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GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF A 3D LOG-LOG
ENERGY-SUPERCRITICAL WAVE EQUATION

TRISTAN ROY

We prove global existence of smooth solutions of the 3D log-log energy-supercritical wave equation

∂t t u−4u =−u5 logc(log(10+ u2))

with 0< c< 8/225 and smooth initial data (u(0)= u0, ∂t u(0)= u1). First we control the L4
t L12

x norm of
the solution on an arbitrary size time interval by an expression depending on the energy and an a priori
upper bound of its L∞t H̃ 2(R3) norm, with H̃ 2(R3) := Ḣ 2(R3) ∩ Ḣ 1(R3). The proof of this long time
estimate relies upon the use of some potential decay estimates and a modification of an argument by Tao.
Then we find an a posteriori upper bound of the L∞t H̃ 2(R3) norm of the solution by combining the long
time estimate with an induction on time of the Strichartz estimates.

1. Introduction

We shall consider the defocusing log-log energy-supercritical wave equation

∂t t u−4u =− f (u) (1-1)

where u : R×R3
→ R is a real-valued scalar field and f (u) := u5g(u) with g(u) := logc(log(10+u2)),

0< c< 8/225. Classical solutions of (1-1) are solutions that are infinitely differentiable and compactly
supported in space for each fixed time t . It is not difficult to see that classical solutions of (1-1) satisfy
the energy conservation law

E :=
1
2

∫
R3
(∂t u(t, x))2 dx +

1
2

∫
R3
|∇u(t, x)|2 dx +

∫
R3

F(u(t, x)) dx (1-2)

where F(u) :=
∫ u

0 f (v) dv. Classical solutions of (1-1) enjoy three symmetry properties that we use
throughout this paper:

• time translation invariance: if u is a solution of (1-1) and t0 is a fixed time then ũ(t, x) :=u(t−t0, x)
is also a solution of (1-1);

• space translation invariance: if u is a solution of (1-1) and x0 is a fixed point lying in R3 then
ũ(t, x) := u(t, x − x0) is also a solution of (1-1);

• time reversal invariance: if u is a solution to (1-1) then ũ(t, x) := u(−t, x) is also a solution.
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The defocusing log-log energy-supercritical wave equation (1-1) is closely related to the power-type
defocusing wave equations, namely,

∂t t u−4u =−|u|p−1u. (1-3)

Solutions of (1-3) have an invariant scaling

u(t, x)→ uλ(t, x) :=
1

λ2/(p−1) u
( t
λ
,

x
λ

)
(1-4)

and (1-3) is sc-critical, where sc :=
3
2
−

2
p−1

. Thus the Ḣ sc(R3)× Ḣ sc−1(R3) norm of (u(0), ∂t u(0)) is
invariant under scaling, i.e.,

‖uλ(0)‖Ḣ sc (R3) = ‖u(0)‖Ḣ sc (R3),

‖∂t uλ(0)‖Ḣ sc−1(R3) = ‖∂t u(0)‖Ḣ sc−1(R3).

If p = 5, then sc = 1 and this is why the quintic defocusing cubic wave equation

∂t t u−4u =−u5 (1-5)

is called the energy-critical equation. If 1 < p < 5 then sc < 1 and (1-3) is energy-subcritical while if
p > 5 then sc > 1 and (1-3) is energy-supercritical. Notice that for every p > 5 there exists two positive
constant λ1(p), λ2(p) such that

λ1(p)|u|5 ≤ | f (u)| ≤ λ2(p)max (1, |u|p). (1-6)

This is why (1-1) is said to belong to the group of barely supercritical equations. There is another way
to see that. Notice that a simple integration by part shows that

F(u)∼
u6

6
g(u), (1-7)

and consequently the nonlinear potential term of the energy
∫

R3 F(u) dx ∼
∫

R3 u6g(u) dx just barely fails
to be controlled by the linear component, in contrast to (1-5).

The energy-critical wave equation (1-5) has received a great deal of attention. Grillakis [1990; 1992]
established global existence of smooth solutions (global regularity) of this equation with smooth initial
data u(0) = u0, ∂t u(0) = u1. His work followed that of Rauch [1981, part I] for small data and that
of Struwe [1988] on the spherically symmetric case. Later Shatah and Struwe [1993] gave a simplified
proof of this result. Kapitanski [1994] and, independently, Shatah and Struwe [1994] proved global
existence of solutions with data (u0, u1) in the energy class.

We are interested in proving global regularity of (1-1) with smooth initial data (u0, u1). By standard
persistence of regularity results it suffices to prove global existence of solutions

u ∈ C
(
[0, T ], H̃ 2(R3)

)
∩C1(

[0, T ], H 1(R3)
)
,

with data (u0, u1) ∈ H̃ 2(R3)× H 1(R3). Here the following space

H̃ 2(R3) := Ḣ 2(R3)∩ Ḣ 1(R3). (1-8)
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In view of the local well-posedness theory [Lindblad and Sogge 1995], standard limit arguments and the
finite speed of propagation it suffices to find an a priori upper bound of the form∥∥(u(T ), ∂t u(T ))

∥∥
H̃2(R3)×H1(R3)

≤ C1
(
‖u0‖H̃2(R3), ‖u1‖H1(R3), T

)
(1-9)

for all times T > 0 and for classical solutions u of (1-1) with smooth and compactly supported data
(u0, u1). Here C1 is a constant depending only on ‖u0‖H̃2(R3), ‖u1‖H1(R3) and the time T .

The global behavior of the solutions of the supercritical wave equations is poorly understood, mostly
because of the lack of conservation laws in H̃ 2(R3). Nevertheless Tao [2007] was able to prove global
regularity for another barely supercritical equation, namely

∂t t u−4u =−u5 log (2+ u2), (1-10)

with radial data. The main result of this paper is:

Theorem 1. The solution of (1-1) with smooth data (u0, u1) exists for all time. Moreover there exists a
nonnegative constant M0 = M0(‖u0‖H̃2(R3), ‖u1‖H1(R3)) depending only on ‖u0‖H̃2(R3) and ‖u1‖H1(R3)

such that
‖u‖L∞t H̃2(R×R3)+‖∂t u‖L∞t H1(R×R3) ≤ M0. (1-11)

We recall some basic properties and estimates. Let Q be a function, let J be an interval and let t0 ∈ J
be a fixed time. If u is a classical solution of the more general problem ∂t t u−4u = Q then u satisfies
the Duhamel formula

u(t)= ul,t0(t)+ unl,t0(t), t ∈ J, (1-12)

with ul,t0 , unl,t0 denoting the linear part and the nonlinear part respectively of the solution starting from t0.
Recall that

ul,t0(t)= cos (t − t0)Du(t0)+
sin (t − t0)D

D
∂t u(t0) (1-13)

and

unl,t0(t)=−
∫ t

t0

sin (t − t ′)D
D

Q(t ′) dt ′, (1-14)

with D the multiplier defined by D̂ f (ξ) := |ξ | f̂ (ξ). An explicit formula for ((sin (t − t ′)D)/D)Q(t ′)
and t 6= t ′ is [sin (t − t ′)D

D
Q(t ′)

]
(x)=

1
4π |t − t ′|

∫
|x−x ′|=|t−t ′|

Q(t ′, x ′) d S(x ′). (1-15)

For a proof see [Sogge 1995]. We recall that ul,t0 satisfies

∂t t ul,t0 −4ul,t0 = 0, ul,t0(t0)= u(t0), ∂t ul,t0(t0)= ∂t u(t0),

while unl,t0 is the solution of

∂t t unl,t0 −4unl,t0 = Q, unl,t0(t0)= 0, ∂t unl,t0(t0)= 0.

