A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR MAXIMAL SINGULAR INTEGRALS WITH ONE DOUBLING MEASURE
A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR MAXIMAL SINGULAR INTEGRALS WITH ONE DOUBLING MEASURE

MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Let σ and ω be positive Borel measures on \(\mathbb{R} \) with σ doubling. Suppose first that \(1 < p \leq 2 \). We characterize boundedness of certain maximal truncations of the Hilbert transform \(T_\sigma \) from \(L^p(\sigma) \) to \(L^p(\omega) \) in terms of the strengthened \(A_p \) condition

\[
\left(\int_{\mathbb{R}} s_Q(x)^p \, d\omega(x) \right)^{1/p} \left(\int_{\mathbb{R}} s_Q(x)^{p'} \, d\sigma(x) \right)^{1/p'} \leq C|Q|,
\]

where \(s_Q(x) = |Q|/(|Q|+|x-x_Q|) \), and two testing conditions. The first applies to a restricted class of functions and is a strong-type testing condition,

\[
\int_Q T_\sigma(\chi_E\sigma)(x)^p \, d\omega(x) \leq C_1 \int_Q d\sigma(x) \quad \text{for all } E \subset Q,
\]

and the second is a weak-type or dual interval testing condition,

\[
\int_Q T_\sigma(\chi_Q f\sigma)(x) \, d\omega(x) \leq C_2 \left(\int_Q |f(x)|^p \, d\sigma(x) \right)^{1/p} \left(\int_Q d\omega(x) \right)^{1/p'},
\]

for all intervals \(Q \) in \(\mathbb{R} \) and all functions \(f \in L^p(\sigma) \). In the case \(p > 2 \) the same result holds if we include an additional necessary condition, the Poisson condition

\[
\int_{\mathbb{R}} \left(\sum_{r=1}^\infty |I_r|^{p-1} \sum_{\ell=0}^\infty 2^{-\ell} \frac{|I_r|}{|I_r(\ell)|} |\chi_{I_r(\ell)}(y)| \right)^p \, d\omega(y) \leq C \sum_{r=1}^\infty |I_r|^{p-1} |I_r|^{p'},
\]

for all pairwise disjoint decompositions \(Q = \bigcup_{r=1}^\infty I_r \) of the dyadic interval \(Q \) into dyadic intervals \(I_r \). We prove that analogues of these conditions are sufficient for boundedness of certain maximal singular integrals in \(\mathbb{R}^n \) when \(\sigma \) is doubling and \(1 < p < \infty \). Finally, we characterize the weak-type two weight inequality for certain maximal singular integrals \(T_\sigma \) in \(\mathbb{R}^n \) when \(1 < p < \infty \), without the doubling assumption on \(\sigma \), in terms of analogues of the second testing condition and the \(A_p \) condition.

1. Introduction

Sawyer [1984; 1982; 1988] characterized two weight inequalities for maximal functions and other positive operators, in terms of the obviously necessary conditions that the operators be uniformly bounded on a restricted class of functions, namely indicators of intervals and cubes. Thus, these characterizations have a form reminiscent of the \(T1 \) theorem of David and Journé.

\[\text{MSC2000: } 42B20.\]
\[\text{Keywords: two weight, singular integral, maximal function, maximal truncation.}\]
Corresponding results for even the Hilbert transform have only recently been obtained [Nazarov et al. 2010; Lacey et al. 2011] and even then only for \(p = 2 \); evidently these are much harder to obtain. We comment in more detail on prior results below, including the innovative work of Nazarov, Treil and Volberg [1999; 2008; 2010; 2003].

Our focus is on providing characterizations of the boundedness of certain maximal truncations of a fixed operator of singular integral type. The singular integrals will be of the usual type, for example the Hilbert transform or paraproducts. Only size and smoothness conditions on the kernel are assumed; see (1-9). The characterizations are in terms of certain obviously necessary conditions, in which the class of functions being tested is simplified. For such examples, we prove unconditional characterizations of both strong-type and weak-type two weight inequalities for certain maximal truncations of the Hilbert transform, but with the additional assumption that \(\sigma \) is doubling for the strong-type inequality. A major point of our characterizations is that they hold for all \(1 < p < \infty \). The methods in [Lacey et al. 2011] and those of Nazarov, Treil and Volberg apply only to the case \(p = 2 \), where the orthogonality of measure-adapted Haar bases prove critical. The doubling hypothesis on \(\sigma \) may not be needed in our theorems, but is required by the use of Calderón–Zygmund decompositions in our method.

As the precise statements of our general results are somewhat complicated, we illustrate them with an important case here. Let

\[
T f(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \frac{1}{y} f(x - y) \, dy
\]

denote the Hilbert transform, let

\[
T^\flat f(x) = \sup_{0 < \varepsilon < \infty} \left| \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \frac{1}{y} f(x - y) \, dy \right|
\]

denote the usual maximal singular integral associated with \(T \), and finally let

\[
T^\# f(x) = \sup_{0 < \varepsilon_1, \varepsilon_2 < \infty} \left| \int_{\mathbb{R} \setminus (-\varepsilon_1, \varepsilon_2)} \frac{1}{y} f(x - y) \, dy \right|
\]

denote the new strongly (or noncentered) maximal singular integral associated with \(T \) that is defined more precisely below. Suppose \(\sigma \) and \(\omega \) are two locally finite positive Borel measures on \(\mathbb{R} \) that have no point masses in common. Then we have the following weak and strong-type characterizations, which we emphasize hold for all \(1 < p < \infty \).

- The operator \(T^\flat \) is weak type \((p, p)\) with respect to \((\sigma, \omega)\), that is,

\[
\|T^\flat(f \sigma)\|_{L^{p, \infty}(\omega)} \leq C \|f\|_{L^p(\sigma)}
\]

equation (1-1)

for all \(f \) bounded with compact support if and only if the two weight \(A_p \) condition

\[
\frac{1}{|Q|} \int_Q d\omega \left(\frac{1}{|Q|} \int_Q d\sigma \right)^{p-1} \leq C,
\]

for all cubes \(Q \).
holds for all intervals Q and the dual T_b interval testing condition
\[
\int_Q T_b(\chi_Q f \sigma) \, d\omega \leq C \left(\int_Q |f|^p \, d\sigma \right)^{1/p} \left(\int_Q d\omega \right)^{1/p'},
\] (1-2)
holds for all intervals Q and $f \in L^p_Q(\sigma)$ (part 4 of Theorem 1.8). The same is true for T_\natural. It is easy to see that (1-2) is equivalent to the more familiar dual interval testing condition
\[
\int_Q |L^*(\chi_Q \omega)|^{p'} \, d\sigma \leq C \int_Q d\omega,
\] (1-3)
for all intervals Q and linearizations L of the maximal singular integral T_b (see (2-10)).

- Suppose in addition that σ is doubling and $1 < p < \infty$. Then the operator T_\natural is strong-type (p, p) with respect to (σ, ω), that is,
\[
\|T_\natural(f \sigma)\|_{L^p(\omega)} \leq C \|f\|_{L^p(\sigma)}
\]
for all f bounded with compact support if and only if these four conditions hold: (1) the strengthened A_p condition
\[
\left(\int_Q s_Q(x)^p \, d\omega(x) \right)^{1/p} \left(\int_I s_I(x)^{p'} \, d\sigma(x) \right)^{1/p'} \leq C |Q|,
\]
where $s_Q(x) = \frac{|Q|}{|Q| + |x - x_Q|}$, holds for all intervals Q; (2) the dual T_\natural interval testing condition
\[
\int_Q T_\natural(\chi_Q f \sigma) \, d\omega \leq C \left(\int_Q |f|^p \, d\sigma \right)^{1/p} \left(\int_Q d\omega \right)^{1/p'},
\]
holds for all intervals Q and $f \in L^p_Q(\sigma)$; (3) the forward T_\natural testing condition
\[
\int_Q T_\natural(\chi_E \sigma)^p \, d\omega \leq C \int_Q d\sigma,
\] (1-4)
holds for all intervals Q and all compact subsets E of Q; and (4) the Poisson condition
\[
\int_R \left(\sum_{r=1}^{\infty} |I_r| |I_r|^p \! - \! 1 \sum_{\ell=0}^{2^{-\ell}} \frac{2^{-\ell}}{|(I_r)(\ell)|} \chi_{(I_r)(\ell)}(y) \right)^p \, d\omega(y) \leq C \sum_{r=1}^{\infty} |I_r| |I_r|^p,
\]
for all pairwise disjoint decompositions $Q = \bigcup_{r=1}^{\infty} I_r$ of the dyadic interval Q into dyadic intervals I_r for any fixed dyadic grid. In the case $1 < p \leq 2$, only the first three conditions are needed (Theorem 1.10). Note that in (1-4) we are required to test over all compact subsets E of Q on the left side, but retain the upper bound over the (larger) cube Q on the right side.

As these results indicate, the imposition of the weight σ on both sides of (1-1) is a standard part of weighted theory, and is in general necessary for the testing conditions to be sufficient. Compare to the characterization of the two weight maximal function inequalities in Theorem 1.2 below.
Problem 1.1. In (1-4), our testing condition is more complicated than one would like, in that one must test over all compact $E \subset Q$ in (1-4). There is a corresponding feature of (1-2), seen after one unwinds the definition of the linearization L^*. We do not know if these testing conditions can be further simplified. The form of these testing conditions is dictated by our use of what we call the “maximum principle”; see Lemma 2.6.

We now recall the two weight inequalities for the maximal function as they are central to the new results of this paper. Define the maximal function

$$Mv(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |v| \quad \text{for } x \in \mathbb{R},$$

where the supremum is taken over all cubes Q (by which we mean cubes with sides parallel to the coordinate axes) containing x.

Theorem 1.2 (maximal function inequalities). Suppose that σ and ω are positive locally finite Borel measures on \mathbb{R}^n, and that $1 < p < \infty$. The maximal operator M satisfies the two weight norm inequality [Sawyer 1982]

$$\|M(f\sigma)\|_{L^p(\omega)} \leq C\|f\|_{L^p(\sigma)} \quad \text{for } f \in L^p(\sigma), \quad (1-5)$$

if and only if for all cubes $Q \subset \mathbb{R}^n$,

$$\int_Q M(\chi_Q\sigma)(x)^p \, d\omega(x) \leq C_1 \int_Q \, d\sigma(x). \quad (1-6)$$

The maximal operator M satisfies the weak-type two weight norm inequality [Muckenhoupt 1972]

$$\|M(f\sigma)\|_{L^{p,\infty}(\omega)} \equiv \sup_{\lambda > 0} \lambda |\{M(f\sigma) > \lambda\}|^{1/p}_\omega \leq C\|f\|_{L^p(\sigma)} \quad \text{for } f \in L^p(\sigma), \quad (1-7)$$

if and only if the two weight A_p condition holds for all cubes $Q \subset \mathbb{R}^n$:

$$\left(\frac{1}{|Q|} \int_Q d\omega\right)^{1/p} \left(\frac{1}{|Q|} \int_Q d\sigma\right)^{1/p'} \leq C_2. \quad (1-8)$$

The necessary and sufficient condition (1-6) for the strong-type inequality (1-5) states that one need only test the strong-type inequality for functions of the form $\chi_Q\sigma$. Not only that, but the full $L^p(\omega)$ norm of $M(\chi_Q\sigma)$ need not be evaluated. There is a corresponding weak-type interpretation of the A_p condition (1-8). Finally, the proofs given in [Sawyer 1982] and [Muckenhoupt 1972] for absolutely continuous weights carry over without difficulty for the locally finite measures considered here.

1.3. **Two weight inequalities for singular integrals.** Let us set notation for our theorems. Consider a kernel function $K(x, y)$ defined on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying the size and smoothness conditions

$$|K(x, y)| \leq C|x - y|^{-n},$$

$$|K(x, y) - K(x', y)| \leq C\delta \left(\frac{|x - x'|}{|x - y|}\right) |x - y|^{-n}, \quad |x - x'| \leq \frac{1}{2}, \quad (1-9)$$

where $\delta > 0$ and $\delta < 1$. We denote the singular integral \mathcal{I}_K of a function $f \in L^1(\mathbb{R}^n)$ by

$$\mathcal{I}_K(f)(x) = \int_{\mathbb{R}^n} K(x - y) f(y) \, dy.$$
where δ is a Dini modulus of continuity, that is, a nondecreasing function on $[0, 1]$ with $\delta(0) = 0$ and $\int_0^1 \delta(s)s^{-1} \, ds < \infty$.

Next we describe the truncations we consider. Let ζ, η be fixed smooth functions on the real line satisfying
\[
\zeta(t) = 0 \quad \text{for } t \leq \frac{1}{2} \quad \text{and} \quad \zeta(t) = 1 \quad \text{for } t \geq 1,
\]
\[
\eta(t) = 0 \quad \text{for } t \geq 2 \quad \text{and} \quad \eta(t) = 1 \quad \text{for } t \leq 1,
\]
ζ is nondecreasing and η is nonincreasing.

Given $0 < \varepsilon < R < \infty$, set $\zeta_\varepsilon(t) = \zeta(t/\varepsilon)$ and $\eta_R(t) = \eta(t/R)$ and define the smoothly truncated operator $T_{\varepsilon,R}$ on $L^1_{\text{loc}}(\mathbb{R}^n)$ by the absolutely convergent integrals
\[
T_{\varepsilon,R}f(x) = \int K(x, y)\zeta_\varepsilon(|x - y|)\eta_R(|x - y|)f(y) \, dy \quad \text{for } f \in L^1_{\text{loc}}(\mathbb{R}^n).
\]
Define the maximal singular integral operator T_\flat on $L^1_{\text{loc}}(\mathbb{R}^n)$ by
\[
T_\flat f(x) = \sup_{0 < \varepsilon < R < \infty} |T_{\varepsilon,R} f(x)| \quad \text{for } x \in \mathbb{R}^n.
\]

We also define a corresponding new notion of strongly maximal singular integral operator $T_\flat^\#$ as follows. In dimension $n = 1$, we set
\[
T_\flat f(x) = \sup_{0 < \varepsilon < R < \infty} |T_{\varepsilon,R} f(x)| \quad \text{for } x \in \mathbb{R},
\]
where $\varepsilon = (\varepsilon_1, \varepsilon_2)$ and
\[
T_{\varepsilon,R} f(x) = \int K(x, y)(\zeta_{\varepsilon_1}(x - y) + \zeta_{\varepsilon_2}(y - x))\eta_R(|x - y|)f(y) \, dy.
\]
Thus the local singularity has been removed by a noncentered smooth cutoff $-\varepsilon_1$ to the left of x and ε_2 to the right of x, but with controlled eccentricity $\varepsilon_1/\varepsilon_2$. There is a similar definition of $T_\flat f$ in higher dimensions involving in place of $\zeta_\varepsilon(|x - y|)$, a product of smooth cutoffs,
\[
\zeta_\varepsilon(x - y) \equiv 1 - \prod_{k=1}^n (1 - \{\varepsilon_{2k-1}(x_k - y_k) + \varepsilon_{2k}(y_k - x_k)\}).
\]
satisfying $1/4 \leq \varepsilon_{2k-1}/\varepsilon_{2k} \leq 4$ for $1 \leq k \leq n$. The advantage of this larger operator T_\flat is that in many cases boundedness of T_\flat (or collections thereof) implies boundedness of the maximal operator \mathcal{M}. Our method of proving boundedness of T_\flat and $T_\flat^\#$ requires boundedness of the maximal operator \mathcal{M} anyway, and as a result we can in some cases give necessary and sufficient conditions for strong boundedness of T_\flat. As for weak-type boundedness, we can in many more cases give necessary and sufficient conditions for weak boundedness of the usual truncations T_\flat.
Definition 1.4. We say that T is a standard singular integral operator with kernel K if T is a bounded linear operator on $L^q(\mathbb{R}^n)$ for some fixed $1 < q < \infty$, that is

$$\| Tf \|_{L^q(\mathbb{R}^n)} \leq C \| f \|_{L^q(\mathbb{R}^n)} \quad \text{for } f \in L^q(\mathbb{R}^n),$$

if $K(x,y)$ is defined on $\mathbb{R}^n \times \mathbb{R}^n$ and satisfies both (1-9) and the Hörmander condition,

$$\int_{B(y,2\varepsilon)^c} |K(x,y) - K(x,y')| \, dx \leq C \quad \text{for } y' \in B(y,\varepsilon), \varepsilon > 0,$$

and finally if T and K are related by

$$T f(x) = \int K(x,y) f(y) \, dy \quad \text{for a.e.-} x \notin \text{supp } f,$$

whenever $f \in L^q(\mathbb{R}^n)$ has compact support in \mathbb{R}^n. We call a kernel $K(x,y)$ standard if it satisfies (1-9) and (1-11).

For standard singular integral operators, we have this classical result. (See the appendix on truncation of singular integrals on [Stein 1993, page 30] for the case $R = \infty$; the case $R < \infty$ is similar.)

Theorem 1.5. Suppose that T is a standard singular integral operator. Then the map $f \to T \mu f$ is of weak type $(1,1)$, and bounded on $L^p(\mathbb{R})$ for $1 < p < \infty$. There exist sequences $\varepsilon_j \to 0$ and $R_j \to \infty$ such that for $f \in L^p(\mathbb{R})$ with $1 \leq p < \infty$,

$$\lim_{j \to \infty} T_{\varepsilon_j,R_j} f(x) \equiv T_{0,\infty} f(x)$$

exists for a.e. $x \in \mathbb{R}$. Moreover, there is a bounded measurable function $a(x)$ (depending on the sequences) satisfying

$$T f(x) = T_{0,\infty} f(x) + a(x) f(x) \quad \text{for } x \in \mathbb{R}^n.$$

We state a conjecture, so that the overarching goals of this subject are clear.

Conjecture 1.6. Suppose that σ and ω are positive Borel measures on \mathbb{R}^n, let $1 < p < \infty$, and suppose T is a standard singular integral operator on \mathbb{R}^n. Then the following two statements are equivalent:

$$\int |T(f \sigma)|^p \omega \leq C \int |f|^p \sigma \quad \text{for } f \in C_0^\infty,$$

$$\left(\frac{1}{|Q|} \int_Q d\omega \right)^{1/p} \left(\frac{1}{|Q|} \int_Q d\sigma \right)^{1/p'} \leq C,$$

$$\int_Q |T \chi_Q \sigma| \leq C' \int_Q \sigma, \quad \text{for all cubes } Q.$$
The most important instances of this conjecture occur when T is one of a few canonical singular integral operators, such as the Hilbert transform, the Beurling transform, or the Riesz transforms. This question occurs in different instances, such as the Sarason conjecture concerning the composition of Hankel operators, or the semicommutator of Toeplitz operators [Cruz-Uribe et al. 2007; Zheng 1996], mathematical physics [Peherstorfer et al. 2007], as well as perturbation theory of some self-adjoint operators. See references in [Volberg 2003].

To date, this has only been verified for positive operators, such as Poisson integrals and fractional integral operators [Sawyer 1984; 1982; 1988]. Recently the authors have used the methods of Nazarov, Treil and Volberg to prove a special case of the conjecture for the Hilbert transform when $p = 2$ and an energy hypothesis is assumed [Lacey et al. 2011]. Earlier in [2010] Nazarov, Treil and Volberg used a stronger pivotal condition in place of the energy hypothesis, but neither of these conditions are necessary [Lacey et al. 2011]. The two weight Helson–Szegő theorem was proved many years earlier by Cotlar and Sadosky [1979; 1983]; thus the L^2 case for the Hilbert transform is completely settled.

Nazarov, Treil and Volberg [1999; 2010] have characterized those weights for which the class of Haar multipliers is bounded when $p = 2$. They also have a result for an important special class of singular integral operators, the “well-localized” operators of [2008]. Citing the specific result here would carry us too far afield, but this class includes the important Haar shift examples, such as the one found by S. Petermichl [2000], and generalized in [2002]. Consequently, characterizations are given in [Volberg 2003] and [Nazarov et al. 2010] for the Hilbert transform and Riesz transforms in weighted L^2 spaces under various additional hypotheses. In particular they obtain an analogue of the case $p = 2$ of the strong-type theorem below. Our results can be reformulated in the context there, a theme we do not pursue further here.

We now characterize the weak-type two weight norm inequality for both maximal singular integrals and strongly maximal singular integrals.

Theorem 1.8 (maximal singular integral weak-type inequalities). Suppose that σ and ω are positive locally finite Borel measures on \mathbb{R}^n, let $1 < p < \infty$, and let T_\flat and T_\sharp be the maximal singular integral operators as above with kernel $K(x, y)$ satisfying (1-9).

1. Suppose that the maximal operator M satisfies (1-7). Then T_\sharp satisfies the weak-type two weight norm inequality

$$\|T_\sharp (f \sigma)\|_{L^{p, \infty}(\omega)} \leq C \|f\|_{L^p(\sigma)},$$

for all cubes $Q \subset \mathbb{R}^n$ and all functions $f \in L^p(\sigma)$.

2. The same characterization as above holds for T_\flat in place of T_\sharp everywhere.

3. Suppose that σ and ω are absolutely continuous with respect to Lebesgue measure, that the maximal operator M satisfies (1-7), and that T is a standard singular integral operator with kernel K as
above. If (1-13) holds for T_b or T_\flat, then it also holds for T:
\[
\|T(f \sigma)\|_{L^p,\infty} \leq C\|f\|_{L^p(\sigma)} \quad \text{for } f \in L^p(\sigma), \; f \sigma \in L^\infty \text{ with } \text{supp } f \sigma \text{ compact.} \quad (1-15)
\]

(4) Suppose $c > 0$ and that $\{K_j\}_{j=1}^J$ is a collection of standard kernels such that for each unit vector u there is j satisfying
\[
|K_j(x, x + tu)| \geq ct^{-n} \quad \text{for } t \in \mathbb{R}. \quad (1-16)
\]

Suppose also that σ and ω have no common point masses, that is, $\sigma(x) \cdot \omega(x) = 0$ for all $x \in \mathbb{R}^n$. Then
\[
\|(T_j)_b(f \sigma)\|_{L^p,\infty} \leq C\|f\|_{L^p(\sigma)} \quad \text{for } f \in L^p(\sigma), \text{ with } 1 \leq j \leq J,
\]
if and only if the two weight A_p condition (1-8) holds and
\[
\int_Q (T_j)_b(\chi_Q f \sigma)(x) \, d\omega(x) \leq C_2 \left(\int_Q |f(x)|^p \, d\sigma(x)\right)^{1/p} \left(\int_Q d\omega(x)\right)^{1/p'},
\]
\[
f \in L^p(\sigma), \; \text{cubes } Q \subset \mathbb{R}^n, \; 1 \leq j \leq J.
\]

While in (1)–(3), we assume that the maximal function inequality holds, in point (4), we obtain an unconditional characterization of the weak-type inequality for a large class of families of (centered) maximal singular integral operators T_b. This class includes the individual maximal Hilbert transform in one dimension, the individual maximal Beurling transform in two dimensions, and the families of maximal Riesz transforms in higher dimensions; see Lemma 2.11.

Note that in (1) above, there is only size and smoothness assumptions placed on the kernel, so that it could for instance be a degenerate fractional integral operator, and therefore unbounded on $L^2(dx)$. But, the characterization still has content in this case, if ω and σ are not of full dimension.

In (3), we deduce a two weight inequality for standard singular integrals T without truncations when the measures are absolutely continuous. The proof of this is easy. From (1-13) and the pointwise inequality $T_{0,\infty}f \sigma(x) \leq T_b f \sigma(x) \leq T_\flat f \sigma(x)$, we obtain that for any limiting operator $T_{0,\infty}$ the map $f \to T_{0,\infty}f \sigma$ is bounded from $L^p(\sigma)$ to $L^{p,\infty}(\omega)$. By (1-7) $f \to Mf \sigma$ is bounded; hence $f \to f \sigma$ is bounded, and so Theorem 1.5 shows that $f \to Tf \sigma = T_{0,\infty}f \sigma + af \sigma$ is also bounded, provided we initially restrict attention to functions f for which $f \sigma$ is bounded with compact support.

The characterizing condition (1-14) is a weak-type condition, with the restriction that one only needs to test the weak-type condition for functions supported on a given cube, and test the weak-type norm over that given cube. It also has an interpretation as a dual inequality $\int_Q |L^*(\chi_Q \omega)|^{p'} \, d\sigma \leq C_2 \int_Q d\omega$, which we return to below; see (2-10) and (2-11).

We now consider the two weight norm inequality for a strongly maximal singular integral T_\flat, but assuming that the measure σ is doubling.

Theorem 1.9 (maximal singular integral strong-type inequalities). Suppose that σ and ω are positive locally finite Borel measures on \mathbb{R}^n with σ doubling, let $1 < p < \infty$, and let T_b and T_\flat be the maximal singular integral operators as above with kernel $K(x, y)$ satisfying (1-9).
(1) Suppose that the maximal operator \(M\) satisfies (1-5) and also the “dual” inequality

\[
\|M(g\omega)\|_{L^{p'}(\sigma)} \leq C \|g\|_{L^{p'}(\omega)} \quad \text{for } g \in L^{p'}(\omega).
\]

Then \(T\) satisfies the two weight norm inequality

\[
\int_{\mathbb{R}^n} T(f\sigma)(x)^p \, d\omega(x) \leq C \int_{\mathbb{R}^n} |f(x)|^p \, d\sigma(x),
\]

for all \(f \in L^p(\sigma)\) that are bounded with compact support in \(\mathbb{R}^n\), if and only if both the dual cube testing condition (1-14) and the condition

\[
\int_Q T(\chi_Q g\sigma)(x)^p \, d\omega(x) \leq C_1 \int_Q d\sigma(x),
\]

holds for all cubes \(Q \subset \mathbb{R}^n\) and all functions \(|g| \leq 1\).

