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ASYMPTOTIC DECAY FOR A ONE-DIMENSIONAL NONLINEAR WAVE
EQUATION

HANS LINDBLAD AND TERENCE TAO

We consider the asymptotic behaviour of finite energy solutions to the one-dimensional defocusing non-
linear wave equation −ut t + uxx = |u|p−1u, where p > 1. Standard energy methods guarantee global
existence, but do not directly say much about the behaviour of u(t) as t →∞. Note that in contrast
to higher-dimensional settings, solutions to the linear equation −ut t + uxx = 0 do not exhibit decay,
thus apparently ruling out perturbative methods for understanding such solutions. Nevertheless, we will
show that solutions for the nonlinear equation behave differently from the linear equation, and more
specifically that we have the average L∞ decay limT→+∞

1
T

∫ T
0 ‖u(t)‖L∞x (R) dt = 0, in sharp contrast

to the linear case. An unusual ingredient in our arguments is the classical Rademacher differentiation
theorem that asserts that Lipschitz functions are almost everywhere differentiable.

1. Introduction

Fix p > 1. We consider solutions u : R× R→ R to the one-dimensional defocusing nonlinear wave
equation

−ut t + uxx = |u|p−1u, (1)

with the finite energy initial condition

‖u(0)‖H1
x (R)
+‖ut(0)‖L2

x (R)
<∞.

Standard energy methods (using the Sobolev embedding H 1
x ⊂ L∞x ) show that the initial value problem

is locally well-posed in this energy class. Furthermore, by using the conservation of energy1

E[u] = E[u(t)] :=
∫

R

T00(t, x) dx, (2)

where T00 is the energy density

T00 :=
1
2 u2

t +
1
2 u2

x +
1

p+ 1
|u|p+1,

Lindblad is supported by NSF grant DMS-0801120. Tao is supported by NSF Research Award DMS-0649473, the NSF
Waterman award and a grant from the MacArthur Foundation.
MSC2010: 35L05.
Keywords: nonlinear wave equation.

1In order to justify energy conservation for solutions which are in the energy class, one can use standard local well-posedness
theory to approximate such solutions by classical (i.e., smooth and compactly supported) solutions (regularising the nonlinearity
|u|p−1u if necessary), derive energy conservation for the classical solutions, and then take strong limits. We omit the standard
details. More generally, we shall perform manipulations such as integration by parts on finite energy solutions as if they were
classical without any further comment.
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it is easy to show that the H 1
x × L2

x norm of u(t) does not blow up in finite time, and that the solution to
(1) can be continued globally in time.

In this paper we study the asymptotic behaviour of finite energy solutions u to (1) as t →±∞. Of
course, from the conservation of energy (2) we know that u(t) stays bounded in Ḣ 1

x (R)∩ L p+1
x (R), and

thus (by the Gagliardo–Nirenberg inequality) bounded in L∞x (R) for all time, but this does not settle the
question of whether ‖u(t)‖L∞x (R) exhibits any decay as t→±∞.

For the linear equation−ut t+uxx =0, the solutions are of course travelling waves u(t, x)= f (x+t)+
g(x− t), which do not decay along light rays x = x0± t . In particular, for any nontrivial linear solution,
‖u(t)‖L∞x (R) stays bounded away from zero. It is thus natural to ask whether the same behaviour occurs
for solutions to the nonlinear Equation (1). However, an easy energy argument shows that the behaviour
must be slightly different. Indeed, if we introduce the momentum density (or energy current)

T01 = T10 := ut ux

and the momentum current

T11 :=
1
2 u2

t +
1
2 u2

x −
1

p+ 1
, |u|p+1

we observe the conservation laws

∂t T00 = ∂x T01, (3)

∂t T01 = ∂x T11. (4)

From (3) and the fundamental theorem of calculus we have

∂t

∫
x<x0+t

T00(t, x) dx = T00(t, x0+ t)+T01(t, x0+ t)

for all x0, t ∈ R. On the other hand, from the nonnegativity of T00 we clearly have

0≤
∫

x<x0+t
T00(t, x) dx ≤ E[u].