We recall the Strichartz estimate [Ginibre and Velo 1995; Keel and Tao 1998; Lindblad and Sogge 1995;
Sogge 1995]

‖u‖Lq
t Lr

x (J×R3) . ‖∂t u(t0)‖L2
x (R

3)+‖∇u(t0)‖L2
x (R

3)+‖Q‖L1
t L2

x (J×R3), (1-16)
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if (q, r) is wave admissible, that is, (q, r) ∈ (2, ∞]× [2, ∞] and 1/q + 3/r = 1/2.
We set some notation that appears throughout the paper. We write C = C(a1, . . . , an) if C only

depends on the parameters a1, . . . , an . We write A . B if there exists a universal nonnegative constant
C ′ > 0 such that A ≤ C ′B. A = O(B) means A . B. More generally we write A .a1,...,an B if there
exists a nonnegative constant C ′ = C(a1, . . . , an) such that A ≤ C ′B. We say that C ′′ is the constant
determined by . in A .a1,...,an B if C ′′ is the smallest constant among the C ′s such that A ≤ C ′B. We
write A �a1,...,an B if there exists a universal nonnegative small constant c = c(a1, . . . , an) such that
A≤ cB. Similar notions are defined for A& B, A&a1,...,an B and A� B. In particular we say that C ′′ is
the constant determined by & in A & B if C ′′ is the largest constant among the C ′s such that A ≥ C ′B.
If x is number then x+ and x− are slight variations of x : x+ := x + αε and x− := x − βε for some
α > 0, β > 0 and 0< ε� 1.

Let 0+ denote the forward light cone

0+ = {(t, x) : t > |x |} , (1-17)

and if J = [a, b] is an interval, let 0+(J ) denote the light cone truncated to J , that is,

0+(J ) := 0+ ∩ (J ×R3). (1-18)

Let e(t) denote the local energy, that is,

e(t) :=
1
2

∫
|x |≤t

(∂t u(t, x))2 dx +
1
2

∫
|x |≤t
|∇u(t, x)|2 dx +

∫
|x |≤t

F(u(t, x)) dx . (1-19)

If u is a solution of (1-1) then by using the finite speed of propagation and the Strichartz estimates we
have

‖u‖Lq
t Lr

x (0+(J ))
. ‖∇u(b)‖L2

x (R
3)+‖∂t u(b)‖L2

x (R
3)+‖Q‖L1

t L2
x (0+(J ))

(1-20)

if (q, r) is wave admissible. If J1 := [a1, a2] and J2 := [a2, a3] then we also have

‖u‖Lq
t Lr

x (0+(J1))
. ‖∇u(a3)‖L2

x (R
3)+‖∂t u(a3)‖L2

x (R
3)+‖Q‖L1

t L2
x (0+(J1∪J2))

. (1-21)

We recall also the well-known Sobolev embeddings. If h is a smooth function then

‖h‖L∞(R3) . ‖h‖H̃2(R3) (1-22)

and
‖h‖L6(R3) . ‖∇h‖L2(R3). (1-23)

If u is the solution of (1-1) with data (u0, u1) ∈ H̃ 2(R3)× H 1(R3), then we get from (1-22)

E . ‖u0‖
2
H̃2(R3)

max
(
1, ‖u0‖

4
H̃2(R3)

g(‖u0‖H̃2(R3))
)
. (1-24)

We shall use the Paley–Littlewood technology. Let φ(ξ) be a bump function adapted to {ξ ∈R3
: |ξ | ≤ 2}

and equal to one on {ξ ∈R3
: |ξ |≤ 1}. If (M, N )∈ 2Z

×2Z are dyadic numbers then the Paley–Littlewood
projection operators PM , P<N and P≥N are defined in the Fourier domain by

P̂M f (ξ) :=
(
φ
( ξ

M

)
−φ

( ξ

2M

))
f̂ (ξ), P̂<N f (ξ) :=

∑
M<N

P̂M f (ξ), P̂≥N f (ξ) :=
∑

M≥N

P̂M f (ξ).

The inverse Sobolev inequality can be stated as follows:
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Proposition 2 (Inverse Sobolev inequality [Tao 2006]). Let g be a smooth function such that

‖g‖Ḣ1(R3) . E1/2l, ‖P≥N g‖L6
x (R

3) & η,

for some real number η > 0 and for some dyadic number N > 0. Then there exists a ball B(x, r) ⊂ R3

with r = O(1/N ) such that we have the mass concentration estimate∫
B(x,r)

|g(y)|2 dy & η3 E−1/2r2. (1-25)

We also recall a result that shows that the mass of solutions of (1-1) can be locally in time controlled.

Proposition 3 (Local mass is locally stable [Tao 2006]). Let J be a time interval, let t , t ′ ∈ J and let
B(x, r) be a ball. Let u be a solution of (1-1). Then(∫

B(x,r)
|u(t ′, y)|2 dy

)1/2

=

(∫
B(x,r)

|u(t, y)|2 dy
)1/2

+ O
(
E1/2
|t − t ′|

)
. (1-26)

This result, proved for (1-5) in [Tao 2006], is also true for (1-1). Indeed the proof relied upon the fact
that the L2(R3) norm of the velocity of the solution of (1-5) at time t is bounded by the square root of
its energy, which is also true for the solution of (1-1) (by (1-2) and (1-7)).

Now we make some comments with respect to Theorem 1. If the function g were a positive constant,
it would be easy to prove that the solution of (1-1) with data (u0, u1) lies in H̃ 2(R3)×H 1(R3), since we
have a good global theory for (1-5). Therefore we can hope to prove global well-posedness for g slowly
increasing to infinity, by extending the technology to prove global well-posedness for (1-5). Notice also
that Tao [2006] found that the solution u of (1-5) satisfies

‖u‖L4
t L12

x (R×R3) . Ẽ Ẽ O(1)
, (1-27)

with Ẽ the energy of u. The structure of g is a double log: it is, roughly speaking, the inverse function
of the towel exponential bound in (1-27).