(2) The same characterization as above holds for \(T\) in place of \(T\) everywhere. In fact

\[|T(f\sigma)(x) - T(f\sigma(x))| \leq CM(f\sigma)(x).\]

(3) Suppose that \(\sigma\) and \(\omega\) are absolutely continuous with respect to Lebesgue measure, that the maximal operator \(M\) satisfies (1-5), and that \(T\) is a standard singular integral operator. If (1-18) holds for \(T\) or \(\sharp\), then it also holds for \(T\):

\[
\int_{\mathbb{R}^n} |T(f\sigma)(x)|^p \, d\omega(x) \leq C \int_{\mathbb{R}^n} |f(x)|^p \, d\sigma(x) \quad \text{for } f \in L^p(\sigma), \ f\sigma \in L^\infty, \ \text{with } \text{supp}(f\sigma) \text{ compact.}
\]

(4) Suppose that \(\{K_j\}_{j=1}^n\) is a collection of standard kernels satisfying for some \(c > 0\),

\[
\pm \Re K_j(x, y) \geq \frac{c}{|x - y|^n} \quad \text{for } \pm (y_j - x_j) \geq \frac{1}{2}|x - y|,
\]

where \(x = (x_j)_{1 \leq j \leq n}\). If both \(\omega\) and \(\sigma\) are doubling, then (1-18) holds for \((T_j)\) and \((T^+_j)\) for all \(1 \leq j \leq n\) if and only if both (1-19) and (1-14) hold for \((T_j)\) and \((T^+_j)\) for all \(1 \leq j \leq n\).

Note that the second condition (1-19) is a stronger condition than we would like: it is the \(L^p\) inequality, applied to functions bounded by 1 and supported on a cube \(Q\), but with the \(L^p(\sigma)\) norm of \(1_Q\) on the right side. It is easy to see that the bounded function \(g\) in (1-19) can be replaced by \(\chi_E\) for every compact subset \(E\) of \(Q\). Indeed if \(L\) ranges over all linearizations of \(T\), then with

\[g_{h, Q, L} = L^*(\chi_Q h\omega)/|L^*(\chi_Q h\omega)|\]
we have

\[
\begin{align*}
\sup_{|g| \leq 1} \int_Q T_\sharp(\chi_Q g \sigma)^p \omega &= \sup_{|g| \leq 1} \sup_L \sup_{\|h\|_{L^p(\omega)} \leq 1} \left| \int_Q (\chi_Q g \sigma) h \omega \right| \\
&= \sup_L \sup_{\|h\|_{L^p(\omega)} \leq 1} \left| \int_Q (\chi_Q h \omega) g \sigma \right| \\
&= \sup_L \int_Q (\chi_Q h \omega) g_{h,Q,L} \sigma \\
&\leq \sup_{\|h\|_{L^p(\omega)} \leq 1} \int_Q T_\sharp(\chi_Q g_{h,Q,L} \sigma)^p \omega.
\end{align*}
\]

Since \(g_{h,Q,L} \) takes on only the values \(\pm 1 \), it is easy to see that we can take \(g = \chi_E \). Point (3) is again easy, just as in the previous weak-type theorem.

And in (4), we note that the truncations, in the way that we formulate them, dominate the maximal function, so that our assumption on \(\mathcal{M} \) in (1)–(3) is not unreasonable. The main result of [Nazarov et al. 2010] assumes \(p = 2 \) and that \(T \) is the Hilbert transform, and makes similar kinds of assumptions. In fact it is essentially the same as our result in the case \(p = 2 \), but without doubling on \(\sigma \) and only for \(T \) and not \(T_5 \) or \(T_\sharp \). Finally, we observe that by our definition of the truncation \(T_\sharp \), we obtain in point (4) a characterization for doubling measures of the strong-type inequality for appropriate families of standard singular integrals and their adjoints, including the Hilbert and Riesz transforms; see Lemma 2.12.

We don’t know if the bounded function \(g \) in condition (1-19) can be replaced by the constant function 1.

We now give a characterization of the strong-type weighted norm inequality for the individual strongly maximal Hilbert transform \(T_\sharp \) when \(1 < p < \infty \) and the measure \(\sigma \) is doubling. If \(p > 2 \) we use an extra necessary condition (see (1-24)) that involves a “dyadic” Poisson function \(\sum_{\ell=0}^{\infty} (2^{-\ell} / |I^{(\ell)}|) \chi_{I^{(\ell)}}(y) \), where \(I \) is a dyadic interval and \(I^{(\ell)} \) denotes its \(\ell \)-th ancestor in the dyadic grid, that is, the unique dyadic interval containing \(I \) with \(|I^{(\ell)}| = 2^\ell |I| \). This condition is a variant of the pivotal condition of Nazarov, Treil and Volberg in [2010]; when \(1 < p \leq 2 \) it is a consequence of the \(A_p \) condition (1-8).

Theorem 1.10. Suppose that \(\sigma \) and \(\omega \) are positive locally finite Borel measures on \(\mathbb{R} \) with \(\sigma \) doubling, let \(1 < p < \infty \), and let \(T_\sharp \) be the strongly maximal Hilbert transform. Then \(T_\sharp \) is strong type \((p, p)\) with respect to \((\sigma, \omega)\), that is,

\[
\|T_\sharp(f, \sigma)\|_{L^p(\omega)} \leq C\|f\|_{L^p(\sigma)},
\]

for all \(f \) bounded with compact support if and only if the following four conditions hold. In the case \(1 < p \leq 2 \), the fourth condition (1-24) is implied by the \(A_p \) condition (1-8), and so in this case we only need the first three conditions below:
The dual $T^\#$ interval testing condition
\[
\int_Q T^\#(\chi_Q f \sigma) \, d\omega \leq C \left(\int_Q |f|^p \, d\sigma\right)^{1/p} \left(\int_Q d\omega\right)^{1/p'}
\]
holds for all intervals Q and $f \in L^p_Q(\sigma)$.

The forward $T^\#$ testing condition
\[
\int_Q T^\#(\chi_E \sigma)^p \, d\omega \leq C \int_Q d\sigma
\]
holds for all intervals Q and all compact subsets E of Q.

The strengthened A_p condition
\[
\left(\int_R \left(\frac{|Q|}{|Q| + |x - x_Q|}\right)^p d\omega(x)\right)^{1/p} \left(\int_R \left(\frac{|Q|}{|Q| + |x - x_Q|}\right)^{p'} d\sigma(x)\right)^{1/p'} \leq C |Q|
\]
holds for all intervals Q.

The Poisson condition
\[
\int_R \left(\sum_{r=1}^{\infty} |I_r| \sigma |I_r|^{p' - 1} \sum_{\ell=0}^{\infty} 2^{-\ell} \chi_{(I_r)^{(\ell)}}(y)\right)^p d\omega(y) \leq C \sum_{r=1}^{\infty} |I_r| \sigma |I_r|^{p'}
\]
holds for all pairwise disjoint decompositions $Q = \bigcup_{r=1}^{\infty} I_r$ of the dyadic interval Q into dyadic intervals I_r, for any fixed dyadic grid.

Remark 1.11. The strengthened A_p condition (1-23) can be replaced with the weaker “half” condition where the first factor on the left is replaced by $(\int_Q d\sigma)^{1/p}$. We do not know if the first three conditions suffice when $p > 2$.

2. Overview of the proofs and general principles

If Q is a cube, then $\ell(Q)$ is its side length, $|Q|$ is its Lebesgue measure and for a positive Borel measure ν, $|Q|_\nu = \int_Q d\nu$ is its ν-measure.

2.1. Calderón–Zygmund decompositions. Our starting place is the argument in [Sawyer 1988] used to prove a two weight norm inequality for fractional integral operators on Euclidean space. Of course the fractional integral is a positive operator with a monotone kernel, properties we do not have in the current setting.

A central tool arises from the observation that for any positive Borel measure μ, one has the boundedness of a maximal function associated with μ. Define the dyadic μ-maximal operator \mathcal{M}^d_μ by
\[
\mathcal{M}^d_\mu f(x) = \sup_{Q \in \mathcal{D}} \frac{1}{|Q|_\mu} \int_Q |f| \mu,
\]
with the supremum taken over all dyadic cubes \(Q \in \mathcal{D} \) containing \(x \). It is immediate to check that \(M_{\mu}^{dy} \) satisfies the weak-type \((1,1)\) inequality, and the \(L^\infty(\mu) \) bound is obvious. Hence we have

\[
\int (M_{\mu}^{dy} f)^p \mu \leq C \int f^p \mu \quad \text{for } f \geq 0 \text{ on } \mathbb{R}^n.
\] (2-2)

This observation places certain Calderón–Zygmund decompositions at our disposal. Exploitation of this brings in the testing condition (1-19) involving the bounded function \(g \) on a cube \(Q \), and indeed, \(g \) turns out to be the “good” function in a Calderón–Zygmund decomposition of \(f \) on \(Q \). The associated “bad” function requires the dual testing condition (1-14) as well.

2.2. Edge effects of dyadic grids.

Our operators are not dyadic operators, nor — in contrast to the fractional integral operators — can they be easily obtained from dyadic operators. This leads to the necessity of considering for instance triples of dyadic cubes, which are not dyadic.

Also, dyadic grids distinguish points by for instance making some points on the boundary of many cubes. As our measures are arbitrary, they could conspire to assign extra mass to some of these points. To address this point, Nazarov, Treil and Volberg [2010; 2003; 1997] use a random shift of the grid.

A random approach would likely work for us as well, though the argument would be different from those in the cited papers above. Instead, we will use a nonrandom technique of shifted dyadic grid from [Muscalu et al. 2002], which goes back to P. Jones and J. Garnett. Define a \textit{shifted dyadic grid} to be the collection of cubes \(\mathcal{D}^\alpha = \{2^j (k + [0, 1]^n + (-1)^j \alpha) : j \in \mathbb{Z}, k \in \mathbb{Z}^n \} \) for some \(\alpha \in \{0, \frac{1}{3}, \frac{2}{3}\}^n \).

(2-3)

The basic properties of these collections are these: In the first place, each \(\mathcal{D}^\alpha \) is a grid, that is, for \(Q, Q' \in \mathcal{D}^\alpha \) we have \(Q \cap Q' \in \{\emptyset, Q, Q'\} \) and \(Q \) is a union of \(2^n \) elements of \(\mathcal{D}^\alpha \) of equal volume. In the second place (and this is the novel property for us), for any cube \(Q \subset \mathbb{R}^n \) there is a choice of some \(\alpha \) and some \(Q' \in \mathcal{D}^\alpha \) such that \(Q \subset (9/10)Q' \) and \(|Q'| \leq C|Q| \).

We define the analogues of the dyadic maximal operator in (2-1), namely

\[
M^\alpha_{\mu} f(x) = \sup_{Q \in \mathcal{D}^\alpha} \frac{1}{|Q|} \int_Q |f| \mu.
\] (2-4)

These operators clearly satisfy (2-2). Shifted dyadic grids will return in Section 4.5.

2.3. A maximum principle.

A second central tool is a “maximum principle” (or good \(\lambda \) inequality) that will permit one to localize large values of a singular integral, provided the maximal function is bounded. It is convenient for us to describe this in conjunction with another fundamental tool of this paper, a family of Whitney decompositions.

We begin with the Whitney decompositions. Fix a finite measure \(\nu \) with compact support on \(\mathbb{R}^n \) and for \(k \in \mathbb{Z} \), let

\[
\Omega_k = \{x \in \mathbb{R}^n : T_k \nu(x) > 2^k \}.
\] (2-5)
Note that $\Omega_k \neq \mathbb{R}^n$ has compact closure for such v. Fix an integer $N \geq 3$. We can choose $R_W \geq 3$ sufficiently large, depending only on the dimension and N, such that there is a collection of cubes $\{Q_j^k\}_j$ that satisfy the following properties:

(disjoint cover) $\Omega_k = \bigcup_j Q_j^k$ and $Q_j^k \cap Q_i^k = \emptyset$ if $i \neq j$,

(Whitney condition) $R_W Q_j^k \subset \Omega_k$ and $3R_W Q_j^k \cap \Omega_k^c \neq \emptyset$ for all k, j,

(bounded overlap) $\sum_j \chi_{NQ_j^k} \leq C \chi_{\Omega_k}$ for all k,

(crowd control) $\#\{Q_j^k : Q_j^k \cap NQ_j^k \neq \emptyset\} \leq C$ for all k, j,

(nested property) $Q_j^k \subsetneq Q_i^\ell$ implies $k > \ell$.

Indeed, one should choose the $\{Q_j^k\}_j$ satisfying the Whitney condition, and then show that the other properties hold. The different combinatorial properties above are fundamental to the proof. And alternate Whitney decompositions are constructed in Section 4.9.1 below.

Remark 2.4. Our use of the Whitney decomposition and the maximum principle are derived from the two weight fractional integral argument of Sawyer; see [1988, Section 2]. In particular, the properties above are as Sawyer’s, aside from the crowd control property above, which is $N = 3$ there.

Remark 2.5. In our notation for the Whitney cubes, the superscript indicates a “height” and the subscript an arbitrary enumeration of the cubes. We will use super- and subscripts below in this manner consistently throughout the paper. It is important to note that a fixed cube Q can arise in many Whitney decompositions: There are integers $K_-(Q) \leq K_+(Q)$ with $Q = Q_j^{k(j)}$ for some choice of $j(k)$ for all $K_-(Q) \leq k \leq K_+(Q)$. (The last point follows from the nested property.) There is no a priori upper bound on $K_+(Q) - K_-(Q)$.

Lemma 2.6 (maximum principle). Let v be a finite (signed) measure with compact support. For any cube Q_j^k as above, we have the pointwise inequality

$$\sup_{x \in Q_j^k} T_\ast(\chi_{(3Q_j^k)^c})v(x) \leq 2^k + CP(Q_j^k, v) \leq 2^k + CM(Q_j^k, v),$$

(2-7)

where $P(Q, v)$ and $M(Q, v)$ are defined by

$$P(Q, v) \equiv \frac{1}{|Q|} \int_Q d|v| + \sum_{\ell=0}^{\infty} \frac{\delta(2^{-\ell})}{|2^{\ell+1}Q \setminus 2^\ell Q|} \int_{2^\ell+1 Q \setminus 2^\ell Q} d|v|,$$

(2-8)

$$M(Q, v) \equiv \sup_{Q' \supset Q} \frac{1}{|Q'|} \int_{Q'} d|v|.$$

The bound in terms of $P(Q, v)$ should be regarded as one in terms of a modified Poisson integral. It is both slightly sharper than that of $M(Q, v)$, and a linear expression in $|v|$, a fact will be used in the proof of the strong-type estimates.
Proof. To see this, take \(x \in Q_j^k \) and note that for each \(\varepsilon > 0 \) there is \(\varepsilon \) with \(\ell(Q_j^k) < \max_{1 \leq j \leq n} \varepsilon_j < R < \infty \) and \(\theta \in [0, 2\pi) \) such that

\[
T_\varepsilon(x(3Q_j^k)^c)\nu(x) \leq (1 + \eta) \left| \int_{(3Q_j^k)^c} K(x, y)\zeta_\varepsilon(x-y)\eta_R(x-y)\nu(y) \right|
= (1 + \eta)e^{i\theta}T_{\varepsilon, R}(x(3Q_j^k)^c)\nu(x).
\]

For convenience we take \(\eta = 0 \) in the sequel. By the Whitney condition in (2-6), there is a point \(z \in 3R_W Q_j^k \cap \Omega_k \) and it now follows that (remember that \(\ell(Q_j^k) < \max_{1 \leq j \leq n} \varepsilon_j \))

\[
|T_{\varepsilon, R}(x(3Q_j^k)^c)\nu(x) - T_{\varepsilon, R}(x)\nu(z)|
\leq C \frac{1}{|6R_W Q_j^k|} \int_{6R_W Q_j^k} d|v| + |T_{\varepsilon, R}(x(6R_W Q_j^k)^c)\nu(x) - T_{\varepsilon, R}(x(6R_W Q_j^k)^c)\nu(z)|
\]

\[
= C \frac{1}{|6R_W Q_j^k|} \int_{6R_W Q_j^k} d|v|
+ \int_{(6R_W Q_j^k)^c} |K(x, y)\zeta_\varepsilon(x-y)\eta_R(x-y) - K(z, y)\zeta_\varepsilon(z-y)\eta_R(z-y)|d|v|(y)
\leq C \frac{1}{|6R_W Q_j^k|} \int_{6R_W Q_j^k} d|v| + C \int_{(6R_W Q_j^k)^c} \delta(|x-z|/|x-y|) \frac{1}{|x-y|^n} d|v|(y)
\leq CP(Q_j^k, v).
\]

Thus

\[
T_\varepsilon(x(3Q_j^k)^c)\nu(x) \leq |T_\varepsilon v(z)| + CP(Q_j^k, v) \leq 2^k + CP(Q_j^k, v),
\]

which yields (2-7) since \(P(Q, v) \leq CM(Q, v) \).

\[
\]

2.7. Linearizations. We now make comments on the linearizations of our maximal singular integral operators. We would like, at different points, to treat \(T_\varepsilon \) as a linear operator, which of course it is not. Nevertheless \(T_\varepsilon \) is a pointwise supremum of the linear truncation operators \(T_{\varepsilon, R} \), and as such, the supremum can be linearized with measurable selection of the parameters \(\varepsilon \) and \(R \), as was just done in the previous proof. We make this a definition.

Definition 2.8. We say that \(L \) is a linearization of \(T_\varepsilon \) if there are measurable functions \(\varepsilon(x) \in (0, \infty)^n \) and \(R(x) \in (0, \infty) \) with \(1/4 \leq \varepsilon_i/\varepsilon_j \leq 4 \), \(\max_{1 \leq j \leq n} \varepsilon_j < R(x) < \infty \) and \(\theta(x) \in [0, 2\pi) \) such that

\[
L f(x) = e^{i\theta(x)}T_{\varepsilon(x), R(x)} f(x) \quad \text{for} \quad x \in \mathbb{R}^n.
\]

For fixed \(f \) and \(\delta > 0 \), we can always choose a linearization \(L \) so that \(T_\varepsilon f(x) \leq (1 + \delta)L f(x) \) for all \(x \). In a typical application of this lemma, one takes \(\delta \) to be one.

Note that condition (1-19) is obtained from inequality (1-18) by testing over \(f \) of the form \(f = \chi_{Q} g \) with \(|g| \leq 1 \), and then restricting integration on the left to \(Q \). By passing to linearizations \(L \), we can
“dualize” (1-14) to the testing conditions
\[
\int_Q |L^*(\chi_Q \omega)(x)|^{p'} \, d\sigma(x) \leq C_2 \int_Q \omega(x), \tag{2-10}
\]
or equivalently (note that in (1-19) the presence of \(g\) makes a difference, but not here),
\[
\int_Q |L^*(\chi_Q g\omega)(x)|^{p'} \, d\sigma(x) \leq C_2 \int_Q \omega(x) \quad \text{for } |g| \leq 1,
\tag{2-11}
\]
with the requirement that these inequalities hold uniformly in all linearizations \(L\) of \(T_\varepsilon\).

While the smooth truncation operators \(T_{\varepsilon,R}\) are essentially self-adjoint, the dual of a linearization \(L\) is generally complicated. Nevertheless, the dual \(L^*\) does satisfy one important property, which plays a crucial role in the proof of Theorem 1.9, the \(L^p\)-norm inequalities.

Lemma 2.9. \(L^*\mu\) is \(\delta\)-Hölder continuous (where \(\delta\) is the Dini modulus of continuity of the kernel \(K\)) with constant \(CP(Q, \mu)\) on any cube \(Q\) satisfying \(\int_{3Q} d|\mu| = 0\), that is,
\[
|L^*\mu(y) - L^*\mu(y')| \leq CP(Q, \mu)\delta\left(\frac{|y - y'|}{\ell(Q)}\right) \quad \text{for } y, y' \in Q. \tag{2-12}
\]

Here, recall the definition (2-8) and that \(P(Q, \mu) \leq CM(Q, \mu)\).

Proof. Suppose \(L\) is as in (2-9). Then for any finite measure \(\nu\),
\[
Lv(x) = e^{i\theta(x)} \int \xi_\varepsilon(x - y) \eta_{R(x)}(x - y) K(x, y) d\nu(y).
\]
Fubini’s theorem shows that the dual operator \(L^*\) is given on a finite measure \(\mu\) by
\[
L^*\mu(y) = \int \xi_\varepsilon(x) (x - y) \eta_{R(x)}(x - y) K(x, y) e^{i\theta(x)} d\mu(x). \tag{2-13}
\]
For \(y, y' \in Q\) and \(|\mu|(3Q) = 0\), we thus have
\[
L^*\mu(y) - L^*\mu(y') = \int \{(\xi_\varepsilon(x) \eta_{R(x)}) (x - y) - (\xi_\varepsilon(x) \eta_{R(x)}) (x - y')\} K(x, y) e^{i\theta(x)} d\mu(x)
+ \int (\xi_\varepsilon(x) \eta_{R(x)}) (x - y') (K(x, y) - K(x, y')) e^{i\theta(x)} d\mu(x),
\]
from which (2-12) follows easily if we split the two integrals in \(x\) over dyadic annuli centered at the center of \(Q\).

2.10. Control of maximal functions. Next we record the facts that \(T\) and \(T_\varepsilon\) control \(M\) for many (sets of) standard singular integrals \(T\), including the Hilbert transform, the Beurling transform and the sets of Riesz transforms in higher dimensions.

Lemma 2.11. Suppose that \(\sigma\) and \(\omega\) have no point masses in common, and that \(\{K_j\}_{j=1}^d\) is a collection of standard kernels satisfying (1-9) and (1-16). If the corresponding operators \(T_j\) given by (1-12) satisfy
\[
\|\chi_T T_j(f, \sigma)\|_{L_p, \infty(\omega)} \leq C\|f\|_{L_p(\sigma)} \quad \text{where } E = \mathbb{R}^n \setminus \text{supp } f,
\]
for $1 \leq j \leq J$, then the two weight A_p condition (1-8) holds, and hence also the weak-type two weight inequality (1-7).

Proof. Part of the “one weight” argument of [Stein and Shakarchi 2005, page 21] yields the asymmetric two weight A_p condition

$$|Q|_\omega |Q'|_{\sigma}^{p-1} \leq C |Q|^p,$$

where Q and Q' are cubes of equal side length r and distance approximately $C_0 r$ apart for some fixed large positive constant C_0 (for this argument we choose the unit vector u in (1-16) to point in the direction from the center of Q to the center of Q', and then with j as in (1-16), C_0 is chosen large enough by (1-9) that (1-16) holds for all unit vectors u pointing from a point in Q to a point in Q'). In the one weight case treated in [Stein and Shakarchi 2005], it is easy to obtain from this (even for a single direction u) the usual (symmetric) A_p condition (1-8). Here we will instead use our assumption that σ and ω have no point masses in common for this purpose.

