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DISPERSION AND CONTROLLABILITY FOR THE SCHRÖDINGER EQUATION
ON NEGATIVELY CURVED MANIFOLDS

NALINI ANANTHARAMAN AND GABRIEL RIVIÈRE

We study the time-dependent Schrödinger equation ı ∂u
∂t =−

1
21u, on a compact Riemannian manifold on

which the geodesic flow has the Anosov property. Using the notion of semiclassical measures, we prove
various results related to the dispersive properties of the Schrödinger propagator, and to controllability.

1. Introduction

Let M be a smooth compact Riemannian manifold of dimension d (without boundary). We denote by 1
the Laplacian on M . We are interested in understanding the regularizing properties of the Schrödinger
equation

ı ∂u
∂t
=−

1
2
1u, where uet=0 ∈ L2(M).

More precisely, given a sequence of initial conditions un ∈ L2(M), we investigate the asymptotic behavior
of the family

νn(dx)=
(∫ T

0
|eı t1/2un(x)|2 dt

)
dVol(x) (1)

of measures (where Vol denotes the Riemannian volume measure on M).
We want to relate this question to the behavior of the geodesic flow, using results on propagation of

singularities. For that purpose, we reformulate the question using the semiclassical formalism, and more
specifically the notion of semiclassical measures. We consider a sequence of states (u h̄)h̄→0+ normalized
in L2(M) (indexed by a parameter h̄> 0 going to 0, which plays the role of Planck’s constant in quantum
mechanics), and for every t ∈ R we define the following family of distributions on the cotangent bundle
T ∗M :

µh̄(t)(a)=
∫

T ∗M
a(x, ξ) dµh̄(x, ξ) := 〈eı t1/2u h̄|Oph̄(a)|e

ı t1/2u h̄〉L2(M) for all a ∈ C∞o (T
∗M), (2)

where Oph̄(a) is a h̄-pseudodifferential operator of principal symbol a (see [Dimassi and Sjöstrand 1999],
or Appendix A for a brief reminder). This construction gives a description of a state in terms of position
and impulsion variables. Throughout the paper, we will denote by U t

:= eı t1/2 the quantum propagator.
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By standard estimates on the norm of Oph̄(a) (the Calderón–Vaillancourt theorem), the map t 7→µh̄(t)
belongs to L∞(R;D′ (T ∗M)), and is uniformly bounded in that space as h̄→ 0+. Thus, one can extract
subsequences that converge in the weak-∗ topology of L∞(R;D′ (T ∗M)). In other words, after possibly
extracting a subsequence, we have

µh̄(θ ⊗ a) :=
∫

R

θ(t)a(x, ξ)µh̄(t)(dx, dξ) dt −→
h̄→0

∫
R

θ(t)a(x, ξ)µ(t)(dx, dξ) dt (3)

for all θ ∈ L1(R) and a ∈ C∞o (T
∗M). The main example to keep in mind is the case when θ is the

characteristic function of some interval [0, T ]. In that case we can write

µh̄(θ ⊗ a)=
∫ T

0
〈eı t1/2u h̄|Oph̄(a)|e

ı t1/2u h̄〉 dt = h̄
∫ T/h̄

0
〈eıτ h̄1/2u h̄|Oph̄(a)|e

ıτ h̄1/2u h̄〉 dτ.

In the last term we used the change of variable t = h̄τ to express everything in terms of the flow eıτ h̄1/2,
which solves the equation −h̄21v/2 = ı h̄∂v/∂τ with the time-parametrization of quantum mechanics.
Thus, in the time-scale of quantum mechanics, we are averaging over time intervals of order h̄−1.

It follows from standard properties of Oph̄(a) that the limit µ has the following properties:

• For almost all t , µ(t) is a positive measure on T ∗M .

• The unitarity of U t implies that
∫

T ∗M µ(t)(dx, dξ) does not depend on t ; from the normalization
of u h̄ , we have

∫
T ∗M µ(t)(dx, dξ)≤1, the inequality coming from the fact that T ∗M is not compact,

and that there may be an escape of mass to infinity.

• Define the geodesic flow gτ : T ∗M → T ∗M as the Hamiltonian flow associated with the energy
p(x, ξ)= ‖ξ‖2x/2. From the Egorov theorem, we have

e−iτ h̄1/2 Oph̄(a)e
iτ h̄1/2

= Oph(a ◦ gτ )+ Oτ,a(h̄) for all τ ∈ R

and for a ∈ C∞o (T
∗M). At the limit h̄→ 0+, this implies that µ(t) is invariant under gτ for almost

all t and all τ .

These sequences of distributions were already studied by Macià [2009]; we refer to that paper for
details about the facts mentioned above. Macià was mostly interested in describing the properties of the
measures µ(t) in the case where the geodesic flow on the manifold M was not chaotic (Zoll manifolds
for instance, or the flat torus [Macià 2010; Anantharaman and Macià 2011]).

In this paper, we are interested in a completely different situation where the geodesic flow has the
Anosov property (manifolds of negative curvature are the main example). In this setting, the case where
the initial states u h̄ are eigenfunctions of the Laplacian, satisfying−h̄21u h̄ = u h̄ , has been much studied;
in this particular situation µh̄(t) does not depend on t . The Shnirelman theorem (also called quantum
ergodicity theorem) says that for a “typical” sequence of eigenfunctions u h̄ , the limit µ is the Liouville
measure on the unit cotangent bundle S∗M ; see [Shnirelman 1974; Zelditch 1987; Colin de Verdière
1985] for the precise statement. It is also known, by the work of Anantharaman and Nonnenmacher, that
for any sequence of eigenfunctions the limit µ has positive entropy [Anantharaman 2008; Anantharaman
and Nonnenmacher 2007; Anantharaman et al. 2009]. The aim of this paper is twofold: extend the
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Shnirelman theorem to the setting of the time dependent equation and prove lower bounds on the metric
entropy of the measures µ(t). We shall also show how these results apply to the controllability problem
for the Schrödinger equation.

2. Statement of the results

2a. Semiclassical large deviations. Our first result is a generalization (and a reinforcement in the case
of Anosov geodesic flows) of the quantum ergodicity theorem. Recall that the Shnirelman theorem
is originally a result on orthonormal bases of eigenfunctions of the Laplacian. In order to state an
analogue for solutions of the time dependent Schrödinger equation, we introduce a notion of generalized
orthonormal families.

2a1. Generalized orthonormal family. We fix α > 0 and a sequence I (h̄) := [a(h̄), b(h̄)] of subintervals
that are of length at least 2αh̄ for every h̄ > 0. We also assume that limh̄→0+ a(h̄)= limh̄→0+ b(h̄)= 1.
We denote by N (I (h̄)) the number of eigenvalues λ2

j of 1 (counted with their multiplicities) satisfying
h̄2λ2

j ∈ I (h̄). We assume that

N (I (h̄))=
Vol(M)
(2π h̄)d

Vol(Bd(0, 1))(b(h̄)− a(h̄))(1+ o(1)) (4)

(where Vol(M) is the Riemannian volume of M , and Vol(Bd(0, 1)) is the volume of the unit ball in Rd ).
According to [Duistermaat and Guillemin 1975], we know that the Weyl law (4) holds in the case where
b(h̄)− a(h̄) = 2αh̄ if we suppose that the set of closed geodesics is of zero Liouville measure on S∗M
(this is the case for Anosov geodesic flows).

We introduce the notion of generalized orthonormal family localized in the “energy window” I (h̄):

Definition 2.1. For h̄ > 0, let (�h̄,Ph̄) be a probability space and u h̄ :�h̄→ L2(M) a measurable map.
We say that (u h̄(ω))ω∈(�h̄ ,Ph̄) is a generalized orthonormal family (GOF) in the spectral window I (h̄) if

• ‖u h̄(ω)‖L2(M) = 1+ o(1) as h̄ tends to 0 (uniformly for ω in �h̄);

• ‖(IdL2(M)−1I (h̄)(−h̄21))u h̄(ω)‖L2(M) = o(1) as h̄ tends to 0 (uniformly for ω in �h̄);

• for every B in L(L2(M)),∫
�h̄

〈u h̄(ω)|B|u h̄(ω)〉L2(M) dPh̄(ω)=
1

N (I (h̄))
Tr(B1I (h̄)(−h̄21)). (5)

We stress the fact that if (u h̄(ω))ω∈(�h̄ ,Ph̄) is a GOF, then (U t u h̄(ω))ω∈(�h̄ ,Ph̄) is also one for every t . This
is a strong requirement which is crucial in the sequel. In Section 4, we will provide two examples of
GOF.

We will denote by µh̄,ω(t) the (time-dependent) distribution associated to u h̄(ω) by formula (2).

2a2. Semiclassical large deviations. The quantum ergodicity theorem says that, for a given orthonormal
basis of eigenvectors of 1, “most of” the associated distributions on T ∗M converge to the Liouville
measure on the unit cotangent bundle S∗M := {p= 1/2} (we recall that p(x, ξ)=‖ξ‖2x/2 is the classical
energy). This holds under the assumption that the geodesic flow acts ergodically on S∗M endowed with
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the Liouville measure. Here we aim for a more precise statement, and will assume that the geodesic flow
has the Anosov property. Our result will, in particular, imply a reinforced version of the usual Shnirelman
theorem.

