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THREE-TERM COMMUTATOR ESTIMATES AND THE REGULARITY
OF %-HARMONIC MAPS INTO SPHERES

FRANCESCA DA L10 AND TRISTAN RIVIERE

We prove the regularity of weak %-harmonic maps from the real line into a sphere. A key step is the
formulation of the %—harmonic map equation in the form of a nonlocal linear Schrodinger type equation
with three-term commutators on the right-hand side. We then establish a sharp estimate for these three-
term commutators.
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1. Introduction

Starting in the early 1950s, the analysis of critical points of conformal invariant lagrangians has attracted
much interest, due to their importance in physics and geometry. (See the introduction of [Riviere 2008]
for an overview.) We recall some classical examples of such operators and their associated variational
problems:

The most elementary example of a two-dimensional conformal invariant lagrangian is the Dirichlet
energy

E() =f Vutr, )P dx dy. ()
D

where D C R? is an open set and Vu is the gradient of u : D — R. We recall that a map ¢ : C — C is
conformal if it satisfies

(3—2%)3—? (g—f,g—i>=o, detVep >0, Vo 0, @)

where (-,-) denotes the standard Euclidean inner product in R”.
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For every u € W12(D, R) and every conformal map ¢ with deg ¢ = 1, we have
2
E(u):E(uqu):/ |(Vog)u(x, y)|” dxdy.
¢~ 1(D)

The critical points of this functional are the harmonic functions satisfying
Au=0 in D. 3)

We can extend E to maps taking values in R” by setting

m
E(u):/ !Vu(x,y)‘zdxdy: > !Vu,-(x,y)‘zdxdy, 4)
D D i=1
where the u; are the components of u. The lagrangian (4) is still conformally invariant and each com-
ponent of its critical points satisfies (3).

We can define the lagrangian (4) also on the set of maps taking values in a compact submanifold
N € R™ without boundary. We have

—Au 1L T,N,

where T, N is the tangent plane to N at the point # € N'; equivalently, we can write
—Au=Aw)(Vu,Vu) := A(u)(0xu, dxu) + A(u)(0yu, dyu), 5)

where A(u) is the second fundamental form at a point u € N'; see [Hélein 2002], for instance. Equation (5)
is called the harmonic map equation into N.
When N is an oriented hypersurface of R™ the harmonic map equation reads as

—Au =n{Vn,Vu), (6)

where n denotes the composition of u with the unit normal vector field v to N.
All these examples belong to the class of conformal invariant coercive lagrangians whose correspond-
ing Euler-Lagrange equation is of the form

—Au = f(u,Vu), (7
where 1 :R? x (R™ ® R?) — R™ is a continuous function satisfying

CHpl> =1/ p)| =Clp* forall§, p,

for some positive constant C'. One of the main issues concerning equations of the form (7) is the regularity
of solutions u € W12(D, N). We observe that (7) is critical in dimension n = 2 for the W !*2-norm.
Indeed, if we plug into the nonlinearity f(u,Vu) the information that u € W1-2(D, N'), we obtain Au €
L'(D), so Vu belongs to leo’cC>o (D), the weak L? space [Stein 1970], which has the same homogeneity
of L?. Hence we are back in some sense to the initial situation. This shows that the equation is critical.

In general, W -2 solutions to (7) are not smooth in dimensions greater than 2; for a counterexample,
see [Riviere 2007]. For an exposition of regularity and compactness results for such equations, we refer

the reader to [Giaquinta 1983].
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We next recall the approach introduced by F. Hélein [2002] to prove the regularity of harmonic maps
from a domain D of R? into the unit sphere S”*~! of R™. In this case the Euler-Lagrange equation is

—Au = u|Vul?. 3)

Shatah [1988] observed in that u € W1-2(D, $™~1) is a solution of (8) if and only if the conservation
law

div(u;Vuj —ujVu;) =0 foralli,je{l, ... ,m} ©)
holds. Using (9) and the fact that 7| u;Vu; = 0 when |u| = 1, Hélein rewrote (8) in the form
—Au=V+tB.-Vu, (10)

where V4 B = (VL B;;) with VX B;j = u; Vuj —u; Vu; (for every vector field v: R? — R”, V4 v denotes
the 77/2 rotation of the gradient Vv, namely V+v = (=0yv, 0xv)).
The right-hand side of (10) can be written as a sum of Jacobians:

VJ_BiJ'vuj = axujayBij —ByujaxB,-j.
This particular structure allows us to apply to (8) the following result:

Theorem 1.1 [Wente 1969]. Let D be a smooth bounded domain of R2. Let a and b be measurable
functions in D whose gradients are in L>(D). Then there exists a unique solution ¢ € W12(D) to

da db  da db
=————-——— inD,
dx dy  dy dx (11)
=0 on dD.

There exists a constant C > 0 independent of a and b such that
[@llee + IVellL2 = ClIVal L2][VD] 2.

In particular ¢ is continuous in D.

Theorem 1.1 applied to (10) leads, via a standard localization argument in elliptic PDEs, to the estimate

IVull 2B, (xo)) = C IIVBIlL2(B, (xo)) VUl L2(B, (xo)) T CF VUl L2(3B, (x0)) (12)

for every xg € D and r > 0 such that B, (x¢) C D. Assume we are considering radii r < ro such that
maxy,ep C VBl 128, (x) < % Then (12) implies a Morrey estimate

sup r_ﬂ/ |Vu|? dx < oo (13)
X0,r>0 By (x0)

for some § > 0, which itself implies the Holder continuity of # by a standard embedding result [Giaquinta
1983]. Finally a bootstrap argument implies that u is in fact C®°, and even analytic: see [Hildebrandt
and Widman 1975; Morrey 1966].

In the present work we are interested in one-dimensional quadratic lagrangians invariant under the
trace of conformal maps that keep invariant the half-space [R{i: the Mobius group.
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A typical example, which we will call the L-energy (L for “line”), is the lagrangian
L(u) :/ ’A'/“u(x)!zdx, (14)
R

where u is a map from R into a k-dimensional submanifold ' of R which is at least C, compact and

without boundary. In fact L(u) coincides with ||u|| i] 2@ (for the definition of the seminorm [|-[| ;71,2 ®)

see Section 2). A more tractable way to look at this norm is given by the identity
/ |AY*u(x)|? dx = inf / \Vii|? dx : it € W2(R?, R™) with trace il = u y .
R R%
The Lagrangian L extends to map « in the function space
HY2(R,N)={ue H/2(R,R") : u(x) € N ae.}.
The operator A'/* on R is defined by means of the Fourier transform (denoted by ") as
AV = g2,

Denote by my the orthogonal projection onto N, which happens to be a C d map in a sufficiently small
neighborhood of N if N is assumed to be C I+1 We now introduce the notion of %-harmonic map into
a manifold.

Definition 1.2. A map u € H'/2(R, N) is called a weak -harmonic map into N if
d .
S Lrs(u+19)),_y =0 forany e H'Y2(R,R™) N LR, R™).

In short, a weak %-harmonic map is a critical point of L in HY2(R, N ) for perturbations in the target.

We encounter %—harmonic maps into the circle S!, for instance, in the asymptotic of equations in
phase-field theory for fractional reaction-diffusion such as

A 2u+u(l—|ul*>)=0
where u is a complex-valued wavefunction.

In this paper we consider the case N = S™~!. We first write (deferring the proof till Theorem 5.2)
the Euler—Lagrange equation associated to L in H'/2(R, S~ 1):

Proposition 1.3. Let T be the operator defined by
T(Q,u):= A"*(OAY*u) — QA *u + A"*uA"*Q, (15)

for O € HY2(R", My (R)) I > 1 and u € HY2(R",R™). (Here n and | are natural numbers and
My (R) denotes the space of | x m real matrices.)
A map u in HI/Z(IR, S™=1) is a weak %-harmonic map if and only if it satisfies the Euler—Lagrange
equation
A4 (u A A *u) =T (un, u). (16)
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The Euler-Lagrange equation (16) will often be completed by the following “structure equation”,
which is a consequence of the fact that # € S”~! almost everywhere:

Proposition 1.4. Let S be the operator given by
S(Q.u) := AV*(QAY*u) —R(QVu) + R(AV* QRA"*u) a7

for Q € HY2(R", M (R)) and u € HY2(R", R™), where n and | are natural numbers and R is the
Fourier multiplier of symbol m(&) =i&/|&|.
All maps in HY2(R, S™=1) satisfy

AV (u- A*u) = S, u) —R(AY*u - RAV*u). (18)

We will first show that H!/2 solutions to the %—harmonic map equation (16) are Holder continuous.
This regularity result will be a direct consequence of a Morrey-type estimate we will establish:

sup r_ﬂ/ ‘A”“u‘z dx < o0. (19)
Xp€R By (x0)
r>0

For this purpose, in the spirit of what we have just presented regarding Hélein’s proof of the regularity
of harmonic maps from a two-dimensional domain into a round sphere, we will take advantage of a
“regularity gain” in the right-hand sides of (16) and (18), where the different terms 7T (uA, u), S(u -, u)
and R(A"*u - RA*u) play more or less the role played by VLB - Vu in (10). More precisely, we will
establish, for every u € HY2(R,R™) and Qe HI/Z(R, My (R)), the estimates

“T(Q’ u)”H*l/Z(R) =C || Q”HUZ(R) ”“”I-'II/Z(R)’ (20)
[S(Q, u)”H—l/Z(R) =C| Q”HUZ(R) ”u”Hl/Z([R)’ (21
(A *u '%A”“”))HH—I/Z(R) <C “u”ffll/Z(R)' (22)

The phrase “regularity gain” is illustrated by the fact that, for such # and Q, the individual terms in 7'

and S (such as AY4(QAY*u) or QAY2u) are not in H~'/2, but the special linear combinations of them

constituting 7" and S do lie in H~'/2. In a similar way, in two dimensions, J(a,b) := g—z% — da 0b

. dy dx
satisfies

(@, D)l -1 = C llall g1 161l g (23)

as a direct consequence of Wente’s result (Theorem 1.1), whereas the individual terms g—z% and g—;%

are not in H~1.

