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ON SOME MICROLOCAL PROPERTIES OF THE RANGE OF A
PSEUDODIFFERENTIAL OPERATOR OF PRINCIPAL TYPE

JENS WITTSTEN

We obtain microlocal analogues of results by L. Hormander about inclusion relations between the ranges
of first order differential operators with coefficients in C* that fail to be locally solvable. Using similar
techniques, we study the properties of the range of classical pseudodifferential operators of principal
type that fail to satisfy condition (¥).

1. Introduction

We shall study the properties of the range of a classical pseudodifferential operator P € ¥/'(X) that is
not locally solvable, where X is a C° manifold of dimension n. Here, classical means that the total
symbol of P is an asymptotic sum of homogeneous terms,

UP(X’S) :pm(x7$)+pm71(xag)+' )

where py is homogeneous of degree k in £ and p,, denotes the principal symbol of P. When no confusion
can occur we will simply refer to op as the symbol of P. We shall restrict our study to operators of
principal type, which means that the Hamilton vector field H),, and the radial vector field are linearly
independent when p,, = 0. We shall also assume that all operators are properly supported, that is, both
projections from the support of the kernel in X x X to X are proper maps. For such operators, local
solvability at a compact set M C X means that for every f in a subspace of C°°(X) of finite codimension
there is a distribution # in X such that

Pu=f (1-1)

in a neighborhood of M. We can also define microlocal solvability at a set in the cosphere bundle, or
equivalently, at a conic set in 7*(X) \ 0, the cotangent bundle of X with the zero section removed. By
a conic set K C T*(X) ~. 0 we mean a set that is conic in the fiber, that is,

(x,&)e K implies (x,A&)e K forall A > 0.

If, in addition, 7, (K) is compact in X, where 7, : T*(X) — X is the projection, then K is said to be
compactly based. Thus, we say that P is solvable at the compactly based cone K C T*(X) \ 0 if there

Research supported in part by the Swedish Research Council.
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is an integer N such that for every f € H(IIO\,C) (X) there exists a u € 9'(X) with KNWF(Pu— f) =g
(see Definition 2.1).

The famous example due to Hans Lewy [1957] of the existence of functions f € C*°(R?) such that
the equation

Ox U +10x,u —2i(x1 +ix2)0,u = f

does not have any solution u € %'(£2) in any open nonvoid subset £2 C R? contradicted the assumption
that partial differential equations with smooth coefficients behave as analytic partial differential equa-
tions, for which existence of analytic solutions is guaranteed by the Cauchy—Kovalevsky theorem. This
example led to an extension due to Hormander [1960b; 1960a] in the sense of a necessary condition
for a differential equation P(x, D)u = f to have a solution locally for every f € C*. In fact (see
[Hormander 1963, Theorem 6.1.1]), if £2 is an open set in R", and P is a differential operator of order m
with coefficients in C*°(£2) such that the differential equation P(x, D)u = f has a solution u € %'(£2)
forevery f € C3°(82), then {p,,, p,} must vanish at every point (x, &) € £2 x R" for which p,,(x, &) =0,
where

{a.b} = 0¢,ad.b—0d,,adb
j=I
denotes the Poisson bracket.

In addition to his example, Lewy conjectured that differential operators that fail to have local solutions
are essentially uniquely determined by the range. Later Hormander [1963, Chapter 6.2] proved that if P
and Q are two first order differential operators with coefficients in C*°(£2) and in C'(£2), respectively,
such that the equation P (x, D)u = Q(x, D) f has a solution u € &'(£2) for every f € C;°(£2), and x is
a point in £2 such that

p1(x,8§) =0 and {p1, p1}(x,8)#0 (1-2)

for some & € R", then there is a constant p such that (at the fixed point x)
'‘O(x, D) = u'P(x, D),

where 'Q and 'P are the formal adjoints of Q and P. If (1-2) holds for a dense set of points x in £2 and
if the coefficients of p;(x, D) do not vanish simultaneously in 2, then there is a function u € C 1(82)
such that

Q(x,D)u = P(x, D)(pnu). (1-3)

Furthermore, for such an operator P and function u, the equation P (x, D)u = P (x, D) f has a solution
u € 9'(£2) forevery f e C§°(£2) if and only if pi(x, D)u =0.

Hormander also showed that this result extends to operators of higher order in the following way (see
[1963, Theorem 6.2.4]). If P is a differential operator of order m with coefficients in C°°(£2) and p is
a function in C™(£2) such that the equation

Px,Dyu=uPx,D)f
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has a solution u € 9'(£2) for every f € C{°(£2), then it follows that

D O P, E)d u(x) =0

j=1
for all x € £2 and £ € R" such that

{Pm, Pm}(x,8) #0 and  py(x, &) =0. (1-4)

This means that the derivative of i must vanish along every bicharacteristic element with initial data
(x, &) satisfying (1-4), that is, giving rise to nonexistence of solutions.

If P is a pseudodifferential operator such that P is microlocally elliptic near (xg, &), then there exists
a microlocal inverse, called a parametrix P~! of P, such that in a conic neighborhood of (x¢, &) we
have PP~! = P~! P = Identity modulo smoothing operators. P is then trivially seen to be microlocally
solvable near (xo, &), and for any pseudodifferential operator Q we can write Q = PP 'Q + R =
PE + R, where R is a smoothing operator. When the range of Q is microlocally contained in the range
of P, we will show the existence of this type of representation for Q in the case when P is a nonsolvable
pseudodifferential operator of principal type, although we will have to content ourselves with a weaker
statement concerning the Taylor coefficients of the symbol of the operator R (see Theorem 2.19 for the
precise formulation of the result). Note that when P is solvable but nonelliptic we cannot hope to obtain
such a representation in general; see the remark on page 440.

For pseudodifferential operators of principal type, Hormander [1985b] proved that local solvability in
the sense of (1-1) implies that M has an open neighborhood Y in X where p,, satisfies condition (¥),
which means that

Imap,, does not change sign from — to + along the oriented bicharacteristics of Reap,, (1-5)

over Y for any 0 # a € C*°(T*(Y) ~ 0). The oriented bicharacteristics are the positive flow-outs of the
Hamilton vector field Hgeqp, on Reap,, = 0. The proof relies on an idea due to Moyer [1978], and
uses the fact that condition (1-5) is invariant under multiplication of p, with nonvanishing factors, and
conjugation of P with elliptic Fourier integral operators.

Rather recently Dencker [2006] proved that condition (¥) is also sufficient for local and microlocal
solvability for operators of principal type. To get local solvability at a point xo, Dencker assumed the
strong form of the nontrapping condition at x,

pm =0 implies 0z py #0. (1-6)

This was the original condition for principal type of Nirenberg and Treves [1970a; 1970b; 1971], which is
always obtainable microlocally after a canonical transformation. Thus, we shall study pseudodifferential
operators that fail to satisfy condition (¥) in place of the condition given by (1-4), and show that such
operators are, in analogue with the inclusion relations between the ranges of differential operators that
fail to be locally solvable, essentially uniquely determined by the range. However, even though (1-4) is a
microlocal condition, we get the mentioned local results for differential operators because of analyticity
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in & of the corresponding symbol. Since this is not generally true for pseudodifferential operators, our
results will be inherently microlocal. We will combine the techniques used in [Hérmander 1963] to prove
the inclusion relations for differential operators with the approach used in [Hormander 1985b] to prove
the necessity of condition (¥) for local solvability of pseudodifferential operators of principal type.

It is possible to extend these results to certain systems of pseudodifferential operators, which will be
addressed in a forthcoming joint paper with Nils Dencker.

2. Nonsolvable operators of principal type

Let X be a C* manifold of dimension n. In what follows, C will be taken to be a new constant every
time unless stated otherwise. We let N ={0, 1,2, ...}, and if « € N" is a multiindex o = (a7, ..., ay),
we let

¥ _ D% ... D%
DY =D ...D

Xp ?

where D, = —id,;,. We shall also employ the standard notation féf)) (x,&) =0y 85 f(x, &) for multi-
indices «, B.

In this section we will follow the outline of [Hormander 1985b, Chapter 26, Section 4]. Recall that
the Sobolev space H(;)(X) for s € R is a local space, that is, if ¢ € C5°(X) and u € H;(X), then

ou € H)(X), and the corresponding operator of multiplication is continuous. Thus we can define
H(IS)C(X) ={u e D' (X):¢u e Hy (X) forall ¢ € C3°(X)}.
This is a Fréchet space, and its dual with respect to the inner product on L? is

HZWP(X) = H%, (X) N€'(X).

Definition 2.1. If K C 7*(X) \ 0 is a compactly based cone, we shall say that the range of Q € ¥['(X)
is microlocally contained in the range of P € lIIC'i (X) at K if there exists an integer N such that for every
[ € HS(X), there exists a u € 9'(X) with WF(Pu— Qf)NK = 2.

Ifle lI/C(f(X ) is the identity on X, we obtain from Definition 2.1 the definition of microlocal solvability
for a pseudodifferential operator (see [Hormander 1985b, Definition 26.4.3]) by setting Q = I. Thus,
the range of the identity is microlocally contained in the range of P at K if and only if P is microlocally
solvable at K. Note also that if P and Q satisfy Definition 2.1 for some integer N, then due to the
inclusion

HYX) CHYX) ifs<t,

the statement also holds for any integer N’ > N. Hence N can always be assumed to be positive.
Furthermore, the property is preserved if Q is composed with a properly supported pseudodifferential
operator Q) € lI/C’I”, (X) from the right. Indeed, let g be an arbitrary function in H(IX,C +m,)(X ). Then
f = Qig € H$ (X) since the map

Q1: HY(X) = H ., (X)

(s) (s—m
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is continuous for every s € R, so by Definition 2.1 there exists a u € @' (X) with WF(Pu— Qf)NK = &.
Hence the range of Q O, is microlocally contained in the range of P at K with the integer N replaced
by N +m'.

The property given by Definition 2.1 is also preserved under composition of both P and Q with a
properly supported pseudodifferential operator from the left. This follows immediately from the fact that
properly supported pseudodifferential operators are microlocal, that is,

WF(Au) C WF(u) NWF(A) for u € 9'(X).

Remark. In Definition 2.1 we may always assume that f € H(C f,r)np(X ) and u € ¢’(X) when considering

a fixed cone K. In fact, assume
Of =Pu+g,

where f € H(IR,C)(X) and u, g € 9'(X) with WF(g)NK = &, and let Y € X satisfy K C T*(Y) ~ 0. (We
write Y € X when Y is compact and contained in X.) Since P and Q are properly supported we can find
Zi1,ZyC Xsuchthat Pv =0in Y if v=01in Z;,and Qv=0in Y if v =0 in Z,. We may of course
assume that ¥ € Z; for j =1, 2. Fix ¢; € C5°(X) with ¢; =1 on Z;. Then we have Pu = P (¢ u) and
Of =Q(f)inY, so

G=WF(Qf — Pu)NK =WF(Q(¢2f) — P(¢1u)) N K

where ¢iu and ¢, f have compact support. Hence we may assume that u € €'(X) and f € H(c ]:),r)np(X )=

H(l}’vc)(X) N¢€’(X) to begin with. Note that this also implies g = Qf — Pu € €¢/(X) since P and Q are
properly supported.

The following easy example will prove useful when discussing inclusion relations between the ranges
of solvable but nonelliptic operators.

Example 2.2. If X ¢ R” is open, and K C T*(X) ~\ 0 is a compactly based cone, then the range of
D| = —i0d/0x; is microlocally contained in the range of D, at K. In fact, this is trivially true since both
operators are surjective @'(X) — 9'(X)/C*(X). To see that for example D is surjective, we note that
by the remark on page 427 it suffices to show that there exists a number N € Z such that the equation
Dyu = f has a solution u € 9'(X) for every f € H{y)" (X) = H{§, (X) N€'(X). By [Hormander 1983b,
Theorem 10.3.1] this is satisfied for every N € Z if u € H¢ )(X) is given by E x f, where E is the

(N+1
regular fundamental solution of D;.

Just as the microlocal solvability of a pseudodifferential operator P gives an a priori estimate for the
adjoint P*, we have the following result for operators satisfying Definition 2.1.

Lemma 2.3. Let K C T*(X)\0 be a compactly based cone. Let Q € W[ (X) and P € Wclj (X) be properly
supported pseudodifferential operators such that the range of Q is microlocally contained in the range
of Pat K. If Y € X satisfies K C T*(Y) and if N is the integer in Definition 2.1, then for every positive
integer k we can find a constant C, a positive integer v and a properly supported pseudodifferential
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operator A with WF(A) N K = @ such that

10" vl —ny) < CUP* vIlwy + IVl (—N—k—n) + | AV (0)) (2-1)
forallve Cgo(Y).

Since (2-1) holds for any «, it is actually superfluous to include the dimension n in the norm || v||(—n—x—n)-
However, for our purposes, it turns out that this is the most convenient formulation.

Proof. We shall essentially adapt the proof of [Hormander 1985b, Lemma 26.4.5]. Let || - ||(s) denote

(c;;mp (X) that defines the topology in H(‘;)(M ) = Hg;’)c(X ) N€' (M) for every compact set

M C X. (The reason we change notation from H(CS(;mp(M ) to H(CS)(M ) when M is compact is to signify
that H("’ y(M) is a Hilbert space for each fixed compact set M.) Let Y € Z € X, and take x € Coo(X)

N

anorm in H

with supp x = Z to be a real-valued cutoff function identically equal to 1 in a neighborhood of Y. Then
x0Of € H(CN_m)(Z) for all f € H(C:,r)np(X ) since Q is properly supported, and we claim that for fixed
fe H(C :,r)np(X ) we have for some C, v and A as in the statement of the lemma

|(x Of I < CUIP* VIl w) + VIl (~N—k—n) + [[AV]I0)) (2-2)

for all v e C§°(Y). Indeed, by hypothesis and the remark on page 427 we can find « and g in €¢’(X) with
WF(g) N K = @ such that

xOf=0f-(10-x)0f =Put+g—(1-x)0f.
Since K € T*(Y) and x = 1 near ¥ we get WF((1 — x)Qf)NK = &, so x Of = Pu + g for some
g € €¢/(X) with WF(g) N K = @&. Thus

(xOf,v) = (u, P*v)+(g,v) for ve Cy(Y).

Now choose properly supported pseudodifferential operators B; and B, of order O with I = B; + B»
and WF(B)) N WF(g) = @ and WF(B;) N K = &, which is possible since WF(g) N K = &. Since
g €€ (X) and B; : €'(X) — €¢/(X) is continuous and microlocal we get B1g € C;°(X), so (B;g, v) can
be estimated by C||v|[(—n—kx—n). Also, g € H(lﬂcm (X) for some n > 0 so if B is properly supported and
elliptic of order u, and B" € l,I/CT”“(X ) is a properly supported parametrix of B, then

Bjv = B'BBjv+ LBjv, (2-3)
where L € ¥ ~°°(X) and both B" and L are continuous H(CS(;mp(X) — H&Ti)(X). Hence

|(B2g, v)| < Cl|B3vll() < CUIBBvll0) + I B5 vl 0)),

and if we apply the identity (2-3) to || B3 v|l(0), B3 vl(—u). - - - sufficiently many times, and then recall
that BJ is properly supported and of order 0, we obtain

|(B2g. v)| = CIBB3 vl 0) + IVl (~N—r—-m))-

Since we chose B to be properly supported this gives (2-2) with A = BB].
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For fixed «, suppose V is the space C3°(Y) equipped with the topology defined by the seminorms
lvll(=N=k=n)> IP*V|l() for v =1,2,..., and ||Av| (9, where A is a properly supported pseudodiffer-
ential operator with K N WF(A) = @. It suffices to use a countable sequence A, Aj, ..., where A, is
noncharacteristic of order v in a set that increases to (7*(X) \0) \. K as v — co. Thus V is a metrizable
space. The sesquilinear form (x Q f, v) in the product of the Hilbert space H(CN_m) (Z) and the metrizable
space V is obviously continuous in y Qf for fixed v, and by (2-2) it is also continuous in v for fixed f.
Hence it is continuous, which means that for some v and C

|(x @, ) = CNOS lw—m) (1P VIl w) + IVl (=N=k—n) + AV ][ (0))

comp comp

for all f € Hfl(\}r)np(X) and v € C3°(Y). Now Q is continuous from H(N) (X) to H(me)(X) so we have
1Of Il (n—m) < CIl fllny- Since x =1 near Y and (x Q)* = Q™ x, this yields the estimate

I(fs @V = ClLfllewmy NPl ) + 0l (=N —c—m) + AV 0)- (2-4)

For v € C3°(Y) and Q™ properly supported we have Q*v € C3°(X), and therefore also Q*v € H(lﬂCN)(X ).
Viewing Q*v as a functional on H(c f,r)np (X), the dual of H(lﬂcN)(X ) with respect to the standard inner

comp

product on L?, we obtain (2-1) after taking the supremum over all f € H " (X) with || fllovy = 1. O

We will need the following analogue of [Hormander 1985b, Proposition 26.4.4]. Recall that 3¢ :
T*(Y) ~ 0 — T*(X) ~ 0 is a canonical transformation if and only if its graph Cs in the product
(T*(X)N0) x (T*(Y)\0) is Lagrangian with respect to the difference oy — oy of the symplectic forms
of T*(X) and T*(Y) lifted to T*(X) x T*(Y) = T*(X x Y). This differs in sign from the symplectic
form ox 4+ oy of T*(X x Y) so it is the twisted graph

C§€ = {(X, S’ Y, _77) . (X, Sa Y, 77) € C%}’
which is Lagrangian with respect to the standard symplectic structure in 7*(X x Y).

Proposition 2.4. Let K C T*(X) ~\ 0 and K' C T*(Y) \ 0 be compactly based cones and let x be a
homogeneous symplectomorphism from a conic neighborhood of K’ to one of K such that x(K') = K.
Let A € I’"’(X xY, I'")and B € I’””(Y x X, ('Y, where I is the graph of x, and assume that A and
B are properly supported and noncharacteristic at the restriction of the graphs of x and x ' to K’ and to
K respectively, while WF'(A) and WF'(B) are contained in small conic neighborhoods. Then the range
of the pseudodifferential operator Q in X is microlocally contained in the range of the pseudodifferential
operator P in X at K if and only if the range of the pseudodifferential operator BQ A in Y is microlocally
contained in the range of the pseudodifferential operator BPA in Y at K'.

Proof. Choose Ay € I™™ (X x Y, I'"yand By € I 7™ (Y x X, (I'"1)") properly supported such that
K'NWF(BA, —I)= g, KNWFAB—-1)=2,
K'NWF(BIA-1I)=2, KNWF(AB,—1)=0.

Assume that the range of Q is microlocally contained in the range of P at K and choose N as in

Definition 2.1. Let g € H(ll‘(,c+m/)(Y) and set f = Ag € H(IX,C)(X). Then we can find u € 9'(X) such that
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KNWF(Pu— Qf)=a. Letv= Bju €% (Y). Then
WF(Av —u) = WF((AB1 — u)

does not meet K, so K N WF(PAv — Qf) = &. Recalling that f = Ag this implies
K'NWF(BPAv— BQAg) =&,

so the range of BQ A is microlocally contained in the range of BP A at K’. Conversely, if the range of
B QA is microlocally contained in the range of BP A at K, it follows that the range of A|jBQAB; is
microlocally contained in the range of AjBPAB; at K. Since

KNWF(A1BPABiju—A1BQABf)=KNWF(Pu— Qf),

this means that the range of Q is microlocally contained in the range of P at K, which proves the
proposition. O

Before we can state our main theorem, we need to study the geometric situation that occurs when p
fails to satisfy condition (¥). Recall that by [Hérmander 1985b, Theorem 26.4.12] we may always
assume that the nonvanishing factor in condition (1-5) is a homogeneous function. We begin with a
lemma concerning a reduction of the general case.

Lemma 2.5. Let p and g be homogeneous smooth functions on T*(X)\0, and let t — y(t), fora <t <b,
be a bicharacteristic interval of Re gp such that q(y(t)) #0 fora <t <b. If

Imgp(y(a)) <0 <Imgp(y(b)), (2-5)
then there exists a proper subinterval [a’, b'] C [a, b], possibly reduced to a point, such that
(i) Imgp(y(®)) =0 fora" <t < ¥,
(ii) for every ¢ > 0 there exista' — e < s_ < a’ and b’ < sy < b’ + ¢ such that Imgp(y(s_)) <0 <
Imgp(y(s4)).
If y(¢) is defined for a <t < b we shall in the sequel say that Im gp changes sign from — to + on

y if (2-5) holds. If y|(» is the restriction of y to [a’, b'] and (i) and (ii) hold we shall say that Imgp
strongly changes sign from — to 4+ on y|iz p.

Proof. 1t suffices to regard the case thatg =1, X =R", p is homogeneous of degree 1 with Re p = ¢,
and the bicharacteristic of Re p is given by

a<x1<b, xX'=@2,....,x,)=0, &=¢,. (2-6)

Here ¢, = (0,...,0,1) € R"?, and we shall in what follows write & in place of ¢/,. The proof of this
fact is taken from [Hormander 1985b, page 97] and is given here for the purpose of reference later, in
particular in connection with Definition 2.11 below.

Choose a pseudodifferential operator Q with principal symbol g. If we let P; = Q P, then the principal
symbol of Pj is p; = gp so Im p; changes sign from — to + on the bicharacteristic y of Re p;. Now
choose Q; to be of order 1 — degree P; with positive, homogeneous principal symbol. If p, is the
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principal symbol of P, = Q| Py, it follows that Re p; and Re p, have the same bicharacteristics, including
orientation, and since p, is homogeneous of degree 1 these can be considered to be curves on the cosphere
bundle $*(X). Moreover, Im p; and Im p, have the same sign, so Im p; changes sign from — to + along
y C S*(X). If yis aclosed curve on S*(X) we can pick an arc that is not closed where the sign change still
occurs. If we assume this to be done, then [Hérmander 1985b, Proposition 26.1.6] states that there exists
a C™ homogeneous canonical transformation x from an open conic neighborhood of (2-6) to one of y
such that x (x1, 0, &,) = y(x1) and x*(Re py) = £;. Since the Hamilton field is symplectically invariant it
follows that the equations of a bicharacteristic are invariant under the action of canonical transformations,
that is, ¥ is a bicharacteristic of x*(Re p,) if and only if x () is a bicharacteristic of Re p,. This proves
the claim.
In accordance with the notation in [Hérmander 1985b, page 97], let (x’, &) = (0, & 9) and consider

L(0, 50) =inf{t —s:a<s<t<b, Imp(s,0,¢,) <0<Imp(t,0,e,)}.

For every small § > O there exist ss and #5 such that a < s5 <5 <b, Im p(ss,0, ¢,) <0 <Im p(t5, 0, &)
and 15 — s5 < L(0, %) + 8. Choose a sequence 8; — 0 such that the limits ¢’ = lim s5; and b =lim 1s;
exist. Then b’ —a’ = L(0, £°) and in view of (2-5) we have a < @’ < b’ < b by continuity. Moreover,
Im p(z,0,¢&,) =0 for a’ <t <b'. This is clear if a’ = b’. If on the other hand Im p(z, 0, ¢,) is, say,
strictly positive for some a’ <t < b/, then L(0, £%) <t — Ss; —> 1 — a’ < b —da’, acontradiction. Thus
() holds.

To prove (ii), let ¢ > 0. After possibly reducing to a subsequence we may assume that the sequences
{s5;} and {zs,} given above are monotone increasing and decreasing, respectively. It then follows by (i)
that s5;, < a’ < b’ <15, for all j. Since s5;, — a’ and 5, — b" we can choose j so thata’ —& < 55, < a’
and b’ < Is; < b’ + ¢. By construction we have Im p(ss;, 0,8;,) <0 <Im p(ts;, 0, &,). This completes
the proof. O

Although it will not be needed here, we note that if [a’, b'] is the interval given by Lemma 2.5 and
a’ < b/, then in addition to (i) and (ii) we also have

(iii) there exists a § > 0 such that Imgp(y(s)) <0 <Imgp(y()) foralla’—8 <s <a’ and b’ <t < b'+86.

Indeed, the infimum L (0, £°) = b’ — a’ would otherwise satisfy L(0, £%) < 8 for every & in view of (ii),
which is a contradiction when a’ < b'.
We next recall the definition of a one-dimensional bicharacteristic.

Definition 2.6. A one-dimensional bicharacteristic of the pseudodifferential operator with homogeneous
principal symbol p isa C! map y: I — T*(X) . 0, where I is an interval on R, such that

1) p(y@))=0fortel,
() 0#yY' () =c®)Hy(y()) ift €I
for some continuous function ¢ : I — C.

Let P be an operator of principal type on a C* manifold X with principal symbol p, and suppose p
fails to satisfy condition (¥) in X. By (1-5) there is a function ¢ in C*°(T*(X) . 0) such that Imgp
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changes sign from — to + on a bicharacteristic y of Re gp, where g # 0. As can be seen in [Hormander
1985b, pages 96-97], we can then find a compact one-dimensional bicharacteristic interval I" C y or a
characteristic point I” € y such that the sign change occurs on bicharacteristics of Re gp arbitrarily close
to I'. What we mean by this will be clear from the following discussion, although we will not use this
terminology in the sequel. By the proof of Lemma 2.5 it suffices to regard the case thatg =1, X =R",
p is homogeneous of degree 1 with Re p = &;, and the bicharacteristic of Re p is given by (2-6).

We shall now study a slightly more general situation is some detail. If y = I x {wg}, where I =[a, b],
we shall by |y| denote the usual arc length in R>", so that |y| = b — a. Furthermore, we will assume
that all curves are bicharacteristics of Re p = &, that is, wy = (x/, 0, &’) € R~ We owe parts of this
exposition to Nils Dencker.

Lemma 2.7. Assume that Im p strongly changes sign from — to + on y = |a, b] x {wo}. Then for any
8 > 0 there exist e >0, a—8 <s_ <aand b < sy < b+ 6§ such that £1Im p(s+, w) > 0 for any
|lw —wp| < e.

Proof. Since t — Im p(¢, wp) strongly changes sign on [a, b] we can find s4 satisfying the conditions
so that +1Im p(sy, wp) > 0. By continuity we can find ex > 0 so that &Im p(s+, w) > 0 for any
|w — wo| < €+. The lemma now follows if we take & = min(e_, ). O

Definition 2.8. Let y=[a, b] x{wo} and y; =[a;, b;] x {w;}. If liminf; . a; >a, lim SUP; 00 bj<b
and lim;_,, w; = wo, then we shall write y; --» y as j — oo. If in addition lim; ., a; = a and
lim;_, o, b; = b then we shall write y; — y as j — oo.

Definition 2.9. If y is a bicharacteristic of Re p =& and there exists a sequence {y;} of bicharacteristics
of Re p such that Im p strongly changes sign from — to + on y; for all j and y; --» y as j — 00, we
set

L,(y) = inf{liminf|y;|:y; --»y as j — oo}, 2-7)
{yj} Jj—o0

where the infimum is taken over all such sequences. We shall write L,(y) > 0 to signify the existence
of such a sequence {y;}.

Remark. The definition of L ,(y) corresponds to what is denoted by L in [Hormander 1985b, page 97],
when y = [a, b] x {wp} is given by (2-6) and

Im p(a, wy) <0 < Im p(b, wy). (2-8)

To prove this claim, we begin by showing that L ,(y) < Ly, after having properly defined L. To this
end, let 7 = [a, b] x {} be a bicharacteristic of Re p such that Im p changes sign on %. For w close to
wo we set

Ly(y,w)y=inf{t —s:a<s <t < b, Imp(a, w) <0< Imp(l;, w)}.

(Using the notation in [Hormander 1985b, page 97] we would have &£,(y, w) = L(x",§') if w =
(x’,0,&").) Then
Lo =liminf & ,(y, w).
w—w(o
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By an adaptation of the arguments in [Hormander 1985b, page 97] it follows from the definition of Lg
that we can find a sequence {y;} of bicharacteristics of Re p with y; =[a;, b;] x {w;} such that

Imp(aj,w;) <0<Imp(b;, w;) forall j,

where limw; = wy and the limits ap = lima; and by = limb; exist, belong to the interval (a, b) and
satisfy by —ag = Lo. If we for each j apply Lemma 2.5 to y; we obtain a sequence of bicharacteristics
I'; Cy;j of Re p such that Im p strongly changes sign from — to + on I';, where |I';| =%, (y;, w;) <|y;].
Clearly I'; --» y as j — 00. Since a < a; < b; < b if j is sufficiently large it follows that for such j we
have £,(y, w;) < ¥,(y;j, w;) by definition. This implies

Lo =1liminf ¥ ,(y, w) <liminf &£, (y, w;)
w—>wy ]~>oo
<liminf |Ij| < limsup|[;| < lim |y;| = Lo, (2-9)
j—o00 j—o00 j—oo
so [I7j| — Lo as j — oo. Thus L ,(y) < Lo.

For the reversed inequality, suppose {y;} is any sequence satisfying the properties of Definition 2.9,
with y; = [a;, l;‘,-] x {w;}. By assumption we have Im p(a;, w;) = Im p(l;j, w;) = 0 for all j, which
together with (2-8) and a continuity argument implies the existence of a positive integer jy such that

a<aj<b;<b forallj> j.
Ifty;s=la; -3, b ;i + 8] x {w;}, this means that for small § > 0 and sufficiently large j we have
Ly, ) < Lp ()50 1),

Since Im p strongly changes sign from — to + on y;, the infimum in the right side exists for every § > 0
and is bounded from above by Bj —aj +24. Taking the limit as § — 0 yields £, (y, w;) < |y,l. Since
w; — wop as j — oo the definition of Ly now gives

Lo <liminf&¥,(y, w;) <liminf|y;]|, (2-10)
j—00 j—o00
and since the sequence {y;} was arbitrary, we obtain Lo < L,(y) by Definition 2.9. This proves the

claim.

When no confusion can occur we will omit the dependence on p in Definition 2.9. We note that if
L ,(y) exists, then L ,(y) < |y| by definition. Also, if Im p strongly changes sign from — to + on y then
Lemma 2.7 implies that the conditions of Definition 2.9 are satisfied. This proves the first part of the
following result.

Corollary 2.10. Let y = [a, b] x {wo} be a bicharacteristic of Re p = &,. If Im p strongly changes sign
from — to + on y, then 0 < L,(y) < |y|. Moreover, for every §, & > 0 there exists a bicharacteristic
Y = ¥s.. of Re p with

)7=[Zz,l;]x{ﬁ)}, a—8<&§l;<b+8, |w — wo| < &,

such that Im p strongly changes sign from — to + on y and |y| < L,(y) + .
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Proof. The existence of the sequence {I';} in the preceding remark can after some adjustments be used
to prove the second part of Corollary 2.10, but we prefer the following direct proof.

Given § > 0 we can by Definition 2.9 find a sequence y; = [a;, b;] x {w;} of bicharacteristics of Re p
such that y; --» y as j — oo, Im p strongly changes sign from — to + on y; and liminf; . |y;| <
L(y) + 6. After reducing to a subsequence we may assume |y;| < L(y) + § for all j. We have
liminf; . a; > a, so for every ¢ there exists a jj(¢) such that a; > a — ¢ for all j > j;. Similarly
there exists a j(¢) such that b; <b+¢ forall j > jp. Also, w; — wp as j — o0, so there exists a j3(¢)
such that |[w; — wop| < ¢ for all j > j3. Hence we can take y = y,, where jo = max(ji, j2, j3). O

Consider now the general case when Imgp changes sign from — to 4+ on a bicharacteristic y C
T*(X) 0 of Regp, where g # 0, that is, (2-5) holds. In view of the proof of Lemma 2.5 we can by
means of (2-7) define a minimality property of a subset of the curve y in the following sense.

Definition 2.11. Let / C R be a compact interval possibly reduced to a pointand let y: I — T*(X)~\. 0 be
a characteristic point or a compact one-dimensional bicharacteristic interval of the homogeneous function
p € C®(T*(X) . 0). Suppose that there exists a function ¢ € C*°(T*(X) \ 0) and a C* homogeneous
canonical transformation x from an open conic neighborhood V of

'={(x1,0,¢,):x1 €I} CT*R"
to an open conic neighborhood x (V) C T*(X) ~\. 0 of y(I) such that

(@ x(x1,0,&,) =y(x1) andRe x*(gp) =§1in V,
(i) Lyxgp(I") =T,

Then we say that (/) is a minimal characteristic point or a minimal bicharacteristic interval if |/| = 0
or |I| > 0, respectively.

The definition of the arclength is of course dependent of the choice of Riemannian metric on 7*(R").
However, since we are only using the arclength to compare curves where one is contained within the
other and both are parametrizable through condition (i), the results here and Definition 2.11 in particular
are independent of the chosen metric. By choosing a Riemannian metric on 7*(X), one could therefore
define the minimality property given by Definition 2.11 through the corresponding arclength in 7*(X)
directly, although there, the notion of convergence of curves is somewhat trickier. We shall not pursue
this any further.

Note that condition (i) implies that ¢ # 0 and Re H,, # 0 on ¥, and that by definition, a mini-
mal bicharacteristic interval is a compact one-dimensional bicharacteristic interval. Moreover, if Imgp
changes sign from — to + on a bicharacteristic y C T*(X) \. 0 of Re ¢gp, where ¢ # 0, then we can always
find a minimal characteristic point y € y or a minimal bicharacteristic interval  C y. In view of the proof
of Lemma 2.5, this follows from the conclusion of the extensive remark beginning on page 432 together
with (2-9). The following proposition shows that this continues to hold even when the assumption (2-5)
is relaxed in the sense of Definition 2.9. We will state this result only in the (very weak) generality
needed here.
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Proposition 2.12. Let y = [a, b] x {wo} be a bicharacteristic of Re p = &, and assume that L(y) > 0.
Then there exists a minimal characteristic point I' € y of p or a minimal bicharacteristic interval I’ C y
of p of length L(y) if L(y) =0 or L(y) > 0, respectively. If I' = [ag, bg] X {wo} and ay < by, that is,
L(y) > 0, then

Im pgf))(t, wp) =0 (2-11)

for all a, B with By =0 ifag <t < by. Conversely, if vy is a minimal characteristic point or a minimal
bicharacteristic interval then L(y) = |y|.

Lemma 2.13. Let y and y; for j > 1 be bicharacteristics of Re p = &, and assume that Im p strongly
changes sign from — to + on y; for each j. If y; -+ y as j — o0 then L(y) < liminf;_, o L(y;).

Proof. Let y; =laj, b;] x {w;} and y = [a, b] x {wp}. Since Im p strongly changes sign from — to +
on y; we can by Corollary 2.10 for each j find a bicharacteristic y; = [a;, b i1 x{w;} of Re p with

aj—1/j <a; Sl;j <bj+1/j and |w;—w;|<1/],

such that Im p strongly changes sign from — to + on y; and |y;| < L(y;) + 1/j. Now |[w; — wo| <
|w; —w;|+|w; —wol, and since liminf;_, o a; > liminf;_,,(a; —1/j) > a and correspondingly for Ej,
we find that y; --» y as j — oo. Thus

L(y) <liminf|y;| <liminf(L(y;) +1//). 0
j—00 J—>00

Proof of Proposition 2.12. We may without loss of generality assume that wy = (0, &,) € R**~!. The
last statement is then an immediate consequence of Definition 2.11. To prove the theorem it then also
suffices to show that we can find a characteristic point I" € y of p, or a compact one-dimensional
bicharacteristic interval I" C y of p of length L(y), with the property that in any neighborhood of I
there is a bicharacteristic of Re p where Im p strongly changes sign from — to 4. This is done by
adapting the arguments in [Hormander 1985b, page 97], which also yields (2-11).

For small § > 0 we can find &(§) with 0 < ¢ < § such that L(y) > L(y) — §/2 for any bicharacteristic
y=1la,b] x {w} witha—e <a <b <b+e¢ and | —wy| < € such that Im p strongly changes sign from
— to 4+ on y. Indeed, otherwise there would exist a 6 > 0 such that for each (sufficiently large) k we can
find a bicharacteristic y; = [ag, br] X {wi} witha —1/k <ay <by <b+1/k and |wy — wo| < 1/k such
that Im p strongly changes sign from — to + on y; and L(yx) < L(y) —§/2. This implies that y; --» y
as k — 00, so by Lemma 2.13 we obtain

L(y) =liminf L(y,) = L(y) —4/2,
—00

a contradiction. Since L(y) > 0 we have by Corollary 2.10 for some |ws — wg| < € and a — ¢ < a5 <
bs < b+ ¢ with ws = (x3, 0, &) that Im p strongly changes sign from — to + on the bicharacteristic
vs = las, bs] x {ws}, and |ys| < L(y) +5/4. Thus,

L(y)=8/2 <|ysl < L(y)+4/4. (2-12)
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We claim that Im p and all derivatives with respect to x” and &’ must vanish at (¢, ws) if as+8 <t < bs—38.
Indeed, by Lemma 2.7 we can find a p > 0, as —§/4 < s_ < as and bs < s < bs + §/4 such that

Imp(s—, w) <0 <Imp(s4,w) forall |lw—ws| < p.

If Im p and all derivatives with respect to x" and &’ do not vanish at (¢, ws) if as +8 <t < bs — 6,
then we can choose w = (x’, 0, &’) so that |[w — ws| < p, |w — wy| < & and Im p(z, w) # O for some
as+6 <t < bs— 4. It follows that the required sign change of Im p(x;, w) must occur on one of the
intervals (s_, ¢) and (¢, s ), which are shorter than L(y) — §/2. This contradiction proves the claim.

Now choose a sequence §; — 0 as j — oo such that lim as, and lim b(;j exist. If we denote these limits
by ag and by, respectively, then L(y) = bg — ag by (2-12), and (2-11) holds if ag < by. In particular, if
ap < by then

H,(y(t)) = (1+idIm p(y(1))/9&)y (t) for agp <t < by,

soif I' ={(¢, wo) : t € [aop, bo]} then I" is a compact one-dimensional bicharacteristic interval of p with
the function c in Definition 2.6 given by

c(t)=1+idIm p(I(1))/9&)~". O

Proposition 2.12 allows us to make some additional comments on the implications of Definition 2.11.
With the notation in the definition, we note that condition (ii) implies that there exists a sequence {I';}
of bicharacteristics of Re x*(¢gp) on which Im x*(gp) strongly changes sign from — to +, such that
I'y — I' as j — oo. By our choice of terminology, the sequence {I;} may simply be a sequence of
points when L(I") = 0. Conversely, if {I';} is a point sequence then L(I") = 0. Also note that if y(I) is
minimal, and condition (i) in Definition 2.11 is satisfied for some other choice of maps ¢’ and x’, then
condition (ii) also holds for ¢’ and x'; in other words,

Lx*(qw(r) =|I'|= L(x’)*(q’p)(r)-

This follows by an application of Proposition 2.12 together with [Hormander 1985b, Lemma 26.4.10].
It is then also clear that y(/) is a minimal characteristic point or a minimal bicharacteristic interval of
the homogeneous function p € C*°(T*(X) \ 0) if and only if I" () is a minimal characteristic point or a
minimal bicharacteristic interval of x *(¢gp) € C*°(T*(R")\.0) for any maps ¢ and yx satisfying condition
(i) in Definition 2.11.

The proof of [Hormander 1985b, Theorem 26.4.7] stating that condition (¥) is necessary for local
solvability relies on the imaginary part of the principal symbol satisfying (2-11). By Proposition 2.12,
it is clear that (2-11) holds on a minimal bicharacteristic interval I" in the case ¢ = 1 and Re p = &;.
However, we shall require that we can find bicharacteristics arbitrarily close to I" for which the following
stronger result is applicable, at least if Im p does not depend on & as is the case for the standard normal
form. This will be made precise below.
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Proposition 2.14. Let p = & + i Im p. Assume that Im p strongly changes sign from — to + on y =
la, b] x {w} and that L(y) > |y| — o for some 0 < o < |y|/2. If Im p does not depend on & then for any
k > o we find that Im p vanishes identically in a neighborhood of I, x {w}, where I, = [a +k,b —k].

The statement would of course be void if the hypotheses hold only for ¢ > |y|/2, for then I, = &.

Proof. If the statement is false, there exists a k > 0 such that Im p £ 0 near I, x {w}. Thus there exists
a sequence (sj, w;) --» I, x {w} such that Im p(s;, w;) # 0 for all j. Since Im p does not depend
on & we can choose w; to have &; coordinate equal to zero for all j, so that (s;, w;) is contained in a
bicharacteristic of Re p. We may choose a subsequence so that for some s € I, we have |s; —s| — 0
and |w; — w| — 0 monotonically, and either Im p(s;, w;) > 0 or —Im p(s;, w;) > 0 for all j. We shall
consider the case with positive sign, the negative case works similarly.

Choose § < (k — 0)/3 and use Lemma 2.7. We find that there exists a —§ < s_ < a and ¢ > 0 such
that Im p(s_, v) <0 for any [v—w| < &. Choose k > 0 so that |s; —s| < § and |w; —w| < & when j > k.
Then ¢ +— Im p(, w;) changes sign from — to + on I; = [s_, s;], which has length

[j|=sj—s_<|sj—s|+s—a+a—s_<|y|—k+25 <|y|—0—34.

If we for each j apply Lemma 2.5 to I; x {w} and let j — oo we obtain a contradiction to the hypothesis
L)z lyl—e. 0

One could state Proposition 2.14 without the condition that the imaginary part is independent of &;.
The invariant statement would then be that the restriction of the imaginary part to the characteristic set
of the real part vanishes in a neighborhood of y.

The fact that Proposition 2.14 assumes that Im p strongly changes sign from — to + on y means that
the conditions are not in general satisfied when y is a minimal bicharacteristic interval. As mentioned
above, we will instead show that arbitrarily close to a minimal bicharacteristic interval one can always
find bicharacteristics for which Proposition 2.14 is applicable. Before we state the results we introduce
a helpful definition together with some (perhaps contrived but illustrative) examples.

Definition 2.15. A minimal bicharacteristic interval I" = [ag, bg] X {wo} C T*(R") \ 0 of the homoge-
neous function p =& +i Im p of degree 1 is said to be p-minimal if there exists a o > 0 such that Im p
vanishes in a neighborhood of [ag + «, by — k] x {wg} for any « > o.

By a 0-minimal bicharacteristic interval /" we thus mean a minimal bicharacteristic interval such that
the imaginary part vanishes in a neighborhood of any proper closed subset of I". Note that this does not
hold for minimal bicharacteristic intervals in general.

Example 2.16. Let f € C°°(R) be given by

—e— 1/ ift <0,
f@)=30 if0<t <2, (2-13)
e V=2 ify S0
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and let ¢ € C*°(R) be a smooth cutoff function with supp¢ = [0, 2] such that ¢ > 0 on (0,2). If
& = (&, ¢&) then
p1(x, &) =& +ilE"[(f (x1) +x20 (x1))

is homogeneous of degree 1. If we write x = (x1, x2, x”) then for any fixed (x”, &) € R"2 x R"~!
with & # 0 we find that {(x, x2, x”,0,&’) : x; = a, x, = ¢} is a minimal characteristic point of p; if
c>0anda=0orif c <0and a =2. Note that if & # 0 then Im p; changes sign from — to + on the
bicharacteristic y(x;) = {(x1, 0, x”, 0, £")} of Re py, but that none of the points {y(x;) : 0 < x; < 2} are
minimal characteristic points.! On the other hand, if f is given by (2-13) let

&' f (x1 = De' ™ if xp <0,
h(x,&)=130 if x, =0,
&' f (e /2 ifxy >0
be the imaginary part of p>(x, &). If Re p» = &; then p, is homogeneous of degree 1 and

e =A{(x1,x2,x",0,&) :xa=c,x1 € I}

is a minimal bicharacteristic interval of p, forany (x”, &) e R*“2xR"~! with £’ £0if c>0and I. =[0, 2]
orif c <0and I, =[1, 3]. Moreover, if ¢ < 0 then I is a O-minimal bicharacteristic interval. However,
there is no ¢ > 0 such that the minimal bicharacteristic interval I" = {(x1,0,x”,0,&") : 0 < x; <2} is
o-minimal. The same holds for the minimal bicharacteristic interval I" = {(x1, 0, x”,0, ) : 1 < x; <3}.
Figure 1 shows a cross-section of the characteristic sets of Im p; and Im p;.

Lemma 2.17. Let p =& +i Im p, and assume that L(y) > 0 and that Im p does not depend on &,. Then
one can find y; Cy; --»y such that |y;| — L(y), Im p strongly changes sign from — to + on y; and
Im p vanishes in a neighborhood of y ;.

UIf the factor x7 in Im pq is raised to the power 3 for example, then it turns out that {y(x1) : 0 < x| < 2} is a one-dimensional

bicharacteristic interval of p{, and not only a bicharacteristic of the real part. It is obviously not minimal though, nor does it
contain any minimal characteristic points.

3 3
21 2]
1 - 1 - 0 +
X2 ] X2 ]
o] — + 07
-1 — -1 — 0 +
2t 2t
2 4 0 1 2 3 4 5 2 4 0 1 2 3 4 5
X1 X1

Figure 1. Cross-sections of the characteristic sets of Im p; and Im p,, respectively.
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Note that the conditions imply that y j-->yas j— o00.

Proof. Choose y; --» y when j — 00 as in the proof of Proposition 2.12, so that Im p strongly changes
sign from — to + on Yj and L(y) =1lim;_, « ly;|. By Lemma 2.13 and Corollary 2.10 we have

L(y) <liminfL(y;) < liminf|y;| = L(y).
j—o00 j—o00

Thus we can for every ¢ > 0 choose j so that |L(y) — |)/j|| < € and |L(yj) — |yj|| < ¢. If we choose
e < L(y)/5 then

2e < (L(y) —&)/2 < ly;l/2.

