
ANALYSIS & PDE

mathematical sciences publishers

Volume 3 No. 3 2010

DORIAN LE PEUTREC

LOCAL WKB CONSTRUCTION FOR WITTEN LAPLACIANS ON
MANIFOLDS WITH BOUNDARY



ANALYSIS AND PDE
Vol. 3, No. 3, 2010

LOCAL WKB CONSTRUCTION FOR WITTEN LAPLACIANS ON MANIFOLDS
WITH BOUNDARY

DORIAN LE PEUTREC

WKB p-forms are constructed as approximate solutions to boundary value problems associated with
semiclassical Witten Laplacians. Naturally distorted Neumann or Dirichlet boundary conditions are
considered.

1. Introduction

Motivation. In order to compute accurately the small eigenvalues, that is, of order O.e�C=h/with C >0,
of a self-adjoint Witten Laplacian acting on 0-forms,

�
.0/

f;h
D�h2�Cjrf .x/j2� h�f .x/ ;

as the small parameter h> 0 tends to 0, we need Wentzel–Kramers–Brillouin (WKB) approximations of
the 1-eigenforms associated with the small eigenvalues of �.1/

f;h
, the self-adjoint Witten Laplacian acting

on 1-forms. The function f is assumed to be a Morse function on some bounded domain � with or
without boundary.

In [Helffer et al. 2004], which improves the previous works [Bovier et al. 2004; 2005] done in a
probabilistic point of view, the authors compute accurately the small eigenvalues of �.0/

f;h
in the case of a

manifold without boundary. In this case, the WKB approximations of 1-eigenforms are the one provided
in the work by Helffer and Sjöstrand [1985], where the analysis is done for general p-forms.

In the case without boundary, it is moreover well known, since the article by Witten [1982], that the
dimension of the spectral subspace associated with the small eigenvalues (i.e., smaller than h) of �.p/

f;h
,

the self-adjoint Witten Laplacian acting on p-forms, is mp.f /, the number of critical points of f with
index p. Furthermore, the corresponding eigenvectors are concentrated around these critical points (see
also [Helffer and Sjöstrand 1985; Helffer et al. 2004; Helffer 1988]).

According to [Chang and Liu 1995; Helffer and Nier 2006; Koldan et al. 2009; Le Peutrec 2008], in the
case of a compact manifold with boundary, these last statements require the introduction of generalized
critical points of f with index p (see Definition 2.6). For a self-adjoint Witten Laplacian �.p/

f;h
with

Neumann or Dirichlet type boundary conditions, �.p/
f;h

admits mp.f / eigenvalues, where mp.f / is the
number of generalized critical points of f with index p. Moreover, the corresponding p-eigenforms
are concentrated around these generalized critical points, which can belong to the boundary. The proper
definition of generalized critical point of f relies on the additional assumption that f has no critical point
on the boundary @� and that f j@� is also a Morse function (see Assumption 2.5). This definition is
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different for Neumann or Dirichlet type boundary conditions, but, in both cases, the interior generalized
critical points of f with index p are the usual critical points with index p (see again Definition 2.6).

Hence, in the case of a manifold with boundary, some WKB approximations of 1-eigenforms have
to be constructed near some generalized critical points which lie on the boundary. This was done in
[Helffer and Nier 2006] for Dirichlet type boundary conditions. Nevertheless, the construction there
relies on some specific trick which cannot be extended to the construction of local WKB 1-forms in the
Neumann case. In order to treat this last case (see [Le Peutrec 2008]), a finer treatment of the three
geometries involved in the boundary problem (boundary, metric, Morse function) is carried out.

It happens that the Neumann case for 1-forms contains all the technical obstructions for a general
WKB ansatz for p-eigenforms. Moreover, this construction can be extended to the Dirichlet case, for
general p-forms, using “dual” computations.

Therefore we show in this paper how to construct local WKB p-forms localized near the boundary in
both Neumann and Dirichlet cases. However, only the construction of local WKB p-forms is considered
here and the comparison with the corresponding p-eigenforms has only be treated in the case p D 1, in
[Helffer and Nier 2006; Le Peutrec 2008].

Main results. Before enunciating our results, let us introduce some notation used in their statements.
We refer in particular the reader to Definition 2.3 and connected material behind.

The operators n and t denote the normal and tangential components, and j � the canonical pull-back
associated with the embedding j W @�!�. They are defined in the next section.

The function ˆ is the degenerate Agmon distance to the generalized critical point U associated with
the function f. This is the only nonnegative solution to jrˆj2D jrf j2 around U (Sections 4A and 4D).

Recall also that for a p-form bh, the notation bh D O.h1/ means that, for each N in N, we have
bh D O.hN / in the sense that kbhk � CNhN for some CN > 0. Here k � k is the L2-norm over the
p-forms inherited from the Riemannian structure.

Lastly, forA2L.T �x�/, x2� (T �x� denoting the cotangential space at x), and a p-form !1^� � �^!p,
A.p/.!1 ^ � � � ^!p/.x/ denotes the following p-form (see also Definition B.1):

.A!1 ^ � � � ^!p/ C � � � C .!1 ^ � � � ^A!p/:

Theorem 1.1 (Neumann case). Let U be a generalized critical point of f with index p on the boundary,
for Neumann type boundary conditions. There exists locally, in a neighborhood of U , a C1 solution
uWKB
p to

�
.p/

f;h
uWKB
p D e�ˆ=hO.h1/; (1-1)

nuWKB
p D 0 on @�; (1-2)

ndf;hu
WKB
p D 0 on @�; (1-3)

where uWKB
p has the form

uWKB
p D ahe

�ˆ=h;

with ah �
P
k

akhk , a0.U /D ta0.U /¤ 0, and

a0.U / 2 Ker
�
2.Hess.f j@�/.U /j

�/.p/�Tr.Hess.f j@��ˆj@�/.U //
�
:
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When restricted to tangential p-forms, 2.Hess.f j@�/.U /j �/.p/ � Tr.Hess.f j@� � ˆj@�/.U // has a
one-dimensional kernel. The tangential form a0 is then unique up to multiplication by a constant.

Theorem 1.2 (Dirichlet case). Let U be a generalized critical point of f with index p on the boundary,
for Dirichlet type boundary conditions. There exists locally, in a neighborhood of U , a C1 solution
uWKB
p to

�
.p/

f;h
uWKB
p D e�ˆ=hO.h1/ (1-4)

tuWKB
p D 0 on @� (1-5)

td�f;hu
WKB
p D 0 on @� ; (1-6)

where uWKB
p has the form

uWKB
p D ahe

�ˆ=h;

with ah �
P
k a

khk , a0.U /D na0.U /¤ 0, and

a0.U / 2 Ker
�
2.Hess.f j@�/.U /j

�/.p/�Tr.Hess.f j@��ˆj@�/.U //
�
:

When restricted to normal p-forms, 2.Hess.f j@�/.U /j �/.p/ �Tr.Hess.f j@� �ˆj@�/.U // has a one-
dimensional kernel. The normal form a0 is then unique up to multiplication by a constant.

Remark 1.3. When B 2L.T �x @�/, x 2 @�, note that Bj � D Bj �t 2L.T �x�IT
�
x @�/�L.T �x�/ and

.Bj �/.p/ ¤ .B/.p/j �. For example, if En is the outgoing normal at the boundary and En� its dual for the
Riemannian scalar product, then for ! ^ En� with ! D t!,

.Bj �/.p/.! ^ En�/D ..Bj �/.p�1/!/^ En� . D .B.p�1/.j �!//^ En� /:

To prove these results and make some explicit computations, we are going to work in local coordinates.
To carry out properly the analysis, we need to choose suitably these local coordinates with respect to the
geometry of the problem. Some “adapted coordinates” will then be defined in Section 3A. They will be
more finely specified in Sections 4A and 4D; see (4-6) and (4-30). The last statements of Theorems 1.1
and 1.2 simply specify the polarization of a0.U / which is imposed, while solving degenerate transport
equations (see Sections 4C and 4F). Again, this is more explicit later, choosing the suitable coordinate
system. In particular, with the coordinate formulation, the fact that a0.U / lies in a given one-dimensional
space appears clearly in (4-25) after Proposition 4.1 for the Neumann case and in (4-49) after Proposition
4.4 for the Dirichlet case. These theorems are respectively proved in Sections 4C and 4F.

When the metric is Euclidean, g D
Pn
iD1.dx

i /2, the manifold � is locally Rn� D Rn�1 � .�1; 0/,
the boundary @� is locally @�D fxn D 0g, and the function f is of the form

f .x/D�xn� 1
2
j�1j.x

1/2� � � � � 1
2
j�pj.x

p/2C 1
2
j�pC1j.x

pC1/2C 1
2
j�n�1j.x

n�1/2

in the Neumann case, or

f .x/DCxn� 1
2
j�1j.x

1/2� � � � � 1
2
j�pj.x

p/2C 1
2
j�pC1j.x

pC1/2C 1
2
j�n�1j.x

n�1/2

in the Dirichlet case, the “adapted coordinates” are simply .x1; : : : ; xn/. The general case is more
involved because the three geometries of the boundary, of the metric (curvature), and of the level sets of
the function f do not match.



230 DORIAN LE PEUTREC

Our goal consists in reducing the analysis to a problem on the boundary, hence to a problem in a
manifold without boundary. Once this is done, we will be able to apply the results of [Helffer and
Sjöstrand 1985], obtained in the case of a manifold without boundary, to this reduced problem.

2. Generalities about Witten Laplacians

On both manifolds with or without boundary. Let� be a C1 connected compact oriented Riemannian
manifold with dimension n 2 N�. We will denote by g0 the given Riemannian metric on �; � and @�
will denote respectively its interior and its boundary.

The cotangent and tangent bundles on � are denoted by T �� and T�, respectively, and the cor-
responding exterior fiber bundles by ƒT ��D

Ln
pD0ƒ

pT �� and ƒT�D
Ln
pD0ƒ

pT�. The fiber
bundles ƒT @�D

Ln�1
pD0ƒ

pT @� and ƒT �@�D
Ln�1
pD0ƒ

pT �@� are defined similarly. The space of
C1, C10 , L2, H s , etc. sections in any of these fiber bundles, E, on O D� or O D @�, will be denoted
respectively by C1.OIE/, C10 .OIE/, L

2.OIE/, H s.OIE/, etc.
When no confusion is possible we will simply use the short notation ƒpC1, ƒpC10 , ƒpL2 and

ƒpH s for E DƒpT �� or E DƒpT �@�.
Note that the L2 spaces are those associated with the unit volume form for the Riemannian structure

on � or @� (� and @� are oriented).
The notation C1.�IE/ is used for the set of C1 sections up to the boundary.
Let d be the exterior differential on C10 .�IƒT

��/,

d .p/ W C10 .�Iƒ
pT ��/! C10 .�Iƒ

pC1T ��/;

and d� its formal adjoint with respect to the L2-scalar product inherited from the Riemannian structure,

d .p/;� W C10 .�Iƒ
pC1T ��/! C10 .�Iƒ

pT ��/:

Remark 2.1. Note that d and d� are both well defined on C1.�IƒT ��/ .

