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1. The results

Let (M,G) be a Riemannian manifold of dimension n ≥ 2 with Riemannian volume density dG and
associated Laplace–Beltrami operator 1G . The Strichartz estimates for the Schrödinger equation

i∂t u+1Gu = 0, u|t=0 = u0, (1-1)

are basically estimates of

‖u‖L p([0,1],Lq (M,dG)) :=

(∫ 1

0
‖u(t, · )‖p

Lq (M,dG)dt
)1/p

,

in terms of certain L2 quantities of u0, when the pair of exponents (p, q) satisfies the admissibility
conditions

2
p
+

n
q
=

n
2
, p ≥ 2, (p, q) 6= (2,∞). (1-2)

Strichartz estimates play an important role in the proof of local existence results for nonlinear Schrödinger
equations (see for instance [Ginibre and Velo 1985; Cazenave 2003; Burq et al. 2004]). We won’t
consider such applications in this paper and will only focus on the estimates themselves.

We review some classical results. If M = Rn with the flat metric, it is well known [Strichartz 1977;
Ginibre and Velo 1985; Keel and Tao 1998] that

‖u‖L p([0,1],Lq (Rn)) . ‖u0‖L2(Rn). (1-3)

MSC2000: 35B45, 35S30, 58J40, 58J47.
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In this model case, the time interval [0, 1] can be replaced by R and the Strichartz estimates are said to
be global in time. Furthermore, the conditions (1-2) are seen to be natural by considering the action of
the scaling u(t, x) 7→ u(t/λ2, x/λ) on both Schrödinger equation and Strichartz estimates.

(In this paper we will not pursue global in time Strichartz estimates. Although one can expect that
they exist, it is not clear how to obtain them by the present method. One may hope to obtain such global
in time results at least for initial data spectrally cutoff on the low frequencies by combining the present
analysis with the method of [Bouclet and Tzvetkov 2008].)

In more general situations, estimates of the form (1-3) sometimes have to be replaced by

‖u‖L p([0,1],Lq (M,dG)) . ‖u0‖H s(M,dG), s ≥ 0, (1-4)

where

‖u0‖H s(M,dG) := ‖(1−1G)
s/2u0‖L2(M,dG),

is the natural L2 Sobolev norm. If s > 0, estimates such as (1-4) are called Strichartz estimates with
loss (of s derivatives). Notice that, under fairly general assumptions on (M,G), we have the Sobolev
embeddings H s(M, dG)⊂ Lq(M, dG) for s > n/2−n/q. They show that (1-4) holds automatically if s
is large enough and the point of Strichartz estimates with loss (and a fortiori without loss) is to consider
smaller s than those given by Sobolev embeddings.

Such inequalities have been proved by Bourgain [1993] for the flat tori T1 and T2, for certain values
of p, q and any s > 0 (i.e., with “almost no loss”), and by Burq, Gérard, and Tzvetkov [Burq et al.
2004] for any compact manifold with s = 1/p. The techniques of the latter work are actually very robust
and can be applied to prove the same results on many noncompact manifolds; the estimates are known
to be sharp for M = S3 with p = 2 and by considering certain subsequences of eigenfunctions of the
Laplacian. This counterexample can then be used to construct quasimodes and show that (1-4) cannot
hold in general with s = 0, even for noncompact manifolds.

A natural question is therefore to find (sufficient) conditions leading to estimates with no loss.
A classical one is the nontrapping condition. We recall that (M,G) is nontrapping if all geodesics

escape to infinity (implying that M is noncompact). It was for instance shown in [Staffilani and Tataru
2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007] that, for nontrapping perturbations of the
flat metric on Rn , (1-4) holds with s= 0. By a perturbation we mean that the departure of G from the flat
metric GEucl is small near infinity and we refer to those papers for more details. In [Hassell et al. 2006],
the more general case of nontrapping asymptotically conic manifolds was considered. To emphasize
the difference with the asymptotically hyperbolic manifolds studied in this paper, we simply recall that
(M,G) is asymptotically conic if G is close to dr2

+ r2g, in a neighborhood of infinity diffeomorphic
to (R,+∞)× S, for some fixed metric g on a compact manifold S. The asymptotically Euclidean case
corresponds to the case where S = Sn−1.

The nontrapping condition, however, has several drawbacks, such as being nongeneric and difficult to
check. Moreover, it is not clearly a necessary condition to get Strichartz estimates without loss.

In [Bouclet and Tzvetkov 2007], we partially got rid of this condition by considering Strichartz esti-
mates localized near spatial infinity. For long-range perturbations G of the Euclidean metric on M= Rn

(meaning that ∂αx (G(x)−GEucl) = O(〈x〉−τ−|α|) for τ > 0), trapping or not, we proved the existence of
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R > 0 large enough such that, if χ ∈ C∞0 (R
n) satisfies χ ≡ 1 for |x | ≤ R, then

‖(1−χ)u‖L p([0,1];Lq (Rn,dG)) . ‖u0‖L2(Rn,dG). (1-5)

This shows that the possible loss in Strichartz estimates can only come from a bounded region where the
metric is essentially arbitrary (recall that being asymptotically Euclidean is only a condition at infinity).
One can loosely interpret this result as follows: as long as the metric is close to a model one for which
one has Strichartz estimates without loss, the solution to the Schrödinger equation satisfies Strichartz
estimates without loss too.

The first goal of the present paper is to show that the same result holds in (bounded) negative curvature,
more precisely for asymptotically hyperbolic (AH) manifolds. We point out, however, that even if our
Theorem 1.2 below is formally the same as in the asymptotically Euclidean case [Bouclet and Tzvetkov
2007, Theorem 1], its proof involves new arguments using the negative curvature. One of the messages
of this paper is that, by taking advantage of certain curvature effects described at the end of this Section,
we prove Strichartz estimates using long time (microlocal) parametrices of the Schrödinger group which
are localized in very narrow regions of the phase space, much smaller than those considered in the
asymptotically Euclidean situation.

As far as the Schrödinger equation is concerned, Strichartz estimates on negatively curved spaces have
been studied in [Banica 2007; Pierfelice 2006; 2008; Anker and Pierfelice 2009] (see [Tataru 2001] for
the wave equation). In [Pierfelice 2006], Pierfelice considers perturbations of the Schrödinger equation
on the hyperbolic space Hn by singular time-dependent radial potentials, with radial initial data (and also
radial source terms) and derives some weighted Strichartz estimates without loss. The nonradial case for
the free Schrödinger equation on Hn is studied in [Banica 2007] where weighted Strichartz estimates are
obtained too. The more general case of certain Lie groups, namely Damek-Ricci spaces, was considered
in [Pierfelice 2008] for global in time estimates (see also [Banica et al. 2008] for the two-dimensional
case) and further generalized in [Banica and Duyckaerts 2007]. In these last papers, only radial data
are considered. This radial assumption was removed in [Anker and Pierfelice 2009]. This last paper
also shows, with [Banica et al. 2008], in such geometries, the set of admissible pairs for the Strichartz
estimates is contained in a triangle, and thus is much wider than in the (asymptotically) Euclidean case.
One expects that such a result remains valid in our context, but this does not clearly follow from the tools
presented here and might require refined propagation estimates.

In this article, we give a proof of Strichartz estimates at infinity which is purely (micro)local and so, to
a large extent, stable under perturbation. We do not use any Lie group structure or spherical symmetry,
nor do we assume any nontrapping condition. We refer to Definition 1.1 below for precise statements
and simply quote here that our class of manifolds contains Hn , some of its quotients and perturbations
thereof. In particular, we do not assume that the curvature is constant, even near infinity. (Powerful
microlocal techniques for AH manifolds have already been developed by Melrose and his school; see
[Mazzeo and Melrose 1987] and the references in [Melrose 1995]. These geometric methods, based on
compactification and blowup considerations, are perfectly designed for conformally compact manifolds
with boundary, but do not clearly apply to the more general manifolds we study here.)

In the next few pages we fix our framework and state our main results precisely, highlighting the key
points that allow us to prove them. We conclude the section with an overview of the remainder of the
article, on page 7.
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Definition 1.1 (AH manifold). (Mn,G) is asymptotically hyperbolic if there exist a compact set KbM,
a real number RK > 0, a compact manifold without boundary S and a function

r ∈ C∞(M,R) with r(m)→+∞ as m→∞ (1-6)

(a coordinate near M \K) such that we have an isometry

9 : (M \K,G)→
(
(RK,+∞)r × S, dr2

+ e2r g(r)
)
, (1-7)

where g(r) is a family of metrics on S depending smoothly on r such that, for some τ > 0 and some
fixed metric g on S, we have∥∥∂k

r (g(r)− g)
∥∥

C∞(S,T ∗S⊗T ∗S) . r−τ−k for r > RK, (1-8)

for all k ≥ 0 and all seminorms ‖ · ‖C∞(S,T ∗S⊗T ∗S) in the space of smooth sections of T ∗S⊗ T ∗S.

With no loss of generality, we can assume that the decay rate τ in (1-8) satisfies

0< τ < 1. (1-9)

Therefore, by analogy with the standard terminology in Euclidean scattering, dr2
+ e2r g(r) can be

considered as a long-range perturbation of the metric dr2
+ e2r g. Notice that the conformally compact

case quoted above corresponds to the special situation where g(r) is of the form g̃(e−r ), for some family
of metrics (g̃(x))0≤x�1 depending smoothly on x ∈ [0, x0) (x0 small enough) up to x = 0. In that case,
g(r) is an exponentially small perturbation of g= g̃(0). The assumption (1-8) is therefore more general.

We next denote by 1G the Laplace–Beltrami operator associated to this metric. It is classical that
this operator is essentially self-adjoint on C∞0 (M) (using for instance the method of [Helffer and Robert
1983]), and therefore generates a unitary group ei t1G on L2(M, dG).

Our main result is the following.

Theorem 1.2. There exists χ ∈ C∞0 (M), with χ ≡ 1 on a sufficiently large compact set, such that, for all
pair (p, q) satisfying (1-2),

‖(1−χ)ei t1G u0‖L p([0,1];Lq (M,dG)) . ‖u0‖L2(M,dG), u0 ∈ C∞0 (M). (1-10)

This theorem is the AH analogue of Theorem 1 of [Bouclet and Tzvetkov 2007] in the asymptotically
Euclidean case.

To be more complete, let us point out that the analysis contained in this paper and a classical argument
due to [Staffilani and Tataru 2002] (see also [Bouclet and Tzvetkov 2007, Section 5]), using the local
smoothing effect [Doi 1996], would give the following global in space estimates.

Theorem 1.3. If in addition (M,G) is nontrapping, then we have global in space Strichartz estimates
with no loss: for all pair (p, q) satisfying (1-2),

‖ei t1G u0‖L p([0,1];Lq (M,dG)) . ‖u0‖L2(M,dG), u0 ∈ C∞0 (M).

We state this result as a theorem although we won’t explicitly prove it. The techniques are fairly
well known and don’t involve any new argument in the present context. We simply note that resolvent
estimates implying the local smoothing effect can be found in [Cardoso and Vodev 2002].



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 5

Remark. Theorem 1.2 reduces the proof of potential improvements of Burq–Gérard–Tzvetkov inequal-
ities to local in space estimates of the form

‖χu‖L p([0,1],Lq (M,dG)) . ‖u0‖H s(M,dG),

with 0 ≤ s < 1/p. It would be interesting to know if such inequalities holds for some trapping AH
manifolds.

We now describe, quite informally, the key points of the analysis developed in this paper. Assuming
for simplicity that S = S1 (and thus n = 2), we consider the model case where the principal symbol of
the Laplacian is

p = ρ2
+ e−2rη2.

For convenience, we introduce

P := −e(n−1)r/21Ge−(n−1)r/2
=−er/21Ge−r/2,

which is self-adjoint with respect to dr dθ , instead of e(n−1)r dr dθ = er dr dθ for the Laplacian itself.
Recall first that, by the Keel–Tao T T ∗ Theorem [1998], proving Strichartz estimates (without loss)

mainly reduces to prove certain dispersion estimates. Using the natural semiclassical time scaling t 7→ht ,
this basically requires to control the propagator e−i th P for semiclassical times of order h−1. Such a control
on the full propagator is out of reach (basically because of trapped trajectories) but, fortunately, studying
some of its cutoffs will be sufficient.

After fairly classical reductions, we will work with semiclassical pseudodifferential operators localized
where r� 1 and p ∈ I , I being a (relatively) compact interval of (0,+∞). We can split the latter region
into two areas defined by

0+ =
{
r � 1, p ∈ I, ρ >− 1

2 p1/2} , 0− =
{
r � 1, p ∈ I, ρ < 1

2 p1/2} ,
respectively called the outgoing and incoming areas. The main interest of such areas is that one has a
very good control on the geodesic flow therein (see Section 3). Basically, geodesics with initial data
in outgoing (resp. incoming) areas escape to infinity as t →+∞ (resp. t →−∞), which is proved in
Proposition 3.3. One thus expects to be able to give long time approximations of the propagator e−i th P ,
microlocalized in such areas, for large times (t ≥ 0 in outgoing areas and t ≤ 0 in incoming ones).

In the asymptotically Euclidean case, it turns out that one can give accurate approximations of e−i th Pχ±

for times t such that 0≤±t . h−1, if χ± are pseudodifferential cutoffs localized in 0±. This is not the
AH case: here we are only able to approximate e−i th Pχ±s for cutoffs χ±s localized in much smaller areas,
namely

0+s (ε)=
{
r � 1, p ∈ I, ρ > (1−ε2)p1/2} , 0−s (ε)=

{
r � 1, p ∈ I, ρ < (ε2

−1)p1/2} ,
which we call strongly outgoing/incoming areas. Here ε will be a fixed small real number. We then
obtain approximations of the form

e−i th Pχ±s = JS±(a±)e−i th D2
r JS±(b±)∗+O(hN ), 0≤±t . h−1. (1-11)
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Here e−i th D2
r is the semiclassical group associated to the radial part D2

r of P . Here and in the sequel, we
shall use the standard notation

Dr = i−1∂r , Dθ = i−1∂θ .

The operators JS±(a±) and JS±(b±) are Fourier integral operators with amplitudes a±, b± supported in
strongly outgoing (+) / incoming (−) areas and phases essentially of the form

S± ≈ rρ+ θη+
e−2rη2

4ρ
,

i.e., the sum of the free phase rρ+θη and of a term whose Hessian is nondegenerate in η, which will be
crucial for the final stationary phase argument (the small factor e−2r will be eliminated by a change of
variable). The nondegeneracy of the full phase of the parametrix (1-11) in ρ will come of course from
e−i th D2

r . This approximation of S± comes basically from (4-34) and (4-35). Although the right-hand
side does not depend on ±, it is only defined in the disconnected regions {ρ > 0} and {ρ < 0}.

The approximation (1-11) is the AH Isozaki–Kiada parametrix and a significant part of this paper is
devoted to its construction. We mention that it is an adaptation to the AH geometry of an approximation
introduced first in [Isozaki and Kitada 1985] to study perturbations of the Euclidean Laplacian by long-
range potentials. In the present paper, it will be used very similarly to the usual (semiclassical) Euclidean
one as in [Bouclet and Tzvetkov 2007]. Its main interest is to give microlocal approximations of the
propagator for times of size h−1. Recall however the big difference with the asymptotically Euclidean
case where one is able to consider cutoffs supported in 0± rather than 0±s (ε) in the AH case. We therefore
have to consider the left parts, namely

0±inter = 0
±
\0±s (ε),

which we call intermediate areas. These areas will only contribute to the dispersion estimates for small
times, in view of the following argument. By choosing δ small enough and by splitting the interval(
−

1
2 , 1−ε2

)
into small intervals of size δ, we can write

0±inter =
⋃

l.δ−1

{
r � 1, p ∈ I, ±ρp−1/2

∈ (σl, σl + δ)
}
=

⋃
l.δ−1

0±inter(l, ε, δ).

Carefuly consideration of the Hamiltonian flow8t
p of p shows that, for any fixed (small) time t0, we can

choose δ (which depends also on ε) such that

8t
p
(
0±inter(l, ε, δ)

)
∩0±inter(l, ε, δ)=∅ for ± t ≥ t0. (1-12)

By semiclassical propagation, this implies that

χ±
intere

−i th Pχ±∗
inter = O(h∞) for ± t ≥ t0,

for pseudodifferential operators χ±inter localized in 0±inter(l, ε, δ). Such operators typically appear in the
T T ∗ argument and the estimate above reduces the proof of dispersion estimates to times |t | ≤ t0. The
latter range of times can then be treated by fairly standard geometric optics approximation.

We interpret (1-12) as a negative curvature effect on the geodesic flow, which we can roughly de-
scribe as follows, say in the outgoing case. For initial conditions (r, θ, ρ, η) in 0+inter(l, ε, δ), the bounds
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1
2 < ρ ≤ (1− ε

2)p1/2 yield the lower bound

ρ̇t
= 2e−2r t

(ηt)2 & ε2,

over a sufficiently long time, if we set (r t , θ t , ρt , ηt) =: 8t
p. This ensures that ρt/p1/2 increases fast

enough to leave the interval (σl, σl + δ) before t = t0 and give (1-12). In the asymptotically flat case,
that is, with r−2 instead of e−2r , we have ρ̇t

= 2(r t)−3(ηt)2 and its control from below is not as good,
basically because of the “extra” third power of (r t)−1.

Overview of remaining sections. In Section 2, we introduce all the necessary definitions, and some
additional results, needed to prove Theorem 1.2. The latter proof is given in Section 2E using microlocal
approximations which will be proved in Sections 5, 6 and 7.

In Section 3, we study the properties of the geodesic flow in outgoing/incoming areas required to
construct the phases involved in the Isozaki–Kiada parametrix. This parametrix is then constructed in
Section 5.

In Section 6 we prove two results: the small semiclassical time approximation of the Schrödinger
group by the WKB method and the propagation of the microlocal support (Egorov theorem). These
results are essentially well known. We need however to check that all the symbols and phases belong to
the natural classes (for AH geometry) of Definition 2.2 below. Furthermore, we use our Egorov theorem
to obtain a propagation property in a time scale of size h−1, which is not quite standard.

Finally, in Section 7, we prove dispersion estimates using basically stationary phase estimates in the
parametrices obtained in Sections 5 and 6.

Up to the semiclassical functional calculus, which is taken from [Bouclet 2007; Bouclet 2010] and
whose results are recalled in Section 2C, this paper is essentially self-contained. This is not only for
the reader’s convenience, but also because the results of Section 6 do require proofs in the AH setting,
although they are in principle well known. The construction of Section 5 is new.

2. The strategy of the proof of Theorem 1.2

2A. The setup. Before discussing the proof of Theorem 1.2, we give the form of the Laplacian, volume
densities and related objects on AH manifolds.

The isometry (1-7) defines polar coordinates: r is the radial coordinate and S will be called the angular
manifold. Coordinates on S will be denoted by θ1, . . . , θn−1.

A finite atlas on M\K is obtained as follows. By (1-7), we have a natural projection πS : (M\K,G)→ S
defined as the second component of 9, that is,

9(m)= (r(m), πS(m)) ∈ (RK,+∞)× S for m ∈M \K. (2-1)

Choosing a finite cover of the angular manifold by coordinate patches Uι, say

S =
⋃
ι∈I

Uι, (2-2)

with corresponding diffeomorphisms

ψι :Uι→ ψι(Uι)⊂ Rn−1, (2-3)
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we consider the open sets
Uι :=9

−1 ((RK,+∞)×Uι)⊂M \K

and then define diffeomorphisms

9ι :Uι→ (RK,+∞)×ψι(Uι)⊂ Rn, (2-4)

by
9ι(m)= (r(m), ψι(πS(m))) .

The collection (Uι, 9ι)ι∈I is then an atlas on M \K. If θ1, . . . , θn−1 are the coordinates in Uι, that is,
ψι = (θ1, . . . , θn−1), the coordinates in Uι are then (r, θ1, . . . , θn−1).

We now give formulas for the Riemannian measure dG and the Laplacian 1G on M \ K. In local
coordinates θ = (θ1, . . . , θn−1) on S, the Riemannian density associated to g(r) reads

dg(r) := det(g(r, θ))1/2|dθ1 ∧ · · · ∧ dθn−1|,

where det(g(r, θ))= det(g jk(r, θ)) if g(r)= g jk(r, θ) dθ j dθk (using the summation convention). Then,
in local coordinates on M \K, the Riemannian density is

dG = e(n−1)r det(g(r, θ))1/2 |dr ∧ dθ1 ∧ · · · ∧ dθn−1|. (2-5)

Now consider the Laplacian. Slightly abusing the notation, we set

c(r, s)= 1
2
∂r det(g(r, s))

det(g(r, s))
for r > RK, s ∈ S, (2-6)

since, for fixed r , the quotient of ∂r det(g jk(r, θ)) by 2 det(g jk(r, θ)) is intrinsically defined as a function
on S, independently of the choice of the coordinate chart. We then have

1G = ∂
2
r + e−2r1g(r)+ c(r, s)∂r + (n− 1)∂r .

It will turn out be convenient to work with the density

d̂G = e(1−n)r dG, (2-7)

rather than dG itself. In particular, we will use the following elementary property: for all relatively
compact subset V ′ι b ψι(Uι), all R > RK and all 1≤ q ≤∞, we have the equivalence of norms

‖u‖Lq (M,d̂G) ≈ ‖u ◦9
−1
ι ‖Lq (Rn), supp(u)⊂9−1

ι

(
(R,+∞)× V ′ι

)
, (2-8)

Lq(Rn) being the usual Lebesgue space. This is a simple consequence of (1-8) and (2-5) (we consider
R > RK since (1-8) gives an upper bound for det g(r, θ) as r→ RK, not a lower bound).

We then have a unitary isomorphism

L2(M, d̂G) 3 u 7→ e−(n−1)r/2u ∈ L2(M, dG), (2-9)

and 1G is unitarily equivalent to the operator

1̂G := eγnr1Ge−γnr , γn =
n−1

2
, (2-10)
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on L2(M, d̂G). This operator reads

1̂G = ∂
2
r + e−2r1g(r)+ c(r, s)∂r − γnc(r, s)− γ2

n, (2-11)

and we will work with
P =−1̂G − γ

2
n. (2-12)

If qι(r, ., · ) is the principal symbol of −1g(r) in the chart Uι, namely

qι(r, θ, ξ)=
∑

1≤k,l≤n−1

gkl(r, θ)ξkξl, (2-13)

the principal symbol of P in the chart Uι is then

pι = ρ2
+ e−2r qι(r, θ, η),= ρ2

+ qι(r, θ, e−rη). (2-14)

The full symbol of P is of the form pι+ pι,1+ pι,0 with

pι, j =
∑

k+|β|= j

aι,kβ(r, θ)ρk(e−rη)β, j = 0, 1. (2-15)

The terms of degree 1 in η come from the first-order terms of the symbol of −1g(r). In the expression
of 1G they carry a factor e−2r and therefore, if j = 1, k = 0 and |β| = 1 above, we could write
aι,kβ(r, θ)= e−r bι,kβ(r, θ) for some function bι,kβ bounded as r→∞. This remark and (1-8) show more
precisely that, for all V b ψι(Uι), the coefficients in (2-15) decay as

|∂ j
r ∂

α
θ aι,kβ(r, θ)| ≤ CV jα〈r〉−τ−1− j , θ ∈ V, r ≥ RK+ 1. (2-16)

The decay rate−τ−1− j will be important to solve transport equations for the Isozaki–Kiada parametrix.
This is the main reason of the long-range assumption (1-8).

2B. Pseudodifferential operators and the spaces Bhyp(�). We will consider h-pseudodifferential op-
erators (h-9DOs) in a neighborhood of infinity and the calculus will be rather elementary. For instance,
we will only consider compositions of operators with symbols supported in the same coordinate patch
and no invariance result under diffeomorphism will be necessary.

The first step is to construct a suitable partition of unity near infinity. Using the cover (2-2) and the
related diffeomorphisms (2-3), we consider a partition of unity on S of the form∑

ι∈I

κι ◦ψι = 1, with κι ∈ C∞0 (R
n−1), supp(κι)b ψι(Uι), (2-17)

and a function κ ∈ C∞(R) such that

supp(κ)⊂ [RK+ 1,+∞), κ ≡ 1 on [RK+ 2,+∞). (2-18)

Then, the functions (κ ⊗ κι) ◦9ι ∈ C∞(M) satisfy∑
ι∈I

(κ ⊗ κι) ◦9ι(m)=
{

1 if r(m)≥ RK+ 2,
0 if r(m)≤ RK+ 1,

(2-19)
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which means that they define a partition of unity near infinity. We could obtain a partition of unity on M

by adding a finite number of compactly supported functions (in coordinate patches) be we won’t need it
since the whole analysis in this paper will be localized near infinity.

We also consider κ̃ ∈ C∞(R) and κ̃ι ∈ C∞0 (R
n−1), for all ι ∈ I, such that

κ̃ ≡ 1 on
(
RK+

1
2 ,+∞

)
, supp(κ̃)⊂ (RK+

1
4 ,+∞),

κ̃ι ≡ 1 near supp(κι), supp(κ̃ι)b ψι(Uι).
(2-20)

We next choose, for each ι ∈ I, two relatively compact open subsets Vι and V ′ι such that

supp(κι)b Vι b V ′ι b supp(κ̃ι) and κ̃ι ≡ 1 near V ′ι . (2-21)

We are now ready to define our 9DOs. In the following definition, we will say that a ∈ C∞(R2n) is
a symbol if either a ∈ C∞b (R

2n)— that is, a is bounded with all derivatives bounded — or

a(r, θ, ρ, η)=
∑

akβ(r, θ)ρkηβ, (2-22)

with akβ ∈ C∞b (R
n), the sum being finite. We shall give examples below. Notice that throughout this

paper, ρ and η will denote respectively the dual variables to r and θ .

Definition 2.1. For ι ∈ I, all h ∈ (0, 1] and all symbol a such that

supp(a)⊂ [RK+ 1,+∞)× V ′ι ×Rn, (2-23)

we define

Ôpι(a) : C
∞

0 (M)→ C∞(M),

by (
Ôpι(a)u

)
◦9−1

ι (r, θ)= a(r, θ, h Dr , h Dθ )
(
κ̃(r)κ̃ι(θ)(u ◦9−1

ι )(r, θ)
)
. (2-24)

Note the cutoff κ̃⊗κ̃ι in the right-hand side of (2-24). It makes the Schwartz kernel of Ôpι(a) supported in
a closed subset of M2 strictly contained in the patch U2

ι so that Ôpι(a) is fully defined by the prescription
of 9ι∗Ôpι(a)9

∗
ι . For future reference, we recall that the kernel of the latter operator is

(2πh)−n
∫∫

e
i
h (r−r ′)ρ+ i

h (θ−θ
′)·ηa(r, θ, ρ, η) dρ dη χ̃(r ′)χ̃ι(θ ′). (2-25)

The notation Ôpι refers to the following relation with the measure d̂G: if a ∈C∞b (R
2n) satisfies (2-23),

then

‖Ôpι(a)‖L2(M,d̂G)→L2(M,d̂G) . 1, h ∈ (0, 1]. (2-26)

This is a direct consequence of the Calderón–Vaillancourt theorem using (2-8) with q = 2, the inclusions
in (2-20), and (2-21). In the “gauge” defined by dG, the latter gives

‖e−γnr Ôpι(a)e
γnr
‖L2(M,dG)→L2(M,dG) . 1, h ∈ (0, 1]. (2-27)

Working with the measure d̂G is to this extent more natural and avoids to deal with exponential weights.
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We now describe the typical symbols we shall use in this paper. Using (2-17), (2-18), (2-19) and
(2-21), we can write

h2 P =
∑
ι∈I

Ôpι
(
(κ ⊗ κι)× (pι+ hpι,1+ h2 pι,0)

)
, r > RK+ 2, (2-28)

using (2-13), (2-14) and (2-15). One observes that the symbols involved in (2-28) are of the form

aι(r, θ, ρ, η)= ãι(r, θ, ρ, e−rη), (2-29)

with ãι ∈ S2(Rn
×Rn). It will turn out that the functional calculus of h2 P (or h21G) will involve more

generally symbols of this form with aι ∈ S−∞(Rn
×Rn). For instance, if f ∈ C∞0 (R), the semiclassical

principal symbol of f (h2 P) or f (−h21G) will be

f (ρ2
+ qι(r, θ, e−rη)), (2-30)

which, once multiplied by the cutoff κ⊗ κι, is of the form (2-29) with ãι ∈ S−∞(Rn
×Rn). This type of

symbols is the model of functions described in Definition 2.2 below. To state this definition, we introduce
the notation

D jαkβ
hyp := er |β|∂βη ∂

j
r ∂

α
θ ∂

k
ρ,

for all j, k ∈ N0 and α, β ∈ Nn−1
0 .

Definition 2.2. Given an open set �⊂ T ∗Rn
+
= (0,+∞)r ×Rn−1

θ ×Rρ ×Rn−1
θ , we define

Bhyp(�)=
{
a ∈ C∞(�) : D jαkβ

hyp a ∈ L∞(�) for all j, k ∈ N0, α, β ∈ Nn−1
0

}
and

Shyp(�)=
{
a ∈ C∞(R2n) : supp(a)⊂� and a ∈Bhyp(�)

}
.

A family (aν)ν∈3 is bounded in Bhyp(�) if (D jαkβ
hyp aν)ν∈3 is bounded in L∞(�) for all j, k, α, β.

Note that considering � ⊂ T ∗Rn
+

is not necessary but, since we shall work only in the region where
r � 1, this will be sufficient.

Example 2.3. Consider the following diffeomorphism from R2n onto itself

Fhyp : (r, θ, ρ, η) 7→ (r, θ, ρ, e−rη). (2-31)

If aι ∈ S0(Rn
×Rn) is supported in Fhyp(�), with �⊂ T ∗Rn

+
, then (2-29) belongs to Shyp(�).

Proof. We only need to check that (2-29) belongs to Bhyp(�). We have

∂r
(
ãι(r, θ, ρ, e−rη)

)
= (∂r ãι)(r, θ, ρ, e−rη)− e−rη · (∂ξ ãι)(r, θ, ρ, ξ)|ξ=e−rη,

which is bounded since ξ · ∂ξaι is bounded. Similarly

er∂η
(
ãι(r, θ, ρ, e−rη)

)
= (∂ξ ãι)(r, θ, ρ, ξ)|ξ=e−rη,

is bounded too. Derivatives with respect to ρ, θ are harmless and higher-order derivatives in r, η are
treated similarly. �

The next lemma gives a characterization of functions in Bhyp(�).
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Lemma 2.4. Let �⊂ T ∗Rn
+

be an open subset and assume that

Fhyp(�)⊂ Rn
+
× B, with B bounded. (2-32)

A function a ∈ C∞(�) is of the form

a(r, θ, ρ, η)= ã(r, θ, ρ, e−rη), with ã ∈ C∞b (Fhyp(�)), (2-33)

if and only if

D jαkβ
hyp a ∈ L∞(�) for all j, k, α, β. (2-34)

Here C∞b (�) and C∞b (Fhyp(�)) are spaces of smooth functions bounded with all derivatives bounded on
� and Fhyp(�), respectively.

Proof. That (2-33) implies (2-34) is proved in the same way as Example 2.3: the boundedness of ξ · ∂ξ ã
follows from the boundedness of ξ = e−rη in Fhyp(�) by (2-32) and the fact that ã ∈ C∞b (Fhyp(�)).
Conversely, one checks by induction that

ã(r, θ, ρ, ξ) := a(r, θ, ρ, erξ),

belongs to C∞b (Fhyp(�)), using again the boundedness of ξ on Fhyp(�). �

Example 2.5. For all f ∈ C∞0 (R
n), all R > RK and all V b 9ι(Uι), (2-30) satisfies the conditions of

this lemma with �= (R,+∞)× V ×Rn .

Proof. By (1-8), there exists C > 1 such that

C−1
|ξ |2 . qι(r, θ, ξ). C |ξ |2 for r > R, θ ∈ V, ξ ∈ Rn−1, (2-35)

and, using the notation (2-13),

|∂ j
r ∂

α
θ gkl(r, θ)| ≤ C jk for r > R, θ ∈ V . (2-36)

Therefore, (2-35) and the compact support of f ensure that e−rη and ρ are bounded, hence that (2-32)
holds on the support of (2-30). Then, (2-36) implies that f (ρ2

+ qι(r, θ, ξ)) belongs to C∞b (Fhyp(�))

(notice that here Fhyp(�)= (R,+∞)× V ×Rn). �

We conclude this subsection with the following useful remarks. If a, b ∈ Shyp(�) for some � (such
a, b satisfy (2-23)), we have the composition rule

Ôpι(a)Ôpι(b)= Ôpι((a#b)(h)), (2-37)

if (a#b)(h) denotes the full symbol of a(r, θ, h Dr , h Dθ )b(r, θ, h Dr , h Dθ ). In particular all the terms of
the expansion of (a#b)(h) belong to Shyp(�) and are supported in supp(a)∩ supp(b). Similarly, for all
N ≥ 0, we have

Ôpι(a)
∗
= Ôpι(a

∗

0 + · · ·+ hN a∗N )+ hN+1 RN (a, h) (2-38)

with a∗0 , . . . , a∗N ∈ Shyp(�) supported in supp(a) and ‖RN (a, h)‖L2(M,d̂G)→L2(M,d̂G) . 1 for h ∈ (0, 1].



