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A guiding principle in Kähler geometry is that the infinite-dimensional symmetric space H of Kähler
metrics in a fixed Kähler class on a polarized projective Kähler manifold M should be well approximated
by finite-dimensional submanifolds Bk ⊂H of Bergman metrics of height k (Yau, Tian, Donaldson). The
Bergman metric spaces are symmetric spaces of type GC/G where G = U (dk + 1) for certain dk . This
article establishes some basic estimates for Bergman approximations for geometric families of toric
Kähler manifolds.

The approximation results are applied to the endpoint problem for geodesics of H, which are solutions
of a homogeneous complex Monge–Ampère equation in A× X , where A⊂C is an annulus. Donaldson,
Arezzo and Tian, and Phong and Sturm raised the question whether H-geodesics with fixed endpoints
can be approximated by geodesics of Bk . Phong and Sturm proved weak C0-convergence of Bergman to
Monge–Ampère geodesics on a general Kähler manifold. Our approximation results show that one has
C2(A× X) convergence in the case of toric Kähler metrics, extending our earlier result on CP1.
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1. Introduction

This is the first in a series of articles on the Riemannian geometry of the space

H= {ϕ ∈ C∞(M) : ωϕ = ω0+ ddcϕ > 0} (1)

of Kähler metrics in the class [ω0] of a polarized projective Kähler manifold (M, ω0, L), equipped with
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the Riemannian metric gH of Mabuchi [1987], Semmes [1992], and Donaldson [1999]:

‖ψ‖2gH,ϕ
=

∫
M
|ψ |2

ωm
ϕ

m!
, where ϕ ∈H and ψ ∈ TϕH' C∞(M). (2)

Here, L→ M is an ample line bundle with c1(L) = [ω0]. Formally, (H, gH) is an infinite-dimensional
nonpositively curved symmetric space of the type GC/G, where G = SDiffω0(M) is the group of Hamil-
tonian symplectic diffeomorphisms of (M, ω0). This statement is only formal since G does not possess
a complexification and H is an incomplete, infinite-dimensional space. An attractive approach to the
infinite-dimensional geometry is to approximate it by a sequence of finite-dimensional submanifolds
Bk ⊂ H of so-called Bergman (or Fubini–Study) metrics. The space Bk of Bergman metrics may be
identified with the finite-dimensional symmetric space GL(dk + 1,C)/U (dk + 1), where dk is a certain
dimension. Thus, Bk is equipped with a finite-dimensional symmetric space metric gBk , which is not the
same as the submanifold Riemannian metric induced on it by gH. The purpose of the series is to show
that much of the symmetric space geometry of (Bk, gBk ) tends to the infinite-dimensional symmetric
space geometry of (H, gH) as k→∞.

To put the problem and results in perspective, we recall that at the level of individual metrics ω ∈H,
there exists a well-developed approximation theory: Given ω, one can define a canonical sequence of
Bergman metrics ωk ∈ Bk which approximates ω in the C∞ topology (see (9)), in much the same way
that smooth functions can be approximated by Bernstein polynomials [Yau 1992; Tian 1990]; see also
[Catlin 1999; Zelditch 1998; 2009]. The approximation theory is based on microlocal analysis in the
complex domain, specifically Bergman kernel asymptotics on and off the diagonal [Boutet de Monvel
and Sjöstrand 1976; Catlin 1999; Zelditch 1998; Donaldson 2001; Phong and Sturm 2009]. The same
methods are used in [Rubinstein and Zelditch ≥ 2010a] to prove that the geometry of (Bk, gBk ) tends to
the geometry of (H, gH) at the infinitesimal level: for example, that the Riemann metric, connection and
curvature tensor of Bk tend to the Riemann metric, connection and curvature of H. But our principal aim
in this series is to extend the approximation from pointwise or infinitesimal objects to more global aspects
of the geometry, such as Bk-geodesics or harmonic maps to (Bk, gBk ). These more global approximation
problems are much more difficult than the infinitesimal ones. The obstacles are analogous to those
involved in complexifying SDiffω0(M). We will explain this comparison in more detail in Section 1F at
the end of this introduction.

This article is concerned with the approximation of gH-geodesic segments ωt in H with fixed end-
points by gBk -geodesic segments in Bk . As recalled in Section 1A, the geodesic equation for the Kähler
potentials ϕt of ωt is a complex homogeneous Monge–Ampère equation. Little is known about the
solutions of the Dirichlet problem at present beyond the regularity result that ϕt ∈ C1,α([0, T ] × M)
for all α < 1 if the endpoint metrics are smooth (see [Chen 2000; Chen and Tian 2008] for results and
background). It is therefore natural to study the approximation of Monge–Ampère gH-geodesics ϕt by
the much simpler gBk -geodesics ϕk(t, z), which are defined by one-parameter subgroups of GL(dk+1,C)

(see (24)). The problem of approximating H-geodesic segments between two smooth endpoints by Bk-
geodesic segments was raised by Donaldson [2001], Arezzo and Tian [2003] and Phong and Sturm
[2006] and was studied in depth by Phong and Sturm [2006; 2007]. Phong and Sturm [2006] proved that
ϕk(t, z)→ ϕt in a weak C0 sense on [0, 1] × M (see (13)); a C0 result with a remainder estimate was
later proved by Berndtsson [2009] for a somewhat different approximation.
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In this article, we study the gBk -approximation of gH-geodesics in the case of a polarized projective
toric Kähler manifold. Our main result is that a gH geodesic segment of toric Kähler metrics with fixed
endpoints is approximated in C2 by a sequence ϕk(t, z) of toric gBk -geodesic segments. More precisely,
for any T ∈R+, we have ϕk(t, z)→ϕt(z) in C2([0, T ]×M), generalizing the results of Song and Zelditch
[2007a] in the case of CP1. It is natural to study convergence of two (space-time) derivatives since the
Kähler metric ωϕ =ω0+ddcϕ involves two derivatives. In the course of the proof, we introduce methods
which have many other applications to global approximation problems on toric Kähler manifolds, and
which should also have applications to nontoric Kähler manifolds.

Here, as in [Song and Zelditch 2007b; Rubinstein and Zelditch 2010; ≥ 2010b], we restrict to the
toric setting because, at this stage, it is possible to obtain much stronger results than for general Kähler
manifolds and because it is one of the few settings where we can see clearly what is involved in the
classical limit as k→∞. The simplifying feature of toric Kähler manifolds is that they are completely
integrable on both the classical and quantum level. In Riemannian terms, the submanifolds of toric
metrics of H and Bk form totally geodesic flats. Hence in the toric case, the geodesic equation along the
flat is linearized by the Legendre transform, with the consequence that there exists an explicit formula for
the Monge–Ampère geodesic ϕt between two smooth toric endpoint metrics. In particular, the explicit
formula shows that geodesics between smooth toric endpoints are smooth. We use this explicit solution
throughout the article, starting from (29). Thus, in the toric case we only need to prove C2-convergence
of the Bergman approximation. An analogous result on a general Kähler manifold would require an
improvement on the known regularity results on Monge–Ampère geodesics in addition to a convergence
result. We refer to [Chen and Tian 2008] for the state of the art on the regularity theory.

1A. Background. To state our results, we need some notation and background. Let L → Mm be an
ample holomorphic line bundle over a compact complex manifold of dimension m. Letω0∈H (1,1)(M,Z)

denote an integral Kähler form. Fixing a reference hermitian metric h0 on L , we may write other her-
mitian metrics on L as

hϕ = e−ϕh0,

and then the space of hermitian metrics h on L with curvature (1, 1)-forms ωh in the class of ω0 may
(by the ∂∂̄ lemma) be identified with the space H of relative Kähler potentials (1). We may then identify
the tangent space TϕH at ϕ ∈ H with C∞(M). Following [Mabuchi 1987; Semmes 1992; Donaldson
2001], we define the Riemannian metric (2) on H. With this Riemannian metric, H is formally an
infinite-dimensional nonpositively curved symmetric space.

The space Bk of Bergman (or Fubini–Study) metrics of height k is defined as follows: Let H 0(M, Lk)

denote the space of holomorphic sections of the k-th power Lk
→M of L and let dk+1=dim H 0(M, Lk).

We let BH 0(M, Lk) denote the manifold of all bases s= {s0, . . . , sdk } of H 0(M, Lk). Given a basis, we
define the Kodaira embedding

ιs : M→ CPdk , z 7→ [s0(z), . . . , sdk(z)]. (3)

We then define a Bergman metric (or equivalently, Fubini–Study) metric of height k to be a metric of the
form

h s := (ι
∗

shFS)
1/k
=

h0(∑dk
j=0 |s j (z)|2hk

0

)1/k , (4)
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where hFS is the Fubini–Study hermitian metric on O(1)→ CPdk . We then define

Bk = {hs : s∈BH 0(M, Lk)}. (5)

Here, hk
0 is the k-th tensor power of the Hermitian metric h0 on O(1) and h s is independent of the choice

of h0. We use the same notation for the associated space of potentials ϕ such that hs = e−ϕh0 and for
the associated Kähler metrics ωϕ . We observe that with a choice of basis of H 0(M, Lk) we may identify
Bk with the symmetric space GL(dk + 1,C)/U (dk + 1) since GL(dk + 1,C) acts transitively on the set
of bases, while ι∗s hFS is unchanged if we replace the basis s by a unitary change of basis.

Several further identifications are important. The first is that Bk may be identified with the space Ik

of hermitian inner products on H 0(M, Lk), the correspondence being that a basis is identified with an
inner product for which the basis is hermitian orthonormal. As in [Donaldson 2001; 2005], we define
maps

Hilbk :H→ Ik,

by the rule that a hermitian metric h ∈H induces the inner products on H 0(M, Lk),

‖s‖2Hilbk(h) = R
∫

M
|s(z)|2hk dVh, where dVh =

ωm
h

m!
and R =

dk + 1
Vol(M, dVh)

. (6)

Further, we define the identifications
FSk : Ik 'Bk

as follows: an inner product G = 〈 , 〉 on H 0(M, Lk) determines a G-orthonormal basis s = sG of
H 0(M, Lk) and an associated Kodaira embedding (3) and Bergman metric (4). Thus,

FSk(G)= h sG
. (7)

The right side is independent of the choice of h0 and the choice of orthonormal basis. As observed
in [Donaldson 2001; Phong and Sturm 2006], FSk(G) is characterized by the fact that for any G-
orthonormal basis {s j } of H 0(M, Lk), we have

dk∑
j=0

|s j (z)|2FSk(G) ≡ 1 for all z ∈ M. (8)

Metrics in Bk are defined by an algebro-geometric construction. By analogy with the approximation
of real numbers by rational numbers, we say that h ∈H (or its curvature form ωh) has height k if h ∈Bk .
A basic fact is that the union

B=

∞⋃
k=1

Bk

of Bergman metrics is dense in the C∞-topology in the space H [Tian 1990; Zelditch 1998]. Indeed,

FSk ◦Hilbk(h)
h

= 1+ O(k−2), (9)

where the remainder is estimated in Cr (M) for any r > 0; the left side moreover has a complete asymp-
totic expansion. See [Donaldson 2002; Phong and Sturm 2006] for precise statements.
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Now that we have defined the spaces H and Bk , we can compare Monge–Ampère geodesics and
Bergman geodesics. Geodesics of H satisfy the Euler–Lagrange equations for the energy functional
determined by (2); see (68). By [Mabuchi 1987; Semmes 1992; Donaldson 1999], the geodesics of H in
this metric are the paths ht = e−ϕt h0 which satisfy the equation

ϕ̈− 1
2 |∇ϕ̇|

2
ωϕ
= 0, (10)

which may be interpreted as a homogeneous complex Monge–Ampère equation on A×M , where A is
an annulus [Semmes 1992; Donaldson 1999].

Geodesics in Bk with respect to the symmetric space metric are given by orbits of certain one-
parameter subgroups σ t

k = e t Ak of GL(dk + 1,C). In the identification of Bk with the symmetric space
Ik 'GL(dk+1,C)/U (dk+1) of inner products, the one-parameter subgroup e t Ak ∈GL(dk+1) changes
an orthonormal basis ŝ(0) for the initial inner product G0 to an orthonormal basis e t Ak ·ŝ(0) for G t , where
G t is a geodesic of Ik . Geometrically, a Bergman geodesic may be visualized as the path of metrics
on M obtained by holomorphically embedding M using a basis of H 0(M, Lk) and then moving the
embedding under the one-parameter subgroup e t Ak of motions of CPdk . The difficulty is to interpret this
simple extrinsic motion in intrinsic terms on M .

In this article, we only study the endpoint problem for the geodesic equation. We are given h0, h1 ∈

H and let h(t) denote the Monge–Ampère geodesic between them. We then consider the geodesic
Gk(t) of Ik between Gk(0)=Hilbk(h0) and Gk(1)=Hilbk(h1) or equivalently between FSk ◦Hilbk(h0)

and FSk ◦Hilbk(h1). Without loss of generality, we may assume that the change of orthonormal basis
(or change of inner product) matrix σk = eAk between Hilbk(h0), Hilbk(h1) is diagonal with entries
eλ0, . . . , eλdk for some λ j ∈ R. Let ŝ(t) = e t Ak · ŝ(0), where e t Ak is diagonal with entries eλ j t . Define

hk(t) := FSk ◦Gk(t)= h ŝ(t) =: h0e−ϕk(t). (11)

It follows immediately from (8) that

ϕk(t; z)=
1
k

log
dk∑

j=0

e2λ j t |ŝ(0)j |
2
hk

0
. (12)

We emphasize that ϕk(t; z) is the intrinsic Bk geodesic between the endpoints FSk ◦Hilbk(h0) and
FSk ◦Hilbk(h1). It is of course quite distinct from the Hilbk-image of the Monge–Ampère geodesic;
the latter is not intrinsic to Bk and one cannot gain any information on the H-geodesic by studying it.

We summarize the notation for hermitian metrics and geodesics of metrics:

• For any metric h on L , hk denotes the induced metric on Lk , and for any metric H on Lk , H 1/k is
the induced metric on L;

• Given h0 ∈H, ht = e−ϕt h0 is the Monge–Ampère geodesic;

• hk = FS ◦Hilbk(h) ∈ Bk is the natural approximating Bergman metric to h, and hk(t) = e−ϕk(t)h0

is the Bergman geodesic (11).

The main result of [Phong and Sturm 2006] is that the Monge–Ampère geodesic ϕt is approximated
by the one-parameter subgroup Bergman geodesic ϕk(t, z) in the following weak C0 sense:
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ϕt(z)= lim
`→∞

[
sup
k≥`

ϕk(t, z)
]∗ uniformly as `→∞, (13)

where u∗ is the upper envelope of u, that is, u∗(ζ0) = limε→0 sup|ζ−ζ0|<ε
u(ζ ). In particular, without

taking the upper envelope, supk≥` ϕk(t, z)→ ϕ(t, z) almost everywhere as `→∞. See also [Berndtsson
2009] for the subsequent proof of an analogous result for the adjoint bundle Lk

⊗ K (where K is the
canonical bundle) with an error estimate ‖ϕk(t)−ϕ(t)‖C0 = O( log k / k).

1B. Statement of results. Our purpose is to show that the degree of convergence of hk(t) → ht or
equivalently of ϕk(t, z)→ ϕt(z) is much stronger that C0 for toric hermitian metrics on the invariant line
bundle L → M over a smooth toric Kähler manifold. We recall that a toric variety M of dimension m
carries the holomorphic action of a complex torus (C∗)m with an open dense orbit. The associated real
torus Tm

= (S1)m acts on M in a Hamiltonian fashion with respect to any invariant Kähler metric ω, that
is, it possesses a moment map

µ : M→ P

with image a convex lattice polytope. Here, and henceforth, P denotes the closed polytope; its interior is
denoted Po (see Section 2 for background). Objects associated to M are called toric if they are invariant
or equivariant with respect to the torus action (real or complex, depending on the context). We define
the space of toric hermitian metrics by

HTm = {ϕ ∈H : (eiθ )∗ϕ = ϕ for all eiθ
∈ Tm
}. (14)

Here, we assume the reference metric h0 is Tm-invariant. We note that since Tm has a moment map, it
automatically lifts to L and hence it makes sense to say that h0 : L→C is invariant under it. With a slight
abuse of notation carried over from [Donaldson 2001], we also let ϕ denote the full Kähler potential on
the open orbit, that is, ωϕ = ddcϕ on the open orbit. It is clearly Tm-invariant.

Our main result is:

Theorem 1.1. Let L→ M be a very ample toric line bundle over a smooth compact toric variety M. Let
HT denote the space of toric hermitian metrics on L. Let h0, h1 ∈ HT and let ht be the Monge–Ampère
geodesic between them. Let hk(t) be the Bergman geodesic between Hilbk(h0) and Hilbk(h1) in Bk . Let
hk(t)= e−ϕk(t,z)h0 and let ht = e−ϕt (z)h0. Then

lim
k→∞

ϕk(t, z)= ϕt(z)

in C2([0, 1]×M). In fact, there exists C independent of k such that

‖ϕk −ϕ‖C2([0,1]×M) ≤ Ck−1/3+ε for all ε > 0.

Our methods show moreover that away from the divisor at infinity D (see Section 2), the function
ϕk(t, z) has an asymptotic expansion in powers of k−1, and converges in C∞ to ϕt . But the asymptotics
become complicated near D, and require a “multiscale” analysis involving distance to boundary facets.
It is therefore not clear whether ϕk has an asymptotic expansion in k−1 globally on M . At least, no
such asymptotics follow from the known Bergman kernel asymptotics, on or off the diagonal. The
analysis of these regimes for general toric varieties seems to be fundamental in “quantum mechanical
approximations” on toric varieties.
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As mentioned above, the Monge–Ampère equation can be linearized in the toric case and solved
explicitly (17); we give a simple new proof in Section 2. The geodesic arcs are easily seen to be C∞

when the endpoints are C∞. Hence the C2-convergence result does not improve the known regularity
results on Monge–Ampère geodesics of toric metrics, but pertains only to the degree of convergence of
Bergman to Monge–Ampère geodesics in a setting where the latter are known to be smooth; it is possible
that the methods can be developed to give regularity results, but this is a distant prospect (see the remarks
at the end of this introduction).

1C. Outline of the proof. We now outline the proof of Theorem 1.1. We start with the fact that the
Legendre transform of the Kähler potential linearizes the Monge–Ampère equation (see Section 2G
and [Abreu 2003; Guan 1999; Donaldson 2002]). The Legendre transform Lϕ of the open-orbit Kähler
potential ϕ, a convex function on Rm in logarithmic coordinates, is the so-called dual symplectic potential

uϕ(x)= Lϕ(x), (15)

a convex function on the convex polytope P . Under this Legendre transform, the complex Monge–
Ampère equation on HTm linearizes to the equation ü = 0 and is thus solved by

ut = uϕ0 + t (uϕ1 − uϕ0). (16)

Hence the solution ϕt of the geodesic equation on H is solved in the toric setting by

ϕt = L−1ut . (17)

Our goal is to show that ϕk(t; z)→ L−1ut as in (16) in a strong sense.
The second simplifying feature of the toric setting occurs on the quantum level. The Bergman geodesic

is obtained by applying the FSk map to the one-parameter subgroup e t Ak . In general, it is difficult to
understand what kind of asymptotic behavior is possessed by the operators e t Ak . But on a toric variety,
there exists a natural basis of the space of holomorphic sections H 0(M, Lk) furnished by monomial
sections zα which are orthogonal with respect to all torus-invariant inner products, and with respect to
which all change of basis operators e t Ak are diagonal; we refer to Section 2 or to [Shiffman et al. 2004] for
background. Hence, we only need to analyze the eigenvalues of eAk . The exponents α of the monomials
are lattice points α ∈ k P in the k-th dilate of the polytope P corresponding to M . The eigenvalues in the
toric case are given by

λα :=
1
2 log

Qhk
0
(α)

Qhk
1
(α)

, (18)

where Qhk
0
(α) is a norming constant for a toric inner product. By a norming constant for a toric hermitian

inner product G on H 0(M, Lk) we mean the associated L2 norm-squares of the monomials

QG(α)= ‖sα‖2G . (19)

In particular, if h ∈HTm , the norming constants for Hilbk(h) are given by

Qhk (α)= ‖sα‖2hk :=

∫
MP

|sα(z)|2hk dVh . (20)
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Thus, an orthonormal basis of H 0(M, Lk) with respect to Hilbk(h) for h ∈HT is given by{
sα√

Qhk (α)
: α ∈ k P ∩Zm

}
.

An equivalent, and in a sense dual (see Section 3), formulation is in terms of the functions

Phk (α, z) :=
|sα(z)|2hk

Qhk (α)
, (21)

and their special values

Phk (α) := Phk

(
α,µ−1

h

( α
k

))
=

∣∣∣sα(µ−1
h

(
α
k

))∣∣∣2
hk

Qhk (α)
. (22)

Given toric hermitian metrics h0, h1 ∈HTm , the change of basis matrix eAk = σh0,h1,k from the mono-
mial orthonormal basis for Hilbk(h0) to that for Hilbk(h1) is diagonal, and the eigenvalues are given by

Sp(eAk eA∗k ) :=

{
e2λα(k) =

Qhk
0
(α)

Qhk
1
(α)
: α ∈ k P

}
. (23)

Hence, for a Bk-geodesic, (12) becomes

ϕk(t, z)=
1
k

log Zk(t, z), (24)

where

Zk(t, z)=
∑

α∈k P∩Zm

(Qhk
0
(α)

Qhk
1
(α)

)t |sα(z)|2hk
0

Qhk
0
(α)

. (25)

It is interesting to observe that the relative Kähler potential (24) is the logarithm of an exponential sum,
hence has the form of a free energy of a statistical mechanical problem with states parametrized by
α ∈ k P and with Boltzmann weights (Qhk

0
(α)

Qhk
1
(α)

)t

.

Thus, our goal is to prove that

1
k

log
∑

α∈k P∩Zm

(Qhk
0
(α)

Qhk
1
(α)

)t |sα(z)|2hk
0

Qhk
0
(α)
→ ϕt(z) in C2([0, 1]×M). (26)

1D. Heuristic proof. We next sketch a heuristic proof which makes the pointwise convergence obvious.
The first step is to obtain good asymptotics of the norming constants (20). As in [Song and Zelditch
2007a], they may be expressed in terms of the symplectic potential by

Qhk (α)=

∫
P

e−k(uϕ(x)+〈(α/k)−x,∇uϕ(x)〉)dx (27)
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As k tends to ∞ the integral is dominated by the unique point x = α/k, where the “phase function”
is maximized. The Hessian is always nondegenerate and by complex stationary phase we obtain the
asymptotics

Qhk (αk)∼ k−m/2e2kuϕ(α).

The complex stationary phase (or steepest descent) method does not apply near the boundary ∂P , causing
serious complications, but in this heuristic sketch we ignore this aspect.

If we then replace each term in Zk by its asymptotics, we obtain

ϕk(t, eρ/2)∼
1
k

log
∑

α∈P∩(1/k)Zm

e2k(u0(α)+t (u1(α)−u0(α))+〈ρ,α〉). (28)

The exponent (u0(α)+ t (u1(α)−u0(α))+〈ρ, α〉) is convex and therefore has a unique minimum point.
This suggests applying a discrete analogue of complex stationary phase to the sum (28), a Dedekind–
Riemann sum which is asymptotic to the integral∫

P
e2k(u0(α)+t (u1(α)−u0(α))+〈ρ,α〉)dα.

Taking 1
k

times the log of the integral and applying complex stationary phase gives the asymptote

max
α∈P

{
u0(α)+ t (u1(α)− u0(α))+〈ρ, α〉

}
.