We recall that the Liouville measure on T ∗M is the measure given by dL= dxdξ in local coordinates.
In a region where the Hamiltonian p has no critical point, one can find local symplectic coordinates
(x1, . . . , xd , ξ1, . . . , ξd) such that x1 = p, and the Liouville measure can be decomposed into dL =

dx1d L x1(x, ξ), where L x1 is a smooth positive measure carried by the energy layer {p = x1}. We shall
restrict our attention to the unit cotangent bundle, S∗M = {p= 1

2}, and will denote L = L1/2. This is the
Liouville measure on S∗M .

Given a GOF (u h̄(ω))ω∈(�h̄ ,Ph̄), our result says that for “most” ω (in the sense of Ph̄) the distributions
µh̄,ω(t) are close to the Liouville measure L . We will use a large deviations result due to Kifer [1992]
to give an estimate on the proportion of ω for which µh̄,ω(t) is far away from L . To state our result, we
need to introduce two dynamical quantities. First, we define the maximal expansion rate of the geodesic
flow on S∗M as

χmax := lim
τ→±∞

1
τ

log sup
ρ∈S∗M

‖dρgτ‖.

This quantity gives an upper bound on the Lyapunov exponents over S∗M and it is linked to the range
of validity of the semiclassical approximation in the Egorov theorem [Bouzouina and Robert 2002]. We
also introduce, for every δ in R and every a in C∞o (T

∗M,R) such that L(a)= 0,

H(δ) := inf
s∈R
{−sδ+ P

(
sa+ϕu)

},

where f 7→ P( f ) is the topological pressure of the continuous map f and ϕu is the infinitesimal unstable
Jacobian (see Section 3 for details). The map δ 7→−H(δ) is the Legendre transform of s 7→ P(sa+ϕu),
which is a smooth and convex function on R. In particular, −H is a convex map on R and it satisfies
H(0)= 0 and H(δ) < 0 for all δ 6= 0 (see Section 3c).

Theorem 2.2. Suppose (S∗M, (gτ )) has the Anosov property. We fix a sequence of generalized orthonor-
mal families (u h̄(ω))ω∈(�h̄ ,Ph̄) (with h̄→ 0+). We fix two observables,

• an element θ in L1(R,R+) such that
∫
θ(t) dt = 1, and

• an element a in C∞o (T
∗M,R) such that

∫
S∗M a d L = 0.

Then, we have, for any δ > 0,

lim sup
h̄→0

log Ph̄({ω ∈�h̄ : µh̄,ω(θ ⊗ a)≥ δ})
|log h̄|

≤
H(δ)
χmax

.

From this theorem and the properties of H(δ), one can deduce the following corollary:

Corollary 2.3. Suppose (S∗M, (gτ )) has the Anosov property. Fix a sequence of GOF (u h̄(ω))ω∈(�h̄ ,Ph̄)

(with h̄→ 0+). Then, for every δ > 0, for every a ∈C∞o (T
∗M,C) and for every function θ in L1(R,R+),

we have
Ph̄

({
ω ∈�h̄ :

∣∣∣µh̄,ω(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣≥ δ})= Oa,δ,θ (h̄ H̃(δ)), (6)
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where H̃(δ) > 0 depends on a, θ and δ.

2a3. Comments. As already mentioned, this result reinforces the Shnirelman theorem in the case of
Anosov geodesic flows. The Shnirelman theorem (suitably adapted to the time-dependent Schrödinger
equation) would simply assert that for an ergodic geodesic flow, and for every δ > 0,

Ph̄

({
ω ∈�h̄ :

∣∣∣µh̄,ω(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣≥ δ})= oa,δ,θ (1) .

The algebraic rate of Corollary 2.3 can be compared with a classical conjecture in quantum chaos, known
as the quantum variance conjecture [Feingold and Peres 1986; Eckhardt et al. 1995]. This conjecture
is usually formulated for eigenfunctions of the Laplacian and states that the quantum variance behaves
(modulo a prefactor related to a classical variance) like 1/TH (h̄), where TH (h̄) is the Heisenberg time.
Recall that the Heisenberg time is defined as h̄ρ̄(h̄), where ρ̄(h̄) is the mean density of states (which is
proportional to h̄−d in our case). Translated in our context, it would predict that∫

�h̄

∣∣∣µh̄,ω(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣2dPh̄(ω)∼ V (a, θ)h̄d−1,

where V (a, θ) would be a classical dynamical variance. If this conjecture is true, it implies

Ph̄

({
ω ∈�h̄ :

∣∣∣µh̄,ω(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣≥ δ})= O

(
h̄d−1) ,

which is stronger than our result.
Related to this kind of question, Zelditch [1994] proved that∫

�h̄

∣∣∣µh̄,ω (θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣p

dPh̄(ω)= O(|log h̄|−p/2)

for all p ≥ 1; see also [Schubert 2006]. Again, his proof is written for the eigenfunction problem, but
could easily be transposed to the time-dependent Schrödinger equation (see [Rivière 2009] — and note
that we have to make the extra assumption ‖u h̄(ω)‖L2 = 1+ O(| log h̄|−1) uniformly in ω). Using the
Bienaymé–Chebyshev inequality, Zelditch’s result implies that

Ph̄

({
ω ∈�h̄ :

∣∣∣µh̄,ω(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣≥ δ})= O(| log h̄|−∞).

Our theorem — although it does not say anything about the quantum variance — improves this aspect of
Zelditch’s result, as we can replace O(|log h̄|−∞) by O(h̄ H̃(δ)).

2b. Entropy of semiclassical measures. Our second result is a lower bound on the Kolmogorov–Sinai
entropy of the measures µ(t). We will consider a sequence of normalized states (u h̄)h̄→0+ in L2(M).
We fix two energy levels 0≤ E1 < E2 and we suppose that the family of states is localized in the energy
window [E1, E2]. Precisely, we make the assumption that

lim
h̄→0+

∥∥(IdL2(M)−1[E1,E2](−h̄21)
)
u h̄
∥∥

L2(M) = 0. (7)
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This assumption implies that each µ(t) is a probability measure carried by the set {E1 ≤ ‖ξ‖
2
x ≤ E2}

(it prevents escape of mass in the fibers of T ∗M). In addition, we recall that µ(t) is invariant under the
geodesic flow. Using the invariance of the energy under the geodesic flow, we see that for Lebesgue
almost every t , µ(t)(dx, dξ) is of the form

∫
µt,E(dx, dξ)ν(d E), where ν is a positive measure on the

interval [E1, E2] and µt,E is a probability measure on {‖ξ‖2x = E} invariant under the geodesic flow.

Remark 1. The measure ν is independent of t . It is the weak limit (after extraction of a subsequence)
of the measures νh̄ defined on R by νh̄([E, E ′])= ‖1[E,E ′]

(
−h̄21

)
u h̄‖

2.

In the following theorem, hKS(µ, (gτ )) denotes the entropy of the invariant probability measure µ for
the geodesic flow gτ (its definition is recalled in Section 3).

Theorem 2.4. Let M be a compact Riemannian manifold of dimension d and constant curvature ≡−1.
We fix two energy levels 0≤ E1 < E2 and we consider a sequence (u h̄)h̄→0+ in L2(M) that satisfies

• the energy localization limh̄→0‖(IdL2(M)−1[E1,E2](−h̄21))u h̄‖L2(M) = 0 and

• limh̄→0‖u h̄‖L2(M) = 1.

Consider µ(t)(dx, dξ) =
∫
µt,E(dx, dξ)ν(d E) a weak-∗ limit in L∞(R;D′ (T ∗M)) of the sequence of

distributions µh̄(t) defined in (2). Then, one has, Leb⊗ν almost everywhere,

hKS(µt,E , (gτ ))≥
d−1

2

√
E,

where hKS(µt,E , (gτ )) is the Kolmogorov–Sinai entropy of µt,E .

Remark 2. For the sake of simplicity, we only state and prove the results in the case of constant curvature.
In principle the methods from [Anantharaman and Nonnenmacher 2007; Anantharaman et al. 2009] for
general Anosov manifolds or from [Rivière 2010] for Anosov surfaces could be adapted in this setting.
However, one step requires a nontrivial adaptation: see Remark 8. Modulo this extra work, the result in
variable curvature would read

hKS(µt,E , (gτ ))≥
(∫
|ϕu
| dµt,E −

d−1
2
χmax(E)

)
where ϕu is the unstable Jacobian and χmax(E) is the maximal expansion rate of the geodesic flow on
the energy layer {p = E/2}; see Section 3. This lower bound may be negative (and thus trivial) if χmax

is too large compared to the average of ϕu . For surfaces, the adaptation of the ideas of [Rivière 2010]
would lead to the better result

hKS(µt,E , (gτ ))≥
1
2

∫
|ϕu
| dµt,E > 0.

Remark 3. We note that
√

E is the speed of trajectories of gτ on the energy layer {p = E/2}. It is also
natural to consider the geodesic flow φτ = gτ/

√
E parametrized to have speed 1 on any energy layer, and

our result then reads hKS(µt,E , (φ
τ ))≥ (d − 1)/2.