Now we explain the main ideas of this paper.
Tao [2006] was able to bound on arbitrary long time intervals the L4

t L12
x norm of solutions of the

energy-critical equation (1-5) by a quantity that depends exponentially on their energy. This estimate
can be viewed as a long time estimate. Unfortunately we cannot expect to prove a similar result for (1-1)
since we are not in the energy-critical regime. However we shall prove the following proposition:

Proposition 4 (Long time estimate). Let J = [t1, t2] be a time interval. Let u be a classical solution of
(1-1). Assume that

‖u‖L∞t H̃2(J×R3) ≤ M (1-28)

for some M ≥ 0. Then there exist three constants CL ,0 > 0, CL ,1 > 0 and CL ,2 > 0 such that

• if E � 1
g1/2(M)

(small energy regime) then

‖u‖4L4
t L12

x (J×R3)
≤ CL ,0; (1-29)

• if E & 1
g1/2(M)

(large energy regime) then

‖u‖4L4
t L12

x (J×R3)
≤
(
CL ,1(Eg(M))

)CL ,2(E193/4+g225/8+(M))
. (1-30)
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This proposition shows that we can control the L4
t L12

x (J × R3) norm of solutions of (1-1) by their
energy and an a priori bound of their L∞t H̃ 2(J × R3) norm. We would like to control the pointwise-
in-time H̃ 2(R3)× H 1(R3) norm of u on an interval [0, T ], with T arbitrarily large. This is done by an
induction on time. We assume that this norm is controlled on [0, T ] by a number M0. Then by continuity
we can find a slightly larger interval [0, T ′] such that this norm is bounded by (say) 2M0 on [0, T ′]. This
is our a priori bound. We subdivide [0, T ′] into subintervals where the L4

t L12
x norm of u is small and we

control the pointwise-in-time H̃ 2(R3)×H 1(R3) norm of u on each of these subintervals (see Lemma 6).
Since g varies slowly we can estimate the number of intervals of this partition by using Proposition 4
and we can prove a posteriori that ‖u(t)‖H̃2(R3)+‖∂t u(t)‖H̃1(R3) is bounded on [0, T ′] by M0, provided
that M0 is large enough; see Section 2.

The proof of Proposition 4 is a modification of the argument used in [Tao 2006] to establish a tower-
exponential bound of the L4

t L12
x (J×R3) norm of v, the solution of (1-5). We divide J into subintervals Ji

where the L4
t L12

x norm of u, the solution of (1-1), is “substantial”. Then by using the Strichartz estimates
and the Sobolev embedding (1-22) we notice that the L∞t L6

x(Ji×R3) norm of u is also substantial, more
precisely, we find a lower bound that depends on the energy E and g(M). Then by Proposition 2 we
can localize a bubble where the mass concentrates and we prove that the size of these subintervals is
also substantially large. Tao [2006] used the mass concentration to construct a solution ṽ of (1-5) that
has a smaller energy than v and that coincides with v outside a cone. The idea behind that is to use an
induction on the levels of energy, due to Bourgain [1999], and the small energy theory following from
the Strichartz estimates in order to control the L4

t L12
x norm of v outside a cone. Unfortunately it seems

almost impossible to apply this procedure to our problem. Indeed the energy of the constructed solution
ũ is smaller than the energy E of u by an amount that depends on E but also on g(M) and therefore an
induction on the levels of the energy is possible if the L∞t H̃ 2(J×R3) norm of ũ can be controlled by M ,
which is far from being trivial. It turns out that we do not need to use the Bourgain induction method.
Indeed since we know that the size of the subintervals Ji s is substantially large and since we have a good
control of the L4

t L12
x norm on these subintervals it suffices to find an upper bound of the size of their

union in order to conclude. To this end we divide a cone containing the ball where the mass concentrates
and the Ji s into truncated-in-time cones where the L4

t L12
x norm of u is substantial. Let J̃1, J̃2, . . . be the

sequence of time intervals resulting from this partition. The mass concentration helps us to control the
size of the first time interval J̃1. By using an asymptotic stability result we can prove, roughly speaking,
that if we consider two successive subintervals J̃ j , J̃ j+1 resulting from this partition of the cone then the
size of J̃ j+1 can be controlled by the size of J̃ j ; see (3-34). But a potential energy decay estimate shows
that if the size of the union of the Ji s is too large then we can find a large subinterval [t ′1, t ′2] such that
the L4

t L12
x norm of u on the cone truncated to [t ′1, t ′2] is small. Therefore [t ′1, t ′2] cannot be covered by

many J̃ j s and one of them is very large in comparison with its predecessor, which contradicts (3-34). At
the end of the process we can find an upper bound of the size of the union of the subintervals Ji s and
consequently we can control the L4

t L12
x norm of u on the interval J .

Remark 5. We will frequently use the x+ and x− notations. Indeed the point (2,∞) is not wave
admissible. Therefore we will work with the point (2+,∞−): see (5-6) and (7-9). This generates
slight variations of many quantities throughout this paper. Sometimes we might deal with quantities like
z := x+/ y−. We cannot conclude directly that z = (x/y)+. In this case we create a variation of y so
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small (compared to that of x) that we have z = (x/y)+. These details have been omitted for the sake of
readability. We strongly recommend that the reader ignores these slight variations at the first reading.

2. Proof of Theorem 1

The proof relies upon Proposition 4 and the following lemma, which we prove on page 268.

Lemma 6 (Local boundedness). Let J = [t1, t2] be an interval. Assume that u is a classical solution of
(1-1). Let Z(t) := ‖(u(t), ∂t u(t))‖H̃2(R3)×H1(R3). There exists 0< ε� constant such that if

‖u‖L4
t L12

x (J×R3) ≤
ε

g1/4(Z(t1))
, (2-1)

then there exists Cl > 0 such that

Z(t)≤ 2Cl Z(t1) for t ∈ J . (2-2)

We claim that the set

F :=
{
T ∈ [0, ∞) : sup

t∈[0,T ]

∥∥(u(t), ∂t u(t))
∥∥

H̃2(R3)×H1(R3)
≤ M0

}
(2-3)

is equal to [0, ∞) for some constant M0 := M0(‖u0‖H̃2(R3), ‖u1‖H1(R3)) large enough. Indeed, 0 ∈ F

(this is clear); F is closed, by continuity; and F is open. To see this last fact, let T ∈ F. Then by
continuity there exists δ > 0 such that

sup
t∈[0,T ′]

‖ (u(t), ∂t u(t)) ‖H2(R3)×H1(R3) ≤ 2M0 (2-4)

for every T ′ ∈ [0, T + δ). By (1-29) and (1-30) we have

‖u‖4L4
t L12

x ([0,T ′]×R3)
≤max

(
CL ,0, (CL ,1 E g(2M0))

CL ,2(E (193/4)+g(225/8)+(2M0))
)
. (2-5)

Let N ≥ 1 and let Z(0) := max (Z(0), 1). Without loss of generality we can assume that Cl � 1 so
that 2Cl Z(0)� 1 and logc (2Cl Z(0)

)
� 1. We have, by the elementary rules of the logarithm and the

inequality logc(2nx)≤ logc((2n)x) for n ≥ 1 and x � 1:

