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DYNAMICS OF VORTICES FOR THE COMPLEX
GINZBURG–LANDAU EQUATION

EVELYNE MIOT

We study a complex Ginzburg–Landau equation in the plane, which has the form of a Gross–Pitaevskii
equation with some dissipation added. We focus on the regime corresponding to well-prepared unitary
vortices and derive their asymptotic motion law.

1. Introduction

We study the dynamics of vortices for a complex Ginzburg–Landau equation on the plane, namely

δ

|log ε|
∂t uε +αi∂t uε =1uε +

1
ε2 uε(1− |uε|2), (CGL)ε

where uε : R+×R2
→ R2 is a complex-valued map. Here δ, α, and ε denote positive real parameters,

and we will mainly focus on the asymptotics as ε tends to zero while δ and α are kept fixed. Up to a
change of scale, we may further assume that α = 1, and we set kε = δ/|log ε|. The complex Ginzburg–
Landau equation (CGL)ε reduces to the Gross–Pitaevskii equation when δ = 0 and to the parabolic
Ginzburg–Landau equation when α = 0. Both the Gross–Pitaevskii and the Ginzburg–Landau equations
have been widely investigated in the regime we will consider (see, for example, [Colliander and Jerrard
1998; Lin and Xin 1999; Jerrard and Spirn 2008; Bethuel et al. 2008] for the Gross–Pitaevskii equation
and [Jerrard and Soner 1998; Serfaty 2007; Bethuel et al. 2007] and references therein for the parabolic
Ginzburg–Landau equation). Typical functions uε in this regime are given explicitly by

u∗ε(ai , di )(z) :=
l∏

i=1

uε,di (z− ai )=

l∏
i=1

f1,di

(
|z− ai |

ε

)(
z− ai

|z− ai |

)di

,

where the points ai ∈ R2, di = ±1, and the functions f1,di : R
+
7→ [0, 1], which satisfy f1,di (0) = 0,

f1,di (+∞) = 1, are in some sense optimal profiles. The points ai are called the vortices of the fields
u∗ε and the di their degrees. This class of functions u∗ε is, of course, not invariant by any of the flows
corresponding to these equations, but it is not far from it (see the notion of well-preparedness in Definition
1.2). In particular, it is possible to define notions of point vortices for solutions of (CGL)ε, at least in
an asymptotic way as ε→ 0, and to study their dynamics. This dynamics is eventually governed by a
system of ordinary differential equations, at least before collisions.
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Two relevant quantities in the study of vortex dynamics are the Ginzburg–Landau energy

Eε(u)=
∫

R2
eε(u) dx =

∫
R2

|∇u|2

2
+
(1− |u|2)2

4ε2 dx

through its energy density eε(u), and the Jacobian

Ju = 1
2 curl(u×∇u)

through its primitive j (u)= u×∇u. In the regime we will consider, one has

eε(uε)
|log ε|

dx ⇀π

l∑
i=1

δai and Juε dx ⇀π

l∑
i=1

diδai

as ε→ 0, which describes asymptotically the positions and degrees of the vortices. The quantity eε(uε)
has been especially used in the study of the parabolic Ginzburg–Landau equation, while j (uε) has been
used in the study of the Gross–Pitaevskii equation. Here, we will rely on both of them.

In the case of the domain being the entire plane R2, which we consider here, the reference fields
u∗ε(ai , di ) have infinite Ginzburg–Landau energy Eε whenever d =

∑
di 6= 0. In [Bethuel and Smets

2007], a notion of renormalized energy for such data — not to be confused with the one in [Bethuel et al.
1994] — was introduced to solve the Cauchy problem for the Gross–Pitaevskii equation. This notion was
later used in [Bethuel et al. 2008] to study the dynamics of vortices for the Gross–Pitaevskii equation in
the plane. Our definition of well-prepared data below and part of the subsequent analysis is borrowed
from this last reference.

The complex Ginzburg–Landau equation (CGL)ε, either in the plane or on the real line, has been
widely considered in the literature, especially as a model for amplitude oscillation in weakly nonlinear
systems undergoing a Hopf bifurcation (see [Aranson and Kramer 2002] for a survey). The mathemat-
ical analysis of vortices for (CGL)ε was initiated in [Lin and Xin 1999], where it was presented as an
alternative approach (a regularized version) for the study of the Gross–Pitaevskii equation. We believe,
however, that the conclusion regarding the dynamics of vortices for (CGL)ε in [Lin and Xin 1999] is
erroneous, and that Theorem 1.3 represents the correct version.

After the completion of this work we were informed that Kurzke, Melcher, Moser, and Spirn [Kurzke
et al. 2008] independently obtained similar results concerning the dynamics of vortices for (CGL)ε in
bounded and simply connected domains.

Renormalized energy and the Cauchy problem. As mentioned, for d =
∑

di 6= 0 the Ginzburg–Landau
energy of u∗ε(ai , di ) is infinite. It can actually be computed that∫

R2

|∇|u∗ε(ai , di )||
2

2
+
(1− |u∗ε(ai , di )|

2)2

4ε2 dz <+∞,

whereas as |z| → +∞,

|∇u∗ε(ai , di )|
2(z)∼

d2

|z|2
,

so that ∫
R2

|∇u∗ε(ai , di )|
2

2
=+∞.
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The renormalized energy introduced in [Bethuel and Smets 2007] is obtained by subtracting the divergent
part of the gradient at infinity. More precisely, given a smooth map Ud such that

Ud =

(
z
|z|

)d

on R2
\ B(0, 1),

we have as |z| → +∞
|∇u∗ε(ai , di )|

2
∼ |∇Ud |

2

and one may define

Eε,Ud (u
∗

ε(ai , di )) := lim
R→+∞

∫
B(R)

(
eε(u∗ε(ai , di ))−

1
2 |∇Ud |

2)<+∞. (1-1)

This definition extends to a larger class of functions, and is a useful ingredient in solving the Cauchy
problem. Following Bethuel and Smets, we define

V=
{
U ∈ L∞(R2,C) : ∇kU ∈ L2 for all k ≥ 2, (1− |U |2) ∈ L2, ∇|U | ∈ L2}.

In particular, the space V contains all the maps u∗ε as well as the reference maps Ud . Our first result,
which we prove in the Appendix, establishes global well-posedness in the class V+H 1(R2). (In passing,
we mention that Ginibre and Velo [1997] investigated the Cauchy problem in local spaces for a more
general class of complex Ginzburg–Landau equations.)

Theorem 1.1. Let u0=U+w0 be in V+H 1(R2). There exists a unique global solution u to (CGL)ε such
that u∈C0({U }+H 1(R2)). If we write u(t)=U+w(t), thenw is the unique solution in C0(R+, H 1(R2))

to {
(kε + i)∂tw =1w+ fU (w),

w(0)= w0,
(1-2)

where
fU (w)=1U + ε−2(U +w)(1− |U +w|2).

In addition, w satisfies

w ∈ L1
loc
(
R+, H 2(R2)

)
∩ L∞loc

(
R∗
+
, L∞(R2)

)
, ∂tw ∈ L1

loc
(
R+, L2(R2)

)
, w ∈ C∞

(
R∗
+
,C∞(R2)

)
.

Finally, the functional Eε,U (u) := Eε,U (w) defined by

Eε,U (u)=
∫

R2

|∇w|2

2
−

∫
R2
1U ·w+

∫
R2

(1− |U +w|2)2

4ε2

satisfies
d
dt

Eε,U (u)=−kε

∫
R2
|∂tw|

2 dx for all t ≥ 0.

As a matter of fact, it follows from integration by parts that if u ∈ {U }+H 1(R2) is as in Theorem 1.1
and if U satisfies in addition |∇U (x)| ≤ C/

√
|x |, then

Eε,U (u(t))≡ Eε,U (u(t))= lim
R→+∞

∫
B(R)

(
eε(u(t))− 1

2 |∇U |2
)

dx .

The functions u∗ε(ai , di ) are not H 1 perturbations of one another, even for fixed d =
∑

di , unless
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algebraic relations connect the ai and di . To handle a class of functions containing all the u∗ε , it is useful
to introduce on the set V the equivalence relation defined, for U,U ′ ∈ V, by

U ∼U ′ ⇐⇒ deg∞(U )= deg∞(U
′) and |∇U |2− |∇U ′|2 ∈ L1(R2).

Denoting by [U ] the corresponding equivalence class of U , we observe that u∗ε(ai , di )∈ [Ud ] for any con-
figuration (ai , di ) such that

∑
di = d. Therefore the space [Ud ]+H 1(R2) contains all H 1 perturbations

of reference maps u∗ε of degree d at infinity.
For a map u in [Ud ] + H 1(R2), we may now define

Eε,[Ud ](u) := lim
R→+∞

∫
B(R)

(
eε(u)− 1

2 |∇Ud |
2),

which is a finite quantity. Moreover, for any solution u ∈ C0({U } + H 1(R2)) with U ∈ [Ud ], we infer
from Theorem 1.1 that

d
dt

Eε,[Ud ](u)=
d
dt

Eε,U (u)=−kε

∫
R2
|∂t u|2,

which means that the renormalized energy has the same dissipation rate as the Ginzburg–Landau energy
in the finite energy case d = 0.

Statement of the main result. In the sequel, An denotes the annulus B(2n+1) \ B(2n) for n ∈ N, so that
R2
= B(2n0)∪

(⋃
n≥n0

An
)
.

