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STANDING RING BLOWUP SOLUTIONS FOR CUBIC NONLINEAR
SCHRÖDINGER EQUATIONS

IAN ZWIERS

For all dimensions N � 3 we prove there exist solutions to the focusing cubic nonlinear Schrödinger
equations that blow up on a set of codimension two. The blowup set is identified both as the site of L2

concentration and by a bounded supercritical norm outside any neighborhood of the set. In all cases, the
global H 1 norm grows at the log-log rate.

1. Introduction

Consider the cubic focusing nonlinear Schrödinger equation in dimension N � 3:�
iut C�uCu juj2 D 0;

u.0;x/D u0 W R
N ! C:

(1-1)

This is a canonical model equation arising in physics and engineering [Sulem and Sulem 1999]. This
equation, and other closely related equations, have been the subject of many recent mathematical studies.

Equation (1-1) is locally wellposed for data

u0 2H s.RN /

for any s 2
�

N
2
� 1; N

2

�
or integer s > N

2
; see [Cazenave 2003]. In these cases we have the classic

blowup alternative: either TmaxDC1 or ku.t/kH s !1 as t! Tmax. Higher regularity persists under
local-in-time dynamics and the maximal time Tmax > 0 for which u belongs to C .Œ0;Tmax/;H

s/ is the
same for all s > N

2
� 1. Evolution under (1-1) preservesZ

R3

ju.t;x/j2 dx D

Z
ju0j

2 dx DM Œu0� (mass); (1-2)Z
jrxu.t;x/j2 dx�

1

2

Z
ju.t;x/j4 dx DEŒu.t;x/�DEŒu0� (energy); (1-3)

Im
�Z
Nu.t;x/ru.t;x/ dx

�
D Im

�Z
u0ru0 dx

�
(momentum): (1-4)
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There are corresponding symmetries. If u.t;x/ satisfies (1-1), so do the following:

u.t;xCx0/ 8x0 2 RN (spatial translation invariance)

u.t C t0;x/ 8 t0 2 R (time translation invariance)

u.t;x/ei
0 8 
0 2 R (phase invariance)

u.t;x�ˇ0t/ei
ˇ0
2
�.x�ˇ0

2
t/
8ˇ0 2 RN (Galilean invariance)

�0u.�2
0t; �0x/ 8�0 > 0 (scaling invariance)

Scaling invariance leaves the PH
N
2
�1.RN / norm of data unchanged and for this reason Equation (1-1)

is deemed H
N
2
�1-critical. Local wellposedness for s > N

2
� 1 and the scaling symmetry prove that all

solutions that blow up in finite time Tmax <C1 must obey the scaling lower bounds

ku.t/kH s &
1

.Tmax� t/
s
2
�N�2

4

:

Equation (1-1) has standing wave solutions. The ansatz u.t;x/D eitW .x/ leads to the elliptic PDE�
�W �W CW jW j2 D 0;

W .jxj/ > 0 for x 2 RN :
(1-5)

The unique positive radial solution1 to (1-5) is the ground-state solution of (1-1). We reserve the notation
Q for the ground-state solution of the two-dimensional problem,�

�R2Q�QCQ jQj2 D 0;

Q.jyj/ > 0 for y 2 R2:
(1-6)

Classification of dynamics. In the case N D 2, if M Œu0� < M ŒQ� solutions to (1-1) exist for all time
[Weinstein 1983] and scatter [Killip et al. 2009]. Negative-energy data u0 2 H 1 lead to blowup in
finite time if it is radially symmetric or has finite variance, u0 2 † D H 1 \ ff W jxjf .x/ 2 L2g; see
[Ogawa and Tsutsumi 1991]. By adjusting the quadratic phase of negative-energy data, one can produce
examples of blowup solutions with arbitrary energy [Cazenave 2003, Remark 6.5.9].2 At the threshold
M Œu0�DM ŒQ� there is, up to symmetries, a unique explicit blowup solution [Merle 1993].

In the cases N D 3 and N D 4 the situation is more complicated. Assume that

M Œu0�
4�N EŒu0�

N�2 <M ŒW �4�N EŒW �N�2: (1-7)

The following classification is independent of time:

ku.t/k4�N
L2 kru.t/kN�2

L2 < kW k4�N
L2 krW kN�2

L2 ; with global existence and scattering, or

ku.t/k4�N
L2 kru.t/kN�2

L2 > kW k4�N
L2 krW kN�2

L2 ; with unbounded H 1 norm growth.

1The classic proof in the case N D 3 is in [Coffman 1972]. For other dimensions, see [Weinstein 1983; Berestycki and
Lions 1983; Kwong 1989]. For a concise overview of these results, see [Tao 2006, Appendix B].

2These arguments also apply to the other energy-subcritical case, N D 3. Further sufficient conditions for blowup based on
the virial identity in N D 3 are known; see [Holmer et al. 2010].
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This was shown in [Kenig and Merle 2006] in the case N D 4 with radial symmetry and in [Duyckaerts
et al. 2008; Holmer and Roudenko 2008; 2010] in the case N D 3. Again, the data at the threshold of
(1-7) may be classified in terms of three special solutions, up to symmetries; see [Duyckaerts and Merle
2009; Duyckaerts and Roudenko 2010]. One of these solutions blows up in finite time, but the exact
dynamic is unknown.

In all cases, the description of behavior above the threshold is an ongoing challenge.
In the case of N D 2, Merle and Raphaël have completely described the dynamic of an open class of

data with M ŒQ� < M Œu0� < M ŒQ�C ı. This open class includes all data with negative energy and is
thought to describe the generic behavior. See Theorem 1.1, below, for references. Their work follows
the earlier simulation [Landman et al. 1988] and construction [Perelman 2001] of solutions in H 1 that
blow up at the rate of the scaling lower bound with a log-log correction.

Recently, in the case of N D 3, data with M ŒW �EŒW � <M Œu0�EŒu0� <M ŒW �EŒW �C ı has been
shown in [Nakanishi and Schlag 2010] to satisfy one of nine scenarios involving scattering, finite-time
blowup, or trapping in the neighborhood of a manifold of solitons.

Known blowup regimes. There remain, in all cases, very few examples of explicit blowup regimes. We
have already alluded to Merle and Raphaël’s results in the case N D 2:

Theorem 1.1 (log-log blowup of L2-critical NLS [Merle and Raphaël 2003; 2004; 2005a; 2006; Raphaël
2005]). Consider the focusing L2-critical NLS in dimension 1� d � 5,

iut C�uCu juj
4
d D 0:

There exists an open set of data in H 1.Rd /, with mass a little larger than the groundstate, that blow up
at the log-log rate:

ku.t/kH 1 �

�
log jlog .Tmax� t/j

Tmax� t

� 1
2

: (1-8)

These solutions concentrate exactly the groundstate profile in L2 at a point. That is, the remainder
of the solution has a strong limit in L2 as t ! Tmax. Moreover, data in the same range of mass that
do not belong to the log-log class give solutions that either exist for all time, or blow up at the rate
ku.t/kH 1 & .Tmax� t/�1.

Theorem 1.1 gives a precise understanding of the stable blowup regime of the one-dimensional quintic
NLS. To prove the next theorem, Raphaël demonstrated a reduction of the two-dimensional quintic
problem (which is H

1
2 -critical) to this one-dimensional log-log regime.

Theorem 1.2 (standing ring blowups for quintic NLS in 2D [Raphaël 2006]). There exists an open set
of radially symmetric data in H 1.R2/ for which the corresponding solution to iut C�uC u juj4 D 0

exhibits blowup at the log-log rate, (1-8), and concentration in L2 at a ring of fixed radius.

The argument was extended to reduce the energy critical and supercritical quintic equations to the
same one-dimensional log-log regime:
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Theorem 1.3 (codimension-one blowups for quintic NLS [Raphaël and Szeftel 2009]). For all N � 3,
there exists an open set of radially symmetric data in H N .RN / for which the corresponding solution to
iut C�uCu juj4 D 0 exhibits blowup at the log-log rate and concentration in L2 at a fixed radius.

Our aim is to implement this approach for the cubic problem, and, under cylindrical symmetry, reduce
the N -dimensional problem (1-1) to the two-dimensional problem, which we understand by Theorem 1.1.
The following result and our main result, Theorem 1.6, were developed simultaneously.3

Theorem 1.4 (standing ring blowups for cubic NLS in 3D [Holmer and Roudenko 2011]). There exists
an open set of cylindrically symmetric data in H 1.R3/ for which the corresponding solution to (1-1)
exhibits blowup at the log-log rate and concentration in L2 at a ring of fixed radius.

The stability proven in Theorem 1.4 is at the level of H 1 regularity, which allows for a different
approach and a larger class of data than our main result in the case N D 3. The new techniques of
Theorem 1.4 are not directly applicable for the energy critical and supercritical cases, N > 3.

It is anticipated that the L2-supercritical NLS will demonstrate further unique blowup behavior not
described by Theorems 1.2, 1.3, 1.4 or our Theorem 1.6. In particular, due to the asymptotic analysis of
Fibich, Gavish, and Wang [Fibich et al. 2007], all supercritical problems with subquintic nonlinearities
are expected to admit radially symmetric blowup solutions that focus onto a shell whose radius collapses
to zero. In the case of cubic nonlinearity and dimension N , the shell is expected to have radius �
.Tmax � t/N=.N�1/2 . In the case N D 3, the H 1 norm is expected to grow at the scaling lower bound.
See also [Holmer and Roudenko 2007]. The existence and uniqueness of these radial blowup solutions
remain important problems.

Notation 1.5. We use f . g, f & g and f � g to denote that there exist constants C1;C2 > 0 such
that f � C1g, f � C2g, and C2g � f � C1g, respectively. The notation f � g is used in more casual
discussion to say that f and g are of the same order. We will use ı.˛/ to denote any function of ˛ with
the property ı.˛/! 0 as ˛! 0. The exact form of ı will depend on the context. Frequently, we use the
operator

ƒD 1Cy � ry ; where y is a two-dimensional variable.

For f;g 2L2.R2/ we have .ƒf;g/D� .f;ƒg/.

Statement of result. For all N �3 we introduce cylindrical coordinates xD .r; z; �/2 Œ0;1/�R�SN�2

for x 2 RN . We refer to functions that are symmetric with respect to � as cylindrically symmetric, and
we let H s

cyl.R
N / denote the cylindrically symmetric subset of H s .

Theorem 1.6 (main result). For all N � 3, there exists a set of cylindrically symmetric data u0 2 P,
open in H N

cyl.R
N /, for which the corresponding solution u.t/ of (1-1) has maximum (forward) lifetime

0< Tmax <C1 and exhibits the following properties:

3After Theorem 1.2, the idea of considering other H
1
2 -critical problems was first suggested to the author’s thesis advisor by

Justin Holmer and Svetlana Roudenko in private conversation.
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Concentration. There exist parameters �.t/ > 0, r.t/ > 0, z.t/ 2RN�2, and 
 .t/ 2R, with convergence

.r.t/; z.t// �! .rmax; zmax/ as t ! Tmax; with rmax � 1; (1-9)

such that there is the following strong convergence in L2.RN /:

u.t; r; z; �/�
1

�.t/
Q

�
.r; z/� .r.t/; z.t//

�.t/

�
e�i
.t/

�! u�.r; z; �/ as t ! Tmax: (1-10)

Persistent regularity away from singular ring. For any R> 0,

u� 2H
N
2
� 1

2 .j.r; z/� .rmax; zmax/j>R/ : (1-11)

Log-log blowup rate. The solution leaves H 1 at the log-log rate:�
log jlog Tmax� t j

Tmax� t

�1
2

ku.t/kH 1.R3/

�!

p
2�

kQkL2.R2/

as t ! Tmax: (1-12)

Moreover, the higher-order norm behaves appropriately:

ku.t/kH N

ku.t/kN
H 1 log ku.t/kH 1

�! 0 as t ! Tmax: (1-13)

Remark 1.7 (nature of u�). For the L2-critical problem, Theorem 1.1, it is known that the residual
profile u� is not in H 1 [Merle and Raphaël 2005b]. Indeed, (1-11) fails for RD 0. See also Remark 5.1.

Brief heuristic. In cylindrical coordinates the Laplacian is written as

�x D @
2
r C @

2
z C .N � 2/

@r

r
: (1-14)

Suppose that a solution to (1-1) is cylindrically symmetric and concentrated near the ring .r; z/� .r0; z0/.
Then for an appropriately small �0 > 0 we may write

u.t;x/D
1

�0

v

�
t

�2
0

;
.r; z/� .r0; z0/

�0

�
; (1-15)

where the function v is supported on the half-plane .r; z/2 Œ�r0=�0;1/�R. Neglect that our parameters
may vary in time. After changing coordinates, v satisfies

i@svC�yvC .N � 2/
�0

r
@y1
vC v jvj2 D 0; where s D

t

�2
0

; y D
.r; z/� .r0; z0/

�0

: (1-16)

For a solution u.t;x/ tightly concentrated near .r0; z0/, we might choose �0 � 1 as the width of the
window of concentration. Then, .N � 2/.�0=r/@y1

v can be taken as a lower-order correction, and the
evolution of v is essentially that of the two-dimensional cubic NLS. If v.s;y/ falls within the robust
log-log blowup dynamic, we would expect the concentration near .r0; z0/ to increase, and for the lower-
order correction in (1-16) to become less relevant.
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We can identify our main challenge: to ensure persistence of sufficient decay in the original variables
near r D 0 such that conditions there mimic those at infinity during a log-log blowup of two-dimensional
cubic NLS.

2. Setting of the bootstrap

In this section we identify data concentrated near the set .r; z/ � .1; 0/, according to properties we
will later show persist. Our subsequent arguments are based on the two-dimensional L2-critical log-log
blowup dynamic, which has been comprehensively investigated in [Merle and Raphaël 2003; 2004;
2005a; 2005b; 2006; Raphaël 2005]. This work stems from those detailed studies.

Definition 2.1 (fundamental properties of almost self-similar profiles). For all b > 0 sufficiently small,
there exists a solution zQb 2H 1.R2/ of

� zQb �
zQbC ibƒ zQbC

zQb j
zQbj

2
D�‰b

that is supported on the ball of radius 2=jbj and converges to Q in C 3.R2/ as b! 0. The profiles zQb

have mass of the order of b2 larger than Q, and energy of the order e�C=b . The truncation error ‰b acts
as the source of the linear radiation,

��b � �bC ibƒ�b D‰b:

The radiation �b is not in L2, with the precise decay rate �b D limjyj!C1 jyj j�bj
2. It is known that

�b� e��=b , and it is this decay property linked to the central profile zQb that is responsible for the log-log
rate of the two-dimensional L2-critical problem. For our analysis, we will truncate �b near jyj � eCa=b

for a small fixed parameter a. See page 694 for details.

Lemma 2.2 (smoothness of zQb). The almost self-similar profiles zQb are smooth. For any s � 3,

lim sup
b!0

k zQbkC s.R2/ <C1 and lim sup
b!0

k zQbkH s.R2/ <C1: (2-17)

Geometric decomposition. In place of .r; z; �/ 2RN we change coordinates to the rescaled half-plane:

y D
.r; z/� .r0; z0/

�0

2 Œ�r0=�0;C1/�R: (2-18)

The fixed parameters r0, z0, �0 will later be replaced by r.t/, z.t/, and �.t/. This will be clear from the
context. Note the measure due to cylindrical symmetry, dx D �0��0;r0

.y/ dy is given by

��0;r0
.y/D jSN�2

j.�0y1C r0/
N�2

1y1��r0=�0
: (2-19)

We will shortly hypothesize parameters of the decomposition in such a way that the support of both
zQb and Q�b are well away from the boundary of domain (2-18). For convenience we will omit the constant

factor jSN�2j and approximate �.y/ � 1 on this region; see (2-55). Integrals in y can then be seen as
taken over all of R2, and regular integration by parts applies. Any integral that cannot be localized in
this way will be treated separately, and very carefully.