N∑
n=1

ε4

g ((2Cl)n Z0)
≥

N∑
n=1

ε4

logc (log((2Cl)2n Z2n(0)+ 10)
) & N∑

n=1

1
logc (2n log (2Cl Z(0))

)
&

1
logc (2Cl Z(0)

) N∑
n=1

1
logc(2n)

&
1

logc (2Cl Z(0)
) ∫ N+1

1

1
logc(2t)

dt

&
1

logc (2Cl Z(0)
) ∫ N+1

1

1
t1/2 dt &

N 1/2

logc (2Cl Z(0)
) . (2-6)
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By Lemma 6, (2-5) and (2-6) we can construct a partition (Jn)1≤n≤N of [0, T ′] such that

‖u‖L4
t L12

x (Jn×R3) =
ε

g1/4 ((2Cl)n Z0)
, 1≤ n < N ,

‖u‖L4
t L12

x (JN×R3) ≤
ε

g1/4
(
(2Cl)N Z0

) , Z(t)≤ (2Cl)
n Z(0),

for t ∈ J1 ∪ · · · ∪ Jn and

N 1/2

logc(2Cl Z(0))
≤max

(
CL ,0, (CL ,1 E g(2M0))

CL ,2(E193/4+g225/8+(2M0))
)
. (2-7)

Since c < 8/225 we have by (1-24)

log N . logc(2Cl Z(0))+ log (CL ,0)

+CL ,2 E (193/4)+ log(225c/8)+ log (10+4M2
0 ) log

(
CL ,1 E logc log(10+4M2

0 )
)

≤ log
( log (M0/Z(0))

log (2Cl)

)
, (2-8)

if M0 = M0(‖u0‖H̃2(R3), ‖u1‖H1(R)) is large enough. To prove the last inequality in (2-8) it is enough,
by using (1-24), to notice that limM0→∞ f (M0)= 0 with

f (M0) :=
logc(2Cl Z(0))+ log (CL ,0)+CL ,2 E (193/4)+ log(225c/8)+ log (10+ 4M2

0 ) log (CL ,1 E logc log(10+4M2
0 ))

log
(

log (M0/Z(0))
log (2Cl )

) .

(2-9)
Therefore we conclude that

sup
t∈[0,T ′]

‖(u(t), ∂t u(t))‖H2(R3)×H1(R3) ≤ (2Cl)
N Z(0)≤ M0. (2-10)

Proof of Lemma 6. By the Strichartz estimates (1-16), the Sobolev embeddings (1-22) and (1-23) and
the elementary estimate |u5

∇ (g(u)) |. |u4
∇ug(u)|, we have

Z(t). Z(t1)+‖u5g(u)‖L1
t L2

x ([t1,t]×R3)+‖u
4
∇ug(u)‖L1

t L2
x ([t1,t]×R3)+‖u

5
∇(g(u))‖L1

t L2
x ([t1,t]×R3)

. Z(t1)+‖u5g(u)‖L1
t L2

x ([t1,t]×R3)+‖u
4
∇ug(u)‖L1

t L2
x ([t1,t]×R3)

. Z(t1)+‖u‖4L4
t L12

x ([t1,t]×R3)
‖u‖L∞t L6

x ([t1,t]×R3)g(‖u‖L∞t L∞x ([t1,t]×R3))

+‖u‖4L4
t L12

x ([t1,t]×R3)
‖∇u‖L∞t L6

x ([t1,t]×R3)g(‖u‖L∞t L∞x ([t1,t]×R3))

. Z(t1)+‖u‖4L4
t L12

x ([t1,t]×R3)
Z(t)g(Z(t)).

(2-11)

Let Cl be the constant determined by the last inequality in (2-11). From (2-1), (2-11) and a continuity
argument, we have (2-2). �

3. Proof of Proposition 4

The proof relies upon five lemmas, which we state here and then prove in subsequent sections, after
seeing how they imply the proposition.
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Lemma 7 (Long time estimate if energy small). Let J = [t1, t2] be a time interval. Let u be a classical
solution of (1-1). Assume that (1-28) holds. If

E �
1

g1/2(M)
, (3-1)

then
‖u‖L4

t L12
x (J×R3) . 1. (3-2)

Lemma 8 (If ‖u‖L4
t L12

x (J×R3) is nonnegligible a mass concentration bubble exists and the size of J is
bounded from below). Let u be a classical solution of (1-1). Let J be a time interval. Assume that (1-28)
holds. Let η be a positive number such that

η ≤
E1/12

g5/24(M)
. (3-3)

If ‖u‖L4
t L12

x (J×R3) ≥ η, then
‖u‖L∞t L6

x (J×R3) & η
2+E−((1/2)+). (3-4)

Moreover, there exist a point x0 ∈ R3, a time t0 ∈ J and a positive number r such that we have the mass
concentration estimate in the ball B(x0, r)∫

B(x0,r)
|u(t0, y)|2 dy & η6+E−(2+)r2, (3-5)

and the following lower bound on the size of J :

|J |& η4 E−2/3r. (3-6)

Lemma 9 (Potential energy decay estimate). Let u be a classical solution of (1-1). Let [a, b] be an
interval. Then we have the potential energy decay estimate∫

|x |≤b
F(u(b, x)) dx .

a
b

(
e(a)+ e1/3(a)

)
+ e(b)− e(a)+ (e(b)− e(a))1/3 . (3-7)

Lemma 10 (L4
t L12

x norm of u is small on a large truncation of the forward light cone). Let J = [t1, t2] be
an interval. Let u be a classical solution of (1-1). Assume that (1-28) holds. Let η be a positive number
such that

η�min
(

E1/4, E5/18,
E1/12

g5/24(M)

)
. (3-8)

Assume also that there exists C2� 1 such that[
t1, (C2 E10+η−(36+))4C2 E10+η−(36+)

t1
]
⊂ J. (3-9)

Then there exists a subinterval J ′ = [t ′1, t ′2] such that
∣∣t ′2/t ′1∣∣∼ E10+η−(36+) and

‖u‖L4
t L12

x (0+(J ′))
≤ η. (3-10)

Lemma 11 (Asymptotic stability). Let J = [t1, t2] be a time interval. Let J ′ = [t ′1, t ′2] ⊂ J and let
t ∈ J/J ′. Let u be a classical solution of (1-1). Assume that (1-28) holds. Then

‖ul,t ′2(t)− ul,t ′1(t)‖L∞x (R3) .
E5/6g1/6(M)

dist1/2(t, J ′)
. (3-11)
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We are ready to prove Proposition 4. We assume that we have an a priori bound M of the L∞t H̃ 2(J×R3)

norm of the solution u. There are two steps:

• If E � 1/g1/2(M), then we know from Lemma 7 that (1-29) holds.

