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A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR
MAXIMAL SINGULAR INTEGRALS WITH ONE DOUBLING MEASURE

MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Let 0 and w be positive Borel measures on R with o doubling. Suppose first that 1 < p < 2. We
characterize boundedness of certain maximal truncations of the Hilbert transform 7; from L?(o) to
L?(w) in terms of the strengthened A, condition

([ s dow)""([ sotr dow) " <cil

where 5o (x) =|01/(|Q|+ |x — xgl), and two testing conditions. The first applies to a restricted class of
functions and is a strong-type testing condition,

/ Ty(xeo)(x)? dw(x) SCI/ do(x) forall EC Q,
0 o

and the second is a weak-type or dual interval testing condition,

1/
| mtosomdow <G [ 1rmrdew) ([ dow)
Q 0 0

for all intervals Q in R and all functions f € L? (o). In the case p > 2 the same result holds if we include
an additional necessary condition, the Poisson condition

ad ’ ad 274 p ad ’
[ (Y e ) do) <€ YL,
R =1 =0 N

r=1

1/p'

for all pairwise disjoint decompositions Q = [ J°Z, I, of the dyadic interval Q into dyadic intervals /,.
We prove that analogues of these conditions are sufficient for boundedness of certain maximal singular
integrals in R” when o is doubling and 1 < p < oo. Finally, we characterize the weak-type two weight
inequality for certain maximal singular integrals 7, in R" when 1 < p < oo, without the doubling
assumption on o, in terms of analogues of the second testing condition and the A, condition.

1. Introduction

Sawyer [1984; 1982; 1988] characterized two weight inequalities for maximal functions and other pos-
itive operators, in terms of the obviously necessary conditions that the operators be uniformly bounded
on a restricted class of functions, namely indicators of intervals and cubes. Thus, these characterizations
have a form reminiscent of the 71 theorem of David and Journé.

Lacey is supported in part by the NSF, through grant DMS-0456538. Sawyer is supported in part by NSERC. Uriarte-Tuero is
supported in part by the NSF, through grant DMS-0901524.

MSC2000: 42B20.
Keywords: two weight, singular integral, maximal function, maximal truncation.
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Corresponding results for even the Hilbert transform have only recently been obtained [Nazarov et al.
2010; Lacey et al. 2011] and even then only for p = 2; evidently these are much harder to obtain. We
comment in more detail on prior results below, including the innovative work of Nazarov, Treil and
Volberg [1999; 2008; 2010; 2003].

Our focus is on providing characterizations of the boundedness of certain maximal truncations of a
fixed operator of singular integral type. The singular integrals will be of the usual type, for example the
Hilbert transform or paraproducts. Only size and smoothness conditions on the kernel are assumed; see
(1-9). The characterizations are in terms of certain obviously necessary conditions, in which the class
of functions being tested is simplified. For such examples, we prove unconditional characterizations of
both strong-type and weak-type two weight inequalities for certain maximal truncations of the Hilbert
transform, but with the additional assumption that o is doubling for the strong-type inequality. A major
point of our characterizations is that they hold for all 1 < p < co. The methods in [Lacey et al. 2011] and
those of Nazarov, Treil and Volberg apply only to the case p = 2, where the orthogonality of measure-
adapted Haar bases prove critical. The doubling hypothesis on ¢ may not be needed in our theorems,
but is required by the use of Calderén—Zygmund decompositions in our method.

As the precise statements of our general results are somewhat complicated, we illustrate them with an
important case here. Let

T/ (x) = lim Lra—yay
e—0 R\(—¢,¢) y

denote the Hilbert transform, let

niw= s [ Lreenadf

O<e<oo

denote the usual maximal singular integral associated with T, and finally let

rfw= s |[ 0 dra-ya)

0<er,e0<00 | JR\(—¢1,82) Y
1/4<er/e1<4

denote the new strongly (or noncentered) maximal singular integral associated with T that is defined
more precisely below. Suppose o and w are two locally finite positive Borel measures on R that have
no point masses in common. Then we have the following weak and strong-type characterizations, which
we emphasize hold for all 1 < p < o0.

o The operator 7, is weak type (p, p) with respect to (o, w), that is,

IT(fo)llrw = ClfllLre) (1-1)

for all f bounded with compact support if and only if the two weight A, condition

1 1 p—l
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holds for all intervals Q and the dual 7} interval testing condition

/QTb(XQfo)dwsC(/Qlfl”da)l/p</g da))l/p/, (1-2)

holds for all intervals Q and f € L’é(a) (part 4 of Theorem 1.8). The same is true for 7y. It is easy
to see that (1-2) is equivalent to the more familiar dual interval testing condition

[ 1L oo da <c [ do. (1:3)
Y 0

for all intervals Q and linearizations L of the maximal singular integral 7, (see (2-10)).

« Suppose in addition that o is doubling and 1 < p < oco. Then the operator T} is strong-type (p, p)
with respect to (o, w), that is,

ITy(fo)llLrw < CIfllLro)

for all f bounded with compact support if and only if these four conditions hold: (1) the strengthened
A, condition

(f sot0 o) ([ sowr’ aoco) " = crol

0]
[Q|+|x—xp]”

fQTu(XQfG)deC(fQIfI”do)l/p<fQ dw)”p’,

holds for all intervals Q and f € Lg(o); (3) the forward 7} testing condition

where sg(x) = holds for all intervals Q; (2) the dual 7} interval testing condition

fTu(an)pdw§C/ do, (1-4)
0 0

holds for all intervals Q and all compact subsets E of Q; and (4) the Poisson condition

o] o] 2,‘; » o]
f(Zurmer’“ me@)mw) do(y) <C Y L. |1I7,
R =0 "N

r=1

for all pairwise disjoint decompositions Q = [ J7—, I, of the dyadic interval Q into dyadic inter-
vals I, for any fixed dyadic grid. In the case 1 < p <2, only the first three conditions are needed
(Theorem 1.10). Note that in (1-4) we are required to test over all compact subsets £ of Q on the
left side, but retain the upper bound over the (larger) cube Q on the right side.

As these results indicate, the imposition of the weight o on both sides of (1-1) is a standard part of
weighted theory, and is in general necessary for the testing conditions to be sufficient. Compare to the
characterization of the two weight maximal function inequalities in Theorem 1.2 below.
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Problem 1.1. In (1-4), our testing condition is more complicated than one would like, in that one must
test over all compact E C Q in (1-4). There is a corresponding feature of (1-2), seen after one unwinds
the definition of the linearization L*. We do not know if these testing conditions can be further simplified.
The form of these testing conditions is dictated by our use of what we call the “maximum principle”;
see Lemma 2.6.

We now recall the two weight inequalities for the maximal function as they are central to the new
results of this paper. Define the maximal function

Jl/Lv(x):supL/h)l for x € R,
o 101 Jo

where the supremum is taken over all cubes Q (by which we mean cubes with sides parallel to the
coordinate axes) containing x.

Theorem 1.2 (maximal function inequalities). Suppose that o and w are positive locally finite Borel
measures on R", and that 1 < p < oo. The maximal operator M satisfies the two weight norm inequality
[Sawyer 1982]

[M(folLr@ = CllfllLr@) for f€LP(o), (1-5)

if and only if for all cubes Q C R",
| Mtxomr w0 do <1 [ doc) (1-6)
Q Q
The maximal operator M satisfies the weak-type two weight norm inequality [Muckenhoupt 1972]
IMCf o)l Lroo(@) = sup AM(fo) > AYo/P < Cll fllLr) for f€LP(o), (1-7)
A>0

if and only if the two weight A, condition holds for all cubes Q C R":

(Hafgdw)l/p(llafgcza)l/plgcz. (1-8)

The necessary and sufficient condition (1-6) for the strong-type inequality (1-5) states that one need
only test the strong-type inequality for functions of the form xpo. Not only that, but the full L? () norm
of M(x o) need not be evaluated. There is a corresponding weak-type interpretation of the A, condition
(1-8). Finally, the proofs given in [Sawyer 1982] and [Muckenhoupt 1972] for absolutely continuous
weights carry over without difficulty for the locally finite measures considered here.

1.3. Two weight inequalities for singular integrals. Let us set notation for our theorems. Consider a
kernel function K (x, y) defined on R" x R" satisfying the size and smoothness conditions

IK(x,y)| <Clx—y|™",

IA

’

|x—x’|)| 3 lx — x| (1-9)

K (x,y) — K@, y)| < ca( |
lx — vyl

lx—y| =2
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where § is a Dini modulus of continuity, that is, a nondecreasing function on [0, 1] with §(0) = 0 and
fol 8(s)s~ds < oo.
Next we describe the truncations we consider. Let ¢, n be fixed smooth functions on the real line
satisfying
t(@)=0 fort<i and ¢@)=1 fort>1,
nt)=0 fort>2 and n@)=1 fort<I,

¢ is nondecreasing and 7 is nonincreasing.

Given 0 <& < R <00, set £ (t) =¢(t/¢e) and ng(t) =n(t/R) and define the smoothly truncated operator
T: r on L]IOC([R{”) by the absolutely convergent integrals

Tg,Rf(X)=/K(x,y)é“s(lx—yl)nR(Ix—yl)f(y)dy for f € Lip(R").

Define the maximal singular integral operator 7, on LIIOC(R”) by

T,f(x)y=sup |Terf(x)| for x e R".
O<e<R<oo
We also define a corresponding new notion of strongly maximal singular integral operator 7} as follows.
In dimension n = 1, we set

T, f(x)= sup |Terf(x)] for x e R,
O<gi<R<o0
1/4<e1/e2<4

where & = (g1, &) and

T f (x) = / K (o 9)(Eey (8 = )+ Gy — O)nr(lx — YD £ () dy.

Thus the local singularity has been removed by a noncentered smooth cutoff — & to the left of x and
&2 to the right of x, but with controlled eccentricity 1/¢,. There is a similar definition of T} f in higher
dimensions involving in place of {.(|x — y|), a product of smooth cutoffs,

Ce(x =) = 1= [ [ = (Zeyy Otk = Y1) + Lo Ok — X)),

k=1

satisfying 1/4 <epx_1/e2x <4 for 1 <k <n. The advantage of this larger operator 7} is that in many cases
boundedness of T} (or collections thereof) implies boundedness of the maximal operator Jl. Our method
of proving boundedness of 7;, and T} requires boundedness of the maximal operator Jl anyway, and as a
result we can in some cases give necessary and sufficient conditions for strong boundedness of T;. As for
weak-type boundedness, we can in many more cases give necessary and sufficient conditions for weak
boundedness of the usual truncations 7.
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Definition 1.4. We say that T is a standard singular integral operator with kernel K if T is a bounded
linear operator on L?(R") for some fixed 1 < g < oo, that is

ITflLewy < CllfllLawny for f e LYR"), (1-10)
if K(x, y) is defined on R" x R" and satisfies both (1-9) and the Hormander condition,
/ |K(x,y)—K(x,y)|dx <C for y € B(y,¢),&>0, (1-11)
B(y,2¢)°

and finally if 7 and K are related by

Tf(x)= / K(x,y)f(y)dy for a.e.-x ¢ supp f, (1-12)
whenever f € L?(R") has compact support in R”. We call a kernel K (x, y) standard if it satisfies (1-9)
and (1-11).

For standard singular integral operators, we have this classical result. (See the appendix on truncation
of singular integrals on [Stein 1993, page 30] for the case R = o0o; the case R < oo is similar.)

Theorem 1.5. Suppose that T is a standard singular integral operator. Then the map f — T, f is of
weak type (1, 1), and bounded on L?(R) for 1 < p < 0o. There exist sequences €; — 0 and R; — o0
such that for f € LP(R) with 1 < p < oo,

lim ng,R/-f(X) = T0,00 f (%)
j—o00

exists for a.e. x € R. Moreover, there is a bounded measurable function a(x) (depending on the se-
quences) satisfying
Tf(x)=Tooof(x)+alx)f(x) forxeR".

We state a conjecture, so that the overarching goals of this subject are clear.

Conjecture 1.6. Suppose that o and w are positive Borel measures on R", let 1 < p < 00, and suppose
T is a standard singular integral operator on R"*. Then the following two statements are equivalent:

/|T(f0')|pw§C/|f|p0' for feCy,
1 /p /s 1 1/p
(@/de) (@deo) <c,

fITxQol” < C// o, + forall cubes Q.
0 )

[T x00ls <" [ o,
(0] (0]

Remark 1.7. The first of the three testing conditions above is the two-weight A, condition. We expect

that this condition can be strengthened to a “Poisson two-weight A, condition”. See [Nazarov et al.
2010; Volberg 2003].
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The most important instances of this conjecture occur when 7' is one of a few canonical singular
integral operators, such as the Hilbert transform, the Beurling transform, or the Riesz transforms. This
question occurs in different instances, such as the Sarason conjecture concerning the composition of
Hankel operators, or the semicommutator of Toeplitz operators [Cruz-Uribe et al. 2007; Zheng 1996],
mathematical physics [Peherstorfer et al. 2007], as well as perturbation theory of some self-adjoint op-
erators. See references in [Volberg 2003].

To date, this has only been verified for positive operators, such as Poisson integrals and fractional
integral operators [Sawyer 1984; 1982; 1988]. Recently the authors have used the methods of Nazarov,
Treil and Volberg to prove a special case of the conjecture for the Hilbert transform when p =2 and an
energy hypothesis is assumed [Lacey et al. 2011]. Earlier in [2010] Nazarov, Treil and Volberg used a
stronger pivotal condition in place of the energy hypothesis, but neither of these conditions are necessary
[Lacey et al. 2011]. The two weight Helson—Szegd theorem was proved many years earlier by Cotlar
and Sadosky [1979; 1983]; thus the L? case for the Hilbert transform is completely settled.

Nazarov, Treil and Volberg [1999; 2010] have characterized those weights for which the class of Haar
multipliers is bounded when p = 2. They also have a result for an important special class of singular
integral operators, the “well-localized” operators of [2008]. Citing the specific result here would carry
us too far afield, but this class includes the important Haar shift examples, such as the one found by
S. Petermichl [2000], and generalized in [2002]. Consequently, characterizations are given in [Volberg
2003] and [Nazarov et al. 2010] for the Hilbert transform and Riesz transforms in weighted L? spaces
under various additional hypotheses. In particular they obtain an analogue of the case p = 2 of the
strong-type theorem below. Our results can be reformulated in the context there, a theme we do not
pursue further here.

We now characterize the weak-type two weight norm inequality for both maximal singular integrals
and strongly maximal singular integrals.

Theorem 1.8 (maximal singular integral weak-type inequalities). Suppose that o and w are positive
locally finite Borel measures on R", let 1 < p < oo, and let T, and T, be the maximal singular integral
operators as above with kernel K (x, y) satisfying (1-9).

(1) Suppose that the maximal operator M satisfies (1-7). Then T, satisfies the weak-type two weight
norm inequality

ITs(fo)llre@ < CllfllLre) for feLP(o), (1-13)

if and only if

1/p 1/p
| mxosawdom o [ 1reordew) ([ dom)”". (1-14)
Q Q Q

for all cubes Q C R" and all functions f € L? (o).
(2) The same characterization as above holds for T, in place of Ty everywhere.

(3) Suppose that o and w are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-7), and that T is a standard singular integral operator with kernel K as
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above. If (1-13) holds for T; or T, then it also holds for T':
IT(fo)llrow <ClfllLr@w) for f€LP(o), fo € L™ with supp fo compact. (1-15)

(4) Suppose ¢ > 0 and that {K ;} ]J~:1 is a collection of standard kernels such that for each unit vector u
there is j satisfying
IKj(x,x+tu)|>ct™ forteR. (1-16)

Suppose also that o and w have no common point masses, that is, o ({x})-w({x}) =0 for all x € R".
Then

I(T)o(fo)llLrw < ClfliLr@) for f€LP(o), withl <j<J,

if and only if the two weight A, condition (1-8) holds and

/

1/p

1/p
| @rixosawdow e [ 1rerdew) ([ dom)”".
Q Q Q
fell(o), cubes QCR", 1 <j</.

While in (1)-(3), we assume that the maximal function inequality holds, in point (4), we obtain an
unconditional characterization of the weak-type inequality for a large class of families of (centered)
maximal singular integral operators 7;,. This class includes the individual maximal Hilbert transform
in one dimension, the individual maximal Beurling transform in two dimensions, and the families of
maximal Riesz transforms in higher dimensions; see Lemma 2.11.

Note that in (1) above, there is only size and smoothness assumptions placed on the kernel, so that
it could for instance be a degenerate fractional integral operator, and therefore unbounded on L?(dx).
But, the characterization still has content in this case, if @ and o are not of full dimension.

In (3), we deduce a two weight inequality for standard singular integrals 7" without truncations when
the measures are absolutely continuous. The proof of this is easy. From (1-13) and the pointwise in-
equality 7900 fo(x) < T, fo(x) < T,fo(x), we obtain that for any limiting operator Ty ~, the map
f — To.o fo is bounded from L” (o) to L?”*°(w). By (1-7) f — M fo is bounded; hence f — fo
is bounded, and so Theorem 1.5 shows that f — T fo = Ty oo fo +afo is also bounded, provided we
initially restrict attention to functions f for which fo is bounded with compact support.

The characterizing condition (1-14) is a weak-type condition, with the restriction that one only needs
to test the weak-type condition for functions supported on a given cube, and test the weak-type norm
over that given cube. It also has an interpretation as a dual inequality |, ol L¥( Xo®)|P do < C; |, o do,
which we return to below; see (2-10) and (2-11).

We now consider the two weight norm inequality for a strongly maximal singular integral 7}, but
assuming that the measure o is doubling.

Theorem 1.9 (maximal singular integral strong-type inequalities). Suppose that o and w are positive
locally finite Borel measures on R" with o doubling, let 1 < p < oo, and let T, and T, be the maximal

singular integral operators as above with kernel K (x, y) satisfying (1-9).
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(1) Suppose that the maximal operator M satisfies (1-5) and also the “dual” inequality
IS 10y < Clgl ) for g € L7 (@). (1-17)

Then T, satisfies the two weight norm inequality

/ Tq(fG)(X)”dw(X)SC/ |f(OIP do (x), (1-18)
Rn Ril

for all f € LP(o) that are bounded with compact support in R", if and only if both the dual cube
testing condition (1-14) and the condition

/Tu(XQgG)(x)”dw(x)iﬁf do (x), (1-19)
0 0

holds for all cubes Q C R" and all functions |g| < 1.

(2) The same characterization as above holds for T, in place of T, everywhere. In fact
T, fo(x) =T, fo(x)| = CM(fo)(x).

(3) Suppose that o and w are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-5), and that T is a standard singular integral operator. If (1-18) holds for T
or Ty, then it also holds for T':

IT(fo)x)|Pdo(x)<C | |f(x)IPdo(x) for feLf(o), fo € L™, with supp(fo) compact.
Rn Rn

(4) Suppose that {K j}'}zl is a collection of standard kernels satisfying for some ¢ > 0,

+ReK;(x,y) >

> for £(yj—xj) = 3lx—yl, (1-20)
lx —y|" Lo
where x = (xj)1<j<n. If both w and o are doubling, then (1-18) holds for (T;), and (Tj*)ufor all
1 < j <nifand only if both (1-19) and (1-14) hold for (T;); and (Tj*)ufor alll < j<n.

Note that the second condition (1-19) is a stronger condition than we would like: it is the L? inequality,
applied to functions bounded by 1 and supported on a cube Q, but with the L” (o) norm of 1y on the
right side. It is easy to see that the bounded function g in (1-19) can be replaced by x g for every compact
subset E of Q. Indeed if L ranges over all linearizations of 7}, then with

8h,0.L = L*(xohw)/IL*(xghw)|
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we have
sup/ Ty(x0g0)’w = sup sup  sup /L(Xan)ha)‘
gl<1Jo lgl=1 L WAl <1V
=sup sup sup/L*(tha))go’
Lkl <tlgl=1!Y o

=sup sup /L*(XQhw)gh,Q,LU
<1JQ

R TT

= sup sup/ L(xogn.0.L)hwo
0

1Al oy 1L

< sup SHP/ T.(x08&h,0,.0) w.
(7]l <1 L JQO

LV (@)=
Since gj, o,1 takes on only the values £1, it is easy to see that we can take g = xg. Point (3) is again
easy, just as in the previous weak-type theorem.

And in (4), we note that the truncations, in the way that we formulate them, dominate the maximal
function, so that our assumption on Jl in (1)—(3) is not unreasonable. The main result of [Nazarov et al.
2010] assumes p = 2 and that T is the Hilbert transform, and makes similar kinds of assumptions. In
fact it is essentially the same as our result in the case p = 2, but without doubling on o and only for T
and not 7;, or T;. Finally, we observe that by our definition of the truncation 7;, we obtain in point (4) a
characterization for doubling measures of the strong-type inequality for appropriate families of standard
singular integrals and their adjoints, including the Hilbert and Riesz transforms; see Lemma 2.12.

We don’t know if the bounded function g in condition (1-19) can be replaced by the constant function 1.

We now give a characterization of the strong-type weighted norm inequality for the individual strongly
maximal Hilbert transform 7, when 1 < p < 0o and the measure o is doubling. If p > 2 we use an extra
necessary condition (see (1-24)) that involves a “dyadic” Poisson function Z;‘;OQ_E /119)) x10 (),
where I is a dyadic interval and 1© denotes its ¢-th ancestor in the dyadic grid, that is, the unique
dyadic interval containing I with |/ (©) = 2¢|7|. This condition is a variant of the pivotal condition of
Nazarov, Treil and Volberg in [2010]; when 1 < p < 2 it is a consequence of the A, condition (1-8).

Theorem 1.10. Suppose that o and w are positive locally finite Borel measures on R with o doubling,
let1 < p < 00, and let Ty be the strongly maximal Hilbert transform. Then T, is strong type (p, p) with
respect to (o, w), that is,

ITy(fo)llLrw) < CllfllLro)s

for all f bounded with compact support if and only if the following four conditions hold. In the case
1 < p <2, the fourth condition (1-24) is implied by the A, condition (1-8), and so in this case we only
need the first three conditions below:
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(1) The dual T, interval testing condition

/QTD(XQfa)dwfC(L|f|Pd0)l/p(/Q dw)w (1-21)

holds for all intervals Q and f € Lg(a).
(2) The forward T; testing condition

/ Ty(xpo)’ do < C/ do (1-22)
0 0

holds for all intervals Q and all compact subsets E of Q.

(3) The strengthened A, condition

(/ (ﬁ)” dow) ([ (Wﬁ'_w')" dow)" =clol  (23)

holds for all intervals Q.

(4) The Poisson condition

oo (o¢] 2,@ p o
/R(Zumm" Yy @ X )" do() = C Y117 (1-24)
r=1 =0 "7 r=1

holds for all pairwise disjoint decompositions Q = o, I, of the dyadic interval Q into dyadic
intervals I, for any fixed dyadic grid.

Remark 1.11. The strengthened A, condition (1-23) can be replaced with the weaker “half” condition
where the first factor on the left is replaced by (|, 0 dw)'/P. We do not know if the first three conditions
suffice when p > 2.

2. Overview of the proofs and general principles

If O is acube, then £(Q) is its side length, | Q| is its Lebesgue measure and for a positive Borel measure v,
|0, = fQ dv is its v-measure.

2.1. Calderon-Zygmund decompositions. Our starting place is the argument in [Sawyer 1988] used to
prove a two weight norm inequality for fractional integral operators on Euclidean space. Of course the
fractional integral is a positive operator with a monotone kernel, properties we do not have in the current
setting.

A central tool arises from the observation that for any positive Borel measure u, one has the bound-
edness of a maximal function associated with . Define the dyadic p-maximal operator JI/LZ“V by

M F ) = ! / , 2-1
S ) Zg o0 Qlflu 2-1
xeQ
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with the supremum taken over all dyadic cubes Q € 9 containing x. It is immediate to check that Jl/tﬁy
satisfies the weak-type (1, 1) inequality, and the L°°(u) bound is obvious. Hence we have

/(M;?‘f)l’u <C f fPu for f>0onR" (2-2)

This observation places certain Calderén—Zygmund decompositions at our disposal. Exploitation of this
brings in the testing condition (1-19) involving the bounded function g on a cube Q, and indeed, g turns
out to be the “good” function in a Calderén—Zygmund decomposition of f on Q. The associated “bad”
function requires the dual testing condition (1-14) as well.

2.2. Edge effects of dyadic grids. Our operators are not dyadic operators, nor—in contrast to the frac-
tional integral operators — can they be easily obtained from dyadic operators. This leads to the necessity
of considering for instance triples of dyadic cubes, which are not dyadic.

Also, dyadic grids distinguish points by for instance making some points on the boundary of many
cubes. As our measures are arbitrary, they could conspire to assign extra mass to some of these points.
To address this point, Nazarov, Treil and Volberg [2010; 2003; 1997] use a random shift of the grid.

A random approach would likely work for us as well, though the argument would be different from
those in the cited papers above. Instead, we will use a nonrandom technique of shifted dyadic grid from
[Muscalu et al. 2002], which goes back to P. Jones and J. Garnett. Define a shifted dyadic grid to be the
collection of cubes

3% = {27 (k+[0, )"+ (-D/a): j€Z k€ Z"}, where € {0, 1, 3}". (2-3)

The basic properties of these collections are these: In the first place, each 9% is a grid, that is, for
0, Q' €%9* wehave QN Q' € {2, Q, O’} and Q is a union of 2" elements of %% of equal volume. In
the second place (and this is the novel property for us), for any cube Q C R” there is a choice of some
a and some Q' € 9, such that Q € (9/10)Q’ and |Q'| < C|Q|.

We define the analogues of the dyadic maximal operator in (2-1), namely

1
M = ) 2.4
wJ (X) ngglb)a IQIM/QIfIM (2-4)
xeQ

These operators clearly satisfy (2-2). Shifted dyadic grids will return in Section 4.5.

2.3. A maximum principle. A second central tool is a “maximum principle” (or good A inequality) that
will permit one to localize large values of a singular integral, provided the maximal function is bounded.
It is convenient for us to describe this in conjunction with another fundamental tool of this paper, a family
of Whitney decompositions.

We begin with the Whitney decompositions. Fix a finite measure v with compact support on R” and
fork € Z, let

Q= {x e R": Tou(x) > 2F). (2-5)
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Note that €; # R" has compact closure for such v. Fix an integer N > 3. We can choose Ry > 3
sufficiently large, depending only on the dimension and N, such that there is a collection of cubes {Q'; }i
that satisfy the following properties:

(disjoint cover) € =J; Q’; and Q’; Nok=oifi #j,
(Whitney condition) Ry Q’; C Q4 and 3Ry Q’; NQ¢ # @ forallk, j,
(bounded overlap) > jANGE < Cyxg, forallk, (2-6)
(crowd control)  #{Q*%: 0Fn NQ’;. # @} < C forall k, j,
(nested property) Q’; & Qf implies k > £.

Indeed, one should choose the {Q’;} ; satisfying the Whitney condition, and then show that the other
properties hold. The different combinatorial properties above are fundamental to the proof. And alternate
Whitney decompositions are constructed in Section 4.9.1 below.

Remark 2.4. Our use of the Whitney decomposition and the maximum principle are derived from the
two weight fractional integral argument of Sawyer; see [1988, Section 2]. In particular, the properties
above are as Sawyer’s, aside from the crowd control property above, which is N = 3 there.

Remark 2.5. In our notation for the Whitney cubes, the superscript indicates a “height” and the sub-
script an arbitrary enumeration of the cubes. We will use super- and subscripts below in this manner
consistently throughout the paper. It is important to note that a fixed cube Q can arise in many Whitney
decompositions: There are integers K_(Q) < K (Q) with Q = Q’;(k) for some choice of j (k) for all
K_(Q) <k < Ki(Q). (The last point follows from the nested property.) There is no a priori upper
bound on K (Q) — K_(Q).

Lemma 2.6 (maximum principle). Let v be a finite (signed) measure with compact support. For any
cube Ql; as above, we have the pointwise inequality

sup T (X304 ) (@) < 2+ CP(Qf.v) <2+ CM(Q]. v), 2-7)

erl;

where P(Q, v) and M(Q, v) are defined by

1 — 8279

P(Q,v)E—/ dlv] + v, (28)
|Q| 0 ; |2£+1Q| 2K+1Q\2£Q

M(Q,v)= sup L, d|v].
0-0 191 Jo

The bound in terms of P (Q, v) should be regarded as one in terms of a modified Poisson integral. It
is both slightly sharper than that of M (Q, v), and a linear expression in |v|, a fact will be used in the
proof of the strong-type estimates.
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Proof. To see this, take x € Q’; and note that for each 7 > 0 there is & with E(Q’;) <maxj<j<, & <R <00
and 6 € [0, 27r) such that

T (X3t () = (1+ n)‘fGQk)c K(x, y)Ee(x — y)nr(x — y)dv(y)

= (L+me" Te R (X304 V) ().

For convenience we take n = 0 in the sequel. By the Whitney condition in (2-6), there is a point
z€ 3Ry Q’J‘. N €2; and it now follows that (remember that K(Q’J‘.) < maxXi<j<n €;)

Te.rR(X304)e V) (X) — T, V(2
< C;k
|6Rw Q1 Jory 0
1

—C—— |
|6Rw Q1 Jory 0

dlv|+ |T5,R(X(6RWQ1;)UV)(X) - Té‘,R(X(ﬁRWQ’;)CV)(ZN

+/(; o |K(x, y)¢e(x —y)nr(x —y) — K(z, y)¢e(z — Y)nR(Zz — Y)|d|V]|(Yy)
Rw ];C

1 |x —z| 1
=¢ |6RWQlj-| 6Rw Q" dpl+c /(6RWQ’;)C lx — Y|)md|vl(y)
< CP(Q},v).
Thus
T (X304 V) (®) = | Tv(2)| + CP(QF, v) =28+ CP(0}, v),
which yields (2-7) since P(Q,v) < CM(Q, v). O

2.7. Linearizations. We now make comments on the linearizations of our maximal singular integral
operators. We would like, at different points, to treat 7; as a linear operator, which of course it is
not. Nevertheless 7} is a pointwise supremum of the linear truncation operators T g, and as such, the
supremum can be linearized with measurable selection of the parameters € and R, as was just done in
the previous proof. We make this a definition.

Definition 2.8. We say that L is a linearization of 7} if there are measurable functions &(x) € (0, c0)"
and R(x) € (0, 00) with 1/4 <¢;/e; <4, max|<j<, & < R(x) < oo and 0(x) € [0, 2) such that

Lf(x) =Ty rey f(x)  for x € R", (2-9)

For fixed f and 6 > 0, we can always choose a linearization L so that T; f(x) < (1 +8)Lf (x) for
all x. In a typical application of this lemma, one takes § to be one.

Note that condition (1-19) is obtained from inequality (1-18) by testing over f of the form f = xpg
with |g| < 1, and then restricting integration on the left to Q. By passing to linearizations L, we can
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“dualize” (1-14) to the testing conditions
/ IL*(xo@)(0)|” do (x) < C / do(x), (2-10)
0 0
or equivalently (note that in (1-19) the presence of g makes a difference, but not here),
[ 1L oo dor < [ dow) tor lgl <1, @-11)
0 0

with the requirement that these inequalities hold uniformly in all linearizations L of 7.

While the smooth truncation operators T, r are essentially self-adjoint, the dual of a linearization L
is generally complicated. Nevertheless, the dual L* does satisfy one important property, which plays a
crucial role in the proof of Theorem 1.9, the L”-norm inequalities.

Lemma 2.9. L*u is §-Holder continuous (where § is the Dini modulus of continuity of the kernel K)

with constant C P(Q, ) on any cube Q satisfying f3Q d|pu| =0, that is,

ly =l
Q)

Here, recall the definition (2-8) and that P(Q, u) < CM(Q, ).

L) = L)) = CPQ ws(22) for v,y € 0. 2-12)

Proof. Suppose L is as in (2-9). Then for any finite measure v,

Lv(x) =" / Lo (¥ = )R (X = MK (x, y)dv ().
Fubini’s theorem shows that the dual operator L* is given on a finite measure y by

L*u(y) = / Le(r) (X = V)R (x = MK (x, y)e "D p(x). (2-13)
For y, y' € Q and |u|(3Q) = 0, we thus have
L*u(y) =L u(y) = / {Cewnre) (6 = ¥) = (e Mre) (6 — YK (x, y)e' X dpu(x)

+ / (Ceery MR (X — ) (K (x,y) — K (x, y))e ' @dp(x),

from which (2-12) follows easily if we split the two integrals in x over dyadic annuli centered at the
center of Q. Il

2.10. Control of maximal functions. Next we record the facts that 7 and T, control J/ for many (sets
of) standard singular integrals 7', including the Hilbert transform, the Beurling transform and the sets of
Riesz transforms in higher dimensions.

Lemma 2.11. Suppose that o and w have no point masses in common, and that {K ;} jopisa collection
of standard kernels satisfying (1-9) and (1-16). If the corresponding operators T; given by (1-12) satisfy

IxeT;(fo)llLrew) < Cl fliLr@)y where E =R"\supp f,
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for 1 < j < J, then the two weight A, condition (1-8) holds, and hence also the weak-type two weight
inequality (1-7).

Proof. Part of the “one weight” argument of [Stein and Shakarchi 2005, page 21] yields the asymmetric
two weight A, condition

10110157 < ClQI7, (2-14)

where Q and Q' are cubes of equal side length r and distance approximately Cor apart for some fixed
large positive constant Cy (for this argument we choose the unit vector # in (1-16) to point in the direction
from the center of Q to the center of Q’, and then with j as in (1-16), Cy is chosen large enough by (1-9)
that (1-16) holds for all unit vectors # pointing from a point in Q to a point in Q”). In the one weight
case treated in [Stein and Shakarchi 2005], it is easy to obtain from this (even for a single direction u)
the usual (symmetric) A, condition (1-8). Here we will instead use our assumption that o and w have
no point masses in common for this purpose.
So fix an open dyadic cube Qg in R”, say with side length 1, let Qy = Qo X Qo and set

Q={Q= Q0 x Q dyadic : Q C Qo and (2-14) holds for Q and Q'}.
Note that with Q = Q x Q’, inequality (2-14) can be written
sp(w,0:Q) < CIQIP2, (2-15)

where

sdp(@,0;Q) =10.10"177".

Here ) (w, 0; Q) =|Qlwxs, Where w x o denotes product measure on R” x R". For 1 < p < oo we easily
see that if Qo = |, Qq is a pairwise disjoint union of cubes Q, then the Lebesgue measures satisfy

Y 1Qul?* = C1Qo x QolP* = C|Qol”.
o

Suppose first that 1 < p < 2. Divide Qg into 2" x 2" = 4" congruent subcubes Q(l), R Qg" of side
length %, and set aside those Qé € Q (those for which (2-14) holds) into a collection of stopping cubes T".
Continue to divide the remaining Qé into 4" congruent subcubes Qj ‘1, R Qé’M of side length l, and
again, set aside those Qé’i € Q into I', and continue subdividing those that remain. We continue with
such subdivisions for N generations so that all the cubes not set aside into I" have side length 2=V . The
important property these cubes have is that they all lie within distance 72~V of the diagonal % = {(x, x) :
(x,x) € Qo} in Qo = Qo x Qp since (2-14) holds for all pairs of cubes Q and Q' of equal side length r
having distance approximately Cor apart. Enumerate the cubes in I" as {Q}, and those remaining that
are not in I' as {Pg}g. Thus we have the pairwise disjoint decomposition

o= (Ua)v(Ua).
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In the case p = 2, the countable additivity of the product measure w x o shows that

shy(@,0: Qo) =Y _ o, 03 Q) + Y _ da(w, 5 Pp).
o B

For the more general case 1 < p < 2, note that at each division described above, we have using 0 <
p—1<1

on 4"

2" _ 2" ) 2" ) )
p.0:00 = (310 (X1Qdl ) = (1@ ) (ZIQhlr ) = X sty .02 @),
i=1 i=1 i=1 i=1 j=1
4’1
sp(@,0:Q)) <Y sy, 0:Q)") for Q)¢ T,
i=1

and so on. It follows that

sdp(@, 03 Q) <Y dp(@,05 Q)+ Y sy, 0; Pp)
o B

<CY QoI+ sy, 05 Pp) < ClQoI" + Y sly(w, 03 Pp).
o B B

Since w and o have no point masses in common, it is not hard to show, using that the side length of
Pp = Pg x Py is 27N and dist(Pg, @) < C27", that we have the limit

Z&Qp(a),a; Pg) — 0 as N — oo.
B

Indeed, if o has no point masses at all, then
> sy, 0:Pg) =Y |Pglul P42
B B

= (X1Pslo) supl P41~ < C1Qolo supl PhIZ™" =0 as N = oo.
B B
B

If o contains a point mass c§,, then

> sty 0 Pp) = (2 1Pgle) sup 1P4ET < C(( Y IPgla) >0 as N oo
p:xeP; pxePy BixePg p:xeP;

since w has no point mass at x. The argument in the general case is technical, but involves no new ideas,
and we leave it to the reader. We thus conclude that

Ap(w, 05 Qo) < C|Qol”,
which is (1-8). The case 2 < p < oo is proved in the same way using that (2-14) can be written

Ay (0, w; Qo) < C'1Qq "2 O
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Lemma 2.12. If {Tj}?:1 satisfies (1-20), then

n
Mv(x) <C Z(Tj)uv(x) for x € R", with v > 0 a finite measure with compact support.
j=1

Proof. We prove the case n = 1, the general case being similar. Then with 7 = T and r > 0 we have
Re(T5,/4,1000 vV (X) — Ty 4,100, V(X)) = /(§r/4(y —x) — &4 (y —x))Re K (x, y)dv(y)

=< [ dv(y).
r [x4r/2,x42r]

Thus

c
Tov(x) = max{|T 4,100V (X) |, | Ty 4r,100-v(X) |} > —/ dv(y),
T Jix+r/2,x+2r]

and similarly
Too(x) = / dv(y).
r [x—2r,x—r/2]
It follows that

Mv(x) < sup i dv(y)
r>0 4T [x—2r,x+2r]

/ dv(y) < CTyv(x). O
[x—21=kp x—2-1=kp]Uu[x4+2-1—kp x+21kr]

Finally, we will use the following covering lemma of Besicovitch type for multiples of dyadic cubes
(the case of triples of dyadic cubes arises in (4-50) below).

Lemma 2.13. Let M be an odd positive integer, and suppose that ® is a collection of cubes P with
bounded diameters and having the form P = M Q, where Q is dyadic (a product of clopen dyadic
intervals). If ®* is the collection of maximal cubes in ©, that is, P* € ®* provided there is no strictly
larger P in ® that contains P*, then the cubes in ®* have finite overlap at most M".

Proof. Let Qg = [0, 1)" and assign labels 1, 2, 3, ..., M" to the dyadic subcubes of side length one of
M Qp. We say that the subcube labeled & is of type k, and we extend this definition by translation and
dilation to the subcubes of M Q having side length that of Q. Now we simply observe that if {P*}; is a
set of cubes in ®* containing the point x, then for a given &, there is at most one P that contains x in
its subcube of type k. The reason is that if ijk is another such cube and E(PJ’.") < £(P7), we must have
P J’-k C P} (draw a picture in the plane for example). 0

2.14. Preliminary precaution. Given a positive locally finite Borel measure © on R”, there exists a
rotation such that all boundaries of rotated dyadic cubes have p-measure zero (see [Mateu et al. 2000]
where they actually prove a stronger assertion when p has no point masses, but our conclusion is obvious
for a sum of point mass measures). We will assume that such a rotation has been made so that all
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boundaries of rotated dyadic cubes have (w + o)-measure zero, where w and o are the positive Borel
measures appearing in the theorems above (of course o doubling implies that o cannot contain any
point masses, but this argument works as well for general o as in the weak type theorem). While this
assumption is not essential for the proof, it relieves the reader of having to consider the possibility that
boundaries of dyadic cubes have positive measure at each step of the argument below.

Recall also (see for example [Rudin 1987, Theorem 2.18]) that any positive locally finite Borel measure
on R" is both inner and outer regular.

3. The proof of Theorem 1.8: Weak-type inequalities

We begin with the necessity of condition (1-14):

/Q T, (o fo)w = / min{[Qlo. T: (tofo) > Ao} da

0
A 00
< + i w,C)»_p/ Pdotd
<([ + [ )minfic 17 do )
sAIQIw+CA1"’/|f|”dG _ <c+1>|Q|i,/f”(/|f|f’do)””,

if we choose A = ([|f17do/|Qlu)"/P.
Now we turn to proving (1-13), assuming both (1-14) and (1-7), and moreover that f is bounded with
compact support. We will prove the quantitative estimate

IT; follLrew < C{EA+ZH fliLr©), (3-1)
A=sup sup supA|{M(fo)>r}|/7, (3-2)
Q0 1flpior=1 150
o= s |0l [ Lo fo)w do. (3:3)
IfllLpo)y=1 Q 0

We should emphasize that the term (3-2) is comparable to the two weight A, condition (1-8).
Standard considerations [Sawyer 1984, Section 2] show that it suffices to prove the following good-A
inequality: There is a positive constant C such that for 8 > 0 sufficiently small, and provided

sup APl{x e R": T fo(x) > A}y <00 for A < oo, (3-4)
O<i<A

we have this inequality:
{x e R": T, fo(x) >2x and Mfo(x) < BA}|w

<CBEL|{x eR": Ty fo(x) > A}, +CB AP /|f|pdc7. (3-5)
Our presumption (3-4) holds due to the A, condition (1-8) and the fact that

{xeR": Ty fo(x) > 1} C B(O, c2~Y™y for A > 0 small,
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Hence it is enough to prove (3-5).

To prove (3-5) we choose A = 2 and apply the decomposition in (2-6). In this argument, we can take
k to be fixed, so that we can suppress its appearance as a superscript in this section. (When we come to
L? estimates, we will not have this luxury.)

Define

E;j={xeQ;:Tyfo(x)>2\and Mfo(x) < BA}.
Then for x € E;, we can apply Lemma 2.6 to deduce
Ty(Xx@oy) fo)(x) < (1+CB)A. (3-6)
If we take B > 0 so small that 1 + CS < %, then (3-6) implies that for x € E;

20 < T fo(x) < Toxso, fo () + Texao)e fo () < Toxagr fo () + 7

Integrating this inequality with respect to w over E; we obtain

ME;], <2 / (Tyxso, fo)o. (3-7)

j
The disjoint cover condition in (2-6) shows that the sets E; are disjoint, and this suggests we should

sum their w-measures. We split this sum into two parts, according to the size of |E;|,/|3Q jl.. The left
side of (3-5) satisfies

Z'E =B Y BB Y |E,~|w(%ﬁ/E(TmQ,.fo>w)p.

J1Ejlo=<BI3Qjlo J1Ejlo>B13Q 1w

Call the added pieces of this I and II. Now

1<) 1305, < CBIQ,
J
by the finite overlap condition in (2-6). From (1-14) with Q =3Q; we have
I < (ﬁ%)p ;mm(ﬁ /%(Tumgjfa)a))p
5C(ﬂ%)pQZIE;ImeQzlﬁ_l/3Q‘|f|”do
()’ /(Zngk)lfl do<c(5)'st 1510 do,

by the finite overlap condition in (2-6) again. This completes the proof of the good-A inequality (3-5).
The proof of assertion 2 regarding 7}, is similar. Assertion 3 was discussed earlier and assertion 4
follows readily from assertion 2 and Lemma 2.11. O
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4. The proof of Theorem 1.9: Strong-type inequalities

Since conditions (1-19) and (1-14) are obviously necessary for (1-18), we turn to proving the weighted
inequality (1-18) for the strongly maximal singular integral 7}.

4.1. The quantitative estimate. In particular, we will prove

IT: follLr@) < C (O +y?* M+ ¥ T+ T fllLro), (4-1)

M= sup [ M(f0)Lr(w) 4-2)
1fllzp =1

M.= sup [ M(gw) ”Lp’(g), 4-3)
I8l pr =1

T=sup sup |01;"PllxoT:(xofo)lLrw): (4-4)
O |fllpe=<1

T.= sup sup|Qf,!” / Ty(xo fo)(x) do(x), (4-5)
I fllepy=1 @ 0

where y > 2 is a doubling constant for the measure o; see (4-19) below. Note that y appears only in
conjunction with ¥ and 9,.. The norm estimates on the maximal function (4-2) and (4-3) are equivalent
to the testing conditions in (1-6) and its dual formulation. The term ‘T, also appeared in (3-3).

4.2. The initial construction. We suppose that both (1-19) and (1-14) hold, that is, (4-4) and (4-5) are
finite, and that f is bounded with compact support on R". Moreover, in the case (1-20) holds, we see
that (1-19) (the finiteness of (4-4)) implies (1-6) by Lemma 2.12, and so by Theorem 1.2 we may also
assume that the maximal operator Jl satisfies the two weight norm inequality (1-5). It now follows that
J(Tyfo)’w < oo for f bounded with compact support. Indeed, T; fo < CAlfo far away from the
support of f, while T} fo is controlled by the finiteness of the testing condition (4-4) near the support
of f.

Let {Q’J‘.} be the cubes as in (2-5) and (2-6), with the measure v that appears in there being v = fo.
We will use Lemma 2.6 with this choice of v as well. Now define an “exceptional set” associated to Q’;
to be

Ef = 05N (Quy1 \ Qusa).

See Figure 4.1. One might anticipate the definition of the exceptional set to be more simply Q’J‘. N Qpt1-
We are guided to this choice by the work on fractional integrals [Sawyer 1988]. And indeed, the choice
of exceptional set above enters in a decisive way in the analysis of the bad function at the end of the
proof.

We estimate the left side of (1-18) in terms of this family of dyadic cubes {Q';.}k, j by

f (Tfo)Po(dx) <Y 2P |41\ Quesalo (4-6)

keZ
<Y @*HP|EL,.
k,j
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2

Figure 4.1. The set E4(Q).

Choose a linearization L of T} as in (2-9) so that (recall R(x) is the upper limit of truncation)
R(x) < 3£(Q%) for x € E}, 4-7)

1 k
and Ty(xzor fo)(x) <2L(x k_fa)(x)—i-C—/ |flo for x € E”.
A3 2 3051 Jo !

Forx e £ f , the maximum principle (2-7) yields
Toxagr fo () 2 T fo (1) = Tyxgghye fo (x) > 2t _2k—cP(Q, fo)=2"-CP(Q. fo).
From (4-7) we conclude that
Lyag:fo(x) =221 = CP(Q}. fo).

Thus either 2¢ < 4infgx L3¢ fo or 28 <4CP(Q%, fo) <4CM(Q%, fo). So we obtain either
J J

|Eflo < C27* / (Lxsgt fo)w(dx), (4-8)
E%
J

or

Bl = C2PIERLLMQS, forr <2 [ (itfo)rdx) (4-9)
Eé

Now consider the following decomposition of the set of indices (k, j):
E={(k.j):1E5], < BIN Qo).
F = {(k, j) : (4-9) holds},
G = {(k. j) : |Eflo > BIN Q%] and (4-8) holds}, (4-10)
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where 0 < 8 < 1 will be chosen sufficiently small at the end of the argument. (It will be of the order of
c? for a small constant c.) By the “bounded overlap” condition of (2-6), we have

Y Kngr <C for keZ. (4-11)
J
j

We then have the corresponding decomposition:

/ (Tforos( Y + X + > )@HIEL, (4-12)

(k,j)eE  (k,j)eF  (k,j)eG

=B Y Ao+ Y [ drore

(k.)<k (k. j)eF
1 p
+C Z |Ek|w —/ (LX3Q’<_fU)a)
(k,j)eG ! (ﬂlNQlﬂw E% J )
=J(H+JQ)+JQ3)
5Co(ﬂf(T“f“)’”erﬂ_pflﬂpo)’ (4-13)

where Co < C(ON + yz,‘)ﬁ* + yZT + %,)P. The last line is the claim that we take up in the remainder of
the proof. Once it is proved, note that if we take 0 < Cof < % and use the fact that [ (T, fo)Pw < oo for
f bounded with compact support, we have proved assertion (1) of Theorem 1.9, and in particular (4-1).

The proof of the strong-type inequality requires a complicated series of decompositions of the domi-
nating sums, which are illustrated for the reader’s convenience as a schematic tree in Figure 4.2.

4.3. Two easy estimates. Note that the first term J (1) in (4-12) satisfies

= 3 @INGL =6 [ (Trore,

(k,j)ek

by the finite overlap condition (4-11). The second term J(2) is dominated by

¢ Y [ tsore s cmififg,
k, j)eF Y Ej

by our assumption (1-5). It is useful to note that this is the only time in the proof that we use the maximal
function inequality (1-5) — from now on we use the dual maximal function inequality (1-17).

Remark 4.4. In the arguments below we can use [Sawyer 1988, Theorem 2] to replace the dual maximal
function assumption 9, < oo with two assumptions, namely a “Poisson two weight A, condition”
and the analogue of the dual pivotal condition of Nazarov, Treil and Volberg [2010]. The Poisson two
weight A, condition is in fact necessary for the two weight inequality, but the pivotal conditions are
not necessary for the Hilbert transform two weight inequality [Lacey et al. 2011]. On the other hand,
the assumption 901 < oo cannot be weakened here, reflecting that our method requires the maximum
principle in Lemma 2.6.
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5o,
m 2
@ J(2) J(1)
e
¥
I <>
%\ y29Mm
\ y sk
2
< >
T* b?—)\
X

)| [we)

v2%, og,? KV\) yIom,
X <

N\

Figure 4.2. This is a schematic tree of how the integral [ (7} fo)”w has been, and will
continue to be, decomposed. We have suppressed superscripts, subscripts and sums in
the tree. Terms in diamonds are further decomposed, while terms in rectangles are final
estimates. The edges leading into rectangles are labeled by 9, 901,, J or J, whose
finiteness is used to control that term. Those terms controlled by the doubling constant
y are also indicated. Equation references are to where the final estimates on the term
is obtained. The word “absorb” leading into J(1) indicates that this term is a small
multiple of [(7; fo)?w and can be absorbed into the left-hand side of the inequality. As
most of the terms involve the maximal theorem (Equation (2-2)), we do not indicate its
use in the schematic tree.
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It is the third term J (3) that is the most involved; see Figure 4.2. The remainder of the proof is taken
up with the proof of

p
> B[ g sora] < Co M 4y T TS W (4-14)
(k, ))eG E; '
where
|EX].,
Rk=—/— (4-15)
T INQNIG

Once this is done, the proof of (4-12) is complete, and the proof of assertion (1) is finished.

4.5. The Calderon-Zygmund decompositions. To carry out this proof, we make Calder6n—Zygmund
decompositions relative to the measure o. These decompositions will be done at all heights simultane-
ously. We will use the shifted dyadic grids; see (2-3). Suppose that y > 2 is a doubling constant for the
measure o':

30|, <y|Q|, for all cubes Q. (4-16)
Fora € {0’ %v %}n’ let

MEf) = sup ﬁmeda,

xeQeyv
MY ={xeR: M2 f(x) >y} = ]G, (4-17)
N
where {G¢'}(; s)e1« are the maximal @ cubes in I'Y", and L* is the set of pairs we use to label the cubes.
This implies that we have the nested property: If G/ ;Cé G?‘;t then ¢ > /. Moreover, if t > ¢’ there
is some s’ with G%' C GS,” . These are the cubes used to make a Calder6n—Zygmund decomposition
at height y’ for the grid 2% with respect to the measure o. We will refer to the cubes {G%"}(; s)e1e as
principal cubes.
Of course we have from the maximal inequality in (2-2)

> PG o < Cl Yo (4-18)
(t,s)el”

The point of these next several definitions is to associate to each dyadic cube Q, a good shifted dyadic
grid, and an appropriate height, at which we will build our Calder6n—Zygmund decomposition.
We now use a consequence of the doubling condition (4-16) for the measure o, that

[P(G)ls <y|Gl, for Gea”. (4-19)

The average |G| ! fG?,, | f|do is thus at most y'*! by (4-19) and the maximality of the cubes in (4-17):

1 P(G*!
yt < T/ |f|do_ S | ( a_’yt )|O‘ o /
1G5 o Go'! |G o |[P(Gs )6 P(G¥!

|fldo <yy' =y (4-20)
)
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Select a shifted grid: Let o : % — {0, % %}" be a map such that for Q € 9, there is a Q € 99D guch
that 3Q C Q and |Q| < C|Q|. Here, C is an appropriate constant depending only on dimension.
Thus, a(Q) picks a “good” shifted dyadic grid for Q. Moreover we will assume that 0 is the
smallest such cube. Note that we are discarding the extra requirement that 3Q C %Q since this

property will not be used. Also we have
0cCMQ, 4-21)
for some positive dimensional constant M. The cubes Q’j‘ will play a critical role below. See
Figure 4.3
Select a principal cube: Define s4(Q) to be the smallest cube from the collection {G‘E(Q)” | (¢,s)el®}
that contains 3Q; such #(Q) is uniquely determined by Q and the choice of function &. Define
HE = {(k, j) : Q%) =G} for (s,1) € L”. (4-22)
This is an important definition for us. The combinatorial structure this places on the corresponding
cubes is essential for this proof to work. Note that 3Qlj‘- - Q’; - sd(Q'j‘.).

Parents: For any of the shifted dyadic grids 9%, a O € 9 has a unique parent denoted as P(Q), the
smallest member of %% that strictly contains Q. We suppress the dependence upon « here.
Indices: Let
IO ={r| GI'* Cc G¥'). (4-23)

We use a calligraphic font J{ for sets of indices related to the grid {G%’}, and a blackboard font H
for sets of indices related to the grid {Q'j‘.}.

The good and bad functions: Let A o1 = [G*'T ! [ o1 fo be the o-average of f on G*'*1.
Define functions g&' and h%' satisfying f = g%’ +h%’ on G%' by

N s

o= e Tz G it <o 2
f(x) for x € G\ | J{G*" : r e K'Y},

h?,t(x) — f(x) - AG?’H—I fOr X € Gg’[+1 Wlth r 613{2"1’ (4-25)
0 forx € G\ | J{G*" ! : r e K}

We extend both g% and h%’ to all of R" by defining them to vanish outside G%".

Now [A ert1] < y'T! by (4-20). Thus Lebesgue’s differentiation theorem shows that (any of the
standard proofs can be adapted to the dyadic setting for positive locally finite Borel measures on R”")

g% ()] < ! < #/ |flo for o-ae. x € G and (¢, ) € L°. (4-26)
s lo G?’l

That is, g% is the “good” function and 2%’ is the “bad” function.

We can now refine the final sum on the left side of (4-14) according to the decomposition of JY f.

12

We carry this out in three steps. In the first step, we fix an « € {0, 3, 5}", and for the remainder of the
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proof, we only consider Q’J‘. for which &(Q’;) = «. Namely, we will modify the important definition of G
in (4-10) to
= (k. )):a(Q}) =, |Eflu > BIN Qf|, and (4-8) holds}, (4-27)

In the second step, we partition the indices (k, j) into the sets H® in (4-22) for (¢, s) € L*. In the third
step, for (k, j) € H®?, we split f into the corresponding good and bad parts, yielding the decomposition

Z / (L X30! fa)w‘ <CU+1), (4-28)
(k, )G
Yo, n= > I, (4-29)
(t,s)el” (t,s)el”

Il = / (L)(3QAgv U)w , (4-30)

(k, /)6 o
I = ‘/ (Lxzgihore| 4-31)

(k, /)6 o
' =GNH. (4-32)

Recall the definition of Rk in (4-15). In the definitions of 7, I! and 11, I, we will suppress the dependence
on o € {0, 3 3}” The sarne will be done for the subsequent decompositions of the (difficult) term /1,
although we usually retain the superscript « in the quantities arising in the estimates. In particular, the
combinatorial properties of the cubes associated with [¢ are essential to completing this proof.

Term I requires only the forward testing condition (1-19) and the maximal theorem (2-2), while term
11 requires only the dual testing condition (1-14), along with the dual maximal function inequality (1-17)
and the maximal theorem (2-2). The reader is again directed to Figure 4.2 for a map of the various
decompositions of the terms and the conditions used to control them.

4.6. The analysis of the good function. We claim that
I<CyZPN fll]p o) (4-33)

Proof. We use boundedness of the “good” function g&’, as defined in (4-24), the testing condition (1-19)
for T; (see also (4-4)), and finally the universal maximal function bound (2-2) with u = . Here are the
details. For x € Ejf, (4-7) implies that LX?,QI{ g¥'o(x) = Lg% o (x) and so

- Y r=cy Y Rk/ (Lg® G)a)|p

(t,5)€l (1,5)€L (k, j)eG*NHY!
<C ) /IM"y(xGng ‘O)fo<C Y / |Lglo|Pw
(1,5)el (t,5)el*

7Y (e s e B i

(t,5)el” (t,5)el?
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where we have used (4-26) and (1-19) with ¢ = g%'/y'*? in the final inequality. This last sum is
controlled by (4-18), and completes the proof of the claim. (|

4.7. The analysis of the bad function: Part 1. It remains to estimate term /I, as in (4-31), but this is in
fact the harder term. Recall the definition of %' in (4-23). We now write

Rt = Z(f Agurt) Xgare! = Z by, (4-34)

regd! rexe!

where the “bad” functions b, are supported in the cube Gﬁ‘”“ and have o-mean zero, f Gq,mb,a =0.
To take advantage of this, we will pass to the dual L* below.
But first we must address the fact that the triples of the 9% cubes G*/*! do not form a grid. Fix
(t,s) € L* and let
J+L )
'=BGY" ir e H*") (4-35)

be the collection of triples of the 9% cubes G*'*! with r € H%'. We select the maximal triples
3G M peger = {Tedpeger (4-36)

from the collection €%, and assign to each r € H%’, the maximal triple 7, = Ty containing 3G%'*1
with least £. Note that Ty, extends outside G*' if G%'*! and G* share a face. By Lemma 2.13 applied
to 9¢ the maximal triples {7}, et have finite overlap 3", and this will prove crucial in (4-49), (4-82)
and (4-50) below. |

We will pass to the dual of the linearization.

f (LhP' o)=Y f (Lbyo)w= ) / o (Wypre)bo (4-37)

k
iy e n3gk

Note that (4-7) implies L*v is supported in 3 Q’; if v is supported in E f explaining the range of integration
above. Continuing, we have for fixed (k, j) € 1%/,

wmels [

(L XEkaZ( )C())b O" +C Z P(Ga H—l’ XEk\b'Ga ’+'a))/ |f|0 (4 38)
3{&1

n30% s

To see the inequality above, note that for r € %' we are splitting the set E j‘ into E 'j‘ NTyy and E 'j‘ \ ().
On the latter set, the hypotheses of Lemma 2.9 are in force, namely the set E; A\ Ty does not intersect
3Gt whence we have an estimate on the §-Hélder modulus of continuity of L*x EX \ T¢(yw. Combine
this with the fact that b, has o-mean zero on G*'*! to derive the estimate below, in which yiTlis the
center of the cube G/

= 1+1
‘/Ggm(L*XEf\%‘“)b*“‘—( /Gg.,H(L*XEﬁ\n(nw(y) LYt 7, @O ) B,0)]

t+1
o, t+1 ) |y yr |)
= ‘/;(:.t+lm’;Q1; CP(Gr ’ XE];\Ti(r)w)(S(E(GgZ I-‘rl) |br(y)| dU()’)
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< CP(G;MH’ XEk_\3Ga,f+1a))/ |fldo.
J r Gtr)z,tJrl
We have after application of (4-38),

p
HF:Z:RKL@w%m)§Mm+m®,

(k. el
where
k

(1) = R ‘}: /}Hld,xﬁmnuwﬂ?a , (4-39)

(k, /)el]‘“ rexd’
t _ k o, t+1 p

ne= Y B(Y PG o [ 1710)

(k, j)ely’ rexd’ !

Note that we may further restrict the integration in (4-39) to G%'*! n 3Qk since L*x EX N Ty is
supported in 3 Qk

4.7.1. Analysis of I11(2). Recalling the definition of 9, in (4-3), we claim that
3 @ < cyroy / |f170. (4-40)
(t,s)el“
Proof. We begin by defining a linear operator by
Piwy = ) PGE™ xpm) X (4-41)
rexy’
In this notation, we have for (k, j) € 1% (see (4-22) and (4-31)),

1
Z P(Gg’H—l’ XEj?w(dX)) ,/;2‘”1 |f|0 - Z P(G?’I—H’ XEI;w) /;;ﬁ‘vr+1 G(|G?’t+1|n /(;ﬁ‘vrﬂ |f|0>

rexy’ rexy’

<y [ P =y [ (P oo
o Ej

By assumption, the maximal function JM(w-) maps L? (w) to L” (), and we now note a particular
consequence of this. In the definition (4-41) we were careful to insert x gt on the right hand side. These
sets are pairwise disjoint, whence we have the inequality below for measures .

= 82
Y Awws ¥ OX Y00 ([ e

(k. el (k, jyel®! rex®’ £=0

5§27Y
<Z Z [2¢GY 2eGe | (/zzcﬁ'*’“mc;;’.r M>XG?'H1(X) = CXG?JM(XG?JM)(X)'

{ozt

(4-42)
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Thus the inequality

k
a,t P < a,t / -
HXGs (kZ) » J(|g|“))””/(a) < CMllxge 8l Lo (w) (4-43)
’j e S,

follows immediately. By duality we then have
k%
[xezr X Pano)], < CMlxgy hllre). (4-44)
(k, j)els”

Note that it was the linearity that we wanted in (4-41), so that we could appeal to the dual maximal
function assumption.
We thus obtain

P
e <y’ Y R’;(/Qk(P’;)*(XG?,ro)dw) .