To begin, we modulate suitable cylindrically symmetric data as if it were two-dimensional:
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Lemma 2.3 (existence of geometric decomposition at a fixed time [Raphaël 2006, Lemma 2]). Suppose
that v 2H 1

cyl.R
N / may be written in the form

v.r; z; �/D
1

�v
. zQbv C �v/

�
.r; z/� .rv; zv/

�

�
e�i
v (2-20)

for some parameters �v; bv; rv > 0 and 
v; zv 2 R such thatZ ˇ̌
ry�v

ˇ̌2
��v;rv .y/ dyC

Z
jyj�10=bv

j�vj
2 e�jyj dy < �

1
2

bv
; (2-21)

j.rv; zv/� .1; 0/j<
1
3

and 10�v < bv < ˛
�: (2-22)

Then there are nearby parameters �0; b0; r0 > 0 and 
0; z0 2 R with

jb0� bvjC

ˇ̌̌̌
�0

�v
� 1

ˇ̌̌̌
C
j.r0; z0/� .rv; zv/j

�v
� �

1
5

b0
; (2-23)

such that the corresponding �0,

�0.y/D �0 v .�0yC .r0; z0// ei
0 � zQb0
; (2-24)

satisfies the two-dimensional orthogonality conditions4

Re.�0; jyj
2 zQb0

/D Re.�0;y zQb0
/D Im.�0; ƒ

2 zQb0
/D Im.�0; ƒ zQb0

/D 0: (2-25)

We now identify a neighborhood of the singular set, the complement of which is contiguous and
includes both the origin and infinity. In the case of N D 3, the singular set is a ring and the neighborhood
a toroid. Define two smooth cutoff functions,

�.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 2

3
;

0 for j.r; z/� .1; 0/j � 1
3
;

�0.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 1

7
;

0 for j.r; z/� .1; 0/j � 1
8
:

(2-26)

In Section 4 we will define a further series of cutoff functions  and ', supported on bounded regions
where �0 � 1. We now describe the initial data for our bootstrap procedure.

Definition 2.4 (description of initial data P). For ˛� > 0 a constant to be determined, let P.˛�/ be the
set of cylindrically symmetric u0 2H N

cyl.R
N / that can be written in the form

u0.r; z/D
1

�0

. zQb0
C �0/

�
.r; z/� .r0; z0/

�0

�
e�i
0

D
1

�0

. zQb0
/

�
.r; z/� .r0; z0/

�0

�
e�i
0 C Qu0.r; z/; (2-27)

in a way that satisfies the following two sets of conditions:

4The decomposition of [Merle and Raphaël 2003] used slightly different orthogonality conditions. Equation (2-25) is the
decomposition introduced [Merle and Raphaël 2004, Lemma 6], which leads to a better estimate on the phase parameter than
was achieved in the former paper.
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Singularity of a log-log nature:

C1.1. Radial profile is focused near a singular ring:

j.r0; z0/� .1; 0/j< ˛
�: (2-28)

C1.2. Radial profile is close to Q near the singular ring: The profiles zQb have nearly the mass of Q

and account for nearly all mass globally:

0< b0Ck Qu0kL2.RN / < ˛
�
I (2-29)

�0.y/ satisfies both the orthogonality conditions

Re.�0; jyj
2 zQb0

/D Re.�0;y zQb0
/D Im.�0; ƒ

2 zQb0
/D Im.�0; ƒ zQb0

/D 0 (2-30)

and the smallness conditionZ ˇ̌
ry�0.y/

ˇ̌2
��0;r0

.y/ dyC

Z
jyj� 10

b0

j�0.y/j
2 e�jyj dy < �

6
7

b0
: (2-31)

C1.3. Conformal and scaling parameters are consistent with log-log blowup speed:

e�e
2�
b0
< �0 < e�e

�
2

1
b0
: (2-32)

C1.4. Energy and localized momentum are normalized:

�2
0 jE0jC�0

ˇ̌̌̌
Im
�Z
rx 

.x/
� rxu0 Nu0

�ˇ̌̌̌
< �10

b0
; (2-33)

where  .x/ is a cylindrically symmetric smooth cutoff function given by

 .x/.r; z; �/D

�
r C z for j.r; z/� .1; 0/j � 1

2
;

0 for j.r; z/� .1; 0/j � 3
4
:

(2-34)

Regularity away from the singularity:

C2.1. Scaling-consistent PH N norm:

ku0kH N .RN / <
C zQ

�N
0

; (2-35)

where C zQ is a universal constant due to Lemma 2.2.

C2.2. Strong hierarchy of regularity away from the singular ring:

k�0u0kH N��.RN / <
1

�N�2�
0

; (2-36)

for each half-integer 1
2
� � � N

2
.

C2.3. Vanishing lower-order norms away from the singular ring:

k�0u0k
H

N
2
� 1

2 1.RN /
< .˛�/

1
2 : (2-37)
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Lemma 2.3 guarantees that P.˛�/ is open in H 1
cyl\H N

cyl. See the Appendix for a proof that P.˛�/ is
nonempty.

For the remainder of this paper, fix an arbitrary u0 2P.˛�/. Let u.t/ denote the evolution under (1-1),
with maximum (forward) lifetime Tmax > 0, possibly infinite.

Continuous evolution in H N .RN / implies the same in H 1.RN /, so by Lemma 2.3 there is some Tgeo2

.0;Tmax�— which may be assumed maximal — for which the geometric decomposition of Lemma 2.3
can be applied on Œ0;Tgeo/. There exist unique continuous functions �.t/; b.t/; r.t/ W Œ0;Tgeo/! .0;1/

and 
 .t/; z.t/ W Œ0;Tgeo/! R, with the expected initial values, where

u.t; r; z; �/D
1

�.t/

�
zQb.t/C �.t/

� �.r; z/� .r.t/; z.t//
�

�
e�i
.t/

D
1

�.t/

�
zQb.t/

� �.r; z/� .r.t/; z.t//
�

�
e�i
.t/

C Qu.t; r; z; �/; (2-38)

such that �.t;y/ satisfies the two-dimensional orthogonality conditions

Re
�
�.t/; jyj2 zQb.t/

�
D 0; (2-39)

Re
�
�.t/;y zQb.t/

�
D 0; (2-40)

Im
�
�.t/;ƒ2 zQb.t/

�
D 0; (2-41)

Im
�
�.t/;ƒ zQb.t/

�
D 0: (2-42)

We may now define the rescaled time,

s.t/D

Z t

0

1

�2.�/
d� C s0; where s0 D e

3�
4b0 : (2-43)

The choice of s0 will prove convenient in the proof of Lemma 3.15 (page 699).
Also set s1 D s.Thyp/, for Thyp as in Definition 2.6 below.

Notation 2.5 (fixed parameters). To aid the reader, we provide a brief summary of the various parameters
that will be introduced, in the order one might ultimately determine them:

� � and a are parameters that determine the cutoff shape of zQb and Q�b; see (3-80) and (3-104). The
value of a> 0 is assumed sufficiently small for the proof of Lemma 3.22, relative to some universal
constant. Before that, the proof of Lemma 3.19 is conditioned on the choice of � < a=C0, for
another universal constant C0 > 0; see (3-196). These choices affect the class of initial data P, both
by setting the profiles zQb and by forcing an upper bound on the value of ˛�.

� �1, �2 and �3: parameters in the statements of Lemma 4.1, Lemma 4.3, and Corollary 4.4. Their
value is chosen (repeatedly) according to circumstance.

� �4: an arbitrary universal constant, 0< �4� 1, used in the proof of Lemma 4.8.

� �5: defined for Lemma 4.8. Its value depends on �4, and is uniform over all m> 0 small enough.

� m0: existence of m0 < m with particular properties in a key assertion of Proposition 2.8. Some
particular value m0 2 .m� �5=2;m/ is chosen for the proof of Lemma 4.10.
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� �6: parameter in the statement of Lemma 4.11. Its value is fixed for the proof of Lemma 4.13.

� �7: defined for Lemma 4.17. Its value is uniform over all m> 0 small enough.

� m: a fixed constant m>0 that features in the bootstrap hypotheses of Definition 2.6. For the purpose
of various proofs in Section 4, m will be assumed sufficiently small. The exact value of m may be
determined apriori, and will affect the class of initial data P by forcing an upper bound on the value
of ˛�.

� ˛�: A fixed positive constant to be determined last. For the purpose of various proofs throughout
this paper, ˛� will be assumed sufficiently small.

The following bootstrap hypotheses are possible due to our choice of data in P.

Definition 2.6 (time Thyp > 0 and bootstrap hypotheses). Let 0 < Thyp � Tmax be the maximum time
such that for all t 2 Œ0;Thyp/ the following two sets of conditions hold:

Singularity remains of a log-log nature:

H1.1. Profile remains focused near a singular ring:ˇ̌
.r.t/; z.t//� .1; 0/

ˇ̌
< .˛�/

1
2 : (2-44)

H1.2. Profile remains close to Q near the singular ring:

0< b.t/CkQu.t/kL2.RN / < .˛
�/

1
10 ; (2-45)Z ˇ̌

ry�.t/
ˇ̌2
��.t/;r.t/.y/ dyC

Z
jyj� 10

b.t/

j�.t/j2 e�jyj dy � �
3
4

b.t/
: (2-46)

H1.3. Conformal and scaling parameters remain consistent with log-log blowup speed:

�

10

1

log s
< b.s/ <

10�

log s
; e�e

10�
b.s/

< �.s/ < e�e
�
10

1
b.s/
: (2-47)

H1.4. Energy and localized momentum remain normalized:

�2.t/ jE0jC�.t/

ˇ̌̌̌
Im
�Z
r .x/ � ru.t/ Nu.t/

�ˇ̌̌̌
< �2

b.t/: (2-48)

H1.5. Norm growths are almost monotonic:

�.sb/� 3�.sa/ for all sa � sb 2 Œs0; s1�: (2-49)

Regularity away from the singularity persists:

H2.1. Growth of PH N is near scaling:

ku.t/kH N .RN / <
eC

m
b.t/

�N .t/
: (2-50)
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H2.2. Strong hierarchy of regularity away from the singular ring persists:

k�u.t/kH N�� <
eC.1C�/

m
b.t/

�N�2�.t/
; (2-51)

for each half-integer 1
2
� � < N

2
, and

k�u.t/k
H

N
2
< eC

2mC�
b.t/ : (2-52)

H2.3. Lower-order norms away from the singular ring remain bounded:

k�u.t/k
H

N
2
� 1

2
< .˛�/

1
10 : (2-53)

An important consequence of H1.2, H1.3, and the forthcoming estimate on �b , (3-103), is that

�.t/ < e�e
�

10b.t/
< �10

b.t/: (2-54)

Therefore as a consequence of H1.1 and the definition of A in (3-104) below,

2
3
� �.y/� 3

2
for all jyj � 5A.t/: (2-55)

The region jyj � 5A.t/ is exceptionally wide, encompassing the support of both the central profile zQb

and the associated radiation Q�b .

Remark 2.7 (geometric decomposition is well defined). Hypotheses H1.1–H1.5 easily satisfy the con-
ditions of Lemma 2.3, ensuring that Thyp � Tgeo and the unique geometric decomposition (2-38) is
available.

Proposition 2.8 (bootstrap conclusion). For ˛� > 0 sufficiently small, hypotheses (2-44)–(2-53) are not
sharp. There exists m0 <m such that, for all t 2 Œ0;Thyp/:

I1.1.
ˇ̌
.r.t/; z.t//� .1; 0/

ˇ̌
< .˛�/

2
3 : (2-56)

I1.2. 0< b.t/CkQu.t/kL2.RN / < .˛
�/

1
5 ; (2-57)Z ˇ̌

ry�.t/
ˇ̌2
��.t/;r.t/.y/ dyC

Z
jyj� 10

b.t/

j�.t/j2 e�jyj dy � �
4
5

b.t/
: (2-58)

I1.3.
�

5

1

log s
< b.s/ <

5�

log s
; e�e

5�
b.t/

< �.t/ < e�e
�
5

1
b.t/
: (2-59)

I1.4. �2.t/ jE0jC�.t/

ˇ̌̌̌
Im
�Z
r .x/ � ru.t/ Nu.t/

�ˇ̌̌̌
< �4

b.t/: (2-60)

I1.5. �.sb/� 2�.sa/ for all sa � sb 2 Œs0; s1�: (2-61)

I2.1. ku.t/kH N .RN / <
eC

m0

b.t/

�N .t/
: (2-62)
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I2.2. k�u.t/kH N�� <
eC.1C�/

m0

b.t/

�N�2�.t/
(2-63)

for each half-integer 1
2
� � < N

2
, and

k�u.t/k
H

N
2
< eC

2m0C�
b.t/ : (2-64)

I2.3. k�u.t/k
H

N
2
� 1

2
< .˛�/

1
5 : (2-65)

As a consequence, Thyp D Tmax.

Strategy of proof: the log-log argument. We will establish statements I1.1–I1.5 in Section 3 using the
arguments of [Merle and Raphaël 2003; 2006]. Here we identify the main challenge in maintaining the
log-log dynamics. As with all modulation arguments, we seek to reduce the question of blowup to a
finite-dimensional ODE dynamic for the parameters. This is only possible due to the algebraic structure
associated with Q. Recall the operator ƒ D 1C y � ry , which one might recognize from either the
argument E.Q/D 0:

.0; ƒ.Q//D
�
�Q�QCQ jQj2 ; ƒ.Q/

�
D�2E.Q/; (2-66)

or from the Pohozaev identity:

.0; ƒ.v//D Re
�
ivsC�yvC v jvj

2 ; ƒ.v/
�
D�

1

2

d

ds
Im
Z
v y � r Nv dy � 2E.v/; (2-67)

which is also a consequence of formally calculating the virial identity’s term

d2

d2s

Z
jyj2 jvj2 dy:

Substitution of (2-38) into (1-1) will produce an equation for �. Ignoring the distinction between Q and
zQb , the terms linear in � are i@s�CL.�/, where L is the linearized propagator near Q. As a matrix on

real and imaginary parts,

L.�/D

�
0 L�

�LC 0

� �
�re

i �im

�
with

�
LC D��C 1� 3Q2;

L� D��C 1�Q2:
(2-68)

Weinstein [1985] noted that

L�.jyj
2 Q/D�2ƒQ; L�.yQ/D�2rQ; and LC.ƒQ/D�2Q: (2-69)

These algebraic properties are the inspiration for the orthogonality conditions, so that, by taking appro-
priate inner products of the �-equation, linear terms cancel. For example, the imaginary part of the inner
product with jyj2 Q has no linear terms due to conditions (2-39) and (2-42). The imaginary part of the
inner product with yQ is controlled by the momentum.

The most fruitful calculation is when we take the real part of an inner product of the �-equation with
ƒQ. This is of course a localized version of (2-67). We substitute conservation of energy to eliminate
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the linear term, 2 Re.�;Q/, which is due to the third identity of (2-69). The remaining terms quadratic
in � form the following,

H.�; �/D

�
Lre 0

0 Lim

� �
�re

i �im

�
�

�
�re

�i �im

�
with

�
Lre D��C 3Qy � rQ;

Lim D��CQy � rQ:
(2-70)

The operator H.�; �/ is the derivative with respect to scaling of the conserved energy of the linear flow.
It has coercivity properties that mirror the stability of Q:

Proposition 2.9 (spectral property). There exists a universal constant ı0 > 0 such that, for any v 2H 1,

H.v; v/� ı0

�Z
y2R2

ˇ̌
ryv

ˇ̌2
C

Z
y2R2

jv2
je�jyj

�
�

1

ı0
��

.Re.v;Q//2C.Re.v;ƒQ//2C.Re.v;yQ//2C.Im.v;ƒQ//2C.Im.v;ƒ2Q//2C.Im.v;rQ//2
�
: (2-71)

The two-dimensional spectral property as stated here has a numerical proof [Fibich et al. 2006].5

Assuming we can ensure H is coercive, the goal is to prove the local virial identity

bs � ı1 jjj�jjj ��
1�C�

b
; (2-72)

where we have defined

jjj�jjj D

Z ˇ̌
ry�

ˇ̌2
� dyC

Z
jyj� 10

b

j�j2 e�jyj dy: (2-73)

To prove (2-72) using the spectral property requires that we control the contribution from all other terms
of the conservation of energy. In particular, we must establish nonlocal control:Z

R2

j�.y/j4 �.y/�

Z
R2

ˇ̌
ry�

ˇ̌2
�.y/: (2-74)

This is our main challenge.
The local virial identity (2-72) is a satisfactory control for � at times where bs < 0. However, our

argument is based on approximating the central profile of the solution; therefore we cannot expect
monotinicity in our modulation parameters. Including the radiation Q� to better approximate the central
profile, repeating the local virial calculation, and taking into account the mass flux leaving the support
of the radiation, Merle and Raphaël [2006] discovered a Lyapunov functional. It is remarkable that we
can approximate the Lyapunov functional very precisely in terms of a positive multiple of a norm of �.
The functional is then used to bridge the control of � between times where bs < 0. The approximation
here is achieved through the conservation of energy, and involves (2-74) a second time.

