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MEAN CURVATURE MOTION OF GRAPHS
WITH CONSTANT CONTACT ANGLE AT A FREE BOUNDARY

ALEXANDRE FREIRE

We consider the motion by mean curvature of an n-dimensional graph over a time-dependent domain in
Rn intersecting Rn at a constant angle. In the general case, we prove local existence for the corresponding
quasilinear parabolic equation with a free boundary and derive a continuation criterion based on the
second fundamental form. If the initial graph is concave, we show this is preserved and that the solution
exists only for finite time. This corresponds to a symmetric version of mean curvature motion of a
network of hypersurfaces with triple junctions with constant contact angle at the junctions.

1. Time-dependent graphs with a contact angle condition

We consider a moving hypersurface 6t in Rn+1 with normal velocity equal to its mean curvature. We
assume6t to be a graph over a time-dependent open set D(t)⊂Rn , not necessarily bounded or connected.
The (properly embedded) intersection (n−1)-submanifold

0(t)=6t ∩Rn
= ∂D(t)

is a moving boundary. Along 0(t) we impose a constant-angle condition

〈N , en+1〉|0(t) = β,

where 0< β < 1 is a constant and N is the upward unit normal of 6t . Mean curvature motion (mcm) is
defined by the law

VN = H,

where VN = 〈V, N 〉, with V = ∂t F the velocity vector in a given parametrization F(t) of 6t (V depends
on the parametrization, while VN does not). A particular parametrization yields mean curvature flow:

∂t F = H N .

For graphs, it is natural to consider graph mean curvature motion: If 6t = graph w(t) for a function
w(t) : D(t)→ R, imposing 〈∂t F, N 〉 = H with F(y, t)= [y, w(y, t)] for y ∈ D(t), we find

wt =
√

1+ |Dw|2 H

MSC2000: 35K55, 53C44.
Keywords: mean curvature flow, triple junctions, free boundaries.
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360 ALEXANDRE FREIRE

(and the velocity is vertical, ∂t F =wt en+1). With the contact angle condition, we obtain a free boundary
problem for a quasilinear PDE{

wt = gi j (Dw)wi j in D(t),
w = 0, β

√
1+ |Dw|2 = 1 on ∂D(t),

where gi j (Dw)= δi j
−wiw j/(1+ |Dw|2) is the inverse metric matrix.

Remark. It is easy to see that the constant-angle boundary condition is incompatible with mean curvature
flow parametrized over a fixed domain D0: on ∂D0 we would have 〈F, en+1〉=0, leading to 〈∂t F, en+1〉=

0, which is incompatible with ∂t F = H N and 〈N , en+1〉 = β. If we parametrize over a time-dependent
domain, mean curvature flow leads to a normal velocity for the moving boundary that is difficult to
control; hence we chose to analyze the geometry of the motion in terms of the graph mcm parametrization.

To establish short-time existence (in parabolic Hölder spaces) we will work with a third parametriza-
tion of the motion, defined over a fixed domain:

F(t) : D0→ Rn+1, F(x, t)= [ϕ(x, t), u(x, t)] ∈ Rn
×R,

where ϕ(t) : D0→ D(t) is a diffeomorphism and F is a solution of the parabolic system

Ft = gi j (DF)Fi j ,

where gi j = 〈Fi , F j 〉 is the induced metric on 6t and gi j is the inverse metric matrix.
In the first part of the paper (Sections 3 to 8) we prove the following short-time existence theorem (on

Q := D0×[0, T ]), where by boundary-orthogonal we mean that certain orthogonality conditions at the
boundary, specified in Section 3, are satisfied.

Theorem 1.1. Let60⊂Rn+1 be a C3+ᾱ graph over D0⊂Rn satisfying the contact and angle conditions
at ∂D0. There exist T > 0 depending only on 60, a parametrization F0 = [ϕ0, u0] ∈ C2+α(D0) of
60 (where α = ᾱ2 and ϕ0 is a boundary-orthogonal diffeomorphism of D0), and a unique solution
F ∈ C2+α,1+α/2(QT

;Rn+1) of the system{
∂t F − gi j (DF)∂i∂ j F = 0, F = [ϕ, u] ∈ Rn

×R,

u|∂D0 = 0, N n+1(DF)|∂D0 = β,

with initial data F0, where ϕ(t) : D0→ D(t)⊂ Rn is a boundary-orthogonal diffeomorphism as well.

The system and boundary conditions are discussed in more detail in Section 3. Sections 4, 5, and 6 deal
with compatibility at t = 0, linearization and the verification that the boundary conditions satisfy com-
plementarity. In particular, adjusting the initial diffeomorphism ϕ0 to ensure compatibility (Section 4)
leads to the loss of differentiability seen in Theorem 1.1. The required estimates in Hölder spaces for
the linearized system are described in Section 7 and the proof is concluded (by a fixed-point argument)
in Section 8. While the general scheme is standard, details are included since we are dealing with a free
boundary problem with somewhat nonstandard boundary conditions. Free boundary-type problems for
mean curvature motion of graphs have apparently not been considered previously.

We describe the evolution equations in the rotationally symmetric case in Section 9 (including a sta-
tionary example for the exterior problem) and the extension to the case of a graph motion 6t intersecting
fixed support hypersurfaces orthogonally in Section 10.
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The original motivation for this work was to establish (by classical parabolic PDE methods) existence-
uniqueness for mean curvature motion of networks of surfaces meeting along triple junctions with
constant-angle conditions. One can use a motion6t of graphs with constant contact angle to produce ex-
amples of triple junction motion: three hypersurfaces moving by mean curvature meeting along an (n−1)-
dimensional submanifold 6(t) so that the three normals make constant angles (say, 120 degrees) along
0(t). We simply reflect on Rn , so the hypersurfaces are 6t , Sigmat , and Rn

−D(t). If 6t = graph w(t)
with w > 0, the system is embedded in Rn+1. This is mean curvature motion of a “symmetric triple
junction of graphs”.

Short-time existence holds for general triple junctions of graphs moving by mean curvature with
constant 120-degree angles at the junction, provided a compatibility condition holds along the junction
(see Section 16). Since the free-boundary problem is easier to understand in the symmetric case, we
decided to do this first. In addition, in the present case it is possible to go further towards a geometric
global existence result. In the second part of the paper (Sections 11–15), motivated by recent work on
lens-type curve networks [Schnürer et al. 2007], we consider continuation criteria and the preservation
of concavity. Since we chose to develop these results for graph motion with a free boundary, although
the general lines of proof (via maximum principles) have precedents, the details of the arguments are
new. For example, Section 12 contains an extension of the maximum principle for symmetric tensors
with Neumann-type boundary conditions given in [Stahl 1996], which in our setting allows one to show
preservation of weak concavity in general. Section 14 includes a continuation criterion for the flow. The
results obtained in Sections 11–15 are summarized in the following theorem, where h denotes the second
fundamental form, pulled back to a symmetric 2-tensor on D(t).

Theorem 1.2. If 60 is weakly concave (h ≤ 0 at t = 0), this property is preserved by the evolution. Let
Tmax be the maximal existence time for the evolution. If the mean curvature of 60 is strictly negative
(sup60

H = H0 < 0), then Tmax is finite. Assuming Tmax <∞, we have

lim sup
t→Tmax

[sup
0t

(|h|g + |∇ tanhtan
|g)] =∞

(if n = 2, in the concave case). If there is no gradient blowup at Tmax, the hypersurface contracts to a
compact convex subset of Rn as t→ Tmax.

Remark. We have not yet proved that the diameter tends to zero as t→ Tmax, though this seems likely
based on the experience with curves [Schnürer et al. 2007], in the absence of gradient blowup. It is an
interesting question (even in the concave case, for n = 2) whether gradient blowup can really occur, that
is, whether sup0t

|∇
tanhtan

|g can diverge as t→ Tmax, while |h|g remains bounded on 0t ).

2. Normal velocity of the moving boundary

The evolution is naturally supplied with initial data 60, a graph meeting Rn+1 at the prescribed angle.
Since we are interested in classical solutions in the parabolic Hölder space C2+α,1+α/2, we expect an
additional compatibility condition at t = 0. We discuss this first for graph mcm w(y, t).

Denote by 0(t) a global parametrization of ∂D(t) (with domain in a fixed manifold, and space vari-
ables left implicit). Differentiating in t the contact condition w(0(t), t)= 0, we find

wt +〈Dw, 0̇(t)〉 = 0.
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Denote by nt the unit normal vector field to 0(t), chosen so that the directional derivative dnw > 0. The
contact condition also implies the gradient of w is purely normal:

Dw|∂D(t) = (dntw)nt .

Combining this with the angle condition, and bearing in mind that dntw|0(t) > 0, we find

dntw =
β0

β
on ∂D(t), β0 :=

√
1−β2.

(In fact, this is a more convenient form of the angle boundary condition for w, since it is linear.) Thus,
on ∂D(t),

1
β

H =
√

1+ (dntw)
2 H =

∂w

∂t
=−〈0̇(t), nt 〉dntw =−0̇n(t)

β0

β
,

and we find the normal velocity of the moving boundary, independent of the parametrization of 0t :

0̇n =−
1
β0

H|0(t).

In particular, this must hold at t = 0. Note that we don’t get a compatibility condition in the usual sense
(of a constraint on the 2-jet of the initial data), but instead an equation of motion for the moving boundary.
Later, in the fixed-domain formulation, we will have to deal with a real compatibility condition.

Remark. For more general (nonsymmetric, nonflat) triple junctions with 120-degree angles, the condi-
tion

H 1
+ H 2

= H 3 on 0(t)

must hold at the junction (for graphs, oriented by the upward normal); this gives a geometric constraint
on the initial data, for classical evolution in C2+α,1+α/2. This automatically holds in the symmetric case
(w2
=−w1, w3

≡ 0), since H 3
= 0 and H I

= trg I d2w I for I = 1, 2.

3. Choice of gauge

It is traditional in moving boundary problems to parametrize the time-dependent domain D(t) of the
unknown w(y, t) by a time-dependent diffeomorphism:

y = ϕ(x, t), ϕ(t) : D0→ D(t),

and then derive the equation satisfied by the coordinate-changed function from the equation for w; see,
for example, [Baconneau and Lunardi 2004; Solonnikov 2003]. Motivated by work on curve networks
[Mantegazza et al. 2004], we will, instead, consider a general parametrization

F : D0×[0, T ] → Rn+1, F(x, t)= [ϕ(x, t), u(x, t)] ∈ Rn
×R,

and derive an equation for F directly from the definition of mean curvature motion,

〈∂t F, N 〉 = H.

We’ll still assume ϕ(t) : D0→ D(t) is a diffeomorphism.
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The first and second fundamental forms are given by

gi j = 〈Fi , F j 〉, A(Fi , F j )= 〈Fi j , N 〉,

where we have set DF = Fi ei and D2 F(ei , e j ) = Fi j , with (ei ) the standard basis of Rn+1. The mean
curvature is the trace of A in the induced metric:

H = 〈gi j (DF)Fi j , N 〉.

The equation for F is
〈∂t F − gi j (DF)Fi j , N 〉 = 0.

There is a natural gauge choice yielding a quasilinear parabolic system

∂t F − gi j (DF)Fi j = 0.

We will sometimes refer to this as the split gauge, since in terms of the components F = [ϕ, u] we have
the essentially decoupled system {

∂t u− gi j (Dϕ, Du)ui j = 0,
∂tϕ− gi j (Dϕ, Du)ϕi j = 0.

.

The splitting is useful in stating the boundary conditions{
u|∂D0 = 0 (contact condition),
N n+1(Dϕ, Du)|∂D0 = β (angle condition).

We immediately see a problem: we have two scalar boundary conditions for n+ 1 unknowns, and no
moving boundary to help! Our solution to this is to introduce n− 1 additional orthogonality conditions
at the boundary for the parametrization ϕ(t). We impose

〈Dτϕ, Dnϕ〉|∂D0 = 0 (orthogonality condition),

for any τ ∈ T ∂D0, where n denotes the inward unit normal to D0. (We fix a tubular neighborhood N of
∂D0 and extend n to N so that dnn = 0 in N.)

Geometrically, the orthogonality boundary condition has a precedent in a method often adopted when
dealing with the evolution of hypersurfaces in Rn+1 intersecting a fixed n-dimensional support surface
orthogonally (see [Struwe 1988], for example), where one replaces vanishing inner product of the unit
normals — a single scalar condition — by a stronger Neumann-type condition for the parametrization
corresponding to n− 1 scalar conditions. (More details are given in Section 10.)

The system must also be supplied with initial data. We assume given an initial hypersurface 60, the
graph of a C3+ᾱ function ũ0(x) defined in the C3+ᾱ domain D0 ⊂ Rn . (The reason for this choice of
differentiability class will be seen later.) It would seem natural to set ϕ0= IdD0 , but this causes problems
related to compatibility; see Section 4. We do require the 1-jet of ϕ0 at the boundary to be that of the
identity:

ϕ0|∂D0
= Id, Dϕ0|∂D = I.

(In particular, the orthogonality condition holds at t = 0.)
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We need a more explicit expression for the unit normal, and for that we use the “vector product”

Ñ (Dϕ, Du) := (−1)n det
[

e1 · · · en+1

DF1
· · · DFn+1

]
= (−1)n det

[
e1 . . . en en+1

Dϕ1 . . . Dϕn Du

]
:= [J (Dϕ, Du), Jϕ] ∈ Rn

×R,

where DF i
∈ Rn for i = 1, . . . n+ 1, Jϕ > 0 is the Jacobian of ϕ and (−1)n is introduced to make sure

the last component is positive. J (Dϕ, Du) is an Rn-valued multilinear form, linear in the components
ui of Du, and of weight n− 1 in the components of Dϕ. It is easy to check that J (I, Du)=−Du. The
unit normal is

N (Dϕ, Du)= Ñ (Dϕ, Du)/
(
|J (Dϕ, Du)|2+ (Jϕ)2

)1/2
.

Thus the angle condition may be stated in the form

β
[
|J (Du, Dϕ)|2+ (Jϕ)2

]1/2
|∂D0
= Jϕ |∂D0

,

and we lose nothing by squaring it:

B(Dϕ, Du) := β2
|J (Du, Dϕ)|2−β2

0 (Jϕ)
2
|∂D0
= 0.

4. Compatibility and the choice of ϕ0

Assume Dϕ0|∂D0
= I. Differentiating in t the contact condition u|∂D0 = 0 and evaluating at t = 0, we find

0= gi j (I, Du0)u0i j ≡ gi j
0 u0i j on ∂D0.

To interpret this condition, consider the mean curvature at t = 0, on ∂D0:

H0 =
1
v0

[
〈J (I, Du0), gi j

0 ϕ0i j 〉+ Jϕ0 gi j
0 u0i j

]
,

where

v0 =
[
|J (I, Du0)|

2
+ J 2

ϕ0

]1/2
|∂D0
= (|Du0|

2
+ 1)1/2

|∂D0
=

1
β
,

using the equality

J (I, Du0)=−Du0 =−(Dnu0)n =−
β0

β
n

on ∂D0. (Recall that β0 :=
√

1−β2.) Thus the compatibility condition is equivalent to

H0|∂D0 =−β0gi j
0 〈ϕ0i j , n〉|∂D0 .

This implies we can’t choose ϕ0 ≡ Id (on all of D0), unless H0|∂D0 ≡ 0, a constraint not present in the
geometric problem (as seen above).1 Instead, regarding H0 as given (by 60), and using

gi j
0 = δi j −

u0i u0 j

v2
0
= δi j −β

2
0 ni n j ,

1The compatibility condition H0|∂D0
= 0 does occur for graph mcm with Dirichlet boundary conditions in a mean-convex

domain [Huisken 1989].
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we find the compatibility constraint〈
(δi j −β

2
0 ni n j )ϕ0i j , n

〉
=−

1
β0

H0 on ∂D0.

Given the zero- and first-order constraints on ϕ0, this can also be written as

ni n j
〈ϕ0i j , n〉 = −

1
β2β0

H0 on ∂D0.

The next lemma, whose proof is given in Appendix A, shows that this can be solved.

Lemma 4.1. Let D0⊂Rn be a uniformly C3+α domain (possibly unbounded), h ∈Cα(∂D0) (0<α< 1).

(i) One can find a diffeomorphism ϕ ∈ Diff2+α(D0) satisfying on ∂D0

ϕ = Id, dϕ = I, n · d2ϕ(n, n)= h.

(ii) More generally, given a nonvanishing vector field

e ∈ C1+α(∂D0;R
n)

with 〈e, u〉 6= 0 on ∂D0, one can find ϕ ∈ Diff2+α(D0) satisfying on ∂D0

ϕ = Id, dnϕ = e, n · d2ϕ(n, n)= h.

If ∂D0 has two components, we may even require ϕ to satisfy the conditions in parts (i) and (ii) at the
two components with different functions h. (This will be needed in Section 10).

As usual, a domain is uniformly C3+α if at each boundary point there are local charts to the upper
half-space (of class C3+α), defined on balls of uniform radius, and with uniform bounds on the C3+α

norms of the charts and their inverses.

Remark 4.2. In particular, ϕ satisfies the orthogonality conditions at ∂D0.

Remark 4.3. It is at this step in the proof that we have a drop in regularity: for C2+α local solutions,
we require C3+α initial data. While this is not unexpected in free-boundary problems (see, for example,
[Baconneau and Lunardi 2004]), I don’t know a counterexample to the lemma if D0 is assumed to be a
C2+α domain.

Remark 4.4. In our application of the lemma, we in fact have h ∈ C1+α(∂D0), but this does not imply
higher regularity for ϕ.

5. Linearization

The evolution equation and boundary conditions in split gauge are
Ft − gi j (DF)Fi j = 0,

u|∂D0 = 0,
B(Dϕ, Du)|∂D0 = 0,

O(Dϕ)|∂D0 = 0,
where

O(Dϕ) := 〈DTϕ, Dnϕ〉.
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Here DTϕ = Dϕ− (dnϕ)〈 · , n〉 is an Rn-valued (n− 1)-form on ∂D0. We’ll prove short-time existence
for this system (with initial data u0, ϕ0) in C2+α,1+α/2 by the usual fixed-point argument based on linear
parabolic theory. Given F = [ϕ̄, ū] in a suitable ball in this Hölder space with center F0 = [ϕ0, u0], it
suffices to consider the pseudolinearization of the system:

Ft − gi j (DF0)Fi j = [gi j (DF)− gi j (DF0)]F i j =: F(F, F0)=: F. (LPDE)

A fixed point of the map F 7→ F corresponds to a solution of the quasilinear equation.
For the nonlinear boundary conditions, we need the honest linearization at F0. For the angle condition,

a computation using the boundary constraints on u0 and ϕ0 yields

1
2 L0 B[Dϕ, Du] = ββ0dnu−β2

0 〈dnϕ, n〉.

The corresponding linear boundary condition will be

ββ0dnu−β2
0 〈dnϕ, n〉 =B(DF, DF0) :=B,

where

2B(DF1, DF2) := B(Dϕ1, Du1)− B(Dϕ2, Du2)−L0 B
(
D(ϕ1−ϕ2), D(u1− u2)

)
,

and we used
−

1
2 L0[Dϕ0, Du0]|∂D0 = ββ0dnu0−β

2
0 〈dnϕ0, n〉|∂D0 = 0.

Also, B(Dϕ0, Du0)|∂D0 = 0, so at a fixed point B(Dϕ, Du)|∂D0 = 0.
Linearizing the orthogonality boundary condition, we find that L0O[Dϕ] is the (n−1)-form on ∂D0

given by
L0O[Dϕ](v)= (∂ jϕ

i
+ ∂iϕ

j )n j (δik − nkni )vk

(summing over repeated indices). The corresponding linear boundary condition is

〈dnϕ, projT ( · )〉+ 〈DTϕ, n〉 = −�(Dϕ̄, Dϕ0)=:�,

where projT denotes orthogonal projection Rn
→ T ∂D0, and

�(Dϕ1, Dϕ2) := O(Dϕ1)−O(Dϕ2)−L0O[Dϕ1− Dϕ2],

and we used
L0O[Dϕ0]|∂D0 = 〈(dnϕ0)

T , · 〉 + 〈DTϕ0, n〉|∂D0 = 0.

6. Complementarity

We wish to apply linear existence theory to the system

Ft − gi j (DF0)Fi j = F,

with boundary conditions at ∂D0
u = 0
ββ0dnu+β2

0 〈dnϕ, n〉 =B,

〈dnϕ, projT ( · )〉+ 〈DTϕ, n〉 = −�
(LBC)
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and initial conditions

ut=0 = u0, ϕt=0 = ϕ0.

It is easy to see that the initial data satisfy the linearized boundary conditions, and above we constructed
ϕ0 so as to guarantee gi j (Du0, Dϕ0)u0i j |∂D0 = 0. (There is no first-order compatibility condition for ϕ0.)
Thus the linear system satisfies the required compatibility at t = 0.

Since the linearized boundary conditions are slightly nonstandard, we must verify they satisfy the
Lopatinski–Shapiro complementarity conditions. We fix x0 ∈ ∂D0 and introduce adapted coordinates
(ρ, σ ) in a neighborhood N0 ⊂ N of x0 in D0:

x ∈ N0 H⇒ x = 00(σ )+ ρn(σ ), σ = (σa) ∈U,

where U⊂Rn−1 is open and 00 :U→Rn is a local chart for ∂D0 at x0. This defines a basis of tangential
vector fields in 00(U), and we may assume that at x0, we have 〈τa, τb〉 = δab and ∇τaτb(x0)= 0 (for the
induced connection on T ∂D0). Let U and ψ be defined in (−ρ1, 0)×U×[0, T ] by

U (ρ, σ, t)= u(00(σ )+ ρn(σ ), t), ψ(ρ, σ, t)= ϕ(00(σ )+ ρn(σ ), t).

In these coordinates, the induced metric is written in block form as

[g(DF0)] =

[
|ψρ |

2
+ (Uρ)

2
〈ψρ, ψa〉+UρUa

〈ψρ, ψa〉+UρUa 〈ψa, ψb〉+UaUb

]
|t=0

=

[
1/β2 0

0 In−1

]

at t = 0 and x0.
We have

Uρρ = D2u(n, n),

since dnn = 0, and

Uab = D2u(τa, τb)+ Du · ∇τaτb = D2u(τa, τb) at x0.

We don’t need Uρa , since gρa = 0 at x0.
Thus

trg0 D2u(x0)= β
2 D2u(n, n)+

∑
a

D2u(τa, τa)= β
2Uρρ +

∑
a

Uaa := β
2Uρρ +1σU,

and, likewise,

trg0 D2ϕ(x0)= β
2ψρρ +1σψ.

For the linearized orthogonality operator, note that, at x0,

L0O[Dψ] = (〈ψρ, τa〉+ 〈ψa, n〉)τa.

Putting everything together, the linear system to consider at x0 is{
Ut −β

2Uρρ −1σU = 0,
ψt −β

2ψρρ −1σψ = 0,



368 ALEXANDRE FREIRE

with boundary conditions
U |ρ=0 = 0,
β0〈ψρ, n〉+βUρ |ρ=0 = b(σ, t),
〈ψρ, τa〉+ 〈ψa, n〉|ρ=0 = ωa(σ, t), a = 1, . . . n− 1.

Now take the Fourier transform in σ ∈ Rn−1 (corresponding to ξ ∈ Rn−1), Laplace transform in t
(corresponding to p ∈ C) to obtain

Û (ρ, ξ, p) ∈ C, ψ̂(ρ, ξ, p) ∈ Cn
; ξ ∈ Rn−1, p ∈ C, ρ < 0.

In transformed variables, we obtain the following system of linear ODE in ρ < 0, for fixed (ξ, p):{
β2Ûρρ − (p+ |ξ |2)Û = 0,
β2ψ̂ρρ − (p+ |ξ |2)ψ̂ = 0

Writing the solution in the form [
Û (ρ)
ψ̂(ρ)

]
= eiργ

[
Û (0)
ψ̂(0)

]
,

we find the characteristic equation β2γ 2
+ p+ |ξ |2 = 0, and choose the root γ so that iγ = (1/β)

√
1

(where 1= p+|ξ |2 and we take the branch of the square root defined by Re
√
1> 0). Here (p, ξ)∈A,

where
A=

{
(p, ξ) ∈ C×Rn−1

: |p| + |ξ |> 0, Re p >−|ξ |2
}
.

Thus the solutions decay as ρ→−∞.
Let W+ be the space of such decaying solutions; it has complex dimension n − 1. The relevant

boundary operator on W+ is

B

[
Û
ψ̂

]
=

 Û
β0〈ψ̂ρ, n〉+βÛρ

〈ψ̂ρ, τa〉+ iξa〈9̂, n〉


|ρ=0

=

 Û (0)
β0(iγ )〈ψ̂(0), n〉+ iβγ Û (0)
(iγ )〈ψ̂(0), τa〉+ iξa〈ψ̂(0), n〉


(a vector in C×C×Cn−1).

The complementarity condition (see [Eidelman and Zhitarashu 1998], for example) is the statement
that B is a linear isomorphism from W+ to Cn+1. With respect to the basis

{
Û (0), 〈ψ̂(0), n〉, 〈ψ̂(0), τa〉

}
of W+, the matrix of B is (in block form)

[B] =

 1 0 [0]1×(n−1)

−
√
1 −(β0/β)

√
1 [0]1×(n−1)

[0](n−1)×1 [iξa](n−1)×1 −(
√
1/β)In−1

 .
This is triangular with nonzero diagonal entries for every (p, ξ) ∈A. Hence B is an isomorphism.

7. Estimates in Hölder spaces

For the fixed-point argument based on the linear system, we need estimates for ‖F‖α, ‖B‖1+α, ‖�‖1+α
of two types, namely mapping and contraction estimates.
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More precisely, for T > 0, R > 0 and QT
= D0×[0, T ] consider the open ball

BT
R =

{
F ∈ C2+α,1+α/2(QT ,Rn+1) : ‖F − F0‖2+α < R, F |t=0 = F0

}
.

(F0 = [ϕ0, u0] is defined from the initial surface 60, via Lemma 4.1.) Solving the linear system with
right-hand side defined by F ∈ BT

R defines a map F : F 7→ F , and we need to verify that, for suitable
choices of T and R, F maps into BT

R and is a contraction.
The argument that follows is standard, and the experienced reader may want to skip to the statement

of local existence in Theorem 8.1. On the other hand, the result is not covered by any general theorem
proved in detail in a reference known to the author, and some readers may find it useful to have all the
details included. Another reason is that, although the “right-hand sides” are clearly quadratic, without
explicit expressions one might run into trouble with compositions — which cause problems in Hölder
spaces — or when appealing to Taylor-remainder arguments if the domain is not convex.

The estimates required to document that F maps into BT
R are of the form

‖F(F, F0)‖α +‖B(DF, DF0)‖1+α +‖�(Dϕ̄, Dϕ0)‖1+α→ 0 as T → 0+,

and the contraction estimates are of the form

‖F(F1, F0)−F(F2, F0)‖α +‖B(DF1, DF2)‖1+α +‖�(Dϕ1, Dϕ2)‖1+α ≤ µ(T )‖F1
− F2
‖2+α,

where µ(T )→ 0 as T → 0+.

Notation. The (α, α/2) norms are taken on QT , the (1+α, (1+α)/2) norms on ∂D0×[0, T ]). Double
bars without an index refer to the (2+ α, 1+ α/2) norm, single bars to supremum norms over QT , and
parabolic norms are indexed by their spatial regularity (α for (α, α/2), etc.) In general, we use brackets
for Hölder-type difference quotients.

We deal with the estimates for the forcing term F first. Consider the map

G : Imm(Rn,Rn+1)→ GLn

that associates to the linear immersion A the inverse matrix of (〈Ai , A j 〉)
n
i=1, inner products of the rows

of A. G is smooth, in particular locally Lipschitz in the space W of linear immersions. Hence, if F1, F2

are maps QT
→ Rn+1 such that DF i

∈ Cα,α/2(QT ) and DF i (z) ∈ K for all z ∈ QT , where K ⊂W is a
fixed compact set, we have the bound

‖G(DF1)−G(DF2)‖α ≤ cK‖D(F1
− F2)‖α.

In fact our maps F i are in C2+α,1+α/2, so DF i
∈C1+α,(1+α)/2. From this higher regularity we obtain the

decay as T → 0+. Assuming F1
|t=0 = F2

|t=0, we have

|D(F1
− F2)| ≤ [D(F1

− F2)]
(1+α)/2
t T (1+α)/2.

Now recall the elementary fact that if D ⊂ Rn is a uniformly C1 domain (not necessarily convex or
bounded) and f ∈C1(D) with α ∈ (0, 1), we have for the α-Hölder difference quotient | f |α the estimate
[ f ]α≤CD‖ f ‖C1 . (Here “uniformly C1” means that D can be covered by countably many balls of a fixed
radius, which are domains of C1 manifold-with-boundary local charts for D, with uniform C1 bounds for
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the charts and their inverses. The constant CD depends on those bounds.) Applying this to DF , where
F = F1

− F2 vanishes identically at t = 0, and assuming T < 1, we obtain

[DF]ax ≤ c
(
|DF | + |D2 F |

)
≤ c

(
[DF](1+α)/2t T (1+α)/2

+ [D2 F]α/2t T α/2)
≤ c‖F‖T α/2,

(where c depends on D0) and similarly for the Hölder difference quotient in t :

[DF]α/2t ≤ [DF]1+α/2t T 1/2
≤ ‖F‖T 1/2,

so we have
‖D(F1

− F2)‖α ≤ c‖F1
− F2
‖T α/2.

We conclude, under the assumption F1
= F2 at t = 0

‖G(DF1)−G(DF2)‖α ≤ cK‖F1
− F2
‖T α/2.

In particular, applying this to F and F0, we find∥∥(G(DF)−G(DF0)
)
D2 F

∥∥
α
≤ cK‖F − F0‖T α/2

‖F‖,

and for F1 and F2 coinciding at t = 0∥∥(G(DF1)−G(DF2)
)
D2 F1∥∥

α
≤ cK‖F1

− F2
‖T α/2

‖F1
‖,

as well as ∥∥(G(DF2)−G(DF0)
)
(D2 F1

− D2 F2)
∥∥
α
≤ cK‖F2

− F0‖T α/2
‖F1
− F2
‖,

so we have the mapping and contraction estimates for F(F, F0) and F(F1, F0)−F(F2, F0).

Lemma 7.1. Assume F, F0, F1, F2 are in C2+α,1+α/2(QT
;Rn+1) and have the same initial values, and

that DF, DF0, DF1, DF2 all take values in the compact subset K of Imm(Rn,Rn+1). Then

‖F(F, F0)‖α ≤ cK‖F − F0‖‖F‖T α/2,

‖F(F1, F0)−F(F2, F0)‖α ≤ cK
(
‖F1
‖+‖F2

− F0‖
)
T α/2
‖F1
− F2
‖.

In particular, if F ∈ BT
R ,

‖F(F, F0)‖α ≤ c0 RT α/2.

If F1, F2
∈ BT

R , we have

‖F(F1, F0)−F(F2, F0)‖α ≤ c0T α/2
‖F1
− F2
‖.

(The constant c0 depends only on the data at t = 0, and we assume T < 1, R < 1.)

Turning to the orthogonality boundary condition, first observe that

�(Dϕ1, Dϕ2)

= 〈DTϕ1, dnϕ
1
〉− 〈DTϕ2, dnϕ

2
〉−L0O[Dϕ1

− Dϕ2
]

=
〈
DT (ϕ1

−ϕ2), dnϕ
1〉
+
〈
DTϕ2, dn(ϕ

1
−ϕ2)

〉
−
〈
dn(ϕ

1
−ϕ2), DTϕ0

〉
−
〈
DT (ϕ1

−ϕ2), dnϕ0
〉

=
〈
DTϕ1

− DTϕ2, dnϕ
1
− dnϕ0

〉
+
〈
dnϕ

1
− dnϕ

2, DTϕ2
− DTϕ0

〉
,
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which has quadratic structure. Using a local frame (τa)
n−1
a=1 for T ∂D0, we find the components

�a(Dϕ1, Dϕ2)=
[
∂i (ϕ

1
−ϕ2)∂ j (ϕ

1
−ϕ0)+ ∂ j (ϕ

1
−ϕ2)∂i (ϕ

2
−ϕ0)

]
n jτ i

a.

The summation convention is i, j = 1, . . . , n, so �a is a sum of terms of the form

b(x)D(ϕ1
−ϕ2)D(ϕ3

−ϕ4),

where b(x)= n jτ i
a and the ϕ I coincide at t = 0. It is then not hard to show that∥∥b(x)D(ϕ1

−ϕ2)D(ϕ3
−ϕ4)

∥∥
1+α ≤ c‖b‖1+α‖ϕ1

−ϕ2
‖‖ϕ3
−ϕ4
‖T α,

with c depending on the C1 norms of local charts for D0. To bound the norm ‖n ⊗ τa‖1+α, note that
|n||τa| ≤ 1, |D(n⊗ τa)| ≤ |Dn| + |Dτa|, and [D(n⊗ τa)]

α
x ≤ [Dn]αx +[Dτa]

α
x . Since n =−(β/β0)Du0

on ∂D0 and ∂D0 is a level set of u0, we clearly have

‖Dn‖α +‖Dτa‖α ≤ c‖D2u0‖α ≤ c‖u0‖.

We summarize the conclusion in the following lemma:

Lemma 7.2. Assume ϕ̄, ϕ0, ϕ
1, ϕ2
∈ C2+α,1+α/2(QT

;Rn) have the same initial values. Then

‖�(Dϕ̄, Dϕ0)‖1+α ≤ c0‖u0‖‖ϕ̄−ϕ0‖
2T α

and
‖�(Dϕ1, Dϕ2)‖1+α ≤ c0‖u0‖

(
‖ϕ1
−ϕ0‖+‖ϕ

2
−ϕ0‖

)
T α
‖ϕ1
−ϕ2
‖

with c0 depending only on the data at t = 0. In particular, if F = [ϕ̄, ū] ∈ BT
R , we have

‖�(Dϕ̄, Dϕ0)‖1+α ≤ c0 R2T α,

and for F I
= [ϕ̄ I , ū I

] ∈ BT
R , I = 1, 2, we have

‖�(Dϕ̄1, Dϕ̄2)‖1+α ≤ c0 RT α
‖ϕ̄1
− ϕ̄2
‖.

To explain the estimates for the angle condition, we write the normal vector as a multilinear form on
DF i

Ñ (DF)= Jn(DF) := (−1)n
n+1∑
i=1

(−1)i−1(DF1
∧ . . . ˆDF i ∧ . . . DFn+1)ei ∈ Rn+1

(DF i omitted in the i-th term of the sum), where DF i
∈ Rn for i = 1, . . . , n + 1 and we identify the

n-multivector in Rn with a scalar, using the standard volume form. The angle condition has the form

β2
|Ñ |2−〈Ñ , en+1〉

2
= 0 on ∂D0,

and we set
B(DF) := β2

|Jn(DF)|2−〈Jn(DF), en+1〉
2,

with linearization at DF0 = [In|Du0]

L0 B[DF] = 2β2〈Jn(DF0), D Jn(DF0)[DF]
〉
− 2

〈
Jn(DF0), en+1

〉 〈
D Jn(DF0)[DF], en+1

〉
.
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Under the assumption F1
= F2 at t = 0, we need an estimate in C1+α,(1+α)/2 for

B(DF1, DF2)

:= B(DF1)− B(DF2)−L0 B[DF1
− DF2

]

= β2(
|Jn(DF1)|2− |Jn(DF2)|2− 2

〈
Jn(DF0), D Jn(DF0)[DF1

− DF2
]
〉)

−
(
〈Jn(DF1), en+1〉

2
−〈Jn(DF2), en+1〉

2
− 2〈Jn(DF0), en+1〉

〈
D Jn(DF0)[DF1

− DF2
], en+1

〉)
.

It will suffice to estimate the expression in the first parenthesis; the second is analogous.
We need the following algebraic observation: if T0 = [In|Du0] and T are n × (n + 1) matrices, the

expression
|Jn(T0+ T )|2− |Jn(T0)|

2
− 2

〈
Jn(T0), D Jn(T0)[T ]

〉
is a linear combination (with constant coefficients) of terms of the form

u0i p(2)(T ), u0i u0 j p(2)(T ), p(2)(T ),

where the p(2)(T ) are polynomials in the entries of T (with constant coefficients) with terms of degree
2≤ deg ≤ 2n.

Thus B(DF1, DF2) is a linear combination (with constant coefficients) of terms

u0i p(2)(DF1
− DF2), u0i u0 j p(2)(DF1

− DF2), p(2)(DF1
− DF2),

with the p(2) as described, and hence it is a linear combination of terms of the form

u0i (F
1 j
k − F2 j

k )d , u0i u0l(F
1 j
k − F2 j

k )d , (F1 j
k − F2 j

k )d

(where 2≤ d ≤ 2n, 1≤ j ≤ n+ 1, 1≤ i, l, k ≤ n), which we write symbolically as

B(DF1, DF2)∼
∑

2≤d≤2n

b(x)(DF1
− DF2)d ,

where b(x) is constant or u0i (x) or u0i (x)u0 j (x). For the degree d terms G(d)
∼ b(x)(DF1

− DF2)d , it
is not hard to show the bound

‖G(d)
‖1+α ≤ c‖b‖1+α‖F1

− F2
‖

d T α, 2≤ d ≤ 2n.

We conclude:

Lemma 7.3. Assume F, F0, F1, F2 are in C2+α,1+α/2(QT
;Rn+1) and have the same initial values. Then

‖B(DF, DF0)‖1+α ≤ c(1+‖u0‖
2)(1+‖F − F0‖

2n−2)T α
‖F − F0‖

2.

‖B(DF1, DF2)‖1+α ≤ c(1+‖u0‖
2)(1+‖F1

− F2
‖

2n−2)T α
‖F1
− F2
‖

2

with c depending only on F0. In particular, if F ∈ BT
R then

‖B(DF, DF0)‖1+α ≤ c0 R2T α,

and if F1, F2
∈ BT

R then
‖B(DF1, DF2)‖1+α ≤ c0T α

‖F1
− F2
‖,

with c0 depending only on F0.
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8. Local existence

Given a C3+ᾱ graph 60 over a uniformly C3+ᾱ domain D0 ⊂ Rn (for arbitrary ᾱ ∈ (0, 1)) satisfying
the contact and angle conditions, let ϕ0 ∈ Diff2+ᾱ be the diffeomorphism given by Lemma 4.1 (with
the 1-jet of the identity at ∂D0 and 2-jet determined by the mean curvature of 60 at ∂D0). Then find
u0 ∈ C2+α(D0) so that F0 = [ϕ0, u0] ∈ C2+α(D0;R

n+1) parametrizes 60 over D0 (α = ᾱ2 < ᾱ).
(Precisely, if [z, ũ0(z)] parametrizes 60 as a graph, and ϕ0 is given by Lemma 4.1, let u0 = ũ0 ◦ ϕ0;

so u0 ∈ C2+α.)
We obtained in Section 7 all the estimates needed for a fixed-point argument in the set

BT
R =

{
F ∈ C2+α,1+α/2(QT ,Rn+1) : ‖F − F0‖< R, F |t=0 = F0

}
.

Choose R<1 and T0<1 small enough (depending only on F0) so that, for F ∈ BT0
R , F(t)=[ϕ(t), u(t)]

defines an embedding of D0, with ϕ(t) a diffeomorphism onto its image D(t). Let K ⊂ Imm(Rn,Rn+1)

be a compact set containing DF(z) for all F ∈ BR and z ∈ QT0 . Now consider T < T0.
Given F ∈ BT

R , solve the linear system (LPDE)/(LBC) with initial data F0 to get F ∈C2+α,1+α/2(QT ).
(This is possible since the complementarity and compatibility conditions hold for the linear system.) This
defines a map F : F 7→ F .

From linear parabolic theory (see [Eidelman and Zhitarashu 1998, theorem VI.21], for example), we
have

‖F − F0‖ ≤ M
(
‖F(F, F0)‖α +‖B(DF, DF0)‖1+α +‖�(Dϕ̄, Dϕ0)‖1+α

)
,

where M > 0 depends on the Cα,α/2 norm of the coefficients of the linear system, that is, ultimately on
‖F0‖.

From Lemmas 7.1–7.3, it follows that

‖F − F0‖ ≤ Mc0(RT α/2
+ R2T α) < R

provided T is chosen small enough (depending only on F0.) Thus F maps BT
R to itself.

Similarly, if F(F i )= F i for i = 1, 2, standard estimates for the linear system solved by F1
− F2 give

‖F1
− F2
‖ ≤ M

(
‖F(F1, F2)‖α +‖B(DF1, DF2)‖1+α +‖�(Dϕ̄1, Dϕ̄2)‖1+α

)
Again the estimates in Lemmas 7.1–7.3 imply

‖F1
− F2
‖ ≤ Mc0(T α/2

+ T α)‖F1
− F2
‖< 1

2‖F
1
− F2
‖,

assuming T is small enough (depending only on F0). This concludes the argument for local existence.

Theorem 8.1. Let60⊂Rn+1 be a C3+ᾱ graph over D0⊂Rn satisfying the contact and angle conditions
at ∂D0. With α = ᾱ2, there exists a parametrization F0 = [ϕ0, u0] ∈ C2+α(D0) of 60, a number T > 0
depending only on F0 and a unique solution F ∈ C2+α,1+α/2(QT

;Rn+1) of the system{
∂t F − gi j (DF)∂i∂ j F = 0, F = [ϕ, u]

u|∂D0 = 0, N n+1(Dϕ, Du)|∂D0 = β, 〈D
Tϕ, dnϕ〉|∂D0 = 0



374 ALEXANDRE FREIRE

with initial data F0. For each t ∈ [0, T ], F(t) is a C2+α embedding parametrizing a surface 6t which
satisfies the contact and angle conditions and moves by mean curvature. In addition, F(t) satisfies the
orthogonality condition at ∂D0.

The hypersurfaces 6t are graphs. For each t ∈ [0, T ], ϕ(t) : D0 → D(t) is a diffeomorphism and
6t = graph(w(t)) for w(t) : D(t)→ R given by w(t) = u(t) ◦ ϕ−1(t). (Since w(t) lies in C2+α2

(D(t)),
it is less regular than u(t) or ϕ(t).) D(t) is a uniformly C2+α domain.

Remark. This theorem does not address the geometric uniqueness of the motion, given 60. It only as-
serts uniqueness for solutions of the parametrized flow (including the orthogonality boundary condition)
in the given regularity class.

9. Rotational symmetry

In this section we record the equations for two rotationally symmetric instances of the problem:

(i) D0 and D(t) are disks, and u > 0 (lens case).

(ii) D0 and D(t) are complements of disks in Rn (exterior case). For simplicity we restrict to n = 2.

Let F(r) = [ϕ(r), u(r)] parametrize a hypersurface 6, where ϕ(r) = φ(r)er is a diffeomorphism
onto its image. Here er and eθ are orthonormal vectors, outward normal and counterclockwise tangent,
respectively, to the circles r = const. The unit upward normal vector and mean curvature are

N =
[−ur er , φr ]√

u2
r +φ

2
r

and H =
1

(φ2
r + u2

r )
3/2

(
φr M(φr , ur )[D2u] − 〈ur er , EM(φr , ur [D2ϕ]〉

)
,

where

M(φr , ur )[D2u] = urr + (φ
2
r + u2

r )
urφr

φ2 , EM(φr , ur )[D2ϕ] =
[
φrr + (φ

2
r + u2

r )
(rφr

φ2 −
1
φ

)]
er .

Simplifying we get

H =
1

(φ2
r + u2

r )
3/2

[
φr urr − urφrr + (φ

2
r + u2

r )
ur

φ

]
.

Now consider the time-dependent case F(r, t)= [φ(r, t)er , u(r, t)]. From the expressions above, one
finds easily that the equation 〈∂t F, N 〉 = H takes the form

φr

(
ut −

1
φ2

r +u2
r

M(φr , ur )[D2u]
)
= ur

〈
er , ϕt −

1
φ2

r +u2
r

EM(φr , ur )[D2ϕ]
〉
.

In split gauge, we consider the system
ut −

1
φ2

r +u2
r

M(φr , ur )[D2u] = 0,

ϕt −
1

φ2
r +u2

r

EM(φr , ur )[D2ϕ] = 0.

Note that φ(r, t)= r solves the φ equation, and that in this case the u equation becomes

wt −
wrr

1+w2
r
−
wr

r
= 0.
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This can be compared with the equation for curve networks,

wt −
wxx

1+w2
x
= 0.

The boundary conditions are easily stated (we assume D0 is the unit disk or its complement). The
“contact condition” at r = 1 is u = 0. For the “angle condition” at r = 1, we find

u2
r =

β2
0

β2φ
2
r , β0 :=

√
1−β2.

Assuming φr > 0 at r = 1, this resolves as

βur +β0φr = 0 at r = 1 (lens case),

βur −β0φr = 0 at r = 1 (exterior case).

(For lenses, one also has at r = 0: ur = 0 and φr = 1.) Thus in both cases one can work with linear
Dirichlet/Neumann-type boundary conditions.

One reason to consider the exterior case is that, unlike the lens case, it admits stationary solutions.
Geometrically one just has to consider one-half of a catenoid truncated at an appropriate height. For
example, for 120-degree junctions the equation for stationary solutions{ urr

1+u2
r
+

ur
r
= 0 in{r > 1},

ur |r=1 =
√

3, u|r=1 = 0.

admits the explicit solution

u(r)=

√
3

2

(
ln(2r +

√
4r2− 3)− ln 3

)
, r >

√
3/2.

Problem. It would be interesting to consider the nonlinear dynamical stability of this solution (even
linear stability is yet to be considered). One may even work with bounded domains by introducing a
fixed boundary at some R > 1 intersecting the surface orthogonally (see Section 10).

10. Fixed supporting hypersurfaces

Extending the local existence theorem to the case of hypersurfaces intersecting a fixed hypersurface S

orthogonally presents no essential difficulty. The case of vertical support surface leads directly to graph
evolution with a standard Neumann condition on a fixed boundary; we consider the complementary case
where S is a graph. Let S⊂Rn+1 be a C4 embedded hypersurface (not necessarily connected), the graph
over D⊂ Rn of B ∈ C4(D), oriented by the upward unit normal

ν(y) := 1
vB
ν̃(y), ν̃(y) := [−DB(y), 1] ∈ Rn

×R, vB :=

√
1+ |DB(y)|2.

We assume ν to be nowhere vertical in D (DB 6= 0). To state the problem in the graph parametrization,
we consider a time-dependent domain D(t)⊂Rn with a boundary consisting of two components ∂1 D(t)
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and ∂2 D(t), both moving. The hypersurface 6t is the graph of w( · , t) over D(t) solving the parabolic
equation

wt − gi j (Dw)wi j = 0 in E :=
⋃

t∈[0,T ]
D(t)×{t} ∈ Rn+1

×[0, T ]

with boundary conditions

w( · , t)|∂1 D(t) = 0,
√

1+ |Dw|2|∂1 D(t) = 1/β

(as before), and on ∂2 D(t)

w = B, ∇w · ∇B =−1.

(The first-order condition on ∂2 D(t) is equivalent to 〈ν, N 〉 = 0.)
Differentiating in t the boundary condition w = B leads easily to an equation for the normal velocity

of the interface 0(t)= ∂2 D(t):

0̇n =
vH

Bn −wn
.

