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SMALL DATA SCATTERING AND SOLITON STABILITY IN Ḣ−1/6 FOR THE
QUARTIC KDV EQUATION

HERBERT KOCH AND JEREMY L. MARZUOLA

We prove scattering for perturbations of solitons in the scaling space appropriate for the quartic non-
linearity, namely Ḣ−1/6. The article relies strongly on refined estimates for a KdV equation linearized
at the soliton. In contrast to the work of Tao, we are able to work purely in the scaling space without
additional regularity assumptions, allowing us to construct wave operators and a weak version of inverse
wave operators.

1. Introduction and statement of results

The generalized Korteweg–de Vries (KdV) equation{
∂tψ + ∂x(∂

2
xψ +ψ

p)= 0 for t, x ∈ R,

ψ(0, x)= ψ0(x)
(1-1)

has an explicit soliton solution

ψc(x, t)= Q p,c,c2t+x0(x) := c2/(p−1)Q p(c(x − (x0+ c2t)))

with c > 0, x0 ∈ R and

Q p =

( p+ 1
2

)1/(p−1)
sech2/(p−1)

( p− 1
2

x
)
. (1-2)

Well-posedness of the generalized KdV equation was established by Kenig, Ponce and Vega [Kenig
et al. 1993] in H s for some s depending on p. The case p = 4 (quartic KdV) is particularly interesting
as it is the only subcritical power nonlinearity that does not lead to a completely integrable system. The
critical space for the quartic KdV equation is H−1/6. Grünrock [2005] obtained local wellposedness in
H s for s > −1/6 and the endpoint Ḣ−1/6 was reached by Tao [2007]. Though wellposedness is not
the main focus of this note, we will return to this question in Section 7 and use spaces of bounded p
variation and their predual (see the appendix and [Hadac et al. 2009]) to simplify and strengthen Tao’s
wellposedness result in the critical space.

The solutions Qc,y are called traveling waves or solitons. These are minimizers of the constrained
variational problem

min{E(w) : w ∈ H 1, ‖w‖L2 = µ > 0}, (1-3)
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where

E(u)=
∫ (

1
2 u2

x −
1

p+1
u p+1

)
dx .

Minimizers also are extremals of the Lagrangian

S(u)= E(u)+ λ
2

∫
u2 dx, (1-4)

where λ is a Lagrangian multiplier. Existence of the minimizer has been shown by Berestycki and Lions
[1983] using the constrained minimization problem

min{T (w) : w ∈ H 1, V (w)= µ̃},

where

T (w)=
∫
w2

x dx and V (w)= λ
2

∫
w2 dx − 1

p+1

∫
w p+1 dx .

The function Q in (1-2) is the unique positive even solution to the Euler–Lagrange equation

−Qxx − Q p
+ Q = 0 (1-5)

to (1-4) with λ = 1. It is a critical point of S(u) again with λ = 1, a minimizer of E with constraint
‖u‖L2 = µ, where

µ2
= ‖Q p(x)‖2L2 =

( p+ 1
2

)2/(p−1)0
( p+1

p−1

)√
π

0
( p+3

2(p−1)

) (1-6)

and hence the quadratic form

K (ψ) :=
∫

1
2w
′2
+

1
2w

2
−

1
2 pQ p−1w2 dx ≥ 0 for 〈w, Q〉 = 0 (1-7)

is nonnegative on the tangent space that is, the functions orthogonal to Q.
The stability of solitons for generic KdV equations has been studied in several seminal works. Orbital

stability was first effectively established in the work of Weinstein [1985]. Then asymptotic stability of
solitons for KdV was first observed by Pego and Weinstein [1994], who proved that solitons for KdV
are stable under perturbations in exponentially weighted spaces. Later, Martel and Merle [2001a; 2005;
2001b] and Martel [2006] refined this result to observe that solitons for generalized KdV equations are
indeed stable under perturbations in the energy space, but measured within a moving reference frame. As
mentioned above, for the case p = 4, building on the multilinear estimates of Grünrock [2005] and the
work of Martel and Merle, Tao [2007] assumes smallness in H 1

∩ Ḣ−1/6 and obtains scattering in Ḣ−1/6.
We will give a more thorough introduction to previous stability results including rigorous definitions of
stability in Section 2.

In the sequel we will focus on the case p = 4 and omit p in the notation. It seems that any further
progress is tied to an understanding of the linearization, or more precisely of the linear equation

ut + ∂x Lu = 0 (1-8)
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and its adjoint
vt +L∂xv = 0, (1-9)

which have the explicit solutions (with ∼Q = c∂c Qc|c=1)

u = a( ∼Q+ 2t Q′)+ bQ′ and v = cQ,

where
∼Q := c d

dc
c2/(p−1)Q p(cx)

∣∣∣
c=1
=

2
p−1

Q p + x Q′p, (1-10)

usually evaluated at c = 1.
Thus both equations (1-8) and (1-9) have linearly growing solutions. It is one of the first contributions

of this paper that both equations are uniformly L2 bounded once we take into account these modes, and,
moreover, there are local energy estimates global in time once we remove these modes. In particular the
assumption of Pego and Weinstein on the absence of embedded eigenvalues holds.

Our goal is to build on the arguments of Weinstein [1985] and Martel and Merle [2001a; 2005] to
establish some type of asymptotic soliton stability for generalized KdV equations by a direct analysis
of the equation itself. We apply a variant of Weinstein’s and Martel and Merle’s arguments to the linear
equations (1-8) and (1-9) and their relatives with variable scale and velocity, and control nonlinear terms
through estimates for linear equations.

Specifically, we define projection operators related to the spectrum of L:

P⊥Q′ψ = ψ −
〈ψ, Q′〉
〈Q′, Q′〉

Q′, P̃ψ = ψ −
〈ψ, Q〉

〈Q, ∼Q〉
∼Q. (1-11)

We obtain the main linear estimates, which in their simplest form can be written as follows.

Theorem 1. Let S be the solution operator for (1-8) and S∗ the solution operator for (1-9). Then, we
have

sup
t
‖S(t)P̃∗u0‖L2 +‖sech(x)∂x P⊥Q′S(t)P̃

∗u0‖L2(R2) . ‖u0‖L2, (1-12)

sup
t
‖S∗(t)P⊥Q′v(t)‖L2 +‖sech(x)∂x P̃ S∗(t)P⊥‖L2(R2) . ‖v0‖L2 . (1-13)

The linear estimates presented in the sequel may be generalized to any subcritical power p < 5. We
provide variants of Theorem 1 for linearization at solitons with variable scale and velocity as well as
estimates in scales of Banach spaces similar to estimates for the Airy equation.

Even near the trivial solution dominating the nonlinear part globally by the linear parts requires to work
in a scale invariant space similar to Ḣ−1/6. On the positive side it will lead to scattering for perturbations
of a soliton in Ḣ−1/6, without the smallness condition of Tao in the energy space (2-4). The study of the
linear equation will lead to a fairly precise understanding of its properties, which seems to be new — we
hope that it will provide a model for many other questions on the stability of solitons.

As is standard in the study of stability, we take

ψ(x, t)= Qc(t)(x − y(t))+w(x, t).
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Then, we have

∂tw+ ∂x(∂
2
xw+ 4Q3

cw)=−ċ(∂c Qc)(x − y)+ ẏ(Q′c)(x − y)

− ∂x(∂
2
x Qc− c2 Qc+ Q4

c)− c2(Q′c(x − y))

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4). (1-14)

The standard choice of ċ and ẏ ensures orthogonality conditions for w. Due to low time regularity we
are forced to relax the orthogonality conditions to

ċ
c
〈Qc,

∼Qc〉 = 〈w, Qc〉, (1-15)

(ẏ− c2)〈Q′c, Q′c〉 = −κ〈w, Q′c〉, (1-16)

where κ � 1.
From an implicit function theorem argument similar to that in the proof of [Martel and Merle 2001b,

Proposition 1], there exist unique c(0) and y(0) so that w( · , 0) is orthogonal to Qc(0)( · − y(0)) and
Q′c(0)( · − y(0)) provided the distance of ψ to the set of solitons is small in a suitable norm.

We consider the equations above as ordinary differential equations for c and y, coupled with the partial
differential equation.

Using the decomposition and linear estimates, in Sections 8.2 and 8.3 we can prove (referring to later
sections for the definition of the function spaces, with Ḃ−1/6,2

∞ slightly larger than Ḣ−1/6) the following
global result:

Theorem 2. There exists ε > 0 and c > 0 such that given (1-1) with initial data of the form

min
c0,y0
‖ψ0− Qc0(x − y0)‖Ḃ−1/6,2

∞

≤ ε,

there exist unique functions c and y with

〈w(0), Qc(0)〉 = 〈w(0), Q′c(0)〉 = 0, ċ ∈ L1
∩C0, ẏ− c2

∈ L2
∩C0,

and a function w(x, t) ∈ Ẋ−1/6
∞ such that

ψ(x, t)= Qc(t),y(t)(x)+w(x, t)

satisfies the quartic KdV equation, and w, c and y satisfy (1-15), (1-16) and (1-14). Moreover,

‖ċ‖L1∩C0 +‖ẏ− c2
‖L2∩C0 +‖w‖Ẋ−1/6

∞

≤ c‖w0‖Ḃ−1/6,2
∞

.

In addition, there exists a function z0 ∈ Ḃ−1/6,2
∞ such that

‖w(t)− e−t∂3
x z0‖Ḃ−1/6,2

∞

→ 0

and
‖w( · )− e− · ∂

3
x z0‖X−1/6

∞ ((t,∞))→ 0 as t→∞

if w(0) is in the closure of C∞0 .
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In fact, we prove a far stronger result than this, though Theorem 2 captures the main ideas. Finally, in
Section 8.4 we show for a function v, there exists a quantity J (v) defined in (8-8) such that we have the
following:

Theorem 3. Let v0 be in the closure of C∞0 in Ḃ−1/6,2
∞ , let c∞ > 0, and let y0 ∈ R. Let v be the solution

to the linear homogeneous K dV equation. Assume that

J (v)≤ δ for some δ = δ(‖v0‖Ḃ−1/6,2
∞

).

Then there exists a solution 9 to the quartic KdV equation, a function y ∈ C1([0,∞)), a function
c ∈ C1([0,∞), (0,∞)) such that w = 9 − Qc,y , where c and y satisfy equations (1-15), (1-16), (1-14),
and

〈w(0), Qc(0)( · − y(0))〉 = 〈w(0), Q′c(0)( · − y(0))〉 = 0,

c(t)→ c∞, y(0)= y0, w(t)− v(t)→ 0 in Ḃ−1/6,2
∞

as t→∞.

Moreover, if in addition v0 ∈ L2, then 9 ∈ C(R, L2(R)) and

‖v0‖
2
L2 +‖Qc∞,0‖

2
L2 = ‖9(t)‖L2 .

There exists ε > 0 such that the assumptions are satisfied if ‖v0‖Ḃ−1/6,2
∞

≤ ε.

Remark 1.1. The conclusions in Theorems 2 and 3 hold as well in the spaces Ḃ−1/6,2
∞ ∩ Ḣ s

∩ Hσ

for any −1 < s ≤ 0 and σ ≥ 0, allowing one to prove uniform bounds in higher Sobolev norms; see
Section 7.1. In particular, given initial data in Ḃ−1/6,2

∞ ∩ Ḣ s
∩ Hσ , J small will imply stability and

scattering in Ḃ−1/6,2
∞ ∩ Ḣ s

∩ Hσ . Specifically, we note one can prove boundedness and scattering in the
energy space H 1 intersected with Ḃ−1/6,2

∞ .

To motivate the construction of our nonlinear iteration spaces, in Section 3 we first derive some refined
estimates for the linear KdV equation {

∂t u+ ∂3
x u = f,

u(0, x)= u0(x).
(1-17)

Then, in Section 4 we discuss the spectral and mapping properties of the operator L and derive linear
estimates for the systems (1-8) and (1-9) and their relatives

ut + uxxx + (Qc(t)(x − x(t))u)x = f.

In Section 5, we combine local smoothing estimates as for (1-17), where we treat the Q terms as error
terms with the virial identity and energy conservation for (1-8) to prove uniform bounds for a projection
of the solution v assuming orthogonality of the initial data to Q′.

With this first result at hand we pursue a standard though nontrivial path and employ pseudodifferential
techniques and duality to derive similar estimates in a full scale of function spaces. The Littlewood–Paley
decomposition at low frequencies is severely affected by the term containing Q. This is done in Section 6
with main result Proposition 6.7.
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Theorems 2 and 3 are proven in the final two sections by combining the wellposedness arguments and
the linear estimates.

2. Review of previous soliton stability results

To begin, we consider the linearized operator

Lψ =−ψ ′′− pQ p−1ψ +ψ

associated to the Euler–Lagrange equation (1-5) of (1-4) with λ=1, respectively the constraint variational
problem (1-3) with Lagrange multiplier 1. It is one of the remarkable operators for which almost every-
thing is known about the spectrum and scattering; see [Lamb 1980, Section 2.4 and 2.5], and [Titchmarsh
1962, Section 4.19]. The operator

LMψ =−ψxx −Msech2(x)ψ

has the continuous spectrum [0,∞) and the ground state ψ0(x)= sechα(x) with eigenvalue α2 provided
M = α(α + 1), with α > 0. The other eigenvalues are (α − j)2 for 1 ≤ j < α together with the
eigenfunctions can be obtained as follows: Let ψ0,M be the ground state with the constant M . Then,

ψ j,(α+ j)(α+ j+1)(x)=
j∏

l=1

( d
dx
− (α+ l) tanh(x)

)
sechα(x)

is the j eigenfunction to the potential with M = (α+ j)(α+ j+1). We consider this information useful,
and we will use these results, even if the arguments could easily be adapted to a much larger class of
nonlinearities.

Clearly LQ′ = 0 and a short calculation or a comparison with the results above shows that Q(p+1)/2

is the ground state with eigenvalue 1− (p + 1)2/4. There is no other eigenvalue if p ≥ 3, but there
are other eigenvalues in (0, 1) if p < 3. As an immediate consequence K (ψ) ≥ ‖ψ‖2L2 if 〈ψ, Q′〉 =
〈ψ, Q(p+1)/2

〉 = 0.
We recall that K is positive definite on the orthogonal complement of Q. We follow [Weinstein 1985]

and use this bound to establish a lower bound on a different codimension 2 subspace if p < 5. There
exists δ > 0 such that

K (ψ)≥ δ‖ψ‖2H1 for all ψ with 〈ψ, Q p−1 Q′〉 = 〈ψ, Q〉 = 0. (2-1)

It suffices to verify this statement independently for odd and even functions. For odd functions the quad-
ratic form is nonnegative, with a null space spanned by Q′. Positivity follows from 〈Q′, Q p−1 Q′〉 6= 0.
The argument for even functions is harder, but again the quadratic form is nonnegative since Q is a local
minimizer of the constraint variational problem.

Let ψ j be a minimizing sequence with ‖ψ j‖H1 = 1. Suppose that the left hand side of (2-1) con-
verges to 0. The sequence maximizes

∫
Q p−1ψ2

j dx . There exists a weakly converging subsequence
which convergences against a nontrivial even limit ψ since ψ →

∫
Q p−1ψ2 dx > 0 is weakly lower

semicontinuous. Moreover 〈ψ, Q〉 = 0 and ‖ψ‖H1 ≤ 1. Rescaling if necessary we see that ‖ψ‖H1 = 1.
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We want to show that K (ψ) > 0 and argue by contradiction. Suppose that K (ψ)= 0. Then by (1-7)
ψ is a minimizer of K under the sole constraint 〈Q, ψ〉 = 0 and hence it satisfies the Euler–Lagrange
equations

Lψ = λQ.

But then ψ is a multiple of ∼Q since

L
∼Q =−2Q

is the unique symmetric function with this property. However 〈Q, Q̃〉 6= 0 if p 6= 5, and hence ψ = 0,
which contradicts our construction and thus implies the existence of δ > 0 with

K (ψ)≥ δ‖ψ‖H1 .

Observe that here the subcriticality condition p < 5 enters crucially.
Given ψ we define the parameters c0 and x0 by the variational problem

‖ψ − Qc0,x0‖
2
H1 = inf

c,x
‖ψ − Qc,x‖

2
H1 .

Following Weinstein [1985] we claim

‖ψ − Qc0,x0‖
2
H1 ≤ c(E(ψ)− E(Qc)), (2-2)

provided the left hand side is sufficiently small. This is a consequence of the lower bound for the quadratic
form (2-1).

Lyapunov stability of solitons has been shown in the seminal work of Weinstein.

Theorem [Weinstein 1985, Theorem 4]. Let ε > 0. There exists δ > 0 such that

inf
x0
‖ψ(t)− Q1(x − x0)‖H1 ≤ ε if ‖ψ0− Q1‖H1 ≤ δ.

This is a direct consequence of the conservation of the L2 norm and the energy, plus (2-2).
The study of asymptotic stability began with Pego and Weinstein [1994] in spaces with growing

exponential weights. The effect of the weight is twofold. First, there is not much the soliton could
interact with on its path to the right. Secondly, small solitons that are slow and prevent asymptotic
stability in L2 carry a weight that makes them exponentially decreasing in time. A key assumption is
the absence of embedded eigenvalues of ∂x L, other than 0 with eigenfunction Q′ and the generalized
eigenfunction ∼Q. Pego and Weinstein verify this assumption for p= 2 and p= 3 and show that it fails at
at most a finite number of values for p between 2 and 5. It is a consequence of the virial identity below
that there are no nonzero purely imaginary eigenvalues of ∂x L.

