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RAYLEIGH-TYPE SURFACE QUASIMODES IN GENERAL LINEAR ELASTICITY

SÖNKE HANSEN

Rayleigh-type surface waves correspond to the characteristic variety, in the elliptic boundary region,
of the displacement-to-traction map. In this paper, surface quasimodes are constructed for the reduced
elastic wave equation, anisotropic in general, with traction-free boundary. Assuming a global variant of
a condition of Barnett and Lothe, the construction is reduced to an eigenvalue problem for a selfadjoint
scalar first order pseudodifferential operator on the boundary. The principal and the subprincipal symbol
of this operator are computed. The formula for the subprincipal symbol seems to be new even in the
isotropic case.

1. Introduction

Rayleigh [1887] discovered the existence of surface waves which propagate along a traction-free flat
boundary of an isotropic elastic body and which decay exponentially into the interior. The propagation
speed of the surface wave is strictly less than that of body waves. Barnett and Lothe [1976] showed that
Rayleigh-type surface waves can also exist at flat boundaries of anisotropic elastic media.

The goal of this paper is to construct, for elastic media which are not necessarily isotropic, Rayleigh-
type surface quasimodes which are asymptotic to eigenvalues or resonances. We use a geometric version
of semiclassical microlocal analysis.

The Rayleigh wave phenomenon of isotropic elastodynamics was explained by Taylor [1979] as prop-
agation of singularities, over the elliptic boundary region, for the Neumann (displacement-to-traction)
operator. Nakamura [1991] generalized this to anisotropic media, using the theory of Barnett and Lothe.
Assuming isotropy of the elastic medium, Cardoso and Popov [1992] and Stefanov [2000] constructed
Rayleigh quasimodes.

Let .M;g/ be an oriented Riemannian manifold with nonempty compact smooth boundary X . The
(infinitesimal) displacement of an elastic medium occupying M is a vector field u on M . The Lie
derivative of the metric tensor is a symmetric tensor field, Def uDLug=2, called the deformation (strain)
tensor caused by the displacement u. The elastic properties are defined by the elasticity (stiffness) tensor.
This is a real fourth order tensor field C 2C1.M IEnd.T 0;2M //, e 7!Ce, which maps into symmetric
tensors and vanishes on antisymmetric tensors. We assume positive definiteness of C , i.e., .e j f /C D
.Ce j f / defines an inner product on the space of symmetric tensors e and f . Here . � j � / denotes the
inner product on tensors induced from g. This assumption is often called the strong convexity condition.
If coordinates are given, then the components of C satisfy symmetries, C ijk` D C jik` D C k`ij , and
C ijk`eij ek` > 0 if eij is a nonzero symmetric tensor. (We use the summation convention.) Denote the
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Riemannian volume elements on M and X by dVM and dVX , respectively. The elasticity operator L

and the traction T are defined, on compactly supported vector fields, byZ
M

.Def u j Def v/C dVM D

Z
M

.Lu j v/ dVM C

Z
X

.T u j v/ dVX : (1)

A positive mass density � 2 C1.M / and the elasticity tensor C define the material properties of the
elastic medium. If the surface X is traction-free, then vibrations of the medium are solutions of the
following eigenvalue problem: Lu D �2�u in M , T u D 0 at X . See [Marsden and Hughes 1983] for
linear elasticity in the language of Riemannian geometry.

The principal symbol of L, and of the h-differential operator h2L, equals the acoustic tensor, c.�/D

c.�; �/2End.CTxM /, � 2T �x M ; see (31). Here the associated acoustical tensor c.�; �/2End.CTxM /,
�; � 2 T �x M , is defined as follows:�

c.�; �/v j w
�
D
�
v˝ � j w˝ �

�
C
: (2)

(Using g, we identify vectors with covectors.) The ik-th covariant component of c.�;�/ equals C ijk`�j�`.
The existence of Rayleigh waves depends on the characteristic variety, †, of the surface impedance

tensor, z. To define z, we first recall the definition of the elliptic boundary region, E � T �X . Let �
denote the unit exterior conormal field of the boundary X . Identify T �X D �? � T �

X
M . By definition,

� 2 E if and only if c.� C s�/ � � Id is positive definite for real s. From the factorization theory of
selfadjoint matrix polynomials one gets q.�/ 2 End.CTxM /, � 2 E\T �x X , such that

c.�C s�/� � IdD
�
s Id�q�.�/

�
c.�/

�
s Id�q.�/

�
; (3)

s 2C. Moreover, the spectrum of q.�/ lies in the lower half-plane, spec q.�/�C�, and these properties
determine q.�/ uniquely. The surface impedance tensor z is defined as follows:

z.�/D ic.�/q.�/C ic.�; �/; � 2 E: (4)

The significance of z results from the fact, proved in Lemma 18, that z is the principal symbol of a
parametrix of the displacement-to-traction operator. In physics, the meaning of z is that it relates the
amplitudes of displacements to the amplitudes of tractions (forces) needed to sustain these.

The surface impedance tensor is Hermitian, and positive definite for large j�j [Barnett and Lothe 1985,
Theorem 6]. If dim M D 3, then

z.�/, � 2 E, has at most one nonpositive eigenvalue. (U)

This property expresses the uniqueness of Rayleigh-type surface waves [Barnett and Lothe 1985, Theo-
rem 8]. In case dim X ¤ 3, we shall assume (U) as a hypothesis. The characteristic variety of z,

†D f� 2 E I det z.�/D 0g;

is a smooth hypersurface, transversal to the radial directions of the fibers of T �X . Compare [Barnett
and Lothe 1985, Theorem 7]. Rayleigh waves exist only if † is not empty. We shall make the stronger
assumption that † intersects every radial line:

†\RC� ¤∅ if � 2 T �X n 0: (E1)
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Compare [Barnett and Lothe 1985, Theorem 12], [Nakamura 1991, Theorem 2.2], [Kawashita and
Nakamura 2000, (ERW)]. Assuming (U) and (E1), there exists a unique p 2 C1.T �X n 0/, p > 0,
homogeneous of degree 1, such that

†D p�1.1/: (5)

See Proposition 6. Furthermore, the kernel of z defines a line bundle, ker z �†, over the compact base
†. We shall require that its first Chern class vanishes:

ker z �† is a trivial line bundle. (E2)

In particular, the bundle is assumed to possess a unit section. Property (E2) is stable with respect to
homotopies in the material properties; see Corollary 7. In the case of isotropic elasticity with positive
Lamé parameters, (U), (E1), and (E2) hold. Moreover,

†D fcr j�j D 1g � ED fcsj�j> 1g; p.�/D cr j�j:

Here cr is the propagation speed of the Rayleigh surface wave which is strictly less than the speeds of
the body waves, 0< cr < cs < cp. See Example 8.

Next we state the central result of this paper: The traction-free surface eigenvalue problem can be
intertwined with a selfadjoint eigenvalue problem on the boundary. We employ a semiclassical pseudo-
differential calculus, with distributions and operators depending on a small parameter, 0 < h � 1. We
write Ah�Bh if and only if the Schwartz kernel of Ah�Bh belongs to C1 with seminorms satisfying
OC1.h

1/.

Theorem 1. Assume dim M D 3, or (U). Assume (E1), (E2). Given a unit section v of ker z � †, there
exists a selfadjoint, elliptic operator P 2‰1.X I�1=2/, independent of h, and operators,

Bh WL
2.X ICTX M /!L2.M ICTM /; kBhk D O.h1=2/;

Jh; QJh 2‰
0;0.X I�1=2;CTX M /; J�h Jh elliptic at †,

such that �
h2L� �

�
Bh � 0; TBhJh �

QJh.P � h�1/;

and BhjX D Id in a neighborhood of †. The principal symbol of P equals p of (5). Furthermore, there
is a formula, (50), for the subprincipal symbol psub of P . If v is changed to another unit section, ei'v,
then the subprincipal symbol changes to psubCfp; 'g, where fp; 'g denotes the Poisson bracket.

This result is known in the isotropic case [Cardoso and Popov 1992; Stefanov 2000], except for the
assertions about the subprincipal symbol.

The operator Bh is a parametrix of the Dirichlet problem near †; see Proposition 17. Its range
consists of functions which are smooth in the interior of M , supported in a preassigned neighborhood
of the boundary, and which decay like e�ı distX =h into the interior.

Ignoring finitely many eigenvalues the spectrum of P consists of a sequence of positive eigenval-
ues �j " 1. Applying Theorem 1 to an associated orthonormal system of eigenvectors we obtain, in
Proposition 21, a sequence of quasimode states: Luj � �

2
j �uj D OC1.h

1
j / with boundary tractions

equal to zero. Moreover, the quasimode states are well-separated. The construction also works when
starting with a sequence of almost orthogonal quasimode states of P .
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Let DD fu 2C1c I T uD 0g. The unbounded operator D!L2.M ICTM I � dVM /, u 7! ��1Lu, is
symmetric and nonnegative. The associated quadratic form is given by the left-hand side of (1). Denote
by LT the Friedrichs extension of this operator. For a selfadjoint operator A with spectrum consisting
of a sequence of eigenvalues accumulating at C1, denote by NA.�/ the usual counting function for the
eigenvalues of A. The following lower bound on NLT

.�/ is an example application of our results.

Corollary 2. Assume M compact, dim M D 3, and (E1), (E2). Let P be the selfadjoint operator given
in Theorem 1. For every m> 1, NLT

.�/�NP .���
�m/ is bounded from below.

Rayleigh waves have been studied in several papers with the emphasis of getting information about
resonances in scattering theory [Stefanov and Vodev 1994; 1995; 1996; Sjöstrand and Vodev 1997; Vodev
1997; Stefanov 2000], and, for anisotropic media, [Kawashita and Nakamura 2000]. Stefanov [2000]
uses Rayleigh quasimodes to derive lower bounds on the number of resonances. See the remark at the
end of Section 9 about going from quasimodes to resonances.

The subprincipal symbol psub affects the eigenvalue asymptotics of P [Duistermaat and Guillemin
1975], and it enters quasimode constructions [Cardoso and Popov 1992]. The subprincipal symbol occurs
in the final formulas via integrals, such as

R
S�X psub and

R

 psub, where 
 is a closed bicharacteristic.

We point out that these integrals do not depend on the choice of the unit section v in Theorem 1, although
psub itself does. An important aim of the present work is to give explicit formulas for the subprincipal
symbol of P . These seem to be new even in the isotropic case which is dealt with in more detail in
Proposition 25. The main difficulty comes from the fact that an invariant notion of subprincipal symbol
has only been available for scalar operators. To overcome this obstacle we adapt and systematically
use the geometric pseudodifferential calculus of Sharafutdinov [2004; 2005] which assumes given a
differential geometric structure. The principal and subprincipal symbol levels are contained in the leading
symbol of a (pseudo-)differential operator.

The paper is organized as follows. In Section 2 the surface impedance tensor is studied; in particular,
a selfcontained treatment of Barnett–Lothe theory is given. The leading geometric symbols of some
differential operators are computed in Section 3. In Section 4 we geometrically decompose the elasticity
operator near the boundary into normal and tangential operators, keeping track of leading geometric
symbols. Section 5 gives, microlocally at the elliptic region E, a factorization of h2L�� into a product
of first order operators. Using the factorization, we construct in Section 6 a parametrix for the Dirich-
let problem microlocally at E. The displacement-to-traction operator Z is defined in Section 7, and
its leading geometric symbol is determined. In Section 8 we derive a diagonalization of Z, and we
prove Theorem 1. In Section 9 we construct localized traction-free surface quasimodes, and we prove
Corollary 2. In Section 10 we calculate, for an isotropic elastic medium, the subprincipal symbol of P .
The Appendix contains a detailed exposition of Sharafutdinov’s geometric pseudodifferential calculus in
a semiclassical setting.

2. The surface impedance tensor

First we collect some well-known facts about spectral factorizations of selfadjoint matrix polynomials.
Refer to [Gohberg et al. 1982, Chapter 11]. Let V be a finite-dimensional complex Hilbert space, and
f .s/D as2CbsC c 2 End.V / a quadratic polynomial in the complex variable s. The spectrum of f is
the set of s 2C such that ker f .s/¤ 0. Assume that the leading coefficient of f , a, is nonsingular. Then
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the spectrum is finite. Assume that f is selfadjoint, f .s/� D f .Ns/, and that, in addition f .s/ is positive
definite for real s. The spectrum of f is a disjoint union �C[��, where �C and �� are contained in the
upper and lower half-planes, respectively. There is a unique q2End.V / such that f .s/D .s�q�/a.s�q/,
and the spectrum of q equals ��. If 
 is a closed Jordan curve which contains �� in its interior and �C
in its exterior, then

q

I



f .s/�1ds D

I



sf .s/�1ds: (6)

The integral on the left is nonsingular. Jordan–Keldysh chains are a means to compute q. In particular,
one has qv D sv if f .s/v D 0 and Im s < 0. Moreover, the solvency equation f .q/D 0 holds.

The following representation of the factor q by integrals is important. We shall also apply it later to
establish symbol properties. Denote by i D

p
�1 the imaginary unit.

Lemma 3. Let f and q be as above. Then

a qf0 D�� i IdCf1; (7)

where f0 D
R1
�1

f .s/�1ds is selfadjoint and positive definite, and

f1 D

Z
jsj�1

saf .s/�1dsC

Z
jsj>1

s�1
�
s2a�f .s/

�
f .s/�1ds:

The integrals converge absolutely in End.V /.

