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A BILINEAR OSCILLATORY INTEGRAL ESTIMATE AND BILINEAR
REFINEMENTS TO STRICHARTZ ESTIMATES ON CLOSED MANIFOLDS

ZAHER HANI

We prove a bilinear L2(Rd)× L2(Rd)→ L2(Rd+1) estimate for a pair of oscillatory integral operators
with different asymptotic parameters and phase functions satisfying a transversality condition. This is
then used to prove a bilinear refinement to Strichartz estimates on closed manifolds, similar to that derived
by Bourgain on Rd , but at a relevant semiclassical scale. These estimates will be employed elsewhere to
prove global well-posedness below H 1 for the cubic nonlinear Schrödinger equation on closed surfaces.

1. Introduction

We consider oscillatory integrals defined by

Tλ f (t, x)=
∫

Rd
eiλφ(t,x,ξ)a(t, x, ξ) f (ξ) dξ, (1-1)

where t ∈ R, x, ξ ∈ Rd , a ∈ C∞0 (R×Rd
×Rd). The phase function φ is a real-valued smooth function

on the support of a. We shall assume that it satisfies a usual nondegeneracy condition, namely that the
(d + 1)× d matrix

∂2φ

∂ξ ∂(x, t)
(t0, x0, ξ0) has maximal rank d for every (t0, x0, ξ0) ∈ supp a. (1-2)

This implies that for each fixed (t0, x0) ∈ Rd+1, the map given by

ξ 7→ ∇(t,x)φ(t0, x0, ξ)

defines a smooth immersion from Rd into Rd+1. The image of this map is a hypersurface which we
denote by Sφ(t0, x0), or just Sφ when no confusion arises. Our objective is to prove bilinear estimates for
such operators and use them to get bilinear refinements to Strichartz estimates on compact manifolds
without boundary.

Operators as in (1-1) can be thought of as variable coefficient generalizations of usual dual restriction
(extension) operators where φ(t, x, ξ)= x .ξ + tψ(ξ) and (1-1) becomes the dual of the operator given
by restricting the Fourier transform to the hypersurface Sφ = {(τ, ξ) ∈ Rd+1

: τ = ψ(ξ)}. As in the case
of restriction operators, one is interested in obtaining asymptotic decay estimates for ‖Tλ‖L p(Rd )→Lq (Rd+1)

in terms of λ. It is well known that in order to obtain nontrivial decay estimates (the optimal one being
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λ−(d+1)/q ), one has to impose some curvature condition on the hypersurfaces Sφ , namely that the Gaussian
curvature does not vanish anywhere. The pairs of exponents (p, q) for which this decay is possible were
specified by Hörmander [1973] when d = 1 and posed as a question for higher dimensions. Since then,
there has been a tremendous amount of research in proving such bounds. (See [Stein 1993] and references
therein for an introduction and [Tao 2004] for a more current survey).

We will be interested in bilinear versions of such estimates. In this case, one considers the product
Tλ f T̃µg, where T̃µg is an operator similar to (1-1):

T̃µg(t, x)=
∫

Rd
eiµψ(t,x,ξ)b(t, x, ξ)g(ξ) dξ, (1-3)

where b ∈ C∞0 (R×Rd
×Rd) and ψ is smooth on the support of b and satisfies the same nondegeneracy

assumption (1-2). The initial motivation behind such estimates was proving and refining the linear
estimates in the case when the exponent q is an even number. However, such an improvement is only
possible when the surfaces Sφ and Sψ satisfy a certain transversality assumption. This transversality turns
out to be more important than any curvature assumption in certain instances. To be precise, the type of
estimates one is often interested in are of the form

‖Tλ f T̃µg‖Lq (R×Rd ) .3(λ,µ)‖ f ‖L2(Rd )‖g‖L2(Rd ). (1-4)

(For us, the case when q = 2 and λ 6= µ will be of particular interest.) Great progress has been achieved
in proving estimates like (1-4) especially in the case λ = µ and when the surfaces Sφ and Sψ satisfy
some nonvanishing curvature assumption. In the constant coefficient (restriction) case, Wolff was able to
prove (1-4) in the cone restriction case for all q > 1+ 2/(d + 1) with 3(λ, λ). λ−(d+1)/q [Wolff 2001].
This estimate was later extended to the endpoint in [Tao 2001]. The same estimate was then proven for
transverse subsets of the paraboloid [Tao 2003]. In the variable coefficient case, Lee proved a similar
estimate when λ=µ, q > 1+2/(d+1), and 3(λ, λ). λ−(d+1)/q+ε under certain curvature assumptions
on the surfaces Sφ(t0, x0) and Sψ(t0, x0) [Lee 2006].

In this paper, we prove an L2 estimate when λ 6= µ and the only assumption we impose on the
hypersurfaces Sφ and Sψ is transversality. In particular, no curvature assumptions are taken.

Theorem 1.1. Suppose that Tλ and T̃µ are two oscillatory integral operators of the form given in (1-1)
with µ 6 λ and assume that the canonical hypersurfaces associated with the phase functions φ and ψ
satisfy the standard transversality condition (1-6), then

‖Tλ f T̃µg‖L2(R×Rd ) .
1

λd/2µ1/2 ‖ f ‖L2(Rd )‖g‖L2(Rd ). (1-5)

The implicit constants are allowed to depend on δ, d , and uniform bounds on a fixed number of derivatives
of φ,ψ, a, and b.

A couple of remarks are in order. First, we mention that (1-5) is sharp (see the remark at the end of
Section 2). Second, we note that without curvature assumptions on the surfaces, the linear estimate is
easily seen to fail (consider the restriction to hyperplanes). However, the L2 bilinear estimate is true as
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long as the surfaces are transverse.1 Even when the linear estimate is true (which requires as mentioned a
nonvanishing curvature assumption on the surfaces), (1-5) is an improvement on applying Hölder and the
linear estimates available especially in the case when µ� λ (for example, when d = 2 linear estimates
give the bound (λµ)−3/4). This improvement is often of great importance in applications (see [Bourgain
1999; 1998; Hani 2012]).

We now specify the transversality condition needed. The canonical hypersurfaces Sφ(t0, x0) and
Sψ(t0, x0), given by the maps ξ 7→ ∇(t,x)φ(t0, x0, ξ) and ξ 7→ ∇(t,x)ψ(t0, x0, ξ) respectively, live in the
cotangent space T ∗(t0,x0)

Rd+1 to Rd+1 at (t0, x0). The nondegeneracy condition defined in (1-2) for φ (and
defined similarly for ψ), implies that for every ξ0 ∈ suppξ a(t0, x0, · ), there exists a locally defined unit
normal vector field ν1(t0, x0, ξ0)= ν1(ξ0) to this surface at the point ∇(t,x)φ(t0, x0, ξ0) ∈ T ∗(t0,x0)

Rd+1. In
other words, the map

ξ 7→
〈
ν1(ξ0),∇(t,x)φ(t0, x0, ξ)

〉
has a critical point at ξ = ξ0 (in linear algebra terms, ν(ξ0) is the unit vector spanning the one dimensional
orthogonal complement of the image of the matrix appearing in (1-2)). Similarly, we define the associated
unit normal vector ν2(ξ0) to Sψ(t0, x0) at the point ∇(t,x)ψ(t0, x0, ξ0) satisfying

ξ 7→
〈
ν2(ξ0),∇(t,x)ψ(t0, x0, ξ)

〉
has a critical point at ξ = ξ0.

The transversality condition we impose on the phase functions φ and ψ is that the two surfaces
Sφ(t0, x0) with Sψ(t0, x0) are uniformly transverse for every (t0, x0): by which we mean that there exists
a δ > 0 such that for each (t0, x0, ξ1) ∈ supp a, (t0, x0, ξ2) ∈ supp b, we have∣∣〈ν1(ξ1), ν2(ξ2)〉

∣∣6 1− δ. (1-6)

This transversality condition is standard in all bilinear oscillatory integral estimates. We remark that there
is a slight difference between this definition of transversality and that used in most differential topology
textbooks in which the definition of transversality includes manifolds that do not intersect. Here we say
that two hypersurfaces are transverse if the intersection of all their translates is transverse in the sense of
differential topology.

Remark. The phase functions φ and ψ can depend on λ and µ as long as the quantitative estimates
needed in the proof (namely (1-6) and the derivative bounds mentioned in Equation (1-5)) are satisfied
uniformly in λ and µ on the support of a and b.

The proof of Theorem 1.1 is based on a T T ∗ argument and delicate analysis of a cumulative phase
function.

Bilinear Strichartz estimates. Our main application of the bilinear estimate in Theorem 1.1 is to derive
short-range or semiclassical bilinear Strichartz estimates for the Schrodinger equation on closed (compact

1This is well known in the constant coefficient case; see [Tao 2004].
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without boundary) d-manifolds Md . We will also be able to prove mixed bilinear estimates of Schrödinger-
wave type as well (see Section 4). Bilinear estimates are of great importance in PDE as they offer
refinements to linear Strichartz estimates. The latter are given on Rd with its Euclidean Laplacian by

‖ei t1u0‖Lq
t Lr

x (R×Rd ) . ‖u0‖L2(Rd ), (1-7)

where (q, r) is any Schrödinger admissible pair, i.e., 2 6 q, r 6∞, 2/q + d/r = d/2, and (q, r, d) 6=
(2,∞, 2). The implicit constants depend on (q, r, d). These estimates are of fundamental importance in
proving both local and global results for nonlinear Schrödinger equations. (See [Tao 2006; Keel and Tao
1998].)