Regarding (2-74), change variables to getZ
R2

j�.y/j4 �.y/D �2

Z
RN

j Quj4 D �2

Z
RN

j� Quj4C�2

Z
RN

.1��4/ j Quj4:

5The numerical proof is given for the L2-critical nonlinearities of Theorem 1.1 in dimensions d D 2; 3; 4, and in d D 5 with
a slight change of orthogonality conditions. In dimension d D 1 the proof is explicit [Merle and Raphaël 2005a, Proposition 2].
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Since the support of � includes the origin, we must apply N -dimensional Sobolev to that term:

k� Quk4
L4.RN /

. k�uk2

H
N
2
�1
.RN /
k�uk2

H 1.RN /
:

Change variables again and observe that to achieve (2-74) requires at least that k�uk
H

N
2
�1
.RN /
� 1.

Strategy of proof: persistence of regularity. Once we have established the log-log nature of our blowup,
we expect powers of 1=� to be as integrable in time as powers ofs

log jlog.Tmax� t/j

Tmax� t
:

Indeed, as noted in [Raphaël and Szeftel 2009],Z t

0

d�

��.�/
� C.ı/

1

���2Cı.t/
; (2-75)

for any ı > 0 and � > 2. Our argument cannot allow any loss of scaling. At all times we must be cautious
to account for all factors of e

1
b . We prove thatZ t

0

e
��

b.�/

��.�/
d� � C.��; �; �/

e
��C�

b.t/

���2.t/
; (2-76)

for any �� < �� C � of either sign and � > 2. The arguments of Section 4, to establish statements
I2.1–I2.3, proceed in three stages.

Control of kukH N . We explicitly calculate d
dt
krN uk2

L2 and seek to estimate the resulting error terms
separately in two regions of space. First, away from the singularity, on the truly N -dimensional region
that includes the origin, the estimates are simpler, due to hypotheses H2.2 and H2.3. Second, on a
neighborhood of the singular set, things are more delicate, and we split the solution into the rescaled
almost self-similar profile and Qu, defined in (2-38). Since zQb is smooth, the higher-order norms scale
exactly with 1=�. In particular, 



1

�
zQb.y/






H N .RN /

�
C. zQb/

�N .t/
; (2-77)

where the constant is uniform for all b sufficiently small; see Lemma 2.2. Note that (2-77) is better than
H2.1. For terms in Qu, the H 1 norm is better than 1=�, due to H1.3. By assuming m> 0 is small enough,
we use this superior H 1 control to offset the logarithmic loss due to our use of H2.1. We prove thatˇ̌̌̌

d

dt
kuk2

H N

ˇ̌̌̌
. 1

�2NC2
C

e�
�5
b

�2
kuk2

H N :

To prove I2.1, we integrate carefully with (2-76).

Remark 2.10. The exact scaling of the smooth central profile was not needed by Raphaël and Szeftel
[2009] to control a higher order norm. With the Strauss radial embedding, those authors prove an estimate
analogous to d

dt
kuk2

H N . kuk2�ıH N kuk
NıC2
H 1 , which is compatible with (2-75) and a hypothesis of the

form kukH N . 1=�NCC.ı/.
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Initial regularity improvement. Let  A be a smooth cutoff function that covers the support of r�—
this includes the boundary of a neighborhood of the singular set that acts as an interface between the
singular dynamics and the truly N -dimensional dynamics. We hope for any control of k AukH � that
is better than an interpolation of H2.1. Calculate d

dt
k Auk2

H � directly from (1-1) and integrate in time.
The result is effectively Kato’s smoothing effect and a Strichartz estimate,

 Au



2

L1t H � .


 Bu



2

L2
t H

�C 1
2
C

Z t

0

ˇ̌̌̌Z
D�. Au juj2/D�. A

Nu/

ˇ̌̌̌
; (2-78)

where  B is some other cutoff function with slightly larger support.
Due to (2-76), we see that the term in H �C 1

2 is in fact of the order 1=�2.�� 1
2
/. This is exactly the sort

of control we want, but the nonlinear term of (2-78) is uncooperative.
To estimate the nonlinear term of (2-78) we prove a modified Brezis–Gallouët estimate that does

not break scaling too badly, the proof of which requires hypothesis H2.1 to be scaling consistent up
to a sufficiently small power of e

1
b . See Remark 4.15. This delicacy is not required in the radial case

[Raphaël 2006; Raphaël and Szeftel 2009] as Strauss’s radial embedding is already scaling consistent.
In place of a Brezis–Gallouët estimate, Holmer and Roudenko [2011] use an elegant microlocal estimate
to smooth the nonlocal part of the nonlinearity.

Iterated smoothing. The next stage is to prove I2.2 and I2.3 hold on the support of r�. We iterate the
argument of (2-78), in half-integer steps, beginning with � DN � 1

2
, and introducing a new cutoff with

smaller support each time. Due to the initial regularity improvement, it is possible to handle the nonlinear
term of (2-78) systematically, and at the same order as the term in H �C 1

2 . Due to integration (2-76), at
each stage we may smooth (almost) a half-derivative farther, relative to scaling, than was proved in the
previous stage. After N iterates, we find that k C uk

H
N
2

is (almost) order-zero in 1
�

. The final iterate
proves k Duk

H
N
2
� 1

2
is constant.

To complete the proof of I2.2 and I2.3, we repeat the iteration scheme for �u. The combination of
hypotheses H2.2 and H2.3 with the results of the first iteration make the second iteration substantially
simpler.

3. Proof of log-log singular behavior

In this section we will prove that properties I1.1–I1.5 are a consequence of hypotheses H1.1–H1.5 and
the bound

k�u.t/k
H

N
2
�1
< .˛�/

1
10 ; (3-79)

which is a particular consequence of H2.3.

Almost self-similar profiles. The parameter � > 0 about to be used is universal, sufficiently small, and
will be determined later on (see after (3-183) and after (3-196)). For b ¤ 0, let

Rb D
2

b

p
1� � and R�b DRb

p
1� �; (3-80)
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and let �b denote a radially symmetric cutoff function with

�b.y/D

�
1 for jyj �R�

b
;

0 for jyj �Rb;
and jr�bjL1 Cj��bjL1 ! 0 as jbj ! 0: (3-81)

The following result was originally shown in [Merle and Raphaël 2003, Proposition 1]. The refined
cutoff, with parameter �, is introduced in [Merle and Raphaël 2004, Propositions 8 and 9].

Proposition 3.1 (localized self-similar profiles). For all � > 0 sufficiently small there exists positive
b�.�/ and ı.�/ such that for all jbj< b�.�/ there exists a unique radial solution Qb to,8̂̂<̂

:̂
�Qb �QbC ibƒQbCQb jQbj

2 D 0;

Pb DQbei b jyj2

4 > 0 for y 2 Œ0;Rb/;

jQb.0/�Q.0/j< ı.�/; Qb.Rb/D 0:

(3-82)

The truncation to jyj< 2
b

, zQb.y/DQb.y/�b.y/, satisfies

� zQb �
zQbC ibƒ zQbC

zQb j
zQbj

2
D�‰b; (3-83)

with the explicit error term

�‰b DQb��bC 2r�b � rQbC ibQby � r�bC .�
3
b ��b/Qb jQbj

2: (3-84)

Moreover, zQb satisfies the following properties:

� Uniform closeness to the ground state:

eC jyj. zQb �Q/




C 3 ! 0 as b! 0: (3-85)

� Derivative with respect to b:



eC jyj

�
@

@b
zQbC i

jyj2

4
Q

�




C 2

! 0 as b! 0: (3-86)

� Supercritical mass:

d

d.b2/

�Z ˇ̌̌
zQb

ˇ̌̌2�ˇ̌̌̌
b2D0

D d0 with 0< d0 <C1: (3-87)

As a consequence of (3-85), for any polynomial P .y/ and k D 0; 1,ˇ̌
P .y/rk‰b

ˇ̌
L1
� e�

C.P/
jbj : (3-88)

In particular, energy and momentum are degenerate:ˇ̌
E. zQb/

ˇ̌
� e�.1�C�/ �

jbj and Im
�Z
ry
zQb
zQb

�
D 0: (3-89)
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The linearized Schrödinger operator near zQb is, M
�
v

iw

�
DMC.v; w/C iM�.v; w/, with,

MC.v; w/D��yvC v�

�
zQ2

bˇ̌
zQb

ˇ̌2 C 2

�ˇ̌
zQb

ˇ̌2
v� Im. zQ2

b/ w; (3-90)

M�.v; w/D��ywCw�

�
2�

zQ2
bˇ̌
zQb

ˇ̌2�ˇ̌ zQb

ˇ̌2
w� Im. zQ2

b/ v: (3-91)

As with L from (2-68), there is an associated bilinear operator

Hb.�; �/DH.�; �/C zHb.�; �/; (3-92)

where H.�; �/ is the usual form (2-70) associated with L. The correction term may be written as

zHb.�; �/D

Z
V11�re

2
C

Z
V12�re�imC

Z
V22�im

2; (3-93)

for well-localized potentials built on zQb , Q and y � r; see [Merle and Raphaël 2004, Appendix C]. Due
to proximity with Q — see (3-85) — there is universal constant C with

eC jyjVij




L1
! 0 as b! 0: (3-94)

The following variation of H is of a different nature. Set

zH .�; �/DH.�; �/�
1

kƒQk2
L2

.�re;LCƒ
2Q/ .�re; ƒQ/ ; (3-95)

which simply alters the definition of LC given in (2-70). The following is a consequence of (2-69) and
the spectral property:

Lemma 3.2 (alternative spectral property [Merle and Raphaël 2004, page 616]). There exists a universal
positive constant Qı0 < ı0 such that, for all � 2H 1,

zH .�; �/� Qı0

�Z
y2R2

ˇ̌
ry�

ˇ̌2
C

Z
y2R2

j�2
je�jyj

�
�

1

ı0
��

.Re.�;Q//2C.Re.�;jyj2Q//2C.Re.�;yQ//2C.Im.�;ƒQ//2C.Im.�;ƒ2Q//2C.Im.�;rQ//2
�
: (3-96)

In Lemma 3.17 and Remark 3.18 we will find that the study of linear radiation gives an accurate
description of mass ejection from the singular regime. Here is a background result:

Lemma 3.3 (linear radiation [Merle and Raphaël 2004, Lemma 15]). There are universal constants
C > 0 and �� > 0 such that for all 0 < � < �� there is b�.�/ > 0 such that for all 0 < b < b�.�/ there
exists a unique radial solution �b to �

��b � �bC ibƒ�b D‰b;R
jr�bj

2 <C1;
(3-97)

where‰b is the truncation error given by (3-83); moreover, the solution satisfies the following properties,
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where we have set
�b D lim

jyj!C1
jyj j�b.y/j

2
W (3-98)

� Decay past the support of ‰b:

jyjj�bjC jyj2 jr�bj

L1.jyj�Rb/
� �

1
2
�C�

b
<C1: (3-99)

� Smallness in PH 1: Z ˇ̌
ry�b

ˇ̌2
� �

1�C�

b
: (3-100)

� Derivative with respect to b: 



@�b@b






C 1

� �
1
2
�C�

b
: (3-101)

� Stronger decay for larger jyj: 

jyj2 jr�bj

L1.jyj�R2
b
/
� C

�
1
2

b

jbj
; (3-102)

e�.1CC�/�
b �

4
5
�b �



jyj2 j�bj2

L1.jyj�R2
b
/
� e�.1�C�/�

b : (3-103)

(As an estimate on �b , (3-103) will be indispensable.)

The small universal parameter a > 0 in the next equation will be introduced later, via (3-165), and
determined on page 706, in the proof of Lemma 3.22. It influences the choice of �. We set

A.t/D ea �
b.t/ ; so that �

�a
2

b
�A� �

� 3a
2

b
; (3-104)

and we let �A denote a radially symmetric cutoff function with

�A.y/D

�
1 for jyj �A;

0 for jyj � 2A:
(3-105)

The truncated radiation Q�b.y/D �A.y/�b satisfies

� Q�b � Q�bC ibƒ Q�b D‰bCF; (3-106)

where the error term F is explicit:

F D �b��AC 2r�A � r�bC ib�by � r�A: (3-107)

In particular, by (3-102) and (3-103),

jF jL1 Cjy � rF jL1 � C
�

1
2

b

A
: (3-108)

Remark 3.4. For smaller values of � the central profiles zQb approximate the mass of the singular region
more closely — see (3-80) — at the cost that estimates (3-85)–(3-89) are only known for ever smaller
values of b. When � is larger, to compensate for the imperfection of our central profile we require more
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of the radiative tail to get an accurate picture of mass transport, requiring a larger choice of a. See [Merle
and Raphaël 2006, page 53] for similar remarks on the optimality in choice of A.t/.

Estimates directly due to geometric decomposition. The next lemma explains our choice of norm for �.

Lemma 3.5 (weighted and local L2 estimates). For any � > 0 and for all v 2H 1.R2/,Z
y2R2

jv.y/j2 e��jyj � C.�/

�Z
jrv.y/j2C

Z
jyj�1

jv.y/j2 e�jyj
�
; (3-109)Z

jyj��

jv.y/j2 � C �2 log �
�Z
jrv.y/j2C

Z
jyj�1

jv.y/j2 e�jyj
�
: (3-110)

Equation (3-110) is found in [Merle and Raphaël 2006, (4.11)]. While the original proof of (3-109)
in [Merle and Raphaël 2004, Lemma 5] has a flaw, the methods of [Merle and Raphaël 2006] give an
alternate proof.

Remark 3.6 (nonconcern for �). In practice, we apply these lemmas and the interaction estimates below
only on regions within fjyj.A.t/g. That is, (2-55) always applies and we may choose to include measure
�.y/ as appropriate.

Lemma 3.7 (estimates on interaction terms [Merle and Raphaël 2003, Section 5.3(C)]). Let s 2 Œs0; s1/,
and recall from (2-73) that jjj�jjj stands for

R ˇ̌
ry�

ˇ̌2
� dyC

R
jyj� 10

b
j�j2 e�jyj dy.

� Estimate of first-order terms:ˇ̌̌̌�
�.y/;P .y/

dk

dyk
zQb.y/

�ˇ̌̌̌
� C.P /jjj�jjj

1
2 ; (3-111)

where P .y/ is any polynomial and 0� k � 3.

� Estimate of second-order terms:ˇ̌̌̌�
R.�/;P .y/

dk

dyk
zQb.y/

�ˇ̌̌̌
� C.P /jjj�jjj; (3-112)

where P .y/ is any polynomial, 0 � k � 3, and R.�/ is the terms of .�C zQb/j�C zQbj
2 formally

quadratic in �— see Equation (3-131).

� Estimate of localized higher-order terms:Z ˇ̌
J.�/� j�j4

ˇ̌
�.y/ dy � ı.˛�/jjj�jjj; (3-113)

where J.�/� j�j4 D 4 Re
�
� j�j2 ; zQb

�
is the term of j�C zQbj

4 formally cubic in � and localized to
the support of zQb . Similarly, �

zR.�/;ƒ zQb

�
� ı.˛�/jjj�jjj; (3-114)

where zR.�/D � j�j2 is the term of .�C zQb/j�C zQbj
2 formally cubic in �.
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The following estimate is our first nontrivial departure from the L2-critical argument.

Lemma 3.8 (complete estimate on J.�/). For all s 2 Œs0; s1/,Z
j�.y/j4 �.y/ dy � ı.˛�/jjj�jjj: (3-115)

With (3-113), this gives a complete estimate for J.�/.