Proof. Let 
R be the negatively oriented closed contour composed of the semicircle fjsj DR; Im s � 0g

and the interval Œ�R;R�. The integral representation (6) holds with 
 D 
R if R is sufficiently large.
We have f .s/�1 D s�2a�1CO.jsj�3/ as jsj !1. It follows that

lim
R!1

I

R

f .s/�1ds D

Z 1
�1

f .s/�1ds

and

lim
R!1

I

R

saf .s/�1ds D�� i IdC lim
R!1

Z R

�R

saf .s/�1ds:

Using s2af .s/�1� IdD .s2a�f .s//f .s/�1 we obtainZ
1<jsj�R

saf .s/�1ds D

Z
1<jsj�R

s�1
�
s2a�f .s/

�
f .s/�1ds:

This proves the formulas. The remaining assertions follow from these and the positive definiteness
of f .s/. �

Let � 2 T �x X , and denote by � 2 T �x M the unit exterior normal. Set aD c.�/, a1.�/D c.�; �/, and
a2.�/D c.�/. Note that a1.�/

� D c.�; �/. The polynomial

f .s/D c.�C s�/� �D as2
C .a1C a�1/sC a2� �; (8)

f .s/D f .s; �/, has values in End.CTxM /. It is selfadjoint with real coefficients. By definition, � 2 E

if and only if f .s/ is positive definite for s 2 R.

Lemma 4. The elliptic region E is an open subset of T �X with compact complement. Moreover, E is
symmetric and star shaped with respect to infinity, i.e., t� 2 E whenever � 2 E and t real, jt j � 1.
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Proof. By positive definiteness of C , there exists ı > 0 such that g.v; c.�/v/ � ıjv˝ �C �˝ vj2 for
(co-)vectors v; �. The symmetrization of a nonzero real elementary tensor is nonzero. Therefore, with a
new ı > 0, in the sense of selfadjoint maps,

c.�/� ıj�j2 Id : (9)

Since j� C s�j2 D j�j2 C s2 the first assertions follow. The symmetry and the star-shapedness follow
from c.t�/D t2c.�/. �

If � 2 E, then (7) holds with q D q.�/, fj D fj .�/. The spectral factor q solves (3); using current
notation:

as2
C .a1C a�1/sC a2� �D .s� q�/a.s� q/: (10)

The spectrum of q lies in the lower half-plane, and q is uniquely determined by these properties. Notice
that q is a smooth section of the bundle �� End.CTX M / � E, where � W E � T �X � X denotes the
canonical projection.

The surface impedance tensor, defined in (4), equals z D i.aqC a1/. Lemma 3 implies

zf0 D � IdCi.f1C a1f0/: (11)

Since the fj ’s are real, this gives the decomposition of z into real and imaginary parts. Following [Mielke
and Fu 2004], we shall use the Riccati-type equation

.zC ia�1/a
�1.z� ia1/D a2� � (12)

to deduce properties of z. Equation (12) follows upon insertion of q D�a�1.izCa1/ into the solvency
equation associated with (10),

aq2
C .a1C a�1/qC a2� �D 0: (13)

A consequence of (12) is

.iq/�z0C z0.iq/D a�1
0
qC q�a01C .a2� �/

0
C q�a0q; (14)

where the prime denotes the derivative with respect to some chosen parameter. The spectra of q and q�

are disjoint. Therefore, the Sylvester equation .iq/�xCx.iq/D i.xq�q�x/D y has a unique solution
x for given y. The solution is, in fact, given by an integral, xD

R 0
�1

exp.i rq/�y exp.i rq/ dr . It follows
that x is positive definite if y is.

Proposition 5. The impedance tensor z.�/, � 2 E, has the following properties.

(i) z.�/ is selfadjoint.

(ii) z.�/ is positive definite if j�j is sufficiently large.

(iii) Re z.�/ is positive definite.

(iv) z.�/ has at least two positive eigenvalues if dim M � 3.

(v) .d=dt/jtD1t�1z.t�/D Pz� z is positive definite.

(vi) The complex conjugate z.�/D z.��/.

We call Pz.�/ D .d=dt/jtD1z.t�/ the radial derivative of z at �. It follows from (v) that Pz is positive
definite on the kernel of z, ker z.
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Proof. To prove (i) we follow the arguments in [Mielke and Fu 2004, Theorem 2.2]. First note that
(12) remains true if z is replaced by z�. Subtracting the two equations we get the Sylvester equation
.iq/�.z� z�/C .z� z�/.iq/D 0, implying z� z� D 0.

It follows from (11) that Re z D �f �1
0

. This proves (iii).
Suppose dim M � 3. Aiming at an indirect proof of (iv), assume that z.�/, � 2 T �x X , has at most

one positive eigenvalue. Then there exists w 2 CTxM such that z.�/ is negative semidefinite on the
orthogonal complement w?. Choose a real vector v ¤ 0 which is orthogonal to both Rew and Imw.
Then v 2 w?, and .Re z.�/v j v/D .z.�/v j v/� 0, contradicting the positive definiteness of Re z.

Next we prove (v) following the method of [Mielke and Fu 2004, Theorem 2.3]. Since aj .�/ is
homogeneous of degree j in �, (12) implies

.t�1z.t�/C ia�1.�//a
�1.t�1z.t�/� ia1.�//D a2.�/� t�2�:

Taking the derivative with respect to t at t D 1, we get

.iq/�.Pz� z/C .Pz� z/.iq/D 2�:

By the remarks following (14), we see that Pz� z is positive definite.
We now prove (vi). Note f .s;��/D f .�s; �/, fj .��/D .�1/jfj .�/, and a1.��/D�a1.�/. Using

(11) we derive z.��/f0.�/D z.�/f0.�/. Since f0 is real and nonsingular the formula follows.
It remains to prove (ii). Let � 2 TxX , j�j D 1. It suffices to show that z1 D limt"1 t�1z.t�/ exists

and is positive definite. Set qt D t�1q.t�/, t > 1 large. From (10) deduce

as2
C .a1.�/C a�1.�//sC a2.�/� t�2�D .s� q�t /a.s� qt /; s 2 R:

Using (7) and dominated convergence in the integrals giving fj we infer that q1D limt"1 qt exists. In
particular, t�1z.t�/ converges to z1D i.aq1Ca1.�// as t "1. Let y 2TxM such that .z1y j y/� 0.
We must show yD 0. Set w.r/D exp.i rq1/y, r � 0. The solvency Equation (13) holds with q replaced
by q1, � D 0. Therefore, aD2

rw C .a1 C a�
1
/Drw C a2w D 0 holds, where we use the abbreviation

aj D aj .�/. Take the inner product in CTxM with w and integrate. An integration by parts givesZ 0

�1

.aDrwCa1w jDrw/C .Drw j a1w/C .a2w jw/ dr D i.aDrwCa1w jw/
ˇ̌0
�1
D .z1y j y/� 0:

Set W .r/Dw.r/˝�CDrw.r/˝� 2 End.CTxM /. Recall aD c.�/, a1D c.�; �/, a2D c.�/, and (2).
We have shown: Z 0

�1

.W .r/ jW .r//C dr � 0:

Recall that C is real, and that . � j � /C is an inner product on symmetric 2-tensors. It follows that the
symmetrization of W .r/ vanishes for all r � 0. In particular,�

w.r/˝ �CDrw.r/˝ � j �˝ �C �˝ �
�
D 0 (15)

for � 2 CT �x M , r � 0. Recall .� j �/D 0. Setting � D �, we derive Dr .w.r/ j �/D .Drw.r/ j �/D 0.
Since w.r/! 0 as r!�1, we obtain .w.r/ j �/D 0. Now, (15) simplifies to .Drw.r/ j �/D 0. Since
� is arbitrary, this implies, successively, Drw D 0, w D 0, y D 0. �
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If dim M D 3 then (U) holds. This follows from (iv).

Proposition 6. Assume (U). Then the characteristic variety of z, † D fdet z.�/ D 0g, is a smooth hy-
persurface in E. Each radial line RC� � T �X intersects † in at most one point, and the intersection
is transversal. The kernel of zj† defines a line bundle ker z � †. Assume, in addition, (E1). There is a
unique p 2 C1.T �X n 0/, homogeneous of degree one, such that † D p�1.1/. Moreover, p > 0, and
p.��/D p.�/.

Proof. From the assumption and (v) of Proposition 5 it follows that .d=dt/ det z.t�/ > 0 if t� 2†, t > 0.
In particular, zero is a regular value of det z. Hence † is a codimension one submanifold transversal to
the radial field. Since RC� \E is connected, a given radial line RC� intersects † in at most one point.
Because of (U) and the selfadjointness of z, zero is simple eigenvalue of z. It follows that ker z � † is
a line bundle. Now assume also (E1). Then each radial line intersects † in a unique point. Define p as
follows. For 0¤ � 2 T �X set p.�/D 1=t if t� 2†, t > 0. Smoothness of p follows from the implicit
function theorem. The evenness of p is a consequence of (vi). The other properties of p are obvious.
Clearly, the homogeneity and pj† D 1 determine p uniquely. �
Corollary 7. Let �t and Ct be homotopies of the mass densities and the elasticity tensors, 0 � t � 1.
Assume that the associated surface impedance tensors zt and their characteristic varieties†t satisfy (U)
and (E1) for every t . The line bundles ker z0 �†0 and ker z1 �†1 are isomorphic.

Proof. The factorization (3) and the definition of the impedance tensor imply that zt depends continuously
on the homotopy parameter t . It follows from Proposition 6 that the characteristic varieties are canonically
diffeomorphic to the sphere bundle SX . We deduce that the Chern classes of the bundles ker zt � SX

do not depend on t . The assertion follows from this. �
Example 8. We consider, as special case, an isotropic elastic medium. We shall verify (U), (E1), and
(E2). The elasticity tensor reads, in component notation,

C ijk`
D �gij gk`

C�.gikgj`
Cgi`gjk/; (16)

where �;� denote the Lamé parameters. Equivalently,

c.�; �/D ��˝ �C��˝ �C�g.�; �/ Id : (17)

Positive definiteness of C is equivalent to �> 0, � dim M C 2�> 0. We make the stronger assumption
�;� > 0. Let � 2 T �x X . We list the eigenvalues s 2 C and the eigenvectors v 2 CTxM of the quadratic
polynomial c.�C s�/� �:

(a) .�C 2�/.j�j2C s2/� �D 0 and v D �C s�,

(b) �.j�j2C s2/� �D 0 and v D s� � j�j2�,

(c) �.j�j2C s2/� �D 0 and v is orthogonal to � and �.

Introduce cp D
p
.�C 2�/=� and cs D

p
�=�, the speeds of pressure and of shear waves, respectively.

Assume that � 2 E. This is equivalent to csj�j> 1. The above eigenvalues and eigenvectors diagonalize
q, q.�/v D sv if Im s < 0. Denote by V the subbundle of ��

�
CTX M

�
� E spanned by � and � , and

V ? its orthogonal bundle. Fix the orthonormal frame �; O� D �=j�j of V , and choose an orthonormal
frame of V ?. In block decompositions of matrices we let the indices 1 and 2 correspond to V and
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V ?, respectively. We denote by .e/ij the block ij of the matrix which represents the endomorphism e.
Observe that q leaves V and V ? invariant, .q/12 D 0D .q/21. A simple computation gives

.iq/11 D
j�j

b

"
ut
p

1�t �i.b�ut/

i.b�t/ t
p

1�ut

#
: (18)

Here t D .csj�j/
�2, u D .cs=cp/

2 D �=.�C2�/, b D 1�
p

1�ut
p

1�t . Moreover, .iq/22 equals
j�j
p

1�t times the unit matrix. The maps aD c.�/ and a1D c.�; �/ also leave V and V ? invariant. We
compute

.z/11 D
�j�j

b

"
t
p

1�t �i.2b�t/

i.2b�t/ t
p

1�ut

#
; (19)

and .z/22 D �.iq/22. The determinant of z equals .�j�j
p

1�t/dim V? times

det.z/11 D �
2
j�j2b�1

�
4
p
.1�t/.1�ut/�.2�t/2

�
: (20)

Given u 2 �0; 1=2Œ, the unique zero t 2 �0; 1Œ is found as the solution of Rayleigh’s cubic equation [1887,
(24)], namely 0D ..t�2/4�16.1�t/.1�ut//=t . Define the Rayleigh wave speed cr D cs

p
t 2C1.X /.

Set p.�/D cr j�j. The characteristic variety † equals fp.�/D 1g. Thus (U) and (E1) hold. Obviously,
i.2b� t/�C t

p
1� t O� 2 ker z.�/, � 2†. Observe that

2.2b� t/D t.2� t/ on †. (21)

Thus
i.2� t/�C 2

p
1� t O� 2 ker z; t D .cr=cs/

2; (22)

is a nowhere vanishing section of the kernel bundle. Hence also (E2) holds. This example is of course
well-known.