Definition 1.2. Let a1, . . . , al be l distinct points in R2, di ∈ {−1,+1} for i = 1, . . . , l and set d =
∑

di .
Let (uε)0<ε<1 be a family of maps in [Ud ] + H 1(R2). We say that (uε)0<ε<1 is well-prepared with
respect to the configuration (ai , di ) if there exist R = 2n0 > max |ai | and a constant K0 > 0 such that,
with Eε(u, B)≡

∫
B eε(u), the following conditions are satisfied:

lim
ε→0

∥∥Juε −π
l∑

i=1
diδai

∥∥
W 1,∞

0 (B(R))∗ = 0, (WP1)

sup
0<ε<1

Eε(uε, An)≤ K0 for all n ≥ n0, (WP2)

lim
ε→0

(
Eε,[Ud ](uε)−Eε,[Ud ](u

∗

ε(ai , di ))
)
= 0. (WP3)

Theorem 1.3. Let (u0
ε)0<ε<1 in [Ud ]+H 1(R2) be a family of well-prepared initial data with respect to the

configuration (a0
i , di ) with di =±1, and let (uε(t))0<ε<1 in C(R+, [Ud ]+H 1(R2)) be the corresponding

solution of (CGL)ε. Let {ai (t)}{i=1,...,l} denote the solution of the ordinary differential equation{
π ȧi (t)= Ci (δdi I2− J2)∇ai W,

ai (0)= ai ,
i = 1, . . . , l, (1-5)

where Ci =−di/(1+δ2), I2 =
( 1

0
0
1

)
, J2 =

(0
1
−1

0

)
, and W is the Kirchhoff–Onsager functional defined by

W (ai , di ) = −π
∑

i 6= j di d j log |ai − a j |. Denote by [0, T ∗) its maximal interval of existence. Then, for
every t ∈ [0, T ∗), the family (uε(t))0<ε<1 is well-prepared with respect to the configuration (ai (t), di ).
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2. Evolution formula for uε

We now recall or derive a number of evolution formulae involving quantities related to uε which we
introduce now.

Notation. For x= (x1, x2)∈R2, we set x⊥=J2x= (−x2, x1), or x⊥= i x under the standard identification
of R2 with C. For z and z′∈C, we denote by z·z′=Re(zz̄′) the scalar product and z×z′= z⊥·z′=−Im(zz̄′)
the exterior product of z and z′ in R2. For Ea : R2

→ R2, we define curl(Ea)= ∂1a2− ∂2a1. If u : R2
→ C,

we denote by
j (u)= u×∇u = iu · ∇u = u⊥ · ∇u

the linear momentum and by
J (u)= ∂1u× ∂2u = det(∇u)

the Jacobian of u. For u ∈ H 1
loc(R

2), it can be checked that J (u) = 1
2 curl j (u) in the distribution sense.

On the set where u does not vanish, we have for k = 1, 2

∂ku = ∂ku ·
u
|u|

u
|u|
+ ∂ku ·

iu
|u|

iu
|u|
.

This yields

∂ku = ∂k |u|
u
|u|
+

jk(u)
|u|

u⊥

|u|
; (2-1)

hence

∂ku · ∂lu = ∂k |u| ∂l |u| +
jk(u) jl(u)
|u|2

, (2-2)

and it follows that

|∇u|2 =
∣∣∇|u|∣∣2+ | j (u)|2

|u|2
. (2-3)

The Hopf differential of u is defined as

ω(u)= |∂1u|2− |∂2u|2− 2i∂1u · ∂2u = 4∂zu∂z̄u.

It follows from (2-2) that ω(u) may be rewritten in terms of the components of ∇|u| and j (u) as

ω(u)= ∂1|u|2− ∂2|u|2− 2i∂1|u| ∂2|u| +
1
|u|2

(
j2
1 (u)− j2

2 (u)− 2i j1(u) j2(u)
)
. (2-4)

We recall that the Ginzburg–Landau energy density is defined by

eε(u)=
|∇u|2

2
+
(1− |u|2)2

4ε2 =
|∇u|2

2
+ V (u),

and we set

µε(u)=
eε(u)
|log ε|

.

In view of (2-3), we then have

eε(u)= eε(|u|)+
| j (u)|2

|u|2
. (2-5)
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Finally, we write the right-hand side in (CGL)ε as

∇E(u)=∇Eε(u)=1u+
1
ε2 u(1− |u|2).

Evolution formulae involving the Jacobian and the energy density. For a smooth map u in space-time,
direct computations by integration by parts yield for the energy

d
dt

∫
R2

eε(u)ϕ dx =−
∫

R2
∂t u · ∇E(u)ϕ dx −

∫
R2
∇ϕ · (∂t u · ∇u) dx (2-6)

and for the Jacobian
d
dt

∫
R2

J (u)χ dx =−
∫

R2
∇
⊥χ · (∂t u⊥ · ∇u) dx, (2-7)

where χ, ϕ ∈ D(R2).
At the same time, the Pohozaev identity (see [Bethuel et al. 2005], for example) yields, for any vector

field EX ∈ D(R2,C),∫
R2

EX · (∇E(u) · ∇u) dx =−
∫

R2
Re
(
ω(u)

∂ EX
∂ z̄

)
dz+

∫
R2

V (u)∇ · EX dx .

In particular, the choice of EX = ∇ϕ, for which ∂z̄ X = 2
∂2ϕ

∂ z̄2 , or EX = ∇⊥χ , for which ∂z̄ X = 2i
∂2χ

∂ z̄2 ,
leads to ∫

R2
∇ϕ · (∇E(u) · ∇u) dx =−2

∫
R2

Re
(
ω(u)

∂2ϕ

∂ z̄2

)
dz+

∫
R2

V (u)1ϕ dx

and ∫
R2
∇
⊥χ · (∇E(u) · ∇u) dx = 2

∫
R2

Im
(
ω(u)

∂2χ

∂ z̄2

)
dz. (2-8)

We next consider a solution u of (CGL)ε, which is smooth in view of Theorem 1.1. In this case,
∇E(u) and ∂t u are related by

∂t u =
1
αε
∇E(u)= βε∇E(u), (2-9)

where αε =
δ

|log ε|
+ i = kε + i . Using (2-9) in (2-6) and (2-7), we obtain

d
dt

∫
R2

eε(u)ϕ dx =−kε

∫
R2
|∂t u|2ϕ dx −

∫
R2
∇ϕ · (βε∇E(u) · ∇u) dx,

d
dt

∫
R2

J (u)χ dx =−
∫

R2
∇
⊥χ · (iβε∇E(u) · ∇u) dx .

To get rid of the terms of the form
∫

R2

EX · (i∇E(u) · ∇u), we compute

d
dt

∫
R2
[bJ (u)χ − aeε(u)ϕ],



DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG–LANDAU EQUATION 165

where βε = a+ ib. This yields
d
dt

∫
R2
[bJ (u)χ−aeε(u)]ϕ

= (b2
+a2)

∫
R2
∇
⊥χ ·(∇E ·∇u)+akε

∫
R2
|∂t u|2 dx+

∫
R2
(∇ϕ−∇⊥χ)·(a(a+ib)∇E ·∇u). (2-10)

Since a = kε/(k2
ε + 1) and b=−1/(k2

ε + 1), we finally infer from this relation and (2-8) the following:

Proposition 2.1. Let u solve (CGL)ε. Then for all ϕ, χ ∈ D(R2),

d
dt

∫
R2
[J (u)χ + kεeε(u)ϕ] = −k2

ε

∫
R2
|∂t u|2ϕ− 2

∫
R2

Im
(
ω(u)

∂2χ

∂ z̄2

)
+ Rε(t, ϕ, χ, u),

where the remainder Rε is defined by either of the equivalent relations

Rε(t, ϕ, χ, u)=−kε

∫
R2
(∇ϕ−∇⊥χ) · (βε∇E(u) · ∇u),

Rε(t, ϕ, χ, u)=−kε

∫
R2
(∇ϕ−∇⊥χ) · (∂t u · ∇u).

Proposition 2.1 allows us to derive formally the motion law for the vortices. Indeed, assume that we
have

Juε(t)→ π

l∑
i=1

diδai (t), µε(uε)(t)→ π

l∑
i=1

δai (t),

and uε(t) is close in some sense to u∗ε(ai (t), di ) and therefore to u∗(ai (t), di ), where

u∗(ai , di )=

l∏
i=1

(
z− ai

|z− ai |

)di

.

We use Proposition 2.1 with u formally replaced by u∗(ai (t), di ) and with choices of test functions ϕ
and χ which are localized and affine near each point ai (t) and satisfy ∇ϕ = ∇⊥χ there, so that both
terms k2

ε

∫
R2 |∂t u|2ϕ and Rε(t, ϕ, χ, uε) vanish in the limit ε→ 0. Using the formula

2
∫

R2
Im
(
ω
(
u∗(ai , di )

)∂2χ

∂ z̄2

)
= 2π

∑
j 6=i

di d j
(ai − a j )

⊥

|ai − a j |
2 · ∇χ(ai )

from [Bethuel et al. 2005, (7.2)], we then obtain that for each i

πdi ȧi (t) · ∇χ(ai )+ δπ ȧi (t) · ∇ϕ(ai )=−2π
∑
j : j 6=i

di d j
(ai − a j )

⊥

|ai − a j |
2 · ∇χ(ai ).

Taking into account that ∇ϕ(ai )=∇
⊥χ(ai ), we infer that

π
(
di ȧi (t)− δȧ⊥i (t)

)
· ∇χ(ai )=−2π

∑
j 6=i

di d j
(ai − a j )

⊥

|ai − a j |
2 · ∇χ(ai ),

which yields the ODE (1-5).
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In Sections 4 and 5, in order to give a rigorous meaning to the previous computations, we will
prove the convergence of the Jacobians and of the energy densities to the weighted sums of Dirac
masses mentioned above, and then show that both the energy dissipation k2

ε

∫
R2 |∂t uε|2 and the remainder

Rε(t, ϕ, χ, uε) vanish when ε tends to zero. In Section 6, we will establish some asymptotic control of
ω(uε)−ω(u∗(ai ), di ) away from the vortices in terms of the excess energy Eε,[Ud ](uε)−Eε,[Ud ](u

∗
ε(ai )),

and finally prove that this excess energy converges to zero by mean of a Grönwall inequality.

3. Some results on the renormalized energy

Degree and energy at infinity. In this paragraph, we collect some results from [Bethuel et al. 2008]
related to the energy at infinity, which require the notion of degree at infinity.

Let A be the annulus B(2) \ B(1). We define

Td =
{
u ∈ H 1(A) : some B ⊂ B(u) satisfies |B| ≥ 3

4 and deg(u, ∂B(r))= d for all r ∈ B
}
,

where B(u) is the set of radii r ∈ [1, 2] such that the restriction u|∂B(r) is continuous and does not vanish,
and we define the sublevel sets

E3ε = {u ∈ H 1(A) : Eε(u, A) < 3}.

The topological sector of degree d is then defined as

S3d,ε = E3ε ∩ Td .