Note that wn at ∂2 D(t) can be computed from Bn , since

−1=∇w · ∇B = wn Bn + |∇
T B|2;

in particular neither Bn nor wn can vanish (so both have constant sign on connected components of ∂2 D),
and one easily computes: wn − Bn =−v

2
B/Bn .

Let 3=6∩S be the intersection (n−1)-manifold, the graph of w (or B) over ∂2 D. Given the graph
parametrizations of 6 and S, say

G(y)= [y, w(y)], B(y)= [y, B(y)], y ∈ ∂2 D,

and τ ∈ T ∂2 D, we have the tangent vectors

Gn := [n, wn] ∈ T6, G B := [∇B,−1] = −vBν ∈ T6, Gτ := [τ,∇w · τ ] ∈ T3,

and the second fundamental forms of 6 and S (for e ∈ Rn arbitrary):

A(dGe, dGe)= 1
v

d2w(e, e), A(dBe, dBe)= 1
vB

d2 B(e, e).

From the equality 〈ν, N 〉 = 0 at ∂2 D, it follows easily that (compare [Stahl 1996])

A(Gτ , ν)=−A(Gτ , N ), τ ∈ T ∂D.

For the remainder of this section, we concentrate on the boundary conditions at ∂2 D0. To establish
short-time existence, we consider as before the parametrized flow

Ft − trgd2 F = 0, g = g(d F), F = [ϕ, u].

The contact and angle boundary conditions are

u|∂2 D0 = B ◦ϕ|∂2 D0, 〈N , ν ◦ϕ〉|∂2 D0 = 0.
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Again we have two scalar boundary conditions for n + 1 components. Here the solution is easier than
at the junction. With the notation Fn = d Fn = [ϕn, un], we replace the angle condition by the “vector
Neumann condition”

Fn ⊥ T S or Fn =−αvBν on ∂2 D0,

where α : ∂2 D0→ R, or equivalently (since this leads to α =−un)

ϕn =−un(∇B ◦ϕ) on ∂2 D0.

Clearly the Neumann condition implies the angle condition 〈N , ν ◦ ϕ〉 = 0, but not conversely. This
linear Neumann-type condition can easily be incorporated into the fixed-point existence scheme described
earlier.

There is one issue to consider: the zero- and first-order compatibility conditions must hold at ∂2 D0

at t = 0. The initial hypersurface 60 uniquely determines w0 and D0 ⊂ Rn (satisfying w0 = B and
∇w0 · ∇B = −1 on ∂2 D0), and then once ϕ0 ∈ Diff(D0) is fixed, u0 = w0 ◦ ϕ0 is also determined. We
may assume

ϕ0 = id, ϕ0n =∇B on ∂2 D0,

so

u0n =∇w0 ·ϕ0n =∇w0 · ∇B =−1 on ∂2 D0,

and then the Neumann condition F0n |∂2 D0 =−vBν holds at t = 0, on ∂2 D0.

The first-order compatibility condition is

trgd2u0 = ut =∇B ·ϕt =∇B · trgd2ϕ0 on ∂D0,

or equivalently

trg〈ν, d2 F0〉 = 0 on ∂D0.

(This is not a mean curvature condition; the mean curvature of 60 is H = trg〈N , d2 F0〉.)
From now on we omit the subscript 0 but continue to discuss compatibility at t = 0. First observe that

the Neumann condition leads to a splitting of the induced metric. Given τ ∈ T ∂2 D0, let Fτ = d Fτ ∈ T3.
Then (recalling un =−1 on ∂2 D0)

〈Fτ , Fn〉 =
〈
[τ, d Bτ ], [ϕn, un]

〉
=∇B · τ −∇B · τ = 0.

Thus we have

trg〈ν, d2 F〉 = gab
〈ν, d2 F(τa, τb)〉+ gnn

〈ν, d2 F(Fn, Fn)〉,

for a local basis {Ta = d Fτa}
n−1
a=1 of T3 with gab = 〈Ta, Tb〉 and gnn = |Fn|

2
= v2

B .
Differentiating in n the condition un = ∇w · ϕn (assuming, as usual, that n is extended to a tubular

neighborhood N of ∂2 D0 as a self-parallel vector field) we find

unn = d2w(n,∇B)+∇w · d2ϕ(n, n).
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(This is legitimate, since u = w ◦ϕ throughout N.) This is used to compute

〈ν, d2 F(n, n)〉 = 1
vB
[unn −∇B · d2ϕ(n, n)]

=
1
vB

[
d2w(n,∇B)+ (∇w−∇B) · d2ϕ(n, n)

]
=−vA(Gn, ν)+

1
vB
(wn − Bn)n · d2ϕ(n, n).

Bearing in mind the expression for wn − Bn found earlier, the compatibility condition may be stated in
the form

vB

Bn
n · d2ϕ(n, n)=−vA(Gn, ν)+ gab

〈d2 F(τa, τb), ν〉.

We are now in the same situation as in Section 4. Given the 1-jet of ϕ0 on ∂2 D0, we extend ϕ0 to
a tubular neighborhood N of ∂2 D0 (and then to all of D0) so that n · d2ϕ(n, n) has the value on ∂2 D0

dictated by the compatibility condition, using Lemma 4.1(ii). We just need to verify that the right-hand
side of the expression above depends only on 60, S and the 1-jet of ϕ0 over ∂2 D0. Clearly only the term
gab
〈ν, d2 F(τa, τb)〉 is potentially an issue.

Fix p ∈ ∂2 D0 and let {τa} be an orthonormal frame for T ∂2 D0 near p, parallel at p for the connection
induced on ∂2 D0 from Rn . If K denotes the second fundamental form of ∂2 D0 in Rn , we have

τa(τb)= K(τa, τb)n at p;

on the left-hand-side, τb is regarded as a vector-valued function in Rn . Still computing at p, this implies

d2 F(τa, τb)= τa(d Fτb)− d F(τa(τb))= τa(dBτb)−K(τa, τb)Fn

= d2B(τa, τb)+K(τa, τb)Bn −K(τa, τn)Fn,

where Fn =−vν and Bn = dBn ∈ T S. Hence

〈ν, d2 F(τa, τb)〉 = 〈ν, d2B(τa, τb)〉+ vK(τa, τb)=A(Ta, Tb)+ vK(τa, τb).

This clearly depends only on S and on 60. We summarize the discussion in a lemma.

Lemma 10.1. Let 60 = graph(w0) be a C3 graph over D0 ⊂ Rn (a uniformly C3 domain) intersecting
a fixed hypersurface S = graph(B) over ∂D0. Consider the parametrized mean curvature motion with
Neumann boundary condition

F ∈ C2,1(D0×[0, T ])→ Rn+1, F = [ϕ, u],

Ft − trgd2 F = 0, g = g(d F), u ◦ϕ = B and Fn ⊥ T S on ∂D0.

Then ϕ0 ∈ Diff(D0) can be chosen so that (with u0 = w0 ◦ ϕ0) the initial data F0 = [ϕ0, u0] satisfies the
zero- and first-order compatibility conditions at t = 0 and ∂D0:

ϕ0n =−u0n(∇B ◦ϕ0), 〈ν ◦ϕ0, trg0d2 F0〉 = 0.

Remark. Differentiating dwτa = d Bτa along τb, we find

d2w(τa, τb)− d2 B(τa, τb)= (wn − Bn)K(τa, τb)
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(reminding us that, althoughw≡ B on ∂D0, the tangential components of their Hessians do not coincide.)
From this follows the expression for K in terms of A and A:

K(τa, τb)=
1

wn − Bn

[
vA(Ta, Tb)− vBA(Ta, Tb)

]
.

It is also easy to express the corresponding traces in terms of the mean curvatures H3 and H3 of 3 in
6 and S:

H3
=
v

vB
gab A(Ta, Tb), H3

=
vB

v
gabA(Ta, Tb).

11. Boundary conditions for the second fundamental form

To understand the long-term behavior of a graph (6t) in Rn+1 moving by mean curvature and intersecting
Rn at a constant angle, we need to consider the evolution of its second fundamental form. Working in
the graph parametrization the boundary conditions are easy to state and linear:

w|∂D(t) = 0, dnw|∂D(t) =
β0

β
,

where n = nt is the inner unit normal to ∂D(t). It is possible to reparametrize the 6t over a different
time-dependent domain D(t), obtaining mean curvature flow

Ft : D(t)→ Rn+1, ∂t F= H N ,

with boundary conditions

Fn+1
|∂D(t) = 0, N n+1

|∂D(t) = β.

For this parametrization the evolution equation for the second fundamental form (and its covariant deriva-
tives of arbitrary order) is well-understood [Huisken 1984]. The disadvantage is that the unit normal N|Ft

depends nonlinearly on the components of F, and as a result the boundary conditions for the second
fundamental form (which are needed for global estimates over spacetime domains) do not admit simple
expressions. Therefore we choose to work with graph flow at the cost of having to derive and understand
a new set of evolution equations. The equations for h and the mean curvature H are derived in Appendix
B. In this section we derive boundary conditions. The development is similar that in [Stahl 1996] for
MCF of hypersurfaces intersecting a fixed boundary orthogonally.

It is easy to see that h splits on ∂D(t): if τ ∈ T ∂D(t) is a tangential vector field, and n = nt is the
inner unit normal

h(n, τ )=
1
v

d2w(n, τ )=
1
v
(τ(wn)− Dw · ∇̄τn)= 0 on ∂D(t),

since wn ≡ β0/β on the boundary and ∇̄τn ∈ T ∂D(t) (∇̄ is the euclidean connection). In particular, it
follows that h(Dw, τ)= 0 on ∂D(t).

Remark. Already this simple fact cannot be shown for a(ν, τ ), the second fundamental form in the
MCF parametrization, regarded as a quadratic form on D(t).
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Boundary condition for H. In Section 2 we derived the equation for the normal velocity of the moving
boundary 0t = ∂D(t):

0̇n =−
v

wn
H =−

1
β0

H at ∂D(t).

Since 〈N , en+1〉(0(t), t)≡ β on ∂D(t) we have

〈∂t N , en+1〉 = −〈∂k N , en+1〉0̇
k,

where ∂k N =−gi j hik G j with en+1 component

〈∂k N , en+1〉 = −gi jw j hik =−
1
v2 h(Dw, ∂k)=−

1
v2wnh(n, ∂k).

Hence we find, on ∂D(t),

〈∂t N , en+1〉 =
wn

v2 h(n, 0̇)=
wn

v2 0̇nh(n, n)=−βHhnn. (11-1)

(We set hnn := h(n, n)). Denote by ∇6 the gradient of 6t , in the induced metric (∇6 f = gi j fi G j ).
Using ∂t N =−∇6H − Hv−1

∇
6v, combined with the expressions (valid on ∂D(t))

〈∇
6H, en+1〉 = gi j Hi 〈G j , en+1〉 = gi j Hiw j =

1
v2wi Hi =

wn

v2 Hn = ββ0 Hn,

〈∇
6v, en+1〉 =

vnwn

v2 =
w2

n

v2 hnn = β
2
0 hnn,

we find on ∂D(t)
〈∂t N , en+1〉 = −ββ0(Hn +β0 Hhnn). (11-2)

Comparing expressions for 〈∂t N , en+1〉 in (11-1) and (11-2) yields a Neumann-type condition for H . We
state this as a lemma (including the evolution equation derived in Appendix B). Here L = Lg denotes
the operator L[ f ] = ∂t f − trg D2 f and ω = Dw/v, a vector field in D(t).

Lemma 11.1. For the surfaces6t evolving by graph mean curvature motion with constant contact angle,
the mean curvature satisfies{

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω) on D(t),
dn H = (β2/β0)Hhnn on ∂D(t).

Boundary conditions for hi j . Fix p ∈ ∂D(t) and let (τa) be an orthonormal frame for Tp∂D(t) (in the
induced metric) satisfying ∇0τa

τb(p) = 0, where ∇0 is the connection induced on 0t by the euclidean
connection d, or, equivalently, by ∇, the Levi-Civita connection of the metric g in D(t). We extend the
τa to a tubular neighborhood of 0t so that ∇̄nτa = 0. Differentiating h(n, τb)= 0 along τa , we find

(∇τa h)(n, τb)=−h(∇τa n, τb)− h(n,∇τaτb). (11-3)

The second fundamental form K(τ, τ ′) of 0t in (D(t), eucl) (equivalently, in (D(t), g)) is defined by

dτaτb =∇
0
τa
τb+K(τa, τb)n on ∂D(t).

To relate K to h|∂D(t), note that since w = 0 on ∂D(t) we have

h(τa, τb)=
1
v

d2w(τa, τb)=
1
v
(τa(τbw)− Dw · dτaτb)=−dτaτb ·

Dw
v
=−β0K(τa, τb).
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(So we see that 0t convex with respect to n corresponds to 6t concave over D(t), as expected.) In (B-1)
in the appendix we observe that ∇∂i ∂ j = (hi j/v)Dw. Then

∇τaτb = τ
i
a
(
(τ

j
b )i∂ j + τ

j
b∇∂i ∂ j

)
= dτaτb+

1
v
τ i

aτ
j

b hi j Dw

=∇
0
τa
τb+K(τa, τb)n+

wn
v

h(τa, τb)n =
(
−

1
β0
+β0

)
h(τa, τb)n =−

β2

β0
h(τa, τb)n

at p, given our assumption ∇0τa
τb(p)= 0. We use this immediately to compute, at p,

∇τa n = 〈∇τa n, τb〉gτb =−〈n,∇τaτb〉gτb =
β2

β0
|n|2gh(τa, τb)τb =

1
β0

h(τa, τb)τb,

since |n|2g = gi j ni n j
= 1+w2

n = β
−2 at p. Using these expressions for ∇τa n and ∇τaτb in (11-3) and

recalling the Codazzi equations, we obtain

(∇nh)(τa, τb)= (∇τa h)(n, τb)=−
1
β0

∑
c

h(τa, τc)h(τc, τb)+
β2

β0
h(τa, τb)hnn.

This can also be written in the form

β0(∇nh)(τ, τ ′)=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′). (11-4)

It turns out the expression for the n-directional derivative of h(τ, τ ′) is exactly the same (at ∂D(t)):

β0dn(h(τ, τ ′))=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′). (11-5)

The reason is that ∇nτa = 0 at the boundary, also for the g-connection

∇nτa = dn(τa)+ niτ j
a∇∂i ∂ j = 0+ 1

v
h(n, τa)Dw = 0,

so in fact

(∇nh)(τa, τb)= n(h(τa, τb))= dn(h(τa, τb)).

As done in [Stahl 1996], we combine this with the result for Hn to compute (∇nh)(n, n). From

Hn =∇n(trgh)= trg(∇nh)= β2(∇nh)(n, n)+
∑

a

(∇nh)(τa, τa).

Here we used |n|2g = β
−2 on ∂D(t), which also implies H = β2hnn+

∑
a h(τa, τa). Using also |htan

|
2
=∑

(htan)2(τa, τa), we find for (∇nh)(n, n)

β2(∇nh)(n, n)=
β2

β0
Hhnn +

1
β0
|htan
|
2
−
β2

β0
(H −β2hnn)hnn =

1
β0
(|htan
|
2
+β4h2

nn)=
1
β0
|h|2g,

since gnn
= β2 at ∂D(t). Equivalently,

β0(∇nh)(n, n)=
1
β2 |h|

2
g on ∂D(t).

It is easy to obtain the corresponding expression for the euclidean connection. Noting that

∇nn = dnn+ ni n j 1
v

hi j Dw = β0hnnn at ∂D(t),
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we find
(dnh)(n, n)= n(hnn)= (∇nh)(n, n)+ 2h(∇nn, n)= (∇nh)(n, n)+ 2β0h2

nn,

so that
β0dn(h(n, n))=

1
β2 |h|

2
g + 2β2

0 h2
nn on ∂D(t).

We record these results as a lemma, including also the evolution equations derived in Appendix B.

Lemma 11.2. Under graph mean curvature motion with constant contact angle, the second fundamental
form satisfies the following tensorial evolution equations, where Ci j and C i j are symmetric 2-tensors
cubic in h; see (B-2) and (B-3). Recall that ω = Dw/v and dω denotes directional derivative.

(i) For the operator L = Lg,

L[hi j ] = −2[hk
i dω(h jk)+ hk

j dω(hik)] +C i j on D(t),

with boundary conditions on ∂D(t) given by
h(n, τ )= 0,

β0dn(h(τ, τ ′))=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′),

β0dn(h(n, n)) = |h|2g/β
2
+ 2β2

0 h2
nn.

(ii) For the operator ∂t −1g, where 1g is the Laplace–Beltrami operator of g

(∂t −1g)[h]i j = H(∇ωh)i j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )+Ci j on D(t),

with boundary conditions on ∂D(t) given by
h(n, τ )= 0,

β0(∇nh)(τ, τ ′)=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′),

β0(∇nh)(n, n) = |h|2g/β
2.

It is also useful to compute the boundary condition for |h|2g. Using Lemma 11.2(ii), we have at ∂D(t)

(β0/2)dn|h|2g = β0〈∇nh, h〉g

= β0β
4(∇nh)(n, n)hnn +β0

∑
b,c
(∇nh)(τa, τb)h(τa, τb)

= β2
|h|2ghnn +

∑
a,b
[−(htan)2(τa, τb)+β

2hnnh(τa, τb)]h(τa, τb)

= β2(
|h|2g + |h

tan
|
2
g
)
hnn − trg(htan)3

Since trgh3
= β6(hnn)

3
+ trg(htan)3 on ∂D(t), we may state this in a slightly different form. Including

also the evolution equation for |h|2g (see Appendix B), we have the following lemma:

Lemma 11.3. Under graph mean curvature flow, the function |h|2g satisfies the evolution equation and
Neumann boundary condition{

(∂t −1g)|h|2g =−2|∇h|2g + Hdω|h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω),
(β0/2)dn|h|2g = 2β2

|h|2ghnn − trg(h3) on ∂D(t).
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12. A maximum principle for symmetric 2-tensors

By the local existence theorem, for suitable initial data we have a mean curvature motion F = [ϕ, u] ∈
C2+α,1+α/2(Q0,Rn+1), where Q0 = D0 × [0, T ] and, for each t ∈ [0, T ], ϕt : D0 → D(t) is a C2+α

diffeomorphism. In particular, with δ = α2, wt = ut ◦ ϕ
−1
t : D(t) → R defines a graph mcm w ∈

C2+δ,1+δ/2(E;R) in an open spacetime domain

E =
⋃

t∈(0,T )

D(t)×{t} ⊂ Rn
×R.

We have a C2+α,1+α/2 diffeomorphism

8 : Q0→ E, 8(x, t)= (ϕt(x), t),

which, for any t0 > 0, restricts to a diffeomorphism Qt0 → Et0 , where

Qt0 = D0× (t0, T ), Et0 =
⋃

t∈(t0,T )

D(t)×{t}.

The parabolic boundary of E is the disjoint union of base and lateral boundary:

∂p E = (D0×{0})t ∂l E, ∂l E =
⋃

t∈(0,T )

∂D(t)×{t}.

(The notions of parabolic boundary, base and lateral boundary have general definitions for arbitrary
bounded spacetime domains [Lieberman 1996], but using 8 it is easy to see that they are given by the
above sets.) In particular, note that 8 defines a diffeomorphism

Qt0 ∪ ∂l Qt0 → Et0 ∪ ∂l Et0,

for each t0 > 0. This diffeomorphism is Ck+α,(k+α)/2 up to the lateral boundary, if D0 is a Ck+α domain
and F ∈ Ck+α,(k+α)/2)(Q0).

Denote by L the operator L = ∂t − gi j (Dw)∂i∂ j , so Lw = 0 in E and w = 0 on ∂l E . The following
height bound is immediate.

Lemma 12.1. Assume 0<w0 < M in D0. Then 0≤ w ≤ M in E (and vanishes only on ∂l E).

Proof. This follows from the weak maximum principle for the operator L , since 0 ≤ w ≤ M holds on
the parabolic boundary ∂p E . �

It is well-known that the function v =
√

1+ |Dw|2 solves the evolution equation (assuming Dw ∈
C2,1(E)— see [Guan 1996], for example)

L[v] +
2
v

gi jviv j =−v|h|2g, or L[v] = −
2
v
|Dv|2g − v|h|

2
g.

From the maximum principle, we have the following global bound on v (equivalently, on |Dw|):

Lemma 12.2. Assume w is a solution with Dw ∈ C2,1(E). Then, on E ,

v(z)≤max{supD(t0) v(x, t0), 1/β}.

Proof. By the weak maximum principle, maxE v =max∂p E v. Note that v|S ≡ 1/β. �
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It follows from this lemma that gi j (t) is uniformly equivalent to the euclidean metric in D(t): If v≤ v̄
in E , and X is a vector field in D(t), then

|X |2e ≤ |X |
2
g = gi j X i X j

= |X |2e + (X · Dw)
2
≤ |X |2e(1+ |Dw|

2)≤ v̄2
|X |2e .

Also, if ω := v−1 Dw then

|ω|2e =
|Dw|2e
v2 = 1−

1
v2 ≤ 1−

1
v̄2 .

The main result in this section is a maximum principle for symmetric 2-tensors satisfying a parabolic
equation on a spacetime domain such as E (image of a cylinder under a diffeomorphism of the special
type 8).

We recall the boundary point lemma for scalar equations, which holds for open spacetime domains
�⊂ Rn

×R+ satisfying an interior ball condition:

For each P = (p, t̄) ∈ ∂l� there is a ball B (in the euclidean metric in Rn+1) which is tangent
to ∂l� only at P and satisfies:
(i) The line segment from P to the center of the ball is not parallel to the t axis.

(ii) B ∩ {t ≤ t̄} ⊂�∩ {t ≤ t̄}.

For the domain of interest the interior ball condition follows from the fact that ∂l E =8(∂D0×(0, T )),
with 8 ∈ C2,1(D0× (0, T )) of the special form above.

Lemma 12.3 [Protter and Weinberger 1984, Theorem 6, page 174]. Let � ⊂ Rn
×R+ be a connected

open set satisfying the interior ball condition. Assume f ∈ C2,1(�) satisfies the uniformly parabolic
inequality

∂t f − trgd2 f − dX f ≤ 0.

Here g = gt is a Riemannian metric in each section �(t), and X t is a bounded vector field in �(t).
Denote by n = nt the inner unit normal of �(t). Assume the supremum M of f in �t̄ := �∩ {t ≤ t̄} is
attained at the point P ∈ ∂�(t̄), and that f < M for t < t̄ . Then dn f (P) < 0.

We now state the hypotheses of our tensorial maximum principle.
E ⊂ Rn

× [0, T ] is the image of a cylinder D0× (0, T ) under a C3,2 diffeomorphism 8 of the form
8(x, t) = (ϕt(x), t) with ϕt : D0→ D(t) a C3 diffeomorphism up to the boundary for each t ∈ [0, T ]
(here D(t) is the t-level set of E); D0 ⊂ Rn is assumed to be the image of the closed unit ball under a
C3 diffeomorphism. In particular, the lateral boundary ∂l E is of class C3,2. On ∂l E we have the inner
unit normal n = nt ∈Rn . Extend nt to a vector field in all of D(t) so that it is in C2,1(E,Rn), arbitrarily
except for the requirements that |n| ≤ 1 pointwise and dnn = 0 in a tubular neighborhood of ∂D(t)
(equivalently, ni∂i n j

= 0 for each j). Fix R > 0 so that D(t)⊂ BR(0) for each t ∈ [0, T ].
The assumptions on the coefficients are given next:

• g = gt is a t-dependent Riemannian metric in D(t), uniformly equivalent to the euclidean metric
for t ∈ [0, T ];

• X = X t is a bounded t-dependent vector field in D(t);
• q = q(z,m) assigns to each z ∈ E and each m in S (the space of quadratic forms in Rn) a quadratic

form q ∈ S. q is assumed to be C2,1 in z, locally Lipschitz in m (uniformly in z ∈ E);
• b = b(z,m) ∈ S is defined for z ∈ ∂l E , with the same regularity assumptions as q.
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We state the next theorem in terms of the Laplace–Beltrami heat operator ∂t−1g and the g-Riemannian
connection ∇, but the result also holds for L and the “euclidean connection” d .

Theorem 12.4. Assume m ∈ C2,1(E;S) satisfies in E the tensorial differential inequality

∂t mi j − (1gm)i j ≤ (∇X m)i j + qi j ( · ,m( · )),

and on ∂l E the boundary condition

(∇nm)i j (z)≥ bi j (z,m(z)).

Suppose the functions q and b satisfy the following null eigenvector conditions: for any m̂ ∈ S and any
null eigenvector V ∈ Rn of m̂ (meaning that m̂i j V j

= 0 for all i), we have qi j (z, m̂)V i V j
≤ 0 for all

z ∈ E and bi j (z, m̂)V i V j
≥ 0 for all z ∈ ∂l E. Then weak concavity of m at t = 0 is preserved:

m ≤ 0 in D(0) H⇒ m ≤ 0 in E .

Proof. The assumptions imply that there is a K > 0 (depending only on E and on the functions X , g, n,
q , and b) satisfying

|n|C2,1(E) ≤ K , |X (z)|eucl ≤ K , |g(z)| + |g−1(z)| ≤ K , z ∈ E,

and if m, m̂ ∈ C2,1(E,S) satisfy (for some µ : E→ R+)

−µ(z)g ≤ m(z)− m̂(z)≤ µ(z)g,

(where the inequality of quadratic forms has the usual meaning) then also

q(z,m(z))≤ q(z, m̂(z))+ Kµ(z)g, z ∈ E,

b(z,m(z))≥ b(z, m̂(z))− Kµ(z)g, z ∈ ∂l E .

Now, for z ∈ E , z = (x, t) define

ϕ(z) := −2K n(z) · x := 2K s(z),

where we use the euclidean inner product and, on ∂l E , s is the “support function” of ∂D(t) (positive if
D(t) is convex and contains the origin). It is clear that we can find M = M(R, K ) > 0 depending only
on K , R and |n|C2,1 so that

|ϕ|C2,1 ≤ M, |dϕ|2g + |1gϕ| ≤ M, |X · dϕ| ≤ M.

We assume also M≥K . Now, given m as in the statement of the theorem and given constants ε>0, γ >0,
and δ > 0, define for Eδ := E ∩ {t < δ}

m̂(z) := m(z)− (εt + γ eϕ(z))g, z ∈ Eδ.

Clearly m̂ ∈ C2,1(Eδ;S). We now derive the constraints on δ, ε, and γ . It will turn out that δ must be
taken small enough (depending only on K , R), ε > 0 is arbitrary, and γ is ε times a constant depending
only on K , R.
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The following inequalities are easily derived:

q(z,m(z))≤ q(z, m̂(z))+ K (εt + γ eϕ(z))g,

∇X m =∇X m̂+ γ (eϕdXϕ)g ≤ ∇X m̂+ (γ eϕM)g,

∂t m̂ = ∂t m− εg− (γ eϕ∂tϕ)g ≤ ∂t m+ (γ eϕM)g− εg,

1gm̂ =1gd2m̂− γ eϕ(|dϕ|2g +1gϕ)g ≥1gm− (γ eϕM)g,

b(z,m(z))≥ b(z, m̂(z))− K (εt + γ eϕ)g.

We use this to compute

∂t m̂−1gm̂ ≤ ∂t m−1gm+ (2γ eϕM)g− εg

≤ q(z,m(z))+∇X m+ (2γ eϕM)g− εg

≤ q(z, m̂(z))+∇X m̂+ K (εt + γ eϕ)g+ (3Mγ eϕ)g− εg

≤ q(z, m̂(z))+∇X m̂+Mεtg+ 4Mγ eϕg− εg,

using K ≤ M in the last step. We conclude the inequality

∂t m̂−1gm̂ ≤ q(z, m̂(z))+∇X m̂− (ε/2)g (12-1)

will hold in Eδ, provided the constants are selected so that, for z ∈ Eδ

4Mγ eϕ(z)+Mεt ≤ ε/2. (12-2)

Turning to boundary points z = (x, t) ∈ ∂l E , note that dnϕ =−2K , so that

∇nm̂(z)=∇nm(z)− (γ eϕ(z)dnϕ(z))g

≥ b(z,m(z))− (γ eϕ(z)dnϕ(z))g

≥ b(z, m̂(z))− K (εt + γ eϕ(z))g− (γ eϕ(z)dnϕ(z))g

≥ b(z, m̂(z))+ K (γ eϕ(z)− εt)g,

implying the inequality
∇nm̂(z)≥ b(z, m̂), z ∈ ∂l Eδ (12-3)

will hold provided the constants are so chosen that, on ∂l Eδ

εt ≤ γ eϕ(z). (12-4)

Bearing in mind that e−2K R
≤ eϕ(z) ≤ e2K R on E , it is not hard to arrange for (12-2) and (12-4) to hold,

or equivalently, for
εt ≤ γ eϕ(z), 10Mγ eϕ(z) ≤ ε.

Given ε > 0, define γ so that 10Mγ e2K R
= ε. Then the second inequality holds, and so will the first,

provided that
εt ≤ γ e−2K R

= (ε/10M)e−4K R,

which is true for any ε > 0, if δ is defined by δ := e−4K R/10M (recall t ∈ [0, δ]).
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Note that, since m ≤ 0 at t = 0, it follows that m̂ is negative definite at t = 0, and hence also for small
time, and we claim that this persists throughout Eδ so that (letting ε→ 0) m ≤ 0 in Eδ. Restarting the
argument at t = δ, we see that this is enough to prove the theorem.

To prove the claim, suppose for a contradiction that m̂ acquires a null eigenvector 0 6= V ∈ Rn at a
point z1 = (x1, t1) ∈ Eδ with t1 ∈ (0, δ] the first time this happens.

Let f̂ (z) := m̂i j V i V j for z ∈ Eδ (that is, we “extend” V to Eδ as a constant vector). It follows from
(12-1) that f̂ satisfies in Eδ

∂t f̂ ≤ (1gm̂)i j V i V j
+ (∇X m̂)i j V i V j

+ qi j ( · , m̂)V i V j
−

1
2ε|V |

2
g.

A short, standard Riemannian calculation using the fact that V is a null eigenvector for m̂ shows that

dX f̂ = (∇X m̂)i j V i V j , 1g f̂ = (1gm̂)i j V i V j .

Using the null eigenvector condition for q , we find that f̂ satisfies in Eδ the strict inequality

∂t f̂ < trgd2 f̂ + dX f̂ .

This shows x1 cannot be an interior point of D(t1), for then (as a first-time interior maximum point for
f̂ ) we would have 1g f̂ (z1)≤ 0 and d f̂ (z1)= 0, contradicting ∂t f̂ (z1)≥ 0. Thus x1 ∈ ∂D(t1). Since f̂
satisfies the differential inequality just stated and z1 = (x1, t1) is a first-time boundary maximum in Eδ,
the parabolic Hopf lemma (Lemma 12.3) implies dn f̂ (z1) < 0. On the other hand, as seen in (12-3),

dn f̂ = (∇nm̂)i j V i V j
≥ bi j (z1, m̂(z1))V i V j

≥ 0,

from the null eigenvector condition on the boundary. This contradiction concludes the proof. �

Corollary 12.5. Suppose m ∈ C2,1(E,S) satisfies the same differential inequality with the same hy-
potheses on the coefficients as in Theorem 12.4 (including the null eigenvector condition for q), and the
boundary conditions 

m(z)(n, τ )= 0, ∀z = (x, t) ∈ ∂l E, τ ∈ Tx∂D(t)

(∇nm)(n, n)≥ bnn(z,m(z))

(∇nm)(τ, τ )≥ btan(z,m(z))(τ, τ ), τ ∈ Tx∂D(t),

for functions bnn(z, m̂) from ∂l E×S to R and btan assigning to (z, m̂) ∈ ∂l E×S, z = (x, t), a quadratic
form in Tx∂D(t). Suppose bnn ≥ 0 in E ×S and btan satisfies, for each m̂ ∈ S,

m̂i jτ
i
= 0 for some τ ∈ Tx∂D(t) H⇒ btan(z, m̂)(τ, τ )≥ 0.

Then, as in the theorem, weak concavity is preserved:

m ≤ 0 at t = 0 H⇒ m ≤ 0 in E .

Proof. As for the theorem, with the following change in the last part of the proof: If 0 6= V ∈Rn is a null
eigenvector of m̂ (defined as in the proof of the theorem) at a boundary point z1 = (x1, t1) ∈ ∂l E , write

V = V nn+ V T , V T
∈ Tx1∂D(t1).
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Assume first that V n
6= 0. Then, noting that m̂ splits at the boundary if m does, we see that n is a

null eigenvector of m̂ at z1, so we define f̂ (z) = m̂i j (z)ni (z1)n j (z1) and repeat the argument. At z1,
(∇nm̂)(n, n)≥ bnn(z1, m̂(z1))≥ 0 leads to a contradiction with the parabolic Hopf lemma, as before.

If V n
= 0, then V T

∈ Tx1∂D(t1) must be a null eigenvector of m̂ at the boundary point z1, and then
we run the argument with f̂ (z)= m̂(z)(V T , V T ), leading to a contradiction, as before. �

Corollary 12.6. Let w ∈ C4,2(E) define a mcm of graphs with constant-angle boundary conditions,
where E is as in the statement of Theorem 12.4. Then weak concavity is preserved:

h ≤ 0 at t = 0 H⇒ h ≤ 0 in E .

Proof. From Lemma 11.2, h satisfies (∂t −1g)hi j = H∇ωhi j + q(z, h)i j and

q(z, h)i j = Hi h(ω, ∂ j )+ H j h(ω, ∂i )+ |h|2ghi j + Hh(∂i , ω)h(∂ j , ω)− Hh(ω, ω)hi j ,

where Hi , H j , H and ωi are regarded as fixed functions of z ∈ E . Clearly q satisfies the null eigenvector
condition, since qi j V i V j

= 0 when hi j V j
= 0 for all i . In addition, expressions obtained for dnh in

Lemma 11.2 show that the boundary conditions in Corollary 12.5 are satisfied with

bnn(z, m̂)≡ 0, btan(z, m̂)=−((m̂)tan)2+β2m̂nnm̂tan.

Hence the claim follows from Corollary 12.5. �

For less regular solutions, we may apply the theorem to a domain Et0 = E ∩ {t > t0} for arbitrarily
small δ > 0. Thus, assuming h < 0 at t = 0 (strictly negative definite), we conclude from Corollary 12.6
that h ≤ 0 for all t .

Remark. It seems plausible that a slightly different version of the result in this section could be used to
strengthen the conclusions in [Stahl 1996].

Finite existence time. It is not difficult to derive that the flow is defined only for finite time in the concave
case.

Lemma 12.7. Let w ∈ C4,2(E), E ⊂ Rn
×[0, T ), define a graph mcm 6t with constant-angle boundary

conditions on a moving boundary. Assume that 60 (and hence 6t , for all t) is weakly concave. Assume
that H|t=0 ≤ H0 < 0, where H0 is a negative constant, and that T = sup{t ∈ [0, T ) : D(t) 6= ∅}. Then
T ≤ t∗ = 1/(2H 2

0 cn), where cn > 0 depends only on n and an upper bound for v in E.

The proof is based on the evolution equation and boundary condition for H (see Appendix B; we have
ω = Dw/v):

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω), Hn = (β
2/β0)Hhnn.

Since h2(ω, ω)≥ 0, |h|2g ≥ (1/n)H 2 and (given that h ≤ 0) h(ω, ω)≥ |Dw|2 H , we have

L[H ] ≤ 1
n

H 3
+ |Dw|2 H 3

≤ cn H 3,

where cn depends on n and on supE |v|, already known to be finite. Let φ(t) solve the ODE φ̇ =

cnφ
3, φ(0)= H0, so

φ(t)= H0[1− 2cn H 2
0 t]−1/2, 0≤ t < t∗ :=

1
2H 2

0 cn
.
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Then, with ψ := 1
n
(H 2
+ Hφ+φ2) > 0 and setting χ = H −φ, we have L[χ ] ≤ ψχ in E and

χn =
β2

β0
(χ +φ)hnn ≥

β2

β0
χ on ∂l E,

since φ < 0 and hnn ≤ 0. Given that χ ≤ 0 at t = 0, it follows from the maximum principle that χ ≤ 0,
or H ≤ φ in [0,min{T, t∗}). This shows t∗ < T is impossible, since φ→−∞ as t→ t∗.

Remark 12.8. It would be natural to try to show that a negative upper bound H0 on the mean curvature
(at t = 0) is preserved, at least under the assumption of concavity. Unfortunately, the evolution equation
for H (under graph mcm) does not lend itself to a maximum principle argument. Letting u := H − H0,
we have

L[u] = |h|2gu+ uh2(ω, ω)− u(H + H0)h(ω, ω)+ H0 Q in E,

with
Q := |h|2g + h2(ω, ω)− H0h(ω, ω). (12-5)

At a point where u = 0, we would need to show L[u] ≤ 0. But it is not true that Q ≥ 0 at such a point.
(Note that un ≥ 0 does hold at boundary points.)

The exception is if n = 2 (under an additional condition). Let ω̂=ω/|ω|g, ω̃=ω⊥/|ω|g. It is easy to
check that B= {ω̂, ω̃} is a g-orthonormal frame at each point where ω 6= 0. Then with

a := h(ω̂, ω̂), b := h(ω̂, ω̃), c := h(ω̃, ω̃),
we have

h2(ω̂, ω̂)− Hh(ω̂, ω̂)= a2
+ b2
− (a+ c)a = b2

− ac =−1,

where 1, the determinant of the matrix of h in B, is nonnegative if h ≤ 0. In particular,

h2(ω, ω)− Hh(ω, ω)=−|ω|2g1≤ 0

in the concave case. Now consider the expression (12-5) for Q, at a point where u = 0, or H = H0.
Since |ω|2g = |Dw|

2 we can write

Q = |h|2g + h2(ω, ω)− Hh(ω, ω)

= a2
+ 2b2

+ c2
+ |Dw|2(b2

− ac)

= b2(2+ |Dw|2)+ a2
− |Dw|2ac+ c2,

so Q ≥ 0 provided |Dw|2 ≤ 2. This last condition is equivalent to v ≤
√

3, and hence (Lemma 12.2) is
preserved by the evolution if it holds at t = 0. Thus:

Proposition 12.9. Assume n= 2, h ≤ 0, and v≤
√

3 on60 (in particular, β ≥ 1/
√

3). Then H ≤ H0 < 0
at t = 0 implies H ≤ H0 for all t ∈ [0, Tmax).

13. Global bounds from boundary bounds for ∇nh

In this section we begin to develop a continuation criterion for solutions of graph mean curvature motion
with constant contact angle based on the second fundamental form. Our first observation is that the
supremum of |h|g on the moving boundary controls its value in the interior. Recall we already have a
bound on supE v (Lemma 12.2) and it is a well known-fact for mean curvature flow of graphs that this
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implies interior bounds for the second fundamental form and its covariant derivatives [Ecker and Huisken
1991; Ecker 2004]. In the next lemma we describe a global bound for mean curvature motion of graphs
with moving boundaries.

Lemma 13.1. Let w : E → R be a (sufficiently regular) solution of graph mcm in a spacetime domain
E ⊂ Rn

×[0, T ], where T <∞. Assume the first derivative bound v(x, t)≤ v̄ holds globally in E. Then
if the bound |h|g ≤ h0 holds on the parabolic boundary ∂p E , we also have the global bound

|h|g ≤ a0 in E

for a constant a0 depending only on n, v̄, h0, T and the initial data of w.

Proof. The proof is simpler under the assumption that h is negative definite, that is, the concave case.
(As shown in the previous section, this condition is preserved if it holds at t = 0.) We give the details in
this case only.

The norms of tensors in D(t) will always be taken with respect to the induced metric g, so we write
|h| for |h|g, |∇h| for |∇h|g, and |D f |2 = gi j fi f j for a function f .

Recall the evolution equations L[v] = −v|h|2− 2|Dv|2/v (so L[v2
] = −2v2

|h|2− 6|Dv|2) and

L[|h|2] = −2|∇h|2+ 2|h|4− 4Hh3(ω, ω)− 2H |h|2h(ω, ω).

In the concave case H ≤ 0 and h3 is negative definite, so we get

L[|h|2] ≤ −2|∇h|2+ 2|h|4.

The idea then is to apply the maximum principle to f = |h|2v2. In the evolution equation for f ,

L[ f ] = v2L[|h|2] + |h|2L[v2
] − 2〈D|h|2, Dv2

〉g,

the terms ±2v2
|h|4 cancel exactly, and we have the inequality

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2− 2〈D|h|2, Dv2

〉g.

The term with the inner product can be estimated in two ways:

|〈D|h|2, Dv2
〉g| ≤

∣∣D|h|2∣∣|Dv2
| ≤ 4

∣∣h|v|∇h
∣∣|Dv| ≤ 2v2

|∇h|2+ 2|h|2|Dv|2

and

〈D|h|2, Dv2
〉g =

1
v2 〈D(|h|

2v2), Dv2
〉g −
|h|2

v2 |Dv
2
|
2
=

1
v2 〈D f, Dv2

〉g − 4|h|2|Dv|2.

Using the second expression, we have

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2−

1
v2 〈D f, Dv2

〉g + 4|h|2|Dv|2−〈D|h|2, Dv2
〉g,

and then estimating the remaining inner product term from the first expression

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2−

1
v2 〈D f, Dv2

〉g + 4|h|2|Dv|2+ 2v2
|∇h|2+ 2|h|2|Dv|2,

yielding after cancellation

L[ f ] ≤ −
1
v2 〈D f, Dv2

〉g.



MEAN CURVATURE MOTION OF GRAPHS WITH CONSTANT CONTACT ANGLE AT A FREE BOUNDARY 391

Applying the (weak) maximum principle to f , we conclude

maxE |h|
2
≤maxE f ≤max∂p E f ≤ v̄2 max∂p E |h|2,

which implies the result (for the concave case) with an explicit constant a0 = v̄h0.
In the general case, we have

L[|h|2] ≤ −2|∇h|2+ cn|h|4.

Then the proof follows the same lines as [Ecker 2004, Proposition 3.21]. We apply the maximum prin-
ciple to f = |h|2(η ◦ v2), for a carefully chosen function η(s). �

Evolution of |∇h|2. In the calculation that follows, we adopt the usual convention that in symbols such
as ∇2h ∗ (∇h)(2) ∗ h(3) and (∇ j h)(p) = ∇ j h ∗ · · · ∗ ∇ j h (p times ), ∗ denotes some unspecified g-
contraction of the tensors in question.

For the time derivative, we have

∂t |∇h|2 = 2〈∂t(∇h),∇h〉+ ∂t(gi j g pq grs)(∇i h)pr (∇ j h)qs

= 2〈∂t(∇h),∇h〉+ 3(∂t gi j )〈∇i h,∇ j h〉,

using the Codazzi identity.
For the Hessian (using ∇k∂l = hklω, derived as (B-1) in Appendix B), we get

∇
2
k,l |∇h|2 = 2〈∇l(∇k∇h),∇h〉+ 2〈∇k∇h,∇l∇h〉− hkldω|∇h|2

= 2〈∇2
k,l(∇h),∇h〉+ 2〈hkl∇ω∇h,∇h〉+ 2〈∇k∇h,∇l∇h〉− hkldω|∇h|2

= 2〈∇2
k,l(∇h),∇h〉+ 2〈∇k∇h,∇l∇h〉,

after cancellation. Taking traces we find

(∂t −1)|∇h|2 =−2|∇2h|2+ 2〈(∂t −1)(∇h),∇h〉+ 3(∂t gi j )〈∇i h,∇ j h〉.

Commutation of covariant derivatives introduces the Riemann curvature tensor, and the time derivative
of the connection is also needed:

(∂t −1)(∇h)=∇[(∂t −1)h] + (∇Rm) ∗ h+Rm ∗ (∇h)+ (∂t0) ∗ h,

where (see appendix)

∂t h =∇d H + H∇ωh+ T + h(3), Ti j = Hi h(ω, ∂ j )+ H j h(ω, ∂i ),

which combined with 0 = hω and ∂tω =∇H + h(2) is easily seen to imply

∂t0 = (∇d H)ω+∇h ∗ h+ h(3) ∼∇2h+∇h ∗ h+ h(3).

From the Gauss equation, Rm∼ h ∗ h. Thus

〈(∂t −1)(∇h),∇h〉 ∼ 〈∇[(∂t −1)h],∇h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

On the other hand, from the evolution equation for h (Appendix B) we have

〈∇[(∂t −1)h],∇h〉 = 〈∇(H∇ωh+ T + h(3)),∇h〉 = 〈∇(H∇ωh),∇h〉+ 〈∇T,∇h〉+ (∇h)(2) ∗ h(2).



392 ALEXANDRE FREIRE

Computing the terms on the right, we find

〈∇(H∇ωh),∇h〉 = 〈∇ωh,∇∇H h〉+ H〈∇(∇ωh),∇h〉 = 〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h,

and using the Codazzi identity

〈∇T,∇h〉 = 2〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2).

Putting together these results, we have

〈(∂t −1)(∇h),∇h〉 = 3〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

On the other hand, using the expression for ∂t gi j given in the appendix we find

3∂t gi j
〈∇i h,∇ j h〉 = −6〈∇ωh,∇∇H h〉+ (∇h)(2) ∗ h(2).

So we have cancellation, and obtain the evolution equation

(∂t −1)|∇h|2 =−2|∇2h|2+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

Remark. Without the cancellation, the right-hand side would involve terms of type (∇h)(3), which would
be a problem for the argument that follows.

Given this calculation, the following lemma has a very simple proof.

Lemma 13.2. For a solution w ∈ C5,3(E), assume we have a uniform bound for h: |h| ≤ a0 in E. Then
there are constants α > 0,C > 0 depending only on the dimension and a0, so that the function

f (x, t)= α|∇h|2+ |h|2

is a subsolution in E , that is, (∂t −1) f ≤ C.

Proof. The calculation above implies that

(∂t −1)|∇h|2 ≤−2|∇2h|2+ cn
(
a0|∇

2h||∇h| + a2
0 |∇h|2+ a4

0 |∇h|
)
,

while the evolution equation for |h|2 implies that

(∂t −1h)|h|2 ≤−2|∇h|2+ cn(a2
0 |∇h| + a4

0).

Clearly we may choose α small enough to satisfy the claim. �

Our next goal is to extend this argument to higher covariant derivatives of h. It turns out this does not
involve a cancellation similar to the one noted above. The terms appearing in each expression below all
have the same weight, the weight of a term T = (∇ j1h)(p1) ∗ · · · ∗ (∇ jr h)(pr ) being the positive integer

w[T ] =
r∑

i=1

pi ( ji + 1)

— in particular, w[∇ j h] = j + 1 and w[(∇ j h)(p)] = p( j + 1) for j ≥ 0, and p ≥ 1. We introduce a
convenient notation for the “error terms”. For integers w0 ≥ 1 and n ≥ 0, the notation Ẽw0,n is used for
a generic term of weight w0 and involving covariant derivatives of h of order at most n; i.e.,

T = Ẽw0,n means w[T ] = w0, ji ≤ n.
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The symbol Ew0,n denotes such a term satisfying the additional restrictions

pi =

{
1 if ji = n,
1 or 2 if ji = n− 1 and n ≥ 1.

Sometimes the same notation is used for the real vector space spanned by terms of the given type. For
example, above we showed that

(∂t −1)|h|2 =−2|∇h|2+ E4,1 and (∂t −1)|∇h|2 =−2|∇2h|2+ E6,2. (13-1)

These symbols have some useful properties. For example, one sees by induction that

∇(En+3,n+1)⊂ En+4,n+2, n ≥ 0,

using the easily checked fact that

En+3,n+1
= (∇n+1h) ∗ h+ (∇nh) ∗ [∇h+ h(2)] + Ẽn+3,n−1, n > 1. (13-2)

The property (13-1) generalizes to higher n:

Lemma 13.3. (∂t −1)|∇
nh|2 =−2|∇n+1h|2+ E2n+4,n+1 for n ≥ 0.