If one wants, one can avoid assumption (7) and deal with the issue of escape of mass in a different
manner: Consider the space S0 of smooth functions a on T ∗M that are 0-homogeneous outside a compact
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set. The distributions µh̄(t) are bounded in L∞(R,S′0), and one can consider convergent subsequences
in the corresponding weak-∗ topology. The corresponding limits µ ∈ L∞(R,S′0) are actually positive
for almost all t , and each µ(t) defines a probability measure on T̂ ∗M , the cotangent bundle compactified
by spheres at infinity. We note that the flow φt can be extended to the spheres at infinity. We can then
write µ(t)=

∫
µt,E(dx, dξ)ν(d E), where now ν is a probability measure on [0,+∞]. Our result reads

hKS(µt,E , (gτ ))≥
√

E(d − 1)/2 for 0≤ E <+∞, and hKS(µt,E , (φ
τ ))≥ (d − 1)/2 for 0< E ≤+∞.

Remark 4 (u h̄ versus un). Let (un) be a normalized sequence in L2(M), and suppose we want to study
the sequence of probability measures (1). No scale h̄n is given a priori. We can always choose h̄n such
that (7) is satisfied, and apply Theorem 2.4. However, the statement of the theorem is trivial for the part
of the limit measure carried on {ξ = 0}: It just says that hKS(µt,0, gτ ) ≥ 0. Thus, it is preferable to
choose h̄n such that none of the limit mass goes to {ξ = 0}. If un converges weakly to 0 in L2, this is
also possible but in general (7) will no longer be satisfied (some of the mass will escape to infinity) and
one must in this case use the version of the theorem stated in Remark 3. If un converges weakly to 0
in L2 and if one is ready to have all the mass escape to infinity (thus losing some information about the
rate of escape), one can even let h̄n = 1. This means that one considers the “distribution”

µn(t)(b) := 〈un | e−ı t1/2 Op1(b)e
ı t1/2un〉L2(M),

defined for all b ∈ S0. This is the analogue of (2) in the microlocal setting [Gérard 1991]. The map
t 7→µn(t) belongs to L∞(R,S′0). Thus, there exists a subsequence (unk )k and µ in L∞(R,S′0) such that∫

R×T̂ ∗M
θ(t)b(x, ξ)µnk (t)(dx, dξ) dt −→

k→+∞

∫
R×T̂ ∗M

θ(t)b(x, ξ)µ(t)(dx, dξ) dt

for all θ ∈ L1(R) and b ∈ S0. Besides, as above, µ(t) is a probability measure on the compactified
cotangent bundle T̂ ∗M , and is invariant under the normalized geodesic flow. As un(t) = eı t1/2un

converges weakly to 0 for every t in R, each µ(t) is actually supported at infinity, and may thus be
identified with a probability measure on the unit sphere bundle S∗M , invariant under the geodesic flow.

Theorem 2.4 adapted to this setting says that hKS(µ(t), (gτ ))≥ (d − 1)/2 for every t in R.

2c. Application to controllability. Theorem 2.4, in the form given in Remark 4, implies the following
observability inequality:

Theorem 2.5. Let M be a compact Riemannian manifold of dimension d and constant curvature iden-
tically equal to −1. Let a be a smooth function on M , and define a closed gτ -invariant subset of S∗M
by

Ka = {ρ ∈ S∗M, a2(gτ (ρ))= 0 for all τ ∈ R}.

Assume that the topological entropy of Ka is less than (d−1)/2. Then, for all T >0, there exists CT,a >0
such that, for all u in L2(M),

‖u‖2L2(M) ≤ CT,a

∫ T

0
‖aeı t1/2u‖2L2(M) dt. (8)
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Remark 5. The topological entropy of a (gτ )-invariant compact subset K of S∗M is related to the
Kolmogorov–Sinai entropy by the variational principle [Walters 1982]

htop(K , (gτ )) := sup
µ∈M(S∗M,gτ )

{
hKS(µ, (gτ )) : µ(K )= 1

}
,

where M(S∗M, gτ ) is the set of probability measures on S∗M invariant under the geodesic flow. Thanks
to [Barreira and Wolf 2007, Corollary 4], our assumption on the topological entropy of Ka is satisfied
when the Hausdorff dimension of Ka is less than d . The converse is also true if Ka is a locally maximal
subset [Pesin and Sadovskaya 2001, Theorem 4.1], that is, there exists an open neighborhood U of Ka

such that Ka =
⋂
τ∈R gτU.

The proof that Theorem 2.4 implies Theorem 2.5 is given in Section 7. This follows a classical
argument due to Lebeau [1992], who used it to prove that if M is an arbitrary Riemannian manifold, and
if Ka =∅ (the “geometric control condition”), then (8) holds.

We can give an example where our assumption on the topological entropy of Ka is satisfied. Consider
a closed geodesic γ and a small tubular neighborhood of this geodesic in M that does not contain another
complete geodesic. We take a to be nonzero on the complement of this neighborhood and 0 near the
closed geodesic. In this case, one has Ka=γ so that our condition holds. Another example, in dimension
d=2, goes as follows: Take a decomposition of the hyperbolic surface M into “hyperbolic pairs of pants”
(there are 2g − 2 pairs of pants if M has genus g). The boundary of each pair of pants consists of 3
simple closed geodesics. Take a function a supported in a neighborhood of the union of these 3g − 3
simple closed geodesics, and assume that a does not vanish on the union of these curves. Thus, any
geodesic that avoids the support of a must stay inside one of the pairs of pants. If the length of each
of the 3g− 3 boundary components is large enough, this will imply that Ka has dimension less than d ,
and our condition will be satisfied. The existence of a hyperbolic pants decomposition with boundary
components of arbitrary large lengths follows, for instance, from [Rees 1981, Proposition 2.2]. It would
be interesting to find a larger variety of geometric situations in which our assumption on Ka holds.

Following the Hilbert uniqueness method, one knows that inequality (8) implies that for any u0, uT ∈

L2(M) and any T > 0, there exists f (t, x) ∈ L2([0, T ]×M) such that the solutions of

ı ∂u
∂t
+
1

2
u = a(x) f (t, x)

with initial condition u|t=0 = u0 satisfy u|t=T = uT . This is called the controllability problem.

Remark 6. As already mentioned, this application to the controllability problem relies on the entropic
estimate of Theorem 2.4, which is proved for manifolds of constant negative curvature. In Remark 2, we
indicated what should be (modulo extra work) the extension of Theorem 2.4 in the case of manifolds of
variable negative curvature. Let us mention what would then be the consequences for controllability. In
the case of manifolds of variable negative curvature, controllability would hold under the condition that

Ptop(Ka, (gτ ), ϕu) <−
d−1

2
χmax,
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where Ptop(Ka, (gτ ), ϕu) is the topological pressure of Ka with respect to ϕu [Pesin 1997, Appendix II].
If M is of variable curvature, there is no precise relation between such a condition and the Hausdorff
dimension of Ka . In the case of surfaces of variable negative curvature, the entropic estimate of Remark 2
would imply that controllability holds under the more general condition

Ptop(Ka, (gτ ), 1
2ϕ

u) < 0.

This condition is satisfied when the Hausdorff dimension of Ka is less than 2 [Barreira and Wolf 2007,
Corollary 4].

Organization of the paper. In Section 3, we describe some background in dynamical systems that we
will need at different points of the article. In Section 4, we give two examples of GOF and apply
Theorem 2.2 to them. In Sections 5 and 6, we prove Theorems 2.2 and 2.4. Finally, in Section 7, we
show how to derive an observability result from Theorem 2.4. In the appendix, we give a brief review of
semiclassical calculus on a manifold.

3. Dynamical systems background

3a. Anosov property. In this paper, we suppose that M is a smooth, compact, Riemannian manifold of
dimension d (without boundary). The geodesic flow (gτ ) on T ∗M is the Hamiltonian flow associated to
the Hamiltonian p(x, ξ)= ‖ξ‖2x/2. We also assume that, for any E > 0, the geodesic flow gτ is Anosov
on the energy layer p−1({E/2})⊂ T ∗M : For all ρ ∈ p−1({E/2}), we have a decomposition

Tρ p−1 ({E/2})= Eu(ρ)⊕ E s(ρ)⊕RX p(ρ),

with X p is the Hamiltonian vector field associated to p, Eu the unstable space and E s the stable space
[Katok and Hasselblatt 1995]. We can introduce the infinitesimal unstable Jacobian as follows [Bowen
and Ruelle 1975]:

ϕu(ρ) := −
d

dτ
(det(dρgτ |Eu(ρ)))τ=0.

3b. Kolmogorov–Sinai entropy. Let us recall a few facts about Kolmogorov–Sinai (or metric) entropy,
which can be found for example in [Walters 1982]. Let (X,B, T, µ) be a measurable dynamical system,
and P := (Pα)α∈I a finite measurable partition of X , that is, a finite collection of measurable subsets
that forms a partition. Each Pα is called an atom of the partition. With the convention 0 log 0 = 0, one
defines

Hn(µ, T,P)=−
∑
|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) logµ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1). (9)

This quantity satisfies a subadditivity property

Hn+m(µ, T,P)≤ Hn(µ, T,P)+ Hm(µ, T, T−nP)= Hn(µ, T,P)+ Hm(µ, T,P). (10)

The first inequality is true even if the probability measure µ is not T -invariant, while the last equality
holds for T -invariant measures. A classical argument for subadditive sequences allows to define the
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quantity

hKS(µ, T,P) := lim
n→∞

Hn (µ, T,P)

n
, (11)

the Kolmogorov–Sinai entropy of (T, µ) with respect to the partition P. The Kolmogorov–Sinai en-
tropy hKS(µ, T ) of (µ, T ) is then defined as the supremum of hKS(µ, T,P) over all finite partitions P

of X . In the case of a flow (for instance the dynamical system (S∗M, gτ , µ)), we define the entropy
hKS(µ, (gτ )) := hKS(µ, g1). Entropy can a priori be infinite. However, for a smooth flow on a compact
finite dimensional manifold, entropy is bounded thanks to the Ruelle inequality [1978]. In the case of
the geodesic flow on a negatively curved manifold, it reads

hKS(µ, (gτ ))≤−
∫

S∗M
ϕu(ρ) dµ(ρ),

and equality holds if and only if µ is the disintegration L of the Liouville measure on S∗M (defined in
Section 2a2) [Pesin 1977; Ledrappier and Young 1985].