For a function f 2C1.�IR/ and h>0, we introduce distorted operators defined on C1.�IƒT ��/:

df;h D e
�f .x/=h .hd/ ef .x/=h and d�f;h D e

f .x/=h .hd�/ e�f .x/=h:

The Witten Laplacian is the differential operator defined on C1.�IƒT ��/ by

�f;h D d
�
f;hdf;hC df;hd

�
f;h D .df;hC d

�
f;h/

2: (2-1)

The last equality follows from the property dd D d�d� D 0 which implies

df;hdf;h D d
�
f;hd

�
f;h D 0: (2-2)

This means, by restriction to the p-forms in C1.�IƒpT ��/, that

�
.p/

f;h
D d

.p/;�

f;h
d
.p/

f;h
C d

.p�1/

f;h
d
.p�1/;�

f;h
:

We next give some uselful relations involving exterior and interior products (denoted respectively by
^ and i ), gradients (denoted by r) and Lie derivatives (denoted by L):
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.df ^/� D irf .in L2.�IƒpT ��//; (2-3)

df;h D hd C df ^; (2-4)

d�f;h D hd
�
C irf ; (2-5)

d ı iX C iX ı d D LX ; (2-6)

�f;h D h
2.d C d�/2Cjrf j2C h.Lrf CL�

rf /; (2-7)

where X denotes a vector field on � or �.

Remark 2.2. The operators introduced depend on the Riemannian metric g0 but we omit this dependence
for conciseness.

On manifolds with boundary.

Definition 2.3. We denote by En� the outgoing normal at � 2 @� and by En�� the 1-form dual to En� for
the Riemannian scalar product.

For any ! 2 C1.�IƒpT ��/, the form t! is the element of C1.@�IƒpT ��/ defined by

.t!/� .X1; : : : ; Xp/D !� .X
T
1 ; : : : ; X

T
p / for all � 2 @�;

with the decomposition into the tangential and normal components to @� at � ; i.e., Xi D XTi ˚ x
?
i En� .

Moreover,
.t!/� D iEn� .En

�
� ^!� / :

The projected form t!, which depends on the choice of En� (hence on g0), can be compared with the
canonical pull-back j �! associated with the embedding j W @�!�. Actually, the exact relationship is
j �! D j �.t!/.

The normal part of ! on @� is defined by

n! D !j@�� t! 2 C1.@�IƒpT ��/:

In the sequel, the form ! 2 C1.�IƒpT ��/ will be said tangential or normal if ! D t! or ! D n!,
respectively, at any point of the boundary.

Definition 2.4. We denote by @f
@n
.�/ or @nf .�/ the normal derivative of f at � :

@f

@n
.�/D @nf .�/ WD hrf .�/ j En� i:

Assumption 2.5. The functions f 2C1.�;R/ and f j@� 2C1.@�;R/ are Morse functions. Moreover,
the function f has no critical point on @�.

The Neumann realization of the Witten Laplacian, denoted by �N
f;h

, is the self-adjoint realization of
�f;h whose domain is

D.�Nf;h/D
˚
! 2ƒH 2.�/ W n! D 0; ndf;h! D 0

	
:

An analogous statement holds for the Dirichlet realization �D
f;h

, the domain now being

D.�Df;h/D
˚
! 2ƒH 2.�/ W t! D 0; td�f;h! D 0

	
:



232 DORIAN LE PEUTREC

See [Chang and Liu 1995; Helffer and Nier 2006; Le Peutrec 2008] for these results.

Definition 2.6. A point U 2 � is called a generalized critical point of f with index p if either U 2 �
and U is a critical point of f with index p, or U 2 @� and

� in the Neumann case, U is a critical point with index p of f j@� such that @nf .U / < 0;

� in the Dirichlet case, U is a critical point with index p� 1 of f j@� such that @nf .U / > 0.

Remark 2.7. This convention implies that the index p of a generalized critical point U on the boundary
satisfies p 2 f0; : : : ; n� 1g in the Neumann case and p 2 f1; : : : ; ng in the Dirichlet case.

We end this section by giving the statement extending to the case of a manifold with boundary the
analysis done by Witten [1982]; see [Chang and Liu 1995; Helffer and Nier 2006; Le Peutrec 2008].

Theorem 2.8. Under Assumption 2.5, there exists h0 > 0 such that �N
f;h

and �D
f;h

have, for h 2 .0; h0�,
the following property: For any p 2 f0; : : : ; ng, the spectral subspaces

Ran1Œ0;h3=2/.�
N;.p/

f;h
/ or Ran1Œ0;h3=2/.�

D;.p/

f;h
/

have rank mp.f /, the number of generalized critical points of f with index p in the respective cases
(Neumann or Dirichlet).

The proofs in [Helffer and Nier 2006; Le Peutrec 2008] in fact show that the corresponding eigenvec-
tors are concentrated around these critical points.

3. Preliminaries, coordinate systems

Since more than two geometries overlap around a generalized critical point of f with index p on the
boundary and since systems of PDE are considered, the choice of the proper coordinate systems is a
crucial point for making the analysis possible.

3A. Existence of an adapted local coordinate system.

Definition 3.1. Let � be a point on the boundary @�. An adapted local coordinate system around � is
a local coordinate system .x1; : : : ; xn/D .x0; xn/ centered at � satisfying the following properties:

(i) dx1; : : : ; dxn is an orthonormal positively oriented basis of T �� .�/, the cotangent space at � .

(ii) The boundary @� corresponds locally to xn D 0 and the interior � to xn < 0.

(iii) .@=@xn/j@�D En, the outgoing normal at the boundary. Moreover, .@=@xn/ is unitary and normal to
fxn D Constantg.

Such a coordinate system is more specific than the one provided by the collar theorem in [Schwarz
1995; Duff 1952; Duff and Spencer 1952]. Moreover, owing to the analysis done in [Petersen 1998,
117–122], it can be proven that such a system always exists. This is the aim of the next result.

Proposition 3.2. A local coordinate system satisfying Definition 3.1 always exists.

Proof. As in [Petersen 1998, 119–120], we look at

T @�? D fv 2 T�� W � 2 @�; v 2 .T�@�/
?
� T��g;
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where .T�@�/? is the orthogonal complement of T @� in T�� (so T�� D T�@�˚
? .T�@�/

? for
each � 2 @�). Then, the map exp? introduced in [Petersen 1998] is a diffeomorphism from an open
neighborhood of the zero section in T @�? onto its image in �. It means, choosing a point � near the
boundary @�, that there exists an unique geodesic � joining � to a point �b on the boundary which
satisfies P�.�b/ 2 T @�?. It is equivalent to say that there exists an unique geodesic � joining � to �b
with P�.�b/D En�b .

Now let �xn be the geodesic distance to @� and take x0 such that x0j@� is a coordinate system on the
boundary and x0 is constant along the geodesics parametrized by xn. The second point of the definition
is then satisfied and @=@xn is unitary. Moreover, the choice of x0j@� is arbitrary and we can choose it
centered at U such that dx1; : : : ; dxn is an orthonormal basis of T �U .�/ positively oriented. Then the
first point of the definition is also satisfied.

We now verify that the third point of the definition is fulfilled. Write

@

@xn

D
@

@xn

ˇ̌̌
@

@xi

E
�
D

D
r@=@xn

@

@xn

ˇ̌̌
@

@xi

E
�
C

D
@

@xn

ˇ̌̌
r@=@xn

@

@xi

E
�
D 0 C

D
@

@xn

ˇ̌̌
r@=@xn

@

@xi

E
�

D

D
@

@xn

ˇ̌̌
r
@=@xi

@

@xn

E
�
D
1

2

@

@xi

D
@

@xn

ˇ̌̌
@

@xn

E
�
D 0;

where we used the fact that r is the Levi-Civita connection and r
@=@xn

@=@xn D 0 since xn is a geodesic
curve. Hence, D

@

@xn

ˇ̌̌
@

@xi

E
�
D

D
@

@xn

ˇ̌̌
@

@xi

E
�b
D

D
En�b

ˇ̌̌
@

@xi

E
�b
D 0;

which gives the third point of the definition. �

Remark 3.3. In an adapted local coordinate system .x0; xn/ around � , remark that the metric g0 can be
written as

g0.x/D .dx
n/2C

X
1�i;j<n

gij .x/ dx
i dxj :

Moreover, it can be convenient to work with matrices and we write G0.x/ D .gij .x//ij , G�10 .x/ D

.gij .x//ij . Remember that gij D h.@=@xi / j .@=@xj /i, gij D hdxi j dxj i, and dxi .@=@xj /D ıij .
Hence, in the .x0; xn/ coordinate system, G˙10 .x/ has the form

G˙10 .x/D

0BBB@
0

G˙1
0

0 .x/
:::

0

0 � � � 0 1

1CCCA ; with G˙10 .0/D Idn :

3B. Separating the xn-variable.

Lemma 3.4. (1) Let f1 belong to C1.�;R/ and let U 2 @� be a critical point of f1j@� such that

@f1

@n
.U /¤ 0: (3-1)

Assume also that ˛ 2 C1.@�;R/ is a local solution to jrT ˛j
2
D jrTf1j

2 around U .
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Then there exists a neighborhood V of U in � such that the eikonal equation

jrˆ˙j
2
D jrf1j

2 (3-2)

with boundary conditions

ˆ˙j@�\V D ˛; @nˆ˙j@�\V D˙
@f1

@n

ˇ̌̌
@�\V

admits a unique local smooth real-valued solution. (On the boundary, (3-2) is to be interpreted as
saying that jrˆ˙j2 D j@nˆ˙j2CjrTˆ˙j2; see details in the proof.)

(2) There exist local coordinates .x1; : : : ; xn/D .x0; xn/ in a neighborhood of U in � with

.x0; xn/.U /D 0

where the function ˆ˙ and the metric g0 have the form

ˆ˙ D�x
n
C˛.x0/ and g0 D gnn.x/ .dx

n/2C

n�1X
i;jD1

gij .x/ dx
idxj :

Moreover, the boundary @� is locally defined by fxn D 0g and � corresponds ton
sgn

�@f1
@n
.U /

�
xn > 0

o
: (3-3)

Proof. (1) Take an adapted local coordinate system .x0; xn/ around U in order to write (3-2) as

j@xnˆ˙j
2
CjrTˆ˙j

2
D j@xnf1j

2
CjrTf1j

2

(see Appendix A for the exact meaning of rT in the interior).
In particular, we obtain on the boundary

j@nˆ˙j
2
CjrTˆ˙j

2
D j@nf1j

2
CjrT ˛j

2:

The first point is then a direct consequence of the Hamilton–Jacobi theorem, due to the condition

@f1

@n
.U /¤ 0:

(2) As in [Helffer and Sjöstrand 1985], set

fC DˆC�ˆ� and f� DˆCCˆ� ;

and note the relations

ˆ� D�
1
2
fCC

1
2
f�; ˆC D

1
2
fCC

1
2
f�; (3-4)

rfC � rf� D 0; (3-5)

fCj@�\V D 0; f�j@�\V D 2˛; (3-6)

@f
C

@n

ˇ̌̌
@�\V

D 2
@f1

@n

ˇ̌̌
@�\V

¤ 0;
@f�
@n

ˇ̌̌
@�\V

D 0: (3-7)
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Let .x1; : : : ; xn�1/D x0 denote a set of coordinates on @� in a neighborhood of U (then contained in V)
and such that xj .U /D 0 . We extend them to a neighborhood of U in � as constant along the integral
curve of the vector field rf

C
. Then we take xn D�1

2
f
C
.x/ for the last coordinate.