In the case of compact manifolds, the first Strichartz estimates were proved by Bourgain [1993] in the
case of the torus. The case of general compact Riemannian manifolds (M, g) without boundary was dealt
with by Burq, Gerard, and Tzvetkov in [Burq et al. 2004] and [Staffilani and Tataru 2002]. In [Burq et al.
2004], the authors prove the estimates

‖ei t1g u0‖Lq
t Lr

x ([0,1]×M) .q,r,M ‖u0‖H1/q (M) (1-8)

for any admissible pair (q, r). The proof relies on a construction of an approximate parametrix to the
semiclassical operator eih1gϕ(h

√
−1g) (where ϕ is Schwartz) which is used to prove the semiclassical

linear Strichartz estimate

‖ei t1g u0‖Lq
t Lr

x ([0,α/N ]×M) .q,r,M ‖u0‖L2(M) (1-9)

whenever u0 is frequency (spectrally) localized at the dyadic scale N and α� 1. This estimate conforms
with the heuristic that Schrödinger evolution moves wavepackets localized at frequency ∼ N at speeds
∼ N , which means that in the time interval [0, α/N ], one expects the wave packet to remain in a coordinate
patch and hence satisfy the same estimates like those on Rd . This heuristic will be very useful in predicting
the right bilinear estimate later on as well. Notice that (1-8) follows directly from (1-9) by splitting the
time interval [0, 1] into N subintervals of lengths N−1 and using the conservation of mass and a square
function estimate (see [Burq et al. 2004]).

Turning to bilinear estimates, we will start by mentioning the relevant estimate on Rd for which we wish
to find an analogue on compact manifolds. This estimate first appeared as a refinement to linear Strichartz
estimates in [Bourgain 1998]: assuming that u0 is frequency localized at frequencies {ξ ∈ Rd

: |ξ | ∼ N1}

and v0 is frequency localized at frequencies {ξ ∈ Rd
: |ξ |. N2} with N2 6 N1, then

‖ei t1u0ei t1v0‖L2(R×Rd ) .d
N (d−1)/2

2

N 1/2
1

‖u‖L2(Rd )‖v‖L2(Rd ). (1-10)

We first notice that this estimate is an improvement on applying Hölder’s inequality and the linear Strichartz
estimates. In fact, applying the linear estimates only, one would get instead of the N (d−1)/2

2 /N 1/2
1 constant

on the left side of (1-10): 1 for d = 2 (here one uses the L2
x → L4

t,x Strichartz estimate) and N d/2−1
2 for

d > 3 (here one should use Hölder, the L2
x → L2(d+2)/d

t,x estimate for ei t1u0, and Bernstein combined
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with the

L2
x → Ld+2

t L
2d(d+2)

d(d+2)−4
x

estimate for ei t1v0). Bourgain used this improvement (when N2�N1) to prove, among other things, global
well-posedness below energy norm for certain mass (and Ḣ 1/2)-critical equations (which incidentally
is also an application that will be considered in the context of closed manifolds in [Hani 2012]). Since
then, this improvement and variants of it proved to be of essential use in studying nonlinear Schrödinger
equations.

In the context of compact manifolds, some bilinear estimates on the torus were already implicit in
[Bourgain 1993] (see also [Burq et al. 2005a]), and other variants were proved in [De Silva et al. 2007].
In [Burq et al. 2005a; 2005b], the authors prove bilinear Strichartz estimates on spheres S2 and S3 (and
on the bit wider class of Zoll manifolds) using bilinear eigenfunction cluster estimates. These bilinear
Strichartz estimates take the form

‖ei t1g u0ei t1gv0‖L2
t,x ([0,1]×Sd ) .d Nαd

2 ‖u0‖L2(Sd )‖v0‖L2(Sd )

whenever u0 is spectrally localized in the dyadic region
√
−1g ∈ [N1, 2N1), v0 in the region

√
−1g ∈

[N2, 2N2), N2 6 N1, with α = 1
4 + ε when d = 2 and α = 1

2 + ε when d = 3.
Using Theorem 1.1, we will be able to prove the following bilinear estimate for any closed manifold

(M, g):

Theorem 1.2. Suppose u0, v0 ∈ L2(Md) are spectrally localized at dyadic scales N1 and N2 as above
with N2 6 N1. Then the estimate

‖ei t1g u0ei t1gv0‖L2
t,x ([−1/N1,1/N1]×M) .M

N (d−1)/2
2

N 1/2
1

‖u0‖L2(M)‖v0‖L2(M). (1-11)

holds. More generally,

‖ei t1g u0ei t1gv0‖L2([−T,T ]×M) 63(T, N1, N2)‖u0‖L2(M)‖v0‖L2(M), (1-12)

where

3(T, N1, N2).M

{
N (d−1)/2

2 /N 1/2
1 if T � N−1

1 ,

T 1/2 N (d−1)/2
2 if T & N−1

1 .
(1-13)

In particular, for T = 1 we have

‖ei t1g u0ei t1gv0‖L2([−1,1]×M) . N (d−1)/2
2 ‖u0‖L2(M)‖v0‖L2(M). (1-14)

Some notes are in order: First we notice that in the semiclassical/ short-range case (1-11), the
coefficient N (d−1)/2

2 /N 1/2
1 is the same as that on Rd . This conforms with the heuristic that in the time

interval [0, 1/N1], the two waves ei t1gv0 (which is moving with speed ∼ N1) and ei t1gv0 (moving at
speed ∼ N2 6 N1) do not leave a coordinate patch and hence their product satisfies the same estimate as
that on Rd . Second, the estimates in (1-12) and (1-14) are essentially obtained from (1-11) by splitting
the time interval into pieces of length N−1

1 . It should be emphasized though that the exact dependence of
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3(T, N1, N2) on its all parameters is often of great importance in applications (see [Hani 2012]). In fact,
it is easy to see that bilinear estimates on the interval [0, T ] translate by scaling into bilinear estimates
on the interval [0, 1] for the rescaled manifold λM .2 The λ-dependence of those estimates is dictated
by dependence of 3(T, N1, N2) on all its parameters. The bilinear Strichartz estimates on λM take the
following form (see [Hani 2012] for relevant calculations):

Corollary 1.3 (Time T estimate on M implies time 1 estimate on λM). Let M be a 2D closed manifold
and suppose that N1, N2 ∈ 2Z and suppose u0, v0 ∈ L2(λM) are spectrally localized around N1 and N2

respectively, with N2 6 N1. Then

‖ei t1λu0ei t1λv0‖L2([0,1]×λM) .M 3(λ−2, λN1, λN2)‖u0‖L2(λM)‖v0‖L2(λM) (1-15)

.M

{
(N2/N1)

1/2
‖u0‖L2(λM)‖v0‖L2(λM) if λ� N1,

(N2/λ)
1/2
‖u0‖L2(λM)‖v0‖L2(λM) if λ. N1,

(1-16)

where we have denoted by 1λ the Laplace–Beltrami operator on the rescaled manifold λM.

Having favorable bounds (in terms of λ and N2) on the right hand side of (1-16) is crucial to obtaining
global well-posedness of some nonlinear equations on M below energy norm. In fact, in [Hani 2012] it is
proven that the cubic nonlinear Schrödinger equation is globally well-posed in H s(M) for any closed 2D
surface M2 and all s > 2

3 , a result which matches the current (to the best of our knowledge) minimum
regularity needed for global well-posedness on the 2-torus.

Finally, we note that as in the case of bilinear estimates on Rd , the bilinear estimates in (1-11) and
(1-12) offer a refinement to those obtained by using linear estimates alone. However, this refinement
is only visible when one looks at estimates over time intervals [0, T ] for T � N−1

2 (or alternatively,
estimates on rescaled manifolds). For example, for d > 3, applying Hölder’s inequality, the L∞t L2

x bound
on ei t1u0, Bernstein and the L2

t L2d/(d−2)
x for ei t1v0, one gets

‖ei t1u0ei t1v0‖L2
t,x ([0,T ]×M) . C(T, N2)‖u0‖L2(M)‖v0‖L2(M),

where C(T, N2)= N (d−2)/2
2 = N (d−1)/2

2 /N 1/2
2 for T . N−1

2 and C(T, N2)= T 1/2 N (d−1)/2
2 for T > N−1

2 .
This shows the improvement offered by (1-12) in the range T � N−1

2 (especially when dealing with
low-high frequency interaction N2� N1). This improvement is due to the cancellation happening when
we multiply the high frequency wave with the low frequency one. This cancellation is completely ignored
by linear estimates. In the case, d = 2, one would need to prove an estimate for the inadmissible pair
(q, r)= (2,∞). This is possible with an N ε loss. See [Jiang 2011]. In this case, the bilinear estimate
(1-12) not only offers a refinement to linear estimates at time scales T � 1 and in the range N2� N1, but
also yields better estimates in the time scale T = 1 (no N ε

2 loss in (1-14)). See [Hani 2012] for details.

The paper is organized as follows. In Section 2 we provide the proof of Theorem 1.1. In Section 3, we
review the needed facts about the parametrix construction in [Burq et al. 2004] and prove Theorem 1.2.

