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WELL- AND ILL-POSEDNESS ISSUES FOR ENERGY SUPERCRITICAL WAVES

SLIM IBRAHIM, MOHAMED MAJDOUB AND NADER MASMOUDI

We investigate the initial value problem for some energy supercritical semilinear wave equations. We
establish local existence in suitable spaces with continuous flow. The proof uses the finite speed of
propagation and a quantitative study of the associated ODE. It does not require any scaling invariance of
the equation. We also obtain some ill-posedness and weak ill-posedness results.

1. Introduction

In this work, we discuss some well-posedness issues of the Cauchy problem associated to the semilinear
wave equation

∂2
t u−1u+ F ′(u)= 0 in Rt ×Rd

x , (1)

where d ≥ 2 and F : R→ R is an even regular function satisfying

F(0)= F ′(0)= 0 and uF ′(u)≥ 0. (2)

These assumptions on F include the massive case, that is, the Klein–Gordon equation. With hypothesis
(2), one can construct a global weak solution with finite energy data using a standard compactness
argument; see, for example [Strauss 1989]. However, the construction of (even local) strong solutions
requires some control on the growth at infinity and more tools. As regards the growth of the nonlinearity
F , we distinguish two cases. For dimensions d ≥ 3 we shall assume that our Cauchy problem is H 1-
supercritical in the sense that

F(u)
|u|2d/(d−2) ↗ +∞, u→∞ . (3)

In two space dimensions and thanks to Sobolev embedding, any Cauchy problem with polynomially
growing nonlinearities is locally well-posed regardless of the sign of the nonlinearity and the growth
of F at infinity. This is a limit case of (3). Square exponential nonlinearities were investigated first
in [Nakamura and Ozawa 1999b], where global existence and scattering for small Cauchy data were
proved, then in [Atallah-Baraket 2004], where local existence was obtained under restrictive conditions,
and finally in [Ibrahim et al. 2007a], where a new notion of criticality based on the size of the energy
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appears. In this paper, we examine the situation of other growths of exponential nonlinearities (not
necessarily square). More precisely, when d = 2, we assume either

log(F(u))
|u|2

↗ +∞ as u→∞, (4)

or
for some q with 0< q ≤ 2,

log(F(u))
|u|q

= O(1) as u→∞. (5)

The model example that we are going to work with when d = 3 is given by

∂2
t u−1u+ u7

= 0. (6)

It is a good prototype for all higher dimensions d ≥ 3 illustrating assumption (3). In two dimensions, we
take

∂2
t u−1u+ u (1+ u2)((q−2)/2)e4π((1+u2)(q/2)−1)

= 0, (7)

with q > 0, illustrating either the cases (4) or (5), depending on whether q > 2 or q ≤ 2.
Define the total energy of u by

E(u(t)) def
= ‖∇t,x u(t)‖2L2

x
+

∫
Rd

2F(u(t)) dx .

The energy of data (ϕ, ψ) ∈ Ḣ 1
× L2 is given by

E(ϕ, ψ) def
= ‖∇ϕ‖2L2

x
+‖ψ‖2L2

x
+

∫
Rd

2F(ϕ) dx .

When ψ = 0, we abbreviate E(ϕ, 0) to simply E(ϕ).
In the sequel, we adopt the following definitions of weak solution and local/global well-posedness of

the Cauchy problem associated to (1).

Definition 1.1. Let X := X1×X0 be a Banach space.1 A weak solution of (1) is a function u :R→ X1 with
(∂t u,∇x u) ∈ L∞(R, X0) satisfying (1) in the distributional sense and having finite propagation speed.
When X = H 1

× L2 is the energy space, we have in addition F(u) ∈ L∞(R, L1) and E(u(t))≤ E(u(0))
for all t .

The existence of such solutions will one of our results.

Definition 1.2.
• The Cauchy problem associated to (1) is locally well-posed in X , abbreviated as LWP, if for every

data (u0, u1) ∈ X , there exists a time T > 0 and a unique2 (distributional) solution

u : [−T, T ]×Rd
→ R

to (1) such that (u, ∂t u) ∈ C([−T, T ]; X), (u, ∂t u)(t = 0) = (u0, u1), and such that the solution
map (u0, u1) 7→ (u, ∂t u) is continuous from X to C([−T, T ]; X).

• The Cauchy problem is globally well-posed (GWP) if the time T can be taken arbitrary.

1Typically, X = Bs
p,q × Bs−1

p,q , for some suitable choice of s, p and q.
2In some cases the uniqueness holds in more restrictive space.
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• The Cauchy problem is strongly well-posed (SWP) if the solution map is uniformly continuous.
• The Cauchy problem is ill-posed (IP) if the solution map is not continuous.
• The Cauchy problem is weakly ill-posed on a set Y ⊂ X (WIP) if the solution map

(u0, u1) ∈ Y 7→ (u, ∂t u)

is not uniformly continuous from Y to C([−T, T ]; X).
We recall a few historic facts about this problem. First, in space dimensions d ≥ 3, the defocusing

semilinear wave equation with power p reads

∂2
t u−1u+ |u|p−1u = 0, (8)

where p > 1. This problem has been widely investigated and there is a large literature dealing with the
well-posedness theory of (8) in the scale of the Sobolev spaces H s . Second, for the global solvability in
the energy space Ḣ 1

× L2, there are mainly three cases. In the subcritical case

p < p∗ def
=

d + 2
d − 2

,

Ginibre and Velo [1985] finally settled global well-posedness in the energy space, by using the Strichartz
estimate, nonlinear estimates in Besov space, and energy conservation.

The critical case p = p∗ is more delicate, due to possibility of energy concentration. Struwe [1988]
proved global existence of radially symmetric regular solutions. Then Grillakis [1990; 1992] extended
this result to nonradial data. In the energy space, Ginibre, Soffer and Velo [Ginibre et al. 1992] proved
global well-posedness in the radial case, where the Morawetz estimate effectively precludes concentra-
tion. The case of general data was solved by Shatah and Struwe [1994], and Kapitanski [1994]. See also
[Ibrahim and Majdoub 2003] for variable metrics. Note that uniqueness in the energy space is not yet
fully solved. We refer to [Planchon 2003] for d ≥ 4, to [Struwe 1999; Masmoudi and Planchon 2006]
for partial results in d = 3, and to [Struwe 2006] for the case of classical solutions.

The supercritical case p > p∗ is even harder, and the global well-posedness problem for general data
remains open, except for the existence of global weak solutions [Strauss 1989], local well-posedness in
higher Sobolev spaces (H s with s ≥ d/2−2/p> 1) as well as global well-posedness with scattering for
small data [Lindblad and Sogge 1995; Wang 1998], and some negative results concerning nonuniform
continuity of the solution map [Burq et al. 2007; Christ et al. 2003; Lebeau 2001]. See also [Lebeau
2005] for a result concerning a loss of regularity and [Tao 2007] for a result about global regularity for
a logarithmically energy-supercritical wave equation in the radial case.

It is worth noticing that the nonlinearities considered in [Burq et al. 2007; Christ et al. 2003; Lebeau
2001; 2005] are homogeneous, and thus at first glance, the proofs cannot be adapted to the case of inho-
mogeneous nonlinearities. But as suggested in [Alazard and Carles 2009], it might be that homogeneity
is used only to guess a suitable ansatz. We also mention the NLS analogues of [Lebeau 2005] (see for
example [Alazard and Carles 2009; Carles 2007; Thomann 2008]). Several different techniques are used
there, to get some results which seem out of reach with an ODE approach (in [Alazard and Carles 2009],
the case d = 1 is allowed, and the trick used in [Lebeau 2005] and [Burq et al. 2007] cannot be adapted,
apparently). See also [Burq and Tzvetkov 2008] about random data Cauchy theory for supercritical wave
equations.
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In dimension two, H 1-critical nonlinearities seem to be of exponential type3, since every power is
H 1-subcritical. On the one hand, in a recent work [Ibrahim et al. 2006], the case F(u)= 1/8π(e4πu2

−1)
was investigated and an energy threshold was proposed. Local strong well-posedness was shown under
the size restriction ‖∇u0‖L2 < 1 and the global well-posedness was obtained in both the sub and critical
cases (when the energy is below or equal to the energy threshold). Very recently, Struwe [2009] has
constructed global smooth solutions with radially symmetric data of arbitrary size. On the other hand, the
ill posedness results of [Lebeau 2005; Christ et al. 2003; Burq et al. 2002] show the nonuniform continuity
of the solution map (or sometimes its noncontinuity at the zero data). In the two-dimensional exponential
case and since small data are in the subcritical regime, we prove only the nonuniform continuity of the
solution map. It is worth to note that the results of [Christ et al. 2003] are based on the scaling invariances
of the wave and Schrödinger equations with homogeneous nonlinearities. The idea developed there
[Christ et al. 2003] is to approximate the solution by its corresponding ODE (at the zero dispersion
limit). Since solutions of the ODE are periodic in time, then a decoherence phenomena occurs for small
time since the ODE solutions oscillate fast. Note that the original result in this field appears in [Lebeau
2001].