Hence, if y; =[a;, b;] X w; then by using Proposition 2.14 on y; we find that Im p vanishes identically
in a neighborhood of )7j =[a; +2¢,b; —2¢] x {w;}. Now choose a sequence & — 0 as k — oo. Then
Vi C Vjx and assuming as we may that j (k) > j (k') if kK > k" we obtain |y; )| — L(y) as k — oo,
which completes the proof. O

If I' C y is a minimal bicharacteristic interval in 7*(R") \. 0 of the homogeneous function p =
& +iIm p of degree 1, where the imaginary part is independent of &;, then by Definition 2.11 and
Proposition 2.12 we have O < |I'| = L(I"). By the proof of Lemma 2.17 there exists a sequence y; — I" of
bicharacteristics of Re p such that Im p strongly changes sign from — to + on y; and vanishes identically
in a neighborhood of a subinterval y; C y;. Moreover, y; — I" as j — 0o. By Lemma 2.13 we have
L(y;) > 0 for sufficiently large j, so according to Proposition 2.12 we can for each such j find a minimal
bicharacteristic interval I'; C y;. We have y; — I' as j — 00 and since

|I'|= L(y) <liminf L(y;) =liminf|I";| <limsup|l;| < lim |y;| = ||,
j—o0 Jj—o0 j—00 Jj—o0

it follows that I'; — I" as j — 00. Since also y; C y; and y; — I" as j — oo, the intersection y; N I’;
must be nonempty for large j. For such j it follows that y; must be a proper subinterval of I';, for if
not, this would contradict the fact that I"; is a minimal bicharacteristic interval. Hence we can find a
sequence {g;} of positive numbers with o; — 0 as j — o0, such that I'; is a ¢ ;-minimal bicharacteristic
interval. We have thus proved the following theorem, which concludes our study of the bicharacteristics.

Theorem 2.18. If I" is a minimal bicharacteristic interval in T*(R") \ 0 of the homogeneous function
p =& +ilm p of degree 1, where the imaginary part is independent of &1, then there exists a sequence
{I';} of 0j-minimal bicharacteristic intervals of p such that I'y — I" and ¢j — 0 as j — oo.

We can now state our main theorem, which yields necessary conditions for inclusion relations between
the ranges of operators that fail to be microlocally solvable.

Theorem 2.19. Let K C T*(X) \ 0 be a compactly based cone. Let P € lI/C]i (X) and Q € lI/clj/(X ) be
properly supported pseudodifferential operators such that the range of Q is microlocally contained in
the range of P at K, where P is an operator of principal type in a conic neighborhood of K. Let py be
the homogeneous principal symbol of P, and let I = [ag, bg] C R be a compact interval possibly reduced
to a point. Suppose that K contains a conic neighborhood of y(I), where y : I — T*(X) \ 0 is either
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(a) a minimal characteristic point of py, or

(b) a minimal bicharacteristic interval of py with injective regular projection in S*(X).

Then there exists a pseudodifferential operator E € 'chli/_k (X) such that the terms in the asymptotic sum
of the symbol of Q — P E have vanishing Taylor coefficients at y(I).

The hypotheses of Theorem 2.19 imply that P is not solvable at the cone K. Indeed, solvability at
K C T*(X)~\0implies solvability at any smaller closed cone, and in view of Definition 2.11 it follows by
[Hormander 1985b, Theorem 26.4.7'] together with [Hormander 1985b, Proposition 26.4.4] that P is not
solvable at the cone generated by y(I). Conversely, suppose that P is an operator of principal type that is
not microlocally solvable in any neighborhood of a point (xo, &) € T*(X) ~\.0. Then the principal symbol
pi fails to satisfy condition (1-5) in every neighborhood of (xg, &) by [Dencker 2006, Theorem 1.1].
In view of the alternative version of condition (1-5) given by [Hormander 1985b, Theorem 26.4.12], it
is then easy to see using [Hormander 1985a, Theorem 21.3.6] and [Hérmander 1985b, Lemma 26.4.10]
that (xo, &o) is a minimal characteristic point of pi, so Theorem 2.19 applies there.

We also mention that if P is of principal type and y is a minimal bicharacteristic interval of the
principal symbol p; contained in a curve along which py fails to satisfy condition (1-5), then y has
injective regular projection in S*(X) by the proof of [Hormander 1985b, Theorem 26.4.12].

Remark. As pointed out in the introduction, we cannot hope to obtain a result such as Theorem 2.19
for solvable nonelliptic operators in general. Indeed, Example 2.2 shows that if X C R" is open, and
K C T*(X) ~ 01is a compactly based cone, then the range of D, is microlocally contained in the range
of Dy at K. If there were to exist a pseudodifferential operator e(x, D) € lI/C(f(X ) such that all the terms
in the symbol of R(x, D) = D, — D{oe(x, D) have vanishing Taylor coefficients at a point (xg, &) € K
contained in a bicharacteristic of the principal symbol o (D) = & of Dy, then in particular this would
hold for the principal symbol

o(R)(x,§) =& —&1eo(x, §),

if eg denotes the principal symbol of e(x, D). However, taking the & derivative of the equation above
and evaluating at (xg, &) then immediately yields the contradiction O = 1 since (xg, &) belongs to the
hypersurface & = 0.

In the proof of the theorem we may assume that P and Q are operators of order 1. In fact, the discussion
following Definition 2.1 shows that if the conditions of Theorem 2.19 hold and Q; € llfcli_k/(X ) and
0, € llfcll_k (X) are properly supported, then the range of 0,0 Q; € lllcll (X) is microlocally contained in
the range of O, P € WCII(X ) at K. If the theorem holds for operators of the same order k then there exists
an operator E € lI/C(f(X ) such that all the terms in the asymptotic expansion of the symbol of Q| — PE
have vanishing Taylor coefficients at y(I). If we choose Q; to be elliptic, then we can find a parametrix
Ql_1 of Q7 such that

Q- PEQ;'=(00Q1—PE)oQ;' mod ¥~>(X)
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has symbol
O pogrt (. ) ~ > ogoalx, §)Dfo,1(x, §)/a! (2-14)

with A = QQ; — PE. Clearly, all the terms in the asymptotic expansion of the symbol of 0 — PE Ql_1
then have vanishing Taylor coefficients at (), and E1 = E Ql_l € lI/C’j,_k (X), so the theorem holds with £
replaced by E|. If the theorem holds for operators of order 1 we can choose Q> elliptic and use the same
argument to show that if all the terms in the asymptotic expansion of the symbol of 0,0 Q; — O, PE
have vanishing Taylor coefficients at y(/), then the same holds for

Q- PEQ'=05'0(02001— 0:PE)o Q7' mod ¥~°(X),

where O, lisa parametrix of O,. Here we use the fact that if y(/) is a minimal characteristic point or
a minimal bicharacteristic interval of the principal symbol of P, then this also holds for the principal
symbol of O, P by Definition 2.11.

For pseudodifferential operators, the property that all terms in the asymptotic expansion of the total
symbol have vanishing Taylor coefficients is preserved under conjugation with Fourier integral operators
associated with a canonical transformation (see Lemma A.1). Thus we will be able to prove Theorem 2.19
by local arguments and an application of Proposition 2.4.

Lety: I — T*(X)\0, with I =[ag, bo] C R, be the map given by Theorem 2.19. By using [Hérmander
1985a, Theorem 21.3.6] or [Hormander 1985b, Theorem 26.4.13], when y is a characteristic point or a
one-dimensional bicharacteristic, respectively, we can find a C*° canonical transformation x from a conic
neighborhood of I' ={(x, &,) : x; € I, x’=0} in T*(R")\.0 to a conic neighborhood of y(I) in T*(X)~.0
and a C* homogeneous function » of degree 0 with no zero on y(I) such that y (x1, 0, &,) = y(x1) for
x1 €I and

x*(bp1) =& +if(x, &), (2-15)

where f is real-valued, homogeneous of degree 1 and independent of &;. Thus, by the hypotheses of
Theorem 2.19 one can in any neighborhood of I find an interval in the x; direction where f changes
sign from — to + for increasing x;. Also, if / is an interval then f vanishes of infinite order on I" by
(2-11), and by Theorem 2.18 there exists a sequence {Ij} of ¢;-minimal bicharacteristics of x*(bp1)
such that 9; — Oand I'; — I" as j — oo.

The existence of the canonical transformation x together with Proposition 2.4 implies that we can find
Fourier integral operators A and B such that the range of BQA is microlocally contained in the range
of BPA at a cone K’ containing I, where the principal symbol of B P A is given by (2-15). In view of
Lemma A.1 we may therefore reduce the proof to the case that P, O € lI/CI1 (R™) and the principal symbol
p of P is given by (2-15). In accordance with the notation in Proposition 2.4 we will assume that the
range of Q is microlocally contained in the range of P at a cone K containing I, thus renaming K’
to K. If

og=4q1+qo+---
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is the asymptotic sum of homogeneous terms of the symbol of Q, we can then use the Malgrange
preparation theorem (see [Hormander 1983a, Theorem 7.5.6]) to find eg, r; € C* near I" such that

qi1(x, &) = G +if (x,§)eo(x, &) +ri(x, &),

where r; is independent of &;. Restricting to |£| = 1 and extending by homogeneity we can make ey and
r1 homogeneous of degree 0 and 1, respectively. The term of degree 1 in the symbol of Q — P oeg(x, D)
is ri(x, &"). Again, by Malgrange’s preparation theorem we can find e_;, ro € C* near I" such that

qo(x, &) —ao(P oeo(x, D)) (x, &) = (51 +if (x,§))e1(x, &) +ro(x, &),

where e_; and ry are homogeneous of degree —1 and 0, respectively, and rq is independent of &;. The
term of degree O in the symbol of

Q—Poey(x,D)—Poe_i(x, D)
is ro(x, &). Repetition of the argument allows us to write
Q=PoE+R(x, Dy) (2-16)

where og(x, ") =ri(x, &) +ro(x, &)+- - - is an asymptotic sum of homogeneous terms, all independent
of &. Thus R(x, D,/) is a pseudodifferential operator in the n — 1 variables x’ depending on x; as a
parameter. Furthermore, the range of R(x, D,-) is microlocally contained in the range of P at K. Indeed,
suppose N is the integer given by Definition 2.1. If g € H(llo\f)(R"), then Rg = PEg — Qg = Pv— Qg
for some v € @' (R"), and there exists a u € @' (R") such that

KNWF(Qg— Pu)=0.

Hence, WF(P (v —u) — Rg) does not meet K, so the range of R is microlocally contained in the range
of P at K. We claim that under the assumptions of Theorem 2.19, this implies that all terms in the
asymptotic sum of the symbol of the operator R(x, D,/) in (2-16) have vanishing Taylor coefficients
at I, thus proving Theorem 2.19. The proof of this claim will be based on the two theorems stated
below. As we have seen, the principal symbol p of P may be assumed to have the normal form given
by (2-15). By means of Theorem 2.20 below, we shall also use the fact that an even simpler normal
form exists near a point where p = 0 and {Re p, Im p} # 0. To prove these two theorems, we will use
techniques that actually require the lower order terms of P to be independent of & near I'. However,
we claim that this may always be assumed. In fact, Malgrange’s preparation theorem implies that

po(x, &) =a(x,&)(E +if(x, &) +b(x, &)

where a is homogeneous of degree —1 and » homogeneous of degree 0, as demonstrated in the con-
struction of the operators £ and R above. The term of degree O in the symbol of (I — a(x, D))P is
equal to b(x, &’). Repetition of the argument implies that there exists a classical operator a(x, D) of
order —1 such that (I — a(x, D)) P has principal symbol & + if(x, &) and all lower order terms are
independent of £;. The microlocal property of pseudodifferential operators immediately implies that the
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range of (I —a(x, D)) Q is microlocally contained in the range of (I —a(x, D)) P at K. Hence, if there
are operators E and R with

R=({UI—-ax,D)Q0—{U—-a(x,D))PE

such that all terms in the asymptotic expansion of the symbol of R have vanishing Taylor coefficients
at I', then this also holds for the symbol of Q — PE = (I —a(x, D))~' R mod ¥, since this property
is preserved under composition with elliptic pseudodifferential operators by (2-14).

Theorem 2.20. Suppose that in a conic neighborhood 2 of
I"={0,&,)} CT*(R")\0
P has the form P = D +ix| D, and the symbol of R(x, D,) is given by the asymptotic sum
o0
OR = Zrl—j(x» £'),
j=0
with ri_; homogeneous of degree 1 — j and independent of &\. If there exists a compactly based cone

K c T*(R") \. 0 containing 2 such that the range of R is microlocally contained in the range of P at K,
then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at I

Theorem 2.21. Suppose that in a conic neighborhood 2 of
I'={(x,x,0,&):a<x <b}CT*R")NO0
the principal symbol of P has the form
p(x, &) =& +if(x, &),

where f is real-valued and homogeneous of degree 1, and suppose that if b > a then f vanishes of infinite
order on I'' and there exists a 0 > 0 such that for any € > @ one can find a neighborhood of

I ={(x1,x',0,) ca+e<x; <b—e}, (2-17)
where f vanishes identically. Suppose also that
f(x,&)=0 implies 9f(x,&)/0x; <0 (2-18)

in §2 and that in any neighborhood of I'' one can find an interval in the x| direction where f changes
sign from — to + for increasing x,. Furthermore, suppose that in §2 the symbol of R(x, D) is given by

the asymptotic sum
(o.¢]

o= r_jx.&)
j=0
with ri_j homogeneous of degree 1 — j and independent of §. If the lower order terms po, p_1, ... in

the symbol of P are independent of &1 near I'', and there exists a compactly based cone K C T*(R")~.0
containing §2 such that the range of R is microlocally contained in the range of P at K, then all the
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terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on I” é ifa < b, and at
I'ifa=h.

Assuming these results for the moment, we can now show how Theorem 2.19 follows.

End of proof of Theorem 2.19. Recall that
I'={(x1,0, &) :a0 < x1 <bo} C T*(R") \ 0.

By what we have shown, it suffices to regard the case Q = PE + R, where we may assume that the
conditions of Theorem 2.21 are all satisfied in a conic neighborhood §2 of I", with the exception of (2-18)
and the condition concerning the existence of a neighborhood of (2-17) in which f vanishes identically
when ag < by. We consider three cases.

(i) I" is an interval. We then claim that condition (2-18) imposes no restriction. Indeed, if there is no
neighborhood of I" in which (2-18) holds, then there exists a sequence {y;} = {(¢;, x;., 0,¢ J’.)} such that
ap <liminfz; <limsupt; <by, (x), &) — (0,§%) e R*" 2,

f(tj,x},sj’.) =0 and Bf(tj,x},éj’.)/axl >0 (2-19)
for each j. By (2-19) we can choose a sequence 0 < §; — 0 such that
[ —5]',)6},5]/-) <0< f(1 —{—Sj,x}, éj/)

In view of Definition 2.9 we must therefore have L(I") =0. Since I" is minimal, this implies that |I"| =0,
so y; — I'. Thus, if there is no neighborhood of I" in which (2-18) holds, then I" is a point, and we will
in this case use the existence of the sequence {y;} satisfying (2-19) to reduce the proof of Theorem 2.19
to Theorem 2.20, as demonstrated in case (iii) below. In the present case however, I" is assumed to be
an interval, so there exists a neighborhood AU of I" in which (2-18) holds. We may assume that U C £2
and since f is homogeneous of degree 1 we may also assume that U is conic.

By Theorem 2.18, there exists a sequence {I;} of ¢;-minimal bicharacteristic intervals such that
0j —> 0and I'; — I' as j — oo. For sufficiently large j we have I'; C U. Hence, if

Iy ={(x1,x},0,8)1a; <x; < bj)
then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on
Ip; =1{(x1,x},0,8) 1aj+0; <x1 <bj—0,}

by Theorem 2.21. Since [,; — I" as j — 00, and all the terms in the asymptotic sum of the symbol
of R are smooth functions, it follows that all the terms in the asymptotic sum of the symbol of R have
vanishing Taylor coefficients on I". This proves Theorem 2.19 in this case.

(ii) I" is a point and condition (2-18) holds. Then all the terms in the asymptotic sum of the symbol of
R have vanishing Taylor coefficients on /" by Theorem 2.21, so Theorem 2.19 follows.

(iii) I" is a point and (2-18) is false. Let {y;} be the sequence satisfying (2-19). Then {Re p, Im p}(y;) >0
and p(y;) =0 for each j since y; = (t;, x;, 0, EJ’.). For fixed j we may assume that y; = (0, n) and use
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[Hormander 1985a, Theorem 21.3.3] to find a canonical transformation yx together with Fourier integral
operators A, B, Ay and B as in Proposition 2.4 such that x (0, &,) = y;, and BPA = Dy +ix;D, ina
conic neighborhood £2 of {(0, €,)}. Repetition of the arguments above allows us to write

BQA=BPAE + R(x, D), (2-20)

where the range of R is microlocally contained in the range of B P A at some compactly based cone K’
containing £2 with x(K’) = K. As before, E and R have classical symbols. Then all the terms in the
asymptotic expansion of the symbol of R have vanishing Taylor coefficients at {(0, &,)} by Theorem 2.20,
and therefore all the terms in the asymptotic expansion of the symbol of A; R B; have vanishing Taylor
coefficients at y; by Lemma A.1 in the appendix. Since the Fourier integral operators are chosen so that

KNWF(A\B—1)=2 and KNWF(AB, —-1)=0,
we have
=KNWF(A|BQAB, — A|BPAEB;— A|RB))=KNWF(Q—-PAEB, — A|RBy)
in view of (2-20). Hence, all the terms in the asymptotic expansion of the symbol of
Q—PE =A1RB;+S, where WF(S)NK =, (2-21)

have vanishing Taylor coefficients at y; if £y = AE By. (Strictly speaking, the change of base variables
yj + (0, n) should be represented in (2-21) by conjugation of a linear transformation « : R" — R", but
this could be integrated in the Fourier integral operators A; and Bj so it has been left out since it will
not affect the arguments below.) It is clear that E; € lI/C?([R?”).

We have now shown that for each j there exists an operator E; € WC?(R”) such that all the terms in the
asymptotic expansion of the symbol of QO — P E; have vanishing Taylor coefficients at y;. To construct
the operator E in Theorem 2.19, we do the following. For each j, denote the symbol of E; by

o0
e/ (x, )~ D el (x,8)

=0
where eé (x, &) is the principal part, and ei ;(x, &) is homogeneous of degree —/. If ¢ is the principal
symbol of Q, then by Proposition A.3 there exists a function ¢y € C*(T*(R") \ 0), homogeneous of
degree 0, such that ¢ — peg has vanishing Taylor coefficients at I".

This argument can be repeated for lower order terms. Indeed, if 0p =g +¢go + - - -, then the term of
degree O in 0Q-PE; is
00(Q - PE)) =G, — pe’

where (see (2-25) below)

Gj(x, ) = qo(x, &) — po(x, £)ef(x. £) = Y 9, p(x, §) Dy} (x, £).
k
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We can write

p(x, &)el (x, &) = p(x, &/1EDe’ | (x, £/IED,
so that g;(x, &), p(x,&/|&|) and eil(x, &/1&]) are all homogeneous of degree 0. Since
8%l eg(I) = lim 8%9fe)(y;)
j—00

it follows by Proposition A.3 that there is a function g € C*°(T*(R") \ 0), homogeneous of degree 0,
such that

qo(x, €) — po(x, &)eo(x, &) = Y 3, p(x, &) Dyeo(x, £) — p(x, §/IEDg(x, £)
k

has vanishing Taylor coefficients at I". Putting e_; (x, &) = |£|"'g(x, £) we find that
%9l e_1(I) = lim 829fe’ | (v)).
J—> 00

and that
00(Q — Poeyg(x, D) — Poe_1(x, D))

has vanishing Taylor coefficients at I". Continuing this way we successively obtain functions e, (x, §) €
C°(T*(R™) \. 0), homogeneous of degree m for m < 0, such that

M
og— (Z e_m)ap mod S;lM
m=0

has vanishing Taylor coefficients at I". If we let £ have symbol

o0
op(x.§) ~ Y (1= p(E)e—m(x. §)
m=0
with ¢ € C§° equal to 1 for & close to 0, then E € lIfC(f([R”) and all terms in the asymptotic expansion of
the symbol of Q — P E have vanishing Taylor coefficients at I". We have proved Theorem 2.19. O

Remark. Instead of reducing to the study of the normal form P = Dy, +ix; D,, when condition (2-18)
does not hold, as in case (iii) above, one could show that the terms in the asymptotic expansion of
the operator R given by (2-16) has vanishing Taylor coefficients at every point in the sequence {y;}
satisfying (2-19) using techniques very similar to those used to prove Theorem 2.21. Theorem 2.19
would then follow by continuity, but the proof of the analogue of Theorem 2.20 would be more involved.
In particular, we would have to construct a phase function w solving the eikonal equation

dw/dx; —if(x,0w/dx") =0

approximately instead of explicitly (confer the proofs of Theorems 2.21 and 2.20, respectively). For
fixed j this could be accomplished by adapting the approach in [Hormander 1963; Hormander 1966]
(for a brief discussion, see [Hormander 1981, p. 83]), where one has f =0 and 9f/dx; > 0 at (0, £9)
instead of at y;.
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We shall now show how our results relate to the ones referred to in the introduction, beginning
with (1-3). There, it sufficed to have the coefficients of P and Q in C*™ and C!, respectively. However,
in order for Theorem 2.19 to qualify, we must require both P and Q to have smooth coefficients. On the
other hand, we shall only require the equation Pu = Qf to be microlocally solvable (at an appropriate
cone K) as given by Definition 2.1. Note that if P is a first order differential operator on an open set
§£2 C R", such that the principal symbol p of P satisfies condition (1-4) at a point (x, &) € T*(£2) \ 0,
then either {Re p, Im p} > 0 at (x, §), or {Re p, Im p} > 0 at (x, —§). (The order of the operator is not
important; the statement is still true for a differential operator of order m, since the Poisson bracket is
then homogeneous of order 2m — 1.) Assuming the former, this implies that (x, £) satisfies condition
(a) in Theorem 2.19 by an application of [Hormander 1985a, Theorem 21.3.3] and Lemma 2.7. In order
to keep the formulation of the following result as simple as possible, we will assume that there exists a
compactly based cone K C T*(£2) . 0 with nonempty interior such that K contains the appropriate point
(x, £&), and such that the equation Pu = Qf is microlocally solvable at K. This is clearly the case if
the equation Pu = Qf is locally solvable in £2 in the weak sense suggested by (1-1).

Corollary 2.22. Let 2 C R" be open, and let P(x, D) and Q(x, D) be two first order differential
operators with coefficients in C*°(§2). Let p be the principal symbol of P, and let xy be a point in 2
such that

p(x0,50) =0 and {Re p,Im p}(xo, o) >0 (2-22)

for some & € R". If K C T*(§2) \ 0 is a compactly based cone containing (xo, &) such that the range of
Q is microlocally contained in the range of P at K, then there exists a constant | such that (at the fixed
point xg)

Q" (xo, D) = uP*(xo, D), (2-23)
where Q* and P* are the adjoints of Q and P.

Proof. By (2-22), P € llfcll(Q) is an operator of principal type microlocally near (xg, &). P and Q
therefore satisfy the hypotheses of Theorem 2.19, and in view of the discussion above regarding the
point (x, &) we find that there exists an operator E € lI/C?(.Q ) such that all the terms in the asymptotic
expansion of the symbol of Q — P E have vanishing Taylor coefficients at (xg, &). By the discussion
following (3-7) on page 452 below, it follows that the same must hold for the adjoint Q* — E* P*. If we
let 0* and P* have symbols op«(x, §) =q1(x, §) +qo(x) and op«(x, §) = p1(x, &) + po(x), then E* P*
has principal symbol e¢gp; if og= = eg+e_1 + ... denotes the symbol of E*. Hence

9q1(xo0, §0) /& = eo(x0, §0)dp1(x0, §0)/3& for 1 <k <n

and p1(xp, &) = p(xo, &) = 0. Since g and p; are polynomials in & of degree 1, this means that at the
fixed point xo we have q;(xg, §) = up1(xg, &) for £ € R", where the constant p is given by the value of
ep at (xg, &). Moreover,

0 = 8¢, 9¢,q1 (X0, £0) = ;€0 (x0, £0) g, p1 (X0, §0) + g, e0(x0, £0)dz; p1 (X0, £0). (2-24)
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By assumption, the coefficients of p(x, D) do not vanish simultaneously, so the same is true for p; (x, D).
Hence 0¢; p1(xo, §0) # O for some j. Assuming this holds for j = 1, we find by choosing j =k =1 in
(2-24) that 0, eo(xo, §o) = 0. But this immediately yields

g, e0(x0, 0) = —0g e0(x0, £0) g, p1(x0, §0)/ g, p1(x0, §0) =0

for 2 <k <n. Now
1
oppr(x. )~ ) oo DY(pi(x.§) + po(x),

and since we have a bilinear map
m /ST x SM' /ST 5 (a, b) > a#b e ST /57

with
@#b)(x, )~ Y L a¢a(x, &) DIb(x, &),

we find that the term of order 0 in the symbol of E* P* is

n
oo(E*P*)(x, &) = e_1(x, &) p1(x, §) +eo(x, &) po(x) + Z dg,e0(x, &) Dipi(x, §). (2-25)
k=1
Since 0g, eg and p; vanish at (xo, §o) we find that go(xo) = upo(xo) at the fixed point xo, which completes
the proof. O

Having proved this result, we immediately obtain the following after making the obvious adjustments to
[Hormander 1963, Theorem 6.2.2]. The fact that we require higher regularity on the coefficients of Q
then yields higher regularity on the propertionality factor. Since the proof remains the same, it is omitted.

Corollary 2.23. Let 2 C R" be open, and let P(x, D) and Q(x, D) be two first order differential oper-
ators with coefficients in C*°(82). Let p be the principal symbol of P, and assume that the coefficients of
p(x, D) do not vanish simultaneously in 2. If for a dense set of points x in §2 one can find &€ € R" such
that (2-22) is fulfilled, and if for each (x, &) there is a compactly based cone K C T*(£2) \ 0 containing
(x, &) such that the range of Q is microlocally contained in the range of P at K, then there exists a
function e € C*(82) such that

O(x,D)u= P(x, D)(eu). (2-26)

In stating Corollary 2.23 we could replace the assumption that the coefficients of p(x, D) do not
vanish simultaneously in §2 with the condition that P is of principal type. Indeed, if dp # O then by a
canonical transformation we find that condition (1-6) holds. Since p # 0 implies ¢ p # 0 by the Euler
homogeneity equation we then have d: p # 0 everywhere, that is, the coefficients of p(x, D) do not
vanish simultaneously in £2. The converse is obvious.

As shown in Example 2.25 below, we also recover the result for higher order differential operators
mentioned in the introduction as a special case of the following corollary to Theorem 2.19, although we
again need to assume higher regularity in order to apply our results.
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Proposition 2.24. Let X be a smooth manifold, and let P € lI/C]j (X) and Q € llfclj/(X ) be properly sup-
ported such that the range of Q o P is microlocally contained in the range of P at a compactly based
cone K C T*(X)\ 0. Let p and q be the principal symbols of P and Q, respectively, and assume that
P is of principal type microlocally near K. If y : I — T*(X) \ 0 is a minimal characteristic point or a
minimal bicharacteristic interval of p contained in K then it follows that

HI’)”(q) =0 forall (x,&)ey(I)andm > 1.
Here HI’,"(q) is defined recursively by H,(q) = {p, q} and HI’,"(q) ={p, HIT_I (@)} form > 2.

Proof. First note that if the range of Q € ¥X'(X) is microlocally contained in the range of P € WX (X)
at K and both operators are properly supported, then it follows that the range of Q o P is microlocally
contained in the range of P at K. (The converse is not true in general.) Indeed, let N be the integer
given by Definition 2.1, and let f € H(IX,CH)(X). Since P : H(ll‘)\}:Jrk)(X) — H(llo\,c)(X) is continuous, we
have g = Pf € H(IR,C)(X). Thus, there exists a u € 9’'(X) such that

=KNWF(Qg— Pu)=KNWF(QPf — Pu),

so the conditions of Definition 2.1 are satisfied with N replaced with N + k.

Let (x,&) € y(I). The range of PQ is easily seen to be microlocally contained in the range of P
for any properly supported pseudodifferential operator Q. The assumptions of the proposition therefore
imply that the range of the commutator

Ri=PoQ—QoPec¥H1x) (2-27)

is microlocally contained in the range of P at K. Hence, by Theorem 2.19 there exists an operator
E e lIlcli/_l(X) such that, in particular, the principal symbol of R; — PE vanishes at (x,§). If e is
the principal symbol of E, homogeneous of degree k’ — 1, then the principal symbol of PE satisfies
p(x, &e(x, &) =0 since p oy =0. Since the principal symbol of R; is

1
Ok4k'—1(R1) = lT{P,q},

the result follows for m = 1.

Let R,, be defined recursively by R,, = [P, R,,—1] for m > 2 with R given by (2-27). Arguing by
induction, we conclude in view of the first paragraph of the proof that the range of R,, is microlocally
contained in the range of P at K form =1, 2. .. since this holds for R;. Assuming the proposition holds
for some m > 1, we can repeat the arguments above to show that the principal symbol of R, ; must
vanish at (x, &). Since the principal symbol of R, equals —i{p, H [’," (g)}, this completes the proof. [J

Example 2.25. Let £2 C R" be open, P(x, D) be a differential operator of order m with coefficients in
C°(£2), and let u be a function in C°°(£2) such that the equation

Px,Dyu=uPx,D)f
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has a solution u € 9'(£2) for every f € C{°(£2). If p is the principal symbol of P then it follows that

Y 3P, E)Dyypu(x) =0 (2-28)
j=1
for all x € £2 and & € R" such that
(P, P}, ) #0 and p(x,§) =0, (2-29)

Indeed, if (x, &) satisfies (2-29) then we may assume that

(Re p, Im p)(x, §) = —2-(p, 5}(x,&) = 0

since otherwise we just regard (x, —&) instead, as per the remarks preceding Corollary 2.22. By the same
discussion it is also clear that (x, &) is a minimal characteristic point of p. Now the conditions above
imply that there exists a compactly based cone K C T*(£2) \. 0 containing (x, £) such that the range of
w P is microlocally contained in the range of P at K. By condition (2-29), P is of principal type near
(x, &), so Proposition 2.24 implies that {p, u} =0 at (x, &), that is,

n
> "0, p(x, £)dy p(x) — By, p(x, £)dg, pu(x) = 0.
j=1
Since p is independent of £ we find that (2-28) holds at (x, £). By homogeneity it then also holds at
(x, =§).

3. Proof of Theorem 2.20

Throughout this section we assume that the hypotheses of Theorem 2.20 hold. We shall prove the theorem
by using Lemma 2.3 on approximate solutions of the equation P*v = 0 concentrated near I’ = {(0, &,)}.
We take as starting point the construction on [Hérmander 1985b, page 103], but some modifications need
to be made in particular to the amplitude function ¢, so the results there concerning the estimates for the
right side of (2-1) cannot be used immediately. To obtain the desired estimates we will instead have to
use [Hormander 1985b, Lemma 26.4.15]. Set

vr(x) = ¢ (x)e T, (3-1)
where
. ) 2 2 . 2 2
w(x) =x, +i(xy+x3+--+x,_+ @ +ix(/2)7)/2

satisfies P*w =0 and ¢ € C;°(R"). By the Cauchy—Kovalevsky theorem we can solve D1¢—ix; D,¢ =0
in a neighborhood of 0 for any analytic initial data ¢ (0, x') = f(x’) € C*(R""!); in particular we are
free to specify the Taylor coefficients of f(x") at x’ = 0. We take ¢ to be such a solution. If need be
we can reduce the support of ¢ by multiplying by a smooth cutoff function x, where x is equal to 1 in
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some smaller neighborhood of 0 so that x¢ solves the equation there. We assume this to be done and
note that if supp ¢ is small enough then

Imw(x) > |x|*/4 for x € supp ¢. (3-2)

Since
dRew(x) = —x1x,dx1 + (1 — x12/2)dx,,,

we may similarly assume that d Re w(x) # 0 in the support of ¢. We then have the following result.

Lemma 3.1. Suppose P = D + ix| D, and let v, be defined by (3-1). Then ¢ and w can be chosen so
that for any f € C(R"~") and any positive integers k and m we have ¢ (0, x') = f (x) in a neighborhood
of (0, 0), ¥ P*v [ m) — 0 as T — o0, and

”Ur”(fm) =< Cmf_m- (3'3)
If I is the cone generated by
{(r, w'(x) : x € supp, Imw(x) =0},

then t8v, — 0 in D'r as T — o0; hence ™" Av, — 0in C®°(R") if A is a pseudodifferential operator with
WF(ANT = 2.

Here 9'+(X) = {u € 9'(X) : WF(u) C '}, equipped with the topology given by all the seminorms on
9%’ (X) for the weak topology, together with all seminorms of the form

Py.y.n () = sup [gu(®)| (1 + 5"
EeV
where N > 0, ¢ € C{°(X), and V C R" is a closed cone with (supp¢ x V) N I’ = @. Note that
uj — uin 9'x(X) is equivalent to u; — u in @'(X) and Au; — Au in C* for every properly supported
pseudodifferential operator A with I N WF(A) = &; see the remark following [Hormander 1985a,
Theorem 18.1.28].

Proof. We observe that T8 P*v, = ™" (P*¢)e!™ — 0 in Cg°(R") for any k as  — oo, if w and ¢ are
chosen in the way given above. Hence t*|| P*v; ||(n) — O for any positive integers k and m. In view of
(3-2) and the fact that d Re w # 0 in the support of ¢ we can apply [Hormander 1985b, Lemma 26.4.15]
to v;. This immediately yields (3-3) and also that 8v; = 0in Qb/f as T — oo, proving the lemma. [

We are now ready to proceed with a tool that will be instrumental in proving Theorem 2.21. The idea
is based on techniques found in [Hérmander 1963].

Let R be the operator given by Theorem 2.20. By assumption there exists a compactly based cone
K C T*(R") \ 0 such that the range of R is microlocally contained in the range of P at K. If N is the
integer given by Definition 2.1, let H(x) € C;°(R") and set

he(x) =t VNH(tx). (3-4)
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Since fzt(é) = r_N_"I:I(f/r) it is clear that for T > 1 we have h, € Hn)(R") and ||h¢||(n) < Ct"/2.
In particular, ||A;||(v) < C for T > 1, where the constant depends on H but not on . Now denote by /.
the integral

L =1" / H(tx)R*v,(x)dx = """ (R*v,, hy), (3-5)
where R* is the adjoint of R. For any « we then have by the second equality and Lemma 2.3 that
1Tl < e el IR Ve ll -y < Cet ™ (IP* e lly + Vel - v—c—m) + 1 Ave | @)

for some positive integer v and properly supported pseudodifferential operator A with WF(A)N K = @.
By Lemma 3.1 this implies

[I] < Cet™ (3-6)

for any positive integer « if 7 is sufficiently large.
Recall that R(x, D) is a pseudodifferential operator in x” depending on x; as a parameter. Its symbol
is given by the asymptotic sum

UR(X, g/) = rl(x7 5/) +r0(xa Sl) + s
where r_;(x, £') is homogeneous of degree — j in £’. The symbol of R* has the asymptotic expansion
OR* = Z 9 Dyogr(x, &) /al,

which shows that R* is also a pseudodifferential operator in x” depending on x; as a parameter. If we
sort the terms above with respect to homogeneity we can write

O R+ ZQI(X’S/)+C]O(va/)+" ] (3_7)

where g_; is homogeneous of order —j, g1 (x, &Y =ri(x,&) and

qo(x, &) =ro(x, E) + Y _ 0e Dyri(x, E).
k=2

A moment’s reflection shows that if all the terms in (3-7) have vanishing Taylor coefficients at some
point (x, &), then the same must hold for o.

Our goal is to show that if q(_ﬁj?(a)(o, £9) does not vanish for all j > —1 and all &, 8 € N”, then (3-6)
cannot hold. For this purpose, we introduce a total well-ordering >, on the Taylor coefficients by means
of an ordering of the indices (Jj, «, 8) as follows.

Definition 3.2. Let «;, 8; € N* and j; > —1 fori = 1, 2. We say that
4% ) 0.8% >, P2 (0.8%) if ji+lanl +1B1] > j2+ loal + 12l
To “break ties”, we say that if j; + ||+ |B1] = j2 + lo2| + | B2], then

0 0.6 > g (0,6 if Bl > 1B,
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Note the reversed order. If also |8;| = |B2|, then we use a monomial ordering on the 8 index to break
ties. Recall that this is any relation > on N” such that > is a total well-ordering on N" and 8, > $»
and y € N* implies 8 + y > B> 4+ y. Having come this far, the actual order turns out not to matter for
the proof of Theorem 2.20, but it will have bearing on the proof of Theorem 2.21. Which monomial
ordering we use on the 8 index will not be important, but for completeness let us choose lexicographic
order since this will be used at a later stage in the definition. Here we by lexicographic order refer to
the usual one, corresponding to the variables being ordered x| > - - - > x,. That is to say, if o; € N" for
i =1,2, then o) >ex o if, in the vector difference o) — ap € Z", the leftmost nonzero entry is positive.
Thus, if j; + |a1| + 81| = j2 + |o2]| + |B2| and B = B,, then we first say that

q(—ﬂjll)(al)(o’ £% >, q(—ﬂjzz)m)(o’ %) if |on| > o] (3-8)

and then use lexicographic order on the n-tuples « to break ties at this stage. Using the lexicographic
order on both multiindices (separately) we get

(&) (e1)
g1 <t qy " <t <tqy " <t qle) <t " <tql@) <t 90 <t

As indicated above we will prove Theorem 2.20 by a contradiction argument, so in the sequel we let
k denote an integer such that
JFlal+1Bl <« (3-9)
B
—Jj (@)
we will thus have « > 0.

if g (0, £9) is the first nonvanishing Taylor coefficient with respect to the ordering >;. Since j > —1

To simplify notation, we shall in what follows write ¢ instead of x; and x instead of x’. Then v, takes

the form
vr (1, x) = @ (t, x)e' T,
where
w(t,X) =Xy 1+ it Fx] 4+ X2+ (g +i12/2)%)/2. (3-10)
We shall as before use the notation & 0=(0,...,0,1) € R*! when in this context. To interpret the

integral I; we will need a formula for how R*(¢, x, D) acts on the functions v;. This is given by the
following lemma, where the parameter ¢ has been suppressed to simplify notation.

Lemma 3.3 [Hormander 1985b, Lemma 26.4.16]. Let g(x, &) € SR x R"™1), let ¢ € CP(R™™)
and w € C®(R"™Y), and assume that Imw > 0 except at a point y where w'(y) = n € R 0 and
Im w” is positive definite. Then
lq(x, DY(@e™) = Y g x, T (D — ) (pe'™) fer!] < CrrtTH? (3-11)
|| <k

fort>landk=1,2,...

An inspection of the proof of [Hormander 1985b, Lemma 26.4.16] shows that the result is still appli-
cable if Imw > 0 everwhere. This is also used without mention in [Hormander 1985b] when proving
the necessity of condition (¥). Thus the statement holds if Im w > 0 except possibly at a point y where
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w'(y) =n e R"' < 0 and Imw” is positive definite. We will also use this fact, but we have refrained
from altering the statement of the lemma.

If ¢ is homogeneous of degree p, then the sum in (3-11) consists (apart from the factor €'™™) of terms
that are homogeneous in 7 of degree u, w — 1, .... The terms of degree p are those in

¢ q®x, T (rw (x) — ) /e, (3-12)

which is the Taylor expansion at t5 of g(x, Tw’). In this way one can give meaning to the expression
g(x, Tw’) even though ¢ (x, &) may not be defined for complex &. The terms of degree p — 1 where ¢ is
differentiated are similarly

n—1
> " q®x, Tw' (1) Deg,

k=1

where ¢® should be replaced by the Taylor expansion at 77 representing the value at Tw’(x), as in (3-12).
In the present case we have
wy (1, 0) —§" =ix — (1*/2)°,

so the expression g_;(t, x, w’ (¢, x)) is given meaning if it is replaced by a finite Taylor expansion

Y P x EOw 1 x) - 9P /1B
B

of sufficiently high order.
Using the classicality of R* we have

M
ore(t, X, &)= Y qj(t,x, &) e WM R,
j=—1

so there is a symbol a € SC_IM_1 (R" x R*~1) such that

M
a(t,x,D)=R*(t,x,D)— Y _ q_;(t.x,D) mod ¥ ®(R").
j=-—1

By (3-2) and (3-10) it is clear that w satisfies the conditions of Lemma 3.3, so
a(t, x, Dyve = a(t, x, ©6")o + 0~ M%) = 7" a(t, x, §")v, + 0172,

which implies that |a(z, x, D)v;| < Ct~M-1 1f we for each —1 < Jj < M write

‘qj(r,x,D)vf— Y q )t x, e (Dy — T8 v ! | < Oy v TR

|| <k;

with k; =2M —2j + 1, then

M
R*(t,x, Dyvr =Y > gt x, t&" Dy — &% v, Ja! + 0z M71/2),

j=—1la|<k;
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Now recall the discussion above regarding the homogeneity of the terms in (3-11), and choose M > «,
where « is an integer satisfying (3-9). Then

M
R*(t,x, Dyve=e™ > > ")t x, Tw|(t,x)) D¢

j=—1 |a|<2M-2j

M
— oiTw Z Z T_j_l‘xlq(_aj)(t,x, U);(t,x))Da(p

J==1la|<2M=2j

M
=™ Z 70, x)

J=—1
with an error of order O(z ~*~1/2), where

ki)=Y g x w6, x)D%  for j = —1. (3-13)
Jtlal=J

As before, q(_aj) (t, x, w.(t, x)) should be replaced by a finite Taylor expansion at £° of sufficiently high
order representing the value at w’.(¢, x). In view of (3-5), this yields

K
IL=1" / H(t, fx)e”w<’~x>< 3 r_JAJ(t,x)+@(T_K_1/2)> dt dx.
J=—1

After the change of variables (t¢, Tx) — (¢, x) we find that

I, :/H(;,x)e”w(f/f’x/”( 3 r_JAJ(t/t,x/t)+©(t_K_1/2)>dt dx. (3-14)
J=—1

To illustrate how we will proceed to prove Theorem 2.20 by contradiction, let us for the moment assume
that ¢1(0, 0, £%) £ 0, where £° = (0,...,0, 1) e R""!. Since

At/ x /Ty =¢(t/T,x/T) Y it/ x /T, EY Wit/ x /) —EVP /1B (3-15)
B

where
wl(t/t,x/1) — &% =ix/T — (*/2tH)E* =0z ™), (3-16)

and (3-10) implies that Tw(z/7t, x/T) = x,—1 as T — 00, we obtain

lim I,/t = / H(t, x)e™1¢ (0, 0)q1 (0, 0, %) dt dx.

T—>00

Since we may choose ¢ # 0 at the origin, the limit above will then not be equal to O for a suitable choice
of H. However, this contradicts (3-6).
Now assume that B,k "q(_ﬂj%)(ao)(O, 0, £%) is the first nonvanishing Taylor coefficient with respect to the

ordering >;, and let
m = jo+ ko + |aol + | Bol (3-17)
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so that m < k by (3-9). Note that «g, fo € N"~! and that the integer ko accounts for derivatives in ¢ while
there is no corresponding term for derivatives in the Fourier transform of ¢ since the ¢g_; are independent
of this variable. Note also that since jj is permitted to be —1, we have 0 < kg, |ag|, |Bo| <m + 1.
To use our assumptlon we will need for each term q(ﬂ ) (t/t,x/7, €% in the Taylor expansion of
(y) HU /T, x/t, w,.(t/T, x/7)) (as it appears in (3-13)) at 50 to consider Taylor expansions in ¢ and x at

W)

the origin. Note that for given j and y, it suffices to consider finite Taylor expansions of q-; of order

k — j —|y| by (3-14) and (3-16). For each j and y we thus write
gt/ x /T, Wi (t/7. x/T))

= 3 @Y 0.0. 6% ki (17 x /1)~ £ /RN 1) + O,
k+la|+|Bl<k—j—Iyl

where (w'.(t/7,x/7) — £9)# should be interpreted by means of (3-16). As we shall see, the term

(t?/(21%))&° will not pose any problem, since it is 0(t~2). We have

/T, x/H) =Y Yoo @006 D7/ x/T)

JHlyI=J ktlal+Bl<c—J T —k— |a|tha(u);(t/t, )C/'L') _EO)ﬂ/(k‘ |Ol|' |ﬁ|') +@(T_K_1+J),

where —1 < j < J. If we are only interested in terms of order T~ in (3-14), we can use the assumption
that 9% ('ﬁg;(o 0,% =0forall =1 < j+k+ |a|+ B8] + |y| < m to let the term (r2/(272))£° from
(3-16) be absorbed by the error term in the expression above. This yields

Yo=Y @F%I0)0.0.£%
I=-1 JHRHFHBIEYI=m DY (T, x Ty T R (i) P [ (R e B]Y) 4 Oz Y,

where we use J = j + |y| together with the fact that we get a factor T ~/#! from (w’.(t/, x/7) — £°)? by
(3-16). Thus,
lim "1, = /H(t,x)eix""

T—>00

> A0 084 %)(0.0,69D760,0)/ (k! al!|BID ) di dx.

J+k+lol+Bl+|yI=m
Now choose ¢ such that D¢ (0, 0) = 1, but D¢ (0, 0) = 0 for all other y such that |y| < |Bo|. This
is possible by the discussion following (3-1). By (3-17) and our choice of the ordering >;, we have
o; q(ﬁf(f(;)(o, 0, £%) =0 for all 8 such that || > 0 as long as j +k + |«| + |B| + | Bo| = m. Hence, with

this choice of ¢, the last expression takes the form

lim "I, = / Ht, x)em—l( S k@™, (0.0, 50)/(k!|a|!)) dt dx, (3-18)

T—00 J (@)
Jtk+lal+|Bol=m

where as usual j is allowed to be —1 so that j € [—1,m — |Bp]] in (3-18). Now some of the Taylor

coefficients in (3-18) may be zero, in particular, the expression may well contain Taylor coefficients that

preceed B,k oq(_ﬁj%)(ao) (0, 0, £%), and those are by assumption zero. However, we claim that if at least one of
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the Taylor coefficients above are nonzero, then we may choose H so that the limit is nonzero. Indeed, if
that were not the case then the expression within brackets in (3-18) would be a polynomial with infinitely
many zeros, and thus it would have to have vanishing coefficients. Since this violates our assumption,
we conclude that the limit is nonzero. However, this contradicts (3-6), which proves Theorem 2.20.