Remark. The identity (11) goes back to Barnett and Lothe; compare [Lothe and Barnett 1976, (3.18)].
It is key to proving, in dimension three, the uniqueness of subsonic traction-free surface waves [Barnett
and Lothe 1985, Theorem 8]. The second assumption in Proposition 6 is needed to prove the existence of
Rayleigh surface waves. Compare with Theorem 12 of the same reference, where existence criteria are
given in terms of the so-called limiting velocity which corresponds to the boundary of the elliptic region.
See [Nakamura 1991, Theorem 2.2] for the Barnett–Lothe condition in a microlocal setting, and the real
principal type property of the Lopatinski matrix it entails. See [Tanuma 2007] for a recent exposition of
Barnett–Lothe theory, and for a treatment of isotropic and transversely isotropic media.

3. Connections and geometric symbols

The elasticity operator is defined in terms of the Levi-Civita connection and of the elasticity tensor. We
use the geometric pseudodifferential calculus of the Appendix to define and compute the leading symbol
of the elasticity operator. The leading symbol includes the principal and the subprincipal level. The
calculus depends on the choice of connections.

Equip M with the Levi-Civita connection of g. Let exp denote its exponential map. If x;y 2M , then
denote by Œy � x� the shortest geodesic segment from x to y, assuming its interior does not intersect the
boundary, and that it is unique.
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Let E � M be a (complex) vector bundle with connection rE . Denote by �E

 2 End.Ex;Ey/ the

parallel transport map along a given curve 
 in M from x to y, e.g., �E
Œy�x�

. The connection can be
recovered from its parallel transport maps:

r
E
v s.x/D

d
dt

ˇ̌
tD0

�E
Œx�expx tv�s.expx tv/: (23)

Denote by ��E � T �M the pullback of E to the cotangent bundle � W T �M ! M . Let a be a
smooth section of ��E � T �M . Following [Sharafutdinov 2004; 2005], we introduce the vertical and
the horizontal covariant derivative of a. The vertical derivative

v
ra.x; �/ 2Ex˝TxM;

at � 2 T �x M , is the derivative of the map T �x M ! Ex , � 7! a.x; �/. The definition of the verti-
cal derivative depends only on the linear structure of the fibers of T �M . The horizontal derivative
hra.x; �/ 2Ex˝T �x M is the derivative at v D 0 of a map TxM !Ex ,

h
ra.x; �/D

@

@v

ˇ̌
vD0

�E
Œx�expx v�

a.expx v; �
T �M
Œexpx v�x��/: (24)

The horizontal derivative depends on the Riemannian structure and on the connection rE . In the scalar
case, E D C, in local coordinates,

h
ra.x; �/D

�
@xj a.x; �/C�k

ij .x/�k@�i
a.x; �/

�
dxj ;

where �k
ij denote the Christoffel symbols of the Levi-Civita connection. Writing a local section of ��E

as a sum of products a1.x; �/a2.x/ where a1 is scalar and a2 a section of E one readily derives local
formulas for the horizontal derivative in terms of connection coefficients. The vertical and the horizontal
derivative extend to first order differential operators, vr and hr, which map sections of ��.E˝T r;sM /

to sections of ��.E˝ T rC1;sM / and of ��.E˝ T r;sC1M /, respectively. The operators vr and hr

commute. It suffices to prove this when E is the trivial line bundle, E D C. In this case the assertion is
easily checked in normal coordinates.

Let F � M be another vector bundle. Let A W C1.M IE/! C1.M IF / be a differential operator
of order m. We introduce a small parameter, 0< h� 1, and we replace A by the h-differential operator
hmA. Then A2‰m;0.M IE;F / as a semiclassical (pseudo-)differential operator. Refer to the Appendix
for an exposition of Sharafutdinov’s geometric pseudodifferential calculus in a semiclassical setting. The
formula (67) for the geometric symbol, �h.A/ 2 Sm;0, simplifies to

�h.A/.x; �/s DAy

�
eih�;exp�1

x yi=h�E
Œy�x�s

�ˇ̌
yDx

; (25)

where � 2 T �x M , s 2 Ex , and i D
p
�1. The geometric symbol extends by continuity to the boundary

of M . In symbol computations we track the leading geometric symbol, defined before Proposition 27.
In the following, the symbol of an operator is always its geometric symbol.

For the Laplace–Beltrami operator one has �h.�h2�/.x; �/ D j�j2. This is readily checked using
normal coordinates.

From (25) and (23) deduce

�h.�ihrE/.�/e D e˝ � 2Ex˝T �x M: (26)
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As before, to ease notation, we usually do not write the base point x into the arguments of tensors and
symbols.

If E � M is a Hermitian vector bundle then we define, using the volume element dVM , the Hilbert
space L2.E/. Assume E and F are Hermitian vector bundles having metric connections. The leading
symbol of the formal adjoint A� of A is given by

�h.A
�/� �h.A/

�
� ih tr

�
v
r

h
r�h.A/

�
�
: (27)

See Proposition 27.
Equip the bundle E˝ T �M with the induced Hermitian structure and the induced connection. The

connection is metric. Observe that the horizontal derivative of �h.�ihrE/� vanishes. Therefore, (27)
and (26) imply

�h

�
.�ihrE/�

�
.�/.e˝ �/D g.�; �/e; �; � 2 T �x M; e 2Ex : (28)

By Proposition 28 the leading symbol of a composition is given as follows:

�h.AB/� �h.A/�h.B/� ih tr
�
v
r�h.A/:

h
r�h.B/

�
: (29)

The trace is the contraction of the TM ˝ T �M factor which is produced by a pair of vertical and
horizontal derivatives. Note: In (29) and below, the dot terminates a differentiated expression, serving
as a closing bracket.

Let C 2C1.M IEnd.E˝T �M //. View C as an operator acting by multiplication on sections of the
bundle E˝T �M � M . Let r denote the connection on the bundle End.E˝T �M /� M induced from
the Levi-Civita connection and from rE . Define sections c; div c of �� End.E/� T �M as follows:

c.�/e D h�; ��C.e˝ �/i; .div c/.�/e D
P

j h�
j ; .��rvjC /.e˝ �/i;

where the angular brackets denote contractions on covectors, using g. Furthermore, .vj / and .�j / are
any dual frames of TM and T �M .

Lemma 9. �h.�h2rE�ıC ırE/D c � ih div cCO.h2/.

Proof. Observe that �h.C /D �
�C , and hr��C D ��rC . The symbol (28) is linear in �. Its vertical

derivative is obvious. Using (29), the symbol a of �ihrE�ıC is found to be

a.�/.e˝ �/D h�; ��C.e˝ �/i � ih
P

j h�
j ; ��rvjC.e˝ �/i:

Here .vj / and .�j / are as in the definition of div c. The horizontal derivative of the symbol of �ihrE

vanishes. Therefore,

�h.�h2
r

E�
ıC ırE/.�/e D a.�/�h.�ihrE/.�/e D a.�/.e˝ �/;

where we used (29). �
Now assume E D CTM and C the elasticity tensor. Identify

End.CT 0;2M /D End.CTM ˝CT �M /:

Let L the elasticity operator defined in (1). Recall from Riemannian geometry the following relation
between the Levi-Civita connection and the Lie derivative:

.Lug/.v; w/D g.rvu; w/Cg.v;rwu/; (30)
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for (real) vector fields u; v; w. Using the symmetries of the elasticity tensor we get

LD Def� ıC ıDefD .�ir/� ıC ı .�ir/:

We obtain the following corollary to Lemma 9:

�h.h
2L� �/D c � � Id�ih div cCO.h2/: (31)

If the C ijk` represent C with respect to some given local coordinates, then (31) reads

�h.h
2L� �/.�/

ik
D C ijk`�j�` � �ı

ik
�
p
�1hC

ijk`

jj
�`CO.h2/:

The vertical bar followed by j means covariant differentiation with respect to the j -th coordinate. If the
elastic medium is isotropic, the leading symbol becomes

�h.h
2L� �/.�/

� �.c2
p j�j

2
� 1/P .�/C �.c2

s j�j
2
� 1/.Id�P .�//� ih

�
r�˝ �C .r�˝ �/�Ch�;r�i Id

�
; (32)

where P .�/D O�˝ O� denotes the orthogonal projection to the propagation direction O� D �=j�j.

4. The elasticity operator in a boundary collar

In a boundary collar, ��"; 0��X �M , we write the elasticity operator L in terms differential operators
on X having coefficients which depend on r 2 I , the negative distance to X .

Let N.x/ 2 TxM denote the unit exterior normal at x 2 X . There exists " > 0 such that, if we
set I D ��"; 0�, the exponential map of the Levi-Civita connection defines a diffeomorphism onto a
neighborhood of X in M :

I �X !M; .r;x/ 7! y D exp.rN.x//:

Essentially without losing generality, we assume that this map is onto M . The inverse map is y 7! .r;x/,
where �r D d.y;X / is the distance from y to X , and x D p.y/ is the unique point in X closest to y.
The distance function r satisfies the (eikonal) equation jrr j D 1 in M . Extend N to M by N D rr .
Also introduce the unit conormal field � D dr . The level hypersurfaces

Mr D fy 2M I r C d.y;X /D 0g

are diffeomorphic to X DM0. The shape operator S D rN is a field of symmetric endomorphisms
of TM , g.Su; v/ D g.u;Sv/. The second fundamental forms of the level hypersurfaces Mr assign
.u; v/ 7! �g.Su; v/ (Weingarten equation). The dependence of the metric tensor on r is given by the
formula .LN g/.v; w/ D 2g.Sv;w/. This formula follows from (30). Introduce J 2 C1.Ir �X /, the
solution of @r log J D tr S , J jrD0D 1. Then we have the following formula for the volume form of M :Z

M

f .y/ dVM .y/D

Z
I

Z
X

f .exp.rN.x///J.r;x/ dVX .x/ dr; (33)

f 2C1c .M /. See [Petersen 1998, Chapter 2] for the geometry of hypersurfaces using distance functions.
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Let E � M be a vector bundle with connection rE . Denote by Er � Mr the bundles induced by the
inclusions Mr �M , r 2I . Set EX DE0. Let u2C1.M IE/ be a section of E. Using parallel transport
in E along the geodesics which intersect the boundary orthogonally, define zu W I ! C1.X IEX / by

zu.r/.x/D zu.r;x/D �E
Œx�y�u.y/ if y D exp.rN.x//.

The map
C1.M IE/! C1.I;C1.X IEX //; u 7! zu; (34)

is an isomorphism of Fréchet spaces. The isomorphism commutes with bundle operations such as tensor
products and contractions.

The covariant derivative in normal direction is transformed into @r under the above isomorphism:

A
rE

N
u.r/D @r zu.r/; r 2 I: (35)

To see this, consider the geodesic I !M , r 7! y.r/ D exp.rN.x//. The tangent vectors are Py.r/ D
N.y.r//. Using (23), it follows that

.rE
N.y.r//u/.y.r//D

d

ds

ˇ̌
sDr

�E
Œy.r/�y.s/�u.y.s//D �

E
Œy.r/�x�

d

ds

ˇ̌
sDr
zu.s;x/:

This implies (35). We have rN N D SN D 0. It follows that @r
zN D 0, and @rz� D 0. Abusing notation,

we write @r to denote rE
N

.
Define ��e D e˝ � and ��.e˝ �/D h�; �ie. Notice that �� and �� commute with @r .
Let F � M be a another vector bundle with a connection. Let B W C1.M IE/! C1.M IF / be a

differential operator. Assume that B is tangential. This means, by definition, that B commutes with the
distance function r , ŒB; r � D 0. Then, for every r 2 I , B restricts to an operator Br W C

1.Mr IEr /!

C1.Mr IFr /, Br U D .Bu/jMr
, where u is a section of E � M which extends a given section U

of Er � Mr . The assumption ŒB; r � D 0 implies that Br is well-defined. Parallel transport along the
geodesics orthogonal to X defines bundle isomorphisms ErŠEX and FrŠFX . Via these isomorphisms
the Br ’s induce differential operators B.r/ WC1.X IEX /!C1.X IFX /, called associated with B, such
that fBu.r/DB.r/zu.r/, r 2I . Each B.r/ is a differential operator having coefficients which are C1 with
respect to r . Conversely, an operator B is tangential if it is given in this way by a family of differential
operators fB.r/ I r 2 Ig with coefficients depending smoothly on r .

Lemma 10. Let E � M be a real vector bundle with connection rE . Then

r
E
D ��@r CB; (36)

where B is tangential. Moreover, B.0/DrEX .

Here E ˝ T �M carries the induced connection. The lemma extends, by decomposition into real
and imaginary parts, to complexifications of real bundles with connections. In particular, it holds for
complexified tensor bundles with the Levi-Civita connection.

Proof. Let P?;P k 2 C1.M IEnd.TM // denote the orthogonal projectors onto the span of N and
onto its orthogonal complement, N?, respectively. Identify E ˝ T �M with Hom.TM;E/. Let u 2

C1.M IE/. We have the following decomposition in C1.M IHom.TM;E//:

r
EuD .rEu/P?C .rEu/P k D .rE

N u/˝ �CBu:
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This defines B, and implies (36). Note that B is tangential. We have

B.0/zu.0/D BujX D
�
.rEu/P k

�
jX D

�
r

EX .ujX /
��

P kjX
�
:

This proves the asserted formula for B.0/. �
Assume E � M a Hermitian bundle with a metric connection. Using (33), and the fact that parallel

transport preserves inner products, we haveZ
M

.u j v/E dVM D

Z
I

Z
X

.zu j zv/EX
J dVX dr; (37)

if u; v 2 C1c .M IE/. Formal adjoints of differential operators on M are taken with respect to these
inner products. The inner product of sections u and v of EX � X is

R
X .u j v/EX

dVX . Formal adjoints
of operators A.r/ associated with a tangential operator A are defined with respect to this inner product.