(k. ey’ /
Summing in (¢, s) and using (P’;)* < Z(Z,i)eﬂ?”(Pf)* for (k, j) € 197, we obtain

Y m@zcy” Yoy Y Ry /Q (PhY (o) doo)” (4-45)

(t,5)eL® (t.5)el> (k. ety

1 p
=Cy?? E: yP E |E§|w(—|NQ".|w Lk(Pﬁ)*(XG?,ta)w)
J j

el (&, jels!

P
sor? Y [0 Y PO o) o (4-46)
(r,5)el® el
P
sorr Yoy [ (X @) o (-47)
(t.5)ele G iy
<Cymr Y- yM|GH,,
(t,s)el>
which is bounded by Cy?PONY [|f]Po. In the last line we are applying (4-44) with h = 1. g

4.7.2. Decomposition of I1(1). We note that the term /7% (1) is dominated by I (1) < III + IV, where

=Yy R’;|Z/G

P
*
(L Xgtog @ bro|

a,t+1
ke’ eyt v T \S2r2
v = Rk L* bo| 4-48
5 J 41 (L™ X4ty @)bro (4-48)
(k j)eﬂu,t }’ijfa't G‘:’ ka+2 J
El s &)

The term /IT". includes that part of b, supported on G*'*!\ Q. ,, and the term IV’ includes that part of
b, supported on G’ +tn Q2. which is the more delicate case.

Remark 4.8. The key difference between the terms /I and IV" is the range of integration: G%'+1\ Q. ,
for /I and G*' TN Q5 for IV!. Just as for the fractional integral case, it is the latter case that is harder,
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requiring combinatorial facts, which we come to at the end of the argument. An additional fact that we
return to in different forms is that the set G%'*! N Q15 can be further decomposed using Whitney
decompositions of Q- in the grid &¢.

Recall the definition of €, in (4-5). We claim
> < CT”/lfl”a (4-49)
(t,5)el“

Proof. Let Eﬁ = 30"\ Quy2 (note that Ef is much larger than E¥). We will use the definition of R in
(4-15), and the fact that

D an =3 (4-50)

Lege!
provided N > 9. We will apply the form (2-11) of (1-14) with g = x g7, —also see (4-5) —and with
J
QET@HQI;- and O=T,

in the cases T, N Q’; is a cube and is not a cube, respectively (the latter is possible since Ty is the triple
of a 9%*-cube). In each case we claim that

QcC Tem3Q’€.

Indeed, recall that Qk is the cube in the shifted grid 9* that is selected by Qk as in the definition “Select
a shifted grid” above and satisfies 3Qk cM Q" C N QX, where N is as in Remark 2.4, by choosing Ry
sufficiently large in (2-6). Now 7y is a triple of a cube in the grid ¥ and Qk is a cube in 9*. Thus if
T, N Qk is not a cube, then we must have T, C 3Qk and this proves the clalm We then have

' k * P\ atp
s ¥ OR(Y X [ Wamen,ere)” e
J

(k})e"' LeLT reXd!=L(r)
~1
k '\ :
< Z R} Z/ |L*XEngiw|pa) /~|h‘s’”|”a
N30k ! E%
(k )eczt iat T, J
—1
P k Ak P ot p
=3 > R X Imn30kL) /Eljhs Po
(k, j)el®! LePy! J
TP |E§|w kip—1 Rt P
<3 Y o' INQGILTH [ 1K IPe
(k,j)el! @ Ej
<car f|h°"|ﬁa<czp /(Ifl”+|M“f|")a-
(k. ety (k, ))eG*NH!

Using

> > xm=) xm=C (4-51)

(t,5)€l (k, j)eGeNHY" all k, j



32 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO
we thus obtain (4-49). O

4.9. The analysis of the bad function: Part 2. This is the most intricate and final case. We will prove

> L= 4y [ifpe. (4-52)

(t.5)€le
where T, T, and 9, are defined in (4-4), (4-5) and (4-3), respectively. The estimates (4-33), (4-40),
(4-49), (4-52) prove (4-12), and so complete the proof of assertion 1 of the strong-type characterization
in Theorem 1.9. Assertions 2 and 3 of Theorem 1.9 follow as in the weak-type Theorem 1.8. Finally,

to prove assertion 4 we note that Lemma 2.12 and condition (1-19) imply (1-6), which by Theorem 1.2
yields (1-5).

4.9.1. Whitney decompositions with shifted grids. We now use the shifted grid @* in place of the dyadic
grid 9 to form a Whitney decomposition of €2, in the spirit of (2-6). However, in order to fit the %%-
cubes Q’; defined above in “Select a shifted grid”, it will be necessary to use a smaller constant than the
constant Ry already used for the Whitney decomposition of €2 into %-cubes. Recall the dimensional
constant M defined in (4-21): it satisfies Q C M Q. Define the new constant

Ry
R, ==Y
LY

We now use the decomposition of €2 in (2-6), but with % replaced by 9 and with Ry replaced by Ry, .

Q=| |5
m

into a Whitney decomposition of pairwise disjoint cubes B,’; in 9¢ satisfying

We have thus decomposed

Ry BY c 4, (4-53)
3Ry BX NQ #£ o,
and the following analogue of the nested property in (2-6):
By & Bf implies k > (. (4-54)

Now we introduce yet another construction. For every pair (k, j) let élj be the unique ¥“-cube B,’;
containing Q'lj‘ Note that such a cube é’; = B,’; exists since Qlj‘ C MQIJ‘. by (4-21) and Ry Q’; C Q by
(2-6) implies that Ry, Q’J‘ C Q. Of course the cube Q’j‘ = B,’ﬁl satisfies

Ry, 0 . (4-55)

MOI‘GOVCI’, W€ can arrange to have
30" c Nk, (4-56)

where N is as in Remark 2.4, by choosing Ry sufficiently large in (2-6). See Figure 4.3.
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1972

Figure 4.3. The relative positions of the cubes Q';, @k., and é’]‘ inside a set 2.

We will use this decomposition for the set 42 = U, B*2 in our arguments below. The corresponding
cubes Qf.‘+2 that arise as certain of the BX*2 satisfy the conditions

3Q§<+2 c ’Q\i_c+2 - éfﬂ c 3§§+2 c NQf-‘“ C Qia. 4-57)

Note that the set of indices m arising in the decomposition of €4 into @% cubes BX*2 is not the same
k+2

as the set of indices i arising in the decomposition of €2 > into % cubes Q; ", but this should not cause
confusion. So we will usually write BIHZ with dummy index i unless it is important to distinguish the
cubes Bl-k + 2 from the cubes Qé‘”. This distinction will be important in the proof of the “bounded
occurrence of cubes” property in Section 4.14.7 below.

Now use Q42 =J Bl.k+2 to split the term /V*, in (4-48) into two pieces as follows:

t k * p
Wiz B RIE T [ e E Hen, o

(k. jyely! refdt ied;
; * P 4-58
+ L RIS s, b (45%)
(el reqd’ied " i
=1IVi() +1Vi(2),
where
..q’; = {l : Af‘i‘z > yl+2} and }; — {l :Af+2 < yt+2}’ (4_59)
and where
k+2 _ 1 ]
ST /B,.m'f 4o (4-60)

denotes the o -average of | f| on the cube Bg‘”. Thus IV (1) corresponds to the case where the averages
are “big” and 7V (2) where the averages are “small”. The analysis of IV’ (1) in (4-58) is the hard case,
taken up later.
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4.9.2. A first combinatorial argument.

Lemma 4.10 (bounded occurrence of cubes). A given cube B € 9% can occur only a bounded number
of times as BZ‘”, where
BI** C Q% with (k, j) € G*.

Specifically, let (k1, j1), ..., (ky, ju) € G%, as defined in (4-27), be such that B = Bi"” for some i,
and B C (NQI;G” for1 <o < M. It follows that M < C ,B_l, where B is the small constant chosen in the
definition of G*. The constant C here depends only on dimension.

The Whitney structure (see (2-6)) is decisive here, as well as the fact that |E§|w > BIN Q’;|w for
(k, j) € G“. For this proof it will be useful to use m to index the cubes B,’,‘l + 2 and to use i to index
the cubes Q%2 The following lemma captures the main essence of the Whitney structure, and will be

i
applied to cubes B,’;l“ satisfying (4-53) and cubes Qf.‘” satisfying (2-6).

Lemma 4.11. Suppose that Q is a member of the Whitney decomposition of Q with respect to the grid
9 and with Whitney constant Ry. Suppose also that a cube B is a member of a Whitney decomposition
of the same open set Q but with respect to the grid 9“ and with Whitney constant Ry,. If N < %RW and
B C N Q, then the side lengths of Q and B are comparable:

Q) ~ £(B).

Proof of Lemma 4.11. Since N < %RW and Q is a Whitney cube we have

£(Q) ~dist(Q, 02) & sup dist(x, dQ2) ~ inf dist(x, d2).
xeNQ xeNQ

Then since B C NQ and B is a Whitney cube (for the other decomposition) we have
£(Q) ~ dist(B, 02) ~ £(B). O

Proof of Lemma 4.10. So suppose that (ky, j1). ..., (k. ju) €G* and B=B{"** c Q% for1 <o < M,
with the pairs of indices (k,, j,) being distinct. Observe that the finite overlap property in (2-6) applies
to the cubes @ﬁ: in the Whitney decomposition (4-53) of € with grid %* and Whitney constant Ry,.
Thus for fixed k, the number of (., j,) with k, = k is bounded by the finite overlap constant since B is
inside each QI;Z This gives us the observation that a single integer k can occur only a bounded number
C), of times among the ky, ..., k.

After a relabeling, we can assume that all the k, for 1 <o < M’ are distinct, listed in increasing order,
and that the number M’ of k, satisfies M < C, M’. The nested property of (2-6) assures us that B is an
element of the Whitney decomposition (4-53) of € for all k; <k <kyy.

Remark 4.12. Note that the k, are not necessarily consecutive since we require that (k,, j,) € G“.
Nevertheless, the cube B does occur among the BikJr2 for any k that lies between k, and k,;. These
latter occurrences of B may be unbounded, but we are only concerned with bounding those for which
(ks, jo) € G*, and it is these occurrences that our argument is treating.
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Thus for 3 <o < M’, we have k| < k, —2 < kyp, and it follows from Remark 4.12 that the cube
B is a member of the Whitney decomposition (4-53) of the open set €2, with grid 9% and Whitney
constant R’W, But we also have that Qlj‘z is a member of the Whitney decomposition (2-6) of €2
with grid 9 and Whitney constant Ry. Thus Lemma 4.11 gives us the equivalence of side lengths
Z(Qk”) ~ {(B). Cornblnmg this with the containment N Qk” D B, we see that the number of possible
locatlons for the cubes Q € 9 is bounded by a constant C/ dependmg only on dimension.

Apply the pigeonhole prmmple to the possible locations of the Q . After a relabeling, we can ar-
gue under the assumption that all Q equal the same cube Q’ for all choices of 1 <o < M”, where
M' < C;M". Now comes the crux of the argument where the condition that the indices (k,, j,) lie in G,
as given in (4-27), proves critical. In particular we have |E “|w > BIN Q’|, where N is as in Remark 2.4.
The k, are distinct, and the sets EY ko Q' are pairwise dlS]Olnt hence

M//
M'BINQ'|, <Y |EN |, <10Q'|, implies M" < p~".

o=1
Thus M < C,C,, B~ and our proof of the claim is complete. g

4.12.1. Replace bad functions by averages. The first task in the analysis of the terms IV’ (1) and IV%(2)
will be to replace part of the “bad functions” b, by their averages over Blk + 2, or more exactly the

averages AkJr2 We again appeal to the Holder continuity of L* X k7, . By construction, 3BkJr2 does

not meet E" so that Lemma 2.9 applies. If BkJr2 C G%'*! for some r, then there is a constant ckJr2

satisfying |ck+2| < 1 such that

k+2 1 k+2

< CP(B{‘“, XE_’;ﬂTg(,)w) /Bk+2|br|o. (4-61)
Indeed, if zf.‘” is the center of the cube Bl“z, we have

/1:3k+2 (L*XEk-ﬂTe( \@)bro

=L (XEkﬂTz<r)w)(Zk+2)f b,o + O(P(B s XEAAT ) @ )f |b, |6>

1
- (/ng+2(L XE_’/{OTZ(V)(D)O’) |BZ€+2|U /Bk b o+ 0<P(B s XEkﬂTg()w)/ |b |U)

Now, the functions b, are given in (4-34), and by construction, we note that

; _ o aai+l k+2
Bk"'2 ‘/l;kH ad |Ga t+1| /;;g,,ﬂ fa‘ + |B,k+2|a /BH2|f|U = |A} | +A"

So with

K2 1 1 bo
Ci |Aa g+ |+Ak+2 |Bk+2| Bl{<+2 rO,
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k+2

we have [¢; 77| <1 and

k+2 1 k+2
/BM(L*XEf”TMw)b’U - (Ci /BM(L*XEf”Tf(r)w)U)('Ag TIHAT
k2
—I—O(P(Bi B, ) /Bmwrla).

In the special case where B!‘*z is equal to G%* +1, we have f g2 b0 = f bro = 0 and the proof above

shows that

)/(;a,tﬂ(L*XEﬁmTZ(Hw)b’O‘ = CP(G;%J-H’ XEﬁﬂTz(r)w) /GOt.tJrl | flo, (4-62)

; — a,t+1
since ng.H. |by|lo = ng,m |f — A%l < ch;w [flo.
Our next task is to organize the sum over the cubes BIHZ relative to the cubes G*'*1. This is needed
Bl{(+2

because the cubes are not pairwise disjoint in k, and we thank Tuomas Hytonen for bringing this

point to our attention. The cube B{‘“ must intersect | J, cger G *+1 since otherwise

* _ o,t
/G a-f+lan+2(L Xk, @)bro =0 for r € Y.

Thus B{‘” satisfies exactly one of the following two cases which we indicate by writing i € Case(a) or
i € Case(b)

Case(a) Bi"+2 strictly contains at least one of the cubes G*'*1 for r € H%".
Case(b) Bl.k+2 C G%'*! for some r € H%'.

Note that the cubes BIHZ with i € $ can only satisfy Case(b), while the cubes Bl.kJr2 with i € $! can
satisfy either of the two cases above. However, we have the following claim.

Claim 4.13. For each fixed r € X%', we have
Z xpt2 = C,
(k+2,i,j) admissible '
where the sum is taken over all admissible index triples (k + 2, i, j), that is, those for which the cube

Bf” arises in term IV', with both Bf“ C G¥'* and Bl.k+2 C QI;

But we first establish a containment that will be useful later as well. Recall that €24, decomposes as
a pairwise disjoint union of cubes Bl.k+2, and thus we have

* _ § : *
/;;“"+IQQ (& XE_’;mTe(,.)w)brO' o fk+2(L XEfmT‘f(f)w)er’
k+2 . ~r i
’ i:BfPnQk£o "

since the support of L*x EAA Ty, @ is contained in 2Qlj C Q'J‘ C élj‘ by (4-7). Since both Bl.kJr2 and é". lie
J r

in the grid ¥¢ and have nonempty intersection, one of these cubes is contained in the other. Now Bl.kJr2
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cannot strictly contain é’; since é’; = Béf for some ¢ and the cubes {B;f }k,j satisfy the nested property
(4-54). It follows that we must have

Bl."‘+2 C QZ‘ whenever Bl.k+2 N Q‘ch £ @. (4-63)

Now we return to Claim 4.13, and note that for a fixed index pair (k + 2, i), the bounded overlap
condition in (2-6) shows that there are only a bounded number of indices j such that Bl.k 2 él; CN Ql; —
see (4-56). We record this observation here:

#{j: B2 C Q’; } < C for each pair (k+2,i). (4-64)
Thus Claim 4.13 is reduced to this one:
Claim 4.14. ) “{xz2 : BIY? € G for some (k, j) € 12" with Bf*> € Q%) < C for each r € 2.

As is the case with similar assertions in this argument, a central obstacle is that a given cube B can arise
in many different ways as a BZ‘”.

Proof of Claim 4.14. We will appeal to the “bounded occurrence of cubes” in Section 4.9.2 above. This
principle relies upon the definition of G* in (4-27), and applies in this setting due to the definition of [
in (4-28). We also appeal to the following fact:

Gt ¢ ék whenever Bft? ¢ G*''n ék with (k, j) € 1%7. (4-65)

To see (4-65), we note that both of the cubes G*'*! and Qk lie in the grid 9% and have nonempty
intersection (they contain Bk+2) so that one of these cubes must be contained in the other. However, if
Qk G, then 30% C Qk C Qk implies s(Q*%) C G*'*!, which contradicts (k, j) € 12", Therefore
we must have G A+l Qk as asserted in (4-65).

So to see that Claim 4. 14 holds, suppose that s,zd(Qk ) =G%' and BkJr2 Cc G¥ 1+1 with an associated
cube Qk as in (4-65). Then by (4-65) and (4-57) the 51de length E(Qk ) of Qk satisfies

€% = LN QY = 1 E(Bh) = LG, (4-66)
Also, if Béf is any Whitney cube at level k that is contained in G%* +1 then by (4-65) and (4-57) we have
Bf c G c 0k c NOK,
so that Lemma 4.11 shows that Béf and Q’; have comparable side lengths:
€(BY) ~ £(Q5). (4-67)

Moreover, if Béf,, is any Whitney cube at level kK’ < k that is contained in G**!, then there is some
Whitney cube Béf at level k such that Béf C Bé‘,/. Thus we have the containments Bé‘ C Bé‘,/ c NQX, and
it follows from (4-67) that

0(Bf) ~ (Q%). (4-68)
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Now momentarily fix ko such that there is a cube Bf°+2 satisfying the conditions in Claim 4.14. Then
all of the cubes BéfJr2 that arise in Claim 4.14 with k < kg — 2 satisfy

1
UBEP) A U(Q) = (G,

Thus all of the cubes Bf“ with k < kg, except perhaps those with k € {ko — 1, ko}, have side lengths
bounded below by ¢ £(G%'*1), which bounds the number of possible locations for these cubes by a

ko+1
dimensional constant. However, those cubes B; ot

at level ko + 1 are pairwise disjoint, as are those
cubes Bl.k 2 at level ko+2. Consequently, we can apply the “bounded occurrence of cubes” to show that
the sum in Claim 4.14, when restricted to k < kg, is bounded by a constant C independent of ky. Since

ko is arbitrary, this completes the proof of Claim 4.14. (|

As a result of Claim 4.14, for those i in either $’ or $! that satisfy Case(b), we will be able to apply
below the Poisson argument used to estimate term /7% (2) in (4-40) above.

We now further split the sum over i € $! in term IV%(2) into two sums according to Case(a) and
Case(b) above:

t k P
IVS(Z) = R; ‘ Z Z /at+1 Bk+2 (L XEfﬂT’é(")a))bra‘
(k,j)els ‘“ rexyt  ieg
ieCase(a)
k p (4-69)
+ Z R ‘ Z Z /ar+|mBk+2 (L XE.I;HT‘(”w)er‘
(k, j)el?! rexyt  ieg
ieCase(b)
= IV (2)[a] + 1V (2)[b].
We apply the definition of Case(b) and (4-61), to decompose IV (2)[b] as follows:
V@mbl= Y &Y Z )3 f (L* g v
(k, j)els D” reyty iefl
Bk+2 GotH—l
p
=Y &Y ¥ | /B L Kt @0 ) x PSS AR
ko ely’  reds Bkﬁﬁ%a Lo (4-70)
+ Z Rk‘ Z Z P(B?  XEAAT, )@ )/ by |cr
(k, j)el®! rexs! iegl
Bk+2cGa t+1
= V() + V.
4.14.1. The bound for V(2). We claim that
Y V@) < CYPMINLIN] o) (4-71)
(t,s)€le

Here, 91, is defined in (4-3), and V{(2) is defined in (4-70).
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Proof. The estimate for term V/(2) is similar to that of II}(2) above (see (4-40)), except that this time
we use Claim 4.13 to handle a complication arising from the extra sum in the cubes BIHZ. We define

P = Z X > PGB panmpe 4-72)

reye! iegt
20(r)=¢ Bk+2 Gart!

We observe that by Claim 4.14 the sum of these operators satisfies

D PhW) = CxgerM(xgee 1), (4-73)
(k. el

and hence the analogue of (4-44) holds with P’; defined as above:

[xez 32 @ amo] = CMlxgerhle (4-74)
(k J)edl

For our use below, we note that this conclusion holds independent of the assumption, imposed in (4-72),
that i € $!.
With this notation, the summands in the definition of V! (2), as given in (4-70), are

YD DD DI A PR M rml IREL)

rexe! iegt
L(r)=¢ Bk+2CGa t+1

k42 o
’+ZZ/ Z Z P(B s XEnT, @) X g2 (since i € K18} (4-75)
rex®! iegt
()=t Bk+char+1

<y / Pi(w)o =y'* / (P (xguo)w.
i EX
We then have from (4-70) and (4-75) by the argument for term 175 (2),

dYovio=cy* Y oyt > R"‘f (PY)* (xGwa)w‘

(t,5)ele (t.5)€l (k,jely’

P Y v [t X D gzon| o

(t,5)el” €, ield!

2P Z pt/ (Pf)*(XG?.tO’)>pa)

(t.5)el Gs el

<cyPmr Y oy Z|G“’|a < Cy*rm? f|f|f’

(t,s)el“

In last lines we are using the boundedness (1-17) of the maximal operator. Il
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We will use the same method to treat term V(1) and term VI(1) below, and we postpone the argument
for now.

4.14.2. The bound for IV (2)[a]. We turn to the term defined in (4-69). In Case(a) the cubes Bl.k+2 satisfy
k+2 , k+2
G ¢ Bf™*  whenever G*'T' N BfT? £ 2.

and so recalling that i € $! and i € Case(a), we obtain from (4-62) that

vou= Y ® Y % /G  Wxpopbo|”

(k, j)el” € rGytleitt T
ieCase(a)
p
k ,t+1
sc X RY Y rGee [
(k,j)Eﬂ?['[ iECase(a)r:GgJ‘HcB;‘*z or
p
142 k J+1 Jg+1
=Cyr D S R Y PGET )Gt
kel Gt 3ok

But this last sum is identical to the estimate for the term /I’ (2) used in (4-45) above. The estimate there
thus gives

Y. Vi@lal<Cyme Y yPIGY!, < Cy*P e / f17o, (4-76)
(t,s)el” (t,s)el®

which is the desired estimate.

4.14.3. The decomposition of IV(1). This term is the first term on the right hand side of (4-58). Recall
that for i € 9% we have i € Case(b) and so BI"> C G&'*! C Ty for some r € #%'. From (4-63) we
also have Bl.kJr2 C é’j‘ To estimate IV (1) in (4-58), we again apply (4-61) to be able to write

p
mavze B AE T ([ rmmei)d)

(k. jely’ ic9}
Bf2cTnQk
k k+2 P 4-77)
+C Rj(z > P(B ,xEmw)/Bmifio)
(k, jyel” ¢ ied; i
Bl.k”cnmé’;
= VIL.(1) + VI.(2).

We can dominate the averages on BIHZ of the bad function b, by Af+2 +|A%! < 2Af.‘+2, since in this
case i € 9! (see (4-59)), and this implies that the average of |b,| = | f — A%'*!| over the cube BF™2 is
dominated by

A§+2+ |A(;l,l+1| < A§+2+yt+2 < 2Af~€+2.
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4.14.4. The bound for VI(2). We claim that

1,9
VIL@) < Comp Y BE (AR, (4-78)
k,i

Here, the sum on the right is over all pairs of integers &, i € $% such that B,“Z cT;nN @’]‘ for some £, j
with (k, j) € 1¢'. (Below, we will need a similar sum, with the condition i € $/ replaced by i € $!
and i € Case(b).) This is a provisional bound, one that requires additional combinatorial arguments in
Section 4.14.7.

Proof. The term VI%(2) can be handled the same way as the term V/(2) (see (4-71)), with these two
changes. First, in the definition of P’;, we replace % by 9!, and second, we use the function

s,t,.9
_ sy k+2
h= E Ai XBI{chz

k.
in (4-74). That argument then obtains
P s,t,9
o P x|, ,, = o 3B o 4 @19
k. j k,i

Here we are using the bounded overlap of the cubes Bl.kJr2 given in Claim 4.13, along with the fact
recorded in (4-64) that for fixed (k + 2, i), only a bounded number of j satisfy Bl{‘“ C é’]‘ Claim 4.13
applies in this setting, as we are in a subcase of the analysis of IV. We then use the universal maximal

function bound (2-2).

oo . 2 k+2\?

(k, j)els” €9

Bf N0k
— k k% P
—c Y Rj‘/Qk(Pj) (ho)a

(k, j)els! J
P

<C / (oo 3 P (gerho)) o

(k, j)els!

P
5C/(XG§” 3 (P’;)*(XGg,zha)) .
(k, j)els’
In view of (4-79), this completes the proof of the provisional estimate (4-78). 0

4.14.5. The bound for VI(1). Recall the definition of VI(1) from (4-77), and also from (4-63) the fact
that Bf“ C é’; whenever Bl“z N é’}‘ # . We claim that

s,t,9
VIL(1) < CTLY B (AP (4-80)
k,i
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The notation here is as in (4-78), but since i € $! implies i belongs to Case(b), the sum over the right is
over k,i € $' such that B¥*? € G+ C Ty N Q’]‘., for some integers j, r, with (k, j) € I%'. As with
(4-78), this is a provisional estimate.

Proof. We first estimate the sum in i inside term VI’ (1). Recall that the sum in i is over those i such
that B{‘H C G‘;‘”H C T, for some r with £ = £(r), and where {7}, is the set of maximal cubes in the

collection {3G% t.re K2}, See the discussion at (4-35), and (4-50). We will write £(i) = £(r) when

BIHZ C G It is also important to note that the sum in i deriving from term /V", is also restricted to

those i such that B;‘H - @’; by (4-63), so that altogether, BIHZ cTyN élj‘ We have

SR
= DBl A (3B me'L*XEﬁﬂTuu“)'“)p,)p_l
i i i
<CZ|Bk+2|g Ak+2)p Z Z / |L* XE! rm(,w| )

L il@i)=¢L

Now we will apply the form (2-11) of (1-14) with g = x EfnT, and Q chosen to be either 7; or Qk
depending on the relative positions of 7, and Qk Since Ty is a triple of a cube in the grid 9% and Qk is
a cube in the grid 9%, we must have either

ék» cT, or T,C 3@".,

If Qk C Ty we choose Q in (2-11) to be Qk and note that by bounded overlap of Whitney cubes, there
are only a bounded number of such cases. If on the other hand 7; C 3Qk, then we choose Q to be T;
and note that the cubes 7, have bounded overlap. This gives

D3 / 1L g 0o S T3
L id@)=¢t

and hence
p —
‘Z</k+zlL*XE,kﬂTawle)AfH‘ =C% ZlBikJrzb(AfH)plNQlﬂg !
i Bi i

since 3@‘1; CN Qlj‘. by (4-56). With this we obtain
VIL() < €T Y REY B (AP IN QP! (4-81)
(k. jely! ied;

* s,t,9
" k+2 k+2
<CTL Y B (AT,
k,i
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where we are using R'j‘. |N Q’; 5)_1 < 1 and (4-64) in the final line. O

4.14.6. The bound for V(1). We will use the same method as in the estimate for term VI(1) above to
obtain

D VI S CTYPN 1L b (4-82)
(t,s)el”

Recall from (4-70) that V/ (1) is given by

p

(k. peld'  rexe’  ied i
B2 Gt
The main difference here, as opposed to the previous estimate, is that i € $! rather than in $¢; see (4-59).
As a result, we have the estimate
|A}(zl,l+1 | +A{-<+2 5 yl+2, (4‘83)

instead of A% 4+ AF2 < AF2 which holds when i € $.

Proof of (4-82). We follow the argument leading up to and including (4-81) in the estimate for term
VI(1) above, but using instead (4-83). The result is as below, where we are using the notation of (4-78),
with the condition i € $! replaced by i € $! and i € Case(b), and so we use an asterisk and § in the
notation below.
Vi) s Y B, P,
k,i

Now we collect those cubes B!‘” that lie in a given cube G*'*! and write the right hand side above as

* s,t,9
Kfy(t-ﬁ-Z)p Z Z |B{€+2|U = z’ﬁy(l-‘rZ)p Z 8)?[’,;.

rex®t ki rexs!

a constant times

By Claim 4.13, which applies as we are in a subcase of 7V, we have ¥7; < C|G%'*!|,, and it follows
that
Vi) < CILy 2P 3 TG o < CTLy PG,

rexd’
and hence from (4-18) that
Do VI =CTY Y v PIGE o < CEEYIf ] o) 0
(t.5)€el® (t.5)€el®

4.14.7. The final combinatorial arguments. Our final estimate in the proof of (4-52) is to dominate by
C f | f|? do the sum of the right hand sides of (4-78) and (4-80) over (¢, s) € L%, namely

3 ZS” <C f | £17 do. (4-84)

(t,s)el* ki
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The proof of (4-84) will require combinatorial facts related to the principal cubes, and the definition of
the collection G* in (4-27). Also essential is the implementation of the shifted dyadic grids. We now
detail the arguments.

Definition 4.15. We say that a cube Bl.kJr2 satisfying the defining condition in VI{(1), namely

there is (k, j) € 19" = G* NH%' such that
Bt Qlj‘- and Bf*? C some G%'*! € GY7 satisfying AFT? > 142,

is a final type cube for the pair (¢, s) € L* generated from Q'j‘..

The collection ¥ of cubes Bl.kJr2 such that B;‘H is a final type cube generated from some Q’J‘. with
(k, j) € 1" for some pair (7, s) € L¥ satisfies the following three properties:

Property 1. ¥ is a nested grid in the sense that given any two distinct cubes in %, either one is strictly
contained in the other, or they are disjoint (ignoring boundaries).

Property 2. IfB!CJrz and Bl.k,/'|r2 are two distinct cubes in F with Bl.k,/Jr2 ; B{‘“, and k and k' have the
same parity, then

’
Af’ +2 Ai_H—Z )

=Y

Property 3. A given cube B;‘“ can occur at most a bounded number of times in the grid F.

Proof of Properties 1, 2 and 3. Property 1 is obvious from the properties of the dyadic shifted grid %¢.
Property 3 follows from the “bounded occurrence of cubes” noted above. So we turn to Property 2. It is
this property that prompted the use of the shifted dyadic grids.

Indeed, since Bl.k,ur2 ;Cé BIHZ, it follows from the nested property (4-54) that k" > k. By Definition 4.15
there are cubes

Q]J‘: and Q]; satisfying Bﬁ”cél;: and Bf”cél;,

& , . N . i . .
and also cubes G, C G%' such that (K, j') € I3 and (k, j) € 19" with (', s"), (¢, s) € L%, so that in
particular,

Nk Jz Nk ,
0% cGy' and Qf c Gy

Now k' > k + 2 and in the extreme case where k' = k 4 2, it follows that the %%-cube é’]‘i is one of the

cubes Béf”, so in fact it must be B;‘” since Bl.k,ur2 C BIHZ. Thus we have
k'+2 Ak _ pk+2
Bi/ C Q]/ - Bt .
In the general case k€’ > k + 2 we have instead
k'+2 Ak k+2
B, CQ; CB.
Now Af” > y'*2 by Definition 4.15, and so there is #o >  + 2 determined by the condition

]/IO < A:;c+2 < yt()-i-l’ (4-85)
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and also sq such that
Bft* c G c G¥,

where the label (7, s9) need not be principal. Combining inclusions we have

k' k+2 o, 1
3% c B2 c goo

N

and since (k', j') € l]?,’t/, we obtain Gf,’t/ C G?O”O. Since (¢, s") € % is a principal label, we have the key
property that

t' > to. (4-86)
Indeed, if G;“,’t/ = G35 then (4-86) holds because (¢, s") € L% is a principal label, and otherwise the
maximality of G shows that

y’°<;/ |fldo <y't! thatis, o<t +1.
(Y,IO

1G5 1 Ja2
Thus using (4-86) and (4-85) we obtain Property 2:
Af’/ﬂ > yt’+2 > yl‘o+2 > VAi'(H- 0

Proof of (4-84). Now for Q = B¥*? € F set

— 1 — Ak+2 _ 1 /
A o=A" = o.

With the three properties above we can now prove (4-84) as follows. Recall that in term IV (1) we
have i € $¢ which implies Bl.kJr2 satisfies Case(b). In the display below by > we mean the sum over i
such that B¥*2 is contained in some G%'*! € G**, and also in some é'; with (k, j) € 17, and satisfying
AFF2 > 2142 The left side of (4-84) is dominated by

> Z*|B{‘+2|J(Ai-‘“>f’=Z|Q|UA<Q)P=Z|Q|g(|Q%fQ|f|a)”

(1,5)el“ (k, ey’ i Qe%F Qe%F

1 )4
_ o) —/|f|o do (x)
f; e(rg, 0 )

<C/ sup ( ! /lflo)pda(x)
T Jrixeg:0e5 M Qlo Jo

sCf M F ()P o (dx) scf )17 do (),
R~r R~r

where the second to last line follows since for fixed x € R”, the sum

1 P
éxg(X)(@Alfla)
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is supergeometric by Properties 1, 2 and 3 above, that is, for any two distinct cubes Q and Q' in ¥ each
containing x, the ratio of the corresponding values is bounded away from 1, more precisely,

! P
or Jolflo
((g §Z/|f|0))” gly ", y") fory=>2.

This completes the proof of (4-84). 0

5. The proof of Theorem 1.10 on the strongly maximal Hilbert transform

To prove Theorem 1.10 we first show that in the proof of Theorem 1.9 above, we can replace the use
of the dual maximal function inequality (1-17) with the dual weighted Poisson inequality (5-5) defined
below. After that we will show that in the case of standard kernels satisfying (1-9) with §(s) = s in
dimension n = 1, the dual weighted Poisson inequality (5-5) is implied by the half-strengthened A,

condition
|O] p' 1/p 1/p
(/R(|Q|+|x __xQ|) ‘Wx)) (/Q dw(x)) < sdp(w,0)|0], (5-1)

for all intervals Q, together with the dual pivotal condition (5-2) of Nazarov, Treil and Volberg [2010],
namely that

> 10:16P(Qr. x00®)" < €' 1ol (5-2)

r=I1

holds for all decompositions of an interval Qg into a union of pairwise disjoint intervals Qg = Uf‘;l O,.
We will assume 1 < p < 2 for this latter implication. Finally, for p > 2, we show that (5-5) is implied
by (5-1), (5-2) and the Poisson condition (1-24).

It follows from work in [Nazarov et al. 2010] and [Lacey et al. 2011] that the strengthened A, condition
(5-16) is necessary for the two weight inequality for the Hilbert transform, and also from [Lacey et al.
2011] that the dual pivotal condition (5-2) is necessary for the dual testing condition

/T(XQa))zdafC/ do,
o o

for T when p =2 and o is doubling. We show below that these results extend to 1 < p < co. A slightly
weaker result was known earlier from work of Nazarov, Treil and Volberg— namely that the pivotal
conditions are necessary for the Hilbert transform H when both of the weights w and o are doubling and
p = 2. However, [Lacey et al. 2011] gives an example that shows that (5-2) is not in general necessary
for boundedness of the Hilbert transform 7" when p = 2.

Finally, we show below that when o is doubling, the dual weighted Poisson inequality (5-5) is implied
by the two weight inequality for the Hilbert transform. Since the Poisson condition (1-24) is a special
case of the inequality dual to (5-5), we obtain the necessity of (1-24) for the two weight inequality for
the Hilbert transform.
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5.1. The Poisson inequalities. We begin working in R” with 1 < p < co. Recall the definition of the
Poisson integral P(Q, v) of a measure v relative to a cube Q, given by

o.¢]

81279
P(Q,v) = d|v|. (5-3)
ZZ:(; 12¢Q| Jao

We will consider here only the standard Poisson integral with §(s) = s in (5-3), and so we also suppose
that 6(s) = s in (1-9) above. We now fix a cube Q¢ and a collection of pairwise disjoint subcubes
{0,122 ,. Corresponding to these cubes we define a positive linear operator

oo
Pu(x) =Y P(Qr, v)xo, (¥). (5-4)
r=1
We wish to obtain sufficient conditions for the following “dual” weighted Poisson inequality,

f P(fw)(x)” do(x)sC/ fPdw(x) for f>0. (5-5)
Rn R~

uniformly in Qg and pairwise disjoint subcubes {Q,}°2 . As we will see below, this inequality is neces-
sary for the two weight Hilbert transform inequality when o is doubling.

The reason for wanting the dual Poisson inequality (5-5) is that in Theorem 1.9 above, we can replace
the assumption (1-17) on dual boundedness of the maximal operator Jl by the dual Poisson inequality
(5-5). Indeed, this will be revealed by simple modifications of the proof of Theorem 1.9 above. In fact
(5-5) can replace (1-17) in estimating term I’ (2), as well as in the similar estimates for terms V/(2)
and VI’ (2). We turn now to the proofs of these assertions before addressing the question of sufficient
conditions for the dual Poisson inequality (5-5).

5.1.1. Sufficiency of the dual Poisson inequality. We begin by demonstrating that the term /I%(2) in
(4-40) can be handled using the “dual” Poisson inequality (5-5) in place of the maximal inequality
(1-17). We are working here in R” with 1 < p < oo. In fact we claim that

Y Q) < CyPpr / |f1Po, (5-6)

(t,s)el”

where ‘3, is the norm of the dual Poisson inequality (5-5) if we take Qg and its collection of pairwise
disjoint subcubes {Q,}° | to be G%" and {G¥' +1}r et - Now the maximal inequality (1-17) was used
in the proof of (4-40) only in establishing (4-43), which says

k
o, P . < E”i a, o/ s
“XGS’ . E.) » J(|g|a)) HLP/(O') <C *”chtg“[‘l (@)
,J)Els”

where

k _ .
Pj(u) = Z P(G* t+1 XE;{M)XG;.;,MI.

rexy!
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We now note that

Y. Pilgloy= ) Y PGIT xplgleo)xgu

(k, jel®! (k, el rege!
1
< Y PG xgurlglo) xgur = P(xgerlglo) (x),
rexs!

which proves
k
Jxcz- 2Pl |, = CBelixgzrelus
’j

which yields (5-6) as before.
The terms V(2) and VI(2) are handled similarly. Indeed, Claim 4.14 yields the following analogue of
(4-73):
> PEW) = CxgerP(xXge 1),
(k. jels!

from which the arguments above yield both (4-71) and (4-78) with 91, replaced by ‘..

5.1.2. Sufficient conditions for Poisson inequalities. We continue to work in R” with 1 < p < co. We
note that (5-5) can be rewritten

> 10oPQr. fo)” <C | fPdw for f=0,
r=1

R~

and this latter inequality can then be expressed in terms of the Poisson operator P’ in the upper half
space [RRZ‘FH given by

P (fo)(r, 1) = f Px— ) f () doo(y).

n

Indeed, let Z, = (xg,, £(Q,)) be the point in [R'fl that lies above the center xp, of Q, at a height equal
to the side length £(Q,) of Q,. Define an atomic measure ds in [RRTI by

o
ds(x, 1) =Y _|Qrlo8z,(x,1). (5-7)
r=1
Then (5-5) is equivalent to the inequality (this is where we use 8(s) = s),
/ PL(fo)x, NP ds(x, 1) < c/ P dwx) for f>0. (5-8)
Rt R”

We can use [Sawyer 1988, Theorem 2] to characterize this latter inequality in terms of testing condi-
tions over P and its dual % given by

P (gw)(x, 1) = /R PO =0, Ddwx, 1.

+

Let Q denote the cube in [R{f’:’l with Q as a face. Then [ibid., Theorem 2] yields the following.
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Theorem 5.2. The Poisson inequality (5-5) holds for given data Qo and {Q,}72, if and only if the
measure s in (5-7) satisfies

/ P—i—(XQCU)p, ds < Cf dw  forall cubes Q € D,
Rtl:—l Q

/ Pt x g ds)! do < C / " ds  for all cubes Q € %.
Rr o

Note that

@]
[ B ds ~ 3210,1P(0r. 50w
RY r=1

Claim 5.3. Let n =1 and suppose that o is doubling. First assume that 1 < p < oo. Then for the special
measure s in (5-7), inequality (5-8) follows from the dual pivotal condition (5-2), the Poisson condition
(1-24), and the half-strengthened A, condition (5-1). Now assume that 1 < p < 2. Then for the special
measure s in (5-7), inequality (5-8) follows from (5-2) and (5-1) without (1-24).

With Claim 5.3 proved, the discussion above yields the following result.

Theorem 5.4. Let n = 1 and suppose that o is doubling. First assume that 1 < p < oco. Then the
dual Poisson inequality (5-5) holds uniformly in Qo and {Q,}2, satisfying U2, O, C Qo provided
the half-strengthened A, condition (5-1), the dual pivotal condition (5-2), and the Poisson condition
(1-24) all hold. Now assume that 1 < p < 2. Then (5-5) holds uniformly in Q¢ and {Q,}2, satisfying

Ufil O, C Qg provided (5-1) and (5-2) both hold. -

Remark 5.5. We do not know if Claim 5.3 and Theorem 5.4 hold without the assumption that o is
doubling, nor do we know if the Poisson condition (1-24) is implied by (5-1) and (5-2) when p > 2.

We work exclusively in dimension n = 1 from now on.

5.5.1. Proof of Claim 5.3. Instead of applying Theorem 5.2 directly, we first reduce matters to proving

12
133
the following atomic measures ds, on [RR%F, along with the following %*-dyadic analogues of the Poisson

that certain 9“-dyadic analogues hold of the two conditions in Theorem 5.2. For a € {0 } we use

operators P and P (with 6(s) = s),

o0
’ , o1
v = PR U e (), PLu@ = ) woiol ),
=1 @
r xeggfie(Q)zz (5-9)

o
dso(x, 1) =Y |7 |o820(x, 1),

r=1

where

(1) the interval I* is chosen to be a maximal 9%-interval contained in Q, with maximum length (there
can be at most two such intervals, in which case we choose the leftmost one),
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(2) the @%-Poisson integral P2 (Q, v) is given by

O H—t

dy — - o
PS (Q,v)—g 001 o dv for Q € 9%,

where Q© denotes the £-th dyadic parent of Q in %%, and
(3) the point ZY = (xje, £(I)) in I]QifL lies above the center x;« of I* at a height equal to the side length
£(I7) of 17,
We will use the following dyadic analogue of Theorem 5.2, whose proof is the obvious dyadic analogue

of the proof of Theorem 5.2 as given in [Sawyer 1988].
Theorem 5.6. The %9“-Poisson inequality

/ P, (fw)” dso,fC/ P dw for f>0,
R
holds if and only if

/ ?a(XQa))”/ dse < C/ dw for all intervals Q € 9%,
R © (5-10)
/(P 7y dse)? dw < C / t" dsq  for all intervals Q € B°.
0

We claim that for any positive measure v, the set of shifted dyadic grids {9}q¢(0,1/3,2/3) satisfies

o0
2—6
P(Q,,v) = dv ~ dv = PLY(I%, v)
' 22:(:) |2e Ql’| ZZQ,« 012/;’ 2/3} [2(; (IO[)(E)' Ia)(l) (XE{OIX/; 2/3} “ '

for all r. Indeed, for each interval 2¢Q,, there is « € {0, 1 /3,2/3} and an interval Q € 9% containing
2¢0, whose length is comparable to that of 2¢Q,. Thus Q = M )+9) for some universal positive
integer c. Now

1
12¢0,| Jao,

P (1)(xg, . £(Q,) = /R Pyg,)(xg, — dv(y) Y 27 dv =P(Q,.v).
=0

Since o is doubling and I* is a maximal 9“-interval in Q, with maximum length, we have |Q, |, S 117 |s
and

/ P, 0 ds = Y10 1o Pav(Eg,, €0 ~ Y| 1oP(Qr, 1)

r=1 r=1

[e.8]
o D IFLPY AR = > /P+yav(x NP ds,.

aef0,1/3,2/3} r=1 ae{0,1/3,2/3)

%

This together with Theorem 5.6 reduces the proof of Claim 5.3 to showing that (5-10) holds for all
ae{0,1/3,2/3}.
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Now the definition of s, in (5-9) shows that the left side of the first line in (5-10) is

(e8]

d / N /

/ PYa (o) dse = ) I1716PE (I xow)”.
R r=1

Recall that I¥, Q € 9*. Now if Q C I for some r, then the sum above consists of just one term that

satisfies
o p'—1
1F o1 Qlw

Tappr 1€l = Cslp(@. )" | QLo
‘

1%, PY (1, xow)? < C

Otherwise we have

d ! ; ’ . ’
/ PaGow) dsa S ) I 1PE U xo)” + Y I 1ePY (I xow)?
Ry 1°cQ 19NQ=2

scgg’/ do+ ). ”a|"(z|(1“><€>|

19NQ=0

p/
da)) ,
onUuH©

where the local term has been estimated by the dual pivotal condition (5-2) applied to Q.
Now if I¢ ¢ Q" \ Q=D then QN Qﬁz) # @ only if Q™ C (I1*)®. Thus the second term on the
right can be estimated by

—f ’

1210 (Y dw)
Z Z o ; |([;1)(f)| 0N ®

m=1 [ C Qim\ Q=1

o0 o0 f 0 da) p/
—¢f JONU)
X 3 mey ()

m=1 [ C Qim\ Q=1 £=0
ad [, dw
o —6 0
ey Y eyl
m=1 [¢C Qm\ Qm=1) =0

||, _
§<Z|Q(m)|p)|Ql” 1/de
(@(/SQQ(X)” da(x))|Q|P 1)/Q da)fC&dp(a),a)p,/Q do.

— 0]
SGa) = Z Ty (x) Ssp(),
and the half-strengthened A, condition (5-1) in the final inequality.

Now we turn to showing that the second line in (5-10) holds using only the A, condition (1-8). First
we compute the dual operator ([P’? »)". Since the kernel of I]:Diy: o 1S

where we have used

dy —
PG y1= ) xl(x)w)mm(y)

1€99:0(I)>t



52 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

we have for any positive measure /. (x, f) on the upper half space RZ,

P ) i

(PP (y) = / 1 > T () )i, 1) = D / ay e 0.

€ge0(I)>t IEED yel
Using the third line in (5-9) we compute that
[ dse= S ulalig
0 19CQ

and

dy \xp'—1,, . _ L -1
Py ) (@ xggdsa)(y)—-legg:€I|I| ing E(I)t dsq(x,t)

=Y Ul Z |(Ia)(()|)((1a)(e>(y)
I*cQ

Thus we must prove

f(Zu% |P—IZ (I“W)IX“ w(y)) do(y) < Cslp(w, )" Y 115175 (5-11)

R 1cQ °cQ

but this is the Poisson condition (1-24) in Theorem 1.10 for the shifted dyadic grid ©*. This completes
the proof of the first assertion in Claim 5.3 regarding the case 1 < p < co. We now assume that 1 < p <2
for the remainder of the proof.

To obtain (5-11) it suffices to show that for each £ > 0

’ p ’
/ (X Ul 1772272 g0 () () < C2 P sy (@, 0)” Y UGS, (5-12)

Roeco 1ecQ

Indeed, with this in hand, Minkowski’s inequality yields

@ )(szdsa)uLp(w)—HZZ|I“|a|1“|” 2272 o

LP ()

=0 I*CQ
o ayp'-2
<ZH > I 2 ey (5-13)
=0 I¥CQ
/p
<c22 ety w.0)( 3 o)

Irco

as required.
Note that fora >0 and p > 1,

h(x)=(a+x)’ —a” — pla+x)’'x,
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is decreasing on [0, co) since h'(x) = —p(p — 1)(a +x)P~2x < 0 for x > 0. Since ~(0) = 0 we have
h(x) <0 for x > 0, that is,

(a+x)? —a? < pla+x)P"'x for a,x >0and p > 1. (5-14)

Now fix an interval Q in (5-12) and arrange the intervals /¥ that are contained in Q into a sequence
{Ir‘"}ﬁ\’:1 in which the lengths |I¥| are increasing (we may suppose without loss of generality that N is
finite). Recall we are now assuming 1 < p < 2. Integrate by parts and apply (5-14) to estimate the left
side of (5-12) by

N

/ p
2720 [ (1 0 ) do)
R

r=1

N " n—1
— /_ p /_ p
_> zpz/ Z((Z'mﬂlra'p 2x(1,a)<f>(y)> —<Z|I,°‘|gllf‘lp Zx(l,e')oz)(y)) )dw(y)
Ry—1" r=1 r=l1
N n p—1
- 221,,3/ Z(p(zuralgurav) 72X(13)“) (y)> |1,;"|,,|15|P2x(1;;)<e>(y)) dw(y)
IRn:] r=1

N n
_ pfl /_ ’_ _
<22ty /R ((§ oo 0)) 1l 17 2115 200 ”xa,g)m(y))dw(y),
n=1 r=1

where we have used (5-14) with

n—1

a=Y A" 2 xgoo () and  x =125 11¢1" 7 Xm0 (),
r=1
and then used |Ir"‘|f”/_2 < |I,‘l"|1”/_2 for 1 < r < n, which follows from |I¥| < |I¥| and p’ > 2. If
IHONUNHD # @ and 1 <r <n, then I* C (I%)® and so

’ p
/ (X 177222 g0 () deoy)
R

rco

N
_ I p_l
<220 Y P [ (27 e 111) " Ko ) do)
R 18cIy)®

n=1
N
<272 p 3 I | 1P PR P12 U O
n=1
N
<27 pely(0,0)7 Y o I P PP (1) )P

n=1

N
=27 paly(@,0)" Y |6 IX17 =27 pstp(w, )P Y |I¥16 11517
n=1 1°cQ
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Thus we have proved (5-12) for p € (1, 2], which completes the proof of (5-10). This finishes the
proof of Claim 5.3, and hence also that of Theorem 5.4.

5.7. Necessity of the conditions. Here we consider the two weight Hilbert transform inequality for
1 < p < 0o. We show the necessity of the strengthened A, condition for general weights, as well as the
necessity of the dual pivotal condition for the dual testing condition, and the dual Poisson inequality for
the dual Hilbert transform inequality, when o is doubling.

5.7.1. The strengthened A, condition. Here we derive a necessary condition for the weighted inequality
(1-18) but with the Hilbert transform 7 in place of T}, that is,

/ T(fo)x)dw(x) <C [ [f(0)|Pdo(x). (5-15)
R\supp f R

The condition,

( /R (ﬁ)” do) " ( /R (Wﬁ'_w')” dow)" =clol  &16)

for all intervals Q, is stronger than the two weight A, condition (1-8), and we call it the strengthened
A, condition.

Preliminary results in this direction were obtained by Muckenhoupt and Wheeden, and in the setting of
fractional integrals by Gabidzashvili and Kokilashvili, and here we follow the argument proving [Sawyer
and Wheeden 1992, (1.9)], where “two-tailed” inequalities of the type (5-16) originated in the fractional
integral setting. A somewhat different approach to this for the conjugate operator in the disk when p =2
uses conformal invariance and appears in [Nazarov et al. 2010], and provides the first instance of a
strengthened A, condition being proved necessary for a two weight inequality for a singular integral.

Fix an interval Q and for a € R and r > 0, let

Y
|01+ 1x — gl

where x is the center of the interval Q. For convenience we assume that neither w nor o have any point

50(x) and  fu,(Y) = Xa—rayM)so(P L,

masses —see [Lacey et al. 2011] for the modifications necessary when point masses are present. For
y < x we have

101(x —y) =|Ql(x —x0) +[Q|(xo —y) =(1Q] + [x —xoD(Q[ +[xo — ¥D,

and so

1 _
e (4 'sp(x)sp(y) for y <x.

Thus for x > a we obtain that

H(fa,0)(x) = / so(? do(y) = 101 5o (x) / so(N? do (y),

xX=Yy
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and hence by (5-15) for the Hilbert transform H,
o.¢] a , p
017 [ so@r ([ so” do))” do)

< / H(fur0)(0)|? doo(x) < C / arOIPdo(y) = C / 50()? do ().

From this we obtain

o0 a ’ p—1
07 ([ sor dow)([ so? o) <c.
a a—r
and upon letting r — oo and taking p-th roots, we get

(/.aoo so(x)? da)(x))l/p (/

a 1 /

/ /
so)” do() " =Clol.

Similarly we have

/

(/ sQ(x)”dw(x))l/p(faoosQ<y)P’da(y))”p <clol.

—00

Now we choose a so that

| s doi= [ 50w dot) = [0 dow.

—00

and conclude that

</ SQ(X)pdw(x)>l/p</ SQ(y)”/dO(y)y/p
=< (/_a so(x)? da)(x))l/f’<[ SQ()’)"/dG()’))l/P’ n (/.OOSQ(x)p da)(x))l/p(/ SQ(y)P'dJ(y))l/P

oo a

<277( [ sou”awe) ([~ sotr o)

_f_zl/l?/(/oosg(x)l’ da)(x))l/p</

a —00

/
/

/

a , 1/p
s0()"do (7))
<2"*rcig|.

5.7.2. Necessity of the dual pivotal condition and the dual Poisson inequality for a doubling measure.
Here we show first that if o is a doubling measure, then the dual pivotal condition (5-2) with §(s) = s is
implied by the A, condition (1-8) and the dual testing condition for the Hilbert transform H, that is,

/|H(X1w)(x)|pl do(x) < Cuo,plll, forall intervals I. (5-17)
I

After this we show that the dual Poisson inequality (5-5) is implied by the A, condition (1-8) and the
dual Hilbert transform inequality,

f |H (x180)(x)|” do(x) < Cooo.p / g(x)” dw(x) forall g > 0 and intervals I. (5-18)
1 1
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Lemma 5.8. Suppose that o is doubling and T = H is the Hilbert transform. Then the dual pivotal
condition (5-2) is implied by the A, condition (1-8) and the dual testing condition (5-17).

Proof. We begin by proving that for any interval / and any positive measure v supported in R\ 7, we

have " "
P(:v) < L /dv+2|1| (Xrev)(x) — (XI"V)()’)’ (5-19)
|I| X yeI X—=Yy
where we here redefine
1
P(I;v) = ! d + I ! 5dv(2), (5-20)
1] 2 Jry 12—z

with z; the center of /. Note that this definition of P(/; v) is comparable to that in (5-3) with §(s) = s.
Note also that H(y;<v) is defined by (5-15) on I, and increasing on / when v is positive, so that the
infimum in (5-19) is nonnegative.

To see (5-19), we suppose without loss of generality that / = (—a, a), and a calculation then shows
that for —a <x <y <a,

H(x;ev)(y) — H(xev)(x)
:f (—1 - )dv(z)Z(y—x) L _ae = l(y—x)f ldV(Z)’
R\ \¢—Y  Z—X R\7 (z—=y)(z—x) — 4 R\/ 2

since ((z — y)(z — x))~! is positive and satisfies
1 1
— Z JE—
(z—=y)(z—x) ~ 472
on each interval (—oo0, —a) and (a, 00) in R\ / when —a < x < y < a. Thus we have from (5-20)

H(xje — H(xpe
P v) = / av e [ Ly < L [avpoir) g, 000~ HGu0e),
|I| IRE\IZ |I| 1 x,yel y—Xx

Now we return to the dual pivotal condition (5-2), and let C,, », , be the best constant in the dual testing
condition (5-17) for H. Let Oy = Ufil 0O, be a pairwise disjoint decomposition of Q¢ and consider
g, 8 > 0, which will be chosen at the end of the proof (we will take § = % and ¢ > 0 very small). For

each interval Q,, let &, € Q, minimize |H (xg:w)| on Q,, that is,
|H (xo:0)(er)| = I)Pei}llH(Xng)(X)l,

and set
Jr,s = (o —€|0|, 0 +€|0/) N O,

Now for each interval Q,, consider the following three mutually exclusive and exhaustive cases:

1O/
>

Case 1: dw(z),
101 Jo, 4 Jpo, lz—20,17
1
Case 2: 1 / do < 1O/ sdw(z) and  |Qr\ Jrele = 8|Qrlos
101 Jo, 4 Jmo, lz—z0,l
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|Qr|
|Qr| 4 Jro, 1z2—2z0,

Case 3: dw(Z) and |Jr,8|0 > (1 _5)|Qr|a-

|2
If O, is a Case 1 interval we have P(Q,, xo,®) < 310,]7! er dw and so

> |Qr|anﬂ>(Qr,xQow>p’sﬂZ@n(@/ d)"

Q, satisfies Case 1

-1
|Qr|a|Qr|w / p’/
dw = Cpll(w, o) do.
pz 10,17 o ! * J o

If O, is a Case 2 or Case 3 interval we have from (5-19) with v = xg,w that for all x € O, \ J,¢,

H(xgong:w)(x) — H(x0ongew)(ar)
X — 0

P(Qr; x0,®) < 6|0/

6|0, |H (X 0pn0c@) (X)| + |H (x gpnoc@) (e)]) < %lH(XQOanw)(X)l-

IQI(

If now Q, is a Case 2 interval, we also have |Q,|, <8710, \ Jrelo and so

> 10:.P(Qr. x0,®)”

Q, satisfies Case 2

IA

| =

> 10\ TeloP(Qr. x00®)”

Q, satisfies Case 2

o0 ,

1 12\» )

=35 ( e ) |H (X 0ongc@)(x)]” do (x)
r=1 r\Jre

<Cesp Y. / . (1H (X0y@)(0)I” + | H (xg,®) (x)|”') dor (x)

< Ceap f |H (xgy) ()| da<x>+Z |H(xg,0)(0)I" do(x))

Or

< oy (€100l + Y CI01) = Cos I Qo
r=1

where the final inequality follows from (5-17) with I = Qg and then I = Q,.
Now we use our assumption that o is doubling. There are C, n > 0 such that

|/
o =C( 150
10|
whenever J is a subinterval of an interval Q. If Q, is a Case 3 interval we have both
| Jrel
1Ol

)12l

<2¢ and |Jr,e|a>(1_8)|Qr|ov
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which altogether yields

el \7
A=10ls < rels = C(T75) 10110 = CC&YIQ/,

1O/
which is a contradiction if § = 1/2 and & > 0 is chosen sufficiently small, so that ¢ < 1/2(1/(2C))'/".
With this choice, there are no Case 3 intervals, and so we are done. O

Lemma 5.9. Suppose that o is doubling and T = H is the Hilbert transform. Then the dual Poisson
inequality (5-5) is implied by the A, condition (1-8) and the dual Hilbert transform inequality (5-18).

Proof. The proof is virtually identical to that of Lemma 5.8 but with dv = x,g dw in place of xo, dw
where g > 0. Indeed, if Q, is a Case 1 interval we then have P(Q,, xg,8w) < 3| er_l er gdw and so

> 10sP(Qr xoug)” = 3PZ|QV|U(@ fQ gdo)”

Q, satisfies Case 1
10:1610,15~ / ' % /
g’ dw < Cpll(w,0)] g’ do.
PZ o7 Jo, ! " Jo,

If Q, is a Case 2 interval, then |Q,|, <& !|Q, \ Jrelo and
Y 100 P(0r. X008

Q, satisfies Case 2

IA

| =

> 10\ JreloP(Qr. x0080)”

Q, satisfies Case 2

1 e=/12\7 )
=3 ;(?) /Q,\J,,S|H(XQ°DQ$gw)(X)Ip do (x)
<Ces.p Z/ (1H (x0,8@) ()| + | H (x0,80)(x)|”) do (x)

< Cesp( /Q |H (x0080) ()| dor(x) + ) /Q |H(xg,80)(0)|” do(x))
0 r=1 r

o0
SCMJ)(C/Q gp/a’a)—i—ZC/Q gp/da)>=Cg,5,p/ ¢" do,
0 r=1 r

Qo

upon using (5-18) with Q¢ and Q,, which is (5-5). As before, Case 3 intervals don’t exist if o is doubling
and ¢ > 0 is sufficiently small. O

Proof of Theorem 1.10. Theorem 5.4 shows that the dual Poisson inequality (5-5) holds uniformly in
Qo and pairwise disjoint {Q,}°2, satisfying U2, Or C Qo, provided both the half-strengthened A,

condition (5-1) and the dual pivotal condition (5-2) hold when 1 < p < 2—and provided (5-1), (5- 2)
and the Poisson condition (1-24) hold when p > 2. Since o is doubling, Lemma 5.8 shows that the dual
pivotal condition (5-2) follows from the dual testing condition (1-21) — and Lemma 5.9 shows that the
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dual Poisson inequality (5-5), and hence also the Poisson condition (1-24), follows from the dual Hilbert
transform inequality (5-18). Thus Theorem 1.10 now follows from the claim proved in Section 5.1.1 that
(5-5) can be substituted for (1-17) in the proof of Theorem 1.9. O
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ENERGY IDENTITY FOR INTRINSICALLY BIHARMONIC MAPS IN FOUR
DIMENSIONS

PETER HORNUNG AND ROGER MOSER

Let u be a mapping from a bounded domain S C R* into a compact Riemannian manifold N. Its intrinsic
biharmonic energy E,(u) is given by the squared L’-norm of the intrinsic Hessian of u. We consider
weakly converging sequences of critical points of £,. Our main result is that the energy dissipation along
such a sequence is fully due to energy concentration on a finite set and that the dissipated energy equals
a sum over the energies of finitely many entire critical points of Ej.