The estimates (20) and (21) are in fact consequences of the three-term commutator estimates in the
next two theorems, which are valid in arbitrary dimension and which are two of the main results of
this paper. We recall that BMO denotes the space of bounded mean oscillations functions of John and
Nirenberg (see for instance [Grafakos 2009])

lullpmo@n) = sup ————
") xo€ER” |Br(.X0)| B, (x0)
r>0

1
u(x)—m/u(y)dy‘ dx.
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Theorem 1.5. For n € N*, u € BMO(R"), and Q € HY2(R", My (R)), set

T(Q,u) := A*(QA*u) — QA ?u + AV*uA"*Q,
Then T(Q,u) € H™'/2(R") and there exists C > 0, depending only on n, such that

IT(Q. )l g=172@ny = C 1l gr1/2 gy |1l BrIO@R?) - (24)
Theorem 1.6. For n € N*, u € BMO(R"), and Q € H'Y2(R", My (R)), set

S(0,u) == A [OA*u] — R(QVu) + R(AV* QRA*u),

where R is the Fourier multiplier of symbol m(£) = i&/|€|. Then S(Q,u) € H™'/2(R") and there exists
C depending only on n such that

IS(Q. )l 172y = C 1 QI 172 gmy 11l 0@ - (25)

The estimates (20) and (21) follow from Theorems 1.5 and 1.6 as a consequence of the embedding
H'Y2(R) — BMO(R).

The parallel between the structures 7" and S for H 172 in one hand and the Jacobian structure J for
H' in the other can be pushed further as follows. As a consequence of a result of R. Coifman, P. L.
Lions, Y. Meyer and S. Semmes [Coifman et al. 1993], the Wente estimate (23) can be deduced from a
more general one. Set, forany i, j € {1,...,n} and a,b € H'(R"),

Sty Ja b Ba i
VIR Oxg 0x; 0xj oxg

and form the matrix J(a,b) := (J;jj(a,b));j=1,... n- The main result in [Coifman et al. 1993] implies
” J(Cl, b)”H—l(Rn) =< C ||a||H1(Rn) ”b”BMO(R") s (26)

which is reminiscent of (24) and (25). Recall also that (26) is a consequence of a commutator estimate
by Coifman, R. Rochberg and G. Weiss [Coifman et al. 1976].

Theorems 1.5 and 1.6 will follow respectively Theorems 1.7 and (27) below, which are their ”dual
versions”. Recall first that %! (R”) denotes the Hardy space of L' functions f on R”satisfying

[R sup |s # £1(x) dx < oo,

nteR

where ¢;(x) := t™" ¢(t~'x) and where ¢ is some function in the Schwartz space ¥(R") satisfying
fRn ¢(x) dx = 1. Recall the famous result by Fefferman saying that the dual space to #! is BMO.

Theorem 1.7. For u, Q € HY/2(R"), set
R(Q,u) = AV*(QA*u) — A2(Qu) + AV*((A* Q)u).
Then R(Q,u) € %' (R") and

IR(Q, “)”%I(R") =C| Q”HI/Z(Rn)”u”HUZ(RH)- (27)
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Theorem 1.8. For u, Q € HY2(R") and u € BUO(R"), set
S(0.u) = A*(QAY*u) — V(QRu) + RAY*(AV* Q%u),
where R is the Fourier multiplier of symbol m(§) = i&/|E|. Then S(Q,u) € %' and

IS0, t)ll5er = CNON gri2 g Il 172 gny- (28)

We say a few words on the proof of the estimates (27) and (28). The compensations of the three dif-
ferent terms in R(Q, u) will be clear from the Littlewood-Paley decomposition of the different products
that we present in Section 3. As usual, we denote by IT;(f, g) the high-low contribution (respectively
from f and g), by I1,(f, g) the low-high contribution, and by IT3( f, g) the high-high contribution. We
also use the notation Iy (A*(fg)), fork =1,2,3 and @ = %, %, as an alternative for A*(T1x (£, g)).

We will use the following decompositions for the operators 15 (R(Q, u)):

I (R(Q,u)) = I (A*(QA u)) + 11 (=A"*(Qu) + A*((A* Q)u)).

> (R(Q.u)) = T (A (QA*u) — A2 (Qu)) + o (A ((AV* Q)u)),

3(R(Q.u)) = I3 (A*(QA u)) — I3 (AV2(Qu)) + I3 (A*((A* Q)u)) .

Finally, injecting the Morrey estimate (19) in equations (16) and (18), a classical elliptic-type bootstrap
argument leads to the following result (see [Lio and Riviere 2010] for details).

Theorem 1.9. Any weak %-harmonic map in HY2(R, S™1) belongs to H; (R, S™=1) for every s € R,
and is therefore C*°.

The paper is organized as follows. After a section with preliminary definitions and notation, we prove
in Section 3 we prove the three-term commutator estimates (Theorems 1.5 and 1.6).

In Section 4 we prove some L-energy decrease control estimates on dyadic annuli for general solutions
to certain linear nonlocal systems of equations, which include (16) and (18).

In Section 5 we derive the Euler-Lagrange equation (16) associated to the lagrangian (14); this is
Proposition 1.3. We then prove Proposition 1.4. We finally use the results of the previous section to
deduce the Morrey-type estimate (19) for %-harmonic maps into a sphere.

In the Appendix we study geometric localization properties of the H'/2-norm on the real line for
H'/2_functions in general and we prove some preliminary results.

2. Definitions and notation

For n > 1, let $(R") and ¥'(R") denote respectively the spaces of Schwartz functions and tempered
distributions. Given a function v we will denote either by 0 or by F[v] the Fourier Transform of v:

5(8) = F(E) = /R u()e 6 dx,

Throughout the paper we use the convention that x, y denote space variables and &, { phase variables.
We recall the definition of fractional Sobolev spaces. For some of the material on the next page, see
[Tartar 2007], for instance.
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Definition 2.1. For s real,

{ve L2(R") : |£]°F[v] € L*(R")} if s >0,
{ve P R : (1+|E2)2Fv] € LAR")} ifs <O.
It is known that H 5 (R") is the dual of H*(R").

For 0 < s < 1, we mention an alternative characterization of H*(R"), which does not use the Fourier
transform.

H(R") = {

Lemma 2.2. For 0 <s < 1, the condition u € H*(R") is equivalent to u € L>(R") and

_ 1/2
( [ u)? dy) -
Rn Rn

|x — ylrt2s
For s > 0 we set
ol grs ny = lutll 2y + NEF TN 2y and Nl o gy = NEPFTN L2 .
For an open set 2 C R”, H%(Q2) is the space of the restrictions of functions from H*(R"), and
If0 <s < 1,then f € H(Q) if and only if /' € L?(Q) and

_ 1/2
(] [ e u)? )" <
QJQ

|x_y|n+2s

_ 2 1/2
ey = ([ [ 420 vxay) <o

|x_y|n+2s

Moreover,

Finally, for a submanifold N of R, we can define
H(R,N)={uec H (R,R™) :u(x) e N ae.}.

We introduce the so-called Littlewood—Paley or dyadic decomposition of unity. Let ¢ (&) be a radial
Schwartz function supported on {& : |§| <2} and equal to 1 on {£ : |£]| < 1}. Let ¥ (£) be the function
() := (&) — ¢ (2£); thus ¢ is a bump function supported on the annulus {£ : % <& =2}.

We put o = ¢, ¥;(§) = ¥ (27/&) for j # 0. The functions Y, for j € Z, are supported on
{£:2/71 < |g] <271}, Moreover ez Vi(x)=1.

We then set ¢ (§) := Zi:—m Vi (§). The function ¢; is supported on {&, [£] < 2/t

We recall the definition of the homogeneous Besov spaces Bls,,q (R™) and homogeneous Triebel—

Lizorkin spaces F g (R") in terms of the dyadic decomposition.
Definition 2.3. Let s € R, 0 < p, g < oo. For f € ¥'(R"), set

X . 1/q
(X 25 WS M pgn)  ifa<oo
”f”Bf,q(R”) = Jj=—o00 (29)

supj ez 2715 [ FLS Ml o ey if ¢ = oo.
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The homogeneous Besov space with indices s, p, ¢, denoted by B;,’q (R™), is the space of all tempered
distributions f for which || f| B85, (R is finite.

Lets € R, 0 < p,q < oo. Again for f € ¥'(R"), set

1/ £,y = H<j=§oo 2954 |5 [y, 3] }q)l/q‘

The homogeneous Triebel-Lizorkin space with indices s, p.q, denoted by F .q(R"), is the space of all
tempered distributions f* for which || /| zs ®") is finite.
p.q

It is known that H*(R") = 's ,(R") = .s L(R?).
Finally we denote by %! (R") the homogeneous Hardy space in R”. It is known that 3! (R") ~
thus we have

F
_ 3 1/2
I by~ [ (S5 w3 0)

We recall that in dimension n = 1, the space HY 2(R) is continuously embedded in the Besov space
Bgo,oo(lR). More precisely we have

H'?(R) < BMO(R) = B, o (R):; (30)

see, for instance, [Runst and Sickel 1996, p. 31] or [Triebel 1983, p. 129].
The s-fractional Laplacian of a function u : R” — R is defined as a pseudodifferential operator of
symbol |£|%5:

Asu(g) = [E[*a(®). (31)
It can also be defined as
s u(y) — y(X)
A'u(x) = m )

where p.v. denotes the Cauchy pr1n01pal value.
In the case s = L, we can write A'/2y = —%R(Vu) where @ is Fourier multiplier of symbol — Z Er:

z ISI

RX (&) = il Z £ X (€)

for every X : R” — R"; thus & = A~/ 2div.

We denote by B, (x) the ball of radius r and center X. If X = 0 we simply write B,. If x, y € R”",
X -y denote the scalar product between x, y.

For every function f : R” — R we denote by M ( f) the maximal function of f, namely

M) = sup |B(x.r)|"! [B Ll (32)

r>0
x€eR”
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3. Three-term commutator estimates: proof of Theorems 1.5 and 1.6

We consider the dyadic decomposition introduced in Section 2. For every j € Z and f € ¥'(R") we
define the Littlewood—Paley projection operators P; and P<; by

Pif=vjf. P<jf=¢f.
Informally, P; is a frequency projection to the annulus {2771 < |g| < 27}, while P< j is a frequency

projection to the ball {|&] < Zj} We will set f; = P f and f/ = P<; f.
We observe that f/ =37 fe—oo Jk and f = k_— oo Jk» where the convergence is in ' (R").

Given f, g € ¥'(R) we can split the product fg as

where
+00 g T j—4 +00 , +oo 400 +oo jt+4
Hl(f;g):ZﬁgJ_ :Z/szg/w HZ(](;g):ZngJ_ Zﬁz4gk’ H3(fg)_szj ng
—0 —00  —00 —00 —00  j+4

This is an example of decomposition into paraproducts (see [Grafakos 2009], for example). Informally,
the first paraproduct IT; is an operator that allows high frequencies of f (~ 2/) multiplied by low
frequencies of g (< 2/) to produce high frequencies in the output; IT, multiplies low frequencies of f
with high frequencies of g to produce high frequencies in the output; and IT; multiplies high frequencies
of f with high frequencies of g to produce comparable or lower frequencies in the output.