4. Proof of Theorem 2.21

In this section we shall give the proof of Theorem 2.21, using ideas taken from [Hormander 1963]
together with the approach used to prove [Hérmander 1985b, Theorem 26.4.7']. As in the previous
section, we aim to use Lemma 2.3 to estimate the operator R(x, D,/) on approximate solutions of the
equation P*v = 0, concentrated near

I ={(x,x,0,&):x; e I'} CT*(R") \ 0. (4-1)

The proofs will be similar, but the situation is more complicated now, which will affect the construction
of the approximate solutions. We will also have to make some adjustments to the proof of [Hormander
1985b, Theorem 26.4.7'] to make it work, so a lot of the details will have to be revisited. Our approximate
solutions will also differ slightly from the ones used to prove [Hérmander 1985b, Theorem 26.4.7'], so
although we will refer directly to results in [ibid.] whenever possible, the formulation of some of these
results will be affected. For a more complete description of the approximate solutions, we refer the
reader to [Hormander 1981] or [Hormander 1985b], where their construction is carried out in greater
detail. When proving Theorem 2.21 we may without loss of generality assume that x’ = 0 and &’ = &°
in (4-1). In accordance with the notation in the proof of Theorem 2.19, we shall therefore throughout
this section refer to I’ simply by I", and we will let I’ = [ag, bo].

To simplify notation we shall in what follows write ¢ instead of x; and x instead of x". If N is the
integer given by Definition 2.1, and # is the dimension, the approximate solutions v, will be taken of the
form

M
v (f, X) :tN“L”eiT“’(”")Zqﬁj(t,x)r_j. 4-2)
0

Here ¢, ¢1, . . . are amplitude functions, and w is a phase function that should satisfy the eikonal equation
dw/ot —if(t,x,0w/ox)=0 (4-3)
approximately, where f is the imaginary part of the principal symbol of P. We take w of the form
w(t, x) = wo(r) + (x — y(1), n(®)) + Z we (1) (x — y(@)*/lecl!, (4-4)
2<|al=M

where M is a large integer to be determined later and x = y(¢) is a smooth real curve. When discussing
the functions w, we shall permit ourselves to use the notation « = (¢4, . .., ) for a sequence of s = ||
indices between 1 and the dimension n — 1 of the x variable, and w, will be symmetric in these indices.
If we take n(¢) to be real-valued and make sure the matrix (Im w ;) is positive definite, then Im w will
have a strict minimum when x = y(¢) as a function of the x variables.
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On the curve x = y(¢) the eikonal equation (4-3) is reduced to

wo (1) = (¥ (1), n(0)) +if (&, y(), n(®), (4-5)

which is the only equation where wy occurs. Hence it can be used to determine wy after y and n have
been chosen. In particular

dImuwo(r)/dt = f(t, y(1), n(1)). (4-6)

In the proof of Theorem 2.20 we could solve the corresponding eikonal equation explicitly. Here this
is not possible, so our goal will instead be to make (4-3) valid apart from an error of order M + 1 in
x — y(t). Note that f(z, x, &) is not defined for complex &, but since

dw(t, x)/9x; —n; (1) =Y waj(O)(x —y()* /]!,
(4-3) is given meaning if f (¢, x, dw/dx) is replaced by the finite Taylor expansion
> SO @) @w(, x)/ox —n@)P /1B (4-7)
1Bl=M

To compute the coefficient of (x — y(#))* in (4-7) we just have to consider the terms with || <|«|. Since

dw/dt =wy— (¥, )+ (x =y, )
+ D we &=l =Y Y wak()x — y)dye/dt/lal!,

2<|a|<M k I<|a|<M-1

the first order terms in the equation (4-3) give

dnj/dt =y wi@dye/dt =i(fi @y, m+ Y fP @y, mwir). (4-8)
k k
Note that this is a system of 2n equations
dnj/dt =) Rewj(tdye/dt ==Y Imwu (@) O, y,m), (4-8)
k k
Y Imwj(D)dyi/dt = — fij (6, y,m) — Y _Rew() fP, y,m), (4-8)"
k k

since y and 7 are real, and under the assumption that Imw; is positive definite these equations can
be solved for dy/dt and dn/dt. We observe that at a point where f = df = 0 they just mean that
dy/dt =dn/dt =0.

When 2 < |a| < M we obtain a differential equation

dwg/dt = " wedy/dt = Fy(t. y. 1, {wp)) (4-9)

k
from (4-3). Here F, is a linear combination of the derivatives of f of order |«| or less, multiplied with
polynomials in wg with 2 < |B| < |a|+ 1. Of course, when |a| = M the sum on the left side of (4-9)
should be dropped, and B should satisfy |8] < |«| instead. Altogether (4-8)’, (4-8)” and (4-9) form a
quasilinear system of differential equations with as many equations as unknowns. Hence we have local
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solutions with prescribed initial data. According to [Hormander 1985b, pages 105-106] we can find a
¢ > 0 such that the equations (4-8) and (4-9) with initial data

Wik =6k, we =0, when 2 < |a| < M and t = (ag + by) /2, (4-10)
y=x, n=_;, when t = (ag + by) /2 4-11)

have a unique solution in (ag—c, bg+c) for all x and & with |x|+ & —& Ol <c. (Here 8 jk 1s the Kronecker
delta.) Moreover,

(1) (Imwjx —&;x/2) is positive definite,

(i1) the map
(x,&, 1) (y,n,1), where x|+ —&% <ec, ap—c <t <by+c,

is a diffeomorphism.

In the range X, of the map (ii) we let v denote the image of the vector field d/d¢ under the map.
Thus v is the tangent vector field of the integral curves, and when f = df = 0 we have v = d/9¢. By
assumption f = 0 implies df/d¢ < 0 in a neighborhood of I" (see (2-18)), so if ¢ is small enough this
also holds in X.. An application of [Hormander 1985b, Lemma 26.4.11] now yields that f must have
a change of sign from — to + along an integral curve of v in X, for otherwise there would be no such
sign change for increasing ¢ and fixed (x, £), and that contradicts the hypothesis in Theorem 2.21. By
(4-6) this means that Im wq(#) will start decreasing and end increasing, so the minimum is attained at an
interior point. We can normalize the minimum value to zero and have then for a suitable interval of ¢ that
Im wy > 0 at the end points and Im wy = 0 at some interior point. Since Re wy is given by (4-5) we can
at this interior point also normalize the value of Re wq to zero. This completes the proof of [Hormander
1985b, Lemma 26.4.14]. However, in order to prove Theorem 2.21 when ag < by we shall need the
following stronger result.

Lemma 4.1. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted (t, x)
now. Then given M € N we can find

() acurvet (t,y(),0,n(t)) € R, witha' <t <b' as close to I as desired,
(ii) C* functions wy(t) for 2 < |a| < M, with Im w jx — 8k /2) positive definite when a’ <t <b’,
(iii) a function wo(t) with Imwg(t) > 0 fora’ <t <b’, Imwy(a’) > 0, Imwy(d') > 0 and Re wy(c’) =

Im wq(c") = 0 for some ¢’ € (a’, b")

such that (4-4) is a formal solution to (4-3) with an error of order O(|x — y(t)|M+1). If ag < by then (iii)
can be improved in the sense that if o0 > 0 is the number given by Theorem 2.21, then we can for any
&> o find

(iii)" a function wo(t) with Imwg(t) > 0, a’ <t < b/, Imwp(a’) > 0, Imwy(d’) > 0 and Re wy(t) =
Imwy(t) =0forallt €ayg+ e, by — ¢].
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Proof. In view of [Hormander 1985b, Lemma 26.4.14] we only need to prove (iii)’.
Let & > g, and let I, = [ag + €, by — €]. By the hypotheses of Theorem 2.21, there is a neighborhood
AU of

I, ={t0,0&%:tel}
where f vanishes identically. Take § > O sufficiently small so that
rel, |x|+1E—&° <8 implies (1, x,0,&) el

As above we can find ¢ > 0 such that the equations (4-8) and (4-9) with initial data (4-10) and (4-11)
have a unique solution in (ay — ¢, bg + ¢) for all x and & with |x|+|§ — & 0| < ¢. Since the map

(x,&,t)— (y,n,t), where |x|+|$—$0| <c, aqp—c<t<by+c,

is a diffeomorphism, we can choose ¢ small enough so that if (y, n, t) is in the range X, of this map,
then |y| + |7 — £° < 8. As we have seen, f must change sign from — to 4 along an integral curve of
v in X, if ¢ is small enough, where in X, we denote by v the image of the vector field d/9¢ under the
map. Let this integral curve be given by

y(t) = (1, y(1),0,n(t)) e R*" for ' <1 <V,
for some choice of a’ and b’ such that ag —c < a’, b’ < by + ¢ and

f@, y@),n@)) <0< f@&, yd",nd)).

Recall that at a point where f = df = 0 the equations (4-8)" and (4-8)” imply that dy/dt = dn/dt = 0.
Since f vanishes identically on y for ¢ € I, and the function wy is determined by (4-5), this proves the
lemma after a suitable normalization. O

Note that if I" is a point then by Lemma 4.1 we can obtain a sequence {y;} of curves
yi() =(t,y;),0,n;@) fora;<t<b)
approaching I", which implies that at t = c;. we have
(v (), 0,mi() - T asj— o0

in T*(R") \. 0, where c;. is the point where Re wg; =Imwg; = 0. Similarly, if I" is an interval and ¢ > 0
is the number given by Theorem 2.21, then for any point w in the interior of I, we can use Lemma 4.1
to obtain a sequence {y} of curves approaching I" and a sequence {wy;} of functions such that for each
J there exists a point w; € y; with w; = y;(¢;) that can be chosen so that Re wy;(¢;) = Imwq;(z;) =0
and w; — w as j — oo. This will be crucial in proving Theorem 2.21. Our strategy is to show that
all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at w;, or at
(c;., Vj (c;.), 0,n; (c})) when I is a point. Theorem 2.21 will then follow by continuity. In what follows
we will suppress the index j to simplify notation.



MICROLOCAL PROPERTIES OF THE RANGE OF A PRINCIPAL PSEUDODIFFERENTIAL OPERATOR 461

Let K and §2 be the cones given by Theorem 2.21, and suppose that the function w given by (4-4) is
a formal solution to (4-3) with an error of order O(|x — y(£)]M*1!) in a neighborhood Y of

{(7,0) rap <t < bp} CR"

with K C T*(Y), such that Imw > 0 in Y except on a compact nonempty subset 7" of the curve x = y(z),
with (tg, y(#9)) € T and w = 0 on 7. We want to show that all the terms in the asymptotic sum of the
symbol of R have vanishing Taylor coefficients at (¢y, y(#), 0, n(f9)). By part (i) of Lemma 4.1 we can
choose w so that

Iy={(, x,0w(t, x)/0t, dw(t, x)/dx): (¢t,x) € T} 4-12)

is contained in £2. This is done to ensure that if A is a given pseudodifferential operator with wavefront
set contained in the complement of K, then WF(A) does not meet the cone generated by [75.

We now turn our attention to the amplitude functions ¢;. With the exception of ¢y, which will be of
great interest to us, we will not be very thorough in describing them. Suffice it to say that these functions
can be chosen so that if P* is the adjoint of P then

”P*vr”(v) S CrN‘H’H‘U‘l’(l*M)/Z’ (4_13)
where M is the number given by (4-2). The procedure begins by setting

Go(t, )=y oa()(x — y(1))"

|| <M

with y(¢) as above, and having ¢, satisfy the linear system of ordinary differential equations

Digoa+ Y aupop =0. (4-14)
|Bl<M

In the same way we then successively choose ¢; and obtain (4-13). The precise details can be found
in [Hormander 1981, pages 87-89], or in [Hormander 1985b, pages 107-110]. Note that we for any
positive integer J < M can solve the equations that determine ¢ so that at the point (fg, y(tp)) € T we
have DY ¢o(to, y(tp)) =0 for all || < J except for one index «, || = J. This will be important later on.
Note also that the estimate (4-13) is not affected if the functions ¢; are multiplied by a cutoff function
in C;°(Y) that is 1 in a neighborhood of T. Since the ¢; will be irrelevant outside of Y for large T by
construction, we can in this way choose them to be supported in Y so that v, € C;°(Y).

Having completed the construction of the approximate solutions, we are now ready to start to follow
the proof of Theorem 2.20. To get the estimates for the right side of (2-1) when v is an approximate
solution, we shall need the following two results. The first, corresponding to Lemma 3.1, is taken from
[Hormander 1985b]. Observe that here it is stated for our approximate solutions which differ from those

in [ibid.] by a factor of TV 1"

, which explains the difference in appearance. Note also that although we
will not use the lower bound for the approximate solutions, that estimate is included so as not to alter

the statement.
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Lemma 4.2 [Hormander 1985b, Lemma 26.4.15]. Let X C R" be open, and let v, be defined by (4-2),
where w € C*(X), ¢; € Ci°(X), Imw > 0in X and d Rew # 0. For any positive integer m we then
have

el (emy < CTNT™ for > 1. (4-15)

If Im w(tg, xo) = 0 and ¢o(ty, x0) # O for some (ty, x9) € X then

N+n/2—m

lvell(—m) = cT for T >1

and for some ¢ > 0. If I is the cone generated by
{@x, dw(t, x), dw(r, x)) : (1, x) € U, supp ¢, Imw(z, x) = 0},

then t®v, — 0 in QZ)’I; as T — 00; hence T Av, — 0in C®(R") if A is a pseudodifferential operator with
WF(A)N I'=oandk is any real number.

Proposition 4.3. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted
(¢, x) now, and let v, be given by (4-2), where w € C*(Y), ¢; € C;°(Y), Imw >0in Y and d Re w #0.
Here Y is a neighborhood of {(t,0) : ap <t < by} such that K C T*(Y). Let H(t, x) € C;°(R x R*1
and set

he(t,0) =T M H (T (t —10), T(x — y(1)), (4-16)

where N is the positive integer given by Definition 2.1 for the operators R and P in Theorem 2.21.
Then hy € Hpyny(R") for all T > 1 and ||h:||(vy < C, where the constant depends on H but not on t.
Furthermore, if M is the integer given by the definition of v, in (4-2) so that (4-13) holds, and I, is the
integral

I; = (R*vy, h_r)a 4-17)

where R* is the adjoint of R(t, x, D), then for any positive integer k there exists a constant C such that
|[I:| < Ct=™if M = M (k) is sufficiently large.

Proof. In Section 3, one easily obtains a formula for the Fourier transform of the corresponding function
h (see (3-4)), which yields the estimates needed to show that 4, € H(y). Here we shall instead use the
equality

// \he (2, x)|?dt dx = 772N // |H (t(t —to), T(x — y(1)))|>dt dx

which shows that if T > 1 then Dtj D¢h. e L2(R™) for all (j, ) e Nx N"~! such that j+|a| < N +[n/2].
Hence, by using the equivalent norm on Hy)(R") given by

lhcllony = > 1D D¢hell).
JjHle|<N

we find that {h;};>; is a bounded one parameter family in Hx)(R"), which proves the first assertion of
the proposition.



MICROLOCAL PROPERTIES OF THE RANGE OF A PRINCIPAL PSEUDODIFFERENTIAL OPERATOR 463

To prove the second part, let k¥ be an arbitrary positive integer, and let v be the positive integer given
by Lemma 2.3 (applied to the operator R instead of Q) so that (2-1) holds for the choice of seminorm
| P*v||(yy in the right side. If we choose

1-M)/2<—-N—-—n—v—k, (4-18)

and recall (4-13), then
[P vellwy < CT™ . (4-19)

Since supp H is compact, we can find a bounded open ball containing supp 4, for all T > 1. Hence
h. € Hy(R") has compact support and v, € C3°(Y), so the result now follows by the estimate (2-4)
together with Lemma 4.2. U

To shorten the notation we will from now on assume that 7o = 0, so that w(0, y(0)) = 0. As in the
proof of Theorem 2.20 it suffices to show that all terms in the asymptotic expansion of the symbol of R*,
given by

OR* :ql(t’x’€)+q0(t’x’$)+"' )

with ¢; homogeneous of degree j in &, have vanishing Taylor coefficients at (0, y(0), n(0)). The method
will be to argue by contradiction that if not, then Proposition 4.3 does not hold. Therefore, let us assume
that B,k Oq(_ﬂj%)(ao) (0, y(0), n(0)) is the first nonvanishing Taylor coefficient with respect to the ordering >,
given by Definition 3.2, and let

m = jo+ ko +laol + [Bol. (4-20)

Now let k be a positive integer such that m < «, and sort the terms in I, given by (4-17), with respect
to homogeneity degree in 7. We can use Lemma 3.3 and the classicality of the symbol og+ to write

M/
R*(t,x, Dyvr = Y q_j(t.x, D)o, + OV t"=M"=1)
j:_

M M
— Z ZIN-H’L—[q_j(t’x’ D)(ei‘[w(t)l)_i_@(TN-‘rn—M/—l)
j=—11=0

for some large number M’. Note that (4-18) implies a lower bound on M, but as we shall see below,
we must also make sure to pick M > 2M’ + 1. For each j we then estimate ¢g_; (¢, x, D) €™ ¢)) using
(3-11) with k=M — 1 —2j, so that

gt x, D) ™)=Y gt x, T)(D—TN)*($re’™™) at!
le|<M—1-2j
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with an error of order O(zr(!=")/2), Recalling (4-18) and the discussion following Lemma 3.3 regarding
the homogeneity of the terms in (3-11), this yields, for sufficiently large M’,

M M
R*(t,x, Dyvr = Y Y Ve N @ x tw) D + 0 )

j=—11=0 lo|<M—1-2j

M M
— .L_N-H’leitw Z Z Z T_j_la‘_lq(flj)(t, X, W;)Da(]&l +©('L'_K_1). (4_21)

j=—11=0 |a|<M—1-2j

Note that 7~/ Il (“)(t x, w),) D*¢; is now homogeneous of order — j — || — in 7, and that as before,

(a)(t x, w’) should be replaced by a finite Taylor expansion at 1 of sufﬁmently high order. For each
—1 < J <k, collect all terms of the form 7—/~l«l~/ (“)(t x, w,)D%¢; in (4-21) that are homogeneous
of order —J in 7, that is, all terms that satisfy j + || +l =J for j > —1,and ||, > 0. If

atx)y= Y g x, w(t, x)D G (¢, x)
Jtlal+l=J

for the permitted values of j and /, then

I = f"/ H(tt, T(x —y(t)))(eirw(”x) 3 r_JA](t,x)+@(r_K_1)>dt dx.

J=—1

After the change of variables (¢, T(x — y(¢))) — (¢, x) we obtain

I, :/ H(t,x)(eirw(’/r’x/fﬂ(’/f)) > r_JA](t/r,x/r+y(t/r))+@(r_’(_1)>dtdx, (4-22)
J=-1

where
2y (t/T, x/T+ y(t/7))
= > DG/t x/T+y(t/0)q ) (/T x [T+ y(t/T), Wit/ x [T+ y(/T)). (4-23)

JHlalH=J

Recall that wo(0) = 0, which together with (4-4) implies
itw(t/t, x/T+y(t/7)) = itw((0) +i{x, nt/7)) -I—@(‘L'_l).

Hence

lim &/ Tw/Tx/T+y(/7) =eitw(’)(0)+i(x,n(0))‘ (4-24)
T—>00

In the sequel we shall also need

n—1

Bw /0 (t/T, x/T+y(t/1) —nj(t/T) = Y wja(t/T) (i /T) +O(x ), (4-25)

k=1
which follows from the definition of w and the fact that w, is symmetric in these special indices «. In
particular, w; x (t) = wy, j(¢) forall j, k € [1,n—1].
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Recall that we chose the integer « such that m < k. By Proposition 4.3 there is a constant C such that

|| <Ct™™, (4-26)

ko _ (Bo)
49— jo(ao)
respect to the ordering >;, where m = jo + ko + |ao| + |Bol, then (4-26) cannot hold. (Since we

and we shall now show that if 0 (0, y(0), n(0)) is the first nonvanishing Taylor coefficient with
are denoting the variables by (¢, x) now, the index « in Definition 3.2 will be replaced by the pair
(k, o) € N x N*~1.) We will do this by determining the limit of 7" I; as Tt — oo. To see what is needed,
consider A_(¢/7, x/t + y(t/7)) and recall that this is

qi(t/T, x/T+y(/T), w /T, x/T 4+ y(/T))do(t/T, x/T + y(1/7)),

which should be regarded as a Taylor expansion in & of g at n(z/7) of finite order. The same applies to
all the other terms of the form q(fj). For given j and o, we only ever need to consider Taylor expansions
of q(_“j) of order x — j — |a| in view of (4-22) and (4-25). To keep things simple, we shall first only
consider gy; it will be clear by symmetry what the corresponding expressions for the other terms should

be. Thus,
qi(t/T, x/T+y(t/T), wi(t/T, x/T+ y(t/7)))
= Y @)V @/t x/r+ /1), 0@/ O) W/, x/T+ (2 /0) = n(t/T)P/IBI+ O ), (4-27)

|Bl<k+1

which shows that to use our assumption regarding the Taylor coefficient 8tk Oq(_’i%)(ao)(O, v(0), n(0)), we
have to for each B write ql(ﬂ)(t/r, x/t+y(t/t), n(t/t)) as a Taylor series at 1(0), in addition to having
to expand each term as a Taylor series in ¢ and x. However, it is immediate from (4-25) that if 8 is an
(n — 1)-tuple corresponding to a given differential operator D? , then there is a sequence 8 = (B1, ..., Bs)
of s = |B| indices between 1 and the dimension n — 1 of the x variable, such that

gP(t, x) = (W (t/t, x /T +y(t/T) —n(t/0)P, (4-28)
as it appears in (4-27), satisfies
g2t x) =cp(t/t, x/v) + O VP17,

where
K n—1

c,g(z/r,x/r):H(Zwk,ﬁj(r/r)xk/r) and  c5(0, x/7) = 7 Pleg(0, x).

j=1 k=1

These expressions make sense if we choose the sequence B to be increasing, for then it is uniquely
determined by B. If for instance Dl = —82/85,-85]-, then B8 = (i, j) if i < j (see the indices « used in
connection with w, in (4-4)). Thus (4-27) takes the form

qi(t/T, x/t+y/T), w.(t/t, x/T +y(t/7)))
= Z q{ﬂ)(t/T,X/T‘Fy(T/T),n(t/‘[))grﬂ(t,x)/|ﬁ|!+@(.[ff<72)’

|Bl<k+1
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and if we expand each term in this expression as a Taylor series at n(0) we obtain

1t/ /T + (/). w(t/T. x/T + y(t/7)))
= Y > @/t v/ )P 1) (/1) — 0 (©0)/(BINYIY
|BI<kc+1|yl<k+1-|8] +0(z77%), (4-29)

where we regard 7(t/t) — n(0) as a finite Taylor series n'(0)t/t + n”(0)t?>/(21%) + - - - of sufficiently
high order to maintain control of the error term in (4-29). If we for each multiindex § let G’f (t,x) be
given by

Gl.x)= Y (t/v)—nO) g2 x)/(yltyal)  fory; e N,
vi+y2=B

then the required order of the Taylor expansion n(¢/t) — n(0) will ultimately depend on B, so we can
write

qi(t/t,x/T+ /1), wi(t/T,x/T + y(t/1)))

= Y ¢P/r x/t+y/1). nO0)GE (1, x) + 07 (4-30)
|Bl<k+1

and we can always bound G’f(t, x) by a constant times 7!l As will be evident in a moment, the
value of G’f (t, x) for |B| > 0 is not important. For notational purposes, denote by Goﬂ (t, x) the limit of
t#1G(t, x) as T — oo. Since G£ (¢, x) = 1 when B = 0 it is clear that GO(z, x) = 1.

For each § we must now write ql(ﬂ)(t/t, x/t + y(t/t), n(0)) as a Taylor expansion in ¢ and x at O
and y(0), respectively. As before, for given j and o, we will only have to consider Taylor expansions of
q*) of order k — j — |ar|. By (4-23) and (4-30) we have

Ao (t/7, x /T + (/7))
= Y o/t x/T+y/O)E/D (/T + y(t/T) = y(0)*GE (2. x)
EHaHple x 0f g (0, y(0), n(0)/(k!la]!) + O(z™72)),  (4-31)

where we in (x/t + y(t/t) — y(0))* regard y(t/t) — y(0) as a finite Taylor series of sufficiently high
order to maintain control of the error terms.

In the way that we expressed the term ¢ (¢ /7, x/t+y(t/7), w,(¢t/7t, x/T+y(t/7))) by (4-31), we can
get similar expressions of appropriate order for the terms q(_V} (t/t,x/t+y/7), w.(t/t,x/T+Yy(t/7)))
that appear in (4-23). For each j and y we have '

g/, x [T+ y(t /), w1/, [T+ y(t/7)))

= > @/ofa/rya/n) - yO) G x)df g D0, y(0). n(0) /(K ]
k+la|+|Bl<k—j—I¥| +@(T—K—1+j+|7/|)' (4-32)
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This together with (4-23) gives

M/t x/T+y/0)= Y Yo @/ /Ty —yO0)* Gl x)
JHAYI=T kel +Bl<k—j—ly| [q(ﬁT(r;/))(O (0), (0))

x DIy (t/7, x/T+ y(t/7)) dial

+ @(r—/c—l-‘rj-i-lyl)’

where —1 < j < J and [ > 0. Using that by assumption the Taylor coefficients 0, q(ﬁjU)) 0, ¥(0), n(0))

vanish for all —1 < j+k+|a|+|B|+|y| <m, and v/ ~*-lel = ¢1Blg—i=k=ll=IBI=VI=l when J = j+1+|y],
the equation above yields

S e/t =Y S ey O G )
J=—1 JHAHYI==1 j+k+lal+|Bl+yl=m ) oo ;
x DYgy(t/7, x/T + y(t/7)) 079" (a) (0. y(0). (0))
k!
+ 0z,

where r"s‘G? (t,x) —> Gg (t, x) as T — oo. As we can see, the expression above is O(t™™~1) as soon as
[ > 0, so in view of (4-22) and (4-24) we obtain

lim t™I, =/ H(t, x)e'WoOFitx.n(©)

(X YO0 G 1) D0, y(O)
JHk+lal+Bl+lyI=m tq(/SJJ(r;/))(O ¥(0), n(O))/(k'lal'))dtdx (4-33)

Recall (4-20) and choose ¢q so that Df°¢o(0, y(0)) = 1, but so that DY¢(0, y(0)) = 0 for all other y
such that |y| < |Bo| (see (4-14)). By the choice of our ordering >, we have afq(_ﬁjff;”(o, v(0), n(0)) =0
for all B such that || > 0 as long as j +k+ ||+ |B8|+|Bo| =m. Hence, with this choice of ¢, equation

(4-33) takes the form

lim "I, =/ H(t, x)e'"WoOFitx.n(©)

T—>00

><< > tk(x—I—y/(O)t)"‘atkq(ﬁjo()a)(O,y(O),n(O))/(k!|a|!))dtdx, (4-34)
Jtk+la|+|ol=m

so as promised, the value of Gg (t, x) for |B] > 0 does not matter. (Note that G8(t, Xx) is present in
(4-34) as the constant factor 1.) As in the proof of Theorem 2.20, some of the Taylor coefficients in
(4-34) may be zero. In particular, the expression may well contain Taylor coefficients that preceed
a," Oq(_ﬁj%)(ao)(o, ¥(0), n(0)) in the ordering, and those are by assumption zero. In contrast to the proof
of Theorem 2.20 we shall have to exploit this fact, since the coefficients of most of the monomials in
(4-34) will be linear combinations of the Taylor coefficients due to the factor (x + y’(0)7)*. However,
the ordering >; was chosen so that there can be no nonzero Taylor coefficient Bt"q(_ﬂjo)(a) (0, ¥(0), n(0))
such that k£ + || > ko + ||, or k + || = ko + |ag| and k < kg. This follows immediately from the
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choice of lexicographic order on the n-tuple (k, ) € N"*. (Recall that in the definition of the ordering >/,
x denoted all the variables in R", while here we denote those variables by (¢, x).) Hence, the only
coefficient of the monomial t%0x® in (4-34) is a," 0q(_ﬂ](.;)(%)(o, v(0), n(0)). We may therefore, as in the
proof of Theorem 2.20, choose H so that the limit in (4-34) is nonzero. Since this contradicts (4-26),

Theorem 2.21 follows in view of the discussion following Lemma 4.1.

Appendix A.

Here we prove a few results used in the main text, related to how the property that all terms in the asymp-
totic expansion of the total symbol have vanishing Taylor coefficients is affected by various operations.

Lemma A.1. Suppose X and Y are two C* manifolds of the same dimension n. Let K C T*(X) \ 0
and K' C T*(Y) \. 0 be compactly based cones and let x be a homogeneous symplectomorphism from
a conic neighborhood of K' to one of K such that x(K') = K. Let A € I"'(X x Y, I'") and B €
"' (Y x X, (I'YY), where I is the graph of x, and assume that A and B are properly supported
and noncharacteristic at the restriction of the graphs of x and x ' to K' and to K respectively, while
WF'(A) and WF'(B) are contained in small conic neighborhoods. If R is a properly supported classical
pseudodifferential operator in Y, then each term in the asymptotic expansion of the total (left) symbol
of R has vanishing Taylor coefficients at a point (y, n) € K' if and only if each term in the asymptotic
expansion of the total (left) symbol of the pseudodifferential operator ARB in X has vanishing Taylor
coefficients at x (v, n) € K.

Proof. We may assume that we have a homogeneous generating function ¢ € C* for the symplectomor-
phism y; see [Grigis and Sjostrand 1994, pages 101-103]. Then x is locally of the form

(0¢(x, n)/0m, n) = (x, d¢(x, n)/0x),

and A and B are given by

) = o [ 7000tz ou dz .
Bu(y) = (2711)” // eV p(y 5, 0)v(s) ds db.

Since R is properly supported we may assume that

Ru(z) = ﬁ / M (z, Mi(n)dn  for u € Coo(Y), (A-1)

where r(z, ) = og is the total symbol of R. Hence

1

ARBu(x)= @)

/ el P =2 @0ty 0= gy (x 2 Y (2, 0)b(y, s, O)u(s)ds d6 dy do dz de,

(A-2)
since B being properly supported implies that Bu € C;°(Y) when u € C3°(Y). Using integration by parts
in z, we see that we can insert a cutoff ¢ ((¢ — o’)/|o|) in the last integral without changing the operator
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ARB mod ¥ ~°. If we make the change of variables T = ¢ — o, then (A-2) takes the form

ARBM(X) /¢(T/|O_|)el((p(x ,T+0)—z2-(t4+0)+(z—y)-0+y-0—¢(s,0))

(2 )3)1
xa(x,z,T+o)r(z,o)b(y,s,0)u(s)dsdddydo dzdt + Lu,

with L € ¥ =%, If £2 € R*" is open and § € C*°(£2, R) is a phase function with a nondegenerate critical
point xg € £2 such that d¢ # 0 everywhere else, then [Grigis and Sjostrand 1994, Proposition 2.3] states,
in particular, that for every compact M C §2 and every u € C*(£2) N¢'(M) we have

) f e u(x)dx — e Agu(xo)A | < Cyh " DT sup [9%u(x)| for A > 1, (A-3)
|| <2n+3

where
(2m)" - i sen @" (x0)/4
Ag = — . (A-4)
| det ¢" (x0)|1/2

It is clear that the result extends to the setting £2 = T*(N) \. 0, where N is a C* manifold of dimension ».
In order to apply the result, we put 0 = Aw, and make the change of variables r = A7. After dropping
the tilde we obtain

ARBM(X) f¢(r/|w|)elk(¢(x T+w)—z2-(t+w)+y-0/A+(z—y) - 0o—¢(s,0) /1)

3n
(2 ) xa(x, z, Mt +w))r(z, \w)b(y, s, Du(s)dsdddydwdzdt + Lu,
where we have used the fact that ¢ is homogeneous of degree 1 in the fiber. For the z, T-integration we
have the nondegenerate critical point given by T =0, z = goé (x, T+w). Note that since (pé is homogeneous
of degree 0 in the fiber we have <p2 (x,0/A) = <p2 (x, 0), so this critical point corresponds to the critical
point for the z, {-integration given by { = o,z = <pé (x, 0). Hence the expression above together with
(A-3) imply that

ARBu(x) = CA*" / ¢! ATy 0=yho=0.0)y, (x y s, w, O)u(s)ds dO dy dw + Lu,

where Ag
wx,y,s, o, 9)_—a(x 2, AT +w))r(z, Aw)b(y, s, 0)p(t/|w|) |r=o,

=g (x,0)
Ag ’ ’
= )\‘_na(-xv §0; (-xa Cl)), )"a))r((pé‘ (-xa C()), )"w)b(y7 s, 9)

with an error of order O(A~"~1). Note that A is now a function of x and w, since the matrix corresponding
to ¢”(xo) in (A-4) is given by the block matrix

0 —Id
= ( 14, ¢, (x, w)) (A5

where Id,, is the identity matrix on R". Clearly the determinant of F is either 1 or —1, so F is nonsingular.
Furthermore, F depends smoothly on the parameters x and w since ¢ € C*, so the eigenvalues of F
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are continuous in x and . Hence it follows that the signature of F is constant, for if not there has to
exist an eigenvalue vanishing at some point (x, w), contradicting the nonsingularity of F. Reverting to
the variable o = Lw we thus obtain

ARBu(x) = Cfe"@(x"’)ﬂ'(g“W“ﬁ))w(x, y,s,0,0)u(s)dsdddydo + Lu,

where

w(x,y,s,0,0)=a(x, (,02 (x,0), o)r(gog (x,0),0)b(y,s,0)

with an error of order O(1~!). Taking the limit as A — oo yields
ARBu(x):C/ ei(W(""’)”'(G_")_g"(s’e))a(x,goé(x,cr),cr)r((pg(x,a),a)b(y,s,9)u(s)dsd9dyda+Lu.

We can now repeat the procedure. Indeed, we can insert a cutoff ¢ ((c —0)/]6|) without changing the
operator mod ¥ ~*°, and after making the corresponding changes of variables in order to apply [Grigis
and Sjostrand 1994, Proposition 2.3] we find that for the y, o-integration we have the nondegenerate
critical point given in the original variables by o =6, y = ¢, (x, o). After taking the limit as A — oo we
obtain

ARBu(x)=C / ' PEO=06M (x5, 0)u(s)ds dO + Liu,

where L; € ¥~ and
wi(x,s,0) =a(x, gy(x,0),0)r(py(x,0),0)b(py(x,0),s,6). (A-6)

As before we let the factor Ag from (A-4) be included in the constant C. In a conic neighborhood of
supp w; we can write

ox,0)—@p(s,0)=(x—s5)E(x,s,0).

Then 5 (x, x,0) = ¢, (x,0) s0 & (x, x,0)/30 = ¢, (x, 6) is invertible, since ¢}, (x, ) # 0 is equivalent
to the fact that the graph of yx is (locally) the graph of a smooth map. Hence 0 — Z(x, s, 0) is C*,
homogeneous of degree 1 and with an inverse having the same properties. For s close to x, the equation
Z(x,s,0) =& then defines 6 = @ (x, s, §). After a change of variables, the last integral therefore takes
the form

ARBu(x) =C/e“x—“fwl(x,s,g)u(s) dsdg + Lyu, (A-7)

where wi(x, s, £) isjust wi(x, s, @(x, s, £)) multiplied by a Jacobian. We note in passing that evaluating
w; at a point (x, x, &) where & is of the form & = ¢/ (x, n) therefore involves evaluating w; at the point
(x, x, n). The integral (A-7) defines a pseudodifferential operator with total symbol p(x, £) satisfying

F— ot
P §)~ Y (OFT (v, ¥, D)y (A-8)

If the total symbol r = og of R has vanishing Taylor coefficients at a point (y, n) = ((,0,/7 (x,n),n), then
by examining (A-8) in decreasing order of homogeneity we find that each term of p must have vanishing
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Taylor coefficients at (x, §) = (x, ¢} (x, n)), since by what we have shown this would involve evaluating
r(z, o) and its derivatives at (go,’7 (x,m,n).
To prove the converse, choose A; € I~ (X x Y, I'")and B; € I =™ (Y x X, (I'"")") properly supported
such that
K'NWF(BA,—1)=2, KNWF(AB-1)=2,
K'NWF(BiA—1)=2, KNWF(AB,—1)=2.

Then a repetition of the arguments above shows that all the terms in the asymptotic expansion of the
total symbol of BjARBA| has vanishing Taylor coefficients at a point (y, n) = ((p;7 (x,n), n) if all the
terms in the asymptotic expansion of the total symbol of ARB has vanishing Taylor coefficients at
(x, &) = (x, ¢.(x,n)). Since R and BiARBA, have the same total symbol in K’ mod ¥ ~>°, the same

must hold for the total symbol of R. O
Let {ex : k=1, ...,n} be a basis for R", let (U, x) be local coordinates on a smooth manifold M of
dimension n, and let
d .. _
{a—)ck.k—l,...,l’l}

be the induced local frame for the tangent bundle 7M. Since the local frame fields commute, we can
use standard multiindex notation to express the partial derivatives 0% f of f € C*°(U).

Lemma A.2. Let M be a smooth manifold of dimension n, and for j > 1 let p,q;,g; € C*°(M). Let
{yj}f;ozl be a sequence in M such that y; — y as j — oo, and assume that p(y) = p(y;) =0 forall j,
and that dp(y) #0. Let (U, x) be local coordinates on M near y, and suppose that there exists a smooth
Sfunction g € C*°(M) such that

dyq(y) = lim 37q;(y;) foralla e N".
J*)OO

If q; — pg vanishes of infinite order at y; for all j, then there exists a smooth function g € C*°(M) such
that g — pg vanishes of infinite order at y. Furthermore,

0y g(y) = lim 97g;(y;) foralla e N". (A-9)
j—o00

Proof. We have stated the result for a manifold, but since the result is purely local we may assume that
M C R" in the proof. It is also clear that we may assume that there exists an open neighborhood U of
y such that y; € U for j > 1, and that dp # 0 in U. By shrinking U if necessary, we can then find a
unit vector v € R" such that 9, p(w) = (v, dp(w)) # 0 for w € U. (We will identify a tangent vector
v € R" at y with 9, € T,R" through the usual vector space isomorphism.) Hence 9, p(w) is invertible
in L, and we let (3, p(w))~! € C*(U) denote its inverse. By an orthonormal change of coordinates we
may even assume that 9, p(w) = 9., p(w). In accordance with the notation used in the statement of the
lemma, we shall write dy, p(w) for the partial derivatives 9., p(w) and denote by (9, p(w))~! the inverse
of 9, p(w) = 9, p(w) in U.
Now
0=0y,(q; — pgj)(yj) =0x,q;(y;) — dx, P(¥;)g;(¥}) (A-10)
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for all j since p(y;) = 0. Since lim; dy,q;(y;) = dx,q(y) by assumption, equation (A-10) yields
Jlim g;(r)) = @ P 0nq() =a eC. (A-11)
We claim that we can in the same way determine
jli)n;o(aggj)(yj) =a() € C forany o e N".

We start by determining lim;_, o, dg;(y;)/0xx = aw) for 1 <k <n. By the hypotheses of the lemma we
have
0=0x0y,(q; — pgj)(Vj)
=0y 0,9 (V) — 0x, 05, P(V))8(Vj) — Ox, (V) 0%, 8 (V) — 0, P(¥)0x, 8 (V) (A-12)
since p(y;) =0. For k =1 =1 we obtain from (A-11) and (A-12)

Jlim 81,850y = @, P(YD ™" (35,4 ) — 35, p(1)a) /2. (A-13)

This allows us to solve for dy, g;(y;) in (A-12) by choosing [ = 1. If b € C denotes the limit in (A-13)
and a € C is given by (A-11) we thus obtain

jli)ngo axkgj(yj) = (8x1p(y))_l (axl akaI(V) - axlaxkp(y)a - axkp(y)b) for2 <k <n.
Now assume that for some m > 3 we have in this way determined
lim 0y, ...0y, g;j(y;), fork; €[l,n], withie[l,m—2].
j—)OO 1 m—2
To shorten notation, we will use the (nonstandard) multiindex notation introduced on page 465; to every
o € N" with |a| = m corresponds precisely one m-tuple 8 = (ki, ..., k,) of nondecreasing numbers

1<k <---<k, <n such that 8,’? equals 9¢. Throughout the rest of this proof we shall let B represent
such an m-tuple, and we let

Bi = (kls -~~5ki—lyki+l5 ---,km)-

As before we have

m
0=032(q; — pg))(v)) = 0q;(y) — 0L p(yp)gi(y) — - =Y g p(v))lg;(v)) (A-14)
i=1
by assumption. If we choose k; =1 forall 1 <i <m, the last sum is just mdy, p(yj)ajg_lgj (y;), and since
the limit of all other terms on the right side are known by the induction hypothesis, we thus obtain the
value of the limit of 8"~'g;(y;) from (A-14) by first multiplying by m~'(dx, p(y;)) " and then letting
Jj — oo. Denote this limit by ¢ € C. If we choose k; # 1 for precisely one i € [1, m], say k, = k, then
the last sum in (A-14) satisfies

m
D g, PP g (i) = 85 p(y)On T g (v + (m — D)y, p(v)a7 20,8, (1),

i=1
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so by the same argument as before we can obtain the value of lim;_, o, a;g;—Zaxkg j(yj) for2 <k <nby
multiplying by (m — 1)~'(dx, p(y;))~" and using 37~ ¢;(y;) — ¢ when taking the limit as j — oo in
(A-14). Continuing this way it is clear that we can successively determine

lim 9,
j—o00

“ ...8ka71gj(yj) forany 1 <k <...<kp_1 <n,

which completely determines lim;_, o, 07g;(y;) = a() for o € N" with |a| = m — 1, proving the claim.
By Borel’s theorem there exists a smooth function g € C°°(M) such that

0y8(y) =aw) = lim 97g;(y;) foralla eN".
j—oo

Since g — pg vanishes of infinite order at y by construction, this completes the proof. O

The lemma will be used to prove the following result for homogeneous smooth functions on the
cotangent bundle.

Proposition A.3. For j > 1 let p,q;,8; € C*(T*(R") \. 0), where p and q; are homogeneous of
degree m and the g; are homogeneous of degree 0. Let {y j}?il be a sequence in T*(R") \. 0 such that
yj — yas j — 0o, and assume that p(y) = p(y;) =0 for all j, and that dp(y) # 0. If there exists a
smooth function g € C*°(T*(R)" \. 0), homogeneous of degree m, such that

Bfafq(y) = jli)ngo 8§8£qj(yj) forall (a, B) € N* x N",

and if qj — pg; vanishes of infinite order at y; for all j, then there exists a g € C*(T*(R") \ 0),
homogeneous of degree 0, such that g — pg vanishes of infinite order at y. Furthermore,

%9 g(y) = jli)n;o 0%0f g (v)) forall (o, B) € N" x NI, (A-15)

Proof. Let m : T*(R") ~ 0 — S*(R") be the projection. Since dp(y) # 0 it follows from homogeneity
that dp(m (y)) # 0. By using the homogeneity of ¢, g; and g; we may even assume that y and y; belong
to S*(R") for j > 1 to begin with.

Now, the radial vector field & 0¢ applied k times to a € C*°(T*(R")\.0) equals / ka if a is homogeneous
of degree [. For any point w € $*(R") with w = (w,, we) in local coordinates on T*(R") it is easy to
see that

T, S*(R") = {(u, v) € R" x R" : (wg, v) =0}.

Therefore a basis for 7, S*(R") together with the radial vector field (£0g),, at w constitutes a basis for
T, T*(R"). This implies that if we can find a homogeneous function g such that ¢ — pg vanishes of
infinite order in the directions 7,,S*(R"), then ¢ — pg vanishes of infinite order at y, for the derivatives
involving the radial direction are determined by lower order derivatives in the directions 7,5*(R").

By the hypotheses of the proposition together with an application of Lemma A.2, we find that there
exists a function g € C*°(T*(R")), not necessarily homogeneous, such that ¢ — pg vanishes of infinite
order at y and (A-15) holds for g. The function g(x, &) = g(x, £/|&]) coincides with g on S*(R"). In
particular, all derivatives of g and g in the directions 7;,S*(R") are equal at y. Thus, by the arguments
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above we conclude that ¢ — pg vanishes of infinite order at y. Since g and g; are homogeneous of
degree 0, the same arguments also imply that (A-15) holds for g, which completes the proof. (|
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BLOW-UP SOLUTIONS ON A SPHERE FOR THE 3D QUINTIC NLS IN THE
ENERGY SPACE

JUSTIN HOLMER AND SVETLANA ROUDENKO

We prove that if u(¢) is a log-log blow-up solution, of the type studied by Merle and Raphaél, to the
L? critical focusing NLS equation id;u + Au + |u|*?u = 0 with initial data uy € H'(R?) in the cases
d = 1,2, then u(#) remains bounded in H' away from the blow-up point. This is obtained without
assuming that the initial data u has any regularity beyond H'(R?). As an application of the d = 1
result, we construct an open subset of initial data in the radial energy space H_.,(R?) with corresponding
solutions that blow up on a sphere at positive radius for the 3D quintic (H'-critical) focusing NLS
equation id,u + Au + |u|*u = 0. This improves the results of Raphaél and Szeftel [2009], where an open
subset in Héd([R3 ) is obtained. The method of proof can be summarized as follows: On the whole space,

high frequencies above the blow-up scale are controlled by the bilinear Strichartz estimates. On the other
hand, outside the blow-up core, low frequencies are controlled by finite speed of propagation.