So fix an open dyadic cube Q_0 in \mathbb{R}^n, say with side length 1, let $Q_0 = Q_0 \times Q_0$ and set

$$\Omega = \{ Q = Q \times Q' \text{ dyadic} : Q \subset Q_0 \text{ and (2-14) holds for } Q \text{ and } Q' \}.$$

Note that with $Q = Q \times Q'$, inequality (2-14) can be written

$$A_p(\omega, \sigma ; Q) \leq C |Q|^{p/2},$$

where

$$A_p(\omega, \sigma ; Q) = |Q|_\omega |Q'|_{\sigma}^{p-1}.$$

Here $A_2(\omega, \sigma ; Q) = |Q|_{\omega \times \sigma}$, where $\omega \times \sigma$ denotes product measure on $\mathbb{R}^n \times \mathbb{R}^n$. For $1 < p < \infty$ we easily see that if $Q_0 = \bigcup_\alpha Q_\alpha$ is a pairwise disjoint union of cubes Q_α, then the Lebesgue measures satisfy

$$\sum_\alpha |Q_\alpha|^{p/2} \leq C |Q_0 \times Q_0|^{p/2} = C |Q_0|^p.$$

Suppose first that $1 < p \leq 2$. Divide Q_0 into $2^n \times 2^n = 4^n$ congruent subcubes $Q_0^1, \ldots, Q_0^{4^n}$ of side length $\frac{1}{2}$, and set aside those $Q_0^j \in \Omega$ (those for which (2-14) holds) into a collection of stopping cubes Γ. Continue to divide the remaining Q_0^j into 4^n congruent subcubes $Q_0^{j,1}, \ldots, Q_0^{j,4^n}$ of side length $\frac{1}{4}$, and again, set aside those $Q_0^{j,t} \in \Omega$ into Γ, and continue subdividing those that remain. We continue with such subdivisions for N generations so that all the cubes not set aside into Γ have side length 2^{-N}. The important property these cubes have is that they all lie within distance $r 2^{-N}$ of the diagonal $\mathbb{D} = \{(x, x) : (x, x) \in Q_0\}$ in $Q_0 = Q_0 \times Q_0$ since (2-14) holds for all pairs of cubes Q and Q' of equal side length r having distance approximately $C_0 r$ apart. Enumerate the cubes in Γ as $\{Q_\alpha\}_\alpha$ and those remaining that are not in Γ as $\{P_\beta\}_\beta$. Thus we have the pairwise disjoint decomposition

$$Q_0 = \left(\bigcup_\alpha Q_\alpha \right) \cup \left(\bigcup_\beta P_\beta \right).$$
In the case \(p = 2 \), the countable additivity of the product measure \(\omega \times \sigma \) shows that
\[
\mathcal{A}_2(\omega, \sigma; Q_0) = \sum_{\alpha} \mathcal{A}_2(\omega, \sigma; Q_{\alpha}) + \sum_{\beta} \mathcal{A}_2(\omega, \sigma; P_{\beta}).
\]

For the more general case \(1 < p \leq 2 \), note that at each division described above, we have using \(0 < p - 1 \leq 1 \)
\[
\mathcal{A}_p(\omega, \sigma; Q_0) = \left(\sum_{i=1}^{2^n} |Q_{0i}|_\omega \right) \left(\sum_{i=1}^{2^n} |Q_{0i}|_\sigma \right)^{p-1} \leq \left(\sum_{i=1}^{2^n} |Q_{0i}|_\omega \right) \left(\sum_{i=1}^{2^n} |Q_{0i}|_\sigma^{p-1} \right) = \sum_{i=1}^{2^n} \mathcal{A}_p(\omega, \sigma; Q_{0i}^i),
\]
and so on. It follows that
\[
\mathcal{A}_p(\omega, \sigma; Q_0) \leq \sum_{\alpha} \mathcal{A}_p(\omega, \sigma; Q_{\alpha}) + \sum_{\beta} \mathcal{A}_p(\omega, \sigma; P_{\beta}) \leq C \sum_{\alpha} |Q_{\alpha}|^p + \sum_{\beta} \mathcal{A}_p(\omega, \sigma; P_{\beta}).
\]

Since \(\omega \) and \(\sigma \) have no point masses in common, it is not hard to show, using that the side length of \(P_{\beta} = P_{\beta} \times P'_{\beta} \) is \(2^{-N} \) and \(\text{dist}(P_{\beta}, \mathbb{S}) \leq C2^{-N} \), that we have the limit
\[
\sum_{\beta} \mathcal{A}_p(\omega, \sigma; P_{\beta}) \to 0 \quad \text{as} \quad N \to \infty.
\]
Indeed, if \(\sigma \) has no point masses at all, then
\[
\sum_{\beta} \mathcal{A}_p(\omega, \sigma; P_{\beta}) = \sum_{\beta} |P_{\beta}|_\omega |P'_{\beta}|_\sigma^{p-1} \leq \left(\sum_{\beta} |P_{\beta}|_\omega \right) \sup_{\beta} |P'_{\beta}|_\sigma^{p-1} \leq C |Q_0|_\omega \sup_{\beta} |P'_{\beta}|_\sigma^{p-1} \to 0 \quad \text{as} \quad N \to \infty.
\]
If \(\sigma \) contains a point mass \(c_\delta x \), then
\[
\sum_{\beta: x \in P'_{\beta}} \mathcal{A}_p(\omega, \sigma; P_{\beta}) \leq \left(\sum_{\beta: x \in P'_{\beta}} |P_{\beta}|_\omega \right) \sup_{\beta: x \in P'_{\beta}} |P'_{\beta}|_\sigma^{p-1} \leq C \left(\sum_{\beta: x \in P'_{\beta}} |P_{\beta}|_\omega \right) \to 0 \quad \text{as} \quad N \to \infty
\]
since \(\omega \) has no point mass at \(x \). The argument in the general case is technical, but involves no new ideas, and we leave it to the reader. We thus conclude that
\[
\mathcal{A}_p(\omega, \sigma; Q_0) \leq C |Q_0|^p,
\]
which is (1-8). The case \(2 \leq p < \infty \) is proved in the same way using that (2-14) can be written
\[
\mathcal{A}_p'(\sigma, \omega; Q_{\alpha}) \leq C' |Q_{\alpha}|^{p'/2}.
\]
Lemma 2.12. If \(\{T_j\}_{j=1}^n \) satisfies (1-20), then
\[
\mathcal{M}v(x) \leq C \sum_{j=1}^n (T_j)_c v(x) \quad \text{for } x \in \mathbb{R}^n, \text{ with } v \geq 0 \text{ a finite measure with compact support.}
\]

Proof. We prove the case \(n = 1 \), the general case being similar. Then with \(T = T_1 \) and \(r > 0 \) we have
\[
\Re(T_{r,4r/100}v(x) - T_{r,4r,100}v(x)) = \int (\xi_{r/4}(y-x) - \xi_4(y-x)) \Re K(x, y) d\nu(y)
\]
\[
\geq \frac{c}{r} \int_{|x+r/2, x+2r]} d\nu(y).
\]
Thus
\[
T_c v(x) \geq \max\{|T_{r,4r/100}v(x)|, |T_{r,4r,100}v(x)|\} \geq \frac{c}{r} \int_{|x+r/2, x+2r]} d\nu(y),
\]
and similarly
\[
T_c v(x) \geq \frac{c}{r} \int_{|x-2r, x-r/2]} d\nu(y).
\]
It follows that
\[
\mathcal{M}v(x) \leq \sup_{r > 0} \frac{1}{4r} \int_{|x-2r, x+2r]} d\nu(y)
\]
\[
= \sup_{r > 0} \sum_{k=0}^{\infty} 2^{-k} \frac{1}{2^{2-k}r} \int_{|x-2^{k-1}r, x-2^{1-k}r|} d\nu(y) \leq CT_c v(x). \quad \Box
\]

Finally, we will use the following covering lemma of Besicovitch type for multiples of dyadic cubes (the case of triples of dyadic cubes arises in (4-50) below).

Lemma 2.13. Let \(M \) be an odd positive integer, and suppose that \(\Phi \) is a collection of cubes \(P \) with bounded diameters and having the form \(P = MQ \), where \(Q \) is dyadic (a product of clopen dyadic intervals). If \(\Phi^* \) is the collection of maximal cubes in \(\Phi \), that is, \(P^* \in \Phi^* \) provided there is no strictly larger \(P \) in \(\Phi \) that contains \(P^* \), then the cubes in \(\Phi^* \) have finite overlap at most \(M^n \).

Proof. Let \(Q_0 = [0, 1)^n \) and assign labels 1, 2, 3, \ldots, \(M^n \) to the dyadic subcubes of side length one of \(MQ_0 \). We say that the subcube labeled \(k \) is of type \(k \), and we extend this definition by translation and dilation to the subcubes of \(MQ \) having side length that of \(Q \). Now we simply observe that if \(\{P^*_i\}_i \) is a set of cubes in \(\Phi^* \) containing the point \(x \), then for a given \(k \), there is at most one \(P^*_i \) that contains \(x \) in its subcube of type \(k \). The reason is that if \(P^*_j \) is another such cube and \(\ell(P^*_j) \leq \ell(P^*_i) \), we must have \(P^*_j \subset P^*_i \) (draw a picture in the plane for example). \(\Box \)

2.14. Preliminary precaution. Given a positive locally finite Borel measure \(\mu \) on \(\mathbb{R}^n \), there exists a rotation such that all boundaries of rotated dyadic cubes have \(\mu \)-measure zero (see [Mateu et al. 2000] where they actually prove a stronger assertion when \(\mu \) has no point masses, but our conclusion is obvious for a sum of point mass measures). We will assume that such a rotation has been made so that all
boundaries of rotated dyadic cubes have \((\omega + \sigma)\)-measure zero, where \(\omega\) and \(\sigma\) are the positive Borel measures appearing in the theorems above (of course \(\sigma\) doubling implies that \(\sigma\) cannot contain any point masses, but this argument works as well for general \(\sigma\) as in the weak type theorem). While this assumption is not essential for the proof, it relieves the reader of having to consider the possibility that boundaries of dyadic cubes have positive measure at each step of the argument below.

Recall also (see for example [Rudin 1987, Theorem 2.18]) that any positive locally finite Borel measure on \(\mathbb{R}^n\) is both inner and outer regular.

3. The proof of Theorem 1.8: Weak-type inequalities

We begin with the necessity of condition (1-14):

\[
\int_Q T_\sharp(\chi_Q f \sigma) \omega = \int_0^\infty \min\{Q, \{T_\sharp(\chi_Q f \sigma) > \lambda\}\} \, d\lambda \\
\leq \left(\int_0^A + \int_A^\infty\right) \min\{Q, C\lambda^{-p} \int |f|^p \, d\sigma\} \, d\lambda \\
\leq A|Q|_\omega + CA^{1-p} \int |f|^p \, d\sigma = (C + 1)|Q|_\omega^{1/p'} \left(\int |f|^p \, d\sigma\right)^{1/p},
\]

if we choose \(A = (\int |f|^p \, d\sigma/|Q|)^{1/p}\).

Now we turn to proving (1-13), assuming both (1-14) and (1-7), and moreover that \(f\) is bounded with compact support. We will prove the quantitative estimate

\[
\|T_\sharp f \sigma\|_{L^p(\omega)} \leq C(\mathcal{A} + \mathcal{T}_\sharp) \|f\|_{L^p(\sigma)},
\]

(3-1)

\[
\mathcal{A} = \sup_{\|f\|_{L^p(\sigma)} = 1} \sup_{\lambda > 0} \lambda \|\mathcal{M}(f \sigma) > \lambda\|_{\omega}^{1/p},
\]

(3-2)

\[
\mathcal{T}_\sharp = \sup_{\|f\|_{L^p(\sigma)} = 1} \sup_{Q} |Q|_\omega^{-1/p'} \int_Q T_\sharp(\chi_Q f \sigma)(x) \, d\omega(x).
\]

(3-3)

We should emphasize that the term (3-2) is comparable to the two weight \(A_p\) condition (1-8).

Standard considerations [Sawyer 1984, Section 2] show that it suffices to prove the following good-\(\lambda\) inequality: There is a positive constant \(C\) such that for \(\beta > 0\) sufficiently small, and provided

\[
\sup_{0 < \lambda < \Lambda} \lambda^p \|\{x \in \mathbb{R}^n : T_\sharp f \sigma(x) > \lambda\}\|_\omega < \infty \quad \text{for} \quad \Lambda < \infty,
\]

(3-4)

we have this inequality:

\[
\|\{x \in \mathbb{R}^n : T_\sharp f \sigma(x) > 2\lambda\ \text{and} \ \mathcal{M}(f \sigma(x) \leq \beta \lambda\}\|_\omega \\
\leq C\beta \mathcal{T}_\sharp \sup_{\|f\|_{L^p(\sigma)} = 1} \|\{x \in \mathbb{R}^n : T_\sharp f \sigma(x) > \lambda\}\|_\omega + C\beta^{-p}\lambda^{-p} \int |f|^p \, d\sigma.
\]

(3-5)

Our presumption (3-4) holds due to the \(A_p\) condition (1-8) and the fact that

\[
\{x \in \mathbb{R}^n : T_\sharp f \sigma(x) > \lambda\} \subset B(0, c\lambda^{-1/n}) \quad \text{for} \quad \lambda > 0 \text{ small},
\]
Hence it is enough to prove (3-5).

To prove (3-5) we choose $\lambda = 2^k$ and apply the decomposition in (2-6). In this argument, we can take k to be fixed, so that we can suppress its appearance as a superscript in this section. (When we come to L^p estimates, we will not have this luxury.)

Define

$$E_j = \{ x \in Q_j : T_\sigma f (x) > 2\lambda \text{ and } M f (x) \leq \beta \lambda \}.$$

Then for $x \in E_j$, we can apply Lemma 2.6 to deduce

$$T_\sigma (\chi_{3Q_j} f) (x) \leq (1 + C\beta) \lambda.$$ \hspace{1cm} (3-6)

If we take $\beta > 0$ so small that $1 + C\beta \leq \frac{3}{2}$, then (3-6) implies that for $x \in E_j$

$$2\lambda < T_\sigma f (x) \leq T_\sigma \chi_{3Q_j} f (x) + T_\sigma (\chi_{3Q_j}^r f) (x) \leq T_\sigma \chi_{3Q_j} f (x) + \frac{3}{2} \lambda.$$

Integrating this inequality with respect to ω over E_j we obtain

$$\lambda |E_j|_\omega \leq 2 \int_{E_j} (T_\sigma \chi_{3Q_j} f) \omega.$$ \hspace{1cm} (3-7)

The disjoint cover condition in (2-6) shows that the sets E_j are disjoint, and this suggests we should sum their ω-measures. We split this sum into two parts, according to the size of $|E_j|_\omega / |3Q_j|_\omega$. The left side of (3-5) satisfies

$$\sum_j |E_j|_\omega \leq \beta \sum_{j : |E_j|_\omega \leq \beta |3Q_j|_\omega} |3Q_j|_\omega + \beta^{-p} \sum_{j : |E_j|_\omega > \beta |3Q_j|_\omega} |E_j|_\omega \left(\frac{2}{\lambda |3Q_j|_\omega} \int_{E_j} (T_\sigma \chi_{3Q_j} f) \omega \right)^p.$$

Call the added pieces of this I and II. Now

$$I \leq \beta \sum_j |3Q_j^k|_\omega \leq C\beta |\Omega|_\omega,$$

by the finite overlap condition in (2-6). From (1-14) with $Q = 3Q_j$ we have

$$II \leq \left(\frac{2}{\beta \lambda} \right)^p \sum_j |E_j|_\omega \left(\frac{1}{|3Q_j|_\omega} \int_{E_j} (T_\sigma \chi_{3Q_j} f) \omega \right)^p \leq C \left(\frac{2}{\beta \lambda} \right)^p \sup_k \sum_j |E_j|_\omega \left(\frac{1}{|3Q_j|_\omega} |3Q_j|_\omega \right)^{p-1} \int_{3Q_j} |f|^p \, d\sigma \leq C \left(\frac{2}{\beta \lambda} \right)^p \sup_k \int |f|^p \, d\sigma,$$

by the finite overlap condition in (2-6) again. This completes the proof of the good-λ inequality (3-5).

The proof of assertion 2 regarding T_\flat is similar. Assertion 3 was discussed earlier and assertion 4 follows readily from assertion 2 and Lemma 2.11. \hfill \Box
4. The proof of Theorem 1.9: Strong-type inequalities

Since conditions (1-19) and (1-14) are obviously necessary for (1-18), we turn to proving the weighted inequality (1-18) for the strongly maximal singular integral T_\sharp.

4.1. The quantitative estimate. In particular, we will prove
\[
\|T_\sharp f \sigma\|_{L^p(\omega)} \leq C\left(M + \gamma^2 M_\ast + \gamma^2 \mathcal{I} + \mathcal{I}_\ast\right)\|f\|_{L^p(\sigma)}, \tag{4-1}
\]
where $\gamma \geq 2$ is a doubling constant for the measure σ; see (4-19) below. Note that γ appears only in conjunction with T_\sharp and M_\ast. The norm estimates on the maximal function (4-2) and (4-3) are equivalent to the testing conditions in (1-6) and its dual formulation. The term T_\ast also appeared in (3-3).

4.2. The initial construction. We suppose that both (1-19) and (1-14) hold, that is, (4-4) and (4-5) are finite, and that f is bounded with compact support on \mathbb{R}^n. Moreover, in the case (1-20) holds, we see that (1-19) (the finiteness of (4-4)) implies (1-6) by Lemma 2.12, and so by Theorem 1.2 we may also assume that the maximal operator \mathcal{M} satisfies the two weight norm inequality (1-5). It now follows that $\int (T_\sharp f \sigma)^p \omega < \infty$ for f bounded with compact support. Indeed, $T_\sharp f \sigma \leq C M f \sigma$ far away from the support of f, while $T_\sharp f \sigma$ is controlled by the finiteness of the testing condition (4-4) near the support of f.

Let $\{Q^k_j\}$ be the cubes as in (2-5) and (2-6), with the measure ν that appears in there being $\nu = f \sigma$. We will use Lemma 2.6 with this choice of ν as well. Now define an “exceptional set” associated to Q^k_j to be
\[
E^k_j = Q^k_j \cap (\Omega_{k+1} \setminus \Omega_{k+2}).
\]
See Figure 4.1. One might anticipate the definition of the exceptional set to be more simply $Q^k_j \cap \Omega_{k+1}$. We are guided to this choice by the work on fractional integrals [Sawyer 1988]. And indeed, the choice of exceptional set above enters in a decisive way in the analysis of the bad function at the end of the proof.

We estimate the left side of (1-18) in terms of this family of dyadic cubes $\{Q^k_j\}_{k,j}$ by
\[
\int (T_\sharp f \sigma)^p \omega(dx) \leq \sum_{k \in \mathbb{Z}} (2^{k+2})^p |\Omega_{k+1} \setminus \Omega_{k+2}|_\omega \tag{4-6}
\]
\[
\leq \sum_{k,j} (2^{k+2})^p |E^k_j|_\omega.
\]
Choose a linearization L of $T_{\hat{s}}$ as in (2-9) so that (recall $R(x)$ is the upper limit of truncation)

$$R(x) \leq \frac{1}{2}\ell(Q_{ji}^k) \quad \text{for } x \in E_j^k,$$

and $T_{\hat{s}}(1_{3Q_{ji}^k}f\sigma(x)) \leq 2L(1_{3Q_{ji}^k}f\sigma(x)) + C\frac{1}{|3Q_{ji}^k|} \int_{3Q_{ji}^k} |f|\sigma \quad \text{for } x \in E_j^k.$

For $x \in E_j^k$, the maximum principle (2-7) yields

$$T_{\hat{s}}1_{3Q_{ji}^k}f\sigma(x) \geq T_{\hat{s}}f\sigma(x) - T_{\hat{s}}1_{3Q_{ji}^k}f\sigma(x) > 2^{k+1} - 2^k - CP(Q_{ji}^k, f\sigma) = 2^k - CP(Q_{ji}^k, f\sigma).$$

From (4-7) we conclude that

$$L1_{3Q_{ji}^k}f\sigma(x) \geq 2^{k-1} - CP(Q_{ji}^k, f\sigma).$$

Thus either $2^k \leq 4\inf_{E_j^k}L1_{3Q_{ji}^k}f\sigma$ or $2^k \leq 4CP(Q_{ji}^k, f\sigma) \leq 4CM(Q_{ji}^k, f\sigma).$ So we obtain either

$$|E_j^k|_\omega \leq C2^{-k}\int_{E_j^k} (L1_{3Q_{ji}^k}f\sigma)\omega(dx),$$

or

$$|E_j^k|_\omega \leq C2^{-p} |E_j^k|_\omega M(Q_{ji}^k, f\sigma)^p \leq C2^{-pk}\int_{E_j^k} (Mf\sigma)^p \omega(dx).$$

Now consider the following decomposition of the set of indices (k, j):

$$\mathcal{E} = \{(k, j) : |E_j^k|_\omega \leq \beta|NQ_{ji}^k|_\omega\},$$

$$\mathcal{F} = \{(k, j) : (4-9) \text{ holds}\},$$

$$\mathcal{G} = \{(k, j) : |E_j^k|_\omega > \beta|NQ_{ji}^k|_\omega \text{ and (4-8) holds}\}.$$
where \(0 < \beta < 1\) will be chosen sufficiently small at the end of the argument. (It will be of the order of \(\epsilon^p\) for a small constant \(\epsilon\).) By the “bounded overlap” condition of (2-6), we have
\[
\sum_j \chi_{NQ^j_k} \leq C \quad \text{for } k \in \mathbb{Z}.
\] (4-11)
We then have the corresponding decomposition:
\[
\int (T_{\sigma} f)^p \omega \leq \left(\sum_{(k,j) \in E} + \sum_{(k,j) \in F} + \sum_{(k,j) \in G} \right) (2^{k+2})^p |E_j^k| \omega
\leq \beta \sum_{(k,j) \in E} (2^{k+2})^p |NQ^k_j| \omega + C \sum_{(k,j) \in F} \int_{E_j^k} (Mf \sigma)^p \omega
+ C \sum_{(k,j) \in G} |E_j^k| \omega \left(\frac{1}{\beta|NQ^k_j|} \int_{E_j^k} (L \chi_{3Q^k_j} f \sigma) \omega \right)^p
= J(1) + J(2) + J(3)
\leq C_0 \left(\beta \int (T_{\sigma} f)^p \omega + \beta^{-p} \int |f|^p \sigma \right),
\] (4-13)
where \(C_0 \leq C(M + \gamma^2 M_* + \gamma^2 \Sigma + \Sigma_*)^p\). The last line is the claim that we take up in the remainder of the proof. Once it is proved, note that if we take \(0 < C_0 \beta < \frac{1}{2}\) and use the fact that \(\int (T_{\sigma} f)^p \omega < \infty\) for \(f\) bounded with compact support, we have proved assertion (1) of Theorem 1.9, and in particular (4-1).

The proof of the strong-type inequality requires a complicated series of decompositions of the dominating sums, which are illustrated for the reader’s convenience as a schematic tree in Figure 4.2.

4.3. Two easy estimates.

Note that the first term \(J(1)\) in (4-12) satisfies
\[
J(1) = \beta \sum_{(k,j) \in E} (2^{k+2})^p |NQ^k_j| \omega \leq C \beta \int (T_{\sigma} f)^p \omega,
\]
by the finite overlap condition (4-11). The second term \(J(2)\) is dominated by
\[
C \sum_{(k,j) \in F} \int_{E_j^k} (Mf \sigma)^p \omega \leq C M^p \|f\|_{L^p(\sigma)}^p,
\]
by our assumption (1-5). It is useful to note that this is the only time in the proof that we use the maximal function inequality (1-5) — from now on we use the dual maximal function inequality (1-17).

Remark 4.4. In the arguments below we can use [Sawyer 1988, Theorem 2] to replace the dual maximal function assumption \(M_* < \infty\) with two assumptions, namely a “Poisson two weight A\(_p\) condition” and the analogue of the dual pivotal condition of Nazarov, Treil and Volberg [2010]. The Poisson two weight A\(_p\) condition is in fact necessary for the two weight inequality, but the pivotal conditions are not necessary for the Hilbert transform two weight inequality [Lacey et al. 2011]. On the other hand, the assumption \(M < \infty\) cannot be weakened here, reflecting that our method requires the maximum principle in Lemma 2.6.
Figure 4.2. This is a schematic tree of how the integral $\int (T \sigma f \sigma)^p \omega$ has been, and will continue to be, decomposed. We have suppressed superscripts, subscripts and sums in the tree. Terms in diamonds are further decomposed, while terms in rectangles are final estimates. The edges leading into rectangles are labeled by \mathcal{M}, \mathcal{M}^*, \mathcal{I} or \mathcal{I}^* whose finiteness is used to control that term. Those terms controlled by the doubling constant γ are also indicated. Equation references are to where the final estimates on the term is obtained. The word “absorb” leading into $J(1)$ indicates that this term is a small multiple of $\int (T \sigma f \sigma)^p \omega$ and can be absorbed into the left-hand side of the inequality. As most of the terms involve the maximal theorem (Equation (2-2)), we do not indicate its use in the schematic tree.
It is the third term $J(3)$ that is the most involved; see Figure 4.2. The remainder of the proof is taken up with the proof of

$$
\sum_{(k,j) \in G} R_j^k \left| \int_{E_j^k} (L x_3 Q_j f \sigma) \omega \right|^p \leq C \gamma^p \mathcal{M}_\sigma^p + \gamma^p \mathcal{X}_\sigma^p \| f \|_{L^p(\sigma)}^p, \quad \text{(4-14)}
$$

where

$$R_j^k = \frac{|E_j^k|}{|N_{Q_j^k}|} \quad \text{(4-15)}$$

Once this is done, the proof of (4-12) is complete, and the proof of assertion (1) is finished.

4.5. The Calderón–Zygmund decompositions. To carry out this proof, we make Calderón–Zygmund decompositions relative to the measure σ. These decompositions will be done at all heights simultaneously. We will use the shifted dyadic grids; see (2-3). Suppose that $\gamma \geq 2$ is a doubling constant for the measure σ:

$$|3 Q|_\sigma \leq \gamma |Q|_\sigma \quad \text{for all cubes } Q. \quad \text{(4-16)}$$

For $\alpha \in \{0, \frac{1}{3}, \frac{2}{3}\}^n$, let

$$\mathcal{M}_\sigma^\alpha f(x) = \sup_{x \in Q \in \mathcal{D}_\alpha} \frac{1}{|Q|_\sigma} \int_Q |f| \, d\sigma,$$

$$\Gamma_t^\alpha = \{x \in \mathbb{R} : \mathcal{M}_\sigma^\alpha f(x) > \gamma^t\} = \bigcup_s G_s^{t,s}, \quad \text{(4-17)}$$

where $\{G_s^{t,s}\}_{(t,s) \in \mathbb{L}^\alpha}$ are the maximal \mathbb{D}_α cubes in Γ_t^α, and \mathbb{L}^α is the set of pairs we use to label the cubes. This implies that we have the nested property: If $G_s^{t,s} \subset G_s^{t',s'}$ then $t > t'$. Moreover, if $t > t'$ there is some s' with $G_s^{t,s} \subset G_s^{t',s'}$. These are the cubes used to make a Calderón–Zygmund decomposition at height γ^t for the grid \mathbb{D}_α with respect to the measure σ. We will refer to the cubes $\{G_s^{t,s}\}_{(t,s) \in \mathbb{L}^\alpha}$ as principal cubes.

Of course we have from the maximal inequality in (2-2)

$$\sum_{(t,s) \in \mathbb{L}^\alpha} \gamma^{pt} |G_s^{t,s}|_\sigma \leq C \| f \|_{L^p(\sigma)}^p. \quad \text{(4-18)}$$

The point of these next several definitions is to associate to each dyadic cube Q, a good shifted dyadic grid, and an appropriate height, at which we will build our Calderón–Zygmund decomposition.

We now use a consequence of the doubling condition (4-16) for the measure σ, that

$$|P(G)|_\sigma \leq \gamma |G|_\sigma \quad \text{for } G \in \mathbb{D}_\alpha. \quad \text{(4-19)}$$

The average $|G_s^{t,s}|_\sigma^{-1} \int_{G_s^{t,s}} |f| \, d\sigma$ is thus at most γ^{t+1} by (4-19) and the maximality of the cubes in (4-17):

$$\gamma^t < \frac{1}{|G_s^{t,s}|_\sigma} \int_{G_s^{t,s}} |f| \, d\sigma \leq \frac{|P(G_s^{t,s})|_\sigma}{|G_s^{t,s}|_\sigma} \frac{1}{|P(G_s^{t,s})|_\sigma} \int_{P(G_s^{t,s})} |f| \, d\sigma \leq \gamma \gamma^t = \gamma^{t+1}. \quad \text{(4-20)}$$
Select a shifted grid: Let $\tilde{\alpha} : \mathcal{D} \to \{0, \frac{1}{3}, \frac{2}{3}\}^n$ be a map such that for $Q \in \mathcal{D}$, there is a $\hat{Q} \in \mathcal{D}(\tilde{\alpha}(Q))$ such that $3Q \subset \hat{Q}$ and $|\hat{Q}| \leq C|Q|$. Here, C is an appropriate constant depending only on dimension. Thus, $\mathcal{D}(\tilde{\alpha}(Q))$ picks a “good” shifted dyadic grid for Q. Moreover we will assume that \hat{Q} is the smallest such cube. Note that we are discarding the extra requirement that $3Q \subset \frac{9}{10} \hat{Q}$ since this property will not be used. Also we have

$$\hat{Q} \subset M Q,$$

(4-21)

for some positive dimensional constant M. The cubes \hat{Q}_j^k will play a critical role below. See Figure 4.3

Select a principal cube: Define $\mathcal{A}(Q)$ to be the smallest cube from the collection $\{G_{s}^{\alpha, t}\}_{t, s \in L_\alpha}$ that contains $3Q$; such $\mathcal{A}(Q)$ is uniquely determined by Q and the choice of function $\tilde{\alpha}$. Define

$$\mathcal{H}_s^{\alpha, t} = \{(k, j) : \mathcal{A}(Q_j^k) = G_s^{\alpha, t}\} \text{ for } (s, t) \in L_\alpha. \quad (4-22)$$

This is an important definition for us. The combinatorial structure this places on the corresponding cubes is essential for this proof to work. Note that $3Q_j^k \subset \hat{Q}_j^k \subset \mathcal{A}(Q_j^k)$.