Proof. Partition the support of � into two- and three- dimensional regions:Z
j�.y/j4 �.y/ dy D

Z
.1��4/ j�.y/j4 �.y/ dyC

Z ˇ̌
� .�yC .r; z/.s// �.y/

ˇ̌4
�.y/ dy: (3-116)

The first term on the right is supported away from r D 0, and due to H1.1 the support of 1 � �4 is
approximately

˚
jyj < 2

3
1
�

	
, so that 1

3
. �.y/ . 5

3
. We estimate this term by two-dimensional Sobolev

embedding and the small mass assumption H1.2. Regarding the second term, the support of �4 excludes
the support of zQb by the same reasons. Changing variables, we obtainZ

j� .x.y// �.y/j4 �.y/ dy D �2

Z
x2RN

j�.x/u.x/j4 dx: (3-117)

By the N -dimensional Sobolev embedding, PH
N
4 ,!L4.RN /, and interpolation,

�2

Z
x2RN

j�.x/u.x/j4 dx . k�uk2
PH

N
2
�1
�2
k�uk2

PH 1.RN /

. k�uk2

H
N
2
�1

�Z ˇ̌
ry�

ˇ̌2
� dy

�
: (3-118)

To complete the proof, we use the assumed control H2.3 for the first and only time. �

Lemma 3.9 (estimates due to conservation laws). For all s 2 Œs0; s1/ the following are true:

(a) Due to conservation of mass:

b2
C

Z
j Quj2 . .˛�/

1
2 : (3-119)

(b) Due to conservation of energy:

2 Re.�; zQb/�

Z
jr�j2 �.y/ dyC 3

Z
jyj� 10

b

Q2�re
2
C

Z
jyj� 10

b

Q2�im
2

� �
1�C�

b
C ı.˛�/jjj�jjj: (3-120)

(c) Due to localized momentum (2-48):ˇ̌
Im.�;r zQ/

ˇ̌
� �2

b C ı.˛
�/jjj�jjj

1
2 : (3-121)

In particular, (3-121) also holds for
ˇ̌
.�im;Re.r zQb//

ˇ̌
, by Hölder and (3-85).
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Proof. (a) Conservation of mass gives
R

RN ju.t/j
2 dx D

R
ju0j

2. From the geometric decomposition,
expand and change some variables, obtainingZ ˇ̌

zQb.y/
ˇ̌2
�.y/ dyC 2 Re

�Z
� zQb�.y/ dy

�
C

Z
j Qu.t/j2 D

Z
ju0j

2: (3-122)

Expand the measure �. Due to the bound on � in (2-54), together with hypotheses H1.1 and H1.2 and
the supercritical mass of zQb ,Z ˇ̌

zQb

ˇ̌2
�.y/ dy �

Z
Q2
D

�Z ˇ̌
zQb

ˇ̌2
�

Z
Q2

�
C .rN�2.t/� 1/

Z ˇ̌
zQb

ˇ̌2
C

Z
O .�y1/

ˇ̌
zQb

ˇ̌2
dy

& b2
�
p
˛�: (3-123)

Due to the smallness of b0 and the small mass of �0 (see C1.2), we have
ˇ̌R

RN ju0j
2
�
R

R2 Q2
ˇ̌
. C˛�.

Due to local support and hypothesis H1.2,
ˇ̌R
� zQb�

ˇ̌
. ˛�:

(b) Conservation of energy gives
R

RN jru.t/j2 dx� 1
2

R
juj4D2E0. From the geometric decomposition,

2�2E0 D

Z ˇ̌
ry. zQbC �/

ˇ̌2
�.y/ dy �

1

2

Z
j zQbC �j

4�.y/ dy (3-124)

Partially expand the measure �:Z ˇ̌
ry. zQbC �/

ˇ̌2
�.y/ dy D rN�2.t/

Z ˇ̌
ry
zQb

ˇ̌2
C

Z
O .�y1/

�ˇ̌
ry
zQb

ˇ̌2
C 2 Re.� zQb/

�
dy

C 2N�2r.t/Re
�Z
ry� � ry

zQb

�
C

Z
jry�j

2�.y/ dy: (3-125)

Due to the support of zQb , the second line is of order �, and thus inconsequential. Via a similar approach,

�
1

2

Z ˇ̌
zQbC �

ˇ̌4
�.y/ dy

D�rN�2.t/

 
1

2

Z ˇ̌
zQb

ˇ̌4
C 2 Re

�Z
� zQb

ˇ̌
zQb

ˇ̌2�
C

Z
j�j2

ˇ̌
zQb

ˇ̌2
CRe

�Z
�2 zQb

2
�!

C�O
�ˇ̌
zQb

ˇ̌2�
�

1

2

Z
J.�/�.y/ dy: (3-126)

Now proceed as in the L2-critical argument. Integrate
R
ry� � ry

zQb by parts and substitute the equa-
tion for zQb (3-83); this cancels the term of (3-126) linear in �. Recall the bound for ‰b (3-88), the
degenerate energy of zQb (3-89), proximity to Q (3-85), that r.t/� 1, and the non-trivial estimate on J ,
Equation (3-115).

(c) Our starting point is (2-48). In cylindrical coordinates, rxf � rxg D @rf @r gC @zf @zf . For this
proof we denote r by x1 and z by x2. Fix either j D 1 or j D 2. From the geometric decomposition,

� Im
�Z

RN

@xj 
.x/@xj u Nu dx

�
D Im

�Z
@xj 

.x/@yj

�
zQbC �

� �
zQbC �

�
�.y/ dy

�
: (3-127)
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Directly from definition (2-34), we have @xj 
.x/ D 1 on the support of zQb . Expand the measure �

as rN�2.t/C O .�y1/. Integrate by parts the interaction term in rN�2.t/@yj �
zQb . With the degenerate

momentum of zQb — see (3-89) — we have

2rN�2.t/ Im
�
�; @yj

zQb

�
D Im

�Z
O .�y1/

�
@yj �
zQbC @yj

zQb�C @yj
zQb
zQb

�
dy

�
C Im

�Z
@xj 

.x/@yj ���.y/ dy

�
��.t/ Im

�Z
RN

@xj 
.x/@xj u Nu dx

�
: (3-128)

The first term on the right is of order �, and thus negligible. For the next term we apply Hölder and the
small mass assumption H1.2. The final term is controlled by H1.4. �

Remark 3.10 (role of momentum conservation). The estimate analogous to (3-121) in the L2-critical
context is proven with the conservation of momentum in place of H1.4; see [Merle and Raphaël 2003,
Appendix A]. As might be expected, the proof of I1.4 will resemble the proof of momentum conservation.
See (3-149).

Definition 3.11 (NLS reformulated for �). For s 2 Œs0; s1/, y 2 Œ�r.t/=�.t/;C1/� R, and a suitable
boundary condition at y1 D�r.t/=�.t/, the function � satisfies

ibs
@ zQb

@b
C i�s�M.�/C

N � 2

r.y1/
�@y1

�C ibƒ�D i

�
�s

�
C b

�
ƒ zQbC Q
s

zQbC i
.rs; zs/

�
�ry
zQb

Ci

�
�s

�
C b

�
ƒ�C Q
s�C i

.rs; zs/

�
� ry�C‰b �R.�/; (3-129)

where we have introduced the new variable

Q
 .s/D�s� 
 .s/: (3-130)

Note the single new term due to cylindrical symmetry. As already mentioned, the term R.�/ corresponds
to those terms formally quadratic in �:

R.�/D
�
�C zQb

�ˇ̌
�C zQb

ˇ̌2
� zQb

ˇ̌
zQb

ˇ̌2
� 2

ˇ̌
zQb

ˇ̌2
��

�
2 zQ2

b �Re. zQ2
b/
�
�: (3-131)

Lemma 3.12 (estimates due to orthogonality conditions). For all s 2 Œs0; s1/,ˇ̌̌̌
�s

�
C b

ˇ̌̌̌
Cjbsj. �1�C�

b
Cjjj�jjj (3-132)

andˇ̌̌̌
ˇ Q
s �

1

jƒQj2
L2

�
�re;LC.ƒ

2Q/
�ˇ̌̌̌ˇC ˇ̌̌rs

�

ˇ̌̌
C

ˇ̌̌zs

�

ˇ̌̌
� �

1�C�

b
C ı.˛�/jjj�jjj

1
2 : (3-133)

Estimates (3-132) and (3-133) are a direct result of orthogonality conditions (2-39), (2-40), (2-41)
and (2-42) by taking the respective inner products with �; see (3-129). Due to (2-54), terms resulting
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from N�2
r.y1/

�@y1
� are inconsequential. The estimates due to energy and momentum, (3-120) and (3-121),

are involved in the estimates of jbsj and jrs=�j C jzs=�j respectively. Otherwise, all calculations are
localized to the support of zQb and are identical to the L2-critical argument. See [Merle and Raphaël
2004, Appendix C] or [Raphaël 2005, Appendix A] for the complete calculations.

Lemma 3.13 (local virial identity). For all s 2 Œs0; s1/,

bs � ı1jjj�jjj ��
1�C�

b
; (3-134)

where ı1 > 0 is a universal constant and jjj�jjj D
R ˇ̌
ry�

ˇ̌2
� dyC

R
jyj� 10

b
j�j2 e�jyj dy as in (2-73).

Brief proof. Begin with the method used to prove preliminary estimate (3-132). Take the real part of
the inner product of � in (3-129) with ƒ zQb . Recognize that @s Im

�
�;ƒ zQb

�
D 0 due to orthogonality

condition (2-42). An adapted version of the algebraic property LC.ƒQ/ D �2Q is applied [Merle
and Raphaël 2004, equation (101)]. After recognizing the equation of zQb , injecting the conservation of
energy cancels the remaining terms linear in �. The resulting terms quadratic in � are the bilinear operator
Hb.�; �/ of (3-92). The remaining terms cubic in � (due to the original inner product) were estimated as
part of Lemma 3.7. See [Merle and Raphaël 2004, Appendix C] for the complete calculation. Controlling
the auxiliary terms of the conservation of energy with (3-120) we have

�bs Im
�
@

@b
zQb; ƒ zQb

�
& Hb.�; �/C bs Im

�
�;ƒ

@

@b
zQb

�
�

�
�s

�
C b

�
Im
�
�;ƒ2 zQb

�
� Q
s Re

�
�;ƒ zQb

�
�
.rs; zs/

�
� Im

�
�;r zQb

�
��

1�C�

b
� ı.˛�/jjj�jjj: (3-135)

Recall that @b
zQb � �

1
4
i jyj2 Q, make the correction (3-94) for zHb , and apply the preliminary esti-

mates (3-132) and (3-133). With the proximity to Q we can write

bs
1
4
kyQk2

L2 &H.�; �/� Q
s.�re; ƒQ/��
1�C�

b
� ı.˛�/jjj�jjj: (3-136)

Identify the alternate form Equation (3-95) of zH , apply the preliminary estimate for Q
s , Equation (3-133),
and apply the adapted version of the spectral property, Lemma 3.2. �

Remark 3.14 (progress in proving Proposition 2.8). We have already proven the first half of I1.2 as
the preliminary estimate (3-119). The local virial identity with preliminary estimate (3-132) produce a
closed expression for � and b, which we treat with simple arguments to prove the following lemma. In
particular, (3-138) implies the first lower bound of I1.3. Following similar methods, we will then prove
the second upper bound of I1.3, I1.4, I1.5, and I1.1.

Lemma 3.15 (upper bound on blowup rate). For all s 2 Œs0; s1/,

b.s/�
3�

4 log s
(3-137)

and

�.s/�
p
�0e
��

3
s

log s : (3-138)
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Proof. Inject hypothesis H1.2 into the local virial identity (3-134) and carefully integrate in time. From
b > 0 and the bound on �b (3-103), we have

@seC
3�
4b D�

bs

b2

3�

4
eC

3�
4b � 1; which implies eC

3�
4b � s� s0C e

C 3�
4b0 : (3-139)

Now (3-137) follows from our clever choice of s0 in (2-43).
Next we view the preliminary estimate (3-132) and hypothesis H1.2 as the approximate dynamics of �:ˇ̌̌̌

�s

�
C b

ˇ̌̌̌
Cjbsj< �

1
2

b
: (3-140)

In particular, as b > 0 is small, ��s

�
�

2b

3
, which we integrate with (3-137) to get

� log�� � log�0C

Z s

s0

�

2 log �
d�: (3-141)

Assume s0 is sufficiently large through the choice of data (2-29) with ˛� sufficiently small, then,Z s

s0

�

2 log �
d� �

�

3

�
s

log s
�

s0

log s0

�
: (3-142)

From the choice of data C1.3, and (2-43), � log�0 � e
�

2b0 D s
3
2

0
. Thus

� log�� �1
2

log�0C
�

3

s

log s
;

and we have proved (3-138). �

A simple change of variables in (3-138) and the choice of data (2-29) and (2-32) yield a corollary:

Thyp D

Z s1

s0

�2.�/ d� � �0

Z C1
2

e
� 2�

3
s

log s ds < ˛�: (3-143)

Proof of second upper bound in I1.3. As a direct consequence of (3-138), again assuming s0 > 0 suffi-
ciently large,

� log.s�.s//�
�

3

s

log s
� log s �

s

log s
: (3-144)

Taking the logarithm and applying (3-137),

log
ˇ̌
� log .s�.s//

ˇ̌
� log

s

log s
�

4

15
log s �

�

5b.s/
; (3-145)

which leads successively to s�.s/� e�e
�
5b and �� e�e

�
5b , the second upper bound of I1.3. �

Proof of I1.4. Recall the approximate dynamic (3-140), which was due to the preliminary estimate
(3-132) and the hypothesized control on �. As a consequence, for s 2 Œs0; s1/,

d

ds

�
�2e

5�
b

�
D 2�2e

5�
b

�
�s

�
C b� b�

5�bs

2b2

�
� ��2be5�b < 0; (3-146)
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which implies

�2.t/e
5�

b.t/ � �2
0e

5�
b0 : (3-147)

Then, with the estimate (3-103) on �b , the choice of data (2-33), and the estimate on �b again, we obtain
the energy-normalization part of I1.4:

�2.t/ jE0j< �
4
b.t/ e

5�
b0 �2

0 jE0j< �
4
b.t/ e

5�
b0 �10

b0
� �4

b.t/; (3-148)

Regarding the localized momentum, calculate directly from (1-1) that,

d

dt
Im
�Z
r .x/ � ru Nu

�
D Re

�Z
@xj @xk

 .x/@xk
u@xj Nu

�
�

1

2

Z
� .x/ juj4�

1

4

Z
�2 .x/ juj2: (3-149)

This is a special case of the general Morawetz calculation; see, for instance, [Tao 2006, equation (3.36)].
Recall from definition (2-34) that the support of .x/ is well away from rD0. Apply the two-dimensional
Sobolev embedding H

1
2 ,!L4 to estimateˇ̌̌̌

d

dt
Im
�Z
r .x/ � ru Nu

�ˇ̌̌̌
� C. .x// ku.t/k2

H 1 .
1

�2
; (3-150)

where the final inequality is due to hypothesized control on � and the small excess mass H1.2. Note thatR t
0

d�
�2.�/

D
R s

s0
d� � s, so we have proven

�.t/
ˇ̌
Im
�
r .x/ � ru.t/ Nu.t/

�ˇ̌
� �.t/

ˇ̌
Im
�
r .x/ � ru0 Nu0

�ˇ̌
CC�.t/s.t/:

From the estimate (3-103) on �b and (3-145) from the previous proof, we have C�.t/s.t/�C�10
b.t/
��4

b
.

Using virtually the same calculation that gave us (3-146)–(3-148) we obtain, for s 2 Œs0; s1/,

d

ds

�
�e

6�
b

�
� �

1
2
�be

6�
b < 0; (3-151)

and hence

�.t/e
6�

b.t/ � �0e
6�
b0 :

By the estimate on �b and choice of data (2-33), we obtain the localized-momentum part of I1.4:

�.t/
ˇ̌
Im
�
r .x/ � ru0 Nu0

�ˇ̌
� �5

b.t/ e
6�
b0 �10

b0
� �4

b.t/: �

Proof of I1.5. We follow the argument found in the proof of [Raphaël 2005, Lemma 7]. Fix some
s2 � s3 2 Œs0; s1/. Substitute the local virial identity (3-134) into the preliminary estimate (3-132) to
control the norm of �. With a crude bound for �b ,ˇ̌̌�s

�
C b

ˇ̌̌
� C.bsC b2/; (3-152)
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From hypothesis H1.2, 0< b2 < ı.˛�/b where ı.˛�/! 0 as ˛�! 0. Then,

� log
�.s2/

�.s3/
D

Z s3

s2

��s

�
C b

�
�

Z s3

s2

b � ı.˛�/�
1

2

Z s3

s2

b � ı.˛�/: (3-153)

In particular, we may assume that ˛� is such that ı.˛�/ < log 2, which proves I1.5. �

Proof of H1.1. The preliminary estimate (3-133) can be crudely simplified toˇ̌̌rs

�

ˇ̌̌
C

ˇ̌̌zs

�

ˇ̌̌
� 1: (3-154)

Then we have for all s 2 Œs0; s1/

jr.s/� r0jC jz.s/� z0j �

Z s

s0

jrsjC jzsj �

Z s

s0

�.�/ d� �
p
�0

Z C1
2

e
��

3
�

log� d� < ˛�; (3-155)

where we applied (3-138), the choice of data (2-32) and the smallness of b0 (2-29). With our choice of
r0,z0 (2-28), this proves I1.1. �

3.1. Lyapunov functional. To begin this section, we repeat the calculation of the local virial identity,
this time including the linear radiation Q�b as part of the central profile. That is, we write

Q� D �� Q�b H) u.t;x/D
1

�.t/

�
zQb.t/C

Q�b.t/C Q�.t/
� �.r; z/� .r.t/; z.t//

�

�
e�i
.t/; (3-156)

where the parameters of the geometric decomposition are unchanged. The equation for Q� may then be
written analogously to (3-129), with a new linearized evolution operator analogous to M , (3-90).