1. Introduction
Consider the L? critical focusing nonlinear Schrodinger equation (NLS)
idu—+ Au+uu=0, (1-1)

where u = u(x, t) € C and x € R, in dimensions d = 1 and d = 2. It is locally well-posed in H'(RY)
and its solutions satisfy conservation of mass M (u), momentum P (u), and energy E(u):

i 1
M) = ul?,, P =Im/uVudx, E@) = 1IVul?, - 4/d+2||u||‘£ﬁ‘f;§; (1-2)

see [Tao 2006, Chapter 3] and [Cazenave 2003, Chapter 4] for exposition and references. The Galilean
identity (see [Tao 2006, Exercise 2.5]) transforms any solution to one with zero momentum, so there is
no loss in considering only solutions u(¢) such that P(u) = 0.

The unique (up to translation) minimal mass H' solution of

—Q+AQ+101Y"Q =0, with 0 =0(), (1-3)

is called the ground state. It is smooth, radial, real-valued and positive, and exponentially decaying; see
[Tao 2006, Appendix B]. In the case d = 1, we have explicitly

0 (x) =34 sech!/?(x). (1-4)

MSC2000: 35Q55.
Keywords: blow-up, nonlinear Schrodinger equation.
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Weinstein [1982] proved that solutions to (1-1) with M (1) < M(Q) necessarily satisfy E(u#) > 0 and
remain bounded in H'! globally in time (that is, they do not blow up in finite time).

Building upon the earlier heuristic and numerical result of Landman, Papanicolaou, Sulem and Sulem
[Landman et al. 1988] and the first analytical result of Perelman [2001], Merle and Raphaél in a series
of papers (see [Merle and Raphagl 2005] and references therein) studied H' solutions to (1-1) such that

E(w) <0, Pu)=0, M(Q)<Mwu)<M(Q)+o* (1-5)

for some small absolute constant o™ > 0. They showed that any such solution blows up in finite time at
the log-log rate — more precisely, they proved that there exists a threshold time Ty(uo) > 0 and a blow-up
time T (ug) > To(up) such that

log|log(T — 1)

12
forTy <t <T, 1-6
S s (1-6)

IVuois ~ (

where the implicit constant in (1-6) is universal. Also, with scale parameter A(¢) = |V Q|| ;2/IVu (@) 2,
there exist parameters of position x (t) € R? and phase y(¢) € R such that if we define the blow-up core

Re x —x(t)
ucore(x,t)=)t(t)d/2Q< A1) )7 (1-7)

and remainder i = u — Ucore, then ||z ;2 < «, and

1/2
Vi % (g =rea=n ) (1-8)
for some C > 1. There is, in addition, a well-defined blow-up point xo := lim; »7 x(¢). We refer to
the region of space {x € R? | |x — xo| > R}, for any fixed R > 0, as the external region. While the
Merle-Raphaél analysis accurately describes the activity of the solution in the blow-up core, the only
information it directly yields about the external region is the bound (1-8).

However, it is a consequence of the analysis in [Raphaél 2006] that in the case d = 1, H' solutions
in the class (1-5) have bounded H'/? norm in the external region all the way up to the blow-up time 7.
In [Holmer and Roudenko 2011], we extended this result to the case d = 2. Raphaél and Szeftel [2009]
established for d = 1 that solutions with regularity H” for N > 3 satisfying (1-5) remain bounded in the
H®™=D/2 norm in the external region, and Zwiers [2011] extended this result to the case d = 2. These
results leave open the possibility that there is a loss of roughly half the regularity in passing from the
initial data to the solution in the external region at blow-up time. The first main result of this paper is that
such a loss does not occur. Specifically, we prove that H' solutions in the class (1-5) remain bounded in
the H' norm in the external region all the way up to the blow-up time, resolving an open problem posed
in [Raphaél and Szeftel 2009, Comment 1 on page 976].

Theorem 1.1. Consider dimension d = 1 or d = 2. Suppose that u(t) is an H' solution to (1-1) in the
Merle—Raphaél class (1-5) (no higher regularity is assumed). Let T > 0 be the blow-up time and xo € R?
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the blow-up point. Then for any R > 0,

T [x—xg|=R

||Vu(t)||L[o§ 12 < C, whereC depends on R, To(ugp), and ||Vu0||Lz.l

We remark that H', the energy space, is a natural space in which to study the equation (1-1) since
the conservation laws (1-2) are defined and Lyapunov—Hamiltonian type methods, such as those used by
Merle and Raphaél in their blow-up theory, naturally yield coercivity on H' quantities.

The retention of regularity in the external region has applications to the construction of new blow-
up solutions, with special geometry, for L? supercritical NLS equations. Using their partial regularity
methods, Raphaél [2006] and Raphaél and Szeftel [2009] constructed spherically symmetric finite-time
blow-up solutions to the quintic NLS

idu—+ Au+lul*u=0 (1-9)

in dimension d > 2 that contract toward a sphere |x| = ry ~ 1 following the one-dimensional quintic
blow-up dynamics (1-6)(1-7) in the radial variable near r = rg. Specifically, they showed there exists
an open subset of initial data in some radial function class with corresponding solutions adhering to the
blow-up dynamics described above. In [Rapha&l 2006], for d = 2, an open subset of initial data in the
radial energy space Hrgd([Rz) was obtained. For d = 3, in which case (1-9) is H' critical, Raphaél and
Szeftel [2009] obtained an open subset of initial data in a comparably “thin” subset Hr3ad([R{3) of the radial
energy space Hrlad([R3).

As an application of the techniques used to prove Theorem 1.1, we prove, for d = 3, the existence of
an open subset of initial data in the full radial energy space Hrgd([I@). For the statement, take Q to be the
solution to (1-3) in the case d = 1, explicitly given by (1-4). The following theorem follows the motif
of the d = 3 case of [Raphaél and Szeftel 2009, Theorem 1] except that %, the initial data, is an open
subset of Hrgd([@) rather than Héd(l]%3).

Theorem 1.2. There exists an open subset P C Hrlad(R3) such that the following holds true. Let ug € %
and let u(t) denote the corresponding solution to (1-9) in the case d = 3. Then there exist a blow-up time
0 < T < +o00 and parameters of scale L(t) > 0, radial position r(t) > 0, and phase y(t) € R such that if
we take

Ucore(t, 1) := 11/2 Q(r ;(’;)(t)>ei)’(1)

and the remainder u(t) := u(t) — ucore (), then the following hold:
(1) The remainder converges in L*: ii(t) — u* in L>(R¥) ast /' T.
(2) The position of the singular sphere converges: r(t) —>ro>0ast /' T.
I'We did not see in the Merle—Raphaél papers the threshold time T (uq) or the blow-up time 7 () estimated quantitatively

in terms of properties of the initial data (|| Vug|l; 2, E (ug), etc.). If such dependence could be quantified, then the constant C in
Theorem 1.1 could be quantified.
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(3) The solution contracts toward the sphere at the log-log rate:

_ 1/2
A(t)(w> — v/an ast /' T.

T—t 1912

(4) The solution remains H'-small away from the singular sphere: For each R > 0,

[ ()l

< €.
r-rnyizr @) =

The 3D quintic NLS equation (1-9) is energy-critical, and the global well-posedness and scattering
problem is one of several critical regularity problems that has received a lot of attention in the last decade
[Bourgain 1999; Colliander et al. 2008; Kenig and Merle 2006]. The global well-posedness for small
data in H' is classical and follows from the Strichartz estimates. Our Theorem 1.2 takes a large, but
special “prefabricated” approximate blow-up solution, and installs it near radius » = 1 on top of a small
global H' background. The main difficulty, of course, is showing that the two different components —
the blow-up portion on the one hand, and the evolution of the small H' background on the other — have
limited interaction and can effectively evolve separately. Thus, it is not surprising that the techniques to
prove Theorem 1.1 are relevant to this analysis.

We now outline the method used to prove Theorem 1.1. We start with a given blow-up solution u(t)
in the Merle—Raphaél class, and by scaling and shifting this solution, it suffices to assume that the blow-
up point is xo = 0 and the blow-up time is 7 = 1, and moreover, (1-6) holds over times 0 < ¢ < 1.
Since (1-1) is L? critical, the size of the L? norm is highly relevant. By mass conservation, we know
that || Pyu(t)|| L2 < 1 for all N and all 0 < ¢ < 1, where Py denotes the Littlewood—Paley frequency
projection. However, (1-6) shows that for N > (1—1)~1%9/2 we have || Pyu(z) || L2 < N1 —p)~U+9/2,
which is a better estimate for these large frequencies N. In Section 3, we show that this smallness of
high frequencies reinforces itself and ultimately proves that for N > (1 — ¢)~(*9/2_ the solution is
H' bounded. This is achieved using dispersive estimates typically employed in local well-posedness
arguments — the Strichartz and Bourgain’s bilinear Strichartz estimates — after the equation has been
restricted to high frequencies. We note that this improvement of regularity at high frequencies is proved
globally in space.

For the Schrodinger equation, frequencies of size N propagate at speed N, and thus, travel a distance
O(1) over a time N~!. Therefore, at time ¢ < 1, a component of the solution in the blow-up core at
frequency N will effectively only make it out of the blow-up core and into the external region before
the blow-up time, provided N > (1 —¢)~!. Thus, we expect that the blow-up action, which is taking
place at frequency ~ (1 —1)~!/?log|log(1 — )| <« (1 —¢)~', will not be able to exit the blow-up core
before blow-up time. This is the philosophy behind the analysis in Section 4. Recall that in Section 3,
we have controlled the solution at frequencies above (1 — ¢)~(1%9/2_ In Section 4, we apply a spatial
localization to the external region, and then look to control the remaining low frequencies, i.e., those
frequencies below (1 — ¢)~(179/2 We examine the equation solved by P_i_p-34Pu(t), where ¢ is a
spatial restriction to the external region. In estimating the inhomogeneous terms, we can make use of the
frequency restriction to exchange a-spatial derivatives for a time factor (1 —#)~3%/4, This enables us to
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prove a low-frequency recurrence: The H*® size of the solution in the external region is bounded by the
H*~1/8 size of the solution in a slightly larger external region. Iteration gives the H' boundedness.

The structure of the paper is as follows. Preliminaries on the Strichartz and bilinear Strichartz estimates
appear in Section 2. The proof of Theorem 1.1 is carried out in Sections Section 3 and 4. The proof of
Theorem 1.2 is carried out in Section 5.

2. Standard estimates

All of the estimates outlined in this section are now classical and well known. Let Py, P<y, and P>y
denote the Littlewood—Paley frequency projections.
We say that (g, p) is an admissible pair if 2 < p < oo and

2.,.d_d

g p 2
excluding the case d =2, g =2, and p = o0.

Lemma 2.1 (Strichartz estimate). If (¢, p) is an admissible pair, then

itA
le" @l arr S llllL2-
t X X

Proof. See [Strichartz 1977] and [Keel and Tao 1998]. O
Lemma 2.2 (Bourgain bilinear Strichartz estimate). Suppose that Ny < N,. Then
itA itA 1d T\
123 €01 P gall 31 5 (Sh—)  Wnlizlenle, @1)
N — d=1\1/2
|| Py, e’ 1Py Aol 20 S < N, ) @1l 2 llg2ll L2 (2-2)

Proof. For the 2D estimate (2-1), see [Bourgain 1998, Lemma 111]; the 1D case appears in [Colliander
et al. 2001, Lemma 7.1]; another nice proof is given in [Koch and Tataru 2007, Proposition 3.5], the
other dimensions are analogous. We review the 1D proof to show that the second estimate (2-2) holds
as well.

Denote u = e/'*(Py,¢1) and v = e='2(Py,¢,). Then in the 1D case,

M, 1) = /E E 5W(&)@(&)au—(s%iszz))dsl (2-3)
1+&62=
1
=P P 2-4
PACHD AR -4

where g(§1,6) =1 — (512 :I:SZZ), thus, |gé1 | =2|& £&;|. To estimate the Léf norm of uv, we square the
expression above and integrate in t and £. Changing variables (7, &) to (&1, &) with T = 512 + 522 and
& =& 4 &), we obtain dtd& = J d&,d&, with the Jacobian J = 2|&| & &;|, which is of size N, (note that
=+ does not matter here, since N, >> Nj). Bringing the square inside, we get

dends _ 1o
< — . O
e S 1o e

luvl?, < / 161 ED 2 ¢2(82) 7
* [&1|~N1,]&2|~N>
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Now we introduce the Fourier restriction norms. For i € $(R!*%),
~ —itA~ -~ 172
il = [P DL e i )y = ([ [ 0P (e + 1671 d )
tx g Jr
If I C R is an open subinterval and u € %' (I x R%), define

lullx, ) = infllallx, ,,
u

where the infimum is taken over all distributions i € ¥'(R'*?) such that it|; = u.

Lemma 2.3. If0 is a function such that supp 6 C I, then forall0 < b < 1,

1/2,b
loullx,, < (101~ + 1D D01 ) ullx, o) (2-5)

s,b ~

Ifo<b< % and x; is the (sharp) characteristic function of the time interval I, then

lxrullx,, ~ llullx,,u)- (2-6)

Proof. Tt suffices to take s = 0. The inequality (2-5) follows from the fractional Leibniz rule. To
address (2-6), we note that Jerison and Kenig [1995] prove that ||X(0’+oo)f||th < ||f”H[b for —% <b< %
Consequently, || x7 fl HY Ny Al HY for any time interval /. Let & be an extension of u (meaning it|; = u)
so that [|i| x,, < 2llullx,,)- Then

be—ttA

xrullx,, = II{Dr) xrillp2p2

= [ lxre™" 2l 0

|Lg < e 2l | L2

= |lutllx,, < 2llullxy,m)-
On the other hand, the inequality |lulx,,) S Il x7ullx,, is trivial, since x;u is an extension of u|;. [
Lemma 2.4. Ifio,u + Au = f on a time interval I = (ay, ay) with |1| = O(1), then

() Foré <b<1,taking ' = (a1 —w,a, + ), 0 < w < 1, we have

lu() — eV u@) | xo,m) S @272 xopr - (2-7)

(2) For0<b < 1,
(@) = &'V Ru@n) xory S NNz (2-8)

Moreover, for all b,

i(t—ap)A
le" "2l xgp0) S Nl 2

Proof. Without loss, we take a; = 0. First we consider (2-7). Since, fort € I,

e—il‘Au( . t) — M(O) _ 19(1‘) / e_it/AQ(lJ)f( ., t/) dl’/’
0
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where 6 is a cutoff function such that 6(¢) =1 on I and supp & C I’, the estimate reduces to the space-
independent estimate

”G(t) / hydr!
0

” S Al for 3 <b<1 (2-9)

by (2-5). Now we prove estimate (2-9). Divide h = P<jh + P>;h and use that
t

/ P-1h(t') = % / (sgn(t —1") +sgn(t") P=1h(¢") dt’
0

to obtain the decomposition

t
0(1) f h(t") di' = H\(t) + Ha(1) + H3(1),
0
where )
Hi(t) = 6(1) / Pty dt,
0

Hy(t) = 10(t)[sgn* P~ h](t) dt’,

+00
Hs(t) = 360(1) / sgn(t) P=1h(t') dt'.

We begin by addressing term H;. By Sobolev embedding (recall % <b<1)andthe L? — L? boundedness
of the Hilbert transform for 1 < p < oo,

IH gy S WH 2 118, H 2620
Using that || = O(1) and || P<ihl > < ||h||th_1, we thus conclude
I e S (101122 + 101 22 + 161 23-2) 1Al o
Next we address the term H;. By the fractional Leibniz rule,

Il S (DA 6 2 llsgn s Poihll Lz + 101l oo (D) (sgn s P 1) || 2.

However,
Isgn#Parhllze S 1) AL S Al ot
On the other hand,
I(D:)” sgn*P=1hll 2 S 10 (@) h@ll2 S 1l ot
Consequently,

I Hall g S (II(Dr)"QIIL,2 s VEN (PR
For term H3, we have

400
Il 100 [ sen Py ar

—00

Lo
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However, the second term is handled via Parseval’s identity

/sgn(t/)leh(t/)dt'=/ t'h(r) dr,
t/

Ir[=1
from which the appropriate bounds follow again by Cauchy—Schwarz. Collecting our estimates for Hj,
H,, and H3, we have

S Collhll -1,
Hlb

He(t) / h(thdt'
0

where
Co = 119112 + 161l 21020 + (D) 01l 2 + 1] 210-20 + 0] 30 S 0!/

This completes the proof of (2-7). Next, we prove (2-8). We have

e"fAu(-,t):u(O)—i/ e A 1t

0
and thus, (2-8) reduces, by (2-6), to

t
H X1 / gt dt’
0

H”SHg”L}’ for 0§b<%. (2-10)

To prove (2-10), note that
t
Xz(t)/o g dt' = x;1(Ox1 * (gxD1@).
Hence,

t
I / g(@ydr'll g < 1D x1 1 2118 -
0

The Fourier transform of x; is smooth and decays like |7|~! as |t| — oo, and hence, ||(D>bXI||L,2 < 00
for0 <b < 1. O

Lemma 2.5 (Strichartz estimate). If (¢, r) is an admissible pair, then we have the embedding

”””L‘,’Lf 5 ||u||Xo,1/2+a(1)'

Proof. We reproduce the well-known argument. Replace u by an extension to # € R such that [|u||x,, ,,, <
2|ulxq, 245 (1)~ Write

u(x, 1) = / / TS (E, T) dt dE.
EJr
Change variables T — 7 — |£|? and apply Fubini to obtain
u(x, 1) = / e / eTE I E (6, T — £ ) dE d.
T &
Define f;(x) by ﬂ(é) =ul, t— |§|2). Then the above reads

u(x, 1) =/ei’teimfr(x)dr,
T
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and hence,

ux, 0] < /IeitAft(x)|dr.

Apply the Strichartz norm, the Minkowski integral inequality, appeal to Lemma 2.1, and invoke Plan-
cherel to obtain

el zgep S f | fe®llz dr.
T
The argument is completed using Cauchy—Schwarz in 7 (note that we need b > %, since fR ()7l dt has
to be finite). O

Lemma 2.6 (Bourgain bilinear Strichartz estimate). Let Ny < N». Then

d—1.1/2
1
IBwnn Prtallzes 5 (=) Tl s el s

d—1.1/2

D 1

||PN1u1PN2u2||L%L%5( L ) et e s st 120211 0 e
’ 2

Proof. We reproduce the well-known argument. As in the proof of Lemma 2.5, taking f; . (x) defined
by fj-(§) =i1(§, T —|€|*), we have

uj(x,t)= / i e"mfj,t(x) dr.
T
Plug these into the expression || Py,u1 Py,u2|| L2125 and then estimate using Lemma 2.2. O

We need to take b = % — & in some places. In those situations, we use this:

Lemma 2.7 (interpolated Strichartz). Take d = 1 or d = 2 and suppose that 0 < b < % and2 < p <oo
and 2 < q < oo satisfy

g-1-£>L—l-i-(l—2b), (2-11)
qg p 2
2 1 1 .
- —==<= in the case d =1 only (2-12)
qg p~2
(see Figure 1). Then
el pa e S Mellxop(r)- (2-13)

with implicit constant dependent upon the size of the gap from equality in (2-11).

Proof. Let

12 4 d
a:=—<—+————(1—2b)>>0. (2-14)
2\g p 2

Using 0 < 0 <1 as an interpolation parameter, we aim to deduce (2-13) by interpolation between

”M ”L?Lf S ”u ”X(),b/(Z(b—a)) , (2-15)
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Figure 1. The enclosed triangular region gives the values of (1/¢g, 1/p) meeting the
hypotheses of Lemma 2.7. The top frame is the case d = 1 and the bottom frame is the
case d = 2. The proof of Lemma 2.7 involves interpolating between a point on the line
2/q+d/p =d/2 and the point (1/2, 1/2).
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with weight 8, for some Strichartz admissible pair (g, p), and the trivial estimate (equality, in fact)

el 22 S Tl xo o0 (2-16)
with weight 1 — 6. The interpolation conditions read

g q 2 2

Multiplying the first of these relations by 2 and adding d times the second, and using the Strichartz

1-6

ST

admissibility condition for (g, p), we obtain
2,4 _d iy,
9 p 2

Combining this relation with (2-14), we get 8 =2b — 2. We can then solve for ¢ and p using (2-17). U
Lemma 2.8 (interpolated bilinear Strichartz). Letd =1 ord =2 and Ny < N;. Then
(d-1)/2

1
IPyur Pryuallpape S Wllul||X0,1,2,5(1>||M2||X0,1/2,5(1)-
2

Proof. First, observe that

| Pnyui PN2“2||L§L§ S llu ”L‘,‘Lﬁ ||M2||L‘}Lf\%- (2-18)
In the case d =1, L‘}Li interpolates between L?Lg and L%Lﬁ, and thus ||”f”L‘}Li < el x03/805 1) DY
Lemma 2.7. We conclude that
1Pyt Pyyuallpare S luillxo sy 12l xo s/sps0)-
Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 1.
In the case d = 2, we still begin with (2-18). Fix € > 0 small. By Sobolev embedding,
IPyyujllpaps S N5 Pyuj IILz;Li/(Hze).
By Lemma 2.7, we have
1PNl g e S Huillx ,

for any b > 3(1 — €). Plugging into (2-18), we obtain

| Py, Pryteal 22 S N3Nl luallx,, forany b> 1(1—e).
Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 2. U

Remark 2.9. After this section we will adopt new notation: Instead of X, 1,245 we will simply write
X172+ If an expression has two different Bourgain spaces, it will mean that the delta’s will be different.
Similarly, if an expression involves § in the estimate on the right side, it will mean that this § will be
different from the one that would be chosen for spaces such as X 1,54 or LP™.

The following is a simple consequence of the pseudodifferential calculus; see [Stein 1993, Theorem1
on page 234 and Theorem 2 on page 237]; see also [Evans and Zworski 2003].



486 JUSTIN HOLMER AND SVETLANA ROUDENKO

Lemma 2.10. Suppose that ¢ is a smooth function on R such that |03 |1~ < ¢y for all a > 0. Then

IP=n(¢g) —dP-ngli2 SN 'lgl for N> 1.

Proof. Let x (§) be a smooth function thatis 1 for |§| > 1 and is O for |§| < % P y 1s a pseudodifferential
operator with symbol x (N~'£) and My, the operator of multiplication by ¢, is a pseudodifferential
operator with symbol ¢ (x). The commutator [Py, My] has symbol with top-order asymptotic term

“Iy/(N~1€)¢' (x). The result then follows from the L? — L? boundedness of 0-order operators. [J

3. Additional high-frequency regularity

In this section, we begin the proof of Theorem 1.1 by showing improved regularity at high frequencies,
above the blow-up scale, with no restriction in space — this appears as Proposition 3.4 below. In Section 4
below, we will complete the proof of Theorem 1.1 by appealing to a finite-speed of propagation argument
for lower frequencies after we have restricted in space to outside the blow-up core.

Consider a solution u(t) to (1-1) in the Merle-Raphaél class (1-5); let Ty > 0 be the threshold time,
T > Ty the blow-up time and xo the blow-up point, as described in the introduction. Our analysis
focuses on the time interval [Ty, T) on which the log-log asymptotics (1-6) kick in. Apply a space-time
(rescaling) shift, in which x = x is sent to x = 0 and the time interval [Ty, T) is sent to [0, 1), to obtain
a transformed solution that we henceforth still denote by u(¢#). Now the blow-up time is 7 = 1, the

blow-up point is x = 0, and (1-6) becomes?

_ 172
oglog 1) Eo)

Vu(t)||2 ~

V)]l ( T
which is now valid for all 0 < ¢ < 1. Note that now, however, the time ¢ = 0 “initial data”, which we
henceforth denote 1, does not correspond to the original initial data u in Theorem 1.1. We remark that

the estimate (1-8) on the remainder it (f) becomes

1
~ (1-0)!2log(1-1)|’

IVa@lz: S (3-2)
In our analysis, the norm L‘;"Lﬁ for an interval I = [0, T'], T’ < T, will be replaced by the norm
X0,1/2+(I). While we have, from Lemma 2.5, the bound

lullpeors S lllxo o 1)

the reverse bound does not in general hold. Nevertheless, (3-1) indicates that the solution is blowing
up close to the scale rate (1 — £)~1/2. Thus, the local theory combined with (3-1) implies a bound on
lullx, 5. (1) Where log[log(1 — T7)] is weakened to (1 — )78,

2 The rescaling is the following. If we take u(x, t) in the original frame (for 7o <t < T), and let

d)2

u(x, 1) = pd2v(uix = x0), 1t — Tp))

with u = (T — Ty)™ 172 then v(y, s) is defined in the modified frame (for 0 < s < 1). Moreover, we have ||Vv(s)||Lz ~
(log|log Mfz( 1—y)]) 1/ 2( 1—5)" 172 , so now the implicit constant of comparability in (3-1) depends on T — T.
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Lemma 3.1. For = [0, T\ withT' < T, for0 <s < 1, we have

lluell x 1 () =S cs(1=THSUED2  ith ey 7 400 as s \ 0.
52

The fact that ¢, diverges as s N\ O results from the fact that (1-1) is L?-critical, and thus, the local
theory estimates break down at s = 0. At the technical level, some slack is needed in applying the
Strichartz and bilinear Strichartz estimates; hence, we need to take b =1/2 —§ in place of b=1/2+4’.

Proof. We just carry out the argument for s = 1. Let A(t) = || Vu(?) ||Z21. Let s; be the increasing sequence
of times> such that A(s;) =27, so that || Vu(t) |72 doubles over [sk, Sg+1]. From (3-1), we compute that
sp=1—2"2% log k. Note that sg1 — sx & 22k log k. Hence, we can rescale the cutoff solution u(¢) on
the time interval [sy, sx11] to a solution u’ on the time interval [0, log k] so that ||u'|| L% e Bl ™ 1. We
invoke the local theory over ~ log k time intervals J each of unit size to obtain [lu'||x, ,,,, sy ~ 1, which
are square summed to obtain ||u’| x, , 124 (0.logk) ~ (log k)12, Returning to the original frame of reference,

we conclude that

k(146
||u||X1,l/2+(SksSk+l) S2 ( )v

where a §-loss is incurred in part from the (log k)!/? factor but also from the b = % + & weight in the X

norm. Thus,
K-1

1/2
§ : 2k(146 K145
||Lt||x]‘l/2+(0’s[() = ( 2 (I+ )> ~72 (I+ ) O
k=1

Now suppose that u(¢) satisfies (3-1). Let tpz =1 — 2% and I = [0, tx]. Then from (3-1) and mass
conservation, we have

2k(+8)/2 -1 for N > 2k(1+8)/2’

1 for N < 2k(1+8)/2, (3-3)

IP=nu®llzerz S {

To refine (3-3), we will work with local-theory estimates and thus use the analogous bound on the
Bourgain norm X 2+ (I;). From Lemma 3.1 we obtain

1Pt X o 1) S NN Panttllx, o 1) < €N 75280/, (3-4)

We obtain from (3-4) that

KAFD/2N =1 for N > 2k(1+0)/2,

1PN ull X100 (1) S {zka/ for N < 2k(1+8)/2 (3-5)

The next step is to run local-theory estimates to improve (3-5) at high frequencies. Frequencies
N < 2K~ (1 —1)7! on I effectively do not make it out of the blow-up core before blow-up time due
to the finite speed of propagation for such frequencies.* Hence, these low frequencies can be controlled
by spatial location, which we address in Section 4. On the other hand, (3-5) shows that the solution at

30ne of the conclusions of the Merle—Raphaél analysis is the almost monotonicity of the scale parameter A(¢) = || Vu(z) ||22] :
A(tr) < 2)1(tp) forall tp > 1.

4Recall that for the Schrodinger equation, frequencies of size N propagate at speed N and thus travel a distance O (1) in
time N1,
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frequencies N > 2k(1+9)/2 i5 small. Thus, for these high frequencies, dispersive estimates might be able,
upon iteration, to show that the solution is even smaller at these high frequencies.

To chose an intermediate dividing point between the high frequencies that are capable of exiting the
blow-up core before blow-up time (N > 2¥) and the frequency scale at which the blow-up is taking place
(N ~ 2%2(logk)'/?), we consider frequencies > 23*/4 to be high frequencies and frequencies < 23/4
to be low frequencies. The goal of this section is Proposition 3.4 below, which shows that the high
frequencies are bounded in H'. In Section 4 below, we will localize in space to the external region and
then control the low frequencies.

We first address the dimension d = 1 case.

Lemma 3.2 (high frequency recurrence in one dimension). Take d = 1. Let ty = 1 —27% and I, = [0, ;.
Let u(t) be a solution such that (3-1) holds, and define

a(k, N) = | P>nullxo, . 1)- (3-6)
Then there exists an absolute constant 0 < u < 1 such that for N > 2k(1+8)/2
1Py (= €% ug)lxg, ) S 2PNk 41, uN) + 2%k + 1, uNY?. (3-7)
In particular, by Lemma 2.4,
alk, N) S| P=yuoll g2 + 2PN o0k + 1, uN) + 2%k + 1, uN)>. (3-8)
Proof. By (2-7) of Lemma 2.4 with o =2"%"!and I = I,
1P (= €% o) oo 10y S 25N Py (e 1) 1 o ) -

In the rest of the proof, we estimate the right side of the estimate above, and we will just write I instead
of I;41 for convenience. By duality,

4 4
P il = sp [ [ Pev(uito waar
lelxo /2—(1k):1 Ik xeR

,1

Fix w with |wllx,,,, ) =1 and let

J:=// Pon(Jul*u) wdx dt.
Iy xeR

Then J can be decomposed into a finite sum of terms J,,, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

Ix
Jo = / / P>y (uiuausugus) wdx dt
0 xeR

such that each term (after a relabeling of the u; for 1 < j < 5) falls into exactly one of the following two

categories.’

SIndeed, decompose each uj as uj = uj 1o + U j med + U j hi> Where uj 10 = P<n;160Uj, U jmed = PN/160<. <N /20, and
ujhi = P>ny20uj. Then in the expansion of ujupuzugus, at least one term must be “hi”; without loss take this to be us.
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Note that w is frequency supported in |§] = N.

Case 1 (exactly one high). Each u; for 1 < j <4 is frequency supported in |§| < uN and us is frequency
supported in |£] > 8uN. In this case, we estimate as

ol < llurllgeree luallgeres lususlizs gz lluawlipz 1z- (3-9)

For j =1, 2, Gagliardo—Nirenberg and (3-1) implies

1/2 1/2
ajllegee S il o 0115, S 2494, (3-10)
kX ko
The bilinear Strichartz estimate (Lemma 2.6) yields
lususllcz 12 S N7 2 u3lx o 0 sl xo o S N 7220 (K, ). (3-11)

The interpolated bilinear Strichartz estimate (Lemma 2.8) yields
luawllzz 13 SN2 allxo oo 0l oo S N7V, (3-12)
Substituting (3-10), (3-11), and (3-12) into (3-9), we obtain
[ Jo| S2XOFRPNT ok, uN).

Case 2 (at least two high). Both u4 and us are frequency supported in |§| > uN (no restrictions on u;
for 1 < j < 3). Then we estimate as

el < el pesslluallg e lluslsg e luslzg pelluslzg ol g o (3-13)
For 2 < j <3 we invoke the Strichartz estimate (Lemma 2.5) and (3-5) to obtain
hjllag o S Nl < 2% (3-14)
For 4 < j <5 we invoke the Strichartz estimate (Lemma 2.5) and (3-6) to obtain
””j”L?kLg S lujllxg, . <ok, uN). (3-15)
For j =1, by Sobolev embedding, the Strichartz estimate (Lemma 2.5), and (3-5),
il poe SUDlLg 1o S Nl o S 2 (3-16)
By the interpolated Strichartz estimate (Lemma 2.7), we have
lwllpsre- S Nwlixoo- o = 1. (3-17)

Using (3-14)—(3-17) in (3-13),
1ol S 2Pa(k, uN)?. O

In the 2D case, we will just go ahead and assume that N > 23%/4 to reduce confusion with deltas.

Case 1 corresponds to i1 142, 1043, 1044, o5, hi and Case 2 corresponds to everything else (at least one u; for 1 < j < 4 must
be “med” or “hi”. Hence, we can take u = 1/160.
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Lemma 3.3 (high frequency recurrence, 2D). Take d =2. Let t, =1 — 2 % and I, = [0, t;). Let u(t) be
a solution such that (3-1) holds and define

a(k, N) = |P>nullxg, . 1)- (3-18)
Then there exists an absolute constant 0 < . < 1 such that for N 2 23%/4,
1P (= €2 u) xS 2PNk + 1, uN). (3-19)
In particular, by Lemma 2.4,
alk, N) S [IPoyullp2 + 29 N™VPa(k + 1, uN). (3-20)
Proof. By Lemma 2.4 (2-7) with I = I} and w = 27%"1,
1P (e — o)1 x0, 00 1) S 2 N Pon (i) L0 o ()

In the remainder of the proof, we estimate the right side, and for convenience take I to be I;. By
duality,

2 2
I P>y (ulu)llxy i) =  SUp f / Poy(|ul?u) wdx dt.
lwlix, f-p=1J I xeR

\1

Fix w with |w|lx,,,,_) =1 and let

J:=// Poy (lu|*u) w dx dt.
Iy xeR

Then J can be decomposed into a finite sum of terms J,,, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

143
Jo = / / P>y (uiuauz) wdx dt
0 xeR

such that each term (after a relabeling of the u; for 1 < j < 3) falls into exactly one of the following two
categories.® Note that w is frequency supported in |£] > N.

Case 1’ (exactly one high). Both u; and u» are frequency supported in |£] < N>/® and uj is frequency
supported in |£| > N /12. In this case, we estimate as

[ 5 ”MIU)”L% 12 ||u2u3||Lz 12-
k X Ik X
By the interpolated bilinear Strichartz estimate (Lemma 2.8),

5/6N1/2 A7—1/2+6 —1/12+8~ks
lnwly 2 S VYOVENTZ R g Wl S NP2,

6
Indeed, decompose u j =u j 104U j med +4 j,hi, Where u j 1o = P_ st j,jmed = Pys/e<. <N/12> and uj hi = P>nNy12u.
Then at least one term must be “hi”; take it to be u3. Case 1’ corresponds to u7 102, 1043 hi and Case 2’ corresponds to all other
possibilities. Hence, we can take u = 1/12.
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and by Lemma 2.6 directly,
luausllyz 12 € (NNl oo sl s 0 S NP0k, u).

Combining yields
[Jal S N7k, uN).

Case 2’ (at least two high). Here we suppose that u is frequency supported in |£] > N>/® and u3 is
frequency supported in |§| > wN; we make no assumptions about u;. Then we estimate as

< _
ol S IIM1||L§kL§+sIluzlly;kLiIlusllLA;kLiIlele;kL;& 5.
For u;, we use Sobolev embedding and (3-5) to obtain

kS
1 Ik)§2 .

5
||u1||y;ky;+fS < ||DxM1||L4;kL1 S lunllx, )«

[Nl

Since N > 23/ we have N>/6 > 23k/8 5 2k(14+0)/2 "and thus by Lemma 2.5 and (3-5),

”u2||L‘}k Li 5 2k(1+8)/2N—5/6 S (2k(1+8)N—2/3)N—1/6

<okeN=1/6  since N > 23/4,
For u3, we use Lemma 2.5 and (3-18) to obtain
lusll g o3 S @k, uN).
Combining, we obtain (changing deltas)
|y <28 N—Yoaq(k, uN). O

The main result of this section is the following. It states that high frequencies (those strictly above
23k/4y are H' bounded on I;. Moreover, if we subtract the linear flow, we obtain H*3~% boundedness

3k/4

for frequencies above in the case d = 1 and H7/%~% boundedness for frequencies above 23*/4 in the

case d =2.7

Proposition 3.4. Let ty = 1 —27%, I, = [0, 1,1, and let u(t) be a solution to (1-1) such that (3-1) holds.
Then we have

||P223k/4u(t)”Lc;;H; S.; ||P223k/4u(t)||X|,1/2+(lk) ,S 1

Moreover, we have the following regularity above H' after the linear flow of the initial data is removed:
Forany (0 <s 5%—8 in the case d = 1 and for any 0 < s 5%—8 in the case d =2, we have

U)X,y st S 1 (3-21)

it A
1 Poosws (u(t) — € uo) Ly my S | Pogsvss (u(t) — e

7 In fact, the threshold > 23k/ 4, to obtain H! boundedness (but not (3-21)), can be replaced by 2k(1+8)/2 for any § > 0; in
the d = 1 case, one can appeal to Lemma 3.2 with a strictly smaller choice of § in order to obtain a nontrivial gain upon each
application of Lemma 3.2. The number of applications of Lemma 3.2 is still finite number but §-dependent. In the 2D case,
Lemma 3.3 would first need to be rewritten. We have stated the proposition with threshold > 23k/4 pecause this is all that is
needed in Section 4, and it allows us to avoid confusion with multiple small parameters.
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Proof. We carry out the d =1 case in full, which is a consequence of Lemma 3.2. The d =2 case follows
from Lemma 3.3 in a similar way.
By (3-5), we start with the knowledge that o (k, N) < 2KU+)/2N~1 for N > 2K1+9/2 Note

I P=yuollz SN~ Vuoll 2 SN
By (3-8) in Lemma 3.2,
a(k, Ny SN 4 2kUE02 =140 (k 41, uN). (3-22)

Application of (3-22) m times gives
m—1
a(k, N) < N—I(Z(Zk(l+8)/2N—l+8)j) QRN =Y (k4 N,
j=0
Since N > 23/4 we have 2¢/2N—! < N~1/3, Taking m = 7 we obtain a(k, N) < N~!. Substituting this
into (3-7) of Lemma 3.2, we obtain

a2 B )
1PN (u() = et 10) |1 x0,1/24 (1) S pkAH0)/2 =24 SN 43+, g

4. Finite speed of propagation

Recall that the main result of the last section was Proposition 3.4, which showed that the solution at
frequencies > 2%/ is H'! bounded on I;. This was achieved without applying any restriction in space.
In this section, we apply a spatial restriction to |x| > R (outside the blow-up core), and study the low
frequencies < 23%/4 on I;.. Since frequencies of size N propagate at speed N, and thus travel a distance
O(1) over a time N~!, we expect that frequencies of size < 2* involved in the blow-up dynamics will
be incapable of exiting the blow-up core |x| < R before blow-up time.

Since I = [0, #] and 1 = 1 — 27, restricting to frequencies < 23k/% on I, for each k is effectively
equivalent to inserting a time-dependent spatial frequency projection P(;_,)-34. The main technical
Lemma 4.3 below shows that, for 0 < r; < r, < 0o, the H? size of the solution in the external region
|x| > r, is bounded by the H*~!/8 size of the solution in the slightly larger external region |x| > ry.
This lemma is proved by studying the equation solved by P(;_;)-34%u, where v is a spatial cutoff.
In estimating the inhomogeneous terms of this equation, we use that the presence of the P__;-34
projection enables an exchange of « spatial derivatives for a factor of (1 —¢)73%/#. This is the manner in
which finite speed of propagation is implemented. Lemma 4.3 is the main recurrence device for proving
Proposition 4.4, giving the H! boundedness of the solution in the external region, completing the proof
of Theorem 1.1.

Before getting to Lemma 4.3, we begin by using the method of Raphaél [2006], based on the use of
local smoothing and (3-2), to achieve a small gain of regularity.®

8In the d = 1 case, we obtain a gain of 2/5 derivatives in this first step, but in fact the proof could be rewritten to achieve a
gain of s < 1/2 derivatives. The reason s = 1/2 derivatives cannot be achieved in one step is the failure of the H 172, oo
embedding needed to estimate the nonlinear term. One could achieve 1/2 derivatives by running the same argument twice, but
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Lemma 4.1 (a little regularity, d = 1 case). Suppose d = 1. Suppose that u(t) solving (1-1) with H'
initial data satisfies (3-1). Fix R > 0. Then

(D) Yrrull

<1
[O.I)L)zc ~

where Yr(x) = ¥ (x/R) and ¥ (x) is a smooth cutoff with ¥ (x) = 1 for |x| > 1/2 and ¥ (x) = 0 for
x| < 1/4.

Proof. Let w = Ygu and g = ¥gou. Then w solves the equation
idw+ 32w = —|q[*w + 20, (Y u) — Ypu= F + F> + F;.
Apply (D,)?/3, and estimate with I = [T, 1) using the (dual) local smoothing estimate for the F, term:
(D w2 S D) w (T2 + (D) Fill 112
+ D) (D)2 Fall 212 + (Dx) P Fsll 12
We begin by estimating term F;. By the fractional Leibniz rule,
1D Fill gz < Mgl 1D wllagerz + 10271910y s lwll oo,
< (Mgl e + 1D 1q 1y s IDY P wll e 2.
By Sobolev/Gagliardo—Nirenberg embedding and (3-2),
g ¥l + 1D 1a1*l 52 S llgl72lloxq N7z S (1 =D~ dog(l =n~H 72
Applying the L! time norm, we obtain a bound by (log(1 — 77)~!)~!. Hence,
(D> Fillpy e S (og(1 = T ™)™ D) Pwll ez
Next, we address term F». We have
D)D) Fall 22 S D" 202 S llall ey 111 2.
From (3-2), we have [|9,¢ll;2 < (T —1)~'/?|log(1 — )| =" and hence
(D) (Dx) " 2Pl 2 S (1 =TV
Term F3 is comparatively straightforward. Indeed, we obtain
KD Fsll gz S Nl o 11400 Yaull 5y S (1= T,
Collecting the estimates above, we obtain

(DY Pwl ooz S 1D w(T) 2 + Qog(1 — T1) ™)~ (D) Pwll e 2 + (1 = T1) V1.

this is unnecessary since we only need a small gain of s > 0 to complete the proof of our main new Lemma 4.3/Proposition 4.4
below, which enables us to reach the full s = 1 gain. One cannot achieve a gain of s > 1/2 by the method employed in the proof
of Lemma 4.1 alone due to the term 9y (lp;e u).
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By taking T} sufficiently close to 1 so that (log(1 — T1)~")~! beats out the (absolute) implicit constants
furnished by the estimates, we obtain

(D) Pwll ez S D w(T)l 2 + (1 =T, -

Lemma 4.2 (a little regularity, d = 2 case). Suppose d = 2. Suppose that u(t) solving (1-1) with H'!
initial data satisfies (3-1). Fix R > 0. Then

(D) Prulle, 12 S 1,
where Vg (x) =¥ (x/R) and ¥ (x) is a smooth cutoff with r (x) = 1 for |x| > % and Y (x) =0 for |x| < le'
Proof. Let w = Ygu and ¢ = Ygou, and take ¥ = V, g and $ = A,y¥g. Then w solves the equation
idw+ Aw=—|glPw+2V, - (Fu)—Fu=F +F,+ Fs.
Apply (D,)!/?, and estimate with I = [T, 1) using the (dual) local smoothing estimate for the term F,:
(D) 2wl oo 2 + 1{Dx) 2w
< D) Pwoll 2 + D) il s + 1 F2ll 212 + 1D2) 2 Fs 12

Before we begin treating term F7, let us note that by (3-2), ||Vgq ||L§ <(1- t)_l/Z(log(l —1)"H~land
hence [|Vq|l;2,2 < (log(1— T1)~1)~1/2. By the fractional Leibniz rule and Sobolev/Gagliardo—Nirenberg

embedding,
1D}21g Pl S 1D qlsllgl s S lall 1V a1l
Hence,
||D;/2|QI2||L§/3L§ < ||q||1L/(;L%||Vq||3L/%2L% < (log(1 — T7)~")™3/4, 4-1)

Also, we have
1/2 1/2
lglls S 1D ql: S llgll 21Vl

and hence
1917ss S Nqlleger2 Vel 32 S Qog(d = T)~™H 712 (4-2)

Now we proceed with the estimates for term F;. By the fractional Leibniz rule (in x),
(D) 2 Fill 3 S 1D 1g P oz lwllagers + g 1212 14D) Pwl o -
By (4-1) and (4-2), we obtain
(D)2 Fil a9 S Qog(1 = T1) ™)™ (D) P wll e + (D) Pl 10).
Next, we treat the F; term. Again since ||Vq||L§ <d- t)_l/z(log(l .
1F2ll 2,2 < Qog(1 = T1)™H™"

The F3 term is comparatively straightforward.
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Collecting the estimates above, we have
(D) 2wl o2 + I(Dx) 2wl a4
S D) w (Tl 2 + (og(1 = T)™H ™!
+(log(1 =)™ )™ 2UD) 2wl o2 + (D) Pwll ).

By taking T} sufficiently close to 1, we obtain

(D 2wl o2 S D w (T2 + (og(1 —T)™H 7 O
Lemma 4.3 (low frequency recurrence). Letd =10ord =2, 0 < R <r| <rp and % <s <1 Let yr;(x)
and Y, (x) be smooth radial cutoff functions such that

0 onlx| < 11 +r),

1 on|x|>r.

0 on|x[=<r,
1
L on|x|=3(r1+nr2)

Y (x) = { and  o(x) = {

Then
IDSYoull oo 12 S 1+ (D) 3 ul| o

2.
[0,1)=x [O,I)LX

Proof. Let x(p) be a smooth function such that x(p) = 1 for |p| < 1 for x(p) = 0 for |p| > 2. Let
P_ = P_y_;-34 be the time-dependent multiplier operator defined by f’? (&) = x (T —1)3*g)) f &)
(where the Fourier transform is in space only). Note that the Fourier support of P attime 7, = 1 — 2k
is < 23%/4 We further have that

oP_f=3i(1=0"""QD. f + P8, .
where Q = Qj_;-34 is the time-dependent multiplier
OF (&)= x'(L =0’ *|ED £ &).