But this is the Legendre transform of the ray of symplectic potentials

uϕ0(α)+ t (uϕ1(α)− uϕ0(α)),

and thus is the Monge–Ampère geodesic.
This is the core idea of the proof. We now give the rigorous version.

1E. Outline of the rigorous proof. The main difficulty in the proof of Theorem 1.1 is that the norms
have very different asymptotic regimes according to the position of the normalized lattice point α/k
relative to the boundary ∂P of the polytope. Even in the simplest case of CPm , the different positions
correspond to the regimes of the central limit theorem, large deviations theorems and Poisson law of rare
events for multinomial coefficients. In determining the asymptotics of (24), we face the difficulty that
these Boltzmann weights might be exponentially growing or decaying in k as k→∞.

To simplify the comparison between the Bergman and Monge–Ampère geodesics, we take advantage
of the explicit solution (17) of geodesic equation to rewrite Zk(t, z) in the form

e−kϕt (z)Zk(t, z)=
∑

α∈k P∩Zm

Rk(t, α)
|sα(z)|2hk

t

Qhk
t
(α)
=

∑
α∈k P∩Zm

Rk(t, α)Phk
t
(α, z), (29)

where as usual ht = e−ϕt h0 (with ϕt as in (17)), and where

Rk(t, α) :=
Qhk

t
(α)

(Qhk
0
(α))1−t(Qhk

1
(α))t

. (30)
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One of the key ideas is that Rk(t, α) has at least one order a semiclassical symbol in k, that is, it has at
least to some extent an asymptotic expansion in powers of k. Once this is established, it is possible to
prove that

1
k

log
∑

α∈k P∩Zm

Rk(t, α)Phk
t
(α, z)→ 0 (31)

in the C2-topology on [0, 1]×M .
The proof of Theorem 1.1 consists of four main ingredients:

• the Localization Lemma 1.2, which states that the sum over α localizes to a ball of radius O(k−1/2+δ)

around the point µht(z). Here and hereafter, δ can be taken to be any sufficiently small positive
constant;

• Bergman/Szegő asymptotics (see Section 4B), which allow one to make comparisons between the
sum in Zk and sums with known asymptotics;

• the Regularity Lemma 1.3, which states that the summands Rk(t, α) one is averaging have suffi-
ciently smooth asymptotics as k→∞, allowing one to Taylor expand to order at least one around
the point µht(z);

• joint asymptotics of the Fourier coefficients (21) and particularly their special values Phk (α) in the
parameters k and distance to ∂P (see Proposition 6.1). We use a complex stationary phase method
in the “interior region” far from ∂P and local Bargmann–Fock models near ∂P .

The localization lemma is needed not just for Rk(t, α) but also for summands which arise from dif-
ferentiation with respect to (t, z).

Lemma 1.2 (localization of sums). Let Bk(t, α) : Zm
∩ k P → C be a family of lattice point functions

satisfying |Bk(t, α)| ≤ C0k M for some C0,M ≥ 0. Then, there exists C > 0 so that for any δ > 0,

∑
α∈k P∩Zm

Bk(t, α)
|sα(z)|2hk

t

Qhk
t
(α)
=

∑
α:
∣∣∣αk −µht(z)

∣∣∣≤k−1/2+δ

Bk(t, α)
|sα(z)|2hk

t

Qhk
t
(α)
+ Oδ(k−C).

The proof is based on integration by parts. One could localize to the smaller scale∣∣∣α
k
−µht(z)

∣∣∣≤ C
log k
√

k
,

but then the argument only brings errors of the order (log k)−M for all M and that complicates later
applications.

The regularity lemma concerns the behavior of the Fourier multiplier Rk(t, α) (30). The sum (25)
formally resembles the Berezin covariant symbol of a Toeplitz Fourier multiplier, that is, the restriction
to the diagonal of the Schwartz kernel of the operator; we refer to [Shiffman et al. 2003; Zelditch 2009]
for discussion of such Toeplitz Fourier multipliers operators on toric varieties and their Berezin symbols.
However, the resemblance is a priori just formal — it is not obvious that Rk(t, α) has asymptotics in k.
As mentioned above, the nature of the asymptotics is most difficult near ∂P; it is not obvious that smooth
convergence holds along D, the divisor at infinity.
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Definition. We define the metric volume ratio to be the function on [0, 1]× P defined by

R∞(t, x) :=
( det∇2ut(x)
(det∇2u0(x))1−t(det∇2u1(x))t

)1/2
.

The purpose of introducing Rk(t, α) is explained by the following result.

Lemma 1.3 (regularity). The volume ratio R∞(t, x) ∈ C∞([0, 1]× P). Further, for 0≤ j ≤ 2,( ∂
∂t

) j
Rk(t, α)=

( ∂
∂t

) j
R∞

(
t,
α

k

)
+ O(k−1/3),

where the O symbol is uniform in (t, α).

This lemma is the subtlest part of the analysis. If the Rk function were replaced by a fixed function
f (x) evaluated at α/k then the convergence problem reduces to generalizations of convergence of Bern-
stein polynomial approximations to smooth functions [Zelditch 2009], and only requires now standard
Bergman kernel asymptotics. However, the actual Rk(t, α) do not a priori have this form, and much more
is required for their analysis than asymptotics (on and off diagonal) of Bergman kernels. The analysis
uses a mixture of complex stationary phase arguments in directions where α/k is not too close to ∂P ,
while for directions close to ∂P we use an approximation by the “linear” Bargmann–Fock model (see
Section 2F and Section 6D).

The somewhat unexpected k−1/3 remainder estimate has its origin in this mixture of complex stationary
phase and Bargmann–Fock asymptotics. Both methods are valid for k satisfying

C log k
k
≤ δk ≤ C ′

1
√

k log k
.

In this region, the stationary phase remainder is of order (kδk)
−1 while the Bargmann–Fock remainder

is of order kδ2
k ; the two remainders agree when δk = k−2/3, and then the remainder is O(k−1/3). For

smaller δk the Bargmann–Fock approximation is more accurate and for larger δk the stationary phase
approximation is more accurate. This matter is discussed in detail in Section 6D.

The rest of the proof of the C2-convergence may be roughly outlined as follows: We calculate two
logarithmic derivatives of e−kϕt (z)Zk(t, z) of (29) with respect to (t, ρ). Using the Localization Lemma
1.2 we can drop the terms in the resulting sums corresponding to α for which

∣∣α
k −µht(z)

∣∣ > k−1/2+δ.
In the remaining terms we use the Regularity Lemma 1.3 to approximate the summands by their Taylor
expansions to order one around µht(z). This reduces the expressions to derivatives of the diagonal Szegő
kernel

5hk
t
(z, z)=

∑
α∈k P∩Zm

|sα(z)|2hk
t

Qhk
t
(α)

(32)

for the metric hk
t on H 0(M, Lk) induced by Monge–Ampère geodesic ht . Here, we use the smoothness

of ht . The known asymptotic expansion of this kernel (Section 4B) implies the C2-convergence of
ekϕt (z)Zk(t, z).

As indicated in this sketch, the key problem is to analyze the joint asymptotics of norming constants
Qk

h(α) and the dual constants Phk (α) (22) in (k, α). Norming constants are a complete set of invariants
of toric Kähler metrics. Initial results (but not joint asymptotics in the boundary regime) were obtained
in [Shiffman et al. 2004]; norms are also an important component of Donaldson’s numerical analysis
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of canonical metrics on toric varieties [Donaldson 2005]. Song and Zelditch [2007a] studied the joint
asymptotics of Qk

h(α) up to the boundary of the polytope [0, 1] associated to CP1. In this article, we
emphasize the dual constants (22).

1F. Bergman approximation and complexification. Having described our methods and results, we re-
turn to the discussion of their relation to Kähler quantization and to the obstacles in complexifying
Diffω0(M). Further discussion is given in [Rubinstein and Zelditch ≥ 2010b].

We may distinguish two intuitive ideas as to the nature of Monge–Ampère geodesics. The first
heuristic idea, due to Semmes [1992] and Donaldson [2001], is to view HCMA (homogeneous complex
Monge–Ampère) geodesics as one-parameter subgroups of GC, where G = SDiffω0(M). One-parameter
subgroups of SDiffω0(M) are defined by Hamiltonian flows of initial Hamiltonians ϕ̇0 with respect to
ω0. A complexified one-parameter subgroup is the analytic continuation in time of such a Hamiltonian
flow [Semmes 1992; Donaldson 2001]. This idea is heuristic inasmuch as Hamiltonian flows need not
possess analytic continuations in time; moreover, no genuine complexification of SDiffω0(M) exists.

The second intuitive idea, backed up by [Phong and Sturm 2006] and this article, is to view HCMA
geodesics as classical limits of Bk geodesics. The latter have a very simple extrinsic interpretation as
one-parameter motions e t Ak ιs(M) of a holomorphic embedding ιs : M → CPdk . But the passage to the
classical limit is quite nonstandard from the point of view of Kähler quantization. The problem is that the
approximating one parameter subgroups e t Ak of operators on H 0(M, Lk), which change an orthonormal
basis for an initial inner product to a path of orthonormal bases for the geodesic of inner products, are
not a priori complex Fourier integral operators or any known kind of quantization of classical dynamics.

The heuristic view taken in this article and series is that et Ak should be approximately the analytic
continuation of the Kähler quantization of a classical Hamiltonian flow. To explain this, let us recall the
basic ideas of Kähler quantization.

Traditionally, Kähler quantization refers to the quantization of a polarized Kähler manifold (M, ω, L)
by Hilbert spaces H 0(M, Lk) of holomorphic sections of high powers of a holomorphic line bundle
L → M with Chern class c1(L) = [ω]. The Kähler form determines a hermitian metric h such that
Ric(h) = ω. The hermitian metric induces inner products Hilbk(h) on H 0(M, Lk). In this quantization
theory, functions H on M are quantized as hermitian (Toeplitz) operators Ĥ :=5hk H5hk on H 0(M, Lk),
and canonical transformations of (M, ω) are quantized as unitary operators on H 0(M, Lk). Quantum
dynamics is given by unitary groups ei tk Ĥ (see [Berman et al. 2008; Boutet de Monvel and Sjöstrand
1976; Zelditch 1998] for references).

In the case of Bergman geodesics with fixed endpoints, H should be ϕ̇0, the initial tangent vector to
the HCMA geodesic with the fixed endpoints. The quantization of the Hamiltonian flow of ϕ̇ should then
be ei tk Ĥ and its analytic continuation should be etk Ĥ . The change of basis operator e t Ak should then be
approximately the same as etk Ĥ . But proving this and taking the classical limit is necessarily nonstandard
when the classical analytic continuation of the Hamiltonian flow of ϕ̇ does not exist. Moreover, we only
know that ϕ̇ ∈ C0,1.

This picture of the Bergman approximation to HCMA geodesics is validated in this article in the case
of the Dirichlet problem on projective toric Kähler manifolds. Y. Rubinstein and the second author have
also verified for the initial value problem on toric Kähler manifolds [Rubinstein and Zelditch ≥ 2010b].
The same authors are currently investigating it for general Kähler metrics on Riemann surfaces.
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1G. Final remarks and further results and problems. An obvious question within the toric setting is
whether ϕk(t)→ϕt in a stronger topology than C2 on a toric variety. It seems possible that the methods of
this paper could be extended to Ck-convergence. The methods of this paper easily imply Ck-convergence
for all k away from ∂P or equivalently the divisor at infinity, but the degree of convergence along this
set has yet to be investigated. As mentioned above, we do not see why ϕk should have an asymptotic
expansion in k, but this aspect may deserve further exploration. We also mention that our methods can
be extended to prove C2-convergence of Berndtsson’s approximations in [Berndtsson 2009].

In subsequent articles on the toric case, we build on the methods introduced here to prove convergence
theorems. In [Song and Zelditch 2007b], we develop the methods of this article to prove that the geodesic
rays constructed in [Phong and Sturm 2007] from test configurations are C1,1 and no better on a toric
variety. Test configuration geodesic rays are solutions of a kind of initial value problem; we refer to
[Phong and Sturm 2007; Song and Zelditch 2007b] for the definitions and results. For test configuration
geodesics, the analogue of Rk is not even smooth in t . The smooth initial value problem is studied in
[Rubinstein and Zelditch ≥ 2010b]. In a different direction, a C2 convergence result has been proved for
completely general harmonic maps of Riemannian manifolds with boundary into toric varieties [Rubin-
stein 2008; Rubinstein and Zelditch 2010]. This includes the Wess–Zumino–Witten model, where the
manifold is a Riemann surface with boundary.

We believe that the techniques of this paper extend to other settings with a high degree of symmetry of
the kinds discussed in [Donaldson 2008]. Recently, Feng [2009] adapted our methods to “toric” metrics
on abelian varieties, that is, metrics which are invariant under a real Lagrangian torus action. Associated
to the torus action is a torus-valued moment map. Abelian varieties are simpler than toric varieties in that
the image of the moment map is the full torus; that is, there is no boundary to the image. Consequently,
Feng [2009] is able to improve Lemma 1.3 and then Theorem 1.1 to give C∞ convergence and complete
asymptotics expansions. The general Kähler case involves significant further obstacles. A basic problem
in generalizing the results is to construct a useful localized basis of sections on a general (M, ω). In
the toric case, we use the basis of Tm-invariant states ŝα = zα, which “localize” on the so-called “Bohr–
Sommerfeld tori”, that is, the inverse images µ−1(αk ) of lattice points under the moment map µ. Such
Bohr–Sommerfeld states also exist on any Riemann surface; in subsequent work, we hope to relate them
to the convergence problem for HCMA geodesics on Riemann surfaces.

We briefly speculate on the higher-dimensional general Kähler case. There are a number of plausible
substitutes for the Bohr–Sommerfeld basis on a general Kähler manifold. A rather traditional one is to
study the asymptotics of eAk on a basis of coherent states 8whk . Here,

8whk (z)=
5hk (z, w)√
5hk (w,w)

are L2 normalized Szegő kernels pinned down in the second argument. Intuitively, 8whk is like a gaussian
bump centered at w with shape determined by the metric h. It is thus more localized than the monomials
zα, which are only gaussian transverse to the tori. Under the change of basis operators e t Ak , both the
center and shape should change. Like the monomials zα, coherent states have some degree of orthogo-
nality. There are in addition other well localized bases depending on the Kähler metric which may be
used in the analysis.
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Our main result (Theorem 1.1) may be viewed heuristically as showing that as k→∞ the change of
basis operators e t Ak tend to a path ft of diffeomorphisms changing the initial Kähler metric ω0 into the
metric ωt along the Monge–Ampère geodesic. This suggests that

e t Ak8whk ∼8
ft (w)

hk
t
,

where ht is the Monge–Ampère geodesic and ft is the Moser path of diffeomorphisms such that f ∗t ω0=

ωt . We leave the exact degree of asymptotic similarity vague at this time since even the regularity of the
Moser path is currently an open problem.

2. Background on toric varieties

In this section, we review the necessary background on toric Kähler manifolds. In addition to standard
material on Kähler and symplectic potentials, moment maps and polytopes, we also present some rather
nonstandard material on almost analytic extensions of Kähler potentials and moment maps that are needed
later on. We also give a simple proof that the Legendre transform from Kähler potentials to symplectic
potentials linearizes the Monge–Ampère equation.

Let M be a complex manifold. We use the standard notation

∂ =
∂
∂z
=

1
2

(
∂
∂x
− i ∂

∂y

)
, ∂̄ =

∂
∂ z̄
=

1
2

(
∂
∂x
+ i ∂

∂y

)
, d = ∂ + ∂̄, dc

:=
i

4π
(∂̄ − ∂), ddc

=
i

2π
∂∂̄.

The last three are real operators.
Let L→M be a holomorphic line bundle. The Chern form of a hermitian metric h on L is defined by

c1(h)= ωh := −

√
−1

2π
∂∂̄ log ‖eL‖

2
h, (33)

where eL denotes a local holomorphic frame (= nonvanishing section) of L over an open set U ⊂M , and
‖eL‖h = h(eL , eL)

1/2 denotes the h-norm of eL . We say that (L , h) is positive if the (real) 2-form ωh is
a positive (1, 1) form, that is, defines a Kähler metric. We write ‖eL(z)‖2h = e−ϕ or locally h = e−ϕ , and
then refer to ϕ as the Kähler potential of ωh in U . In this notation,

ωh =

√
−1

2π
∂∂̄ϕ = ddcϕ. (34)

If we fix a hermitian metric h0 and let h = e−ϕh0, and put ω0 = ωh0 , then

ωh = ω0+ ddcϕ. (35)

The metric h induces hermitian metrics hk on Lk
= L ⊗ · · ·⊗ L given by ‖s⊗k

‖hN = ‖s‖
k
h .

We now specialize to toric Kähler manifolds; for background, we refer to [Abreu 2003; Donaldson
2002; Guan 1999; Shiffman et al. 2004]. A toric Kähler manifold is a Kähler manifold (M, J, ω) on
which the complex torus (C∗)m acts holomorphically with an open orbit Mo. Choosing a basepoint m0

on the open orbit identifies Mo
≡ (C∗)m and give the point z = eρ/2+iϕm0 the holomorphic coordinates

z = eρ/2+iϕ
∈ (C∗)m, ρ, ϕ ∈ Rm . (36)
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The real torus Tm
⊂ (C∗)m acts in a Hamiltonian fashion with respect to ω. Its moment map

µ= µω : M→ P ⊂ t∗ ' Rm

(where t is the Lie algebra of Tm) with respect to ω defines a singular torus fibration over a convex lattice
polytope P; as in the introduction, P is understood to be the closed polytope. We recall that the moment
map of a Hamiltonian torus action with respect to a symplectic form ω is the map µω : M→ t∗ defined
by d〈µω(z), ξ〉 = ιξ#ω, where ξ # is the vector field on M induced by the vector ξ ∈ t. Over the open
orbit one thus has a symplectic identification

µ : Mo
' Po

×Tm .

We let x denote the Euclidean coordinates on P . The components (I1, . . . , Im) of the moment map
are called action variables for the torus action. The symplectically dual variables on Tm are called the
angle variables. Given a basis of t or equivalently of the action variables, we denote by {∂/∂θ j } the
corresponding generators (Hamiltonian vector fields) of the Tm action. Under the complex structure J ,
we also obtain generators ∂/∂ρ j of the Rm

+
action.

The action variables are globally defined smooth functions but fail to be coordinates at points where
the generators of the Tm action vanish. We denote the set of such points by D and refer to it as the
divisor at infinity. If p ∈ D and Tm

p denotes the isotropy group of p, then the generating vector fields of
Tm

p become linearly dependent at P . Since we are proving C2 estimates, we need to replace them near
points of D by vector fields with norms bounded below. We discuss good choices of coordinates near
points of D below.

We assume M is smooth and that P is a Delzant polytope. It is defined by a set of linear inequalities

`r (x) := 〈x, vr 〉− λr ≥ 0, r = 1, . . . , d,

where vr is a primitive element of the lattice and inward-pointing normal to the r -th (m−1)-dimensional
facet Fr = {`r = 0} of P . We recall that a facet is a highest-dimensional face of a polytope. The inverse
image µ−1(∂P) of the boundary of P is the divisor at infinity D⊂ M . For x ∈ ∂P we denote by

F(x)= {r : `r (x)= 0}

the set of facets containing x . To measure when x ∈ P is near the boundary we further define

Fε(x)= {r : |`r (x)|< ε}. (37)

The simplest toric varieties are linear Kähler manifolds (V, ω) carrying a linear holomorphic torus
action. They provide local models near a corner of P or equivalently near a fixed point of the Tm action.
As discussed in [Guillemin and Sternberg 1982; Lerman and Tolman 1997], a linear symplectic torus
action is determined by a choice of m elements β j of the weight lattice of the Lie algebra of the torus.
The vector space then decomposes (V, ω) =

⊕
(Vi , ωi ) of orthogonal symplectic subspaces so that the

moment map has the form
µBF(v1, . . . , vm)=

∑
|v j |

2β j . (38)

The image of the moment map is the orthant Rm
+

. This provides a useful local model at corners. We refer
to these as Bargmann–Fock models; they play a fundamental role in this article (see Section 2F).
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2A. Slice-orbit coordinates. We will also need local models at points near codimension r faces, and
therefore supplement the coordinates (36) on the open orbit with holomorphic coordinates valid in neigh-
borhoods of points of D. An atlas of coordinate charts for M generalizing the usual affine charts of CPm

is given in [Shiffman et al. 2004, Section 3.2], and we briefly recall the definitions. For each vertex
v0 ∈ P , we define the chart Uv0 by

Uv0 := {z ∈ MP : χv0(z) 6= 0}, (39)

where
χα(z)= zα = zα1

1 · · · z
αm
m .

Throughout the article we use standard multiindex notation, and put |α| = α1 + · · · + αm . Since P is
Delzant, we can choose lattice points α1, . . . , αm in P such that each α j is in an edge incident to the
vertex v0, and the vectors v j

:= α j
− v0 form a basis of Zm . We define

η : (C∗)m→ (C∗)m, η(z)= η j (z) := (zv
1
, . . . , zv

m
). (40)

The map η is a Tm-equivariant biholomorphism with inverse

z : (C∗)m→ (C∗)m, z(η)= (η0e1
, . . . , η0em

), (41)

where e j is the standard basis for Cm , and 0 is an m×m-matrix with det0=±1 and integer coefficients
defined by

0v j
= e j , v j

= α j
− v0. (42)

The corner of P at v0 is transformed to the standard corner of the orthant Rm
+

by the affine linear trans-
formation

0̃ : Rm
3 u→ 0u−0v0 ∈ Rm, (43)

which preserves Zm , carries P to a polytope Qv0 ⊂ {x ∈ Rm
: x j ≥ 0} and carries the facets F j incident

at v0 to the coordinate hyperplanes = {x ∈ Qv0; x j = 0}. The map η extends to a homeomorphism

η :Uv0 → Cm, η(z0)= 0, (44)

where z0 is the fixed point corresponding to v0. By this homeomorphism, the set µ−1
P (F j ) corresponds

to the set {η ∈ Cm
: η j = 0}. If F be a closed face with dim F =m− r which contains v0, then there are

facets Fi1, . . . , Fir incident at v0 such that F = F i1 ∩· · ·∩ F ir . The subvariety µ−1
P (F) corresponding F

is expressed by
µ−1

P (F)∩Uv0 = {η ∈ Cm
: ηi j = 0, j = 1, . . . , r}. (45)

When working near a point of µ−1
P (F), we simplify notation by writing

η = (η′, η′′) ∈ Cm
= Cr

×Cm−r , (46)

where η′ = (ηi j ) as in (45) and where η′′ are the remaining η j ’s, so that (0, η′′) is a local coordinate
of the submanifold µ−1

P (F). When the point (0, η′′) lies in the open orbit of µ−1
P (F), we often write

η′′ = eiθ ′′+ρ′′/2. In practice, we simplify notation by tacitly treating the corner at v0 as if it were the
standard corner of Rm

+
, omit mention of 0 and always use (z′, z′′) instead of η. It is straightforward to

rewrite all the expressions we use in terms of the more careful coordinate charts just mentioned.
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These coordinates may be described more geometrically as slice-orbit coordinates. Set P0 ∈ µ
−1
P (F)

and let (C∗)mP0
denote its stabilizer (isotropy subgroup). Then there always exists a local slice at P0,

that is, a local analytic subspace S ⊂ M containing P0, invariant under (C∗)mP0
, and such that the natural

(C∗)m-equivariant map of the normal bundle of the orbit (C∗)m · P0, namely

[ζ, P] ∈ (C∗)m ×(C∗)mz S 7→ ζ P ∈ M, (47)

is a biholomorphism onto (C∗)m · S. The terminology is taken from [Sjamaar 1995, Theorem 1.23]. The
slice S can be taken to be the image of a ball in the hermitian normal space TP0((C

∗)m P0)
⊥ to the orbit

under any local holomorphic embedding w : TP0((C
∗)m P0)

⊥
→ M with w(P0) = P0 and dwP0 = Id.