Next we prove a formula expressing the elasticity operator L as a quadratic polynomial in Dr D�i@r

with tangential coefficients. Now assume E D CTM , and let B as in (36). Define tangential operators

A0 D ��C�� ; A1 D�i ��CB; A2 D B�CB:

The order of Aj is j . Moreover, A�
1
D iB�C�� .

Proposition 11. The elasticity and traction operators defined in (1) are as follows:

LD .Dr � i tr S/.A0Dr CA1/CA�1Dr CA2; �iT DA0.0/Dr CA1.0/:

Furthermore, A�
1
.0/DA1.0/

�.

Proof. Let u; v 2 C1c .M ICTM /. It follows from (30) and the symmetry properties of the elasticity
tensor that Z

M

�
Def u j Def v

�
C

dVM D

Z
M

�
Cru j rv

�
dVM :

Inserting (36) and using the definition of Aj , the right-hand side equalsZ
M

.��Cru j @rv/ dVM C

Z
M

.B�Cru j v/ dVM

D

Z
M

.A0@r uC iA1u j @rv/ dVM C

Z
M

.�iA�1@r uCA2u j v/ dVM :

We integrate by parts, using (37), and getZ
M

.w j @rv/ dVM

D

Z
I

Z
X

. zw j @r zv/J dVX dr D

Z
X

�
w.0/ j v.0/

�
dVX �

Z
I

Z
X

�
.@r log J / zwC @r zw j zv

�
J dVX dr:

Summing up we haveZ
M

�
Def u j Def v

�
C

dVM D

Z
M

�
.Dr � i tr S/.A0Dr CA1/uCA�1Dr uCA2u j v

�
dVM

C

Z
X

�
A0.0/.@r u/.0/C iA1.0/u.0/ j v.0/

�
dVX :

Comparing with (1) the formulas for L and T follow. The last assertion follows because J D 1 at X . �
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Next we compute the leading symbols of the operators (associated with) Aj . The symbols are r -
dependent sections of �� End.CTX M /� T �X . Dropping tildes, the symbol of A0 equals

�h.A0/D aD c.�/ 2 C1.I;C1.T �X I�� End.CTX M //:

Introduce the divergence of the acoustic tensor restricted to X as follows:

.divX c/.�/v D
X

˛
h�˛; .��rv˛C /.v˝ �/i;

if � 2 T �x M , v 2 TxM , x 2 X . Here .v˛/ and .�˛/ are any dual frames of TX and T �X . If local
coordinates are chosen such that r is one coordinate and the other coordinates are constant along the
geodesics orthogonal to X , then .divX c/.�/ik D C i˛k`

j˛
�`. Here the summation convention is used

with Latin indices referring to all coordinates, and Greek referring to all coordinates except r . We also
need the contraction hC;Si 2 C1.M IEnd.TM // of the elasticity tensor with the shape operator, in
coordinates,

hC;Siik D C ijk`Sj`; Sj` D �j j`:

(Because rN S D 0 one can also write Greek indices instead of j and `.)

Lemma 12. Let a1 and a2 denote the principal symbols of the h-differential operators hA1 and h2A2,
respectively. At r D 0: a1.�/D c.�; �/, and a2.�/D c.�/. On the leading symbol level, �h.hA1/D a1,
�h.hA�

1
/D a�

1
� iha1�, and �h.h

2A2/D a2� iha2�CO.h2/, where, at r D 0,

a1� D .divX c/.�/C��hC;Si; a2�.�/D .divX c/.�/:

Proof. By Lemma 10 we have

hA1.0/D ��C ı .�ihr/; h2A2.0/D .�ihr/� ıC ı .�ihr/;

where r D rTX is the Levi-Civita connection of the boundary. We compute the leading symbol of
hA1.0/ using the composition formula (29). Recall (26). The vertical derivative of the symbol of ��C
vanishes, Hence

�h.hA1/.0/.�/D �h.hA1.0//.�/D c.�; �/; � 2 T �X M:

The formula for �h.h
2A2.0// follows from Lemma 9. In view of (27), a1�D tr vr hra�

1
. Since a�

1
.�/D

c.�; �/D h�; ��.C��/i is linear in �, its vertical derivative is immediate. Hence

tr vr h
ra�1 D

X
˛
h�˛; ��rv˛ .C��/i:

Now, rv.C��/ equals .rvC /�� plus a contraction of C with rv�DSv, proving the formula for a1�. �

If the elastic medium is isotropic, (16), then a straightforward computation shows that, at r D 0,

.divX c/.�/D .r�˝ �/C .r�˝ �/�Ch�;r�i Id;

hC;Si D .�C�/S C .� tr S/ Id:

Here r�;r� 2 TX � TX M are the gradients of the Lamé parameters restricted to X .
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5. Microlocal factorization

We factorize, microlocally in the elliptic region, the h-differential operator h2L� � into a product with
right factor hDr �Q, where Q is a tangential h-pseudodifferential operator such that the spectrum of its
principal symbol is contained in the lower half-plane, C�.

As in the previous section we identify M with a boundary collar I �X , and sections of CTM � M

with r -dependent sections of CTX M � X . Operators are polynomials in Dr=hDhDr with tangential h-
(pseudo-)differential operators as coefficients. The latter are quantizations (64), Bh DOph.bh/ 2‰

m;k
tang ,

of tangential symbols,

bh 2 S
m;k
tang D C1.I;Sm;k.T �X I�� End.CTX M ///:

By Proposition 11 the principal symbol f .s; �/D c.�Cs�/�� of h2L�� at �Cs� is a second order
polynomial in s. View s as the symbol of Dr=h. The coefficients are h-independent tangential symbols.
By (9), there exists a constant ı > 0 such that

f .s; �/� ı.1Cjsj2Cj�j2/ Id; s 2 R; (38)

holds if � is sufficiently large. If F � E is closed and R> 0, then F nfj�j>Rg is compact. Hence there
exist 0< "0; ı such that (38) holds uniformly for .r; �/ 2 Œ�"0; 0��F . We say that a property holds at the
elliptic region E if it is true in every open subset of I �E where (38) holds uniformly.

Recall from Section 2 that we have a unique spectral factorization (10) at E.

Lemma 13. Let q D q.�/, � 2 E, the unique solution of the spectral factorization f .s; �/ D .s �

q.�/�/a.s� q.�//, spec q.�/� C�. Then q 2 S1
tang at E.

Proof. By Lemma 3 we have a q D �� if �1
0
C f1f

�1
0

with integrals fj D fj .�/ defined there. Using
(38), we can estimate f0.�/D

R
f .s; �/�1ds as follows:

jf0.�/j �

Z 1
�1

ı�1.1Cjsj2Cj�j2/�1ds D �=ıh�i;

h�i D .1C j�j2/1=2. The integrand f .s; �/�1 remains integrable after applying @r , hr, and vr finitely
many times. Therefore these derivatives can be interchanged with the integral. In view of the symbol
properties of f , we deduce, using estimates as above, f0 2 S�1

tang at E. Using an upper bound f .s; �/ �
ı�1.jsj2C h�i2/ Id, we derive f0.�/ � ıh�i

�1 Id, again in the sense of selfadjoint maps. Therefore f0

is an elliptic symbol, and f �1
0
2 S1

tang at E.
Write f1 D f10Cf11, where f10.�/D

R
jsj�1 saf .s; �/�1ds,

f11.�/D

Z
jsj>1

s�1
�
s2a�f .s; �/

�
f .s; �/�1ds:

Recall that s2a� f .s/D �s.a1C a�
1
/� .a2 � �/. Reasoning as in the proof of f0 2 S�1

tang, we see that
the integrand of f11 and its derivatives are integrable. Moreover, we deduce f11 2S0

tang. It is easy to see
that f10 2 S�2

tang. Therefore, at E, f1 2 S0
tang. The lemma follows. �

For an h-tempered family .uh/2h�1C�1.X / one defines the semiclassical wavefront set WFh.uh/�

T �X tS�X [Gérard 1988; Sjöstrand and Zworski 2002]. Below we deal with operators associated to
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symbols which are not defined on all of T �X but only at E. These operators are defined microlocally in
E by letting them operate on the subspace of distributions .uh/ which satisfy WFh.uh/� E, modulo the
space h1C1.

Lemma 14. Let q be as in Lemma 13. Microlocally at E,

h2L� �D .Dr=h�Q]/A0.Dr=h�Q/; (39)

where Q;Q] 2‰
1;0
tang, such that Q�Oph.q/;Q

]�Oph.q
�/ 2‰

0;�1
tang . Here A0 is as in Proposition 11.

Proof. Initially we set QD Oph.q/ and Q] D Oph.q
�/. At E,

h2L� �D .Dr=h�Q]/A0.Dr=h�Q/CR1CR0 Dr=h; (40)

where Rj 2‰
j ;�1
tang . Here we used the formula for L given in Proposition 11. Observe that, if A 2‰

m;k
tang ,

then the commutator ŒDr=h;A� belongs to ‰m;k�1
tang . Aiming at an inductive construction, we assume that

(40) holds for some positive integer k such that Rj 2‰
jC1�k;�k
tang . The spectra of q and q� are disjoint.

It follows that the equation sq�q�sD r has, at E, for every symbol r 2Sm a unique solution s 2Sm�1.
Applying this construction to the principal symbols of the Rj ’s, we find operators Sj 2 ‰

j�k;�k
tang such

that Sj Q�Q]Sj �Rj lies in ‰j�k;�k�1
tang . Set

Q1 DQ�A�1
0 .S0QCS1/; Q

]
1
DQ]

C .Q]S0CS1/A
�1
0 :

Then

.Dr=h�Q
]
1
/A0.Dr=h�Q1/D .Dr=h�Q]/A0.Dr=h�Q/C

�
S0Q�Q]S0

�
Dr=hC

�
S1Q�Q]S1

�
CŒDr=h;S0QCS1�� .Q

]S0CS1/A
�1
0 .S0QCS1/:

Replace Q and Q] by Q1 and Q
]
1
, respectively. By the symbol calculus, (40) holds with smaller errors,

Rj 2‰
j�k;�k�1
tang . The proof is completed using asymptotic summation. �

It follows from the foregoing construction that the symbol of Q is classical.

6. A Dirichlet parametrix

Microlocally at E, we solve, constructing a parametrix, Bf D u, the Dirichlet problem h2Lu��uD 0,
ujX D f . We adapt the method of [Taylor 1996, 7.12] to our setting.

Denote by

Sm
pois � C1.Œ�1; 0�;C1.T �X I�� End.CTX M ///

the space of symbols b.s; �/, �1� s � 0, � 2 T �X , that satisfy the estimates

j@�s .
v
r/j .h

r/`b.s; �/
ˇ̌
� C�j`h�i

mC��j ;

for all nonnegative integers � , j , and `. Let S
m;k
pois denote the corresponding space of h-dependent symbols

bh. Observe that g.sh�i/ 2 S0
pois if g.t/D jt jj e"t , " > 0, j a nonnegative integer.
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We continue to work in a collar I � X � M . Choose a cutoff �0 as in (64). Let ı > 0. Given
bh 2 S

m;k
pois , introduce the operator Bh D Opı;h.bh.r=h// by setting

Bhf .r;y/D .2�h/�n

Z
T �y

Z
Ty

e�ih�;vi=hCırh�i=h�0.y; v/bh.r=h;y; �/�
CTX M
Œy�expy v�

f .expy v/ dv d�; (41)

for r 2 I , n D dim X . We call Bh a Poisson operator with symbol bh and (exponential) decay ı. The
arguments in [Taylor 1996, Chapter 7, Proposition 12.4] apply to give Bh WL

2.X /!H
�mC1=2

h
.I �X /

with norm O.h�kC1=2/. (The Sobolev spaces H s
h

are defined using hD instead of D.) If 0< ı0 < ı and
j 2 N, then

rj Bh 2 Opı0;h S
m�j ;k�j
pois :

Moreover, Bhf 2 C1 in r < 0, and Bhf .r/ decays together with its derivatives as eı
0r=h, uniformly if

f ranges in a bounded subset of L2.X /. We call h-dependent operators negligible if they have Schwartz
kernels which are smooth and OC1.M�X /.h

1/. We write A � B if and only if A�B is negligible.
Note that Bh in (41) is negligible if there exists � > 0 such that bh.s; �/D 0 if �� < s � 0.

We need to handle the composition of a Poisson operator with a tangential operator. The following
lemma deals with this when the symbols are classical, i.e., possess asymptotic expansions in powers of h.