2Here λM can either be viewed as the Riemmannian manifold (M, (1/λ2)g) or by embedding M into some ambient space
RN and then applying a dilation by λ to get λM .
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Finally in Section 4 we prove inhomogeneous versions of the bilinear Strichartz estimates stated above in
addition to mixed type bilinear estimates for products of the Schrödinger propagator ei t1u0 and the half
wave propagators e±i t |∇|v0 . These estimates can also be deduced from Theorem 1.1 and have potential
applications (to be investigated elsewhere) in studying Zakharov type systems on closed manifolds. We
use the notation A . B to denote A 6 C B for some C > 0 and A ∼ B to denote A . B . A.

2. Proof of Theorem 1.1

All implicit constants are allowed to depend on d, δ and uniform bounds on a finite number of derivatives
of φ,ψ, a and b. We have

Tλ f (t, x)T̃µg(t, x)=
∫

Rd

∫
Rd

ei(λφ(t,x,ξ1)+µψ(t,x,ξ2))a(t, x, ξ1)b(t, x, ξ2) f (ξ1)g(ξ2) dξ1 dξ2. (2-1)

Since the supports of a and b are compact, one can use a finite partition of unity to split a and b into
finitely many pieces so that on the support of each piece there exists t0, x0, ξ0, ξ2,0 such that

|t − t0|, |x − x0|, |ξ1− ξ0|, |ξ2− ξ2,0|6
1
C
,

where C is some large constant depending only on δ and the uniform norms of φ and ψ and their
derivatives on the compact supports of a and b.

Also notice that by applying a rotation L of the domain R×Rd : (t, x)= LT (s, y), the left hand side
of (1-5) is unaffected, whereas the hypersurfaces Sφ and Sψ are both rotated by L . In fact, since

∇(s,y)
(
φ(LT (s, y), x, ξ)

)
= L(∇φ)

(
LT (s, y), ξ

)
,

where ∇ is taken in the first d + 1 variables of φ. Consequently, if we apply the change of variable
(t, x) = LT (s, y), the canonical hypersurfaces Sφ and Sψ are both rotated by L . Using this symmetry,
one can assume that∣∣∣∣det

(
∂2φ

∂ξ ∂x
(t0, x0, ξ0)

)∣∣∣∣& 1 and
∣∣∣∣det

(
∂2ψ

∂ξ ∂x
(t0, x0, ξ2,0)

)∣∣∣∣& 1 (2-2)

on the support of a and of b, respectively. This means that the surfaces Sφ and Sψ can be regarded as
graphs of functions of the form (ξ, τ1(ξ)) and (ξ, τ2(ξ))⊂ T ∗(t0,x0)

Rd+1 respectively.
Define

A := ∂2φ

∂ξ ∂x
(t0, x0, ξ0) and B := ∂2ψ

∂ξ ∂x
(t0, x0, ξ2,0).

By the above, we have that A and B are invertible. It will be convenient later on to do the following
change of variables in the ξ1 integral and define ξ = ξ1+ (µ/λ)A−1 Bξ2.3 This gives

Tλ f (t, x)T̃µg(t, x)

=

∫
Rd

∫
Rd

eiλ(φ(t,x,ξ−(µ/λ)A−1 Bξ2)+(µ/λ)ψ(t,x,ξ2))c(t, x, ξ, ξ2) f
(
ξ −

µ

λ
A−1 Bξ2

)
g(ξ2) dξ dξ2, (2-3)

3The justification for this change of variables will be obvious later on. However, at a heuristic level this corresponds to adding
the momenta of the two waves.
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where we set c(t, x, ξ, ξ2)= a(t, x, ξ − (µ/λ)A−1 Bξ2)b(t, x, ξ2) and all we have to remember about c
is that it is uniformly bounded along with all its derivatives (since µ/λ6 1) and is supported in a small
neighborhood of (t0, x0, ξ0+ (µ/λ)A−1 Bξ2,0, ξ2,0) of diameter . 1/C . In particular, we have∣∣∣ξ − µ

λ
A−1 Bξ2− ξ0

∣∣∣6 1
C

(2-4)

for every ξ, ξ2 in the support of c.
We now fix a particular coordinate direction e j (to be specified later), and write ξ2= pe j+ξ

′

2. Roughly
speaking, the direction will be chosen using the transversality assumption of the two surfaces Sφ and Sψ
so that ∣∣∣∣〈ν1(ξ0),

∂2ψ(t0, x0, ξ2,0)

∂ξ ∂(t, x)
e j

〉∣∣∣∣&δ 1. (2-5)

(The inner product is in Rd+1, the second entry being the product of a (d+ 1)× d matrix with a vector in
Rd .) This will be possible because ν2 is the unique direction for which〈

ν2,
∂2ψ(t0, x0, ξ2,0)

∂ξ ∂(t, x)

〉
= E0Rd ;

since ν1 is not a multiple of ν2, the vector〈
ν1,

∂2ψ(t0, x0, ξ2,0)

∂ξ ∂(t, x)

〉
is also nonzero, so there exists a coordinate direction e j onto which the projection of this nonzero vector
does not vanish. In other words, the inner product in (2-5) can be thought of as the projection of ν1 onto
the curve in Sφ(t0, x0) given by t 7→ ∇(t,x)ψ(t0, x0, ξ2,0+ te j ).

For convenience of notation, when confusion does not arise, we will assume that j = 1 and write
ξ2 = (p, ξ ′2) where p ∈ R and ξ ′2 ∈ Rd−1. As a result, we have∥∥Tλ f (t, x)T̃µg(t, x)

∥∥
2

=

∥∥∥∥∫
Rd−1
ξ ′

∫
Rd
ξ

∫
Rp

eiλ(φ(t,x,ξ−(µ/λ)A−1 Bξ2)+(µ/λ)ψ(t,x,ξ2))c(t, x, ξ, ξ2) f
(
ξ −

µ

λ
ξ2

)
g(ξ2) dξ dp dξ ′2

∥∥∥∥
2

6
∫

Rd−1
ξ ′2

∥∥∥∥∫
Rd
ξ

∫
Rp

eiλ(φ(t,x,ξ−(µ/λ)A−1 Bξ2)+(µ/λ)ψ(t,x,ξ2))c(t, x, ξ, ξ2) f
(
ξ −

µ

λ
ξ2

)
g(ξ2) dξ dp

∥∥∥∥
L2

t,x

dξ ′2.

Freezing ξ ′2, we define the operator S = Sξ ′2 : L
2(Rd+1)→ L2(Rd+1) given by

SF(t, x)=
∫

Rd
ξ

∫
Rp

eiλ(φ(t,x,ξ−(µ/λ)A−1 Bξ2)+(µ/λ)ψ(t,x,ξ2))c(t, x, ξ, ξ2)F(ξ, p) dξ dp, (2-6)

where ξ2 = (p, ξ ′2). As a result of this definition, our estimate is reduced to proving that for each ξ ′2, the
estimate

‖SF‖L2
t,x (R

d+1) .
1

λd/2µ1/2 ‖F‖L2
p,ξ (R

d+1) (2-7)
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holds for S. In fact, with such an estimate and by Cauchy–Schwarz in the ξ ′2 integral (keeping in mind
that c is compactly supported), we get∥∥Tλ f (t, x)T̃µg(t, x)

∥∥
2 .

1
λd/2µ1/2

∫
|ξ ′2|.1

∥∥∥∥ f
(
ξ −

µ

λ
(p, ξ ′2)

)
g(p, ξ ′2)

∥∥∥∥
L2

p,ξ

dξ ′2

. 1
λd/2µ1/2 ‖ f ‖L2‖g‖L2 .

The bound on S is proved using a T ∗T argument. For convenience of notation, let us define

8(t, x, ξ, p)= φ
(

t, x, ξ − µ
λ

A−1 Bξ2

)
+
µ

λ
ψ(t, x, ξ2), (2-8)

where ξ2 = (p, ξ ′2). With this notation, S takes the form

SF(t, x)=
∫

Rd
ξ

∫
Rp

eiλ8(t,x,ξ,p)c(t, x, ξ, p)F(ξ, p) dξ dp.

The adjoint of S is given by the operator

S∗G(ξ, p)=
∫

Rd
x

∫
Rt

e−iλ8(t,x,ξ,p)c̄(t, x, ξ, p)G(x, t) dx dt.

As a result, we get

S∗SF(ζ, q)=
∫

Rd
ξ

∫
Rp

K (ζ, q, ξ, p)F(ξ, p) dξ dp, (2-9)

where

K (ζ, q, ξ, p)=
∫

Rt

∫
Rd

x

eiλ[8(t,x,ξ,p)−8(t,x,ζ,q)]c(t, x, ξ, p)c̄(t, x, ζ, q) dx dt. (2-10)

Our aim will be to show that K satisfies the bound

K (ζ, q, ξ, p).N
1

(1+λ|ξ−ζ |+µ|q− p|)N (2-11)

for a sufficiently large N (any N > d + 1 would do).
In fact, with such an estimate, one can easily see (using Schur’s test for example) that ‖S∗S‖L2→L2 .

1/(λdµ). Since ‖S‖L2→L2 = ‖S∗S‖1/2L2→L2 one gets that ‖S‖L2→L2 is bounded by O(1/(λd/2µ1/2)).
The bound on K is based on nonstationary-phase-type estimates and integration by parts. These are

based on the following estimates on the phase function 8 and its derivatives.