The affine coordinates η′′ above define the slice S = η−1
{(z′, z′′(P0)) : z′ ∈ (C∗)r }. The local orbit-slice

coordinates are then defined by

P = (z′, eiθ ′′+ρ′′/2)⇐⇒ η(P)= eiθ ′′+ρ′′/2(z′, 0), (48)

where (z′, 0) ∈ S is the point on the slice with affine holomorphic coordinates z′ = (η′).
As will be seen below, toric functions are smooth functions of the variables eρ j away from D, and

of the variables |z j |
2 at points near D. We introduce the following polar coordinates centered at a point

P ∈ D:

r j := |z j | = eρ j/2. (49)

They are polar coordinates along the slice. The gradient vector field of r j is denoted ∂/∂r j . As with
polar vector fields, it is not well-defined at r j = 0. But to prove C` estimates of functions which are
smooth functions of r2

j it is sufficient to prove C` estimates with respect to the vector fields ∂/∂r j or
∂/∂(r2

j ).

2B. Kähler potential in the open orbit and symplectic potential. Now consider the Kähler metrics ω in
H (see (1)). We recall that on any simply connected open set, a Kähler metric may be locally expressed as
ω= 2i∂∂̄ϕ, where ϕ is a locally defined function which is unique up to the addition ϕ 7→ ϕ+ f (z)+ f (z)
of the real part of a holomorphic or antiholomorphic function f . Here, a ∈ R is a real constant which
depends on the choice of coordinates. Thus, a Kähler metric ω ∈ H has a Kähler potential ϕ over the
open orbit Mo

⊂ M . In fact, there is a canonical choice of the open-orbit Kähler potential once one fixes
the image P of the moment map:

ϕ(z)= log
∑
α∈P

|zα|2 = log
∑
α∈P

e〈α,ρ〉. (50)

Invariance under the real torus action implies that ϕ only depends on the ρ-variables, so that we may
write it in the form

ϕ(z)= ϕ(ρ)= F(eρ). (51)

The notation ϕ(z) = ϕ(ρ) is an abuse of notation, but is rather standard since [Donaldson 2002]. For
instance, the Fubini–Study Kähler potential is ϕ(z)= log(1+|z|2)= log(1+eρ)= F(eρ). Note that the
Kähler potential log(1+|z|2) extends to Cm from the open orbit (C∗)m , although the coordinates (ρ, θ)
are only valid on the open orbit. This is a typical situation.
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On the open orbit, we then have

ωϕ =
i
2

∑
j,k

∂2ϕ(ρ)

∂ρk∂ρ j

dz j

z j
∧

dz̄k

z̄k
. (52)

Positivity of ωϕ implies that ϕ(ρ) = F(eρ) is a strictly convex function of ρ ∈ Rn . The moment map
with respect to ωϕ is given on the open orbit by

µωϕ (z1, . . . , zm)=∇ρϕ(ρ)=∇ρF(eρ1, . . . , eρm ), (z = eρ/2+iθ ). (53)

Here, and henceforth, we subscript moments maps either by the hermitian metric h or by a local Kähler
potential ϕ. The formula (53) follows from the fact that the generators ∂/∂θ j of the Tm actions are
Hamiltonian vector fields with respect to ωϕ with Hamiltonians ∂ϕ(ρ)/∂ρ j , since

ι∂/∂θ j
ωϕ = d

∂ϕ

∂ρ j
. (54)

The moment map is a homeomorphism from ρ ∈ Rm to the interior Po of P and extends as a smooth
map from M→ P with critical points on the divisor at infinity D. Hence, the Hamiltonians (54) extend
to D.

Note that the local Kähler potential on the open orbit is not the same as the global smooth relative
Kähler potential in (1) with respect to a background Kähler metric ω0. That is, given a reference metric
ω0 with Kähler potential ϕ0, it follows by the ∂∂̄ lemma that ω = ω0 + ddcϕ with ϕ ∈ C∞(M). As
discussed in [Donaldson 2002, Proposition 3.1.7], the Kähler potential ϕ on the open orbit defines a
singular potential on M which satisfies ddcϕ = ω+ H where H is a fixed current supported on D. We
generally denote Kähler potentials by ϕ and in each context explain which type we mean.

By (52), a Tm-invariant Kähler potential defines a real convex function on ρ ∈ Rm . Its Legendre dual
is the symplectic potential uϕ: for x ∈ P there is a unique ρ such that µϕ(eρ/2) = ∇ρϕ = x . Then the
Legendre transform is defined to be the convex function

uϕ(x)= 〈x, ρx 〉−ϕ(ρx), eρx/2 = µ−1
ϕ (x)⇐⇒ ρx = 2 logµ−1

ϕ (x) (55)

on P . The gradient ∇x uϕ is an inverse to µωϕ on MR on the open orbit, or equivalently on P , in the
sense that ∇uϕ(µωϕ (z))= z as long as µωϕ (z) /∈ ∂P .

The symplectic potential has canonical logarithmic singularities on ∂P . According to [Abreu 2003,
Proposition 2.8] or [Donaldson 2002, Proposition 3.1.7], there is a one-to-one correspondence between
Tm

R -invariant Kähler potentials ψ on MP and symplectic potentials u in the class S of continuous convex
functions on P such that u− u0 is smooth on P where

u0(x)=
∑

k

`k(x) log `k(x). (56)

Thus, uϕ(x) = u0(x)+ fϕ(x) where fϕ ∈ C∞(P). We note that u0 and uϕ are convex, that u0 = 0 on
∂P and hence uϕ = fϕ on ∂P . By convexity, maxP u0 = 0.

We denote by Gϕ = ∇
2
x uϕ the Hessian of the symplectic potential. It has simple poles on ∂P . It

follows that ∇2
ρϕ has a kernel along D. The kernel of G−1

ϕ (x) on Tx∂P is the linear span of the normals
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µr for r ∈ F(x). We also denote by Hϕ(ρ) = ∇2
ρϕ(e

ρ) the Hessian of the Kähler potential on the open
orbit in ρ coordinates. By Legendre duality,

Hϕ(ρ)= G−1
ϕ (x), µ(e

ρ)= x . (57)

This relation may be extended to D→ ∂P . The kernel of the left side is the Lie algebra of the isotropy
group G p of any point p ∈ µ−1(x). The volume density has the form

det(G−1
ϕ )= δϕ(x) ·

d∏
r=1

`r (x), (58)

for some positive smooth function δϕ [Abreu 2003]. We note that log
d∏

r=1
`r (x) is known in convex

optimization as the logarithmic barrier function of P .

2C. Kähler potential near D. We also need smooth local Kähler potentials in neighborhoods of points
z0 ∈ D. We note that the open orbit Kähler potential (50) is well-defined near z = 0. Local expressions
for the Kähler potential at other points of D essentially amount to making an affine transformation of
P to transform a given corner of P to 0, and in these coordinates the local Kähler potential near any
point of D can be expressed in the form (50). For instance, on CP1, a Kähler potential valid at z =∞ is
given in the coordinates w= 1/z by log(1+|w|2). It differs on the open orbit from the canonical Kähler
potential log(1+ |z|2) by the term log |z|2 whose i∂∂̄ is a delta function at z = 0, supported on D away
from the point w = 0 that one is studying. In [Song 2005] the reader can find further explicit examples
of toric Kähler potentials in affine coordinate charts. Hence, in what follows, we will always use (50) as
the local expression of the Kähler potential, without explicitly writing in the affine change of variables.

We will however need to be explicit about the use of slice-orbit coordinates z′j , ρ
′′

j (see (48)) in the
local expressions of the Kähler potential. The coordinates near z0 depend on Fε(z0) from (37). For each
z0 ∈ D corresponding to a codimension r face of P , after an affine transformation changing the face to
x ′ = 0, we may write the Kähler potential as the canonical one in slice-orbit coordinates, F(|z′|2, eρ

′′

)

Section 2A (48). Since 0 ∈ P , F is smooth up to the boundary face z′ = 0. The fact that F is smooth up
to the boundary also follows from the general fact that a smooth Tm-invariant function g ∈C∞Tm (M) may
be expressed in the form g(z) = F̂g(µϕ(z)) where as F̂g ∈ C∞(Rm). This is known as the divisibility
property of Tm-invariant smooth functions [Lerman and Tolman 1997]. It implies that F is a smooth
function of the polar coordinates r2

j near points of D in the sense of (49).

2D. Almost analytic extensions. In analyzing the Bergman/Szegő kernel and the functions (21), we
make use of the almost analytic extension ϕ(z, w) to M × M of a Kähler potential for a Kähler ω;
for background on almost analytic extensions; see [Boutet de Monvel and Sjöstrand 1976; Melin and
Sjöstrand 1975]. It is defined near the totally real antidiagonal (z, z̄) ∈ M ×M by

ϕC(x + h, x + k)∼
∑
α,β

∂α+βϕ

∂zα∂ z̄β
(x)

hα

α!

kβ

β!
. (59)

When ϕ is real analytic on M , the almost analytic extension ϕ(z, w) is holomorphic in z and antiholo-
morphic in w and is the unique such function for which ϕ(z) = ϕ(z, z). In the general C∞ case, the
almost analytic extension is a smooth function with the right side of (59) as its C∞ Taylor expansion
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along the antidiagonal, for which ∂̄ϕ(z, w)= 0 to infinite order on the antidiagonal. It is only defined in
a small neighborhood (M ×M)δ = {(z, w) : d(z, w) < δ} of the antidiagonal in M ×M , where d(z, w)
refers to the distance between z and w with respect to the Kähler metric ω. It is well defined up to a
smooth function vanishing to infinite order on the diagonal; the latter is negligible for our purposes (cf.
Proposition 1.1 of [Boutet de Monvel and Sjöstrand 1976].)

The analytic continuation ϕ(z, w) of the Kähler potential was used by Calabi [1953] in the analytic
case to define a Kähler distance function, known as the Calabi diastasis function:

D(z, w) := ϕ(z, w)+ϕ(w, z)− (ϕ(z)+ϕ(w)). (60)

Calabi showed that

D(z, w)= d(z, w)2+ O(d(z, w)4), ddc
wD(z, w)|z=w = ω. (61)

One has the same notion in the almost analytic sense.
The gradient of the almost analytic extension of the Kähler potential in the toric case defines the almost

analytic extension µC(z, w) of the moment map. We are mainly interested in the case where w = eiθ z
lies on the Tm-orbit of z, and by (53) we have,

iµC(z, eiθ z)=∇θϕC(z, eiθ z)=∇θ FC(eiθ
|z|2), (62)

where F is defined in (51). We sometimes drop the subscript in FC and µC since there is only one
interpretation of their extension; but we emphasize that ϕ(z, eiθ z) = FC(eiθ

|z|2) is very different from
ϕ(eiθ z)= F(|eiθ z|2)= F(|z|2). For example, the moment map of the Bargmann–Fock model (Cm, |z|2)
is µ(z)= (|z1|

2, . . . , |zm |
2), whose analytic extension is (z1w̄1, . . . , zmw̄m). Similarly that of the Fubini–

Study metric on CPm is (in multiindex notation)

µFS,C(z, w)=
z · w̄

1+ z · w̄
.

In Section 2F we further illustrate the notation in the basic examples of Bargmann–Fock and Fubini–
Study models. We also observe that (62) continues to hold for the Kähler potential F(|z′|2, eρ

′′

) in
slice-orbit coordinates. That is, we have

iµ(z′, eρ
′′/2)=∇θ ′,θ ′′FC(eiθ ′

|z′|2, eiθ ′′+ρ′′)|(θ ′,θ ′′)=(0,0). (63)

The complexified moment map is a map

µC→ (M ×M)δ→ Cm . (64)

The invariance of µ under the torus action implies that µC(eiθ z, eiθw) = µC(z, w). The following
proposition will clarify the discussion of critical point sets later on (see, for example, Lemma 5.2).

Proposition 2.1. For δ sufficiently small so that µC(z, w) is well-defined, we have

(1) ImµC(z, eiθ z)= 1
2∇θ D(z, eiθ z).

(2) µC(z, eiθ z)= µC(z, z) with (z, eiθ z) ∈ (M ×M)δ if and only if eiθ z = z.
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Proof. The proof of the identity (1) is immediate from the definitions; we only note that the diastasis
function is a kind of real part, and that the imaginary part originates in the factor of i in (62). One can
check the factors of i in the Bargmann–Fock model, where µC(z, eiθ z) = eiθ

|z|2 while D(z, eiθ z) =
2(cos θ − 1)|z|2+ 2i(sin θ)|z|2 (in vector notation).

By (61), D(z, w) has a strict global minimum at w= z which is nondegenerate. It is therefore isolated
for each z. Since its Hessian at w = z is the identify with respect to ω, the isolating neighborhood has a
uniform size as z varies. Thus, there exists a δ > 0 so that µC(z, w)=µC(z, z) in (M×M)δ if and only
if z = w. This is true both in the real analytic case and the almost-analytic case. �

2E. Hilbert spaces of holomorphic sections. On the “quantum level”, a toric Kähler variety (M, ω)
induces the sequence of spaces H 0(M, Lk) of holomorphic sections of powers of the holomorphic toric
line bundle L with c1(L)= 1

2π [ω]. The (C∗)m action lifts to H 0(M, Lk) as a holomorphic representation
which is unitary on Tm . Corresponding to the lattice points α ∈ k P , there is a natural basis {sα} (denoted
χ P
α in [Shiffman et al. 2004]) of H 0(M, Lk) given by joint eigenfunctions of the (C∗)m action. It is

well-known that the joint eigenvalues are precisely the lattice points Zm
∩ k P in the k-th dilate of P .

On the open orbit sα(z) = χα(z)ek where e is a frame and where as above χα(z) = zα = zα1
1 · · · z

αm
m .

Hence, the sα are referred to as monomials. For further background, we refer to [Shiffman et al. 2004].
A hermitian metric h on L induces the Hilbert space inner products (6) on H 0(M, Lk).

As is evident from (21), we will need formulae for the monomials which are valid near D. By (40)
and (42), we have

χα j (z)= η j (z)χv0(z), z ∈ (C∗)m, (65)

and by (43) we then have

|χα(z)|2 = |η0̃(α)|2. (66)

As mentioned above, for simplicity of notation we suppress the transformation 0̃ and coordinates η,
and we will use the orbit-slice coordinates of (48). Thus, we denote the monomials corresponding to
lattice points α near a face F by (z′)α

′

e〈(iθ
′′
+ρ′′/2),α′′〉, where 0̃(α) = (α′, α′′) with α′′ in the coordinate

hyperplane corresponding under 0̃ to F and with α′ in the normal space.

2F. Examples: Bargmann–Fock and Fubini–Study models. As mentioned above the Bargmann–Fock
model is the linear model. It plays a fundamental role in this article because it provides an approximation
for objects on any toric variety on balls of radius log k/

√
k and also near D. Although it and the Fubini–

Study model are elementary examples, we go over them because the notation is used frequently later on.
The Bargmann–Fock models on Cm correspond to choices of a positive definite hermitian matrix H

on Cm . A toric Bargmann–Fock model is one in which H commutes with the standard Tm action, that
is, is a diagonal matrix. We denote its diagonal elements by H j j̄ . The Kähler metric on Cm is thus
i∂∂̄ϕBF,H (z) where the global Kähler potential is

ϕBF,H (z)=
m∑

j=1

H j j̄ |z j |
2
= F(|z1|

2, . . . , |zm |
2), with F(y1, . . . , ym)=

∑
j

H j j̄ y j .

For simplicity we often only consider the case H = I . Putting |z j |
2
= eρ j and using (53), it follows

that µBF,H (z1, . . . , zm) = (H11̄|z1|
2, . . . , Hmm̄ |zm |

2) : Cm
→ Rm

+
as in (38). The symplectic potential
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Legendre dual to ϕBF,H is given by

uBF,H (x)=−ϕBF,H (µ
−1
BF(x))+ 2〈logµ−1

BF,H (x), x〉 = −
∑

j

x j +

m∑
j=1

x j log
x j

H j j̄
. (67)

In this case, GBF,H is the diagonal matrix with entries 1
x j H j j̄

, so

det GBF,H =
1

det H
∏

j

1
x j
.

The off-diagonal analytic extension of the Kähler potential in the sense of (59) is then

ϕBF,H (z, w̄)=
m∑

j=1

H j j̄ z j w̄ j = F(z1w̄1, . . . , zmw̄m),

and in particular,

ϕBF,H (z, eiθ z)=
m∑

j=1

H j j̄ e
iθ j |z j |

2
= F(eiθ1 |z1|

2, . . . , eiθm |zm |
2).

Henceforth we often write the right side in the multiindex notation FC(eiθ
|z|2). We observe, as claimed

in (62), that ∇θ FBF,C(eiθ
|z|2)|θ=0 = iµBF(z).

Quantization of the Bargmann–Fock model with H = I produces the Bargmann–Fock (Hilbert) space

H2(Cm, (2π)−mkme−k|z|2 dz ∧ dz̄)

of entire functions which are L2 relative to the displayed weight. It is infinite-dimensional and a basis is
given by the monomials zα where α ∈ Rm

+
∩Zm . In Section 3A we compute their L2 norms. For H 6= I

one uses the volume form e−k〈H z,z〉(i∂∂̄〈H z, z〉)m/m! = e−k〈H z,z〉 det H dz ∧ dz̄.
Toric Fubini–Study metrics provide compact models which are similar to Bargmann–Fock models.

In a local analysis we always use the latter. A Fubini–Study metric on CPm is determined by a positive
hermitian form H on Cm+1 and a toric Fubini–Study metric is a diagonal one

∑m
j=0 H j j̄ |Z j |

2. In the
affine chart Z0 6= 0, for example, a local Fubini–Study Kähler potential is

ϕFS,H (z1, . . . , zm)= log
(

1+
∑

j

h j j̄ |z j |
2
)
,

where h j j̄ = H j j̄/H00̄. This is a valid Kähler potential near z = 0 but of course has logarithmic singular-
ities on the hyperplane at infinity. The almost analytic extension of the Fubini–Study Kähler potential is
given in the affine chart by log(1+

∑
j h j j̄ z j w̄ j ). Thus (62) asserts that

i

∑
j h j j̄ |z j |

2

1+
∑

j h j j̄ |z j |
2 =∇θ log

(
1+

∑
j

h j j̄ e
iθ j |z j |

2
)∣∣∣
θ=0
.

Quantization produces the Hilbert spaces H 0(CPm,O(k)), where O(k)→ CPm is the kth power of
the hyperplane section bundle. Sections lift to homogeneous holomorphic polynomials on Cm+1, and
correspond to lattice points in k6 where 6 is the unit simplex in Rm .
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2G. Linearization of the Monge–Ampère equation. It is known that the Legendre transform linearizes
the Monge–Ampère geodesic equation. Since it is important for this article, we present a simple proof
that does not seem to exist in the literature.

Proposition 2.2. Let Mc
P be a toric variety. Then under the Legendre transform ϕ 7→ uϕ the complex

Monge–Ampère equation on HTm linearizes to the equation u′′ = 0. Hence the Legendre transform of a
geodesic ϕt has the form ut = u0+ t (u1− u0).

Proof. It suffices to show that the energy functional

E =
∫ 1

0

∫
M
ϕ̇2

t dµϕt dt (68)

is Euclidean on paths of symplectic potentials. For each t let us push forward the integral
∫

M ϕ̇
2
t dµϕ

under the moment map µϕt . The integrand is by assumption invariant under the real torus action, so the
push forward is a diffeomorphism on the real points. The volume measure dµϕt pushes forward to dx .
The function ∂tϕt(ρ) pushes forward to the function ψt(x)= ϕ̇t(ρx,t) where µϕt (ρx,t)= x . By (55), the
symplectic potential at time t is

ut(x)= 〈x, ρx,t 〉−ϕt(ρx,t).

We note that
u̇t = 〈x, ∂tρx,t 〉− ϕ̇t(ρx,t)−〈∇ρϕt(ρx,t), ∂tρx,t 〉. (69)

The outer terms cancel, and thus, our integral is just∫ 1

0

∫
P
|u̇t |

2 dx dt.

Clearly the Euler–Lagrange equations are linear. �

3. The functions Phk and Qhk

We now introduce the key players in the analysis, the norming constants Qhk (α) (20) and the dual con-
stants Phk (α) of (22). The duality is given in the following:

Proposition 3.1. Qhk(α)=
ekuϕ(α/k)

Phk (α)
. (70)

Proof. By (55), it follows that∥∥∥sα
(
µ−1

h

(α
k

))∥∥∥2

hk
=

∣∣∣χα(µ−1
h

(α
k

))∣∣∣2e−kϕh(µ
−1
h (α/k))

= ekuϕh (α/k). �

Corollary 3.2. Rk(t, α)=
(Phk

0
(α))1−t(Phk

1
(α))t

Phk
t
(α)

.

Proof. We need to show that

Qhk
t
(α)

(Qhk
0
(α))1−t(Qhk

1
(α))t

=

(Phk
0
(α))1−t(Phk

1
(α))t

Phk
t
(α)

. (71)
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By Proposition 3.1, the left side of (71) equals∣∣χα(µ−1
ht

(
α
k

))∣∣2e−kϕt (µ
−1
ht
(α/k))

Phk
t
(α)

( Phk
0
(α)∣∣χα(µ−1

0

(
α
k

))∣∣2e−kϕ0(µ
−1
0 (α/k))

)1−t( Phk
1
(α)∣∣χα(µ−1

1

(
α
k

))∣∣2e−kϕ1(µ
−1
1 (α/k))

)t

.

By the equality in the proof of Proposition 3.1, the left side of (71) equals

ek(ut (α/k)+(1−t)u0(α/k)+tu1(α/k))
×

(Phk
0
(α))1−t(Phk

1
(α))t

Phk
t
(α)

.

But ut(x)+ (1− t)u0(x)+ tu1(x)= 0 on a toric variety, and this gives the stated equality. �

Further, we relate the full Phk (α, z) to the Szegő kernel. The Szegő (or Bergman) kernels of a pos-
itive hermitian line bundle (L , h)→ (M, ω) over a Kähler manifold are the kernels of the orthogonal
projections 5hk : L2(M, Lk)→ H 0(M, Lk) onto the spaces of holomorphic sections with respect to the
inner product Hilbk(h) (6). Thus, we have

5hk s(z)=
∫

M
5hk (z, w) · s(w)

ωm
h

m!
, (72)

where the · denotes the h-hermitian inner product at w. Let eL be a local holomorphic frame for L→M
over an open set U ⊂ M of full measure, and let {sk

j = f j e⊗k
L : j = 1, . . . , dk} be an orthonormal basis

for H 0(M, Lk) with dk = dim H 0(M, Lk). Then the Szegő kernel can be written in the form

5hk (z, w) := Fhk (z, w) e⊗k
L (z)⊗ e⊗k

L (w), (73)

where

Fhk (z, w)=
dk∑

j=1

f j (z) f j (w). (74)

Since the Szegő kernel is a section of the bundle (Lk)⊗ (Lk)∗ → M × M , it often simplifies the
analysis to lift it to a scalar kernel 5̂hk (x, y) on the associated unit circle bundle X → M of (L , h).
Here, X = ∂D∗h is the boundary of the unit disc bundle with respect to h−1 in the dual line bundle L∗.
We use local product coordinates x = (z, t) ∈ M × S1 on X , where x = ei t

‖eL(z)‖he∗L(z) ∈ X . To avoid
confusing the S1 action on X with the Tm action on M we use ei t for the former and eiθ (multiindex
notation) for the latter. We note that the Tm action lifts to X and combines with the S1 action to produce
a (S1)m+1 action. We refer to [Zelditch 1998; 2009; Shiffman and Zelditch 2002] for background and
for more on lifting the Szegő kernel of a toric variety.