For every j, we have

. . ; jt3
suppF[f/~4g,) C {22 <1E1 <2772 and suppF|

S fre]C tlel <27t

k=j-3

Lemma 3.1. For every f € ¥ we have sup | f7| < M(f).
jezZ
Proof. We have

S =F e f =2 / FBIQ (x— ) S () dy = /R Fpl2) f(x — 27T 2) d=

Z / “UB) f(x — 277 2) dz

+o00

=Y max |9«f—1[¢1(z)|/3 =2l

k=—00 sz \ 2k—1

+o0
< _Z p T R / () dz

B(x,2k=I)\B(x,2k—1-J)

< M(f) Z max  2%F M ](2)| < CM ().

2k sz 1
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In the last inequality we use the fact that ~![¢] is in $(R"), and thus

+o00
>, mx 25l < 2 [ 157 ple)] e < o 0
oo Bake \Bak—1

Proof of Theorem 1.7. We need to estimate IT; (R(Q, u)), [1,(R(Q, u)) and I13(R(Q, u)). Consistently
with our earlier convention, we write, for example, IT;(A"*(QA!*u)) to mean

AT (Q. AV u)) = Z AV4(Q; (A0 ).
j=—0o0

* Estimate of | IT; (A"*(QA"*u))||,,. This expression equals
© . . 1/2 . 12,
/ ( Z 2J Q}(A1/4u1_4)2) dx S/ sup; |A'/4u]_4|(z 2]Q ) /
n _] Rn

- 1/2 1/2
5( / (M(A”“u))zdx) ( / > 2/’Q}dx)
R R
= Clullgi2121 g2 (34)

« Estimate of IT; (AY*(A"*Qu) — A?(Qu)). We show that this term lies in B? | (%' < B? ). To
this purpose we use the “commutator structure” of the term above:

I (80748 0= 230

= SUP e =t Zl Zl (A4 @™ AV4 Q) — A2/ Q))) hy dx
00,00 noj —jl<3

i Zl Xlz 3 9,7[“]_4] @[A1/4QjA1/4ht _ QjAl/th] dé
" l=jl=

IA

= Supyal -
14l 50,

=swppy, < | XX FuTE)

R j Je—jl=3
X (/Rn FLONO)FIA*hE - 0L — & = ¢]'?) d@) dg. (35)
Note that in (35) we have |§| <2/73 and 2/7% < |¢| <2772, Thus [§/¢] < %’ allowing us to write
1€ cp rEN+1
ST (R RTE z (6)

for appropriate coefficients ¢;. Thus the expression on the last two lines of (35) equals

st — =212 =121} (1=[1-

Gl J—4 U2art o) 1emar A4 1o o N (6!
s[5 % st e ( [ k7o oms e 03 5(;) ) d.

14l s, SR T 1= jT=3 (36)
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Next, for k € Z and g € &', we set
Skg =F g Vg 7).

We note that if 4 € Bgooo then Sih € Bg:fééHk and if 71 € H® then Sih e HSst1/2+k,
Finally, if 0 € H'/? then VA+1(Q) e H=%=1/2,
It follows that (36) is bounded above by

c s Yy v @ EOHYI T FS;0; A h))(E) dE

h <1 I! R |r—jl<
14l 50, <1720 J li=jl<3

o0
cl ; i
<C s ”h”BgoooZﬁ/ S 201291+ 415,05 dx
g =1 ol Jan

<CZ T le (l+l/2)]vl+l j— 4||2(l+1)]S1Q |dx

ad . . 1/2 . 1/2
SCZC—I'(/ 22—2(1-1-1/2)]|vl+1u1—4|2dx) (/R 222(l+1)]|Sle|2dx) .
n i n J
By Plancherel’s theorem, this equals

o 1/2
Y ([ srrenigtawa ) ([ £ 2001510, e
j=0 VR R

o0

1/2 1/2
—c 0_12—31(/ 22_j|9?[Vuj_4]|2d§) ([ Z2f|“f[Qj]I2dé)
— ! R R" j

1/2

o0
-3/
<€ Y 21N sl e,
=0

where we have used the fact that for every vector field X we have
+o00 . .
f > 2—J(Xf—4)2dx=/ ZXle > o2 fdx</ Z 277 (Xj)? dx. (37)
Rt j=—00 j—4>k j=—00
j—a=1
« Estimate of || IT(A"4(AY*Qu)) H%l: as in (34).
e Estimate of | [T (AY4(QAY*u) — AV2(Qu)) HB" : analogous to (35).

« Estimate of ” I3 (AY?(Qu)) ”%1 We show that thls lies in the smaller space B1 | (we always have

B0 — %1). We first observe that if 4 € B oo then AY2h € B_ and
) Jj+6 j+6
ARITO = N A2y < sup [27FAV2hy | Y 2k <c2) Il o __- (38)

keN

k=—o0 k=—o00
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Thus

[T (A(Qup | o =suppuyy <1 | 33 AVQjuih

IR Jk—j|<3

=suppay,, <1 | X X AVAQuilh’Oldx
000 R™ j |k—jl=<3

=suppay, <t | X X (Qui)AhI T dx
00,00 R" lk—j|<3

<C SUP|| 9 <1 1Al g, y ,Z |k—%<3 2| Qjugldx

' 1/2 . 1/2
<C( i 2.2/ Qde) ( i 22’%2-61)6) <ClOl gr2llull g1/2-
n _] n _]

o Estimate of IT5(AY4(QAY*u)). To show that this is in B?

1,1°
AV*h e Boo{éi, and by arguing as in (38) we get
IAYhj | Loe < 272 |1R] o

Thus

[T (A (@ A ) [ go =suppy, <1 | X X AVHQj A u)h
1.1 Boo‘oo R7 ] ‘k—j|§3

= SUP|a| <1 Z > (Q A up)[AVAhT T8 dx
&0 k=7l=3

SCsuppyy silbllg, | 2 X 27210 A uy] d
o0.00 > J lk—jl=3

<C 2/ 0%d . A*uj)?d "
<c([,zvoiu) (/W,Z« )

= COll gr/2llull g1/2-

« Estimate of TT5(AY4(AY*Qu)): analogous to (40).

we observe that if / € Bgo,oo

161

(39)

then

(40)
O

Proof of Theorem 1.5. We use Theorem 1.7 and the duality between BMO and %' . For all h, Q € H'/?

and u € BMO we have

/ (A4 QA4 1)~ QA2 u+AV*QA*u) hdx = / (AVH(QAV*h)—AV2(Qh)+A*(hAY* Q)) u dx
R R”

< Cllullamoll R(Q. 1) 31

by Theorem 1.7, this is at most
Cllullamoll Nl g2 121l gr1s2-
Hence

IT(Q. Wl gr—1/2 = SupPyy 1 o<1 /Rn T(Q,u)hdx < Clullsmoll Ol g1/2-
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Proof of Theorem 1.8. We observe that  is a Fourier multiplier of order zero; thus % : H~1/2 — H~1/2,
R — %', and R : BY | — BY . See [Taylor 1991] and [Sickel and Triebel 1995].
The estimates are very similar to the ones in Theorem 1.7; thus we will write down only one:

e Estimate of IT (RA4(A"*Q%Ru) — V(Q%Ru)). We observe that Vu = AV*RA'/*u. Hence
T (RAY4(AV* Q%u) — V(QRu)) || 30
1.1

< > Y (RAVHAVAQ;RuI ) — V(Q;Ru! ) hy dx

= Supyp| . 1
Il IIBgo.c,o R T —71<3

= SUPIAI 59 51[ > Y R THRAAhAAQ; —Vh Q) dx

suppgy, < | XX FRuITHE)
R iy P

([ Ftoommar e~ (¢ - e -1/ g ) de. @)

Now we can proceed exactly as in (35) and get

sup > 2 (%Al/4(Al/4Qj%uj_4) - v(Qj%uj_‘t)) hydx < C| Q||H1/2 ||u||Hl/2~ O
Il g STIR™ G jr—jI=3
Proof of Theorem 1.6. This follows from Theorem 1.8 and the duality between %! and BMO. O

Lemma 3.2. Let u € HY/2(R"), then R(AY*u - RAY*u) € %', and

IFR(AY 4w - RA ) 51 = Clull -

Proof. Since % : %' — !, it is enough to verify that A4y - RA*u € %!.

* Estimate of TT{ (AY*u, RAY*u):
+o00

1/2
”Hl(Al/‘lu,%Al/“u)H%l :/ ( E: [A1/4uj(97iAl/4u)j_4)2) Jx
Rn

Jj=—00
+o00

' 1/2
< /Rn supj‘(%Al/“u)J_“‘ (Z [A”“uj]z) dx

j=0

1/2 +o0 1/2
< ( f |M(%A”4u)|2dx) ( / >0 (A, dx)
R7 R .

j=—00

= Cllull?, - (42)

The estimate of the %' norm of IT,(AY*u - RAY*u) is similar to (42).
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e Estimate of T13(AY%u - RAY4u):
1T (A0, RAY*u) | 0

= su AV 5 R(AY*up ) (h7 6 j+6h d
p > uj RN uy) + > he)dx
R

g, <t Jrr T s =j-s
. j+6
= su / > (A1/4uj97{(A1/4uk)—ujVuk+%V(ujuk))(h]_6+ » ht)dx. 43)
g <1 IR T el =i

We only estimate the terms with 2/ %, the estimates with /4, being similar. We have

A > (AR R(A ug) — ujVug)h! 78 dx
" olk—jl=3

SUP|lAl 0 <
0,00

= suppp, <1 [ XX %[hf—ﬁ]m(/ %{u,—]%ml“uk][lyv/z—|x—y|l/21dy) dx.
co.c0m JRM j |k—jI<3 R

By arguing as in (35), we can show that this is bounded above by C ||u ”iI /- Finally we also have
SUP|4ll 50 51f > 2> %V(ujuk)hj_G dx
00 IR Jk—jl<3

= SuP"h”BO 51/ Z Z %(u]uk)VhJ_G dx
00,00 R" j |k—jl<3

1/2
szup"h"BO <1 ”h”Bgooo oy 21ujukdx§C( ZZJujz. dx) :C||u||§-{1/2.
S0.00 IR k—j|<3 RTJ

O
Theorem 1.8 and Lemma 3.2 imply:
Corollary 3.3. Letn € HY/2(R", S™~1). Then AY*[n- AV*n] € % (R™).
Proof. Since n - Vn = 0 (see proof of Proposition 1.4), we can write
AV - AY*n) = AV n- AV*n]— R[n - Vn] + R[A*n - RAY*n] — R[AY*n - RAY*n]
=Sm-,n)—R[A*n-RA*n]. (44)

The estimate in the corollary’s conclusion is a consequence of Theorem 1.8 and Lemma 3.2, which imply
respectively that S(n-,n) € %' and R(A*n-RAY*n) € %', O
4. L-energy decrease controls

We now provide (in Propositions 4.1 and 4.2) localization estimates of solutions to the equations
AYH (M A *u) = T(Q,u) (45)

and
A*(p-A*u) = S(q -, u) —RA*u - RAY*u), (46)



164 FRANCESCA DA LIO AND TRISTAN RIVIERE

where Q € HY2(R, My (R)), M € HY2(R, Myn(R)), [ > 1 and p,q € HY2(R, R™).