Lemma 2.1. There exists � ∈ Sd such that∣∣〈∇t,x8(t, x, ξ, p)−∇t,x8(t, x, ζ, q),�
〉∣∣& |ξ − ζ | + µ

λ
|p− q| (2-12)

and ∣∣∣∣ ∂

∂xα ∂tβ
(8(t, x, ξ, p)−8(t, x, ζ, q))

∣∣∣∣.α,β |ξ − ζ | + µλ |p− q|. (2-13)
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Proof. The second estimate (2-13) is a direct consequence of the definition (2-8), the Taylor expansion,
and the uniform boundedness of all the t, x derivatives of φ and ψ . We now turn to the proof of (2-12).

Here we split the analysis into two cases:

Case 1: |ξ − ζ | > 1
100(µ/λ)| p− q|. The change of variables we have made in (2-3) will allow us to

prove (2-12) in this case using only the x derivative part of ∇t,x8. In fact, using (2-8), we have

∇x8(t, x, ξ, p)−∇x8(t, x, ζ, q)=∇xφ
(

t, x, ξ − µ
λ

A−1 Bξ2

)
−∇xφ

(
t, x, ζ −

µ

λ
A−1 Bζ2

)
(2-14)

+
µ

λ

(
∇xψ(t, x, ξ2)−∇xψ(t, x, ζ2)

)
, (2-15)

where ζ2 = (q, ξ ′2). We estimate (2-14) in the following manner:

∇xφ
(

t, x, ξ − µ
λ

A−1 Bξ2

)
−∇xφ

(
t, x, ζ − µ

λ
A−1 Bζ2

)
=

〈
∂2φ

∂ξ ∂x

(
t, x, ξ − µ

λ
A−1 Bξ2

)
, ξ − ζ −

µ

λ
A−1 B(ξ2− ζ2)

〉
+ O(|ξ − ζ |2)

=

〈
∂2φ

∂ξ ∂x
(t0, x0, ξ0), ξ − ζ −

µ

λ
A−1 B(ξ2− ζ2)

〉
+Error1

= A(ξ − ζ )− µ
λ

B(ξ2− ζ2)+Error1,

where we used the fact that A = (∂2φ/∂ξ ∂x)(t0, x0, ξ0). Here

Error1 =

〈
∂2φ

∂ξ ∂x

(
t, x, ξ − µ

λ
A−1 Bξ2

)
, ξ − ζ −

µ

λ
A−1 B(ξ2− ζ2)

〉
−

〈
∂2φ

∂ξ ∂x
(t0, x0, ξ0), ξ − ζ −

µ

λ
A−1 B(ξ2− ζ2)

〉
+ O

(
|ξ − ζ |2

)
.

By our assumption of smallness of the support of c (cf. (2-4)), the error can be estimated (if C is chosen
large enough depending on the uniform norms of derivatives of φ) by

|Error1|.φ
1
C
∣∣ξ − ζ − µ

λ
A−1 B(ζ2− ξ2)

∣∣+ O
(
|ξ − ζ |2

)
6 1

10γ1|ξ − ζ |,

where γ1 is chosen to be the smallest singular value of A (or equivalently γ1 =minz∈Sd−1 |Az|).
Next we estimate (2-15) by

µ

λ

(
∇xψ(t, x, ξ2)−∇xψ(t, x, ζ2)

)
=
µ

λ

〈
∂2ψ

∂ξ ∂x
(t, x, ξ2), ξ2− ζ2

〉
+ O

(
µ

λ
|ξ2− ζ2|

2
)

=
µ

λ

〈
∂2ψ

∂ξ ∂x
(t0, x0, ξ2,0), ξ2− ζ2

〉
+Error2

=
µ

λ
B(ξ2− ζ2)+Error2,

where

Error2 =
µ

λ

(〈
∂2ψ

∂ξ ∂x
(t, x, ξ2), ξ2− ζ2

〉
−

〈
∂2ψ

∂ξ ∂x
(t0, x0, ξ2,0), ξ2− ζ2

〉)
+ O

(
µ

λ
|ξ2− ζ2|

2
)
,
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which, as before, can be bounded (using the bounds |ξ2−ζ2|, |ξ2−ξ2,0|.
1
C

and µ
λ
|ξ2−ζ2|6 100|ξ−ζ |)

by
|Error2|6

1
10γ1|ξ − ζ |.

Collecting these estimates we get

∇x8(t, x, ξ, p)−∇x8(t, x, ζ, q)= A(ζ − ξ)+Error1+Error2, (2-16)

where Error1+Error2 is bounded by 1
5γ1|ζ − ξ |. We now let ω ∈ Sd−1 be equal to A(ζ − ξ)/|A(ζ − ξ)|.

Since ∣∣〈A(ζ − ξ), ω〉∣∣= ∣∣A(ξ − ζ )∣∣> γ1|ξ − ζ |

by the definition of γ1, we get∣∣〈∇x8(t, x, ξ, p)−∇x8(t, x, ζ, q), ω〉
∣∣& |ξ − ζ |.

As a result, by taking � ∈ Sd equal to (ω, 0) we get∣∣〈∇t,x8(t, x, ξ, p)−∇t,x8(t, x, ζ, q),�〉
∣∣& |ξ − ζ |& |ξ − ζ | + µ

λ
|p− q|, (2-17)

which is (2-12) in Case 1.

Case 2: |ξ − ζ |6 1
100(µ/λ)| p− q|. The analysis in this case is a bit more delicate, and it is here that

the transversality assumption is used. In this case, we will take � = ν1(ξ0), the normal to the surface
ξ 7→ ∇t,xφ(t0, x0, ξ) at ξ0. With this choice we have〈
∇t,x8(t, x, ξ, p)−∇t,x8(t, x, ζ, q),�

〉
=

〈
∇t,xφ

(
t, x, ξ − µ

λ
A−1 Bξ2

)
−∇t,xφ

(
t, x, ζ − µ

λ
A−1 Bζ2

)
, ν1(ξ0)

〉
(2-18)

+
µ

λ

〈
∇t,xψ(t, x, ξ2)−∇t,xψ(t, x, ζ2), ν1(ξ0)

〉
. (2-19)

The main term in this expression comes from (2-19), whereas (2-18) will be treated as an error. We start
by lower bounding (2-19).

We have

∇t,xψ(t, x, ξ2)−∇t,xψ(t, x, ζ2)=

〈
∂2ψ

∂ξ ∂(x, t)
(t, x, ξ2), ξ2− ζ2

〉
+ O

(
|ξ2− ζ2|

2)
=

〈
∂2ψ

∂ξ ∂(x, t)
(t0, x0, ξ2,0), ξ2− ζ2

〉
+Error1

= (p− q)
〈

∂2ψ

∂ξ ∂(x, t)
(t0, x0, ξ2,0), e j

〉
+Error1,

where

Error1 =

〈
∂2ψ

∂ξ ∂(x, t)
(t, x, ξ2), ξ2− ζ2

〉
−

〈
∂2ψ

∂ξ ∂(x, t)
(t0, x0, ξ2,0), ξ2− ζ2

〉
+ O

(
|ξ2− ζ2|

2).



350 ZAHER HANI

This is estimated as before using the small support assumption to get

|Error1|.ψ
1
C
|ξ2− ζ2|6

1
C
|p− q|, (2-20)

where we have used in the last inequality the fact that ξ2 = (p, ξ ′2) and ζ2 = (q, ξ ′2). We remark that

N :=
∂2ψ

∂ξ ∂(x, t)
(t0, x0, ξ2,0)

is a (d+ 1)× d matrix, so 〈N , e j 〉 is a vector in Rd+1. From a geometric point of view, this vector lies in
the tangent space to Sψ(t0, x0) at ξ2,0.

Recall that by definition, ν2 := ν2(ξ2,0) is the unique vector (up to sign) in Sd such that νT
2 N = 0

where νT
2 is the row vector corresponding to ν2. In particular, the map from the d-dimensional subspace

ν⊥2 ⊂ Rd+1 into Rd given by
ν ∈ ν⊥2 7→ νT N ∈ Rd

is an isomorphism. Let γ2> 0 denote its smallest singular value (or equivalently γ2 is the positive infimum
of the above map when ν ∈ ν⊥2 satisfies ‖ν‖ = 1).

Writing ν1(ξ0) = αν2 + βν3 with ν3 ∈ ν
⊥

2 , ‖ν3‖ = 1, and |α|, |β| 6 1, we notice that since 1− δ >
|〈ν1, ν2〉| = |α| we have that |β| =

√
1−α2 >

√
δ.