• Therefore we assume that the energy is large, that is,

E &
1

g1/2(M)
. (3-12)

We can assume without loss of generality that

‖u‖L4
t L12

x (J×R3) ≥
E1/12

g5/24(M)
. (3-13)

From (3-13) we can partition J into subintervals J1, . . . , Jl such that for i = 1, . . . , l − 1,

‖u‖L4
t L12

x (Ji×R3) =
E1/12

g5/24(M)
and ‖u‖L4

t L12
x (Jl×R3) ≤

E1/12

g5/24(M)
. (3-14)

Before moving forward we say that an interval Ji is exceptional if

‖ul,t1‖L4
t L12

x (Ji×R3)+‖ul,t2‖L4
t L12

x (Ji×R3) ≥
1

(C3 Eg(M))C4(E (193/4)+g(225/8)+(M))
, (3-15)

for some C3� 1, C4� 1 to be chosen later. (The numbers 193/4 and 225/8 will play an important role
in (3-44).) Otherwise Ji is unexceptional. Let E denote the set of J ′i s that are exceptional and let Ec

denote the set of nonempty sequences of consecutive unexceptional intervals Ji . By (1-16), (3-12) and
(3-15),

card (E). E2 [O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . [O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . (3-16)

Since card (Ec). card (E) we have

‖u‖4L4
t L12

x (J×R3)
. [O(Eg(M))]O(E (193/4)+g(225/8)+(M))

( E1/3

g5/6(M)
+ sup

K∈Ec

‖u‖4L4
t L12

x (K×R3)

)
. (3-17)

Let K = Ji0 ∪ · · · ∪ Ji1 be a sequence of consecutive unexceptional intervals. If N (K ) is the number of
Ji s making K then by (3-12), (3-14) and (3-17) we have

‖u‖L4
t L12

x (J×R3) .
(

sup
K∈Ec

N (K )
)

[O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . (3-18)

Therefore it suffices to estimate N (K ) for every K = Ji0 ∪· · ·∪ Ji1 . We will do that by first determining
a lower bound for the size of the elements Ji s and then by estimating the size of K . By (3-12), (3-14)
and Lemma 8, there exists for i ∈ [i0, . . . i1] a (ti , ri , xi ) ∈

(
Ji × ( 0,∞)×R3

)
such that

1
r2

i

∫
B(xi ,ri )

|u(ti , y)|2 dy &
E−(3/2+)

g5/4+(M)
(3-19)

and

|Ji |&
E−1/3ri

g5/6(M)
. (3-20)
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Let k ∈ [i0, . . . , i1] be such that rk = mini∈[i0, i1]
ri ; let f (t, r, x) := 1

r2

∫
B(x,r) |u(t, y)|2 dy; let C5 be

the constant determined by (3-19); and let r0 = r0(M) be defined by

r0 M2
=

C5 E−((3/2)+)

4g(5/4)+(M)
.

Since f (t, r, x)≤ r M2 we have

f (t, r0, x)≤
C5 E−((3/2)+)

4g(5/4)+(M)
.

The set A := {(t, r, x) : t ∈ K , r0 ≤ r ≤ rk, x ∈R3
} is connected. Therefore its image is connected by f

and there exists (t̃, r̃ , x̃) ∈ K × [r0, rk] ×R3 such that f (t̃, r̃ , x̃) = (C5 E−((3/2)+))/(2g(5/4)+(M)) . In
other words we have the following mass concentration

1
r̃2

∫
B(x̃,r̃)

u2(t̃, x) dx =
C5 E−(3/2+)

2g(5/4)+(M)
. (3-21)

Moreover we have the useful lower bound for the size of Ji ,1 i0 ≤ i ≤ i1:

|Ji |& r̃
E−1/3

g5/6(M)
. (3-22)

At this point we need to use the following lemma, which gives information about the size of K .

Lemma 12. Let K be a sequence of unexceptional intervals. Assume there exist t̄ ∈ K , x̄ ∈ R3 and
r̄ ∈ (0,∞) such that

1
r̄2

∫
B(x̄,r̄)

u2(t̄, y) dy & E−((3/2)+)g(5/4)+(M). (3-23)

Then there exist two constants C6� 1, C7� 1 such that

|K | ≤ (C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̄ . (3-24)

If we combine the lemma with (3-22) we can estimate N (K ). More precisely, by Lemma 12, (3-22)
and (3-12) we have

N (K ).
(C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̃

r̃ E−(1/3)
g5/6(M)

.
(
O(Eg(M))

)O(E (193/4)+g(225/8)+(M))
. (3-25)

Plugging this upper bound for N (K ) into (3-18) we get (1-30), completing the proof of the proposition
(modulo the lemmas).

Proof of Lemma 12. By using the space translation invariance of (1-1) we can reduce to the case where
x̄ vanishes.2 By using the time reversal invariance and the time translation invariance3 it suffices to
estimate |K ∩ [t̄, ∞)|. By using the time translation invariance again4 we can assume that t̄ = r̄ and

1Notice that we have the lower bound r̃ ≥ C5 E−((3/2)+)/(4M2g(5/4)+(M)). One might think that the presence of r̃ in
(3-22) is annoying since this lower bound is crude. However we will see that r̃ disappears at the end of the process: see (3-25).
Therefore a sharp lower bound is not required.

2We consider the function u1(t, x)= u(t, x − x̄) and we abuse notation in the sequel by writing u1 for u.
3We consider the function u2(t, x) := u(2t̄ − t, x) and we abuse notation in the sequel by writing u2 for u.
4We consider the function u3(t, x) := u(t + (t̄ − r̄), x) and we abuse notation in the sequel by writing u3 for u.
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therefore r̄ ∈ K . Let K+ := K ∩ [r̄ ,∞). We are interested in estimating |K+|. We would like to use
Lemma 10. Therefore, we consider the set 0+(K+). We have

1
r̄2

∫
B(0,r̄)
|u(r̄ , y)|2 dy &

E−((3/2)+)

g(5/4)+(M)
. (3-26)

Therefore by Proposition 3 and (3-26) we have∫
B(0,r̄)
|u(t, y)|2 dy &

E−((3/2)+)r̄2

g(5/4)+(M)
(3-27)

if (t−r̄)E1/2
≤ (c0 E−((3/4)+)r̄/g(5/8)+(M)) for some c0�1. Therefore by Hölder there exists 0< c1�1

small enough such that

‖u‖
L4

t L12
x

(
0+

([
r̄ ,r̄+ c0 E−((5/4)+) r̄

g(5/8)+(M)

])) ≥ c1
E−17/16

g25/32(M)
. (3-28)

Suppose first that ‖u‖L4
t L12

x (0+(K+))
≤ c1

E−(17/16)

g(25/32)(M)
. In this case we get from (3-28)

K+ ⊂
[
r̄ , r̄ +

c0 E−((5/4)+)r̄
g(5/8)+(M)

]
, (3-29)

and, using also (3-12), we get (3-24).