Proof (for n ≥ 2). With the natural multiindex notation,

∂t |∇h|2 = 2〈∂t(∇
nh),∇nh〉+ ∂t(g IJ g pr gqs)(∇n

I h)pq(∇
n
J h)rs, |I | = |J | = n.

Using the Codazzi identity and the curvature tensor repeatedly, we obtain

∂t(g IJ g pr gqs)(∇n
I h)pq(∇

n
J h)rs = (n+ 2)(∂t gi j )〈∇i∇

n−1h,∇ j∇
n−1h〉

+(∂t gi j )Rm[∇n−2h]i ∗Rm[∇n−2h] j + (∂t gi j )(∇nh)i ∗Rm[∇n−2h] j .

Since ∂t gi j
=∇h+ h(2) (see (B-4) in Appendix B) and Rm= h ∗ h, this reduces to

(∇nh)(2) ∗ (∇h+ h(2))+ (∇n−2h)(2) ∗ (∇h+ h(2)) ∗ h(4)+ (∇nh) ∗ (∇n−2h) ∗ (∇h+ h(2)) ∗ h(2),

which is in E2n+4,n+1.
Turning to space derivatives, we have (as for n = 1)

1|∇nh|2 = 2〈1(∇nh),∇nh〉+ 2|∇n+1h|2,

and therefore

(∂t −1)|∇
nh|2 =−2|∇n+1h|2+ 2〈(∂t −1)(∇

nh),∇nh〉+ E2n+4,n+1.

The conclusion of the lemma is now an immediate consequence of the next claim, and of the expression
(13-2) for a general term in En+3,n+1. �

Claim. (∂t −1)[∇
nh] ∈ En+3,n+1 for n ≥ 0.

Proof. We work by induction on n, the cases n = 0, 1 having already been checked:

(∂t −1)h = H∇ωh+ T + h(3) ∈ E3,1, (∂t −1)(∇h)=∇[(∂t −1)h] + E4,2
∈ E4,2.
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For the induction step, it is enough to show that

(∂t −1)[∇
n+1h] = ∇

[
(∂t −1)(∇

nh)
]
+ En+4,n+2,

since ∇En+3,n+1
⊂ En+4,n+2.

For the time derivative part, we have, for any multiindex i I of length n+ 1 (with n = |I |),

∂t [∇
n+1h]i I = ∂t

[
∂i (∇

nh[∂I ])− (∇
nh)(∇i∂I )

]
= ∂i (∂t(∇

nh[∂I ]))− ∂t(∇
nh[∇i∂I ])

=∇i (∂t(∇
nh))[∂I ] + ∂t(∇

nh)(∇i∂I )− ∂t(∇
nh)(∇i∂I )−∇

nh[∂t(∇i∂I )].

For a multiindex I = i1 . . . in of length n denote by I k
p the multiindex of length n obtained from I by

setting its k-th entry ik equal to p. It is then clear that

∂t(∇i∂I )=

n∑
k=1

∑
p

(∂t0
p
iik
)∂I k

p
.

In symbolic notation, the preceding calculation is summarized as

∂t [∇
n+1h] = ∇(∂t∇

nh)+ (∇nh) ∗ (∂t0).

Since ∂t0 ∈ E3,2, this says
∂t [∇

n+1h] = ∇(∂t∇
nh)+ En+4,n+2.

Covariant derivatives in space may be dealt with in the usual way. Again for a multiindex i I of length
n+ 1, we have for first-order derivatives

∇k(∇
n+1
i I h)=∇k(∇i (∇

n
I h))−∇k(∇

nh(∇i∂I ))

=∇i (∇k(∇
n
I h))−∇k(∇

nh(∇i∂I ))+Rmik[∇
n
I h],

and for second-order covariant derivatives

∇l(∇k(∇
n+1
i I h))=∇l(∇i (∇k(∇

n
I h)))+∇l(Rmik[∇

n
I h])−∇l(∇k(∇

nh(∇i∂I )))

=∇i (∇l(∇k(∇
n
I h)))+Rmil[∇k(∇

n
I h)] +∇(Rm ∗∇nh)+∇2(∇nh ∗ h)

=∇i (∇
2
l,k(∇

n
I h))+∇i (∇∇l∂k∇

n
I h)+Rm ∗∇n+1h+∇(Rm ∗∇nh)+∇2(∇nh ∗ h),

∇
2
l,k(∇

n+1
i I h)=∇i (∇

2
l,k(∇

n
I h))−∇∇l∂k (∇

n+1
i I h)+∇(0 ∗∇n+1h)

+Rm ∗∇n+1h+∇(Rm ∗∇nh)+∇2(∇nh ∗ h)

=∇i (∇
2
l,k(∇

n
I h))+0∗∇n+2h+∇(0∗∇n+1h)+Rm∗∇n+1h+∇(Rm∗∇nh)+∇2(∇nh∗h).

Taking traces with gkl and using the expressions Rm= h(2), ∇Rm=∇h ∗h, 0 = hω, ∇0 =∇h+h(2),
it follows easily that

1(∇n+1h)=∇(1(∇nh))+ En+4,n+2,

and therefore
(∂t −1)[∇

n+1h] = ∇[(∂t −1)(∇
nh)] + En+4,n+2,

proving the claim and the lemma. �

The analog of Lemma 13.2 for higher covariant derivatives of h follows easily from these remarks.
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Lemma 13.4. For a solution w ∈Cn+5,[(n+5)/2]+1(E) assume we have a uniform bound for h and its first
n covariant derivatives |∇ j h| ≤ a j in E , j = 0, . . . , n. Then there are constants α > 0,C > 0 depending
only on the dimension and the a j , so that the function

fn+1(x, t)= α|∇n+1h|2+ |∇nh|2

is a subsolution in E , that is, (∂t −1) fn+1 ≤ C.

Proof. In the proof we denote by Cn a generic positive constant depending only on dimension and the
a j , j = 0, . . . , n. We have

(∂t −1)|∇
nh|2 =−2|∇n+1h|2+ E2n+4,n+1, (∂t −1)|∇

n+1h|2 =−2|∇n+1h|2+ E2n+6,n+2,

where

E2n+4,n+1
=∇

n+1h ∗∇nh ∗ h+ (∇nh)(2) ∗ Ẽ2,1
+ (∇nh) ∗ Ẽn+3,n−1

+ Ẽ2n+4,n−1,

E2n+6,n+2
=∇

n+2h ∗∇n+1h ∗ h+ (∇n+1h)(2) ∗ Ẽ2,1
+ (∇n+1h) ∗ Ẽn+4,n

+ Ẽ2n+6,n.

This implies

(∂t −1)|∇
nh|2 ≤−2|∇n+1h|2+Cn|∇

n+1h| +Cn,

(∂t −1)|∇
n+1h|2 ≤−2|∇n+2h|2+Cn|∇

n+2h||∇n+1h| +Cn(|∇
n+1h|2+ |∇n+1h| + 1).

It is easy to see from these inequalities that α can be chosen sufficiently small so that the conclusion of
the lemma will hold. �

14. Hölder gradient estimate for the second fundamental form

Notation. In this section, parabolic Hölder spaces are denoted by a single superscript; i.e., C2+α,(1+α)/2

becomes C2+α, etc. Capital X , Y , etc., denote general points in the spacetime domain E . This follows
the notation used in [Lieberman 1996].

A continuation criterion for the solution w(y, t) in ET in terms of a bound on the norm |h|g of
the second fundamental form would follow from an a priori C3+δ(ET ) bound on a solution, assuming
|h|g ≤ a0 in ET ; equivalently, from a global a priori Hölder gradient bound |∇h|δ ≤ M in ET (for
suitably controlled M). In this section we show how such a bound follows from the a priori estimates of
linear parabolic theory applied to the evolution equations for v, H , and the Weingarten operator, under
an additional hypothesis.

Assuming w ∈ C2+δ(ET ) is a solution, satisfying in addition |h|g ≤ a0 in ET , we already observed
the maximum principle implies bounds

0≤ w ≤ w0, 1≤ v ≤ v̄ in ET ,

depending only on the initial data and β (we assume w ≥ 0, at t = 0, vanishing only on ∂D0.) In
particular, g is uniformly equivalent to the euclidean metric on ET . In this section, bounds depending on
a0, v̄, and the initial data will be denoted generically by a constant M > 0 (dependence on β will not be
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recorded explicitly). The bound on h implies a uniform C2 bound for the spacetime domain ET , which
we can express in terms of a diffeomorphism 8 : D0×[0, T ] → ET by

|8|C2 ≤ M.

We will also need to assume a uniform gradient bound on the boundary for the second fundamental form:

|(∇τh)(τ, τ )| ≤ a1 for all τ ∈ T ∂D(t) with |τ | = 1.

Estimates depending a0, a1, v̄ and the initial data will be given in terms of constants denoted generically
by M1.

In fact ET is a bounded domain in Rn
× [0, T ] of class C2+δ with bounds controlled by M1. (This

statement includes some regularity in t , so it is not immediate from the uniform bound assumed for
∇

tanhtan on ∂l E). To see this, consider the equation satisfied by wk = ∂kw, written in “divergence form”
with Dirichlet boundary conditions{

∂twk − ∂i (gi j∂ jwk)= gk
:= (∂k gi j )wi j − (∂i gi j )∂ jwk,

wk |∂l E := ϕ
k
= (β0/β)nk, wk |t=0 = ∂kw0.

Assuming ∂kw ∈ C1+δ(E), the following estimate holds [Lieberman 1996, Theorem 4.27]:

|wk |1+δ ≤ C
(
sup

E
|wk | + ‖gk

‖1,n+1+δ + |ϕ
k
|1+δ;∂l E + |∂kw0|1+δ;D0

)
.

Here ‖gk
‖1,n+1+δ is the norm in the spacetime Morrey space L1,n+1+δ(E)

‖gk
‖1,n+1+δ = sup

Y∈E,
r<diamE

(
r−(n+1+δ)

∫
E[Y,r ]

|gn
|d X

)
.

In the present case this can easily be estimated, since

|∂k gi j
| = |hi

kω
j
+ h j

kω
i
| ≤ M, |∂ jwk | ≤ v̄a0 ≤ M H⇒ |gk

| ≤ M,

and |E[Y, r ]| ≤ Crn+2, while δ ∈ (0, 1). Thus ‖gk
‖1,n+1+δ ≤ M .

Since |∇τ (∇τn)| ≤ c
(
|(∇τh)(τ, τ )|+ |h|

)
≤ M1, it follows that n is C2 in space variables on ∂l E . On

the other hand, Dw = ω/β on ∂D(t), and ω is a solution of ∂tω
k
= trg D2ωk

+ |h|2gω
k , hence n is also

C1 in time on ∂l E . We conclude |ϕk
|1+δ;∂l E ≤ (β0/β)|n|1+δ;∂l E ≤ M1.

Therefore we have |Dw|1+δ ≤ M1, and |w|2+δ ≤ M1 (note that C depends on |gi j
|Cδ and other

constants also controlled by M .) In particular, ET is a C2+δ domain with chart constants controlled by
M1. (In fact, in a neighborhood of any point P ∈ ∂l E with ∂y2w 6= 0, a boundary chart 9 is given by
9(y1, y2, t)= (y1, w(y, t), t).)

The first-order term in the evolution equation for h (or for the Weingarten operator) involves DH ;
hence the next step is to obtain a global gradient bound |DH |1+α ≤ M1 in ET . The mean curvature
satisfies the “divergence form” equation with Neumann boundary conditions{

∂t H − ∂ j (gi j (X)Hi )+ ∂ j (gi j )(X)∂i H − c(X)H = 0,
dn H = (β2/β0)Hhnn := ψ on ∂D(t), H|t=0 = H0,
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where
c := |h|2g − h2(ω, ω)+ Hh(ω, ω).

Then with the regularity conditions for the domain and the coefficients

∂l E ∈ C1+δ, n ∈ Cδ(∂l E), ∂ j (gi j ) ∈ L1,n+1+δ(E), c ∈ L1,n+1+δ(E),

and assuming H ∈ C1+δ(E), or w ∈ C3+δ(E), we have the bound

|H |1+δ;E ≤ C
(
supE |H | + |ψ |δ;∂l E + |H0|1+δ;D0

)
.

As noted earlier
‖∂ j gi j

‖1,n+1+δ +‖c‖1,n+1+δ ≤ M,

hence C is controlled by M . In addition, |w|2+δ ≤ M1 implies |h|δ ≤ M1, and hence |ψ |δ;∂l E ≤ M1. We
conclude |H |1+δ ≤ M1, and state it as a lemma.

Lemma 14.1. Let w ∈ C3+δ(ET ) be a classical solution of graph mean curvature motion with contact
and constant-angle boundary conditions. Assume that |h|g ≤ a0 on ∂l E and that |(∇τh)(τ, τ )| ≤ a1 on
∂l E. Then we have a global gradient bound for H :

supET |DH |δ ≤ M1,

for a constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Corollary 14.2. Under the same hypotheses as Lemma 14.1, we have a global gradient bound

supE |∇h|g ≤ M1,

for a positive constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Proof. The bound on the components (∇nh)(τ, τ ) and (∇nh)(n, n) on the lateral boundary ∂l E follows
immediately from the expressions in Section 11. The bound on (∇τh)(τ, τ ) over ∂l E is hypothesized,
and then the bound on the remaining component (∇τh)(n, n) follows from the global gradient bound
|DH | ≤ M implied by Lemma 14.1. Thus |∇h| ≤ M1 on ∂l E , and then the global bound follows from
Lemma 13.2 and the maximum principle. �

To improve the conclusion of Corollary 14.2 to a Hölder gradient bound, it is natural to consider the
evolution equation for h with the Neumann-type boundary conditions derived in Section 11. One is then
faced with the problem that those boundary conditions do not control components such as (∇τh)(τ, τ )
on ∂t E . So as a preliminary step we consider the evolution equation for v, which has the advantage that
the boundary values are constant. Written in linear form, we have{

∂tv− gi j (X)vi j + bi (X)∂iv+ c(X)v = 0,
v|∂t E = 1/β, v|t=0 = v0,

where

gi j (X)= δi j −
wiw j

1+ |Dw|2
(X), bi (X)=

2gi jwkwk j

1+ |Dw|2
(X), c(X)= |h|2g(X).
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We clearly have gi j
∈ Cδ (since Dw ∈ Cδ), as well as bi , c ∈ Cδ (since h ∈ Cδ), and ∂l E ∈ C2+δ with

bounds controlled by M1 in all cases as observed earlier. Therefore assuming v ∈ C2+δ (equivalently,
w ∈ C3+δ) we have the bound

|v|2+δ;E ≤ C
(

supE v+
1
β

)
,

with C controlled by M1. Thus |D2v|δ ≤ M1. Recalling v−1∂iv = h(∂i , ω), this implies that

|(∇τh)(n, n)|δ;∂l E = |(∇nh)(τ, n)|δ;∂l E ≤ M1 for all τ ∈ T ∂D(t) and |τ | = 1.

Since H=β2hnn+h(τ, τ ) on ∂l E , it follows from Lemma 14.1 that we also have |(∇τh)(τ, τ )|δ;∂l E ≤M1.
For the remaining components of ∇h, this bound follows directly from the boundary conditions

|(∇nh)(τ, τ )|δ;∂l E + |(∇nh)(n, n)|δ;∂l E ≤ M1.

Now consider the evolution of the components of the Weingarten operator, written in divergence form
with Neumann boundary conditions{

∂t hk
j − ∂i (gil∂lhk

j )= f k
j in ET , f k

j := H j hk
l ω

l
− Hlhl

jω
k
+ h(3)kj − (∂i gil)(∂lhk

j ),

dn(hk
j )= ϕ

k
j on ∂l E, hk

j |t=0
= hk

j0.

The same theorem quoted above gives the estimate (assuming hk
j ∈ C1+δ or w ∈ C3+δ)

|hk
j |1+δ;E ≤ C

(
supE |h

k
j | + ‖ f k

j ‖1,n+1+δ + |ϕ
k
j |δ;∂l E + |hk

0 j |1+δ;D0

)
.

Note that

dn(hk
j )= gik(∇nh)i j = β

2(∇nh)(n, ∂ j )nk
+ (∇nh)(τ, ∂ j )τ

k on ∂l E .

From this and the above discussion it follows that |ϕk
j |δ;∂l E ≤M1. The bound ‖ f k

j ‖1,n+1+δ ≤M1 follows
from Lemma 14.1 and Corollary 14.2. We conclude |hk

j |1+δ;E ≤ M1. The 1+ δ estimate for hk
j clearly

implies the following lemma:

Lemma 14.3. Let w ∈ C3+δ(ET ) be a classical solution of graph mean curvature motion with contact
and constant-angle boundary conditions. Assume that |h|g ≤ a0 on ∂l E and that |(∇τh)(τ, τ )|∂l E ≤ a1.
Then we have a global Hölder gradient bound for h:

|∇h|δ;ET ≤ M1,

for a constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Remark. This is clearly equivalent to a global a priori C3+δ bound for w on ET , |w|3+δ ≤ M1.

Lemma 14.3 is the main step in the derivation of a “continuation criterion” for this flow.

Proposition 14.4. Assume the maximal existence time Tmax is finite. Then (for n = 2, in the concave
case)

lim sup
t→Tmax

sup
∂D(t)

(|h|g + |(∇τh)(τ, τ )|)=∞.
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Proof. For w0 ∈ C3+ᾱ(D0) satisfying the contact angle condition (with ᾱ ∈ (0, 1) arbitrary) and α = ᾱ2,
Theorem 8.1 yields a unique solution F = [u, ϕ] of mcm with contact angle/orthogonality boundary
conditions in a maximal time interval [0, Tmax] with F ∈ C2+α(QTmax

0 ), QTmax
0 = Q × [0, Tmax); this is

also the unique solution in F ∈C2+δ2
(QTmax

0 ), where δ=α2. Thenw=u◦ϕ−1
∈C2+δ(ETmax) is a solution

of graph mcm, which for any t0 > 0 is in C3+δ(ETmax
t0 ). By contradiction, assume |h|g+|(∇τh)(τ, τ )| is

bounded in ET
t0 for any T < Tmax (with bound independent of T ). Then Lemma 14.3 applies, giving an a

priori bound |∇h|δ;ET
t0
≤ M1, for T arbitrarily close to Tmax. In particular, |w( · , T )|C3+δ(D(T )) ≤ M1, and

for T close enough to Tmax we can use Theorem 8.1 again, with initial data w( · , T ), to find a solution
F ′= [u′, ϕ′] ∈C2+δ2

(QT ′
0 ) (where T ′> Tmax), extending F . This contradicts the maximality of Tmax. �

15. Behavior at the extinction time

In this section we consider the behavior of 6t as t approaches the maximal existence time T , in the
concave case. We assume H ≤ H0 < 0 at t = 0, so T is finite. Let Kt ⊂Rn+1 be the compact convex set
bounded by 6t . Since H ≤ 0, {Kt } is a decreasing family, and the intersection

KT =
⋂

0≤t<T
Kt ⊂ Rn+1

is compact, convex and nonempty. It turns out that KT has zero (n + 1)-volume. In this section we
use the support function to show this when n = 2 (following the argument in [Stahl 1996]), under the
assumption that there is no gradient blowup.

Assume the origin 0 ∈ Rn is a point of KT . The support function of Kt (with respect to this origin) is
the function p( · , t) on D(t) given by

p(y, t)=
〈
G(y, t), N (y, t)

〉
, G(y, t)= [y, w(y, t)].

Since Kt is convex, p > 0 in D(t); the evolution equations and boundary conditions for p are easily
computed. From L[G] = 0 and L[N ] = |h|2g N , we have

L[p] = 〈L[G], N 〉+ 〈G, L[N ]〉− 2gkl
〈∂k G, ∂l N 〉 = |h|2g p+ 2H,

and, since 〈dnG, N 〉 = 0,
pn |∂D(t) = 〈G, dn N 〉 = −A(GT , N ),

where, with yT
:= y− (y ·n)n ∈ Ty∂D(t), the tangential component GT

:= G−〈G, N 〉N is easily seen
to be, at ∂D(t),

GT
=

1
v2 [w

2
n yT
+ y, 0].

Since h(yT , n)= 0 at ∂D(t), this implies A(GT , n)= β2(y · n)h(n, n). Note that p(y)=−β0(y · n) on
∂D(t), so we have

pn |∂D(t) =
β2

β0
phnn,

which is reminiscent of the boundary condition for H . We also have the upper bound

p ≤ ‖G‖ ≤maxD(0) ‖G0‖ := p0,

since the Kt are nested.
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Proposition 15.1. Let n = 2. Assume that

lim sup
t→T

sup
y∈∂D(t)

|h|g =∞

at the maximal existence time T . Then

lim inf
t→T

inf
y∈D(t)

p(y, t)= 0.

Proof. Reasoning by contradiction, assume p> 2δ > 0 for t ∈ [0, T ).We claim that this implies an upper
bound for |H | (and hence for |h|, since |h|2≤ nH 2) contradicting the fact that lim supt→T sup0t

|h| =∞.
To prove the claim, consider the function

f (y, t) :=
|H |

p− δ
=−

H
p− δ

.

Using the evolution equations and boundary conditions for H and p we find (with ω̂ := ω/|ω|g, see
Remark 15.2 below)

L[ f ] = f (−δ |h|2g + 2p f )+ |ω|2g
(
h2(ω̂, ω̂)− Hh(ω̂, ω̂)

)
−

2
p− δ

gkl∂k f ∂l p

and
fn |∂D(t) =−δ

β2

β0
hnn

|h|2

(p− δ)2
≥ 0.

Since |h|2g ≥
1
n

H 2
=

1
n

f 2(p− δ)2 we get

L[ f ] ≤ f
(
−
(p− δ)2δ

n
f 2
+ 2p f

)
+ |ω|2g

(
h2(ω̂, ω̂)− Hh(ω̂, ω̂)

)
−

2
p− δ

〈∇ f,∇ p〉g.

Now recall from Remark 12.8 that if n = 2

h2(ω̂, ω̂)− Hh(ω̂, ω̂)=−1≤ 0,

so

L[ f ] ≤ f
(
−
(p− δ)2δ

n
f 2
+ 2p f

)
−

2
p− δ

〈∇ f,∇ p〉g.

Let δ > 0 be so small that supD(0) f|t=0 < 2np0/δ
3. We claim this persists for all t ∈ [0, T ). If not,

assume f (y0, t0) = 2np0/δ
3 with t0 > 0 smallest possible and let y0 be a local maximum of f ( · , t0).

Since fn ≥ 0 at ∂D(t0), the boundary point lemma implies that z0 = (y0, t0) can’t be a boundary point
of E . Thus y0 ∈ ∂D(t0) is an interior point, so L[ f ]|z0 ≥ 0 and ∇ f (z0)= 0: hence

(p− δ)2δ
n

f (z0)≤ 2p(z0), or f (z0)≤
2np(z0)

δ(p− δ)2
≤

2np0

δ(p− δ)2
,

which is not possible since p−δ>δ. Thus f (y, t)<4p0/δ
3 in E , which implies the bound |H |≤4p2

0/δ
3

for t ∈ [0, T ), contradicting the maximality of T . �

Remark 15.2. It is easy to verify that the vector fields

ω =
1
v
[w1, w2], ω̃ = vω⊥ = [−w2, w1]
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in D(t)⊂ R2 satisfy
〈ω, ω̃〉g = 0, |ω|2g = |ω̃|

2
g = |Dw|

2
e := w

2
1 +w

2
2.

Thus we may think of {ω, ω̃} as a “conformal pseudoframe” (ω and ω̃ vanish when Dw = 0), defined
on all of D(t). Moreover, at the boundary ∂D(t),

ω = β0n, ω̃ =
β0

β
n⊥ =

β0

β
τ,

where {τ, n} is an euclidean-orthonormal frame along 0t . Thus ω and ω̃ supply canonical extensions of
n, τ to the interior of D(t) as uniformly bounded vector fields.

It follows from the proposition that KT cannot contain a half-ball of positive radius centered at a
point of R2; in particular, vol3(KT ) = 0. Based on the experience with curve networks [Schnürer et al.
2007], one is led to expect that KT is a point (diamKT = 0), at least under the same assumption as
the proposition (no gradient blowup). We have not been able to show this yet; existence of self-similar
solutions and comparison arguments appropriate to the free-boundary setting appear to be needed for the
usual approach to work.

16. Final comments

Local existence. We state here a local existence theorem for configurations of graphs over domains with
moving boundaries. In this setting, a triple junction configuration consists of three embedded hypersur-
faces 61, 62, 63 in Rn+1, graphs of functions w I defined over time-dependent domains D1(t), D2(t)⊂
Rn (D1 covered by one graph, D2 by two graphs), satisfying the following conditions:

(1) The 6 I intersect along an (n−1)-dimensional graph3(t) (the “junction”), along which the upward
unit normals satisfy the relation: N1+ N2 = N3.

(2) If a fixed support hypersurface S ⊂ Rn+1 is given (also a graph, not necessarily connected), the 6 I

intersect S orthogonally.

Topologically, in the case of bounded domains one has the following examples:

(i) Lens type: two disks or two annuli covering D2(t) and one annulus covering D1(t).

(ii) Exterior type: two annuli covering D2(t) and one disk covering D1(t).

The boundary component of the annuli disjoint from the junction intersects the support hypersurface S
orthogonally for each t .

Let 6 I
0 (I = 1, 2, 3) be graphs of C3+α functions over C3+α domains D1

0, D2
0 ⊂ Rn , defining a triple

junction configuration and satisfying the compatibility condition for the mean curvatures on the common
boundary 00 of D1

0 and D2
0

H 1
+ H 2

= H 3.

Then there exists T > 0 depending only on the initial data, and functions w I
∈ C2+α,1+α/2(Q I ), Q I

⊂

Rn
× [0, T ), so that the graphs of w I (., t) : D I (t)→ R define a triple junction configuration for each

t ∈ [0, T ) moving by mean curvature.
The proof will be given elsewhere.
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Uniqueness. An interesting issue we have not addressed here is whether one has breakdown of unique-
ness for initial data of lower regularity, or if the “orthogonality condition” at the junction is removed.
For curve networks, nonuniqueness has been considered in [Mazzeo and Sáez 2007]; but neither a drop
in regularity (from initial data to solution in Hölder spaces) nor the orthogonality condition play a role
in the case of curves.

Appendix A. Proof of Lemma 4.1

Throughout the proof n denotes the inner unit normal at ∂D, extended to a tubular neighborhood N in
Rn so that Dnn = 0. Since D is uniformly C3+α, it follows that n ∈ C2+α(∂D) with uniform bounds.
Denote by ρ the oriented distance to the ∂D (so Dρ = n in N). Let ζ ∈ C3(D) be a cutoff function with
ζ ≡ 1 in N1 ⊂ N, ζ ≡ 0 in D \N.

We find ϕ of the form
ϕ(x)= x + ζ(x) f (x)n(x)

with f ∈ C2+α(N). The 1-jet conditions on ϕ at ∂D translate to these conditions on f :

f|∂D = 0, D f|∂D = 0, D2 f (n, n)|∂D =1 f |∂D = h.

Lemma A.1. Let D be a uniformly C3+α domain with boundary distance function ρ>0. Let h∈Cα(∂D)
be bounded. There exists an extension g ∈ C∞(D)∩C(D) such that g|∂D = h, supD |g| ≤ sup∂D |h| and
ρ2g ∈ C2+α(D).

Given this lemma, all we have to do is set f = 1
2ρ

2g, which clearly satisfies all the requirements (in
particular, 1 f = h at ∂D.)

To verify that ϕ is a diffeomorphism, it suffices to check that |ζ f n|C1 (in N⊂ {ρ < ρ0}) is small if ρ0

is small. This is easily seen: |ζ f n|C0 ≤
1
2ρ

2
0 |g|C0 ; from |Dζ | ≤ cρ−1

0 it follows that | f Dζ | ≤ cρ0|g|C0 ;
and |D f | ≤ 1

2ρ
α
0 ‖g‖C2+α(D) on N, since D f ∈ C1+α(D) and D f|∂D = 0. Finally, with A the second

fundamental form of ∂D,

|Dn| ≤ |A|C0 H⇒ | f Dn| ≤ 1
2ρ

2
0 |g|C0 |A|C0 .

A word about Lemma A.1. (This is probably in the literature, but I don’t know a reference.) If D is
the upper half-space, we solve 1g = 0 in D with boundary values h. Then the estimate

[D2(ρ2 P ∗ h)]α(D)≤ c|h|Cα(∂D)

follows by direct computation with the Poisson kernel P; for the rest of the norm, use interpolation.
Then transfer the estimate to a general domain using “adapted local charts” in which ρ in D corresponds
to the vertical coordinate in the upper half-space. (It is easy to see that at each boundary point there is a
C2+α adapted chart with uniform bounds.)

Appendix B. Evolution equations for the second fundamental form

We consider mean curvature motion of graphs:

G(y, t)= [y, w(y, t)], y ∈ D(t)⊂ Rn, wt = gi jwi j = vH, v =
√

1+ |Dw|2.
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In this appendix we include evolution equations for geometric quantities, in terms of the operators

∂t −1g, L = ∂t − trgd2.

It is often convenient to use the vector field in D(t)

ω :=
1
v

Dw.

Since −ω is the Rn component of the unit normal N and L[N ] = |h|2g N , we have

L[ωi
] = |h|2gω

i , |h|2g := gik g jlhi j hkl .

Here h = (hi j ) is the pullback to D(t) of the second fundamental form A:

h(∂i , ∂ j )= hi j = A(Gi ,G j )=
1
v
wi j .

First, denoting by∇ the pullback to D(t) of the induced connection∇6 (that is, G∗(∇X Y )=∇6G∗X G∗Y
for any vector fields X, Y in D(t)), and using the definition

∇
6
Gi

G j = Gi j −〈Gi j , N 〉N = [0, wi j ] −
1
v2wi j [−Dw, 1] =

wi j

v2 [Dw, |Dw|
2
] =

wi j

v2 G∗Dw,

we conclude that
∇∂i ∂ j =

1
v

hi j Dw = hi jω. (B-1)

From this one derives easily a useful expression relating the Laplace–Beltrami operator and the oper-
ator trgd2 acting on functions

1g f = trgd2 f −
H
v
wm fm = trgd2 f − Hdω f.

We also have, for the covariant derivatives of h with respect to the euclidean connection and to∇=∇g:

∂m(hi j )=∇mhi j + [h jmhik + himh jk]ω
k .

(Here ∇h is the symmetric (3, 0)-tensor with components: ∇mhi j = (∇∂m h)(∂i , ∂ j ).)
Iterating this and taking g-traces yields, using the Codazzi identity and the easily verified relation

∂iω
k
= hk

i := g jkhi j ,

trgd2(hi j )= gmk∂m(∂k(hi j ))

= gmk(∇2
∂m ,∂k

h)(∂i , ∂ j )+ H∇ωhi j + 2[hk
i ∇kh j p + hk

j∇khi p]ω
p
+ [Hi h j p + H j hi p]ω

p

+ 2
[
hi p(h2) jq + (h2)i ph jq + Hhi ph jq

]
ωpωq

+ 2(h3)i j + 2(h2)i j h(ω, ω).

Here the powers h2 and h3 of h are the symmetric 2-tensors defined used the metric:

(h2)i j := gkphikh pj = hk
i h pj , (h3)i j := gkpglqhikh plhq j .

Note also that
[hk

i ∇kh j p + hk
j∇khi p]ω

p
=∇ω(h2)i j ,

using the Codazzi identity.
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Evolution equations for h. Starting from G t = vHen+1 = H
(
N + v−1

[Dw, |Dw|2]
)
= H N + H G∗ω

and Nt =−∇
6H − Hv−1

∇
6v (where ∇6 f = gi j f j Gi and ∇ f = gi j f j∂i ) we have

∂t(hi j )= 〈(H N )i j , N 〉− 〈Gi j ,∇
6H〉−

H
v
〈Gi j ,∇

6v〉+ 〈(H G∗ω)i j , N 〉.

Using the easily derived facts

〈Ni j , N 〉 = −h2(∂i , ∂ j ), Hi j −〈Gi j ,∇
6H〉 = (∇d H)(∂i , ∂ j ),

1
v
〈Gi j ,∇

6v〉 = h(ω, ω)hi j ,

we obtain

∂t(hi j )= (∇d H)(∂i , ∂ j )− Hh2(∂i , ∂ j )− Hh(ω, ω)hi j +〈(H G∗ω)i j , N 〉,
where

〈(H G∗ω)i j , N 〉 = Hi 〈(G∗ω) j , N 〉+ H j 〈(G∗ω)i , N 〉+ H〈(G∗ω)i j , N 〉.

To identify the terms, computation shows that

〈(G∗ω)i , N 〉 = h(ω, ∂i ),

and hence, using also

∇
6
Gi
(G∗ω)= G∗(∇∂iω), ∇∂iω = (h

p
i +ω

qhiqω
p)∂p =

∑
p

hi p∂p,

we obtain (using ωk∂ j (hik)=∇ωhi j + 2h(∂i , ω)h(∂ j , ω)) that

〈(G∗ω)i j , N 〉 = ∂ j (ω
khik)−〈∇

6
Gi
(G∗ω), ∂ j N 〉 = hk

j hik +ω
k∂ j (hik)+ h(∂ j ,∇∂iω)

= (∇ωh)i j + (h2)i j + 2h(ω, ∂i )h(ω, ∂ j )+
∑

p
hi ph j p

= (∇ωh)i j + 2(h2)i j + 3h(ω, ∂i )h(ω, ∂ j ),

since
∑

p hi ph j p = (h2)i j + h(ω, ∂i )h(ω, ∂ j ). Combining all the terms yields

∂t(hi j )= (∇d H)(∂i , ∂ j )+ H∇ωhi j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )

+ H(h2)i j + 3Hh(ω, ∂i )h(ω, ∂ j )− Hh(ω, ω)hi j .

From this expression and Simons’ identity (in tensorial form)

∇d H =1gh+ |h|2gh− Hh2,

we obtain easily a tensorial “heat equation” for h:

[(∂t −1g)h]i j = H∇ωhi j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )+Ci j ,

with
Ci j := |h|2ghi j + 3Hh(∂i , ω)h(∂ j , ω)− Hh(ω, ω)hi j . (B-2)

Using the earlier computation relating 1gh (the tensorial Laplacian of h) and trgd2h, we obtain from
this the evolution equation in terms of L:

L[hi j ] = −2[hk
i ∇ωh jk + hk

j∇ωhik] + C̃i j ,
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where

C̃i j := Ci j −2
[
h(∂i , ω)h2(∂ j , ω)+ h2(∂i , ω)h(∂ j , ω)

]
−2(h3)i j −2(h2)i j h(ω, ω)−2Hh(∂i , ω)h(∂ j , ω).

We may also write this purely in terms of the euclidean connection d:

L[hi j ] = −2[hk
i dωh jk + hk

j dωhik] +C i j ,

where

C i j = Ci j + 2
[
h(∂i , ω)h2(∂ j , ω)+ h2(∂i , ω)h(∂ j , ω)

]
−2(h3)i j −2(h2)i j h(ω, ω)−2Hh(∂i , ω)h(∂ j , ω).

(B-3)

Time derivatives and evolution equations for ω and g. The time derivative of ω is simply minus the
time derivative of the Rn component of N . In addition, one computes easily that (∇v)/v = S(ω), where

S(X) := S(X i∂i )= hi
j X j∂i

is the Weingarten operator. Hence

∂tω =∇H +
H
v
∇v =∇H + H S(ω). (B-4)

For the metric and “inverse metric” tensors it follows from ∂t gi j = (wiw j )t and wi t = (vH)i that

∂t gi j = v
2(Hiω

j
+ H jω

i )+ v2 H
(
h(ω, ∂i )ω

j
+ h(ω, ∂ j )ω

i).
Then, using ∂t gi j

=−gik∂t gkl gl j , we have

∂t gi j
=−

[
(∇H)iω j

+ (∇H j )ωi]
− H

[
S(ω)iω j

+ S(ω) jωi].
Since we know the evolution equation of ω, it is easy to obtain that of gi j :

L[gi j
] = −L[ωiω j

] = −L[ωi
]ω j
+ 2gkl(∂kω

i )(∂lω
j )−ωi L[ω j

].

Using ∂kω
i
= hi

k , we find
L[gi j
] = −2|h|2gω

iω j
+ 2(h2)i j .

It is also easy to see that ∂k gi j
=−(hi

kω
j
+ h j

kω
i ).

Evolution of the mean curvature. To compute the evolution equation for H = gi j hi j , we just need to
remember that gi j is time-dependent:

(∂t −1g)H = (∂t gi j )(hi j )+ trg[(∂t −1g)h] = −2h(∇H, ω)− 2Hh2(ω, ω)+ trg[(∂t −1g)h].

The result is
(∂t −1g)H = HdωH + |h|2g H + Hh2(ω, ω)− H 2h(ω, ω).

Since
L[ f ] = (∂t −1g) f − Hdω f

(for any f ), we see that the equation in terms of L has no first-order terms:

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω).
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One can also derive L[H ] from the expression L[gi j hi j ] = L[gi j
]hi j + gi j L[hi j ] − 2gkl(∂k gi j )(∂lhi j ).

Evolution of the Weingarten operator. The tensorial Laplacian of S is the (1, 1) tensor 1g S with com-
ponents 1ghk

j . We have

1ghk
j = gik1ghi j or 〈(1g S)X, Y 〉g = (1gh)(X, Y ).

The evolution equation is easily obtained:

(∂t −1g)hk
j = (∂t gik)hi j + gik(∂t −1g)hi j

= H∇ωhk
j + H j hk

l ω
l
− Hlhl

jω
k
+ |h|2ghk

j + 2H S(ω)kh(ω, ∂ j )− Hh(ω, ω)hk
j − Hh(S(ω), ∂ j )ω

k .

Remark. Since the components of ∇S are given by

(∇ωS)(∂ j )= (∇ωhk
j )∂k, ∇ωhk

j = dω(hk
j )+ h2(ω, ∂ j )ω

k
− h(ω, ∂ j )S(ω)k,

we see that upon setting j = k and adding over k we recover the evolution equation for H .

The evolution equation for hk
j in terms of L follows from the calculation

L[hk
j ] = L[gik

]hi j + gik L[hi j ] − 2gmn(∂m gik)(∂nhi j )

=−2(∇ωhk
m)h

m
j + (∂ j |h|2g)ω

k

+ |h|2ghk
j − Hh(ω, ω)hk

j + H S(ω)kh(∂ j , ω)+ 2h3(∂ j , ω)ω
k
− 2(h2)kpω

ph(∂ j , ω).

Setting j = k and adding over k, we recover the earlier expression for L[H ].

Evolution of |h|2
g . That gi j is time-dependent introduces an additional term in the usual expression

(∂t −1g)|h|2g =−2|∇h|2g + 2〈h, (∂t −1g)h〉g + 2(∂t gi j )(h2)i j .

Using the expressions given earlier, one easily finds

(∂t −1g)|h|2g =−2|∇h|2g + Hdω|h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω),

L[|h|2g] = −2|∇h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω).
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LIFSHITZ TAILS FOR GENERALIZED ALLOY-TYPE
RANDOM SCHRÖDINGER OPERATORS

FRÉDÉRIC KLOPP AND SHU NAKAMURA

We study Lifshitz tails for random Schrödinger operators where the random potential is alloy-type in the
sense that the single site potentials are independent, identically distributed, but they may have various
function forms. We suppose the single site potentials are distributed in a finite set of functions, and we
show that under suitable symmetry conditions, they have a Lifshitz tail at the bottom of the spectrum
except for special cases. When the single site potential is symmetric with respect to all the axes, we give
a necessary and sufficient condition for the existence of Lifshitz tails. As an application, we show that
certain random displacement models have a Lifshitz singularity at the bottom of the spectrum, and also
complete our previous study (2009) of continuous Anderson type models.

1. Introduction

Consider the continuous alloy-type (or Anderson) random Schrödinger operator

Hω =−1+ V0+ Vω, where Vω(x)=
∑
γ∈Zd

ωγV (x − γ) (1-1)

on Rd , d ≥ 1, where

• V0 is a periodic potential;

• V is a compactly supported single site potential;

• (ωγ)γ∈Zd are independent identically distributed random coupling constants.

Let 6 be the almost sure spectrum of Hω and E− = inf6. When V has a fixed sign, it is well
known that, if a =ess-inf(ω0) and b =ess-sup(ω0), then E− = inf(σ (−1+ Vb̄)) if V ≤ 0 and E− =
inf(σ (−1+ Vā)) if V ≥ 0. Here, x̄ is the constant vector x̄ = (x)γ∈Zd .

For E a real energy, the integrated density of states is defined by

N (E)= lim
L→+∞

#{eigenvalues of H N
ω,L ≤ E}

Ld , (1-2)

where
H N
ω,L =−4+ V0+ Vω on L2(CL(0)), (1-3)

with Neumann boundary conditions, where CL(0) is defined by (1-4). It is well-known that N (E) exists
and is non-random, i.e., N (E) is independent of ω, almost surely; it has been the object of a lot of studies.

MSC2000: 35P20, 47B80, 47N55, 81Q10, 82B44.
Keywords: random Schrödinger operators, sign-indefinite potentials, Lifshitz tail.
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In particular, it is well known that the integrated density of states of the Hamiltonian admits a Lifshitz
tail near E−, i.e.,

lim
E→E+−

log |log N (E)|
log(E − E−)

< 0.

Actually, the limit can often be computed and in many cases is equal to −d/2; we refer to [Carmona
and Lacroix 1990; Kirsch 1989; 1985; Pastur and Figotin 1992; Stollmann 2001; Veselić 2004; 2008]
for extensive reviews and more precise statements.

In the present paper, we mainly consider a generalized Bernoulli alloy-type model that we define
below: we allow the single site potential to have various function forms (with a discrete distribution).
We give a necessary and sufficient condition to have Lifshitz tail under a symmetry assumption on the
single site potentials. The results we obtain are then applied to the random displacement models studied
recently by Baker, Loss and Stolz [2008; 2009], and also to complete the study of the occurrence of
Lifshitz tails for alloy-type models initiated in [Klopp and Nakamura 2009].

1.1. The model. We now describe our model. We let d ≥ 1 and we study operators on H= L2(Rd). By

C`(x)= {y ∈ Rd
| 0≤ y j − x j ≤ `, j = 1, . . . , d}, (1-4)

we denote the cube with edge ` > 0 and x as the lower right corner. Let V0 ∈ C0(Rd) be a background
potential, periodic with respect to Zd .

Let vk ∈ C0
c (C1(0)), k = 1, . . . ,M , be single site potentials where M ∈ N. We consider the random

Schrödinger operator:

Hω =−4+ V0+ Vw on H= L2(Rd),

where

Vω(x)=
∑
γ∈Zd

vω(γ)(x − γ)

is the random potential and {ω(γ) | γ ∈ Zd
} are independent, identically distributed random variables

with values in {1, . . . ,M}.
To fix ideas, let us assume

inf σ(Hω)= 0, a.s. ω, (1-5)

which can always be achieved by shifting V0 by a constant.
We set

H N
k =−4+ V0+ vk on L2(C1(0)),

with Neumann boundary conditions on the boundary ∂C1(0).

Assumption A. (1) V0 is symmetric about the plane {x | xd = 1/2}. (2) There exists m ∈ {1, . . . ,M}
such that

inf σ(H N
k )= 0 for k = 1, . . . ,m,

inf σ(H N
k ) > 0 for k > m.

(3) For k = 1, . . . ,m, vk(x) is symmetric about {xd = 1/2}.
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Remark 1.1. Note that in this assumption, we only require symmetry with respect to a single coordinate
hyperplane that we chose to be the d-th one.

If one assumes that V0 and the (vk)1≤k≤M are reflection symmetric with respect to all the coordinate
planes [Baker et al. 2008; 2009; Klopp and Nakamura 2009], the standard characterization of the almost
sure spectrum [Pastur and Figotin 1992; Kirsch 1989] and lower bounding Hω by the direct sum of its
Neumann restrictions to the cubes (C1(γ))γ∈Zd show that, as a consequence of (1-5), one obtains

• for all k ∈ {1, . . . ,M}, inf σ(H N
k )≥ 0;

• there exists k ∈ {1, . . . ,M} such that inf σ(H N
k )= 0.

1.2. The results. We study the Lifshitz singularity for the integrated density of states (IDS) at the zero
energy. Recall that the IDS is defined by (1-2).

We first consider a relatively easy case:

Theorem 1.2. Suppose Assumption A holds with m < M. Then

lim sup
E→+0

log |log N (E)|
log E

≤−
1
2
. (1-6)

We expect that (1-6) holds with −d/2 on the right-hand side, which is known to be optimal; see
[Klopp and Nakamura 2009, Theorem 0.2 and Section 2.2], for example.

If m = M , then we need further classification of the potential functions. We denote the standard basis
of Rd by

e j = (δ j i )
d
i=1 ∈ Rd , j = 1, . . . , d,

and we define an operator H N
k`( j) on L2(U j ) as

U j = C1(0)∪C1(e j ), j = 1, . . . , d. (1-7)

We set

H N
k`( j) =

{
−4+ V0(x)+ vk(x) on C1(0),
−4+ V0(x)+ v`(x − e j ) on C1(e j ),

(1-8)

with Neumann boundary conditions on ∂U j , where k, ` ∈ {1, . . . ,m} and j ∈ {1, . . . , d}. We define

v j ∼j v`
def
⇐⇒ inf σ(H N

k`( j))= 0. (1-9)

Namely, vk ∼j v` implies that the coupling of two local Hamiltonians H N
k and H N

` does not increase the
ground state energy. We note that vk�jv` generically for k 6= `.

Theorem 1.3. Suppose Assumption A holds with m = M , and that vk�dv` for some k 6= `. Then (1-6)
holds, i.e., Hω has Lifshitz singularities at the zero energy.

To obtain a more precise result on the existence and the absence of Lifshitz singularities, we make a
stronger symmetry assumption on the potentials.

Assumption B. In addition to satisfying Assumption A, V0 and vk are symmetric about {x | x j = 1/2}
for all j = 1, . . . , d, and k = 1, . . . ,m = M .
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Theorem 1.4. Suppose Assumption B holds.

(i) If vk�jv` for some j and k 6= `, then (1-6) holds.

(ii) If vk ∼j v` for all j and k, `, then the van Hove property holds, namely, there exists C > 0 such that

1
C

Ed/2
≤ N (E)≤ C Ed/2. (1-10)

In (1-10), the asymptotic is new only for E small; for E large, it is a consequence of Weyl’s law. The
example in Section 3 of [Klopp and Nakamura 2009] is a special case of Theorem 1.4(ii).

In a previous paper [Klopp and Nakamura 2009], we used the concavity of the ground state energy
with respect to the random parameters, and also used an operator theoretical trick to reduce the problem
to the monotonous perturbation case. These methods are not available under the assumptions of the
present paper. Instead, we employ a quadratic inequality similar to the Poincaré inequality, and take
advantage of the positivity of certain Dirichlet-to-Neumann operators to obtain a lower bound of the
ground state energy for Schrödinger operators on a strip. This estimate is quasi one-dimensional, and
this is why we obtain Lifshitz tail estimate with the exponent corresponding to the one-dimensional case.
We do believe that this method can be refined to obtain the optimal exponent, though we have not been
successful so far.

This paper is organized as follows. We discuss the eigenvalue estimate on a strip in Section 2 and
prove our main theorems in Section 3. We discuss an application to random displacement models in
Section 4, and an application to the model studied in [Klopp and Nakamura 2009] in Section 5.

Throughout this paper, we use the following notations: P( · ) denotes the probability measure for the
random potential, and E( · ) denotes the expectation; D(A) denotes the definition domain of an operator A;
〈 · , · 〉 denotes the inner product of L2-spaces; ∂� denotes the boundary of a domain �; and #3 denotes
the cardinality of a set 3.