Parents: For any of the shifted dyadic grids \mathcal{D}^α, a $Q \in \mathcal{D}^\alpha$ has a unique parent denoted as $P(Q)$, the smallest member of \mathcal{D}^α that strictly contains Q. We suppress the dependence upon α here.

Indices: Let

$$\mathcal{K}_s^{\alpha, t} = \{r | G_r^{\alpha, t+1} \subset G_s^{\alpha, t}\}. \quad (4-23)$$

We use a calligraphic font \mathcal{K} for sets of indices related to the grid $\{G_s^{\alpha, t}\}$, and a blackboard font \mathbb{H} for sets of indices related to the grid $\{Q_j^k\}$.

The good and bad functions: Let $A_{G_r^{\alpha, t+1}} = \int_{G_r^{\alpha, t+1}} f r \sigma$ be the σ-average of f on $G_r^{\alpha, t+1}$. Define functions $g_s^{\alpha, t}$ and $h_s^{\alpha, t}$ satisfying $f = g_s^{\alpha, t} + h_s^{\alpha, t}$ on $G_s^{\alpha, t}$ by

$$g_s^{\alpha, t}(x) = \begin{cases} A_{G_s^{\alpha, t+1}} & \text{for } x \in G_s^{\alpha, t+1} \text{ with } r \in \mathcal{K}_s^{\alpha, t}, \\ f(x) & \text{for } x \in G_s^{\alpha, t} \setminus \{G_s^{\alpha, t+1} : r \in \mathcal{K}_s^{\alpha, t}\}, \end{cases} \quad (4-24)$$

$$h_s^{\alpha, t}(x) = \begin{cases} f(x) - A_{G_r^{\alpha, t+1}} & \text{for } x \in G_r^{\alpha, t+1} \text{ with } r \in \mathcal{K}_s^{\alpha, t}, \\ 0 & \text{for } x \in G_s^{\alpha, t} \setminus \{G_r^{\alpha, t+1} : r \in \mathcal{K}_s^{\alpha, t}\}. \end{cases} \quad (4-25)$$

We extend both $g_s^{\alpha, t}$ and $h_s^{\alpha, t}$ to all of \mathbb{R}^n by defining them to vanish outside $G_s^{\alpha, t}$.

Now $|A_{G_r^{\alpha, t+1}}| \leq \gamma^{t+1}$ by (4-20). Thus Lebesgue’s differentiation theorem shows that (any of the standard proofs can be adapted to the dyadic setting for positive locally finite Borel measures on \mathbb{R}^n)

$$|g_s^{\alpha, t}(x)| \leq \gamma^{t+1} \frac{\gamma}{|G_s^{\alpha, t}|} \int_{G_s^{\alpha, t}} |f| r \sigma \quad \text{for } \sigma\text{-a.e. } x \in G_s^{\alpha, t} \text{ and } (t, s) \in L_\alpha. \quad (4-26)$$

That is, $g_s^{\alpha, t}$ is the “good” function and $h_s^{\alpha, t}$ is the “bad” function.

We can now refine the final sum on the left side of (4-14) according to the decomposition of $M_\alpha f$. We carry this out in three steps. In the first step, we fix an $\alpha \in \{0, \frac{1}{3}, \frac{2}{3}\}^n$, and for the remainder of the
proof, we only consider Q^k_j for which $\tilde{a}(Q^k_j) = \alpha$. Namely, we will modify the important definition of \mathcal{G} in (4-10) to

$$\mathcal{G}^{\alpha} = \{(k, j) : \tilde{a}(Q^k_j) = \alpha, \ |E^k_j|_{\omega} > \beta |N Q^k_j|_{\omega} \text{ and (4-8) holds}\}, \tag{4-27}$$

In the second step, we partition the indices (k, j) into the sets $\mathbb{H}^{\alpha, \ell}_s$ in (4-22) for $(t, s) \in \mathbb{L}_u$. In the third step, for $(k, j) \in \mathbb{H}^{\alpha, \ell}_s$, we split f into the corresponding good and bad parts, yielding the decomposition

$$\sum_{(k, j) \in \mathcal{G}^{\alpha}} R^k_j \left| \int_{E^k_j} (L \chi_3 Q^k_j f \sigma) \omega \right|^p \leq C (I + II), \tag{4-28}$$

where

$$I = \sum_{(t, s) \in \mathbb{L}_u} I^t_s, \quad II = \sum_{(t, s) \in \mathbb{L}_u} II^t_s, \tag{4-29}$$

$$I^t_s = \sum_{(k, j) \in \mathbb{H}^{\alpha, \ell}_s} R^k_j \left| \int_{E^k_j} (L \chi_3 Q^k_j g^{\alpha, \ell}_s) \sigma \omega \right|^p, \tag{4-30}$$

$$II^t_s = \sum_{(k, j) \in \mathbb{H}^{\alpha, \ell}_s} R^k_j \left| \int_{E^k_j} (L \chi_3 Q^k_j h^{\alpha, \ell}_s) \sigma \omega \right|^p, \tag{4-31}$$

$$\mathbb{H}^{\alpha, \ell}_s = \mathcal{G} \cap \mathbb{H}^{\alpha, \ell}_s. \tag{4-32}$$

Recall the definition of R^k_j in (4-15). In the definitions of I, I^t_s and II, II^t_s, we will suppress the dependence on $\alpha \in [0, \frac{1}{2}, \frac{3}{2}]^p$. The same will be done for the subsequent decompositions of the (difficult) term II, although we usually retain the superscript α in the quantities arising in the estimates. In particular, the combinatorial properties of the cubes associated with $\mathbb{H}^{\alpha, \ell}_s$ are essential to completing this proof.

Term I requires only the forward testing condition (1-19) and the maximal theorem (2-2), while term II requires only the dual testing condition (1-14), along with the dual maximal function inequality (1-17) and the maximal theorem (2-2). The reader is again directed to Figure 4.2 for a map of the various decompositions of the terms and the conditions used to control them.

4.6. The analysis of the good function. We claim that

$$I \leq C \gamma^{2p} \| f \|_{L^p(\sigma)}^p. \tag{4-33}$$

Proof. We use boundedness of the “good” function $g^{\alpha, \ell}_s$, as defined in (4-24), the testing condition (1-19) for T_2 (see also (4-4)), and finally the universal maximal function bound (2-2) with $\mu = \omega$. Here are the details. For $x \in E^k_j$, (4-7) implies that $L \chi_3 Q^k_j g^{\alpha, \ell}_s \sigma(x) = L g^{\alpha, \ell}_s \sigma(x)$ and so

$$I = \sum_{(t, s) \in \mathbb{L}_u} I^t_s = C \sum_{(t, s) \in \mathbb{L}_u} \sum_{(k, j) \in \mathcal{G}^{\alpha} \cap \mathbb{H}^{\alpha, \ell}_s} R^k_j \left| \int_{E^k_j} (L g^{\alpha, \ell}_s) \omega \right|^p$$

$$\leq C \sum_{(t, s) \in \mathbb{L}_u} \int |M^d_{\omega} (\chi_{G^{\alpha, \ell}_s} L g^{\alpha, \ell}_s) \sigma| \omega \leq C \sum_{(t, s) \in \mathbb{L}_u} \int |G^{\alpha, \ell}_s \sigma| \omega \leq C \gamma^{2p} \sum_{(t, s) \in \mathbb{L}_u} \gamma^{p t} |G^{\alpha, \ell}_s \sigma|, \tag{4-34}$$
where we have used (4-26) and (1-19) with \(g = g_{s}^{\alpha,t} / \gamma^{t+2} \) in the final inequality. This last sum is controlled by (4-18), and completes the proof of the claim. \(\square \)

4.7. The analysis of the bad function: Part I.

It remains to estimate term \(II \), as in (4-31), but this is in fact the harder term. Recall the definition of \(\mathcal{C}_{s}^{\alpha,t} \) in (4-23). We now write

\[
h_{s}^{\alpha,t} = \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} (f - A_{G_{r}^{\alpha,t+1}}) \chi_{G_{r}^{\alpha,t+1}} = \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} b_{r},
\]

where the “bad” functions \(b_{r} \) are supported in the cube \(G_{r}^{\alpha,t+1} \) and have \(\sigma \)-mean zero, \(\int_{G_{r}^{\alpha,t+1}} b_{r} \sigma = 0 \). To take advantage of this, we will pass to the dual \(L^{*} \) below.

But first we must address the fact that the triples of the \(\mathcal{D}^{\alpha} \) cubes \(G_{r}^{\alpha,t+1} \) do not form a grid. Fix \((t, s) \in \mathbb{L}^{s} \) and let

\[
\mathcal{C}_{s}^{\alpha,t} = \{ 3G_{r}^{\alpha,t+1} : r \in \mathcal{K}_{s}^{\alpha,t} \}
\]

be the collection of triples of the \(\mathcal{D}^{\alpha} \) cubes \(G_{r}^{\alpha,t+1} \) with \(r \in \mathcal{K}_{s}^{\alpha,t} \). We select the maximal triples

\[
\{3G_{r}^{\alpha,t+1}\}_{t \in \mathcal{L}_{a}^{\alpha,t}} = \{ T_{\ell} \}_{t \in \mathcal{L}_{a}^{\alpha,t}}
\]

from the collection \(\mathcal{C}_{s}^{\alpha,t} \), and assign to each \(r \in \mathcal{K}_{s}^{\alpha,t} \), the maximal triple \(T_{\ell} = T_{\ell}(r) \) containing \(3G_{r}^{\alpha,t+1} \) with at least \(\ell \). Note that \(T_{\ell}(r) \) extends outside \(G_{s}^{\alpha,t} \) if \(G_{r}^{\alpha,t+1} \) and \(G_{s}^{\alpha,t} \) share a face. By Lemma 2.13 applied to \(\mathcal{D}^{\alpha} \) the maximal triples \(\{ T_{\ell} \}_{t \in \mathcal{L}_{a}^{\alpha,t}} \) have finite overlap \(3^{a} \), and this will prove crucial in (4-49), (4-82) and (4-50) below.

We will pass to the dual of the linearization.

\[
\int_{E_{j}^{k}} (Lh_{s}^{\alpha,t} \sigma) \omega = \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} \int_{E_{j}^{k}} (Lb_{r} \sigma) \omega = \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} \int_{G_{r}^{\alpha,t+1} \cap 3Q_{j}} (L^{*} \chi_{E_{j}^{k}} \omega) \sigma
\]

Note that (4-7) implies \(L^{*} \nu \) is supported in \(3Q_{j}^{k} \) if \(\nu \) is supported in \(E_{j}^{k} \), explaining the range of integration above. Continuing, we have for fixed \((k, j) \in \mathbb{L}_{s}^{a,t} \),

\[
|4-37| \leq \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} \int_{G_{r}^{\alpha,t+1} \cap 3Q_{j}} (L^{*} \chi_{E_{j}^{k}} \cap T_{\ell}(r) \omega) b_{r} \sigma + C \sum_{r \in \mathcal{K}_{s}^{\alpha,t}} P(G_{r}^{\alpha,t+1}, \chi_{E_{j}^{k}} \cap \mathcal{G}_{r}^{\alpha,t+1} \omega) \int_{G_{r}^{\alpha,t+1}} |f| \sigma.
\]

To see the inequality above, note that for \(r \in \mathcal{K}_{s}^{\alpha,t} \) we are splitting the set \(E_{j}^{k} \) into \(E_{j}^{k} \cap T_{\ell}(r) \) and \(E_{j}^{k} \setminus T_{\ell}(r) \). On the latter set, the hypotheses of Lemma 2.9 are in force, namely the set \(E_{j}^{k} \setminus T_{\ell}(r) \) does not intersect \(3G_{r}^{\alpha,t+1} \), whence we have an estimate on the \(\delta \)-Hölder modulus of continuity of \(L^{*} \chi_{E_{j}^{k}} \setminus T_{\ell}(r) \omega \). Combine this with the fact that \(b_{r} \) has \(\sigma \)-mean zero on \(G_{r}^{\alpha,t+1} \) to derive the estimate below, in which \(y_{r}^{t+1} \) is the center of the cube \(G_{r}^{\alpha,t+1} \).

\[
\int_{G_{r}^{\alpha,t+1}} (L^{*} \chi_{E_{j}^{k} \setminus T_{\ell}(r)} \omega) b_{r} \sigma = \int_{G_{r}^{\alpha,t+1} \cap 3Q_{j}} (L^{*} \chi_{E_{j}^{k} \setminus T_{\ell}(r)} \omega) - L^{*} \chi_{E_{j}^{k} \setminus T_{\ell}(r)} \omega(y_{r}^{t+1})(b_{r} \sigma) \leq \int_{G_{r}^{\alpha,t+1} \cap 3Q_{j}} C \chi_{E_{j}^{k} \setminus T_{\ell}(r)} \omega(b_{r} \sigma(y_{r}^{t+1})) \left| y_{r}^{t+1} - y_{r} \right| d \sigma(y)
\]
In this notation, we have for (4-38),

\[
II_s' = \sum_{(k,j) \in I_s^a} R_j^k \left(\int_{E_j^r} (Lh_r^a) \omega \right)^p \leq II_s'(1) + II_s'(2),
\]

where

\[
II_s'(1) = \sum_{(k,j) \in I_s^a} R_j^k \left(\sum_{r \in \mathcal{M}_s^a} \int_{G_r^{a,t+1}} (L^* \chi_{G_r^{a,t+1} \cap T_{(r)} \omega}) b_r \sigma \right)^p,
\]

\[
II_s'(2) = \sum_{(k,j) \in I_s^a} R_j^k \left(\sum_{r \in \mathcal{M}_s^a} \mathcal{P}(G_r^{a,t+1}, \chi_{E_j^r} \omega) \int_{G_r^{a,t+1}} |f| \sigma \right)^p.
\]

Note that we may further restrict the integration in (4-39) to \(G_r^{a,t+1} \cap 3Q_j^k\) since \(L^* \chi_{E_j^r} \cap T_{(r)} \omega\) is supported in \(3Q_j^k\).

4.7.1. Analysis of II(2). Recalling the definition of \(\mathcal{M}_s\) in (4-3), we claim that

\[
\sum_{(r,s) \in \mathcal{I}_s^a} II_s'(2) \leq C \gamma^2 \mathcal{M}_s^p \int |f|^p \sigma.
\]

Proof. We begin by defining a linear operator by

\[
\mathcal{P}_j^k(\mu) \equiv \sum_{r \in \mathcal{M}_s^a} \mathcal{P}(G_r^{a,t+1}, \chi_{E_j^r} \mu \chi_{G_r^{a,t+1}}).
\]

In this notation, we have for \((k,j) \in I_s^a\) (see (4-22) and (4-31)),

\[
\sum_{r \in \mathcal{M}_s^a} \mathcal{P}(G_r^{a,t+1}, \chi_{E_j^r} \omega(\text{d}x)) \int_{G_r^{a,t+1}} |f| \sigma = \sum_{r \in \mathcal{M}_s^a} \mathcal{P}(G_r^{a,t+1}, \chi_{E_j^r} \omega) \int_{G_r^{a,t+1}} \sigma \left(\frac{1}{|G_r^{a,t+1}|} \int_{G_r^{a,t+1}} |f| \sigma \right)
\]

\[
\leq \gamma^{t+2} \int_{E_j^r} (\mathcal{P}_j^k(\mu) \sigma)^{1/2} = \gamma^{t+2} \int_{E_j^r} (\mathcal{P}_j^k(\chi_{G_r^{a,t+1}} \sigma) \omega).
\]

By assumption, the maximal function \(M(\omega)\) maps \(L^p(\omega)\) to \(L^p(\sigma)\), and we now note a particular consequence of this. In the definition (4-41) we were careful to insert \(\chi_{E_j^r}\) on the right hand side. These sets are pairwise disjoint, whence we have the inequality below for measures \(\mu\).

\[
\sum_{(k,j) \in I_s^a} \mathcal{P}_j^k(\mu)(x) \leq \sum_{(k,j) \in I_s^a} \sum_{r \in \mathcal{M}_s^a} \sum_{\ell=0}^\infty \frac{\delta(2^{-\ell})}{|2^\ell G_r^{a,t+1}|} \left(\int_{2^\ell G_r^{a,t+1}} \chi_{E_j^r} \mu \chi_{G_r^{a,t+1}} \right) \chi_{G_r^{a,t+1}}(x)
\]

\[
\leq \sum_{\ell=0}^\infty \sum_{r \in \mathcal{M}_s^a} \frac{\delta(2^{-\ell})}{|2^\ell G_r^{a,t+1}|} \left(\int_{2^\ell G_r^{a,t+1} \cap G_r^{a,t+1}} \chi_{G_r^{a,t+1}} \right) \chi_{G_r^{a,t+1}}(x) \leq C \chi_{G_r^{a,t}} M(\chi_{G_r^{a,t}})(x) \quad (4-42)
\]
Thus the inequality
\[
\left\| \chi_{G_{i}^{a,t}} \sum_{(k,j) \in I_{s}^{a,t}} P_{j}^{k} (|g|) \right\|_{L^{p}(\sigma)} \leq C \mathfrak{M}_{\ast} \left\| \chi_{G_{i}^{a,t}} g \right\|_{L^{p}(\omega)}
\] (4-43)
follows immediately. By duality we then have
\[
\left\| \chi_{G_{i}^{a,t}} \sum_{(k,j) \in I_{s}^{a,t}} (P_{j}^{k})^{\ast} (|h|) \right\|_{L^{p}(\omega)} \leq C \mathfrak{M}_{\ast} \left\| \chi_{G_{i}^{a,t}} h \right\|_{L^{p}(\sigma)}.
\] (4-44)
Note that it was the linearity that we wanted in (4-41), so that we could appeal to the dual maximal function assumption.

We thus obtain
\[
\sum_{(t,s) \in L^{a}} II_{s}^{t}(2) \leq \gamma^{p(t+2)} \sum_{(k,j) \in I_{s}^{a,t}} R_{j}^{k} \left(\int_{Q_{j}^{k}} (P_{j}^{k})^{\ast} (\chi_{G_{i}^{a,t}}) d\omega \right)^{p}.
\] (4-45)

Summing in \((t,s)\) and using \((P_{j}^{k})^{\ast} \leq \sum_{(i,l) \in I_{s}^{a}} (P_{i}^{l})^{\ast}\) for \((k,j) \in I_{s}^{a,t}\), we obtain
\[
\sum_{(t,s) \in L^{a}} II_{s}^{t}(2) \leq C \gamma^{2p} \sum_{(t,s) \in L^{a}} \gamma^{p(t)} \sum_{(k,j) \in I_{s}^{a,t}} R_{j}^{k} \left(\int_{Q_{j}^{k}} (P_{j}^{k})^{\ast} (\chi_{G_{i}^{a,t}}) d\omega \right)^{p}
\] (4-45)
\[
= C \gamma^{2p} \sum_{(t,s) \in L^{a}} \gamma^{p(t)} \sum_{(k,j) \in I_{s}^{a,t}} |E_{j}^{k}| \left(\frac{1}{|N Q_{j}^{k} \omega|} \int_{Q_{j}^{k}} (P_{j}^{k})^{\ast} (\chi_{G_{i}^{a,t}}) d\omega \right)^{p}
\] (4-46)
\[
\leq C \gamma^{2p} \sum_{(t,s) \in L^{a}} \gamma^{p(t)} \int_{G_{s}^{a,t}} \left(\sum_{(i,l) \in I_{s}^{a,t}} (P_{i}^{l})^{\ast} (\chi_{G_{i}^{a,t}}) \right)^{p} d\omega
\] (4-47)
\[
\leq C \gamma^{2p} \mathfrak{M}_{\ast} \sum_{(t,s) \in L^{a}} \gamma^{p(t)} |G_{s}^{a,t}| d\omega,
\] (4-47)
which is bounded by \(C \gamma^{2p} \mathfrak{M}_{\ast}^{p} \int |f|^{p} d\omega\). In the last line we are applying (4-44) with \(h \equiv 1\).

4.7.2. Decomposition of \(II^{t}(1)\)

We note that the term \(II_{s}^{t}(1)\) is dominated by \(III_{s}^{t} + IV_{s}^{t}\), where
\[
III_{s}^{t} = \sum_{(k,j) \in I_{s}^{a,t}} R_{j}^{k} \sum_{r \in \mathcal{G}_{s}^{a,t+1}} \left(L^{\ast} \chi_{E_{r}^{t}(\Omega_{r+1})} \right) b_{r} \sigma^{p},
\]
\[
IV_{s}^{t} = \sum_{(k,j) \in I_{s}^{a,t}} R_{j}^{k} \sum_{r \in \mathcal{G}_{s}^{a,t+1}} \left(L^{\ast} \chi_{E_{r}^{t}(\Omega_{r+1})} \right) b_{r} \sigma^{p}.
\] (4-48)
The term \(III_{s}^{t}\) includes that part of \(b_{r}\) supported on \(G_{r+1}^{a,t} \setminus \Omega_{k+2}\), and the term \(IV_{s}^{t}\) includes that part of \(b_{r}\) supported on \(G_{r}^{a,t+1} \cap \Omega_{k+2}\), which is the more delicate case.

Remark 4.8. The key difference between the terms \(III_{s}^{t}\) and \(IV_{s}^{t}\) is the range of integration: \(G_{r}^{a,t+1} \setminus \Omega_{k+2}\) for \(III_{s}^{t}\) and \(G_{r}^{a,t+1} \cap \Omega_{k+2}\) for \(IV_{s}^{t}\). Just as for the fractional integral case, it is the latter case that is harder,
requiring combinatorial facts, which we come to at the end of the argument. An additional fact that we return to in different forms is that the set \(G^{α, I+1} \cap Ω_{k+2} \) can be further decomposed using Whitney decompositions of \(Ω_{k+2} \) in the grid \(D^α \).

Recall the definition of \(Ξ_α \) in (4-5). We claim

\[
\sum_{(t, s) ∈ L^α} III^t_s ≤ CΞ^p_α \int |f|^p \sigma. \tag{4-49}
\]

Proof. Let \(\tilde{E}_j^k = 3Q_j^k \setminus Ω_{k+2} \) (note that \(\tilde{E}_j^k \) is much larger than \(E_j^k \)). We will use the definition of \(R_j^k \) in (4-15), and the fact that

\[
\sum_{t ∈ G^{α, I}} χ_{T_t} \leq 3^n \tag{4-50}
\]

provided \(N ≥ 9 \). We will apply the form (2-11) of (1-14) with \(g = χ_{E_j^k ∩ T_t} \) — also see (4-5) — and with

\[
Q = T_t \cap \hat{Q}_j^k \quad \text{and} \quad Q = T_t
\]

in the cases \(T_t ∩ \hat{Q}_j^k \) is a cube and is not a cube, respectively (the latter is possible since \(T_t \) is the *triple* of a \(D^α \)-cube). In each case we claim that

\[
Q ⊂ T_t \cap 3\hat{Q}_j^k.
\]

Indeed, recall that \(\hat{Q}_j^k \) is the cube in the shifted grid \(D^α \) that is selected by \(Q_j^k \) as in the definition “Select a shifted grid” above and satisfies \(3\hat{Q}_j^k ⊂ M Q_j^k ⊂ N Q_j^k \), where \(N \) is as in Remark 2.4, by choosing \(R_W \) sufficiently large in (2-6). Now \(T_t \) is a triple of a cube in the grid \(D^α \) and \(\hat{Q}_j^k \) is a cube in \(D^α \). Thus if \(T_t ∩ \hat{Q}_j^k \) is not a cube, then we must have \(T_t ⊂ 3\hat{Q}_j^k \) and this proves the claim. We then have

\[
III^t_s ≤ \sum_{(k, j) ∈ G^{α, I}} R_j^k \left(\sum_{t ∈ G^{α, I}} ∫_{E_j^k \cap T_t} |L^*χ_{E_j^k \cap T_t}|(ω) |f|^p \sigma \right)^{p-1} \int_{E_j^k} |h_s^α \cdot |p \sigma
\]

\[
≤ \sum_{(k, j) ∈ G^{α, I}} R_j^k \left(∫_{T_t ∩ 3\hat{Q}_j^k} |L^*χ_{E_j^k \cap T_t}|(ω) |f|^p \sigma \right)^{p-1} \int_{E_j^k} |h_s^α \cdot |p \sigma
\]

\[
≤ Ξ^p_α \sum_{(k, j) ∈ G^{α, I}} R_j^k \left(∫_{E_j^k \cap 3\hat{Q}_j^k} |T_t \cap 3\hat{Q}_j^k| |ω| \right)^{p-1} \int_{E_j^k} |h_s^α \cdot |p \sigma
\]

\[
≤ Ξ^p_α \sum_{(k, j) ∈ G^{α, I}} \frac{|E_j^k| |ω|}{N Q_j^k} |N Q_j^k|^{p-1} \int_{E_j^k} |h_s^α \cdot |p \sigma
\]

\[
≤ CΞ^p_α \sum_{(k, j) ∈ G^{α, I}} \int_{E_j^k} |h_s^α \cdot |p \sigma ≤ CΞ^p_α \sum_{(k, j) ∈ G^{α, I}} \int_{E_j^k} (|f|^p + |M^α_σ f|^p) \sigma.
\]

Using

\[
\sum_{(t, s) ∈ L^α} \sum_{(k, j) ∈ G^{α, I}} χ_{E_j^k} = \sum_{all \, k, j} χ_{E_j^k} ≤ C, \tag{4-51}
\]
we thus obtain (4-49).