The exponential weight pushes the continuous spectrum of ∂x L to the left, makes the problem more
parabolic, and allows the use of techniques from smooth dynamical systems, in particular of a center
manifold reduction that is a restriction of the flow to a two dimensional manifold.



152 HERBERT KOCH AND JEREMY L. MARZUOLA

Martel and Merle [2001a; 2005] and Martel [2006] introduced a virial identity or monotonicity formula
for the adjoint problem (1-9) as well as for nonlinear problems. Let

η(x)=−
p+ 1
p− 1

Q′

Q
=

p+ 1
2

tanh
p− 1

2
x

and suppose that v satisfies the Equation (1-9). By direct computation we have

−
d
dt

∫
ηv2 dx = 〈(3(L+ 1

4(p+ 1)2− 1)Q(p−1)/2v, Q(p−1)/2v〉, (2-3)

where the quadratic form is nonnegative and it has by the spectral theory of Schrödinger operators
with sech2(x) potentials a one-dimensional null space spanned by Q. There are two consequences: the
quantity on the left hand side is monotonically decreasing, and the right hand side controls the H 1 norm
of Q(p−1)/2v provided v is orthogonal to a vector Q with 〈Q, Q〉 6= 0. Hence, if v(0) is orthogonal to
Q′ and ∼Q, which is preserved under the evolution,

‖Q(p−1)/2v‖H1 ≤ c sup
t
‖v(t)‖L2 .

The left hand side is controlled provided we obtain a bound on supt‖v(t)‖L2 . Martel and Merle [2001a;
2005] use this and related observations together with the a priori control on the deviation of the solution
to the set of solitons in ingenious ways for indirect arguments: The existence of a solution H 1 close
to solitons, but not asymptotically converging to the soliton “on the right” leads to the existence of
impossible objects.

Later, Côte [2006] constructed solutions with specific asymptotic conditions including many soliton
solutions for positive time. This shows that L2 convergence to a soliton will not be true without restricting
the set where convergence is studied.

Already L2 conservation precludes asymptotic stability of the trivial solution. The relevant notion
instead of asymptotic stability is for unitary problems the notion of scattering. Suppose that ψ(0) is
close to a soliton. We seek a function w satisfying the Airy equation as well as c(t) and y(t) and a
Banach space X such that ‖ψ−Qc(t)(x− y(t))−w(t)‖X → 0 as t→∞. Tao [2007] verifies scattering
in the following sense: Suppose that

‖ψ(0)− Q(0)‖H1 +‖ψ(0)− Q‖Ḣ−1/6 � 1. (2-4)

Then scattering holds with X = Ḣ−1/6. Tao relies on the work of Martel and Merle, and in particular on
Weinstein’s a priori estimate of the difference to the soliton.

3. The Airy equation

For purposes of understanding and motivating dispersive estimates for the linearized KdV equation, here
we study and collect results for the Airy equation{

vt + vxxx = 0,
v(x, 0)= v0(x).

(3-1)
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The solution operator defines a unitary group S(t) with the kernel

K (t, x)= t−1/3 Ai(xt−1/3),

where as x→∞ the Airy function is roughly x−1/4e−x3/2
, and as x→−∞ the Airy function is roughly

Re(x−1/4e−i x3/2
). Strichartz estimates for solutions,

‖u‖L p Lq ≤ c‖|D|−1/pu0‖L2 (3-2)

where L p Lq is the standard space time norm such that the L p norm in time of the Lq norm in space and

2
p
+

1
q
=

1
2
,

follow as an immediate consequence. Of particular interest for this work are the homogeneous Strichartz
pair (p, q) = (6, 6) as well as the endpoint Strichartz pair (p, q) = (4,∞). For an overview of Airy
function asymptotics, see [Fedoryuk 1993].

Local smoothing estimates for (3-1) go back to [Kato 1983]. Here we are interested in a more general
version of them. Let γ (t, x)≥ 1 be a smooth bounded increasing function. We calculate

d
dt

∫
γ u2 dx =

∫
(γt + γ

(3))u2
− 3γ ′u2

x dx (3-3)

and search for conditions ensuring that the right hand side is nonpositive. We assume

∂3
xγ ≤−

2
3∂tγ (3-4)

with the easiest case being γ (t, x)= γ0(x − t), for which we assume

γ
(3)
0 ≤

2
3γ
′

0. (3-5)

We get
d
dt

∫
γ u2 dx +

∫
γ ′(u2

x +
1
3 u2) dx ≤ 0. (3-6)

Let us fix a particular example,

γ0(x)= 1+
∫ x

−∞

(1+ |y|2)−(1+ε)/2dy. (3-7)

It satisfies the criteria and, provided ε is sufficiently small, a straightforward calculation gives (3-5).
Next, it is instructive to consider a scaling. For µ > 0 and γ0 as above we define

γµ(t, x)= γ0(µ
−1(x −µ−2t)).

Then,
d
dt

∫
γµu2 dx +

∫
γ ′µ(u

2
x +

1
3µ2 u2) dx ≤ 0. (3-8)

One may easily generalize this inequality by choosing t → y(t) with ẏ ≥ 1
8µ
−2, and setting γ (t, x) =

γ0(µ
−1(x − y(t))). In the sequel we will always restrict ourselves to µ= 1.
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The virial identity clearly generalizes to functions spaces with different regularity. To see this, we first
define the space H s

ρ (and similarly L2
ρ) by the norm

‖u‖2H s
ρ
=

∫
|〈D〉su|2ρ2(x) dx <∞,

where ρ > 0 with uniformly bounded derivatives of order up to k for some k ≥ |s| and 〈D〉s is defined
through the Fourier multiplication (1+ |ξ |2)s/2. Similarly we define ρH s where u ∈ ρH s if and only if

u = ρ f for f ∈ H s and ‖u‖ρH s = inf
u=ρ f
‖ f ‖H s .

The function ρ will often depend on t . Given a Banach space X , we denote the space of X -valued L2

functions by L2 X , and give the obvious meaning to L2ρH s and L2 H s
ρ . Such spaces will be explored

further in Section 4.

Remark 3.1. We note that ρH s
= H s

ρ−1 , if ρ is nonnegative, up to equivalent norms. However as we
wish to highlight the use of duality throughout the linear analysis and construction of iteration spaces,
we adopt the ρH s convention.

If γ satisfies the assumptions above and{
ut − uxxx = f, where f ∈ L2√γ ′H−1,

u(0, x)= u0(x), where u0 ∈ L2,
(3-9)

we obtain by an obvious modification of the argument above

‖u‖L∞L2 +‖u‖L2 H1√
γ ′
≤ c

(
‖u(0)‖L2 +‖ f ‖L2

√
γ ′H−1

)
. (3-10)

We turn to a useful technical result.

Lemma 3.1. Let m ∈C∞(R) satisfy |m( j)(ξ)|≤c j 〈ξ〉
s− j for j ≥1 and let m(D) be the Fourier multiplier

defined by m. Suppose that γ ∈ C∞,

|γ ( j)(x)|. γ (x) for j ≥ 0, and

|1− γ (x)/γ (y)|. c(|x − y| + |x − y|N ) for some N .

For any a ∈ R we have

‖γ−a
[m(D), γ a

]〈D〉1−s f ‖L2 +‖[m(D), γ a
]γ−a
〈D〉1−s f ‖L2 ≤ cs,a‖ f ‖L2

and
‖〈D〉1−s

[m(D), γ a
]γ−a f ‖L2 +‖〈D〉1−sγ−a

[m(D), γ a
] f ‖L2 ≤ cs,a‖ f ‖L2 .

The most important example of m is the Fourier multiplier 〈D〉s defined by the function (1+|ξ |2)s/2.

Proof. We begin with the estimate of the first term in the first inequality, the second term being similar.
We decompose m(D)=m0(D)+m1(D), where the convolution kernel m0(x) of m0(D) is supported in
|x | ≤ 2, and the one for m1(D) is supported in |x | ≥ 1. The convolution kernel m1(x) together with its
derivatives decays exponentially.
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The integral kernel of γ−a
[m1(D), γ a

] is

K1(x, y)= m1(x − y)
(

1−
(
γ (x)
γ (y)

)a)
.

The kernel and its derivatives decay like 〈x − y〉−N , which implies

‖γ−a
[m1(D), γ a

] f ‖H N ≤ cN‖ f ‖H−N

for all N > 0 by Schur’s lemma. It remains to prove

‖γ−a
[m0(D), γ a

]〈D〉1−s f ‖L2 ≤ cs,a‖ f ‖L2 .

We decompose 〈D〉s = D0 + D1. The bound for γ−a
[m0(D), γ a

]D0 follows from standard pseudo-
differential calculus. The bound for the term with D1 follows from

‖γ−a
[m0(D), γ a

] f ‖L2 ≤ cN‖ f ‖H N ,

which again follows easily by standard pseudodifferential calculus. �

Lemma 3.2. Suppose that {
ut + uxxx = f, where f ∈

√
γ ′H s−1,

u(0, x)= u0(x), where u0 ∈ H s .
(3-11)

Then
‖u‖L∞H s +‖u‖L2 H s+1√

γ ′

≤ c
(
‖u(0)‖H s +‖ f ‖L2

√
γ ′H s−1

)
. (3-12)

Moreover, if {
ut + uxxx = (sech2(x − x(t)) f )x + ∂x g,
u(0, x)= u0(x),

(3-13)

with ẋ ≥ δ, then

‖u‖L∞ Ḣ−1 +‖u‖L2 H0√
γ ′
. ‖u(0)‖Ḣ−1 +‖ f ‖L2 H−1 +‖g‖L1 L2 . (3-14)

Proof. We set v = 〈D〉su, where u satisfies (3-11); hence

vt + vxxx = 〈D〉s f,

and
‖u‖L∞H s +‖u‖L2 H s+1√

γ ′

= ‖v‖L∞L2 +‖v‖L2 H1√
γ ′
≤ c(‖v(0)‖L2 +‖〈D〉s f ‖L2γ H−1),

where the first term is equal to ‖u(0)‖H s and

‖〈D〉s f ‖L2
√
γ ′H−1 = ‖〈D〉−1(γ ′)−1/2

〈D〉s f ‖L2 L2

≤ ‖ f ‖L2
√
γ ′H s−1 +‖[〈D〉−1, (γ ′)−1/2

]〈D〉s f ‖L2 L2

≤ ‖ f ‖L2
√
γ ′H s−1 +‖(γ

′)−1/2
〈D〉s−2 f ‖L2 L2 .
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The last inequality follows from Lemma 3.1 applied with γ ′ for γ , a = 1/2, and −1 for s. This implies
the desired estimate (3-12). Now suppose that u satisfies (3-13) and let v be the antiderivative of u with
respect to x . It satisfies {

vt + vxxx = sech2(x − x(t)) f + g,
v(0, x)= v0(x);

(3-15)

hence
‖u‖L∞ Ḣ−1 +‖u‖L2 H0√

γ ′
≤ c‖g‖L1 L2 +‖ f ‖L2 H−1 . �

4. Properties of the Schrödinger operator

We briefly recall notions from the introduction. Given p> 1, solitons of the form Q p(x− t) satisfy (1-5)
and it is not hard to verify that all bounded solutions are translates of ±Q p in Equation (1-2). Similarly
Q p,c = c2/(p−1)Q p(cx) satisfies

∂2
x (Q p)c− c2(Q p)c+ (Q p)

p
c = 0. (4-1)

We will focus on p = 4 and omit again p from the notation. Let ′ denote differentiation with respect to
x and · differentiation with respect to time. We recall the definition of ∼Q from (1-10) and ∼Qc = c∂c Qc

respectively
∼∼Qc= c∂cc∂c Qc, the corresponding differentiation at c. There are many explicit calculations,

and we collect some of them here. Using the properties of Qc(x)= c2/3 Q(cx), it follows that

‖Qc‖L2 = c1/6
‖Q1‖L2, 〈

∼Qc, Qc〉 =
1
2 c∂c‖Qc‖

2
L2 =

1
6‖Qc‖

2
L2, (4-2)

where the L2 norm is given by (1-6), and

‖Q′c‖L2 = c7/6
‖Q′1‖L2 . (4-3)

In addition,

∂x Qc = c5/3 Q′(cx) and c∂c Qc =
( 2

3 Qc+ x Q′c
)
=
∼Qc = c2/3 ∼Q(cx).

The operator Lc is defined by

Lcu =−uxx + c2u− 4Q3
cu, (4-4)

where we mostly omit y and c if c= 1. We recall that virtually everything is known about the spectrum
of L; see [Andrews et al. 1999; Lamb 1980; Titchmarsh 1962]. We summarize the findings below. We
also refer to [Martel 2006; Weinstein 1985] and the references therein for extensive discussions of these
properties for more general operators of type similar to L.

By direct differentiation in x of (1-5), we see LQ′ = 0. Hence, the null space of L consists at least
of the space αQ′ for all α ∈ R. Similarly, by differentiation in c of (4-1), we see L(

∼Q)=−2Q, so ∂x L

has at least a 2-dimensional generalized null space. Also, since Q′ = 0 only at x = 0, we know from
the Sturm oscillation theorem that there exists some λ0 > 0 and Q0 > 0 such that LQ0 = −λ0Q0, the
unique negative eigenstate of L. Note, because L is a sech2 potential perturbation of the Laplacian, it is
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possible to exactly construct Q0 = Q5/2 and λ0 = 21/4 using standard techniques. The analysis above
summarizes the entire discrete spectral decomposition for L.

Following the analysis in [Weinstein 1985, Propositions 2.7 and 2.9], if

〈ũ, Q〉 = 0 and 〈ũ, Q′〉 = 0,

then there exists k0 > 0 such that

〈ũ,Lũ〉 ≥ k0‖ũ‖2L2 . (4-5)

Here k0 depends only on the power p = 4 in (1-1).
We will consider ρ = eν with ν ∈ C |s|+1 with

|ν( j)(x)| ≤ ε (4-6)

for 0 ≤ j ≤ |s| + 1 and a small constant ε to be chosen later. Clearly we may regularize ν and hence
ρ = eν without changing the spaces. Then

u ∈ H s
ρ ⇐⇒ ρu ∈ H s

⇐⇒ u ∈ ρ−1 H s .

It is quite obvious that the dual space of H s
ρ is ρH−s with isometric norms, and this statement does not

depend on the regularity of ρ. We recall the definition of the projectors (1-11).

Lemma 4.1. For all s ∈ R, there exists C > 0 such that

‖P⊥Q′u‖H s+2 ≤ C‖Lu‖H s , ‖P⊥Q′u‖ρH s+2 ≤ C‖Lu‖ρH s , ‖P⊥Q′u‖H s+2
ρ
≤ C‖Lu‖H s

ρ
.

Proof. The first inequality is an immediate consequence of the nature of the spectrum described above
along with ellipticity. The second and the third statement are equivalent because H s

ρ = ρ
−1 H s , with

equivalent norms.
Fix µ= 1− (p+1)2/4, where p= 4. For λ= λ0+ iλ1 in the complex half plane left of µ, we obtain

the resolvent estimate
|λ−µ|‖u‖L2 ≤ ‖(L− λ)u‖L2

and also for some 1> κ > 0, we have

Re
∫

u(L− λ)u dx ≥ |λ−µ|‖u‖2L2 +〈(L−µ)u, u〉

≥
1
2 |λ−mu|‖u‖2L2 + κ‖ux‖

2
L2 + (1− κ)〈(L−µ)u, u〉

+
( 1

2 |λ−µ| + κ(1−µ)− 4κ‖Q‖3L∞
)
‖u‖2L2

≥
1
2 |µ− λ0|‖u‖2L2 +min

{
|µ− λ0|

8‖Q‖3L∞
,

1
2

}
‖ux‖

2
L2

by the obvious choice of κ .
We obtain the estimate for λ with real part at most µ:

|µ− λ|‖u‖L2 +min{|λ−µ|, 1}‖ux‖L2 ≤ C Re〈(L− λ)u, u〉 ≤ C‖〈(L− λ)u‖H−1‖u‖H1 .
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These estimates imply that the resolvent (L− λ)−1 defines a continuous uniformly bounded map (for
Re λ≤ λ0 < µ) from H−1 to H 1. Moreover,

‖u‖L2 ≤ |λ−µ|−1
‖Lu‖L2 and ‖ux‖

2
L2 ≤ |λ−µ|

−1 max
{1

2
,

8‖Q‖L∞

|λ−µ|

}
‖(L− λ)u‖2L2 .

We turn to the weighted estimates and calculate formally

eν(L− λ)e−ν = L− λ− |ν ′|2+ ∂xν
′
+ ν ′∂x ,

and hence, since ∂xν
′
+ ν ′∂x is antisymmetric,

Re
∫

ueν(L− λ)e−νu) dx = Re
∫

u(L− λ)u dx −‖ν ′u‖2L2 ≥
1
2 |λ0−µ|‖u‖2L2

if ε ≤
√
|λ0−µ|/2, which we assume in the sequel. As above we obtain with an explicit constant C

‖u‖H1 ≤ C‖eν(L− λ)e−νu‖H−1 . (4-7)

It follows from these estimates that given δ > 0 there is a single resolvent family (for Re λ < µ− δ)
mapping ρH−1

→ ρH 1 and from H−1
ρ → H 1

ρ , provided ε is sufficiently small.
Recall that L has a zero eigenvalue with eigenfunction Q′ and a single negative eigenvalue −λ0

with a ground state Q0. Let P be the orthogonal projection to the orthogonal complement of these two
eigenfunctions. The remaining spectrum is contained in [ρ,∞), where ρ > 0 is either 1 (if p≥ 3), or the
next positive eigenvalue, which can be easily be calculated. Moreover, L is selfadjoint. The resolvent
R(λ)= (L−λ)−1 is a holomorphic map in C\(1,∞) with simple poles in µ, 0, and possibly some other
eigenvalues in (0, 1). In addition, R0(λ)= R(λ)P has a continuous and hence holomorphic extension to
λ= 0 and λ=−λ0, which is uniformly bounded in each half plane strictly left of ρ.