2. Lower bounds on the ground state energy

Throughout this section, we suppose v1, . . . vm satisfy Assumption A. Let a > 0,

�0 = [0, 1]d−1
×[−a, 0] ⊂ Rd ,

and let W0 ∈ C0(�0) be a real-valued function on �0. We set

P N
0 =−4+W0 on L2(�0)

with Neumann boundary conditions. Let L ∈ N,

�1 = [0, 1]d−1
×[0, L]

and let W1 ∈ C0(�1) such that

W1 = V0+ vk(`)(x − `ed) if x ∈ C1(`ed), `= 0, . . . , L − 1,

where {k(`)}L−1
`=0 is a sequence with values in {1, . . . ,m}. We then set

�=�0 ∪�1, W (x)=
{

W0(x) if x ∈�0,

W1(x) if x ∈�1,
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and set
P N
=−4+W on L2(�),

with Neumann boundary conditions. The main result of this section is this:

Theorem 2.1. Suppose inf σ(P N
0 ) > 0, and suppose vk(`) ∼d vk(`′) for `, `′ ∈ {0, . . . , L− 1}. Then there

exists C > 0 such that C is independent of L and of the sequence {k(`)}, and such that

inf σ(P N )≥
1

C L2 .

In the following, we suppose vk ∼d v` for all k, ` for simplicity (and without loss of generality). We
prove Theorem 2.1 by a series of lemmas. First, we show a variant of the classical Poincaré inequality.
Let 0 be the trace operator from H 1(�1) to L2(S) with S = [0, 1]d−1

×{0}, i.e.,

0ϕ(x ′)= ϕ(x ′, 0) for x ′ ∈ [0, 1]d−1, ϕ ∈ C0(�1),

and 0 extends to a bounded operator from H 1(�1) to L2(S).

Lemma 2.2. Let ϕ ∈ H 1(�1). Then

2
L
‖0ϕ‖2L2(S)+‖∇ϕ‖

2
L2(�1)

≥
1
L2 ‖ϕ‖

2
L2(�1)

.

Proof. It suffices to show the estimate for ϕ ∈ C1(�1). Since

ϕ(x ′, t)= ϕ(x ′, 0)+
∫ t

0
∂xdϕ(x

′, s)ds, x ′ ∈ [0, 1]d−1, t ∈ [0, L],

we have

|ϕ(x ′, t)| ≤ |ϕ(x ′, 0)| +
∫ t

0
|∂xdϕ(x

′, s)|ds ≤ |ϕ(x ′, 0)| +
√

t
(∫ L

0
|∇ϕ(x ′, s)|2ds

)1/2

by the Cauchy-Schwarz inequality. This implies

‖ϕ‖2L2(�1)
≤

∫ ∫ L

0

{
|ϕ(x ′, 0)| +

√
t
(∫ L

0
|∇ϕ(x ′, s)|2ds

)1/2
}2

dtdx ′

≤ 2
∫ ∫ L

0
|ϕ(x ′, 0)|2 dsdx ′+ 2

∫ L

0
tdt ×‖∇ϕ‖2L2(�1)

= 2L‖0ϕ‖2L2(S)+ L2
‖∇ϕ‖2L2(�1)

and the claim follows. �

For k ∈ {1, . . . ,M}, we set

qk(ϕ, ψ)=

∫
C1(0)

(∇ϕ · ∇ψ + vkϕψ)dx, ϕ, ψ ∈ H 1(C1(0)),

which is the quadratic form corresponding to H N
k . Let 9k be the positive ground state for H N

k , which is
unique up to a constant. Since inf σ(H N

k )= 0, we expect ϕ/9k is close to a constant if qk(ϕ, ϕ) is close
to 0, and this observation is justified by the following lemma.
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Lemma 2.3. There exists c1 > 0 such that

‖∇(ϕ/9k)‖
2
L2(C1(0))

≤ c1qk(ϕ, ϕ), ϕ ∈ H 1(C1(0)), k = 1, . . . ,m.

Proof. This is a consequence of the so-called ground state transform. It suffices to show the inequality
when ϕ ∈ C1(C1(0)). We set f = ϕ/9k . Then we have

qk(ϕ, ϕ)= 〈∇( f9k),∇( f9k)〉+ 〈vk f9k, f9k〉

= ‖9k(∇ f )‖2+〈9k∇ f, f∇9k〉+ 〈 f∇9k, 9k∇ f 〉

+ 〈 f∇9k, f∇9k〉+ 〈vk f9k, f9k〉

= ‖9k(∇ f )‖2+〈∇(| f |29k),∇9k〉+ 〈vk | f |29k, 9k〉

= ‖9k(∇ f )‖2+ qk(| f |29k, 9k).

Since qk(| f |29k, 9k)= 〈(H N
k )

1/2
| f |29k, (H N

k )
1/29k〉 = 0, we have

qk(ϕ, ϕ)= ‖9k(∇ f )‖2 ≥ (inf |9k |)
2
‖∇ f ‖2,

and we may choose c1 = (mink inf |9k |)
−2. �

Lemma 2.4. Suppose vk ∼d v`. Then there exists µ1, µ2 > 0 such that

µ19k(x ′, 0)= µ29`(x ′, 0), for x ′ ∈ [0, 1]d−1.

Proof. Consider H N
k`(d) in Ud (see (1-7) and (1-8) in Section 1), and let 8 ∈ L2(Ud) be the positive

ground state of H N
k`( j). We set

ϕ1 =8dC1(0), ϕ2( · )=8( · + ed)dC1(0).

Then ϕ1, ϕ2 are positive and qk(ϕ1, ϕ1)= q`(ϕ2, ϕ2)= 0. By the variational principle and the uniqueness
of the ground states, we learn

ϕ1 = µ19k, ϕ2 = µ29`

with some µ1, µ2 > 0. By Assumption A, 9k and 9` are symmetric about {xd = 1/2}, and hence

µ19k(x ′, 0)= µ19k(x ′, 1)= ϕ1(x ′, 1)= ϕ2(x ′, 0)= µ29`(x ′, 0)

for x ′ ∈ [0, 1]d−1, where we have used the continuity of 8 on {xd = 1}. �

Now, let �1 and W1 be as in the beginning of Section 2, and define

P N
1 =−4+W1 on L2(�1)

with Neumann boundary conditions. We set

Q1(ϕ, ψ)=

∫
�1

(∇ϕ · ∇ψ +W1ϕψ)dx = 〈(P N
1 )

1/2ϕ, (P N
1 )

1/2ψ〉

for ϕ,ψ ∈ H 1(�1)= D((P N
1 )

1/2).
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Lemma 2.5. There exists c2 > 0 such that c2 is independent of L and of the sequence {k(`)}, and

1
L
‖0ϕ‖2L2(S)+ Q1(ϕ, ϕ)≥

1
c2L2 ‖ϕ‖

2
L2(�1)

for ϕ ∈ H 1(�1).

Proof. By Lemma 2.4, there exist µ1, . . . , µm > 0 such that

µ191(x ′, 0)= µ292(x ′, 0)= · · · = µm9m(x ′, 0).

We set
9(x)= µk(`)9k(`)(x − `ed) if `≤ xd ≤ `+ 1,

and then 9 ∈ H 1(�1) by the above observation. Moreover, 9 is the ground state for P N
1 , unique up to

a constant. We apply Lemma 2.2 to ϕ/9, and we have

1
L2 ‖ϕ‖

2
L2(�1)

≤
1
L2 (sup9)2‖ϕ/9‖2L2(�1)

≤
(sup9)2

L
‖0(ϕ/9)‖2L2(S)+ (sup9)2‖∇(ϕ/9)‖2L2(�1)

≤

(sup9
inf9

)2 1
L
‖0ϕ‖2L2(S)+ c1(sup9)2 Q1(ϕ, ϕ),

where we have used Lemma 2.3 in the last inequality. The claim follows immediately. �

We next consider P0=−4+W0 on L2(�0) and its Dirichlet-to-Neumann operator. As in Theorem 2.1,
we suppose

α = inf σ(P N
0 ) > 0.

We set
P ′0 =−4+W0 on L2(�0) with D((P ′0)

1/2)= {ϕ ∈ H 1(�0) | 0ϕ = 0},

where 0 is the trace operator from H 1(�1) to L2(S). Then P ′0 defines a self-adjoint operator, and each
ϕ ∈ D(P ′0) satisfies Dirichlet boundary conditions on S and Neumann boundary conditions on ∂�0 \ S.
Let λ<α. By a standard argument of the theory of elliptic boundary value problems (see [Folland 1995],
for instance), for any g ∈ H 3/2(S), there exists a unique ψ ∈ H 2(�0) such that

(−4+W0− λ)ψ = 0, 0ψ = g (2-1)

and that satisfies Neumann boundary conditions on ∂�0 \ S. Then the map

T (λ) : g 7→ 0(∂νψ) ∈ H 1/2(S)

defines a bounded linear map from H 3/2(S) to H 1/2(S), where ∂ν = ∂/∂xd is the outer normal derivative
on S. We consider T (λ) as an operator on L2(S), and it is called the Dirichlet-to-Neumann operator.

Lemma 2.6. T (λ) is a symmetric operator. If λ0 < α, then T (λ)≥ ε for 0≤ λ≤ λ0 with some ε > 0.

Proof. Let ϕ,ψ ∈ H 2(�0) such that 0ϕ = f , 0ψ = g, and

(−4+W0− λ)ϕ = (−4+W0− λ)ψ = 0,
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with Neumann boundary conditions on ∂�0 \ S. By Green’s formula we have

0= 〈(−4+W0− λ)ϕ,ψ〉− 〈ϕ, (−4+W0− λ)ψ〉

= −

∫
S
∂νϕ ·ψ +

∫
S
ϕ · ∂νψ =−〈T (λ) f, g〉L2(S)+〈 f, T (λ)g〉L2(S),

and hence T (λ) is symmetric. Similarly, we have

0= 〈(−4+W0− λ)ϕ, ϕ〉 = −

∫
S
∂νϕ ·ϕ+

∫
�0

|∇ϕ|2+

∫
�0

(W0− λ)|ϕ|
2

=−〈T (λ) f, f 〉+ Q0(ϕ, ϕ)− λ‖ϕ‖
2,

where Q0(ϕ, ϕ)=
∫
�0

(
|∇ϕ|2+W0|ϕ|

2
)
dx . Hence, we learn that

〈T (λ) f, f 〉 = Q2(ϕ, ϕ)− λ‖ϕ‖
2
≥ Q0(ϕ, ϕ)− λ0‖ϕ‖

2.

The form in the right-hand side is equivalent to ‖ϕ‖2H1(�0)
since λ0 < α. Hence, it is bounded from

below by ε‖ f ‖2L2(S) with some ε > 0 by virtue of the boundedness of the trace operator from H 1(�0) to
L2(S). �

We note that T (λ) extends to a self-adjoint operator on L2(S) by the Friedrichs extension, though we
do not use the fact in this paper.

Proof of Theorem 2.1. Let ϕ be the ground state of P N on � with the ground state energy λ ≥ 0. If
λ ≥ λ0 > 0 with some fixed λ0 (independently of L), then the statement is obvious, and hence we may
assume 0≤ λ≤ λ0 < α = inf σ(P N

0 ) without loss of generality.
Let f =0ϕ ∈ H 3/2(S). Since ϕ satisfies Neumann boundary conditions on ∂�0 \ S, we learn ∂νϕdS=

T (λ)ϕ. On the other hand, by Green’s formula, we have∫
�1

P Nϕ ·ϕ =

∫
S
∂nϕ ·ϕ+

∫
�1

|∇ϕ|2+W1|ϕ|
2

= 〈T (λ) f, f 〉L2(S)+ Q1(ϕ, ϕ)

≥ ε‖ f ‖2L2(S)+ Q1(ϕ, ϕ)

by Lemma 2.6. Now, we apply Lemma 2.5 to learn that the right-hand side is bounded from below by
(1/c2L2)‖ϕ‖2L2(�1)

. Since P Nϕ= λϕ and ‖ϕ‖L2(�1) 6= 0, this implies λ≥ 1/c2L2 for large enough L . �

3. Proof of the main theorems

We now discuss the proofs of Theorems 1.2 and 1.3, and we prove Theorem 1.4 at the end of the section.
We thus suppose Assumption A with either m < M or that there exists k, k ′ such that vk�dvk′ .

For notational simplicity, we assume the reflections of vk at {xd = 1/2} are included in the possible
set of potentials {vk}. This does not change the conditions on {v1, . . . , vm}, but we might need to add
the reflections of {vm+1, . . . , vM}. This does not affect the following arguments.

We write
3= {p ∈ Zd−1

| 0≤ p j ≤ L − 1, j = 1, . . . , d − 1}
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x1 x2

x3

Σ(2,4)

Figure 1. Chopping the cube into strips.

and, for p ∈3, we set

6p =

L−1⋃
k=0

C1((p, k))

so that CL(0) is decomposed (see Figure 1) as

CL(0)=
⋃
p∈3

6p

which is a disjoint union except for the boundaries of the strips.
For a given Vω and p ∈3, we consider the restriction of Hω to 6p, i.e.,

H̃ N
p =4+ V0+

L−1∑
`=0

vω((p,`))(x − (p, `)) on L2(6p)

with Neumann boundary conditions on ∂6p. By the standard Neumann bracketing, we learn

H N
ω,L ≥

⊕
p∈3

H̃ N
p on L2(CL(0))∼=

⊕
p∈3

L2(6p),

and hence, in particular,
inf σ(H N

ω,L)≥min
p∈3

inf σ(H̃ N
p ). (3-1)

Under our assumptions, one of the following holds for each p ∈3:

(a)p: ω((p, `)) > m for some `, or vω((p,`))�dvω((p,`′)) for some `, `′ ∈ {0, . . . , L − 1}.

(b)p: For all `, `′ ∈ {0, . . . , L − 1}, ω((p, `))≤ m and vω((p,`)) ∼d vω((p,`′)).

We note that the probability of Condition (b)p to occur is less than µ−L with some µ< 1 independent
of L . Since {ω(γ)} are independent, we have

P
(
(b)p holds for some p ∈3

)
≤ Ldµ−L , (3-2)

which is small if L is large. For the moment, then, we suppose Condition (a)p holds for all p ∈3.
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We denote by V p(x) the potential function of H̃ N
p on 6p. Let

6̂p = (p+ [0, 1]d−1)× (R/(2LZ))

and set V̂ p(x)= V p(x ′, |xd |) for x = (x ′, xd)∈ (p+[0, 1]d−1)×[−L , L)∼= 6̂p, i.e., V̂ p is the extension
of Ṽ p by the reflection at {xd = 0}. We note V̂ p is continuous on 6̂p. We now consider

Ĥ N
p =4+ V̂ p on L2(6̂p)

with Neumann boundary conditions. It is easy to see

inf σ(H̃ N
p )≥ inf σ(Ĥ N

p ). (3-3)

In fact, if 8 is the ground state of H̃ N
p , then we extend 8 by reflection to obtain 8̂ ∈ H 1(6̂p) and we

have
〈Ĥ N

p 8̂, 8̂〉

‖8̂‖2
=
〈H̃ N

p 8,8〉

‖8‖2
= inf σ(H̃ N

p )

and the claim (3-3) follows by the variational principle.
Since we assume Condition (a)p, 6p can be decomposed to subsegments 6p =

⋃K
j=14 j such that

each 4 j satisfies the following conditions: We write

4 j =

ν⋃
`=0

C1(p, κ + `), κ ∈ Z, 0≤ ν < L

and

V̂ p(x)= vβ(`)(x − (p, `)) for x ∈ C1(p, κ + `), ` ∈ {0, . . . , ν},

with β(`) ∈ {1. . . . ,M}. Then either one of the following holds:

(i) β(0) ∈ {m+ 1, . . . ,M}; β(`) ∈ {1, . . . ,m} for `≥ 1; and vβ(`) ∼d vβ(`′) for `, `′ ∈ {1, . . . , ν}.

(ii) β(`) ∈ {1, . . . ,m} for all `; vβ(0)�dvβ(1); and vβ(`) ∼d vβ(`′) for `, `′ ∈ {2, . . . , ν}.

The proof of this claim is an easy, though somewhat lengthy, combinatorial exercise. We omit the
details.

We again decompose Ĥ N
p . We denote the restriction of Ĥ N

p to 4 j by Pj on L2(4 j ) with Neumann
boundary conditions. Then again by Neumann bracketing, we learn that

Ĥ N
p ≥

κ⊕
j=1

Pj on L2(6̂p)∼=

κ⊕
j=1

L2(4 j ),

and in particular,
inf σ(Ĥ N

p )≥min
j

inf σ(Pj ). (3-4)

Now if (i) holds for 4 j , then we set a = 1 and use Theorem 2.1 for Pj . Since inf σ(H N
β(0)) > 0 by

Assumption A and ν ≤ L , we learn that

inf σ(Pj )≥
1

C(ν−1)2
≥

1
C(L−1)2

.
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If (ii) holds for 4 j , then we set a = 2 and use Theorem 2.1 for Pj . Since vβ(0)�dvβ(1), we have
inf σ(H N

β(0)β(1)(d)) > 0. Thus we have

inf σ(Pj )≥
1

C(ν−2)2
≥

1
C(L−2)2

.

Combining these with (3-1), (3-3) and (3-4), we conclude that

inf σ(H N
ω,L)≥

c3
L2 (3-5)

with some c3 > 0, provided Condition (a)p holds for all p ∈3.

Proof of Theorems 1.2 and 1.3. For E > 0, we set√
c3
E
< L ≤

√
c3
E
+ 1,

so that, by virtue of (3-5),
inf σ(H N

ω,L) > E

provided Condition (a)p holds for all p∈3. As noted in (3-2), the probability of the events that Condition
(b)p holds for some p ∈3 is bounded by

P
(
(b)p holds for some p ∈3

)
≤ Ldµ−L

≤ c4 E−d/2e−c5 E−1/2

with some c4, c5 > 0. On the other hand, since the potential V0+ Vω is uniformly bounded, we have

#{eigenvalues of H N
ω,L ≤ α} ≤ c6Ld

for any ω with some c6 > 0. Thus we have

L−dE
(

#{e.v. of H N
ω,L ≤ E}

)
≤ L−d(c6Ld)P

(
(b)p holds for some p ∈3

)
≤ c4c6 E−d/2e−c5 E−1/2

≤ c7e−(c5−ε)E−1/2

for 0< ε < c5 with some c7 > 0. By the Neumann bracketing again, we have

N (E)≤ L−dE
(

#{e.v. of H N
ω,L ≤ E}

)
≤ c7e−(c5−ε)E−1/2

and Theorems 1.2 and 1.3 follow immediately from this estimate. �

In fact, we have proved that

lim inf
E→+0

|log N (E)|
E−1/2 > 0,

and this statement is slightly stronger than (1-6).

Proof of Theorem 1.4. Statement (i) is an immediate consequence of Assumption B and Theorem 1.3.
We just replace the xd -axis by the x j -axis where vk�jv` for some k, `.

For (ii), we use the ground state transform as in the proof of Lemmas 2.3–2.5. Under our conditions,
there exist µ1, . . . , µm > 0 such that

µ191(x)= µ292(x)= · · · = µm9m(x) for x ∈ ∂C1(0).
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For given H N
ω,L , we set

8(x)= µk9k(x) if x ∈ C1(γ) with ω(γ)= k.

Then it is easy to see that 8 is the positive ground state of H N
ω,L with the energy 0. Let Q( · , · ) be the

quadratic form corresponding to H N
ω,L . For ϕ ∈ H 1(CL(0)), we set f = ϕ/8. As in the proof of Lemma

2.3, we have
Q(ϕ, ϕ)= ‖8(∇ f )‖2

and hence
(inf8)2‖∇ f ‖2 ≤ Q(ϕ, ϕ)≤ (sup8)2‖∇ f ‖2.

This implies

K−2 ‖∇ f ‖2

‖ f ‖2
≤

Q(ϕ, ϕ)
‖ϕ‖2

≤ K 2 ‖∇ f ‖2

‖ f ‖2
,

where K =maxk sup(µk9k)/mink inf(µk9k). By the min-max principle, we learn that

K−2 #{e.v. of (−4)N
L ≤ E} ≤ #{e.v. of H N

ω,L ≤ E} ≤ K 2 #{e.v. of (−4)N
L ≤ E},

where (−4)N
L is the Laplacian on CL(0)with Neumann boundary conditions. Taking the limit L→+∞,

we have
K−2cd Ed/2

≤ N (E)≤ K 2cd Ed/2, (3-6)

where cd is the volume of the unit ball in Rd . This completes the proof of Theorem 1.4. �

4. Application to random displacement models

We now consider a model recently studied by Baker, Loss and Stolz [2008; 2009]. Combining their
results with Theorem 1.2, we show that this model exhibits Lifshitz singularities at the ground state
energy.

We consider a random Schrödinger operator of the form:

Hω =−4+ Vω on L2(Rd),

where
Vω(x)=

∑
γ∈Zd

q(x − γ−ω(γ))

with independent, identically distributed random variables {ω(γ) | γ ∈ Zd
} taking values in C1(0).

Assumption C. (1) There exists δ ∈ (0, 1/2) such that ω(γ) takes values in a finite set

2⊂ {x ∈ Rd
| δ ≤ x j ≤ 1− δ, for all j ∈ {1, . . . , d}}.

Moreover
2⊃1= {x ∈ Rd

| x j = δ or 1− δ, for all j ∈ {1, . . . , d}}

and P(ω(γ)= x) > 0 for x ∈1.

(2) q ∈ C0(R
d) and it is supported in {x | |x j | ≤ δ, j ∈ {1, . . . , d}}. Moreover, q is symmetric about

{x | x j = 0}, j = 1, . . . , d .
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Figure 2. An example in two dimensions, showing a typical random configuration (left)
and the minimizing configuration (right).

(3) Let H N
q = −4+ q on L2({|x | ≤ 1}) with Neumann boundary conditions, and let φ be the ground

state. Then φ is not a constant outside Supp q . Note that this is relevant only if the ground state energy
is 0.

Let H N
1,β =−4+ q(x − β) on L2(C1(0)) with Neumann boundary conditions, where β ∈2. Baker,

Loss and Stolz [2008] showed that inf σ(H N
1,β) takes its minimum (with respect to β) if and only if β ∈1.

In particular, they showed that for H N
ω,2` the Neumann restriction of Hω to C2`(0) the minimal value of

the ground state energy was obtained for clustered configuration (see Figure 2).
We cannot directly apply our result to this model, since q(x−β) is not symmetric for β ∈1. However,

they also showed that if we consider the operator Hω restricted to C2(0) and if d ≥ 2, then the minimum
is attained by 2d symmetric configurations, which are equivalent to each other by translations (see [Baker
et al. 2009] and Figure 3). Thus, we can apply our results by considering Hω as a 2Zd -ergodic random
Schrödinger operators, i.e., by considering C2(0) as the unit cell. Then this model satisfies Assumption A
with M = (#2)2

d
and m = 2d .

Theorem 4.1. Let d ≥ 2, and suppose Assumption C for some δ ∈ (0, 1/2). Then (1-6) holds at the
bottom of the spectrum of Hω, a.s.

We note that if d = 1, this result does not hold, and the IDS may have logarithmic singularity at the
bottom of the spectrum [Baker et al. 2009]. In view of our results, such singularities can occur for the
lack of symmetry of the minimizing configurations.

5. The alloy-type model studied in [Klopp and Nakamura 2009]

In a previous paper on Lifshitz tails for sign indefinite alloy-type random Schrödinger operators [Klopp
and Nakamura 2009], we studied the model (1-1) for a single site potential V satisfying the reflection
symmetry Assumption B.

We now recall some of the results of that work. Let the support of the random variables (ωγ)γ be
contained in [a, b] and assume both a and b belong to the essential support of the random variables.

Now consider the operator H N
λ =−1+λV with Neumann boundary conditions on the cube C1(0)=

[0, 1]d . Its spectrum is discrete, and we let E−(λ) be its ground state energy. It is a simple eigenvalue
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Figure 3. Left: the minimal 2× 2 configurations in two dimensions. Right: other 2× 2
configurations in two dimensions.

and λ 7→ E−(λ) is a real analytic concave function defined on R. Let E− be the infimum of the almost
sure spectrum of Hω then

Proposition 5.1 [Klopp and Nakamura 2009]. Under Assumption B,

E− = inf(E−(a), E−(b)).

As for Lifshitz tails, we proved

Theorem 5.2 [Klopp and Nakamura 2009]. Suppose that Assumption B is satisfied, and that

E−(a) 6= E−(b). (5-1)

Then

lim sup
E→E+−

log |log N (E)|
log(E − E−)

≤−
d
2
−α+,

where we have set c = a if E−(a) < E−(b) and c = b if E−(a) > E−(b), and

α+ =−
1
2

lim inf
ε→0

log
∣∣log P({|c−ω0| ≤ ε})

∣∣
log ε

≥ 0.

The technique developed in [Klopp and Nakamura 2009] did not allow us to treat the case E−(a)=E−(b).
Clearly, if the random variables (ωγ)γ are non trivial and Bernoulli distributed, i.e., if

P(ω0 = a)+P(ω0 = b)= 1 and P(ω0 = a) > 0, P(ω0 = b) > 0,

Theorem 1.4 tells us that the Lifshitz tails hold if and only if aV �j bV for some j ∈{1, . . . , d} (see (1-9)).
So we are just left with the case when the random variables (ωγ)γ are not Bernoulli distributed.

We prove

Theorem 5.3. Suppose Assumption B is satisfied and that

E−(a)= E−(b). (5-2)

Assume moreover that the independent, identically distributed random variables (ωγ)γ are not Bernoulli
distributed, that is, P(ω0 = a)+P(ω0 = b) < 1. Then

lim sup
E→E+−

log |log N (E)|
log(E − E−)

≤−
1
2
. (5-3)
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So we show that Lifshitz tails also hold in this case. As already noted we believe that (5-3) is not
optimal and that −1/2 should be replaced by −d/2. Moreover, depending on the tail of the distributions
of the random variables (ωγ)γ near a and b, the lim sup in (5-3) should be a limit, the inequality should
become an equality, the exponent −1/2 should be replaced by −d/2 plus a possibly vanishing constant
(see of [Klopp and Nakamura 2009, Section 0] for the case E−(a) 6= E−(b)).

Combining Theorems 5.2 and 5.3 with the Wegner estimates obtained in [Klopp 1995; Hislop and
Klopp 2002] and the multiscale analysis as developed in [Germinet and Klein 2001], we learn:

Theorem 5.4. Assume that Assumption B holds. and that the common distribution of the random vari-
ables admits an absolutely continuous density. Then the bottom edge of the spectrum of Hω exhibits
complete localization in the sense of [Germinet and Klein 2001].

This result improves upon Theorem 0.3 of [Klopp and Nakamura 2009].

5.1. The proof of Theorem 5.3. Recall that H N
ω,L is defined in (1-3). It is well known that, at E , a

continuity point of N (E), the sequence

N N
L (E)= E

(#{eigenvalues of H N
ω,L ≤ E}

Ld

)
is decreasing and converges to N (E) [Pastur and Figotin 1992; Kirsch 1989]. As

N N
L (E)≤ C P({inf σ(H N

ω,L)≤ E}), (5-4)

it is sufficient to prove an upper bound for P({inf σ(H N
ω,L)≤ E}) for a well chosen value of L .

Define E−,L(ω)= inf σ(H N
ω,L). It only depends on (ωγ)γ∈ZL , where

ZL = {γ ∈ Zd
| 0≤ γ j < L , j = 1, . . . , d}.

Lemma 5.5. The function ω 7→ E−,L(ω) is real analytic and strictly concave on [a, b]ZL .

Proof. Though this is certainly a well known result, for the sake of completeness, we give the proof. The
ground state being simple, ω 7→ E−,L(ω) is real analytic in ω.

As Hω depends affinely on ω, by the variational characterization of the ground state energy, E−,L(ω)
is the infimum of a family of affine functions of ω. So it is concave.

The strict concavity is obtained using perturbation theory. Let ϕL(ω) be the unique normalized positive
ground state associated to E−,L(ω) and H N

ω,L . The ground state energy being simple, this ground state is
a real analytic function of ω; differentiating once the eigenvalue equation and the normalization condition
of the ground state, as the ground state is normalized and real, one obtains

(H N
ω,L − E−,L(ω))∂ωγϕL(ω)=

(
∂ωγ E−,L(ω)− V ( · − γ)

)
ϕL(ω), (5-5)

〈∂ωγϕL(ω), ϕL(ω)〉 = 0. (5-6)

A second differentiation yields

(H N
ω,L − E−,L(ω))∂2

ωγωβ
ϕL(ω)= ∂

2
ωγωβ

E−,L(ω)ϕL(ω)+
(
∂ωγ E−,L(ω)− V ( · − γ)

)
∂ωβϕL(ω)

+
(
∂ωβ E−,L(ω)− V ( · −β)

)
∂ωγϕL(ω).
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Hence, using (5-5) and (5-6), we compute

∂2
ωγωβ

E−,L(ω)=−〈V ( · − γ)∂ωβϕL(ω), ϕL(ω)〉− 〈V ( · −β)∂ωγϕL(ω), ϕL(ω)〉

= −2Re(〈(H N
ω,L − E−,L(ω))−1ψβ, ψγ〉),

where

• ψγ =5V ( · − γ)ϕL(ω);

• 5 is the orthogonal projector on the orthogonal to ϕL(ω).

Hence, for (aγ)γ complex numbers,∑
γ,β

∂2
ωγωβ

E−,L(ω)aγaβ =−2Re(〈(H N
ω,L − E−,L(ω))−15ua,5ua〉)

where
ua =

(∑
γ

aγV ( · − γ)
)
ϕL(ω).

Note that, as V is not trivial, the assumption E−(a)= E−(b) implies that V changes sign, that is, there
exists x+ 6= x− such that V (x−)·V (x+)< 0. Now, the vector5ua vanishes if and only if ua is colinear to
ϕL(ω) which cannot happen as V is not constant and ϕL(ω) does not vanish on open sets by the unique
continuation principle. On the other hand, E−,L(ω) being a simple eigenvalue associated to ϕL(ω),
5(H N

ω,L − E−,L(ω))−15 ≥ c5 for some c > 0. So the Hessian of ω 7→ E−,L(ω) is positive definite.
This completes the proof of Lemma 5.5. �

We now turn to the proof of Theorem 5.3. As the random variables are not Bernoulli distributed, that
is, P(ω0 = a)+P(ω0 = b) < 1, we can fix ε > 0 sufficiently small such that

P(ω0 ∈ [a, a+ ε))+P(ω0 ∈ (b− ε, b]) < 1.

By strict concavity of E−(λ), one has E−(a) < E−(a+ ε) and E−(b) < E−(b− ε).
In Section 2, we proved:

Lemma 5.6. Assume E−(a)= E−(b). There exists C > 0 with the following property: For any L ≥ 0, if
ω ∈ {a, b, a+ ε, b− ε}ZL is such that

∀p ∈3 ∃` ∈ {0, . . . , L−1} such that ω(p,`) ∈ {a+ ε, b− ε}, (P)

then

E−,L(ω)≥ E−(a)+
1

C L2 . (5-7)

To complete the proof of Theorem 5.3, we first extend Lemma 5.6 using the concavity of the ground
state energy:

Lemma 5.7. Assume E−(a) = E−(b). There exists C > 0 satisfying the following property: For all
L ≥ 0, if ω ∈�L is such that

∀p ∈3 ∃` ∈ {0, . . . , L−1} such that ω(p,`) ∈ [a+ ε, b− ε], (P ′)

then (5-7) holds. (The constant C is the same as in Lemma 5.6.)
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We postpone the proof of this result to complete that of Theorem 5.3. Pick E > E−(a)= E−(b). We
use (5-4) and pick L = c(E − E−(a))1/2. Pick c > 0 sufficiently small that Cc2 < 1. Then Lemma 5.6
tells us that, if ω ∈ [a, b]ZL satisfies (P ′), then E−(ω) > E . So, the set �L(E) := {ω ∈�L | E−(ω) > E}
satisfies

�L \�L(E)⊂
{
ω ∈�L | ∃p ∈3 such that ω(p,`) ∈ [a, a+ ε)∪ (b− ε, b] for all `

}
.

Hence,
P(�L \�L(E))≤

∑
p∈3

P({ω(p,`) ∈ [a, a+ ε)∪ (b− ε, b] for all `})

= Ld−1(P(ω0 ∈ [a, a+ ε))+P(ω0 ∈ (b− ε, b]))L .

This yields the announced exponential decay and completes the proof of Theorem 5.3. �

Proof of Lemma 5.7. We will proceed in two steps. First, we prove that, if ω satisfies (P ′) and all its
coordinates that are not in [a + ε, b− ε] are either equal to a or to b, then (5-7) holds (with the same
constant as in Lemma 5.6). This comes from the concavity of the ground state and the fact that any such
point is a convex combination of points satisfying (P). Indeed, take such a point ω and let 0(ω) be the
set of coordinates such that ωγ ∈ [a+ ε, b− ε]. Define K (ω) = {a+ ε, b− ε}0(ω). Then there exists a
convex combination (µη)η∈K (ω) such that

(ωγ)γ∈0(ω) =
∑

η∈K (ω)

µηη,
∑

η∈K (ω)

µη = 1, µη ≥ 0.

Hence,

ω =
∑

η∈K (ω)

µηη̃ where (η̃)γ =
{
ηγ ifγ ∈ 0(ω),
ωγ if γ 6∈ 0(ω).

That ω satisfies (5-7) then follows from the concavity of ω 7→ E−,L(ω), that is Lemma 5.5, and from
Lemma 5.6.

To complete the proof of Lemma 5.7, it suffices to show that a point ω satisfying (P ′) can be written a
convex combination of points of the type defined above. This is done as above. Indeed, pick ω satisfying
(P ′). Define L(ω)= {a, b}(ZL\0(ω)). Then there exists a convex combination (µη)η∈L(ω) such that

(ωγ)γ∈(ZL\0(ω)) =

∑
η∈L(ω)

µηη,
∑
η∈L(ω)

µη = 1, µη ≥ 0.

Hence,

ω =
∑
η∈L(ω)

µηη̃ where (η̃)γ =
{
ηγ if γ 6∈ 0(ω),
ωγ if γ ∈ 0(ω).

That ω satisfies (5-7) then follows from the concavity of ω 7→ E−,L(ω) and from the first step. This
completes the proof of Lemma 5.7. �
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ANALYTIC CONTINUATION OF THE RESOLVENT OF THE LAPLACIAN
AND THE DYNAMICAL ZETA FUNCTION

VESSELIN PETKOV AND LUCHEZAR STOYANOV

Let s0<0 be the abscissa of absolute convergence of the dynamical zeta function Z(s) for several disjoint
strictly convex compact obstacles Ki ⊂ RN , i = 1, . . . , κ0, κ0 ≥ 3, and let

Rχ (z)= χ(−1D − z2)−1χ, χ ∈ C∞0 (R
N ),

be the cutoff resolvent of the Dirichlet Laplacian −1D in the closure of RN
\
⋃κ0

i=1 Ki . We prove that
there exists σ1 < s0 such that the cutoff resolvent Rχ (z) has an analytic continuation for

Im z <−σ1, |Re z| ≥ J1 > 0.

1. Introduction

Let K be a subset of RN (N ≥ 2) of the form K = K1∪K2∪· · ·∪Kκ0 , where the Ki are compact strictly
convex disjoint domains in RN with C∞ boundaries 0i = ∂Ki and κ0 ≥ 3. Set �=RN \ K and 0= ∂K .
We assume that K satisfies the following (no-eclipse) condition:

for every pair Ki , K j of different connected components of K , the convex hull
of Ki ∪ K j has no common points with any other connected component of K . (H)

With this condition, the billiard flow φt defined on the cosphere bundle S∗(�) in the standard way is
called an open billiard flow. It has singularities, however its restriction to the nonwandering set 3 has
only simple discontinuities at reflection points. Moreover, 3 is compact, φt is hyperbolic and transitive
on 3, and it follows from [Stoyanov 1999] that φt is non-lattice; therefore, by a result of Bowen [1973],
it is topologically weak-mixing on 3.

Given a periodic reflecting ray γ ⊂� with mγ reflections, denote by dγ the period (return time) of γ,
by Tγ the primitive period (length) of γ and by Pγ the linear Poincaré map associated to γ. Denote by
5 the set of all periodic rays in � and let λi,γ , for i = 1, . . . , N − 1, denote the eigenvalues of Pγ with
|λi,γ|> 1 [Petkov and Stoyanov 1992].

Let P be the set of primitive periodic rays. Set

δγ =−
1
2

log(λ1,γ . . . λN−1,γ) for γ ∈ P, rγ =
{

0 if mγ is even,
1 if mγ is odd,

and consider the dynamical zeta function

Z(s)=
∞∑

m=1

1
m

∑
γ∈P

(−1)mrγem(−sTγ+δγ).

MSC2000: primary 35P20, 35P25; secondary 37D50.
Keywords: open billiard, periodic rays, zeta function.
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It is easy to show that there exists s0 ∈R such that for Re s > s0 the series Z(s) is absolutely convergent
and s0 is minimal with this property. The number s0 is called abscissa of absolute convergence. On the
other hand, using symbolic dynamics and the results of [Parry and Pollicott 1990], it follows that Z(s)
is meromorphic for Re s > s0− a, a > 0 [Ikawa 1990] and Z(s) is analytic for Re s ≥ s0. According to
[Stoyanov 2001] (for N = 2) and [Stoyanov 2007] (for N ≥ 3 under some additional conditions), there
exists 0<ε<a so that the dynamical zeta function Z(s) admits an analytic continuation for Re s≥ s0−ε.

The cutoff resolvent, defined by

Rχ (z)= χ(−1K − z2)−1χ : L2(�)→ L2(�)

for Im z<0, where χ ∈C∞0 (R
N ), χ=1 on K , and1K is the Dirichlet Laplacian in�, has a meromorphic

continuation in C for N odd with poles z j such that Im z j > 0 and in C\{i R+} for N even. The analytic
properties and the estimates of Rχ (z) play a crucial role in many problems related to the local energy
decay, distribution of the resonances etc. In the physical literature and in works concerning numerical
calculation of resonances [Cvitanović and Eckhardt 1989; Wirzba 1999; Lin 2002; Lin and Zworski
2002; Lin et al. 2003] the following conjecture is often made.

Conjecture 1.1. The poles µ j (with Reµ j <0) of Z(s) and the poles z j of Rχ (z) are related by i z j =µ j .

At least one would expect that the poles z j of Rχ (z) lie in sufficiently small neighborhoods of −iµ j .
Presumably for this reason the numbers −iµ j are called pseudopoles of Rχ (z).

The case of several disjoint disks has been treated in many works (see [Wirzba 1999] for a compre-
hensive list of references), and a certain method for numerical computation of the resonances has been
used. Although it is not rigorously known whether the numerically found resonances approximate the
(true) resonances in the exterior of the discs, and whether the dynamical zeta function has an analytic
continuation to the left of the line of absolute convergence, this way of computation is widely accepted
in the physical literature.

In the case of two strictly convex disjoint domains it was proved [Ikawa 1982; Gérard 1988] that the
poles of Rχ (λ) are contained in small neighborhoods of the pseudopoles

m
π

d
+ iαk, m ∈ Z, k ∈ N.

Here d > 0 is the distance between the obstacles and αk > 0 are determined by the eigenvalues λ j of the
Poincaré map related to the unique primitive periodic ray.

It is known that the conjecture above is true for convex cocompact hyperbolic manifolds X =0\Hn+1,
where 0 is a discrete group of isometries with only hyperbolic elements admitting a finite fundamental
domain (then X is a manifold of constant negative curvature). More precisely, the zeros of the correspond-
ing Selberg’s zeta function coincide with the poles (resonances) of the Laplacian 1g on X [Patterson
and Perry 2001].

The case of several convex obstacles is generally much more complicated. However the case s0 > 0
is easier, since we know that for −s0 ≤ Im z ≤ 0 the cutoff resolvent Rχ (z) is analytic [Ikawa 2000].

In the following we assume that s0 < 0.

The first problem is to examine the link between the analyticity of Z(s) for Re s > s0 and the behavior
of Rχ (z) for 0≤ Im z <−s0. (The parameters z and s are connected by the equality s = i z).
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Theorem 1.2 [Ikawa 1988]. Assume s0 < 0 and N = 3. Then for every ε > 0 there exists Cε > 0 so that
the cutoff resolvent Rχ (z) is analytic for Im z <−(s0+ ε), |Re z| ≥ Cε .

A similar result for a control problem has been established by Burq [1993]. The proofs in [Ikawa
1988; Burq 1993] are based on the construction of an asymptotic solution UM(x, s; k) with boundary
data m(x; k) = ei kψ(x)h(x), k ∈ R, k ≥ 1, where ψ is a phase function and h ∈ C∞(0) has a small
support. More precisely, UM( · , s; k) is C∞(�)-valued function for Re s > s0, and we have

(1x − s2)UM( · , s; k)= 0 for x ∈ �̊ if Re s > s0, (1-1)

UM( · , s; k) ∈ L2(�̊) if Re s > 0, (1-2)

UM(x, s; k)= m(x; k)+ rM(x, s; k) on 0 if Re s > s0, (1-3)

where, for rM(x, s; k) and Re s > s0+ d > s0, |s+ i k| ≤ c, we have the estimates

‖rM( · , s; k)‖L∞(0) ≤ Cd,ψ,hk−M . (1-4)

To obtain the leading term of UM(x, s; k) it is necessary to justify the convergence of series of the form

∞∑
n=0

∑
| j |=n+3

jn+2=l

e−sϕ j (x)a j (x, s; k), (1-5)

where j = ( j0, . . . , jn+2) is a configuration (word) of length | j | = n+ 3, the ϕ j (x) are phase functions
and the amplitudes a j (x, s; k) depend on the complex parameter s ∈ C and a real parameter k ≥ 1 (see
Sections 3 and 5 for the notation and more details). These parameters are not connected but to have (1-4)
we must take |s + i k| ≤ c. The main difficulty is to establish the summability of the series above and
to obtain suitable C p estimates of their traces on 0 for Re s > s0. The absolute convergence of Z(s)
makes it possible to study the absolute convergence of these series and to get estimates which lead to
the properties in (1-1)–(1-4). This might seem a bit surprising since the dynamical zeta function Z(s)
is determined by the periods of periodic rays and the corresponding Poincaré maps, and formally from
Z(s) one gets almost no information about the dynamics of the rays in a whole neighborhood of the
nonwandering set. As it turns out, the absolute convergence of Z(s) is a strong condition which enables
us to justify the absolute convergence of (1-5).

The existence of a domain {z ∈ C : Re z ∈ [E − δ, E + δ], 0 ≤ Im z ≤ hδ} free of resonances was
proved in [Nonnenmacher and Zworski 2009] for the operator−h21+V (x), V (x)∈C∞0 (R

n), assuming
that the trapping set of the Hamiltonian flow 8t of |ξ |2 + V (x) has a hyperbolic dynamics similar to
that of the billiard flow in the exterior of K . The existence of a resonance-free domain in that work is
established under the hypothesis Pr(1/2) < 0, where Pr(s) is the topological pressure associated with the
(negative infinitesimal) unstable Jacobian of the flow 8t . In our situation this condition is equivalent to
Pr(g) < 0, where Pr(g) is the pressure of the function g associated with the symbolic dynamics related
to the flow (see Section 3 for the definition of g and its pressure). It is shown in Section 3 below that
C1Pr(g) ≤ s0 ≤ C2Pr(g) for some constants C1 > 0, C2 > 0, so Pr(g) < 0 if and only if s0 < 0. It
should be mentioned that the techniques and tools in [Nonnenmacher and Zworski 2009] are different
from those in [Ikawa 1988; Burq 1993] and the present work.
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In the case Re s< s0, it is an interesting problem to examine the link between the analytic continuation
of Rχ (z) for Im z ≥−s0 and that of the dynamical zeta function Z(s). Several years ago, Ikawa [1994]
announced a result concerning a local analytic continuation of Rχ (z) in a neighborhood of a point z0 in
the region

Dα,ε = {z ∈ C : Im z ≤−s0+ |Re z|−α, |Re z| ≥ Cε}, 0< α < 1,

assuming the following conditions:

(i) Z(s) is analytic in a neighborhood of i z0 and

|Z(i z0)| ≤ |z0|
1−ε, 0< ε < 1; (1-6)

(ii) if w(η)> 0 is an eigenfunction of the Ruelle operator L
−s0 f̃+g̃ with eigenvalue 1, then the constants

M = max
ξ,η∈6+A

w(ξ)

w(η)
, m = min

ξ∈6+A

e−s0 f̃ (ξ)+g̃(ξ)

satisfy the inequality (M/m)
√
θ < 1 with a global constant 0< θ < 1 depending on the expanding

properties of the billiard flow [Ikawa 1988; 1990]. We refer to Section 3 for the notation 6+A , f̃ , g̃.

Also in [Ikawa 1994] it was announced that (ii) holds in the case of three balls centered at the vertices
of an equilateral triangle, provided the radii of the balls are sufficiently small. In general condition (ii) is
rather restrictive. On the other hand, it is difficult to check condition (i) if we have no precise information
about the spectral properties of L̃s = L

−s f̃+g̃ for Re s close to s0. In [Ikawa 1994] there are no comments
on when (i) holds or whether this happens at all. As we show in Section 5, the estimate (1-6) for z ∈ Dα,ε

is related to the behavior of the iterations of the Ruelle operator L̃s introduced in Section 3. It does not
look like the tools required to do this were available back in 1994. To our knowledge a proof of the result
announced by Ikawa has not been published anywhere.

Starting with [Dolgopyat 1998], there has been considerable progress in the analysis of the spectral
properties of the Ruelle transfer operators L̃s related to hyperbolic systems. The so-called Dolgopyat
type estimates for the norms of the iterations L̃n

s [Dolgopyat 1998; Stoyanov 2001; 2007] imply an
estimate for the zeta function Z(s) in a strip s0−ε≤Re s ≤ s0, ε > 0 (see Section 3 and Appendix C for
details). Note also that the information given by the estimates of the iterations and the behavior of the
spectrum of L̃s is richer than that related to the zeta function Z(s).

Assuming certain regularity of the family of local unstable manifolds W u
ε (x) of the billiard flow over

the nonwandering set3 (see Appendix C) and that the Dolgopyat type estimates (3-3) hold for the related
operator L̃s for some class of functions, in this paper we prove the following main result:

Theorem 1.3. Let s0 < 0. Suppose that the estimates (3-3) for the operator L̃s hold and that the map
3 3 x 7→W u

ε (x) is Lipschitz. Then there exist σ1 < s0 and J1 > 0 such that the cutoff resolvent Rχ (z) is
analytic in

S= {z ∈ C : Im z <−σ1, |Re z| ≥ J1}.

Moreover, there exists an integer m ∈ N such that

‖Rχ (z)‖L2(�̊)→L2(�̊) ≤ C(1+ |z|)m, z ∈ S. (1-7)
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The geometric assumptions in this theorem are always satisfied for N = 2. In particular, the Dolgopyat
type estimates (3-3) stated in Section 3 below always hold when N = 2 [Stoyanov 2001]. For N ≥ 3 it
follows from some general results in [Stoyanov 2007] that (3-3) hold under certain assumptions about
the flow on 3. These assumptions are listed in detail at the beginning of Appendix C. It seems likely
that most of these assumptions are either always satisfied or not really necessary in proving the estimates
(3-3) for open billiard flows. In fact, it was shown very recently in [Stoyanov 2009] that one of the
conditions1 imposed in [Stoyanov 2007] (and in [Petkov and Stoyanov 2009] as well) is always satisfied
for pinched open billiard flows. Apart from that in [Stoyanov 2009] a class of examples with N ≥ 3 is
described for which the results in this paper can be applied.