Lemma 3.16 (radiative virial identity [Merle and Raphaël 2006]). For all s 2 Œs0; s1/,

@sf1 � ı2 jjjQ�jjjC�b �
1

ı2

Z
A�jyj�2A

j�j2 dy; (3-157)

where jjjQ�jjjD
R ˇ̌
ry Q�

ˇ̌2
�.y/ dyC

R
jyj� 10

b
jQ�j2 e�jyj dy (cf. (2-73)), ı2; c> 0 are universal constants, and

f1.s/D
b

4

ˇ̌
y zQb

ˇ̌2
L2 C

1

2
Im
�Z

y � r Q�b Q�b

�
C Im.�;ƒ Q�b/: (3-158)

Compared with the local virial identity, the radiative virial identity is useless to control � in PH 1 due to
the presence of mass term

R
A�jyj�2A j�j

2. See (3-110) for further discouragement. Nevertheless, we will
link this term to the ejection of mass from the singularity, through the radiation, into the dispersive regime
(Lemma 3.17). Then, we will show this mass ejection is more or less uninterrupted by demonstrating
the Lyapunov functional (Lemma 3.19). Finally, through conservation of energy we will prove precise
bounds on the Lyapunov functional in terms of the excess mass at the singularity and j�j PH 1 (Lemma 3.20).
These bounds will allow us to bridge between times where bs � 0 (times where the local virial identity
is useful) to control � pointwise in time (Lemma 3.22).
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Let �1 be a smooth radial cutoff function on R2 satisfying

�1.y/D

�
0 for jyj � 1

2
;

1 for jyj � 3;
(3-159)

1
4
� �01 �

1
2

for 1� jyj � 2; 0� �01 for all y: (3-160)

The following lemma is proved on page 707:

Lemma 3.17 (mass ejection from singular and radiative regimes).

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
�

b

400

Z
A�jyj�2A

j�j2 dy ��
a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy ��2

b :

Remark 3.18 (interpretation of Lemma 3.17). Assume for the sake of heuristics that �� �b in the region
jyj�A. With the definition of �b in (3-98) and the control on � afforded by hypothesis H1.2, the lemma’s
inequality suggests continuous ejection of mass from the region jyj < A=2, regardless of whether that
region is growing or contracting.

Lemma 3.19 (Lyapunov functional). For all s 2 Œs0; s1/,

@sJ� �Cb

�
�bCjjjQ�jjjC

Z
A�jyj�2A

j�j2
�
; (3-161)

where C > 0 is a universal constant and

J.s/D

Z
j zQbj

2
�

Z
jQj2C 2 Re.�; zQb/C

1

rN�2.s/

Z �
1��1

� y

A

��
j�j2 �.y/ dy

�
ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im.�;ƒ Q�b/
�
; (3-162)

Qf1 being is the principal part of f1 from (3-158):

Qf1.b/D
b

4

ˇ̌
y zQb

ˇ̌2
L2 C

1
2

Im
�Z

y � r Q�b Q�b

�
: (3-163)

The proof, which we defer until page 708, involves the radiative virial estimate (3-157), the mass
dispersion estimate in Lemma 3.17, and conservation of mass.

Now let us discuss what J is.

Lemma 3.20 (estimates on Lyapunov functional). For all s 2 Œs0; s1/ we have the crude estimate

jJ� d0b2
j< ı3b2; (3-164)

where 0< ı3� 1 is a universal constant and d0b2 is the approximate excess mass of the profile zQb (see
(3-87)). There also holds a more refined estimate:

��1�Ca
b C

1

C
jjj�jjj � J.s/�f2.b.s//� �

1�Ca
b CCA2

jjj�jjj; (3-165)
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where f2 is the principal part of J concerned with the mass of the profile:

f2.b/D

Z ˇ̌̌
zQb

ˇ̌̌2
�

Z
jQj2�

ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dv

�
: (3-166)

Proof. To prove (3-164) we will approximate each term of (3-162). To estimate the term in j�j2, recall
from (3-159) the support of �1, and derive the consequence for �.y/ similar to Equation (2-55). One
obtains Z �

1��1

� y

A

��
j�j2 �.y/ dy .

Z
jyj�3A

j�j2 .A2 log Ajjj�jjj � �
1
2

b
; (3-167)

where the second inequality is due to Lemma 3.5 and the final inequality is from the definition (3-104) of
A and the hypothesized control of �. Estimate .�; zQb/ by the same control, and the terms in Q�b by (3-100).
Equation (3-164) then follows from (3-87) by noting that the constant ı2 due to the radiative virial identity
(3-157) can be assumed small with respect to universal constant d0, so that 0< .@f2=@b

2/
ˇ̌
b2D0

<1.
Next we prove the refined estimate. Note that

J.s/�f2.b.s//D 2 Re.�; zQb/C
1

rN�2.t/

Z
.1��1/ j�j

2 �.y/�
ı2

800
b Im.�;ƒ Q�b/: (3-168)

By the bounds for Q�b in Lemma 3.5 and the choice of A, we have

ˇ̌
Im.�;ƒ Q�b/

ˇ̌
� �

1
2
�C�

b

�Z
jyj�A

j�j2
� 1

2

. �
1
2
�C�

b
A.log A/

1
2 jjj�jjj

1
2 . �1�Ca

b Cjjj�jjj: (3-169)

Since b is small, the contribution of (3-169) is a factor of ˛� smaller than the desired bound. Similar
terms will be omitted for the remainder of the proof.

Regarding the two other terms in (3-168), the term linear in � we recognize from the conservation of
energy (3-120). Indeed, the upper bound for (3-168) follows from (3-120) with (3-109) andZ

.1��1/ j�j
2 �.y/ dy .A2 log Ajjj�jjj; (3-170)

which is due to (3-110).
To establish a lower bound for (3-168) we will need the following lemma, whose proof is based on

a spectral result due to [Martel and Merle 2001], with additional properties proven in [Mariş 2002] and
[McLeod 1993]. See [Merle and Raphaël 2006, Lemma 8] for that spectral property, and Appendix D
of the same reference for a proof of the lemma.

Lemma 3.21 (elliptic estimate for L). Recall the linearized Schrödinger operator L from (2-68). There
exists a universal constant ı4 > 0 such that, for all v 2H 1.R2/,

Re .L.v/; v/�
Z
�1 jvj

2

� ı4

�Z
jrvj2C

Z
jvj2 e�jyj

�
�

1

ı4

�
Re.v;Q/CRe.v; jyj2 Q/CRe.v;yQ/CIm.v;ƒ2Q/

�2
: (3-171)
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Introduce a new radially symmetric cutoff function, analogous to �A (3-105) but with larger support,
such that .1��B.y//.1��1.y=A//D 0:

�B.y/D

�
1 for jyj � 3A;

0 for jyj � 4A:
(3-172)

By (2-55), we can rewrite the principal part of the conservation of energy estimate (3-120) as

2 Re.�; zQb/�

Z
.1��2

B/ jr�j
2 �.y/ dyC

Z
�2

B jr�j
2 dy � 3

Z
Q2.�B�re/

2
�

Z
Q2.�B�im/

2;

(3-173)
where we used the exponential spatial decay of Q and the lower bound for �b (3-98) to control the excess
in Q2�2 on jyj> 10

b
. With integration by parts,Z

�2
B jr�j

2 dy D

Z
jr.�B�/j

2 dyC

Z
��B �B j�j

2 dy: (3-174)

The principal part of (3-168) is then

2 Re.�; zQb/C
1

rN�2.t/

Z
.1��1/ j�j

2 �.y/ dy �

Z
.1��2

B/ jr�j
2 �.y/ dy

C

�
Re.L.�B�/; �B�/�

Z
�1 j�B�j

2

�
C

Z
��B �B j�j

2
C

Z
.1��1/

�
�

rN�2.t/
��2

B

�
j�j2: (3-175)

The final term can be neglected, since .1� �1/.�=rN�2.t/� �2
B
/ is of order �y1, and supported on

jyj< 4A. The lower bound for (3-168) then follows from Lemma 3.21, an integration by parts, and the
straightforward comparison,Z

�2
B jr�j

2
C

Z
j�B�j

2 e�jyj &
Z
�2

B jr�j
2 �.y/C

Z
jyj� 10

b

j�j2 e�jyj; (3-176)

again due to the support of �B and the bound on �. This completes the proof of (3-165). �

Lemma 3.22 (lower bound on blowup rate). For all s 2 Œs0; s1/,

b.s/�
4�

3 log s
(3-177)

and Z s

s0

.�b.�/Cjjj�jjj/ d� � C˛�; (3-178)

where C > 0 is a universal constant and

jjj�jjj � �
4
5

b
: (3-179)

(This is (2-58), the remaining part of I1.2.)

Note that (3-177) is the first upper bound of I1.3. The only estimate still required in order to establish
Proposition 2.8 follows as a corollary.
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Proof of the second lower bound I1.3. Recall from (3-140) the approximate dynamics of �. Since b > 0

is small, we have ��s

�
� 3b, which we integrate with (3-177),

� log�.s/� � log�0C 4�

Z s

s0

1

log �
d� � � log�0C 4�.s� s0/: (3-180)

Use (3-177) again, and recall the definition of s0 (2-43) and choice of data (2-32), to obtain

�.s/� �0e4�s0 e�4�e
4�

3b.s/
> e�e

5�
b.s/
: �

Proof of Lemma 3.22. First, in view of the crude estimate (3-164), we may divide the Lyapunov inequality
(3-161) by

p
J and integrate in time, leavingZ s

s0

�
�b.�/Cjjj�jjj

�
d� � C

�p
J.s0/�

p
J.s/

�
� Cb0: (3-181)

The choice of data (2-29) then proves (3-178). Alternately, we may view the crude estimate (3-164) and
the Lyapunov inequality (3-161) as giving a differential inequality for J:

@se
C 5�

4

q
d0
J & b

J
�be

5�
4

q
d0
J � 1; (3-182)

which implies

e
C 5�

4

q
d0

J.s/ � e
C 5�

4

q
d0

J.s0/ C s� s0: (3-183)

Here we applied the bound (3-103) on �b , for which it is essential that 5
4
> 1CC�; see Remark 4.15.

By the crude estimate (3-164) and the definition of s0 in (2-43), we have

e
C 5�

4

r
d0

J.s0/ > e
�
b0 > s0; (3-184)

which, again with estimate (3-164), proves (3-177) from (3-183).
It remains to establish the pointwise control of �. Fix s 2 Œs0; s1/.

1. If @sb.s/� 0, then (3-179) follows from the local virial identity, Lemma 3.13.

2. If @sb.s/ > 0, there exists a largest interval .sC; s/, with s0 � sC, on which @sb > 0. This implies
b.sC/ < b.s/ and either

sC D s0 or @sb.sC/D 0:

In the first case we use the choice of small �0 and in the second the local virial identity, to obtain in either
case Z ˇ̌

ry�.sC;y/
ˇ̌2
�.y/ dyC

Z
jyj� 10

b.sC/

j�.sC;y/j
2 e�jyj dy � �

6
7

b.sC/
:

From the upper bound of the refined estimate (3-165), and assuming a> 0 is sufficiently small,

J.sC/�f2.b.sC//� �
5
6

b.sC/
< �

5
6

b.s/
: (3-185)
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Since J is non-increasing, and from the lower bound of refined estimate (3-165), we get

�
5
6

b.s/
� J.s/�f2.b.sC//

&
�Z ˇ̌

ry�.s;y/
ˇ̌2
�.y/ dyC

Z
jyj� 10

b.s/

j�.s;y/j2 e�jyj dy

�
��1�Ca

b.s/ C
�
f2.b.s//�f2.b.sC//

�
:

(3-186)

As noted in the proof of the crude estimate (3-164), we may assume the constant ı2 of (3-157) is small
enough relative to d0 so that 0<@f2=@b2

ˇ̌
b2D0

<1, proving that
�
f2.b.s//�f2.b.sC//

�
> 0. Assuming

a> 0 is sufficiently small, this proves (3-179). �

Proof of Lemma 3.17. Directly from (1-1) we obtain

1
2
@s

�Z
�1

�
.r; z/� .r.t/; z.t//

�A

�
juj2 dx

�
D

1

�A
Im
�Z
rx�1

� y

A

�
� rxu Nu dx

�
�

1

2�2A

Z ��
�s

�
C

As

A

�
yC

@s.r; z/

�

�
� rx�1

� y

A

�
juj2 dx: (3-187)

By the choice of A in (3-104) and the properties of �1 in (3-159), the support of zQb and �1.y=A/ are
disjoint. With the geometric decomposition and a change of variables we can rewrite (3-187) in terms
of j�j2:

1

2

d

ds

Z
�1

� y

A

�
j�j2 �.y/ dy

D
1

A
Im
�Z
rx�1

� y

A

�
� ry� ��.y/ dy

�
C

b

2

Z
y

A
� rx�1

� y

A

�
j�j2 �.y/ dy

�
1

2A

Z ��
�s

�
C bC

As

A

�
yC

@s.r; z/

�

�
� rx�1

� y

A

�
j�j2 �.y/ dy: (3-188)

By Cauchy–Schwarz, the definition of A in (3-104) and the lower bound on �b in (3-103),ˇ̌̌̌
1

A
Im
�Z
rx�1

� y

A

�
� ry� ��.y/ dy

�ˇ̌̌̌

�
1

A

�Z
jr�j2 �.y/ dy

� 1
2
�Z ˇ̌̌

rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy

� 1
2

�
1

2
�

a
2

b

Z
jr�j2 �.y/ dyC

b

40

Z ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy: (3-189)

The factor b
40

is arbitrary by assuming b is sufficiently small. The following term is the principal part of
(3-188). From Equation (3-160) we know the support of �01 and that �01 � 0, so

b

2

Z
y

A
� rx�1

� y

A

�
j�j2 �.y/ dy �

b

5

Z ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy: (3-190)
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Regarding the last line of (3-188), apply preliminary estimates (3-132) and (3-133), the support of �01,
and the definition of A to estimate

1

2A

ˇ̌̌̌�
�s

�
C bC

As

A

�
yC

@s.r; z/

�

ˇ̌̌̌
�

b

40
: (3-191)

Due to the bounds for �01.y=A/ on A� jyj � 2A, and lower bounds for � similar to (2-55), we haveZ ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy �

1

6

Z
A�jyj�2A

j�j2 dy: (3-192)

From (3-188) we have proven,

d

ds

Z
�1

� y

A

�
j�j2 �.y/ dy �

b

20

Z
A�jyj�2A

j�j2 dy ��
a
2

b

Z
jr�j2 �.y/ dy: (3-193)

Finally note that by the preliminary estimate (3-133), the fact that r.t/ � 1 from H1.1, a change of
variables, and the log-log relationship (2-54), we have the easy estimateˇ̌̌̌

rs

rN�1.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

ˇ̌̌̌
� �

Z
j Quj2� �2

b : (3-194)

This completes the proof of Lemma 3.17. �

Proof of Lemma 3.19. We multiply the radiative virial identity (3-157) by ı2b

800
and sum with the mass

ejection estimate in Lemma 3.17 to cancel the bad sign of
R
A�jyj�2A j�j

2:

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
C
ı2b

800
@sf1

�
ı2

2
b

800
jjjQ�jjjC

b

800

Z
A�jyj�2A

j�j2 dyC
ı2b

1000
�b ��

a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy: (3-195)