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 13

2C. The functional calculus. In Proposition 2.7 below, we give two pseudodifferential approximations
of f (h2 P) near infinity of M, when f ∈ C∞0 (R). The first approximation, namely (2-43), is given in
terms of the “quantization” Ôpι defined in the previous subsection. This is the one we shall mostly use
in this paper. However, at some crucial points, we shall need another approximation, (2-44), which uses
properly supported 9DOs.

To define such properly supported operators, we need a function

ζ ∈ C∞0 (R
n), ζ ≡ 1 near 0, supp(ζ ) small enough,

which will basically be used as a cutoff near the diagonal. The smallness of the support will be fixed in
the following definition.

Definition 2.6. For ι ∈ I, all h ∈ (0, 1] and all symbol a satisfying (2-23), we define

Opι,pr(a) : C∞0 (M)→ C∞(M),

as the unique operator with kernel supported in U2
ι and such that the kernel of 9∗ι Ôpι(a)9ι∗ is

(2πh)−n
∫∫

e
i
h (r−r ′)ρ+ i

h (θ−θ
′)·ηa(r, θ, ρ, η) dρ dη ζ(r − r ′, θ − θ ′). (2-39)

The advantage of choosing the support of ζ small enough is that, using (2-23), we can assume that, on
the support of (2-39), r ′ belongs to a neighborhood of [RK+1,+∞) and θ ′ belongs to a neighborhood of
V ′ι . For instance, we may assume that r ′ ∈ κ̃−1(1) and θ ′ ∈ κ̃−1

ι (1) so that we can put a factor κ̃(r ′)κ̃ι(θ ′)
for free to the right-hand side of (2-39). The latter implies, using (2-8), (2-25), and (2-39), the standard
off-diagonal fast decay of kernels of 9DOs and the Calderón–Vaillancourt theorem stating that, for all
a ∈ C∞b (R

2n) satisfying (2-23) and all N ∈ N0, we have

‖Ôpι(a)− Opι,pr(a)‖L2(M,d̂G)→L2(M,d̂G) . hN , h ∈ (0, 1]. (2-40)

This shows that, up to remainders of size h∞, Ôpι(a) and Opι,pr(a) coincide as bounded operators on
L2(M, d̂G). Under the same assumptions on a, we also have

‖Opι,pr(a)‖L2(M,dG)→L2(M,dG) . 1, h ∈ (0, 1], (2-41)

which is a first difference with Ôpι(a) for which we have only (2-27) in general. The estimate (2-41) is
equivalent to the uniform boundedness (with respect to h ∈ (0, 1]) of eγnr Opι,pr (a)e−γnr on L2(M, d̂G).
The latter is obtained similarly to (2-26), using the Calderón–Vaillancourt theorem, for we only have
to consider the kernel obtained by multiplying (2-39) by eγn(r−r ′), which is bounded (as well as its
derivatives) on the support of ζ(r − r ′, θ − θ ′).

In other words, (2-41) can be interpreted as a boundedness result between (exponentially) weighted
L2 spaces. Similar properties holds for Lq spaces (under suitable assumptions on the symbol a) and they
are the main reason for considering properly supported operators. In particular, they lead to following
proposition, where we collect the estimates we shall need in this paper. We refer to [Bouclet 2007] for
the proof.
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Proposition 2.7. Let f ∈ C∞0 (R) and let I b (0,+∞) be an open interval containing supp( f ). Let
χK ∈ C∞0 (M) and R > RK+ 1 be such that

χK(m)= 1 if r(m)≤ R+ 1.

Then, for all N ≥ 0 and all ι ∈ I, we can find symbols

aι,0( f ), . . . , aι,N ( f ) ∈ Shyp
(
(R,+∞)× Vι×Rn

∩ p−1
ι (I )

)
(2-42)

(where pι is the principal symbol of P in the chart Uι) such that, if we set

a(N )ι ( f, h)= aι,0( f )+ haι,1( f )+ · · ·+ hN aι,N ( f ),

we have

(1−χK) f (h2 P)=
∑
ι∈I

Ôpι(a
(N )
ι ( f, h))+ hN+1 R̂N ( f, h), (2-43)

(1−χK) f (h2 P)=
∑
ι∈I

Opι,pr(a(N )ι ( f, h))+ hN+1 RN ,pr( f, h), (2-44)

where, for each q ∈ [2,∞],

‖e−γnr RN ,pr( f, h)‖L2(M,d̂G)→Lq (M,dG) . h−n( 1
2−

1
q ) for h ∈ (0, 1], (2-45)

and

‖R̂N ( f, h)‖L2(M,d̂G)→L2(M,d̂G) . 1 for h ∈ (0, 1]. (2-46)

In addition, for all ι ∈ I and all q ∈ [2,∞], we have

‖e−γnr Opι,pr(a(N )ι ( f, h))‖L2(M,d̂G)→Lq (M,dG) . h−n( 1
2−

1
q ) for h ∈ (0, 1], (2-47)

and, for all q ∈ [1,∞] and all γ ∈ R,

‖e−γr Opι,pr(a(N )ι ( f, h))eγr
‖Lq (M,d̂G)→Lq (M,d̂G) . 1 for h ∈ (0, 1]. (2-48)

In this proposition, as well as in further definitions or propositions, the interval I can be considered
as a semiclassical energy window, in the sense that the principal symbol of h2 P will live in I . In the
sequel, I will be more explicitly of the form

( 1
4 , 4

)
or
( 1

4 − ε, 4+ ε
)
; see for instance (2-54).

To make (2-42) more explicit, let us quote for instance that

aι,0( f )(r, θ, ρ, η)= κ(r)κι(θ) f (ρ2
+ qι(r, θ, e−rη))× (1−χK)(9

−1
ι (r, θ)).

More generally, (2-42) and Lemma 2.4 show that aι,0( f ), . . . , aι,N ( f ) are of the form (2-29), with
ãι(r, θ, ρ, ξ) compactly supported with respect to (ρ, ξ).

The estimate (2-48) basically means that Opι,pr(a
(N )
ι ( f, h)) preserves all Lq spaces with any expo-

nential weights. In particular, since Lq(M, dG) = e−γnr/q Lq(M, d̂G), replacing d̂G by dG in (2-48)
would give a completely equivalent statement. This estimate is the main reason for introducing properly
supported operators. Of course, (2-48) holds for other symbols than those involved in the functional
calculus of P . We have more generally (see [Bouclet 2007]) for all γ ∈ R,

‖e−γr Opι,pr(aι)eγr
‖Lq (M,d̂G)→Lq (M,d̂G) . 1 for h ∈ (0, 1], (2-49)
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for any q ∈ [1,∞] and any

aι ∈ Shyp
(
(RK+ 1,+∞)× V ′ι ×Rn

∩ p−1
ι (I ′)

)
,

provided I ′ is bounded.
By the unitary equivalence of P and −1G − γ

2
n , we would get a very similar pseudodifferential

expansion for f (−h21G). (Here we have only described (1− χK) f (h2 P) since this will be sufficient
for our present purpose, but of course there is a completely analogous result for the compactly supported
part χK f (h2 P); see [Bouclet 2007].) Such an approximation of f (−h21G) was used in [Bouclet 2010]
to prove the next two propositions.

Proposition 2.8. Consider a dyadic partition of unit

1= f0(λ)+
∑
k≥0

f (2−kλ),

for λ in a neighborhood of [0,+∞), with

f0 ∈ C∞0 (R), f ∈ C∞0
(
[

1
4 , 4]

)
. (2-50)

Then, for all χ ∈ C∞0 (M) and all q ∈ [2,∞), we have

‖(1−χ)u‖Lq (M,dG) .

( ∑
h2
=2−k

k≥0

‖(1−χ) f (−h21G)u‖2Lq (M,dG)

)1/2

+‖u‖L2(M,dG).

This proposition leads to the following classical reduction.

Proposition 2.9. Let χ ∈ C∞0 (M) and (p, q) be an admissible pair. Then (1-10) holds true if and only if
there exists C such that

‖(1−χ)ei t1G f (−h21G)u0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,dG), (2-51)

for all h ∈ (0, 1] and u0 ∈ C∞0 (M).

This result is essentially well known and proved in [Bouclet 2010] for a class of noncompact manifolds.
We simply recall here that the Lq

→ Lq boundedness of the spectral cutoffs f (−h21G) is not necessary
to prove this result, although the latter slightly simplifies the proof when it is available.

2D. Outgoing and incoming areas. Propositions 2.7 and 2.9 lead to a microlocalization of Theorem 1.2:
as we shall see more precisely in Section 2E, they allow to reduce the proof of (1-10) to the same estimate
in which 1− χ is replaced by h-9DOs. But this microlocalization, i.e., the support of the symbols in
(2-42), is still too rough to simplify the proof of Theorem 1.2 in a significant way. The purpose of this
subsection is to describe convenient regions which will refine this localization.

Definition 2.10. Fix ι ∈ I. For R > RK + 1, an open subset V b V ′ι (see (2-21)), an open interval
I b (0,+∞) and σ ∈ (−1, 1), we define

0±ι (R, V, I, σ )=
{
(r, θ, ρ, η) ∈ R2n

: r > R, θ ∈ V, pι ∈ I, ±ρ >−σ p1/2
ι

}
,

where pι is the principal symbol of P in the chart Uι given by (2-14). The open set 0+ι (R, V, I, σ ) is
called an outgoing area, and 0−ι (R, V, I, σ ) an incoming area.
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We note in passing that, except from the localization in θ , these areas are defined using only the
variable r , its dual ρ and the principal symbol of P . In particular, up to the choice of the coordinate r ,
the conditions r > R, pι ∈ I and ±ρ > −σ p1/2

ι define invariant subsets of T ∗M. However the whole
analysis in this paper will be localized in charts and we will not use this invariance property.

Let us record some useful properties of outgoing/incoming areas. First, they decrease with respect to
V, I, σ and R−1:

R1 ≥ R2, V1 ⊂ V2, I1 ⊂ I2, σ1 ≤ σ2 H⇒ 0±ι (R1, V1, I1, σ1)⊂ 0
±

ι (R2, V2, I2, σ2). (2-52)

Second, we have

0+ι
(
R, V, I, 1

2

)
∪0−ι

(
R, V, I, 1

2

)
= (R,+∞)× V ×Rn

∩ p−1
ι (I ). (2-53)

Here we have chosen σ = 1
2 but any σ ∈ (0, 1) would work as well.

We will use the following elementary property, proved later as part (ii) of Proposition 4.1.

Proposition 2.11. Any symbol a ∈ Shyp
(
(R,+∞)× V ×Rn

∩ p−1
ι (I )

)
can be written as

a = a++ a−, with a± ∈ Shyp
(
0±ι (R, V, I, 1

2)
)
.

This splitting into outgoing/incoming areas was sufficient to use the Isozaki–Kiada parametrix in the
asymptotically Euclidean case; in the AH case, we will only be able to construct this parametrix in much
smaller areas, called strongly outgoing/incoming areas, which we now introduce.

We first describe briefly the meaning of such areas, say in the outgoing case. Basically, being in an
outgoing area means that ρ is not too close to −p1/2; the aim of strongly outgoing areas is to guarantee
that ρ is very close to p1/2, which is of course a much stronger restriction. This amounts essentially to
chose σ close to−1 in the definition of outgoing areas. We will measure this closeness in term of a small
parameter ε. It will actually be convenient to have the other parameters, namely R, V, I , depending also
on ε, so we introduce

R(ε)= 1/ε, Vι,ε = {θ ∈ Rn−1
: dist(θ, Vι) < ε2

}, I (ε)=
( 1

4 − ε, 4+ ε
)
, (2-54)

where we recall that Vι is defined in (2-21).

Definition 2.12. For all ε > 0 small enough, we set

0±ι,s(ε) := 0
±

ι

(
R(ε), Vι,ε, I (ε), ε2

− 1
)
.

The open set 0+ι,s(ε) is called a strongly outgoing area, and 0−ι,s(ε) a strong incoming area.

The main interest of such areas is to ensure that e−r
|η| is small if ε is small. Indeed, if q ∈ [0,+∞)

and −1< σ < 0, we have the equivalence

±ρ >−σ(ρ2
+ q)1/2 ⇐⇒ ±ρ > 0 and q < σ−2(1− σ 2)ρ2. (2-55)

Therefore, there exists C such that, for all ε small enough and (r, θ, ρ, η) ∈ 0±ι,s(ε),

qι(r, θ, e−rη)≤ Cε2,

which, by (2-35), is equivalent to
|e−rη|. ε. (2-56)
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Note also that, by (2-52), strongly outgoing/incoming areas decrease with ε.

We now quote a result that motivates, at least partially, the introduction of strongly outgoing/incoming
areas. Its proof is given in Section 4A.

Denote by 8t
ι the Hamiltonian flow of pι. This is of course the geodesic flow written in the chart

9ι(Uι)×Rn of T ∗M.

Proposition 2.13. Fix σ ∈ (−1, 1). There exists R′σ > 0 such that for all R ≥ R′σ and all ε > 0 small
enough, there exists tR,ε ≥ 0 such that

8t
ι

(
0±ι (R, Vι, (1

4 − ε, 4+ ε), σ )
)
⊂ 0±ι,s(ε) if ± t ≥ tR,ε.

In particular, for all ε > 0 small enough, there exists Tε > 0 such that

8t
ι

(
0±ι (R(ε), Vι, I (ε), σ )

)
⊂ 0±ι,s(ε) if ± t ≥ Tε. (2-57)

Note that, since pι is only defined in the chart9ι(Uι)×Rn , its flow is not complete. We shall however
see in Section 3 that, for any initial data (r, θ, ρ, η) ∈ 0±ι (R(ε), Vι, I, σ ), 8t

ι(r, θ, ρ, η) is well defined
for all ±t ≥ 0; that is, 8t

ι(r, θ, ρ, η) ∈9ι(Uι)×Rn for all ±t ≥ 0.
Proposition 2.13 essentially states that the forward flow sends outgoing areas into strongly outgoing

areas in finite time, and likewise the backward flow sends incoming areas into strongly incoming ones.
This will be interesting for the proof of Proposition 2.24.

The last type of region we need to consider are the intermediate areas. They should have two
properties: firstly they should essentially cover the complement of strongly outgoing/incoming areas
in outgoing/incoming areas and, secondly, be small enough.

To define them we need the following. For all ε > 0 and all δ > 0, we can find L + 1 real numbers,
σ0, . . . , σL ,

(ε/2)2− 1= σ0 < σ1 < · · ·< σL =
1
2 , (2-58)

such that (
(ε/2)2− 1, 1

2

)
=

L−1⋃
l=1
(σl−1, σl+1) (2-59)

and
|σl+1− σl−1| ≤ δ. (2-60)

Note that the intervals overlap in (2-59), since (σl−1, σl+1) always contains σl .

Definition 2.14. The intermediate outgoing and incoming areas associated to the cover (2-59) are

0±ι,inter(ε, δ; l) :=
{
(r, θ, ρ, η) ∈ R2n

: r > R(ε), θ ∈ Vι, pι ∈ I (ε), ±ρ/p1/2
ι ∈ (−σl+1,−σl−1)

}
,

for 1≤ l ≤ L − 1.

Notice that, by definition,

0±ι,inter(ε, δ; l)⊂ 0
±

ι

(
R(ε), Vι, I (ε), 1

2

)
. (2-61)

In the notation, we only specify the parameters which are relevant for our analysis, namely ε, δ, but,
of course, intermediate areas depend on the choice of σ1, . . . , σL . Here δ measures the smallness and
Proposition 2.16 below will explain how to choose this parameter.
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Proposition 2.15. Fix ε > 0 small enough, δ > 0 and σ0, . . . , σL satisfying (2-58), (2-59) and (2-60).
Then, any symbol

a± ∈ Shyp
(
0±ι (R(ε), Vι, I (ε), 1

2)
)

can be written as
a± = a±s + a±1,inter+ · · ·+ a±L−1,inter,

with a±s ∈ Shyp(0
±
ι,s(ε)) and a±l,inter ∈ Shyp(0

±

ι,inter(ε, δ; l)).

The proof is given in Section 4A.

We conclude this subsection with the following proposition which will be crucial for the proof of
Theorem 1.2 and motivates the introduction of intermediate areas. The proof is given in Section 4A.

Proposition 2.16. Fix t > 0. Then, for all ε > 0 small enough, we can find δ > 0 small enough such that,
for any choice of σ0, . . . , σL satisfying (2-58), (2-59) and (2-60), we have, for all 1≤ l ≤ L − 1,

8t
ι

(
0±ι,inter(ε, δ; l)

)
∩0±ι,inter(ε, δ; l)=∅, (2-62)

provided that
±t ≥ t .

2E. The main steps of the proof of Theorem 1.2. We already know from Proposition 2.9 that we only
have to find χ ∈ C∞0 (M) such that (2-51) holds, which is equivalent to

‖e−γnr (1−χ) f (h2 P)e−i t Pu0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,d̂G), (2-63)

using the unitary map (2-9) and (2-11), (2-12).
Before choosing χ, we introduce the following operators. Choose a cutoff f̃ ∈ C∞0 ((0,+∞)) such

that f̃ f = f .

Lemma 2.17. For all χ ∈ C∞0 (M), we can write

(1−χ) f̃ (h2 P)= (1−χ)Apr(h)+ R(h)

with R(h) satisfying, for all q ∈ [2,∞],

‖e−γnr R(h)‖L2(M,d̂G)→Lq (M,dG) . 1, (2-64)

and Apr(h) such that, for all q ∈ [2,∞],

‖e−γnr Apr(h)‖L2(M,d̂G)→Lq (M,dG) . h−n
(

1
2−

1
q

)
, (2-65)

‖e−γnr Apr(h)eγnr
‖L∞(M,dG)→L∞(M,dG) . 1, (2-66)

‖Apr(h)∗e−γnr
‖L1(M,d̂G)→L2(M,d̂G) . h−n/2, (2-67)

‖eγnr Apr(h)∗e−γnr
‖L1(M,d̂G)→L1(M,d̂G) . 1. (2-68)

Proof. This is an immediate consequence of Proposition 2.7. Using (2-44), with N such that N+1≥n/2,
we define Apr(h) as the sum of the properly supported pseudodifferential operators. We thus have (2-64),
(2-65) and (2-66). The estimates (2-67) and (2-68) are obtained by taking the adjoints (with q =∞ in
(2-65)) with respect to d̂G. �
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Basically, the operators e−γnr Apr(h) and Apr(h)∗e−γnr will be used as “ghost cutoffs” to deal with
remainder terms of parametrices which will be O(hN ) in L(L2(M, d̂G)), using the Sobolev embeddings
(2-65) and (2-67). They will be “transparent” for the principal terms of the parametrices by (2-66) and
(2-68), which uses crucially that they are properly supported.

For ε to be fixed below, we choose χ ∈ C∞0 (M) such that

χ ≡ 1 for r(m)≤ 3ε−1.

This function will appear in Proposition 2.18 below only trough its support. More precisely, the propo-
sition states that to prove (2-63) for such a χ (with ε small enough), it is sufficient to prove the estimate
(2-70) for a class of symbols supported where r(m)≥ ε−1.

Proposition 2.18 (Microlocalization of Strichartz estimates). To prove (2-63), it is sufficient to show
that, for some ε small enough and all

aι ∈ Shyp
(
(R(ε),+∞)× Vι×Rn

∩ p−1
ι (I (ε))

)
, (2-69)

where we recall that R(ε)= ε−1 and I (ε)=
( 1

4 − ε, 4+ ε
)
, we have

‖e−γnr Apr(h)Ôpι(aι)e
−i t Pu0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,d̂G), (2-70)

uniformly with respect to h ∈ (0, 1].

Proof. Choose χ0 ∈ C∞0 (M) such that

χ0 ≡ 1 for r(m)≤ ε−1,

χ0 ≡ 0 for r(m)≥ 2ε−1.

We then have (1− χ0) ≡ 1 near supp(1− χ) so, by the proper support of the kernel of Apr(h), we also
have

(1−χ)Apr(h)= (1−χ)Apr(h)(1−χ0),

at least for ε small enough. The latter and (2-64) reduces the proof of (2-63) to the study of

e−γnr Apr(h)(1−χ0) f (h2 P)e−i t P .

By splitting (1 − χ0) f (h2 P) using (2-43) with N + 1 ≥ n/2, we obtain the result using (2-46) and
(2-65). �

We now introduce a second small parameter δ > 0. By Propositions 2.11 and 2.15, for all δ > 0, any
aι satisfying (2-69) can be written as

aι = a+s + a−s +
L−1∑
l=1

a+l,inter+ a−l,inter, (2-71)

with
a±s ∈ Shyp(0

±

ι,s(ε)), a±l,inter ∈ Shyp(0
±

ι,inter(ε, δ; l)). (2-72)



20 JEAN-MARC BOUCLET

Proposition 2.19 (Reduction to microlocalized dispersion estimates). To prove (2-70), it is sufficient to
show that, for some ε and δ small enough, we have∥∥e−γnr Apr(h)Ôpι(a

±

s )e
−i th P Ôpι(a

±

s )
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε|ht |−n/2, (2-73)∥∥e−γnr Apr(h)Ôpι(a

±

l,inter)e
−i th P Ôpι(a

±

l,inter)
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε,δ|ht |−n/2, (2-74)

for
h ∈ (0, 1] and 0≤±t ≤ 2h−1. (2-75)

Recall that the important point in this lemma is (2-75), i.e., that it is sufficient to consider t ≥ 0 for
outgoing localizations, and t ≤ 0 for incoming ones.

Proof. Define

T±s (t, h, ε)= e−γnr Apr(h)Ôpι(a
±

s )e
−i t P , T±l,inter(t, h, ε, δ)= e−γnr Apr(h)Ôpι(al,inter)e−i t P .

By (2-26) and (2-65) (with q = 2), we have,

‖T±s (t, h, ε)‖L2(d̂G)→L2(dG)+‖T
±

l,inter(t, h, ε, δ)‖L2(d̂G)→L2(dG) ≤ Cε,δ for h ∈ (0, 1], t ∈ R;

hence by the Keel–Tao Theorem [1998], the inequality (2-70) would follow from the estimates

‖T±s (t, h, ε)T±s (s, h, ε)∗‖L1(dG)→L∞(dG) ≤ Cε|t − s|−n/2, (2-76)

‖T±l,inter(t, h, ε)T±l,inter(s, h, ε)∗‖L1(dG)→L∞(dG) ≤ Cε,δ|t − s|−n/2, (2-77)

for h ∈ (0, 1] and t, s ∈ [0, 1]. Using the time rescaling t 7→ ht , the equality L1(dG) = e−2γnr L1(d̂G),
and the fact that the adjoint of (2-9) is given by eγnr , we see that (2-76) and (2-77) are respectively
equivalent to (2-73) and (2-74), for h ∈ (0, 1] and |t | ≤ 2h−1.

The reduction (2-75) to ±t ≥ 0 is obtained similarly to [Bouclet and Tzvetkov 2007, Lemma 4.3]. We
only recall here that it is based on the simple observation that the operators T (t)T (s)∗ considered above
are of the form Be−i(t−s)P B∗, so L∞ bounds on their Schwartz kernel for±(t−s)≥ 0 give automatically
bounds for ±(t − s)≤ 0 by taking the adjoints. �

As we shall see, there are basically two reasons for choosing ε small enough. The next result is the
first condition.

Proposition 2.20 (Time h−1 Isozaki–Kiada parametrix). For all ε > 0 small enough and all a±s in
Shyp(0

±
ι,s(ε)), we can write

e−i th P Ôpι(a
±

s )
∗
= E±IK(t, h)+ hn R±IK(t, h),

with

‖e−γnr E±IK(t, h)e−γnr
‖L1(d̂G)→L∞(dG) . |ht |−n/2, (2-78)

‖R±IK(t, h)‖L2(d̂G)→L2(d̂G) . 1, (2-79)

for
h ∈ (0, 1], 0≤±t ≤ 2h−1.
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Proof. By (2-38), the result follows from Theorem 5.1 and by a stationary phase argument justified by
Propositions 7.2, 7.3, 7.6, Lemma 7.9 and Propositions 7.11, 7.12. �

Proposition 2.20 is mainly an application of the Isozaki–Kiada parametrix. It has the following con-
sequence.

Proposition 2.21 (Time h−1 strongly incoming/outgoing dispersion estimates). For all ε > 0 sufficiently
small, (2-73) holds for all h, t satisfying (2-75).

Proof. We first replace Ôpι(a
±
s ) by Opι,pr(a±s ) to the left of e−i th P in (2-73). The remainder term, which

is O(h∞) in L(L2(d̂G)) by (2-40), produces a term of size O(h∞) in L(L1(d̂G), L∞(dG)) using (2-65)
(with q =∞) and (2-67). We then use Proposition 2.20: the remainder term satisfies∥∥e−γnr Apr(h)Opι,pr(a±s )e

−i th P hn R±IK(t, h)Apr(h)∗e−γnr
∥∥

L1(d̂G)→L∞(dG) . 1. |ht |−d/2,

and the main term E±IK(t, h) gives the expected contribution via the use of (2-66), (2-68), and (2-49) for
Opι,pr(a±s ). �

The second condition on ε will come from Proposition 2.24. It uses Proposition 2.16 which depends
on some fixed small time which will be given by the following result.

Proposition 2.22 (Time 1 geometric optics). There exists tWKB > 0 such that, for all ε > 0 small enough
and all symbol a± ∈ Shyp

(
0±ι (R(ε), Vι, I, 1

2)
)
, we can write

e−i th P Ôpι(a
±)∗ = E±WKB(t, h)+ hn R±WKB(t, h),

with
‖e−γnr E±WKB(t, h)e−γnr

‖L1(d̂G)→L∞(dG) . |ht |−n/2,

‖R±WKB(t, h)‖L2(d̂G)→L2(d̂G) . 1,

(2-80)

for
h ∈ (0, 1], 0≤±t ≤ tWKB. (2-81)

Proof. This follows from the stationary phase theorem, using the parametrix given in Theorem 6.1 and
Propositions 7.2, 7.3, 7.6, and 7.8. �

The first consequence of this proposition is the following result on short-time dispersion estimates,
whose proof is completely similar to that of Proposition 2.21.

Proposition 2.23 (Time 1 dispersion estimates in intermediate areas). For all ε > 0, all δ > 0 and all
a±l,inter satisfying (2-72), the estimate (2-74) holds for all h, t satisfying (2-81).

We can now give the second condition on ε, also giving the choice of δ. The proof is given in on page
65 (Section 6B).

Proposition 2.24 (Negligibility of 1. t . h−1 dispersion estimates in intermediate areas). If ε is small
enough, we can choose δ > 0 small enough such that, for all 1≤ l ≤ L − 1, all

b±l,inter ∈ Shyp
(
0±ι,inter(ε, δ; l)

)
,

and all N ≥ 0, we have

‖Ôpι(b
±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
‖L2(d̂G)→L2(d̂G) ≤ Cl,N hN , (2-82)
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for
h ∈ (0, 1], tWKB ≤±t ≤ 2h−1.

This is, at least intuitively, a consequence of Proposition 2.16 with t= tWKB and of the Egorov theorem
which shows that e−i th P Ôpι(b

±

l,inter)
∗ lives semiclassically in the region 8t

ι

(
supp(b±l,inter)

)
.

We summarize the reasoning above as follows.

Proof of Theorem 1.2. Using Proposition 2.21, we first choose ε0 > 0 small enough that, for all ε ∈
(0, ε0], (2-73) holds for 0 ≤ ±t ≤ 2h−1. By possibly decreasing ε0, we then choose tWKB according
to Proposition 2.22, uniformly with respect to ε ∈ (0, ε0]. Next, according to Proposition 2.24, we fix
ε ∈ (0, ε0] and δ > 0 small enough that (2-82) holds for tWKB ≤ ±t ≤ 2h−1. Using (2-65), (2-67) and
Proposition 2.24 with N = n and b±l,inter = a±l,inter defined by (2-71), we have∥∥e−γnr Apr(h)Ôpι(a

±

l,inter)e
−i th P Ôpι(a

±

l,inter)
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε,δ . |ht |−n/2,

for tWKB ≤ ±t ≤ 2h−1. On the other hand, (2-74) holds for 0 ≤ ±t ≤ tWKB, using Proposition 2.22.
Therefore (2-74) holds for 0 ≤ ±t ≤ 2h−1. By Proposition 2.19, this proves (2-70) for all aι satisfying
(2-69). By Proposition 2.18, this implies (2-63) which, by Proposition 2.9, implies Theorem 1.2. �

3. Estimates on the geodesic flow near infinity

In this section, we describe some properties of the Hamiltonian flow of functions of the form

p(r, θ, ρ, η)= ρ2
+w(r)q(r, θ, η), (3-1)

on T ∗Rn
+
= R+r ×Rn−1

θ ×Rρ ×Rn−1
η . Here q is an homogeneous polynomial of degree 2 with respect

to η and w a positive function. In Section 3B, we will assume that w(r) = e−2r but we start with more
general cases in Section 3A.

The motivation for the study of (3-1) comes naturally from the form of the principal symbol pι of P
given by (2-14).

We emphasize that the symbol p considered in this section is defined on T ∗Rn
+

whereas pι is only
defined on a subset of the form T ∗(RK,+∞)× Vι. The results of Section 3B will nevertheless hold for
pι as well with no difficulty for we shall have a good localization of the flow in the regions we consider
(see Corollary 3.10).

3A. A general result. Let w = w(r) be a smooth function on R+ = (0,+∞) such that

w > 0, w′ < 0,
(
w′

w

)′
≥ 0, (3-2)

and, for some 0< γ < 1,

lim sup
r→+∞

∫ (1+γ)r

r

w′

w
∈ [−∞, 0). (3-3)

Note that limr→+∞w(r) exists, by (3-2), and that (3-3) implies that this limit must be 0. Note also that,
for all R > 0, we have

w(r). 1 and |w′(r)|. w(r) for r ∈ [R,+∞).
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These assumptions are satisfied for instance by w(r)= r−2 or w(r)= e−2r .
We assume that q is an homogeneous polynomial of degree 2 with respect to η of the form

q(r, θ, η)= q0(θ, η)+ q1(r, θ, η) (3-4)

with q0, q1 homogeneous polynomials of degree 2 with respect to η satisfying, for some 0< τ ≤ 1,

|∂αθ ∂
β
η q0(θ, η)|. 〈η〉

2−|β|, (3-5)

|∂ j
r ∂

α
θ ∂

β
η q1(r, θ, η)|. 〈r〉−τ− j

〈η〉2−|β|, (3-6)

and, for some C > 0,
C−1
|η|2 ≤ q(r, θ, η)≤ C |η|2, (3-7)

for (r, θ, η) ∈ R+×Rn−1
×Rn−1. The latter implies, by possibly increasing C , that

C−1
|η|2 ≤ q0(θ, η)≤ C |η|2, (θ, η) ∈ Rn−1

×Rn−1. (3-8)

Setting q ′ = ∂r q (= ∂r q1), we finally assume that,

q ′

q
×
w

w′
→ 0 as r→+∞, (3-9)

uniformly with respect to θ ∈ Rn−1 and η ∈ Rn−1
\ 0.

The Hamiltonian flow 8t
= (r t , θ t , ρt , ηt), generated by p, is the solution to the system

ṙ = 2ρ,
θ̇ = w ∂q/∂η,
ρ̇ = −w′q −wq ′,
η̇ = −w∂q/∂θ,

(3-10)

with initial condition
(r t , θ t , ρt , ηt)|t=0 = (r, θ, ρ, η). (3-11)

Our main purpose is to show that, if ρ > −p1/2 (with p = p(r, θ, ρ, η)) and r is large enough, then
8t is defined for all t ≥ 0 and rt →+∞ as t→+∞ (we will obtain a similar result for t ≤ 0 provided
ρ < p1/2). This result relies mainly on the following remark: if η 6= 0, we can write

−w′q −wq ′ =−w
′

w

(
p− ρ2) (1+ w

w′
×

q ′

q

)
.