Notation. In the rest of this paper, we will write hKS(µ) for hKS(µ, (gτ )), unless we want to consider a
flow different from (gτ ).

3c. Topological pressure. To conclude this section, we introduce the topological pressure of the dy-
namical system (S∗M, gτ ) as the Legendre transform of the Kolmogorov–Sinai entropy [Walters 1982;
Parry and Pollicott 1990; Pesin 1997]: for all f ∈ C0(S∗M,R),

P( f )= P(S∗M, (gτ ), f ) := sup
{

hKS(µ)+

∫
S∗M

f dµ : µ ∈M(S∗M, gτ )
}
,

where M(S∗M, gτ ) is the set of probability measures on S∗M invariant under the geodesic flow. This
defines a continuous and convex function on C0(S∗M,R) [Walters 1982].

We shall be particularly interested in the behavior of P( f ) near f = ϕu . By the Ruelle inequality, we
have P(ϕu)=0 (the sup defining P(ϕu) is achieved atµ= L; see Section 3b). Moreover, it can be proved
that for any real-valued Hölder function f on S∗M , the function s 7→ P(ϕu

+ s f ) is real analytic on R

[Bowen and Ruelle 1975; Ruelle 1976] and its derivatives of order 1 and 2 can be computed explicitly
[Parry and Pollicott 1990].

We have d
ds (P(ϕ

u
+ s f ))|s=0 =

∫
S∗M f d L . If

∫
S∗M f d L = 0, the convex function s 7→ P(ϕu

+ s f )
achieves its minimum at 0. Moreover, if

∫
S∗M f d L = 0, then we have

d2

ds2 (P(ϕ
u
+ s f ))

∣∣
s=0 = σ

2( f ),

where

σ 2( f ) := lim
T→+∞

1
T

∫
S∗M

(∫ T

0
f ◦ gτ (ρ) dτ

)2
d L(ρ)

is called the dynamical variance of the function f . It is known that σ 2( f ) vanishes if and only if f is of
the form f = d

dτ (h ◦ gτ )|τ=0 for some function h. In this case, one says that f is a coboundary.
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3d. Kifer’s large deviation upper bound. We shall use the following result, due to Kifer [1992], and
valid for more general Anosov flows:

lim
T→∞

1
T

log
∫

S∗M
exp

(∫ T

0
a ◦ gτ (ρ) dτ

)
d L(ρ)= P(a+ϕu), (12)

for all continuous a. In fact, we will only use that the lim sup is uniform for a running over compact sets
in the C1 topology (this property can be derived from the proof of [Kifer 1992, Theorem 3.2]).

Remark 7. This result implies the following strengthened version of the Birkhoff ergodic theorem. Fix
a such that

∫
S∗M a d L = 0, and fix δ > 0. Then

lim sup 1
T

log L
({
ρ ∈ S∗M : 1

T

∫ T

0
a ◦ gτ (ρ) dτ > δ

})
≤ inf

s≥0
{−sδ+ P(sa+ϕu)}

= inf
s∈R
{−sδ+ P(sa+ϕu)} = H(δ).

Similarly, for δ < 0, one has

lim sup 1
T

log L({ρ ∈ S∗M : 1
T

∫ T

0
a ◦ gτ (ρ) dτ < δ})≤ H(δ).

The function −H , which is the Legendre transform of s 7→ P(ϕu
+ sa), satisfies H(δ) = 0, is convex

and is positive for δ 6= 0 (it is infinite for δ 6= 0 if a is a coboundary).

4. Examples of generalized orthonormal families

In this section, we provide two examples of GOF and show how Theorem 2.2 applies to them. Our
examples are of distinct types: basis of eigenvectors of 1 and truncated Dirac distributions. In the first
example, Theorem 2.2 provides a strengthened version of Shnirelman’s theorem for Anosov flows.

4a. Orthonormal basis of eigenvectors. Consider (ψn)n∈N, an orthonormal basis of L2(M) made of
eigenfunctions of 1, that is, there exists a sequence 0= λ0 < λ1 ≤ · · · ≤ λn ≤ · · · such that for every n
in N,

1ψn =−λ
2
nψn.

For h̄ > 0, we take �h̄ := {n ∈ N : h̄2λ2
n ∈ [1− αh̄, 1+ αh̄]}, where α is some fixed positive number.

In this case, the probability measure is given by Ph̄ :=
1
|�h̄ |

∑
n∈�h̄

δn and the measurable map is given
by u h̄(n) := ψn . Applying Corollary 2.3 to this example, we find that for every a in C∞o (T

∗M), and for
every δ > 0, there exists H̃(δ) > 0 such that

1
|�h̄|

∣∣∣{n ∈�h̄ :

∣∣∣µh̄,n(a)−
∫

S∗M
a d L

∣∣∣≥ δ}∣∣∣= Oa,δ(h̄ H̃(δ)).

Shnirelman’s theorem provides a oa,δ(1), and using the results from [Zelditch 1994] on eigenfunctions
of 1, one can obtain a Oa,δ,p(|log h̄|−p) for arbitrarily large p.
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4b. Truncated Dirac distributions. The second class of examples we will consider is given by families
of vectors constructed from the Dirac distributions. For y in M , we denote by δy the Dirac distribution
given by 〈δy, f 〉 := f (y) (where f is in C∞(M)). To construct our GOF, we will project δy on L2(M).
To do this, recall that we have defined I (h̄) := [a(h̄), b(h̄)], where b(h̄) − a(h̄) ≥ 2αh̄, and that we
have defined N (I (h̄)) := |{n : h̄2λ2

n ∈ I (h̄)}|. Using this notation, we can introduce a truncated Dirac
distribution by

δh̄
y :=

(
VolM(M)
N (I (h̄))

)1/2

1I (h̄)
(
−h̄21

)
δy .

According to (global and local) Weyl laws from [Duistermaat and Guillemin 1975] and from [Sogge and
Zelditch 2002, Theorem 1.2]), we know that in the Anosov case,(

M,
VolM

VolM(M)
, δh̄

y

)
is a GOF in the spectral window I (h̄).

Applying Corollary 2.3 to this example, we find that for every a in C∞o (T
∗M,C), for every θ in

L1(R,R+) and for every δ > 0, there exists H̃(δ) > 0 such that

VolM

({
y ∈ M :

∣∣∣µh̄,y(θ ⊗ a)−
∫

S∗M
a d L

∫
R

θ(t) dt
∣∣∣≥ δ}) := Oa,θ,δ(h̄ H̃(δ)).

Thus, if we choose y randomly on M according to the volume measure, and consider the solution of the
Schrödinger equation eı t1/2δh̄

y , our result says that we have convergence of the associated semiclassical
measure to the uniform measure, for most y (in the probability sense, and with an explicit bound) as
h̄ tends to 0. Taking a subsequence (h̄n)n that tends to 0 fast enough, we can apply the Borel–Cantelli
lemma and derive convergence for almost every y [Rivière 2009]. An interesting question would be to
understand more precisely for which subsequences (h̄n) we have convergence for almost every y.

4c. Coherent states. Similar results could, in principle, apply to bases of coherent states (e.g., gaussian
states). Such bases can be constructed easily in euclidean situations; see [Rivière 2009] for an application
of Theorem 2.2 to the “cat map” toy model. However, on an arbitrary manifold, it seems difficult to
construct bases of coherent states meeting all the requirements of the definition of a GOF, which are
actually quite strong.

5. Proof of Theorem 2.2

The proof has two steps. To begin with, we combine the Bienaymé–Chebyshev inequality and the
Egorov theorem to obtain a first bound (Section 5b). Then we apply a large deviations estimate due
to Kifer [1992] to obtain a bound in terms of the topological pressure. This proof follows the steps of
Zelditch [1994], the new input being

• the use of the exponential function x 7→ ex in Section 5b instead of the power functions x 7→ x p;

• the use of Kifer’s large deviation result for the geodesic flow instead of the central-limit theorem;1

1Rigorously speaking, one cannot say that the LDP is stronger than the CLT. When the large deviation principle holds with
a rate function that is C2 and strictly convex, one usually expects to have a central limit theorem; the variance of the limiting
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• a more careful treatment of the trace asymptotics (Lemma 5.3) to make sure that the remainder term
is not larger than the leading term for the symbols we consider.

We fix θ an element of L1(R,R+) such that
∫
θ(t) dt = 1. Let a be an element in C∞o (T

∗M,R) that
satisfies

∫
S∗M a d L = 0. Recall that we defined

χmax := lim
τ→±∞

1
τ

log sup
ρ∈S∗M

‖dρgτ‖.

