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THE INVERSE CONJECTURE FOR THE GOWERS NORM OVER FINITE
FIELDS VIA THE CORRESPONDENCE PRINCIPLE

TERENCE TAO AND TAMAR ZIEGLER

The inverse conjecture for the Gowers norms U d(V ) for finite-dimensional vector spaces V over a finite
field F asserts, roughly speaking, that a bounded function f has large Gowers norm ‖ f ‖Ud (V ) if and only
if it correlates with a phase polynomial φ= eF(P) of degree at most d−1, thus P :V→F is a polynomial
of degree at most d − 1. In this paper, we develop a variant of the Furstenberg correspondence principle
which allows us to establish this conjecture in the large characteristic case char F > d from an ergodic
theory counterpart, which was recently established by Bergelson, Tao and Ziegler. In low characteristic
we obtain a partial result, in which the phase polynomial φ is allowed to be of some larger degree C(d).
The full inverse conjecture remains open in low characteristic; the counterexamples found so far in this
setting can be avoided by a slight reformulation of the conjecture.

1. Introduction

1.1. The combinatorial inverse conjecture in finite characteristic. Let F be a finite field of prime order.
Throughout this paper, F will be considered fixed (for example, F = F2 or F = F3), and the term vector
space will be shorthand for vector space over F, and more generally any linear algebra term (span,
independence, basis, subspace, linear transformation, etc.) will be understood to be over the field F.

If V is a vector space, f : V → C is a function, and h ∈ V is a shift, we define the (multiplicative)
derivative 1· h f : V → C of f by the formula

1· h f := (Th f ) f ,

where the shift operator Th with shift h is defined by Th f (x) := f (x + h). An important special case
arises when f takes the form f = eF(P), where P : V → F is a function, and eF : F→ C is the standard
character eF( j) := e2π i j/|F| for j = 0, . . . , |F|−1. In that case we see that 1· h f = eF(1h P), where
1h P : V → F is the (additive) derivative of P , defined as

1h P = Th P − P.

Given an integer d > 0, we say that a function P : V → F is a polynomial of degree at most d if
we have 1h1 . . . 1hd+1 P = 0 for all h1, . . . , hd+1 ∈ V , and write Polyd V for the set of all polynomials
on V of degree at most d; thus for instance Poly0 V is the set of constants, Poly1 V is the set of linear
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2 TERENCE TAO AND TAMAR ZIEGLER

polynomials on V , Poly2 V is the set of quadratic polynomials, and so forth. It is easy to see that Polyd V
is a vector space, and if V = Fn

= {(x1, . . . , xn) : x1, . . . , xn ∈ F} is the standard n-dimensional vector
space, then Polyd V has the monomials x i1

1 . . . x
in
n for 06 i1, . . . , in < |F| and i1+· · ·+ in 6 d as a basis1.

We shall say that a function f : V → C is a phase polynomial of degree at most d if all (d+1)-th
multiplicative derivatives 1· h1 . . . 1· hd+1 f are identically 1, and write Pd(V ) for the space of all phase
polynomials of degree at most d. We have the following equivalence between polynomials and phase
polynomials in the high characteristic case:

Lemma 1.2 (phase polynomials are exponentials of polynomials). Suppose that 0 6 d < char F, and
f : V → C. Then the following are equivalent:

(i) f ∈ Pd(V ).

(ii) f = e2π iθeF(P) for some θ ∈ R/Z and P ∈ Polyd V .

Proof. See [Bergelson et al. 2009, Lemma D.5]. �

Remark 1.3. The lemma fails in the low characteristic case d> char F; consider for instance the function
f : F2→ C defined by f (1) := i and f (0) := 1. This function lies in P2(F2) but does not arise from a
polynomial in Poly2F2.

Definition 1.4 (expectation notation). If A is a finite nonempty set and f : A→C is a function, we write
|A| for the cardinality of A, and EA f ,

∫
A f , or Ex∈A f (x) for the average (1/|A|)

∑
x∈A f (x).

Definition 1.5 (Gowers uniformity norm [Gowers 1998; 2001]). Let V be a finite vector space, let
f : V → C be a function, and let d > 1 be an integer. We then define the Gowers norm ‖ f ‖U d (V ) of f
to be the quantity

‖ f ‖U d (V ) :=

∣∣∣Eh1,...,hd

∫
V
1· h1 . . . 1· hd f

∣∣∣1/2d

,

thus ‖ f ‖U d+1(V ) measures the average bias in d-th multiplicative derivatives of f . We also define the
weak Gowers norm ‖ f ‖ud (V ) of f to be the quantity

‖ f ‖ud (V ) := sup
φ∈Pd−1(V )

∣∣∣∫
V

f φ
∣∣∣, (1-1)

thus ‖ f ‖ud (V ) measures the extent to which f can correlate with a phase polynomial of degree at most
d − 1.

Remark 1.6. It can in fact be shown that the Gowers and weak Gowers norm are in fact norms for d > 2
(and seminorms for d = 1); see [Gowers 2001; Tao and Vu 2006]. Further discussion of these two norms
can be found in [Green and Tao 2008]. In view of Lemma 1.2, in the high characteristic case char F> d
one can replace the phase polynomial φ ∈ Pd−1(V ) in (1-1) by the exponential eF(P) of a polynomial
P ∈ Polyd−1 V . However, this is not the case in low characteristic. For instance, let F= F2, V = Fn

2 , and
consider the symmetric function S4 : V → F2 defined by

S4(x1, . . . , xn) :=
∑

16i< j<k<l6n

xi x j xk xl .

1The restriction i1, . . . , in < |F| arises of course from the identity x |F| = x for all x ∈ F.
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Then the function f := (−1)S4 has low correlation with any exponential eF(P) = (−1)P of a cubic
polynomial P ∈ Poly3 V in the sense that Ex∈V f eF(−P)= on→∞(1) [Lovett et al. 2007; Green and Tao
2009a]; on the other hand, it is not hard to verify that the function

g(x1, . . . , xn) := e2π i |x |/8,

where |x | denotes the number of indices 16 j 6 n for which x j = 1, lies in P3(V ) and has a large inner
product with f ; indeed, since f (x) = +1 when |x | = 0, 1, 2, 3 mod 8 and −1 otherwise, we easily
check that

Ex∈V f ḡ = 1
8

(
1+ e−2π i/8

+ e−4π i/8
+ e−6π i/8

− e−8π i/8
− e−10π i/8

− e−12π i/8
− e−14π i/8)

+ on→∞(1)

=
1− i −

√
2i

4
+ on→∞(1).

We thus see that ‖(−1)S4‖u4(V ) is bounded from below by a positive absolute constant for large n.

Let D := {z ∈ C : |z| 6 1} be the compact unit disk. This paper is concerned with the following
conjecture.

Conjecture 1.7 (inverse conjecture for the Gowers norm). Let F be a finite field and let d > 1 be an
integer. Then for every δ > 0 there exists ε > 0 such that ‖ f ‖ud (V ) > ε for every finite vector space V
and every function f : V → D such that ‖ f ‖U d (V ) > δ.

Remark 1.8. This result is trivial for d = 1, and follows easily from Plancherel’s theorem for d = 2. The
result was established for d = 3 in [Green and Tao 2008] (for odd characteristic) and [Samorodnitsky
2007] (for even characteristic), and a formulation of Theorem 1.9 was then conjectured in both papers,
in which the phase polynomials were constrained to be (char F)-th roots of unity. This formulation of the
conjecture turned out to fail in the low characteristic regime char F+1< d [Green and Tao 2009a; Lovett
et al. 2007]; however, the counterexamples given there do not rule out the conjecture as formulated above
in this case, basically because of the discussion in Remark 1.6.

The case when δ was sufficiently close to 1 (depending on d) was treated in [Alon et al. 2003; 2005],
while the case when char F is large compared to d and δ was established in [Sudan et al. 2001]. In [Green
and Tao 2009a], Theorem 1.9 was also established in the case when f was a phase polynomial of degree
less than char F. These results have applications to solving linear systems of equations (and in particular,
in finding arithmetic progressions) in subsets of vector spaces [Green and Tao 2009b; Gowers and Wolf
2007] and also to polynomiality testing [Samorodnitsky 2007; Bogdanov and Viola 2007]. Conjecture
1.7 is also the finite field analogue of a corresponding inverse conjecture for the Gowers norm in cyclic
groups Z/NZ, which is of importance in solving linear systems of equations in sets of integers such as
the primes; see [Green and Tao 2006; Frantzikinakis et al. 2007] for further discussion.

The main result of this paper is to establish this conjecture in the high characteristic case.

Theorem 1.9 (inverse conjecture for the Gowers norm in high characteristic). Conjecture 1.7 holds
whenever char F≥ d.

In the low characteristic case we have a partial result.



4 TERENCE TAO AND TAMAR ZIEGLER

Theorem 1.10 (partial inverse conjecture for the Gowers norm). Let F be a finite field and let d > 1 be
an integer. Then for every δ > 0 there exists ε > 0 such that ‖ f ‖uk(V ) > ε for every finite vector space V
and every function f : V → D such that ‖ f ‖U d (V ) > δ, where k = C(d) depends only on d.

Remark 1.11. One could in principle make the quantity k = C(d) in Theorem 1.10 explicit, but this
would require analyzing the arguments in [Bergelson et al. 2009] in careful detail. One should however
be able to obtain reasonable values of k for small d (e.g., d = 4).

The proofs of Theorems 1.9, 1.10 rely on four additional ingredients:

• an ergodic inverse theorem for the Gowers norm for Fω-systems (Theorems 1.19, 1.20), established
in [Bergelson et al. 2009];

• the Furstenberg correspondence principle [Furstenberg 1977], combined with the random averaging
trick of Varnavides [1959];

• a statistical sampling lemma (Proposition 3.13); and

• local testability of phase polynomials (Lemma 4.5), essentially established in [Alon et al. 2003;
2005].

Of these ingredients, the ergodic inverse theorem is the most crucial, and we now pause to describe it
in detail.

1.12. The ergodic inverse conjecture in finite characteristic. Let Fω :=
⋃
∞

n=0 Fn be the inverse limit of
the finite-dimensional vector spaces Fn , where each Fn is included in the next space Fn+1 in the obvious
manner; equivalently, Fω is the space of sequences (xi )

∞

i=1 with xi ∈ F, and all but finitely many of the
xi nonzero. This is a countably infinite vector space over F.

Definition 1.13 (Fω-system). A Fω-system is a quadruplet X = (X,B, µ, (Tg)g∈Fω), where (X,B, µ) is
a probability space, and T : h 7→ Th is a measure-preserving action of Fω on X , thus for each h ∈ Fω,
Th : X → X is a measure-preserving bijection such that Th ◦ Tk = Th+k for all h, k ∈ Fω. Given any
measurable φ : X → C and h ∈ Fω, we define Thφ : X → C to be the function Thφ := φ ◦ Th , and
1· hφ : X → C to be the function 1· hφ := Thφ · φ. We also define the inner product 〈 f, g〉 :=

∫
X f ḡ dµ

for all f, g ∈ L2(X), where the Lebesgue spaces L p(X)= L p(X,B, µ) are defined in the usual manner.
We say that the system is ergodic if the only Fω-invariant functions on L2(X) are the constants.

Definition 1.14 (phase polynomial). Let X = (X,B, µ, (Tg)g∈Fω) be an Fω-system, and let d > 0. We
say that a function φ ∈ L∞(X) is a phase polynomial of degree at most d if we have 1· h1 . . . 1· hd+1φ = 1
µ-a.e. for all h1, . . . , hd+1 ∈ Fω. We let Pd(X) denote the space of all phase polynomials.

Remark 1.15. By setting h1 = · · · = hd+1 = 0 we see that every phase polynomial φ ∈ Pd(X) has unit
magnitude: |φ| = 1 µ-a.e.

Definition 1.16 (Gowers–Host–Kra seminorms [Host and Kra 2005]). Let X = (X,B, µ, (Tg)g∈Fω) be
a Fω-system, and let φ ∈ L∞(X). We define the Gowers–Host–Kra seminorms ‖φ‖U d (X) for d > 1
recursively as follows:

• If d = 1, then ‖φ‖U 1(X) := lim supn→∞
(
‖Eh∈Fn Thφ‖

2
L2(X,µ)

)1/2;

• If d > 1, then ‖φ‖U d (X) := lim supn→∞
(
‖1· hφ‖

2d−1

U d−1(X,µ,T )

)1/2d

.
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We also define the weak Gowers–Host–Kra seminorm ‖φ‖ud (X) as

‖φ‖ud (X) := sup
ψ∈Pd−1(X)

|〈φ,ψ〉|.

Example 1.17. If φ ∈ Pd−1(X) is a phase polynomial of degree at most d − 1, then

‖φ‖U d (X) = ‖φ‖ud (X) = 1.

Remark 1.18. One can use the ergodic theorem to show that the limits here in fact converge, but we
will not need this. The U d are indeed seminorms, but we will not need this either.

In [Bergelson et al. 2009, Corollaries 1.26, 1.27], the following ergodic theory analogues of Theorems
1.9, 1.10 was shown:

Theorem 1.19 (inverse conjecture for the Gowers–Host–Kra seminorm for high characteristic). Let X =
(X,B, µ, (Tg)g∈Fω) be an ergodic Fω-system, let char F > d > 1, and let φ ∈ L∞(X) be such that
‖φ‖U d (X) > 0. Then ‖φ‖ud (X) > 0.

Theorem 1.20 (partial inverse conjecture for the Gowers–Host–Kra seminorm for general characteristic).
Let X = (X,B, µ, (Tg)g∈Fω) be an ergodic Fω-system, let d > 1, and let φ ∈ L∞(X) be such that
‖φ‖U d (X) > 0. Then ‖φ‖uk(X) > 0 for some k = C(d) depending only on d.

Remark 1.21. The if part of this theorem follows easily from van der Corput’s lemma; the important
part of the theorem for us is the only if part. These results can be viewed as a finite field analogue of the
results in [Host and Kra 2005] in high characteristic (and a partial analogue in the low characteristic case),
and indeed draws heavily on the tools developed in that paper; see [Bergelson et al. 2009] for further
discussion. It is quite possible that k can in fact be taken to equal d in Theorem 1.20 (or equivalently,
that the condition char F> d can be dropped in Theorem 1.19); this would imply Conjecture 1.7 in full
generality.

We will use Theorem 1.20 as a black box, and it will be the primary ingredient in our proof of
Theorem 1.10, in much the same way that the Furstenberg recurrence theorem is the primary ingredient
in Furstenberg’s proof of Szemerédi’s theorem in [Furstenberg 1977]. Theorem 1.19 plays a similar role
for Theorem 1.9.

As with any other argument using a Furstenberg-type correspondence principle, our bounds are inef-
fective, in that we do not obtain an explicit value of ε in terms of d and δ. In principle, one could finitise
the arguments in [Bergelson et al. 2009] (in the spirit of [Tao 2006]) to obtain such an explicit value, but
this would be extremely tedious (and not entirely straightforward), and would lead to an extremely poor
dependence (such as iterated tower-exponential or worse). We will not pursue this matter here.

2. Notation

We will rely heavily on asymptotic notation. Given any parameters x1, . . . , xk , we use Ox1,...,xk (X) to
denote any quantity bounded in magnitude by Cx1,...,xk X for some finite quantity Cx1,...,xk depending only
on x1, . . . , xk . We also write Y �x1,...,xk X or X �x1,...,xk Y for Y = Ox1,...,xk (X). Furthermore, given an
asymptotic parameter n that can go to infinity, we use on→∞;x1,...,xk (X) to denote any quantity bounded
in magnitude by cx1,...,xk (n)X , where cx1,...,xk (n) is a quantity which goes to zero as n →∞ for fixed
x1, . . . , xk . Thus for instance, if r2 > r1 > 1, then exp r1/log r2 = or2→∞;r1(1).
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3. Statistical sampling

It is well known that the global average Eh∈V f (h) of a bounded function f : V → D can be accurately
estimated (with high probability) by randomly selecting a number of points x1, . . . , xN ∈ V and comput-
ing the empirical Monte Carlo average (or local average) E16n6N f (xn). Indeed, it is not hard to show
(by the second moment method) that with probability oN→∞(1), one has

E16n6N f (xn)= Eh∈V f (h)+ oN→∞(1).

The point here is that the error term is uniform in the choice of f and V .
We now record some variants of this standard random local averages approximate global averages

fact, in which we perform more exotic empirical averages. We begin with averages along random sub-
spaces of V .

Lemma 3.1 (random sampling for integrals). Let v1, . . . , vm be points chosen independently at random
in a finite-dimensional vector space V , and let f : V →D be a function. With probability 1−om→∞(1),
we have

EEa∈Fm f (Ea · Ev)= Eh∈V f (h)+ om→∞(1),

where Ev := (v1, . . . , vm) and Ea · Ev := a1v1+ · · ·+ amvm .

Remark 3.2. One can easily make the om→∞(1) terms more explicit, but we will not need to do so here.

Proof. We use the second moment method. Note that

EEEa∈Fm f (Ea · Ev)= Eh∈V f (h)+ om→∞(1)

(the om→∞(1) error arising from the a= 0 contribution) so by Chebyshev’s inequality it suffices to show
that

E|EEa∈Fm f (Ea · Ev)|2 = |Eh∈V f (h)|2+ om→∞(1).

The left side can be rearranged as
E
Ea,Eb∈Fm E f (Ea · Ev) f̄ (Eb · Ev).

It is easy to see that the inner expectation is |Eh∈V f (h)|2 unless Ea = cEb, for some c ∈ F in which case it
is O(1). The claim follows. �

In the above lemma, f was deterministic and thus independent of the vi . But we can easily extend
the result to the case where f depends on a bounded number of the vi .

Corollary 3.3 (random sampling for integrals, II). Let V be a finite-dimensional vector space, let m >
m0 > 0, let v1, . . . , vm ∈ V be chosen independently at random, and let fv1,...,vm0

: V → D be a function
that depends on v1, . . . , vm0 but is independent of vm0+1, . . . , vm . Then with probability 1−om→∞;m0(1),
we have

EEa∈Fm fv1,...,vm0
(Ea · Ev)= Eh∈V fv1,...,vm0

(h)+ om→∞;m0(1).

Proof. We write Ea = (Ea0, Ea1) ∈ Fm0 × Fm−m0 and Ev = (Ev0, Ev1) ∈ V m0 × V m−m0 . If we condition Ev0 =

(v1, . . . , vm0) to be fixed, we see from applying Lemma 3.1 to the remaining random vectors Ev1 that for
fixed Ea0, we have

EEa1∈Fm−m0 fv1,...,vm0
(Ea · Ev)= Eh∈V fv1,...,vm0

(Ea0 · Ev0+ h)+ om−m0→∞(1),
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with probability 1−om−m0→∞(1) conditioning on Ev0; integrating this we see that the same is true without
the conditioning. We can shift h by Ea0 · Ev0, move the h average onto the other side, and take expectations
to conclude that

E|EEa1∈Fm−m0 fv1,...,vm0
(Ea · Ev)− Eh∈V fv1,...,vm0

(h)| = om−m0→∞(1)

for each Ea0; averaging over Ea0 by the triangle inequality we obtain the claim. �

Remark 3.4. It is with this corollary that we are implicitly exploiting the highly transitive nature of
the symmetry group GL(V ) available to us. In the setting of the cyclic group Z/NZ, the analogue of
Lemma 3.1 is still true, namely that one can approximate a global average

∫
Z/NZ

f by a local average
on random arithmetic progressions of medium length, but this approximation no longer holds if f is
allowed to depend on the first few values of that progression, since this of course determines the rest
of the progression; this is related to the fact that (for N prime, say), the affine group of Z/NZ (which
is analogous to GL(V )) is 2-transitive but no stronger. In contrast, in the finite field setting, a small
subspace of a medium-dimensional subspace does not determine the whole subspace.

We will need to generalise these results further by considering more exotic averages along cubes. A
typical result we will need can be stated informally as

EEa2∈Fm2 EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(TEa2·Ev2 f̄ )(TEa1·Ev1+Ea2·Ev2 f )≈ Eh1,h2∈V

∫
V

f (Th1 f̄ )(Th2 f̄ )Th1+h2 f (3-1)

when m1 is large, m2 is large compared with m1, and Ev is random (see Lemma 3.9 for the formal version
of this type of estimate). Such results follow (heuristically, at least), by iterating the previous results.
For instance, from Corollary 3.3 we heuristically have

EEa2∈Fm2 EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(TEa2·Ev2 f̄ )(TEa1·Ev1+Ea2·Ev2 f )(x)≈Eh2∈V EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(Th2 f̄ )(TEa1·Ev1+h2 f )

when m2 is large compared to m1 and then interchanging the expectations and applying Lemma 3.1
heuristically yields

Eh2∈V EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(Th2 f̄ )(TEa1·Ev1+h2 f )≈ Eh1∈V Eh2∈V

∫
V

f (Th1 f̄ )(Th2 f̄ )(Th1+h2 f ),

when m1 is large, thus giving (3-1).
We will formalise the precise statement along these lines that we need later in this section. We begin

with some key definitions.

Definition 3.5 (Lipschitz norm). If G : Dn
→ C is a function on a polydisk Dn , we define the Lipschitz

norm ‖G‖Lip of G to be the quantity

‖G‖Lip := sup
z∈Dn
|G(z)| + sup

z,w∈Dn :z 6=w

|G(z)−G(w)|
d(z, w)

,

where we use the metric

d
(
(z1, . . . , zn), (w1, . . . , wn)

)
:= |z1−w1| + · · · + |zn −wn|.
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Definition 3.6 (accurate sampling sequence). Let k > 1, let V be a finite-dimensional vector space, let
f : V → D be a bounded function, and let

0= H0 < H1 < H2 < H3 < · · ·

be a sequence of integers (or “scales”). We define an accurate sampling sequence for f of degree k and
at scales H1, H2, . . . to be an infinite sequence of vectors

v1, v2, v3, . . . ∈ V

such that for every sequence
06 w0 < r1 < · · ·< rk

of scales and every Lipschitz function G : D{0,1}
k
×F

Hr0
→ C, we have∫

V
|G f,r0,r1,...,rk −G f,r0 |6

‖G‖Lip

r1
, (3-2)

where
G f,r0,r1,...,rk (x) := E

Ea1∈F
Hr1 ,...,Eak∈F

Hrk G
(
( f (x +ω ·u+ Eb · Ev0)

)
ω∈{0,1}k ,Eb∈F

Hr0 ),

where
u= (Ea1 · Ev1, . . . , Eak · Evk); Ev j = (v1, . . . , vHr j

), j = 0, . . . , k,

and
G f,r0(x) := Eh1∈V,...,hk∈V G

(
( f (x +ω ·h+ Eb · Ev0))ω∈{0,1}k ,Eb∈F

Hr0

)
,

where h= (h1, . . . , hk).

Remark 3.7. The denominator r1 in (3-2) could be replaced by any other fixed function of r1 that went
to infinity as r1→∞ if desired here.

Remark 3.8. We make the trivial but useful remark that an accurate sampling sequence of degree k
is also an accurate sampling sequence of degree k ′ for any 1 6 k ′ 6 k. Indeed, to verify (3-2) for a
function G ′ :D{0,1}

k′
×F

Hr0
→D and some scales rk′ > · · ·> r0 > 0, one simply adds some dummy scales

rk′+1, . . . , rk above rk′ and extends G ′ to a function G :D{0,1}
k
×F

Hr0
→D by composing with the obvious

restriction map from D{0,1}
k
×F

Hr0 to D{0,1}
k′
×F

Hr0 .

Roughly speaking, an accurate sampling sequence will allow us to estimate all the global averages
that we need for the combinatorial inverse conjecture for the Gowers norm by local averages which are
suitable for lifting to the ergodic setting via the correspondence principle. We illustrate the use of such
sequences by describing the three special cases of (3-2) that we will actually need in our arguments.

Lemma 3.9 (global Gowers norm can be approximated by local Gowers norm). Let d > 1, let V be a
finite-dimensional vector space, let f : V → D be a bounded function, and let v1, v2, . . . ∈ V be an
accurate sampling sequence for f of degree d and at scales H1, H2, . . . . Then for every sequence of
scales

0< r1 < r2 < · · ·< rd ,

we have
E
Ea1∈F

Hr1 ,..., Ead∈F
Hrd

∫
V
1· Ea1·Evr1

. . . 1· Ead ·Evrd
f = ‖ f ‖2

d

U d (V )+ or1→∞;d(1).



FINITE FIELDS INVERSE GOWERS NORM CONJECTURE 9

Remark 3.10. As with all other estimates in this section, the point is that the error term is uniform over
all choices of f and V . Note that the d = 2 case of this lemma is a formalisation of (3-1).

Proof. We apply (3-2) with r0 = 0, and G : D{0,1}
d
→ C being the function

G
(
(z(ω))ω∈{0,1}d

)
:=

∏
ω∈{0,1}d

Cω1+...+ωd z(ω),

where C : z 7→ z̄ is the complex conjugation operator. A routine computation gives the identities

G f,0,r1,...,rd (x)= E
Ea1∈F

Hr1 ,...,Ead∈F
Hrd 1· Ea1·Evr1

. . . 1· Ead ·Evrd
f,

∫
V

G f,0 = ‖ f ‖2
d

U d (V ).

Also, it is easy to see that the Lipschitz norm ‖G‖Lip is Od(1). The claim now follows immediately from
(3-2) and the triangle inequality. �

Lemma 3.11 (global averages can be approximated by local averages). Let V be a finite-dimensional
vector space, let f : V → D be a bounded function, and let v1, v2, . . . ∈ V be an accurate sampling
sequence for f of degree 1 and at scales H1, H2, . . . . Then for every finite sequence Eb1, . . . , Ebm ∈ Fω and
every continuous function F : Dm

→ C, we have∫
V
|EEa∈FHr TEa·Evg−

∫
V

g| = or→∞;F,m,Eb1,...,Ebm
(1),

where g : V → C is the function

g(x) := F(TEb1·Ev
f (x), . . . , TEbm ·Ev

f (x)). (3-3)

Proof. By approximating the continuous function F uniformly by a Lipschitz function, we may assume
that F is Lipschitz. By adding dummy vectors to the collection Eb1, . . . , Ebm if necessary, we may assume
that {Eb1, . . . , Ebm} = FHr0 for some r0 > 0 depending on Eb1, . . . , Ebm , thus F is now a Lipschitz function
from DF

Hr0 to C.
Note that to prove the claim we may without loss of generality restrict to the regime r > r0. We now

apply (3-2) with G : D{0,1}×F
Hr0
→ C being the function

G
(
(z(ω, Eb))ω∈{0,1},Eb∈F

Hr0

)
:= F

(
(z(1, Eb))Eb∈F

Hr0

)
.

A routine computation gives the identities

G f,r0,r (x)= EEa∈FHr TEa·Evg(x), G f,r0(x)= Eh∈V Thg(x)=
∫

V
g.

Also, it is clear that G is Lipschitz with norm OF,r0(1). The claim then follows from (3-2). �

Lemma 3.12 (global polynomiality test can be approximated by local polynomiality test). Let k > 1, let
V be a finite-dimensional vector space, let f :V→D be a bounded function, and let v1, v2, . . .∈V be an
accurate sampling sequence for f of degree k and at scales H1, H2, . . . . Then for every finite sequence
Eb1, . . . , Ebm ∈ Fω and every continuous function F : Dm

→ C, we have

E
Ea1∈F

Hr1 . . . EEak∈F
Hrk

∫
V

∣∣1· Ea1·Ev . . . 1· Eak ·Evg− 1
∣∣= Eh1,...,hk∈V

∫
V

∣∣1· h1 . . . 1· hk g− 1
∣∣+ or1→0;F,m,Eb1,...,Ebm ,k(1)
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for any 16 r1 < r2 < · · ·< rk , where g : V → C is the function defined by (3-3).

Proof. Arguing as in Lemma 3.11, we may assume that {Eb1, . . . , Ebm} = FHr0 for some r0 > 0 depending
on Eb1, . . . , Ebm , and that F : DF

Hr0
→ C is Lipschitz.

Note that to prove the claim we may without loss of generality restrict to the regime r1 > r0. We now
apply (3-2) with G : D{0,1}

k
×F

Hr0
→ C being the function

G
(
(z(ω, Eb))ω∈{0,1}k ,Eb∈F

Hr0

)
:=

∣∣∣ ∏
ω∈{0,1}k

Cω1+...+ωk F
(
(z(ω, Eb))Eb∈F

Hr0

)
− 1

∣∣∣,
where C is again the complex conjugation operator. A routine computation gives the identities

G f,r0,r1,...,rk (x)= E
Ea1∈F

Hr1 . . . EEak∈F
Hrk

∣∣1· Ea1·Ev . . . 1· Eak ·Evg(x)− 1
∣∣,

G f,r0(x)= Eh1,...,hk∈V
∣∣1· h1 . . . 1· hk g(x)− 1

∣∣,
for any r0 < r1 < · · · < rk . Also it is clear that G is Lipschitz with norm OF,r0,k(1). The claim then
follows from (3-2) and the triangle inequality. �

Of course, in order to utilise the above lemmas we need to know that such accurate sampling sequences
in fact exist. This is the purpose of the following proposition.

Proposition 3.13 (existence of accurate sampling sequence). Let d > 1. Then there exists a sequence

0= H0 < H1 < H2 < H3 < · · ·

of integers such that for every finite-dimensional vector space V and any function f : V→D, there exists
an accurate sampling sequence v1, v2, v3, . . . ∈ V for f of degree d at scales H1, H2, . . . .

Remark 3.14. The key point here is that the scales H1, H2, H3, . . . are universal; they depend on d , but
otherwise and work for all vector spaces V and functions f .

Proof. We select H j recursively by the formula H j+1 := F(H j ), where F = Fd :N→N is a sufficiently
rapidly growing function depending on d that we will choose later.

We use the probabilistic method, choosing v1, v2, . . . ∈ V uniformly at random, and showing that (if
F was sufficiently rapid) the resulting sequence will be an accurate sampling sequence with positive
probability.

We begin with observing that in order to verify the condition (3-2), it suffices by the triangle inequality
to show that with positive probability, one has∫

V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣6 ‖G‖Lip

dr1
(3-4)

for all 16 d ′ 6 d , all 06 r0 < · · ·< rd ′ , and every Lipschitz function G : D{0,1}
d
×F

Hr0
→ C, where

G f,r0,r1,...,rd′
(x)

:= E
Ea1∈F

Hr1 ,...,Ead′∈F
Hrd′

Ehd′+1,...,hd∈V G
((

f
(

x +
d ′∑

j=1

ω j Ea j · Ev j +

d∑
j=d ′+1

ω j h j + b · Ev0

))
(ω1,...,ωd )∈{0,1}d

b∈F
Hr0

)
.



FINITE FIELDS INVERSE GOWERS NORM CONJECTURE 11

By the union bound, it will suffice to show that for all 1 6 d ′ 6 d and all 0 6 r0 < · · · < rd ′ , with
probability 1− oHrd′

→∞;d,Hr0 ,...,Hrd′−1
,r1(1), (3-4) holds for all Lipschitz functions G :D{0,1}

d
×F

Hr0
→ C,

since the total failure probability can be made to be less than 1 by choosing F to be sufficiently rapid.
We can normalise G to have Lipschitz norm 1. By the Arzelà–Ascoli theorem, the space of such

functions is compact in the uniform topology. In particular, there exists a collection of functions

G : D{0,1}
d
×F

Hr0
→ C

of Lipschitz norm 1, S, of size Od,Hr0 ,r1(1), such that any other such Lipschitz function lies within
1/(4dr1), say, of a function G ∈ S in the uniform metric. Because of this, we see from the union bound
again that it will suffice to show that for all 1 6 d ′ 6 d and all 0 6 r0 < · · · < rd ′ , and all functions
G : D{0,1}

d
×F

Hr0
→ C of Lipschitz norm 1 in S,∫

V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣6 1
2dr1

(3-5)

of (3-4) holds with probability 1− oHrd′
→∞;d,Hr0 ,...,Hrd′−1

,r1(1).
Fix d ′, r0, . . . , rd ′,G. By Markov’s inequality, it suffices to show that

E

∫
V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣= oHrd′
→∞;d,Hr0 ,...,Hrd′−1

(1);

by linearity of expectation it thus suffices to show that

E
∣∣G f,r0,r1,...,rd′

(x)−G f,r0,r1,...,rd′−1
(x)
∣∣= oHrd′

→∞;d,Hr0 ,...,Hrd′−1
(1)

uniformly in x ∈ V .
Fix x . We observe that

G f,r0,r1,...,rd′
(x)= E

Ea∈F
Hrd′

fv1,...,vHrd′−1
(Ea · Evd ′), G f,r0,r1,...,rd′−1

(x)= Eh∈V fv1,...,vHrd′−1
(h),

where fv1,...,vHrd′−1
: V → D is the function

fv1,...,vHrd′−1
(h) :=

E
Ea1∈F

Hr1 ,...,Ead′−1∈F
Hrd′−1

Ehd′+1,...,hd∈V G
((

f
(

x+
d ′−1∑
j=1

ω j Ea j ·Ev j+ωd ′hd ′+

d∑
j=d ′+1

ω j h j+b·Ev0

))
(ω1,...,ωd )∈{0,1}d

b∈F
Hr0

)
.

As the notation suggests, the function fv1,...,vHrd′−1
depends on the values of v1, . . . , vHrd′−1

but not on
higher elements of the sequence. Also, as G has Lipschitz norm 1, f takes values in D. The claim now
follows from Corollary 3.3. �

4. Proof of the main theorems

We are now ready to prove the main theorems. We shall just prove Theorem 1.10 using Theorem 1.20;
the deduction of Theorem 1.9 using Theorem 1.19 is exactly analogous (see the brief remarks at the end
of this section).
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Fix F and d , and let k = C(d) be the quantity in Theorem 1.20. By increasing k if necessary we may
assume k> d . Assume for sake of contradiction that Theorem 1.10 failed for this choice of F, d, k. Then
we can find δ > 0 and a sequence f (n) : V (n)

→D of functions on finite-dimensional vector spaces V (n)

such that
‖ f (n)‖U d (V (n)) > δ (4-1)

for all n, but
‖ f (n)‖uk(V (n)) = on→∞(1). (4-2)

We now let F(x) := x , and let
1< H1 < H2 < · · ·

be the sequence in Proposition 3.13; it is important to note that this sequence does not depend on n.
From that proposition, we can find an accurate sampling sequence

v
(n)
1 , v

(n)
2 , . . . ∈ V (n)

for f (n) of degree k at these scales. We fix such a sequence for each n.
We will use these sampling sequences to lift the functions f (n) on V (n) to a universal dynamical

system for Fω by the usual Furstenberg correspondence principle method. We begin by constructing this
universal space.