From the fundamental theorem of calculus (and the monotone convergence theorem), we thus obtain∫
∞

−∞

T00(t, x0+ t)+T01(t, x0+ t) dt ≤ E[u]

for all x0 ∈ R. From the pointwise inequality T00 + T01 ≥
1

p+1
|u|p+1 we conclude in particular the

nonlinear decay estimate ∫
∞

−∞

|u|p+1(t, x0+ t) dt ≤ (p+ 1)E[u] (5)

for any x0 ∈ R. From reflection symmetry we also have∫
∞

−∞

|u|p+1(t, x0− t) dt ≤ (p+ 1)E[u] (6)

for any x0 ∈ R. We thus see that solutions to the nonlinear equation u must decay (on average, at least)
along any light ray x = x0±t , in sharp contrast to solutions to the linear equation. This simple calculation
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already reveals that the nonlinear equation has somewhat different asymptotic behaviour from the linear
equation, and in particular that it is highly unlikely that one can asymptotically analyse the former as a
perturbation of the latter. This is in contrast with the one-dimensional nonlinear Klein–Gordon equation,
for which the decay can be leveraged to obtain asymptotic results; see for instance [Lindblad and Soffer
2005]. Another contrast is with the local theory, which asserts that singularities for the nonlinear wave
equation propagate along the same light rays as for the linear one; see [Reed 1978].

The estimates (5), (6) imply that finite energy solutions u cannot concentrate on light rays {(t, x0± t) :
t ∈R}. However, it is a priori conceivable that such solutions might still concentrate on other worldlines
{(t, x(t)) : t ∈R}. Concentration on spacelike worldlines (in which |x ′(t)|>1) are easily ruled out by finite
speed of propagation (or by a modification of the arguments used to derive (5), (6)), but concentration
on timelike worldlines (in which |x ′(t)| < 1) are not so obviously ruled out. Nevertheless, we are able
to rule out this scenario by the following theorem, which is the main result of this paper.

Theorem 1.1 (Average L∞x decay). Let u be a finite energy solution to (1), with an upper bound E[u]≤ E
on the energy. Then

1
2T

∫ t0+T

t0−T
‖u(t)‖L∞x (R) dt ≤ cE,p(T )

for all t0 ∈R and T > 0, where cE,p :R
+
→R+ is a function depending only on the energy bound E and

the exponent p such that cE,p(t)→ 0 as t→∞. In particular, we have

lim
T→+∞

sup
t0∈R

1
2T

∫ t0+T

t0−T
‖u(t)‖L∞x (R) dt = 0.

The proof of this theorem will use energy estimates combined with a version of the Rademacher differ-
entiation theorem (or Lebesgue differentiation theorem), that Lipschitz functions are almost everywhere
differentiable. The basic idea is to observe that if u concentrates on a timelike worldline {(t, x(t)) : t ∈R},
then x should be Lipschitz, and thus mostly differentiable. This implies that u concentrates on certain
parallelograms in spacetime; we will then use energy estimates to rule out such concentration.

In principle, the decaying bound cE,p(T ) could be made explicit, but this would require a quantitative
version of the Rademacher differentiation theorem. Such results exist (see [Tao 2009] or [Tao 2008, Sec-
tion 2.4]), but they are fairly weak (involving the inverse tower exponential function log∗). Presumably
a more refined argument than the one given in this paper would give better bounds. For instance, it is
plausible to conjecture that ‖u(t)‖L∞x (R) should decay at a polynomial rate in t , at least in the perturbative
regime when u is small.

We remark that our methods do not seem to give any precise asymptotics for the solution. Of course
Theorem 1.1 indicates that the solution will not scatter to a linear solution, but it is not clear what the
solution scatters to instead, even in the perturbative regime. It may be that techniques from nonlinear
geometric optics could be useful to settle this question, but the extremely weak decay of the solution
means that it would be very difficult for these methods to be made rigorous, at least until one can improve
the results of Theorem 1.1 significantly.
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2. Energy estimates

In this section we derive the basic energy estimates needed to establish Theorem 1.1. Henceforth we fix
p and the finite energy solution u. We adopt the notation X . Y or X = O(Y ) to denote the estimate
|X | ≤CY , where C can depend on p and the energy bound E . Thus from energy conservation we obtain
the bounds ∫

R

|ut |
2(t, x)+ |ux |

2(t, x)+ |u|p+1(t, x) dx . 1 (7)

for all t .