Such estimates will be crucial to obtaining Morrey-type estimates for half-harmonic maps into the
sphere (see Section 5). As observed in Section 1, half-harmonic maps into the sphere satisfy both
equations (16) and (18), which are (45) and (46) with (M, Q) and (p, q) replaced by (uA,uA) and
(u,u), respectively. Roughly speaking, we show that the L2 norm of M A*y in a sufficiently small ball
(u being a solution of either (45) or (46)), is controlled by the L? norm of the same function in annuli
outside the ball multiplied by a “crushing” factor.

To this end we consider a dyadic decomposition of unity (Section 2). For convenience set

Ap = Byn+1 \ Byn—1, A;l = Byn \ Byn-1,

for i € Z. Choose a dyadic decomposition ¢; € C3°(R), so

+o0
supp(pj) C A; and > ¢;j =1. 47)
—0o0

Also define, for h € Z,

h—1
=3 o, L—,,,:|sz|—1/ u(x) dx, ﬁh=|Ah|_1[ u(x) dx, a/”=|A;1|—1/ u(x) dx.
—o0 sz Ap A;’l

Proposition 4.1. Let Q € H'/2(R, My, (R)), M € HY2(R, My (R)), [ > 1, and let u € H'/?(R, R™)
be a solution of (45). Then for k < 0 with |k| large enough we have

/4 2 1 1/4 2
IMA ullz2p ) = 21 ull2p,,)
00 o0
SC(Zz(k—h)/z||MA1/4u||iz(Ah)-I-E 2(""’)/2IIA”“ulliZ(Ah))- (48)
ek h=k

Proposition 4.2. Let p,q € H'/2(R, R™) and let u € H'/2(R, R™) be a solution of (46). Then for k <0
with |k| large enough we have

Ip- A ulzagg,, ) = 1A ullL2p,,
00 o0
< C( Zz(k_},)/znp ) AIMMHiZ(Ah) + Zz(k—h)/Z||A1/4u||iz(Ah)). (49)
s h=k

For the proof, we need some estimates.

Lemma 4.3. Let u € H'/2(R). Then, for all k € Z,

+00
> 2 Hlgntu =l vz = € D2 Hlguragay + 2 F Ml rzgay )-GO
h=k s<k s>k

Proof of Lemma 4.3. We first have

lon =) 12y < o= @) sy + 10m1 g1 2y ik — 1. (51)
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We estimate separately the two terms on the right-hand side of (51). We have

_h . _=h 2
It =741 /2 ) = / /Ah = u)()lz—j/(z(u itz dx dy

_ 2
<2(/ / ) “(Zy)l dxdy+||v¢h||§o/ f |u—ﬁh|2dxdy)
Ap JAp lx =yl Ap JAp

<C(““”H1/2(A )—1—2_’1 lu — h|2dx)<C||u||

Ay H1/2(4,) 62

where we used the fact that ||V, |lee < C 27" and the embedding H!/2(R) — BMO(R).
Now we estimate |ii; — i”|. We can write il = 5:100 21=k7'l Moreover,

iy —a"| < |at —a'™| + |ig —a'"|

§C|Ah|_1/A |u—uh|dx+ Z 2[ —k Z |u/s+1 —IS|
h

[=—00 s=I

_ . (53)
< C|Ay I/A lu—a"| dx + Z 2=k Z | Agt1]” /A lu—a**t! | dx
h = s+1

|=—00 s=I

=il 5 2T Wlgnce)

|=—00 s=I

Combining (52) and (53) we get
lon @ =" 12y < Nlon @ =) 12y + lonl HJ/Z(R)mk — |

<c(||u||H1/2(Ah)+ y o "Z Wlgiieay) 69

—00 s=I

Multiplying both sides of (54) by 2k=h and summing up from /2 = k to 400 we get

+00 k—1 h
Z 2k—h( Z 2l_k Z ”u”Hl/Z(A ))
h=k I=—00 s=[+1
=C X Il (Z X2+ > Il (X xoh)

h>k l<s h>s <k

=C X%CZS_ ||u||H1/2(A)+ Z 2% |”||H1/2(A) O
s<
Now we recall the value of the Fourier transform of some functions that will be used in the sequel.

We have
FIx|~12)E) = |57V (55)

The Fourier transforms of |x|, x|x|~'/2, and |x|'/2 are the tempered distributions defined, for every
¢ € #(R), as follows (with 1y the characteristic function of 1):



166 FRANCESCA DA LIO AND TRISTAN RIVIERE

¢() —¢(0) ~ 1, )¢ O)x
x2

’

(FIx1). 0) = (Fx/ 1x]]* Fixl. @) = (0.1 % B (x). ) = pov. /R
_ _ ) _ 1
(9?[x|x| 1/2],(p)=(9»*[x]*9?[|x| 1/2]’¢)=((8)0(x)*|x| 1/2’¢)=p.v./l;{((p(x)—¢(0))|i—|w dx,

(@[|x|1/2],go) = p.v./ Mu’x.
R

X772
Next we introduce the operators
F(Q.a) = AV*(Qa)— QA a + A" Qa, (56)
G(0,a) = RAY*(Qa) — OA*Ra + AV*QRa. (57)
We observe that T(Q, u) = F(Q, A"*u) and S(Q,u) = RG(Q, A*u).

We now state turn to lemmas where we consider M, u as in Proposition 4.1 or p, u as in Proposition 4.2,
and estimate the H'/2 norm of w = A~V4(M AY*u) or w = A™V*(p - A*u) in B, in terms of the
H'/2 norm of w in annuli outside the ball and the L2 norm of A'/#4 in annuli inside and outside the
ball B,«. The key point is that each term is multiplied by a crushing factor.

Lemma 4.4. Assume the hypotheses of Proposition 4.1. There exist C > 0 and n > 0, independent of u
and M , such that for all 1 € (0, %), all k < ko (where ko € Z depends on n and || Q| g1/2w)), and all
n >n, we have

| xk—aw = Br—a)|| g1/

1/4 S (k=h) /2y Al/4 1 k—h
<l xe—aA” u||L2+C( 2.2 IA *ull 2+ 2 2 ”w”Hl/Z(Ah))’ (58)
h=k h=k—n

where w = A™V*(M A'Y*u) and we recall that x—4 =1 on Byi—s and xx—4 =0 on BS,_,.

Lemma 4.5. Assume the hypotheses of Proposition 4.2. There exist C > 0 and n > 0, independent of u
and M , such that for all (0, %), all k < ko (where ko € Z depends on 1 and the H'Y2 norms of Q and u
in R), and all n > n, we have

H Xie—a(w —Wg_4) ” H1/2(R)

4 S o (k—h)/2 )| A1/4 k=3 ek
5n||Xk_4A“u||Lz(R)+C( > 2P Ay g+ Y 2 ||w||,~,1/2(Ah)), (59)
h=k _

h=k—n

where w = A™V4(p - AV%u).

Proof of Lemma 4.4. Fix n € (0, 7). We first consider k < 0 large enough in absolute value so that
lxx (O — Qk)||H1/2(R) < ¢, where ¢ € (0, 1) will be determined later. We write

F(Q, A u) = F(Q1, A*u) + F(Q2, A*u),

where

01 =xx(Q—0r) and Qr=(1—x)(Q— Q).
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By construction, we have

supp Q2 C ngfl and ”QZ”HI/Z(R) = Q||H1/2(R)-
For brevity, set
W= xk—a(W — Wg—4q).
We rewrite (45) as

+o00

2wy == X puw— i)+ FQuL A0+ FQa A . (60
h=k—4

We take the scalar product of both sides with W and integrate over R. From Corollary A.8 it follows
that

400
ylm | A“Z(h;jv on(w— uak_n) Wdx = lim | A= v-n) (0 = Bgg)) - W dx = 0.

This allows us to interchange the infinite sum with the integral and the operator A!/? in the expression

+00 oo
R —"—
R h=k—4 h=k—4"®

Thus we get from (60) the equality

/ | A4 (W) dx
R

+o00
=— Y /Al/z(wh(w—zi)k_4))-de+/ F(QI,A”“u)-de—i—/F(Q2,A”4u)-de. (61)
h=k—4 'R R R

Step 1: estimate of the sum. We split the sum in (61) into two parts: k —4 <h <k—-3and h >k —2.

Step 1a. We have
k-3 k-3

- Z /R{Al/z(ﬁﬂh(w_wk—ﬂ)'de < ||W||31/2(R)( Z H(ph(w_wk—4)HHl/2(R))-

h=k—4 h=k—4
By Lemma 4.3, the right-hand side is bounded above by

k—3 k—5 h
Wi 2 (Il + X 2769 Y lwli,))
h=k—4 I=—00 s=I+1
k—3
<CWli( L 2 Hluliuay ) ©
h=—oc
From the localization theorem A.1 it follows that
k—6 ) ~ )
Z ||w||H1/2(Ah) S C”WHHI/Z(R)’

h=—o00
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where C > 0 is independent of k and w. Thus we can find 7y > 6 such that

k—n
chzz“Wmmwmwsgmwmuw for all n > ny,
=—0

with the same constant C appearing on the last line of (62). Then for n > n{ we have

k-3
> [ a0 =)W

h=k—4 k-3

Wy + W iy 2 1wl ). 63
h=k—n

Step 1b. To estimate the part of the sum in (61) with # > k — 2, we use the fact that the supports of ¢y,
and of yj_4 are disjoint; in particular 0 ¢ supp(<ph (W —wp_4q) * W) We have