As a result, we have〈
ν1,∇t,xψ(t, x, ξ2)−∇t,xψ(t, x, ζ2)

〉
= (p− q)νT

1 Ne j +Error1 = β(p− q)νT
3 Ne j +Error1.

Since ‖νT
3 N‖> γ2, one can choose e j so that |νT

3 Ne j |> γ2/
√

d =: c1. Combining this to the estimate
on Error1 in (2-20) above we get that if C is large enough, then∣∣〈ν1,∇t,xψ(t, x, ξ2)−∇t,xψ(t, x, ζ2)

〉∣∣> c1
√
δ|p− q| − c1

√
δ

100
|p− q|> 99

100
c1
√
δ|p− q|. (2-21)

As mentioned before, we will treat (2-18) as an error. Indeed,〈
∇t,xφ

(
t, x, ξ − µ

λ
A−1 Bξ2

)
−∇t,xφ

(
t, x, ζ − µ

λ
A−1 Bζ2

)
, ν1(ξ0)

〉
= ν1(ξ0)

T D(d+1)×d

(
t, x, ξ − µ

λ
A−1 Bξ2

)[
ξ − ζ −

µ

λ
A−1 B(ξ2− ζ2)

]
+ O

(∣∣∣µ
λ
(p− q)

∣∣∣2),
where we have defined

D(d+1)×d(t, x, η)= ∂2φ

∂ξ ∂(x, t)
(t, x, η)

and also used that |ξ − ζ |6 (µ/λ)|p− q| in this case. Since the derivatives of D are uniformly bounded
and because of the small support assumption (2-4), we have∥∥∥D(d+1)×d

(
t, x, ξ − µ

λ
A−1 Bξ2

)
− D(d+1)×d(t0, x0, ξ0)

∥∥∥. 1
C
6 c1

√
δ

100(‖A−1 B‖+1)

if C is large enough.
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Using the fact that νT
1 D(d+1)×d(t0, x0, ξ0)= 0, we get that∣∣∣∣〈∇t,xφ

(
t, x, ξ − µ

λ
A−1 Bξ2

)
−∇t,xφ

(
t, x, ζ − µ

λ
A−1 Bζ2

)
, ν1(ξ0)

〉∣∣∣∣6 c1
√
δ

50
µ

λ
|p− q| (2-22)

again using the small support assumption.
Combining (2-22) and (2-21), we get (2-12) for Case 2.

Now we are ready to perform the integration by parts needed to prove the estimate (2-11). Recall that

K (ζ, q, ξ, p)=
∫

Rt

∫
Rd

x

eiλ[8(t,x,ξ,p)−8(t,x,ζ,q)]c(t, x, ξ, p)c̄(t, x, ζ, q) dx dt.

Let D� be the operator given by

D� :=
1

iλ〈∇t,x8(t, x, ξ, p)−∇t,x8(t, x, ζ, q),�〉
〈∇(x,t), �〉. (2-23)

Then
D�

(
eiλ(8(t,x,ξ,ξ2)−8(t,x,ζ,ζ2))

)
= eiλ(8(t,x,ξ,ξ2)−8(t,x,ζ,ζ2)).

Noticing that the formal adjoint of D� acting on L2 is

DT
� = 〈∇(x,t), �〉

1
(iλ〈∇t,x8(t, x, ξ, p)−∇t,x8(t, x, ζ, q),�〉)

,

we get

K (ζ, q, ξ, p)=
∫

Rt

∫
Rd

x

eiλ[8(t,x,ξ,p)−8(t,x,ζ,q)]c(t, x, ξ, p)c̄(t, x, ζ, q) dx dt

=

∫
Rt

∫
Rd

x

eiλ[8(t,x,ξ,p)−8(t,x,ζ,q)](DT
�)

N c̄(t, x, ξ, p)c(t, x, ζ, q) dx dt.

Using the estimates in Lemma 2.1, it is easy to see that

(DT
�)

N c̄(t, x, ξ, p)c(t, x, ζ, q).N
1

(λ|ξ−ζ |+µ|p−q|)N .

When λ|ξ − ζ | +µ|p− q|6 1, we do not perform any integration by parts and estimate the K integrand
by O(1) and hence K by O(1) as well. Otherwise we use the above decay. As a result, we get

K (ξ, ξ2, ζ, ζ2).N
1

(1+λ|ξ−ζ |+µ|p−q|)N ,

which finishes the proof. �

Remark. It is not hard to see that the estimate (1-5) is sharp. In fact, by considering the restriction
case and taking φ(t, x, ξ)= ψ(t, x, ξ)= x .ξ + t |ξ |2 with a having its ξ support in the region |ξ |> 100
and b having its ξ support near |ξ | 6 1, one can reduce the sharpness of (1-5) to that of (1-10) which
is known to be sharp. In fact, this can be seen by first reducing to the case when N2 = 1 (again
using scaling) and taking û0 to be the characteristic function of [N1, N1 + N−1

1 ] × [−1, 1]d−1 (hence
‖u0‖L2

x
∼ N−1/2

1 ); and v̂0 to be the characteristic function of [−1, 1]d (hence ‖v0‖L2
x
∼ 1). By Plancherel’s
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theorem in space and time, we get that the left side of (1-10) is & ‖χR1 ∗ χR2‖L2(Rd+1) where R1 =

[N1, N1+N−1
1 ]×[0, 1]d and R2=[−1, 1]d+1. A direct calculation now shows that χR1∗χR2 & (1/N1)χR3

where R3 = [N1+
1
4 , N1+

3
4 ] × [−

1
2 ,

1
2 ]

d and hence ‖χR1 ∗χR2‖L2(Rd+1) ∼ 1/N1, which shows that the
left side of (1-10) is & (1/N 1/2

1 )‖u0‖L2
x
‖v0‖L2

x
.

3. Bilinear Strichartz estimates

We will apply the result of the previous section to get bilinear Strichartz estimates for the free Schrödinger
evolution on compact manifolds without boundary. These will be analogues in the variable coefficient
case to the estimate (1-10) on Rd with the Euclidean Laplacian which we recall here for convenience

‖ei t1u0ei t1v0‖L2(R×Rd ) .
N (d−1)/2

2

N 1/2
1

‖u‖L2(Rd )‖v‖L2(Rd ),

where u, v ∈ L2(Rd) are frequency localized on the dyadic annuli {ξ ∈ Rd
: |ξ | ∈ [N1, 2N1]} and

{ξ ∈ Rd
: |ξ | ∈ [N2, 2N2]} respectively.

By scaling time and space, one can easily see that this estimate is equivalent to the same one on the
time interval [0, 1/N1]. On this time scale, the numerology in (1-10) can be understood (heuristically at
least) by a simple back-of-the-envelope calculation. Thinking of ei t1u0 as a “bump function” localized in
frequency at scale N1 and initially (at t = 0) localized in space at scale 1/N1. The evolution moves this
bump function at a speed N1 thus expanding its support at this rate while keeping the L2 norm conserved.
Similarly, ei t1v0 could be thought of as a “bump function” that is initially concentrated in space at
scale ∼ 1/N2 and moving (expanding) at speed N2. A simple schematic diagram allows to estimate the
space-time overlap of the two expanding “bump functions” thus giving the estimate N (d−1)/2

2 /N 1/2
1 for

the L2
t,x([0, N−1

1 ]×Rd) of the product.
The goal of this section is to prove the analogue of (1-10) for the linear evolution of the Schrödinger

equation on a C∞ compact manifold M without boundary. This was stated in Theorem 1.2. All implicit
constants are allowed to depend on M and the uniform bounds of its metric functions (they are all
finite since M is compact). To fix notation, we consider two functions u0, v0 ∈ C∞(M)4 such that
u0 = ϕ(

√
−1/N1)u0 and v0 = ϕ(

√
−1/N2)v0 where ϕ ∈ C∞0 (R), and we would like to estimate the

L2
t,x norm of the product ei t1u0ei t1v0. We assume further that ϕ vanishes in a small neighborhood of the

origin.

Remark. The same analysis allows to consider different frequency localizations for u0 and v0 like
u0 = ϕ(

√
−1/N1)u0 and v0 =ψ(

√
−1/N2)v0 with ϕ,ψ ∈C∞0 as long as ϕ vanishes in a neighborhood

of the origin and N1 is sufficiently larger than N2. In particular, ψ does not need to vanish near the origin.

To simplify notation, we use 1 to denote the Laplace–Beltrami operator 1g on M , and |ξ |g(x) to
denote

√
g(x)i jξiξ j .

Proof of Theorem 1.2. The proof is organized as follows. We will first review some important facts about
microlocalizing ϕ(h

√
−1) and constructing the Schrödinger parametrix (as in [Burq et al. 2004]) that will

4The full result for u0, v0 ∈ L2(M) can be obtained in the end by a standard limiting argument.
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be used to approximate the linear evolutions. The case when N2 ∼ N1, will then follow directly from the
semiclassical linear Strichartz estimates already proven in [Burq et al. 2004, Proposition 2.9]. As a result,
we will only need to consider the case when N2� N1. This will ensure that the canonical hypersurfaces
associated to the phase functions of the parametrices are transversal as defined in the previous section, a
fact which will allow us to apply Theorem 1.1. �

Microlocalizing ϕ(h
√
−1) [Burq et al. 2004; Sogge 1993; Hörmander 1994a; 1994b]. In this section,

we will briefly review how spectrally localizing a function f ∈ C∞(M) using the spectral multiplier
ϕ(h
√
−1) is expressed in local coordinates. Essentially, up to smooth remainder terms, ϕ(h

√
−1) f

is given in local coordinates as a pseudodifferential operator whose symbol a(x, ξ) has a support that
reflects the spectral localization dictated by ϕ:

Proposition 3.1. Let ϕ ∈ C∞0 (R) and κ :U ⊂ Rd
→ V ⊂ M be a coordinate parametrization of M. Also

let χ1, χ2 ∈C∞0 (V ) be such that χ2= 1 near the support of χ1. Then for every N ∈N, every h ∈ (0, 1), and
every σ ∈ [0, N ], there exists aN (x, ξ) supported in {(x, ξ)∈U×Rd

: κ(x)∈ supp(χ1), |ξ |g(x) ∈ supp(ϕ)}
such that ∥∥κ∗(χ1ϕ(h

√
−1) f

)
− a(x, h D)κ∗(χ2 f )

∥∥
Hσ (Rd )

.N hN−σ
‖ f ‖L2(M) (3-1)

for every f ∈ C∞(M). In particular, if ϕ is supported away from the origin, then so is the ξ support of
a(x, ξ). Here κ∗ is used to denote the pull-back map given by κ∗ f = f ◦ κ .