Now suppose instead that ‖u‖L4
t L12

x (0+(K+))
≥ c1

E−((17/16)+)

g(25/32)+(M)
. Define

η̃ :=
c1

4
E−((17/16))+

g(25/32)+(M)
, (3-30)

and divide 0+(K+) into consecutive cone truncations 0+( J̃1), . . . , 0+( J̃k) such that, for j =1, . . . , k−1,

‖u‖L4
t L12

x (0+( J̃ j ))
= η̃ (3-31)

and
‖u‖L4

t L12
x (0+( J̃k))

≤ η̃. (3-32)

We get from (3-28)

J̃1 ⊂

[
r̄ , r̄ +

c0 E−((5/4)+)r̄
g(5/8)+(M)

]
. (3-33)

Result 13. If j ∈ [1, . . . , k− 1] we either have

| J̃ j+1|. | J̃ j |η̃
−4 E8/3g1/3(M) (3-34)

or

| J̃ j | ≥ (C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̄ (3-35)

for some constants C6� 1, C7� 1.
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Proof. We get from (1-21), (3-12) and (3-30)

‖u− ul,t j+1‖L4
t L12

x (0+( J̃ j ))
. ‖u5g(u)‖L1

t L2
x (0+( J̃ j∪ ˜J j+1))

. ‖u4
‖L1

t L3
x (0+( J̃ j∪ ˜J j+1))

‖ug1/6(u)‖L∞t L6
x (0+( J̃ j∪ ˜J j+1))

g5/6(M)

. η̃4 E1/6g5/6(M)

� η̃, (3-36)

with J j = [t j−1, t j ]. Therefore by (3-31) we have ‖ul,t j+1‖L4
t L12

x (0+( J̃ j ))
∼ η̃. This implies that

‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃ j ))
& η̃ (3-37)

or
‖ul,t2‖L4

t L12
x (0+( J̃ j ))

& η̃. (3-38)

Case 1. ‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃i ))
& η̃. By Lemma 11 and Hölder we have

‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃ j ))
. | J̃ j |

1/4
‖ul,t j+1 − ul,t2‖L∞t L12

x (0+( J̃ j ))

. | J̃ j |
1/4
‖ul,t j+1 − ul,t2‖

1/2
L∞t L∞x (0+( J̃ j ))

‖ul,t j+1 − ul,t2‖
1/2
L∞t L6

x (0+( J̃ j ))

.
| J̃ j |

1/4 E2/3g1/12(M)

| J̃ j+1|1/4
. (3-39)

We get (3-34) from (3-37) and (3-39).

Case 2. ‖ul,t2‖L4
t L12

x (0+( J̃ j ))
& η̃. In this case ‖ul,t2‖L4

t L12
x ( J̃ j )

& η̃. Recall that K+ is a subinterval of
K = Ji0 ∪ · · · ∪ Ji1 , sequence of unexceptional intervals Ji , i0 ≤ i ≤ i1. Consequently there are at least
∼ η̃(C3 Eg(M))C4 E (193/4)+g(225/8)+(M) intervals J j that cover J̃i . Therefore we get (3-35) from (3-22) and
(3-12). �

Using Result 13 and Lemma 10 we can get an upper bound on the size |K+|:

Result 14. We have
|K+| ≤ (C6 Eg(M))C7(E (193/4)+g(225/8)+(M))r̄ . (3-40)

Proof. Let B := (C6 Eg(M))C7(E (193/4)+g(225/8)+(M)). Assume that (3-40) fails. Let J̃ j1 be the first interval
for which | J̃1 ∪ · · · ∪ J̃ j1 | exceeds Br̄ . Then j1 6= 1, | J̃ j1 |. | J̃ j1−1|η̃

−4 E8/3g1/3(M) and we have

c1 E−5/4r̃
g(5/8)(M)

+ T2− T1+ (T2− T1)η̃
−4 E8/3g1/3(M)& | J̃1| + · · · + | J̃ j1 | ≥ Br̄ , (3-41)

if [T1, T2] := J̃2 ∪ · · · ∪ J̃ j1−1. Therefore by (3-12) and (3-41) we have

T2− T1 &
η̃4 E−(8/3)Br̄

g1/3(M)
. (3-42)

Moreover T1 ≤ r̄ + (c1 E−((5/4)+)r̄)/(g(5/8)+(M)). Therefore by (3-12) we have

T1 = O(r̄). (3-43)
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By (3-42) and (3-43) we have

T2

T1
≥

(
C2 E10+

( η̃
4

)−(36+))4C2 E10+(η̃/4)−(36+)

, (3-44)

with C2 defined in Lemma 10, provided that C6, C7 � max (c1,C2). Therefore we can apply Lemma
10 and find a subinterval [t ′1, t ′2] ⊂ J̃2∪· · ·∪ J̃ j1−1 with

∣∣t ′2/t ′1∣∣∼ E10+η̃−(36+) and ‖u‖L4
t L12

x ([t
′

1,t
′

2])
≤ η̃/4.

This means that [t ′1, t ′2] ⊂ [T1, T2] is covered by at most two consecutive intervals. It is convenient to
introduce [t ′1, t ′2]g, the geometric mean of t ′1 and t ′2. We have [t ′1, t ′2]g ∼ η̃

−18 E5t ′1. There are two cases.

Case 1. [t ′1, t ′2] is covered by one interval J̃ j̄ = [a j̄ , b j̄ ], 2≤ j̄ ≤ j1−1. Then | J̃ j̄ |& η̃
−(36+)E10+t ′1 and

| J̃ j̄−1| ≤ t ′1. Therefore | J̃ j̄ |& η̃
−(36+)E10+

| J̃ j̄−1|. Contradiction with (3-12) and (3-34).

Case 2. [t ′1, t ′2] is covered by two intervals J̃ j̄ =[a j̄ , b j̄ ] and J̃ j̄+1=[a j̄+1, b j̄+1] for some 2≤ j̄ ≤ j1−2.
Then there are two subcases.

Case 2a. b j̄ ≤ [t
′

1, t ′2]g. In this case | J̃ j̄+1| & η̃
−(36+)E10+t ′1 and | J̃ j̄ | ≤ η̃

−(18+)E5+t ′1. Therefore by
(3-12) we have | J̃ j̄+1|& η̃

−(18+)E5+
| J̃ j̄ |. Contradiction with (3-12) and (3-34).

Case 2b. b j̄ ≥ [t
′

1, t ′2]g. In this case by (3-12) | J̃ j̄ | & η̃−(18+)E5+t ′1 and | J̃ j̄−1| ≤ t ′1. Therefore
| J̃ j̄ |& η̃

−(18+)E5+
| J̃ j̄−1|. Contradiction with (3-12) and (3-34).

This exhausts all cases. Thus we have proved Result 14 and so also Lemma 12. �

Remark 15. It seems likely that we can find a better upper bound for |K+| than (3-40) by exploiting
Lemma 11 in a better way. For instance we can consider k successive time intervals J̃ j+1, . . . , J̃ j+k ,
k > 1 and prove an estimate like

| J̃ j+1| + · · · | J̃ j+k | . | J̃ j |η̃
−4 E8/3g1/3(M). (3-45)

This estimate is stronger than (3-34). We can probably find a smaller B such that (3-44) holds with
η̃ substituted for something like kη̃ and, by modifying the argument above, find a contradiction with
(3-45). At the end of the process we can probably prove global existence of smooth solutions to (1-1)
for 0< c < c0, with c0 > 8/225 to be determined. We will not pursue these matters.