+o00
> [ A entw— i) W

h=k—2

+00
= 3 [T et — ) W

h=k—-2

+o0
= Z H @_1(@')||Loo(32h+2\32h_2) ||§0h(w - wk—4)”Ll ”I/VHLl
h=k—2

+o00
<C Y 272 gp(w — )| 2y 2P IW L2y (64)
h=k—2

By Theorem A.5 and Lemma 4.3 the sum on this last line is bounded above by

+o00
Yo 2 onw =) | g2y Wl g2

h=k—2 +o0 s
< Z 2k_4_h(||w||H1/2(Ah) + Z 21—(k—4)
h=k—2 I=—00

h
> Nl gy ) IV g
s=l+1

+o00
f( > 2wl gy + D Il ( X2 27

h=k—4 s<k—4 h>k—41<s—1
£ 3 Wolavsay( £ 5 2 Wl
s>k—4 h>s—11<k—4
+00 k-5
5( Yo 2T Ml e, + D zh—("—“)nwnm/z(Ah))||W||Hl/2(R). (65)
h=k—4 h=—o00

Finally, set n > i1 = max(n, ny), where n, > 6 is such that

it i
c Z 2 ||w||H1/2(Ah) = §||W||H1/2([R) for n > n,.
h=—o00
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We conclude from (63)—(65) that

+o0 too
h; /R AV (g (w = B—g)) - W = W 13120 T C I Hl/z(mh; 2wl 124, 66)
=k—4 =k—n

Step 2: estimate of fR F(Q1, A"*u)- W dx, the second term on the right-hand side of (61). We write

k+1
F(Q1, A u) = F(Q1, xp—aA*u) + 3 F(Q1,0p A u) +

400
Y F(Qu.gnAu).  (67)
h=k—4

h=k+2
By Theorem 1.7, the integral involving the first term on the right can be estimated as follows:

/R F(O1. —a &) - W dx < C1 Q1L 1/ | xk—a A ull 2 IW L1 2

< Cellx—s A ull2 Wl 12

< T lxk—a & ull 2 Wl 12y (68)

where in the last inequality we have made use of the choice of € > 0 (see beginning of proof on page 166).
We also use Theorem 1.7 for the integral involving the second term on the right-hand side of (67):

k+1 k+1

Z /RF(QI,(PhAl/Au)'deSC Z ”Ql”Hl/z(R)||(phAl/4u||L2(R)”W”;’[l/Z(R)- (69)
h=k—4 h=k—4

Next we want to deal with the term in (67) involving the infinite sum. Again by Corollary A.8 we can
exchange the summation with the integral and write

+o00 Foo
/R( Z F(Ql,gohA”“u))-de: Z /RF(Ql,(phAl”u)-de.

h=k+2 h=k+2

If h >k + 2, we have F(Q1, o AV*u)-W = Q1 AV*(¢, AV*u) - W, since the supports of Q1 and ¢y,
are disjoint, as are the supports of xz_4 and ¢j. Hence we can write

+o00

400
> | F@uga - wax= 3

O 1 A *(pp A*u) - W dx
h=k+2 h=k+2"R

400
= %[5 (@i )« W)

h=k+2
+00

> 1T E D)oo\ By Q108 A s (W
h=k+2

+oo
<C Y 20 A ull | Wl

(70)
h=k+2
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By Theorem A.5 we finally get

+o0 +o00
> / F(Qr,onA*u)- Wdx < C Y~ 2701 guo eyl lon A ull L2y IW | 172y
h=k+2 "R h=k+2

+o00

<C Y Mg A ul 2 W 12y
h=k+2

Step 3: estimate of [, F(Q2, A'*u)- W dx, the last term in (61). As in Step 2, we write

k+1
F(Qa2, A*u) = F(Q2, p—aA*u) + 3 F(Q2, 0p AV u) +

+00
Y. F(Q2.0pA"*u). (71)
h=k—4

h=k+2
For the first term, since the support of Q5 is included in ng,I , we have
F(Q2. Xk—aA*u)- W = AV (02 (xk—a AV 1)) - W.
Observe that O, = Z‘Zi’%_l 0n(02—(02)k—1), (02)k—1 = 0) and by using Corollary A.8 we get

/ F(Qs. xr—a AV *u) - W dx
R

+o0
= 3 [ A(n02 = (@2 (tamsh ) W

h=k—1

00
=0 3 [ I (e 0002 = (D2im) # W)

h=k—1
=ClIWl . % 1F™ (&1 ) | Lo (B 2\ By | Kk—a A *10) 0 (Q2 — (Q2)i—1) [ 1
=k—1

1/4 % —h/2~k/2 A
< Cllxk—a A ull 2 lW ll oy 2= 27225 2 lon(Q2 = () k=Dl 172y
®) ®)
h=k—1

From Lemma 4.3, possibly by choosing a smaller k, we get

cy 2k —(0 : <lp_ 1
Y Zk: ||§0h(Q2 (Q2)k—1)||H1/2(R) =71 <1g:
=k—1

Therefore
| F (@2 a0 W = Sl W ey

Now turning to the second term in (71), we bound the corresponding integral using Theorem 1.7:

k+1 k+1

> /RF(Q2,<PhAI/4M)'WdX <C Y Qg load ull 2 W=kl g1/2g)-  (72)
h=k—4 h=k—4
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Finally we consider the last term in (71). By Corollary A.8 we can write
+o00 400
/ ( > F(0a. whA”“u)) Wdx= Y | F(Q2.opA"u)-Wdx.
R\ h=k+2 h=k+2"R
Next, since the support of Q5 is included in Bg,‘,,l, we have for & > k + 2 the equality
F(Qa. oA *u)- W = (AV4(Q2 4 A *u) — Q2 AV (@A) + AV* Qo AV *u) - W
= A0 A ) - W.
Therefore

400
> / F(Qa, onA*u)- W dx (73)
R

h=k+2 400 400
= Y [ aana i wax = 3 [ FA Qx| FW ds

h=k+2 h=k+2

00
-y /R E12F(Qp AV )] FIW] dE

h=k+2

+o0
= % [FE) (0n0 (@3~ (@) « W) d

h=k+2

+o00
< > FE ) poocn
h=k+2

Sh+2\Byn—2) ” (90/1 AIMU(QZ - (QZ)k—l)) * W HLI([R)‘

Now choose ¥, € C5°(R) such that ¥, = 1 in Byn+1 \ Byn—1 and supp ¢ C Bya+2 \ Byn—2. Thus

+o00
(713)=C Y 272 yn(Q2 = (@2)k—1)| oy llon A “ull L2y IW L1 gy

h=k+2
+o00
<C Y 2Myu(02— (@D | g2 len A ull L2y Wl 12y (74)
h=k+2
+oo b _ 1/2 400 i 1/2
SC( Y 2 ||wh(Q2—(Qz)k_onip/z(m) ( > 2 ||<ohA”4u||iz) W12y
h=k+2 h=k+2

where we have applied Theorem A.5 and Cauchy—Schwartz.
From Lemma 4.3 (with ¢ replaced by y) and Theorem A.1 we deduce that

+o00

(X

_ 1/2
F (02 0 gy ) =IO ey
h=k+2
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Thus
+o0 1/2
3 [ @zt wax = Wl sy X 2 lond il
h=k+2 h=k+1
+00
< C||W||H1/2(R)( > z“‘—’”/z||<ohA“4u||Lz<R>). (75)
h=k+1

By combining (68), (69), (70), (72) and (75) we obtain (for some constant C depending on Q)

/ F(Q, A*u)- W dx
R

%n”Xk 4A1/4u”L2”W”H1/2(R)+C Z 2(k h)/2||Al/4u||L2(Ah)”W”HI/Z(R) (76)

h=k—4
Finally for all n > n we have
W 1120
+o0 400
< Nl xk—a A sl 12y + c( Yo K Mwlgiag,+ Y 2% ||A”4u||Lz<A,1>), (77)
h=k—n h=k—4
concluding the proof of Lemma 4.4. O

Proof of Lemma 4.5. The proof is similar to the preceding one, so we just sketch it. As before, we fix
ne (0, %) We consider k < 0 such that

Xk @ =@ 12y <& and e A ull 2@ <e.

with & > 0 to be determined later.
We observe that (46) is equivalent to

RAY*(p- AY*u) = G(q -, AV*u) — A*u - (RAY*u). (78)

We write

G(q T A1/4M) = G(Ql ) Al/4u) + G(qZ T Al/4u)’
where

g1 = xk(q—qx) and g2 = (1— xx)(g —qGx)-
We observe that supp g, < Bck , and ||q1 ”FII/Z(R) <e. We also set

up = xie A, us == ) A u, w=A"*(p-AMu), W = xp_a(w—Wg_q).
We rewrite (78) as
+o00

RAVHW) = _@ml/z( > on(w-— wk_4))

h=k—4
+G(qr1 -, A*u) + G(gz -, A *u) +uq - (RA*u) 4+ uy - (RAY*u).  (79)
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We multiply (79) by W and integrate over R. By using again Corollary A.8 we get

/ AV W2 dx (80)
R

+o00
= — QRA]/Z — W WYd G -,A1/4 wW)d G -,A1/4 W) d
h;k—4/R (on(w—wg—4))(W)dx +/R (91 u)(W) x+[[R (42 u)(W) dx

+/ ul-(QJtAl/4u)(W)dx+/ Uy - (RA*u)(W) dx.
R R

The last term vanishes, since #, and ) _4 have disjoint supports. Estimating fu;e G(Q1, AV*u)(W) dx
and [ G(Q2, AV*u)(W)dx is analogous to what we did for the terms [ F(Q1, A"*u)(W)dx and
Jg F(Q2, A*u)(W) dx of (61). We therefore concentrate on the other two terms in the right-hand side
of (80).

To estimate the sum term, we split it into two parts: one sum for k —4 < i1 < k — 3 and one for
h > k —2. For the first part we write

k-3
- /R%Al/z(‘ﬂh(W—u_)k—O)(W) dx

h=k—4

k-3
< > A = wr—a)| 12 1OV 172y
h=k—4
k=3 k=S sy &
<0 2 (olizay+ £ 274 3 ullgusgay )IW i, 6D
h=k—4 |=—00 s=Il+1

where the second inequality follows from Lemma 4.3. Let ny > 6 be such that

k—nl
C > 2wl gaag,y < $IW gy
h=—o00

If n > ny we have

k-3
80 = HW Iy oy CIW g 5 2710l ) 32)
=k—n

For the second part of the sum (4 > k —2) we use the fact that supp(goh (W —Wp_yq) * W) is contained
in Byn+2 \ B,n—2; in particular, it does not contain 0.