The equivariant lift of a section s = f e⊗k
L ∈ H 0(M, Lk) is given explicitly by

ŝ(z, t)= eikt
‖e⊗k

L ‖hk f (z)= ek[−(1/2)ϕ(z)+i t] f (z) . (75)

The Szegő kernel thus lifts to X × X as the scalar kernel

5̂k(z, t;w, t ′)= ek[−(1/2)ϕ(z)−(1/2)ϕ(w)+i(t−t ′)]Fk(z, w) . (76)

Since it is S1- equivariant we often put t = t ′ = 0.
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Proposition 3.3. Phk (α, z)= (2π)−m
∫

Tm
5̂hk (eiθ z, 0; z, 0)e−i〈α,θ〉dθ.

Proof. We recall that χα(z) = zα is the local representative of sα in the open orbit with respect to an
invariant frame. Since

{
χα/

√
Qhk (α)

}
is the local expression of an orthonormal basis, we have

Fhk (z, w)=
∑

α∈k P∩Zm

χα(z)χα(w)
Qhk (α)

;

hence

5̂hk (z, 0;w, 0)=
∑

α∈k P∩Zm

χα(z)χα(w)e−k(ϕ(z)+ϕ(w))/2

Qhk (α)
.

It follows that

5hk (eiθ z, 0; z, 0)=
∑

α∈k P∩Zm

|χα(z)|2e−kϕ(z)ei〈α,θ〉

Qhk (α)
.

Integrating against e−i〈α,θ〉 sifts out the α term. �

Corollary 3.4. We have

Phk (α)= (2π)−m
∫

Tm
5̂hk

(
eiθµ−1

h

(α
k

)
, 0;µ−1

h

(α
k

)
, 0
)

e−i〈α,θ〉dθ. (77)

3A. Bargmann–Fock model. As discussed in Section 2F, the Hilbert space in this model has the or-
thogonal basis zα with α ∈ Rm

+
∩ Zm . The Bargmann–Fock norming constants when H = I are given

by
Qhk

BF
(α)= k−|α|−mα!, where α! := α1! . . . αm ! .

It follows that an orthonormal basis of holomorphic monomials is given by
{
k(|α|+m/2)zα/

√
α!
}
.

We therefore have
|sα(z)|2hk

BF

Qhk
BF
(α)
= k|α|+m |z

α
|
2

α!
e−k|z|2, (78)

and in particular,

Phk
BF
(α)= kme−|α|

αα

α!
, (79)

where αα = 1 when α = 0. Here, we use that uBF

(
α
k

)
=
α
k

log α
k
−
α
k
, so that

ekuBF(α/k)
= e−|α|

k−|α|

αα

and Qhk
BF
(α)= k−m−|α|α! . We observe that Phk

BF
(α) depends on k only through the factor km .

Precisely the same formula holds if we replace I by a positive diagonal H with elements H j j̄ . By a

change of variables we obtain Qhk
BF,H

(α) =
∏m

j=1 H−α j

j j̄
Qhk

BF
(α), and also by (67) we have uBF,H (x) =

uBF(x)+
∑

j x j log H j j̄ . Hence, by Proposition 3.1,

Phk
BF,H

(α)= Phk
BF
(α)

m∏
j=1

H−α j

j j̄
e
∑

j α j log H j j̄ = Phk
BF
(α).
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3A1. CPm . In the Fubini–Study model, a basis of H 0(CPm,O(k)) is given by monomials with α ∈ k6
(see Section 2F), and the norming constants are given by

Qhk
FS
(α)=

(
k
α

)
:=

(
k

α1, . . . , αm

)−1

. (80)

Recall that multinomial coefficients are defined for α1+ · · ·+αm ≤ k by(
k

α1, . . . , αm

)
=

k!
α1! · · ·αm !(k− |α|)!

,

where, as above, |α| = α1+ · · ·+αm .
We further have

|sα(z)|2hk
FS
= |zα|2e−k log(1+|z|2)

and therefore,

Phk
FS
(α, z)=

(
k

α1, . . . , αm

)
|zα|2e−k log(1+|z|2),

and since

e−kuFS(α/k)
=

∣∣∣sα(µ−1
FS

(α
k

))∣∣∣2
hk

FS

=

(α
k

)α(
1−
|α|

k

)k−|α|
,

we have

Phk
FS
(α)=

k!
α1! · · ·αm !(k− |α|)!

(α
k

)α(
1−
|α|

k

)k−|α|
.

4. The Szegő kernel of a toric variety

We will use Proposition 3.3 to reduce the joint asymptotics of Phkα, z) in (k, α) to asymptotics of the
Bergman–Szegő kernel off the diagonal. We now review some general facts about diagonal and off-
diagonal expansions of these kernels, for which complete details can be found in [Shiffman and Zelditch
2002], and we also consider some special properties of toric Bergman–Szegő kernels which are very
convenient for calculations; to some extent they derive from [Shiffman et al. 2004], but the latter only
considered Szegő kernels for powers of Bergman metrics.

The Szegő kernels 5̂hk (x, y) are the Fourier coefficients of the total Szegő projector 5̂h(x, y) :
L2(X)→ H2(X), where H2(X) is the Hardy space of boundary values of holomorphic functions on
D∗ (the kernel of ∂̄b in L2(X)). Thus,

5̂hk (x, y)=
1

2π

∫ 2π

0
e−ikt5̂h(ei t x, y) dt.

The properties we need of 5̂hk (x, y) are based on the Boutet de Monvel–Sjöstrand construction [1976]
of an oscillatory integral parametrix for the Szegő kernel:

5̂(x, y)= S(x, y)+ E(x, y) ,

with S(x, y)=
∫
∞

0 eiλψ(x,y)s(x, y, λ)dλ , E(x, y) ∈ C∞(X × X) .
(81)
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The phase function ψ is of positive type and is given in the local coordinates above by

ψ(z, t;w, t ′)= 1
i
(
1− eϕ(z,w)−(ϕ(z)+ϕ(w))/2ei(t−t ′)). (82)

Here, ϕ(z, w) is the almost analytic extension of the local Kähler potential with respect to the frame,
that is, h = e−ϕ(z); see (59) for the notion of almost analytic extension. The amplitude s

(
z, t;w, t ′, λ

)
is

a semiclassical amplitude as in [Boutet de Monvel and Sjöstrand 1976, Theorem 1.5], that is, it admits
an expansion s ∼

∑
∞

j=0 λ
m− j s j (x, y) ∈ Sm(X × X ×R+).

The phase ψ(z, t;w, t ′) is the generating function for the graph of the identity map along the symplec-
tic cone 6 ⊂ T ∗X defined by 6 = {(x, rαx) : r > 0}, where αx is the Chern connection one form. Hence
the singularity of 5̂(x, y) only occurs on the diagonal and the symbol s is understood to be supported
in a small neighborhood (M × M)δ of the antidiagonal. It will be useful to make the cutoff explicit by
introducing a smooth cutoff function χ(d(z, w)), where χ is a smooth even function on R and d(z, w)
denotes the distance between z, w in the base Kähler metric.

As above, we denote the k-th Fourier coefficient of these operators relative to the S1 action by 5̂hk =

Shk + Ehk . Since E is smooth, we have Ehk (x, y)= O(k−∞), where O(k−∞) denotes a quantity which
is uniformly O(k−n) on X × X for all positive n. Hence Ehk (z, w) is negligible for all the calculations
and estimates of this article, and further it is only necessary to use a finite number of terms of the symbol
s. For simplicity of notation, we will use the entire symbol.

It follows that (with x = (z, t), y = (w, 0) and with χ(d(z, w)) as above ),

5̂hk (x, y)= Shk (x, y)+ O(k−∞)

= k
∫
∞

0

∫ 2π

0
eik(−t+λψ(z,t;w,0))χ(d(z, w))s

(
z, t;w, 0, kλ

)
dtdλ+ O(k−∞). (83)

The integral is a damped complex oscillatory integral since (61) implies that

Imψ(x, y)≥ Cd(x, y)2, (x, y ∈ X), (84)

for (x, y) sufficiently close to the diagonal, as one sees by Taylor expanding the phase around the diag-
onal; see [Boutet de Monvel and Sjöstrand 1976, Corollary 1.3]. It follows from (83) and from (84) that
the Szegő kernel 5hk (z, w) on M is “gaussian” in small balls d(z, w)≤ log k/

√
k, that is,

|5̂hk (z, ϕ;w, ϕ′)| ≤ Ckme−kd(z,w)2
+ O(k−∞), when d(z, w)≤

log k
√

k
, (85)

and on the complement d(z, w)≥ log k/
√

k it is rapidly decaying. This rapid decay can be improved to
long range (subgaussian) exponential decay off the diagonal given by the global Agmon estimates,

|5̂hk (z, ϕ;w, ϕ′)| ≤ Ckme−
√

kd(z,w). (86)

We refer to [Christ 2003; Lindholm 2001] for background and references.
It is helpful to eliminate the integrals in (83) by complex stationary phase. Expressed in a local frame

and local coordinates on M , the result is this:

Proposition 4.1. Let (L , h) be a C∞ positive hermitian line bundle, and let h = e−ϕ in a local frame.
Then in this frame, there exists a semiclassical amplitude Ak(z, w) ∼ kma0(z, w)+ km−1a1(z, w)+ · · ·
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in the parameter k−1 such that

5̂hk (z, 0;w, 0)= ek(ϕ(z,w)−(ϕ(z)+ϕ(w))/2)χk(d(z, w)) Ak(z, w)+ O(k−∞),

where, as above, χk(d(z, w))= χ
( k1/2

log k
d(z, w)

)
is a cutoff to a log k

√
k

-neighborhood of the diagonal.

Proof. This follows from the scaling asymptotics of [Shiffman and Zelditch 2002] or from [Berman et al.
2008, Theorem 3.1]. We refer there for a detailed proof of the scaling asymptotics and only sketch a
somewhat intuitive proof.

The integral (83) is a complex oscillatory integral with a positive complex phase. With no loss of
generality we may set ϕ′ = 0. Taking the λ-derivative gives one critical point equation

1− eϕ(z,w)−(ϕ(z)+ϕ(w))/2ei t
= 0 (87)

and the critical point equation in t implies that λ= 1. The λ-critical point equation can only be satisfied
for complex t with imaginary part equal to the negative of the Calabi diastasis function (60), that is,

Im t = D(z, w),

and with real part equal to −Imϕ(z, w). To obtain asymptotics, we therefore have to deform the integral
over S1 to the circle |ζ | = e−D(z,w). Since d(z, w)≤C(log k/

√
k) by assumption, the deformed contour

is a slightly rescaled circle by the amount (log k/
√

k); in the complete proofs, the contour is held fixed
and the integrand is rescaled as in [Shiffman and Zelditch 2002]. The contour deformation is possible
modulo an error O(k−M) of arbitrarily rapid polynomial decay because the integrand may be replaced
by the parametrix (up to any order in λ) which has a holomorphic dependence on the C∗ action on L∗,
hence in eiθ to a neighborhood of S1 in C. This is immediately visible in the phase and with more work
is visible in the amplitude (this is the only incompleteness in the proof; the statement can be derived from
[Shiffman and Zelditch 2002; Christ 2003]). We need to use a cutoff to a neighborhood of the diagonal
of M ×M , but it may be chosen to be independent of θ .

By deforming the circle of integration from the unit circle to |ζ | = eD(z,w) and then changing variables
t 7→ t + i D(z, w) to bring it back to the unit circle, we obtain

5̂hk (x, y)∼ k
∫
∞

0

∫ 2π

0
eik(−t−i D(z,w)−λψ(z,t+i D(z,w);w,0))s(z, t + i D(z, w);w, 0, kλ)dt dλ mod k−∞.

The new critical point equations state that λ = 1 and that ei Imϕ(z,w)ei t
= 1. The calculation shows that

ψ = 0 on the critical set so the phase factor on the critical set equals eϕ(z,w)−(1/2)(ϕ(z)+ϕ(w)). The Hessian
of the phase on the critical set is

(0
1

1
i

)
, as in the diagonal case, and the rest of the calculation proceeds

as in [Zelditch 1998]. (As mentioned above, a complete proof is contained in [Shiffman and Zelditch
2002]). �

4A. Toric Bergman–Szegő kernels. In the toric case, we may simplify the expression for the Szegő
kernels in Proposition 4.1 using the almost analytic extension (see Equation (59)) of the Kähler potential
ϕ(z, w) to M ×M , which has the form

FC(z · w̄)= the almost analytic extension of F(|z|2) to M ×M. (88)
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The almost analytic extension will be illustrated in some analytic examples below, where it coincides
with the analytic continuation.

Thus, we have:

Proposition 4.2. For any hermitian toric positive line bundle over a toric variety, the Szegő kernel for
the metrics hk

ϕ have the asymptotic expansions in a local frame on M ,

5hk (z, w)∼ ek(FC(z·w̄)−(F(|z|2)+F(|w|2))/2 Ak(z, w) mod k−∞,

where

Ak(z, w)∼ km
(

a0(z, w)+
a1(z, w)

k
+ · · ·

)
is a semiclassical symbol of order m.

As an example, the Bargmann–Fock(–Heisenberg) Szegő kernel with k = 1 and H = I is given (up
to a constant Cm depending only on the dimension) by

5̂hBF(z, θ, w, ϕ)= ez·w̄−(|z|2+|w|2)/2ei(θ−ϕ)
=

∑
α∈Zn

zαwα

α!
e−(|z|

2
+|w|2)/2ei(θ−ϕ).

The higher Szegő kernels are Heisenberg dilates of this kernel:

5̂hk
BF
(x, y)=

1
πm kmeik(t−s)ek(ζ ·η̄−(1/2)|ζ |2−(1/2)|η|2), (89)

where x= (ζ, t) , y= (η, s). In this case, the almost analytic extension is analytic and FBF,C(z, w)= z·w̄.
A second example is the Fubini–Study Szegő kernel on O(k), which lifts to S2m−1

× S2m−1 as

5̂hk
FS
(x, y)=

∑
J

(k+m)!
πm j0! · · · jm !

x J ȳ J
=
(k+m)!
πmk!

〈x, y〉k . (90)

Recalling that

x = eiθ e(z)
‖e(z)‖

in a local frame e over an affine chart, the Szegő kernel has the local form on Cm
×Cm of

5̂hk
FS
(z, 0;w, 0)=

(k+m)!
πmk!

exp
(

k log (1+z ·w̄)(√
1+|z|2

√
1+|w|2

)). (91)

Thus, FFS,C(z, w)= log(1+ z · w̄).

4B. Asymptotics of derivatives of toric Bergman–Szegő kernels. One of the key ingredients in of The-
orem 1.1 is the asymptotics of derivatives of the contracted Bergman–Szegő kernel

5hk
t
(z, z)= Fhk

t
(z, z)‖ek

L(z)‖
2
hk = 5̂hk (z, 0; z, 0) (92)

in (t, z). (The notation is slightly ambiguous since in (73) it is used for the uncontracted kernel, but it
is standard and we hope no confusion will arise since one is scalar-valued and the other is not.) These
derivatives allow us to make simple comparisons to derivatives of ϕk(t, z). Since we are ultimately
interested in Ck norms we need asymptotics of derivatives with respect to nonvanishing vector fields.
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We can use the vector fields (∂/∂ρ j ) away from D and the vector fields (∂/∂r j ) near D. The calculations
are very similar, but we carry them both out in some detail here. Later we will tend to suppress the
calculations with (∂/∂r j ) to avoid duplication; the reader can check in this section that the calculations
and estimates are valid.

Only the leading coefficient and the order of asymptotics are relevant. The undifferentiated diagonal
asymptotics are of the following form: for any h ∈ P(M, ω) we have

5hk (z, z)=
dk∑

i=0

‖si (z)‖2hk
= a0km

+ a1(z)km−1
+ a2(z)km−2

+ · · · , (93)

where a0 is constant and as above dk + 1= dim H 0(M, Lk).
We first consider derivatives with respect to ρ. Calculating ρ derivatives of 5hk (eρ/2, eρ/2) is equiv-

alent to calculating θ -derivatives of 5hk
t
(eiθ z, z). Using (62) we have

5hk
t
(eiθ z, z)=

∑
α∈k P∩Zm

ei〈α,θ〉
|zα|2e−k Ft (eiθ

|z|2)

Qhk
t
(α)

.

The results are globally valid but are not useful near D since on each stratum some of the vector fields
generating the (C∗)m action vanish.

Below, we use the tensor product notation
(
α
k
−µht(e

ρ/2)
)⊗2

i j
for

(
αi
k
−µht(e

ρ/2)i

)(α j

k
−µht(e

ρ/2) j

)
.

Proposition 4.3. For i, j = 1, . . . ,m we have:

(1) k−m
∑

α∈k P∩Zm

(
α
k
−µht(e

ρ/2)
)e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

= O(k−2);

(2) 1
5hk

t
(z, z)

(
−

∑
α∈k P∩Zm

(
∂
∂t

log Qhk
t
(α)
) e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

)
− k ∂

∂t
ϕt = O(k−1);

(3) 1
5hk

t
(z, z)

(
k2

∑
α∈k P∩Zm

(
α
k
−µht(e

ρ/2)
)⊗2

i j

e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

)
− k ∂2ϕt

∂ρi∂ρ j
= O(k−1);

(4) 1
5hk

t
(z, z)

(
k
∑

α∈k P∩Zm

(
α
k
−µht(e

ρ/2)
)

i

(
∂
∂t

log Qhk
t
(α)
)e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

)
− k ∂

2ϕt
∂ρi∂t

= O(k−1).

Proof. To prove (1), we differentiate and use (53)–(62) and (93) to obtain

O(km−1)=∇ρ5hk
t
(eρ/2, eρ/2)= k

∑
α∈k P∩Zm

(α
k
−µht(e

ρ/2)
)e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

.

To prove (2) we differentiate

log5hk
t
(eρ/2, eρ/2)= log

∑
α∈k P∩Zm

e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

with respect t to produce the left side. Since the leading coefficient of (93) is independent of t , the t
derivative has the order of magnitude of the right side of (2).
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To prove (3), we take a second derivative of (1) in ρ (or θ ) to get

∇
2
ρ5hk

t
(eρ/2, eρ/2)=−k∇µht(e

ρ/2)5hk
t
(eρ/2, eρ/2)+ k2

∑
α∈k P∩Zm

(α
k
−µht(e

ρ/2)
)⊗2 e〈α,ρ〉−kϕt (eρ/2)

Qhk
t
(α)

.

Then (3) follows from (93) and the fact that ∇µht(e
ρ/2)=∇2ϕ. Similar calculations show (4). �

In our applications, we actually need asymptotics of logarithmic derivatives. They follow in a straight-
forward way from Proposition 4.3, using that 5hk (z, z)∼ km . We record the results for future reference.

Proposition 4.4. We have

1
k
∇ρ log

∑
α∈k P∩Zm

|Sα(z)|2hk
t

Qhk
t
(α)
=

∑
α

(
α
k
−µht(z)

) e〈α,ρ〉

Qhk
t
(α)∑

α

e〈α,ρ〉

Qhk
t
(α)

= O
( 1

k2

)
,

1
k
∂

∂t
log

∑
α∈k P∩Zm

|Sα(z)|2hk
t

Qhk
t
(α)
=

∑
α
∂t log

( 1
Qhk

t
(α)

) e〈α,ρ〉

Qhk
t
(α)∑

α

e〈α,ρ〉

Qhk
t
(α)

−
∂ϕt

∂t
= O

( 1
k2

)
.

Proposition 4.5. We have

(1) 1
k
∇

2
ρ log

∑
α∈k P∩Zm

|Sα(z)|2hk
t

Qhk
t
(α)
=

1
k

∑
α,β

(α−β)⊗2 e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)

(∑
α

e〈α,ρ〉

Qhk
t
(α)

)−2
−

∂2ϕt

∂ρi∂ρ j
= O

( 1
k2

)
,

(2) 1
k
∂

∂t
∇ρ log

∑
α∈k P∩Zm

|Sα(z)|2hk
t

Qhk
t
(α)
=

1
k

∑
α,β

(α−β) ∂t log
(Qhk

t
(β)

Qhk
t
(α)

) e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)(∑

α

e〈α,ρ〉

Qhk
t
(α)

)2
−
∂2ϕt

∂ρi∂t
= O

( 1
k2

)
,

(3) 1
k
∂2

∂t2 log
∑

α∈k P∩Zm

|Sα(z)|2hk
t

Qhk
t
(α)

=
1
k

∑
α,β

(
∂2

t log 1
Qhk

t (α)

+

(
∂t log 1

Qhk
t

)(
∂t log

Qhk
t
(β)

Qhk
t
(α)

) e〈α,ρ〉

Qhk
t
(α)

)
e〈β,ρ〉

Qhk
t
(β)(∑

α
e〈α,ρ〉

Qhk
t
(α)

)2
−
∂2ϕt

∂t2 = O
( 1

k2

)
.

Finally, we consider the analogous derivatives with respect to the radial coordinates r j near D. We
assume z is close to the component of D given in local slice orbit coordinates by z′=0 and let r ′= (r j )

p
j=1

denote polar coordinates in this slice as discussed in Section 2. The Szegő kernel then has the form

5hk
t
(z, z)=

∑
α∈k P∩Zm

∏p
j=1 r2α j

j e〈ρ
′′,α′′〉e−k Ft (r2

1 ,...,r
2
p,e

ρp+1 ,...,eρm )

Qhk
t
(α)

. (94)
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The coefficients of the expansion (93) are smooth functions of r2
j and the expansion may be differentiated

any number of times.
The behavior of 5hk

t
(z, z) for z ∈ D has the new aspect that many of the terms vanish. The extreme

case is where z is a fixed point. We choose the slice coordinates so that it has coordinates z = 0. We
observe that only the term with α = 0 in (94) is nonzero, and the α-th term vanishes to order |α|.

Since
∂

∂r j
=

2
r j

∂

∂ρ j

where both are defined, the calculations above are only modified by the presence of new factors of 2
r j

in each space derivative. Since we are applying the derivative to functions of r2
j , it is clear that the

apparent poles will be canceled. Indeed, the r j derivative removes any lattice point α with vanishing α j

component. Comparing these derivatives with derivatives of (94) gives the following:

Proposition 4.6. For n = 1, . . . , p, we have

1
k
∂

∂rn
log5hk

t
(z, z)=

∑
α:αn 6=0

2
(
αn
k
−µtn(z)

)
rn

∏p
j=1 r2α j

j e〈ρ
′′,α′′〉e−k Ft (r2

1 ,...,r
2
p,e

ρp+1 ,...,eρm )

Qhk
t
(α)

∑
α

∏p
j=1 r2α j

j e〈ρ
′′,α′′〉e−k Ft (r2

1 ,...,r
2
p,e

ρp+1 ,...,eρm )

Qhk
t
(α)

= O
( 1

k2

)
.

In effect, the exponent α is taken to α − (0, . . . , 1n, . . . ) in the sum or removed if αn = 0, where
(0, . . . , 1n, . . . ) is the lattice point with only a 1 in the n-th coordinate. There are similar formulae for
the second derivatives

∂2

∂rn∂ri
,

∂2

∂rn∂t
,

∂2

∂rn∂ρi
.

The only important point to check is that the modification changing α to α− (0, . . . , 1n, . . . ) does not
affect the proofs in Sections 7 and 8.

5. Localization of sums: proof of the Localization Lemma 1.2

The following proposition immediately implies Lemma 1.2:

Proposition 5.1. Given (t, z), and for any δ,C > 0, there exists C ′ > 0 such that

|sα(z)|2hk
t

Qhk
t
(α)
= Phk

t
(α, z)= O(k−C) if

∣∣∣α
k
−µht(z)

∣∣∣≥ C ′k−1/2+δ.