Hence, in this paper our main aim is to investigate the local well and ill posedness regardless of the
size of the initial data. Our idea to overcome the absence of scaling invariance is to choose regularized
step functions as initial data (i.e., functions constant near zero). The presence of the step immediately
guarantees the equality between the PDE and the ODE solutions in a backward light cone, thanks to the
finite speed of propagation. The length of the step can be adjusted (in the supercritical regime) so that
ill-posedness/weak ill-posedness occurs inside the light cone.

This paper is organized as follows. In Section 2, we state our main results. In Section 3, we recall
some basic definitions and auxiliary lemmas. In Section 4, we investigate the energy regularity regime.
Section 5 is devoted to the low regularity data.

Finally, we mention that, C will be used to denote a constant which may vary from line to line. We
also use A . B to denote an estimate of the form A ≤ C B for some absolute constant C and A ≈ B if
A . B and B . A.

2. Main results

Energy regularity data. First we show that if the general assumptions (2)+(3) or (2)+(4) are satisfied,
the nonlinearity is too strong to ensure the local well-posedness in the energy space:

Theorem 2.1. Assume that d ≥ 3 and (2)+(3), or d = 2 and (2)+(4).

(1) There exist a sequence (ϕk) in Ḣ 1 and a sequence (tk) in (0, 1) satisfying

‖∇ϕk‖L2
x
→ 0, tk→ 0, supk E(ϕk) <∞,

and such that any weak solution uk of (6) with initial data (ϕk, 0) satisfies

lim inf
k→+∞

‖∂t uk(tk)‖L2
x
& 1.

In particular the Cauchy problem is ill-posed in H 1
× L2.

3In fact, the critical nonlinearity is of exponential type in any dimension d with respect to Hd/2 norm.
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(2) If we relax the condition supk E(ϕk) <∞ by taking limk→+∞
∫

F(ϕk)=+∞, we can even get

lim
k→+∞

‖∂t uk(tk)‖L2
x
=∞ .

Remark 2.2. Lebeau [2001] proved a loss of regularity result for energy supercritical homogeneous
wave equation; see also [Christ et al. 2003]. Recently, Tao [2007] has shown the global well-posedness
in the radial case of a logarithmic energy supercritical wave equation in H 1+ε

× H ε for any ε > 0. The
above Theorem shows that ε cannot be taken zero.

The above theorem covers model (7) in two space dimensions with q > 2. When q < 2, recall that
the global well-posedness in the energy space can easily be obtained through the sharp Trudinger–Moser
inequality combined with the simple observation that for ε > 0 there exists Cε > 0 such that∣∣(1+ u2)(q−2)/2e4π(1+u2)q/2

− e4π ∣∣≤ Cε (eεu
2
− 1) for all u ∈ R.

In the case q = 2, the local well-posedness for the Cauchy problem associated to (7) in the energy space
was first established in [Nakamura and Ozawa 1999a; 1999b] for small Cauchy data. Later on, optimal
smallness for well-posedness was investigated, first in [Atallah-Baraket 2004] for radially symmetric
initial data (0, u1), and then in [Ibrahim et al. 2006; 2007b] for general data. The following result
generalizes the previous results to any data in the energy space regardless of its size.

Theorem 2.3. Let (u0, u1) ∈ H 1
× L2. There exists a time T > 0 and a unique solution u of (7) with

q = 2 in the space CT (H 1) ∩ C1
T (L

2) satisfying u(0, x) = u0(x) and u̇(0, x) = u1(x). Moreover, the
solution map is continuous on H 1

× L2.

In [Ibrahim et al. 2007b] it is shown that the local solutions of (7) (with q = 2) are global whenever
the total energy E ≤ 1, where

E(u(t)) def
= ‖∇t,x u(t)‖2L2

x
+

1
4π

∫
R2

e4πu2
− 1 dx .

Indeed, in that case, the Cauchy problem is strongly well-posed. The following result shows the weak
ill-posedness on the set { E < 1+ δ } for any δ > 0. More precisely

Theorem 2.4. Let ν > 0. There exist a sequence of positive real numbers (tk) tending to zero and two
sequences (uk) and (vk) of solutions of the nonlinear Klein–Gordon equation

�u+ ue4πu2
= 0, (9)

satisfying

‖(uk − vk)(t = 0, · )‖2H1 +‖∂t(uk − vk)(t = 0, · )‖2L2 = o(1) as k→+∞,

0< E(uk, 0)− 1≤ e3ν2, 0< E(vk, 0)− 1≤ ν2,

lim inf
k→∞

‖∂t(uk − vk)(tk, · )‖2L2 ≥
π

4
(e2
+ e3−8π )ν2.

Notice that Theorem 2.3 yields the continuity with respect to the initial data and Theorem 2.4 yields
that there is no uniform continuity if the energy is larger than 1 (supercritical regime).
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Remark 2.5. Struwe [2009] has constructed global smooth solutions for the two-dimensional energy
critical wave equation with radially symmetric data. Although the techniques are different, this result
might be seen as an analogue of Tao’s result [2007] for the three-dimensional energy supercritical wave
equation. Our Theorem 2.4 shows just the weak ill-posedness in the supercritical case. This is weaker
than the result in higher dimensions where the flow fails to be continuous at zero as shown in [Christ
et al. 2003]. The reason behind this is that small data are always subcritical in the exponential case.

Low regularity data for the model (7). Now that the local well/ill-posedness is clarified in the energy
space for dimension d ≥ 2, our next task in this paper is to seek for the “largest possible spaces” in which
we have local well-posedness for the Cauchy problem associated to the model (7). Recall that we have
the embeddings

H 1(R2) ↪→ B1
2,∞(R

2) ↪→ H s(R2), s < 1 . (10)

The next theorem show the failure of the well-posedness in spaces slightly bigger than the energy space
in the case q = 2. This means that the Cauchy problem posed either in B1

2,∞ or H s with s < 1 becomes
supercritical. More specifically:

Theorem 2.6. Assume q=2. Let W :={ u∈ L2
:∇u∈ L2,∞

}, where L2,∞ is the classical Lorentz space.4

(1) There exists a sequence (ϕk) in W and a sequence (tk) in (0, 1) satisfying

‖ϕk‖W→ 0 as tk→ 0,

and such that any weak solution uk of (7) with initial data (ϕk, 0) satisfies

limk→∞ ‖∂t uk(tk)‖L2,∞ =∞.

(2) There exists a sequence (ϕk) in B1
2,∞ and a sequence (tk) in (0, 1) satisfying

‖ϕk‖B1
2,∞
→ 0 as tk→ 0,

and such that any weak solution uk of (7) with initial data (ϕk, 0) satisfies

limk→∞ ‖∂t uk(tk)‖B0
2,∞
=∞.

In particular, the flow fails to be continuous at 0 in the W×L2,∞ topology or B1
2,∞×B0

2,∞ topology.

(3) Let s < 1. There exists a sequence (ϕk) in H s and a sequence (tk) in (0, 1) satisfying

‖ϕk‖H s → 0 as tk→ 0,

and such that any weak solution uk of (7) with initial data (ϕk, 0) satisfies

limk→∞ ‖∂t uk(tk)‖H s−1 =∞.

In particular, the flow fails to be continuous at 0 in the H s
× H s−1 topology.