Our argument in Sections 7–8 shows that the integer m in (1-7) depends on σ1 and N , however we
have not tried to get precise information about m. It seems that to obtain an optimal growth in (1-7) is a
difficult problem.

We stress that the Dolgopyat type estimates only apply to a special class of functions on 3, namely to
Lipschitz functions on3 that are constant on any local stable manifold W s

loc(x) of the billiard flow φt (see
Section 3 below for details). The estimates for the iterations of the Ruelle operator were originally ob-
tained for the Ruelle operator Ls related to a coding given by a Markov family of rectangles (see [Petkov
and Stoyanov 2009; Stoyanov 2007] and Appendix C for the notation). For the proof of Theorem 1.3 we
need Dolgopyat type estimates for the iterations of the Ruelle operator L̃s related to the symbolic coding
using the connected components of K . The link between the operators L̃s and Ls and the estimates
leading to (3-3) are given in [Petkov and Stoyanov 2009, Section 3]; see also Proposition C.5.

We mention that our result implies the existence of an analytic continuation of Rχ (z) in a strip 0 ≤
Im z ≤ −σ1, |Re z| > J1, without any restrictions on the eigenfunction w(η) and the behavior of Z(s)
for σ1 ≤ Re s ≤ s0. The estimate (1-7) enables us to obtain a scattering expansion with an exponential
decay rate of the remainder for the solutions of the Dirichlet problem{

(∂2
t −1)u(t, x)= 0, x ∈ �̊, u|R×0 = 0,

u|t=0 = f ∈ C∞0 (�̊), ∂t u|t=0 = g ∈ C∞0 (�̊).
(1-8)

Set H = Ḣ(�̊)⊕ L2(�̊) and D j
= H j (�̊)⊕ H j−1(�̊) for j ≥ 2, where the space Ḣ(�̊) is the closure

of C∞0 (�̊) with respect to the norm

‖v‖Ḣ(�̊) =

(∫
�

|∇v(x)|2dx
)1/2

.

Corollary 1.4. Let N be odd and let χ ∈ C∞0 (R
n) be equal to 1 in a neighborhood of K . Let u(t, x) be

the solution of (1-8) with initial data (χ f, χg). Then under the assumptions of Theorem 1.3 there exists
L ∈ N such that for every ε > 0 and for t > 0 sufficiently large we have

χu(t, x)=
∑

Im zl≤−σ1

m(zl )∑
j=1

wzl , j (x)ei t zl t j−1
+ E(t)( f, g),

where
‖E(t)( f, g)‖H ≤ Cεe(σ1+ε)t‖( f, g)‖DL .

1This is the nondegeneracy of the symplectic form over the nonwandering set 3; see condition (ND) in Appendix C.
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Here σ1 < s0 is as in Theorem 1.3, the zl are the resonances with Im zl ≤−σ1, ml(zl) is the multiplicity
of zl , and wzl , j is related to the cutoff resonances states corresponding to zl .

A similar result was established by Ikawa [1988] with σ1 replaced by s0 < 0. Recently, a local decay
result for the solutions of the wave equation related to hyperbolic convex cocompact manifolds 0 \Hn+1

was proved by C. Guillarmou and F. Naud [2009]. They obtain an exponentially decreasing remainder
related to the abscissa δ of absolute convergence of the Poincaré series

Ps(m,m′)=
∑
γ∈0

e−sdh(m,γm′), m,m′ ∈ Hn+1,

dh being the hyperbolic distance. To improve this result, one would have to establish a polynomial growth
of the corresponding cutoff resolvent for δ−ε≤Re s ≤ δ, |Im s| ≥Cε and small ε > 0, and an analog of
Corollary 1.4 can be conjectured for convex cocompact manifolds (for which Dolgopyat type estimates
are known). For other results concerning scattering expansions for trapping obstacles the reader could
consult [Tang and Zworski 2000] and the references given there.

The proof of Theorem 1.3 is long and technical. The reason for this is that we are trying to exploit some
quite weak information coming from the Dolgopyat type estimates for some restrictive class of functions
defined on a symbolic model to build approximations of the resolvent of a boundary value problem based
on infinite series which are not absolutely convergent. This reflects the geometric situation and we have
to deal with infinite series related to reflections of trapping rays. In this direction it appears the present
work is the first one where infinite series of this kind are used for a WKB construction.

Below we discuss the main steps in the proof of Theorem 1.3.
As in [Ikawa 1988; 1994], the idea is to construct an approximative solution UM(x, s; k) for

σ1 ≤ Re s ≤ s0, |Im s| ≥ J1, k ≥ 1,

so that UM(x, s; k) satisfies the conditions (1-1)–(1-3). For our analysis in Section 8 we need to study
the Dirichlet problem for (1x − s2) with initial data

m(x; k)= G(x)ei k〈x,η〉
∣∣
x∈0 j
= G(x)ei kϕ(x)

∣∣
x∈0 j

coming from a representation by using the Fourier transform. On the other hand, it is convenient to
pass to data m(x, s; k) = e−sϕ(x)b1(x, s; k) with b1(x, s; k) = e(s+i k)ϕ(x)G(x) and to work with two
parameters s ∈ C and k ≥ 1. After the preparation in Sections 3–5, we construct in Section 6 the first
approximation V (0)(x, s; k). The first step in the construction of V (0)(x, s; k) is the analysis of the series

w0, j (x, s; k)=
∞∑

n=−2

∑
| j |=n+3, jn+2= j

e−sϕ j (x)a j (x, s; k)=
∞∑

n=−2

Un+2, j (x, s; k), x ∈ 0 j ,

where j = ( j0, . . . , jn, jn+1, jn+2) are configurations of length | j | = n + 3, ϕ j (x) are phase functions
and a j (x, s; k) are amplitudes determined by a recurrent procedure starting with m(x, s; k). This series
corresponds to the sum of the leading terms of the asymptotic solutions constructed after an infinite
number of reflections. The analysis of w0, j (x, s; k) is given in Sections 3–5. The main goal there
is to justify the existence of w0, j (x, s; k) and to obtain an analytic continuation of w0, j (x, s; k) from
Re s > s0 to a strip σ0 ≤ Re s ≤ s0 with σ0 < s0. To do this, as in the analysis of Dirichlet series
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with complex parameter, the strategy is to establish suitable estimates for Un+2, j (x, s; k) and to apply
a summation by packages. The structure of Un+2, j is rather complicated since the phases ϕ j (x) and the
amplitudes a j (x, s; k) are related to the dynamics of the reflecting rays having | j | reflections and issued
from the convex front {(x,∇ϕ(x)) : x ∈ supp h}. It seems unlikely that an explicit relationship exists
between Un+2, j (x, s; k) and the iterations Ln

−s f̃+g̃ of the Ruelle operator L−s f̃+g̃; see Sections 3 and 5).
Consequently, one would not expect a particular relationship between

∑
∞

n=−2 Un+2, j (x, s; k) and the
zeta function Z(s). Thus, it appears the situation considered here is rather different from the case of
convex cocompact surfaces where it is known that the singularities of the Selberg zeta function coincide
with the singularities of the corresponding Poincaré series which in turn is related to the resolvent of the
Laplacian [Patterson and Perry 2001].

It was observed by Ikawa [1994] that Un+2, j (x, s; k) can be compared with Ln
−s f̃+g̃Mn,s(x)Gs ṽs(ξ),

where Mn,s(x) and Gs are suitable operators defined by means of billiard trajectories issued from appro-
priate unstable or stable manifolds, while ṽs(ξ) is a function related to the boundary data m(x, s; k) =
e−sϕ(x)h. The precise definitions with some small but essential differences2 are given in Section 3.

The crucial step in this direction is Theorem 3.2, which provides an estimate of the form

‖Ln
−s f̃+g̃

Mn,s(x)Gs ṽs(ξ)−Un+2,l(x, s; k)‖C p(0) ≤ C p(s, ϕ, h)(θ + ca)n for all p ∈ N and n ∈ N,

where a = s0−Re s and c> 0, 0< θ < 1, C p > 0 are global constants. The assumption concerning the
Dolgopyat type estimates (3-3) of L̃s is not required for the proof of Theorem 3.2. A statement similar
to part (a) of Theorem 3.2 (corresponding to p = 0) was announced by Ikawa [1994], however as far as
we know no proof has ever been published. The proof of Theorem 3.2 is long and technical, however we
consider it in detail since it is of fundamental importance for the considerations later on. It is essential to
notice that the link between Un+2, j and the iterations of the Ruelle operator L

−s f̃+g̃ is crucial and allows
us to find suitable estimates and deduce the convergence of w0, j (x, s; k). This could be considered as
a mathematical interpretation of the interaction between the terms with complex phases in Un+2, j . The
proof of Theorem 3.2 in the case p = 0 is given in Section 3, while Section 4 deals with p ≥ 1.

In Section 5 we obtain estimates for w0, j (x, s; k) applying Theorem 3.2. The convergence of this
series is reduced to that of the series

∑
∞

n=0 Ln
−s f̃+g̃Mn,s(x)Gs ṽs(ξ). Here the Dolgopyat type estimates

(3-3) for the iterations Ln
−s f̃+g̃ play a crucial role and we can justify the analyticity of w0, j (x, s; k) for

Re s ≥ σ0 with σ0 < s0. The estimates of w0, j (x, s; k) for σ0 ≤ Re s ≤ s0 are different from those in the
domain of absolute convergence Re s > s0.

In Section 6 we construct outgoing parametrices Ph, Pg, Pe respectively for the hyperbolic, glancing
and elliptic sets of T ∗(0 j ) related to a fixed strictly convex obstacle K j . We set Sj (s) = Ph + Pg + Pe

and define the first approximation

V (0)(x, s; k)=
κ0∑

j=1

(
Sj (s)w0, j

)
(x, s; k), x ∈�,

which is an analytic function for s ∈ D0 = {s ∈ C : σ0 ≤ Re s ≤ 1, |Im s| ≥ J ≥ 2}. Here the estimates
for Un+2, j (x, s; k) obtained in Section 5 are crucial for the convergence of the series Sj (s)w0, j . Next,

2In fact, it is difficult to see how the original definitions of the operators Mn,s and Gs in [Ikawa 1994] would work without
the changes we have made in Section 3 below.
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we need to examine the leading terms of the traces of V (0) on 0l, l 6= j , and for this purpose we use
a microlocal analysis based on the frequency set introduced in [Guillemin and Sternberg 1977] and
[Gérard 1988] as well as a global construction of asymptotic solution with oscillatory boundary data
e−i sϕ j (x)b(x, s; k) with frequency set in the hyperbolic domain given by Ikawa [1988]. Thus, we show
that V (0)(x, s; k) satisfies the conditions

(1x − s2)V (0)(x, s; k)= 0 for x ∈ �̊, s ∈ D0,

V (0)(x, s; k) ∈ L2(�̊) for Re s > 0,

V (0)(x, s; k)= m(x, s; k)+ s−1 R1(x, s; k) on 0 for s ∈ D0,

with estimates

‖R1(x, s; k)‖C p(0) ≤ C p〈s+ i k〉p+2
|s|p+(N+3)/2+β0, 0< β0 < 1, for all p ∈ N,

where 〈z〉 = 1+ |z|. The main point here is that R1(x, s; k) is analytic for s ∈ D0. Finite higher order
approximations V ( j)(x, s; k), j = 0, . . . ,M − 1, are examined in Section 7, and we show that

M−1∑
j=0

V ( j)(x, s; k)= m(x, s; k)+ s−M QM(x, s; k), x ∈ 0, s ∈ D0,

with estimates
‖QM(x, s; k)‖C0(0) ≤ CM |s|N (M)〈s+ i k〉L(M), s ∈ D0,

where N (M) > M depends on M and L(M)→∞ as M→∞ and QM(x, s; k) is analytic for s ∈ D0.
The situation here is quite different from the absolutely convergent case treated in [Ikawa 1988; Burq
1993], where we have N (M)= 0 for Re s > s0+d > s0. We need a finite number M−1> (N −3)/2 of
higher order approximations, so we fix M and, applying a version of the three lines theorem, we choose
σ1 < s0 close to s0 so that for

s ∈ {s ∈ C : σ1 ≤ Re s ≤ s0+ c, | Im s| ≥ J, |s+ i k| ≤ |σ0| + c}, s0+ c ≥ 1

we get an estimate
‖QM(x, s; k)‖C0(0) ≤ BM kα,

with 0< α < M− (N −1)/2. The final step of our argument is in Section 8, where we solve an integral
equation on the boundary 0. To do this, we invert in L2(0) an operator I + Q(s; k) and we apply the
last estimate to show that Q(s; k) has a small L2(0) norm for k ≥ k1.

Depending on how much details the reader is prepared to see in trying to understand the proof of our
main result, we would suggest three different ways to proceed. The shortest one is to start by reading
Section 2 and only the beginning of Section 3 concerning the definitions of u j (x, s) and the statement
of Theorem 3.2, however omitting the proof of this theorem in Sections 3–4. Then one should read the
definition of w0, j (x, s) in Section 5, and skipping the proof of the estimates (5-8) of w0, j in Section 5,
one could go directly to the constructions in Section 6, followed by Sections 7 and 8. The arguments in
Sections 6–8 use only the estimates (5-8) and some geometrical facts from Section 2 and Appendix B,
so the reader should be able to understand the proof of Theorem 1.3 in Section 8 modulo the omitted
technical details.
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The second way to proceed is to read Section 2 and then to follow the dynamical proofs in Section
3, assuming the estimate (3-3). One could then proceed as above up to Section 8. In this way at a first
reading Section 4 could be skipped, if the reader is not interested in the details of the estimates of the
derivatives of Un+2, j . Finally, a complete reading would start with Section 2 and then Appendices A
and C, to understand the estimates (3-3) and the restrictions on the class of functions for which we have
Dolgopyat type estimates based on [Stoyanov 2007] and [Petkov and Stoyanov 2009]. Then one can
proceed as in the second way.

2. Preliminaries

This section contains some basic facts about the dynamics of the billiard flow in the exterior � of K .
Our main reference is [Ikawa 1988], whose notation we follow for the most part; see also [Burq 1993]
and [Petkov and Stoyanov 1992].

Throughout the paper we use the symbols c and C to denote positive global constants depending only
on K . These constants might be different in different expressions. Notation of the form C p, cp will be
used to denote global constants that depend on K and possibly on the number p. We assume throughout
that K is as in Section 1.

Denote by A the κ0× κ0 matrix with entries A(i, j)= 1 if i 6= j and A(i, i)= 0 for all i , and set

6A = {( . . . , η−m, . . . , η−1, η0, η1, . . . , ηm, . . . ) : 1≤ η j ≤ κ0, η j ∈ N, η j 6= η j+1 for all j ∈ Z},

6+A = {(η0, η1, . . . , ηm, . . . ) : 1≤ η j ≤ κ0, η j ∈ N, η j 6= η j+1 for all j ≥ 0},

6−A = {( . . . , η−m, . . . , η−1, η0) : 1≤ η j ≤ κ0, η j ∈ N, η j−1 6= η j for all j ≤ 0}.

Let
pr1 : S

∗(�)=�×SN−1
→� and pr2 : S

∗(�)→ SN−1

be the natural projections. Introduce the shift operator

σ :6A→6A (or σ :6+A →6+A )

by (σ (ξ))i = ξi+1 for i ∈ Z and ξ ∈6A (or for i ∈ N and ξ ∈6+A ).
Fix a large ball B0 containing K in its interior. For any x ∈ 0 = ∂K we will denote by ν(x) the

outward unit normal to 0 at x .
For any δ > 0 and V ⊂� denote by S∗δ (V ) the set of those (x, u) ∈ S∗(�) such that x ∈ V and there

exist y ∈ 0 and t ≥ 0 with y+ tu = x , y+ su ∈ RN
\ K for all s ∈ (0, t) and 〈u, ν(y)〉 ≥ δ.

Condition (H) implies:

Lemma 2.1 [Ikawa 1988, Lemma 3.1]. There exist constants δ0 > 0 and d0 > 0 such that for all i, j =
1, . . . , κ0, if a ray issued from x ∈0i with direction u hits 0 j at a point y ∈0 j such that 〈u, ν(y)〉 ≥−δ0,
then the forward ray issued from (y, v) with v = u− 2〈u, ν(y)〉ν(y) does not meet a d0 neighborhood of⋃

l 6= j Kl .

That is, there exists a constant δ′> 0 such that if for some (y, v)∈ S∗(�) with y ∈0, both its forward
and backward billiard trajectories have common points with 0, then δ′ ≤ 〈v, ν(y)〉.

Let z0= (x0, u0)∈ S∗(�). Denote by X1(z0), X2(z0), . . . , Xm(z0), . . . the successive reflection points
(if any) of the forward trajectory γ+(z0) = {pr1(φt(z0)) : 0 ≤ t}. If γ+(z0) is bounded (that is, if it has
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infinitely many reflection points), we will say that it has a forward itinerary η = (η1, η2, . . . ) (or that it
follows the configuration η) if X j (z0)∈ ∂Kη j for all j ≥ 1. Similarly, we denote by γ−(z0) the backward
trajectory determined by z0 and by . . . , X−m(z0), . . . , X−1(z0), X0(z0) its backward reflection points, if
any. For any j ∈ Z for which X j (z0) exists, denote by 4 j (z0) the direction of γ(z0)= γ−(z0)∪ γ+(z0)

at X j (z0)= pr1(φt j (z0)); that is,
4 j (z0)= lim

t↘t j
pr2(φt(z0)).

Thus, φt j (z0)= (X j (z0),4 j (z0)). A finite string j= ( j0, j1, j2, . . . , jm) of numbers ji =1, 2, . . . , κ0 will
be called an admissible configuration (of length | j |=m+1) if ji 6= ji+1 for all i=0, 1, . . . ,m−1. We will
say that a billiard trajectory γ with successive reflection points x0, x1, . . . , xm follows the configuration
j if xi ∈ 0 ji for all i = 0, 1, . . . ,m.

A phase function on an open set U in RN is a smooth (C∞) function ϕ :U→ R such that ‖∇ϕ‖ = 1
everywhere in U. For x ∈U the level surface

Cϕ(x)= {y ∈U : ϕ(y)= ϕ(x)}

has a unit normal field ±∇ϕ(y).

Remark 2.2. In this section and the next two, the C∞ smoothness assumption can be replaced by Ck

for any k ≥ 1.

Definition 2.3. A phase function ϕ defined on U is said to satisfy condition (P) on V if

(i) the normal curvatures of Cϕ with respect to the normal field −∇ϕ are nonnegative at every point of
Cϕ , and

(ii) U+(ϕ)= {y+ t∇ϕ(y) : t ≥ 0, y ∈U∩V} ⊃
⋃

i 6= j Ki .

A natural extension of ϕ on U+(ϕ) is obtained by setting ϕ(y + t∇ϕ(y)) = ϕ(y)+ t for t ≥ 0 and
y ∈U∩V.

Given a phase function ϕ satisfying condition (P) on 0 j and i 6= j , denote by Ui (ϕ) the set of all
points x of the form x = X1(y,∇ϕ(y))+ t 41(y,∇ϕ(y)), where y ∈ U ∩ 0 j and t ≥ 0 are such that
X1(y,∇ϕ(y)) ∈ 0i,( j), where

0i,( j) =

{
x ∈ 0i :

〈
ν(x), y−x

‖y−x‖

〉
≥ δ0 for all y ∈ 0 j

}
.

Then, setting ϕi (x)= ϕ(X1(y,∇ϕ(y)))+ t , one gets a phase function ϕi satisfying condition (P) on 0i

[Ikawa 1988]. The operator sending ϕ to ϕi is denoted by 8i
j , that is, 8i

j (ϕ)= ϕi .
Given an admissible configuration j = ( j0, j1, . . . , jm) and a phase function ϕ satisfying condition

(P) on 0 j0 , define

ϕ j =8
jm
jm−1
◦8

jm−1
jm−2
◦ . . . 8

j2
j1 ◦8

j1
j0 (ϕ).

Notice that for any z in the domain U j (ϕ) of ϕ j there exists (x, u) ∈ S∗(0 j0) such that x ∈ U and
γ+(x, u) follows the configuration j , that is, it has at least m reflection points and X i (x, u) ∈ 0 ji for all
i = 1, . . . ,m, and z = Xm(x, u)+ t 4m(x, u) for some t ≥ 0. Set

X−l(z, ϕ j )= Xm−l(x, u), 0≤ l ≤ m.
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Several well-known facts about the dynamics of the billiard in �, phase functions and related objects
will be frequently used throughout the paper and for convenience of the reader we state them here.

The following is a consequence of the hyperbolicity of the billiard flow in the exterior of K and can
be derived from the works of Sinai on general dispersing billiards [Sinai 1970; Sinai 1979] and from
Ikawa’s papers on open billiards, such as [Ikawa 1988]; see also [Burq 1993]. In this particular form it
can be found in [Sjöstrand 1990]; see also [Petkov and Stoyanov 1992, Chapter 10].

Proposition 2.4. There exist global constants C > 0 and α ∈ (0, 1) such that for any admissible con-
figuration j = ( j0, j1, . . . , jm) and any two billiard trajectories in � with successive reflection points
x0, x1, . . . , xm and y0, y1, . . . , ym , both following the configuration j , we have

‖xi − yi‖ ≤ C (αi
+αm−i ), 0≤ i ≤ m.

C and α can be chosen so that if there exists a phase function ϕ satisfying condition (P) on some open
set U containing x0 and y0 and such that

∇ϕ(x0)=
x1−x0
‖x1−x0‖

and ∇ϕ(y0)=
y1−y0
‖y1−y0‖

,

then ‖xi − yi‖ ≤ C αm−i for 0≤ i ≤ m.

Next, given a vector a = (a1, . . . , aN ) ∈ RN , set

Da = a1
∂

∂x1
+ · · ·+ aN

∂

∂xN
,

and for any C1 vector field f : U → RN (U ⊂ RN ) and any V ⊂ U set ‖ f ‖0(V )= supx∈V ‖ f (x)‖ and
‖ f ‖0 = ‖ f ‖0(U ). Assuming f has continuous derivatives of all orders up to p ≥ 1, set

‖ f ‖p(x)= max
a(1),...,a(p)∈SN−1

‖(Da(1) ...Da(p) f )(x)‖, ‖ f ‖p(V )= sup
x∈V
‖ f ‖p(x), ‖ f ‖p = ‖ f ‖p(U ),

‖ f ‖(p)(x)= max
0≤ j≤p

‖ f ‖ j (x), ‖ f ‖(p)(V )= sup
x∈V
‖ f ‖(p)(x), ‖ f ‖(p) = ‖ f ‖(p)(U ).

Similarly, for x ∈ 0 and V ⊂ 0 set

‖ f ‖0,p(x)= max
a(1),...,a(p)∈Sx0

‖(Da(1) . . . Da(p) f )(x)‖, ‖ f ‖0,p(V )= sup
x∈V
‖ f ‖0,p(x), ‖ f ‖0,p=‖ f ‖0,p(U ),

where Sx0 is the unit sphere in the tangent plane Tx0 to 0 at x . Finally, set

‖ f ‖0,(p)(x)= max
0≤ j≤p

‖ f ‖0, j (x), ‖ f ‖0,(p)(V )= sup
x∈V
‖ f ‖(p)(x), ‖ f ‖0,(p) = ‖ f ‖0,(p)(U ).

Remark 2.5. It follows easily from the definitions that for any δ > 0 and any integer p ≥ 1 there exists
a constant Ap = Ap(δ, K ) > 0 such that if ψ is a phase function which is at least C p+1-smooth on some
subset V of � and x ∈ V ∩0 with (x,∇ψ(x)) ∈ S∗δ (V ), then ‖∇ψ‖p(x)≤ Ap ‖∇ψ‖0,p(x).

The following comprises Proposition 5.4 in [Ikawa 1982], Propositions 3.11 and 3.12 in [Ikawa 1988]
and Lemma 4.1 in [Ikawa 1987]; see also the proof of the estimate (3.64) in [Burq 1993].
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Proposition 2.6. For every integer p≥ 1 there exist global constants C p > 0 and α ∈ (0, 1) such that for
any admissible configuration j = ( j0, j1, . . . , jm) and any phase functions ϕ and ψ satisfying condition
(P) on 0 j0 on some open set U, we have

‖∇ϕ j‖p(x)≤ C p ‖∇ϕ‖(p)(U∩ B0) for any x ∈U j (ϕ)∩ B0, (2-1)

and

‖∇ϕ j −∇ψ j‖p(x)≤ C p α
m
‖∇ϕ−∇ψ‖p(U∩ B0), (2-2)∥∥X−l( · ,∇ϕ j )− X−l( · ,∇ψ j )

∥∥
0,p(x)≤ C p α

m−l
‖∇ϕ−∇ψ‖(p)(U∩ B0) (2-3)

for any x ∈U j (ϕ)∩U j (ψ)∩ B0 and 0≤ l < m. Finally, we can choose C p > 0 so that

‖X−l( · ,∇ϕ j )‖0,p(x)≤ C p α
l for all x ∈U j (ϕ)∩ B0 and 0≤ l < m. (2-4)

Given x in the domain U of a phase function ϕ, introduce

3ϕ(x)=
(

Gϕ(x)
Gϕ(X−1(x,∇ϕ))

)1/(N−1)

,

where Gϕ(y) is the Gaussian curvature of Cϕ(y) at y. It follows from [Ikawa 1988] (or [Burq 1993])
that there exist global constants 0< α1 < α < 1 such that

0< α1 ≤3ϕ(y)≤ α < 1 (2-5)

for any phase function ϕ and any y ∈U(ϕ).
Now for any j = ( j0 = 1, j1, . . . , jm) and any x ∈U j (ϕ), slightly changing a definition from [Ikawa

1988], set
(A j (ϕ) h)(x)=3ϕ, j (x) h(X−m(x,∇ϕ j )),

where

3ϕ, j (x)=3ϕ( j1,..., jm )
(x)3ϕ( j1,..., jm−1)

(X−1(x,∇ϕ j )) . . . 3ϕ(X−m(x,∇ϕ j )) ∈ (0, 1).

The following facts can be derived from [Ikawa 1982; 1988]; see also [Burq 1993, Proposition 5.1].

Proposition 2.7. For every integer p≥ 1 there exists a global constant C p > 0 such that for any admissi-
ble configuration j = ( j0, j1, . . . , jm) and any phase function ϕ satisfying condition (P) on 0 j0 on some
open set U, we have ‖3ϕ, j‖p(x)≤ C p ‖∇ϕ‖(p)(U∩ B0) for x ∈U j (ϕ)∩ B0.

3. Ruelle operator and asymptotic solutions

Given ξ ∈ 6A, let . . . , P−2(ξ), P−1(ξ), P0(ξ), P1(ξ), P2(ξ), . . . be the successive reflection points of
the unique billiard trajectory in the exterior of K such that Pj (ξ) ∈ Kξ j for all j ∈ Z. Set

f (ξ)= ‖P0(ξ)− P1(ξ)‖.

Following [Ikawa 1988] (see also Appendix A), one constructs a sequence {ϕξ, j }
∞

j=−∞ of phase functions
such that for each j , ϕξ, j is defined and smooth in a neighborhood Uξ, j of the segment [Pj (ξ), Pj+1(ξ)]

in � and:
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(i) ‖∇ϕξ, j‖ = 1 on Uξ, j and ∇ϕξ, j satisfies part (i) of condition (P) on Uξ, j ;

(ii) ∇ϕξ, j (Pj (ξ))=
Pj+1(ξ)− Pj (ξ)

‖Pj+1(ξ)− Pj (ξ)‖
;

(iii) ϕξ, j = ϕξ, j+1 on 0ξ j+1 ∩Uξ, j ∩Uξ, j+1 ;

(iv) for each x ∈Uξ, j the surface Cξ, j (x)= {y ∈Uξ, j : ϕξ, j (y)= ϕξ, j (x)} is strictly convex with respect
to its normal field ∇ϕξ, j .

More precisely, one can proceed as follows. Given ξ ∈ 6A, let ξ− = ( . . . , ξ−2, ξ−1, ξ0) and let
ψξ− be the phase function with ψξ−(P0) = 0 and ∇ψξ−(P0) = (P1 − P0)/‖P1 − P0‖ constructed in
Proposition A.1(a). Set ϕξ,0 = ψξ− and ϕξ, j = (ψξ−)(ξ0,ξ1,...,ξ j ) for any j > 0. For j < 0, setting ξ ( j)

=

( . . . , ξ j−2, ξ j−1, ξ j ) and using again Proposition A.1, we get a phase function ψξ ( j) with ψξ ( j)(Pj ) = 0
and∇ψξ ( j)(Pj )= (Pj+1−Pj )/‖Pj+1−Pj‖. By the uniqueness of the phase functionsψη (see Proposition
A.1(c)), it follows that there exists a constant c j such that ψξ− = (ψξ ( j) + c j )(ξ j ,ξ j+1,...,ξ0) (locally near
the segment [P0, P1]). Setting ϕξ, j = ψξ ( j) + c j , one obtains a phase function defined on some naturally
determined3 open set Uξ−, j such that

(ϕξ, j )(ξ j ,ξ j+1,...,ξ−1,ξ0) = ψξ−, j < 0. (3-1)

This completes the construction of the phase functions ϕξ, j .
It follows from Proposition 2.6 that for any p ≥ 1 there exists a global constant C p > 0 such that

‖∇ϕξ, j‖(p) ≤ C p for all ξ ∈6A and j ∈ Z. (3-2)

Remark 3.1. The construction above can be carried out for j < 0 for any ξ ∈ 6−A and any billiard
trajectory γ in � with reflection points . . . , P−2(ξ), P−1(ξ), P0(ξ) such that Pj (ξ) ∈ Kξ j for all j ≤ 0.
Then one defines a phase function ψξ− with ψξ−(P0)= 0 as above, and using (3-1) one gets a sequence
{ϕξ, j } j≤0 of phase functions such that for each j < 0, ϕξ, j is defined and smooth in a neighborhood
Uξ, j of the segment [Pj (ξ), Pj+1(ξ)] in� and satisfies conditions (i)–(iv). Moreover (3-2) holds for any
p ≥ 1 and any j ≤ 0.

For any y ∈Uξ, j denote by Gξ, j (y) the Gauss curvature of Cξ, j (x) at y. Now define g :6A→ R by

g(ξ)=
1

N − 1
log

Gξ,1(P1(ξ))

Gξ,0(P0(ξ))
.

Clearly, g(ξ)= log3ϕξ,1(P1(ξ)), where 3ϕ is the function introduced in Section 2.
Given a function F :6A→ C and an integer n ≥ 0, set

varn F = sup{|F(ξ)− F(η)| : ξi = ηi for |i |< n},

and for 0< θ < 1 we define ‖F‖θ = supn(varn F)/θn, |||F |||θ = ‖F‖∞+‖F‖θ and introduce the space
Fθ (6A)= {F : |||F |||θ <∞}. Clearly Fθ (6A) is the space of all Lipschitz functions with respect to the
metric dθ on 6A defined by dθ (ξ, ξ)= 0 and dθ (ξ, η)= θn , where n ≥ 0 is the least integer with ξi = ηi

for |i |< n.

3See the proof of Proposition A.1(a).
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It follows from Proposition 2.4 that f, g ∈ Fα(6A). By Sinai’s Lemma [Parry and Pollicott 1990],
there exist f̃ , g̃ ∈ F√α(6A) depending on future coordinates only and χ1, χ2 ∈ F√α(6A) such that

f (ξ)= f̃ (ξ)+χ1(ξ)−χ1(σξ), g(ξ)= g̃(ξ)+χ2(ξ)−χ2(σξ), ξ ∈6A.

As in the proof of Sinai’s Lemma, for any k = 1, . . . , κ0 choose and fix an arbitrary sequence

η(k) = ( . . . , η
(k)
−m, . . . , η

(k)
−1, η

(k)
0 ) ∈6−A with η(k)0 6= k.

Then for any ξ ∈6A (or ξ ∈6+A ) set

e(ξ)= ( . . . , η(ξ0)
−m , . . . , η

(ξ0)
−1 , η

(ξ0)
0 = ξ0, ξ1, . . . , ξm, . . . ) ∈6A.

Then we have

χ1(ξ)=

∞∑
n=0

(
f (σ n(ξ))− f (σ ne(ξ))

)
,

and the function χ2 is defined similarly, replacing f by g.
Setting χ(ξ, s)=−sχ1(ξ)+χ2(ξ), for the function R(ξ, s)=−s f (ξ)+g(ξ)+ iπ we have R(ξ, s)=

R̃(ξ, s)+χ(ξ, s)−χ(σξ, s) for ξ ∈6A, s ∈C, where R̃(ξ, s)=−s f̃ (ξ)+ g̃(ξ)+ iπ depends on future
coordinates of ξ only (so it can be regarded as a function on 6+A×C). Below we need the Ruelle transfer
operator Ls : C(6+A )→ C(6+A ) defined by

Lsu(ξ)=
∑
ση=ξ

e R̃(η,s) u(η)

for any continuous (complex-valued) function u on 6+A and any ξ ∈6+A . Notice that

Ln
s u(ξ)= (−1)n

∑
ση=ξ

e−s f̃ (η)+g̃(η)u(η)= (−1)n Ln
−s f̃+g̃

u(ξ), n ≥ 0,

hence ‖Ln
s ‖∞ =

∥∥Ln
−s f̃+g̃

∥∥
∞

. Set L̃s = L
−s f̃+g̃.

Define the map 8 :6A→3∂K =3∩ S∗∂K (�) by

8(ξ)=

(
P0(ξ),

P1(ξ)− P0(ξ)

‖P1(ξ)− P0(ξ)‖

)
.

Then 8 is a bijection such that 8 ◦ σ = B ◦8, where B : 3∂K → 3∂K is the billiard ball map. It is
well-known — and relatively easy to see — that there exist global constants 0 < α′ < α < 1, C > 0 and
c > 0 (α is actually the constant from Proposition 2.4) such that

c dα′(ξ, θ)≤ dist(8(ξ),8(η))≤ C dα(ξ, η), ξ, η ∈6A,

where dist is the Euclidean distance in S∗(�) ⊂ RN
×SN−1. Thus, if h : 3∂K → C is Lipschitz, then

h ◦8 ∈ Fα(6A), and if v ∈ Fα′(6A), then v ◦8−1 is a Lipschitz function on 3∂K .
Let π :6A→6+A be the natural projection. For any function v :6+A →C the function v◦π :6A→C

depends on future coordinates only, so (v ◦ π) ◦8−1
: 3∂K → C is constant on local stable manifolds.

Conversely, if h :3∂K → C is constant on local stable manifolds, then v = h ◦8 :6A→ C depends on
future coordinates only, so it can be regarded as a function on 6+A . For any (p, u) ∈ S∗(�) sufficiently
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close to 3, let ω(p, u) ∈ S∗∂K (�) be the backward shift of (p, u) along the flow to the first point at the
boundary. That is, ω(p, u)= (q, u) ∈ S∗∂K (�), where p = q + t u and (p, u)= φt(q, u) for some t ≥ 0
and 〈u, ν(q)〉 > 0. Thus, ω : V0 → S∗∂K (�) is a smooth map defined on an open subset V0 of S∗(�)
containing 3.

Denote by CLip
u (3∂K ) the space of Lipschitz functions h : 3∂K → C such that h ◦ ω is constant on

any local stable manifold W s
loc(x) of the flow φt contained in the interior of V0 \ S∗∂K (�). For such h let

Lip(h) denote the Lipschitz constant of h, and for t ∈ R, |t | ≥ 1, define

‖h‖Lip,t = ‖h‖0+
Lip(h)
|t |

, ‖h‖0 = sup
x∈3∂K

|h(x)|.

To estimate the norm of L̃n
s , we will apply Dolgopyat type estimates [Dolgopyat 1998] established in

the case of open billiard flows in [Stoyanov 2001] for N = 2 and in [Stoyanov 2007] for N ≥ 3 under
certain assumptions (see Appendix C). It follows from these results that there exist constants σ0 < s0,
t0 > 1 and 0 < ρ < 1 such that for s = τ + i t with τ ≥ σ0, |t | ≥ t0 and n = p[log |t |] + l, p ∈ N,
0 ≤ l ≤ [log |t |] − 1, and for any function v ∈ C(6+A ) of the form v = h ◦8 with h ∈ CLip

u (3∂K ), we
have

‖L̃n
s v‖∞ ≤ Cρ p[log |t |]el Pr(−τ f̃+g̃)

‖h‖Lip,t . (3-3)

Here Pr (F) denotes the topological pressure of F , defined by

Pr(F)= sup
µ∈Mσ

(
hµ(σ )+

∫
6+A

F dµ
)
,

where Mσ is the set of probability measures on 6+A invariant with respect to σ and hµ(σ ) is the measure-
theoretic entropy of σ with respect to µ.

The abscissa of absolute convergence s0 introduced in Section 1 is determined by the equality

Pr(−s0 f + g)= 0.

Thus,

hν(σ )− s0

∫
f dν+

∫
g dν ≤ 0 for all ν ∈Mσ .

Let νg be the equilibrium state of g such that Pr(g) = hνg (σ )+
∫

g dνg. Then Pr(g) ≤ s0
∫

f dνg. Next,
let ν0 ∈Mσ be the equilibrium state of −s0 f + g with

hν0(σ )− s0

∫
f dν0+

∫
g dν0 = 0 .

This yields s0
∫

f dν0 = hν0(σ )+
∫

g dν0 ≤ Pr(g). Consequently,

Pr(g)∫
f dνg

≤ s0 ≤
Pr(g)∫

f dν0
,

and we deduce that s0 < 0 if only if Pr(g) < 0.
We will deal with oscillatory data on 01 (which can be replaced by any 0 j ) of the form

u1(x, s)= e−s ϕ(x) h(x), x ∈ 01, s ∈ C, σ0 ≤ Re s ≤ 1.
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Here ϕ is a C∞ phase function defined on some open subset U=U(ϕ) and satisfying condition (P) on
01 (see Section 2) and h is a C∞(0) function with small support on 01. In fact, using a C∞ extension,
we may assume that h is a C∞ function on RN , so in particular h is C∞ on U, as well. For every
configuration j = ( j0, j1, . . . , jm), j0 = 1, | j | = m+ 1, we can construct a function u j (x, s) following
a recurrent procedure [Ikawa 1994]. We construct a sequence of phase functions ϕ j (x) and amplitudes
a j (x) and define

u j (x, s)= (−1)| j |−1e−sϕ j (x)a j (x).

For the configurations j and j ′ = ( j0, j1, . . . , jm, jm+1), we have

u j0(x, s)= u1(x, s) on 01,

u j (x, s)+ u j ′(x, s)= 0 on 0 jm+1 .

The phase functions ϕ j and their domains U j (ϕ) are determined following the procedure in Section 2.
In particular, each ϕ j satisfies condition (P) on 0 jm , so it follows from item (ii) of that condition that
0i ⊂ U j (ϕ) for every i = 1, . . . , κ0, i 6= jm . The amplitudes a j (x) are determined on U j (ϕ) as the
solutions of the transport equations

2〈∇ϕ j ,∇a j 〉+ (1ϕ j )a j = 0.

More precisely, using the notation of Section 2 (see also [Ikawa 1988, Section 4] and [Ikawa 1994,
Section 4.1]), we will assume that a j (x) has the form

a j (x)= (A j (ϕ)h)(x), x ∈U j (ϕ). (3-4)

Next, let µ = (µ0 = 1, µ1, . . . ) ∈ 6
+

A . It follows from [Ikawa 1988] that there exists a unique
point y(µ) ∈ 01 such that the ray γ(y, ϕ) issued from a point y(µ) in direction ∇ϕ(y(µ)) follows the
configuration µ. Let Q0(µ)= y(µ), Q1(µ), . . . , be the consecutive reflection points of this ray. Define

f +i (µ)= ‖Qi (µ)− Qi+1(µ)‖, g+i (µ)=
1

N − 1
log

Gϕ
µ,i (Qi+1(µ))

Gϕ
µ,i (Qi (µ))

< 0,

where Gϕ
µ,i (y) denotes the Gaussian curvature of the surface

Cϕ
µ,i (x)=

{
z ∈U(µ0,µ1,...,µi )(ϕ) : ϕ(µ0,µ1,...,µi )(z)= ϕ(µ0,µ1,...,µi )(x)

}
at y. As for g(ξ), the function g+i (µ) can be expressed by means of the function 3ϕ introduced in
Section 2, namely g+i (µ)= log3ϕ(µ0,µ1,...,µi )

(Qi+1(µ)).
Using the points Q j (µ) constructed above, define ṽ ∈ Fθ (6

+

A ) by

ṽs(ξ)= e−s ϕ(Q0(ξ)) h(Q0(ξ))

if ξ0 = 1 and ṽs(ξ)= 0 otherwise. Here the function h comes from the boundary data u1(x, s).
Next, for s ∈ C and ξ ∈6+A with ξ0 = 1, following [Ikawa 1994], set

φ+(ξ, s)=
∞∑

n=0

(
−s [ f (σ ne(ξ))− f +n (ξ)] + [g(σ

ne(ξ))− g+n (ξ)]
)
. (3-5)

Formally, define φ+(ξ, s)= 0 when ξ0 6= 1, thus obtaining a function φ+ :6+A ×C→ C.
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Now for any s ∈ C define the operator Gs : C(6+A )→ C(6+A ) by

(Gsv)(ξ)=
∑
ση=ξ

e−φ
+(η,s)−s f̃ (η)+g̃(η) v(η), v ∈ C(6+A ), ξ ∈6

+

A .

(Although similar, this is different from the corresponding definition in [Ikawa 1994].)
Fix an arbitrary l = 1, . . . , κ0 and an arbitrary point x0 ∈ 0l . Define the function φ−(x0; · , · ) :

6A×C→C (depending on l as well) as follows. First, set φ−(x0; η, s)= 0 if η0 6= l. Next, assume that
η ∈ 6A satisfies η0 = l. There exists a unique billiard trajectory in � with successive reflection points
P̃i (x0; η)∈ ∂Kηi (−∞< i ≤ 0) such that x0= P̃−1(x0; η)+ t∇ψη−(P̃−1(x0; η)) for some t > 0. (See the
beginning of this section and Appendix A for the definition of ψη− .) Notice that in general the segment
[P̃−1(x0; η), x0] may intersect the interior of Kl . Denote P̃0(x0; η)= x0, and for any i < 0 set

f −i (x0; η)= ‖P̃i+1(x0; η)− P̃i (x0; η)‖, g−i (x0; η)=
1

N − 1
log

Gη,i (P̃i+1(x0; η))

Gη,i (P̃i (x0; η))
.

Then define

φ−(x0; η, s)=−s
−∞∑

i=−1

(
f (σ i (η))− f −i (x0; η)

)
+

−∞∑
i=−1

(
g(σ i (η))− g−i (x0; η)

)
.

We will show later that this series is absolutely convergent.
Next, define the operator Mn,s(x0) : C(6+A )→ C(6+A ) (depending also on l) by

(Mn,s(x0)v) (ξ)=
∑
ση=ξ

e−φ
−(x0;σ

n+1e(η),s)−χ(σ n+1e(η),s)−s f̃ (η)+g̃(η) v(η)

for any v ∈ C(6+A ), any x0 ∈ 0 and any ξ ∈6+A .
Let s0 ∈ R be the abscissa of absolute convergence of the dynamical zeta function (pages 427–428)

determined by Pr (−s0 f̃ + g̃)= 0.
The first part of the following theorem is similar to (4-10) in [Ikawa 1994]:

Theorem 3.2. There exist global constants c > 0, a > 0, θ ∈ (0, 1) and C p > 0 for every integer p ≥ 0
such that for any choice of l = 1, . . . , κ0 and x0 ∈ 0l the following hold:

(a) For all integers n ≥ 1, all ξ ∈6+A with ξ0 = l and all s ∈ C with Re s ≥ s0− a we have∣∣∣(Ln
s Mn,s(x0)Gs ṽs)(ξ)−

∑
| j |=n+3

jn+2=l

u j (x0, s)
∣∣∣

≤ C0 (θ + c a)n eC0[Re(s)(1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
(
(|s| + ‖∇ϕ‖0,(1)) ‖h‖0,0+‖h‖0,(1)

)
. (3-6)

(b) For all n ≥ 1, all ξ ∈6+A with ξ0 = l and all s ∈ C with Re s ≥ s0− a we have∥∥∥(Ln
s Mn,s( · )Gs ṽs

)
(ξ)−

∑
| j |=n+3

jn+2=l

u j ( · , s)
∥∥∥
0,p

≤ C p (θ + c a)n eC p[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
p∑

i=0
(|s|‖∇ϕ‖0,i +‖∇ϕ‖0,i+1)

i+1
‖h‖0,p−i . (3-7)

In this section we deal with part (a). The proof of part (b) is given in Section 4 below.
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Proof of Theorem 3.2(a). Fix l, x0 ∈ 0l and ξ ∈ 6+A with ξ0 = l. Then for any s ∈ C and n ≥ 1, using
[Ikawa 1994, Section 4.1], setting j = (1, j1, j2, . . . , jn+1, l), we get

u(1, j1, j2,..., jn+1,l)(x0, s)= (−1)n+2 e−s [ϕ(Q0( j))+ f +0 (x0; j)+···+ f +n+1(x0; j)] a j (x0), (3-8)

where f +i (x0; j)=‖Qi (x0; j)−Qi+1(x0; j)‖ (i = 0, 1, . . . , n+1), Qi (x0; j) being the reflection points
of the billiard trajectory issued from a point y ∈01 in direction ∇ϕ(y) which follows the configuration j
for its first n+1 reflections and is such that Qn+2(x0; j)= x0. Notice that the segment [Qn+1(x0; j), x0]

may intersect the interior of Kl .4 Then there is exactly one such trajectory. Given a function

F(ξ) :6+A → C,

introduce the notation

Fn(ξ)= F(ξ)+ F(σ (ξ))+ · · ·+ F(σ n−1(ξ)).

We have

(Ln
s Mn,s(x0)Gs ṽs)(ξ)= (−1)n

∑
σ nη=ξ

e−s f̃n(η)+g̃n(η) (Mn,s(x0)Gs ṽs)(η)

= (−1)n
∑

σ nη=ξ

e−s f̃n(η)+g̃n(η)
∑
σζ=η

e−φ
−(x0;σ

n+1e(ζ ),s)−χ(σ n+1e(ζ ),s)−s f̃ (ζ )+g̃(ζ )

×
∑
σµ=ζ

e−φ
+(µ,s)+χ(e(µ),s)−s f̃ (µ)+g̃(µ) ṽs(µ)

= (−1)n
∑

σ n+2µ=ξ
µ0=1

e−s f̃n+2(µ)+g̃n+2(µ) W (n+2)(x0;µ, s), (3-9)

where the function
W (n+2)(x0; · , · )=W (n+2)

1,l (x0; · , · ) :6
+

A ×C→ C

is defined by W (n+2)(x0;µ, s) = 0 when µ0 6= 1 or µn+2 6= l and otherwise (i.e., when µ0 = 1 and
µn+2 = l) by

W (n+2)(x0;µ, s)= ez(x0;µ,s) e−s ϕ(Q0(µ)) h(Q0(µ)), (3-10)

where we have set

z(x0;µ, s)=−φ−(x0; σ
n+1e(σµ), s)−χ(σ n+1e(σµ), s)−φ+(µ, s)+χ(e(µ), s). (3-11)

Clearly, in (3-9) the summation is over sequences

µ= (1, j1, j2, . . . , jn+1, l, ξ1, ξ2, . . . )= ( j , ξ), (3-12)

with µn+2 = l, where j = (1, j1, j2, . . . , jn+1, l). It follows from (3-9) that

[Ln
s Mn,s(x0)Gs ṽs](ξ)= (−1)n

[
Ln+2
−s f̃+g̃(W

(n+2)(x0; · , s))
]
(ξ). (3-13)

4In fact one can define the functions f +i (x0; j) (i = 0, 1, . . . , n+1) and therefore u j (x0, s) for any x0 ∈U j (ϕ) in a similar
way. Just consider the (unique) billiard trajectory issued from a point y = Q0(x0; j) ∈ 01 in direction ∇ϕ(y) following the
configuration j for its first n + 1 reflections and such that if v is the reflected direction of the trajectory at Qn+1(x0; j), then
x0 = Qn+1(x0, j)+ t v for some t ≥ 0.
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It follows from Propositions 2.4 and 2.6 that there exist global constants C > 0 and α ∈ (0, 1) such
that

| f (σ ne(ξ))− f +n (ξ)| ≤ C αn, |g(σ ne(ξ))− g+n (ξ)| ≤ C ‖∇ϕ‖0,(1) αn, (3-14)

for all ξ ∈6A and all integers n ≥ 1, so by (3-5),

φ+(µ, s)= (|s| + ‖∇ϕ‖0,(1)) O(αn)+
n+1∑
i=0

(
−s [ f (σ i e(µ))− f +i (µ)] + [g(σ

i e(µ))− g+i (µ)]
)
.