Proof. See Proposition 2.1 of [Burq et al. 2004] (alternatively, one can use the parametrix expression of
the half-wave operator ei t

√
−1 (see [Sogge 1993] for example), along with the expression of ϕ in terms

of its Fourier transform).
A consequence of this proposition and a finite partition of unity in M , one can split u0 = ϕ(h

√
−1)u0

into pieces of the form χ1ϕ(h
√
−1)u0 and replace each of those pieces (incurring an error that is

O(hN
‖u0‖L2)) by a(x, h D)κ∗(χ2u0) which is a compactly supported function in space and is pseudolo-

calized in frequency in the following sense:
There exists a function ψ ∈ C∞0 (R

d) such that for all h ∈ (0, 1), σ > 0, and N > 0,

κ∗
(
χ1ϕ(h

√
−1) f

)
= ψ(h D)κ∗

(
χ1ϕ(h

√
−1) f

)
+ r1, (3-2)

with ‖r1‖Hσ (Rd ) .σ,N hN
‖ f ‖L2 . If ϕ is supported away from 0, one can also take ψ to be supported

at a positive distance from the origin in Rd . This follows easily from Proposition 3.1 and standard
pseudodifferential calculus (See [Stein 1993], for example). We will denote w0(x)= a(x, h D)κ∗(χ2u0).
In brief, w0 is compactly supported in space and can be replaced by ψ(h D)w0 at the cost of an error that
is O(hN

‖u0‖L2(M)).

The parametrix [Burq et al. 2004]. With this microlocalization setup, Burq, Gerard, and Tzvetkov
constructed an approximate solution in local coordinates to the semiclassical equation

ih∂tw+ h21gw = 0, (3-3)

w(0)= ϕ(h
√
−1)v0. (3-4)
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More precisely, using the usual WKB construction (see for example [Hörmander 1994a; 1994b; Burq
et al. 2004], or the lecture notes [Evans and Zworski 2003]), they show that there exists α > 0, such that
on the time interval [−α, α]

w(s)= w̃(s)+ r2(s),

where r2(s) satisfies ‖r2(t)‖L∞t ([−α,α]×Hσ (M)) . hN
‖w0‖L2(M) (with N sufficiently large) and w̃(t) is

supported in a compact subset of V ⊂ M and is given in local coordinates by the oscillatory integral

w̃(s, x)= 1
(2πh)d

∫
Rd

e(i/h)φ̃(s,x,ξ)a(s, x, ξ, h)ŵ0

(
ξ

h

)
dξ. (3-5)

Here a(s, x, ξ, h)=
∑N

j=0 h j a j (s, x, ξ), and a j ∈ C∞0 ([−α, α] ×U ×U ′ b R×Rd
×Rd), while w0 is

the microlocalization of ϕ(h
√
1)v0 described above. Since w0 can be replaced by ψ(h D)w0 at the cost

of an error that is O(hN
‖w0‖L2(Rd )) one can assume without loss of generality that a(s, x, ξ, h) has its ξ

support at a positive distance from the origin in frequency space if ϕ is supported away from 0 itself.
The phase function φ̃ appearing in the integral (3-5) satisfies the eikonal equation

∂s φ̃+
∑

i j

gi j∂i φ̃∂ j φ̃ = 0, (3-6)

φ̃(0, x, ξ)= x .ξ. (3-7)

Semiclassical linear Strichartz estimates and the case N1 ∼ N2. Using this representation, one can
easily use stationary phase (see [Burq et al. 2004] for details) to get the semiclassical dispersion estimate

‖ei t1ϕ2(h
√
−1)v0‖L∞(M) .M

1
td/2 ‖v0‖L1(M) (3-8)

for every t ∈ [−αh, αh] with 0 < α � 1. Combining this with the Keel–Tao machinery [1998] one
immediately gets the semiclassical Strichartz estimate

‖ei t1ϕ(h
√
−1)u0‖Lq

t Lr
x ([−αh,αh]×M) .M ‖u0‖L2(M) (3-9)

whenever 26 q, r 6∞ satisfy 2/q + d/r = d/2 and (q, r, d) 6= (2,∞, 2).
This estimate is enough to prove (1-11) in the case when h = 1/N1 ∼ m = 1/N2. In fact, for d = 2,

one can use the L4
t,x Strichartz estimate to get

‖ei t1u0ei t1v0‖L2
t,x ([−αh,αh]×M2)6‖e

i t1ϕ(h
√
−1)u0‖L4

t,x
‖ei t1ϕ(h

√
−1)v‖L4

t,x
.‖u0‖L2(M2)‖v0‖L2(M2).

Whereas for d > 3, one can apply Hölder’s inequality, the L∞t L2
x bound on ei t1u0, Bernstein5 and the

L2
t L2d/(d−2)

x for ei t1v0 to get

‖ei t1u0ei t1v0‖L2
t,x ([0,αh]×M) . N (d−2)/2

2 ‖u0‖L2(M)‖v0‖L2(M)

as desired.

5One can verify Bernstein’s inequality in the setting of compact manifolds by using Proposition 3.2 and the fact that the
kernel K (x, y) of a(x, h D) satisfies the bound ‖K (x, y)‖Lr

x L p
y (Rd×Rd ) .a h−d(1−1/r−1/p).
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The case N1� N2. In this section, we will reduce the case N1� N2 to a verification of the conditions
of (1-5). By rescaling time, we have

‖ei t1u0ei t1v0‖L2
t,x ([−αh,αh]×M) = h1/2

‖eiht1u0eiht1v0‖L2
t,x ([−α,α]×M)

= h1/2
‖eiht1u0eim(h/m)t1v0‖L2

t,x ([−α,α]×M). (3-10)

As a result it is enough to show

‖eiht1u0eim( h
m t)1v0‖L2

t,x ([−α,α]×M) .
1

m(d−1)/2 ‖u0‖L2(M)‖v0‖L2(M). (3-11)

The advantage of writing the estimate in this way is that we can now use the parametrices for ei th1u0 and
ei tm1v0 constructed above to write6

ei th1u0(x)= T̃hu0(t, x)+ Rhu0(t, x)

and
eim(ht/m)1v0(x)= S̃mv0(t, x)+ Rmv0(t, x),

where T̃h and S̃m are defined according to (3-5) by

T̃hu0(t, x)= 1
(2πh)d

∫
Rd

e(i/h)φ̃(t,x,ξ)a1(t, x, ξ, h)̂̃u0

(
ξ

h

)
dξ (3-12)

and

S̃mv0(t, x)= 1
(2πm)d

∫
Rd

e(i/m)φ̃(ht/m,x,ξ2)a2

( h
m

t, x, ξ2,m
)̂̃v0

(
ξ2
m

)
dξ2, (3-13)

where ũ0 and ṽ0 are the respective microlocalizations of u0 and v0 in the considered coordinate patch (in
particular ‖ũ0‖L2(Rd ) . ‖u0‖L2(M) and ‖ṽ0‖L2(M) . ‖v0‖L2(M)). Also we have

‖Rhu0‖L∞t Hσ ([−α,α]×M) . hN
‖u0‖L2(M) and ‖Rmv0‖L∞t Hσ ([−α,α]×M) . m N

‖v0‖L2(M). (3-14)

The main contribution comes of course from the product T̃hu0 S̃v0. For example the cross terms T̃hu0 Rmv0

and Rhu0 S̃mv0 can be bounded as follows:

‖T̃hu0 Rmv0‖L2
t,x
6 ‖T̃hu0‖L∞t L2

x
‖Rmv0‖L2

t L∞x
. ‖u0‖L2‖v0‖L2,

where in the last step we used (3-14) and a crude Sobolev embedding to bound ‖Rmv0‖L2
t L∞x

by ‖Rm‖L2
t Hσ

x

for some σ > d/2. The L∞t L2
x bound on T̃hu0 follows from the L∞t L2

x boundedness of ei th1u0. Similarly,
one bounds the contributions of Rhu0 S̃mv0 and Rhu0 Rmv0.

To bound the contribution of T̃hu0 S̃mv0, we now apply Theorem 1.1 with φ(t, x, ξ)= φ̃(t, x, ξ) and
ψ(t, x, ξ2)= φ̃((h/m)t, x, ξ2), f (ξ) := ũ(ξ/h), and g(ξ)= ṽ0(ξ/m), to get

‖T̃hu0 S̃mv0‖L2
t,x ([−α,α]×Rd ) .

1
(hm)d

(hdm)1/2‖ f ‖L2(Rd )‖g‖L2(Rd ) .
1

m(d−1)/2 ‖ũ0‖L2(Rd )‖ṽ0‖L2(Rd ),

6Strictly speaking this representation only holds in an open neighborhood of x0 ∈ M . Since M is compact, we can cover it by
finitely many of such neighborhood, and hence we only need to prove the estimate on each one of them.
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which clearly gives (3-11) and hence (1-11). As a result, all we need to do is to verify that the requirements
of Theorem 1.1 are satisfied.