This theorem can be seen as a consequence of the following general result about arbitrary 1≤ q <∞.
Indeed, Equation (7) is subcritical at the regularity of the Besov space B1

2,q ′ but supercritical at the H s

regularity level with s < 1, where, as usual, q ′ denotes the Lebesgue conjugate exponent of q. More
precisely:

4It is defined by its norm ‖u‖L2,∞ := supσ>0(σ meas1/2
{ |u(x)|> σ }).
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Theorem 2.7. Assume that 1≤ q <∞.

(1) Let (u0, u1) ∈ B1
2,q ′ ×B0

2,q ′ .
5 There exists a time T > 0 and a unique solution u of (7) with initial

data (u0, u1) in the space CT (B
1
2,q ′)∩C1

T (B
0
2,q ′).

(2) Let s < 1. There exists a sequence (ϕk) in H s and a sequence (tk) in (0, 1) satisfying

‖ϕk‖H s → 0 as tk→ 0,

and such that any weak solution uk of (7) with initial data (ϕk, 0) satisfies

limk→+∞ ‖∂t uk(tk)‖H s−1 =∞.

In particular, the flow fails to be continuous at 0 in the H s
× H s−1 topology.

Remark 2.8. The same well-posedness results can be derived for the corresponding two dimensional
nonlinear Schrödinger equations.

We end this section with a table summarizing the picture of well/ill-posedness.

Data regularity

Setting H 1 B1
2,∞ H s with s < 1

d ≥ 3 and (3) WIP IP IP
d = 2 and (4) IP IP IP
d = 2 and q < 2 GWP & SWP LWP IP
d = q = 2 and E > 1 LWP & WIP IP IP
d = q = 2 and E ≤ 1 GWP & SWP IP IP

3. Background

Besov spaces. For the convenience of the reader, we recall the definition and some properties of Besov
spaces.

Definition 3.1. Let χ be a function in S(Rd) such that χ(ξ) = 1 for |ξ | ≤ 1 and χ(ξ) = 0 for |ξ | > 2.
Define the function ψ(ξ) = χ(ξ/2)− χ(ξ). The (homogeneous) frequency localization operators are
defined by ̂̇

4j u(ξ)= ψ(2− jξ) û(ξ) for all j ∈ Z.

If s < d/p, then u belongs to the homogeneous Besov space Ḃs
p,q(R

d) if and only if the partial sum∑m
−m 4̇j u converges to u as a tempered distribution and the sequence (2s j

‖4j u‖L p) belongs to `q(Z).

To define the inhomogeneous Besov spaces, we need an inhomogeneous frequency localization.

Definition 3.2. The inhomogeneous frequency localization operators are defined by

4̂j u(ξ)=


0 if j ≤−2,
χ(ξ)û(ξ) if j =−1,
ψ(2− jξ) û(ξ) if j ≥ 0.

5As we will see in the proof, when q ′ = ∞ the appropriate space is B̃1
2,∞, the closure of smooth compactly supported

function in the usual Besov space B1
2,∞.
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For N ∈ N, set
SN =

∑
j≤N−1

4j .

We say that u belongs to the inhomogeneous Besov space Bs
p,q(R

d) if u ∈ S′ and ‖u‖Bs
p,q
<∞, where

‖u‖Bs
p,q
=

‖4−1u‖L p +

( ∞∑
j=0

2 jqs
‖4 j u‖

q
L p

)1/q
if q <∞,

‖4−1u‖L p + sup j≥0 2 js
‖4 j u‖L p if q =∞ .

We recall without proof the following properties of the operators 4j and Besov spaces [Runst and
Sickel 1996; Triebel 1983; 1992; 1978].

• Bernstein’s inequality: For all 1≤ p ≤ q ≤∞ we have

‖4j u‖Lq (Rd ) ≤ C 2 jd(1/p−1/q)
‖4j u‖L p(Rd ) .

• Embeddings:

Bs
p,q(R

d) ↪→Bs1
p1,q1

(Rd), (11)

whenever

s− d
p
≥ s1−

d
p1
, 1≤ p ≤ p1 ≤∞, 1≤ q ≤ q1 ≤∞, s, s1 ∈ R .

• Equivalent norm: For s > 0 we have

‖u‖Bs
p,q
≈ ‖u‖L p +‖∇u‖Ḃs−1

p,q
. (12)

Sobolev spaces and Hölder spaces are special cases of Besov spaces: H s
= Bs

2,2 and Cσ
= Bσ

∞,∞,
for noninteger σ > 0.

We shall also use a result about functions that operate by pointwise multiplication in Besov spaces:

Theorem 3.3 [Runst and Sickel 1996, Theorem 4.6.2]. Let |s| < d/2. Any function in Ḃ
d/2
2,∞ ∩ L∞(Rd)

is a pointwise multiplier in the Besov space Ḃs
2,q(R

d).

An important application of this theorem6 which will be used in the sequel is the fact that the function
f (x) := x/r operates on Ḃ0

2,∞(R
2) via pointwise multiplication. Indeed, according to Theorem 3.3 it

suffices to show that f belongs to Ḃ1
2,∞(R

2). For this, note that f̂ is an homogeneous distribution of
degree −2, belonging to the C∞ class outside the origin. We can then define g ∈ S by ĝ = ψ f̂ . Hence
4j f (x)= g(2 j x) and ‖4j f ‖L2 = 2− j

‖g‖L2 .

Two-dimensional Strichartz estimate and logarithmic inequality.

Proposition 3.4 [Miao et al. 2004; Nakamura and Ozawa 2001].

‖u‖L4((0,T );B1/4
∞,2)
. ‖∂2

t u−1u+ u‖L1((0,T );L2)+‖u(0)‖H1 +‖∂t u(0)‖L2 . (13)

Using the embedding (11), we can replace B1/4
∞,2 with the Hölder space C1/4.

6We are grateful to Gérard Bourdaud for providing us this reference and a proof of the application.
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The following lemma shows that we can estimate the L∞ norm by a stronger norm but with a weaker
growth (namely logarithmic).

Lemma 3.5. Let 0< α < 1 and 1≤ q ≤∞. There exists a constant C such that

‖u‖L∞ ≤ C‖u‖B1
2,q′

log1/q
(

e+
‖u‖Cα

‖u‖B1
2,q′

)
. (14)

Similar inequalities appeared in [Brézis and Gallouet 1980]; they have been improved (with respect
to the best constant) as follows:

Lemma 3.6 [Ibrahim et al. 2007a, Theorem 1.3]. Let 0<α<1. For any λ>1/(2πα) and any 0<µ≤1,
a constant Cλ > 0 exists such that, for any function u ∈ H 1(R2)∩Cα(R2)

‖u‖2L∞ ≤ λ‖u‖
2
Hµ log

(
Cλ+

8αµ−α‖u‖Cα

‖u‖Hµ

)
, (15)

where Hµ is defined by the norm ‖u‖2Hµ := ‖∇u‖2L2 +µ
2
‖u‖2L2 .

Proof of Lemma 3.5. Write u =
N−1∑
j=−1
4j u +

∞∑
j=N
4j u, with N ≥ 0 an integer to be chosen later. Using

Bernstein’s inequality, we get

‖u‖L∞ ≤ C
N−1∑
j=−1

2 j
‖4j u‖L2 +

∞∑
j=N

2− jα (2 jα
‖4j u‖L∞

)
≤ C

(
N 1/q
‖u‖B1

2,q′
+

2−Nα

1−2−α
‖u‖Cα

)
.

Choosing N ∼
1

α log 2
log

(
e+
‖u‖Cα

‖u‖B1
2,q′

)
, we obtain (14) as desired. �

Oscillating second order ODE. Here we recall a classical result about ordinary differential equations.

Lemma 3.7 [Arnaudiès and Lelong-Ferrand 1997, Section III.5]. Let F : R→ R be a smooth function.
The ODE

ẍ(t)+ F ′(x(t))= 0, (16)

with initial conditions x(0)= x0 > 0 and ẋ(0)= 0, has a nonconstant periodic solution if and only if the
function G : y 7→ 2(F(x0)− F(y)) has two distinct simple zeros α and β with α ≤ x0 ≤ β and G has no
zero in the interval ]α, β[. The period is then given by

T = 2
∫ β

α

dy
√

G(y)
=
√

2
∫ β

α

dy
√

F(x0)− F(y)
.