Note that the Fourier support of Q at time 7y = 1 —27% is ~ 23¥/4_ Note also that if g = g(x) is any
function, then
IPDYgll2 < (=07 gl 2. (4-3)

Let w = P_vyru. Taking ¥, = V, v, and @2 = Ay, we have
w4+ Aw=—i(1—1)"Y*Q -V, w— P_volu|u+2P_V, - [Fou] — P_Tru
=FM+E+FB+F
By the energy method,
1 4
”Diw”iﬁ;l)Lg < ||D;w(0)||§§ +/0 (D Fi(s), Dyw(s)) 2| ds +10 2;||Dij||iFOJ)L%.
i

For term F, we argue as follows. Let Obea projection onto frequencies of size (1 —¢)~>/4. Then

1 1
[ UDiF©. DweNzlds < [ 1= DY Gyl s
0 0 *
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Applying (4-3) with ¢ = %, we can control the above by

1 ~
| =97 1D w13, s

Dividing the time interval [0, 1) = U,fi [, tk+1), we bound the above by

+00 tet1 +00
> ok / | D3 Pyssspou()1I7 ds S D ID Pyl o
k=1 L

[t tep1) ™%
k=1 kolke+1

where Py is the projection onto frequencies of size ~ 2°%/4 (and not < 23%/4). However, writing
u(t) = e""®ug + (u(t) — e'"®ug), the above is controlled by (taking s = 1, the worst case)

o] +00
2 it A 2
D IV Pywsuoli s + Y IV Pywss (u(@) = €A uo) 7.
k=1 k=1

By (3-21) of Proposition 3.4,
+o0
IVauollz +) 27 S 1.
k=1

In conclusion, for term F; we obtain

1
/I(DiFl(S),Diw(S))LgldSS1-
) .

We next address term F». Insert wf/ arl _ Yo, then apply (4-3) with o = s to obtain (in the worst

case s = 1),

—3/4 4/d —3/4 4/d+1
1Dy ol 2 S I =07 a2 U =07 iynull e Iy, -

We consider the cases d = 1 and d = 2 separately. Whend =1,

IWiullgo SIDY Yl S 1,
by Lemma 4.1. Consequently,

1D Fally, 2 SN =07 <1

0.y~
On the other hand, when d = 2, we have
2/3 3 _
IWillg S ND Waullz S 1D Yl 5 1Vl S (A =0)7V0
by Lemma 4.2 and (3-2). Consequently,
”D;Fz”l‘[l().l)l‘% ,-S ”(1 o t)73/4(1 - t)71/6||l‘[10.l) SJ 1
Next, we address term F3. By (4-3) with @ = 9/8,

s < _\=27/32 s—1/8
ID3Fsllgy, 2 U =722 1D A @l 1o
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Since ||(1 —1)727/32|| Ly ™ 1 and the support of ¥, is contained in the set where | = 1, we have

s 1/8
1D} Fsllpy 12 S D)™ P ynullgy 1o

[0.1)

Finally, we consider F4. We have

1Dy Fally 2 S IV Py 2 SHA =07 ullgs 12 $1

.k (Ty.1) 0.1 &
by (4-3) with o = 1. O
Proposition 4.4. Suppose that u(t) solving (1-1) with H' initial data satisfies (3-1). Fix R > 0. Then

lull oo n

[0.1) m>R ~

Proof. Iterate Lemma 4.3 eight times on successively larger external regions. U

Proposition 4.4 completes the proof of Theorem 1.1.

5. Application to 3D standing sphere blow-up

We now outline the proof of Theorem 1.2 utilizing the techniques of Section 3 and 4. Theorem 1.2
pertains to radial solutions of (1-9). We define the initial data set % as in° Rapha¢l and Szeftel [2009,
Definition 1, page 980-1], except that condition (v) is replaced by [luollg1(r—1>1/10) = €. The goal
then becomes to complete the proof of the bootstrap Proposition 1 on page 982, where the “improved
regularity estimates” (35)—(37) are effectively replaced with

@l g, <e.

|x|<1/2
Let us formulate a more precise statement:

Proposition 5.1 (partial bootstrap argument). Let Q be the 1D ground state given by (1-4), and let € > 0,
T > 0 be fixed with T < €*®. Suppose that u(t) is a radial 3D solution to

i+ Au+ul*u=0
on an interval [0, T'] C [0, T) such that the following “bootstrap inputs” hold:

(1) There exist parameters L(t) > 0, y(t) € R, and |r(¢t) — 1] < 1/10, such that if we define

i 1) =u(r,t)— A(t§1/2Q(r ;(gt)), (5-1)

then, forO <t <T’,

. 12
log|log(T z)|) | 52)

Va2 = 2~ ~ ( =

and
1

”V”t(t)”L2 ~ |1 g(T [)|1+(T—[)1/2

(5-3)

IWe are considering the case dimension d = 3 (in their notation N = 3).
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(2) Interior Strichartz control. ||(V)u(t)||L5 Lo <€
0.

T Ix1<1/2

(3) Initial data remainder control: ||<V)ﬁ0|IL% <e.

Then we have the following “bootstrap output”:

||<V>”(t)||L[°00 30/11 565. (5-4)

Ix|=1/2

T’]L|2x|51/2 T ” <V>M(l‘)”L[50.T’]L
The goal of this section is to prove Proposition 5.1, which shows that the bootstrap input (2) is rein-
forced. Proposition 5.1 is, however, an incomplete bootstrap and by itself does not establish Theorem 1.2.
The analysis which uses (5-4) to reinforce the bootstrap assumption (1) is rather elaborate but will be
omitted here as it follows the arguments in [Rapha&l 2006] and [Raphaél and Szeftel 2009]. Moreover,
these papers demonstrate how the assertions in Theorem 1.2 follow.
The proof of Proposition 5.1 follows the methods developed in Section 3—4 used to prove Theorem 1.1.

We do not, however, rescale the solution so that 7 = 1 as was done in Section 3.

Remark 5.2. Let us list some notational conventions for the rest of the section. We take 1y = T — 2%
and denote I, = [0, #]. Let v(r, t) = ru(r, t), and consider v as a 1D function in r extended to r < O as
an odd function. Note that v solves

i0v+0%v = —r*|*v.

The frequency projection Py will always refer to the 1D frequency projection in the r-variable. The
Bourgain norm ||v||x,, refers to the 1D norm in the r-variable.

Let Ayp = A(0) and take kg € N such that 2_k0/2(log ko)~1/2 ~ xg. We then have T ~ 27X The
assumption 7' < €40 equates to 2-k0/8 < ¢35 Note that A (1) = 2_k/2(10g k)12,

Lemma 5.3 (smallness of initial data). Under the assumption (3) in Proposition 5.1 on the initial data,
and with vy = rug, we have
1P o048, v0ll 2 + 18 v0ll 2, | S €.

<12 ™~

Proof. Let vy = riig. Since 9,09 = g + rd, o, we have by Hardy’s inequality
~ —1~ ~ ~ 5
18,50l 2 S Nl dioll 2 + I Viioll 2 S I Viioll 2 S €.

Recalling the definition of ity = u(0) in (5-1) (with = 0), we have

The result then follows from the exponential localization and smoothness of Q. U

Lemma 5.4 (radial Strichartz). Suppose that u(t) is a 3D radial solution to
i0ju + Au = f.

Letv(r,t) =ru(r,t) and g(r,t) =rf(r, t) and consider v as a 1D function in r (extended to be odd), so
that
i0v+ Brzv =g.
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Then for (q, r) and (g, 7') satisfying the 3D admissibility condition,

2/p-1 < A0l
- vilgepr S llvollzz + i g”L?’Lrp :

Proof. The left side is equivalent to ||Vu/|| LIy and the right side is equivalent to |Jug| 2+ LA

it is just a restatement of the 3D Strichartz estimates.

.
q 7P
LiL?
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SO

Lemma 5.5 (3D to 1D conversion). Suppose that u(x) is a 3D radial function, and write u(r) = u(x).

Let v(r) =ru(r). Then for 1 < p <3, we have
PP~ 9wl p S I Vaull -

Also for % < p < 400, we have
2/p—1
IVeull e S PP~ 00] .

Consequently, for 3D admissible pairs (q, p) such that 2 < p < 3, we have
IVullgage ~ 1r*P~ 0, vll oy
We remark that g =5 and p = % falls within the range of validity for (5-7).

Proof. The proof of (5-5) and (5-6) is a standard application of the Hardy inequality.
First, we prove (5-5). Using v =ru,

PPy 0 = 2P 4 Py,

and thus,
) 1 2 2 1
|~ /p— 3rv||L£’ <|Ir /Pa,unL; + |Ir /p M||L£’-

We have, for r > 0,

+00 d +00
u(r) =—(w(+oo) —u(r)) = / %(u(sr)) ds = / u'(sr)rds.

=1 s=1
By the Minkowski integral inequality,

+0o0

2/p—1 ) < / 2/p
127l < [l s

1

Changing variable r — s~ 'r, we obtain that the right-hand side is bounded by

T 2p,
s ds |\\r"Pu’|| »
s=1 r>0
and the s integral is finite provided p < 3.

Next, we prove (5-6). We have

PP = rPo,.(r ') = — 2P 2y 4 2P 1,0,

and hence,
2 2/p—=2 2/p—1
172/ P8ull p < 1P~ 20l + 1722 9,0l o

(5-5)

(5-6)

(5-7)
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We have

1 1

4 (o(sr))ds = / o (sryr ds.
ds 0

v(r)=v({r)—v0) = /

s=0
By the Minkowski integral inequality,

1
2/p—2 2/p—1
12720, < / 1 (5P P o ds.
s=0

Changing variable r — s~!r in the right side, we obtain

1
||r2/p_2U||Lrp < </ s—3/]7+1ds>”v/(r)r2/l7—l ”L,p
=0

5=
and the s integral is finite provided p > % O

The replacement for Lemma 3.1 is Lemma 5.6 below. The difference is that in Lemma 5.6, we only
use b < % when working at H' regularity.

Lemma 5.6. Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold. Then for % —§<
b < %,
18-Vl x40, S 24 (log )" *172 = (T — 1) (log|log(T — )"/, (5-8)

Also,for%—é <b< %4—8,
Il 0 S5 2% = (T —1)™°. (5-9)

Proof. We will only carry out the proof of (5-8), which stems from (5-2).10

The proof of (5-9) is similar,
and stems from the bound on ||u(¢)|| ys obtained from interpolation between (5-2) and mass conservation.
In the proof below, T has no relation to the T representing blow-up time in the rest of the article.

Let A = A(ty) =27%2(logk)™'/%. Let r = AR, x =AX, and t = A>T + t;. Define the functions
V(R,T) =A20(AR, AT + 1) = 2 20(r, 1),
UX,T)=2"2u0X, \>T + 1) = A %u(x, ).
Note that the identity v(r) = ru(r) corresponds to V(R) = ARU (R).
We study V(R,T) on T € [0, log k], which corresponds to ¢ € [#x, tx4+1]. We have ||V||L§e = ||v||Lg ~
O (1) (by mass conservation) and ||8RV||L3e = Al|d,v||z2. Hence, ||8RV||L[OS] yld = O(1). The equation
r log
satisfied by V is
i0rV 402V = A" R7HV|*V.

Let J = [a, b] be a unit-sized time interval in [0, log k]. Then by Lemma 2.4,

1RV llx0505) S N8RV @22 + 19rAT*RTHVIFV) 1 1.

10The need to take b < 1/2 comes from Lemma 2.4, (2-7) versus (2-8); when working at H 1 regularity near the origin, we
cannot suffer any loss of derivatives. The fact that [0, v| x, ,(z,) for b < 1/2is only a H 1 subcritical quantity is of no harm as
the only application of (5-8) in the subsequent arguments is to control the solution for » > 1/2, where the equation is effectively
L2 critical.
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Let x1(r) = 1 for r < § and supp x; C B(0, ). Let x = 1 — x1. Let g1 = g A *R~* 1 AR)|V[*V)
and g = dg(A"*R™*x2(AR)|V|*V), so that the above becomes

108V llx050) S 108V @Iz + lgill 2 + l1gall 112 (5-10)

We begin with estimating || g2||; 112 We have

g2l iz S IVl 2 + 1V @RV L 13- (5-11)
We now treat the first term in (5-11). Of course, ||V5||L11L%e = V||25L10. By Sobolev embedding ”V”L}?O <
J™R

2/5 o
| Dy V”L?e and by Holder,
2/5
IVilzs o S TOUDEE Vo2 S1TY UV 02 + 1RV Il og2)
< IOQI OVl 12 + 10V 10,2)-
Using that ||V||L30L%e ~ 1, that |J| ~ 1 and Lemma 2.7, provided % <b< %, we have
Vg5 S IO+ 110V lx,)- (5-12)
We now treat the second term in (5-11), similarly estimating the term || V|| L1 We have
[ V48RV”L}L§ < |J|7/20||V”ilJoL}eouaRVHL‘}L}?
S+ 10-V I 1022) 18RV Il 4 L10-
J ~R J™R
Appealing to Lemma 2.7, provided % <b< %, we obtain
VARV Iy 2 S 1200+ 110V l1x,,)°. (5-13)
Combining (5-12) and (5-13), we have
g2l 2 S 1720+ 1108 VIIx,,)°- (5-14)

Next we estimate || g ”Lleﬁ' By rescaling,

_ —4) 4
”glllLle%e = Allo-Gar v v)”L[lfk,ka]L%'

1

Let w = x1u, where x; =1 on supp x; but supp x; C B(0, %). Replacing u =r~" v, we obtain o, (ru’) =

d,(r x1w?), and hence,
lgtllzz, S Awliy o + lrw*dywll2) S AAx ™ w0 + [wVwl2). (5-15)
By Hardy’s inequality and 3D Sobolev embedding,
1x1~ P wligo S 1D wllp S IVwll o
By Holder’s inequality and 3D Sobolev embedding,

4 4 5
lw*Vwlzz < lwlizaollVwl zon S IV 30
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Returning to (5-15) and invoking (2) of Proposition 5.1,

gl 2 SMVWIE s som S he. (5-16)
kT I, Hx

k

By putting (5-14) and (5-16) into (5-10), we obtain
19&VI1xo 505y S N0RV @22 + [T 17220 + 108V 1x0,)° + A€

From this, we conclude that we can take |J| sufficiently small (but still “unit-sized”!") so that it follows
that

1RV I x, () < O(1).

Square summing over unit-sized intervals J filling [0, log k],

18R V Il xo 510, 10g kD) < (log k)2,

This estimate scales back to
”arU”Xo.b([tk,tkH]) 5 (log k)l/zk(tk)_Zb — 2kb(10g k)h+1/2,

Now square sum over k from k =0 to k = K to obtain a bound of 2X? (log K)?*+1/2 over the time interval
I, which is the claimed estimate (5-8). Il

The analogue of Lemma 3.2 will be Lemma 5.7 below. We note that as a consequence of Lemma 5.6,
the hypothesis of Lemma 5.7 below is satisfied with at(k, N) =27*2N~1,

Lemma 5.7 (high-frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold,
/12

and le
Bk, N) := | P>N0,vllxg, 1)
Then there exists an absolute constant 0 < u < 1 such that for N > 2k(+9)/2 e have
Blk, N+ r/ P Pondrvll g 1
SN PN voll g2 + 28PN Bk, uN) + N 020 Bk, uN)Y? +27% + & (5-17)
for all 3D admissible (q, p).

Proof. Note that v solves

10,0+ 0% = —rlul*u = —r~*v|*v.

Let x;(r) be a smooth function such that x(r) = 1 for |r| < % and x; is supported in |r| < %. Let
x2=1—x1. Apply P>y0, to obtain

(i + ) P=nd,v = g1 + g2,

1]Meaning: with size independent of any small parameters like € or A
12Note the inclusion of one derivative in the definition of B, in contrast to the choice of definition for « in Proposition 3.4.
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where

gj(r)=—P-nd, (xjr*v|*v) for j=1,2.
Then by Lemma 2.4!3 and Lemma 5.4,
| P> 0rvllxo,1o- 1) + ||r2/"*1PzN8rvlngkL,v S IIP=n0rvollz2 + I8 ey 22 +N82lzy r2-

The term || g2 || Lr? is controlled in a manner similar to the analysis in the proof of Lemma 3.2. For this
term, x» r~*and 9, (x> r ~*) are smooth bounded functions, with all derivatives bounded. By Lemma 2.10,

lg2llzz S Py (@) 2 + N7 (00 [ 2 (5-18)
By an analysis similar to the proof of Lemma 3.2, utilizing the bounds in Lemma 5.6, we obtain
I Pon (@)% 1 12 S 2CFENTI Bk, uN) + NTHO20 Bk, N, (5-19)
Also by the Strichartz estimates, as in the proof of Lemma 5.6 above,
14007l 12 S ID I, 0RVIx,, S 26072, (5-20)
Inserting (5-19) and (5-20) into (5-18), we obtain

||g2||L} 12 5 2k(]+8)/2N_1+8,3(k, ,LLN) +N_]+82k8,8(k, MN)2+N_12k(1+8)/2. (5_21)
T

The last term, N ~12k049/2 gjves the contribution 2% in (5-17) due to the restriction N > 2k(1+9)/2
(different deltas).
Next we address || g; IIL; ;2. We estimate away Psy by
k" -

||81||L;kLg S ||§1||L;kLg, (5-22)

where (ignoring complex conjugates)
g1=0,(r"*x1v°).

1

Let w = xju, where x; = 1 on supp x; but supp x1 C B(0, %). Replacing u = r~"v, we obtain g; =

8, (rx1u’) = 9, (r xw>), and hence,
&2 S Iwll o+ llrw*d,wliz S Hxl ™ PwliF o + lw vl
v Ll ; Ll F:
By Hardy’s inequality and 3D Sobolev embedding,
™ Pwligo S 1D wllzwo S IVwll .
By Holder’s inequality and 3D Sobolev embedding,

4 4 5
lw*Vwlizz < lwllpoIVwll o S IVwl -

13We were able to obtain the L}k L% right side (without § loss), because we took b < 1/2 in the Bourgain norm.
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Hence, ||g; ||L% < ||Vw||i30/”. Returning to (5-22) and invoking (2) of Proposition 5.1,
X

5 5
”glllL}kL% S vauL‘;kLiO/“ 5 €. g

The analogue of Proposition 3.4 is this:

Proposition 5.8 (high-frequency control). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then for any 3D Strichartz admissible pair (q, p), we have

2/p—1 5
I Pgoussdr 0l -ty + PP Pogisadrvll g 1p S €.

Proof. Several applications of Lemma 5.7, just as Proposition 3.4 is deduced from Lemma 3.2. O

Due to the H! criticality of the problem, we do not have improved regularity of v(f) — ei’% vy as was
the case in Proposition 3.4. As a substitute, we can use the methods of Lemma 5.7 to obtain the following
lemma:

Lemma 5.9 (additional high-frequency control). Suppose that the assumptions of Proposition 5.1 and
Remark 5.2 hold. Then
+00 1/2
(Z | Pawssdpvllger ]L%> <6, (5-23)
k—ko k—1:1k
Proof. 1t suffices to prove the estimate with the sum terminating at k = K, provided we obtain a bound
independent of K. For each k in kg < k < K, write the integral equation on ;. For r € [t;_1, #]
t
(1) = e vy — i f % 1yt (t)) d
0

Apply P,3/40, to obtain
!
Pyadpv(t) = P23k/4€lt8’28rv() —1i / el(t_t/)a’2 Py3i/4 0, (r_4|v|4v(t’)) dt’.
0

Estimate

| Pysisad,vll oo g2 < || Posesadrvoll 2 + [| Posksadr (r ol *0) |l 11 42
[t —1.15 17T r I =r

By the inequality (a + b)*> < 2a* 4 2b?, this implies

2

2 2 —4,. .4
| Ppaadrvllice 1o S NP0 v0ll72 + 11 Posesa0r (r [0 0) 171 o
[tg—1.1517T r Iy =r

1

Let x1(r) be a smooth function such that y;(r) = 1 for |r| < % and x; is supported in |r| < %. Let
x2=1—x1. Letg; = P23k/4ar(Xjr_4|U|4U) for j =1,2.
Recall that in the proof of Lemma 5.7, we showed that

||P2NarX2r—4|U|4v”L}kL% 5 2k(]+8)/2N_1+8}3(k, I,LN) +N_1+82k8,8(k, MN)2+N_12k(1+8)/2,
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and Proposition 5.8 showed that B(k, 23/%) < 1. Combining gives || g2 || L2 S 27k/8 and hence,
k r

K 1/2
2 —ko/8 5
(§:||82||L1 Lz) S8 <€,
I ~r
k=ko

Now we address g;. Let w = xju. For each k, lengthen I to I := I to obtain
K
2 —4 4 2

anlan < WPyt (g lwl*w)ligy o
k=ko

By the Minkowski inequality, for any space-time function F', we have
||P23k/4F||[%L}Lg = ||P23k/4F||L}z]§Lg S ||F||L}L%

Hence,

K

2 < —4,. 14 2
kaugl 173 12 S 10Gar~ lw*w)lg, .
=Ko

At this point we proceed as in Lemma 5.7 to obtain a bound by €°.

505

O

Now we begin to insert spatial cutoffs away from the blow-up core and obtain the missing low fre-
quency bounds. The first step is to obtain a little regularity above L2, since it is needed in the proof of

Lemma 5.11.

Lemma 5.10 (small regularity gain). Suppose that the assumptions of Proposition 5.1 and Remark 5.2

3

hold. Let v3,4(r) be a smooth function such that y3/4(r) =1 for |r| < 3 and ¥3/4(r) = 0 for |r| =

Then
D) T3 vl o

< 5
[O,T)L% ~S €.

Proof. Taking ¥ = 3,4, let w = yv. Then
10w+ 07w =Y (@id +8>)v+28,(Y'v) —y'v
= —r~ 4y v[*v +20,(¥'v) —¥"v = F| + F> + F3.
Local smoothing and energy estimates provide the estimate

3/7
1D w|

2
o Lr

7

3

SID Twoll 2 1D il 12+ 107 2D Bl o + 1D Fsllpy 2. (5-24)

We begin with the F; estimate. Let ¥ be a smooth function such that

0 ifr<i,
Fry=41 ify<r=<ig,
0 ifr>2.

Let ¢ = r~'v. By writing 1 = (1 — ¥*) + ¥*, we obtain
Fi=—1=§Hyr v —jqlw.
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Note that (1 — 1%4)1# is supported in |r| < % and iﬁ4w is supported in ‘—1‘ <|r| < %—5
For the term (1 — F*)yr~*|v|*v, we appeal to the bootstrap hypothesis (2) in the same way we did in
the proof of Lemma 5.7 to obtain a bound by €. As for the term |g|*w, by the fractional Leibniz rule,

3/7
L 1D Tl g

||D3/7(|C[| w)”L' L2< ||D3/7|q| || L7/3|| Il 7.0 L14+|||‘]| ”L

[0,T) Lr [0.7) [0.7)

By Sobolev embedding and Gagliardo—Nirenberg,
1D g1l 7 + a1l S gl l0,q17,  and wlige S 1D w2,
Hence,
107 (al* w12 Sllallpee 1200l 1D Wil 12

[0.T)

By (5-3), 10,qll.2 , 12 < (Jlog T)~! < (loge~")~!. Consequently, we obtain

~ [0,7)

1D} Fillyy, 12 S €+ (oge )™ ID w12
As for F», we start by bounding

IID_1/2D3/7F2||L2 Lz<||D13/‘4(w Iz, -

[0.7)

On the support of ¥, we have v = rg. Noting that on the support of 1" we have r ~ 1 and using the
interpolation, we get

1D W r)lc; < allez + gl 2 Noq ™.
By (5-3),
Mgl e, STV S
Consequently,

~1/2n3/7 1/2 1/28 <« 5
| D V2D3/ Pl 12 ST 24Tl <6,
Finally, for the term F3, we estimate
3/7 1/2 <« 5
DY Fillgy 12 Slallyy,, 2+ 10rlly, , 12 STHT2 S €
Collecting the above estimates and inserting into (5-24), we obtain

1D wllze 2 SIDY T woll2 + Goge ™) ID TwllLe 12 +€,

[0,7) [0,7)
and the result follows (by bootstrap assumption (3), || Dr3 z wo| L2 < e). Il

We will need to apply the following lemma eight times in the proof of Proposition 5.12 below. As in
Section 4, the use of the frequency projection P<(r_;)-3+ and the process of exchanging derivatives for
time factors via (5-25) is essentially an appeal to the finite speed of propagation for low frequencies.
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Lemma 5.11 (low frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Let % <ri<m< % and % <s < 1. Let ¥\ (r) and Yr»(r) be smooth cutoff functions such that

1 onlr| <r, 1 on |r|§l(r1—|—r2),
Yi(r) = | and Yp(r) = 2
0 on|rl=35(r1+r2) 0 onlr|>nr.
Then
1D} o)l 2 SUD TP (Wav) i, 12 + €.

Proof. Let x(§) =1for |§] < 1 and x (§) =0 for || > 2 be a smooth function. Let P = P_y_; -3+ be the
time-dependent multiplier operator defined by 13? (&) = x (T —1)3/%¢) f (¢) (where Fourier transform is
in space only). Note that the Fourier support of P at time T —t = 2% is < 23 /4 We further have that

W Pf=3i(T —1)""*Qd, f + P, f,
where Q = Q 7_;)-3 is the time-dependent multiplier

Oh(&) = x'(T = )3 *€) h(®).

Note that the Fourier support of Q at time t = T — 2% is ~ 23k/4 Note also that if g = g(r) is any
function, then

IPDEgll2 < (T =7 *|Igll 2. (5-25)
Let ¥ be a smooth function such that

0 if|r|<1i,
Fr)y= 11 if 3 <|r[ <301 +r),
0 if|r|=nr.

Let w = P_(r_;)-3+ D; (¥1v). By Proposition 5.8, it suffices to show that

s—1/8
lwilee, 2 SUDFTEW20)

5
2 .
0,7)Er 0.7 L7 +e

Note that w solves

idw+ 37w =—3(T —1)""/* 09, Di(Y1v) — PD(Y1r*|v|*v) +2P3, D (Y{v) — PDE(y{'v)
=FM+E+FB+F

By the energy method, we obtain

T 4
2 2 2
lwl2ey, < ||w0||L;+/ (Fiow) gzl + 10 IR 2,
0 o 0.7 %7
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We estimate F) using Lemma 5.9 as follows.'* Let Q be a projection onto frequencies of size ~
(T —t)~3/* (importantly, not < (T —t)~3/%). Then

T T
/0|<F1,w>L;|5f0 (T =0~ QD> (yiw)li7.

It suffices to take s = 1, the worst case. The presence of Q allows for the exchange Dr1 2~ (T — )38,

which gives

T T
/0 [(F1, w2 sfo (T =0~ 108, (W1v)II7.

By decomposing [0, T) = U,fiko [#, tx+1], and using that (T — 1)~ =2k on [#, tr+11, we have

/ (T =07 108, v, = Z f M) Py, (g10) 2.
arasy| "
Since |[#, tx+1]] =2~ —kthe above is controlled by Zk —ko | Pa3k/40y Y1012
which is bounded by €’ (by Lemma 5.9). etk
For the nonlinear term F», by writing 1 = 1 — * + ¥*, we have

12 the square root of

Fy=—PD}(r (1 = FHyv*o) — PD gty vl o) = Fay + Foo.
The support of (1 — ip4)l//1 is contained in |r| < % and we can use the bootstrap hypothesis (2) to obtain

5
”FZ]”LI <€ )

0.nL
as was done in the proof of Lemma 5.7 (for any s < 1). For Fpy, taking v = Ypv and noting that
Y1 Y2 = Y1, we have Fy = PDS(r ~*§*y|0]*D). By (5-25) with o =

1Pl 02 < “(T—t)_3/32IIDf_1/8(r_4fﬁ4w1|17| Dez

Since ¥ is supported in % < |r| < ry, the function F*y;r—* is smooth and compactly supported. By the
fractional Leibniz rule,

_ _ ~1 4~ ~ — ~ ~,7/2 1/2 —2
1D B T B9 e S IIE 1D 5502 S IDYTHI2 18,1, 14D) 55112

Using the bound ||0, vlle < (T —1)~/2 from (5-3) and the bound on ||D v||Loo L2 from Lemma 5.10,
we obtain

2 ST =0T =07y WD) T e, 12 SEND) ™ o0l 2

| F22l 11 - oo 0 L2

[0,7)

To bound F3, we use (5-25) with o = % to obtain

—27/32 1/8
1Pl 2 SN =072 1D ol o,

[0,7)™r

141t seems that the energy method is needed here, since it furnishes fOT [{F1, w);2|; we cannot see a way to estimate
| F1 ||L1 L Indeed, by pursuing the method here, one ends up with a bound || F ||L1 RS Zk —ko | Py3k/a 1//1v||L2 which

is not controlled by Lemma 5.9, since it is not a square sum.
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The F4 term is more straightforward than F3, since there is one fewer derivative. O
The H' control will complete part of the bootstrap estimate (5-4) in Proposition 5.1:

Proposition 5.12 (H' control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then

< 5
19: v||LF5T>L\2r|<5/8 €

Proof. Letry = % + é(k —1). Apply Lemma 5.11 on [rg, r¢41] for k =1, ..., 8 to obtain collectively
by Lemma 5.10 that

5
18,0l SE+vlla_ <é 0

[0,7) \ I=5/8 Iri<3/4

Proposition 5.13 (local smoothing control). Let the assumptions of Proposition 5.1 and Remark 5.2
hold. Let vr9/16 be a smooth function such that Y916(r) = 1 for |r| < 1¢ and Yo/16(r) =0 for |r| = §.

Then
IDY2Wonev)ll 2 12 S €.

[0, T)

Proof. Let x(§) =1 for |£| < 1 and x(£) = 0 for |£] > 2 be a smooth function. Let y_ = x and
¥+ = 1 — x. Let P_ be the Fourier multiplier with symbol x_((T — )*>/*£) and P, be the Fourier
multiplier with symbol x ((T —¢)3/4€). Then I = P_ + P, for each ¢, and P_ projects onto frequencies
< (T —t)~%4, while P, projects onto frequencies > (T —t)~>/*. Letting Q be the Fourier multiplier
with symbol 3 x'((T —1)*/4€), we have 8, Py f = +i(T —1)~1/4Q8, f + P9, f. Note that Q has Fourier

support in |&| ~ (T — )34,

First, we can discard low frequencies. From Proposition 5.12 and (5-25) with o = %,

1D} P_ypopievlsa | 12 S IT =07 0 popevlla 12 S TVE N0 Wos6vlI5s, 12 S €

[0,7)

For the high-frequency portion, Df 2 Py r9/16v, we first need to dispose of the spatial cutoff. We have

D2 Pyiropi6 = o16D;/* Py + DY Py, o6

The leading order term in the symbol of the commutator [D3/ 2 Py, Y9161, by the pseudodifferential
calculus, is £'/2 x4 (6(T — )Y/ (r) + E/2(T — 1)>*x L. (E(T — 1)**)¥’'(r). Hence, we obtain the
bound

LD} Py, Yropnel (D)™l 1212 S 1,

independently of 7. Thus, ||[D;’ P+ 1//9/16]v|| 12,12 1s easily bounded by Proposition 5.12.

It remains to show that ||y /16D P+v I 13, < €7, the estimate for the high-frequency portion with
no spatial cutoff to the right of the frequency cut off. To obtain local smoothing via the energy method,
we need to introduce the pseudodifferential operator A of order 0 with symbol exp(—(sgng)(tan_1 r)),
where sgn & is a smoothed signum function. Note that by the sharp Gérding inequality, A is positive.
The key property of A is

Af=A02f —2i(1+r>)"'D,Af + BY,
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where B is an order 0 pseudodifferential operator. The first-order term i (1 4+ r%)~' D, Af will generate
the local smoothing estimate.
Let w = AP;v. By the sharp Girding inequality,
o602 Pavllzz 12 SN +r%)7 ”2D3/2w||Lszz

3,2

and it suffices to prove that ||(1 +72)~1/2D;“w|| 2 Lz 3. The equation satisfied by w is

w4+ 3w+ 2i(1+r) 'Dyw= (T —1)"V*A08,v— AP r *v|*v+ Bv=F + F, + F3,

where B is a order O operator (satisfying bounds independent of ). By applying 9, and pairing this
equation with d,w (energy method), we obtain, upon time integration,

T
2 2—=1/2103/2,. 112 2 2
10wl 2+ N+ 20wl s fo (00 Frow) | 1003, Fallyy o + 1000 F3l,

The F3 term is easily controlled using Proposition 5.12.

The F; term is controlled as in the proof of Lemma 5.11 (a similar first term). For the F, term, let ¥
be a smooth function such that ¥ (r) = 1 for |r| < 1 and ¥ (r) =0 for |r| < 1. Writing 1 = >+ (1 — "),
we have

= AP W r Hulfv+ APL(1 — ) r*u*v = Fay + Fa.

We estimate || 9, F71 || Ll L2 ASWE did in the proof of Lemma 5.7. For the term F»», take v = (1—y°>)r 4,
and note that v is smooth and well localized. In the proof of Lemma 5.7 (see (5-18) and (5-21)), we
showed that

I PZNar‘/’+|”|4U||L}kL% < KUFD2ZNSB (K, uNY + NT1 02K Bk, uN)? + N~12K0+72,
Furthermore, Proposition 5.8 showed that g8 (k, 23k/4) < 1. Combining with the above gives
”P223k/48r1//+|vl4v||L}kL% < k8,

Thus,

o0 [e.¢]
4 4 —ko/8 5
10: Faallpy, 12 S D N Pogwsdeps 00l 12 S Y I Psosssdpralvlollyy 2 S270F S O
k=ko k=ko

Proposition 5.14 (Strichartz control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2
hold. Then

2/p— < 5
Ir?/P="5, vllze e, S €

Proof. Let ¢ be a smooth function such that v (r) =1 for |r| < 5 ! and Y(ry=0for|r|> . Letw=1vv.
Then w solves

idw+ 07w = —yr v +20,(Y'v) — ¢y v=F + F, + F;.
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By the Strichartz estimate and dual local smoothing estimate, we obtain
2/p—1 < ~1/2
I hrwllpe rr SNOrwollz +10,Fillpy ra + 1D, 70 Fallpz o + 110, 3l pa-

Let ¥ be a smooth function such that ¥ (r) = 1 for |r| < }1 and ¥ (r) = 0 for |r| > % By writing
1 =9+ (1 — ), we have

=y r )t — v (1 = F)r oty = Fiy + Fro.

Since the support of ¥ is contained in |r| 5 , we can estimate the term |9, Fi1|| Ll L2 by €’ using
bootstrap assumption (2) as in the proof of Lemma 5.7. Since (1 — )Wr_4 is a bounded and smooth
function,

o, F , < v <T v < e,
19 Fially 2 SN0V Ny 2 STHOIG (2 S

Also, by Proposition 5.13,

1D} Falle 2 S 1D Popievll 2

[0, T) [0, T)
Finally,
< <éd
10 Faly 2 STNOI e 12 Se
by Proposition 5.12. Collecting the estimates above, we obtain the claimed bound. O

This completes the proof of Proposition 5.1 (via Lemma 5.5).
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SHARP GEOMETRIC UPPER BOUNDS ON RESONANCES FOR SURFACES
WITH HYPERBOLIC ENDS

DAVID BORTHWICK

We establish a sharp geometric constant for the upper bound on the resonance counting function for
surfaces with hyperbolic ends. An arbitrary metric is allowed within some compact core, and the ends
may be of hyperbolic planar, funnel, or cusp type. The constant in the upper bound depends only on the
volume of the core and the length parameters associated to the funnel or hyperbolic planar ends. Our
estimate is sharp in that it reproduces the exact asymptotic constant in the case of finite-area surfaces
with hyperbolic cusp ends, and also in the case of funnel ends with Dirichlet boundary conditions.

1. Introduction

For a compact Riemannian surface, the Weyl law shows that the asymptotic distribution of eigenval-
ues is determined by global geometric quantities. In the compact hyperbolic case, Weyl asymptotics
follow easily from the Selberg trace formula; see, e.g, [McKean 1972], This approach extends also
to noncompact hyperbolic surfaces of finite area [Venkov 1990]. Some reinterpretation of the spectral
counting is needed for the noncompact case, however. One can either supplement the counting function
for the discrete spectrum by a term related to the scattering phase, or else use the counting function for
resonances instead of eigenvalues. Weyl asymptotics, in this extended sense, were established for general
finite-area surfaces with hyperbolic cusp ends by Miiller [1992] and Parnovski [1995].

For infinite-area surfaces with hyperbolic ends, the discrete spectrum is finite and possibly empty, and
therefore plays no role in the spectral asymptotics. One could look for analogies to the finite-area results
in the asymptotics of either the scattering phase or the resonance counting function. For the scattering
phase of a surface with hyperbolic ends, Weyl asymptotics were proven by Guillopé and Zworski [1997].
One does not necessarily expect a corresponding result to hold for the resonance counting function — see
e.g., [Guillopé and Zworski 1997, Remark 1.6] — but neither can we rule out the possibility at this point.
Understanding the role that global geometric properties play in the distribution of resonances remains a
compelling problem.

In the context of infinite-area hyperbolic surfaces, only the order of growth of the resonance counting
function is currently well understood. Guillopé and Zworski [1995; 1997] showed the resonance counting
function for infinite-area surfaces with hyperbolic ends satisfies N, (¢) < 1% (with the caveat that the lower
bound is proportional to the 0O-volume, which might be zero in exceptional cases). These results have been
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MSC2000: primary 35P25, 58J50; secondary 47A40.
Keywords: resonances, hyperbolic surfaces, scattering theory.
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extended to higher-dimensional manifolds with hyperbolic ends in [Borthwick 2008]. Unfortunately,
the methods used in these proofs yield only an ineffective constant for the upper bound, with no clear
geometric content. Moreover, the derivation of the lower bound depends explicitly on the upper bound,
so the geometric dependence of the lower bound is likewise undetermined.

In this paper we present a geometric constant for the upper bound on the resonance counting function
for infinite-area surfaces with hyperbolic ends. This constant is sharp in the sense that it agrees with the
exact asymptotics in the cases of finite area surfaces or truncated funnels. Our approach is inspired by
Stefanov’s recent paper [2006] on compactly supported perturbations of the Laplacian on R" for n odd,
and similar techniques were applied to compactly supported perturbations of H**! in [Borthwick 2010].

We can state the cleanest result for a hyperbolic surface (X, g) =H?/T. Let R, denote the associated
resonance set (poles of the meromorphic continuation of (Ag —s(1 — s)~ 1), with counting function

No(t) :=#{¢ € Rg: 10 — 3| <1}

The sharp version of our bound involves a regularization of the counting function,

Ng(a) = /Oa 2(Ng(t); Ne O 4, (1-1)

This type of regularization is standard in the theory of zeros of entire functions, and there is a natural
connection to the asymptotics of N, (1),

Ne(a)~ Ba*> <= N,(1)~ Bt%;

see [Stefanov 2006, Lemma 1]. If we have only the upper bound on N ¢» then we lose some sharpness in
the estimate of N,:

Ne(a) < Ba*> =  Ng(r) <eBt>.

Theorem 1.1. Suppose (X, g) is a smooth geometrically finite hyperbolic surface with x(X) < 0. Let
L1, ..., Ly, denote the diameters of the geodesic boundaries of the funnels of X. The regularized counting
Jfunction for the resonances of A, satisfies

Ny (a) LAy
- SIX(X)I+;ZJ+0(1)- (1-2)

We can see that this result is sharp in two extreme cases. For a finite-area hyperbolic surface (that is, with
ng=0), our upper bound agrees with the known asymptotic Ng () / 2 ~|x (X)|. On the other hand, for an
isolated hyperbolic funnel F; of boundary length ¢, under Dirichlet boundary conditions, the resonances
form a half lattice. It is easy to see that Nf,()/ t? ~ £/4, so the funnel portion of (1-2) is also sharp.
The restriction to x(X) < 0 in Theorem 1.1 leaves out just a few cases. The complete (smooth)
hyperbolic surfaces for which x (X) > 0 are the hyperbolic plane H?, the hyperbolic cylinder C; :=
H?/(z + e'z), and the parabolic cylinder Cy, = H2/(z — z + 1). Resonance sets can be computed
explicitly in these cases (see [Borthwick 2007, Sections 4-5]), and exact asymptotics for the counting
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function are easily obtained:
Ny (t) ~ 1%, Nc,(t) ~ 3e?,  Nc () =1.

If we interpret C, as the union of 2 funnel ends, then (1-2) would also give a sharp estimate for this case.
Using Theorem 1.1 in conjunction with the argument of Guillopé and Zworski [1997] for the lower
bound, we can deduce the following:

Corollary 1.2. For k € N there exists a constant cy such that for any geometrically finite hyperbolic
surface (X, g) with x(X) <0,

Ng(t) 1 n Ej —2/k
zck|x(X)|(1+— —) fort>1.
2 X X)) ; 4

The constant ¢ obtained in this way (see Section 4 for the derivation) is rather ineffective; the point here
is just that there exists a lower bound that depends only on x (X) and {¢}.

We will obtain Theorem 1.1 as a consequence of a somewhat more general estimate. Consider a
smooth Riemannian surface (X, g), possibly with boundary, that has finitely many ends that are assumed
to be of hyperbolic planar, funnel, or cusp type. That is, X admits the decomposition

X=KuYiu---uY, UChpyrU---UCpgn, (1-3)

illustrated in Figure 1, where the core K is a smooth compact manifold with boundary. The metric in K
is arbitrary. The Y; are infinite-area ends: either hyperbolic planar,

Y; = [bj,00) x S, gly, =dr*+sinh*rd6*, where b; >0, (1-4)

or hyperbolic funnels,

92
Y; =[bj,00) x st gly, :dr2+£5 COSth(zn)z’ where b; > 0and £; > 0. (1-5)
The C; are hyperbolic cusps,
1 2 2 A9’
ng[bj,OO)XS s g|cj:d}" +e_r(2ﬂ)2, where bJZO (1-6)

The finite-area portion of X consisting of the core plus the cusps is denoted by
X =KuCypgU---UCppyp,. (1-7)

Any geometrically finite hyperbolic surface, with the exception of the parabolic cylinder Co,, admits
a decomposition of the form (1-3). In such surfaces, aside from H? itself, only funnel or cusp ends can
occur.

We let A denote the positive Laplacian on (X, g). In general we may consider the operator

P:=Ag+V,
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Figure 1. Surface X with boundary and hyperbolic ends.

where V € Ci°(X) with supp(V) C K. We denote by % p the resonance set associated to P. These
resonances are the poles of the analytically continued resolvent

Rp(s) = (P —s(l—=s)7",
counted according to multiplicity. The associated resonance counting function is
Np(t) :=#{¢ eRp: |t -5 <t}

Our context is essentially that of Guillopé and Zworski [1995; 1997], and so we already know that
Np(t) < t? (see Section 2 for details). It is thus natural to define the regularized counting function
Np(a) just as in (1-1).

Before stating the upper bound, we introduce the asymptotic constants associated to the resonance
count for isolated hyperbolic planar or funnel ends.

Theorem 1.3. For a hyperbolic planar or funnel end Y = [b, 00) x S', with metric as in (1-4) or (1-5),
the resonance counting function for the Laplacian with Dirichlet boundary conditions at r = b satisfies

an asymptotic ast — 00,
Ny (1) ~ A(Y)t>.

We will write these constants A(Y) explicitly in a moment. First let us state our main result.

Theorem 1.4. For (X, g) a surface with hyperbolic ends as in (1-3) and V € C§°(X), the regularized
counting function for P = A, +V satisfies

Np@) 1

3 < Evol(Xc,g)—i-ZA(Yj)-i-O(l)v (1-8)

j=1
where X, is the subset (1-7).
If (X, g) is a finite-area surface with hyperbolic cusp ends (and arbitrary metric in the interior),
Parnovski [1995] proved that

1
Ng(t) ~ 5 —vol(X, Pl
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This shows that Theorem 1.4 is sharp in the case ng = 0. It also suggests an intriguing interpretation
of the constants appearing in (1-8). Suppose we split X into a disjoint union X, UY; U---UY,, at the
boundary of X, and impose Dirichlet boundary conditions at the newly created boundaries. The constant
on the right side of (1-8) is the sum of the asymptotic constants for the resonance counting function of
the resulting components.

To obtain Theorem 1.1 from Theorem 1.4, we take the Y; to be standard funnels with boundaries at
bj =0, in which case A(Y;) = £;/4. And under the assumptions that X. has geodesic boundary and
hyperbolic interior, the Gauss—Bonnet theorem gives vol(X, g) = —2m x (X).

As in Corollary 1.2, combining Theorem 1.4 with the Guillopé—Zworski argument gives a lower
bound on Np(t) with a constant that depends only on 0-vol(X, g) and the end parameters £; and b; for
j=1,..., ng assuming that O-vol(X, g) # 0.

The asymptotic constants A(Y) appearing in Theorem 1.3 have a somewhat complicated form. Con-
sider first a model funnel end Fy ,, defined by
2

Fy ry = [ro, 00) X S' and ds*=dr>+€>cosh’r (;iﬁ)Z.

(1-9)

The case rg = 0, a standard funnel with geodesic boundary, is simply denoted by Fy. The resonance set
for the Laplacian on Fy ,, with Dirichlet boundary conditions at r = r¢ is denoted R Fory
In Section 7 we will show that for ro > 0,

/2 poo I i0 ¢
A(Fz,ro):—% sinhro—i-%/ / LF(xe );3’r0)]+ dx do, (1-10)
0 0

where [ - ]+ denotes the positive part and, with w := 27 /¢,

asinhr + v w? + o2 cosh2r>)

V? 4+ a?
(\/ w? + a2 cosh?r —iwsinhr

+ warg
V?+a?cosh’r +iwsinhr

(We will use the principal branch of log in all such formulas.) The integral in (1-10) is explicitly com-

I(a,l,r):= Re(Za log(

) +r(Ima —w). (1-11)

putable in the case ro = 0, since / (xe'?, ¢,0) = m(x sin® — w). In this case we recover the asymptotic
constant for the standard funnel, A(Fy) = £/4.