Lemma 2.1 (Hölder continuity). For all t, x, t ′, x ′ ∈ R we have the pointwise bound

u(t, x)= O(1) (8)

and the Hölder continuity property

u(t, x)− u(t ′, x ′)= O(|t − t ′|1/2+ |x − x ′|1/2). (9)

Proof. The bound (8) follows immediately from (7) and the Gagliardo–Nirenberg inequality. Using
the bound on |ux |

2 in (7) together with the fundamental theorem of calculus and the Cauchy–Schwarz
inequality, we also have the spatial Hölder continuity bound

u(t, x)− u(t, x ′)= O(|x − x ′|1/2).

Thus to prove (9) it will suffice to show that

u(t1, x0)− u(t2, x0)= O((t2− t1)1/2) (10)

for all t2 > t1. In view of (8) we may also assume t2 = t1+ O(1).
Fix t1, t2. From (4) and the fundamental theorem of calculus we have

∂t

∫
x<x0

T01(t, x) dx = T11(t, x0);

integrating this in time and using (7) we obtain the bounds∫ t2

t1
T11(t, x0) dt = O(1).

Combining this with (8) we conclude ∫ t2

t1
ut(t, x0)

2 dt = O(1)

and (10) follows from the fundamental theorem of calculus and Cauchy–Schwarz. �

Now we prove a more advanced energy estimate.
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Proposition 2.2 (nonlinear energy decay in a parallelogram). Let T ≥ R ≥ 1, let x0, t0 ∈R, and let v ∈R

be a velocity. Then we have∫ t0+T

t0−T

∫ x0+vt+R

x0+vt−R
|u(t, x)|p+1 dx dt . R1/2T 1/2

+
T
R
. (11)

Remark 2.3. Energy conservation (7) only gives the bound of O(T ) for this integral, thus this proposi-
tion is nontrivial when T is much larger than R. A key point here is that the bounds do not blow up in
the neighbourhood of the speed of light v= 1. It may be possible to improve the right-hand side of (11),
and to also control other components of the energy, but the above bound will suffice for our purposes.

Proof. By translation invariance we can set x0 = t0 = 0. By reflection symmetry we may assume that
v ≥ 0.

Let χ : R→ R be a nonnegative bump function supported on [−2, 2] which equals 1 on [−1, 1], and
let ψ(x) :=

∫
y<x χ(y) dy be the antiderivative of χ . From (4) and integration by parts we have

∂t

∫
R

ψ
( x−vt

R

)
T01(t, x) dx =− 1

R

∫
R

χ
( x−vt

R

)(
T11(t, x)+ vT01(t, x)

)
dx;

integrating this against χ(t/T ) using (7) we conclude that∫
R

∫
R

χ
( t

T

)
χ
( x−vt

R

)(
T11(t, x)+ vT01(t, x)

)
dx dt = O(R). (12)

A similar argument using (3) instead of (4) yields∫
R

∫
R

χ
( t

T

)
χ
( x−vt

R

)(
T01(t, x)+ vT00(t, x)

)
dx dt = O(R). (13)

On the other hand, if we define the nonlinear null form

Q := (−∂t t + ∂xx)u2
=−2u2

t + 2u2
x + 2|u|p+1

then from integration by parts and (8) we have∣∣∣∣∫
R

∫
R

χ
( t

T

)
χ
( x−vt

R

)
Q(t, x) dx dt

∣∣∣∣= ∣∣∣∣∫
R

∫
R

u2(t, x)(−∂t t + ∂xx)
(
χ(

t
T
)χ(

x−vt
R

)
)

dx dt
∣∣∣∣

.
∫ 2T

−2T

∫ v+2R

v−2R

1
T 2 +

1
R2 dx dt

. R
T
+

T
R
. T

R
. (14)

Let us compare |u|p+1 against the quantities

T11+ vT01 =
1
2 u2

t + vut ux +
1
2 u2

x −
1

p+ 1
|u|p+1,

T01+ vT00 =
1
2vu2

t + ut ux +
1
2vu2

x +
v

p+ 1
|u|p+1,

Q =−2u2
t + 2u2

x + 2|u|p+1.
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We divide into three cases.