Theorem 3.1 [Almeida 1999]. For all3> 0, there exists ε3> 0 such that for every 0<ε< ε3, we have

E3ε =
⋃
d∈Z

S3d,ε.

The map deg : E3ε → Z, u ∈ S3d,ε 7→ d is continuous.

For the rest of this section, we fix 3>3d = 2πd2 log 2 and we set

Sd ≡ S3d,ε3,

so in particular the map Ud belongs to Sd , since |Ud | ≡ 1 on A and
∫

A
1
2 |∇Ud |

2
= πd2 log 2.

One easily infers from Theorem 3.1 that if u ∈ [Ud ] + H 1(R2), then for any sufficiently large k the
map u(2k

· ) belongs to some Sd(k). In fact, one can find a radius from which d(k)≡ d , that is, u has well
defined and constant degree d at infinity.

Proposition 3.2 [Bethuel et al. 2008]. Let d ∈Z,3>3d and u ∈ [Ud ]+H 1(R2). There exists an integer
n ∈ N∗ such that for any k ≥ n, the map uk : z ∈ A 7→ u(2kz) belongs to the topological sector Sd . We
denote by n(u) the smallest integer with this property.

For maps u ∈ [Ud ] + H 1(R2) satisfying in addition a uniform energy bound on large annuli one can
characterize n(u) as follows (see, for example, the proof of Lemma 7.1 in [Bethuel et al. 2008]).

Lemma 3.3. Let 3>3d be given and 0< ε < ε3. Let u ∈ [Ud ]+ H 1(R2) and assume that there exists
some n0 ∈ N∗ such that Eε(u, An) < 3 for all n ≥ n0. Then n(u)≤ n0.

The next lemma provides a lower bound for the energy on large annuli.
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Lemma 3.4 [Bethuel et al. 2008]. Let d ∈ Z and u ∈ [Ud ] + H 1(R2). Then, for any k ≥ n(u), we have
for 0< ε < ε3 ∫

Ak

(
eε(u)− 1

2 |∇Ud |
2)
≥−C2−2kε2.

One can then derive from Lemma 3.4 an upper bound for Eε(u, B)− Eε(u∗ε, B) on large balls B in
terms of the excess energy Eε,[Ud ](u)−Eε,[Ud ](u

∗
ε). We will therefore be able to rely on properties of the

Ginzburg–Landau energy on bounded domains in the course of the proof of Theorem 1.3.

Lemma 3.5 [Bethuel et al. 2008]. Let d ∈ Z, u ∈ [Ud ] + H 1(R2), a1, . . . , al ∈ R2 and d1, . . . , dl ∈ Z∗

such that d =
∑

di . Let k ≥ 1+max{log2 |a1|, . . . , log2 |al |, n(u)} and R = 2k . Then, we have∫
B(R)

[
eε(u)− eε(u∗ε(ai , di ))

]
≤ Eε,[Ud ](u)−Eε,[Ud ](u

∗

ε(ai , di ))+
C
R
,

where C depends only on l and d.

Explicit identities for the reference map u∗
ε. We present here an account of some classical identities for

the energy of u∗ε , borrowed from [Bethuel et al. 2008].
We consider a configuration (ai , di ) with di ∈ Z∗ and we set d =

∑
di . We begin with an explicit

expansion near each vortex a j .

Lemma 3.6. For j ∈ {1, . . . , l} and 0< ε < 1,∫
B(a j ,r)

eε(u∗ε(ai , di ))= πd2
j log

(r
ε

)
+ γ(|d j |)+ O

( r
ra

)2
+ O

(
ε
r

)2
,

where γ(|d j |) is some universal constant.

On the other hand, u∗ε(ai , di ) behaves as u∗(ai , di ) away from the vortices, so its energy on �R,r =

B(R) \
⋃l

j=1 B(a j , r) is close to the energy of u∗(ai , di ) on �R,r which we can compute explicitly
[Bethuel et al. 1994]. Combining the previous expansions, we obtain:

Proposition 3.7. Let
ra =

1
8 min

i 6= j
{|ai − a j |}, Ra =max{|ai |}.

Then for R > Ra + 1, we have as ε→ 0∫
B(R)

eε(u∗ε(ai , di ))= π

l∑
i=1

d2
i |log ε| +W (ai , di )+

l∑
i=1

γ(|di |)+πd2 log R+ O
( Ra

R

)
+ oε(1).

Observe that πd2 log R =
∫

B(R)\B(1)

1
2 |∇Ud |

2. This yields an expansion for the renormalized energy:

Corollary 3.8. When ε→ 0,

Eε,[Ud ](u
∗

ε(ai , di ))= π

l∑
i=1

d2
i |log ε| +W (ai , di )+

l∑
i=1

γ(|di |)−

∫
B(1)

|∇Ud |
2

2
+ oε(1).

Concerning the energy on annuli, we finally quote the following:
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Lemma 3.9. For R > Ra , we have∫
B(2R)\B(R)

eε(u∗ε(ai , di ))= πd2 log 2+ O
( Ra

R

)
or, in view of the properties of Ud at infinity,∫

B(2R)\B(R)
eε(u∗ε(ai , di ))=

∫
B(2R)\B(R)

|∇Ud |
2

2
+ O

( Ra

R

)
.

4. Coercivity for the renormalized energy

In this section, we supplement some results from [Bethuel et al. 2008] and [Jerrard and Spirn 2007] with
estimates to be used later. These results establish precise estimates in various norms for maps u being
close to u∗ε(ai , di ) in terms of the excess energy with respect to the configuration (ai , di ). For a map
u ∈ [Ud ] + H 1(R2) and a given configuration (ai , di ) with di =±1, we define this excess energy 6ε as

6ε =6ε(ai , di )= Eε,[Ud ](u)−Eε,[Ud ](u
∗

ε(ai , di )).

We also set
ra =

1
8 min

i 6= j
{|ai − a j |}, Ra = max

i=1,...,l
{|ai |}.

Theorem 4.1. Let r ≤ ra and let 2n0 = R0 > Ra be such that
⋃l

i=1 B(ai , r)⊂ B(R0). There exist ε0 and
η0, depending only on l, r , ra , Ra , and R0, such that for all u ∈ [Ud ] + H 1(R2) satisfying

η = ‖Ju−π
l∑

i=1

diδai‖W 1,∞
0 (B(R0))∗

≤ η0 and 2n(u)
≤ R0, (4-1)

we have∫
B(R0)\∪B(ai ,r)

eε(|u|)+
1
8

∣∣∣∣ j (u)
|u|
− j (u∗(ai , di ))

∣∣∣∣2 ≤6ε +C
(
η, ε,

1
R0

)
for ε ≤ ε0, (4-2)

where C is a continuous function on R3 that vanishes at the origin. Furthermore, there exist points
bi ∈ B(ai , r/2) such that, for some continuous functions f on R2 and g on R4, we have∥∥∥Ju−π

l∑
i=1

diδbi

∥∥∥
W 1,∞

0 (B(R0))∗
≤ f (R0, 6ε)ε|log ε|, (4-3)

∥∥∥µε(u)−π l∑
i=1

δbi

∥∥∥
W 1,∞

0 (B(R0))∗
≤

g(R0, r, ra, 6ε)

|log ε|
. (4-4)

Proof. Except for the energy concentration (4-4), each of the statements is proved in [Bethuel et al. 2008,
Theorem 6.1]. We first infer from (4-1) that

‖Ju−πdiδai‖W 1,∞
0 (B(ai ,r))∗

≤ η0 for all i .

If η0 is small enough with respect to r this gives in view of [Jerrard and Spirn 2007, Theorem 3] that K i
0≥

C(r), where K i
0 is the local excess energy near the vortex i defined by K i

0 =
∫

B(ai ,r)
eε(u)−π log

(
r/ε

)
.
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It follows that ∫
B(ai ,r)

eε(u)≤
∫

B(R0)

eε(u)−π(l − 1)|log ε| −C(r).

At the same time, since n(u)≤ n0, we have according to Lemma 3.5 and Proposition 3.7∫
B(R0)

eε(u)≤
∫

B(R0)

eε(u∗ε(ai , di ))+6ε +
C
R0
≤ πl|log ε| +6ε +C.

This first implies that K i
0 ≤ C +6ε. Also, replacing r by 3r/4 we see that∫

B(R0)\∪B(ai ,3r/4)
µε(u)≤

C +6ε
|log ε|

,

where C only depends on R0, r, ra, Ra .
Now, according to [Jerrard and Spirn 2007, Theorem 2′], the energy density µε(u) on B(ai , r) is

concentrated at the point bi ∈ B(ai , r/2) where J (u) concentrates. From [Colliander and Jerrard 1999,
Theorem 3.2.1] and the estimate for K i

0 it follows that

‖µε(u)−πδbi‖W 1,∞
0 (B(ai ,r))∗

≤
f (6ε,C)
|log ε|

.

Combining this and the upper bound for the energy density outside the vortex balls yields (4-4). �

5. Convergence to Lipschitz vortex paths

In this section, we establish compactness for the Jacobians and the energy densities in a more general
situation, replacing assumption (WP3) in Theorem 1.3 by a uniform bound on the initial excess energy.