In addition, x is decreasing on [0, T/4] and x(T/4)= 0.

Trudinger–Moser inequalities. It is known that the Sobolev space H 1(R2) is embedded in all Lebesgue
spaces L p for 2 ≤ p < ∞ but not in L∞. Moreover, H 1 functions are in the so-called Orlicz space,
that is, their exponentials are integrable for every growth less than eu2

. Precisely, we have the following
Trudinger–Moser inequality (see [Adachi and Tanaka 2000; Ruf 2005] and references therein).
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Proposition 3.8. Let α ∈ (0, 4π). A constant cα exists such that∫
R2

(
eα|u(x)|

2
− 1

)
dx ≤ cα‖u‖2L2 (17)

for all u in H 1(R2) such that ‖∇u‖L2(R2) ≤ 1. Moreover, if α ≥ 4π , then (17) is false.

We point out that α = 4π becomes admissible in (17) if we require ‖u‖H1(R2) ≤ 1 rather than
‖∇u‖L2(R2) ≤ 1. Precisely, we have

sup
‖u‖H1(R2)≤1

∫
R2

(
e4π |u(x)|2

− 1
)

dx <∞

and this is false for α > 4π . See [Ruf 2005] for more details.
The estimates above obviously control any exponential power with smaller growth (q < 2). However,

no estimate holds if the growth is higher (q > 2). Hence, the value q = 2 is also another criticality
threshold for problems involving such nonlinearities.

Some technical lemmas.

Lemma 3.9. For any 0< a < 1, ∫ 1

a
re4a2 log2 r dr ≤ 2. (18)

Proof. Let I (a) be the integral in (18). The change of variable s =−2a log r yields

I (a)=
1

2a
e−1/(4a2)

∫
−2a log a

0
e(s−1/2a)2ds =

1
2a

e−1/(4a2)

∫
−2a log a−1/(2a)

−1/(2a)
ey2

dy.

But −2a log a− 1
2a
≤

1
2a

for 0< a < 1; thus

I (a)≤ 2Ae−A2
∫ A

0
ey2

dy,

where A = 1
2a

. It remains to prove that for all nonnegative A∫ A

0
ey2

dy ≤
eA2

A
. (19)

Estimate (19) is obvious when A ≤ 1. If A ≥ 1, we write∫ A

0
ey2

dy =
∫ 1

0
ey2

dy+
∫ A

1
2yey2 dy

2y
,

and an integration by parts gives ∫ A

0
ey2

dy ≤
e
2
+

eA2

2A
+

∫ A

1

ey2

2y2 dy.

Using the monotonicity of the function y 7→ ey2
/(2y2), the estimate (19) follows. �
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Lemma 3.10. For any a ≥ 1 and k ≥ 1,∫ 1

e−k/2
re(4a2/k) log2 r dr ≤ 2e(a

2
−1)k . (20)

Proof. Let I (a, k) be the integral in (20). The change of variable u =− 2a
√

k
log r yields

I (a, k)=
√

k
2a

e−k/(4a2)

∫ a
√

k

0
e(u−

√
k/(2a))2 du.

Changing once more the variable to v = u−
√

k
2a

yields

I (a, k)=
√

k
2a

e−k/(4a2)

∫ (2a2
−1)
√

k/(2a)

−
√

k/(2a)
ev

2
dv.

Hence, for any a ≥ 1 we have

I (a, k)≤

√
k

a
e−k/(4a2)

∫ (2a2
−1)
√

k/(2a)

0
ev

2
dv.

Now, using the estimate
∫ A

0
eu2

du ≤
eA2
− 1

A
≤

eA2

A
, true for all nonnegative A, we obtain (20). �

Lemma 3.11. For any λ > 0 and A > λ,∫ A

A−λ2/A

du√
eA2
− eu2

≤
A e2λ2

A2− λ2 e−A2/2. (21)

Proof. Choosing h(u)= −1
ueu2 and g′(u)= ueu2√

eA2
−eu2

, and integrating by parts, we deduce (21). �

Lemma 3.12. For any A > 1, ∫ A

0

du√
eA2
− eu2

≈ A e−A2/2. (22)

Proof. Let I (A) be the integrating in (22). In one hand, it is clear that

I (A)≥ A e−A2/2.

In the other hand, write

I (A)=
∫ A−1/(4A)

0

du√
eA2
− eu2

+ J
(

A, 1
2

)
. (23)

By Lemma 3.11, we get

J
(

A, 1
2

)
≤

A e1/2

A2− 1
4

e−A2/2 . A e−A2/2.

For any 0≤ u ≤ A− 1
4A

, we have

1√
eA2
− eu2

≤
1√

eA2
− e(A−1/4A)2

. e−
A2
2 .
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Hence, the first integral in (23) can be estimated by
∫ A−1/(4A)

0

du√
eA2
− eu2

. A e−A2/2, and (22) follows.
�

4. Energy regularity data

This section is devoted to the well-posedness issues in energy space stated in Section 2. Some of these
results were announced in [Ibrahim et al. 2007b]. We begin with Theorem 2.1.

Proof of Theorem 2.1. First, consider the case d ≥ 3. We prove statement (1) of the theorem.

• Construction of ϕk . For k ≥ 1 and ε > 0 (depending on k as we will see later) define ϕk by

ϕk(x)=


0 if |x | ≥ 1,
a(k, ε)(|x |2−d

− 1) if ε/k ≤ |x | ≤ 1,
k(d−2)/2 if |x | ≤ ε/k,

where a(k, ε)= ε
d−2k(d−2)/2

kd−2−εd−2 is chosen such that ϕk is continuous. An easy computation yields

‖∇ϕk‖
2
L2 .

εd−2kd−2

kd−2− εd−2 . ε
d−2.

Using assumption (3), we get∫
Rd

F(ϕk(x))dx . F(k(d−2)/2)
(
ε

k

)d
+

∫ 1

ε/k
F
(
a(k, ε)(r2−d

− 1)
)
rd−1dr

. F(k(d−2)/2)
(
ε

k

)d
(

1+
1− (ε/k)d(

1− (ε/k)d−2
)2d/(d−2)

)
.

Since k
(
F(k(d−2)/2)

)−1/d
→ 0 we will choose

ε = εk
def
= k

(
F(k(d−2)/2)

)−1/d
.

With this choice, we can see that ‖∇ϕk‖L2 → 0 and supk E(ϕk) <∞.

• Construction of tk . Consider the ordinary differential equation associated to (1):

8̈+ F ′(8)= 0, (8(0), 8̇(0))= (k(d−2)/2, 0). (24)

Using Lemma 3.7 and the assumptions on F , we can see that (24) has a unique global periodic
solution 8k with period

Tk = 2
√

2
∫ k(d−2)/2

0

d8√
F(k(d−2)/2)− F(8)

= 2
√

2
k(d−2)/2√

F(k(d−2)/2)

∫ 1

0

(
1−

F(vk(d−2)/2)

F(k(d−2)/2)

)−1/2

dv.

By assumption (3), we get

Tk ≤ 2
√

2
k(d−2)/2√

F(k(d−2)/2)

∫ 1

0

(
1− v2d/(d−2))−1/2dv . k(d−2)/2(F(k(d−2)/2)

)−1/2
.
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It follows that (for k large enough)

Tk �
εk

k
.

Now we are in a position to construct the sequence (tk). Recall that by finite speed of propagation,
any weak solution uk of (1) with data (ϕk, 0) satisfies

uk(t, x)=8k(t) if 0< t < εk
k

and |x |< εk
k
− t.

Hence

|∂t uk(t, x)| = |8̇k(t)| =
√

2
√

F(k(d−2)/2)− F(8k(t)).

Let us choose tk =
Tk
4

; then 8k(tk)= 0, tk �
εk
k

and, for |x |< εk
k
− tk ,

|∂t uk(tk, x)| =
√

2
√

F(k(d−2)/2)− F(8k(tk))&
√

F(k(d−2)/2).

So

‖∂t uk(tk)‖2L2 & F(k(d−2)/2)
(
εk
k
− tk

)d
=

(
εk
k

)d
F(k(d−2)/2)

(
1− tk

k
εk

)d
,

and the conclusion follows.