1. Introduction and main result

Let S ¢ R* be a bounded Lipschitz domain and let N be a compact Riemannian manifold without
boundary. For convenience we assume that N is embedded in R” for some n > 2. We denote the second
fundamental form of this embedding by A and we denote the Riemannian curvature tensor of N by R.
For u € C*®(S, N) define the pull-back vector bundle »~! T N in the usual way and denote the norm on it
and on related bundles by | - |. Together with the Levi-Civita connection on the tangent bundle T N, the
mapping u induces a covariant derivative V* on u~' T N. We extend this covariant derivative to tensor
fields in the usual way. Denote by my the nearest point projection from a neighborhood of N onto N
and set P,(x) = Dy (u(x)). Then P,(x) is the orthogonal projection from R* onto the tangent space
TyxyN to N atu(x). Let X € L*(S, R") be a section of u 'TN. Following [Moser 2008] we define

VX = (P,0,X) @ dx*

Denote the derivative of u by Du = (d,u) ® dx®. The intrinsic Hessian V¥ Du is a section of (7T S)* ®
(TS)*®u~'TN. By a standard fact about Dy, it is given by

V" Du = (P, 3 dpu) ® dx* ® dx”
= (8001 + A(u) (dgu, dpu)) @ dx* @ dxP.
We define the Sobolev spaces

WEP(S, N) = {u € WEP(S,R") : u(x) € N for almost all x € S}
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group of Sergio Conti in Bonn.

Hornung is the corresponding author.

MSC2000: 58E20, 35J35.
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and we introduce the energy functional E; : W>2(S, N) — R, given by
Ey(u) =1 /|V“Du|2.
4 Js

Critical points of E; are called intrinsically biharmonic mappings. There are also other kinds of second
order functionals whose critical points are called “biharmonic” mappings. The functional E; is defined
intrinsically, that is, it does not depend on the embedding of N into R”. Another intrinsically defined sec-
ond order functional that is naturally associated with u is F»(u) = }L f glT() |2, where 7 («) :=trace V¥ Du
denotes the tension field of . Critical points of F, are usually called intrinsically biharmonic mappings.
Another functional that can be associated with u is the energy E»(u) = i /. S|D2u|2. Its critical points are
usually called extrinsically biharmonic mappings. The functional E; enjoys better analytical properties
than E, and F3, but it has the drawback of depending on the particular embedding of N into R".

Biharmonic mappings, being the next higher order equivalent of harmonic mappings, have attracted a
lot of attention in the differential geometry literature; see [Montaldo and Oniciuc 2006] for an overview.
Analytic aspects of the problem are less well understood, and on questions other than regularity (see
[Chang et al. 1999; Wang 2004b; Wang 2004a; Wang 2004c; Lamm and Riviere 2008; Struwe 2008])
not much work has been done. This is the case in particular for intrinsic biharmonic mappings, because
the problem is difficult due to a lack of coercivity of the corresponding functions in the Sobolev spaces
traditionally used. Thus despite the fact that the intrinsic case is geometrically more interesting, the
problem has not widely been studied from the analysis point of view.

Recent progress has been made, however, based on the observation that the lack of coercivity can be
removed for one type of intrinsic biharmonic mappings (the type studied in the present paper), provided
that one works in a geometrically motivated variant of Sobolev spaces [Moser 2008; Scheven 2009]. This
approach permits methods analogous to what has been used for harmonic mappings. But since we have a
fourth order equation for biharmonic mappings (in contrast to second order for harmonic mappings), and
since we have to work in different spaces, such an approach still requires additional ideas and arguments.
In this paper, we develop the theory a step further.

The existence of minimizers of E; under given boundary conditions on the mapping itself and on its
first derivatives was established in [Moser 2008] using the direct method of the calculus of variations.
For simplicity, from now on we will omit the adverb “intrinsically”:

In the present paper, a mapping u € W>2(S, N) will be called biharmonic if it is critical for E, under
outer variations, that is,

dt ‘t:O

see [Scheven 2009; Moser 2008]. In [Scheven 2009] it is shown that a mapping u € W22(S, N) is
biharmonic precisely if it satisfies

Er(ny(u+1t¢)) =0 forall ¢ € C5°(S,R");

/vaa,gu-(vav,g¢+R(u)(¢,aau)aﬁu) =0 (1)
S

for every section ¢ € WOZ’Z(S, R NL®(S, R of u~'TN.
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We will study sequences of biharmonic mappings (u;) C W>2(S, N) with uniformly bounded energy,
that is, lim sup,_, o, E2(ux) < 0o. Since our results are analogous to known facts about harmonic map-
pings, we describe the situation encountered in that context: Let & C R? be a bounded Lipschitz domain
in R2. A mapping u € W'2(Q, N) is said to be (weakly) harmonic if it is a critical point for the Dirichlet
energy

1
E\(u) = o / |Du|?.
Q

A given sequence (u;) C W'2(Q, N) of harmonic mappings with uniformly bounded Dirichlet energy
has a subsequence that converges weakly in W2 to some mapping u € W'2(2, N). This convergence
in general fails to be strong, that is, in general liminf;_ ~ E1(u;) > E;(u). The only reason for this
loss is that the energy can concentrate on a lower dimensional subset Xy C 2. In particular, u; — u in
CIIOC(Q \ 2o, R"). By the results in [Hélein 1991; Hélein 1990], the mappings u; and u are smooth. In
addition, the set Xy is finite. Moreover, for each point x € X there exist M, € N and entire harmonic
mappings vy, ..., vy, € C*(R?, N) such that, after passing to a subsequence,

M,
lim [ |Dux|>> | |Du)? 2,
k;wfg| uk|_fg| u|+ZZfRz|vj|

xeXy j=1

Later the converse inequality was shown to hold as well [Jost 1991; Parker 1996; Ding and Tian 1995].
Our main result is the analogue of these facts for critical points of the functional E,. It is summarized
in the following theorem:

Theorem 1.1. Let S C R* be a bounded Lipschit; domain and let N be a smooth compact manifold
without boundary embedded in R". Let (u;) C W>2(S, N) be a sequence of biharmonic mappings and
assume that

lim sup/lV“"Duk|2+ | Duy|* < oc. (2)
S

k— 00

Then uy € C*°(S, N) and we may pass to a subsequence in k (again called (uy)) and find a biharmonic
map u € C*(S, N) and a finite set 3o C S such that

(1) uy — u weakly in (WEZNwWhH (s, RY),
(ii) ux — uin C} (S \ Zo, R").

Moreover, for each x € X there exist M, € N and biharmonic mappings vf R U;,[Y eC °°(R4, N) such
that

M,
. u 2 u 2 v} X2
lim S|v Dy | _/S|v Dul’+ )" Z/WW i DV,

xeXp j=1

M,
li Duy* = [ |Dul* DvY|*.
gim [ iD= [10ut+ 33 [ 1)

xeXp j=1

3)
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Remarks. (i) By [Moser 2008, Theorem 2.1] the hypothesis (2) is equivalent to the seemingly weaker
hypothesis lim sup;_, o, /. SlV“kDuk|2 + | Duy|* < oo and also to the seemingly stronger hypothesis

lim sup|lug|lw22(s, 5y < 00
k— o0

(i) Moser [2008] showed that every biharmonic mapping v € W22(S, N) in fact satisfies v e C®(S, N).

(iii) To obtain smoothness of the limiting mapping u as well, one needs a removability result for isolated
singularities of biharmonic mappings. This is derived in Lemma 2.3 below. Another auxiliary result
is the existence of a uniform lower bound on the energy of entire nonconstant biharmonic mappings,
given in Lemma 2.6 below. Analogues of these facts are well known for harmonic mappings and
also for critical points of other higher order functionals; see for example [Wang 2004b].

(iv) The main contribution of Theorem 1.1 are the energy identities of (3). To obtain an equality (and not
just a lower bound for the left hand sides), one has to show that no energy concentrates in a “neck”
region around a concentration point x € Xg. This is proven in Section 3 below. Similar results are
known in the context of harmonic mappings; see for example [Jost 1991; Parker 1996; Ding and
Tian 1995; Lin and Riviere 2002]. They are also known for other kinds of biharmonic mappings,
but only if the target manifold is a round sphere, since then the Euler-Lagrange equations enjoy a
special structure [Wang 2004b]. Under the general hypotheses of Theorem 1.1 no such structure
seems available, so a different approach is needed.

Notation. By e, ..., es we denote the standard basis of R*. We also set e,(x) = x/|x| for all x € R*.
By B,(x) we denote the open ball in R* with center x and radius r. We set B, = B,(0). If A and B
are tensors of the same type, then A - B denotes their scalar product. We will often write V Du instead
of V*Du, and we identify R* with its dual (R¥)*, writing, for example, e, instead of dx.

2. Proof of Theorem 1.1

We define the energy densities
ei(w) = |Dul* and ex(u) =|VDul|*.

(These should not be confused with the unit vectors in R*.) We also set e(u) = e1 (1) +e2(u). For U C S
we define €;(u; U) = fU e;(u), where i =1, 2, and we define €(u; U) =¢€1(u; U) +é,(u; U).
Theorem 1.1 is a consequence of the following two propositions.

Proposition 2.1. There exists an g > 0 such that the following holds: Let (uy) C W>2(S, N) be a
sequence of biharmonic mappings (so uy € C*(S, N)) and assume that u € W>2(S, N) is such that

up —u weakly in (W>2N W (S, R"Y). (4)

Define
Yo=1{x€eS: likminf%(uk; B,(x)) > ¢e1/2 forallr > 0}.
— 00
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Then u € C*°(S, N) is biharmonic and u;, — u in CIZOC(S \ X0, N). Moreover, there exist functions 0y,

0y : Lo — (0, 00) such that 6,(x) > ¢ for all x € g and
FHlei(up) =~ Lei)+ Y (S fori=1,2 (5)
xeXy
weakly-+ in the dual space of C8 (S).
Remarks. (i) By Remark (i) following Theorem 1.1, the hypothesis (2) implies (4) for a subsequence.

(ii) The measures ) 5
and only if the convergence (4) is strong. In that case the last sum in (5) is defined to be zero.

0; (x)8x) are called defect measures. Their common support X is empty if

Proposition 2.2. Let uy, u, o and 6; be as in Proposition 2.1. Then, for each x € X, there exists M, e N
and biharmonic mappings vy, ..., UX,[X € C®(R*, N) such that 6; (x) = 27;1 %i(vf; R*). In particular,

M,
; . Q) — 2. (y- (% 4 P
klglgo%i(uk,S)—%l(u,S)—l—ZZZI%,(Uf,R) fori=1,2.
Xeno j=

For the proof of Proposition 2.1 we need three auxiliary results. The following lemma is a simple

consequence of [Moser 2008, Theorem 2.1]:

Lemma 2.1. There exists a universal constant C such that the following holds: Let r > 0, let u €
W?>2(B,, N) and let X € L*(B,, R") be a section of u"'TN. If V*X € L*(B,) then X € L*(B,), and

1XNI 248,y < CUAV* Xl 208,y + 71X N1 22(8,))-
For u € C* we introduce the notation [u]cr(x) = Z§:1|Dj u(x)|'7. An obvious consequence of
[Scheven 2009, Lemma 5.3] is the following:
Lemma 2.2. There exists €1 > 0 such that, for all r > 0 and for all biharmonic u € C*°(B,, N) satisfying
f |Du|4 <& wehave sup |x|[u]c(x) <1.
B,— xeBr/2
The following lemma shows that isolated singularities of biharmonic mappings are removable.

Lemma 2.3. Let X C S be finite and let u € W>2(S, N) be biharmonic on S\ . Then u is biharmonic
on S. In particular, u € C*(S, N).

Proof. This proof closely follows that of [Jost 2005, Lemma 8.5.3]. We assume without loss of generality
that S = B; and that ¥ = {0}. Then (1) is equivalent to

/ Vadgu - VoV = f(u,Du@Du@Dzu)-qb (6)
B By
for some R”-valued mapping f that is smooth in the first argument and linear in the second argument.

Since u is biharmonic on Bj \ {0}, Equation (6) is satisfied for all ¢ € (LN Wg’z)(Bl \ {0}, R") that are
sections of u~! T N. From the properties of f we deduce that

| f(u, Du® Du® D*u)| < C(|D*u|* + | Du|*). (7)
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Hence f(u, Du® Du ® D*u) € L'(B;, R"). For small R € (0, 1) we set

0 for t € [0, R?],
tr(t) = { 1 —log(t/R)/|log R| fort e [R?, R],
1 fort € [R, 1).
One readily checks that
lim | |D’tg(|x])]* + [DTr(|x])|* dx = 0. (8)
R—0 B,

Now let ¢ € (L® N W?>2)(B, R") be a section of u~'TN. Then, for all R € (0, 1),

Pr(x) =T(|x[)(x)

is still a section of ' TN, and ¢g € (LN WOZ’Z)(Bl \ {0}, R™). Hence it is an admissible test function
for (6). Using (7) and (8) it is easy to check that (6) holds for all ¢ as above, that is, u is biharmonic.
Since u € W22(S, N), Remark (ii) to Theorem 1.1 implies that u € C*(S, N). O

Proof of Proposition 2.1. Clearly (4) implies lim sup,_, ., €(ux; S) < oo. Hence X is finite whatever the
choice of ;. We choose €1 as in the statement of Lemma 2.2. Then the Arzela—Ascoli theorem implies
that uy — u in CIZOC(S \ g, N). Hence u is biharmonic on S \ Xp. Lemma 2.3 therefore implies that
u € C®(S, N) and that u is biharmonic on S.

Weak lower semicontinuity of the L?-norm and (4) imply the existence of (positive) Radon measures

u1 and @y on S such that
Pl up) = FHejw) +p; fori=1,2. 9)

We claim that
w1({x}) > e, forall x €sptpu;. (10)

In fact, let x € S be such that i ({x}) < &;. Then by (9) there exists r > 0 such that

lim sup/ e (ug) Sf e1(u) + p1(Br(x)) < 1.
B, (x) B, (x)

k—o00

Thus uy — u in C*(B, »2(x)) by Lemma 2.2 and the Arzela—Ascoli theorem. (First only for a subse-
quence, but all subsequences must converge to the same limit u because uy — u in W>2(S, R").) Thus
w1(Br/2(x)) =0, so x ¢ sptu;. This proves (10), which in turn implies that spt £ is finite and that
wy = erslotm 01(x)3x) for a function 6; : spt u; — [&1, 00).
If x ¢ spt i1, then (9) implies that
inf lim e1(uy) = inff e1(u) =0. (11)
B, (x)

r>0k—o00 B, (x) r>

On the other hand, if x € spt i then there exists r > 0 such that By, (x) Nspt u; = {x} because spt i is
finite. Thus w(d B, (x)) =0, and so (9) implies

lim / el(uk)Z/ er(u) + i ({x}).
k=00 J B (x) B, (x)
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We conclude that
inf lim e1(ur) = 1 ({x}) forall x € S. (12)

r>0k—o00 B, (x)

Now (12) together with (10) imply that spt u; C ¥p. On the other hand, if x ¢ sptu; then (11) and
Lemma 2.2 imply that there is 7 > 0 such that u; — u on C?*(B.(x), N); hence x ¢ spt w2 and x ¢ Xg. Thus
spt o C spt w1 = Xop. It remains to check that spt u C spt . But (9) implies that, for r € (0, distys(x)),

. | Duy |* |Dul? =
hmsup/ ( +e2(uk)> 5/ ( 5 +ez(u)> + 12(B,(x)), (13)
B, (x) Bx)\ T

k—o00 r2

because by Sobolev embedding we have Duy — Du strongly in L2. If x ¢ spt 15, then the infimum over
r > 0 of the right side of (13) is zero, since Du € L*. Hence Lemma 2.1 implies that x ¢ X. O

For the proof of Proposition 2.2 we will need the following three lemmas:

Lemma 2.4. There exists a modulus of continuity w (that is, w € C9([0, 00)) is nondecreasing and
w(0) = 0) such that, whenever r > 0 and u € W*%(B,., N) is biharmonic, then

disty, (x)[u] e (x) < w(/ |Du|4) forall x € B,.
B,

Proof. Notice that u € C*°(B,, N) by Remark (ii) to Theorem 1.1. The claim follows from a scaled
version of [Scheven 2009, Lemma 5.3] and from the fact that, by Jensen’s inequality,

2
(p‘Z/ |Dul?) 5/ | Dul*. O
B,(a) B, (a)

We will also need the following crucial estimate.

Lemma 2.5. There exists a constant C3 such that the following holds: For all R € (0, 3/8) and for all
biharmonic u € C*°(By, N) satisfying
g:= sup €(u; By \ By < C;l
pE(R,1/2)
we have
€(u; B1 \ Bg) < Czw(g) + 2¢. (14)

Here, w is as in the conclusion of Lemma 2.4.

The proof of Lemma 2.5 will be given in Section 3.

Finally, we will need the existence of a uniform lower bound on the energy of nonconstant entire
biharmonic mappings. An analogous fact is well known for harmonic mappings and also for other kinds
of biharmonic mappings; see for example [Wang 2004b].

Lemma 2.6. There exists a constant o > 0 such that €(u; R*) > « for every nonconstant biharmonic
mapping u € C®(R*, N).
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Proof. If the claim were false then there would exist nonconstant biharmonic u,, € C>®(R*, N) such
that 1imy,— o0 €(um; R*) = 0. After passing to a subsequence we have Du,, — 0 pointwise almost
everywhere. Therefore, since u,, is nonconstant and since Du,, is continuous, there exist x,, € R*
such that r,, := |Du,,(x,,)| are nonzero but lim,,_, o 7, = 0. Define i1, (x) = u,, (x,, + x/ry). Then
E(ily; RY) = €(u,; R*) converges to zero as m — oo. By Lemma 2.2 this implies the existence of a
constant mapping u such that i, — u in Cfoc(lR“, N). But on the other hand, | Di,, (0)| = 1 for all m, so
|Du(0)| = 1. This contradiction finishes the proof. O

Proof of Proposition 2.2. By Proposition 2.1 we have uy, u € C*°(S, N). Since the case Xy = & is
trivial, we assume that g is nonempty. After translating, rescaling (the energy € is scaling invariant)
and restricting, we may assume that o = {0} and that S§ = B;. By Proposition 2.1 we have u; — u
weakly in (W>2N WL4) (B, R") and uy — u in C2_(B; \ {0}, N). Moreover, there is some

loc

0> ¢ (15)

such that
F*Le(ur) — L*e(u) +05(). (16)

Let € € (0, 1) be such that Czw(g) + 3¢ < min{w/4, £1/4}, where w is as in Lemma 2.4, C3 is as in
Lemma 2.5 and ¢; is as in Lemma 2.2. Since u € W22(B;, R"), there exists Q € (0, 1) such that

/ e(u) <e/2. (17)
Bo
We claim that there exists a sequence R; — 0 such that, for all k large enough,
€(ur; Byp \ By) <¢ forall pe[Ry, Q/2], (18)
€(ui; Bor, \ Br,) =¢. (19)

In fact, set
Ry ={r € (0, Q/2) : €(ux; Bar \ Br) > €}

If infinitely many of the %) were empty, Lemma 2.5 would imply that there exists k; — oo such that
€(ux;; Bg \ By,) < Czw(e) + 2¢ for any sequence r; — 0. Choosing this sequence in such a way that
€(uk;; By;) < ¢ for all i, we would conclude that €(uy,; Bg) < C3w(¢) + 3¢ < £1/4, contradicting (15).

Thus, for k large, Ry # & and we can define Ry = sup R;. Clearly R, > 0 because f Boy\B, e(uy) <
f By, e(ur) — 0 as r — 0. On the other hand, R; — 0, since otherwise p = %lim inf;_, o0 Ry is positive,
SO

lim sup/ e(ug) < lim e(ug) =/ e(u) <e/2

k=0 JBog,\Bg, k=0JBy\B, Bo\B,

by (17). This contradicts the fact that Ry is contained in the closure of Ry, which by continuity of

r— fB2 \B e(uy) implies that fBzR \Br e(uyx) > ¢. This also proves (19). Then (18) follows from the
r r k k

definition of Ry.
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Combining (18) with (a scaled version of) Lemma 2.5, we conclude that
€(ur; Bg \ Br,) < Csw(e) +2¢ < /4 (20)
Set vk (x) = ux(Rgx). Then by (16)

lim sup €(v; Bg) = limsup €(uy; Brg,) < inf limsup €(uy; By,) =0 2D

i
k— 00 k— 00 >0 r oo

for all R > 0. Set

> ={x eR?* Hliminf€(vg; By (x)) > £1/2 forall r > 0}.
—00

By (21) we can apply Proposition 2.1 to each Bg. We conclude that =V is locally finite and that there
exists a biharmonic mapping v € C®(R*, N) such that, after passing to a subsequence, v; — v weakly
in (Wh*n w2 (R*, R") and

loc loc
u— v in Co.(R*\ =M R, (22)
and we find that there are a functions 91(1), 92(1) : =M - (0, 00) such that

FHleiv) = e+ Y 0 ()8 for i=1,2. (23)

xex®

On the other hand, the bound (20) implies that

lim sup € (vg; Bg \ B1) < C3w(e)+2¢ forall R > 1.

k— 00

Thus =V ¢ B; (so T is finite) and therefore
v — vin CL (R*\ By, R")

by (22). From this and since € (vy; B> \ B1) = €(ux; Bag, \ Bg,) = ¢ for all k by (19), we conclude that
€(v; R*) > ¢. Hence Lemma 2.6 implies that €(v; R > a.

Claim #1. For all n > 0, there exist R > 1 and p € (0, 1) such that
liminf€(ux; B, \ Brr,) < 1.
k— 00

To prove this claim, let us first show that for all § > O there exist R and p and a sequence k; — 00
such that

€(uy;; Boy \By) <8 foralli eNandallr € [RRy, p/2]. 24)

In fact, assume that this were not the case. Then there would exist § € (0, &) such that for all R and p,
the set

P = {r € [RRy, p/21:€(ux; Bor \ By) > 8}
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is nonempty for all k£ large enough. We choose R > 2 so large and p € (0, Q) so small that

€(v; Byp \ Bp,) <8/4  for all R> R, and (25)
€(u; B,) <8/4. (26)

This is clearly possible because e(v) € LY(R%). Let Iék = sup @{k, hence Iék € [RRy, p/2]. Arguing as
above for Ry, using (26) one readily checks that Ry — 0. We claim that

R/ R — 0. (27)

Indeed, if this were not the case then (after passing to a subsequence) there would exist R € [R, 00)
such that ﬁ’k /Ry € [Ié /2, Zﬁ] for k large enough. Thus by the definition of ﬁk and since R > R > 2 and
™ c By,
3 < limsup € (uy; Bzék \ Bl?k) < limsup€(vi; Byp \ Bk/z)-
k— 00 k—00

This contradiction to (25) shows that (27) must be true.

Now define Uy (x) = uk(ﬁkx). As done above for Ry and vy, using the fact that § < &, one shows that
there exists a nontrivial biharmonic mapping v € C®(R*, N) such that, after passing to a subsequence,
U — v in (Wlif N WIL’CA')([RA', R™). Since  is nontrivial, Lemma 2.6 implies that €(d; R*) > «. Hence

by (27) and since R; — 0, for all R > 1 we have
liminf€(ur; By \ Brg,) > liminf€(uy; Bpg \ Brr,)
k— o0 k— 00 k
=likr£1)£rgf%(vk; BE\BR(Rk/I%k))
> sup liminf€(vy; By \ By) > €(0; Bp)

r>0 k=00

because 0; — v on Bj. Taking the supremum over all R>1and recalling that €(9; R*) > o, we conclude
that lim infy_, o €(uy; B, \ Brg,) > . This contradiction to (20) concludes the proof of (24).
Combining Lemma 2.5 with (24) and choosing § small enough shows that Claim #1 is true.
The results obtained so far apply to any 6 > 0. Now we argue by induction: Assume that m € N
is such that 8 € ((m — 1)a, ma]. If m > 2 then assume, in addition, that Proposition 2.2 is true for all
6 € (0, (m — 1)x]. On one hand, fori =1, 2, for all R € (1, 0co) and for all p € (0, 1) we have

0; +€;(u; By) = kli)n;o(%i(uk; B, \ Brg,) +6i(ui; Brg,)) = kll)ngo €i(vk; Br)
=€ B+ Y 0.
xex®

(First we used (5) and that p; (0B,) = 0 for all p € (0, 1), and then we used (23) together with the fact
that ¥ ¢ B;.) Taking p — 0 and R — oo we conclude

0 =€ RY+ Y 0 (x) forboth i =1,2. (28)

xex®
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Hence

6 > E(v; RY) + Z oM (x). (29)

xex®

Since ¢(v; R*) > « this implies that 8V (x) <0 — « for all x € =V, If m > 2 we can thus apply the
induction hypothesis to conclude that

M,
6 () =Y € (wi: RY) forboth i =1,2. (30)
j=1

Here v}, R u)i”x € C°°([R{4, N) are biharmonic and M, € (0, m — 1] is a natural number. (If m = 1, then

(29) implies that M = & and that 6 = o = €(v; R*). This concludes the proof of the case m = 1.)
On the other hand, for all p € (0, 1) and all R > 1,
0 < kli)ngo(%(uk; B, \ Brg,) + é(ur; Brr,))
< lim inf € (uy; Bp \ BRRk) + lim €(vg; Br)
k— 00 k— 00

= liminf%(u: B, \ Brr,) +€(v: BR)+ > _ 0 (0)8). (31)
k—o00 ren D

We used that =V © By, so limg_, o0 €(vx; Br) = €(v; Bg) + Y res® 9(1)(x)8{x}. Now let p — 0 and
R — oo in (31) using Claim #1. We conclude that & <€ (v; RY)+Y" 1 61 (x). Thus by (29) and (30),

M,
o=6w:RY+ Y Y 6wl RY.

xexM j=I

Combining this with the inequalities (28) immediately implies that

My
0 =€W:;RH+ Y Y €} R") forboth i=1,2. O
xex® j=1

3. Energy estimates on the “neck” region
The purpose of this section is to prove the following proposition.

Proposition 3.1. There exists a constant Cy such that the following holds: For all R € (0, 1/2) and for
all biharmonic u € C* (B, N) satisfying

e:= sup |x|[ulcz(x) <1, (32)
xEBl\ER

we have

/ VU Dul? < Cy(e +%u: B\ Bp))e. (33)
Bi1\Br
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Corollary 3.1. There exists a constant C, such that the following holds: For all R € (0, 1/2) and for all
biharmonic u € C*°(By, N) satisfying (32), we have

| Du|?
5 < Ca(e +€(u; By \ Br))e. (34)
B\Bz Xl

If, in addition, ¢ < 1/(2(C| + C3)), then
€(u; B\ Bg) <2(Cy + Cy)e>. (35)

Proof. Set ¢ = SUP, ¢ g\ By |x|[u#]c3(x). By (33) and by (63) from Lemma 5.2, we have

| Du|? ) = 3 2
> = Ci(e+é(u; Bi\ BRr))e +2%°(0B1)e".
B\Bx |XI

This implies (34) because ¢ < 1. We clearly have
D 2
/ |Du|4582/ s
Bi\Bg B\Br Xl

/ _ 1Dul* < Ca(e +€(u; B\ Br))e’.
Bi\Br

Thus (34) implies that

Adding this to (33) yields
€(u; By \ Br) < (C1 + C2)e” + (C + C2)€(u; By \ Br)e,

because ¢ < 1. Since ¢ < 1/(2(C + C3)), we can absorb the second term into the left hand side. This
yields (35). Il

As a consequence of Corollary 3.1 we obtain Lemma 2.5:
Proof of Lemma 2.5. Set ¢ = sup ,¢(g 1 /2) €(u; Bzp \ By). We claim that
|x|[u]cs(x) < 40)(8) forall x € B]/2 \ §4R/3- (36)

In fact, let x € By2 \ Bug s»3 and apply Lemma 2.4 to the ball By|/4(x). This yields

disty g, 40 () [ules (x) < co(/ |Du|4).

Bixj/a(x)
Since Bjyj/4(x) C B3jx|/2 \ B3jx|/4, this implies (36).
Applying (35) (with By, instead of By and By 3 instead of Bg) to (36) implies
€(u; Biy2\ Bags3) < Co’(e) (37)

for some constant C, provided that ¢ is small enough (since then w(¢) is small, and so |x|[u]c3(x) is
small by (36)). Finally, note that by definition of ¢ we have €(u; By \ By,2) + €(u; Bog \ Br) < 2e¢.
Together with (37) and smallness of w(¢) this implies (14). Il
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The rest of this section will be devoted to the proof of Proposition 3.1. We will use the notation
ru=eydqu, Du=0ou®e,, Dgu=Du— Du, D*u = (0,08u) ® eq Q ep.
Above and in what follows we tacitly sum over repeated indices. A short calculation shows that
Dgsu = (|x]9g,e,u) ® €q. (38)

Proof of Proposition 3.1. Since u € C*° (B, N), [Scheven 2009, Lemma 4.2] implies that (1) is equivalent
to
Au =~y Eq[u] + Glul, (39)

where Ey[u] = —0g(A(u)(0qu, dgu)) + Fylul, and Fylu]: S — (RH* @ R"” and G[u] : S — R" are as
in [Scheven 2009, Lemma 4.2], that is, Fy[u] = fy (¥, VDu ® Du) for functions f, that are smooth in
the first and linear in the second argument, and G[u] = g;(u, VDu @ VDu) + g»(u, VDu ® Du ® Du)
for functions g; and g, that again are smooth in the first and linear in the second argument. Therefore,

|Glul| < C(ID*ul* + |Dul*), (40)
|Eq[ull < C(ID*ul|Dul + |Dul?). (41)

For r; < ry define the open annulus A(ry, r2) = B,, \ Er] and set A = A(R, 1). (This should not be
confused with the second fundamental form of N.) As we will show at the end of this proof, we may
assume without loss of generality that R = 2~ for some integer L > 1.

Define R; = 2FR and set Ay = A(Ry, Ris1). Set

e= sup |x|[ules (). 42)
xEBl\ER

Following an idea used in [Sacks and Uhlenbeck 1981] and [Ding and Tian 1995] in the context of
harmonic mappings, we introduce the unique radial mapping g : A — R" solving the following boundary
value problem for all k =0, ..., L:

A2q=0 on Ag, (43)
1 P 1

(Ry) = ————— u and ¢'(Ry) = —/ du. (44)

T = 90@Br,) Jys, T T @8R Jon,,

(For a radial function of the form g (x) = g (]x|), we often write ¢ instead of g.) Notice that ¢ is indeed
well and uniquely defined on each A; by (43) and (44) because (43) is simply a fourth order ordinary
differential equation on (R, Riy1), since ¢ is radial. (See Lemma 5.1 below for details.) The rest of
this proof is divided into Lemma 3.1 and Lemma 3.2 below. Combining their conclusions one obtains
that of Proposition 3.1.

Let us finally check that the case of arbitrary R € (0, 1) follows from the case when R =27%. In fact,
for general R let L be such that 2LR e [%, 1). The definition of ¢ implies that

/ |VDu|2§szf Ix|™* < 23 (3B)) log 2.
AQLR,1) AQLR,1)
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Applying Proposition 3.1 with B,.p instead of Bj, the estimate (33) follows. U
Lemma 3.1. For u, g and R as in the proof of Proposition 3.1 we have
/|D2(u—q)|2§C<8+/|V”Du|2+|Du|4)s, (45)
A A
D(u — 2
/MgC(H/W“DuFHDur‘)e. (46)
A | x| A

Proof. Since g|4, is a solution of a linear ordinary differential equation with smooth coefficients, it is
C° up to the boundary of A;. Moreover, for r € (Ry, Ry+1), by Lemma 5.1 there exists a universal
constant C such that

lq'(N] < Cg' (RO + 19" (R )| + Ry g (Re1) — g (RO)). (47)

By (44) and by (42) this implies that |u(x) — g (Ry)| < | Dull o9 Bg,) -diam(0 Bg,) for all x € dBg, and
all k. Therefore,
|g (Rk+1) — q(Ri)| < || Dullpa,) diam Ax < Ce (48)

by (42) and because diam A; < CRy. Since |x| is comparable to R; on Ay and since k was arbitrary, we
conclude from (47) and (48) and from (44) and (42) that |x||Dg(x)| < Ce for all x € A. By (44) and by
(42) this implies that |u — g| < Ce. Summarizing, we have shown that

[(u —q)(xX)|+ |x||D(m —q)(x)| < Ce forall x € A. (49)
Notice that while (44) implies that g € C '(A, R") and that ¢| A €C ®(Ag, R") for all k, in general
q ¢ C*(A;R").
By partial integration one obtains, for arbitrary v € C%(Ay, R"),
Ri+1

/|D2v|2=/ (aaa,gv)-(aaaﬂv):/ (sz)-v+|:/ (a,aﬁv)-aﬁv—(a,m)-v} .
Ak Ak Ak aAk I‘:Rk

Here and below we use the notation

[F], =)= f)

for functions f € C°([#1, 2]). Inserting v = u — ¢ and summing over k =0, ..., L yields

/|D2(u—q)|2:/(A2u)-(u—q)
A A

L
+ZU88 (098 (u — )) - dp(u — q) — (B, A — q)) - (u —q)]
k=0 p

Ric+1

p=Rx
1
=f(A2u)-(u—q>+ [/ ara,su-a,a(u—q)—arm-(u—q)}
A B, =R
]

k=0 =98,

Ric+1

(0,9rq)(p) - 3y (u — g)(x) — (8, Aq)(p) - (u — q)(x) d%3(x)] . (50)
P=Ry
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In the first step we used that A2g = 0 on Ay. In the last step we used that the boundary integrals with
continuous integrands cancel successively, and we used that ¢ is radial. Since ¢ is radial, the same is
true for 0, 0,¢ and 9, Agq; see (60). The choice of boundary conditions (44) implies that

(3r8rq)(p)-/aB 3r(u—q)(x) d¥*(x) =0 and (3rACI)(p)-/(;B (u—q)(x) dH*(x) =0

for all p € {Ro, Ry, ..., Rr}. So the sum in the last term in (50) is zero. (The discontinuous expressions
q" = 0,9,q and ¢"" occurring in 9, Aq must be understood in the trace sense: If d Bg, belongs to d Ax
then ¢”(Ry) = lim,4g, ¢”(r) and if d Bg, belongs to d Ay, then g”(Ry) = lim, g, ¢”(r). These limits
exists because, as noted above, ¢g|4, is smooth up to the boundary of Ay.)

To estimate the second term in (50) we use (49) and (42). This gives

| g - )l < c0 @B 5 < 2
9B, r<r
Similarly, [, |8, Aullu —q| < Ce?. Thus (50) implies

[iPa-or<| [ @t w-g|+c2 (51)
To estimate the term | [, (A%u) - (u — g)| in (51), we use (39) to replace A%u. We obtain
/Amzm-w—q)=/A<—aaEa[u]>-(u—q)+G[u]-(u—q)
=/AEa[M]'3a(M—Q)+/AG[M]'(”—C])—|:/a x—“‘Ea[uHu—qz)]1 . (52

B, x| r—R

To estimate the last term in (52) we simply use that | E,[¢]| < |D%u||Du|+ |Du)® < Ce?/|x|? pointwise
by (41). Thus

/ |Eqlulllu —q| < Ce*%(3B,)r > < Cé®

B,
for both r =1 and » = R.
To estimate the second term in (52), we use (40) and (49) to find

/|G[u]||u—q| sCa/(|DZu|2+|Du|4>.
A A

To estimate the first term in (52) notice that by (41) and by (49) we have

D 2
| ”,J ) (53)

|Du|  |Dul?
—_ <

|x| x|~

f|Ea[u]||D(u—q)| sae/wzm Cs/(|D2u|2+|Du|4+
A A A

x|

Applying Lemma 5.2 to v = u with r; = R and r, = 1, we have

Dul? 1 !
|Dul §/|D2u|2+[—f |Du|2] .
A Ix] A r Jas, r—R
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The boundary terms can be estimated as above using the definition of &, Thus

So (53) implies
/|Ea[u]||D(u—q>| 508(82+/|D2u|2+|Du|‘*).
A A

Since |D%ul?> < C(N)(|VDu|*> + |Du|*) for some constant C(N) depending only on the immersion
N — R", this concludes the proof of (45).
To prove (46) we apply Lemma 5.2 to each restriction (# — g)|4,. This yields

ID(u— q)|? 1 Riri
/—25 D2 — )P + —/ Du—g)P| .
Ar x| Ax r JaB, r=R,

When we sum over k =0, ..., L, the terms in square brackets cancel successively because D(u — gq) is
continuous. After estimating the boundary terms on d B; and on d Bg using (42), this yields (46). U

Lemma 3.2. For u, g and R as in the proof of Proposition 3.1 we have

1 V2
/ D> —q)? > (——i)f |V”Du|2—C(8—|—/|V“Du|2+|Du|4>8.
A(R,1) 2 3 A(R,1) A

Proof. For v e C*°(S, R") we have
D*v=DDgv+ DD,v,
where Dgsv = Dv — D,v. Thus
|D?*v|? > |DDgv|? 4+ 2D(Dv — D,v) - DD,v. (54)
Now D(Dv — D,v) - DD,v equals
e ((Bp) ® (ep —€Pe,)) - 9 (Byv @ el ey)
= ((aaaﬁv) ® (ep — e,/?er) — (0pV) ® 9y (efer)) : ((a(xayv) ® e;/er + (9,v) ® 0y (e,}fer))
= ((0.9pv) ® (e —€f'e,)) - (3, v) ® Bu (€] e)))
— [(3p) ® du (el e,)|* — (Ipv) @ Bu(efer) - (3a0,v) ® €l e,
= ((Bu0pv) ® (g —efe,) - ((3,v) ® (Buey))
— (V) ® o (ef €)* — (9pv) ® (0uef Ve - (3udyv) @ €] e,
= (9,e,0aV) - (3,0) — |9pv]* [0u (el €) [ — Bgye, v - (3, 0q V).
This shows that
D(Dv — D,v) - DD,v > —2|De,||D*v||Dv| — 2| Dv|*| De, |*
> —(|D*v]* + C|De,|*| D) (55)
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for some universal constant C > 0. Since | De, (x)|> =3/|x|, inserting (55) into the estimate (54) yields
3|D*v|? > |DDgv|* — C|Dv|*/|x|%.

Inserting v = u — ¢q, integrating and using that Dgg = 0 gives

Du—ag)l2
/|D2(u—q)| >/|DDS ul? — | (blt |2q)l
2
z/|VDu—VD,u|2_c 1D = q)I”
|x|?
1 2 2 |D(u —q)|?
Z(I—E)/WDM +(1—\/§)/|VDru| _c ot

In the second step we used that
Du = Dgu+ Dyu

and the trivial estimate |Df| > |V* f|. By (58) the last line equals

_ﬁ)/|VDu|z+(ﬁ_l)/ V(i [ 1D =)
]2

|x|?

1—4/2 1
+ V2 / <§|Du|2+2(Vf8ru)'3ru—glaru|2)d%3 .
2 9B, r r r=R

The claim follows by dropping the second term, which is nonnegative, and noticing that the fourth term
is dominated by &2 by (42) while, by (46), the third term is dominated by

8(5+/|VDu|2+|Du|4). O
A

4. An equality for stationary biharmonic mappings

The following lemma is true for mappings that are stationary with respect to the energy E in the sense of
[Moser 2008]. We do not need the precise definition here. We only remark that every smooth biharmonic
mapping is also stationary. Therefore by Remark (ii) to Theorem 1.1, every u € W>2(S, N) that is
biharmonic is also stationary. To recall the monotonicity formula from [Moser 2008], for u € W22(B;, N)

=1f |VDu|2+1f <§|Du|2+2(D,a,u-a,u)>d%3.
4 Js, 4 Jop \r

Theorem 3.1 in [Moser 2008] (see also [Hornung and Moser 2012]) then states that, if u € W>2(S, N)
is stationary, then

we define

u 2 2
@(rz)—@(r1)=/ (IV |x|0,u(x)] Jr2Iaru(X)I dx) (56)
)2\3'1

x| x|

for almost all 7y, rp with 0 < r; <rp < 1. As a corollary to this fact we obtain the following lemma:
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Lemma 4.1. Let u € W>2(By, N) be stationary and let R € (0, 1). Then

1 9,u|?
/ |V“Dru|2=/ <—|V“Du|2+2| ”,l)
B1\Bg Bi\Bg \4 |x|

1
41 U (§|Du|2 — ‘—‘|a,u|2 +2(V"3,u) - aru>d%3} (57)
4 9B, \T r R
Vé(|x]0,u)|?
=/ <l|vupu|2_' (|x|2ru>|>
Bi\Br 2 | x|
1 3 2 !
Fa (—|Du|2+2(v;’a,u).a,u——|a,u|2)d%3 . (58)
2 9B, \T r f_R

We remark that Lemma 4.1 can be regarded as a biharmonic counterpart of [Sacks and Uhlenbeck
1981, Lemma 3.5].

Proof. First notice that |V D,u|?> = |Vd,u|*> + | De,|?|3,u|* and that | De,|> = 3/|x|>. Moreover, a short
calculation using (38) shows that |x|V0d,u = V(|x|d,u) — D,u. Using these facts we calculate

V(|x|0,u D,u 2
VD,u = |V By e, 210,
x| x|
IV(xow)* | [oul* 2
= — —D(|x|0,u) - D,
P2 e DO Dr
V(|x]8,u)|? dyul? dyul?
:| (Ix|0yu)| 4| | —diV<| | x>‘ (59)
|x|? |x|? |x |2
Integrating over B \ Bg and using (56) we obtain (57). On the other hand, (59) clearly equals
IV (Ix|0,u)]? |aru|2) IV(xlow))* <|3ru|2 )
2 2 - —div| ——x ).
(2 R T
Integrating this over By \ Bg and using (56) we obtain (58). O

5. Appendix

Lemma 5.1. There exists a universal constant C4 such that for all R > 0 and for all radial solutions
q € C®(Bar \ Bgr,R") of the equation Azq =0on Bop \ Br, the following estimate holds:

14/ lleo g 5.5 < Calld’ R +1g' @R+ R~ [g2R) — g(R)]).
Proof. After rescaling we may assume without loss of generality that R = 1. Since

q’(|x])
|x]

we see that A2g = 0 is equivalent to ¢’ being a solution of the third order system

3 3 / 3 4
;< ft ©, f’(t)) + (—ft ©, f’(t)) =0. (61)

Aq(x) =3 +4"(IxD, (60)
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Denote by X C C*°(B; \ By, R") the (at most three dimensional) subspace of solutions to (61). Denote
by L : X — R the functional given by Lf = (f(1), f(2), /; 12 f). We claim that L is surjective.

In fact, let a € R?. By the direct method it is easy to see that the functional v /, Bo\By |V2v|? has a
minimizer in the class of all radial v € W>? satisfying v'(1) = a; and v'(2) = a, and v(2) — v(1) = as.
This minimizer ¢ satisfies the Euler—Lagrange equation A%g = 0, so its radial derivative ¢’ solves the
ODE (61). Thus ¢’ € X and Lq" = a. This proves surjectivity of L.

Hence X is three dimensional and L is in fact bijective. Since all norms on X are equivalent and since
the inverse of L is of course bounded, we conclude that || f'{|co(,2),ry < CILf]| for all f € X. This
implies the claim. O

Lemma 5.2. Let 0 < ry <rp <1 and assume that v € WQ’Z(B,2 \1_3,1, R™). Then

Dv|? 1 "
/ | ”2' 5/ |D2v|2+[—/ |Dv|2:| . (62)
Brz\Br] |x| Brz\Br] r 3Br r=ri
Ifve W>2(B,,\ B,,, N) then
| Dvl? vy | L 2|
5 =< IVYDoul=+| - | D] . (63)
BrZ\Brl |'x| Brz\Brl r 8Br r=ri

Proof. For v € C2(A(r1, ), R") we have

|Dv> (|Dvf? 3| Dv|?
2 = div x| — .
|x|? |x|? x|

Hence if Dv is continuous up to the boundary of A(ry, r2) then

|Dv|? 9, Dv|? |Dv|>  x 17
2 ) = — _— + > X —
A(ry,r2) |x| A(ry,r) |x| 9B, |X| |x| r=r

v 1 NG
- —2/ (0,9,0) - 2% 4 [—/ Dl } . (64)
A(r1.r2) x| r JaB, —

By density and by continuity of the trace operator, this equality remains true for v e W22(A(ry, 1), R").
We conclude that

Dv|? Dv? 1 &
z/ | 2' 5/ |D2v|2+/ %Jr[—f |Dv|2} :
AGriora) X1 A(r1,r) AGrry) 1 X1 r Jas, r=r

Absorbing the second term on the right into the left hand side yields (62).
If v takes values in N then the first term on the right hand side of (64) equals

0
-2 / (V' 04v) - OV
A(r1.r) x|

because 0, v(x) € Ty N for all x. Estimating as above yields (63). O
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THE WAVE EQUATION ON ASYMPTOTICALLY
ANTI DE SITTER SPACES

ANDRAS VASY

In this paper we describe the behavior of solutions of the Klein—-Gordon equation, (L, + Mu = f,
on Lorentzian manifolds (X°, g) that are anti de Sitter-like (AdS-like) at infinity. Such manifolds are
Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic)
spaces, in the sense that the metric is conformal to a smooth Lorentzian metric g on X, where X has a
nontrivial boundary, in the sense that g = x 22, with x a boundary defining function. The boundary is
conformally timelike for these spaces, unlike asymptotically de Sitter spaces studied before by Vasy and
Baskin, which are similar but with the boundary being conformally spacelike.

Here we show local well-posedness for the Klein-Gordon equation, and also global well-posedness
under global assumptions on the (null)bicharacteristic flow, for A below the Breitenlohner—Freedman
bound, (n—1)2/4. These have been known before under additional assumptions. Further, we describe the
propagation of singularities of solutions and obtain the asymptotic behavior (at 3 X) of regular solutions.
We also define the scattering operator, which in this case is an analogue of the hyperbolic Dirichlet-
to-Neumann map. Thus, it is shown that below the Breitenlohner—Freedman bound, the Klein—Gordon
equation behaves much like it would for the conformally related metric, g, with Dirichlet boundary
conditions, for which propagation of singularities was shown by Melrose, Sjostrand and Taylor, though
the precise form of the asymptotics is different.

1. Introduction

In this paper we consider asymptotically anti de Sitter (AdS) type metrics on n-dimensional manifolds
with boundary X for n > 2. We recall the actual definition of AdS space below, but for our purposes
the most important feature is the asymptotic form of the metric on these spaces, so we start by making
a bold general definition. Thus, an asymptotically AdS type space is a manifold with boundary X such
that X° is equipped with a pseudo-Riemannian metric g of signature (1, n — 1) that near the boundary Y
of X is of the form e

g == (1-1)
where & is a smooth symmetric 2-cotensor on X such that X =Y x [0, €), with respect to some product
decomposition of X near Y, and Ay is a section of T*Y @ T*Y (rather than merely' Ty X®TyX)andisa

This work is partially supported by the National Science Foundation under grant DMS-0801226, and a Chambers Fellowship
from Stanford University.
MSC2000: 35L05, 58J45.
Keywords: asymptotics, wave equation, anti de Sitter space, propagation of singularities.

n fact, even this most general setting would necessitate only minor changes, except that the “smooth asymptotics” of
Proposition 8.10 would have variable order, and the restrictions on A that arise here, A < (n — l)2 /4, would have to be modified.

81
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Lorentzian metric on Y (with signature (1, n —2)). Note that Y is timelike with respect to the conformal
metric
g =x?g, so $=—dx*+hnear?,

that is, the dual metric G of g is negative definite on N*Y, that is, on span{dx}, in contrast with the
asymptotically de Sitter-like setting studied in [Vasy 2010b] when the boundary is spacelike. Moreover,
Y is not assumed to be compact; indeed, under the assumption (TF) below, which is useful for global
well-posedness of the wave equation, it never is. Let the wave operator [1 =[], be the Laplace-Beltrami
operator associated to this metric, and let

P=PO)=0,+xr

be the Klein—Gordon operator, where A € C. The convention with the positive sign for the “spectral
parameter” A preserves the sign of A relative to the x> component of the metric in both the Riemannian
conformally compact and the Lorentzian de Sitter-like cases, and hence is convenient when describing
the asymptotics. We remark that if n = 2 then up to a change of the (overall) sign of the metric, these
spaces are asymptotically de Sitter, and hence the results of [Vasy 2010b] apply. However, some of the
results are different even then, since in the two settings the role of the time variable is reversed, so the
formulation of the results differs as the role of “initial” and “boundary” conditions changes.

These asymptotically AdS metrics are also analogues of the Riemannian ‘conformally compact’, or
asymptotically hyperbolic, metrics, introduced by Mazzeo and Melrose [1987] in this form, which are
of the form x ~2(dx? + h) with dx*> + h smooth Riemannian on X, and |y a section of T*Y ® T*Y.
These have been studied extensively, in part due to the connection to AdS metrics (so some phenomena
might be expected to be similar for AdS and asymptotically hyperbolic metrics) and their Riemannian
signature, which makes the analysis of related PDE easier. We point out that hyperbolic space actually
solves the Riemannian version of Einstein’s equations, while de Sitter and anti de Sitter space satisfy
the actual hyperbolic Einstein equations. We refer to [Fefferman and Graham 1985; Graham and Lee
1991; Anderson 2008] among others for analysis on conformally compact spaces. We also refer to
[Witten 1998; Graham and Witten 1999; Graham and Zworski 2003] and references therein for results
in the Riemannian setting that are of physical relevance. There is also a large body of literature on
asymptotically de Sitter spaces. Among others, Anderson and Chrusciel studied the geometry of asymp-
totically de Sitter spaces [Anderson 2004; 2005; Anderson and Chrusciel 2005], while in [Vasy 2010b]
the asymptotics of solutions of the Klein—-Gordon equation were obtained, and in [Baskin 2010] the
forward fundamental solution was constructed as a Fourier integral operator. It should be pointed out that
the de Sitter—Schwarzschild metric in fact has many similar features with asymptotically de Sitter spaces
(in an appropriate sense, it simply has two de Sitter-like ends). A weaker version of the asymptotics in
this case is contained in the works of Dafermos and Rodnianski [2005; 2009; 2007] (they also study a
nonlinear problem), and local energy decay was studied by Bony and Hifner [2008], in part based on
the stationary resonance analysis of S4 Barreto and Zworski [1997]; stronger asymptotics (exponential
decay to constants) was shown in a series of papers with Antonio S4 Barreto, Richard Melrose and the
author [Melrose et al. 2011; 2008].
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For the universal cover of AdS space itself, the Klein—-Gordon equation was studied by Breitenlohner
and Freedman [1982a; 1982b], who showed its solvability for A < (n — 1)2 /4, n = 4, and uniqueness
for A < 5/4, in our normalization. Analogues of these results were extended to the Dirac equation by
Bachelot [2008]; and on exact AdS space there is an explicit solution due to Yagdjian and Galstian
[2009]. Finally, for a class of perturbations of the universal cover of AdS, which still possess a suitable
Killing vector field, Holzegel [2010] showed well-posedness for A < (n — 1)?/4 by imposing a boundary
condition; see [Holzegel 2010, Definition 3.1]. He also obtained certain estimates on the derivatives of
the solution, as well as pointwise bounds.

Below we consider solutions of Pu =0, or indeed Pu = f with f given. Before describing our results,
first we recall a formulation of the conformal problem, namely g = x2g, so g is Lorentzian smooth on
X, and Y is timelike —at the end of the introduction we give a full summary of basic results in the
“compact” and “conformally compact” Riemannian and Lorentzian settings, with spacelike as well as
timelike boundaries in the latter case. Let

PZDg;

adding A to the operator makes no difference in this case (unlike for P). Suppose that ¥ is a spacelike
hypersurface in X intersecting Y (automatically transversally). Then the Cauchy problem for the Dirichlet
boundary condition,

Pu=f, uly=0, ulg=vo, Vuly=1y,

with f, Yo, ¥ given, V a vector field transversal to ¥, is locally well-posed (in appropriate function
spaces) near ¥. Moreover, under a global condition on the generalized broken bicharacteristic (or GBB)
flow and &, which we recall below in Definition 1.1, the equation is globally well-posed.

Namely, the global geometric assumption is that

there exists ¢ € €°°(X) such that for every GBB y,the maptopoy: R — R

TF
is either strictly increasing or strictly decreasing and has range R, (TF)

where p : T*X — X is the bundle projection. In the formulation above of the problem, we would assume
that & is a level set, t = #y; note that locally this is always true in view of the Lorentzian nature of the
metric and the conditions on Y and &. As is often the case in the presence of boundaries — see for
example [Hormander 1985, Theorem 24.1.1] and the subsequent remark — it is convenient to consider
the special case of the Cauchy problem with vanishing initial data and f supported to one side of ¥, say
in t > ty; one can phrase this as solving

Pu=f, uly=0, suppuC {t>1).

This forward Cauchy problem is globally well-posed for f € L2 (X)and u € I-'IILC(X ), and the analogous

loc
statement also holds for the backward Cauchy problem. Here we use Hérmander’s notation H'(X) [1985,
Appendix B] to avoid confusion with the “zero Sobolev spaces” Hj(X), which we recall momentarily.
In addition, (without any global assumptions) singularities of solutions, as measured by the b-wave

front set, WFy, relative to either leoc

(X) or HILC(X ), propagate along GBB as was shown by Melrose,
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Sjostrand and Taylor [Melrose and Sjostrand 1978; 1982; Taylor 1976; Melrose and Taylor 1985]; see
also [Sjostrand 1980] in the analytic setting. Here recall that in X°, bicharacteristics are integral curves
of the Hamilton vector field H,, (on 7*X°\ 0) of the principal symbol p = 02(}3) inside the characteristic
set,

X = p ' ({0D).

We also recall that the notion of a €°*° and an analytic GBB is somewhat different due to the behavior at
diffractive points, with the analytic definition being more permissive (that is, weaker). Throughout this
paper we use the analytic definition, which we now recall.

First, we need the notion of the compressed characteristic set 3 of P. This can be obtained by replacing
Ty X in T*X by its quotient 7y X /N*Y, where N*Y is the conormal bundle of ¥ in X. One denotes then
by ¥ the image 7 (X) of  in this quotient. One can give a topology to ¥, making a set O open if and
only if #7!(0) is open in . This notion of the compressed characteristic set is rather intuitive, since
working with the quotient encodes the law of reflection: Points with the same tangential but different
normal momentum at Y are identified, which, when combined with the conservation of kinetic energy
(that is, working on the characteristic set) gives the standard law of reflection. However, it is very useful
to introduce another (equivalent) definition already at this point since it arises from structures that we
also need.

The alternative point of view (which is what one needs in the proofs) is that the analysis of solutions of
the wave equation takes place on the b-cotangent bundle, °7*X (‘b’ stands for boundary), introduced by
Melrose. See [Melrose 1993] for a very detailed description, and [Vasy 2008¢] for a concise discussion.
Invariantly one can define °7*X as follows. First, let ¥, (X) be the set of all 6> vector fields on X tangent

to the boundary. If (x, yi, ..., y,—1) are local coordinates on X, with x defining Y, then elements of
Vp(X) have the form
n—1
axd.+Y by, (1-2)
j=1

with a and b; smooth. It follows immediately that ¥, (X) is the set of all smooth sections of a vector
bundle 7 X, and x, yj,a,bjfor j=1,...,n—1 give local coordinates in terms of (1-2). Then bT*X is
defined as the dual bundle of ®7 X. Thus, points in the b-cotangent bundle, °T*X, of X are of the form

n—1
dx
E+ ZIEJ dyj.,
j=

so (x,y,§,¢) give coordinates on b7*X. There is a natural map 7 : T*X — PT*X induced by the
corresponding map between sections,

n—1

n—1
d
Edx+ ) ¢idy; = (xs)Ter;gjdyj.
]:

j=1
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Thus
”(x’y’f’ C):(xv y,X$,§), (1'3)

that is, § = x& and { = ¢. Over the interior of X we can identify Ty X with bTX*C,X , but this identification
7 becomes singular (no longer a diffeomorphism) at Y. We denote the image of ¥ under = by

T =7(%),

called the compressed characteristic set. Thus, . is a subset of the vector bundle °T*X , and hence is
equipped with a topology that is equivalent to the one define by the quotient; see [Vasy 2008c, Section 5].
The definition of analytic GBB is then as follows:

Definition 1.1. Generalized broken bicharacteristics, or GBB, are continuous maps y: I — 3, where 1
is an interval, satisfying that for all f € €>°(°T*X) real valued,

limi (foy)(s) — (foy)(s0)
im inf

§—>S0 s — S50

> inf{H,(7* £)(q) : g € 7 (¥(s0)) N Z}.

Since the map p — H,, is a derivation, H,, =aH, at X, so bicharacteristics are merely reparametrized
if p is replaced by a conformal multiple. In particular, if P is the Klein—Gordon operator L + A for an
asymptotically AdS-metric g, the bicharacteristics over X° are, up to reparametrization, those of g. We
make this into our definition of GBB.

Definition 1.2. The compressed characteristic set 3 of P is that of 0.
Generalized broken bicharacteristics, or GBB, of P are GBB in the analytic sense of the smooth
Lorentzian metric g.

We now give a formulation for the global problem. For this purpose we need to recall one more
class of differential operators in addition to V', (X) (which is the set of €°° vector fields rangent to the
boundary). Namely, we denote the set of €> vector fields vanishing at the boundary by Vo (X). In local
coordinates (x, y), these have the form

axde+ Y bj(xdy). with a,b; € 6 (X); (1-4)
j=1
see (1-2). Again, ¥o(X) is the set of all €*° sections of a vector bundle 0T X, which over X° can be
naturally identified with Tx. X; see [Mazzeo and Melrose 1987] for a detailed discussion of 0-geometry
and analysis and [Vasy 2010b] for a summary. We then let Diff},(X) and Diffy(X) be the set of differential
operators generated by ¥V, (X) and Vo(X), respectively, that is, they are locally finite sums of products
of these vector fields with €°°(X)-coefficients. In particular,

P =0, + A € Diff}(X),

which explains the relevance of Diffy(X). This can be seen easily from g being in fact a nondegenerate

-2

smooth symmetric bilinear form on °T X ; the conformal factor x =2 compensates for the vanishing factors

of x in (1-4), so in fact this is exactly the same statement as g being Lorentzian on T X.
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Let H(’)‘ (X) denote the zero-Sobolev space relative to
L*(X) = L3(X) = L*(X, dg) = L*(X, x "dg);
so if k > 0 is an integer then
ue Hy(X) ifandonlyif Lue L*(X) forall L e Diff5(X);

negative values of k give Sobolev spaces by dualization. For our problem, we need a space of “very nice”
functions corresponding to Diff,(X). We obtain this by replacing €°°(X) with the space of conormal
functions to the boundary relative to a fixed space of functions, in this case Hé‘(X ), that is, functions
ve H&IOC(X) such that Qu € Hok,
version of this is Hé"’g” (X), which is given for m > 0 integer by

(X) for every Q € Diff,(X) (of any order). The finite order regularity

loc

uc H(’;’I;”(X) if and only if u € HY(X) and Qu € H{ (X) for all Q € Diff" (X),

while for m < 0 integer, u € Hyy'(X) if u = Y. Qju;, u; € Hyy(X), and Q; € Diff"(X). Thus,
Ho_, é"_m (X) is the dual space of H(’,‘”];" (X), relative to L%(X ). Note that in X°, there is no distinction
between 1, (X), Vo(X), or indeed simply ¥'(X) (smooth vector fields on X), so over compact subsets
K of X°, H(]i’l;" (X) is the same as H**(K). On the other hand, at ¥ = 3X, H(i’bm (X) distinguishes
precisely between regularity relative to Vo(X) and V' (X).

Although the finite speed of propagation means that the wave equation has a local character in X, and
thus compactness of the slices # = #y is immaterial, it is convenient to assume that

the map ¢ : X — R is proper. PT)

Even as stated, the propagation of singularities results (which form the heart of the paper) do not assume

this, and the assumption is made elsewhere merely to make the formulation and proof of the energy

estimates and existence slightly simpler, in that one does not have to localize in spatial slices this way.
Suppose A < (n — 1)?/4. Suppose

f € Hypie(X) and  supp f C {t > to}. (1-5)
We want to find u € H()l,loc(X ) such that
Pu=f and suppu C {t>tp}. (1-6)

We show that this is locally well-posed near . Moreover, under the previous global assumption on GBB,
this problem is globally well-posed:

Theorem 1.3 (see Theorem 4.16). Assume that (TF) and (PT) hold. Suppose ) < (n — 1)?/4. The
1oc(X), and for all compact K C X
there exists a compact K' C X and a constant C > 0 such that for all f as in (1-5), the solution u satisfies

.. . . 1
forward Dirichlet problem (1-6) has a unique global solution u € H,,

gy < CUF g ey
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Remark 1.4. In fact, one can be quite explicit about K” in view of (PT), since u|,¢[,.;,] can be estimated
by fl;er, with I open and containing [#g, #1].