+o00 Foo
> [ - Wydx= Y [ eslontw— i l@FWIE de

h=k—2 h=k-2

400
= 3 [T O iig « W) dx

h=k-2

+o00
- Z 5(/)()6) (pp(w—wg_4)* W) (x)dx =0.
R

h=k-2
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Step 2: estimate of [ uq - (RAY*u)(W) dx. We have

400
/Rul S(RAY*u) (W) dxz/Ru] (Rup)(W) dx+}§c/Ru1 (PR AV u) (W) dx. (83)

By applying Lemma 3.2 and using the embedding of %! (R) into H~'/2(R) we get
/Rul (@) (W) dx < Cllug - @)l |V 172y < Clua 13210V 12y

1
= C8||XkAl/4u”L2”(W)”HI/Z(R) = ZSHXkAlMu”LZ”(W)”Hl/z(R)-

By choosing &€ > 0 smaller if needed, we may suppose that Ce <.
Now we observe that for 1 > k the supports of ¢p and yz_4 are disjoint. Thus

Z f u - (%whA”“u)(W)dx—Z f {100 (@10 0+ (0 W)

=C Z X1 200 (B 2\ By o) | (@R A1) % (s W)I 1
h=k

+o00
=Cy 272K 0y AV Loy e L2 | OV gy 12y

+o00
<Ce 3 2521 g AV ull 2y W) | 12y
h=k

n —
vy Z 2D g Al L2y | W) 172y -

Proof of Proposition 4.1. From Lemma 4.4, there exist C > 0 and 7 > 0 such that forall n > 71, 0 < < &,
k < ko (ko depending on n and the H /2 norm of 0), every solution to (45) satisfies (77) and thus also

W12 /2 0

+o00
<n ||><k_4A“4u||iz+cz"/2h % 25 w2
=K—n

LC +§° 2 =h)/2 | A4
h=k—4

2
H]/Z(A ) u”LZ(R)- (84)
Now we can fix n > 1 and we can replace in the second term of (84) C on/2 by C.
From Lemma A.3 it follows that there are Cy, C, > 0 and m; > 0 (independent of n and k) such that

if m > my we have

+o00

> okt / IMAY*u? dx. (85)

2
”W”HI/Z(R) Cq / |MA1/4u| dx —C,
sz—n m h=k—n—m Bzh\Bzh—l

Finally from Lemma A.4 it follows that there is C > 0 such that for all y € (0, 1) there exists m, > 0
such that if m > m, we have
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k—h
h=k—n
-3 I

+o0
5)/[ |MA*ulPdx+ > 2(k—h)/2[ |MAY*u|? dx.
|| <2k—n—m 2

h h+1
h=k—n—m =slgl=2

By combining (84), (85) and (86) we get

ClMA U2, =C > 2P A2, 4G 5 DI A 2

h=k—n—m h=k—n—m

+n2||Xk_4A”“u||iz(R) +CYIMA ullfag e 8D

Now choose y,n > 0 so that C Icy < % and C In? < 1. With these choices we get for some
constant C > 0

| M — LA

2 2
u”LZ(sz—n—m) u”LZ(B k—n—m)

SC( > ok ">/2||MA“4u||L2(A)+ ¥ alke ">/2||A”4u||Lz(Ah)) (88)

h=k—n—m =k—n—m

We observe that in the final estimate (88) the index m can be fixed as well. Thus by replacing in (88)
k —n—m by k we get (48) and we conclude the proof. d

The proof of Proposition 4.2 is analogous and we omit it.

5. Morrey estimates and Holder continuity of %-harmonic maps into the sphere

We consider the (m — 1)-dimensional sphere S™~! C R™. Let I1gm—1 be the orthogonal projection on
S™=1_We also consider the Dirichlet energy defined by

L(u):[ IAY*u(x)|>dx  foru:R— S™1, (89)
R

Definition 5.1. We say that u € H'/2(R, S 1) is a weak %—harmonic map if

d
EL(HSWI—I (u+t¢))|t=0 =0 (90)

for every map ¢ € H'/2(R, R™) N L (R, R™). In other words, weak %—harmonic maps are the critical
points of the functional (89) with respect to perturbations of the form IT gm—1(u + t¢).

We denote by /\(R™) the exterior algebra (or Grassmann algebra) of R”. If (¢;)i=1,. m is the
canonical orthonormal basis of R™, every element v € /\ p(R™) can be written as v = > jvrer, where
I={iy,....ipywith1 <iy <---<i, <m, vy := v, i, and e :=e;; A+ Nej,.
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By L we denote the interior multiplication L : /\ , (R™) x A\ 4(R™) — /\ 4— p(R™) defined as follows:
Lete; = e A---Nej,, ey =ej; A---Aej,, withg > p. Theney L ey = 0if I ¢ J; otherwise
erley=(—1)Meg, where eg is a (¢— p)-vector and M is the number of pairs (i, j) € I x J with j >1i.

By the symbol ¢ we denote the first order contraction between multivectors. We recall that it satisfies
aef=al Bif fisal-vectorandxe (BAY)=(xeB)Ay +(=1)PI(aey)AB,if B and y are
respectively a p-vector and a g-vector.

Finally by the symbol * we denote the Hodge star operator, * : A\ ,(R™) — /\,;—,(R™), defined by

*B=(e1 A---ANey)epB.
Next we write the Euler equation associated to the functional (89).

Theorem 5.2. All weak %-harmonic maps u € H 1/ 2(R, S™=1Y satisfy in a weak sense the equation
/}A”Zm-vdxzo, 1)
R

for every v e HY2(R, R™) N L®(R, R™) such that v € Tu(x)S’”_1 almost everywhere, or equivalently
the equation
AVuru=0 in%, (92)

or yet
A*wunA*u)y=T(Q,u) in%, 93)
with Q = un.

Proof. The proof of (91) is analogous that of Lemma 1.4.10 in [Hélein 2002]. For v as in the statement,
we have

M gm—1(u+1tv) =u+twy,

where

1 8H m— i
wy =/ L(u—i—tsv)v’ds.
0 dyj

Hence

L(Hsm_l(u—i—tv)):/ |A1/4u|2dx+2t[ A?u-w; dx + o(t),
R R

as t — 0. Thus (90) is equivalent to

lim [ AY?u-w;dx =0.
t—0 JRr

Since IT gm—1 is smooth it follows that w; — wo = d I1 gm—1(u)(v) in H'2(R, R™) N L®(R, R™) and
therefore

/ A”“u dnsm—l (u)(v) dx =0.
R

Since v € Tu(x)Sm_1 a.e., we have dI1 gm—1(u)(v) = v a.e. and (91) follows.
To prove (92), we take ¢ € C°(R, A\ ;u—2(R™)). Then

/go/\u/\Al/zudXZ (/*((p/\u)-AI/zudx)el/\-'-/\em. (94)
R R



THREE-COMMUTATOR ESTIMATES AND THE REGULARITY OF %-HARMONIC MAPS INTO SPHERES 177

We claim that
v=sx(p Au) e HY>(R,R™) and v(x) € TM(X)S’"_1 a.e.

That v € H'/2(R, R™) N L>®(R, R™) follows form the fact that its components are the product of two
functions in H'/2(R, R™) N L (R, R™), which is an algebra. Moreover,

veu=x(uAne)u=x(ureru)=0. (95)

It follows from (91) and (94) that

/(p/\u/\AI/zudx=O.
R

This shows that A2y Au=0in 9, concluding the proof of (92).
To prove (93) it is enough to observe that A?u Au = 0 and AY*u A AV*u = 0. O

Next we show that any map u € H'2(R, R™) such that |u| =1 a.e. satisfies the structural equation (18).

Proof of Proposition 1.4. We observe that if u € H'/2(R, S™~1) then Leibniz’s rule holds. Thus
Viul?=2u-Vuin @ (96)

Indeed, the equality (96) holds trivially if « € C®(R, R™™'). Let u € H'/2(R, S”~"') and let u; be a
sequence in CS°(R, R™) converging to u in H'/?(R,R™) as j — +oc. Then Vu; — Vu as j — +00
in H=Y/2(R, R”~"). Thus u; - Vu; — u - Vu in @’ and (96) follows.

If u e HY/2(R, S™~1), then V|u|* = 0 and thus u - Vi = 0 in @’ as well. Thus u satisfies (18) and
this conclude the proof. O

By combining Theorem 5.2, Proposition 1.4 and the results of the previous section we get the Holder
regularity of weak %—harmonic maps.

Theorem 5.3. Let u € HY/2(R, S™ 1) be a harmonic map. Then u € Clg;a (R, ™1,

Proof. From Theorem 5.2 it follows that u satisfies (93). Moreover, since |u| = 1, Proposition 1.4 implies
that u satisfies (18) as well. Propositions 4.1 and 4.2 yield for k < 0, with |k| large enough,

o0
1/4,,112 (k—h)/2 /4,112 1 /4,112
oA Al = C 3 26N Sl + Il ©7)
NG E <C %0:2(k—h)/2”A1/4u”2 + LAv4y)? (98)
L2(B,i) — = L2(4p) " 4 L2(B,i)
Since
A w72y = lu- A ullfagg ) + luA A ulTa .
we get
o
174,112 (k—=h)/2 ) A1/4,, 112
18l 2, = € 3 262l (99)
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Now observe that for some C > 0 (independent of k) we have

€T 1A gy 1Al € z RS
=—00

From this and (98) it follows that

k—1 00
Z ”Al/‘lu”iz(Ah) <C h¥k2(k—h)/2”Al/4

2
u ||L2(Ah)'
h=—00

By applying Proposition A.9 and using again (99) we get for » > 0 small enough and some g € (0, 1)

/ |AY4u|? dx < CrPB. (100)

Condition (100) yields that u belongs to the Morrey—Campanato space $2:7B (see [Adams 1975, page

79), and thus u € C%A/ 2(R) (see [Adams 1975; Giaquinta 1983], for instance). O
Appendix

We prove here some results used in the previous sections. The first is that the H'2([a, b]) norm, where
—00 < a < b < +o00, can be localized in space. This result, besides being of independent interest, is
used in Section 4 for localization estimates. For simplicity we will suppose that [a, b] =[—1, 1].