Thus, using the definitions of f̃ , g̃ and χ and the fact that χ(σ n+2e(µ), s)=χ(σ n+1e(σµ), s)+|s| O(αn),
we get

−s[ f +0 (µ)+ f +1 (µ)+ · · ·+ f +n+1(µ)] + [g
+

0 (µ)+ g+1 (µ)+ · · ·+ g+n+1(µ)]

= (s+‖∇ϕ‖0,(1)) O(αn)−φ+(µ, s)− s[ f (e(µ))+ f (σe(µ))+ · · ·+ f (σ n+1e(µ)]

+[g(e(µ))+ g(σe(µ))+ · · ·+ g(σ n+1e(µ)]

= (|s| + ‖∇ϕ‖0,(1)) O(αn)−φ+(µ, s)− s f̃n+2(µ)+ g̃n+2(µ)+χ(e(µ), s)−χ(σ n+1 e(σµ), s).

Now, fix for a moment n ≥ 1 and µ as in (3-12), and set η = σ n+1e(σ (µ)). Then we have

η = σ n+1e(σ (µ))= (. . . , ∗, ∗, µ1, µ2, . . . , µn+1;µn+2 = l, µn+3, . . . ), (3-15)

and as for φ+ one gets

φ−(x0; η, s)= (|s| + ‖∇ϕ‖0,(1)) O(αn)− s
−n−1∑
i=−1
[ f (σ iη)− f −i (x0; η)] +

−n−1∑
i=−1
[g(σ iη)− g−i (x0; η)].

From these estimates and (3-11) one derives

z(x0;µ, s)= s f̃n+2(µ)− g̃n+2(µ)−φ
−(x0; η, s)− s

n+1∑
i=0

f +i (µ)+
n+1∑
i=0

g+i (µ)+(|s| + ‖∇ϕ‖0,(1)) O(αn)

= s f̃n+2(µ)− g̃n+2(µ)− sc(x0;µ)+ d(x0;µ)+(|s| + ‖∇ϕ‖0,(1)) O(αn), (3-16)

where

c(x0;µ)=−
n+1∑
i=0
[ f (σ iη)− f −i (x0;η)]+

n+1∑
i=0

f +i (µ), d(x0;µ)=−
−n−1∑
i=−1
[g(σ iη)−g−i (x0;η)]+

n+1∑
i=0

g+i (µ).

We will show that ∣∣∣c(x0;µ)−
n+1∑
i=0

f +i (x0; j)
∣∣∣≤ C αn (3-17)

and ∣∣ed(x0;µ) h(Q0(µ))− (A j (ϕ)h)(x0)
∣∣≤ C (‖∇ϕ‖0,(1) ‖h‖0,0+‖h‖0,(1)) θn, (3-18)

for some global constant C > 0, where

θ =
√
α ∈ (0, 1).
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There exists a unique ray γ(y, ϕ) issued from a point y= yn(x0;µ)∈01 in direction ∇ϕ(y), following
the configuration µ for its first n + 1 reflections and such that if Q̃i (x0;µ) (1 ≤ i ≤ n + 1) are its first
n+ 1 reflection points and v is the reflected direction of the trajectory at Qn+1(x0; j), then

x0 = Qn+1(x0, j)+ t v

for some t ≥ 0. Set Q̃n+2(x0;µ)= x0. Notice that as before the segment [Q̃n+1(x0;µ), x0]may intersect
the interior of Kl (or be tangent to 0l at x0).

Before we continue, let us make a few simple (but essential) remarks concerning the sequences of
points

Q0(µ) ∈ 01 = 0µ0, Q1(µ) ∈ 0µ1, . . . , Qn+1(µ) ∈ 0µn+1, Qn+2(µ) ∈ 0µn+2 = 0l, . . . , (3-19)

Q̃0(x0;µ) ∈ 01 = 0µ0, Q̃1(x0;µ) ∈ 0µ1, . . . , Q̃n+1(x0;µ) ∈ 0µn+1, Q̃n+2(x0;µ) ∈ 0l, (3-20)

. . . , Pη−n−1(η) ∈ 0η−n−1 = 0µ1, . . . , P−1(η) ∈ 0η−1 = 0µn+1, P0(η) ∈ 0η0 = 0µn+2 = 0l, . . . , (3-21)

. . . , P̃η−n−1(x0; η)∈0η−n−1=0µ1, . . . , P̃−1(x0;µ)∈0η−1=0µn+1, P̃0(x0; η)∈0η0=0µn+2=0l . (3-22)

It is clear that the sequences (3-19) and (3-20) “start” from the same convex level surface ϕ= c, therefore
by Proposition 2.4 there exist constants C > 0 and α ∈ (0, 1) such that

‖Qi (µ)− Q̃i (x0;µ)‖ ≤ C αn+2−i , 0≤ i ≤ n+ 2. (3-23)

(Notice that Q̃n+2(x0;µ)= x0 ∈ 0l , so ‖Qn+2(µ)− Q̃n+2(x0;µ)‖ ≤ diam(K )≤C .) Similarly, the right
ends of sequences (3-21) and (3-22) determine points on the same unstable manifold of the billiard flow
φt , so by Proposition 2.4 these sequences “converge backwards”, that is,

‖Pi (η)− P̃i (x0; η)‖ ≤ C α|i |, i ≤ 0. (3-24)

On the other hand, the sequences (3-19) and (3-21) continue indefinitely to the right following the same
patterns. Thus, these sequences converge forwards; more precisely, using Proposition 2.4 again, we have

‖Qi (µ)− Pi−n−2(η)‖ ≤ C αi , 1≤ i. (3-25)

Similarly, the sequences (3-20) and (3-22) converge forwards to Q̃n+2(x0;µ)= P̃0(x0; η)= x0:

‖Q̃i (x0;µ)− P̃i−n−2(x0; η)‖ ≤ C αi , 1≤ i ≤ n+ 2. (3-26)

It now follows from (3-2) and (3-24) that

|g(σ i (η))− g−i (x0; η)| =

∣∣∣∣∣ 1
N − 1

log
Gη,i (Pi+1(η))

Gη,i (Pi (η))
−

1
N − 1

log
Gη,i (P̃i+1(x0; η))

Gη,i (P̃i (x0; η))

∣∣∣∣∣≤ C α|i | (3-27)

for all i ≤ 0. In particular, the second series in (3-5) is absolutely convergent, and by (3-27) and Propo-
sition 2.7, |d(x0;µ)| ≤ C for some global constant C > 0.

Next, setting

ãi (x0;µ)=
1

N − 1
log

Gϕ
µ,i (Q̃i+1(x0;µ))

Gϕ
µ,i (Q̃i (x0;µ))

(3-28)
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and using (3-23) and Proposition 2.6, one gets

|ãi (x0;µ)− g+i (µ)| =
1

N − 1

∣∣∣∣log
Gϕ
µ,i (Q̃i+1(x0;µ))

Gϕ
µ,i (Q̃i (x0;µ))

− log
Gϕ
µ,i (Qi+1(µ))

Gϕ
µ,i (Qi (µ))

∣∣∣∣
≤ C ‖∇ϕ‖0,(1)

(
‖Q̃i (x0;µ)− Qi (µ)‖+‖Q̃i+1(x0;µ)− Qi+1(µ)‖

)
≤ C ‖∇ϕ‖0,(1) αn+2−i , (3-29)

for all i = 0, 1, . . . , n+ 2.
Next, notice that by construction ϕη,i = (ϕη,−n−2)(µ1,...,µn+2+i ) + c for −n − 1 ≤ i ≤ −1. Thus, by

(2-2), (3-2) and (3-25), for all −n− 1≤ i ≤−1 we have

|g+n+2+i (µ)− g(σ iη)| =
1

N − 1

∣∣∣∣∣log
Gϕ
µ,n+2+i (Qn+2+i+1(µ))

Gϕ
µ,n+2+i (Qn+2+i (µ))

− log
Gη,i (Pi+1(η))

Gη,i (Pi (η))

∣∣∣∣∣
≤ C

(
‖∇ϕ(µ1,...,µn+2+i )−∇(ϕη,−n−2)(µ1,...,µn+2+i )‖0,(1)

+‖Qn+2+i+1(µ)− Pi+1(η)‖+‖Qn+2+i (µ)− Pi (η)‖
)

≤ C ‖∇ϕ−∇(ϕη,−n−2)‖0,(1) α
n+2+i

+C αn+2+i
≤ C ‖∇ϕ‖0,(1) αn+2+i . (3-30)

In a similar way (3-26) implies

|ãn+2+i (x0;µ)− g−i (x0; η)| ≤ C ‖∇ϕ‖0,(1) αn+2+i , −n− 1≤ i ≤−1. (3-31)

To prove (3-18), notice that (A j (ϕ)h)(x0) = 3ϕ, j (x0) h(Q̃0(x0;µ)). The definition of 3ϕ, j and
Q̃n+2(x0;µ)= x0 gives

log3ϕ, j (x0)= log3ϕ, j (Q̃n+2(x0;µ))=
n+1∑
i=0

ãi (x0;µ). (3-32)

Next, assume for simplicity that n is odd (the other case is similar), and set m = (n + 1)/2. Using
(3-27)–(3-31), we get

log3ϕ, j (x0)− d(x0;µ)=
n+1∑
i=0

ãi (x0;µ)+
−n−1∑
i=−1
[g(σ iη)− g−i (x0; η)] −

n+1∑
i=0

g+i (µ)

=

−n−1∑
i=−m−1

[g(σ iη)− g−i (x0; η)] +
m∑

i=0

[
ãi (x0;µ)− g+i (µ)

]
+

n+1∑
i=m+1

[
ãi (x0;µ)− g−i−n−2(x0; η)

]
+

−m∑
i=−1
[g(σ iη)− g+n+2+i (µ)]

= O(αm) ‖∇ϕ‖0,(1) = O(θn) ‖∇ϕ‖0,(1). (3-33)

Since, by (3-23),

|h(Q̃0(x0;µ))− h(Q0(µ))| = ‖h‖0,1O(αn), (3-34)
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this gives

|ed(x0;µ) h(Q0(µ))− (A j (ϕ)h)(x0)|

≤ |ed(x0;µ)− elog3ϕ, j (x0)| ‖h(Q0(µ))‖+3ϕ, j (x0) ‖h(Q0(µ))− h(Q̃0(x0;µ)‖

≤ emax{d(x0;µ),log3ϕ, j (x0)} |d(x0;µ)− log3ϕ, j (x0)| ‖h‖0,0+‖h‖0,(1) O(αn)

≤ C (‖∇ϕ‖0,(1) ‖h‖0,0+‖h‖0,(1)) θn,

which proves (3-18).
Similarly to (3-27) one gets | f (σ i (η))− f −i (x0; η)| ≤ C α|i |, and also

| f +i (µ)− f +i (x0; j)| = |‖Qi (µ)− Qi+1(µ)‖−‖Qi (x0; j)− Qi+1(x0; j)‖| ≤ C αn+2−i .

Combining these two estimates yields (3-17).
Next, using the notation from the beginning of this proof, notice that for any µ as in (3-12) we have

Qi (x0; j)= Q̃i (x0;µ) for all i = 0, 1 . . . , n+2, and therefore f +i (x0; j)= ‖Q̃i (x0;µ)− Q̃i+1(x0;µ)‖

for all i = 0, 1, . . . , n+ 1. (This has been used already in the proof of (3-17).)
Define the function

W̃ (n+2)(x0; · , · )= W̃ (n+2)
1,l (x0; · , · ) :6

+

A ×C→ C

by W̃ (n+2)(x0;µ, s)= 0 when µ0 6= 1 or µn+2 6= l and

W̃ (n+2)(x0;µ, s)= es f̃n+2(µ)−g̃n+2(µ)−s ϕ(Q̃0(x0;µ))−s
∑n+1

i=0 ‖Q̃i (x0;µ)−Q̃i+1(x0;µ)‖

×3ϕ, j (x0) h(Q̃0(x0;µ)), (3-35)

whenever µ0 = 1 and µn+2 = l, where j = j (n+2)(µ) is defined by (3-12).
Using (3-8), we can now write∑

| j |=n+3
j0=1

jn+2=l

u j (x0,−i s)

= (−1)n
∑

σ n+2µ=ξ
µ0=1

e
−s ϕ(Q̃0(x0;µ))−s

n+1∑
i=0
‖Q̃i (x0;µ)−Q̃i+1(x0;µ)‖

3ϕ, j (x0) h(Q̃0(x0;µ))

= (−1)n
∑

σ n+2µ=ξ

e−s f̃n+2(µ)+g̃n+2(µ) W̃ (n+2)(x0;µ, s)= (−1)n
[
Ln+2
−s f̃+g̃(W̃

(n+2)(x0; · , s))
]
(ξ).

This and (3-13) imply∣∣∣∣(Ln
s Mn,s(x0)Gs ṽs)(ξ)−

∑
| j |=n+3

jn+2=l

u j (x0, s)
∣∣∣∣
=
∣∣Ln+2
−s f̃+g̃

[
(W (n+2)(x0; · , s)− W̃ (n+2)(x0; · , s))

]
(ξ)
∣∣. (3-36)

Standard estimates for Ruelle transfer operators yield that there exists a global constant C > 0 such that

‖L p
−s f̃+g̃

H‖∞ ≤ C eC |Re s| ep Pr(−Re(s) f̃+g̃)
‖H‖∞, p ≥ 0, s ∈ C, (3-37)

for any continuous function H :6+A → C.
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Remark 3.3. The estimate above can be derived, for example, from [Stoyanov 2005]; see the proof of
Theorem 2.2, Case 1 there, which uses arguments from [Bowen 1975] (see also the proof of [Parry and
Pollicott 1990, Theorem 2.2]). More precisely, since f, g ∈ Fα(6A), where α > 0 is as in Proposition
2.4, we have f̃ , g̃ ∈ Fθ (6

+

A ), where θ =
√
α ∈ (0, 1). Setting u = −Re(s) f̃ + g̃, v = −Im(s) f̃ ,

λ= ePr(−Re(s) f̃+g̃), we have −s f̃ + g̃ = u+ i v, and λ > 0 is the maximal eigenvalue of the operator Lu

on Fθ (6
+

A ). Let h ∈ Fθ (6
+

A ) be a positive corresponding eigenfunction, that is, Luh = λ h. It is then
easy to check (see, [Stoyanov 2005, (2.2)], for example) that

‖L p
−s f̃+g̃ H‖∞ ≤

‖h‖∞
min h

λp
‖H‖∞

for any p ≥ 0 and any continuous functions H on 6+A . To estimate ‖h‖∞
min h

one can use [Stoyanov 2005,
(3.6)], for example, from which it follows that

‖h‖∞
min h

≤ K = e2θ b/(1−θ)λM eM ‖u‖∞,

where M ≥ 1 is a constant (one can take M = 2 in the situation considered here) and b=max{1, ‖u‖θ }.
Clearly, ‖u‖θ ≤ |Re s|‖ f̃ ‖θ + ‖g̃‖θ ≤ C (|Re s| + 1) and similarly, ‖u‖∞ ≤ C (|Re s| + 1), so (3-37)
follows.

To use (3-37), we need to estimate supξ∈6+A
∣∣(W (n+2)(x0; · , s)− W̃ (n+2)(x0; · , s)

)
(ξ)
∣∣.

Fix for a moment s ∈ C. According to the definitions of W (n+2) and W̃ (n+2), it is enough to consider
µ ∈6+A with µ0 = 1 and µn+2 = l. For such µ, using (3-10), (3-16), (3-32), (3-33) and (3-35), we have

|W (n+2)(x0;µ, s)− W̃ (n+2)(x0;µ, s)| =
∣∣∣es f̃n+2(µ)−g̃n+2(µ)−s ϕ(Q̃0(x0;µ))−s

n+1∑
i=0

f +i (x0; j)+
n+1∑
i=0

ãi (x0;µ)
∣∣∣

×

∣∣∣e(s+‖∇ϕ‖0,(1))O(θn)−s[c(x0;µ)−
n+1∑
i=0

f +i (x0; j)]−s[ϕ(Q0(µ))−ϕ(Q̃0(x0;µ)] h(Q0(µ))− h(Q̃0(x0;µ))
∣∣∣. (3-38)

To estimate (3-38), first notice that by (3-15) and Proposition 2.4,

| f (σ iµ)− f (σ i−(n+2)η)| ≤ C αi , 0≤ i ≤ n+ 2.

Using this, (3-24), (3-26) and Proposition 2.4 again, one gets∣∣∣ f̃n+2(µ)−
n+1∑
i=0

f +i (x0; j)
∣∣∣≤ C +

∣∣∣ fn+2(µ)−
n+1∑
i=0

f +i (x0; j)
∣∣∣

≤ C +
n+1∑
i=0
| f (σ iµ)− f +i (x0; j)| ≤ C (3-39)

for some global constant C > 0. Similarly, it follows from (3-15), (3-29) and (3-30) that∣∣∣g̃n+2(µ)−
n+1∑
i=0

ãi (x0;µ)
∣∣∣≤ C ‖ϕ‖0,(1). (3-40)

Next, notice that

|e(s+‖∇ϕ‖0,(1))O(θ
n)
− 1| ≤ C eC(|Re s|+‖∇ϕ‖0,(1)) (|s| + ‖∇ϕ‖0,(1))θn.
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Using this together with (3-17), (3-18), (3-39) and (3-40) in (3-38) we obtain

|W (n+2)(x0;µ, s)− W̃ (n+2)(x0;µ, s)|

≤ C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
∣∣e(s+‖∇ϕ‖0,(1))O(θn) h(Q0(µ))− h(Q̃0(x0;µ))

∣∣
≤ C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]

∣∣e(s+‖∇ϕ‖0,(1))O(θn)
− 1

∣∣ |h(Q0(µ))|

+C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
∣∣h(Q0(µ))− h(Q̃0(x0;µ))

∣∣
≤ C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]

(
(|s| + ‖∇ϕ‖0,(1)) ‖h‖0,0+‖h‖0,(1)

)
θn.

Thus, choosing the global constant C > 0 sufficiently large, combining the above with (3-37) gives∣∣∣Ln+2
−s f̃+g̃

[
(W (n+2)(x0; · , s)− W̃ (n+2)(x0; · , s))

]
(ξ)
∣∣∣

≤ C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
(
(|s| + ‖∇ϕ‖0,(1)) ‖h‖0,0+‖h‖0,(1)

)
(ePr(−Re(s) f̃+g̃) θ)n+2. (3-41)

Next we have (see [Parry and Pollicott 1990, Chapter 4], for example)

d
ds

Pr(−s f̃ + g̃)
∣∣∣
s=s0
=−

∫
6+A

f̃ dν =−
∫
6+A

f dν =−c0 < 0,

where ν is the equilibrium state of (−s0 f̃ + g̃). Recall that Pr(−s0 f̃ + g̃)= 0, so ePr(−Re(s) f̃+g̃) < 1 for
Re s > s0. Now assume s0− a ≤ Re s with some small constant a > 0. Then

ePr(−Re s f̃+g̃)
= 1+ c0(s0−Re s)+ O((Re s− s0)

2)≤ 1+ c1a,

for some constant c1 > 0. Thus,
ePr(−Re s f̃+g̃)θ ≤ θ + c a,

for some global constant c = c1θ > 0. Combining this with (3-41) completes the proof of (3-6). �

4. Estimates for the derivatives

In this section we prove Theorem 3.2(b). Throughout we assume that p ≥ 1.
For any x ∈ 0l close to x0 and any η ∈ 6A with η0 = l define the points P̃j (x; η) and the functions

f −i (x; η), g−i (x; η), φ
−(x; η, s), etc., as in the beginning of Section 3 replacing the point x0 by x . We

will assume that the segment [P̃−1(x0; η), x0] has no common points with the interior of Kl and x is
close enough to x0 so that the same holds with x0 replaced by x .

By Proposition A.1 there exists a unique phase function ψη (also depending on x0) defined in a neigh-
borhood U of x0 in 0l , such that ψη(x0) = 0 and the backward trajectory γ−(x,∇ψη(x)) of any point
x ∈U with ψη(x)= 0 has an itinerary ( . . . , η−l, . . . , η−1, η0), that is

∇ψη(x)=
P̃0(x; η)− P̃−1(x; η)

‖P̃0(x; η)− P̃−1(x; η)‖
,

for any x ∈Cψη∩U . (Notice that in generalψη is different from the functions ϕη, j defined in the beginning
of Section 3.) For any i < 0, denoting J = (ηi , ηi+1, . . . , η−1, η0), we can write ψη = (ψη,i )J for
some phase function ψη,i (defined on some naturally defined open subset Vη,i of RN ) satisfying Ikawa’s
condition (P) on 0ηi . We then have P̃i (x; η) = X−i (x,∇(ψη,i )J ). As in the discussion leading up to
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(3-2), one derives the existence of a global constant C p > 0 such that ‖ψη,i‖(p)(Vη,i ∩ B0)≤C p for all η
and i < 0. Using (2-4) in Proposition 2.6 with ϕ = ψη,m for some m ≥ i and replacing C p with a larger
global constant if necessary, we get

‖P̃i ( · ; η)‖0,p(x)≤ C p α
|i |, i < 0. (4-1)

Similarly, for any µ ∈6+A with µ0 = 0 and µn+2 = k we have

‖Q̃i ( · ; η)‖0,p(x)≤ C p α
n+2−i , 0≤ i ≤ n+ 2, (4-2)

‖Q̃i ( · ;µ)− P̃i−n−2( · ; η)‖0,p(x)≤ C p α
i , 0≤ i ≤ n+ 2. (4-3)

Next, recall the function 3ϕ from the beginning of this section. By Proposition 2.6,

‖∇ϕJ‖0,p ≤ C p ‖∇ϕ‖0,(p), (4-4)

for any finite admissible configuration J .
Since for any i < 0 we have g−i (x; η) = log3ψη,i (P̃i+1(x; η)), it follows from (4-1)–(4-3) and from

Proposition 2.7 that for any p ≥ 1 there exists a global constant C p > 0 such that

‖g−i ( · ; η)‖0,p(x)≤ C p α
|i |, i < 0. (4-5)

Similarly, according to (3-28) and Proposition 2.6,

‖ãi ( · ;µ)‖p(x)≤ C p ‖∇ϕ‖0,(p) α
n+2−i , 0≤ i ≤ n+ 2, (4-6)

and as in the proof of (3-31) one gets,

‖ãi ( · ;µ)− g−i−n−2( · ; η)‖p(x)≤ C p ‖∇ϕ‖0,(p+1) α
i , 0≤ i ≤ n+ 2. (4-7)

Next, given x as above, µ and n with µn+2 = l, define W (n+2)(x;µ, s) by (3-10), η by (3-15) and
W̃ (n+2)(x;µ, s) by (3-35) replacing x0 by x . We will estimate the derivatives of

W (n+2)(x;µ, s)− W̃ (n+2)(x;µ, s)

with respect to x .
First look at the first derivatives Dv[W (n+2)( · ;µ, s)− W̃ (n+2)( · ;µ, s)](x), where v ∈ Sx0. Writing

φ−(x; η, s)=−s φ−1 (x; η)+φ
−

2 (x; η), where

φ−1 (x; η)=
−∞∑

i=−1

(
f (σ i (η))− f −i (x; η)

)
, φ−2 (x, η)=

−∞∑
i=−1

(
g(σ i (η))− g−i (x; η)

)
,

we see that for any x, x ′ ∈ 0l close to x0 we have

φ−1 (x; η)−φ
−

1 (x
′
; η)=−ψη(x)+ψη(x ′),

so Dv(φ
−

1 ( · ; η))(x)= Dv(ψη(x)). Therefore, by (3-11),

Dvz( · ;µ, s)(x)=−s Dvψη(x)+
−∞∑

i=−1
Dv(g−i ( · ; η))(x). (4-8)
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Next, using the notation j = (µ0, µ1, µ2, . . . , µn+2) and

z̃(x;µ, s)= s f̃n+2(µ)− g̃n+2(µ)− s (ϕµ0) j (x),

it follows from (3-38) that

W (n+2)( · ;µ, s)− W̃ (n+2)( · ;µ, s)(x)

= ez(x;µ,s)−s ϕ(Q0(µ)) h(Q0(µ))− ez̃(x;µ,s)3ϕ, j (Q̃n+2(x;µ)) h(Q̃0(x;µ))
= I (x)+ II (x), (4-9)

where
I (x)=

(
ez(x;µ,s)−s ϕ(Q0(µ))− ez̃(x;µ,s)+log3ϕ, j (Q̃n+2(x;µ))

)
h(Q0(µ)),

II (x)= ez̃(x;µ,s)3ϕ, j (Q̃n+2(x;µ))
(
h(Q0(µ))− h(Q̃0(x;µ))

)
.

Let O be a small compact connected neighborhood of x in 0. Fix temporarily µ, s, n and η with
(3-15), and set

A(y)= z(y;µ, s)− s ϕ(Q0(µ)), B(y)= z̃(x;µ, s)+ log3ϕ, j (Q̃n+2(x;µ)), y ∈ O.

To estimate I (x) we first write ‖A‖0(O) = O(|s| + |s| ‖ϕ‖0,0 + ‖∇ϕ‖0,(1)), using the estimates in
Section 3, and also

|eA
|0,0(O)≤ C eC[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]. (4-10)

It follows from (4-6) and (3-40) that |g̃n+2(µ)| ≤ C ‖∇ϕ‖0,(1). Combining this with the definition of
z̃(x;µ, s) and (3-39) implies

‖z̃( · ;µ, s)‖0(O)= O(|s| + |s| ‖ϕ‖0,0+‖∇ϕ‖0,(1)), ‖B‖0(O)= O(|s| + |s| ‖ϕ‖0,0+‖∇ϕ‖0,(1)).

Next, we will estimate the derivatives of A and B. For any q ≥ 1 and any y ∈ O, using (4-8), (2-1) and
(4-5), we get

‖A‖0,q(y)= ‖s φ−1 ( · ; η)−φ
−

2 ( · ; η)‖0,q(y)

≤ |s| ‖∇ψη‖0,q(y)+
−∞∑

i=−1
‖g−i ( · ; η)‖0,q(y)≤ |s|Cq +Cq

−∞∑
i=−1

α|i | ≤ Cq (|s| + 1). (4-11)

Thus, for any q ≥ 0,

‖eA
‖0,q(O)≤ Cq‖eA

‖0,0(O) (max1≤i≤q ‖A‖0,i (O))q ≤ Cq eC [|Re s| (1+|ϕ|0,0)+‖∇ϕ‖0,(1)] (|s| + 1)q .

Similarly, (4-4) gives

‖z̃( · ;µ, s)‖0,q(y)= ‖s (ϕµ0) j‖0,q(y)≤ Cq |s| ‖∇ϕ‖0,(q),

while (3-31) and (4-6) imply

‖log3ϕ, j ( · )‖0,q(y)≤
n+1∑
i=0
‖ãi ( · ;µ)‖0,q(y)≤ Cq ‖∇ϕ‖0,(q) for any q ≥ 0,

so
‖B‖0,q(y)≤ Cq (|s| + 1) ‖∇ϕ‖0,(q), y ∈ O.
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The next step is to estimate the derivatives of A− B. By Proposition 2.6 and (2-1) we have

‖∇ψη−∇(ϕµ0)J‖0,q(O)≤ Cq α
n
‖∇ψη−∇ϕµ0‖0,(q) ≤ Cq α

n
‖∇ϕ‖0,(q).

Again set m = (n+ 1)/2, assuming for simplicity that n is odd, and write θ =
√
α ∈ (0, 1). As in the

proof of (3-18), for any y ∈ O and any q ≥ 1, using (4-5), (4-6) and (4-7), we have

‖A− B‖0,q(y)≤
∥∥∥−s ψη+

−∞∑
i=−1

g−i ( · ; η)+ s (ϕµ0)J −
n+1∑
i=0

ãi ( · ;µ)
∥∥∥
0,q
(y)

≤ |s| ‖ψη− (ϕµ0)J‖0,q(y)+
−∞∑

i=−m−1
‖g−i ( · ; η)‖0,q(y)

+

m∑
i=0
‖ãi ( · ;µ)‖0,q(y)+

n+1∑
i=m+1

‖ãi ( · ;µ)− g−i−n−2( · ; η)‖0,q(y)

≤ Cq(|s| ‖∇ϕ‖0,(q)+‖∇ϕ‖0,(q+1)) θ
n.

From Section 3, a similar estimate holds for q = 0. Consequently,

‖eB−A
‖0,q(O)≤ Cq‖eB−A

‖0(O)
(
max1≤i≤q ‖B− A‖0,i (O)

)q
≤ Cq eC (|Re s|+‖∇ϕ‖0,(1)) (|s| ‖∇ϕ‖0,(q)+‖∇ϕ‖0,(q+1))

qθnq .

Finally, as in the estimate just after (3-40), it follows that

‖eB−A
− 1‖0(O)≤ C eC (|Re s|+‖∇ϕ‖0,(1)) (|s| + ‖∇ϕ‖0,(1)) θn.

This, together with (4-10) and (4-11), implies that for any q ≥ 1,

‖(I )‖0,q(O)≤ Cq ‖h‖0(0) eC [|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)] (|s| ‖∇ϕ‖0,(q)+‖∇ϕ‖0,(q+1))
q θn.

Using similar estimates, for any q ≥ 1 one gets

|II |0,q(O)≤ Cq α
n eC [|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]

q−1∑
r=0
(|s| + 1)r+1 (‖∇ϕ‖0,(r))

r+1
‖h‖0,q−r (O).

It now follows from (4-9) and the estimates for I and II found above that for any p ≥ 1 we have

‖W (n+2)( · ;µ, s)− W̃ (n+2)( · ;µ, s)‖0,(p)(O)

≤ C p θ
n eC [|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)] ×

q∑
r=0

(
|s| ‖∇ϕ‖0,(r)+‖∇ϕ‖0,(r+1)

)r+1
‖h‖0,q−r (O).

Combining this with (3-6), (3-36) and the argument from the end of Section 3 completes the proof of
Theorem 3.2. �

5. Estimates for w0, j (x, s)

Our purpose in this section is to prove that the series

w0, j (x, s)=
∞∑

n=n j

∑
| j |=n+3
jn+2= j

u j (x, s), x ∈ 0 j
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is convergent and that w0, j (x, s) is an analytic function for s ∈ D1 with values in C∞(0 j ). Since we
deal with initial data m(x, s)= u1(x, s) on 01 we set n1=−2 and n j =−1, j = 2, . . . , κ0. Theorem 3.2
clearly reduces the problem to the convergence of the series

∞∑
n=0

(Ln
s Mn,s(x)Gs ṽs)(ξ), x ∈ 0 j .

Throughout this and the following sections we will use the notation

E p(s, ϕ, h)=
{

eC p[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)]
∑p

j=0(|s|‖∇ϕ‖0, j +‖∇ϕ‖0, j+1)
j+1
‖h‖0,p− j if p ≥ 1,

C0eC p[|Re s| (1+‖ϕ‖0,0)+‖∇ϕ‖0,(1)][(|s| + ‖∇ϕ‖0,(1)) ‖h‖0,0+‖h‖0,(1)] if p = 0,

where as before by C p we denote positive global constants depending on p which may change from line
to line.

First we will establish for σ0 ≤ Re s ≤ 1 the inequality

‖Ln
s Mn,s( · )− Ln−1

s Mn−1,s( · )Ls‖0,p ≤ C p E p(s, ϕ, h)θn, (5-1)

where Ls =−L
−s f̃+g̃ and σ0 < s0. The precise choice of σ0 depends on the estimates (3-3) and will be

discussed below. For this purpose we write

(Ln
s Mn,s − Ln−1

s Mn−1,s Ls)w(ξ)=−Ln+1
s [Y

(n)(x; s, µ)− Ỹ (n)(x; s, µ)](ξ),

where
Y (n)(x; s, µ)= exp

(
−φ−(x; σ n+1e(µ), s)−χ(σ n+1e(µ), s)

)
w(µ),

Ỹ (n)(x; s, µ)= exp
(
−φ−(x; σ ne(σµ), s)−χ(σ ne(σµ), s)

)
w(µ).

The inequality (5-1) follows from the estimates∥∥φ−(x; σ n+1e(ξ), s)−φ−(x; σ ne(σ (ξ)), s)
∥∥
0,p ≤ C p E p(s, ϕ, h)θn, (5-2)

|χ(σ n+1e(ξ), s)−χ(σ ne(σ (ξ)), s)| ≤ C(1+ |s|)θn, (5-3)

and the form of the operators Mn,s(x). The estimate (5-3) is a consequence of the choice of χ1, χ2 and
the fact that f, g ∈ Fθ (6A). To prove (5-2), notice that∣∣∣∣ −∞∑

i=−1

(
f (σ n+1+i e(ξ))− f

(
σ n+i e(σ (ξ)))

)∣∣∣∣≤ Cθn,

and similar estimates hold for g. The terms involving f and g are independent of x and they are not
important for the estimates of the derivatives. To deal with the terms depending on x , recall that

φ−(x; η)=−sφ−1 (x; η)+φ
−

2 (x; η),

with Dv(φ
−

1 ( · ; η)(x)= Dv(ψη(x)). Here and below we use the notation of the previous section. On the
other hand,

‖∇ψσ n+1e(µ)(x)−∇ψσ ne(σ (µ))(x)‖0,p ≤ C pα
n. (5-4)

In fact, the backward trajectories γ−(x,∇ψσ n+1e(µ)(x)) and γ−(x,∇ψσ ne(σ (µ))(x)) follow an itinerary
(µn+1, µn, . . . , µ1) and we can apply Proposition 2.6. Now we repeat the argument used in the previous
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section for the estimate of ‖A− B‖0,p. Set m = (n+ 1)/2 and assume for simplicity that n is odd. For
fixed n we set η = σ n+1e(µ), η̃ = σ ne(σ (µ)). The estimate of

‖φ−1 (x; η)−φ
−

1 (x; η̃)‖0,p

follows from (5-4). Next we write

−∞∑
i=−1

(
g−i (x; η)− g−i (x; η̃)

)
=

−∞∑
i=−m−1

(
g−i (x; η)− g−i (x; η̃)

)
+

n+1∑
i=m+1

(
g−i−n−2(x; η)− ãi (x;µ)

)
−

n+1∑
i=m+1

(
g−i−n−2(x, η̃)− ãi (x;µ)

)
.

The ‖ · ‖0,p norms of the sums from i =m+1 to n+1 can be estimated as in Section 4 by using (4-7),
since

η = σ n+1e(µ)= ( . . . , ∗, ∗, µ0, µ1, . . . , µn+1 = l, µn+2, . . . ),

η̃ = σ ne(σ (µ))= ( . . . , ∗, ∗, µ1, . . . , µn+1 = l, µn+2, . . . ),

and
n+1∑

i=m+1

∥∥g−i−n−2(x; η)− ãi (x;µ)
∥∥
0,p ≤

n+1∑
i=m+1

αi ,

n+1∑
i=m+1

∥∥g−i−n−2(x; η̃)− ãi (x;µ)
∥∥
0,p ≤

n+1∑
i=m+1

αi .

To estimate the sums from i =−m− 1 to −∞, we apply (4-5) and this completes the proof of (5-1).
From the representation

Ln
s Mn,s =

n∑
k=1
(Lk

s Mk,s − Lk−1
s Mk−1,s Ls)Ln−k

s +M0,s Ln
s ,

we get
∞∑

n=1
Ln

s Mn,sw =
∞∑

n=1

( n∑
k=1
(Lk

s Mk,s − Lk−1
s Mk−1,s Ls)Ln−k

s w+M0,s Ln
sw
)
.

Since s0 ∈ R is the abscissa of absolute convergence, for Re s > s0 we have Pr(−Re(s) f̃ + g̃) < 0 and
‖Ln

s ‖∞ ≤ 1 for all n. Consequently, the double sum in the right hand side is absolutely convergent
for Re s > s0 and we can change the order of summation. Applying Fubini’s theorem, we are going to
examine

∞∑
n=0

Ln
s Mn,sGs ṽs = (M0,s +Qs)

∞∑
n=0

Ln
s Gs ṽs, (5-5)

where

Qs =
∞∑

k=1
(Lk

s Mk,s − Lk−1
s Mk−1,s Ls).

According to (5-1), the series defining Qs is absolutely convergent for σ0 ≤ Re s ≤ 1 and

‖Qs‖0,p ≤ C p E p(s, ϕ, h).

Consequently, the problem of the analytic continuation of the left hand side of (5-5) for Re s < s0 is
reduced to that of the series

∑
∞

n=0 Ln
sws , with ws = Gs ṽs .
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The analysis of
∑
∞

n=0 Ln
sws is based on Dolgopyat type estimates (3-3); we must show that, with 8

and CLip
u (3∂K ) as in Appendix C, we havews=hs◦8 for some hs ∈CLip

u (3∂K ). This assertion is proved
in the same appendix, where we show that for |Re s| ≤ a we have ‖hs‖Lip,t ≤ C0 with C0 independent
of s. Thus for s = τ + i t , σ0 ≤ τ ≤ 1, |t | ≥ t0 > 1, we get

∞∑
n=0
‖L̃n

sws‖∞ ≤
∞∑

p=0

[log |t |]−1∑
l=0

Cρ p[log |t |]el Pr(−τ f̃+g̃)
‖hs‖Lip,t

≤
CC0

1− ρ[log |t |]

[log |t |]−1∑
l=0

el Pr(−τ f̃+g̃)
≤ C1 max{log |t |, |t |Pr(−τ f̃+g̃)

}.

On the other hand, for σ0 sufficiently close to s0 we have

Pr(−σ0 f̃ + g̃)= β̃0 < 1.

Combining this with the estimate for Qs , we conclude that for σ0 ≤ Re s and |t | ≥ t0 > 1 we have∥∥∥∥ ∞∑
n=0

Ln
s Mn,sGs ṽs

∥∥∥∥
0,0
≤ C2|t |1+β̃0 .

The analysis in [Ikawa 1982, Section 5] implies that the series defining w0, j (x, s) is absolutely con-
vergent for x ∈ 0 j , Re s ≥ s0+ d > s0 and we have

‖w0, j (x, s)‖0 j ,0 ≤ C j,d , Re s ≥ s0+ d. (5-6)

On the other hand, the analytic continuation of the series
∑
∞

n=0 Ln
s Mn,sGs ṽs established above, together

with an application of Theorem 3.2(a) with a sufficiently small ε = s0−Re s > 0, guarantee an analytic
continuation of w0, j (x, s) for x ∈ 0 j , Re s ≥ σ0, |Im s| ≥ t0 with σ0 = s0− ε. Applying Theorem 3.2(a)
once more for s = σ0+ i t , we get the estimate

‖w0, j (x, σ0+ i t)‖0 j ,0 ≤ D j |t |1+β̃0 .

The same argument works for all l = 1, . . . , κ0 and we get the same estimate for

w0,l(x, s)=
∞∑

n=nl

∑
| j |=n+3

j0=1
jn+2=l

u j (x, s), x ∈ 0l .

Clearly, we can choose 0< β̃0 < 1 independent of l = 1, . . . , κ0.
Now we will obtain C p(0 j ) estimates for w0, j (x, s). To examine the regularity of the functions

w0, j (x, s) on 0 j , set

Un+2, j (x, s)=
∑

| j |=n+3
jn+2= j

u j (x, s).

We start with an estimate of the C p(0 j ) norms of Un+2, j (x, s)
∣∣
0 j

. To this end, applying Theorem 3.2(b)
with p ≥ 1, we must estimate the norms ‖LsMn,s( · )ws‖0 j ,p, where ws = Gs ṽs and Ln

s are independent
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of x ∈ 0. We write

Ln
s Mn,sws

=M0,s Ln
sws +

m∑
k=1
(Lk

s Mk,s − Lk−1
s Mk−1,s Ls)Ln−k

s ws +
n∑

k=m+1
(Lk

s Mk,s − Lk−1
s Mk−1,s Ls)Ln−k

s ws

=: B0+ B1+ B2,

where m = [n/2]. We apply the estimate (3-3) combined with ‖hs‖Lip,t ≤ C0, t = Im s, and we obtain

‖Ln
sws‖0 ≤ Cρnelog |t |[Pr(−s f̃+g̃)−log ρ]

≤ Cρn
|t |β0 for all n ∈ N,

with 0< ρ < 1 and β0 = Pr(−σ0 f̃ + g̃)− log ρ > 0. Increasing ρ, we can arrange β0 < 1 but this is not
important for our argument (see also Remark C.4).

For the term B0 we get
‖B0‖0 j ,p ≤ C p|Im s|β0 E p(s, ϕ, h)ρn.

In the same way for the term B1 we have

‖B1‖0 j ,p ≤ C ′p|Im s|β0 E p(s, ϕ, h)
m∑

k=1
θ kρm

≤ C ′′p|Im s|β0 E p(s, ϕ, h)(
√
ρ)n.

Finally, for B2 we obtain

‖B2‖0 j ,p ≤ Dp|Im s|β0 E p(s, ϕ, h)
n∑

k=m+1
θ k
≤ D′p|Im s|β0 E p(s, ϕ, h)θm+1.

So, replacing θ by another global constant 0< θ̃ < 1 with θ̃ ≥max {
√
ρ,
√
θ}, we arrange an estimate

‖Ln
s Mn,sws‖0 j ,p ≤ Bp|Im s|β0 E p(s, ϕ, h)θ̃n.

Thus, with global constants C p, Dp we deduce

‖Un+2, j (x, s)‖0 j ,p ≤ C p|Im s|β0 E p(s, ϕ, h)(θn
+ θ̃n)≤ Dp|Im s|β0 E p(s, ϕ, h)θ̃n for all n ∈N. (5-7)

Consequently, the series w0, j (x, s) is convergent in the C p(0 j ) norm and for σ0 ≤ τ ≤ s0+ 1 we have

‖w0, j (x, τ + i t)‖0 j ,p ≤ Bp|t |β0 E p(s, ϕ, h), p ≥ 1, (5-8)

where the constants Bp are independent of j . Summing over l = 1, . . . , κ0, we obtain the same estimate
for ‖w0(x, τ + i t)‖0,p and for Re s ≥ σ0 the trace w0(x, s) is an analytic function in s with values in
C∞(0).

Observe that by contracting the domain σ0≤Re s ≤ s0+1 we may obtain better bounds for the C p(0)

norms. For example, we treat below the case p = 0 and the same argument works for p ≥ 1. In the
domain σ0 ≤ Re s ≤ s0 + d , d > 0, Im s ≥ t0, we apply the Phragmen–Lindelöf theorem [Titchmarsh
1968, 5.65]. Notice that when we decrease d > 0 the constant C j,d in (5-6) change but we always have
the bound (5-6). Consequently, for σ0 ≤ τ ≤ s0+ d we deduce

‖w0, j (x, τ + i t)‖0 j ,0 ≤ B|t |κ(τ), t ≥ 2,
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where κ(x) is a linear function such that

κ(σ0)= 1+ β̃0, κ(s0+ d)= 0.

It is clear that if d > 0 is small enough, there exist σ ′0 with σ0 <σ
′

0 < s0 and 0<β < 1 so that for τ ≥ σ ′0
we have

‖w0, j (x, τ + i t)‖0 j ,0 ≤ A j |t |β, t ≥ t0,

and similarly we treat the case t ≤−t0. Finally, for τ ≥ σ ′0, |t | ≥ t0 we have

‖w0, j (x, τ + i t)‖0 j ,0 ≤ A j |t |β . (5-9)

Here the constants A j depend on the norms of ∇ϕ and h.

Remark 5.1. In the following we will not use the estimate (5-9); however a similar argument based on
the Phragmen–Lindelöf theorem will be crucial in Section 7, where we need to control the behavior of
the remainder QM(x, s; k) and its bounds when |Im s| → ∞. On the other hand, (5-9) is related to the
assumption (1-6) of Ikawa mentioned in the Introduction. The estimate (1-6) can be established choosing
σ ′0 < s0 close to s0 and applying (3-3). This is not necessary for our exposition and we leave the details
to the reader.

6. The leading term V (0)(x, s; k)

Our purpose here is to apply the construction in Section 3 with boundary data

m(x, s; k)= ei kψ(x)b(x, s; k), x ∈ 0 j ,

where k ≥ 1 and s ∈ D0 = {s ∈ C : σ0 ≤ Re s ≤ 1, | Im s| ≥ J > 0}, with some constant J to be
chosen below. We suppose that there exists a phase function ϕ(x) satisfying condition (P) in 0 j such
that ϕ(x)|0 j =ψ(x) for x ∈ suppx b(x, s; k). The amplitude b(x, s; k) is analytic with respect to s ∈D0

and
⋃

s,k suppx b ⊂ 0 j ,

‖b(x, s; k)‖0 j ,p ≤ C p for all k ≥ 1, s ∈ D0, p ∈ N.

In the following we will use the notation 〈z〉 = (1+ |z|). For our construction it is convenient to write
the oscillatory data m(x, s; k) with phase e−sψ(x) and we set

m(x, s; k)= e−sψ(x)e(s+i k)ψ(x)b(x, s; k)= e−sψ(x)b1(x, s; k).

Then
‖b1(x, s; k)‖0 j ,p ≤ C ′p〈s+ i k〉p for all p ∈ N.

Thus our data depends on two parameters s ∈D0 and k ≥ 1. The complex parameter s will be related to
the convergence of the series w0, j (x, s; k) constructed in Section 5 starting with initial data m(x, s; k),
while the real parameter k is connected with the oscillatory data G(x)ei k〈x,η〉

|y∈0 j , |η| ≤ 1− δ1/2 < 1,
coming from a Fourier transform (see Section 8). Note that up to the end of Section 7 the parameters s
and k will not be related and the estimates obtained depend on expressions of the form 〈s+ i k〉M . After
the application of Phragmen–Lindelöf argument at the end of Section 7, we take |s+ i k|≤ Const in order
to get bounds by powers of k. We consider amplitudes b(x, s; k) depending on s and k to cover higher
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order approximations in Section 7. Starting with boundary data e−sψb1 and following the procedure in
Sections 3–5, we can justify the convergence of the series w0, j (x, s; k) which are analytic for s ∈ D0.

Now we will discuss the domain where the parameter s is running. For Im z<0 we define the resolvent
(−1K − z2)−1 of the Dirichlet Laplacian −1K related to K by the spectral calculus and we get

‖(−1K − z2)−1
‖L2(�)→L2(�) ≤

C
|z||Im z|

, Im z < 0.