It is interesting to compare the resonance sets of truncated funnels Fy,, with ro > O to extended
funnels with ro < 0. The two cases are quite different in terms of the classical dynamics; an extended
funnel contains a trapped geodesic, while truncated funnels are nontrapping. Because of this change
in dynamics, we expect the distribution of resonances near the critical line to change dramatically as
ro switches from positive to negative. Figure 2 illustrates these differences. In the nontrapping case at
left, the distance from the resonances to the critical line increases logarithmically as Im s — oo. For the
trapping case at right, the distance decreases exponentially. These behaviors are consistent with results
on resonance-free regions for asymptotically hyperbolic manifolds by Guillarmou [2005].
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Figure 2. Resonance sets of the funnel Fy ,, with different boundary locations r(, shown
for £ =2m.

Of course, the asymptotics of the global counting function Np(¢) are not expected to be sensitive to
the dynamics. Indeed, we will show in Section 8 that the formula (1-10) for the asymptotic constant of
N, ,, (1) remains valid for ro < 0. This exact asymptotic can be compared to the upper bound obtained
for the extended funnel from Theorem 1.4, which is

NF“a—g(a) < —% sinh ro + g for rp < 0. (1-12)
Figure 3 illustrates the difference between the upper bound (1-12) and the sharp asymptotic in this
situation. Given this discrepancy, one might think that the bound in Theorem 1.4 could be improved
by moving the boundary of K further into the interior of the surface (that is, by allowing b; < 0 in the
definition (1-5)). Unfortunately, for reasons that we will explain in Section 4, it does not seem possible
to obtain any improvement this way.
In the hyperbolic planar case, the model problem for Y is scattering by a spherical obstacle in H?2, that
is, on the exterior Dirichlet domain 2, := {r > ro} C H?2. The resonance asymptotics for this spherical
obstacles in H**! were worked out in Borthwick [2010, Theorem 1.2]. In two dimensions the result is

/2 (00 [ H (xei?
A(Q,) =2—coshr0+i/ / [W—3’m)]+dxd9, (1-13)
T 0 0 X

where

coshr —+/1+a2sinh?r
og )
coshr ++/1+ a2 sinh?r

(1-14)
a?—1

hr ++/1+a?sinh?
H(a,r) ::Re(Zalog(acos rt o7 sin r>)+1
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N sinhr—i—%

N 2m

Figure 3. The exact asymptotic constant for Fy , as a function of boundary location r,
shown for £ = 2m. The dotted line shows the bound from Theorem 1.4.

The paper is organized as follows. The basic material on the resolvent and resonances of the operator
P is reviewed in Section 2. In Section 3 we present the factorization formula for the relative scattering
determinant and show that this leads to Weyl asymptotics for the scattering phase and a counting formula
for resonances based on contour integration. The growth estimates on the scattering determinant and the
resulting proof of Theorem 1.4 are given in Section 4, assuming certain estimates to be developed in
later sections. The derivation of Corollary 1.2 is also given in Section 4. In Section 5, we develop
the asymptotic analysis of Dirichlet eigenmodes on hyperbolic funnels. These asymptotics are applied
in Section 6 to prove the Poisson operator estimates needed for Section 4. Finally, in Section 7 and
Section 8 we establish the exact asymptotic constant (1-10) for the truncated and extended funnel cases,
respectively, and prove the funnel part of Theorem 1.3 in particular.

2. Resonances

The context introduced in Section 1 differs from that of Guillopé and Zworski [1995; 1997] in two
relatively minor ways: Hyperbolic planar ends are allowed in addition to funnels, and a compactly
supported potential V' is possibly added to A,. The latter addition really is trivial, but the inclusion of
hyperbolic planar ends requires a few extra estimates on model terms. In this section we will briefly
review the theory [Guillopé and Zworski 1995; 1997], in order to explain those additional estimates.

To define resonances we need analytic continuation of the resolvent, Rp(s) := (P —s(1 —s))~!, from
its original domain Re s > % Each end Y; is isometric to a portion of either H or the model funnel F;;, and
we can use this identification to pullback model resolvents R?,j (s). After appropriate cutoffs are applied,
we can treat these model terms as operators on X, whose kernels have support only in the corresponding
ends Y;. Similarly, we define R%/ (s) by pullback from the model cusp. Suppose that X,Z € C®(X) are
cutoff functions for j =1, ..., n¢f+n. and k =0, 1, 2, such that

0 forr>k+1inend j,
xi =11 forr<kinend j,
1 outside of end j.

We also set y; := ]—[j ij.
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For some sy with Re s sufficiently large, so that Rp(sg) is defined, we set

netne
M(s) —xZRp<so>xl+Z<1—xo>R0 @A =xD+ Y A=x)RE ()1 = x7).
Jj=1 j=ns+1

This parametrix satisfies
(P—s(1—s)M(s)=1-—L(s),

where

L(s) == —[Aq, x21Rp(s0) x1 + (s(1 —5) —s0(1 —50)) x2Rp (50) X1

ng+ne
+Z o XJIRY (DA = xD+ Y [Ag xJ1RE (5)(1 = x{).
j=1 Jj=ni+1

There are two differences here from the construction of [Guillopé and Zworski 1995]. First of all, some
of our model terms RO (s) will be copies of Ry(s) instead of the funnel resolvent. Second, we follow
the treatment in [Borthw1ck 2007] in using the model resolvent for a full cusp, rather than modifying the
original Hilbert space.

Let p € C*°(X) be proportional to e™" in the ends Y; and C;, with respect to the coordinate systems
given in (1-4)—(1-6). The operator L(s) is compact on p" L*(X, dg) for Res > % — N and defines a
meromorphic family with poles of finite rank. (The structure of the kernel of R% (s) at infinity is the same
whether Y; is a funnel or hyperbolic planar, so this part of the argument is unaffected by the addition of
hyperbolic planar ends.)

By choosing s and sy appropriately we can insure that / — L(s) is invertible at some s, and then the
analytic Fredholm yields

Rp(s)=M(s)(I = L(s)~". 2-1)
This proves the following result, a slight generalization of [Guillopé and Zworski 1995, Theorem 1]:

Theorem 2.1 (Guillopé and Zworski). The formula (2-1) defines a meromorphic extension of Rp(s) to
a bounded operator on p" L*(X, dg) for Re s > 5 — N, with poles of finite rank.

Meromorphic continuation allows us to define %R p as the set of poles of Rp(s), listed according to
multiplicities given by

mp(¢) :=rankRes; Rp(s).

The same parametrix construction also leads to an estimate of the order of growth of the resonance
counting function. The following is a slight generalization of [Guillopé and Zworski 1995, Theorem 2]:

Theorem 2.2 (Guillopé and Zworski). The resonance counting function satisfies a bound

Np(t) = O(1?).
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Our version requires just a few additional estimates. To obtain this bound on the counting function,
Guillopé and Zworski [1995] introduced a Fredholm determinant

D(s) :=det(I — L3(s)?), where L3(s) := L(s)x3.

Using the relation
Rp(s)x3 = M(s)x3(I + L3(s) + L3(s)*)(I — L3(s)>) 7",

and a result of Vodev [1994, Appendix], they showed that % p is included in the union of the set of poles
of D(s) with 3 copies of the union of the sets of poles of M (s) and L3 (s).

The only change that the inclusion of hyperbolic planar ends requires in this argument is that for
each hyperbolic planar end we include a copy of Ry among the possible poles of M (s) and L3(s). Since
Nu(t) =01, just as for funnels, the problem reduces as in [Guillopé and Zworski 1995] to an estimate
of the growth of D(s). Through Weyl’s inequality, the estimate of D(s) is broken up into estimates on
the singular values of various model terms. We must check that the relevant estimates are satisfied by
the hyperbolic planar model terms.

There are three estimates to consider. The first concerns the resolvent Ry(s). If Q; and Q, are
compactly supported differential operators of orders ¢g; and g, with disjoint supports, then for ¢ > 0,

|Q1Ru(s) 02l < Clg;, €)(s)!'T%> for Res > ¢, (2-2)

and
|01 Ru(s) 02l < C(gj, &)(s)"T2~!  for Res > %+8- (2-3)

To prove either of these, one can simply use the explicit formula
1 ~1
t(l—1))°
RH—I](S§Z,Z/)=L/ ((. 2 )
47 Jo (t+sinh®d(z, 2))*

and repeat the argument from [Guillopé and Zworski 1995, Lemma 3.2].
The next estimate is for the Poisson kernel Ep(s). In the Poincaré ball model B, this kernel is given
by

, 1 T(s)* (1—[z[»)*
Eg(s; z,0) = HF(ZS) T for zeB, 0 eR/2n 7).

Given a compact set K C B and ¢ > 0, we have

|08 Eg(s; 2, 0)| < C(K, &)*k! e forze K, keN. (2-4)

This is not difficult to prove directly by induction, or one can use an analyticity argument as in [Guillopé
and Zworski 1995, Lemma 3.1].

Finally, we must estimate the scattering matrix Sy(s). We can write this explicitly in terms of Fourier
modes,

T(3—s) T(s+kl)
I'(s—3) T —s+IkD)

Su(s) =Y _[Su()ke* =, where [Sy(s)]i =2'"%
kez
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Using Stirling’s formula, it is easy to use this expression for the eigenvalues to estimate the singular

values of Sy(s). Assuming that Res < % — ¢ and dist(s, —Ny) > n, we have

wj(Se(s)) < exp(C(n) (s) +Re(l —2s) log((s)/)))- (2-5)

This is the analog of [Guillopé and Zworski 1997, Lemma 4.2].
With these model estimates in place, one can simply apply Guillopé and Zworski’s original argument
(treating the cusp contributions as in [Borthwick 2007, Section 9.4]) to prove that
2
§()D(s)] < LT,
where g(s) is a entire function of order 2 and finite type, with zeros derived from Ry and the model
resolvent sets for the funnels and cusps. This yields the proof of Theorem 2.2.

3. Relative scattering determinant

To define scattering matrices, we will fix a function p € C°(X) that serves as a boundary defining
function for a suitable compactification of X. We start with smooth positive functions pr, p. satisfying

1 in each Y},

r

2e™" ineachY;,
Pf= o

and =
1 in each C; pe {

in each C;.

Then we set p = pgp, for the global boundary defining function.

The ends Y; are conformally compact, and we distinguish between the internal boundary 9Y;, and
the boundary at infinity d».Y; induced by the conformal compactification. The funnel ends Y; come
equipped with a length parameter £;, the length of the closed geodesic bounding the finite end. If we
assign length ¢; =27 to a hyperbolic planar end, for consistency, then the metric induced by p2g on the
boundary of Y; at infinity gives an isometry

Y ZR/E,Z.

The cusp ends can be compactified naturally by lifting to H and invoking the Riemann-sphere topology,
as described in [Borthwick 2007, Section 6.1]. The resulting boundary d,,C; consists of a single point.
Despite the discrepancy in dimensions, it will be convenient to group all of the infinite boundaries
together as
00X 1= 000 Y1 U+ U 0o Yy U0 Crrpg1 U+ U 0o Crpypon,. -

Then we have
CP (0 X) =C* R/ D) B - - - ® CT(R/Ly Z) D C™,

and similarly for L*(35X).
In Section 2, R% (s) denoted the pullback of the model resolvent in the parametrix construction.
Carrying on with this notation, we also define the model Poisson operators

Ey (s): C®0uY)) = L*(Y)),
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and scattering matrices
S?,j(s) 1 C®(00Y}) = C®(3n0Y ).

Similarly, for the cusp ends we have the Poisson kernels
E2 (s):C— L*(C))
C; : J/*

There is no analog of the model scattering matrix for a cusp; see [Borthwick 2007, Section 7.5] for an
explanation of this.
The scattering matrix Sp(s) is defined as a map on C*° (9, X), which we can write as

St (s) S%))

Scf(s) SCC(S) (3‘1)

Sp(s) = (

where the blocks are split between the “funnel-type” ends Y; and the cusps C;. The block § ff(s) is a ma-
trix of pseudodifferential operators; all other blocks have finite rank. To define a scattering determinant,
we normalize using the background operator

0
So(s) = (SYéS) (I)> ,  where S?,(s) = S% ()P ---& S?ﬂf ().

The relative scattering determinant is then defined by
7(s) = det Sp(s)So(s) ™. (3-2)

The poles of the background scattering matrix Sp(s) define a background resonance set

" (%, for afunnel end,
97’30=U{ F,,  fora funnel en (3-3)

iz Ry for a hyperbolic planar end.

For x =0 or P let H,(s) denote the Hadamard product over R,
H(s) = [ (1 —s/g)es/c+57/20,
LeR,
Theorem 2.2 implies that the product for Hp (s) converges, and for Hy(s) this is clear from the definition
of gl().
Proposition 3.1. For P = A, + V, the relative scattering determinant admits a factorization

Hp(1—s) Ho(s)

T(s) = e® ,
Hp(s) Ho(l—s)

where q(s) is a polynomial of degree at most 2.

Proof. 1f the ends Y are all hyperbolic funnels, then Guillopé and Zworski [1997, Proposition 3.7] proved
the factorization formula of with ¢ (s) a polynomial of degree at most 4. The first part of the proof, the
characterization of the divisor of 7 (s) obtained in [Guillopé and Zworski 1997, Proposition 2.14], remains
valid if hyperbolic planar ends are included.
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To extend the more difficult part of the argument, which is the estimate that shows g (s) is polynomial,
we require only the extra estimates on model terms given in (2-2), (2-3), (2-4), and (2-5). With these
estimates one can easily extend the proof of [Guillopé and Zworski 1997, Proposition 3.7]. We refer the
reader also to [Borthwick 2007, Section 10.5], for an expository treatment of these details.

To see that the maximal order of ¢ (s) is 2, we could prove an estimate analogous to [Borthwick 2008,
Lemma 5.2]. However, we will be proving a sharper version of this estimate later in this paper. From
(4-12) in the proof of Theorem 4.1, it will follow that for some sequence a; — oo,

loglt(s)| < O(a) for|s — 3| = a;, |arg(s — 7)| < 370 — 3.

Because the Hadamard products H,(s) have order 2, this implies a bound |g(s)| = O (|s |2+¢) in the sector
larg(s — %)| < %71 — 4. Hence g (s) has degree at most 2, since it is already known to be polynomial. (The
derivations leading to (4-12) require only that g (s) is polynomial, so this argument is not circular.) [

To apply the factorization of t(s) to resonance counting we introduce the relative scattering phase
of P, defined as

L 1,
o(§) -—Elogf(z-i-lé), (3-4)
with branches of the log chosen so that o (£) is continuous and o (0) = 0. By the properties of the relative

scattering matrix, o (£) is real and o (—&) = —o ().
To state the relative counting formula, we let Ny denote the counting function associated to Ry,

No() :=#{¢ € Ro: |t — 5] <1},
and No(a) the corresponding regularized counting function.

Corollary 3.2. As a — o0,

v v ‘o) 2 (™2 1 i0
Np(a) — No(a) =4 Tdt—i—; log|z(5 +ae'”)|d6 + O(loga). (3-5)
0 0

The proof is by contour integration of 7//7(s) around a half-circle centered at s = % See [Borthwick
2010, Proposition 3.2] for the details of the derivation of (3-5) from Proposition 3.1. This is the analog
of a formula developed by Froese [1998] for Schrédinger operators in the Euclidean setting.

The other consequence we need from Proposition 3.1 is essentially also already proven. To analyze the
first term on the right side of (3-5), we will invoke the Weyl-type asymptotics satisfied by the scattering
phase:

Theorem 3.3 (Guillopé and Zworski). As & — +o0,

1 Nhp\ .o Nc
o (&) = (5 0-vol(X, ) = 22 ) % - “g logs + 0(),
4 2 b4
where ny, denotes the number of the Y ; that are hyperbolic planar.

For surfaces with hyperbolic funnel or cusp ends, this result was established by Guillopé and Zworski
[1997, Theorem 1.5]. As in the other cases discussed above, the modifications needed to adapt the proof
to our slightly more general setting are fairly simple. The first point is that the addition of a compactly
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supported potential V does not change the argument at all, since it does not affect the leading term in
the wave trace asymptotics as derived in [Guillopé and Zworski 1997, Lemma 6.2]. The second issue
is that we allow hyperbolic planar ends in addition to funnels. However, for |f| < £ the restriction to
the diagonal of the wave kernel on a model funnel F; is identical to that of H?. This is the content of
[Guillopé and Zworski 1997, Equation (6.1)]. So hyperbolic planar ends may also be included without
modifying the argument. Such ends do affect the final calculation, however, because 0-vol(H?) = —27
whereas the model funnels had 0-vol(F;) = 0. This difference accounts for the nyp, term.

4. Scattering determinant asymptotics

To state the asymptotic estimate for the scattering determinant contribution to the resonance counting
formula (3-5), we introduce the following constants. If Y; is a funnel with parameters £, b;, then we set

/2 poo I ie,ﬁ-,b' 0
B(Y}) ::i/ / [ (xe 3, )+ dvdo Y
T Jo 0 X 4

where I (a, £, r) was defined in (1-11). If Y; is a hyperbolic planar end with parameter b, then
/2 poo H i6 b
B(Y;) := i[ / M dx db,
T 0 0 X

where H (a, ¢, r) was defined in (1-14). The cusps do not contribute to the asymptotics of 7 (s) to leading
order, so we make no analogous definition for C;.

Theorem 4.1. For (X, g) a surface with hyperbolic ends as in (1-3), there exists an unbounded set
A C [1, 00) such that

/2 ) ng
%/0 log|t(} +ae'®)|do < Z B(Y))a*+o0(a*) forall ac A.
j=1

Before undertaking the proof of Theorem 4.1, we will show how this theorem leads to the proof of
the main result stated in Section 1:

Proof of Theorem 1.4. Starting from the counting formula from Corollary 3.2, we apply Theorem 3.3 to
the scattering phase term and Theorem 4.1 to the scattering determinant contribution. This yields

~ ~ 1 1t
Np(a) = No(@) + 5 - 0-vol(X, g)a’ + Zl B(Y)a® +o(a?), (4-1)
]:

as a — oo. From the explicit definition (3-3) of R, we see that

No(t) N i {1 for a hyperbolic planar end,

2 = £;/4 for a funnel end,
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and so ]VO (a) satisfies the same asymptotic. Also, we have
ng
0-vol(X, ) = vol(Xc, g) + Y _ 0-vol(¥;, g).
j=1

The 0-volumes of the Y; are easily computed. For a hyperbolic planar end,
log(2/¢)
0-vol(Y;, g) =2m FPO/ sinhr dr = —2m cosh b,
E—> b:
and for a funnel end,
log(2/¢)
0-vol(Y;, g) =¢; FPO/ coshrdr =—£;sinhb;.
E— bj

By the formulas (1-13) and (1-10) for A(Y;), we see that (4-1) is equivalent to the claimed estimate. []

The derivation of Theorem 1.1 from Theorem 1.4 was already explained in Section 1. To prove
Corollary 1.2 we simply recall a few details of the proof of the lower bound in Guillopé and Zworski
[1997, Theorem 1.3]. For a test function ¢ € Ci°(R,) with ¢ > 0 and ¢ (1) > 0, we have estimates

&) < Cr(1416))*"% fork e Nand Imé& < 0.

Pairing the distributional Poisson formula [Guillopé and Zworski 1997, Theorem 5.7] with A¢ (A - ) yields
o0
|0-vol(X, g)| 1% < Ck / A +r)*3Npr) dr.
0

If we have Np (1) < At? for t > 1, then splitting the integral at a gives
0-vol(X, &) A* < Cx(N(ra) + Ar*a™F).

Setting t = La, we have
N(t) > (ckl0-vol(X, g)|a™* — Aa~>7F) 12,

and optimizing with respect to a then yields
N(t) = cxl0-vol(X, g)['TH/2AH/2,

Corollary 1.2 is then proven by substituting the constant obtained in Theorem 1.1 for A.

The rest of this section is devoted to the proof of Theorem 4.1. To produce a formula convenient for
estimation, we introduce cutoff functions as follows. Fix some n € (0,1). For j =1, ..., nf+ n. and
k=1, 2, we define X;{ € C*°(X) so that X/f = 1 outside the j-th end (¥; or C;), and inside the j-th end
we have

j_{o for r > b; + (k+ 1), 42

X =1 forr <b;+kn.

Note that ij =1 on the support of le , as illustrated in Figure 4.
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Figure 4. The cutoff functions x,f in the j-th end.

Proposition 4.2. With cutoffs defined as in (4-2), we have
Sx(9)So(9) ™ =1+ Q(s),
where the components of Q(s), in terms of the block decomposition introduced in (3-1), are

0T(s) = 25 = DEY, () [Ay,, x5IRp(5)[Ay,, x{1ES, (1 =),
0S1(s) = 25 — DEY, () [Ac,. x3IRp () Ay, x] 1ED, (1 - 5),
0%(s) = —(25 — DEY () [Ar,. x3IRp($)Acy. x/1E (),
05i(s) = —(25 — DEL () [Ac,. x3IRp(S)Acy. 2] 1E (5,

Proof. One can characterize the scattering matrix Sy (s) through the boundary behavior of solutions of
(Ag —s(1 —s))u =0. For € C*(d0X) and Res > %, with s %= N/2, there is a unique generalized
eigenfunction u € C*°(X) with the asymptotic behavior

w~pi = p Y+ piol Sx ()Y (4-3)

For hyperbolic surfaces with cusps, a proof is given in Borthwick [2007, Proposition 7.13]. The essential
analysis takes place in the ends, so including smooth metric or potential perturbations within K requires
only trivial modifications to the proof. Likewise, hyperbolic planar ends may be included without much
change to the argument.

Suppose f; € C*°(dxY;). Then we can use the model Poisson kernel E 9,/, (s) to create a partial solution
1- le )E?,j (s) f;j supported in Y;. As p — 0 in Y, this function has the ésymptotic behavior

N S B

(01~ £+ PF Sy, () 1) (4-4)
To create a full solution, we will take the ansatz

u= (1= xDEy () f;+u'
and then solve (A, —s(1 —s))u = 0 for u’ by applying the resolvent. The result is

u' = Rp()[Ay,, X{1EY () f;.
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In the end Y;, we can use the fact that (1 — Xé)[ij, le] =0 to deduce

(Ay, —s(1=5)(1 = x3)u' = —[Ay,, X351,

and hence that
(1= xu' = =Ry ()[ Ay, x51Rp()[Ay;, x]1EY, (5) ;-

This gives the asymptotic behavior in Y;:
'~ —pi EY () [Av,, x51Rp($)[ Ay, x{ 1EY. (5) £;. (4-5)
By comparing the asymptotics (4-4) and (4-5) to the general form (4-3), we see that
SH(s) = 8,89, () — (25 = DEY, (5)'[Ay,, X51Rp(5)[Ay,, X{1EY ()
We then obtain Qg (s) by noting that
Ey (s)Sy, ()" =—Ey (1 -s).

To find ijf(s) we use the same setup starting from f; € C*°(9.Y;), but then analyze u’ by restricting

to the cusp end C;. This yields
(1= xhu' = —RE ([Ac, AIRp () Ay, x{1EY (5) f;.
The asymptotic behavior in C; is given by
(1= xhu' ~ =p* " EL () [Ac,, x5IRp () Ay, X{1EY () £,

so that
Sicjf(s) =—2s — l)Egi (s)'[Ac;, Xé]RP(S)[AYj, xf]E%-(S)-

Next take a; € C*(0,C;) = C. Since Egj (s;r) = p;*/(2s — 1), our ansatz for a generalized
eigenfunction satisfying (4-3) starts from

-5 .

(=B )a; ~ s a;.
The corresponding generalized eigenfunction is
u=(1- X{)Egj (s)aj+u', where u'=Rp(s)[Ac,, X{]Egj(s)aj.
arguing as above, we find that
W ~ —p{ EY () [Ay,, X51Rp()[Ac,., X{ 1EC, (5)a;
in the funnel Y;, and
'~ —pl T EQ () [Ac,, X51Rp()[Ac;, x{1EQ (s)a;

in the cusp C;. We can then read off the matrix elements, Sfj‘?(s) and Sl.cjC (s), as above. O
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In conjunction with the cutoffs defined in (4-2), we introduce projections ]l,{ on L*(X, dg), where

f forrelbj+kn,bj+(k+1)n]inend j,
0 otherwise.

1/ f= { (4-6)
As with the cutoffs, these projections depend on b; and also on the choice of n > 0. We then introduce

operators on L*(X, dg) given by

G(s) := (25 — l)IL{E%(l —$)Ey, ()1 forj=1,... ny (4-7)
Gj(s):=—Q2s = DI{EQ (EQ ()1 for j=ng+1,...,nr+ne. (4-8)

Proposition 4.3. The relative scattering phase is bounded by

ngtne

log|z(s)| < Z logdet(/ +C(n, €)|G ;(s)])
j=1

forRes > % with dist(s(1 —5), 0 (P)) > e.

Proof. In the formula for the relative scattering matrix given in Proposition 4.2, we can write Q(s) as
the composition of three operators,

0(s): L2(0:0X) -2 L2(X, dg) & 12(X, dg) 2> L2(0.:X),

where
ng ) netne ] ng+ne )
j=1 j=ns+1 i,j=1

w1/ 50 1) 0
Q3|L2(aooyj) =1 Ey,(1-s), Q3’L2(awc‘,-) = IL{EC, (5).
By the cyclicity of the trace,
T(s) =det(/ + Q(s)) =det(/ + Q20 Q30 Q1).

Under the assumptions Res > % with dist(s(1 — s), o (P)) > e, we can apply the spectral theorem and
standard elliptic estimates to prove that || Q> || < C(n, €). By the Weyl estimate this then gives

o
lT(s)] =< 1_[(1 +C(, e)nj(Q30 Q1)) =det(1+C(n, e)|Q30 O1)
j=1
The result follows immediately from
Q3OQ1 :Glea"'@GnH-nc,
where the G (s) are given by (4-7) and (4-8). Il

The right side of the estimate from Proposition 4.3 is always positive. It is therefore impossible to
obtain a sharp estimate by this approach in cases where the leading asymptotic behavior of log|t (s)] is
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negative. The extended funnel, whose resonance asymptotics are studied in Section 8, gives an example
of this situation.

Proof of Theorem 4.1. Let Ry be the background resonance set as defined in (3-3). To avoid poles, we
will restrict our attention to radii in the set

A={a>1:dist({ls — L =a}, R UTp) = a7},

Since Ny(t) and Np(t) are O(t?), the density of A in [1, r) approaches 1 as r — oo.
If we assume that 0 <6 < /2 —ea~2, then s = % +ae'® will satisfy the hypothesis that

dist(s(1 —s), o (P)) > ¢

for Proposition 4.3. We also assume a € A throughout this argument. If Y; is a funnel end, then
Proposition 6.3 gives

logdet(I +C(n, &)|G; (5 +ae'®)]) <k;(0,b; +4na*+C(n, e, bj)aloga, (4-9)

where

Iy ie’g,,
k0, 7) ;:2/ e 620 1, sin?,
0 X

If Y; is hyperbolic planar, the corresponding estimate follows from [Borthwick 2010, Proposition 5.4],
with

00 H iG’
0,y =2 [ HEELDL
0 x3

(A slight modification of the original proof is required, replacing the assumption a € N with an estimate
based on dist( —ae’®, —N).)
For a cusp end C}, it is easy to estimate directly since
Sr
EQ (s) = =5—
¢ =1
which gives

Gj(s;r,0,r',0) = ——2s1_ L1 (e 1L;,5().

1

This operator has rank one, so that
det( +c|Gj(s))) =1+ cui1(Gj(s)),

where the sole singular value is given by

bj+2n 172 , bi+3n 172
M](Gj(s)) _ 1 (/ leRese—r dr) </ leRese—r d}") .
125 —1] bj+n bj+2n

Hence we have
det(I +¢|G; (X +ae®)) <1+ ieza(bj%n)'
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For a sufficiently large,
logdet(I + C(n, €)|G (3 +ae'”)|) <C(n,e,bj)a forall |8] < /2. (4-10)

From (4-9) and (4-10) we conclude that

loglt (L 4+ae?)] X )
g2—2 SZ"j(é’»bj‘i‘477)-|-C(77, e,bj)a""'loga 4-11)

a
j=1

forae Aand0<6 < J'r/2—£a_2. Since the « (0, r) are uniformly continuous on [0, /2] x [b;, b;+1],
we can take n — 0 in (4-11), to obtain
log|t (3 +ae?)] &
BN T T 23 k0. b)) +olad), (4-12)
j=1

a

uniformly for 0 <6 <m /2 — ca2.

By integrating the estimate (4-12) over 6, we obtain

) w/2—¢ea”
o)

It remains to fill in the small gap where |0 is close to /2. The factorization given by Proposition 3.1,

2 ne
loglz (3 +ae'”)|d0 <" B(Y;)a* +o(a?).
j=1

together with the minimum modulus theorem [Boas 1954, Theorem 3.7.4], implies that for any n > 0,
l7(§ +ae')| < C,exp(a®t), (4-13)

provided a € A. (This was the reason that R p was included in the definition of A.) Thus,

o) /2 )
—/ log|t (3 +ae'?)|do = O(a"e),
T Jrj2—ea2

and so this term can be absorbed into the o(a?) error. O

To conclude this section, we’ll derive some uniform upper and lower bounds on the growth of t(s)
for s € C, refining the estimates that one could obtain directly from Proposition 3.1. These will prove
useful in Section 7 and Section 8, in particular.

Lemma 4.4. Let 9 denote the joint set of zeros and poles of ‘L'(% +z) and ‘L’(% —1iz). Assuming |z| > 1
and dist(z, 9) > |z|~# with B > 2, we have

—c(B)lz|* <loglt(3 +2)| < C(B)IzI*.

Proof. Since r(% —z7)= l/r(% +z) and r(% +2z)= r(% + z), it suffices to prove the bounds for z in the
first quadrant.

For Rez > § with § > 0, the upper bound is given in (4-11). As long as § < 1, the function t(s) is
analytic in the strip Re z € [0, §]. And since loglr(% + z)| = 1 for Re z = 0, the bound log|r(% +2)| =
0 (|z]?) extends to the strip Re z € [0, §] by (4-13) and the Phragmén—Lindel6f theorem.
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To prove the lower bound, consider the Hadamard products appearing in the factorization of 7 (s) given
in Proposition 3.1. These products are of order 2 but not finite type, so applying the minimum modulus
theorem directly would give — loglt(% +2)| = 0(|z]**"), away from the zeros. However, Lindel6f’s
theorem (see e.g., [Boas 1954, Theorem 2.10.1]) shows that products of the form H*(% + z)H*(% +iz)
are of finite type. In other words,

log| Hy (3 + ) Ho (3 £iz)| < Clz)?,

as |z| — oo. Using these estimates, and their implications via the minimum modulus theorem, we can
prove a lower bound

loglt(3 +2)| = —c(B)|z]* —log|t(} £iz)], (4-14)

provided %—l—z and %j:i 7 stay at least a distance |z|~# away from the sets 1 — % Fi,, a0 R, with > 2.

Assuming arg z € [0, /2], we already know log|r(% —iz)] < C(B)|z|?* from above, provided % —iz
stays at least a distance |z|~# away from the sets % Fe,, and 1—%p,. The lower bound in the first quadrant
then follows from (4-14). O

5. Funnel eigenmodes

Let F, be a hyperbolic funnel of diameter £. In geodesic coordinates (r,0) € R, x S!, defined with
respect to the closed geodesic neck, the metric is

2
g0=dr2+cosh2r%, where w := 2—” (5-1)
w £
The Laplacian is given by
2
Ap, = —9> —tanhr §, — —2—32. (5-2)
cosh”r

In this section we will consider asymptotic properties of the Fourier modes of generalized eigenfunctions
of A Fy-

The restriction of eigenvalue equation (Ar, —s(1 —s))u = 0 to the k-th Fourier mode, u = w(r)ek?,
yields the equation
2 k2w?
—0 w — tanhr 8rw—|—( 5 —s(l—s))w:O. (5-3)
cosh” r

This is essentially a hypergeometric equation. With respect to the symmetry » — —r, we have an even
solution,
wi (s;7) := (coshr) *F(X(s +iwk), (1 — s +iwk); 3; —sinh?r), (5-4)

and an odd solution,
wy (53 7) :=sinhr(coshr)*F(3(1+ 5 +iwk), $(2 — s +iwk); 3; —sinh’r). (5-5)

(We follow Olver’s convention in using F(a, b; ¢; z) := F(a, b; c; 2)/ '(c), where F(a, b; c; z) is the
standard Gauss hypergeometric function.)
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By symmetry, we can and will assume that k > 0. If we substitute w = (cosh7)~'/2U and introduce
the parameter o defined by s = % + ka, the coefficient equation (5-3) becomes

U = (K f +9)U, (5-6)
where ., )
w”+o~coshr 1
= ——+————— and = —
f cosh? r & 4 cosh? r

This equation has turning points when o = tiw/ cosh r. We will restrict our attention to arg« € [0, %n],
so that we only consider the upper turning point. The Liouville transformation involves a new variable

Jede = /fdr, (5-7)

on a contour that starts from the upper turning point. Integrating (5-7) yields

2/3)5° = ¢, (5-8)
where ¢ (a, r), the integral of \/f dr from the turning point, is given explicitly by

¢ defined by integrating

bler) i o log (a sinhr + v ? + o2 cosh2r>

Vo? 4+ a?

iw V? +a?cosh’r —iwsinhr
+ 5 log +do(a) (5-9)
V? +a?cosh’r +iwsinhr
for o # iw, where
Po(@) = ¢(@; 0) = =37 (i + ). (5-10)

By continuity, the definition of ¢ extends to & = iw, with
¢(iw,r)=iwlogcoshr.

To complete the Liouville transformation, we set W = (f/¢)!/#U, so that (5-6) becomes an approxi-
mate Airy equation,

;W = (K¢ +y)W. (5-11)
with the extra term given by
¢ 5¢ 2 §8 5
=—_9%f— (b, =4 — 5-12
V=gt = gm0 e (5-12)
The solutions of (5-11) are of the form
Wy = Ai(k* ¥R ) + hy (k, a, 1), (5-13)

where 0 = 0 or £1, and the error term satisfies the differential equation

Gho —k*Che = (ho + AiK*Pe* P 1))y, (5-14)
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Using methods from Olver [1974] we can control this error term.
Lemma 5.1. The error equation (5-14) admits solutions that satisfy lim,_, o h,(r) = 0 and
Iho| < Ck~" a3 (1 + k| /) eI Tk Re,
with C independent of r, k and «.

We will defer the rather technical proof of Lemma 5.1 to the end of this section, in order to concentrate
on the implications of (5-13). The asymptotics of the Airy function are well known; see for example
[Olver 1974, Section 11.8]. Uniformly for |arg z| < m — &, we have

Ai(z) =

| _
212 1/4‘3’<F’(—%Z3/2)(1+0(|Z| 312y). (5-15)

And uniformly for |arg z| > %n + e,

AiD) = —15 (=2 eosG (=0 = k) (1 + 0(1z1 7)), (5-16)

These asymptotics make it convenient to introduce a pair of solutions of the eigenvalue equation (5-3)
defined by
Wy = 277126 70/0k /0 14 (02  a® cosh? r) "1/ 4w, (5-17)

where W, is the ansatz (5-13) forc =0 or 1.

Proposition 5.2. Consider the solutions of the equation
(AF, — % — lcz()zz)ezikew(7 (r)y=0
given by (5-17) with o = 0 or 1. Assuming k > 1 and arg « € [0, %n — &), we have asymptotics
we = (@ +a*cosh? ) exp((—=1)7Tke) (1 + O (Jka| ™)), (5-18)

with constants that depend only on €. In addition, for arga € [0, w /2] and |ko| sufficiently large, we
have the upper bounds
wo| < CkYexp((=1)"*"kRe ¢), (5-19)

and the lower bound
lwol > ce *Re?. (5-20)

Proof. The assumption that arga € [0, 7 /2 — ¢] implies that arg¢ € [—27/3, /3 — €], so that (5-15)
applies to both wg and w; in this case. It also implies that |¢| > c(e)(Ja| + 1), so that the error
term O (Jw|~>/?) from (5-15) becomes O (|ker|™") when applied to |w| = k*/3|¢|. In combination with
Lemma 5.1, this proves (5-18), and also (5-19) and (5-20) in the case where arg « is bounded away from
/2.

Ifarga € [n/2 — ¢, w /2], then (5-15) and (5-16), together with Lemma 5.1, give the estimates

k!0 AW, | < Cexp((—1)° 'k Re ), (5-21)
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and
kO A Wo| > ceFRe? (5-22)

If |w? + o? cosh® r| > 1, which bounds ¢ away from 0, then this gives (5-19) immediately. This leaves
the case |w? + a? cosh? r| < 1, which puts ¢ close to zero. In this case, ¢ < (w? + «? cosh? r), so that
wy =< kYOW,.. Then if |k¢| > 1 we can derive the estimates from (5-21) and (5-22), while for |k¢| < 1
we simply note that W, is bounded and nonzero near the origin. U

Another detail we will need later is the asymptotic behavior of w, as r — oo.
Lemma 5.3. For Rea >0, as r — 00,

~ o~ V2o kG0 ty @) 1/ 2 ke

wo Y
and

w ~ o~ V2B @+y @) ()1/2—ka | o1/2+ke

where p :=2e™", and
2a iw o—iw
=alog ———+ =1 .

Proof. The results follow immediately from (5-15) and (5-16), in combination with the asymptotic

(5-23)

o +i_w o a—iw
4/w2+a2 2 ga+10)

asr — 00. O

¢ (a;r) =ar + ¢o(a) +a log +0@¢™h, (5-24)

We conclude the section with the proof of the error estimate that is the basis of Proposition 5.2 and
Lemma 5.3.

Proof of Lemma 5.1. The cases of different o are all very similar, so we consider only o = 0. In this
case combining the boundary condition with variation of parameters allows us to transform (5-14) into
an integral equation:

f(r/)l/Z .
e

—in/6 00
271152—/3/ Ko(r, 'y (") (ho(k, o, 1) + AL(K* ¢ (1))

holk, o, r) =

where
Ko(r, ') := Ai(k*Pc ()AL Pe 2 B e (r)) — Ai(k*Pe 2B () AL ¢ (r)).

Then, using the method of successive approximations as in [Olver 1974, Theorem 6.10.2], together with
the bounds on the Airy function and its derivatives developed in [Olver 1974, Section 11.8], we obtain
the bound

ol < Ce™ R (14161114 (Y0 — 1), (5-25)

where

U(r) = /oo|z/ff‘/2;—‘/2|dr/. (5-26)
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From (5-12), we compute

5 (w? +a?cosh?r)!/2
1/2 2 -
>§ coshr + T T cosh 7 . (5-27)

Y22 = (a4 cosh’ r + 4a’w” sinh® r — w*
4(w? + a2 cosh? r)5/2

The estimate must be broken into various regions. Fix some ¢ > 0.
Case 1. Assume |o| > 1 and |@® + o? cosh? (r)| = c¢. Under these conditions, we can estimate
|p] < |e|(r + 1).
Then from (5-27), we find
W22 < Crlal 7 Pe ™ r+ DY 4 Cola PR+ )T

We easily conclude that for || > 1,
/ W fPe Pldr = 0l 7?). (5-28)
|w?24-a2 cosh?(r)|>¢

Case 2. Assume || <1 and |w?+a? cosh?(r)| > c. The behavior of ¢ is now slightly more complicated,
depending on the size of r relative to |«|,

b] = la| +e™" for || sinhr <1,
- la|(r +log|ee|) for |a|sinhr > 1.

In this case, we estimate (5-27) by

Ci(ja|+e )3 4+ Cre™ (la| + e )3 for |o|sinhr < 1,

212 <
— i + |ale) a2 +logla)Be" + Cala| /2r33e for || sinhr > 1.

It is then straightforward to bound, for |¢| <1,

/ [ f2e 2 dr = O(la| 7). (5-29)

|w?+a? cosh?(r)|>c

Case 3. Assume |@? + o2 cosh? (r)] < c. In this case we are near the turning point, where ¢ and ¢ are
small. Since |w? + a2 cosh?(r)| < ¢ implies |«|?> < w? + ¢, we are only concerned with small |«| here.
We proceed as in [Borthwick 2010, Appendix]. In the coordinate z = sinh r, the turning point occurs at

Set

1/2
f ) _ oItz (5-30)

2 +1
Because |w? + o2 coshz(r)| = |a?(z* — zg)l, the assumption |w? + o2 coshz(r)| < ¢ implies

z=z0= a7l (5-31)
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with constants that depend only on c. This makes it easy to estimate
|9 p(@)] < a2, (5-32)

with constants that depend only on ¢ and k. If we define

¢

)= =5,
1 (z—2z0)?
then by writing

s = [ PRt

dt,
0 V(A =1zo+12)2+1

we can deduce from (5-32) that
85q ()| = |a>E, (5-33)

To apply these estimates, we note that f/{ = pz(%q)*z/ 3. We can use this identification to apply the
bounds (5-32) and (5-33) to the formula (5-31) for ¢, obtaining

W27 < o) 723 for | + ® cosh?(r)| < c.
The bound
/ [y f2e 712 dr = 0(ja|72P), (5-34)
|w?+a? cosh?(r)|<c

follows immediately, since the range of integration for r is O(1).
Combining the bounds (5-28), (5-29), and (5-34) gives

®(0) = O(ja|~*3),

and the claimed estimate follows from (5-25). O

6. Funnel determinant estimates
For the model funnel Fy, fix ry > 0 and for some n > O set
ry =ro+kn.

Let 1; denote the multiplication operator for the characteristic function of the interval r € [ry, r¢+1]
in L>(F;). The operator G ;(s) defined in (4-7) can be represented in the model funnel case by

G(s):=(2s — D1, Ep,(1—$)ER,(s)' 1, (6-1)

Our goal in this section is to prove the sharp bound on logdet(1 + ¢|G(s)|) used in the proof of
Theorem 4.1.

To proceed we must analyze the Fourier decomposition of Ef, (s). Because of the circular symmetry,
the Poisson kernel on F, admits a diagonal expansion into Fourier modes:

Er(5ir,0,6) =1 3 ax(s; e (62)
kez
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The coefficients ay (s; r) satisfy (5-3) with the boundary condition ai (s; 0) = 0, so we must have
ai(s;r) = ck(s)wy (s; 1), (6-3)
where w, is the odd solution (5-5). To compute the normalization constant ¢, (s), we use the fact that
(2s — Dag(s;r) ~ p' = + [Sp ()’ as p — 0, (6-4)

where [Sf,(s)]x is the k-th matrix element of the scattering matrix S¢(s). Applying the appropriate
Kummer identity [Olver 1974, Equation (5.10.16)] to the hypergeometric function in (5-5) gives

ar(s; 1) ~ () (TG = )2 —9)p" +T(s = HB(L+9)p' ™),

where
1
Bi(s) == ; , . (6-5)
T (3(s+ikao))I (2 (s —iko)))
By comparing this asymptotic to (6-4), we can read off the coefficient
) 2s — 1
Cr(Ss) = ,
(s — DBl +5)
as well as the scattering matrix element
Lz =5)B2~5)
[SF, ()]k = —>— : (6-6)
(s —3)B(1+5)
For future reference we note also that
a1 —s:ry = — 860 (6-7)
[SF, ($)]k
and
ag(s;r) =a—(s;r) (6-8)

We can express the singular values of G(s) in terms of the coefficients a(s; r). Up to reordering,
these singular values are given by

Ar(s) = |25 = 1|<fr2|ak(1 —s; r)|2coshrdr>l/2</

r rn

3

: 12
|ak(s;r)|2coshrdr) forkeZ. (6-9)

To prove this, we note that A;(s)? is the eigenvalue of G*G(s) corresponding to the eigenfunction

Xtra,rs1(Pag (s r)e =
eigenvalues.

. Also, it is easy to see from (6-1) and (6-2) that these are the only nonzero

Using (6-7) to replace ax (1 — s) by ax(s), and assuming 1 < 1, we can estimate
MG+ ka) < [2kaar( + ke 73)*[SF, (3 — ko) coshrs]. (6-10)

We will first estimate the various components. Recall that the matrix elements of Sf, (s) were expressed
in terms of the function B; defined in (6-5).
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Lemma 6.1. Fork > 0 and argx € [0, %T(], if we assume dist(ka, Ng) > & then we have
log|[Sr, (3 —ka)lk| = 2k Re y +2k[Re ¢l — C (),
where y (o) was defined in (5-23). If instead we assume that dist(% —ka, RfF,) < |kae| =B, then
log|[Sr, (5 — ka)lk| < 2k Rey +2k[Re ¢l + C(B) log|kar|.

Proof. Consider the matrix element (6-6). For Rea > 0, we can apply Stirling’s formula directly to
obtain

log I'(ka) B (3 + kat) = ky () — S log mk*av/w? + 02 + O (Jka| 1),

To estimate the other term, we must avoid zeros and poles. For Rez < 0, applying Stirling via the
reflection formula gives

log|I'(z)| < Re((z — 3) log(—z) — z) — w|Imz| + log(1 + dist(z, —Ng) ") + O(1),

and
log|T'(z)| > Re((z — %) log(—z) —z) —w|Imz| 4+ O(1).

If we assume that dist(ka, Ng) > §, then we obtain the upper bound
log|T (—ka) B 3 — ka)| < —kRe y (@) — 2k[Re ¢o] - — L logkKa/? +a? + C(5).
For a lower bound, we need to assume that dist(kot, Rf,) > |kee|~#, and then we find that
log|T'(—ka) i (3 — ka)| = —k Re y (@) — 2k[Re go]— — L log k2av/w? + a2 — C(B) loglka|. O
Lemma 6.2. Assuming that Rea >0, k > 0, and dist(% — ko, RE,) < lkae| ™, we have
log kk(% + ka) <2kRe ¢ (a; r3) —2k[Re ¢po() ]+ + O (log |ka|).