Definition 4.1 (Furstenberg universal space). Let X :=DFω be the space of functions ζ : Fω→D. With
the product topology, this is a compact metrisable space, with Borel σ -algebra B. It has a continuous
action h 7→ Th of the additive group Fω, defined by the formula

Thζ(x) := ζ(x + h).

We let Pr(X)T be the space of all Borel probability measures µ on X which are invariant with respect to
this action; note that X = (X,B, µ, (Th)h∈Fω) is a Fω-system for any µ ∈ Pr(X)T . If µ(n) ∈ Pr(X)T is a
sequence of such measures, and µ ∈ Pr(X)T is another measure, we say that µ(n) converges vaguely to
µ if we have

lim
n→∞

∫
X
φ(ζ ) dµ(n)(ζ )→

∫
X
φ(ζ ) dµ(ζ )

for all continuous functions φ : X→ C.

Because X is compact metrisable, and the action of T is continuous it is a well known fact that
Pr(X)T is sequentially compact; thus every sequence of measures in Pr(X)T has a vaguely convergent
subsequence whose limit is also in Pr(X)T .

For each n, we define a measure µ(n) ∈ Pr(X)T on X by the formula

µ(n) = Ex∈V (n)δζn,x ,

where δ denotes the Dirac mass and for each x ∈ V (n), ζn,x ∈ X is the function

ζn,x(Ea) := TEa·Ev(n) f (n)(x)= T∑∞
m=1 amv

(n)
m

f (n)(x)

for all Ea ∈ Fω (note the sum on the right side has only finitely many nonzero terms). Observe that µ(n)

is indeed T -invariant. By passing to a subsequence if necessary, we may assume that µ(n) converges
vaguely to a limit µ ∈ Pr(X)T . We write X := (X,B, µ, (Th)h∈Fω).
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Let f : X→ D be the indicator function f (ζ ) := ζ(0). We observe the key correspondence∫
X

G(TEa1 f, . . . , TEak f ) dµ(n)(ζ )=
∫

V (n)
G(TEa1·Ev(n) f (n), . . . , TEak ·Ev(n) f (n)) (4-3)

for all Ea1, . . . , Eak ∈ Fω, all n, and all continuous G : Dk
→ C.

We now record the (standard) fact that the countable collection of shifts Th f for h ∈ Fω generates
L∞(X):

Lemma 4.2 (Th f generate L∞(X)). Given any φ ∈ L∞(X) and ε > 0, there exists a finite number of
shifts Eh1, . . . , Ehk ∈ Fω and a continuous function G : Dk

→ C such that∫
X

∣∣φ−G(TEh1
f, . . . , TEhk

f )
∣∣ dµ6 ε.

Proof. For continuous φ, the claim follows easily from the Stone–Weierstrass theorem (and in this case
we can upgrade the L1 approximation to L∞ approximation). As X is compact metrisable, the Borel
measure µ is in fact a Radon measure, and so (by Urysohn’s lemma) the continuous functions are dense
in L∞(X) in the L1(X) topology, and the claim follows. �

We can now use the machinery of the previous section to deduce various important facts about X and
f . For instance, Lemma 3.11 now implies

Lemma 4.3 (ergodicity). X is ergodic.

Proof. By the mean ergodic theorem, it suffices to show that

lim
r→∞

∫
X

∣∣∣EEh∈FHr Thg−
∫

X
g dµ

∣∣∣ dµ= 0

for all g ∈ L∞(X). By Lemma 4.2 and a standard limiting argument it suffices to show this for g which
are functions of finitely many shifts of f , say g = G(TEb1

f, . . . , TEbk
f ). We will then show that∫

X

∣∣∣EEh∈FHr TEhg−
∫

X
g dµ

∣∣∣ dµ= or→∞;G,k,Eb1,...,Ebk
(1).

By vague convergence it suffices to show that∫
X

∣∣∣Eh∈FHr TEhg−
∫

X
g dµ(n)

∣∣∣ dµ(n) = or→∞;G,k,Eb1,...,Ebk
(1)

for all n. By (4-3), we can rewrite the left side as∫
V

∣∣∣EEh∈FHr TEh·Ev(n)r
g(n)−

∫
V

g(n)
∣∣∣,

where
g(n) := G(TEb1·Ev(n)

f (n), . . . , TEbk ·Ev(n)
f (n)).

But the claim now follows from Lemma 3.11 (and Remark 3.8). �

In a similar spirit, Lemma 3.9 implies this:

Lemma 4.4 ( f has large Gowers–Host–Kra norm). ‖ f ‖U d (X) > δ.
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Proof. From the mean ergodic theorem we have

‖ f ‖2U 1(X) = lim sup
K1→∞

EEh1∈FK1

∫
X
1· Eh1

f dµ,

and by induction we have

‖ f ‖2
d

U d (X) = lim sup
Kd→∞

. . . lim sup
K1→∞

EEhd∈FKd . . . EEh1∈FK1

∫
X
1· Eh1

. . . 1· Ehd
f dµ.

It thus suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ > δ2d

− ord→∞(1)

whenever 16 rd < · · ·< r1. By reversing the order of averages, it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ > δ2d

− or1→∞(1)

whenever 16 r1 < · · ·< rd . Fix r1, . . . , rd . By weak convergence, it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ(n) > δ2d

− or1→∞(1)

for all n. By (4-1), it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ(n) > ‖ f (n)‖2

d

U d (V (n))
− or1→∞(1).

By (4-3), left side can be rephrased as∫
V

E
Ea1∈F

Hr1 ,...,Ead∈F
Hrd 1· Ea1·Ev

(n)
r1
. . . 1·

Ead ·Ev
(n)
rd

f (n),

and the claim now follows from Lemma 3.9 (and Remark 3.8). �

We have now verified all the hypotheses of Theorem 1.19. Applying that theorem, we conclude that
‖ f ‖uk(X) > c for some c > 0 (which could be very small, but positive). Thus we can find a phase
polynomial φ ∈ Pk−1(X) of degree k− 1 such that∣∣∣∫

X
f φ dµ

∣∣∣> c.

Let ε > 0 be a small number (depending on d, k, c) to be chosen later. By Lemma 4.2, we can find
Eb1, . . . , Ebm ∈ Fω (with m potentially quite large, but finite) and a continuous G : Dm

→ C such that∫
X

∣∣φ−G(TEb1
f, . . . , TEbm

f )
∣∣6 ε. (4-4)

Since φ takes values in D, we may assume without loss of generality that G does also. If ε is small
enough depending on c, we thus have∣∣∣∫

X
f G(TEb1

f, . . . , TEbm
f ) dµ

∣∣∣> c/2.
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By vague convergence, we thus have∣∣∣∫
X

f G(TEb1
f, . . . , TEbm

f ) dµ(n)
∣∣∣> c/4

for all sufficiently large n (depending on G,m, c). Using (4-3), we rearrange this as∣∣∣∫
V

f (n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))
∣∣∣> c/4. (4-5)

Now let r1 be a large integer depending on the Eb1, . . . , Ebm, ε, and let r j := r1+ ( j −1) for j = 2, . . . , d .
Since φ is a phase polynomial of degree k− 1, we have∫

X

∣∣1· Ea1 . . . 1· Eakφ− 1
∣∣ dµ= 0

for all Ea1 ∈ FHr1 , . . . , Eak ∈ FHrk . From many applications of (4-4), the triangle inequality, and the bound-
edness of φ,G, we conclude that∫

X

∣∣1· Ea1 . . . 1· Eak G(TEb1
f, . . . , TEbm

f )− 1
∣∣ dµ�k ε

for all Ea1 ∈ FHr1 , . . . , Eak ∈ FHrk . By vague convergence, this implies that∫
X

∣∣1· Ea1 . . . 1· Eak G(TEb1
f, . . . , TEbm

f )− 1
∣∣ dµ(n)�k ε

for all sufficiently large n (depending on ε, Hr1, . . . , Hrk ). Using (4-3), we can rearrange the left side as∫
V (n)

∣∣1· Ea1·Ev(n) . . . 1· Eak ·Ev(n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣,

and so on averaging we obtain

E
Ea1∈F

Hr1 ,...,Eak∈F
Hrk

∫
V (n)

∣∣1· Ea1·Ev(n) . . . 1· Eak ·Ev(n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣�k ε.

Applying Lemma 3.12 we conclude (if r1 is sufficiently large depending on Eb1, . . . , Ebm, ε) that

Eh1,...,hk∈V (n)

∫
V (n)

∣∣1· h1 . . . 1· hk G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣�k ε.

Now we invoke a local testability lemma:

Lemma 4.5 (polynomiality is locally testable). Let V be a finite-dimensional vector space, let k > 1, let
g : V → D be a bounded function, and suppose that

Eh1,...,hk∈V

∫
V

∣∣1· h1 . . . 1· hk g− 1
∣∣6 ε (4-6)

for some ε > 0. Then there exists a phase polynomial φ ∈ Pk−1(V ) such that∫
V
|g−φ|6 oε→0;d(1).
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For F = F2, this result is essentially in [Alon et al. 2003; 2005] or [Tao 2007, Proposition 4.6], but
for the convenience of the reader, and in view of the subtle difference between phase polynomials and
polynomials (see Remark 1.3), we give a full proof of this lemma in Appendix A.

Applying this lemma, we conclude that there exists φ(n) ∈ Pk−1(V (n)) such that∫
V

∣∣G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))−φ(n)
∣∣6 oε→0;k(1).

Inserting this into (4-5) we conclude that ∣∣∣∫
V

f (n)φ(n)
∣∣∣> c/8

if ε is sufficiently small depending on c, k. But this contradicts (4-2). The proof of Theorem 1.10 is
complete.

The proof of Theorem 1.9 is identical, but with k now set equal to d , and Theorem 1.19 used instead
of Theorem 1.20. We leave the details to the reader.

Remark 4.6. It is tempting to try to adapt these arguments to the cyclic setting Z/NZ, in which the
role of polynomials is replaced by that of a nilsequence (see [2006; 2008] for further discussion), thus
establishing the inverse conjecture for the Gowers norm for Z/NZ that was formulated in those papers.
The analogue of Theorem 1.19 is known; see [Host and Kra 2005]. However, two obstructions remain
before one can carry out this program. The first is to compensate for the rigidity of arithmetic progressions
that seems to prevent a counterpart of Corollary 3.3 from holding in the cyclic group setting (see Remark
3.4). The second is that whereas polynomiality is locally testable thanks to Lemma 4.5, it is unclear
whether the property of being a nilsequence is similarly testable.

Appendix: Proof of Lemma 4.5

In this appendix we give a proof of Lemma 4.5, following the arguments in [Alon et al. 2003; 2005] and
[Tao 2007, Proposition 4.6]. We begin with a variant of Lemma 1.2:

Lemma A.1 (discreteness). Let k > 0, let V be a finite-dimensional vector space, and φ ∈ Pk(V ). Then
there exists θ ∈ R/Z and an integer K > 1 depending only on F such that φ(x) is equal to e2π iθ times a
K -th root of unity for every x ∈ V .

Proof. See [Bergelson et al. 2009, Lemma D.5], (which gives the explicit value K = pbk/pc+1, where p
is the characteristic of F). �

Lemma A.2 (rigidity). Let k > 0, let V be a finite-dimensional vector space, and take φ ∈ Pk(V ).
Suppose that

∫
V |φ−1|6 ε for some ε > 0. If ε is sufficiently small depending on k, F, then φ is constant.

Proof. We induct on k. For k = 0 the claim is obvious, and for k = 1 φ is a linear character (times a
phase) and the claim can be worked out by hand. Now suppose k > 2 and the claim has already been
shown for smaller values of k. Since φ is a phase polynomial, we have 1· 0 . . . 1· 0φ = 1, and thus φ
has unit magnitude. Observe that if

∫
V |φ − 1| 6 ε, then

∫
V |Thφ − 1| 6 ε for every h ∈ V . Using the

elementary estimate
|1· hφ− 1|6 |φ− 1| + |Thφ− 1|
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(using the fact that φ has unit magnitude) we conclude that∫
V
|1· hφ− 1|6 2ε,

for every h ∈ V . On the other hand, 1· hφ ∈ Pk−1(V ), so by induction hypothesis (if ε is small enough)
we conclude that 1· hφ is constant for all h ∈ V . Thus φ ∈ P1(V ), but then the claim follows from the
case of k− 1. �

We now prove Lemma 4.5. The case k = 1 is easy, so suppose that k > 2 and the claim has already
been established for k − 1. To abbreviate the notation we shall write o(1) for oε→0;k(1). We say that a
statement P(x) holds for most x ∈ V if it holds for (1− o(1))|V | elements of v.

We fix k, V, f . We may assume that ε is small depending on d , as the claim is trivial otherwise. From
(4-6) and Markov’s inequality we see that

Eh1,...,hk−1∈V

∫
V

∣∣1· h1 . . . 1· hk−11· h f − 1
∣∣= o(1) (A-1)

for most h ∈ V . Let us call h good if (A-1) holds. Applying the induction hypothesis, we conclude that
for any good h there exists2 φh ∈ Pk−2(V ) such that∫

V
|1· h f −φh|6 o(1).

In particular, this implies (by Markov’s inequality) that for all good h, we have

f (x + h) f (x)= φh(x)+ o(1)

for most V . Since f is bounded in magnitude by 1, this implies that

| f (x)| = 1− o(1)

for most x , and for all good h we have

f (x + h)= φh(x) f (x)+ o(1) (A-2)

for most x .
We now pause to perform a discretisation trick. Write p := char F. From repeated applications of

(A-2) we see that

f (x)= f (x + ph)= φh(x)φh(x + h) . . . φh(x + (p− 1)h) f (x)+ o(1)

for most x , and thus
φh(x)φh(x + h) . . . φh(x + (p− 1)h)= 1+ o(1)

for at least one x . On the other hand, from Lemma A.1 φh takes values in e2π iθ times K -th roots of unity
for some fixed K depending only on d, p. Thus e2π i pθ times a K -th root of unity is within o(1) of 1,

2This quantity plays the same role that cocycles do in ergodic theory.
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and so e2π iθ lies within o(1) of a pK -th root of unity. Rotating φh by o(1) if necessary we may assume
that e2π iθ is exactly a pK -th root of unity, and in particular we have

φ
pK
h ≡ 1 (A-3)

whenever h is good.
Now suppose that h1, h2, h3, h4 are good and form an additive quadruple in the sense that h1+ h2 =

h3+ h4. Then from (A-2) we see that

f (x + h1+ h2)= f (x)φh1(x)φh2(x + h1)+ o(1) (A-4)

for most x , and similarly

f (x + h3+ h4)= f (x)φh3(x)φh4(x + h3)+ o(1)

for most x . Since | f (x)| = 1+ o(1) for most x , we conclude the approximate cocycle relationship

φh1(x)φh2(x + h1)φh3(x)φh4(x + h3)= 1+ o(1)

for most x . In particular, the average of the left side in x is 1 − o(1). Applying Lemma A.2 (and
assuming ε small enough), we conclude that the left side is constant in x ; using the discretisation (A-3),
we conclude (again for ε small enough) that it is in fact 1. Thus

φh1(x)φh2(x + h1)= φh3(x)φh4(x + h3) (A-5)

for all x and any good additive quadruple h1, h2, h3, h4.
Now for any k ∈ V , define the quantity ψ(k) ∈ C by the formula

ψ(k) := φh1(0)φh2(h1) (A-6)

whenever h1, h2, h1+h2 are simultaneously good. Note that the existence of such an h1, h2 is guaranteed
since most h are good, and (A-5) ensures that the right side of (A-6) does not depend on the exact choice
of h1, h2 and so ψ is well-defined. From (A-3) we see that ψ takes values in the pK -th roots of unity,
and in particular only has O(1) possible values.

Now let x ∈ V and h be good. Then, since most elements of V are good, we can find good r1, r2, s1, s2

such that r1+ r2 = x and s1+ s2 = x + h. From (A-4) we see that

f (y+ x)= f (y+ r1+ r2)= f (y)φr1(y)φr2(y+ r1)+ o(1),

f (y+ x + h)= f (y+ s1+ s2)= f (y)φs1(y)φs2(y+ s1)+ o(1),

for most y. Also from (A-2) we have

f (y+ x + h)= f (y+ x)φh(y+ x)+ o(1)

for most y. Combining these (and the fact that | f (y)| = 1+ o(1) for most y) we see that

φs1(y)φs2(y+ s1)φr1(y)φr2(y+ r1)φh(y+ x)= 1+ o(1)

for most y. Taking expectations and applying Lemma A.2 and (A-3) as before, we conclude that

φs1(y)φs2(y+ s1)φr1(y)φr2(y+ r1)φh(y+ x)= 1
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for all y. Specialising to y = 0 and applying (A-6) we conclude that

φh(x)= ψ(x + h)ψ(x)=1· hψ(x) (A-7)

for all x ∈ V and good h; thus we have successfully “integrated” φh . We can then extend φh(x) to all
h ∈ V (not just good h) by viewing (A-7) as a definition. Observe that if h ∈ V , then h = h1 + h2 for
some good h1, h2, and from (A-7) we have

φh(x)= φh1(x)φh2(x + h1).

In particular, since the right side lies in Pk−2(V ), the left side does also. Thus we see that1· hψ ∈Pk−2(V )
for all h ∈ V , and thus Q ∈ Pk−1(V ). If we then set g(x) := f (x)ψ(x), then from (A-2), (A-7) we see
that for every h ∈ H we have

g(x + h)= g(x)+ o(1)

for most x . From Fubini’s theorem, we thus conclude that there exists an x such that g(x+h)=g(x)+o(1)
for most h, thus g is almost constant. Since |g(x)| = 1+o(1) for most x , we thus conclude the existence
of a phase θ ∈ R/Z such that g(x)= e2π iθ

+ o(1) for most x . We conclude that

f (x)= e2π iθψ(x)+ o(1)

for most x , and Lemma 4.5 then follows.
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BILINEAR FORMS ON THE DIRICHLET SPACE

NICOLA ARCOZZI, RICHARD ROCHBERG, ERIC SAWYER AND BRETT D. WICK

We show that the bilinear form Bb( f, g) = 〈 f g, b〉 is bounded on the Dirichlet space of holomorphic
functions on the unit disk if and only if |b′|2 dx dy is a Carleson measure for the Dirichlet space. This is
completely analogous to the results for boundedness of Hankel forms on the Hardy and Bergman spaces,
but the proof is quite different, relying heavily on potential-theoretic constructions.

1. Introduction

A Hankel form is a bilinear form B on a space of holomorphic functions with the characteristic property
that for any f , g, B( f, g) is a linear function of f g. These forms have been studied extensively on
Hardy spaces and on Bergman type spaces; some references are mentioned below. Here we consider
boundedness of Hankel forms on the Dirichlet space. In contrast to Hardy and Bergman spaces, the
Dirichlet space is a potential space and hence, not surprisingly, capacity estimates play a central role in
the analysis. Thus, although our main results are strongly analogous to earlier work, the techniques are
quite different.

Overview. Let D be the classical Dirichlet space, the Hilbert space of holomorphic functions on the disk
with inner product

〈 f, g〉D = f (0)g(0)+
∫

D

f ′(z)g′(z) dA

and normed by ‖ f ‖2D=〈 f, f 〉D. Given a holomorphic symbol function b we define the associated Hankel
type bilinear form, initially for f, g ∈ P(D), the space of polynomials, by

Tb( f, g) := 〈 f g, b〉D.

The norm of Tb is
‖Tb‖D×D := sup

{
|Tb( f, g)| : ‖ f ‖D = ‖g‖D = 1

}
.

We say a positive measure µ on the disk is a Carleson measure for D if

‖µ‖C M(D) := sup
{∫

D

| f |2dµ : ‖ f ‖D = 1
}
< ∞,
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and that a function b is in the space X if the measure dµb := |b′(z)|2dA is a Carleson measure. We norm
X by

‖b‖X := |b(0)| +
∥∥|b′(z)|2dA

∥∥1/2
C M(D)

and denote by X0 the norm closure in X of the space of polynomials.
Our main result is this:

Theorem 1.1. (1) Tb is bounded if and only if b ∈ X. In that case

‖Tb‖D×D ≈ ‖b‖X.

(2) Tb is compact if and only if b ∈ X0.

This result is part of an intriguing pattern of results involving boundedness of Hankel forms on Hardy
spaces in one and several variables and boundedness of Schrödinger operators on the Sobolev space. We
recall some of those results in the next subsection.

Boundedness criteria for bilinear forms can be recast as weak factorization of function spaces. We
present details and related earlier results later in this introduction. In particular we will see that the
first statement in Theorem 1.1 is equivalent to a weak factorization of the predual of X; in notation we
introduce below

(D�D)∗ = X. (1-1)

At the end of the introduction (page 25) we describe the relation between Theorem 1.1 and classical
results about Hankel matrices.

The proof of Theorem 1.1 comes in Sections 2 and 3. It is easy to see that ‖Tb‖D×D ≤ C‖b‖X. To
obtain the other inequality we must use the boundedness of Tb to show |b′|2dA is a Carleson measure.
Analysis of the capacity-theoretic characterization of Carleson measures due to Stegenga allows us to
focus attention on a certain set V in D and the relative sizes of

∫
V |b
′
|
2 and the capacity of the set

V ∩∂D. To compare these quantities we construct Vexp, an expanded version of the set V which satisfies
two conflicting conditions. First, Vexp is not much larger than V , either when measured by

∫
Vexp
|b′|2 or

by the capacity of the V exp ∩ ∂D. Second, D \ Vexp is well separated from V in a way that allows the
interaction of quantities supported on the two sets to be controlled. Once this is done we can construct
a function 8V ∈ D which is approximately one on V and which has 8′V approximately supported on
D \ Vexp. Using 8V we build functions f and g with the property that

|Tb( f, g)| =
∫

V
|b′|2+ error.

The technical estimates on 8V allow us to show that the error term is small and the boundedness of Tb

then gives the required control of
∫

V |b
′
|
2.

Once the first part of the theorem is established, the second follows rather directly.

Other bilinear forms. The Hardy space of the unit disk, H 2(D), can be defined as the space of holo-
morphic functions on the disk with inner product

〈 f, g〉H2(D) = f (0)g(0)+
∫

D

f ′(z)g′(z) (1− |z|2) dA
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and normed by ‖ f ‖2H2(D)
= 〈 f, f 〉H2(D). Given a holomorphic symbol function b the Hankel form with

symbol b is the bilinear form

T H2(D)
b ( f, g) := 〈 f g, b〉H2(D). (1-2)

The boundedness criteria for such forms was given by Nehari [1957]. He used the fact that functions in
the Hardy space H 1 can be written as the product of functions in H 2 and showed T H2(D)

b will be bounded
if and only if b is in the dual space of H 1. Using Ch. Fefferman’s identification of the dual of H 1 we
can reformulate this in the language of Carleson measures. We say a positive measure µ on the disk is
a Carleson measure for H 2(D) if

‖µ‖C M(H2(D)) := sup
{∫

D

| f |2dµ : ‖ f ‖H2(D) = 1
}
< ∞.

The form T H2(D)
b is bounded if and only if b is in the function space B M O or, equivalently, if and only

if
|b′(z)|2(1− |z|2) dA ∈ C M(H 2(D)).

Later, in [Coifman et al. 1976], Nehari’s theorem was viewed as a result about Calderón–Zygmund
singular integrals on spaces of homogenous type and an analogous result was proved for H 2(∂Bn), the
Hardy space of the sphere in complex n-space. In that context the Hankel form is defined similarly

T H2(∂Bn)
b ( f, g) := 〈 f g, b〉H2(∂Bn).

That form is bounded if and only if b is in B M O(∂Bn) or, equivalently, if and only if, with ∇ denoting
the invariant gradient on the ball,

|∇b(z)|2dV ∈ C M(H 2(∂Bn)).

The approach in [Coifman et al. 1976] is not well suited for analysis on the Hardy space of the poly-
disk, H 2(Dn). However Ferguson, Lacey, and Terwilleger were able to extend methods of multivariable
harmonic analysis and obtain a result for H 2(Dn) [Ferguson and Lacey 2002; Lacey and Terwilleger
2009]. They showed that a Hankel form on H 2(Dn), again defined as a form whose value only depends
on the product of its arguments, is bounded if and only if the symbol function b lies in B M O(Dn) or,
equivalently, if and only if derivatives of b can be used to generate a Carleson measure for H 2(Dn).

Maz’ya and Verbitsky [2002] presented a boundedness criterion for a bilinear form associated to
the Schrödinger operator. Although their viewpoint and proof techniques were quite different from those
used for Hankel forms, their result is formally very similar. We change their formulation slightly to make
the analogy more visible, our b is related to their V by b = −1−1V . Let L̊1

2(R
n) be the energy space

(homogenous Sobolev space) obtained by completing C∞0 (R
n) with respect to the quasinorm induced by

the Dirichlet inner product

〈 f, g〉Dir =

∫
Rn
∇ f · ∇g dx .

Given b, a bilinear Schrödinger form on L̊1
2(R

n)× L̊1
2(R

n) is defined by

Sb( f, g) = 〈 f g, b〉Dir.
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Although the relevant class of measures in this context was first studied by Maz’ya we will use a notation
which emphasizes the analogy with the previous situations. We will write µ ∈ C M(L̊1

2(R
n)) if

‖µ‖C M(L̊1
2(R

n)) := sup
{∫

Rn
| f |2dµ : ‖ f ‖L̊1

2(R
n) = 1

}
< ∞.

Corollary 2 of [Maz’ya and Verbitsky 2002] is that Sb is bounded if and only if∣∣(−1)1/2b
∣∣2 dx ∈ C M(L̊1

2(R
n)).

It would be very satisfying to know an underlying reason for the similarity of these various results to
each other and to Theorem 1.1.

Reformulation in terms of weak factorization. In his proof Nehari used the fact that any function f ∈
H 1(D) could be factored as f = gh with g, h ∈ H 2(D), ‖ f ‖H1(D) = ‖g‖H2(D)‖h‖H2(D). In [Coifman
et al. 1976] the authors develop a weak substitute for this. For two Banach spaces of functions, A and
B, defined on the same domain, define the weakly factored space A�B to be the completion of finite
sums f =

∑
ai bi ; {ai } ⊂A, {bi } ⊂B using the norm

‖ f ‖A�B = inf
{∑

‖ai‖A‖bi‖B : f =
∑

ai bi

}
.

It is shown in [Coifman et al. 1976] that H 2(∂Bn)�H 2(∂Bn)= H 1(∂Bn) and consequentially(
H 2(∂Bn)�H 2(∂Bn)

)∗
= B M O(∂Bn). (1-3)

(In this context, by = we mean equality of the function spaces and equivalence of the norms.) Based
on the analogy between (1-1) and (1-3) we think of D�D as a type of H 1 space and of X as a type of
B M O space. That viewpoint is developed further in [Arcozzi et al. 2008].

The precise formulation of (1-1) is the following corollary.

Corollary 1.2. For b ∈X set3bh= Tb(h, 1), then3b ∈ (D�D)∗. Conversely, if3∈ (D�D)∗ there is a
unique b ∈X so that for all h ∈P(D) we have3h = Tb(h, 1)=3bh. In both cases ‖3b‖(D�D)∗ ≈ ‖b‖X.

Proof. If b ∈ X and f ∈ D�D, say f =
∑

gi hi with
∑
‖gi‖D‖hi‖D ≤ ‖ f ‖D�D+ ε, then

|3b f | =
∣∣∣∣ ∞∑

i=1

〈gi hi , b〉D

∣∣∣∣ = ∣∣∣∣ ∞∑
i=1

Tb(gi , hi )

∣∣∣∣ ≤ ‖Tb‖

∞∑
i=1

‖gi‖D‖hi‖D ≤ ‖Tb‖(‖ f ‖D�D+ ε).

It follows that 3b f = 〈 f, b〉D defines a continuous linear functional on D�D with ‖3b‖ ≤ ‖Tb‖.
Conversely, if 3 ∈ (D�D)∗with norm ‖3‖, then for all f ∈ D

|3 f | = |3( f · 1)| ≤ ‖3‖‖ f ‖D‖1‖D = ‖3‖‖ f ‖D.

Hence there is a unique b ∈D such that 3 f =3b f for f ∈D. Finally, if f = gh with g, h ∈D we have

|Tb(g, h)| = |〈gh, b〉D| = |3b f | = |3 f | ≤ ‖3‖‖ f ‖D�D ≤ ‖3‖‖g‖D‖h‖D,

which shows that Tb extends to a continuous bilinear form on D�D with ‖Tb‖ ≤ ‖3‖. By Theorem 1.1
we conclude b ∈ X and collecting the estimates that ‖3‖ = ‖3b‖(D�D)∗ ≈ ‖Tb‖ ≈ ‖b‖X. �
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There is a bilinear form related to Tb which was studied earlier and which is also related to a weak
factorization statement. Define Kb by Kb( f, g)=

∫
D

f ′gb̄′ dV . It was shown independently in [Coifman
and Murai 1988; Tolokonnikov 1991; Rochberg and Wu 1993] that Kb is bounded if and only if b ∈ X.
(In fact the work reported in the last of these papers began as an attempt to prove Theorem 1.1.) Define
the space ∂−1(∂D�D) to be the completion of the space of functions f which have f ′ =

∑N
i=1 g′i hi

(and thus f = ∂−1∑(∂gi )hi )) using the norm

‖ f ‖∂−1(∂D�D) = inf
{∑

‖gi‖D‖hi‖D : f ′ =
N∑

i=1

g′i hi

}
.

Theorem 1.3 [Coifman and Murai 1988; Tolokonnikov 1991; Rochberg and Wu 1993]. Kb is bounded
if and only if b ∈ X, equivalently,

(∂−1(∂D�D))∗ = X.

In fact this follows from Theorem 1.1. In proving that if b ∈ X then Tb is bounded we actually show
directly that Kb is bounded and then note that

Tb( f, g) = Kb( f, g)+ Kb(g, f )+ ( f gb̄)(0). (1-4)

In the other direction, if Kb is bounded then the same relation shows Tb is bounded and we can then
appeal to Theorem 1.1.

The representation (1-4) gives an insight into why Theorem 1.1 seems to be more difficult than those
earlier results. The proofs of Theorem 1.3 in the three papers cited give, explicitly or implicitly, estimates
from below for |Kb( f, g)|. In proving Theorem 1.1 we need to estimate |Tb( f, g)| from below. Although
the formula (1-4) invites using that representation as a starting point for analysis of Tb. It was unclear
to us how to analyze the potential cancellation between terms on the right hand side of (1-4) and that
potential cancellation appears to be a basic issue here.

Combining the previous two results we have, with the obvious notation:

Corollary 1.4. ∂(D�D)= ∂D�D.

In contrast
∂(D�D) 6= ∂1/2D� ∂1/2D.

To see this note that ∂1/2D�∂1/2D= H 2(D)�H 2(D)= H 1(D) and that f (z)= (log(1− z))3/2 satisfies
f ′ ∈ ∂(D�D), f ′ /∈ H 1.

Reformulation in terms of matrices. If Tb is given by (1-2) with b(z) =
∑

bnzn then the matrix rep-
resentation of Tb with respect to the monomial basis is (b̄i+ j ). Nehari’s theorem gives a boundedness
condition for such Hankel matrices; matrices (ai, j ) for which ai, j is a function of i + j . There are
analogous results for Hankel forms on Bergman spaces. Those forms have matrices(

(i + 1)α( j + 1)β(i + j + 1)γ b̄(i + j)
)

(1-5)

with α, β > 0 and are bounded if and only if b(z) is in the Bloch space. The criteria for (1-5) to belong
to the Schatten–von Neumann classes is known if min{α, β} > −1/2 and it is known that those results
do not extend to min{α, β} ≤ −1/2. For all of this see [Peller 2003, Chapter 6.8].
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The matrix representations of the forms Tb and Kb with respect to the basis of normalized monomials
of D are of the form (1-5) with (α, β) equal to

(
−

1
2 ,−

1
2

)
in the first case and

(
−

1
2 ,

1
2

)
in the second.

2. Preliminary steps in the proof of Theorem 1.1

Proof of (2) given (1). Suppose Tb is compact. For any holomorphic function k(z) on D and r , 0< r < 1,
set Sr k(z)= k(r z). A computation with monomials verifies that

TSr b( f, g) = Tb(Sr f, Sr g).

As r→ 1, Sr converges strongly to I . Using this and that Tb is compact we obtain lim ‖TSr b− Tb‖ = 0.
Hence, by the first part of the theorem lim ‖Sr b− b‖X = 0. The Taylor coefficients of Sr b decay geo-
metrically, hence Sr b ∈ X0 and thus b ∈ X0.

In the other direction note that if b is a polynomial then Tb is finite rank and hence compact. If
{bn} ⊂ P(D) is a sequence of polynomials which converge in norm to b ∈ X0 then, by the first part of
the theorem, Tb is the norm limit of the Tbn and hence is also compact. �

Proof of the easy direction of (1). Suppose that µb is a Carleson measure for D. For f, g ∈ P(D) we
have

|Tb( f, g)| =
∣∣∣∣ f (0)g(0)b(0)+

∫
D

(
f ′(z)g(z)+ f (z)g′(z)

)
b′(z) dA

∣∣∣∣
≤
∣∣ f (0)g(0)b(0)

∣∣+ ∫
D

∣∣ f ′(z)g(z)b′(z)
∣∣ dA+

∫
D

∣∣ f (z)g′(z)b′(z)
∣∣ dA

≤
∣∣( f gb)(0)

∣∣+‖ f ‖D

(∫
D

|g|2 dµb

)1/2

+‖g‖D

(∫
D

| f |2 dµb

)1/2

≤ C
(
|b(0)| + ‖µb‖C M(D)

)
‖ f ‖D‖g‖D

= C‖b‖X‖ f ‖D‖g‖D.