Proof. The proof is based on integration by parts. All of the essential issues occur in the Bargmann–Fock
model, so we first illustrate with that case.

5A. The Bargmann–Fock case. To analyze the decay of Phk
BF
(α, z) as a function of lattice points α,

it seems simplest to use the following integral formula (suppressing the factor km and normalizing the
volume of Tm to equal one):

k|α|
|zα|2

α!
e−k|z|2

= (2π)−m
∫

T m
e−k((1−eiθ )|z|2−i〈α/k,θ〉)dθ = e−k|z|2(2π)−m

∫
T m

ek(eiθ
|z|2−i〈α/k,θ〉)dθ. (95)



BERGMAN METRICS AND GEODESICS 327

Here we denote eiθ
|z|2 by 〈eiθ z, z〉 for simplicity.

The rightmost expression in (95) is e−k|z|2 times a complex oscillatory integral with phase

8z,α/k(θ)= (eiθ
− 1)|z|2− i

〈 α
k
, θ
〉
.

We observe that (consistent with Proposition 2.1),

∇θ8z,α/k(θ)= i
(

eiθ
|z|2−

α

k

)
= 0 ⇐⇒ eiθ

|z|2 = |z|2 =
α

k
.

Further, we claim that
|∇θ8z,(α/k)(θ)| ≥

∣∣∣|z|2− α
k

∣∣∣. (96)

Indeed, the function

fz,α(θ) :=
∣∣∣eiθ
|z|2−

α

k

∣∣∣2 = m∑
j=1

(
cos θ j |z j |

2
−
α j

k

)2
+ (sin θ j |z j |

2)2

on Tm has a strict global minimum at θ = 0 as long as |z j |
2
6= 0 and α j/k 6= 0 for all j . We note that

this discussion of global minima is possible only because the Kähler potential admits a global analytic
continuation in (z, w); in general, one can only analyze critical points near the diagonal.

We integrate by parts with the operator

L=
1
k

1
|∇θ8z,α/k |

2∇θ8z,α/k · ∇θ ; (97)

that is, we apply its transpose

Lt
=−

1
k

1
|∇θ8z,α/k |

2∇θ8z,α/k · ∇θ −
1
k
∇θ ·

1
|∇θ8z,α/k |

2∇θ8z,α/k (98)

to the amplitude. The second (divergence) term is −1 times

1
k
∇ ·∇8z,α/k

|∇8z,α/k |
2 +

1
k
〈∇

28z,α/k · ∇8z,α/k,∇8z,α/k〉

|∇8z,α/k |
4 . (99)

We will need to take into account the k-dependence of the coefficients, and therefore introduce some
standard spaces of semiclassical symbols. We denote by Sn

δ (T
m) the class of smooth functions ak(θ) on

Tm
×N satisfying

sup
eiθ∈Tm

∣∣Dγ
θ ak(θ)

∣∣≤ Ckn+|γ |δ. (100)

Here we use multiindex notation Dγ
θ =

∏m
j=1(−i∂/∂θ j )

γ j . Thus, each Dθ j derivative gives rise to an
extra order of kδ in estimates of ak . We note that products of symbols satisfy

Sn1
δ × Sn2

δ ⊂ Sn1+n2
δ .

We now claim that, with δ the same as in the statement of the proposition,

∇θ8z,α/k

|∇θ8z,α/k |
2 ∈ S1/2−δ

1/2−δ (101)

while the quantity in (99) — note in particular the prefactor 1/k — lies in S−2δ
1/2−δ.
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To prove the claim, we first observe that the sup norm estimates are correct by (96) and from the
fact that ∇8z,α/k/|∇8z,α/k | is a unit vector. We further consider derivatives of (101) and (96). Each θ
derivative essentially introduces one more factor of k |∇θ8z,α/k | and hence raises the order by k1/2−δ.
This continues to be true for iterated derivatives, proving the claim.

Now we observe that
Lt
: Sn

1/2−δ→ Sn−2δ
1/2−δ. (102)

Indeed, the first term of Lt is the composition of (i) ∇θ , which raises the order by 1
2−δ, (ii) multiplication

by an element of S1/2−δ
1/2−δ , which again raises the order by 1

2 − δ, and (iii) 1/k, which lowers the order
by 1. The second term is 1/k times an element of S1−2δ

1/2−δ and thus also lowers the order by 2δ.
It follows that each partial integration by L introduces decay of k−2δ. Hence, for any M > 0,

(95)= e−k|z|2(2π)−m
∫

T m
ek(eiθ

|z|2−i〈α/k,θ〉)((Lt)M 1)dθ =O(k−2δ)M e−k|z|2
∫

T m
ek Re(eiθ

|z|2)dθ =O(k−2δM)

in this region.

5B. General case. We now generalize this argument from the model case to the general one. With no
loss of generality we may choose coordinates so that z lies in a fixed compact subset of Cm , where the
open orbit is identified with (C∗)m . In the open orbit we continue to write |z|2 = eρ . The first step is to
obtain a useful oscillatory integral formula for Phk (α, z). By Propositions 3.3 and 4.2, we have

Phk (α, z)= (2π)−m
∫

T m
ek(FC(eiθ

|z|2)−F(|z|2)) χ(d(z, eiθ z)) Ak(z, eiθ z, 0)ei〈α,θ〉dθ + O(k−∞). (103)

The phase is given by

8z,α/k(θ)= FC(eiθ
|z|2)− F(|z|2)− i

〈α
k
, θ
〉
, (104)

where as above, FC(eiθ
|z|2) is the almost analytic continuation of the Kähler potential F(|z|2) to M×M .

By (84) and (61), it satisfies

Re(FC(eiθ
|z|2)− F(|z|2))≤−Cd(z, eiθ z)2 for some C > 0. (105)

Hence, the integrand (103) is rapidly decaying on the set of θ where d(z, eiθ z)2 ≥ C(log k)/k (see also
(86)), and we may replace χ(d(z, eiθ z)) by χ(k1/2−δ ′d(z, eiθ z)) ∈ S0

1/2−δ ′ , since the contribution from
1−χ(k1/2−δ ′d(z, eiθ z)) is rapidly decaying. Here, δ ′ is an arbitrarily small constant and we may choose
it so that δ ′ < δ in the proposition. (We did not use such cutoffs in the Bargmann–Fock case since the
real analytic potential had a global analytic extension with obvious properties, but as in Section 2D, it is
necessary for almost analytic extensions).

The set d(z, eiθ z) ≤ C(kδ
′

/
√

k) depends strongly on the position of z relative to D, or equivalently
on the position of µh(z) relative to ∂P . For instance, if z is a fixed point then d(z, eiθ z) = 0 for all θ .
However, we will not need to analyze these sets until the next section.

We now generalize the integration by parts argument. Our goal is to prove that Phk
t
(α, z) = O(k−C)

if |α/k−µht(z)| ≥ Ck−1/2+δ. Now, the gradient in θ of the phase of (103) is given by

∇θ8z,α/k(θ)=∇θ FC(eiθ
|z|2)− i

α

k
= i
(
µC(z, eiθ z)−

α

k

)
, (106)
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where µC(z, eiθ z) is the almost analytic extension of the moment map (see Section 2D). The following
lemma is obvious, but we display it to highlight the relations between the small parameters δ of the
proposition and δ ′ in our choice of cutoffs.

Lemma 5.2. If
∣∣∣αk −µht(z)

∣∣∣≥ Ck−1/2+δ and if d(z, eiθ z)≤ Ck−1/2+δ ′ with δ ′ < δ, then

∣∣∣(µht(z, eiθ z)− α
k

)∣∣∣≥ C ′k−1/2+δ.

Proof. By Proposition 2.1,

∣∣∣(µht(z, eiθ z)− α
k

)∣∣∣2 = ∣∣∣(Reµht(z, eiθ z)− α
k

)∣∣∣2+ ∣∣1
2∇θ D(z, eiθ z)

∣∣2
≥

∣∣∣(µht(z)−
α
k

)∣∣∣2+ O(d(eiθ z, z)). �

It follows that, under the assumption
∣∣∣αk −µht(z)

∣∣∣ ≥ Ck−1/2+δ of the proposition, we may integrate
by parts with the operator

L=
1
k
|∇θ8z,α/k |

−2
∇θ8z,α/k · ∇θ (107)

The transpose Lt has the same form (98) as for the Bargmann–Fock example, the only significant change
being that it is now applied to a nonconstant amplitude Ak and to the cutoff

χ(k1/2−δ ′d(z, eiθ z)) ∈ S0
1/2−δ ′ (108)

as well as to its own coefficients. Differentiations of Ak preserve the orders of terms; the only significant
change in the symbol analysis in the Bargmann–Fock case is that differentiations of χ(k1/2−δ ′d(z, eiθ z))
bring only improvements of order k−δ

′

rather than k−δ. However, the order still decreases by at least 2δ ′

on each partial integration, and therefore repeated integration by parts again gives the estimate

|Phk (α, z)| = O
(
(k−δ

′

)M
∫

Tm
ek(Re F(eiθ

|z|2)−F(|z|2)dθ
)
= O((k−δ

′

)M). �

Remark. It is natural to use integration by parts in this estimate since the decay in µht(z)− α/k must
use the imaginary part of the phase and is not a matter of being far from the center of the gaussian.

5C. Further details on the phase. For future reference (see Lemma 6.2), we Taylor expand the phase
(104) in the θ variable to obtain

8z,α/k(θ)= i〈µ(z)−α/k, θ〉+ 〈Hα/kθ, θ〉+ R3

(
k, eiθµ−1

(α
k

))
, (109)
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where R3= O(|θ |3). Here, Hα/k =∇
2 F(µ−1(α/k)) denotes the Hessian of ϕ at α/k (see (57) in Section

2B). Indeed, we have

FC(eiθ
|z|2)− F(|z|2)=

∫ 1

0

d
dt

FC(ei tθ
|z|2)dt =

∫ 1

0
〈∇θ F(ei tθ

|z|2), iθ〉dt

= 〈∇ρF(eρ)), (iθ)〉+
∫ 1

0
(t − 1)∇2

ρ(F(e
i tθ+ρ))(iθ)2/2dt

= i〈µ(z), θ〉+∇2
ρ(F(e

ρ))(iθ)2+ R3

(
k, eiθµ−1

(
α
k

)
, θ
)

= i〈µ(z), θ〉+ 〈Hzθ, θ〉+ R3

(
k, θ, µ−1

(
α
k

))
,

(110)

in the notation (57), where Hz =∇
2
ρF(|z|2) and where

R3(k, θ, ρ) :=
∫ 1

0
(t − 1)2〈∇3

ρ(F(e
i tθ+ρ)), (iθ)3/3!〉dt. (111)

6. Proof of the Regularity Lemma 1.3 and joint asymptotics of Phk(α)

The first statement that R∞(t, x) is C∞ up to the boundary follows from (58),

R∞(t, x)=

(
δϕt (x) ·

∏d
r=1 `r (x)(

δϕ0(x) ·
∏d

r=1 `r (x)
)1−t(

δϕ1(x) ·
∏d

r=1 `r (x)
)t

)1/2

=

( δϕt (x)
δϕ0(x)1−tδϕ1(x)t

)1/2
, (112)

where the functions δϕ are positive, bounded below by strictly positive constants, and C∞ up to ∂P .
We now consider the asymptotics of Rk(t, α). We determine the asymptotics of the ratio by first

determining the asymptotics of the factors of the ratio. We could use either the expression (30) in terms of
norming constants Qk

h(α) for the dual expression in terms of Phk (α) in Corollary 3.2. Each approach has
its advantages and each seems of interest in the geometry of toric varieties, but for the sake of simplicity
we only consider Phk (α) here. In [Song and Zelditch 2007a] we take the opposite approach of focusing
on the norming constants. The advantage of using Phk (α) is that it may be represented by a smooth
complex oscillatory integral up to the boundary, while Qk

h(α) are singular oscillatory integrals over P . A
disadvantage of Phk (α) is that it does not extend to a smooth function on P and has singularities on ∂P .

The asymptotics of Phk (α) are straightforward applications of steepest descent in compact subsets of
M\D but become nonuniform at D. To gain insight into the general problem we again consider first the
Bargmann–Fock model, where by (79) we have

Phk
BF
(α)= kme−|α|

αα

α!
= (2π)−mkm

∫
Tm

ek〈eiθ
−1−iθ,α/k〉dθ. (113)

As observed before, the factors of k cancel so “asymptotics” means asymptotics as α → ∞. This
indicates that we do not have asymptotics when α ranges over a bounded set, or equivalently when α/k
is (C/k)-close to a corner. On the other hand, steepest descent asymptotics applies in a coordinate α j as
long as α j →∞. Our aim in general is to obtain steepest descent asymptotics of Phk (α) in directions
far from facets and Bargmann–Fock asymptotics in directions near a facet.
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6A. Asymptotics of Phk(α). The analysis of Phk (α) is closely related to the analysis of Phk (α, z) in
Section 5B, and in a sense is a continuation of it. But the arguments are now more than integrations-by-
parts. We obtain the asymptotics of Phk (α) from the integral representation analogous to (103) (see also
Proposition 4.2 and Corollary 3.4). Modulo rapidly decaying functions in k, we have (in the notation of
Proposition 4.2):

Phk (α)∼ (2π)−m
∫

Tm
e−k(FC(eiθµ−1

h (α/k))−F(µ−1
h (α/k)))Ak(eiθµ−1

h (α/k), µ−1
h (α/k), 0, k)ei〈α,θ〉dθ. (114)

This largely reduces the asymptotic calculation of Phk (α) to facts about the off-diagonal asymptotics of
the Szegő kernel (compare Proposition 4.2).

The integral (114) is the oscillatory integral (103) but with z = µ−1
(
α
k

)
. Hence, as in (104), its

phase is

8α/k(θ)= FC

(
eiθµ−1

(
α
k

))
− F

(
µ−1

(
α
k

))
− i

〈
α
k
, θ
〉
. (115)

As in (84) and (105) (but with i included in as part of the phase),

Re8α/k(θ)≤−Cd
(
µ−1

(
α
k

)
, eiθµ−1

(
α
k

))2
for some C > 0. (116)

Specializing (106) to our z = µ−1
(
α
k

)
, we get

∇θ8α/k(θ)=∇θ FC

(
eiθµ−1

(
α
k

))
− i α

k
= i
(
µC

(
µ−1

(
α
k

)
, eiθµ−1

(
α
k

))
−
α
k

)
. (117)

By Proposition 2.1, the complex phase has a critical point at values of θ such that d(z, eiθ z) ≤ δ, and
eiθµ−1(α/k) = µ−1(α/k). For α/k /∈ ∂P , the only critical point is therefore θ = 0. The phase then
equals zero, and hence at the critical point the real part of the phase is at its maximum of zero.

For α/k /∈ ∂P , the critical point θ = 0 is nondegenerate. Specializing (109) to z=µ−1(α/k), we have

FC

(
eiθµ−1

h

(
α
k

))
− F

(
µ−1

h

(
α
k

))
=

∫ 1

0

d
dt

FC

(
ei tθµ−1

h

(
α
k

))
dt

= i
〈
α
k
, θ
〉
+ i〈Hα/kθ, θ〉+ R3

(
k, θ, µ−1

(
α
k

))
, (118)

where R3 is defined in (111). Hence,

8α/k(θ)= 〈Hα/kθ, θ〉+ R3

(
θ, k, µ−1

(
α
k

))
, (119)

and finally

Phk (α)∼ (2π)−m
∫

Tm
e−k〈Hα/kθ,θ〉ek R3(θ,k,µ−1(α/k))Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0, k

)
dθ. (120)

Nondegeneracy of the phase is the statement that Hα/k is a nondegenerate symmetric matrix, and this
follows from strict convexity of the Kähler potential or symplectic potential, see (57). But as discussed
in Section 2B, Hα/k has a kernel when α/k ∈ ∂P . Hence the stationary phase expansion is nonuniform
for α/k ∈ P and is not possible when α/k ∈ ∂P . This explains why we need to break up the analysis
into several cases, and why we cannot rely on the complex stationary phase method for all of them.
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Specializing (85) and (86), we have∣∣∣5hk

(
eiθµ−1

h

(
α
k

)
, µ−1

h

(
α
k

))∣∣∣≤ Ckme−Ckd(α/k),eiθα/k))2
+ O(e−C

√
kd(z,eiθ z)). (121)

Hence, the integrand of (114) is negligible off the set of θ where d(µ−1(αk ), eiθµ−1(αk ))≤C(log k)/
√

k.
We now observe that for d(z, eiθ z)≤ Ckδ/

√
k,

d(eiθ z, z)2 ∼
∑

j

(1− cos θ j )` j (µ(z)), (122)

where we sum over j such that |` j (µ(z))| � 1 (we will make this precise in the next definition). In
particular,

d
(

eiθµ−1
h

(
α
k

)
, µ−1

h

(
α
k

))2
∼

∑
j

(1− cos θ j )` j

(
α
k

)
. (123)

Indeed, both in small balls in the interior and near the boundary, the calculation is universal and hence
is accurately reflected in the Bargmann–Fock model with all H j = 1, where the distance squared equals

m∑
j=1

|eiθ j z j − z j |
2
= 2

m∑
j=1

|z j |
2(1− cos θ j )= 2

m∑
j=1

` j (µ(z))(1− cos θ j ). (124)

This motivates the following terminology:

Definition. Let 0< δk � 1.

• x ∈ P is δk-close to the facet F j = {` j = 0} if ` j (x)≤ δk .

• x ∈ P is δk-far from the facet F j = {` j = 0} if ` j (x)≥ δk .

• x is a δk-interior point if it is δk-far from all facets.

There are m possible cases according to the number of facets to which x is δk-close. Of course, x can
be δk-close to at most m facets, in which case it is δk-close to the corner defined by the intersection of
these facets. We thus define

Fδk (x)= {r : |`r (x)|< δk}. (125)

We also let

δ#
k (x)= #Fδk(x) (126)

denote the number of δk-close facets to x . Dual to the sets Fδk above are the sets

FFi1 ,...,Fir
=
{

x : Fδk(x)= {i1, . . . , ir }
}
. (127)

The asymptotics of Phk (α) depend to the leading order on the determinant of the inverse of the Hessian
of the phase of (114) (see also (103)) at θ = 0. This Hessian is the same as the Hessian of the Kähler
potential discussed in Section 2B, and we recall that its inverse is the Hessian G of the symplectic
potential. Hence, the asymptotics are in terms of the determinant of G, which has first order poles on



BERGMAN METRICS AND GEODESICS 333

∂P . This indicates that the asymptotics are not uniform up to ∂P . We saw this as well in the explicit
example of the Bargmann–Fock case. We define

Gϕ,δk (x)=
(
δϕ(x) ·

∏
j /∈Fδk(x)

` j (x)
)−1

, (128)

where the functions δϕ are defined in Section 2B. When x is δk-far from all facets, then Gϕ(x)= det Gϕ;
compare (58). We also define Phk

BF
(k` j (x)) to be the unique real analytic extension of (79) to all x ∈

[0,∞). We then consider Bargmann–Fock type functions of type (79) adapted to the corners of our
polytope P:

PP,k,δk (x)=
∏

j∈Fδk(x)

Phk
BF

(
k` j

(α
k

))
(129)

and
P̃P,k(x)=

∏
j∈Fδk(x)

k−1(2π` j (x))1/2Phk
BF
(k` j (x)). (130)

When we straighten out the corners by affine maps to be standard octants and separate variables
x = (x ′, x ′′) into directions near and far from ∂P , then PP,k,δk (x) is by definition a function of the near
variables x ′ and Gϕ,δk (x) is by definition a function of the far variables x ′′.

The main result of this section is this:

Proposition 6.1. Phk (α)= Cmkm/2
√

det Gϕ

(
α
k

)
P̃P,k

(
α
k

)(
1+ Rk

(
α
k
, h
))
, (131)

where Rk = O(k−1/3) and Cm is a positive constant depending only on m. The expansion is uniform
in the metric h and may be differentiated in the metric parameter h twice with a remainder of the same
order.

Equivalently, with δ#
k defined in (126) and by letting δk = k−2/3,

Phk (α)= Cmk(m−δ
#
k (α/k))/2

√
Gϕ,δk

(
α
k

)
PP,k,δk

(
α
k

)(
1+ Rk

(
α
k
, h
))
, (132)

where again Rk = O(k−1/3).

The factor k(m−δ
#
k (α/k))/2 is due to the fact that we apply complex stationary phase in m − δ#

k

(
α
k

)
variables to a complex oscillatory integral with symbol of order k(m−δ

#
k (α/k)).

As a check, let us consider the m-dimensional Bargmann–Fock case where δ#
k (α/k)= r , and with no

loss of generality we will assume that the first r facets are the close ones. The factor km in the symbol
of the Szegő kernel is then split into kr (absorbed in PP,k,δk ) and km−r in the far factor. As discussed in
Section 3A, the far factor should have the form

km−r
m∏

j=r+1

e−α j
α
α j
j

α j !
∼ km−r

m∏
j=r+1

α
−1/2
j .

The asymptotic factor in Proposition 6.1,

k(m−δ
#
k (α/k))/2

( m∏
j=r+1

k
α j

)1/2

,
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matches this expression. Here, and throughout the proof, we always straighten out the corner to a standard
octant when doing calculations in coordinates.

Secondly, as a check on the remainder, we note that it arises from two sources. As will be seen in the
proof, in far directions the stationary phase remainder has the form

O
( 1

kd((α/k), ∂P)

)
,

while in the near directions it has the form O(k(d(α/k, ∂P))2). When d(α/k, ∂P)∼ k−2/3 the remain-
ders match.

We break up the proof into cases according to the distance of α/k to the various facets as k →∞.
Since we are studying joint asymptotics in (α, k), α may change with k.

6B. Interior asymptotics.

α/k is δ-far from all facets. We first consider the case where α/k is δ-far from all facets as an intro-
duction to the problems we face. In this case, we obtain asymptotics of the integral (114) by a complex
stationary phase argument. But it is not quite standard even in this interior case. In the next section, we
go on to consider the same expansion when δ depends on k.

Lemma 6.2. Assume that there exists δ > 0 such that ` j (α/k)≥ δ for all j , that is, that α/k is δ-far from
all facets. Then there exist bounded smooth functions A− j (x) on P such that

Phk (α)∼ Cmkm/2
√

det Gϕ

(
α
k

)(
1+

A−1(α/k)
k

+
A−2(α/k)

k2 + · · ·+ Oδ(k−M)
)
.

Here, Gϕ=∇
2u (see Section 2B) and Gϕ(α/k) is its value at α/k; its norm is O(δ−1) and its determinant

is O(δ−m).

Before going into the proof, we note that the only assumption on the limit points of α/k is that they
are δ-far from facets. The lattice points α are implicitly allowed to vary with k. Asymptotics of the left
side clearly depend on the asymptotics of the points α/k, and the lemma states how they do so.

Proof. We now apply the complex stationary phase method, or more precisely its proof. The usual com-
plex stationary phase theorem applies to exponents k8(θ), where 8(θ) is a positive phase function with
a nondegenerate critical point at θ = 0. In our case, the phase is also k-dependent since it depends on α/k
and the asymptotics of (120) therefore depend on the asymptotics of α/k in the domain d(α/k, ∂P)≥ δ.
Our stated asymptotics also depend on the behavior of α/k in the same way.