Obviously all derivatives of φ and ψ are uniformly bounded on the compact supports of a1 and a2

(h/m 6 1). Moreover, since φ̃(0, x, ξ) = x .ξ , we have that (∂2φ/∂ξ∂x)(0, x, ξ) = Id (invertible), the
nondegeneracy condition (1-2) is satisfied at t = 0 and hence for all t ∈ [−α, α] if α is small enough.

Now we consider the canonical surfaces Sφ and Sψ :
Recall that Sφ and Sψ are the images of the maps

ξ1 7→ ∇t,xφ(t, x, ξ1)=
(
∇x φ̃(t, x, ξ1), ∂t φ̃(t, x, ξ1)

)
,

ξ2 7→ ∇t,xψ(t, x, ξ2)=

(
∇x φ̃

( h
m

t, x, ξ2

)
,

h
m
∂t φ̃

( h
m

t, x, ξ2

))
,

respectively. By the nondegeneracy condition above, Sφ and Sψ are smooth embedded hypersurfaces in
T ∗(t,x)R

d+1. We need to show that if ν1(ξ1) is the normal to Sφ at ∇t,xφ(t, x, ξ1) and ν(ξ2) is the normal
to Sψ at ∇t,xψ(t, x, ξ2), then there is a δ > 0 (uniform in ξ1 and ξ2) such that

|〈ν1, ν2〉|6 1− δ. (3-15)

By continuity, we only need to verify (3-15) at t = 0 for all x, ξ1, ξ2. This will imply that the same holds
for all t ∈ [−α, α] if α is small enough. We now fix (0, x0) ∈ Rd+1 and consider the surfaces Sφ and
Sφ in T ∗(0,x0)

Rd+1. From the eikonal equation (3-6), φ̃(0, x, ξ) = x .ξ and ∂t φ̃(0, x, ξ) = gi j (x)ξiξ j . A
straightforward computation gives

ν1(ξ)=
(2g1 jξ j , 2g2 jξ j , . . . , 2gd jξ j ,−1)

√

1+4|ξ |2g(x)
and

ν2(ξ)=
(2(h/m)g1 jξ j , 2(h/m)g2 jξ j , . . . , 2(h/m)gd jξ j ,−1)

√

1+4|(h/m)ξ |2g(x)
,

where we recall our notation that |ξ |g(x) =
√

g(x)i jξiξ j . As a result,

〈ν1(ξ1), ν2(ξ2)〉 =
1

√

1+4|ξ1|
2
g(x)

√

1+4|(h/m)ξ2|
2
g(x)

+ O
( h

m

)
.

Since |ξ1|& 1 and |ξ2|. 1,7 we get that (3-15) holds true if h/m is small enough.
The proof of (1-12) follows by splitting the time interval [0, T ] into pieces of length N−1

1 . That of
(1-14) follows by setting T = 1 in (1-14) when N1 > 1 and by using the L∞t L2

x estimates and Sobolev’s
inequality if N1 6 1. �

Remark. If P(D) is a differential operator on M of degree n, then P(D)eiht1u0 has the expression

P(D)eiht1u0(x)= h−n T̃ ′hu0(t, x)+ R′hu0(t, x),

7Without loss of generality, we can assume that ‖gi j
− δi j
‖6 f rac1C for some large enough C on the coordinate patch

considered. This is enough to have |ξ |g(x) ∼ |ξ |.
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where T̃ ′h and R′h are operators of the same form as Th and Rh . In particular, T ′h has an expression as
in (3-12) (just with different a) and R′h obeys similar estimates to (3-14) (by choosing h small enough).
Similar expressions for eimt1v0 allow us, using the exact same analysis performed above, to get:

Corollary 3.2. Suppose the u0, v0 ∈ L2(M) are spectrally localized around N1, N2 ∈ 2Z respectively as
in Corollary 1.3. Let P(D) and Q(D) be differential operators on M of orders n and m respectively:

‖P(D)ei t1u0 Q(D)ei t1v0‖L2([0,T ]×M) 6 N n
1 N m

2 3(T, N1, N2)‖u0‖L2(M)‖v0‖L2(M), (3-16)

where 3(T, N1, N2) is given in (1-13).

This variant will be useful in some applications of the bilinear Strichartz estimates proved here (see
[Hani 2012] for example).

4. Further results and remarks

Bilinear inhomogeneous estimates. Here we will present some inhomogeneous versions of the bilinear
estimates proved in the previous section. We will assume that u(t) and v(t) solve the inhomogeneous
Schrödinger equation with forcing terms F and G respectively. More precisely,

i∂t u+1u = F, (4-1)

i∂tv+1v = G. (4-2)

F and G can be assumed to be a priori in C∞.8 The question now is to determine estimates for ‖uv‖L2
t,x

in terms of the initial data u(0)= u0, v(0)= v0 and the forcing terms F and G.
We will prove two types of inhomogeneous estimates: one corresponding to spectrally localized

functions generalizing (1-11) and another is a time T = 1 estimate generalizing (1-14).

Theorem 4.1. Suppose u(t) and v(t) solve the inhomogeneous Schrödinger equations (4-1) and (4-2)
with initial data u(0) = u0 and v(0) = v0 respectively. Also suppose that (q, r) and (q̃, r̃) are two
Schrödinger admissible exponents.

(i) If u(t)= ϕ(
√
−1/N1)u(t) and v(t)= ϕ(

√
−1/N2)v(t) for all t , then

‖uv‖L2
t,x ([0,1/N1]×M) .

N (d−1)/2
2

N 1/2
1

(
‖u0‖L2(M)+‖F‖Lq′

t Lr ′
x

)(
‖v0‖L2(M)+‖G‖L q̃′

t L r̃ ′
x

)
, (4-3)

where for any p ∈ [1,∞], p′ denotes its conjugate exponent 1/p+ 1/p′ = 1.

(ii) In general, for any δ > 0 we have

‖uv‖L2
t,x ([0,1]×M)

.
(
‖u0‖H δ(M)+‖(

√
1−1)δ+1/q F‖

Lq′
t Lr ′

x

)(
‖v0‖H1/2−δ(M)+‖(

√
1−1)1/2−δ+1/q̃ G‖

L q̃′
t L r̃ ′

x

)
. (4-4)

For the proof, we will need the Christ–Kiselev lemma [2001], which we state following [Smith and Sogge
2000]:

8This assumption can be removed a posteriori using standard density arguments.
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Lemma 4.2. Let X and Y be Banach spaces and K (t, x) a continuous function taking values in B(X, Y ),
the space of bounded linear mappings from X to Y . Suppose that −∞6 a < b 6∞ and let

T f (t)=
∫ b

a
K (t, s) f (s) ds.

Suppose that

‖T f ‖Lq ([a,b];Y ) 6 C‖ f ‖L p([a,b];X),

and define the lower triangular operator

W f (t)=
∫ t

a
K (t, s) f (s) ds.

Then, if 16 p < q 6∞,

‖W f ‖Lq ([a,b];Y ) . C‖ f ‖L p([a,b];X).

Proof of Theorem 4.1. We start by proving the spectrally localized version in (4-3). The integral equations
satisfied by u(t) and v(t) are given by Duhamel’s formula:

u(t)= ei t1u0− i
∫ t

0
ei(t−s)1F(s) ds and v(t)= ei t1v0− i

∫ t

0
ei(t−s)1G(s) ds.

As a result,

u(t)v(t)= ei t1u0ei t1v0− iei t1u0

∫ t

0
ei(t−s)1G(s) ds

−iei t1v0

∫ t

0
ei(t−s)1F(s) ds−

∫ t

0
ei(t−s)1F(s) ds

∫ t

0
ei(t−r)1G(r) dr. (4-5)

Recall that u0, u(t), F(t) are all spectrally localized at dyadic scale N1 and v0, v(t),G(t) localized at
scale N2. The estimate for the first term on the right in (4-5) is the bilinear Strichartz estimate proved in
the previous section. We turn to the second term. Applying the Christ–Kiselev lemma (with Y = L q̃ ′

t L r̃ ′
x ,

X = L2
t,x([0, 1/N1]×M), and C ∼ N (d−1)/2

2 /N 1/2
1 ‖u0‖L2(M)), it is enough to show∥∥∥∥ei t1u0

∫ 1/N1

0
ei(t−s)1G(s) ds

∥∥∥∥
L2

t,x ([0,1/N1]×M)
.

N (d−1)/2
2

N 1/2
1

‖u0‖L2(M)‖G‖L q̃′
t L r̃ ′

x
.

But this follows from the bilinear estimate (1-11) and∥∥∥∥∫ 1/N1

0
e−is1ϕ

(√
−1

N1

)
G(s) ds

∥∥∥∥
L2

x (M)
. ‖G‖

L q̃′
t L r̃ ′

x
,

which is the dual estimate to (1-9).
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The third term on the right in (4-5) is estimated similarly. For the fourth term, we first apply the
Christ–Kiselev lemma to reduce the estimate to∥∥∥∥∫ 1/N1

0
ei(t−s)1F(s) ds

∫ t

0
ei(t−r)1G(r) dr

∥∥∥∥
L2

t,x ([0,1/N1]×M)

=

∥∥∥∥ei t1
(∫ 1/N1

0
e−is1F(s) ds

)∫ t

0
ei(t−r)1G(r) dr

∥∥∥∥
L2

t,x

.
N (d−1)/2

2
N1

∥∥∥∥∫ N−1
1

0
e−is1F(s) ds

∥∥∥∥
L2(M)
‖G‖

L q̃′
t L r̃ ′

x
. ‖F‖

Lq′
t Lr ′

x
‖G‖

L q̃′
t L r̃ ′

x
,

where in the first inequality we apply the same analysis as that used to estimate the second and third
term on the right in (4-5) (or apply Christ–Kiselev lemma again) while in the second we use the dual
homogeneous Strichartz estimate. This finishes the proof of (4-3).