Theorem A.1 (Localization of H'/2((—1,1)) norm). Let u € H'/2((=1, 1)). For some C > 0 we have
0
LIS o LTS

where Aj = Byj+1\ Byj-1.
Proof. For every i € Z, we set A; = Byi \ Byi—1 and it} = |A}|™" [, u(x) dx. We have

|lu(x)—u(y)|* u(y)|?
||u|| :/ / dx dy
HI2(-1,0) — J_ 11] -1,1] |x— =y

_ Z // Ju()—u()? dx dy

e BEEEE
|u(x)—u()? Ju(x)—u(y)|*
dx dy dx d
,_Zoo//// |x — yI? +2]_Zoo,§1//// x —y[? g

s Z // GO o

T v 12
j=—o00 Jj+1 |x y|

We first observe that

Ju(x) —u(»)* Ju(x) —u(»)*
Z// dx dy < Z/,L, dx dy (102)

T v _ 2 2
oo [x =yl Ix =l
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and

[, s $ [
Jj=—00

It remains to estimate the double sum in (101). We have

) —u)P

Z Z// RS

j=—ooz>j+l

ey Y 2—2’// ux) —u(y)* dx dy

Jj=—00i=j+2

(Z > 2‘”/,/,' — ;| dx dy + Z > 2‘2’// ju(x) — it} 2 dx dy

j=—oc0i>j+2 J_—°0l>1+2
+ Z > 2—2’// lu(y) —it) |2dxdy)
j=—o00i>j+2

( Z > 2 P + Z > 2—2’21f |u(x) — it} *dx

]——OOI>]+2

B> 2‘2’2’/ u() - u-|2dy).

j=—o00i>j+2

j=—00i=j+2

Denote by W, Wy, W), the three double sums in the last parentheses. We have

Wy = Z 3 2—2’21f lu(x) — it} [2dx = Z 2—2’/ lu(x) — it} 2 dx(lsz_zzf)

i=—00j<i—2 i=—00
_ 2
e Z A4 1/ u(x) — it} 2dx < C Z // '“(T)Z Zl(zy)l dx dy, (104)

where in the last inequality we used the fact that, for every i,

4} 1/ ) — i} 2 < |4}~ 1/,

_ 2
<A~ 2/ / lu(x) —u(y)|? dxa'y<C[/// |u(>|2 §|(§})| dx dy.

A similar calculation yields

2

u(x) — A} lfA u(y) dy

|u(x) —u(y)|” u(y)|?
CZ // Ty dx dy. (105)

j=—00



180 FRANCESCA DA LIO AND TRISTAN RIVIERE

Finally, to estimate W = Z > 272 gl — g |2 we first observe that
j=—00i>j+2

i—1
Sr =12 - —/12 - ~ 12 -1 =12
iy — i < (=) ) iy —wp* and iy —ig)* < |4 /Alu—ull dx,
i !

where ii; = |4;|7! fAl u(x)dx. Setting a; = |A;|™! fAl |u —i1;|? dx, we then have

Z > - ’Zaz< Z as Z > G-HY

j=—00i=j+2 I=—0c0 j=—00i—j=l+1—j

We observe that

l
Z Z (i—j)2/7 < Z / 27 ¥xdx = Z 27UHI=D (42— )

I+1—j

j=—00i—j=I+1—j Jj=—o00 Jj=—00
+o00
5/ 27'(t+1)dx < C, (106)
1
for some constant C independent of /. It follows that
0 2
w<c Y alfC/ / Jutx) = ”(zy” dx dy. (107)
= 4 Ix=l

By combining (102), (103), (104), (105), and (107) we finally obtain

312 11»~ Z 112,y

Next we show that
0

2 2
D Nl gy S N0y (108)

l=—00

For every [ we have A; = C; U D;, where C; = Byi+1 \ By and D; = B,i \ Byi—1. Thus

|u(x)—u(y)|? Ju(x)—u(»)* |u(x)—u(y)|?
= dx dy dxdy+2 dx dy.
[c,/c, |x — y|? +/D,h/D, |x — y|? * /D,,,[c, lx — y|? 4

Since | J;(C; x Cp), \U;(D; x Cy), and | J;(D; x C;) are disjoint unions contained in [0, 1] x [0, 1], we

have
2 2
Z// |u(x)— ”(JZ/)| dx dy < / / u(x)— u(J27)| dx dy.
~JaJa  Ix=yl -1,11J[=1,11  |x =]
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Z/ / lu(x)—u(y)|* u(y)|? dx dy < / [ |lu(x)—u(y)|* —u(y)|? dx dy
— 4 JC, =y —1,11J[=1,1]  |x— =2 ’

2 2
W[ ORI,
~Jp I X =) 11 J[-1,11 X =yl
It follows that

Ju(x)—u(y)|?
Z el = /[11][[—1 1 =y ey = gy

Remark A.2. By analogous computations one can show that for all » > 0 we have
+o0
ey = 22 12040y
j=—00

where A]’. = B,i+1, \ Byj-1,, where the equivalence constants do not depend on r.

181

Next we compare the H /2 norm of A~'/4(MA"*u) with the L2 norm of MAY*u, where u € H/2(R)

and M € Hl/z(R,M,xm(R)), fort > 1.

In the sequel, for p > o > 0, we denote by 1<y, Lp<|x|» and 1,<|x|<, the characteristic functions

of the sets of points x € R satisfying the respective inequalities.

Lemma A.3. Let M € HY2(R, Myxm(R)), withm > 1 and t > 1, and let and u € H'/*(R). There exist
Ci >0, Cy > 0and nyg € N, independent of u and M, such that, for any r € (0,1), n > ng and any

X0 € R, we have

||A71/4(MA1/4M)||H1/2(B (x0))

+o00
ZCI/ |MA*u>dx—Cy Y 2—”/
B, j2n (x0) h——n B,p, (x0)\B,yn—1,(x0)

|MAY4u|? dx.

Proof. For notational simplicity we take xo = 0, but the estimates made will be independent of xy.

We write
AVHMAY*u) = A‘1/4(]l|x|5,/2n MA*u) + A‘”“((l — ]l|x|5,/2n)MA”4u),
where n > 0 is large enough; the threshold will be determined later in the proof. We have
| AT MA w) | 12,
= [ AT @ 2 MA W) | 12 g,y — [ ATV = L) MA 1) | g2,
> AT @y MA* W) | 12,y = AT @2 <iwizar MAY*U) | 12,
—| A71/4(]l|)c|24rMAM“)HHl/z(B,)
z | A Ay MA )| a2 gy = [ A7 Wrjansieiar MA 0 12y
—| A_l/él(ﬂlxlzuMA]M”)HHI/Z(Br)'
We estimate the last three terms in (109).

(109)
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e Estimate of H ATVHLy jan < x| <ar M A1) H A1/2@)- This expression is equal to

/ |MAY*u|? dx = Z/ MAY*u|? dx. (110)
r/2"<|x|<4r 2hy<|x|<2h+1p

* Estimate of | A_l/4(]1|x|24rMAl/4“)HHl/Z(B,)' Setting g := 1|y|>4, M A'*u, we have

: (X7 )0 = (X x )
1A g0 a5 = // |
B, r

|t —s|?

1 B ~ 2
:/ / |t s|2([| A g(x) (Jt—x| 12 _|s—x]| 1/2)dx) dt ds
rJBr |0~ x|>4r

2
(mean-value thm.) < C / / ( / g (x)| max (|t —x| 72, |s—x|73/2) dx) dt ds
r r |X|Z4r

+o00 2
sc[ / (Z/ |g(x)|max(|t—x|_3/2,|s—x|_3/2)dx) dt ds
rJBr \ Ty 2hr<|x|<2h+1r
+o00 2
scf / (Z/ |g(x)|2—3h/2r—3/2dx) dt ds
rJBr \ Ty J 2 r<|x|<2h 1y
+oo —1/2\2
(Hélder inequality) < C / / (ZZ_hr_l( / |g(x)|2dx) )dtds
r N\ h=4 2hr§|x|§2h+1r

+oo +oo
(Cauchy-Schwarz) < C ( Z 2k ) (

> ot

h—d hed 2hr<|x|<2h+1r

| M AY*u|? dx)

+o00
§C(Z2_h/ |MA”4u|2dx). (111)
h—d 2hr<|x|<2h+1r

* Estimate of ||A‘1/4(]l|x\5,/2nMA”4u)||HI/Z(Br). We set
hi=1x 21 < x| < 2
By the localization theorem A.1 there exists a constant C>0 (independent of r) such that

A4 (L <rjon M A 0|2

HY2[R)
+o00
SC Z ||A e (1|x|<r/2”MAI/4”)||H1/2(AF)
h=—o0 S (112)

||A 1/4 (]]-|x|<r/2”MA1/4U)“H1/2(B ) + CZ ”A 1/4 (]]-|x|<r/2"MA1/4u)”H1/2(Ar)
h=0
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* Estimate of Z o 1AV 4@ <pjon M AY4u)||? Setting

H1/2(47)
S (X) 1= Lixj<pjon MAY*u

and working as in the first three lines of (111), we can write for this sum the upper bound
+o0o )
X [ ([ e s-x ) dx ) ar ds
heo Y An/ Ay \Jlx|I=r/2"
+o00 .
=C Z/ / max(lt|‘3,|s|‘3)—(/ If(x)lzdx) di ds
h=0 41’4} 2" \Jx|<r/2n

C+c>o

C
=— 2"’(/ |f(x)|2dx) 5—/ |MAY*u|? dx.
2 lx|<r/2n 2% Jixi<r/2n

h=0

(113)

If n is large enough that C C/Z” , we get, combining (109), (110), (111), (112) and (113), for some
C1, G, positive,

||A”4(MA‘/4u)||H1/2(B)_C1/ |MA*u|? dx — C, Z —”/ |MAY*u|? dx,
B, /on _ B,pt1,\B

2hy

which ends the proof of the lemma. O

We now compare the H'/2 norm of A~"/4(M A'*y) in the annuli Ay, = Byn+1(xo) \ Bon—1(xo) with
the L? norm in the same annuli of M A'/#y. This result, like the previous one, was used in the proof of
Proposition 4.1.