Using (3-9) and the negativity of w′/w, this shows that, for all ε > 0, we can find R > 0 such that

−w′q −wq ′ ≥−(1− ε)(p− ρ2)
w′

w
, on [R,+∞)r ×Rn−1

θ ×Rρ ×Rn−1
η (3-12)

which we shall exploit to prove that ρ̇ ≥ 0.
In the following lemma and in the sequel, we shall use extensively the shorter notation

p = p(r, θ, ρ, η).
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Lemma 3.1. Denote by (−t−, t+) (t± ∈ (0,+∞]) the maximal interval on which the solution of (3-10),
with initial condition (3-11), is defined. Then

t± ≥
r

2p1/2 .

Furthermore, either rt → 0 as t→ t+ (resp. t→−t−) or t+ =+∞ (resp. t− =+∞).

Note that, if p(r, θ, ρ, η)= 0, i.e., ρ = 0 and η = 0, then it is trivial that t± =+∞.

Proof. We will only consider the case of t+, the one of t− being similar. By the conservation of energy
we have |ρt

| ≤ p1/2 thus, for t ∈ [0, t+), ṙ t is bounded,

|r t
− r | ≤ 2tp1/2, (3-13)

and r t
≥ r − 2tp1/2. We now argue by contradiction and assume that t+ < r/2p1/2 (in particular, that

t+ is finite). Then r+ := r − 2t+ p1/2 > 0 and rt ≥ r+ for all t ∈ [0, t+). Furthermore, by (3-7), we have
|w∂ηq| ≤ C(wq +w)≤ C(p+w), with w bounded on [r+,+∞), hence θ̇ t is bounded on [0, t+). One
shows similarly that ρ̇t and η̇t are bounded on [0, t+), using that |w′| . w on [r+,+∞) for ρ̇. This
implies that limt→t+(r

t , θ t , ρt , ηt) exists and belongs to (0,+∞)×Rn−1
×R×Rn−1. The solution can

therefore be continued beyond t+, which yields the contradiction.
We now consider the second statement. Assume that t+<+∞. We must show that r t

→ 0 as t→ t+.
Assume that this is wrong. Then there exists R > 0 small enough and a sequence tk → t+ such that
r tk ≥ R for all k ≥ 0. On the other hand, by energy conservation, we have |r t

− r s
| ≤ 2p1/2

|t − s| for all
t, s ∈ [0, t+), hence

r t
≥ r tk − 2p1/2

|t − tk | ≥ R/2

provided |t − tk | ≤ R/4p1/2. Since tk can be chosen as close to t+ as we want, there exists ε >
0 small enough such that r t

≥ R/2 for t ∈ [t+ − ε, t+). Then, by the same argument as above,
limt→t+(r

t , θ t , ρt , ηt) exists and belongs to (0,+∞)×Rn−1
×R×Rn−1. The solution can be continued

beyond t+; hence t+ =+∞, which is a contradiction. �

Lemma 3.2. Let 0< ε < 1. For any R > 0 such that (3-12) holds, we have:

(i) If r t0 ≥ R and ρt0 > 0 for some t0 ∈ [0, t+), then t+ =+∞ and

r t
≥ R, ρt

≥ ρt0, r t
≥ r t0 + 2(t − t0)ρt0 for all t ≥ t0.

(ii) If r t0 ≥ R and ρt0 < 0 for some t0 ∈ (−t−, 0], then −t− =−∞ and

r t
≥ R, ρt

≤ ρt0, r t
≥ r t0 + 2(t − t0)ρt0 for all t ≤ t0.

Proof. As in Lemma 3.1, we only consider the case of t+. It suffices to show that

r t
≥ R for all t ∈ [t0, t+). (3-14)

Indeed, if this is true, Lemma 3.1 shows that t+ = +∞ and then, by (3-12), we have ρ̇t
≥ 0, whence

ρt
≥ ρt0 and r t

− r t0 ≥ 2ρt0(t − t0). Let us prove (3-14). Consider the set

I =
{
t ∈ [t0, t+) : r s

≥ R and ρs
≥ ρt0 for all s ∈ [t0, t]

}
.
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It is clearly an interval containing t0 and we set T := sup I . By continuity, ρt
≥ ρt0/2> 0 for t in a small

neighborhood J of t0. This implies that ṙ t > 0 on J , hence that r t
≥ r t0 ≥ R on J ∩[t0, t+) and thus that

ρ̇t
≥ 0 on J ∩ [t0, t+) which in turn shows that ρt

≥ ρt0 on J ∩ [t0, t+). This proves that T > t0. Then,
on [t0, T ), we have

r t
≥ R, ρt

≥ ρt0 . (3-15)

Now assume, by contradiction, that T < t+. Then (3-15) holds on [t0, T ] and in particular we have
r T
≥ r t0 + 2(T − t0)ρt0 > r t0 . Thus r t

≥ R in a neighborhood of T and this implies that ρ̇t
≥ 0 in this

neighborhood. Hence there exists T ′ > T such that (3-15) holds on [t0, T ′] yielding a contradiction. �

To state the next result, we define l ∈ (0,+∞] as

l =− lim sup
r→+∞

∫ (1+γ)r

r

w′

w
(3-16)

and we choose an arbitrary σ ∈ R such that

0< σ <

{
−

2
l
+

( 4
l2 + 1

)1/2
if l <+∞,

1 if l =+∞.
(3-17)

Note that 0<−2
l
+

( 4
l2 + 1

)1/2
< 1 if l is finite, and that (3-17) is equivalent to

(1− σ 2)l/2> 2σ > 0.

Proposition 3.3. For any σ satisfying (3-17), there exists Rw,γ,σ > 0 large enough that the following
property holds. Let r > Rw,γ,σ . Then:

(i) If ρ >−σ p1/2, then t+ =+∞ and

r t
≥max

(
(1− γ)r, (1− γ− σγ)r + 2σ p1/2

|t |
)

(3-18)

for all t ≥ 0.

(ii) If ρ < σ p1/2, then −t− =−∞ and (3-18) holds for t ≤ 0.

This proposition means that, by choosing initial data with r large enough and ρ > −σ p1/2 (resp.
ρ < σ p1/2), the forward (resp. backward) trajectory lies in a neighborhood of infinity. In particular, the
forward (resp. backward) flow starting at (r, θ, ρ, η), with ρ >−σ p1/2 (resp. ρ < σ p1/2 ) depends only
on the values of p on [(1− γ)r,+∞)×Rn−1

×R×Rn−1.

Proof. We only consider the case where ρ >−σ p1/2, the case where ρ < σ p1/2 being similar. If l <∞,
(3-17) allows one to choose 0< ε < 1 such that

(1− ε)2(1− σ 2)l/2≥ 2σ. (3-19)

If l =∞, we choose an arbitrary ε ∈ (0, 1). We next choose R so that (3-12) holds with the above choice
of ε. If ρ ≥ σ p1/2 (recall that p1/2 > 0 since ρ > −σ p1/2) and r ≥ R, then Lemma 3.2 shows that the
result holds with Rw,γ,σ = R. We can therefore assume that ρ < σ p1/2. Set

R1 = (1− γ)−1 R, T = γr/2p1/2. (3-20)
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By Lemma 3.1, we have t+ > T and, if r ≥ R1,

r t
≥ r − 2tp1/2

≥ (1− γ)r ≥ R for t ∈ [0, T ].

Using (3-12), this implies that ρ̇t
≥ 0 on [0, T ] and hence that ρt

≥ −σ p1/2 for all t ∈ [0, T ]. We
now prove by contradiction that there exists t ∈ [0, T ] such that ρt

≥ σ p1/2. If this is wrong, we have
(ρt)2 ≤ σ 2 p on [0, T ], thus (3-12) shows that, for all t ∈ [0, T ],

ρ̇t
≥−(1− ε)(1− σ 2)p

w′

w
(r t)≥−(1− ε)(1− σ 2)p

w′

w
(r + 2tp1/2),

using the third estimate of (3-2) and the fact that r t
≤ r+2tp1/2 in the second inequality. By integration

over [0, T ], we get

ρT
− ρ ≥−(1− ε)(1− σ 2)p1/2 1

2

∫ (1+γ)r

r

w′

w
, (3-21)

using the second equality in (3-20). Fix R2 such that, for all r > R2,

−

∫ (1+γ)r

r

w′

w
>

 (1− ε)l if l <+∞,
4σ

(1−ε)(1−σ 2)
if l =+∞.

With such a choice (and (3-19) if l is finite), we see that, if r ≥ max(R1, R2), (3-21) implies that
ρT
− ρ ≥ 2σ p1/2 and hence that ρT

≥ σ p1/2 which yields the expected contradiction.
In summary, we have shown that for any r ≥max(R1, R2) and any ρ >−σ p1/2, there exists t0 ∈ [0, T ]

such that ρt0 ≥ σ p1/2 > 0 and r t0 ≥ R, hence t+ = +∞ by Lemma 3.2. Furthermore, r t
≥ (1− γ)r on

[0, T ] and r t
≥ r T
+ 2(t − T )σ p1/2

≥ (1− (1+ σ)γ)r + 2tσ p1/2 on [T,+∞). The result follows since

max
(
(1−γ)r, (1−γ−σγ)r + 2σ p1/2t

)
=

{
(1− γ)r if t ∈ [0, T ],
(1− γ− σγ)r + 2σ p1/2t if t > T . �

3B. The asymptotically hyperbolic case. We will now prove more precise estimates on the Hamiltonian
flow of p when

w(r)= e−2r .

In that case, the conditions (3-2), (3-3) and (3-9) are fulfilled, with any 0 < γ < 1 in (3-3) and we have
l =+∞ in (3-16).

We shall need the following improvement of Proposition 3.3.

Proposition 3.4. Let 0 < σ < 1. There exist Rσ > 0 and Cσ > 0 such that: if r ≥ Rσ and ρ > −σ p1/2

(resp. ρ < σ p1/2), then

r t
≥ r + 2σ p1/2

|t | −Cσ , for all t ≥ 0 (resp. t ≤ 0).

The improvement consists in replacing (1− γ− σγ)r in the estimate (3-18) by r −Cσ .

Proof. Here again we only consider the case t ≥ 0. By Proposition 3.3, we may assume that r t
≥ R for

all t ≥ 0, with R large enough so that (3-12) holds with ε = 1
2 . This implies that

ρ̇t
= 2e−2r t

q(r t , θ t , ηt)− e−2r t
∂r q1(r t , θ t , ηt)≥ e−2r t

q(r t , θ t , ηt)= p− (ρt)2. (3-22)
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If ρ ≥ σ p1/2, then the result follows from Lemma 3.2 (with Cσ = 0). If ρ < σ p1/2, we will show that,
with T = 2σ p−1/2/(1− σ 2), there exists t ∈ [0, T ] such that ρt

≥ σ p1/2. Assume that this is wrong.
Then (ρt)2 ≤ σ 2 p on [0, T ] and by integrating the above estimate on ρ̇t , we get

ρT
− ρ ≥ T (1− σ 2)p = 2σ p1/2.

This proves that ρT
≥ σ p1/2 which is a contradiction. Therefore, by Lemma 3.2, we see that r t

− r T
≥

2σ p1/2(t − T ) for t ≥ T . On the other hand, we have r t
≥ r − 2p1/2t for t ∈ [0, T ]. The latter implies

that r t
≥ r+2σ p1/2t−2p1/2(1+σ)t ≥ r+2σ p1/2t−4σ/(1−σ) for t ∈ [0, T ]. This holds in particular

for t = T and then for t ≥ T . Thus the results holds with Cσ = 4σ/(1− σ). �

We have so far only studied some localization properties of 8t , the Hamiltonian flow of p. We shall
now give estimates on derivatives of8t . We start with the following lemma giving some rough estimates.
They will serve as a priori estimates for the proof of Proposition 3.8 below.

Lemma 3.5. For all 0< σ < 1, there exists R > 0 such that, for all (r, θ, ρ, η) ∈ T ∗Rn
+

satisfying

r > R, ±ρ >−σ p1/2, p ∈
( 1

4 , 4
)
, (3-23)

and all ±t ≥ 0, we have ∣∣er |β|∂βη ∂
j

r ∂
α
θ ∂

k
ρ(8

t
−80)(r, θ, ρ, η)

∣∣. 〈t〉.
Note the er |β| factor in front of the derivatives.
We will need two lemmas. The first one, proved by induction, is a soft version of the classical Faà di

Bruno formula.

Lemma 3.6. Let �1 ⊂ Rn1 , �2 ⊂ Rn2 be open subsets, with n1, n2 ≥ 1. Consider smooth maps y =
(y1, . . . , yn2) :�1→�2 and Z :�1×�2→ Rn3 , with n3 ≥ 1. Then, for all |γ| ≥ 1,

∂γx (Z(x, y(x)))= (∂y Z)(x, y(x))∂γx y(x)+
(
∂γx Z

)
(x, y(x))+ Rγ(x)

where Rγ(x) vanishes identically if |γ| = 1 and, otherwise, is a linear combination of(
∂γ−γ

′

x ∂νy Z
)
(x, y(x))

(
∂
γ1

1
x y1(x) . . . ∂

γ1
ν1

x y1(x)
)
. . .
(
∂
γ

n2
1

x yn2(x) . . . ∂
γ

n2
νn2

x yn2(x)
)
,

with γ, γ′, γk
j ∈ N

n1
0 , ν = (ν1, . . . , νn2) ∈ N

n2
0 satisfying γ′ 6= 0, ν 6= 0 and

γ′ ≤ γ, 2≤ |ν| + |γ− γ′| ≤ |γ|, γ1
1+ · · ·+ γ

1
ν1
+ · · ·+ γ

n2
1 + · · ·+ γ

n2
νn2
= γ′,

and using the convention that ∂
γk

1
x yk(x) . . . ∂

γk
νk

x yk(x) ≡ 1 if νk = 0 (if νk 6= 0 then γk
1, . . . , γ

k
νk

are all
nonzero).

In the second lemma, we consider the linear differential equation

Ẋ = A(t)X + Y (t), (3-24)

where A( · ) is a continuous map from [0,+∞) to the space MN×N (R)) of N × N matrices with real
entries, for some N ≥ 1, and Y ( · ) ∈ C([0,+∞),CN ). We assume that A( · ) belongs to a subset
B⊂ C([0,+∞),MN×N (R)) for which there exist δB > 0 and CB > 0 such that

|||A(t)||| ≤ CBe−δBt for all t ≥ 0 and A( · ) ∈B,
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with ||| · ||| a matrix norm associated to the norm ‖ · ‖ on CN , i.e., such that ‖M Z‖ ≤ |||M ||| ‖Z‖, for all
M ∈MN×N (R) and Z ∈ CN .

Lemma 3.7. There exists C > 0 such that, for all A( · ) ∈B and all Y ( · ) satisfying∫
∞

0
‖Y (t)‖dt <∞,

the solutions X ( · ) of (3-24) satisfy

‖X (t)‖ ≤ C
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
for t ≥ 0. (3-25)

Proof. First fix 0<δ<δB and ε= δB−δ. Choose T > 0 such that CBe−δBt
≤ ε for t ≥ T . By Gronwall’s

lemma, we have

‖X (t)‖ ≤
(
‖X (T )‖+

∫
∞

T
‖Y (s)‖ ds

)
eε(t−T ) for t ≥ T,

‖X (t)‖ ≤
(
‖X (0)‖ +

∫ T

0
‖Y (s)‖ ds

)
eCBT for t ∈ [0, T ].

These two inequalities give, for some C depending only on CB, δB, δ and T ,

‖X (t)‖ ≤ C
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
eεt for t ≥ 0.

Used as an a priori estimate in (3-24), this yields

‖Ẋ(t)‖ ≤ ‖Y (t)‖+CCBe−δt
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
for t ≥ 0,

which implies (3-25). �

Proof of Lemma 3.5. As before, we only prove the result for t ≥ 0. For |β|+ j+|α|+k = 0, the result is
a consequence of the motion equations (3-10) and energy conservation. Indeed, for r t

− r , the estimate
follows directly from (3-13). Next, the equation of motion for θ , together with (3-7) and Proposition 3.4,
shows that

|θ̇ t
|. e−2r t

|ηt
|. e−2r t

〈ηt
〉

2 . 1+ p;

hence that |θ t
− θ | . 〈t〉 by integration. One similarly shows that |ρt

− ρ| + |ηt
− ρ| . 〈t〉. We now

consider the derivatives and write, for simplicity, ∂γ = ∂βη ∂
j

r ∂
α
θ ∂

k
ρ . Denoting by Hp is the Hamiltonian

vector field of p and applying ∂γ to (3-10), we obtain

er |β|∂γ8̇t
= (d Hp)(8

t)er |β|∂γ8t
+ R(t),

where, by Lemma 3.6, R(t) vanishes if |γ| = 1 or, if |γ| ≥ 2, is a linear combination of

(∂νHp)(8
t)er |β|(∂γ1

1r t
· · · ∂

γ1
ν1 r t)
· · ·
(
∂γ

2n
1 ηt

n−1 · · · ∂
γ2n
ν2n ηt

n−1
)
. (3-26)
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Here ν = (ν1, . . . , ν2n) is of length at least 2, all the derivatives of 8t involved in R(t) are of strictly
smaller order than γ (meaning that γi

li ≤ γ and γi
li 6= γ), and

2≤ |ν| ≤ |γ|, γ1
1+ · · ·+ γ

2n
ν2n
= γ. (3-27)

Writing d Hp as a matrix, we have

d Hp =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

+ e−2r


0 0 0 0

∂2
rηq1−2∂ηq ∂2

θηq 0 ∂2
ηηq

4∂r q1−4q−∂2
rr q1 2∂θq−∂2

θr q1 0 2∂ηq−∂2
ηr q1

2∂θq−∂2
rθq1 −∂2

θθq 0 −∂2
ηθq

 .
Defining M as the first (constant) matrix of the right-hand side and using Proposition 3.4, we have∣∣d Hp(8

t)−M
∣∣. e−2r t

〈ηt
〉

2 . e−2r−2σ t(〈η〉2+〈t〉2). e−σ t ,

using that 2p1/2
≥ 1 and that e−2r

〈η〉2 is bounded, by (3-23). We then set

A(t)= e−t M (d Hp(8
t)−M

)
et M ,

X (t)= e−t M er |β|∂γ8t
− er |β|∂γ80,

Y (t)= e−t M R(t)+ A(t)er |β|∂γ80,

so that
Ẋ(t)= A(t)X (t)+ Y (t), X (0)= 0.

Noting that M2
= 0, we have

exp(±t M)= 1± t M, | exp(±t M)|. 〈t〉; (3-28)

thus
|A(t)|. e−σ t

〈t〉2 . e−σ t/2. (3-29)

To estimate X (t) by Lemma 3.7, we still need to estimate Y (t). We first assume that ∂γ = ∂βη with
|β| = 1. We then have R(t)= 0 and

A(t)er |β|∂γ80
= e−t M(∂βη Hp)(8

t)er ,

since M∂βη80
= 0. By Proposition 3.4 and (3-23) again, we obtain

|(∂βη Hp)(8
t)|. e−2r−2σ t

〈ηt
〉. e−r−σ t ,

so that |Y (t)| . e−σ t/2. Using (3-29) and Lemma 3.7, we get |X (t)| . 1. Since M∂βη80
= 0, we can

rewrite X (t)= e−t M er∂
β
η (8

t
−80) and, using (3-28), finally get∣∣er∂βη (8

t
−80)

∣∣. 〈t〉.
The other first-order derivatives of 8t

−80 are studied similarly (note that there is no er factor then), by
showing that X (t) is bounded and using that X (t)= e−t M∂γ(8t

−80)+ (e−t M
−1)∂γ80 with (3-28) to

get
|∂γ(8t

−80)|. 〈t〉.
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For higher-order derivatives, ∂γ80
= 0 and ∂γ(8t

−80) = ∂γ8t . Furthermore, since the derivatives of
8t involved in R(t) are of strictly smaller order than γ, we can proceed by induction. By writing x t for
r t , ρt , θ t and

∂γ
i
l = ∂

β i
l
η ∂

ki
l

r ∂
αi

l
θ ∂

j i
l
ρ

for the derivatives involved in (3-26), with 1≤ i≤2n and 1≤ l≤νi (recall that, if νi =0, the corresponding
product in (3-26) is 1), the induction hypothesis yields

|e|β
i
l |r∂γ

i
l x t
|. 〈t〉,

since ∂
β i

l
η x t
= ∂

β i
l
η (x t
− x0) if β i

l 6= 0. If n+ 2≤ i ≤ 2n (and νi 6= 0), we also have

|e|β
i
l |r∂γ

i
lηt

i−n−1|. 〈t〉,

unless ∂γ
i
l = ∂

β i
l
η with |β i

l | = 1, in which case we only have |∂γ
i
lηt

i−n−1|. 〈t〉. By setting

E= {n+ 2≤ i ≤ 2n : ∃1≤ l ≤ νi such that ∂γ
i
l = ∂

β i
l
η with |β i

l | = 1},

and N = #E, we thus obtain

|(3-26)|. eNr
|(∂νHp)(8

t)|〈t〉|ν|−N ∏
E

|∂γ
i
lηt

i−n−1|.

Since the components of Hp are polynomial of degree 2 with respect to the last n−1 variables, we only
need to consider the case where N ≤ 2, otherwise νn+2+ · · ·+ ν2n ≥ 3 and ∂νHp ≡ 0. Furthermore

|(∂νHp)(8
t)|. e−2r t

〈ηt
〉

2−νn+2−···−ν2n . e−2r t
〈ηt
〉

2−N .

For N ≤ 2, we have 〈ηt
〉

2−N . 〈η〉2−N
+ 〈t〉2−N so, using that eNr e−2r t

. e−(2−N )r−2σ t , we see that
eNr e−2r t

〈ηt
〉

2−N . e−σ t which finally implies |(3-26)|. 〈t〉|ν|e−σ t . e−σ t/2. Therefore |Y (t)|. 〈t〉e−σ t

and, by Lemma 3.7, |X (t)| is bounded. The result then follows easily. �

The following proposition will be important in Section 4C to construct and estimate phase functions.

Proposition 3.8. For all 0< σ < 1, there exists R > 0 such that, for all j, k ∈N0, α, β ∈Nn−1
0 , with the

notation
D jαkβ

hyp = er |β|∂βη ∂
j

r ∂
α
θ ∂

k
ρ,

(introduced before Definition 2.2) and (l)+ =max(0, l), we have

|D jαkβ
hyp (r t

− r − 2|t |p1/2)|.
(
e−r
〈η/p1/2

〉
)(2−|β|)+ p−(k+|β|)/2,

|D jαkβ
hyp (θ t

− θ)|. e−r(e−r
〈η/p1/2

〉
)(1−|β|)+ p−(k+|β|)/2,

|D jαkβ
hyp (ρt

− ρ)| + |D jαkβ
hyp (ηt

− η)|.
(
e−r
〈η/p1/2

〉
)(2−|β|)+ p(1−k−|β|)/2,

and, for all 0< ε < 1,∣∣D jαkβ
hyp (ρt

∓ p1/2)
∣∣. (e−r

〈η/p1/2
〉
)(2−|β|)+e−4(1−ε)|t |p1/2

p(1−k−|β|)/2,
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uniformly with respect to (r, θ, ρ, η) and t satisfying

r > R, ±ρ >−σ p1/2, ±t ≥ 0. (3-30)

Apart from the energy localization and the localization in θ , the conditions (3-30) are the main ones
that define outgoing/incoming areas according to Definition 2.10.

Note also that, if (r, θ, ρ, η) are restricted to a subset where p belongs to a compact subset of (0,+∞),
the estimates of Proposition 3.8 read∣∣D jαkβ

hyp (r t
−r−2|t |p1/2)

∣∣+∣∣D jαkβ
hyp (ρt

−ρ)
∣∣+∣∣D jαkβ

hyp (ηt
−η)

∣∣. (e−r
〈η〉
)(2−|β|)+

, (3-31)∣∣D jαkβ
hyp (θ t

−θ)
∣∣. e−r (e−r

〈η〉
)(1−|β|)+

, (3-32)∣∣D jαkβ
hyp (ρt

∓ p1/2)
∣∣. (e−r

〈η〉
)(2−|β|)+ e−4(1−ε)|t |p1/2

. (3-33)

Actually the latter estimates are equivalent to Proposition 3.8, in view of the elementary scaling properties

(r t , θ t)(r, θ, ρ, η)= (rλt , θλt)(r, θ, ρ/λ, η/λ), (3-34)

(ρt , ηt)(r, θ, ρ, η)= λ(ρλt , ηλt)(r, θ, ρ/λ, η/λ), (3-35)

valid for λ > 0. Note that the condition (3-30) is invariant under the scaling (t, ρ, η) 7→ (λt, ρ/λ, η/λ).

To prove Proposition 3.8, we need the following lemma (which will also be useful in proof of
Proposition 2.16 in Section 4A).

Lemma 3.9. For all 0 < σ < 1, there exist R > 0 and C > 0 such that, for all (r, θ, ρ, η) satisfying
(3-23),

|ρt
∓ p1/2

| ≤ Ce−|t |/C for ± t ≥ 0. (3-36)

In particular, ρt
→±p1/2 as t→±∞.

Proof. We consider the case where t ≥ 0, the case of negative times being similar. Using (3-12),
Proposition 3.4 and Lemma 3.5, we can choose R large enough such that ρ̇t

≥ 0 and

ρ̇t . e−2r t
|ηt
|
2 . e−2r t

(|η| + 〈t〉)2 . e−2r−2σ t(|η| + 〈t〉)2 . e−σ t , (3-37)

using the fact that e−2r
|η|2 . p in the last estimate. Therefore, ρt has a limit as t→+∞. By the energy

conservation and the estimate on e−2r t
|ηt
|
2 given by (3-37), we have p = (ρt)2+O(e−σ t), which shows

that (ρt)2→ p. Since ρt is nondecreasing and ρ0
= ρ > −p1/2, the limit must be p1/2. Then we get

(3-36) by integrating the equation of motion for ρt between t and +∞, namely

p1/2
− ρt
=

∫
∞

t
ρ̇s ds =

∫
∞

t
e−2r s (

2q(r s, θ s, ηs)− (∂r q1)(r s, θ s, ηs)
)

ds (3-38)

where, by Proposition 3.4 and Lemma 3.5, the integrand is O(e−2r−2σ s(〈s〉+ 〈η〉)2). �

Proof of Proposition 3.8. We only need to prove (3-31), (3-32) and (3-33) with p ∈ ( 1
4 , 4) and, again, we

only consider t ≥ 0 and ρ >−σ p1/2. We first assume that j+|α|+k+|β|= 0. By (3-10), Proposition 3.4
and Lemma 3.5, we have

|θ̇ t
|. e−2r−2σ t(|η| + 〈t〉). e−2r−σ t

〈η〉,

|η̇t
|. e−2r−2σ t(|η| + 〈t〉)2 . e−2r−σ t

〈η〉2;
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hence |ηt
−η|. e−2r

〈η〉2 and |θ t
−θ |. e−2r

〈η〉. In particular, ηt
−η and θ t

−θ are bounded. The motion
equation for r t yields

r t
− r − 2tp1/2

= 2
∫ t

0
(ρs
− p1/2) ds, (3-39)

and, using (3-36), we get |r t
− r − 2tp1/2

| . 1. The latter estimate and the boundedness |ηt
− η| imply,

together with (3-38),
|ρt
− p1/2

|. e−2r−4tp1/2
〈η〉2. (3-40)

Furthermore, since |p1/2
−ρ| = |ρ2

− p|/|ρ+ p1/2
|. e−2r

|η|2, we also have |ρt
−ρ|. e−2r

〈η〉2. Putting
(3-40) into (3-39), we obtain |r t

− r − 2tp1/2
| . e−2r

〈η〉2 which completes the proof of (3-31), (3-32)
and (3-33) for j + |α| + k+ |β| = 0 (note that we can choose ε = 0 in this case).

We now prove (3-32) when j+|α|+k+|β|≥1. We first note that, by Lemma 3.5 and the boundedness
of |r t
− r − 2tp1/2

|, we have∣∣D j ′α′k′β ′

hyp (e−r t
ηt)
∣∣≤ ∣∣D j ′α′k′β ′

hyp (e−r t
(ηt
− η))

∣∣+ ∣∣D j ′α′k′β ′

hyp (e−r t
η)
∣∣

. e−2tp1/2
〈t〉 j

′
+|α′|+k′+|β ′|(e−r

+ (e−r
|η|)(1−|β

′
|)+
)

. e−2tp1/2
〈t〉 j

′
+|α′|+k′+|β ′|(e−r

〈η〉
)(1−|β ′|)+

, (3-41)

for all j ′+ |α′| + k ′+ |β ′| ≥ 0. By writing

θ t
− θ =

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds,

and using (3-41), Lemma 3.5 (more precisely, the estimates
∣∣D j ′′α′′k′′β ′′

hyp r t
∣∣+ ∣∣D j ′′α′′k′′β ′′

hyp θ t
∣∣. 〈t〉 if j ′′+

|α′′|+k ′′+|β ′′| 6= 0), the Leibniz formula and Lemma 3.6, we obtain (3-32). We obtain similarly (3-33)
and then (3-31) (also using that (e−r

〈η〉)2 . e−r
〈η〉 . 1). Note that, for r t

− r − 2tp1/2, (3-31) follows
directly from (3-33) and (3-39). �

Corollary 3.10. Let V b V ′ b Rn−1 be two relatively compact open subsets and let 0 < σ < 1. There
exists R > 0 and C > 0 such that the conditions

r > R, θ ∈ V, ±ρ >−σ p1/2, (3-42)

imply that, for all ±t ≥ 0,
r t > r −C and θ t

∈ V ′.

In particular, if (3-42) holds, the flow 8t(r, θ, ρ, η) depend only on p on T ∗
(
(r −C,+∞)× V ′

)
for

±t ≥ 0.

This corollary allows us to localize the estimates of Proposition 3.8 in charts of asymptotically hyper-
bolic manifolds.

4. The Hamilton–Jacobi and transport equations

In this section, we develop the analytical tools necessary for the Isozaki–Kiada parametrix that will be
constructed in Section 5. We mainly construct the phases and amplitudes needed for that parametrix, but
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also prove certain useful properties of outgoing/incoming areas, including those quoted without proof in
Section 2D.

All the statements in this section will hold in a coordinate chart at infinity, associated to a fixed coor-
dinate patch Uι on the angular manifold. Thus, for notational simplicity, we will drop the corresponding
index ι from the notation.

4A. Properties of outgoing, incoming and intermediate areas. Here we collect some properties of out-
going, incoming and intermediate areas which will be needed for the construction of the Isozaki–Kiada
parametrix. We also prove a part of the results quoted without proofs in Section 2D, namely Propositions
2.11, 2.13, 2.15 and 2.16.

In the first proposition below, we use the classes Shyp(�) introduced in Definition 2.2.

Proposition 4.1. (i) Assume that

R1 > R2, V1 b V2, I1 b I2, σ1 < σ2. (4-1)

Then we can find χ±1→2 ∈ Shyp
(
0±(R2, V2, I2, σ2)

)
such that

χ±
1→2 ≡ 1 on 0±(R1, V1, I1, σ1).

(ii) Any symbol a ∈ Shyp
(
(R,+∞)× V ×Rn

∩ p−1(I )
)

can be written

a = a++ a−, with a± ∈ Shyp
(
0±(R, V, I, 1

2)
)
.

One important point in this proposition is that χ±1→2 and a± can be chosen in Shyp.

Proof. (i) We may for instance choose

χ±
1→2(r, θ, ρ, η)= χR1→R2(r)χV1→V2(θ)χ I1→I2(p)χσ1→σ2(±ρ/p1/2),

with χR1→R2, χσ1→σ2 ∈ C∞(R), χV1→V2 ∈ C∞0 (V2) and χ I1→I2 ∈ C∞0 (I2) such that

supp(χR1→R2)⊂ (R2,+∞), supp(χσ1→σ2)⊂ (−σ2,+∞),

χR1→R2 ≡ 1 on (R1,+∞), χV1→V2 ≡ 1 on V1, χ I1→I2 ≡ 1 on I1, χσ1→σ2 ≡ 1 on (−σ1,+∞).

Notice that ρ/p1/2 is smooth on the support of χ I1→I2(p). The so defined χ±1→2 is smooth on R2n ,
supported in 0±(R2, V2, I2, σ2), identically 1 on 0±(R1, V1, I1, σ1), and one easily checks that it belongs
to Bhyp

(
0±(R2, V2, I2, σ2)

)
, using for instance Lemma 2.4.

(ii) This is very similar to the first case. We may for instance choose

a±(r, θ, ρ, η)= a(r, θ, ρ, η)χ±1/2(ρ/p1/2),

with χ±1/2 ∈ C∞(R) such that

χ+
1/2+

χ−
1/2 ≡ 1, supp(χ+1/2)⊂

(
−

1
2 ,+∞

)
, supp(χ+1/2)⊂

(
−∞, 1

2

)
.