We now turn to the time 1 estimate (4-4). We start by mentioning that the first term on the right in
(4-5) satisfies the needed estimate

‖ei t1u0ei t1v0‖L2([0,1]×M) . ‖u0‖H δ‖v0‖H1/2−δ .

This follows directly by splitting into Littlewood–Paley pieces u =
∑

N1>1
(dyadic)

uN1 and v =
∑

N2>1
(dyadic)

vN2 and
estimating by

‖ei t1u0ei t1v0‖L2
t,x ([0,1]×M)

6
∑

N16N2

‖ei t1uN1ei t1vN2‖L2
t,x
+

∑
N1>N2

‖ei t1uN1ei t1vN2‖L2
t,x

.
∑

N16N2

N (d−1)/2
1 ‖uN1‖L2‖vN2‖L2 +

∑
N2<N1

N (d−1)/2
2 ‖uN1‖L2‖vN2‖L2

.
∑

N16N2

N (d−1)/2−δ
1

N (d−1)/2−δ
2

‖uN1‖H δ‖vN2‖H (d−1)/2−δ +

∑
N2<N1

N δ
2

N δ
1
‖uN1‖H δ‖uN2‖H (d−1)/2−δ

. ‖u‖H δ‖v‖H (d−1)/2−δ ,

where we have used Schur’s test to sum in the last step. The rest of the proof of (4-4) follows as that of
(4-3) above except that here we use the estimate dual to (1-8) given by∥∥∥∥∫ 1

0
ei(t−s)1F(s) ds

∥∥∥∥
L2(M)

. ‖(
√

1−1)1/q F‖
Lq′

t Lr ′
x ([0,1]×M)

. �

Bilinear estimates of mixed type. Here we present an instance of a mixed-type bilinear estimate of
Schrödinger-wave type that can be proved using Theorem 1.1. Constant coefficient versions of such
estimates are often useful when studying coupled Schrödinger-wave systems such as the Zakharov system
(see [Bejenaru et al. 2009] for instance). Theorem 4.3 below serves as an example of a variable coefficient
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Schrödinger-wave bilinear estimates and has potential applications in studying Zakharov systems (or
other Schrödinger-wave systems) on manifolds.

Theorem 4.3. Suppose u0, v0 ∈ L2(Md) are spectrally localized at dyadic scales N1 and N2 as above
with 1� N1. Then the estimate

‖ei t1u0e±i t |∇|v0‖L2
t,x ([−1/N1,1/N1]×M) .M

min(N1, N2)
(d−1)/2

N 1/2
1

‖u0‖L2(M)‖v‖L2(M) (4-6)

holds. Of course, an estimate over the time interval [0, T ] follows as well by splitting into pieces of
length 1/N1.

Proof. We present the proof in the case of the forward half wave operator, the proof for the backwards
operator being similar. As before, we use the parametrix for ei t |∇|v0 which is given, up to a smoothing
remainder Rmv0, by the oscillatory integral

SW
m v0 =

1
(2πm)d

∫
Rd

e(i/m)ψ(t,x,ξ2)a(t, x, ξ2)̂̃v0

(
ξ2
m

)
dξ2,

where ψ is a nondegenerate phase function (in particular det((∂2/∂ξ ∂x)ψ̃) 6= 0) and homogeneous in
ξ2 of degree 1 and ṽ0 is a microlocalization of v0 as explained in Section 3 (cf. [Hörmander 1994b,
Chapter XXIX]). As before, we used the convention that h = 1/N1 and m = 1/N2. As a result, we have

‖ei t1u0ei t |∇|v0‖L2
t,x ([−α/N1,α/N1]×M) = h1/2

‖eiht1u0eiht |∇|v0‖L2
t,x ([−α,α]×M).

Ignoring the smooth remainder terms Rh and Rm (as they are inconsequential as in Section 3) we get that
(4-6) follows from the estimate

‖T̃hu0(t, x)S̃W
m v0(ht, x)‖L2

t,x ([−α,α]×Rd ) .
1

(hm)d/2
min(m, h)d/2 max(m, h)1/2‖ũ0‖L2(Rd )‖ṽ0‖L2(Rd )

= C max(m, h)−(d−1)/2
‖ũ0‖L2(Rd )‖ṽ0‖L2(Rd ).

This inequality follows by applying Equation (1-5) with the nondegenerate phase functions φ(t, x, ξ1)=

φ̃(t, x, ξ1) and ψ(t, x, ξ2)= ψ̃(ht, x, ξ2). The transversality condition is directly verified as follows. The
normal vectors to the two surfaces

Sφ : ξ1 7→ ∇t,xφ(t, x, ξ1)=
(
∇x φ̃(t, x, ξ1), ∂t φ̃(t, x, ξ1)

)
,

Sψ : ξ2 7→ ∇t,xψ(t, x, ξ2)=
(
∇x ψ̃(ht, x, ξ2), h∂t ψ̃(ht, x, ξ2)

)
can be written as ν1 = (η1, τ1) and ν2 = (η2, τ2) with η1, η2 ∈ Rn and τ1, τ2 ∈ R. The fact that
〈ν2, (∂

2/∂ξ ∂(x, t))ψ〉 = E0 implies that 〈η2, (∂
2/∂ξ∂x)ψ̃(ht, x, ξ2)〉 + hτ2∂t∂ξ ψ̃(ht, x, ξ2) = E0, which

implies that

η2 =−hτ2

〈
∂t∂ξ ψ̃,

[
∂2

∂ξ∂x
ψ̃

]−1〉
= O(h).

This gives that
〈ν1, ν2〉6 |τ1τ2| + O(h)6 |τ1| + O(h).
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As a result, the transversality condition (1-6) holds if h� 1 (i.e., N1� 1) and |τ1|< 1, which is the case
since τ1 =−1/

√

1+ 4|ξ |2g(x) and |ξ1|& 1 (see end of the proof of Theorem 1.2). �

Applications in PDE. The bilinear estimate (1-14) directly implies local well-posedness for 2-dimensional
cubic NLS

i∂t u+1u = |u|2u,

u(t = 0)= u0 ∈ H s(M2)
(4-7)

in X s,b
⊂ Ct H s

x spaces for all s > 1/2 and some b > 1
2 . It should be noted that local well-posedness of

(4-7) in Ct H s for s > 1
2 has already been proven in [Burq et al. 2004] using linear Strichartz estimates.

Here X s,b is the closure of C∞0 (R×M) in the norm

‖u‖X s,b =

(∫
R

∑
ν

〈τ + ν〉2b
〈ν〉s‖π̂νu(τ )‖2L2(M) dτ

)1/2

,

where the sum runs over the distinct eigenvalues of the Laplacian and πν is the projection onto the
eigenspace corresponding to the eigenvalue ν. It is worth remarking that (1-11) translates into the
following estimate for functions u, v ∈ C∞0 (R×M) satisfying u(t) = 1[N1,2N1)(

√
−1)u(t) and v(t) =

1[N2,2N2)(
√
−1)v(t):

‖uv‖L2(R×M) .min(N2, N1)
1/2
‖u‖X0,b‖v‖X0,b (4-8)

for any b > 1
2 (cf. [Burq et al. 2005a; Hani 2012]). Using this and a standard dyadic decomposition one

can prove the crucial cubic estimate that yields local well-posedness via Picard iteration (see [Burq et al.
2005a] for example).

One interesting application of Theorem 1.2 is that of proving global well-posedness of (4-7) for s < 1.
As mentioned in the introduction, the bilinear Strichartz estimate (1-12) on the time interval [0, T ]
translates into a bilinear Strichartz estimate on the rescaled manifold λM over the time interval [0, 1].
Here λM can either be viewed as the Riemmannian manifold (M, (1/λ2)g) or by embedding M into
some ambient space RN and then applying a dilation by λ to get λM . The relevant result was cited in the
introduction in Corollary 1.3: if u0, v0 ∈ L2(λM) are spectrally localized around N1 and N2 respectively,
with N2 6 N1. Then

‖ei t1λu0ei t1λv0‖L2([0,1]×λM) .3(λ
−2, λN1, λN2)‖u0‖L2(λM)‖v0‖L2(λM)

.

{
(N2/N1)

1/2
‖u0‖L2(λM)‖v0‖L2(λM) if λ� N1,

(N2/λ)
1/2
‖u0‖L2(λM)‖v0‖L2(λM) if λ. N1.

This estimate turns out to be crucial in [Hani 2012] where it is proved that (4-7) is globally well-posed
for all s > 2

3 . This generalizes, without any loss in regularity, a similar result from [Bourgain 2004] (see
also [De Silva et al. 2007]), where global well-posedness for s > 2

3 is proved for the torus T2. Global
well-posedness for s > 1 follows using conservation of energy and standard arguments. To go below the
energy regularity s = 1, the I-method of Colliander, Keel, Staffilani, Takaoka, and Tao should be used
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and most of the analysis is done on λM rather than M . As a result, the factor of 1/λ1/2 on the right side
of (1-16) in the range λ. N1 becomes crucial to get the full regularity range of s > 2

3 (see [Hani 2012]).
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