In these coordinates, the functions ˆ˙ and the metric g0 have the forms announced in the lemma.
Further, by (3-6), (3-7), and (3-1), the boundary @� is locally defined by fxnD 0g and� corresponds

to the set in (3-3). �

In the sequel, we will apply part (1) of this lemma in the Neumann and Dirichlet cases in order to
specify the Agmon distance, associated with the function f, to a generalized critical point U with index
p on the boundary.

Then, using part (2) of the lemma and Proposition 3.2.11 of [Le Peutrec 2008] (in the Neumann case)
or Proposition 3.3.9 of [Helffer and Nier 2006] (in the Dirichlet case), we view �

.p/;N

f;h
and �.p/;D

f;h

locally in V around U 2 @� as the restrictions to V of A
.p/
N and A

.p/
D , the latter being the self-adjoint

Witten Laplacian operators on Rn�DRn�1�.�1; 0/ (possibly after choosing �xn instead of xn) whose
domains are

D.AN /D f! 2ƒH
2.Rn�/ W n! D ndf;h! D 0g; D.AD/D f! 2ƒH

2.Rn�/ W t! D td�f;h! D 0g

(see also [Koldan et al. 2009]), and which satisfy

dim Ker A
.p/
N D 1; �.A

.p/
N / n f0g � ŒCh6=5;C1/; (3-8)

dim Ker A
.p/
D D 1; �.A

.p/
D / n f0g � ŒCh6=5;C1/: (3-9)

4. WKB construction near the boundary for �
.p/

f;h
, with p in f0; : : : ; ng

4A. Local WKB construction in the Neumann case. Let U be a generalized critical point of f with
index p in the Neumann case, that is, a critical point with index p 2 f0; : : : ; n� 1g of f j@� satisfying
@f
@n
.U / < 0, and take an adapted local coordinate system .x0; xn/ around U .
Letˆ and ' be respectively the Agmon distance to U associated with the function f and its restriction

to the boundary. The Agmon distance associated with f, that is, with the metric jrf .x/j2 dx2, is denoted
by dAg: ˆ.x/D dAg.x; U /. Recall that, locally,

jrf j2 D jrˆj2

and that ˆ is smooth near U ; see [Helffer and Sjöstrand 1984]. Moreover, ' is nothing but the Agmon
distance to U on the boundary and satisfies locally, on the boundary,

jrTf j
2
D jr'j2:

We now use Lemma 3.4(1) with f1 D f and ˛ D '. The function ˆC of the lemma is consequently ˆ
and we have locally

j@nˆj
2
CjrTˆj

2
D jrˆj2 D jrf j2 ; (4-1)

ˆj@� D '; (4-2)

@nˆj@� D
@f

@n

ˇ̌̌
@�
: (4-3)
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Moreover,
@2xnxn.f �ˆ/.0/D @

2
nn.f �ˆ/.0/D 0: (4-4)

Indeed, we can write in the coordinates .x0; xn/, for the metric g0,

j@xnˆj
2
CjrTˆj

2
g0
D j@xnf j

2
CjrTf j

2
g0
;

where jrTˆj2g0DO.jxj2/ and jrTf j2g0DO.jxj2/ because 0 is a critical point of f j@� in the coordinates
.x0; xn/ (see for example Appendix A). Then apply @xn to the last equation:

@xn j@xnˆj
2
CO.jxj/D @xn j@xnf j

2
CO.jxj/;

that is, using (4-3),
2@2xnxn.f �ˆ/@xnf D O.jxj/;

which yields the result. According to [Helffer and Sjöstrand 1985, 279–280], there exist local coordinates
.x0; xn/ centered at U , where x0D .x1; : : : ; xn�1/ are Morse coordinates for f j@� around U , such that
dx1; : : : ; dxn�1; dxn is orthonormal at U , and

f .x0; 0/D 1
2
�1.x

1/2 C � � � C 1
2
�n�1.x

n�1/2Cf .U /;

'.x0/D 1
2
j�1j.x

1/2C � � �C 1
2
j�n�1j.x

n�1/2;
(4-5)

with �i < 0 for i 2 f1; : : : ; pg and �i > 0 for i 2 fpC 1; : : : ; n� 1g. Furthermore, the coordinates
.x0; xn/ can be chosen such that dx1; : : : ; dxn�1 and dx1; : : : ; dxn�1 coincide at U , and even such that
x0j@� D x

0j@� since x0j@� can be chosen freely.

Specification of the coordinate system for Theorem 1.1. In the rest of the paper we are going to work
in an adapted local coordinate system x D .x0; xn/ around U such that

dxi D dxi at U for all i 2 f1; : : : ; n� 1g : (4-6)

4B. First boundary conditions in the Neumann case. We first write out the function ah.x/D a.x; h/
in our coordinate system:

a.x; h/D
X
I2I

aI .x; h/ dx
I
D

X
I 02I0

aI 0.x; h/ dx
I 0
C

X
In2In

aIn.x; h/ dx
In ; (4-7)

where
I WD

˚�
i1; : : : ; ip

�
2 f1; : : : ; ngp ; i1 < � � �< ip

	
;

I0 WD
˚�
i1; : : : ; ip

�
2 f1; : : : ; ngp ; i1 < � � �< ip < n

	
;

In WD
˚�
i1; : : : ; ip

�
2 f1; : : : ; ngp ; i1 < � � �< ip D n

	
;

and dx.i1;:::;ip/ D dxi1 ^ � � � ^ dxip . We will use in the sequel the Einstein summation convention to
write (4-7) without the summation symbols:

a.x; h/D aI .x; h/ dx
I
D aI 0.x; h/ dx

I 0
C aIn.x; h/ dx

In :

The first boundary condition (1-2) simply says that

aIn..x
0; 0/; h/�

X
k

akIn.x
0; 0/hk � 0 for all In 2 In; (4-8)
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which is equivalent to
akIn.x

0; 0/� 0 for all k 2 N and In 2 In: (4-9)

The rest of this subsection specifies some consequence of these conditions. These consequences will
be used in the next subsection to prove Theorem 1.1.

Proposition 4.1. In the notation of Appendices A and B, the following relations are satisfied for every
tangential p-form b.x/D bI .x/ dx

I , that is, every p-form b.x/ satisfying bIn.x
0; 0/� 0 for all In 2In:

t..2LrˆCR1/b/D .2L
r Q̂
˝ IdCRT

Neu/bI 0dx
I 0
C 2

@ˆ

@xn
i@=@xndb;

n..2LrˆCR1/b/D 2
�@bIn
@xn

@ˆ

@xn
C `In.x

0; 0/
�
dxIn ;

where the `In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn
(for In in In) and RT

Neu is an order-zero differential operator given on the boundary, in the coordinates
.x0; xn/, by the matrix

RT
Neu.x

0; 0/D

0BBB@
0

RT 0

Neu.x
0/

:::

0

0 � � � 0 ˇ.x0/

1CCCA
.p/

� 
.x0/ Id;

where

ˇ.0/D 0; 
.0/D Tr .Hess.f j@��'/.0// ; and RT 0

Neu.0/D 2Hess.f j@�/.0/:

In particular, this is true for ak for k in N when (4-9) is fulfilled.

The following elementary result is important to notice here and also while verifying the final compat-
ibility conditions (see pages 242–244).

Lemma 4.2. Let b.x/ be a tangential p-form. The p-form

iEn.db/

is then tangential and the equivalence

iEn.db/D 0 () ndb D 0

is locally valid on the boundary @�. In particular, this is true for ak for k in N when (4-9) is fulfilled.

Proof. On the boundary @�, we have, in the coordinate system .x0; xn/,

i@=@xn. db/D i@=@xnn dbCi@=@xnt dbD i@=@xnn dbC0D i@=@xn. db/In dx
InD .�1/p. db/In dx

Innfng;

which leads to the result. �

Lemma 4.3. For every tangential p-form b.x/, we have

t..Lrˆ�L
r Q̂
/b/D t..LrTˆ�L

r Q̂
/b/D

@ˆ

@xn
i@=@xndb;

n..Lrˆ�L
r Q̂
/b/D

�@bIn
@xn

@ˆ

@xn
C Q̀In.x

0; 0/
�
dxIn ;
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where the Q̀In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn
(for In in In).

Proof. On the boundary @�, we have the decomposition

.Lrˆ�L
r Q̂
/b D L.@ˆ=@xn/.@=@xn/bC .LrTˆ�L

r Q̂
/b: (4-10)

Thanks to Cartan’s formula (2-6), we can rewrite (4-10) as

.Lrˆ�L
r Q̂
/bD i.@ˆ=@xn/.@=@xn/dbCd.i.@ˆ=@xn/.@=@xn/b/Ci

.rTˆ�r Q̂ /
dbCd.i

.rTˆ�r Q̂ /
b/: (4-11)

Using Lemma 4.2, the first term on the right side of (4-11) is tangential:

i.@ˆ=@xn/.@=@xn/ db D
@ˆ

@xn
i@=@xn db:

Moreover, since rTˆDr Q̂ on the boundary (see Appendix A), the term i
.rTˆ�r Q̂ /

db of the right
side equals 0 on @�. Hence, we can write on @�

.Lrˆ�L
r Q̂
/b D i.@ˆ=@xn/.@=@xn/dbC d.i.@ˆ=@xn/.@=@xn/b/C d.i.rTˆ�r Q̂ /

b/: (4-12)

Let us study in a first time the term d.i.@ˆ=@xn/.@=@xn/b/. Writing

b D bIdx
I
D bI 0dx

I 0
C bIndx

In ;

we deduce (in �) that

i.@ˆ=@xn/.@=@xn/b D bIni.@ˆ=@xn/.@=@xn/dx
In D .�1/p�1bIn

@ˆ

@xn
dxInnfng;

and, applying d to this last relation, we obtain on @� (remembering that bIn D 0 on @�)

d.i.@ˆ=@xn/.@=@xn/b/D .�1/
p�1

nX
iD1

@

@xi

�
bIn

@ˆ

@xn

�
dxi ^ dxInnfng

D .�1/p�1
@bIn
@xn

@ˆ

@xn
dxn^ dxInnfngC 0D

@bIn
@xn

@ˆ

@xn
dxIn : (4-13)