Now we turn to the proof of the second claim of Theorem 2.1. For clarity, we restrict ourselves to the
model example (6). For any real a > 0, we denote by 8a the unique global solution of

8̈(t)+87(t)= 0, (8(0), 8̇(0))= (a, 0) . (25)

By Lemma 3.7, 8a is periodic with period T (a). By a scaling argument, we have T (a)= a−3 T (1), and
therefore

T (a)= C a−3, (26)

for some absolute positive constant C .

• Construction of tk . Let (Mk) be a sequence of integers tending to infinity and such that

Mk = o(k1/6) as k→∞ . (27)

We denote by (ηk) the unique sequence in (0,∞) satisfying

4Mk =
1

1− (1− ηk)3
. (28)

As a consequence of these choices, we obtain the crucial identity

Mk T (
√

k)=
(
Mk −

1
4

)
T (
√

k(1− ηk)) . (29)

A good choice for the sequence (tk) is then

tk = Mk T (
√

k) . (30)

Taking advantage of (26) and (27), we get tk � k−4/3.
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• Construction of ϕk . The idea is to take a function ϕk oscillating between
√

k and
√

k(1 − ηk) a
certain number of times. Choose a sequence (Nk) of even integers tending to infinity and such that

Nk ∼ C k1/6 M2
k , (31)

and set αk := 10 tk Nk k4/3
∼ C M3

k . Divide the radial interval k−4/3
≤ r ≤ (αk + 1)k−4/3 into Nk

subintervals each of them has a length 10 tk and write

[k−4/3, (αk + 1)k−4/3
] =

Nk−1⋃
j=0

[a( j)
k , a( j+1)

k ],

where a( j)
k = k−4/3

+ 10 j tk . Now consider a ϕk that is continuous and oscillates between
√

k and
√

k(1− ηk) as follows:

ϕk(r)=
√

k if r ≤ k−4/3,

ϕk(r)=
√

k(1− ηk) if k−4/3
+ tk ≤ r ≤ k−4/3

+ 9tk,

ϕk(r)=
√

k if k−4/3
+ 11tk ≤ r ≤ k−4/3

+ 19tk,

ϕk(r)= · · · ,

ϕk(r)=
√

k if k−4/3
+ (10Nk − 9)tk ≤ r ≤ k−4/3

+ (10Nk − 1)tk,

ϕk(r)=
√

k if r ≥ k−4/3
+ 10Nk tk;

in the remaining intervals, ϕk is affine. An easy computation shows that

‖∇ϕk‖
2
L2 . Nk

(√kηk

tk

)2
(k−4/3)3 tk k4/3 .

1
Mk

. (32)

Moreover, using the finite speed of propagation and the fact that

8√k(tk)=
√

k, 8√k(1−ηk)
(tk)= 0,

we conclude that any weak solution uk to (6) with data (ϕk, 0) satisfies

‖∂t uk(tk)‖2L2 & Nkk4(k−4/3)4tkk4/3 & M3
k . (33)

This finishes the proof for d ≥ 3. The case d = 2 can be handled in a similar way. We have just to make
a suitable choice of the initial data.

• Construction of ϕk . For k ≥ 1, we define ϕk by

ϕk(x)=


0 if |x | ≥ 1,
−2
√

k

log F(
√

k)
log |x | if εke−k/2

≤ |x | ≤ 1,
√

k if |x | ≤ εke−k/2,
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where εk = ek/2(F(
√

k))−1/2. Remark that, by (4), we have εk → 0. An easy computation using
(4) yields

‖∇ϕk‖
2
L2 .

−1
log εk

,

and ∫
R2

F(ϕk(x)) dx . ε2
k e−k F(

√
k)+

∫ 1

εke−k/2
r exp

(
4

log2 r

(log F(
√

k))2

)
dr.

The choice of εk implies that the first summand on the right side is . 1. For the second summand,
we use Lemma 3.9.

• Construction of tk . As in higher dimensions, we consider the associated ordinary differential equa-
tion with data (

√
k, 0). This equation has a unique global periodic solution with period

Tk = 2
√

2
∫ √k

0

d8√
F(
√

k)− F(8)
.

By assumption (4), we get

Tk .
√

k
1
A

∫ A

0

du√
eA2
− eu2

,

where A =
√

log F(
√

k). It follows from Lemma 3.12 that Tk � εke−k/2. Now, arguing exactly in
the same manner as in higher dimensions, we finish the proof for d = 2. �

Proof of Theorem 2.3. The idea here is to split the initial data into a small part in H 1
× L2 and a smooth

one. First we solve the IVP with smooth initial data to obtain a local and bounded solution v. Then we
consider the perturbed equation satisfied by w := u− v and with small initial data. (A similar idea was
used in [Gallagher and Planchon 2003; Germain 2008; Kenig et al. 2000; Planchon 2000].) Now we
come to the details.

Existence. Given initial data (u0, u1) in the energy space H 1
× L2, we decompose it as

(u0, u1)= Sn(u0, u1)+ (I − Sn)(u0, u1),

where the first term is defined as (u0, u1)<n and the second as (u0, u1)>n , for n a (large) integer to be
chosen later. Note that

(u0, u1)>n→ 0 in H 1
× L2 as n→∞,

and that, for every n, (u0, u1)<n ∈ H 2
× H 1. First we consider the IVP with regular data

�v+ v+ f (v)= 0, (v(0, x), ∂tv(0, x))= (u0, u1)<n, f (v)= v(e4πv2
− 1). (34)

It is known that (34) is well-posed. More precisely, there exist a time Tn=T (‖(u0, u1)<n‖H2×H1)>0 and
a unique solution v to (34) in CTn (H

2)∩C1
Tn
(H 1). Moreover, we can choose Tn such that ‖v‖L∞Tn (H

2) ≤

(‖((u0)<n, (u1)<n)‖H2×H1 + 1).
Next we consider the perturbed IVP with small data

�w+w+ f (w+ v)− f (v)= 0, (w(0, x), ∂tw(0, x))= (u0, u1)>n. (35)
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We shall prove that (35) has a local in time solution in the space ET := CT (H 1)∩C1
T (L

2)∩ L4
T (C

1/4)

for suitable time T > 0. This will be achieved by a standard fixed point argument. We denote by w` the
solution of the linear Klein–Gordon equation with data (u0, u1)>n ,

�w`+w` = 0, (w`(0, x), ∂tw`(0, x))= (u0, u1)>n.

For a positive time T ≤ Tn and a positive real number δ, we denote by ET (δ) the closed ball in ET of
radius δ and center at the origin. On the ball ET (δ), we define the map 8 by

8 : w ∈ ET (δ) 7→ w̃

where
�w̃+ w̃+ f (w+w`+ v)− f (v)= 0, (w̃(0, x), ∂t w̃(0, x))= (0, 0) .

By energy and Strichartz estimates, we get

‖8(w)‖ET . ‖ f (w+w`+ v)− f (v)‖L1
T (L

2) . ‖w+w`‖L∞T (L
2)

∥∥eC‖w+w`+v‖2∞ + eC‖v‖2∞
∥∥

L1
T

It is clear that ∥∥eC‖v‖2∞
∥∥

L1
T
. T eC(‖(u0)<n‖H2+1)2 .

On the other hand, using the logarithmic inequality we infer

eC‖w+w`+v‖2∞ . eC‖(u0)<n‖
2
H2

(
C +
‖w+w`‖C1/4

δ+ ε

)C(δ+ε)2

,

where ε2
= ‖w0‖

2
H1 +‖w1‖

2
L2 . By the Hölder inequality in time we deduce∥∥eC‖w+w`+v‖2∞

∥∥
L1

T
. eC‖(u0)<n‖

2
H2 T 1−β/4(T 1/4

+ δ+ ε)β,

where β := C(δ+ ε)2 < 4 for δ and ε small enough. Finally, we get

‖8(w)‖ET . (δ+ ε)e
C‖(u0)<n‖

2
H2
(
T + T 1−β/4(T 1/4

+ δ+ ε)β
)
.

From this inequality it follows immediately that 8 maps ET (δ) into itself if T is small enough. To prove
that 8 is a contraction (at least for T small), we consider two elements w1 and w2 in ET (δ) and define

w = w1−w2, w̃ = w̃1− w̃2, w̄ = (1− θ)(w`+w1)+ θ(w`+w2)+ v with 0≤ θ ≤ 1.