By Equation (4-7) the resolvent is uniformly bounded on the weighted spaces if λ is in the half plane
left of −µ. Decreasing ε if necessary (so that the orthogonal projection P⊥Q′ along Q′ is bounded in the
weighted space), we obtain the same statement for R0(λ). Now complex interpolation implies

‖L−1 P f ‖H1
ρ
≤ C‖P f ‖H−1

ρ
.

This implies the desired estimates for s =−1.
Standard elliptic theory extends this estimate to

‖u‖H s+2
ρ
≤ C‖(L− λ)u‖H s

ρ
, (4-8)

‖u‖ρH s+2 ≤ C‖(L− λ)u‖ρH s (4-9)

first to all s ≥−1, and then, by duality, to all s ∈ R. The first estimate is the special situation when ν is
constant.

We conclude with the trivial observation that we may replace (4-6) by limx→∈∞ ν
j
= 0, which holds

for ρ(x)= (1+ |x |2)a for all real numbers a, since in that case we may choose an equivalent norm that
satisfies (4-6). �
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5. Energy methods for the linearized equation

We turn to a study of what we call the linear u-problem

{
ut = ∂x(Lu),
u(0, x)= u0,

(5-1)

where

Lu = (−∂2
x + 1− 4Q3)u =

(
−∂2

x + 1− 10sech2( 3
2 x
))

u.

We note here that L is the operator that results from linearization of the KdV equation about Q when
we work in a moving reference frame or in other words make the change of variables x→ x− t . Indeed,
setting ψ(x, t)= Q(x − t)+ u(x − t, t) and plugging into (1-1), we get

∂t u =−∂x(∂
2
x u− u+ (Q+ u)4− Q4

+ ∂2
x Q− Q+ Q4)= ∂x(Lu)− ∂x(6Q2u2

+ 4Qu3
+ u4).

For reasons that will become clear in the sequel, we also consider the linear v-problem{
vt = L(∂xv),

v(0, x)= v0.
(5-2)

The two equations (5-2) and (5-1) are related in many ways.

(1) They are dual to each other.

(2) If u satisfies the u equation, then v = ∂x u satisfies the v equation.

(3) If v satisfies the v equation, then u = Lv satisfies the u equation.

We observe that u = Q′ is a solution to the u equation, and hence 〈v, Q′〉 is preserved by the flow
for v. In particular orthogonality is preserved by the evolution. Similarly, v = Q is a solution to the
v equation and 〈u, Q〉 is preserved by the u flow. Moreover, u = aQ′ + b( ∼Q + 2t Q′) satisfies the u
equation for all coefficients a and b. As a consequence both equations admit solutions that grow linearly
with time. Moreover, if v satisfies the v equation, then

d
dt
〈v,

∼Q〉+ 2t〈v, Q′〉 = 0

and v is orthogonal to ∼Q and Q′ provided it is initially.
Inspired by a set of ideas collected from [Martel and Merle 2008] and the references therein, let us

look at a virial identity for (5-2), namely

Iη(v)=−
∫
η(x)v2 dx,
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where η(x) will be defined in the sequel. We have

−
d
dt

Iη(v)=−2
∫
η(x)v(Lvx) dx

=−2
∫
η(x)v((−∂2

x + 1− 4Q3)vx) dx

= 2
∫
ηv∂3

x v dx − 2
∫
ηv∂xv dx + 8

∫
ηQ3v∂xv dx

=−2
∫
η′v∂2

x v dx − 2
∫
η∂xv∂

2
x v dx +

∫
ηxv

2 dx

− 4
∫
η′Q3v2 dx − 4

∫
η∂x

(
sech2(3

2
x
))
v2 dx

= 3
∫
η′v2

x dx + 2
∫
η′′v∂xv dx +

∫
η′v2 dx − 4

∫
η′Q3v2 dx − 12

∫
ηQ2 Q′v2 dx .

As in [Martel 2006], we take

η(x)=−
5
3

Q′

Q
=

5
3 tanh

(3
2 x
)
, (5-3)

which is similar to x near 0 and bounded at∞. Note, the sign convention here is chosen to match that
of [Martel and Merle 2008]. By direct computation we have

η′(x)= Q3(x), (Q3η)′ =−5Q3
+ 3Q6,

η′′′(x)
η′(x)

= 9
(
1− 3

5 Q3(x)
)
, η2(x)=

( 5
3

)2(1− 2
5 Q3(x)

)
,(

η′′(x)
η′(x)

)2
= 9

(
1− 2

3 Q3(x)
)
, |η| ≤ 5

3 .

Proposition 5.1. If v satisfies the v-KdV equation and v is orthogonal to ∼Q and Q′, then there exists
some C > 0 such that given η as in (5-3), we have

d
dt

Iη(v)+C‖sech
( 3

2 x
)
v‖2H1 ≤ 0.

Proof of Proposition 5.1. Following the formalism presented above, we see

−
d
dt

Iη(v)=−2
∫

L(∂xv)vη dx = 3
∫
(∂xv)

2η′ dx +
∫
v2(−η′′′+ η′− 4(Q3η)′) dx .

Selecting

w̃(t, x)= v(t, x)
√
η′(x)

we see

−
d
dt

Iη(v)= 3
∫
(∂x w̃)

2 dx +
∫

A(x)w̃2 dx,
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where

A(x)= 1+ 1
2
η′′′

η′
−

3
4

(
η′′

η′

)2

− 4
(Q3η)′

η′
=

75
4
− 12Q3.

Hence,

−
d
dt

Iη(v)= 3
(
〈Lw̃, w̃〉+

21
4

∫
w̃2 dx

)
.

Since L∂x Q = 0, we know that given v = Q, we have

−
d
dt

Iη(v)= 0.

However, v = Q corresponds directly to w̃ = Q5/2, which is the ground state or L, which has exact
eigenvalue −21/4. Then, since 〈Q, ∼Q〉 6= 0, our orthogonality condition v ⊥ ∼Q is enough to guarantee
that there exists C > 0 such that

B̃(w̃, w̃)≥ C‖w̃‖2H1 = C‖
√
η′v‖2H1,

which is the desired result. �

We note in the case of more general weight functions η, virial identity methods are still applicable
even if perhaps analytic proofs of the virial identities are more challenging.

By choosing the multiplier γ (v− vxx) with γ = γ0(x − t) for γ0 as in (3-7), we see

d
dt

∫
γ (v2
+ v2

x) dx =−3
∫
γ ′v2

x dx +
∫
γ (3)v2 dx −

∫
γ ′v2 dx

+ 4
∫
γ ′Q3v2 dx + 12

∫
γ Q2 Q′v2 dx

−

∫
(3γ ′v2

xx + γ
′v2

x − γ
(3)v2

x) dx +
∫

4γ ′Q3v2
x dx, (5-4)

which consists of a number of negative semidefinite terms. All nonnegative semidefinite terms are easily
dominated by a multiple of ‖v‖2

H1
sech(3x/2)

, the term in Proposition 5.1.

Finally, note that by direct computation

∂t 〈L
−1v, v〉 = 0. (5-5)

Now, let us define an energy for the solution v of (5-2) to be

E(v)=
∫
γ (x)(v2

+ v2
x) dx + λE

∫
η(x)v2 dx +3E 〈L

−1v, v〉, (5-6)

where η(x) is chosen as in (5-3).
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Proposition 5.2. Let us assume v satisfies the v-KdV equation and v is orthogonal to ∼Q and Q′. There
exist λE ,3E , δ > 0 such that

E(v)∼ ‖v‖2H1 (5-7)

d
dt

E(v)+ δ‖v‖2H2√
γ ′

≤ 0. (5-8)

Proof. From (5-4) and the proof of Proposition 5.1, we see easily one may choose a λE that depends only
on δ and C so that (5-8) holds for all 32 > 0. We choose 3E large to achieve E(v) ≥ C ′′‖v‖2H1 . There
exists some constant C ′ such that E(v) ≤ C ′‖v‖2H1 . Thus the estimate follows given the orthogonality
conditions on v. �

The assertions of Proposition 5.2 are robust under suitable perturbations. We turn to the analysis of
the time dependent problem

vt − (−∂
2
x − 4Q3

c(t),y(t))∂xv = α(t)Qc(t),y(t)+β(t)Q′c(t),y(t), (5-9)

where

α(t)=−
(ċ/c)〈v, ∼̃Qc(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′c(t),y(t)〉

〈Qc(t),y(t),
∼Qc(t),y(t)〉

, (5-10)

β(t)=−
(ċ/c)〈v, ∼Q′c(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′′c(t),y(t)〉

〈Q′c(t),y(t), Q′c(t),y(t)〉
. (5-11)

Here,
∼̃Qc(t),y(t) =

2
3
∼Qc(t),y(t)+ x ∼Q′c(t),y(t) = c(t)∂c

∼Qc(t),y(t). (5-12)

For simplicity of exposition, in the sequel we suppress the t and y dependence and instead write simply
Qc(t),y(t) = Qc unless we want to stress the dependence on y(t) and t . Similarly we recall

Lcv = Lc,yv =−vxx + c2v− 4Q3
c,yv. (5-13)

The terms on the right hand side ensure that 〈v(0), Q′c(0),y(0)〉 = 0 implies 〈v(t), Q′c(t),y(t)〉 = 0, and,
in addition, 〈v(0), ∼Qc(0),y(0)〉 = 0 implies 〈v(t), ∼Qc(t),y(t)〉 = 0. We choose γ (x, t) = γ0(x − y(t)) and
we prove the following:

Proposition 5.3. There exists a δ, λ,3 > 0 such that the following is true: Suppose that

|c(t)− 1| + |ċ(t)| + |ẏ(t)− c2(t)|< δ (5-14)

for all t ≥ 0 and define

E(v)=
∫
γ (x, t)(v2

+ v2
x) dx + λ

∫
η1,y(t)(x)v2 dx +3〈L−1

1,y(t)v, v〉, (5-15)

where we suppress the dependence of E and v on t. Then

E(v)∼ ‖v‖2H1, (5-16)
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for all t > 0 provided

〈v, Q′c〉 = 〈v,
∼Qc〉 = 0. (5-17)

Moreover, if v satisfies the system consisting of (5-9), (5-10) and (5-11) and v( · , 0) is orthogonal to
∼Qc(0),y(0) and Q′c(0),y(0) (which implies the orthogonality for all t) we have

d
dt

E(v)+ δ‖v‖2H2√
γ ′

≤ 0. (5-18)

Proof. Since 〈v(t), Q′c(t),y(t)〉 = 0, we have

〈L−1
c(t),y(t)v, v〉 ≥ C‖v‖2H−1

for some C>0, as seen in (4-5). Here and in the remaining part of this section we use the Moore–Penrose
inverse, which is by an abuse of notation given by the orthogonal projection to the complement of Q′,
followed by an inversion of L on this orthogonal subspace. Let us look at a slightly different quantity
(where we replace c by 1) given by 〈L−1

1,y(t)v, v〉. Then, since 〈v, Q′c〉 = 〈v,
∼Qc〉 = 0, for |c− 1| small

enough we have

〈L−1
1,y(t)v, v〉 ≥ 2C‖P⊥Q′1,y(t)v‖

2
H−1 ≥ 2C‖v‖2H−1 −C ′|c− 1|‖v‖2H−1 ≥ C‖v‖2H−1

for some constants C,C ′ > 0 and δ ≤ C/C ′. The properties are similar to the previous proposition,
but the calculations are more tedious. We consider them to be important for the understanding of the
linearization. We recall that we suppress the dependence of Q and L on y in the notation below. Then
we have

d
dt
〈L−1

1 v, v〉 = 2〈vt ,L−1
1 v〉− 12ẏ〈Q2

1 Q′1L−1
1 v,L−1

1 v〉+ 2ẏ
〈v, Q′1〉
〈Q′1, Q′1〉

〈Q′′1,y,L−1
1 v〉

= 2I1− 12I2+ 2I3,

where I2 originates from the differentiation of the inverse and I3 from the dependence of the implicit
projection on time. We have

I1 = 〈Lc∂xv,L−1
1 v〉− c2

〈∂xv,L−1
1 v〉+α〈Q′c,L−1

1 v〉+β〈Qc,L−1
1 v〉,

〈Lc∂xv,L−1
1 v〉 = 〈(Lc−L1)∂xv,L−1

1 v〉 = (c2
− 1)〈∂xv,L−1

1 v〉+ 4〈(Q3
c − Q3

1)∂xv,L−1v〉,

[L−1
1 , ∂x ] = −L−1

1 [L1, ∂x ]L
−1
1 = 12L−1

1 Q2
1 Q′1L−1

1 +L−1
1 [∂x , PQ′1] + [∂x , PQ′1]L

−1
1 ,

[∂x , PQ′1]v =−
〈v, Q′1〉
〈Q′1, Q′1〉

Q′′1 +
〈v, Q′′1〉
〈Q′1, Q′1〉

Q′1,

〈∂xv,L−1
1 v〉 = 1

2〈v, [L
−1
1 , ∂x ]v〉 = 6〈Q2

1 Q′1L−1
1 v,L−1

1 v〉,

〈v, Q′1〉 = 〈v, Q′1− Q′c〉

by the orthogonality conditions and

〈L−1
1 v, Q′c〉 = 〈L

−1
1 v, Q′c− Q′1〉 and 〈L−1

1 v, Qc〉 = 〈L
−1
1 v, (L−1

1 −L−1
c )Qc〉
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because of the orthogonality conditions and since L−1
c Qc =

∼Qc.
Altogether, and applying Lemma 4.1, we have∣∣∣ d

dt
〈L−1

1 v, v〉

∣∣∣≤ O(|c2
− 1| + |ẏ− 1| + |ċ|)‖v‖2

H−1/2
√
γ ′

, (5-19)

which we will control by the virial identity below.
We now look at virial weights of the form

η(x, t)=−
5
3

Q′1(x − y(t))
Q1(x − y(t))

=
5
3 tanh

( 3
2(x − y(t))

)
,

which has properties similar to those of η(x) with appropriate changes for the unit scaling.
We have defined v such that

v(x, t)⊥ ∼Qc(t),y(t) and v(x, t)⊥ Q′c(t),y(t) for all t ≥ 0.

Following the formalism presented above and in [Martel 2006], select

w̃(t, x)= v(t, x)
√
η′(x).

Then,

−
d
dt

Iη(v)= 3
∫
(∂x w̃)

2 dx +
∫

A(x)w̃2 dx − 2
∫
η1,y

(
β(t)Q′c,y +α(t)Qc,y

)
v dx

+
3
2 c2(ẏ− c2)

∫
sech2( 3

2 c(x − y(t))
)
v2 dx + 3

2 c4
∫

sech2( 3
2 c(x − y(t))

)
v2 dx,

where

A(x, t)= 1+ 1
2
η′′′

η′
−

3
4

(η′′
η′

)2
− 4

(Q3η)′

η′
=

75
4
− 12Q3.

Hence,

−
d
dt

Iη(v) > 3
(
〈Lw̃, w̃〉+ 21

4 c2
∫
w̃2 dx

)
+O(|12

− c2
| + |ẏ− c2

|)‖v‖2L2√
γ ′

.

From above, we know that 3
(
〈Lw̃, w̃〉+ 21

4

∫
w̃2 dx

)
=0 for v=Q1,y(t). This corresponds to w̃=Q5/2

1,y(t),
which is the ground state or L1,y(t). Hence, v = Q is the ground state of the quadratic form

3
(
〈Lw̃, w̃〉+ 21

4

∫
w2 dx

)
.

From Lemma 4.1, our orthogonality condition v ⊥ ∼Qc(t),y(t) is enough to guarantee there exists δ > 0
such that

d
dt

Iη(v)+‖v‖2H1√
γ ′

≤ 0

provided |c2
− 12
| + |ẏ − c2

| is small for all t ≥ 0, which follows from our assumptions on the initial
perturbation.
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The time-dependent version of
d
dt

∫
γ (x, t)(v2

+ v2
x) dx

is done in full generality in the analysis of (3-13) in Section 3 for the Airy equation. The terms that we
have to control are the same as for constant c and ẏ, plus the terms coming from the right hand side.
Those are easy to control. Namely,

2
∣∣∣∫ [

(αQ+βQ′)γ − ∂x(γ (αQ′+βQ′′))
]
v dx

∣∣∣. (|ċ| + |ẏ− c2
|)‖|v|2‖L2√

γ ′

for γ as in Section 3. �

Note, above we have always assumed the proper orthogonality conditions, but without them we easily
obtain the following estimate for solutions of the v equation:

‖v‖L∞H1∩L2 H2√
γ ′
≤ C

(
‖v(0)‖H1 + sup

t
|〈v( · , t), Q′1,y(t)〉| + ‖〈v( · , t), ∼Q1,y(t)〉‖L2([0,∞)

)
. (5-20)

6. Function spaces and projection operators

In this section we construct the function spaces for our nonlinear analysis using properties of the linear
evolution we studied in Sections 3–5. Based on the energy functional (5-6) for the v-equation, it seems
natural to look at

v ∈ X1
= L∞H 1

∩ L2 H 2√
γ ′
,

where γ = γ0(x) is as in (3-5), and again by convention we set L p X to be the L p norm in time of the X
norm in space.