Thus Tb has a bounded extension to D×D with ‖Tb‖ ≤ C‖b‖X. �

We note for later that if Tb extends to a bounded bilinear form on D then b ∈ D, equivalently, dµb is
a finite measure. To see this note that for all f ∈ P(D), |〈 f, b〉D| = |Tb( f, 1)| ≤ ‖Tb‖‖ f ‖D‖1‖D. Thus
b ∈ D and

‖b‖D ≤ C‖Tb‖. (2-1)

Disk capacity and disk blow-ups. To complete the proof of Theorem 1.1 we must show that if Tb is
bounded then µb: = |b′|2dA is a D-Carleson measure. We will do this by showing that µb satisfies a
capacitary condition introduced by Stegenga [1980].

For an interval I in the circle we let Im be its midpoint and z(I ) = (1− |I |/2π)Im be the associated
index point in the disk. In the other direction let I (z) be the interval such that z(I (z))= z. Let T (I ) be
the tent over I , the convex hull of I and z(I ) and let T (z) = T (z(I )) := T (I ). More generally, for any
open subset H of the circle T, we define T (H), the tent region of H in the disk D, by

T (H) =
⋃
I⊂H

T (I ).
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For G in the circle T define the capacity of G by

CapD G = inf
{
‖ψ‖2D : ψ(0) = 0,Reψ(z) ≥ 1 for z ∈ G

}
. (2-2)

Stegenga [1980] has shown that µ is a D-Carleson measure exactly if for any finite collection of disjoint
arcs {I j }

N
j=1 in the circle T we have

µ
(⋃N

j=1
T (I j )

)
≤ C CapD

(⋃N

j=1
I j

)
. (2-3)

We will need to understand how the capacity of a set changes if we expand it in certain ways. For I
an open arc and 0< ρ ≤ 1, let I ρ be the arc concentric with I having length |I |ρ .

Definition 2.1 (disk blowup). For G open in T we call

Gρ
D =

⋃
I⊂G

T (I ρ)

the disk blowup (of order ρ) of G.

The important feature of the disk blowup is that it achieves a good geometric separation between
D \Gρ

D and G1
D = T (G). This plays a crucial role in using Schur’s test to estimate an integral later, as

well as in estimating an error term near the end of the paper.

Lemma 2.2. Let G be an open subset of the circle T. If w ∈ G1
D = T (G) and z /∈ Gρ

D then |z −w| ≥
(1− |w|2)ρ .

Proof. The inequality follows from the definition of Gρ
D and the inclusion

T (I ρ) ⊂
{
z : |z− z(I )| < 2(1− |z(I )|)2ρ

}
. �

It would be useful to us if we knew there were constants Cρ , for each 0< ρ < 1, such that

CapD

⋃
I⊂G

I ρ ≤ Cρ CapD G. (2-4)

and
lim
ρ→1−

Cρ = 1. (2-5)

Bishop [1994] proved (2-4) but did not obtain (2-5). In a short while we will obtain Lemma 2.8, an
analog of (2-4) and (2-5) in a tree model, and that will play an important role in the proof. After we
show that tree and disk are comparable (Corollary 2.12) we will also have the tree result (2-4), which
will likewise be used in the proof. It remains an open question whether the disk result (2-5) holds.

Tree capacity and tree blow-ups. In our study of capacities and approximate extremals it will sometimes
be convenient to transfer our arguments to and from the Bergman tree T and to work with the associated
tree capacities. We now recall the notation associated to T. Further properties of T are in the Appendix
and a more extensive investigation with other applications is in [Arcozzi et al. 2007].

Let T be the standard Bergman tree in the unit disk D. That is T={x} is the index set for the subsets
{Bx} of D obtained by decomposing D, first with the circles Ck ={z : |z|= 1−2−k

}, k= 1, 2, . . . and then
for each k making 2k radial cuts in the ring bounded by Ck and Ck+1. We refer to the {Bx} as boxes and
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we emphasize the standard bijection between the boxes and the intervals on the circle {I (Bx)} obtained
by radial projection of the boxes. This also induces a bijection with the point set {z(I (Bx))} in the disk;
furthermore, z(I (Bx)) ∈ Bx . At times we will use the label x to denote the point z(I (Bx)).

T is a rooted dyadic tree with root {0}, which we denote by o. For a vertex x of T we denote its
immediate predecessor by x−1 and its two immediate successors by x+ and x−. We let d(x) equal the
number of nodes on the geodesic [o, x]. The successor set of x is S(x)= {y ∈ T : y ≥ x}.

We say that S ⊂ T is a stopping time if no pair of distinct points in S are comparable in T. Given
stopping times E, F ⊂ T we say that F � E if for every x ∈ F there is y ∈ E above x , that is, with
x > y. For stopping times F � E denote by G(E, F) the union of all those geodesics connecting a point
of x ∈ F to the point y ∈ E above it.

The bijections between {Bx}, {I (Bx)}, and {z(I (Bx))} induce bijections between other sets. We will
be particularly interested in three types of sets:

• stopping times W in the tree T,

• T-open subsets G of the circle T,

• T-tent regions 0 of the disk D.

The bijections are given as follows. For W a stopping time in T, its associated T-open set in T is the
T-shadow ST(W )=

⋃
{I (x) : x ∈W } of W on the circle (this also defines the collection of T-open sets).

The associated T-tent region in D is TT(W ) =
⋃{

T (I (κ)) : κ ∈ W
}

(this also defines the collection of
T-tent regions).

At times we will identify a stopping time W = WT in a tree T with its associated T-shadow on the
circle and its T-tent region in the disk and will use W or WT to denote any of them. When we do this
the exact interpretation will be clear from the context.

Note that for any open subset E of the circle T, there is a unique T-open set G ⊂ E such that E \G
is at most countable. We often informally identify the open sets E and G.

For a functions k, K defined on T set

I k(x) =
∑

y∈[o,x]

k(y), 1K (x) = K (x)− K (x−)

with the convention that K (o−)= 0.
For � ⊆ T a point x ∈ T is in the interior of � if x, x−1, x+, x− ∈ �. A function H is harmonic in

� if

H(x) = 1
3

[
H(x−1)+ H(x+)+ H(x−)

]
(2-6)

for every point x which is interior in �. If H = I h is harmonic then for all x in the interior of �

h(x) = h(x+)+ h(x−). (2-7)

Let CapT be the tree capacity associated with T:

CapT(E) = inf
{
‖ f ‖2`2(T) : I f ≥ 1 on E

}
. (2-8)
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More generally, if E, F ⊂ T are disjoint stopping times with F � E , the capacity of the pair (E, F),
commonly known as a condenser, is given by

CapT(E, F) = inf
{
‖ f ‖2`2(T) : I f ≥ 1 on F, supp( f ) ⊂

⋃
e∈E

S(e)
}
. (2-9)

Let Tθ be the rotation of the tree T by the angle θ , and let CapTθ
be the tree capacity associated with

Tθ as in (2-8), and extend the definition to open subsets G of the circle T by

CapTθ
(G) = inf

{∑
κ∈Tθ

f (κ)2 : I f (β) ≥ 1 for β ∈ Tθ , I (β) ⊂ G
}
.

This is consistent with the definition of tree capacity of a stopping time W in Tθ ; that is, if

G =
⋃{

I (κ) : κ ∈ W
}
,

we have
CapTθ

(W ) = CapTθ
({o},W ) = CapTθ

(G).

When the angle θ is not important, we will simply write T with the understanding that all results have
analogues with Tθ in place of T.

We will use functions on the disk which are approximate extremals for measuring capacity, that is
functions for which the equality in (2-2) is approximately attained. A tool in doing that is an analysis of
the model problems on a tree. The following result about tree capacities and extremals is proved in the
Appendix.

Proposition 2.3. Suppose E , F ⊂ T are disjoint stopping times with F � E.

(1) There is an extremal function H = I h such that Cap(E, F)= ‖h‖2
`2 .

(2) The function H is harmonic on T \ (E ∪ F).

(3) If S is a stopping time in T, then
∑

κ∈S |h(κ)| ≤ 2Cap(E, F).

(4) The function h is positive on G(E, F) and zero elsewhere.

Definition 2.4 (stopping time blowup). Given 0 ≤ ρ ≤ 1 and a stopping time W in a tree T, define the
stopping time blowup W ρ

T of W in T as the set of minimal tree elements in {Rρκ : κ ∈ Tθ }, where Rρκ
denotes the unique element in the tree T satisfying

o ≤ Rρκ ≤ κ, ρd(κ) ≤ d(Rρκ) < ρd(κ)+ 1. (2-10)

Clearly W ρ
T is a stopping time in T. Note that R1κ = κ . The element Rρκ can be thought of as the

ρ-th root of κ , since |Rρκ| = 2−d(Rρκ)
≈ 2−ρd(κ)

= |κ|ρ .
If W is a stopping time for T and W ρ

T is the stopping time blowup of W , then there is a good estimate for
the tree capacity of W ρ

T given in Lemma 2.8 below: CapT({o},W ρ
T)≤ ρ

−2 CapT({o},W ). Unfortunately
there is not a good condenser estimate of the form CapT(W

ρ
T,W )≤ Cρ CapT({o},W ); the left side can

be infinite when the right side is finite. We now introduce another type of blowup, a tree analog of
the disk blowup, for which we do have an effective condenser estimate. We do this using a capacitary
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extremal function and a comparison principle. Let W be a stopping time in T. By Proposition 2.3, there
is a unique extremal function H = I h such that

I h(x) = H(x) = 1 for x ∈ W and CapT W = ‖h‖2`2 . (2-11)

Definition 2.5 (capacitary blowup). Given a stopping time W in T, the corresponding extremal H sat-
isfying (2-11), and 0< ρ < 1, define the capacitary blowup Ŵ ρ

T of W by

Ŵ ρ
T =

{
t ∈ G({o},W ) : H(t) ≥ ρ and H(x) ≤ ρ for x < t

}
.

Clearly Ŵ ρ
T is a stopping time in T.

Lemma 2.6. CapT Ŵ ρ
T ≤ ρ

−2 CapT W.

Proof. Let H be the extremal for W in (2-11) and set h =1H , hρ = h/ρ and Hρ
= H/ρ. Then Hρ is a

candidate for the infimum in the definition of capacity of Ŵ ρ
T, and hence, by the comparison principle,

CapT Ŵ ρ
T ≤ ‖h

ρ
‖

2
`2 =

( 1
ρ

)2
‖h‖2`2 = ρ

−2 CapT W. �

The next lemma is used in the proof of our main estimate, (3-1). It requires an upper bound on
CapD(G). However, (3-1) is straightforward if CapD(G) bounded away from zero so that restriction is
not a problem. In fact, moving forward we will assume, at times implicitly, that CapD(G) is not large.

Lemma 2.7. CapT(W, Ŵ ρ
T)≤

4
(1−ρ)2

CapT W provided CapT W ≤ (1− ρ)2/4.

Proof. Let H be the extremal for W in (2-11). For t ∈ Ŵ ρ
T we have by our assumption,

h(t) ≤ ‖h‖`2 ≤
√

CapT W ≤ 1
2(1− ρ),

and so
H(t) = H(t−)+ h(t) ≤ ρ+ 1

2(1− ρ) =
1
2(1+ ρ).

If we define H̃(t) = 2/(1−ρ)
(
H(t)− 1

2(1+ ρ)
)
, then H̃ ≤ 0 on Ŵ ρ

T and H̃ = 1 on W . Thus H̃ is a
candidate for the capacity of the condenser and so, by the comparison principle,

CapT(W, Ŵ ρ
T) ≤ ‖4 H̃‖2

`2(G(W ρ
T,W ))

≤ ‖4 H̃‖2`2(T) =

( 2
1−ρ

)2
‖h‖2`2(T) =

4
(1−ρ)2

CapT W. �

We also have good tree separation inherited from the stopping time blowup W ρ
T. This gives our

substitute for (2-4) and (2-5).

Lemma 2.8. W ρ
T ⊂ Ŵ ρ

T as open subsets of the circle or, equivalently, as T-tent regions in the disk.
Consequently CapT W ρ

T ≤ ρ
−2 CapT W .

Proof. The restriction of H to a geodesic is a concave function of distance from the root, and so if
o< z <w ∈W , then

H(z) ≥
(

1−
d(z)
d(w)

)
H(o)+

d(z)
d(w)

H(w) =
d(z)
d(w)

≥ ρ, z ∈ Ŵ ρ
T,

and this proves W ρ
T ⊂ Ŵ ρ

T. The inequality now follows from Lemma 2.6. �
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Holomorphic approximate extremals and capacity estimates. We now define a holomorphic approxi-
mation 8 to the extremal function H = I h on T constructed in Proposition 2.3. We will use a parameter
s. We always suppose s>−1 and additional specific assumptions will be made at various places. Define

ϕκ(z) =
(

1− |κ|2

1− κz

)1+s

,

8(z) =
∑
κ∈T

h(κ)ϕκ(z) =
∑
κ∈T

h(κ)
(

1− |κ|2

1− κz

)1+s

. (2-12)

Note that for τ ∈ T ∑
κ∈T

h(κ)I δκ(τ ) = I
(∑
κ∈T

h(κ)δκ

)
(τ ) = I h(τ ) = H(τ ),

and so
8(z)− H(z) =

∑
κ∈T

h(κ){ϕκ − I δκ}(z). (2-13)

Define 0s by

0sh(z) =
∫

D

h(ζ )
(1− |ζ |2)s

(1− ζ z)1+s
dA, (2-14)

and recall that for appropriate constant cs , cs0s is a projection onto holomorphic functions [Zhu 2005,
Thm 2.11]. For notational convenience we absorb the constant cs into the measure dA. Thus for h∈P(D),

0sh(z) = h(z). (2-15)

We then have 8= 0s g where

g(ζ ) =
∑
κ∈T

h(κ)
1
|Bκ |

(1− ζκ)1+s

(1− |ζ |2)s
χBκ (ζ ), (2-16)

and Bκ is the Euclidean ball centered at κ with radius c(1− |κ|) where c is a small positive constant to
be chosen later. The function 8 satisfies the following estimates.

Proposition 2.9. Set F = ÊρT and write E = {wk}k . Suppose z ∈ D and s >−1. Then
|8(z)−8(wk)| ≤ C CapT(E, F), z ∈ T (wk),

Re8(wk) ≥ c > 0, k ≥ 1,

|8(wk)| ≤ C, k ≥ 1,

|8(z)| ≤ C CapT(E, F), z /∈ F.

(2-17)

Corollary 2.10. Let the situation be as in the proposition. If s >−1
2 then 8= 0s g, where g satisfies∫

D

|g(ζ )|2dA ≤ C CapT(E, F); (2-18)

and if s > 1
2 then

‖8‖2D ≤

∫
D

|g(ζ )|2dA ≤ C CapT(E, F). (2-19)
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Proof. From (2-13) we have

|8(z)− H(z)| ≤
∑
κ∈[o,z]

∣∣h(κ){ϕκ(z)− 1}
∣∣+ ∑

κ /∈[o,z]

|h(κ)ϕκ(z)| = I(z)+ II(z).

Also, h is nonnegative and supported in V γ
G \ V α

G . We first show that

II(z) ≤
∑
κ /∈[o,z]

h(κ)
∣∣∣∣1− |κ|21− κz

∣∣∣∣1+s

≤ C Cap(E, F).

For A > 1 let

� j =

{
κ ∈ T : A− j−1 <

∣∣∣∣1− |κ|21− κz

∣∣∣∣ ≤ A− j
}
.

Lemma 2.11. For every j the set � j is a union of two stopping times for T.

Proof. Let �1
j be the subset of � j of points whose distance from the root is odd and set �2

j =� j \�
1
j .

We will show both are stopping times; that is, if for r = 1, 2, κ ∈�r
j , λ ∈T, and κ ∈ [o, λ), then λ /∈�r

j .
Set δκ = λ− κ . We have∣∣∣∣ 1− λ̄z

1− |λ|2

∣∣∣∣ = 1− |κ|2

1− |λ|2

∣∣∣∣1− (κ + δκ)z1− |κ|2

∣∣∣∣
=

1− |κ|2

1− |λ|2

∣∣∣∣ 1− κ̄z
1− |κ|2

−
δκz

1− |κ|2

∣∣∣∣ ≥ 1− |κ|2

1− |λ|2

(∣∣∣∣ 1− κ̄z
1− |κ|2

∣∣∣∣− |δκz|
1− |κ|2

)
. (2-20)

By the construction of the tree (1− |κ|2) ∼ 2s(1− |λ|2) for some positive integer s, and if κ and λ are
in the same �r

j then s ≥ 2. Also, by the construction of T, we have

|δκz|
1− |κ|2

≤

√
2(1− |κ|)|z|

1− |κ|2
.

√
2

2
,

and hence we continue with ∣∣∣∣ 1− λ̄z
1− |λ|2

∣∣∣∣ ≥ 4
(

A j
−

√
2

2

)
.

We are done if A j+1
≤ 4(A j

−
√

2/2) for each j . That holds if A ≤ 4(1−
√

2/2) < 1.17. �

Now by the stopping time property, item 3 in Proposition 2.3, we have∑
κ∈� j

h(κ) ≤ C CapT(E, F), j ≥ 0.

Altogether we then have

II(z) ≤
∞∑
j=0

∑
κ∈� j

h(κ)A− j (1+s)
≤ Cs CapT(E, F).

If z ∈ D \ F then I(z)= 0 and H(z)= 0 and we have

|8(z)| = |8(z)− H(z)| ≤ II(z) ≤ Cs CapT(E, F),

which is the fourth line in (2-17).
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If z ∈ T (w j ), then for κ /∈ [o, w j ] we have |ϕκ(w j )| ≤ C |ϕκ(z)|, and for κ ∈ [o, z] we have

|ϕκ(z)−ϕκ(w j )| =

∣∣∣∣(1− |κ|2

1− κz

)1+s

−

(
1− |κ|2

1− κw j

)1+s∣∣∣∣ ≤ Cs
|z−w j |

1− |κ|2
.

Thus for z ∈ T (wαj ),

|8(z)−8(w j )| ≤
∑

κ∈[o,wαj ]

h(κ)|ϕκ(z)−ϕκ(w j )| +C
∑
κ /∈[o,z]

h(κ)|ϕκ(z)|

≤ Cs

∑
κ∈[o,wαj ]

h(κ)
|z−w j |

1− |κ|2
+C II(z) ≤ Cs CapT(E, F),

since h(κ)≤ C CapT(E, F) and
∑

κ∈[o,w j ]

1
1−|κ|2

≈
1

1−|w j |
2 . This proves the first line in (2-17).

Moreover, we note that for s = 0 and κ ∈ [o, w j ],

Reϕκ(w j ) = Re
1− |κ|2

1− κw j
= Re

1− |κ|2

|1− κw j |
2 (1− κw j ) ≥ c > 0.

A similar result holds for s >−1 provided the Bergman tree T is constructed sufficiently thin depending
on s. It then follows from

∑
κ∈[o,w j ]

h(κ)= 1 that

Re8(w j ) =
∑

κ∈[o,w j ]

h(κ)Reϕκ(w j )+
∑

κ /∈[o,w j ]

h(κ)Reϕκ(w j )

≥ c
∑

κ∈[o,w j ]

h(κ)−C CapT(E, F) ≥ c′ > 0.

We trivially have

|8(w j )| ≤ I(z)+ II(z) ≤ C
∑

κ∈[o,w j ]

h(κ)+C CapT(E, F) ≤ C,

and this completes the proof of (2-17).
Now we prove (2-18). From property 1 of Proposition 2.3 we obtain∫

D

|g(ζ )|2dA =
∫

D

∣∣∣∣∑
κ∈T

h(κ)
1
|Bκ |

(1− ζκ)1+s

(1− |ζ |2)s
χBκ (ζ )

∣∣∣∣2 dA

=

∑
κ∈T

|h(κ)|2
1
|Bκ |2

∫
Bκ

|1− ζκ|2+2s

(1− |ζ |2)2s dA ≈
∑
κ∈T

|h(κ)|2 ≈ CapT(E, F).

Finally (2-19) follows from (2-18) and [Böe 2002, Lemma 2.4]. �

Corollary 2.12. Let G be a finite union of arcs in the circle T. Then

CapD(G) ≈ CapT(G), (2-21)

where CapD denotes Stegenga’s capacity on the circle T.
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Proof. To prove the inequality / in (2-21) we use Proposition 2.9 to obtain a test function for estimating
the Stegenga capacity of G. We take F = {o} and E = G in Proposition 2.9. Let c,C be the constants
in Proposition 2.9, and suppose that Cap(E, F)≤ c/(3C). Set 9(z)= 3

c (8(z)−8(0)). Then 9(0)= 0
and

Re9(z) = 3
c
{
Re8(z)−Re8(0)

}
≥

3
c
{
c− 2C CapT(E, F)

}
≥ 1, z ∈ G.

By definition (2-2) and (2-19) we have, for G ⊂ T,

CapD(G) ≤ ‖9‖
2
D =

(3
c

)2
‖8‖2D ≤

(3
c

)2
C CapT(E, F) ≤ C CapT E = C CapT G.

To obtain the opposite inequality we use ψ ∈ D, an extremal function for computing CapD G. For
R> 0, z ∈D let B(z, R) be the hyperbolic disk of radius R centered at z. Pick R large enough so that for
all κ ∈ T \ {o} we have B(κ, R) ⊃ convexhull(Bκ ∪ Bκ−1). Our candidate for estimating CapT is given
by setting h(o)= 0 and

h(κ) = (1− |κ|2) sup
{
|ψ ′(z)| : z ∈ B(κ, R)

}
; κ ∈ T \ {o}.

We have the pointwise estimate

Reψ(β) ≤ |ψ(β)| ≤
∑
κ∈[o,β]

∣∣ψ(κ)−ψ(κ−1)
∣∣

≤

∑
κ∈[o,β]

|κ − κ−1
| sup

{
|ψ ′(z)| : z ∈ segment(κ, κ−1)

}
≤ C

∑
κ∈[o,β]

h(κ) = C I h(β).

We have the norm estimate, with z(κ) denoting the appropriate point in B(κ, R),

‖h‖2`2(T) =

∑
κ∈T

(1− |κ2
|)2|ψ ′(z(κ))|2 ≤ C

∑
κ∈T

(1− |κ2
|)2

|B(κ, R)|

∫
B(κ,R)

|ψ ′(z)|2 dA

≤ C
∑
κ∈T

∫
B(κ,R)

|ψ ′(z)|2 dA ≤ C
∫

D

|ψ ′(z)|2 dA ≤ C‖ψ‖2D.

Here the first inequality uses the submean value property for the subharmonic function |ψ ′(z)|2, the
second uses straightforward estimates for |B(κ, R)|, and the next estimate holds because the B(κ, R) are
approximately disjoint;

∑
χB(κ,R)(z)≤ C . Recalling definition (2-8) we find

CapT G ≤ C
∥∥∥1

c
ψ
∥∥∥2

D
=

C
c2 CapD G. �

Abbreviate CapTθ
by Capθ , and let Tθ (E) be the Tθ -tent region corresponding to an open subset E

of the circle T. Recall that T (E)=
⋃

I⊂E
T (I ). Now define M by

M := sup
E open ⊂T

∫
T
µb(Tθ (E)) dθ∫

T
Capθ (E) dθ

. (2-22)

Corollary 2.13. ‖µb‖
2
C M(D) ≈ M.
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Proof. Using Corollary 2.12 and Tθ (E)⊂ T (E), we have

M ≤ C sup
E open ⊂T

∫
T
µb(T (E)) dθ∫

T
CapD(E) dθ

= C sup
E open ⊂T

µb(T (E))
CapD(E)

≈ ‖µb‖
2
C M(D),

where the final comparison is Stegenga’s theorem. Conversely, one can verify using an argument in the
style of the one in (2-25) below that for 0< ρ < 1,

µb(E) ≤ C
∫

T

µb(Tθ (E
ρ
D)) dθ ≤ C M

∫
T

Capθ (E
ρ
D)dθ ≈ C M CapD(E

ρ
D) ≤ C M CapD(E).

Here the third line uses (2-21) with EρD and T(θ) in place of G and T, and the final inequality follows
from (2-4). Thus from Stegenga’s theorem we obtain

‖µb‖
2
C M(D) ≈ sup

E open ⊂T

µb(E)
CapD(E)

≤ C M. �

Given 0< δ < 1, let G be an open set in T such that∫
T
µb(Tθ (G))dθ∫

T
Capθ (G) dθ

≥ δM. (2-23)

We need to know that µb(V
β
G \VG) is small compared to µb(VG). This crucial step of the proof is where

we use the asymptotic capacity estimate Lemma 2.8.

Proposition 2.14. Given ε > 0 we can choose δ = δ(ε) < 1 in (2-23) and β = β(ε) < 1 so that, for any
G satisfying (2-23), we have

µb(V
β
G \ VG) ≤ εµb(VG), (2-24)

where V β
G = Gβ

D and VG = G1
D = T (G).

Proof. Let Gρ(θ)=Gρ
Tθ

. Lemma 2.8 shows that Capθ (G
ρ(θ))≤ρ−2 Capθ (G) for 0≤ θ <2π , 0<ρ<1,

and if we integrate on T we obtain∫
T

Capθ (G
ρ(θ)) dθ ≤ ρ−2

∫
T

Capθ (G) dθ.

From (2-22) and (2-23) we thus have∫
T

µb(Tθ (Gρ(θ))) dθ ≤ M
∫

T

Capθ (G
ρ(θ)) dθ ≤ Mρ−2

∫
T

Capθ (G) dθ ≤
1
δρ2

∫
T

µb(Tθ (G)) dθ.

It follows that∫
T

µb(Tθ (Gρ(θ)) \ Tθ (G)) dθ =
∫

T

µb(Tθ (Gρ(θ))) dθ −
∫

T

µb(Tθ (G)) dθ

≤

( 1
δρ2 − 1

) ∫
T

µb(Tθ (G)) dθ.
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Now, with η = 1
2(ρ+ 1),∫

T

µb
(
Tθ (Gρ(θ)) \ Tθ (G)

)
dθ =

∫
T

∫
Tθ (Gρ(θ))\Tθ (G)

dµb(z) dθ ≥
∫

T

∫
Tθ (Gρ(θ))\T (G)

dµb(z) dθ

≥

∫
T

∫
Tθ (Gρ(θ))\T (G)

dµb(z) dθ

=

∫
D

1
2π

∫
{θ :z∈Tθ (Gρ(θ))\T (G)}

dθ dµb(z) ≥
1
2

∫
T (Gη

D)\T (G)
dµb(z),

(2-25)

since every z ∈ T (Gη
D) lies in Tθ (Gρ(θ)) for at least half of the θ ’s in [0, 2π). Here we may assume that

the components of Gρ
D have small length since otherwise we trivially have

∫
T

CapT(θ)(G) dθ ≥ c > 0.
We continue with

M ≤
1
c

∫
dµb ≤

1
c
‖b‖2D ≤

C
c
‖Tb‖

2. (2-26)

Combining the inequalities above, using ρ = 2η− 1, 1/2≤ ρ < 1, and choosing δ = η, we obtain

µb(T (G
η
D) \ T (G)) ≤ 2

(
1
δρ2 − 1

)∫
T

µb(Tθ (G)) dθ

= 2
(

1
η(2η− 1)2

− 1
)∫

T

µb(Tθ (G)) dθ ≤ C(1− η)
∫

T

µb(Tθ (G)) dθ,

for 3
4 ≤ η < 1. Recalling that V η

G = T (Gη
D) and that for all θ we have Tθ (G)⊂ T (G)= VG this becomes

µb(V
η
G \ VG) ≤ C(1− η)

∫
T

µb(Tθ (G)) dθ ≤ C(1− η)µb(VG),
3
4 ≤ η < 1,

Hence given ε > 0 it is possible to select δ and β so that (2-24) holds. �

Schur estimates and a bilinear operator on trees. We begin with a bilinear version of Schur’s well
known theorem.

Proposition 2.15. Let (X, µ), (Y, ν) and (Z , ω) be measure spaces and H(x, y, z) be a nonnegative
measurable function on X × Y × Z. Define, initially for nonnegative functions f , g,

T ( f, g)(x) =
∫

Y×Z
H(x, y, z) f (y) dν(y)g(z) dω(z), x ∈ X,

For 1< p <∞, suppose there are positive functions h, k, and m on X , Y , and Z respectively such that∫
Y×Z

H(x, y, z)k(y)p′m(z)p′dν(y) dω(z) ≤ (Ah(x))p′,

for µ-a.e. x ∈ X , and ∫
X

H(x, y, z)h(x)p dµ(x) ≤ (Bk(y)m(z))p,

for ν×ω-a.e. (y, z) ∈ Y × Z. Then T is bounded from L p(ν)× L p(ω) to L p(µ) and ‖T ‖ ≤ AB.
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Proof. We have∫
X
|T f (x)|p dµ(x) ≤

∫
X

(∫
Y×Z

H(x, y, z)k(y)p′m(z)p′ dν(y) dω(z)
)p/p′

×

(∫
Y×Z

H(x, y, z)
( f (y)

k(y)

)p
dν(y)

( g(z)
m(z)

)p
dω(z)

)
dµ(x)

≤ Ap
∫

Y×Z

(∫
X

H(x, y, z)h(x)p dµ(x)
)( f (y)

k(y)

)p
dν(y)

( g(z)
m(z)

)p
dω(z)

≤ Ap B p
∫

Y×Z
k(y)pm(z)p

( f (y)
k(y)

)p
dν(y)

( g(z)
m(z)

)p
dω(z)

= (AB)p
∫

Y
f (y)p dν(y)

∫
Z

g(z)p dω(z). �

This proposition can be used, along with the estimates

∫
D

(1− |w|2)t

|1−wz|2+t+c dw ≈


Ct if c < 0, t > −1,

−Ct log(1− |z|2) if c = 0, t > −1,

Ct(1− |z|2)−c if c > 0, t > −1,

(2-27)

to prove a corollary we will use later [Zhu 2005, Thm 2.10].

Corollary 2.16. Define

T f (z) = (1− |z|2)a
∫

D

(1− |w|2)b

(1−wz)2+a+b f (w) dw, S f (z) = (1− |z|2)a
∫

D

(1− |w|2)b

|1−wz|2+a+b f (w) dw.

Suppose t ∈ R and 1 ≤ p <∞. Then T is bounded on L p(D, (1− |z|2)t dA) if and only if S is bounded
on L p(D, (1− |z|2)t dA) if and only if

−pa < t + 1 < p(b+ 1). (2-28)

We now use Proposition 2.15 to show that if A, B⊂ T are well separated then a certain bilinear
operator mapping on `2(A)× `2(B) maps boundedly into L2(D).

Lemma 2.17. Suppose A and B are subsets of T , h ∈ `2(A) and k ∈ `2(B), and 1/2< α < 1. Suppose
further that A and B satisfy the separation condition, ∀κ ∈A, γ ∈ B, then we have

|κ − γ| ≥ (1− |γ|2)α. (2-29)

Then the bilinear map of (h, k) to functions on the disk given by

T (h, b)(z) =
(∑
κ∈A

h(κ)
(1− |κ|2)1+s

|1− κz|2+s

)(∑
γ∈B

b(γ)
(1− |γ|2)1+s

|1− γz|1+s

)
is bounded from `2(A)× `2(B) to L2(D).

Remark 2.18. For h ∈ `2(A) and b ∈ `2(B) set

H(z) =
∑
κ∈A

h(κ)
(1− |κ|2)1+s

(1− κz)2+s , B(z) =
∑
γ∈B

b(γ)
(1− |γ|2)1+s

(1− γz)1+s .
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By [Zhu 2005, Thm 2.30] H ∈ L2(D) and B ∈D. There are unbounded functions in D; hence these facts
do not ensure that HB ∈ L2(D). The lemma shows that if A and B are separated then HB ∈ L2(D).

Proof of Lemma 2.17. We will verify the hypotheses of the previous proposition. The kernel function
here is

H(z, κ, γ) =
(1− |κ|2)1+s

|1− κz|2+s

(1− |γ|2)1+s

|1− γz|1+s , z ∈ D, κ ∈ A, γ ∈ B,

with Lebesgue measure on D and counting measure on A and B. We will take as Schur functions

h(z) = (1− |z|2)−1/4, k(κ) = (1− |κ|2)1/4, and m(γ) = (1− |γ|2)ε/2,

on D, A and B respectively, where ε = ε(α, s) > 0 will be chosen sufficiently small later. We must then
verify ∑

κ∈A

∑
γ∈B

(1− |κ|2)3/2+s

|1− κz|2+s

(1− |γ|2)1+ε+s

|1− γz|1+s ≤ A2(1− |z|2)−1/2 (2-30)

for z ∈ D, and∫
D

(1− |κ|2)1+s

|1− κz|2+s

(1− |γ|2)1+s

|1− γz|1+s (1− |z|
2)−1/2dA ≤ B2(1− |κ|2)1/2(1− |γ|2)ε (2-31)

for κ ∈A and γ ∈B.
To prove (2-30) we write

∑
κ∈A

∑
γ∈B

(1− |κ|2)3/2+s

|1− κz|2+s

(1− |γ|2)1+ε+s

|1− γz|1+s =

(∑
κ∈A

(1− |κ|2)3/2+s

|1− κz|2+s

)(∑
γ∈B

(1− |γ|2)1+ε+s

|1− γz|1+s

)
.

Then from (2-27) we obtain

∑
κ∈A

(1− |κ|2)3/2+s

|1− κz|2+s ≤ C
∫

D

(1− |w|2)−1/2+s

|1−wz|2+s dw ≤ C(1− |z|2)−1/2

and ∑
γ∈B

(1− |γ|2)1+ε+s

|1− γz|1+s ≤ C
∫
ζ∈VG

(1− |ζ |2)−1+ε+s

|1− ζ z|1+s
dA ≤ C,

which yields (2-30).
We now prove (2-31). We will make repeated use of (2-29) as well as the following consequence of

it (via the triangle inequality):

(1− |κ|2) ≤ C |κ − γ| for all κ ∈ A, γ ∈ B.