We also prove microlocal elliptic regularity and describe the propagation of singularities of solutions,
(X). We define this notion in Definition 5.9 and discuss it there in
more detail. However, we recall the definition of the standard wave front set WF on manifolds without

as measured by WF, relative to H()l,loc
boundary X that immediately generalizes to the b-wave front set WFy,. Thus, one says that g € T*X \ o
is not in the wave front set of a distribution u if there exists A € W°(X) such o¢(A)(g) is invertible
and QAu € L*(X) for all Q € Diff(X) — this is equivalent to Au € €°°(X) by the Sobolev embedding
theorem. Here L?(X) can be replaced by H”(X) instead, with m arbitrary. Moreover, WF" can also be
defined analogously, by requiring Au € L>(X) for A € U™ (X) elliptic at g. Thus, ¢ ¢ WF(u) means that
u is ‘microlocally €°° at ¢’, while ¢ ¢ WF"” (1) means that u is ‘microlocally H™ at ¢’.

In order to microlocalize Héﬁ ’t')" (X), we need pseudodifferential operators, here extending Diff,(X) (as
that is how we measure regularity). These are the b-pseudodifferential operators A € W{"(X) introduced
by Melrose; their principal symbol oy, , (A) is a homogeneous degree m function on ®7*X \ 0. See again
[Melrose 1993; Vasy 2008c]. Then we say that g € bT*X\o is not in WF{;'OO(M) if there exists A € ‘llg(X)
with oy, 0(A)(g) invertible and such that Au is Hé‘ -conormal to the boundary. One also defines WF’g’m (u):
We say g ¢ WFY' (u) if there exists A € W' (X) with 0y, 0(A)(g) invertible and such that Au € H(’i (X).
One can also extend these definitions to m < 0.

loc

With this definition we have the following theorem:

Theorem 1.5 (see Proposition 7.7 and Theorem 8.8). Suppose that P = Ug + A, where A < (n — 1)2/4.
Let m € R or m = oo. Suppose u € H&”ﬁloc (X) for some k € R. Then

WE," () \ £ C WE, """ (Pu).
Moreover,
(WEL™ (u) N $) \ WE, "1 (Pu)
is a union of maximally extended generalized broken bicharacteristics of the conformal metric g in
S\ WE, " (Pu).

In particular, if Pu = 0, then WFll)’oo(u) C Y is a union of maximally extended generalized broken
bicharacteristics of g.

As a consequence of this theorem, we get a more general, and precise, well-posedness result:

Theorem 1.6 (see Theorem 8.12). Assume that (TF) and (PT) hold. Suppose that P = U, + A, where
A < (n—1)%/4. Let m € R and suppose m' < m. Suppose f € HO_’;”I'(')'CH(X). Then (1-6) has a unique
solution in H&”ﬁoc (X), which in fact lies in H(},’gjloc (X)), and for all compact K C X there exists a compact
K’ C X and a constant C > 0 such that

||M ”Holsm(K) S C ||f||H(;;"n+l(K/)'
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While we prove this result using the relatively sophisticated technique of propagation of singularities,
it could also be derived without full microlocalization, that is, without localizing the propagation of
energy in phase space.

We also generalize propagation of singularities to the case Im A 7~ 0 (Re A arbitrary), in which case we
prove one-sided propagation depending on the sign of Im A. Namely, if Im A > 0 respectively ImA < O,
then

(WEL™ (u) N3\ WE, "1 (Pu)

is a union of maximally forward respectively maximally backward extended generalized broken bicharac-
teristics of the conformal metric g. There is no difference between the case Im A =0and Re A < (n—1)?/4,
respectively Im A # 0, at the elliptic set, that is, the statement

WE," () \ £ C WE, " (Pu).

holds even if Im A # 0. We refer to Proposition 7.7 and Theorem 8.9 for details.

These results indicate already that for Im A # 0 there are many interesting questions to answer, and in
particular that one cannot think of A as ‘small’; this will be the focus of future work.

In particular, if f is conormal relative to HO1 (X) then WFII)’OO (u)=a. Let /- denote the branch square
root function on C \ (—oo, 0] chosen so that takes positive values on (0, co). The simplest conormal
functions are those in 6°°(X) that vanish to infinite order (that is, with all derivatives) at the boundary;
the set of these is denoted by ¢ (X). If we assume fe ¢>°(X) then

u=x*My, veb®(X), st =Fn-D+/3(n—D>=1,

as we show in Proposition 8.10. Since the indicial roots of [1, + A are

se) =3(m—D £ /I —1D2—1, (1-7)

this explains the interpretation of this problem as a “Dirichlet problem”, much like it was done in the
Riemannian conformally compact case by Mazzeo and Melrose [1987]: Asymptotics x*~Mv_, with
v_ € 6*°(X), corresponding to the growing indicial root s_(}) is ruled out.

For A < (n— 1)?/4, one can then easily solve the problem with inhomogeneous “Dirichlet” boundary
condition, that is, given vy € €*°(Y) and f € %> (X), both supported in {t > 1y},

Pu=f, uli<, =0, u:xs*mv_—i—x”mwr, vy €67 (X), v_|ly =1

if s, (A\)—s_(A)=2y/(n—1)2/4 — A is not an integer. If s, (1) —s_(A) is an integer, the same conclusion
holds if we replace v_ € €°°(X) by v_ € €*°(X) + xS+ R =s-() log x 6°°(X); see Theorem 8.11.

The operator v_|y — v4 |y is the analogue of the Dirichlet-to-Neumann map, or the scattering operator.
In the De Sitter setting the setup is somewhat different as both pieces of scattering data are specified either
at past or future infinity; see [Vasy 2010b]. Nonetheless, one expects that the result of [ibid., Section 7],
that the scattering operator is a Fourier integral operator associated to the GBB relation, can be extended
to the present setting, at least if the boundary is totally geodesic with respect to the conformal metric g
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and the metric is even with respect to the boundary in an appropriate sense. Indeed, in an ongoing project,
Baskin and the author are extending Baskin’s construction [2010] of the forward fundamental solution
on asymptotically De Sitter spaces to the even totally geodesic asymptotically AdS setting. In addition,
it is interesting to ask what the “best” problem to pose is when Im A # 0; the results of this paper suggest
that the global problem (rather than local, Cauchy data versions) is the best behaved. One virtue of the
parametrix construction is that we expect to be able answer Lorentzian analogues of questions related to
[Mazzeo and Melrose 1987], which would bring the Lorentzian world of AdS spaces significantly closer
(in terms of results) to the Riemannian world of conformally compact spaces. We singled out the totally
geodesic condition and evenness since they hold on actual AdS space, which we now discuss.

We now recall the structure of the actual AdS space to justify our terminology. Consider R"*! with
the pseudo-Riemannian metric of signature (2, n — 1) given by

— dz% — = dzﬁ,l —|—dz3 +dzi+1,
with (z1, ..., z,+1) denoting coordinates on R*t1 and the hyperboloid
2 2 2 2
<1 +- '+Zn—1 iy T ip41 = -1

inside it. Note that z,% + zfl 41 = 1 on the hyperboloid, so we can (diffeomorphically) introduce polar
coordinates in these two variables, that is, we let (z,, z,+1) = RO, with R > 1 and 6 € S!. Then the
hyperboloid is of the form

a4+ —RP=—1

inside R"~! x (0, 00)g x S). Since dz; for j=1,...,n—1, df and d(z}+---+z>_, — R?) are linearly
independent at the hyperboloid,
Zlv --'7Zﬂ—179

give local coordinates on it, and indeed these are global in the sense that the hyperboloid X° is identified
with R"~! x S! via these. A straightforward calculation shows that the metric on R"*! restricts to give
a Lorentzian metric g on the hyperboloid. Indeed, away from {0} x S!, we obtain a convenient form of
the metric by using polar coordinates (r, w) in R, so R?> =r? 4 1:

g=—(dr)?—r’do®+ (dR)?*+R*d0* = -1 +r) 7" dr’ = r* dw* + (1 +r%) d6?,

where dw? is the standard round metric; a similar description is easily obtained near {0} x S' by using
the standard Euclidean variables.
We can compactify the hyperboloid by compactifying R"~! to a ball B! via inverse polar coordinates

(x, w), where x = r1,

1y .oy Zn=1) =x v, 0<x<oo, weS" 2

Thus, the interior of B”—! is identified with R"~!, and the boundary S§"2 of B*—! is added at x = 0 to
compactify R"~!. We let
X=B"1xS'
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be this compactification of X°; a collar neighborhood of 9 X is identified with
[0, 1), x S"7% x S}.
In this collar neighborhood, the Lorentzian metric takes the form
g= %(—(1 +x3) 7 dx? —do® + (14 x%) do?),
which is of the desired form, and the conformal metric is
e=—(1+x)""dx® —dw®+ (1+x?) d6*

with respect to which the boundary {x = 0} is indeed timelike. Note that the induced metric on the
boundary is —dw? +d6? up to a conformal multiple.

As already remarked, g has the special feature that Y is totally geodesic, unlike for example the case
of B"~! x S' equipped with a product Lorentzian metric, with B"~! carrying the standard Euclidean
metric.

For global results, it is useful to work on the universal cover X =01 x R; of X, where R; is the
universal cover of S}); we use ¢ to emphasize the timelike nature of this coordinate. The local geometry
is unchanged, but now ¢ provides a global parameter along generalized broken bicharacteristics, and
satisfies the assumptions (TF) and (PT) for our theorems.

We use this opportunity to summarize the results, already referred to earlier, for analysis on confor-
mally compact Riemannian or Lorentzian spaces, including a comparison with the conformally related
problem, that is, for Az or [1;. We assume Dirichlet boundary conditions (DBC) when relevant for the
sake of definiteness, and global hyperbolicity for the hyperbolic equations, and do not state the function
spaces or optimal forms of regularity results.

(i) Riemannian: (A; —A)u = f with DBC is well-posed for A € C\ [0, 00); moreover, if f € <'€°°(X),
then u € €°°(X). (This also works outside a discrete set of poles X in [0, 00).)
(i) Lorentzian, X = Y, UY_ is spacelike, f is supported inz > 79, and A € C: (z —AM)u = f, for u
supported in 1 > 1, is well-posed. If f € € (X), the solution is €* up to Y.
(iii) Lorentzian, dX is timelike, f is supported in # > 1o, and A € C: (U — AMu = f, with DBC at Y
and u supported in ¢ > 1o, is well-posed. If f € € (X), the solution is € up to Y.
We now go through the original problems. Let s ()A) be as in (1-7).

(i) Asymptotically hyperbolic, A € C\ [0, +00): There is a unique solution of (A, — A)u = f, with
fe <'€°°(X), such that u = x*+®v, v € €*°(X). (Analogue of DBC [Mazzeo and Melrose 1987].)
(Indeed, u = (Ag— 1)~! £, and this can be extended to A € [0, 4+00), apart from finitely many poles
in [0, (n — 1)2/4], and analytically continued further.)

(ii) Asymptotically de Sitter, A € C: For f supported in ¢ > #y, there is a unique solution of (L, —A)u = f
supported in ¢ > ty. Moreover, for f € €*°(X),

u=x*My 4+ x-My_ vy €6®(X), and vi|y is specified,
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i~

x Y x

Y Y

Figure 1. On the left, a Riemannian example, B2. In the middle, an example of spacelike
boundary, [0, 1], x S; with x timelike. On the right, the case of timelike boundary,
B3, x Ry, with y” timelike.

provided that s; (A) —s_(A) ¢ Z. (See [Vasy 2010b].)

(iii)) Asymptotically anti de Sitter, A € R\ [(n — 1)?/4, +00): For f € <€°°(X ) supported in ¢ > 1y, there
is a unique solution of ((J; — A)u = f such that u = x*+®v, v € €°>°(X) and suppu C {t > 1o}.

The structure of this paper is as follows. In Section 2 we prove a Poincaré inequality that we use to
allow the sharp range A < (n — 1)?/4 for A real. Then in Section 3 we recall the structure of energy
estimates on manifolds without boundary as these are then adapted to our “zero geometry” in Section 4.
In Section 5 we introduce microlocal tools to study operators such as P, namely the zero-differential-
b-pseudodifferential calculus, Diffy Wy, (X). In Section 6 the structure of GBB is recalled. In Section 7
we study the Dirichlet form and prove microlocal elliptic regularity. Finally, in Section 8, we prove the
propagation of singularities for P.

2. Poincaré inequality

Let i be a conformally compact Riemannian metric, that is, a positive definite inner product on °7 X
and hence by duality on °7*X; we denote the latter by H. We denote the corresponding space of L?
sections of T*X by L?(X; °T*X) = L%(X; O7*X). While the inner product on L?(X; °T*X) depends
on the choice of A, the corresponding norms are independent of /, at least over compact subsets K of X.
We first prove a Hardy-type inequality:

Lemma 2.1. Suppose Vy € V(X) is real with Vox|x—o = 1, and let V € V(X) be given by V = x V.
Given any compact subset K of X and C < (n — 1)/2, there exists xo > 0 such that if u € Go(X) is
supported in K, then for ¥ € €°°(X) supported in x < xo,

Cllvullaxy < 1¥ Vaull 3 x)- (2-1)
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Recall here that <€°°(X ) denotes elements of 6°°(X) that vanish at Y = 9 X to infinite order, and the

o0

subscript comp on 6.5,

(X) below indicates that in addition the support of the function under consider-
ation is compact.

Proof. For any V € V',(X) real, and x € C@ggmp(X), u €€ (X), we have, using V*=—-V —divV,

comp
(VOou,u)y =LV, xlu, u) = (xu, Vu) = (Vu, xu) = —(xu, Vu) = (Vu, xu) — (xu, (div V)u).
Now, if V = xVj, with Vj € ¥ (X) transversal to X, and if we write dg = x~"dg for dg a smooth
nondegenerate density, then in local coordinates z; such that dg = J|dz| and Vo =} VOJ d;,
divV=x"7"">"0;(x " IxVy)

=—(=1Y VJ@x)+xI7" D 0;(JV§) = —(n— D)(Vox) + x div; V.
J
where the subscript g in divy Vj denotes that the divergence is with respect to g. Thus, assuming that
Vo € V(X) with Vyx|,—o = 1, we have
divV =—m—1)+xa, where ae6>(X).
Let x, > 0 be such that Vox > 1/2inx <x|. Thus, if 0 < xo <1, xo =1 near 0, x) <0, xo is supported

inx < x{, and x = xo o x, then
Vx =x(Vox)(xgox) <0;

hence ((V x)u, u) <0 and
(X ((n =D +xayu, u) <2l xPullllx'Vul.
Thus given any C < (n—1)/2, there is xo > 0 such that for u supported in K,
Cllx"ull < lx'Vul;
namely we take xo < x,/2 such that (n —1)/2 — C > (supglal)xo, and choose xo = 1 on [0, xo] and
supported in [0, 2xg). This completes the proof of the lemma. 0
The basic Poincaré estimate is this:

Proposition 2.2. Suppose K C X compact, KNdX # &, O is open with K C O, O is arcwise connected
to 30X, and K' = O compact. There exists C > 0 such that for u € H(}’IOC(X), one has

lull 2y < Clldull 2 0.07+x)- (2-2)
where the norms are relative to the metric h.

Proof. 1t suffices to prove the estimate for u € ¢ (X), for then the proposition follows by the density of
¢(X) in H()l,loc(X ) and the continuity of both sides in the H()l,loc(X ) topology.
Let Vp and V be as in Lemma 2.1, and let ¢ € %gf)’mp(Y ) be identically 1 on a neighborhood of K NY,

supported in O, and let xo > 0 be as in the lemma with K replaced by K’. We pull back ¢ to a function
¢ defined on a neighborhood of Y by the Vj flow; thus, Vp¢ = 0. By decreasing xg if needed, we may
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assume that ¢ is defined and is €°° in x < x¢, and supp¢ N {x < x9} C O. Now, let ¥ € €>°(X) be
identically 1 where x < x¢/2, supported where x < 3x¢/4, and let ¥y € €°°(X) be identically 1 where

X < 3x¢/4, supported in x < xq; thus Yo € € (X). Then, by Lemma 2.1 applied to ¥oopu,

comp

Cllwull 2y = Cllwvodull ) < 19V o)l 200 = 196Vl 2 x). (2-3)

The proposition follows by the standard Poincaré estimate and arcwise connectedness of K to Y (hence
to x < x0/2), since one can estimate |y~ y,/2 in L? in terms of dit|y>x/2 In L? and U xo/d<x <xo/2- Il

We can get a more precise estimate of the constants if we restrict to a neighborhood of a spacelike
hypersurface &; it is convenient to state the result under our global assumptions. Thus, (TF) and (PT)
are assumed to hold from here on in this section.

Proposition 2.3. Suppose Vy € V(X) is real with Vox|x—o = 1 and Vot = 0 near Y and let V € V' (X)
be given by V.= xVy. Let I be a compact interval. Let C < (n —1)/2 and y > 0. Then there exist € > 0,
x0 > 0 and C’ > 0 such that the following holds.

Fortgel, 0 <6 <eandforue HOl (X), one has

,loc
letll 2 e mrettontoreny < € IV Ul 2t pretio—s.torel, x(pr <ol
/
+yIdull 2 (pyetio—s.iorery T C Nl L2 pyetio—s.ony> 24
where the norms are relative to the metric h.

Proof. We proceed as in the proof of Proposition 2.2, using that the 7-preimage of the enlargement of the
interval by distance < 1 points is still compact by (PT); we always use € < 1 correspondingly. We simply
let ¢ = $ ot, where qS is the characteristic function of [fy, o + €]. Thus V¢ vanishes near Y; at the cost
of possibly decreasing xo, we may assume that it vanishes in x < xo. By (2-3), with C =C < (n —1)/2,
if ¢ is identically 1 on [0, x¢/4) and is supported in [0, xo/2), then

1Wull 20, < CHIY Vull = C' [y Vul. (2-5)

Thus, it remains to give a bound for || (1 — ¥)u ||L2( (Pt (p)elto o+l

Let & be the spacelike hypersurface in X given by t =1y, with p € /. Now let W € V', (X) be transversal
to &. The standard Poincaré estimate (whose weighted version we prove below in Lemma 2.4) obtained
by integrating from t = #yp — § yields that for u € C'6""(X ) with u|;=;,—s =0,

1/2
12l 24 retio-s.so et < €€+ 8 2NWUll 3 pes (prectio—s i+t (2-6)
with C'(€ +8) — 0 as € +3 — 0. Applying this with u supported where x € (x(/8, 00), we have
1
el 2 e pyetio—s.iprery < €€+ 2 IXWull 2 s (pyetio—s.so-rel)y (2-7)
with C"(e +8) — 0 as e +8 — 0. As we want 0 < § < ¢, we choose € > 0 so that

C"(2e)'? < y.
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Let x € €2 (R; [0, 1]) be identically 1 on [#y, co) and be supported in (fp — §, o). Applying (2-6) to

comp
x (t)u, we have
/" 1/2
Il 22 (4p: e pretip, to+emy = € (€ +9) ! Wl 2 (et (pyetto—s.10+e1h)
" 1/2 /
+C e +8) Tl OWOUl L2 (i1 pyetio—s.101-

In particular, this can be applied with u replaced by (1 — ¥)u. U
We also need a weighted version of this result. We first recall a Poincaré inequality with weights.

Lemma 2.4. Let Cy > 0. Suppose that W € Vp(X) real, |divW| < Cy, 0 < x € %ngp(X), and
X <—=y(Wx) fort>tg,withQ <y < 1/(2Cy). Then there exists C > 0 such that for u € Hol’ (X) with

t >ty on supp u,

loc

f|Wx||u|2dg < Cy/x|Wu|2dg.
Proof. We compute, using W* = —W —divW,
(Wxu, u) = (IW, xlu, u) = (xu, Wu) — (Wu, xu) = —(xu, Wu) — (Wu, xu) — (xu, (div W)u),
SO

/|Wx||u|2dg = —((Wxu, u) <2llx" ull 2 x> Wull 12 + Collx ' ull3

2 12 in 2
=2( | yiwxlluPdg) I Wull 2+ Co | VIWxIlul de.

Dividing through by ([|W x| |u|>dg)'/? and rearranging yields

1/2
(1= con( [ Wil dg) <22 Wl
hence the claim follows. O

Our Poincaré inequality (which could also be named Hardy, in view of the relationship of (2-1) to the
Hardy inequality) is then as follows:

Proposition 2.5. Suppose Vy € V' (X) is real with Vox|x—o = 1 and Vot =0 near Y, and let V € V', (X)
be given by V. = xVy. Let I be a compact interval. Let C < (n — 1)/2. Then there exist € > 0, xg > 0,
C’ > 0 and yo > 0 such that the following holds.

o0

Suppose tg € I and 0 <y < yy. Let xo €6 (R), x = xootand0 < yo < —y)((/) on [tg, tg + €], with

comp
Xo supported in (—oo, ty+ €] and § < €. Foru € H(} 1oc(X), one has
"1/2 —1yn1/2
Il 3o pyetoaoreny = € NVl L2z pretio—s.totel. x(pr=xop

1/2
+CYIx 2 dul e pretio—s.oreny T €Ml Lz p i peto-siony (28

where the norms are relative to the metric h.
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Proof. Let & be the spacelike hypersurface in X given by ¢ = #p, where #y € I. We apply Lemma 2.4
with W € 9, (X) transversal to & as follows.
One has from (2-5) applied with ¢ replaced by |x’|'/? that

111 2ull 200 < €IV IV,

We now use Lemma 2.4 with x replaced by xp?, with p = 1 on supp(l — ) and p € C(éf(‘;np(X"), to
estimate || (1 — )| W x|"/u ||L3(X). We choose p so that in addition Wp = 0; this can be done by pulling
back a function pg from ¥ under the W-flow. We may also assume that p is supported where x > x¢/8
in view of x > xo/4 on supp(l — ¢) (we might need to shorten the time interval we consider, that is,

€ > 0, to accomplish this). Thus, W (p?x) = p>W x, and hence
[ Pwxiuitag < cy [ oxiwar e

Since x > x(/8 on supp p, one can estimate f xp?|Wu|?dg in terms of f X|du|%1 dg (even though £ is
a Riemannian 0-metric!), giving the desired result. O

3. Energy estimates

We recall energy estimates on manifolds without boundary in a form that will be particularly convenient
in the next sections. Thus, we work on X°, equipped with a Lorentz metric g and dual metric G; let
[ = [, be the d’Alembertian, so 02(L]) = G. We consider a “twisted commutator” with a vector field
V = —1Z, where Z is a real vector field, typically of the form Z = x W, with x a cutoff function. Thus,
we compute (—t(V*[J — OV)u, u) — the point being that the use of V* eliminates zeroth order terms
and hence is useful when we work not merely modulo lower order terms.

Note that — (V*J—[V) is a second order, real, self-adjoint operator, so if its principal symbol agrees
with that of d*Cd for some real self-adjoint bundle endomorphism C, then in fact both operators are the
same as the difference is zeroth order and vanishes on constants. Correspondingly, there are no zeroth
order terms to estimate, which is useful as the latter tend to involve higher derivatives of x, which in
turn tend to be large relative to d x. The principal symbol in turn is easy to calculate, for the operator is

—(VO-0V)=—(V*=V)O+.[0, V], (3-1)
whose principal symbol is
—100(V* = V)G + Hgo1(V).

In fact, it is easy to perform this calculation explicitly in local coordinates z; and dual coordinates ¢;.
Let dg = J|dz|, so J = |det g|'/?>. We write the components of the metric tensors as g;; and G, and
d; = d;; when this does not cause confusion. We also write Z = xy W = > j Z/9 j. In the remainder of
this section only, we adopt the standard summation convention. Then

(=12 =1Z*=—1J719;0Z/ and -O=J""9JG"9;,
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SO
— (V= Vu=—1(—12) +12)u=(Z*+ Z)u=(~=J'3;JZ/ + Z/3;)u
=—J7'3;JZ))u = —(div Z)u,
Hg = G50, + GV ¢;0;, — (0, G i L0y,
(the first two terms of Hg are the same after summation, but it is convenient to keep them separate);

hence
— Gl kys. ij kys. k A
Hgo1(V) =G (az_/z )ik + GV, 27) 86k — 27 (0, GV &g
Relabeling the indices, we deduce that
—100(V* = V)G + Hgo1(V) = (=J ' (I Z)GY + G* (& 27) + G0 Z') — 29 G gt
with the first and fourth terms combining into —J =13, (J Z¥G/)¢;¢;, so
—1(V*O-0V)=d*Cd, Cij=gitByj 32)
Bij=—J""0(JZ*GY) + G (0 27) + G* (0 2",

where C;; are the matrix entries of C relative to the basis {dz;} of the fibers of the cotangent bundle.
We now want to expand B using Z = x W, and separate the terms with x derivatives, with the idea
being that we choose the derivative of x large enough relative to x to dominate the other terms. Thus,

Bij = G &z + G2 — T 0 (J Z* G

ik v ik y7i ij ik ik j ik ' 1 k i (3-3)

= ))(G"W/ +G""W' —GYW") + x (G (0 Z') + G'* (0 Z') — T " H(JZ"G"))

and multiplying the first term on the right hand side by a,-uaTu (and summing over i, j) gives
Ew ay(@du) = (9 )(G*W/ + G*W' — GTW*)o;ud;u 4)

=u,dx)gdu(W)+du(W)(dy, du)g —dx (W)(du, du)g,

which is twice the sesquilinear stress-energy tensor associated to the wave u. This is well known to
be positive definite in du, that is, for covectors o, Ew 4, (o) > 0 and vanishing if and only if o = 0,
when W and dx are both forward timelike for smooth Lorentz metrics, see for example [Taylor 1996,
Section 2.7] or [Hérmander 1985, Lemma 24.1.2]. In the present setting, the metric is degenerate at the
boundary, but the analogous result still holds, as we show below.

If we replace the wave operator by the Klein—Gordon operator P = [J+ A, A € C, we obtain an
additional term

—A(V*=V)4+2ImAV = =1 Re A(V* = V) +ImA(V+ V*) = —1RerAdivV + ImA(V 4+ V¥)

in —1(V*P — P*V) as compared to (3-1). With V = —iZ, Z = xW, as above, this contributes
—Re A(Wy) in terms containing derivatives of x to —z(V*P — P*V). In particular, we have

(—l(V*P—P*V)u,u):fEw,dx(du)dg—Rek((Wx)u,u)
+ImA((x Wu, u) + (u, x Wu)) + (x Rdu, du) + (x R'u,u), (3-5)
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where R € €*°(X°; End(T*X°)) and R’ € €*°(X°).

Now suppose that W and d x are both timelike (either forward or backward; this merely changes an
overall sign). The point of (3-5) is that one controls the left side if one controls Pu (in the extreme case,
when Pu =0, it simply vanishes), and one can regard all terms on the right side after Ew 4, (du) as terms
one can control by a small multiple of the positive definite quantity [ Ew 4y (du) dg due to the Poincaré
inequality if one arranges that x’ is large relative to yx, and thus one can control f Ew ay(du) dg in terms
of Pu.

In fact, one does not expect that d x will be nondegenerate timelike everywhere: Then one decomposes
the energy terms into a region €2 where one has the desired definiteness, and a region 2_ where this
need not hold, and then one can estimate f Ew a5 (du)dg in Q in terms of its behavior in Q_ and Pu.
Thus one propagates energy estimates (from €2_ to €24 ), provided one controls Pu. Of course, if u
is supported in 24, then one automatically controls # in €_, so we are back to the setting that u is
controlled by Pu. This easily gives uniqueness of solutions, and a standard functional analytic argument
by duality gives solvability.

It turns out that in the asymptotically AdS case one can proceed similarly, except that the term
Re L {(W x)u, u) is not negligible any more at 0 X, and neither is Im A({x Wu, u) + (u, x Wu)). In fact,
the Re A term is the “same size” as the stress energy tensor at d X ; hence the need for an upper bound for
it. Meanwhile the Im A term is even larger; hence the need for the assumption Im A = 0 because although
x 1s not differentiated (hence in some sense ‘small’), W is a vector field that is too large compared to
the vector fields the stress energy tensor can estimate at d X. It is a b-vector field, rather than a 0-vector
field. We explain these concepts now.

4. Zero-differential operators and b-differential operators

We start by recalling that V', (X) is the Lie algebra of € vector fields on X tangent to d X, while ¥ (X)
is the Lie algebra of €°° vector fields vanishing at d X. Thus, ¥o(X) is a Lie subalgebra of ¥, (X). Note
also that both ¥¢(X) and V'y(X) are €°°(X)-modules under multiplication from the left, and they act on
xk€>(X), in the case of ¥'¢(X) in addition mapping 6> (X) into x¢°°(X). The Lie subalgebra property
can be strengthened as follows.

Lemma 4.1. Vo(X) is an ideal in V' (X).
Proof. Suppose V € Vy(X) and W € V', (X). Then, since V vanishes at 9 X, there exists V' € V' (X) such
that V = xV’. Thus,

[V,Wl=[xV', W]=[x, W]V +x[V', W].

Now, [x, W] = —Wx € x6°°(X) since W is tangent to Y, and [V', W] € V' (X) since V', W € ¥ (X); so
[V, W] exV(X)=To(X). O

As usual, Diffy(X) is the algebra generated by ¥o(X), while Diff,(X) is the algebra generated
by ¥ (X). We combine these in the following definition, originally introduced in [Vasy 2010b] (indeed,
even weights x” were allowed there).
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Definition 4.2. Let Diff’é Diffy’ (X) be the (complex) vector space of operators on <€°°(X ) of the form
> P;0;. P;eDiffi(X), Q; €Difff(X),

where the sum is locally finite, and let

o [e.0]
Diffy Diff, (X) = |_J (_J Diff§ Diffy (X).
k=0m=0

We recall that this space is closed under composition, and that commutators have one lower order in
the O-sense than products [Vasy 2010b, Lemma 4.5]:

Lemma 4.3. Diffy Diff,(X) is a filtered ring under composition with
AB e Diffs™ Diff"™ ™™ (X) if A e DiffS Diff" (X) and B € DiffS Diff!" (X)
Composition is commutative to leading order in Diffy, that is, for A and B as above, with k + k' > 1,
[A, B] € Diftl ™ =1 Diff ™' (X).

Here we need an improved property regarding commutators with Diff, (X) (which would a priori only
gain in the 0-sense by the preceding lemma). It is this lemma that necessitates the lack of weights on the
Diff, (X)-commutant.

Lemma 4.4. For A € Diff{(X) and B € Diff§ Diff{"(X), with s > 1,
[A, B] e Diff§ Diff, 7"~ (X).

Proof. Only the leading terms in terms of Diffy, order in both commutants matter for the conclusion, for
otherwise the composition result Lemma 4.3 gives the desired conclusion. We again write elements of
Diffy Diff, (X) as locally finite sums of products of vector fields and functions, and then, using Lemma 4.3
and expanding the commutators, we are reduced to checking that

G [W,V]=—[V,W]e Diff(l)(X) for V € Vo(X) and W € ¥, (X), which follows from Lemma 4.1,
and

(i) [W, f1=Wf e €°(X) :Diffg(X) for W € V(X)) and f € €*°(X).
In both cases thus, the commutator drops b-order by 1 as compared to the product. U
Lemma 4.5. For each nonnegative integer | with | < m,
x' Diff! Difff" (X)  Diff§ " Diff" ' (X).
Proof. This result is an immediate consequence of xV'y(X) C xV'(X) = Vo(X). O

Integer ordered Sobolev spaces, Hé"’l;" (X) were defined in the introduction. It is immediate from our
definitions that for P e Diffj Diff} (X),

P: H(;‘;l;"(X) — H(’;g”s‘m(X)
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is continuous.
A particular consequence of Lemma 4.4 is that if V € V,(X), P e Difff (X), then [P, V] e Diffj (X).
We also note that for Q € V', (X), with Q = —1Z and Z real, we have Q* — Q € €°°(X), where the
adjoint is taken with respect to the L> = L(z)(X ) inner product. Namely:

Lemma 4.6. Suppose Q € V,(X), with Q = —1Z and Z real. Then Q* — Q € 6*°(X), and with
Q=ap(xDy)+ Y _a;Dy,,
we have
Q" — Q=divQ=J""(D.(xao]) + Y _ Dy, (a;))).
with the metric density given by J\|dxdy|, where J € x "€ (X).

Proposition 4.7. Suppose Q € Vi (X), with Q = —i1Z and Z real. Then
—1(Q*0-0Q) =d*Cd, 4-1)
where C € € (X; End(°T*X)). In the basis {dx/x,dyi/x, ..., dy,—1/x}, we have

Cij = Z 8it Z(—J_lak(fakézj) + G* (3ay) + G (Bkar)).
¢ k

Proof. We write
—1(Q*0-00Q) = —1(Q* — @0 —[Q. O] € Diff§(X),

and compute the principal symbol, which we check agrees with that of d*Cd. One way of achieving this
is to do the computation over X°; by continuity if the symbols agree here, they agree on °T*X. But over
the interior this is the standard computation leading to (3-2); in coordinates z j, with dual coordinates ¢;,
writing Z=3"Z/9., and G = }_ G"9.,0;,, we find both sides have principal symbol

Y Bytity, By =Y (=J'%(JZ*GY) + G* @0 2)) + GTF (0 2)).
ij k

Now both sides of (4-1) are elements of Diff(z)(X ), are formally self-adjoint, real, and have the same
principal symbol. Thus, their difference is a first order, self-adjoint and real operator; it follows that its
principal symbol vanishes, so in fact this difference is zeroth order. Since it annihilates constants (as
both sides do), it actually vanishes. O

We particularly care about the terms in which the coefficients a; are differentiated, with the idea being
that we write Z = x W, and choose the derivative of x large enough relative to y to dominate the other
terms. Thus, as in (3-4),

Bij =Y @) (G* W/ +GH W =G W ) +x > (GH @0 2)+G ™ 02— T 0 (T ZGT))  (4-2)
k k
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and multiplying the first term on the right hand side by d;u Bj_u (and summing over i, j) gives

> " @x) (G W+ GIFW — G W) 3udju,
i,j.k

which is twice the sesquilinear stress-energy tensor %E w.dy (du) associated to the wave u. As we men-
tioned before, this is positive definite when W and dx are both forward timelike for smooth Lorentz
metrics. In the present setting, the metric is degenerate at the boundary, but the analogous result still
holds since

Ew.ay(du) =" @) (G W/ + GI*W = GTWX) (xdu) x9u
ijk (4-3)
= (xdu,dy)gxdu(W) +xdu(W)(dy, xdu)gs —dx(W)(xdu, xdu)g,

so the Lorentzian nondegenerate nature of G proves the (uniform) positive definiteness in x du, consid-
ered as an element of 77X, and hence in du, regarded as an element of 0Tq"‘X . Indeed, we recall the
quick proof here since we need to improve on this statement to get an optimal result below.

Thus, we wish to show that for o € Tq*X , WeT,;X, o and W forward timelike,

Ewa(B) = (B, ) BW)+BW) (@, B)g —a(W)(B, B)g

is positive definite as a quadratic form in 8. Since replacing W by a positive multiple does not change
the positive definiteness, we may assume, as below, that (W, W) &= 1. Then we may choose local
coordinates (z1, ..., 2,) such that W = 9., and g|, = dz,Z, — (dz% +---+ dz,%_l); thus élq = agn —
(822l +-- -—|—822n71). Thena =) o dz; being forward timelike means that o, > 0 and oz,% > a%—i—- . -—|—oz,21_1.
Thus,

Ev.a(B) = (Buotn — Sﬁjaj)ﬁn + B (@nBn — Sa,ﬁ,) — (1.2 - nz_lmnz)
j=1 j=1 j=1

n n—1 n—1
=y Y IBiP =B > ;B = BictiBu
j=1 j=1 j=l1
(4-4)

n—1

s 3215 e) (D)
=1 ' =1

=1

a0 3082~ 20tan (D0 2) =11 - (D8,7) ") 20
j=1 j=1

j=1

~

with the last inequality strict if |8, | # (Zr;;}l B j|2)1/ 2, and the preceding one (by the strict forward
timelike character of «) strict if 8, # 0 and Z;’;} | ,3‘,-|2 = 0. It is then immediate that at least one of
these inequalities is strict unless 8 = 0, which is the claimed positive definiteness.
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We claim that we can make a stronger statement if U € T, X and «(U) =0 and (U, W); = 0 (thus U
is necessarily spacelike, that is, (U, U); < 0):

a (W)

2
. U)g'ﬁ(UN for ¢ <1

Ewa(B)+c

is positive definite in 8. Indeed, in this case (again assuming (W, W); = 1) we can choose coordinates
as above so that W = 9d,,, and so that U is a multiple of d;,, namely U = (—(U, U)§)1/28Z1, where
gl = dz% — (dz% + -4+ dz%_l). To achieve this, we complete ¢, = W and ¢; = (—(U, U)g)*l/zU
(which are orthogonal by assumption) to a ¢ normalized orthogonal basis (ej, es, ..., ¢e,) of T,X, and
then choose coordinates so that the coordinate vector fields are given by the e; at g. Then a forward

timelike means that «,, > 0 and oz,% > oz12 +-- ‘—l—arzl_], and o (U) = 0 means that ; = 0. Thus, with ¢ < 1,

a (W)
(U,U);

= (Buca - %ﬁj%’)ﬁn + B (ctnfn - nzla,-ﬂ‘,-) — (1.2 - nzlw,wz) —can i
j=2 j=2 j=1

Ewq(B)+c 1BU)I?

> (1= oy B P+ (Buotn — Sﬁjaj)ﬁn + B (ctnB —niajﬁj) (18, —nfwjlz)).
Jj=2 j=2 j=2

On the right hand side the term in the large parentheses is the same kind of expression as in (4-4), with
the terms with j = 1 dropped, and is thus positive definite in (82, ..., B,), For ¢ < 1, the first term is
positive definite in 81, so the left hand side is indeed positive definite as claimed. Rewriting this in terms
of G in our setting, we obtain that for ¢ < 1

Ew.ay(du) —c(Wy)|xUu|?

is positive definite in du, considered an element of 0Tq"‘X , when g € 0X, and hence is positive definite
sufficiently close to d.X.
We restate the result:

Lemma 4.8. Suppose q € 0X, U, W € T, X, a € Tq*X, a(U)=0and (U, W)z =0. Then

a(W)
U, U);

Ewo(B)+c IB&U)* for c <1

is positive definite in € 0Tq"‘X.
At this point we modify the choice of our time function ¢ so that we can construct U and W satisfying

the requirements of the lemma.

Lemma 4.9. Assume (TF) and (PT). Given &y > 0 and a compact interval 1, there exists a function
T € €°(X) such that |t — t| < 8¢ for t € I, dt is timelike in the same component of the timelike cone
as dt, and G(dt, dx)=0atx=0.
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Proof. Let x € €% ([0, 00)) be identically 1 near 0, with 0 < x <1 and x’ <0, and supported in [0, 1].

comp

For €, § > 0 to be specified, let

G(dt,d
T=t —xx(x‘s/e)M.
G(dx,dx)
Note that x < €!/® on the support of x (x®/¢), so if €!/% is sufficiently small, then G(dx, dx) is negative

and bounded away from 0, in view of (PT) and because é(dx, dx)<0OatY.
Atx =0, .

G(dt,dx)

——dx

dt =dt — —
G(dx,dx)

so G(dt,dx) =0. As already noted, x < €'/% on the support of x (x°/¢), so for t € I with I compact,
we have in view of (PT)
|t —t] < Ce'?, (4-5)

with C independent of € and §. Next,

dt =dt —aydx —aydx — Bu,

a=x<x—8), V=€(j((j;—:il;;)), &=8x;x/<£>, ﬁ=xx<x—8>, M=d<—2((5;”ilz))>-

é(dt —aydx,dt —aydx) = G(dt, dt) — Zayé(dt, dx) —i—azyzé(dx, dx)
R G(dt, dx)?
= G(dt,dt) — Qu —az)A(—x),

G(dx,dx)

which is > G (dr, dt) if 20 —a? > 0, that is, if & € [0, 2]. But 0 < & < 1, s0
G(dt — aydx, dt —aydx) > G(dt, dt) > 0

that is, dt — aydx is timelike. Since dt — pay dx is still timelike for 0 < p < 1, dt — aydx is in
the same component of timelike covectors as dt, that is, it is forward oriented. Next, observe that with
C’=sups|x'(s)l,

@l <C's, and |8 <€’

so over compact sets, &y dx + S can be made arbitrarily small by first choosing § > 0 sufficiently small

and then € > 0 sufficiently small. Thus, G(dr, dr) is forward timelike as well. Reducing € > 0 further
if needed, (4-5) completes the proof. g

This lemma can easily be made global.

Lemma 4.10. Assume (TF) and (PT). Given 8y > 0 there exists a function T € €°°(X) such that |t—t| < &g
fort € R, drt is timelike in the same component of the timelike cone as dt, and G(d'c, dx)=0atx=0.
In particular, t also satisfies (TF) and (PT).
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Proof. We proceed as above, but let

xw)) G(dt, dx)

vt _xx<e(t) Gldx,dx)

We then have two additional terms,

—x!1720s(r) log x

€() €(t) / G(dx, dx) €(r) €(1) €(t)/ G(dx, dx)
in dt. Note that x < e(¢)'/® on the support of both terms, while (x*® /e (1)) x'(x*?) /(1)) is uniformly
bounded. Thus, if §(r) < 1/3, |8'(t)] < 1, and |€'(¢)| < 1, the factor in front of d¢ in both terms is
bounded in absolute value by Ce(t)é(dt, dx)/é(dx, dx). Now for any k there are &, € > 0, which we
may assume are in (0, 1/3) and are decreasing with &, such that t so defined satisfies on I = [—k, k] all
the requirements if 0 < €(t) < €, 0 <8() <8 on 1, |€/(r)] <1 and |8'(¢)] < 1. But now in view of
the bounds on €; and & it is straightforward to write down €(¢) and & (¢) with the desired properties, for
example, by approximating the piecewise linear function that takes the value ¢; at =(k — 1) for k > 2, to
get €(¢), and similarly with §, finishing the proof. |

From the remainder of this section, we assume that (TF) and (PT) hold. From now on we simply
replace t by t. We let W = é(dt, -)and Uy = é(dx, -). Thus, at x =0,
dt(Up) = G(dx,dt) =0 and (Up, W)z = G(dx,dr) =0.

We extend Uply to a vector field U such that Ut =0, that is, U is tangent to the level surfaces of 7. Then
we have on all of X,

W(dt)=G(dt,dt) >0 and U(dx) = G(dx,dx) <0 (4-6)

on a neighborhood of Y, with uniform upper and lower bounds (bounding away from 0) for both bounds
(4-6) on compact subsets of X.

Using Lemma 4.8 and the equations just above, we thus deduce for x = x o¢ and ¢ < 1, for p in
€©°°(X) identically 1 near Y, and supported sufficiently close to Y, for Q = —i1Z and Z = x W,

(=1(Q"P = P*Qu,u) = / Ew.ay(du)dg —Re A {((Wx)u, u)
+ImA((x Wu, u) + (u, xWu)) + (x Rdu, du) + (x R'u, u)
= ((x'A+ xR)du, du) + (cp(Wx)xUu, xUu) — Re A((W y)u, u)
+ImA((x Wu, u) + (u, xWu)) + (x R'u,u)  (4-7)
with A, R € €*°(X; End(°T*X)), R’ € €*(X) and A positive definite, all independent of x. Here p is
used since Ew g, (du) —c(W x)|x Uul? is only positive definite near Y.

Fix 1o < tg+€ < t1. Let xo(s) = e~ /s for s > 0 and xo(s) = 0 for s < 0. Let x; be in €*(R), be
identically 1 on [1, c0), and vanish on (—o0, 0]. Thus, 52 x(/)(s) = xo(s) for s € R. Now consider

%) = xo(—=F ~'(s —t1)x1((s —t0) /€),
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so supp x C [to, t1], and for s € [ty + €, t;] we have

X'=—F 'x(=F (s —1)). so

x=-r"'s-n’x
For f > 0 sufficiently large, this is bounded by a small multiple of x’, namely on [#) + €, ;]

X =—yx' where y= (1 —1)°F . (4-8)
In particular, for sufficiently large F, we have on [ty + €, #1]
—(X"A+ xR = —x"A/2.
In addition, by (2-8) and (4-8), for Re A < (n — )?/4and ¢’ >0 sufficiently close to 1
—(Re M\(Wx)u, u) < ' {p(—=Wx)xUu, xUu) + C'F | x " dull?,

while
[(xR'u,u)] < C'llx"?ul® and

I 2ul® < C'F=H=Wxu, u) < C"F~H(W)xUu, xUu) + C"F 2|l Pdul®. (4-9)
However, Im A({x Wu, u) + (u, x Wu)) is too large to be controlled by the stress energy tensor since W
is a b-vector field, but not a 0-vector field. Thus, to control the Im A term for ¢ € [fy + €, t1], we need to
assume that Im A = 0. Then, writing Qu = Q*u + (Q — Q*)u and choosing f > 0 sufficiently large to
absorb the first term on the right hand side of (4-9), we have

(—x'Adu,du)/2 < —(—1Pu, Qu) + (1 Pu, Qu) + y{(—x")du, du)
< 2C1x"2W Pull g o o 2 g
+2CI(=xD"Pull 2 o0 1 (=xD " 2ull 12y + CI(=x) P dul?

-1 2 2
<2087 (IW Pl 1)+ 11 Pullly )

+2C8(Ix Pullfyy ) + 1= PullTagy)) + CFHI=X) P dul?. - (4-10)

For sufficiently small § > 0 and sufficiently large / > 0 we absorb all but the first parenthesized term on
the right hand side into the left hand side by the positive definiteness of A and the Poincaré inequality,
Proposition 2.5, to conclude that for u# supported in [7g + €, ],

1/2
I(=x) " 2dull 3 x07-x) < CllPull gt - (4-11)
In view of the Poincaré inequality, we have this result:

Lemma 4.11. Suppose A < (n — 1)2/4, to <ty+e€ <t and x is as above. Foru € <€°°(X) supported in
[ty + €, t1], one has

=X 2l gy ey = ClIPU ot - (4-12)
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Remark 4.12. If I is compact then there is 7 > 0 such that for ¢y € I we can take any #| € (fy, to + 7],
that is, the time interval over which we can make the estimate is uniform over such compact intervals 1.

This lemma gives local in time uniqueness immediately; hence iterative application of the lemma,
together with Remark 4.12, yields this:

Corollary 4.13. Suppose . < (n — 1)?/4. For f € H,, ﬁ,’ﬁ)c(X ) supported in t > ty, there is at most one
ue H()l,loc(X) such that suppu C {p :t(p) > to} and Pu = f.

Estimate (4-11) has another consequence via the standard functional analytic argument.

Lemma 4.14. Suppose A < (n—1)?%/4 and I is a compact interval. There is ¢ > 0 such that for ty € I,
and for f € HO

loc

(X) supported in t > 1, there exists u € Hol,’b_’llOC(X ), such that
suppu C{p:t(p)>ty} and Pu=f int<ty+o.

Proof. For any subspace X of €7°°(X), let X|[,,7,] consist of elements of X restricted to ¢ € [0, T1], and
let Z{[T ol consist of elements of X supported in ¢ € [19, 71]. In particular, an element of € COmp(X )[ro ol
vanishes to infinite order at t = 79, ;. Thus, the dot over 6> denotes the infinite order vanishing at 0X,
while the e denotes the infinite order vanishing at the time boundaries we artificially imposed.

We assume that f is supported in ¢ > 79+ §p. We use Lemma 4.11, with the role of #y and #; reversed
(backward in time propagation), and our requirement on o is that it is small enough that the backward
version of the lemma is valid with #; =ty 4+ 20. (This can be done uniformly over / by Remark 4.12.)
Let Ty =1t — € and #; be such that 1+ o0 = Tl/ < Ty <t <ty+20. Applying the estimate (4-11), using
P = P*, with u replaced by ¢ € (éggmp
with 1y € [#9, T}) in the role of 7y, we obtain

(X )Eto,Tﬂ with 1 in the role of #y there (backward estimate), and

1/2 ; .
1020l g 001y < CIP Bl gty 10T € Blomp (K 7y (4-13)
It is also useful to rephrase this as
”(/)””W)'W.] < CIIP*¢||H&;‘1(X)|[TO,T1] for ¢ € %Comp(X)EmTl], (4-14)
when 7§ > 19. By (4-13), P*: Comp(X)[t0 o B Cécomp(X)[t0 7,1 18 injective. Define

(P*)~! : Rangx

* plee) .
Comp(x)l.to‘m PT = <6COU“P(X)[fo,Tl]

by (P*)~'4 being the unique ¢ € %ngp(X )i1y.1;1 Such that P*¢ = . Now consider the conjugate linear
functional on Rang QOh 1) P* given by
lrg-T11

comp

Y (f, (P ). (4-15)
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In view of (4-13) and the support condition on f (namely, the support is in t > ty+3J¢) and v (the support
isinz <T)),2

xy—1 *y—1
A DN =W b 0, TP i 0Ol 5101 = C”f”HJ'(Xﬂ[rowo,Tn”w”H&Q'I(X)I[rOJI]’

so £ is a continuous conjugate linear functional if we equip Ran%ggmp O P* with the H, g’l X, 111
norm.

If we did not care about the solution vanishing in ¢ < fo + 80, we could simply use Hahn—Banach to
extend this to a contlnuous conjugate linear functional u on H0 b "'x )1y.1,1» Which can thus be identified

with an element of H 0b "x iz, 7,1- This would give

Pu(¢) = (Pu, ) = (u, P*¢p) = L(P*$) = (f. (P*) "' P*¢) = (f. §)
for ¢ € Cﬁcomp(X)Eto’Tl], so Pu=f.
We do want the vanishing of u in (z, fo + o), that is, when applied to ¢ supported in this region. As
a first step in this direction, let 8/ € (0, §p), and note that if

*k
¢ € (gcomp(X ). o8y [ Ran(@wmp(x)“o . P,

then £(¢) = O directly by (4-15), namely, the right hand side vanishes by the support condition on f.
Correspondingly, the conjugate linear map L is well defined on the algebraic sum

COmp(X)[t0 0+8}) + Ran(@mmp(X)UO,T1J P* (4-16)

by

L@+9) =) for ¢ € G (X, s and ¥ € Rang P*.

.
comp (X)[tO,T|]

We claim that the functional L is actually continuous when (4-16) is equipped with the H bl’l(X Mito.T11
norm. This follows from

1 PO = CUF g ot 1V 0,

Lig+8():T'

together with
_ < —|— —
”wHHo,bl'l(X)htoJré(),Tﬂ =le 1'0”Ho.lj'l()"”ltoﬂl

since ¢ vanishes on [ty + &), T1]. Correspondingly, by the Hahn—Banach theorem, we can extend L to a
continuous conjugate linear map
—1,1
u:Hyy (X1~ C,

which can thus by identified with an element of Ho,'b_ (X, 7,7 This gives

Pu($) = (Pu, ¢) = (u, P*¢) = £(P*p) = (f, (P*)"'P*¢) = ([, $)

2We use below that we can regard f as an element of H()_l(X)EzO—HSO ) and (P*)f1 Y as an element of H(} (X)E_OO )
so these can be naturally paired, with the pairing bounded in the appropriate norms. We then write these norms as

—1
H() (X)|[to+50,T1] and H(} (X)‘[10+50,T1]'
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for ¢ € @ (X)Eto,Tll supported in (fy, T1), so Pu = f, and in addition

comp
u(@) =0 for ¢ €6, (0, s

S0
t>1+38, on suppu. 4-17)

In particular, extending u to vanish on (—o0, fy + 8(), which is compatible with the existing definition
in view of (4-17), we have a distribution solving the PDE, defined on ¢ < T;, with the desired support
condition. In particular, we use a cutoff function y that is identically 1 for t € (—oo, T{] and supported
ont € (—oo, T1], one has that xu € H(}"I;I(X) and xu vanishes for t <ty + 5(’) and for ¢t > T;. Then
Pu = f on (—o0, T|), thus completing the proof. U

Proposition 4.15. Suppose » < (n — 1)>/4. For f € HOTILC(X) supported in t > ty, there exists u in
Hy'y oo (X) such that suppu C {p : t(p) > to} and Pu = f.

Proof. We subdivide the timeline into intervals [#;, ¢; 1], each of which is sufficiently short so that energy
estimates hold even on [#;_>, #;13]; this can be done in view of the uniform estimates on the length of
such intervals over compact subsets. Using a partition of unity, we may assume that f is supported
in [fx—1, tx+2], and we need to construct a global solution of Pu = f with u supported in [#;_;, 00).
First we obtain uy as above solving the PDE on (—o0, #;42] (that is, Puy — f is supported in (f442, 00))
and supported in [#;_1, fx+3]. Let fry1 = Pug — f; this is thus supported in [#;42, fx+3]. We next solve
Pujpy1=— fry1 on (—o0, txy3] with aresult supported in [#541, tx+4]. Then P (ux+ugy1)— f is supported
in [#43, tx+4], etc. Proceeding inductively and noting that the resulting sum is locally finite, we obtain
the solution on all of X. O

Well-posedness of the solution will follow once we show that for solutions u HO1 ’g/loc (X)of Pu=f,
with f € H,, ; ’lSOC(X ) supported in ¢ > #y, we in fact have u € HO1 ’g l_olc(X ); indeed, this is a consequence
of the propagation of singularities. We state this as a theorem now, recalling the standing assumptions

as well:

Theorem 4.16. Assume that (TF) and (PT) hold. Suppose . < (n—1)?/4. For f € H(; Il’lloc(X ) supported
loc(X) such that suppu C {p : t(p) > to} and Pu = f. Moreover,
for K C X compact there is K' C X compact, depending on K and ty only, such that

int > ty, there exists a unique u € HO1

el g oy < 11l oy (4-18)

Remark 4.17. While we used t of Lemma 4.10 instead of ¢ throughout, the conclusion of this theorem
is invariant under this change (since &g > 0 is arbitrary in Lemma 4.10), and thus is actually valid for the
original ¢ as well.

Proof. Uniqueness and (4-18) follow from Corollary 4.13 and the estimate (4-12). By Proposition 4.15,
this problem has a solution u € H()l”l; lloc(X ) with the desired support property. By the propagation of
singularities, Theorem 8.8, we know u € H(}JOC(X ) since u vanishes for ¢ < 1. Il
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5. Zero-differential operators and b-pseudodifferential operators

To microlocalize, we need to replace Diffy, (X) by W, (X) and Wy (X). We refer to [Melrose 1993] for
a thorough discussion and [Vasy 2008c, Section 2] for a concise introduction to these operator algebras
including all the facts that are required here. In particular, the distinction between W, (X) and Wy (X)
is the same as between W (R") and W (R") of classical, or one step polyhomogeneneous, respectively
standard, pseudodifferential operators, that is, elements of the former (Wy(X), respectively W (R")) are
(locally) quantizations of symbols with a full one-step polyhomogeneous asymptotic expansion (also
called classical symbols), while those of the latter (W (X), respectively W(R")) are (locally) quanti-
zations of symbols that merely satisfy symbolic estimates. While the former are convenient since they
have homogeneous principal symbols, the latter are more useful when one must use approximations (for
example, by smoothing operators), as is often the case below. Before proceeding, we recall that points
in the b-cotangent bundle ®T* X of X are of the form

n—1
dx
E Tt ZIEJ dy;.
j=

Thus, (x, y, § e ) give coordinates on dTEX L If (x, v, &€, ¢) are the standard coordinates on 7*X induced
by local coordinates on X, that is, if one-forms are written as & dx+¢ dy, thenthe map 7 : T*X — brxx
is given by 7 (x, y,§,¢) = (x, y, x&, §).

To be a bit more concrete (but again we refer to [Melrose 1993] and [Vasy 2008c, Section 2] for
more detail), we can define a large subspace (which in fact is sufficient for our purposes here) of W/ (X)
and W} (X) locally by explicit guantization maps; these can be combined to a global quantization map
by a partition of unity as usual. Thus, we have ¢ = g, : S"(°T*X) — Wi" (X), which restrict to
q:S8y *tT*X) — W' (X), with cl denoting classical symbols. Namely, over a local coordinate chart U
with coordinates (x, y), where y = (yy, ..., Y»—1), and with a supported in ngX with K C U compact,
we may take

g(@u(x,y) = 2m)™" / e‘“)‘*)")f*(Vy’)'%(x;x/)a(x, v, xE, Ou(x', y')dx'dy de de,

understood as an oscillatory integral, where ¢ € %ngp((—l /2,1/2)) is identically 1 near 0, and the
integral in x” is over [0, 0o0). Note that ¢ is irrelevant as far as the behavior of Schwartz kernels near the
diagonal is concerned (it is identically 1 there); it simply localizes to a neighborhood of the diagonal.
Somewhat inaccurately, one may write g(a) as a(x, y, x Dy, Dy), so a is symbolic in b-vector fields; a

more accurate way of reflecting this is to change variables, writing £ = x& and ¢ = ¢, so

g@u(x, y) = )" / o T 02096 (o y £ ou ) Wy dgr. 5D

With this explicit quantization, the principal symbol oy, ,(A) of A = g(a) is the class [a] of a in
S (®T*X)/S" =1 (PT*X). If a is classical, this class can be further identified with a homogeneous symbol

of degree m, that is, an element of S (°T*X\0). On the other hand, the operator wave front set WEF, (A)

hom
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of A =gq(a) can be defined by saying that p € °T*X \ o is not in WEF, (A) if p has a conic neighborhood
' in °T*X \ o such that a = a(x, y, &, ¢) is rapidly decreasing (that is, is an order —oo symbol) in T".
Thus, A is microlocally order —oo on the complement of WF| (A).

A somewhat better definition of W (X) and W, (X) is directly in terms of the Schwartz kernels. The
Schwartz kernels are well behaved on the b-double space X% = [X?; (3X)?] created by blowing up the
corner (9X)? in the product space X> = X x X; in particular they are smooth away from the diagonal
and vanish to infinite order off the front face. In these terms ¢ above localizes to a neighborhood of
the diagonal that only intersects the boundary of X% in the front face of the blow-up. The equivalence
of the two descriptions can be read off directly from (5-1), which shows that the Schwartz kernel is a
right b-density valued (this is the factor (dx’/x)dy’ in (5-1)) distribution conormal to (x —x")/x =0 and
y — ' =0, that is, the lift of the diagonal to X2.

The space Wy (X) forms a filtered algebra, so AB € \IJ{)’Z*’”/(X ) for Ae W' (X) and B € \Ilgg(X ). In
addition, the commutator satisfies [A, B] € \Il{)'frm/_] (X), that is, it is one order lower than the product,
but there is no gain of decay at d X. We also recall a crucial lemma from [Vasy 2008c, Section 2]:

Lemma 5.1. For A € V[ (X) and A € V' (X), one has [xD,, A] € xWp.(X) and [xD,, A] € x W} (X),
respectively.

Proof. The lemma is an immediate consequence of x D, having a commutative normal operator; see
[Melrose 1993] for a detailed discussion and [Vasy 2008c, Section 2] for a brief explanation. O

For simplicity of notation we state the results from here through Lemma 5.5 for Wy (X); they work
equally well if one replaces Vy(X) by Wpc(X) throughout.

Lemma 4.4 still holds with Diff,(X) replaced by Wy (X), but without the awkward restriction on
positivity of b-orders (which is simply due to the lack of nontrivial negative order differential operators).

Definition 5.2. Let Diffg " (X) be the (complex) vector space of operators on <€°°(X ) of the form
> P;Q;. with P; eDifff(X) and Q; € ¥ (X),

where the sum is locally finite, and let

oo o0

Diffy Wy (X) = |_J (| Difff wi' ().
k=0meR

We define Diffg Wit (X) similarly, by replacing W, (X) by Wy (X) throughout the definition.

The ring structure (even with a weight x") of Diffy Wy, (X) was proved in [Vasy 2010b, Corollary 4.4
and Lemma 4.5], which we recall here. We add to the statements of these results that Diffy W, (X) is
also closed under adjoints with respect to any weighted nondegenerate b-density, and in particular with
respect to a nondegenerate 0-density such as |dg|, since both Diffy(X) and W, (X) are closed under these
adjoints and (AB)* = B*A*.

Lemma 5.3. Diffy Wy (X) is a filtered *-ring under composition (and adjoints) with

AB e Diffs™ Wt (X)) if A e Difff W (X) and B € Diff§ W (X)
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and
A* € Diffs W"(X) if A e Diffs W"(X)

where the adjoint is taken with respect to a (that is, any fixed) nondegenerate 0-density. Moreover,
composition is commutative to leading order in Diffy, that is, for A and B as above and k +k' > 1,
[A, B] € Diffl * =1 gm+m'(x),

Just like for differential operators, we again have a lemma that improves the b-order (rather than
merely the 0-order) of the commutator provided one of the commutants is in W, (X). Again, it is crucial
here that there are no weights on Wy (X).