Then, as follows naturally from the equation, we define Y 1
= L1 H 1

+ L2√γ ′L2.
Generically, we define

X s
= L∞H s

∩ L2 H s+1
√
γ ′

and Y s
= L1 H s

+ L2
√
γ ′H s−1,

where we note (Y s)∗ = X−s .

6.1. The scale of energy spaces. Let us study the v-equation{
(∂t −L∂x)v = f0+

√
γ ′ f1 = f,

v(0, x)= v0,
(6-1)

where f0 ∈ L1 H s , f1 ∈ L2Ls−1 and v0 ∈ H s . We assume that the orthogonality conditions

v0 ⊥ Q′, v0 ⊥
∼Q (6-2)

and

( f0+
√
γ ′ f1)⊥

∼Q, ( f0+
√
γ ′ f1)⊥ Q′ for all t (6-3)

hold.
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Proposition 6.1. There exists a unique solution v ∈ X s that satisfies

‖v‖X s ≤ c(‖v0‖H s +‖ f0+
√
γ ′ f1‖Y s ).

Moreover, v(t) is orthogonal to Q′ and ∼Q.

Note, Theorem 1 is an immediate consequence.

Proof. We begin by considering the case s = 1. The previous section implies the estimate

‖v‖X s ≤ c(‖v0‖H s +‖ f0‖L1(H s)).

if f1 = 0 by a variation of constants argument. We retrace the steps and its modifications needed for f1.
Using the multipliers from the energy inequalities, we need the obvious estimates∣∣∣∫ f0γ (v− vxx) dx dt

∣∣∣+ ∣∣∣∫ f0ηvdx dt
∣∣∣+ ∣∣∣∫ f0L−1v dx dt

∣∣∣≤ c‖v‖L∞H1‖ f0‖L1 H1

and, using Lemma 4.1,∣∣∣∫ √
γ ′ f1(γ (v− vxx) dx dt

∣∣∣+ ∣∣∣∫ √
γ ′ f1ηv dx dt

∣∣∣+ ∣∣∣∫ √
γ ′ f1L−1v dx dt

∣∣∣≤ c‖ f1‖L2‖v‖L2 H2√
γ ′
.

It is not hard to see that v(t) remains orthogonal to Q′ and ∼Q so that we can close the argument as in
the previous section. We obtain the desired estimate for s = 1:

‖v‖X1 ≤ c(‖v0‖H1 +‖ f0+
√
γ ′ f1‖Y 1).

We denote the solution operator for the inhomogeneous v-problem (u-problem) by Sv (Su) and we write

‖Sv f ‖X1 ≤ c‖ f ‖Y 1 . (6-4)

The role of the two orthogonality conditions are different: The equation is invariant under the addition
of a multiple of Q to v, and orthogonality to Q′ is conserved. Orthogonality to ∼Q was needed for the
virial identity of Martel and Merle, whereas orthogonality of v and Q′ entered the control of the H−1

norm by the Moore–Penrose inverse of L. Without orthogonality one still obtains (5-20).
Suppose now that v satisfies {

vt −L∂xv = f,
v(x, 0)= v0.

(6-5)

Let ε be a small constant. We apply (1 + ε2 D2)(s−1)/2 to both sides of the equation and denote
vs
= (1+ ε2 D2)(s−1)/2v. It satisfies

vs
t −L∂xv

s
= (1+ ε2 D2)(s−1)/2 f + [(1+ ε2 D2)(s−1)/2, 4Q3

]∂xv.

Hence, applying (5-20)

‖v‖X s ≤ c1‖v
s
‖X1

≤ c2
(
‖(1+ε2 D2)(s−1)/2 f ‖Y 1+‖[(1+ε2 D2)(s−1)/2, 4Q3

]∂xv‖Y 1+sup
t
|〈vs, Q′〉|+‖〈vs,

∼Q〉‖L2
)
.
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and we turn to the commutator term.

Lemma 6.2. Let φ ∈ C∞(R) satisfy |φ| + |φ′| ≤ Ce−|x |. Let k(x, y) be the kernel of the operator

[(1+ ε2 D2)s/2, φ](1+ ε2 D2)−s/2.

Then,

|k(x, y)| ≤ cε|s|e−(|x |+|y|)/4−|x−y|/(4ε).

We postpone its proof. By Lemma 6.2 (with φ = 4Q3 and s− 1) and Schur’s Lemma

‖[(1+ε2 D2)(s−1)/2, 4Q3
]∂xv‖Y 1 ≤ ‖(γ ′)−1/2

[(1+ε2 D2)(s−1)/2, 4Q3
](1+ε2 D2)(1−s)/2∂xvs‖L2

≤ cε‖(γ ′)1/2∂xv
s
‖L2,

(6-6)

and by Lemma 3.1, after rescaling, as for the constant coefficient equation, we have

‖(1+ ε2 D2)(s−1)/2 f ‖Y 1 ≤ c‖ f ‖Y s .

For all Schwartz functions,∥∥(1+ |x |2)N ((1+ ε2 D2)s/2φ−φ
)∥∥

L2 ≤ Cε.

If 〈v, ∼Q〉 = 〈v, Q′〉 = 0, then

|〈vs,
∼Q〉| =

∣∣〈v, ∼Q〉− 〈vs,
∼Q− (1+ ε2 D2)−

s
2
∼Q〉
∣∣≤ Cε‖γ ′1/2vs

‖L2, (6-7)

|〈vs, Q′〉| =
∣∣〈v, Q′〉− 〈vs, Q′− (1+ ε2 D2)−

s
2 Q′〉

∣∣≤ Cε‖vs
‖L2 . (6-8)

Suppose that 〈 f, Q′〉 = 〈 f, ∼Q〉 = 0. Then we obtain for all s ∈ R from (6-6), (6-7) and (6-8)

‖vs
‖X s ≤ c(‖ f ‖Y s + ε‖vs

‖X s )

and hence

‖v‖X s . ‖ f ‖Y s , (6-9)

which again implies for solutions v to vt −L∂xv = PQ′ f , given by the variation of constants formula,
the bound ‖P̃∗v‖X s ≤ C‖ f ‖Y s or equivalently (recall (1-11))

‖P̃∗SvP⊥Q′‖Y s→X s . 1. (6-10)

Using spacetime duality, we consider {
(∂t − ∂x L)u = g,
u(0, x)= 0.

The estimate adjoint to (6-10) is

‖P⊥Q′Su P̃‖Y s→X s . 1, (6-11)

which completes the proof. �
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Proof. We turn to the proof of Lemma 6.2.
Let φ̂ be the Fourier transform of φ, which, because of the exponential decay extends to a holomorphic

function φ̂ in the strip {z : |Im z|< 1}. Moreover there exists C such that∫
|φ̂(ξ + iσ)| dξ ≤ C if |σ | ≤ 1

2 .

This estimate in turn implies exponential decay. Let k(x, y) be the integral kernel of

[(1+ ε2 D2)s/2, φ](1+ ε2 D2)−s/2.

We claim
|k(x, y)| ≤ cNε|s|e−δ(|x |+|y|)e−δ|x−y|/ε, (6-12)

which implies Lemma 6.2.
The symplectic Fourier transform

k̂(ξ, η)= 1
2π

∫
e−iξ x+iyηk(x, y) dx dy

satisfies

k̂(ξ, η)=
((1+ ε2ξ 2

1+ ε2η2

)s/2
− 1

)
φ̂(ξ − η).

We set a = ε(ξ + η)/2 and b = (ξ − η)/2. Then k̂(ξ, η)= ĝ(a, b), where

ĝ(a, b)=
((1+ (εb+ a)2

1+ (εb− a)2

)s/2
− 1

)
φ̂(2b)

and
k(x, y)= (2π)−1

∫
ei(xξ−yη)ĝ(ε(ξ + η)/2, (ξ − η)/2)) dξ dη

= 2ε(2π)−1
∫

ei( x−y
ε

a+b(x+y))ĝ(a, b) da db =: 2εg((x − y)/ε, x + y).

The function ĝ expands to a holomorphic function in a to the strip {z : |Im z| < 1/2} if ε| Im b| < 1/2.
Clearly,

1+ (a+ εb)2

1+ (a− εb)2
= 1+

4(εb)2

1+ (a− εb)2
+ 4εb

a− εb
1+ (a− εb)2

,

and hence we define the error term h by the right hand side of(1+ (εb+ a)2

1+ (εb− a)2

)s/2
− 1= 2sεb

a− εb
1+ (εb− a)2

+ h(εb, a).

It satisfies
|h(εb, a)| ≤ cs2ε2

|b|2(1+ |εb− a|)−2 if |ε Im b+ a| ≤ 1/2.

Hence, ∣∣∣∫ ei(av+bw)h(εb, a)φ̂(2b) da db
∣∣∣≤ cs2ε2e−(|v|+|w|)/4
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by the extension of a and b to a suitable complex strip. The leading term contributing to g can be
calculated:

g0(v,w)= (2π)−1
∫

ei(av+bw) a− εb
1+ (a− εb)2

bφ̂(2b) da db

= i v
|v|

e−|v|
∫

ei(b(w+εv))bφ̂(2b) db =
√
π2i v
|v|

e−|v|φ′((w+ εv)/2)).

The leading term for k is

k0(x, y)=
√
π2iε

x − y
|x − y|

e−|x−y|/εφ′(x). �

6.2. U and V space estimates. In this section, we generalize and improve Theorem 1 using the U p and
V p spaces as defined in [Hadac et al. 2009] and in the appendix. For notational simplicity, let us define

U p
=U p

K dV and V p
= V p

K dV .

We begin with a number of estimates that we will use often in the sequel.
Let c, y ∈ C1 satisfy (5-14) and let γ (x, t)= γ0(x − y(t)). Then,

‖aQ′c(t),y(t)+ b ∼Qc(t),y(t)‖Y 0 . ‖a‖L2+L1 +‖b‖L2+L1;

hence
‖P⊥Q′ P̃ f ‖DU 2+L2

√
γ ′H−1 . ‖ f ‖DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1 .

We consider
wt +wxxx = f, with w(0)= u0.

Then,
‖w‖U 2 . ‖u0‖L2 +‖ f ‖DU 2

and, since U 2
⊂ L2 H 1√

γ ′
,

‖〈w, Q〉‖L2 +‖〈w,
∼Q〉‖L2 . ‖ f ‖DU 2 +‖u0‖L2 .

Hence, with v = P̃ P⊥w, we have

‖v‖L2 H1√
γ ′
. ‖ f ‖DU 2 +‖u0‖L2 .

We calculate

(∂t + c2
− ∂x L)

(
〈w, Q〉

〈Q, ∼Q〉
∼Q+
〈w, Q′〉

〈Q′, ∼Q′〉
Q′
)
=

ċ
c
〈w, Q〉

〈Q, Q̃〉

∼∼Q+ (ẏ− c2)
〈w, Q′〉

〈Q′, ∼Q′〉
Q′′

+

(
(ẏ− c2)

〈w, Q〉

〈Q, ∼Q〉
+

ċ
c
〈w, Q′〉

〈Q′, ∼Q′〉

)
∼Q′− α̃ ∼Q− β̃Q′,

where α̃ and β̃ are the time derivatives of the coefficients of ∼Q and Q′ and
∼∼Q = (x − y) ∼Q′+ 2

3
∼Q.
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Hence, assuming that u0 satisfies the orthogonality conditions, that w and v are as above, and with g
defined through the previous calculations,

∂tv+ c2vx − ∂x Lc,yv = α̃
∼Q+ β̃Q′+ g+ f, with v(0)= u0, (6-13)

where we collect the properties of v and g in the following.

Lemma 6.3. Assuming (5-14), we have 〈v(t), Q〉 = 〈v(t), Q′〉 = 0 and

‖v‖V 2∩L2 H1√
γ ′
+‖g‖L2

√
γ ′H−1 . ‖u0‖L2 +‖ f ‖DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1 . (6-14)

Proof. We claim that
‖α̃‖L1+L2 +‖β̃‖L1+L2 ≤ c(‖w0‖L2 +‖ f ‖DU 2),

the proof of which we postpone. Assuming its validity we put the term 4∂x Qv in (6-13) on the right
hand side. We bound ‖v‖V 2 in terms of ‖w0‖L2 and the right hand side in DV 2. Since DU 2

⊂ DV 2 and
L2√γ ′H−1

⊂ DV 2, we can control all terms on the right hand side.
The only missing piece is the L2

+ L1 bound for α and β. There are two different arguments: Either
we can follow the calculation above and calculate α̃ and β̃ above, or we can test by Q and Q′ and use
orthogonality to obtain the standard equations for α and β. We use the first approach and recall the
calculations after (1-10). Then

d
dt
〈w, Q〉 = 〈 f, Q〉+ ẏ〈w, Q′〉+ ċ

c
〈w,

∼Q〉,

d
dt
〈w, Q′〉 = 〈 f, Q′〉+ ẏ〈w, Q′′〉+ ċ

c
〈w,

∼Q′〉.
(6-15)

There is one more term entering the coefficient of Q′ coming from applying the linear operator to ∼Q,
which gives

−2
〈w, Q〉

〈Q, ∼Q〉
c2 Q′.

All these terms are easily controlled. �

We return to the analysis of the time dependent v-problem

vt + c2cx −L∂xv = α(t)Qc(t),y(t)+β(t)Q′c(t),y(t)+ f, (6-16)

where

α(t)=−
(ċ/c)〈v, ∼̃Qc(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′c(t),y(t)〉

〈Qc(t),y(t),
∼Qc(t),y(t)〉

−
〈
∼Q, f 〉

〈Q, ∼Q〉
, (6-17)

β(t)=−
(ċ/c)〈v, ∼Q′c(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′′c(t),y(t)〉

〈Q′c(t),y(t), Q′c(t),y(t)〉
−
〈Q′, f 〉
〈Q′, Q′〉

, (6-18)

with the initial data v(x, 0)= v0(x) orthogonal to ∼Q and Q′. Then also v(t) satisfies these orthogonality
conditions. We combine the arguments of the previous subsection with those of Proposition 5.3:
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Lemma 6.4. Suppose that (5-14) holds. There exists a unique solution v to (6-16) and (6-17) and (6-18)
that satisfies

‖〈D〉sv‖X0∩V 2 ≤ c(‖v0‖H s +‖〈D〉s f ‖Y 0+DV 2).

Moreover v(t) is orthogonal to Q′ and ∼Q.

Proof. We begin with s = 0. We write f = fU + fY with fU ∈ DU 2 and fY ∈ Y 0. Let ṽ be defined with
f = fU as in Lemma 6.3. It satisfies

‖ṽ‖V 2∩X0 ≤ C(‖ fU‖DU 2 +‖u0‖L2).

Let us take v = ṽ+w, where w satisfies

wt +wx − ∂x Lw = α
∼Q+βQ′+ fY + g, with w(0)= 0,

with g as in Lemma 6.3 and by Lemma 6.4

‖w‖X0 . ‖ fY‖Y 0 +‖g‖Y 0 . ‖ f ‖DU 2+Y 0 +‖u0‖L2 .

We put the term 4∂x(Q3w) to the right hand side, which we easily control in Y 0 as well as α and β and
we arrive at

‖v‖V 2∩X0 ≤ C
(
‖v0‖L2 +‖ f ‖Y 0+DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1

)
. (6-19)

The case of general s follows by the same arguments as above. �

Our main interest will be in similar estimates for the u problem below.
We consider the u equations

ut + c2ux − ∂x(Lc,yu)= α ∼Q+βQ′+ f, (6-20)

with initial data u(0)= u0 that satisfies 〈u0, Q〉 = 〈u0, Q′〉 = 0, together with the modal equations

α(t)=−
(ċ/c)〈u, ∼Q〉+ 〈 f, Q〉

〈Q, ∼Q〉
, (6-21)

β(t)=−
(ẏ− c2)〈u, Q′′〉+ (ċ/c)〈u, ∼Q′〉+ 〈u,LQxx 〉+ 〈 f, Q′〉

〈Q′, Q′〉
, (6-22)

which again ensures the orthogonality of u(t) with Q and Q′.
We obtain first the analog of Lemma 6.4.

Lemma 6.5. Suppose that (5-14) holds. There exists a unique solution u to (6-20), (6-21) and (6-22)
that satisfies

‖u‖X0∩U 2 ≤ c(‖u0‖L2 +‖ f ‖Y 0+DV 2).

Moreover, u(t) is orthogonal to Q′ and Q.
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It is not difficult to construct solutions; however we are interested in global estimates. Moreover we
may restrict to a finite time interval and assume that all the data as well as u are smooth and decay at
infinity.

We set v = Lu. It satisfies the orthogonality conditions

〈v, Q′〉 = 0= 〈u, Q〉 = 〈L−1v, Q〉 = 〈v, ∼Q〉.

Moreover, v satisfies

vt + c2vx −L∂xv =−2c2αQ+ 12Q2((ċ/c) ∼Q+ (ẏ− c2)Q′)u+L f

and we may apply Lemma 6.4 with s =−2:

‖v‖X−2 . ‖Lu(0)‖H−2 +‖L f ‖Y−2 + (|ċ/c| + |ẏ− c2
|)‖u‖L2(H−3√

γ ′
).

We apply Lemma 4.1 several times to get

‖u‖X0 . ‖Lv‖X−2 . ‖u0‖L2 +‖ f ‖Y 0 + sup
t
(|ċ/c| + |ẏ− c2

|)‖u‖X−1 .

To complete the proof we observe that by (5-14) we may subtract the last term on the right hand side
from both sides to arrive at the desired estimate. The inclusion of V 2 and DU 2 works now exactly as
for the v equation.