We set κ∗ = κ
|κ|

, γ∗ = γ
|γ|

, and we express the integral
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D

(1− |κ|2)1+s

|1− κz|2+s

(1− |γ|2)1+s

|1− γz|1+s (1− |z|
2)−1/2 dA =: I+ II+ III+ IV+V

as a sum of integrals over five regions:

I over
{
|z− γ∗| ≤ 1− |γ|2

}
,

II over
{
1− |γ|2 ≤ |z− γ∗| ≤ 1

2 |κ − γ|
}
,

III over
{
|z− κ∗| ≤ 1− |κ|2

}
,

IV over
{
1− |κ|2 ≤ |z− κ∗| ≤ 1

2 |κ − γ|
}
,

V over
{
|z− γ∗|, |z− κ∗| ≥ |κ − γ|

}
.

We have

I ≈
(1−|κ|2)1+s

|κ−γ|2+s

∫
|z−γ∗|≤1−|γ|2

(1−|z|2)−1/2 dA

≈
(1−|κ|2)1+s(1−|γ|2)3/2

|κ−γ|2+s ≤ C(1−|κ|2)1/2(1−|γ|2)3(1−α)/2,

II ≈
(1−|κ|2)1+s(1−|γ|2)1+s

|κ−γ|2+s

∫
1−|γ|2≤|z−γ∗|≤ 1

2 |κ−γ|

(1−|z|2)−1/2

|z−γ∗|1+s dA

≈
(1−|κ|2)1+s(1−|γ|2)1+s

|κ−γ|2+s (1−|γ|2)1/2−s

=
(1−|κ|2)1+s(1−|γ|2)3/2

|κ−γ|2+s ≤ C(1−|κ|2)1/2(1−|γ|2)3(1−α)/2,

III ≈
(1−|κ|2)1/2(1−|γ|2)1+s

|κ−γ|1+s ≤ C(1−|κ|2)1/2(1−|γ|2)(1+s)(1−α),

IV ≤ C(1−|κ|2)1/2(1−|γ|2)ε for some ε > 0,

V ≈
∫
|z−γ∗|,|z−κ∗|≥|κ−γ|

(1−|κ|2)1+s

|z−κ∗|2+s

(1−|γ|2)1+s

|z−γ∗|1+s (1−|z|
2)−1/2 dA

≈
(1−|κ|2)1+s(1−|γ|2)1+s

|κ−γ|3/2+2s ≤ C(1−|κ|2)1/2(1−|γ|2)(1+s)(1−α). �

3. The main bilinear estimate

To complete the proof we will show that µb is a D-Carleson measure by verifying Stegenga’s condition
(2-3); that is, we will show that for any finite collection of disjoint arcs {I j }

N
j=1 in the circle T we have

µb

(⋃N

j=1
T (I j )

)
≤ C CapD

(⋃N

j=1
I j

)
.
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In fact we will see that it suffices to verify this for the sets G =
⋃N

j=1 I j described in (2-23) that are
almost extremal for (2-22). We will prove the inequality

µb(VG) ≤ C‖Tb‖
2 CapD(G). (3-1)

Once we have this, Corollary 2.12 yields

M =

∫
T
µb(Tθ (G)) dθ∫

T
Capθ (G) dθ

≤
µb(VG)∫

T
Capθ (G) dθ

≤ C‖Tb‖
2.

By Corollary 2.13 ‖µb‖
2
C M(D) ≈ M which then completes the proof of Theorem 1.1.

We now turn to (3-1). Let 1
2 < β < β1 < γ < α < 1, with additional constraints to be added later.

Suppose G (2-23) with ε > 0 to be chosen. We define in succession the following regions in the disk:

VG = TT(G), V α
G = Gα

D, V γ
G =

̂
(V α

G )
γ/α
T , V β

G = (V
γ
G)
β/γ
D .

Thus VG is the T-tent associated with G, V α
G is a disk blowup of G, V γ

G is a T-capacitary blowup of V α
G ,

and V β
G is a disk blowup of V γ

G . Using the natural bijections described earlier, we write

VG = {wk}k, V α
G = {w

α
k }k, V γ

G = {w
γ
k }k, V β

G = {w
β
k }k, (3-2)

with wk , wαk , wγk , wβk ∈ T. Following earlier notation we write E = V α
G and F = V γ

G .
We proceed by estimating Tb( f, g) for well chosen f and g in D. Let 8 be as in (2-12); we then have

the estimates in Proposition 2.9 and Corollary 2.10. Set g = 82; then g is approximately equal to χVG .
The function f will be, approximately, b′χVG ;

f (z) = 0s(
1

(1+ s)ζ
χVG b′(ζ ))(z) =

∫
VG

b′(ζ )(1− |ζ |2)s

(1− ζ z)1+s

dA

(1+ s)ζ
. (3-3)

We now analyze Tb( f, g). From (3-3) and (2-15) we have

f ′(z) =
∫

VG

b′(ζ )(1− |ζ |2)s

(1− ζ z)2+s
dA = b′(z)−

∫
D\VG

b′(ζ )(1− |ζ |2)s

(1− ζ z)2+s
dA = b′(z)+3b′(z),

where the last term is defined by

3b′(z) = −
∫

D\VG

b′(ζ )(1− |ζ |)s

(1− ζ z)2+s
dA. (3-4)

We have

Tb( f, g) = ( f82b̄)(0)+
∫

D

{
f ′(z)8(z)+ 2 f (z)8′(z)

}
8(z)b′(z) dA =: (1)+ (2)+ (3)+ (4), (3-5)

with

(1) = ( f82b̄)(0), (3) = 2
∫

D

8(z)8′(z) f (z) b′(z) dA,

(2) =
∫

D

|b′(z)|28(z)2 dA, (4) =
∫

D

3b′(z) b′(z)8(z)2 dA.
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Now we write

(2) =
∫

D

|b′(z)|28(z)2dA =
{∫

VG

+

∫
V β

G \VG

+

∫
D\V β

G

}
|b′(z)|28(z)2 dA =: (2A)+ (2B)+ (2C). (3-6)

The main term is (2A). By (2-17) and (2-1) it satisfies

(2A) = µb(VG)+

∫
VG

|b′(z)|2(8(z)2−1) dA = µb(VG)+ O
(
‖Tb‖

2 CapT(E, F)
)
, (3-7)

Rearranging this and using (3-5) and (3-6) we find

µb(VG) ≤ C‖Tb‖
2 CapT(E, F)+ |Tb( f, g)| + |(1)| + (2B)+ (2C)+ |(3)| + |(4)|. (3-8)

Using the boundedness of Tb and Corollary 2.10 we have

|Tb( f, g)| = |Tb( f,82)| = |Tb( f8,8)| ≤ ‖Tb‖‖ f8‖D‖8‖D ≤ C‖Tb‖‖ f8‖D

√
CapT(E, F). (3-9)

For (1) we use the elementary estimate

|(1)| ≤ C‖b‖2D CapT(E, F) ≤ C‖Tb‖
2 CapT(E, F).

For (2B) we use (2-24) to obtain

(2B) ≤ Cµb(V
β
G \ VG) ≤ Cεµb(VG). (3-10)

Using (2-17) once more, we see that (2C ) satisfies

(2C) ≤

∫
D\V β

G

|b′(z)|2(Cα,β,ρ CapT(E, F))2 dA ≤ C‖Tb‖
2 CapT(E, F). (3-11)

Putting these estimates into (3-8) we obtain

µb(VG) ≤ C(‖Tb‖
2 CapT(E, F)+‖Tb‖‖ f8‖D

√
CapT(E, F)+ |(3)| + |(4)|). (3-12)

For small positive ε we estimate (3) using Cauchy–Schwarz as follows:

|(3)| ≤ 2
∫

D

|8(z)b′(z)||8′(z) f (z)| dA

≤ ε

∫
D

|8(z)b′(z)|2dA+
C
ε

∫
D

|8′(z) f (z)|2 dA

= (3A)+ (3B).

Using the decomposition and the argument surrounding term (2) we obtain

(3A) ≤ ε{

∫
VG

+

∫
V β

G \VG

+

∫
D\V β

G

}|8(z)b′(z)|2dA ≤ Cε(µb(VG)+C‖Tb‖
2 CapT(E, F)). (3-13)
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To estimate term (3B) we use

| f (z)| ≤
∣∣∣∣0s

( 1
(1+ s)ζ

χVG b′(ζ )
)
(z)
∣∣∣∣

≤

∫
VG

(1− |ζ |2)s

|1− ζ z|1+s
|b′(ζ )| dA

≈

∑
γ∈T∩VG

(1− |γ|2)1+s

|1− γz|1+s

∫
Bγ
|b′(ζ )|(1− |ζ |2) dλ(ζ )

=

∑
γ∈T∩VG

(1− |γ|2)1+s

|1− γz|1+s b(γ),

where ∑
γ∈T∩VG

b(γ)2 ≈
∑

γ∈T∩VG

∫
Bγ
|b′(ζ )|2(1− |ζ |2)2 dλ(ζ ) =

∫
VG

|b′(ζ )|2 dA.

We now use the separation of D\V α
G and VG . The facts that A= supp(h)⊂D\V α

G and B=T∩VG ⊂

VG , together with Lemma 2.2, ensure that (2-29) is satisfied and hence we can use Lemma 2.17 and the
representation of 8 in (2-12) to continue with

(3B) =

∫
D

|8′(z) f (z)|2dA ≤ C
(∑
κ∈A

h(κ)2
)(∑

γ∈B

b(γ)2
)
.

We also have from (2-1) and Corollary 2.10 that(∑
κ∈A

h(κ)2
)(∑

γ∈B

b(γ)2
)
≤ C CapT(E, F)‖Tb‖

2.

Altogether we then have

(3B) ≤ C CapT(E, F)‖Tb‖
2, (3-14)

and thus also

|(3)| ≤ εµb(VG)+C‖Tb‖
2 CapT(E, F). (3-15)

We begin our estimate of term (4) by

|(4)| =
∣∣∣∣∫

D

3b′(z) b′(z)8(z)2 dA
∣∣∣∣ ≤

√∫
D

|b′(z)8(z)|2 dA

√∫
D

|3b′(z)8(z)|2 dA, (3-16)

where the first factor is
√
(3A)/ε. We claim the following estimate for the second factor,√

(4A) := ‖83b′‖L2(D):

Lemma 3.1. (4A)=

∫
D

|8(z)3b′(z)|2dA ≤ Cµb(V
β
G \ VG)+C‖Tb‖

2 CapT(E, F).
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Proof. From (3-4) we obtain

(4A) =

∫
D

|8(z)|2
∣∣∣∣{∫

V β
G \VG

+

∫
D\V β

G

}
b′(ζ )(1− |ζ |)s

(1− ζ z)2+s
dA
∣∣∣∣2dA

≤ C
∫

D

|8(z)|2
(∫

V β
G \VG

|b′(ζ )|(1− |ζ |)s

|1− ζ z|2+s
dA
)2

dA+C
∫

D

|8(z)|2
∣∣∣∣ ∫

D\V β
G

b′(ζ )(1− |ζ |)s

(1− ζ z)2+s
dA
∣∣∣∣2 dA

=: (4AA)+ (4AB).

Corollary 2.16 shows that

|(4AA)| ≤

∫
D

(∫
V β

G \VG

|b′(ζ )|(1− |ζ |)s

|1− ζ z|2+s
dA
)2

dA ≤ C
∫

V β
G \VG

|b′(ζ )|2 dA = Cµb(V
β
G \ VG).

We write the second integral as

(4AB) =

{∫
V γ

G

+

∫
D\V γ

G

}
|8(z)|2

∣∣∣∣∫
D\V β

G

b′(ζ )(1− |ζ |)s

(1− ζ z)2+s
dA
∣∣∣∣2 dA =: (4AB A)+ (4AB B),

where, by Corollary 2.16 again,

(4AB B) ≤ C CapT(E, F)2
∫

D

|b′(ζ )|2dA ≤ C‖Tb‖
2 CapT(E, F)2 ≤ C‖Tb‖

2 CapT(E, F),

where the final estimate, CapT(E, F)≤C , follows from our assumption that CapD(G) is small. Indeed,
(2-4) then shows that CapD(E) is small and hence CapT(E) is small as well by Corollary 2.12. Lemma
2.7 then shows that CapT(E, F) is small, and in particular bounded.

Finally, with β < β1 < γ < α < 1, Corollary 2.16 shows that the term (4AB A) satisfies the following
estimate. Recall that V γ

G =
⋃

J γk and wγj = z(J γk ). We set A` = {k : J γk ⊂ Jβ1
` } and define `(k) by the

condition k ∈ A`(k). From Lemma 2.2 we have sidelength(J γk ) ≤ sidelength(Jβ1
` )

1/ρ , with ρ = β1/γ.
Hence

(4AB A) ≤ C
∫

V γ
G

(∫
D\V β

G

|b′(ζ )|(1− |ζ |)s

|1− ζ z|2+s
dζ
)2

dA

≈ C
∑

k

∫
J γk

|J γk |
(∫

D\V β
G

|b′(ζ )|(1− |ζ |)s

|1− ζwγk |2+s
dζ
)2

dA

= C
∑

k

|J γk |

|Jβ1
`(k)|
|Jβ1
`(k)|

(∫
D\V β

G

|b′(ζ )|(1− |ζ |)s

|1− ζwγk |2+s
dζ
)2

≈ C
∑
`

∑
k∈A` |J

γ
k |

|Jβ1
` |

∫
J
β1
`

(∫
D\V β

G

|b′(ζ )|(1− |ζ |)s

|1− ζ z|2+s
dζ
)2

dA

≤ C |V β1
G |

ε(γ−β1)

∫
V
β1
G

(∫
D\V β

G

|b′(ζ )|(1− |ζ |)s

|1− ζ z|2+s
dζ
)2

dA

≤ C |V β1
G |

ε(γ−β1)‖b‖2D ≤ C‖Tb‖
2 CapT(E, F).
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We continue from ((3-16)). We know that |(4)| ≤
√
(3A)/ε

√
(4A) We estimate (3A) using (3-13) and

(4A) using Lemma 3.1. After that we continue by using (2-24) so

|(4)| ≤
√

Cµb(VG)+C‖Tb‖
2 CapT(E, F)×

√
Cµb(V

β
G \ VG)+C‖Tb‖

2 CapT(E, F) (3-17)

≤

√
Cµb(VG)+C‖Tb‖

2 CapT(E, F)×
√
εµb(VG)+C‖Tb‖

2 CapT(E, F)

≤
√
εµb(VG)+C

√
µb(VG)

√
‖Tb‖

2 CapT(E, F)+C‖Tb‖
2 CapT(E, F).

Now, recalling that f ′ = b′+3b′,

‖8 f ‖2D ≤ C
∫
|8′(z) f (z)|2dA+C

∫
|8(z)(b′(z)+3b′(z))|2dA (3-18)

≤ C(3B)+C
1
ε
(3A)+C(4A).

≤ Cµb(VG)+C‖Tb‖
2 CapT(E, F),

by Lemma 3.1 and the estimates (3-13) and (3-14) for (3A) and (3B). �

Using Proposition 2.14 and the estimates (3-15), (3-17), and (3-18) in (3-12) we obtain

µb(VG) ≤
√
εµb(VG)+C‖Tb‖

2 CapT(E, F)+C
√
‖Tb‖

2 CapT(E, F)
√
µb(VG)

≤
√
εµb(VG)+C‖Tb‖

2 CapT(E, F).

We absorb the first term into the right side. Now using Lemma 2.7, Lemma 2.8 again, and Corollary
2.12 we obtain

CapT(E, F) ≤ C CapD G.

Finally we have
µb(VG) ≤ C‖Tb‖

2 CapT(E, F) ≤ C‖Tb‖
2 CapD G,

which is (3-1).

Appendix: Tree extremals

Let E be a stopping time in T. Recall that

CapT(E) = inf{‖h‖2`2 : I h ≥ 1 on E}. (A-1)

We call functions which can be used in computing the infimum admissible.
Much of the following proposition as well as Proposition 2.3 could be extracted from general capacity

theory such as presented in, for instance, [Adams and Hedberg 1996]. Statement (3) is the discrete analog
of the fact that continuous capacity can be interpreted as the derivative at infinity of a Green function.

Proposition A.2. Suppose E ⊂ T is given.

(1) There is a function h such that the infimum in the definition of CapT(E) is achieved.

(2) If x /∈ E ,
h(x) = h(x+)+ h(x−). (A-2)
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(3) h(o)= ‖h‖2
`2 .

(4) h is strictly positive on G(o, E) and zero elsewhere.

(5) I h|E = 1.

Proof. Consider first the case when E is a finite subset of T. Multiplying an admissible function by the
characteristic function of G(o, E) leaves it admissible and reduces the `2 norm. Hence we need only
consider functions supported on the finite set of vertices in G(o, E). In that context it is easy to see that
an extremal exists, call it h. Now consider (2). Suppose x ∈ T \E and consider the competing function
h∗ which takes the same values as h except possible at x, x+, and x− and whose values at those points
are determined by

(i) h∗(x)+ h∗(x+)= h(x)+ h(x+) and h∗(x)+ h∗(x−)= h(x)+ h(x−),

(ii) h∗(x)2+ h∗(x+)2+ h∗(x−)2 is minimal subject to (i).

Then h∗ is admissible, ‖h∗‖2
`2 ≤ ‖h‖2`2 , and, doing the calculus problem, h∗ satisfies (A-2). Hence h

must satisfy (A-2).
If h(x) < 0 at some point, replacing its value by zero leaves the function admissible while reducing

the `2 norm, hence h≥ 0. To complete the proof of (4) we must show that we cannot have an x ∈G(o, E)
at which h(x) = 0. Suppose we had such a point. By (A-2) and the fact that h ≥ 0, we have h ≡ 0 on
ST(x). Hence by admissibility I h(x−1)≥ 1. Let y 6= x be the point such that x−1

= y−1. If h(y)> 0 then
setting h(y)= 0 we would decrease the `2 norm while keeping the function admissible. Thus h(y)= 0
and, by (A-2), h(x−1) = 0. Continuing in this way we find that h ≡ 0 an the geodesic from o to some
e ∈ E , an impossibility for an admissible function. Item (5) is a consequence of this. If I h(e) > 1 for
some e ∈ E and h(e) > 0 then we could decrease h(e) slightly, reducing the norm of h and still have h
admissible thus contradicting the supposition that h is extremal.

It remains to show (3) and we do that by induction on the size of E . If E ={e} is a single point having
distance d − 1≥ 0 from o then the extremal is h ≡ 1/d on [o, e] and ‖h‖2

`2 = d(1/d)2 = h(o). Given E
with more than one point, let z be the uniquely determined branching point in G(o, E) having the least
distance from the root. Consider the rooted trees T±= S(z±) with roots z±. Set E±= E∩T± and let h±
be the extremal functions for the computation of CapT±(E±). By induction, we have ‖h±‖2`2 = h±(z±).
From properties (1)-(5) satisfied by the extremal functions h, h+ and h it is easy to see that

h(x) =


(1− I h(z))h±(x) if x ∈ G(z±),

h(o) if x ∈ [o, z],

0 otherwise.

In particular, I h(z)= dh(o) if there are d points in [o, z] such that

h(o) = h(z) = h(z+)+ h(z−) =
h+(z+)+ h−(z−)

1− I h(z)
=

h+(z+)+ h−(z−)
1− dh(o)

. (A-3)
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Rescaling and using the induction hypothesis,

‖h‖2`2 = (‖h+‖2`2 +‖h−‖2`2)(1− dh(o))2+ dh(o)2 = (h+(z+)+ h−(z−))(1− dh(o))2+ dh(o)2

=
h(z+)+ h(z−)

1− dh(o)
(1− dh(o))2+ dh(o)2 =

h(z)
1− dh(o)

(1− dh(o))2+ dh(o)2

=
h(o)

1− dh(o)
(1− dh(o))2+ dh(o)2 = h(o).

We note in passing that, by (3), formula (A-3) gives a recursive formula for computing tree capacities.
Suppose now that E is infinite. Select a sequence of finite sets En = {e1, . . . , en} such that En ↗ E .

Let hn be the corresponding extremal functions and Hn = I hn . We claim that the sequence Hn increases,
in the sense specified below. Let K = Hn − Hn−1 = I (hn − hn−1) = I kn . By (A-2), the function K
satisfies the mean value property on G(o, En) \ ({o} ∪ En):

K (x) = 1
3 [K (x+)+ K (x−)+ K (x−1)], if x ∈ G(o, En) \ ({o} ∪ En).

Moreover, K vanishes on {o} ∪ En−1 and it is positive at en , since Hn−1(en) ≤ 1 = Hn(en), by (3) and
(4). By the maximum principle (an easy consequence of the mean value property), Kn ≥ 0 in G(o, En).
Hence, the limit I h = H = limn Hn exists in G(o, E) and it is finite because each Hn is bounded above
by 1. Since h(x)= H(x)− H(x−1)= lim hn(x), h is admissible for E and it satisfies (3), (4) and (5).

Also, hn→ h as n→∞, pointwise, and ‖hn‖
2
`2 = hn(o)→ h(o), by dominated convergence, hence,

h(o) = lim
n→∞
‖hn‖

2
`2 = ‖h‖2`2,

which is (3) for h.
It remains to prove that h is extremal. Suppose k is another admissible function for E , and let kn be

its restriction to G(o, En), which is clearly admissible for En . By the extremal character of the functions
hn , we have

‖k‖2`2 = lim
n→∞
‖kn‖

2
`2 ≤ lim

n→∞
‖hn‖

2
`2 = lim

n→∞
hn(o) = h(o) = ‖h‖2`2 .

Hence, h is extremal among the admissible functions for E . �

Proof of Proposition 2.3. Consider each e ∈ E as the root of the tree Te = S(e). Set Fe = F ∩ S(e)
and let he be the extremal function (from the previous proposition) for computing CapTe

(Fe). Using the
previous proposition it is straightforward to check that h =

∑
he is the required extremal function and

has the required properties. �
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POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM
SCHRÖDINGER OPERATORS

JEAN-MICHEL COMBES, FRANÇOIS GERMINET AND ABEL KLEIN

We show absence of energy levels repulsion for the eigenvalues of random Schrödinger operators in
the continuum. We prove that, in the localization region at the bottom of the spectrum, the properly
rescaled eigenvalues of a continuum Anderson Hamiltonian are distributed as a Poisson point process
with intensity measure given by the density of states. In addition, we prove that in this localization region
the eigenvalues are simple.

These results rely on a Minami estimate for continuum Anderson Hamiltonians. We also give a
simple, transparent proof of Minami’s estimate for the (discrete) Anderson model.

1. Introduction

Local fluctuations of eigenvalues of random operators are believed to distinguish between localized and
delocalized regimes, indicating an Anderson metal-insulator transition. Exponential decay of eigenfunc-
tions implies that disjoint regions of space are uncorrelated and create almost independent eigenvalues,
leading to the absence of energy levels repulsion, which is mathematically translated in terms of a Poisson
point process. On the other hand, extended states imply that distant regions have mutual influence, and
thus create some repulsion between energy levels.

Local fluctuations of eigenvalues have been studied within the context of random matrix theory, in
particular Wigner matrices and GUE matrices [Bellissard 2004; Disertori et al. 2002; Erdős et al. 2009b;
2009a; Johansson 1998; 2001; Schenker and Schulz-Baldes 2007]. It is challenging to understand
random hermitian band matrices from the perspective of their eigenvalues fluctuations, by proving a
transition between Poisson statistics and a semi-circle law for the density of states (a signature of energy
levels repulsion), and relate this to the (discrete) Anderson model [Bellissard 2004; Disertori et al. 2002].
CMV matrices are another class of random matrices for which Poisson statistics and a transition to energy
levels repulsion have been proved been proved [Killip and Stoiciu 2009; Stoiciu 2006; 2007].

For random Schrödinger operators, Poisson statistics for eigenvalues were first proved by Molchanov
[1980/81] for the same one-dimensional continuum random Schrödinger operator for which Anderson
localization was first rigorously established [Gol’dsheı̆d et al. 1977]. Molchanov’s proof was based
on a detailed analysis of localization in finite intervals for this particular random Schrödinger operator
[Molchanov 1978].

Poisson statistics for eigenvalues of the Anderson model was established in [Minami 1996]. The
Anderson model, a random Schrödinger operator on `2(Zd), is the discrete analogue of the Anderson

MSC2000: primary 82B44; secondary 47B80, 60H25.
Keywords: Anderson localization, Poisson statistics of eigenvalues, Minami estimate, level statistics.
Klein was supported in part by NSF Grant DMS-0457474.

49



50 JEAN-MICHEL COMBES, FRANÇOIS GERMINET AND ABEL KLEIN

Hamiltonian. A crucial ingredient in Minami’s proof is an estimate of the probability of two or more
eigenvalues in an interval. The key step in the proof of this estimate, namely [Minami 1996, Lemma 2],
estimates the average of a determinant whose entries are matrix elements of the imaginary part of the
resolvent. The more recent proofs of Minami’s estimate by Bellissard et al. [2007] and Graf and Vaghi
[2007] are variants of Minami’s. Since those arguments do not seem to extend to the continuum, a
Minami-type estimate and Poisson statistics for the eigenvalues have until now been challenging ques-
tions for continuum Anderson Hamiltonians.

Here we introduce a fundamentally new approach to Minami’s estimate. Unlike the previous approach,
ours relies on averaging spectral projections, a technique that does extend to the continuum. Combined
with a property of rank-one perturbations, it provides a simple and transparent proof of Minami’s estimate
for the Anderson model, valid for single-site probability distributions with compact support and no atoms,
which is presented here as an illustration of the method. On the continuum, our proof of Minami’s
estimate circumvents the unavailability of that rank-one property by averaging the spectral shift function,
using refined bounds on the density of states not previously available.

Once we have Minami’s estimate in the continuum, we prove Poisson statistics for eigenvalues of the
Anderson Hamiltonian. We start by approximating the point process defined by the rescaled eigenvalues
by superpositions of independent point processes, as in [Molchanov 1980/81; Minami 1996]. But our
proof that these superpositions converge weakly to the desired Poisson point process differs from Mi-
nami’s for the Anderson model, since his way of identifying the intensity measure of the Poisson process,
which relies on complex analysis, is not readily applicable in the continuum. We identify this intensity
measure using methods of real analysis.

Klein and Molchanov [2006] showed that Minami’s estimate implies simplicity of eigenvalues for the
Anderson model, a result previously obtained by Simon [1994] by different methods. Their arguments
can also be applied in the continuum, so we also obtain simplicity of eigenvalues in the continuum.
Previous results [Combes and Hislop 1994; Germinet and Klein 2006] proved only finite multiplicity of
the eigenvalues in the localization region.

2. Main results

To state our results we introduce the following notation. We write

3L(x) := x +
[
−

L
2 ,

L
2

[d (2-1)

for the (half-open, half-closed) box of side L > 0 centered at x ∈Rd . By 3L we denote a box 3L(x) for
some x ∈Rd . Given a box3=3L(x), we set 3̃=3∩Zd . If B is a set, we write χB for its characteristic
function. We set χ (L)x := χ3L (x). The Lebesgue measure of a Borel set B ⊂ R will be denoted by |B|.
If r > 0, we denote by [r ] the largest integer less than equal to r , and by [[r ]] the smallest integer bigger
than r . By a constant we will always mean a finite constant. Constants such as Ca,b,... will be finite and
depending only on the parameters or quantities a, b, . . .; they will be independent of other parameters or
quantities in the equation.

We consider random Schrödinger operators on L2(Rd) of the type

Hω := −1+ Vper+ Vω, (2-2)
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where 1 is the d-dimensional Laplacian operator, Vper is a bounded Zd -periodic potentia,; and Vω is an
Anderson-type random potential, given by

Vω(x) :=
∑
j∈Zd

ω j u j (x), with u j (x)= u(x − j), (2-3)

where the single-site potential u is a nonnegative bounded measurable function on Rd with compact
support, uniformly bounded away from zero in a neighborhood of the origin, and ω = {ω j } j∈Zd is a
family of independent identically distributed random variables, whose common probability distribution
µ is nondegenerate with a bounded density ρ with compact support.

We normalize Hω as follows. We first require inf suppµ=0, which can always be realized by changing
the periodic potential Vper. Next we assume ‖u‖∞ = 1, which can achieved by rescaling µ. We then
adjust Vper by adding a constant so inf σ(−1+ Vper) = 0, in which case [0, E∗] ⊂ σ(−1+ Vper) for
some E∗ > 0. Thus, without loss of generality, we will assume that the random Schrödinger operator
Hω given in (2-2)–(2-3) is normalized as follows:

(I) The free Hamiltonian H0 := −1+ Vper has 0 as the bottom of its spectrum:

inf σ(H0)= 0. (2-4)

(II) The single-site potential u is a measurable function on Rd such that

‖u‖∞ = 1 and u−χ3δ− (0) ≤ u ≤ χ3δ+ (0) with u−, δ± ∈ ]0,∞[; (2-5)

we set
U+ :=

∥∥∑
j∈Zd u j

∥∥
∞
≤max

{
1, δd
+

}
. (2-6)

(III) ω = {ω j } j∈Zd is a family of independent, identically distributed random variables, whose common
probability distribution µ has a density ρ such that

{0,Mρ} ∈ ess supp ρ ⊂ [0,Mρ] with Mρ ∈ ]0,∞[ and ρ+ := ‖ρ‖∞ <∞. (2-7)

A random Schrödinger operator Hω on L2(Rd) as in (2-2)–(2-3), normalized as in (I)-(III), will be called
an Anderson Hamiltonian. The common probability distribution µ in (III) is said to be uniform-like if
its density ρ also satisfies ρ− := ess inf ρχ[0,Mρ ] > 0, in which case we have

ρ−χ[0,Mρ ] ≤ ρ ≤ ρ+χ[0,Mρ ] with ρ±,Mρ ∈ ]0,∞[. (2-8)

An Anderson Hamiltonian Hω is a Zd -ergodic family of random self-adjoint operators. It follows
from standard results [Klein and Molchanov 2006; Carmona and Lacroix 1990; Pastur and Figotin 1992]
that there exist fixed subsets 6, 6pp, 6ac and 6sc of R so that the spectrum σ(Hω) of Hω, as well as
its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets
with probability one. With our normalization, the nonrandom spectrum 6 of an Anderson Hamitonian
Hω satisfies [Kirsch and Martinelli 1982]

σ(H0)⊂6 ⊂ [0,∞[, (2-9)

so inf6 = 0 and [0, E∗] ⊂6 for some E∗ = E∗(Vper) > 0. Note that 6 = σ(−1)= [0,∞[ if Vper = 0.
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An Anderson Hamiltonian Hω exhibits Anderson and dynamical localization at the bottom of the spec-
trum [Martinelli and Holden 1984; Combes and Hislop 1994; Klopp 1995; Kirsch et al. 1998; Germinet
and De Bièvre 1998; Damanik and Stollmann 2001; Germinet and Klein 2001; 2003a; Aizenman et al.
2006]. More precisely, there exists an energy E1 > 0 such that [0, E1] ⊂ 4

CL, where 4CL is the region
of complete localization for the random operator Hω [Germinet and Klein 2004; 2006]. (See Appendix
A for a discussion of localization. Note that R \6 ⊂ 4CL in our definition.) Similarly, given an energy
E1 > 0, we have [0, E1] ⊂ 4

CL if ρ+ in (2-7) is sufficiently small, corresponding to a large disorder
regime.

Finite volume operators will be defined for finite boxes3=3L( j), where j ∈Zd and L ∈ 2N, L>δ+.
Given such3, we will consider the random Schrödinger operator H (3)

ω on L2(3) given by the restriction
of the Anderson Hamiltonian Hω to 3 with periodic boundary condition. To do so, we identify 3 with
a torus in the usual way by identifying opposite edges, and define finite volume operators

H (3)
ω := H (3)

0 + V (3)
ω on L2(3). (2-10)

The finite volume free Hamiltonian H (3)
0 is given by

H (3)
0 := −1(3)+ V (3)

per on L2(3), (2-11)

where 1(3) is the Laplacian on 3 with periodic boundary condition and V (3)
per is the restriction of Vper

to 3. The random potential V (3)
ω is the restriction of Vω(3) to 3, where, given ω =

{
ωi
}

i∈Zd , ω(3) ={
ω
(3)
i

}
i∈Zd is defined as follows:

ω
(3)
i =

{
ωi if i ∈3,
ω
(3)
k if k− i ∈ LZd .

(2-12)

The random finite volume operator H (3)
ω is covariant with respect to translations in the torus. If B ⊂ R

is a Borel set, we write P (3)ω (B) := χB(H
(3)
ω ) and Pω(B) := χB(Hω) for the spectral projections.

The finite volume operator H (3)
ω has a compact resolvent, and hence its (ω-dependent) spectrum

consists of isolated eigenvalues with finite multiplicity. It satisfies a Wegner estimate [Combes and
Hislop 1994; Combes et al. 2007a]: Given E0 > 0, there exists a constant KW , independent of 3, such
that for all intervals I ⊂ [0, E0] we have

E
{
tr P (3)ω (I )

}
≤ KW ρ+|I ||3|. (2-13)

The constant KW given in [Combes and Hislop 1994; Combes et al. 2007a] depends on E0, d, u, Vper,Mρ ,
but not on ρ+.

The integrated density of states (IDS) for Hω is given, for a.e. E ∈ R, by

N (E) := lim
L→∞
|3L(0)|−1 tr P (3L (0))

ω (]−∞, E]) for P-a.e. ω, (2-14)

in the sense that the limit exists and is the same for P-a.e. ω [Carmona and Lacroix 1990; Pastur and
Figotin 1992]. It follows from (2-13) that the IDS N (E) is locally Lipschitz, hence continuous, so (2-14)
holds for all E ∈ R. For all E ∈ R we have

N (E)= lim
L→∞

E
{
|3L |

−1 tr P (3L )
ω (]−∞, E])

}
. (2-15)
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N (E) is a nondecreasing absolutely continuous function on R, the cumulative distribution function of
the density of states measure, given by

η(B) := E tr
{
χ
(1)
0 Pω(B)χ

(1)
0

}
for a Borel set B ⊂ R. (2-16)

In particular N (E) is differentiable a.e. with respect to Lebesgue measure, with n(E) := N ′(E) ≥ 0
being the density of the measure η, so n(E) > 0 for η-a.e. E .