The final term of (3-195) has the bad sign. Recall from (3-156) that � D Q�C Q�b , and from (3-100) that
Q�b is small in PH 1, on the support of which we can estimate �, so that

�
a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy . �

a
2

b

�
�

1�C�

b
C

Z
jr Q�j2 �.y/ dy

�
� �

1Ca
4

b
C�

a
2

b

Z
jr Q�j2 �.y/ dy; (3-196)

where for the second inequality we require a> 4C�; see Remark 3.4. To rewrite ı2b

800
@sf1, note that

b@sf1 D @s

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im.�;ƒ Q�b/
�
� @sb Im.�;ƒ Q�b/; (3-197)

where Qf1 is the principal part of f1; see (3-163) and (3-158), respectively. Estimate the final term
of (3-197) with a combination of the preliminary estimate (3-132), Hölder, Lemma 3.5, and H1.2.
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Equation (3-195) is transformed into

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dyC

ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im
�
�;ƒ Q�b

���
�
ı2

2
b

800

�
jjjQ�jjjC

Z
A�jyj�2A

j�j2 dy

�
C
ı2b

2000
�b: (3-198)

To identify the left-hand side of (3-198) with �@sJ, inject the conservation of mass,
R

RN ju.t/j
2
DR

ju0j
2. As we did for Equation (3-122), rewrite u.t/ with the geometric decomposition, expand the

product, change variables, expand the measure �, divide by rN�2.t/, and take the derivative @s:

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
D�@s

�Z ˇ̌
zQb

ˇ̌2
�

Z
jQj2C 2 Re

�
�; zQb

��
� @s

�
1

rN�2.t/

Z
O .�y1/

�ˇ̌
zQb

ˇ̌2
C 2 Re

�
� zQb

���
�

@sr

rN�1.t/

Z
ju0j

2: (3-199)

Through a combination of the preliminary estimates (3-132) and (3-133), the �-equation (3-129), and the
log-log rate (2-54), we obtainˇ̌̌̌

�@s

�
1

rN�2.t/

Z
O .�y1/

�ˇ̌
zQb

ˇ̌2
C 2 Re

�
� zQb

���ˇ̌̌̌
. � < �2

b :

Likewise, ˇ̌̌̌
@sr

r2.t/

ˇ̌̌̌ Z
ju0j

2 . �
Z
ju0j

2 < �2
b :

Inserting (3-199) into (3-198) completes the proof of Lemma 3.19. �

4. Proof of global behavior

In this section we prove that the properties I2.1–I2.3 follow from hypotheses H1.1–H2.3. The follow-
ing properties of the singular dynamic proven in Section 3 will be used: the specific log-log rate, the
geometric decomposition and resulting control on bs , and the integrability of k QukL2

t H 1
x

.

Growth of kukH N . It is left until Section 5 to show that 1=� follows the log-log rate (1-12). Here, we
use the log-log rate in the form H1.3, and the control of bs , to prove directly that ��1.t/ has the same
integrability in time as r

log jlog.T � t/j

T � t
:

Lemma 4.1 (Integrability due to log-log rate[Raphaël and Szeftel 2009, (51)]). Let 0��<2 and �12R.
Then, Z t

0

e
�1

b.�/

��.�/
d� . C.�; �1; ˛

�/; (4-200)

where for fixed � and �1, C.�; �1; ˛
�/ decays much faster than e�

1
˛� as ˛�! 0.
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Proof. The log-log rate, H1.3, gives e
�

10b < jlog�j and �

10b
>

1

100
log s; hence

1

�
> eCe

�
10b

> es
1

100
:

By a change of variables and the almost-monotony of �, H1.5,Z t

0

e
�1

b.�/

��.�/
d� <

Z s

s0

jlog�j
10�1
�

���2.� 0/
d� 0 .

jlog�.t/j
10�1
�

���2.t/
.s.t/� s0/. e.��2/s

1
100 .t/:

Finally, to prove the behavior of C.�; �1; ˛
�/, recall that s.t/� s0 D e

3�
4b0 and b0 < ˛

�. �

Remark 4.2 (Lemma 4.1 for � � 2). From the log-log rate, H1.3, s.t/� s0 . e
10
�

1
b.t/ , so by the same

proof, Z t

0

1

��
. e

10
�

1
b.t/

���2
: (4-201)

This is the primary integrability tool of [Raphaël and Szeftel 2009]. The following improvement will be
crucial.

Lemma 4.3 (refined integrability due to control of bs). Let �> 2 and �� be arbitrary and assume ˛�> 0

is sufficiently small. Then for any �2 > 0 and all t 2 Œ0;Thyp/,Z t

0

e�
��

b.�/

��.�/
d� � C.�; �2; ˛

�/
e�

��

b.t/ eC
�2

b.t/

���2.t/
; (4-202)

where, for fixed � and �2, C.�; �2; ˛
�/! 0 as ˛�! 0.

Proof. To begin, we prove the case �� D 0. By direct calculation,

d

ds

�
1

b

1

���2

�
D

1

���2

�
.�� 2/�

bs

b2
� .�� 2/

�s

�
C b

b

�
:

For ˛� sufficiently small relative to �, from H1.2 and the control of bs , (3-132),

1

��
� C.�/

1

�2

d

ds

�
1

b

1

���2

�
D C.�/

d

dt

�
1

b

1

���2

�
: (4-203)

After integration, we estimate

C.�/
1

b

1

���2
� C.�; �2; ˛

�/
eC

�2
b

���2
:

For those cases where �� ¤ 0, integrate by parts:Z t

0

e�
��

b.�/

��.�/
d� D e�

��

b.�/

Z �

0

1

��.� 0/
d� 0

ˇ̌̌̌t
0

�

Z t

0

��
�

b�

b2
e�

��

b.�/

Z �

0

1

��.� 0/
d� 0

�
d�: (4-204)

Apply the previous case to the first term on the right. For the second term, make the change of variable
b� D bs.�/=�

2.�/ and apply the previous case for some �2�
1
2

. Use (3-132) to approximate bs , and we
have bounded the second term by a small multiple of the left-hand side. �



STANDING RING BLOWUP SOLUTIONS FOR CUBIC NLS 711

Lemma 4.3 is not true for � D 2. As a substitute, we prove a corollary of the integrated Lyapunov
inequality, (3-178).

Corollary 4.4. Let �3 � 0. For all t 2 Œ0;Thyp/,Z t

0

e
�3

b.�/

�
k Qu.�/k2

H 1 C
�b.�/

�2.�/

�
d� . C.˛�/e

�3
b.t/ : (4-205)

Proof. By change of variables and integration by parts,Z t

0

e
�3

b.�/

�
k Qu.�/k2

H 1 C
�b.�/

�2.�/

�
d�

D e
�3

b.�/

Z �

0

�2.� 0/


 Qu.� 0/

2

H 1
x
C�b.� 0/ d� 0

ˇ̌̌̌s.t/
s0

C �3

Z s.t/

s0

bs

b2
e
�3

b.�/

�Z �

0

�2
k Quk2

H 1
x
C�b

�
d�:

Then observe the control on bs in (3-132) and the estimate (3-178). �

Remark 4.5 (optimality of (4-205)). Corollary 4.4 is the best possible integrability of e
ı
b =�2 for constant

ı. As a heuristic, assume that ��
p

T � t and e
1
b � jlog�j � jlog.T � t/j, motivated by the log-log rate

H1.3. The integral
R T jlog.T�t/jı

T�t
dt is only finite for values of ı sufficiently negative. In our case, the

maximum threshold for ı is given dynamically by (3-178).

Next, we translate hypotheses H2.1–H2.3 into a gain of derivative during particular N -dimensional
Sobolev embeddings. Consider a smooth cutoff function with support on ��1.f1g/:

Q�.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 3

4
;

0 for j.r; z/� .1; 0/j � 2
3
:

(4-206)

Lemma 4.6 (consequences of bootstrap hypotheses). Let v D Q�u. Then,Z ˇ̌
r

N�1v
ˇ̌2
jvj2 � C

�
Q�; ˛�

�
kvk2

H N ; (4-207)

where C . Q�; ˛�/! 0 as ˛�! 0. Furthermore, suppose that

N � 1� l1 � l2 � l3 � 0 with l1 C l2 C l3 DN;

k1 � k2 � k3 � 0 with k1C k2C k3 DN � 2:

ThenZ ˇ̌
r

N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
C

Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌

C

Z ˇ̌
r

N�1v
ˇ̌2�
jrvj2Cjvj4

�
� C. Q�/

1

�2NC1
: (4-208)

Proof. For (4-207), apply the N -dimensional Sobolev embeddings H 1 ,!L
2N

N�2 and H
N
2
�1 ,!LN :Z ˇ̌

r
N�1v

ˇ̌2
jvj2 � krN�2vk2

L
2N

N�2

kvk2
LN . kvk2H N kvk

2

H
N
2
�1
:

Then recall hypothesis H2.3.
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We consider in turn the three integrals in (4-208), applying Hölder and N -dimensional Sobolev em-
beddings in each case. For the first,Z ˇ̌

r
N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
. kvk PH N

Y
jD1;2;3



rlj v




L
2N
lj

. kvk PH N

Y
jD1;2;3

kvk
H

N
2
C

lj
2
Cı
; (4-209)

where 1
2
� ı > 0 is only necessary if l3 D 0. Apply hypotheses H2.1 and H2.2, interpolating if ı ¤ 0.

The resulting bound is of the order 1=�2N .

To deal with the second integral in (4-208), choose rj D 2N
N �2

N �2

1

kj
and qj D 2N

N

NC1

1

lj
, so

X 1

rj
D

N � 1

2N
and

X 1

qj
D

N C 1

2N
:

ThenZ ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
.

Y
jD1;2;3



rkj v




L
rj



rlj v




L
qj

.
Y

jD1;2;3

kvk
H

N
2
C

kj
2

N�3
N�2

Cı
kvk

H
N
2
C

lj
2

N�1
N
Cı
; (4-210)

where, again, 1
2
� ı>0 is only necessary if k2; k3 or l3D0. Apply hypotheses H2.1–H2.3, interpolating

where necessary. The resulting bound is of the order 1=�2N�4.
For the third integral, we writeZ ˇ̌

r
N�1v

ˇ̌2�
jrvj2Cjvj4

�
.


rN�1v



2

L
2N

N�2

�
krvk2

LN Ckvk
4
L2N

�
. kvk2

H N

�
kvk2

H
N
2

Ckvk4

H
N
2
�1

�
: (4-211)

Apply hypotheses H2.1 and H2.3. The resulting bound is of the order 1=�2N .
Finally, use hypothesis H1.3 to estimate the neglected factors of e

1
b by a single factor of 1=�. �

Near the singular ring, and in particular on the support of r�, we do not have the luxury of bootstrap
hypotheses. However, under cylindrical symmetry this region is essentially two-dimensional. Indeed,
two-dimensional type Sobolev embeddings may be applied to functions supported on this region, as we
remark in the next paragraph. Coupled to the geometric decomposition, these embeddings will achieve
precisely the weakest usable bounds.

Remark 4.7 (comparison of H �.R2/ and H �.RN /). Consider �N � f0 < R < r < 2R <1g � RN ,
a fixed cylindrical symmetric compact domain away from the origin, as is, in particular, the support of
r�. Let �2 � R2 denote the obvious projection, and let f denote any cylindrically symmetric function
supported on �N . For � � 0 we claim that

kf kH �.R2/ �R;N;� kf kH �.RN / whenever f 2H
d�e
0
.�N /:
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The canonical linear mapping T W f .x 2 RN / ! f ..r; z/ 2 R2/ is seen, by explicit computation, to
be continuous as a map L2

0
.�N /! L2

0
.�2/ or H

d�e
0
.�N /! H

d�e
0
.�2/. Moreover, the mapping is

compact (see [Lions 1982]), so the same map between the interpolation spaces H �
0
.�N /, H �

0
.�2/ of

the interpolation pairs L2.�N /;H
d�e.�N / and L2.�2/;H

d�e.�2/ is also compact [Persson 1964].

Lemma 4.8 (two-dimensional version of Lemma 4.6). Let v D .1� Q�/u. There exists �5 > 0 such thatZ ˇ̌
r

N�1v
ˇ̌2
jvj2 � C. Q�; zQb/

�
1

�2N
C e�

�5
b kuk2

H N

�
; (4-212)

and thatZ ˇ̌
r

N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
C

Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌

C

Z ˇ̌
r

N�1v
ˇ̌2�ˇ̌
rv
ˇ̌2
Cjvj4

�
� C. Q�; zQb/

�
1

�2NC2
C

e�
�5
b

�2
kuk2

H N

�
; (4-213)

where kj and lj are as in Lemma 4.6. The value of �5 > 0 is uniform over all m> 0 sufficiently small.

Proof. Due to the concentrated support of zQb — see (2-55) — we have

.1� Q�/u.r; z; �/D
1

�
zQb

�
.r; z/� .r0; z0/

�

�
e�i


C .1� Q�/ Qu.r; z/; (4-214)

which we denote by W Cw. Due to Lemma 2.2, the various norms of W are explicit. For example,

rN W




L1
� C. zQb/=�

NC1, where the constant is uniform over all b sufficiently small. To prove
(4-212) and (4-213), we substitute vDW Cw and consider two cases: all factors are W , or, at least one
factor is w. The first case is explicit and trivial. In the second case we will extract a factor that is a power
of kwkH 1 . Assuming m> 0 is sufficiently small, H1.2 will then yield the factor of e��5=b . Throughout
this proof, we preserve the correct multiplicity of 1=� and kukH N by avoiding the Sobolev embedding
into L1.

Make the substitution v DW Cw. To prove (4-212) we need to show the same bound for,Z ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌ ˇ̌
v
ˇ̌2
C

Z ˇ̌
r

N�1v
ˇ̌2 ˇ̌
v
ˇ̌
jwj: (4-215)

In the first case, apply the two-dimensional embedding H
1
2 ,!L4, and interpolate:Z ˇ̌

r
N�1w

ˇ̌ ˇ̌
r

N�1v
ˇ̌
jvj2 �



rN�1w




L4



rN�1v




L4 kvk
2
L4

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk2

H
1
2

.
�
kwk

1� 1
2.N�1/

H N kwk
1

2.N�1/

H 1

�
kvk

H
N� 1

2
kvk2

H
1
2

: (4-216)

Interpolate the norms in v between kukL2 and kukH N . The factor of kwkH 1 provides a factor of
e�

�5
b for some �5> 0, assuming that the constant m> 0 of hypothesis H2.1 is sufficiently small. For the
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second term of (4-215) follow the same strategy, except use the interpolation kwk
H

1
2
. kwk

1
2

H 1 kwk
1
2

L2 .
This completes the proof of (4-212).

Now consider the three left-hand side terms of (4-213) in turn. In each case make the substitution
v DW Cw and assume at least one factor is w.

1. We need to show the same bound forZ ˇ̌
r

Nw
ˇ̌ ˇ̌
r

laW
ˇ̌ ˇ̌
r

lb W
ˇ̌ ˇ̌
r

lc W
ˇ̌
C

Z ˇ̌
r

N v
ˇ̌ ˇ̌
r

lav
ˇ̌ ˇ̌
r

lbv
ˇ̌ ˇ̌
r

lcw
ˇ̌
; (4-217)

where N � 1 � la; lb; lc � 0, with laC lbC lc DN , is some permutation of l1; l2; l3. Integrate the first
term of (4-217) by parts, use Hölder and interpolate:

rN�1w




L2



rlaW rlb W rlc W




H 1 . kwk
1� 1

N�1

H N kwk
1

N�1

H 1



rlaW rlb W rlc W




H 1 :

The norms of W have explicit scaling-consistent bounds of the order .1=�/.2ClaClbClc/. Again, kwkH 1

provides a factor of e�
�5
b for some �5 > 0 and the resulting bound is of the order 1=�2NC1.