Here again ρ/p1/2 is smooth on the support of a and a± ∈Bhyp
(
0±(R, V, I, 1

2)
)
. �

By Proposition 4.1(i), 0±(R2, V2, I2, σ2) is a neighborhood of the closure of 0±(R1, V1, I1, σ1) under
the assumption (4-1). In the following proposition, we make this remark more quantitative.
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Proposition 4.2. Assume (4-1). There exists ε > 0 such that, for all (r ′, θ ′, ρ ′, η′) ∈ R2n and all
(r, θ, ρ, η) ∈ 0±(R1, V1, I1, σ1),

|(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)| ≤ ε H⇒ (r ′, θ ′, ρ ′, η′) ∈ 0±(R2, V2, I2, σ2).

Proof. Choose first ε0 > 0 such that, if |r − r ′| + |θ − θ ′| ≤ ε0, r ′ > R2 and θ ′ ∈ V2. Then, by writing

q(r ′, θ ′, e−r ′η′)− q(r ′, θ ′, e−rη)= e−2r ′q(r ′, θ ′, η′− η)+ (e2(r−r ′)
− 1)q(r ′, θ ′, e−rη), (4-2)

and using (3-5), (3-6) with the Taylor formula, we get

|p(r ′, θ ′, ρ ′, η′)− p(r, θ, ρ, η)| ≤ |ρ2
− ρ ′2| +C |η′− η|2+C(|r − r ′| + |θ − θ ′|)e−2r

|η|2,

where e−2r
|η|2 is bounded, using (3-7). Since ρ is bounded too, we obtain∣∣p(r ′, θ ′, ρ ′, η′)− p(r, θ, ρ, η)

∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,

provided that
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣≤ ε0 and therefore,∣∣p1/2(r ′, θ ′, ρ ′, η′)− p1/2(r, θ, ρ, η)

∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,∣∣∣∣ ρ ′

p1/2(r ′, θ ′, ρ ′, η′)
−

ρ

p1/2(r, θ, ρ, η)

∣∣∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,

if
∣∣(r, θ, ρ, η)−(r ′, θ ′, ρ ′, η′)∣∣ is small enough, using that I2b (0,+∞). The conclusion is then easy. �

Similarly to (2-54), we fix V0 ⊂ Rn−1 a relatively compact open subset of ψι(Uι) and define

R(ε)= 1/ε, Vε = {θ ∈ Rn−1
: dist(θ, V0) < ε

2
}. (4-3)

In the sequel, we shall need very often the following result on strongly outgoing/incoming areas
(see Propositions 4.8, 4.14 and Lemmas 4.11, 4.16). This will for instance be the case when we use
Taylor’s formula and want to guarantee that the whole segment between two points of a strongly outgo-
ing/incoming area is still contained in such an area.

Proposition 4.3. For all M > 0, there exist εM > 0 and CM > 1 such that, for all 0 < ε ≤ εM , the
following holds: if

(r, θ, ρ, η) ∈ 0±s (ε), (4-4)

and

r ′− r ≥−M, |θ ′− θ |< Mε2, |ρ ′− ρ|< Mε2, |η′− η|< Mεe1/ε, (4-5)

then, for all 0≤ s ≤ 1,

(r ′, θ ′, ρ ′, sη′) ∈ 0±s (CMε).

In particular, (r ′, θ ′, ρ ′, 0) ∈ 0±s (CMε).

Remark. There should not be any confusion between the interpolation parameter 0 ≤ s ≤ 1 and the
subscript s, which refers to strongly outgoing/incoming areas (and which are independent of s).
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Proof. Using (2-56) and (4-2), we first note the existence of M ′ > 0 such that, for all 0< ε < 1
4 , if (4-4)

and (4-5) hold then ∣∣p(r ′, θ ′, ρ ′, sη′)− p(r, θ, ρ, η)
∣∣≤ M ′ε2,

using in particular that sη′−η= s(η′−η)+(s−1)η. If CM is large enough and 0<εCM <
1
4 , we obtain

0< 1
4 −CMε <

1
4 − ε−M ′ε2

≤ p(r ′, θ ′, ρ ′, sη′)≤ 4+ ε+M ′ε2 < 4+CMε.

If 0< ε ≤ εM with εM small enough, then p(r ′, θ ′, ρ ′, sη′)/p(r, θ, ρ, η)= 1+O(ε2) so that

±ρ ′

p(r ′, θ ′, ρ ′, sη′)1/2
=

±ρ

p(r, θ, ρ, η)1/2
p(r, θ, ρ, η)1/2

p(r ′, θ ′, ρ ′, sη′)1/2
±

ρ ′− ρ

p(r ′, θ ′, ρ ′, sη′)1/2
> 1− (CMε)

2,

by possibly increasing CM . In addition, dist(θ, V0) ≤ |θ
′
− θ | + dist(θ, V0) < (CMε)

2, by possibly
increasing CM again and decreasing εM . Finally, r ′ ≥ r −M > e1/ε

−M > e1/CMε, for all 0 < ε ≤ εM

by possibly decreasing εM again, so (r ′, θ ′, ρ ′, sη′) ∈ 0±s (CMε). �

We can now prove Proposition 2.13, which states that one can reach a strongly outgoing (incoming)
area from an outgoing (incoming) one in finite time, along the geodesic flow.

Proof of Proposition 2.13. We consider only the outgoing case. With no loss of generality, we may
assume that 0<σ <1. By choosing R≥ R′σ large enough, we can use Proposition 3.4 and Corollary 3.10.
By Proposition 3.4, we have rt ≥ r+ct−C for some C, c> 0, hence rt > R(ε) for all t ≥ tR,ε, provided

ctR,ε −C + R > R(ε). (4-6)

By Proposition 3.8, we have |θ t
− θ | . e−r hence θ t

∈ Vε, for ε small enough and all t ≥ 0, since
e−1/ε

� ε2. Using (3-33) and the energy conservation, we shall have ρt/p1/2(r t , θ t , ρt , ηt) > 1− ε2

provided for instance that
e−p1/2tR,ε ≤ ε3, (4-7)

with ε small enough. Choosing tR,ε so that (4-6) and (4-7) hold, we get the result. �

We conclude this part with an explicit construction for cutoffs.
In Section 5, we will need a result similar to Proposition 4.1(i). This is the purpose of the following

result.

Proposition 4.4. We can find 0< ν < 1 and a family of cutoffs χ±
ε2→ε
∈ Shyp(0

±
s (ε

1+ν)), defined for all
ε small enough, such that

χ±
ε2→ε
= 1 on 0±s (ε

2) (4-8)

and, uniformly on R2n ,∣∣e−2r
|η| j∂r,θ,ρ,ηχ

±

ε2→ε

∣∣+ ∣∣e−2r
|η|2∂ρ,η∂r,θχ

±

ε2→ε

∣∣. ε1/2, j = 1, 2. (4-9)

That we can find, for each ε, χ±
ε2→ε
∈ Shyp(0

±
s (ε

1+ν)) satisfying (4-8) would follow directly from
Proposition 4.1. The important additional point here is the control with respect to ε given by (4-9). Note
also that the power 1

2 is essentially irrelevant: we only mean that the left-hand side of (4-9) is uniformly
small as ε→ 0. This rather technical point will only be used in Section 5 to globalize suitably certain
phase functions.
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Proof. For 0 < δ < 1 to be chosen later, we consider the characteristic functions χ̄ I
ε1+δ and χ̄V

ε2+δ of( 1
4 − ε

1+δ, 4+ ε1+δ
)

and V + B(0, ε2+δ) respectively. Choose ζ I
∈ C∞0 (R), ζ

V
∈ C∞0 (R

n−1) both equal
to 1 near 0, such that

∫
ζ I
=
∫
ζ V
= 1 and set

χ I
ε1+δ (λ)=

∫
χ̄ I
ε1+δ (µ)ζ

I
(
λ−µ

ε1+2δ

)
ε−1−2δdµ, χV

ε2+δ (θ)=

∫
χ̄V
ε2+δ (ϑ)ζ

V
(
θ −ϑ

ε2+2δ

)
ε−(n−1)(2+2δ)dϑ.

One then easily checks that, if ε is small enough,

χ I
ε1+δ ≡ 1 on

( 1
4 − ε

2, 4+ ε2), χV
ε2+δ (θ)= 1 if dist(θ, V ) < ε4,

χ I
ε1+δ ≡ 0 outside

( 1
4 − ε

1+ δ
4 , 4+ ε1+ δ

4
)
, χV

ε2+δ (θ)= 0 if dist(θ, V )≥ ε2+ δ
2 .

Choosing ω ∈ C∞(R) supported in
(1

4 ,∞
)

such that ω = 1 near
[ 1

3 ,∞
)
, we now define

χ±
ε2→ε

(r, θ, ρ, η)= ω
(

r
R(ε3/2)

)
χV
ε2+δ (θ) χ

I
ε1+δ (p) ω(±ρ) ζ I

(
e−2r |η|

2

ε4−δ

)
.

On the support of χ I
ε1+δ (p), we have ρ2

≥
1
4 − O(ε) so the factor ω(±ρ) only determines the sign of ρ.

By (2-55) and (2-56), one sees that (4-8) holds with ν = δ/2, if ε is small enough. Furthermore, χ±
ε2→ε

is supported in 0±s (ε
1+ν) and belongs to Bhyp(0

±
s (ε

1+ν)).
We prove (4-9). Since e−2r

|η|2 . ε4−δ on the support of χ±
ε2→ε

, the first-order derivatives satisfy

|∂rχ
±

ε2→ε
|. R(ε3/2)−1

+ e−2r
|η|2(ε−1−2δ

+ ε−4+δ). 1,

|∂ρχ
±

ε2→ε
|. ε−1−2δ,

|∂θχ
±

ε2→ε
|. ε−2−2δ

+ ε−1−2δe−2r
|η|2 . ε−2−2δ,

|∂ηχ
±

ε2→ε
|. e−2r

|η|(ε−1−2δ
+ ε−4+δ)� e−ε

−1/2
,

using the fact that e−2r
|η|. e−r

≤ e−ε
−1

for the last estimate. Similarly

|∂ρ∂r,θχ
±

ε2→ε
|. ε−2−2δ

× ε−1−2δ
= ε−3−4δ, |∂η∂r,θχ

±

ε2→ε
|. e−ε

−1/2
.

Since e−2r
|η|2e−3−4δ . ε1−5δ and e−2r

|η| � e−ε
−1/2

, the result follows with δ = 1
10 (hence with ν = 1

20 ).
�

We finally consider the statements involving intermediate areas.

Proof of Proposition 2.15. By (2-58) and (2-59), we can find χ−∞, χ+∞ ∈ C∞(R) and

χl ∈ C∞0 (−σl+1,−σl−1),

for 1≤ l ≤ L − 1, such that

supp(χ−∞)⊂ (−∞,−σL−1), supp(χ+∞) ∈ (1− ε2,+∞) and χ
+∞+

L−1∑
l=1
χl +χ−∞ ≡ 1 on R.

This simply relies on the overlapping property of the intervals in (2-59). We then obtain the result by
considering
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a±s (r, θ, ρ, η)= a±(r, θ, ρ, η) χ+∞(±ρ/p1/2),

a±l,inter(r, θ, ρ, η)= a±(r, θ, ρ, η) χl(±ρ/p1/2), 1≤ l ≤ L − 2,

a±L−1,inter(r, θ, ρ, η)= a±(r, θ, ρ, η) (χL−1+χ−∞)(±ρ/p1/2).

since, in the definition of a±L−1,inter, the cutoff guarantees that±ρ/p1/2<−σL−2 and a± that±ρ/p1/2>

−
1
2 =−σL . �

Proof of Proposition 2.16. We consider the outgoing case, the incoming one being similar. Using
Corollary 3.10, we may assume that, if ε is small enough, (3-22) holds for any initial condition such
that r > R(ε), θ ∈ V and ρ ≥ −1

2 p1/2. In particular t 7→ ρt is nondecreasing for t ≥ 0. Assume that
1
2 ≤ ρ/p1/2

≤ 1− (ε/2)2 and set

tε = tε(r, θ, ρ, η) := sup
{

t ≥ 0 :
ρs

p1/2 <
ρ

p1/2 + ε
4 for all s ∈ [0, t]

}
.

Notice that tε is finite by Lemma 3.9 and that ρtε = ρ + p1/2ε4. If 1 − (ε/2)2 + ε4
≥

1
2 , we have

|ρt/p1/2
| ≤ 1− (ε/2)2+ ε4 on [0, tε). Thus, if ε is small enough (independent of (r, θ, ρ, η)), we have

(ρt)2/p ≤ 1− (ε/2)2 for all t ∈ [0, tε) and then, by (3-22) again, we have ρ̇t
≥ (ε/2)2 p on [0, tε], so

ρtε − ρ ≥ (ε/2)2 ptε.

This shows that tε≤ ε4/(ε/2)2 p=4ε2/p. Then, for ε small enough such that 4ε2/p≤ t for all (r, θ, ρ, η)
in {

(r, θ, ρ, η) ∈ R2n
: r > R(ε), θ ∈ V, p ∈ I (ε), − 1

2 ≤ ρ/p1/2
≤ 1− (ε/2)2

}
, (4-10)

and with δ = ε4/2, we have ρt
− ρ ≥ 2δp1/2 for all t ≥ t . This implies (2-62) since, for any choice of

σ0, . . . , σL and any l, 0±inter(ε, δ; l) is contained in (4-10). �

4B. Hyperbolic long/short-range symbols. In this short subsection, we introduce the definitions of
short/long-range hyperbolic symbols which will be useful for the resolution of transport equations in
Section 4E. We prove in passing Proposition 4.6 below which will be used at several places, in particular
in Section 4C.

Definition 4.5. A smooth function a± on 0±s (ε) is said to be of hyperbolic short range if

|∂ j
r ∂

α
θ ∂

k
ρ∂

β
η a±(r, θ, ρ, η)|. 〈r − log〈η〉〉−τ−1− j , (r, θ, ρ, η) ∈ 0±s (ε), (4-11)

and of hyperbolic long range if

|∂ j
r ∂

α
θ ∂

k
ρ∂

β
η a±(r, θ, ρ, η)|. 〈r − log〈η〉〉−τ− j , (r, θ, ρ, η) ∈ 0±s (ε). (4-12)

Notice that in this definition, we do not assume that a ∈Bhyp(0
±
s (ε)). However, this will be the case

in the applications and we now give a simple criterion to check that a symbol a ∈ Bhyp(0
±
s (ε)) is of

hyperbolic short/long range.
For ε small enough, by restricting a to a smaller area 0±s (ε/C), with C>1 large enough (or to 0±s (ε

2),
0±s (ε

3) as it will be the case in the applications), using Lemma 2.4 and Proposition 4.3, we have

a(r, θ, ρ, η)= a(r, θ, ρ, 0)+
∫ 1

0
(∂ξ ã)(r, θ, ρ, sξ)|ξ=e−rηds · e−rη, (4-13)
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where ã belongs to C∞b (Fhyp(0
±
s (ε))) and (r, θ, ρ, sη) ∈ 0±s (ε) if (r, θ, ρ, η) ∈ 0±s (ε/C). Since

|∂ j
r ∂

β
η e−rη|. 〈r − log〈η〉〉−N for all N > 0 and (r, θ, ρ, η) ∈ 0±s (ε),

we obtain that, for a ∈Bhyp(0
±
s (ε)),

a is of hyperbolic short/long range in 0±s (ε/C) ⇐⇒ a|η=0 is of usual short/long range (4-14)

in the sense that ∣∣ (∂ j
r ∂

α
θ ∂

k
ρa
)
(r, θ, ρ, 0)

∣∣. 〈r〉−τ− j for (r, θ, ρ, 0) ∈ 0±s (ε),

in the long-range case (recall that 0< τ ≤ 1) and∣∣ (∂ j
r ∂

α
θ ∂

k
ρa
)
(r, θ, ρ, 0)

∣∣. 〈r〉−τ−1− j for (r, θ, ρ, 0) ∈ 0±s (ε),

in the short-range case.

To calculate a|η=0 in some applications, we shall use the following elementary result.

Proposition 4.6. For all r > 0, all θ ∈ Rn−1 and all ±ρ > 0, we have, for all ±t ≥ 0,

(r t , θ t , ρt , ηt)|η=0 = (r + 2tρ, θ, ρ, 0), (4-15)

∂η(r t , θ t , ρt , ηt)|η=0 =

(
0,
∫ t

0
e−2r−4sρ hessη[q](r + sρ, θ) ds, 0, Id

)
. (4-16)

where hessη[q](r, θ) is the Hessian matrix of q with respect to η (which is independent of η).

Proof. One simply checks that the right-hand side of (4-15) is a solution to (3-10) (with w(r) = e−2r )
for ±t ≥ 0. Applying then ∂η to (3-10), one sees easily as well that the right-hand side of (4-16) is a
solution to the corresponding system. �

Remark. If ε is small enough then, on 0±s (ε), we have

r − log〈η〉 ≥ 0. (4-17)

In particular, in this region, 〈r − log〈η〉〉 is equivalent to the weight

〈r − log〈η〉〉+ :=max(1, r − log〈η〉)

which was introduced by Froese and Hislop [1989]. For the study of global in time estimates, which
we hope to consider in a future work, the resolvent estimates proved in [Bouclet 2006] suggest that the
hyperbolic short/long-range conditions (4-11)/(4-12) would play the same role as the usual Euclidean
short/long-range conditions used in [Bouclet and Tzvetkov 2008].

4C. The Hamilton–Jacobi equation. We now use the results of Section 3B to solve the time-independent
Hamilton–Jacobi equations giving the phases of the Isozaki–Kiada parametrix.

Lemma 4.7. There exists 0< ε0 < 1 such that, for all 0< ε ≤ ε0 and all ±t ≥ 0, the map

9±t : (r, θ, ρ, η) 7→ (r, θ, ρt , ηt)

is a diffeomorphism from 0±s (ε) onto its range and

0±s (ε
3)⊂9±t

(
0±s (ε)

)
for all ± t ≥ 0. (4-18)
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Proof. See Appendix A. �

The power ε3 in (4-18) is not very important. It is only a rough explicit quantitative bound for the size
of a strongly outgoing area contained in 9+t (0+s (ε)) for all t ≥ 0 (or a strongly incoming area contained
in 9−t (0−s (ε)) for all t ≤ 0).

The components of the inverse map (9±t )−1 are of the form (r, θ, ρt , ηt) with

ρt = ρt(r, θ, ρ, η), ηt = ηt(r, θ, ρ, η).

Here we omit the ± dependence for notational simplicity. We thus have

ρt(r, θ, ρt , ηt)= ρ, ηt(r, θ, ρt , ηt)= η, (4-19)

at least for all (r, θ, ρ, η) ∈ 0±s (ε
3
0) and ±t ≥ 0.

Remark. It follows from the proof of Lemma 4.7 and the scaling properties (3-34), (3-35) that 9±t is
actually a diffeomorphism from the cone generated by 0±s (ε0) onto its range, the latter range containing
the cone generated by 0±s (ε

3
0). Therefore (ρt , ηt) is actually the restriction to 0±s (ε

3
0) of a map defined

on the cone generated by 0±s (ε
3
0) and, using (3-35), we have

(ρt , ηt)(r, θ, λρ, λη)= λ(ρλt , ηλt)(r, θ, ρ, η) if ± t ≥ 0 and (r, θ, ρ, η) ∈ 0±s (ε
3
0), (4-20)

for all λ > 0.

Proposition 4.8. There exists ε1 ≤ ε
3
0 such that, for all j, k ∈ N0, α, β ∈ Nn−1

0 ,∣∣D jαkβ
hyp (ρt − ρ)

∣∣+ ∣∣D jαkβ
hyp (ηt − η)

∣∣. 1, (r, θ, ρ, η) ∈ 0±s (ε1), ±t ≥ 0. (4-21)

In addition, if (r, θ, ρ, 0) ∈ 0±s (ε1), we have

(ρt , ηt)|η=0 = (ρ, 0), (4-22)

∂η(ρt − ρ, ηt − η)|η=0 = (0, 0). (4-23)

Proof. By (4-18), any (r, θ, ρ, η) ∈ 0±s (ε
3
0) can be written as 9±t (r, θ, ρ̃, η̃) with (r, θ, ρ̃, η̃) ∈ 0±s (ε0).

Hence
sup
0±s (ε

3
0)

|ρt − ρ| + |ηt − η| ≤ sup
0±s (ε0)

|ρ̃− ρt(r̃ , θ̃ , ρ̃, η̃)| + |η̃− ηt(r̃ , θ̃ , ρ̃, η̃)|.

By (3-31), the right-hand side is bounded, so we obtain (4-21) for j + |α| + k + |β| = 0. Then, for ε
small enough, using Propositions 3.8 and 4.6, we remark that, for (r, θ, ρ, η) ∈ 0±s (ε),∣∣∂ρ,η (ρt

− ρ, ηt
− η

)∣∣≤ ∫ 1

0

∣∣∂η∂ρ,η(ρt , ηt)(r, θ, ρ, sη)
∣∣ ds|η|. |e−rη|. ε,

since, by Proposition 4.3, (r, θ, ρ, sη)∈0±s (ε0) if (r, θ, ρ, η)∈0±s (ε) and ε is small enough. Therefore,
if ε is small enough,

|∂ρ,η(ρ
t , ηt)− Idn| ≤

1
2 on 0±s (ε), (4-24)
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for all ±t ≥ 0. Here | · | is a matrix norm. We can now prove (4-21) when j+|α|+k+|β| ≥ 1. Assume
first that D jαkβ

hyp = er∂
β
η , with |β| = 1, and set for simplicity

4t(r, θ, ρ, η)= (ρt , ηt)(r, θ, ρ, η), 4t(r, θ, ρ̃, η̃)= (ρt , ηt)(r, θ, ρ̃, η̃), 4= (ρ, η),

when (r, θ, ρ, η) ∈ 0±s (ε
3), (r, θ, ρ̃, η̃) ∈ 0±s (ε) and ±t ≥ 0. Applying er∂

β
η to (4-19), we get

(∂ρ̃,η̃4
t)(r, θ,4t)er∂βη4t = (0, er∂βη η)= er∂βη4,

and using that (∂ρ̃,η̃4t)∂
β
η4= ∂

β

η̃
4t , we obtain

(∂ρ̃,η̃4
t)(r, θ,4t)er∂βη (4t −4)= er (∂η̃(4−4t)

)
|(r,θ,4t )

,

where the right-hand side is bounded, by (3-31). Using (4-24), we see that er∂αη (4t −4) is bounded on
0±s (ε1) for ±t ≥ 0, by choosing ε1 ≤ ε

3
0 and such that (4-24) holds. The other first-order derivatives are

treated similarly and are simpler to handle since there is no er . When j + |α| + k + |β| ≥ 2, we iterate
this process using Lemma 3.6. To complete the proof of the proposition, we finally note that (4-22) and
(4-23) are easy consequences of (4-19) and Proposition 4.6. �

By Propositions 4.7 and 4.8, we can define r s
t = r s

t (r, θ, ρ, η) and θ s
t = θ

s
t (r, θ, ρ, η) on 0±s (ε1) by

r s
t = r s(r, θ, ρt , ηt), θ s

t = θ
s(r, θ, ρt , ηt) for ± t ≥±s ≥ 0,

where ±t ≥ ±s ≥ 0 means more precisely that t ≥ s ≥ 0 if (r, θ, ρ, η) ∈ 0+s (ε1) and t ≤ s ≤ 0 if
(r, θ, ρ, η) ∈0−s (ε1). Here we assume that ε1 is small enough so that Proposition 3.8 hold for r > R(ε1)

and σ = 1
2 (for instance), which justifies that r s

t and θ s
t are well defined (and that their derivatives can be

estimated using Proposition 3.8).
By the classical Hamilton–Jacobi theory, the function 6± defined by

6±(t, r, θ, ρ, η)= r t
t ρ+ θ

t
t · η− tρ2

− te−2r t
t q(r t

t , θ
t
t , η) (4-25)

solve the following time-dependent eikonal equation, for (r, θ, ρ, η) ∈ 0±s (ε1) and ±t ≥ 0,

∂t6± = p(r, θ, ∂r6±, ∂θ6±), 6±|t=0 = rρ+ θ · η. (4-26)

To put it in a more standard way, note that (4-25) is obtained by defining 6± via

6±(t, r, θ, ρt , ηt)= r tρt
+ θ t
· ηt
− tp(r t , θ t , ρt , ηt). (4-27)

(This simple expression uses the fact that p is homogeneous of degree 2 in (ρ, η).) Now assume for a
while that

S±(r, θ, ρ, η) := rρ+ θ · η+
∫
±∞

0
∂t
(
6±(t, r, θ, ρ, η)− tρ2) dt (4-28)

is well defined on 0±s (ε1). Then, at least formally,

∂r,θ S±(r, θ, ρ, η)= lim
t→±∞

∂r,θ6±(t, r, θ, ρ, η). (4-29)

The latter only uses the fact that the term tρ2 inside the integral is independent of r, θ . If we know in
addition that

lim
t→±∞

∂ρ6±(t, r, θ, ρ, η)=+∞, (4-30)
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then, using the fact that 6± are generating functions of 8t , that is,

8t(r, θ, ∂r6±, ∂θ6±)= (∂ρ6±, ∂η6±, ρ, η) for ± t ≥ 0, (4-31)

we obtain, on 0±s (ε1),

p(r, θ, ∂r S±, ∂θ S±)= lim
t→±∞

p(∂ρ6±, ∂η6±, ρ, η)= ρ2. (4-32)

Proposition 4.9. There exist 0 < ε2 ≤ ε1 such that we can find S± = S±(r, θ, ρ, η), defined on 0±s (ε2),
real-valued, satisfying

p(r, θ, ∂r S±, ∂θ S±)= ρ2 on 0±s (ε2), (4-33)

and such that
S±(r, θ, ρ, η)= rρ+ θ · η+ϕ±(r, θ, ρ, η), (4-34)

for some ϕ± ∈Bhyp(0
±
s (ε2)) satisfying, when (r, θ, ρ, 0) ∈ 0±s (ε2),

ϕ±|η=0 = 0, er∂ηϕ±|η=0 = 0, e2r hessη[ϕ±]|η=0 =

∫
±∞

0
e−4tρ hessη[q](r + 2tρ, θ)dt. (4-35)

It is convenient to note that, by possibly decreasing ε2 and by using Lemma 2.4, (4-13), and the first
two equalities in (4-35), we can write

ϕ±(r, θ, ρ, η)=
∑
|β|=2

a±β (r, θ, ρ, e−rη)e−2rηβ, (4-36)

with a±β ∈ C∞b (Fhyp(0
±(ε2))).

Proof. We consider only the outgoing case. To complete the proof of (4-33), we have to prove the missing
details, namely the convergence of the integral in (4-28) (plus its derivability) and the limits (4-29) and
(4-30). Defining (ρs

t , η
s
t ) := (ρ

s, ηs)(r, θ, ρt , ηt), the equations of motion yield

r t
t = r + 2

∫ t

0
ρs

t ds = r + 2tρ− 2
∫ t

0

∫ t

s
e−2ru

t
(
2q(ru

t , θ
u
t , η

u
t )− (∂r q)(ru

t , θ
u
t , η

u
t )
)

du ds. (4-37)

By Propositions 3.8 and 4.8, we have the following bounds on 0+s (ε1), for s ≥ 0 and t ≥ 0,∣∣Dhyp
jαkβ(r

s
t − r)

∣∣. 〈s〉, ∣∣Dhyp
jαkβ(θ

s
t − θ)

∣∣. e−r ,
∣∣Dhyp

jαkβ(η
s
t − η)

∣∣. 1. (4-38)

In addition, using Proposition 3.4 and (4-18), we have, for s ≥ 0 and t ≥ 0,

r s
t ≥ r + 2(1− ε6)sp1/2(r, θ, ρt , ηt)−C ≥ r + s/4−C on 0+s (ε

3), (4-39)

with ε small enough such that, p1/2(r, θ, ρt , ηt) ≥
1
4 . Using (4-37), (4-38), (4-39), with ε2 := ε

3
≤ ε1

small enough, and Lemma 3.6, we obtain the existence of a bounded family (at)t≥0 in Bhyp(0
+
s (ε2))

such that
r t

t = r + 2tρ+ at(r, θ, ρ, η) for t ≥ 0. (4-40)

One shows similarly that (θ t
t− θ) ·η= er (θ t

t− θ) · e
−rη is bounded in Bhyp(0

+
s (ε2)) for t ≥ 0, and hence

that
6+− (rρ+ θ · η+ tρ2) is bounded in Bhyp(0

+

s (ε2)) for t ≥ 0, (4-41)
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which proves (4-30). Then, using (4-26) and (4-31), we note that

∂t6+− ρ
2
= e−2∂ρ6+q(∂ρ6+, ∂η6+, η). (4-42)

Therefore, using (4-39), (4-40), (4-41) and (4-42), we obtain the convergence of the integral in (4-28)
and the limit (4-29) as well as the fact that S+(r, θ, ρ, η)− rρ− θ · η belongs to Bhyp(0

+
s (ε2)). Finally,

the formulas in (4-35) follow directly from (4-42) combined with (4-22) and (4-15). �

Remark 1. By applying ∂η to (4-41) we see that there exists C such that

|∂η6+(t, r, θ, ρ, η)− θ | ≤ Ce−r . e−R(ε2) for all (r, θ, ρ, η) ∈ 0+s (ε2) and t ≥ 0.

This shows, in the spirit of Corollary 3.10, that the proof above depends only on the definition of q(r, θ, η)
for θ in an arbitrarily small neighborhood of V 0, provided ε2 is small enough.

Remark 2. Using (3-34), (3-35) and (4-20), one sees that S± is actually well defined on the conical area
given by

r > R(ε2), θ ∈ Vε2, ±ρ > (1− ε
2
2)p

1/2,

and that
6±(t, r, θ, λρ, λη)= λ6±(λt, r, θ, ρ, η) if λ > 0.

Thus that S± is the restriction to 0±s (ε2) of an homogeneous function of degree 1 with respect to (ρ, η).

We conclude this part with a result useful for considering phases globally defined on R2n when we
shall construct Fourier integral operators.

Proposition 4.10. For some small enough ε3> 0, there exists a family of functions (S±,ε)0<ε≤ε3 , globally
defined on R2n , such that

ϕ±,ε(r, θ, ρ, η) := S±,ε(r, θ, ρ, η)− rρ− θ · η

coincides with ϕ± on 0±s (ε) and satisfies

supp(ϕ±,ε)⊂ 0±s (ε
1/2), ϕ±,ε ∈Bhyp(0

±

s (ε
1/2)), (4-43)∣∣∂ρ,η⊗ ∂r,θϕ±,ε(r, θ, ρ, η)

∣∣≤ 1
2 for (r, θ, ρ, η) ∈ R2n, 0< ε ≤ ε3, (4-44)

with | · | a matrix norm.

In further applications, (4-44) will also be used under the equivalent form∣∣∂ρ,η⊗ ∂r,θ S±,ε(r, θ, ρ, η)− Idn
∣∣≤ 1

2 for (r, θ, ρ, η) ∈ R2n, 0< ε ≤ ε3. (4-45)

Remark. Although this proposition allows one to assume that they are globally defined, the phases S±,ε
solve the Hamilton–Jacobi equations on 0±s (ε2) only.

Proof. We use Proposition 4.4 and consider

S±,ε(r, θ, ρ, η) := rρ+ θ · η+χε1/2→ε(r, θ, ρ, η)ϕ±(r, θ, ρ, η), (4-46)

with ϕ± defined in Proposition 4.9. We have S±,ε = S± on 0±s (ε) and, using(4-9) and (4-36),∣∣∂ρ,η⊗ ∂r,θ S±,ε(r, θ, ρ, η)− Idn
∣∣. ε1/4 on R2n, (4-47)
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since e−r
|η|. ε1/2 on 0+s (ε

1/2). This yields the result if ε is small. �

4D. Fourier integral operators on Rn. In this subsection, we derive some basic properties of Fourier
integral operators associated to the phases S± obtained in Proposition 4.9.

For simplicity, we introduce the shorter notation

B±s (ε) :=Bhyp(0
±

s (ε)), S±s (ε) := S±hyp(0
±

s (ε)), (4-48)

where the classes Bhyp and Shyp were defined in Definition 2.2.
By Propositions 4.9 and 4.10, for all h ∈ (0, 1], all ε small enough and all a± ∈ S±s (ε), we can define

the operator

J±h (a
±) : S(Rn)→ S(Rn), (4-49)

as the operator with Schwartz kernel

K±h (r, θ, r
′, θ ′)= (2πh)−n

∫
e

i
h (S±(r,θ,ρ,η)−r ′ρ−θ ′·η)a±(r, θ, ρ, η) dρ dη.