We can write
f (w`+w1)− f (w`+w2)= w[(1+ 8πw̄2)e4πw̄2

− 1]

for some choice of 0≤ θ(t, x)≤ 1. By the energy estimate and the Strichartz inequality we have∥∥8(w1)−8(w2)
∥∥

ET
.
∥∥weC |w̄|2

∥∥
L1

T (L
2
x )
.

By convexity, we obtain

‖8(w1)−8(w2)
∥∥

ET
. ‖w(eC |w`+w1|

2
+ eC |w`+w2|

2
)
∥∥

L1
T (L

2
x )
.
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So arguing as before, we get

‖8(w1)−8(w2)‖ET . ‖w‖L∞T (L
2)

(
‖eC‖w`+w1‖

2
∞‖L1

T
+‖eC‖w`+w2‖

2
∞‖L1

T

)
,

. T 1−β/4(T 1/4
+ δ+ ε)β‖w1−w2‖T ,

for some β < 4. If the parameters ε > 0, δ > 0 and T > 0 are suitably chosen, then 8 is a contraction
map on ET (δ) and thus a local in time solution is constructed.

Uniqueness. We shall prove the uniqueness in the space

Fη := CT (H 2)∩C1
T (H

1)+{w ∈ ET : ‖w‖T ≤ η},

for any η < 1/
√

2. Let u := v+w and U := V +W be two solutions of (9) in Fη with the same initial
data. Since v, V ∈Ct(H 2) and H 2 is embedded in L∞, we can choose a time T > 0 such that (for some
constant C)

‖v‖L∞([0,T ],L∞) ≤ C and ‖V ‖L∞([0,T ],L∞) ≤ C . (36)

The difference U − u satisfies

�(U − u)+U − u = f (v+w)− f (V +W ), ((U − u), ∂t(U − u))(t = 0)= (0, 0).

Using the energy estimate and Strichartz inequality, we get

‖U − u‖ET .
∥∥ f (v+w)− f (V +W )

∥∥
L1

T (L
2)

.
∥∥(U − u)

(
U 2(e4πU 2

− 1)+ u2(e4πu2
− 1)

)∥∥
L1

T (L
2)

. ‖U − u‖L∞T (L
2/ε)

∥∥U 2(e4πU 2
− 1)+ u2(e4πu2

− 1)
∥∥

L1
T (L

2/(1−ε))
,

where ε > 0 is to be chosen small enough. To conclude the proof of the uniqueness, we have to estimate
the term ∥∥u2(e4πu2

− 1)
∥∥

L1
T (L

2/(1−ε))
,

for example. Observe that, for any β > 0 and a > 1,

x2(e4πx2
− 1)≤ Cβ(e4π(1+β)x2

− 1), (37)

and
(x + y)2 ≤

a
a− 1

x2
+ a y2 . (38)

Hence ∥∥u2(e4πu2
− 1)

∥∥
L1

T (L
2/(1−ε))

.
∫ T

0

(∫
R2

(
e8π 1+β

1−ε u2
− 1

)
dx
)(1−ε)/2

dt .

Moreover, using (38), we can write

e8π 1+β
1−ε u2

− 1≤
(

e8π 1+β
1−ε

a
a−1 v

2
− 1

)
+

(
e8π 1+β

1−ε aw2
− 1

)
+

(
e8π 1+β

1−ε
a

a−1 v
2
− 1

)(
e8π 1+β

1−ε aw2
− 1

)
. (39)

To estimate the first term on the right-hand side of (39), we use (36). For the second term, observe that

√
2 η

√
(1+β)a

1− ε
→ η
√

2< 1 as a→ 1 and ε, β→ 0 .
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This enables us to use the Trudinger–Moser inequality. We do the same for the last term. This concludes
the proof of the uniqueness in the space Fη. Note that we can weaken the hypothesis η < 1

√
2

to η < 1 if
we use the sharp logarithmic inequality (15). �

Remark 4.1. In higher dimensions d ≥ 3, we obtain a similar result in H d/2
× H d/2−1 for (1) by using

a decomposition in H d/2+1
× H d/2 and small in H d/2

× H d/2−1.

Proof of Theorem 2.4. For any k ≥ 1 define fk by

fk(x)=


0 if |x | ≥ 1,

−
log |x |
√

kπ
if e−k/2

≤ |x | ≤ 1,
√

k/4π if |x | ≤ e−k/2.

These functions were introduced in [Moser 1971] to show the optimality of the exponent 4π in Trudinger–
Moser inequality. An easy computation shows that ‖∇ fk‖L2(R2) = 1 and ‖ fk‖L2(R2) . 1/

√
k. Denote by

uk and vk any weak solutions of (9) with initial data ((1+ 1
k ) fk(

·

ν
), 0) and ( fk(

·

ν
), 0), respectively. By

construction,∥∥(uk − vk)(0)
∥∥2

H1 +
∥∥∂t(uk − vk)0)

∥∥2
L2 =

1
k2 ‖ fk

(
·

ν

)
‖

2
H1 = o(1) as k→∞.

Also, using estimate (20), it is clear that

0< E
((

1+ 1
k

)
fk

(
·

ν

))
− 1≤ e3ν2 and 0< E

(
fk

(
·

ν

))
− 1≤ ν2.

Now, we shall construct the sequence of time tk . A good approximation of uk and vk is provided by the
corresponding ordinary differential equation,

8̈+8e4π82
= 0. (40)

More precisely, let 8k and 9k be the solutions of (40) with initial data

8k(0)=
(

1+ 1
k

)√ k
4π
, 8̇k(0)= 0,

and

9k(0)=

√
k

4π
, 9̇k(0)= 0,

respectively. Note that by finite speed of propagation, we have 8k = uk and 9k = vk in the backward
light cone |x |< νe−k/2

− t , t < νe−k/2.
On the other hand, recall that the period Tk of 8k is given by

Tk = 2
∫ (1+1/k)

√
k

0

du√
e(1+1/k)2k − eu2

;

hence, using Lemma 3.12 we can prove that Tk ≈
√

k e−(1+1/k)2k/2. Therefore, one need to choose time
tk << e−(1+1/k)2k/2 and check that the decoherence of8k and9k occurs at time tk . Choose tk ∈ ]0, Tk/4[
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such that

8k(tk)=
(

1+ 1
k

)√ k
4π
−

((
1+ 1

k

)√ k
4π

)−1

.

It follows that

tk =
∫ √k+1/

√
k

√
k+1/

√
k−4π

√
k/(k+1)

du√
ek(1+1/k)2 − eu2

.

Using (21), we obtain tk . (1/
√

k)e−k/2. In particular, if k is large enough then tk . (ν/2)e−k/2. Now
we show that this time tk is sufficient to let instability occurs. Since 9k is decreasing on the interval
[0, (Tk/4)], we have

e4πψk(0)2 − e4πψk(tk)2 = |ek
− e4πψk(tk)2 |. ek,

Therefore,∣∣(8̇k(tk))2− (9̇k(tk))2
∣∣= 1

4π
∣∣(e4π8k(0)2 − e4π8k(tk)2)− (e4π9k(0)2 − e4π9k(tk)2)

∣∣& ek .

Finally, we deduce that∫
R2

∣∣∂t(uk − vk)(tk)
∣∣2 dx &

∫
|x |<(ν/2)e−k/2

∣∣∂t(uk − vk)(tk)|2 dx & ν2e−k
|8̇k(tk))− 9̇k(tk)

∣∣2
and the conclusion follows. �

5. Low regularity data

Proof of Theorem 2.6. (1) For k ≥ 1 and γ > 1, let ϕk = γ fk . An easy computation shows that

‖∇ϕk‖L2,∞ .
γ
√

k
.

Next we consider the solution 8k of the associated ODE with Cauchy data (γ
√

k/4π, 0). The period Tk

of 8k satisfies
Tk ≈ γ

√
k e−(γ

2/2)k
� e−k/2.

Arguing as in the previous section, we construct a sequence (tk) going to zero such that any weak solution
uk with Cauchy data (ϕk, 0) satisfies

‖∂t uk(tk)‖2L2,∞ & e(γ
2
−1)k,

and we are done.