Lemma A4. Let M € Hl/z(R,J‘/Ltth >1(R), m>1,t > 1, and u € H2(R). There exists C > 0
such that for every y € (0,1), for all n = ng € N (ng dependent on y and independent of u and M),
for every k € Z, and any xy € R, we have

Z 2k h||A_l/4(MA1/4u)||

2 H'/2(Byj41(x0)\ Byn— I(XO))

5)/[ |MAY*u2dx + Z‘ 2<’<—">/2/ | M AY*u|?dx.
B, k—n (x0) hek—n B,p41(x0)\Byn—1(x0)

Proof. Again we take xo = 0, but the estimates will be independent of xo. Given 4 € Z and / > 3 we set
Ap = Bynt1 \ Byn—1 and Dy p, = Byt \ Byn—i.
Fix y € (0, 1). We have, for w = A~"4(M A'*u) and for any / > 3 (to be chosen later),

() —w()P
o= [, [, e

<2[|A V4 1p, , M A ul)? F2AVA (1 —1p, ) MAY*u]? (114)

H/2(Ay) H'2(Ap)
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The first of these two terms is bounded above by

h+1-1

> / IMA*u>dx.  (115)
B

|A 41, , MAY*u|? / |MAY*u|? dx =
Dl,h s=h—I 2s+l\B2S

HI/Z(R) =

Multiplying by 2k=h and summing up from /2 = k to 400 we get
+00 too

> 2 MAT p,  MA Y, < C2T Y / IMA*u?dx.  (116)
B,n+1\Byn—1

h=k h=k—I

To estimate the remaining term on the right-hand side of (114), set g = (1—1p, ,) M A'/*u and write,
as in the first two lines of (111),

— 2
”A 1/4g||H1/2(Ah)

1 2
Z/ / 2(/ g(x) (|Z—X|_1/2—|S—x|_1/2) dx) dt ds
Anday 1t =] |x|<2h=lor |x|>2!+h

1 2 1 2
52/ / —2(/ (same)) dt ds+2/ / —2(/ (same)) dtds. (117)
A, Ja, [t—s| |x|>2!+h A, Ja, [t—s| x|<2—1

For the first of these last two terms we can write, following the same steps as in (111) and using the
fact that, since / > 3, we have |x — ¢/, |x —s| > 297! for every 5,1 € Aj, and 29 < |x| <297F1:

/Ah/Ah It—lslz(

2
/| 2l+hg(x)(|t—x|_1/2—|s—x|_1/2) dx) dt ds
x|>

|
o0

§C2h_’( 2—q/

IR

q=h+I

|g(x)|2dx). (118)

q<|x|<2¢+1

Multiplying the right-hand side by 2", where k € Z, taking the sum from / = k to +o0, interchanging

the summations, and using the fact that g(x) = M A'*u(x) when 29 < |x| <2971, we get the value

c2! +f 2k_q(q—l—k)(/
2

|MA”4u|2dx)

g=k+1 9= lx|=27+]
+o00
<c2' Y 2("—‘1)/2(/ |MA“4u|2dx), (119)
Z 29=|x|=<29H1
g=k+1
+o00
which is therefore an upper bound for the contribution to 2k=h|y |2 of the term in (117)

) : - H/2(4p)
containing the integral over |x| > 2/ 74, h=k

We still have to estimate the contribution of the term containing the integral over |x| < 2= we
can assume that 4 > k. Again following the same reasoning as in (111) and the using the inequalities

|x —s], |x —¢| > 2#~2 applicable to this case, we write
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2
1 ~1/2 ~1/2
5 g(x) (lt—x| —|s—x|7"?)dx ) dt ds
Apday |0 =517\ J|x|<2n—

< c/ / 2—3h2h—’(/ |g(x)|2dx) dt ds = cz—’/ |MAY*u|? dx
Ap JAp |x|<2h—1 |x| <21

h—[—1
=c2—’(/ |MA uldx+ / |MA”4u|2dx). (120)
| <2k~ £ Jaasixi<aat

Multiply the right-hand side of (120) by 2k=h take the sum from & = k to +o0, interchange the double
summation, evaluate the geometric series, and rename ¢ to /1 as the index of the remaining summation,
to obtain the upper bound

+o0
C2"+1/ |MA udx +C27% " / 2K M A u)? dx (121)
|x|<2k—! hek—I 2h<|x|<2h+1
+o0
for the contribution to Y 2K~/ |jw||%. of the term under consideration (second term on the last
. - H1/2(A4p)
line of (117)). h=k
Now choose / so that C 27! < y < 1, and set ng = /. Then, for all n > ny,
400 h—I
> ok (c 2! f |MAu?dx+C 272 )" / |MAY*u|? dx)
ek |x|<2k—! s—k—1I 25<|x|<25+!1
+o00
5)// |MA*u*dx + ) / KM M A u)? dx.
|x|<2k—n hek 2h<|x|<2h+1

By combining (114), (116), (119) and (121), for n > ny we finally get

+00

k—h A— 2
Z ) ||A 1/4(MA1/4u)”H1/2(Ah)
h=k
400
< )// |MA udx+ ) / 2=W/2| pp AVAy 12 dx. O
|x|<2k—n hefep ) 2T S x| <2

Next we show a sort of Poincaré inequality for functions in H'2(R) having compact support. Recall
that, for €2 an open subset of R, the extension by 0 of a function in H(} / 2(Q) = C@O(Q)H 1z is, generally
speaking, not in H'/2(R). This is why Lions and Magenes [1972] introduced the set Holé %(Q) for which
the Poincaré inequality holds.

Theorem A.5. Ler v € H'/2(R) be such that suppv C (—1,1). Then v € L2([—1,1]) and

/[—1 . v()|*dx < C v, ((=2.2).
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Proof.
g _ 2
/ |v(x)| dx <C [v()] 5 dx dy < C/ / [v(x) v(;))| dx dy
=l 1slyi=2 Jixist (X = 1<iyl<2 Jixi=1 X =y
() v ,
=€ dx dy = Cllvl,> (=2, 2). 0
/y|<2/|x|<2 |x — y|? Y 1lg2( ]

From Theorem A.5 it follows that

vl L2qrpy < CrY ”v”Hl/Z(R)-

The next three results justify the interchanging of infinite sums, pseudodifferential operators, and
integrals that we performed several times to obtain the localization estimates in Section 4.

In Lemma A.6 (resp. A.7) we consider a function g € H'/2(R)NL®(R) (resp. f € H'/2(R)NL®(R))
whose support is contained in By (resp. By ). We estimate the L?-norm of A*g (resp. A/ f) in
annuli Ay = Byn \ Byn—1 with h > k (resp. h < N).

Lemma A.6. Let g € H'/2(R)N L (R) be such that supp g C B« (R). Then for all h > k + 3 we have
184 gll L2,y = €227, (122)
where Ay, = B,yn \ Byn—1 and C depends on I|g||H1/2([R)’ gl oo ®)-

Proof. We fix h > k + 3 and let x € Aj. We set g5 = |Byx|™! fsz g(x) dx. We have

A"*g(x) = lim

/ g(y)—gx) dy = lim g(y)—gx) dy
g—0 |

x—ylze |x—y[3/2 £=0 Jix—y|ze |x — p[3/2
Y€B, K

180 — gkl dy + 272 / 2() — 2kl dy

2k

< C 27329k B! /
B,

< C27"22% (gl oy + gl Loo@)-

In the last inequality we used the fact that H'Y2(R) < BMO(R). It follows that

[A |AY4g(x)|? dx < C 22k~ 2”(||g||Loo(R)+II(gfllHl/z([R{))
h

Thus (122) holds. O

Lemma A.7. Let f € H'2(R) N L®(R) be such that supp f C BSx (R). Forall h < N — 3, we have

IAY* fll L2 a,ydx < C 2=N/2, (123)

where C depends on || f || gr1/2(y and || f || Lo
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Proof. Fix h < N —3 and x € Aj;,. We have

Al/4f(X) — lim f(y) —f(X) dy
60 Jjx—ylzs |x —p|3/2

o (f [0S0, f =0 ) o
2 |x—y|=2N-1

_ _ 13/2 _ 13/2
L0 oV ylze |x =yl |x =yl

We observe that if |x — y| < 2V 72 and x € Ay, then |y| <2¥~1 and thus f(y) = f(x) = 0. Hence

(124):[ S = /() dy+/ W=/,
2 2

N-2<|x—y|<aN |x—y[3/2 Nelx—y| |x—p[3/?

< CR2NN (| £ sy + 1 o) + 27V f o)

< C2N2( fll ey + 1/ ILoo)- (125)

From (125) it follows that
/Ah IAY4 F(x)|2dx < C 2_N+h(||f”21/2(ﬂ%) + |f||ioo(R))

and thus (123) holds. O

Corollary A.8. Let g € H'/2(R) N L*°(R) with supp g € Bk, for some k € Z and for every N > 0 let
fn be a sequence in H'/2(R) N L®°(R) such that ”fN”FIl/Z(R) + | /N Loy < C (C independent of
N) and supp fn C By Then

lim AY* fn(x)AY*g(x)dx = 0. (126)
N—>+oo JRr

Proof. We split the integral in (126) as follows:

/ AV fi (x) AV g (x) dx
R
k+2 N—=2
— A1/4 A1/4 d A1/4 A1/4 d
h:Z_OO /A REARISE T x+h§+3 /A AN ) d

00
+ > / A4 fn(x)AY*g(x)dx. (127)
h=N—1"4n

We estimate the three summations in (127). We take N > k.
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By applying Lemma A.7 we have

k+2 k+2

h;oo /Ah AV [y () A g (x) dx < h;_oo(/Ah AV fiy (x) 2 dx)1/2(/Ah A4 g(x)|? dx)!/?

k+2
< Clgl g2l grogy + 1 /v lew) Y 20772
h=—0o0
< 2k=N)/2, 128)

By Lemma A.6 we have

+oo IS
Z / AV f(x)A g (x) dx = CILIN iz I8 12y + 18 oo @) Z 2
h=N—1"4n =

< (C2kN, (129)

Finally, by applying Lemmas A.6 and A.7 we get

N-2 +o00
> / A4 fn(x)AV3g(x)dx < C2KN2 N a7hi2 < ¢ =2, (130)
h=k+3 " n h=k+3
By combining (127), (128) and (129) we get (126) and we can conclude. O

We conclude with the following technical result, used in the proof of Theorem 5.3.

Proposition A.9. Let (ay )i be a sequence of positive real numbers satisfying ',tio_oo 61]2c < 00 and
n 400
Za,zC <C Z 2(”“_1‘)/261,2c for everyn <0. (131)
—o0 k=n+1

There are 0 < § < 1, C > 0 and in < 0 such that for n < ii we have
n
Y ap <c@MP.
—00
Proof. Forn <0, we set 4,, = Zfoo a,zc. We have alzC = Ay — Aj—; and thus

+o00 +00
Ap<C Y 2R — g ) <C1—1/V2) Y 2R 4,
k=n+1 k=n+1

Therefore

+o0
A<ty 20H17R2 Y (132)

n+1
with

C 1 1
r:C—H(I—E)<1—E.
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The relation (132) implies the estimate

+o00
Ap S TAggr 1y 2017024, (133)
n+2

Now we apply induction on A,y in (133) and we get

too - +o0
(133) < 2 (Z 2(n+2—k)/2Ak) + E(Z 2(n+2—k)/2Ak)

n+2 n+2

400
=1(r+ l/ﬁ)(z 2(n+2—k)/2Ak)

n+2

+o0
=1(t+1/v2) (A,,+2 +1/V2)° 2<”+3—k)/2Ak)

n+3

400
<t(t+1/2)? Z 2(1+3-)/2 4, (by applying induction on A4 »)
n+3

+o00
<<tV 27Ray
k=0

A

t(t+ 1/6)‘”(% 2"‘)( f a,i)

k=0 k=—o00
+o0

<ua@+ 1V ) 4
k=—oc0

<Cy™,

with y = 7(t + 1/+/2)™". Therefore for some 8 € (0, 1) and for all n < 0 we have 4, < C(2")#. O
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