Theorem 5.1. Let (a0
i , di ) with di = ±1 be a configuration of vortices. Let R = 2n0 and (u0

ε)0<ε<1 in
[Ud ] + H 1(R2) such that

lim
ε→0

∥∥∥Ju0
ε −π

l∑
i=1

diδa0
i

∥∥∥
W 1,∞

0 (B(R))∗
= 0, (WP1)

sup
0<ε<1

Eε(u0
ε, An)≤ K0 for all n ≥ n0, (WP2)

sup
0<ε<1

(
Eε,[Ud ](u

0
ε)−Eε,[Ud ](u

∗

ε(a
0
i , di ))

)
≤ K1. (WP3′)

Then there exist R′ = 2n1 and T > 0 depending only on K1, R, ra0 and Ra0 , a sequence εk → 0 and
l Lipschitz paths bi : [0, T ] → R2 starting from a0

i such that

sup
t∈[0,T ]

∥∥∥Juεk (t)−π
l∑

i=1

diδbi (t)

∥∥∥
W 1,∞

0 (B(R′))∗
→ 0, k→+∞, (5-1)

sup
t∈[0,T ]

∥∥∥µεk (uεk )(t)−π
l∑

i=1

δbi (t)

∥∥∥
W 1,∞(B(R′))∗

→ 0, k→+∞. (5-2)
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Moreover, there exist a constant C0 > 0 depending only on ra0, R, K1 and K0 and a constant C1 > 0
depending on ra0, R and K1 such that for all t ∈ [0, T ] and k ∈ N, we have

Eεk (uεk (t), An)≤ C0 for all n ≥ n1, (5-3)

Eεk ,[Ud ](uεk (t))−Eεk ,[Ud ](u
∗

εk
(bi (t), di ))≤ C1. (5-4)

Proof. The proof is very similar to that of [Bethuel et al. 2008, Theorem 4]. In the sequel, C will be a
constant depending only on ra0 , R, Ra0 , and K1. To simplify the notations further we will set ra = ra0

and Ra = Ra0 .
We first consider 3>max(K0,3d). Thanks to Lemma 3.3 and (WP2), there exists ε3 > 0 such that

n(u0
ε)≤ n0 for all 0< ε < ε3. We fix such a 3 and from now on only consider 0< ε < ε3.

We next introduce the smallest integer n1 ≥ n0 such that 2n1 ≥ max(R, Ra+ra) and define R′ = 2n1 .
In the remainder of the proof, we write ‖ · ‖ instead of ‖ · ‖W 1,∞

0 (B(R′))∗ . Our aim is to apply Theorem 4.1
to each uε(t) for the choice r = ra and R0= R′. Let η0 and ε0 be the constants provided by Theorem 4.1
for this choice. First, thanks to (WP2) and (WP3′), the convergence in (WP1) still holds on the larger ball
B(R′) (see the proof of Lemma 7.3 in [Bethuel et al. 2008]). Therefore, since t 7→ Juε(t) ∈ L1(B(R′))
is continuous for each ε, there exists a time Tε > 0 such that∥∥∥Juε(s)−π

l∑
i=1

diδa0
i

∥∥∥< η0, ∀s ∈ [0, Tε).

We take Tε as the maximum time smaller than T ∗ having this property, where T ∗ is as in Theorem 1.3.
Meanwhile, since t 7→ Eε(uε(t), An) is uniformly continuous with respect to n and 3> K0, we infer

from (WP2) that there exists T ′ε > 0 such that for s ∈ [0, T ′ε ]

Eε(uε(s), An) < 3 for all n ≥ n1,

so according to Lemma 3.3 we have n(uε(s)) ≤ n1 for s ∈ [0, T ′ε ]. We take T ′ε ≤ T ∗ maximal with this
property.

We claim that there exists a constant D depending on K1, ra , R, and K0 such that for all s ∈
[0,min(Tε, T ′ε)),

Eε(uε(s), An)≤ D for all n ≥ n1. (5-5)

Consequently, if we assume from the beginning that3>max(K0,3d , D), then T ′ε ≥Tε, and it follows
from Lemma 3.3 that n(uε(s))≤ n1 on [0, Tε].

Proof of (5-5). As in [Bethuel et al. 2008], we decompose each Eε(uε(s), An)− Eε(u∗ε(a
0
i , di ), An), for

n ≥ n1, as
+∞∑
k=n1
k 6=n

(
Eε(u∗ε(a

0
i , di ), Ak)− Eε(uε(t), Ak)

)
+ Eε(u∗ε(a

0
i , di ), B(R′))− Eε(uε(s), B(R′))+Eε,[Ud ](uε(s))−Eε,[Ud ](u

∗

ε(a
0
i , di )).

We first handle each term of the sum in the right. In view of Lemmas 3.4 and 3.9, we have for k ≥ n1

Eε(uε(s), Ak)≥−Cε22−2k
+

∫
Ak

|∇Ud |
2

2
≥ Eε(u∗ε(a

0
i , di ), Ak)−C(Ra)2−k

−Cε22−2k,
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so we deduce that
+∞∑
k=n1
k 6=n

(
Eε(u∗ε(a

0
i , di ), Ak)− Eε(uε(s), Ak)

)
≤ C.

Next, we infer from the definition of Tε and [Jerrard and Spirn 2007, Theorem 3] that∫
B(a0

i ,ra)

eε(uε(s))≥ π |log ε| −C.

Observe that R′ is chosen so that ∪B(a0
i , ra)⊂ B(R′), so this leads to

Eε(uε(s), B(R′))≥ πl|log ε| −C.

Using Proposition 3.7, we thus find

Eε(u∗ε(a
0
i , di ), B(R′))− Eε(uε(s), B(R′))≤ C. (5-6)

Finally, we define 60
ε (s) := Eε,[Ud ](uε(s))− Eε,[Ud ](u

∗
ε(a

0
i , di )). Since Eε,[Ud ](uε(t)) is nonincreasing,

(WP3′) yields 60
ε (s)≤ Eε,[Ud ](u

0
ε)−Eε,[Ud ](u

∗
ε(a

0
i , di ))≤ K1, and (5-5) follows. �

We can now apply Theorem 4.1 to each uε(t) on [0, Tε]. This provides points bεi (s) ∈ B
(
a0

i , ra/2
)

for
0≤ s ≤ Tε. Since 60

ε (s)≤ K1, the estimate (4-2) turns into∫
�R′,ra

eε(|uε(s)|)+
1
8

∣∣∣∣ j (uε(s))
|uε(s)|

− j (u∗(a0
i , di ))

∣∣∣∣2 ≤ C,

where �R′,ra = B(R′) \
⋃

B(a0
i , ra). Also, we have by (2-4) and (2-5)∫

�R′,ra

eε(uε(s))≤ C (5-7)

and
‖ω(uε(s))‖L1(�R′,ra )

≤ C, (5-8)

where C = C(R, ra, K1). For convenience, we will now write µε instead of µε(uε).
Given any configuration (ai , di ), we denote by H(ai ) the set of functions χ, ϕ ∈ D(R2) such that

χ =

l∑
i=1

χi , ϕ =

l∑
i=1

ϕi ,

where for all i

χi , ϕi ∈ D
(

B
(

ai ,
3ra

2

))
, ∇ϕi =∇

⊥χi on B(ai , ra),

and χi (hence ϕi ) is affine on B(ai , ra) with |∇χi (ai )| = |∇ϕi (ai )| ≤ 1.
By definition of ra such functions χ and ϕ always exist, and we can moreover estimate their L∞

norms by

‖Dϕ‖∞, ‖Dχ‖∞ ≤
C
ra
, ‖D2ϕ‖∞, ‖D2χ‖∞ ≤

C
r2

a
.

We next control the remainder terms appearing in Proposition 2.1.
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Lemma 5.2. There exists a constant C = C(ra, R, K1, T ∗) such that∫ Tε

0

∫
R2

|∂t uε|2

|log ε|2
ds ≤

C
|log ε|

and for all χ, ϕ ∈H(a0
i ) ∣∣∣∣∫ Tε

0

∫
R2
(∇⊥χ −∇ϕ) ·

∂t uε · ∇uε
|log ε|

ds
∣∣∣∣≤ C
|log ε|1/2

.

Proof. To prove the first inequality, we use Theorem 1.1 and obtain

δ

|log ε|

∫ Tε

0

∫
R2
|∂t uε|2 = Eε,[Ud ](u

0
ε)−Eε,[Ud ](uε(Tε))≤ K1+Eε,[Ud ](u

∗

ε(a
0
i , di ))−Eε,[Ud ](uε(Tε)).

Since n(uε(Tε))≤ n1 we have by Lemma 3.5

Eε,[Ud ](u
∗

ε(a
0
i , di ))−Eε,[Ud ](uε(Tε))≤

∫
B(R′)

eε(u∗ε(a
0
i , di ))−

∫
B(R′)

eε(uε(Tε))+
C
R′
,

which is bounded in view of (5-6). It then suffices to divide all terms by |log ε|.
For the second assertion, we set ξ = ∇⊥χ −∇ϕ, which has compact support in A =

⋃
Ai , where

Ai = B(a0
i , 3ra/2) \ B(a0

i , ra), and we apply the Cauchy–Schwarz inequality. We obtain(∫ Tε

0

∫
R2
(∇⊥χ −∇ϕ) ·

∂t uε · ∇uε
|log ε|

)2

≤

(∫ Tε

0

∫
R2

|∂t uε|2

|log ε|2

)
·

(∫ Tε

0

∫
A
|∇uε|2|ξ |2

)
.

Since A ⊂�R′,ra and sup
0<ε<1

Tε ≤ T ∗, we infer from (5-7) that

∫ Tε

0

∫
A
|∇uε|2|ξ |2 ≤ ‖ξ‖2∞

∫ Tε

0

∫
A
|∇uε|2 ≤ CT ∗‖ξ‖2

∞
,

and the conclusion finally follows from the first part of the proof. �

Lemma 5.3. There exists T = T (ra, Ra, R, K1) > 0 such that

lim inf
ε→0

Tε ≥ T .

Proof. We first show that for (χ, ϕ) ∈H(a0
i ), for s, t ∈ [0, Tε] and i = 1, . . . , l we have∣∣〈χi , Juε(t)− Juε(s)〉+ δ〈ϕi , µε(t)−µε(s)〉

∣∣≤ C |t − s| +
C

|log ε|1/2
. (5-9)

Indeed, we fix i and we invoke Proposition 2.1 for u ≡ uε and the choice of test functions (χi , ϕi ).
Integrating the formula in that proposition over [s, t] yields∣∣〈χi , Juε(t)− Juε(s)〉+ δ〈ϕi , µε(t)−µε(s)〉

∣∣
≤ 2

∫ t

s

∫ ∣∣∣∣Im(ω(uε)∂2χi

∂ z̄2

)∣∣∣∣+ ∫ t

s

∫ ∣∣∣∣ |∂t uε|2

|log ε|2
ϕi + (∇

⊥χi −∇ϕi ) ·
∂t uε · ∇uε
|log ε|

∣∣∣∣,
where ∂2χi/∂ z̄2 has support in Ci ⊂�R′,ra , and it finally suffices to use (5-8) and Lemma 5.2.
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In a second step, we take advantage of the equality
∥∥∥Juε(Tε)−π

l∑
i=1

diδa0
i

∥∥∥≡ η0. We set

νi,ε = di
bεi (Tε)− a0

i

|bεi (Tε)− a0
i |
, i = 1, . . . , l

and we define χi,ε, ϕi,ε so that for x ∈ B(a0
i , ra),

χi,ε(x)= νi,ε · x, ϕi,ε(x)= ν⊥i,ε · x .