Lemma 15. Let 0 < ı0 < ı. Let A D Oph a.r/ and B D Opı;h b.r=h/, where a D a.r; �/ 2 S1
tang and

b.s; �/ 2 Sm
pois are h-independent symbols. Then

AB � Opı0;h c.r=h/;

where c D ch 2 S
mC1;0
pois has an asymptotic expansion c �

P
j�0 hj cj , cj 2 S

mC1�j
pois . The principal term

equals
c0.s; �/D a.0; �/b.s; �/e.ı�ı

0/sh�i:

Proof. Using Taylor expansions, a.r; �/ D
P

j<N rj aj .�/C rN a0
N
.r; �/, and the properties of rj B

noted above, we may assume without loss of generality that a does not depend on r . Arguing as in the
proof of Proposition 28 we can write, at least formally, AB D Op0;h Qc.r=h/, where

Qc.s;x;�/D .2�h/�2n

Z
Tx�T �x �Tx�T �x

ei'=ha.x;�/�
��End.CTX M /

Œx�y�
b.s;y;�/eısh�iM.x;wCv;v/d.v;�;w;#/;

' as in (72). We use the standard arguments in handling compositions of symbols: dyadic decompositions
and the method of (non-)stationary phase. We infer that there exist � > 0 and dj 2 S

mC1�j
pois , d0.s; �/D

a.�/b.s; �/, such that for every N ,

Qc.s; �/D

� X
j<3N

hj dj .s; �/

�
eısh�iC QdN h.s; �/e

�sh�i;

where QdN h 2 S
mC1�N;�N
pois . Observe that h�i=h�i is uniformly bounded from below if � and � range

in the same dyadic shell. Above we have chosen � less than ı times this bound. Define ch.s; �/ as
the product of an asymptotic sum

P
j�0 hj dj .s; �/ with the symbol e.ı�ı

0/sh�i 2 S0
pois. It follows that

AB �Opı0;h c.r=h/ belongs to Op�;h S
mC1�N;�N
pois for every N . Thus AB � Opı0;h c.r=h/. �
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Let q and Q be as in Lemma 14. If �2E ranges in a set having a positive distance to the complement
of the elliptic region, then there exist positive constants ı0 and M such that

jesiq.0;�/
j �Mesı0h�i; s � 0: (42)

This follows from the fact that the spectrum of q.0; �/=h�i is contained in a compact subset of the lower
half-plane then. We shall solve .Dr=h�Q/B � 0, BjrD0 D Id, microlocally at E. On the symbol level
we have to solve linear ordinary differential equations with constant coefficient matrices. The following
assertions are true microlocally in E where (42) holds.

Lemma 16. Let 0 < ı < ı0. Let r 2 S1Cm
pois and v 2 Sm. Let b.s; �/ be the solution of the initial value

problem

@sb.s; �/D
�
iq.0; �/� ıh�i

�
b.s; �/C r.s; �/; �1< s � 0; (43)

and b.0; �/D v.�/. Then b.s; �/ 2 Sm
pois.

Proof. Note that the coefficient matrix of (43) does not depend on s. Representing b by Duhamel’s
formula and using (42) we derive the estimate

jb.s; �/j �M jv.�/jCM

Z 0

s

e.ı0�ı/sh�ijr.s; �/j ds �M jv.�/jC
M

ı0� ı
sup
s�0

jr.s; �/j=h�i:

Moreover, we can estimate @sb.s; �/ by estimating the right-hand side of (43). Differentiating (43) we
derive linear ordinary differential equations for @�s .

vr/j .hr/`b.s; �/. These equations are of the same
structure as (43) with the same coefficient matrix. The asserted symbol estimates are obtained recursively.

�

Proposition 17. Let 0<ı<ı0, and �>0. There exists B 2Opı;h S
0;0
pois with Schwartz kernel supported in

�� < s� 0, such that, microlocally at E, .Dr=h�Q/B� 0 and BjrD0D Id. Moreover, .h2L��/B� 0.

Proof. It follows from Lemma 15 that, for a classical symbol b 2 S
m;k
pois , 0 < ı0 < ı, modulo negligible

operators, the composition

.Dr=h�Q/Opı;h b.r=h/

equals Opı0;h c.r=h/, c 2 S
mC1;k
pois . Moreover, c is classical, and, modulo S

m;k�1
pois ,

c.s; �/�
�
� i@sb.s; �/� iıh�ib.s; �/� q.0; �/b.s; �/

�
e.ı�ı

0/sh�i:

Fix a sequence .ıj /, ı < ıjC1<ıj . Using Lemmas 15 and 16 we recursively find h-independent symbols
bj 2 S

1�j
pois , b1jrD0 D Id, bj jrD0 D 0 if j > 1, such that Bj D hj�1 Opıj ;h bj .r=h/ satisfy

.Dr=h�Q/.B1C � � �CBj / 2 Opı0;h S
1�j ;�j
pois ; ıjC1 < ı

0 < ıj :

Now B is constructed using asymptotic summation. The last assertion follows from the factorization (39).
�
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7. The displacement-to-traction operator

In this section we deal with operators on the boundary X . Therefore, in the following, operators and
symbols are, as a rule, evaluated at r D 0.

Let B denote the Dirichlet parametrix given in Proposition 17 and T the traction defined in (1). The
operator Z D hTB is called the semiclassical displacement-to-traction operator, or Neumann operator,
at E. By Propositions 11 and 17 we have, if WFh.f /� E,

Zf D .iA0Dr=hBf C ihA1Bf /jX D iA0.0/Q.0/f C ihA1.0/f:

Therefore, Z D iA0QC ihA1, and Z is, microlocally in E, a pseudodifferential operator of class ‰1;0.
The symbol of Z is classical since the symbols of Aj and Q are.

Lemma 18. The displacement-to-traction operator Z is, in E, up to a negligible operator, formally
selfadjoint. The principal symbol of Z equals the surface impedance tensor

z D i.aqC a1/ 2 S1.EI�� End.CTX M //: (44)

The leading symbol of Z is zC hz�, where z� 2 S0,

z�q� q�z� D i tr.S/zC i@r z� a2�� a1�qC tr
�
v
rq�:ah

rq
�
: (45)

Proof. Let f1; f2 2L2.X ICTX M /, WFh.fj /� E, and set uj D Bfj . By (1),Z
X

.Zf1 j f2/ dVX �

Z
X

.f1 jZf2/ dVX D h�1

Z
M

.u1 j h
2Lu2� �u2/� .h

2Lu1� �u1 j u2/ dVM :

It follows from Proposition 17 that the right-hand side is O.h1/, uniformly if the fj ’s range in a bounded
set and have h-wavefronts contained in a common closed subset of E. Thus Z� D Z in E. Recalling
Z D iA0QC ihA1, we infer from the symbol calculus that z D i.aqC a1/ is the principal symbol.

It remains to prove the formula for z�. Write the leading symbols of Q and Q] as q C hq� and
q� C hq]�, respectively. It is easy to see that z� D iaq�. Recall the formula for L in Proposition 11.
The factorization (39) is equivalent to

.Dr=h� ih tr.S//hA1C .hA�1� ih tr.S/A0/Dr=hCh2A2��D�Dr=hA0Q�Q]A0Dr=hCQ]A0Q:

This in turn is equivalent to the following two equations of tangential operators:

hA1C hA�1 � ih tr.S/A0CA0QCQ]A0 D 0;

ŒDr=h;A0QC hA1�� ih tr.S/hA1C h2A2� ��Q]A0QD 0:

On the principal symbol level these equations become a1Ca�
1
CaqC q�aD 0 and a2��� q�aq D 0.

These equations agree with (10). On the leading symbol level the equations become, after division by h,

�ia1�� i tr.S/aC aq�C q]�a� i tr
�
v
rq�:hra

�
D 0;

�@r z� i tr.S/a1� ia2�� q�aq�� q]�aqC i tr
�
v
rq�:hraq

�
D 0:

Elimination of q]� from these equations gives

.aq�/q� q�.aq�/D ia1�qC tr.S/zC @r zC ia2�� i tr
�
v
rq�:ah

rq
�
:
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Formula (45) for z� D iaq� follows. �

In principle z� is found as the unique solution of the linear Equation (45). The right-hand side of
the equation consists of known quantities and their first order derivatives. Refer to Section 10 for an
algorithm computing z� if the elastic medium is isotropic.

8. Diagonalization of Z

Assume (U) and (E1). By Proposition 6 the kernel ker z defines a line bundle over the characteristic
variety †Dp�1.1/ of the surface impedance tensor z. Since zero is a simple eigenvalue of z at †, there
exist � > 0 and an open neighborhood K � E of † such that z.�/, � 2 K, has exactly one eigenvalue
�0.�/ of modulus<�. (In the following, K is to be replaced by a smaller neighborhood when necessary.)
The line bundle E0 D ker.z � �0/ � K is a subbundle of ��CTX M D Hom.C; ��CTX M /. The
orthoprojector onto this bundle is given by a contour integral, u0 D .2� i/�1

H
j�jD�.�� z/�1d�. Denote

by u1 D Id�u0 the orthoprojector onto the orthogonal bundle, E1.
Assume also (E2). Choose a unit section v of ker z �†, jvj D 1. Using u0, extend v to a unit section

of E0 �K. Call this section also v. Clearly, u0D v˝v
�. If R2‰0;0 denotes the inverse of a square root

of the scalar operator Oph.v/
�Oph.v/, then V D Oph.v/R satisfies V �V D Id, i.e., V is an isometry.

Lemma 19. Choose V 2 ‰0;0.KIC;CTX M /, with principal symbol v, such that V �V D Id. Set
U0DV V �, U1D Id�U0. There exist B 2‰�1;�2.X ICTX M /, B�DB, and R2‰�1;�1.X ICTX M /,
R�CRD 0, such that, microlocally in K,

.Id�R�/Z.Id�R/D U0.ZCB/U0CU1.ZCB/U1: (46)

In particular,
.Id�R�/Z.Id�R/V D V V �.ZCB/V: (47)

The leading symbol of the scalar operator V �.ZCB/V 2‰1;0 equals

�0C h.z�v j v/� ih tr
�
v� vrz:hrvCvrv�:hr�0:v

�
: (48)

Here, as in Lemma 18, zC hz� denotes the leading symbol of Z.

Proof. To prove (46) we adopt ideas from [Stefanov 2000]. The operators U0 and U1 are orthogonal
projectors, U �j D Uj D U 2

j , and U1U0 D 0. Write

Z D U0ZU0CU1ZU1CB;

where B D U0ZU1 C U1ZU0. Since uj z D zuj and u1u0 D 0 we have B 2 ‰0;�1. Let hb, with
b D b� 2 S0, denote the principal symbol of B. Define the section zj D zjEj of End.Ej /. The spectra
of z0 and z1 are disjoint. Therefore the Sylvester equation sz0 � z1s D u1bu0 has a unique solution s

which is a section of Hom.E0;E1/. We extend s to a section of End.��CTX M / by s D u1su0. Then
sz�zsD u1bu0, and s 2 S�1. Define S DOph.hs/ and RDU0S�U1�U1SU0. Then, R�D�R and
B D U0BU1CU1BU0 � R�Z CZR modulo ‰�1;�2. Therefore, with a different B 2 ‰�NC1;�N ,
N D 2, and Z0 DZ1 DZ, we have

.Id�R�/Z.Id�R/D U0Z0U0CU1Z1U1CB: (49)
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If N � 2 then, using the same construction as before, we find R1 2 ‰
�N;�N , R�

1
D �R1 such that

U0BU1CU1BU0 �R�
1
ZCZR1 modulo ‰�N;�N�1. Hence we get (49) with R and Zj replaced by

RCR1 and Zj CB, respectively. The new error B belongs to ‰�N;�N�1. Iterating this construction
and using asymptotic summation (46) follows. Since U0V D V , (46) implies (47).

Observe that the leading symbols of V �.Z C B/V and V �ZV are equal. The principal symbol
equals .v j zv/ D �0 because jvj D 1. We write the leading symbol of V as .1C h
 /v C hw, where
v�wD .w j v/D 0. Note that .v j zw/D 0. A straightforward symbol computation, using (68) and (71),
gives

�h.V
�ZV /� �0C h.z�v j v/C h.
 C 
 /�0� ih tr

�
v� vrz:hrvCvr h

rv�:zvCvrv�:hrzv
�

modulo O.h2/. From V �V D 1 it follows that the leading symbol of V �V equals unity. Since jvj2 D 1

is the principal symbol, this implies

h.
 C 
 /� ih tr
�
v
r

h
rv�:vC v

rv�:hrv
�
D 0:

Therefore the expression for the symbol of V �ZV simplifies to

�h.V
�ZV /� �0C h.z�v j v/C ih tr

�
�0
v
rv�:hrv� v� vrz:hrv�vrv�:hrzv

�
modulo O.h2/. Using hrzv D �0

hrvChr�0:v we deduce (48). �

Denote by ‰m
phg the class of h-independent pseudodifferential operators A with polyhomogeneous

symbols, a �
P

j�m aj , aj homogeneous of degree j . When regarded as an h-dependent operator,
A2‰m;m has the classical symbol

P
j�m h�j aj . In the next lemma, following [Popov and Vodev 1999]

and [Stefanov 2000], we use this relation to conjugate the scalar operator constructed in Lemma 19 into
hP � 1, where P is h-independent.

Recall that �1=2 � X denotes the bundle of half-densities.

Lemma 20. There is a selfadjoint operator P 2‰1
phg.X I�

1=2/with principal symbol p, and an operator
A 2 ‰0;0 from half-density sections to scalar functions, elliptic near †, such that A�V �.ZCB/VAD

hP � 1 in a neighborhood of †. The subprincipal symbol of P equals, on †,

psub D .Pzv j v/
�1
�

Re.z�v j v/C Im tr.v� vrz:hrv/
�
C Im tr.h

rp:vrv�:v/: (50)

Here Pz denotes the radial derivative of z. If instead of v another unit section QvDei'v of ker z �† is used
to define V , and thus P , then the principal symbol of P remains unchanged, whereas the subprincipal
changes to Qpsub D psubCfp; 'g on †. Here fp; 'g denotes the Poisson bracket.