Given an energy E ∈ 6, using (2-13) we define a point process ξ (3)E,ω on the real line by the rescaled
spectrum of the finite volume operator H (3)

ω near E:

ξ
(3)
E,ω(B) := tr

{
χB(|3|(H (3)

ω −E))
}
= tr

{
P (3)ω (E+ |3|−1 B)

}
(2-17)

for a Borel set B ⊂ R. (We refer to [Daley and Vere-Jones 1988] for definitions and results concerning
random measures and point processes.)

Theorem 2.1. Let Hω be an Anderson Hamiltonian with δ− ≥ 2 and a uniform-like distribution µ. Then
there exists an energy E0 > 0, such that:

(a) For all energies E ∈4CL
∩[0, E0[ such that the IDS N (E) is differentiable at E with n(E) := N ′(E)

positive, the point process ξ (3L )
E,ω converges weakly, as L→∞, to the Poisson point process ξE on R

with intensity measure νE(B) := E ξE(B)= n(E)|B|, that is, dνE = n(E)dE.

(b) With probability one, every eigenvalue of Hω in 4CL
∩ [0, E0[ is simple.

Similarly, given an energy E0 > 0, (a) and (b) hold if the probability distribution µ in (2-8) has a density
ρ with (ρ+/ρ−)ρ2d

−1
+ sufficiently small. In fact, there exists a constant Qd,Vper > 0, such that (a) and (b)

hold whenever

U+u−2d

−

ρ+
ρ−
ρ2d
−1
+

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
≤ Qd,Vper, (2-18)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.

The next theorem gives our Minami estimate for the continuum Anderson Hamiltonian, a crucial
ingredient for proving Theorem 2.1.

Theorem 2.2. Let Hω be an Anderson Hamiltonian with δ− ≥ 2 and a uniform-like distribution µ. Then
there exists a constant Qd,Vper > 0, such that whenever (2-18) holds for an energy E0 > 0, we have the
Minami estimate

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ KM(ρ+|I ||3|)2, (2-19)

for all intervals I ⊂ [0, E0] and 3=3L with L ≥ L(E0), with a constant

KM ≤ Cd,Vper,Mρ (1+ E0)
4[[d/4]]. (2-20)

In more detail:

(i) If Hω is an Anderson Hamiltonian with δ− ≥ 2, there exists a constant Cd,Vper such that, given an
energy E0 > 0, the Wegner estimate (2-13) holds for all intervals I ⊂ [0, E0] with a constant

KW ≤ Cd,Vperu
−2d

−
ρ2d
−1
+

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
, (2-21)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.
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(ii) If Hω is an Anderson Hamiltonian with a uniform-like distribution µ, and for a given E0 > 0 the
constant KW in (2-13) satisfies

2KW U+
ρ+
ρ−
≤ 1, (2-22)

then (2-19) holds for all intervals I ⊂[0, E0] with a constant KM =Cd,Vper,u,Mρ ,E0 KW . If in addition
δ− ≥ 2, we have (2-20).

Our approach to Minami’s estimate is discussed in Section 3, where it is illustrated by a proof of the
estimate for the (discrete) Anderson model (Theorem 3.3). We also comment on the differences between
the discrete and the continuum cases.

On the lattice (the Anderson model), the Wegner estimate (2-13) is a simple consequence of spectral
averaging ((3-14)), and holds with KW =1 for all E0 [Wegner 1981; Fröhlich and Spencer 1983; Carmona
et al. 1987; Kirsch 2008]. On the continuum the Wegner estimate, which has not been as simple to
prove, comes with an E0 dependent constant KW (which also depends on d , Vper, and u) [Combes and
Hislop 1994; Combes et al. 2007a]. The proof given in [Combes and Hislop 1994] requires the covering
condition δ−≥1. It allows estimates of the constant, but the estimates do not go to 0 as either E0 or ρ+ go
to 0. The proof in [Combes et al. 2007a] does not require a covering condition, but it uses [Combes et al.
2003, Proposition 1.3] (cf. [Combes et al. 2007a, Theorem 2.1]), which relies on the unique continuation
principle to show that some constant is strictly positive, giving no control on the constant in (2-13). To
prove that (2-22) holds, so we have (2-19), we need suitable control of the constant KW , as in (2-21). To
obtain this control we introduce a double averaging procedure which uses the covering condition δ−≥ 2.

Note that the estimate (2-21) provides a bound on the differentiated density of states n(E) := N ′(E)
in the interval [0, E0], whenever it exists, since it then follows from (2-13) and (2-21) that

n(E)≤ Cd,Vperu
−2d

−
ρ2d

+
γd(E)min

{
1, E2d

−d−1}max
{
1, E2d+2}

. (2-23)

Once we have the Minami estimate (2-19), we may prove Poisson statistics and simplicity of eigen-
values. The next theorem is proven for arbitrary Anderson Hamiltonians.

Theorem 2.3. Let Hω be an Anderson Hamiltonian. Suppose there exists an open interval I such that
for all large boxes3 the estimate (2-19) holds for any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with
some constant KM .

(a) For all energies E ∈ I∩4CL such that the IDS N (E) is differentiable at E with n(E) := N ′(E) > 0,
the point process ξ (3L )

E,ω converges weakly, as L →∞, to the Poisson point process ξE on R with
intensity measure νE(B) := E ξE(B)= n(E)|B|, that is, dνE = n(E)dE.

(b) With probability one, every eigenvalue of Hω in I∩4CL is simple.

Theorem 2.3(a) is proven by approximating the point process ξ (3L )
E,ω by superpositions of independent

point processes, as in [Molchanov 1980/81; Minami 1996], which are then shown to converge weakly to
the desired Poisson point process. But here our proof diverges from Minami’s, who used the connection,
valid for the Anderson model, between the Borel transform of the density of states measure η and averages
of the matrix elements of the imaginary part of the resolvent, to identify the intensity measure of the limit
point process. Instead, we introduce the random measures

θ
(3)
E,ω(B) := tr

{
χ3Pω(E+ |3|−1 B)χ3

}
for a Borel set B ⊂ R, (2-24)
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justified by (2-13)–(2-16), which we show to have the same weak limit as the point processes ξ (3)E,ω , and
use them to show that, thanks to the Lebesgue Differentiation Theorem, the intensity measure νE of the
limit point process ξE satisfies dνE = n(E)dE .

Theorem 2.1 follows immediately by combining Theorem 2.2 and Theorem 2.3. Theorem 2.2 is proven
in Sections 4 and 5. In Section 4 we prove Wegner estimates with control of the constant in Lemma 4.1,
and a Wegner estimate with one random variable ω j fixed in Lemma 4.2. Theorem 2.2(i) follows from
Lemma 4.1(i). Section 5 contains the proof of Minami’s estimate: Theorem 2.2(ii) is proven in Lemma
5.1(i), completing the proof of Theorem 2.2. Theorem 2.3 is proven in Sections 6 and 7. In Section 6 we
prove Theorem 2.3(a), namely the convergence of the rescaled eigenvalues to a Poisson point process.
Finally, in Section 7 we discuss how Theorem 2.3(b) follows from the Minami estimate (2-19) and [Klein
and Molchanov 2006].

Some comments about our notation: Finite volumes will always be understood to be boxes3=3L( j0)
with j0 ∈Zd and L ∈ 2N, L >δ+. We will always identify such3 with the torus j0+Rd/LZd . If j ∈ 3̃,
we will consider subboxes 3(3)s ( j) of 3, where 0< s ≤ L , defined by

3(3)s ( j) :=
{⋃

k∈LZd 3s( j + k)
}
∩3,

that is, χ
3
(3)
s ( j) := χ3

∑
k∈LZd χ3s( j+k). Similarly, we define functions u(3)j on the torus 3 by u(3)j :=

χ3
∑

k∈LZd u j+k , that is, the function u j will be assumed to have been wrapped around the torus3. Note
that we then have V (3)

ω =
∑

j∈3̃ ω j u
(3)
j . We will abuse the notation and just write 3s( j) for 3(3)s ( j),

u j for u(3)j , and V (3)
ω =

∑
j∈3̃ ω j u j . In addition, given j ∈ ϒ ∩Zd , where ϒ =3L(0) or Rd , we write

ω= (ω⊥j , ω j ), and H (ϒ)

(ω⊥j ,ω j=s)
= H (ϒ)

(ω⊥j ,s)
, P (ϒ)

(ω⊥j ,ω j=s)
(I )= P (ϒ)

(ω⊥j ,s)
(I ) when we want to make explicit that

ω j = s.

3. A new approach to Minami’s estimate illustrated by a proof for the (discrete) Anderson Model

The starting point and key idea in our approach is contained in the following simple lemma.

Lemma 3.1. Consider the self-adjoint operator Hs = H0 + sW on the Hilbert space H, where H0 and
W are self-adjoint operators on H, with W ≥ 0 bounded, and s ≥ 0. Let Ps(J )= χJ (Hs) for an interval
J , and suppose tr Ps(]−∞, c]) <∞ for all c ∈ R and s ≥ 0. Then, for all a, b ∈ R with a < b we have

tr Ps(]a, b])≤
{
tr P0(]−∞, b])− tr Pt(]−∞, b])

}
+ tr Pt(]a, b]) for 0≤ s ≤ t. (3-1)

Proof. Let a, b ∈ R with a < b and 0≤ s ≤ t . Then, since W ≥ 0, we have

tr Ps(]a, b])= tr Ps(]−∞, b])− tr Ps(]−∞, a])

≤ tr P0(]−∞, b])− tr Pt(]−∞, a])

= tr P0(]−∞, b])− tr Pt(]−∞, b])+ tr Pt(]a, b]), (3-2)

as required. �

We will also use the basic spectral averaging estimate: Let H0 and W be self-adjoint operators on
a Hilbert space H, with W ≥ 0 bounded. Consider the random operator Hξ := H0 + ξW , where ξ
is a random variable with a nondegenerate probability distribution µ with compact support. The basic
spectral averaging estimate for such perturbations of self-adjoint operators says that, given ϕ ∈ H with
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‖ϕ‖ = 1, then for all bounded intervals I ⊂ R we have (see [Combes and Hislop 1994, Corollary 4.2],
[Combes et al. 2007a, (3.16)])

Eξ
{
〈ϕ,
√

WχI (Hξ )
√

Wϕ〉
}
:=

∫
dµ(ξ)

〈
ϕ,
√

WχI (Hξ )
√

Wϕ
〉
≤ Qµ(|I |), (3-3)

where

Qµ(s) :=
{
ρ∞s if µ has a bounded density ρ as in (2-7),
8 supa∈R µ([a, a+s]) otherwise.

(3-4)

As a consequence, given a trace class operator S ≥ 0 on H, we have

Eξ
{
tr{
√

WχI (Hξ )
√

W S}
}
≤ (tr S)Qµ(|I |). (3-5)

Note that the measure µ has no atoms if and only if lims↓0 Qµ(s)= 0.
Lemma 3.1 will allow the decoupling of random variables for the performance of two spectral aver-

agings.
We will first illustrate our approach to Minami’s estimate by giving a simple and transparent proof of

the estimate for in the discrete case, that is, for the Anderson model. We will then comment on how to
proceed in the continuum case, that is, for the Anderson Hamiltonian.

Minami’s estimate for the (discrete) Anderson model. An Anderson model will be a discrete random
Schrödinger operator of the form

Hω = H0+ Vω on `2(Zd), (3-6)

where H0 is a bounded self-adjoint operator and Vω is the random potential given by Vω( j) = ω j for
j ∈ Zd , where ω = {ω j } j∈Zd is a family of independent, identically distributed random variables with
common probability distribution µ. (The usual Anderson model has H0 =−1, where 1 is the discrete
Laplacian.) We assume µ has compact support and no atoms. Adjusting H0 and µ, we may assume

{0,M} ∈ suppµ⊂ [0,M] with M ∈]0,∞[. (3-7)

Restrictions of Hω to finite volumes 3⊂ Zd are denoted by H (3)
ω , a self-adjoint operator of the form

H (3)
ω = H (3)

0 + V (3)
ω on `2(3), (3-8)

where H (3)
0 is a self-adjoint restriction of H0 to the finite-dimensional Hilbert space `2(3), and V (3)

ω is
the restriction of Vω to 3. (In the discrete case our results are not sensitive to the choice of H0,3, they
hold for any boundary condition.) Given a Borel set J ⊂ R, we write P (3)ω (J ) = P (3)Hω (J ) = χJ (H

(3)
ω )

for the associated spectral projection.
What makes the discrete case much easier than the continuum is that in the discrete case finite volume

operators are finite-dimensional and each random variable couples a rank-one perturbation. Given a unit
vector ϕ in a Hilbert space H, we let 5ϕ denote the orthogonal projection onto Cϕ, the one-dimensional
subspace spanned by ϕ. With this notation, the potentials in (3-6) and (3-8) are given by sums of rank-one
perturbations:

Vω =
∑
j∈Zd

ω j5 j and V (3)
ω =

∑
j∈3

ω j5 j , with 5 j =5δ j . (3-9)
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For rank-one perturbations Lemma 3.1 has the following consequence:

Lemma 3.2. Let Hs be as in Lemma 3.1 with W =5ϕ for some unit vector ϕ ∈H. Then, for all a, b ∈R

with a < b we have

tr Ps(]a, b])≤ 1+ tr Pt(]a, b]) for all 0≤ s ≤ t. (3-10)

Proof. Let 0≤ s ≤ t . Recall that for any c ∈ R we always have

0≤ tr Ps(]−∞, c])− tr Pt(]−∞, c])≤ 1, (3-11)

the last inequality being a consequence of the min-max principle applied to rank-one perturbations, for
example, [Kirsch 2008, Lemma 5.22]. Thus (3-10) follows immediately from (3-1). �

For rank-one perturbations the fundamental spectral averaging estimate (3-3) may be stated as follows:
Consider the random self-adjoint operator

Hξ = H0+ ξ5ϕ on H, (3-12)

where H0 is a self-adjoint operator on the Hilbert space H, ϕ ∈ H with ‖ϕ‖ = 1, and ξ is a random
variable with a nondegenerate probability distribution µ with compact support. Let Pξ (J )= χJ (Hξ ) for
a Borel set J ⊂ R. Then for all bounded intervals I ⊂ R we have [Wegner 1981; Fröhlich and Spencer
1983; Carmona et al. 1987; Kirsch 2008; Combes and Hislop 1994; Combes et al. 2007a]

Eξ
{
〈ϕ, Pξ (I )ϕ〉

}
:=

∫
dµ(ξ) 〈ϕ, Pξ (I )ϕ〉 ≤ Qµ(|I |). (3-13)

The Wegner estimate for an Anderson model [Wegner 1981; Fröhlich and Spencer 1983; Carmona
et al. 1987; Kirsch 2008] is an immediate consequence of (3-13):

E
{
tr P (3)Hω (I )

}
=

∑
j∈3

Eω⊥j

{
Eω j {〈δ j , P (3)Hω (I )δ j 〉}

}
≤ Qµ(|I |)|3|. (3-14)

We can now prove Minami’s estimate for an Anderson model for arbitrary µ with compact support
and no atoms, a result previously known only for µ with a bounded density [Minami 1996; Bellissard
et al. 2007; Graf and Vaghi 2007].

Theorem 3.3. Let Hω be an Anderson model as in (3-6), with µ arbitrary except for compact support
and no atoms. Let 3⊂ Zd be a finite volume. For any bounded interval I we have

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ (Qµ(|I |)|3|)2. (3-15)

Theorem 3.3 is extended in [Combes et al. 2009], allowing for n arbitrary intervals and arbitrary single-
site probability measure µ with no atoms. We also give applications of (3-15), deriving new results about
the multiplicity of eigenvalues and Mott’s formula for the ac-conductivity when the single-site probability
distribution is Hölder continuous.

Proof of Theorem 3.3. Fix 3 ⊂ Zd and let I be a bounded interval. Since the measure µ has no atoms,
it follows from (3-14) that Eω

{
tr P (3)ω ({c})

}
= 0 for any c ∈ R. Thus we may take all intervals to be of
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the form ]a, b], and use Lemma 3.2 to decouple the random variable ω j from the random variables ω⊥j .
In view of (3-7), for all τ j ≥ M , j ∈ Zd , we have

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)=
∑
j∈3

{
〈δ j , P (3)ω (I )δ j 〉(tr P (3)ω (I )− 1)

}
≤

∑
j∈3

{
〈δ j , P (3)

(ω⊥j ,ω j )
(I )δ j 〉(tr P (3)

(ω⊥j ,τ j )
(I ))

}
. (3-16)

We now average over the random variables ω = {ω j } j∈Zd . Using (3-13), we get

Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤

∑
j∈3

Eω⊥j

{
(tr P (3)

(ω⊥j ,τ j )
(I ))

(
Eω j

{
〈δ j , P (3)

(ω⊥j ,ω j )
(I )δ j 〉

})}
≤ Qµ(|I |)

∑
j∈3

Eω⊥j

{
tr P (3)

(ω⊥j ,τ j )
(I )
}
. (3-17)

This holds for all τ j ≥ M , j ∈ Zd , so we now take τ j = M+ ω̃ j , where ω̃= {ω̃ j } j∈Zd and ω= {ω j } j∈Zd

are two independent, identically distributed collections of random variables. Now τ =
{
τ j
}

j∈Zd are
independent identically distributed random variables with a common probability distribution µτ such
that Qµτ = Qµ. We get

Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
= Eτ

{
Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}}
≤ Qµ(|I |)

∑
j∈3

E(ω⊥j ,τ j )
(tr P (3)

(ω⊥j ,τ j )
(I ))≤ (Qµ(|I |)|3|)2, (3-18)

where we used the Wegner estimate (3-14). (More precisely, we estimate as in (3-14); the random
variables do not need to be identically distributed.) �

Stepping up to the continuum. Unfortunately things are not so simple for the continuum Anderson
Hamiltonian. The main reason is that the random potential Vω in (2-3) is a sum of independent random
perturbations of infinite rank, not of rank one as in the discrete case, and thus the a priori bound in (3-11),
and also Lemma 3.2, are not applicable anymore.

To prove Minami’s estimate on the continuum we will use the fundamental spectral averaging estimate
as in (3-5). The straightforward expansion of the trace in (3-14) and (3-17) cannot be used for the spectral
averaging, even with u j instead of δ j , and will be replaced by a more sophisticated expansion in terms of
trace class operators, as in [Combes and Hislop 1994; Combes et al. 2007a] ((4-1)–(4-5)). Lemma 3.1 will
be modified, since the term in brackets in (3-1) does not satisfy an a priori bound as in (3-11) anymore.
This term will be estimated using the Birman–Solomyak formula; see (5-3), (5-4). The bound in (3-11)
is then replaced by averaging the resulting expression over all the other random variables and using the
Wegner estimate (2-13); see (5-9). The resulting bound is useful if the constant KW in (2-13) is not too big
(we have KW = 1 in the lattice, as can be seen in (3-14)). Since previous proofs of the Wegner estimate
do not give the desired control of KW , we must revisit the Wegner estimate. We introduce a double
averaging procedure that provides the desired estimates on the constant KW (Lemma 4.1). In addition,
because of the way we use the Birman–Solomyak formula, we do not have freedom in the choice of τ j as
in (3-16), we have to take τ j = Mρ . Thus we cannot average in τ as in (3-18); this argument is replaced
by a refinement of the Wegner estimate where one of the random variables is fixed (Lemma 4.2).
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4. The Wegner estimate revisited

Let Hω be the Anderson Hamiltonian, E0 > 0, I ⊂ [0, E0] an interval, and 3 a finite box. To prove the
Wegner estimate (2-13), it is shown in [Combes and Hislop 1994; Combes et al. 2007a] that

tr P (3)ω (I )≤ Q1
∑
j,k∈3̃

∣∣tr{√uk P (3)ω (I )
√

u j T (3)
j,k }

∣∣, (4-1)

where
{
T (3)

j,k

}
j,k∈3̃ are (nonrandom) trace class operators in L2(3) such that

max
j∈3̃

{∑
k∈3̃

‖T (3)
j,k ‖1

}
≤ Q2, (4-2)

the constants Q1, Q2 depending only on E0, d, u, Vper,Mρ . Letting

T (3)
j,k =U (3)

j,k |T
(3)
j,k |

be the polar decomposition of the operator T (3)
j,k , recalling that then |T (3)∗

j,k |=U (3)
j,k T (3)

j,k U (3)∗
j,k , and setting

S(3)j :=
1
2

∑
k∈3̃

(
|T (3)∗

j,k | + |T
(3)

k, j |
)
≥ 0 for j ∈ 3̃, (4-3)

we obtain
tr P (3)ω (I )≤ Q1

∑
j∈3̃

tr
{√

u j P (3)ω (I )
√

u j S(3)j

}
, (4-4)

with
max
j∈3̃

{
tr S(3)j

}
≤ Q2. (4-5)

If we now take the expectation in (4-4), use (3-5) and (4-5), we get the Wegner estimate (2-13) with
KW = Q1 Q2.

We will need control of the constant KW and a Wegner estimate with one of the random variables,
say ω0, fixed. In the course of obtaining control over KW we will derive (4-1) with estimates on the
constants Q1 and Q2 in the case when δ− ≥ 1.

A Wegner estimate with control of the constants.

Lemma 4.1. Let Hω be an Anderson Hamiltonian.

(i) Assume δ− ≥ 2. Then there exists a constant Cd,Vper such that, given an energy E0 > 0, (2-13) holds
for all intervals I ⊂ [0, E0] with a constant

KW ≤ Cd,Vper

(ρ+
u−

)2d

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
, (4-6)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.

(ii) Assume δ− ≥ 1. Then, given an energy E0 > 0, (4-1)–(4-5) hold for all intervals I ⊂ [0, E0] with
constants

Q1 = (1+ E0)
2[[d/4]] and Q2 = C ′d,Vper

, (4-7)
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and hence (2-13) holds for all intervals I ⊂ [0, E0] with a constant

KW ≤ C ′d,Vper
(1+ E0)

2[[d/4]]. (4-8)

Proof. Assume δ− ≥ m, where m is either 1 or 2. We set

χ
(m)
j = χ3m( j) for j ∈ ϒ̃ := ϒ ∩Zd ,

where ϒ is either Rd or a finite box 3 (recall that in this case χ3m( j) denotes χ (3)3m( j), a subbox in the
torus). Note that for any j0 ∈ ϒ̃ we have ∑

j∈( j0+mZd )∩ϒ

χ
(m)
j = 1. (4-9)

We also let χ̂ (m)j = u j
−1/2χ

(m)
j on 3m( j), χ̂ (m)j = 0 otherwise. It follows from (2-5) that

χ̂
(m)
j ≤ u−1/2

− χ
(m)
j .

(Recall we write u j for u(3)j .)
To prove (i), assume δ− ≥ 2. We write ω′ = {ω j } j∈2Zd , ω′′ = {ω j } j /∈2Zd . We set

Hω′′ := H0+ Vω′′, Vω′′ :=
∑

j /∈2Zd

ω j u j . (4-10)

Note that Hω′′ is a 2Zd ergodic family of random self-adjoint operators, and we have

Hω ≥ Hω′′ ≥ H0, Hω′′ ≥ Vω′′ . (4-11)

Fix an energy E0 > 0, a box 3, and let I = ]a, b] ⊂ [0, E0]. Set p = 2d+1. Given t > 0, the function
gt(x) = (1 + t x)−2p is convex on the interval ]−1/t,∞[. Thus, using (4-11), we can proceed as in
[Combes and Hislop 1994] using convexity and Jensen’s inequality (see Lemma B.1 in Appendix B),
and then (4-9) and (2-5), to get

tr P (3)ω (I )≤ (1+ t E0)
2p tr

{
P (3)ω (I )(1+ t H (3)

ω )−2p P (3)ω (I )
}

≤ (1+ t E0)
2p tr

{
P (3)ω (I )(1+ t H (3)

ω′′ )
−2p P (3)ω (I )

}
= (1+ t E0)

2p tr
{

P (3)ω (I )(1+ t H (3)
ω′′ )

−2p}
= (1+ t E0)

2p
∑

j,k∈3∩2Zd

tr
{

P (3)ω (I )χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

}
= (1+ t E0)

2p
∑

j,k∈3∩2Zd

tr
{√

uk P (3)ω (I )
√

u j χ̂
(2)
j (1+ t H (3)

ω′′ )
−2pχ̂

(2)
k

}
. (4-12)
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It then follows from (3-5), proceeding as in (4-1)–(4-4) (see also [Combes et al. 2007a, Lemma 2.1]),
that

Eω′ tr P (3)ω (I )≤ (1+ t E0)
2pρ+|I |

∑
j,k∈3∩2Zd

∥∥χ̂ (2)j (1+ t H (3)
ω′′ )

−2pχ̂
(2)
k

∥∥
1

≤ (1+ t E0)
2pu−1
−
ρ+|I |

∑
j,k∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1. (4-13)

We now use several deterministic estimates. First,∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1
≤

∑
r∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
2

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ
(2)
k

∥∥
2. (4-14)

Second,

∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥2

2
≤
∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ (2)r

∥∥∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
1
. (4-15)

Third, we estimate ∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
using the Combes–Thomas estimate. We use the precise estimate provided in [Germinet and Klein 2003b,
(19) in Theorem 1] (with γ = 1

2 ), modified for finite volume operators with periodic boundary condition
as in [Figotin and Klein 1996, Lemma 18] and [Klein and Koines 2001, Theorem 3.6], plus the fact that
we are using boxes of side 2. For L ≥ Ld we have, with d3( j, r) the distance on the torus 3,

∥∥χ (2)j (1+t H (3)
ω′′ )

−pχ (2)r

∥∥= t−p
∥∥χ (2)j (t−1

+ H (3)
ω′′ )

−pχ (2)r

∥∥≤ t−p( 4
3 t
)p exp 1

2
√

t
exp

(
−

1

8
√

td
d3( j, r)

)
=
( 4

3

)p exp
1

2
√

t
exp

(
−

1

8
√

td
d3( j, r)

)
. (4-16)

Fourth, note that∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
1
≤
∥∥χ (2)j (1+ t H (3)

ω′′ )
−p/2∥∥

2

∥∥χ (2)r (1+ t H (3)
ω′′ )

−p/2∥∥
2

=
∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ

(2)
j

∥∥1/2

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥1/2

1 . (4-17)

We now average over ω′′. Using (4-14)–(4-17), we have

Eω′′
{∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ (2)r

∥∥1/2

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ
(2)
k

∥∥1/2

1

}
≤ Eω′′

{∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ
(2)
j

∥∥1/4

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥1/2

1 ×
∥∥χ (2)k (1+ t H (3)

ω′′ )
−pχ

(2)
k

∥∥1/4

1

}
≤ βt := Eω′′

{∥∥χ (2)0 (1+ t H (3)
ω′′ )

−pχ
(2)
0

∥∥
1

}
, (4-18)

where we used Hölder’s inequality plus translation invariance (in the torus) of the expectation.
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It now follows from (4-14), (4-15), (4-16), (4-17), and (4-18) that

Eω′′

{ ∑
j,k∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1

}
≤ βt exp 1

2
√

t

( 4
3

)p ∑
j,k,r∈3∩2Zd

exp
(
−

1

16
√

td
d3( j, r)

)
exp

(
−

1

16
√

td
d3(r, k)

)

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

( ∑
r∈2Zd

exp
(
−

1

16
√

td
|r |
))2

= 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

(∑
s∈Z

exp
(
−

1
8d
√

t
|s|
))2d

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

(
1+ 2

∫
∞

0
ds exp

(
−

1
8d
√

t
|s|
))2d

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|(1+ 16d

√
t)2d ,

(4-19)

so we conclude from (4-13) that

Eω tr P (3)ω (I )≤
( 4

3

)p 1
2u−

(1+ t E0)
2pβt exp 1

2
√

t
(1+ 16d

√
t)2dρ+|I ||3|. (4-20)

We now estimate βt . We have, using periodicity, and again Lemma B.1 with H (3)
ω′′ ≥ Vω′′ and (2-5),

βt := Eω′′
{
tr{χ (2)0 (1+ t H (3)

ω′′ )
−pχ

(2)
0 }

}
=

2d

|3|
Eω′′

{
tr{(1+ t H (3)

ω′′ )
−p
}
}

≤
2d

|3|
Eω′′

{
tr
{
(1+ t H (3)

ω′′ )
−p/4(1+ tVω′′)−p/2(1+ t H (3)

ω′′ )
−p/4}}

=
2d

|3|
Eω′′

{
tr
{
(1+ tVω′′)−p/4(1+ t H (3)

ω′′ )
−p/2(1+ tVω′′)−p/4}}

= Eω′′
{
tr
{
χ
(2)
0 (1+ tVω′′)−p/4(1+ t H (3)

ω′′ )
−p/2(1+ tVω′′)−p/4χ

(2)
0

}}
= Eω′′

{
tr
{
(1+ tVω′′)−p/4χ

(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0 (1+ tVω′′)−p/4}}

≤ Eω′′
{
(1+ tu−ω̂0)

−p/2 tr{χ (2)0 (1+ t H (3)
ω′′ )

−p/2χ
(2)
0 }

}
,

(4-21)

where we set, with Q := {0, 1}d \ {0} ⊂ Zd ,

ω̂0 =
∑
q∈Q

ω̂0,q with ω̂0,q :=min{ωq+i : i ∈ 2Zd , |q + i |∞ = 1}. (4-22)

Note that |Q| = 2d
− 1, and (q + 2Zd) ∩ (q ′ + 2Zd) = ∅ if q, q ′ ∈ Q with q 6= q ′, so {ω̂0,q}q∈Q are

independent random variables.
Now, with 2 :=max{− ess inf Vper, 0},

tr
{
χ
(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0

}
≤

{
sup
E≥0

(1+2+E
1+t E

)p/2}
tr
{
χ
(2)
0 (H (3)

ω′′ + 1+2)−p/2χ
(2)
0

}
≤ Cd,2 max{1, t−p/2

}, (4-23)
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where (as in the proof of Lemma A.4 of [Germinet and Klein 2004], for example) we used the fact that
tr
{
χ
(2)
0 (H (3)

ω′′ +1+2)−p/2χ
(2)
0

}
is uniformly bounded, independently of3— itself a consequence of the

inequality p = 2d+1
≥ 4[[d/4]], where [[d/4]] is the smallest integer exceeding d/4.

Moreover, since p = 2d+1 > 2(2d
− 1),

Eω′′{(1+ tu−ω̂0)
−p/2
} ≤

∏
q∈Q

Eω′′
{
(1+ tu−ω̂0,q)

−p/(2(2d
−1))}

=

∏
q∈Q

Eω′′
{

max
i∈2Zd

|q+i |∞=1

(1+ tu−ωq+i )
−p/(2(2d

−1))}
≤
(
2d Eω0

{
(1+ tu−ω0)

−p/(2(2d
−1))})2d

−1

≤

(
2d ρ+

∫
∞

0
dω0 (1+ tu−ω0)

−p/(2(2d
−1))

)2d
−1

≤

(
2d(2d

− 1) ρ+
(2d − 1− p

2 )tu−

)2d
−1

= C ′d
( ρ+

tu−

)2d
−1
. (4-24)

Thus, we have

βt ≤ C ′d,2 max{1, t−2d
}

( ρ+
tu−

)2d
−1
, (4-25)

so it follows from (4-20) that

Eω tr P (3)ω (I )≤
C ′d,2
u−

(1+ t E0)
2d+2

exp 1
2
√

t
(1+ 16d

√
t)2d max{1, t−2d

}

( ρ+
tu−

)2d
−1
ρ+|I ||3|. (4-26)

If E0 ≤ 3, we choose t = 1/E0, obtaining

Eω tr P (3)ω (I )≤ C ′′d,2
(ρ+

u−

)2d

E2d
−d−1

0 |I ||3|. (4-27)

If E0 > 3, we take t = 1, getting

Eω tr P (3)ω (I )≤ C ′′′d,2

(ρ+
u−

)2d

E2d+2

0 |I ||3|. (4-28)

Thus, for all E0 > 0 we have

Eω tr P (3)ω (I )≤
Cd,2

u−

(ρ+
u−

)2d
−1

min{1, E2d
−d−1

0 }max{1, E2d+2

0 }ρ+|I ||3|. (4-29)

For d = 1 we need to do a bit better. In this case we redo (4-23) as follows:

tr
{
χ
(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0

}
≤ tr

{
χ
(2)
0 (1+ t H (3)

ω′′ )
−1χ

(2)
0

}
≤ αt := tr

{
χ
(2)
0 (1+ t H (3)

0 )−1χ
(2)
0

}
. (4-30)

For d = 1 the estimate (4-26) now becomes

Eω tr P (3)ω (I )≤
C1,θ

u−
(1+ t E0)

8 exp 1
2
√

t
(1+ 16

√
t)2αt

( ρ+
tu−

)
ρ+|I ||3|, (4-31)
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and thus (4-29) becomes

Eω tr P (3)ω (I )≤
C1,2

u−

ρ+

u−
γ1(E0)max{1, E8

0}ρ+|I ||3|. (4-32)

where γ1(E0)≤ 1 and limE0→0 γ1(E0)= 0 uniformly in 3 large.
This proves (i). To prove (ii), we now assume δ− ≥ 1. We proceed as in the proof of (i), with ω′ = ω

and ω′′= {ω j } j /∈Zd =∅, that is Vω′′ = 0 and Hω′′ = H0. We also now fix p= 2[[d/4]]. Then (4-12) yields
(4-1) with Q1 = (1+ t E0)

2p and T (3)
j,k = χ̂

(1)
j (1+ t H (3)

0 )−2pχ̂
(1)
k . Proceeding as in (4-14)–(4-19) gives

(4-2) with
Q2 = β

(0)
t exp 1

4
√

t

( 4
3

)p
(1+ 32d

√
t)2d , (4-33)

where, as in (4-23),

β
(0)
t :=

∥∥χ (1)0 (1+ t H (3)
0 )−pχ

(1)
0

∥∥
1 ≤ Cd,2 max{1, t−p

} ≤ Cd,2. (4-34)

We now set t = 1, obtaining (4-7) and (4-8). �

A Wegner estimate with ω0 fixed. Let ϒ =3L(0) or Rd . Given τ ∈ R, we consider (recall u0 = u)

H (ϒ)

(ω(0),τ )
= H (ϒ)

(ω(0),ω0=τ)
= H (ϒ)

ω + (τ −ω0)u. (4-35)

Lemma 4.2. Let Hω be an Anderson Hamiltonian, E0 > 0. Given τ ∈ R, there exists a constant K̃W =

K̃W (d, u, Vper, E0,Mρ, τ ), such that for any interval I ⊂ [0, E0] and finite box 3=3L(0) we have

Eω(0)
{
tr P (3)

(ω(0),τ )
(I )
}
≤ K̃Wρ+|I ||3|. (4-36)

Moreover, if δ− ≥ 2, we have
K̃W ≤ Cd,Vper,τ (1+ E0)

2[[ d4 ]]. (4-37)

Proof. We will show that the proof of Theorem 1.3 of [Combes et al. 2007a] can be modified to yield the
proposition. All references of the form (2.N) in this proof will be to that paper unless otherwise stated.