We require additionally that χ =
∑
χi,ε and ϕ =

∑
ϕi,ε belong to H(a0

i ); we can moreover choose ϕi,ε

and χi,ε so that their norms in C2(B(R)) remain bounded uniformly in ε. Since bεi (Tε) ∈ B(a0
i , ra/2),

we have |di |
∣∣bεi (Tε)− a0

i

∣∣= diχ
(
bεi (Tε)− a0

i

)
+ δϕ

(
bεi (Tε)− a0

i

)
, so

∥∥∥π l∑
i=1

di (δbεi (Tε)− δa0
i
)
∥∥∥= 〈π l∑

i=1

di (δbεi (Tε)− δa0
i
), χ

〉
+ δ

〈
π

l∑
i=1

(δbεi (Tε)− δa0
i
), ϕ

〉
.

On the other hand, we have∥∥∥Juε(Tε)−π
l∑

i=1

diδa0
i

∥∥∥≤ ∥∥∥Juε(Tε)−π
l∑

i=1

diδbεi (Tε)

∥∥∥+ ∥∥∥π l∑
i=1

di (δbεi (Tε)− δa0
i
)
∥∥∥.

The second term in the right-hand side may be rewritten as

〈
π

l∑
i=1

di (δbεi (Tε)− δa0
i
), χ

〉
+ δ

〈
π

l∑
i=1

(δbεi (Tε)− δa0
i
), ϕ

〉
= A+ B+C,

where

A =
〈
π

l∑
i=1

diδbεi (Tε)− Juε(Tε), χ
〉
+ δ

〈
π

l∑
i=1
δbεi (Tε)−µε(Tε), ϕ

〉
≤ C

(∥∥∥Juε(Tε)−
l∑

i=1
diδbεi (Tε)

∥∥∥+ δ∥∥∥µε(Tε)− l∑
i=1
δbεi (Tε)

∥∥∥),
B =

〈
Juε(Tε)− Juε(0), χ

〉
+ δ

〈
µε(Tε)−µε(0), ϕ

〉
,

C =
〈
Ju0

ε −π
l∑

i=1
diδa0

i
, χ
〉
+ δ

〈
µε(u0

ε)−π
l∑

i=1
δa0

i
, ϕ
〉

≤ C
(∥∥∥Ju0

ε −

l∑
i=1

diδa0
i

∥∥∥+ δ∥∥∥µε(u0
ε)−

l∑
i=1
δa0

i

∥∥∥).
In view of the bound provided by (5-9) for B, estimates (4-3)–(4-4) and the fact that 60

ε (s) ≤ K1 for
0≤ s ≤ Tε, this implies

η0 =

∥∥∥Juε(Tε)−π
l∑

i=1

diδa0
i

∥∥∥≤ C
(
ε|log ε| + |log ε|−1

+ |log ε|−
1
2
)
+CTε,

and letting ε→ 0 yields the conclusion. Lemma 5.3 is proved. �
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Conclusion of the proof of Theorem 5.1. We consider t, s ∈ [0, T ]. Arguing as in the proof of Lemma
5.3 (with Tε and 0 replaced by t and s), we find that for all χ, ϕ belonging to H(a0

i ),∣∣∣∣ l∑
i=1

di
[
χ(bεi (t))−χ(b

ε
i (s))

]
+ δ

[
ϕ(bεi (t))−ϕ(b

ε
i (s))

]∣∣∣∣
≤ C sup

τ∈[0,T ]

(∥∥∥Juε(τ )−
l∑

i=1

diδbεi (τ )

∥∥∥+ δ∥∥∥µε(τ )− l∑
i=1

δbεi (τ )

∥∥∥)
+

∣∣∣〈Juε(t)− Juε(s), χ
〉
+ δ

〈
µε(t)−µε(s), ϕ

〉∣∣∣,
which is bounded by oε(1)+c|t− s| because of (4-3), (4-4) and (5-9). Considering successively χ(x)=
e1 · x and χ(x)= e2 · x on each B(a0

i , ra), we obtain

|bεi (t)− bεi (s)| ≤ c|t − s| + oε(1). (5-10)

Next, using that bεi ∈ B(a0
i , ra) and a standard diagonal argument, we may construct a sequence

(εk)→ 0 and paths bi (t) such that bεk
i (t) converges to bi (t) for all t ∈ Q∩ [0, T ]. We infer then from

(4-3)–(4-4) that the convergence statements (5-1)–(5-2) in Theorem 5.1 hold for these times. Moreover,
in view of (5-10) these paths are Lipschitz on [0, T ] ∩ Q, so that they can be extended in a unique
way to Lipschitz paths (still denoted by bi (t)) on the whole of [0, T ]. We can finally establish that the
convergence (5-1)–(5-2) holds uniformly with respect to t ∈ [0, T ] by again using (5-10) and (4-3)–(4-4).

Finally, we already know from (5-5) that the estimate (5-3) holds for the full family (uε)ε<ε3 . To
show (5-4), we now recall the uniform bound Eε,[Ud ](uε(t))−Eε,[Ud ](u

∗
ε(a

0
i , di ))≤ K1, and observe also

that Corollary 3.8 gives

Eε,[Ud ](u
∗

ε(a
0
i , di ))−Eε,[Ud ](u

∗

ε(bi (t), di ))=W (a0
i , di )−W (bi (t), di )≤ C,

since the bi are continuous and remain separated on [0, T ]. This yields the bound (5-4) and concludes
the proof of Theorem 5.1. �

As mentioned early in the proof of Theorem 5.1, the convergence of the initial data in (WP1) actually
holds on every large ball B(L), L = 2n

≥ R, so we find the same conclusions replacing R by L .

Lemma 5.4 [Bethuel et al. 2008, Lemma 7.3]. There exists a subsequence, still denoted by εk , such that
for all L ≥ 2n1 ,

ηk := sup
[0,T ]

∥∥∥Juεk (t)−π
l∑

i=1

diδbi (t)

∥∥∥
W 1,∞

0 (B(L))∗
→ 0, k→+∞.

For t ∈ [0, T ] and sufficiently large k ∈N, we may therefore apply Theorem 4.1 to uεk (t) with respect
to the configuration (bi (t), di ) and with the choice R0 = L = 2n for each n ≥ n1. We are led to introduce
the excess energy at time t with respect to the configuration (bi (t), di ) by

6εk (t)= Eεk ,Ud (uεk (t))−Eεk ,Ud (u
∗

εk
(bi (t), di )),

which is uniformly bounded on [0, T ] in view of (5-4). Letting first k, then n tend to +∞, we can get
rid of the dependence on R in (4-2).
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Lemma 5.5. For all r ≤ ra/2 and K ≥ 2n1 , we have for sufficiently large k and t, t1, t2 ∈ [0, T ]∫
B(K )\∪B(bi (t),r)

eεk

(
|uεk (t)|

)
+

1
8

∣∣∣∣ j (uεk (t))
|uεk (t)|

− j (u∗(bi (t), di ))

∣∣∣∣2 ≤6εk (t)+C
(
εk, ηk,

1
K

)
.

Therefore, we have as k→+∞

lim sup
k→+∞

∫ t2

t1

∫
B(K )\∪B(bi (t),r)

eεk

(
|uεk (t)|

)
+

1
8

∣∣∣∣ j (uεk )(t)
|uεk (t)|

− j (u∗(bi (t), di ))

∣∣∣∣2 ≤ lim sup
k→+∞

∫ t2

t1
6εk (t).

Thus, the distance between uεk (t) and u∗(bi (t), di ) can be asymptotically controlled by lim sup6εk (t).
We now define the trajectory set

T= {(t, bi (t)), t ∈ [0, T ], i = 1, . . . , l}

and its complement
G= [0, T ]×R2

\T.

Thanks to the uniform bounds in L2
loc(G) provided by Lemma 5.5, we establish:

Proposition 5.6. There exists a subsequence, still denoted εk , such that

j (uεk )

|uεk |
⇀ j (u∗(bi ( · ), di ))

weakly in L2
loc(G) as k→+∞.

Proof. Let B be any bounded subset of R2. According to Lemma 5.4,

curl( j (uεk ))= 2Juεk → 2π
l∑

i=1

diδbi ( · ) = curl
(

j (u∗(bi ( · ), di ))
)

in D′([0, T ]× B). (5-11)

At the same time, we have

div( j (uεk ))→ 0= div
(

j (u∗(bi ( · ), di ))
)

in D′([0, T ]× B). (5-12)

Indeed, since uεk solves (CGL)ε, we obtain by considering the exterior product

kεk uεk × ∂t uεk + uεk · ∂t uεk = uεk ×1uεk = div( j (uεk )),

so we are led to

div
(

j (uεk )
)
= kεk uεk × ∂t uεk +

1
2εk

d
dt

(
|uεk |

2
− 1

εk

)
. (5-13)

Now, applying Lemma 3.5 to uεk , we find

sup
[0,T ]

Eεk (uεk (t), B)≤ πl|log ε| +6εk (t)+C ≤ πl|log εk | +C, (5-14)

where the second inequality is itself a consequence of (5-4). This implies that |uεk |→1 in L2([0, T ]× B).
Moreover, we infer that the second term on the right-hand side of (5-13) converges to zero in the distri-
bution sense on [0, T ]× B. For the first one, it suffices to use the Cauchy–Schwarz inequality combined
with the L2 bound provided by Lemma 5.2 and the already mentioned uniform bounds of |uεk | in L2

loc.
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We then infer from Lemma 5.4 and (5-14) that j (uεk ) is uniformly bounded in L p
loc([0, T ] ×R2) for

all p < 2. This is a consequence of, for example, [Colliander and Jerrard 1999, Theorem 3.2.1 and
subsequent remarks]. We deduce from (5-11) and (5-12) that up to a subsequence, we have

j (uεk ) ⇀ j1 = j (u∗(bi ( · ), di ))+ H (5-15)

weakly in L p
loc([0, T ]×R2), where H is harmonic in x on [0, T ]×R2.