Proof. By conjugation we can assume arg« € [0, %n]. Then ak(% + ko; r) can be expressed in terms of
the solutions w, from Proposition 5.2. To satisfy the Dirichlet boundary condition, it must be a constant
multiple of wo(0)w(r) — w1 (0)we(r). Lemma 5.3 gives the asymptotic behavior of this expression as
r — 00, allowing us to deduce the constant. After comparing to (6-4), we find that

1 12 -
ar(; +kair) = g 127 KO@F7 ) (15 (0ywy (r) — w1 () wo (1)) (6-11)
The estimate
lae(h + kat; )| < CkM6FRe@ @ —do@—y (@), (6-12)

for |ko| sufficiently large, then follows immediately from (5-19) and (5-20). The result now follows from
applying Lemma 6.1 and (6-12) in (6-10). g
Proposition 6.3. Assuming that n <1,0 <6 <7 /2, and dist(3 —ae'®, Rp,) > a=* for some fixed p > 1,
we have

logdet(I +c|G(} +ae'®)|) < k8, ra)a*+ Cc, ro, Blaloga,
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iwF -~~~ ———=————————— -

iw
cosh? r

Re¢p > 0> Re ¢y

L o= Q(@)eie

Figure 5. Positive and negative regions for Re ¢ («; r) and Re ¢pp(«), shown for r = 1.

where

Iy iQ’E’
K(@,r):Zf e 60k o 1ysinte, (6-13)
0

PE
with I (xe'?, £, r) :=2Re ¢ (xe'?; r), which agrees with the definition (1-11).
Proof. We start from the expression for the determinant in terms of the singular values,
det(! +¢|G (5 +ae’®)|) = [ [(1 + cre(3 +ae'®)).
kez

By the conjugation symmetry, we can assume 6 € [0, %n]. Let 0(#) be the implicit solution of the
equation Re ¢ (o (0)e'?, r3) =0, as illustrated in Figure 5.
Note that Re ¢p(xe’’) =01in a neighborhood of x = ¢(0). For some § > 0, we subdivide the sum in

o0
logdet(I +c|G (% +ae')]) =2 Zlog(l + chi (3 +aie'®)) + O(aloga)
k=1

at values where a; /k = 0(0) and (1 — 8)p(8). The dominant part of the sum is
Y= Z log(1 +c)»k(% +aei9)).
I1<k=<a/o(0)

Assuming that a € {a;}, Lemma 6.2 gives the bound

i< ) 2k(Reg(ae”/kirs) —[Rego(ae’ /k)1s) +Clc.ro. faloga.
l<k=a/o(©)

Because the summand is a decreasing function of k, we may estimate the sum by the integral

a/o(9) . .
¥, < / ’ 2k(Re¢(ae“9/k; r3) — [Re ¢0(ae’9/k)]+) + C(c, ro, B)aloga
0
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Substituting x = a/k gives

a/o(0) . © R i6.
f 2kRe ¢ (ae' /k; V3)dk=2a2/ de.
0 o) X
We can also compute that
alo(9) ) o0 in@ — 2
f 2k[Re ¢o(ae' / k)14 dk = ra? / T2 dx =2 ino.
0 ] sin(8) X 2w

Comparing to (6-13), we conclude that
£1 <k(0.r3)a> +Ce, ro, Plaloga.
The middle term is given by

D= ) log(l+ek(s+ae)),
a/o(®)<k=a/(1-8)o(6)

Since I (o, £, r3) = O(d) for k in this range, the same integral estimate used for X gives

20| < C(c, ro, B)8a* +C(c, ro, B)aloga.

Finally, we set

Y_ = Z log(1+ ckk(% + aei‘g)).
k>a/(1-8)0(6)

For k in this range, I («, £, r3) < —C4 and we can estimate
|Z_] < Cl(c,rg, B,8)e * for some ¢ > 0.
Adding together the estimates for X, ¥y, and X_ gives
logdet(I + C|G (4 +ae)|) <« (0, r3)a* + C(c, ro, B)(8a* +aloga) + C(c, ro, B, 8)e

We can absorb the 8a” term into the first term by replacing r3 by r4, assuming that n = O(8), since
k (0, -) is strictly increasing. This yields the claimed estimate. 0

7. Resonance asymptotics for truncated funnels

Inside the model funnel F;, with metric given by (5-1), we let Fy ,, denote the truncated region {r >
ro}, with the Laplacian defined by imposing Dirichlet boundary conditions at r = ry. To compute the
associated scattering matrix elements exactly, we consider the solutions of the Fourier mode equation
(5-3) given by (5-4) and (5-5). To impose the boundary condition at » = ry, we set

ug(s; r) == wi (s3 ro)wy (53 1) — wy (s3 ro)wy (s 7). (7-1)
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The scattering matrix element may be obtained from the asymptotics of uy(s; r) as r — oo be noting
that for any generalized eigenmode we have

u(s; r) ~ s (p' 4+ Sk, ()p®) (7-2)
as r — 0o, where p :=2e~" as before. The solutions w,fc have leading asymptotics,

wif (s37) ~T(s = HPi()p' ™ + T (5 —9)B(1 —5)p°,

- 1 1-s 1 s (7-3)
w (5;r)~Tls—=3)B(l+s)p 7 +T (3 —8)B(2—5)p’
as r — oo, where B (s) was defined in (6-5).
If we set
fils;r) =T (s — D (B +)wi (s:7) — Be(s)wy (557)), (7-4)
Then from (7-2) we can read off that
Ji(1 —s5710)
S = 7-5
(S, O = = (7-5)

The k-th Fourier mode thus contributes scattering poles at the values of s for which

Bi(1+s)w;" (53 70) — B (s)wy (s 79) = 0.

This function can be written in terms of a single normalized hypergeometric function, via the standard
identities, yielding

%Fwo = U{s : F(%(l +s5+iwk), %(s+iwk); %—i—s; — sinh ™2 ro) :()}.
keZ

A sample resonance counting function is shown in Figure 6.

Theorem 7.1. For the truncated funnel with Dirichlet boundary conditions,
N, (6) ~ A(Fep)t%,

where A(Fy,,) is given by (1-10).

In conjunction with [Borthwick 2010, Theorem 1.2] for the hyperbolic planar case, this will complete
the proof of Theorem 1.3. Before giving the proof, we need some estimates of scattering matrix elements.

Lemma 7.2. Assuming that arg o € [0, /2 — €] with dist(ka, Ng) > n, we can have

[Sk,,, (5 +ke)lk

— 1| > 2k(R : —[R -C
Sr( kol |- el =Redo@l) =

for |ka| sufficiently large.
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300+

200+

90 *

2 4 6 8 10
Figure 6. The resonance counting function for Fy ,,, shown for £ =27 and ro = 1.

Proof. To estimate [S Fery (s)]x, as given in (7-5), we must connect f; to the solutions w, introduced in
(5-17). Since fk(% ~+ ko 1) is recessive as r — 00, this solution must be proportional to wg. From (7-3),
we can use the reflection formula for the gamma function to see that

N

fk(%—i-ka;r)w—p as r — 00.
Tka

By comparing this to the asymptotic from Lemma 5.3, we find that

fi (3 +ka; 1) = Afwo(r). (7-6)
where
+._ L kgotn)
O mka

We may also express fk(% — ka; r) in terms of the wy,
fe(g —kair) = Agwo(r) + Ay wi(r), (7-7)

for some coefficients A; and A; that are independent of r but do depend on k and . By (7-3),

1—s

1 P
__k ; N — 5
fk(z a;r) Tka

and so by Lemma 5.3 we have
Al = g g2 gk G ty) (7-8)

The other coefficient can then be computed by comparing values at » = 0,

_ 1 i , _
0 = o0y U — ke 0) = A7 wi0). (7-9)
Using (7-6) to relate wo(0) to fi( % + ka; 0), we can then deduce that

wi(r) w1(0)>
wo(r)  wo(0) /)

Sk, (L +ke) ] = [Sp, (5 + k) — e—2k<¢°+y>( (7-10)
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Red((3 —5)/k;r0) =0

Figure 7. Using the equation Re ¢ = 0 to locate the resonances of Fy ,, occurring in the
k = 7 Fourier mode, shown for £ =2 and ryp = 1.

Hence

[SF,, (3 +ka) Ik - _ez,((%w)(w(r) ~wi(0
[SF, (5 + ka)]i wo(r)  wo(0)

For argx € [0, m/2 — €], we deduce from (5-18) (using also the fact that Re(¢ — ¢pg) > c(e, r)) that

(wl(r) ~ wi(0)
wo(r)  we(0)

The result then follows from (7-11) and the lower bound on [SF, (% — ka)]x provided by Lemma 6.1. [J

)[Sn(é kel (7-11)

) =™ (1+ O(lka| ™). (7-12)

The estimates in Lemma 7.2 give approximate locations for the resonances in Rp,, arising from
the k-th Fourier mode. The zeros of (7-10) correspond to resonances at s = % — ka. This requires a
cancellation between the two terms on the right side of (7-10). If Re ¢ > 0, then the second term is larger
by approximately e?*¢ and cancellation only occurs near the poles of [Sg, (s)]x; this explains the poles of
[S Ferg (s)]x on the negative real axis. For Re ¢ =0, the two terms in (7-10) have the same magnitude; the
resonances off the real axis in R Ferg thus occur near the line Re ¢>((% —s)/k; ro) =0 (and its conjugate).
Figure 7 illustrates this phenomenon. For Re ¢ < 0, the first term in (7-10) is always larger than the
second and no zeros occur.

Since [SF,, (% + ka) ] may indeed have zeros near the line Re ¢ = 0, proving a lower bound is more
delicate in this region. By focusing on a relatively narrow strip, we can settle for a cruder estimate on
the matrix elements in the vicinity of the zeros.

Lemma 7.3. Fork >0 and Res > % and assuming dist(1 —s, Rf,) > Is|~# with B > 2,

[SFe,, ()]
[SF, ($)]k

If dist(1 — s, %Fz,ro) > |s|7P with B > 2, then we have

[SF,,, (5)]k
log| ————
(7, (5)]k

log‘ < Clro, B)(k + Is]) logls|.

> —c(ro, B)(k +|s]) log]s|.
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Proof. From (7-4), we note that f(s; rg)/ ' (s — %) is an entire function of 5. By Stirling’s formula and
the estimate (5-19), we can estimate its growth for large |s| and k # O by

f k(83 r0)
(s —3)
where C is independent of k. The same estimate holds for k£ =0, by the classical asymptotics of the hyper-

< C(ro)(k +|s]) log|s),

geometric function due to Watson [Erdélyi et al. 1953, Section 2.3.2]. Assuming that dist(s, %Flm) >
|s|~#, where B > 2, the minimum modulus theorem gives

lo fk(S' > —c(rg, B)(k+|s]) log|s| for large |s|.
g r T, g s

)
The results follow from applying these estimates to
[SF,, )k fil—s:r0)  fils;0)
[SF®k — filsirg)  f(l—s5:0)
Proof of Theorem 7.1. We note that

Np, () ~ 10> and  0-vol(Fy ,,) = —{sinhry.

By Corollary 3.2 and Theorem 4.1, the claimed asymptotic will be proved if we can show that there
exists an unbounded set A C [1, o0) such that

/2 ] i f
—/ log|t(} +ae'®)|ad > 4a” / (xe, ; ro)l+ — Lea® —o(a?) (7-13)
X
for all a € A. We take
A:={a>1:dist({ls — i =a}, Rp, URF,, U No) > a7} (7-14)

Using the symmetry of coefficients under k — —k, and estimating the K = 0 term by Lemma 7.3, we
have ) "
oo
. [SF,, (3 +ae™)lk
log|r(%+ae’9)| :2210g K=012 :
Pyt [SF, (5 +ael®)];

+ O(aloga). (7-15)

Define ¢(8) by Re ¢ (0(8)e'?, ry) = 0, as in the proof of Proposition 6.3, and assume for now that
o< %n —¢&. For 8 > 0, we will split the sum (7-15) at a/k = 0(9)(1 £a~'/?). Let X, denote the portion
of the sum with a/k > 0(8)(1 + a~'/?). Under this condition, we want to derive a lower bound from
Lemma 7.2 using the inequality

log|1 4+ A| > log|A| —log2 for [A] > 2.

For a sufficiently large, we will have Re ¢ (xe'?, rg) > ca™'/? for x > 0(8)(1+a~'/?). Thus, for k > c\/a
we can deduce from Lemma 7.2 that
[Sk,,, (5 +ae'®)]
[Sk.(5 +ae®)]

> 2k(Re ¢ (ae' /k; r3) — [Re go(ae’” /k)14) + O(1).
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Arguing as in the proof of Proposition 6.3, we can then obtain
3 oo e (1 4+ ae®));
0 -
[SF, (5 +ae'®)];

o /Cﬁ Re ¢ (xe™, ro) — [Re go(xe’™)]
0(0)(1+a=112) X3

cy/a<k<a/(o(0)(14a~1/2))

>

dx — O(aloga).

For k < cy/a, Lemma 7.3 gives the estimate

> —0(a*?loga).

Z o ‘[SFKV,O(%—Fae"Q)]k
[SF, (X +aei®)]

1<k<c\/a
On the other hand, since |Re ¢ («, )| = O (J|) for large ||, we also have

0y /OO Re¢(xei9,ro)—[Re¢o(xeie)]+d
c

v 3 X = 0(a3/2).

We can also estimate

22 [T Reg e o) — Rego(xe”).
a x3
e(9)

X = O(a3/2)

since Re ¢ («, £, r9) is O (§) in the range of integration. In combination, these estimates give

© R i0 2
s, > 2a2/ e¢>(x§ 70 e~ T Gn2 0 — 0@ loga) fora e A. (7-16)
0(6) X 2w

Let = denote the portion of the sum in (7-15) for which 0(0)(1 —a~'?) < a/k < 0(0)(1 +a~'/?).
Since there are O (a!/?) values of k in this range, Lemma 7.3 gives the estimate

Yo > —0(a*?loga). (7-17)

Finally, we have X_, defined as the portion of (7-15) with a/k < o(6)(1 — a~17?). Now we wish to
apply Lemma 7.2 using

log|1+A| > —|A|log4 for [A] < 3.

Note that I(xem, 2, ry) < —ca= /2 for x < o) (1 — a_]/z) and a sufficiently large, and that k > ca in
the range of X_. Thus for large a Lemma 7.2 yields

1 i0
[SFK,,O (lj +a€ )k > —O(e_Ckail/z),
[SF, (5 + ae'?)];

within the scope of ¥_. We conclude that

2

Y >0 . (7-18)
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Applying the estimates (7-16), (7-17), and (7-18) to the sum (7-15) now proves the lower bound

w/2—¢ ) 4 2 n/2—e poo 2R iG’ 2 2 w/2—e
3/ 1og|f(§+ae’9)|dezi/ f [ e(/’(xi ro)l+ dx—i/ sin® 6 df—o(a?),
T Jo T Jo 0 X w Jo

For the missing sectors, we appeal to Lemma 4.4 to see that

2 /2 )
= log|t (% +ae'®)|do > —cea®.
T w/2—¢

We can thus take ¢ — 0 to complete the proof of (7-13). 0

Remark. In the proof of (1-13) given in [Borthwick 2010, Theorem 1.2], the X_ term was estimated
incorrectly. This term is not necessarily positive, so the upper bound O (e™““) does not imply a corre-
sponding lower bound. Instead, one needs to argue as in the derivation of (7-18) above. The estimates
needed for the correct argument were given in [Borthwick 2010, Equations (6.8)—(6.10)].

8. Resonance asymptotics for extended funnels

Using the same notation as in Section 7, we now consider Fy _,,, defined as the subset r > —r( in
a hyperbolic cylinder of diameter ¢, where ro > 0. The metric and Laplacian are still given by (5-1)
and (5-2), so that the scattering matrix elements are easily computed in terms of hypergeometric functions
as before.

With reference to the even/odd solutions w,fc defined in (5-4) and (5-5), a solution u(s; r) to the k-th
eigenmode equation (5-3) satisfying uy (s; —rg) = 0 can be written

u(s; r) = wi (s; ro)wy (s 1) + wy (53 ro)w™ (s5 1),

where w,f[ (s; r) are the even/odd hypergeometric solutions defined in (5-4) and (5-5). Using the asymp-
totic expansions (7-3) as r — oo, we can read off the scattering matrix elements

1 vt N (e
[Sr, ()] = INE f) Bk (2 —s)w) (i, ro) + B (1 S)I_Uk (s; ro)’ &-1)
L(s—3) B(L+s)wy (s;ro) + Br(s)wy (s5r0)

where B (s) was defined in (6-5).
This shows in particular that

Rr,_, = {5 : Bel+9)wy (53 70) + Be()wy (55 7o) =0}
keZ

Theorem 8.1. For the extended funnel with Dirichlet boundary conditions imposed at r = —rq, for ry >0,
we have
N, _,, (1) ~ A(Fp, )P,

where

/2 poo 1 i0 0. —
A(F[,_m):%sinhrﬁgfo /O LI (xe = olv a0, (8-2)

and I (a, £, r) was defined in (1-11).



548 DAVID BORTHWICK

Proof. Since Np,(t) ~ %Etz and 0-vol(Fy,—,) = £sinhry, Theorem 8.1 will follow from Corollary 3.2

and Theorem 3.3, once we establish

/2 ) 2 w/2 poo I i0 0. —
2 [ 1ogle( +ael®)) do = 2 [Tre™. & =)l ) o Loa? — oa?),  (8-3)
T Jo 2 T 0 0 X3 4

where A is defined again by (7-14).

As in the proof of Theorem 7.1, we start with the Fourier decomposition of the scattering matrices

and use Lemma 7.3 to estimate the k = 0 term, leaving

=[Sk, (5 +ae)k

log|t(} +ae')| =2 log‘ :
? ,; [Sk, (5 +aei®)];

+ O(aloga).

If we define
gi(s; ) =T (s = D (B(L+)wif (s37) + Br()wy (s57)),

then by (8-1),
(S, ., (5 +ae')k = gx(5 —ae’”)/g(5 +ae').

Assuming k > 0, we set ko = ae'?. Since gr(s; +) solves (5-3), for Rea > 0, we can write
gk(5 £ka; r) = Bywo(r) + By wi(r),

where w, are the solutions given in (5-17).
As r — o0, the coefficient of p'~* in the expansion of gk(% + ko 1) is

ZF(ka)zﬂk(%—l-kO{),Bk(%—i—ka): 1 (I_Coshnkw

ko

)[SFZ(% —ka)lk.

sin Tka
The coefficient of p!=* in gk(% —ka;r) is

1 h
T (ka)T(—kat) (B (3 + ka) B (3 — ka) + B (3 — ka) B 3 +ka)) = _ 1 coshmko

mka sinmka

Comparing these to the asymptotics for w,, as given in Lemma 5.3, we see that

B =

e k(¢oty) < coshmkw
sinTka

Sk, (L —ka)lk,
— )[ F, (5 — ko) Ik
and

e K@o+y) cosh mkw

wkyo sinmka
We then find the By coefficients by evaluating at r =0,

B;:—

1
By = m(gk(% =+ ka; 0) — Bf w1 (0)).

Since fi and gj agree at r =0, (7-6) shows that

+, 1 : +._ 1 &
wo(0) = AJ gk (3 +ka; 0), where A := ke’ @oty),

(8-4)

(8-5)

(8-6)

(8-7)

(8-8)

(8-9)
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_ i0
Re o > Re(d — o) @ =0

0 <Red¢o < Re(¢ — o)

1) 4 o =01(6)e’?

Figure 8. Positive and negative regions for Re(¢ («; ) — ¢o(e)), shown for r = 1.

Combining these formulas gives

gk(% +ko;r) = Agwo(r) + Bl+ <w1 (r)— Z;Eg; wo(r)>, (8-10)
and
1 . _ 1 + _ U)](O)
gk(5 —ka;r) =[Sk, (3 +ka)lk Ay wo(r) + By <w1(r) ~ 00 wo(r)>. (8-11)

The asymptotic analysis of (8-10) is straightforward. The BIJr wi(r) term always dominates for |ko|
large and arg ¢ € [0, /2 — €], by Proposition 5.2. By applying Stirling’s formula to (8-5) we find that
1
Tk
The analysis of (8-11) more complicated. This term has both zeros and poles, and different terms can

dominate for « in different regions. For a = xe'%, the borders between these regions will be denoted
x=0;(0) for j =1, 2, where

gk (3 +ka;r) = (@? 4 a? cosh? r) "4k @0 (1 4 O (k| 7). (8-12)

Re¢o(01(0)e) =0 and Re(p(02(0)e'; r) —2¢0(02(0)e'; 1)) = 0.

For the first curve we can be explicit, with ;1 (8) = wcsc 6.
Consider first the portion of the sum (8-4) with a/k > 02(0). In this region, Re ¢g > Re(¢ — ¢pp) and
the first term in (8-11) dominates the asymptotics. In this case, provided |ka| € A,

log|gk (3 —ka; )| = kRe(—¢ + ¢o — ) + O (loglka|).
For k <a/p,(0), we thus have

i

S 1 i0
[SF, (3 +ac) :_2kRe(¢(%;m>_¢0(%)>+oaoga).

[SF, (3 +ae’®)]

log
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This gives the estimate

2

1<k<a/02(0)

‘ [Sk,_,, (5 +ae)k
[SF, (5 +ae®)]k

3 dx + O(aloga). (8-13)
2(0)

_ 2 /Oo 2Re[¢o(xe'’) — p(xe; ro)]
Q

The region 01 (0) < a/k < 02(0) corresponds to 0 < Re ¢y < Re(¢ — ¢p). In this case, the B, w(r)
term dominates the asymptotics of (8-11), and we have

log|gk(3 — ka; )| = kRe(¢ — 3¢ — ¥) + O (loglka|).

Using this along with (8-12) gives

' [Sk,_,, (5 +ae®)] »
= —2kRegg(ae'’” /k)+ O(loga) fork <a/o,(0).

[SF, (4 +aei®)]

We conclude that

[Sk, ., (5 +ae)]k
> lo dx + O(aloga). (8-14)

[SFg(% +aei?);

2 /OO 2Re ¢o(xe'?)
o 3
a/o2(9)<k<a/01(6) 0200) X

The terms with Re ¢g < 0 make only lower order contributions. First of all, we can prove a general
estimate,

Sk, _,, (5)]k
l = O((k +1s]) log|s|).

TG

just as in Lemma 7.3, to show that

[Sk,_,, (5 +ae)]
2. ' R = 0@ loga. (8-15)
010)(1—a~"2) <a/ k=01 (0) LSk (3 +ae™)]k
For the remaining terms, we use (8-10) and (8-11) to write
[SF,_, (3 +ka)lk e~ K@) [SE, (5 — ka) i wi (0)
1 = I (wl(i’) — wo(r)>.
[SF, (5 +ka)li ko gi(z+kasr) wo(0)

This gives the estimate

—1

1
o ‘ e G ARk | o) Re go(@) + O oglkal).

[SF, (5 + ka) i

For a sufficiently large, this gives

[SE, _,, (5 +ae)l
E log I -
[SF, (5 +ae?)]x

a/k=e1(@)(1-a='/?)

— O(e™ V). (8-16)

The estimates (8-14)—(8-16) cover all terms in the sum (8-4), and together yield

® 9 Re(2 0y i0. 2
ego(xe™) — pxe; o)) dx—nacj sin® + O (aloga)

log|t (3 + ae')| :2a2/ 5
2(0) X
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foraec Aand0 <6 <m/2—c¢.
We now integrate over 9 € [0
of Theorem 7.1. This yields

1

, 57 —¢] and use Lemma 4.4 to control the limit & — 0, as in the proof

do — Lta* — o(a*).

4a> 72 /°° 2ReQpo(xe’’) = pxes )
X
T 0 0

2 /2 )

—/ log|t(3 +ae')|do = — -
T Jo 2(60) X
To complete the proof of (8-3), recall the definition of ¢ («; r) as the integral of /f dr in (5-7). Since
the function f occurring there is an even function of r, the function ¢ — ¢9 will be odd in r. (This is not

readily apparent from the definition (5-9).) This parity implies that

I(a, £, —ro) = 2Re(2¢o(ar) — ¢ (ax; 10)). O
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A VECTOR FIELD METHOD APPROACH TO IMPROVED DECAY FOR
SOLUTIONS TO THE WAVE EQUATION ON A SLOWLY ROTATING KERR
BLACK HOLE

JONATHAN LUK

We prove that sufficiently regular solutions to the wave equation [, ® = 0 on the exterior of a suffi-
ciently slowly rotating Kerr black hole obey the estimates |®| < C(t*)~¥?*" on a compact region of r.
This is proved with the help of a new vector field commutator that is analogous to the scaling vector field
on Minkowski and Schwarzschild spacetime. This result improves the known robust decay rates that are
proved using the vector field method in the region of finite » and along the event horizon.

1. Introduction 553
2. Geometry of Kerr spacetime 559
3. Notation 562
4. Vector field commutators 563
5. The basic identities for currents 566
6. Statement of the main theorem 568
7. Vector field multiplier N, and mild growth of nondegenerate energy 568
8. Integrated decay estimates and boundedness of nondegenerate energy 571
9. Vector field multiplier Z and decay of nondegenerate energy 586
10.  Estimates for solutions to (g, & =0 601
11. Estimates for ¥ ® and elliptic estimates 604
12. Estimates for Q@ 612
13. Estimates for S 614
14. TImproved decay for the linear homogeneous wave equation 621
15. Discussion 623
Acknowledgments 623
References 623

1. Introduction

A major open problem in general relativity is that of the nonlinear stability of Kerr spacetimes. These
spacetimes are stationary axisymmetric asymptotically flat black hole solutions to the vacuum Einstein
equations

R, =0
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in 3+ 1 dimensions. They are parametrized by (M, a) representing respectively the mass and the specific
angular momentum of a black hole; see Section 2. It is conjectured that Kerr spacetimes are asymptoti-
cally stable. In the framework of the initial value problem, the stability of Kerr would mean that for any
solution to the vacuum Einstein equations with initial data close to the initial data of a Kerr spacetime,
its maximal Cauchy development has an exterior region that approaches a nearby, but possibly different,
Kerr spacetime.

To study the stability of Kerr spacetimes, it is important to first understand the corresponding linear
problem. One way to approach this is to study the linear scalar wave equation Ug, ® = 0, where gg is
the metric on a fixed Kerr background and [, is the Laplace—Beltrami operator. This can be compared
with the proofs of the nonlinear stability of the Minkowski spacetime in which a robust understanding
of the quantitative decay properties of solutions to the linear wave equation plays a fundamental role
[Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005].

The Kerr family of spacetimes contains a one-parameter subfamily known as the Schwarzschild space-
times for which a = 0. It is natural when studying the wave equation on Kerr spacetimes to begin by
focusing on the wave equation on Schwarzschild spacetimes. Pointwise boundedness and decay of the
solutions to the wave equation on Schwarzschild spacetimes has been proved in [Wald 1979; Kay and
Wald 1987; Machedon and Stalker 2002; Blue and Sterbenz 2006; Dafermos and Rodnianski 2009;
Kronthaler 2007; Blue and Soffer 2006; Donninger et al. 2011; Tataru 2009]. In particular, Dafermos
and Rodnianski used the vector field method to show that on the exterior region of the Schwarzschild
spacetimes, including along the event horizon, solutions to the linear wave equation satisfy |®| < C(t*)~!,
where ¢* is a regular coordinate (up to the event horizon) that approaches infinity towards null infinity.
In an earlier work [Luk 2010], we improved this decay rate. More precisely, we showed that sufficiently
regular solutions to the wave equation [l;® = 0 on the Schwarzschild black hole obey the estimates
|D| < Cn(t*)_3/ 241 for any 7 > 0 on a compact region of r, including along the event horizon and inside
the black hole.

This paper generalizes the result above to Kerr spacetimes where a << M. For Kerr spacetimes sat-
isfying this condition, Dafermos and Rodnianski [2011], and subsequently Andersson and Blue [2009],
have proved a decay rate in the exterior region of the Kerr spacetime, including along the event horizon,
of |®| < C(t*)~ ", where t* is a regular coordinate to be defined later, and with t* we will define
a foliation of the exterior region of Kerr spacetime by the spacelike hypersurfaces X,«. Extending the
methods in [Luk 2010], we are able to improve this decay rate using the vector field method.

Theorem 1. Suppose Ug, ® =0. Then for all n > 0 and all M > 0 there exists ay such that the following
estimates hold on Kerr spacetimes with (M, a) for which a < ay.

(1) Improved decay of nondegenerate energy:

M

f (D/ @)% < CREp ()73
=0 SN{r<R}
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(2) Improved pointwise decay:
M
> IDI@| < CRE () forr < R.
j=0

Here, D denotes derivatives in a regular coordinate system (See Section 2). Ey and E),; depend only on
M and some weighted Sobolev norm of the initial data.

A more precise version of this theorem will be given in Section 6. Our proof relies on an analogue
of the scaling vector field on Minkowski spacetime. Recall that in Minkowski spacetime the vector field
S =19, + ro, is conformally Killing and satisfies [[1,,, S] = 20],,. Hence any estimates that hold for
@ a solution to [,,® = 0 would also hold for S®. However, S has a weight that is increasing with .
Hence one can hope to prove a better estimate for & using the estimates for S®. (See, for example,
[Klainerman and Sideris 1996]).

In [Luk 2010], we introduced an analogue of the scaling vector field on Schwarzschild spacetimes.
We defined, in the Regge—Wheeler tortoise coordinate (see Section 2), the vector field S =9, +r*09,+. In
[Luk 2010], we studied the commutator [[,,, ST and showed that all the error terms can be controlled.
Thus, up to a loss of ¢" (for n arbitrarily small), S® obeys all the estimates of ® that were proved in
[Dafermos and Rodnianski 2009]. In particular, we showed that S®, like & itself, obeys a local integrated
decay estimate

t r
// (D*®)? drdt < CEx(t)™2  fort <t < (1.1,
t Jr
t r21
/f (SD*®)? drdt < CEx(t)™>™ fort <t < (1.1)¢t.
t r

From this we proved an improved decay of the L? norm of D*®. We will explain the main idea in the
case k = 0. Firstly, the local integrated decay for ® would already imply on a sequence of #; slices, with
ti <tiz1 < (1.1)%t;, that ® obeys a better decay rate, namely ®(t;) < Cti_3/2

method to use the estimates for S®, which can be explained heuristically as follows. Given any time ¢,

. We then introduced a new

we find the largest #; < ¢ that has a better decay rate. Then we integrated from #; to ¢ using the vector
field S. At this point S has a weight that grows like . Hence we have, at least schematically,

) ry t r
/ ®(1)2dr < c(f & (6)2dr +1! f / S(®2) dr dt|).
r r i Jry

We then notice that the last term can be estimated by the local integrated decay estimates

t r t r t ry
/ / S(®2) dr dz) < c(/ / 2 dr dt +/ / (S®)2 dr dt) <12,
i Jry i Jry i Jr

Putting these together, we would get

r
/ &(1)>dr < Ct 31,

r1
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Using this method, we also showed the improved decay for the L? norm of higher derivatives. Pointwise
decay estimate thus followed from standard Sobolev embedding.

In this paper we would like to carry out a similar argument. We introduce a scaling vector field (which
we again call §) which is the same as in [Luk 2010] at the asymptotically flat end, but is smooth up to and
across the event horizon. We will prove a local integrated decay estimate for S® and use the argument
in [ibid.] as outlined above to prove an improved decay rate. The most difficult part of the argument is
to control the error terms coming from the commutation of [y, and (the modified) S, that is, the term
(=FS
by the energy estimates for the homogeneous equation [1,, ® = 0 proved in [Dafermos and Rodnianski
2011; 2008]. This term schematically looks like

S]®. To control this, we need to use estimates for derivatives of ®, which in turn are provided

[Ogg» S1® = O(1) O, @ + O(r ) (D*® + DO +r DY D), (1)

where ¥ is an angular derivative on the 2-sphere. The term O (1)[J,, ® vanishes since we are considering
gy @ = 0. The other terms have the two desirable features. First, although S has a weight in ¢*, the
commutator is independent of ¢*, which is a result of 9;« being a Killing vector field. Second, these terms
decay as r — 00, which is a result of the asymptotic flatness of Kerr spacetimes. The last term would
appear to have less decay in r, which is also the case in Schwarzschild spacetimes. In that case, we
controlled this term in [Luk 2010] by commuting the equation with €2, the generators of the spherical
symmetry of Schwarzschild spacetimes. The quantity 2® would then give us control over an extra power
of r. One difficulty that arises in the case of Kerr spacetimes is that they are not spherically symmetric.
Nevertheless, following [Dafermos and Rodnianski 2008], we can construct an analog of €2, call it ?2,
that is an asymptotic symmetry, that is, the commutator [, , Q] would decay in r. The nondegenerate
energy of €@ would then control the last term in the above expression. Moreover, it is sufficient to define
Q only when r is very large since otherwise the factor in r can be absorbed by constants. However, in a
finite region of r, the commutator [, , ST would in general be large.

To understand which quantities of S® have to be controlled, we rederive the energy estimates in
[Dafermos and Rodnianski 2008] in the slightly more general case of the inhomogeneous equation
Ug, ® = G. This would also immediately imply that for the linear inhomogeneous equation g, ® = G
with sufficiently regular and sufficiently decaying (both in space and time) G, the solution ®, assuming
that the initial data is sufficiently regular, would decay with a rate of (+*)~!*", precisely as that in [ibid.].
We will then apply this to the equations for Q® and S®. To derive these energy estimates, we will
use the (non-Killing) vector field multipliers N and Z. Here N is a modification of 9« so that it is
timelike everywhere, including near the event horizon. The use of N tackles the issue of superradiance,
a difficulty that arises from the spacelike nature of d;+ near the event horizon. Z is an analogue of the
conformal vector field 1?3, 4 vd, in Minkowski spacetime and is used to prove decay.

Since we will use vector field multipliers that have weights in t* and r, to prove the energy estimates
at t* = t for the inhomogeneous equation we would have to control the term (as well as other similar or
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/[ (t*)2r1+5G2
R(70,7)

where the integration over space and the #* interval [tg, T]. To prove the energy estimates for SO, we
need to show that for G as in (1), this is bounded by C(7)". We split this into two parts: r < %t* and

more easily controlled terms)

r> %t*. Forr < %t*, we can replace plts by r=312 gince G decays in r. Then, we use the fact that
N
Z// rm P (Dr ) < T
i1 Y JRAD T N{r< %)

Hence if we sum up the whole integral by integrating in [7g, (1.1) 7], [(1.1) 70, (1.1)27p] ete., we will get

a bound of
llog7]+1

> AT~y T
i=0

For r > %t*, we do not have a decay estimate for the integrated in time estimate. However, we would
still have an almost boundedness estimate:

N

> f/ (D) < Co.
=1 Y RAD e 0N(r= 1)

Notice, moreover, that G? ~ r—3*3(D*®)? and this region we have r 37 < (+*)~2r~1+%, Hence we
again have
N

Z// G? < Cr2Hn,
1 Y YR D T N> 1%}

and the required estimate followed in the same manner as in the case r < %t*.

With the modified S, which is smooth up to the event horizon (contrary to [Luk 2010]), we can prove
the improved decay estimates for the L? norm of ® and D® once these error terms are controlled. Using
the commutation with the Killing vector d;+, we would also have control for L? norm of DBIIZQD. Away
from the event horizon, this is sufficient to control all other derivatives by elliptic estimates. However,
since near the event horizon, 9d;+ is not Killing, we would not have control over other derivatives. Here,
we follow [Dafermos and Rodnianski 2008; 2011] and commute the equation with a version of the
red-shift vector field, Y. Once we control D}A’katj*d> we can use the wave equation to control (any
derivatives of) A®, where A is the Laplace—Beltrami operator on the sphere, which is elliptic. We can
thus control derivatives of ® in any directions. We will show, moreover, that the commutator [[,, , Y ]
has the property that the inhomogeneous terms can be controlled once we have controlled the L? norm
of Dat’i ®. This implies that Y @ would decay in the same rate as d;+ ® for which we have already derived
an improved decay rate.
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We now turn to some history of this problem. We mention some results on Kerr spacetimes with a > 0
here and refer the readers to [Dafermos and Rodnianski 2008; Luk 2010] for references on the corre-
sponding problem on Schwarzschild spacetimes. There has been a large literature on the mode stability
and nonquantitative decay of azimuthal modes. See for example [Press and Teukolsky 1973; Hartle and
Wilkins 1974; Whiting 1989; Finster et al. 2008; 2006] and references in [Dafermos and Rodnianski
2008]. The first global result for the Cauchy problem was obtained by Dafermos and Rodnianski [2011],
who proved that for a class of small, axisymmetric, stationary perturbations of Schwarzschild spacetime,
which include Kerr spacetimes that rotate sufficiently slowly, solutions to the wave equation are uniformly
bounded. Similar results were obtained later using an integrated decay estimate on slowly rotating Kerr
spacetimes by Tataru and Tohaneanu [2011]. Using the integrated decay estimate, Tohaneanu [2012]
also proved Strichartz estimates.

Decay for general solutions to the wave equation on sufficiently slowly rotating Kerr spacetimes
was first proved by Dafermos and Rodnianski [2008] with a quantitative rate of |®| < C(¢*)~'+C4. A
similar result was later obtained by Andersson and Blue [2009] using a physical space construction to
obtain an integrated decay estimate. In all of [Tataru and Tohaneanu 2011; Dafermos and Rodnianski
2008; Andersson and Blue 2009], the integrated decay estimate is proved and plays an important role.
All proofs of such estimates rely heavily on the separability of the wave equation, or equivalently, the
existence of a Killing tensor on Kerr spacetime. In a recent work, Dafermos and Rodnianski [2010]
show that assuming the integrated decay estimate (nondegenerate up to the event horizon if it exists) and
boundedness for the wave equation on an asymptotically flat spacetime, the decay rate |®| < C(*)~!
holds. This in particular improves the rates in [Dafermos and Rodnianski 2008; Andersson and Blue
2009]. In a similar framework, but assuming in addition exact stationarity, Tataru [2009] proved a local
decay rate of (+*)~3 using Fourier-analytic methods. This applies in particular to sufficiently slowly
rotating Kerr spacetimes. Dafermos and Rodnianski have recently announced a proof for the decay of
solutions to the wave equation on the full range of subextremal Kerr spacetimes a < M.

In view of the nonlinear problem, it is important to understand decay in a robust manner. In particular,
past experience shows that refined decay estimates might not be stable in nonlinear problems. The
vector field method is known to be robust and culminated in the proof of the stability of the Minkowski
spacetime [Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005]. We prove our decay
result using the vector field method with the expectation that the method will be useful for studying
nonlinear problems. As a model problem, we will study the semilinear equation with a null condition on
a fixed slowly rotating Kerr background. In a forthcoming paper that we will show the global existence
of solutions with small initial data for this class of equations. We will also study the asymptotic behavior
of these solutions. The null condition, which is a special structure of the nonlinearity, has served as an
important model for the proofs of the nonlinear stability of Minkowski spacetime and we hope that it
will find relevance to the problem of the nonlinear stability of Kerr spacetime.

We end the introduction with an overview of the paper. In Section 2, we will introduce the Kerr
geometry, including a few different coordinate systems that we will find useful in the rest of the paper.
In Section 4, we introduce the (non-Killing) vector field commutators that will be used. These include
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the scaling vector field S, which is the main tool for obtaining improved decay rates. In Section 5, we
introduce the formalism for vector field multipliers. We then have all the notation necessary to state
the precise form of our main theorem in Section 6. In Sections 7, 8 and 9, we prove the main energy
estimates using the vector field multipliers N, X and Z. We write down the energy estimates in the most
general form, allowing for the possibility of controlling the inhomogeneous terms in different energy
norms. Such generality is unnecessary for the result in this paper, but will be useful in studying the
null condition. Starting from Section 10, we return to the homogeneous equation. In Section 10, we
write down the energy estimates proved in [Dafermos and Rodnianski 2008]. We then derive the energy
estimates after commuting with Y, Q and S in Sections 11, 12 and 13 respectively. Finally, using the
estimates for S®, we prove the main theorem in Section 14.

2. Geometry of Kerr spacetime

2.1. Kerr coordinates. The Kerr metric in the Boyer-Lindquist coordinates takes the form

M 1+a2cos20 2 20
gk = —<1 — —) dt2+—r22dr2+r2<l+%> do>
r(1 ) 1 & r

2 2
44 crozs 0 ZTM 72
fr(14 S M@0 g g a0 e )
. a- T 7 J)sin T 2o '
A ) (145

In this paper, we will consider Kerr spacetimes with a small. It can then be thought of as a small
perturbation of Schwarzschild spacetimes because by setting a =0, we recover the Schwarzschild metric:

2M 2MN\ !
g5 = _(1 — _) i + <1 — —> dri+r3d6* 4 rksin® 0 dg>.
rs rs

The Cauchy development of Kerr spacetimes can be described schematically by taking a two-dimensional
slice as in Figure 1.

Notice that (2) represents the metric on the exterior region (the right side in the diagram). In the
coordinate system above, this is the region {r > r.}, where r. is the larger root of A = r?> —2Mr +a>.
This is the region that we will study. We foliate the exterior region of the Kerr spacetime by hypersurfaces
X, as depicted in the diagram. A precise definition of the hypersurface ¥, will be given in Section 3.3.
The coordinates in (2) are not regular at the event horizon #+ = {r =r, }. It will be helpful in the sequel
to use different coordinate systems on Kerr spacetimes. From now on we will call the coordinate system
on which the metric (2) is defined the Kerr (¢, r, 6, ¢) coordinates. We define a new coordinate system,
the Kerr (¢, r*, 0, ¢) coordinates, by

dr* . r+a?
dr A

El
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Tt

Figure 1. Kerr spacetime.

where A = r2 —2Mr + a? is zero at the event horizon. In this coordinate system, the metric looks like

2 2
6
) dr? + A +a*)?(r +a? cos? 0)dr* + r2<1 + i ) d6?

r

e oM
8K = — _r(1+azcr02529)
5 a> 2M  a*sin’6 U
+r 1+—2+—m s 9d¢ —4M
reor (14550

asin®@

—  dtd¢.
r(l + _a2crozs29) ¢

Since the definition of r* depends only on r, it is unambiguous to talk about the vector 9,.

2.2. Schwarzschild coordinates. In order to compare calculations on Kerr spacetimes to calculations
on Schwarzschild spacetimes, it is helpful to exhibit a diffeomorphism between the two. We do so
by defining an explicit map between the coordinate functions (¢, r, 9, ¢) on a Kerr spacetime and the
coordinate functions (¢s, rg, 05, ¢s) on a Schwarzschild spacetime with the same mass. These will be
defined differently near and away from the event horizon. Take

() = :1 if r <ry —1(ry —r3),

. — 1, —
0 ifr=ry —z0y —ry),

where ., as above, is the larger root of A =r> —2Mr +a? and ry >ry is a constant to be determined
later. With this y (), we can then define

r§ —2Mrg =r2—2Mr +a2,
ts+ x(rs)2M log(rs —2M) =t + x (r)h(r), where
Os =6,
¢s=¢+ x(r)P(r), where

dh(r) . 2Mr
dr — r2=2Mr+a?’

dP(r) a
dr  r2—=2Mr+a?’
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Then, by identifying (¢, rs, 05, ¢s) with the corresponding coordinate functions on Schwarzschild space-
times, we have a diffeomorphism between Kerr spacetimes and Schwarzschild spacetimes. This coor-
dinate system will be used and will be called the Schwarzschild (zg, rs, fs, ¢s) coordinates on Kerr
spacetimes. Once we have this diffeomorphism, we can put any system of Schwarzschild coordi-
nates on Kerr spacetimes. These include the Schwarzschild (¢35, rs, 05, ¢s) coordinates, where 15 =
ts+ x(rs)2Mlog (rs — 2M) and rg, 05, ¢s are defined as above. We also define

t*:t;:l‘s—}-x(l"s)ZMlOg(rS—zM)

and use the Kerr (¢*, r, 0, ¢*) coordinates. Notice that 9, = 3,;.

It is common to denote on Schwarzschild spacetimes u = 2M /rs. We will take the same notation on
Kerr spacetimes, with the understanding that it is always defined with respect to the Schwarzschild rg
coordinates. In particular (1 — i) approaches 0 as r — r (the event horizon).

Another system of Schwarzschild coordinates can be defined by considering two coordinate charts
on the standard unit 2-sphere and introducing a system of coordinates (x g‘, X g ) on each of them. We
then define the Schwarzschild (3, s, x?, xf ) coordinates in the obvious manner. Using this coordinate
system and the diffeomorphism as above, we have, for small a,

|(8K)ap — (85)apl < €2, 3)
This smallness assumption will be used throughout this paper.

2.3. Null frame near event horizon. Some extra cancellations for the estimates near the event horizon
are best captured using a null frame. Hence we define a null frame {\7, f Ey, E>} in the region r <7y,
where r, is to be determined later. On the event horizon,

V=8t*+

e
2MV+ ¢

is the Killing null generator. A direct computation shows that it satisfies
VV V=« V,

where k is a strictly positive number on the event horizon. We want to extend V to a null frame. On
the event horizon, define Y first on a 2-sphere given by a fixed t* to be null, orthogonal to the 2-sphere
and require that gg (V, Y ) = —2. Define also locally an orthonormal frame {E;, E,} tangent to the fixed
2-sphere. In the sequel, we will only need to work with a local null frame. We then extend this null
frame off the fixed 2-sphere on the event horizon (with Vig=V) by requiring

VY =VV =V, Ex =0, (4)

where A € {1, 2}. Then extend this null frame using the isomorphisms generated by V. The equations
above hold everywhere. If we choose r, close enough to r, we still have, by Taylor’s theorem,

VoV =kV+b"Y +b'E, +b*Es, (5)
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where « is a strictly positive function in ;. <r <r, bounded away from 0, and [b*| < C (1 — p).
In Schwarzschild spacetime, consider the frame on 92 given by {(r§ sin 03)*18(]55, r;lags}. Then we
get

V=0+mdg+0—wdy, Y =0;—0 Ei=ry'ds, Ey=(rssinfs) oy

Since we consider Kerr spacetimes on which the metric is close to that on a Schwarzschild spacetime,
the null frame can be expressed in (t*, r, 6, ¢*) coordinates as

V=>4uwd+1—pn)d +01(€)d, E =r "8+ 0()d,
Y =8 — 8, + 01(¢), Ey = (rsin®) "9, + 01(€)d.