Since the states u h̄(ω) are uniformly microlocalized in a thin neighborhood of S∗M , we can assume that
a is compactly supported in a tubular neighborhood p−1([12 − η,

1
2 + η]) of S∗M (with η > 0 arbitrarily

small). Letting χη = χmax
√

1+ 2η, we have, for all τ ∈ R, for all ρ ∈ T ∗M and for all α,

‖∂α(a ◦ gτ )(ρ)‖ ≤ Ca,αeχη|α||τ |.

5a. Long-time Egorov theorem. We fix c such that cχη < 1
2 . The positive quantization Op+h̄ procedure

described in Appendix A satisfies the following “long time Egorov property”:

‖U−τ h̄ Op+h̄ (a)U
τ h̄
−Op+h̄ (a ◦ gτ )‖L2(M)→L2(M) = Oa(h̄1/2−ν) for all |τ | ≤ c|log h̄|, (13)

where ν := cχη; see [Anantharaman and Nonnenmacher 2007].

Lemma 5.1. For every δ0 > 0, there exists h̄0 (depending on a, θ and δ0) such that for every h̄ < h̄0,∥∥∥∥∫ θ(t)U−t
(

Op+h̄ (a)−
1

2T

∫ T

−T
Op+h̄ (a ◦ gτ ) dτ

)
U t dt

∥∥∥∥
L2(M)→L2(M)

≤ δ0 for every |T | ≤ c|log h̄|.

Proof. The proof of this lemma relies on the application of the Egorov property (13). For T a real number
such that |T | ≤ c|log h̄|, we have∫
θ(t)U−t

( 1
2T

∫ T

−T
Op+h̄ (a ◦ gτ ) dτ

)
U t dt = 1

2T

∫ T

−T

∫
θ(t)U−t−τ h̄ Op+h̄ (a)U

t+τ h̄dtdτ +Oa(h̄1/2−ν).

We make the change of variables t ′= t+τ h̄ and use the fact that ‖θ( ·)−θ( · −τ))‖L1 −→
τ→0

0 to conclude.

�

5b. Bienaymé–Chebyshev and Jensen’s inequality. For simplicity of notation, we will denote the quan-
tity we want to bound as follows:

Ph̄(θ ⊗ a, δ) := Ph̄({ω ∈�h̄ : µh̄,ω(θ ⊗ a)≥ δ}).

The first step is to combine the previous lemma with the Bienaymé-Chebyshev inequality to obtain a
bound on Ph̄(θ ⊗ a, δ).

gaussian being the second derivative of the rate function at its minimum. Formally, one makes a Taylor expansion of order 2 of
the LDP near the minimum of the rate function to derive a gaussian behavior. However, the implementation of this idea requires
a very precise and strong version of the LDP, and in practice one prefers to prove the CLT independently.
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Lemma 5.2. Let δ, δ0 > 0 be arbitrary positive numbers. For s ∈ R, let

as(T (h̄), ρ) := exp
(

s
∫ T (h̄)

−T (h̄)
a ◦ gτ (ρ) dτ

)
,

where T (h̄)= c|log h̄| (and c is such that cχη < 1/2). Then, given s > 0 and for h̄ small enough, one has

Ph̄(θ ⊗ a, δ)≤ 2e(−2δ+4δ0)sT (h̄)

N (I (h̄))
Tr[1I (h̄)(−h̄21)Op+h̄ (as(T (h̄), · ))]. (14)

Proof. Let s > 0. A direct application of the Bienaymé–Chebyshev inequality allows us to write

Ph̄(θ ⊗ a, δ) := Ph̄({ω ∈�h̄ : µh̄,ω(θ ⊗ a)≥ δ})≤ e−2sδT (h̄)
∫
�h̄

exp(2sT (h̄)µh̄,ω(θ ⊗ a)) dPh̄(ω).

We can now use Lemma 5.1 and deduce that, for h̄ small enough,

Ph̄(θ ⊗ a, δ)≤ e−2sδT (h̄)
∫
�h̄

exp
(

sµh̄,ω

(
θ ⊗

(∫ T (h̄)

−T (h̄)
a ◦ gτ dτ

))
+ 2sδ0T (h̄)‖u h̄(ω)‖

2
)

dPh̄(ω).

Using the fact that ‖u h̄(ω)‖ = 1+o(1) uniformly for ω in �h̄ , the quantity e2sδ0T (h̄)‖u h̄(ω)‖
2

is uniformly
bounded by e3sδ0T (h̄) for h̄ small enough. The map x 7→ esx is convex and we can use Jensen’s inequality
to write

Ph̄(θ ⊗ a, δ)≤ es(−2δ+3δ0)T (h̄)
∫
�h̄

µh̄,ω

(
exp

(
sµh̄,ω(θ ⊗ 1)

(∫ T (h̄)

−T (h̄)
a ◦ gτ dτ

))
⊗ θ

) dPh̄(ω)

µh̄,ω(θ ⊗ 1)
.

Using again that ‖u h̄(ω)‖ = 1+o(1) uniformly for ω in �h̄ and that θ is nonnegative and
∫
θ(t) dt = 1,

one has

µh̄,ω(θ ⊗ 1)= 1+ o(1),

uniformly in ω for h̄ small enough. All this can be summarized as follows:

Ph̄(θ ⊗ a, δ)≤ 2es(−2δ+4δ0)T (h̄)
∫
�h̄

µh̄,ω (θ ⊗ as(T (h̄), · )) dPh̄(ω).

Note that the function as(T (h̄), · ) belongs to the class of symbols S0,k0
ν (T ∗M), where ν := cχη < 1/2

and k0 := 2cs‖a‖∞ (Appendix A); moreover as(T (h̄), · ) is constant in a neighborhood of infinity. The
previous inequality can be rewritten as

Ph̄(θ ⊗ a, δ)≤ 2e(−2δ+4δ0)sT (h̄)
∫
θ(t)

∫
�h̄

〈u h̄(ω)|U−t Op+h̄ (as(T (h̄), · ))U t
|u h̄(ω)〉 dPh̄(ω) dt.

We recall that if (u h̄(ω))ω∈(�h̄ ,Ph̄) is a GOF then for every t in R, (U t u h̄(ω))ω∈(�h̄ ,Ph̄) is also a GOF
Using point 3 of the definition of a GOF, we get for h̄ small enough the bound

Ph̄(θ ⊗ a, δ)≤ 2e(−2δ+4δ0)sT (h̄)

N (I (h̄))
Tr[1I (h̄)(−h̄21)Op+h̄ (as(T (h̄), · ))]. �
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5c. Trace asymptotics. We now have to estimate (from above) the trace

Tr[1I (h̄)(−h̄21)Op+h̄ (as(T (h̄), · ))]. (15)

We first underline that, for every h̄ > 0, there exist energy levels E1 < · · ·< EP (depending on h̄) such
that

I (h̄)= [a(h̄), b(h̄)] ⊂
P⊔

p=1

[E p −αh̄, E p +αh̄)⊂ [a(h̄)−αh̄, b(h̄)+αh̄],

for some fixed positive α. Note that P = O((b(h̄)− a(h̄))/h̄). We decompose (15) into

P∑
p=1

Tr[1[E p−αh̄,E p+αh̄)(−h̄21)Op+h̄ (as(T (h̄), · ))].

We shall bound each term of the previous sum (uniformly with respect to p), using standard trace esti-
mates, and then sum over p. We consider for instance the interval [1− αh̄, 1+ αh̄), and recall how to
determine the asymptotic behavior of

Tr[1[1−αh̄,1+αh̄)(−h̄21)Op+h̄ (as(T (h̄), · ))].

Introduce a function f that is C∞, compactly supported in a small neighborhood of 1, equal to 1 in a
neighborhood of 1 and taking values in [0, 1]. We shall also use a function χ in S(Rd) whose Fourier
transform is compactly supported in a small neighborhood of 0, containing no period of the closed
geodesics of (gτ ) on S∗M . We assume that χ ≥ 0 and that it is greater than 1 on [−α, α]. Using the fact
that the quantization is positive, we can bound the previous quantity as

Tr[1[1−αh̄,1+αh̄)(−h̄21)Op+h̄ (as(T (h̄), · ))] ≤ Tr
[

f (−h̄21)χ
(
−h̄21−1

h̄

)
Op+h̄ (as(T (h̄), · ))

]
. (16)

The study of this last quantity now follows well-known lines. We use the Fourier inversion formula,

2πχ
(E−1

h̄

)
=

∫
R

eı(E−1)τ/h̄χ̂(τ ) dτ.

As a consequence, the right hand side of (16) can be written as

1
2π

∫
R

e−ıτ/h̄ Tr(Op+h̄ (as(T (h̄), · ))U 2τ h̄ f (−h̄21))χ̂(τ ) dτ.