On the other hand, it follows from the first part of Lemma 5.5 that there exists j2 such that, taking
subsequences if necessary, j (uεk )/|uεk |⇀ j2 weakly in L2

loc(G).
Taking into account the strong convergence |uεk |→1 in L2

loc([0, T ]×R2), we obtain j1= j2 ∈ L2
loc(G).

The second part of Lemma 5.5 combined with (5-15) then yields

‖H‖L2
loc(G)
≤ lim inf

k→+∞

∥∥∥∥ j (uεk )

|uεk |
− j (u∗(bi , di ))

∥∥∥∥
L2

loc(G)

≤ CT,

where C depends only on K1, R, and ra , so finally ‖H‖L2([0,T ]×R2) ≤CT . Since H is harmonic in x , we
find that H(t, · ) is bounded on R2 for almost every t and therefore is identically zero. We end up with
j1 = j2 = j (u∗(bi ( · ), di )) in G, and the conclusion follows. �

6. Proof of Theorem 1.3

Let {bi (t)} be the l Lipschitz paths on [0, T ] provided by Theorem 5.1, and {ai (t)} the unique maximal
solution defined on I = [0, T ∗) to (1-5) with initial conditions a0

i . Our aim is to show that ai (t)≡ bi (t)
on I . We prove this first on [0, T ]. By Rademacher’s Theorem, the time derivatives ḃi (t) exist and are
bounded almost everywhere on [0, T ]. Without loss of generality, we may assume T < T ∗, so

|ȧi (t)| ≤ C, |ḃi (t)| ≤ C a.e. on [0, T ]. (6-1)

Moreover, we may assume, possibly after decreasing T , that |ai (t)− bi (t)| ≤ ra/2 for all i . Hence, the
trajectories ai (t) remain in B(a0

i , ra) on [0, T ]. We introduce

h(t)=
l∑

i=1

∫ t

0

∣∣ȧi (s)− ḃi (s)
∣∣ ds, σ (t)=

l∑
i=1

∣∣ai (t)− bi (t)
∣∣.

Then h is Lipschitz on [0, T ] and for almost every t ∈ [0, T ] we have h′(t)=
∑l

i=1

∣∣ȧi (t)− ḃi (t)
∣∣. Note

that since σ is absolutely continuous and σ(0)= 0, we have for all t ∈ [0, T ]

σ(t)=
∫ t

0
σ ′(s) ds ≤ h(t).

Therefore it suffices to show that h is identically zero on [0, T ]. This will be done by means of Grönwall’s
Lemma.

Lemma 6.1. For all t1, t2, t ∈ [0, T ], we have

lim sup
k→+∞

6εk (t)≤ Ch(t) and lim sup
k→+∞

∫ t2

t1
6εk (s) ds ≤ C

∫ t2

t1
h(s) ds,

where C only depends on ra , K0, and Ra .
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Proof. For t ∈ [0, T ], we decompose 6εk (t) as

6εk (t)= Eεk ,[Ud ](uεk (t))−Eεk ,[Ud ](u
0
εk
)+6εk (0)+Eεk ,[Ud ](u

∗

εk
(a0

i , di ))−Eεk ,[Ud ](u
∗

εk
(bi (t), di )).

Appealing to Corollary 3.8 and Theorem 1.1, we obtain

6εk (t)=−δ
∫ t

0

∫
R2

|∂t uεk |
2

|log εk |
+6εk (0)+W (a0

i , di )−W (bi (t), di )+ oεk (1).

Using that W is Lipschitz away from zero, we estimate the difference on the right by

W (a0
i , di )−W (bi (t), di )=W (a0

i , di )−W (ai (t), di )+W (ai (t), di )−W (bi (t), di )

≤−

∫ t

0

l∑
i=1

ȧi (s) · ∇ai W (s) ds+Cσ(t).

Since the ai solve the Cauchy problem (1-5), an explicit computation gives

ȧi (s) · ∇ai W (s)=
δ

π
Ci di |∇ai W |

2
=−δπ |ȧi (s)|2,

so

6εk (t)≤6εk (0)+ δπ
∫ t

0

l∑
i=1

|ȧi (s)|2 ds− δ
∫ t

0

∫
R2

|∂t uεk |
2

|log εk |
+Cσ(t)+ oεk (1).

For the energy dissipation on the right-hand side, we need a lower bound as εk tends to zero. In view of
the convergence of the Jacobians (5-1) and the upper bound for the energy

sup
t∈[0,T ]

Eεk (uεk (t), B(R′))≤ πl|log εk | +C

stated in (5-14), Proposition 3 in [Jerrard 1999] (see also Corollary 7 in [Sandier and Serfaty 2004])
provides the lower mobility bound

lim inf
k→+∞

∫ t

0

∫
R2

|∂t uεk |
2

|log εk |
≥ π

l∑
i=1

∫ t

0

∣∣ḃi (t)
∣∣2 ds. (6-2)

Now, thanks to (6-1), we have

l∑
i=1

∫ t

0

(
|ȧi (s)|2− |ḃi (s)|2

)
≤ C

l∑
i=1

∫ t

0

∣∣ȧi (s)− ḃi (s)
∣∣ ds = Ch(t),

whereas 6εk (0)→ 0 by assumption; hence we get

lim sup
k→+∞

6εk (t)≤ C (σ (t)+ h(t)) .

Applying Fatou’s Lemma in (6-2) yields the corresponding integral version as well. We conclude by
using that σ ≤ h. �

As suggested in the introduction, the map u∗(ai (t), di ) solves the evolution formula provided by Propo-
sition 2.1 in the asymptotic limit where ε→ 0.
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Lemma 6.2. For t ∈ [0, T ] and χ, ϕ ∈H(a0
i ),

π
d
dt

l∑
i=1

[
diχ(ai (t))+ δϕ(ai (t))

]
=−2

∫
R2

Im
(
ω(u∗(ai (t), di ))

∂2χ

∂ z̄2

)
.

Proof. We use the following formula, proved in [Bethuel et al. 2005] and valid for any configuration
(ai , di ) and any test function χ that is affine near the point vortices:

−2
∫

R2
Im
(
ω(u∗(ai (t), di ))

∂2χ

∂ z̄2

)
=−2π

∑
i 6= j

di d j
(ai (t)− a j (t))⊥

|ai (t)− a j (t)|2
· ∇χ(ai (t)).

We also compute

d
dt

l∑
i=1

[
diχ(ai )+δϕ(ai )

]
=

l∑
i=1

[
di∇χ(a0

i ) · ȧi (t)+δ∇ϕ(a0
i ) · ȧi (t)

]
=

l∑
i=1

di∇χ(a0
i ) ·
(
ȧi (t)−δdi ȧ⊥i (t)

)
,

where the second equality follows from the relation ∇ϕ(a0
i )=∇

⊥χ(a0
i ). Next, we deduce from (1-5)

π
(
ȧi (t)− δdi ȧ⊥i (t)

)
=−Ci (1+ δ2d2

i )∇
⊥

ai
W = di∇

⊥

ai
W,

and we obtain

π
d
dt

l∑
i=1

[
diχ(ai )+ δϕ(ai )

]
=

l∑
i=1

∇χ(ai ) · ∇
⊥

ai
W =−2π

∑
i 6= j

di d j
(ai − a j )

⊥

|ai − a j |
2 · ∇χ(ai ),

which yields the conclusion. �

Lemma 6.3. Set A =
⋃l

i=1 B(a0
i , 2ra) \ B(a0

i , ra) and let t1, t2 ∈ [0, T ]. For all ϕ ∈ D(A), we have

lim sup
k→+∞

∣∣∣∣∫ t2

t1

∫
A

[
ω(uεk (s))−ω(u

∗(bi (s), di ))
]
ϕ

∣∣∣∣≤ C‖ϕ‖∞

∫ t2

t1
h(s) ds.

Proof. We apply the pointwise equality (2-4) to u ≡ uεk (t) and u∗ ≡ u∗(bi (t), di ) for all t . Since
|u∗(bi (t), di )| = 1, this gives

ω(u)−ω(u∗)=
2∑

k,l=1

(
ak,l∂l |u|∂k |u| + bk,l

[
jk(u)
|u|

jl(u)
|u|
− jk(u∗) jl(u∗)

])
,

where ak,l, bk,l ∈ C. We rewrite the terms involving the components of j as

jk(u)
|u|

jl(u)
|u|
− jk(u∗) jl(u∗)=

(
jk(u)
|u|
− jk(u∗)

)(
jl(u)
|u|
− jl(u∗)

)
+ jk(u∗)

(
jl(u)
|u|
− jl(u∗)

)
+ jl(u∗)

(
jk(u)
|u|
− jk(u∗)

)
.
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We multiply the previous equality by ϕ, integrate on [t1, t2] × A and let k go to +∞. Using the weak
convergence in L2 of j (uεk )/|uεk | to j (u∗(bi (.), di )) on [0, T ]× A ⊂ G, we deduce that

lim sup
k→+∞

∣∣∣∣∫ t2

t1

∫
A

[
ω(uεk (s))−ω(u

∗(bi (s), di ))
]
ϕ

∣∣∣∣
≤ C‖ϕ‖∞ lim sup

k→+∞

∫ t2

t1

∫
A

(∣∣∇|uεk |
∣∣2+ ∣∣∣∣ j (uεk )

|uεk |
− j (u∗(bi , di ))

∣∣∣∣2).
The conclusion finally follows from Lemmas 5.5 and 6.1. �

We are now in a position to complete the proof of Theorem 1.3. We consider arbitrary χ, ϕ belonging
to H(a0

i ), we fix 0≤ s ≤ t ≤ T and we integrate the evolution formula given by Proposition 2.1 on [s, t].
We obtain ∫ t

s

d
dτ

∫
R2

Juεk (τ )χ + δ

∫
R2
µεk (τ )ϕ =

∫ t

s
g1

k (τ )+

∫ t

s
g2

k (τ ),

where

g1
k (τ )=−δ

∫
R2

|∂t uεk |
2

|log εk |
2 + Rεk (τ, χ, ϕ, uεk ), g2

k (τ )=−2
∫

R2
Im
(
ω(uεk (τ ))

∂2χ

∂ z̄2

)
.