We introduce the background potential

H1 := H0+ τ
∑

j∈2Zd

u j =−1+ V (2)
per , (4-38)

where V (2)
per = Vper+ τ

∑
j∈2Zd u j is a 2Zd -periodic potential. It follows that

H(ω(0),τ ) = H1+ Vω(0)(τ ) with Vω(0)(τ ) :=
∑

j∈(2Z)d\{0}

(ω j − τ)u j +
∑

j∈Z\(2Z)d

ω j u j . (4-39)

The main point is that the single-site potential u0 = u does not appear in the sum, but all the other u j ’s
appear with a random coefficient.

To prove (4-36) with no conditions on δ−, we proceed as in Section 2 of [Combes et al. 2007a]. We
take an interval I ⊂[0, E0], write Ĩ =[0, E0+1]; I and Ĩ replace the intervals1 and 1̃ in that paper. The
potential V3 in equation (2.7) there is replaced by V (3)

ω(0)
(τ ), which only involves the random variables

ω(0). As a consequence, the sum in (2.10) runs over indices i, j ∈ 3̃\{0}. The spectral averaging in (2.13)
can thus be performed with respect to the random variables ω(0). Similarly for (2.18), since K̃ (n)i1, jn
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of (2.17) is now constructed only with the single-site potentials u j ’s present in V (3)

ω(0)
(τ ), that is, u j with

j ∈ 3̃ \ {0}. We thus get the analog of (2.20), with M0 = Mρ + |τ |, namely, with P1(B)= χB(H1),

Eω(0)
{
tr
{

P (3)
(ω(0),τ )

(I )P (3)1 (R \ Ĩ )
}}
≤ K1ρ+|I ||3|, (4-40)

for an appropriate constant K1.
It remains to bound Eω(0)

{
tr
{

P (3)
(ω(0),τ )

(I )P (3)1 ( Ĩ )
}}

. For this purpose, we set

Ṽ1 =
∑

j∈(e1+2Zd )

u j , (4-41)

where e1 = (1, 0, 0, . . . , 0) /∈ 2Zd , and we use H1 and Ṽ (3)
1 , the restriction of Ṽ1 to 3, instead of H0

and Ṽ3 =
∑

j∈Zd∩3 u j , in the crucial estimate (2.1) of [Combes et al. 2007a]. Since H1 and Ṽ1 are both
2Zd -periodic, we have1 the equivalent of (2.1),

P (3)1 ( Ĩ )Ṽ (3)
1 P (3)1 ( Ĩ )≥ C(E0, u, Vper, τ )P

(3)
1 ( Ĩ ), (4-42)

with a constant C(E0, u, Vper, τ ) > 0. Since

Ṽ1 ≤ Ṽ0⊥ :=
∑

j∈Zd\{0}

u j , (4-43)

it follows that
P (3)1 ( Ĩ )Ṽ (3)

0⊥ P (3)1 ( Ĩ )≥ C(E0, u, Vper, τ )P
(3)
1 ( Ĩ ). (4-44)

As a consequence, we get (2.21) with Ṽ3 replaced by Ṽ (3)
0⊥ , and hence we obtain the analogue of (2.31):

Eω(0)
{
tr
{

P (3)1 ( Ĩ )Ṽ (3)
0⊥ P (3)

(ω(0),τ )
(I )Ṽ (3)

0⊥ P (3)1 ( Ĩ )
}}
≤ K2ρ+|I ||3|, (4-45)

for an appropriate constant K2.
The desired bound (4-36) now follows as the analogue of (2.32).
If δ− ≥ 2, we have ∑

j∈(( j0+Zd )\{0})∩3

u j ≥ u−χ3, (4-46)

so we can apply the proof of Lemma 4.1(ii) to the random operator Hω(0),τ getting (4-36) with (4-37). �

5. The Minami estimate

Theorem 2.2 follows by combining Lemma 4.1(i) and the following lemma:

Lemma 5.1. Let Hω be an Anderson Hamiltonian with a uniform-like distribution µ. Let E0 > 0 and
suppose the Wegner estimate (2-13) holds for all intervals I ⊂ [0, E0] with a constant KW such that

2KW U+
ρ+
ρ−
≤ 1. (5-1)

Then there exists a constant KM = KM(u, ρ±,Mρ, E0, d) such that the Minami estimate (2-19) holds
for all intervals I ⊂ [0, E0].

1by [Combes et al. 2003, Proposition 1.3]; see also [Combes et al. 2007a, Theorem 2.1].
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If δ− ≥ 2, we have the estimate

KM ≤ Cd,Vper,Mρ (1+ E0)
4[[ d4 ]]. (5-2)

Proof. Let 3 be a finite box. It follows from (2-13) that Eω{tr P (3)ω ({c})} = 0 for any c ∈ R. Thus we
may take all bounded intervals to be of the form ]a, b]. For such an interval we modify Lemma 3.1 as
follows: Given δ > 0 small, we pick a nonincreasing function h ∈ C∞(R), such that h(t) = 1 for t ≤ 0
and h(t)= 0 for t ≥ δ. Note that 0≤ h ≤ 1, h′ ≤ 0, supp h′ ⊂ [0, δ],

∫
R

dt h′(t)=−1, and we can choose
h so |h′| ≤ 2

δ . Given c ∈R, we set hc(t)= h(t−c), and note that hc−δ ≤ χ]−∞,c] ≤ hc. We let I = ]a, b],
Iδ = ]a− δ, b+ δ]. Using h, we rework (3-1) in the following way. Given j ∈ 3̃ and τ ≥ Mρ , we have

tr P (3)ω (I )≤ tr hb(H (3)
ω )− tr ha−δ(H (3)

ω )

≤
{
tr hb

(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)}
+
{
tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)
− tr ha−δ

(
H (3)

(ω⊥j ,ω j=τ)

)}
≤
{
tr hb

(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)}
+ tr P (3)

(ω⊥j ,ω j=τ)
(Iδ). (5-3)

We now fix τ =Mρ and use the Birman–Solomyak formula [Simon 1998] as in [Combes et al. 2007b,
(7)–(8)], plus the hypothesis (2-8), obtaining

ξ
(3)
b,τ (ω

⊥

j ) := tr hb
(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)
= −

∫ τ

0
ds tr

{√
u j h′b(H

(3)

(ω⊥j ,ω j=s)
)
√

u j
}

≤
2
δ

∫ τ

0
ds tr

{√
u j P (3)

(ω⊥j ,ω j=s)
(]b, b+ δ])

√
u j
}

≤
2
δρ−

∫
dsρ(s) tr

{√
u j P (3)

(ω⊥j ,ω j=s)
(]b, b+ δ])

√
u j
}
. (5-4)

Note that ξ (3)b,τ (ω
⊥

j ) is closely related to the spectral shift function associated to the pair H (3)

(ω⊥j ,ω j=0)
and

H (3)

(ω⊥j ,ω j=τ)
.

Now fix E0 > 0, let I = ]a, b] ⊂ [0, E0[, and consider δ > 0 such that b+ δ ≤ E0, so Iδ ⊂ [0, E0]. If
tr P (3)ω (I )≥ 1, it follows from (4-4) that

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)≤ Q1
∑
j∈3̃

tr
{√

u j P (3)ω (I )
√

u j S(3)j

}
(tr P (3)ω (I )− 1), (5-5)

so, using (5-3) and (5-4), we get

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)≤ Q1
∑
j∈3̃

{(
tr
{√

u j P (3)ω (I )
√

u j S(3)j

})
8
(3)
b,τ (ω

⊥

j )
}
, (5-6)

where for each j ∈ 3̃

8
(3)
b,τ (ω

⊥

j ) :=
(
ξ
(3)
b,τ (ω

⊥

j )− 1
)
+ tr P (3)

(ω⊥j ,τ )
(Iδ) (5-7)

is independent of the random variable ω j . If tr P (3)ω (I ) < 1 , we have P (3)ω (I ) = 0, and hence we also
have (5-6).
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Thus, if we now take the expectation in (5-6), use (3-5) and (4-5), we get

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ Q1 Q2ρ+|I |

∑
j∈3̃

Eω⊥j

{
8
(3)
b,τ (ω

⊥

j )
}

= Q1 Q2ρ+|I | |3|Eω⊥k
{
8
(3)
b,τ (ω

⊥

k )
}

(5-8)

for any k ∈ 3̃.
We will now estimate Eω⊥k

{
8
(3)
b,τ (ω

⊥

k )
}
. It follows from (5-4) and (2-13) that, if we have (5-1),

Eω⊥k

{
ξ
(3)
b,τ (ω

⊥

k )
}
≤

2
δρ−

Eω
{
tr
{√

uk P (3)ω (]b, b+ δ])
√

uk
}}

=
2

δρ−|3|
Eω
{∑

j∈3̃
tr
{√

u j P (3)(ω) (]b, b+ δ])
√

u j
}}

≤
2U+
δρ−|3|

Eω
{
tr P (3)ω (]b, b+ δ])

}
≤ 2KW U+

r
r
ρ+ρ− ≤ 1. (5-9)

In this case, we have

Eω⊥k

{
8
(3)
b,τ (ω

⊥

k )
}
≤ Eω⊥k

{
tr P (3)

(ω⊥k ,τ )
(Iδ)

}
≤ K̃Wρ+(|I | + 2δ)|3|, (5-10)

where we used Lemma 4.2, where K̃W = K̃W (d, u, Vper, E0,Mρ).
Combining (5-8) and (5-10) we get

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ Q1 Q2 K̃W |I |(|I | + 2δ)(ρ+|3|)2. (5-11)

Letting δ→ 0 we get (2-19) with KM = Q1 Q2 K̃W .
If δ− ≥ 2, the estimate (5-2) follows from (4-7) and (4-37). �

6. Poisson statistics

In this section we prove Theorem 2.3(a).
Let Hω be an Anderson Hamiltonian, and suppose I is an open interval such that for all large boxes

3 the estimate (2-19) holds for any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with some constant
KM . (We will assume that a given 3 is large enough.) Recall we have (2-13) for these intervals with
some constant KW .

Let E ∈ I∩4CL be such that the IDS N (E) is differentiable at E with n(E) := N ′(E) > 0. It follows
from (2-13) that we then have

0< n(E)≤ KWρ+. (6-1)

We fix an open interval I1 such that E∈I1⊂I1⊂I∩4CL. Note that for each bounded Borel set B⊂R

there exists a finite cB = cB,E,I1 such that E+ |3|−1 B ⊂ I1 and |E+ |3|−1 B| ≤ δ0 if |3| ≥ cB . The
point process ξ (3)ω = ξ

(3)
E,ω of (2-17) has an intensity measure given by ν(3)(B) := E ξ

(3)
ω (B) for a Borel

set B ⊂ R; it follows from (2-13) that,

ν(3)(B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-2)
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We start with the same general strategy used in [Molchanov 1980/81; Minami 1996]. We fix a ∈ ]0, 1[,
and divide3=3L(0) into ML boxes3(m)=3`(km) of side `≈ La , `∈ 2N, centered at km ∈3∩(2Zd);
note ML =

|3L |
|3`|
≈ L(1−a)d . For each m = 1, 2, . . . ,ML we define point processes

ξ (3,m)ω (B) := tr P (3
(m))

ω (E+ |3|−1 B) for a Borel set B ⊂ R. (6-3)

Note that {ξ (3,m)ω }m=1,2,...,ML are independent, identically distributed point processes, each with intensity
measure (using (2-13))

ν(3,m)(B) := E ξ (3,m)ω (B)≤ KWρ+|B|M−1
L for all 3 with |3| ≥ cB . (6-4)

We consider their superposition, the point process

ξ̃ (3)ω :=

ML∑
m=1

ξ (3,m)ω , (6-5)

with intensity measure

ν̃(3)(B) := E ξ̃ (3)ω (B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-6)

We will prove that ξ̃ (3)ω ≈ ξ
(3)
ω as L→∞, and that ξ̃ (3)ω converges weakly, as L→∞, to the Poisson point

process ξ with intensity measure ν(B) := E ξ(B) = n(E)|B|. But here we must use different methods
from [Molchanov 1980/81; Minami 1996].

So let θ (3)ω = θ
(3)
E,ω be the random measure defined in (2-24); its intensity measure is

η(3)(B) := E θ (3)ω (B)= |3|η(E+ |3|−1 B), (6-7)

where η is the density of states measure, given in (2-16). It again follows from (2-13) that

η(3)(B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-8)

We start with a lemma. Given a measure η on R, we write η( f ) :=
∫

R
f dη for suitable functions f ,

say, f ∈ Fb,K , the collection of bounded Borel functions on R vanishing outside a compact interval. It
follows from (2-17) that for all f ∈ Fb,K we have

ξ (3)ω ( f )= tr f3(H (3)
ω ), where f3(E) := f (|3|(E −E)), (6-9)

with similar expressions for ξ̃ (3)ω ( f ), ξ (3,m)ω ( f ), and θ (3)ω ( f ).

Lemma 6.1. For all f ∈ Fb,K we have

lim
L→∞

E
∣∣ξ (3)ω ( f )− ξ̃ (3)ω ( f )

∣∣= 0 (6-10)

and
lim

L→∞
E
∣∣ξ (3)ω ( f )− θ (3)ω ( f )

∣∣= 0. (6-11)

Proof. In view of (6-2), (6-6), and (6-8), it suffices to prove (6-10) and (6-11) for f ∈ C∞K (R), since
{ f ∈ C∞K (R) : supp f ⊂ J } is dense in L1(J, dE) for any interval J .
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So let f ∈ C∞K (R). To prove (6-10), we set `′ ≈ `−
√
`, 3(m,′) = 3`′(km), and 3(m,′′) = 3`(km) \

3`′(km). Using χ3 =
∑ML

m=1 χ3(m) , we get

ξ (3)ω ( f )− ξ̃ (3)ω ( f )=
ML∑

m=1

(
tr
{
χ3(m) f3(H (3)

ω )χ3(m)
}
− tr f3(H (3(m))

ω )
)

=

ML∑
m=1

(
tr
{
χ3(m,′) f3(H (3)

ω )χ3(m,′)
}
− tr{χ3(m,′) f3(H (3(m))

ω )χ3(m,′)}
)

+

ML∑
m=1

(
tr
{
χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}
− tr

{
χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
})
. (6-12)

We now use the fact that the expectation is invariant under translations in the torus to get, for any m,

E
∣∣ξ (3)ω ( f )− ξ̃ (3)ω ( f )

∣∣≤ MLE
∣∣tr{χ3(m,′) f3(H (3)

ω )χ3(m,′)
}
− tr

{
χ3(m,′) f3(H (3(m))

ω )χ3(m,′)
}∣∣ (6-13)

+MLE
∣∣tr{χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}
− tr

{
χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
}∣∣. (6-14)

It follows from the Wegner estimate (2-13) that

MLE
∣∣tr{χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}∣∣≤ ML

|3(m,′′)|

|3|
E tr
{
| f3|(H (3)

ω )
}

≤ ML
|3(m,′′)|

|3|
KWρ+|3|

∫
R

| f3|(E)dE

=
|3(m,′′)|

|3(m)|
KWρ+‖ f ‖1. (6-15)

Similarly,

MLE
∣∣tr{χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
}∣∣≤ ML

|3(m,′′)|

|3(m)|
E tr
{
| f3|(H (3(m))

ω )
}

≤ ML
|3(m,′′)|

|3(m)|
KWρ+|3

(m)
|

∫
R

| f3|(E)dE

=
|3(m,′′)|

|3(m)|
KWρ+‖ f ‖1. (6-16)

Since
|3(m,′′)|

|3(m)|
≈
`d−1
√
`

`d =
1
√
`
≈

1

L
a
2
→ 0 as L→∞, (6-17)

the term in (6-14) goes to 0 as L→∞.
To finish the proof of (6-10) we need to show that the term in (6-13) also goes to 0 as L →∞. To

do that we will use that I1 ⊂ 4
CL, the Helffer–Sjöstrand formula for smooth functions of self-adjoint

operators, and estimates on Schrödinger operators.
Given a box 3, we identify L2(3) with the subspace of L2(Rd) consisting of functions vanishing

outside3. Given a function φ ∈C∞K (R), we let W (φ) to be the closure of the local first order differential
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operator [1,φ] on C∞K (R). We set

χφ := χsuppφ, χ∇φ := χsupp∇φ,

and note that W (φ)=χ∇φW (φ)=W (φ)χ∇φ =χ∇φW (φ)χ∇φ . We recall that if suppφ⊂3◦, the interior
of 3, which here may be either a finite box or Rd , we have∥∥(H (3)

ω + 1)−1/2W (φ)
∥∥= ∥∥W (φ)(H (3)

ω + 1)−1/2∥∥≤ Cφ := C1
(
‖1φ‖∞+‖∇φ‖∞

)
, (6-18)

where C1 depends only on d . We also recall that for all x ∈3 we have∥∥χ31(x)(H
(3)
ω + 1)−1∥∥

pd
≤ C2 <∞ with pd = [

d
2 ] + 1, (6-19)

the constant C2 being independent of x and 3 for L ≥ 2 [Klein et al. 2002, (130)–(136)].
We now recall the Helffer–Sjöstrand formula; refer to [Hunziker and Sigal 2000, Appendix B] for

details. Given g ∈ C∞(R) and m ∈ N, we set

{{g}}m :=
m∑

r=0

∫
R

du |g(r)(u)| (1+ |u|2)(r−1)/2. (6-20)

If {{g}}m <∞ with m ≥ 2, then for any self-adjoint operator K we have

f (K )=
∫

R2
dg̃(z) (K − z)−1, (6-21)

where the integral converges absolutely in operator norm. Here z = x + iy, g̃(z) is an almost ana-
lytic extension of g to the complex plane, dg̃(z) := 1

2π ∂z̄ g̃(z) dx dy with ∂z̄ = ∂x + i∂y , and |dg̃(z)| :=
(2π)−1

|∂ z̄ g̃(z)| dx dy. Moreover, for all p ≥ 0 we have∫
R2
|dg̃(z)|

1
|= z|p

≤ cp {{g}}m <∞ for m ≥ p+ 1 (6-22)

with a constant cp.
Since f ∈C∞K (R), we have, using the Helffer–Sjöstrand formula with3=3L , R(3)ω (z)= (H (3)

ω −z)−1

and R(3,m)ω (z)= (H (3(m))
ω − z)−1, and taking φ0 ∈ C∞K (3`−10d(km)) such that φ0χ3`−20d (km) = χ3`−20d (km)

and 0≤ φ0 ≤ 1, that

T (3)
ω := χ3(m,′) f3(H (3)

ω )χ3(m,′) −χ3(m,′) f3(H (3(m))
ω )χ3(m,′) (6-23)

=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)χ3(m,′) −χ3(m,′) R

(3,m)
ω (z)χ3(m,′)

}
=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)φ0χ3(m,′) −χ3(m,′)φ0 R(3,m)ω (z)χ3(m,′)

}
=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)W (φ0)R(3,m)ω (z)χ3(m,′)

}
, (6-24)

where we used the geometric resolvent identity.
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Now let us pick functions φi ∈C∞K (R), i = 1, 2, . . . , 2p−1, such that 0≤ φi ≤ 1, φiχ∇φi−1 = χ∇φi−1 ,
and χφiχ3`−30d (km) = 0 for i = 1, 2, . . . , 2p− 1. Using the resolvent identity 2p− 1 times we get

χ3(m,′) R
(3)
ω (z)W (φ0)

= χ3(m,′) R
(3)
ω (z)W (φ2p−1)R(3)ω (z)W (φ2p−2) . . . R(3)ω (z)W (φ1)R(3)ω (z)W (φ0)

=
{
χ3(m,′) R

(3)
ω (z)

}{
W (φ2p−1)R(3)ω (z)W (φ2p−2)

}{
χ∇φ2p−2 R(3)ω (z)

}
×
{
W (φ2p−3)R(3)ω (z)W (φ2p−4)

}
. . .
{
χ∇φ2 R(3)ω (z)

}{
W (φ1)R(3)ω (z)W (φ0)

}
. (6-25)

We now use that the integral in (6-24) is performed over a compact domain in R2, which depends only
on the function f , so there is constant C f such that for z in the region of integration we have∥∥(H (3)

ω + 1)R(3)ω (z)
∥∥≤ C f

|=z|
, (6-26)

and hence, using (6-18) and (6-19), we have∥∥W (φi )R(3)ω (z)W (φi−1)
∥∥≤ C f Cφi Cφi−1

|=z|
(6-27)

and, for B ⊂3L ′ ⊂3, ∥∥χB R(3)ω (z)
∥∥

pd
≤

C f C2

|=z|
|3L ′ |. (6-28)

We now choose p = pd as in (6-19), and note that we can choose the functions φi ∈ C∞K (R), i =
1, 2, . . . , 2pd − 1 so that the constants Cφi are independent of 3, say all Cφi ≤ C3 From (6-25), (6-27),
and (6-28), we get

∥∥χ3(m,′) R(3)ω (z)W (φ0)R(3,m)ω (z)χ3(m,′)
∥∥

1 ≤

(
C f C2

|=z|
|3(m)|

)pd
(

C f C2
3

|=z|

)pd∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥

≤ C4C ′f `
pd |=z|−2pd

∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥.

(6-29)
We now use that I1 ⊂ 4CL, the region of complete localization for Hω. The term in (6-13) is

MLE{T (3)
ω }, with T (3)

ω as in (6-23). It follows from (6-24), (6-25), and (6-29) that for large L ,

MLE{T (3)
ω } ≤ MLC4C ′f `

pd

∫
R2
|d f̃3(z)| |=z|−2pd E

{∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥}

≤ MLC4C ′f `
pd

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 E
{∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)

∥∥1/5}
≤ MLC4C ′f `

pd+2d(ρ++
√
ρ+)

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 e−`

1/4

≤ Ld`pd+de−`
1/4

c2pd+
4
5
C4C ′f (ρ++

√
ρ+) {{ f3}}2pd+2 .

(6-30)

where we used (A-4) and (6-22). Note that 2pd ≤ d + 1 and

{{ f3}}m ≤ CE0, f,m |3|
m−1 for all m = 2, 3, . . . . (6-31)
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It follows that

MLE{T (3)
ω } ≤ Ld2

+3d`3d/2+1e−`
1/4

c2pd+
4
5
C f,E0,d(ρ++

√
ρ+)→ 0 as L→∞. (6-32)

Thus (6-10) is proven.
The proof of (6-11) is similar. With 3=3L(0), we set L ′ ≈ L−

√
L , 3′ =3L ′(0), and 3′′ =3\3′.

We have
θ (3)ω ( f )− ξ (3)ω ( f )= tr{χ3 f3(Hω)χ3}− tr f3(H (3)

ω )

=
(
tr{χ3′ f3(Hω)χ3′}− tr{χ3′ f3(H (3)

ω )χ3′}
)

+
(
tr{χ3,′′ f3(Hω)χ3′′}− tr{χ3′′ f3(H (3)

ω )χ3′′}
)
,

(6-33)

and hence

E
∣∣θ (3)ω ( f )− ξ (3)ω ( f )

∣∣≤ E
∣∣tr{χ3′ f3(Hω)χ3′}− tr{χ3′ f3(H (3)

ω )χ3′}
∣∣ (6-34)

+ E
∣∣tr{χ3,′′ f3(Hω)χ3′′}− tr{χ3′′ f3(H (3)

ω )χ3′′}
∣∣. (6-35)

We now use the Wegner estimate (2-13) to obtain

E
∣∣tr{χ3′′ f3(H (3)

ω )χ3′′}
∣∣≤ |3′′|
|3|

E tr
{
| f3|(H (3)

ω )
}

≤
|3′′|

|3|
KWρ+|3|

∫
R

| f3|(E) dE =
|3′′|

|3|
KWρ+‖ f ‖1,

(6-36)

and
E
∣∣tr{χ3′′ f3(Hω)χ3′′}∣∣≤ |3′′|E tr

{
χ0| f3|(H (3)

ω )χ0
}
= |3′′|N (| f3|)

≤ |3′′|KWρ+

∫
R

| f3|(E) dE =
|3′′|

|3|
KWρ+‖ f ‖1.

(6-37)

Since |3′′|/|3| ≈ 1/
√

L , the term in (6-35) goes to 0 as L→∞.
To finish the proof of (6-11) , we need to show that the term in (6-34) also goes to 0 as L→∞. As

before, we use the Helffer–Sjöstrand formula. We have, taking φ0 ∈C∞K (3L−10d(0)) such that 0≤φ0≤ 1
and φ0χ3L−20d (0) = χ3L−20d (0), that

S(3)ω :=χ3′ f3(Hω)χ3′ −χ3′ f3(H
(3
ω )χ3′ (6-38)

=

∫
R2

d f̃3(z)
{
χ3′Rω(z)χ3′ −χ3′R(3)ω (z)χ3′

}
=

∫
R2

d f̃3(z)
{
χ3′Rω(z)φ0χ3′ −χ3′φ0 R(3)ω (z)χ3′

}
=

∫
R2

d f̃3(z)
{
χ3′Rω(z)W (φ0)R(3)ω (z)χ3′

}
. (6-39)

Proceeding as in (6-25)–(6-29), we get∥∥χ3′Rω(z)W (φ0)R(3)ω (z)χ3′
∥∥

1 ≤ C4C ′f L pd |=z|−2pd‖χ∇φ0 R(3)ω (z)χ3′‖. (6-40)
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Recall that I1 ⊂ 4
CL. The term in (6-34) is E{S(3)ω }, with S(3)ω as in (6-38). It follows from (6-39)

and (6-40) that for large L ,

E{S(3)ω } ≤ C4C ′f L pd

∫
R2
|d f̃3(z)| |=z|−2pd E

{
‖χ∇φ0 R(3)ω (z)χ3′‖

}
≤ MLC4C ′f L pd

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 E
{
‖χ∇φ0 R(3)ω (z)χ3′‖1/5

}
≤ C4C ′f L pd+2d(ρ++

√
ρ+)

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 e−L1/4

≤ L pd+2de−L1/4
c2pd+

4
5
C4C ′f (ρ++

√
ρ+) {{ f3}}2pd+2

≤ Ld2
+5de−L1/4

c2pd+
4
5
C f,E0,d(ρ++

√
ρ+)→ 0 as L→∞, (6-41)

where we used (A-4) and (6-22).
Thus (6-11) is proven, and with it the lemma. �

Given point processes {ζn}n∈N and ζ on R, we let ζn⇒ ζ denote the weak convergence of ζn to ζ as
n→∞. We recall [Daley and Vere-Jones 1988, Proposition 9.1.VII] that ζn⇒ ζ if and only if

lim
n→∞

E e−ζn( f )
= E e−ζ( f ) for all f ∈ CK ,+(R). (6-42)

The following lemma shows that it suffices to prove that ξ̃ (3)ω ⇒ ξ to prove Theorem 2.3(b).

Lemma 6.2. ξ (3)ω ⇒ ξ if and only if ξ̃ (3)ω ⇒ ξ .

Proof. If ζi , i = 1, 2, are point processes on R, defined on the same probability space, we have, for all
f ∈ CK ,+(R), ∣∣Ee−ζ1( f )

− Ee−ζ2( f )
∣∣≤ E

∣∣ζ1( f )− ζ2( f )
∣∣. (6-43)

The lemma follows immediately from (6-42), (6-43), and Lemma 6.1. �

We are now ready to prove Theorem 2.3(a). In view of Lemma 6.2, it suffices to prove that ξ̃ (3)ω ⇒ ξ .
By standard results from the theory of point processes (cf. [Daley and Vere-Jones 1988, Theorem 9.2.V
and subsequent remark]; see also [Kritchevski 2008, Theorem 2.3]), this is equivalent to verifying the
following three conditions for all bounded intervals I (recall 3=3L(0)):

lim
L→∞

max
m=1,2,...,ML

P{ξ (3,m)ω (I )≥ 1} = 0, (6-44)

lim
L→∞

ML∑
m=1

P{ξ (3,m)ω (I )≥ 1} = n(E)|I |, (6-45)

lim
L→∞

ML∑
m=1

P{ξ (3,m)ω (I )≥ 2} = 0. (6-46)

Since P{ξ
(3,m)
ω (I ) ≥ 1} ≤ E{ξ

(3,m)
ω (I )}, (6-44) follows immediately from (6-4). In addition, it follows

from the definition (6-3) and the estimate (2-19), that for all 3 with |3| ≥ cI we have

P{ξ (3,m)ω (I )≥ 2} ≤ 1
2 E
{
(ξ (3,m)ω (I ))(ξ (3,m)ω (I )− 1)

}
≤

1
2 KM(ρ+|I |M−1

L )2, (6-47)

so (6-46) follows.
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Thus Theorem 2.3(a) is proved if we verify condition (6-45). To do so, we first notice that

E{ξ (3,m)ω (I )} =
∞∑

k=1

P{ξ (3,m)ω (I )≥ k}, (6-48)

and, as in [Kritchevski 2008],
∞∑

k=2

P{ξ (3,m)ω (I )≥ k} =
∞∑

k=2

(k− 1)P{ξ (3,m)ω (I )= k}

≤

∞∑
k=2

k(k− 1)P{ξ (3,m)ω (I )= k} = E
{
(ξ (3,m)ω (I ))(ξ (3,m)ω (I )− 1)

}
. (6-49)

It thus follows, as in (6-47), that

0≤ E{̃ξ (3)ω (I )}−
ML∑

m=1

P{ξ (3,m)ω (I )≥ 1} ≤ ML KM(ρ+|I |M−1
L )2→ 0 as L→∞. (6-50)

We conclude that (6-45) is equivalent to

lim
L→∞

E{̃ξ (3)ω (I )} = n(E)|I |, (6-51)

and hence, by Lemma 6.1, equivalent to

lim
L→∞

E{θ (3)ω (I )} = n(E)|I |. (6-52)

But it follows from (6-7) that, for all 3 such that |3| ≥ cI

E{θ (3)ω (I )} = |3|η(E+ |3|−1 I )= |3|
∫

E+|3|−1 I
n(E) dE . (6-53)

Since by our hypothesis E is a Lebesgue point of the locally integrable function n(E) (cf. [Yeh 2006,
Definition 25.13]), and the sets E+|3|−1 I shrink nicely to E as L→∞ (cf. [Yeh 2006, Definition 25.16]),
we can use the Lebesgue Differentiation Theorem (cf. [Yeh 2006, Theorem 25.17]) to conclude that

lim
L→∞
|3|

∫
E+|3|−1 I

n(E)dE = n(E)|I |. (6-54)

Thus (6-52), and hence (6-45), is proven, completing the proof of Theorem 2.3(a).

7. Simplicity of eigenvalues

We prove Theorem 2.3(b) proceeding as in [Klein and Molchanov 2006]. Let Hω be an Anderson
Hamiltonian, and let I be an open interval such that for large boxes 3 the estimate (2-19) holds for
any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with some constant KM . We call ϕ ∈ L2(Rd) fast
decaying if it has β-decay for some β > 5

2 d , which in the continuum means that ‖χ (1)x ϕ‖ ≤Cϕ〈x〉−β for
some constant Cϕ , where 〈x〉 :=

√
1+ |x |2. We will show that, with probability one, Hω cannot have an

eigenvalue in I with 2 linearly independent fast decaying eigenfunctions.
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Let I ⊂ I be a closed interval, q > 2d, L ∈ 2N large, 3L = 3L(0). We cover the interval I by
2
(
[Lq/2|I |] + 1

)
≤ Lq
|I | + 2 intervals of length 2L−q , in such a way that any subinterval J ⊂ I with

length |J | ≤ L−q will be contained in one of these intervals. ([x] denotes the largest integer ≤ x .) Let
BL ,I,q denote the complement to the event that tr P (3L )

ω (J ) ≤ 1 for all subintervals J ⊂ I with length
|J | ≤ L−q . The probability of BL ,I,q can be estimated, using (2-19) and

P{tr P (3)ω (I )≥ 2} ≤ 1
2 E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
, (7-1)

by

P{BL ,I,q} ≤
1
2 KMρ

2
+
(Lq
|I | + 2)(2L−q)2L2d

≤ 2KMρ
2
+
(|I | + 1)L−q+2d . (7-2)

Thus, taking scales Lk=2k , k=1, 2, . . ., it follows from the Borel–Cantelli Lemma that, with probability
one, the event BLk ,I,q eventually does not occur.

Let ω be in the set of probability one for which we have pure point spectrum with exponentially decay-
ing eigenfunctions in the region of complete localization 4CL. Suppose there exists E ∈ I∩4CL which
is an eigenvalue of Hω with 2 linearly independent eigenfunctions. In particular these eigenfunctions
decay exponentially, so, if we fix β > 5

2 d, they both have β-decay. Pick an open interval I 3 E , such
that Ī ⊂ I ∩4CL. [Klein and Molchanov 2006, Lemma 1] can be adapted to the continuum by using
smooth functions to localize the eigenfunctions in finite boxes. It then follows that for L large enough
the finite volume operator H (3L )

ω has at least 2 eigenvalues in the interval JE,L = [E−εL , E+εL ], where
εL = C L−β+

d
2 for an appropriate constant C independent of L . Since β > 5d

2 there exists q > 2d such
that β− d

2 > q , and hence εL < L−q for all large L . But with probability one this is impossible since the
event BLk , Ī ,q does not occur for large Lk .

Theorem 2.3(b) is proven.