The asymptotic behavior of the trace comes from an asymptotic expansion of the kernel of the operator
Op+h̄ (as(T (h̄), · ))U 2τ h̄ f (−h̄21). This expansion is given by the theory of Fourier integral operators
[Dimassi and Sjöstrand 1999, Chapter 11; Zworski 2012, Chapter 10]. The trace is then expressed as the
integral of the kernel over the diagonal, and the asymptotic behavior of this integral is determined by the
method of stationary phase [Dimassi and Sjöstrand 1999, Chapter11].
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Lemma 5.3. For every integer N ≥ 1, we have

Tr
[

f (−h̄21)χ
(
−h̄21−1

h̄

)
Op+h̄ (as(T (h̄), · ))

]
=

1
(2π h̄)d−1

(N−1∑
n=0

h̄n
∫

S∗M
D2nas(T (h̄), ρ) d L(ρ)+Oa,χ,θ,N (h̄N (1−2ν)−βν−k0)

)
,

where β > 0 depends only on the dimension of M , and where D2n is a differential operator of order 2n
on T ∗M (depending on the cutoff functions and on the choice of the quantization Op+h̄ ).

There are many references for these kind of estimates. For instance, a very similar calculation is done
by Schubert [2006, Proposition 1] (he stops at N = 1 but the stationary phase method actually provides
asymptotic expansions at any order).

Recall that ν = cχη < 1
2 . It is important here to note that as(T (h̄), ·) belongs to the class S0,k0

ν (T ∗M),
and that the observable as(T (h̄), x, ξ) satisfies the particular property that D2nas(T (h̄), ρ) is of the form
as(T (h̄), x, ξ)b2n(x, ξ), with ‖b2n‖∞ = O(|s|2n h̄−2nν) as h̄ → 0 and s →∞. If s stays in a bounded
interval, and if we choose N large enough accordingly, this implies that

Tr
[

f (−h̄21)χ
(
−h̄21−1

h̄

)
Op+h̄ (as(T (h̄), · ))

]
≤

1
(2π h̄)d−1

(∫
S∗M

as(T (h̄), ρ) d L(ρ)
)
(1+O(h̄1−2ν)).

Combing this with Lemma 5.2 and using the Weyl law (4), we finally have, for every N ≥ 1 and h̄
small enough,

Ph̄(θ ⊗ a, δ)≤ Ce(−2δ+4δ0)sT (h̄)
(∫

S∗M
as(T (h̄), ρ) d L(ρ)

)
(1+O(h̄1−2ν)), (17)

for some constant C that does not depend on h̄.

5d. A large deviations bound. To conclude, we use Kifer’s large deviations result (12). For our proof,
we only need an upper bound on the quantity∫

S∗M
exp

(
s
∫ T

−T
a ◦ gτ (ρ) dτ

)
d L(ρ).

Compared with (12), there is a parameter s in the exponential that stays in a bounded interval I . Following
the proof of the upper bound (12) in [Kifer 1992, Section 3], one can say that for every δ′ > 0 and any
bounded interval I in R+, there exists cδ′ > 0 and n(δ′, I )∈N such that for every T ≥ n(δ′, I ) and every
s in I , ∫

S∗M
exp

(
s
∫ T

−T
a ◦ gτ (ρ) dτ

)
d L(ρ)≤ cδ′eT δ′e2T P(sa+ϕu). (18)

This last bound will allow us to conclude. In fact, combining this inequality to the bound (17) on
Ph̄(θ ⊗ a, δ), we find that

Ph̄(θ ⊗ a, δ)≤ Ce(−2δ+4δ0)sT (h̄)eT (h̄)δ′e2T (h̄)P(sa+ϕu),
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where the constant C depends on the various parameters but not on h̄. This implies

lim sup
h̄→0

log
(
Ph̄(θ ⊗ a, δ)

)
c|log h̄|

≤ δ′+ (−2δ+ 4δ0)s+ 2P(sa+ϕu).

This last inequality holds for any δ0 > 0 and any δ′ > 0. It implies that for every s > 0 in the interval I ,

lim sup
h̄→0

log
(
Ph̄(θ ⊗ a, δ)

)
c|log h̄|

≤ −2sδ+ 2P(sa+ϕu) for all c ∈
(

0, 1
2χmax

)
.

In particular, we find that

lim sup
h̄→0

log(Ph̄(θ ⊗ a, δ))
|log h̄|/(2χmax)

≤ 2 inf
s∈R+

{
−sδ+ P

(
sa+ϕu)} for all δ ∈ R.

Since δ > 0, we have infs∈R+ {−sδ+ P (sa+ϕu)} = infs∈R{−sδ + P (sa+ϕu)}. This concludes the
proof of Theorem 2.2.

6. Proof of Theorem 2.4

In this section, we assume that M has constant sectional curvature −1, and we fix two energy levels
0≤ E1 < E2 and consider a sequence (u h̄)h̄→0+ in L2(M) that satisfies

lim
h̄→0
‖(IdL2(M)−1[E1,E2](−h̄21))u h̄‖L2(M) = 0.

Moreover, we suppose that ‖u h̄‖L2(M) = 1. The proof follows essentially the same lines as the one in
[Anantharaman and Nonnenmacher 2007], and we refer the reader to that paper for a detailed account.

6a. Quantum partitions. As usual when computing the Kolmogorov–Sinai entropy, we start by decom-
posing the manifold M into finitely many pieces (of small diameter). Let (Pk)k=1,...,K be a family of
smooth real functions on M such that

K∑
k=1

P2
k (x)= 1 for all x ∈ M. (19)

Later on we will assume that the diameters of the supports of the Pk are small enough. We shall denote
by P̂k the operator of multiplication by Pk(x) on the Hilbert space L2(M). We denote the Schrödinger
flow by U t

= exp(ı t1/2). With no loss of generality, we will assume that the injectivity radius of M is
greater than 2, and work with this propagator at time h̄, that is, U h̄ . This unitary operator is a Fourier
integral operator associated with the geodesic flow g1 taken at time τ = 1. As one does to compute
the Kolmogorov–Sinai entropy of an invariant measure, we define a new quantum partition of unity by
evolving and refining the initial partition under the quantum evolution. For each time n ∈ N and any
sequence of symbols α = (α0, . . . , αn−1), where αi ∈ [1, K ] (we say that the sequence α is of length
|α| = n), we define the operators

πα = P̂αn−1(n− 1)P̂αn−2(n− 2) · · · P̂α0 . (20)
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Throughout the paper we use the notation Â(τ )=U−τ h̄ ÂU τ h̄ for the quantum evolution of an operator
Â. From (19) and the unitarity of U t , the family of operators {πα : |α| = n} obviously satisfies the
resolution of identity

∑
|α|=n παπ

∗
α = IdL2(M). We also have

∑
|α|=n π

∗
απα = IdL2(M).

6b. Quantum entropy, and entropic uncertainty principle. For each time n and each normalized φ in
L2(M), we define two quantities that are noncommutative analogues of the entropy (9):

h−n (φ)=−
∑
|α|=n

‖π∗αφ‖
2 log(‖π∗αφ‖

2), (21)

h+n (φ)=−
∑
|α|=n

‖παφ‖
2 log(‖παφ‖2). (22)

In all that follows, the integer n is of order c̃|log h̄| (with c̃ > 0 to be chosen later), and thus the number
of terms in the sum

∑
|α|=n is of order h̄−K0 for some K0> 0. The following is proved in [Anantharaman

and Nonnenmacher 2007], using the entropic uncertainty principle of [Maassen and Uffink 1988].

Proposition 6.1. Let χ be real-valued, smooth, compactly supported function on R. Define

c(χ, n) := max
|α|=|α′|=n

(‖πα′(n)πα χ(−h̄21)‖). (23)

Then for any h̄ > 0 and L > 0, and for any normalized state φ satisfying

sup
|α|=n
‖(I −χ(−h̄21))π∗αφ‖ ≤ h̄L , (24)

we have
h+n (U

nh̄φ)+ h−n (φ)≥−2 log(c(χ, n)+ hL−K0).

Finally everything boils down to the main estimate:

Theorem 6.2 [Anantharaman 2008; 2011; Anantharaman and Nonnenmacher 2007]. If the diameters of
the supports of the functions Pk are small enough (compared with the injectivity radius), the following
holds.

For E > 0 and 0 < ε < E , choose χ smooth, compactly supported in [E − ε, E + ε], and such that
‖χ‖∞ ≤ 1. For any c̃> 0, there exists h̄ c̃ > 0 such that, for all h̄ < h̄ c̃, for n ≤ c̃| log h̄|, and for any pair
α, α′ of sequences of length n,

‖πα′(n)πα χ(−h̄21)‖ ≤ Ch̄−(d−1)/2 e−n(d−1)
√

E−ε. (25)

(The constant C is an absolute constant).

Remark 8. This result is an improvement of the estimate of [Anantharaman 2008] (where the prefactor
was only h̄−d/2) and [Anantharaman and Nonnenmacher 2007] (where the support of χ was assumed
to shrink with h̄). Proving Theorem 2.4 using the weaker results of these papers turned out to be more
painful than reproving Theorem 6.2 directly. This proof is provided in [Anantharaman 2011, Section 5].
Unfortunately, the arguments of there are specific to constant curvature, although we believe the result
should also hold in variable negative curvature (parts of the proof rely on the fact that the stable and
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unstable foliations of the geodesic flow are smooth). Thus, if we wanted to extend Theorem 2.4 so as
to get the results claimed in Remark 2, we would have to use the hyperbolic dispersive estimate in the
form used in [Anantharaman and Nonnenmacher 2007], which would need a rather different, and more
technical, presentation.