Although the exact statement of complex stationary phase [Hörmander 1990, Theorem 7.7.5] does
not apply, the proof applies without difficulty in this region. Namely, we introduce a cutoff χδ(θ) =
χ(δ−1θ) ∈ C∞(Tm) which is equal to 1 in a δ-neighborhood of θ = 0 and which vanishes outside a 2δ-
neighborhood of θ = 0. We decompose the integral into its χδ and 1− χδ parts. A standard integration
by parts argument, essentially the same as in the Localization Lemma 1.2 shows that the 1−χδ term is
= O(δ−M k M) for all M > 0. In the χδ part the integral may be viewed as an integral over Rm and we
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may apply the Plancherel theorem as in the standard stationary phase argument to obtain

Phk (α)∼
Cm√

det(k Hα/k)

∫
Rm

e−〈(k Hα/k)
−1ξ,ξ〉Fθ→ξ

(
ek R3(θ,k,µ−1(α/k))Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0
))
(ξ)dξ,

(133)
where Fθ→ξ is the Fourier transform.

The stationary phase expansion [Hörmander 1990, Theorem 7.7.5] is asymptotic to(2π
k

)m/2 e(iπ/4) sgnHα/4√
| det Hα/k |

∞∑
j

k− j Pα/k, j Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0
)∣∣∣∣
θ=0
, (134)

where

Pα/k, j Ak(0)=
∑
ν−µ= j

∑
2ν≥3µ

i− j 2−ν

µ! ν!
〈H−1

α/k Dθ , Dθ 〉
ν(Ak Rµ3 )|θ=0. (135)

The only change in the standard argument is that we have a family of quadratic forms Hα
k

depending
on parameters (α, k) rather than a fixed one. But the standard proof is valid for this modification. As in
the standard proof, we expand the exponential in (133) and evaluate the terms and the remainder of the
exponential factor just as in [Hörmander 1990, Theorem 7.7.5], to obtain (134), which becomes(

det
(
k−1Gϕ

(
α
k

)))1/2 M∑
j=0

k− j(〈Gϕ

(
α
k

)
Dθ , Dθ

〉) j
χδek R3(k,θ,µ−1(α/k))Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0, k

)∣∣∣
θ=0

+O
(

k−M sup
θ∈Suppχδ

∣∣∣〈Gϕ(
α
k )Dθ , Dθ 〉

M χδek R3(k,θ,µ−1(α/k))Ak
(
µ−1

h (αk ), eiθµ−1
h (αk ), 0, k

)∣∣∣). (136)

Here, Gx is the Hessian of the symplectic potential, that is, the inverse of Hµ−1(x). (See Section 2B.) We
recall that Gx has poles x−1

j of order one when x ∈ ∂P . When d(α/k, ∂P) ≥ δ, its norm is therefore
O(δ−1) and its determinant is O(δ−m). Since R3 vanishes to order 3 at the critical point, the terms of
the expansion can be arranged into terms of descending order as in the standard proof. If we recall that
the leading term of S is km , we obtain the statement of Proposition 6.1 in the δ-interior case. �

α/k is δk-far from facets with kδk → ∞. We continue to study the complex oscillatory integral (114)
but now allow α/k to become δk-close to some facet, and obtain a stationary phase expansion (with very
possibly a slow decrease in the steps) under the condition that kδk →∞. This should be feasible since
the phase k8α/k is still rapidly oscillating in this region, albeit at different rates in different directions
according to the proximity of α/k to a particular facet. The principal complication is as follows:

• The Hessian Gϕ(α/k) now has components which blow up like δ−1
k near the close facets. In the

stationary phase expansion, we get factors of

k− j
〈
Gϕ

(
α
k

)
Dθ , Dθ

〉 j
Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0, k

)
R3

(
k, θ, µ−1

h

(
α
k

))µ
both in the expansion and remainder. We must verify that these terms still are of descending order.

As a guide, we note that by (95), the Bargmann–Fock phase with µh(z)= α/k is given by

8BF,α/k(θ)=
〈
α
k
, eiθ
− iθ

〉
=

〈
cos θ + i(sin θ − θ), α

k

〉
,
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while the amplitude is constant. In this case, the phase factors into single-variable factors and one can
employ the complex stationary phase method separately to each. In the general case, we will roughly
split the variables θ into two groups (θ ′, θ ′′), depending on α/k, so that the θ ′ variables are paired with
the small components of α/k while the θ ′′ variables are paired with its large components. The complex
stationary phase method applies equally to either dθ ′ or dθ ′′ integral, but the orders of the terms are
determined by the proximity of α/k to the facets.

Lemma 6.3. Let {δk} be a sequence such that kδk→∞. Assume that ` j (α/k)≥ δk for all j , that is, that
α/k is δk far from all facets. Then in the notation of Lemma 6.2, we have

Phk (α)∼ Cmkm/2
√

det Gϕ

(
α
k

)(
1+ A−1(α/k)

k
+

A−2(α/k)
k2 + · · ·+

A−M(α/k)
k2 + O(kδk)

−M
)
,

where now
A− j

(
α
k

)
≤ Dδ−1

k = Cd
(
α
k
, ∂P

)− j
.

Remark. One may regard this as an expansion in the semiclassical parameter (kδk)
−1
= (kd(α/k,∂P))−1.

Proof. We need to prove that the expansion (136) may be rearranged into terms of decreasing order and
that the remainder can be made to have an arbitrarily small order k−M by taking sufficiently many terms.

To analyze the expansion (136), we begin with a decomposition of the inverse Hessian Gα/k , that is,
the Hessian of the symplectic potential, which has the form u0+ g, where g ∈ C∞(P) and where u0 is
the canonical symplectic potential (56). We continue to fix a small δ > 0 as in the previous section, and
consider the facets to which α/k is δ-close. We use the affine transformation to map these δ-close facets
to the hyperplanes x ′j = 0. In these coordinates, we may write the symplectic potential as

uϕ(x)=
∑
j∈Fδk

x ′j log x ′j + g(x), (137)

where the Hessian of g is bounded with bounded derivatives near α/k. The Hessian Gα/k then decom-
poses into the sum

Gϕ(x)=
∑

j∈Fδk (α/k)

1
x ′j
δ j j +∇

2g := Gs
ϕ(x)+∇

2g, (138)

where ∇2g is smooth up to the boundary in a neighborhood of Fδk(α/k). The notation Gϕ(x)s refers to
the “singular part” of Gx . The choice of δ is not important; we are allowing α/k to become δk close to
some facets, and for any choice of δ, the sum will include such facets.

The decomposition (138) of the inverse Hessian induces a block decomposition of the Hessian operator
〈Gα/k Dθ , Dθ 〉. The change of variables to x above induces an affine change of the θ variables, as follows.
We are using the coordinates (x ′, x ′′) on P with x ′ denoting the linear coordinates in the directions of the
normals to the facets Fδk (α/k). The normals corresponding to Fδk (α/k) generate the isotropy algebra
of the subtorus (Tm)′ fixing the near facets. We have Tm

= (Tm)′×(Tm)′′, and denote the corresponding
coordinates by (θ ′, θ ′′).

The Hessian operator in these coordinates has the form〈
Gϕ

(
α
k

)
Dθ , Dθ

〉
=

∑
j∈Fδk (α/k)

k
α′j

D2
θ ′j θ
′

j
+

〈
Gϕ

(
α
k

)′′
Dθ , Dθ

〉
, (139)
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where the second term has bounded coefficients. Evidently, the change to the interior stationary phase
expansion is entirely due to the singular part of the Hessian operator〈

Gs
ϕ

(
α
k

)
Dθ , Dθ

〉
:=

∑
j∈Fδk (α/k)

k
α′j

D2
θ ′j θ
′

j
. (140)

We now consider the order of magnitude of the terms in the j-th term (135), which has the form

k−ν
〈
Gϕ

(
α
k

)
Dθ , Dθ

〉ν
Ak

(
µ−1

h

(
α
k

)
, eiθµ−1

h

(
α
k

)
, 0, k

)
R3

(
k, θ, µ−1

h

(
α
k

))µ∣∣∣
θ=0
, (141)

with ν−µ= j and 2ν ≥ 3µ. The latter constraint is evident from the fact that R3 vanishes to order 3.
Using (139), 〈Gϕ(α/k)Dθ , Dθ 〉

ν becomes a sum of terms of which the most singular is〈
Gs
ϕ

(
α
k

)
Dθ , Dθ

〉ν
:=

( ∑
j∈Fδk (α/k)

k
α′j

D2
θ ′j θ
′

j

)ν
.

We will only discuss the terms generated by this operator; the discussion is similar but simpler for the
other terms. In the extreme case of 〈G ′′α/k Dθ , Dθ 〉

ν , the discussion is essentially the same as in the
previous section; in particular, (141) has order k− j .

The problem with each application of 〈Gs
ϕ(α/k)Dθ , Dθ 〉 is that it raises the order by the maximum

of k/α′j , which may be as large as kδk . Although we have an overall k− j and constraints ν − µ = j ,
2ν ≥ 3µ, it is not hard to check that these are not sufficient to produce negative exponents of k.

The key fact which saves the situation is that the phase8α/k and amplitude S depend on θ as functions
of eiθ

|µ−1(α/k)|2. Although R3 has a more complicated θ -dependence, its third and higher derivatives
are the same as those of 8α/k , and it is obvious that only these contribute to (141). Hence derivatives
in θ bring in factors of |µ−1(α/k)|2 by the chain rule. Due to the behavior of the moment map near a
facet, these chain rule factors cancel a square root of the blowing up factor in Gϕ(α/k). This turns out
to be sufficient for a descending series due to the power k− j and constraint 2ν ≥ 3µ.

Before giving all the details, let us consider what should be the “worst” terms of (141), that is, the
ones with the least decay in k. Each factor of R3 comes with a factor of k, so one would expect terms
with large µ to be worst. The worst term will be one with a maximum µ and where a maximum number
of applications on operator 〈Gs

α/k Dθ , Dθ 〉
ν is applied to the chain-rule factors eiθ

(
|µ−1(α/k)|2

)
j (the

j-th component of this vector), obtained from an application of some Dθ ′j
to S or to R3. If instead

we differentiate S or R3 again, we pull out another chain rule factor, which cancels more of the bad
coefficient k/α′j .

We now give the rigorous argument. The terms of (141) have the form

k−ν+µGϕ

(
α
k

)i1 j1
· · ·Gϕ

(
α
k

)iν jν
Dβ1 R3 · · · Dβµ R3 Dβµ+1 S, (142)

where |β| = 2ν and where Dβq denote universal constant multiples of the multinomial differential oper-
ators ∂βq/(∂θn1 · · · ∂θnβq ), where the union of the indices agrees with {i1, j1, . . . , iν, jν}. We need each
|βq | ≥ 3 for q ≤ µ to remove the zero of R3. If we only consider the most singular term, then we need
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iq = jq ∈ Fδk (α/k). In this case our term becomes

k−ν+µ
( ∏

1≤ j≤ν
q j∈Fδ(α/k)

k
α′q j

)
Dβ1 R3 · · · Dβµ R3 Dβµ+1 S, (143)

For each factor k/α′q j
, there exist two factors of the associated differential operator ∂/∂θq j . When one

is applied to either R3 or S it pulls out a chain rule factor eiθq j |µ−1(α/k)) j |
2. If the second derivative is

applied to this factor, it will not introduce any new factors of |µ−1(α/k)) j |
2. We now estimate (143) by

|(143)| ≤ k−ν+µ
( ∏

1≤ j≤ν
q j∈Fδ(α/k)

k
α′q j

) µ∏
j=1

∣∣∣µ−1
(α

k

)
q j

∣∣∣2. (144)

Now µ−1(x) = ∇uϕ(x) in ρ coordinates. So the square of the q j -th component of µ−1(α/k) equals
log(αq j /k) plus a bounded remainder in ρ coordinates; here as above we are using the x j coordinates
adapted to α/k. It follows that in the z coordinates adapted to the facets of D corresponding to the hyper-
planes x ′j =0, with |z j |

2
= eρ j , we have |µ−1(α/k)q j |

2
≤C α j/k. The constant C comes from the smooth

part of the symplectic potential and has a uniform bound. As a check, we note that for the approximating
Bargmann–Fock model we have |z j |

2
= α j/k. It follows from (144) and k/α′j ≤ Cd(α/k, ∂P)−1 that

∣∣(143)
∣∣ ≤ Ck−ν+µ

( ∏
1≤ j≤ν

q j∈Fδ(α/k)

k
α′q j

) µ∏
j=1

k
α′q j

≤ Ck−ν+µd
(α

k
, ∂P

)−ν+µ
= C

(
kd
(α

k
, ∂P

))− j
. (145)

Effectively, the “semiclassical parameter” has changed from k−1 to k−1d(α/k, ∂P)−1, a natural pa-
rameter in boundary problems. As long as kd(α/k, ∂P)→∞ at some fixed rate, we obtain a descending
expansion. �

6C. Boundary zones: corner zone. Having dealt with the case where |α j/k| ≥ δk , we now turn to the
complementary cases where d(µ(z), ∂P) ≤ δk , that is, at least for one j , |α j/k| ≤ δk or equivalently,
α/k is δk-close to at least one facet. The choice of the scale δk is so that it is small enough to justify the
Bargmann–Fock approximation in the “near” variables.

In this section, we consider the extreme corner case where µ(z) lies in a δk-corner, that is, where there
exists a vertex v ∈ ∂P so that d(µ(z), v)≤ δk . Putting v= 0, the assumption becomes that |µ(z)| ≤Cδk .
Our main object is to determine the scale δk so that the Bargmann–Fock approximation is valid. That is,
for z = µ−1(α/k) we should have, in the multiindex notation of Section 2F (see (113)),

Phk (α) ∼ Phk
BF
(α) = km(2π)−m

∫
Tm

exp
(
−k

m∑
j=1

H j j̄

〈
eiθ j − 1+ iθ j ,

α j

k

〉)
dθ. (146)

Lemma 6.4. If µ(z) lies in a δk-corner, then

Phk (α)= CmPhk
BF
(α)(1+ O(δk)+ O(kδ2

k ))= CmPhk
BF
(α)(1+ O(kδ2

k )).
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Proof. We may assume that v = 0 and that the corner is a standard octant. The phase is

k
(

FC(|z|2eiθ )− F(|z|2)−
〈α

k
, θ
〉)
. (147)

We Taylor expand F(w) at w = 0:

FC(eiθ
|z|2)= F(0)+ F ′(0)eiθ

|z|2+ O(|z|4),

so that
FC(|z|2eiθ )− F(|z|2)= F ′(0)|z|2(eiθ

− 1))+ O(|z|4).

Since |z|2= O(δk), we see that k times the quartic remainder is O(kδ2
k )= o(1) as long as δk = o

(
1/
√

k
)
.

Hence this part of the exponential is a symbol of order zero and may be absorbed into the amplitude.
Further we note that F ′(0)|z|2 = µ(z)+ O(|z|4) and therefore we have

k
(

FC(|z|2eiθ )− F(|z|2)− i
〈α

k
, θ
〉)
= kµ(z)

(
(1− cos θ)+ i(sin θ − θ)

)
+ O(|z|4)).

It follows that when µ(z)= α/k = O(δk), the phase equals

α((1− cos θ)+ i(sin θ − θ))+ O(kδ2
k ).

Absorbing the eO(kδ2
k ) = 1+ O(kδ2

k ) term into the amplitude produces an oscillatory integral with the
same phase function as for the Bargmann–Fock kernel.

Now let us consider the amplitude of the integral. We continue with the notation of Proposition 4.2.
The amplitude has a semiclassical expansion Ak(z, w)∼ kma0(z, w)+km−1a1(z, w)+· · · . Further, the
Tm-invariance implies that Ak(eiθ z, eiθw)= Ak(z, w). The leading order amplitude equals 1 when z=w
and thus

a0(z, eiθw)= 1+Ceiθ
|z|2+ O(|z|4),

hence the full symbol satisfies

Ak(z, eiθ z)= km(1+Ceiθ
|z|2+ · · · )+ O(δ2

k ).

When µ(z)= α/k = O(δk) we thus have

Ak(z, eiθ z)= km
(

1+Ceiθ α

k
+ O(δ2

k )
)
.

Therefore, Phk (α)= Phk
BF
(α)
(
1+ O(δk)+ O(kδ2

k )
)

in the corner region. �

6D. Boundary zones: mixed boundary zone. Now consider the general case where d(µ(z), ∂P) ≤ δk ,
butµ(z) is not necessarily in a corner. Thus, at least one component α j/k=O(δk) but not all components
need to satisfy this condition. We refer to this case as mixed since some components are small and some
are not.

The basic idea to handle this case is to split the components into near and far parts, to use Taylor
expansions and Bargmann–Fock approximations in the near components, and to use complex stationary
phase in the far components. By Section 6B, complex stationary phase works for any sequence δk

satisfying kδk → ∞, and by Section 6C the Taylor–Bargmann–Fock approximation works whenever
δk = o

(
1/
√

k
)
, so we have some flexibility in choosing δk .
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Remark. In fact, we see that both the complex stationary phase and the Bargmann–Fock approximations
are valid for k satisfying (for instance)

C log k
k
≤ δk ≤ C ′

1
√

k log k
,

although the remainder estimates will not be equally sharp by both methods. In fact, the stationary phase
remainder is of order (kδk)

−1 while the Bargmann–Fock remainder is of order kδ2
k ; the two remainders

agree when δk = k−2/3 and for small δk the Bargmann–Fock remainder is smaller.

We first choose linear coordinates so that µ(z) = α/k is δ′k close to the first r facets and δ′k far
from the p := m − r remaining facets, and by an affine map we position the first r facets as the first
r coordinate hyperplanes at x = 0, and the remaining facets as the remaining coordinate hyperplanes.
We use coordinates (x ′, x ′′) relative to this splitting. We also write the z variables as (z′, z′′) in the
corresponding slice-orbit coordinates and (θ ′, θ ′′) as the associated coordinates on Tm .

We now introduce two small scales, a smaller one δ′k to define the nearest facets, and a larger one
δ′′k . The Bargmann–Fock approximation will be used in the x ′ variables which are δ′k close to a facet. It
is sometimes advantageous to use the Bargmann–Fock approximation in the x ′′ variables which are δ′′k
small, but the complex phase method is also applicable. In the following, we continue to use the notation
above Proposition 6.1.

Lemma 6.5. Assume µ(z) lies in the mixed boundary zone {|x ′| ≤ δ′k, |x
′′
| ≤ δ′′k }. If

ηk = k−1(δ′′k )
−1
+ k(δ′k)

2
+ k(δ′k)

2δ′′k + δ
′

k→ 0,

then Phk (α) has an asymptotic expansion

Phk (α)= Cmkm−p/2
√

Gϕ,δk

(α
k

)
PP,k,δ′k (α)(1+ O(ηk)).

Our strategy for obtaining asymptotics of Phk (α) in this case is as follows:

• We employ steepest descent in the p directions which are δ′′k -far from all facets, that is, in the x ′′

variables. This removes the x ′′ variables and produces an expansion analogous to that of Lemma 6.2.

• In the remaining x ′ variables, we Taylor expand the phase and amplitude in the directions δk-close
to ∂P as in Section 6C.

• We thus obtain universal asymptotics to leading order depending only on the number of facets to
which α/k is δk-close.

Proof. We are still working on the oscillatory integral with phase (114), but we now treat it as an iterated
complex oscillatory integral in the variables (θ ′, θ ′′) defined above. We first consider the dθ ′′ integral,

Ik

(
θ ′,
α
k

)
:= (2π)−p

∫
Tp

ek(FC(eiθµ−1
h (α/k))−F(µ−1

h (α/k)))Ak

(
eiθµ−1

h

(
α
k

)
, µ−1

h

(
α
k

)
, 0, k

)
e−i〈α,θ〉dθ ′′, (148)

where p is the number of θ ′′ variables. We also let r=m−p be the number of θ ′ variables. We now verify
that we may apply the complex stationary phase method to the dθ ′′ integral for fixed θ ′. Throughout
this section, we put z = µ−1(α/k) and often write |z′|2, |z′′|2 for the modulus square of the associated
complex coordinate components of this point in the open orbit.
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First we simplify the complex phase. As in Section 6C, we Taylor expand FC(eiθ ′
|z′|2, eiθ ′′

|z′′|2) in
the z′ variable (and only in the z′ variable) to obtain

FC(eiθ ′
|z′|2, eiθ ′′

|z′′|2)= FC(0, eiθ ′′
|z′′|2)+ F ′1(0, eiθ ′′

|z′′|2)eiθ ′
|z′|2+ O(|z′|4),

where F1 is the z′-derivative of F . The phase is then

k
(

FC(eiθ ′
|z′|2, eiθ ′′

|z′′|2)− F(|z′|2, |z′′|2)− i
〈
α′

k
, θ ′
〉
− i
〈
α′′

k
, θ ′′

〉)
= k

(
FC(0, eiθ ′′

|z′′|2)− F(0, |z′′|2)
)
+ k

(
F ′1(0, eiθ ′′

|z′′|2)eiθ ′
|z′|2− F ′1(0, |z

′′
|
2)|z′|2

)
−k
(

i
〈
α′

k
, θ ′
〉
+ i
〈
α′′

k
, θ ′′

〉)
+ O(k|z′|4). (149)

We now absorb the exponentials of the terms kO(|z′|4), ki〈α′/k, θ ′〉 of the phase (149) into the
amplitude, that is, we take the new amplitude A′′k to be the old one Ak multiplied by this factor. The
term kO(|z′|4) is o(1), while ki〈α′/k, θ ′〉 is constant in θ ′′, so their exponentials are symbols in θ ′′ and
may be absorbed into the amplitude. Moreover, the term −F ′1(0, |z

′′
|
2)|z′|2 is independent of θ ′′ so its

exponential may also be absorbed into the amplitude.
The phase function for the dθ ′′ integral thus simplifies to

k
(
FC(0, eiθ ′′

|z′′|2)− F(0, |z′′|2)
)
+ k

(
F ′1(0, eiθ ′′

|z′′|2)eiθ ′
|z′|2

)
− ki

〈
α′′

k
, θ ′′

〉
. (150)

Due to the presence of |z′|2, the terms k(F ′1(0, eiθ ′′
|z′′|2)eiθ ′

|z′|2 − F ′1(0, |z2|
2)|z′|2) are O(kδ ′), hence

of much lower order than the remaining terms. To simplify the phase further, we now argue that their
exponentials can also be absorbed into the amplitude, albeit as exponentially growing rather than poly-
nomially growing factors in k. Since F ′1(0, |z2|

2)|z′|2 is independent of θ ′′, it can be factored out of the
θ ′′ integral, so the key factor is

Ek(θ
′′) := ek(F ′1(0,e

iθ ′′
|z′′|2)eiθ ′

|z′|2), (151)

where in the notation for Ek we omit its dependence on the parameters |z′′|2, |z′|2, θ ′. Thus we would
like to show that complex stationary phase method applies to the complex oscillatory integral with phase

8′′(θ ′′) := FC(0, eiθ ′′
|z′′|2)− F(0, |z′′|2)− i

〈
α′′

k
, θ ′′

〉
(152)

and with the amplitude A′′k (θ
′′) given by the original amplitude Ak multiplied by

exp k
(

F ′1(0, eiθ ′′
|z′′|2)eiθ ′

|z′|2− F ′1(0, |z
′′
|
2)|z′|2+ i

〈
α′′

k
, θ ′′

〉
+ O(|z′|4

)
.

The amplitude is of exponential growth but its growth is of strictly lower exponential growth than the
phase factor.

The next (not very important) observation is that by (116), the real part of complex phase damps the
integral so that the integrand is negligible on the complement of the set

|θ ′′| ≤ C
δ ′

d ′′(µ(z), ∂P)
(153)
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modulo rapidly decaying errors. This follows by splitting up the sum in (122)–(123) into the close facets
to z and the far facets. The integrand is negligible unless |Re8| ≤ C(log k)/k; hence it is negligible
unless

d(eiθ z, z)2 ∼
∑

j∈Fδk(µ(z))

(1− cos θ ′′j )`
′′

j (µ(z))+ O(|z′|2)

∼

∑
j∈Fδk(µ(z))

(θ ′′j )
2`′′j (µ(z))+ O(δ′k)

≤ C
log k

k
⇐⇒ θ2

j ≤
O(δ′k)+ O

( log k
k

)
d ′′(µ(z), ∂P)

, for all j ∈ Fδk(µ(z)).