Lemma 5.4. [A, B] e Diffs Wi~ (X) if A € ¥{(X) and B € Diff}, W" (X),

Proof. Expanding elements of Diffg(X ) as finite sums of products of vector fields and functions, and using
that W, (X) is commutative to leading order, we need to consider commutators [ f, A] for f € €°°(X)
and A € ¥} (X) and show that this is in \I!g_1 (X), which is automatic as €°°(X) C lIlg(X). We also need
to consider [V, A] for V € ¥o(X) and A € W} (X) and show that this is in Diff(l) \Ifg_l (X), that is,

[V.A]l=) W;B;+C; forsome Bj,C; €W "(X)and W; € Vo(X).
j
But V =xV’, where V' € ¥ (X), and

[V',Al=) W/Bj+C} forsome W;e¥(X)and B}, C} € ¥~ (X);
i

see [Vasy 2008c, Lemma 2.2]. Meanwhile B” =[x, Alx ! € lIJg_l(X), SO

[V. Al =[x, AIV'+x[V', Al = B"(xV) + Y _(xW))B}; +xC/,
j

which is of the desired form once the first term is rearranged using Lemma 5.3. That is, explicitly
B"(xV"y= (xV)B" +[B”, xV'], with the last term being an element of \I!g’l(X). O

We also have an analogue of Lemma 4.5.
Lemma 5.5. For any integer [ > 0,
x' Diffy Wy (X) € Diffy ' ¥ (X).

Proof. It suffices to show that x W' (X) C Diff(l) \IJI’)"’1 (X); the rest follows by induction. Also, we may
localize and assume that A is supported in a coordinate patch; note that

W, (X) C Diffy W, *°(X)

since 6> (X) C Diff(l)(X). Thus, let A € W' (X). Then there exist A; € \l—'t',”_l(X) for j=0,...,n—1,
and R € W, *°(X) such that
A=(xD)Ao+ ) DyAj+R;
Jj
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to achieve this, one simply needs to use the ellipticity of L = (x D,)?+_ D%/ by constructing a parametrix
G e \Ilg2(X) to it, and writing A = LGA + EA, with E € \Dgoo(X). As x(xDy), x Dy; € Vo(X), the
conclusion follows. O

As a consequence of our results thus far, we deduce that \1/8 (X) is bounded on H;'(X), as stated
already in [Vasy 2010b, Lemma 4.7].

Proposition 5.6. Suppose m € 7. Any A € \Ilgc (X) with compact support defines a bounded operator
on H' (X), with operator norm bounded by a seminorm of A in lIJt?C(X ).

Proof. For m > 0 this is a special case of [Vasy 2010b, Lemma 4.7]. The fact that the operator norm is
bounded by a seminorm of A in \PSC(X ) was not explicitly stated there, though follows from the proof.
The case m < 0 follows by duality.

For the convenience of the reader we recall the proof in the case we actually use in this paper, namely
m =1 (then m = —1 follows by duality). Any A as in the statement of the proposition is bounded on
L?(X) with the stated properties. Thus, we need to show thatif V € ¥o(X), then VA : HO1 (X) — L*(X).
But VA = AV + [V, A] and [V, A] € Diff) ¥, '(X) € ¥{(X). Hence AV : H}(X) — L*(X) and
[V, A]: L3(X) — L*(X), with the claimed norm behavior. O

If ¢ is a homogeneous function on PT*X \ o, then we again consider the Hamilton vector field Hy
associated to it on 7*X° \ 0. A calculation with change of coordinates shows that in the b-canonical
coordinates given above

Hq = (a§Q)xax - (xaxCI)a§ + (3£61)3y - (ayCI)ag,

so H, extends to a 6> vector field on b7 X \ o that is tangent to bTB*XX. IfQe lIJt’)"/(X) and P € V' (X),
then [Q, P] € \IJI’J"JF’"/_] (X) has principal symbol
1
O—b,m-‘rm’—l([Q’ P]) = Iqu'
Using Proposition 5.6 we can define a meaningful WF, relative to HO1 (X). First we recall the definition
of the corresponding global function space from [Vasy 2010b, Section 4]:
For k > 0 the b-Sobolev spaces relative to Hj(X) are given by?

H{p compX) = {1 € Hy o (X) 1 Au € H 0 (X) for all A € WE(X)).

These can be normed by taking any properly supported elliptic A € \IJ{)‘(X ) and letting

2 2 2
u ’ = ||U r + Au r .
|| ” ”Ojg,comp(x) ” ”[-IU(X) ” “HO(X)

Although the norm depends on the choice of A, for u supported in a fixed compact set, different choices
give equivalent norms; see [Vasy 2010b, Section 4] for details in the 0-setting (where supports are not

3We do not need weighted spaces, unlike in [Vasy 2010b], so we only state the definition in the special case when the weight
is identically 1. On the other hand, we are working on a noncompact space, so we must consider local spaces and spaces of
compactly supported functions as in [Vasy 2008c, Section 3]. Note also that we reversed the index convention (which index
comes first) relative to [Vasy 2010b], to match the notation for the wave front sets.
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an issue), and [Vasy 2008c, Section 3] for an analysis involving supports. We also let H(; {; 1o (X) be the
subspace of H .(X) consisting of u € Hy;,.(X) such that ¢u € Hglg cOmp(X) for any ¢ € Cécomp(X).
Here it is also useful to have Sobolev spaces with a negative amount of b-regularity, in a manner

completely analogous to [Vasy 2008c, Definition 3.15]:

Deﬁnition 5.7. Let r be an integer, k <0, and A € \If_k (X) be elliptic on S* X with proper support. Let

H (X) be the space of all u € €~°°(X) of the form u = u; + Aup with uy, u26H0 (X). Let

0, b comp comp

]l = inf{|lui||zr wr|larx) tu =uy + Aus}.
el gzt 0 {0y + Nzl ey o0 1+ Auz}

We also let H&’Ig’loc (X) be the space of all u € 6~°°(X) such that ¢pu € H"*

% comp (X) for all ¢ € €22, (X).

comp

As discussed for analogous spaces following [Vasy 2008c, Definition 3.15], this definition is indepen-
dent of the particular A chosen, and different A give equivalent norms for distributions # supported in a
fixed compact set K. Moreover:

Lemma 5.8. Suppose reZand k € R. Any B € \PO (X) with compact support defines a bounded
operator on Ho b(X ), with operator norm bounded by a seminorm of B in \IJ -(X).

Proof. Suppose k > 0 first. Then for an A € lIlﬁ(X ) as in the definition above,

1Bul?,..

0 b,comp

2 2
o = 1Bulld o + 1ABul

The first term on the right side is bounded in the desired way due to Proposition 5.6. Letting G € ¥, k(X)
be a properly supported parametrix for A such that GA = Id+E for E € ¥, *(X), we have ABu =
AB(GA— E)u = (ABG)Au — (ABE)u, with ABG € \IJ .(X)and ABE € ¥, ™ (X) C lIl .(X). Thus

IABullg;xy < CllAull g x) + Cllull g x)

by Proposition 5.6, with C bounded by a seminorm of B. This completes the proof if k£ > 0.
Fork <0, let A € \l’b_k (X) be as in the definition. If u = u; + Au,, and G € \IJ§ (X) is a parametrix
for A such that AG =Id+F for F € W, *°(X), then

Bu=Bu;+ BAuy, = Bu;1+ (AG — F)BAuy, = Bu; + A(GBA)u, — (FBA)u,.

Now, B, FBA, GBA € ¥)(X) so Bu € Ho (X). Choosing u; and u, so that

b,comp

lwrllazg o0 + w2l g oo < 20l gre - (x,)

(.Om

shows the desired continuity, and that the operator norm of B is bounded by a \IJ .(X)-seminorm.  [J

Now we define the wave front set relative to H ,.(X). We also allow negative a priori b-regularity
relative to this space.

Definition 5.9. Suppose u € HO loc(X)’ reZand k € R. Then g € °T*X \ 0 is not in WF{)’OO(u) if there
isan A € \IJO(X) such that oy, 9(A)(q) is invertible and QAu € H&IOC(X) for all Q € Diffy,(X), that is, if
Au € Hyp o (X).
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Moreover, g € "T*X \ 0 is not in WEF," (u) if there is an A € W} (X) such that oy, 0(A)(q) is invertible
and Au € H&loc(X).

Proposition 5.6 implies that Wy.(X) acts microlocally, that is, it preserves WFy; see [Vasy 2008c,
Section 3] for a similar argument. In particular, the proofs for both the qualitative and quantitative
version of microlocality go through without any significant changes; one simply replaces the use of
[Vasy 2008c, Lemma 3.2] by Proposition 5.6.

Lemma 5.10 (see [Vasy 2008c, Lemma 3.9]). Suppose that u € Hg:]g:loc(X) and B € \Ifgc(X). Then
WE;" " (Bu) € WE;™ (u) N WF; (B).

As in [Vasy 2008c, Section 3], the wave front set microlocalizes the “b-singular support relative to
Hj 1,.(X)”, meaning this:

Lemma 5.11 (see [Vasy 2008c, Lemma 3.10]). Suppose u € H&’{;IOC(X), peX. Ibe;XﬂWFé’m(u) =0,
then in a neighborhood of p, u lies in Holﬂ’t')" (X), that is, there is ¢ € %ggmp(X) with ¢ = 1 near p such
that ¢u € Hyy' (X).

Corollary 5.12 (see [Vasy 2008c, Corollary 3.11]). Suppose u € Hg:{;’loc(X ) and WE,"" (u) = &. Then
ue HS:KIOC(X).

In particular, if u € H(;,’Ig,loc (X) and WF." (u) = @ for all m, then u € H(;”gjoc(X), that is, u is conormal
in that Au € HS’IOC(X) for all A € Diff,(X) (or indeed A € W, (X)).

Finally, we have the following quantitative bound for which we recall the definition of the wave front
set of bounded subsets of \Ilt’fC(X ):

Definition 5.13 (see [Vasy 2008c, Definition 3.12]). Suppose that % is a bounded subset of \Dé‘c(X ), and
q €®S*X. We say that ¢ ¢ WEF, () if there is some A € Wy,(X) that is elliptic at ¢ such that {AB : B € B}
is a bounded subset of W, *°(X).

Lemma 5.14 (see [Vasy 2008c, Lemmas 3.13 and 3.18]). Suppose that K C °S*X is compact and U is
a neighborhood of K in®S*X. Let K C X compact, and U be a neighborhood of K in X with compact
closure. Let Q € \Ilg(X) be elliptic on K with WF,(Q) C U, with Schwartz kernel supported in K x K.
Let B be a bounded subset of \Iill)‘c (X) with WF_(B) C K and Schwartz kernel supported in K x K. Then
for any s <0 there is a constant C > 0 such that for B € B and u € H&’IS)JOC (X) with WF{)’k(u) NU =@,
we have

IBullg ey = Clull grs gy + 11 Quell g x))-

We can use this lemma to obtain uniform bounds for pairings. We call a subset & of Diffiy \I—'gf (X)
bounded if its elements are locally finite linear combinations of a fixed, locally finite set of elements of
Difty (X) with coefficients that lie in a bounded subset of \IJgi‘ (X).

Corollary 5.15. Suppose that K C °S*X is compact and U is a neighborhood of K in®S*X. Let K C X
be compact, and U be a neighborhood of K in X with compact closure. Let Q € \Il,f (X) be elliptic on K
with WF{ (Q) C U, with Schwartz kernel supported in K x K. Let B be a bounded subset of Diff(z) \Ifgf (X)
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with WF,(B) C K and Schwartz kernel supported in K x K. Then there is a constant C > 0 such that
for Be B andu € Hol,’tf,loc(X) with WFlI)’k(u) NU = &, we have

(Bu, )| < Clull gy gy + 1 Qul gy )

Proof. Using Lemma 5.3 we can write B as ) Bi’j P*R;A, where P;, R; € Diff(l)(X), A€ \Pg(X) (which

we take to be elliptic on K, but such that Q is elliptic on WF{)(A)), Bi’ ; lies in a bounded subset %’
of \IJ§ (X) and the sum is finite. Then

[(Bu, u)| < Y [(R; Au, Pi(B{)*u)| < |IRjAull 2y || Pi(B] ) ull 2x)
ij ij
< D I Aull o 1P Bl ull gy < D Cllull s gy + 1Qul g )
ij
where in the last step we used Lemma 5.14. O
It is useful to note that infinite order b-regularity relative to L%(X ) and HO1 (X) are the same.
Lemma 5.16. WF, ™ (u) = WFy ™ () for u € H{ .. (X).

Proof. The complements of the two sides are the set of points g € >S* X for which there exist A € \Ilt? (X)
(with compactly supported Schwartz kernel, as one may assume) such that oy, ¢(A)(gq) is invertible and
LAu € H}(X), respectively LAu € L3(X). Since H} (X) C L3(X), that WEY"™ (1) € WE ™ (u) follows
immediately. For the converse, if LAu € L(z)(X ) for all L € Diffy,(X), then Diffy(X) C Diff, (X) shows that
OLAu € L3(X) for Q € Diff}(X) and L € Diffy(X), so LAu € H} (X), that is, WE}'™ (1) € WEY ™ (u),
completing the proof. 0

We finally recall that u € ¥ (X), that is, that u is conormal relative to kaﬁ(X ), which means that
Lu € x*L}(X) for all L € Diff,(X), so in particular u € x*L{(X). Thus,

in view of L3(X) = x""D/2L2(X).

6. Generalized broken bicharacteristics

We recall the structure of the compressed characteristic set and GBB from [Vasy 2010a, Sections 1 and 2].
In that paper X is a manifold with corners and k is the codimension of the highest codimension corner in
the local coordinate chart. Thus, for application to this paper, the reader should take kK = 1 when referring
to [Vasy 2010a, Sections 1 and 2]. It is often convenient to work on the cosphere bundle, here bg*x
which is equivalent to working on conic subsets of °7*X \ 0. In a region where, say,

|§|<C|£n_1| and 1€l < Clgn-1l for j=1,...,n—2, (6-1)
with C > 0 fixed, we can take

x7y17""ynfl’é\’ﬁlv””én*27 |£n71| Where§:§/|£n71| and é‘]:g‘l/lgn*”!
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as (projective) local coordinates on °T*X \ o, and hence take

A

x7 yl""yyn—1,§7£13 "'s{l’l—z

as local coordinates on the image of this region under the quotient map in °S*X; see [Vasy 2010a,
Equation (1.4)].

First, we choose local coordinates more carefully. In arbitrary local coordinates (x, yi, ..., y,—1) on
a neighborhood Uy of a point on ¥ =0 X, so that Y is given by x =0 inside x > 0, any symmetric bilinear
form on T*X can be written as

Gx,y) =A@, )80+ Y _2C;(x.y) dx By, + Y _ Byj(x,y)dy, dy, (6-2)
J iJj
with A, B, C smooth. In view of (1-1), using x given there and coordinates y; on Y pulled by to a collar
neighborhood of ¥ by the product structure, we have in addition

AQ0,y)=—1 and C;(0,y)=0 forall y,

and B(0, y) = (B;;(0, y)) is Lorentzian for all y. Below we write covectors as

n—1

a=Edx+Y ¢ dy. (6-3)

i=1

Thus,

n—1

Glio=—0;+ > Bij(0.y) dy, dy,. (6-4)

i,j=1
and hence the metric function, p(g) = G(q, q) forqg e T*X, is
Plizo=—£>+¢ - B()S. (6-5)

Since A(0, y) = —1 < 0, we see Y is indeed timelike in that the restriction of the dual metric G to N*Y
is negative definite, for locally the conormal bundle N*Y is given by

{(x,y,6,0):x=0, £ =0}.
We write h = ¢ - B(y)¢ for the metric function on the boundary. Also, from (6-5),
Hp=—2& -3, +H;+ Bd +xV, (6-6)

where V is a € vector field in Uy = T*Up and B is a 6> function on Uy.

It is sometimes convenient to improve the form of B near a particular point pg, around which the
coordinate system is centered. Namely, since B is Lorentzian, we can further arrange it by adjusting the
y; coordinates so that

> Bij(0.0)8,8,, =07 — Y 9. (6-7)

i<n—1
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We now recall from the introduction that 77 : T*X — T*X is the natural map corresponding to the
identification of a section of T*X as a section of °T*X, and in local coordinates 7 is given by

w(x,y,§,0)=(x,y,x§0).
Moreover, the image under 7 of the characteristic set ¥ C T*X \ o, given by
Y={qeT"X:plg) =0},
is the compressed characteristic set ¥ = 7(X). Note that (6-5) gives that
E'JﬂouoﬂbT{fX={(0,y,0,§):OSE-B(y)g, ¢ # 0} (6-8)

In particular, in view of (6-7), by Ny lies in the region (6-1), at least after we possibly shrink Uy (recall
that Ug = T*Uyp), as we assume from now. We also remark that, using (6-6),

Tilee,y.6,00Hp = =26 - (0x +80¢) + Hpp +xB0g + x7,V, (6-9)
and correspondingly
Hp*E| _y = —26"=2(p—¢-B(y)¢) =—2¢ - B(y){, where (0,y,£,0) € X, (6-10)
As we already noted, {n—1 cannot vanish on ¥ N WUp, SO
Hprr* & /1En1D)] g = =21¢u1]7"&> = xE|5u1 |2 Hala1 D],
= =20-117'¢ - B, (0,7.6,0) € 2.

To better understand the generalized broken bicharacteristics for [J, we divide 3 into two subsets.

(6-11)

We thus define the glancing set G as the set of points in 3 whose preimage under # = 7|5 consists of
a single point, and define the hyperbolic set ¥ as its complement in 3. Thus, bTX*C,X N3 C 9 since
is a diffeomorphism on Ty, X, while ¢ € N bT;‘X lies in % if and only if on 77 '({g}), € = 0. More
explicitly, with the notation of (6-8),

GNU N TFX ={(0,y,0,8): ¢ - B(y)¢ =0, ¢ #0},

. (6-12)
N U NOTEX ={(0,,0,8) : ¢ - B(E >0, ¢ #0).

Thus, % corresponds to generalized broken bicharacteristics that are tangent to Y in view of the vanishing
of & at 7#71(9) (recall that the 9, component of H, is —2&), while # corresponds to generalized broken
bicharacteristics that are normal to Y. Note that if Y is one-dimensional (hence X is 2-dimensional),
then ¢ - B(y)¢ = 0 necessarily implies { = 0, so in fact 4N bT;‘X = ¢, and hence there are no glancing
rays.

We next make the role of ¢ and # more explicit, which explains the relevant phenomena better. A
characterization of GBB, which is equivalent to Definition 1.1, is this:

Lemma 6.1 (see the discussion in [Vasy 2005, Section 1] after the statement of Definition 1.1). A con-
tinuous map y : I — 3, where I C R is an interval, is a GBB (in the analytic sense that we use here) if
and only if it satisfies the following requirements:
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() If go = y(so) €Y, then for all f € €>*°(PT*X),

d  pn o
T (For)(s0) =H,(x")(Go) where Go=7""(0)- (6-13)

(1) If gqo = y(so) € ¥, then there exists € > 0 such that
y(t) ¢°TyX if O0<|s—sol <eforsel. (6-14)

The idea of the proof of this lemma is that at <4, the requirement in (i) is equivalent to Definition 1.1
since ﬁ_l(qo) contains a single point. On the other hand, at #, the requirement in (ii) follows from
Definition 1.1 applied to the functions f = ££, using (6-10), to conclude that & is strictly decreasing at
¢ along GBB. Since one has § = 0 on ¥ N {x = 0}, we have for a GBB y through y(s9) = ¢o € %, on
a punctured neighborhood of sg, that §(y(s)) # 0, so y(s) ¢ bT;X (since y(s) € 2). For the converse
direction at ¥ we refer to [Lebeau 1997]; see [Vasy 2005, Section 1] for details.

7. Microlocal elliptic regularity

We first note the form of [] with commutator calculations in mind. Rather than thinking of the tangential
terms x D, as “too degenerate”, we think of x D, as “too singular” in that it causes the failure of [ to lie
in x2 Diffﬁ (X). This makes the calculations rather analogous to the conformal case, and also it facilitates
the use of the symbolic machinery for b-pseudodifferential operators (b-PsDOs).

Proposition 7.1. On a collar neighborhood of Y, the form of U is
—(xDo)*a(xDy) + (xD)*M' + M"(xD,) + P, (7-1)
with
a—1exe>®X), M', M" € x* Diff} (X) C x Diffy(X),
P e x*Diff}(X), P —x*0;, € x’ Diff}(X) C x Diff3(X),
where U, is the d’Alembertian of the conformal metric on the boundary (extended to a neighborhood of

Y using the collar structure).

Proof. Writing the coordinates as (z1, ..., Z,), the operator [, is given by
O¢=Y_ D:Gi;D).
ij
with adjoints taken with respect to dg = |det g|'/?|dz; - - - dz,|. Withz; = y; for j=1,...,n—1 and
Z, = x, this can be rewritten as
Og =) _(xD)*Gij(xD:)
ij
n—1 n—1 n—1

= (xD)*Gun(xDy) + Y (D) Guj(xDy)) + Y (xDy)*Gjn(xDy))+ Y (xDy,)*Gij(xDy).
j=1 j=1 ij=l1
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Since G +1€ x€™(X), we find that & — 1 € x6>(X) by taking & = =Gy Since G, Gnj €€ (X),
we find M’, M" € x? Diff] »(X) by taking M’ = Z" ! Gn} (xDy,) and M" = Z?;%(XD”)*G]'". Finally,

n—1
P = (xDy)*Gij(xDy,) € x* Diffy (X).
ij=1

Modulo x3 Diffﬁ(X ), we can pull out the factors of x and restrict éi j to Y. Therefore P differs from
20y =x%) Df hijDy; by an element of x3 Diffﬁ(X ), completing the proof. (|

We next state the lemma regarding Dirichlet form that is of fundamental use in both the elliptic and
hyperbolic/glancing estimates. Below the main assumption is that P =[], + A, with [, as in (7-1). We
first recall the notation for local norms:

Remark 7.2. Since X is noncompact and our results are microlocal, we may always fix a compact set
K C X and assume that all PsDOs have Schwartz kernel supported in K x K. We also let U be a
neighborhood of K in X such that U has compact closure, and use the H, '(U) norm in place of the
1oc(X). (We may instead take ¢ € (Gcomp(U ) identically 1 in a
neighborhood of K, and use ||¢u||H LX) .) Below we use the notation || - ||H1 LX) for || - ||H 1y tO avoid

H (X) norm to accommodate u € Ho

having to specify U. We also use ||v||H LX) for ||¢v||H x)"

Lemma 7.3 (see [Vasy 2008c, Lemma 4.2]). Suppose that K C ®S* X is compact, U C ®’S* X is open, and
K Cc U. Suppose that A ={A, : r € (0, 11} is a bounded family of PsDOs in \I’gC(XN) with WF; (o) C K,
and with A, € W™\(X) for r € (0,1]. Then there are G € W, "*(X) and G € W7'*(X) with
WF’ (G), WF’ (G) C U and Cy > 0 such that for r € (0,1] and u € Hollfloc(X) (here k < 0) with

neither WF1 s 1/2(14) nor WF_1 S+]/2(Pu) intersecting U, we have

(dAru, dAruyG + 2 Aul*] < Collullye o+ 1Gul |Pully i o, +IGPuU;
0,b,1 oc 0,b,loc

H (0"

H(X)+|

Remark 7.4. The point of this lemma is G is 1/2 order lower (s — 1/2 versus s) than the family si. We
will later take the limit » — O to gain control of the Dirichlet form evaluated on Agu, where Ag € Wi (X),
in terms of lower order information.

The role of A, for r > 0 is to regularize such an argument, that is, to make sure various terms in a
formal computation, in which one uses Ag directly, actually make sense.

The main difference with [Vasy 2008c, Lemma 4.2] is that A is not negligible.

Proof. We have A,u € Hj (X) for r € (0, 11, so
(dAyu,dAsu) + A Aul? = (PAu, Ayu).

Here the right side is the pairing of H(;l(X) with HO1 (X), so by writing PA, = A, P+ [P, A,], it can
be estimated by
|{Ar Pu, Ayu)| + ([P, Arlu, Ayu)l. (7-2)
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The lemma is thus proved if we show that the first term of (7-2) is bounded by

Collulyos o, +1GuNyy ) + 1Pl s +1GPull; (7-3)

Hj (X) Hy (X))

: ” 2 2
the second term is bounded by CO(”u”Hé,ﬁloc(X + ||Gu||H %)
defined in Remark 7.2.)
The first term is straightforward to estimate. Let A € \If_l/ (X) be elliptic with A~ € W
parametrix, so that

). (Recall that the “local” norms were

I/Z(X) a

E=AA"—-Id and E/:A_A—Ide\IJb’OO(X).
Then

(A, Pu, A;u) = (AA™ — E)A,Pu, A,u) = (A" A, Pu, N*A,u) — (A, Pu, E*A,u).

Since A™ A, is uniformly bounded in \IJSH/ 2(X) and A*A, is uniformly bounded in \IJS 1 2(X), we

have (A~ A, Pu, A*A,) is uniformly bounded, with a bound like (7-3) using Cauchy—Schwartz and
Lemma 5.14. Indeed, by Lemma 5.14, if we choose any G € \I/v 1 2(X ) that is elliptic on K, there is a
constant Cy > 0 such that

IA* Al o < Cr(llul,, +11Gul;

H X) Obloc(X) H (X))

s+1/2

Similarly, by Lemma 5.14 and its analogue for WF S, if we choose any G € Wy 7(X) that is elliptic

on K, there is a constant Ci > 0 such that

1A~ A, Pull? He! CrlPull?, i o +IGPull3, 1\ )-

(X) Hj p0c(X) Hy (X)

Combining these gives, with C, = C; 4 C{, the desired result:

(AT A, Pu, N*Au)| < [A”A Pull [A*Arul| < A7 A, Pull® + | A* Aul®
<Co(||ull oo T IGul; +||Pu||i,0_;k +IG Pul; He!

o H{(X) x)"

A similar argument, using that A, is uniformly bounded in \Il°+1/ 2(X ) (in factin W (X)), and E* A, is
o 1/Z(X) (in factin \IlbC (X)), shows that (A, Pu, E*A,u) is uniformly bounded.

Now we turn to the second term in (7-2), whose uniform boundedness is a direct consequence of
Lemma 5.4 and Corollary 5.15. Indeed, by Lemma 5.4, [P, A,] is a bounded family in Diffg \IJ;C_I (X);
hence A’[P, A,]is a bounded family in Diff% lllgg ~1(X). Then one can apply Corollary 5.15 to conclude
that

uniformly bounded in W

(AFLP, Adu, u) < C'(llul?14

2
HEE 0 (X0 + ”GMHH](X))‘ O

A more precise version, in terms of requirements on Pu, is the following. Here, as in Section 2, we
fix a positive definite inner product on the fibers of °7*X (that is, a Riemannian 0-metric) to compute

|dv||? since v has support in a compact set below, the choice of the inner product is irrelevant.

L2(X:0T*X)’



120 ANDRAS VASY

Lemma 7.5 (see [Vasy 2008c, Lemma 4.4]). Suppose that K C ®S*X is compact, U C °S*X is open,
and K C U. Suppose that A = {A, : r € (0, 1]} is a bounded family of PsDOs in V; (X) with
WE, (s0) C K and with A, € W™\ (X) forr € (0, 1]. Then there are G € ¥}~ "*(X) and G € W} (X) with
WF{)(G), WF{)(G) C U and Cy > 0 such that fore >0, r € (0,1], u € H()l”é"loc(X) (where k < 0) with

neither WFl])’S_l/Z(u) nor WFgl’s(Pu) intersecting U, we have

|[(dAyu, dAu) + A Arul?|

2 2 2 —1 2
< elld Al ooy + Collule o+ 1Gully € 1Pul? 1

1/~ 2
it oo T IGPul,

(X) (X))'

Lloc

Remark 7.6. The point of this lemma is that on the one hand the new term €||d A, u |I> can be absorbed
in the left hand side in the elliptic region and hence is negligible; on the other hand, there is a gain in the
order of G (s versus s 4 1/2 in the previous lemma).

Proof. We need only modify the previous proof slightly, by estimating the term |(A, Pu, A,u)| in (7-2)
differently, namely

~ 2 ~—1 2
(A, Pu, Aru)| < | Ay Pull ot ) | Arttll gy ) < €llA-ull te A Pully -

Hj (X)

Now the lemma follows by using Lemma 5.14 and the remark following it: Choosing any G € WP (X)
that is elliptic on K gives a constant C| > 0 such that

JHIGPuUl . ).

Hy' (X)

2
1A Pull s g,

< Cy(|1Pul? _
! Hy o (X

We then use the Poincaré inequality to estimate || A, u|| HI(X) by Ca|ldA,ullf2(x), and finish the proof
exactly as for Lemma 7.3. O

We next state microlocal elliptic regularity. For this result the restrictions on A € C are weak (only a
half-line is disallowed), but on the other hand, a solution u satisfying our hypotheses may not exist for
values of A when A ¢ (—oo, (n — 1)%/4).

Proposition 7.7 (microlocal elliptic regularity). Suppose that P =4+ A, » € C\ [(n — 1)*/4, o0) and
m € R orm = o0o. Suppose u € H()lﬁloc(X)for some k <0. Then

WE," (1) \ £ C WE,, " (Pu).

Proof. We first prove a slightly weaker result in which WF,' 1""(Pu) is replaced by WF,' Lm+1/ 2(Pu) —
we rely on Lemma 7.3. We then prove the original statement using Lemma 7.5.

Suppose that g € bT;‘ X \ ©. We may assume iteratively that g ¢ WFtl,’S_l/ 2(u); we need to prove
then that g ¢ WFE)"Y (u) provided s < m + 1/2 (note that the inductive hypothesis holds for s =k +1/2
since u € Hol,’bk,loc(X )). We use local coordinates (x, y) as in Section 6, centered so that g € bT(“(‘)’O)X and
arranging that (6-7) holds. We further group the variables as y = (y’, y,—1), with corresponding b-dual
variables (', £,—1). We denote the Euclidean norm by |¢’].

Let A € W, (X) be such that

WE,(A)NWF* () =@ and WF,(A) NWE* T (Pu) =2
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and that WF; (A) in a small conic neighborhood U of g, with U such that for a suitable C > 0 or € > 0,
() &5y < CE*if&(q) #0,
(ii) 1€] < €l¢| forall j, and |¢'|/I¢,—1] > 1 +€ if £(g) = 0 and ¢ (g) - B(y(9))¢ () <O.

Let A, € \IJb_Z(X) for r > 0, such that £ = {A, : r € (0, 1]} is a bounded family in lIJt?(X), and A, — Id
asr — Oin IIlf:(X) for € > 0. For example, the symbol of A, could be taken as (1 + r(|£|2 + |§|2))_1.
Let A, = A, A. Let a be the symbol of A, and let A, have symbol (1 + r(|£|2 + |§|2))_1a for r > 0, so
A, € \Dg’z(X) for r > 0, and A, is uniformly bounded in W, (X), and A, — A in \Dgf(X).
By Lemma 7.3,
(dAsu, dAsu)G + Ml|Aul®

is uniformly bounded for r € (0, 1], so
(dAyu,dAu)g +Rer||Ayul®> and  Ima||A,ul®

are uniformly bounded. If Im A # 0, then taking the imaginary part at once shows that ||A,u|| is in fact
uniformly bounded. On the other hand, whether Im A = 0 or not,

(dA,u,dA,u>G=/ A(x,y)xDxA,uxDxArudg—Ff > " Bij(x,y)xDy A,uxDy Ayudg
X X

+/ ZCj(x,y)xDxA,unyjA,udg—i-/ ZCj(x,y)nyjA,uxDxArudg.
X X

Using that A(x, y) = —14+xA'(x, y) + Y (y; —yj(g))Aj(x, y), we see that if A, is supported where
x <dand|y; —yj(g)| <4 forall j, then for some C > 0 (independent of A,),

)f A(x,y)xDxAruxDxArudg—f A, y(@)) x Dy AuxD Ay dg| < CoIx D AP, (7-4)
X X

with analogous estimates* for B;j(x,y) — B;;(0, y(¢q)) and for C;(x, y). Thus, there exists C > 0and
8o > 0 such that if § < §y and A is supported where |x| < é and |y — y(q)| < 8, then

n—2
/((1—C‘S)IxDxA,u|2—Rek|Aru|2)a’g+Z/ ((1—65)Zny,A,unyjA,u> dg
X . X . ’

Jj=1 J

_f ((1+65)§ :nyn_,A,unyn_lA,u> dg
X B
J

< |(dA,u,dAu)g +Rer||Aul?|. (7-5)

Now we distinguish the cases §(¢g) = 0 and £(g) # 0. If £(g) = 0, we choose J € (0, 1/(26‘)) with
8 < 8o, so that

(1=CO¢'1P/¢h_y) > 1+2C8

4Recall that C;j(0,y) =0and B;;(0,y(¢q)) =0if i # j and B;;(0, y(g)) =1ifi = j =n —1and B;;(0, y(q)) = —1if
i=j#n—1.
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on a neighborhood of WFj (A), which is possible in view of (ii) at the beginning of the proof. Then the
second integral on the left side of (7-5) can be written as || Bx A, u||?, with the symbol of B given by

~ ~ 1/2
(A=Co)g'P—+Co)¢2 )"
(which is > 81En—10)s modulo a term

f FxA,uxA,udg for F e \I!g(X).
X

But A¥xFxA, is uniformly bounded in xz\lfg‘gﬂ (X) C Diff(z) \I!]f‘g -1 (X), so this expression is uniformly
bounded as r — 0 by Corollary 5.15. We thus deduce that

f ((1—C8)|xDyAyul* —ReA|A,ul?) dg + | BxAull®
X

is uniformly bounded as r — O.
If §(¢) # 0, and A is supported in |x| < §, then

63/ 8_2|x2DxAru|2dg§C'8/ IxD,A,ul*dg.
X X

On the other hand, near {¢": £(¢") = 0}, for § > O sufficiently small,

Cs 2 2 2 2 =
6—2|x Dy Ayul”—|xDy, Ayul”|dg =|BxA,ull”+ | FxAuxA,udg,
X X

with the symbol of B given by ((@/8)§2 —¢2_ )% (which does not vanish on U for § > 0 small), while
F e llfg (X), so the second term on the right side is uniformly bounded as r — 0 just as above. We thus
deduce in this case that

/ (1=2C8)|xDyAyul>dg —ReA|A,ul?) + | BxAul?
X

is uniformly bounded as r — O.
If Im A # O then we already saw that ||A,u| ;2 is uniformly bounded, so we deduce that

Ayu, xD,A,u and Bx A,u are uniformly bounded in L2(X). (7-6)

If ImA = 0 but A < (n — 1)?/4, then the Poincaré inequality allows us to reach the same conclusion,
since on the one hand in case (ii)

(1—C8)|lx Dy Ayull* —Re Al|Ayul?,

and in case (1)

(1—2C8)|lx Dy Arul* —Re || A ull?,
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are uniformly bounded; on the other hand by Proposition 2.3, for § > O sufficiently small there exists
¢ > 0 such that

(1—2C8)|lx Dy Ayul® —ReAl|Ayull® > c(|lx Dy Aru||® + || Ayull?).

Correspondingly there are sequences A, u, xD, A, u and BxA, u, weakly convergent in L?(X), and
such that rp — 0, as k — oo. Since they respectively converge to Au, x D, Au and BxAu in €~°°(X),
we deduce that the weak limits are Au, x D Au and Bx Au, which therefore lie in L?(X). Consequently,
qé¢ WFé’s(u), hence proving the proposition with WF,’ L™ (Pu) replaced by WF, Lmtl/2 py).,

To obtain the optimal result, we note that due to Lemma 7.5 we still have, for any € > 0, that

(dAyu, dAu) —e||dAul?

is uniformly bounded above for r € (0, 1]. By arguing just as above, with B as above, for sufficiently
small € > 0, the right side gives an upper bound for

/ ((1—2C8 —€)|xDy Ayul* —Re A|A,ul?) dg + | BxAsull?,
X

which is thus uniformly bounded as » — 0. The proof is then finished exactly as above. (|

The analogous argument works for the conformally compact elliptic problem, that is, on asymptotically
hyperbolic spaces, to give that for A € C\ [(n — 1)?/4, 00), local solutions of (A ¢ — A)u are actually
conormal to Y provided they lie in H(} (X) locally, or indeed in H()l”b_ *(X).

8. Propagation of singularities

In this section we prove propagation of singularities for P by positive commutator estimates. We do
so by first performing a general commutator calculation in Proposition 8.1, then using it to prove rough
propagation estimates first at hyperbolic, then at glancing points, in Propositions 8.2 and 8.6, respec-
tively. An argument originally due to Melrose and Sjostrand [1978] then proves the main theorems,
Theorems 8.8 and 8.9. Finally we discuss consequences of these results.

We first describe the form of commutators of P with W, (X). We state this as an analogue of [Vasy
2010a, Proposition 3.10], and later in the section we follow the structure of [Vasy 2010a] as well. Given
Proposition 8.1 below, the proof of propagation of singularities proceeds with the same commutant con-
struction as in [Vasy 2008c]; see also [Vasy 2008a]. Although it is in a setting that is more complicated in
some ways, since it deals with the equation on differentials forms, we follow the structure of [ Vasy 2010a]
since it was written in a more systematic way than [Vasy 2008c]. Recall from the introduction that § is
the variable b-dual to x, and § = § /1En-1l.

Proposition 8.1. Suppose i = {A, :r € (0, 1]} is a family of operators A, € \IJS (X) uniformly bounded
in WH2(X), of the form A, = AA,, with A € WO(X), a = 0p,0(A) and w, = oy s 41/2(A,). Then

1[A*A,, O] = (xD,)*C*(xD,) + (x Dy)*xC. + xC (x D,) + x*C", (8-1)



124 ANDRAS VASY

where
CPe L™((0,11; WE(X)), CL,Cle L0, 11; ¥2T(X)), CPe v (X),

and
0b,25(CH) = 2wla(V*a +adch),

0b,2541(C}) = 06,2511 (C)) = 2w}a(V'a +aé)),

ab,szrz(Crb) = 2wfa(Vba + aE';),

with 5E , Cry E? uniformly bounded in S -1 50 st respectively, Ve V', V" smooth and homogeneous of
degree —1, 0, 1 respectively on br*x \ 0, and where V]j|y and V'|y annihilateé‘ and

Vly = 2hd; — Hy,. (8-2)

Proof. In Proposition 7.1, [J is decomposed into a sum of products of weighted b-operators, so analo-
gously expanding the commutator, all calculations can be done in x/¥,(X) for various values of /. In
particular, keeping in mind Lemma 5.1 (which gives the additional order of decay),

L[A¥ Ay, x Dy, 1[AFA,, (xDy)*] € L¥((0, 1, xW2H (X)),

with principal symbol —2w?axd,a — 2a*w, (xd,w,). By this observation, all commutators with factors
of xD, or (xDy)* in (7-1) can be absorbed into the “next term” of (8-1), so [AfA,, (xDy)*Jo(x Dy)
is absorbed into xC)'(x Dy), (xDy)a[AfA,, xD,]is absorbed into (xDy)*xC/, and [AA,, (x Dy)*IM’
and M"[A¥A,, (x D,)] are absorbed into x2C f The principal symbols of these terms are of the desired
form, that is, after factoring out 2w?a, they are the result of a vector field applied to a plus a multiple of
a, and this vector field is —adx in the case of the first two terms (thus annihilating §), and is —mx~ 19, in
the case of the last two terms, which in view of m = oy, | (M) = oy, 1(M") € x2S, shows that it actually
does not affect V°|y.

Next, 1 (x Dy)*[AfA,, a](x Dy) can be absorbed into (and can be taken equal to) (x Dx)*Cﬁi (xD,) with
principal symbol of C 4 given by

—(3ye) 3¢ (@*w}) — (xdea)dg (@ wy)

in local coordinates; thus again is of the desired form since the d¢ term has a vanishing factor of x
preceding it. )

Since [A*A,, M'] and [A¥A,, M"] are uniformly bounded in x2\IJ§S+1(X ), the corresponding com-
mutators can be absorbed into (xD,)*xC, and xC,’(x D,), respectively, without affecting the principal
symbols of C, and C; at Y, and possessing the desired form.

Next, P = x20, + R, with R € x3 Diff%(X), so [AA,, R] is uniformly bounded in x3\llgs+2(X), and
thus can be absorbed into Crb without affecting its principal symbol at Y, and it has the desired form.
Finally, 1[A¥A,, x20,] € xz\lfg“'”(X) has principal symbol 0 (azwrz)2x2h — xZHh(a2w,2), and can thus
be absorbed into C f , yielding the stated principal symbol at Y. 0

We start our propagation results with the propagation estimate at hyperbolic points.
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Proposition 8.2 (normal, or hyperbolic, propagation). Suppose P =1+, with . € C\[(n— 1)2/4, 00).
Let go = (0, y0. 0, £0) € # NPT X, and let

n=-§

be the function defined in the local coordinates discussed above, and suppose that u € Holy’,f’ loc(X) for
some k <0, qo ¢ WFgl’oo(f) and f = Pu. If Im A < 0 and there exists a conic neighborhood U of qq
in°T*X \ o such that

g & WE, ™) if g € U and 5(g) <0, (8-3)

then qo ¢ WEL ™ (u).
In fact, if the wave front set assumptions are relaxed to qo ¢ WF, l’SH( f) (with f = Pu) and the
existence of a conic neighborhood U of qo in °T*X \ o such that

q¢ WFll)’S(u) if g €U andn(q) <0, (8-4)

then we can still conclude that qg ¢ WF]])’S (u).

Remark 8.3. As follows immediately from the proof given below, in (8-3) and (8-4), one can replace
n(g) < 0 by n(g) > 0, that is, one has the conclusion for either direction (backward or forward) of
propagation, provided one also switches the sign of Im A when it is nonzero that is, the assumption
should be Im A > 0. In particular, if Im A = 0, one obtains propagation estimates both along increasing
and along decreasing 7.

Note that n is increasing along the GBB of [; by (6-11). Thus, the hypothesis region {g € U : n(g) <0}
on the left side of (8-3) is backwards from qq, so this proposition, roughly speaking, propagates regularity
forwards.

Moreover, every neighborhood U of gy = (yy, §o) € %ﬂbT;‘X in ¥ contains an open set of the form

{q: 1x(@1*+1y(@) — yol* +1£ (@) — Sol* < 8}, (8-5)

see [Vasy 2008c, Equation (5.1)]. Note also that (8-3) implies the same statement with U replaced by
any smaller neighborhood of go and in particular for the set (8-5), provided that § is sufficiently small.
We can also assume by the same observation that WF, Ls+1 (Pu) NU = &. Furthermore, we can also
arrange that h(x, y, £, ¢) > (&, O)I*|£0l7*h(g0)/2 on U since o - B(yo)so = h(0, yo, 0, £o) > 0. We
write

h=1¢u1]2h = 1gn1]72¢ - BOY)E

for the rehomogenized version of 4, which is thus homogeneous of degree zero and bounded below by
a positive constant on U.

Proof. This proposition is the analogue of [Vasy 2008c, Proposition 6.2], and since the argument is
similar, we mainly emphasize the differences. These enter by virtue of A not being negligible and the
use of the Poincaré inequality. In [Vasy 2008c], one uses a commutant A € \Ilg (X) and weights A, €
wO(X) for r € (0, 1), which are uniformly bounded in W}""/*(X), with A, = AA,, in order to obtain
the propagation of WFII)’S(M) with the notation of that paper, whose analogue is WFII)’S(u) here (the
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difference is the space relative to which one obtains b-regularity: H'(X) in the previous paper, the
zero-Sobolev space HO1 (X) here). One can use exactly the same commutant as in [Vasy 2008c]. Then
Proposition 8.1 lets one calculate 1[A}A,, P] to obtain an expression completely analogous to [Vasy
2008c, Equation (6.18)] in the hyperbolic case. We also refer to [Vasy 2010a] because, although it
studies a more delicate problem, namely natural boundary conditions (which are not scalar), the main
ingredient of the proof, the commutator calculation, is written up exactly as above in Proposition 8.1;
see [Vasy 2010a, Proposition 3.10] and the way it is used subsequently in Proposition 5.1 there.

As in the proof of [Vasy 2010a, Proposition 5.1], we first construct a commutant by defining its scalar
principal symbol a. This completely follows the scalar case; see the proof [Vasy 2008c, Proposition 6.2].
Next we show how to obtain the desired estimate.

So, as in the proof [Vasy 2008c, Proposition 6.2], let

0 (q) = 1x(@)* +1y(@) = yo* + 15 (@) = Lol, (8-6)
with | - | denoting the Euclidean norm. For € > 0 and § > 0, with other restrictions to be imposed later
on, let

1

Let xo € 6*°(R) be equal to 0 on (—oo, 0] and xo(¢) = exp(—1/¢) for t > 0. Thus, tzx()(t) = xo(t) for
t € R. Let x; € €°(R) be 0 on (—o0, 0] and 1 on [1, 00), with x; > 0 satistying x| € Céggmp((O, 1)).
Finally, let x» € %ggmp([R{) be supported in [—2cy, 2¢1] and identically 1 on [—cy, c1], where c; satisfies
|§A|2 <e¢1/2in £NU. Thus, X2(|§|2) is a cutoff in |§|, with its support properties ensuring that dX2(|‘§ 1) is
supported in | § |2 € [c1, 2¢1] and hence outside > — it should be thought of as a factor that microlocalizes
near the characteristic set but effectively commutes with P (since we already have the microlocal elliptic

result). Then, for F > 0 large, to be determined, let

a=xo(F ' 2= 8/8)x1(n/8+2)x2(EP); (8-8)

so a is a homogeneous degree zero € function on a conic neighborhood of ¢q in ®7*X \ 0. Indeed as
we will see momentarily, a has for any € > 0 compact support inside this neighborhood (regarded as a
subset of °S* X, that is, quotienting out by the RT-action) for § sufficiently small, so in fact it is globally
well defined. In fact, on supp a we have ¢ <28 and n > —26. Since w > 0, the first of these inequalities
implies that n < 2§, so on suppa

Inl <28. (8-9)

Hence,
w < €28(28 —n) < 48%€%. (8-10)

In view of (8-6) and (8-5), this shows that given any €y > 0 there exists §o > 0 such that a is supported
in U for any € € (0, ¢g) and § € (0, 8g). The role that F large plays (in the definition of @) is that it
increases the size of the first derivatives of a relative to the size of a; hence it allows us to give a bound
for a in terms of a small multiple of its derivative along the Hamilton vector field, much like the stress
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energy tensor was used to bound other terms by making x’ large relative to x in the (nonmicrolocal)
energy estimate.
Now let Ag € lIft? (X) with oy 0(Ap) = a, supported in the coordinate chart. Also let A, be scalar and
have symbol
1Eat P20 47|50 DI for r €0, 1), (8-11)
so A, = AA, € wt?(X) for r > 0 and it is uniformly bounded in \ngl/z(X). Then, for r > 0,
(tATA Pu,u) — (1 A7 Aru, Pu) = (1[ATA,, Plu,u)+ (1 (P — P*)A%Au, u) -12)
= (t[A*A,, Plu,u) —2TmA[ Aqul?.

We can compute this using Proposition 8.1. We arrange the terms of the proposition so that the terms in
which a vector field differentiates x; and x» are included in E, and E, respectively. Thus, we have

1A*A, P —1PA*A, = (xD,)*C*(x D) 4+ (xD)*xC. +xC/(xD,) +x*C’ + E, + E. + F,, (8-13)
with 2(—1¢—1 —1, 2t —2¢o—1 pfy ./ 2~
(P alga T (P e T Y xoxixe +a’c;),
ab2+1(C) =w (F 87 a(f' +87'€ > fxguixa +a*c),
ov2u+1(C) = w (F 187 a(f" + 871 2 [ xoxxe +a’E)),
ob25+2(Cr) = w} (F 187 g1 la@h + f* 48772 P xoxix +a°E),

025 (CH) = w

(8-14)

where %, f/, f” and f” aswell as f%, f', f” and f" are all smooth functions on ®T*X \ 0, homogeneous
of degree 0 (independent of € and &), and h= 1En—1 |~2h is the rehomogenized version of 4. Moreover,
%, f', f" and f° arise from when w is differentiated in x (f ~'(2—¢/8)), and thus vanish when v =0,
while f%, ', £ and f* arise when 7 is differentiated in x (f ~1(2 — ¢/5)), and comprise all such terms
with the exception of those arising from the d: component of V°|y (which gives 4h = 4|¢,—1|7%h on
the last line above) and hence are the sums of functions vanishing at x = 0 (corresponding to us only
specifying the restrictions of the vector fields in (8-2) at Y) and functions vanishing at § = 0 (when
|En—1]7 in n = —|¢,—1|7" is differentiated).”
In this formula we think of
AF s~ wlalg i lhxox x (8-15)

as the main term; note that / is positive near go. Compared to this, the terms with a? are negligible, for
they can all be bounded by
cF MF e wlalg 1 X x2)

(see (8-15)), that is, by a small multiple of F_18_1w3a|£n_1 |_1X6X1X2 when F is taken large, using
that 2 — ¢ /6 <4 on suppa and

Xo(F ') = (F "0 ¢ (F 'ty < 16F 72xg(F ~'t)  for 1 < 4; (8-16)

5Terms of the latter kind did not occur in [Vasy 2008c¢] since time-translation invariance was assumed, but it does occur in
[Vasy 2008b] and [Vasy 2010a], where the Lorentzian scalar setting is considered.
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see the discussion in [Vasy 2008b, Section 6] and following [Vasy 2008c, Equation (6.19)].
The vanishing condition on the f¥, f/, f”, f° ensures that, on suppa,

L1 1L LR < ColP? < 2Ces, (8-17)

so the corresponding terms can thus be estimated using w?f ~'8~'a| En-1 |1 X4 X1x2 provided e !is not
too large; that is, there exists €y > 0 such that if € > &, the terms with f%, f/, f”, f° can be treated as
error terms.

On the other hand, we have

PSS L) < Clxl + ClE| < Co'? + CIE| <2Ces + CIEL (8-18)

Now, |§ | <2|x| on ¥ (for €] = x|&] < 2[x[|§»—1] with U sufficiently small). Therefore we can write

fi= fﬁ + fb with fb supported away from 3 and fji satisfying
|fE1< Clxl + CIE| < C'lx| < C'w'/? < 2C"es; (8-19)

we can also obtain a similar decomposition for /', f” and f”.
Indeed, using (8-16) it is useful to rewrite (8-14) as

0b,2s(CH = wiF 167 al gt |7 (FF+ €267 1+ F 188D X X1 X2
Op251(CL) = w28 Fla(f + 87 2+ F 18 X x1 X0,
Ob2541(C) = w28 F a(f + 87 e 2"+ F '8¢ xxi xas
0p2512(C)) = w2 Flalgu 1 |@h+ 2+ 87 e 2 0+ F ) xgx xas

(8-20)

where
o £ f’, f” and f* are smooth functions on PT*X \ o that are homogeneous of degree 0 and satisfy
(8-17) (and are independent of F , €, §, r);

o fF, e f f F" and f /* are smooth functions on °7*X \ 0, homogeneous of degree 0, with f i = fj + fb ,
where fji , fti’ f” , ft satisfy (8-19) (and are independent of [, €, §, r), while fb , fb, fb are
supported away from ¥; and

. & ¢, ¢! and &) are smooth functions on PT*X \ o that are homogeneous of degree 0 and uniformly
bounded in €, 8, r, F.

Let

by = 2w |1 "2 (F 8) 2 (rox) " x1 2,
and let B, € \IJgH(X ) with principal symbol b,. Then let
Cew(X) and o0,0(C)=ga| WPy =y,

where € S}(l)om(bT*X \ 0) is identically 1 on U considered as a subset of °S*X; recall from Remark 8.3
that & is bounded below by a positive quantity here.
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IfC, e \Ilgs (X) with principal symbol
0b25(Cr) = —4wlF '8 alg | xgxixa = — 18117207,
then we deduce from (8-13)—(8-20) that®
1ATA, P —1PATA,
= B (C*x*C +xR°x + (xDy)*R'x + xR"(x Dy) + (x D,)*R*(xDy)) B, + R/ + E, + E. (8-21)
with
b 0 D! DI -1 ft -2
R eV (X), R,R eV, (X), R ey (X),
R/ € L™((0, 1); Diffy W2 ~'(X)), E,, E. € L™((0, 1); Diff3 ¥ (X)),
with WF, (E) C n~'((—o0, =8]) N U and WF, (E") N S = &, and with r” = oy, o(R"), ¥ = o1, _1(R"),
7' =0y _1(R"), r* € op,_»(R?), and
P’ < CoBe+e ' +8F 7Y, [LaaiF | S Cae+e ' +8F 7D,
Ena | < CoBe e +8F 7Y, (gh_irf < Cae+e +8F 7.

This is almost completely analogous to [Vasy 2008c, Equation (6.18)] with the understanding that each
term therein inside the parentheses attains an additional factor of x? (corresponding to [J being in
Diff%(X ) rather than Diffz(X )), which we partially include in x D, (vs. Dy). The only difference is
the presence of the §/ ~! term, which however is treated like the €8 term for /- sufficiently large; hence
the rest of the proof proceeds very similarly to that paper. We go through this argument to show the role
that A and the Poincaré inequality play, and in particular how the restrictions on A arise.

Having calculated the commutator, we proceed to estimate the “error terms” R®, R’ , R” and R? as

operators. We start with R”. By the standard square root construction to prove the boundedness of PsDOs
on L?, see e.g. the discussion after [Vasy 2008c, Remark 2.1], there exists RE eV, l(X ) such that

IR vl < 2suplr’| vl + [ Rov| forall ve L2(X).
Here || - || is the L?(X) norm, as usual. Thus, we can estimate, for any y > 0,
(R0, v)| < [R"v| o]l < 2suplr’| [ol|* + | R, ]l [[v]
<2C,@e+e " +8F DI+ y IR VIR + yilv P

Now we turn to R'. Let T € W 1(X ) be elliptic (which we use to shift the orders of PsDOs at our
convenience), with symbol | gn_lrl on suppa, and with T~ € \Dé (X) a parametrix, so 7T =Id+F

0The f ? terms are included in R", while the fb11 terms are included in E’, and similarly for the other analogous terms
in f/, ", f°. Moreover, in view of Lemma 5.4, we can freely rearrange factors, e.g., writing C*x2C as xC*Cx if we
wish, with the exception of commuting powers of x with x Dy or (xDy)* since we need to regard the latter as elements
of Diff(])(X ) rather than Diffllj(X ). Indeed, the difference between rearrangements has lower b-order than the product, in
this case being in x2\llb_ 1(X ), which in view of Lemma 5.5, at the cost of dropping powers of x, can be translated into
a gain in O-order, that is, x2\llb_ 1(X ) C Diff(% 128 3 (X), with the result that these terms can be moved to the “error term”
R" € L*°((0, 1); Diff% \IJIES_I(X)).
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with F € W~ °°(X). Then there exists I?é eV 1(X ) such that

IR *w| = [(RY(T™T — Fyw|| < [[(RY*T™)(Tw)| + [(R)*Fw|
<2Cy(8e 4+ e L+ 8F H|Tw| + | R, Tw| + |(R)* Fw|

for all w with Tw € L*(X), and similarly, there exists Iéé’ eV, Y(X) such that
IR"w|| <2Cy(8e +€ ' +8F | Tw| + IR/ Tw| + |R" Fw].
Finally, there exists Rbjj eV 1(X ) such that
(T REw| <2Cy(8e + €~ +8F " HIITw| + |RETw| + |(T7)*R* Fu|
for all w with Tw € L?(X). Thus,
[(xv, (R")*(xDy)v)| < 2C2(8€ + €' +8F ~H | TxDyv]l [|xv]|
+2yllxvl* +y IR, Tx Dyvl|* + y~ | F'x Dyv|?,

{R"xDyv, xv)| <2C2(8€ +e ' +8F Y TxDv|l ||xv]
+2ylxvll* + ¥ IR/ TxDyw|* +y~ | F'xDyvl?,

and, writing x Dyv =T~ T (x Dyv) — F(x D,v) in the right factor, and taking the adjoint of 7,

[(R¥x D, v, xDyv)| <2Cy(8e + €' +8F "I T @D )v|l IT (xD)v| +2yIIT (x Dy)v]?
+y NRIT (DI + v~ I F (e Do)vl> + 1R (x D)ol | F* (x Dy) |1,
with F/, F”, F* € U (X).
Now, by (8-21),
(tIATA,, Plu,u) = |Cx Byull> + (R"x Byu, x Byu) + (R"x Dy Byu, x Byu)
+ (xByu, (R*xDyByu) + (R*x Dy Byu, x Dy Byu)
+(Ru,u)+ ((E, + E)u,u) (8-22)
On the other hand, this commutator can be expressed as in (8-12), so
(1AYA, Pu,u) — (1A Aru, Pu)
= —2ImA|Aul®> + |CxByul|> + (R°x Byu, x Bou) + (R"x Dy Byu, x Byu)
+ (xByu, (R*x D, Byu) + (R*°x D, Byu, x Dy Byu) 4+ (R'u, u) + ((E, + EDu, u), (8-23)

so the signs of the first two terms agree if Im A < 0, and the Im A term vanishes if A is real.

Assume for the moment that WF, Ls+3/ 2(Pu) N U = @ —this is certainly the case in our setup if
Ls+1(py), which is what we

qo ¢ WE, 1% (py), but this assumption is a little stronger than go ¢ WF,
need to assume for the second paragraph in the statement of the proposition. We deal with the weakened

hypothesis go € WF, L5t (Puy) at the end of the proof. Returning to (8-23), the utility of the commutator
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calculation is that we have good information about Pu (this is where we use that we have a microlocal
solution of the PDE!). Namely, we estimate the left hand side as

[(Ar Pu, Ayu)| < [((T7)* A, Pu, T Aru)| + (A, Pu, FA,u)|

B (8-24)
<I(T )*ArPu”H(;l(X)||TAru||H01(X) + ”ArPu”HO*l(X)”FArullHol(X)-
Since (T ~)*A, is uniformly bounded in ‘-I!]‘;:3/ 2 (X) and T A, is uniformly bounded in \IJI‘;C_ 12 (X), both

with WF{) in U, with WF; Lst3/ 2(Pu) and WFS)’S_I/ 2(u), respectively, disjoint from them, we deduce

(using Lemma 5.14 and its H, ! analogue) that [((T~)*A, Pu, T A,u)| is uniformly bounded. Similarly,
taking into account that FA, is uniformly bounded in W *°(X), we see that (A, Pu, FA,u)| is also
uniformly bounded, so [(A, Pu, A,u)| is uniformly bounded for r € (0, 1].

Thus,

ICxByul* —ImA[|Aqul)?
<2(A, Pu, Ap) |+ ((E,+EDu, u)|+(2C2(8e+e +8F 1) +y) Ix Brull >+~ | R x Byul?
+4Cy e+ € +8F DxBaullIT(xDy)Byull +y ' IIRT (x D) Byul* + ¥y | R/ T (x D) Byul?
+4yllxBul® + (2C2(e + €' +8F ) +2y)IT(x Do) Brul?
+ vy IRET (x D) Byul* + || R (x D) Byul| || F (x Dy) Bt
+y "NF&Dy)Baul> +y ' |F'(x Do) Byull* + v | F"(x D) Byul®. (8-25)

All terms but the ones involving C; or y (not y~!) remain bounded as » — 0. The C; and y terms can be
estimated by writing T (x D) = (x D,)T'4T" for some 7', T" € W~ (X), and using Lemma 7.3 and the
Poincaré lemma where necessary. Namely, we use either Im A # 0 or A < (n— 1)2/4 to control x Dy L B,u
and Lf},u in L2(X) in terms of ||x]§ru |l > where L € qu—l (X); this is possible by factoring Dy, , (whichis
elliptic on WF’ (Er)) out of B, modulo an error F, bounded in W} (X), which in turn can be incorporated
into the “error” given by the right hand side of Lemma 7.3. Thus, there exists C3 > 0, G € \Il;_]/ 2(X )
and G € \Ing/Z(X) as in Lemma 7.3 such that

b o TIGUG o T IPUll 1 o +IG P,

D 2 D D 2 2
I Dy L Byal® + 1L Byl = Cs (s Brael+ ulFyy o T o)

We further estimate ||x By« in terms of ||Cx B,u| and ”””Ho'{]oc(x) using that C is elliptic on WF{ (B)
and Lemma 5.14. We conclude, using Im A < 0, taking € sufficiently large, then y and §y sufficiently
small, and finally F sufficiently large, that there exist y > 0, € >0, &y > 0 and C4 > 0 and Cs > 0 such
that for § € (0, &),

CallxByull* < 21(A, Pu, Aru)| + [{(Er + E)u, u)]

+ Cs(1Gullyyy oy H NG Pl ) + Cslull o oy + 1Pl re (x)-

Letting r — 0 now keeps the right hand side bounded, proving that lxB,u|l is uniformly bounded as
r — 0; hence x Bou € L*(X) (see the proof of Proposition 7.7). In view of Lemma 7.3 and the Poincaré
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inequality (as in the proof of Proposition 7.7), this proves that go ¢ WFll)’S (u), and hence proves the first
statement of the proposition.