Case 1 (spacelike): v ≥ 1. In this case, we can verify the pointwise bound

1
p+ 1

|u|p+1
≤ T01+ vT00

and so (11) follows immediately from (13) (note that R = O(R1/2T 1/2)).

Case 2 (lightlike): 1− R1/2

2T 1/2 < v < 1. In this case we have the bound

v

p+ 1
|u|p+1

≤ (T01+ vT00)+ O
(

R1/2

T 1/2 T00

)
and so from (13) and (7) we have

v

p+ 1

∫
R

∫
R

χ
( t

T

)
χ
( x−vt

R

)
|u(t, x)|p+1 dt dx . R+ R1/2T 1/2

and (11) follows.

Case 3 (timelike): 0≤ v ≤ 1− R1/2

2T 1/2 . Here we use the identity

(T11+ vT01)− v(T01+ vT00)+
1− v2

4
Q = (1− v2)u2

x +
(p− 1)(1− v2)

2(p+ 1)
|u|p+1.

Taking the indicated linear combination of (12), (13), (14) and discarding (1 − v2)u2
x , which is non-

negative, we conclude that

(p− 1)(1− v2)

2(p+ 1)

∫
R

∫
R

χ
( t

T

)
χ
( x−vt

R

)
|u(t, x)|p+1 dt dx . R+ 1−v2

4
T
R

and thus (noting that 1− v2
= (1− v)(1+ v) is comparable to 1− v)∫

R

∫
R

χ
( t

T

)
χ
( x−vt

R

)
|u(t, x)|p+1 dt dx . R

1−v
+

T
R
.

Since 1− v & R1/2/T 1/2 by hypothesis, the claim follows. �

3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Suppose that this claim failed for some E, p. Carefully negating
the quantifiers, we may thus find a sequence of times Tn→∞ and tn ∈R, a δ > 0 independent of n, and
a family of solutions un which uniformly obey the energy bound E[un] ≤ E such that

1
2Tn

∫ tn+Tn

tn−Tn

‖un(t)‖L∞x (R) dt ≥ δ.

By translating each un by tn , we may normalise tn = 0.
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Let n be large. We will now allow our implied constants in the . notation to depend on δ, thus∫ Tn

−Tn

‖un(t)‖L∞(R) dt & Tn.

From this bound and (8), we now conclude that the set

{t ∈ [−Tn, Tn] : ‖un(t)‖L∞(R) & 1}

has Lebesgue measure & Tn (for suitable choices of implied constants). In particular, we can find a finite
set 1n ⊂ [−Tn, Tn] of times which are 1-separated and of cardinality

#1n & Tn

such that
‖un(t)‖L∞(R) & 1 (15)

for all t ∈1n .
For each t ∈1n , let xn(t) ∈R be a point such that |un(t, xn(t))| ≥ 1

2‖un(t)‖L∞(R). From (15), one has

|un(t, xn(t))|& 1 (16)

for all t ∈1n .
Let us say that two times t, t ′ ∈1n are spacelike if we have

|xn(t ′)− xn(t)| ≥ |t − t ′| + 1.

There is a limit as to how many spacelike pairs of times can exist:

Lemma 3.1 (finite speed of propagation). Let n be sufficiently large, and let t1, . . . , tm ∈ 1n be times
which are pairwise spacelike. Then we have m = O(1).

Proof. Without loss of generality we may assume that t1 < . . . < tm . Consider the spacetime region

� := R×R \
⋃

1≤ j≤m

{
(t, x) : t ≥ t j and |x − xn(t j )| ≤ t − t j +

1
2

}
.