We collect the results for the case s = 0, which is the only estimate we will need later on.

Proposition 6.6. Suppose that (5-14) holds. There exists a unique solution v to (6-16), (6-17) and (6-18)
that satisfies

‖v‖V 2∩X0 ≤ c(‖v0‖L2 +‖ f ‖DU 2+Y 0).

Moreover, v(t) is orthogonal to Q′ and ∼Q. Similarly there is a unique solution u to (6-20), (6-21) and
(6-22) that satisfies

‖u‖V 2∩X0 ≤ c(‖u0‖L2 +‖ f ‖DU 2+Y 0).

Moreover, u(t) is orthogonal to Q′ and Q.

6.3. Littlewood–Paley decomposition. We consider functions c and y satisfying (5-14) We set λ∈30=

1.01N and let Pλ be the Littlewood–Paley decomposition with Fourier multipliers supported in the set
{ξ : 1.01−1λ≤ |ξ | ≤ 1.01λ} if λ > 1 and {ξ : |ξ | ≤ 1} if λ= 0. Then, we denote

uλ = Pλu.

The Besov spaces are defined as the set of all tempered distributions for which the norm

‖v‖Bs,p
q
= ‖λs

‖vλ‖L p‖lq (30)

is finite. Here s ∈ R and 1 ≤ p, q ≤ ∞. Similarly we define the homogeneous spaces Ḃs,p
q with the

summation over 3 = 1.01Z, where the frequency λ = 1 plays no special role. There is an ambiguity
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about the meaning of v0, which differs depending on whether we consider Bs,p
q or the homogeneous

space Ḃs,p
q .

We define the spaces X s
∞

and Y s
∞

using the norms

‖u‖X s
∞
= sup
λ∈30

λs
‖uλ‖V 2∩X0 and ‖ f ‖Y s

∞
= sup
λ∈30

λs
‖ fλ‖DU 2+Y 0 .

The homogeneous spaces Ẋ s
∞

and Ẏ s
∞

are defined in the same way as the homogeneous Besov space
Ḃs,p

q with 3= 1.01Z, though with a slight modification for s < 0 in the Y spaces due to the ρ multiplier.
Namely, we take

‖u‖Ẋ s
∞
= sup
λ∈3

(
λs
‖uλ‖V 2∩X0

)
,

‖F‖Ẏ s
∞
= inf

F= f+g

(
sup
λ∈3

λs
‖ fλ‖DU 2 + sup

λ∈30

λs
‖gλ‖Y 0

)
,

(6-23)

where there is a slight abuse of notation since the operators in f0 and g0 are taking on two different
meanings, the homogeneous projection for f0 and the inhomogeneous projection for g0.

We study {
ut + ux + ∂x Lu = α ∼Q+βQx + f + ∂x(ρg),
u(x, 0)= 0,

(6-24)

where α is given by (6-21) and β by (6-22). As a first step we obtain a weighted L2 bound for u in (6-25)
below.

Let f = f ++ f − and g= g++g− be a decomposition into high (|ξ |>1) and low (|ξ |≤1) frequencies.
We define {

vt + c2vx −Lvx = α+Q+β+Q′+ (∂−1
x f ++ ρg+),

v(x, 0)= 0,

where
〈Q, ∼Q〉α+ = (c2

− ẏ)〈v, Q̃′〉− (ċ/c)〈v,
∼∼Q〉− 〈∂−1

x f ++ ρg+, ∼Q〉,

〈Q′, Q′〉β+ = (c2
− ẏ)〈v, Q′′〉− (ċ/c)〈v, ∼Q′〉+ 〈 f ++ ∂x(ρg+), Q〉

ensure P̃∗P⊥Q′v = 0. Then by Proposition 6.6

‖v‖X0 . ‖∂−1
x f ++ ρg+‖DU 2+Y 0 . ‖F+‖Ẏ s

∞
. ‖F‖Ẏ s

∞
,

where the second inequality holds for all s >−1.
As a simple consequence, we obtain

‖PQ′∂xv‖L2 L2
ρ
. ‖F‖Ẏ s

and compute similar to arguments above

(∂t − c2∂x + ∂x L)(PQ′∂xv)

=

(
α+−

d
dt
〈v, Q′′〉
〈Q′, Q′〉

)
Q′+

(
β++

〈v, Q′′〉
〈Q′, Q′〉

(ẏ− c2)

)
Q′′+

〈v, Q′′〉
〈Q′, Q′〉

ċ
c
∼Q′+ f++ ∂x(ρg+).
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We make the ansatz u = PQ′∂xv+ u− and observe that 〈∂xv, Q〉 = 0 by construction. Then,

∂t u−+ c2∂x u−− ∂x Lu−

= α
∼Q+βQ′+ f−+ ∂x(ρg−)+

( ċ
c
〈v,

∼Q′〉
〈Q′, Q′〉

−
〈 f ++ ∂x(ρg+), Q〉

〈Q′, Q′〉

)
Q′′−

〈v, Q′′〉
〈Q′, Q′〉

ċ
c
∼Q′,

where α and β ensure orthogonality. Later we will need the obvious identity (integrate by parts in the
second term) 〈

f−+ ∂x(ρg−)−
(
〈 f ++ ∂x(ρg+), Q〉

〈Q′, Q′〉

)
Q′′, Q

〉
= 〈F, Q〉.

Then, u = ∂x P⊥Q′v+ u− and hence with F+ = f ++ ∂xρg+ we have

‖u‖L2 L2
ρ
. ‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1 . (6-25)

By (6-21) we see

‖α‖L1 . ‖ċ‖L2∩L∞(‖F‖Y s +‖〈F, Q〉‖L2+L1)+‖〈F, Q〉‖L1 (6-26)

and, using (5-14)
‖α‖L2 . ‖F‖Y s +‖〈F, Q〉‖L2 (6-27)

and by (6-22)
‖β‖L2 . ‖F‖Y s +‖〈F, Q′〉‖L2 . (6-28)

We turn to the frequency localized equation{
(uλ)t + (uλ)xxx =−Pλ∂x(4Q3u)+αPλ

∼Q+βPλQx + Pλ f + Pλ∂x(ρg),
uλ(x, 0)= 0.

Observe that by using first the boundedness of Fourier multipliers on U 2, DV 2 and the dual of the
embedding U 2

⊂ L2 H 1
ρ , we have

‖Pλ∂x(4Q3u)‖DV 2 . λ‖Q3u‖DV 2 . λ‖Q2u‖L2 L2 . λ
(
‖F‖Ẏ s

∞
+‖〈F, Q〉‖L2+L1

)
.

If λ > 1, then by Lemma 3.1
‖[Pλ∂x , Q3

]u‖L2 L2
ρ
. ‖u‖L2 L2

ρ
.

Repeating these estimates for the term containing g and using the estimates of the previous section we
obtain for λ≤ 1,

‖uλ‖V 2∩L2 H1
ρ
. ‖Pλ f ‖DU 2 + λ

(
‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1

)
+ λ1/2

‖α‖L1,

since
‖α
∼Q‖L1 Ḃ−1/2,2

∞

. ‖α‖L1

and, for λ > 1,

‖uλ‖V 2∩L2 H1
ρ
. ‖ fλ‖DU 2 +‖gλ‖L2 +‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1 +‖〈F, Q′〉‖L2+L1 .
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As a result, we arrive at the following key fact.

Proposition 6.7. Suppose (5-14) holds for some small δ, that −1/2< s < 0, F ∈ Y s and{
ut + uxxx + 4∂x(Q3u)= α ∼Q+βQx + F,
u(x, 0)= 0,

where α and β are defined in (6-21) and (6-22). Then,

‖u‖Ẋ s
∞
. ‖F‖Ẏ s

∞
+‖〈F, Q〉‖L1 +‖〈F, Q′〉‖L2+L1 +‖〈F, Q+〉‖L2+L1 .

This result will play a large role in the nonlinear analysis required to prove asymptotic stability.
For future use, we denote by L p

I , Ẋ−1/6
∞,I , etc. the function spaces on the space time set I × R, and

specifically we set L p
T , Ẋ−1/6

∞,T for I = (0, T ). All previous constructions carry over to finite time intervals.

7. Local wellposedness for the quartic KdV equation

In this section we study local wellposedness for the quartic generalized KdV equation{
∂tψ − ∂xxxψ − (ψ

4)x = 0,
ψ(0, x)= ψ0(x).

(7-1)

Let v be the solution to the Airy equation with the same initial data, that is,{
vt + vxxx = 0,
v(0, x)= ψ0(x).

(7-2)

The main local wellposedness is the next result.

Theorem 4. Let r0 > 0. There exist ε0, δ0 > 0 such that, if 0< T ≤∞,

‖ψ0‖Ḃ−1/6,2
∞

≤ r0 (7-3)

and
sup
λ

‖vλ‖L6([0,T ],R) ≤ δ0, (7-4)

then there is a unique solution ψ = v+w with ‖w‖Ẋ−1/6
∞,T
≤ ε0. Moreover, the function w (and hence ψ)

depends analytically on the initial data.

By the Strichartz estimates for linear KdV (see also (7-5) and (7-6) below), given v as in (7-2) we
have

sup
λ

‖vλ‖L6 ≤ κ0‖v‖Ẋ−1/6
∞,T
,

and by the definition of the spaces

‖v‖Ẋ−1/6
∞,T
≤ κ1

(
‖ψ(0)‖Ḃ−1/6,2

∞

+‖∂tv+ ∂xxxv‖Ẏ−1/6
∞,T

)
.

Hence, we obtain global existence from Theorem 4 for (7-1) if

‖ψ‖Ḃ−1/6,2
∞

≤min
{

1,
δ(1)
(κ0κ1)

}
,
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where δ(1) is the δ (which depends on r0) evaluated at r0 = 1.
In any case, if condition (7-4) is satisfied for T =∞, then, since ψλ ∈ V 2, the function et∂xxxψλ is of

bounded 2-variation with values in L2 (see the appendix), and hence it has a limit in L2 as t→∞. This
implies that

∑
λ limt→∞ et∂xxxψλ =: S(ψ0) exists and is the scattering state. If in addition ψ0 is in the

closure of C∞0 in Ḃ−1/6,2
∞ , then we may exchange the summation and limit.

Under the same assumptions we can solve the initial value problem with initial dataψ0(T )=e−T ∂xxxψ0,
which, by an easy limit as T→∞, gives the inverse of the map S. We will later see similar constructions
for perturbation of the soliton.

It is not hard to see that ifψ0 is in the closure of C∞0 in Ḃ−1/6,2
∞ , then we can achieve condition (7-4) by

choosing T small. This implies local existence with smooth dependence on initial data. Moreover, since
we obtain smooth dependence on the initial data, if we have any global solution ψ(t) in the closure of
C∞0 and perturb the initial data by an amount ε, we obtain a solution at least with a life span T =−c ln ε
by easy perturbation arguments. In particular, if the initial datum lies in an ε neighborhood of a soliton,
then the solution exists at least until time ∼ |ln ε| and remains in a small neighborhood until that time.

Before turning to the proof we remark that in this section we work with the weaker norms

‖u‖Ẋ−1/6 = sup
λ

λ−1/6
‖uλ‖V 2 and ‖ f ‖Ẏ−1/6 = sup

λ

λ−1/6
‖ fλ‖DU 2 .

On the other hand, since the results remain trivially true for the original definition of the spaces we keep
the notation.

Proof. First, we recall some estimates for u ∈U 2
K dV . Let m(ξ, ξ1)= m(ξ, ξ − ξ1). Then

‖u‖L6
t L6

x
. ‖|D|−1/6u(0)‖L2 (L6 Strichartz estimate), (7-5)∥∥∥∫

R

m(ξ, ξ1)|ξ
2
1 − (ξ − ξ1)

2
|
1/2û1(ξ1)û2(ξ − ξ1) dξ1

∥∥∥
L2(R2)

. sup
|m(ξ, ξ1)|

2

|ξ 2
1 − (ξ − ξ1)2|

1
2

‖u1(0)‖L2‖u2(0)‖L2 (bilinear estimate). (7-6)

The bilinear estimate is a variant of standard estimates as in [Grünrock 2005]. The most important
choice is m = |ξ 2

1 − (ξ − ξ1)
2
|
1/2.

Let m(ξ, ξ1) be a function that satisfies m(ξ, ξ − ξ1)= m(ξ, ξ1). Then,∥∥∥∫ m(ξ, ξ1)ei t (ξ3
1+(ξ−ξ1)

3)û1(0, ξ1)û2(0, ξ − ξ1) dξ1

∥∥∥2

L2

=

∫
m(ξ, ξ1)m(ξ, η1)e3i t (ξ2

1−ξξ1−η
2
1+ξη1)û1(ξ1)û2(ξ − ξ1)û2(ξ − η1)û1(η1) dt dξ1 dη1 dξ

=

∫
|m(ξ, η1)|

2

|η2
1− (ξ − η1)2|

|u1(η1)|
2
|u2(ξ − η1)|

2 dξ dη1

≤ sup
|m(ξ, ξ1)|

2

|ξ 2
1 − (ξ − ξ1)2|

‖u1‖L22
‖u2‖L22
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since
φ(ξ1)= ξξ

2
1 − ξ

2ξ1− ξη
2
1+ ξ

2η1 = ξ(ξ1− η1)(ξ1+ η1− ξ)

vanishes if ξ1 = η1 or ξ1 = ξ − η1 and

φ′(η1)= ξ(2η1− ξ)= ξ(η1− (ξ − η1)) and φ′(ξ − η1)= ξ((ξ − η1)− ξ1).

These results immediately imply (see the appendix for more information) for λ≥ 1.1µ the estimates

‖uλ‖L6
T
. λ−1/6

‖uλ‖U 2
T
, (7-7)

‖uλuµ‖L2
T
. λ−1

‖uλ‖U 2
T
‖uµ‖U 2

T
. (7-8)

By interpolating the bilinear estimate and the Strichartz estimate, if 2< p ≤ 3,

‖uλuµ‖L p
T
. λ−1(µ−1/6λ5/6)(3p−6)/p

‖uλ‖U 2
T
‖uµ‖U 2

T
(7-9)

and, if ρ� µ∼ λ,
‖(uλuµ)ρ‖L2

T
. λ−1/2ρ−1/2

‖uλ‖U 2
T
‖uµ‖U 2

T
. (7-10)

Interpolating once again, we have

‖(uλuµ)ρ‖L p
T
. λ−1/2ρ−1/2(λ1/6ρ1/2)(3p−6)/p

‖uλ‖U p
T
‖uµ‖U p

T
. (7-11)

We proceed with a standard fixed point argument, which requires bounds on the nonlinearity. The
solution ψ = v+w is constructed by studying{

wt +wxxx + (v+w)
4
x = 0,

w(0)= 0,
(7-12)

where again {
vt + vxxx = 0,
v(0)= ψ0.

Then, the key estimate is contained in the following.

Lemma 7.1. There exists r > 0 independent of T such that given vk ∈ Ẋ−1/6
∞,T for k = 1, 2, 3, 4 we have

‖∂x(v1v2v3v4)‖Ẏ−1/6
∞,T
≤ r

4∏
k=1

‖vk‖Ẋ−1/6
∞,T
, (7-13)

and, with v and w defined by (7-2) and (7-12), respectively,

‖∂x(v
3w)‖Ẏ−1/6

∞,T
≤ r sup

λ

‖vλ‖L6‖ψ0‖
2
B−1/6,2
∞

‖w‖X−1/6
∞,T
. (7-14)

We apply these estimates to v4
+4v3w+6v2w2

+4vw3
+w4. Either we may choose to estimate one

factor v in L6 or the dependence on w is at least quadratic. Suppose that ‖w‖Ẋ−1/6
∞,T
≤ µ. We obtain

‖∂x(v+w)
4
‖Ẏ−1/6
∞,T
≤ 6r(κ3

1δr
3
0 + κ

2
1δµr2

0 + κ
2
1r2

0µ
2
+ κ1r0µ

3
+µ4).
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If µ≤ κ1r0, then the right hand side is bounded by

20r(κ3
1δr

3
0 + κ

2
1µ

2r2
0 ).

Suppose that

µ≤min
{
κ1r0,

1
40rκ2

1r2
0

}
and δ ≤

µ

40rκ4
1r3

0

.

If w solves {
wt +wxxx + (v+W )4x = 0,
w(0)= 0

and ‖W‖Ẋ−1/6
∞,T
≤ µ, then w exists and satisfies ‖w‖Ẋ−1/6

∞,T
≤ µ.

Standard arguments then allow one to construct a unique solution satisfying the contraction assump-
tion, possibly after decreasing µ by an absolute multiplicative factor. �

It remains to prove Lemma 7.1. By duality, it suffices to verify that

λ

∣∣∣∫ v1v2v3v4uλ dx dt
∣∣∣≤ Cλ1/6

‖uλ‖V 2

4∏
k=1

‖vk‖Ẋ−1/6
∞,T

and

λ

∣∣∣∫ v3wuλ dx dt
∣∣∣≤ Cλ1/6

‖uλ‖V 2 sup
µ

‖vµ‖L6

(
sup
µ

µ−1/6
‖vµ‖U 2

)2
‖w‖Ẋ−1/6

∞,T
,

where uλ ∈ V 2 is frequency localized at frequency λ.
By summation, the statement of the lemma holds provided we can prove the following.

Lemma 7.2. We have for λ1 ≤ λ2 ∼ λ3 ∼ λ4 ∼ λ5 and ε > 0

λ5

∫
v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt . λ−1/3

min λ
−

1
6

5

(
λmax

λmin

)ε 5∏
k=1

‖vk,λk‖V 2 (7-15)

and

λmax

∫
vλ1vλ2vλ3uλ4wλ5 dx dt .