The remaining term of (4-217) is more difficult. Choose qa; qb; qc > 0 such thatX
jDa;b;c

1

qj
D

1

2
with

1

qj
<

lj

2
if lj ¤ 0 and

1

qj
< �4 if lj D 0; (4-218)

where 0 < �4� 1 is an arbitrary universal constant. Apply Hölder and two-dimensional Sobolev em-
beddingsZ ˇ̌

r
N v
ˇ̌ ˇ̌
r

lav
ˇ̌ ˇ̌
r

lbv
ˇ̌ ˇ̌
r

lcw
ˇ̌
� kvkH N



rlav




Lqa



rlbv




Lqb



rlcw




Lqc

. kvkH N

Y
jDa;b

kvk
H

2. 1
2
� 1

qj
/Clj
kwk

H
2. 1

2
� 1

qc /Clc
: (4-219)

Due to the choice in (4-218), the final three norms of (4-219) may be interpolated strictly between H N

and H 1, or strictly between H 1 and L2, if lj D 0. We are guaranteed a factor in kwkH 1 ,

.4-219/.

8<:kuk
2
H N kuk

2�C.lc/

H 1 kwk
C.lc/

H 1 if all the lj are nonzero;

kuk
2CC.�4/

H N kuk
2�NC.�4/�C.lc/

H 1 kwk
C.lc/

H 1 if some lj is zero:
(4-220)

For m> 0 sufficiently small (relative to �4), there is a spare factor of e�
�5
b , for some �5> 0. This proves

the bound for the first term on the left in (4-213).

2. Choose r1; r2; r3 > 0 and q1; q2; q3 > 0 according to the rules of (4-218). Then,Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
.

Y
jD1;2;3



rkj v




L
rj



rlj v




L
qj : (4-221)

Recall that at least one factor of v in (4-221) is in fact w. Continue with two-dimensional Sobolev
embeddings and interpolation as we did at Equation (4-219). This proves the bound for the second term
on the left in (4-213).
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3. Apply Hölder and two-dimensional Sobolev to getZ ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌
jrvj2 �



rN�1w




L4



rN�1v




L4 krvk
2
L4

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk2

H
3
2

; (4-222)Z ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌
jvj4 �



rN�1w




L4



rN�1v




L4 kvk
4
L8

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk4

H
3
4

: (4-223)

The bound for the third term on the left-hand side of (4-213) follows from interpolation. �

Lemma 4.9 (H N energy identity). Denote the N -th order energy by

EN .u/D

Z ˇ̌
r

N u
ˇ̌2
�

�
2

Z ˇ̌
r

N�1u
ˇ̌2
juj2CRe

Z
.rN�1

Nu/2u2

�
: (4-224)

Then

1

C

ˇ̌̌̌
d

dt
EN .u/

ˇ̌̌̌
�

Z
jr

N ujjrl1ujjrl2ujjrl3ujC

Z
jr

k1ujjrk2ujjrk3ujjrl1ujjrl2ujjrl3uj

C

Z
jr

N�1uj2
�
jruj2Cjuj4

�
; (4-225)

where the right-hand side is implicitly summed over N �1� l1 � l2 � l3 � 0 with l1C l2C l3 DN and
k1 � k2 � k3 � 0 with k1C k2C k3 DN � 2.

Proof. We refer to the right-hand side of (4-225) as error terms of type I, II, and III respectively. By
direct calculation,

1

2

d

dt

�Z ˇ̌̌
r

N u
ˇ̌̌2�
D� Im

Z
r

N .�uCu juj2/rN
Nu

D�2 Im
Z
r.rN�1u juj2/rN

Nu� Im
Z
r.rN�1

Nuu2/rN
Nu

C terms of the form
Z
r

N�2 .ruru u/rN
Nu: (4-226)

The final terms here are errors of type I. Regarding the first term on the right in (4-226),

�2 Im
Z
r.rN�1u juj2/rN

NuD 2 Im
Z
r

N�1u juj2 rN�1� Nu

D

Z
d

dt

�ˇ̌
r

N�1u
ˇ̌2�
juj2� 2 Im

Z
r

N�1u juj2 rN�1. Nu juj2/: (4-227)

Recognize the last term of (4-227) as error of type II and III. Regarding the other term,Z
d

dt

�ˇ̌
r

N�1u
ˇ̌2�
juj2 D

d

dt

�Z ˇ̌
r

N�1u
ˇ̌2
juj2

�
C 2 Im

Z ˇ̌
r

N�1u
ˇ̌2�
�uCu juj2

�
Nu: (4-228)
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After integration by parts, we recognize the final term of (4-228) as being of type I and III. We have
shown that

�2 Im
Z
r
�
r

N�1u juj2
�
r

N
NuD

1

2

d

dt

�Z ˇ̌
r

N�1u
ˇ̌2
juj2

�
;

up to error terms. It is virtually the same calculation to show that,

� Im
Z
r
�
r

N�1
Nuu2

�
r

N
NuD

1

2

d

dt

�
Re
Z
.rN�1

Nu/2u2

�
;

also up to error terms of type I, II, and III. This completes the proof of (4-225). �

Now we simply combine the previous three Lemmas. Equations (4-207) and (4-212) prove that EN �

kukH N . Equations (4-208) and (4-213) control dEN =dt . Integrate the bound on dEN =dtEN using
Lemma 4.3, with �2 < min.�5; 2m/. Choose m0 > 0 to be any value, m� �5=2 < m0 < m. Assuming
˛� is sufficiently small (depending on the choice of m0), we have proved statement I2.1:

Lemma 4.10 (controlled growth of H N ). For all t 2 Œ0;Thyp/,

ku.t/kH N .RN / <
e

m0

b.t/

�N .t/
: (4-229)

Behavior away from both infinity and the singularity. In this section we concentrate on the interface
between the singular set and the truly N -dimensional region that contains the origin. On this interface,
away from r D 0, the dynamics remains essentially two-dimensional and L2-critical

Lemma 4.11 (Two-dimensional endpoint Sobolev control away from the singularity). If �6 > 0 and '
is a smooth cutoff function compactly supported away from both the singular set and the origin,

k'u.t/kL1.RN / � C.�6; '/e
C
�5

b.t/

�
k Qu.t/kH 1.RN /C

�
1
2

b.t/

�.t/

�
: (4-230)

(This is a two-dimensional type of estimate due to the support of '.)

The key feature of Lemma 4.11 is that it lets us avoid the Sobolev embedding H 1C�.R2/ ,!L1.R2/.
At the order of the blowup parameter �, Equation (4-230) is consistent with scaling. The analogue in
the case of radial symmetry, given in [Raphaël 2006; Raphaël and Szeftel 2009], is Strauss’s radial
embedding.

Proof of Lemma 4.11. We adapt an argument of Brezis and Gallouët. Our estimate is for a fixed time
t 2 Œ0;Thyp/. Choose

RD kQu.t/kH 1 C
�

1
2

b.t/

�.t/
� 0:

Consider vD'u as a compactly supported function of two variables, and partition phase space as follows:

jvj � k OvkL1.R2/ D

Z
j�j�R

j Ov.�/j d�C

Z
j�j>R

j Ov.�/j d�
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Let h�i denote
p

1Cj�j2 and rewrite the low frequencies:Z
j�j�R

j Ovj d� D

Z
j�j�R

�
h�i

1
2 j Ovj

1
2
��
j Ovj

1
2
��
h�i�

1
2

�
d� � kvk

1
2

H 1 kvk
1
2

L2

�Z
j�j�R

1

h�i
d�

� 1
2

; (4-231)

Estimate the final integral of (4-231) as
R
j�j�R

1
h�i

d� �
R R

0
1
�
� d� D R: Apply a similar argument for

high frequencies, with parameter �.�6;m/ > 1 to be determined:Z
j�j>R

j Ovj d� D

Z
j�j>R

�
h�i� j Ovj

� 1

h�i�
d� . kvkH �

�Z C1
R

1

h�i2�
� d�

� 1
2

�
1

2.� � 1/
kvkH �

1

R��1
. 1

2.� � 1/

�
kvk2��

H 1 R��1
�� kvk��1

H 2

R2.��1/

�
: (4-232)

Due to hypothesis H2.1 and the �b-estimate (3-103), the final term of (4-232) is bounded by eC
�6

b.t/ for
any choice of � > 1 sufficiently small. �

Definition 4.12 (cutoffs to cover Suppr�). Fix N C4 smooth cylindrically symmetric cutoff functions
 .0/,  .

1
2
/,  .1/, '.N�

1
2
/, '.N�1/, . . . , '.

N
2
/, '.

N
2
� 1

2
/ with the following properties:

1. They cover the support of r�: Each function is 1 on
˚

1
3
< j.r; z/� .1; 0/j< 2

3

	
.

2. The tails do not overlap: The support of each cutoff is contained where the previous cutoff is 1.

3. They are supported away from both the singularity and the origin: The largest support, that of  .0/,
is contained in

˚
1
7
< j.r; z/� .1; 0/j< 6

7

	
.

Lemma 4.13 (annular H
1
2 control: the crucial first step). For all t 2 Œ0;Thyp/,

 . 1

2
/u




H
1
2
. 1

�C.˛�/.t/
; (4-233)

where C.˛�/! 0 as ˛�! 0.

This is the first proof that any behavior better than scaling extends beyond the support of hypotheses
H2.2 and H2.3.

Remark 4.14 (analogue in [Raphaël 2006; Raphaël and Szeftel 2009]). In radial cases, one proves
Lemma 4.13 for H � , � < 1

2
. The subsequent H

1
2 bound — see, for example, [Raphaël 2006, Lemma

10] — should be seen as comparable to the forthcoming Lemma 4.17.

Proof of Lemma 4.13. By direct calculation,

1

2

d

dt



 . 1
2
/u


2

PH
1
2
D Im

�Z
D

1
2

�
u� .

1
2
/
C 2r .

1
2
/
� ru� .

1
2
/u juj2

�
D

1
2

�
 .

1
2
/
Nu
��
: (4-234)

Estimate the first and second terms on the right in (4-234):

D
1
2

�
u� .

1
2
/
�



L2



 . 1
2
/u




H
1
2
� C

�
 .

1
2
/
�

 .0/u



H
1
2



 . 1
2
/u




H
1
2
;

r . 1

2
/
� ru




L2



 . 1
2
/u




H 1 � C
�
 .

1
2
/
�

 .0/u

2

H 1 :
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The nonlinear term of (4-234) does not enjoy any real-valued cancellations, as the operator D does
not have an exact Leibniz property. Apply standard commutation estimates:

D

1
2

�
 .

1
2
/u juj2

�


L2 .



 . 1
2
/u




H
1
2



 .0/u

2

L1.R2/
C


 . 1

2
/u




L4



 .0/u


W

1
2
;4



 .0/u


L1.R2/

.


 . 1

2
/u




H
1
2

�

 .0/u

2

L1.R2/
C


 .0/u



H 1



 .0/u


L1.R2/

�
: (4-235)

From support away from the singularity,  .0/u D  .0/ Qu, and we may apply the endpoint estimate of
Lemma 4.11. Denote



 . 1
2
/u.t/




PH

1
2

by f . We have the simple ODE

1

2

d

dt
.f 2/�C

�
 .

1
2
/
��
f k Qu.t/k

1
2

H 1k Qu.t/k
1
2

L2CkQu.t/k
2
H 1

�
CC

�
�6;  

.0/
�
f 2eC

�6
b.t/

�
k Qu.t/k2

H 1C
�b.t/

�2.t/

�
:

The final term is dominant. After integration, by Corollary 4.4,

 . 1
2
/u.t/




H

1
2
. e

�
C.˛�/C.�6; 

.0//e
C
�6

b.t/

�
: (4-236)

To complete the proof, choose �6 D
�
10

and recall the log-log rate H1.3. �

Remark 4.15 (justification for Lemma 4.11). The open nature of hypothesis H1.3 is an essential feature
of any modulation argument. It is for this reason that we must be free to choose �6. The standard
Brezis–Gallouët estimate, kvkL1.R2/ . kvkH 1

p
log .kvkH 2/; would not suffice to prove Lemma 4.13.

We now reformulate the calculation of (4-234) for repeated application.

Lemma 4.16 (standard Gronwall argument). Let  A be supported where  B � 1, let I be any subin-
terval of Œ0;Thyp/, and let � � 0. Then

 Au




L1

I
H � � C. A/

�

 Bu0




H � CjI jC



 Bu




L2
I

H
�C 1

2
C


 Au juj2




L1

I
H �

�
: (4-237)

Lemma 4.17 (annular H 1 control: propagation of Lemma 4.13). There exists �7 > 0, universal for all
m> 0 sufficiently small, such that for, all t 2 Œ0;Thyp/,



 .1/u.t/


H 1 < C.˛�/

e�
�7

b.t/

�
1
2 .t/

; (4-238)

where C.˛�/! 0 as ˛�! 0.

Proof. Apply (4-237) for �D1, ID Œ0; t <Thyp�,  AD .1/, and BD .
1
2
/. Note that .1/uD .1/ Qu.

Through interpolation and hypotheses H1.2 and H2.1,



 .1/u


L2

I
H

1C 1
2
.
�Z
k Quk

2� 1
N�1

H 1 k Quk
1

N�1

H N

� 1
2

.
�Z

e�.
1
4
� m

N�1/
1
b

1

�N

� 1
2

: (4-239)

Assuming m>0 is sufficiently small, apply integrability Lemma 4.3 for �2>0, also sufficiently small.
Regarding the final term of (4-237), apply Hölder, two-dimensional Sobolev embedding, and interpolate:
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 .1/u juj2


H 1 .



r� . 1
2
/u
� �
 .

1
2
/u
�2



L2 .


r� . 1

2
/u
�



L4



 . 1
2
/u


2

L8 .


 . 1

2
/u




H
3
2



 . 1
2
/u


2

H
3
4

. kuk
3
2

1

N� 1
2

H N



 . 1
2
/u


3� 3

2
1

N� 1
2

H
1
2

. 1

�
3
2

N

N� 1
2

CC.˛�/
.t/

; (4-240)

where the final inequality is due to hypothesis H2.1 and Lemma 4.13. The final exponent is less than 2

for ˛� > 0 sufficiently small and N � 3. Apply Lemma 4.1. �

Remark 4.18 (scheme for the remainder of Section 4). The proof of Lemma 4.17 may be repeated, with
a shrunken cutoff and H

3
2 in place of H 1. However, due to the new version of Equation (4-239), iteration

to higher norms will not yield more than the same 1
2

-derivative improvement over scaling.
Instead, we switch direction. Starting with I2.1, at each stage the previous iterate will give progres-

sively better control on the equivalent of (4-239). Lemma 4.17 will be used to help control the equivalent
of Equation (4-240).

Lemma 4.19 (Moser-type product estimate). Let v 2 H �C 1
2 .Rd / for some � � d

2
�

1
2

, not necessarily
an integer. Then, 

v3




H � . kvk

H
�C 1

2
kvk2

H
d
2

: (4-241)

Lemma 4.20 (I2.2 and I2.3 on the support of r�). For any t 2 Œ0;Thyp/ and any half-integer 1
2
� � < N

2
,

we have 

'.N��/u


H N�� < C.˛�/

e.1C�/
m0

b.t/

�N�2�
; (4-242)

'.N

2
/u.t/




H

N
2
< C.˛�/eC

2m0C�
b.t/ ; (4-243)

'.N

2
� 1

2
/u




H
N
2
� 1

2
< C.˛�/.˛�/

1
5 ; (4-244)

where in each case C.˛�/! 0 as ˛�! 0.

Proof. We prove (4-242) by induction in �. The base case � D 0 is Lemma 4.10. Hypothesize that
(4-242) holds for � � 1

2
, some � � 1

2
. Set � D N � � and apply the standard Gronwall argument for

I D Œ0; t < Thyp�,  A D �.�/ and  B D �.�C
1
2
/,

'.�/u



H � . k�0u0kH � C


'.�C 1

2
/u




L2
t H

�C 1
2
C


'.�/u juj2



L1
t H � : (4-245)

Apply our induction hypothesis to the second term on the right in (4-245):




'.�C 1
2
/u





L2
t H

�C 1
2
.
�Z

I

�
e.1C.��

1
2
// m0

b.�/

�N�2.�� 1
2
/.�/

�2

d�

� 1
2

. e.1C�/
m0

b.t/

�N�2�.t/

�
e
�2�m0

b.t/
� 1

2 : (4-246)

where, since � < N
2

, we applied Lemma 4.3 for some �2 <m0. Examine the final term of (4-245). Note
that, '.�/uD '.�/

�
'.�C

1
2
/u
�
. Recall Remark 4.7, apply Lemma 4.19 in the two-dimensional case, and
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inject both the induction hypothesis and the H 1 control of Lemma 4.17,

'.�/u juj2


H � .