Now recall that I 3 I D .i1; : : : ; ip/ with 1 � i1 � � � � � ip � n, and denote by ind.ik/ the integer k.
Looking at the third term of the right side of (4-12), we write

i
.rTˆ�r Q̂ /

bI dx
I
D bI dx

I .rTˆ�r Q̂ /D bI
X
j2I

.�1/ind.j /C1.rTˆ�r Q̂ /j dx
Infj g

D bI
X
j2I

.�1/ind.j /C1
j̨ dx

Infj g;

where, due to (A-2) and (A-3), for all j in f1; : : : ; ng,

j̨ D .rTˆ�r Q̂ /j D

nX
iD1

gij
� @ˆ
@xi

.x/�
@ˆ

@xi
.x0; 0/

�
:



LOCAL WKB CONSTRUCTION FOR WITTEN LAPLACIANS ON MANIFOLDS WITH BOUNDARY 239

Moreover, due to the block diagonal form of G�10 , for all j in f1; : : : ; ng, j̨ satisfies, again by (A-2)
and (A-3),

˛n.x/� 0 and j̨ .x
0; 0/� 0 for all j 2 f1; : : : ; n� 1g;

Hence, we obtain on @�

d.i
.rTˆ�r Q̂ /

bI dx
I /.x0; 0/D

nX
lD1

X
j2I

.�1/ind.j /C1 @

@xl
.bI j̨ /.x

0; 0/ dxl ^ dxInfj g

D 0C
X
j2I

.�1/ind.j /C1 @

@xn
.bI j̨ /.x

0; 0/ dxn^ dxInfj g

D

X
j2I 0

.�1/ind.j /C1 @

@xn
.bI 0 j̨ /.x

0; 0/ dxn^ dxI
0nfj g

C

X
j2Innfng

.�1/ind.j /C1 @

@xn
.bIn j̨ /.x

0; 0/ dxn^ dxInnfj g

D

X
j2I 0

.�1/ind.j /C1 @

@xn
.bI 0 j̨ /.x

0; 0/ dxn^ dxI
0nfj g;

where we used j̨ .x
0; 0/ � 0 at the second line and ˛n.x/ � 0 at the second to last line. Using again

j̨ .x
0; 0/� 0 allows us to write on @�

d.i
.rTˆ�r Q̂ /

bI dx
I /.x0; 0/D bI 0

X
j2I 0

.�1/ind.j /C1 @ j̨

@xn
.x0; 0/ dxn^ dxI

0nfj g

D bI 0
X
j2I 0

.�1/ind.j /Cp @ j̨

@xn
.x0; 0/ dxI

0nfj g
^ dxn

DW Q̀In.x
0; 0/ dxIn ; (4-14)

where the Q̀In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn
(for In in In). Combining (4-12), (4-13), and (4-14) leads to the result announced in Lemma 4.3. �

Proof of Proposition 4.1. From Section B2 we have

Lrˆ�L�rˆCLrf CL�
rf D 2LrˆCR1;

where R1 is an order-zero differential operator. Writing R1 DRT
1 CRN

1 , we deduce from (B-1), since
bIdx

I D bI 0dx
I 0 on the boundary, that

t.R1.bI dx
I //D bI 0.x

0; 0/RT
1 .dx

I 0/;

n.R1.bI dx
I //D bI 0.x

0; 0/RN
1 .dx

I 0/D Q̀0In.x
0; 0/ dxIn ;

where the Q̀0In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn
(for In in In).

Moreover, from (4-1)–(4-4), f �ˆ satisfies the assumptions of Corollary B.5; thus RT
1 is given on

the boundary, in the coordinates .x0; xn/, by
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RT
1 .x
0; 0/D

0BBB@
0

RT 0

1 .x
0/

:::

0

0 � � � 0 ˇ.x0/

1CCCA
.p/

� 
.x0/ Id;

where ˇ and 
 are C1 functions that satisfy

ˇ.0/D 0; 
.0/D Tr.Hess.f j@��'/.0//; and RT 0

1 .0/D 2Hess.f j@��'/.0/:

Having in mind Lemma 4.3, we now look at the term 2L
r Q̂
CR1. From Proposition B.3, we write

2L
r Q̂
D 2L

r Q̂
˝ IdCR3;

where R3DRT
3 CRN

3 is an order-zero differential operator such that, since Q̂ satisfies the assumptions
of Corollary B.5,

t.R3.bI dx
I //D bI 0.x

0; 0/RT
3 .dx

I 0/;

n.R3.bI dx
I //D bI 0.x

0; 0/RN
3 .dx

I 0/D Q̀00In.x
0; 0/ dxIn ;

where the Q̀00In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn ,
and RT

3 is given on the boundary, in the coordinates .x0; xn/, by

RT
3 .x
0; 0/D

0BBB@
0

RT 0

3 .x
0/

:::

0

0 � � � 0 0

1CCCA
.p/

;

with
RT 0

3 .0/D 2Hess. Q̂ j@�/.0/D 2Hess.'/.0/:

Note that, according to Remark B.4, the .n; n/-entry of the matrix is indeed 0 since @2 Q̂ =.@xn/2 � 0.
Set RNeu D R1 CR3 and Q̀.3/In D

Q̀0
In
C Q̀00In

for In in In. Then RNeu is an order-zero differential
operator satisfying

2L
r Q̂
CR1 D 2L

r Q̂
˝ IdCRNeu (4-15)

and
t.RNeu.bIdx

I //D bI 0.x
0; 0/RT

Neu.dx
I 0/;

n.RNeu.bIdx
I //D bI 0.x

0; 0/RN
Neu.dx

I 0/D Q̀
.3/
In
.x0; 0/ dxIn ;

(4-16)

where the Q̀.3/In are C1.@�/-linear combinations of the bI 0 (for I 0 in I0) that do not depend on the bIn
(for In in In). Moreover, RT

Neu is given on the boundary, in the coordinates .x0; xn/, by

RT
Neu.x

0; 0/D

0BBB@
0

RT 0

1 .x
0; 0/CRT 0

3 .x
0; 0/

:::

0

0 � � � 0 ˇ.x0/

1CCCA
.p/

� 
.x0/ Id;
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where

ˇ.0/D 0; 
.0/D Tr .Hess.f j@��'/.0// ; and RT 0

1 .0/CRT 0

3 .0/D 2Hess.f j@�/.0/:

Now look at the term 2L
r Q̂
˝ Id. By Cartan’s formula (2-6), we have

.2L
r Q̂
˝ Id/b D dbI 0.r Q̂ / dxI

0

C dbIn.r
Q̂ / dxIn ;

and, using the boundary condition satisfied by the bIn (for In in In) and the fact that r Q̂ is a tangential
vector field, we obtain

.2L
r Q̂
˝ Id/b D

n�1X
iD1

@bI 0

@xi
.r Q̂ /i dx

I 0
D .2L

r Q̂
˝ Id/bI 0 dxI

0

: (4-17)

Set `In D Q̀In C
1
2
Q̀.3/
In

for In in In. Writing

.2LrˆCR1/b D 2.Lrˆ�L
r Q̂
/bC .2L

r Q̂
CR1/b

and using (4-15)–(4-17), we obtain Proposition 4.1 after the application of Lemma 4.3. �

4C. Proof of Theorem 1.1. We shall first consider a WKB-approximation for

.�
.p/

f;h
�E.h//uWKB

p D e�ˆ=hO.h1/ (4-18)

with E.h/DO.h2/ and the boundary conditions (1-2) and (1-3) and then check E.h/DO.h1/.
Writing

df;h.e
�ˆ=hak/D e�ˆ=h

�
hdakC d.f �ˆ/^ ak

�
for all k 2 N;

where, due to (1-2) and (4-3), ak and d.f �ˆ/ are tangential forms, the second boundary condition
(1-3) corresponds to

n.dak/D 0 for all k 2 N: (4-19)

We now recall a relation that will be very useful; see [Helffer and Sjöstrand 1985] for a complete proof:

eˆ=h�f;he
�ˆ=h

D h2.d C d�/2Cjrf j2� jrˆj2C h.Lrˆ�L�rˆCLrf CL�
rf /

D h2.d C d�/2C h.Lrˆ�L�rˆCLrf CL�
rf /: (4-20)

We then write, in the notation of Section B2,

Lrˆ�L�rˆCLrf CL�
rf D 2LrˆCR1 D 2Lrˆ˝ IdCR;

where R and R1 are order-zero differential operators defined in Section B2.
By looking for E.h/�

P1
kD1 h

kC1Ek , the interior equation (4-18) reads

eˆ=h.�f;h�E.h//e
�ˆ=h

D h2
�
.d C d�/2� h�2E.h/

�
C h .2Lrˆ˝ IdCR/ :

We now verify that it is possible to construct a solution uWKB
p to (4-18) in� which can be extended to

� and satisfying the boundary conditions (1-2) and (1-3). The construction of an interior WKB solution



242 DORIAN LE PEUTREC

in � is standard as an inductive Cauchy problem, once the ak are known on @�; see [Dimassi and
Sjöstrand 1999; Helffer 1988]. Actually the noncharacteristic Cauchy problems

.2Lrˆ˝ IdCR/ak D�.d C d�/2ak�1C

kX
`D1

E`a
k�` in � (4-21)

are solved by induction, with the convention a�1 D 0.
Hence the problem is reduced to the solving of the system made of the boundary conditions (4-9),

(4-19) and of the compatibility equation on the boundary (see Section B2 for the meaning of the notation):

.2LrˆCR1/ a
k
D�.d C d�/2ak�1C

kX
`D1

E`a
k�` on @�: (4-22)

Owing to Proposition 4.1 (with the notation of Section 4B) and to (4-3), the system (4-22), (4-9),
(4-19) is equivalent to the following differential system on @�:

�t.d C d�/2ak�1C

kX
`D1

E`a
k�`
D .2L

r Q̂
˝ IdCRT

Neu/a
k
I 0 dx

I 0
C 2

@f

@xn
i@=@xnda

k;

�n.d C d�/2ak�1� 2`In.x
0; 0/ dxIn D 2

@f

@n

@akIn
@xn

dxIn ;

akIn j@� � 0 and n.dak/D 0 for all k 2 N;

where the `In are C1.@�/-linear combinations of the akI 0 (for I 0 in I0) that do not depend on the akIn
(for In in In). Note also, owing to Lemma 4.2, that the first line of this system simply reads

�t.d C d�/2ak�1C

kX
`D1

E`a
k�`
D .2L

r Q̂
˝ IdCRT

Neu/a
k
I 0 dx

I 0 : (4-23)

Moreover, since dxi D dxi for i 2 f1; : : : ; n� 1g at the point U , it follows from Corollary B.5, (4-5),
and the results in [Helffer and Sjöstrand 1985, 271–275] that RT

Neu.0/ restricted to tangential forms is
symmetric with the one-dimensional kernel Rdx1 ^ � � � ^ dxp.