4.9. The analysis of the bad function: Part 2. This is the most intricate and final case. We will prove

\[
\sum_{(t,s) \in \mathbb{L}^a} IV'_s \leq C(\gamma^{2p} \mathcal{T}_p + \mathcal{T}_s^p + \gamma^{2p} \mathcal{M}_s^p) \int |f|^p \sigma, \tag{4-52}
\]

where \(\mathcal{T}, \mathcal{T}_s \) and \(\mathcal{M}_s \) are defined in (4-4), (4-5) and (4-3), respectively. The estimates (4-33), (4-40), (4-49), (4-52) prove (4-12), and so complete the proof of assertion 1 of the strong-type characterization in Theorem 1.9. Assertions 2 and 3 of Theorem 1.9 follow as in the weak-type Theorem 1.8. Finally, to prove assertion 4 we note that Lemma 2.12 and condition (1-19) imply (1-6), which by Theorem 1.2 yields (1-5).

4.9.1. Whitney decompositions with shifted grids. We now use the shifted grid \(\mathcal{D}^\alpha \) in place of the dyadic grid \(\mathcal{D} \) to form a Whitney decomposition of \(\Omega_k \) in the spirit of (2-6). However, in order to fit the \(\mathcal{D}^\alpha \)-cubes \(\hat{Q}_j^k \) defined above in “Select a shifted grid”, it will be necessary to use a smaller constant than the constant \(R_W \) already used for the Whitney decomposition of \(\Omega_k \) into \(\mathcal{D} \)-cubes. Recall the dimensional constant \(M \) defined in (4-21): it satisfies \(\hat{Q} \subset MQ \). Define the new constant

\[
R'_W = \frac{R_W}{M}.
\]

We now use the decomposition of \(\Omega_k \) in (2-6), but with \(\mathcal{D} \) replaced by \(\mathcal{D}^\alpha \) and with \(R_W \) replaced by \(R'_W \). We have thus decomposed

\[
\Omega_k = \bigcup_m B_m^k
\]

into a Whitney decomposition of pairwise disjoint cubes \(B_m^k \) in \(\mathcal{D}^\alpha \) satisfying

\[
R'_W B_m^k \subset \Omega_k, \tag{4-53}
\]

\[
3R'_W B_m^k \cap \Omega_k^c \neq \emptyset, \tag{4-54}
\]

and the following analogue of the nested property in (2-6):

\[
B_j^k \not\subseteq B_i^\ell \quad \text{implies} \quad k > \ell. \tag{4-55}
\]

Now we introduce yet another construction. For every pair \((k, j) \) let \(\tilde{Q}_j^k \) be the unique \(\mathcal{D}^\alpha \)-cube \(B_m^k \) containing \(\hat{Q}_j^k \). Note that such a cube \(\tilde{Q}_j^k = B_m^k \) exists since \(\hat{Q}_j^k \subset M Q_j^k \) by (4-21) and \(R_W Q_j^k \subset \Omega_k \) by (2-6) implies that \(R'_W \hat{Q}_j^k \subset \Omega_k \). Of course the cube \(\tilde{Q}_j^k = B_m^k \) satisfies

\[
R'_W \hat{Q}_j^k \subset \Omega_k. \tag{4-55}
\]

Moreover, we can arrange to have

\[
3\tilde{Q}_j^k \subset N Q_j^k, \tag{4-56}
\]

where \(N \) is as in Remark 2.4, by choosing \(R_W \) sufficiently large in (2-6). See Figure 4.3.
We will use this decomposition for the set $\Omega_{k+2} = \bigcup_m B_m^{k+2}$ in our arguments below. The corresponding cubes \tilde{Q}_i^{k+2} that arise as certain of the B_m^{k+2} satisfy the conditions

$$3Q_i^{k+2} \subset \tilde{Q}_i^{k+2} \subset \hat{Q}_i^{k+2} \subset 3\tilde{Q}_i^{k+2} \subset NQ_i^{k+2} \subset \Omega_{k+2}.$$ \hfill (4-57)

Note that the set of indices m arising in the decomposition of Ω_{k+2} into \mathcal{B}_m^{k+2} cubes is not the same as the set of indices i arising in the decomposition of Ω_{k+2} into \mathcal{Q}_i^{k+2} cubes Q_i^{k+2}, but this should not cause confusion. So we will usually write B_i^{k+2} with dummy index i unless it is important to distinguish the cubes B_i^{k+2} from the cubes Q_i^{k+2}. This distinction will be important in the proof of the “bounded occurrence of cubes” property in Section 4.14.7 below.

Now use $\Omega_{k+2} = \bigcup_i B_i^{k+2}$ to split the term IV_s^t in (4-48) into two pieces as follows:

$$IV_s^t \leq \sum_{(k,j) \in \mathcal{I}^{\alpha,t}_s} R_k^j \sum_{r \in \mathcal{K}_s^{\alpha,t}} \sum_{i \in \mathcal{J}_s^{\alpha,t}} \int_{G_r^{k+1} \cap B_i^{k+2}} (L^* \chi_{E_j^{k+2}(G_r^{k+1})}(w)) b_r \sigma \left| f \right| d\sigma \quad \hfill (4-58)$$

$$= IV_s^t(1) + IV_s^t(2),$$

where

$$\mathcal{J}_s^t = \{ i : A_i^{k+2} > \gamma^{t+2} \} \quad \text{and} \quad \mathcal{J}_s^t = \{ i : A_i^{k+2} \leq \gamma^{t+2} \},$$ \hfill (4-59)

and where

$$A_i^{k+2} = \frac{1}{|B_i^{k+2}|} \int_{B_i^{k+2}} |f| d\sigma \quad \hfill (4-60)$$
denotes the σ-average of $|f|$ on the cube B_i^{k+2}. Thus $IV(1)$ corresponds to the case where the averages are “big” and $IV(2)$ where the averages are “small”. The analysis of $IV_s^t(1)$ in (4-58) is the hard case, taken up later.
4.9.2. A first combinatorial argument.

Lemma 4.10 (bounded occurrence of cubes). A given cube $B \in \mathcal{D}^\alpha$ can occur only a bounded number of times as B_i^{k+2}, where

$$B_i^{k+2} \subset \tilde{Q}_j^k \quad \text{with} \quad (k, j) \in \mathcal{G}^\alpha.$$

Specifically, let $(k_1, j_1), \ldots, (k_M, j_M) \in \mathcal{G}^\alpha$, as defined in (4-27), be such that $B = B_i^{k_\sigma+2}$ for some i_σ and $B \subset \tilde{Q}_j^{k_\sigma}$ for $1 \leq \sigma \leq M$. It follows that $M \leq C\beta^{-1}$, where β is the small constant chosen in the definition of \mathcal{G}^α. The constant C here depends only on dimension.

The Whitney structure (see (2-6)) is decisive here, as well as the fact that $|E_j^\alpha| \leq \beta|NQ_j^\alpha|$ for $(k, j) \in \mathcal{G}^\alpha$. For this proof it will be useful to use m to index the cubes B_m^{k+2} and to use i to index the cubes Q_i^{k+2}. The following lemma captures the main essence of the Whitney structure, and will be applied to cubes B_m^{k+2} satisfying (4-53) and cubes Q_i^{k+2} satisfying (2-6).

Lemma 4.11. Suppose that Q is a member of the Whitney decomposition of Ω with respect to the grid \mathcal{D} and with Whitney constant R_W. Suppose also that a cube B is a member of a Whitney decomposition of the same open set Ω but with respect to the grid \mathcal{D}^α and with Whitney constant R_W'. If $N < \frac{1}{2}R_W$ and $B \subset NQ$, then the side lengths of Q and B are comparable:

$$\ell(Q) \approx \ell(B).$$

Proof of Lemma 4.11. Since $N < \frac{1}{2}R_W$ and Q is a Whitney cube we have

$$\ell(Q) \approx \text{dist}(Q, \partial \Omega) \approx \sup_{x \in NQ} \text{dist}(x, \partial \Omega) \approx \inf_{x \in NQ} \text{dist}(x, \partial \Omega).$$

Then since $B \subset NQ$ and B is a Whitney cube (for the other decomposition) we have

$$\ell(Q) \approx \text{dist}(B, \partial \Omega) \approx \ell(B). \quad \square$$

Proof of Lemma 4.10. So suppose that $(k_1, j_1), \ldots, (k_M, j_M) \in \mathcal{G}^\alpha$ and $B = B_i^{k_\sigma+2} \subset \tilde{Q}_j^{k_\sigma}$ for $1 \leq \sigma \leq M$, with the pairs of indices (k_σ, j_σ) being distinct. Observe that the finite overlap property in (2-6) applies to the cubes $\tilde{Q}_j^{k_\sigma}$ in the Whitney decomposition (4-53) of Ω_k with grid \mathcal{D}^α and Whitney constant R_W'. Thus for fixed k, the number of (k_σ, j_σ) with $k_\sigma = k$ is bounded by the finite overlap constant since B is inside each $\tilde{Q}_j^{k_\sigma}$. This gives us the observation that a single integer k can occur only a bounded number C_k of times among the k_1, \ldots, k_M.

After a relabeling, we can assume that all the k_σ for $1 \leq \sigma \leq M'$ are distinct, listed in increasing order, and that the number M' of k_σ satisfies $M \leq CbM'$. The nested property of (2-6) assures us that B is an element of the Whitney decomposition (4-53) of Ω_k for all $k_1 \leq k \leq k_M$.

Remark 4.12. Note that the k_σ are not necessarily consecutive since we require that $(k_\sigma, j_\sigma) \in \mathcal{G}^\alpha$. Nevertheless, the cube B does occur among the B_i^{k+2} for any k that lies between k_σ and $k_{\sigma+1}$. These latter occurrences of B may be unbounded, but we are only concerned with bounding those for which $(k_\sigma, j_\sigma) \in \mathcal{G}^\alpha$, and it is these occurrences that our argument is treating.
Indeed, if \(z_b \) Now, the functions \(\sigma |_\ell(\mathcal{E}) \) not meet with grid \(/H5104 \). So with \(\text{grid } \mathcal{E} \) and Whitney constant \(R_W \). Thus Lemma 4.11 gives us the equivalence of side lengths \(\ell(Q_{j_0}^{k_\sigma}) \approx \ell(B) \). Combining this with the containment \(N Q_{j_0}^{k_\sigma} \supset B \), we see that the number of possible locations for the cubes \(Q_{j_0}^{k_\sigma} \in \mathcal{E} \) is bounded by a constant \(C'_b \) depending only on dimension.

Apply the pigeonhole principle to the possible locations of the \(Q_{j_0}^{k_\sigma} \). After a relabeling, we can argue under the assumption that all \(Q_{j_0}^{k_\sigma} \) equal the same cube \(Q' \) for all choices of \(1 \leq \sigma \leq M'' \), where \(M' \leq C'_b M'' \). Now comes the crux of the argument where the condition that the indices \((k_\sigma, j_\sigma) \) lie in \(\mathbb{G}_\alpha \), as given in (4-27), proves critical. In particular we have \(|E_{j_0}^{k_\sigma}|_\omega \geq \beta |N Q'|_\omega \) where \(N \) is as in Remark 2.4. The \(k_\sigma \) are distinct, and the sets \(E_{j_0}^{k_\sigma} \subset Q' \) are pairwise disjoint; hence

\[
M'' \beta |N Q'|_\omega \leq \sum_{\sigma=1}^{M''} |E_{j_0}^{k_\sigma}|_\omega \leq |Q'|_\omega \quad \text{implies } M'' \leq \beta^{-1}.
\]

Thus \(M \leq C_b C'_b \beta^{-1} \) and our proof of the claim is complete. \(\square \)

4.12.1. Replace bad functions by averages. The first task in the analysis of the terms \(IV_4^\epsilon(1) \) and \(IV_4^\epsilon(2) \) will be to replace part of the “bad functions” \(b_r \) by their averages over \(B_i^{k+2} \), or more exactly the averages \(\overline{A}^{k+2}_i \). We again appeal to the Hölder continuity of \(\mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}}) \). By construction, \(3B_i^{k+2} \) does not meet \(E_j^\mathcal{E} \), so that Lemma 2.9 applies. If \(B_i^{k+2} \subset G_{r,t+1}^\mathcal{E} \) for some \(r \), then there is a constant \(c_i^{k+2} \) satisfying \(|c_i^{k+2}| \leq 1 \) such that

\[
\left| \int_{B_i^{k+2}} (\mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}})) b_r \sigma - \left(c_i^{k+2} \int_{B_i^{k+2}} (\mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}})) \sigma \right) (|A_{r,t+1}^\alpha| + \overline{A}^{k+2}_i) \right| \\
\leq C \left(\int_{B_i^{k+2}} |b_r| \sigma \right) \left(\int_{B_i^{k+2}} |\sigma| \right).
\]

Indeed, if \(z_i^{k+2} \) is the center of the cube \(B_i^{k+2} \), we have

\[
\int_{B_i^{k+2}} (\mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}})) b_r \sigma \\
= \mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}}) (c_i^{k+2} \int_{B_i^{k+2}} b_r \sigma) + O \left(\left(\int_{B_i^{k+2}} |b_r| \sigma \right) \right) \\
= \left(\int_{B_i^{k+2}} (\mathcal{L}^\ast (\chi_{E_j^\mathcal{E} \cap T_{(\omega)}})) \sigma \right) \left(\int_{B_i^{k+2}} b_r \sigma \right) + O \left(\left(\int_{B_i^{k+2}} |b_r| \sigma \right) \right).
\]

Now, the functions \(b_r \) are given in (4-34), and by construction, we note that

\[
\frac{1}{|B_i^{k+2}|_{\sigma}} \left| \int_{B_i^{k+2}} b_r \sigma \right| \leq \frac{1}{|G_{r,t+1}^\mathcal{E}|_{\sigma}} \left| \int_{G_{r,t+1}^\mathcal{E}} f \sigma \right| + \frac{1}{|B_i^{k+2}|_{\sigma}} \left| \int_{B_i^{k+2}} f \sigma \right| = |A_{r,t+1}^\alpha| + \overline{A}^{k+2}_i.
\]

So with

\[
\epsilon_i^{k+2} = \frac{1}{|A_{r,t+1}^\alpha| + \overline{A}^{k+2}_i} \frac{1}{|B_i^{k+2}|_{\sigma}} \int_{B_i^{k+2}} b_r \sigma,
\]
we have $|c_i^{k+2}| \leq 1$ and
\[
\int_{B_i^{k+2}} (L^* \chi_{E_i^k \cap T(\omega)}) b_r \sigma = \left(c_i^{k+2} \int_{B_i^{k+2}} (L^* \chi_{E_i^k \cap T(\omega)}) \sigma \right) (|A_r^{\alpha,t+1}| + A_i^{k+2}) + O \left(P(B_i^{k+2}, \chi_{E_i^k \cap T(\omega)}) \int_{B_i^{k+2}} |b_r| \sigma \right).
\]
In the special case where B_i^{k+2} is equal to $G_r^{\alpha,t+1}$, we have $\int_{B_i^{k+2}} b_r \sigma = \int b_r \sigma = 0$ and the proof above shows that
\[
\left| \int_{G_r^{\alpha,t+1}} (L^* \chi_{E_i^k \cap T(\omega)}) b_r \sigma \right| \leq C P \left(G_r^{\alpha,t+1}, \chi_{E_i^k \cap T(\omega)} \right) \int_{G_r^{\alpha,t+1}} |f| \sigma ,
\]
(4-62)
since $\int_{G_r^{\alpha,t+1}} |b_r| \sigma = \int_{G_r^{\alpha,t+1}} |f - A_r^{\alpha,t+1}| \sigma \leq 2 \int_{G_r^{\alpha,t+1}} |f| \sigma$.

Our next task is to organize the sum over the cubes B_i^{k+2} relative to the cubes $G_r^{\alpha,t+1}$. This is needed because the cubes B_i^{k+2} are not pairwise disjoint in k, and we thank Tuomas Hytonen for bringing this point to our attention. The cube B_i^{k+2} must intersect $\bigcup_{r \in \mathcal{R}_s^{\alpha,t}} \tilde{G}_r^{\alpha,t+1}$ since otherwise
\[
\int_{G_r^{\alpha,t+1} \cap B_i^{k+2}} (L^* \chi_{E_i^k \cap T(\omega)}) b_r \sigma = 0 \quad \text{for} \quad r \in \mathcal{R}_s^{\alpha,t}.
\]
Thus B_i^{k+2} satisfies exactly one of the following two cases which we indicate by writing $i \in \text{Case(a)}$ or $i \in \text{Case(b)}$

Case(a) B_i^{k+2} strictly contains at least one of the cubes $G_r^{\alpha,t+1}$ for $r \in \mathcal{R}_s^{\alpha,t}$.
Case(b) $B_i^{k+2} \subset G_r^{\alpha,t+1}$ for some $r \in \mathcal{R}_s^{\alpha,t}$.

Note that the cubes B_i^{k+2} with $i \in \mathcal{R}_s^{\alpha,t}$ can only satisfy Case(b), while the cubes B_i^{k+2} with $i \in \mathcal{R}_s^{\alpha,t}$ can satisfy either of the two cases above. However, we have the following claim.

Claim 4.13. For each fixed $r \in \mathcal{R}_s^{\alpha,t}$, we have
\[
\sum_{(k+2,i,j) \text{ admissible}} \chi_{B_i^{k+2}} \leq C,
\]
where the sum is taken over all admissible index triples $(k+2,i,j)$, that is, those for which the cube B_i^{k+2} arises in term IV of I_1 with both $B_i^{k+2} \subset G_r^{\alpha,t+1}$ and $B_i^{k+2} \subset \tilde{G}_j^{k}$.

But we first establish a containment that will be useful later as well. Recall that Ω_{k+2} decomposes as a pairwise disjoint union of cubes B_i^{k+2}, and thus we have
\[
\int_{G_r^{\alpha,t+1} \cap \Omega_{k+2}} (L^* \chi_{E_i^k \cap T(\omega)}) b_r \sigma = \sum_{i: B_i^{k+2} \cap \tilde{Q}_j^{k} \neq \emptyset} \int_{B_i^{k+2}} (L^* \chi_{E_i^k \cap T(\omega)}) b_r \sigma,
\]
since the support of $L^* \chi_{E_i^k \cap T(\omega)}$ is contained in $2Q_j^k \subset \tilde{Q}_j^k \subset \tilde{Q}_j^k$ by (4-7). Since both B_i^{k+2} and \tilde{Q}_j^k lie in the grid \mathcal{R}_s^{α} and have nonempty intersection, one of these cubes is contained in the other. Now B_i^{k+2}
cannot strictly contain \(\tilde{Q}_j \) since \(\tilde{Q}_j^k = B_\ell^k \) for some \(\ell \) and the cubes \(\{B_\ell^k\}_{k,j} \) satisfy the nested property (4-54). It follows that we must have

\[
B_{i}^{k+2} \subset \tilde{Q}_j^k \quad \text{whenever} \quad B_{i}^{k+2} \cap \tilde{Q}_j^k \neq \emptyset. \tag{4-63}
\]

Now we return to Claim 4.13, and note that for a fixed index pair \((k+2, i)\), the bounded overlap condition in (2-6) shows that there are only a bounded number of indices \(j\) such that \(B_{i}^{k+2} \subset \tilde{Q}_j^k \subset N Q_j^k \) — see (4-56). We record this observation here:

\[
\# \{j : B_{i}^{k+2} \subset \tilde{Q}_j^k\} \leq C \quad \text{for each pair} \quad (k + 2, i). \tag{4-64}
\]

Thus Claim 4.13 is reduced to this one:

Claim 4.14. \(\sum \{\chi_{B_{i}^{k+2}} : B_{i}^{k+2} \subset G_r^{\alpha, r+1} \text{ for some} \ (k, j) \in \mathbb{I}_s^{\alpha, r} \text{ with} \ B_{i}^{k+2} \subset \tilde{Q}_j^k\} \leq C \) for each \(r \in \mathbb{I}_s^{\alpha, r}. \)

As is the case with similar assertions in this argument, a central obstacle is that a given cube \(B \) can arise in many different ways as a \(B_{i}^{k+2} \).

Proof of Claim 4.14. We will appeal to the “bounded occurrence of cubes” in Section 4.9.2 above. This principle relies upon the definition of \(G_r^{\alpha} \) in (4-27), and applies in this setting due to the definition of \(\mathbb{I}_s^{\alpha, r} \) in (4-28). We also appeal to the following fact:

\[
G_r^{\alpha, r+1} \subset \tilde{Q}_j^k \quad \text{whenever} \quad B_{i}^{k+2} \subset G_r^{\alpha, r+1} \cap \tilde{Q}_j^k \quad \text{with} \quad (k, j) \in \mathbb{I}_s^{\alpha, r}. \tag{4-65}
\]

To see (4-65), we note that both of the cubes \(G_r^{\alpha, r+1} \) and \(\tilde{Q}_j^k \) lie in the grid \(G_r^\alpha \) and have nonempty intersection (they contain \(B_{i}^{k+2} \)), so that one of these cubes must be contained in the other. However, if \(\tilde{Q}_j^k \subset G_r^{\alpha, r+1} \), then \(3\tilde{Q}_j^k \subset \tilde{Q}_j^k \subset \tilde{Q}_j^k \) implies \(s(Q_k^j) \subset G_r^{\alpha, r+1} \), which contradicts \((k, j) \in \mathbb{I}_s^{\alpha, r}\). Therefore we must have \(G_r^{\alpha, r+1} \subset \tilde{Q}_j^k \) as asserted in (4-65).

So to see that Claim 4.14 holds, suppose that \(s(Q_k^j) = G_r^{\alpha, r} \) and \(B_{i}^{k+2} \subset G_r^{\alpha, r+1} \) with an associated cube \(\tilde{Q}_j^k \) as in (4-65). Then by (4-65) and (4-57) the side length \(\ell(Q_k^j) \) of \(Q_k^j \) satisfies

\[
\ell(Q_k^j) = \frac{1}{N} \ell(N Q_k^j) \geq \frac{1}{N} \ell(\tilde{Q}_j^k) \geq \frac{1}{N} \ell(G_r^{\alpha, r+1}). \tag{4-66}
\]

Also, if \(B_\ell^k \) is any Whitney cube at level \(k \) that is contained in \(G_r^{\alpha, r+1} \), then by (4-65) and (4-57) we have

\[
B_\ell^k \subset G_r^{\alpha, r+1} \subset \tilde{Q}_j^k \subset N Q_j^k,
\]

so that Lemma 4.11 shows that \(B_\ell^k \) and \(Q_j^k \) have comparable side lengths:

\[
\ell(B_\ell^k) \approx \ell(Q_j^k). \tag{4-67}
\]

Moreover, if \(B_{i}^{k'} \) is any Whitney cube at level \(k' < k \) that is contained in \(G_r^{\alpha, r+1} \), then there is some Whitney cube \(B_\ell^k \) at level \(k \) such that \(B_{i}^{k'} \subset B_\ell^k \). Thus we have the containments \(B_\ell^k \subset B_{i}^{k'} \subset N Q_j^k \), and it follows from (4-67) that

\[
\ell(B_{i}^{k'}) \approx \ell(Q_j^k). \tag{4-68}
\]
Now momentarily fix \(k_0 \) such that there is a cube \(B_{i_0}^{k_0+2} \) satisfying the conditions in Claim 4.14. Then all of the cubes \(B_{i}^{k+2} \) that arise in Claim 4.14 with \(k \leq k_0 - 2 \) satisfy
\[
\ell(B_{i}^{k+2}) \approx \ell(Q_j^k) \geq \frac{1}{N} \ell(G_r^{a,j+1}).
\]
Thus all of the cubes \(B_{i}^{k+2} \) with \(k \leq k_0 \), except perhaps those with \(k \in \{k_0 - 1, k_0\} \), have side lengths bounded below by \(c \ell(G_r^{a,j+1}) \), which bounds the number of possible locations for these cubes by a dimensional constant. However, those cubes \(B_{i}^{k_0+1} \) at level \(k_0 + 1 \) are pairwise disjoint, as are those cubes \(B_{i}^{k_0+2} \) at level \(k_0 + 2 \). Consequently, we can apply the “bounded occurrence of cubes” to show that the sum in Claim 4.14, when restricted to \(k \leq k_0 \), is bounded by a constant \(C \) independent of \(k_0 \). Since \(k_0 \) is arbitrary, this completes the proof of Claim 4.14.

As a result of Claim 4.14, for those \(i \) in either \(J_2^j \) or \(J_3^i \) that satisfy Case(b), we will be able to apply below the Poisson argument used to estimate term \(II'_i(2) \) in (4-40) above.