'.�C 1
2
/u




H
�C 1

2



'.�C 1
2
/u


2

H 1

. eC
.1C.�� 1

2
//m0

b

�N�2.�� 1
2
/

e�
2�7

b

�
D

e
.neg/

b

�2

1

�N�2�
; (4-247)

where we made the assumption that m> 0 is sufficiently small relative to �7. Finally, apply Lemma 4.3
for some �2 less than the negative exponent. This completes the proof of (4-242).

To prove (4-243) let � D N
2

. We proceed exactly as above, using (4-242) in place of the induction
hypothesis, and applying Corollary 4.4 in place of Lemma 4.3.

To prove (4-244), let �D N
2
C

1
2

. We proceed exactly as above using (4-243) in place of the induction
hypothesis, and applying Lemma 4.1 in place of Lemma 4.3. �

Improved behavior at infinity. With Lemma 4.20 covering the support of r�, we prove the correspond-
ing result for � by similar methods. Note the argument is now in three dimensions.

Proof of I2.2 and I2.3. We revisit the proof of the standard Gronwall argument. Let I D Œ0; t < Thyp�,
� � 0, and set v D �u. With (1-1), we get

ivt C�vC v jvj
2
D u��C 2r� � ruC .�2

� 1/�u juj2 : (4-248)

Note that the terms on the right-hand side of (4-248) are localized to the support of r�, a region of
two-dimensional character where '.

N
2
� 1

2
/
� 1. By direct calculation,

1
2
k�ukL1

I
H � � k�u0kH � C



�u j�uj2




L1
I

H �

CC.�/
�

'.1/u0




H � CjI jC



'.1/u


L2

I
H
�C 1

2
C


'.1/uj'.1/uj2



L1
I

H �

�
: (4-249)

Consider �DN�� for some �2
�

1
2
; N

2
C

1
2

�
. Due to Definition 4.12, all the conclusions of Lemma 4.20

apply to '.
N
2
� 1

2
/u, which we use in place of an induction hypothesis to control the second line of (4-249),

exactly as we did Equation (4-245). These terms will give the largest contribution.
Finally, examine the term nonlinear in �u. Apply the Moser-type estimate of Lemma 4.19, interpolate,

and inject hypotheses H2.2,

�u j�uj2




L1
I

H N�� .




k�uk

H
N�.�� 1

2
/
k�uk2

H
N
2






L1

I

.

8̂̂̂<̂
ˆ̂:
Z

I

e.1C.��
1
2
// m

b.�/

�N�2.�� 1
2
/.�/

e
2
�

2mC�
b.�/

�
d� for � � N

2
;Z

I

e
3
�

2mC�
b.�/

�
d� for � D N

2
C

1
2
:

(4-250)

Apply Lemma 4.1 for � � N
2

, Corollary 4.4 for � D N
2
�

1
2

, and Lemma 4.3 for N
2
�1� � � 1

2
. Note

that the result of Equation (4-250) is an entire order better than necessary. �
This completes all the deferred proofs necessary to establish Proposition 2.8.



STANDING RING BLOWUP SOLUTIONS FOR CUBIC NLS 721

5. Proof of Theorem 1.6

Proof of norm growth (1-12), (1-13). From Proposition 2.8 we have that Thyp D Tmax, and from (3-143)
we have blowup in finite time. By the failure of local wellposedness we have that �.t/! 0 as t! Tmax.
Recall the approximate dynamics of �, Equation (3-140), which with the control on b implies in particular
that j�s=�j< 1 on Œs0; smax/, which easily integrates to

jlog�.s/j. 1C s: (5-251)

Therefore smax DC1. By direct calculation and a change of variable,

�@t

�
�2 log jlog�j

�
D�

�s

�
log jlog�j

�
2C

1

jlog�j log jlog�j

�
:

The approximate dynamics (3-140) gives

b

2
� �

�s

�
� 2b;

so with the log-log rate H1.3 we have proven that, for some universal constant C > 0 and all t 2 Œ0;Tmax/,

1

C
� �@t

�
�2 log jlog�j

�
� C: (5-252)

For all t 2 Œ0;Tmax/, integrate Equation (5-252). Since � is very small we can estimate

1

C

�
Tmax� t

log jlog.Tmax� t/j

� 1
2

� �.t/� C

�
Tmax� t

log jlog.Tmax� t/j

� 1
2

: (5-253)

We do not prove the exact value of the constant in (1-12); see [Merle and Raphaël 2006, Proposition 6].
Finally, we conclude that (1-13) follows from the log-log relationship H1.3, higher-order norm control
H2.1, and from m> 0 small. As an aside, recall that ds=dt D 1=�2, so with (5-253) one would conclude

1

C
jlog.Tmax� t/j � s.t/� C jlog.Tmax� t/j : (5-254)

Then from the explicit lower and upper bounds for b in (3-137) and (3-177) we obtain

1

C log jlog.Tmax� t/j
� b.t/�

C

log jlog.Tmax� t/j
: �

Proof of stable locus of concentration, (1-9). The preliminary estimate (3-133) implies in particular thatˇ̌̌̌
@s.r; z/

�

ˇ̌̌̌
< 1 (5-255)

on Œs0; s1/. Then by a change of variable, (5-253) and the bound (3-143) on Tmax,Z Tmax

0

j@t .r; z/j dt <

Z Tmax

0

1

�.t/
dt < ı.˛�/: (5-256)

Equation (1-9) follows from choice of initial data C1.1. �



722 IAN ZWIERS

Proof of regularity away from singular ring, (1-11). Given R> 0, define �
R

to be a suitable modification
of � (2-26), equal to 1 for j.r; z/� .rmax; zmax/j>R. Choose some t.R/ 2 Œ0;Tmax/ such that

A.t/�.t/Cj.r.t/; z.t//� .rmax; zmax/j �R for all t 2 Œt.R/;Tmax/; (5-257)

and hence �
R

uD �
R
Qu for all t 2 Œt.R/;Tmax/. Let t3 2 .t.R/;Tmax� be the largest value such that

�Ru.t/




H 1 < 2



�Ru.t.R//




H 1 for all t 2 Œt.R/; t3/: (5-258)

This choice of t3 > t.R/ is possible since u.t/ is strongly continuous in H 1 at time t.R/ < Tmax. With
interpolation, (5-258) replaces the bootstrap hypotheses H2.2 and H2.3. Repeating the arguments of
Section 4 proves that t3 D Tmax and

k Qu.t/kH 1.j.r;z/�.rmax;zmax/j>R/ < C.R/ for all t 2 Œ0;Tmax/: (5-259)

This yields (1-11). �

Proof of mass concentration, (1-10). Let R> 0. To begin we will prove there exists a residual profile in
L2 away from the singular ring:

Qu.t/! u� in L2
x

�
j.r; z/� .rmax; zmax/j �R

�
as t ! Tmax: (5-260)

Then to establish (1-10) we will prove

u� 2L2.RN / and
Z ˇ̌

u�
ˇ̌2
D lim

t!Tmax

Z
j Qu.t/j2: (5-261)

Let �0 > 0 be arbitrary. Due to (3-178), we may choose t.R/ < Tmax such that

Tmax� t.R/ <
�0

1CC.R=4/
and

Z Tmax

t.R/

Z
jr Quj2 dx dt < �0; (5-262)

where C.R=4/ is the constant from Equation (5-259). We may assume that, for t 2 Œt.R/;Tmax/, u.t/D Qu

on
˚
j.r; z/� .rmax; zmax/j>R=4

	
. Let � > 0 be a parameter to be fixed later, and define

v� .t;x/D u.t C �;x/�u.t;x/: (5-263)

Since t.R/ < Tmax, u.t/ is strongly continuous in L2 at time t.R/. Thus, there exists �0 such thatZ ˇ̌
v� .t.R//

ˇ̌2
dx < �0 for all � 2 Œ0; �0�: (5-264)

Denote a smooth cutoff function �R analogous to �1 (see (3-159) and (3-160)):

�R.r; z/D �
4
1

�
.r; z/� .rmax; zmax/

R

�
: (5-265)

By direct calculation,

1
2
@t

�Z
�Rjv

�
j
2

�
D Im

�Z
r�R �rv

�v� dx

�
C Im

�Z
�Rv

�
�
u juj2.tC�/�u juj2.t/

�
dx

�
: (5-266)
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Regarding the first term on the right in (5-266), from Hölder and our choice of t.R/ we haveZ Tmax

t.R/

ˇ̌̌̌
Im
�Z
r�R � rv

�v� dx

�
dt

ˇ̌̌̌
� C

�Z Tmax

t.R/

12 dt

� 1
2

�
1
2

0
< C�0: (5-267)

Regarding the second term on the right in (5-266), by homogeneity,ˇ̌
�Rv

�
�
u juj2 .t C �/�u juj2 .t/

�ˇ̌
� C

�ˇ̌
�

1
4

R
u.t C �/

ˇ̌4
C
ˇ̌
�

1
4

R
u.t/

ˇ̌4�
: (5-268)

Then, as we did in proving estimate (3-115), apply the Sobolev embedding H
N
4 ,!L4.RN / and inter-

polate, obtaining Z ˇ̌
�

1
4

R
u
ˇ̌4
� C



� 1
4

R
u


2

H
N
2
�1



� 1
4

R
u


2

H 1 :

By (5-259), the uniform control of H
N
2
�1, and our choice of t.R/,Z Tmax

t.R/

ˇ̌
�Rv

�
�
u juj2 .t C �/�u juj2 .t/

�ˇ̌
dt � C�0: (5-269)

Through the integration of (5-266) we have proved thatZ
�R

ˇ̌
v� .t/

ˇ̌2
dx < C�0 for all � 2 Œ0; �0� and t 2 Œt.R/;Tmax� �/: (5-270)

This shows that Qu is Cauchy, which proves (5-260).
We turn to (5-261). Denote the thickness of the toroidal support of the singular profile and radiation

by

R.t/DA.t/�.t/: (5-271)

Recall the definition of A.t/ in (3-104). By the log-log rate H1.3, we have A.t/� jlog.Tmax� t/jC ; in
particular, R.t/! 0 with the bound R.t/� .Tmax� t/

1
2
�ı. Now consider

�R.t/;� D �
4
1

�
.r; z/� .r.�/; z.�//

R.t/

�
;

a family of time-variable cutoffs similar to �R.t/. For fixed time t < Tmax we calculate directly that

1

2
@�

�Z
�R.t/;� ju.�/j

2 dx

�
D

1

R.t/
Im
�Z
rx�R.t/;� � rxu.�/u.�/ dx

�
�

1

2R.t/

Z
@� .r.�/; z.�// �rx�R.t/;� ju.�/j

2 dx; (5-272)

where we use rx�R.t/;� to denote

ry�
4
1.y/

ˇ̌̌
yD

.r;z/�.r.�/;z.�//
R.t/

:



724 IAN ZWIERS

Regarding the first term on the right in (5-272),ˇ̌̌̌
1

R.t/
Im
�Z
rx�R.t/;� � rxu.�/u.�/ dx

�ˇ̌̌̌
. 1

R.t/
ku.�/kH 1 .

1

A.t/�.t/�.�/
:

Regarding the last term of (5-272), apply the preliminary estimate (3-133),ˇ̌̌̌
1

2R.t/

Z
@� .r.�/; z.�// � rx�R.t/;� ju.�/j

2 dx

ˇ̌̌̌
. 1

A.t/�.t/�.�/

Z
ju0j

2:

Integrate (5-272) in � , and apply the bounds for A and � to obtainˇ̌̌̌Z
�R.t/;Tmax

ˇ̌
u�
ˇ̌2

dx�

Z
�R.t/;t ju.t/j

2 dx

ˇ̌̌̌
� C

1

A.t/�.t/

Z Tmax

t

1

�.�/
d�

�
C

jlog.Tmax� t/jC

�
log jlog.Tmax� t/j

Tmax� t

� 1
2
Z Tmax

t

�
log jlog.Tmax� �/j

Tmax� �

� 1
2

d�

�
1

jlog.Tmax� t/j
C
2

:

(5-273)

The final inequality relied upon Tmax � t < Tmax < ˛�, Equation (3-143), both to approximate the
integral and then to approximate C log jlog.Tmax� t/j < jlog.Tmax� t/j

C
2 . Taking the limit t ! Tmax

we see that Z ˇ̌
u�
ˇ̌2
D lim

t!Tmax

Z
�R.t/;t ju.t/j

2: (5-274)

From the definition of A.t/ and (3-110) we can bound
R
.1��R.t// j Qu.t/j

2 to prove that

lim
t!Tmax

Z
�R.t/;t ju.t/j

2
D lim

t!Tmax

Z
�R.t/;t j Qu.t/j

2
D lim

t!Tmax

Z
j Qu.t/j2I

this shows that the limit in (5-274) exists and establishes (5-261). This completes the proof of (1-10). �

Remark 5.1 (consistency with u� … H 1). By repeating the proof of I2.3, we expect that following the
proof of (5-260) it could be shown that Qu.t/! u� in H 1

�
j.r; z/� .rmax; zmax/j � R

�
. Nevertheless, an

attempt to prove a version of (5-261) in H 1 will fail. Indeed, the last term in (5-272) would require a
bound for jru.�/j on the support of r�, with nothing to take the role of mass conservation.

Appendix

Proof that P is nonempty. Choose r0 D 1, z0 D 0, b0 > 0 small enough to satisfy (2-29), and �0 in the
range of C1.3. Fix some smooth real-valued radially symmetric function f .y/, with support in jyj � 2

and such that kf kH N .R2/� 1, .f;Q/D 1 and, for any � 2C to be determined, such that �0.y/D �f .y/

satisfies the orthogonality conditions (2-30). One can explicitly calculate such an f from zQb0
. With


0 D 0, we now find � D �.b0/ to satisfy C1.4 and the small-mass requirement of C1.2.
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By the choice of �0, we have j.r; z/� .1; 0/j< 1
3

on the support of zQb0
.y/, which includes the support

of f .y/. After a change of variables, we will expand ��0;1.y/ as .1C�0y1/
N�2 so that

�2
0 jE0j D

ˇ̌̌̌
1

2

Z ˇ̌
ry. zQb0

C �f /
ˇ̌2
��0;1.y/ dy �

1

4

Z ˇ̌
zQb0
C �f

ˇ̌4
��0;1.y/ dy

ˇ̌̌̌
.
ˇ̌̌̌
1

2

Z ˇ̌
ry. zQb0

C �f /
ˇ̌2

dy �
1

4

Z ˇ̌
zQb0
C �f

ˇ̌4
dy

ˇ̌̌̌
CO .�0/ ; (5-275)

which is a small correction from the two-dimensional energy. Directly from (1-6) we get

d

dw

�
1

2

Z ˇ̌
ry .QCwf /

ˇ̌2
dy �

1

4

Z
jQCwf j4 dy

� ˇ̌̌̌
wD0

D�Re.f;Q/D�1; (5-276)

so the left-hand side does not depend on the imaginary component of �. By the degenerate energy of
zQb0

we may choose the real part of � of the order j�j ��1�C�

b0
such that E0D 0. Note the choice �D 0

is impossible as the energy of zQb0
alone is too large to satisfy C1.4.

Next we show the momentum requirement of C1.4 is satisfied. Again from the choice of �0, the
support of zQb0

C�f lies well within j.r; z/� .1; 0/j � 1
2

, a region where rx 
.x/ is constant; see (2-34).

With the radial symmetry of zQb and f we have

�0 Im
�Z
rx 

.x/
� rxu0 Nu0

�
D .1; 1/ � Im

�Z
ry

�
zQb0
C �f

��
zQb0
C �f

�
��0;1.y/ dy

�
D 2 Im

Z
�f zQb0

dyCO .�0/ ; (5-277)

and there is a O .�0/ choice of the imaginary part of � such that (5-277) is zero. Finally, we note that
C1.4 is satisfied,

k Qu0kL2.RN / D j�j

�Z
jf .y/j2 ��0;1.y/ dy

� 1
2

< ˛�: (5-278)

The requirements C2.2 and C2.3 are automatic from the support of f . The constant C in C2.1 is due to
Lemma 2.2 and the choice of �. �

Relationship with the classic virial argument. For data u0 2H 1 with finite variance, due to the classic
virial identity, a sufficient condition for blowup is�

Im
�Z

xru0u0

��2

> 2 kxu0k
2
L2 E.u0/: (5-279)

We remark that there exists u0 2 P for which condition (5-279) fails.
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