In fact, recalling that we needed go ¢ WF, Ls+3/ 2(Pu) for the uniform boundedness in (8-24), this
proves a slightly weaker version of the second statement of the proposition with WF, Lstlpy) replaced

by WF_1 St/ 2(Pu) For the more precise statement we modify (8-24) — this is the only term in (8-25)

that needs modification to prove the optimal statement. Let T e \IJ_I/ 2(X ) be elliptic, T~ e \Dl/ 2(X )a
parametrix, with F=T"T-Ide \IJb (X). Then, similarly to (8-24), we have for any y > 0,
[(ArPu, Ayu)| < [(T7)* A Pu, T Aru)| + [{Ar Pu, FA,u)|
(8-26)

<y '"NT*A Pul? P +YIT Aullfp gy + 1A Pull oo |F Arill g -

(X)
The last term on the right hand side can be estimated as before. As (T_)*A is bounded in \IJerl (X) with
WEF, disjoint from U, we see that || (T7)*A, Pul| Hy ' (X) is uniformly bounded. Moreover, || TAAul? HY(X)

can be estimated, using Lemma 7.3 and the Poincaré inequality, by ||xD,, TAAu|? modulo terms

L2(X)
that are uniformly bounded as r — 0. The principal symbol of Dy, lTA 18 $n—10b,—1 /2(T)a with

a = xox1x2, where o stands for XO(AO (2—¢/9H)), etc., so we can write

1Ea11"2a = 18011 x0x1 02 = Ay Q= /)N En1 1> ox) P xix2 = F 128122 — ¢ /)b,

where we used that

XoF 12 =¢/8)=F*2—¢/8) *xo(F 12— /%))

when 2 — ¢ /6 > 0, while a and b vanish otherwise. Correspondingly, using that | En— Y Zob’_ 1 /z(f") is
%> and homogeneous degree zero near the support of a in °T*X \ 0, we can write Dy, TA=GB+F,
with G € lI’O(X ) and F € W, —1/ 2(X ). Thus, modulo terms that are bounded as » — 0, we can estimate
lxDy,_ TAA +ull* (and hence ||TAA ul|? H, (X)) from above by C6||xB u||>. Therefore, modulo terms
that are bounded asr — 0,fory>0 sufﬁmently small, || TA,ul? #)(x) can be absorbed into ||Cx B, u]|2.
As the treatment of the other terms on the right hand side of (8- 25) requires no change, we deduce as
above that xf?ou € L?(X), which (in view of Lemma 7.3) proves that go ¢ WFS)’S(M), completing the
proof of the iterative step.

We need to make one more remark to prove the proposition for WFtl)’oo(u); namely we need to show
that the neighborhoods of gg that are disjoint from WFll)’S(u) do not shrink uncontrollably to {gg} as
s — 00. This argument parallels the last paragraph of the proof of [Hormander 1985, Proposition 24.5.1].
In fact, note that above we have proved that the elliptic set of B = By is disjoint from WF:)’S (u). In the
next step, when we are proving qo ¢ WF1 S+1/2
amount), thus decreasing the support of a = a,1,> in (8-8), to make sure that suppa,1,> is a subset
of the elliptic set of the union of B, with the region 1 < 0, and hence that WFtl)"Y (u) Nsupp a1 =<

(u), we decrease § > 0 slightly (by an arbitrary small

Each iterative step thus shrinks the elliptic set of B, by an arbitrarily small amount, which allows us
to conclude that gy has a neighborhood U’ such that WFé’s(u) N U’ = & for all s. This proves that
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qo ¢ WE)™®(u), and indeed that WE,(u) N U’ = @, for if A € W}"(X) with WF,(A) C U’, then
Au € H(} (X) by Lemma 5.10 and Corollary 5.12. U

Before turning to tangential propagation we need a technical lemma, which roughly states that when
applied to solutions of Pu = 0 with u € HO1 (X), the operators x D, and Id are not merely bounded by
xD,, | microlocally, but are small compared to it, provided that A € C\ [(n — 1)2 /4, 00). This result is
the analogue of [Vasy 2008c, Lemma 7.1], and is proved as there, with the only difference being that
the term (LA,u, A,u) cannot be dropped; instead it is treated just as in Proposition 7.7 above. Below
a §-neighborhood refers to a §-neighborhood with respect to the metric associated to any Riemannian
metric on the manifold ®7* X, and we identify ®S* X as the unit ball bundle with respect to some fiber
metric on °T*X.

Lemma 8.4 (see [Vasy 2008c, Lemma 7.11). Suppose that P = Ug + A, with A € C\ [(n — 1)2/4, 00).
Suppose u € H()l,’lf,loc(x ), and suppose that we are given K C °S*X compact satisfying

K CYNT*Y \WE, " "2(Pu).

Then there exist 8y > 0 and Co > 0 with the following property. Let § < 8. Let U C °S*X be open in
a §-neighborhood of K, and let sl = {A, : r € (0, 1]} be a bounded family of PsDOs in V; (X) with
WE, () C U, and with A, € \I’g_l(X)ff)rr € (0, 11. ] o

Then there exist G € W /*(X) and G € Wy "> (X) with WF,(G), WF,(G) C U and Co = Co(8) > 0
such that for all r > 0,

lx Dy Ayull* + || Ayull?

= Codllx Dy, Arull® + Colllullfyrs o F1GUNG oy FIPUIL 14 FNGPUlL ) B-2D)

The meaning of ||l/t||H011,bk']0c(X) and || Pu”i’ofg,ﬁc X is stated in Remark 7.2.

Remark 8.5. Since K is compact, this is essentially a local result. In particular, we may assume that
K is a subset of °T*X over a suitable local coordinate patch. Moreover, we may assume that 8y > 0 is
sufficiently small so that Dy, _, is elliptic on U.

Proof. By Lemma 7.3 applied with K replaced by WF{ (s4) in the hypothesis (note that the latter is
compact), we already know that

. (8-28)

2 (2 2 2 % b2
(dAru, dAru)g+Al|Aul |SCo(llullHé‘,éloc(X)JrIIGMII I Pull,- +”GP“”H(;1<X))

1 L.k
HO X) O,b,loc(X)

for some C;) > 0 and for some G and G as in the statement of the lemma. Freezing the coefficients at Y,
as in the proof of Proposition 7.7 —see [Vasy 2008c, Lemma 7.1] for details — we deduce that

|lx Dy Arull* — A Ayull?|
< [ (/090D AUGD, YA )ldg] + C3lxD,  Arul?
X

+C§(llul?
oy

Jloc

2 2
oo HIGUR o+ I PUI

~ 2
Hy (X) koo T IGPullyy1(x)-  (8-29)

(X)
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Now, one can show that

‘/ (3° (D5, By (0. Dy x A A g
X

< CoblI Dy, Arull® + Co@) (lullfyrs )+ 1Gully ) (8-30)

precisely as in the proof of [Vasy 2008c, Lemma 7.1]. Equations (8-29)—(8-30) imply (8-27) with the
left side replaced by ||[x Dy Aqull®> — A|A,u?|. If ImA # 0, we get the desired bound for ||A,u|? by
taking the imaginary part of |x Dy A, u 1> — A||Aqu||*; hence taking the real part gives the desired bound
for ||x Dy A,ul|> as well. If ImA =0 but A < (n—1)?/4, we finish the proof using the Poincaré inequality;
see the proof of Proposition 7.7. O

We finally state the tangential, or glancing, propagation result.

Proposition 8.6 (tangential, or glancing, propagation). Suppose P =g+ with . € C\[(n— 1)2/4, 00).
Let Uy be a coordinate chart in X, and let U be open with UcCUy. Letu € Hol,bk,loc(x)fo’" some k <0,
andlet 7 : T*X — T*Y be the coordinate projection

Ti(x, .80 (y,0).

Given K C bSZ*JX compact with
K C (4N TyX) \WF;l’Oo(f), where f = Pu, (8-31)

there exist constants Co > 0 and 8y > 0 such that the following holds. If ImA <0, qo = (yo, go) ek,

ag=n"" (qo) and Wy = 71, |o,H, considered as a constant vector field in local coordinates, and for some
0<d<dpg, Cod<e<landforalla=(x,y,&, ¢) € X, there holds

m(a) ¢ WFIIJ’OO(u) if aeT*X and |7 (o — (g —Wp))| < €8 and |x(a)| < €8, (8-32)

then qq ¢ WFII)’OO(u).
In addition, WFgl’oo(f) may be replaced by WF;I’SH(f), and WFll)’oo(u) may be replaced by
WE’ (u), s € R.

Remark 8.7. Just like Proposition 8.2, this result gives regularity propagation in the forward direction
along Wy, that is, to conclude regularity at o, one needs to know regularity in the backward Wy-direction
from qo.

One can again change the direction of propagation, that is, replace § by —§ in o — (ag — 8 Wy), provided
one also changes the sign of Im A to Im A > 0. In particular, if Im A =0, one obtains propagation estimates
in both the forward and backward directions.

Proof. The proof follows closely that of [Vasy 2008c, Proposition 7.3], which is corrected at a point
in [Vasy 2008a], so we merely point out the main steps. Again, one uses a commutant A € \Ilt? (X)
and weights A, € lI']?(X) for r € (0, 1), uniformly bounded in \D;SFI/Z(X), with A, = AA,, in order to
obtain the propagation of WFS)’S (1) with the notation of that paper, whose analogue is WFS)‘S (u) here (the

difference is the space relative to which one obtains b-regularity: it is H'(X) in the previous paper, but
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the zero-Sobolev space H(} (X) here). One can use exactly the same commutants as in [Vasy 2008c], with
a small correction given in [Vasy 2008a]. Then Proposition 8.1 lets one calculate :1[A}A,, P] to obtain
a completely analogous expression to the formulas below [Vasy 2008c, Equation (7.16)], as corrected.
The rest of the argument is completely analogous as well. Again, we refer the reader to [Vasy 2010a]
because the commutator calculation is written up exactly as above in Proposition 8.1 (see [Vasy 2010a,
Proposition 3.10]) and it is used subsequently in 6.1 there the same way it needs to be used here — any
modifications are analogous to those in Proposition 8.2 and arise due to the nonnegligible nature of A.

Again, we first construct the symbol a of our commutator following the (corrected) proof [Vasy 2008c,
Proposition 7.3]. Note that (with p = x‘zob,g(ﬁ) =h)

Wo(q0) = Hj(q0),

and let
W =|¢n-1|" Wo.

so W is homogeneous of degree zero (with respect to the R*-action on the fibers of T*Y \ 0). We use
1= (8g0($n—1)0) (Yn—1 — (¥a—1)0)

now to measure propagation, since gn__]l H;(ya—1) =2 > 0 at g by (6-7), so Hz7 is 2|£n,1| > 0 at qo.
Note that 7 is thus increasing along GBB of g.
First, we require

=P, &) =1¢n-112P(y, §);
note that dp; # 0 at o for ¢ # 0 there, but H;p =0, so

Wpi(go) =0

Next, dim T*Y =2n — 2 since dim Y =n — 1; hence dim $*Y = 2n — 3. With a slight abuse of notation,
we also regard go as a point in $*Y —recall that S*Y = (T*Y \ 0)/R*". We can also regard W as a
vector field on $*Y in view of its homogeneity. Since W does not vanish as a vector in 7,,5*Y in
view of W#(qo) # O since 7 is homogeneous degree zero and hence a function on S*Y, the kernel
of W in T,/ S*Y has dimension 2n — 4. Thus there exist homogeneous degree zero functions p; for
j=2,...,2n—4 on T*Y (and hence functions on $*Y) such that

pj(qo) =0 forj=2,...,2n—4,

Wpi(qo) =0 forj=2,...,2n—4, (8-33)
dp;(qo) for j =1,...,2n —4 are linearly independent at gj.
By dimensional considerations, the dp;(qo) for j =1, ..., 2n — 4, together with d7, span the cotangent

space of S*Y at g, that is, of the quotlent of T*Y by the Rt -action, so the p;, together with 7, can be
used as local coordinates on a chart Uy C S*Y near go. We also let 9L be a neighborhood of ¢ in °S* X

such that p;, together with 77, x and §, are local coordinates on ou, this holds if ouo is identified with a
subset of 4N bS;;X and U is a product neighborhood of this in ®S*X in terms of the coordinates (6-1).
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Note that since "E'A =0on ¥ ﬂsz‘,X , for points ¢ in 3 one can ensure that§ is small by ensuring that 77 (¢)
is close to gg and x(q) is small; see the discussion around (8-5) and after (8-7). By reducing U if needed
(this keeps all previously discussed properties), we may also assume that it is disjoint from WF, Lo ).

Hence,
2n—4

En—1] ™ Wop; = Z Fjipi+ Fjon_3ii for j=2,...,2n—4,
i=1

with fji smooth fori =1,...,2n —3 and j =2,...,2n — 4. Then we extend p; to a function on
br*Xx \ o (using the coordinates (x, y, é‘ Y )), and conclude that

2n—4
|£n71|_1Hﬁpj = Z Fjipi+ Fjon_3ii+ Fjox for j=2,...,2n—4, (8-34)
=1

with F ;1 smooth. Similarly, with }7"1 smooth,

2n—4
Zua| T Hpi =2+ > Fipr+ Fausfi + Fox. (8-35)
=1
Let
2n—4
w=xP+) o (8-36)
j=1
Finally, we let
¢ =7+w/(€), (8-37)
and define a by
a=xo(F "' 2= ¢/8))x1((78) /€8 + D x2(IE1/¢h_ ). (8-38)

with xo, x1 and x» as in the case of the normal propagation estimate, stated after (8-7). We always
assume € < 1, so we have

¢ <25 and 7> —€5§—6>—25 on suppa.
Since w > 0, the first of these inequalities implies that 1 < 24§, so
|7l <25 on suppa. (8-39)

Hence,
w <2828 — ) < 48%€>. (8-40)

Thus, suppa lies in aL for § > 0 sufficiently small. Moreover,

1/2

nel—6—e€d,—8] and w’'“ <2 on suppdy, (8-41)

so this region lies in (8-32) after € and § are both replaced by appropriate constant multiples, namely the
present § should be replaced by §/(2[(n—1)ol)-
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We proceed as in the case of hyperbolic points, letting A € \Dg (X) with oy 0(Ag) = a, supported in
the coordinate chart. Also let A, be scalar, with symbol

1En1 T 2A+ (801D T I for r €0, D), (8-42)

S0 A, = AA, € lI’S(X) for r > 0 and it is uniformly bounded in \ngl/z(X). Then, for r > 0,

(1AYA,Pu,u) — (1AFAyu, Pu) = (1[AT Ay, Plu,u) + (1(P — P*)ATA,u, u) (843)
— ([A* A, Plu, u) — 2Im Al Ayul?.

and we compute the commutator here using Proposition 8.1. We arrange the terms of the proposition so
that the terms in which a vector field differentiates x; are included in E, and the terms in which a vector
fields differentiates x» are included in E;. Thus, we have

1A*A, P —1PA*A, = (xD,)*C*(x D) + (xD,)*xC. +xC/'(xD,) + x>C° + E, + E. + F,, (8-44)

with
2(F'8 7 algu 1T (P €727 DX xa + a*EE),
02511 (C) = w(F '8 a(f +67'€ > Y xoxix2 +a*E),
0b,254+1(C)) = wi(F '8 a(f" + 87 € 2 fxoxix2 + a*E)),
06.2542(C)) = wi (F 187 [Cumtla@+ £+ 87 € 2 ) xoxixa +a*e),

0b25s(CH = w

(8-45)

where f%, £/, f” and f” as well as f¥, f/, /" and f” are all smooth functions on ®7* X \ 0, homogeneous
of degree 0 (and independent of € and §). Moreover, f%, f', f”, f° arise when o is differentiated in
xo(F ~1(2 = ¢/8)), while %, f', f” and f” arise when 7 is differentiated in xo(f ~'(2 — ¢/8)), and
comprise all such terms with the exception of part of that arising from the —H;, component of V°|y
(which gives the 4 on the last line above, modulo a term included in f > and vanishing @ = 0). In
addition, since V* ,o2 =2pV*p for any function p, the terms f* fore=1,’,”, b have vanishing factors of
o1 and x, with the structure of the remaining factor dictated by the form of V*p; and V°x, respectively.

Thus, using (8-34) to compute f”, (8-35) to compute f°, we have

££=3 " pefé+afs, £=3"ooifo+ Y pexf 22 fo+ > o fiys
k kl k k
=" mfi+xfy fore="". f=xfo+> of +ifl.
k k
with f,f etc. smooth. We deduce that
257 fFl < e, il =c, (8-46)
e 257 <ce !, Iffl<C fore="", (8-47)
e 287N < ce s, | f°] < Cs. (8-48)

We remark that although thus far we worked with a single gp € K, the same construction works with
qo in a neighborhood U,/ of a fixed gy € K, with a uniform constant C. In view of the compactness
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of K, this suffices (by the rest of the argument we present below) to give the uniform estimate of the
proposition.

Since (8-46)—(8-48) are exactly the same (with slightly different notation) as (6.16)—(6.18) of [Vasy
2010a], the rest of the proof is analogous, except that [Vasy 2010a, Lemma 4.6] is replaced by Lemma 8.4
here. Thus, for a small constant ¢y > O to be determined, which we may assume to be less than C, we
demand below that the expressions on the right sides of (8-46) are bounded by co(e8)~!, those on the
right sides of (8-47) are bounded by cg (€8)~'/2, and those on the right sides of (8-48) are bounded by cj.
This demand is due to the appearance of two, one, and zero, respectively, factors of x D, in (8-44) for the
terms whose principal symbols are affected by these, taking into account that in view of Lemma 8.4 we
can estimate || Q;v|| by Cg k (€8)"/2|| Dy, ,v|| if v is microlocalized to a e8-neighborhood of 4, which is
the case for us with v = A,u in terms of support properties of a.

Thus, recalling that cg > 0 is to be determined, we require that

(Clcp)*8 <e <1, (8-49)

and
8 < (co/C)% (8-50)

see [Vasy 2010a, Proposition 6.1] for motivation. Then with €, § satisfying (8-49) and (8-50) and hence
871> (C/cy)? > C/cyp, the bounds (8-46)—(8-48) give that

e 287N fH < cpste !, |f% < cod™e!, (8-51)
6_28_]|f.| S CO(S_I/ZE_]/Z, |fo| ECO(S—]/ZE—]/Q fOl‘ .:/, 1 (8_52)
e 287 f] < co, 11 < co, (8-53)

as desired. One deduces that
1ATA, P —1PATA,
= B (C*x*C +xR°x + (xDy)*R'x + xR"(xDy) + (x D,)*R*(xDy)) B, + R/ + E, + E. (8-54)

!
with
R e¥(X), R,R'ey;'(X), R*ev,*(X),
R/ € L™((0, 1); Diffy W2 ~'(X)), E,, E. € L™((0, 1); Diff3 ¥ (X)),

with
WE,(E) C 771 ((—=8 — €8, =8]) N~ ([0, 48%€2)) C U

(see (8-41)), WE,(E) NS = @, and with r’ = 01, ¢(R"), 7 =0p_1(R'), 7" =0p_1(R"), r* €ap_2(R%),

"] < 2co+CodF ', L1 <2c087 272+ Co8F 7,
En17"] <2008 2 P4 Cosr T, gn_yrF < 20087 e + CodF T
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These are analogues of the result of the second displayed equation after [Vasy 2008c, Equation (7.16)],
as corrected in [Vasy 2008a], with the small (at this point arbitrary) constant ¢y replacing some constants
given there in terms of € and §; see [Vasy 2010a, Equation (6.25)] for estimates stated in exactly the
same form in the form-valued setting. The rest of the argument proceeds as in the proof of [Vasy 2008c,
Proposition 7.3], taking into account [Vasy 2008a], and using Lemma 8.4 in place of [Vasy 2008c,
Lemma 7.1]. O

Since for A real, A < (n — 1)?/4, both forward and backward propagation are covered by these two
results (see Remarks 8.3 and 8.7), we deduce our main result on the propagation of singularities:

Theorem 8.8. Suppose that P =0+, with A < (n—1)%/4, form € R or m = 0o. Suppose u € Hol”éiloc (X)
for some k <0. Then
(WEL™ (u) N '2) \ WE, " (Pu)

is a union of maximally extended generalized broken bicharacteristics of the conformal metric g in
S\ WF; " (Pu).

In particular, if Pu = 0, then WFll)’oo(u) C Y is a union of maximally extended generalized broken
bicharacteristics of 8.

Proof. The proof proceeds as that of [Vasy 2008c, Theorem 8.1], since Propositions 8.2 and 8.6 are
complete analogues of [Vasy 2008c, Propositions 6.2 and 7.3]. Given the results of the preceding sections
of [Vasy 2008c], the argument proving [Vasy 2008c, Theorem 8.1] is itself only a slight modification of
an argument originally due to Melrose and Sjostrand [1978], as presented by Lebeau [1997] (although
we do not need Lebeau’s treatment of corners here).

For the convenience of the reader we give a very sketchy version of the proof. To start with, propaga-
tion of singularities has already been proved in X°; this is the theorem of Duistermaat and Hormander
[Hormander 1971]. Now, the theorem can easily be localized — the global version follows by a Zorn’s
lemma argument; see [Vasy 2008c, proof of Theorem 8.1] for details. Indeed, in view of the Duistermaat
and Hormander’s result, it suffices to show that if

qo € WEL () \WF, """ (Pu) and g € °T} X, (8-55)

then

there exists a generalized broken bicharacteristic y : [—€p, 0] — >,

: Lm —1m+1 (8-56)
with eg >0, y(0)=gqo, y(s) € WF " (u)\ WF, (Pu), s e€l[—ep,0],

for the existence of a GBB on [0, €p] can be demonstrated similarly by replacing the forward propagation
estimates by backward ones, and, directly from Definition 1.1, piecing together the two GBBs gives
one defined on [—¢p, €p]. Note that (8-55) implies that gy € 6 U ¥ by microlocal elliptic regularity,
Proposition 7.7.

Now suppose gg € (WFL’”’ (u) \WF;I""+1 (Pu)) ﬂbT;;X N #. We use the notation of Proposition 8.2.
Then y in (8-55) is constructed by taking a sequence ¢, — o, where g, € T*X° and 5(g,) = —§ (g2) <O



140 ANDRAS VASY

and GBB y,, : [—€), 0] = 2 with y,,(0) = g, and with y,(s) € (WE," (u) \ WE, """ (Pu)) N T*X° for
s € [—€p, 0]. Once this is done, by compactness of GBB with image in a compact set (see [Vasy 2008c,
Proposition 5.5] and [Lebeau 1997, Proposition 6]), one can extract a uniformly convergent subsequence,
converging to some Yy, giving (8-56). Now, the g, arise directly from Proposition 8.2, by shrinking U
(via shrinking § in (8-5)); namely under our assumption on gg, for each such U there must exist a
q € WFé’m(u) in U N{n < 0}. The y, then arise from the theorem of Duistermaat and Hérmander,
using that n(g,) < 0 implies that the backward GBB from ¢,, cannot meet Y for some time €, uniform
in n — this is essentially due to 7 being strictly increasing along GBB microlocally, and 7 vanishing at
N bT; X: So as long as 7 is negative, the GBB cannot hit the boundary. For more details, see the proof
of [Vasy 2008c, Theorem 8.1].

Finally, suppose gq € (WFtl)’m (u) \WE, Lm+1pyy) NPT X NY, which is the more technical case. This
part of the argument is present in essentially the same form in [Melrose and Sjostrand 1978]. Lebeau
[1997, Proposition VII.1] gives a very nice presentation; see the proof of [Vasy 2008c, Theorem 8.1]
for an overview with more details. The rough idea for constructing the GBB y for (8-56) is to define
approximations to it using Proposition 8.6. First, recall that in Proposition 8.6, applied at gy, Wy is the
coordinate projection (push forward) of H,, evaluated at a1 (q0), to T*Y. Thus, one should think of the
point 7 (go) — 8 Wy in T*Y as an 0(8?) approximation of where a backward GBB should be after “time”
(that is, parameter value) §. This is used as follows: Given § > 0, Proposition 8.6 gives the existence of
a point g; in WFé’m(u) that is, roughly speaking, 0(8%) from 7 (q1) — (7 (qgo) — 8Wy), with x(gq;) being
0(82) as well. Then, from g, one can repeat this procedure (replacing ¢o by ¢; in Proposition 8.6) —
there are some technical issues corresponding to ¢; being in the boundary or not, and also whether in the
former case the backward GBB hits the boundary in time 8. Taking § = 2"y, this gives 2"V + 1 points
qj corresponding to the dyadic points on the parameter interval [—eg, 0]. It is helpful to consider this as
analogous to a discrete approximation of solving an ODE without the presence of the boundary by taking
steps of size 27V ¢p. Defining yy(s) for only these dyadic values, one can then get a subsequence
that converges, as k — 0o, at s =27" jeg foralln > 1 and 0 < j <2" integers. (Note that y, (s) is defined
for these values of s for k sufficiently large!) One then checks as in Lebeau’s proof that the result is the
restriction of a GBB to dyadic parameter values. Again, we refer to [Lebeau 1997, Proposition VIL.1]
and the proof of [Vasy 2008c, Theorem 8.1] for more details. O

In fact, even if Im A # 0, we get one-sided statements:

Theorem 8.9. Suppose that P =+ A andIm X > 0, and m € R or m = co. Suppose u € Hol”éiloc (X)

for some k <0. Then

(WEL™ (u) N $) \ WE, "1 (Pu)

is a union of maximally forward extended (and in the case Im A < 0 backward extended) generalized
broken bicharacteristics of the conformal metric g in

S\ WF, " (Pu).
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In particular, if Pu = 0, then WFll)’oo(u) C 3 is a union of maximally extended generalized broken

bicharacteristics of g.

Proof. The proof proceeds again as for Theorem 8.8, but now Propositions 8.2 and 8.6 only allow
propagation in one direction. Thus, if ImA < 0, they allow one to conclude that if a point in ¥ \
WE, Lmtlpy)isin WFkl)’m (1), then there is another point in WFtl)’m (u) that is roughly along a backward
GBB segment emanating from it. Then an actual backward GBB can be constructed as in [Melrose and
Sjostrand 1978; Lebeau 1997]. O

In the absence of b-wave front set we can easily read off the actual expansion at the boundary as well.

Proposition 8.10. Suppose that P =1+ A, where A € C. Let

ss() =4 —Dx /T -2

Suppose u € Hol’ (X), WFt],’oo(u) = and Pu € (€°°(X). Then

loc
u=x*Mo, and vy e€P(X). (8-57)

Conversely, if . < (n — 1)? /4, given any g, € €>°(Y), there exists v, € €*(X) and v, |y = g4 such
that u = x*+® vy satisfies Pu € (@OO(X); in particular u € HO1 (X) and WFé’w(u) =J.

loc

This proposition reiterates the importance of the constraint on A in that

x (1= D/2+ia ¢ HO1 (X) for ¢ eR;

Jloc

for o > (n — 1)2 /4, the growth or decay relative to H()l,loc(X ) does not distinguish between the two
approximate solutions x**® v, having v+ € €*(X).

Proof. For the first part of the lemma, by Lemma 5.16 and the remark after, we have u € s{"~D/2(X)
under our assumptions. By (7-1),

P+ ((xDy+1(n— 1))(xDx)—A) € x Diff} (X). (8-58)
This is, up to a change in overall the sign of the second summand,
(xDy4+1(n—1))(xDy) — A,

the same as the analogous expression in the de Sitter setting; see the first line of the proof of [Vasy 2010b,
Lemma 4.13]. Thus, the proof of that lemma goes through without changes — the reader needs to keep
in mind that u € #4"~D/2(X) excludes one of the indicial roots from appearing in the argument of that
lemma. (In the de Sitter setting, in [Vasy 2010b, Lemma 4.13] there was no a priori weight, relative to
which one has conormality, specified.)

The converse again works as in [Vasy 2010b, Lemma 4.13] using (8-58). O

We can now state the “inhomogeneous Dirichlet problem”:
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Theorem 8.11. Assume (TF) and (PT). Suppose A < (n—1)?/4, and st —s_(AM)=2/(n—1)2/4—1x
is not an integer, and P = P(A) =1, + A.
Given vg € €*°(Y) and f € %”(X), both supported in {t > ty}, the problem

Pu=f, uli<,,=0, u =x"Wy_ —I—x5+(k)v+, v+ €6°(X), v_|y =y,

has a unique solution
If s+ (L) —s—_(}) is an integer, the same conclusion holds if we replace the condition v_ € €*°(X) by
v_ € €X(X) + x5+ P 75-W Jog x € (X).

Proof. The proof of [Vasy 2010b, Lemma 4.13] shows that there exists i, supported in ¢ > fy, such that
i =x*My_, v_is as in the statement of the theorem, and Pi € <'€°°(X ). Now let u’ be the solution
of Pu' = f — Pu supported in {r > o}, whose existence follows from Theorem 4.16, and which is of
the form x*+® v, by Theorem 8.8 and Proposition 8.10. Then u = it + u’ solves the PDE as stated.
Uniqueness follows from the basic well-posedness theorem, Theorem 4.16. (|

Finally we add well-posedness of possibly rough initial data:

Theorem 8.12. Assume (TF) and (PT). Suppose f € H(; él'g: ! (X) for some m € R, and let m’ < m. Then
(1-6) has a unique solution in H(},’tlfloc (X), which in fact lies in H(;”;?IOC(X), and for all compact K C X
there exists a compact K' C X and a constant C > 0 such that

”””HJ"”(K) = C”f”H&;vm‘H(Kr)-

Remark 8.13. It should be emphasized that if one only wants to prove this result, without microlocal
propagation, one could use more elementary energy estimates.

Proof. If m > 0, then by Theorem 4.16, (1-6) has a unique solution in H()l,loc(X ), and by propagation
of singularities it lies in H()l”l:’loc(X ), with the desired estimate. Moreover, again by the propagation of
singularities, any solution of (1-6) in Hol,’g” l/oc (X) liesin Hol,’t’f 1oc (X), so the solution is indeed unique even
in Hy oo (X).

If m < 0, uniqueness and the stability estimate follow as above. To see existence, let Ty < fy, and let
fj— fsuchthat f; € Hy t:,ylloc and supp f; C {t > Tp}. This can be achieved by taking A, € ¥, *°(X) with
properly supported Schwartz kernel (of sufficiently small support) such that {A, : r € (0, 1]} is a bounded
family in \IJSC(X ), converging to Id in W (X) for € > 0; then with f; = A,, f, r; — 0, we have the
desired properties. By Theorem 4.16, (1-6) with f replaced by f; has a unique solution u; € H()l,loc(X ).
Moreover, by the propagation of singularities, one has a uniform estimate

”I/lk —Uuj ”HOI""(K) =< C”fk - f['”HOTblvm+l(K/),

with C independent of j and k. In view of the convergence of the f; in H, ti’mH(K "), we deduce the
convergence of the u; in Hol,’t':1 (K) tosome u € HOI”;" (K); hence (by uniqueness) we deduce the existence
ofu e H(}”g'floc(X) solving Pu = f with support in {t > Ty}. However, as supp f C {t > o}, uniqueness
shows the vanishing of u on {t < 1y}, proving the theorem. U
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SMALL DATA SCATTERING AND SOLITON STABILITY IN H~1/6¢ FOR THE
QUARTIC KDV EQUATION

HERBERT KOCH AND JEREMY L. MARZUOLA

We prove scattering for perturbations of solitons in the scaling space appropriate for the quartic non-

linearity, namely H~'/°

. The article relies strongly on refined estimates for a KdV equation linearized
at the soliton. In contrast to the work of Tao, we are able to work purely in the scaling space without
additional regularity assumptions, allowing us to construct wave operators and a weak version of inverse

wave operators.

1. Introduction and statement of results

The generalized Korteweg—de Vries (KdV) equation

{a,w+ax(a§¢+w)=o for t,x e R, (1-1)
¥ (0, x) = Yro(x)
has an explicit soliton solution
Ve, 1) = Qp o 2y () := PO (c(x = (x0 + 1))
with ¢ > 0, xp € R and
0,= <pTH)1/(p_l)sech2/ U’“(”T_lx). (1-2)

Well-posedness of the generalized KdV equation was established by Kenig, Ponce and Vega [Kenig
et al. 1993] in H® for some s depending on p. The case p =4 (quartic KdV) is particularly interesting
as it is the only subcritical power nonlinearity that does not lead to a completely integrable system. The
critical space for the quartic KdV equation is H~!/%. Griinrock [2005] obtained local wellposedness in
H* for s > —1/6 and the endpoint H~'/® was reached by Tao [2007]. Though wellposedness is not
the main focus of this note, we will return to this question in Section 7 and use spaces of bounded p
variation and their predual (see the appendix and [Hadac et al. 2009]) to simplify and strengthen Tao’s
wellposedness result in the critical space.

The solutions Q. , are called traveling waves or solitons. These are minimizers of the constrained
variational problem

min{E(u)):weHl, w2 = >0}, (1-3)
mnded by a Hausdorff Center postdoc at the University of Bonn and by a National Science Foundation postdoc-
toral fellowship. Koch was partially supported by the DFG through Sonderforschungsbereich 611.
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E(u) = /(%ui - ﬁuﬁl) dx.

Minimizers also are extremals of the Lagrangian

where

S(u) = E(u)+%/u2dx, (1-4)

where A is a Lagrangian multiplier. Existence of the minimizer has been shown by Berestycki and Lions
[1983] using the constrained minimization problem

min{7(w):w e H', V(w) = 1},
where
T(w) = / w?cdx and V(w)= %/wzdx — #fw”“ dx.
The function Q in (1-2) is the unique positive even solution to the Euler-Lagrange equation
—0x—07"+0=0 (1-5)

to (1-4) with A = 1. It is a critical point of S(u) again with A = 1, a minimizer of E with constraint
lull 2 = w, where

+1
p+ 1N\Y0-DT(E5) /7
12 = 110,12 = (T) VT (1-6)
F(Z(p—l))
and hence the quadratic form
KW):= / %w’z +iw?—1p0P~tw?dx >0 for (w, Q) =0 (1-7)

is nonnegative on the tangent space that is, the functions orthogonal to Q.

The stability of solitons for generic KdV equations has been studied in several seminal works. Orbital
stability was first effectively established in the work of Weinstein [1985]. Then asymptotic stability of
solitons for KdV was first observed by Pego and Weinstein [1994], who proved that solitons for KdV
are stable under perturbations in exponentially weighted spaces. Later, Martel and Merle [2001a; 2005;
2001b] and Martel [2006] refined this result to observe that solitons for generalized KdV equations are
indeed stable under perturbations in the energy space, but measured within a moving reference frame. As
mentioned above, for the case p = 4, building on the multilinear estimates of Griinrock [2005] and the
work of Martel and Merle, Tao [2007] assumes smallness in H'N H /% and obtains scattering in H~Ye,
We will give a more thorough introduction to previous stability results including rigorous definitions of
stability in Section 2.

In the sequel we will focus on the case p = 4 and omit p in the notation. It seems that any further
progress is tied to an understanding of the linearization, or more precisely of the linear equation

u;+ 0, Fu =0 (1-8)
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and its adjoint
v+ Lo =0, (1-9)

which have the explicit solutions (with Q =¢0:0¢le=1)
u=a(Q+2tQ)+bQ and v=cOQ,
where

4

0 :chc

2/(p—1 2
PV 0, (cx) CZI:ﬁQ,,erQ;, (1-10)

usually evaluated at ¢ = 1.

Thus both equations (1-8) and (1-9) have linearly growing solutions. It is one of the first contributions
of this paper that both equations are uniformly L? bounded once we take into account these modes, and,
moreover, there are local energy estimates global in time once we remove these modes. In particular the
assumption of Pego and Weinstein on the absence of embedded eigenvalues holds.

Our goal is to build on the arguments of Weinstein [1985] and Martel and Merle [2001a; 2005] to
establish some type of asymptotic soliton stability for generalized KdV equations by a direct analysis
of the equation itself. We apply a variant of Weinstein’s and Martel and Merle’s arguments to the linear
equations (1-8) and (1-9) and their relatives with variable scale and velocity, and control nonlinear terms
through estimates for linear equations.

Specifically, we define projection operators related to the spectrum of &£:

(¥, Q) 5 (¥, Q) ~
Piy=y——=_0, Py=y—-"="0. 1-11
oV =1 (Q’,Q/)Q =y (Q,Q)Q (1-11)

We obtain the main linear estimates, which in their simplest form can be written as follows.

Theorem 1. Let S be the solution operator for (1-8) and S* the solution operator for (1-9). Then, we
have

supl|S(1) P*uql| 12 + IIsech(x)d, PG S(1) P*uoll 2 ey S lluwoll 2, (1-12)
t

supl|S* (1) Pg (1) 12 + [Isech(x)dy PS*(1) Pl 12y S Nlvoll z2- (1-13)
t

The linear estimates presented in the sequel may be generalized to any subcritical power p < 5. We
provide variants of Theorem 1 for linearization at solitons with variable scale and velocity as well as
estimates in scales of Banach spaces similar to estimates for the Airy equation.

Even near the trivial solution dominating the nonlinear part globally by the linear parts requires to work
in a scale invariant space similar to H~!/. On the positive side it will lead to scattering for perturbations

of a soliton in H~1/¢

, without the smallness condition of Tao in the energy space (2-4). The study of the
linear equation will lead to a fairly precise understanding of its properties, which seems to be new — we
hope that it will provide a model for many other questions on the stability of solitons.

As is standard in the study of stability, we take

Y, 1) = Qcny(x —y(@) +w(x,1).
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Then, we have
dw + 3, (32w +4Q3w) = —¢(8,00) (x — ) + y(QL)(x — y)
— 3,820 — 20+ 0H — (QL(x —y))
— 3,60 (x — Y)w? +40.(x —y)w® +wh. (1-14)

The standard choice of ¢ and y ensures orthogonality conditions for w. Due to low time regularity we
are forced to relax the orthogonality conditions to

£(0e 0 = (w, Qo). (1-15)
(= eNQ;, 00) = —r(w, 00), (1-16)

where « > 1.

From an implicit function theorem argument similar to that in the proof of [Martel and Merle 2001b,
Proposition 1], there exist unique ¢(0) and y(0) so that w( -, 0) is orthogonal to Q. (- — y(0)) and
QZ(O)( - — ¥(0)) provided the distance of i to the set of solitons is small in a suitable norm.

We consider the equations above as ordinary differential equations for ¢ and y, coupled with the partial
differential equation.

Using the decomposition and linear estimates, in Sections 8.2 and 8.3 we can prove (referring to later
sections for the definition of the function spaces, with Bo_o] /6:2 slightly larger than H~'/9) the following
global result:

Theorem 2. There exists € > 0 and ¢ > 0 such that given (1-1) with initial data of the form
min|{| o — Q¢ (x — yo)ll =162 <€,
€0, Y0 o0
there exist unique functions ¢ and y with
— R : 1 0 +_ 2_-.72~¢0
(w(0), Q) = (W(0), QL)) =0, é¢eL'nC’, §-cFeLl’nc’,

/6

and a function w(x,t) € Xgol such that

Y(x, 1) = Qc@),yr)(x) +w(x, 1)
satisfies the quartic KdV equation, and w, c and y satisfy (1-15), (1-16) and (1-14). Moreover,
el inco 4+ 17 = 2 llz2nco + lwll s < ellwoll z-sa.
In addition, there exists a function z € Bo_ol/ 82 Such that

t

23
lw(t) —e™ d"Zo”l_,}—l/e,z -0
[o¢]

and

—. 93
lw(-)—e ‘Zollx;l/e((t’oo))—>0 ast — 0o

if w(0) is in the closure of Cg°.
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In fact, we prove a far stronger result than this, though Theorem 2 captures the main ideas. Finally, in
Section 8.4 we show for a function v, there exists a quantity J(v) defined in (8-8) such that we have the
following:

Theorem 3. Let vy be in the closure of C3° in 3501/6’2, let coo > 0, and let yg € R. Let v be the solution
to the linear homogeneous KdV equation. Assume that

J() <48  forsome §=35(||voll z-1/6.2).

Then there exists a solution WV to the quartic KdV equation, a function y € C'([0, 00)), a function
c € C([0, 00), (0, 00)) such that w = W — Oc,y, where ¢ and y satisfy equations (1-15), (1-16), (1-14),
and

(w(0), Qe (- = ¥(0))) = (w(0), Q) (- — ¥(0))) =0,

c(t) = co, YO)=yo, w@)—v(E)—>0 in Bo_ol/ﬁ’z ast— oo.
Moreover, if in addition vy € L%, then ¥ € C(R, L>(R)) and

2 2
lvollz2 +11Qew0llz2 = (@) Il 2

There exists € > 0 such that the assumptions are satisfied if || vo|| jo1/62 S €.

Remark 1.1. The conclusions in Theorems 2 and 3 hold as well in the spaces Bo_ol/ 6.2

NH* NH’
for any —1 < s < 0 and o > 0, allowing one to prove uniform bounds in higher Sobolev norms; see
Section 7.1. In particular, given initial data in Bo_ol/ “>NENH 7, J small will imply stability and
scattering in B;ol/ 2N HsnH°. Specifically, we note one can prove boundedness and scattering in the
energy space H' intersected with Bog/®2.

To motivate the construction of our nonlinear iteration spaces, in Section 3 we first derive some refined
estimates for the linear KdV equation

{@u+@u=ﬁ (1-17)

u(0, x) = up(x).

Then, in Section 4 we discuss the spectral and mapping properties of the operator & and derive linear
estimates for the systems (1-8) and (1-9) and their relatives

U +Uyxx + (Qc(t) (x—x@)u)y = f.

In Section 5, we combine local smoothing estimates as for (1-17), where we treat the Q terms as error
terms with the virial identity and energy conservation for (1-8) to prove uniform bounds for a projection
of the solution v assuming orthogonality of the initial data to Q’.

With this first result at hand we pursue a standard though nontrivial path and employ pseudodifferential
techniques and duality to derive similar estimates in a full scale of function spaces. The Littlewood-Paley
decomposition at low frequencies is severely affected by the term containing Q. This is done in Section 6
with main result Proposition 6.7.
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Theorems 2 and 3 are proven in the final two sections by combining the wellposedness arguments and
the linear estimates.

2. Review of previous soliton stability results

To begin, we consider the linearized operator

LY =—y" —pQP Ty +y

associated to the Euler-Lagrange equation (1-5) of (1-4) with A = 1, respectively the constraint variational
problem (1-3) with Lagrange multiplier 1. It is one of the remarkable operators for which almost every-
thing is known about the spectrum and scattering; see [Lamb 1980, Section 2.4 and 2.5], and [Titchmarsh
1962, Section 4.19]. The operator

Ly = —Yux — Msech? (xX)yr

has the continuous spectrum [0, co) and the ground state o (x) = sech® (x) with eigenvalue o? provided
M = a(a + 1), with @ > 0. The other eigenvalues are (¢ — j)> for 1 < j < « together with the
eigenfunctions can be obtained as follows: Let vy js be the ground state with the constant M. Then,
/ d
Viasiatien@ =] [ (55 = @+ tanh(x) )sech” (x)

is the j eigenfunction to the potential with M = (¢ + j)(x + j + 1). We consider this information useful,
and we will use these results, even if the arguments could easily be adapted to a much larger class of
nonlinearities.

Clearly £Q’ = 0 and a short calculation or a comparison with the results above shows that Q(?+1/2
is the ground state with eigenvalue 1 — (p + 1)?/4. There is no other eigenvalue if p > 3, but there
are other eigenvalues in (0, 1) if p < 3. As an immediate consequence K (i) > ||1[r||i2 if (¥, Q") =
(W, Q(p+l)/2> =0.

We recall that K is positive definite on the orthogonal complement of Q. We follow [Weinstein 1985]
and use this bound to establish a lower bound on a different codimension 2 subspace if p < 5. There
exists 6 > 0 such that

K@) = 8|1y, forall ¥ with (, 077'Q) = (¢, Q) =0. 2-1)

It suffices to verify this statement independently for odd and even functions. For odd functions the quad-
ratic form is nonnegative, with a null space spanned by Q’. Positivity follows from (Q’, Q? -9 £0.
The argument for even functions is harder, but again the quadratic form is nonnegative since Q is a local
minimizer of the constraint variational problem.

Let ¥; be a minimizing sequence with ||| ;1 = 1. Suppose that the left hand side of (2-1) con-
verges to 0. The sequence maximizes | Q”_IW} dx. There exists a weakly converging subsequence
which convergences against a nontrivial even limit ¢ since ¥ — [ QP "2 dx > 0 is weakly lower
semicontinuous. Moreover (Y, Q) =0 and ||| ;1 < 1. Rescaling if necessary we see that ||| g1 = 1.
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We want to show that K (1) > 0 and argue by contradiction. Suppose that K (1) = 0. Then by (1-7)
Y is a minimizer of K under the sole constraint (Q, 1) = 0 and hence it satisfies the Euler-Lagrange
equations

LY =210.
But then v is a multiple of O since
20 =-2Q

is the unique symmetric function with this property. However (Q, Q) # 0 if p # 5, and hence ¥ = 0,
which contradicts our construction and thus implies the existence of § > 0 with

K@) =8Y g

Observe that here the subcriticality condition p < 5 enters crucially.
Given ¥ we define the parameters cg and xg by the variational problem

1V = Qeounollzy = infllYr — Qeuxll-
Following Weinstein [1985] we claim

1V — Qeyxollip < c(E() — E(Q)), (2-2)

provided the left hand side is sufficiently small. This is a consequence of the lower bound for the quadratic
form (2-1).
Lyapunov stability of solitons has been shown in the seminal work of Weinstein.

Theorem [Weinstein 1985, Theorem 4]. Let € > 0. There exists 6 > O such that
ig)flltlf(t) —O1(x —xo)llgr <& i IYo— Qillgr <39.

This is a direct consequence of the conservation of the L? norm and the energy, plus (2-2).

The study of asymptotic stability began with Pego and Weinstein [1994] in spaces with growing
exponential weights. The effect of the weight is twofold. First, there is not much the soliton could
interact with on its path to the right. Secondly, small solitons that are slow and prevent asymptotic
stability in L? carry a weight that makes them exponentially decreasing in time. A key assumption is
the absence of embedded eigenvalues of 3,%, other than 0 with eigenfunction Q’ and the generalized
eigenfunction Q. Pego and Weinstein verify this assumption for p =2 and p = 3 and show that it fails at
at most a finite number of values for p between 2 and 5. It is a consequence of the virial identity below
that there are no nonzero purely imaginary eigenvalues of 0, &.

The exponential weight pushes the continuous spectrum of 9, & to the left, makes the problem more
parabolic, and allows the use of techniques from smooth dynamical systems, in particular of a center
manifold reduction that is a restriction of the flow to a two dimensional manifold.
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Martel and Merle [2001a; 2005] and Martel [2006] introduced a virial identity or monotonicity formula
for the adjoint problem (1-9) as well as for nonlinear problems. Let

10 1 —1
ﬂ(x)z——p+ @ _rtl 2!,
p—10 2 2
and suppose that v satisfies the Equation (1-9). By direct computation we have
— 4 P dx = (B + L+ 1P = DRIy, @Dy, 2-3)

where the quadratic form is nonnegative and it has by the spectral theory of Schrédinger operators
with sech?(x) potentials a one-dimensional null space spanned by Q. There are two consequences: the
quantity on the left hand side is monotonically decreasing, and the right hand side controls the H' norm
of QP—1/2y provided v is orthogonal to a vector Q with (Q, Q) # 0. Hence, if v(0) is orthogonal to
Q' and O, which is preserved under the evolution,

1P~V 2y 1 < esupllu()]l 2.
t

The left hand side is controlled provided we obtain a bound on sup, |[v(#)|| ;2. Martel and Merle [2001a;
2005] use this and related observations together with the a priori control on the deviation of the solution
to the set of solitons in ingenious ways for indirect arguments: The existence of a solution H' close
to solitons, but not asymptotically converging to the soliton “on the right” leads to the existence of
impossible objects.

Later, Cote [2006] constructed solutions with specific asymptotic conditions including many soliton
solutions for positive time. This shows that L? convergence to a soliton will not be true without restricting
the set where convergence is studied.

Already L? conservation precludes asymptotic stability of the trivial solution. The relevant notion
instead of asymptotic stability is for unitary problems the notion of scattering. Suppose that ¥ (0) is
close to a soliton. We seek a function w satisfying the Airy equation as well as c(¢) and y(¢) and a
Banach space X such that ||y — Q¢ (x —y(£)) —w(#)||x — 0 as t — oo. Tao [2007] verifies scattering
in the following sense: Suppose that

1¥(0) = Q) 1 + 11 (0) = Qll 16 K 1. (2-4)
Then scattering holds with X = H~'/%. Tao relies on the work of Martel and Merle, and in particular on
Weinstein’s a priori estimate of the difference to the soliton.
3. The Airy equation

For purposes of understanding and motivating dispersive estimates for the linearized KdV equation, here
we study and collect results for the Airy equation

{Ut + Vyxx =0, (3-1)

v(x,0) =vo(x).



SMALL DATA SCATTERING AND SOLITONS FOR THE QUARTIC KDV EQUATION 153

The solution operator defines a unitary group S(¢) with the kernel

K@, x)=t""3Ai(xt™'3),

—x3/

1/4,

where as x — oo the Airy function is roughly x~ ’ and as x — —oo the Airy function is roughly

Re(x~1/ 4e*""m). Strichartz estimates for solutions,
—1
lullzrrs < clIDI™Pugll 2 (3-2)

where L? L? is the standard space time norm such that the L# norm in time of the L4 norm in space and

2 01 1
P a2
follow as an immediate consequence. Of particular interest for this work are the homogeneous Strichartz
pair (p, qg) = (6, 6) as well as the endpoint Strichartz pair (p, g) = (4, 00). For an overview of Airy
function asymptotics, see [Fedoryuk 1993].
Local smoothing estimates for (3-1) go back to [Kato 1983]. Here we are interested in a more general

version of them. Let y (¢, x) > 1 be a smooth bounded increasing function. We calculate

% yuldx = /()/; +yNu? —3y'u* dx (3-3)

and search for conditions ensuring that the right hand side is nonpositive. We assume
o)y < 3oy (3-4)

with the easiest case being y (¢, x) = yo(x — t), for which we assume

v < 2y, (3-5)
We get
%/yuzdx—l-/ y' Ui+ tu*) dx <0. (3-6)
Let us fix a particular example,
X
yo(x) =1+ / (L+ ]y~ 72gy, (3-7)
—0oQ0

It satisfies the criteria and, provided ¢ is sufficiently small, a straightforward calculation gives (3-5).
Next, it is instructive to consider a scaling. For 1 > 0 and y; as above we define

Yult, x) = yo(u™ (x — n™21)).

Then,
d

2 2, 1
E/VM” dx+/yl;(ux+3—u2u ydx <0. (3-8)

One may easily generalize this inequality by choosing t — y(¢) with y > % w2

Yo(u™ ' (x — y(1))). In the sequel we will always restrict ourselves to u = 1.

, and setting y (f, x) =
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The virial identity clearly generalizes to functions spaces with different regularity. To see this, we first
define the space H} (and similarly L?) by the norm

lulfy, = [ 1P uPe dr < o

where p > 0 with uniformly bounded derivatives of order up to k for some k > |s| and (D)* is defined
through the Fourier multiplication (1 + |& |2)$72. Similarly we define p H® where u € p H® if and only if

w=pf for feH' and |ulyp = inf | fl-

The function p will often depend on 7. Given a Banach space X, we denote the space of X-valued L?
functions by L?X, and give the obvious meaning to L>pH* and L>H - Such spaces will be explored
further in Section 4.

Remark 3.1. We note that pH* = H -1, if p is nonnegative, up to equivalent norms. However as we
wish to highlight the use of duality throughout the linear analysis and construction of iteration spaces,
we adopt the p H® convention.

If y satisfies the assumptions above and

U —Uyex = f,  where f e L>/y'H™!, (3-9)
u(0, x) =uo(x), where ug e L?,
we obtain by an obvious modification of the argument above
llll o2 + IIMIILzHlﬁ <c(lu@le+1fll2yya-t) - (3-10)
Y

We turn to a useful technical result.

Lemma 3.1. Let m € C®(R) satisfy [m) (£)| < Cj (E)s7J for j > 1 and let m(D) be the Fourier multiplier
defined by m. Suppose that y € C*,

lyP )| <yx) forj=>0, and
11—y /yDMI Selx —yl+1x—ylY)  forsome N.

For any a € R we have

ly ~“[m(D), y“UD)' = fll 2 + I[m (D), y*1y = (D)™ fll12 < cs.all £l 2
and
(DY =S [m(D), y“1y = fll2 + KDYy ~“Im(D), y“1fll 2 < cs.all £l 12-

The most important example of m is the Fourier multiplier (D)* defined by the function (1 + |& |2)s/2.

Proof. We begin with the estimate of the first term in the first inequality, the second term being similar.
We decompose m (D) = mo(D) +m (D), where the convolution kernel mq(x) of mq(D) is supported in
|x| <2, and the one for m (D) is supported in |x| > 1. The convolution kernel m(x) together with its
derivatives decays exponentially.
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The integral kernel of y ~“[m (D), y¢] is

KiCr,y) = mi(x — y)(l - (@))
y(y)

The kernel and its derivatives decay like (x — y)~", which implies
ly = “lmi(D), y“1f v < enll fllg-~

for all N > 0 by Schur’s lemma. It remains to prove

ly ~“Imo(D), y*UD)Y' ™ fll 2 < csall fll 12

We decompose (D)* = Dy + D;. The bound for y ~“[my(D), y*]Dy follows from standard pseudo-
differential calculus. The bound for the term with D; follows from

ly ~“lmo(D), y“1f 2 < enll fllgw,
which again follows easily by standard pseudodifferential calculus. O

Lemma 3.2. Suppose that

{ut+uxxx=f, where f € /Yy H*™!, G-11)
u(0, x) =uo(x), whereuyec H*.
Then
lull oo s + IIMlleH% < c(luOllms + 1l z2yyrms—) - (3-12)
Moreover, if
{u, + ey = (sech®(x = x (1)) f)x + 08, (3-13)
u(0, x) = uo(x),
with x > 6, then
lotll Lo -1 + IIMIILzﬂi)m SHu@ll g+ 11 g+ 182 (3-14)

Proof. We set v = (D)*u, where u satisfies (3-11); hence
Ut + Vxxx = <D>sf’

and

lull oo s + ||M||L2Hj+ﬁl/ = vl Loor2 + ”v”LZH\l/V < c(vO)llz2 + (D) fll L2y 51

where the first term is equal to ||« (0)|| g and

IKD)* fll 2 yzrm—1 = D) () 2DV fll2p2
< fll2ygrms— + KDY~ () V2UDY fll2r2
< 2yt + 1) TVHDY 72 fll 2g2.
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The last inequality follows from Lemma 3.1 applied with y’ for y, a =1/2, and —1 for s. This implies
the desired estimate (3-12). Now suppose that u satisfies (3-13) and let v be the antiderivative of u with
respect to x. It satisfies

Vp + Ugyx = sechz(x —x@)f+g, (3-15)
v(0, x) = vo(x);
hence
ullpoog—1 + Null2go  <cliglpipz+ 11/ lr2m-1- u
'

4. Properties of the Schrodinger operator

We briefly recall notions from the introduction. Given p > 1, solitons of the form Q ,(x —1) satisfy (1-5)
and it is not hard to verify that all bounded solutions are translates of &Q , in Equation (1-2). Similarly
Qp,c = CZ/(p—l) Qp(CX) satisfies

32(Qp)e —cH(Qp)e +(Q,)F =0. (4-1)

We will focus on p =4 and omit again p from the notation. Let ’ denote differentiation with respect to
x and ° differentiation with respect to time. We recall the definition of O from (1-10) and O, = ¢, 0,
respectively 50 =cd.cd.Q., the corresponding differentiation at c. There are many explicit calculations,
and we collect some of them here. Using the properties of Q.(x) = c?3Q(cx), it follows that

1Qcliz2 =c®11Q1l2,  (Dc, Oc) = 3ccl Ocll2s = £11 Q3. (4-2)

where the L? norm is given by (1-6), and

1QLl12 = c"°11 Q) I 2 (4-3)
In addition,
0:0c=c"Q'(ex) and  ¢d.Qc = (3Qc +x0;) = Oc =c** 0 (cx).
The operator &, is defined by
Pt = —tyy +Cu—4Q3u, (4-4)

where we mostly omit y and c if ¢ = 1. We recall that virtually everything is known about the spectrum
of &; see [Andrews et al. 1999; Lamb 1980; Titchmarsh 1962]. We summarize the findings below. We
also refer to [Martel 2006; Weinstein 1985] and the references therein for extensive discussions of these
properties for more general operators of type similar to £.

By direct differentiation in x of (1-5), we see Q" = 0. Hence, the null space of & consists at least
of the space « Q’ for all « € R. Similarly, by differentiation in ¢ of (4-1), we see 33(@) =—-20,50 0, &
has at least a 2-dimensional generalized null space. Also, since Q' = 0 only at x = 0, we know from
the Sturm oscillation theorem that there exists some Ay > 0 and 2y > 0 such that £2y = —102y, the
unique negative eigenstate of &. Note, because & is a sech’ potential perturbation of the Laplacian, it is



SMALL DATA SCATTERING AND SOLITONS FOR THE QUARTIC KDV EQUATION 157

possible to exactly construct 99 = Q3/% and A¢ = 21/4 using standard techniques. The analysis above
summarizes the entire discrete spectral decomposition for &£.
Following the analysis in [Weinstein 1985, Propositions 2.7 and 2.9], if

(@, 0)=0 and (@, Q")=0,
then there exists kg > O such that
(i, Lit) > kollii 3. (4-5)
Here ko depends only on the power p =4 in (1-1).
We will consider p = ¢” with v € C¥I+! with

WD) <e (4-6)

for 0 < j <|s|+ 1 and a small constant ¢ to be chosen later. Clearly we may regularize v and hence
p = e" without changing the spaces. Then

ueHZ(z»pueH‘W:»uep_le.
It is quite obvious that the dual space of Hj is o H ™ with isometric norms, and this statement does not
depend on the regularity of p. We recall the definition of the projectors (1-11).

Lemma 4.1. For all s € R, there exists C > 0 such that
1 1 1
1Pl s> < CllEulins,  1Pgull, s < ClliEullpns, 1Pl s < CllEullay.

Proof. The first inequality is an immediate consequence of the nature of the spectrum described above
along with ellipticity. The second and the third statement are equivalent because H, = o 'H*, with
equivalent norms.
Fix = 1—(p+1)?/4, where p =4. For A = Ao +iA; in the complex half plane left of 1, we obtain
the resolvent estimate
1A = plllull2 < 1€ —Mullr:

and also for some 1 > k > 0, we have
Re/u(sff—x)udx > A — plllull3, + (L — wu, u)
> 2 —mulllull, +llucls + (1 — 1) (L — pu, u)
+ (3= pl (=) — 4k QN o) lull?

Il —2ol 1
5 el

> 1= ol el +min{ -0
? t 811013~

by the obvious choice of «.
We obtain the estimate for A with real part at most u:

I = Alllull g2 +min{|A — ], DHuxllz2 < CRe((£ —Mu, u) < CI{(E —Vullg-llullg-
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These estimates imply that the resolvent (¥ — 1)~! defines a continuous uniformly bounded map (for
Re < Ao < ) from H~! to H'. Moreover,

] (1 8IQl
e = 1=l a2 and o = 2= gl max| 5, 1 = Rl

We turn to the weighted estimates and calculate formally
" E—ne =L —r— [P+ +1d,,

and hence, since d,v" + V9, is antisymmetric,
Re f ue’ (£ —1)e—"u)dx = Re / u(@—Nudx —|Vul3, = Sro — plllul;,

if e < {/|Xo — 1|/2, which we assume in the sequel. As above we obtain with an explicit constant C
lullgr < Clle" (£ —1)e "ully-1. (4-7)

It follows from these estimates that given § > O there is a single resolvent family (for ReA < p — )
mapping pH ™' — pH' and from H;l — H ;, provided ¢ is sufficiently small.

Recall that & has a zero eigenvalue with eigenfunction Q' and a single negative eigenvalue —Ag
with a ground state 9y. Let P be the orthogonal projection to the orthogonal complement of these two
eigenfunctions. The remaining spectrum is contained in [p, 00), where p > 0 is either 1 (if p > 3), or the
next positive eigenvalue, which can be easily be calculated. Moreover, & is selfadjoint. The resolvent
R(}) = (£—A)~!is a holomorphic map in C\ (1, co) with simple poles in y, 0, and possibly some other
eigenvalues in (0, 1). In addition, Ry(A) = R(A) P has a continuous and hence holomorphic extension to
A =0 and A = —Ag, which is uniformly bounded in each half plane strictly left of p.

By Equation (4-7) the resolvent is uniformly bounded on the weighted spaces if A is in the half plane
left of —u. Decreasing ¢ if necessary (so that the orthogonal projection Pé, along Q' is bounded in the
weighted space), we obtain the same statement for Ry(A). Now complex interpolation implies

1L~ PFllmy < CUPS -

This implies the desired estimates for s = —1.
Standard elliptic theory extends this estimate to

luell g2 < CIE = Lul mg, (4-8)
lull s < CIE = Dull e (4-9)

first to all s > —1, and then, by duality, to all s € R. The first estimate is the special situation when v is
constant.

We conclude with the trivial observation that we may replace (4-6) by lim,_, coo v/ = 0, which holds
for p(x) = (1 + |x|?)? for all real numbers a, since in that case we may choose an equivalent norm that
satisfies (4-6). O
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5. Energy methods for the linearized equation

We turn to a study of what we call the linear u-problem

{utzax(f.ﬁu), (5-1)

u(0, x) = uop,
where
Pu = (—3; +1—40%)u = (-3} + 1 — 10sech®(3x))u.
We note here that & is the operator that results from linearization of the KdV equation about Q when

we work in a moving reference frame or in other words make the change of variables x — x —¢. Indeed,
setting ¥ (x,t) = Q(x —t) +u(x — ¢, t) and plugging into (1-1), we get

du=—8@2u—u+Q+u)?—0*"+920—- 0+ 0" =8, (Pu) — 8, (6Q*u* +4Qu> +u*).