Since akI 0dx
I 0 is tangential and 2L

r Q̂
˝ Id only differentiates the akI 0 tangentially, because

.2L
r Q̂
˝ Id/akI 0 dx

I 0
D

n�1X
iD1

@akI 0

@xi
.r Q̂ /i dx

I 0 ;

it turns out that (4-23) can be rewritten as a tangential system that can be solved according to the analysis
of the boundaryless case done in [Helffer and Sjöstrand 1985]. Here are the details: thanks to Lemma
4.2, the complete system (4-21), (4-22), (4-9) and (4-19) becomes equivalent to the system

.2L
r Q̂
˝IdCRT

Neu/a
k
I 0dx

I 0
D�t.dCd�/2ak�1C

k�1P̀
D1

E`a
k�`
CEka

0 on @�;

.2Lrˆ˝IdCR/ak D�.dCd�/2ak�1C
kP̀
D1

E`a
k�` on �;

aIn j@� � 0 for In 2 In:

9>>>>>>=>>>>>>;
(SNeu)
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The first line is a degenerate matrix transport equation, which can be solved following [Helffer and
Sjöstrand 1985, page 275] and [Helffer 1988, pages 13–14]: for k D 0, the homogeneous boundary
equation

.2L
r Q̂
˝ IdCRT

Neu/a
0
I 0dx

I 0
D 0

admits some solution if and only if

a0I 0.0/ dx
I 0
2 Ker.RT

Neu.0//; (4-25)

and the solution is unique once a0I 0.0/ dx
I 0 has been chosen. This shows the uniqueness of a0 up to

multiplication by a constant. Note also that the formulation of Theorem 1.1 is a coordinate-free rewriting
of this condition for a0.U /. Indeed, it has already been mentioned that, when restricted to tangential
p-forms, the kernel of RT

Neu.0/ is one-dimensional. Recall moreover that, in our coordinate system (see
Proposition 4.1), at U Š 0,

RT
Neu.U /D 2

0BB@
0

Hess.f j@�/.U /
:::

0 � � � 0

1CCA
.p/

� Tr .Hess.f j@��ˆj@�/.U //

D 2A.p/�Tr .Hess.f j@��ˆj@�/.U // ;

and that, for a tangential p-form dxI
0

D dxi1 ^ � � � ^ dxip ,

A.p/dxI
0

D .A dxi1/^ dxi2 ^ � � � ^ dxip C � � �C dxi1 ^ � � � ^ dxip�1 ^ .A dxip /;

where, for ` 2 f1; : : : ; pg,

Adxi` D .Hess.f j@�/.U // dx
i` C 0:dxn D .Hess.f j@�/.U /j

�/ dxi` :

Lastly, note that in the previous equation, we wrote .Hess.f j@�/.U // dxi` with a slight abuse of no-
tation, since Hess.f j@�/.U / 2 L.T �U @�/ and dxi`.U / 2 T �U�. Indeed, the proper notation would be
.Hess.f j@�/.U /j �/ dxi` ; where

.Hess.f j@�/.U /j
�/ dxi` 2 L.T �U�IT

�
U @�/� L.T �U�IT

�
U�/:

Now take a0.0/Ddx1^� � �^dxp 2Ker.RT
Neu.0//. For kD 1, we have to solve the boundary equation

.2L
r Q̂
˝ IdCRT

Neu/a
1
I 0dx

I 0
D�t.d C d�/2a0CE1a

0:

Choose then E1 such that

�t.d C d�/2a0.0/CE1a
0.0/ 2 Ran.RT

Neu.0//D
�
Ker.RT

Neu.0//
�?
;

where the last equality follows from both the symmetry of RT
Neu.0/ and G0.0/D Idn. This is equivalent

to choosing E1 such that

E1 D
ht.d C d�/2a0.0/ j a0.0/ig0.0/

ka0.0/k2
g0.0/

;
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and this is indeed possible since Ker.RT
Neu.0//D Ra0.0/¤ f0g. Next take a1I 0.0/ dx

I 0 such that

RT
Neu.0/.a

1
I 0.0/ dx

I 0/D�t.d C d�/2a0.0/CE1a
0.0/:

Then, for each k > 2, choose Ek such that the compatibility condition

�t.d C d�/2ak�1.0/C

k�1X
`D1

E`a
k�`.0/CEka

0.0/ 2
�
Ker.RT

Neu.0//
�?

is satisfied, or, more precisely, such that

Ek D
ht.d C d�/2ak�1.0/�

Pk�1
`D1 E`a

k�`.0/ j a0.0/ig0.0/

ka0.0/k2
g0.0/

;

and take ak�1I 0 .0/ dxI
0

in

.RT
Neu.0//

�1
�
�t.d C d�/2ak�1.0/C

k�1X
`D1

E`a
k�`.0/CEka

0.0/
�
:

Thus, at every step k 2 N, the first and third lines of the system (SNeu) fully determine the Cauchy data
ak.x0; 0/ and the numberEk . The first line fully determines the restrictions of the aI 0 to @�. The second
line solves the interior problem with these Cauchy data and contains, with the two other lines, thanks to
Lemma 4.2, the second trace condition (4-19).

We now check that E.h/ D O.h1/. We prove this by comparing with the half-space problem, for
which we know by (3-8) that the first eigenvalue is 0 with multiplicity one and that the second one is
larger than Ch6=5. Take a cut-off function � 2 C10 .�/ satisfying � D 1 in a neighborhood of U and
@�=@nj@� D 0. Then set

uKp D �e
�ˆ=h

KX
kD0

akhk D �e�ˆ=hAKh :

From @�=@nj@� � 0 and

df;h.�A
K
h /D .hd C df ^/�A

K
h D hd�^A

K
h C�df;hA

K
h ;

the form uKp 2 ƒ
1H 2.Rn�/ belongs to the domain of A

.p/
N and the approximations uKp and EK.h/ DPK

kD1Ekh
kC1 satisfy�

A
.p/
N �E

K.h/
�
uKp D h

KC2�Ke�ˆ=h� h2Œ�; ��uKp D O.hKC2/ in Rn�;

nuKp D 0 on Rn�1 � f0g;

ndf;hu
K
p D 0 on Rn�1 � f0g;

for some C1 1-form �K defined in a neighborhood of U and independent of h. From a direct Laplace
method we obtain

kuKp k � ch
.nC1/=4;
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and the spectral theorem then implies that there exists an eigenvalue �.h/ of A
.p/
N such that

jEK.h/��.h/j D O.hKC2�.nC1/=4/:

Choosing the integer K large enough, we deduce from the inclusion

�.A
.p/
N / n f0g � ŒCh6=5;C1/

combined with the estimate EK.h/D O.h2/ that �.h/D 0. The number K being arbitrary, the construc-
tion of the previous quasimode is then possible only if Ek D 0 for all k 2 N�. �

4D. Local WKB construction in the Dirichlet case. Let U be a generalized critical point of f with
index p in the Dirichlet case, i.e., a critical point of index p�1, with p 2 f1; : : : ; ng, of f j@� satisfying
.@f=@n/.U />0, and again take an adapted local coordinate system .x0; xn/ around U , as in Section 4A.

Let ' be the Agmon distance to U on the boundary and use Lemma 3.4(1) with f1 D f and ˛ D '.
Denoting by ˆ the function ˆ� of the lemma, ˆ is then the Agmon distance to U and we have locally

j@nˆj
2
CjrTˆj

2
D jrˆj2 D jrf j2 ; (4-26)

ˆj@� D '; (4-27)

@nˆj@� D�
@f

@n

ˇ̌̌
@�
: (4-28)

Moreover, the following relation is satisfied (see the proof of (4-4) and replace @nˆj@� D @nf j@� by
@nˆj@� D�@nf j@�):

@2xnxn.f Cˆ/.0/D @
2
nn.f Cˆ/.0/D 0: (4-29)

As in Section 4A, there exist other local coordinates .x0; xn/ centered at U , with x0D .x1; : : : ; xn�1/
and dx1; : : : ; dxn�1; dxn orthonormal at U , such that (4-5) is satisfied with �i <0 for i 2 f1; : : : ; p�1g
and �i > 0 for i 2 fp; : : : ; n� 1g. Furthermore, the coordinates .x0; xn/ can be chosen in such a way
that dx1; : : : ; dxn�1 and dx1; : : : ; dxn�1 coincide at U and even such that x0j@� D x0j@�.

Specification of the coordinate system for Theorem 1.2. In the rest of this section, we are again going
to work in an adapted local coordinate system x D .x0; xn/ around U such that

dxi D dxi at U for all i 2 f1; : : : ; n� 1g : (4-30)

The proof is quite close to the one for the Neumann case, but here it turns out to be more natural to
make “dual computations”. In particular, we will work with d� where we worked with d in the Neumann
case. This leads to somewhat more complicated computations.

4E. First boundary conditions in the Dirichlet case. Writing

ah.x/D a.x; h/D aI .x; h/ dx
I
D aI 0.x; h/ dx

I 0
C aIn.x; h/ dx

In ;

the first boundary condition (1-5) is equivalent to

akI 0.x
0; 0/� 0 for all k 2 N and I 0 2 I0: (4-31)

The rest of this subsection specifies some consequences of these conditions, in the same spirit as those
specified in the Section 4B concerning the Neumann case.
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4E1. About LCL�. The relation

Lrˆ�L�rˆCLrf CL�
rf D�2L�rˆCLr.fCˆ/CL�

r.fCˆ/

is obviously satisfied, and using again Proposition B.3, we can write

L�
r.fCˆ/CLr.fCˆ/ DR4;

where R4 is an order-zero differential operator.
Writing R4 DRT

4 CRN
4 , we deduce from (B-2), since akI dx

I D akIndx
In on the boundary, that

t.R4.a
k
I dx

I //D akIn.x
0; 0/RN

4 .dx
In/D Q̀0I 0.x

0; 0/ dxI
0

;

n.R4.a
k
I dx

I //D akIn.x
0; 0/RT

4 .dx
In/;

where the Q̀0I 0 are C1.@�/-linear combinations of the akIn (for In in In) that do not depend on the akI 0
(for I 0 in I0).

Moreover, by (4-26)–(4-29), here f Cˆ satisfies the assumptions of Corollary B.5; thus RT
4 is given

on the boundary, in the coordinates .x0; xn/, by

RT
4 .x
0; 0/D

0BBB@
0

RT 0

4 .x
0/

:::

0

0 � � � 0 ı.x0/

1CCCA
.p/

� �.x0/ Id;

where ı, � are C1 functions which satisfy

ı.0/D 0; �.0/D Tr.Hess.f j@�C'/.0//; RT 0

4 .0/D 2Hess.f j@�C'/.0/:

4E2. Expression of the codifferential d�. As already mentioned, to make a study similar to the one done
in Section 4B for the Neumann case, we need to work with d�, so we must have a handy expression for
this operator.