(
λmin

λmax

)1/6(λmax

λmin

)ε
× sup

µ

‖vµ‖L6

(
sup
µ

µ−1/6
‖vµ‖U 2

)2
‖uλ4‖V 2‖wλ5‖V 2, (7-16)

where λmax and λmin respectively are the maximal and minimal λ j .

Proof. We claim that∣∣∣∫ v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt
∣∣∣≤ Cλ−1

max‖v1,λ1‖U 2‖v2,λ2‖U 2‖v3,λ3‖L6‖v4,λ4‖L6‖v5,λ5‖L6 (7-17)

provided
|λ1− λ2| ≥

1
10λmax. (7-18)
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This estimate is a consequence of Hölder’s inequality and the bilinear estimate (7-6). We recall that

‖vλ‖L6 . λ−1/6
‖vλ‖U 6 . λ−1/6

‖vλ‖V 2 .

To obtain a nontrivial integral there have to be elements in the support of the Fourier transforms that
add up to zero. Unless there is at least one pair of (λ j , λk) satisfying (7-18), the integral is zero. Hence,
we would obtain (7-15) if we were allowed to replace the V 2 norms there by U 2 norms for the first two
factors. Observe that we may reorganize the factors as we wish.

Let us assume λ1. λ2. λ3. λ4. λ5. We consider first the case when λ4≤ 1.05λ1. Then, if there are
elements in the support of the truncations on the Fourier side adding up to zero — otherwise the integral
vanishes — either

0.8
λ5

4
≤ λ1 ≤ λ4 ≤ 1.1λ1 ≤ 1.2

λ5

4
or 0.6

λ5

2
≤ λ1 ≤ λ4 ≤ 1.1λ1 ≤ 1.4

λ5

2
.

In this case we can replace the U 2 norms by V 2 norms as follows. We decompose into low and high
modulation as

v j,λ j = v
l
j,λ j
+ vh

j,λ j
,

where vl
j is defined by the Fourier multiplier projecting to |τ − ξ 3

| ≤ λ3
5/1000. Then, we have

‖vl
j,λ j
‖V 2 +‖vh

j,λ j
‖V 2 ≤ ‖v j,λ j‖V 2 and ‖vh

j,λ j
‖L2 . λ

−
3
2

5 ‖v j,λ j‖V 2 .

We refer to the appendix and [Hadac et al. 2009] for more information.
We expand the product. The integral over the product of the five vl

j,λ vanishes because of the support
of the Fourier transforms. Hence at least one term has high modulation. We estimate it in L2, put another
term into L∞ and the others into L6 using Hölder’s inequality. We estimate the L∞ norm through energy
and Bernstein’s inequality.

Hence ∣∣∣∫ v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt
∣∣∣. λ−3/2

5

5∏
j=1

‖v j,λ j‖V 2, (7-19)

which implies the desired estimate.
It remains to study λ1 . λ2 . λ3 . λ4 . λ5, λ4 ≥ 1.05λ1. The most difficult case is λ5 ≤ 1.02λ2

since otherwise we apply two stronger bilinear estimates. For simplicity we consider λ1 � λ where
λ2 = λ5 = λ. We have to bound ∫

∑
ξ j=0

∏
û j,λ j (ξ j ) dξ2 dξ5 dt

with ξ1 = −
∑5

j=2 ξ j . We may restrict the integration to
∑5

j=2 ξ j ∼ λ1 and ξ j ∼ λ. By symmetry it
suffices to consider ∫

∑
ξ j=0

χ||ξ3|−|ξ2||∼λ1

∏
v̂ j,λ j (ξ j ) dξ2 dξ5 dt.
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We choose ε > 0 small, p, q so that 1/p= (1−ε)/2+ε/3, 1/q= ε/2+(1−ε)/3. By Hölder’s inequality∣∣∣∫ v1,λ1(v2,λv3,λ)λ1v4,λv5,λ dx dt
∣∣∣. λ−1(λ5/6λ

−1/6
1 )ελ−1/2λ

−1/2
1 (λ1/6λ

1/2
1 )1−ελ

−1/6
3

∏
j

‖v j,λ j‖U 12/5 .

. λ−3/2(λ2/3λ
−2/3
1 )ε

∏
j

‖v j,λ j‖U 12/5 .

For the second part we would like to put one v term into L6, and up to two into U 2. This can be easily
be done if there are two frequencies of v that differ by a small constant times λmax. If not it is not hard
to see that in the argument above we can put one term into L6. �

7.1. Variants and extensions of wellposedness for the quartic KdV equation. The arguments of the
last sections have implications for wellposedness questions in other function spaces. Given 1≤ p ≤∞,
ω ∈C1((0,∞), (0,∞)) and T ∈ (0,∞], we define the function space Xω

p,T as the set of all distributions
for which the norm

‖u‖p
Xωp,T
=

∑
λ

(ω(λ)‖uλ‖V 2)p, (7-20)

with obvious modifications if p =∞ is finite. We will always assume that

sup|ω′|/ω <∞, (7-21)

infω′/ω >−1. (7-22)

This is a Banach space provided for some C > 0 we have

lim inf
λ→0

ω(λ)λ1/2 > C; (7-23)

otherwise we obtain a Banach space of equivalence classes of functions. Similarly, we define the Banach
space

‖ f ‖p
Yωp,T
=

∑
λ

(ω(λ)‖ fλ‖DU 2)p. (7-24)

The definition of Bω,pq follows the same pattern. It is not hard to see that∫
u f dx dt . ‖u‖Xωp,T ‖ f ‖

Yω−1
p′,T

and ‖ f ‖
Yω−1

p′,T
. sup
‖u‖Xωp,T

≤1

∫
u f dx dt.

Moreover, we may expand the inner product into dyadic pieces and apply uniformly elliptic pseudo-
differential operators to the pieces. In particular, we may replace differentiation by multiplication on the
dyadic pieces and vice versa.

Proposition 7.3. The following estimate holds:

‖∂x(u4)‖Yωp,T ≤ C sup
λ

‖uλ‖L6‖u‖2
Ẋ−1/6
∞,T
‖u‖Xωp,T .
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Proof. Given v ∈ Xω−1

p′,T , we expand
∫
∂x(u4)v dx dt into dyadic pieces, to which we apply the arguments

and estimate (7-16) from the previous section. By symmetry∑
λ j

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣. ∑

λ1≤λ2≤λ3≤λ4,λ5

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣.

If λ5 ∼ λ4 we obtain∑
λ1≤λ2≤λ3≤λ4∼λ5

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣

. sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
×

∑
λ1≤λ2≤λ3≤λ4∼λ5

λ
1/6
1 λ

−1/6
5

(
λ5

λ1

)ε
‖uλ4‖V 2‖vλ5‖V 2,

which is bounded by

sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
‖u‖Xωp,T ‖v‖Xω−1

p′,T
.

The other extreme is∑
λ5≤λ1≤λ2≤λ3∼λ4

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣

≤ sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
×

∑
λ5≤λ1≤λ2≤λ3∼λ4

λ5λ
−1
4

(
λ4

λ5

)ε
‖uλ4‖V 2‖vλ5‖V 2,

which satisfies the same estimate provided
∑

λ≤µ λω(λ) . µωµ. However, this is ensured by (7-22).
The remaining cases are similar and the result follows. �

From Proposition 7.3, we can prove the following corollary to Theorem 4.

Corollary 7.4. Suppose that ω satisfies (7-21), (7-22) and (7-23). If ψ0 ∈ Ḃ−1/6,2
∞ ∩ Bω,2p is the initial

data for a solution of (7-1) and v satisfies (7-4), then the solution ψ of Theorem 4 is in Xω
p,T and satisfies

‖ψ‖Xωp,T ≤ C‖ψ0‖Bω,2p
.

In addition:

Corollary 7.5. Suppose that ψ0 lies in the closure of C∞0 in Ḃ−1/6
∞,T . Then, it follows that

(t→ ψ(t)) ∈ C([0, T ], Ḃ−1/6,2
∞

).

If T =∞, then et∂3
xxxψ converges to the scattering data as t→∞ in Ḃ−1/6

∞,T . If in addition ψ0 ∈ L2, then

(t→ ψ(t)) ∈ C([0, T ], L2)

and et∂3
xxxψ converges also in L2.

There exists ω satisfying the assumptions above, with ω(λ)λ−1/6
→∞ as λ→∞ and λ→ 0 and

‖ψ0‖Bω,2∞
<∞. By Corollary 7.4 the Xω

∞,T is controlled by the initial data. Hence

λ−1/6
‖vλ‖DV 2∩X0 → 0as λ→∞ or λ→ 0.
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By the previous argument the deviation of the solution to the linear solution tends to zero as the considered
interval shrinks to zero. This implies continuity. Continuity at infinity always holds in V p.

The second part requires an obvious specialization of Corollary 7.4 to the case ω= 1, plus a repetition
of the argument for scattering.

Particular examples for ω are 〈λ〉s for s ≥−1/6 and λs
+λσ for −1/2≤ s ≤−1/6≤ σ . It is not hard

to see that we can replace the homogeneous spaces by inhomogeneous ones if we restrict to finite T and
allow the constants to depend on T .

8. Stability and scattering for perturbations of the soliton

8.1. Setup and main result. We return now to the full nonlinear problem (7-1). Let us take

ψ(x, t)= Qc(t)(x − y(t))+w(x, t).

Then, we have

∂tw+ ∂x(∂
2
xw+4Q3

cw)=−ċ(∂c Qc)(x − y)+ ẏ(Q′c)(x − y)− ∂x(∂
2
x Qc− c2 Qc+ Q4

c)− c2(Q′c(x − y))

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4).

Hence,

∂tw+ ∂x(∂
2
xxw+ 4Q3

cw)=−(ċ/c)
∼Qc(x − y)+ (ẏ− c2)Q′c(x − y)

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4). (8-1)

To use the dispersive estimates proved in Section 6, we wish to have

w ⊥ Qc(x − y) and w ⊥ Q′c(x − y). (8-2)

To get more regularity for y and c, we ask for (8-2) only asymptotically and hence take as in (1-15)
and (1-16) the modal equations

(ċ/c)〈Qc,
∼Qc〉 = 〈w, Qc〉, (8-3)

(ẏ− c2)〈Q′c, Q′c〉 = −κ〈w, Q′c〉, (8-4)

where κ > 0 is taken to be large.
We calculate

d
dt
〈w, Q〉 = 〈wt , Q〉+ ẏ〈w, Q′〉+ (ċ/c)〈w, ∼Q〉

= 〈w,LQ′〉− (ċ/c)〈Q, ∼Q〉+ 〈6Q2w2
+ 4Qw3

+w4, Q′〉+ (ẏ− c2)〈w, Q′〉+ (ċ/c)〈w, ∼Q〉

and
d
dt
〈w, Q′〉 = 〈wt , Q′〉+ ẏ〈w, Q′′〉+ (ċ/c)〈w, ∼Q′〉

= 〈w,LQ′′〉+ (ẏ− c2)〈Q′, Q′〉+ 〈6Q2w2
+ 4Qw3

+w4, Q′′〉

+ (ẏ− c2)〈w, Q′′〉+ (ċ/c)〈w, ∼Q′〉.
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Hence,

d
dt
〈w, Q〉+ 〈w, Q〉 = −κ

〈w, Q′〉2

〈Q′, Q′〉
−
〈w, Q〉〈w, ∼Q〉

〈Q, ∼Q〉
+ 〈6Q2w2

+ 4Qw3
+w4, Q′〉 (8-5)

and
d
dt
〈w, Q′〉+ κ〈w, Q′〉− 〈w,LQ′′〉

= −κ
〈w, Q′〉〈w, Q′′〉
〈Q′, Q′〉

+
〈w, Q〉〈w, ∼Q′〉

〈Q, ∼Q〉
+ 〈6Q2w2

+ 4Qw3
+w4, Q′′〉. (8-6)

The right hand sides are at least quadratic inw, and, as we shall see, small compared to ‖w0‖ in a suitable
sense. As a consequence the orthogonality conditions are approximately satisfied for large t . In addition,
ċ and ẏ− c2 are small and continuous.

We study the initial value problem w(0)= w0. Let again v be the solution to the linear problem. We
will prove scattering for small perturbations of the soliton in Ḃ−1/6,2

∞ . It will be important for the reverse
problem that we will achieve something slightly stronger.

Using the notation
0 =

{
y ∈ C([0,∞)) : y(0)= 0, |ẏ− 1| ≤ 1

10

}
, (8-7)

we define for any interval I the quantity

JI (v)= sup
λ

(
‖vλ‖L6

I
+ λ1/4−1/6

‖vλ‖L4
I L∞ + sup

y∈0
λ−1/6

∫
R×I

γ ′0(x − y(t))(v2
λ+ (∂xvλ)

2) dx dt
)
. (8-8)

Proposition 8.1. Let v be a solution of (3-1) with initial data v0 ∈ Ḃ−1/6,2
∞ . Then,

J[0,∞)(v). ‖v0‖Ḃ−1/6,2
∞

.

Moreover, if v0 is in the closure of C∞0 in Ḃ−1/6,2
∞ , then

lim
t→∞

J[t,∞)(v)= 0.

Proof. The first statement is an immediate consequence of the Strichartz estimate and local smoothing.
For the second statement we fix ε > 0. There are at most finitely many v0,λ of norm larger than ε/c.
Hence it suffices to verify the statement for a single λ. Since vλ ∈ L6L6 and L4L∞, we have

lim
t→∞
‖vλ‖L6(R×(t,∞)) = lim

t→∞
‖vλ‖L4

[t,∞)L
∞ = 0.

Let I be a bounded interval. Then the map

0→ λ−1/6
∫

R×I
γ ′0(x − y(t))(v2

λ+ (∂xvλ)
2) dx dt

is continuous with respect to uniform convergence, hence it assumes its maximum. Given j ≥ 1, let
y j : [2 j , 2 j+1

]→R be the path for which this quantity is maximal. We choose two paths yo and ye with
γ (0)= 0 and the difference between 1 and the derivative at most 0.2, one which coincides with y j for j
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even on the corresponding intervals, and one which does so for j odd. For both paths we have the local
smoothing estimate. But this implies the claim. �

Let y ∈ 0. The function spaces Ẋ s
∞;T and Ẏ s

∞;T depend on y but not on c. This dependence is not
reflected in the notation. In addition, let c ∈ C1([0,∞)). We assume (5-14), ċ ∈ L2 and ẏ− c2

∈ L2 in
this section, which we have to verify for the solutions we study, and turn to a study of a priori estimates
for solutions to (8-1), (8-3) and (8-4), and we recall (8-5) and (8-6). Because of translation and scaling
invariance we may restrict ourselves to a study for y(0) = 0 and c(0) = 1. Moreover, we may and do
assume that the orthogonality conditions hold at time 0, that is,

〈w0, Q〉 = 〈w0, Q′〉 = 0.

The main result is the following sharpened version of Theorem 2.

Proposition 8.2. Let C > 0. There exist ε > 0 and K > 0 such that for ‖w0‖Ḃ−1/6,2
∞

<C and J[0,T )(v)≤ ε
and for v a solution of (3-1) with initial data w0, the solution w in the system of equations (1-15)–(1-14)
satisfies (5-14),

‖w‖Ẋ−1/6
∞,T
≤ K J 1/2

[0,T )(v),

with K depending on C but not on time. Moreover, if J(0,∞)(v)≤ ε, then there exists a unique η∈ Ḃ−1/6,2
∞

such that
lim

t→∞
et∂3

xxxwλ(t)= ηλ,

with convergence in L2. In addition

lim
t→∞
‖w(t)‖Ḃ−1/6

∞,T
= ‖9‖Ḃ−1/6,2

∞

.

Remark 8.1. Variants in the spirit of Corollary 7.4 can be easily obtained by including the arguments
there, which will establish Theorems 2 and 3 with higher Sobolev regularity as stated in Remark 1.1.

The proof consists of three step,s a preliminary part consisting of an important initialization, multi-
linear estimates that are less critical variants of those of the last section, and a priori estimates for the
nonlinear equation using the multilinear estimates and the linearized equation.

We recall that v satisfies vt + vxxx = 0 with initial data v(0)= w0. We want to control the difference
between v and the solution ν to νt + c2∂xν− ∂x Lν = α

∼Q+βQ′ with initial data ν(0)=w0 with α and
β ensuring 〈ν, Q〉 = 〈ν, Q′〉 = 0, which we assume to hold initially. We recall that (5-14) is a standing
assumption.

For simplicity, let us define J = J[0,∞)(v). The following result is the first step of the proof.

Lemma 8.3. Suppose that w0 ∈ B−1/6,2
∞ satisfies the orthogonality conditions. Then

‖ν‖Ẋ−1/6
∞

. ‖w0‖Ḃ−1/6,2
∞

and
‖ν− P̃ P⊥Q′v‖Ẋ−1/6

∞

+‖α‖L1∩L2 +‖β‖L2 . J. (8-9)
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Proof. The first bound on ν is an immediate consequence of Proposition 6.7. The second statement is
more delicate. As a first step we consider u = P̃ P⊥v. It satisfies

sup
λ

(
‖uλ‖L6 + λ−1/6+1/4

‖uλ‖L4 L∞ + λ
−1/6
‖uλ‖L2 H1

ρ

)
. J, (8-10)

since ‖〈v, Q〉‖L2∩L6 +‖〈v, Q′〉‖L2∩L6 . J . We calculate

∂t u+ c2ux − ∂x Lc,yu = G, with u(0)= w0, (8-11)

where

G =−4∂x(Q3u)−
( d

dt
〈v, Q〉

〈Q, ∼Q〉

)
∼Q−

( d
dt
〈v, Q′〉
〈Q′, Q′〉

)
Q′

−
〈v, Q〉

〈Q, ∼Q〉
(∂t + c2∂x − ∂x L)Q̃−

〈v, Q′〉
〈Q′, Q′〉

(∂t + c2∂x − ∂x L)Q̃′.