Obviously, P is elliptic and bounded from below.

Proof. The radial derivatives of p and of �0D .zv j v/ are, at †, equal to 1 and .Pzv j v/ > 0, respectively.
Therefore, near†, a2

0
�0Dp�1 for some a0 2C1, a0>0. Set QZDA�

0
V �.ZCB/VA0, A0DOph.a0/.

Choose QP1 2 ‰
1;0 (formally) selfadjoint with leading symbol p � ih tr.vr hrp/=2. The selfadjoint

operators QZ and QP1 � 1 have the same principal symbol, p � 1. Therefore, the imaginary parts of their
leading symbols are equal. It follows that the principal symbol q0 of QQ0 D

QZ� . QP1�1/ 2‰0;0 equals,
on †, a2

0
D .Pzv j v/�1 times the real part of the coefficient of h in (48).
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Define p0 2C1.T �X n0/, homogeneous of degree 0, and r�1 2S�1 such that q0Dp0C2.p�1/r�1

holds in a neighborhood of †. Then

.1� h Oph.r�1/
�/ QZ.1� h Oph.r�1//D QP1C h QP0� 1C h QQ�1;

where QP0 is selfadjoint with principal symbol p0. Proceeding inductively, we obtain selfadjoint operators
QPj 2‰

j ;0 with classical symbols such that, for N < 1,

.1� hR�N /
QZ.1� hRN /D h

P
N<j�1

h�j QPj � 1C h�N QQN ;

where QQN 2 ‰
N;0, RN 2 ‰

�1;0. Therefore, there is an h-independent operator P 2 ‰1
phg such that

.1� hR�/ QZ.1� hR/D hP � 1 near †. Moreover, P � QP1C h QP0 modulo ‰�1;�2. The symbol of P

equals p � i tr.vr hrp/=2C p0 modulo S�1. It follows from Corollary 29, or rather its analogue for
h-independent operators, that p is the principal symbol of P and psubD p0 its subprincipal symbol. By
construction p0 D q0 on †. Formula (50) follows from the formula for q0 mentioned earlier.

Note that fp; 'g D tr
�
vrp:hr' � hrp:vr'

�
. The last assertion of the lemma follows from (50),

using v� vrz:v D vr�0. �

Proof of Theorem 1. The following assertions hold microlocally in a neighborhood of †. It follows from
Lemmas 19 and 20 that

.Id�R�/Z.Id�R/VAD VA��.hP � 1/;

where A�� denotes a parametrix of A�. Define JhD .Id�R/VA and QJhD .Id�R�/�1VA��. We have
Jh; QJh2‰

0;0, QJh�Jh2‰
�1;�1. Moreover, J�

h
Jh is elliptic. By definition of Z, TBhJhD

QJh.P�h�1/,
where Bh is the Dirichlet parametrix given in Proposition 17. Combining the results in Section 6 with
Lemmas 19 and 20, the theorem follows. �

9. Construction of quasimodes

Given P of Theorem 1 we associate to the sequence of positive eigenvalues of P a sequence of quasi-
modes of LT . We follow [Stefanov 2000, Section 4], differing in some details, however.

Let P , Bh, and Jh as in Theorem 1. Assume given a sequence of quasimodes, .�j /, with almost
orthogonal quasimodes states:

Pfj ��jfj D OC1.h
1
j /; .fj j fk/� ıjk D O..hj C hk/

1/; (51)

fj 2 C1.X I�1=2/, 0< �j � �jC1!1, hj D �
�1
j .

We define quasimode states for the traction-free boundary problem. By Theorem 1 the traction tj D

TBhj Jhj fj D OC1.h
1
j /. Choose u0j D OC1.h

1
j / satisfying A0.0/@r u0j jX C tj D 0 and u0j jX D 0.

Define uj 2 C1c .M ICTM /,

uj D h
�1=2
j

�
Bhj Jhj fj Cu0j /: (52)

By Theorem 1,
Luj ��

2
j �uj D OC1.h

1
j /; T uj D 0; (53)

and kujkL2 D O.1/. We can assume that the uj are supported in a given neighborhood of X . Using the
ellipticity of L, we deduce kujkH 2 D O.h�2

j /.
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To go from quasimodes to eigenvalues or, in scattering theory, to resonances, it is desirable to be able
to decompose the quasimodes into well-separated clusters. In addition, the quasimode states of each
cluster should be linearly independent, and remain so after applying small perturbations.

Proposition 21. Let the assumptions of Theorem 1 hold. Assume given quasimodes �j D h�1
j > 0 of P

as in (51), and define uj as in (52). Then (53) holds. Let m > dim X . There exist ı > 0 and a covering
of f�j g by a sequence of intervals Œak ; bk �� RC, such that

bk C 2ıb�m�dim X
k < akC1; bk � ak < b�m

k :

Let wj 2H 2.M ICTM / be such that, for some N � 0,

kwjkH 2 D O.h�2�N
j /; wj �uj D OL2.h2 dim XCN

j /:

Then, for large k, fwj gak��j�bk
is linearly independent.

Proof. Property (53) is clear by the arguments already given.
It is well-known that a quasimode sequence (51) is asymptotic to a subsequence of the sequence of

eigenvalues of P . The latter satisfies the Weyl asymptotics. Hence we have a Weyl estimate j �C�dim X
j .

It follows that every interval Œa; b�, 1 � b, of length > L has a subinterval of length � Lb� dim X =C

containing no quasimode �j . The existence of intervals Œak ; bk � having the stated properties follows
from this observation. Compare [Stefanov 1999, Proof of Theorem 2]. Define the set of indices of the
k-th cluster: Ik D fj I �j 2 Œak ; bk �g.

Choose a left inverse Kh 2‰
0;0.X ICTX M; �1=2/ of Jh, KhJh D Id at †. Since J�

h
Jh is elliptic at

†, Kh is readily found.
Denote by 
 W v 7! vjX the trace map. By (52), h

1=2
j 
uj D Jhj fj C 
u0j . From (51) it follows that

WFhj fj �†. Therefore,

h
1=2
j Khj 
uj D fj COC1.h

1
j /:

By the remark after Lemma 26 we can assume that there exists a constant C such that for all j ; ` 2 Ik ,
k 2 N,

kKh` �Khj kL2!L2 � Cbk jh` � hj j:

Using bk jh` � hj j � bka�2
k
j�` ��j j � a�2

k
b�mC1

k
, it follows that

h
1=2
j k.Kh` �Khj /
ujkL2 D O.b�m

k /; j ; ` 2 Ik ;

if k is sufficiently large. The assumptions on wj imply kwj � ujkH 1 D O.h1Cdim X
j /. Here we use

the estimate kvk2
H 1 � CkvkL2kvkH 2 . Applying the trace theorem, k
wj � 
ujkL2 D O.h1Cdim X

j /.
Summarizing the estimates, we have shown that, for some " > 0,

kh
1=2
j Kh`
wj �fjkL2 D O.h"Cdim X

`
/; j ; ` 2 Ik :

Because of almost orthogonality of the fj and the Weyl estimate, we can apply [Stefanov 1999, Lemma
4]. We obtain, for every ` 2 Ik , the linear independence of fKh`
wj gj2Ik

when k is sufficiently large.
Since Kh`
 is linear, also fwj gj2Ik

is linearly independent. �
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Proof of Corollary 2. We apply Proposition 21 with �j "1 the sequence of positive eigenvalues of P ,
counted with multiplicities, and ffj g a corresponding orthonormal system of eigenvectors. Fix m >

dim X . Let Œak ; bk � be the intervals, clustering f�j g, given in the proposition. The quasimode states
defined in (52) belong to the domain of the selfadjoint operator LT . Let �k denote the spectral projector
for LT of the interval Œa0

k
; b0

k
�, where a0

k
D ak � ıb

�m�dim X
k

, b0
k
D bk C ıb

�m�dim X
k

. The intervals
Œa0

k
; b0

k
� are pairwise disjoint. Set wj D�kuj if �j 2 Œak ; bk �. A well-known argument, using the spectral

theorem, gives
ı2b�2m�2 dim X

k kwj �ujk
2
L2 � k.LT ��

2
j /ujk

2
L2 D O.b�1k /

if �j 2 Œak ; bk �. Since LT is elliptic, we have kwjkH 2 D O.�2
j /. Now Proposition 21, with N D 0,

implies that, for k sufficiently large, the rank of �k equals ]fj I �j 2 Œak ; bk �g. Hence an increase by n

of NP over Œak ; bk � leads to an increase � n of NLT
over Œa0

k
; b0

k
�. Taking into account the widths of the

intervals, the corollary follows. �

Remark. The foregoing arguments also apply to give lower bounds for the counting function of reso-
nances. In this case, �k is the projector onto the space of resonant states which correspond to resonances
in rectangles Œak ; bk �C i Œ0; sk �. To satisfy the assumptions in Proposition 21 for wj D �kuj , one es-
tablishes resolvent estimates. See [Stefanov and Vodev 1996; Tang and Zworski 1998; Stefanov 1999;
Stefanov 2000] for ways from quasimodes to resonances. The clustering method was developed in this
context [Stefanov 1999] to handle multiplicities appropriately. Resolvent estimates for anisotropic elastic
systems are given in [Kawashita and Nakamura 2000].

10. The isotropic subprincipal symbol

In this section we assume that the elastic medium is isotropic. We evaluate the subprincipal symbol of
P , psub, starting from the general formula (50).

We continue with Example 8, referring to the notation introduced there. The kernel bundle ker z is
a line subbundle of V , the subbundle of CTX M spanned by �, O� D �=j�j. Abbreviate (19) and (18) as
follows:

.z/11 D

�
�1 �i�2
i�2 �3

�
; .iq/11 D

�
�11 �i�12

i�21 �22

�
:

It will be convenient to use the velocities relative to the Rayleigh wave speed, �sD cr=cs and �pD cr=cp.
Then t D �2

s , ut D �2
p on †D fcr j�j D 1g. Moreover, we set �s D .1� �

2
s /

1=2, �p D .1� �2
p /

1=2,
We first show how to evaluate .z�v j v/, v 2 ker z, z� as in (45).

Lemma 22. Set K D .iq/11. Define Yj by (55), (56), and (58) below. Let X D .xjk/ the selfadjoint
2� 2 matrix which is the unique solution of

XKCK�X D�2Y1�Y2�Y �2 CY3CY �3 : (54)

Let v D v1�C v2
O� 2 ker z. Then

2 Re.z�v j v/D x11jv1j
2
Cx22jv2j

2
C 2 Re x12 Nv1v2:

Proof. Set x D z� C z��. Then 2 Re.z�v j v/ D .xv j v/. By (45), x satisfies the uniquely solvable
Sylvester equation x.iq/C .iq/�x D iy C .iy/�, where y equals the right-hand side of (45). Since q
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leaves V and V ? invariant, X D .x/11 D .xjk/ is the unique solution of (54) provided the right-hand
side of the equation equals .iyC .iy/�/11. The latter holds if

Y1 D .tr.S/zC @r z/11; Y2 D .a1�iq/11; Y3 D
�
i tr vr.iq/�:ah

riq
�
11
:

Observe that the a2� term of (45) drops out because of the skewness of .ia2�/11. In the following we
derive formulas for Yj .

The basis vectors � and O� do not depend on r . Therefore, .@r z/11 D @r .z/11. We obtain

Y1 D tr.S/
�
�1 �i�2
i�2 �3

�
C

�
@r�1 �i@r�2
i@r�2 @r�3

�
: (55)

Using Lemma 12 and the remark following it we obtain a formula for .a1�/11. Clearly, .a1�iq/11D

.a1�/11.iq/11. We derive

Y2 D

"
� tr S h O�;r�i

h O�;r�i � tr SC.�C�/h O�;S O�i

#�
�11 �i�12

i�21 �22

�
: (56)

It remains to determine Y3. Fix an orthonormal frame .�j / of T �
X

M , �1D �, �2D
O� . To compute the

contraction we use the frame .�j /j�2 of T �X , and the dual frame. We compute derivatives of

iq D j�j
p

1� t.Id��˝ � � O�˝ O�/ C �11�˝ � � i�12�˝ O�C i�21
O�˝ �C �22

O�˝ O�:

Set sjk D hS�j ; �ki. A calculation using hr� D S and hrO� D 0 gives�
h
rjiq

�
11
D

h
rj.iq/11C sj2j�jb

�1M; j � 2;

where

M D

�
0 .ut � b/

p
1� t

.ut � b/
p

1� t i.ut � t/

�
:

Regard the coefficients �jk as functions of cs; cp; j�j. Then hrj.iq/11 D h�j ;rcsiKs C h�j ;rcpiKp,
where Ks and Kp denote the partial derivatives of .iq/11 with respect to cs and cp, respectively. In
particular, �

h
r2iq

�
11
D hO�;rcsiKsCh

O�;rcpiKpC s22j�jb
�1M:

Define w1 D Œ.ut � b/
p

1� t ;�i.b�ut/�. The row k > 2 in
�

hrjiq
�
21

equals sjkb�1j�jw1.
The vertical derivative of a function � which, when restricted to a fiber depends only on j�j, is given

by its radial derivative:
v
r�� D j�j

�1
h O�; �i P�: (57)

A calculation using vr� D 0 and vrO� D j�j�1.Id�O�˝ O�/ gives�
v
rjiq

�
11
D

v
rj.iq/11 D j�j

�1ı2j
PK; j � 2;

where we have set
PK D

�
P�11 �i P�12

i P�21 P�22

�
:

Define w2 D Œi.b� t/;
p

1�ut �
p

1� t �. The row k > 2 in
�
vrjiq

�
21

equals ıjkb�1w2.
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Set A D .a/11 D diagŒ�C 2�;��. Note that .a/22 equals � times the unit matrix. Summing over
j � 2 we derive

Y3D i PK�A
�
j O�j�1

h O�;rcsiKsCj
O�j�1
h O�;rcpiKpCs22b�1M

�
C i�b�2

j�j.tr.S/�s22/w
�
2˝w1; (58)

evaluated at †. �

Denote by v the unique unit section of ker.z��0/ satisfying . O� j v/ > 0, so

v D 
�1
�
i�2�C .�1��0/ O�

�
;


 > 0 such that jvj D 1. We compute the v-dependent terms in the right-hand side of (50).