The cutoff resolvent ψ(−1K − z2)−1ψ , ψ ∈ C∞0 (�), has a meromorphic continuation in C for N odd
and in C \ i R+ for N even. This resolvent is called outgoing. Setting z = −i s, we obtain an outgoing
resolvent (1K − s2)−1 which is a bounded operator in L2(�) for Re s > 0 and the analytic singularities
of ψ(1K−s2)−1ψ are included in Re s< 0. Set� j =RN

\K j and suppose that K ⊂{x ∈RN
: |x |<ρ0}.

Since the real parameter k ≥ 1 is positive, we assume in this and in the following sections that Im s < 0.
To treat the case Im s > 0, we must take k ≤ −1 and repeat the argument. For our analysis it is more
convenient to consider the outgoing resolvent R(s) acting on functions f ∈ H 2(0) defined for s outside
the set of resonances (and also for s /∈ i R+ for N even). More precisely, given f ∈ H 2(0) we define
R(s) f = v(x, s), where v(x, s) is the unique outgoing solution of the problem{

(1− s2)v = 0, x ∈ �̊,
v|0 = f.

Here outgoing means that

v(rθ)= r−(N−1)/2e−sr (w(θ)+ o(1)) and ∂rv+ sv = o(1)v as r→+∞,

uniformly with respect to θ ∈ SN−1, with some w ∈ C∞(SN−1). This condition is equivalent to

v||x |≥ρ1 = (S0(s)u)
∣∣
|x |≥ρ1

, (6-1)

for some ρ1� ρ0 and a compactly supported (in a compact set independent of s) function u, where

S0(s)= (1− s2)−1
: L2

comp(R
N )→ H 2

loc(R
N )

is the outgoing resolvent of the Laplacian in RN . If we replace K above by the strictly convex obstacle
K j , we can choose J ≥ 2 so that the outgoing resolvents

R j (s) : H p+2(0 j )→ H p+1(� j ∩ {|x | ≤ R}), p ∈ N

are analytic [Vainberg 1989; Gérard 1988] for

s ∈ D0 =
{
s ∈ C : σ0 ≤ Re s ≤ 1, |Im s| ≥ J

}
,

and w j =R j (s) f is outgoing solution of the problem{
(1− s2)w j = 0, x ∈� j ,

w j
∣∣
0 j
= f.

Moreover, for s ∈ D0 and R ≥ ρ0+ 1 we have the estimate

‖R j (s) f ‖H p+1(� j∩{|x |≤R}) ≤ CR,p〈s〉p+2
‖ f ‖H p+2(0 j ), j = 1, . . . , κ0, (6-2)
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with some constant CR,p > 0. This estimate was established for p = 0 in [Gérard 1988, Proposition
A.II.2]. For completeness we give the argument for p ≥ 1. Let χ ∈ C∞0 (R

N ) be a cutoff function such
that χ(x)= 1 for |x | ≤ R and χ(x)= 0 for |x | ≥ R+ 1. Set w j =R j (s) f and observe that

1(χw j )= 2〈∇χ,∇w j 〉+ s2χw j +1(χ)w j = F j .

The function χw j is a solution of the Dirichlet problem in ωR = (|x | ≤ R + 1)∩� j and the standard
estimates for boundary problems imply

‖χw j‖H2(ωR) ≤ CR,2
(
‖F j‖L2(ωR)+‖ f ‖H3/2(0 j )

)
.

To estimate ‖χw j‖L2(ωR), writew j = e( f )−(1K j−s2)−1(1−s2)e( f ), where e( f ) is extension operator
from H 2(0 j ) to H 5/2

comp(ωR−1). This implies ‖χw j‖L2(ωR) ≤ BR〈s〉‖ f ‖H2(0 j ), since for strictly convex
obstacles we have (see for instance [Vainberg 1989, Chapter X])

‖χ(1K j − s2)−1χ‖L2→L2 ≤ C〈s〉−1.

In the same way one estimates ‖1(χ)w j‖L2(ωR) by using another cutoff, and applying (6-2) for p = 0
we obtain this estimate for p = 1. The general case can be considered by using an inductive argument.
More precise estimates than (6-2) can be obtained following a construction of outgoing parametrix for
the Dirichlet problem outside K j [Gérard 1988, Appendix II].

Finally, notice that for v with supp v ⊂ {|x | ≤ R} we have from [Vainberg 1989] the estimates

‖S0(s)v‖H p+1(|x |≤R) ≤ CR,p‖v‖H p(|x |≤R), p ∈ N, s ∈ D0. (6-3)

For our construction we need to introduce some pseudodifferential operators depending on the param-
eter s ∈D0. For this purpose we will use the notation and the results in [Gérard 1988, A.I and A.II] (see
also [Stefanov and Vodev 1995, Appendix]). Given a set X ⊂ RN−1, we denote by C̃∞(X) the space of
the functions u(x, s), s ∈ D0, such that u( · , s) ∈ C∞(X) and p(u( · , s))= O(〈s〉−∞) for all seminorms
p in C∞(X). In a similar way we define distributions D̃′(X). Next, given two open sets X ⊂ RN−1,
Y ⊂ RN−1, consider the spaces of symbols a(x, y, η, s) ∈ Sm,l

ρ,δ (X × Y ) such that for every compact
U ⊂ X × Y , all multiindices α, β, γ and s ∈ D0 we have

sup
(x,y)∈U

∣∣∂αx ∂βy ∂γηa(x, y, η, s)
∣∣≤ Cα,β,γ,U |s|l+ρ|γ|+δ|α+β|(1+ |η|)m−|γ|.

Consider the pseudodifferential operator Op(a) ∈ Lm,l
ρ,δ(X) defined by

(Op(a)u)(x, s)=
( s

2π

)N−1
∫

e−s〈x−y,η〉a(x, y, η, s)u(y, s) dy dη,

where the support of a(x, y, η, s) ∈ Sm,l
ρ,δ (X ×Y ) with respect to (y, η) is uniformly bounded for s ∈D0

and a(x, y, η, s) is analytic for s ∈ D0. The operator Op(a) maps C̃∞0 (Y ) into C̃∞(X). Below we will
take Y = 0 j and the symbols a(x, y, η, s) will have compact supports with respect to (y, η). Moreover,
we will work with symbols in Sm,l

0,0 . We say that Op(a) is properly supported if the kernel K (x, y, s) of
Op(a) is properly supported uniformly with respect to s. Recall that K (x, y, s) is properly supported
if both projections from the support of K (x, y, s) to X and Y are proper maps (see [Hörmander 1985a,
Definition 18.1.21]). We refer to [Gérard 1988, A.I] for the properties of pseudodifferential operators
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depending on s. Notice that a properly supported pseudodifferential operator Op(a) can be defined
also by a symbol a(x, η, s). A properly supported pseudodifferential operator Op(a) is called elliptic at
(x0, η0) ∈ T ∗(X) if a(x, η, s) satisfies the estimate

|a(x, η, s)| ≥ C〈s〉p, p ≥ 0, (x, η) ∈ V, s ∈ D0,

V being a neighborhood of (x0, η0) independent of s.
Next, consider Fourier integral operators with real phase function ϕ(x, η) and complex parameter

s ∈ D0 having the form

I (u)(x, s)=
( s

2π

)N−1
∫

e−s(ϕ(x,η)−〈y,η〉)a(x, y, η, s)u(y, s) dy dη,

where as above the support of a(x, y, η, s) ∈ Sm,l
ρ,δ (X × Y ) with respect to (y, η) is uniformly bounded

for s ∈ D0 and a(x, y, η, s) is analytic for s ∈ D0. For example, the local parametrix constructed in the
hyperbolic region defined below is a Fourier integral operator in this form.

To examine the asymptotic behavior with respect to the parameter s we will use the frequency set
W̃F(u) introduced in [Gérard 1988]; see also [Guillemin and Sternberg 1977; Stefanov and Vodev 1995].
(The notation W̃F(u) is used to avoid the confusion with the wave front set W F(u) of a distribution). We
recall the definition of W̃F(u) only for the so-called finite points (x, η) ∈ T ∗(X), since this is sufficient
for our argument. Let u(x, s) ∈ D̃′(X) be a distribution depending on the parameter s so that for every
compact X ′ ⊂ X there exists M such that u(x, s)|X ′ ∈ H−M(X ′) and ‖u( · , s)

∣∣
X ′‖H−M ≤ CM〈s〉−M . We

say that (x0, η0)∈ T ∗(X) is not in W̃F(u) if there exists Op(a)∈ L0,0
ρ,δ(X), ρ+δ < 1, properly supported

and elliptic at (x0, η0) such that for every compact U ⊂ X we have∥∥(Op(a)u)(x, s)
∥∥

C j (U ) ≤ CU,M, j 〈s〉−M for all j ∈ N, M ∈ N, s ∈ D0.

If U is a neighborhood of K and if the distribution kernel Q(x, y, s) of an operator

Q(s) : C∞(0)→ C∞(U \ K )

belongs to C̃∞(U\K×0), we will say briefly that Q(s)u is a negligible term. The terms having behavior
O(〈s〉−M) with large M will also be called negligible. It is important to note that a series of negligible
terms in general is not negligible, and one needs to have uniform estimates with respect to s of the terms
of the series to conclude that such a series is negligible.

6.1. Construction of the operators Ph, Pg, Pe. In the analysis below we fix j ∈ {1, . . . , κ0}. Consider
the hyperbolic, glancing and elliptic sets on T ∗(0 j ) defined respectively by

H= {(y, η) ∈ T ∗(0 j ) : |η|< 1}, G= {(y, η) ∈ T ∗(0 j ) : |η| = 1}, E= {(y, η) ∈ T ∗(0 j ) : |η|> 1},

where (y, η) are local coordinates in T ∗(0 j ). Let χ0 ∈ C∞0 (T
∗(0 j )) be a function such that 0≤ χ0 ≤ 1

and χ0(y, η)= 0 in a small neighborhood G0 of G∪E, while χ0(y, η)= 1 for

(y, θ) ∈ G1,G1 ⊂ T ∗(0 j ) \G0 ⊂H.

Choosing a finite covering of 0 j , we may suppose that in local coordinates (y, η) we have χ0(y, η)= 1
for y ∈ 0 j , |η| ≤ 1− δ1, where

√

1− δ2
0 < 1− δ1 < 1 and δ0 ∈ (0, 1) is a global constant chosen as in
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Lemma 2.1. Thus if a ray γin issued from
⋃

l 6= j Kl meets 0 j at y ∈ 0 j with direction ξ ∈ SN−1 so that
χ0(y, ξ |Ty(0 j )) 6= 1, then the reflected or diffractive outgoing ray γout issued from (y, ξ−2〈ξ, ν(y)〉ν(y))
does not meet a neighborhood of

⋃
ν 6= j Kν depending only on δ0.

Consider a finite partition of unity of the set supp(χ0)⊂H and, as in [Gérard 1988], a finite partition
of unity of psedodifferential operators to localize the construction. Let (y0, η0) ∈ supp(χ0) ⊂H and let
χ(y, η) ∈ C∞0 (T

∗(0 j )), 0 ≤ χ(y, η) ≤ 1, be a function such that χ = 1 in a neighborhood of (y0, η0).
Let Ũ j be a small neighborhood of K j and let U j = Ũ j \ K j . Let 0χ ⊂ 0 j be the projection of supp
χ(x, η) on 0 j .

We will omit again the dependence on k in the notation if the context is clear. Given boundary data
u(y, s), in the hyperbolic region we construct an outgoing parametrix Hh,χ : C̃∞(0χ )→ C̃∞(U j ) of the
form

(Hh,χu)(x, s)=
( s

2π

)N−1
∫

e−s(ψ(x,η)−〈y,η〉)
M∑
ν=0

aν(x, y, η)s−νu(y, s) dy dη.

We have {
(1x − s2)(Hh,χu)(x, s)= s−M AM(s)u, x ∈U j ,

(Hh,χu)(x, s)
∣∣
0 j
= Op(χ)u,

where

AM(s)u =
( s

2π

)N−1
∫

e−s(ψ(x,η)−〈y,η〉)(1x − s2)
(
aM(x, y, η)

)
u(y, s) dy dη.

The construction of Hh,χ is given in [Gérard 1988, A.II.2]. Here the phase ψ(x, η) satisfies the equation

|∇xψ |
2
= 1, ψ |0 j = 〈x, η〉, (x, η) close to (y0, η0).

The amplitudes aν(x, y, η) are determined from the transport equations with initial data

a0|x∈0 j = χ(y, η), aν |x∈0 j = 0, ν ≥ 1.

Notice that aν depend only on χ(y, η) and the integration in Hh,χu is over a compact domain with respect
to y and η, so for s ∈ D0 the integral is well defined. Applying a finite partition of unity, we construct
an outgoing parametrix Hh : C̃∞(0 j )→ C̃∞(U j ) such that{

(1x − s2)(Hhu)(x, s)= s−M BM(s)u, x ∈U j ,

(Hhu)(x, s)
∣∣
0 j
= Op(χ0)u,

where the operator BM(s) is analytic with respect to s and satisfies the estimates

‖BM(s)u‖H p(U j ) ≤ C p|s|p+2
‖u‖0,0 j for all p ∈ N,

with some global constants. Let 9(x) ∈ C∞0 (U j ) be a cutoff function such that 9(x) = 1 in a small
neighborhood of K j . Then we obtain

(1x − s2)[9Hhu] = s−M9BM(s)u+ [1,9]Hhu, x ∈U j ,

and we define the outgoing parametrix

(Phu)(x, s)=9Hhu− S0(s)(s−M9BM(s)u+ [1,9]Hhu), x ∈� j .
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Thus we get 
(1x − s2)(Phu)(x, s)= 0 for x ∈� j , s ∈ D0,

(Phu)( · , s) ∈ L2(� j ) if Re s > 0,
(Phu)(x, s)

∣∣
0 j
= Op(χ0)u+Qh(s)u,

where for large M we obtain a negligible operator Qh(s) coming from the trace of the action of S0(s).
Here we use the fact that the frequency set of S0(s)w is given by the outgoing rays issued from W̃F(w)
and the outgoing rays issued from [1,9]Hhu do not meet 0 j . Notice that the operator Ph depends
analytically on s.

Let χ1(x, η)+χ2(x, η)= 1−χ0(x, η), where, for ε0 > 0 small enough, χ1(x, η) ∈ C∞0 (T
∗(0 j )) is a

function with support in {
(x, η) : 1− δ1 ≤ 1− 2ε0 ≤ |η| ≤ 1+ 2ε0

}
,

while χ2(x, η) ∈ C∞(T ∗(0 j )) has support in{
(x, η) : |η| ≥ 1+ ε0

}
.

In the glancing region following the construction in [Gérard 1988, A.II.3] and in [Stefanov and Vodev
1995, A.3]), we construct an outgoing parametrix Hg such that

(1x − s2)(Hgu)= s−M Bg(s)u for x ∈U j ,

(Hgu)( · , s) ∈ L2(� j ) if Re s > 0,
Hgu|0 j = Op(χ1)u+ s−M B ′g(s)u,

where Bg(s) and B ′g(s) are Fourier–Airy operators with complex parameter. The only difference with
the construction in [Gérard 1988] is that we have s−M Bg(s) and s−M B ′g(s) instead of operators with
kernel in C̃∞(U j ×0 j ) and C̃∞(0 j ×0 j ), respectively. For this purpose, as in the hyperbolic case, we
use a finite sum of amplitudes instead of an asymptotic infinite sum of symbols. The advantage is that
our parametrix Hg, as well as Bg(s) and B ′g(s), depend analytically on s. Now define

(Pgu)(x, s)=9Hgu− S0(s)
(
s−M9Bg(s)u+ [1,9]Hgu

)
, x ∈� j .

In the elliptic region the construction of a parametrix in [Gérard 1988, A.II.4] is given by a Fourier
integral operator with big parameter λ and complex phase function. When λ is complex, there are
some difficulties to justify this construction [Stefanov and Vodev 1995, A.4]. For this reason in the
elliptic region we introduce Peu =R j (s)(Op(χ2)u) keeping the analytic dependence on s. Thus, setting
Sj (s)= Ph + Pg + Pe, we have

(1x − s2)(Sj (s)u)(x, s)= 0 for x ∈� j , s ∈ D0,

(Sj (s)u)( · , s) ∈ L2(� j ), if Re s > 0,
(Sj (s)u)(x, s)

∣∣
0 j
= u+Q j (s)u,

where for large M the operator Q j (s) is negligible.
Our strategy is to apply the construction above to the function

w0, j (x, s)=
∞∑

n=n j

Un+2, j (x, s)
∣∣
0 j
,
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where
Un+2, j (x, s)=

∑
| j |=n+3
jn+2= j

u j (x, s),

the u j (x, s) being defined in Section 3 starting with initial data e−sϕb1(x, s; · ). Recall that in the previous
section we obtained estimates for the C p(0 j ) norms of Un+2, j (x, s) for s ∈D0. Thus applying Ph, Pg and
Pe to w0, j (x, s) we obtain convergent series. Consequently, the function (Sj (s)w0, j )(x, s) is analytic
for s ∈ D0 with values in C∞(� j ) and here we use the fact that w0, j (x, s) ∈ C∞(0 j ). It is convenient
to introduce the following.

Definition 6.1. Let ω ⊂ RN be an open set and let D be a domain in C. We say that the function
U (x, s; k) satisfies condition (S) in (ω,D) if

(i) for k ≥ 1, U ( · , s; k) is a C∞(ω)-valued analytic function in D,

(ii) U ( · , s; k) ∈ L2(ω) for Re s > 0, and

(iii) (1x − s2)U (x, s; k)= 0 in ω for every s ∈ D.

It is clear that (Sj (s)(s)w0, j )(x, s) satisfies condition (S) in (� j ,D0). Taking the sum over j =
1, . . . , κ0, we conclude that the function

V (0)(x, s)=
κ0∑

j=1
(Sj (s)w0, j )(x, s)

satisfies condition (S) in (�̊,D0).

6.2. Traces of Sj (s)w0, j on 0l . The analysis of the traces (Sj (s)w0, j )(x, s)
∣∣
0l
, l 6= j , is more difficult.

The main contributions come from (Phw0, j )
∣∣
0l

, where l 6= j . Our goal is to find the leading term
of Ph(Un+2, j (x, s)

∣∣
0 j
)
∣∣
0l
, l 6= j . Let j be a configuration such that | j | = n + 3, jn+2 = j and let

e−sϕ j (x)a j (x, s) be a term in Un+2, j (x, s). For x ∈ 0 j consider

Op(χ0)(e−sϕ j (x)a j (x, s)|0 j )=

∫
e−s(〈x−y,η〉+ϕ j (y))χ0(y, η)a j (y, s) dy dη

=

T∑
µ=1

∫
e−s(〈x−y,η〉+ϕ j (y))χ0(y, η)a j (y, s)βµ(y, η) dy dη =

T∑
µ=1

Iµ(x, s),

where the βµ ∈C∞0 (T
∗(0 j )) are cutoff functions such that

∑T
µ=1 βµ(y, η)= 1 for (y, η)∈ suppχ0(y, η).

For Iµ(x, s) we will apply the stationary phase argument with big complex parameter s ∈ D0; see,
for instance, [Gérard 1988, Lemma 2.3]. The critical points of Iµ(x, s) satisfy the equations x = y,
η =∇yϕ(y), and the matrix

G j (y)=
(
ϕ j ,y,y −I
−I 0

)
is invertible with

(G j (y))−1
=

(
0 −I
−I −ϕ j ,y,y

)
.
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An application of the stationary phase argument yields

Op(χ0)(e−sϕ jj (x)a j (x, s)|0 j )

=e−sϕ jj (x)
[
χ0(x,∇yϕ j (x))a j (x, s)+

M−1∑
q=1

Lq, j (y, Dy, Dη)(χ0a j )(x,∇yϕ j (x))s−q
+AM, j (x, s)s−M],

x ∈ 0 j . (6-4)

Here Lq, j (y, Dy, Dη) are operators of order 2q and the form of (G j (y))−1 shows that all terms in Lq, j
contain derivatives with respect to one of the variables ηi , i = 1, . . . , N − 1. Thus, the terms in (6-4)
with coefficients s−q , for 1≤ q ≤ M − 1, vanish if |∇yϕ j (x)| ≤ 1− δ1.

For s ∈ D0 we have

Ph

[ κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

]
=R j (s)

[(
Op(χ0)+Qh(s)

)( κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)]
,

and for large M , the operator Qh, j,lu = (R j (s)Qh(s)u)
∣∣
0l

, j 6= l, is negligible.
The leading contribution in the traces on 0l comes from the trace of the terms

R j (s)
(
e−sϕ j (x)χ0(x,∇yϕ j (x))a j (x, s)

∣∣
0 j

)
,

that is from the action of R j (s) on the leading term in (6-4). To examine this contribution we construct,
as [Ikawa 1988, Section 4], an asymptotic outgoing global solution

v j ,M(x, s)= e−sψ j (x)
M∑
µ=1

c j ,µ(x, s)s−µ

of the problem {
(1x − s2)v j ,M(x, s)= s−Mr j ,M(x, s) for x ∈� j ,

v j ,M(x, s)
∣∣
0 j
= e−sϕ j (x)χ0(x,∇yϕ j (x))a j (x, s)

∣∣
0 j
.

We have ψ j (x) = ϕ j (x) on 0 j and the phase ψ j (x) is defined following the procedure in Section 2.
Moreover, ψ j (x) satisfies condition (P) on 0 j . Next, the amplitudes c j ,µ(x, s) are determined globally
by the transport equations. It is easy to see that

c j ,0(x, s)
∣∣
0l
=−a( j ,l)(x, s)

∣∣
0l
, l 6= j,

where ( j , l) is the configuration ( j0, j1, . . . , jn+2 = j, l). This follows from the definition of a( j ,l)(x, s)
in Section 3 and from the transport equation for the leading term c j ,0 [Ikawa 1988, Section 4] com-
bined with the fact that if c j ,0(x, s)|0l 6= 0, then x must lie on a ray issued from (y,∇yϕ j (y)) with
χ0(y,∇yϕ j (y))= 1. The minus appears since for the configurations ( j , l) we have to include the factor
(−1)n+4. Next, choose a function8∈C∞0 (|x | ≤ρ0+1) equal to 1 in a neighborhood of K and introduce

V j ,M(x, s)=8v j ,M(x, s)− S0(s)
(
s−Mr j ,M(x, s)+ [1,8]v j ,M(x, s)

)
.

We have (1x − s2)V j ,M(x, s)= 0 in � j and for M large the traces

V j ,M(x, s)
∣∣
0l
−R j (s)

(
e−sϕ j (x)χ0(x,∇yϕ j (x))a j (x, s)

∣∣
0 j

)∣∣
0l
, l = 1, . . . , κ0
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are negligible terms coming from the action of S0(s). We obtain this first for the trace on 0 j and then use
the estimates for the resolvent R j (s). On the other hand, for large M we get V j ,M(x, s)

∣∣
0l
=v j ,M(x, s)

∣∣
0l

modulo negligible terms related to the action of S0(s). Thus the leading term of the trace on 0l is
e−sϕ j (x)c j ,0(x, s)

∣∣
0l

.
Next, consider e−sϕ j (x)b j (x, s)|0 j with b j (x, s)|0 j = 0 for |∇yϕ j (x)| ≤ 1−δ1. Moreover, assume that

if b j (x, s) 6= 0 for x ∈ 0 j , then x is lying on a segment issued from some obstacle Kl , with l 6= j . From
(6-4) we see that the terms with coefficients s−q , 1 ≤ q ≤ M − 1, have these properties. According to
[Gérard 1988, Theorem A.II.12], the frequency set of R j (s)(e−sϕ j (x)b j (x, s)|0 j ) is included in the set
determined by the outgoing rays issued from W̃F(e−sϕ j (x)b j (x, s)|0 j ). According to Lemma 2.1, our
choice of δ1 shows that these rays do not meet a neighborhood of

⋃
l 6= j Kl . Consequently, the traces of

R j (s)(e−sϕ j (x)b j (x, s)|0 j ) on 0l, l 6= j , are negligible. It is clear also that all terms with factors s−q will
produce traces with this factor.

For fixed n and fixed j , with l 6= j , we take the finite sum over the configurations | j | = n + 3 of
all terms having coefficient s−q , 1 ≤ q ≤ M , in the trace R j (s)(Op(χ0)Un+2, j |0 j )

∣∣
0l

and we denote
this sum by s−1 Rh,n, j,l(x, s). Since we cannot estimate directly the series with the contributions s−q ,
we are going to include in s−1 Rh,n, j,l(x, s) all terms mentioned above as negligible and appearing with
coefficients s−q , 1≤ q ≤ M .

Thus for fixed n, summing over j = 1, . . . , κ0 with j 6= l and j , we obtain all configurations j with
| j | = n+ 4, jn+3 = l and we conclude that(

Ph

κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)∣∣
0l
=−

∑
| j |=n+4

jn+3=l

e−sϕ j (x)a j (x, s)
∣∣
0l
+s−1 Rh,n, j,l(x, s)+Qh, j,l

( κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)
. (6-5)

To treat (Pgw0, j )|0l , l 6= j , we apply the same argument. According to the results in [Gérard 1988,
Appendix II], the frequency set of R j (s)

(
Op(χ1)Un+2, j (x, s)

∣∣
0 j

)
is related to the outgoing rays issued

from the frequency set of

Op(χ1)
( ∑
| j |=n+3
jn+2= j

e−sϕ j (x)a j (y, s)
∣∣
0 j

)
.

For every j the frequency set of Op(χ1)
(
e−sϕ j (y)a j (y, · )

∣∣
0 j

)
is given by (y,∇yϕ j (y)) such that

y ∈ supp a j (y, · )
∣∣
0 j
, |∇yϕ j (y)| ≥ 1− δ1.

If y ∈ 0 j has this property and a j (y, · )|0 j 6= 0 for some configuration j , then y is lying on a segment
issued from some 0µ, µ 6= j . Our choice of δ1 guarantees that the outgoing rays mentioned above pass
outside a neighborhood of

⋃
l 6= j K j . Thus, we deduce

(
Pg

κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)∣∣
0l
= s−M Rg,n, j,l(x, s). (6-6)

Here the series
∑
∞

n=0 Rg,n, j,l is convergent but we cannot show that s−M ∑∞
n=0 Rg,n, j,l is negligible.

In fact, the results of Theorem 3.2 cannot be applied to this series and for this reason we take M = 1
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in (6-6) and consider Rg,n, j,l together with the terms Rh,n, j,l . A similar analysis can be applied to
R j (s)(Op(χ2)Un+2, j |0 j )

∣∣
0l

since there are no outgoing rays issued from the elliptic region, and we get(
R j (s)(Op(χ2)Un+2, j )

∣∣
0 j

)
|0l = Qe, j,l(Un+2, j

∣∣
0 j
),

where the operator Qe, j,l has kernel in C̃∞(0l ×0 j ).
Summing over n and j = 1, . . . , κ0, we conclude that for x ∈ 0 we have

V (0)(x, s; k)= m(x, s; k)+ s−1 R1(x, s; k)+ s−M QM,0(x, s; k), (6-7)

where the notation makes explicit the dependence on k. The cancellation of the leading terms follows
from the equality (

a( j ,l)(x, s)+ a j (x, s)
)∣∣

x∈0l
= 0, l 6= j,

and the representation (6-5). The negligible terms coming from the action of Qh, j,l , Qe, j.l , j, l=1, . . . , κ0

to w0, j are included in s−M QM,0(x, s; k), while R1(x, s; k) is the sum over n, j and l of the contributions
Rh,n, j,l(x, s; k) and Rg,n, j,l(x, s; k) coming from (6-6), with M=1. Applying the estimates for Un+2, j |0 j

and the analyticity of Ph , Pg and Pe, we deduce that QM,0(x, s; k) and V (0)(x, s; k)|0 are analytic for
s ∈ D0. Thus we conclude that R1(x, s; k) is analytic for s ∈ D0. We can prove directly that R1(x, s; k)
is analytic examining the series

∞∑
n=n j

Ph,n, j,l(x, s; k),
∞∑

n=n j

Pg,n, j,l(x, s; k).

In fact, it suffices to obtain estimates |Ph,n, j,l | ≤ Bh, j,l θ̃
n for all n ∈ N, and we treat this question in

the next subsection. Thus the analyticity of R1(x, s; k) is not related to the analyticity of V (0) and QM

and we may work with a parametrix Pe which is not analytic in s (see [Stefanov and Vodev 1995, A.4]
and Section 8). This could simplify a little bit our argument, but we arrange V (0) to be analytic in order
to have similarity with the construction in [Ikawa 1988]. On the other hand, to obtain estimates for the
outgoing resolvent better than (6-2) we must use an approximation by a parametrix.

6.3. Estimates of R1(x, s; k). To estimate R1(x, s; k) we need to estimate Rh,n, j,l and Rg,n, j,l . To deal
with Rh,n, j,l , we use the equality (6-5). Notice that the trace(

Ph

κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)∣∣
0l

is given by the trace on 0l of

S0(s)
((

s−M BM(s)+ [1,9]Hh
) κ0∑

j=1
j 6=l

Un+2, j
∣∣
0 j

)
.

The term involving s−M is easy to handle, and we treat the term with [1,9]. Applying the estimates
(5-7) with p= 0 and applying the L2 estimates for the action of the Fourier integral operator Hh , we get∥∥∥∥[1,9]Hh

( κ0∑
j=1
j 6=l

Un+2, j

)∣∣
0 j

∥∥∥∥
0
≤ C j,l |s|2+β0〈s+ i k〉θ̃n,
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where β0 and 0<θ̃ <1 were introduced in Section 5 and 〈s+ i k〉 comes from (5-7). Next for g∈C0(RN )

with compact support we write S0(s)g = Es ∗ g, where Es(x) is the kernel of S0(s). This kernel has the
form

Es(x)=
i
4

( s
2π |x |

)γ
H (1)
γ (s|x |), γ =

N − 2
2

,

where H (1)
γ (z) is the Hankel function of first type. Since 0l ∩ supp9 = ∅, we can estimate the C p

norms of (S0(s)[1,9]w)
∣∣
0l

exploiting the estimates for the derivatives of H (1)
γ (z). Thus, setting βN =

(N − 3)/2+β0, we deduce∥∥∥∥S0(s)[1,9]Hh

κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

∥∥∥∥
0l ,p
≤ B j,l,p〈s+ i k〉|s|2+p+βN θ̃n. (6-8)

Next, for the sum ∑
| j |=n+4

jn+3=l

e−sϕ j (x)a j (x, s)
∣∣
0l

in (6-5) we apply Theorem 3.2(b). Consequently, summing over n, we obtain estimates for

s−1
∞∑

n=n j

Ph,n, j,l,

with the same order as in (6-8).
The analysis of Rg,n, j,l is very similar. To estimate

[1,9]Hg

( κ0∑
j=1
j 6=l

Un+2, j
∣∣
0 j

)
,

we observe that outside a small neighborhood of K j the parametrix Hg in the glancing domain can be
written as a Fourier integral operator with real phase and we may estimate

(
S0(s)[1,9]Hgw

)∣∣
0l

as in
the hyperbolic case discussed above. For the remainder Q0,M(x, s; k) we have

‖QM,0(x, s; k)‖0,p ≤ Dp〈s+ i k〉p+2
|s|p+2+β0, p ∈ N, (6-9)

where 〈s+ i k〉p+2 comes form the estimates of the amplitude b1(x, s; k). Finally, we get the following
crude estimates

‖R1(x, s; k)‖0,p ≤ C p〈s+ i k〉p+2
|s|p+3+βN , s ∈ D0, p ∈ N (6-10)

and the term s−1
‖R1(x, s; k)‖0,0 has no order O(|s|−1) for all s ∈ D0.

It is important to note that in the domain of absolute convergence Re s > s0+ d > s0 we have better
estimates for R1(x, s; k). First, in this domain, for all γ and |x | ≤ R the series

Dγ
x

( ∞∑
n=1

∑
| j |=n

e−sϕ j (x)a j (x, s)
)

(6-11)
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are absolutely convergent [Ikawa 1988]. Next Proposition 2.6 shows that the phases ϕ j (x) and their
derivatives are uniformly bounded with respect to j and by recurrence we obtain the absolute convergence
of the series

∞∑
n=1

∑
| j |=n

e−sϕ j (x)Lq, j (x, Dx)a j (x, s),

Lq, j (x, Dx) being partial differential operators of order q independent of j and n with coefficients
uniformly bounded with respect to j . Now in the equality (6-4) we can sum over the configurations j
and after the action of R j (s) the sum of all terms with coefficients s−q , 1≤ q ≤M−1, and the remainder
yield contributions which can be included in QM,0. To deal with the traces of

∞∑
n=0

∑
| j |=n+3
jn+2= j

R j (s)
(
χ0(x,∇yϕ j (x))a j (x, s)e−sϕ j (x)

∣∣
0 j

)
,

we can exploit the estimates in [Ikawa 1988, Sections 4 and 5] for the amplitudes c j ,µ(x, s) of the
asymptotic solutions v j ,M(x, s). In the same way, we can estimate and sum the negligible contributions
s−M Rg,n, j,l coming from the glancing region and show that they yield a negligible term. Thus, for
Re s > s0+ d > s0 we deduce

‖R1(x, s; k)‖0,p ≤ C p,d〈s+ i k〉p+2
|s|p, p ∈ N, (6-12)

while for |s+ i k| ≤ a+ 1 we obtain

‖R1(x, s; k)‖0,p ≤ C ′p,dk p, p ∈ N. (6-13)

7. Higher order terms of the asymptotic solution

Our purpose is to improve (6-7) by higher order approximations V ( j)(x, s; k), j = 1, . . . ,M −1, where
M is an integer such that M >(N−1)/2. In particular, for N = 2 we can take M = 1 and the construction
in Section 6 is sufficient. Recall that the term R1(x, s; k) in the previous section has the form

∞∑
n=n j

κ0∑
j,l=1

(Rh,n, j,l(x, s; k)+ Rg,n, j,l(x, s; k)),

with n1 =−2 and n j =−1 for j 6= 1. Fix j and l and set

e−sϕn(x)m( j,l)
1,n (x, s; k)= Rh,n, j,l(x, s; k)+ Rg,n, j,l(x, s; k), x ∈ 0l,

where ϕn(x) is one of the phases ϕ j (x) in Un+2, j (x, s; k). The choice of ϕn is not important and we
omit in the notation the dependence on ( j, l). The analysis in the previous section shows that we have
the estimates ∥∥m( j,l)

1,n (x, s; k)
∥∥
0l ,p
≤ Dp〈s+ i k〉p+2

|s|p+3+βN θ̃n, for all n ∈ N, (7-1)

where 0< θ̃ < 1 is the same as in Section 5. Here and below we denote by F ( j,l) some terms depending
on the traces on K j and Kl, j, l = 1, . . . , κ0, while j , j ′ denote configurations. Now for fixed n we
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apply the construction of Sections 3 and 6 to the oscillatory data e−sϕn(x)m( j,l)
1,n (x, s; k) and we obtain a

series
∑
∞

m=−1 U ( j,l)
1,n,m(x, s; k) with

U ( j,l)
1,n,m(x, s; k)=

∑
| j ′|=m+3

j ′m+2=l

(−1)m+2e−sϕ1,n, j ′ (x)a( j,l)
1,n, j ′(x, s; k),

where the phase functions ϕ1,n, j ′(x) depend on the configurations j ′. Taking the summation over n, we
are going to study the double series

w1, j,l(x, s; k)=
∞∑

n=n j

∞∑
m=−1

U ( j,l)
1,n,m(x, s; k)

∣∣
0l
, x ∈ 0l . (7-2)

We repeat the argument of Section 5 for σ0 ≤ Re s ≤ 1 and applying (7-1) and Theorem 3.2(b), we get
the estimates∥∥U ( j,l)

1,n,m(x, s; k)
∥∥
0l ,p
≤ D′p〈s+ i k〉p+3

|s|p+4+βN+β0 θ̃n+m for all n ∈ N and m ∈ N, (7-3)

with constants D′p independent of n,m ∈N. Thus, the double series definingw1, j,l(x, s; k) is convergent.
Applying Sl(s) to w1, j,l(x, s; k) and exploiting (7-3), we justify the convergence of the corresponding
series and for s ∈ D0 we obtain analytic terms. The function

V (1)(x, s; k)=−s−1
κ0∑

j,l=1

Sl(s)(w1, j,l(x, s; k))

satisfies condition (S) in (�̊,D0) and for s ∈ D0 and x ∈ 0 we get

V (0)(x, s; k)+ V (1)(x, s; k)= m(x, s; k)+ s−2 R2(x, s; k)+ s−M QM,1(x, s; k). (7-4)

Here R2(x, s; k) and QM,1(x, s; k) are analytic for s ∈D0, QM,1 satisfies the same estimates as in (6-9),
while for R2(x, s; k) we have

‖R2(x, s; k)‖0,p ≤ C p〈s+ i k〉p+3
|s|p+6+2βN for all p ∈ N. (7-5)

For Re s > s0+ d > s0 we obtain again better estimates, since we can choose ϕn(x)= ϕ j (x) and

m( j,l)
1,n (x, s; k)= c j ,1(x, s; k)

∣∣
0l
,

where c j ,1(x, s; k) is the coefficient in front of s−1 in the asymptotic solution v j ,M(x, s; k) introduced
in Section 6. Exploiting the convergence of the series (6-11), we deduce that in this domain the growth
in the right hand side of (7-5) is 〈s+ i k〉p+3

|s|p.
Repeating this procedure, we construct V ( j)(x, s; k), 0≤ j ≤ M−1, which are analytic functions for

s ∈ D0 with values in C∞(�). They satisfy condition (S) in (�̊,D0) and we have
M−1∑
j=0

V ( j)(x, s; k)= m(x, s; k)+ s−M QM(x, s; k), x ∈ 0, (7-6)

with polynomial estimates

‖QM(x, s; k)‖0,0 ≤ CM〈s+ i k〉L(M)|s|N (M), s ∈ D0. (7-7)
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Here QM(x, s; k) is analytic for s ∈ D0 and CM depend on the norms of the derivatives of ψ(x) and
b(x, s; k) involved in the boundary data m(x, s; k) introduced in the beginning of Section 6. Thus, we
establish crude estimates with orders N (M), L(M) depending on M and it seems quite difficult to obtain
more precise estimates for s ∈D0. Of course, we have N (M) > M , however we will apply the estimates
above for fixed M and the precise value of N (M) is not important for our argument. For Re s≥ s0+d> s0,
Im s ≤−J the absolutely convergence of (6-11) implies

‖QM(x, s; k)‖0,0 ≤ CM,d〈s+ i k〉L(M). (7-8)

The constant CM,d depends on d but L(M) is independent of d . Now we fix an integer M ∈ N so that
M > (N − 1)/2, N (M) and L(M) are fixed. Next, we fix d > 0 small enough so that

d
N (M)

s0+ d − σ0
< M −

N − 1
2

.

In the domain {s ∈ C : σ0 ≤ Re s ≤ s0+ d < 0, Im s ≤−J } consider the function

F(x, s; k)=
QM(x, s; k)
(s+ i k)L(M) ,

which is analytic with respect to s. The estimates (7-7) and (7-8) combined with the Phragmen–Lindelöf
theorem [Titchmarsh 1968] show that for s ∈ {s ∈ C : Re s = t, σ0 ≤ t ≤ s0+ d, Im s ≤−J }, we have

‖F(x, s; k)‖0,0 ≤ AM |s|κ(t),

κ(t) being the linear function such that κ(σ0) = N (M), κ(s0 + d) = 0. We can choose σ1 < s0 so that
0 ≤ κ(t) ≤ α for σ1 ≤ t ≤ s0 + d with some 0 < α < M − (N − 1)/2. Thus, for σ1 ≤ Re s ≤ s0 + d ,
Im s ≤−J , |s+ i k| ≤ |σ0| + 1 we get

‖QM(x, s; k)‖0,0 ≤ AM |s+ i k|L(M)|s|α ≤ BM kα, k ≥ 1. (7-9)

Moreover, the constant BM depends on the derivatives of∇ψ and b(x, s; k) involved in the boundary data
m(x, s; k) as well as on some global constants depending only on K . The restriction σ1 ≤ Re s ≤ s0+d
with s0+d<0 was used only to guarantee that the factor (s+i k)L(M)

6=0 in this domain. For Re s> s0+d
we can apply the estimate (7-8) to obtain (7-9) with another constant AM and α = 0. Consequently, for
some fixed c such that s0+ c ≥ 1 the estimates (7-9) hold for

s ∈ D1 = {s ∈ C : σ1 ≤ Re s ≤ s0+ c, Im s ≤−J, |s+ i k| ≤ |σ0| + c}.

8. Integral equation on the boundary

In this section we define for s ∈D1 an operator R(s, k) : L2(0)→ C∞(�̊), where k > J + |σ0| + c will
be taken sufficiently large and D1 is the domain introduced in the previous section. The operator R(s, k)
satisfies 

(1x − s2)R(s, k) f = 0 for x ∈ �̊,
R(s, k) f ∈ L2(�) if Re s > 0,
R(s, k) f

∣∣
0
= f,

(8-1)
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and to arrange the boundary condition we will solve an integral equation on 0. After the construction
of a solution

∑M−1
j=0 V ( j)(x, s; k) with the properties in Section 7, it was mentioned in [Ikawa 1988,

Proposition 2.4] that the existence of R(s, k) can be obtained by the argument in [Ikawa 1987]. On
the other hand, [Ikawa 1987] deals with the case of two strictly convex obstacles and in that case the
geometry of the trapping rays is rather different from that in [Ikawa 1988] and our paper. For the sake of
completeness we will discuss briefly how we can construct R(s, k) by using the construction in Sections
6 and 7 in the hyperbolic region and those in [Ikawa 1982; 1988; Stefanov and Vodev 1995] in the
glancing and elliptic regions.

Fix M > (N − 1)/2 and 0 < α < M − (N − 1)/2 as in the previous section and j ∈ {1, . . . , κ0}. Let
Y ⊂ 0 j and let F ∈ L2(0 j ) with supp F ⊂ Y . As in Section 6, choose local coordinates (y, η) in T ∗(Y )
with y = (y1, . . . , yN−1) ∈W ⊂ RN−1, and write

F(y)= (2π)−N+1
∫

ei 〈y,η〉 F̂(η) dη =
( k

2π

)N−1
G(y)

∫
ei k〈y,η〉 F̂(kη) dη,

where G(y) ∈ C∞0 (R
N−1), G(y)= 1 on supp F(y) and

F̂(η)=
∫

e−i 〈y,η〉F(y) dy.

Consider a partition of unity χ0(η)+ χ1(η)+ χ2(η) = 1 with C∞ functions χi (η) between 0 and 1
and such that

suppχ0(η)⊂ {η : |η| ≤ 1− δ1/2},

suppχ1(η)⊂ {η : 1− 2
3δ1 ≤ |η| ≤ 1+ 2

3δ1},

suppχ2(η)⊂ {η : |η| ≥ 1+ δ1/2},

0< δ1 < 1 being the constant in Section 6. Set

Fi (y)=
( k

2π

)N−1
G(y)

∫
ei k〈y,η〉χi (η)F̂(kη)dη, i = 0, 1, 2.

To treat F0 we will apply the results of Sections 3–7. Consider the function

ψ(y; η)= 〈y, η〉, y ∈W, |η|< 1− δ1/2.

We can construct a phase function ϕ = ϕ(x; η) defined in V j such that

(i) ϕ
∣∣
supp G= ψ(y; η), y ∈W ,

(ii) (∂ϕ/∂ν)(x; η)
∣∣
V j∩0 j

≥ δ2 > 0, y ∈W ,

(iii) the phase ϕ(x; η) satisfies condition (P) on 0 j .

The local existence of ϕ(x; η) satisfying the conditions (i)–(ii) has been discussed in [Ikawa 1987;
1988]. To arrange (iii), we use a suitable continuation and we treat this problem in Appendix B below.
Starting with the oscillatory data m0(y; η) = (2π)−N+1G(y)ei k〈y,η〉, |η| ≤ 1− δ1/2 and applying the
argument of Sections 6 and 7, we construct an approximative solution V0(x, s; k, η) which satisfies
condition (S) in (�̊,D1) and such that

V0(y, s; k, η)= m0(y; η)+ s−M QM(y, s; k, η), x ∈ 0.
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Moreover, for QM(x, s; k, η) we have the estimate (7-9) and it is clear that the constants BM and α in
(7-9) can be chosen uniformly with respect to η, |η| ≤ 1− δ1/2. Define the operator

U0(s; k)F =
∫

V0(x, s; k, η)χ0(η)F̂(kη)k N−1dη

with values in C∞(�) so that U0(s; k)F satisfies condition (S) in (�̊,D1) and

U0(s; k)F |0 = F0+ s−M
∫

QM(x, s; k, η)χ0(η)F̂(kη)k N−1dη = F0+ L0(s; k)F.

Therefore

‖L0(s; k)F‖2L2(0) ≤ C0

(∫
|η|≤1−δ1/2

k−M+(N−1)/2+α
|F̂(kη)|k(N−1)/2dη

)2

≤ C0k−2M+N−1+2α
∫
|η|≤1−δ1/2

dη
∫

RN−1
|F̂(kη)|2k N−1dη ≤ C1k−2M+N−1+2α

‖F‖2L2(0),

with a constant C1 > 0 depending only on K . Moreover, for s ∈ D1 we obtain the estimate

‖U0(s; k)F‖L2(�∩{|x |≤R}) ≤ C0,Rkm0‖F‖L2 . (8-2)

To prove this, it is sufficient to show that

‖V0(x, s; k, η)‖L2(�∩{|x |≤R}) ≤ C ′0,Rk p0, s ∈ D1, (8-3)

uniformly with respect to |η| ≤ 1− δ1/2. On the other hand,

V0(x, s; k, η)= V (0)(x, s; k, η)−
M−1∑
m=1

V (m)(x, s; k, η)s−m,

V (m)(x, s; k, η)=
κ0∑

j1, j2,..., jm=1

Sjm (s)w j1, j2,..., jm (x, s; k, η).

Here the w j1, j2,..., jm (x, s; k, η), x ∈ 0l , are infinite series and the estimates of ‖V (m)
‖L2(�∩{|x |≤R}) fol-

low from the estimates for the operators Hh, Hg, S0(s), Pe and the estimates for ‖w j1, j2,..., jm‖H2(0m).
According to the recurrence procedure in Section 7, we deduce that

‖w j1, j2,..., jm‖H2(0m) ≤ Dl |s|q(m), s ∈ D1, m = 0, . . .M − 1,

for some integers q(m), and we get (8-3) with p0 = supm q(m).
To deal with F1(y), introduce ξ(y, η) ∈ SN−1 such that

ξ(y, η)−〈ν(y), ξ(y, η)〉 = η, (y, η) ∈4= supp G×
{
η : − 2

3δ1 ≤ |η| − 1≤ 2
3δ1
}
,

and consider
ζ(y, η)= ξ(y, η)− 2〈ν(y), ξ(y, η)〉ν(y) ∈ SN−1.

Our choice of δ1 in Section 6 and Lemma 2.1 show that at least one of the rays {y + tξ(y, η) : t ≥ 0},
{y+ tζ(y, η) : t ≤ 0} does not meet a d0-neighborhood of

⋃
l 6= j Kl . For every fixed (y0, η0)∈4 we have
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the property above for at least one of the rays related to ξ(y0, η0) and ζ(y0, η0) and the same is true for
(y, η) sufficiently close to (y0, η0). Consider a microlocal partition of unity

M1∑
µ=1

ψµ(y)4µ(η)= 1

on 4 so that supp4µ ⊂ {η : −δ1 ≤ |η| − 1 ≤ δ1}, while for (y, η) ∈ suppψµ4µ, we have the property
of the rays mentioned above. We fix µ and assume first that the outgoing rays {y + tξ(y, η) : t ≥ 0},
(y, η) ∈ suppψµ4µ do not meet a neighborhood of

⋃
l 6= j Kl . Consider boundary data

m̃µ(y; k, η)= (2π)−N+1G(y)ψµ(y)ei k〈y,η〉, η ∈ supp4µ.