For a differential form ! we set, in the coordinate system .x0; xn/,

ri Drxi ; a�i ! D dx
i
^!; ai! D irxi!:

Then d and d� have the following form (see [Cycon et al. 1987, pages 238–247]):

d D

nX
iD1

a�i ri D�

nX
iD1

.ri /
�a�i ; (4-32)

d� D�

nX
iD1

airi : (4-33)

Recall also the characteristic relations

a�i a�j C a�j a�i D 0; aiaj C ajai D 0; a�i aj C aja�i D g
ij ; for all i; j 2 f1; : : : ; ng:
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Denoting by @i the operator defined by components with differentiation in a fixed coordinate system,

@i .!Idx
I /D

@!I

@xi
dxI ;

ri becomes (see again [Cycon et al. 1987, pages 238–247])

ri D @i �
X
j;l;m

�
j

il
gjma�l am; (4-34)

where the �j
il

are the Christoffel symbols. Then d� becomes

d� D�
X
i

ai@i C
X
i;j;l;m

�
j

il
gjmaia

�
l am

D�

X
i

ai@i C
X
i;j;l;m

�
j

il
gjm

�
aia
�
l C a�l ai

�
am�

X
i;j;l;m

�
j

il
gjma�l aiam

D�

X
i

ai@i C
X
i;j;l;m

�
j

il
gjmg

ilam�
X
i;j;l;m

�
j

il
gjma�l aiam: (4-35)

4E3. Results.

Proposition 4.4. In the notation of Appendix A and Section 4E1, the following relations are satisfied
for every normal p-form b.x/ D bI .x/ dx

I (that is, every p-form b.x/ satisfying bI 0.x0; 0/ � 0 for all
I 0 2 I0):

t..�2L�rˆCR4/b/D 2

�
@bI 0

@xn
@ˆ

@xn
C `I 0.x

0; 0/

�
dxI

0

;

n..�2L�rˆCR4/b/D .2L
r Q̂
˝ IdCRT

Dir/bIn dx
In � 2

@ˆ

@xn
dxn^ d�b;

where the `I 0 are C1.@�/-linear combinations of the bIn (for In in In) that do not depend on the bI 0
(for I 0 in I0) and RT

Dir is an order-zero differential operator given in the coordinates .x0; xn/, on the
boundary by the following matrix, by

RT
Dir.x

0; 0/D

0BBB@
0

RT 0

Dir.x
0/

:::

0

0 � � � 0 ı.x0/

1CCCA
.p/

� �2.x
0/ Id;

where
ı.0/D 0; �2.0/D Tr.Hess.f j@��'/.0//; RT 0

Dir.0/D 2Hess.f j@�/.0/:

In particular, this is true for ak for k in N, when (4-31) is fulfilled.

Lemma 4.5. Let b.x/ be a normal p-form. The p-form En�^ d�b is then normal and the following
equivalence is locally valid on the boundary @�:

En�^ d�b D 0 () td�b D 0:

In particular, this is true for ak for k in N, when (4-31) is fulfilled.
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Proof. On the boundary @�, we can write, in the coordinate system .x0; xn/,

dxn^ d�b D dxn^nd�bC dxn^ td�b D 0C dxn^ td�b D dxn^ .d�b/I 0dx
I 0

D .�1/p�1.d�b/I 0dx
I 0
^ dxn:

Since dxn D En�, this leads to the result. �

Lemma 4.6. For every tangential p-form b.x/,

n..L�rˆ�L�
r Q̂
/b/D

@ˆ

@xn
dxn^ d�b;

t..L�rˆ�L�
r Q̂
/b/D

�
�
@bI 0

@xn
@ˆ

@xn
C Q̀I 0.x

0; 0/
�
dxI

0

;

where the Q̀I 0 are C1.@�/-linear combinations of the bIn (for In in In) that do not depend on the bI 0
(for I 0 in In).

Proof. Owing to (2-3) and to Cartan’s formula (2-6), we write, in the coordinates .x0; xn/,

.L�rˆ�L�
r Q̂
/b

D d�.dˆ^b/Cdˆ^d�bCd�.d Q̂ ^b/Cd Q̂ ^d�b

D d�
� @ˆ
@xn

dxn^b
�
C
@ˆ

@xn
dxn^d�bCd�..dTˆ�d Q̂ /^b/C.dTˆ�d Q̂ /^d

�b; (4-36)

where the function Q̂ is defined in Appendix A.
The second summand on the last line of (4-36) is normal by Lemma 4.5. Moreover, since dTˆD d Q̂

on the boundary, the last summand also equals 0 on @�. Hence, on @�,

.L�rˆ�L�
r Q̂
/b D

@ˆ

@xn
dxn^ d�bC d�

� @ˆ
@xn

dxn^ b
�
C d�..dTˆ� d Q̂ /^ b/: (4-37)

We study first the second summand on the right-hand side. Writing

b D bIdx
I
D bI 0dx

I 0
C bIndx

In ;

we deduce that, in �,
@ˆ

@xn
dxn^ b D

@ˆ

@xn
bI 0dx

n
^ dxI

0

:

Applying d� to this last relation (see (4-35)) and recalling that bI 0 D 0 on @�, we obtain on @�

d�
� @ˆ
@xn

dxn^ b
�
D�

X
i

ai@i

� @ˆ
@xn

bI 0 dx
n
^ dxI

0
�
C

X
i;j;l;m

�
j

il
gjmg

ilam

� @ˆ
@xn

bI 0 dx
n
^ dxI

0
�

�

X
i;j;l;m

�
j

il
gjma�l aiam

� @ˆ
@xn

bI 0 dx
n
^ dxI

0
�

D�

X
i

ai@i

� @ˆ
@xn

bI 0 dx
n
^ dxI

0
�
C 0

D�irxn
@ˆ

@xn
@bI 0

@xn
dxn^ dxI

0

D�
@ˆ

@xn
@bI 0

@xn
dxI

0

: (4-38)
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We used on the last line the fact that G�10 is block diagonal with gnn � 1.
Now look at the third term of the right-hand side of (4-37) and write, in view of (A-5),

.dTˆ� d Q̂ /^ bIdx
I
D

n�1X
iD1

�
@ˆ

@xi
.x/�

@ˆ

@xi
.x0; 0/

�
bIdx

i
^ dxI DW

n�1X
iD1

˛ibIdx
i
^ dxI ;

where, ˛i D
@ˆ

@xi
.x/�

@ˆ

@xi
.x0; 0/ for i in f1; : : : ; n� 1g. Hence we have

j̨ .x
0; 0/� 0 for all j 2 f1; : : : ; n� 1g :

Taking (4-35) again into account, we therefore obtain, on @�,

d�..dTˆ� d Q̂ /^ bIdx
I /.x0; 0/

D�

X
i

ai@i

n�1X
jD1

j̨ bIdx
j
^ dxI

C

� X
i;j;l;m

�
j

il
gjmg

ilam�
X
i;j;l;m

�
j

il
gjma�l aiam

� n�1X
jD1

j̨ bIdx
j
^ dxI

D�

X
i

ai@i

n�1X
jD1

j̨ bIdx
j
^ dxI D�an

n�1X
jD1

@

@xn
. j̨ bI / dx

j
^ dxI ;

where we used j̨ .x
0; 0/ � 0 twice on the last line. Now, since gni D gin D 0 for i in f1; : : : ; n� 1g,

we can write, for all I 0 2 I0,

andx
I 0
D irxndx

I 0
D 0:

This implies

d�..dTˆ�d Q̂ /^bI dx
I /.x0; 0/D�an

n�1X
jD1

@

@xn
. j̨ bI / dx

j
^dxI D�an

n�1X
jD1

@

@xn
. j̨ bIn/ dx

j
^dxIn

D .�1/pC1
n�1X
jD1

@

@xn
. j̨ bIn/ dx

j
^dxInnfng

D .�1/pC1
n�1X
jD1

bIn
@ j̨

@xn
.x0; 0/ dxj^dxInnfng

DW Q̀I 0.x
0; 0/ dxI

0

; (4-39)

where the Q̀I 0 are C1.@�/-linear combinations of the bIn (for In in In) that do not depend on the bI 0
(for I 0 in I0).

Combining (4-37), (4-38), and (4-39) leads to the result announced in Lemma 4.6. �

Proof of Proposition 4.4. Having in mind Lemma 4.6, we now look at the term �2L�
r Q̂
CR4. Again by

Proposition B.3, we can write

�2L�
r Q̂
D 2L

r Q̂
CR5 D 2L

r Q̂
˝ IdCR5CR6;
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where R5DRT
5 CRN

5 and R6DRT
6 CRN

6 are order-zero differential operators satisfying, for i 2 f5; 6g
(since bIdxI D bIndx

In on the boundary),

t.Ri .bI dx
I //D bIn.x

0; 0/RN
i .dx

In/D Q̀i
0

I 0.x
0; 0/ dxI

0

;

n.Ri .bI dx
I //D bIn.x

0; 0/RT
i .dx

In/:

Here the Q̀i
0

I 0.x
0; 0/ are C1.@�/-linear combinations of the bIn (for In in In) that do not depend on the

bI 0 (for I 0 in I0). Moreover, since Q̂ satisfies the assumptions of Corollary B.5, RT
5 and RT

6 are given
on the boundary, in the coordinates .x0; xn/, by

RT
5 D

0BBB@
0

RT 0

5

:::

0

0 � � � 0 0

1CCCA
.p/

� �.x0/ Id and RT
6 D

0BBB@
0

RT 0

6

:::

0

0 � � � 0 0

1CCCA
.p/

;

where

�.0/D�2Tr.Hess. Q̂ j@�/.0//D�2Tr.Hess.'/.0//; RT 0

5 .0/D�4Hess.'/.0/; RT 0

6 .0/D2Hess.'/.0/:

Set RDirDR4CR5CR6 and Q̀.3/I 0 D
Q̀0
I 0C
Q̀50

I 0C
Q̀60

I 0 for I 0 in I0. Then RDir is an order-zero differential
operator satisfying

�2L
r Q̂
CR4 D 2L

r Q̂
˝ IdCRDir (4-40)

and
t.RDir.bIdx

I //D bIn.x
0; 0/RN

Dir.dx
In/D Q̀

.3/
I 0 .x

0; 0/ dxI
0

;

n.RDir.bIdx
I //D bIn.x

0; 0/RT
Dir.dx

In/;
(4-41)

where the Q̀.3/I 0 are C1.@�/-linear combinations of the bIn (for In in In) that do not depend on the bI 0
(for I 0 in I0). Moreover, RT

Dir is given on the boundary, in the coordinates .x0; xn/, by

RT
Dir.x

0; 0/D

0BBB@
0

RT 0

Dir.x
0; 0/

:::