Lemma 23. On † we have Im tr hrp:vrv�:v D 0, and

16
 2 Im tr.v� vrz:hrv/

Dm3��1c2
r �

6
s .4��

2
s /.2��

2
s /
�
2�s
P�3� .2��

2
s /
P�2
�
s22C2m3cr�

6
s .2��

2
s /.5�

2
s �4��4

s / tr0 S; (59)

where tr0 S D tr S � s22, s22 D h
O�;S O�i, and mD �j�j=b.

Proof. Set 
1 D �2=
 and 
2 D .�1��0/=
 . We continue to use the frame .�j /. For j � 2 we have

v
rjv
�
D�i vrj
1:�

�
C
v
rj
2: O�

�
Cj�j�1.1� ı2j /
2�

�
j ;

h
rjv D i h

rj
1:�C
h
rj
2: O�C i
1S�j :

Note that vrjv
�:v is real. Hence Im tr hrp:vrv�:v D 0. We need the vertical derivative of z. To

compute it we proceed in the same way as we did when computing the derivatives of iq. Recall that z

equals �? Id on V ?, where �? D �j�j
p

1� t . We obtain
�
vrjz

�
11
D vrj.z/11. Moreover, the column

k > 2 in .vrjz/12 equals ıjk j�j
�1 times the transpose of the row vector Œ�i�2; �3� �

?�. We get

Im v� vrjz:hrjv D 
1 Re v� vrjz:S�j

D 
1.
2
v
rj�3� 
1

v
rj�2/s2j C 
1j�j

�1
�

2.�3� �

?/� 
1�2
�
sjj .1� ı2j /:

Summing over j � 2 we obtain


 2 Im tr.v� vrz:hrv/D �1�2
v
r

S O�
�3� �

2
2
v
r

S O�
�2C cr�2

�
�1.�3� �

?/� �2
2

�
tr0.S/:

The first term on the right equals

m2
j�j�1s22.2b� t/

�
t
p

1� t P�3� .2b� t/ P�2
�
:

Moreover, using the definition of b, we calculate

�3� �
?
Dm.

p
1�ut �

p
1� t/:

Using (21), 4b D t.4� t/, we derive (59). �

The restriction to † of the radial derivative of the eigenvalue �0 D .zv j v/ D a�2
0
.p � 1/ equals

P�0 D .Pzv j v/D a�2
0

because Pp D 1 on †.
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Lemma 24. Let mD �j�j=b. On †, we have


 2 P�0 Dm3�6
s .4� �

2
s /�s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
;

Proof. The section wD i�2�C�1 O� equals 
v on †. Therefore 
 2�0� .zw jw/D �1 det.z/11 to second
order on †. Inserting (20),


 2�0 �mbt
p

1� t
�
4
p
.1� t/.1�ut/� .2� t/2

�
:

Recall that p D cr j�j D �st�1=2, †D ft D �2
s g. The rule of de l’Hospital gives

lim
t!�2

s

4
p
.1� t/.1�ut/� .2� t/2

�st�1=2� 1
D 4�2

s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
:

Summarizing, the formula for 
 2 P�0 D 

2�0=.p� 1/ follows. �

Inserting the formulas of the lemmas of this section into the general formula (50) for the subprincipal
symbol of P we obtain a formula for the subprincipal symbol in the isotropic case.

Proposition 25. Denote by X D .xjk/ the 2� 2 matrix solving (54). Set

N D �s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
:

Let P be the operator of Lemma 20 determined by the unit section v of ker z having positive O� component.
The subprincipal symbol of P is given as follows.

16Npsub D .cr=2�/
�
x11.2� �

2
s /

2
C 4x22.1� �

2
s /

2
C 4 Im x12.2� �

2
s /�s

�
C��1c2

r .2��
2
s /
�
2�s
P�3�.2��

2
s /
P�2
�
hS O�; O�iC2cr .4��

2
s /
�1.2��2

s /.5�
2
s �4��4

s /.tr.S/�hS O�; O�i/:

Proof. On †, w D 
v D .mt=2/
�
i.2 � t/� C 2

p
1� t O�

�
. Using Lemmas 22 and 24 we calculate

16N Re.z�w j w/=
 2 P�0. The result is the first term on the right-hand side of the claimed formula.
Similarly, we obtain the other terms combining the Lemmas 23 and 24. �

The constituents of the above formula for psub are curvature and velocities (Lamé parameters), as-
sumed known. It seems difficult to analyze the formula further unless it is specialized to particular cases.
However, it should be noted that the formula allows explicit numerical evaluation of psub. Therefore it
can be used when solving transport equations for Rayleigh wave amplitudes numerically with a (seismic)
ray tracing program, say. Formulas for the amplitudes of Rayleigh waves were given by in [Babich and
Kirpichnikova 2004].

Appendix: Geometric pseudodifferential calculus

Pseudodifferential operators on manifolds are usually introduced by reducing to the euclidean case via
partitions of unity, [Hörmander 1985, 18.1; Zworski 2011]. The principal symbol of a pseudodifferential
operator is invariantly defined. If the operator acts on sections of the line bundle of half-densities then
there also is an invariantly defined subprincipal symbol [Hörmander 1985, Theorem 18.1.33; Sjöstrand
and Zworski 2002, Appendix].
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In the body of the paper we explicitly track, down to the subprincipal level, symbols of operators
acting between vector bundles. To achieve this we use Sharafutdinov’s geometric pseudodifferential
calculus [Sharafutdinov 2004; 2005]. The purpose of this appendix is to recall this calculus, presenting
a semiclassical variant. Since we have to refer, in the main part of the present paper, to proofs of the
calculus, we give a rather detailed presentation. The calculus depends on a symmetric connection of
the manifold and on metric connections of the (Hermitian) bundles. We make the stronger assumption
that the manifold is Riemannian and that the symmetric connection is the Levi-Civita connection. The
important features of the calculus are a symbol isomorphism modulo order minus infinity, and complete
symbol expansions for products and adjoints given solely in terms of geometric data. Using connections
to develop a pseudodifferential calculus and to prove the existence of a complete symbol isomorphism
was done earlier in [Widom 1980]. This was further developed by Pflaum [1998], who gave a conve-
nient quantization map from symbols to operators. Sharafutdinov gave symbol expansions in terms of
geometric data.

Let X a compact Riemannian manifold without boundary, dim X D n. The exponential map, exp, of
the Levi-Civita connection defines a diffeomorphism, .x; v/ 7! .x;y/ D .x; expx v/, between a neigh-
borhood of the zero-section of the tangent bundle T D TX and a neighborhood of the diagonal in X 2.
In the proofs of the propositions below we need the following properties of exp. In local coordinates the
exponential map satisfies

.expx v/
i
D xi

C vi
�� i

jk.x/v
jvk=2CO.jvj3/; (60)

where � i
jk

denotes the Christoffel symbols. Normal coordinates centered at x satisfy .expx v/
i D vi .

There exist 0< r <R< inj.x/, the injectivity radius of X , such that the equation

expexpx v
z D expx w (61)

defines, for every v 2 Tx D TxX , jvj < R, a diffeomorphism w 7! z D z.x; v; w/ from an open
neighborhood of the origin, contained in fjwj < Rg � Tx , onto the ball fjzj < rg � Ty , y D expx v.
This map is used below to change variables of integration. Obviously, z.x; 0; w/ D w. A computation
in normal coordinates centered at x shows that

.z0w/
�1z D w� vCO..jvjC jwj/3/ as v;w! 0. (62)

Recall, from Section 3, the notation for segments and for parallel transport maps. In local coordinates,�
�TX
Œexpx v�x�w

�i
D wi

�� i
jk.x/w

jvk
CO.jvj2/: (63)

Let E � X and F � X be Hermitian vector bundles with metric connections. Recall from Section 3
the definition (24) of horizontal derivatives and the definition of vertical derivatives. A C1 section a of
the bundle ��Hom.E;F / � T �X is called a Hom.E;F /-valued symbol of order m 2 R, a 2 Sm D

Sm.T �X I��Hom.E;F //, if and only if for all nonnegative integers j and `,

sup
x;�

.1Cj�j/j�m
ˇ̌
.vr/j .h

r/`a.x; �/
ˇ̌
<1:

These are the usual type .1; 0/ symbol estimates. The symbol space Sm is a Fréchet space. The space
Sm;k D Sm;k.T �X I��Hom.E;F // of h-dependent symbols of order m and degree k is the Fréchet
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space of families ah 2 Sm such that fhkah I 0< h� 1g is bounded in Sm. We call a 2 Sm;k classical if
there exists an asymptotic expansion a�

P
j hj�kaj with h-independent symbols aj 2 Sm�j .

In the following lemma we define, in a semiclassical setting, the quantization of symbols according to
Sharafutdinov’s geometric pseudodifferential calculus. We relate this definition of h-pseudodifferential
operators to the definition in the euclidean situation. For semiclassical analysis, in particular, for the class
‰m;k D Oph Sm;k of h-pseudodifferential operators, including mapping properties, and for frequency
sets (h-wavefront sets), refer to [Gérard 1988; Ivrii 1998; Dimassi and Sjöstrand 1999; Sjöstrand and
Zworski 2002; Zworski 2011]. The class of negligible operators, ‰�1;�1, consists of h-dependent
operators whose Schwartz kernels are C1 with O.h1/ seminorms.

Fix �0 2C1.TX /, real-valued, jvj< r on the support of �0.x; v/, such that �0D1 in a neighborhood
of the zero-section in TX .

Lemma 26. Let ah 2 Sm;k be a Hom.E;F /-valued symbol. Then

Ahuh.x/D .2�h/�n

Z
T �x

Z
Tx

e�ih�;vi=h�0.x; v/ � ah.x; �/�
E
Œx�expx v�

uh.expx v/ dv d�; (64)

defines an h-pseudodifferential operator Ah 2 ‰
m;k.X IE;F /. Given a point x there exists a geodesic

ball U centered at x, and a symbol aU
h
2 Sm;k such that, for uh compactly supported in U ,

Ahuh.y/D .2�h/�n

Z
T �x

Z
Tx

eih�;v�wi=haU
h .y; �/�

E
Œy�y0�uh.y

0/ dw d�;

where y D expx v and y0 D expx w. Moreover, at x, aU
h
� ah modulo Sm�2;k�2. Every h-pseudo-

differential operator is, modulo negligible operators, of the form (64).

The measures in (64) are the normalized Lebesgue measures of the euclidean spaces Tx and T �x .

Proof. We shall drop the subscript h from the notation. Fix x 2 X . Let U denote a geodesic ball with
center x and radius �R. In the following we assume that the support of u is a compact subset of U . In
(64) we replace the variables x; v; � by y; z; �. Next we change variables in the integral Au.y/ such that
the domain of integration does not depend on y. Set y D expx v. Define z D z.x; v; w/ by (61). Using
the symplectic map .w; #/ 7! .z; �/, � D t .z0w/

�1# , we get

Au.y/D

Z
Tx

K.v; w/�E
Œy�expx w�

u.expx w/ dw;

where the kernel K is given by

K.v; w/D .2�h/�n

Z
T �x

e�i'=h�0.y; z/a.y; �/ d#;

with 'Dh�; ziDh#; .z0w/
�1zi. Since zD0 if and only if vDw, we have '.v;w; #/Dh .v;w/#;w�vi.

Here  D IdCO.jvj2 C jwj2/ by (62). Decreasing the radius of U and making the linear change of
variables � D  .v;w/# , we get

K.v; w/D .2�h/�n

Z
T �x

eih�;v�wi=h�0.y; z/a.y; �/J1.v; w/ d�;
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with J1.v; w/D1CO.jvj2Cjwj2/. It follows that A restricted to U is an h-pseudodifferential operator of
class ‰m;k . As it stands the symbol depends on v; �; w. Using the standard symbol reduction procedure
we obtain aU .expx v; �/. Moreover, the asymptotic expansion implies that, as v!0, aU�a2Sm�2;k�2.

Note that Au.y/D 0 if the distance between y and supp u is > r . Using a partition of unity, we infer
that the class of operators given by (64) equals the class of h-pseudodifferential operators with Schwartz
kernels supported in small neighborhoods of the diagonal. �

Standard arguments show that up to a negligible operator Ah D Oph.ah/ does not depend on the
choice of the cutoff �0. The space

‰m;k.X IE;F /D Oph Sm;k
C‰�1;�1:

is the space h-pseudodifferential order m and degree k. We denote the geometric symbol by �h.Ah/Dah.