(154)

Under the assumption that d ′′(µ(z), ∂P)≥ δ′′k , the integrand is rapidly decaying unless θ2
j ≤Cδ′k/δ

′′

k . We
could introduce a cutoff of the form

χ

(√
δ′′k
δ′k
θ

)
,

but for our purposes, it suffices to use a smooth cutoff χδ(θ ′′) around θ ′′ = 0 with a fixed small δ so that
we may use local θ ′′ coordinates. We then break up the integral using 1 = χδ + (1− χδ). The (1− χδ)
term is rapidly decaying and may be neglected.

We observe that ∇θ ′′FC(0, eiθ ′′
|z′′|2) = iµ′′

C
(|z′′|, eiθ ′′

|z′′|) is the complexified moment map for the
subtoric variety z′ = 0, and we can use Proposition 2.1 to see that its only critical point in the domain of
integration is at θ ′′ = 0. We denote the Hessian of the phase (152) at θ ′′ = 0 by

H ′′
|z′′|2 =∇

2
θ ′′8
′′(θ ′′)|θ ′′=0 =∇

2
θ ′′FC(0, eiθ ′′

|z′′|2)|θ ′′=0, (155)

and observe that it equals i Dµ′′
C
(|z′′|, eiθ ′′

|z′′|), the derivative of the moment map from the subtoric
variety to its polytope. By the same calculation that led to (138), the θ ′′−θ ′′ block of the inverse Hessian
operator has the form

G ′′ϕ(x
′′)=

p∑
j=1

1
x ′′j
δ j j +∇

2g := (G ′′ϕ)
s(x ′′)+∇2g, (156)

where |x ′′| ≥ δ ′′k .
We now must verify that the complex stationary phase expansion

(det k−1G ′′ϕ(|z
′′
|
2))1/2

M∑
j=1

k− j (〈G ′′ϕ(|z
′′
|
2)Dθ ′′, Dθ ′′〉)

jχδA′′k (θ
′′)|θ ′′=0 (157)

is a descending expansion in well-defined steps and that the remainder

k−M sup
θ ′′∈Suppχδ

∣∣〈G ′′ϕ(|z′′|2)Dθ ′′, Dθ ′′〉
M A′′k (θ

′′)M χδA′′k (θ
′′)
∣∣ (158)

is of arbitrarily small order as M increases.
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We first note that the Hessian operator k−1
〈G ′′ϕ(|z

′′
|
2)Dθ ′′, Dθ ′′〉 brings in a net order of k−1(δ′′k )

−1,
since the coefficients 1/x ′′ in the singular part are bounded by (δ′′k )

−1. The maximal order terms arise
from applying the Hessian operator to the factor Ek . Each derivative can bring down a factor of

k F ′1(0, eiθ ′′
|z′′|2)eiθ ′

|z′|2)= O(kδ ′kδ
′′

k ).

Since there are two θ ′′ derivatives for each k−1(δ′′k )
−1 the maximum order in k from a single factor of

k−1
〈G ′′ϕ(|z

′′
|
2)Dθ ′′, Dθ ′′〉 applied to A′′k is of order

ηk = k−1(δ′′k )
−1((kδ ′k)

2(δ′′k )
2
+ kδ′kδ

′′

k )= k(δ′k)
2δ′′k + δ

′

k .

In particular this is the order of magnitude of the subdominant term. Therefore, to obtain a descending
expansion in steps of at least k−ε0 , we obtain the following necessary and sufficient condition on (δ′k, δ

′′

k ):

ηk ≤ Ck−ε0 . (159)

Under this condition, the series and remainder will go down in steps of k−ε0 .
With these choices of (δ′k, δ

′′

k ), the complex stationary phase expansion gives an asymptotic expansion
in powers of k−ε0 . Recalling that the unique critical point occurs at θ ′′ = 0, the remaining dθ ′ integral is
given by the dimensional constant Cm(2π)−r times

Phk (α)∼
(
det(k−1G ′′ϕ(|z

′′
|
2)
)1/2

∫
Tr

eik〈α′/k,θ ′〉
M∑

j=1

k− j (
〈G ′′ϕ(|z

′′
|
2)Dθ ′′, Dθ ′′〉

) j
χδA′′k (θ

′, 0)dθ ′, (160)

plus the integral of the remainder (158), which is uniform in θ ′ and integrates to a remainder of the same
order. Here we wrote the amplitude as A′′k (θ

′, θ ′′) and set θ ′′ = 0 after the differentiations.
The differentiations leave the factor Ek (151) while bringing down polynomials in the derivatives of

its phase. The same is true of the factor ekO(‖z′‖4) that we absorbed into the amplitude. We now collect
these factors and note that the exponent is simply the original phase (149) evaluated at θ ′′ = 0:

8′(θ ′; |z′|2, |z′′|2) := FC(eiθ ′
|z′|2, |z′′|2)− F(|z′|2, |z′′|2)− i

〈
α′

k
, θ ′
〉
. (161)

We also collect the derivatives of this phase and the other factors of Ak and find that

M∑
j=1

k− j (
〈G ′′ϕ(|z

′′
|
2)Dθ ′′, Dθ ′′〉

) j
χδA′′k (θ

′, 0)= ek8′(θ ′;|z′|2,|z′′|2) Ãk(θ
′), (162)

where Ãk(θ
′) is a classical symbol in k whose order is the order m of the original symbol Ak . The

integral (160) then takes the form

Phk (α) ∼ Cm
(
det(k−1G ′′ϕ(|z

′′
|
2))
)1/2

∫
Tr

ek8′(θ ′;|z′|2,|z′′|2) Ãk(θ
′)dθ ′. (163)

This is a corner type integral as studied in Section 6C, with |z′′|2 as an additional parameter. The asymp-
totics of (163) are given by Lemma 6.4. It is only necessary to keep track of the powers of |z′|2, |z′′|2

and of the parameter k−1(δ′′k )
−1(kδ ′k)

2 in the analysis of Ãk .
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To do so, we first observe that

∇θ ′FC(eiθ ′
|z′|2, |z′′|2)= iµ′C((z

′, z′′), (eiθ ′z′, z′′)), (164)

that is, it is the ′ component of the complexified moment map. By definition of (z′, z′′) it equals α′/k
when θ ′ = 0. It follows that F ′1(0, |z

′′
|
2)|z′|2 = α′/k, and the almost analytic extension satisfies

F ′1(0, |z
′′
|
2)eiθ ′
|z′|2 = eiθ ′ α

′

k
, (165)

where (as previously) the multiplication is componentwise. If we then Taylor expand the phase, we
obtain

8′(θ ′; |z′|2, |z′′|2)= F ′1(0, |z
′′
|
2)|z′|2(1− eiθ ′)+ O(|z′|4)= α

′

k
(1− eiθ ′)+ O(|z′|4). (166)

If we absorb the ekO(|z|4) factor into the amplitude, the integral has now been converted to the form (146)
with a more complicated amplitude.

We next observe that

Ãk = km(1+ O(|z′|2)). (167)

Hence, the assumption |z′|2 = O(δ′k) implies that to leading order

Phk (α)∼
√

det k−1 G ′′ϕ(|z′′|2) km
∫

T r
e−k((eiθ ′

−1−iθ))α′/kdθ ′(1+ O(δ′k))

= km−p/2
√

det G ′′ϕ(|z′′|2)Phk
BF
(α′)(1+ O(δ′k)). (168)

This completes the proof of the lemma. �

6E. Completion of proof of Proposition 6.1.

6E1. Asymptotic expansion for Phk (α). The error terms for the asymptotics of Phk (α) are k−1(δ′′k )
−1 in

the corner zone, k(δ′k)
2 in the interior zone and ηk = k−1(δ′′k )

−1
+ k(δ′k)

2
+ k(δ′k)

2δ′′k + δ
′

k in the mixed
zone. To minimize these terms, we let

k−1(δ′′k )
−1
= k(δ′k)

2 and 0< δ′k ≤ δ
′′

k .

By elementary calculation, the optimal choice for δ′k and δ′′k is given by

δ′k = δ
′′

k = k−2/3 and k−1(δ′′k )
−1
= k(δ′k)

2

and

k−1(δ′′k )
−1
= k(δ′k)

2
= k−1/3, ηk ∼ O(k−1/3).

We let δk = k−2/3 and break up the estimate into four cases.

(1) |x ′|, |x ′′| ≤ δk : this is the corner case handled in Lemma 6.4 if k(δk)
2
→ 0.

Phk (α)= CmPhk
BF
(α)(1+ O(k−1/3)).
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(2) |x ′|, |x ′′| ≥ δk . By Lemma 6.3, the stationary phase is valid and

Phk (α)∼ Cmkm/2
√

det Gϕ

(
α
k

) (
1+ O(k−1/3)

)
.

(3) |x ′| ≤ δk and |x ′′| ≥ δk . By Lemma 6.5,

Phk (α)= Cmkm−(p/2)
√

det G ′′ϕ
(
α
k

)
PP,k,δ′k (α

′)(1+ O(k−1/3)).

(4) |x ′′| ≤ δk and |x ′| ≥ δk . This case is the same as case (3) by switching x ′ and x ′′.

Combining the formulas above, the asymptotics for Phk (α) is given by (132)

Phk (α) = Cmk1/2 (m−δ#
k (α/k))

√
Gϕ,δk

(
α
k

)
PP,k,δk

(
α
k

)(
1+ Rk

(
α
k
, h
))
,

where Rk(α/k, h)= O(k−1/3).
On the other hand, (131) is derived by the calculation

k1/2(m−δ#
k )

√
Gϕ,δk

(
α
k

)
PP,k,δk

(
α
k

)
= k(m/2)

√
det Gϕ

(
α
k

)
P̃P,k

∏
j /∈Fδk(x)

(
2πk` j

(
α
k

))−1/2
e|k` j (α/k)|

k` j

(
α
k

)
k` j

(
α
k

)k` j (α/k)

= km/2
√

det Gϕ

(
α
k

)
P̃P,k(1+ O(k−1/3)),

where the last equality follows from the Stirling approximation.

6E2. Derivatives with respect to metric parameters. Now suppose that h=ht is a smooth one-parameter
family of metrics. We would like to obtain asymptotics (∂/∂t) j Phk

t
(α) for j = 1, 2.

Proposition 6.6. For j = 1, 2, there exist amplitudes S j of order zero such that(
∂
∂t

) j
Phk

t
(α)= Cmk(m−δ

#
k (α/k))/2

√
Gϕt ,δk

(
α
k

)
PP,k,δk

(
α
k

)(
S j (t, α, k)+ Rk

(
α
k
, ht

))
,

where Rk = O(k−1/3). The expansion is uniform in h and may be differentiated in h twice with a
remainder of the same order.

Proof. Such time derivatives may also be represented in the form (114)( ∂
∂t

) j
Phk

t
(α)= (2π)−m

∫
Tm

e−k(Ft (eiθµ−1
ht
(α/k))−Ft (µ

−1
ht
(α/k)))Ak, j (k, t, α, θ)ei〈α,θ〉dθ, (169)

with a new amplitude Ak, j that is obtained by a combination of differentiations of the original amplitude
in t and of multiplications by t derivatives of the phase. It is easy to see that t derivatives of the amplitude
do not change the estimates above since they do not change the order in growth in k of the amplitude.
However, t derivatives of the phase bring down factors k(∂/∂t) j (Ft(eiθµ−1

ht
(α/k))−Ft(µ

−1
ht
(α/k)). The
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second derivative can bring down two factors with j = 1 or one factor with j = 2. We now verify that,
despite the extra factor of k, the new oscillatory integral still satisfies the same estimates as before.

The key point is that, by the calculation (118), the phase Ft(eiθµ−1
ht
(α/k))−Ft(µ

−1
ht
(α/k))−i〈α/k, θ〉

for any metric h vanishes to order 2 at the critical point θ = 0; the first derivative vanishes because
∇θ Ft(eiθ z)|θ=0 = iµht(z). Hence, the t derivative of the ht -dependent Taylor expansion (118) for a
one-parameter family ht of metrics also vanishes to order 2, that is,(

∂
∂t

) j
(

Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

)))
= O(|θ |2). (170)

Thus, for each new power of k one obtains by differentiating the phase factor in t one obtains a factor
which vanishes to order 2 at θ = 0. As a check, we note that in the Bargmann–Fock model, the phase
has the form

∑
j (e

iθ j − 1− iθ j )α j/k.
We start with the first derivative, repeating the asymptotic analysis but with the new amplitude S1. In

the “interior region” the stationary phase calculation in Lemma 6.2 proceeds as before, but the leading
term (now of one higher order than before) vanishes since it contains the value of (170) at the critical
point as a factor. Therefore the asymptotics start at the same order as before but with the value of the
second θ -derivative of the amplitude at θ = 0.

In the corner and mixed boundary zones we obtain an integral of the same type as the ones studied in
Lemma 6.4 and Lemma 6.5, respectively, but again with an amplitude of one higher order given by the
t-derivative of the phase. The only change in the calculation is in the Taylor expansion of the amplitude
in (167) in the z′ variable, which now has the form

Ãk,1 = k
(
∂
∂t

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

)))
+ O(|z′|2), (171)

so that the final integral now has the form

(2π)−mkm
∫

T r
e−k(eiθ ′

−1−iθ ′)α′/k
(

k
(
∂
∂t

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

))))
θ ′′=0

dθ ′.

As noted in (170)

k
(
∂
∂t

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

)))
= k

(
∂
∂t

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

))
− i
〈
α
k
, θ
〉)

= k ∂
∂t

∫ 1

0
(1− s) ∂

2

∂s2

(
Ft

(
eisθµ−1

ht

(
α
k

)))
ds

= O
(

k|θ |2α
k

)
.

Since the stationary phase method applies as long as |α| →∞ we may assume that |α| ≤ C and we
see that the factor is then bounded. Here, we have suppressed the subscript C for the almost-analytic
extension to simplify the writing.

As an independent check, we use integration by parts in θ ′. We use a cutoff function χ supported near
θ ′ = 0 to decompose the integral into a term supported near θ ′ = 0 and one supported away from θ ′ = 0.
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We use the integration by parts operator

L=
1(

(eiθ ′−1)α′
)2

(
eiθ ′
− 1

)
α′ · ∇θ ,

where we note that the factors of k cancel. The operator is well defined for θ ′ 6= 0 and repeated partial
integration gives decay in α′ in case |α′|→∞. On the support of χ the denominator is not well defined
but the vanishing of the phase to order two shows that Lt(S1) is bounded.

Now we consider second time derivatives. The second ∂/∂t could be applied to the phase factor ek8t

again or it could be applied again to (171), and then we have

Ãk,2 = k
(
∂
∂t

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

)))2

+k
(
∂2

∂t2

)(
Ft

(
eiθµ−1

ht

(
α
k

))
− Ft

(
µ−1

ht

(
α
k

)))2

+ O(|z′|2). (172)

The first term contains the factor k2 and after cancellation it induces a term of order |α′|2. In addition
this term vanishes to order four at θ = 0. Hence the stationary phase calculation in the case of the first
derivative equally shows that the first two terms vanish and thus the factors of k2 are canceled. In the
regime where stationary phase is not applicable, |α′|2 may be assumed bounded, and additionally one
can integrate by parts twice. Thus again this term is bounded. �

6F. Completion of the proof of Lemma 1.3. So far we have only considered the asymptotics of Phk (t, z).
We now take the ratios to complete the proof of Lemma 1.3.

Lemma 6.7. With δϕ defined by (58), we have

Rk(t, α)=
(

det∇2ut(
α
k )

(det∇2u0(
α
k ))

1−t(det∇2u1(
α
k ))

t

)1/2

(1+ O(k−1/3)).

The asymptotic may be differentiated twice with the same order of remainder.

Proof. Combining Corollary 3.2 and Proposition 6.1, we have

Rk(t, α)=

√
det Gϕt (

α
k ) P̃P,k(

α
k )(√

det Gϕ0(
α
k ) P̃P,k(

α
k )
)1−t(√

det Gϕ1(
α
k ) P̃P,k(

α
k )
)t (1+ O(k−1/3)). (173)

We observe that the factors of P̃P,k cancel out, leaving

Rk(t, α)=

√
det Gϕt (

α
k )(√

det Gϕ0(
α
k )
)1−t(√

det Gϕ1(
α
k )
)t (1+ O(k−1/3)). (174)

By Proposition 6.6, the asymptotic in (173) may be differentiated twice with the same order of re-
mainder, completing the proof. �
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Remark. By (58), we also have

Rk(t, α)=
(
δ1−t
ϕ0
δt
ϕ1

δϕt

)−1/2

(1+ O(k−1/3)).

Indeed, the factors of ` j (α/k) are independent of the metrics and cancel out. Also
(
δ1−t
ϕ0
δt
ϕ1
/δϕt

)−1/2 is
smooth on P .

The following simpler estimate on logarithmic derivatives is sufficient for much of the proof of the
main results:

Lemma 6.8. Both ∂t log Rk(t, α) and ∂2
t log Rk(t, α) are uniformly bounded.

Proof. We first note that

∂t log Rk(t, α)= log Phk
1
(α)− log Phk

0
(α)− ∂t log Phk

t
(α). (175)

By Proposition 6.1,

log Phk (α)= 1
2 log det

(
k−1Gϕ

(
α
k

))
+ log P̃P,k

(
α
k

)
+ log Cm + O(k−1/3). (176)

As in Lemma 6.7, the Bargmann–Fock terms cancel between the h0 and h1 terms, while the metric
factors simplify asymptotically to 1

2 log
(
δϕ1δϕ0

)
, and this is clearly bounded. To complete the proof that

∂t log Rk(t, α) is uniformly bounded, we need the final ratio to be bounded. By Proposition 6.6, we
see that in the “interior” region both numerator and denominator have asymptotics which differ only
in the value of a zeroth order amplitude at θ = 0 and that it equals 1 in the case of the denominator.
Hence, the ratio is bounded in the interior. Towards the boundary, the denominator is comparable with
the Bargmann–Fock model and is bounded below by one. The numerator is also bounded by Proposition
6.6, and therefore the ratio is everywhere bounded.

Now we consider the case of ∂2
t log Rk(t, α), which simplifies to

∂2
t log Rk(t, α)=−

∂2
t Phk

t
(α)

Phk
t
(α)
+

(
∂t Phk

t
(α)

Phk
t
(α)

)2

. (177)

As we have just argued, the second factor is bounded. The same argument applies to the first term by
Proposition 6.6. �

7. C0 and C1-convergence

We begin with the rather simple proof of C0-convergence with remainder bounds.

7A. C0-convergence.

Proposition 7.1. 1
k

log Zk(t, z)e−kϕt (z) = O
( log k

k

)
uniformly for (t, z) ∈ [0, 1]×M.

We will derive the proposition from the following result, which in turn is an immediate consequence
of Lemma 6.7:

Lemma 7.2 (upper/lower bound lemma). There exist C, c > 0 such that

c ≤Rk(t, α)≤ C.
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Proof of Proposition 7.1. By the upper/lower bound lemma, there exist constants c,C > 0 such that

c5hk
t
(z, z)≤

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)
≤ C5hk

t
(z, z). (178)

Hence,

1
k

log5hk
t
(z, z)≤ 1

k
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)
≤

1
k

log5hk
t
(z, z)+ O

(1
k

)
= O

( log k
k

)
, (179)

where the last estimate follows from (93). �

7B. C1-convergence. We now discuss first derivatives in (t, z). In the z variable the vector fields ∂/∂ρ j

vanish on D, so we can only use them to estimate C1 norms in directions δk far from the boundary. In
directions close to the boundary we may choose coordinates so that derivatives in z′ near z′ = 0 define
the C1 norm.

The estimates in the ρ and z′ derivatives are similar. We carry out the calculations in detail in the ρ
variables and then indicate how to carry out the analogous estimates in the z variable.

We also consider the t derivative. The key distinction between t and z derivatives is the following:

• z or ρ derivatives bring down derivatives of the phase, which have the form k(µht(z)− α/k). The
factor of k raises the order of asymptotics while the factor (µht(z)−α/k) lowers it by the Localization
Lemma.

• t derivatives do not apply to the phase and only differentiate Rk(t, α) and Qhk
t
(α).

Proposition 7.3. Uniformly for (t, z) ∈ [0, 1]×M , we have:

(1) 1
k

∣∣∣∣∣ ∂∂ρi
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣= O(k−1/2+δ).

(2) The same estimate is valid for the derivative ∂/∂rn in directions near D, as in Proposition 4.6.

(3) 1
k

∣∣∣∣∣ ∂∂t
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣= O(k−1/3).

Proof. For (1), we write
1
k

∣∣∣∣∣∇ρ log
∑

α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

∑
α∈k P∩Zm

(
α
k
−µht(z)

)
Rk(t, α)

|Sα|2hk
t

Qhk
t
(α)

∑
α∈k P∩Zm

Rk(t, α)
|Sα|2hk

t

Qhk
t
(α)

∣∣∣∣∣∣∣∣∣∣∣
.

The right-hand side can be rewritten as

∑
α∈k P∩Zm

|α/k−µht(z)|≤k−1/2+δ

(
α
k
−µht(z)

)
Rk(t, α)

|Sα|2hk
t

Qhk
t
(α)

∑
α∈k P∩Zm

Rk(t, α)
|Sα|2hk

t

Qhk
t
(α)

+ O(k−M),
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which in turn is bounded above by

C k−1/2+δ

∑
α∈k P∩Zm

|α/k−µht(z)|≤k−1/2+δ

|Sα|2hk
t
/Qhk

t
(α)

∑
α∈k P∩Zm

|Sα|2hk
t
/Qhk

t
(α)

+ O(k−M) ≤ Ck−1/2+δ,

proving (1). Here we have applied the Localization Lemma 1.2 and Lemma 7.2 to Rk .
Regarding the derivatives ∂/∂rn in (2), the only change to the argument is in summing only α with

αn 6= 0 and then changing α to α − (0, . . . , 1n, . . . , 0) as explained in Proposition 4.6. Clearly the
localization and the estimates only change by 1/k.

We now consider the ∂t derivative. By Proposition 4.4, we have

1
k
∂

∂t
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

=
1
k

∑
α

Rk(t, α)∂t log
(

Rk(t, α)
Qhk

t
(α)

) e〈α,ρ〉

Qk
t (α)∑

α

Rk(t, α)
e〈α,ρ〉

Qhk
t
(α)
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+ O(k−1)
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 + O(k−1).

Notice that Qhk
t
=Rk(t, α)(Qhk

0
(α))1−t(Qhk

1
(α))t , so

∂t log Qk(t, α)= ∂t log Rk(t, α)+ log
Qhk

1
(t, α)

Qhk
0
(t, α)

. (180)

It follows easily from the fact proved in Lemma 1.3 (or more precisely the simpler Lemma 6.8) that
Rk(t, α) = O(1) and ∂t log Rk(t, α) = O(1). Also the rightmost term in (180) is O(k) uniformly in α.
Replacing Rk by R∞ plus an error of order k−1/3, we obtain, as needed,

1
k
∂

∂t
log

∑
α∈k P∩Zm

Rk(t,α)
|Sα(z)|2hk

t

Qhk
t
(α)
= O(k−1/3). �
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8. C2-convergence

We now consider second derivatives in ρ, t . Again we must separately consider derivatives in the interior
and near the boundary. The following proposition completes the proof of Theorem 1.1.