4. Proof of Lemma 7

Applying the Strichartz estimates and the Hölder inequality,

‖u‖L4
t L12

x (J×R3) . E1/2
+‖u4

‖L1
t L2

x (J×R3)‖ug1/6(u)‖L∞t L6
x (J×R3)‖g

5/6(u)‖L∞t L∞x (J×R3)

. E1/2
+ E1/6g5/6(M)‖u‖4L4

t L12
x (J×R3)

. (4-1)

Hence (3-2) by (3-1) and a continuity argument.
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5. Proof of Lemma 8

Let J ′ = [t ′1, t ′2] ⊂ J be such that ‖u‖L4
t L12

x (J ′×R3) = η. Then by (1-22) and (3-3)

‖ f (u)‖L1
t L2

x (J ′×R3) . ‖ug1/6(u)‖L∞t L6
x (J ′×R3)‖u‖

4
L4

t L12
x (J ′×R3)

‖g5/6(u)‖L∞t L∞x (J ′×R3)

. E1/6η4g5/6(M). E1/2.
(5-1)

It is slightly unfortunate that (2,∞) is not wave admissible. Therefore we consider the admissible pair
(2+ ε, 6(2+ε)/ε) with ε� 1. By the Strichartz estimates and (5-1), we have

‖u‖L2+ε
t L(6(2+ε))/εx (J ′×R3)

. ‖∇u(t ′1)‖L2(R3)+‖u(t
′

1)‖L2(R3)+‖ f (u)‖L1
t L2

x (J ′×R3) . E1/2. (5-2)

Let N be a frequency to be chosen later. By the Bernstein inequality and (1-7) we have

‖P<N u‖L4
t L12

x (J ′×R3) . N 1/4
|J ′|1/4‖u‖L∞t L6

x (J ′×R3) . N 1/4
|J ′|1/4 E1/6. (5-3)

Therefore
‖P<N u‖L4

t L12
x (J ′×R3) . |J

′
|
1/4 N 1/4 E1/6. (5-4)

Let c2� 1. Then if N = c4
2(η

4/(|J ′|E2/3)) we have

‖P≥N u‖L4
t L12

x (J ′×R3) & η and ‖u‖L4
t L12

x (J ′×R3) ∼ ‖P≥N u‖L4
t L12

x (J ′×R3). (5-5)

By (5-2) and (5-5) we have

η ∼ ‖P≥N u‖L4
t L12

x (J ′×R3)

. ‖P≥N u‖(2+ε)/4
L2+ε

t L(6(2+ε))/εx (J ′×R3)
‖P≥N u‖1−(2+ε)/4L∞t L6

x (J ′×R3)

. E (2+ε)/8‖P≥N u‖1−((2+ε)/4)L∞t L6
x (J ′×R3)

. (5-6)

Therefore we conclude that ‖P≥N‖L∞t L6
x (J ′×R3) & η

2+E−((1/2)+). Applying Proposition 2 we get (3-5).

6. Proof of Lemma 9

Bahouri and Gerard [1999, page 171] used arguments from Grillakis [1990; 1992] and Shatah–Struwe
[1993] to derive an a priori estimate of the solution u to the 3D quintic defocusing wave equation, that
is, ∂t t u−4u+ u5

= 0. More precisely they were able to prove∫
|x |≤b
|u(b, x)|6 dx .

a
b
(ẽ(a)+ ẽ1/3(a))+ ẽ(b)− ẽ(a)+ (ẽ(b)− ẽ(a))1/3, (6-1)

with

ẽ(t) :=
1
2

∫
|x |≤t

(∂t u)2 dx +
1
2

∫
|x |≤t
|∇u|2 dx +

1
6

∫
|x |≤t

u6 dx . (6-2)

Since we apply their ideas to the potential f we just sketch the proof. Given the cone 0+([a, b]) we
denote by ∂0+([a, b]) the mantle of the cone 0+([a, b]), that is,

∂0+([a, b]) :=
{
(t ′, x) ∈ [a, b]×R3, t = |x |

}
. (6-3)
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The local energy identity

e(b)− e(a)=
1

2
√

2

∫
∂0+([a,b])

∣∣∣∣ x∂t u
t
+∇u

∣∣∣∣2+ 1
√

2

∫
∂0+([a,b])

F(u) (6-4)

results from the integration of the identity ∂t u (∂t t u−4u+ f (u))= 0 on the cone 0+([a, b]). We have
[Shatah and Struwe 1998]

∂t

( t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u

)
− div

(
t∇u∂t u+ (x .∇u)∇u−

|∇u|2x
2
+
(∂t u)2x

2
− x F(u)+ u∇u

)
+ u f (u)− 4F(u)= 0. (6-5)

Integrating this identity on 0+([a, b]), we have

X (b)− X (a)+ Y (a, b)=
∫
0+([a,b])

4F(u)− u f (u), (6-6)

with
X (t) :=

∫
|x |≤t

t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u (6-7)

and
Y (a, b) :=

−
1
√

2

∫
∂0+([a,b])

(
t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u+ t

∇u.x
|x |

∂t u+
|x .∇u|2

|x |

−
|∇u|2

2
|x | +

(∂t u)2|x |
2

− |x |F(u)+ u
∇u.x
|x |

)
. (6-8)

In fact we have [Shatah and Struwe 1993]

X (t)=
∫
|x |≤t

t
[1

2
(∂t u)2+

1
2

∣∣∣∇u+
ux
|x |2

∣∣∣2]+ ∂t u(x .∇u+ u)+ t F(u)−
∫
|x |=t

u2

2
. (6-9)

Since t = |x | on ∂0+([a, b]) we have

Y (a, b)=−
1
√

2

∫
∂0+([a,b])

|x |(∂t u)2+ 2(x .∇u)∂t u+ u∂t u+
(x .∇u)2

|x |
+ u
∇u.x
|x |

, (6-10)

and after some computations [Shatah and Struwe 1993], we get

Y (a, b)=−
1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+ (∇u.x)+ u)2+

∫
|x |=b

u2

2
−

∫
|x |=a

u2

2
. (6-11)

Therefore, if

H(t) :=
∫
|x |≤t

t
[1

2
(∂t u)2+

1
2

∣∣∣∇u+
ux
|x |2

∣∣∣2]+ ∂t u(x .∇u+ u)+ t F(u), (6-12)

then

H(b)− H(a)=
1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+∇u.x + u)2+

∫
0+([a,b])

4F(u)− u f (u). (6-13)
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We estimate H(t), following [Bahouri and Gérard 1999]. We have

|∂t u(x .∇u+ u)| ≤
t
2

(
(∂t u)2+

∣∣∣∇u+
ux
|x |2

∣∣∣2) . t
(
(∂t u)2+ |∇u|2+

u2

|x |2

)
. (6-14)