Remark. Let Ah D Oph.ah/ 2 ‰
0;0. Then Ah is L2 bounded, uniformly in h. Assume, in addition,

that ah depends differentiably on h with @hah 2 S0;0. Changing variables in (64) from � to � D �=h,
we obtain Ah1

�Ah0
D
R h1

h0
h�1 Oph.bh/ dh, where bh 2 S0;0, bh.x; �/D h@hah.x; �/C

vr�ah.x; �/.
This implies the following useful Lipschitz estimate:

kAh1
�Ah0

kL2!L2 � C h�1
0 jh1� h0j if h0 < h1,

where kOph.bh/kL2!L2 � C <1. The assumption holds if ah is classical and given as a Borel sum.

In the following, we often suppress from writing the h-dependence of symbols, operators and distri-
butions. Moreover, when dealing with integrals like (64), we move, without explicitly writing this, the
x-dependence from the domain of integration into the integrand using arguments as in the proof of the
lemma.

Lebesgue measure dv on TxX and Riemannian volume are related byZ
f .y/ dVX .y/D

Z
f .expx v/J0.x; v/ dv;

where yD expx v and J0 is the Jacobian, satisfying J0D 1CO.jvj2/ at vD 0. Let ADAh be as in (64).
The Schwartz kernel KA of A,

Au.x/D

Z
X

KA.x;y/u.y/ dVX .y/; KA.x;y/ 2 Hom.Ey ;Fx/:

equals in a neighborhood of the diagonal a partial Fourier transform of the symbol,

KA.x;y/D .2�h/�n

Z
T �x

e�ih�;exp�1
x yi=ha.x; �/ d�  .x;y/�E

Œx�y�: (65)

Here  .x;y/ D �0.x; v/=J0.x; v/, y D expx v. The symbol a is recovered via the inverse Fourier
transform:

a.x; �/�

Z
Tx

eih�;vi=h.�0J0/.x; v/KA.x; expx v/�
E
Œexpx v�x� dv (66)
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modulo S�1;�1. The correspondence between an operator AD Oph.a/ and its full symbol a, named
the geometric symbol of A, defines the complete symbol isomorphism

‰m;k.X IE;F /=‰�1;�1 Š Sm;k.T �X IHom.��E; ��F //=S�1;�1:

The geometric symbol can also be computed by applying the operator to suitable testing functions:

a.x; �/s �Ay

�
eih�;exp�1

x yi=h�0.x; exp�1
x y/�E

Œy�x�s
�
jyDx : (67)

Here Ay means that A acts on functions of the variable y. In particular, in case E D C, the geometric
symbol is obtained at the center of normal coordinates xj when A is applied to ei�jxj =h and evaluated
at xj D 0.

We derive symbol properties and expansions using the method of stationary phase:�
det.H=2� ih/

�1=2 Z
ei.'.x//=ha.x/ dx D exp

�
2�1ihhH�1@; @i

��
ei�.x/=ha.x/

�ˇ̌
xD0

D

X
j<3N

.ih/j

j !2j
hH�1@; @ij

�
ei�.x/=ha.x/

�ˇ̌
xD0
CO.hN /:

Here ' 2C1 is real-valued, '0.x/D 0 if and only if xD 0, H D'00.0/ is nonsingular, and '.0/D 0. The
remainder �.x/D '.x/�hHx;xi=2 vanishes to third order at xD 0. The expansion has the advantage,
when compared to that obtained using the Morse lemma, of giving an efficient algorithm for computing
the asymptotic series.

See [Asada and Fujiwara 1978, Lemma 3.2] and [Hörmander 1990, Theorem 7.7.5], where the ex-
pansion is arranged in powers of !�1 D h.

We are mainly interested in the leading symbols of operators. We define the leading symbol of an
operator Oph.a/ 2‰

m;k as the residue of a in Sm;k=Sm�2;k�2. The principal symbol is, of course, the
residue in Sm;k=Sm�1;k�1.

Proposition 27. Let A D Oph.a/ as in (64) with geometric symbol a 2 Sm;k . The formal adjoint
A� 2‰m;k.X IF;E/ has the geometric symbol

b � a�� ih tr vr h
ra� mod Sm�2;k�2: (68)

If a is classical then so is b.

Notice that vr hra� is a section of ��.Hom.F;E/˝ T ˝ T �/. The trace is taken of the T ˝ T �

part.

Proof. The formal adjoint of A is defined byZ
X

�
u1.x/ jAu2.x/

�
F

dVX .x/D

Z
X

�
A�u1.y/ j u2.y/

�
E

dVX .y/:

The Schwartz kernel satisfies KA�.x;y/ D KA.y;x/
�. Recall that parallel transport preserves inner

products. It follows from (65) that

KA�.x;y/D .2�h/�n

Z
T �y

eih�;exp�1
y xi=h�E

Œx�y�a.y; �/
�d�  .y;x/;
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and KA�.x;y/D 0 if the distance between x and y is > r . Set yD expx v. Define z 2Ty by expy zDx.
After a linear change variables from � 2 T �y to � D t .exp0x.v//� 2 T �x we have

KA�.x;y/D .2�h/�n

Z
T �x

eih�;zi=h�E
Œx�y�a.y; �/

�d�  .y;x/=J1.x; v/;

with Jacobian J1.x; v/D 1CO.jvj2/. Define

b.x; �/D

Z
Tx

eih�;vi=h.�0J0/.x; v/KA�.x;y/�
F
Œy�x�dv:

Inserting KA� we have

b.x; �/D .2�h/�n

Z
Tx

Z
T �x

ei'=h
QaJd� dv; (69)

where
' D h�; viC h�; zi D �h� � �; viC h�;ˆi;

QaD �E
Œx�y�a.y; �/

��F
Œy�x� D �

Hom.F;E/
Œx�y�

a.y; �/�;

J D �0.x; v/J0.x; v/ .y;x/=J1.x; v/D 1CO.jvj2/;

and ˆ D ˆ.x; v/ D exp0x.v/
�1

z C v. A computation in normal coordinates centered at x shows that
ˆ D O.jvj3/ as v ! 0. If '0

�
D 0 then z D 0, hence v D 0. It follows that the critical points of ' are

defined by v D 0, � D �.
Apply the method of stationary phase to (69) and deduce that b 2 Sm;k . Moreover, the following

asymptotic expansion holds:

b �
X

j

.ih/j

j !
h�@� ; @vi

j
�
eih�;ˆi=h

Qa
�ˇ̌
vD0;�D�

: (70)

Differentiation of the exponential factor brings out a nonzero factor only if it consumes at least three
derivatives with respect to v and at most one derivative with respect to �. It follows that the sum is
asymptotic. Moreover, b is determined modulo Sm�2;k�2 by the terms in the asymptotic sum with
j < 2, b � a�� ihh@� ; @vi Qa. Observe that

�T
Œx�expx v�

ı exp0x.v/D IdTx
CO.jvj2/ as v! 0.

It follows that @v Qa
ˇ̌
vD0
D hra�.x; �/. Hence b � a�� ih tr vr hra�. The Schwartz kernels of Oph.b/

and A� are equal in a neighborhood of the diagonal. Therefore A��B 2‰�1;�1. �

Proposition 28. Let A 2 ‰mA;kA.X IF;G/ and B 2 ‰mB;kB .X IE;F / with geometric symbols a and
b, respectively. Set k D kAC kB , mDmACmB . Then AB 2‰m;k.X IE;G/ with geometric symbol

c � ab� ih tr
�
v
ra:hrb

�
(71)

modulo Sm�2;k�2. If a and b are classical then so is c.

Again the trace is taken of the T ˝T � part, and the dot terminates differentiated expressions.
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Proof. Setting y D expx v, the operator C DAB is given by

C u.x/D

.2�h/�2n

ZZZZ
Tx�T �x �Ty�T �y

e�i.h�;viCh�;zi/=ha.x; �/ � �F
Œx�y�

�
b.y; �/�E

Œy�expy z�u.expy z/
�

dz d� dv d�:

Here and in the following we do not write the cutoff factors. Let z D z.x; v; w/ be the solution of
expy z D expx w. The symplectic change of variables .w; #/ 7! .z; �/, � D t .z0w/

�1# , preserves the
volume form. We get C u.x/D

R
Tx

KC .x; expx w/u.expx w/J0.x; w/ dw, with Schwartz kernel

KC .x; expx w/J0.x; w/D .2�h/�2n

Z
T �x �Tx�T �x

e�i.h�;viCh�;zi/=hc0d.#; v; �/ �E
Œx�expx w�

;

c0D a.x; �/�
Hom.E;F /
Œx�y�

b.y; �/M.x; w; v/. Here M.x; w; v/ 2GL.Ex/ denotes the parallel transport in
E along the geodesic triangle x! expx w! expx v! x. It follows that the symbol of C equals

c.x; �/D .2�h/�2n

Z
Tx�T �x �Tx�T �x

ei'=hc0d.v; �; w; #/; (72)

' D h�; wi � h�; vi � h�; zi. We introduce w� v as a new variable, w. Then (72) holds with

' D�h�� �; vi � h# � �; wiC h#;ˆi;

c0 D a.x; �/�
Hom.E;F /
Œx�y�

b.y; �/M.x; wC v; v/;

Here ˆDw�.z0w.x; v; wCv//
�1z.x; v; wCv/2T �x . By (62), ˆ vanishes to third order at vDwD 0.

Clearly, v D 0D z at a critical point of '. It follows that v D w D 0 and �D # D � define the critical
points.

Now apply the method of stationary phase to (72) and deduce that c 2 Sm;k is a symbol which,
moreover, has an asymptotic expansion

c �
X

j

.�ih/j

j !

�
h@# ; @wiC h@�; @vi

�j �
eih#;ˆi=hc0

�ˇ̌
vDwD0;�D#D�

: (73)

Using that ˆ does not depend on � and # , and vanishes to third order at v D w D 0, we infer that the
summands with j > 1 belong to Sm�2;k�2. It follows that

ab� ihh@�a; @v QbM i � ihah@# ; @wi QbM;

evaluated at the critical point, is the leading symbol of C . Here QbD �Hom.E;F /
Œx�y�

b.y; �/. We have @w QbD 0

at v D w D 0. This follows from �0w D 0 which is a corollary of z D w at v D 0. The derivatives of M

with respect to v and w vanish at vDwD 0. Using �T
Œx�expx v�

ız0w D IdTx
CO.jvj2/ at wD 0, we derive

@v Qb D @v�
Hom.E;F /
Œx�expx v�

b.expx v;
t .z0w/

�1#/D h
rb.x; #/;

at v D w D 0. Summarizing the computations, (71) follows. �



RAYLEIGH-TYPE SURFACE QUASIMODES IN GENERAL LINEAR ELASTICITY 495

Remark. The proofs of Propositions 27 and 28 follow those in [Sharafutdinov 2004; 2005] closely with
only minor modifications. Our derivation of the asymptotic expansions of the symbols of adjoints and
products may be somewhat shorter, however. We differ in defining the adjoint with respect to the volume
element rather than using half-densities. Notice that the symbol expansions (70) and (73) depend only on
the given symbols and on the geometry. In the formulas (68) and (71), we extracted the leading symbols.

For the purposes of the present paper it suffices to assume X compact. A symbol calculus on general
(complete) Riemannian manifolds needs to take the injectivity radius into account and handle mapping
properties more explicitly.

It is well-known that a pseudodifferential operator acting on half-densities has an invariantly defined
subprincipal symbol; see [Sjöstrand and Zworski 2002, Appendix] for a proof in the semiclassical case.
We relate the subprincipal symbol to the leading geometric symbol. Equip the half-density bundle�1=2 �
X with the inner product .u jv/Du� Nv= dVX , where the operations on the right are in the sense of densities.
The connection given by r�

1=2

dV
1=2

X
D 0 is metric with respect to the Hermitian structure of �1=2.

Corollary 29. Let A2‰m;k.X I�1=2/. The leading symbol of A equals that of the corresponding scalar
operator QA 2 ‰m;k.X / which is given by QAuD dV

�1=2
X

A.u dV
1=2

X
/. If the geometric symbol a of A is

classical, a�
P

j�0 hj�kaj , aj 2 Sm�j , then h�ka0 is the principal symbol of A, and

asub D h1�k.a1C i vra0:
h
ra0=2/

is its subprincipal symbol.

Proof. Consider the multiplication operator dV
1=2

X
2 ‰0;0.X IC; �1=2/. The Hom.C; �1=2/-valued

symbol �� dV
1=2

X
is the leading symbol of this operator. Note that its horizontal and vertical derivatives

vanish. The equality of the leading symbols of A and QA now follows from Proposition 28.
Let aU denote the local symbol of A in a geodesic coordinate chart U centered at a given point x.

We use normal coordinates centered at x. Assume a classical, hka D a0 C ha1 C O.h2/. Then aU is
classical, and hkaU D a0CO.h/. Moreover, it follows from Lemma 26 that hkaU D a0Cha1CO.h2/

at x. The subprincipal symbol equals, by definition, h1�k.a1C 2�1i
P

j @
2a0=@xj@�j /. The horizontal

derivative in the j -th coordinate direction equals, at x, the partial derivative with respect to xj . The
formula for the subprincipal symbol follows. �
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