Appendix A. The region of complete localization

In this appendix we discuss localization for an Anderson Hamiltonian Hω. Localization is most com-
monly taken to be Anderson localization: pure point spectrum with exponentially decaying eigenstates
with probability one. It is also natural to consider dynamical localization, where the moments of a wave
packet, initially localized both in space and in energy, should remain uniformly bounded under time
evolution. For the multidimensional continuum Anderson Hamiltonian, localization has been proved
by a multiscale analysis [Martinelli and Holden 1984; Combes and Hislop 1994; Klopp 1995; Kirsch
et al. 1998; Germinet and De Bièvre 1998; Damanik and Stollmann 2001; Germinet and Klein 2001;
2003a], and, in the case when we have the covering condition δ− ≥ 1, also by the fractional moment
method [Aizenman et al. 2006]. These methods give more than just Anderson or dynamical localization,
although they imply both. In the case when both methods are available, that is, δ− ≥ 1, they have the
same region of applicability [Germinet and Klein 2006; Klein 2008].

Thus, following [Germinet and Klein 2006], we consider the region of complete localization 4CL for
an Anderson Hamiltonian Hω, defined as the set of energies E ∈R where we have the conclusions of the
bootstrap multiscale analysis of [Germinet and Klein 2001], that is, as the set of E ∈ R for which there
exists some open interval I 3 E , such that given any ζ , 0< ζ < 1, and α, 1< α < ζ−1, there is a length
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scale L0 ∈ 2N and a mass m > 0, so if we take Lk+1 ≈ Lαk with Lk+1 ∈ 2N, k = 0, 1, . . . , we have

P{R(m, Lk, I, x, y)} ≥ 1− e−Lζk (A-1)

for all k = 0, 1, . . ., and x, y ∈ Zd with |x − y| > Lk + %, where % > 0 is a constant depending only on
supp u, and

R(m, L , I, x, y)= ω{; for every E ′ ∈ I either 3L(x) or 3L(y) is (ω,m, E ′)-regular}. (A-2)

Given E ∈ R, x ∈ Zd and L ∈ 6N, we say that the box 3L(x) is (ω,m, E)-regular for a given m > 0 if
E /∈ σ(H (3L (x))

ω ) and∥∥0(L)x R(3L (x))
ω (E + iδ)χ3 L

3
(x)
∥∥≤ exp

(
−m L

2

)
for all δ ∈ R, (A-3)

where R(3L (x))
ω (E+ iδ)= (H (3L (x))

ω − (E+ iδ))−1 and 0(L)x denotes the charateristic function of the belt
3L−1(x)\3L−3(x). (See [Germinet and Klein 2001; 2004; 2006; Klein 2008]; note that all the proofs
work with the definition (A-3), that is, with the insertion of “for all δ ∈R” They also work with the finite
volume operators with periodic boundary condition used in this article.)

By construction 4CL is an open set. It can be characterized in many different ways [Germinet and
Klein 2004; 2006]. For convenience, our definition includes the complement of the spectrum of Hω in
the region of complete localization, that is, R \6 ⊂ 4CL. The spectral region of complete localization,
4CL
∩6, is called the “strong insulator region” in [Germinet and Klein 2004].) If the conditions for

the fractional moment method are satisfied, 4CL coincides with the set of energies where the fractional
moment method can be performed. (Minami [1996] proved Poisson statistics for the Anderson model
in the region of validity of the fractional moment method, in other words, in the region of complete
localization for the Anderson model.)

Proposition A.1. Consider a closed bounded interval I ⊂ 4CL. Then for all z ∈ C with <z ∈ I , and
boxes 3=3L , we have, for s ∈ ]0, 1

4 [ and ξ ∈ ]0, 1[, and x, y ∈3 with |x − y| ≥ (log L)(1/ξ)+,

E
{
‖χ (1)x R(3)ω (z)χ (1)y ‖

s}
≤ Cs,I,ζ (ρ++

√
ρ+)e−|x−y|ξ (A-4)

for L ≥ L1(ξ, I, s).

We will need the following consequence of the Wegner estimate (2-13).

Lemma A.2. Let I = [c, d] be such that (2-13) holds for any subinterval of [c−1, d+1] with a constant
KW . Then for any s ∈

]
0, 1

2

[
, box 3, and z ∈ C with <z ∈ I , we have

E
{
‖R(3)ω (z)‖s

}
≤ Cs KWρ+|3|. (A-5)

Proof. Let <z ∈ I . It follows from (2-13) that for all t ≥ 1

P
{
‖R(3)ω (z)‖ ≥ t

}
≤

2
t

KWρ+|3| (A-6)

Thus

E{‖R(3)ω (z)‖s} =
∫
∞

0
t P
{
‖R(3)ω (z)‖s ≥ t

}
dt ≤ 1+

∫
∞

1
t
(
2t−1/s KWρ+|3|

)
dt

≤ 1+C ′s KWρ+|3|. �
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If we have the covering condition δ−≥ 1, (A-5) holds without the volume factor in the right hand side
[Aizenman et al. 2006].

Proof of Proposition A.1. Given 0 < ξ < 1, we pick ζ such that ζ 2 < ξ < ζ < 1 (always possible) and
set α = ζ/ξ , note α < ζ−1. Since I ⊂ 4CL, there is a scale L0 ∈ 2N and a mass mζ > 0, such that, if
we set Lk+1 ≈ Lαk , with Lk+1 ∈ 2N, k = 0, 1, . . . , we have the estimate (A-1) for x, y ∈ Zd such that
|x − y|> Lk + %.

Let us now fix3=3L , x, y ∈3L ∩Zd and pick k such that Lk+1+%≥ |x− y|> Lk+%. In this case,
if ω ∈ R

(
mζ , Lk, I, x, y

)
, then for <z ∈ I either 3Lk (x) or 3Lk (y) is (ω,m,<z)-regular; say 3Lk (x)

is (ω,m,<z)-regular. (Note that we take the boxes of size Lk in the torus 3.) Then, using (A-3) and
[Germinet and Klein 2001, (2.9)], we reach∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥≤ γI
∥∥0(Lk)

x R
(3Lk (x))
ω (z)χ (1)x

∥∥∥∥χ (1)y R(3)ω (z)0(Lk)
x

∥∥
≤ γI exp

(
−mζ

Lk
2

)∥∥R(3)ω (z)
∥∥. (A-7)

Thus, with s ∈ ]0, 1
4 [, using Lemma A.2,

E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s
: ω ∈ R(mζ , Lk, I, x, y)

}
≤ γ s

I exp
(
−smζ

Lk
2

)
E
{
‖R(3)ω (z)‖s

}
≤ Cs KWρ+|3|γ

s
I exp

(
−smζ

Lk
2

)
≤ Cs,Iρ+|3| exp

(
−smζ

Lk
2

)
, (A-8)

and
E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s
: ω /∈ R(mζ , Lk, I, x, y)

}
≤
(
E{‖R(3)ω (z)‖2s

}
)1/2(

P{ω /∈ R(mζ , Lk, I, x, y)}
)1/2

≤ (C2s KWρ+|3|)
1/2 exp

(
−

1
2 Lζk

)
≤ C ′s,I (ρ+|3|)

1/2 exp
(
−

1
2 Lζk

)
. (A-9)

It follows that for Lk sufficiently large, that is, |x − y| large, we have

E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s}
≤ Cs,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 Lζk

)
≤ Cs,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 Lξk+1

)
≤ C ′s,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 |x − y|ξ

)
, (A-10)

so (A-4) follows for |x − y| ≥ (log L)(1/ξ)+ (with a slightly smaller ξ ). �

Appendix B. A convexity inequality for traces

The following inequality was used in [Combes and Hislop 1994, Proof of Proposition 4.5] and also in
the derivation of (4-12) above.

Lemma B.1. Let H1 and H2 be two self-adjoint operators on a Hilbert space H, such that H1 is diago-
nalizable and H1 ≥ H2. Let f and g be bounded Borel functions on some open interval I ⊃ σ(H1), such
that g is real-valued, nonincreasing, and convex on I . Then

tr
{

f̄ (H1)g(H1) f (H1)
}
≤ tr

{
f̄ (H1)g(H2) f (H1)

}
. (B-1)
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Proof. Let ϕ ∈H be an eigenvector of H1 with eigenvalue λ and satisfying ‖ϕ‖ = 1. Then〈
ϕ, f̄ (H1)g(H1) f (H1)ϕ

〉
= f̄ (λ)g(λ) f (λ)= f̄ (λ)g(〈ϕ, H1ϕ〉) f (λ)≤ f̄ (λ)g(〈ϕ, H2ϕ〉) f (λ)

≤ f̄ (λ)〈ϕ, g(H2)ϕ〉 f (λ)=
〈
ϕ, f̄ (H1)g(H2) f (H1)ϕ

〉
, (B-2)

where the first inequality follows from g nonincreasing and H1 ≥ H2, and the second inequality used the
convexity of the function g, Jensen’s inequality (compare [Yeh 2006, Theorem 14.16]), and the spectral
theorem.

Since H1 is diagonalizable, (B-1) follows by expanding the trace on an orthonormal basis of eigen-
values for H1 and using (B-2) for each term. �
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BULK UNIVERSALITY AND CLOCK SPACING OF ZEROS FOR ERGODIC
JACOBI MATRICES WITH ABSOLUTELY CONTINUOUS SPECTRUM

ARTUR AVILA, YORAM LAST AND BARRY SIMON

By combining ideas of Lubinsky with some soft analysis, we prove that universality and clock behavior
of zeros for orthogonal polynomials on the real line in the absolutely continuous spectral region is im-
plied by convergence of 1

n
Kn.x; x/ for the diagonal CD kernel and boundedness of the analog associated

to second kind polynomials. We then show that these hypotheses are always valid for ergodic Jacobi
matrices with absolutely continuous spectrum and prove that the limit of 1

n
Kn.x; x/ is �1.x/=w.x/,

where �1 is the density of zeros and w is the absolutely continuous weight of the spectral measure.

1. Introduction

Given a finite measure, d�, of compact and not finite support on R, one defines the orthonormal polyno-
mials pn.x/ (or pn.x; d�/ if the �-dependence is important) by applying Gram–Schmidt to 1; x; x2; : : : .
Thus, pn is a polynomial of degree exactly n with leading positive coefficient so thatZ

pn.x/pm.x/ d�.x/D ınm: (1-1)

For background on these orthogonal polynomials on the real line (OPRL), see [Szegő 1939; Freud 1971;
Simon 2010].

Associated to � is a family of Jacobi parameters fan; bng1nD1, an > 0, bn real, determined by the
recursion relation (p�1.x/� 0):

xpn.x/D anC1pnC1.x/C bnC1pn.x/C anpn�1.x/: (1-2)

The fpn.x/g1nD0 are an orthonormal basis of L2.R; d�/ (since supp d� is compact) and (1-2) says that
multiplication by x is given in this basis by the tridiagonal Jacobi matrix

J D

0BBB@
b1 a1 0 � � �

a1 b2 a2 � � �

0 a2 b3 � � �
:::

:::
:::
: : :

1CCCA : (1-3)
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If we restrict (as we normally will) to � normalized by �.R/ D 1, then � can be recovered from
J as the spectral measure for the vector .1; 0; 0; : : : /t . Favard’s theorem says there is a one-to-one
correspondence between sets of bounded Jacobi parameters, that is,

sup
n
janj D ˛C <1; sup

n
jbnj D ˇ <1; (1-4)

and probability measures with compact and not finite support under this �! J ! � correspondence.
We will use this to justify spectral theory notation for things like supp d� which we will denote �.d�/

since it is the spectrum of J , �.J /. We will use �ess.d�/ for the essential spectrum, and if

d�.x/D w.x/ dxC d�s.x/; (1-5)

where d�s is Lebesgue singular, then we define

†ac.d�/D fx j w.x/ > 0g; (1-6)

determined up to sets of Lebesgue measure 0, so †ac ¤∅ means d� has a nonvanishing a.c. part.
We will also suppose

inf
n
an D ˛� > 0; (1-7)

which is no loss since it is known [Dombrowski 1978] that if the inf is 0, then †ac D ∅, and we will
only be interested in cases where †ac ¤∅.

One of our concerns in this paper is the zeros of pn.x; d�/. These are not only of intrinsic interest;
they enter in Gaussian quadrature and also as the eigenvalues of JnIF , the upper left n� n corner of J ,
and so are relevant to statistics of eigenvalues in large boxes, a subject on which there is an enormous
amount of discussion in both the mathematics and the physics literature.

These zeros are all simple and real. The measure d�n is the normalized counting measure for the zeros:

�n.S/D
1

n
# of zeros of pn in S: (1-8)

In many cases, d�n converges to a weak limit d�1 called the density of zeros or density of states (DOS).
If this weak limit exists, we say that the DOS exists. It often happens that d�1 is d�e, the equilibrium
measure for eD �ess.d�/. This is true, for example, if �e is equivalent to dx � e and †ac D e, a theorem
of Widom [1967] and Van Assche [1986] (see also [Stahl and Totik 1992; Simon 2007]). If d�1 has an
a.c. part, we use �1.x/ for d�1=dx and we use �e.x/ for d�e=dx. More properly, d�1 is the density
of states measure (so

R x
�1

d�1 is the integrated density of states) and �1.x/ the density of states.
We are especially interested in the fine structure of the zeros near some point x0 2 �.d�/. We define

x
.n/
j .x0/ by

x
.n/
�2 .x0/ < x

.n/
�1 .x0/ < x0 � x

.n/
0 .x0/ < x

.n/
1 .x0/ < � � � ; (1-9)

requiring these to be all of the zeros near x0. It is known that if x0 is not isolated from �.d�/ on either
side, that is, if for all ı > 0,

.x0� ı; x0/\ �.d�/¤∅¤ .x0; x0C ı/\ �.d�/; (1-10)

then for each fixed j ,
lim
n!1

x
.n/
j .x0/D x0: (1-11)
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We are interested in clock behavior, named after the spacing of numerals on a clock — meaning equal
spacing of the zeros nearby to x0:

Definition. We say that there is quasiclock behavior at x0 2 �.d�/ if and only if for each fixed j 2 Z,

lim
n!1

x
.n/
jC1.x0/� x

.n/
j .x0/

x
.n/
1 .x0/� x

.n/
0 .x0/

D 1: (1-12)

We say there is strong clock behavior at x0 if and only if the DOS exists and for each fixed j 2 Z,

lim
n!1

n.x
.n/
jC1.x0/� xj .x0//D

1

�1.x0/
: (1-13)

Obviously, strong clock behavior implies quasiclock behavior. Thus far, the only cases where it is
proven there is quasiclock behavior, one has strong clock behavior but, as we will explain in Section
7, we think there are examples where one has quasiclock behavior at x0 but not strong clock behavior.
Before this paper, all examples known with strong clock behavior have �1D �e, but we will find several
examples where there is strong clock behavior with �1 ¤ �e in Section 7. In that section, we will say
more about:

Conjecture. For any �, quasiclock behavior holds at a.e.x0 2†ac.d�/.

In this paper, one of our main goals is to prove this result for ergodic Jacobi matrices. A major role
will be played by the Christoffel–Darboux (CD) kernel, defined for x; y 2 C by

Kn.x; y/D

nX
jD0

pj .x/ pj .y/; (1-14)

the integral kernel for the orthogonal projection onto polynomials of degree at most n in L2.R; d�/; see
Simon [2008a] for a review of some important aspects of the properties and uses of this kernel. We will
repeatedly make use of the CD formula:

Kn.x; y/D
anC1Œ pnC1.x/ pn.y/�pn.x/pnC1.y/�

Nx�y
I (1-15)

the Schwarz inequality:
jKn.x; y/j

2
�Kn.x; x/Kn.y; y/I (1-16)

and the reproducing property: Z
Kn.x; y/Kn.y; z/ d�.y/DKn.x; z/: (1-17)

It is a theorem [Simon 2009] that if the DOS exists, then

1

nC1
Kn.x; x/ d�.x/

weak
�! d�1.x/; (1-18)

and, in general, 1

nC1
Kn.x; x/ d�.x/ has the same weak limit points as d�n. This suggests that a.c. parts
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converge pointwise; that is, one hopes that for a.e.x0 2†ac,

1

nC 1
Kn.x0; x0/!

�1.x0/

w.x0/
: (1-19)

This has been proven for regular measures (in the sense of [Stahl and Totik 1992]; see also [Simon 2007])
with a local Szegő condition in a series of papers, of which the seminal ones are [Máté et al. 1991; Totik
2000]. We will prove it for ergodic Jacobi matrices.

We say bulk universality holds at x0 2 supp d� if and only if uniformly for a; b in compact subsets
of R, we have

Kn.x0C a=n; x0C b=n/

Kn.x0; x0/
!

sin.��.x0/.b� a//
��.x0/.b� a/

: (1-20)

We use the term bulk here because (1-20) fails at edges of the spectrum [Lubinsky 2008a]. We also note
that when (1-20) holds, typically (and in all cases below) for z; w complex, one has

Kn.x0C z=n; x0Cw=n/

Kn.x0; x0/
!

sin.�.x0/.w� Nz//
�.x0/.w� Nz/

: (1-21)

Freud [1971] proved bulk universality for measures on Œ�1; 1� with d�s D 0 and strong conditions
on w.x/. Because of related results (but with variable weights) in random matrix theory, this result
was reexamined and proven in multiple interval support cases with analytic weights by Kuijlaars and
Vanlessen [2002]. A significant breakthrough was made by Lubinsky [2009], whose contributions we
return to shortly.

The following theorem is a basic result of Freud [1971], rediscovered by Levin.1

Theorem 1.1 (Freud–Levin Theorem). Bulk universality at x0 implies strong clock behavior at x0.

Remarks. 1. The proof [Freud 1971; Levin and Lubinsky 2008; Simon 2008a] relies on the CD
formula (1-15), which implies that if y0 is a zero of pn, then the other zeros of pn are the points
y solving Kn.y; y0/D 0 and the fact that the zeros of sin.��.x0/.b � a// are at b � a D j=�.x0/
with j 2 Z.

2. Szegő [1939] proved strong clock behavior for Jacobi polynomials and Erdős and Turán [1940] for
a more general class of measures on Œ�1; 1�. Simon has a series on the subject [2005; 2006a; 2006b;
Last and Simon 2008]. The last of these papers was one motivation for [Levin and Lubinsky 2008].

It is also useful to define

�n D
1

n
w.x0/Kn.x0; x0/; (1-22)

so (1-19) is equivalent to
�n! �1.x0/: (1-23)

We say weak bulk universality holds at x0 if and only if, uniformly for a; b on compact subsets of R, we
have

Kn.x0C a=.n�n/; x0C b=.n�n//

Kn.x0; x0/
!

sin.�.b� a//
�.b� a/

; (1-24)

1See [Levin and Lubinsky 2008]. Lubinsky (private communication) has emphasized to us that this part of the paper is due
to Levin alone — hence our name for the result.
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the form in which universality is often written, especially in the random matrix literature. Notice that

weak universalityC (1-23) ) universality: (1-25)

Notice also that (1-24) could hold in case where �n does not converge as n!1. The same proof that
verifies Theorem 1.1 implies:

Theorem 1.2 (Weak Freud–Levin Theorem). Weak bulk universality at x0 implies quasiclock behavior
at x0.

With this background in place, we can turn to describing the main results of this paper: five theorems,
proven one per section in Sections 2–6.

The first theorem is an abstraction, extension, and simplification of Lubinsky’s second approach to
universality [2008b]. Lubinsky [2009] found a beautiful way of going from control of the diagonal CD
kernel to the off-diagonal (i.e., to universality). It depended on the ability to control limits not only of
.1=n/Kn.x0; x0/ but also .1=n/Kn.x0Ca=n; x0Ca=n/— what we call the Lubinsky wiggle. We will
especially care about the Lubinsky wiggle condition:

lim
n!1

Kn.x0C a=n; x0C a=n/

Kn.x0; x0/
D 1 (1-26)

uniformly for a 2 Œ�A;A� for each A. In addition to this, Lubinsky [2009] needed a simple but clever
inequality and, most significantly, a comparison model example where one knows universality holds.
For Œ�1; 1�, he took Legendre polynomials (that is, d�D .1=2/�Œ�1;1�.x/ dx). In extending this to more
general sets, one uses approximation by finite gap sets as pioneered by Totik [2001]. Simon [2008b]
then used Jacobi matrices in isospectral tori for a comparison model on these finite gap sets, while Totik
[� 2010] used polynomials mappings and the results for Œ�1; 1�.

For ergodic Jacobi matrices, where �.d�/ is often a Cantor set, it is hard to find comparison models,
so we will rely on a second approach developed by Lubinsky [2008b] that seems to be able to handle any
situation that his first approach can and which does not rely on a comparison model. Our first theorem,
proven in Section 2, is a variant of this approach. We need a preliminary definition.

Definition. Let d� be given by (1-5). A point x0 is called a Lebesgue point of d� if w.x0/ > 0 and

lim
ı#0

.2ı/�1
Z x0Cı

x0�ı

jw.x/�w.x0/j dx D 0; (1-27)

lim
ı#0

.2ı/�1�s.x0� ı; x0C ı/D 0: (1-28)

Standard maximal function methods [Rudin 1987] show that Lebesgue almost every x0 2†ac.d�/ is
a Lebesgue point.

Theorem 1. Let x0 be a Lebesgue point of �. Suppose that:

(i) The Lubinsky wiggle condition (1-26) holds uniformly for a 2 Œ�A;A� and any A <1.

(ii) We have
lim inf
n!1

1

nC 1
Kn.x0; x0/ > 0: (1-29)
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(iii) For any ", there is C" > 0 so that for any R <1, there is an N so that for all n > N and all z 2 C

with jzj<R, we have

1

nC 1
Kn

�
x0C

z

n
; x0C

z

n

�
� C" exp."jzj2/: (1-30)

Then weak bulk universality, and so, quasiclock behavior, holds at x0.

Remarks. 1. If one replaces the right-hand side of (1-30) by

C exp.Ajzj/; (1-31)

then the result can be proven by following Lubinsky’s argument in [2008b]. He does not assume
(1-31) directly but rather hypotheses that he shows imply it (but which are invalid when the support
of d� is a Cantor set).

2. Because our Theorem 3 below is so general, we doubt there are examples where (1-30) holds but
(1-31) does not, but we feel our more general abstract result is clarifying.

3. The strategy we follow is Lubinsky’s, but the tactics differ and, we feel, are more elementary and
illuminating.

In [Lubinsky 2008b], the only examples where the wiggle condition can be verified are the situations
where Totik [� 2010] proves universality using Lubinsky’s first method. To go beyond that, we need the
following, proven in Section 3:

Theorem 2. Let †�†ac. Suppose for a.e.x0 2†, condition (iii) of Theorem 1 holds and

(iv) limn!1.1=.nC 1//Kn.x0; x0/ exists and is strictly positive.

Then condition (i) of Theorem 1 holds for a.e.x0 2†.

Of course, (iv) implies condition (ii). So we obtain:

Corollary 1.3. If (iii) and (iv) hold for a.e.x0 2 †, then for a.e.x0 2 †, we have weak universality and
quasiclock behavior.

By (1-25), we see:

Corollary 1.4. If (iii) and (iv) hold for a.e. x0 2 †, and if the DOS exists and the limit in (iv) is
�1.x/=w.x/, then for a.e.x 2†, we have universality and strong clock behavior.

Next, we need to examine when (1-30) holds. We will not only obtain a bound of the type (1-31) but
one that does not need to vary N with R and is universal in z. We will use transfer matrix techniques
and notation.

Given Jacobi parameters, fan; bng1nD1, we define

Aj .z/D

 
z�bj
aj
�
1
aj

aj 0

!
; (1-32)

so that (1-2) is equivalent to �
pn.x/

anpn�1.x/

�
D An.x/

�
pn�1.x/

an�1pn�2.x/

�
: (1-33)
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We normalize, placing an on the lower component, so that

det.Aj .z//D 1: (1-34)

The transfer matrix is then defined by

Tn.z/D An.z/ : : : A1.z/; (1-35)

so �
pn.x/

anpn�1.x/

�
D Tn.x/

�
1

0

�
: (1-36)

If Qpn are the OPRL associated to the once stripped Jacobi parameters fanC1; bnC1g1nD1, and

qn.x/D�a
�1
1 Qpn�1.x/ (1-37)

with q0 D 0, then

Tn.z/D

�
pn.z/ qn.z/

anpn�1.z/ anqn�1.z/

�
: (1-38)

Here is how we will establish (1-30) and (1-31):

Theorem 3. Fix x0 2 R. Suppose that

sup
n

1

nC 1

nX
jD0

kTj .x0/k
2
� C <1: (1-39)

Then for all z 2 C and all n,

1

nC 1

nX
jD0

Tj�x0C z

nC 1

�2 � C exp.2C˛�1� jzj/: (1-40)

Moreover, if
sup
n
kTn.x0/k

2
D C <1; (1-41)

then for all z 2 C and n, Tn�x0C z

nC 1

�� C 1=2 exp.C˛�1� jzj/: (1-42)

Remarks. 1. Our proof is an abstraction of ideas of Avila and Krikorian [2006], who only treated the
ergodic case.

2. ˛� is given by (1-7).

3. There is a conjecture, called the Schrödinger conjecture [Maslov et al. 1993], that says (1-41) holds
for a.e. x0 2†ac.d�/.

Our last two theorems below are special to the ergodic situation. Let � be a compact metric space,
d� a probability measure on �, and S W�! � an ergodic invertible map of � to itself. Let A;B be
continuous real-valued functions on � with inf! A.!/ > 0. Let

˛C D kAk1; ˇ D kBk1; ˛� D kA
�1
k
�1
1 : (1-43)
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For each ! 2�, J! is the Jacobi matrix with

an.!/D A.S
n�1!/; bn.!/D B.S

n�1!/: (1-44)

Equation (1-43) is consistent with (1-4) and (1-7). Usually one only takes �, a measure space, and A;B
bounded measurable functions, but by replacing � by .Œ˛�; ˛C�� Œ�ˇ; ˇ�/1� z� and mapping �! z�
by ! 7! .A.Sn!/; B.Sn!//1nD�1, we get a compact space model equivalent to the original measure
model. We use d�! for the spectral measure of J! and pn.x; !/ for pn.x; d�!/.

The canonical example of the setup with a.c. spectrum is the almost Mathieu equation. Let ˛ be a
fixed irrational, � a nonzero real, and �D @D the unit circle fei� j � 2 Œ0; 2�/g. Then take

an D 1; bn D 2� cos.�˛nC �/;

(so S.ei� / D ei�ei�˛, d�.�/ D d�=2�). If 0 ¤ j�j < 1, it is known [Avila 2008; Avila and Damanik
2008; Avila and Jitomirskaya 2008; Jitomirskaya 2007] that the spectrum is purely a.c. and is a Cantor
set. It is also known [Jitomirskaya 2007] that if j�j � 1, there is no a.c. spectrum.

Theorem 4. Let fJ!g!2n be an ergodic family with †ac, the common essential support of the a.c. spec-
trum of J! , of positive Lebesgue measure. Then for a.e. pairs .x; !/ 2†ac ��,

lim
n!1

1

nC 1

nX
jD0

jpj .x; w/j
2 and lim

n!1

1

nC 1

nX
jD0

jqj .x; w/j
2 (1-45)

exist.

Theorem 5. For a.e. .x; !/ in†ac��, the first limit in (1-45) is �1.x/=w!.x/, where �1 is the density
of the a.c. part of the DOS.

This is, of course, an analog of the celebrated results of Máté et al. [1991] (for Œ�1; 1�) and Totik [2000]
(for general sets e containing open intervals) for regular measures obeying a local Szegő condition.

Theorems 3–5 show the applicability of Theorem 2, and so lead to:

Corollary 1.5. For any ergodic Jacobi matrix, we have universality and strong clock behavior for a.e.!
and a.e.x0 2†ac.

In particular, the almost Mathieu equation has strong clock behavior for the zeros.

Remark. It is possible to show that for the almost Mathieu equation there is universality for a.e.x0 2†ac

and every !. Our current approach to this uses that the Schrödinger conjecture is true for the almost
Mathieu operator, a recently announced result [Avila et al. � 2010].

For nD 1; 2; 3; 4; 5, Theorem n is proven in Section nC 1. Section 7 has some further remarks.

2. Lubinsky’s second approach

In this section, we will prove Theorem 1. We begin with two overall visions relevant to the proof. First,
the sinc kernel sin�z=�z [Lund and Bowers 1992] enters as the Fourier transform of a suitable multiple
of the characteristic function of Œ��; ��.
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Second, the ultimate goal of quasiclock spacing is that on a 1=n�n scale, zeros are a unit distance
apart, so on this scale

# of zeros in Œ0; n�� n: (2-1)

Lubinsky’s realization is that the Lubinsky wiggle condition and Markov–Stieltjes inequalities (see be-
low) imply that the difference of the two sides of (2-1) is bounded by 1. This is close enough that,
together with some complex variable magic, one gets unit spacing.

The complex variable magic is encapsulated in the following result whose proof we defer until the
end of the section.

Theorem 2.1. Let f be an entire function with the following properties:

(a) f .0/D 1.

(b) supx2Rjf .x/j<1.

(c)
Z 1
�1

jf .x/j2 dx � 1.

(d) f is real on R.

(e) All the zeros of f lie on R and if these zeros are labeled by � � � � z�2 � z�1 < 0 < z1 � z2 � � � � ,
with z0 � 0, then

jzj � zkj � jj � kj � 1: (2-2)

(f) For each " > 0, there is C" with
jf .z/j � C"e

"jzj2 : (2-3)

Then

f .z/D
sin.�z/
�z

: (2-4)

Remarks. 1. Equation (2-2) allows f a priori to have double zeros but not triple or higher zeros.

2. It is easy to see there are examples where (2-3) holds for some but not all " and where (2-4) is false,
so (2-3) is sharp.

Proof of Theorem 1 given Theorem 2.1. (This part of the argument is essentially in [Lubinsky 2008b].)
Fix a 2 R and let

fn.z/D
Kn
�
x0C a=.n�n/; x0C .aC z/=.n�n/

�
Kn.x0; x0/

: (2-5)

By (1-29), (1-30), and (1-16), the fn are uniformly bounded on each disk fz j jzj < Rg, so by Montel’s
theorem, we have compactness that shows it suffices to prove that any limit point f .z/ has the form
(2-4). We will show that this putative limit point obeys conditions (a)–(f) of Theorem 2.1.

The Lubinsky wiggle condition (1-26) implies (a). From the Schwarz inequality, (1-11) and the wiggle
condition, we get

sup
x2R

jf .x/j D 1; (2-6)

which is stronger than (b).
By (1-17), Z

jy�x0�.a=n�n/j�.R=n�n/

jKn.x; y/j
2w.y/ dy � Kn.x; x/ (2-7)
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for each R <1. Changing variables and using the Lebesgue point condition leads toZ R

�R

jf .y/j2 dy � 1; (2-8)

which yields (c) (see Lubinsky [2008b] for more details). In this, one uses (1-29) and (1-30) to see that

0 < inf �n < sup �n <1: (2-9)

That f is real on R is immediate; the reality of zeros follows from Hurwitz’s theorem and the fact
[Simon 2008a] that pnC1.x/� cpn.x/ has only real zeros for c real.

The Markov–Stieltjes inequalities [Markoff 1884; Freud 1971; Simon 2008a] assert that if x1; x2; : : :
are successive zeros of pn.x/� cpn�1.x/ for some c, then for j � kC 2,

�.Œxj ; xk�/�

j�1X
`DkC1

1

Kn.x`; x`/
: (2-10)

Using the fact that the zj (including z0) are, by Hurwitz’s theorem, limits of xj ’s scaled by n�n and the
Lubinsky wiggle condition to control limits of n�n=Kn.x`; x`/, one finds that (2-2) holds (see [Lubinsky
2008b] for more details). Here one uses that x0 is a Lebesgue point to be sure that

1

xk � xj

Z xk

xj

d�.y/! w.x0/: (2-11)

Finally, (1-30) implies (2-3). Thus, (2-4) holds. �

We now reduce the proof of Theorem 2.1 to using conditions (a)–(e) to improve the bound (2-3).

Proposition 2.2. (a) Fix a > 0. If f is measurable, real-valued and supported on Œ�a; a� withZ a

�a

f .x/2 dx � 2a and
Z a

�a

f .x/ dx D 2a; (2-12)

then
f .x/D �Œ�a;a�.x/ a.e. (2-13)

(b) If f is real-valued and continuous on R and yf is supported on Œ��; �� withZ 1
�1

f .x/2 dx � 1 and f .0/D 1; (2-14)

then

f .x/D
sin.�x/
�x

: (2-15)

(c) If f is an entire function, real on R with (2-14), and for all ı > 0, there is Cı with

jf .z/j � Cı exp..� C ı/jIm zj/; (2-16)

then (2-4) holds.
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Proof. (a) Essentially this follows from equality in the Schwarz inequality. More precisely, (2-12) impliesZ a

�a

jf .x/��Œ�a;a�.x/j
2 dx � 0: (2-17)

(b) Apply Proposition 2.2 (a) to .2�/1=2 yf .k/ with aD � .

(c) By the Paley–Wiener theorem, (2-16) implies that yf is supported on Œ��; ��. �

Thus, we are reduced to going from (2-3) to (2-16).
By f .0/ D 1, the reality of the zeros and (2-3), we have, by the Hadamard factorization theorem

[Titchmarsh 1932, Section 8.24] that

f .z/D eAz
Y
j¤0

�
1�

z

zj

�
ez=zj ; (2-18)

with A real. For x 2 R, define zj .x/ to be a renumbering of the zj , so

: : :� z�1.x/ < x � z0.x/� z1.x/� : : : : (2-19)

By jzj � zkj � jk� j j � 1, we see that

znC1.x/� x � n; x� z�.nC1/.x/� n: (2-20)

In particular, .x � 1:1; x C 1:1/ can contain at most z0.x/; z˙1.x/; z˙2.x/. Removing the open
intervals of size 2=10 about each of the five points jz`.x/�xj (`D 0;˙1;˙2) from Œ0; 1� leaves at least
one ı > 0, that is, we can pick ı.x/ in Œ0; 1� so for all j ,

jzj .n/� .x˙ ı/j �
1
10
: (2-21)

Moreover, by (2-20), for nD 1; 2; : : : ,

jz˙.nC2/.x/� .x˙ ı/j � n: (2-22)

Since
j1� .xC iy/=zj j

2

j.1� .xC ı=zj /.1� x� ı/=zj /j
� 1C

.y2C ı2/

jzj � .xC ı/jjzj � .x� ı/j
; (2-23)

we conclude from (2-18) that

jf .xC iy/j2

jf .x� ı/jjf .xC ı/j
�

�
1C

y2C 1

.1=100/

�5 1Y
nD1

�
1C

1Cy2

n2

�2
�C.1Cy10/

�
sinh�

p
y2C 1

�
p
y2C 1

�2
: (2-24)

Thus, for any ", there is a C" with

jf .xC iy/j � C" exp..� C "/jyj/; (2-25)

for every xC iy 2 C, which is (2-16). This concludes the proof of Theorem 2.1.