In what follows, the integer n will always be taken equal to bc̃|log h̄|c, where c̃ will be fixed in
the next section. We assume that L is large enough so that h̄L−K0 is negligible in comparison with
h̄−(d−1)/2 e−n(d−1)

√
E−ε. As a corollary of Theorem 6.2 and Proposition 6.1, we have this:

Corollary 6.3. Let (φh̄)h̄→0 be a sequence of normalized states satisfying the assumptions of 6.1, with
L large enough that h̄L−K0 is negligible in comparison with h̄−(d−1)/2 e−n(d−1)

√
E−ε for n = bc̃|log h̄|c.

Then, in the semiclassical limit, the entropies of φh̄ at time n = bc̃|log h̄|c satisfy

h+n (U
nh̄φh̄)+ h−n (φh̄)

2n
≥ (d − 1)

√
E − ε−

(d − 1)
2c̃

+O(n−1). (26)

6c. Subadditivity until the Ehrenfest time. In this section, we fix a sequence of normalized states
(φh̄)h̄→0 satisfying (24) (χ is always assumed to be supported in [E − ε, E + ε]). We fix some arbitrary
δ > 0, and introduce the Ehrenfest time,

nEhr(h̄, E, ε) :=
⌊
(1− δ)|log h̄|
√

E + ε

⌋
. (27)

Remark 9. The Ehrenfest time is the largest time on which the (noncommutative) dynamical system
formed by the flow (U τ h̄) acting on pseudodifferential operators (supported in {‖ξ‖2 ∈ [E − ε, E + ε]})
is commutative, up to small errors going to 0 with h̄.

We take n = nEhr(h̄, E, ε) (in other words, we take c̃ = (1− δ)/
√

E + ε), and we use a subadditivity
property of the entropies h+n and h−n to go from (26) for n = nEhr(h̄, E, ε) to a fixed, arbitrary, integer
n0. The proof of the next proposition is given in [Anantharaman and Nonnenmacher 2007] in the case
when φh̄ is an eigenfunction of 1. It can easily be adapted to the case of an arbitrary φh̄ and yields this:

Proposition 6.4 (subadditivity). Let E ≥ 0 and ε > 0. For δ > 0 arbitrary, define the Ehrenfest time
nEhr(h̄, E, ε) as in (27). Let (φh̄)h̄→0 be a normalized family satisfying (24), where χ is supported in
[E − ε, E + ε], and L is chosen large enough.

For any n0 ∈N, there exists a positive Rn0(h̄), with Rn0(h̄)→ 0 as h̄→ 0, such that for any h̄ ∈ (0, 1]
and any n0,m ∈ N with n0+m ≤ nEhr(h̄), we have

h+n0+m(φh̄)≤ h+m(φh̄)+ h+n0
(U mh̄φh̄)+ Rn0(h̄),

h−n0+m(φh̄)≤ h−n0
(φh̄)+ h−m(U

n0h̄φh̄)+ Rn0(h̄).

Let n0 ∈ N be fixed and n = nEhr(h̄, E, ε). Using the Euclidean division n = qn0 + r , with r < n0,
Proposition 6.4 implies that for h̄ small enough,

h+n (φh̄)

n
≤

∑q−1
k=0 h+n0

(U kn0h̄φh̄)

qn0
+

h+r (U
qn0h̄φh̄)

n
+

Rn0(h̄)
n0
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and

h−n (φh̄)

n
≤

∑q−1
k=0 h−n0

(U (r+kn0)h̄φh̄)

qn0
+

h−r (U
r h̄φh̄)

n
+

Rn0(h̄)
n0

.

Note that h+r (U
qn0h̄φh̄)+ h−r (U

r h̄φh̄) stays uniformly bounded (by log n0) when h̄→ 0. Combining the
subadditivity property with Corollary 6.3, we find that∑q−1

k=0(h
+
n0
(U kn0h̄U nh̄φh̄)+ h−n0

(U (r+kn0)h̄φh̄))

2qn0

≥ (d − 1)
√

E − ε−
(d − 1)

√
E + ε

2(1− δ)
−

Rn0(h̄)
n0
+On0(1/n) (28)

for n = nEhr(h̄, E, ε).

6d. The conclusion. The interval [E1, E2] is fixed. Consider E in [E1, E2] and a sequence of normal-
ized states (u h̄)h̄→0 that satisfies (7). We may assume without loss of generality that 1[E1,E2](−h̄21)u h̄ =

u h̄ (since the semiclassical limits associated with u h̄ and 1[E1,E2](−h̄21)u h̄ will be the same). We fix a
function χ ∈ C∞o (R), supported in [−1, 1] such that

∑
k∈Z χ

2(x − k)≡ 1. For N ∈ N, we write

ε =
E2− E1

N
and χ j (x)= χ

( x − E1− jε
ε

)
for j = 0, . . . , N .

We have u h̄ =
∑N

j=0 χ
2
j (−h̄21)u h̄ and thus ‖u h̄‖

2
=
∑N

j=0‖χ j (−h̄21)u h̄‖
2. We will write u j =

χ j (−h̄21)u h̄ and ũ j = u j/‖u j‖. For t ∈ R, we apply (28) to φh̄ =U t ũ j and obtain∑q−1
k=0

(
h+n0
(U kn0h̄U nh̄U t ũ j )+ h−n0

(U (r+kn0)h̄U t ũ j )
)

2qn0

≥ (d − 1)
√

E1+ ( j − 1)ε−
(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε−

Rn0(h̄)
n0
+On0(1/|log h̄|). (29)

If we multiply by θ(t) (satisfying θ ∈ L1(R,R+) and
∫
θ = 1), integrate with respect to t , and take into

account the fact that (kn0+ r)h̄→ 0 and nh̄→ 0, we find that∫
θ(t)

h+n0
(U t ũ j )+ h−n0

(U t ũ j )

2n0
dt ≥ (d−1)

√
E1+ ( j − 1)ε−

(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε+on0(1). (30)

This yields that

N∑
j=0

‖u j‖
2
∫
θ(t)

h+n0
(U t ũ j )+ h−n0

(U t ũ j )

2n0
dt

≥

N∑
j=0

‖u j‖
2
[
(d − 1)

√
E1+ ( j − 1)ε−

(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε

]
+ on0(1). (31)
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We define the averaged entropy

h−n (φ, θ)=−
∑
|α|=n

(∫
θ(t)‖π∗αU tφ‖2dt

)
log
(∫

θ(t)‖π∗αU tφ‖2dt
)
, (32)

h+n (φ, θ)=−
∑
|α|=n

(∫
θ(t)‖παU tφ‖2dt

)
log
(∫

θ(t)‖παU tφ‖2dt
)
. (33)

Using the concavity of x 7→ −x log x , (31) implies

N∑
j=0

‖u j‖
2 h+n0

(ũ j , θ)+ h−n0
(ũ j , θ)

2n0

≥

N∑
j=0

‖u j‖
2
[
(d − 1)

√
E1+ ( j − 1)ε−

(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε

]
+ on0(1). (34)

We can now take the limit h̄ → 0. If the semiclassical measure associated with the family (U t u h̄)

decomposes as µt =
∫
µt,E dν(E), then ‖u j‖

2 converges to
∫
χ2

j (E) dν(E). On the left side of (34),
h+n0
(ũ j , θ) and h−n0

(ũ j , θ) both converge to

∑
|α|=n0

η

(
1∫

χ2
j (E) dν(E)

∫
θ(t)χ2

j (E)µt,E((P2
αn−1
◦ gn−1) · · · (P2

α1
◦ g1)P2

α0
) dν(E) dt

)
,

where η(x)=−x log x .
Then, we let n0→+∞, which allows to go from the previous quantity to the Kolmogorov–Sinai en-

tropy hKS; for this step, details can be found in [Anantharaman and Nonnenmacher 2007, Section 2.2.8].
This gives us the inequality

N∑
j=0

∫
χ2

j (E) dν(E)hKS

(
1∫

χ2
j (E) dν(E)

∫
θ(t)χ2

j (E)µt,E dν(E) dt
)

≥

N∑
j=0

[
(d − 1)

√
E1+ ( j − 1)ε−

(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε

] ∫
χ2

j (E) dν(E). (35)

At this stage, we use the fact that hKS is affine and derive that∫
θ(t)

(
hKS

(
µt,E

)
−

N∑
j=0

χ2
j (E)

[
(d − 1)

√
E1+ ( j − 1)ε−

(d − 1)
2(1− δ)

√
E1+ ( j + 1)ε

])
dν(E) dt ≥ 0.

Finally, we can take the limit N →+∞, to obtain∫
θ(t)

(
hKS

(
µt,E

)
−

d−1
2

√
E
)

dν(E) dt ≥ 0.
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If we use the same argument, replacing u h̄ by f (−h̄21)u h̄ (where f is a smooth function on [E1, E2]

such that
∫

f 2(E) dν(E)= 1), we obtain by the same argument∫
θ(t) f 2(E)

(
hKS(µt,E)−

d−1
2

√
E
)

dν(E) dt ≥ 0;

this holds for all θ in L1(R,R+) such that
∫
θ = 1 and f in C∞o (R+,R) such that

∫
f 2(E) dν(E) = 1.