We now further split the sum over \(i \in J_3^i \) in term \(IV'_i(2) \) into two sums according to Case(a) and Case(b) above:
\[
IV'_i(2) \leq \sum_{(k,j)\in J_1^k} \left| \sum_{r\in J_1^r} \sum_{i\in Case(a)} \int_{G_{r^{a,j+1}}^{i} \cap B_{i}^{k+2}} (L^* \chi_{B_{i}^{k+1} \cap T_{(i)}} \omega) b_r \sigma \right|^p
\]
\[
+ \sum_{(k,j)\in J_1^k} \left| \sum_{r\in J_1^r} \sum_{i\in Case(b)} \int_{G_{r^{a,j+1}}^{i} \cap B_{i}^{k+2}} (L^* \chi_{B_{i}^{k+1} \cap T_{(i)}} \omega) b_r \sigma \right|^p
\]
\[
\equiv IV'_i(2)[a] + IV'_i(2)[b].
\]
We apply the definition of Case(b) and (4-61), to decompose \(IV'_i(2)[b] \) as follows:
\[
IV'_i(2)[b] = \sum_{(k,j)\in J_1^k} \left| \sum_{r\in J_1^r} \sum_{i\in J_3^i} \int_{B_{i}^{k+2}} (L^* \chi_{B_{i}^{k+1} \cap T_{(i)}} \omega) b_r \sigma \right|^p
\]
\[
\leq \sum_{(k,j)\in J_1^k} \left| \sum_{r\in J_1^r} \sum_{i\in J_3^i} \left(\int_{B_{i}^{k+2}} (L^* \chi_{B_{i}^{k+1} \cap T_{(i)}} \omega) \sigma \right) \times c_i^{k+2}(|A_i^{a,j+1}| + A_{i}^{k+2}) \right|^p
\]
\[
+ \sum_{(k,j)\in J_1^k} \left| \sum_{r\in J_1^r} \sum_{i\in J_3^i} P(B_{i}^{k+2} \cap T_{(i)} \omega) \int_{B_{i}^{k+2}} |b_r| \sigma \right|^p
\]
\[
= V'_i(1) + V'_i(2).
\]

4.14.1. The bound for \(V(2) \). We claim that
\[
\sum_{(t,s)\in J_2^j} V'_i(2) \leq C \gamma^2 p \| f \|_{L^p(\sigma)}^p.
\]
Here, \(\mathcal{M}_s \) is defined in (4-3), and \(V'_i(2) \) is defined in (4-70).
Proof. The estimate for term \(V^i_s(2) \) is similar to that of \(II^i_s(2) \) above (see (4-40)), except that this time we use Claim 4.13 to handle a complication arising from the extra sum in the cubes \(B^{k+2}_i \). We define

\[
P^k_j(\mu) = \sum_{\ell} \sum_{r \in \ell^{(}\mu_r)} \sum_{i \in \ell^j_i} P(B^{k+2}_i, \chi_{E^j_i \cap T_i} \mu) \chi_{B^{k+2}_i}.
\]

(4-72)

We observe that by Claim 4.14 the sum of these operators satisfies

\[
\sum_{(k, j) \in G_{s, \mu}^i} P^k_j(\mu) \leq C \chi \mathcal{M}(\chi_{G_{s, \mu}^i} \mu),
\]

(4-73)

and hence the analogue of (4-44) holds with \(P^k_j \) defined as above:

\[
\| \chi_{G_{s, \mu}^i} \sum_{(k, j) \in G_{s, \mu}^i} (P^k_j)^*(|h| \sigma) \|_{L^p(u)} \leq C \mathcal{M}_u \| \chi_{G_{s, \mu}^i} h \|_{L^p(u)}.
\]

(4-74)

For our use below, we note that this conclusion holds independent of the assumption, imposed in (4-72), that \(i \in \mathcal{J}_s^j \).

With this notation, the summands in the definition of \(V^i_s(2) \), as given in (4-70), are

\[
\sum_{\ell} \sum_{r \in \ell^{(}\mu_r)} \sum_{i \in \ell^j_i} P(B^{k+2}_i, \chi_{E^j_i \cap T_i} \omega) \left(\int_{B^{k+2}_i} (\sigma) (\frac{1}{|B^{k+2}_i|} \int_{B^{k+2}_i} |f| \sigma) \right)
\]

\[
\leq \gamma^{t+2} \sum_{\ell} \sum_{r \in \ell^{(}\mu_r)} \sum_{i \in \ell^j_i} P(B^{k+2}_i, \chi_{E^j_i \cap T_i} \omega) \chi_{B^{k+2}_i} \omega \quad \text{(since } i \in \mathcal{J}_s^j \text{)}
\]

(4-75)

We then have from (4-70) and (4-75) by the argument for term \(II^i_s(2) \),

\[
\sum_{(t, s) \in L^u} V^i_s(2) \leq C \gamma^{2p} \sum_{(t, s) \in L^u} \gamma^{pt} \sum_{(k, j) \in G_{s, \mu}^i} R^k_j \left(\int_{Q_j} (P^k_j)^*(\chi_{G_{s, \mu}^i} \sigma) |\omega| \right)^p
\]

\[
\leq C \gamma^{2p} \sum_{(t, s) \in L^u} \gamma^{pt} \int |M_\omega(\chi_{G_{s, \mu}^i} \sum_{(t, i) \in G_{s, \mu}^j} (P^k_j)^*(\chi_{G_{s, \mu}^i} \sigma)) |^p \omega
\]

\[
\leq C \gamma^{2p} \sum_{(t, s) \in L^u} \gamma^{pt} \int_{G_{s, \mu}^i} \left(\sum_{(t, i) \in G_{s, \mu}^j} (P^k_j)^*(\chi_{G_{s, \mu}^i} \sigma) \right)^p \omega
\]

\[
\leq C \gamma^{2p} \mathcal{M}_u \sum_{(t, s) \in L^u} \gamma^{pt} \int_{G_{s, \mu}^i} |G_{s, \mu}^i | \sigma \leq C \gamma^{2p} \mathcal{M}_u \int |f|^p \sigma.
\]

In last lines we are using the boundedness (1-17) of the maximal operator. ∎
We will use the same method to treat term \(V(1) \) and term \(VI(1) \) below, and we postpone the argument for now.

4.14.2. The bound for \(IV(2)[a] \)

We turn to the term defined in (4-69). In Case(a) the cubes \(B_i^{k+2} \) satisfy

\[
G_{r_i}^{a_i, t+1} \subset B_i^{k+2} \quad \text{whenever} \quad G_{r_i}^{a_i, t+1} \cap B_i^{k+2} \neq \emptyset.
\]

and so recalling that \(i \in \mathcal{J}_s \) and \(i \in \text{Case(a)} \), we obtain from (4-62) that

\[
IV_s^t(2)[a] = \sum_{j \in \mathcal{J}_s} R_j^k \sum_{i \in \text{Case(a)}} \sum_{r : G_{r_i}^{a_i, t+1} \subset B_i^{k+2}} \left(\int_{G_{r_i}^{a_i, t+1}} (L^* \chi_{E_i}^t \omega) b_r \sigma \right)^p \\
\leq C \sum_{j \in \mathcal{J}_s} R_j^k \sum_{i \in \text{Case(a)}} \sum_{r : G_{r_i}^{a_i, t+1} \subset B_i^{k+2}} P(G_{r_i}^{a_i, t+1}, \chi_{E_i}^t \omega) \int_{G_{r_i}^{a_i, t+1}} |f| \sigma |^p \\
\leq C \gamma^{p(t+2)} \sum_{j \in \mathcal{J}_s} R_j^k \sum_{r : G_{r_i}^{a_i, t+1} \subset \mathcal{T}_j} P(G_{r_i}^{a_i, t+1}, \chi_{E_i}^t \omega) |G_{r_i}^{a_i, t+1}| |\sigma|^p.
\]

But this last sum is identical to the estimate for the term \(II_s^t(2) \) used in (4-45) above. The estimate there thus gives

\[
\sum_{(t, s) \in \mathcal{L}^a} IV_s^t(2)[a] \leq C \gamma^{2p} \mathfrak{M}_a \sum_{(t, s) \in \mathcal{L}^a} \gamma^{p(t+1)} |G_{r_i}^{a_i, t}| |\sigma| \leq C \gamma^{2p} \mathfrak{M}_a \int |f| \sigma,
\]

which is the desired estimate.

4.14.3. The decomposition of \(IV(1) \)

This term is the first term on the right hand side of (4-58). Recall that for \(i \in \mathcal{J}_s \) we have \(i \in \text{Case(b)} \) and so \(B_i^{k+2} \subset G_{r_i}^{a_i, t+1} \subset T_i \) for some \(r \in \mathcal{J}_s^{a_i, t} \). From (4-63) we also have \(B_i^{k+2} \subset \mathcal{T}_j \). To estimate \(IV_s^t(1) \) in (4-58), we again apply (4-61) to be able to write

\[
IV_s^t(1) \leq C \sum_{(k, j) \in \mathcal{J}_s} R_j^k \sum_{\ell = \gamma^t} \left(\int_{B_i^{k+2} \cap T_i \cap \mathcal{T}_j} |L^* \chi_{E_i}^t \omega \sigma \rangle \right)^p \\
+ C \sum_{(k, j) \in \mathcal{J}_s} R_j^k \sum_{\ell = \gamma^t} \left(\int_{B_i^{k+2} \cap T_i \cap \mathcal{T}_j} P(B_i^{k+2}, \chi_{E_i}^t \omega) \right)^p
\]

\[
= VI_s^t(1) + VI_s^t(2).
\]

We can dominate the averages on \(B_i^{k+2} \) of the bad function \(b_r \) by \(A_i^{k+2} + |A_{r_i}^{a_i, t+1}| \leq 2A_i^{k+2} \), since in this case \(i \in \mathcal{J}_s \) (see (4-59)), and this implies that the average of \(|b_r| = |f - A_{r_i}^{a_i, t+1}| \) over the cube \(B_i^{k+2} \) is dominated by

\[
A_i^{k+2} + |A_{r_i}^{a_i, t+1}| \leq A_i^{k+2} + \gamma^{t+2} < 2A_i^{k+2}.
\]
4.14.4. The bound for VI(2). We claim that

\[VI'_s(2) \leq C2R^p \sum_{k,i} B^{k+2}_i |B^{k+2}_i|_\sigma (\Lambda^{k+2}_i)^p. \]

(4-78)

Here, the sum on the right is over all pairs of integers \(k, i \in \mathcal{J} \) such that \(B^{k+2}_i \subset \mathcal{T}_\ell \cap \tilde{Q}_j^k \) for some \(\ell, j \) with \((k, j) \in \mathcal{G}^{s,t}_{\mathcal{I}}. \) (Below, we will need a similar sum, with the condition \(i \in \mathcal{J} \) replaced by \(i \in \mathcal{J}_s \) and \(i \in \text{Case}(b). \) This is a provisional bound, one that requires additional combinatorial arguments in Section 4.14.7.

Proof. The term \(VI'_s(2) \) can be handled the same way as the term \(V'_s(2) \) (see (4-71)), with these two changes. First, in the definition of \(P_j \), we replace \(\mathcal{J} \) by \(\mathcal{J}_s \), and second, we use the function

\[h = \sum_{k,i} \Lambda^{k+2}_i \chi_{B^{k+2}_i} \]

in (4-74). That argument then obtains

\[\left\| \chi_{G^{s,t}_j} \sum_{k,j} (P_j^k)^*(\chi_{G^{s,t}_j}h\sigma) \right\|_{L^p(\omega)}^p \leq C2R^p \sum_{k,i} B^{k+2}_i |B^{k+2}_i|_\sigma (\Lambda^{k+2}_i)^p. \]

(4-79)

Here we are using the bounded overlap of the cubes \(B^{k+2}_i \) given in Claim 4.13, along with the fact recorded in (4-64) that for fixed \((k + 2, i) \), only a bounded number of \(j \) satisfy \(B^{k+2}_i \subset \tilde{Q}_j^k \). Claim 4.13 applies in this setting, as we are in a subcase of the analysis of IV. We then use the universal maximal function bound (2-2).

\[VI'_s(2) = \sum_{(k,j) \in \mathcal{G}^{s,t}_{\mathcal{I}}} R_j^k \left(\sum_{\ell \in \mathcal{J}_s} \sum_{i \in \mathcal{J}_s : B^{k+2}_i \subset \mathcal{T}_\ell \cap \tilde{Q}_j^k} P(B^{k+2}_i, \chi_{E^i_{\mathcal{T}_\ell} \cap \mathcal{T}_\ell \omega})(\int_{B^{k+2}_i \sigma} \Lambda^{k+2}_i)^p \right) \]

\[= C \sum_{(k,j) \in \mathcal{G}^{s,t}_{\mathcal{I}}} R_j^k \left(\int_{\tilde{Q}_j^k}(P_j^k)^*(h\omega) \right)^p \]

\[\leq C \int \left(M_\omega \left(\sum_{(k,j) \in \mathcal{G}^{s,t}_{\mathcal{I}}} (P_j^k)^*(\chi_{G^{s,t}_j}h\sigma) \right) \right)^p \omega \]

\[\leq C \int \left(\chi_{G^{s,t}_j} \sum_{(k,j) \in \mathcal{G}^{s,t}_{\mathcal{I}}} (P_j^k)^*(\chi_{G^{s,t}_j}h\sigma) \right)^p \omega. \]

In view of (4-79), this completes the proof of the provisional estimate (4-78). \(\square \)

4.14.5. The bound for VI(1). Recall the definition of VI(1) from (4-77), and also from (4-63) the fact that \(B^{k+2}_i \subset \tilde{Q}^k_j \) whenever \(B^{k+2}_i \cap \tilde{Q}^k_j \neq \emptyset \). We claim that

\[VI'_s(1) \leq C2R^p \sum_{k,i} B^{k+2}_i |B^{k+2}_i|_\sigma (\Lambda^{k+2}_i)^p. \]

(4-80)
The notation here is as in (4-78), but since \(i \in J_s^j \) implies \(i \) belongs to Case(b), the sum over the right is over \(k, i \in J_s^j \) such that \(B_i^{k+2} \subset G_{r_i}^{a_r,i+1} \subset T_{\ell(r)} \cap \tilde{Q}_j^k \), for some integers \(j, r \), with \((k, j) \in \mathbb{N}_s^a \). As with (4-78), this is a provisional estimate.

Proof. We first estimate the sum in \(i \) inside term \(IV_s^j \). Recall that the sum in \(i \) is over those \(i \) such that \(B_i^{k+2} \subset G_{r_i}^{a_r,i+1} \subset T_{\ell} \) for some \(\ell = \ell(r) \), and where \(\{T_{\ell}\}_\ell \) is the set of maximal cubes in the collection \(\{3G_{r_i}^{a_r,i+1} : r \in \mathbb{N}_s \} \). See the discussion at (4-35), and (4-50). We will write \(\ell(i) = \ell(r) \) when \(B_i^{k+2} \subset G_{r_i}^{a_r,i+1} \). It is also important to note that the sum in \(i \) deriving from term \(IV_s^j \) is also restricted to those \(i \) such that \(B_i^{k+2} \subset \tilde{Q}_j^k \) by (4-63), so that altogether, \(B_i^{k+2} \subset T_{\ell} \cap \tilde{Q}_j^k \). We have

\[
\left| \sum_i \left(\int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega| \sigma \right) A_i^{k+2} \right|^p \\
\leq \sum_i \left| B_i^{k+2} \right| \sigma(A_i^{k+2}) \left(\sum_i \left| B_i^{k+2} \right|^1 \sigma \left(\int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega| \sigma \right)^{p'} \right)^{p-1} \\
\leq \sum_i \left| B_i^{k+2} \right| \sigma(A_i^{k+2}) \left(\sum_i \int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega|^p \sigma \right)^{p-1} \\
\leq C \sum_i \left| B_i^{k+2} \right| \sigma(A_i^{k+2}) \left(\sum_{i, \ell(i) = \ell} \int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega|^p \sigma \right)^{p-1}.
\]

Now we will apply the form (2-11) of (1-14) with \(g = \chi_{E_j^i \cap T_{\ell}} \) and \(Q \) chosen to be either \(T_{\ell} \) or \(\tilde{Q}_j^k \) depending on the relative positions of \(T_{\ell} \) and \(\tilde{Q}_j^k \). Since \(T_{\ell} \) is a triple of a cube in the grid \(\mathcal{D}_a^\alpha \) and \(\tilde{Q}_j^k \) is a cube in the grid \(\mathcal{D}_a^\alpha \), we must have either

\(\tilde{Q}_j^k \subset T_{\ell} \) or \(T_{\ell} \subset 3\tilde{Q}_j^k \).

If \(\tilde{Q}_j^k \subset T_{\ell} \) we choose \(Q \) in (2-11) to be \(\tilde{Q}_j^k \) and note that by bounded overlap of Whitney cubes, there are only a bounded number of such cases. If on the other hand \(T_{\ell} \subset 3\tilde{Q}_j^k \), then we choose \(Q \) to be \(T_{\ell} \) and note that the cubes \(T_{\ell} \) have bounded overlap. This gives

\[
\sum_{\ell} \sum_{i, \ell(i) = \ell} \int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega|^p \sigma \lesssim \mathcal{T}_s^p |3\tilde{Q}_j^k|_\omega,
\]

and hence

\[
\left| \sum_i \left(\int_{B_i^{k+2}} |L^* \chi_{E_j^i \cap T_{\ell(i)}} \omega| \sigma \right) A_i^{k+2} \right|^p \leq C \mathcal{T}_s^p \sum_i \left| B_i^{k+2} \right| \sigma(A_i^{k+2}) |N Q_j^k|_\omega^{p-1},
\]

since \(3\tilde{Q}_j^k \subset N Q_j^k \) by (4-56). With this we obtain

\[
IV_s^j(1) \leq C \mathcal{T}_s^p \sum_{(k, j) \in \mathbb{N}_s^a} R_j^k \sum_{i \in J_s^j} \left| B_i^{k+2} \right| \sigma(A_i^{k+2}) |N Q_j^k|_\omega^{p-1} \\
\leq C \mathcal{T}_s^p \sum_{k,i} \left| B_i^{k+2} \right| \sigma(A_i^{k+2})^p,
\]

(4-81)
where we are using \(R_j^k |N Q_j^k|^{p-1} \leq 1 \) and (4-64) in the final line.

4.14.6. The bound for \(V(1) \). We will use the same method as in the estimate for term \(VI(1) \) above to obtain

\[
\sum_{(t,s) \in \mathbb{L}^a} V_s^t(1) \leq C \Xi_s^p \gamma^{2p} \|f\|_{L^p(\sigma)}^p.
\]

(4-82)

Recall from (4-70) that \(V_s^t(1) \) is given by

\[
\sum_{(k,j) \in \mathcal{W}^t} R_k^j \sum_{r \in \mathbb{G}^t_i} \sum_{i \in \mathcal{J}^t_s} \left(\int_{B_i^{k+2} \subset \mathcal{G}_s^{t+1}} (L_s^{\ast} \chi_{E_i^{\ast} \cap T_{t(s)}} \omega) \sigma \right) c_i^{k+2} (|A_r^{t+1}| + A_i^{k+2})^p.
\]

The main difference here, as opposed to the previous estimate, is that \(i \in \mathcal{J}_s^t \) rather than in \(\mathcal{J}_s^t \); see (4-59). As a result, we have the estimate

\[
|A_r^{t+1}| + A_i^{k+2} \lesssim \gamma^{t+2},
\]

(4-83)

instead of \(|A_r^{t+1}| + A_i^{k+2} \lesssim A_i^{k+2} \), which holds when \(i \in \mathcal{J}_s^t \).

Proof of (4-82). We follow the argument leading up to and including (4-81) in the estimate for term \(VI(1) \) above, but using instead (4-83). The result is as below, where we are using the notation of (4-78), with the condition \(i \in \mathcal{J}_s^t \) replaced by \(i \in \mathcal{J}_s^t \) and \(i \in Case(b) \), and so we use an asterisk and \(\mathcal{J} \) in the notation below.

\[
V_s^t(1) \leq C \Xi_s^p \sum_{k,i} |B_i^{k+2}|_{\sigma} (\gamma^{t+2})^p.
\]

Now we collect those cubes \(B_i^{k+2} \) that lie in a given cube \(G_s^{t+1} \) and write the right hand side above as a constant times

\[
\Xi_s^p \gamma^{(t+2)p} \sum_{r \in \mathbb{G}_s^{t+1}} \sum_{k,i} |B_i^{k+2}|_{\sigma} := \Xi_s^p \gamma^{(t+2)p} \sum_{r \in \mathbb{G}_s^{t+1}} G_s^{r,t+1}.
\]

By Claim 4.13, which applies as we are in a subcase of \(IV \), we have \(G_s^{r,t+1} \leq C |G_s^{r,t+1}|_\sigma \), and it follows that

\[
V_s^t(1) \leq C \Xi_s^p \gamma^{(t+2)p} \sum_{r \in \mathbb{G}_s^{t+1}} |G_s^{r,t+1}|_\sigma \leq C \Xi_s^p \gamma^{(t+2)p} \sum_{k,i} |G_s^{r,t+1}|_\sigma,
\]

and hence from (4-18) that

\[
\sum_{(t,s) \in \mathbb{L}^a} V_s^t(1) \leq C \Xi_s^p \gamma^{2p} \sum_{(t,s) \in \mathbb{L}^a} \gamma^{t+p} |G_s^{r,t+1}|_\sigma \leq C \Xi_s^p \gamma^{2p} \|f\|_{L^p(\sigma)}^p.
\]

\[\square \]

4.14.7. The final combinatorial arguments. Our final estimate in the proof of (4-52) is to dominate by \(C \int |f|^p \, d\sigma \) the sum of the right hand sides of (4-78) and (4-80) over \((t,s) \in \mathbb{L}^a \), namely

\[
\sum_{(t,s) \in \mathbb{L}^a} \sum_{k,i} |B_i^{k+2}|_{\sigma} \leq C \int |f|^p \, d\sigma.
\]

(4-84)
The proof of (4-84) will require combinatorial facts related to the principal cubes, and the definition of the collection G^{α} in (4-27). Also essential is the implementation of the shifted dyadic grids. We now detail the arguments.

Definition 4.15. We say that a cube B_i^{k+2} satisfying the defining condition in $VI'_t(1)$, namely

there is $(k, j) \in \boxtimes_{\alpha, t} = G^{\alpha} \cap H^{\alpha, t}$ such that

$B_i^{k+2} \subset \tilde{Q}_j^{K}$ and $B_i^{k+2} \subset$ some $G^{\alpha, t+1}_r \subset G^{\alpha, t}_s$ satisfying $A_i^{k+2} > \gamma^{t+2}$,

is a final type cube for the pair $(t, s) \in \mathbb{L}^\alpha$ generated from Q^k.

The collection \mathcal{F} of cubes B_i^{k+2} such that B_i^{k+2} is a final type cube generated from some Q^k with $(k, j) \in \boxtimes_{\alpha, t}$ for some pair $(t, s) \in \mathbb{L}^\alpha$ satisfies the following three properties:

Property 1. \mathcal{F} is a nested grid in the sense that given any two distinct cubes in \mathcal{F}, either one is strictly contained in the other, or they are disjoint (ignoring boundaries).

Property 2. If B_i^{k+2} and $B_i^{k'+2}$ are two distinct cubes in \mathcal{F} with $B_i^{k+2} \subsetneq B_i^{k'+2}$, and k and k' have the same parity, then

$A_i^{k'+2} > \gamma A_i^{k+2}$.

Property 3. A given cube B_i^{k+2} can occur at most a bounded number of times in the grid \mathcal{F}.

Proof of Properties 1, 2 and 3. Property 1 is obvious from the properties of the dyadic shifted grid \mathcal{D}^{α}. Property 3 follows from the “bounded occurrence of cubes” noted above. So we turn to Property 2. It is this property that prompted the use of the shifted dyadic grids.

Indeed, since $B_i^{k+2} \subsetneq B_i^{k'+2}$, it follows from the nested property (4-54) that $k' > k$. By Definition 4.15 there are cubes

$Q_{j'}^{k'}$ and Q_j^k satisfying $B_i^{k'+2} \subset \tilde{Q}_{j'}^{k'}$, and $B_i^{k+2} \subset \tilde{Q}_j^k$,

and also cubes $G^{\alpha, t'}_s \subset G^{\alpha, t}_u$ such that $(k', j') \in \boxtimes_{\alpha, t'}$, and $(k, j) \in \boxtimes_{\alpha, t}$ with $(t', s'), (t, s) \in \mathbb{L}^\alpha$, so that in particular,

$\tilde{Q}_{j'}^{k'} \subset G^{\alpha, t'}_s$ and $\tilde{Q}_j^k \subset G^{\alpha, t}_s$.

Now $k' \geq k + 2$ and in the extreme case where $k' = k + 2$, it follows that the \mathcal{D}^{α}-cube $\tilde{Q}_{j'}^{k'}$ is one of the cubes B_i^{k+2}, so in fact it must be B_i^{k+2} since $B_i^{k'+2} \subset B_i^{k+2}$. Thus we have

$B_i^{k'+2} \subset \tilde{Q}_{j'}^{k'} = B_i^{k+2}$.

In the general case $k' \geq k + 2$ we have instead

$B_i^{k'+2} \subset \tilde{Q}_{j'}^{k'} \subset B_i^{k+2}$.