0

0 � � � 0 ı.x0/

1CCCA
.p/

� �2.x
0/ Id;

where

ı.0/D 0;

�2.0/D �.0/C �.0/D Tr .Hess.f j@�C'/.0//� 2Tr .Hess.'/.0//D Tr .Hess.f j@��'/.0// ;

RT 0

Dir.0/DRT 0

4 .0/CRT 0

5 .0/CRT 0

6 .0/D 2Hess.f j@�C'/.0/� 2Hess.'/.0/D 2Hess.f j@�/.0/:

We now look at the term 2L
r Q̂
˝ Id. By Cartan’s formula (2-6),

.2L
r Q̂
˝ Id/b D dbI 0.r Q̂ / dxI

0

C dbIn.r
Q̂ / dxIn ;
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and, using the boundary conditions satisfied by the bI (for I in I) and the fact that r Q̂ is a tangential
vector field, we obtain

.2L
r Q̂
˝ Id/b D

n�1X
iD1

@bIn
@xi

.r Q̂ /i dx
In D 2L

r Q̂
˝ Id bIn dx

In : (4-42)

Set `I 0 D� Q̀I 0 C 1
2
Q̀.3/
I 0 and write

.�2L�rˆCR3/b D�2.L
�
rˆ�L�

r Q̂
/bC .�2L�

r Q̂
CR3/b:

Using (4-40)–(4-42), Proposition 4.4 is then a direct consequence of Lemma 4.6. �

4F. Proof of Theorem 1.2. Although the calculations are different, the scheme of the proof is the same
as for Theorem 1.1. Consider first a WKB-approximation for

.�
.p/

f;h
�E.h//uWKB

p D e�ˆ=hO.h1/; (4-43)

with E.h/DO.h2/ and the boundary conditions (1-5) and (1-6).
From

d�f;h.e
�ˆ=hak/D e�ˆ=h

�
hd�akC ir.fCˆ/a

k
�

for all k 2 N;

where, due to (1-5) and (4-28), ak is a normal form and r.f Cˆ/ is a tangential vector field, the second
boundary condition (1-6) corresponds to

t.d�ak/D 0 for all k 2 N; (4-44)

We now recall that, in the notation of Section B2 and Section 4E1,

eˆ=h�f;he
�ˆ=h

D h2.d C d�/2C h.2Lrˆ˝ IdCR/D h2.d C d�/2C h.�2L�rˆCR4/:

By looking for E.h/�
P1
kD1 h

kC1Ek , the interior equation (4-43) reads, as in Section 4C,

eˆ=h.�f;h�E.h//e
�ˆ=h

D h2
�
.d C d�/2� h�2E.h/

�
C h.2Lrˆ˝ IdCR/:

Hence, as in Section 4C, the construction of an interior WKB solution in� is standard as an inductive
Cauchy problem, once the ak are known on @�, since the noncharacteristic Cauchy problems

�
2Lrˆ˝ IdCR

�
ak D�.d C d�/2ak�1C

kX
`D1

E`a
k�` in � (4-45)

are solved by induction with the convention a�1 D 0.
The problem is then reduced to solving the system made of the boundary conditions (4-31) and (4-44)

and of the compatibility equation

�
�2L�rˆCR4

�
ak D�.d C d�/2ak�1C

kX
`D1

E`a
k�` on @� (4-46)

(see Section 4E1 for the notation).
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Owing to Proposition 4.4 (with the notation of Section 4E3) and to (4-28), the system (4-46), (4-31),
(4-44) is equivalent to the following differential system on @�:

�n.d C d�/2ak�1C

kX
`D1

E`a
k�`
D .2L

r Q̂
˝ IdCRT

Dir/a
k
In
dxIn C 2

@f

@xn
dxn^ d�ak;

�t.d C d�/2ak�1� 2`I 0.x
0; 0/ dxI

0

D�2
@f

@n

@akI 0

@xn
dxI

0

;

akI 0 j@� � 0 and t.d�ak/D 0 for all k 2 N;

where the `I 0 are C1.@�/-linear combinations of the akIn (for In in In) which do not depend on the akI 0
(for I 0 in I0). Note also, according to Lemma 4.5, that the first line of the last system reads

�n.d C d�/2ak�1C

kX
`D1

E`a
k�`
D .2L

r Q̂
˝ IdCRT

Dir/a
k
In
dxIn : (4-47)

Moreover, since dxi D d Nxi for i 2 f1; : : : ; n� 1g at the point U , it follows from Corollary B.5, (4-5),
and the results in [Helffer and Sjöstrand 1985, pages 271–275] that RT

Dir.0/ restricted to normal forms
is symmetric with the one-dimensional kernel Rdx1 ^ � � � ^ dxp�1 ^ dxn.

Since akIndx
In is normal and 2L

r Q̂
˝ Id only differentiates the akIn tangentially, because

.2L
r Q̂
˝ Id/akIndx

In D

n�1X
iD1

@akIn
@xi

.r Q̂ /idx
In ;

it turns out (4-47) can be rewritten as a tangential system that can be solved according to the analysis of
the boundaryless case done in [Helffer and Sjöstrand 1985]. Here are the details: thanks to Lemma 4.5,
the complete system becomes equivalent to

.2L
r Q̂
˝IdCRT

Dir/a
k
In
dxIn D�n.dCd�/2ak�1C

k�1P̀
D1

E`a
k�`
CEka

0on @�;

.2Lrˆ˝IdCR/ak D�.dCd�/2ak�1C
kP̀
D1

E`a
k�` on �;

aI 0 j@� � 0 for all I 0 2 I0:

9>>>>>>=>>>>>>;
(SDir)

The first line is again a homogeneous degenerate matrix transport equation which can be solved following
[Helffer and Sjöstrand 1985; Helffer 1988]: for k D 0, take

a0.0/D dx1 ^ � � � ^ dxp�1 ^ dxn 2 Ker.RT
Dir.0//: (4-49)

The formulation of Theorem 1.2 is just a coordinate-free rewriting of this condition for a0.U /. Recall
that, in our coordinate system (see Proposition 4.4), at U Š 0,

RT
Dir.U /D 2

0B@ 0

Hess.f j@�/.U /
:::

0 � � � 0

1CA
.p/

� Tr.Hess.f j@��ˆj@�/.U //

D 2A.p/�Tr.Hess.f j@��ˆj@�/.U //;
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and that, for a normal p-form dxIn D dxi1 ^ � � � ^ dxip�1 ^ dxn,

A.p/dxIn D .A dxi1/^ dxi2 � � � ^ dxnC � � �C dxi1 ^ � � � ^ .A dxip�1/^ dxnC 0;

where, for ` 2 f1; : : : ; p� 1g,

Adxi` D .Hess.f j@�/.U // dx
i` C 0:dxn D

�
Hess.f j@�/.U /j

�
�
dxi` :

Finally, as in the analogous part of the proof in the Neumann case, the writing .Hess.f j@�/.U // dxi` is
a slight abuse of notation, the proper one being .Hess.f j@�/.U /j �/ dxi` .

Then, for k > 0, choose Ek such that the compatibility condition

�n.d C d�/2ak�1.0/C

k�1X
`D1

E`a
k�`.0/CEka

0.0/ 2
�
Ker.RT

Dir.0//
�?

is satisfied and take akIn.0/ dx
In in

.RT
Dir.0//

�1
�
�n.d C d�/2ak�1.0/C

k�1X
`D1

E`a
k�`.0/CEka

0.0/
�
:

Thus, at every step k2N, the first and the third line of (SDir) fully determine the Cauchy data ak.x0; 0/ and
the number Ek . The second line solves the interior problem with these Cauchy data and contains, with
the two other lines, thanks to Lemma 4.5, the second trace condition (4-44). Checking E.h/DO.h1/ is
then identical to the end of the proof of Theorem 1.1 done in Section 4C after choosing a cut-off function
� which satisfies r�DrT� on the boundary @�. �

Appendices: Computations in adapted local coordinate systems

In the two appendices below we work in an adapted local coordinate system .x0; xn/ around U 2 @� so
as to be able to apply the results both to the Neumann and Dirichlet cases.

Appendix A. A modified Agmon distance

Define Q̂ around U in the coordinates .x0; xn/ by

Q̂ .x0; xn/Dˆ.x0; 0/ for all x D .x0; xn/; (A-1)

and note the following relation satisfied for all x around U , in the coordinates .x0; xn/, due to the form
of G˙10 (see Remark 3.3):

d Q̂ .x/D dT Q̂ .x/C
@ Q̂

@xn
.x/dxn D dT Q̂ .x/;

r Q̂ .x/DrT Q̂ .x/C
@ Q̂

@xn
.x/

@

@xn
DrT

Q̂ .x/:
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For a vector (or a vector field) X D
Pn
iD1Xi

@

@xi
, with the identification X D

 
X1
:::
XN

!
, the tangential

and normal parts of X are defined as

XT D

0BBB@
X1
:::

Xn�1
0

1CCCA ; XN D

0BBB@
0
:::

0

Xn

1CCCA :
Similarly, for a .n; n/-matrix A.x/D .aij .x//i;j , define AT .x/ and AN .x/ by

AT D

0BBB@
0

A0
:::

0

0 � � � 0 ann

1CCCA ; AN D

0BBB@
a1n

Œ0�
:::

an�1n
an1 � � � ann�1 0

1CCCA :
Recall moreover that, for a vector (or a vector field) X and a C1 function  , the identification

hr jXig0 D d .X/ leads to

r DG�10

0B@ @ =@x
1

:::

@ =@xn

1CA :
Hence, due to the form of G�10 (see Remark 3.3), the following relations are satisfied:

.r /T DrT DG
�1
0

0BBB@
@ =@x1

:::

@ =@xn�1

0

1CCCA ; .r /N D
@ 

@xn
@

@xn
DG�10

0BBB@
0
:::

0

@ =@xn

1CCCA :
In the Neumann case, we will compare Lrˆ and L

r Q̂
and the following relations can sometimes be

convenient:

rˆ�r Q̂ DG�10

0BBBBBBB@

@ˆ

@x1
.x/�

@ˆ

@x1
.x0; 0/

:::
@ˆ

@xn�1
.x/�

@ˆ

@xn�1
.x0; 0/

@ˆ

@xn
.x/

1CCCCCCCA
; (A-2)

rTˆ�r Q̂ DG
�1
0

0BBBBBB@

@ˆ

@x1
.x/�

@ˆ

@x1
.x0; 0/

:::
@ˆ

@xn�1
.x/�

@ˆ

@xn�1
.x0; 0/

0

1CCCCCCA : (A-3)
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We will compare L�
rˆ and L�

r Q̂
in the Dirichlet case and the following relations are also convenient:

dˆ� d Q̂ D

n�1X
iD1

� @ˆ
@xi

.x/�
@ˆ

@xi
.x0; 0/

�
dxi C

@ˆ

@xn
.x/ dxn; (A-4)

dTˆ� d Q̂ D

n�1X
iD1

� @ˆ
@xi

.x/�
@ˆ

@xi
.x0; 0/

�
dxi : (A-5)

Appendix B. About LCL�

B1. For a general C1 function h. Here we give similar results to those found in [Helffer and Sjöstrand
1985, Appendix A].