Standard energy estimates reveal that∫
(t j ,x)∈�

T00(t j , x) dx +
∫
|x−xn(t j )|≤

1
2

T00(t j , x) dx ≤
∫
(t j−1,x)∈�

T00(t j−1, x) dx

for all 1 < j ≤ m, where T00 = T00,n is the energy density of un . Iterating this and then using (7), we
conclude that ∑

1< j≤m

∫
|x−xn(t j )|≤

1
2

T00(t j , x) dx . 1

and in particular that ∑
1< j≤m

∫
|x−xn(t j )|≤

1
2

|un(t j , x)|p+1 dx . 1.
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But from (16), (9) we see that ∫
|x−xn(t j )|≤

1
2

|un(t j , x)|p+1 dx & 1.

for each j , and the claim follows. �

We now use this lemma and some combinatorial arguments to extract a Lipschitz worldline.

Corollary 3.2 (existence of Lipschitz worldline). Let ε0 : (0, 1] → (0, 1] be an arbitrary function. Then
there exists a constant 0< c0 = c0(ε0) ≤ 1 with the following property: for all sufficiently large n, there
exists c0 < c < 1 (depending on n) and a subset 1′n of 1n with

#1′n ≥ cTn

such that we have the Lipschitz property

|xn(t ′)− xn(t)| ≤ |t − t ′| + ε0(c)Tn (17)

for all t, t ′ ∈1′n .

Proof. Fix ε, and let n be sufficiently large. Define the particle number of a set1 to be the largest integer
m for which one can find pairwise spacelike times t1, . . . , tm in 1. By the previous lemma, we see that
1n has particle number O(1). The key lemma is the following:

Lemma 3.3 (dichotomy). Let 1′ ⊂1n , m = O(1) and c > 0 be such that

#1′ ≥ 2cTn

and 1′ has particle number at most m. Suppose n is sufficiently large depending on c. Then at least one
of the following is true:

(i) There exists a subset 1′′ ⊂1′ of cardinality at least cTn such that (17) holds for all t, t ′ ∈1′′.

(ii) There exists a subset 1′′′ ⊂ 1′ of cardinality at least cε0(c)Tn/16 with particle number at most
m− 1.

Iterating this lemma at most O(1) times we obtain the claim.
It remains to prove the lemma. We subdivide the interval [−Tn, Tn] into intervals I of length between

ε0(c)Tn/4 and ε0(c)Tn/8. Call an interval sparse if #(1′∩I )≤cε0(c)Tn/8, and dense otherwise. Observe
that at most cTn elements of 1′ lie in sparse intervals. Thus if we let 1′′ denote the intersection of 1′

with the union of all the dense intervals, then #1′′ ≥ cTn .
If 1′′ obeys (17) then we are done. Otherwise, we can find t1, t2 ∈1′′ such that

|xn(t1)− xn(t2)|> |t1− t2| + ε0(c)Tn.

The time t1 must lie in some dense interval I . We split 1′′ ∩ I = 1′′′1 ∪1
′′′

2 , where 1′′′1 consists of all
t ∈1′′∩ I with |xn(t)− xn(t1)| ≤ ε0(c)Tn/2, and 1′′′2 consists of the remainder of 1′′∩ I . Observe from
the triangle inequality (if n is sufficiently large depending on c) that all times in 1′′′1 are spacelike with
respect to t2, and similarly all times in1′′′2 are spacelike with respect to t1. Thus each of1′′′1 and1′′′2 can
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have particle number at most m−1. On the other hand, by the pigeonhole principle, one of 1′′′1 and 1′′′2
must have cardinality at least 1

2 #(1′′ ∩ I ), which is at least cε0(c)Tn/16 since I is dense. The lemma,
and hence the corollary, follows. �

Let ε0 : (0, 1] → (0, 1] to be a function to be chosen later (one should think of ε0(c) as going to zero
very rapidly as c→ 0). For any sufficiently large n, let c0, c and 1′n be as in Corollary 3.2.