Now $A_i^{k+2} > \gamma^{t+2}$ by Definition 4.15, and so there is $t_0 \geq t + 2$ determined by the condition

$\gamma^{t_0} < A_i^{k+2} \leq \gamma^{t_0 + 1},$ (4-85)
and also \(s_0 \) such that
\[B_i^{k+2} \subset G_i^{\alpha_i, t_0} \subset G_s^{\alpha, t}, \]
where the label \((t_0, s_0)\) need not be principal. Combining inclusions we have
\[\widetilde{Q}_{j'}^{k'} \subset B_i^{k+2} \subset G_i^{\alpha_i, t_0}, \]
and since \((k', j') \in \mathbb{N}^2_s\), we obtain \(G_i^{\alpha_i, t'} \subset G_i^{\alpha_i, t_0} \). Since \((t', s') \in \mathbb{L}^\alpha\) is a principal label, we have the key property that
\[t' \geq t_0. \quad (4-86) \]
Indeed, if \(G_i^{\alpha_i, t'} = G_i^{\alpha_i, t_0} \) then (4-86) holds because \((t', s') \in \mathbb{L}^\alpha\) is a principal label, and otherwise the maximality of \(G_i^{\alpha_i, t'} \) shows that
\[\gamma < \frac{1}{|G_i^{\alpha_i, t_0}|} \int |f| \, d\sigma \leq \gamma^{t'+1} \quad \text{that is,} \quad t_0 < t' + 1. \]
Thus using (4-86) and (4-85) we obtain Property 2:
\[A^k|^{k+2}_i > \gamma^{t'+2} \geq \gamma^{t_0+2} \geq \gamma A^{k+2}_i. \]

Proof of (4-84). Now for \(Q = B_i^{k+2} \in \mathcal{F} \) set
\[A(Q) = \frac{1}{|Q|} \int_Q |f| \, d\sigma = A_i^{k+2} = \frac{1}{|B_i^{k+2}|} \int_{B_i^{k+2}} |f| \, d\sigma. \]

With the three properties above we can now prove (4-84) as follows. Recall that in term IV(1) we have \(i \in \mathcal{J}_s \) which implies \(B_i^{k+2} \) satisfies Case(b). In the display below by \(\sum_i \) we mean the sum over \(i \) such that \(B_i^{k+2} \) is contained in some \(G_i^{\alpha_i, t+1} \subset G_s^{\alpha, t} \), and also in some \(\widetilde{Q}_j^k \) with \((k, j) \in \mathcal{K}_s^t\), and satisfying \(A_i^{k+2} > 2^{t+2} \). The left side of (4-84) is dominated by
\[
\sum_{(i, s) \in \mathcal{L}^t} \sum_{(k, j) \in \mathcal{K}_s^t} \sum_i |B_i^{k+2}| |A_i^{k+2}|^p = \sum_{Q \in \mathcal{F}} |Q| |A(Q)|^p = \sum_{Q \in \mathcal{F}} |Q| |\sigma(\frac{1}{|Q|} \int_Q |f| \, d\sigma)^p |
\]
\[
= \int_{\mathbb{R}^n} \sum_{Q \in \mathcal{F}} \chi_Q(x) \left(\frac{1}{|Q|} \int_Q |f| \sigma \right)^p d\sigma(x)
\]
\[
\leq C \int_{\mathbb{R}^n} \sup_{x \in Q, Q \in \mathcal{F}} \left(\frac{1}{|Q|} \int_Q |f| \sigma \right)^p d\sigma(x)
\]
\[
\leq C \int_{\mathbb{R}^n} M_{\sigma}^\alpha f(x)^p (dx) \leq C \int_{\mathbb{R}^n} |f(x)|^p d\sigma(x),
\]
where the second to last line follows since for fixed \(x \in \mathbb{R}^n \), the sum
\[
\sum_{Q \in \mathcal{F}} \chi_Q(x) \left(\frac{1}{|Q|} \int_Q |f| \sigma \right)^p
\]
is supergeometric by Properties 1, 2 and 3 above, that is, for any two distinct cubes \(Q \) and \(Q' \) in \(F \) each containing \(x \), the ratio of the corresponding values is bounded away from 1, more precisely,

\[
\left(\frac{1}{|Q|} \int_Q |f| \sigma \right)^p \left(\frac{1}{|Q'|} \int_{Q'} |f| \sigma \right)^p \notin [\gamma^{-p}, \gamma^p) \quad \text{for } \gamma \geq 2.
\]

This completes the proof of (4-84). \(\square \)

5. The proof of Theorem 1.10 on the strongly maximal Hilbert transform

To prove Theorem 1.10 we first show that in the proof of Theorem 1.9 above, we can replace the use of the dual maximal function inequality (1-17) with the dual weighted Poisson inequality (5-5) defined below. After that we will show that in the case of standard kernels satisfying (1-9) with \(\delta(s) = s \) in dimension \(n = 1 \), the dual weighted Poisson inequality (5-5) is implied by the half-strengthened \(A_p \) condition

\[
\left(\int_{\mathbb{R}} \left(\frac{|Q|}{|Q| + |x - x_Q|^+} \right)^{p'} d\sigma(x) \right)^{1/p'} \left(\int_Q d\omega(x) \right)^{1/p} \leq A_p(\omega, \sigma) |Q|,
\]

(5-1)

for all intervals \(Q \), together with the dual pivotal condition (5-2) of Nazarov, Treil and Volberg [2010], namely that

\[
\sum_{r=1}^{\infty} |Q_r| \sigma P(Q_r, \chi_{Q_0} \omega)^{p'} \leq \mathcal{P}_p^r |Q_0| \omega,
\]

(5-2)

holds for all decompositions of an interval \(Q_0 \) into a union of pairwise disjoint intervals \(Q_0 = \bigcup_{r=1}^{\infty} Q_r \). We will assume \(1 < p \leq 2 \) for this latter implication. Finally, for \(p > 2 \), we show that (5-5) is implied by (5-1), (5-2) and the Poisson condition (1-24).

It follows from work in [Nazarov et al. 2010] and [Lacey et al. 2011] that the strengthened \(A_2 \) condition (5-16) is necessary for the two weight inequality for the Hilbert transform, and also from [Lacey et al. 2011] that the dual pivotal condition (5-2) is necessary for the dual testing condition

\[
\int_Q T(\chi_{Q\omega})^2 d\sigma \leq C \int_Q d\omega,
\]

for \(T \) when \(p = 2 \) and \(\sigma \) is doubling. We show below that these results extend to \(1 < p < \infty \). A slightly weaker result was known earlier from work of Nazarov, Treil and Volberg — namely that the pivotal conditions are necessary for the Hilbert transform \(H \) when both of the weights \(\omega \) and \(\sigma \) are doubling and \(p = 2 \). However, [Lacey et al. 2011] gives an example that shows that (5-2) is not in general necessary for boundedness of the Hilbert transform \(T \) when \(p = 2 \).

Finally, we show below that when \(\sigma \) is doubling, the dual weighted Poisson inequality (5-5) is implied by the two weight inequality for the Hilbert transform. Since the Poisson condition (1-24) is a special case of the inequality dual to (5-5), we obtain the necessity of (1-24) for the two weight inequality for the Hilbert transform.
5.1. The Poisson inequalities. We begin working in \mathbb{R}^n with $1 < p < \infty$. Recall the definition of the Poisson integral $P(Q, \nu)$ of a measure ν relative to a cube Q, given by

$$P(Q, \nu) \equiv \sum_{\ell=0}^{\infty} \frac{\delta(2^{-\ell})}{|2^\ell Q|} \int_{2^\ell Q} d|\nu|.$$ \hfill (5-3)

We will consider here only the standard Poisson integral with $\delta(s) = s$ in (5-3), and so we also suppose that $\delta(s) = s$ in (1-9) above. We now fix a cube Q_0 and a collection of pairwise disjoint subcubes $\{Q_r\}_{r=1}^{\infty}$. Corresponding to these cubes we define a positive linear operator

$$P_{\nu}(x) = \sum_{r=1}^{\infty} P(Q_r, \nu) \chi_{Q_r}(x).$$ \hfill (5-4)

We wish to obtain sufficient conditions for the following “dual” weighted Poisson inequality,

$$\int_{\mathbb{R}^n} P(f \omega)(x)^p d\sigma(x) \leq C \int_{\mathbb{R}^n} f^p d\omega(x) \quad \text{for} \quad f \geq 0. \quad \hfill (5-5)$$

uniformly in Q_0 and pairwise disjoint subcubes $\{Q_r\}_{r=1}^{\infty}$. As we will see below, this inequality is necessary for the two weight Hilbert transform inequality when σ is doubling.

The reason for wanting the dual Poisson inequality (5-5) is that in Theorem 1.9 above, we can replace the assumption (1-17) on dual boundedness of the maximal operator \mathcal{M} by the dual Poisson inequality (5-5). Indeed, this will be revealed by simple modifications of the proof of Theorem 1.9 above. In fact (5-5) can replace (1-17) in estimating term $II_s^t(2)$, as well as in the similar estimates for terms $V_s^t(2)$ and $VI_s^t(2)$. We turn now to the proofs of these assertions before addressing the question of sufficient conditions for the dual Poisson inequality (5-5).

5.1.1. Sufficiency of the dual Poisson inequality. We begin by demonstrating that the term $II_s^t(2)$ in (4-40) can be handled using the “dual” Poisson inequality (5-5) in place of the maximal inequality (1-17). We are working here in \mathbb{R}^n with $1 < p < \infty$. In fact we claim that

$$\sum_{(t,s) \in I^a} II_s^t(2) \leq C \gamma^{2p} \mathfrak{P}_s \gamma \int |f|^p \sigma, \hfill (5-6)$$

where \mathfrak{P}_s is the norm of the dual Poisson inequality (5-5) if we take Q_0 and its collection of pairwise disjoint subcubes $\{Q_r\}_{r=1}^{\infty}$ to be $G^a_{s,t}$ and $[G^a_{r,t+1}]_{r \in \mathcal{G}^a_{s,t}}$. Now the maximal inequality (1-17) was used in the proof of (4-40) only in establishing (4-43), which says

$$\left\| \chi_{G^a_{s,t}} \sum_{(k,j) \in \mathcal{I}^a_{s,t}} P^k_j |g| \omega \right\|_{L^p(\sigma)} \leq C \mathfrak{M}_a \left\| \chi_{G^a_{s,t}} g \right\|_{L^p(\omega)},$$

where

$$P^k_j(\mu) \equiv \sum_{r \in \mathcal{G}^a_{s,t}} P(G^a_{r,t+1}, \chi_{E^a_j} \mu) \chi_{G^a_{r,t+1}}.$$
We now note that
\[\sum_{(k,j) \in I_\alpha, t} P^k_j(\|g\|) = \sum_{(k,j) \in I_\alpha, t} P(G_{r,t}^\alpha, \chi_{E_j} \|g\|)\chi_{G_{r,t}^\alpha} \]
\[\leq \sum_{r \in K_{\alpha, t}} P(G_{r,t}^\alpha, \chi_{G_{r,t}^\alpha} \|g\|)\chi_{G_{r,t}^\alpha} = P(\chi_{G_{r,t}^\alpha} \|g\|)(x), \]
which proves
\[\left\| \chi_{G_{r,t}^\alpha} \sum_{k,j} P^k_j(\|g\|) \right\|_{L^p' (\sigma)} \leq C \| \chi_{G_{r,t}^\alpha} \|_{L^p' (\omega)}, \]
which yields (5-6) as before.

The terms \(V(2) \) and \(VI(2) \) are handled similarly. Indeed, Claim 4.14 yields the following analogue of (4-73):
\[\sum_{(k,j) \in I_\alpha, t} P^k_j(\mu) \leq C \chi_{G_{r,t}^\alpha} P(\chi_{G_{r,t}^\alpha} \|g\|), \]
from which the arguments above yield both (4-71) and (4-78) with \(M^\ast \) replaced by \(P^\ast \).

5.1.2. Sufficient conditions for Poisson inequalities. We continue to work in \(\mathbb{R}^n \) with \(1 < p < \infty \). We note that (5-5) can be rewritten
\[\sum_{r=1}^{\infty} |Q_r|_\sigma P(Q_r, f \omega)^p \leq C \int_{\mathbb{R}^n} f^p' \ d\omega \quad \text{for} \quad f \geq 0, \]
and this latter inequality can then be expressed in terms of the Poisson operator \(P_+ \) in the upper half space \(\mathbb{R}^{n+1}_+ \) given by
\[P_+(f \omega)(x, t) = \int_{\mathbb{R}^n} P_t(x-y) f(y) \ d\omega(y). \]
Indeed, let \(Z_r = (x_Q, \ell(Q_r)) \) be the point in \(\mathbb{R}^{n+1}_+ \) that lies above the center \(x_Q \) of \(Q_r \) at a height equal to the side length \(\ell(Q_r) \) of \(Q_r \). Define an atomic measure \(ds \) in \(\mathbb{R}^{n+1}_+ \) by
\[ds(x, t) = \sum_{r=1}^{\infty} |Q_r|_\sigma \delta_{Z_r}(x, t). \quad (5-7) \]
Then (5-5) is equivalent to the inequality (this is where we use \(\delta(s) = s \)),
\[\int_{\mathbb{R}^{n+1}_+} P_+(f \omega)(x, t)^p' \ ds(x, t) \leq C \int_{\mathbb{R}^n} f^p' \ d\omega(x) \quad \text{for} \quad f \geq 0. \quad (5-8) \]

We can use [Sawyer 1988, Theorem 2] to characterize this latter inequality in terms of testing conditions over \(P_+ \) and its dual \(P_+^\ast \) given by
\[P_+(g \omega)(x, t) = \int_{\mathbb{R}^{n+1}_+} P_t(y-x) g(x, t) \ d\omega(x, t). \]
Let \(\hat{Q} \) denote the cube in \(\mathbb{R}^{n+1}_+ \) with \(Q \) as a face. Then [ibid., Theorem 2] yields the following.
Theorem 5.2. The Poisson inequality (5-5) holds for given data Q_0 and $\{Q_r\}_{r=1}^\infty$ if and only if the measure s in (5-7) satisfies
\[
\int_{\mathbb{R}^n_+} \mathbb{P}_+^{+}\langle \chi_{Q} \rangle^p d\nu \leq C \int_{Q} d\omega \quad \text{for all cubes } Q \in \mathbb{D},
\]
\[
\int_{\mathbb{R}^n} \mathbb{P}_+^*(t^{p^{-1}} \delta_{Q})^p d\omega \leq C \int_{Q} t^p \ d\nu \quad \text{for all cubes } Q \in \mathbb{D}.
\]

Note that
\[
\int_{\mathbb{R}^n_+} \mathbb{P}_+^{+}\langle \chi_{Q} \rangle^p d\nu \approx \sum_{r=1}^\infty |Q_r| \sigma P(Q_r, \chi_{Q\omega})^p.
\]

Claim 5.3. Let $n = 1$ and suppose that σ is doubling. First assume that $1 < p < \infty$. Then for the special measure s in (5-7), inequality (5-8) follows from the dual pivotal condition (5-2), the Poisson condition (1-24), and the half-strengthened A_p condition (5-1). Now assume that $1 < p \leq 2$. Then for the special measure s in (5-7), inequality (5-8) follows from (5-2) and (5-1) without (1-24).

With Claim 5.3 proved, the discussion above yields the following result.

Theorem 5.4. Let $n = 1$ and suppose that σ is doubling. First assume that $1 < p < \infty$. Then the dual Poisson inequality (5-5) holds uniformly in Q_0 and $\{Q_r\}_{r=1}^\infty$ satisfying $\bigcup_{r=1}^\infty Q_r \subset Q_0$ provided the half-strengthened A_p condition (5-1), the dual pivotal condition (5-2), and the Poisson condition (1-24) all hold. Now assume that $1 < p \leq 2$. Then (5-5) holds uniformly in Q_0 and $\{Q_r\}_{r=1}^\infty$ satisfying $\bigcup_{r=1}^\infty Q_r \subset Q_0$ provided (5-1) and (5-2) both hold.

Remark 5.5. We do not know if Claim 5.3 and Theorem 5.4 hold without the assumption that σ is doubling, nor do we know if the Poisson condition (1-24) is implied by (5-1) and (5-2) when $p > 2$.

We work exclusively in dimension $n = 1$ from now on.

5.5.1. Proof of Claim 5.3. Instead of applying Theorem 5.2 directly, we first reduce matters to proving that certain \mathbb{D}^α-dyadic analogues hold of the two conditions in Theorem 5.2. For $\alpha \in \{0, \frac{1}{3}, \frac{2}{3} \}$ we use the following atomic measures ds_α on \mathbb{R}^2_+, along with the following \mathbb{D}^α-dyadic analogues of the Poisson operators \mathbb{P} and \mathbb{P}_+ (with $\delta(s) = s$),
\[
\mathbb{P}_\alpha^{dy} v(x) = \sum_{r=1}^\infty P_\alpha^{dy}(I_r^\alpha, v) \chi_{I_r^\alpha}(x), \quad \mathbb{P}_+^{dy} v(x, t) = \sum_{Q \in \mathbb{D}^\alpha \text{ s.t. } x \in Q \text{ and } \ell(Q) \geq t} \frac{t}{\ell(Q)} \frac{1}{|Q|} \int_Q d\nu,
\]
\[
ds_\alpha(x, t) = \sum_{r=1}^\infty |I_r^\alpha|_\alpha \delta_{Z_r^\alpha}(x, t),
\]
where
1. the interval I_r^α is chosen to be a maximal \mathbb{D}^α-interval contained in Q_r with maximum length (there can be at most two such intervals, in which case we choose the leftmost one),
(2) the \mathcal{D}^α-Poisson integral $P^\alpha_{dy}(Q, \nu)$ is given by

$$P^\alpha_{dy}(Q, \nu) \equiv \sum_{\ell=0}^{\infty} \frac{2^{-\ell}}{|Q^{(\ell)}|} \int_{Q^{(\ell)}} d\nu \quad \text{for } Q \in \mathcal{D}^\alpha,$$

where $Q^{(\ell)}$ denotes the ℓ-th dyadic parent of Q in \mathcal{D}^α, and

(3) the point $Z_r^\alpha = (x_r^\alpha, \ell(I_r^\alpha))$ in \mathbb{R}^2_+ lies above the center x_r^α of I_r^α at a height equal to the side length $\ell(I_r^\alpha)$ of I_r^α.

We will use the following dyadic analogue of Theorem 5.2, whose proof is the obvious dyadic analogue of the proof of Theorem 5.2 as given in [Sawyer 1988].

Theorem 5.6. The \mathcal{D}^α-Poisson inequality

$$\int_{\mathcal{R}^2_+} |\mathbb{P}^\alpha_{dy,+}(f \omega)|^{p'} d\sigma \leq C \int_Q f^{p'} d\omega \quad \text{for } f \geq 0,$$

holds if and only if

$$(5-10) \int_{\mathcal{R}^2_+} |\mathbb{P}^\alpha_{dy,+}(\chi_Q \omega)|^{p'} d\sigma \leq C \int_Q d\omega \quad \text{for all intervals } Q \in \mathcal{D}^\alpha,$$

$$\int_{\mathcal{R}^2_+} (\mathbb{P}^\alpha_{dy,+}(t^{p-1} \chi_Q d_\sigma))^p d\omega \leq C \int_Q t^{p'} d_\sigma \quad \text{for all intervals } Q \in \mathcal{D}^\alpha.$$

We claim that for any positive measure ν, the set of shifted dyadic grids $\{\mathcal{D}^\alpha\}_{\alpha \in [0,1/3,2/3]}$ satisfies

$$P(\mathcal{Q}_r, \nu) = \sum_{\ell=0}^{\infty} \sum_{\alpha \in [0,1/3,2/3]} \frac{2^{-\ell}}{|2^\ell \mathcal{Q}_r|} \int_{2^\ell \mathcal{Q}_r} d\nu \approx \sum_{\alpha \in [0,1/3,2/3]} \frac{2^{-\ell}}{|(I_r^\alpha)^{(\ell)}|} \int_{(I_r^\alpha)^{(\ell)}} d\nu = \sum_{\alpha \in [0,1/3,2/3]} P^\alpha_{dy}(I_r^\alpha, \nu)$$

for all r. Indeed, for each interval $2^\ell \mathcal{Q}_r$, there is $\alpha \in [0,1/3,2/3]$ and an interval $Q \in \mathcal{D}^\alpha$ containing $2^\ell \mathcal{Q}_r$ whose length is comparable to that of $2^\ell \mathcal{Q}_r$. Thus $Q = (I_r^\alpha)^{(\ell+c)}$ for some universal positive integer c. Now

$$\mathbb{P}_+(\nu)(x_Q, \ell(Q)) = \int_{\mathcal{R}} P_{\ell(Q)}(x_Q - y) d\nu(y) \approx \sum_{\ell=0}^{\infty} \frac{1}{|2^\ell Q_r|} \int_{2^\ell \mathcal{Q}_r} d\nu = P(\mathcal{Q}_r, \nu).$$

Since σ is doubling and I_r^α is a maximal \mathcal{D}^α-interval in Q_r with maximum length, we have $|Q_r|_\sigma \lesssim |I_r^\alpha|_\sigma$ and

$$\int_{\mathcal{R}^2_+} \mathbb{P}_+(\nu(x, t))^{p'} ds = \sum_{r=1}^{\infty} |Q_r|_\sigma \int_{\mathcal{R}^2_+} \mathbb{P}_+(\nu(x_Q, \ell(Q)))^{p'} ds \approx \sum_{r=1}^{\infty} |Q_r|_\sigma P(Q_r, \nu)^p$$

$$\approx \sum_{\alpha \in [0,1/3,2/3]} \sum_{r=1}^{\infty} |I_r^\alpha|_\sigma P^\alpha_{dy}(I_r^\alpha, \nu)^p = \sum_{\alpha \in [0,1/3,2/3]} \int_{\mathcal{R}^2_+} P^\alpha_{dy,+}(x, t)^p d\sigma.$$
Now the definition of s_α in (5-9) shows that the left side of the first line in (5-10) is
\[
\int_{\mathbb{R}_+^d} P_{+,\alpha}^d(\chi_Q \omega)^{p'} \, ds_\alpha = \sum_{r=1}^{\infty} |I_r^\alpha|_|P_{+,\alpha}^d(I_r^\alpha, \chi_Q \omega)^{p'}|
\]
Recall that $I_r^\alpha, Q \in \mathcal{D}^\alpha$. Now if $Q \subset I_r^\alpha$ for some r, then the sum above consists of just one term that satisfies
\[
|I_r^\alpha|_\sigma P_{+,\alpha}^d(I_r^\alpha, \chi_Q \omega)^{p'} \leq C \frac{|Q|_\omega^{p'-1}}{|I_r^\alpha|^{p'}} |Q|_\omega \leq C \mathcal{A}_p(\omega, \sigma)|Q|_\omega.
\]
Otherwise we have
\[
\int_{\mathbb{R}_+^d} P_{+,\alpha}^d(\chi_Q \omega)^{p'} \, ds_\alpha \leq \sum_{I_r^\alpha \subset Q} |I_r^\alpha|_\sigma P_{+,\alpha}^d(I_r^\alpha, \chi_Q \omega)^{p'} + \sum_{I_r^\alpha \cap \mathbb{Q} = \emptyset} |I_r^\alpha|_\sigma P_{+,\alpha}^d(I_r^\alpha, \chi_Q \omega)^{p'}
\]
\[
\leq C \mathcal{A}_p \int_Q d\omega + \sum_{I_r^\alpha \cap \mathbb{Q} = \emptyset} |I_r^\alpha|_\sigma \left(\sum_{\ell=0}^{\infty} \frac{2^{-\ell}}{|(I_r^\alpha)^{(\ell)}|} \int_{Q \cap (I_r^\alpha)^{(\ell)}} d\omega \right)^{p'},
\]
where the local term has been estimated by the dual pivotal condition (5-2) applied to Q.

Now if $I_r^\alpha \subset Q^{(m)} \setminus Q^{(m-1)}$, then $Q \cap (I_r^\alpha)^{(\ell)} = \emptyset$ only if $Q^{(m)} \subset (I_r^\alpha)^{(\ell)}$. Thus the second term on the right can be estimated by
\[
\sum_{m=1}^{\infty} \sum_{I_r^\alpha \subset Q^{(m)} \setminus Q^{(m-1)}} |I_r^\alpha|_\sigma \left(\sum_{\ell=0}^{\infty} \frac{2^{-\ell}}{|(I_r^\alpha)^{(\ell)}|} \int_{Q \cap (I_r^\alpha)^{(\ell)}} d\omega \right)^{p'}
\]
\[
\leq \sum_{m=1}^{\infty} \sum_{I_r^\alpha \subset Q^{(m)} \setminus Q^{(m-1)}} |I_r^\alpha|_\sigma \sum_{\ell=0}^{\infty} 2^{-\ell} \left(\int_{Q \cap (I_r^\alpha)^{(\ell)}} d\omega \right)^{p'}
\]
\[
\leq C \sum_{m=1}^{\infty} \sum_{I_r^\alpha \subset Q^{(m)} \setminus Q^{(m-1)}} |I_r^\alpha|_\sigma \sum_{\ell=0}^{\infty} 2^{-\ell} \left(\int_{Q \cap (I_r^\alpha)^{(\ell)}} d\omega \right)^{p'}
\]
\[
\leq \left(\sum_{m=1}^{\infty} \frac{|Q^{(m)}|_\sigma}{|Q^{(m)}|^{p'}} \right) |Q|_\omega^{p'-1} \int_Q d\omega
\]
\[
= \left(\frac{1}{|Q|^{p'}} \int_{s_{+,\alpha}^d, Q} d\sigma(x) |Q|_\omega^{p'-1} \right) \int_Q d\omega \leq C \mathcal{A}_p(\omega, \sigma)^{p'} \int_Q d\omega,
\]
where we have used
\[
s_{+,\alpha}^d(x) = \sum_{m=0}^{\infty} \frac{|Q|}{|Q^{(m)}|} \chi_{Q^{(m)}}(x) \leq s_Q(x),
\]
and the half-strengthened A_p condition (5-1) in the final inequality.

Now we turn to showing that the second line in (5-10) holds using only the A_p condition (1-8). First we compute the dual operator $(P_{+,\alpha}^d)^*$. Since the kernel of $P_{+,\alpha}^d$ is
\[
P_{+,\alpha}^d(x, t, y) = \sum_{I \in \mathcal{D}^\alpha \times \ell(I) \geq t} \chi_I(x) \frac{t}{\ell(I)} |\chi_I(y)|,
\]
we have for any positive measure \(\mu(x, t) \) on the upper half space \(\mathbb{R}^2_+ \),

\[
(\mathbb{P}^{dy}_{+, o})^* \mu(y) = \int_{\mathbb{R}^2_+} \left(\sum_{I \in \mathcal{D}: I \geq t} \chi_I(x) \frac{1}{|I|} \chi_I(y) \right) \mu(x, t) = \sum_{I \in \mathcal{D}: y \in I} \frac{1}{|I|} \int_I \frac{1}{t} d\mu(x, t).
\]

Using the third line in (5-9) we compute that

\[
\int \chi_Q \, ds_\alpha = \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'},
\]

and

\[
(\mathbb{P}^{dy}_{+, o})^* (t^{p'-1} \chi_Q \, ds_\alpha(y)) = \sum_{I \in \mathcal{D}: y \in I} \frac{1}{|I|} \int_{I \cap Q} \frac{1}{t} t^{p'-1} \, ds_\alpha(x, t)
\]

\[
= \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'} \sum_{\ell=0}^\infty \frac{2^{-\ell}}{|(I^p_r)_{\ell}(y)|} \chi_{(I^p_r)_{\ell}(y)}.
\]

Thus we must prove

\[
\int_R \left(\sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'-1} \sum_{\ell=0}^\infty \frac{2^{-\ell}}{|(I^p_r)_{\ell}(y)|} \chi_{(I^p_r)_{\ell}(y)} \right)^p \omega(y) \leq C \mathcal{A}_p(\omega, \sigma) \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'};
\]

but this is the Poisson condition (1-24) in Theorem 1.10 for the shifted dyadic grid \(\mathcal{D}^{\alpha} \). This completes the proof of the first assertion in Claim 5.3 regarding the case \(1 < p < \infty \). We now assume that \(1 < p \leq 2 \) for the remainder of the proof.