Let h be a C1 function from � to R and write

rhD

nX
iD1

.rh/i
@

@xi
:

Following [Helffer and Sjöstrand 1985], we make the following algebraic definition:

Definition B.1. For a Euclidean space .E; h � j � i/ and A 2L.E/, A.p/ and �.p/.A/ denote respectively
the linear application A.p/ 2 L.ƒpE/ and the application �.p/.A/D A˝ � � �˝A:

A.p/.!1 ^ � � � ^!p/D .A!1 ^ � � � ^!p/C � � �C .!1 ^ � � � ^A!p/;

�.p/.A/.!1 ^ � � � ^!p/D .A!1/^ � � � ^ .A!p/;

with the obvious convention A.0/ D 0 and �.0/.A/D 1.

Remark B.2. Under the canonical identificationƒ1EDE, note that A.1/DA. Moreover, if A� denotes
the adjoint of A according to the scalar product onE, the adjoint of A.p/ is simply .A.p//�D .A�/.p/DW
A.p/;�. Recall that ƒpE is a Euclidean space with the scalar product h � j � ip:

h!1 ^ � � � ^!p j�1 ^ � � � ^�pip D det
�
h!i j �j i

�
i;j
:

We also remark that for a p-form akI dx
I D akI 0dx

I 0CakIndx
In we have, in the notation of Appendix A,

A.p/ D A
.p/
T CA

.p/
N

and
t.A.p/.akI dx

I //D akI 0.x
0; 0/A

.p/
T .dxI

0

/C akIn.x
0; 0/A

.p/
N .dxIn/;

n.A.p/.akI dx
I //D akIn.x

0; 0/A
.p/
T .dxIn/C akI 0.x

0; 0/A
.p/
N .dxI

0

/:

For any order-zero differential operator A D A.p/C Id, where  is a C1 function, we define the
order-zero differential operators

AT
D A

.p/
T C Id and AN

D A
.p/
N :
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(If  � 0 then AT coincides with A.p/T and AN with A.p/N .) Our aim is to work with tangential forms
in the Neumann case (i.e., akI dx

I D akI 0dx
I 0 on @�) and with normal forms in the Dirichlet case (i.e.,

akI dx
I D akIndx

In on @�). Hence, for any tangential form in the Neumann case we write

t.A.akI dx
I //D akI 0.x

0; 0/A
.p/
T .dxI

0

/C .x0; 0/akI 0.x
0; 0/ dxI

0

D t.AT .akI dx
I //;

n.A.akI dx
I //D akI 0.x

0; 0/A
.p/
N .dxI

0

/D n.AN .akI dx
I //;

(B-1)

and for any normal form in the Dirichlet case, we write

t.A.akI dx
I //D akIn.x

0; 0/A
.p/
N .dxI

0

/D t.AN .akI dx
I //;

n.A.akI dx
I //D akIn.x

0; 0/A
.p/
T .dxIn/C .x0; 0/akIn.x

0; 0/ dxIn D n.AT .akI dx
I //:

(B-2)

Proposition B.3. In the coordinates .x0; xn/, we have Lrh D Lrh˝ IdCRh and

LrhCL�
rh DRhCR�h �

 
nX
iD1

�
@.rh/i

@xi
C
1

2
.rh/i

@ ln detG0
@xi

�!
Id�

nX
iD1

.rh/i

�
G0
@.G�10 /

@xi

�.p/
;

where .Lrh˝Id/akI dx
I D .Lrh.a

k
I // dx

I , Rh is the order-zero differential operator given by the matrix

Rh.x/D
�@.rh/j

@xi

�.p/
i;j
DW A

.p/

h
;

and
�
@.rh/j
@xi

�
i;j

and G0
@.G�10 /

@xi
are viewed as endomorphisms of T �x�. Further, the matrix of R�

h
is

R�h WD A
.p/;�

h
D .G0

tAhG
�1
0 /.p/:

Remark B.4. According to the computations in Appendix A, .rh/n D @h=@xn. Moreover, due to the
form of G˙10 , note that

RhCR�h �

nX
iD1

.rh/i

�
G0
@ŒG�10 �

@xi

�.p/
is given by the matrix0BBB@

A0
h
CG00

tA0
h
G�1

0

0 �
Pn
iD1.rh/iG

0
0

@ŒG�1
0

0 �

@xi

�
@2h

@xn@xi

�
i;1

CG00

�
@.rh/i
@xn

�
i;1�

@.rh/j
@xn

�
1;j

C

�
@2h

@xn@xj

�
1;j

G�1
0

0
@2h

.@xn/2

1CCCA
.p/

:

Corollary B.5. In the coordinates .x0; xn/, assume that the function h admits a critical point at 0, that
@h=@xn� 0 on the boundary @�, and that ..@2h/=.@xn/2/.0/D 0. Then the following relations are true:

Rh.0/DR�h.0/D

0BBB@
0

Hess.hj@�/.0/
:::

0 � � � 0

1CCCA
.p/
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and
.LrhCL�

rh/.0/D 2Rh.0/�Tr.Hess.hj@�/.0// Id :

Proof. Since .x0; xn/ are adapted local coordinates around U Š 0 and 0 is a critical point of h, note first
that, for all i in f1; : : : ; ng,

.rh/i D

nX
jD1

gij
@h

@xj
D
@h

@xi
CO.jxj2/:

This implies

Rh.x/D
�@.rh/j

@xi

�.p/
i;j
D .Hess.h//.p/CO.jxj/:

At 0, in particular, since @h=@xn � 0 on the boundary and ..@2h/=.@xn/2/.0/D 0, we have

Rh.0/D

0BBB@
0

Hess.hj@�/.0/
:::

0 � � � 0

1CCCA
.p/

:

Moreover, we deduce from G˙10 .0/D Idn and the symmetry of Hess.hj@�/.0/,

R�h.0/DRh.0/:

At last, we obtain from @2h

.@xn/2
.0/D 0 that

�

� nX
iD1

@.rh/i

@xi

�
IdD�Tr .Hess.hj@�/.0// at 0;

which leads to the end of the proof, using that, for all i in f1; : : : ; ng,

.rh/i .0/D
@h

@xi
.0/D 0: �

Proof of Proposition B.3. The first equality is proved in [Helffer and Sjöstrand 1985, pages 334–336].
There is also a proof of the second equality in the same paper, but we need to be more precise here. From
the first equality, let us deduce

L�
rh D .Lrh˝ Id/�CR�h:

Remarking that the scalar product of two p-forms ! and � is given by

h! j �ig0 D h! j �
.p/.G�10 /�ige ;

where ge is the Euclidean metric
Pn
iD1.dx

i /2, we obtain

R�h D �
.p/.G0/.

tAh/
.p/�.p/.G�10 /D .G0

tAhG
�1
0 /.p/:

Now look at the term .Lrh ˝ Id/�. Take first two p-forms ˛! and ˇ� where ˛, ˇ are C10 .�;R/

functions, and !, � are two p-forms dxI and dxJ . Denoting by Vg0.dx/ the normalized volume form,
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Vg0.dx/ satisfies

Vg0.dx/D .detG0.x//1=2dx1 ^ � � � ^ dxn DW �.x/ dx1 ^ � � � ^ dxn:

Hence we deduce

h˛! j .Lrh˝ Id/�ˇ�ig0 D hLrh.˛/! j �ig0 D
Z
.Lrh.˛//ˇh! j �ig0.x/.detG0.x//1=2dx:

Using Cartan’s formula (2-6), Lrh.˛/D d˛.rh/D
Pn
iD1

@˛
@xi
.rh/i and we obtainZ

.Lrh.˛//ˇh! j �ig0.x/.detG0.x//1=2dx D
Z � nX

iD1

@˛

@xi
.rh/iˇ

�
h! j �ig0.x/� dx

D�

Z
˛

nX
iD1

@

@xi

�
.rh/iˇh! j �ig0.x/�

�
dx:

Now writeZ
˛

nX
iD1

@

@xi

�
.rh/iˇh! j �ig0.x/�

�
dx

D�

Z
˛

nX
iD1

�@.rh/i
@xi

ˇh! j �ig0.x/�
�
dx�

Z
˛

nX
iD1

�
.rh/i

@ˇ

@xi
h! j �ig0.x/�

�
dx

�

Z
˛

nX
iD1

�
.rh/iˇ

@

@xi
.h! j �ig0.x//�

�
dx�

Z
˛

nX
iD1

�
.rh/iˇh! j �ig0.x/

@�

@xi

�
dx

D�

Z
˛

nX
iD1

�@.rh/i
@xi

ˇh! j �ig0.x/�
�
dx�

Z
˛.Lrh.ˇ//h! j �ig0.x/� dx

�

Z
˛

nX
iD1

�
.rh/iˇ

@

@xi
.h! j �ig0.x//�

�
dx�

Z
˛

nX
iD1

�
.rh/iˇh! j �ig0.x/

@�

@xi

�
dx:

Noting that, for all i in f1; : : : ; ng,

@

@xi
�.p/.G�10 /D

�@G�10
@xi

˝G�10 ˝ � � �˝G
�1
0

�
C � � �C

�
G�10 ˝ � � �˝G

�1
0 ˝

@G�10
@xi

�
D �.p/.G�10 /

�
G0
@ŒG�10 �

@xi

�.p/
;

we deduce that, for all i in f1; : : : ; ng,

@

@xi
h! j �ig0.x/ D

�
!
ˇ̌̌ �
G0
@ŒG�10 �

@xi

�.p/
�

�
g0.x/

:

Consequently,

.Lrh˝ Id/� D�Lrh˝ Id�
� nX
iD1

�@.rh/i
@xi

C
.rh/i

�

@�

@xi

��
Id�

nX
iD1

.rh/i

�
G0
@ŒG�10 �

@xi

�.p/
;
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which leads to the second result of Proposition B.3. �

B2. Application to Lrˆ �L�
rˆ
CLrf CL�

rf
. Let us first write

Lrˆ�L�rˆCLrf CL�
rf D 2LrˆCLr.f�ˆ/CL�

r.f�ˆ/:

By Proposition B.3, we deduce
L�
r.f�ˆ/CLr.f�ˆ/ DR1;

where R1 is an order-zero differential operator.
Next, using the first equality of Proposition B.3, we get

2Lrˆ D 2Lrˆ˝ IdCR2;

where R2 is an order-zero differential operator too.
Consequently, setting RDR1CR2, we obtain

Lrˆ�L�rˆCLrf CL�
rf D 2Lrˆ˝ IdCR;

where R is an order-zero differential operator.
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