Since the symbol a± is supported in 0±s (ε), the phase S± can be replaced by S±,ε which is globally
defined (see Proposition 4.10). Note also that J±h (a

±) maps clearly the Schwartz space into itself since,
for fixed h say h = 1, it can be considered as the pseudodifferential operator with symbol eiϕ±a± =
eiϕ±,εa± which belongs to C∞b (R

2n).
To obtain the L2 boundedness of such operators uniformly in h ∈ (0, 1] as well as the factorization

Proposition 4.13 below, which are both consequences of the usual Kuranishi trick, we need a preliminary
result.

Consider the maps (ρ±,ε, η±,ε) : R3n
→ Rn defined by

(ρ±,ε, η±,ε)(r, θ, r ′, θ ′, ρ, η) :=
∫ 1

0
∂r,θ S±,ε(r ′+ s(r − r ′), θ ′+ s(θ − θ ′), ρ, η)ds (4-50)

so that

(r − r ′)ρ±,ε + (θ − θ ′) · η±,ε = S±,ε(r, θ, ρ, η)− S±,ε(r ′, θ ′, ρ, η). (4-51)

Lemma 4.11. For all (r, θ, r ′, θ ′) ∈ R2n and all 0 < ε ≤ ε3, the map (ρ, η) 7→ (ρ±,ε, η±,ε) is a dif-
feomorphism from Rn onto itself. Denoting by (ρ±,ε, η±,ε) the corresponding inverse, we have, for all
0< ε ≤ ε3, ∣∣∂βη ∂ j

r ∂
j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ((ρ±,ε, η±,ε)− (ρ, η))

∣∣. 1 on R3n. (4-52)

Furthermore, there exists ε6 > 0 such that, for all 0< ε ≤ ε6, we have

(r, θ, ρ, η) ∈ 0±s (ε) H⇒
(
r, θ, ρ±,ε, η±,ε

)
|r=r ′,θ=θ ′ ∈ 0

±

s (ε
1/3), (4-53)(

r, θ, ρ±,ε, η±,ε
)
|r=r ′,θ=θ ′ ∈ 0

±

s (ε
3) H⇒ (r, θ, ρ, η) ∈ 0±s (ε), (4-54)

and ∣∣∂βη ∂ j
r ∂

j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ((ρ±,ε, η±,ε)− (ρ, η))|r=r ′,θ=θ ′

∣∣. e−|β|r on 0+s (ε
3). (4-55)



44 JEAN-MARC BOUCLET

Proof. The estimate (4-45) implies directly that (ρ, η) 7→ (ρ±,ε, η±,ε) is a diffeomorphism for all
(r, θ, r ′, θ ′) ∈ R2n and 0< ε ≤ ε3. Evaluating (4-50) at (r, θ, r ′, θ ′, ρ±,ε, η±,ε), namely

(ρ, η)= (ρ±,ε, η±,ε)(r, θ, r ′, θ ′, ρ±,ε, ρ±,ε), (4-56)

yields

(ρ, η)− (ρ±,ε, η±,ε)=

∫ 1

0
∂r,θϕ±,ε(r ′+ s(r − r ′), θ ′+ s(θ − θ ′), ρ±,ε, η±,ε)ds. (4-57)

By (4-43) we have ϕ±,ε ∈ C∞b (R
2n), so (ρ±,ε, η±,ε)− (ρ, η) is bounded, for fixed ε. For the deriva-

tives, we apply ∂βη ∂
j

r ∂
j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ to the right-hand side of (4-57) and obtain (4-52) by induction, using

Lemma 3.6.
To prove (4-53), we simply notice that ϕ±,ε coincides with ϕ± on 0±s (ε

3) so that∣∣(ρ, η)− (ρ±,ε, η±,ε)|r=r ′,θ=θ ′
∣∣= |∂r,θϕ±(r, θ, ρ, η)|. ε2,

using (2-56) and (4-36). The result follows from Proposition 4.3 and the fact that 0±s (Cε) ⊂ 0
±
s (ε

1/3)

for ε small enough. To get (4-54), we use directly Proposition A.1 proving that 0±s (ε
3) ⊂ 9 t(0±s (ε))

with

9 t(r, θ, ρ, η) :=
(
r, θ, ρ±,ε, η±,ε

)
|r=r ′,θ=θ ′ =

(
r, θ, ∂r S±(r, θ, ρ, η), ∂θ S±(r, θ, ρ, η)

)
,

which is actually independent of t and ε.
By (4-52), (4-55) holds when β = 0. Consider next the first-order derivatives when |β| = 1 and the

other multi-indices are 0. Applying ∂βη to (4-56) and evaluating at r = r ′, θ = θ ′, we get(
∂ρ,η(ρ±,ε, η±,ε)

)
∂βη
(
(ρ±,ε, η±,ε)− (ρ, η)

)
= ∂βη ∂r,θϕ±(r, θ, ρ±,ε, η±,ε)

where we have replaced ϕ±,ε by ϕ± using (4-54). Since
(
∂ρ,η(ρ±,ε, η±,ε)

)
−1 is uniformly bounded and

erβ∂
β
η ∂r,θϕ±

(
r, θ, ρ±,ε, η±,ε

)
is bounded, using (4-54) again, we get the result in this case. Higher-order

derivatives are obtained similarly by induction, using Lemma 3.6. �

Proposition 4.12. For all 0< ε ≤ ε6 and all a±, b± ∈ S±s (ε), we have∥∥∥J±h (a
±)J±h (b

±)∗−
∑

k≤N
hkc±k (r, θ, h Dr , h Dθ )

∥∥∥
L2(Rn)→L2(Rn)

≤ ChN+1 for h ∈ (0, 1], (4-58)

where the constant C can be chosen uniformly with respect to a± and b± when they vary in bounded
subsets of S±s (ε) and where the symbols c±k are given by

c±k =
∑

j+|α|=k

1
j !α!

∂
j

r ′∂
α
θ ′D

j
ρDα

η

(
a(r, θ, ρ±,ε, η±,ε) b(r ′, θ ′, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)

)
|r=r ′, θ=θ ′, (4-59)

with Jac(ρ±,ε, η±,ε)= |det(∂ρ,η(ρ±,ε, η±,ε))|. In particular,

c±k ∈ S±s (ε
1/3). (4-60)
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Proof. The Schwartz kernel of J±h (a
±)J±h (b

±)∗ takes the form

(2πh)−n
∫

e
i
h (S±,ε(r,θ,ρ,η)−S±,ε(r ′,θ ′,ρ,η))a(r, θ, ρ, η) b(r ′, θ ′, ρ, η) dρ dη

and this can be rewritten using the Kuranishi trick, that is, (4-51) and Lemma 4.11, as

(2πh)−n
∫

e
i
h ((r−r ′)ρ+(θ−θ ′)·η)a(r, θ, ρ±,ε, η±,ε)b(r ′, θ ′, ρ±,ε, η±,ε)Jac(ρ±,ε, η±,ε) dρ dη. (4-61)

By (4-52), the symbol in (4-61) belongs to C∞b (R
3n). Therefore, the standard h-pseudodifferential

calculus implies that, with ck defined by (4-59), we obtain the L2 bound (4-58) by the Calderón–
Vaillancourt theorem. In addition, by (4-53) (applied with (ρ, η) = (ρ±,ε, η±,ε)|r=r ′,θ=θ ′), we have
supp(c±k )⊂ 0

+
s (ε

1/3). One then checks that c±k ∈B±s (ε
1/3), using (4-55). �

We note in passing that this proposition shows that, for all 0< ε ≤ ε6 and all a± ∈ S±s (ε),

‖J±h (a
±)‖L2(Rn)→L2(Rn) ≤ C for h ∈ (0, 1]. (4-62)

More precisely, the constant C can be chosen independently of a± if, for ε fixed, a± vary in a bounded
subset of S±s (ε).

Proposition 4.13. For all 0< ε ≤ ε6, the following holds: if we are given a±0 , . . . , a±N ∈ S±s (ε) with

a±0 & 1 on 0±s (ε
3), (4-63)

then, for all χ±s ∈ S±s (ε
9), we can find b±0 , . . . , b±N ∈ S±s (ε

3) such that, if we set

a±(h)= a±0 + · · ·+ hN a±N , b±(h)= b±0 + · · ·+ hN b±N ,

we have∥∥J±h (a
±(h))J±h (b

±(h))∗−χ±s (r, θ, h Dr , h Dθ )
∥∥

L2(Rn)→L2(Rn)
≤ ChN+1 for h ∈ (0, 1].

Proof. By Proposition 4.12 and the notation therein, we only need to find b±0 , . . . , b±N such that

c±0 = χ
±

s , c±k = 0 for k = 1, . . . , N .

Using Lemma 4.11 and (4-59), the first equation, c±0 = χ
±
s , is solved explicitly by

b±0 (r, θ, ρ, η)=
(
χ±s (r, θ, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)

)
|r ′=r, θ ′=θ ×

1
a±0 (r, θ, ρ, η)

,

where 1/a±0 is well defined since χ±s (r, θ, ρ±,ε, η±,ε)|r ′=r, θ ′=θ is supported in 0±s (ε
3) by (4-54). Thus,

b±0 is well defined, supported in 0±s (ε
3) and belongs to B±s (ε

3) by (4-50) and Proposition 4.9 (since
(ρ±,ε, η±,ε)|r ′=r, θ ′=θ = ∂r,θ S± in 0±s (ε

3)). Furthermore, b±0 (r, θ, ρ±,ε, η±,ε)|r ′=r, θ ′=θ is supported in
0±s (ε

9). We then find the other symbols by induction for we have a triangular system of equations. More
precisely, the k-th equation ck ≡ 0 (k ≥ 1), reads(

b±k (r, θ, ρ±,ε, η±,ε) a±0 (r, θ, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)
)
|r=r ′,θ=θ ′ = d±k (r, θ, ρ, η)
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where d±k is a linear combination of symbols of the form

(∂γb±k2
)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′

(∂γ
′

a±k1
)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′δ k1k2γγ′(r, θ, ρ, η)

with k2 < k and δk1k2γγ′ a product of derivatives of order ≥ 1 of (ρ±,ε, η±,ε)(r, θ, r ′, η′, ρ, η) evaluated
at r = r ′, θ = θ ′. By the induction assumption (∂γb±k2

)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ is supported in 0±s (ε
9),

so we have
(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ ∈ 0

±

s (ε
3),

using (4-53). Therefore, δk1k2γγ′(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ belongs to B±s (ε
3) by (4-55) and b±k satisfies

the expected properties. �

4E. The transport equations. In this subsection, we solve the time-independent transport equations
related to the phases constructed in Proposition 4.9. If we define (v±, w±)= (v±, w±)(r, θ, ρ, η) by(

v±

w±

)
:=

(
(∂ρ p)(r, θ, ∂r S±, ∂θ S±)
(∂η p)(r, θ, ∂r S±, ∂θ S±)

)
=

(
2∂r S±

e−2r (∂ηq)(r, θ, ∂θ S±)

)
, (4-64)

these transport equations take the form

v±∂r a±+w± · ∂θa±+ y±a± = z±, (4-65)

where y±, z± are given and a± is the unknown function of (r, θ, ρ, η). Such equations arise naturally
in the construction of the Isozaki–Kiada parametrix (see Section 5). They can be solved standardly by
the method of characteristics and therefore, we start with the study the integral curves of the vector field
(v±, w±).

Given (r, θ, ρ, η) ∈ 0±s (ε
2), with ε > 0 small enough (to be specified below), we denote by

r±t = r±t (r, θ, ρ, η), θ±t = θ
±

t (r, θ, ρ, η),

the solution to {
ṙ±t = v

±(r±t , θ
±

t , ρ, η),

θ̇±t = w
±(r±t , θ

±

t , ρ, η),
(4-66)

with initial data
r±0 (r, θ, ρ, η)= r, θ±0 (r, θ, ρ, η)= θ.

In this problem, ρ and η are parameters. Equivalently,

φ±t = φ
±

t (r, θ, ρ, η) := (r
±

t , θ
±

t , ρ, η) (4-67)

is the flow of the autonomous vector field (v±, w±, 0, 0).

Proposition 4.14. There exists ε4 > 0 such that for all (r, θ, ρ, η) ∈ 0±s (ε
2
4), the solution (r+t , θ

+
t ) (resp.

(r−t , θ
−
t )) is globally defined on [0,+∞) (resp. (−∞, 0]). There also exists C > 0 such that, for all

0< ε ≤ ε4 and all (r, θ, ρ, η) ∈ 0±s (ε
2), we have

(r±t , θ
±

t , ρ, η) ∈ 0
±

s (ε) for ± t ≥ 0, (4-68)

and ∣∣r±t − r − 2tρ
∣∣≤ Cε2 min(1, |t |),

∣∣θ±t − θ ∣∣≤ Ce−r . (4-69)



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 47

Furthermore, ∣∣D jαkβ
hyp (r±t − r − 2tρ)

∣∣+ ∣∣D jαkβ
hyp (θ±t − θ)

∣∣≤ C jαkβ . (4-70)

for (r, θ, ρ, η) ∈ 0±s (ε
2
4) and ±t ≥ 0.

Since S±,ε= S± on 0±s (ε), the localization property (4-68) shows that φ±t still solves (4-66) on 0±s (ε
2)

if one replaces (v±, w±) by (v±ε , w
±
ε ), the latter being obtained by replacing S± by S±,ε in (4-64).

Proof. Here again we only consider the outgoing case. By (4-36), there exists C0 ≥ 1 such that, for all
(r, θ, ρ, η) ∈ 0+s (ε2),

|∂r S+− ρ| ≤ C0e−r
|η| and |e−2r (∂ηq)(r, θ, ∂θ S+)| ≤ C0e−2r

|η|. (4-71)

By (2-56), there exists C1 ≥ 1 such that, for all ε > 0 small enough and all (r, θ, ρ, η)∈0+s (ε), we have

e−r
|η| ≤ C1ε and e−2r

|η| ≤ C1ε
2, (4-72)

the last inequality following from e−R(ε)
≤ ε. If ε small enough, we may also assume that

ρ > 1
8 for all (r, θ, ρ, η) ∈ 0+s (ε).

Now fix M = 5C0C1, and for (r, θ, ρ, η) ∈ 0+s (ε
2), consider T := T(r, θ, ρ, η) defined by

T=
{
t ≥ 0 : (r+s , θ

+

s ) is defined and r+s ≥ r + s/8, |θ+s − θ | ≤ Mε2 for all s ∈ [0, t]
}
.

The set T is clearly an interval containing 0 and, if ε is small enough, Proposition 4.3 shows that
(r+s , θ

+
s , ρ, η) ∈ 0

+
s (ε) for all s ∈ T. Thus, by (4-71) and (4-72), we have

|ṙ+s − 2ρ| ≤ 2C0C1ε and |θ̇+s | ≤ C0C1ε
2 for s ∈ T,

and, by possibly assuming that C0C1ε<
1
8 , we have ṙ+s >0 on T. Choosing CM ≥1 as in Proposition 4.3,

we now claim that, if
ε < ε2/CM and r > R(CMε),

then T := sup T=+∞. Assume this is wrong. Then T is finite, belongs to T and, on [0, T ], we have

r+s ≥ r + s/8≥ r, |θ+s − θ | ≤ C1ε
2 < Mε2,

so, by Proposition 4.3, (r+s , θ
+
s , ρ, η) ∈ 0

+
s (CMε)⊂ 0

+
s (ε2) and, by (4-71) and (4-72),

|r+T − r − 2ρT | ≤ C0e−r
|η|

∫ T

0
e−s/8 ds ≤ C0e−r

|η| T ≤ C0C1εT, (4-73)

|θ+T − θ | ≤ C0e−2r
|η|

∫ T

0
e−s/4 ds ≤ 4C0e−2r

|η|< 5C0C1ε
2. (4-74)

This implies that r+T > r+T/8 and that |θ+T −θ |<Mε2, so the flow can be continued beyond T , yielding
a contradiction with the definition of T . The flow is thus well defined for t ≥ 0. Then (4-69) follows
from the first inequalities of (4-73) and (4-74) with an arbitrary t ≥ 0 instead of T , since e−r

|η|. ε2 for
(r, θ, ρ, η) ∈ 0+s (ε

2). If ε is small enough, Proposition 4.3 shows that (4-68) is a direct consequence of
(4-69), using that e−r

� ε4.
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It remains to prove (4-70) for j+|α|+k+|β| ≥ 1. We consider r+t := r+t −2tρ and θ+t := θ
+
t , which

satisfy
dr+t
dt
= v(t, r+t , θ

+

t , ρ, η),
dθ+t
dt
= w(t, r+t , θ

+

t , ρ, η), (4-75)

with
v(t, r, θ, ρ, η)= (∂rϕ+)(r + 2tρ, θ, ρ, η),

w(t, r, θ, ρ, η)= e−2r−4tρ (∂ηq) (r + 2tρ, θ, ∂θ S+(r + 2tρ, θ, ρ, η)) .

Using (4-36), we have, for all j ′, α′, k ′, β ′,∣∣D j ′α′k′β ′

hyp (v,w)
∣∣. 〈t〉k′e−4tρ . e−2tρ for t ≥ 0, on 0+s (ε2/C), (4-76)

with C such that if (r, θ, ρ, η)∈0+s (ε2/C) then (r+2tρ, θ, ρ, η)∈0+s (ε2/C). Note also that if ε is small
enough and (r, θ, ρ, η)∈0+s (ε

2), we have (r+t , θ
+
t , ρ, η)∈0

+
s (ε2/C), using (4-69) and Proposition 4.3.

We then obtain (4-70) by induction by applying D jαkβ
hyp to (4-75). Indeed, using Lemma 3.6 and (4-76),

we have
d
dt

D jαkβ
hyp

(
r+t , θ

+

t
)
=
(
∂r,θ (v,w)

)
D jαkβ

hyp (r+t , θ
+

t )+O(e−2ρt),

where O(e−2ρt) = 0 for first-order derivatives and, otherwise, follows from the induction assumption.
Since |∂r,θ (v,w)|. e−2ρt , Lemma 3.7 yields the result. �

We now come to the resolution of (4-65) in a way suitable to further purposes.

Proposition 4.15. There exists ε5 > 0 such that, for all 0< ε ≤ ε5 and all y± ∈Bhyp(0
±
s (ε)) of hyper-

bolic short range in 0±s (ε), the function

a±hom = exp
∫
±∞

0
y± ◦φ±s ds,

solves (4-65) on 0±s (ε
2) with z± ≡ 0 , belongs to Bhyp(0

±
s (ε

2)) and a±hom−1 is of hyperbolic long range
in 0±s (ε

2).
In addition, for all z± ∈Bhyp

(
0±s (ε)

)
, of hyperbolic short range in 0±s (ε), the function

a±inhom =−

∫
±∞

0
z± ◦φ±s exp

(∫ s

0
y± ◦φ±u du

)
ds

solves (4-65) on 0±s (ε
2), belongs to Bhyp(0

±
s (ε

2)), and is of hyperbolic long range in 0±s (ε
2).

Lemma 4.16. There exists ε5 > 0 such that, for all j, α, k, β and all N ≥ 0,∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η

(
r±t − r − 2tρ

)∣∣+ ∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η (θ
±

t − θ)
∣∣. 〈r − log〈η〉〉−N ,

on 0±s (ε5), uniformly with respect to ±t ≥ 0.

Proof. By Proposition 4.3, there exists C > 0 such that, for all ε small enough and all s ∈ [0, 1],

(r, θ, ρ, η) ∈ 0±s (ε
2) H⇒ (r, θ, ρ, sη) ∈ 0±s (Cε

2). (4-77)

Therefore, if Cε2
≤ ε2

4 and if we set X±t (r, θ, ρ, η)= (r
±
t − r − 2tρ, θ±t − θ), we can write

X±t (r, θ, ρ, η)= X±t (r, θ, ρ, 0)+
∫ 1

0
(er∂ηX±t )(r, θ, ρ, sη) ds · e−rη,
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on 0±s (ε
2). The crucial remark is that X±t (r, θ, ρ, 0) = 0. Indeed, by (4-34) and the first equation in

(4-35), we have ∂r S± ≡ ρ and ∂θ S± ≡ 0 at η = 0 (notice that (r, θ, ρ, 0) ∈ 0±s (ε2) if Cε2
≤ ε2), so

the solution to (4-66) is simply (r + 2tρ, θ) in this case. In addition, by (4-70), (X±t )t≥0 is bounded in
Bhyp(0

±
s (ε

2)). Thus, for all N ≥ 0,∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η X±t (r, θ, ρ, η)

∣∣. e−r
〈η〉. 〈r − log〈η〉〉−N for ± t ≥ 0, (r, θ, ρ, η) ∈ 0±s (ε

2),

which yields the result. �

Proof of Proposition 4.15. For simplicity we set ∂γ = ∂ j
r ∂

α
θ ∂

k
ρ∂

β
η . Then, using Lemma 3.6 with |γ| ≥ 1,

∂γ
(
y± ◦φ±s

)
is the sum of

(∂r y±) ◦φ±s ∂
γr±s + (∂θ y±) ◦φ±s · ∂

γθ±s + δ j0δα0(∂
k
ρ∂

β
η y±) ◦φ±s (4-78)

and of a linear combination of

(∂k−k′
ρ ∂β−β

′

η ∂νr,θ y±) ◦φ±s
(
∂γ

1
1r±s . . . ∂

γ1
ν1 r±s

)
. . .
(
∂γ

n
1 (θ±s )n−1 . . . ∂

γn
νn

x (θ±s )n−1
)
, (4-79)

where (θ±s )1, . . . , (θ
±
s )n−1 are the components of θ±s , (0, 0, k ′, β ′)+

∑
γ

j
i = γ, using the convention and

the notation of Lemma 3.6. By (4-70), we have

|(∂r y±) ◦φ±s ∂
γr±s |. 〈r

±

s − log〈η〉〉−τ−2e−r |β|
〈s〉κ ,

where κ = 1 if k = 1 and j + |α| + |β| = 0, and κ = 0 otherwise. On the other hand, by Lemma 4.16,
we have

|(∂r y±) ◦φ±s ∂
γr±s |. 〈r

±

s − log〈η〉〉−τ−2
〈r − log〈η〉〉− j̃

〈s〉κ ,

with the same κ as above and j̃ = j if j ≥ 2, or j̃ = 0 for j ≤ 1. Similarly, we also have

|(∂θ y±) ◦φ±s · ∂
γθ±s |. 〈r

±

s − log〈η〉〉−τ−1 min
(
e−|β|r , 〈r − log〈η〉〉− j),

while, for the last term of (4-78), we have

|δ j0δα0(∂
k
ρ∂

β
η y±) ◦φ±s |.min

(
e−|β|r e−2|β‖ρs|, 〈r±s − log〈η〉〉−τ−1− j),

since e−|β|r
±
s . e−|β|r e−2|β‖s| for r±s − r −2ρs is bounded from below and ρs ≥ 0. Now, we remark that∣∣(∂γ1

1r±s . . . ∂
γ1
ν1 r±s

)∣∣. 〈s〉ν̃1〈r − log〈η〉〉−N0,

where ν̃1 is the number of ∂γ
1
l = ∂

j1
l

r ∂
α1

l
θ ∂

k1
l
ρ ∂

β1
l
η for which j1

l = 0, N0 = 0 if j1
l ≤ 1 for all l and N0 is any

positive number if j1
l ≥ 2 for at least one l. We therefore obtain, if β = β ′,

|(4-79)|. 〈r±s − log〈η〉〉−τ−1−ν1 min
(
e−r |β|

〈s〉ν1, 〈r − log〈η〉〉ν1−ν̃1− j
〈s〉ν̃1

)
,

since ν1−ν̃1− j ≥ 0 in the case where no r derivative fall on the components of θ±s and only r derivatives
of order at most 1 fall on r±s . If β 6= β ′, we have

|(4-79)|.min
(
e−2|β−β ′||ρs|e−|β|r 〈s〉ν1, 〈r±s − log〈η〉〉−τ−1−ν1〈r − log〈η〉〉ν1−ν̃1− j

〈s〉ν̃1
)
.

Since r±s − r − 2ρs is bounded from below, ρs ≥ 0 (with |ρ|& 1) and using (4-17), we have

〈r±s − log〈η〉〉−τ−1−ν1 . 〈r − log〈η〉+ |s|〉−τ−1−ν1 .
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All this implies that∣∣D jαkβ
hyp

(
y± ◦φ±s

) ∣∣. 〈s〉−τ−1 and
∣∣∂ j

r ∂
α
θ ∂

k
ρ∂

β
η

(
y± ◦φ±s

) ∣∣. 〈r − log〈η〉+ |s|〉−τ−1
〈r − log〈η〉〉− j ,

and since ∫
+∞

0
〈r − log〈η〉+ |s|〉−τ−1ds . 〈r − log〈η〉〉−τ

(using (4-17) on strongly outgoing/incoming areas), we see that the function
∫
±∞

0 y± ◦ φ±s ds belongs
to Bhyp(0

±
s (ε

2)) and is of hyperbolic long range. This implies easily that the same holds for a±hom− 1.
One then checks that a±hom solves the homogeneous transport equation by computing d(a±hom ◦φ

±
t )/dt at

t = 0±. One studies similarly the case of a±inhom. �

5. An Isozaki–Kiada type parametrix

In this section, we prove an approximation of e−i th P Ôpι(χ
±
s ) when χ±s is supported in the strongly

outgoing (+) or incoming (−) region 0±ι,s(ε) (see Definition 2.12 for these areas and Definition 2.1 for
Ôpι( · )). We recall that ι is an arbitrary index corresponding to the chart at infinity we consider and
where the symbols are supported (see (2-4) and (2-19)).

Here we will prove an L2 approximation, valid for times such that 0 ≤ ±t . h−1. Basically, we will
show that, for any N , e−i th P Ôpι(χ

±
s ) is the sum of a Fourier integral operator and of a term of order hN

in the operator norm of L2(M, d̂G), uniformly for 0≤ t . h−1.
We will therefore essentially prove half of Proposition 2.20, namely the estimate (2-79). The disper-

sion estimate (2-78), following from a stationary phase argument on the Fourier integral operator, will
be proved in Section 7.

In the sequel, we choose an arbitrary ι ∈ I (see (2-2)). Since it will be fixed, we drop it most of the
time from the notation (in particular in phases, symbols) and keep it only for the diffeomorphism 9ι, the
regions 0±ι,s( · ) and (5-3).

In the next result, we use the classes of symbols Shyp( · ) introduced in Definition 2.2 and the Fourier
integral operators (4-49) defined in Section 4D. For these operators, the phases are associated to the
Hamiltonian p = pι, the principal symbol of P in the ι-th chart (this notation is consistant with (5-3)).

Theorem 5.1. For all N ≥ 0, there exists ε(N ) > 0 such that, for all 0< ε ≤ ε(N ), the following holds:
there exists a±(h)= a±0 + · · ·+ hN a±N with a±0 , . . . , a±N ∈ Shyp(0

±
ι,s(ε)), such that for all

χ±s ∈ Shyp(0
±

ι,s(ε
9)) (5-1)

we can find b±(h)= b±0 + · · ·+ hN b±N with

b±0 , . . . , b±N ∈ Shyp(0
±

ι,s(ε
3)), (5-2)

such that, for all T > 0, there exists C > 0 such that∥∥ e−i th P Ôpι(χ
±

s )−9
∗

ι

(
J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗
)(
9−1
ι

)∗∥∥
L2(d̂G)→L2(d̂G) ≤ ChN−1,

provided that
0≤±t ≤ T h−1, h ∈ (0, 1].
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By the inclusions in (2-20), together with (2-21) and (2-54), the symbols a±(h) and b±(h) are sup-
ported in (ε−1,+∞)×Vι,ε×Rn

⊂ (RK+1,+∞)×V ′ι ×Rn , for ε small. Therefore the Schwartz kernel
of the operator J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗ is supported in
(
(RK+ 1,+∞)× V ′ι

)2 and hence

9∗ι
(
J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗
)
(9−1

ι )∗

is well defined on the whole manifold (by the implicit requirement that its kernel vanishes outside the
coordinate patch Uι×Uι of M×M).

We also remark that ε(N ) could certainly be chosen independently of N . However this is useless for
the applications we have in mind and we will not consider this refinement.

Before starting the proof, we give some heuristic ideas about our parametrix. It gives a microlocal
approximation of ei th P for initial data microlocalized in strongly outgoing/incoming areas. In such
areas, e−rη is small and r is large, so the geodesic flow is close to the “free” flow of ρ2 uniformly in the
future/past, as a consequence of Proposition 3.8 basically. This closeness at the classical level remains
true at the quantum level in the sense that the flow ei th P can be put in the normal form ei th D2

r , i.e.,
up to the conjugation by time-independent Fourier integral operators. We point out that we state this
approximation on a h−1 time scale, but it would more generally hold for times of order h−N , for any
N . To obtain a semiglobal in time parametrix (one with t ≥ 0 or t ≤ 0), we would need to combine our
construction with a priori estimates on ei th P of local energy decay type, to control the error terms given
by the Duhamel formula.

Let us fix or recall some notation. We set

Pι = (9−1
ι )∗P(9ι)∗ = p(r, θ, Dr , Dθ )+ p1(r, θ, Dr , Dθ )+ p2(r, θ), (5-3)

with p the principal symbol and pk of degree 2−k in (ρ, η) for k = 1, 2. For simplicity, we also use the
notation (4-48).

Recall finally that, for some fixed ει > 0 small enough, Proposition 4.10 proves the existence of S±
solving

p(r, θ, ∂r S±, ∂θ S±)= ρ2 for (r, θ, ρ, η) ∈ 0+ι,s(ει). (5-4)

Proof of Theorem 5.1. For simplicity we set

A± = J±h (a
±(h)), B± = J±h (b

±(h)).

By the Duhamel formula, we have

e−i th P9∗ι A± =9∗ι A±e−i th D2
r −

i
h

∫ t

0
e−i(t−s)h P9∗ι (h

2 PιA±− A±h2 D2
r )e
−ish D2

r ds. (5-5)

Multiplying (5-5) by B∗
±
(9−1

ι )∗ and defining

C± := χ±s (r, θ, h Dr , h Dθ )(κ̃ ⊗ κ̃ι)− A±B∗
±
, D±(s) := (h2 PιA±− A±h2 D2

r )e
−ish D2

r B∗
±

(5-6)
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(where κ̃ and κ̃ι are the cutoffs used in Definition 2.1), we obtain

e−i th P Ôpι(χ
±

s )

=9∗ι A±e−i th Dr B∗
±
(9−1

ι )∗+ e−i th P9∗ι C±(9−1
ι )∗−

i
h

∫ t

0
e−i(t−s)h P9∗ι D±(s)(9−1

ι )∗ds. (5-7)

Using (2-8) with q = 2, the theorem will then be proved if we find a±(h) and b±(h) such that

‖C±‖L2(Rn)→L2(Rn) . hN and ‖D±(s)‖L2(Rn)→L2(Rn) . hN+1 for h ∈ (0, 1], (5-8)

uniformly with respect to 0≤±s ≤ T h−1 for D±(s).
For simplicity we only consider the outgoing case but the incoming one is of course completely similar.

Construction of a+(h). We first define (v+, w+) by (4-64) and also set

y+ := p(r, θ, ∂r , ∂θ )S++ p1(r, θ, ∂r , ∂θ )S+. (5-9)

Lemma 5.2. There exists ε̃ι ≤ ει such that y+ belongs to Bhyp(0
+
ι,s(ε̃ι)) and is of hyperbolic short range

on 0+ι,s(ε̃ι).

Proof. This follows from (2-11) and (4-14), since Proposition 4.9 shows that y+
|η=0 ≡ 0. �

Elementary computations show that, for all a+0 , . . . , a+N ∈ S+hyp(ε) and a+(h)= a+0 + · · ·+ hN a+N ,

h2 Pι J+h (a
+(h))− J+h (a

+(h))h2 D2
r =

N+2∑
l=0

hl J+h (d
+

l ),

where the symbols are given by

d+l =
(

p(r, θ, ∂r S+, ∂θ S+)− ρ2) a+l − i
(
v+∂r a+l−1+w

+
· ∂θa+l−1+ y+a+l−1

)
+ Pιa+l−2

=−i
(
v+∂r a+l−1+w

+
· ∂θa+l−1+ y+a+l−1

)
+ Pιa+l−2, (5-10)

using (5-4) and assuming ε ≤ ει. Here, we have 0 ≤ l ≤ N + 2 and the convention that a+
−2 = a+

−1 =

a+N+1 = a+N+2 ≡ 0. In particular, the first three terms are given by

d+0 = 0, (5-11)

id+1 = v
+∂r a+0 +w

+
· ∂θa+0 + y+a+0 , (5-12)

id+2 = v
+∂r a+1 +w

+
· ∂θa+1 + y+a+1 + i Pιa+0 . (5-13)

Using Proposition 4.15, Lemma 5.2 and assuming ε̂ι ≤min(ε̃2
ι , ε5) we can define

â+0 (r, θ, ρ, η)= exp
∫
+∞

0
y+ ◦φ+s (r, θ, ρ, η) ds for (r, θ, ρ, η) ∈ 0+ι,s(ε̂ι),

so â+0 ∈Bhyp(0
+
ι,s(ε̂ι)), â+0 − 1 is of hyperbolic long range in 0+ι,s(ε̂ι) and

v+∂r â+0 +w
+
· ∂θ â+0 + y+â+0 ≡ 0 on 0+ι,s(ε̂ι).