For reasons that will become clear in the sequel, we also consider the linear v-problem

{v, = L0, v), (5-2)

v(0, x) = vg.

The two equations (5-2) and (5-1) are related in many ways.

(1) They are dual to each other.
(2) If u satisfies the u equation, then v = d,u satisfies the v equation.

(3) If v satisfies the v equation, then u = Fv satisfies the u equation.

We observe that u = Q' is a solution to the u equation, and hence (v, Q) is preserved by the flow
for v. In particular orthogonality is preserved by the evolution. Similarly, v = Q is a solution to the
v equation and (u, Q) is preserved by the u flow. Moreover, u = aQ’ + b(Q + 21 Q') satisfies the u
equation for all coefficients a and b. As a consequence both equations admit solutions that grow linearly
with time. Moreover, if v satisfies the v equation, then

i, 0)+21(v, Q) =0
dt
and v is orthogonal to Q and Q' provided it is initially.

Inspired by a set of ideas collected from [Martel and Merle 2008] and the references therein, let us

look at a virial identity for (5-2), namely

Lw == [ ne?ax,
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where 1 (x) will be defined in the sequel. We have

_%IU(U) = —2/ nx)v(&Lvy) dx

:—2/n(x)v((—a§+1—4Q3)vx)dx
=2/17v83vdx—Z/nvaxvdx+8/nQ3v8xvdx
:—2/n/vafvdx—2/n8xv8§vdx+/nxv2dx
) 2(3 2
—4/;7 Qv dx—4/n8x(sech (Ex))v dx
=3/n/vfdx+2/17”v8xvdx—|—/n/v2dx—4/17/Q3v2dx—12/nQ2Q/v2dx.

As in [Martel 2006], we take

/

50
M =-35 = 2 tanh(3x), (5-3)

which is similar to x near 0 and bounded at co. Note, the sign convention here is chosen to match that
of [Martel and Merle 2008]. By direct computation we have

n'(x) = @), (@*n)'=-50"+30",
T —o(1-30'w). W= () (1-10°)
" 2
(L) =s0-30'w). ik

Proposition 5.1. If v satisfies the v-KdV equation and v is orthogonal to Q and Q', then there exists
some C > 0 such that given 1 as in (5-3), we have

d
Eln(v)+C||sech(§x)v||§]1 <0.
Proof of Proposition 5.1. Following the formalism presented above, we see
d
—Eln(v) = —2f§£(axu)vn dx =3 f(axv)zn/dx +f V(=" +n' —4(0°n)) dx.

Selecting
w(t, x) = v(t, x)v/1'(x)
we see

—%I,,(v):3/(8xﬁ))2dx+/A(x)zI)2dx,
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where

Ax) =1+ —120°.

(n”)2_4<Q3n>/ A

n n 4

W

1’7__
2y

Hence,

~ 1w =31, u?)—i—%/ﬁ)zdx).

Since £9, O = 0, we know that given v = Q, we have

d

_Eln(v) =

However, v = Q corresponds directly to w = Q°/2, which is the ground state or &, which has exact
eigenvalue —21/4. Then, since (Q, Q) # 0, our orthogonality condition v L ( is enough to guarantee
that there exists C > 0 such that

B(ib, ) > Cl|®%,: = CllVn'vl3,
which is the desired result. O

We note in the case of more general weight functions 7, virial identity methods are still applicable
even if perhaps analytic proofs of the virial identities are more challenging.
By choosing the multiplier y (v — vy,) with y = yp(x — ) for yp as in (3-7), we see

jt y (v? +v2)dx_—3/ 2dx+/ D2 dx — fy’vzdx
+ 4/y/Q3v2dx+12/yQ2Q/v2dx
/(3)/ v i 4y —y Py dx + /4;/Q3v§dx, (5-4)

which consists of a number of negative semidefinite terms. All nonnegative semidefinite terms are easily

dominated by a multiple of ||v ”i]l , the term in Proposition 5.1.
sech(3x/2)
Finally, note that by direct computation

3 (£ v, v) =0. (5-5)
Now, let us define an energy for the solution v of (5-2) to be
E(v) = f y(x)(v? +v?) dx 4+ Ag f n)v2dx + Ap(£ v, v), (5-6)

where 7(x) is chosen as in (5-3).
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Proposition 5.2. Let us assume v satisfies the v-KdV equation and v is orthogonal to Q and Q'. There
exist \g, Ag, 8 > 0 such that

E®) ~ [[vll3, (5-7)
d 2
TEW +8||v||% <0. (5-8)

Proof. From (5-4) and the proof of Proposition 5.1, we see easily one may choose a A g that depends only
on 6 and C so that (5-8) holds for all A, > 0. We choose A g large to achieve E(v) > C”||v||%{1. There
exists some constant C’ such that E(v) < C’ ||v||%{1. Thus the estimate follows given the orthogonality
conditions on v. O

The assertions of Proposition 5.2 are robust under suitable perturbations. We turn to the analysis of
the time dependent problem

v — (=07 =400 ) 3100 = () Qe y(t) + B Qo (1) (5-9)
where
LI Oety)) + G = Gip ) 510
(Qe).y)s Qe y))
S — €/, Oy ) + O =D, QZ(,),JV(,Q. 51
(Qei vy Loy
Here, ~
QC(I),y(t) = %QC(T)J(I) +x Q/c(z),y(z) =c(1)0, Qc(z),y(,). (5-12)

For simplicity of exposition, in the sequel we suppress the ¢ and y dependence and instead write simply
Oc),yr) = Q¢ unless we want to stress the dependence on y(¢) and 7. Similarly we recall

Lev=Leyv =~y + v — 407 0. (5-13)

The terms on the right hand side ensure that (v(0), Q:»(O),y(0)> = 0 implies (v (), Q:-(z),y(z)> =0, and,
in addition, (v(0), QC(O)J(O)) = 0 implies (v(¢), Qc(t),y(,)) = 0. We choose y(x,t) = yo(x — y(¢)) and
we prove the following:

Proposition 5.3. There exists a §, ., A > 0 such that the following is true: Suppose that
le(@) =1+ 1¢M]+[3@) — @) <8 (5-14)
for all t > 0 and define
E(v) = / y(x, (0 +v2) dx + A / M.y (X)v* dx + A(SB;;O)U, v), (5-15)
where we suppress the dependence of E and v on t. Then

E@) ~ [vll3,:, (5-16)
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forall t > 0 provided
(v, 1) = (v, Oc) =0. (5-17)

Moreover, if v satisfies the system consisting of (5-9), (5-10) and (5-11) and v(-, 0) is orthogonal to
QC(O), y(0) and Q/C(O)’ 3(0) (which implies the orthogonality for all t) we have

d

2
EE(U)+3||U||H3/7§O. (5-18)

14

Proof. Since (v(t), Q:,(t),y(t)) =0, we have

(Eewy.yyvs v) = Cllvlly -

for some C > 0, as seen in (4-5). Here and in the remaining part of this section we use the Moore—Penrose
inverse, which is by an abuse of notation given by the orthogonal projection to the complement of Q’,
followed by an inversion of & on this orthogonal subspace. Let us look at a slightly different quantity
(where we replace ¢ by 1) given by (EBI;(OU, v). Then, since (v, Q) = (v, 0.) =0, for |c — 1| small
enough we have

-1 i 2 2 2 2
(1. v) Z22CN Py, i1 = 2C vl = C'le =1lvllg- = Clvlig -

for some constants C, C’ > 0 and § < C/C’. The properties are similar to the previous proposition,
but the calculations are more tedious. We consider them to be important for the understanding of the
linearization. We recall that we suppress the dependence of Q and & on y in the notation below. Then
we have

d — — . — — . (Uv Q/1> —1
— (7, v) = 2(v,, 70y — 129(0% 0 % v, £y + 2y ——L (0, #7)
dr 1 AR 11 1 (0. 0 Ly <1
=21 — 121, + 215,
where I, originates from the differentiation of the inverse and I3 from the dependence of the implicit
projection on time. We have
I = (Lcdyv, L7 ) = (00, £7'0) +a(QL, £17M0) + B(Qc, £7 M),

(Ledev, 710) = (Lo — L), L7 0) = (¢ — {0, L7 0) +4((QF — 0)d v, £710),

(€7 0] = =27 ' [L1, 0% = 12971 0701 7 + £ [0k, Py 1+ [0y, P17
wop . wo)
[0,, Polv=——"1_ 0]+ ——=L-0],
o (01.0) ' (e on !

(30, £ 'v) = 3 (0, (7, 0clv) = 6007 Q1 F; v, £,
(v, Q) = (v, Q1 — Q1)

by the orthogonality conditions and

(F M, 0Ly = (P, 0L 0)) and (7', Qo) = (F v, (&7 -2H 0,
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because of the orthogonality conditions and since 2;1 Q.= 0..
Altogether, and applying Lemma 4.1, we have

d - . .
Jr )| 203 =1+ 15 = 1+ 1EDIVIG -1z (5-19)

Y

which we will control by the virial identity below.
We now look at virial weights of the form

501 —y(0)
301 —y(0)

which has properties similar to those of n(x) with appropriate changes for the unit scaling.
We have defined v such that

n(x,t) =— = 2 tanh(3(x — y(1))),

v(x, 1) L Qcyyay and  v(x,1) L Q) forallz>0.
Following the formalism presented above and in [Martel 2006], select

w(t, x) =v(t, x)v/n'(x).

Then,
_%In(v) :3/(8xzb)2dx+/A(x)ﬁ)2dx _2/ Ny (,B(t)QQ’y—I-a(t)Qc,y) vdx
+3fG—cP) / sech?(3c(x — y(1))v?dx + 3c* / sech’(3c(x — y(1)))v* dx,

where
1" 3N\ (@) 75 3
A(x,t)——1+§7—z< ) —4 o ——I—IZQ.

n/

Hence,
_d D @) 4 212 ~2) e TN PR
dtln(v)>3((§ﬁw,w)+ 2 fw dx) + 008 =15 = DIl .

5/2

From above, we know that 3((£w, W) +2! [ %% dx) =0 for v= Q). This corresponds to & = 0y

which is the ground state or &1 ,(;). Hence, v = Q is the ground state of the quadratic form
3((&&1}, W) + %/wzdx).

From Lemma 4.1, our orthogonality condition v L Q.. y(¢) is enough to guarantee there exists § > 0
such that

L1+l <0

dt’" HW
provided |c> — 12| + |y — ¢?| is small for all + > 0, which follows from our assumptions on the initial
perturbation.
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The time-dependent version of

d 2, .2
a7 y(x, ) +vy)dx

is done in full generality in the analysis of (3-13) in Section 3 for the Airy equation. The terms that we
have to control are the same as for constant ¢ and y, plus the terms coming from the right hand side.
Those are easy to control. Namely,

ﬂ/[WQ+ﬂQUy—%04aQ+ﬁQ5ﬂvdﬂS(MHﬂy—fbmmﬂ%ﬁ

for y as in Section 3. U
Note, above we have always assumed the proper orthogonality conditions, but without them we easily
obtain the following estimate for solutions of the v equation:

|IvI|LooH1mLszﬁ < C(Ilv O g1 +Slt1p|(v(',t), Q)+ 1,0, Oy o) (5-20)

Y
6. Function spaces and projection operators

In this section we construct the function spaces for our nonlinear analysis using properties of the linear
evolution we studied in Sections 3-5. Based on the energy functional (5-6) for the v-equation, it seems
natural to look at

1 _ roogyl 2172
veX =L HﬂLHW,

where ¥ = yp(x) is as in (3-5), and again by convention we set L” X to be the L? norm in time of the X
norm in space.
Then, as follows naturally from the equation, we define Y! = L'H' 4+ L%, /yL>.
Generically, we define
X' =L®H'NLH and Y =L'H' +L*/y'H™,

where we note (Y*)* = X~°.

6.1. The scale of energy spaces. Let us study the v-equation

{(3z—$3x)1)=f0+«/7f1=f’ 6-1)
v(0, x) = vy,
where fo e L'H*, fi € L>L°~! and vy € H*. We assume that the orthogonality conditions
wlQ, wlQ (6-2)
and
oty )L O, (fo+Vy'fyLQ forall (6-3)

hold.
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Proposition 6.1. There exists a unique solution v € X* that satisfies

lvllxs < cllvollas + 11 fo++/ v fillys).
Moreover, v(t) is orthogonal to Q' and Q.
Note, Theorem 1 is an immediate consequence.

Proof. We begin by considering the case s = 1. The previous section implies the estimate

Ivlixs = c(lvolles + 1 foll Lras))-

if fi =0 by a variation of constants argument. We retrace the steps and its modifications needed for f;.
Using the multipliers from the energy inequalities, we need the obvious estimates

[ vt vodxarl+| [ fomvdxar|+] [ o varde| < ol

and, using Lemma 4.1,
[V hoe=uaval | [ Vrsmasar +| [ Sy pig ] < el
Y

It is not hard to see that v(¢) remains orthogonal to Q' and O so that we can close the argument as in
the previous section. We obtain the desired estimate for s = 1:

lvllxt < c(llvollgr + I fo 4+ /%' fillyr).

We denote the solution operator for the inhomogeneous v-problem (u-problem) by S, (S,,) and we write

1Su fllxr < cll fliyr- (6-4)

The role of the two orthogonality conditions are different: The equation is invariant under the addition
of a multiple of Q to v, and orthogonality to Q' is conserved. Orthogonality to O was needed for the
virial identity of Martel and Merle, whereas orthogonality of v and Q' entered the control of the H~!
norm by the Moore—Penrose inverse of &£. Without orthogonality one still obtains (5-20).

Suppose now that v satisfies

{vt—iEaxvzf, 6-5)

v(x, 0) = vp.

Let ¢ be a small constant. We apply (1 + ¢2D?)©¢~D/2 to both sides of the equation and denote
v = (14 2D?)6=D/2y. 1t satisfies

v — L3 v" = (14+e*DHS V2 f 4 [(14+62D*ED/2 40%19,v.
Hence, applying (5-20)

Ivllxs < crllv’llx

< o(IlA+e2DH D2 £y + 111 +e2 D 7D2 40318, vl 1 +supl (v*, Q) +1(v*, O)l.2).
t
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and we turn to the commutator term.
Lemma 6.2. Let ¢ € C®(R) satisfy |¢| + |¢'| < Ce ™. Let k(x, y) be the kernel of the operator
[(1+&2D*)?, p1(1 +2D*) /2.

Then,
lk(x, y)| < Cg|s|e*(|x|+\y\)/4*\x*y|/(48)_

We postpone its proof. By Lemma 6.2 (with ¢ =403 and s — 1) and Schur’s Lemma

I(1+e2D?H D2 403180y < 1)V (142 DH D2 403 (1462 D) 9728, 04|12

< cell () 20:0° | 2. 0
and by Lemma 3.1, after rescaling, as for the constant coefficient equation, we have
I(L+€2D?) ™02 fllyy < el fllys.
For all Schwartz functions,
|+ 1xHY((1+&2D*)* g — )| . < Ce.
If (v, 0) = (v, Q') =0, then
(', O) = (v, O) = (v, O — (1 +&*DH) 3 0)| < Celly’ " 2, (6-7)
(v, Q) = |(v, @) = (v*, Q' = (14D} 73 Q)| < Cellv* 2. (6-8)
Suppose that (f, Q') = (f, Q) = 0. Then we obtain for all s € R from (6-6), (6-7) and (6-8)
v [xs < el fllys +ellv* 1 xs)
and hence
Ivllxs S 1L fllys, (6-9)

which again implies for solutions v to v, — £9d,v = Py f, given by the variation of constants formula,
the bound ||P*U”Xs < C|| fllys or equivalently (recall (1-11))

IP*SyPgllysmxs S 1. (6-10)

Using spacetime duality, we consider

{(at -0 )u =g,
u(0,x)=0.

The estimate adjoint to (6-10) is
1PGSuPllys—xs S 1, (6-11)

which completes the proof. O
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Proof. We turn to the proof of Lemma 6.2.
Let ¢ be the Fourier transform of ¢, which, because of the exponential decay extends to a holomorphic
function ¢A) in the strip {z : |[Im z| < 1}. Moreover there exists C such that

f|$(5+ia)lds <C if o] <3
This estimate in turn implies exponential decay. Let k(x, y) be the integral kernel of
[(1+&*D*)/%, ¢1(1 + > D)™/,

We claim
lk(x, y)| < cyels|e D =dlx=yl/e (6-12)

which implies Lemma 6.2.
The symplectic Fourier transform

r 1 —iEx+iy
b = 5 [ ek, ) drdy

. 1 22N /2 .
i) = ((+—jé) - 1)¢<s —.
We set a = e(€ +1)/2 and b = (§ — n)/2. Then k(£, n) = §(a, b), where

. _((1+ b +a)* .
san=((Fgap) 1)

satisfies

and

k(x,y) = 27)"! / FEI G (o€ + ) /2, (€ — 1)/2)) dE dn

=2¢(27)"! f T O by da db =: 2eg((x — y) /¢, x + ).

The function g expands to a holomorphic function in a to the strip {z : [Imz| < 1/2} if ¢] Im b| < 1/2.

Clearly,
14 (a+e¢b)? 4(eb)? a—¢b
_— = _— & —_—
1+ (a —eb)? 1+ (a —eb)? 1+ (a —eb)?
and hence we define the error term /& by the right hand side of
14 (eb+a)*\*/? a—eb
—_— —1=2seb——— + h(eb, a).
<1+(sb—a)2> o @b —ay T

It satisfies
\h(eb, a)| < cs?e*|b|*(1 + |eb—a|)~? if |eImb+al <1/2.

Hence,
‘ f TP p(eb, a)p(2b) da db| < csPete” MWD/
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by the extension of @ and b to a suitable complex strip. The leading term contributing to g can be
calculated:
a—eb

gO(v, w) = (27-[)—1 / ei(av+bw)

= iﬁe"”' / &' P p b 0p) db = ﬁ2i|—z|e_|”|¢’((w + £v)/2)).

The leading term for k is

ko(x,y) =ﬁ2ie|x_yle_lx_yl/sqy(x). O
X =Yy

6.2. U and V space estimates. In this section, we generalize and improve Theorem 1 using the U? and
VP spaces as defined in [Hadac et al. 2009] and in the appendix. For notational simplicity, let us define

UP=Ug,, and VP =V[,.

We begin with a number of estimates that we will use often in the sequel.
Let ¢, y € C! satisfy (5-14) and let y (x, t) = yo(x — y(¢)). Then,

||aQ:~(t),y(z) + b@c(l),y([)”YO Sllalligzepr +1BI 24 p1s

hence
IlPéfPfIIDUz+L2WH—1 S flpwe + I ONllegrr + 1 OV 2gp-

We consider
W+ Wyxy = f,  with w(0) = uyp.

Then,
lwlyz S lluollzz + 11 f l po2

: 2 271
L“H
and, since U“ C N

lw, Q)2 + 1w, Q)2 S I fIpue + lluoll 2.

Hence, with v = ﬁPLw, we have

Il 2gt _ S I by + lluoll 2.
v

We calculate

0)
0)

(w,

0 +
(Q, ¢

(81 +6‘2 _ 8x5~’0)( <w’ Q/> Q/> ¢ <w’ Q> <wa Q/>

o~ = - = %+ y — 2)—~ "

(0. 0) 0.0 0. 5 ?
+<(y‘—c2)<w’g>+f<w’Q~>
(0.0)  ¢(0.0)

where @ and ,8~ are the time derivatives of the coefficients of 0 and Q' and

)Q’—&Q—BQG

I

0=@x-y»0+30.
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Hence, assuming that uq satisfies the orthogonality conditions, that w and v are as above, and with g
defined through the previous calculations,

qv+ctuy — Lo yv=a0+p0 +g+f with v(0) = uo, (6-13)
where we collect the properties of v and g in the following.

Lemma 6.3. Assuming (5-14), we have (v(t), Q) = (v(t), Q") =0 and
IIUIIVanzHlﬁ + gl z2yru—1 S lluollz + 1Lf Il pw2 + 1 QM lpagrr + (s @V lp2gr (6-14)
Y

Proof. We claim that

lolipipz2 + 1Bl r2 < cllwollz2 + 1 f l pw2),

the proof of which we postpone. Assuming its validity we put the term 49, Qv in (6-13) on the right
hand side. We bound ||v||y2 in terms of ||wyl| .2 and the right hand side in DV2. Since DU? C DV? and
L%/y"H™' € DV?, we can control all terms on the right hand side.

The only missing piece is the L? + L' bound for « and 8. There are two different arguments: Either
we can follow the calculation above and calculate & and B above, or we can test by Q and Q' and use
orthogonality to obtain the standard equations for o and 8. We use the first approach and recall the
calculations after (1-10). Then

4w, Q)= (£, Q)+ 3w, )+ S (w, D),

d p N (6-15)
27w, Q) =({f, @)+ y{w, 0) + —(w, 0').

There is one more term entering the coefficient of Q' coming from applying the linear operator to O,
which gives
-2 <w’ g> CZQ/.
(0, 0)

All these terms are easily controlled. O

We return to the analysis of the time dependent v-problem

vy + CZCx — %o v =0al(t) Qc(t),y(t) + B(1) Q;(;),y(z) + f, (6-16)
where
() = — &/, Oy + o= A Oy _ (0 f). 6-17)
(Qe).y@)s Qen).ye)) (Q,0)
: , N/ ,, +(y— 2 , "’//t . ,
B(1) = _(C/C)(v Qc(t),y( )) (y—cH QC( ), (. )) _ (Q, ) (6-18)

(e v Loy (0. Q')

with the initial data v(x, 0) = vo(x) orthogonal to O and Q'. Then also v(¢) satisfies these orthogonality
conditions. We combine the arguments of the previous subsection with those of Proposition 5.3:
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Lemma 6.4. Suppose that (5-14) holds. There exists a unique solution v to (6-16) and (6-17) and (6-18)
that satisfies

(DY vl xony2 < cUlvollas +1{D)* fllyorpy2)-
Moreover v(t) is orthogonal to Q' and Q.

Proof. We begin with s = 0. We write f = fy + fy with fy € DU? and fy € Y°. Let # be defined with
f = fu as in Lemma 6.3. It satisfies

Ivllvenxe = €Ul full by + lluollz2)-

Let us take v = v 4+ w, where w satisfies
w+w, - Lw=a0+B0 + fr+g, with w(0)=0,
with g as in Lemma 6.3 and by Lemma 6.4

lwllxo S Iy llye +1gllyo S 1 Ipy2syo + lluoll 2.

We put the term 49, (Qw) to the right hand side, which we easily control in Y° as well as & and 8 and
we arrive at

lvllvanxo < C(lvoll 2 + I llyospuz + 1(F Q) llp2err + 1(F @) Ip24r)- (6-19)
The case of general s follows by the same arguments as above. O

Our main interest will be in similar estimates for the u problem below.
We consider the u equations

i+ Py — 8 (Feyu) =aQ + B0+ f, (6-20)

with initial data u(0) = u that satisfies (ug, Q) = (ug, Q') = 0, together with the modal equations

~

a(t):_(é/6)< Q)+, Q) 6-21)

(0. 0)
B(t) = G =ADw, 0"+ (C/Cz(ét; QQ’/>>+ (, £0xx) + ([, Q/)’ (622)

which again ensures the orthogonality of u(r) with Q and Q’.

We obtain first the analog of Lemma 6.4.

Lemma 6.5. Suppose that (5-14) holds. There exists a unique solution u to (6-20), (6-21) and (6-22)
that satisfies

lullxony2 < c(lluollL2 + 11 fllyos pv2).-

Moreover, u(t) is orthogonal to Q" and Q.
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It is not difficult to construct solutions; however we are interested in global estimates. Moreover we
may restrict to a finite time interval and assume that all the data as well as u are smooth and decay at
infinity.

We set v = $u. It satisfies the orthogonality conditions

(v, Q) =0=(u, Q) =(£"'v, 0) = (v, Q).
Moreover, v satisfies
U 4 vy — Lov = =22 Q + 120%((E /) O+ (G — A QVu+ L f
and we may apply Lemma 6.4 with s = —2:
Ivllx—2 S N1Lu@)ll g2+ 1L flly-=+ (/eI + 1y — CZI)IIMIILz(H\—/sV)-
We apply Lemma 4.1 several times to get
lullxo S I1£vlix-2 S lluollzz + 11 fllyo +Slth(IC'/C| +1y =D llullx-.

To complete the proof we observe that by (5-14) we may subtract the last term on the right hand side
from both sides to arrive at the desired estimate. The inclusion of V2 and DU? works now exactly as
for the v equation.

We collect the results for the case s = 0, which is the only estimate we will need later on.

Proposition 6.6. Suppose that (5-14) holds. There exists a unique solution v to (6-16), (6-17) and (6-18)
that satisfies

vllvanxe < cllvollz2 + 1. f l py2+y0)-

Moreover, v(t) is orthogonal to Q" and 0. Similarly there is a unique solution u to (6-20), (6-21) and
(6-22) that satisfies

lully2nxo < c(lluollL2 + 1 I py24vo)-

Moreover, u(t) is orthogonal to Q' and Q.

6.3. Littlewood—Paley decomposition. We consider functions ¢ and y satisfying (5-14) We set L. € Aoy =
1.01N and let P, be the Littlewood—Paley decomposition with Fourier multipliers supported in the set
(£:1.017'A < |€| < 1.01A}if A > 1 and {& : || < 1} if A = 0. Then, we denote

u) = P)\M.
The Besov spaces are defined as the set of all tempered distributions for which the norm
vl gz = 1A% loallze lle ag)

is finite. Here s € R and 1 < p,q < oco. Similarly we define the homogeneous spaces B;’p with the
summation over A = 1.014, where the frequency A = 1 plays no special role. There is an ambiguity



SMALL DATA SCATTERING AND SOLITONS FOR THE QUARTIC KDV EQUATION 173

about the meaning of vg, which differs depending on whether we consider B;’p or the homogeneous
space By’
We define the spaces X3 and Y3 using the norms

lullxs, = sup A luslly2nxo  and || fllyg, = sup 2’| fall py2yyo-
reNg LEA

The homogeneous spaces X ’. and Ygo are defined in the same way as the homogeneous Besov space

By" with A = 1.017, though with a slight modification for s < 0 in the ¥ spaces due to the p multiplier.
Namely, we take

lull s = sup (A[|uxlly2nxo) .
e A
re

‘ v ' (6-23)
IFllz = inf (sup Al filpue + sup 2°ligslyo).
®  F=ft+gNea r€Ag

where there is a slight abuse of notation since the operators in fy and go are taking on two different
meanings, the homogeneous projection for f and the inhomogeneous projection for go.
We study
urtuy +Fu=aQ+p0x+ f+ 9 (pg),
(6-24)
u(x,0)=0,

where « is given by (6-21) and 8 by (6-22). As a first step we obtain a weighted L? bound for u in (6-25)
below.
Let f = ft+f~ and g =g +g~ be a decomposition into high (|&| > 1) and low (|&| < 1) frequencies.
We define
vty — Loy =0 . Q4+ B0 + (O f T+ pg ™),
{v(x, 0)=0,

where

x

(0, Qo = (c* = Y)(v, Q') — (¢/c) (v, ) — (3 T + pg™, O,
(0, Q"VBy = (> =), Q") = (¢/c) v, )+ (f T+ 8, (pg™), Q)

ensure f’*PQL,v = 0. Then by Proposition 6.6
Iollxo S 107 £ + pgt lpueys S IF llys S I Flys

where the second inequality holds for all s > —1.
As a simple consequence, we obtain

1 Pordxvllz2zz SITF s
and compute similar to arguments above

(3 — *dy 4 0, L) (Pgrdyv)
_<a _ 4 0"
U a0 o)

(v, ")

<U9 Q//> C ~/
- Oy .
0. 0) Q'+ f++dc(pg+)

(Q, Q) c

)Q’ + (m + G- cz)) 0"+
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We make the ansatz u = Py 0,v + u_ and observe that (d,v, Q) = 0 by construction. Then,
u_ +cu_— 0, Lu_

=aQ+pO + f- +d:(pg-) + (

¢ (0,0)  (fr+acegh), Q>> o 090 ¢
c(Q. Q) (0. Q) (0,0 e
where o and § ensure orthogonality. Later we will need the obvious identity (integrate by parts in the
second term)

T+ (pg™), "
<f— +u(pg) - (LA g Q> = (F. 0).
Then, u = 9, Pé,v +u_ and hence with F™ = f+ +9,pg" we have
lullz2zz S IHFys +1(F, Q)llz2qrr + ICF™, Ol pt- (6-25)
By (6-21) we see
el S Néllznpoe (HF Nlys + ICF, Q) lz24p) + IKF, Q)i (6-26)
and, using (5-14)
lellz SNFNlys +1(F, Q)2 (6-27)
and by (6-22)
1Bz SFlys + IKF, Q) I 2. (6-28)

We turn to the frequency localized equation

{(Mx)z + U3 xxx = — P13y (4Q%u) + a P, O + BPLQx + Pi f + Pidc(08),
u*(x,0)=0.

Observe that by using first the boundedness of Fourier multipliers on U2, DV? and the dual of the
embedding U? C LQHA, we have

1P0:(4Q°w) I py2 SANQ ullpye S ANQ%ull 2z S A(IFlys + I(F, Q)llz2qr1)-

If » > 1, then by Lemma 3.1
ILPdxs @ ull2rz S llul 22

Repeating these estimates for the term containing g and using the estimates of the previous section we
obtain for A <1,

lurllvanzzmy S UPf by +AIF lys + I1CF, @ lp2grr + IGE T, Q) l2r) + 22 e,

since

lee Qll 1oz S lleellz
and, for A > 1,

luzllvanczmy S fllpuz +lIgall2 + 1 F lys + I(F, QM 2qrr + ICF T, Q) 2qrr + ICF, Q)24 10
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As aresult, we arrive at the following key fact.
Proposition 6.7. Suppose (5-14) holds for some small §, that —1/2 <s <0, F € Y* and
{ut Fltxry +40x(QPu) = 0 + O + F,
u(x,0)=0,
where o and B are defined in (6-21) and (6-22). Then,

lulls SUFys +ICF, Ol +I1CF, Q) I p2ppt + I(F, Q) loyp-

This result will play a large role in the nonlinear analysis required to prove asymptotic stability.
For future use, we denote by L%, X;o%é,

gol/f for I = (0, T'). All previous constructions carry over to finite time intervals.

etc. the function spaces on the space time set / x R, and
specifically we set LY., X

7. Local wellposedness for the quartic KdV equation

In this section we study local wellposedness for the quartic generalized KdV equation

{81‘1// - axxxw - (¢4)x =0, (7_1)
¥ (0, x) = o(x).
Let v be the solution to the Airy equation with the same initial data, that is,
{Ut + Vyxx =0, (7-2)
v(0, x) = Yo(x).
The main local wellposedness is the next result.
Theorem 4. Let ry > 0. There exist g, §g > 0 such that, if 0 < T < oo,
Yol o162 <10 (7-3)
and
supllvallzsqo,71,®) = S0, (7-4)
A

then there is a unique solution W = v + w with lwlly-1/6 < €0. Moreover, the function w (and hence Vr)
oo, T
depends analytically on the initial data.

By the Strichartz estimates for linear KdV (see also (7-5) and (7-6) below), given v as in (7-2) we
have

supllvillzs < kollvll 4-1ss,
A 00,T
and by the definition of the spaces
||v||;'(1/T6 =K (HW(O)”B;‘/“ + |9;v + 8xxxv”f/*lé6)-

Hence, we obtain global existence from Theorem 4 for (7-1) if

LR}

1 orsez smin{l,
Boo (kok1)
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where 6 (1) is the § (which depends on rg) evaluated at ro = 1.

In any case, if condition (7-4) is satisfied for T = oo, then, since ¥, € V2, the function e!%xx Y, is of
bounded 2-variation with values in L? (see the appendix), and hence it has a limit in L? as t — oo. This
implies that ) _, lim; o €’ Oxxx Y =: S(Yo) exists and is the scattering state. If in addition g is in the

. a—1/6,2
closure of C{° in By /

, then we may exchange the summation and limit.

Under the same assumptions we can solve the initial value problem with initial data v (T) = e~ %1,
which, by an easy limit as T — oo, gives the inverse of the map S. We will later see similar constructions
for perturbation of the soliton.

It is not hard to see that if y is in the closure of C° in Bo}l/ 6.2

choosing 7" small. This implies local existence with smooth dependence on initial data. Moreover, since

, then we can achieve condition (7-4) by

we obtain smooth dependence on the initial data, if we have any global solution 1 (¢) in the closure of

C;° and perturb the initial data by an amount &, we obtain a solution at least with a life span 7 = —cIne¢

by easy perturbation arguments. In particular, if the initial datum lies in an & neighborhood of a soliton,

then the solution exists at least until time ~ |In ¢| and remains in a small neighborhood until that time.
Before turning to the proof we remark that in this section we work with the weaker norms

~1/6 —-1/6
lullg-16 = sup A~ lluzlly> and || flly-16 = sup A~ )l fill pio-
Py A

On the other hand, since the results remain trivially true for the original definition of the spaces we keep
the notation.

Proof. First, we recall some estimates for u € Ulz(dV‘ Letm(§,&)=m(&,& —&;). Then

lull zszo S NDI™0uO)l 2 (L® Strichartz estimate), (7-5)
| [ mee. et - - 02 i s s,
R L*(R=)
2
< sup m (&, &0l T l1(0) || 21| u2(0) ]| 12 (bilinear estimate). (7-6)

|67 — (6 — €122
The bilinear estimate is a variant of standard estimates as in [Griinrock 2005]. The most important
choice is m = |7 — (€ — &)?|1/2.
Let m(&, &) be a function that satisfies m(&, & — &) = m(&, &1). Then,

2
L2

N/m@fow@“@f”mma&mxas—&uﬁﬂ

=/%uasOm@nnn”@F““ﬁ%mmAamxs—so@@—wnmmm)mdadmds

[ ImE P
P — (& — )2
m(E. &)

< - -
=Pl e —g

w1 ()1 |ua(E — )| d& dm

22 22
lur | L7 (luz|| L
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since

P& = EEL —E261 —Enf +E2m = EGE —n)(E +m — &)

vanishes if £ =n; or £, =& — n; and
¢'(n)=82m —&) =Em—E—m)) and @€ —n) =& —m) —&D.
These results immediately imply (see the appendix for more information) for A > 1.1y the estimates
il s S A0 Nulg2, (7-7)
ey S 27 uallz gl 2. (7-8)
By interpolating the bilinear estimate and the Strichartz estimate, if 2 < p <3,
el g < 271G 0RO PO ug o a2 (7-9)
and, if p <K u ~ A,
) pllz S 27207 P llusllyz lugllyz - (7-10)
Interpolating once again, we have
) pllpy S 272p7 202 POy Y ol - (7-11)

We proceed with a standard fixed point argument, which requires bounds on the nonlinearity. The
solution ¥ = v + w is constructed by studying

{wt + Wyxx +(v—|—w)i =0,

w(0) =0, (7-12)

where again
{vt + Vxxx =0,
v(0) = vo.

Then, the key estimate is contained in the following.

Lemma 7.1. There exists r > 0 independent of T such that given vy € X ;01’/T6 fork=1,2,3,4 we have

4

192 1vav3va) l[-vs < 7 [ Tlloell g-vs., (7-13)
oo, T k=1 oo, T

and, with v and w defined by (7-2) and (7-12), respectively,

2
19: WP w)l 16 < 7 supllvall sllwoll? sz lwll-1e. (7-14)
oo, T A Boo o, T
We apply these estimates to v* +4v3w + 6v>w? 4+ 4vw? + w*. Either we may choose to estimate one
factor v in L® or the dependence on w is at least quadratic. Suppose that ||w|| ;-6 < u. We obtain
oo, T

|10y (v + U))4||Y—146 < 6r(lc138r8 + K126,ur§ + Klzrguz + /qro,uu3 + [L4).
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If u < k119, then the right hand side is bounded by
20r (K?Si’g + Kfuzrg).

Suppose that

. 1 nw
§m1n{/< ro, —} and 6 < ——.
H 1o 40r/<12r§ 40ricfrg
If w solves
w; + Wyxx + (V+ W)i =
w(0) =

and ”W”x e < < u, then w exists and satisfies ||w||X o < < .
Standard arguments then allow one to construct a umque solution satisfying the contraction assump-
tion, possibly after decreasing u by an absolute multiplicative factor. O

It remains to prove Lemma 7.1. By duality, it suffices to verify that

4
)»‘/ V1 V203V4U), dX dt‘ < CAMOuz ]y l_[”Uk”)'(—l/(;
oo, T

k=1

and
3 1/6 -1/6 2
A [ vtwis dxdr| < €AV vz suplivlee (sup ™ vl ) Tl e
7 © oo,

where u; € V? is frequency localized at frequency A.
By summation, the statement of the lemma holds provided we can prove the following.

Lemma 7.2. We have for Ay <Ay ~A3~Xtg~Asande >0

1/3
As / U1,A1 V2,4, V3,03 V4,04 V5,25 dxdt < N mln/ ( max) H”vk }Lk”VZ (7_15)
Amin
and
A 1/6 A e
)‘ma"/ Uiy Upy Uns Uiy Wis dx dt S <_km1n) (}Lméx>
max min

2
wwmﬂmmmeMmmmmgwm
M %

where Amax and Amin respectively are the maximal and minimal A ;.

Proof. We claim that

‘/ VLA V2,00 U305 V40, Us a5 dX dt| < Ca L llor s 2 v o2 1vs sl e llvasg e llvs asll s (7-17)

provided
|)‘l _)\2| > %)‘max- (7‘18)



SMALL DATA SCATTERING AND SOLITONS FOR THE QUARTIC KDV EQUATION 179

This estimate is a consequence of Holder’s inequality and the bilinear estimate (7-6). We recall that
loallze £ A7V Nvallys S A0 lvallyz

To obtain a nontrivial integral there have to be elements in the support of the Fourier transforms that
add up to zero. Unless there is at least one pair of (A, A;) satisfying (7-18), the integral is zero. Hence,
we would obtain (7-15) if we were allowed to replace the V2 norms there by U? norms for the first two
factors. Observe that we may reorganize the factors as we wish.

Let us assume A1 S A S A3 S Ag S As. We consider first the case when A4 < 1.054;. Then, if there are
elements in the support of the truncations on the Fourier side adding up to zero— otherwise the integral
vanishes — either

As As As As
0.8: <M <M<IlIry< 1'21 or 0.6? <AM<M<IlIrz< 1.4?.

In this case we can replace the U2 norms by V2 norms as follows. We decompose into low and high
modulation as

o h
Vja; = V), TV

where vé. is defined by the Fourier multiplier projecting to |t — £3| < )»g /1000. Then, we have

3
l h h -2
0y, v+ 1105, llve < llvjallve and Jlvg, lle S As v lve.

We refer to the appendix and [Hadac et al. 2009] for more information.

We expand the product. The integral over the product of the five vé’ ,, vanishes because of the support
of the Fourier transforms. Hence at least one term has high modulation. We estimate it in L2, put another
term into L> and the others into L® using Holder’s inequality. We estimate the L° norm through energy
and Bernstein’s inequality.

Hence

5
_3)2
‘/ VLA V2,39 V3.25 V4,0, V5,05 AX df‘ <A5 P Thvsa, lve, (7-19)
j=1

which implies the desired estimate.
It remains to study A1 < Ao S A3 S Ag < As, Ag > 1.054;. The most difficult case is A5 < 1.024,

since otherwise we apply two stronger bilinear estimates. For simplicity we consider A; << A where
Ay = A5 = A. We have to bound

/zg._o [T, &) dsdssd

with & = — Z?:z ;. We may restrict the integration to 25.:2 £j ~ A and &; ~ A. By symmetry it
suffices to consider

/ZE 0 Xllgs1=1&211~2 1_[ j1,(&)) dé& dés dt.

J
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We choose ¢ > 0 small, p,gsothat1/p=(1—¢)/24+¢/3,1/qg=¢/2+(1—¢)/3. By Holder’s inequality

- —1/6 — —1/2 1/2\1—g4 —1/6
[ v @ vssvsa dxde €27 GOV T PO T [ g s
J
— -2/3
SATRPOAEATEE [ Ty, s
J

For the second part we would like to put one v term into L°, and up to two into U2. This can be easily

be done if there are two frequencies of v that differ by a small constant times Ap,x. If not it is not hard
to see that in the argument above we can put one term into LS. O

7.1. Variants and extensions of wellposedness for the quartic KdV equation. The arguments of the
last sections have implications for wellposedness questions in other function spaces. Given 1 < p < oo,
w e Cl((0, 00), (0, 00)) and T € (0, o], we define the function space X ‘;’T as the set of all distributions
for which the norm

IIMIIf(;T = Z(a)(/\)lluxllvz)”, (7-20)
' A

with obvious modifications if p = oo is finite. We will always assume that

sup|a’|/w < 00, (7-21)
info/w> —1. (7-22)

This is a Banach space provided for some C > 0 we have
lim igfw(k)kl/z > C; (7-23)

otherwise we obtain a Banach space of equivalence classes of functions. Similarly, we define the Banach
space

1150, = D (@M fillpy2)". (7-24)
A
The definition of B, P follows the same pattern. It is not hard to see that

[ us dxar Sputg 151,

-1
p.T

and Ifll,. 1S sup / uf dx dr.
p.T

u <1
lullxy <

Moreover, we may expand the inner product into dyadic pieces and apply uniformly elliptic pseudo-
differential operators to the pieces. In particular, we may replace differentiation by multiplication on the
dyadic pieces and vice versa.

Proposition 7.3. The following estimate holds:

—1/6 [l ”X(;;,T'

o, T

4 2
19 () lye, < ngplluxllLﬁllullX
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Proof. Givenv € X ;“,TlT, we expand [ 9y (u*)v dx dt into dyadic pieces, to which we apply the arguments
and estimate (7-16) from the previous section. By symmetry

ZKS‘/MMMMMA;MMUAS dx df‘ S Z )\5‘/ Up Up,UjsUp, Vis dx di|.
Aj

A1SA2=<A3=<A4,A5

If A5 ~ X4 we obtain

Z k5‘/uklukzu,\3uk4v;\5 dxdt‘

A=A <A3<Aq4~As

2 As\¢
— 1/6,—1/6( /5
Ssupluglpo(sup ™ i) < D0 a5 (7) lesllvzllvss e,
" " M ShashsSha~is !

which is bounded by

~1/6

2
latllgn ) Nl 0] g
p.T

supllu s (sup i
N I

The other extreme is

Z AS‘/”M”M”A;”MUM dxdt‘

As<A<A2<A3~A4

2 Aa\E
-1/6 —1( 74
< suplllio(sop i lallon) x 30 sy (5 Bl e,
" ’ AsSAI=A2=<A3~A4 >
which satisfies the same estimate provided ng u (A) S nw,. However, this is ensured by (7-22).
The remaining cases are similar and the result follows. O

From Proposition 7.3, we can prove the following corollary to Theorem 4.

Corollary 7.4. Suppose that o satisfies (7-21), (7-22) and (1-23). If o € Bx** N B2 is the initial

data for a solution of (7-1) and v satisfies (7-4), then the solution \ of Theorem 4 is in X ﬁT and satisfies

IV lxs, < Clioll go2-

In addition:

5—1/6
oo, T

Corollary 7.5. Suppose that Vg lies in the closure of C$® in . Then, it follows that

(t = Y (@) € C(0, T1, BL/*?).
If T = o0, then e' 0x Y converges to the scattering data ast — 00 in BO_Ol/T6 If in addition o € L?, then

(t = ¥(1) e C(0, T, L?)

a3
etd

and e'%xr converges also in L.

1/6

There exists w satisfying the assumptions above, with w (A)A™"/®* — oo as A — oo and A — 0 and

1Yol go2 < 0o. By Corollary 7.4 the X g’O’T is controlled by the initial data. Hence

A7V vl pyeaye = Oas A — 0o or A — 0.
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By the previous argument the deviation of the solution to the linear solution tends to zero as the considered
interval shrinks to zero. This implies continuity. Continuity at infinity always holds in V7.

The second part requires an obvious specialization of Corollary 7.4 to the case w = 1, plus a repetition
of the argument for scattering.

Particular examples for w are (L)* for s > —1/6 and A* +A° for —1/2 <s < —1/6 <o. It is not hard
to see that we can replace the homogeneous spaces by inhomogeneous ones if we restrict to finite 7 and
allow the constants to depend on 7.

8. Stability and scattering for perturbations of the soliton
8.1. Setup and main result. We return now to the full nonlinear problem (7-1). Let us take

Y(x, 1) = Qery(x — y(1)) + w(x, 1).
Then, we have
0iw + 0, (AW +4Q7w) = —¢(3: Q) (x — ¥) + ¥(QL) (x — y) = (97 Qe — ¢ Qe + 0F) — (QL(x — y))
— 3,602 (x — Y)W +40.(x — y)w® + w?).
Hence,
dw + 0, (92w +4Q0w) = —(¢/0) Qe (x =) + (F — ) QL(x — y)
— 0607 (x —y)w* +40,.(x — y)w’ +w). (8-1)
To use the dispersive estimates proved in Section 6, we wish to have
wlQc(x—y) and wL Qu(x—y). (8-2)

To get more regularity for y and ¢, we ask for (8-2) only asymptotically and hence take as in (1-15)
and (1-16) the modal equations

(©/){(Qe, Oc) = (w, Oc), (8-3)
3 — (0L, QL) = —k{w, L), (8-4)

where k > 0 is taken to be large.
We calculate

%<w, Q) = (wy, Q) +y(w, Q) + (¢/c)(w, O)
= (w, £Q') — (¢/)(Q, O) + (6Q*w? +4Qw’ + w*, Q) + (G — A (w, Q') + (¢/c)(w, O)

and

9w, Q') = (wy, Q') + 3w, Q")+ (/) w, 0')

dt
= (w, 20") + (3 — A(Q', Q') + (60*w? +4Quw* + w?, Q")
+ (G —A{w, Q") + (/) (w, 0.
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Hence,
n2 A
%m, )+ (w, Q):—KEUQ)’,’QQ>/>—(w’(g’%};@+(6Q2w2+4Qw3—|—w4, Q)  (85)
and
L, Q) +rfw, Q') — (w, £0")
(ws Q/><w’ Q//> <w7 Q)(U), Q/> 2 2 3 4 Vi
=— — 6 4 ,0"). (86
oo T o TeLwHaow et o). @6

The right hand sides are at least quadratic in w, and, as we shall see, small compared to ||wy]|| in a suitable
sense. As a consequence the orthogonality conditions are approximately satisfied for large ¢. In addition,

2

¢ and y — ¢* are small and continuous.

We study the initial value problem w(0) = wq. Let again v be the solution to the linear problem. We

will prove scattering for small perturbations of the soliton in B;ol/ 6.2

. It will be important for the reverse
problem that we will achieve something slightly stronger.
Using the notation

I'={yeC(0,00):y0)=0,y—1] < 15}, (8-7)

we define for any interval / the quantity
I10) = sup (Il + 24l g sup a0 [y = @0+ @iy dadr). (89)
A yell Rx1

- —1/6,2

Proposition 8.1. Let v be a solution of (3-1) with initial data vo € B '~ Then,

< .
J10.00) (V) S Hlvoll p-1e2.
. o o . 51762
Moreover, if vy is in the closure of Cj” in B, ' ", then

lim J[,,oo)(v) =0.
t—00

Proof. The first statement is an immediate consequence of the Strichartz estimate and local smoothing.
For the second statement we fix ¢ > 0. There are at most finitely many v ; of norm larger than ¢/c.
Hence it suffices to verify the statement for a single A. Since v; € L®L® and L*L>°, we have

Il_i)nc;lonv)»”LG(Rx(t,oo)) = ,li“é‘o””k“Lﬁm)L” =0.
Let I be a bounded interval. Then the map

r — xl/ﬁf Yox — y(6)) (v2 4 (8,v3)?) dx dt
Rx1I

is continuous with respect to uniform convergence, hence it assumes its maximum. Given j > 1, let
yj: [2/,2/%1] — R be the path for which this quantity is maximal. We choose two paths y, and y, with
y(0) = 0 and the difference between 1 and the derivative at most 0.2, one which coincides with y; for j
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even on the corresponding intervals, and one which does so for j odd. For both paths we have the local
smoothing estimate. But this implies the claim. (|

Let y € I'. The function spaces X ao:7 and Y .7 depend on y but not on c¢. This dependence is not
reflected in the notation. In addition, let ¢ € C'([0, 00)). We assume (5-14), ¢ € L? and y —c¢?> € L? in
this section, which we have to verify for the solutions we study, and turn to a study of a priori estimates
for solutions to (8-1), (8-3) and (8-4), and we recall (8-5) and (8-6). Because of translation and scaling
invariance we may restrict ourselves to a study for y(0) = 0 and ¢(0) = 1. Moreover, we may and do
assume that the orthogonality conditions hold at time 0, that is,

(wo, @) = (wo, Q) =0.
The main result is the following sharpened version of Theorem 2.

Proposition 8.2. Let C > 0. There exist ¢ > 0 and K > 0 such that for |wol| 3152 < C and Jyjo,1)(v) < ¢
and for v a solution of (3-1) with initial data wy, the solution w in the system of equations (1-15)—(1-14)
satisfies (5-14),
1/2
lwllge < K7 (@),
with K depending on C but not on time. Moreover, if J,0) (V) < €, then there exists a unique n € -0—01/ 6.2
such that

. 3
lim "% w; (1) = n;,
11— 00
with convergence in L?. In addition
lim lw(@)| z-16 = W] g-1/6..
—00 oo, T 0

Remark 8.1. Variants in the spirit of Corollary 7.4 can be easily obtained by including the arguments
there, which will establish Theorems 2 and 3 with higher Sobolev regularity as stated in Remark 1.1.

The proof consists of three step,s a preliminary part consisting of an important initialization, multi-
linear estimates that are less critical variants of those of the last section, and a priori estimates for the
nonlinear equation using the multilinear estimates and the linearized equation.

We recall that v satisfies v; + vy, = 0 with initial data v(0) = wg. We want to control the difference
between v and the solution v to v; 4+ ¢29,v — 9, v = « O + BQ’ with initial data v(0) = wo with & and
B ensuring (v, Q) = (v, Q") = 0, which we assume to hold initially. We recall that (5-14) is a standing
assumption.

For simplicity, let us define J = Jjo,)(v). The following result is the first step of the proof.

Lemma 8.3. Suppose that wg € Bo_ol/ 6.2 satisfies the orthogonality conditions. Then
il g1 < llwoll 3=1/62

and
|Iv—PPé/UIIX;l/e+||a||LImL2+||,3||L2SJ- (8-9)
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Proof. The first bound on v is an immediate consequence of Proposition 6.7. The second statement is
more delicate. As a first step we consider u = P PLv. It satisfies

sup(llull s + 2~ | oo + 27l 2my) S, (8-10)
A

since [[(v, Q) .2As + 11{v, Ol r2nrs < J. We calculate

du+Puy — 9 Feyu=G, with u(0) = wy, (8-11)
where
d (v, 0)\ ~ d (v, Q)
om0 (G G)e- (g )
(Q’u) (0. 0) 0 41 (0. 0 0
Q) s — 0,90 - L) 50— 0,90

(Q.0) (0, Q')

We consider the terms separately. Any derivative falling on (Q, Q) or (Q’, Q') can be computed using
(4-2) and (4-3), yielding a factor ¢/c. Next,

Lo, 0) = 0w+, Q)+ (= v, @)+ (/) v, 0) =—(Q4, 1) +(E =) v, Q)+ (/) v, O)
and
%w, Q') = (04, Q)+ (= §)(v, Q")+ (/c) (v, Q')
=—(0,.20") = 4HQ’ Q" v) + (> = ))(v, Q") + (¢/c) (v, Q).
Moreover,

(@ +c%0, — 9,90 = (/) 0+ (=)0 +22Q,
(0 + %0 — 0, £) Q' = (¢/0) 0"+ (" =) Q"
We write G = a O + BQ’ + g, where, using again (4-2) and (4-3),
(Q, Q) =—(¢/c)(v, O)— (> =) (v, Q) +5(E/c) (v, Q)+ (v, ().,
(0, Q"B =—(/c)(v, Q)= (=) (v, Q")+ (/) (v, Q) +4(v, 07 Q") +(v, £.0)) =2 (v, Q'),

_ 3 <v’ Q) . ~ 2 N / / / é”/ 2 . "
g =—40:(Q"v)— 0 Q>((C/C)Q+(C -»NO)—(v, 0)/(Q, 0 ))(;Q +(c" =y 0.

’

By Lemma 6.3, we have ||g|lyo < J. The difference w = v — u satisfies (abusing the notation slightly by
denoting by @ and  new quantities)

w+Cwy — . fw=a0+ B0 —g
with initial data w(0) = 0, and again by Lemma 6.3

lwll xony2 5 llgllyo 5 J.
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We rewrite the equation for v as
Vi Ve = —0:(4Qv) +aQ + Q" =: F.

Decompose v = u + w. We recall that

(Q. Q) = — (/) (v, O; (8-12)
hence
lellir + 1 s S Cle/ellz + 1y — ).
The L? bound for B is simpler. The estimates for the linear equation imply now (8-9). g

As it will be used in the sequel, we note the following simple consequence of Lemma 8.3. Namely,
we have

Jey(v) SJT(v), (8-13)

where we denote by J. , the quantity analogous to J, but for the given path dictated by the ¢ and y mod-
ulation parameters. After this nontrivial preliminary step, we continue with the proof of Proposition 8.2.
The strategy is to write the equation in terms of

u=W—0cw,ye —V

and expand the nonlinearity. In the next step we study multilinear estimates, which in the last step are
combined with Proposition 6.7 to obtain the a priori estimates.

8.2. Multilinear estimates. We proceed as for the initial value problem and bound multilinear expres-
sions. In this section we collect nonlinear estimates in terms of the V2 spaces to prove Proposition 8.2.

Lemma 8.4. Let u be a tempered distribution and u;, its frequency localization. Let ¢ be a Schwartz
function. Then,

lpusll 2 S min{A>75 A7 (luall 2 + 10:uall 2
Here ¢ is the constant of (3-7).

Proof. We begin with the case A > 1, in which case we prove the stronger estimate where we replace ¢
by y’ as defined in Section 3. Let x € C;° be supported in {£ : % < |&| < 2}. Then,

9 a\"' (9
V=V (5 Jaan =3 () (3 Yo

A

2 ) (. () ) o

where (0, / 2"y (0 /M) 1s an L? bounded Fourier multiplier. As a result,

(2 12

-1
2 SAT luall2ry-
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We estimate the second term on the right hand side using the adjoint of Lemma 3.1 witha =1 and s =0:

bt (v (B) (%) o e,

<r7h
A

2"

lunll2(yr)-
We turn to A < 1. Clearly,

Ipusll 2 < o)™ 221y ull .

Let x = sin(x)/x, which is the inverse Fourier transform (up to a constant factor) of the characteristic
function of the interval [—1, 1]. Let xo € R. We define

gr(x) = u;. (x) x (A (x — x0)/100).

Then, g, satisfies roughly the same frequency localization as v,, and it coincides with u; at xo. Thus,
by Bernstein’s inequalities,

VY Y (A(x — 100
Wy Goyus, (x0)] < A2y o)llgall 2 < exM/2 sup X (XO)X\(/% o )”ﬁ”*”“'

Now the elementary estimate

Supmbz()h(x ;/)C((;C))/IOON <ca®

completes the proof. U
We proceed to prove the necessary multilinear estimates.

Lemma 8.5. Let c, y satisfy (5-14), u € Xo_ol/ % and let v and Q be as in Proposition 8.2. Then, the
following estimates hold.:

3
19 uruauz D)l y-ve S T [l -1se, (8-14)

j=1

2
0 1wz Q) e S T Tllaell g v, (8-15)

j=1
18 (2u Q) lly-1i6 < TP el (8-16)

X Y5 6 5 X;ol/é u X;ol/ﬁ
1/2

19 (v @)y -16 S IVl ){;/onun xzve- (8-17)

Proof. We begin with the dual Strichartz estimate

—1/4
I fllpve SATVA fill s

By construction, spatial Fourier multipliers in V?, UP, DU? and DV? are bounded by the supremum
of the multiplier; hence

2 3/4 2
1 P3x(Qu1 3, u2.0) puz S MM Q%ur izl 4
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sA1 A L3 ll A L A [~ A cog?2

. — . —1/2y,1/6,1/6
Smin{1, A7 ymin{1, 2520 s I - ez | g-ve.

This is summable for A; € I' and we obtain the desired estimate for A < 1. Assume now that A > 1.
Then, using Holder and Bernstein and |Q'| < Q

—-1/6 2 —-1/6 1/2 1/2 1/2 1/2
WV P Q%u 2 N 2y et S A0 Qui Il | Quea i I e | Quan o, 15 | Quua iy I

< A0 ming1, 2723 min(1, A5 2l | e llual gve,

which can easily be summed over A; and X, if A > 1. This implies (8-15) and also (8-17).

We approach estimate (8-14) similarly: We expand u ; and observe that the expressions are symmetric;
hence it suffices to sum over A} <X, <A3. If &1 <1 we argue as above and estimate u; ;, in L, followed
by Bernstein’s inequality. So we restrict to the case A; > 1.

Then, using that Q is integrable,

3 3
M P Qui ayun 3,135, | pyz S A HHMM, lpazee S 274 (harary) V12 Hlluj,x,- Il -1,
00, T
j=1 j=1
which is easily summable if A S 1 S Aq, Ao, As. If A > 1, we argue differently. To simplify the argument
we assume that the Fourier transform of Q is supported in [—1, 1]—handling the tail is straightforward
but technical. Instead of bounding A|| Py Quy ;,u2 3,u3,3, |l py2, we employ duality and study

I = )f Qul,kluz,}\zu3,k3u4,k4 dx dt‘

assuming that 1 << A; < A, < A3. Then, we have

3
—5/6,—1/6
1< 11Qus iyl llgslluaollslua s e < 257350 T Ty, llgvolua e,
j=1

The factor A; 3 6)3/ % is summable for fixed Agover I <Ay <Ay <Az, 1 <Xy < A3—this suffices since

I =0 if X4 is much larger than A3. As a result, we have proven estimate (8-14) and, after checking the
proof, (8-16). O

We turn to bounds for inner products occurring as inner products of the right hand side of (8-1) with
Q and Q’, and at the right hand side of (8-5) and (8-6).

Lemma 8.6. Let u € X;OI/(S, and let v and Q be as in Proposition 8.2. In addition, let yo(t) be a
one parameter family of Schwartz functions parametrized by t with uniformly bounded seminorms and
Y(x,t) =vyo(t,x —y()). Thenforall1 < p <3/2
4
60 Guruausua). ¥) e S T Tllujllg e, (8-18)
j=I
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where we consider the LP norm with respect to time and

18, W), ) I r S J||v||§.(o_ol/6||u|| e (8-19)
Forall 1 < p <2, we have
3
1@ (10203 @), ) llw S [ Tl e, (8-20)
j=1
1(0x W u @), ¥)llLr S Tl v llull 4 ve. (8-21)
Forall 1 < p <3, we have
2
102 (w120, ) lle S T sl gove, (8-22)
j=1
10 0u @), ¥) e S Tllullg-vs. (8-23)

Proof. We expand the terms in (8-18) and we consider

IP = ||<u1,)\1u2,)»2u3,)\3u4y)»4’ ‘W>“LP'

By symmetry it suffices to look at the case A} < Ap < A3 < A4. If p = 1 we bound the terms using
Holder’s and Bernstein’s inequalities as above:

1/2 1/2
I S e ool g oo N 2us 2 91 a2

4
2/3,2/3 . 1/6 ,—5/6 . 1/6 —=5/6
<3P0 mingay®, 4570  mingay/®, 4] /}]_[||uj||X;o1/6,
j=1

which is easily summable. We obtain by Holder’s inequality

4 4
Byp S [ g e S T Twillgovs,
j=1 j=1

which we use if 1 < XA; < A4. If A} < 1, we estimate the corresponding term in L°°, apply Bernstein’s
inequality, and argue as in the next case. Interpolation with the L' estimate yields a summable expression
as long as p < 3/2.

We turn to estimate (8-20), denote again the p-norms by 7, and expand again

2/3 . 1/6 , =5/6 . 1/6 , =5/6
Iy Sl g el Qua oo 2 @ us s N2 S A7 min{ay®, 23 Y min{ay/®, A7) [ Tl 1l e,

which again is easily summable over A; < Ay < A3. Also

3

3
LS g s ST uja, =165
j=1 j=1

which is almost summable, and by interpolation we obtain the bounds for any p < 2.
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The estimate (8-22) with p = 1 follows by the same arguments as above. It is even simpler. Again we
may restrict ourselves to A1 < A. For p =3 we put estimate u ;; into L% and again the full statement
follows by interpolation. A simple check of the proof reveals that the arguments above imply (8-23),
(8-21) and (8-19). O

The right hand sides of (8-5) and (8-6) are functions of ¢, for which we have bounds in L? for
1 < p < 3/2 in terms of ||w||X;l,/r°' In the second equation, (8-6), the term (w, £Q.,) plays a special
role: It is in L9 for 2 < g < 0o, but not in L? for any p < 2 in general. In particular we cannot control
the deviation of y from the linear movement.