Define the function x ′n : [−Tn, Tn] → R by

x ′n(t) := inf
t ′∈1′n

(xn(t ′)− |t − t ′|).

One easily verifies that x ′n is Lipschitz with constant at most 1. From (17) we also see that

|xn(t)− x ′n(t)| ≤ ε0(c)Tn (18)

for all t ∈1′n .
We now apply a quantitative version of the Rademacher (or Lebesgue) differentiation theorem to

ensure that x ′n(t) is approximately differentiable on a large interval.

Proposition 3.4 (quantitative Rademacher differentiation theorem). Let ε1 : (0, 1]→ (0, 1] be a function,
and let δ>0. Then there exists r1=r1(ε1, δ)>0 with the following property: given any Lipschitz function
f : [−1, 1] → R with Lipschitz constant at most 1, there exists r1 ≤ r ≤ 1 such that the set{
x ∈ [−1, 1] : there exists L ∈ R such that

∣∣∣∣ f (y)− f (x)
y−x

− L
∣∣∣∣≤ δ

whenever y ∈ [−1, 1] is such that ε1(r)≤ |y− x | ≤ r
}

(which, intuitively, is the set where f is approximately differentiable) has Lebesgue measure at least
2− δ.

Proof. We give an indirect “compactness and contradiction” proof. Suppose for contradiction that the
claim failed. Negating the quantifiers carefully, this means that there exists a function ε1 : (0, 1]→ (0, 1],
a δ > 0, a sequence rn→ 0, and a sequence fn : [0, 1]→R of Lipschitz functions with constant at most 1,
such that the sets{

x ∈ [−1, 1] : there exists L ∈ R such that
∣∣∣∣ fn(y)− fn(x)

y−x
− L

∣∣∣∣≤ δ
whenever y ∈ [−1, 1] is such that ε1(r)≤ |y− x | ≤ r

}
have Lebesgue measure at most 2− δ for all n and all rn ≤ r ≤ 1.

By translating each fn by a constant if necessary, we may assume that fn(0) = 0. The Lipschitz
functions then form a bounded equicontinuous family on the compact domain [−1, 1], and so by the
Arzelà–Ascoli theorem we may (after passing to a subsequence if necessary) assume that the fn converge
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uniformly to a limit f . We conclude that the set{
x ∈ [−1, 1] : there exists L ∈ R such that

∣∣∣∣ f (y)− f (x)
y−x

− L
∣∣∣∣≤ δ/2

whenever y ∈ [−1, 1] is such that ε1(r)≤ |y− x | ≤ r
}

has Lebesgue measure at most 2− δ for all 0 < r ≤ 1. On the other hand, f is clearly Lipschitz with
constant at most 1, and so by the Lipschitz differentiation theorem, f is differentiable almost everywhere.
In particular, the set

∞⋃
m=1

{
x ∈ [−1, 1] : there exists L ∈ R such that

∣∣∣∣ f (y)− f (x)
y−x

− L
∣∣∣∣≤ δ/2

whenever y ∈ [−1, 1] is such that 0≤ |y− x | ≤ 2−m
}

has full measure in [−1, 1]. By the monotone convergence theorem, this implies that one of the sets in
this union has measure greater than 2− δ. But this contradicts the previous claim. �

Remark 3.5. It is also possible to give a more direct “martingale”2 or “multiscale analysis” proof of
this proposition, which we sketch as follows. For each n ≥ 1, let fn be the piecewise linear continuous
function which agrees with f on multiples of 2−n , and is linear between such intervals. One easily
verifies that the functions fn+1− fn are pairwise orthogonal in the Hilbert space Ḣ 1([−1, 1]), and thus
by Bessel’s inequality we have

∞∑
n=1

‖ fn+1− fn‖
2
Ḣ1([−1,1]) ≤ 2.

Now let F :N→N be a function to be chosen later, and let σ > 0 be a small quantity to be chosen later.
From the pigeonhole principle, one can find 1≤ n0 ≤ C(F, σ ) such that

F(n0)∑
n=n0

‖ fn+1− fn‖
2
Ḣ1([−1,1]) ≤ σ.