Since the function
∫
∞

0 y+ ◦ φ+s ds is bounded on 0+ι,s(ε̂ι) (see the proof of Proposition 4.15), we also
have

â+0 (r, θ, ρ, η)& 1 for (r, θ, ρ, η) ∈ 0+ι,s(ε̂ι). (5-14)
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Using (2-11) and the fact that â+0 − 1 is of hyperbolic long range, it is easy to check that Pιâ+0 is of
hyperbolic short range in 0+ι,s(ε̂

2
ι ). By Proposition 4.15, we can then define

â+1 = i
∫
+∞

0
(Pιâ+0 ) ◦φ

+

s exp
(∫ s

0
y+ ◦φ+u du

)
ds on 0+ι,s(ε̂

2
ι ),

which belongs to Bhyp(0
+
ι,s(ε̂

2
ι )), is of hyperbolic long range in 0+ι,s(ε̂ι) and satisfies

v+∂r â+1 +w
+
· ∂θ â+1 + y+â+1 ≡−i Pιâ+0 on 0+ι,s(ε̂

2
ι ).

More generally, for 1≤ l ≤ N , we can define iteratively

â+l = i
∫
+∞

0
(Pιâ+l−1) ◦φ

+

s exp
(∫ s

0
y+ ◦φ+u du

)
ds on 0+ι,s(ε̂

2l

ι ),

which belongs to Bhyp(0
+
ι,s(ε̂

2l

ι )), is of hyperbolic long range in 0+ι,s(ε̂
2l

ι ) and satisfies

v+∂r â+l +w
+
· ∂θ â+l + y+â+l ≡−i Pιâ+l−1 on 0+ι,s(ε̂

2l

ι ),

using Proposition 4.15 and the fact that Pιâ+l−1 is of hyperbolic short range if â+l is of hyperbolic long
range. Therefore, using Proposition 4.4 with ε ≤ ε̂2N

ι and setting

a+l = χ
+

ε2→ε
â+l for 0≤ l ≤ N ,

with the â+l defined above, we have constructed a+0 , . . . , a+N ∈ S+hyp(ε) with a+0 satisfying (4-63), by
(5-14). Furthermore,

d+l ∈ S+hyp(ε) for 0≤ l ≤ N + 2 (5-15)

and
d+l ≡ 0 on 0+ι,s(ε

2) for 0≤ l ≤ N . (5-16)

Construction of b+(h). Given χ+s ∈ S+hyp(ε
9), we simply choose the symbols b+0 , . . . , b+N according to

Proposition 4.13, with ε ≤min(ε̂2N

ι , ε6).

Justification of the parametrix. Since κ̃ ⊗ κ̃ι ≡ 1 near the support of χ+s , we have∥∥χ+s (r, θ, h Dr , h Dθ )−χ
+

s (r, θ, h Dr , h Dθ )(κ̃ ⊗ κ̃ι)
∥∥

L2(Rn)→L2(Rn)
. hM , h ∈ (0, 1],

for all M , using the standard symbolic calculus, the Calderón–Vaillancourt Theorem and the fact that
S+hyp(ε)⊂ C∞b (R

2n). Using Proposition 4.13, we therefore obtain∥∥C+
∥∥

L2(Rn)→L2(Rn)
. hN+1, h ∈ (0, 1].

It remains to consider D+(s), which reads

D+(s)=
N+2∑
l=0

N∑
m=0

hl+m J+h (d
+

l )e
−ish D2

r J+h (b
+

m)
∗.

By (4-62) and (5-15), the part of the sum where l ≥ N + 1, has an L2 operator norm of order hN+1.
Once divided by h and integrated over an interval of size at most h−1, the corresponding operator norm
is O(hN−1). The control of the other terms of the sum will follow from the next result.
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Proposition 5.3. If ε is small enough, then, for all 0≤ l,m ≤ N and all M ≥ 0, we have∥∥J+h (d
+

l )e
−ish D2

r J+h (b
+

m)
∗
∥∥

L2(Rn)→L2(Rn)
≤ CεhM for h ∈ (0, 1], 0≤ s ≤ T h−1.

The proof is based on a fairly elementary nonstationary phase argument. To control the operator norms
of the kernels obtained after integrations by parts, we need the following rough lemma.

Lemma 5.4. For a ∈ C∞b (R
3n) compactly supported with respect to ρ, let us set

[a]+h (r, θ, r
′, θ ′)= (2πh)−n

∫∫
e

i
h (S+,ε(r,θ,ρ,η)−sρ2

−S+,ε(r ′,θ ′,ρ,η))a(r, θ, r ′, θ ′, ρ, η) dρ dη,

using S+,ε defined in Proposition 4.10. Denote by A+h : L2(Rn)→ L2(Rn) the operator with Schwartz
kernel [a]+h . Then, there exists n0(n)≥ 0 such that, for all ε small enough,

‖A+h ‖L2(Rn)→L2(Rn) ≤ Cεh−n0〈s〉n0 max|γ|≤n0 supR3n ‖∂
γa‖∞,

for all h ∈ (0, 1], all s ∈ R and all a ∈ C∞b (R
3n) satisfying

supp(a)⊂ {|ρ| ≤ 10}.

Proof. We get this as a simple consequence of the Calderón–Vaillancourt Theorem by interpreting A+h
as the pseudodifferential operator with symbol

e
i
h (ϕ+,ε(r,θ,ρ,η)−sρ2

−ϕ+,ε(r ′,θ ′,ρ,η))a(r, θ, r ′, θ ′, ρ, η),

where ϕ+,ε is defined in Proposition 4.10. �

Proof of Proposition 5.3. We notice first that, by Proposition 4.9 and (4-36),

∂ρ
(
S+(r, θ, ρ, η)− sρ2

− S+(r ′, θ ′, ρ, η)
)
= r − r ′− 2sρ+O(ε2), (5-17)

∂η
(
S+(r, θ, ρ, η)− sρ2

− S+(r ′, θ ′, ρ, η)
)
= θ − θ ′+O(e−1/ε), (5-18)

on the support of d+l (r, θ, ρ, η)b
+
m(r
′, θ ′, ρ, η). On the other hand, by construction, we have

d+l = i−1 (v+∂rχε2→ε +w
+
· ∂θχε2→ε

)
â+l−1+ Pι(χε2→εâ

+

l−2)−
χ
ε2→εPιâ+l−2

(with the convention that â+
−2 = â+

−1 ≡ 0). Using in particular that

w+ = e−r (∂ηq)(r, θ, e−r∂θ S+),

we conclude that d+l is a sum of terms of the form c(r, θ, ρ, η)∂ j
r (e−r∂θ )

αχ+
ε2→ε

, with j + |α| ≥ 1 and
c ∈B+s (ε). Using the form of χ+

ε2→ε
given by Proposition 4.4, we see that, on the support of such terms,

at least one of the following properties hold:

ε−1
≤ r ≤ ε−2, (5-19)

p(r, θ, ρ, η)≤ 1
4 − ε

2 or p(r, θ, ρ, η)≥ 4+ ε2, (5-20)

ε4−2κ . e−2r
|η|2 . ε2, (5-21)

dist(θ, Vι)≥ ε4, (5-22)

for some fixed 0< κ < 1 in (5-21). For terms such that (5-19) holds on their supports, we have
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(5-17)≤ ε−2
− ε−3

− 2sρ+C ≤−1− 2sρ. (5-23)

for ε small enough and integrate by parts with respect to ρ. For those satisfying (5-20) on their supports,
then we must have

ρ2
−

1
4 ≤−ε

2 or ρ2
− 4& ε2,

since e−2r
|η|2 . ε2 in any case, whereas on the support of b+l , where p(r ′, θ ′, ρ, η) ∈

( 1
4 − ε

3, 4+ ε3
)

and e−2r ′
|η|2 . ε6,

ρ2
−

1
4 &−ε

3 and ρ2
− 4≤ ε3,

so that the amplitude vanishes identically, again if ε is small enough. For those satisfying (5-21) on their
supports, we have er

|η|−1 . εκ−2. Since e−r ′
|η|. ε3, we get

er−r ′
≤ C + (1+ κ) ln ε� 0,

which implies again that (5-17)≤−1−2sρ, if ε is small enough. Thus on the supports of terms satisfying
either (5-19) or (5-20) or (5-21), we have |(5-17)|& 〈s〉. By standard integrations by parts, the kernel of
corresponding operator can be written, for all M , as in Lemma 5.4 with amplitudes of order (h/〈s〉)M in
C∞b (R

3n). Hence, their L2 operator norms are of order (h/〈s〉)M−n0 with an arbitrary M .
For the remaining terms satisfying (5-22) on their supports, we remark that |θ ′− θ | ≥ ε5 (otherwise

dist(θ, Vι)≤ |θ − θ ′| + dist(θ ′, Vι) < ε5
+ ε6
� ε4) hence

|(5-18)|& ε5.

Thus, for all M ≥ 0, the kernel of the corresponding operators can be written as in Lemma 5.4 with
amplitudes of order hM in C∞b (R

3n). Since M is arbitrary, their L2 operator norms are of order hM if
|s|. h−1. �

This completes the proof of Theorem 5.1. �

6. Geometric optics and Egorov’s theorem on AH manifolds

As in the previous section, we fix here an arbitrary index ι corresponding a coordinate patch and then
drop it from the notation in symbols, phases, intervals, etc.

6A. Finite time WKB approximation. Next we give a short time parametrix of e−i th P Ôpι(χ
±) when

χ± is supported in an outgoing (+) or an incoming (−) area. This parametrix is the standard geometric
optic (or WKB) approximation which is basically well known. Nevertheless, in the literature, one mostly
finds local versions (i.e., with χ ∈ C∞0 ) or versions in Rn for elliptic operators. Here we are neither in
a relatively compact set nor in the uniformly elliptic setting, so we recall the construction with some
details.

Analogously to Section 5, we prove here an L2 approximation. The related dispersion estimates
leading to (2-80) will be derived in Section 7.

We also emphasize that, although we shall prove this approximation with a specified time orientation
(t≥0 for χ+ and t≤0 for χ−), this result has nothing to do with outgoing/incoming areas; in principle we
should be able to state a similar result for any χ supported in p−1(I ) and for times |t | � 1. We restrict
the sense of time for only two reasons: firstly, because it is sufficient for our purpose and, secondly,
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because we can use directly Proposition 3.8 (we should otherwise give a similar result for the geodesic
flow for t in an open neighborhood of 0).

Fix
I1 b I2 b I3 b (0,+∞),

three relatively compact open subsets of V ′ι (see (2-21)),

V1 b V2 b V3 b V ′ι ,

and three real numbers
−1< σ1 < σ2 < σ3 < 1.

For some R3 large enough to be fixed below, we also choose arbitrary R1, R2 real numbers such that

R1 > R2 > R3.

Theorem 6.1. For all R3 large enough, there exists tWKB > 0 and a function

6 ∈ C∞
(
[0,±tWKB]×R2n,R

)
such that, for any

χ± ∈ Shyp
(
0±ι (R1, V1, I1, σ1)

)
, (6-1)

we can find
a±0 (t), . . . , a±N (t) ∈ Shyp

(
0±ι (R2, V2, I2, σ2)

)
,

depending smoothly on t for 0≤±t ≤ tWKB, and such that, if we set

a±N (t, h)= a±0 (t)+ · · ·+ hN a±N (t),

the operator defined on C∞0 (R
n) by the kernel[

J±h
(
t, a±N (t, h)

)]
(t, r, θ, r ′, θ ′)= (2πh)−n

∫∫
e

i
h (6

±(t,r,θ,ρ,η)−r ′ρ−θ ′·η)a±N (t, h, r, θ, ρ, η) dρ dη,

satisfies, with 1ι the characteristic function of (R3,+∞)× V3,∥∥ e−i th P Ôpι
(
χ±
)
−9∗ι J±h

(
t, a±N (t, h)

)
1ι
(
9−1
ι

)∗∥∥
L2(M,d̂G)→L2(M,d̂G) ≤ ChN+1, (6-2)

for
0≤±t ≤ tWKB, h ∈ (0, 1].

In addition, the functions 6± are of the form

6±(t, r, θ, ρ, η)= rρ+ θ · η+
(
6±0 (t, r, θ, ρ, η)− rρ− η · η

)
χ±

2→3(r, θ, ρ, η),

with χ±2→3 ∈ Shyp(0
±
ι (R3, V3, I3, σ3)) such that χ±2→3 ≡ 1 on 0±ι (R2, V2, I2, σ2), and some bounded

family (6±0 (t))0≤±t≤tWKB in Bhyp(0
±
ι (R3, V3, I3, σ3)) satisfying{
∂t6
±

0 + p(r, θ, ∂r6
±

0 , ∂θ6
±

0 )= 0,
6±0 (0, r, θ, ρ, η)= rρ+ θ · η,

(6-3)

and ∣∣D jαkβ
hyp

(
6±0 (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

) ∣∣≤ C jαkβ t2, (6-4)
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both for
0≤±t ≤ tWKB and (r, θ, ρ, η) ∈ 0±ι (R3, V3, I3, σ3).

We also have(
6±(t, r, θ, ρ, η)− rρ− θ · η

)
0≤±t≤tWKB

bounded in Shyp
(
0±ι (R3, V3, I3, σ3)

)
. (6-5)

Finally, for all 0≤ j ≤ N ,(
a±j (t)

)
0≤±t≤tWKB

is bounded in Shyp
(
0±ι (R2, V2, I2, σ2)

)
. (6-6)

Notice that V1 b V ′ι , so it makes sense to consider Ôpι(χ
±); see (2-23).

In principle it is not necessary to have R3 large to get such a lemma, but this will be sufficient for our
applications. The interest of choosing R3 large is simply to allow to use directly Proposition 3.8.

Note also that, by (6-6), the kernel of J±h
(
t, a±N (t, h)

)
1ι is supported in ((R3,+∞)× V3)

2.

Proof of Theorem 6.1. The proof will occupy the rest of this section.
We need to find 6± and a±N (t, h) such that

J±h
(
0, a±N (0, h)

)
= χ±(r, θ, h Dr , h Dθ ), (6-7)

(h Dt + h2 Pι)J±h (t, a±N (t, h))= hN+2 R±N (t, h), (6-8)

where Pι = (9−1
ι )∗P9∗ι and

‖R±N (t, h)‖L2(Rn)→L2(Rn) ≤ C, h ∈ (0, 1], 0≤±t ≤ tWKB. (6-9)

Indeed, if (6-7), (6-8) and (6-9) hold, the equality

9∗ι J±h
(
t, a±N (t, h)

)
1ι
(
9−1
ι

)∗
− e−i th P9∗ι χ

±(r, θ, h Dr , h Dθ )1ι
(
9−1
ι

)∗
= ihN+1

∫ t

0
e−i(t−s)h P̃9∗ι RN (s, h)1ι

(
9−1
ι

)∗
ds

will yield (6-2) since, for all M > 0,

‖9∗ι χ
±(r, θ, h Dr , h Dθ )1ι

(
9−1
ι

)∗
− Ôpι(χ

±)‖L2(M,d̂G)→L2(M,d̂G) ≤ CM hM ,

by standard off-diagonal decay (see Definition 2.1 for Ôpι), since 1ι ≡ 1 near 5r,θ
(
supp(χ±)

)
.

To get the conditions to be satisfied by 6± and a±0 , . . . , a±N we observe that

(
h Dt + h2 Pι

)
J±h

(
t, a±N (t, h)

)
=

N+2∑
j=0

h j J±h

(
t, b±j (t)

)
, (6-10)

where, if we additionally set a±
−2 = a±

−1 = a±N+1 = a±N+2 ≡ 0,

b j = (∂t6
±
+ p(r, θ, ∂r6

±, ∂θ6
±))a±j + i−1(∂t +T±)a±j−1+ Pa±j−2, (6-11)

with
T± = 2∂r6

±∂r + (∂ηq)(r, θ, e−r∂θ6
±) · e−r∂θ + (p+ p1)(r, θ, ∂r , ∂θ )6

±, (6-12)



58 JEAN-MARC BOUCLET

where q = qι is defined in (2-13) and p1 is the homogeneous part of degree 1 of the full symbol of Pι.
To obtain (6-7), (6-8) and (6-9) it will therefore be sufficient to solve the eikonal equation (6-3), then the
transport equations

(∂t +T±)a±0 = 0, a±0 (0, · )= χ
±(.), (6-13)

(∂t +T±)a±k =−i Pιa±k−1, a±k (0, · )= 0, (6-14)

for 1≤ k ≤ N , and finally to get an L2 bound for Fourier integral operators of the form J±h (t, a) (using
the Kuranishi trick).

To solve (6-3), we need the following lemma for which we recall that (r t , θ t , ρt , ηt) is the Hamiltonian
flow of p.

Lemma 6.2. For all −1 < σeik < σ ′eik < 1, all open intervals Ieik b I ′eik b (0,+∞), all open subsets
Veik b V ′eik b V ′ι and all Reik > R′eik large enough, there exists t1 > 0 small enough that

9 t
±
: (r, θ, ρ, η) 7→ (r t , θ t , ρ, η)

is a diffeomorphism from 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik) onto its range for all 0≤±t < t1 and

0±ι (Reik, Veik, Ieik, σeik)⊂9
t
±

(
0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik)
)

for all 0≤±t < t1.

Proof. First choose a σ ′′eik ∈ R, and open interval I ′′eik and open set V ′′eik such that

σ ′eik < σ
′′

eik < 1, I ′eik b I ′′eik b (0,+∞), V ′eik b V ′′eik b V ′ι .

Also choose R′′eik > 0 large enough that Proposition 3.8 holds with σ = |σ ′′eik| and R = R′′eik. We then
choose arbitrary Reik and R′eik such that

Reik > R′eik > R′′eik,

and then χ±′→′′ ∈Shyp(0
±
ι (R

′′

eik, V ′′eik, I ′′eik, σ
′′

eik)) such χ±′→′′≡1 on 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik). The existence
of such a function follows from Proposition 4.1(i). In particular, χ±′→′′ and ∂r,θ,ρ,ηχ

±
′→′′ are bounded on

R2n . For ±t ≥ 0, consider the map

εt
±
: R2n

3 (r, θ, ρ, η) 7→
(∫ t

0
2ρs ds,

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds

)
χ±
′→′′

(r, θ, ρ, η) ∈ Rn, (6-15)

so that, by the equations of motion,

9 t
±
= IdR2n + (εt

±
, 0) on 0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik).

By Proposition 3.8 we have |∂r,θ,ρ,ηε
t
±
| . |t |; hence IdR2n +

(
εt
±
, 0
)

is a diffeomorphism from R2n

onto itself, for all ±t ≥ 0 small enough. Therefore, it remains to show that, if t is small enough and
(r, θ, ρ, η) ∈ 0±ι (Reik, Veik, Ieik, σeik) is of the form

(r, θ, ρ, η)= (r ′, θ ′, ρ ′, η′)+ (εt
±
(r ′, θ ′, ρ ′, η′), 0),

then (r ′, θ ′, ρ ′, η′) ∈ 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik). We have trivially ρ = ρ ′ and η = η′. By Proposition 3.8,
|εt
±
|. |t | on R2n , so |r−r ′|+|θ−θ ′|. |t |; hence r ′> R′eik and θ ′ ∈ V ′eik if t is small enough. Moreover,
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by writing

q(r, θ, e−rη)− q(r ′, θ ′, e−r ′η)= q(r, θ, e−rη)− q(r ′, θ ′, e−rη)+ (1− e−2(r ′−r))q(r ′, θ ′, e−rη),

we see that ∣∣p(r, θ, ρ, η)− p(r ′, θ ′, ρ, η)
∣∣. |t |,

using the boundedness of |e−r ′η| and Taylor’s formula. Hence

p(r ′, θ ′, ρ, η) ∈ I ′eik and ± ρ >−σ ′eik p(r ′, θ ′, ρ, η)1/2

if t is small enough, since p(r, θ, ρ, η) ∈ Ieik and ±ρ >−σeik p(r, θ, ρ, η)1/2. This completes the proof.
�

Now fix Ieik, I ′eik, Veik, V ′eik, and σeik, σ
′

eik as in Lemma 6.2, with the additional conditions

Veik = V3, Ieik = I3, σeik = σ3.

Denote by 9±t the inverse of 9 t
±

and define (rt , θt)= (rt , θt)(r, θ, ρ, η) by

9±t (r, θ, ρ, η)= (rt , θt , ρ, η) ∈ 0
±

ι (R
′

eik, V ′eik, I ′eik, σ
′

eik),

if (r, θ, ρ, η) ∈ 0±ι (Reik, Veik, Ieik, σeik) and 0 ≤ ±t < t1. Here t1, Reik and R′eik are those given by
Lemma 6.2.

Proposition 6.3. For all R3 > Reik, there exists teik > 0 such that

6±0 (t, r, θ, ρ, η) := rtρ+ θt · η+ tp(rt , θt , ρ, η),

solves (6-3) on 0±ι (R3, V3, I3, σ3) for 0≤±t ≤ teik, and such that

(6±0 (t, r, θ, ρ, η)− rρ− θ · η)0≤±t≤teik is bounded in Bhyp
(
0±ι (R3, V3, I3, σ3)

)
. (6-16)

Proof. That 6±0 solves the eikonal equation is standard, so we only have to show (6-16). Since

6±0 (t, r, θ, ρ, η)= rρ+ θ · η+ (rt − r)ρ+ er (θt − θ) · e−rη+ te−2(rt−r)q(rt , θt , e−rη),

(6-16) would follow from the estimates∣∣D jαkβ
hyp (rt − r)

∣∣+ ∣∣D jαkβ
hyp (er (θt − θ))

∣∣≤ C jαkβ, (6-17)

for 0≤±t ≤±teik and (r, θ, ρ, η) ∈ 0±ι (R3, V3, I3, σ3). The equations of motion yield

r t
= r +

∫ t

0
2ρs ds, θ t

= θ +

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds, (6-18)

so, by Proposition 3.8 with R′eik of Lemma 6.2 and by choosing teik small enough, we see that, for
0≤±t ≤ teik,

|∂r,θ (r t , θ t)− Idn| ≤
1
2 on 0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik),

where | · | is a matrix norm. Therefore, by differentiating the identity (r t , θ t)(rt , θt , ρ, η) = (r, θ) one
obtains, similarly to Proposition 4.8,

|D jαkβ
hyp (rt − r)| + |D jαkβ

hyp (θt − θ)| ≤ C jαkβ, (6-19)



60 JEAN-MARC BOUCLET

for 0≤±t ≤ teik and (r, θ, ρ, η)∈0±ι (R3, V3, I3, σ3). This proves the expected estimates for rt−r . The
second equation of (6-18) evaluated at (rt , θt , ρ, η) yields

er (θ − θt)=

∫ t

0
er−r s

t (∂ηq)(r s
t , θ

s
t , e−r s

t ηs
t ) ds, (6-20)

where x s
t = x s(rt , θt , ρ, η) for x = r, θ, η.

Combining (6-19) and Proposition 3.8, we have, on 0±ι (R3, V3, I3, σ3),∣∣D jαkβ
hyp (r s

t − r)
∣∣+ ∣∣D jαkβ

hyp (θ s
t − θ)

∣∣+ ∣∣D jαkβ
hyp (ηs

t − η)
∣∣≤ C jαkβ for 0≤±t,±s ≤ teik,

from which the estimate of the second term of (6-17) follows using (6-20). �

We now solve the transport equations. By (6-12), we have to consider the time-dependent vector field
(v±t , w

±
t ) defined on 0±ι (R3, V3, I3, σ3), for 0≤±t ≤ teik, by(

v±t
w±t

)
:=

(
(∂ρ p)(r, θ, ∂r6

±

0 , ∂θ6
±

0 )

(∂η p)(r, θ, ∂r6
±

0 , ∂θ6
±

0 )

)
=

(
2∂r6

±

0

e−2r (∂ηq)(r, θ, ∂θ6±0 )

)
. (6-21)

We then denote by φ±s→t the flow, from time s to time t , of (v±t , w
±
t , 0Rn ) namely the solution to

∂tφ
±

s→t = (v
±

t (φ
±

s→t), w
±

t (φ
±

s→t), 0), φ±s→s(r, θ, ρ, η)= (r, θ, ρ, η). (6-22)

Lemma 6.4. For any open interval Itr, anyσtr ∈ R, and any open subsetVtr ⊂ Rn−1 such that

Rtr > R3, Vtr b V3, Itr b I3, −1< σtr < σ3,

there exists 0< t2 ≤ teik small enough that

φ±s→t is well defined on 0±ι (Rtr, Vtr, Itr, σtr) for all 0≤±s ≤ t2, 0≤±t ≤ t2 (6-23)

and ∣∣Dhyp
jαkβ

(
φ±s→t − Id

)∣∣. 1 on 0±ι (Rtr, Vtr, Itr, σtr) for 0≤±s,±t ≤ t2. (6-24)

By (6-23), we mean in particular that

φs→t
(
0±ι (Rtr, Vtr, Itr, σtr)

)
⊂ 0±ι (R3, V3, I3, σ3) for 0≤±s,±t ≤ t2. (6-25)

The estimate (6-24) can be restated by saying that the components of φ±s→t − Id are bounded families of
Bhyp

(
0±ι (Rtr, Vtr, Itr, σtr)

)
for 0≤±s,±t ≤ t2.

Proof. For all δ > 0 small enough, we have

|r − r ′| + |θ − θ ′| ≤ δ and (r, θ, ρ, η) ∈ 0±ι (Rtr, Vtr, Itr, σtr)

H⇒ (r ′, θ ′, ρ, η) ∈ 0±ι (R3, V3, I3, σ3) (6-26)

by Proposition 4.2. Denoting by (r±s→t , θ
±
s→t , ρ, η) the components of φ±s→t , they must be solutions of

the problem

(r±s→t , θ
±

s→t)= (r, θ)+
∫ t

s
(v±τ , w

±

τ )(r
±

s→τ , θ
±

s→τ , ρ, η)dτ.

By (6-16), we have
|(v±τ , w

±

τ )| + |∂r,θ (v
±

τ , w
±

τ )| ≤ C, (6-27)
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on 0±ι (R3, V3, I3, σ3), for 0≤±τ ≤ teik. Therefore, the sequence u±n (t)= u±n (t, s, r, θ, ρ, η) defined by

u±0 (s)= (r, θ), u±k+1(t)= (r, θ)+
∫ t

s
(v±τ , w

±

τ )(u
±

k (τ ), ρ, η)dτ,

is a Cauchy sequence in C0([0,±t2],Rn) for all (r, θ, ρ, η) ∈ 0±ι (Rtr, Vtr, Itr, σtr) and 0 ≤ ±s ≤ t2, for
some t2 small enough independent of (r, θ, ρ, η). Indeed, using (6-26) and choosing t2 small enough so
that

∑
k≥0(Ct2)k+1

≤ δ, a standard induction using (6-27) shows that

|u±k+1(t)− u±k (t)| ≤ (Ct2)k+1,

which makes the sequence well defined and convergent. This proves (6-23). We then obtain (6-24)
by induction by differentiating the equations in (6-22). This proof is completely similar to that of the
estimate (4-70) in Proposition 4.14 (and much simpler since it is local in time) so we omit the details. �

Now denote by q±t = q±t (r, θ, ρ, η) the function defined on [0,±teik]×0
±
ι (R, V, I, σ ) by

q±t := (p+ p1)(r, θ, ∂r , ∂θ )6
±

0 .

This function was involved in (6-12).

Proposition 6.5. Choose Rtr, Vtr, Itr and σtr such that

R2 > Rtr > R3, V2 b Vtr b V3, I2 b Itr b I3, σ2 < σtr < σ3.

There exists ttr > 0 small enough that, for all χ± satisfying (6-1), the functions

a±0 , . . . , a±N : [0,±ttr]×R2n
→ C

vanishing outside 0±ι (R2, V2, I2, σ2) and defined iteratively on 0±ι (R2, V2, I2, σ2) by

a±0 (t): = χ
±
◦φ±t→0 exp

(∫ t

0
q±s ◦φ

±

t→s

)
,

a±k (t): = −
∫ t

0
i(Pιa±k−1)(s1, φ

±

t→s1
) exp

(∫ t

s1

q±s2
◦φ±t→s2

ds2

)
ds1 for 1≤ k ≤ N

are smooth and solve (6-13) and (6-14). Furthermore, for all 0≤ k ≤ N ,

(a±k (t))0≤±t≤ttr is bounded in Shyp
(
0±ι (R2, V2, I2, σ2)

)
. (6-28)

Proof. Fix R′tr, V ′tr, I ′tr and σ ′tr such that

R2 > R′tr > Rtr, V2 b V ′tr b Vtr, I2 b I ′tr b Itr, σ2 < σ
′

tr < σtr.

By choosing 0< ttr ≤ t2 small enough, we then have, for all 0≤±s,±t ≤ ttr,

φ±s→t
(
0±ι (R1, V1, I1, σ1)

)
⊂ 0±ι (R2, V2, I2, σ2), (6-29)

φ±s→t
(
0±ι (R2, V2, I2, σ2)

)
⊂ 0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr), (6-30)

φ±s→t
(
0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr)
)
⊂ 0±ι (Rtr, Vtr, Itr, σtr). (6-31)
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This follows from Proposition 4.2 and the fact that |φ±t→s−Id|. |t−s|, which comes from the integration
of (6-22) between s and t , using (6-24). By Lemma 6.4, the flow is well defined on 0±ι (Rtr, Vtr, Itr, σtr),
therefore the condition (6-31) ensures that we have the pseudo-group property

φ±t→u ◦φ
±

s→t = φ
±

s→u, 0≤±s,±t,±u ≤ ttr, (6-32)

on 0±ι (R
′
tr, V ′tr, I ′tr, σ

′
tr). In particular, φ±t→s ◦φ

±
s→t = Id on this set. Therefore, by (6-30), we have

0±ι (R2, V2, I2, σ2)⊂ φ
±

t→s
(
0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr)
)
.

This implies that the map
(t, r, θ, ρ, η) 7→ (t, φ±s→t(r, θ, ρ, η))

is a diffeomorphism from (0,±ttr) × 0±ι (R
′
tr, V ′tr, I ′tr, σ

′
tr) onto its range and that this range contains

(0,±ttr)×0±ι (R2, V2, I2, σ2). Restricted to the latter set, the inverse is given by (t, φ±t→s) which shows
that φ±t→s is smooth with respect to t . Furthermore, by differentiating in t the relation φ±t→s ◦φ

±
s→t = Id,

one obtains
∂tφ
±

t→s + (∂r,θφ
±

t→s) · (v
±

t , w
±

t )= 0, on 0±ι (R2, V2, I2, σ2),

for 0 < ±t < ttr. Using this relation, one easily checks that a±0 solves (6-13) on 0±ι (R2, V2, I2, σ2). In
addition, if

(r, θ, ρ, η) ∈ 0±ι (R
′

tr, V ′tr, I ′tr, σ
′

tr) \0
±

ι (R2, V2, I2, σ2),

we have φ±t→0(r, θ, ρ, η) /∈ supp(χ±) otherwise (r, θ, ρ, η) ∈ 0±ι (R2, V2, I2, σ2) by (6-1), (6-29) and
(6-32). This shows that, extended by 0 outside 0±ι (R2, V2, I2, σ2), a±0 is smooth. The property (6-28)
for k = 0 is then a direct consequence of (6-24). We note in passing that we have

supp(a±0 (t))⊂ φ
±

0→t(supp(χ±)).

The proof for the higher-order terms a±k , k ≥ 1, is then obtained similarly by induction using that
supp(Pιa±k−1(s1))⊂ φ

±

0→s1
(supp(χ±)) for all s1. �

Proof of Theorem 6.1. There remains to prove (6-4), to globalize 6±0 , to prove (6-5) and the bound (6-9).
By Proposition 4.1, we can choose

χ±
2→3 ∈ Shyp(0

±

ι (R3, V3, I3, σ3)) such that χ±2→3 ≡ 1 on 0±ι (R2, V2, I2, σ2).