We decompose the latter as

g2
k =−2

∫
R2

Im
([
ω(uεk )−ω(u

∗(bi , di ))
]∂2χ

∂ z̄2

)
− 2

∫
R2

Im
([
ω(u∗(bi , di ))−ω(u∗(ai , di ))

]∂2χ

∂ z̄2

)
− 2

∫
R2

Im
(
ω(u∗(ai , di ))

∂2χ

∂ z̄2

)
= Ak(τ )+ Bk(τ )+Ck(τ ).

We next substitute the expression given in Lemma 6.2 for Ck in the previous equalities. Setting

fk,χ,ϕ(τ )=

∫
R2

Juεk (τ )χ + δ

∫
R2
µεk (τ )ϕ−π

l∑
i=1

[
diχ(ai (τ ))+ δϕ(ai (τ ))

]
,

we obtain

fk,χ,ϕ(t)− fk,χ,ϕ(s)=
∫ t

s
g1

k +

∫ t

s
Ak +

∫ t

s
Bk .

Lemma 5.2 with Tε = T first gives
∣∣∫ t

s g1
k (τ ) dτ

∣∣ ≤ C |log εk |
−1/2 for all k. Moreover, it follows from

Lemma 6.3 and inclusion supp ∂2χ/∂ z̄2
⊂ A that

lim sup
k→+∞

∣∣∣∣∫ t

s
Ak(τ ) dτ

∣∣∣∣≤ C
∫ t

s
h(τ ) dτ.

Finally, the regularity of ω(u∗) away from the vortices gives∫ t

s
|Bk(τ )| dτ ≤ C

∫ t

s
σ(τ) dτ ≤ C

∫ t

s
h(τ ) dτ.
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Letting k go to +∞, we deduce from the convergence statements in Theorem 5.1 that for 0≤ s ≤ t ≤ T ,

| fχ,ϕ(t)− fχ,ϕ(s)| ≤ C
∫ t

s
h(τ ) dτ, (6-3)

where the constant C depends only on χ , ϕ and the initial conditions, and fχ,ϕ is defined by

fχ,ϕ = π
l∑

i=1

[
di (χ(bi )−χ(ai ))+ δ(ϕ(bi )−ϕ(ai ))

]
.

We now fix a time t ∈ [0, T ] at which all the vortices bi have a time derivative. Since the ai are C1,
it follows that fχ,ϕ is differentiable at t with time derivative given by

f ′χ,ϕ(t)= π
l∑

i=1

(
di∇χ(a0

i )+ δ∇
⊥χ(a0

i )
)
·
(
ḃi (t)− ȧi (t)

)
.

Dividing by t − s in (6-3) and letting s→ t then gives∣∣∣∣π l∑
i=1

(
di∇χ(a0

i )+ δ∇
⊥χ(a0

i )
)
·
(
ḃi (t)− ȧi (t)

)∣∣∣∣≤ C h(t).

So, considering in particular χ, ϕ ∈ H(a0
i ) such that χ and ϕ vanish near each point a0

i except for one,
we obtain for all i = 1, . . . , l∣∣∣π(di∇χ(a0

i )+ δ∇
⊥χ(a0

i )
)
·
(
ḃi (t)− ȧi (t)

)∣∣∣≤ C h(t).

Choosing then successively χ(x) = x1 and χ(x) = x2 near a0
i we end up with |ḃi (t)− ȧi (t)| ≤ Ch(t),

and it follows by summation that h′(t)≤Ch(t) for a.e. t ∈ [0, T ]. Since h(0)= 0, this implies that h= 0
on [0, T ], and hence σ = 0 on [0, T ]. Applying Lemma 6.1, we infer that lim supk→+∞6εk (t) ≤ 0.
Besides, Lemma 3.5 yields for all L ≥ 2n1

lim inf
k→+∞

6εk (t)≥ lim inf
k→+∞

∫
B(L)

[
eεk (uεk (t))− eεk (u

∗

εk
(ai (t), di ))

]
−

C
L
≥−

C
L
,

where the second inequality follows from the convergence of Jacobians on B(L) stated in Lemma 5.4; see
[Jerrard and Spirn 2007; Lin and Xin 1999]. Letting L tend to +∞, we obtain lim infk→+∞6εk (t)≥ 0,
so we deduce from (5-3) that (uεk (t))k∈N is well-prepared with respect to the configuration (ai (t), di ).
By the uniqueness of the limit, this holds for the full family (uε(t))0<ε<1 on [0, T ].

In conclusion, we observe that in our definition T only depends on K1, ra and max(R, Ra+ra), so we
can extend our results to the whole of [0, T ∗) by repeating the previous arguments.

Appendix: The Cauchy problem for (CGL)ε

We present here the proof of Theorem 1.1. We omit the dependence on ε and rewrite (1-2) in the form{
∂tw = (a+ ib)(1w+ fU0(w)),

w(0)= w0 ∈ H 1(R2),
(CGL)
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where a is positive, b is real and

fU0(w)=1U0+ (U0+w)(1− |U0+w|
2).

We denote by S = S(t, x) the semigroup operator associated to the corresponding homogeneous linear
equation. Every solution w ∈ C0

(
[0, T ], H 1(R2)

)
to (CGL) satisfies the Duhamel formula

w(t, · )= S(t, · ) ∗w0+

∫ t

0
S(t − s, · ) ∗ gU0(w(s), · ) ds, s ∈ [0, T ],

where gU0 = (a+ ib) fU0 . The kernel S is explicitly given by

S(t, x)=
1

4π(a+ ib)t
exp

(
−|x |2

4(a+ ib)t

)
.

Since a is positive, S decays at infinity like the standard heat kernel; therefore (CGL) enjoys the same
smoothing properties as the parabolic Ginzburg–Landau equation. In particular, we have for all t > 0
and for all 1≤ r ≤+∞ ∥∥S(t, · )

∥∥
Lr (R2)

≤
Ca,b

t1−1/r (A-1)

and concerning the space derivatives of S(t),∥∥Dk S(t, · )
∥∥

Lr (R2)
≤

Ca,b

t (|k|/2)+1−1/r . (A-2)

We will often use Young’s inequality, which states that, if 1+ 1
r
=

1
p
+

1
q

and f ∈ L p(R2), g ∈ Lq(R2),
then

‖ f ∗ g‖Lr (R2) ≤ ‖ f ‖L p(R2)‖g‖Lq (R2).

We first state a local well-posedness result for (CGL).

Proposition A.4. Let w0 ∈ H 1(R2). There exists a positive time T ∗ depending on ‖w0‖H1 and a unique
solution w ∈ C0

(
[0, T ∗), H 1(R2)

)
to (CGL).

Proof. We intend to apply the fixed point theorem to the map ψ : w ∈ H 1(R2) 7→ ψ(w), where

ψ(w)(t)= S(t) ∗w0+

∫ t

0
S(t − s) ∗ gU0(w(s)) ds.

To this aim, we introduce R = ‖w0‖H1(R2) and for T > 0

B(T, R)=
{
w ∈ L∞

(
[0, T ], H 1(R2)

)
: ‖w‖L∞(H1) ≤ (2Ca,b+ 1)R

}
,

where Ca,b is the constant appearing in (A-1)–(A-2). We next show that we can choose T = T (R) so
that ψ maps B(T (R), R) into itself and is a contraction on this ball.

For T > 0, we let w ∈ B(T, R) and expand fU0(w). Using that H 1(R2) is continuously embedded in
L p(R2) for all 2≤ p <+∞ and that U0 belongs to V, it can be shown that∥∥ fU0

∥∥
L∞([0,T ],L2)

≤ C(U0, R) (A-3)

(see [Bethuel and Smets 2007, Lemma 1]), and that for w1, w2 ∈ B(T, R)

‖ fU0(w1)− fU0(w2)‖L∞([0,T ],L2) ≤ C(U0, R)‖w1−w2‖L∞([0,T ],H1). (A-4)
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We next apply Young’s inequality to obtain

‖ψ(w)(t)‖H1 ≤ ‖ψ(w)(t)‖L2 +‖∇ψ(w)(t)‖L2

≤ 2‖S(t)‖L1‖w0‖H1 +

∫ t

0
‖S(t − s)+∇S(t − s)‖L1‖gU0(s)‖L2 ds

≤ 2Ca,b‖w0‖H1 +C
∫ t

0

(
1+ (t − s)−1/2)

‖gU0(w(s))‖L2 ds,

where the last inequality is a consequence of (A-1) and (A-2) with the choice r = 1. This yields, by
(A-3) and (A-4),

sup
t∈[0,T ]

‖ψ(w)(t)‖H1 ≤ 2Ca,b‖w0‖H1 +C(U0, R)(T +
√

T )

and similarly,

sup
t∈[0,T ]

‖ψ(w1)(t)−ψ(w2)(t)‖H1 ≤ C ′(U0, R)(T +
√

T ) sup
t∈[0,T ]

‖w1(t)−w2(t)‖H1 .

The conclusion follows by choosing T = T (R) sufficiently small so that C(U0, R)(T +
√

T ) ≤ R and
C ′(U0, R)(T +

√
T ) < 1. �

We next show additional regularity for a solution to (CGL).

Lemma A.5. Let w ∈ C0
(
[0, T ], H 1(R2)

)
be a solution to (CGL). Then w belongs to

L1
loc
(
[0, T ], H 2(R2)

)
∩C0((0, T ], H 2(R2)

)
,

and therefore to L1
loc

(
[0, T ], L∞(R2)

)
.