Equation (8-5) and (8-6) can be considered as scalar linear ordinary differential equations for (w, Q)
and (w, Q). The kernel for the fundamental solution is uniformly bounded in L?” in the first case for all
p, and in the second case it is bounded in L' by 1/«, whereas the L> norm is 1.

We collect the consequences as follows.

Lemma 8.7. Suppose that w solves (8-1) with (w(0), Q) = (w(0), Q') = 0 and w = v + u, where v
solves (7-2) with initial data w(0). Then,

supl(w(1), Q)1 S (J + lull g-1/0)* (L + 1wl 4-16)?, (8-24)
t
supl(w(r), @) S (J + llull g170)* (L lwllg16)* + 72wl -1y (8-25)
t 00,
Moreover, if 1 < p <3/2, then

H%(w(t), 0) H ) S+ ”u”X;o'/(’)z(l + ”w”X;”G)Z'

L7 (0,00
We may write %(w(r), Q') = y1 + y» such that
Iyillro.c0 S U +llulgv0)> A+ w6 and lyall20,00 S+ lully-16).
Finally, it follows that
sup(le(t) — 11+ 1) + léllr S (J + llull o) (1 + 1wl ),
Sply = 11 S ( + llull e 6) (L lwlliie)” 12 + o),
15 = lle S+ lull o) T+ wll g-6)*. (8-26)

Proof. This is an immediate consequence of Lemma 8.5 and basic properties of the simple ordinary
differential equations. O

The estimates of this subsection remain true if we consider a time integral instead of (0, o).

8.3. Global bounds and scattering near the soliton. We now complete the proof of Proposition 8.2.

Proof. By the local existence result there exists a local solution in a neighborhood of the soliton.
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The decomposition ¥ = Q.(),yt) + w together with the modal equations (8-3) and (8-4) implies
existence of C! functions ¢(7) and y(t) that satisfy (8-1), (8-3) and (8-4) up to fixed time. We recall that
after rescaling and shifting, (wg, Q) = (wo, Q") =0, ¢(0) =1 and y(0) = 0.

As in the first step we denote the solution to the linear equation with initial data w(0) by v. It satisfies
the estimates of Lemma 8.3 and (8-13) provided (5-14) is satisfied.

We suppose that (, ¢, y) is a solution up to time 7', such that u =¥ — Q(), () — v satisfies for some
ki, k» to be chosen later the conditions

IPgully-vs <2k J'? and  lull 416 < 2k T '/, (8-27)
0o, T oo, T
We shall see that there exist §, k1 and &k, such that if in addition J < §, then
Lo 1/2 N 12 )
”PQ'u”Xool,/rﬁ <k J and ||I/£||X001./Té <kyJ'“. (8-28)

This implies the estimate conditionally depending on (8-27). Observe that by Lemma 8.7 control of
the norms implies validity of (5-14) if § is sufficiently small. In particular, the estimates on the linear
equations hold.

On the other hand, if we fix C and § we can apply a continuity argument with the initial data Twy.
The estimate clearly holds for small 7 and the norms depend (for finite time) continuously on t. This
implies the a priori estimate uniformly for all 7. The scattering statement is an immediate consequence:
Combine the fact that functions in V2 are left-continuous at infinity with a frequency envelope argument
as above. It remains to derive (8-28) from (8-27) for suitably chosen k;, k; and §.

We formulate the crucial estimate in the following.

Lemma 8.8. Let C be given and let v and Q be as in Proposition 8.2. There exist ki, ky and § such that,
if (8-27) holds, and ||wol| 3-152 < C and Jo,1)(v) <& hold, then

1/2 3/2
| Pl o < es(Nall3o & T 7y ) 1wl 2oz + Jio.1y ().

We postpone the proof of Lemma 8.8. Clearly (u, Q") = (w, Q') and the same is true for its derivatives.
By Lemma 8.7 and simple properties of ODEs, we have with implicit constants depending on the size
of the initial data that

d
2] T P2 ) I e B e P2
and
(. 0"z < 1w, @)z + (PG, @)z
Hence,

s @)lre + | -, @)

< 2 Lo
L2 ™~ ”””)-(0—01/6 +J+ ||PQ/M||X001/6.

The crucial point is that the right hand side only contains the projection of u, not u itself. We obtain
easily
1@+ 3y Qs S 1Y N2+ 1Y g2



192 HERBERT KOCH AND JEREMY L. MARZUOLA

As a result, using estimates similar to those in Lemma 8.7 we have
(u, Q")
H Q/ Q/

By Lemma 8.8 and (8-27),

o S Kalllelle T+ P ullg ). (8-29)
172
1 Pgull e = sl e + I3 () + ) S 343 + DI 3012
using, as we may, lull y-1/6 < 1 and, by the estimate (8-29) and (8-27), we have
oo, T
lull -6 < ka(J +e3(8K3 + 1) J (v) +37'72).
We choose first k1, then k; and finally § small to complete the proof. U
Proof of Lemma 8.8. We write the equation for u = w — v, with u, + u, — 0x&Fe yu =: G. We have
= (¢/cHaN 0+ =+ B1)Q =8 (607u+v)* + 40, (u+v)* + (u+1)*),
where «; and 8 ensure the orthogonality conditions for v, that is, (8-12). We recall that they satisfy
lenllzr Slcli2d  and ez + 1Bl S J-

To apply Proposition 6.7 we have to project u. This leads to a calculation similar to Lemma 8.3. Let
n= P . Pu and ,ut—i—c Ot — 0y L =: H. Then, using (u, Q) = (w, Q) and (u, Q') = (w, Q),

H=6- (drég g>>>Q <%<<Z;gf>)g

(w, Q) N7 , (w, Q . ”
— — 2
o Q>< O+ =50+ Q) (€08 + (=)
=aQ+B0 +g,
where
(w, Q) ¢ %
—g=0,(607(u+v)> +4QL(u+v) + U+ v)?) + ==
g =0:(602(u +v)? +40.u+ )’ + (+v)*) 552
. Q) 5 . w0\ w0) , .,
+<(Q,Q>(C y)+<QCQ’>C)Q+<Q’,Q’>(C N

By construction u#(0) = 0. We apply Proposition 6.7 to get

leelles,, S Nglly—e + (g, QL+ g™, Q)2 +1IKg, @) lI2
By Lemma 7.1, Lemma 8.5 and Lemma 8.6, we get
18l yzs S el + T lwoll 1oz,
and by Lemma 8.7

3/2
(g QI+ 1™, Qllze + (g, QM2 S lullf —1/6+J1/2”w0” /_1/62-
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Together, we have
3/2
B;ol 16,2+

D 1 2 1/2
1P* Prull g vis S Nl s + T2 ol U
oo, T 00, T

Proposition 8.2 generalizes straightforwardly to smaller function spaces in the style of Section 7.1.

8.4. An almost inverse wave operator result. In this section we will construct solutions with given
asymptotic behavior, proving Theorem 3. This is a partial converse statement to Proposition 8.2.

Remark 8.2. Theorem 3 is quite satisfactory in several respects. It shows which asymptotic properties
may characterize a solution. The main missing piece is uniqueness of the solution W. It implies existence
of a solution for small scattering data, and, for arbitrary scattering states, existence of a solution with
given scattering data for large .

Proof. We turn to the time-reversed equation
drw +0x (Bw +4Q7w) = (5 — A (w, Qxx) + (/) (w, Q') + (60w’ +40w’ +w*, Qux)  (8-30)

with
(¢/0)(Qe, Oc) = —(w, Qc) and (3 —c))(QL, QL) =« (w, Q).

Let v be the solution to the Airy equation with initial data vo. We may and do assume that yp = 0. By
Proposition 8.1 we know that lim;_, o J1,00)(v) =0. Given S > 0 and yS satisfying |y5(S) — c§05| < SS,
we solve the backwards initial value problem

v(S)=v(S+ Qcoc,ys'

We choose 133> 8 > § to ensure that |y —c®| < § for the solutions under consideration. The arguments
of the previous section allow one to do that down to a largest time ¢° * for which

S,yS 2 .8,y 2.8,y
ly(@>7) — st | =6t .

We want to show that the infimum of the 75" as a function of y*S is attained for some y® and it is equal to
zero if § is sufficiently small. Suppose not, and denote the infimum by 7 > 0. By continuous dependence
on yS , given ¢ > 0, there exists an interval [a, b] such that the solution exists down to a time smaller
than (14 &), and yS9((1 +&)t) = (c2, — 8)(1 + &)t and ySb((1 4+ &)7) = (2, +8)(1 +&)7. Hence,
there exists y5-¢ with

VU +e)r) =ck(1+eo)t.

But then, if § is sufficiently small, we see that a positive infimum is not possible, and moreover this
construction gives a limit that is a solution denoted again by (¥5, y5) with y5(0) = 0.

We consider the limit S — co. Since y°5 — cgo and ¢35 are small there exists a converging subsequence
ySi, ¢S, 8 i — oo that converges to ¢ and y. There are corresponding solutions W;, u; and w; of the
corresponding equation. We extend w; beyond S; by v. By the stability result, given § > 0 we find T > 0
such that

||wj—v||X-1/e <.

00,[T,00)
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Using a frequency envelope there exists A such that

ATV W) llver.o0) S8

whenever A > A or A~ > A.
In particular,

[(wj —w) (Ol g-1162 <8
for t > T'(8) and j and [ sufficiently big. Again, using J small we are able to deduce that (w;) is a
Cauchy sequence in X r /6 and the limit is the desired solution. 0
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Appendix: Setup and properties of the U?, V? spaces for the linear KdV equation

To define the function spaces U 2 V2, we summarize [Hadac et al. 2009, Section 2], where we suggest
the reader look for further details. Let & be the set of finite partitions —co < fp <t} < ... < tg = 0Q.
In the following, we consider functions taking values in L? := L?(R?; C), but in the general part of this
section L may be replaced by an arbitrary Hilbert space.

Definition A.1. Let 1 < p < co. For {f}X_) € % and {¢}e,' € L? with 3 ¢cll?, = 1 we call the
function a : R — L? given by

K
a= Z Xt Pk—1
k=1

a UP-atom, where x; is the standard cutoff function to interval /. Furthermore, we define the atomic

space
o0 o0
U? .= {u = Z)Ljaj ‘ aj a UP-atom,, A; € C such that Zl)‘jl < oo}
j=1 j=1
with norm
o0 o
lullys = inf] 3131 | u =" 4ja;, ; €C. aja U”-atom}. (A-1)
j=1 j=1

Atoms are bounded in the supremum norm, and hence every convergence here implies uniform con-
vergence.

Proposition A.2. Let1 < p < g < o0.

(1) The expression | - |\yr is a norm. The space U?P is complete and hence a Banach space.

(2) The embeddings UP C U? have norm 1.
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3) For u € U?, all one sided limits exist, including at 00, u is continuous from the right, and the
limit at —o0 is zero.

(4) The subspace of continuous functions U! is closed.

Definition A.3. Let 1 < p < co. We define V7 as the normed space of all functions v : R — L2 for
which the norm

K 1/p
lvllve := sup (lev(tk)—v(tk—l)lliz) (A-2)

{00 €% N =1

is finite. Here we understand v(co) as zero. Let V' denote the subspace of all right-continuous functions
with limit 0 at —oo.

Taking the partition {z, 0o}, one sees that the supremum norm is not larger than the V” norm.
Proposition A4. Let1 < p < g < o0.
(1) The expression || - ||yr is a norm and VP is complete.
(2) Forv € VP, all one sided limits including at £00 exist.
(3) The subspace V' is closed.
(4) The embedding UP? C V'’ is continuous and ||ully» < 2YP|ju| y».
(5) The embeddings VP C V1 are continuous and ||v||ys < ||v]v».

From the proof of [Hadac et al. 2009, Proposition 2.17], we have the following:

Lemma A.5. Let f € V', with q > p. Then, given § > 0 and m > 1, there exist fi € U? and f> € U?
such that f = f1+ fo and

-1 1)
m= | fillur + €|l fallus SN fllve.

The following corollary is obvious.
Corollary A.6. The space V" is continuously embedded in U4 for q > p.

There is a bilinear map, B, which for 1/p+1/g =1and 1 < p, g < oo can formally be written as

B(f,g) = —/f,gdt, for fe VP, geU1.
It satisfies |B(f, g)| < || fllvrllgllus, which is natural if we replace g by an atom. The map
VP> f—(g— B(f.8) e (U
is an isometric bijection. Moreover,
lullyr = sup{B(u, v) :v € C(R), [[v]lvr =1}

If ve V2, then
lvllve = sup{B(u, v) :u € C(R), |lu|lyr = 1}.
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If the distributional derivative of u is in L' and v € V7, then
B(u,v)=— / usvdt.

If felL' then F(t) = fioo fds € VP for all p = 1, and hence F € U?. Moreover, || f|pyr :=
I|Fllur < | fll 1. We denote by DUP the metric completion of L' in the norm given by the duality
pairing. Similarly we define DV,

There is a close relation to Besov spaces, namely

B//"" cuP cvP cBYPP (A-3)

with continuous embeddings. These embeddings clarify the relation to X** spaces below.

We claim that the convolution with an L' function  defines a bounded operator on U? and V? with
norm < ||n|| 1. Because of the duality statement it suffices to verify boundedness on U”. We approximate
the characteristic function by a sum of Dirac measures. The convolution with an atom clearly has norm
at most 1. Convergence in U! to the convolution with the characteristic function is immediate. The full
statement is an immediate consequence, as well as the boundedness of the convolution by a Schwarz
function on U” and V”. In particular smooth projections on high and low frequencies are bounded.

Following Bourgain’s strategy for the Fourier restriction spaces, we define the adapted function spaces

Uggy =S(=0UP and VZ,, =S(-n)V?

and similarly DU? and DV?.
Again, we define a bilinear map Bgg4y such that for u VI‘? qvandve U,% 4v» We have for a function
u with (3, +32)u € L'L?

Bgav(u,v) =— /((az + 82 )u, v) dt.

Note, this bilinear map is well defined and gives a duality relation. Hence,

”u”DVz?dv = sup /uf dxdt and ”u”DUz?dv = sup /uf dxdt.
Ifllye =<1 Ifllye =<1
Kdv Kdv
Moreover, we may restrict f to suitable subspaces. More details on how the construction of such atomic
spaces allows us to put u, in the dual space are included in [Hadac et al. 2009].
By the construction of our spaces, we obtain for a solution u of the linear KdV equation

ut+uxxx:f, (A-4)
u(0, x) = up(x),
the estimates
lullyz < luollze + 1 F vz, - (A-5)
lullg,, S luollz + 1/ puz,, - (A-6)

which follow trivially from the construction of the VI% dv> DV,% 4v and U,z( v DUIZ( Jv Spaces.
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Spatial Fourier multipliers act on U?, V¢, DUP?, DV in the obvious way and their operator norm is
bounded by the supremum of the multiplier.
Let (p, q) be a Strichartz pair. Then,

—1
lullLrre <cllDI™VYPully»

and the dual estimate
If vy <clIDI™YP Fll

hold. The first estimate is not hard to check on atoms. Since convergence in U” and in L L4 both imply
pointwise convergence for subsequences we obtain the full estimate. The second estimate follows by
duality.

Similarly the local smoothing estimates carry over to U? spaces and to DV?. Let c(¢) and y(¢) satisfy
(5-14). Then

IIMIILzHlﬁ) <cllully2 and || fllpyv2 <cllfllz2pm-1-
Y

In the same fashion the bilinear estimates for solutions to the free equation imply bilinear estimates for
functions in U?.

The smooth decomposition into high and low modulation (that is, the smooth projection of the fre-
quencies to T — &3 large and respectively small) is bounded in U? and V2, and the L? norm of the high
modulation part gains the inverse of square root of the truncation as a factor by the embeddings (A-3).
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A REMARK ON BARELY H*’-SUPERCRITICAL WAVE EQUATIONS

TRISTAN ROY

We prove that a good H’» critical theory for the 3D wave equation d;,u — Au = —|u|"~'u can be
extended to prove global well-posedness of smooth solutions of at least one 3D barely H Sr-supercritical
wave equation 9,4 — Au = —|u|""'ug(jul), with g growing slowly to infinity, provided that a Kenig-
Merle type condition is satisfied. This result is related to those obtained by Tao and the author for the
particular case s, = 1, showing global regularity for g growing logarithmically with radial data and for
g growing doubly logarithmically with general data.

1. Introduction

For fixed p > 3, let H? = Hz([F\R3) N HS» (R3) and H!':= Hl([R{3) N HSP_I([RR3), where s, :=

2
. . p—1
We consider the wave equation

\SJROA}

pput — Due = —|ulP~ ug(|ul),
u(0) :=up € H?, (1-1)
du©):=u, € H',
where u : R x R? — C is a complex-valued scalar field and g is a smooth, real-valued positive function
defined on the set of nonnegative numbers and satisfying

1
0<g'(x) <~ (1-2)
X
This condition says that g grows more slowly than any positive power of u.

We shall see that (1-1) has many connections with the defocusing power-type wave equation

e — Au = —|u|Pu,
u(0) :=ug € H (R%), (1-3)
du(0) :=u; € H» 1 (R?).

It is known that if u satisfies (1-3), then u; defined by

1 t x
u(t,x) = mu <X’ x) , (1-4)

satisfies the same equation, but with data
0. x) — 1 X d 8 (0. 1) = 1 X
u; (0, x) = PR <x> an 3.0, x) = Pl <X> .

MSC2000: 35Q55.
Keywords: wave equation, global existence, barely supercritical.
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Notice that (1-3) is HSr (R3) critical, which means that the Hr (R3) x Hr1 (R*)-norm of (u(0), 3,u(0))
is invariant under the scaling defined above.

We recall the local existence theory. From [Ginibre and Velo 1989; Lindblad and Sogge 1995], we
know that there exists a positive constant § := 8(||(u0, ul)||HSP(R3)XHSP_1(R3)) > 0 and a time of local
existence 7; > O such that if

sin (1 D)

tD
cos (tD)ug + D

<$ (1-5)

L?(P*I)L)%(P*I)([O’TI]XR_%)

then there exists a unique solution (u, d;u) in
6 ([0, 731, B ®))NL7P ™V LAP=D([0, T x RN D= LILI(0, Ti1x RY) x 6 ([0, i1, H*~(R%))
of (1-3)! in the integral equation sense, i.e., u satisfies the Duhamel formula

"sin(t —1t)D

. D sin (1 D)
u(t) :=cos (¢ )uo—i-Tul —/0 D

(lulP~'u) (¢ ar'. (1-6)
It follows that we can define a maximal time interval of existence I .x = (—7-, T+). Moreover,
_1
||M||L[2(’)71)L)2C(’)71)(.1) < OO, ||DSF ZM”L?L;‘(J) < OO, and ”(u, al”)”Lf’OI-'ISPxL}’OHSP’I(J) < 0

for any compact subinterval J C Ijn,x. See [Kenig and Merle 2006] or [Tao 2006a] for more explanations.
Now we turn to the global well-posedness theory of “(1-3)”. In view of the local well-posedness
theory, one can prove (see [Kenig and Merle 2011] and references), after some effort, that it is enough

to find a finite upper bound of | u/| 126D 2 on arbitrary long time intervals 7, and, if this is the
1 X

(p—1) 3
(IxR3)
case, then the solution scatters to a solution of the linear wave equation. No blow-up has been observed

for (1-3). Therefore it is believed that the following scattering conjecture is true:

Conjecture 1.1 (scattering conjecture). Assume that u is the solution of (1-3) with data (ug,u;) €
H* (R?) x H»~'(R3). Then u exists for all time t and there exists Cy := C, (|| (o, Wl frsp w3y g1 (R3))
such that

””||L,2("‘”L§(‘"”(R><R3) <C. (1-7)
The case s, = 1 (equivalently, p = 5) is particular. Indeed the solution
(u, ) €6([0, Ty], H'(R)) x 6([0, Ti], L*RY)

satisfies the conservation of the energy E(t) defined by

1 1 1
E() :=-/ |8,u(t,x)|2dx+—/ |Vu(t,x)|2dx+—/ lul®(z, x) dx. (1-8)
2 R3 2 R3 6 R3

I The Ltz(p_l)L,zc(p_l)(R x R3)-norm of u is invariant under the scaling (1-4). The choice of the space L,z(‘”_l)Li(‘”_l)
in which we place the solution u is not unique. There exists an infinite number of spaces of the form L?

which we can establish a local well-posedness theory.

L', scale invariant in
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In other words, E(t) = E(0). This is why this equation is often called energy-critical: the exponent
sp =1 corresponds precisely to the minimal regularity required for (1-8) to be defined. The global well-
posedness of (1-8) in the energy class and in higher regularity spaces is now understood. Rauch [1981]
proved the global existence of smooth solutions of this equation with small data. Struwe [1988] showed
that the result still holds for large data but with the additional assumption of spherical symmetry of the
data. The general case (large data, no symmetry assumption) was finally settled by Grillakis [1990; 1992].
Shatah and Struwe [1994] and independently Kapitanski [1994] proved global existence of solutions in
the energy class. Bahouri and Gérard [1999] reproved this result by using a compactness method and
results from Bahouri and Shatah [1998]. In particular, they showed that the Ltz(s_l)Li(s_l) (R x R3)-norm
of the solution is bounded by an unspecified finite quantity. Lately Tao [2006b] found an exponential
tower type bound of this norm. All these proofs of global existence of solutions of the energy-critical
wave equation have as a common key point the conservation of energy, which leads, in particular, to the
control of the H' x L2-norm of the solution Qu(t), u(t)).

If s, < 1, or equivalently, p < 5, we are in the energy-subcritical equation. The scattering conjecture
is an open problem. Nevertheless, some partial results are known if we consider the same problem (1-3),
but with data (ug, u;) € HS x H*~!, s p < 5. More precisely, it is proved in [Kenig et al. 2000; Gallagher
and Planchon 2003; Bahouri and Chemin 2006; Roy 2007; Roy 2009a] that there exists sg := so(p) such
that s, < so < 1 and such that (1-3) is globally well-posed in H® x H s=1 for s > sp.

If s, > 1, or, equivalently, p > 5, we are in the energy-supercritical regime. The global behavior of
the solution is, in this regime, very poorly understood. Indeed, following the theory of the energy-critical
wave equation, the first step would be to prove that the H*» x H*»~!-norm of the solution is bounded for
all time by a finite quantity depending only on the H*» x H*»~'-norm of the initial data. Unfortunately,
the control of this norm is a very challenging problem, since there are no known conservation laws in
high regularity Sobolev spaces. Kenig and Merle [2011] recently proved, at least for radial data, that this
step would be the last, by using their concentration compactness/rigidity theorem method [Kenig and

Merle 2006]. More precisely, they showed that if sup,¢; [(u(t), du(O)l gop g3y frsr-1 @3y < 00, then

Conjecture 1.1 is true. -

As mentioned before, the energy supercritical regime is almost ferra incognita. Nevertheless, Tao
[2007] observed that the technology used to prove global well-posedness of smooth solutions of (1-3)
can be extended, after some effort, to some equations of the type (1-1), with p =5 and radial data. More
precisely, he proved global regularity of (1-1) with g(x) := log (2 + x2). This phenomenon, in fact, does
not depend on the symmetry of the data: it was proved in [Roy 2009b] that there exists a unique global
smooth solution of (1-1) with g(x) :=1log® log (10+x* and0 < ¢ < %.

Equations of the type (1-1) are called barely H*r-supercritical wave equations. Indeed, the condition
(1-2) basically says that for every € > 0, there exist two constants c¢; := c;(p) and ¢, := c2(p, €) such
that

c1(p) < g(lul) < ca(p, €)lu|®  for |u| large. (1-9)

Since the critical exponent of the equation d;,u — Au = —|u|P~F€u is s p+e =S+ O(¢€), the nonlinearity
of (1-1) is barely H*»-supercritical.
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The goal of this paper is to check that this phenomenon, observed for s, = 1, still holds for other values
of s,,. The standard local well-posedness theory shows us that it is enough to control the pointwise-in-
time H2 x H'-norm of the solution. In this paper, we will use an alternative local well-posedness theory.
We shall prove:

Proposition 1.2 (local existence for barely H°r-supercritical wave equation). Assume that g satisfies
(1-2) and

1
g'x)=0 (;) : (1-10)

Let M be such that || (uo, u1)|l g2, g1 < M. Then there exists § := 5(M) > 0 small such that, if T; satisfies

sintD
cos (tD)ug +

ui

<3, (1-11)
L7 VLD (0, 11 xR3)

then there exists a unique (u, o;u) in
6(10, Til, A2)NL{P~VL2P=D((0, 71)N D~ LILA([0, Ti)ND22LEL ([0, T1]) x6([0, Ty, A')

that solves (1-1) in the integral equation sense; i.e., u satisfies the Duhamel formula

sintD /’ sin(t —t')D
u— | ————
0

u(t) :=cos (tD)ug+ D

(lu@)1P  u g (lu@))) dt'. (1-12)

Notice the many similarities between Proposition 1.2 and the local well-posedness theory for (1-3).
This allows us to define a maximum time interval of existence Inax ¢ = [—7- ¢, Ty ¢] such that, for
any compact subinterval J C Ijax, g, the quantities

1 21
”””L,z(”_”Lf(’"”(J)’ | D 2”||L;‘L§(J)» D 2M||L;‘L;4C(J)a ||(”,at”)HL;wﬁZ(J)XL?OﬁI(])

are all finite. Again, see [Kenig and Merle 2006] or [Tao 2006a] for more explanations.

Now we set up the problem. In view of the comments above for 5, = 1, we need to make two assump-
tions. First we will work with a “good” H*» (R3) theory: therefore we will assume that Conjecture 1.1
is true. Then, we also would like to work with H Sp(R3) x Hsr~1 (R?) bounded solutions (u(z), 3u(t));
more precisely, we will assume this:

Condition 1.3 (of Kenig—Merle type). Let g be a function that satisfies (1-2) and that is constant for x
large. Then there exists Cy := C2(||(uo, ull g2y s g) such that

sup || (®), 31e()) Il on oy oo 2y < Co- (1-13)

tEImax,g

Remark 1.4. In the particular case s, = 1, it is not difficult to see that Condition 1.3 is satisfied. Indeed,
u satisfies the energy conservation law

Ep(1) ::%/W(atu(z,x))de+%fw |Vu(z,x)|2dx+/wF(u(z,x),zz(z,x))dx, (1-14)
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with

1 1
F(z,7) =|z]> ™! / 1 Re (g(t)z])) dt = |z f 2 g(tlz])dt. (1-15)
0 0

Since g is bounded, we have |F(z,2)| < |z°. By using the Sobolev embeddings ||u0||Lg S lluoll 52
and [Ju(?)| e S llu(®) |l g2, we easily conclude that Condition 1.3 holds. The energy conservation law
was often in [Tao 2007; Roy 2009b].

Here is the main result of this paper:
Theorem 1.5. Let p be fixed.
(1) There exists a function g satisfying (1-2) and
Jlim g(x) = oo (1-16)

and such that the solution of (1-1) (with g := g) exists for all time, provided that the scattering
conjecture and Condition 1.3 are satisfied.

(2) There exists a function f depending on T and ||(uo, u1) || g2, 51 such that
”M”L;wfﬂ([_rj]) + ”a’u”Lﬁ’OI:]l([—T,T]) = f(T7 Il (o, uy ”)ﬁzxgl)- (1-17)

Theorem 1.5 shows that a “good” H*r (R3) theory for (1-3) can be extended, at least, to one barely
H*» (R3)-supercritical equation, with § going to infinity.

Remark 1.6. Apart from its dependence on p, the function g is universal: it does not depend on an
upper bound of the initial data. Moreover, g is unbounded: it goes to infinity with as x.

Remark 1.7. In fact, Theorem 1.5 holds for a weaker version of Condition 1.3: there exists a function
C such that for all subinterval I C Iyax, g

sup | (), 31 (0) | gsp sy frsr1 @y < C20 (1-18)
tel
with C; := C (Il (uo, u) |l g2, 71+ & 11). See the proof of Theorem 1.5 and, in particular, (5-21), (5-33)
and (5-48).

We recall some basic properties and estimates. If #y € [#1, £,], if F € L?Li([tl, 1)) and if (u, o;u) €
C([t1. ], H™(R))xC([t1, 1], H™ ' (R?)) satisfy

intD "sin(t—1")D
u(t) : cos(zD)u0+SmD ul_f %F(g)dﬁ (1-19)

to
with data (u(1g), o;u(tg)) € H m(R3) x H m=1(R3), then we have the Strichartz estimates [Ginibre and
Velo 1995; Lindblad and Sogge 1995]
Neell 9 Lr ey, 11y F 12l oo g oy 1oy, 121y + 10021 Lo m—1 @3y (111, 121



204 TRISTAN ROY

Here (g, r) is m-wave admissible, i.e.,

(g,r) €(2,00] x[2,00] and l+§=§—m; (1-21)
q r 2
moreover,
1 3 1 3
—+-==+=-2 (1-22)
g r q T

We set some notation that will appear throughout the paper.

We write A < B if there exists a universal nonnegative constant C’ > 0 such that A < C'B. The
notation A = O(B) means A S B. More generally, we write A <,
constant C' = C(ay, ..., a,) such that A < C’'B. We say that C” is the constant determined by < in
AZa,.., a, B if there exists
a universal small nonnegative constant c =c(ay, ..., a,) such that A < ¢B. Following [Kenig and Merle

a, B if there exists a nonnegative

.....

2011], we define, on an interval I,

lellsay == Nl 2002004y Mullway = Nullggragy  Nullyg, = ||u||LtgL§([) (1-23)
We also define the quantity
QL u) := 1D 2ullway + 1D 2ullway + el g gy + 1302l o (1-24)
Let X be a Banach space and r > 0. Then

BX,r):={feX:|flx=r} (1-25)

We recall also the well-known Sobolev embeddings. We have
1720l ooy S 121 g2, (1-26)
Vilsir SID™HAI L s -

We shall combine (1-27) with the Strichartz estimates, since (2( p—1), 62(Z :;)) is %— wave admissible.

We also recall some Leibnitz rules [Christ and Weinstein 1991; Kenig et al. 1993]. We have

”DaF(u)”L?LK_(I) 5 ”F/(u)”LflL;l(])“Dau”L?ZL;Z(])v (1-28)
. . 11,1 11,1
with @ > 0, r, rq, rp lying in [1, oo], .= a—i—q—z, and L= E+E‘
The Leibnitz rule for products is
”Da(uv)”LfL;([) 5 ”Dau”L;“L;l(l)”v”L;fZL;Z([) + ”Dau”L;“L?(])”U”L;ML)’}(]), (1‘29)

i ing i t_t,41 1_ 1,1 1_ 1,1 11,1
with o > 0, r, rq, rp lying in [1, oo], ot a=ata ; _r1+r2,andr_r3+r4.

If F € C?%, we can write

1
F(x)—F(y) :/ F'(tx 4+ (1 —1)y)(x —y) dr. (1-30)
0
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By using (1-28) and (1-29) the Leibnitz rule for differences can be formulated as
| D¥(F (u) — F(v))”L;’LQ(I) S, sup ”F/(tl/l +(1— t)v)”L;’l L (1)||Da(“ - v)”L;UL;Z(])
1€[0,1]

+ sup [|[F"(tu+ (1 -0l

c o (1D D o v Mu—=vll o o . (1-31
ref0,1] L;“Lxl(l)(” ”L§’2L2<I>+” ”szu(z))” ”Li’%ﬁ(l) (1-31)

i " 3+ 1vine i 1_ 1,1 1_1,1 1_1,1,1 I_1,1,1
witha >0, ry, r2, 1y, 1y, r3 lyingin [1, oo], = +q2, y = +r2, 1= q +qé+q§, and r=q +r§+r§'
We shall apply these formulas to several formulas of F (i), and, in particular, to F () := |u|” " ug(Ju).

Notice that, by (1-2) and (1-10), we have F'(x) ~ |x|?~'g(|x]) and F”(x) ~ |x|?~>g(|x|). Notice also
that, by (1-2) again, we have, for ¢ € [0, 1],

g (Itx+ (1 =0yl < g @max (Ix], [y) < g(max (Ix[, [y]) +1log2) < g(Ix) +g(yD- (1-32)

This will allow us to estimate easily

sup ||F/(tlzt+(1—t)U>||L;11L;1(I) and  sup ||F//(tu+(1—I)U)||L;11L;1(I).
te[0,1] ’ te[0.1] ’

Now we explain the main ideas of this paper. We shall prove, in Section 3, that very many values
functions g, a special property for the solution of (1-1) holds.

Proposition 1.8 (control of S(I)-norm and of norm of initial data imply control of L™ H>(I) x L H'(I)
norm). Let I be a compact subinterval of Inax ¢ (5o |[ullsy < 00) and assume that O € 1. Assume that g

satisfies (1-2), (1-10) and®
o0
1
——dy=o0. (1-33)
/1 y&*(y)

Let A > 0 such that || (uo, u1)|l g2, g1 < A. Let u be the solution of (1-1). There exists a constant C > 0
such that

”(”a atu)”L?CFIZ(I)xL?OI:Il(I) = (2C)NA, (1'34)
with N := N(I), such that
Qo)NA 2p—1)
dy > |lulsfy (1-35)
/zCA yg2(y) St

Moreover we shall give a criterion of global well-posedness (proved in Section 4):

Proposition 1.9 (criterion of global well-posedness). Assume that |Inax ¢l < 00. Assume that g satisfies
(1-2), (1-10) and (1-33). Then
N 1]'S Ly, c) = OO- (1-36)

The first step is to prove global well-posedness of (1-1), with g := g; a nondecreasing function that is
constant for x large (say x > C{, with C| to be determined). By Proposition 1.9, it is enough to find an
upper bound of the S([—7, T])-norm of the solution uy for T arbitrarily large. This can indeed be done,
by proving that g; can be considered as a subcritical perturbation of the nonlinearity. In other words,
g1(Ju])|u|P~'u will play the same role as that of |u|”~'u(1—|u|~%) for some a > 0. Once we have noticed

2Condition (1-33) basically says that g grows slowly on average.
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that this comparison is possible, we shall estimate the relevant norms (in particular, ||u||sq—r.77))) using
perturbation theory, Conjecture 1.1 and Condition 1.3, in the spirit of [Zhang 2006]. We expect to find
a bound of the form

lupllsq—7.71 < C3(Ilo, uD |l ga s T), (1-37)

with C3 increasing as T or ||(uo, u1)|l g2, 51 grows. Notice that if we restrict [—T, T'] to the interval
[—1, 1] and if the H? x H'-norm of the initial data (up, u1) is bounded by 1, then we can prove, using
(1-37), (1-26) and Proposition 1.8, that the Ly°L°([—T, T'])-norm of the solution u[j; is bounded by
a constant (denoted by C;) on [—1, 1]. Therefore, if 4 is a smooth extension of g; outside [0, C],
and if u is the solution of (1-1) (with g := h), we expect to prove that u = uj on [—1, 1] and for data
| (uo, u)ll g2, g1 < 1. This implies in particular, by (1-37), that we have a finite upper bound |[|u||s(—1,1})-

We are not done yet. There are two problems. First, g; does not go to infinity. Second, we only
control ||ul|sq—1,17) for data ||(xo, u1)ll 2, 51 < 1: we would like to control |lu| s, for arbitrary data.
In order to overcome these difficulties we iterate the procedure described above. More precisely, given a
function g;_; that is constant for x > C;_; and such that u; _7, a solution of (1-1) with g = g;_1, satisfies

||I/t[,‘_1]||S([_(,‘_1)’,'_1]) < 00, we construct a function g; that

e is an extension of g;_; outside [0, C;_;], and

» is increasing and constant (say equal to i + 1) for x > C/, with C; to be determined.

Again, we shall prove that the g; may be regarded as a subcritical perturbation of the nonlinearity
(i+1)|u|?~'u. This allow us to control llee(i1 | s(—i.i7)» by using perturbation theory, Conjecture 1.1, and
Condition 1.3. Using Proposition 1.8 and (1-26), we can find a finite upper bound for ||uf;)|| 2L (i, i1)-
We assign the value of this upper bound to C;. To conclude the argument we let ¢ = lim;_, » g;. Given
T >0, we can find a j such that [T, T] C [—j, j] and || (uo, u1) || g2, g1 < j. We prove that u = upj on
[—J, j], where u is a solution of (1-1) with g := g. Since we have a finite upper bound of ||u[j] lsa—j. s
we also control |lu||sq—;, ;1 and ||u|lsq—7,71)- Theorem 1.5 follows from Proposition 1.9.

2. Proof of Proposition 1.2

In this section we prove Proposition 1.2 for barely H*»(R?)-supercritical wave equations (1-1). The
proof is based upon standard arguments. Here we have chosen to modify an argument in [Kenig and
Merle 2011].

For 6, T;, C, M to be chosen and such that (1-11) holds we define

By := B(€([0, Ty, HH N D>~ W([0, Ti) N D >W ([0, T;]), 2C M),
By := B(S([0, T1]), 28), (2-1)
B':= B(%([0, T}], H'),2CM),

and
X :={(u,0u):ue€ B NB,, duehB}. (2-2)
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Let
cos (tDyug + D), / w (1u@)1P~ u)g(u D) dr
W (u, ou) := o . (2-3)
—Dsin (tD)ug + cos (tD)uy —/ cos (t—t')D (|u(t’)|p_1u(t/)g(|u(t’)|)) dr’
0

W maps X to X. Indeed, in view of (1-11), (1-20), and the fractional Leibnitz rule (1-28) applied to
ae{s,—% 2—1}and
Fu) = |ul”~ ug(|jul)

and by applying the multipliers D22 and D*~? to the Strichartz estimates with m = %, we have

oo, 7D
s —1 —1 2-1 -1
S H(MO’ MI)HI-NIZ(R3)XI-]1([R{3)+ ”DY” 2(|”|p ”g(|”|))”vi/([o,m)+ HD 2(|”|p ”g(|”|))”vi/([o,m)
_1 _1 -1
<CM+C(ID*2ullwqo.ziy + 1D~ 2 ullwo.zin) l1ull 0. 77y 8 el Low Lo g0.70)
<CM+ Q8P 'cecM)gCcM) (2-4)
for some C > 0 and
;1 —
leellsqo.mip =8 < [ D72 (lul P~ ug (uD) | 0.7,
_ _1 _
S lull§gonp 12 2ullwqonin gl Lo, mn) S (28)7' 2CM)ZQ2CM).  (2-5)
Choosing § = §(M) > 0 small enough we see that W(X) C X.

U is a contraction. Indeed we have

1 () — ¥ ()llx
<052 QulP g ul) = 1P 0g (WD) o,y + 1072 Qael? g ael) = 1017 08 (D) | 0.1
S (gUlullereqo.nn) + 8NVl rqo.m1))

x ((Ilullfé&&m) + 0l50.7) (12572 @ = ) lwao.my + 10272 (@ = v) lwao, )
(el 21y + 10150 7)) 14 — Vs,
x(1D°~2ullwqo.n + 1D* 2ullwqo.np + 1D~ 2vllwo.np + ||D2%v||w<[o,m>))
< (8CM)(28)P7" 4+ (28)P7*2C M) [lu — v]|x. (2-6)

In these computations, we applied the Leibnitz rule for differences to « € {s p— %, %} and

Fu) = ul”  ug(lul).

Therefore, if § = §(M) > 0 is small enough, W is a contraction.
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3. Proof of Proposition 1.8
To show Proposition 1.8, it is enough to prove that Q (/) < co. Without loss of generality we can assume
that A > 1. Then we divide I into subintervals (/;)1<;<y such that

n
g!/r=(2C) A)

lullscy = (3-1)

for some C 2 1 and n > 0 constants to be chosen later, except maybe the last one. Notice that such a
partition always exists since by (1-33) we get, for N := N (/) large enough,

N

N )N A
Z;>/ ;dx>f dy > [lul 28, (3-2)
P 8220 A) — )i gXHRO)*A) T~ Jaca  ygEY) S

We get, by a similar reasoning as used in Section 2

_1 — _1 —
QU1, u) S o, )l sy sy + | 072 (ul? ™ ug (D) |y g,y + 10772 (ul? ™ ug (D) |y 1,
_1 _1 —1
S A+ (1D 2ullway + 10> 2 ullway) lull§ e, g Uluell oo )
-1
S A+l U, wg(Qh, u)). (3-3)

We choose C to be equal to the constant determined by < in (3-3). Without loss of generality we can
assume that C > 1. By a continuity argument, iteration on i, we get, for n < 1, (1-34).

4. Proof of Proposition 1.9

To prove Proposition 1.9, we argue as follows: by time reversal symmetry it is enough to prove that
Ty g <00, If [|ull sty < 00 then we have Q([0, Ty ¢], u) < oo: this follows by slightly adapting
the proof of Proposition 1.8. Consequently, by the dominated convergence theorem, there would exist a
sequence f, — T4 ¢ such that [lullsy,.7, ) < & and ||D“1’_%u||W([tn,T+.g]) & § if n is large enough, with
8 defined in Proposition 1.2. But, by (1-19) and (1-20),

sin (t —t,) D

| cos ((t — 1) D)u(t,) + B — st 7 )

-1 _1
S Mullsqn.zop + leells gy, 7o 1P 2ullws, 7, 8 (QUO, T g uD)) K8, (4-1)
and consequently, by continuity, there would exist T > T, , such that

sin (t —t,)D
cos ((t—tn)D)u(tn)+T8,u(tn) <$é

S(ta, TD

) (4-2)

which would contradict the definition of 77 .

Remark 4.1. Notice that if we have the stronger bound || u | 5(1,,,, ,) < C WithC:=C (|| (o, up) |l 52 xﬁl) <
00, then not only Inax,¢ = (—00, +00) but also u scatters as + — Fo00. Indeed, by Proposition 1.9,
Imax,g =R. Then by time reversal symmetry it is enough to assume that  — 0o. Let v(7) := (u(¢), 0,u(t)).
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We are looking for vy o := (u+,o, u+,1) such that

[v@®) = K®)vro] g2y g1 — 0 4-3)

as t — oo. Here |
k)= (-oc ip  coerh D) (4-4)

We have |
= (gt oD

Notice that K ~'(¢) and K (¢) are bounded in H? x H'. Therefore it is enough to prove that K “THv()
has a limit as r — oo. But since K ~!(#)v(t) = (uo, u1) — K~1(t) (uni(t), d,un(t)) — where

to — "D
i (1) = — /0 % (1) 1P~ u () g (u()HD) di’

denotes the nonlinear part of the solution (1-12) — it suffices to prove that K~ (¢) (un(¢), ;uni(t)) has
a limit. But

|K = tDumt) — K ()um () | 72, 1
< |l un, Byum) ”L,°°1-12([t1,tz])><L§’°1:11([tl,tz])
< (D=2 (el ug ()l gy 1y + 1072 (el g () | gy ) (4-6)
S (10 2ullwann + 107720y o el & (el @)-

It remains to prove that Q (R) < oo in order to conclude that the Cauchy criterion is satisfied, which would

imply scattering. This follows from || || s(r) < 00 and a slight modification of the proof of Proposition 1.8.

5. Construction of the function g

In this section we prove Theorem 1.5. Let
Up(i) :={(T, (o, u1)): 0=<T <i, l(uo, u)ll o i1 <1i} (5-1)

As i ranges over {1, 2, ...} we construct, for each set Up(i), a function g; satisfying (1-2) and (1-10).
Moreover it is constant for large values of |x|. The function g; | depends on g;; the construction of g;
is made by induction on i. More precisely:

Lemma 5.1. Let A >> 1. There exist two sequences of numbers {C;};>o, {C }izo and a sequence of
Sunctions {g;}i>o such that, for all (T, (ug, u1)) € Up(i), we have

e 80:=1,Co:=0,C)=0;
e {Ci}is0 and {Cl.’}izo are positive, nondecreasing, and satisfy

ACl‘,1 < Cl/ < AC,’ (5-2)
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fori>1and

Ci>i; (5-3)
e g; is smooth, nondecreasing, and satisfies (1-2), (1-10),
C; 1

/ ———dt > 00 asi— 00, (5-4)

1 1g; (1)

and
—1(x])  if|x| < AC;_q,
gi(lxly = {1 (KD Tl = ACi (5-5)
1+ 1 lf|X| > Ci;

o the solution u; of the wave equation
i) — Dugiy = —lug 1P g gi (g ),
ugi(0) = ug € H?, (5-6)
3;14[,‘](0) =Ujc I‘I1

satisfies

max (J|ug | sq—iip || i 9rugin) ||LIOCFIZ([_T’T])XL?OI_}I([_T,T])) <Ci. (5-7)

We postpone the proof until page 212. Assume the lemma is true and let ¢ = lim;_, o, g;. Clearly
g is smooth; it satisfies (1-2) and (1-10). It also goes to infinity. Moreover let u be the solution of
(1-1) with g := g. We want to prove that the solution u exists for all time. Let 7y > 0 be a fixed time.
Let j := j(To, lluoll 52, llu1ll 1) > O be the smallest positive integer such that [Ty, To] C [—/, j] and

| (uo, u)ll g2y g1 < j. We claim that

G, 3l Lo o1y oy x Lo A1 (-5 75 = €5 and - ullsq-r. 7 = €

Indeed, let

Fj:= {t €0, j1: I(u, 8fu)”L?OI:IZ([—t,t])xL?OI-NII([—t,t]) < Cjand |lullsq-r.m < Cj}- (5-8)
We must show that F; coincides with [0, j]. Certainly F; is nonempty, since it contains 0; see (5-3).

F; is closed. Indeed, let 7 € F ;. There exists a sequence (t,),>1 in [0, j] such thatt, — 7, ||u||s(—1, 1)) <
Cj» and [[(u, 3i1) |l oo -, 1y x 1 (-1, = Cj- It is enough to prove that [|u|s_7.7 is finite and
then apply dominated convergence. There are two cases:

o If card{t, : t, <1} < oo, there exists ng large enough such that ¢, > f for n > ng and

lullsq—z.m < lullsq—t,.0,1) < 0. (5-9)
o If card{t, : t, <1} = 0o, we can assume by passing to a subsequence that 7, <7. Let no > 1 be fixed.
Since

sin (t—t,,) D
() < | @ltng), Baeta)) | oy g S Cjo (5-10)
S [ty 1)

we conclude from the dominated convergence theorem that there is n := n(ng) large enough that

cos (t —t,,) Du(ty,) +

sin (¢t — ;)

D
| cos (¢t — tny) Du(tn,) + D 3tu(fn0)||s([;,,l,f]) <3, (5-11)
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with § :=§(C ) defined in Proposition 1.2. Therefore, by Proposition 1.2, we have ||u/| S({t, 1) < OO

Similarly, ||u|| S(=F,—tn, 1) < OO Combining these inequalities with [|u| s+, 1, 1) < C;, we eventually

Iy
get |lull 7.7 < 00, as desired.

F; is open. Indeed, let 7 € F;. By Proposition 1.2 there exists o > 0 such that if t € (f—a, t+a)N[0, j] then
[—1, 1] C Imax,g and |lull Lo pooq—r,) S ||u||LocH2([ S S Cj. Also, by (5-7), [—t,t] C Imax,g;- In view of
these remarks, we conclude, after slightly adapting the proof of Proposition 1.8, that Q([—¢, ], u) S; 1
and Q([—¢, 1], u[j]) <j 1. We divide [—1, ¢] into a finite number of subintervals (1;);<x = ([a;, bi])1<i<k
that satisfy, for n < 1 to be defined later, the following properties:

. _1 _1 _1
(D) 1<i <k lluggllsan <0 lullsay <0, 1D 2uggllway <0 1D 2ullwey <0, 1D*2ullway <0,
_1
and || D> 2up; lway < 0.
. _1 _1
@) 1 <i <k Nugllsay =nor llullsay = n or D 2uyllway = n or |D* 2ullway = n or
_1 _1
ID* Zullwey = n, or ID* 2upyllwy) = n-

Notice that, by (1-2), we have

llg;(lul) — gj(|”[1]|)||L°°L°°(1) S llu _”[j]”L?"L,?O(I,-) S llu _”[j]”Lf"FIZ(I,-)' (5-12)

Consider w = u — - Applying the Leibnitz rules (1-28), (1-31), and (1-29), together with (5-12), we
have

oI, w)
<072 ul? @ — ) QD) | gy + 1027l @ = ) D) |y

_1 _ _ _1 _ _
[ D72 (el = gy 1P g QD || gy + 1 D772 Qul?™ et = g7~ g Qb gy

_1 _ _1 _
[ D2 (a7 gy (8 QD =8 Qg D) [y gy 1 D72 ey |7 g (g Qe = Qg D) [

S@- gj)(||u||L5>ogz(11))(||DS”_%MHW(II) + ||D2_%u||W(1.))||M||§(;ll)
o5l o ) (g0, + el ) D 2wy + 1022 wlhwary)
+ (g5 + lellso) lwllse
><(llDS”_quW(ll)-i-llDz_%ullwul)+||DS"_%M[]-]||W(11)+||D2_%”[j]||W(11)))
+ ||g;'(|u|)||L,°°L};C(11)(||Dsp7%u”W(11) + ||D27%M||W(I]))(||M||S(11) + ||”U]||5(112))”w||S(11)
+ [l el = &5 Ut D | oo poe sy 1D 22 lwary laagy 5

p—1 Sp—4% sp—+ s,—1
+ ”uL/']”S(Il) ||u[j]||L5>0[-12([1)(”w”L[OO[f[Z([l)(”D r 2M”W(Il) + ”D r 2“U]||W(11)) + ||D ! 2w||W(11))
S/ (CpmP~r o, wy + P71, w) + 0P QL w) + Cin? T (@, w) + QUL w)),  (5-13)

since, by choosing A large enough and by the construction of g, we have

(& — 8 Ulull oo g2 ,)) =0 (5-14)
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We conclude via a continuity argument that Q (I, w) =0, sou = upj; on I,. In particular, u(b;) = upj (by).
By iteration on i, it is not difficult to see that u = upj on [—t,t]. Hence (t —a,f +a) N[0, j]1 C F;, by
(5-7). Thus F; is open.

The upshot is that F; = [0, j], so [|ullsq-7, 7)) < C;. This proves global well-posedness. Moreover,
since j depends on T and || (ug, u1)|l g2, g1, we get (1-17).

Proof of Lemma 5.1. The proof extends to the end of the paper. We must establish a priori bounds.

Step 1: Construction of g;.

Basically, g; is a nonnegative function that increases and is equal to 2 for x large. Recall that [T, T] C
[—1,1] and |[(uo, u) |l g2, gn < 1. Let I C [T, T].

Observe that the point (co—, 34) 1= (%Ei 3+¢€) with € < 1 is 1-wave admissible.

We would like to chop I (satisfying || - [[ 13 (;) < 00) into subintervals I; such that || - |73 (s;) 1s as
small as wanted. Unfortunately this is impossible because the L°-norm is pathological. Instead we will
apply this process to || - || Lo L3 This creates slight variations almost everywhere in the process of the
construction of g;. Details with respect to these slight perturbations have been omitted for the sake of
readability: they are left to the reader, who should ignore the + and — signs at the first reading.

We define

X{):= D%—Svao—ij(l) ND2~SPW ()N SI) N LXH*(I) x L H ' (I). (5-15)

Let g; be a smooth function, defined on the set of nonnegative real numbers, nondecreasing, and such
that i; := g1 — 2 satisfies the following properties: #;(0) = —1, & is nondecreasing, and i (x) = 0 if
|x| > 1. It is not difficult to see that (1-2) and (1-10) are satisfied.

Observe that

I OIS —= (5-16)
x|~
and
R} () S —5 (5-17)
x| ="~
Let u;) and vyj) be solutions to the equations
Ayt — Aupy = —up 1P~ ugr (up ),
M[l](O) =Uug € Hz, (5—18)

8;14[1](0) =Ul € [‘}l

and
Bvpy — Aoy = =2 [opy|” ™ vy,
vy (0) = uyo, (5-19)
8[1)[1] (0) =Uuj.
Step 1a. We claim that [lvy|lx®) < oo. Indeed, since we assumed that Conjecture 1.1 is true, we can
divide R into subintervals (/; = [#;, tj41])1<j< such that

lvmllsa;y =n and  llvyllsa) <.
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with n < 1. Then

1
- -1
o llx e S 1 @mE). vm) | o @)oo @) + 12772 Qoml? o) |,

+1)
< [ m @), dvm @) | - + || D | o 1%,
S m @), v || gsp sy x oot w3) Vw1 NV S (1)

Sl llxay + 07 vwllx - (5-20)
Notice that I < 1: this follows from Conjecture 1.1, Condition 1.3 and the inequality

Il (uo, U1)||HSp(R3)X1-'1Sp*1(R3) < sup |[(u(1), atu(t))||HSp(R3)X1-'1Sp*1(R3) = Cz(ll(uo, ul)”]fﬂxﬁl)
t€lmax, g,

S (5-21)
following from Condition 1.3 and the assumption || (uo, u1)ll g2, 51 < 1. (At this stage, we only need
to know that ||(uo, u1) |l gsp ey x fror—1 w3 < (@0, )l g2, 1 < 1 and apply Conjecture 1.1. Therefore
the introduction of sup,.;

max,

" | (ut), O ()|l gsp (R3)x F°» 1 (R3) in (5-21) is redundant. This is done on
purpose. Indeed, we will use Condition 1.3 in other parts of the argument: see (5-33).)
Now by a standard continuity argument and iteration on j we have

lvmllxw S1 (5-22)

~

Step 1b. We control [luy — vy llx_7.77)> for 7 < 1 to be chosen later. By time reversal symmetry it is
enough to control |[u) — vyl x 0.7y~ To this end we consider wyy) := up; — vy We get

—1 —1
Orwin — Awp = —|wpy +vl?™ (v + wpy) g1 (v + wiy) + 2|17 v

Let n’ < 1. By (5-22), we can divide [0, 7] into subintervals (Jx = [t} ; +1D1<k<m that satisfy

1D 2 vl 3y =1 o 1D Zomllwesy =0 for I <k <m, (5-23)
1D Svpllwey < ' and D 2oyll ooy 3v gy <0 for 1 <k <m., 624
We have
lwillx e S | (win @), dwpy ) | Froe @y et gy T AL T Az,
where

1 - -

Ay = D72 2l P oy = 2lvp + win P @+ wim) L, (5-25)
_1 - _
Ay = D72 (hy (o + wi Doy +wi 1P~ o+ wi)) |3 '
LIL? (Js1)
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By the fractional Leibnitz rule applied to g (x) := lx|P~1xh(x), (5-16), (5-17), Sobolev embedding and
Holder in time we have

—1
Ay < | vy 4wl | L | D~ (ugy + wiy) | L L ()

p—1
ey _1
S v +wpl zp;u e D2 A wn) | e 3
L, ? (/k+1)
prl

U 2(v[l]+wm)HLoc Ly ST T DY Juy ”Lw LY (i)

ptl

- Pl ~ Hy
St T+ ey, - (5-26)

For A; we follow [Kenig and Merle 2011, p. 9]:

p—1 p—1 g —1
AL S (”U[l]”suk D + ”w[l]”S(Jk 1))”DYP 2wl w )
+ +
5L o1
(”U[U” SUn T llwi | S(]Hl))(”D[ Zup | W T | D%~ 2wy ”W(Jk+1))||w[1]||5(fk+l>
-1 -2 2 -1
S P wmllx e + lwmllg g, + P lwmlix g, + 1 lwnl o, (5-27)

This follows from (1-31) and (1-27). Therefore we have

N Bt
lwimllx e S lwmllxao + @) 2 "1+ tllwllix,, )

+ D" wimllx e + ol g, + 0P lwmllF g, + 7 el g, - (5-28)
Let C be the constant determined by (5-28). By induction, we have
lwmllx ey < RO, (5-29)
provided that for 1 <k <m — 1 we have
PN L k7
C(n) = i« CROT,
N Pt N
Ci(QOM) 7 " < O,
CHP 1O « C20) T,

(5-30)
C (2O’ <« cof,
C)P2 (RO’ « COM,
7 (RO < ceoyk.
These inequalities are satisfied if n’ < 1 and
i<l (5-31)

since k <m — 1 and, by (5-22), m < 1. We conclude that

lwllx o7y S 1- (5-32)
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Step 1c. We control |[ujy||x(-r,77)- By time reversal symmetry, it is enough to control |[uyll xo,77)-
Recall that T < 1. We chop T < 1 into subintervals (Ji = [ay', bi'])1<x'<p such that | Jy| =7 for 1 <k’ <!’
and |Jy| <. Notice that, by Condition 1.3, we have

I (u(ax), atu(ak/))||[~.]5P([R3)><HSI’*1([R3) =< fup [ (u(t), atu(t))||HSp([Ra3)><HSp*'(R3)
te max,g|

< Co (I1uo, uD) | oy 1) S 1. (5-33)

taking advantage of the assumption ||(uo, u1)|| 32, 51 < 1. For each k' let vy; x| be the solution of

vpiky — Avpey = —lvpa P o e,
vk (ak) = upn(ar), (5-34)
0rvp1 ke (ak) = drupy(ar);
in particular, v[j x; = vyi;. By slightly modifying the proof of Step 1b and letting vj; 4] play the role of
vy, this leads, by (5-33), to
lvpallxw S1 (5-35)
and
lwi s llxoy ST, (5-36)

with wyy k) = upy — vp1xq. Therefore [lupyllx ) S 1, and summing over Jir we have
lupllxqo,rpy S 1. (5-37)
Step 1d. We control || (uy, atu[l])||L?oﬁz([_lJDXL?OI;,I([_MD and ||upllsq—1.17). We get from (5-37)
lumllsq-1,1p S 1- (5-38)

To conclude Step 1: By Proposition 1.8 and (5-38) we have

Il Gy alu[l])||L,°°I-12([71,1])><L,°°ﬁ‘([71,l]) S1 (5-39)
Therefore
max ([lumllsq=1,1p, e, at”m)||L;>°F12([—1,1])XL;>°1511([_1,1])) <. (5-40)

We let C| in the statement of Lemma 5.1 be equal to 1. We can assume without the loss of generality
that the constant implicit in < in (5-40) is larger than 1; let C; in the statement of Lemma 5.1 be this
constant. Then Ci and C| satisfy (5-2) and (5-3).

Step 2: Construction of g; from g;_;.

Recall that [-T, T] C [—i, i] and |[(uo, u1)|l g2, 51 < i. In view of (5-5) it is enough to construct g;
for [x| > AC;_;. Itis clear that, by choosing C; large enough, we can construct find a function g; defined
on [AC;_;, C[] such that g;, defined by

gi—1(x) if x| < AC;_y,
gi(x):=q18x) ifC/>|x|>ACi_, (5-41)
i+1  iffx|>C
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is smooth and slowly increasing; also it satisfies (1-2), (1-10), and

[
dy > i. (5-42)
AC_, Y&H(Y)

It remains to determine C; in the statement of Lemma 5.1. To do that we slightly modify the reasoning

in Step 1.
We sketch the argument. Let 4; (x) := g;(x) — (i+1). Then h;(x) = 0 if |x| > C]. It is not difficult to
see that

—_—

|hi (O] Si —=—» (5-43)
x| = F
, 1
e P — (5-44)
x| = F
Let u[;1 and vy;) be the solutions of the equations
iy — Dy = —lug| P~ ugingi (ug ),
u[,-](O) = uy, (5—45)

Orupi1(0) == uy
and
dvpiy — Avgy = — (@ + Dl P~ oy,
vyi1(0) == uo, (5-46)
9 v;1(0) :=uy
Step 2a. We have
v llx® Si 1, (5-47)

by adapting the proof of Step la. Notice, in particular, that we can use Conjecture 1.1 and control
lviiyll sw) since wy;y == (i + l)ﬁv[i] satisfies 9y, wyi) — Awyy = —|wi [P~ wp.

Step 2b. We have |lug;) — vyijllx 0.7y Si 1 for 7 < 1, by adapting the proof of Step 1b. The dependance
on i basically comes from (5-43), (5-44) and (5-46).

Step 2c. We prove that [lupllx(—7,7)) Sip 1. By time reversal symmetry, it is enough to control
llueiill x qo,77. Recall that T < i. We chop [0, T'] into subintervals (Jy = [ax, bi'])1<k'< such that
|Jw| =1 for 1 <k’ <!’ and |Jy| <1 (with f defined in Step 2b). By Condition 1.3 and the assumption
| wo, u)ll g2, g1 <1, we have

Il Gy (arr), Bruegiy (@) | gop oy w o1y < SUP- || iy (@), af”[i](t))HHSp(W)fop*l(R»*) Silo (5-48)

te max, g;

We introduce
e vii k) — Aviik) = — (i + D P~ g,
vk (ar) = up(ar), (5-49)
0rvpi k1 (ar) = Opuy(ax’)
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and, by using (5-48), we can prove that
Nwiillsq—iip Si 1. (5-50)

Step 2d. By using Proposition 1.8 and (5-50) we get

max (llugils—r,ips 1, Sl Lo o ipwre i qoiin) Si 1 (5-51)

We can assume without loss of generality that the constant implicit in < is larger than i and C;. Let C;
be this constant; (5-2) and (5-3) are satisfied.
This concludes Step 2, and the proof of Lemma 5.1. O
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