Proposition 8.1. Uniformly for (t, z) ∈ [0, 1]×M , we have, for any δ > 0,

(1)
1
k

∣∣∣∣∣∣ ∂2

∂ρi∂ρ j
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣∣= O(k−(1/3)+2δ);

(2)
1
k

∣∣∣∣∣∣ ∂2

∂t∂ρ j
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣∣= O(k−(1/3)+2δ);

(3)
1
k

∣∣∣∣∣∣ ∂
2

∂t2 log
∑

α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

∣∣∣∣∣∣= O(k−(1/3)+2δ).

(4) The same estimates are valid for the derivative ∂/∂rn in directions near D as in Proposition 4.6.

We break up the proof into the four cases. To simplify the exposition, we introduce some new notation
for localizing sums over lattice points. By the Localization Lemma 1.2, sums over lattice points can
be localized to a ball of radius O(k−1/2+δ) around µht(z). We emphasize that although there are three
metrics at play, it is the metric ht along the Monge–Ampère geodesic that is used to localize the sum.
We introduce a notation for localized sums over pairs of lattice points: let

∼∑
α,β

F(α, β) :=
∑

|α/k−µht(z)|≤k−1/2+δ

|β/k−µht(z)|≤k−1/2+δ

F(α, β). (181)

Notation. Throughout the calculations in Sections 6.5 and 8B, (α−β) stands for (α−β)i and (α−β)2

stands for (α−β)i (α−β) j .

8A. Second space derivatives in the interior. In this section we prove case (1). We have
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(β)(∑

α
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)2 , (182)
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modulo O(1/k) by Proposition 4.3. We also completed the square and used that the sum over α is a
probability measure to replace α2

− αβ by 1
2(α − β)

2 using the symmetry in α and β in the sum. We
also use Proposition 4.5 to write ∂2ϕt/∂ρi∂ρ j as a sum over lattice points.

By the Localization Lemma 1.2, each sum over lattice points can be localized to a ball of radius
O(k−1/2+δ) aroundµht(z). Then, by Lemma 1.3 each occurrence of Rk(t, α) or Rk(t, β)may be replaced
by R∞(t, α/k) plus an error of order k−1/3. Since

1
k
(α−β)2 = O(k2δ),

the total error is of order k2δ−1/3. Since δ is arbitrarily small, this term is decaying. Further, after
replacing Rk(t, β) by R∞(t, α/k) we may then replace α/k and β/k by µht(z) at the expense of another
error of order k−1/2+δ. By modifying (182) accordingly, we have

1
k

∣∣∣∣∣∣ ∂2

∂ρi∂ρ j
log

∑
α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
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(α)

∣∣∣∣∣∣+ O(k−(1/3)+2δ)

≡
1
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1
2

∼∑
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ρ/2))2
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e〈α,ρ〉

Qhk
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(α)

)2 −

1
2
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(α−β)2
e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)(∑

α

e〈α,ρ〉

Qhk
t
(α)

)2

∣∣∣∣∣∣∣∣∣∣
≡ 0, (183)

where ≡ means that the lines agree modulo errors of order O(k−(1/3)+2δ). In the last estimate, we use
that R∞(t, µht(e

ρ/2))2 cancels out in the first term. This completes the proof in the spatial interior case.
The modifications when z is close to ∂P are just as in the case of the first derivatives.

8B. Mixed space-time derivatives. The mixed space-time derivative is given by

1
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log
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.

It suffices to prove that

1
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∑
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(α−β)∂t log(Rk(t, α))
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= O(k−1/2+δ)
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and

1
k

∣∣∣∣∣∣∣∣∣∣
1
2

∑
α,β

(α−β)Rk(t, β)Rk(t, α)∂t log
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Qhk
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(α)
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= O(k−(1/3)+2δ).

The first estimate follows by the Localization Lemma 1.2 and from Lemma 6.8, i.e., ∂t log Rk(t, α)=
O(1). The second estimate is very similar to that in Section 8A, specifically in (183), so we do not write
it out in full. In outline, we first apply the Localization Lemma and replace each Rk(t, α) by R∞(µht(z))
with z = eρ/2. The errors in making these replacements are of order k−1/3+δ because

∂t log
Qhk

t
(β)

Qhk
t
(α)
= O(k |ut(α)− ut(β)|)= O(k1/2+δ),

and because α−β = O(k1/2+δ) in the localized sum. We then express ∂2ϕt/∂ρi∂t in terms of the Szegő
kernel, that is, as a sum over lattice points, using Proposition 4.5, and cancel the ∂2ϕt/∂ρi∂t term. The
sum of the remainders is then of order k−1/3+δ, completing the proof in this mixed case.

8C. Second time derivatives. The proof in this case follows the same pattern, although the estimates
are somewhat more involved. The main steps are to localize the sums over lattice points, to replace
each Rk by R∞, then to cancel out R∞ after all replacements, and to see that the resulting lattice point
sum cancels ∂2ϕt/∂ρi∂t . The complications are only due to the number of estimates that are required to
justify the replacements.

The second time derivative equals

1
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∂t2 log
∑

α∈k P∩Zm

Rk(t, α)
|Sα(z)|2hk

t

Qhk
t
(α)

=
1
k

∑
α,β

Rk(t, β)Rk(t, α)
(
∂t log

(
Rk(t, α)
Qhk

t
(α)

(Rk(t, β)
Qhk

t
(β)

)−1
))2 e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)(∑

α

Rk(t, α)
e〈α,ρ〉

Qhk
t
(α)

)2

+
1
k


∑
α,β

Rk(t, β)Rk(t, α)∂2
t log

(Rk(t, α)
Qhk

t
(α)

) e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)(∑

α

Rk(t, α)
e〈α,ρ〉

Qhk
t
(α)

)2 − k
∂2

∂t2ϕt

 . (184)

On the middle line of (184), the square term in the numerator is a simplification of(
∂t log

(
Rk(t, α)
Qhk

t
(α)

(Rk(t, β)
Qhk

t
(β)

)−1
))(

∂t log
Rk(t, α)
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(α)

)
,
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using the fact that the expression is antisymmetric in (α, β) and that we are summing over α, β— similar
to what we did in (182).

To simplify the notation, we introduce the abbreviations R(α)=Rk(t, α), T(α)=
1

Qhk
t
(α)

, f ′=
∂ f
∂t

,
and we write (184)= N/D, where the numerator has the schematic form

N=
∑
α,β

((
R′

R
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T
(α)
)′
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R
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R
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T
(β)
))2
)

R(α)T(α)R(β)T(β)e〈α,ρ〉e〈β,ρ〉,
(185)

and where the denominator is D =
(∑

α R(α)T(α)
)2. We omit the factors e〈α,ρ〉

Qhk
t
(α)

e〈β,ρ〉

Qhk
t
(β)

from the
notation since they are always present.

We now compare N and D to the corresponding expressions in the second time derivative of the Szegő
kernel in Proposition 4.5. In the latter case, R ≡ 1 so any terms with t-derivatives of R above do not
occur in the third comparison expression of Proposition 4.5. Terms with no t derivatives of R will be
precisely as in the comparison except that R is replaced by 1. So we consider a subsum of N :

N1 =
∑
α,β

((T′

T
(α)
)′
+

1
2

(T′

T
(α)−

T′

T
(β)
)2
)

R(α)T(α)R(β)T(β). (186)

If we now replace all occurrences of Rk(t, α) by R∞(µht(z)) in both numerator and denominator we get
the Szegő kernel expression (the third comparison expression of Proposition 4.5) of order 1/k2. (This is
verified in more detail at the end of the proof.) So we are left with estimating two remainder terms: first,
the difference N1− Ñ1, where Ñ1 is a sum of terms in which we replace at least one R(α) by R∞(µht(z))
(or with β). Second, we must estimate N − N1.

We first consider N1− Ñ1. It arises by substituting at least one R(α)−R∞(µht(z)) = O(k−1/3) for
one of the R(α)’s in N1. We apply the Localization Lemma 1.2 to replace N1 (and D) by sums over
α/k, β/k ∈ B(µht(z), k−1/2+δ). We thus need to estimate the following expression, when at least one
R(α) is replaced by R(α)−R∞(µht(z)):
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Due to the factor 1/k outside the sum, it suffices to prove that((
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T
(α)
)′
+

1
2

(
T′

T
(α)−

T′

T
(β)
)2)
= O(k1+2δ).
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By Proposition 3.1, we have
T′

T
=−
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P
+ ku′t
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α
k

)
.

Since ut = (1− t)u0+ tu1, we have
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)
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)
,

where we recall from Section 2B that uϕ = u0+ fϕ with fϕ smooth up to the boundary of P . It follows
that
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, (187)(
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= O(1), (188)

with

k( f1− f0)
(
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)
− k( f1− f0)

(
β
k

)
= kO

(∣∣∣αk − βk ∣∣∣)= O(k1/2+δ).

Further, by Lemma 6.7 (using Proposition 6.6), the factors of

( ∂∂t )Phk
t
(α)

Phk
t
(α)

=

(
S1(t, α, k)+ Rk(

α
k , h)

)
S0(t, α, k)

= O(1),

and similarly (P′/P)′ = O(1). Since (187) is squared, it has terms as large as O(k1+2δ). Taking into
account the overall factor of 1

k and the presence of at least one factor of size k−1/3 coming from the
replacement of at least one Rk(t, α) by R∞(µht(z)), we see that N1− Ñ1 has order k−(1/3)+2δ and again
this decays for sufficiently small δ.

Now we estimate N−N1, which consists of terms with at least one t-derivative of R. By Lemma 6.7,
the terms with no t derivatives on T give the terms
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by Lemma 1.3.
This leaves us with the terms (R′
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Again by Lemma 6.8, the first term is O(1) while the second factor is (187) and has size kk−1/2+δ. Here,
we again use Propositions 3.1 and 6.6. Due to the overall factor of 1/k this term has size k−1/2+δ.

Therefore, as stated above, up to errors of order k−(1/3)+δ, (184) is simplified to −∂2ϕt/∂t2 plus
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 .

As before, we cancel the factors of R∞(µht(e
ρ/2)). The resulting difference then cancels to order k−1/2+δ

by Proposition 4.5(3).
This completes the proof of the second time derivative estimate, and hence of the main theorem.

Acknowledgments

The authors thank D. H. Phong and J. Sturm for their support of this project. We also thank them and
Y. A. Rubinstein for many detailed corrections. The second author’s collaboration with Rubinstein,
subsequent to the initial version of this article, has led to a deepened understanding of the global approx-
imation problem, which is reflected in the revised version of the introduction.

References

[Abreu 2003] M. Abreu, “Kähler geometry of toric manifolds in symplectic coordinates”, pp. 1–24 in Symplectic and contact
topology: interactions and perspectives (Toronto and Montreal, 2001), edited by Y. Eliashberg et al., Fields Inst. Commun.
35, Amer. Math. Soc., Providence, RI, 2003. MR 2004d:53102

[Arezzo and Tian 2003] C. Arezzo and G. Tian, “Infinite geodesic rays in the space of Kähler potentials”, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 2:4 (2003), 617–630. MR 2005c:32027

[Berman et al. 2008] R. Berman, B. Berndtsson, and J. Sjöstrand, “A direct approach to Bergman kernel asymptotics for
positive line bundles”, Ark. Mat. 46:2 (2008), 197–217. MR 2009k:58050 Zbl 1161.32001

[Berndtsson 2009] B. Berndtsson, “Positivity of direct image bundles and convexity on the space of Kähler metrics”, J. Differ-
ential Geom. 81:3 (2009), 457–482. MR 2010e:32020

[Boutet de Monvel and Sjöstrand 1976] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de
Szegő, Astérisque 34-35, Soc. Math. France, Paris, 1976. MR 58 #28684

[Calabi 1953] E. Calabi, “Isometric imbedding of complex manifolds”, Ann. of Math. 58 (1953), 1–23. MR 15,160c Zbl 0051.
13103

[Catlin 1999] D. Catlin, “The Bergman kernel and a theorem of Tian”, pp. 1–23 in Analysis and geometry in several complex
variables: Proceedings of the 40th Taniguchi symposium (Katata, 1997), edited by G. Komatsu and M. Kuranishi, Birkhäuser,
Boston, 1999. MR 2000e:32001 Zbl 0941.32002

[Chen 2000] X. Chen, “The space of Kähler metrics”, J. Differential Geom. 56:2 (2000), 189–234. MR 2003b:32031

[Chen and Tian 2008] X. X. Chen and G. Tian, “Geometry of Kähler metrics and foliations by holomorphic discs”, Publ. Math.
Inst. Hautes Études Sci. 107 (2008), 1–107. MR 2009g:32048

[Christ 2003] M. Christ, “Slow off-diagonal decay for Szegö kernels associated to smooth Hermitian line bundles”, pp. 77–89
in Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), edited by W. Beckner et al., Contemp. Math. 320, Amer.
Math. Soc., Providence, RI, 2003. MR 2005b:32038

http://www.ams.org/mathscinet-getitem?mr=2004d:53102
http://www.ams.org/mathscinet-getitem?mr=2005c:32027
http://dx.doi.org/10.1007/s11512-008-0077-x
http://dx.doi.org/10.1007/s11512-008-0077-x
http://www.ams.org/mathscinet-getitem?mr=2009k:58050
http://www.emis.de/cgi-bin/MATH-item?1161.32001
http://projecteuclid.org/euclid.jdg/1236604342
http://www.ams.org/mathscinet-getitem?mr=2010e:32020
http://www.ams.org/mathscinet-getitem?mr=58:28684
http://dx.doi.org/10.2307/1969817
http://www.ams.org/mathscinet-getitem?mr=15,160c
http://www.emis.de/cgi-bin/MATH-item?0051.13103
http://www.emis.de/cgi-bin/MATH-item?0051.13103
http://www.ams.org/mathscinet-getitem?mr=2000e:32001
http://www.emis.de/cgi-bin/MATH-item?0941.32002
http://projecteuclid.org/euclid.jdg/1090347643
http://www.ams.org/mathscinet-getitem?mr=2003b:32031
http://dx.doi.org/10.1007/s10240-008-0013-4
http://www.ams.org/mathscinet-getitem?mr=2009g:32048
http://www.ams.org/mathscinet-getitem?mr=2005b:32038


BERGMAN METRICS AND GEODESICS 357

[Donaldson 1999] S. K. Donaldson, “Symmetric spaces, Kähler geometry and Hamiltonian dynamics”, pp. 13–33 in Northern
California Symplectic Geometry Seminar, edited by Y. Eliashberg et al., Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math.
Soc., Providence, RI, 1999. MR 2002b:58008

[Donaldson 2001] S. K. Donaldson, “Scalar curvature and projective embeddings, I”, J. Differential Geom. 59:3 (2001), 479–
522. MR 2003j:32030 Zbl 1052.32017

[Donaldson 2002] S. K. Donaldson, “Scalar curvature and stability of toric varieties”, J. Differential Geom. 62:2 (2002), 289–
349. MR 2005c:32028 Zbl 1074.53059

[Donaldson 2005] S. K. Donaldson, “Some numerical results in complex differential geometry”, preprint, 2005. arXiv 0512625

[Donaldson 2008] S. K. Donaldson, “Kähler geometry on toric manifolds, and some other manifolds with large symmetry”,
pp. 29–75 in Handbook of geometric analysis, vol. 1, edited by L. Ji et al., Adv. Lect. Math. (ALM) 7, Int. Press, Somerville,
MA, 2008. MR 2483362

[Feng 2009] R. Feng, “Bergman metrics and geodesics in the space of Kähler metrics on principally polarized Abelian vari-
eties”, preprint, 2009. arXiv 0910.2311

[Guan 1999] D. Guan, “On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles”, Math.
Res. Lett. 6:5-6 (1999), 547–555. MR 2001b:32042

[Guillemin and Sternberg 1982] V. Guillemin and S. Sternberg, “Convexity properties of the moment mapping”, Invent. Math.
67:3 (1982), 491–513. MR 83m:58037 Zbl 0503.58017

[Hörmander 1990] L. Hörmander, The analysis of linear partial differential operators, I: Distribution theory and Fourier
analysis, 2nd ed., Grundlehren der Math. Wiss. 256, Springer, Berlin, 1990. MR 91m:35001a Zbl 0712.35001

[Lerman and Tolman 1997] E. Lerman and S. Tolman, “Hamiltonian torus actions on symplectic orbifolds and toric varieties”,
Trans. Amer. Math. Soc. 349:10 (1997), 4201–4230. MR 98a:57043 Zbl 0897.58016

[Lindholm 2001] N. Lindholm, “Sampling in weighted L p spaces of entire functions in Cn and estimates of the Bergman
kernel”, J. Funct. Anal. 182:2 (2001), 390–426. MR 2002g:32007 Zbl 1013.32008

[Mabuchi 1987] T. Mabuchi, “Some symplectic geometry on compact Kähler manifolds. I”, Osaka J. Math. 24:2 (1987), 227–
252. MR 88m:53126

[Melin and Sjöstrand 1975] A. Melin and J. Sjöstrand, “Fourier integral operators with complex-valued phase functions”, pp.
120–223 in Fourier integral operators and partial differential equations (Colloq. Internat. (Nice, 1974), Lecture Notes in
Math. 459, Springer, Berlin, 1975. MR 55 #4290 Zbl 0306.42007

[Phong and Sturm 2006] D. H. Phong and J. Sturm, “The Monge–Ampère operator and geodesics in the space of Kähler
potentials”, Invent. Math. 166:1 (2006), 125–149. MR 2007h:32036

[Phong and Sturm 2007] D. H. Phong and J. Sturm, “Test configurations for K-stability and geodesic rays”, J. Symplectic
Geom. 5:2 (2007), 221–247. MR 2009a:32033 Zbl 05263551

[Phong and Sturm 2009] D. H. Phong and J. Sturm, “Lectures on stability and constant scalar curvature”, pp. 101–176 in
Current developments in mathematics, 2007, edited by D. Jerison et al., Int. Press, Somerville, MA, 2009. MR 2532997
Zbl 05578296

[Rubinstein 2008] Y. A. Rubinstein, Geometric quantization and dynamical constructions on the space of Kähler metrics,
Ph.D. thesis, MIT, 2008, Available at http://dspace.mit.edu/handle/1721.1/44270.

[Rubinstein and Zelditch 2010] Y. A. Rubinstein and S. Zelditch, “Bergman approximations of harmonic maps into the space
of Kahler metrics on toric varieties”, J. Symplectic Geom. 8:3 (2010), 1–27.

[Rubinstein and Zelditch ≥ 2010a] Y. A. Rubinstein and S. Zelditch, in preparation.

[Rubinstein and Zelditch ≥ 2010b] Y. A. Rubinstein and S. Zelditch, “The Cauchy problem for the Monge–Ampère equation,
I”, in preparation.

[Semmes 1992] S. Semmes, “Complex Monge–Ampère and symplectic manifolds”, Amer. J. Math. 114:3 (1992), 495–550.
MR 94h:32022 Zbl 0790.32017

[Shiffman and Zelditch 2002] B. Shiffman and S. Zelditch, “Asymptotics of almost holomorphic sections of ample line bundles
on symplectic manifolds”, J. Reine Angew. Math. 544 (2002), 181–222. MR 2002m:58043 Zbl 1007.53058

http://www.ams.org/mathscinet-getitem?mr=2002b:58008
http://projecteuclid.org/euclid.jdg/1090349449
http://www.ams.org/mathscinet-getitem?mr=2003j:32030
http://www.emis.de/cgi-bin/MATH-item?1052.32017
http://projecteuclid.org/euclid.jdg/1090950195
http://www.ams.org/mathscinet-getitem?mr=2005c:32028
http://www.emis.de/cgi-bin/MATH-item?1074.53059
http://arxiv.org/abs/0512625
http://www.ams.org/mathscinet-getitem?mr=2483362
http://arxiv.org/abs/0910.2311
http://www.ams.org/mathscinet-getitem?mr=2001b:32042
http://dx.doi.org/10.1007/BF01398933
http://www.ams.org/mathscinet-getitem?mr=83m:58037
http://www.emis.de/cgi-bin/MATH-item?0503.58017
http://www.ams.org/mathscinet-getitem?mr=91m:35001a
http://www.emis.de/cgi-bin/MATH-item?0712.35001
http://dx.doi.org/10.1090/S0002-9947-97-01821-7
http://www.ams.org/mathscinet-getitem?mr=98a:57043
http://www.emis.de/cgi-bin/MATH-item?0897.58016
http://dx.doi.org/10.1006/jfan.2000.3733
http://dx.doi.org/10.1006/jfan.2000.3733
http://www.ams.org/mathscinet-getitem?mr=2002g:32007
http://www.emis.de/cgi-bin/MATH-item?1013.32008
http://projecteuclid.org/euclid.ojm/1200780161
http://www.ams.org/mathscinet-getitem?mr=88m:53126
http://www.ams.org/mathscinet-getitem?mr=55:4290
http://www.emis.de/cgi-bin/MATH-item?0306.42007
http://dx.doi.org/10.1007/s00222-006-0512-1
http://dx.doi.org/10.1007/s00222-006-0512-1
http://www.ams.org/mathscinet-getitem?mr=2007h:32036
http://projecteuclid.org/euclid.jsg/1202004456
http://www.ams.org/mathscinet-getitem?mr=2009a:32033
http://www.emis.de/cgi-bin/MATH-item?05263551
http://www.ams.org/mathscinet-getitem?mr=2532997
http://www.emis.de/cgi-bin/MATH-item?05578296
http://dspace.mit.edu/handle/1721.1/44270
http://dx.doi.org/10.2307/2374768
http://www.ams.org/mathscinet-getitem?mr=94h:32022
http://www.emis.de/cgi-bin/MATH-item?0790.32017
http://dx.doi.org/10.1515/crll.2002.023
http://dx.doi.org/10.1515/crll.2002.023
http://www.ams.org/mathscinet-getitem?mr=2002m:58043
http://www.emis.de/cgi-bin/MATH-item?1007.53058


358 JIAN SONG AND STEVE ZELDITCH

[Shiffman et al. 2003] B. Shiffman, T. Tate, and S. Zelditch, “Harmonic analysis on toric varieties”, pp. 267–286 in Explo-
rations in complex and Riemannian geometry, edited by J. Bland et al., Contemp. Math. 332, Amer. Math. Soc., Providence,
RI, 2003. MR 2004m:32039 Zbl 1041.32004

[Shiffman et al. 2004] B. Shiffman, T. Tate, and S. Zelditch, “Distribution laws for integrable eigenfunctions”, Ann. Inst.
Fourier (Grenoble) 54:5 (2004), 1497–1546. MR 2006k:58042 Zbl 1081.35063

[Sjamaar 1995] R. Sjamaar, “Holomorphic slices, symplectic reduction and multiplicities of representations”, Ann. of Math.
(2) 141:1 (1995), 87–129. MR 96a:58098 Zbl 0827.32030

[Song 2005] J. Song, “The α-invariant on certain surfaces with symmetry groups”, Trans. Amer. Math. Soc. 357:1 (2005),
45–57. MR 2005g:32031 Zbl 1081.53063

[Song and Zelditch 2007a] J. Song and S. Zelditch, “Convergence of Bergman geodesics on CP1”, Ann. Inst. Fourier (Gre-
noble) 57:7 (2007), 2209–2237. MR 2009k:32025 Zbl 1144.53089

[Song and Zelditch 2007b] J. Song and S. Zelditch, “Test configurations, large deviations and geodesic rays on toric varieties”,
2007. arXiv 0712.3599

[Tian 1990] G. Tian, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom. 32:1 (1990), 99–130.
MR 91j:32031

[Yau 1992] S.-T. Yau, “Open problems in geometry”, pp. 275–319 in Chern—a great geometer of the twentieth century, edited
by S.-T. Yau, Int. Press, Hong Kong, 1992. MR 1201369
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