We set

6±(t, r, θ, ρ, η)= rρ+ θ · η+χ±2→3(r, θ, ρ, η)×
(
6±0 (t, r, θ, ρ, η)− rρ− θ · η

)
.

It coincides with 6±0 on [0,±teik] × 0
±
ι (R2, V2, I2, σ2) so it is a solution to the eikonal equation on

[0,±tWKB] × 0
±
ι (R2, V2, I2, σ2), for any 0 < tWKB ≤ teik. Furthermore, (6-16) implies (6-5) and, by

using

6±0 (t, r, θ, ρ, η)= rρ+ θ · η+
∫ t

0
p(r, θ, ∂r6

±

0 (s), ∂θ6
±

0 (s)) ds, (6-33)

we get (6-4) since (6-16) and (6-33) itself show that the components of (∂r6
±(s)−ρ, ∂θ6±(s)−η) are

O(s) in Bhyp(0
±
ι (R3, V3, I3, σ3)).
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To prove (6-9), we use the Kuranishi trick which is as follows. By Taylor’s formula, we can write

6±(t, r, θ, ρ, η)−6±(t, r ′, θ ′, ρ, η)= (r −r ′)ρ̃±(t, r, θ, r ′, θ ′, ρ, η)+ (θ − θ ′) · η̃±(t, r, θ, r ′, θ ′, ρ, η).

Using again (6-33) and (6-16), we obtain∣∣∂ j
r ∂

α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ∂

β
η

(
(ρ̃±, η̃±)(t, r, θ, r ′, θ ′, ρ, η)− (ρ, η)

) ∣∣≤ C jα j ′α′kβ |t |, (6-34)

for (r, θ, r ′, θ ′, ρ, η ∈R3n) and 0≤±t ≤ teik. The latter implies that, for all 0≤±t ≤ tWKB small enough
and all (r, θ, r ′, θ ′) ∈ R2n , the map

(ρ, η) 7→ (ρ̃±, η̃±),

is a diffeomorphism from Rn onto itself. Furthermore, proceeding similarly to the proof of (4-52) in
Lemma 4.11, we see that its inverse (ρ̃, η̃) 7→ (ρ±, η±) satisfies∣∣∂ j

r ∂
α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ̃∂

β

η̃

(
(ρ±, η±)(t, r, θ, r ′, θ ′, ρ̃, η̃)− (ρ̃, η̃)

) ∣∣≤ C jα j ′α′kβ, (6-35)

on R3n , uniformly with respect to 0 ≤ ±t ≤ tWKB. Thus, for any bounded family (a±(t))0≤±t≤tWKB in
Shyp(0

±
ι (R2, V2, I2, σ2)), the kernel of J±h (t, a±(t))J±h (t, a±(t))∗, which reads

(2πh)−n
∫

e
i
h (6

±(t,r,θ,ρ,η)−6±(t,r ′,θ ′,ρ,η)) a±(t, r, θ, ρ, η) a±(t, r ′, θ ′, ρ, η) dρ dη, (6-36)

can be written as

(2πh)−n
∫

e
i
h ((r−r ′)ρ̃+(θ−θ ′)·η̃))B(t, r, θ, r ′, θ ′, ρ̃, η̃) dρ̃d η̃, (6-37)

with B(t, · ) bounded in C∞b (R
3n) as 0≤±t ≤ tWKB. By the Calderón–Vaillancourt theorem the operator

given by (6-37) is uniformly bounded; hence ‖J±h (t, a±(t))‖L2(Rn)→L2(Rn) ≤C whenever 0≤±t ≤ tWKB

and h ∈ (0, 1], where C depends only a finite number of seminorms of a±(t) in C∞b (R
2n). Using (6-10),

(6-11) (with a±k (t) solutions to the transport equations) and (6-28), the bound above yields (6-9), which
completes the proof of Theorem 6.1. �

6B. Proof of Proposition 2.24. To prove Proposition 2.24, we first need a version of the semiclassical
Egorov Theorem in the asymptotically hyperbolic setting. We recall that 8t

= (r t , θ t , ρt , ηt) denotes
the Hamiltonian flow of the principal symbol p of P .

Fix an open subset V b V ′ι , an open interval I b (0,+∞), and −1< σ < 1.

Theorem 6.6. If R > 0 is large enough the following holds: for all T > 0, all N ≥ 0 and all

a ∈ Shyp
(
0±ι (R, V, I, σ )

)
, (6-38)

we can find
a0(t), . . . , aN (t) ∈ Shyp

(
8t(supp(a))

)
for 0≤±t ≤ T, (6-39)

such that, for all 0≤±t ≤ T and all 0< h ≤ 1,∥∥∥e−i th P Ôpι(a)e
i th P
−

N∑
k=0

hk Ôpι(ak(t))
∥∥∥

L2(M,d̂G)→L2(M,d̂G)
≤ CN ,T,ahN+1. (6-40)
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This theorem is basically well known. Here the main point is to check (6-39), namely that a0(t), . . . ,
aN (t) lie in Bhyp

(
8t(supp(a))

)
. Notice that, by Corollary 3.10, 8t(supp(a)) is contained in the same

chart as a in which it is therefore sufficient to work.
Using the group property, it is sufficient to prove the result when T is small enough (depending only

on V, I, σ ). To check this point, we choose open sets V1, V2 such that V b V1 b V2 b V ′ι . Then, for
some C > 0 and all R large enough,

8t(0±ι (R, V, I, σ )
)
⊂ 0±ι (R−C, V1, I, σ ), ± t ≥ 0,

8t(0±ι (R−C, V1, I, σ )
)
⊂ 0±ι (R− 2C, V2, I, σ ), ± t ≥ 0.

This follows from Corollary 3.10 and the fact that ρt can be assumed to be nondecreasing, using (3-22).
Thus, it is sufficient to prove (6-40) for 0 ≤ ±t ≤ ε with ε > 0 small enough independent of a ∈
Shyp

(
0±ι (R−C, V1, I, σ )

)
. Indeed, if this holds, it holds for a satisfying (6-38) and

eiεh P Ôpι(a)e
−iεh P

−

N∑
k=0

hk Ôpι(ak(ε))+ hN+1 RN (h, ε)

with RN (h, ε) uniformly bounded on L2(M, d̂G) and ak(ε) ∈ Shyp
(
0±ι (R − C, V1, I, σ )

)
, with ak(ε)

supported in8ε (supp(a))more precisely. Conjugating the expression above by e−iεh P and then applying
the same result with ak(ε) instead of a we can write

ei2εh P Ôpι(a)e
−2iεh P

−

N∑
k=0

hk Ôpι(ak(2ε))+ hN+1 RN (h, 2ε),

where ak(2ε) is supported in 82ε(supp(a)), which is still contained in 0±ι (R − C, V1, I, σ ), and thus
allows one to iterate the procedure.

The interest of considering small times is justified by the following lemma.

Lemma 6.7. Fix V1, I, σ as above. For some R1 > 0 large enough and ε > 0 small enough,∣∣D jαkβ
hyp

(
(8t)−1

− Id2n
)∣∣≤ C jαkβ on 8t(0±ι (R1, V1, I, σ )

)
,

for all 0≤±t ≤ ε.

Proof. Using the identity

d(8t
− Id2n)=

∫ t

0
d Hp(8

s)d8s ds

and Proposition 3.8, we have |d(8t
− Id2n)|. |t | hence |(d8t)−1

|. 1 on 0±ι (R1, V1, I, σ ) if R1 is large
enough and t is small enough. We then obtain the result by applying D jαkβ

hyp to 8t
◦ (8t)−1 and using the

Faà di Bruno formula. For instance, if j = k = |α| = 0 and |β| = 1, we have

d8t
|(8t )−1er∂βη ((8

t)−1
− Id2n)= (Id2n − d8t

|(8t )−1)er∂βη Id2n

where, using Proposition 3.8, the right-hand side is bounded for this is simply er∂
β
η (Id2n−8

t) evaluated
at (8t)−1. Higher-order derivatives are studied similarly by iteration, using Lemma 3.6. �
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Naturally, (8t)−1 is the reverse Hamiltonian flow, namely flowing 8t
(
0±ι (R1, V1, I, σ )

)
back to

0±ι (R1, V1, I, σ ). More precisely, for 0≤±t ≤ ε,

d
dt
(8t)−1(r, θ, ρ, η)=−Hp

(
(8t)−1(r, θ, ρ, η)

)
for (r, θ, ρ, η) ∈8±ε

(
0±ι (R1, V1, I, σ )

)
. (6-41)

We prefer to keep the notation (8t)−1 on 8t
(
0±ι (R1, V1, I, σ )

)
rather than using 8−t , since we have

only studied 8t for t ≥ 0 on outgoing areas and t ≤ 0 on incoming areas.
We have essentially all the tools needed to solve the transport equations considered in the next lemma.

Lemma 6.8. There exists C > 0 such that, for all R large enough, the following holds: for any aini ∈

Shyp
(
0±ι (R, V, I, σ )

)
and any bounded family ( f (t))0≤±t≤ε of Shyp

(
0±ι (R−C, V1, I, σ )

)
, smooth with

respect to t and such that
supp( f (t))⊂8t(supp(aini)),

the function defined for 0≤±t ≤ ε by

a(t) :=
{

aini ◦ (8
t)−1
+
∫ t

0 f (s) ◦8s
◦ (8t)−1 ds on 8t(supp(a)),

0 outside,

is smooth and satisfies
∂t a(t)+{p, a(t)} = f (t), a(0)= aini. (6-42)

Furthermore
(a(t))0≤±t≤ε is bounded in Shyp

(
0±ι (R−C, V1, I, σ )

)
. (6-43)

In (6-43), we consider 0±ι (R − C, V1, I, σ ) for it is independent of t but, by construction, a(t) is
supported in the smaller region 8t(supp(a)).

Proof. To check the smoothness of a0(t) it suffices to see that aini ◦ (8
t)−1 and f (s) ◦ (8t−s)−1

are defined and smooth in a neighborhood of 8t(supp(a)), while they vanish on the complement of
8t(supp(a)) (relatively to the neighborhood). Indeed (8t)−1 is defined on 8t(0±ι (R − C, V1, I, σ ))
and if (r, θ, ρ, η) belongs to 8t(0±ι (R − C, V1, I, σ )) but doesn’t belong to 8t(supp(a)), then acirc ◦

(8t)−1(r, θ, ρ, η)=0; otherwise, (8t)−1(r, θ, ρ, η) should belong to supp(a) and thus (r, θ, ρ, η) should
belong to 8t(supp(a)). Similarly,∫ t

0
f (s) ◦8s

◦ (8t)−1(r, θ, ρ, η) ds

must vanish, otherwise there would be s between 0 and t such that8s
◦(8t)−1(r, θ, ρ, η)∈8s(supp(a))

implying that (r, θ, ρ, η) ∈ 8t(supp(a)). Then (6-42) follows directly from (6-41) and (6-43) follows
from Lemma 6.7. �

Proof of Theorem 6.6. By Lemma 6.8, the solutions of the transport equations (6-42) belong to the set
Shyp(0

±
ι (R−C, V1, I, σ )). The proof is then standard; see [Robert 1987], for instance. �

Proof of Proposition 2.24. We start by choosing ε > 0 and δ > 0 according to Proposition 2.16 with
t = tWKB. Then, using (2-26), (2-37), (2-38) and Theorem 6.6, it is straightforward to show that, for all
T ≥ tWKB and all N ≥ 0,∥∥Ôpι(b

±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
∥∥

L2(d̂G)arrowL2(d̂G) ≤ CT,l,N hN for h ∈ (0, 1], tWKB ≤±t ≤ T .
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It is therefore sufficient to show the existence of T large enough such that∥∥Ôpι(b
±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
∥∥

L2(d̂G)arrowL2(d̂G) ≤ Cl,N hN for h ∈ (0, 1], T ≤±t ≤ 2h−1. (6-44)

For simplicity we consider positive times and set B = Ôpι(b
+

l,inter). For T to be chosen, we write

e−i th P B∗ = e−i(t−T )h P B(T )∗e−iT h P , B(T )= e−iT h P BeiT h P .

As above, we may write
B(T )∗ =

∑
k≤N

hk Ôpι(b
∗

k (T ))+ hN+1 BN (h),

with BN (h) uniformly bounded on L2(M, d̂G) and

b∗k (T ) ∈ Shyp
(
8T (supp(b+l,inter))

)
⊂ Shyp

(
8T (0+ι,inter(ε, δ; l))

)
.

By (2-57), for all ε̃ > 0, we can choose Tε̃ large enough that 8T
(
0+ι,inter(ε, δ; l)

)
⊂ 0+ι,s(ε̃

9). Thus, if ε̃ is
small enough, Theorem 5.1 allows one to write, for t ≥ Tε̃,

e−i(t−Tε̃)h P Ôpι(b
∗

k (Tε̃))=9
∗

ι

(
J+h (ãε̃(h))e

−i(t−Tε̃)h D2
r J+h (b̃ε̃(h))

∗
)
(9−1

ι )∗+ hN RN (t, h),

with RN (t, h) uniformly bounded on L2(M, d̂G) for h ∈ (0, 1] and 0≤ t − Tε̃ ≤ 2h−1, and

ãε̃(h) ∈ Shyp
(
0+ι,s(ε̃)

)
.

We will therefore get (6-44) with T = Tε̃ if we choose ε̃ small enough such that, for all N ,∥∥b+l,inter(r, θ, h Dr , h Dθ )J+h (ãε̃(h))
∥∥

L2(Rn)→L2(Rn)
≤ CN hN .

By the standard composition rule between pseudodifferential and Fourier integral operators (see [Robert
1987]), b+l,inter(r, θ, h Dr , h Dθ ) J+h (ãε̃(h)) is the sum of an operator with norm of order hN and of Fourier
integral operators with amplitudes vanishing outside the support of

b+l,inter(r, θ, ∂r S+, ∂θ S+) ãε̃(r, θ, ρ, η, h),

where S+ = S+(r, θ, ρ, η) is the phase defined in Proposition 4.9. It is therefore sufficient to show that,
for ε̃ small enough, the support of the amplitude above is empty. Indeed, on this support we have

∂r S+
p(r, θ, ∂r S+, ∂θ S+)1/2

≤ 1− (ε/2)2,
ρ

p(r, θ, ρ, η)1/2
> 1− ε̃2. (6-45)

Furthermore, by Proposition 4.9, we also have

|∂r S+− r | + |∂θ S+− η|. ε̃2

on 0+ι,s(ε̃), where ãε̃(h) is supported. Since p is bounded from above and from below on 0+ι,s(ε̃), we
obtain, for all ε̃ small enough,

ρ

p(r, θ, ρ, η)1/2
≤ 1− (ε/2)2+C ε̃2

≤ 1− (ε/4)2,

which is clearly incompatible with the second condition of (6-45). �
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7. Dispersion estimates

In this section, we prove Propositions 2.20 and 2.22, using respectively the parametrices given in The-
orems 5.1 and 6.1. The dispersion estimates will basically follow from the stationary phase theorem,
applied to the kernels of these parametrices which are oscillatory integrals. The principle is thus quite
simple. One needs however to check some technical points essentially due to the noncompactness of the
manifold and, more precisely, to the nonuniform ellipticity of the symbol of the Laplacian.

Here is some heuristic in the case of the Isozaki–Kiada parametrix. We have to consider oscillatory
integrals with phases whose model is

(r − r ′)ρ+ (θ − θ ′) · η− tρ2
+ (e−2r

− e−2r ′)
|η|2

4ρ
,

where r, r ′, θ, θ ′ are parameters and ρ, η the integration variables. Due to the localization of the ampli-
tudes, we may also assume that (r, θ, ρ, η) and (r ′, θ ′, ρ, η) belong to strongly outgoing/incoming area.
The critical point satisfies (assuming that it is unique)

r − r ′− 2tρ− (e−2r
− e−2r ′)

|η|2

4ρ2 = 0, (7-1)

θ − θ ′+ (e−2r
− e−2r ′)

η

2ρ
= 0, (7-2)

where one should also keep in mind that e−rη and e−rη′ are small since the amplitudes are supported
in strongly outgoing/incoming areas. In particular, ρ is close to ±p1/2 and thus is far from 0. By (7-1),
one obtains at the critical point that, as expected,

r ≈ r ′+ 2tρ = r ′+ 2|tρ|, (7-3)

where tρ = |tρ| by the sense of time considered in outgoing/incoming areas. This in turn shows that

θ − θ ′ ≈ e−2r ′ (1− e−2tρ) η
ρ
.

In Proposition 7.2, we check that this intuition is correct, and we improve the localization around critical
points in Proposition 7.6. To use the stationary phase theorem, one needs to check the nondegeneracy of
the phase. Using the change of variable ξ = e−rη′, the phase is changed into

(r − r ′)ρ+ er ′(θ − θ ′) · ξ − tρ2
+ (e−2(r−r ′)

− 1)
|ξ |2

4ρ

and its hessian becomes

t


−2

0 e−2(r−r ′)
−1

2tρ

− e−2(r−r ′)
− 1

2tρ

(
0 ξ/ρ

ξ/ρ 0

) . (7-4)

Since ξ is small, the second matrix is small compared to the first one. When t is not too large, the entry
(e−2(r−r ′)

−1)/(2tρ) is bounded from above and below (recall (7-3)) and the phase is thus nondegenerate.
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This is made more rigorous in Proposition 7.11. When t becomes large the hessian matrix is basically
equivalent to (

−2t
0 −1/(2ρ)

)
which is again nondegenerate but will contribute apparently only through a factor |t |−1/2 in the stationary
phase theorem. However, recalling the change of variable e−r ′η= ξ whose Jacobian is er ′(n−1), and using
the two factors e−(n−1)r ′/2, e−(n−1)r/2 on both sides of the kernel (written with respect to dG rather than
d̂G), we get a factor of the form e(n−1)(r ′−r)/2 which decays exponentially in t by (7-3) and provides
(much more than) the missing |t |−(n−1)/2 decay. This is made more rigorous in Proposition 7.12.

The aim of the following subsection is to justify this intuition. In particular, to justify the above
approximations (e.g. the precise meaning of (7-3) or the smallness of the second matrix in (7-4)) we
need to be in an asymptotic regime given by a certain (small) parameter: in the Isozaki–Kiada case, the
relevant parameter is ε (the size of the strongly outgoing/incoming areas) and, in the WKB case, it is the
range of time.

7A. Stationary and nonstationary phase estimates. For simplicity, we drop the index ι from the nota-
tion, including in outgoing/incoming areas. In both Isozaki–Kiada and WKB parametrices, we have to
consider oscillatory integrals of the form

(2πh)−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,η)A±(t, r, θ, r ′, θ ′, ρ, η) dρ dη. (7-5)

For the Isozaki–Kiada parametrix, the amplitude is independent of t and of the form

A±IK(t, r, θ, r
′, θ ′, ρ, η)= a±(r, θ, ρ, η) b±(r ′, θ ′, ρ, η),

with
a± ∈ Shyp

(
0±s (ε)

)
and b± ∈ Shyp

(
0±s (ε

3)
)
, (7-6)

with ε > 0 small to be fixed. The phase reads

8±IK(t, r, θ, r
′, θ ′, ρ, η)= S±,ε(r, θ, ρ, η)− tρ2

− S±,ε(r ′, θ ′, ρ, η),

where S±,ε is defined in Proposition 4.10. We recall that it coincides with S± on 0±s (ε) (hence on 0±s (ε
3)

too), where S± is given by Proposition 4.9. We can therefore freely replace S±,ε by S±, or more generally
by any other continuation of S± outside 0±s (ε). Here we have 0≤±t ≤ 2h−1. The integral (7-5) is well
defined for (r, θ, r ′, θ ′) ∈ R2n but, using (7-6), we can assume that

r ≥ ε−1, θ ∈ Vε, r ′ ≥ ε−3, θ ′ ∈ Vε3 . (7-7)

The first goal of this section is to prove that, if ε is small enough, we can use stationary phase estimates.
The second goal is to show a similar result for the WKB parametrix, using tWKB as small parameter

(see Theorem 6.1). In this case, we have to consider

A±WKB(t, r, θ, r
′, θ ′, ρ, η)= a±(t, r, θ, ρ, η),

where, for V2 b ψι(Uι), I2 b (0,+∞), σ2 ∈ (−1, 1), some R2 > 0 large enough and some tWKB > 0,

(a±(t))0≤±t≤tWKB is bounded in Shyp
(
0±(R2, V2, I2, σ2)

)
. (7-8)
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In particular, we can assume that
r ≥ R2, θ ∈ V2. (7-9)

The phase is of the form

8±WKB(t, r, θ, r
′, θ ′, ρ, η)=6±(t, r, θ, ρ, η)− r ′ρ− θ ′ · η, (7-10)

and we refer to Theorem 6.1 for more details. We only recall here that the phase 6± is defined
on [0,±tWKB] × R2n and solves the eikonal equation (6-3) on [0,±tWKB] × 0

±(R3, V3, I3, σ3), with
0±(R2, V2, I2, σ2) ⊂ 0

±(R3, V3, I3, σ3). Here again, the condition (7-8) implies that we can freely
modify 6± outside 0±(R2, V2, I2, σ2).

Below, we will use the notation 8± (resp. A±) either for 8±IK or 8±WKB (resp. A±IK or A±WKB), as long
as a single analysis for both cases will be possible. For convenience we also define

0≤±t ≤ T (h) :=
{

2h−1 for Isozaki–Kiada,
tWKB for WKB.

In the next lemma, we summarize the basic properties of A± and8± needed to get a first nonstationary
phase result. For simplicity, we set ∂γ = ∂ j

r ∂
α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ∂

β
η .

Lemma 7.1. In each case, for all |γ| ≥ 0, the amplitude satisfies∣∣∂γA±(t, r, θ, r ′, θ ′, ρ, η)
∣∣≤ Cγ (7-11)

for all
(r, θ, r ′, θ ′, ρ, η) ∈ R3n, h ∈ (0, 1], 0≤±t ≤ T (h), (7-12)

and we may assume that the phase satisfies∣∣∂γ(8±(t, r, θ, r ′, θ ′, ρ, η)− (r − r ′)ρ− (θ − θ ′) · η
)∣∣≤ Cγ〈t〉, (7-13)

under the condition (7-12) too. In particular, for all |γ| ≥ 1,

|∂γ∂ρ8
±(t, r, θ, r ′, θ ′, ρ, η)| ≤ Cγ〈t〉, (7-14)

under the condition (7-12).

Proof. If A± = A±IK, (7-11) follows easily from Definition 2.2, (7-6), (7-8) and the time independence of
A±IK. If A± = A±WKB, (7-11) is a direct consequence of (7-8). For the phase, Proposition 4.10 shows that
8±IK− (r−r ′)ρ− (θ−θ ′) ·η is the sum of a function f ∈C∞b (R

3n) with −tρ2; similarly, by Lemma 7.5,
8±WKB−(r−r ′)ρ−(θ−θ ′)·η is the sum of some f ∈C∞b (R

3n) with−tp(r, θ, ρ, η). Since the amplitude
is compactly supported with respect to ρ and p(r, θ, ρ, η), we may replace 8±IK by (r − r ′)ρ− (θ − θ ′) ·
η+ f − tρ2χ1(ρ) and 8±WKB by (r − r ′)ρ − (θ − θ ′) · η+ f − tp(r, θ, ρ, η)χ1(p(r, θ, ρ, η)), for some
χ1 ∈ C∞0 (R). This implies (7-13) and completes the proof. �

Now choose χ1 ∈ C∞0 (−1, 1), χ2 ∈ C∞0 (R
n−1), both equal to 1 near 0 and define, for any c1, c2 > 0,

A±c1,c2
= χ1

(
∂ρ8

±

c1〈t〉

)
χ2

(
∂η8

±

c2

)
A±.
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Let E±(t, h) be the operator with Schwartz kernel (7-5) and E±c1,c2
(t, h) the operator with Schwartz kernel

(2πh)−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,η)A±c1,c2

(t, r, θ, r ′, θ ′, ρ, η) dρ dη, (7-15)

for h ∈ (0, 1] and 0≤±t ≤ T (h).

Proposition 7.2 (Semiclassical finite speed of propagation). For all c1, c2 > 0 and all N ≥ 0, we have∥∥E±(t, h)− E±c1,c2
(t, h)

∥∥
L2(Rn)→L2(Rn)

≤ CN ,A,8,c1,c2hN for h ∈ (0, 1], 0≤±t ≤ T (h). (7-16)

Moreover, if c1 is small enough, there exists C ≥ 0, independent of±t ∈ [0, T (h)] and of c2> 0, such that

r ′− r ≤ C (7-17)

on the support of A±c1,c2
.

Proof. The kernel of E±(t, h)− E±c1,c2
(t, h) is an oscillatory integral similar to (7-15) with amplitude

A±− A±c1,c2
=

(
1−χ1

(
∂ρ8

±

c1〈t〉

))
χ2

(
∂η8

±

c2

)
A±+

(
1−χ2

(
∂η8

±

c2

))
A±.

On the support of the second term of the right-hand side, we integrate by part M times with
h

i |∂η8±|2
∂η8

±
· ∂η.

All derivatives of ∂η8±/|∂η8±|2 are bounded since t is bounded in the WKB case and ∂γ∂η8±IK is
independent of t and bounded for |γ| ≥ 1. On the support of the first term, integrate by part M times with

h
i∂ρ8±

∂ρ .

Using (7-14), we have, on the support of the first term, |∂γ(1/∂ρ8±)| . 1, for all γ. Thus, using also
(7-11), we end up in both cases with an integral of the form

hM−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,ξ)B±(t, r, θ, r ′, θ ′, ρ, ξ) dρd ξ

with B±(t, · ) bounded in C∞b (R
3n), for 0 ≤ ±t ≤ T (h). We then interpret this integral as the ker-

nel of a pseudodifferential operator with symbol hM exp
(
i(8± − (r−r ′)ρ − (θ−θ ′) · η)/h

)
B± (in the

spirit of Lemma 5.4). By the Calderón–Vaillancourt Theorem and (7-13), its operator norm has order
hM(〈t〉/h)n0 , for some universal n0 depending only on n. Thus we get (7-16) by choosing M = N+2n0.

To prove the second statement, we consider separately the two cases. For the WKB parametrix, t is
bounded. Thus, by (7-13), ∂ρ8±WKB − (r − r ′) is bounded and since |∂ρ8±WKB| . c1〈t〉, on the support
of A±WKB,c1,c2

, r − r ′ must be bounded too. For the Isozaki–Kiada parametrix, as long as t belongs to a
bounded set the same argument holds. We may therefore assume that ±t ≥ T with T > 0 a fixed large
constant. We then exploit two facts: first, for some c > 0, we have c < ±ρ < c−1 and tρ ≥ 0 on the
support of A±IK. Second, f ± := 8±IK − (r − r ′)ρ − (θ − θ ′) · η+ tρ2 is independent of t and bounded,
together with all its derivatives on the support of A±IK. Then

∂ρ8
±

IK = r − r ′− 2tρ+ ∂ρ f ±;
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hence, on the support of χ1(∂ρ8
±

IK/c1〈t〉), we have

r − r ′ ≥−c1〈t〉+ 2tρ− ∂ρ f ±.

If c1 is small enough and T large enough, we have 2tρ−c1〈t〉≥ 0 for t ≥ T . This completes the proof. �

Remark. It is clear from the proof that the constant C in (7-17) is uniform with respect to ε > 0 small
in the Isozaki–Kiada case (recall that the amplitudes depend respectively on t and ε for the WKB and
the IK parametrices).

From now on, we fix c1 > 0 small enough that (7-17) holds.

Proposition 7.3 (Dispersion estimate for times ≤ h). For all c2 > 0, and still with γn =
n−1

2
, we have

‖e−γnr E±c1,c2
(t, h)e−γnr

‖L1(Rn)→L∞(Rn) ≤ CA,8,c2 |ht |−n/2 for 0<±t ≤min(T (h), h).

Note that the condition ±t ≤min(T (h), h) is essentially the condition ±t ≤ h. We have put it under
this form only because of those h such that h ≥ tWKB. This will not modify the rest of the analysis.
Furthermore, the latter h correspond to bounded frequencies and their contribution to the Strichartz
estimates can be treated by Sobolev embeddings.

Proof. In the Isozaki–Kiada case, both e−r ′η = ξ and e−rη are supported in a compact set. In the WKB
one, e−rη is compactly supported but, using (7-17), this also implies that e−r ′η is compactly supported.
Therefore, in both cases, the change of variable e−r ′η = ξ shows that the kernel of E±c1,c2

(t, h) is an
integral of the form

h−ne(n−1)r ′
∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,er ′ξ)B±(t, θ, r ′, θ ′, ρ, ξ) dρ dξ,

with B± bounded on [0,±T (h)] × R3n and supported in a region where |ρ| + |ξ | . 1. The kernel
of e−γnr E±c1,c2

(t)e−γnr is then simply obtained by multiplying the integral above by e−γn(r+r ′), so its
modulus is controlled by h−neγn(r ′−r) . |ht |−n/2, by (7-17) and the fact that 0<±t ≤ h. This completes
the proof. �

To prove the dispersion estimates for h ≤±t ≤ T (h) we need to analyze the phases more precisely.
In the following lemma and its proof, we shall use the notation (3-4).

Lemma 7.4. For all (fixed) ε̃ >0 small enough, we can find a family of real-valued functions (ϕst
±,ε)0<ε�1

such that
ϕst
±,ε = ϕ± = ϕ±,ε on 0±s (ε), (7-18)

ϕst
±,ε ∈ Shyp (0s(ε̃)) , (7-19)

and that, if we set

R±,ε(r, θ, ρ, η)= ϕst
±,ε(r, θ, ρ, η)−

q0(θ, e−rη)

4ρ
the following holds for j + |α| ≤ 1:

sup
(r,θ,η)∈R2n−1

±ρ∈[ 14 ,4]

∣∣(er∂η)
β∂ j

r ∂
α
θ ∂

k
ρ R±,ε(r, θ, ρ, η)

∣∣≤ {Cετ/2 if k+ |β| ≤ 2,
Cε jαkβ if k+ |β| ≥ 3,

(7-20)

where τ , the decay rate in (1-8), satisfies (1-9).
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Proof. Using (4-35) and Taylor’s formula, we can write

ϕ±(r, θ, ρ, η)=
∫
±∞

0
e−4tρq(r + 2tρ, θ, e−rη)dt +

∑
|γ|=3

aγ(r, θ, ρ, η)(e−rη)γ,

with aγ ∈Bhyp(0
±
s (ε0)) for some fixed ε0 > 0. Therefore,

ϕ±(r, θ, ρ, η)−
q0(θ, e−rη)

4ρ
=

∫
±∞

0
e−4tρq1(r + 2tρ, θ, e−rη)dt +

∑
|γ|=3

aγ(r, θ, ρ, η)(e−rη)γ, (7-21)

with q1 satisfying (3-6). Denote by R(r, θ, ρ, η) the right-hand side of (7-21) and choose χ1 ∈ C∞0 (R)
and χ2 ∈ C∞0 (R

n−1) both equal to 1 near 0. For some ε̃ > 0 to be fixed below, choose χ±
ε̃

such that

χ±
ε̃
∈ Shyp(0

±

s (ε̃)), χ±
ε̃
≡ 1 on 0±s (ε̃

2),

using Proposition 4.1. (We don’t need Proposition 4.4 here, since ε0 will be fixed.) We then claim that,
if ε̃ is small enough (and fixed) and ε with ε̃′ is small enough too, the function

ϕst
±,ε(r, θ, ρ, η) :=

q0(θ, e−rη)

4ρ
+ R(r, θ, ρ, η)χ±

ε̃
(r, θ, ρ, η)χ2(e−rη/ε1/2)(1−χ1)(ε

1/2r),

satisfies (7-18), (7-19) and (7-20). Indeed, by choosing ε̃ small enough, we have ±ρ ≈ 1 on the support
of χ±

ε̃
, so the integral in (7-21) is exponentially convergent. Furthermore, since∣∣(er∂η)

β∂ j
r
(
(e−rη)γχ1(e−rη/ε1/2)

) ∣∣≤ C(ε1/2)|γ|−|β|,

for all γ, and using the fact that, if tρ ≥ 0 and r ≥ 0,∣∣(er∂η)
β∂ j

r ∂
α
θ ∂

k
ρq1(r + tρ, θ, e−rη)

∣∣≤ C |t |k〈r〉−τ |e−rη|2−|β|,

we get the estimate (7-20). Finally, since er
|η| . ε and r ≥ ε on 0±s (ε), we have (7-18) for all ε small

enough. The property (7-19) is clear thanks to χ±
ε̃

. �

In the following lemma, we use the notation of Theorem 6.1.