We consider the terms separately. Any derivative falling on 〈Q, ∼Q〉 or 〈Q′, Q′〉 can be computed using
(4-2) and (4-3), yielding a factor ċ/c. Next,

d
dt
〈v, Q〉 = 〈∂tv+c2v′, Q〉+ (c2

− ẏ)〈v, Q′〉+ (ċ/c)〈v, ∼Q〉 =−〈Q4
x , v〉+ (c

2
− ẏ)〈v, Q′〉+ (ċ/c)〈v, ∼Q〉

and
d
dt
〈v, Q′〉 = 〈v̇+ c2v′, Q′〉+ (c2

− ẏ)〈v, Q′′〉+ (ċ/c)〈v, Q̃′〉

= −〈v,LQ′′〉− 4〈Q3 Q′′, v〉+ (c2
− ẏ)〈v, Q′′〉+ (ċ/c)〈v, ∼Q′〉.

Moreover,
(∂t + c2∂x − ∂x L)

∼Q = (ċ/c)
∼∼Q+ (c2

− ẏ) ∼Q′+ 2c2 Q′,

(∂t + c2∂x − ∂x L)Q′ = (ċ/c) ∼Q′+ (c2
− ẏ)Q′′.

We write G = α ∼Q+βQ′+ g, where, using again (4-2) and (4-3),

〈Q, ∼Q〉α =−(ċ/c)〈v, ∼Q〉−(c2
− ẏ)〈v, Q′〉+ 1

3(ċ/c)〈v, Q〉+〈v, (Q4)x 〉,

〈Q′, Q′〉β =−(ċ/c)〈v, ∼Q′〉−(c2
− ẏ)〈v, Q′′〉+ 10

3 (ċ/c)〈v, Q′〉+4〈v, Q3 Q′′〉+〈v,Lc Q′′c 〉−2c2
〈v, Q′〉,

g =−4∂x(Q3v)−
〈v, Q〉

〈Q, ∼Q〉
((ċ/c)

∼∼Q+(c2
− ẏ) ∼Q′)−(〈v, Q′〉/〈Q′, Q′〉)(

ċ
c
∼Q′+(c2

− ẏ)Q′′).

By Lemma 6.3, we have ‖g‖Y 0 . J . The difference w= ν−u satisfies (abusing the notation slightly by
denoting by α and β new quantities)

wt + c2wx − ∂x Lw = α
∼Q+βQ′− g

with initial data w(0)= 0, and again by Lemma 6.3

‖w‖X0∩V 2 . ‖g‖Y 0 . J.
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We rewrite the equation for ν as

νt + νxxx =−∂x(4Qν)+α ∼Q+βQ′ =: F.

Decompose ν = u+w. We recall that

〈Q, ∼Q〉α =−(ċ/c)〈ν, ∼Q〉; (8-12)

hence
‖α‖L1 +‖F‖Ẏ−1/6

∞

. (‖ċ/c‖L2 +‖ẏ− c2
‖L2)J.

The L2 bound for β is simpler. The estimates for the linear equation imply now (8-9). �

As it will be used in the sequel, we note the following simple consequence of Lemma 8.3. Namely,
we have

Jc,y(ν). J (v), (8-13)

where we denote by Jc,y the quantity analogous to J , but for the given path dictated by the c and y mod-
ulation parameters. After this nontrivial preliminary step, we continue with the proof of Proposition 8.2.
The strategy is to write the equation in terms of

u =9 − Qc(t),y(t)− ν

and expand the nonlinearity. In the next step we study multilinear estimates, which in the last step are
combined with Proposition 6.7 to obtain the a priori estimates.

8.2. Multilinear estimates. We proceed as for the initial value problem and bound multilinear expres-
sions. In this section we collect nonlinear estimates in terms of the V 2 spaces to prove Proposition 8.2.

Lemma 8.4. Let u be a tempered distribution and uλ its frequency localization. Let φ be a Schwartz
function. Then,

‖φuλ‖L2 .min{λ1/2−ε, λ−1
}
(
‖uλ‖L2(γ ′)+‖∂x uλ‖L2(γ ′)

)
.

Here ε is the constant of (3-7).

Proof. We begin with the case λ ≥ 1, in which case we prove the stronger estimate where we replace φ
by γ ′ as defined in Section 3. Let χ ∈ C∞0 be supported in {ξ : 1

2 ≤ |ξ | ≤ 2}. Then,√
γ ′uλ =

√
γ ′∂−1

x χ

(
∂x

λ

)
∂x uλ = λ−1

√
γ ′
(
∂x

λ

)−1
χ

(
∂x

λ

)
∂x uλ

= λ−1
(
∂x

λ

)−1
χ

(
∂x

λ

)√
γ ′∂x uλ+ λ−1

(√
γ ′,

(
∂x

λ

)−1
χ

(
∂x

λ

))
∂x uλ,

where (∂x/λ)
−1χ(∂x/λ) is an L2 bounded Fourier multiplier. As a result,∥∥∥λ−1

(
∂x

λ

)−1
χ

(
∂x

λ

)√
γ ′∂x uλ

∥∥∥
L2
. λ−1

‖uλ‖L2(γ ′).
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We estimate the second term on the right hand side using the adjoint of Lemma 3.1 with a= 1 and s= 0:∥∥∥λ−1
(√

γ ′,

(
∂x

λ

)−1
χ

(
∂x

λ

))
(γ ′)−1/2

√
γ ′∂x uλ

∥∥∥
L2
. λ−1

‖uλ‖L2(γ ′).

We turn to λ < 1. Clearly,

‖φuλ‖L2 ≤ ‖φ(γ ′)−1/2
‖L2‖

√
γ ′uλ‖L∞ .

Let χ̃ = sin(x)/x , which is the inverse Fourier transform (up to a constant factor) of the characteristic
function of the interval [−1, 1]. Let x0 ∈ R. We define

gλ(x)= uλ(x)χ̃(λ(x − x0)/100).

Then, gλ satisfies roughly the same frequency localization as vλ, and it coincides with uλ at x0. Thus,
by Bernstein’s inequalities,

|
√
γ ′(x0)uλ(x0)| ≤ cλ1/2

√
γ ′(x0)‖gλ‖L2 ≤ cλ1/2 sup

x,x0

√
γ ′(x0)χ̃(λ(x − x0)/100)

√
γ ′(x)

‖
√
γ ′uλ‖L2 .

Now the elementary estimate

sup
x,x0

√
γ ′(x0)

|χ̃(λ(x − x0)/100)|
√
γ ′(x)

≤ cλ−ε

completes the proof. �

We proceed to prove the necessary multilinear estimates.

Lemma 8.5. Let c, y satisfy (5-14), u ∈ Ẋ−1/6
∞ and let ν and Q be as in Proposition 8.2. Then, the

following estimates hold:

‖∂x(u1u2u3 Q)‖Ẏ−1/6
∞

.
3∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-14)

‖∂x(u1u2 Q2)‖Ẏ−1/6
∞

.
2∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-15)

‖∂x(ν
2uQ)‖Ẏ−1/6

∞

. J 1/2
‖ν‖

3/2
Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

(8-16)

‖∂x(νuQ2)‖Ẏ−1/6
∞

. J 1/2
‖ν‖

1/2
Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

. (8-17)

Proof. We begin with the dual Strichartz estimate

‖ fλ‖DV 2 . λ−1/4
‖ fλ‖L4/3 L1 .

By construction, spatial Fourier multipliers in V p, U p, DU p and DV p are bounded by the supremum
of the multiplier; hence

‖Pλ∂x(Q2u1,λ1u2,λ2)‖DU 2 . λ3/4
‖Q2u1,λ1u2,λ2‖L

4
3 L1
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and
‖Q2u1,λ1u2,λ2‖L

4
3 L1
≤ ‖Qu1,λ1‖L2 L2‖Qu2,λ2‖

1
L2 L2/2‖u2,λ2‖

1/2
L∞L2

.min{1, λ−1
1 }min{1, λ−1/2

2 }λ
1/6
1 λ

1/6
2 ‖u1‖Ẋ−1/6

∞

‖u2‖Ẋ−1/6
∞

.

This is summable for λ j ∈ 0 and we obtain the desired estimate for λ ≤ 1. Assume now that λ ≥ 1.
Then, using Hölder and Bernstein and |Q′|. Q

λ−1/6
‖Pλ∂x Q2u1,λ1u2,λ2‖L2γ H−1 . λ−1/6

‖Qu1,λ1‖
1/2
L∞‖Qu2,λ2‖

1/2
L∞‖Qu1,λ1‖

1/2
L2 ‖Qu2,λ2‖

1/2
L2

. λ−1/6λ
5/12
1 min{1, λ−1/2

1 }λ
5/12
2 min{1, λ−1/2

2 }‖u1‖Ẋ−1/6
∞

‖u2‖Ẋ−1/6
∞

,

which can easily be summed over λ1 and λ2 if λ≥ 1. This implies (8-15) and also (8-17).
We approach estimate (8-14) similarly: We expand u j and observe that the expressions are symmetric;

hence it suffices to sum over λ1≤λ2≤λ3. If λ1.1 we argue as above and estimate u1,λ1 in L∞, followed
by Bernstein’s inequality. So we restrict to the case λ1� 1.

Then, using that Q is integrable,

λ‖PλQu1,λ1u2,λ2u3,λ3‖DU 2 . λ3/4
3∏

j=1

‖u j,λ j‖L4 L∞ . λ
3/4(λ1λ2λ3)

−1/12
3∏

j=1

‖u j,λ j‖Ẋ−1/6
∞,T
,

which is easily summable if λ. 1. λ1, λ2, λ3. If λ> 1, we argue differently. To simplify the argument
we assume that the Fourier transform of Q is supported in [−1, 1]— handling the tail is straightforward
but technical. Instead of bounding λ‖PλQu1,λ1u2,λ2u3,λ3‖DU 2 , we employ duality and study

I =
∣∣∣∫ Qu1,λ1u2,λ2u3,λ3u4,λ4 dx dt

∣∣∣
assuming that 1� λ1 ≤ λ2 ≤ λ3. Then, we have

I ≤ ‖Qu3,λ3‖L2‖u1,λ1‖L6‖u2,λ2‖L6‖u4,λ4‖L6 . λ−5/6
3 λ

−1/6
4

3∏
j=1

‖u j,λ j‖Ẋ−1/6
∞,T
‖u4,λ4‖V 2 .

The factor λ−5/6
3 λ

5/6
4 is summable for fixed λ4 over 1≤ λ1 ≤ λ2 ≤ λ3, 1≤ λ4 . λ3 — this suffices since

I = 0 if λ4 is much larger than λ3. As a result, we have proven estimate (8-14) and, after checking the
proof, (8-16). �

We turn to bounds for inner products occurring as inner products of the right hand side of (8-1) with
Q and Q′, and at the right hand side of (8-5) and (8-6).

Lemma 8.6. Let u ∈ Ẋ−1/6
∞ , and let v and Q be as in Proposition 8.2. In addition, let ψ0(t) be a

one parameter family of Schwartz functions parametrized by t with uniformly bounded seminorms and
ψ(x, t)= ψ0(t, x − y(t)). Then for all 1≤ p < 3/2

‖〈∂x(u1u2u3u4), ψ〉‖L p .
4∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-18)
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where we consider the L p norm with respect to time and

‖〈∂x(v
3u), ψ〉‖L p . J‖v‖2

Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

. (8-19)

For all 1≤ p < 2, we have

‖〈∂x(u1u2u3 Q), ψ〉‖L p .
3∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-20)

‖〈∂x(v
2uQ), ψ〉‖L p . J‖v‖Ẋ−1/6

∞

‖u‖Ẋ−1/6
∞

. (8-21)

For all 1≤ p < 3, we have

‖〈∂x(u1u2 Q2), ψ〉‖L p .
2∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-22)

‖〈∂x(vuQ2), ψ〉‖L p . J‖u‖Ẋ−1/6
∞

. (8-23)

Proof. We expand the terms in (8-18) and we consider

Ip := ‖〈u1,λ1u2,λ2u3,λ3u4,λ4, ψ〉‖L p .

By symmetry it suffices to look at the case λ1 ≤ λ2 ≤ λ3 ≤ λ4. If p = 1 we bound the terms using
Hölder’s and Bernstein’s inequalities as above:

I1 . ‖u1,λ1‖L∞‖u2,λ2‖L∞‖|ψ |
1/2u3,λ3‖L2‖|ψ |1/2u4,λ4‖L2

. λ2/3
1 λ

2/3
2 min{λ1/6

3 , λ
−5/6
3 }min{λ1/6

4 , λ
−5/6
4 }

4∏
j=1

‖u j‖Ẋ−1/6
∞

,

which is easily summable. We obtain by Hölder’s inequality

I3/2 .
4∏

j=1

‖u j,λ j‖L6 .
4∏

j=1

‖u j‖Ẋ−1/6
∞

,

which we use if 1 ≤ λ1 ≤ λ4. If λ1 ≤ 1, we estimate the corresponding term in L∞, apply Bernstein’s
inequality, and argue as in the next case. Interpolation with the L1 estimate yields a summable expression
as long as p < 3/2.

We turn to estimate (8-20), denote again the p-norms by Ip and expand again

I1 . ‖u1,λ1‖L∞‖Qu2,λ2‖L2‖(∂xψ)u3,λ3‖L2 . λ2/3
1 min{λ1/6

2 , λ
−5/6
2 }min{λ1/6

3 , λ
−5/6
3 }

∏
‖u j‖Ẋ−1/6

∞

,

which again is easily summable over λ1 ≤ λ2 ≤ λ3. Also

I2 .
3∏

j=1

‖u j,λ j‖L6 .
3∏

j=1

‖u j,λ j‖Ẋ−1/6
∞

,

which is almost summable, and by interpolation we obtain the bounds for any p < 2.
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The estimate (8-22) with p= 1 follows by the same arguments as above. It is even simpler. Again we
may restrict ourselves to λ1 ≤ λ2. For p = 3 we put estimate u j,λ j into L6 and again the full statement
follows by interpolation. A simple check of the proof reveals that the arguments above imply (8-23),
(8-21) and (8-19). �

The right hand sides of (8-5) and (8-6) are functions of t , for which we have bounds in L p for
1 ≤ p < 3/2 in terms of ‖w‖Ẋ−1/6

∞,T
. In the second equation, (8-6), the term 〈w,LQxx 〉 plays a special

role: It is in Lq for 2 ≤ q ≤∞, but not in L p for any p < 2 in general. In particular we cannot control
the deviation of y from the linear movement.

Equation (8-5) and (8-6) can be considered as scalar linear ordinary differential equations for 〈w, Q〉
and 〈w, Q′〉. The kernel for the fundamental solution is uniformly bounded in L p in the first case for all
p, and in the second case it is bounded in L1 by 1/κ , whereas the L∞ norm is 1.

We collect the consequences as follows.

Lemma 8.7. Suppose that w solves (8-1) with 〈w(0), Q〉 = 〈w(0), Q′〉 = 0 and w = v + u, where v
solves (7-2) with initial data w(0). Then,

sup
t
|〈w(t), Q〉|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2, (8-24)

sup
t
|〈w(t), Q′〉|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2+ κ−1/2
‖w‖Ẋ−1/6

∞,T
. (8-25)

Moreover, if 1≤ p < 3/2, then∥∥∥ d
dt
〈w(t), Q〉

∥∥∥
L p(0,∞)

. (J +‖u‖Ẋ−1/6
∞

)2(1+‖w‖Ẋ−1/6
∞

)2.

We may write d
dt 〈w(t), Q′〉 = γ1+ γ2 such that

‖γ1‖L p(0,∞) . (J +‖u‖Ẋ−1/6
∞

)2(1+‖w‖Ẋ−1/6
∞

)2 and ‖γ2‖L2(0,∞) . (J +‖u‖Ẋ−1/6
∞

).

Finally, it follows that

sup
t
(|c(t)− 1| + |ċ|)+‖ċ‖L1 . (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2,

sup
t
|ẏ− 1|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2+ κ−1/2(J +‖u‖Ẋ1/6
∞

),

‖ẏ− c2
‖L2 . (J +‖u‖Ẋ−1/6

∞

)(1+‖w‖Ẋ−1/6
∞

)3. (8-26)

Proof. This is an immediate consequence of Lemma 8.5 and basic properties of the simple ordinary
differential equations. �

The estimates of this subsection remain true if we consider a time integral instead of (0,∞).

8.3. Global bounds and scattering near the soliton. We now complete the proof of Proposition 8.2.

Proof. By the local existence result there exists a local solution in a neighborhood of the soliton.
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The decomposition ψ = Qc(t),y(t) + w together with the modal equations (8-3) and (8-4) implies
existence of C1 functions c(t) and y(t) that satisfy (8-1), (8-3) and (8-4) up to fixed time. We recall that
after rescaling and shifting, 〈w0, Q〉 = 〈w0, Q′〉 = 0, c(0)= 1 and y(0)= 0.

As in the first step we denote the solution to the linear equation with initial data w(0) by ν. It satisfies
the estimates of Lemma 8.3 and (8-13) provided (5-14) is satisfied.