Therefore by (6-14), the Hölder inequality and (1-7), we have

H(t) . t
(

e(t)+
∫
|x |≤t

u2

|x |2

)
. t

(
e(t)+

( ∫
|x |≤t

u6
)1/3

)
. t

(
e(t)+ e1/3(t)

)
. (6-15)

Moreover by (6-4), the Hölder inequality and (1-7), we have

1
√

2

∫
∂0+([a,b])

1
t

(
t∂t u+∇u.x + u

)2
.

b

2
√

2

∫
∂0+([a,b])

(
∇u · x

t
+ ∂t u

)2
+

1

2
√

2

∫
∂0+([a,b])

u2

t2

. b
∫
∂0+([a,b])

∣∣∣ x
t
∂t u+∇u

∣∣∣2+ 1

2
√

2

( ∫
∂0+([a,b])

u6
)1/3

. b
(
(e(b)− e(a))+ (e(b)− e(a))1/3

)
. (6-16)

We get from (1-7)

4F(u)− u f (u)≤ 0. (6-17)

By (6-13), and (6-15)–(6-17), we have

∫
|x |≤b

F(u) .
H(b)

b
.

H(a)+ 1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+∇u.x + u)2

b

.
a
b

(
e(a)+ e1/3(a)

)
+ e(b)− e(a)+ (e(b)− e(a))1/3 . (6-18)

7. Proof of Lemma 10

The proof relies upon two results that we prove in the subsections.

Result 16. Let u be a classical solution of (1-1). Assume that (1-28) holds. Let η be a positive number
such that (3-3) holds. If ‖u‖L4

t L12
x (0+(J ))

≥ η then

‖u‖L∞t L6
x (0+(J )) & η

2+E−((1/2)+). (7-1)

Result 17. Let u be a smooth solution to (1-1). Assume that (1-28) holds. Let η be a positive number
such that

η ≤min(1, E1/18). (7-2)

Let J = [t1, t2] be an interval such that [t1, t1(Eη−18)4Eη−18
] ⊂ J . Then there exists a subinterval

J ′ = [t ′1, t ′2] such that
∣∣t ′2/t ′1∣∣= Eη−18 and

‖u‖L∞t L6
x (0+(J ′)) . η. (7-3)
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Let C9 be the constant determined by & in (7-1). Let C10 be the constant determined by . in (7-3).
We get from (3-9):

[
t1, t1

(
E
(C9η

2+E−(1/2)+

2C10

)−18
)4E

(
C9η

2+E−(1/2)+
2C10

)−18]
⊂
[
t1, C2(E10+η−(36+))4C2 E10+η−(36+)

t1
]

⊂ J, (7-4)

if C2 � max (C9,C10). Therefore, since (C9η
2+E−(1/2+))/(2C10) satisfies (7-2) by (3-8), we can use

Result 17 and show that there exists a subinterval J ′ = [t ′1, t ′2] such that |t ′2/t
′

1| ∼ E10+η−(36+) and

‖u‖L∞t L6
x (0+(J ′)) ≤

C9η
2+E−(1/2+)C10

2C10
≤ C9

η2+E−(1/2+)

2
. (7-5)

Now we claim that ‖u‖L4
t L12

x (0+(J ′))
≤ η. If not by (3-8) and Result 16 we have

‖u‖L∞t L6
x (0+(J ′)) ≥ C9η

2+E−(1/2+). (7-6)

Contradiction with (7-5).

Proof of Result 16. We substitute J ′ for 0+(J ′) in (5-1) to get

‖ f (u)‖L1
t L2

x (0+(J ′))
. E1/2. (7-7)

By the Strichartz estimates (1-20) on the truncated cone 0+(J ′) we have

‖u‖L2+ε
t L(6(2+ε))/εx (0+(J ′))

. E1/2, (7-8)

after following similar steps to prove (5-2). Therefore

η = ‖u‖L4
t L12

x (0+(J ))
. ‖u‖(2+ε)/4

L2+ε
t L(6(2+ε))/εx (0+(J ′))

‖u‖1−((2+ε)/4)L∞t L6
x (0+(J ′))

. E (2+ε)/8‖u‖1−((2+ε)/4)L∞t L6
x (0+(J ′))

. (7-9)

Therefore (7-1) holds. �

Proof of Result 17. By (7-2) we have Eη−18
≥ 1. Let n be the largest integer such that 2n ≤ 4Eη−18.

This implies that n ≥ Eη−18. Let A := Eη−18. Now we consider the interval [t1, A2nt1] ⊂ J . We write
[t1, A2nt1] = [t1, A2t1] ∪ · · · ∪ [A2(n−1)t1, A2nt1]. We have

n∑
i=1

e(A2i t1)− e(A2(i−1)t1)≤ 2E, (7-10)

and by the pigeonhole principle there exists i0 ∈ [1, n] such that

e(A2i0 t1)− e(A2(i0−1)t1). η18. (7-11)

Now we choose a := A2(i0−1)t1 and b ∈ [A2i0−1t1, A2i0 t1]. Let t ′1 := A2(i0−1)t1, t ′2 := A2i0−1t1 and
J ′ := [t ′1, t ′2]. We apply (3-7) and (7-2) to get

‖u‖L∞t L6
x (0+([t

′

1, t ′2]))
. ‖F(u)‖L∞t L1

x (0+([t
′

1, t ′2]))
. (E−1η18(E + E1/3)+ η18

+ η6)1/6 . η. �
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Proof of Lemma 11

We have after computation of the derivative of e(t)

∂t e(t)≥
∫
|x |=t

F(u) d S, (7-12)

and integrating with respect of time∫
I

∫
|x |≤t

g(u)u6(t ′, x ′) d S dt ′ . E . (7-13)

By using the space and time translation invariance∫
J

∫
|x ′−x |=|t ′−t |

g(u)u6(t ′, x ′) d S dt ′ . E . (7-14)

Therefore (1-15), (1-22), (7-14) and the Hölder inequality give us∣∣∣∣−∫
J ′

sin (t−t ′)D
D

g(u)u5 dt ′
∣∣∣∣= ∣∣∣∣ 1

4π |t−t ′|

∫
|x ′−x |=|t ′−t |

g5/6(u)u5g1/6(u) d Sdt ′
∣∣∣∣

.
∫

J ′

1
|t−t ′|

( ∫
|x ′−x |=|t ′−t |

u6g(u)d S
)5/6( ∫

|x ′−x |=|t ′−t |
g(u) d S

)1/6
dt ′

. g1/6(M)
∫

J ′

1
|t − t ′|2/3

( ∫
|x ′−x |=|t ′−t |

u6g(u) d S
)5/6

dt ′

. g1/6(M)E5/6
( ∫

J ′

1
|t−t ′|4

)1/6
. g1/6(M)

E5/6

dist1/2(t, J ′)
. (7-15)

Notice that

u(t)= ul,ti (t)−
∫ t

ti

sin (t − t ′)D
D

u5(t ′)g(u(t ′)) dt ′, (7-16)

for i = 1, 2. We get (3-11) from (7-15) and (7-16).
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