As a consequence, one has for Leb⊗ν-almost every (t, E),

hKS(µt,E)≥
d−1

2

√
E . �

Remark 10. If one wants to consider the microlocal setting (see Remark 4) where one uses Op1 instead
of Oph̄ , one introduces a partition of unity based on the Paley–Littlewood decomposition. For a fixed
ε > 0, arbitrarily small, one introduces a smooth function ψε on R+ satisfying ψε(E)= 1 for 0≤ E ≤ 2−ε

and ψε(E)= 0 for E ≥ 1. Then, one can define ϕε(E)= ψε(E/2ε)−ψε(E) and verify that

1= ψε(E)+
∑
j≥0

ϕε(2− jεE).

We stress that for every j ≥ 0, the cutoff function ϕε(2− jεE) is compactly supported in [2ε( j−1), 2ε( j+1)
].

On the energy window E ∈ [2ε( j−1), 2ε( j+1)
], one can adapt the proof above, doing the change of vari-

able ξ  2−ε jξ , and using the relation Op1(a(x, 2−ε jξ)) = Op2−ε j (a(x, ξ)). One then copies the steps
of Section 6, using h̄ j = 2−ε j as the effective Planck constant, and taking χ j (E) = ϕ

1/2
ε (2− jεE) in

Section 6d.

7. From entropy estimates to observability

In this section, we explain how we can go from the entropy estimates of Theorem 2.4 to the observ-
ability estimate of Theorem 2.5. According to Lebeau [1992], it suffices to prove the following weak
observability result to deduce Theorem 2.5:

Theorem 7.1. Under the assumptions of Theorem 2.5, for all T > 0, there exists CT,a > 0 such that

‖u‖2L2(M) ≤ CT,a

(∫ T

0
‖aeı t1/2u‖2L2(M) dt +‖u‖2H−1(M)

)
for all u in L2(M). (36)

For the sake of completeness, we briefly recall the argument of Lebeau to deduce observability from a
weak observability estimate at time T . First, for T ′ > T , we introduce the subspace

N (T ′) := {ϕ ∈ L2(M) : a(x)(eı t1ϕ)(x)= 0 for all 0≤ t ≤ T ′}.

From weak observability and the compactness of the injection L2
⊂ H−1, we can deduce that for T ′> T ,

this subspace is finite-dimensional. One can also verify that1ϕ belongs to N (T ′′) for every T < T ′′< T ′

and every ϕ in N (T ′) (by taking the limit of the sequence (eıε1ϕ−ϕ)/ε, which belongs to N (T ′′) for ε
small enough, and is bounded in H−2(M)).

This implies that 1 is an operator from the finite-dimensional subspace N (T ′) into itself. As a is
nontrivial, one can deduce the existence of an eigenfunction of the Laplacian that is equal to 0 on a
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nonempty open set. By the Aronszajn–Cordes theorem [Hörmander 1985, Section 17.2], this eigenfunc-
tion is necessarily 0 and the subspace N (T ′) is reduced to {0}. By contradiction, we can finally deduce
that observability holds for T ′ > T .

To prove Theorem 7.1, we proceed by contradiction and make the assumption that there exists a
sequence of normalized vectors (un)n∈N in L2(M) and T > 0 such that

lim
n→+∞

(∫ T

0
‖aeı t1/2un‖

2
L2(M) dt +‖un‖

2
H−1(M)

)
= 0. (37)

This implies that un converges to 0, weakly in L2. For every t in R, we introduce the “distribution”

µn(t)(b) := 〈un | e−ı t1/2 Op1(b)e
ı t1/2un〉L2(M),

defined for all b ∈ S0. The map t 7→ µn(t) belongs to L∞(R,S′0). Thus, there exists a subsequence
(unk )k and µ in L∞(R,S′0) such that∫

R×T̂ ∗M
θ(t)b(x, ξ)µnk (t)(dx, dξ) dt −→

k→+∞

∫
R×T̂ ∗M

θ(t)b(x, ξ)µ(t)(dx, dξ) dt

for all θ ∈ L1(R) and b ∈ S0. As un converges weakly to 0, each µ(t) is actually supported at infinity,
and may thus be identified with a probability measure on the unit sphere bundle S∗M , invariant under
the geodesic flow (see Remark 4).

From Theorem 2.4 and Remark 4, we know that hKS(µ(t)) ≥ 1
2(d − 1) for almost every t in R. We

will now use the fact that the topological entropy of Ka is less than 1
2(d − 1), that is,

htop(Ka, (gτ )) := sup
µ∈M(S∗M,gτ )

{hKS(µ) : µ(Ka)= 1}< 1
2(d − 1).

Using property (37), we know that
∫

S∗M×[0,T ] a
2(x, ξ)µ(t)(dx, dξ) dt = 0. In particular, this implies

that µ(t)(S∗M\Ka)= 0 for almost every t in [0, T ] (as µ(t) is gτ -invariant), leading to a contradiction.
�

Appendix A. Pseudodifferential calculus on a manifold

In this section, we recall some facts of pseudodifferential calculus; details can be found in [Zworski
2012]. We define on R2d the following class of (semiclassical) symbols:

Sm,k(R2d) := {a = ah̄ ∈ C∞(R2d) : |∂αx ∂
β
ξ a| ≤ Cα,β h̄−k

〈ξ〉m−|β|

for all K ⊂ Rd compact, α, β, some Cα,β, and all (x, ξ) ∈ K ×Rd
}.

Let M be a smooth compact Riemannian d-manifold without boundary. Consider a finite smooth atlas
( fl, Vl) of M , where each fl is a smooth diffeomorphism from the open subset Vl ⊂ M to a bounded
open set Wl ⊂ Rd . To each fl corresponds a pull-back f ∗l : C

∞(Wl)→ C∞(Vl) and a canonical map f̃l

from T ∗Vl to T ∗Wl :
f̃l : (x, ξ) 7→ ( fl(x), (D fl(x)−1)T ξ).
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Consider now a smooth locally finite partition of identity (φl) adapted to the previous atlas ( fl, Vl).
That means

∑
l φl = 1 and φl ∈ C∞o (Vl). Then, any observable a in C∞(T ∗M) can be decomposed

as a =
∑

l al , where al = aφl . Each al belongs to C∞(T ∗Vl) and can be pushed to a function ãl =

( f̃ −1
l )∗al ∈ C∞(T ∗Wl). As in [Zworski 2012], define a class of symbols of order m and index k by

Sm,k(T ∗M) := {a = ah̄ ∈ C∞(T ∗M) : |∂αx ∂
β
ξ a| ≤ Cα,β h̄−k

〈ξ〉m−|β| for all α, β and some Cα,β}. (38)

Then, for a ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol ãl ∈ Sm,k(R2d) the standard
Weyl quantization:

Opwh̄ (ãl)u(x) :=
1

(2π h̄)d

∫
R2d

e(ı/h̄)〈x−y,ξ〉ãl

( x + y
2

, ξ ; h̄
)

u(y) dy dξ,

where u ∈ C∞o (R
d). Consider now a smooth cutoff ψl ∈ C∞c (Vl) such that ψl = 1 close to the support

of φl . A quantization of a ∈ Sm,k(T ∗M) is then defined by

Oph̄(a)(u) :=
∑

l

ψl × ( f ∗l Opwh̄ (ãl)( f −1
l )∗)(ψl × u), (39)

where u ∈C∞(M). According to the appendix of [Zworski 2012], the quantization procedure Oph̄ sends
Sm,k(T ∗M) onto the space of pseudodifferential operators of order m and of index k, denoted 9m,k(M).
It can be shown that the dependence in the cutoffs φl and ψl only appears at order 2 in h̄ and the principal
symbol map σ0 :9

m,k(M)→ Sm,k/Sm,k−1(T ∗M) is then intrinsically defined.
At various places in this paper, a larger class of symbols should be considered, as in [Dimassi and

Sjöstrand 1999] or [Zworski 2012]. For 0≤ ν < 1/2,

Sm,k
ν (T ∗M)= {a = ah̄ ∈ C∞(T ∗M) : |∂αx ∂

β
ξ a| ≤ Cα,β h̄−k−ν|α+β|

〈ξ〉m−|β| for all α, β and some Cα,β}.

Results of [Dimassi and Sjöstrand 1999] can be applied to this new class of symbols. For example, if M
is compact, a symbol of S0,0

ν gives a bounded operator on L2(M) (with norm independent of h̄ ≤ 1).
Even if the Weyl procedure is a natural choice to quantize an observable a on R2d , it is sometimes

preferable to use a quantization that also satisfies the property that Oph̄(a)≥0 if a≥0 (such a quantization
procedure is said to be positive). This can be achieved using to the anti-Wick procedure; see [Helffer
et al. 1987]. For a in S0,0

ν (R2d) that coincides with a function on Rd outside a compact subset of T ∗Rd ,
one has

‖Opwh̄ (a)−OpAW
h̄ (a)‖L2 ≤ C

∑
|α|≤D

h̄(|α|+1)/2
‖∂αa‖∞, (40)

where C and D are some positive constants that depend only on the dimension d . To get a positive
procedure of quantization on a manifold, one replaces in definition (39) the Weyl quantization by the
anti-Wick one. We will denote by Op+h̄ (a) this new choice of quantization, which is well defined for
every element in S0,0

ν (T ∗M) of the form b(x)+ c(x, ξ), where b belongs to S0,0
ν (T ∗M) and c belongs

to C∞o (T
∗M)∩ S0,0

ν (T ∗M). We underline the fact that Op+h̄ (1)= IdL2(M).
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