Remark. It is possible to show, using the Phragmén–Lindelöf principle [Titchmarsh 1932], that if one
assumes, instead of (2-3), the stronger jf .z/j � Cejzj

ı

, then it is possible to weaken (2-2) to

jzj j � jj j � 1; (2-26)
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for if (2-26) holds, then (2-18) implies that

jf .iy/j � C.1Cjyj/e�jyj: (2-27)

Applying Phragmén–Lindelöf to .1� iz/�1f .z/ei�z on the sectors arg z 2 Œ0; �=2� and Œ�=2; �� proves
that

jf .xC iy/j � C.1Cjzj/e�jyj: (2-28)

3. Doing the Lubinsky wiggle

Our goal in this section is to prove Theorem 2.

Proof of Theorem 2. By Egorov’s theorem [Rudin 1987, p. 73], for every ", there exists a compact set
L�† with j†nLj<" (with j j D Lebesgue measure) so that on L, the sequence 1

nC1
Kn.x; x/� Qqn.x/

converges uniformly to a limit, which we call Qq.x/. If we prove that (1-26) holds for a.e.x0 2 L, then
by taking a sequence of "’s going to 0, we get that (1-26) holds for a.e.x0 2†

By Lebesgue’s theorem on differentiability of integrals of L1-functions [Rudin 1987, Theorem 7.7]
applied to the characteristic function of L, for a.e.x0 2 L, we get

lim
ı#0

.2ı/�1j.x0� ı; x0C ı/\Lj D 1: (3-1)

We will prove that (1-26) holds for all x0 with (3-1) and with condition (iv) of Theorem 2.
The expression 1

nC1
Kn
�
xC a

n
C
Nz
n
; xC a

n
C
z
n

�
is analytic in z, so by a Cauchy estimate and a real,ˇ̌̌̌

d

da
Qqn

�
xC

a

n

�ˇ̌̌̌
� sup
jzj�1

1

nC1

ˇ̌̌̌
Kn

�
xC

a

n
C
Nz

n
; xC

a

n
C
z

n

�ˇ̌̌̌
D sup
jzj�1

ˇ̌̌̌
Qqn

�
xC

a

n
C
z

n

�ˇ̌̌̌
: (3-2)

By a Schwarz inequality, for x; y 2 C,

1

nC1
jKn.x; y/j � . Qqn.x/ Qqn.y//

1=2: (3-3)

Thus, using the assumed (1-30), for any x0 for which (1-30) holds and any A<1, there are N0 and
C so for n�N0, ˇ̌̌

Qqn

�
x0C

a

n

�
� Qqn

�
x0C

b

n

�ˇ̌̌
� C ja� bj; (3-4)

for all a; b with jaj � A, jbj � A.
Since each Qqn is continuous and the convergence is uniform on L, Qq is continuous on L. Thus, we

have for each A <1,

sup
�ˇ̌̌
Qq
�
x0C

a

n

�
� Qq.x0/

ˇ̌̌ ˇ̌̌̌
jaj< A; x0C

a

n
2 L

�
! 0; (3-5)

as n!1. By the uniform convergence theorem,

sup
�ˇ̌̌
Qqn

�
x0C

a

n

�
� Qqn.x0/

ˇ̌̌ ˇ̌̌̌
jaj< A; x0C

a

n
2 L

�
! 0: (3-6)
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We next note that (3-1) implies

sup
jbj�A

n dist
�
x0C

b

n
;L
�
! 0I (3-7)

equivalently, for any ", there is an N1 so for n � N1 and jbj < A, there exists jaj < A (a will be
n-dependent) so that ja� bj< " and x0C a=n 2 L. We haveˇ̌̌

Qqn

�
x0C

b

n

�
� Qqn.x0/

ˇ̌̌
�

ˇ̌̌
Qqn

�
x0C

b

n

�
� Qqn

�
x0C

a

n

�ˇ̌̌
C

ˇ̌̌
Qqn

�
x0C

a

n

�
� Qqn.x0/

ˇ̌̌
; (3-8)

where jb�aj< " and x0Ca=n2L. By (3-4), if n�max.N0; N1/, the first term is bounded by C" and,
by (3-7), the second term goes to zero, that is,

sup
jbj<A

ˇ̌̌
Qqn

�
x0C

b

n

�
� Qqn.x0/

ˇ̌̌
! 0: (3-9)

Since Qqn.x0/! Qq.x0/¤ 0, we have

sup
jbj<A

ˇ̌̌
Qqn.x0C b=n/

Qqn.x0/
� 1

ˇ̌̌
! 0; (3-10)

as n!1, which is (1-26). �

4. Exponential bounds for perturbed transfer matrices

In this section, our goal is to prove Theorem 3. As noted in the Introduction, our approach is an extension
of a theorem of Avila and Krikorian [2006, Lemma 3.1] exploiting that one can avoid using cocycles and
so go beyond the apparent limitation to ergodic situations. The argument here is related to but somewhat
different from variation of parameters techniques [Jitomirskaya and Last 1999; Killip et al. 2003] and
should have wide applicability.

Proof of Theorem 3. Fix n and define, for j D 1; 2; : : : ; n,

QAj D Aj

�
x0C

z

nC 1

�
; (4-1)

Aj D Aj .x0/; (4-2)

Tj D Aj : : : A1; QTj D QAj : : : QA1: (4-3)

(Note that QAj and QTj depend on n as well as j .)
Note that, by (1-32),

QAj �Aj D a
�1
j

�
z=.nC 1/ 0

0 0

�
; (4-4)

so that

k QAj �Aj k � ˛
�1
�

jzj

nC 1
: (4-5)
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Write

T �1j
QTj D .T

�1
j
QAjTj�1/.T

�1
j�1
QAj�1Tj�2/ : : : .T

�1
1
QA1T0/

D .1CBj /.1CBj�1/ : : : .1CB1/; (4-6)

where
Bk D T

�1
k . QAk �Ak/Tk�1: (4-7)

Here we used
AkTk�1 D Tk : (4-8)

Since Tk has determinant 1 (see (1-34)), we have

kT �1k k D kTkk: (4-9)

So, by (4-5),

kBkk � kTkk kTk�1k˛
�1
�

jzj

nC 1
: (4-10)

Thus, since
k1CBj k � 1CkBj k � exp.kBj k/; (4-11)

Equation (4-6) implies that

k QTj k � kTj k exp
�
˛�1� jzj

h 1

nC 1

jX
kD1

kTkk kTk�1k
i�
: (4-12)

By the Schwarz inequality, for j D 1; 2; : : : ; n,

1

nC 1

jX
kD1

kTkk kTk�1k �
1

nC 1

jX
kD0

kTkk
2
�

1

nC 1

nX
kD0

kTkk
2: (4-13)

Using (1-39) and (4-12), we find

k QTj k � kTj k exp.C˛�1� jzj/: (4-14)

This clearly holds for j D 0 also. Squaring and summing,

1

nC 1

nX
jD0

k QTj k
2
�

� 1

nC 1

nX
jD0

kTj k
2
�

exp.2C˛�1� jzj/; (4-15)

which is (1-40).
Note that (1-41) implies (1-39) so that (1-42) is just (4-14). �

We note that the argument above can also be used for more general perturbative bounds. For example,
suppose that

C1 � sup
n
kTn.x0/k<1; (4-16)
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for a given set of Jacobi parameters. Let a0n D anC ıan and b0n D bnC ıbn with

C2 �

1X
nD1

jıanjC jıbnj<1 (4-17)

and
˛0� D inf a0n > 0: (4-18)

Defining QAn; QTn at energy x0 but with fa0n; b
0
ng
1
nD1 Jacobi parameters, one gets

k QAk �Akk � C3Œ˛
�1
� C .˛

0
�/
�1�.jıakjC jıbkj/ (4-19)

for some universal constant C3. Thus

kBkk � C3C
2
1 Œ˛
�1
� C .˛

0
n/
�1�.jıakjC jıbkj/ (4-20)

and
k QTnk � C1 exp.C 21C2C3Œ˛

�1
� C .˛

0
�/
�1�/; (4-21)

providing another proof of a standard `1 perturbation result.

5. Ergodic Jacobi matrices and Cesàro summability

In this section, our goal is to prove Theorem 4. We fix an ergodic Jacobi matrix setup. We will need to
use certain special solutions:

Theorem 5.1 [Deift and Simon 1983]. For any Jacobi matrix with †ac.d�!/ (which is a.e.!-indepen-
dent) of positive measure, for a.e. pair .x; !/ 2 †ac �� (a.e. with respect to dx ˝ d�.!/), there exist
sequences fu˙n .x; !/g

1
nD�1 such that

Tn.x; !/

 
u˙1 .x; !/

a0u
˙
0 .x; !/

!
D

 
u˙nC1.x; !/

anu˙n .x; !/

!
; (5-1)

with the following properties:

(i) u�n .x; !/D u
C
n .x; !/;

(ii) an.uCnC1u
�
n �u

�
nC1u

C
n /D�2i ;

(iii) juCn .x; !/j D ju
C
0 .x; S

n!/j;

(iv)
R
juCn .x; !/j

2 d�.!/ <1;

(v) u˙0 is real.

Of course, by (iii), the integral in (iv) is n-independent. For later purposes (see Section 6), we will
need an explicit formula for this integral. In fact, we will need explicit formulae for u0; u�1 in terms of
the m-function.

For Im z > 0, one defines QuCn .z; !/ so as to solve the following equation equivalent to (5-1):

an Qu
C
nC1C .bn� z/ Qu

C
n C an�1 Qu

C
n�1 D 0; (5-2)
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with
P1
nD1j Qu

C
n j
2 <1. This determines QuCn up to a constant, and so

m.z; !/D�
QuC1 .z; !/

a0 Qu
C
0 .z; !/

(5-3)

is normalization-independent and, by (5-2), obeys

m.z; !/D
1

�zC b1� a
2
1m.z; S!/

: (5-4)

(Note: We have suppressed the !-dependence of an; bn.)
As usual with solutions of (5-4),

m.z; !/D

Z
d�C! .x/

x� z
; (5-5)

where d�C! is the measure associated to the half-line Jacobi matrix J! .
For a.e.x 2†ac and a.e.!, m.xC i0; !/ exists and has

Imm.xC i0; !/ > 0 .a.e. x 2†ac/; (5-6)

We normalize the solution uC obeying Theorem 5.1 by defining:

uC0 .x; !/D
1

a0ŒImm.xC i0; !/�1=2
; (5-7)

uC1 .x; !/D�
m.xC i0; !/

ŒImm.xC i0; !/�1=2
: (5-8)

(We have listed all the formulae because [Deift and Simon 1983] only considers the case an � 1.) The
uCn are then determined by the difference equation, and the u�n by condition (i).

Of course, we have

pn D
uCnC1�u

�
nC1

uC1 �u
�
1

; (5-9)

since both sides obey the same difference equations with p�1 D 0 (since uC0 D u
�
0 ) and p0 D 1.

By (5-9), to prove Theorem 4 we need to show that

1

n

n�1X
jD0

.uCjC1�u
�
jC1/

2 (5-10)

exists. This follows from the existence of

lim
n!1

1

n

nX
jD1

juCj j
2 (5-11)

and

lim
n!1

1

n

nX
jD1

.uCj /
2: (5-12)
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From condition (iii) and the ergodic theorem (plus (iv)), the a.e.! existence of the limit in (5-11) is
immediate. In cases like the almost Mathieu equation with Diophantine frequencies where uCn is almost
periodic, one also gets the existence of the limit in (5-12) directly, but there are examples, like the almost
Mathieu equation with frequencies whose dual has singular continuous spectrum, where the phase of uCn
is not almost periodic. So this argument does not work in general. In fact, we will eventually prove that
for a.e. .x; !/ in †ac �� (see Theorem 6.3):

lim
n!1

1

n

nX
jD1

.uCj /
2
D 0: (5-13)

It would be interesting to have a direct proof of this (for the periodic case, see [Simon 2010]) rather than
the indirect path we will take.

Define the 2� 2 matrix

Un.x; !/D
1

.�2i/1=2

 
uCnC1.x; !/ u�nC1.x; !/

anu
C
n .x; !/ anu

�
n .x; !/

!
; (5-14)

(where we fix once and for all a choice of
p
�2i ). By condition (ii),

det.Un.x; !//D 1 (5-15)

and, by (5-1),
Tn.x; !/U0.x; !/D Un.x; !/ (5-16)

or
Tn.x; !/D Un.x; !/U0.x; !/

�1: (5-17)

For now, we fix x 2†ac with

E.Œa0.!/
2 Imm.xC i0; !/��1/ <1; (5-18)

(known Lebesgue a.e. by Kotani theory; see [Simon 1983; Deift and Simon 1983]), so Un can be defined
and is in L2.

Theorem 5.2. Fix a matrix Q. For a.e.!, the limit of matrices

lim
n!1

1

n

n�1X
jD0

Tj .x; !/
tQTj .x; !/ (5-19)

exists.

Proof of Theorem 4 given Theorem 5.2. Pick

QD

�
1 0

0 0

�
:

Then the 1,1 matrix element of Tj .x; !/tQTj .x; !/ is pj .x; !/2, and the 2,2 element is qj .x; !/2.
Since the limits in (1-45) exist, we are done. �
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Equation (5-17) plus condition (iv) will imply critical a priori bounds on kTn.x; � /kL1.d�/. It will be
convenient to use the Hilbert–Schmidt norm on these 2� 2 matrices.

Lemma 5.3. We have

sup
n

Z
kTn.x; !/k d�.!/ <1: (5-20)

Proof. Since det.Un/D 1,
kUn.x; !/

�1
k D kUn.x; !/k: (5-21)

Thus, by (5-17),
kTn.x; !/k � kUn.x; !/k kU0.x; !/k: (5-22)

By the Schwarz inequality,

sup
n

Z
kTn.x; !/k d�.!/� sup

n

Z
kUn.x; !/k

2 d�.!/D

Z
kU0.x; !/k

2 d�.!/ <1;

where we also have used condition (iv) and the equality

kUj .x; !/k D kU0.x; S
j!/k; (5-23)

a consequence of condition (iii) and our use of Hilbert–Schmidt norms. �

Let Aj .!/ be the matrix (1-32) with aj D aj .!/, bj D bj .!/ and let

A.!/� A1.!/; (5-24)

so
Aj .!/D A.S

j�1!/; (5-25)

and the transfer matrix for J! is

Tn.!/D A.S
n�1!/ : : : A.!/: (5-26)

Now form the suspension
y�D��SL.2;C/ (5-27)

and define yS W y�! y� by
yS.!; C /D .S!;A.!/C /; (5-28)

so
ySn.!; C /D .Sn!; Tn.!/C /: (5-29)

Theorem 5.4. There exists an yS -invariant probability measure d� on y� whose projection onto � is d�
and with Z

kCk d�.!; C / <1: (5-30)

Proof. Pick any probability measure �0 on SL.2;C/ with
R
kCkk d�0.C / <1 for all k. For example,

one could take d�0.C /DNe�kCk
2

d Haar.C / where N is a normalization constant. Let yS� be induced
on measures on y� by Œ yS�.�/�.f /D �.f ı yS/. Let

�n D yS
n
� .�˝�0/: (5-31)
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Then the invariance of � under S� implies the projection of �n is � andZ
kCk d�n D

Z
kTn.!/Ck d�˝ d�0 �

�Z
kTn.!/k d�

��Z
kCk d�0

�
; (5-32)

which, by (5-20), is uniformly bounded in n.
Let Q�n be the Cesàro averages of �n, that is,

Q�n D
1

n

n�1X
jD0

�j : (5-33)

So, by (5-32),

sup
n

Z
kCk d Q�n <1; (5-34)

so fQ�ng are tight, that is,
lim
K!1

sup
n
Q�nfC j kCk �Kg ! 0;

which implies that Q�n has a weak limit point in probability measures on z�. This weak limit point is
invariant and, by (5-34), it obeys (5-30). �

Lemma 5.5. Let L<1. Let

y�L D f.!; C / j kU0.!/k<L; kCk<Lg: (5-35)

Then for any ", there is a K so that for a.e. .!; C / 2 y�L,

lim
n!1

1

n

X
j2B.K;!;C/
0�j�n�1

kTj .!/Ck
2
� "; (5-36)

where
B.K;!; C /D fj j kTj .!/Ck �Kg: (5-37)

Proof. Since U0.!/ 2 L2.d�/, we have

lim
s!1

Z
kU0.!/k�s

kU0.!/k
2d�.!/D 0; (5-38)

so for any ı > 0, there exists s.ı/ so that the integral is less than ı.
Let zB. zK;!/ be defined by

zB. zK;!/D fj j kUj .!/k � zKg: (5-39)

By the Birkhoff ergodic theorem and (5-23) for a.e.!,

lim
n!1

1

n

X
j2 zB. zK;!/
0�j�n�1

kUj .!/k
2
D

Z
kU0.!/k� zK

kU0.!/k
2d�� ı; (5-40)

if zK � s.ı/.
Given " and L, let ı D "=L2 and K � L2s.ı/. Since

kTj .!/Ck � kUj .!/kL
2 (5-41)
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if .!; C /��L,

B.K;!; C /� zB
� K
L2
; !
�
:

So, by (5-40) and (5-41),

lim
n!1

1

n

X
j2B.K;!;C/
0�j�n�1

kTj .!/Ck
2
� L2ı D "; (5-42)

which is (5-35). �

Proof of Theorem 5.2. Without loss, suppose kQk � 1. Define on y�

fn.!; C /D
1

n

n�1X
jD0

C tTj .x; !/
tQTj .x; !/C: (5-43)

If we prove that this has a pointwise limit for � a.e. .!; C /, we are done: since � is the projection of �,
for � a.e.!, there are some C for which (5-43) has a limit. But C is invertible, so .C t /�1fnC�1 has a
limit, that is, (5-19) does.

Notice that if
h.!; C /D C tQC; (5-44)

then fn.!; C / is a Cesàro average of h. ySj .!; C //, so we can almost use the ergodic theorem except we
only know a priori that

R
kh.!; C /k1=2 d� <1, not

R
kh.!; C /k d� <1, so we need to use Lemma

5.5.
Fix L and consider .!; C / 2 y�L. Let

hK.!; C /D

(
C tQC if kCk �K;

0 if kCk>K:
(5-45)

Then, since kQk � 1,

khK. yS
j .!; C //� h. ySj .!; C //k �

(
0 if j … B.K;!; C /;

kTj .!/Ck
2 if j 2 B.K;!; C /:

(5-46)

It follows that if

f .K/n .!; C /D
1

n

n�1X
jD0

hK. yS
j .!; C //; (5-47)

then
kf .K/n .!; C /�fn.!; C /k � sum on left side of (5-36):

So, by Lemma 5.5,
lim sup
n!1

kf .K/n .!; C /�fn.!; C /k � "; (5-48)

if
K �K.";L/ (5-49)

given by the lemma.
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For any finite K, hK is bounded, so the Birkhoff ergodic theorem and the invariance of � imply, for
a.e. .!; C /, limf

.K/
n .!; C / exists. Thus (5-48) and (5-49) imply that limf

.K/
n .!; C / forms a Cauchy

sequence as K!1 (among, say, integer values), and that its limit is also lim fn.!; C /, for a.e. .!; C /
in y�L.

Since L is arbitrary and �. y�n y�L/! 0 on account of
R
kU0.!/k

2 d� <1, we see that fn has a limit
for a.e.!;C . �

6. Equality of the local and microlocal DOS

Our main goal in this section is to prove Theorem 5. We know from Theorem 4 that for a.e.! 2� and
x0 2†ac, we have

1

nC 1
Kn.x0; x0/! k!.x0/ (6-1)

some positive function. By Theorems 1 and 2, this implies that the spacing of zeros at a.e. Lebesgue
point is

x
.n/
jC1.x0/� x

.n/
j .x0/�

1

nw!.x0/k!.x0/
: (6-2)

Thus, for fixed K large, in an interval .x0�K=n; x0CK=n/, the number of zeros is 2Kw.x0/k.x0/.
On the other hand, if �1.x0/ is the density of states, for a.e.x0 in the a.c. part of the support of d�1,
the number of zeros in .x0 � ı; x0C ı/ is approximately 2ın�.x0/. If ı were K=n, this would tell us
that

w!.x0/k!.x0/D �1.x0/; (6-3)

which is precisely (1-23).
Of course, �1 is defined by first taking n!1 and then ı # 0, so we cannot set ı DK=n, but (6-3)

is an equality of a local density of zeros obtained by taking intervals with O.n/ zeros as n!1 and a
microlocal individual spacing as in (6-2).

So define
�L.x0; !/D w!.x0/k!.x0/; (6-4)

the microlocal DOS. Notice that we have indicated an !-dependence of �L because, at this point, we have
not proven !-independence. !-independence often comes from the ergodic theorem — we determined
the existence of k!.x0/ using the ergodic theorem, but unlike for �1, the underlying measure was only
invariant, not ergodic, and indeed, k! , the object we controlled is not !-independent.

Of course, once we prove �L D �1, �L will be proven !-independent, but we will, in fact, go the
other way: we first prove that �L is !-independent, use that to show that if u is the Deift–Simon wave
function, then the average of u2 (not juj2) is zero, and use that to prove that �L D �1.

Theorem 6.1. Suppose that J! is a family of ergodic Jacobi matrices. Let �L.x; !/ be determined by
(6-1) and (6-4) for x 2†ac, ! 2�. Then for a.e.x 2†ac, �L.x; !/ is a.e.!-independent.

Proof. Since �L.x; !/ is jointly measurable for .x; !/ 2 †ac ��, �L.x; � / is measurable for a.e.x.
Since S is ergodic, it suffices to prove that �L.x; S!/D �L.x; !/ for a.e. .x; !/.

Let pn.x; !/ be the OPs for J! . Then the zeros of pn�1.x; S!/ and pn.x; !/ interlace. It follows,
for any interval In;A.x0/D Œx0�A=n; x0CA=n�, thatˇ̌

# of zeros of pn.x; !/ in In;A.x0/� # of zeros of pn�1.x; S!/ in In;A.x0/
ˇ̌
� 2: (6-5)
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If �L.x0; S!/¤ �L.x0; !/ and AD k�L.x0; !/�1 with k large, it is easy to get a contradiction between
(6-5) and (6-2). Thus, �L.x; !/D �L.x; S!/ as claimed. �

Next, we need a connection between �L and u. Recall from (5-9) that

pn.x; !/D
ImuCnC1.x; !/

ImuC1 .x; !/
; (6-6)

while (5-8) and (5-5) give, respectively,

ImuC1 .x; !/D�ŒImm.xC i0; !/�1=2; (6-7)

Imm.xC i0; !/D �w!.x/ for a.e.x 2†ac: (6-8)

Thus, if we define

Av!.fj .!//� lim
n!1

1

n

nX
jD1

fj .!/; (6-9)

then

�L.x; !/D
1

�
Av!.ŒImuCj .x; !/�

2/: (6-10)

Note that ImuCj .x; !/ is not ImuC0 .x; S
j!/, so we cannot write (6-10) as an integral. In fact, the !-

independence of the right side of (6-10) (because of !-independence of the left side) will have important
consequences.

To see where we are heading, we note the following result (see also [Damanik 2007, Theorem 5]).

Theorem 6.2 [Kotani 1997]. For a.e.x 2†ac,

�1.x/D
1

2�

Z
juC0 .x; !/j

2 d�.x/: (6-11)

Remarks. 1. Kotani [1997] and Damanik [2007] treat an�1, but it is easy to accommodate general an.

2. Kotani’s theorem is not stated in this form but rather as (see Equation (22) in [Damanik 2007]):

��1.x/D

Z
ImG!.0; 0I xC i0/ d�.!/; (6-12)

where G! is the whole-line Green’s function. Because G! is reflectionless, G! is pure imaginary
and

Im.G!.0; 0I xC i0//D Œ2a20 Imm.xC i0; !/��1 D 1
2
juC0 .x; !/j

2; (6-13)

by (5-7).

Thus, the key to proving �L D �1 will be to show that

Av!.ŒImuCj .x; !/�
2/D Av!.ŒReuCj .x; !/�

2/: (6-14)

Note that (6-10) includes that the Av!.ŒImuCj �
2/ exists and, by the ergodic theorem, Av!.juCj j

2/ exists,
so we know for a.e. .x; !/ 2†ac �� that Av!.ŒReuCj .x; !/�

2/ exists. We are heading towards:
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Theorem 6.3. Suppose x 2†ac is such that �L.x; !/ exists for a.e.! and is !-independent, and that

�1..�1; x�/¤
1
2
: (6-15)

Then for a.e.!,
Av!..uCj .x; !//

2/D 0: (6-16)

Proof of Theorem 5 given Theorem 6.3. (6-15) fails at most a single x in †ac, so (6-16) holds for
a.e. .x; !/ 2†ac ��. Its real part implies (6-14), and so for a.e. .x; !/,

Av!.ŒImuCj .x; !/�
2/D 1

2
Av!.juCj .x; !/j

2/D 1
2

Z
juC0 .x; !/j

2 d�.x/; (6-17)

by the ergodic theorem. By (6-10), (6-11), and the definition of �L in (6-4) and the paragraphs preceding
it, we see that the first limit in (1-45) is �1.x/=w!.x/. �

Proof of Theorem 6.3. Fix x 2 †ac (at each stage, we work up to sets of Lebesgue measure 0). Define
'.!/ 2 .0; 2�/ by

Arg.�m.xC i0; !//D�'.!/: (6-18)

Then '.!/ 2 .0; �/ by Imm> 0. Let (' and sn also depend on x)

sn.!/D

nX
jD1

'.Sj�1!/: (6-19)

Then, by (5-3) and condition (iii),

uCn .x; !/D e
�isn.!/uC0 .x; S

n!/ and uCnCj .x; !/D e
�isn.!/uCj .x; S

n!/: (6-20)

It follows that for each fixed n,

Av!.ImuCj ..x; S
n!//2/D Av!..Im eisn.!/uCj .x; !//

2/: (6-21)

If s; x; y are real,

.Im.eis.xC iy///2 D .x sin sCy cos s/2

D y2C .sin2 s/.x2�y2/C xy.sin 2s/; (6-22)

and thus we can write for the left-hand side of (6-21)

Av!.ImuCj ..x; S
n!//2/D Av!.ŒIm.uCj .x; !//�

2/C sin2 sn.!/R.!/C 1
2

sin.2sn.!//I.!/; (6-23)

where
R.!/D Av!.Re..uCj .x; !//

2//; I.!/D Av!.Im..uCj .x; !//
2//; (6-24)

(all such averages having been previously shown to exist).
We know that for a.e. .x; !/, for n D 0; 1; 2; : : : , the left side of (6-21) exists and is n-independent

(and equal to �L.x; !/). For such .x; !/, (6-23) implies that for all n,

sin sn.!/Œsin sn.!/R.!/C cos sn.!/I.!/�D 0: (6-25)

We want to consider two cases:
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Case 1. For a positive measure set of !,

s2.!/D �; s4.!/D 2�; s6.!/D 3�; : : : : (6-26)

Case 2. For a.e.!, there is an n.!/ so

s2j .!/D j� .j D 1; : : : ; n� 1/ s2n.!/¤ n�: (6-27)

In Case 1, for such !, we have sn.!/=.n�/! 1
2

. It follows by standard Sturm oscillation theory
[Johnson and Moser 1982] that sn.!/=.n�/! �1..�1; x�/ for almost every !. Thus, the hypothesis
(6-15) eliminates Case 1.

For Case 2, suppose first that n is odd, so s2.n�1/.!/ is a multiple of 2� and (6-19), for 2n� 1 and
2n imply

sin.'2n�1/Œsin.'2n�1/RC cos.'2n�1/I �D 0; (6-28)

sin.'2n�1C'2n/Œsin.'2n�1C'2n/RC cos.'2n�1C'2n/I �D 0: (6-29)

Since '2n�1 2 .0; �/, sin.'2n�1/ ¤ 0 and since '2n�1C '2n 2 .0; 2�/ n f�g, (for if it equals � , then
s2n D n�!), sin.'2n�1C'2n/¤ 0.

The determinant of equations (6-28)/(6-29) is

� sin.'2n�1/ sin.'2n�1C'2n/ sin.'2n/¤ 0 (6-30)

since
sin.A/ cos.B/� sin.B/ cos.A/D sin.A�B/: (6-31)

Here ¤ 0 in (6-30) comes from '2n 2 .0; �/, so sin.'2n/¤ 0.
The nonzero determinant means that (6-28)/(6-29)) I DRD 0, that is, Av!..uCj /

2/D 0 for a.e.!.
If n is even, s2.n�1/.!/ is an odd multiple of � and all equations pick up minus signs, so the argument
is unchanged. �

7. Concluding remarks

1. We have proven for general ergodic Jacobi matrices that for a.e. .x; !/ 2†ac ��,

1

nC 1
Kn.x; xI!/!

�1.x/

w!.x/
: (7-1)

Here �1 is the Radon–Nikodým derivative of the a.c. part of d�1. Based on [Máté et al. 1991; Totik
2000], where results of this type are proven for regular measures, one expects

�1.x/D �e.x/: (7-2)

Here e is the essential spectrum of J! and �e its equilibrium measure. Simon [2007, Theorem 1.15]
proves

Theorem 7.1. If †ac is not empty, then (7-2) holds if and only if , for �e a.e.x, the Lyapunov exponent,
.x/, obeys

.x/D 0: (7-3)
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In particular, for examples where (7-3) fails on a set of positive Lebesgue measure in e [Bjerklöv 2006;
Bourgain 2002a; 2002b; Fedotov and Klopp 2005; 2006], (7-2) may not hold. On the other hand, for
examples like the almost Mathieu equation where it is known that (7-3) holds on all of e [Bourgain and
Jitomirskaya 2002], (7-2) holds. The moral is that (7-2) holds some, but not all, of the time for ergodic
Jacobi matrices.

2. Here is an interesting example that provides a deterministic problem where one has strong clock
behavior but with a density of zeros, �1, which is not �e. Let d� be a measure on Œ�2; 2� of the form
(N is a normalization constant)

d�.x/D
1

N

�
�Œ�1;1�.x/ dxC

1X
nD1

e�n
2

ıxn

�
; (7-4)

where fxng is a dense subset of Œ�2; 2� n .�1; 1/. Then, as in [Simon 2007, Example 5.8], �1 exists
and is the equilibrium measure for Œ�1; 1� (not eD Œ�2; 2�). Moreover, the method of [Lubinsky 2009]
shows that for x 2 .�1; 1/,

1

nC 1
Kn.x; x/!

�1.x/

N�1
: (7-5)

Using either the method of this paper (that is, of [Lubinsky 2008b]) or the method of [Lubinsky 2009],
one proves universality with �1.

3. Simon [2007, Example 5.8] provides a measure with �ess.�/D Œ�2; 2� but †ac D Œ�2; 0� and where
�n has multiple weak limits, including the equilibrium measures for Œ�2; 0� and for Œ�2; 2�. By general
principles [Stahl and Totik 1992], the set of limits is connected, so uncountable. One would like to prove
that quasiclock behavior nevertheless holds for the a.c. spectrum of this model as this will provide a key
test for the conjecture that quasiclock behavior always holds on †ac.

4. What has sometimes been called the Schrödinger conjecture [Maslov et al. 1993] says that for any
Jacobi matrix and a.e.x 2†ac.�/, we have a solution, un, with

0 < inf
n
junj � sup

n
junj<1 (7-6)

and u�1 D 0. Invariance of †ac under rank one perturbations then proves that for a.e.x 2 †ac.�/, the
transfer matrix is bounded. Thus, Theorem 3 in the strong form would always be applicable.

5. While (6-15) is harmless since it only eliminates at most one x, one can ask if (6-16) holds even if
(6-15) fails. Using periodic problems, it is easy to construct ergodic cases where arguCn D ��n=2, so
(6-25) provides no information on I.!/. Nevertheless, in these cases, one can show R.!/D I.!/D 0.
We have not been able to find an example where for a set of positive measure !’s, s2n.!/ D n� ,
s2nC1.!/ D n� C ' with ' some fixed point in .0; �/ n f�=2g. In that case, it might happen that
R.!/¤ 0, I.!/¤ 0. So it remains open if we need to exclude the x with (6-15).

6. While we could use soft methods in Section 3, at one point in our research we used an explicit formula
for the derivative of .1=n/Kn.x0Ca=n; x0Ca=n/ as a function of a that may be useful in other contexts,
so we want to mention it. We start with a variation of parameters formula (discussed, for example, in
[Jitomirskaya and Last 1999; Killip et al. 2003]) that says that, in terms of the second kind polynomials
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of (1-38),

pn.x/�pn.x0/D .x� x0/

n�1X
mD0

.pn.x0/qm.x0/�pm.x0/qn.x0//pm.x/; (7-7)

which implies

p0n.x0/D

n�1X
mD0

.pn.x0/qm.x0/�pm.x0/qn.x0//pm.x0/: (7-8)

Since
d

da

1

n
Kn

�
x0C

a

n
; x0C

a

n

�ˇ̌̌̌
aD0

D
1

n2

nX
jD0

2p0j .x0/pj .x0/; (7-9)

this leads to

d

da

1

n
Kn

�
x0C

a

n
; x0C

a

n

�ˇ̌̌̌
aD0

D
2

n2

nX
jD0

�
pj .x0/

2
� jX
kD0

pk.x0/qk.x0/
�
�qj .x0/pj .x0/

jX
kD0

pk.x0/
2

�
:

(7-10)
As noted in [Simon 2008a], if .1=n/

Pn
jD0 pj .x0/

2 and .1=n/
Pn
jD0 pj .x0/qj .x0/ have limits and

supnŒ.1=n/
Pn
jD0 qj .x0/

2� <1, then the right side of (7-10) goes to 0.
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