Following [Ikawa 1988, Proposition 4.7] (see also [Ikawa 1982, Proposition 7.5]), for every M ≥ 1 there
exists a function Zµ,M(x, s; k, η) which satisfies condition (S) in (� j ,D1) as well as the conditions

‖Zµ,M( · , s; k, η)‖C p(� j∩{|x |≤R}) ≤ CR,pk p for all p ∈ N (8-4)

and

Zµ,M(y, s; k, η)= m̃µ(y; k, η)+ r−M Dµ,M(y, s; k, η), y ∈ 0,

with ‖Dµ,M( · , s; k, η)‖0,p ≤ C pk p for all p ∈ N. The constants in these estimates are uniform with
respect to η and µ and they depend only on the geometry of K .

The construction of Zµ in [Ikawa 1982] is long and technical. We sketch below the main points. The
starting point is to introduce oscillatory boundary data

(2π)−N+1G(y)ψµ(y)h(t)ei k(〈y,η〉−t), η ∈ supp4µ,

depending on y and t with h ∈ C∞0 (R
+), supp h ⊂ (T, T + 1), T > 1 and to construct an asymptotic

solution wµ(x, t; k, η) of the wave equation (∂2
t −1x)u = 0 for t ≥ 0 with

suppwµ(x, t; · , · )⊂ {(x, t) : t ≥ 0}

and big parameter k. We omit in the notation here and below the dependence on M . In the glancing
region we have two phase functions ϕ±= θ(y, η)± 2

3ρ
3/2(y, η) [Ikawa 1982; Gérard 1988; Stefanov and

Vodev 1995] and ϕ± are constructed so that their traces on supp G∩0 j coincide with 〈y, η〉. The outgoing
rays are propagating with directions ∇ϕ+, while the incoming rays are propagating with directions ∇ϕ−.
The proofs in [Ikawa 1982; 1988] work assuming N odd and one considers the Laplace transform

ŵµ(x, s; k, η)=
∫
∞

−∞

e−stwµ(x, t; k, η)dt, s ∈ D1.

The assumption that N is odd is used only by applying the strong Huygens principle to guarantee that
for every fixed x ∈ � j the support of wµ with respect to t is compact, hence the integral is convergent.
For N even we apply the finite speed of propagations and the fact that the supports of the solutions of
the transport equations are propagating along the rays {y+ t∇ϕ+(y, η) : t ≥ 0} to show that for |x | ≤ ρ0

the solution wµ(x, t; k, η) vanishes for t large. This justifies the existence of ŵµ(x, s; k, η) for |x | ≤ ρ0.
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Next, using the notation of Section 6, consider

Zµ(x, s; k, η)=
1

ĥ(s+ i k)

(
8ŵµ− S0(s)(8(1x − s2)ŵµ+ [1,8]ŵµ)

)
, (8-5)

where h is chosen so that ĥ(s + i k) 6= 0 for |s + i k| ≤ |σ0| + c. Now let µ be such that the rays
{y + tζ(y, η) : t ≤ 0}, (y, η) ∈ suppψµ4µ, do not meet a neighborhood of

⋃
l 6= j Kl . In this case we

repeat the procedure in [Ikawa 1982, Section 7] and [Ikawa 1988, Section 4] to construct an asymptotic
solution wµ(x, t; k, η) of the wave equation for t ≤ 0 with suppwµ(x, t; · , · ) ⊂ {(x, t); t ≤ 0} starting
with oscillatory boundary data

(2π)−N+1G(y)ψµ(y)h(−t)e−i k(−〈y,η〉−t), η ∈ supp4µ.

We express 〈y, η〉 by the trace of the phase function ϕ−
∣∣
0 j

related to the incoming directions and we
consider for |x | ≤ ρ0 the Laplace transform

ŵµ(x, s; k, η)=
∫
∞

−∞

estwµ(x, t; k, η) dt, s ∈ D1.

Next, we define Zµ(x, s; k, η) by (8-5) using the outgoing parametrix S0(s) and deduce the estimates
(8-4). Finally, we introduce

U1(s; k)F =
M1∑
µ=1

∫
Zµ(x, s; k, η)4µ(η)χ1(η)F̂(kη)k N−1dη,

and conclude that U1(s; k)F is analytic for s ∈ D1 and satisfies{
(1x − s2)U1(s; k)F = 0, x ∈� j ,

U1(s; k)F
∣∣
0
= F1+ L1(s; k)F.

As above, exploiting the estimates (8-4), we obtain

‖L1(s; k)F‖L2(0) ≤ CM k−M
‖F‖L2(0), s ∈ D1

and
‖U1(s; k)F‖L2(�̊∩{|x |≤R}) ≤ C1,Rk(N−1)/2

‖F‖L2 . (8-6)

Now we pass to the analysis of the term F2 in the elliptic region. Let Ũ j be a small neighborhood
of K j and let U j = Ũ j \ K j . Following [Stefanov and Vodev 1995, A.4], we construct a parametrix
He : C̃∞(supp G)→ C̃∞(U j ) as a Fourier integral operator with complex phase function ϕ̃(x, η) and
big parameter k having the form

(Heu)(x, s)=
( s

2π

)N−1
∫

ei k(ϕ̃(x,η)−〈y,η〉)ã(x, η, k)u(y) dy dη,

so that {
(1s − s2)Heu = Keu, x ∈U j ,

Heu
∣∣
0 j
= Op(Gχ2)u,
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where
Op(Gχ2)u =

( k
2π

)N−1
∫

ei k〈x−y,η〉G(x)χ2(η)u(y) dy dη.

The last operator is defined for u ∈ C∞(0 j ) but it can be prolonged to F ∈ L2(0 j ) since the symbol
χ2(η) lies in S0,0

0,0 [Gérard 1988, Proposition A.I.6].
Assume that locally the boundary 0 j is given by the equation xN = 0 and let locally U j ⊂ {xN ≥ 0}.

To satisfy the equation (1x − s2)Heu = 0 modulo negligible terms, we must choose ϕ̃ so that

|∇ϕ̃|2 =−
( s

k

)2
= γ2, ϕ̃

∣∣
0 j
= 〈x, η〉. (8-7)

For |s+ i k|≤ |σ0|+c we see that γ= 1+O(k−1) is a complex parameter close to 1 and we may repeat the
argument in [Stefanov and Vodev 1995, A.4] and [Gérard 1988, A.II.4] to construct ϕ̃ with the properties

Im ϕ̃(x, η)≥ c0xN (1+ |η|), c0 > 0, and |Re ϕ̃(x, η)| ≤ c′0(1+ |η|).

The phase ϕ̃ satisfies the eikonal equation modulo O(x∞N ), the amplitudes satisfy the corresponding
transport equations modulo O(x∞N ) and ã(x, η, k) ∈ S0,0

0,0 . Notice that the sign of Im ϕ̃(x, η) is related to
the choice k > 0. We have

Re
(
ik(ϕ̃(x, η)−〈y, η〉)

)
=−k Im ϕ̃(x, η)≤−c0kxN (1+ |η|),

and the integral He F is convergent for xN > 0 and F ∈ L2(Y ). Moreover, we have

sup
xN≥0

xm
N e−c0xN (1+|η|) ≤ cm(1+ |η|)−mk−m for all m ∈ N,

and this implies that the kernel of Ke is in C̃∞(U j × suppG) and we obtain Ke = O(|k|−∞) uniformly
with respect to xN ∈ [0, ε].

Next, let 9(x) ∈ C∞0 (U j ) be a cutoff function such that 9(x) = 1 in a small neighborhood of K j .
Define

U2(s; k)F =
[
9He− S0(s)(9Ke+ [1,9]He)

]
F.

Then U2(s; k)F satisfies {
(1x − s2)U2(s; k)F = 0, x ∈ �̊, s ∈ D1,

U2(s; k)F
∣∣
0
= F2+ L2(s; k)F,

but U2(s; k)F is not analytic with respect to s which will not be important for the proof of Theorem 1.3
below. On the other hand, the trace on 0 of S0(s)[1,9]He F is negligible and the same is true for the
trace of S0(s)9Ke F . Thus, ‖L2(s; k)F‖L2(0) ≤CM k−M

‖F‖L2(0) for all M ∈N. Moreover, we have the
estimate

‖U2(s; k)F‖L2(� j∩{|x |≤R}) ≤ C2,R‖F‖L2(0), (8-8)

which is a consequence of L2 estimates of9He F and [1,9]He F . In fact, the estimate of ‖[1,9]He F‖L2

is easy since 9 = 1 in a neighborhood of � j and the kernel of [1,9]He lies in C̃∞(U j × supp G). To
estimate ‖9He F‖L2 , observe that for small xN ≥ 0, He is a Fourier integral operator with nondegenerate
phase function of positive type φ(x, y, η) = ϕ̃(x, η) − 〈y, η〉 [Hörmander 1985b, Definition 25.4.3].
Thus, we can estimate

‖(He F)(xN , · , s; k)‖L2(U j∩{xN=z}) ≤ B‖F‖L2(0)
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uniformly with respect to z ∈ [0, ε] [Hörmander 1985b, Theorem 25.5.6] and this leads to (8-8). Finally,
introduce

LY (s; k)F =U0(s; k)F +U1(s; k)F +U2(s; k)F,

and conclude that LY (s; k)F |0 = F +
2∑

i=0
L i (s; k)F = F + QY (s; k)F, with

‖QY (s; k)F‖L2(0) ≤ BY k−M+(N−1)/2+α
‖F‖L2(�).

By using a partition of unity on 0, we define an operator

L(s; k) : L2(0) 3 f → L(s; k) f ∈ C∞(�̊)

and deduce that L(s; k) f satisfies
(1x − s2)L(s, k) f = 0 for x ∈ �̊,
L(s, k) f ∈ L2(�) if Re s > 0,
L(s, k)F

∣∣
0
= f + Q(s; k) f,

with
‖Q(s; k) f ‖L2(0) ≤ Bk−M+(N−1)/2+α

‖ f ‖L2(0).

Choosing k1 sufficiently large, the operator I + Q(s; k) : L2(0)→ L2(0) is invertible for s ∈ D1 and
k ≥ k1. We define

R(s, k) f = L(s; k)(I + Q(s; k))−1 f : L2(0)→ C∞(�̊),

and it is clear that R(s, k) f for s ∈ D1 satisfies (8-1).

Proof of Theorem 1.3. Given g ∈ L2(�̊) and χ ∈ C∞0 (�̊) with supp χ ⊂ {|x | ≤ ρ}, ρ ≥ ρ0, by (6-3) we
obtain S0(s)(χg) ∈ H 1(|x | ≤ ρ) and this yields [S0(s)(χg)]

∣∣
0
∈ H 1/2(0). Setting s = i z, consider for

Im z < 0,
v = S0(i z)(χg)− R(i z; k)

(
[S0(i z)(χg)]

∣∣
0

)
. (8-9)

Then for the cutoff resolvent Rχ (z) introduced in Section 1 we get

Rχ (z)(χg)= χv, Im z < 0.

The operators χ S0(i z)χ and Rχ (z) admit respectively analytic and meromorphic continuation from
Im z < 0 to {z ∈ C : Im z ≤−σ1,Re z <−J1}, where −J1 =min{−J, |σ0| + c− k1}. Thus,

χR(i z; k)
(
[S0(i z)(χg)]

∣∣
0

)
is also meromorphic in this domain and to show that it is analytic for i z ∈ D1 it suffices to prove that
this operator is bounded. For i z ∈ D1 this follows from the estimates (8-2), (8-6), (8-8) above and we
obtain a polynomial bound for

‖χR(i z; k)‖L2(0)→L2(�̊).

Consequently, Rχ (z) admits an analytic continuation and we get (1-7) for Re z<−J1< 0. Next to cover
the case Re z > J1 > 0, we can use the fact that the poles of Rχ (z) are symmetric with respect to i R+

or repeat the argument with k� 0. �
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To obtain Corollary 1.4 we establish the estimate

‖Rχ (z)‖H L (�̊)→L2(�̊) ≤ C(1+ |z|)m−L , z ∈ S,

where m ∈N is the integer in (1-7) and L ∈N, L >m. The proof goes repeating that in the nontrapping
case [Tang and Zworski 2000, Theorem 1] and we omit the details. �

Appendix A : Stable and instable manifolds for open billiards

Let z0 = (x0, u0) ∈ S∗(�). For convenience we will assume that x0 /∈ K . Assume that the backward
trajectory γ−(z0) determined by z0 is bounded, and let η ∈6−A be its itinerary.

Given x ∈ RN and ε > 0, by B(x, ε) we denote the open ball with center x and radius ε in RN .
In this section we use some tools from [Ikawa 1988] to construct the local unstable manifold5 W u

loc(z0)

of z0 in S∗(�) and show that it is Lipschitz in z0 (and η). In a similar way one deals with local stable
manifolds.

Notice that if the boundary 0 of K is only Ck (k ≥ 2) the C∞ smoothness below should be replaced
by Ck .

Proposition A.1. There exists a constant ε0 > 0 such that for any z0 = (x0, u0) ∈ S∗δ0
(� ∩ B0) whose

backward trajectory γ−(z0) has an infinite number of reflection points X j = X j (z0) ( j ≤ 0) and η ∈6−A
is its itinerary, the following hold:

(a) There exists a smooth (C∞) phase function ψ = ψη satisfying part (i) of condition (P) on U =

B(x0, ε0)∩� such that ψ(x0) = 0, u0 = ∇ψ(x0), and such that for any x ∈ Cψ(x0)∩U+(ψ) the
billiard trajectory γ−(x,∇ψ(x)) has an itinerary η and therefore d(φt(x,∇ψ(x)), φt(z0))→ 0 as
t→−∞. That is,

W u
loc(z0)= {(x,∇ψ(x)) : x ∈ Cψ(x0)∩U+(ψ)}

is the local unstable manifold of z0. Moreover, for any p ≥ 1 there exists a global constant C p > 0
(independent of z0 and η) such that

‖∇ψη‖(p)(U)≤ C p. (A-1)

(b) If (y, v)∈ S∗(�∩B0) is such that y∈Cψ(x0) and γ−(y, v) has the same itinerary η, then v=∇ψ(y),
that is, (y, v) ∈W u

loc(z0).

(c) There exist a constant α ∈ (0, 1) depending only on the obstacle K and for every p ≥ 1 a constant
C p > 0 such that for any integer r ≥ 1 and any ζ, η ∈ 6−A with ζ j = η j for −r ≤ j ≤ 0, we have
‖∇ψη−∇ψζ‖p(V )≤ C p α

r , where V =U(ψη)∩U(ψζ ).

Proof. (a) Take ε0 > 0 so small that whenever (x, u) ∈ S∗δ0/2(� ∩ B0) and (y, v) ∈ S∗(�) is such that
‖x − y‖ < ε0 and ‖u − v‖ < ε0 we have (y, v) ∈ S∗δ0

(�). Then define U = B(x0, ε0) ∩� as in the
statement. Next, set

d−m = ‖X−m+1− X−m‖ and u−m =
X−m+1− X−m

‖X−m+1− X−m‖
∈ Sn−1, m ≥ 1.

5Notice that W u
loc(z0) and W u

ε (z0) (see Appendix C) coincide in a neighborhood of z0.
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Given any integer m ≥ 1, consider the linear phase function ψ (m) =ψ (m,η) in � such that ∇ψ (m) ≡ u−m

and ψ (m)(X−m)=−(d−m + d−m+1+ · · ·+ d−1). Then define

ψ (m)m = ψ (m,η)m =8η0
η−1
◦8η−1

η−2
◦ · · · ◦8η−m+2

η−m+1
◦8η−m+1

η−m
(ψ (m)).

Clearly ψ (m)m is a smooth phase function defined everywhere on U (in fact, on a much larger subset of
�) with ψ (m)m (X0)= 0. Moreover, it follows from Proposition 2.6 that

‖∇ψ (m)m −∇ψ
(m+1)
m+1 ‖p(U)≤ C p α

m, m ≥ 1, (A-2)

for some global constant C p > 0 depending only on K and p. Here we use the fact that

‖∇ψ (m)−∇ψ (m+1)
‖(p) ≤ C,

due to the special choice of the phase functions ψ (m) and ψ (m+1). Since

ψ (m)m (X0)= ψ
(m+1)
m+1 (X0)= 0,

it now follows that there exists a constant C p > 0 such that

‖ψ (m)m (x)−ψ (m+1)
m+1 (x)‖ ≤ C p α

m for x ∈U∩ B0.

This implies that for every x ∈ U there exists ψ(x) = limm→∞ ψ
(m)
m (x). Now (A-2) shows that ψ is

C∞-smooth in U and
‖∇ψ (m)m −∇ψ‖p(U)≤ C p α

m, m ≥ 1. (A-3)

In particular, ‖∇ψ‖ ≡ 1 in U. Extending ψ in a trivial way along straight line rays, we get a phase
function ψ satisfying part (i) of condition (P) in U.

We now show that W = {(x,∇ψ(x)) : x ∈ Cψ(x0) ∩U+(ψ)} is the local unstable manifold of z0.
Given x ∈ Cψ(x0) ∩U+(ψ) sufficiently close to x0 and an arbitrary integer r ≥ 0, consider the points
X−r (x, ψ (m)m ) ∈ ∂Kη−r for m ≥ r . By Proposition 2.4, there exist global constants C > 0 and α ∈
(0, 1) such that ‖X−r (x, ψ (m)m )− X−r (x, ψ (m

′)
m′ )‖ ≤ C αm−r for m′ ≥ m > r . Thus, there exists X−r

=

limm→∞ X−r (x, ψ (m)m ) ∈ ∂Kη−r and

‖X−r (x, ψ (m)m )− X−r
‖ ≤ C αm−r , m > r. (A-4)

It is now easy to see that {X− j
}
∞

j=0 are the successive reflection points of a billiard trajectory in � and
this is the trajectory γ−(x,∇ψ). The backward itinerary of the latter is obviously η. Moreover, (A-3)
implies d(φt(x,∇ψ(x)), φt(z0))→ 0 as t→−∞, so (x,∇ψ(x)) ∈W u

loc(z0).
Finally, by (2-1),

‖ψ (m)m ‖(p)(U)≤ C p ‖ψ
(m)
‖(p) ≤ C p,

and combining this with (A-3) gives (A-1).

(b) Let (y, v) ∈ S∗(�) be such that y ∈ Cψ(x0) and γ−(y, v) has the same itinerary η. Define the
phase functions ϕ(m)m and ϕ(m) as in part (a) replacing the point z0 = (x0, u0) by z = (y, v), and let
ϕ(x)= limm→∞ ϕ

(m)
m (x). Then by part (a), we have

W u
loc(z)= {(x,∇ψ(x)) : x ∈ Cϕ(y)∩U+(φ)}.
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On the other hand, it follows from Proposition 2.6 that there exist constants C > 0 and α ∈ (0, 1) such
that ‖∇ψ (m)m −∇ϕ

(m)
m ‖≤C αm for all m≥0, which implies ϕ=ψ . Thus, v=∇ϕ(y)=∇ψ(y)∈W u

loc(z0).

(c) Choose the constants α ∈ (0, 1) and C p > 0 (p = 1, . . . , k) as in part (a). Let ζ, η ∈6−A be such that
ζ j = η j for all −r ≤ j ≤ 0 for some r ≥ 1. Construct the phase functions ψ (m,η)m and ψ (m,ζ )m (m ≥ 1) as
in part (a); then

ψη = lim
m→∞

ψ (m,η)m , ψζ = lim
m→∞

ψ (m,ζ )m .

It follows from Proposition 2.6 that ‖∇ψ (r,η)−∇ψ (r,ζ )‖≤C p α
r . Combining this with (A-3) with m= r

for η and then with η replaced by ζ , one gets

‖∇ψη−∇ψζ‖ ≤ ‖∇ψη−∇ψ
(r,η)
‖+‖∇ψ (r,η)−∇ψ (r,ζ )‖+‖∇ψ (r,ζ )−∇ψζ‖ ≤ C p α

r .

This proves the assertion. �

Appendix B: Construction of a phase function satisfying condition (P)

Consider a local representation xN = h(y) of the boundary 0 j with y = (y1, . . . , yN−1) ∈ W ⊂ RN−1.
We wish to construct a phase function ϕ(x; η) such that

ϕ(y, h(y); η)= 〈y, η〉, (y, h(y)) ∈U, η = (η1, . . . , ηN−1),

U being a small neighborhood of a fixed point x0 ∈ 0 j so that ϕ(x; η) satisfies conditions (i)–(iii) of
Section 8. Assume that |η| ≤ 1−µ, where 0< µ < 1. It is convenient to consider a little more general
problem with boundary data given by a smooth function χ(y) such that |∇yχ(y)| ≤ 1−µ for y ∈ W .
We will construct a phase function ϕ(x) such that

ϕ(y, h(y))= χ(y), y ∈W, (B-1)

omitting the dependence on η in the notation. From the boundary condition (B-1) we determine the
derivatives of ϕ on the boundary 0 j . Set

ϕy = (ϕy1, . . . , ϕyN−1), h y = (h y1, . . . , h yN−1), χy = (χy1, . . . , χyN−1).

We have ϕy +ϕxN h y = χy , so setting ϕxN =
√

1− |ϕy|
2 and solving the system

ϕy +
√

1− |ϕy|
2 h y = χy,

we get
(1− |ϕy|

2)|h y|
2
= |χy|

2
+ |ϕy|

2
− 2〈χy, ϕy〉.

On the other hand,
2〈χy, ϕy〉+ 2

√
1− |ϕy|

2 〈h y, χy〉 = 2|χy|
2,

which gives
(1+ |h y|

2)(1− |ϕy|
2)− 2〈h y, χy〉

√
1− |ϕy|

2+ |χy|
2
− 1= 0.

Consequently, for ϕxN =
√

1− |ϕy|
2 we obtain

ϕxN (y, h(y))= 1
1+|h y|

2

(
〈h y, χy〉+

√
〈h y, χy〉

2+ (1− |χy|
2)(1+ |h y|

2)
)
.
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Now it is easy to see that we have the condition

〈∇ϕ(x), ν(x)〉 ≥ δ0 > 0, x = (y, h(y)) ∈U. (B-2)

In fact in local coordinates x = (y, h(y)) the outward normal to 0 j is given by

ν(x)=
1√

1+ |h y|
2
(−h y, 1),

and we deduce

〈∇ϕ(x), ν(x)〉 =
1√

1+ |h y|
2
[(1+ |h y|

2)ϕxN −〈h y, χy〉] ≥
√

1− |χy|
2 ≥

√
2µ−µ2 > 0.

By using (B-2) and a standard argument, we can solve locally the eikonal equation |∇ϕ(x)| = 1 with
initial data

ϕ(y, h(y))= χ(y),

∇xϕ(y, h(y))=
(
ϕy(y, h(y)), ϕxN (y, h(y))

)
, (y, h(y)) ∈U.

This argument works for local boundary condition χ(y)= 〈y, η〉, |η| ≤ 1− δ1/2, and we obtain a phase
function ϕ(x; η), x = (y, h(y)), y ∈ W . As in [Ikawa 1988; Burq 1993], we show that the principal
curvatures of the wave front

Gϕ(z)= {y ∈ RN
: ϕ(y; η)= ϕ(z; η)}

are strictly positive for every z = (y, h(y)) ∈U .
In order to satisfy condition (P) on 0 j , we will construct a suitable continuation of ϕ(x; η). For this

purpose fix a point x0 = (y0, h(y0)) ∈ U . Without loss of generality, we can assume that ϕ(x0; η) = 0.
Consider a sphere S0 passing through x0 with center O in the interior of K j so that the unit outward
normal ν0 of S0 at x0 coincides with ∇ϕ(x0; η).

Choosing local coordinates (θ, z(θ)), θ ∈ W ⊂ RN−1 on S0, let 40 = {(θ, z(θ)) : |θ − θ0| ≤ 2ε} ⊂ S0

be a small neighborhood of x0= (θ0, z(θ0)). Consider the trace 8(θ)= ϕ(θ, z(θ)) of ϕ on 40. (We omit
again the dependence on η in the notation.) Since 8(θ0)= 0 and ∇θ8(θ0)= 0, we have

|8(θ)| ≤ C0ε
2, |∇θ8(θ)| ≤ C1ε, θ ∈40.

Choose a smooth cutoff function α(θ), 0 ≤ α(θ) ≤ 1, such that α(θ) = 1 for |θ − θ0| ≤ ε/2, α(θ) = 0
for |θ − θ0| ≥ ε with |∇θα| ≤ C2ε

−1. Set χ(θ)= α(θ)8(θ). Then for small ε > 0 we have

|∇θχ(θ)| ≤ (C0C2+C1)ε < 1−µ < 1.

By the procedure above we construct a phase function 9(x) so that 9(θ, z(θ)) = χ(θ), |θ − θ0| ≤ 2ε.
For 4′= {(θ, z(θ)) : ε≤ |θ−θ0| ≤ 2ε} ⊂40, it is easy to see that ∇x9

∣∣
4′

coincides with the unit normal
ν0 to S0. Thus if x = z + tν0(z), t ≥ 0 with z ∈ 4′, we have 9(x) = t and for such x the phase 9(x)
coincides with the phase function 9̃(x) defined globally in a neighborhood of S0 and having boundary
data 9̃(x)= 0 for all x ∈ S0. Consequently, we may consider 9̃(x) as a continuation of 9(x), so 9(x)
is defined globally outside a small neighborhood of the center O of S0 lying in the interior of K j . It is
clear that 9 satisfies condition (P) on S0. On the other hand, for 41 = {(θ, z(θ)) : |θ − θ0| ≤ ε/2} we
have 9

∣∣
41
= ϕ

∣∣
41

and locally in a neighborhood of x0 the phases 9(x) and ϕ(x) coincide. Thus, we can
consider 9(x) as a continuation of ϕ(x).
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Appendix C: Dolgopyat type estimates for open billiards

Here we first state the assumptions about the billiard flow and the nonwandering set 3 under which the
results in [Stoyanov 2007] imply the Dolgopyat type estimates (3-3). Following [Petkov and Stoyanov
2009], we then explain how to apply these in the situation described in Section 6. Full details of the
arguments can be found in [Petkov and Stoyanov 2009].

For x ∈3 and a sufficiently small ε > 0 let

W s
ε (x)= {y ∈ S∗(�) : d(φt(x), φt(y))≤ ε for all t ≥ 0, d(φt(x), φt(y))→ 0 as t→∞},

W u
ε (x)= {y ∈ S∗(�) : d(φt(x), φt(y))≤ ε for all t ≤ 0, d(φt(x), φt(y))→ 0 as t→−∞}}

be the (strong) stable and unstable manifolds of size ε. Then Eu(x)= Tx W u
ε (x) and E s(x)= Tx W s

ε (x).

The following pinching condition6 is one of the assumptions mentioned above:

There exist constants C > 0 and 0< α ≤ β such that for every x ∈3 we have

C−1 eαx t
‖u‖ ≤ ‖dφt(x) · u‖ ≤ C eβx t

‖u‖, u ∈ Eu(x), t > 0,

for some constants αx , βx > 0 depending on x but independent of u and t with

α ≤ αx ≤ βx ≤ β and 2αx −βx ≥ α for all x ∈3.

(P)

When N = 2 this condition is always satisfied. For N ≥ 3, some general conditions on K that imply
(P) are given in [Stoyanov 2009]. According to general regularity results, (P) implies that W u

ε (x) and
W s
ε (x) are Lipschitz in x ∈ 3. In fact, it follows from [Hasselblatt 1994; 1997] that, assuming (P),

the map 3 3 x 7→ Eu(x) is C1+ε with ε = 2 infx∈3(αx/βx)− 1 > 0, in the sense that this map has a
linearization at any x ∈3 that depends (uniformly Hölder) continuously on x . The same applies to the
map 3 3 x 7→ E s(x).

Next, we need some definitions from [Stoyanov 2007]. Given z ∈3, let

expu
z : E

u(z)→W u
ε0
(z) and exps

z : E
s(z)→W s

ε0
(z)

be the corresponding exponential maps. A vector b ∈ Eu(z)\ {0} will be called tangent to3 at z if there
exist infinite sequences {v(m)} ⊂ Eu(z) and {tm} ⊂ R \ {0} such that expu

z (tm v
(m)) ∈ 3∩W u

ε (z) for all
m, v(m)→ b and tm → 0 as m→∞. It is easy to see that a vector b ∈ Eu(z) \ {0} is tangent to 3 at
z if there exists a C1 curve z(t) (0 ≤ t ≤ a) in W u

ε (z) for some a > 0 with z(0) = z and ż(0) = b, and
z(t) ∈3 for arbitrarily small t > 0. In a similar way one defines tangent vectors to 3 in E s(z).

Denote by dα the standard symplectic form on T ∗(RN ) = RN
×RN . The following condition says

that dα is in some sense nondegenerate on the “tangent space” of 3 near some its points:

There exist z0 ∈3, ε > 0 and µ0 > 0 such that, for any ẑ ∈3∩W u
ε (z0) and any

unit vector b ∈ Eu(ẑ) tangent to 3 at ẑ, there exist z̃ ∈ 3 ∩W u
ε (z0) arbitrarily

close to ẑ and a unit vector a ∈ E s(z̃) tangent to 3 at z̃ with |dα(a, b)| ≥ µ0.
(ND)

Remark C.2. Clearly this is always true for N = 2. It was shown very recently in [Stoyanov 2009] that
for N ≥ 3 this conditions is always satisfied for open billiard flows satisfying the pinching condition (P).

6It appears that in the proof of the estimates (3-3), in the case of open billiard flows (and some geodesic flows), one should
be able to replace condition (P) by just assuming Lipschitzness of the stable and unstable laminations. This will be the subject
of future work.
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It follows from the hyperbolicity of 3 that if ε > 0 is sufficiently small, there exists δ > 0 such that
if x, y ∈ 3 and d(x, y) < δ, then W s

ε (x) and φ[−ε,ε](W u
ε (y)) intersect at exactly one point [x, y] ∈ 3

[Katok and Hasselblatt 1995]. That is, there exists a unique t ∈ [−ε, ε] such that φt([x, y]) ∈ W u
ε (y).

Setting 1(x, y) = t , defines the so called temporal distance function. Given E ⊂ 3, we will denote
by Int3(E) and ∂3E the interior and the boundary of the subset E of 3 in the topology of 3, and by
diam(E) the diameter of E . Following [Dolgopyat 1998], a subset R of 3 will be called a rectangle
if it has the form R = [U, S] = {[x, y] : x ∈ U, y ∈ S}, where U and S are subsets of W u

ε (z) ∩3 and
W s
ε (z)∩3, respectively, for some z ∈3 that coincide with the closures of their interiors in W u

ε (z)∩3
and W s

ε (z)∩3.
Let R= {Ri }

k
i=1 be a Markov family of rectangles Ri = [Ui , Si ] for 3 (for the definition, see [Bowen

1973], [Dolgopyat 1998] or [Stoyanov 2007] for instance). Set R =
⋃k

i=1 Ri , denote by P : R→ R the
corresponding Poincaré map, and by τ the first return time associated with R. Then P(x)=φτ(x)(x)∈ R
for any x ∈ R. Notice that τ is constant on each stable fiber of each Ri . We will assume that the size
χ = maxi diam(Ri ) of the Markov family R = {Ri }

k
i=1 is sufficiently small so that each rectangle Ri is

between two boundary components 0pi and 0qi of K , that is for any x ∈ Ri , the first backward reflection
point of the billiard trajectory γ determined by x belongs to 0pi , while the first forward reflection point
of γ belongs to 0qi .

Moreover, using the fact that the intersection of 3 with each cross-section to the flow φt is a Cantor
set, we may assume that the Markov family R is chosen in such a way that

(i) for any i = 1, . . . , k we have ∂3Ui =∅.

Finally, partitioning each Ri into finitely many smaller rectangles if necessary and removing some
unnecessary rectangles from the family formed in this way, we may assume that

(ii) for every x ∈ R the billiard trajectory of x from x to P(x) makes exactly one reflection.

From now on we will assume that R = {Ri }
k
i=1 is a fixed Markov family for φt of size χ < ε0/2

satisfying conditions (i) and (ii). Set

U =
k⋃

i=1

Ui .

The map σ̃ :U→U is given by σ̃ = π (U ) ◦P, where π (U ) : R→U is the projection along stable leaves.
Let A= (Ai j )

k
i, j=1 be the matrix given by Ai j = 1 if P(Ri )∩R j 6=∅ and Ai j = 0 otherwise. Consider

the symbol space
6A = {(i j )

∞

j=−∞ : 1≤ i j ≤ k, Ai j i j+1 = 1 for all j},

with the product topology and the shift map σ :6A→6A given by σ((i j ))= ((i ′j )), where i ′j = i j+1 for
all j . As in [Bowen 1973] one defines a natural map 9 : 6A→ R. Namely, given any (i j )

∞

j=−∞ ∈ 6A

there is exactly one point x ∈ Ri0 such that P j (x) ∈ Ri j for all integers j . We then set 9((i j ))= x . One
checks that 9 ◦ σ = P ◦9 on R. It follows from the condition (i) above that the map 9 is a bijection.

In a similar way one deals with the one-sided subshift

6+A = {(i j )
∞

j=0 : 1≤ i j ≤ k, Ai j i j+1 = 1 for all j ≥ 0},

where the shift map σ :6+A→6+A is defined in the same way. There exists a unique map ψ :6+A→U
such that ψ ◦π = π (U ) ◦9, where π :6A→6+A is the natural projection.
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Notice that the roof function r :6A→[0,∞) defined by r(ξ)= τ(9(ξ)) depends only on the forward
coordinates of ξ ∈ 6A. Indeed, if ξ+ = η+, where ξ+ = (ξ j )

∞

j=0, then for x = 9(ξ) and y = 9(η) we
have x, y ∈ Ri for i = ξ0 = η0 and P j (x) and P j (y) belong to the same Ri j for all j ≥ 0. This implies
that x and y belong to the same local stable fibre in Ri and by condition (ii), it follows that τ(x)= τ(y).
Thus, r(ξ)= r(η). So, we can define a roof function r :6+A→ [0,∞) such that r ◦π = τ ◦9.

Let B(6+A) be the space of bounded functions g : 6+A → C with its standard sup norm ‖ · ‖0. Given
a function g ∈ B(6+A), the Ruelle transfer operator Lg : B(6+A)→ B(6+A) is defined by (Lgh)(η) =∑

σ(η)=ξ eg(η)h(η). Denote by CLip(U ) the space of Lipschitz functions h :U→C, and for h ∈CLip(U )
let Lip(h) denote the Lipschitz constant of h. For t ∈ R, |t | ≥ 1, define

‖h‖Lip,t = ‖h‖0+
Lip(h)
|t |

, ‖h‖0 = sup
x∈U
|h(x)|.

Given a real-valued function g on 6+A with g ◦ψ−1
∈ CLip(U ), there is a unique s(g) ∈ R such that

Pr(−s(g) r + g)= 0.

If G : 3→ C is a continuous function such that (g ◦ψ−1
◦ π (U ))(x) =

∫ τ(x)
0 G(φt(x)) dt , with x ∈ R,

then s(g)= Prφt (G), the topological pressure of G with respect to the flow φt on 3 [Parry and Pollicott
1990, Chapter 6].

The following is an immediate consequence of the main result in [Stoyanov 2007], taking into account
the particular considerations for open billiard flows in [Stoyanov 2009].

Theorem C.3. Assume the billiard flow φt over 3 satisfies conditions (P) and (ND). Let g :6+A→ R be
such that g◦ψ−1

∈CLip(U ). Then there exist constants a> 0, t0 ≥ 1, σ(g) < s(g), C > 0 and 0<ρ < 1
such that, for any s = τ + i t with τ ≥ σ(g), |τ | ≤ a and |t | ≥ t0, any integer n ≥ 1 and any function
v :6+A→ C with v ◦ψ−1

∈ CLip(U ), writing n = p[log |t |] + l, p ∈ N, 0≤ l ≤ [log |t |] − 1, we have

‖(Ln
−sr+g v) ◦ψ

−1
‖Lip,t ≤ Cρ p[log |t |]elPr(−τr+g)

‖v ◦ψ−1
‖Lip,t . (C-1)

Remark C.4. Another way to state the estimate above is the following [Dolgopyat 1998; Stoyanov
2007]: For every g :6+A→ R with g ◦ψ−1

∈ CLip(U ) and every ε > 0 there exist constants 0< ρ < 1,
a0 > 0 and C > 0 such that for any integer m > 0, any s = τ + i t ∈ C with |τ | ≤ a0, |t | ≥ 1/a0 and any
function v :6+A→ C with v ◦ψ−1

∈ CLip(U ) we have:

‖(Lm
−sr+g v) ◦ψ

−1
‖Lip,t ≤ Cρm

|t |ε‖v ◦ψ−1
‖Lip,t .

In the remaining part of this section, following [Petkov and Stoyanov 2009], we show how to apply
the Dolgopyat type estimates (C-1) to obtain the estimates of ‖Ln

s Gs ṽs‖0,0 required in Section 5. The
problem is that the operator Ls acts on C(6+A ), that is, it is related to the coding of billiard trajectories
by means of the components of K , while the Dolgopyat type estimates apply to Ruelle transfer operators
L−sr+g defined by means of Markov families and acting on functions v such that v ◦ψ−1 is Lipschitz
with respect to the standard metric in the phase space. Here we describe how the two types of Ruelle
transfer operators relate, and show that the function (Gs ṽs) ◦ψ

−1 is Lipschitz. This makes it possible to
apply (C-1).
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Apart from the coding described above, we can also use the coding of the flow over 3 by using
the boundary components of K described in Section 3. We will use the notation from there, notably
f (ξ), g(ξ), η(k) for any k = 1, . . . , κ0, e(ξ), χ f = χ1, χg = χ2, f̃ (ξ) and g̃(ξ). Define the map
8 :6A→3∂K =3∩ S∗3(�) by

8(ξ)=

(
P0(ξ),

P1(ξ)− P0(ξ)

‖P1(ξ)− P0(ξ)‖

)
.

Then 8 is a bijection such that 8 ◦ σ = B ◦8, where B : 3∂K → 3∂K is the billiard ball map. As
before, given any function G ∈ B(6+A ), the Ruelle transfer operator LG : B(6+A )→ B(6+A ) is defined
by (LG H)(ξ)=

∑
σ(η)=ξ eG(η)H(η).

Let ω : V0→ S∗∂K (�) be the backward shift along the flow defined in Section 3 on some neighborhood
V0 of 3 in S∗(�). Consider the bijection S = 8−1

◦ω ◦9 : 6A→ 6A. Its restriction to 6+A defines a
bijection S :6+A→6+A . Moreover S ◦σ = σ ◦S. Define the function g′ :6A→ R by g′(i)= g(S(i)).

Next, for any i = 1, . . . , k, choose

ĵ
(i)
= ( . . . , j (i)−m, . . . , j (i)

−1) such that ( ĵ
(i)
, i) ∈6−A .

It is convenient to make this choice in such a way that ĵ
(i)

corresponds to the local unstable manifold
Ui ⊂ 3 ∩ W u

ε (zi ), that is, the backward itinerary of every z ∈ Ui coincides with ĵ
(i)

. Now for any
i = (i0, i1, . . . ) ∈6

+

A (or i ∈6A) set

ê(i)= ( ĵ
(i0)
; i0, i1, . . . ) ∈6A.

According to the choice of ĵ
(i0), we then have 9(ê(i)) = ψ(i) ∈ Ui0 . (Notice that without this special

choice we would only have that 9(ê(i)) and ψ(i) ∈Ui0 lie on the same stable leaf in Ri0 .) Next, define

χ̂g(i)=
∞∑

n=0

(
g′(σ n(i))− g′(σ n ê(i))

)
for i ∈6A.

As before, the function ĝ :6A→R given by ĝ(i)= g′(i)−χ̂g(i)+χ̂g(σ i) depends on future coordinates
only, so it can be regarded as a function on 6+A .

We will now describe a natural relationship between the operators

LV : B(6+A)→ B(6+A) and Lv : B(6+A )→ B(6+A ),

with v appropriately defined by means of V .
First define 0 : B(6A)→ B(6A) by 0(v)=v◦8−1

◦ω◦9=v◦S. Since by property (ii) of the Markov
family, ω : R→ 3∂K is a bijectiion, it follows that 0 is a bijection and 0−1(V ) = V ◦9−1

◦ω−1
◦8.

Moreover, 0 induces a bijection 0 : B(6+A )→ B(6+A). Indeed, assume that v ∈ B(6A) depends on
future coordinates only. Then v ◦8−1 is constant on local stable manifolds in S∗3(�). Hence v ◦8−1

◦ω

is constant on local stable manifolds on R, and therefore 0(v) = v ◦8−1
◦ ω ◦9 depends on future

coordinates only.
Next, let v,w ∈ B(6+A ) and let V =0(v), W =0(w). Given i, j ∈6+A with σ( j)= i , setting ξ =S(i)

and η = S( j), we have σ(η)= ξ . Thus,

LW V (i)=
∑

σ( j)=i
eW ( j) V ( j)=

∑
σ( j)=i

ew(S( j)) v(S( j))= Lwv(ξ) for all i ∈6+A .

This shows that (Lwv) ◦S= L0(w)0(v).
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The equality
Pr(−τr + ĝ)= Pr(−τ f̃ + g̃) (C-2)

and the following proposition are established in [Petkov and Stoyanov 2009, Section 3].

Proposition C.5. Assume that the map33 x 7→W u
ε (x) is Lispchitz. Then there exist Lipschitz functions

δ1, δ2 :U → R such that setting δ̂s(i)= es δ1(ψ(i))+δ2(ψ(i)), we have(
Ln
−s f̃+g̃

u
)
(S(i))=

1

δ̂s(i)
·Ln
−s r+ĝ

(
δ̂s · (u ◦S)

)
(i), i ∈6+A, s ∈ C, (C-3)

for any u ∈ C(6+A ) and any integer n ≥ 1.

Combining (C-1)–(C-3), we deduce:

Theorem C.6 [Petkov and Stoyanov 2009]. Assume the billiard flow φt over 3 satisfies conditions (P)
and (ND). There exist constants a> 0, σ0< s0, t0≥ 1, C ′> 0 and 0<ρ < 1 so that for any s= τ+ i t ∈C

with τ ≥ σ0, |τ | ≤ a, |t | ≥ t0, any integer n≥ 1 and any function u :6+A →R with u ◦S◦ψ−1
∈CLip(U ),

writing n = p[log |t |] + l, p ∈ N, 0≤ l ≤ [log |t |] − 1, we have∥∥(Ln
−s f̃+g̃ u

)
◦S ◦ψ−1∥∥

Lip,t ≤ C ′ρ p[log |t |]el P(−τ f̃+g̃)
‖u ◦S ◦ψ−1

‖Lip,t . (C-4)

The estimate (3-3) is a consequence of (C-4) and it could hold even if the condition (P) is not fulfilled
(see Remark C.2 for condition (ND)).

Next, for the needs of Section 5, we have to estimate ‖Ln
−s f̃+g̃

Gs ṽs‖0,0, where the operator Gs is
defined in Section 3. For any integer n ≥ 0 we have

Ln
−s f̃+g̃

Gsv(ξ)=
∑
σ nη=ξ

∑
σζ=η

e−s f̃n(η)+g̃n(η)e−φ
+(ζ,s)−s f̃ (ζ )+g̃(ζ )v(ζ )

=

∑
σ n+1ζ=ξ

e−s f̃n+1(ζ )+g̃n+1(ζ )e−φ
+(ζ,s)v(ζ )= Ln+1

−s f̃+g̃
(e−φ

+( · ,s)v) (ξ).

Thus, it is enough to estimate ∥∥Ln+1
−s f̃+g̃

(e−φ
+( · ,s) ṽs)

∥∥
0,0.

As in Sections 3–5, we will consider these operators over 01.
Given s ∈ C, consider the functions ws :U1→ R and ŵs :6

+

A→ R defined by

ws(x)= ws(ψ(i))= ŵs(i)= e−φ
+(ξ,s)ṽs(ξ), for x = ψ(i) ∈U1, i ∈6+A, ξ = S(i).

In order to use the Dolgopyat type estimate (3-3), we have to show that ws is Lispchitz on U1. We will
deal in details with

w(1)s (x)= es
∑
∞

n=0[ f (σ
ne(ξ))− f +n (ξ)]−s ϕ(Q0(ξ))h(Q0(ξ));

in a similar way one can deal with w(2)s (x) = e−
∑
∞

n=0[g(σ
ne(ξ))−g+n (ξ)]. It follows from the definitions of

φ+(ξ, s) and ṽs in Section 3 that ws(x)= w
(1)
s (x) w(2)s (x).

Fix an arbitrary point y1 ∈3 such that η(1) ∈6−A corresponds to the local unstable manifold W u
loc(y1),

i.e. the backward itinerary of every z ∈ W u
loc(y1) ∩ V0 coincides with η(1). It follows from the Lips-

chitzness of the stable and unstable laminations that the map H1 : U1→ W u
loc(y1) defined by H1(x) =
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φ1(x,y1)([x, y1]) is Lipschitz. Here 1 is the temporal distance function defined in the beginning of this
section.

Next, consider the N -dimensional submanifold X ={(q, q+t∇ϕ(q) :q ∈01, 0< t} of S∗(RN ) and the
(stable) holonomy map H :W u

loc(y1)∩3→ X defined by H(y)=W s
loc(y)∩ X . Since ϕ satisfies Ikawa’s

condition (P), it is easy to see that W s
loc(y) is transversal to X , so H(y) = W s

loc(y)∩ X is well-defined
for y ∈W u

loc(y1)∩3. Moreover, it follows from our assumptions that the stable (and unstable) holonomy
maps for the billiard flow φt are Lispchitz. In particular, H is Lipschitz.

We can now write downw(1)s (x) using the maps H and H1 as follows. Given x ∈U1, we have x =ψ(i)
for some i ∈6+A , with i0 = 1. Setting ξ = S(i), we then have ξ0 = 1. For any integer m > 1 consider

Bm =

m−1∑
n=0

[ f (σ ne(ξ))− f +n (ξ)] −ϕ(Q0(ξ)).

Setting
y =H1(x) ∈W u

loc(y1), z =H(y),

we have that z ∈W s
loc(y), and moreover ω(z)= (Q0(ξ),∇ϕ(Q0(ξ))). Thus,

Q0(ξ)= pr1(ω(z))= pr1
(
ω(H(H1(x)))

)
is Lipschitz in x ∈U1. Next, set ε(u)=‖pr1(u)−pr1(ω(u))‖; then u= φε(u)(ω(y)) and ε(u) is a smooth
function on an open subset of S∗(�) (where ω is defined and takes values in S∗01

(�)). For Bm we have

Bm = O(θm)+ ε(y)− ε(z)−ϕ(ω(z))= O(θm)+ ε(y)−ϕ(z),

and letting m→∞ we get

w(1)s (x)= es[ε(y)−ϕ(z)] h(ω(z))= es[ε(H1(x))−ϕ(H(H1(x)))] h
(
ω(H(H1(x)))

)
,

so w(1)s (x) is Lipschitz in x ∈U1. Moreover, for x ∈U1 and bounded Re s we obtain an uniform bound
for the Lipschitz norm of w(1)s (x). The same argument works for w(2)s (x).
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