Proof. We first differentiate fU0(w) and use [Bethuel and Smets 2007, Lemma 2] which states by means
of various Sobolev embeddings, Hölder and Gagliardo–Nirenberg inequalities that

∂i fU0(w)= g1(w)+ g2(w) ∈ L∞
(
[0, T ], L2(R2)

)
+ L∞

(
[0, T ], Lr (R2)

)
for all 1< r < 2. Moreover, we have sups∈[0,T ]

(
‖g1(w)(s)‖L2(R2)+‖g2(w)(s)‖Lr (R2)

)
≤C(U0, A(T ), r),

where A(T )= sups∈[0,T ] ‖w(s)‖H1(R2). Next, differentiating twice, Duhamel’s formula gives

∂i jw(t)= ∂ j S(t) ∗ ∂iw0+

∫ t

0
∂ j S(t − s) ∗ ∂i fU0(s) ds,

so taking into account the decomposition ∂i fU0 = g1+ g2 we get

‖∂i jw(t)‖L2 ≤ ‖∇S(t)‖L1‖∇w0‖L2 +

∫ t

0
‖∇S(t− s)‖L1‖g1(s)‖L2 ds+

∫ t

0
‖∇S(t− s)‖Lα‖g2(s)‖Lr ds,

where α is chosen so that 1+ 1
2
=

1
α
+

1
r

. This finally yields, in view of (A-2),

‖∂i jw(t)‖L2 ≤ Ct−1/2
‖w0‖H1 +C(U0, A(T ), r)

∫ t

0

(
(t − s)−

1
2 + (t − s)−

1
2−1+ 1

α
)

ds.

Since 1
2
+ 1− 1

α
=

1
r
< 1, the right-hand side is finite, so ∂i jw ∈ L1

loc

(
[0, T ], L2(R2)

)
. �
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Lemma A.5 enables us to show that the renormalized energy is nonincreasing and hence to control
‖w(t)‖H1(R2). For (CGL), this energy is given by

EU0(w)(t)=
∫

R2

|∇w|2

2
−

∫
R2
1U0 ·w+

∫
R2

(1− |U0+w|
2)2

4
.

It is well-defined and continuous in time for w ∈ C0(H 1(R2)).

Lemma A.6. Let w ∈ C0
(
[0, T ), H 1(R2)

)
be a solution to (CGL). Then for all t ∈ (0, T ) we have

d
dt

EU0(w)(t)≤ 0.

Moreover, there exists CU0,w0 depending only on U0 and ‖w0‖H1 such that

‖w(t)‖H1 ≤ CU0,w0 exp(CU0,w0 t) for all t ∈ [0, T ). (A-5)

Proof. We infer from (CGL) and Lemma A.5 that ∂tw belongs to L∞loc

(
(0, T ], L2(R2)

)
, so we can

compute

d
dt

EU0(w(t))=
∫

R2
∇w · ∇∂tw−1U0 · ∂tw− ∂tw · (U0+w)(1− |U0+w|

2)

=−

∫
R2
∂tw · (1w+ fU0(w))=−

∫
R2
∂tw ·

( 1
a+ib

∂tw
)
=
−a

a2+ b2

∫
R2
|∂tw|

2
≤ 0.

We now turn to (A-5). We compute, for t ∈ (0, T ),

1
2

d
dt
‖w(t)‖2L2(R2) =

∫
R2
w · ∂tw =

∫
R2
w · [(a+ ib)1w] +

∫
R2
w · [(a+ ib) fU0(w)]

= −a
∫

R2
|∇w|2+

∫
R2
w · (a+ ib)1U0+

∫
R2
w ·
[
(a+ ib)(U0+w)(1− |U0+w|

2)
]
.

We then split the last term in the previous equality as∫
R2
w·
[
(a+ib)(U0+w)(1−|U0+w|

2)
]
=

∫
R2
w·
[
(a+ib)U0(1−|U0+w|

2)
]
+a

∫
R2
|w|2(1−|U0+w|

2).

The last term on the right is clearly bounded by a‖w(t)‖2L2(R2)
. Using the Cauchy–Schwarz inequality

for the first term, we obtain∫
R2
w ·
[
(a+ ib)(U0+w)(1− |U0+w|

2)
]
≤ C(U0)‖w(t)‖L2 V (t)1/2+ a‖w(t)‖2L2,

where V (t)=
∫

R2(1− |U0+w(t)|2)2. We are led to

d
dt
‖w(t)‖2L2(R2) ≤ C(U0)

(
‖w(t)‖2L2 + 1+ V (t)

)
. (A-6)

On the other hand, Cauchy–Schwarz inequality gives

EU0(w)(t)≥
∫

R2

|∇w|2

2
dx −C(U0)‖w(t)‖L2 +

V (t)
4
,
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which yields, since EU0(w) is nonincreasing,

V (t)
4
+

∫
R2

|∇w|2

2
≤ EU0(w0)+C(U0)‖w(t)‖L2 . (A-7)

We infer from (A-6) and (A-7)

‖w(t)‖L2 ≤ (1+‖w0‖H1) exp(Ct)

and finally deduce (A-5) by using (A-7) once more. �

Lemma A.6 provides global well-posedness for (CGL).

Proposition A.7. Letw0 ∈ H 1(R2). Then there exists a unique and global solutionw∈C0
(
R+, H 1(R2)

)
to (CGL).

Proof. Let w ∈ C0
(
[0, T ∗), H 1(R2)

)
be the unique maximal solution with initial condition w0. If T ∗ is

finite, we have according to (A-5)

lim sup
t→T ∗

‖w(t)‖H1(R2) ≤ C(U0, T ∗, w0) <+∞,

so that we can extend w to a solution w on [0, T ∗+δ] for some positive δ. This yields a contradiction. �

We conclude this section with the following

Proposition A.8. Let w ∈ C0
(
R+, H 1(R2)

)
be the solution to (CGL). Then w ∈ C∞

(
R∗
+
,C∞(R2)

)
.

Proof. Step 1. Let p ≥ 2 and v ∈ H p(R2). We show that Dk fU0(v) ∈ L2(R2)+ L4/3(R2) for all |k| ≤ p.
We may assume in view of the proof of Lemma A.5 that |k| ≥ 2. We decompose fU0(v) as fU0(v)=

1U0+ hU0(v), where
hU0(v)= (U0+ v)(1− |U0+ v|

2).

Since U0 ∈ V, it suffices to show that DkhU0(v) ∈ L2(R2)+ L4/3(R2). Applying Leibniz’s formula to
hU0(v), we obtain

DkhU0(v)=
∑
m≤k

( k
m

)
Dk−m(U0+ v)Dm(1− |U0+ v|

2)

= Dk(U0+ v)−
∑
m≤k
n≤m

( k
m

)(m
n

)
Dk−m(U0+ v)Dn(U0+ v) · Dm−n(U0+ v).

Since 2≤ |k| ≤ p, v ∈ H p(R2) and U0 ∈ V, we clearly have Dk(U0+ v) ∈ L2(R2).
For the second term in the right-hand side, we write each product inside the sum as

Da(U0+ v)Db(U0+ v) · Dc(U0+ v)

with |a|+ |b|+ |c| = |k| ≥ 2, and we examine all cases. We observe that Da(v+U0) belongs to H 1(R2)

whenever 1≤ |a| ≤ p−1 and hence to L4(R2), whereas Da(v+U0) belongs to L2(R2) for 2≤ |a| ≤ p.
Since U0+ v ∈ L∞, we finally obtain

Da(U0+ v)Db(U0+ v) · Dc(U0+ v) ∈ L2(R2)+ L4/3(R2),

which yields the conclusion.
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Step 2: regularity in space for a solution to (CGL). Let w ∈ C0
(
R+, H 1(R2)

)
be the solution to (CGL).

We show that w ∈ C0(R∗
+
, H p(R2)) for all p ≥ 1.

We proceed by induction on p. The case p= 2 has already been treated in Lemma A.5, so we assume
w ∈ C0

(
R∗
+
, H p(R2)

)
for some p ≥ 2. For |k| ≤ p+ 1, we differentiate w(t) and we find

Dkw(t)= Dk(S(t) ∗w0)+ Dk
∫ t

0
S(t − s) ∗ gU0(s) ds

which we rewrite as

Dkw(t)= Dk S(t) ∗w0+

∫ t/2

0
(Dk S(t − s)) ∗ gU0(s) ds+

∫ t

t/2
Dm S(t − s) ∗ Dk−m gU0(s) ds,

where m is a multiindex such that |m| = 1.
It follows from (A-2) that t 7→Dk S(t)∗w0∈C0(R∗

+
, L2(R2)). Next, arguing that gU0∈C0

(
R+, L2(R2)

)
and using (A-2) with r = 1, we find∥∥∥∥∫ t/2

0
(Dk S(t − s)) ∗ gU0(s) ds

∥∥∥∥
L2
≤ C

∫ t/2

0

ds
(t − s)|k|/2

≤
C

t (|k|/2)−1 .

Also, since |k−m|= |k|−1≤ p andw(s)∈H p(R2) by assumption, Step 1 provides the decomposition

Dk−m gU0(s)= d1(s)+ d2(s),

where d1 belongs to C0(R∗
+
, L2(R2)) and d2 to C0

(
R∗
+
, L4/3(R2)

)
. It follows from (A-2) that∥∥∥∥ ∫ t

t/2
Dm S(t − s) ∗ Dk−m gU0(s) ds

∥∥∥∥
L2
≤

∫ t

t/2

(
‖∇S(t − s)‖L1‖d1(s)‖L2 +‖∇S(t − s)‖Lr‖d2(s)‖L4/3

)
ds

≤ C(t)
∫ t

t/2

(
(t − s)−

1
2 + (t − s)−

1
2−1+1

r
)

ds,

where r satisfies 1 + 1
2 =

1
r +

3
4 . The last term is finite since 1

2 + 1 − 1
r =

3
4 < 1, so we infer that

w ∈ C0
(
R∗
+
, H p+1(R2)

)
, as we wanted.

Step 3. Let w ∈ C0(R+, H 1(R2)) be the solution to (CGL). We show that w ∈ Ck
(
R∗
+
,C l(R2)

)
for all

k, l ∈ N.
Fix k, l ∈ N. we show by induction on 0 ≤ j ≤ k that w ∈ C j

(
R∗
+
,C l+2k−2 j (R2)

)
. This holds for

j = 0 according to Step 2 and since H p is embedded in C l+2k for large enough p. We next assume that
w ∈ C j

(
R∗
+
,C l+2k−2 j (R2)

)
for some 0≤ j ≤ k− 1, and it follows that

1w, fU0(w) ∈ C j(R∗
+
,C l+2k−2 j−2(R2)

)
.

Going back to Equation (CGL), we obtain

w ∈ C j+1(R∗
+
,C l+2k−2 j−2(R2)

)
.

This concludes the proof of Proposition A.8. �
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