(2) Now we will prove the ill-posedness in B1
2,∞. The main difficulty is the construction of the initial

data. For this end, consider a radial smooth function h ∈C∞0 (R
2) satisfying h(r)=0 if r ≥2 and h(r)=1

if r < 1. For a > 0, set ha(r)= h(r/a). Since ĥa(ξ)= a2ĥ(aξ), we get

|ĥa(ξ)| ≤
C
|ξ |2

uniformly in a. (41)

Now we define the function ga via

ga(r)=
1− ha(r)

r
.
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Proposition 5.1. |ĝa(ξ)| ≤
C
|ξ |

uniformly in a.

Proof. Write
ĝa(ξ)=

C
|ξ |
−C

( 1
|ξ |
? ĥa(ξ)

)
,

using the fact that r̂−1 = C |ξ |−1. (The convolution here is well defined.) Thus, we have to prove that,
for fixed ξ , ∣∣∣∣ ∫ ĥa(η)

|ξ − η|
dη
∣∣∣∣. 1
|ξ |

uniformly in a.

The idea now is the following: fix ξ such that |ξ | ∼ 2 j for some j ∈ Z and write∫
ĥa(η)

|ξ − η|
dη =

∫
|η|≤c2 j

ĥa(η)

|ξ − η|
dη+

∫
|η|∼2 j

ĥa(η)

|ξ − η|
dη+

∫
|η|≥C2 j

ĥa(η)

|ξ − η|
dη. (42)

Using (41), we can easily estimate the second and third terms on the right-hand side. To estimate the
first term, we use the fact that ĥa is uniformly in L1. �

Corollary 5.2. supa>0 ‖ga‖Ḃ0
2,∞
<∞.

Proof. Write ‖ga‖Ḃ0
2,∞
≈ sup j∈Z

∫
2 j−1<|ξ |<2 j+1

|ĝa(ξ)|
2 dξ . sup

j∈Z

∫ 2 j+1

2 j−1

dr
r
. 1, uniformly in a. �

Now we are ready to construct the sequence of initial data (ϕk). Let θ ∈ C∞0 (R
2) be a radial function

such that θ(r)= 1 if r ≤ 1 and θ(r)= 0 if r ≥ 2. For k ≥ 1, set

g̃k(r)=
1
√

k
ge−k/2(r)θ(r). (43)

It follows from Corollary 5.2 that ‖g̃k‖Ḃ0
2,∞
.

1
√

k
. Moreover, one can see easily that

1
C

√
k ≤

∫ 2

0
g̃k(r) dr C

√
k .

To finish the construction set

ϕk(r)= γ

√
k

4π
− ck

∫ r

0
g̃k(τ ) dτ,

where γ > 1 and ck is chosen so that ϕk(2)= 0. We now summarize some crucial properties of ϕk .

Proposition 5.3. (a) ϕk(r)= γ
√

k/4π if r ≤ e−k/2. (b) ϕk→ 0 in B1
2,∞(R

2).

Proof. Part (a) follows directly from the definition of the function g̃k . To prove (b), recall that

‖ϕk‖B1
2,∞
≈ ‖ϕk‖L2 +‖∇ϕk‖Ḃ0

2,∞
.

Since ‖ϕk‖L2 . 1/
√

k we have just to prove that ‖∇ϕk‖Ḃ0
2,∞

goes to zero. As ∇ϕk = (x/r)g̃k(r), it
suffices to apply Theorem 3.3 together with the fact that x/r ∈ Ḃ1

2,∞ ∩ L∞. �
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We resume the proof of Theorem 2.6, considering the associated ODE with Cauchy data (γ
√

k/4π, 0)
and denoting by 8k the (global periodic) solution with period

Tk .
∫ γ
√

k

0

du√
eγ2k − eu2

. γ
√

k e−(γ
2/2)k
� e−k/2 (γ > 1).

Set tk = Tk/4 so that 8k(tk) = 0. Note that by finite speed of propagation any weak solution uk of (7)
with Cauchy data (ϕk, 0) satisfies

uk(t, x)=8k(t) for 0< t < e−k/2 and |x |< e−k/2
− t.

Hence
−∂t uk(tk, x)& e(γ

2/2)k for |x |< e−k/2
− tk . (44)

It remains to estimate from below the norm ‖∂t uk(tk)‖Ḃ0
2,∞

. To get the desired estimate we proceed in
the following way. First recall that

‖∂t uk(tk)‖Ḃ0
2,∞
= sup
‖v‖

Ḃ0
2,1
=1

∫
R2
v(x) ∂t uk(tk, x) dx .

Then we have to make a suitable choice of v. Let v be a smooth compactly supported function such that

v(x)= 1 for |x | ≤ 1
4 , v(x)= 0 for |x | ≥ 1

2 .

For k ≥ 1 let vk(x)= ek/2 v(ek/2x). We remark that ‖vk‖Ḃ0
2,∞
= ‖v‖Ḃ0

2,∞
is a constant. Using (44), we get

‖∂t uk(tk)‖Ḃ0
2,∞
≥

∫
−∂t uk(tk, x) vk(x) dx ≥ ek/2

∫
|x |≤ 1

4 e−k/2
−∂t uk(tk, x) dx

& ek/2(e−k/2)2 e(γ
2/2)k
= e(γ

2
−1)/2k .

This finishes the proof of the part (2) of the theorem, since γ > 1.

(3) Without loss of generality, we may assume that 0 ≤ s < 1. Let 0 < γ < 1
2(1 − s) and consider

ϕk = kγ fk . It is clear that
‖ϕk‖H s . kγ k−(1−s)/2

→ 0

Denote by uk any weak solution of (9) with initial data (ϕk, 0) and 8k the solution of the associated
ODE with Cauchy data (kγ

√
k/4π, 0). The period Tk of 8k satisfies

Tk . kγ+1/2 e−(k
2γ+1)/2

� e−k/2.

Choose tk =
Tk
4

, so that 8k(tk)= 0. By finite speed of propagation, we have

uk(t, x)=8k(t) for |x |< e−k/2
− t, 0< t < e−k/2.

Hence |x |< e−k/2
− tk ,

−∂t uk(tk, x) = −8̇k(tk)=
1

2
√
π

√
ek2γ+1

− e4π82
k(tk) =

1
2
√
π

ek2γ+1/2. (45)



362 SLIM IBRAHIM, MOHAMED MAJDOUB AND NADER MASMOUDI

To conclude the proof we need to estimate from below ‖∂t uk(tk)‖H s−1 . Write

‖∂t uk(tk)‖H s−1 = sup
‖v‖H1−s=1

∫
R2
v(x) ∂t uk(tk, x) dx .

Set vk(x)= esk/2 v(ek/2 x), where v is as above. It follows that

‖∂t uk(tk)‖H s−1 ≥

∫
−∂t uk(tk, x) vk(x) dx ≥ esk/2

∫
|x |≤ 1

4 e−k/2
−∂t uk(tk, x) dx & esk/2 (e−k/2)2 e

1
2 k2γ+1

= e(s/2−1)k+ 1
2 k2γ+1

,

which goes to infinity when k→∞. �

Proof of Theorem 2.7. (1) Our aim here is to prove the local well-posedness of (7) in B1
2,q ′ ×B0

2,q ′ for
any 1≤ q <∞. The strategy is the same as in the proof of Theorem 2.3. We decompose the initial data
(u0, u1) into a small part7 in B1

2,q ′ ×B0
2,q ′ and a regular one:

(u0, u1)= (u0, u1)>N + (u0, u1)<N .

First we solve the IVP with regular data to obtain a local regular solution v, and then we solve the
perturbed IVP with small data using a fixed point argument to obtain finally the expected solution u.
Let us start by studying the free equation. For a given (u0

`, u1
`) ∈B1

2,q ′ ×B0
2,q ′ we denote by u` the free

solution with data (u0
`, u1

`), that is

�u`+ u` = 0, (u`, ∂t u`)(t = 0)= (u0
`, u1

`) . (46)

Using a localization in frequency, an energy estimate and te Strichartz inequality (13), we derive the
following result.