If one then sets r := σ2−n0 , one can verify all the required claims if σ is chosen sufficiently small
depending on δ, and F is sufficiently rapidly growing depending on δ, σ , and ε0; the quantity L can
basically be taken to be f ′n(x). We omit the details, but see [Tao 2009] for some similar arguments in
this spirit.

Let δ > 0 be a small quantity (depending on c) to be chosen later, and let ε1 : (0, 1] → (0, 1] be the
function ε1(r) := δr . We let n be sufficiently large, and apply the above proposition to the Lipschitz
function f = fn : [−1, 1]→R defined by f (y) := 1/Tnx ′n(Tn y). We conclude that there exists r1= r1(δ)

2Indeed, the arguments here are closely related to some classical martingale inequalities of Doob [1953] and Lépingle
[1976].
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and r1 < r < 1 (depending on δ and n) such that the set{
x ∈ [−Tn, Tn] : there exists L ∈ R such that

∣∣∣∣ x ′n(t ′)−x ′n(t)
t ′−t

− L
∣∣∣∣≤ δ

whenever y ∈ [−Tn, Tn] is such that δrTn ≤ |t − t ′| ≤ rTn

}
has measure at least (2− δ)Tn .

On the other hand, the set 1′n has cardinality at least cTn . As in the proof of Lemma 3.3, we partition
[−Tn, Tn] into intervals I of length between rTn/4 and rTn/8, and let 1′′n be the portion of 1′n which
are contained inside those intervals I which are dense in the sense that they contain at least crTn/16
elements of 1′n . It is easy to see that 1′′n has cardinality at least cTn/2. Also, 1′′n is 1-separated.

Thus, if we let δ = δ(c) be sufficiently small compared to c, we can find t∗ ∈ [−Tn, Tn] within a
distance 1 of 1′′n and v ∈ R such that∣∣∣∣ x ′n(t ′)− x ′n(t∗)

t ′− t∗
− v

∣∣∣∣≤ δ whenever t ′ ∈ [−Tn, Tn] is such that δrTn ≤ |t∗− t ′| ≤ rTn.

Let t0 be an element of1′′n within 1 of t∗. Applying (18), the triangle inequality, and the Lipschitz nature
of x ′n , we conclude that

xn(t1)= xn(t0)+ v(t1− t0)+ O(δ|t1− t0|)+ O(ε0(c)Tn)+ O(1)

whenever t1 ∈1′′n is such that δTn + 1 ≤ |t1− t0| ≤ rTn − 1. Applying the Lipschitz property again, we
conclude that

xn(t1)= xn(t0)+ v(t1− t0)+ O(δrTn)+ O(ε0(c)Tn)+ O(1)

for all t1 ∈1′′n with |t1− t0| ≤ rTn−1. If we set ε0(c) := δ(c)r1(δ(c)), and assume n is sufficiently large
depending on all other parameters, we thus have

xn(t1)= xn(t0)+ v(t1− t0)+ O(δrTn)

whenever t1 ∈ 1′′n and |t1− t0| ≤ rTn/4. One should view this as an assertion that xn is approximately
differentiable near t0.

By definition of 1′′n , we know that t0 is contained in an interval I of length at most rTn/4 which
contains & crTn elements of 1n . We thus see that the parallelogram

P := {(t, x) : t ∈ I, |x − xn(t0)− v(t − t0)| ≤ R/2}

contains at least & crTn points of the form (t, xn(t)) with t ∈1n , where R is a quantity of size ∼ δrTn .
On the other hand, by definition of 1n , we have |un(t, x(t))| & 1 for all t ∈ 1n . Applying (9), we
conclude that ∫

P
|un(t, x)|p+1 dt dx & crTn.
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On the other hand, from Proposition 2.2 we have∫
P
|un(t, x)|p+1 dt dx . R1/2(rTn)

1/2
+

rTn

R
. δ1/2rTn + δ

−1.

If we set δ to be sufficiently small depending on c, and let n be sufficiently large depending on all other
parameters, we obtain a contradiction as desired. This completes the proof of Theorem 1.1.
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