Lemma 7.5. We can find a family of real-valued functions (6±st (t))0≤±t≤tWKB such that

6±st (t)=6
±(t) on 0±(R2, V2, I2, σ2), (7-22)

and, for all k, β,

sup
R2n

∣∣(er∂η)
β∂k
ρ

(
6±st (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

)∣∣≤ Ckβ t2. (7-23)

Proof. Using the function χ±2→3 of Theorem 6.1, the result is straightforward by considering

6±st (t, r, θ, ρ, η)

= χ±2→3(r, θ, ρ, η)
(
6±0 (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

)
+ rρ+ θ · η+ tp(r, θ, ρ, η),

and using (6-4). �
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We remark that 6± satisfies (6-5) whereas 6±st does not. This was the reason for considering 6± first,
since the property (6-5) is convenient to prove L2 bounds for Fourier integral operators.

The estimates (7-20) and (7-23) show that we have good asymptotics for the phases in certain regimes,
namely ε→ 0 for the Isozaki–Kiada parametrix and t→ 0 for the WKB parametrix. Using Lemmas 7.4
and 7.5, we replace ϕ±,ε by ϕst

±,ε and 6± by 6±st in the expression of 8±IK and 8±WKB, respectively.
To use a single formalism for both cases, we introduce the parameter

λst :=

{
ε for the Isozaki–Kiada parametrix,
t st
WKB for the WKB parametrix,

where t st
WKB> 0 will denote the size of the time interval where t will be allowed to live. Using the change

of variable ξ = e−r ′η and factorizing by t in the phase, the integral (7-15) can be written

(2πh)−ne2γnr ′
∫

ei t
h 8̃
±

λst
(z,ρ,ξ) Ã±c1,c2λst

(z, ρ, ξ) dρ dξ,

where h ∈ (0, 1],

8̃±λst
(y, ρ, ξ)= 1

t
8±(t, r, θ, r ′, θ ′, ρ, er ′ξ), (7-24)

Ã±c1,c2,λst
(y, ρ, ξ)= Ac1,c2(t, r, θ, r

′, θ ′, ρ, er ′ξ), (7-25)

and
y = (h, t, r, θ, r ′, θ ′), (7-26)

with r, r ′ satisfying (7-17) and

0<±t ≤ T (h, λst) :=

{
2h−1 for the Isozaki–Kiada parametrix,
t st
WKB for the WKB parametrix.

The kernel of e−γnr E±c1,c2
(t, h)e−γnr then becomes

(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±

λst
(y,ρ,ξ) Ã±c1,c2,λst

(y, ρ, ξ) dρ dξ.

Proposition 7.6 (nonstationary phase). There exists C ′ > 0 such that the condition∣∣∣∣r−r ′

t

∣∣∣∣+ er ′
∣∣∣∣θ−θ ′t

∣∣∣∣≥ C ′ (7-27)

implies that for all c2 > 0, all N ≥ 0 and all 0< λst� 1, we can find Cc2,N ,λst such that, for all

h ∈ (0, 1], ±t ∈ [h, T (h, λst)], ω ≥ 1, (r, θ, r ′, θ ′) ∈ R2n,

with r, r ′ satisfying (7-17), we have∣∣∣∣(2πh)−neγn(r ′−r)
∫

eiω8̃±λst
(y,ρ,ξ) Ã±c1,c2,λst

(y, ρ, ξ) dρ dξ
∣∣∣∣≤ Cc2,N ,λsth

−nω−N .

Proof. For t 6= 0, we define

8̃free
t :=

r − r ′

t
ρ+ er ′ θ − θ

′

t
· ξ.
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Then

∇ρ,ξ 8̃
free
t =

(
r−r ′

t
, er ′ θ−θ

′

t

)
.

We then start with the case of 8±WKB. By Lemma 7.5 and (7-17), ∇ρ,ξ (8̃λst − 8̃
free
t ) is a function of

(t, r, θ, r ′, ρ, ξ) which is bounded on the support of the amplitude, as well as all its derivatives in ρ, ξ ,
uniformly with respect to (t, r, θ, r ′). Therefore, if C ′ is large enough, we have∣∣∇ρ,ξ 8̃λst

∣∣& ∣∣∣r−r ′

t

∣∣∣+ er ′
∣∣∣θ−θ ′t

∣∣∣, (7-28)

and the result follows from standard integrations by parts. Note that, here, we have not used the smallness
of λst (i.e., of t). We shall use it for the case of 8±IK which we now consider. Since ±ρ ∈

[ 1
4 , 4

]
on the

support of the amplitude if ε = λst is small enough, Lemma 7.4 and Taylor’s formula imply that

∇ρ,ξ (8̃λst − 8̃
free
t )= (−2ρ, 0)+∇ρ,ξ

q0(θ, er ′−rξ)− q0(θ
′, ξ)

tρ
+ εε(y, ρ, ξ)

(
r−r ′

t
,
θ−θ ′

t

)
,

where εε(y, ρ, ξ) and all its derivatives in ρ, ξ go to 0 as ε→ 0, uniformly with respect to y (see (7-26))
with r, r ′ satisfying (7-17) and (±ρ, ξ) ∈

[ 1
4 , 4

]
× Rn−1. Furthermore, using (7-17) and the fact that

|ξ |. ε3 on the support of the amplitude, we have∣∣∣∣∣∇ρ,ξ q0(θ, er ′−rξ)− q0(θ
′, ξ)

tρ

∣∣∣∣∣. ε3
∣∣∣∣(r−r ′

t
,
θ−θ ′

t

)∣∣∣∣
thus, using that r ′ ≥ 0 on the support of the amplitude, we have (7-28) if ε is small enough. In addition,
for all k+ |β| ≥ 2, we also have ∣∣∂k

ρ∂
β
ξ 8̃λst

∣∣. ∣∣∣∣(r−r ′

t
,
θ−θ ′

t

)∣∣∣∣
on the support of the amplitude, using (7-17). The result then follows again from integrations by parts. �

We next state a convenient form of the stationary phase theorem with parameters; the demonstration —
a simple adaptation of the proof of [Hörmander 1983, Theorem 7.7.5] — is given in Appendix A for
completeness.

Proposition 7.7 (Stationary phase theorem). Let � be a set and

f : Rn
×� 3 (x, y) 7→ f (x, y) ∈ R

a function, smooth with respect to x and such that

Hessx [ f ](x, y)= S(y)+ R(x, y) for (x, y) ∈ Rn
×�, (7-29)

with S(y) a symmetric nonsingular matrix such that

|S(y)−1
|. 1 for y ∈�, (7-30)

and R(x, y) a symmetric matrix such that

‖S(y)−1 R(x, y)‖ ≤ 1
2 for (x, y) ∈ Rn

×�, (7-31)



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 75

where ‖ · ‖ is the Euclidean matrix norm. Then there exists N ≥ 0 such that, for all K b Rn , there exists
CK > 0 satisfying∣∣∣∣∫ eiω f (x,y)u(x)dx

∣∣∣∣≤ CKω
−n/2 sup

|α|≤N
‖∂αu‖L∞(K ) sup

2≤|α|≤N

(
sup
x∈K
|∂α f (x, y)| + 1

)N

,

for all y ∈�, all u ∈ C∞0 (K ) and all ω ≥ 1.

For the WKB parametrix, we shall use this proposition fairly directly by considering

�±WKB

(
t st
WKB

)
=

{
(h, t, r, θ, r ′, θ ′) : h ∈ (0, 1],

∣∣∣r−r ′

t

∣∣∣≤ C ′, h ≤±t ≤ t st
WKB

}
.

Notice in particular that r − r ′ is bounded on �WKB
(
t st
WKB

)
.

Proposition 7.8 (Dispersion estimate for the WKB parametrix). Fix c2 > 0. There exists t st
WKB > 0 small

enough such that, for all y = (h, t, r, θ, r ′, θ ′) ∈�±WKB

(
t st
WKB

)
and all ω ≥ 1, we have∣∣∣∣(2πh)−neγn(r ′−r)

∫
e

iω8̃±
tst
WKB

(y,ρ,ξ)
Ã±c1,c2,t st

WKB
(y, ρ, ξ) dρ dξ

∣∣∣∣. ω−n/2.

Proof. This is a straightforward application of Proposition 7.7 since, using (7-23), we have

Hessρ,ξ [8̃t st
WKB
] =

(
2 0
0 Hessη(q)

)
+O(t st

WKB),

where the first matrix of the right-hand side satisfies (7-30) by the uniform ellipticity of q. The conclusion
is then clear since all derivatives, in ρ, ξ , of Ã±t st

WKB
are bounded, as well as those of 8̃t st

WKB
of order at

least 2, on the support of the amplitude. �

To be in position to use Proposition 7.7 for the Isozaki–Kiada parametrix, we still need two lemmas.

Lemma 7.9 (Sharper localization for IK). Let χ0 ∈ C∞0 (R) be equal to 1 near 0 and set

χε(y, ρ)= χ0

(
ε−τ/4

(
2ρ− r−r ′

t

))
. (7-32)

Then, for all ε > 0 small enough, all N ≥ 0 and all c2 > 0, there exists Cc2,N ,ε such that, for all

h ∈ (0, 1], ±h ≤ t ≤ 2h−1, ω ≥ 1,

and all (r, θ, r ′, θ ′) ∈ R2n satisfying (7-7) and such that∣∣∣r−r ′

t

∣∣∣+ er ′
∣∣∣θ−θ ′t

∣∣∣≤ C ′, (7-33)

we have∣∣∣∣(2πh)−neγn(r ′−r)
∫

eiω8̃±ε (y,ρ,ξ)(1−χε(y, ρ)) Ã±c1,c2,ε
(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cc2,N ,εh
−nω−N .

Proof. By the same analysis as in the proof of Proposition 7.6, using Lemma 7.4 and (7-33), we may
write

8̃±ε (y, ρ, ξ)=
r−r ′

t
ρ− ρ2

+ R±ε (y, ρ, ξ),
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where, on the support of the amplitude, we have

|∂ρR±ε |. ε
τ/2, |∂k

ρ∂
β
ξ R±ε |. 1

for k+ |β| ≥ 1. On the other hand, on the support of (1−χε(y, ρ)) we also have, for some c > 0,

r−r ′

t
− 2ρ ≥ cετ/4 or r−r ′

t
− 2ρ ≤−cετ/4.

Therefore, if ε is small enough,
|∂ρ8̃

±

ε (y, ρ, ξ)|& ε
τ/4,

on the support of the amplitude and the result follows from integrations by parts in ρ. �

Basically, the interest of the localization (7-34) is to replace 1
4ρ in (7-20) by 2t/(r − r ′) up to a small

error. We implement this idea as follows. By Lemma 7.9, we can replace Ã±c1,c2,ε
(y, ρ, ξ) in (7-25) by

χε(y, ρ) Ã±c1,c2,ε
(y, ρ, ξ). (7-34)

If ε is small enough, we have ±ρ ∈
[1

4 , 4
]

on the support of Ã±c1,c2,ε
hence, for some c > 0,

c|t | ≤ r − r ′ ≤ c−1
|t |, (7-35)

on the support of (7-34), which is stronger than (7-17). Furthermore, the condition (7-33) together with
(7-7) implies that we may assume that |θ − θ ′| ≤ C ′e−ε

−3
|t |. From now on we fix

c2 = ε.

Thus, by writing
∂η8

±

IK = θ − θ
′
+ ∂ηϕ±(r, θ, ρ, η)− ∂ηϕ±(r ′, θ ′, ρ, η),

with ϕ± ∈Bhyp(0
±(ε2)), we have|∂ηϕ±(r, θ, ρ, η)|. e−r and |∂ηϕ±(r ′, θ ′, ρ, η)|. e−r ′ on the support

of the amplitude. By (7-7), we have for instance |∂η8±IK− (θ − θ
′)| ≤ ε2 if ε is small enough. We may

therefore assume that

|θ − θ ′| ≤ C ′′ε
|t |
〈t〉
. (7-36)

To be set of parameters for the stationary phase theorem, we will thus choose

�±IK(ε)=
{
(h, t, r, θ, r ′, θ ′) : h ∈ (0, 1], ±t ∈ [h, 2h−1

] and (7-7), (7-33), (7-35), (7-36) hold
}
.

Before applying Proposition 7.7, we still need to modify the phase 8̃±ε outside the support of the new
amplitude (7-34).

Lemma 7.10. We can find 9±ε smooth and real-valued such that, on the support of (7-34),

9±ε (y, ρ, ξ)= 8̃
±

ε (y, ρ, ξ),

and

9±ε (y, ρ, ξ)=
r − r ′

t
ρ+

θ − θ ′

t
er ′ξ − ρ2

−
1− e2(r ′−r)

2(r − r ′)
q0(θ

′, ξ)+ψ±ε (y, ρ, ξ), (7-37)
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where, for all k+ |β| ≤ 2,

sup
(ρ,ξ)∈Rn

y∈�±IK(ε)

|〈t〉|β|/2∂k
ρ∂

β
ξ ψ
±

ε (y, ρ, ξ)| → 0 as ε→ 0, (7-38)

and for |k| + |β| ≥ 3,
sup

(ρ,ξ)∈Rn

y∈�±IK(ε)

| ∂k
ρ∂

β
ξ ψ
±

ε (y, ρ, ξ)| ≤ Cε,k,β . (7-39)

Proof. We shall basically combine (7-20) with the fact that

|2ρ− (r − r ′)/t |. ετ/4, (7-40)

on the support of (7-34). By Lemma 7.4, the phase reads

r − r ′

t
ρ+

θ − θ ′

t
er ′ξ − ρ2

−
q0(θ

′, ξ)− e2(r ′−r)q0(θ, ξ)

4ρt
+

R±,ε(r, θ, ρ, er ′ξ)− R±,ε(r ′, θ ′, ρ, er ′ξ)

t
.

The last term of this sum satisfies the estimates (7-38) and (7-39): for 0<±t ≤1, it follows from Taylor’s
formula using (7-33) and Lemma 7.4 with j + |α| = 1, and for ±t ≥ 1 it follows from Lemma 7.4 with
j + |α| = 0. For the term involving q0 we write

1
4ρt
=

1
2(r − r ′)

+

(
1

4ρt
−

1
2(r − r ′)

)
χ1

(
2ρ− (r − r ′)/t

ετ/8

)
,

using (7-40) with ε small enough and χ1 ∈ C∞0 (R
n−1) equal to 1 near 0, and

q0(θ, er ′−rξ)= e2(r ′−r)q0(θ
′, ξ)+ e2(r ′−r)(q0(θ, ξ)− q0(θ

′, ξ))χ2(ξ),

with χ2 ∈ C∞0 (R
n−1) equal to 1 near 0. We obtain the estimates (7-38) and (7-39) for

1
4ρt

e2(r ′−r)(q0(θ, ξ)− q0(θ
′, ξ))χ2(ξ),

using (7-36), and for

(1− e2(r ′−r))q0(θ
′, ξ)

(
1

4ρt
−

1
2(r − r ′)

)
χ1

(
2ρ− (r − r ′)/t

ετ/8

)
using (7-35). In both cases, we can freely multiply the functions by a compactly support cutoff in ρ
using that ±≈ 1 on the support of the amplitude. This completes the proof. �

Proposition 7.11 (bounded times). There exists εst > 0 such that, for all T > 0, all 0 < ε ≤ εst, there
exists Cε,T such that, for all

h ∈ (0, 1], h ≤±t ≤ T, (r, θ, r ′, θ ′) satisfying (7-7), (7-35) and (7-36) , (7-41)

we have ∣∣∣∣(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±
ε (y,ρ,ξ)χε(y, ρ) Ãc1,ε,ε(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cε,T |ht |−n/2. (7-42)



78 JEAN-MARC BOUCLET

Proof. By Lemma 7.10, we can replace 8̃±ε by 9±ε . We then have

Hessρ,ξ [9±ε ] =

 2 0

0 1−e2(r ′−r)

2(r−r ′)
Hessη(q0)

+ o(1),

where o(1)→ 0 as ε→ 0 , uniformly with respect to (ρ, ξ)∈Rn and to the parameters satisfying (7-41).
Using the upper bound in (7-35) and the boundedness of t , the positive number

1− e2(r ′−r)

2(r − r ′)

belongs to a compact subset of (0,∞), yielding the condition (7-30). We then conclude by applying
Proposition 7.7. �

To obtain (7-42), we have used the boundedness of eγn(r ′−r), since |r − r ′| was bounded. In principle,
the condition (7-35) implies that eγn(r ′−r) decays exponentially in time. We shall exploit the latter below.

Proposition 7.12 (Large times). There exists T > 0 and ε′st such that, for all 0< ε ≤ ε′st, there exists Cε
such that, for all

h ∈ (0, 1], T ≤±t ≤ 2h−1, (r, θ, r ′, θ ′) satisfying (7-7), (7-35) and (7-36) , (7-43)

we have ∣∣∣∣(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±
ε (y,ρ,ξ)χε(y, ρ) Ãc1,ε,ε(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cε|ht |−n/2.

Proof. Choose T large enough such that, for t ≥ T and r, r ′ satisfying (7-35), we have e2(r ′−r)
≤

1
2 .

To compensate the factor 1/(r − r ′) in (7-37) (of order 1/|t | by (7-35)), we consider the new variable
|t |1/2ζ = ξ . By (7-38), if ε is small enough, this new phase satisfies the assumptions of Proposition 7.7.
In the corresponding estimate given by Proposition 7.7, derivatives of the new amplitude as well as
derivatives of the new phase of order at least 3 will grow at most polynomially with respect to t . This
gives a polynomial growth in t of the coefficient in the stationary phase estimate of Proposition 7.7 but
such a growth is controlled by the exponential decay of eγn(r ′−r) . e−c|t |. This completes the proof. �

7B. Proof of Proposition 2.20. By (2-38), up to a remainder of operator norm of size hn (uniformly
in time), we may replace Ôpι(a

±
s )
∗ by a linear combination of operators of the form Ôpι(ã

±
s ) with

supp(ã±s ) ⊂ supp(a±s ). We next apply Theorem 5.1 to order n + 1 and are left with the study of
the Fourier integral operator part. By Proposition 7.2, the amplitude can be modified so that, up to a
remainder of operator norm of order hn uniformly in time, we are left with an operator whose kernel
K±(r, θ, r ′, θ ′, t, h) satisfies

|e−γnr K±(r, θ, r ′, θ ′, t, h)e−γnr ′
|. |ht |−n/2, h ∈ (0, 1], 0<±t ≤ 2h.

Indeed, for t ≤ h, this follows from Proposition 7.3 and for t ≥ h, from Propositions 7.11 and 7.12 with
ω =±t/h and also from Proposition 7.6 and Lemma 7.9 with N ≥ n/2. �

Proof of Proposition 2.22. It is completely similar to the one of Proposition 2.20 by considering times
0≤±t ≤ t st

WKB with t st
WKB small enough to be in position to use both Theorem 6.1 and Proposition 7.8. �
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Appendix A. Control on the range of some diffeomorphisms

In this section, we prove a proposition implying Lemma 4.7 and (4-54) in Lemma 4.11. For simplicity,
we consider the outgoing case only but the symmetric result holds in the incoming one.

Let us define the following conical subset of T ∗Rn
+
\ 0,

0+s-con(ε)=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ q(r, θ, e−rη))1/2
}
, (A-1)

which is the cone generated by 0+s (ε).

Proposition A.1. Assume that, for some 0 < ε̄ < 1
4 , we are given a family of maps (9 t)t≥0 defined on

0+s-con(ε̄), of the form

9 t(r, θ, ρ, η)= (r, θ, ρt(r, θ, ρ, η), ηt(r, θ, ρ, η)) ∈ R2n,

satisfying, for all r > R(ε̄), θ ∈ Vε̄, ρ > (1− ε̄2)p1/2, t ≥ 0 and λ > 0,

(ρt , ηt)(r, θ, λρ, λη)= λ(ρλt , ηλt)(r, θ, ρ, η), (A-2)

(ρt , ηt)(r, θ, ρ, 0)= (ρ, 0), (A-3)

and such that

(ρt
− ρ)t≥0 and (the components of ) (ηt

− η)t≥0 are bounded in Bhyp(0
+

s (ε̄)). (A-4)

Then, there exists 0< ε̃≤ ε̄ such that, for all t ≥ 0 and all 0< ε≤ ε̃, 9 t is a diffeomorphism from 0+s (ε)

onto its range and
0+s (ε

3)⊂9 t (0+s (ε)) , t ≥ 0, 0< ε ≤ ε̃.

Lemma 4.7 is indeed a consequence of Proposition A.1 since Proposition 3.8, (3-35) and (4-15) show
that (A-2), (A-3) and (A-4) hold with (ρt , ηt)= (ρt , ηt). Similarly, for Lemma 4.11, we consider

(ρt , ηt)(r, θ, ρ, η) := (ρ+, η+)(r, θ, r, θ, ρ, η)

which is independent of t and satisfies the assumptions (A-2), (A-3), (A-4) by (4-50), Proposition 4.9
and Remark 2 after Proposition 4.9.

To prove the proposition, we need another conical subset of T ∗Rn
+
\ 0:

0̃+s-con(ε)=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ |η|2)1/2
}
.

Using the diffeomorphism Fhyp defined by (2-31), we have

F−1
hyp

(
0̃+s-con(ε)

)
=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ |e−rη|2)1/2
}
. (A-5)

The latter is of interest in view of the following lemma.

Lemma A.2. There exists C > 1 such that, for all ε > 0 small enough,

0+s-con(ε/C)⊂ F−1
hyp

(
0̃+s-con(ε)

)
⊂ 0+s-con(Cε).
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Proof. By (3-7), we have, for some 0< c < 1,

ce−2r
|η|2 ≤ q(r, θ, e−rη)≤ c−1

|e−rη|2, r > R(ε), θ ∈ Vε, η ∈ Rn−1.

Using (2-55), it suffices to show the existence of C > 1 satisfying, for all ε small enough,

c−1(1− (ε/C)2)−2 (1− (1− (ε/C)2)2
)
≤ (1− ε2)−2(1− (1− ε2)2

)
, (A-6)

and
(1− ε2)−2 (1− (1− ε2)2

)
≤ c(1− (Cε)2)−2 (1− (1− (Cε)2)2) . (A-7)

For ε → 0, the left-hand side of (A-6) is equivalent to 2c−1(ε/C)2 and the right-hand side to 2ε2.
Therefore, (A-6) holds if c−1/C2 < 1 and ε is small enough. We get (A-7) similarly. �

Let us now consider (1, 0)= (1, 0, . . . , 0) ∈Rn
\0. For all 0< ε < 1, let us denote by C+(ε) the cone

generated by B((1, 0), ε), namely

C+(ε)= {(λρ, λη) | λ > 0, (ρ− 1)2+ |η|2 < ε2
}.

Since ρ > 1− ε > 0 and ρ2/(ρ2
+ |η|2) > 1− ε2/(1− ε)2 on B((1, 0), ε), it is then not hard to check

that, for all ε small enough,

C+(ε2/4)⊂ {ρ > (1− ε2)(ρ2
+ |η|2)1/2},

and
{ρ > (1− ε2)(ρ2

+ |η|2)1/2} ⊂ C+(2ε),

since, if ρ > (1−ε2)(ρ2
+|η|2)1/2 then (1, η/ρ) ∈ B((1, 0), 2ε), using that 1− (1−ε2)2 < 4ε2(1−ε2)2

for ε small enough. In particular, we obtain

(R(ε),+∞)× Vε×C+(ε2/4)⊂ 0̃+s-con(ε)⊂ (R(ε),+∞)× Vε×C+(2ε). (A-8)

We next recall a standard lemma the simple proof of which we omit.

Lemma A.3. Let x0 ∈ Rn , ε > 0 and f : B(x0, ε)→ Rn such that f (x0) = x0 and f − id is 1
2 Lipschitz

(meaning that | f (x)− x + y− f (y)| ≤ |x − y|/2) on B(x0, ε). Then f is injective on B(x0, ε) and

B(x0, ε/2)⊂ f (B(x0, ε)).

Proof of Proposition A.1. Set

fr,θ,t(ρ, ξ)=
(
ρt(r, θ, ρ, erξ), e−rηt(r, θ, ρ, erξ)

)
.

By Lemma 2.4 and (A-4), we have, for k+ |β| = 2,

|∂k
ρ∂

β
η fr,θ,t(ρ, η)|. 1, t ≥ 0, (r, θ, ρ, ξ) ∈ Fhyp(0

+

s (ε̄)), (A-9)

and, by choosing ε̄1 small enough, we also have

r > R(ε̄), θ ∈ Vε̄, (ρ, ξ) ∈ B((1, 0), ε̄1) H⇒ (r, θ, ρ, ξ) ∈ Fhyp(0
+

s (ε̄)).
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By (A-3) ∂ρ,ξ fr,θ,t(ρ, 0)= Idn , so (A-9) implies that fr,θ,t − Idn is 1
2 -Lipschitz on B((1, 0), 2ε) for all

ε small enough, all t ≥ 0, r > R(ε̄), and θ ∈ Vε̄. Therefore, by Lemma A.3,

B((1, 0), ε)⊂ ft,r,θ (B((1, 0), 2ε)) , t ≥ 0, r > R(ε̃), θ ∈ Vε̃.

Using (A-2), we can replace the balls in the inclusion above by the cones they generate and, using
Lemma A.2 with (A-8), we get

0+s-con(ε/2C)⊂9 t(0+s-con(2
√

2Cε1/2)
)
, t ≥ 0, (A-10)

for all ε small enough, with the C > 1 of Lemma A.2. Since fr,θ,t − Idn is 1
2 -Lipschitz on B((1, 0), 2ε)

for all t ≥ 0, (A-2) implies that it is also 1
2 -Lipschitz on the cone generated by B((1, 0), 2ε) so fr,θ,t

is injective on this cone. Thus, for all ε small enough and t ≥ 0, 9 t is injective on 0+s-con(ε) and is a
diffeomorphism onto its range. By (A-10), we have

0+s (ε
3)⊂ 0+s-con(ε

3)⊂9 t (0+s-con(ε)
)
,

for all t ≥ 0 and all ε small enough, so the proof will be completed by showing that, for all ε small
enough and all t ≥ 0, the following implication holds:

(r, θ, ρ, η)=9 t(r, θ, ρ1, η1) ∈ 0
+

s (ε
3) with (r, θ, ρ1, η1) ∈ 0

+

s-con(ε)

H⇒ p(r, θ, ρ1, η1) ∈ (
1
4 − ε, 4+ ε). (A-11)

Assume the first line of (A-11). Using (A-3) at (ρ1, 0) and the fact that ft,r,θ − Idn is 1
2 -Lipschitz, we

have
|(ρ, e−rη)− (ρ1, e−rη1)| = | ft,r,θ (ρ1, e−rη1)− (ρ1, e−rη1)| ≤ |e−rη1|/2. (A-12)

Therefore |e−rη − e−rη1| ≤ |e−rη1|/2 and we get |η1| ≤ 2|η|. Since e−r
|η| . ε3, (A-12) shows that

|ρ− ρ1| + |e−r (η− η1)|. ε3 hence that

|p(r, θ, ρ1, η1)− p(r, θ, ρ, η)|. ε3.

Since p(r, θ, ρ, η) ∈ ( 1
4 − ε

3, 4+ ε3), the latter yields (A-11) for ε small enough. �

Proof of Proposition 7.7.
Note first that, for all y ∈�, the map

Rn
3 x 7→ ∇x f (x, y) ∈ Rn

is a diffeomorphism since, by considering F(x, y) := S(y)−1
∇x f (x, y) and using (7-29), (7-31) and

(7-30), x 7→ F(x, y)− x is 1
2 Lipschitz. For all y ∈�, we denote by x0 = x0(y) the unique solution to

∇x f (x0, y)= 0.

Now consider

g(x, y)= f (x, y)− f (x0, y)−〈Hessx [ f ](x0, y)(x − x0), x − x0〉 /2,

and, for all s ∈ [0, 1],

fs(x, y)= f (x0, y)+〈Hessx [ f ](x0, y)(x − x0), x − x0〉 /2+ sg(x, y).
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Notice that f1 = f , that f0− f (x0, y) is quadratic with respect to x − x0 and that

∇x fs(x, y)=
{

S(y)+ s
∫ 1

0
R(x0+ t (x − x0), y)dt + (1− s)R(x0, y)

}
(x − x0),

by Taylor’s formula and (7-29). By (7-30), there exists c > 0 such that |S(y)X | ≥ 2c|X |, for all X ∈ Rn

and all y ∈� hence (7-31) implies that

|∇x fs(x, y)| ≥ c|x − x0(y)|, s ∈ [0, 1], (x, y) ∈ Rn
×�. (A-13)

Lemma A.4. For all K b Rn and all integer k ≥ 1, there exists C > 0 and N > 0 such that, for all
s ∈ [0, 1], all y ∈� and all u such that

u ∈ C2k−1
0 (K )∩C2k(Rn

\ {x0(y)}), (A-14)

∂αx u(x0(y))= 0, |α|< 2k, (A-15)

∂αx u ∈ L∞(Rn), |α| = 2k, (A-16)

we have ∣∣∣∣∫ eiω fs(x,y)u(x)dx
∣∣∣∣≤ Cω−k max

|α|≤2k
‖∂αu‖L∞(K ) max

2≤|α|≤2k

(
1+ sup

x∈K
|∂α fs |

)N
, ω ≥ 1.

Notice that the assumption (A-16) is only a condition near x0(y). It guarantees the boundedness of
∂αu(x)/|x − x0|

2k−|α|.

Proof. We proceed by induction and consider first k = 1. We would like to integrate by part using
the operator |∇x fs |

−2
∇x fs · ∇x but, since ∇x fs may vanish on the support of u, we consider Lδ :=

(|∇x fs |
2
+ δ)−1

∇x fs · ∇x which satisfies

iω
∫

eiω fs(x,y)u(x)dx = lim
δ↓0

∫
(Lδeiω fs(x,y))u(x)dx .

We then integrate by part at fixed δ > 0, using that

tLδ =−
1

|∇x fs |
2+ δ

{
∇x fs · ∇x +1x fs −

2
|∇x fs |

2+ δ
〈Hessx [ fs]∇x fs,∇x fs〉

}
.

Since |1x fs(x, y)u(x)|.max|α|=2 ‖1x fs( · , y)‖L∞(K )‖∂
αu‖L∞ |x−x0(y)|2 and using (A-13), by letting

δ ↓ 0 we get ∣∣∣∣iω ∫ eiω fs(x,y)u(x)dx
∣∣∣∣≤ C max

|α|≤2
‖∂αu‖L∞(K ) max

|α|=2

(
1+ sup

x∈Rn
|∂α fs |

)
.

Here the constant C is independent of y, u, s and ω; it depends only on K and the constant c in (A-13).
The result then follows by induction using that

|∇x fs |
−2
〈∇x fs, ∂x u〉, |∇x fs |

−2(1x fs)u, |∇x fs |
−4
〈Hessx [ fs]∇x fs,∇x fs〉 u

satisfy the assumptions (A-14), (A-15) and (A-16) if u does for k+ 1. �
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End of the proof of Proposition 7.7. We next consider I (s) =
∫

eiω fs(x,y)u(x)dx so that, for all j ∈ N0,
we have

I (2 j)(s)= (iω)2 j
∫

eiω fs(x,y)g(x, y)2 j u(x)dx .

Since ∂αx
(
g(x, y)2 j

)
|x=x0(y)

= 0 for all |α|< 6 j , Lemma A.4 yields, with k = 3 j ≥ n/2,

|I (2 j)(s)| ≤ Cω−n/2 max
|α|≤6 j

‖∂αu‖L∞(K ) max
2≤|α|≤6 j

(
1+ sup

x∈Rn
|∂α fs |

)N
, s ∈ [0, 1].

Since I (1)=
∫

eiω f (x,y)u(x)dx , the estimate

|I (1)−
∑
l<2 j

I (l)(0)/ l!| ≤ sup
s∈[0,1]

|I (2 j)(s)|/(2 j)!,

reduces the proof to estimating the integrals I (l)(0)whose common phase f0 is quadratic, up to a constant
term and whose amplitude is u(x)g(x, y)l . By Taylor’s formula g(x, y) is of order |x − x0(y)|2 so the
derivatives of u(x)g(x, y)l may be of order 〈x0(y)〉2l on which we have no control. By choosing K̃ a
bounded neighborhood of K and applying Lemma A.4 to the subset of � on which x0(y) /∈ K̃ , we can
assume that we consider those y for which x0(y) ∈ K̃ . We then use the Lemma 7.7.3 of [Hörmander
1983] on oscillatory integrals with quadratic phases, observing that ‖∂αx g( · , y)l‖L∞(Kx ) is controlled by
(products of) of norms ‖∂βx f ( · , y)‖L∞(Kx ) with |β| ≥ 2, since x is bounded on the support of u and x0(y)
remains bounded. �
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