Proposition 5.4. Let T > 0. For any 1< q ′ ≤∞, there exists 0≤ ε(q ′) < 1
4 such that

‖u`‖L∞T (B
1
2,q′ )
+‖u`‖L4

T (C
1
4−ε)
. ‖u0

`‖B1
2,q′
+‖u1

`‖B0
2,q′
. (47)

(In fact, when q ′ ≤ 4, we have a zero loss of derivatives, meaning ε(q ′) = 0, and when q ′ > 4, one can
choose an arbitrary 0< ε < 1

4 .)

Proof. From the energy and Strichartz estimates applied to 1 j u`, we have

2 j
‖1 j u`‖L∞T (L

2)+ 2 j/4
‖1 j u`‖L4

T (L
∞) . 2 j

‖1 j u0
`‖L2 +‖1 j u1

`‖L2 . (48)

Summing this estimate in `q ′ we have
∥∥2 j/4
‖1 j u`‖L4

T (L
∞)

∥∥
`q′ ≤‖u0

`‖B1
2,q′
+‖u1

`‖B0
2,q′

. In the case q ′≤ 4,
the proposition follows from the observation∥∥u`‖L4(B

1/4
∞,q′ )
≤ ‖2 j/4

‖1 j u`‖L4
T (L

∞)

∥∥
`q′ ,

together with the Sobolev embedding B
1/4
∞,q ′→ C1/4. When q ′ > 4, notice that for any 0< ε < 1

4 ,

‖u`‖L4
T (B

1/4−ε
∞,4 )
=
∥∥(2 j/4− jε

‖1 j u`‖L∞)`4

∥∥
L4

T
=
∥∥2− jε(2 j/4

‖1 j u`‖L4
T (L

∞))
∥∥
`4 .

7To do so in the case q ′ =∞ we have to work with B̃1
2,∞ := D

B 1
2,∞ and B̃0

2,∞ := D
B 0

2,∞ .
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Using (48) and Hölder’s inequality in j — writing 1
4
=

1
q ′
+

1
r

, with r = 4q ′

q ′−4
— we get∥∥u`‖L4

T (B
1/4−ε
∞,4 )
≤ ‖(2− jε)

∥∥
`r

∥∥(2 j/4
‖1 j u`‖L4

T (L
∞))
∥∥
`q′ . ‖u0

`‖B1
2,q′
+‖u1

`‖B0
2,q′
.

Again, Sobolev embedding enables us to finish the proof. �

Define gq(u) := u
(
(1+ u2)(q−2)/2e4π((1+u2)q/2−1)− 1

)
, so that (7) reads

�u+ u+ gq(u)= 0. (49)

An easy computation shows that

|gq(u)− gq(v)| ≤

{
C |u− v|(eC |u|q

− 1+ eC |v|q
− 1) if 1≤ q ≤ 2,

C |u− v|(u2
+ eC |u|q

− 1+ v2
+ eC |v|q

− 1) if 2< q <∞.
(50)

According to (50) and the Sobolev embeddings

H 1 ↪→B1
2,q ′ if q ≤ 2, H 2 ↪→B1

2,q ′ ↪→ H 1 if q > 2,

we will distinguish two cases.

Case 1≤ q < 2. We solve �v+v+gq(v)= 0 with Cauchy data (u0, u1)<N ∈ H 1
×L2 to obtain a global

solution v ∈ C(R, H 1). Next we have to solve

�w+w+ gq(v+w)− gq(v)= 0, (w, ∂tw)(t = 0)= (u0, u1)>N . (51)

We seek w in the form
w = u`+w,

where u` is the free solution with Cauchy data (u0, u1)>N . Hence w solves

�w+w+ gq(v+ u`+w)− gq(v)= 0, (w, ∂tw)(t = 0)= (0, 0) . (52)

We rely on estimates for the linear part u` given by Proposition 5.4 in order to choose appropriate
functional spaces for which a fixed point argument can be performed. We introduce, for any nonnegative
time T and some 0≤ ε < 1

4 , the complete metric space

ET = C
(
[0, T ], H 1(R2)

)
∩C1(

[0, T ], L2(R2)
)
∩ L4

T
(
C

1
4−ε(R2)

)
,

endowed with the norm

‖u‖ET := sup
0≤t≤T

[
‖u(t, · )‖H1 +‖∂t u(t, · )‖L2

]
+‖u‖

L4
T (C

1
4−ε)

.

For a positive real number δ, we denote by ET (δ) the ball in ET of radius δ and centered at the origin.
On the ball ET (δ), we define the map 8 by

w 7→8(w) := w̃, (53)

where

�w̃+ w̃ = gq(v)− gq(v+ u`+w), (w̃, ∂t w̃)(t = 0)= (0, 0). (54)
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To show that, for small T and δ, 8 maps ET (δ) into itself and it is a contraction, we use Proposition 5.4
together with Lemma 3.5 and (50). We skip the details here and refer to [Ibrahim et al. 2006] for similar
arguments.

Case 2< q <∞. The method is almost the same as above, except for the choice of the functional spaces.
First we solve �v+ v+ gq(v) = 0 with Cauchy data (u0, u1)<N ∈ H 2

× H 1 to obtain a local solution
v ∈ C((−T, T ), H 2). Remember that in this case, the nonlinearity is too strong to solve the Cauchy
problem in H 1

× L2 (see Theorem 2.1). Next we have to solve

�w+w+ gq(v+w)− gq(v)= 0, (w, ∂tw)(t = 0)= (u0, u1)>N . (55)

We seek w in the form
w = u`+w,

where u` is the free solution with Cauchy data (u0, u1)>N . Hence w solves

�w+w+ gq(v+ u`+w)− gq(v)= 0, (w, ∂tw)(t = 0)= (0, 0) . (56)

We introduce, for any nonnegative time T , the complete metric space

ET = C
(
[0, T ], H 2(R2)

)
∩C1(

[0, T ], H 1(R2)
)
∩ L4

T
(
C1/4(R2)

)
,

endowed with the norm

‖u‖ET := sup
0≤t≤T

[
‖u(t, · )‖H2 +‖∂t u(t, · )‖H1

]
+‖u‖L4

T (C
1/4).

We denote by ET (δ) the ball in ET of radius δ and centered at the origin. On the ball ET (δ), we define
the map 8 by

w 7→8(w) := w̃, (57)

where

�w̃+ w̃ = gq(v)− gq(v+ u`+w), (w̃, ∂t w̃)(t = 0)= (0, 0). (58)

Having in hand Proposition 5.4, Lemma 3.5, and (50), we proceed in a similar way as in the previous
case (see also [Ibrahim et al. 2006]) but now we need to be more careful since the source term has to be
estimated in L1

T (H
1) instead of L1

T (L
2). We refer also to [Colliander et al. 2009] for similar computation

in the context of nonlinear Schrödinger equation.
(2) We turn to the second part of the theorem. Without loss of generality, we may assume that 0≤ s<1.

Also, for the sake of simplicity, we take q = 1. Let γ > 1
2 and, for k ≥ 1, consider the function gk defined

by

gk(x)=


√

k if |x | ≤ e−k/2,

−

√
k

log 2
log |x | +

√
k− k3/2

2 log 2
if e−k/2

≤ |x | ≤ 2e−k/2,

0 if|x | ≥ 2e−k/2.

We remark that
‖kγ gk‖H s . kγ−s+3/2 e−(1−s)k/2

→ 0 as k→∞.
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Denote by 8k the solution of the associated ODE with Cauchy data (kγ+
1
2 , 0). The period Tk of 8k

satisfies
Tk . kγ+1/2 e−1/2kγ+1/2

� e−k/2.

Choose tk =
Tk
4

so that 8k(tk)= 0. By finite speed of propagation, any weak solution uk of (7) satisfies

−∂t uk(tk, x) = 8̇k(tk)=
e−2π

2
√
π

√
e
√

k2γ+1+1− e
√
82

k(tk)+1 & e
1
2 kγ+

1
2 for |x |< e−k/2

− tk .

So arguing exactly as before, we get

‖∂t uk(tk)‖H s−1 & (e−k/2)2 esk/2 e
1
2 kγ+

1
2
= e(s/2−1)k+ 1

2 kγ+
1
2
.

This concludes the proof once γ > 1
2 . �
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