We suppose that (ψ, c, y) is a solution up to time T , such that u =ψ−Qc(t),y(t)−ν satisfies for some
k1, k2 to be chosen later the conditions

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ 2k1 J 1/2 and ‖u‖Ẋ−1/6

∞,T
≤ 2k2 J 1/2. (8-27)

We shall see that there exist δ, k1 and k2 such that if in addition J ≤ δ, then

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ k1 J 1/2 and ‖u‖Ẋ−1/6

∞,T
≤ k2 J 1/2. (8-28)

This implies the estimate conditionally depending on (8-27). Observe that by Lemma 8.7 control of
the norms implies validity of (5-14) if δ is sufficiently small. In particular, the estimates on the linear
equations hold.

On the other hand, if we fix C and δ we can apply a continuity argument with the initial data τw0.
The estimate clearly holds for small τ and the norms depend (for finite time) continuously on τ . This
implies the a priori estimate uniformly for all T . The scattering statement is an immediate consequence:
Combine the fact that functions in V 2 are left-continuous at infinity with a frequency envelope argument
as above. It remains to derive (8-28) from (8-27) for suitably chosen k1, k2 and δ.

We formulate the crucial estimate in the following.

Lemma 8.8. Let C be given and let v and Q be as in Proposition 8.2. There exist k1, k2 and δ such that,
if (8-27) holds, and ‖w0‖Ḃ−1/6,2

∞

≤ C and J(0,T )(v)≤ δ hold, then

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ c3

(
‖u‖2

Ẋ−1/6
∞,T
+ J 1/2

(0,T )(v)‖w0‖
3/2
Ḃ−1/6,2
∞

+ J(0,T )(v)
)
.

We postpone the proof of Lemma 8.8. Clearly 〈u, Q′〉=〈w, Q′〉 and the same is true for its derivatives.
By Lemma 8.7 and simple properties of ODEs, we have with implicit constants depending on the size
of the initial data that∥∥∥〈u, Q′〉

∥∥∥
L1+L2

+

∥∥∥ d
dt
〈u, Q′〉

∥∥∥
L1+L2

. ‖u‖2
Ẋ−1/6
∞

+ J +‖〈w, Q′′〉‖L2

and
‖〈w, Q′′〉‖L2 ≤ ‖〈ν, Q′′〉‖L2 +‖〈P⊥Q′u, Q′′〉‖L2 .

Hence,
‖〈u, Q′〉‖L1+L2 +

∥∥∥ d
dt
〈u, Q′〉

∥∥∥
L1+L2

. ‖u‖2
Ẋ−1/6
∞

+ J +‖P⊥Q′u‖Ẋ−1/6
∞

.

The crucial point is that the right hand side only contains the projection of u, not u itself. We obtain
easily

‖(∂t + ∂
3
x )γ (t)Q

′
‖Ẏ−1/6
∞,T
. ‖γ ‖L2 +‖γ ′‖L1+L2 .
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As a result, using estimates similar to those in Lemma 8.7 we have∥∥∥ 〈u, Q′〉
〈Q′, Q′〉

Q′
∥∥∥

X−1/6
∞,T

≤ k4
(
‖u‖2

Ẋ−1/6
∞,T
+ J +‖P⊥u‖Ẋ−1/6

∞,T

)
. (8-29)

By Lemma 8.8 and (8-27),

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ c3(‖u‖2Ẋ−1/6

∞,T
+ J 1/2

(0,T )(v)+ J )≤ c3(4k2
2 + 1)J + c3 J 1/2

using, as we may, ‖u‖Ẋ−1/6
∞,T
≤ 1 and, by the estimate (8-29) and (8-27), we have

‖u‖Ẋ−1/6
∞,T
≤ k4

(
J + c3(8k2

2 + 1)J (v)+ c3 J 1/2).
We choose first k1, then k2 and finally δ small to complete the proof. �

Proof of Lemma 8.8. We write the equation for u = w− ν, with ut + c2ux − ∂x Lc,yu =: G. We have

G = (ċ/c+α1)
∼Q+ (ẏ− c2

+β1)Q′− ∂x
(
6Q2

c(u+ ν)
2
+ 4Q′c(u+ ν)

3
+ (u+ ν)4

)
,

where α1 and β1 ensure the orthogonality conditions for ν, that is, (8-12). We recall that they satisfy

‖α1‖L1 . ‖ċ‖L2 J and ‖α1‖L2 +‖β1‖L2 . J.

To apply Proposition 6.7 we have to project u. This leads to a calculation similar to Lemma 8.3. Let
µ= P⊥Q′ P̃u and µt + c2∂xµ− ∂x Lµ=: H . Then, using 〈u, Q〉 = 〈w, Q〉 and 〈u, Q′〉 = 〈w, Q′〉,

H = G−
( d

dt
〈w, Q〉

〈Q, ∼Q〉

)
∼Q−

( d
dt
〈w, Q′〉
〈Q′, Q′〉

)
Q′

−
〈w, Q〉

〈Q, ∼Q〉

( ċ
c
∼̃Q+ (c2

− ẏ) ∼Q′+ 2Q′
)
−
〈w, Q′〉
〈Q′, Q′〉

(
(ċ/c) ∼Q′+ (c2

− ẏ)Q′′
)

= α
∼Q+βQ′+ g,

where

−g = ∂x
(
6Q2

c(u+ ν)
2
+ 4Q′c(u+ ν)

3
+ (u+ ν)4

)
+
〈w, Q〉

〈Q, ∼Q〉

ċ
c
∼̃Q

+

(
〈w, Q〉

〈Q, ∼Q〉
(c2
− ẏ)+

〈w, Q′〉
〈Q′, Q′〉

ċ
c

)
∼Q′+

〈w, Q′〉
〈Q′, Q′〉

(c2
− ẏ)Q′′.

By construction u(0)= 0. We apply Proposition 6.7 to get

‖u‖Ẋ s
∞,T
. ‖g‖Ẏ−1/6

∞,T
+‖〈g, Q〉‖L1 +‖〈g+, Q〉‖L2 +‖〈g, Q′〉‖L2 .

By Lemma 7.1, Lemma 8.5 and Lemma 8.6, we get

‖g‖Ẏ−1/6
∞

. ‖u‖2
Ẋ−1/6
∞

+ J‖w0‖Ḃ−1/6,2
∞

,

and by Lemma 8.7

‖〈g, Q〉‖L1 +‖〈g+, Q〉‖L2 +‖〈g, Q〉‖L2 . ‖u‖2
Ẋ−1/6
∞

+ J 1/2
‖w0‖

3/2
Ḃ−1/6,2
∞

.
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Together, we have
‖P̃∗P⊥u‖Ẋ−1/6

∞,T
. ‖u‖2

Ẋ−1/6
∞,T
+ J 1/2

‖w0‖
3/2
Ḃ−1/6,2
∞

. �

Proposition 8.2 generalizes straightforwardly to smaller function spaces in the style of Section 7.1.

8.4. An almost inverse wave operator result. In this section we will construct solutions with given
asymptotic behavior, proving Theorem 3. This is a partial converse statement to Proposition 8.2.

Remark 8.2. Theorem 3 is quite satisfactory in several respects. It shows which asymptotic properties
may characterize a solution. The main missing piece is uniqueness of the solution9. It implies existence
of a solution for small scattering data, and, for arbitrary scattering states, existence of a solution with
given scattering data for large t .

Proof. We turn to the time-reversed equation

∂tw+ ∂x(∂
2
xw+ 4Q3

cw)= (ẏ− c2)〈w, Qxx 〉+ (ċ/c)〈w,
∼Q′〉+ 〈6Q2w2

+ 4Qw3
+w4, Qxx 〉 (8-30)

with
(ċ/c)〈Qc,

∼Qc〉 = −〈w, Qc〉 and (ẏ− c2)〈Q′c, Q′c〉 = κ〈w, Q′c〉.

Let v be the solution to the Airy equation with initial data v0. We may and do assume that y0 = 0. By
Proposition 8.1 we know that limt→∞ J[t,∞)(v)= 0. Given S> 0 and yS satisfying |yS(S)−c2

∞
S|< δ̂S,

we solve the backwards initial value problem

9(S)= v(S)+ Qc∞,yS .

We choose 1� δ̂� δ to ensure that |ẏ− c∞| ≤ δ̂ for the solutions under consideration. The arguments
of the previous section allow one to do that down to a largest time t S,yS

for which

|y(t S,yS
)− c2

∞
t S,yS
| = δ̂t S,yS

.

We want to show that the infimum of the t S,yS
as a function of yS is attained for some yS and it is equal to

zero if δ̂ is sufficiently small. Suppose not, and denote the infimum by τ > 0. By continuous dependence
on yS , given ε > 0, there exists an interval [a, b] such that the solution exists down to a time smaller
than (1+ ε)τ , and yS,a((1+ ε)τ ) = (c2

∞
− δ)(1+ ε)τ and yS,b((1+ ε)τ ) = (c2

∞
+ δ)(1+ ε)τ . Hence,

there exists yS,ε with
yS,a((1+ ε)τ )= c2

∞
(1+ ε)τ.

But then, if δ̂ is sufficiently small, we see that a positive infimum is not possible, and moreover this
construction gives a limit that is a solution denoted again by (9S, yS) with yS(0)= 0.

We consider the limit S→∞. Since ẏS
−c2
∞

and ċS are small there exists a converging subsequence
yS j , cS j , S j →∞ that converges to c and y. There are corresponding solutions 9 j , u j and w j of the
corresponding equation. We extend w j beyond S j by v. By the stability result, given δ > 0 we find T > 0
such that

‖w j − v‖Ẋ−1/6
∞,[T,∞)

≤ δ.
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Using a frequency envelope there exists 3 such that

λ−1/6
‖(w j )λ‖V 2(T,∞) . δ

whenever λ > 3 or λ−1 >3.
In particular,

‖(w j −wl)(t)‖Ḃ−1/6,2
∞

≤ δ

for t ≥ T (δ) and j and l sufficiently big. Again, using J small we are able to deduce that (w j ) is a
Cauchy sequence in Ẋ−1/6

T and the limit is the desired solution. �
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Appendix: Setup and properties of the U p, V p spaces for the linear KdV equation

To define the function spaces U 2, V 2, we summarize [Hadac et al. 2009, Section 2], where we suggest
the reader look for further details. Let Z be the set of finite partitions −∞ < t0 < t1 < . . . < tK =∞.
In the following, we consider functions taking values in L2

:= L2(Rd
;C), but in the general part of this

section L2 may be replaced by an arbitrary Hilbert space.

Definition A.1. Let 1 ≤ p <∞. For {tk}Kk=0 ∈ Z and {φk}
K−1
k=0 ⊂ L2 with

∑K−1
k=0 ‖φk‖

p
L2 = 1 we call the

function a : R→ L2 given by

a =
K∑

k=1

χ[tk−1,tk)φk−1

a U p-atom, where χI is the standard cutoff function to interval I . Furthermore, we define the atomic
space

U p
:=

{
u =

∞∑
j=1

λ j a j

∣∣∣ a j a U p-atom,, λ j ∈ C such that
∞∑
j=1

|λ j |<∞
}

with norm

‖u‖U p := inf
{ ∞∑

j=1

|λ j |

∣∣∣ u =
∞∑
j=1

λ j a j , λ j ∈ C, a j a U p-atom
}
. (A-1)

Atoms are bounded in the supremum norm, and hence every convergence here implies uniform con-
vergence.

Proposition A.2. Let 1≤ p < q <∞.

(1) The expression ‖ · ‖U p is a norm. The space U p is complete and hence a Banach space.

(2) The embeddings U p
⊂U q have norm 1.
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(3) For u ∈ U p, all one sided limits exist, including at ±∞, u is continuous from the right, and the
limit at −∞ is zero.

(4) The subspace of continuous functions U p
c is closed.

Definition A.3. Let 1 ≤ p <∞. We define V p as the normed space of all functions v : R→ L2 for
which the norm

‖v‖V p := sup
{tk}Kk=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖
p
L2

)1/p
(A-2)

is finite. Here we understand v(∞) as zero. Let V p
− denote the subspace of all right-continuous functions

with limit 0 at −∞.

Taking the partition {t,∞}, one sees that the supremum norm is not larger than the V p norm.

Proposition A.4. Let 1≤ p < q <∞.

(1) The expression ‖ · ‖V p is a norm and V p is complete.

(2) For v ∈ V p, all one sided limits including at ±∞ exist.

(3) The subspace V p
− is closed.

(4) The embedding U p
⊂ V p

− is continuous and ‖u‖V p ≤ 21/p
‖u‖U p .

(5) The embeddings V p
⊂ V q are continuous and ‖v‖V q ≤ ‖v‖V p .

From the proof of [Hadac et al. 2009, Proposition 2.17], we have the following:

Lemma A.5. Let f ∈ V p
− , with q > p. Then, given δ > 0 and m > 1, there exist f1 ∈ U p and f2 ∈ U q

such that f = f1+ f2 and
m−1
‖ f1‖U p + eδm‖ f2‖U q . ‖ f ‖V p .

The following corollary is obvious.

Corollary A.6. The space V p
− is continuously embedded in U q for q > p.

There is a bilinear map, B, which for 1/p+ 1/q = 1 and 1< p, q <∞ can formally be written as

B( f, g)=−
∫

ft g dt, for f ∈ V p, g ∈U q .

It satisfies |B( f, g)| ≤ ‖ f ‖V p‖g‖U q , which is natural if we replace g by an atom. The map

V p
3 f → (g→ B( f, g)) ∈ (U q)∗

is an isometric bijection. Moreover,

‖u‖U p = sup{B(u, v) : v ∈ C(R), ‖v‖V p = 1}.

If v ∈ V p
− , then

‖v‖V q = sup{B(u, v) : u ∈ C(R), ‖u‖U p = 1}.
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If the distributional derivative of u is in L1 and v ∈ V p, then

B(u, v)=−
∫

utv dt.

If f ∈ L1, then F(t) =
∫ t
−∞

f ds ∈ V p for all p ≥ 1, and hence F ∈ U p. Moreover, ‖ f ‖DU p :=

‖F‖U p ≤ ‖ f ‖L1 . We denote by DU p the metric completion of L1 in the norm given by the duality
pairing. Similarly we define DV q .

There is a close relation to Besov spaces, namely

B1/p,p
1 ⊂U p

⊂ V p
⊂ B1/p,p

∞
(A-3)

with continuous embeddings. These embeddings clarify the relation to X s,b spaces below.
We claim that the convolution with an L1 function η defines a bounded operator on U p and V p with

norm≤‖η‖L1 . Because of the duality statement it suffices to verify boundedness on U p. We approximate
the characteristic function by a sum of Dirac measures. The convolution with an atom clearly has norm
at most 1. Convergence in U 1 to the convolution with the characteristic function is immediate. The full
statement is an immediate consequence, as well as the boundedness of the convolution by a Schwarz
function on U p and V p. In particular smooth projections on high and low frequencies are bounded.

Following Bourgain’s strategy for the Fourier restriction spaces, we define the adapted function spaces

U p
K dV = S(−t)U p and V p

K dV = S(−t)V p

and similarly DU p and DV p.
Again, we define a bilinear map BK dV such that for u ∈ V p

K dV and v ∈U q
K dV , we have for a function

u with (∂t + ∂
3
x )u ∈ L1L2

BK dV (u, v)=−
∫
〈(∂t + ∂

3
x )u, v〉 dt.

Note, this bilinear map is well defined and gives a duality relation. Hence,

‖u‖DV p
K dV
= sup
‖ f ‖Uq

K dV
≤1

∫
u f dx dt and ‖u‖DU p

K dV
= sup
‖ f ‖V q

K dV
≤1

∫
u f dx dt.

Moreover, we may restrict f to suitable subspaces. More details on how the construction of such atomic
spaces allows us to put ut in the dual space are included in [Hadac et al. 2009].

By the construction of our spaces, we obtain for a solution u of the linear KdV equation{
ut + uxxx = f,
u(0, x)= u0(x),

(A-4)

the estimates

‖u‖V 2
K dV
. ‖u0‖L2 +‖ f ‖DV 2

K dV
, (A-5)

‖u‖U 2
K dV
. ‖u0‖L2 +‖ f ‖DU 2

K dV
, (A-6)

which follow trivially from the construction of the V 2
K dV , DV 2

K dV and U 2
K dV , DU 2

K dV spaces.
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Spatial Fourier multipliers act on U p, V q , DU p, DV q in the obvious way and their operator norm is
bounded by the supremum of the multiplier.

Let (p, q) be a Strichartz pair. Then,

‖u‖L p Lq ≤ c‖|D|−1/pu‖U p

and the dual estimate
‖ f ‖DV p′ ≤ c‖|D|−1/p f ‖L p′ Lq′

hold. The first estimate is not hard to check on atoms. Since convergence in U p and in L p Lq both imply
pointwise convergence for subsequences we obtain the full estimate. The second estimate follows by
duality.

Similarly the local smoothing estimates carry over to U p spaces and to DV q . Let c(t) and y(t) satisfy
(5-14). Then

‖u‖L2 H1√
γ ′
) ≤ c‖u‖U 2 and ‖ f ‖DV 2 ≤ c‖ f ‖L2

√
γ ′H−1 .

In the same fashion the bilinear estimates for solutions to the free equation imply bilinear estimates for
functions in U 2.

The smooth decomposition into high and low modulation (that is, the smooth projection of the fre-
quencies to τ − ξ 3 large and respectively small) is bounded in U 2 and V 2, and the L2 norm of the high
modulation part gains the inverse of square root of the truncation as a factor by the embeddings (A-3).
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