To obtain (5-11) it suffices to show that for each \(\ell \geq 0 \)

\[
\int_R \left(\sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'-2\ell} \chi_{(I^p_r)_{\ell}(y)} \right)^p \omega(y) \leq C 2^{-\ell} \mathcal{A}_p(\omega, \sigma) \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'}.
\]

Indeed, with this in hand, Minkowski’s inequality yields

\[
\|((\mathbb{P}^{dy}_{+, o})^*(t \chi_Q \, ds_\alpha)) \|_{L^p(\omega)} = \left\| \sum_{\ell=0}^\infty \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'-2\ell} \chi_{(I^p_r)_{\ell}(y)} \right\|_{L^p(\omega)}
\]

\[
\leq \sum_{\ell=0}^\infty \left\| \sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'-2\ell} \chi_{(I^p_r)_{\ell}(y)} \right\|_{L^p(\omega)}
\]

\[
\leq C \sum_{\ell=0}^\infty 2^{-\ell} \mathcal{A}_p(\omega, \sigma) \left(\sum_{I^p \subset Q} |I^p_r| |I^p_r|^{p'} \right)^{1/p},
\]

as required.

Note that for \(a > 0 \) and \(p > 1 \),

\[
h(x) \equiv (a + x)^p - a^p - p(a + x)^{p-1}x,
\]
is decreasing on $[0, \infty)$ since $h'(x) = -p(p-1)(a+x)^{p-2}x < 0$ for $x > 0$. Since $h(0) = 0$ we have $h(x) \leq 0$ for $x \geq 0$, that is,

$$(a+x)^p - a^p \leq p(a+x)^{p-1}x \quad \text{for } a, x > 0 \text{ and } p > 1. \quad (5-14)$$

Now fix an interval Q in (5-12) and arrange the intervals I^a_r that are contained in Q into a sequence $\{I^a_r\}_{r=1}^N$ in which the lengths $|I^a_r|$ are increasing (we may suppose without loss of generality that N is finite). Recall we are now assuming $1 < p \leq 2$. Integrate by parts and apply (5-14) to estimate the left side of (5-12) by

$$2^{-2p} p \int_R \left(\sum_{r=1}^{N} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p d\omega(y)$$

$$= 2^{-2p} p \int_R \sum_{n=1}^{N} \left(\sum_{r=1}^{n} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p \left(\sum_{r=1}^{n-1} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p d\omega(y)$$

$$\leq 2^{-2p} p \int_R \sum_{n=1}^{N} \left(\sum_{r=1}^{n} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p |I^a_n| |I^a_n|^{p-2} |I^a_n|^{(p-2)(p-1)} \chi_{(I^a_n)^c}(y) d\omega(y)$$

where we have used (5-14) with

$$a = \sum_{r=1}^{n-1} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \quad \text{and} \quad x = |I^a_n| |I^a_n|^{p-2} \chi_{(I^a_n)^c}(y),$$

and then used $|I^a_r|^{p-2} \leq |I^a_n|^{p-2}$ for $1 \leq r \leq n$, which follows from $|I^a_r| \leq |I^a_n|$ and $p' \geq 2$. If $(I^a_r)^c \cap (I^a_n)^c \neq \emptyset$ and $1 \leq r \leq n$, then $I^a_r \subset (I^a_n)^c$ and so

$$\int_R \left(\sum_{I^a_r \subset Q} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p d\omega(y)$$

$$\leq 2^{-2p} p \sum_{n=1}^{N} |I^a_n| |I^a_n|^{p-2} \int_R \left(\sum_{1 \leq r \leq n} |I^a_r| |I^a_r|^{p-2} \chi_{(I^a_r)^c}(y) \right)^p d\omega(y)$$

$$\leq 2^{-2p} p \sum_{n=1}^{N} |I^a_n| |I^a_n|^{p-2} (|I^a_n|^{p-1})_o$$

$$\leq 2^{-2p} p \sum_{n=1}^{N} |I^a_n| |I^a_n|^{p-2} (|I^a_n|^{(p-1)}_o)$$

$$= 2^{-p} p \mathcal{A}_p(\omega, \sigma) \sum_{n=1}^{N} |I^a_n| |I^a_n|^{p-2} (|I^a_n|^{(p-1)}_o)$$

$$= 2^{-p} p \mathcal{A}_p(\omega, \sigma) \sum_{I^a_r \subset Q} |I^a_r| |I^a_r|^{p-2}.$$
Thus we have proved (5-12) for \(p \in (1, 2] \), which completes the proof of (5-10). This finishes the proof of Claim 5.3, and hence also that of Theorem 5.4.

5.7. Necessity of the conditions. Here we consider the two weight Hilbert transform inequality for \(1 < p < \infty \). We show the necessity of the strengthened \(A_p \) condition for general weights, as well as the necessity of the dual pivotal condition for the dual testing condition, and the dual Poisson inequality for the dual Hilbert transform inequality, when \(\sigma \) is doubling.

5.7.1. The strengthened \(A_p \) condition. Here we derive a necessary condition for the weighted inequality (1-18) but with the Hilbert transform \(T \) in place of \(T^\# \), that is,

\[
\int_{\mathbb{R} \setminus \text{supp } f} T(f \sigma)(x)^p \, d\omega(x) \leq C \int_{\mathbb{R}^n} |f(x)|^p \, d\sigma(x). \tag{5-15}
\]

The condition,

\[
\left(\int_{\mathbb{R}} \left(\frac{|Q|}{|Q| + |x - x_Q|} \right)^p d\omega(x) \right)^{1/p} \left(\int_{\mathbb{R}} \left(\frac{|Q|}{|Q| + |x - x_Q|} \right)^{p'} d\sigma(x) \right)^{1/p'} \leq C |Q| \tag{5-16}
\]

for all intervals \(Q \), is stronger than the two weight \(A_p \) condition (1-8), and we call it the strengthened \(A_p \) condition.

Preliminary results in this direction were obtained by Muckenhoupt and Wheeden, and in the setting of fractional integrals by Gabidzashvili and Kokilashvili, and here we follow the argument proving [Sawyer and Wheeden 1992, (1.9)], where “two-tailed” inequalities of the type (5-16) originated in the fractional integral setting. A somewhat different approach to this for the conjugate operator in the disk when \(p = 2 \) uses conformal invariance and appears in [Nazarov et al. 2010], and provides the first instance of a strengthened \(A_2 \) condition being proved necessary for a two weight inequality for a singular integral.

Fix an interval \(Q \) and for \(a \in \mathbb{R} \) and \(r > 0 \), let

\[
s_Q(x) = \frac{|Q|}{|Q| + |x - x_Q|} \quad \text{and} \quad f_{a,r}(y) = \chi_{(a-r, a)}(y)s_Q(y)^{p'-1},
\]

where \(x_Q \) is the center of the interval \(Q \). For convenience we assume that neither \(\omega \) nor \(\sigma \) have any point masses — see [Lacey et al. 2011] for the modifications necessary when point masses are present. For \(y < x \) we have

\[
|Q|(x - y) = |Q|(x - x_Q) + |Q|(x_Q - y) \leq (|Q| + |x - x_Q|)(|Q| + |x_Q - y|),
\]

and so

\[
\frac{1}{x - y} \geq |Q|^{-1}s_Q(x)s_Q(y) \quad \text{for } y < x.
\]

Thus for \(x > a \) we obtain that

\[
H(f_{a,r} \sigma)(x) = \int_{a-r}^a \frac{1}{x - y}s_Q(y)^{p'-1} \, d\sigma(y) \geq |Q|^{-1}s_Q(x) \int_{a-r}^a s_Q(y)^{p'} \, d\sigma(y),
\]
and hence by (5-15) for the Hilbert transform \(H\),
\[
|Q|^{-p} \int_\alpha^\infty s_\omega(x)^p \left(\int_\alpha^{-r} s_\omega(y)^{p'} d\sigma(y) \right)^p d\omega(x) \\
\leq \int |H(f_\alpha,\sigma)(x)|^p d\omega(x) \leq C \int |f_\alpha,\sigma(y)|^p d\sigma(y) = C \int_\alpha^{-r} s_\omega(y)^{p'} d\sigma(y).
\]

From this we obtain
\[
|Q|^{-p} \left(\int_\alpha^\infty s_\omega(x)^p d\omega(x) \right) \left(\int_\alpha^{-r} s_\omega(y)^{p'} d\sigma(y) \right)^{p-1} \leq C,
\]
and upon letting \(r \to \infty\) and taking \(p\)-th roots, we get
\[
\left(\int_\alpha^\infty s_\omega(x)^p d\omega(x) \right)^{1/p} \left(\int_\alpha^{-r} s_\omega(y)^{p'} d\sigma(y) \right)^{1/p'} \leq C|Q|.
\]

Similarly we have
\[
\left(\int_\alpha^\infty s_\omega(x)^p d\omega(x) \right)^{1/p} \left(\int_\alpha^{-r} s_\omega(y)^{p'} d\sigma(y) \right)^{1/p'} \leq C|Q|.
\]

Now we choose \(a\) so that
\[
\int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y) = \int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y) = \frac{1}{2} \int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y),
\]
and conclude that
\[
\left(\int_\alpha^\infty s_\omega(x)^p d\omega(x) \right)^{1/p} \left(\int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y) \right)^{1/p'} \leq 2^{1/p'} \left(\int_\alpha^{-r} s_\omega(x)^p d\omega(x) \right)^{1/p} \left(\int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y) \right)^{1/p'}
\]
\[
\leq 2^{1/p'} \left(\int_\alpha^\infty s_\omega(x)^p d\omega(x) \right)^{1/p} \left(\int_\alpha^\infty s_\omega(y)^{p'} d\sigma(y) \right)^{1/p'} \leq 2^{1+1/p'} C|Q|.
\]

5.7.2. Necessity of the dual pivotal condition and the dual Poisson inequality for a doubling measure.
Here we show first that if \(\sigma\) is a doubling measure, then the dual pivotal condition (5-2) with \(\delta(s) = s\) is implied by the \(A_p\) condition (1-8) and the dual testing condition for the Hilbert transform \(H\), that is,
\[
\int_I |H(\chi_I \omega)(x)|^p d\sigma(x) \leq C_{\omega,\sigma,p} |I|^{1/p} \quad \text{for all intervals } I.
\]
After this we show that the dual Poisson inequality (5-5) is implied by the \(A_p\) condition (1-8) and the dual Hilbert transform inequality,
\[
\int_I |H(\chi_I g_\omega)(x)|^p d\sigma(x) \leq C_{\omega,\sigma,p} \int_I g(x)^{p'} d\omega(x) \quad \text{for all } g \geq 0 \text{ and intervals } I.
\]
Lemma 5.8. Suppose that σ is doubling and $T = H$ is the Hilbert transform. Then the dual pivotal condition (5-2) is implied by the A_p condition (1-8) and the dual testing condition (5-17).

Proof. We begin by proving that for any interval I and any positive measure ν supported in $\mathbb{R} \setminus I$, we have

$$\mathbb{P}(I; \nu) \leq \frac{1}{|I|} \int_I d\nu + \frac{2|I|}{|\nu|} \inf_{x,y \in I} \frac{H(\chi_{I}; \nu)(x) - H(\chi_{I}; \nu)(y)}{x - y},$$

(5-19)

where we here redefine

$$\mathbb{P}(I; \nu) = \frac{1}{|I|} \int_I d\nu + \frac{1}{2} \int_{\mathbb{R} \setminus I} \frac{1}{|z - z_I|^2} d\nu(z),$$

(5-20)

with z_I the center of I. Note that this definition of $\mathbb{P}(I; \nu)$ is comparable to that in (5-3) with $\delta(s) = s$. Note also that $H(\chi_{I}; \nu)$ is defined by (5-15) on I, and increasing on I when ν is positive, so that the infimum in (5-19) is nonnegative.

To see (5-19), we suppose without loss of generality that $I = (-a, a)$, and a calculation then shows that for $-a \leq x < y \leq a$,

$$H(\chi_{I}; \nu)(y) - H(\chi_{I}; \nu)(x)$$

$$= \int_{\mathbb{R} \setminus I} \left(\frac{1}{|z - y|} - \frac{1}{|z - x|} \right) d\nu(z) = (y - x) \int_{\mathbb{R} \setminus I} \frac{1}{(z - y)(z - x)} d\nu(z) \geq \frac{1}{4} (y - x) \int_{\mathbb{R} \setminus I} \frac{1}{z^2} d\nu(z),$$

since $((z - y)(z - x))^{-1}$ is positive and satisfies

$$\frac{1}{(z - y)(z - x)} \geq \frac{1}{4z^2}$$

on each interval $(-\infty, -a)$ and (a, ∞) in $\mathbb{R} \setminus I$ when $-a \leq x < y \leq a$. Thus we have from (5-20)

$$\mathbb{P}(I; \nu) = \frac{1}{|I|} \int_I d\nu + \frac{|I|}{2} \int_{\mathbb{R} \setminus I} \frac{1}{z^2} d\nu(z) \leq \frac{1}{|I|} \int_I d\nu + \frac{2|I|}{|\nu|} \inf_{x,y \in I} \frac{H(\chi_{I}; \nu)(y) - H(\chi_{I}; \nu)(x)}{y - x}.$$

Now we return to the dual pivotal condition (5-2), and let $C_{\omega, \sigma, p}$ be the best constant in the dual testing condition (5-17) for H. Let $Q_0 = \bigcup_{r=1}^{\infty} Q_r$ be a pairwise disjoint decomposition of Q_0 and consider $\epsilon, \delta > 0$, which will be chosen at the end of the proof (we will take $\delta = \frac{1}{2}$ and $\epsilon > 0$ very small). For each interval Q_r, let $\alpha_r \in Q_r$ minimize $|H(\chi_{Q_r}; \omega)|$ on Q_r, that is,

$$|H(\chi_{Q_r}; \omega)(\alpha_r)| = \min_{x \in I} |H(\chi_{Q_r}; \omega)(x)|,$$

and set

$$J_{r, \epsilon} \equiv (\alpha_r - \epsilon|Q_r|, \alpha_r + \epsilon|Q_r|) \cap Q_r.$$

Now for each interval Q_r, consider the following three mutually exclusive and exhaustive cases:

Case 1: $\frac{1}{|Q_r|} \int_{Q_r} d\omega > \frac{|Q_r|}{4} \int_{\mathbb{R} \setminus Q_r} \frac{1}{|z - z_{Q_r}|^2} d\omega(z),$

Case 2: $\frac{1}{|Q_r|} \int_{Q_r} d\omega \leq \frac{|Q_r|}{4} \int_{\mathbb{R} \setminus Q_r} \frac{1}{|z - z_{Q_r}|^2} d\omega(z)$ and $|Q_r \setminus J_{r, \epsilon}| \geq \delta|Q_r|,$
Case 3:

\[
\frac{1}{|Q_r|} \int_{Q_r} d\omega \leq \frac{|Q_r|}{4} \int_{\mathbb{R} \setminus Q_r} \frac{1}{|z - z_Q|^2} d\omega(z) \quad \text{and} \quad |J_{r,\varepsilon}| \sigma > (1 - \delta)|Q_r| \sigma.
\]

If \(Q_r\) is a Case 1 interval we have \(\mathbb{P}(Q_r, \chi_{Q_0} \omega) \leq 3|Q_r|^{-1} \int_{Q_r} d\omega\) and so

\[
\int_{Q_r} \sum_{Q_r \text{ satisfies Case 1}} |Q_r| \sigma \mathbb{P}(Q_r, \chi_{Q_0} \omega)^{p'} \leq 3 \sum_{r=1}^{\infty} |Q_r| \sigma \left(\frac{1}{|Q_r|} \int_{Q_r} d\omega \right)^{p'} \leq C_p \sum_{r=1}^{\infty} \frac{|Q_r| \sigma}{|Q_r|^{|\rho' - 1|}} \int_{Q_r} d\omega \leq C_p \|\omega, \sigma\|_{A_p}^{\rho'} \int_{Q_0} d\omega.
\]

If \(Q_r\) is a Case 2 or Case 3 interval we have from (5-19) with \(v = \chi_{Q_0} \omega\) that for all \(x \in Q_r \setminus J_{r,\varepsilon}\),

\[
\mathbb{P}(Q_r; \chi_{Q_0} \omega) \leq 6|Q_r| \frac{H(\chi_{Q_0 \cap Q_r} \omega)(x) - H(\chi_{Q_0 \cap Q_0} \omega)(a_r)}{x - a_r} \leq 6|Q_r| \frac{1}{|\varepsilon|Q_r} \left(|H(\chi_{Q_0 \cap Q_r} \omega)(x)| + |H(\chi_{Q_0 \cap Q_0} \omega)(a_r)| \right) \leq \frac{12}{\varepsilon} |H(\chi_{Q_0 \cap Q_r} \omega)(x)|.
\]

If now \(Q_r\) is a Case 2 interval, we also have \(|Q_r| \sigma \leq \delta^{-1}|Q_r \setminus J_{r,\varepsilon}| \sigma\) and so

\[
\sum_{Q_r \text{ satisfies Case 2}} |Q_r| \sigma \mathbb{P}(Q_r, \chi_{Q_0} \omega)^{p'} \leq \frac{1}{\delta} \sum_{Q_r \text{ satisfies Case 2}} |Q_r \setminus J_{r,\varepsilon}| \sigma \mathbb{P}(Q_r, \chi_{Q_0} \omega)^{p'} \leq \frac{1}{\delta} \sum_{r=1}^{\infty} \left(\frac{12}{\varepsilon} \right)^{p'} \int_{Q_r \setminus J_{r,\varepsilon}} |H(\chi_{Q_0 \cap Q_r} \omega)(x)|^{p'} d\sigma(x) \leq C_{\varepsilon, \delta, p} \sum_{r=1}^{\infty} \int_{Q_r \setminus J_{r,\varepsilon}} |H(\chi_{Q_0} \omega)(x)|^{p'} + |H(\chi_{Q_r} \omega)(x)|^{p'} d\sigma(x) \leq C_{\varepsilon, \delta, p} \left(\int_{Q_0} |H(\chi_{Q_0} \omega)(x)|^{p'} d\sigma(x) + \sum_{r=1}^{\infty} \int_{Q_r} |H(\chi_{Q_r} \omega)(x)|^{p'} d\sigma(x) \right) \leq C_{\varepsilon, \delta, p} \left(C_{Q_0} + \sum_{r=1}^{\infty} C_{Q_r} \right) = C_{\varepsilon, \delta, p} C_{Q_{new}},
\]

where the final inequality follows from (5-17) with \(I = Q_0\) and then \(I = Q_r\).

Now we use our assumption that \(\sigma\) is doubling. There are \(C, \eta > 0\) such that

\[
|J| \sigma \leq C \left(\frac{|J|}{|Q|} \right)^{\eta} |Q| \sigma
\]

whenever \(J\) is a subinterval of an interval \(Q\). If \(Q_r\) is a Case 3 interval we have both

\[
\frac{|J_{r,\varepsilon}|}{|Q_r|} \leq 2\varepsilon \quad \text{and} \quad |J_{r,\varepsilon}| \sigma > (1 - \delta)|Q_r| \sigma.
\]
which altogether yields

$$(1 - \delta)|Q_r|_\sigma < |J_{r,\varepsilon}|_\sigma \leq C\left(\frac{|J_{r,\varepsilon}|}{|Q_r|}\right)^{\eta}|Q_r|_\sigma \leq C(2\varepsilon)^{\eta}|Q_r|_\sigma,$$

which is a contradiction if $\delta = 1/2$ and $\varepsilon > 0$ is chosen sufficiently small, so that $\varepsilon < 1/(2(2C))^{1/\eta}$.

With this choice, there are no Case 3 intervals, and so we are done. \hfill \Box

Lemma 5.9. Suppose that σ is doubling and $T = H$ is the Hilbert transform. Then the dual Poisson inequality (5-5) is implied by the A_p condition (1-8) and the dual Hilbert transform inequality (5-18).

Proof. The proof is virtually identical to that of Lemma 5.8 but with $dv = \chi_{Q_0}g\, d\omega$ in place of $\chi_{Q_0}\, d\omega$ where $g \geq 0$. Indeed, if Q_r is a Case 1 interval we then have $\mathbb{P}(Q_r, \chi_{Q_0}g\, d\omega) \leq 3|Q_r|^{-1} \int_{Q_r} g\, d\omega$ and so

$$\sum_{Q_r \text{ satisfies Case 1}} |Q_r|_{\sigma}\mathbb{P}(Q_r, \chi_{Q_0}g\, d\omega)^{p'} \leq 3^p \sum_{r=1}^{\infty} |Q_r|_{\sigma} \left(\frac{1}{|Q_r|} \int_{Q_r} g\, d\omega\right)^{p'} \leq C_p \sum_{r=1}^{\infty} \frac{|Q_r|_{\sigma}|Q_r|_{\omega}^{p-1}}{|Q_r|^p} \int_{Q_r} g^{p'}\, d\omega \leq C_p\|\omega\|_{A_p} \int_{Q_0} g^{p'}\, d\omega.$$

If Q_r is a Case 2 interval, then $|Q_r|_{\sigma} \leq \delta^{-1}|Q_r \setminus J_{r,\varepsilon}|_{\sigma}$ and

$$\sum_{Q_r \text{ satisfies Case 2}} |Q_r|_{\sigma}\mathbb{P}(Q_r, \chi_{Q_0}g\, d\omega)^{p'} \leq \frac{1}{\delta} \sum_{Q_r \text{ satisfies Case 2}} |Q_r \setminus J_{r,\varepsilon}|_{\sigma}\mathbb{P}(Q_r, \chi_{Q_0}g\, d\omega)^{p'}$$

$$\leq \frac{1}{\delta} \sum_{r=1}^{\infty} \left(\frac{12}{\varepsilon}\right)^{p'} \int_{Q_r \setminus J_{r,\varepsilon}} |H(\chi_{Q_0}\cap Q_r g\, d\omega)(x)|^{p'}\, d\sigma(x)$$

$$\leq C_{\varepsilon, p} \sum_{r=1}^{\infty} \int_{Q_r \setminus J_{r,\varepsilon}} (|H(\chi_{Q_0}g\, d\omega)(x)|^{p'} + |H(\chi_{Q_r}g\, d\omega)(x)|^{p'})\, d\sigma(x)$$

$$\leq C_{\varepsilon, p} \left(\int_{Q_0} |H(\chi_{Q_0}g\, d\omega)(x)|^{p'}\, d\sigma(x) + \sum_{r=1}^{\infty} \int_{Q_r} |H(\chi_{Q_r}g\, d\omega)(x)|^{p'}\, d\sigma(x)\right)$$

$$\leq C_{\varepsilon, p} \left(\int_{Q_0} g^{p'}\, d\omega + \sum_{r=1}^{\infty} \int_{Q_r} g^{p'}\, d\omega\right) = C_{\varepsilon, p} \int_{Q_0} g^{p'}\, d\omega,$$

upon using (5-18) with Q_0 and Q_r, which is (5-5). As before, Case 3 intervals don’t exist if σ is doubling and $\varepsilon > 0$ is sufficiently small. \hfill \Box

Proof of Theorem 1.10. Theorem 5.4 shows that the dual Poisson inequality (5-5) holds uniformly in Q_0 and pairwise disjoint $\{Q_r\}_{r=1}^{\infty}$ satisfying $\bigcup_{r=1}^{\infty} Q_r \subset Q_0$, provided both the half-strengthened A_p condition (5-1) and the dual pivotal condition (5-2) hold when $1 < p \leq 2$ — and provided (5-1), (5-2) and the Poisson condition (1-24) hold when $p > 2$. Since σ is doubling, Lemma 5.8 shows that the dual pivotal condition (5-2) follows from the dual testing condition (1-21) — and Lemma 5.9 shows that the
dual Poisson inequality (5-5), and hence also the Poisson condition (1-24), follows from the dual Hilbert transform inequality (5-18). Thus Theorem 1.10 now follows from the claim proved in Section 5.1.1 that (5-5) can be substituted for (1-17) in the proof of Theorem 1.9.

Acknowledgment

We began this work during research stays at the Fields Institute in Toronto, Canada, and continued at the Centre de Recerca Matemàtica in Barcelona, Spain. We thank these institutions for their generous hospitality. In addition, this paper has been substantially improved by the careful attention of the referee, for which we are particularly grateful.

References

MICHAEL LACEY: lacey@math.gatech.edu
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street NW, Atlanta, GA 30332-0160, United States
http://www.math.gatech.edu/~lacey

ERIC T. SAWYER: sawyer@mcmaster.ca
Department of Mathematics and Statistics, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
http://www.math.mcmaster.ca/~sawyer/

IGNACIO URIARTE-TUERO: ignacio@math.msu.edu
Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States
A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure

MICHAEL LACEY, ERIC T. SAWYER and IGNACIO URIARTE-TUERO

Energy identity for intrinsically biharmonic maps in four dimensions

PETER HORNUNG and ROGER MOSER

The wave equation on asymptotically anti de Sitter spaces

ANDRÁS VASY

Small data scattering and soliton stability in $\dot{H}^{-1/6}$ for the quartic KdV equation

HERBERT KOCH and JEREMY L. MARZUOLA

A remark on barely \dot{H}^{s}-supercritical wave equations

TRISTAN ROY