Alternatively, if we write E,, where « = 1, 2, 3, 4, for the null frame, we have

(14 w3+ (1 =)o, =V + 01(€)Eq, 99 =rE|+ 0(¢)Eq,
O0pr — 0, = 1? + O1(e)E,, 8¢* =rsinfE,+ O1(e€)E,.

We also define the vector fields V, Y, E;, E» outside {r < ry } by requiring them to be compactly sup-
ported in {r < r;r } (for some r;r to be determined) and invariant under the one-parameter families of
isometries generated by 9d;+ and dy+. Notice that in particular there is no requirement that the vector
fields form a null frame in the region {r, <r < r;r }.

3. Notation

3.1. Constants. Throughout this paper, we will use C to denote a large constant and c¢ to denote a small
constant. They can be different from line to line. We will also use A to denote bootstrap constants and
we think of A to be large, that is, A > C. We also use the notation O; (1) and O, (¢) to denote terms that
are bounded up to a constant by 1 and €, with bounds that improve by r~! for each derivative up to the
i-th derivative. We will also use the notation f ~ g to denote cf < g < Cf.

There are some constants that we will choose in the proof. The following are values of r in the Kerr
coordinates:

r+<r;<r;,“<%M<RQ.

We will fix 7} and r, in Remarks and, respectively.
There are also smallness parameters that can be thought of as obeying

O<d<ekLnKe.

We use € to denote the smallness of the specific angular momentum a of the spacetimes that we are
working on. We use n ~ Ce to denote the loss in the decay rate of the solutions to the wave equation
as compared to that on Schwarzschild spacetimes. We use e to construct the nondegenerate energy, and
use § and & as small parameters whenever they are needed. The parameters § and 8’ need not be fixed
from line to line.
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3.2. Values of t*. We will adopt the following as much as possible: We denote by t* a general value
of t*. In particular, it will be used for integration variables. We denote by 7 the t* value for which we
want an estimate and by 7¢ the t* value where the initial data is posed. We will always assume 79 > 1
and the reader can think of 7o = 1. When integrating, we will often denote the endpoints by 7" and 7.
Finally, at a few places we will need to choose a particular value of t* in an interval. This is usually done
to achieve the maximum or minimum of the energy quantities. We often denote such choices as 7.

3.3. Integration.
Definition 1. Define the following sets:

e Y, ={t*=1}.

e R, T)={t' <t* <t}

e H(E@T,)={r=ry, ' <t*<1}.
When integrating on these sets, we will normally integrate with respect to the volume form, which we
suppress. On X, the volume form is \/det g |x_. On R (7, 1), the volume form is v/det gx. However, on
the event horizon #(7’, t), the surface is null and the metric is degenerate. Nevertheless, on #(t’, 1), the
integrand will always be of the form Ju”léw’ where n‘gw is the normal to ¥ (7', ). We will hence take

the volume form corresponding to the (arbitrarily) chosen normal. Occasionally, we will also integrate
over the topological 2-spheres given by fixing r and r. We will denote the volume form by dA =

Jvdetgklse.

For some computations, however, it is more convenient to write down the volume form explicitly in
coordinates. In our notation, the following two expressions denote the same integral:

/ f:f fy/detgk |z, drd dé.
P o

When we write the integrals, we will often use [/ to denote an integral over a spacetime region and
use [ denote an integral over a spacelike or null hypersurface.
The volume form on X+ can be compared with that on R(t’, 7). In particular, we have

[w? = LA 1)

4. Vector field commutators

In this section, we discuss the vector field commutators that we will use in this article. One obvious such
vector field is the Killing vector field d;+, which satisfies

[Dgl(a 81‘*] =0.

In addition to 9;+, we will use three non-Killing vector fields S, Y and ©; to control higher derivatives of
the solution ¢. We introduce S, a new vector field, to obtain the improved decay rate for the solution .
We will follow [Dafermos and Rodnianski 2008; 2011], defining the commutator Y to estimate @ near
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the event horizon. We will use the vector fields €2;, which are analogues of the angular momentum vector
fields in Schwarzschild spacetime, to control the error terms coming from the commutator [, , S].

4.1. Vector field commutators under metric perturbations. Some computations are easier in Schwarz-
schild spacetime than in Kerr spacetime. In the sequel, we will often consider a fixed vector field on
the differentiable structure of the Schwarzschild exterior. We now show that for such vector fields, the
commutators with [, and L, are close to each other as long as a is chosen to be sufficiently small:

Proposition 2. Consider either the Schwarzschild (3, rs, x?, xf ) coordinates or (ts,rs > 1y, xgl, xf )
coordinates. Suppose V is a vector field defined on either of these coordinates. Then

2 2
[y — Oy, VI®| < Cér_2<z Zm£x|amva||a"q>|),
m=1 k=1

where 0 is the coordinate derivative for the coordinate system on which V is defined.

Proof. We rewrite
O, = 8% 0,0 + %0, and Dy, = g% 8,95 + 1% -

Using |(gx)ap — (85)apl < €r~2 and |0, ((gk)ap — (g5)ap)| < €r 2, we have |/— det gx — /— det gs| <
er~2 and |9, (v/— detgg — o/— det gs)| < er—2. Therefore,

SUE Igg“3 - g%ﬂl +sup [n% —n%| < Cer 2.
o, o

Therefore,
‘[ng — Ugs V]CD’ =< ‘(g%ﬂ _gglﬂ)(aaaﬁvy)ayq>| +2|(g?(ﬁ _ggﬁ)aavyaﬁa),@‘
N +| (g —n%) (8. V")d, |
= Cer™ (32 Y suplo™ v io- ). 0
m=1k=1 &

4.2. Commutator S. We construct a commuting vector field S on Schwarzschild that is different from
[Luk 2010] and is stable under perturbation.

Define § = 1509,z + h(rs)dys, where
her) r—2M ifr~2M,
r) =
(r+2Mlog(r —2M) —3M —2Mlog M)(1 — ) ifr > R,

for some large R, and it is interpolated so that it is smooth and nonnegative. For r > R, since t* =¢, this
agrees with the definition in [Luk 2010]. Therefore we have

[T S1= (24 ’*’“‘>Dg5 +§(”7 - 2’*“)3»* +2((f ~1)- 3’*”‘)4, ®)

r r r 2r

where A is the Laplace-Beltrami operator on the standard sphere. In the coordinates (t*, r, 6, ¢),

Ogs = —01 (r) 37 + 2 (r)d; +o3(r) 9,9 + s (r)d; + s (r)d, + K.
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The crucial observation is that all ¢; are smooth and bounded and depend only on r. Noting that «; does
not depend on ¢, we have

[Oggs S1=B1 (r) 37 + Bo(r)d? + B3(r), 8, + Ba(r)d; + Bs(r)d, + Po(r) &.

Again, it is important to note that all 8; are smooth, bounded and depend only on r. The form of g; for
r > R is given by (6).

We consider the same vector field S on Kerr. Using Proposition 2, and noting that 3" S* is bounded
for m > 1, we have forr > R

‘[DgK:S]q>_<2+rM)ngq)——(r——l— r“)ar*cb—z((r?—l)— r“)ggcp

r r\r r 2r

2
< Cer_2<Z|8kCI>|),
k=1

and for r < R,

2
[Og,. S1@| <C ) "|DFo.
k=1

4.3. Commutator fli. Let €2; be a basis of vector fields of rotations in Schwarzschild spacetimes. An
explicit realization can be

cos ¢ cosf sin ¢ cos 0

Q:{a,' 3 + P cos Py — a}.
», Sin ¢dp + oo p> COS Py %

Define SNZ,- = x(r)$2; to be cutoff so that it is supported in {r > Rq} and equals 2; for r > Rqo + 1 for

sin @

some large Rg. On Schwarzschild spacetimes, €2; is Killing and therefore < is Killing for r > Rg + 1.
Therefore,

[y, 1= 7 (r) (9% +9),

where x is some function that depends only on r and is supported in {Rg < r < Rg + 1}.
Using Proposition 2, we have

[Dgg» Q1P| < Cr2(10° 0| + [0 D).
Moreover, since 5,- vanishes for r < Rg, we have trivially

[, ]® =0 forr < Rg.

8K

From now on, we write € to denote any one of the €2;, while taking the norm to be |§CI>| =) 1P|
This commutator is useful for gaining powers of r near spatial infinity. In particular we have

Y| < Cr'|Qd].

This extra power of r is essential for controlling the error terms arising from the commutation of [,
with S.
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4.4. Commutator Y. Let ¥, as in Section 2.3, be a vector field that is null near the event horizon, is
normalized with respect to another null vector V and is cut off to be compactly supported in {r < r;,r .

Proposition 3. On Kerr spacetimes such that € is small, we have
[[Ogy, Y10 —kV2®| < C(1 D3+ ®| + €| D*®| + |DD|)  forr <ry,
where k > ¢ > 0 is as in (5).

Proof. The principal term for the commutator [[g,, Y@ is 2(?)71’”DM D, ®, where (?)Tr,w is the defor-
mation tensor defined by (Y)n,w = %(Du I?v + D, Y ). We look at three terms that are useful in deriving
the estimates.

(Y)n‘m _ g(DV?’ V)=—g(¥, D‘;V) =2k,
|()A/)T[\A/EA| — |%(g(D‘7YA', Ey) +g(DEA?’ ‘7))| = Ce,
i(?)nEAEB| = |%(g(DEB?’ Ex) +g(DEA?’ EB))| =Ce,

where the smallness in the second and third line come from the assumption that we are close to Schwarz-
schild. Notice also that for r <r,, V is C close to d;+. Therefore, in the commutator, the main term
is

kY2,

All the other second order terms either have a 9, derivative or small. Il

5. The basic identities for currents

5.1. Vector field multipliers. We consider the conservation laws for @ satisfying [, ® = 0. Define the
energy-momentum tensor
v = 0, D0, P — 18,0 D3, .

We note that 7, is symmetric and the wave equation implies that D*T,,,, = 0. Given a vector field V#,
we define the associated currents

IV (@) =V"T(®) and KY(®)=Vm, T (@),
where (V)n,w is the deformation tensor defined by
WV, = (DL Vi + D, V).

In particular, KV (®) = (V)n,w = 0 if V is Killing. Since the energy-momentum tensor is divergence
free,
D*J) (®)=K" (®).
We also define the modified currents
LY (@) = ) (@) + §(wd, & — 5, wd?),
KV (@) =K"(®)+ twd" 3, ® — 1 H,wd>.
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Then
D*J)Y (@) =K"" (D).

We integrate by parts with this in the region bounded by X, ¥, and #*(z’, T). We denote this region
as R(1’, ). We denote the future-directed normal to X, by n’ér.

Proposition 4. We have

/ T (@)ns, + / Iy (@b o+ / / KV (®) = / I (@,
) H(t',T) R(t’,7) X

v v v v
Loetom [ et [ kvt @= [ g,
; 9+ (t/,7) R(1',7) X

One can similarly define the quantities above for the inhomogeneous wave equation [1,® = F. In this
case, the energy-momentum is no longer divergence free. Instead, we have

DMT,, = Fo,®.

In this case,
D*J)(®) = KV (®)+ FV",.

For the modified current,
DM (@) = KV"(®) + j Fwd + FV'0,®.

Proposition 5. We have

/ Jlf(cb)n’gfqt/ JIX(CD)ngmt,,T)+// KV(CD):f JlY(QJ)n’;r/—// FV'3,®,
po H(t',T) R(t',7) )2 R(t’,7T)

14 |4 14
/ T (cp)nngr/ Ty (q>)n{;€+(T,J)+// KV ()
po ¥H(t',7) R(t,7)
=/ JIY’wV(CD)n’)é/—i—/f (—1Fw®—FV"'3,9).
. ‘ R(t',T)

5.2. Vector field multipliers under metric perturbations. If we consider Kerr spacetimes such that ¢
is small, vector fields multipliers are stable if defined in the Schwarzschild coordinates (¢, r, x4, xB )
or (t,r >ry, x4, x8). We can consider a fixed vector field defined on the differentiable structure of a
Schwarzschild exterior and compare the currents obtained using the Schwarzschild metric and the Kerr
metric.

Proposition 6. Consider either the Schwarzschild (t3, rs, x?, xf) coordinates or (tg,rs > ry, x?, xf)
coordinates. Suppose V is a vector field defined on either of these coordinates. Then

(Y (@t — (), (@) | < Cer™ max| V¥ (9 P)>
T T o
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and

Vo' oy Vo —2<( kyra ) 2 m 2)
|Kg" (@) — K¢ (®)| < Cer kZOImo?xw Ve +|w])(0P)* + lew w|®?).
=0, m=lI,

6. Statement of the main theorem

With the currents defined, we can state our main theorem.

Main Theorem. Suppose Ug, ® = 0. Then for alln > 0, R > ry and all M > 0 there exists ay such
that the following estimates hold in the region {ry <r < R} on Kerr spacetimes with (M, a) for which
a < ay.

(1) Improved decay of nondegenerate energy:

14
e
j=0 Z.N{r<R}

£+2

SCRT_3+U(Z/ JMZ—l-CN,wZ(atﬂ*lsq))nlérO+ Z / JerCN’wZ(B,’i’l?kuj@)n;,o)'
= Js, mAk+j<t+5 " Fro

(2) Improved pointwise decay:

14

D _ID/ @]

j=0 44

N 172
cemm( S [ pentamsons v ¥ [ apeagiaon, )
m=0">% mek+j<e+7 7 ¥

Here the vector field N will be defined in Section 7, and the vector field Z with the modifying function
w? will be defined in Section 9.

Remark. We will show that although JMZ””Z (D) n’;l* is not always nonnegative, JMZJFCN w? (D) ”%,* is
nonnegative for sufficiently large C. Hence all the energy quantities in the theorem are nonnegative.

Remark. Since we have the improved decay of the nondegenerate energy, the theorem above can be
extended beyond the event horizon. More precisely, for any r, € (r_, ry), where r_ is the smaller root

of A =r?—2Mr — a?, the theorem holds up to » > r, for D understood as a regular derivative inside
the black hole, and with the constant depending also on rp. The proof is similar to that in [Luk 2010].

7. Vector field multiplier N, and mild growth of nondegenerate energy

Kerr spacetime has a Killing vector field d;. The conservation law gives

/ Il (®)n + / Tl (@)nk = / Ty (@) + f / % PG.
X %(f()af) PP QR(‘[(),‘[)

0
We add to the Killing vector field 9; a red-shift vector field. Here, we use the “nonregular” red-shift
vector field as in [Dafermos and Rodnianski 2008]. Under this construction, N, is C° but not C! at the
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event horizon #*. Compared to the smooth construction in [ibid.], this construction will provide extra
control for some derivatives near #7.
Define

Y =y1()Y +00)V,

where
1 1

T ogtr—rry? ™ 2= gy

By this definition Y is compactly supported in {r < r;r } and is invariant under the isomorphisms generated
by 0;« and 9.

yi(r)=1

Proposition 7. Let N, = 0;« + Y. For any e, there is a corresponding choice of € K e and ry such that
for every integer p, there exists c, > 0 such that

Jliv"(CID)nge+ ~ (Dy ®)> +e Z (Dg, ®)> on the event horizon,
EA€{Ey, Er}
JYe@nk ~ > (D, @)’ +e(Dg, @)’ forr<ry,
E,e{E1,E, V)
J[LVE(CID)néI ~ 2:(84))2 forr >ry inthe (t*,r, x4, xB) coordinates,

KV (@) = cpe(llog(r = r)l” ((Dg @7 + Y (Dp, ®)%) + (D)%) forr =y,
A

KNe(®) < Ced e (D)nly, forry <r<ry.

Proof. It is obvious that Y is timelike and future-oriented for r < r, . Since 9+ is casual in the exterior
region of Schwarzschild spacetime and is null only on the event horizon, for every small e > 0, there
exists sufficiently small € > 0O such that N, is timelike and future-directed on Kerr spacetimes up to the
event horizon. The first two estimates hold since in Kerr spacetime, 9, is e-close to V on the event
horizon. The third estimate holds because outside a small (depending on €) neighborhood of the event
horizon, d,+ is timelike.

To show that K¢ (®) has the required positivity near the event horizon, we compute the deformation
tensor. First, notice that

3Dyr

(r —ry)(log(r —ry))*

Dyyr=Dyy, =
Using this we have

Orpo = 8K(D\>(Y1I?+y2‘7), V)=—gxnY+nV, D(/V) =2y1k+b" ya,
B 6D{,r
(r—ry)(log(r—ry)*’

Do =gk (DT +yV), ¥) =
3Dyr
(r—ry)(log(r—ry))*

Wros =2ex (DY +32V), V) +1gr(Dy(n Y +32V), V) = +y1k+y2b",
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Moreover, we have

Drgp o Vryp s One,e, = 0.
Notice that
Tjy ~(Dy®)2,  Tpp~ (D@2, Ty~ VO

and that (Y)n‘; Ey (Y)n); E, and Vg 1Ep have no terms of the form (Dy ®)2. Hence we can choose ry
sufficiently close to ry so that forry <r <ry,

C

Y a2
B = By O G g — ol

((D‘; ®)>+ Y (D, c1>)2).
A

Since 9+ is Killing, and KVe(®) = eK Y (), we have

1
(r—ry)|log(r—ry)|

KNe(d) > ce(K(D?QD)z + (D ®)* + Z(DEACID)Z)> forr <ry,
A

. . 3 .. . . _
Finally, since J,fn’él* controls all derivatives in the region r, <r < r;,r , we have

K Ne (dD)SCeJliVe (cI>)n’)ér forrgfrgr;r, 0
Definition 8. We call the positive quantity |, s, évf (D) ”%f the nondegenerate energy.

The following identity determines how the nondegenerate energy changes with t.

Proposition 9. Let @ satisfy Uy, ® = G. Then

/ TV (@)l + / TY(@)nk + f f K@)
PO #(z0,7) R(z0,T)N{r<ry}

=/ I (@t —i—e/f KY(CD)—i—f (0 ® +eY D)G.
by R(r0, )Ny <r<ry} R(t0,7)

70 Ty
The estimates given by the vector field N are sufficient to show that, modulo inhomogeneous terms,

the quantity . s/ /LVf (®) n‘gr cannot grow too much in a short time interval:

Proposition 10. Let @ satisfy (g, ® = G. For e sufficiently small, € < e and 0 <t —t' < 1, we have

/ JIILVe(@)n’;I +/ Jlll\/«(cp)n{;e+ < 4/ Jé"e(d))n’ér, +C// G2.
T H(t', 1) )] R(t’',7T)

Proof. We first note that

T
f/ KY(CD)§C/ / TN (®) n, d7,
R, DNy <r<rf} v Jx:

</
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with C independent of e and € whenever € < e < 1. Then, by Proposition 9,

/ TV (@)l + / TN(@)nly. + / / K@)
pom H(t',7) R, T)N{r=<ry}

=/ JliV“(CD)n’é/+e// KY(CD)—l—/ (3D +eY D)G
P i R, O)N{ry <r<ri) R(7',7)

T
. / J (@l +Ce f f J (@, d 48 f/ (3@ +eY ®))* +(8) G’
Zr/ T/ X: QR(T/,T)

%(f ,T)
< /
)

By Gronwall’s inequality and absorbing (8')~! into the constant C, we have

f INe(@)ny <2 / Je(@nf , +C f / G>.
Z z R(r',T)

Now the estimate for the term horizon follows from Proposition 9. (]

T
JZLVE(CI))n%z,+(C8/+2Ce) / / TN (@)nl, dT +(8)7! / G2
o J2; R(t',7)

<

<

8. Integrated decay estimates and boundedness of nondegenerate energy

In this section we would like to show an integrated decay estimate. We first follow [Luk 2010] to
construct a vector field and prove an integrated decay estimate for the terms near spatial infinity. That
construction is in turn inspired by [Sterbenz 2005]. In [Luk 2010], the decay rate in r of this integrated
decay estimate is crucial for controlling the error terms arising from the vector field commutator S. In
the sequel, such an estimate will also facilitate many computations as we prove the full integrated decay
estimate.

In view of the red shift, all derivatives of ® can be controlled near the event horizon. However, we
would also like to prove an integrated decay estimate that controls & itself near the event horizon. This
is in contrast to the integrated decay estimate in [Dafermos and Rodnianski 2008], which degenerates
near the event horizon. This extra control is useful as we are considering the inhomogeneous problem.

The proof of the integrated decay estimate for a finite region of r away from the horizon follows that in
[Dafermos and Rodnianski 2008]. The one difference here is that we do not assume the boundedness of
/s .7, :’e(d))n’gr (even after ignoring inhomogeneous terms). We would instead like to prove the bound-
edness of |, s J li\’“ (<I>)n’§1 using the integrated decay estimates. We will, however, use Proposition 10.

The reader should think of this integrated decay estimates as analogous to the estimates associated to
the vector field X in [Dafermos and Rodnianski 2009; 2011; Luk 2010]. However, it is impossible to
obtain such estimates using a vector field in Kerr spacetimes and we therefore resort to a phase space
analysis; see [Alinhac 2009].

To perform the phase space analysis, we will take the Fourier transform in the variable t*, take the
Fourier series in the variable ¢* and express the dependence on the 6 variable in oblate spheroidal
harmonics. Carter [1968] discovered that with this decomposition, the wave equation can be separated.
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However, to take the Fourier transform in the variable #*, we need ® to be at least in L2. To this end,
we perform a cutoff in the variable ¢*.

8.1. Estimates near spatial infinity. In this subsection, we follow [Luk 2010] to construct a vector field
X = f(r*)o,+ such that the spacetime integral that can be controlled with a good weight in r.
Proposition 11 [Luk 2010, Proposition 8]. In Schwarzschild spacetimes, using (t, r*, x4, xB) coordi-
nates, there exists Xs = f (r*)d,« and w§ supported inr > %M , such that

KX (@) > e (0, 0)2 +r VP +r 37002 for r* > max{100, 100M}
and

| /2 , 7E @t | <c /E o
This implies via stability (since the vector field is supported away from the event horizon) the following:
Proposition 12. In Kerr spacetimes, using (t*, r, x*, xB) coordinates, there exists X and wX supported
inr > %M such that for some large R,
K5 (@) > cg (r 100,02 4+ r YOI + 7370 02) — Cyer 28 ®)2  for r* > R

and

‘/ Jlf(,wx(cp)n%r‘ SC/ Ji"e(d))n’i.
N P

Now it is easy to construct the following vector field on Schwarzschild spacetimes:

A

Proposition 13. In Schwarzschild spacetimes, in (t, r*, x4, xB) coordinates, there exists X s= f (r*) 0,

supported inr > 14—3M such that
KX(@) > er 10 (0, 0)2 — Cr™ 130, @) +r WO 2+ r378®2%)  for r* > max{100, 100M}

and
| /2 X @t | <c /2 TV @)l .

Proof. Let f be supported appropriately and let f(r*) = 1/(1 +r*)® whenever r* is large. O
As before, a stability argument gives this:

Proposition 14. In Kerr spacetimes, in (t*, r, x4, x8) coordinates, there exists X supported inr > %M
such that for some large R,

KX(@) > cr 1783, @)% — Cy(r '@ ®) +r VO +r7°®%) forr*>R

and

‘/z Jj(q))n’;t‘SC/z ]live(CD)nlér.

X

Now using the vector field X + % (cz/C )v())v( and modifying function w*, we get the following estimate:
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Proposition 15. For € sufficiently small,

—1-6 yN, —3-38 52
/ / (r= 70 (@yny, +r 70 07)
R(w0.7)N(r=R)

5C</J,7@(<I>)n‘§1+/J,iV(<D)n’§TO+ f/ (J,ivf(d>>n‘§,*+<b2>+f <|ar<1>|+r—1|c1>|>|G|>.

Z DI R(r0. 1) {E M=r<R} R (10.7)

8.2. Estimates near the event horizon. The integrated decay estimates shown in [Dafermos and Rod-
nianski 2008] are degenerate around the event horizon. Here we will prove the corresponding estimates
near the event horizon. In view of the availability of the red-shift estimate K¢, we will focus on the
zeroth order term ®2. It turns out that we can use a construction in [Luk 2010].

Proposition 16. In Schwarzschild spacetimes, in (t, r*, x4, xB) coordinates, there exists X, = Jn(r*)op«
and wX" supported inr < %M such that

KX (@) > ¢((3,- @) + VPP + D) forr <ry
and

X X
VE T (@)n’ér‘ gcf)t TN (@) nk and T (@)l | < CINe (@) ..

Proof. Let
3 3.3

5 (r)—t"
—_— 0 = — r
(I+ap2) =71

Xn= fh(rigk)ar; =—x(r) 8(1+—4M_2)3r§,

where x (r) is a cutoff function that is compactly supported in r < %M and is identically 1 for r <r, .
Also, let

41—
wXh = 21,r) + %fh(”*)-

From now on, we will focus on the behavior when r < r, and treat the terms in {r, <r < ZTSM } as
errors. Recall that on Schwarzschild spacetime,

Kxh,wxh () = £ (8,*CI>)2+ 2—=3w f@r") |Y7CD|2
1—u 2r

1 1 4 2
__<—f///(r*)+_f//(r*)_f—ﬁf,(r*)__M(3_4M)f(r*)>q)2
4\1—pn r r2 r3

We now look at the sign of this expression for r <r . Itis easy to see that the coefficient for (8,+®@)? is
positive:

pri(l—p) _ c(l—p)

[0 = A=W, fo(r) = (tdp 22~ 13

E}
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The coefficient of |¥ ®|? is also clearly positive. A computation shows that

1 4 2
S =G f
- r r r

. w8192 4 1 (128 + (=784 + (464 4 1 (=28 + (52 4+ (=3 +4w)))))))
o 44+ )t
We want to show that P () =192+ (128 + u(—784 4 (464 + u (—28+u(524+u(—34+4w)))))) > 1/7
for 16/23 < pu <1.
First, 192 4 128 — 784u% + 46413 = 16(—12 — 20 +29u%) (n — 1) > 0.
Now 52 — 31 + 42 reaches its minimum at 3/8. Hence, 52 — 3 + 4> > 823/16.
Finally —28 4 (52 — 30 +4u?) > —28 +11/20-823/16 > 93/320.
Therefore, P(u) > 1023/6400 > 1/7 for 16/23 < u < 1. Therefore, for r <r,

KX () > ¢((8,+ D)2 4 |V D|? + d2).
The second and third statements,

| /E JH @yl | < € /E JN(@l and |5 (@l | < CIN (@)l

follow from the boundedness of f; and w** and that on the Schwarzschild horizon 3; = 9,+. Hence in
both estimates, the constants are independent of e for e small. U

Because X, and w*" are actually smooth up to the event horizon, we have this via a stability argument:

Proposition 17. In Kerr spacetimes, using (ts, rs, xé, xg) coordinates, there exists X, and wX» sup-
portedinr < %M such that

KX (@) > cd? — Ce(d): D)2 — Ce(d, D)> forr <ry

and

] fz J;(”’wxh(@)ngr‘SC /E IN@nl  and |15 (@l | < CINe (@)l

Together with the red shift, we then have an integrated decay estimate near the event horizon:

Proposition 18.

/ / (@ + KN (@))
R(z0,T)N{r=<ry}
gc( / TNe(@)ns, + / I (@ + / f L (@I @)ng )
P Zro R(t0,T)N{ry f"f?M}

][f (13- ®| +r | BDIG| + \// (at*cb—l—eYCD)GD.
%(TO,T)Q{YS%M} %(ro,r)ﬂ{rS%M}



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 575

8.3. Cutoff, decomposition and separation. Following [Dafermos and Rodnianski 2008], we define the
cutoff &7, = £®, where £ = x (t* — 1 — 1) x(—t* — 1 4 1'), for some smooth cutoff function y (x) that
is identically 1 for x < —1 and has support on {x < 0}. Then

(0,7 = £G +2D*® Dy + d, & =: F.

We then decompose in frequency. We decompose the Fourier transform in ¢ of & into Fourier series in
¢ and oblate spheroidal harmonics:

®L =" RY,(r)Sme(aw, cos0)e™?.
m, L

We also decompose the inhomogeneous term F (which comes both from the original inhomogeneous
term G and the cutoff):

F= Z Fo(r)Sme(aw, cos 0)e'™?.
m,
Letting ¢ be a sharp cutoff with such that £ =1 for |x| <1 and ¢ =0 for |x| > 1, we define

o0
(I)b = / g(a)/wl) Z Rﬁl(r)sml(aa)’ CcOS e)eim¢eia)tdw’
—00

m,L:dm (@) <A

o0
(I)d = f g(a)/wl) Z Rﬁl(l")sml(aa)’ cOS Q)eiii’l(beia)tdw’
—00

m, L (w)>A

<I>u=/ I—¢@/m) Y. RY(MSmlaw,cost)e™ e do,

mal:)\ml(w)z)\sz

CDn:f (I=¢@/@)) Y. Ry(MSwaw, cosd)e e dw.

m, L (0)<Arw?

In this decomposition, we think of w; as large and A, as small.

8.4. The trapped frequencies. Trapping occurs for ®,. An integrated decay estimate is proved in de-
tail in [Dafermos and Rodnianski 2008, Section 5.3.3]. The first term on right side in the following
proposition is different from that in [ibid.], but the inequality still holds as a result of the proof of the
corresponding inequality there.

Proposition 19.
/ / X%+ X0 Pe)* + X Ly _apgys 1y I (PN,
R(—00,00)
0
§C/ (a,*q>;,)2+Ce/ <a¢*q>;)2+/ dt*/ Qfr*+a®) V2 F o ((r* +a»)Vo7)
H(—00,00) H(—00,00) —00 r>R

A
+f’(r2+a2)Fuq>;,)Tsin9 d¢ do dr*+8' // (@L)2+(3,+@L)2+C (8! //
RNO{r<R}

2 2 F2’
r a RNO{r<R}
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where x is a weight that degenerates at infinity and near the event horizon and f is increasing and
f=tan"'(+* —a — Ja)/a —tan" (=1 —a)"V/? for r > R for some fixed a.

8.5. The untrapped frequencies. For each of the pieces that are untrapped, that is, ®, for e =b, d or f,
Dafermos and Rodnianski [2008] constructed a vector field X, such that

f / XUV @onlt + @) <C / / K (@),
R (—00,00) ! R(—00,00)

where x is a weight function that both degenerates at infinity and vanishes around the event horizon.
Using this vector field and the conservation identity, they showed the following:

Proposition 20.

//%(_oo - X ((J,ivf(cbb) + Jli"e(@d) + Jliv(cbu))n/éz F (D4 DI+ @i))

<C / INe(@)nly, +C(8)! / F?
F(—00,00) R(—00,00)N{r<R}

+C8 // (DT + (3TN 4 1,23,y IV (DT 0K
R(—c0.00N(r<R) CT =g My 2T
o0
[ Car [ @pet e B+ R F)ar (04 a) o)
—00 {r>=R}

+ 1102+ @) (Fy + Fo+ F)®L)—= sin0 d do dr,
r<+a

where x and f are exactly as in Proposition 19.

Proof. This inequality is essentially borrowed from Dafermos and Rodnianski [2008, Section 5.3.4]. The
only difference is the first term on it right side. They used the estimate

/ JX(@)nky, <C / VAIC IRV
H(—00,00) P
Here, we have not proved boundedness of the solution and hence we are content with the estimate

/ TX(@)nly, <C / TN @L)nky, .

J(—00,00) #(—00,00)

This estimate holds for C independent of e because X, is constructed as f 9, and, on the event horizon,
3 = OV + 0(e)Ea. O
8.6. The integrated decay estimates. To add up the estimates in the previous sections, we need a Hardy-
type inequality:

Proposition 21. For R’ < R,

/ 2’ < C / r TN (@)nk,
X.N{r>R} X N{r>=R’}
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Proof. Let k(r) be defined by solving k'(r, 0, ¢) = r®=2vol, where vol = vol(r, 6, ¢) is the volume
density on X, with r, 8, ¢ coordinates, with boundary condition k(R’, 6, ¢) = 0. Now

/ re et = ///Ook/(r)cbzdr d6 dg
pom ry
= —2/f/ k(r)®0,®dr do d¢
k(r)2 1/2 1/2
52( / f / 0 (0, D)%dr do d¢>> ( f / / K (r)®%dr do d¢>> .

Since vol ~ r2, k(r) ~ r®+! and k'(r) ~ r®, we have (1 +k(r)?) /(1 +k'(r)) ~ r* vol. O

We now add up the estimates for ®,, ¢, ®; and P;.

Proposition 22.
I @t 6,0 e
R(t’',7T)

< C( f INe(@)nk, + f TN @)nk,  + / T3 (@)l
N i

W (', 1)

+// (|ar*d>|+r“|d>|)|G|+|f/ (- ® -+ Y O)G|
R(r'—1,7+1) R -1+ DN{r<E m}

+ // G2>.
R(t'—1,7+1)

Proof. Since the function f appears identically in Propositions 19 and 20, we can add up the estimates
to obtain

/ / (X (2 (@0) + T (@) + Ly _3pg1 1y 0 (P2) + T (@) + X (@F + §F + @F + D))
R(—00,00)
<C / TN (@)nly, +C(8)™! / f F?
F(r'—1,74+1) R(—00,00)N{r<R}
+Cé // (CI>§,)2+(8,*CI>;)2+ ]l{r<gM}J,iV€(CI>§,)n’§*
R (—00,00)N{r <R} -8 !
(o)
+/ dr* / Qf2+ad) 2 (F+ Fo+ Fy+ Fy) o (7 +a*) ' 2 @)
—00 {r>R}
+ f'(r* +a*)(F, + Fo+ F, + Fﬁ)CDZ/)% sin@de¢ do dr*.
r a
By the definition of the cutoff, we have the pointwise equalities

F:Fb-i-Fd-i-Fj-i-Fu.
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Therefore, we have

/ / X sz LT (@TRE, + X (®7)
R(—00,00)

< C/ TNe(@)nky, +C(S)7! // F?
H(t'—1,t+1) R(—00,00)N{r<R}

+ 8 // (PL)? + @ L) + 1y, o2y I (PTIY,,
R(—00,00)N{r<R}

/ dr* / 2fE*+a»)' PFa((r* +a*)'?OL) + f'(r* +a )Fcbf) ia sin® d¢ do dr*.
r>R}

First, by Proposition 10, we have

/%( Leth) J/ive(q))ng(+ fC/ Jlive(CD)n/ér/—FC[ J[ive(q))nl;)r"i_/ ]liv“(CD)nge+
'—1,t

2 ho H(t',T)
Recall that
F=§G+2D*®PD,& + P, E.

By the definition of &, the last two terms are supported in the * range (' — 1, T")U(z, T+ 1). Moreover,
since £ depends only on ¢*, the only terms involving D® are 9,+® and O(€)d4-P. Using this, we
immediately have the following with C independent of e as long as € < e:

C(Sl)_l /[ F2
R(—00,00)N{r<R}
<c@$H7! (// G? +// (r 2 @% 4 J e (P)nk *)).
R(r'—1,74+DN{r<R} R(t'—1,7)UR(T, T+1) !

/ dr* / £ +a)Fc1>r — sin6 d¢p 6 dr*
{r>R}

gc(// r_1|d>||G|—|—// (r_2<I>2+JIiV€(<D)n’§*)).
R(r'—1,74+1) R(t'—1,7)UR(T,7+1) !

The other term with F' is more delicate to estimate. One of the terms in the expansion does not have

Similarly, we have

sufficient decay in r:

o
2, 2\1)2 2, 2\1/2 A
/ dt*/ 2f(r? +a*) 2 F . ((r* +a*) ®L) 3oy sind dgdodr
- r>R}

50(// r—‘|c1>||G|+f/ (r_2<I>2+Jlin(d>)n’§t*)>
R(t'—1,74+1) R(t'—1,7")UR(T,T+1)

o0
+/ dt*/ 2f(r* +aH)" P o0,, £0,((r* +a*)' 2 D) ZA > sin6 d¢ do dr*
—00 r>R} r<+a
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Nevertheless, noting that £ is independent of 7*, an integration by parts in 7* would give

A
r2+a?

oo
/ dt*f{ }2f(r2 +a) 200y, 8, (P +a) @)% sinf d¢ d6 dr*
—00 r>R

= —/ dt*/ (r’ +a*)d%¢ Og &0, (f%) sin@ d¢ d6 dr* + boundary terms
-0 {r>R} r+a

< C// r_2<I>2,
R(t'—1,7)UR(t,T+1)

where the boundary terms can be controlled (after possibly changing R) by pigeonholinginr €[R, R+1].
By the mild growth estimate of Proposition 10, the estimate near the event horizon from Proposition 18
and the Hardy inequality of Proposition 21,

/ /gt (r 2@ + T (P)nk )

(t/—1,t")UR(t,T+1)
sc( f I (@)nf , + / I @)k, + / / G2>.
z poe R(t'—1,7)UR(T,T+1)

Therefore, using all the estimates above and noticing the support of £, we have

</

/f XLy iz 1an T2 (@I, + @)
R(t',7)

<c@)™! f
>

I @)k, +C@EH)7! /2 INe(@)nk, +C /% . )JliV“(qD)ngﬁ
o/ T 't

+cff r1|CI>||G|—|—C(5’)1// G?
R(t'—1,74+1) R(T'—1,7+1)

+C& ,/f D%+ (B3 D)+ 1, 2y 0 (D).
R(r’, T)N{r<R} o t

We add to this the estimates near spatial infinity and the event horizon, that is, Propositions 15 and 18,
to get

//W, )r_l_‘sIl{lr_3M‘2%M}JliV"(d>)n’§t* +r 70,9 +r 0 92
T,T

<c@)! / I (@ +C@)! f JNe(®)nk +C / TN (®@)nly,
’ i ' %

z. po (/,7)

+C// (10,+®|+r~'|®]IG] —l—C‘// 0P +eYP)G
%(r’_l,t—i-]) %(T’—],T—Q—l)ﬂ{ri%M}

ree! [ c>+cs [ O (0 ®) o Ly I (@I
R —1,7+1) G(x'—1,t+1)N{r<R)
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By choosing &’ sufficiently small and absorbing (8')~! into the constant C, we can absorb the last term:
/fg« ' A RN AN COUSTE T O RS A
T,T

<C / IN@)nly +C / IN(@)nk, +C / TN (@)nly,
P ' %, (', T)

+Cf/ <|ar*<1>|+r1|<1>|>|c|+c]// (8- + Y )G
R~ 1T+ DN{r<E M) R~ 1, r+DNr<2 M)

+C / / G
R(t'—1,74+1)

using Proposition 10 and 21 at the last step. |
Definition 23. From now on, we write
KX@) =r™ 70, yynan ) (@ 477 70(0,9)7 +r 002,
X —1-8 N —3-8 52
K (®)=r J (@) +r -,
This is a slight abuse of notation because these “currents” do not arise directly from a vector field.

8.7. Boundedness of the nondegenerate energy.

Proposition 24. Let @ satisfy Uy, ® = G. For e sufficiently small and € < e, we have

/ TY(@)nk + / TN (@)nly, + / / K@)
pe H(t',7) R, T)N{r<ry}
§C(/ N (@)t +V/ a,*ch‘Jr‘// Y G|
= ' R(r'—1,7+1) R(r'—1,7+1)
+/f (|a,c1>|+r—‘|<1>|)|G|+f/ G2>.
R(t'—1,7+1) R(t'—1,7+1)

T
// KY(oD)scf / Jlf]f(cb)n’g,*dt*,
Rt T)Nry <r<ryi} v Jx;

Y

Proof. We recall that

with C independent of e and € whenever € < e < 1. At this point, we choose ry < 14—1M < %M . Hence
this term can be controlled by the integrated decay estimates. Then, by Proposition 9,

[ amt [ adomt [[ KY@)
po H(t',T) R(t', O)N{r<ry}
=/ J;Vf(cb)ng,Jre// KY(d>)+// (3D +eYD)G
b)) v R, O)Nfry <r<ryf} R(t',T)

Y

T
5/ T (@)nk +Ce/ f TN (@)%, dT + ‘// (3P +eY DG
I T T/ Zfﬂ{r;frfr;'} ' R(t/,7)

<
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I,

JliVe(CD)n’gr,+Ce( / TNe(@)nk + / TN (@)nf  + / TNe(@)nl,
X, )2 H(t',T)

+// (|8,d>|+r_1|<D|)|G|+/f G2)
R(t'—1,7+1) R(t'—1,7+1)

+‘// (at*CD—I—eY@)G‘.
R(t',7)

Hence, the proposition holds if e is chosen to be sufficiently small. g

T/

Remark. From this point on, we will consider r;“ and e to be fixed. After e is fixed, the vector field N,
will be written simply as N.

We now estimate the inhomogeneous terms in Proposition 24:

Proposition 25.

/ T (®)nk +/ J;V(q>)n{;€++ff KN(CD)—i—// KXo (®)
po ’ ¥H(t',7) R, T)N{r=ry} R(t',7)

41 1/2 2
e pms ([ (L) )+ L, )
= ! -1 poye R(t',7)

Proof. Adding the estimates in Propositions 22 and § times the estimates in Proposition 24, we have

/ T (®)nk +/ Jﬁ(@)n%—k// KN(¢)+5// KX(®)
X ! H(t', 1) R, )Nr=<ry} R(t’,T)
§C(/ J;V(q>)n‘gr,+// (|a<1>|+r—1|<1>|)|G|+// 62)
T R(T'—1,74+1) R(r'—1,7+1)
N N
+C8< /E J (@' + /% . g (@)ngﬁ)
/2 pr+l 1/2
§C( / I (@) +  sup ( / T (@)n;t*) / ( / GZ) dr*
T e[t/ —1,t+11\J T« '—1 poe
+ / / GZ) +cs( / IN @)k, + f Ty (q>>n§;€+>,
R(t'—1,74+1) . ’ (', 1)

where at the last step we have used Proposition 21. Choosing C8 < 3, we can absorb the last term to the

7/

left side to get

[ oaroms+ [ prem [ kv +s [ ke
pom ' H(t',T) R/, )N{r=ry} R(t',7)
12 prl 1/2
§C< / JIiV(CI))n’ér/+ sup ( / J;V(cb)ngt*> / (/ Gz> dt*
)2 t*e[v'—1,74+1] ) -1 po
o)
R(t'—1,7+1)
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By considering the estimate above on [t’, T], where T is when the supremum on the right-hand side is
achieved, and using Proposition 10, we get

/ JliV(CID)n’g—i—/ J,ﬁV(cI>)n§€++f/ KN(<I>)+8// KX0(®)
o ! (', %) R, DNfr<ry} R(t',7)

T+1 2
< C(/ Jli"(cb)n‘gr, + </ ( G2)1/2dt*> )
</ ‘E’*l 2,*

We plug this into (7) and apply Cauchy—Schwarz to prove the proposition. (|

We can also estimate the inhomogeneous terms not in L'L? but in L?L?, provided that we allow
some extra factors of r and some loss of derivatives in G. This is especially useful for estimating the
commutator terms from S, which do not have sufficient decay in #* in the interior to be estimated in L' L.
More precisely:

Proposition 26. / TV (®)n + / T (@)nly, + / / KN (@) + / / KXo ()
po (', 1) R, T)N{r<ry} R(t',T)

gc(/ JN(q>)n2,+Z// r'@rG)Y +  sup / 1 G2>.
/ R(t'—1,7+1) e[t/ 1, t+11J SxN{lr—3M|< g M}

Proof. By Propositions 22 and 24,

/ T (®)nk +/ J:’(@)I’lgﬁ-l-// KN(<D)+5// KXo (®)
T, ! (', 7) R/, O)N{r<ry} R(',7)
§C(/ JNe (@)l +‘f/ 0 0G|
¥ T R(t'—1,74+1)
+‘/f eYdDG‘+// (|8,<I>|+r_1|<I>|)|GI+// GZ)
R(t'—1,7+1) R(t'—1,7+1) R(t'—1,7+1)
+C8/( / TV (®)n + / 7Y (@)ngﬁ).
2. H(t',7)
Choosing C§’ < 5, we can absorb the last term into the left hand side to get
/ TN (@)nk + f TN (@)nly, + / / KY(®) + / f KX (®)
pom ' ¥H(t',7) R(r', )N{r=ry} R(t',7)
50(/ J:’(Cb)n’é,—i—‘// at*q>G)+‘// Y 0G|
T, ’ R(t'—1,7+1) R(t'—1,7+1)
+// (|a,<1>|+r—1|c1>|)|G|+// GZ).
Rz —1,741) R('—1,7+1)
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For the bulk error term, we focus at the region {|r —3M| < éM } and integrate by parts.

)f/ I+ ®G
R(T' =1, T+ D)N{|r—3M|< { M}
<4 f / o7+ C(8)! / / (3 G)?
R~ LT+ DN{Ir-3M|<§ M} R(e'—1, 1+ DN{Ir=3M|< 1 M)
+ ‘/ G|+ ‘/ aG|
SeN{lr—3M|<g M} S N{lr=3M|< L M)
< § // 7_3_8¢2+C(5/)_1 // (at*G)Z
Rt~ L r+DN{r—3M|<g M} R('—1, T+ DN{Ir—3M|< L M}
+ sup (8/ r—2c1>2+c(5/)—1/ Gz)
rrefr'—1,741] N{lr—3M|<i M} ZxN{lr—3M|< LM}

<4 / / ro7e?+c@E)! / / (3+G)*
R(r'—1, 1+ DN{Ir—3M|<§ M} R —1, 1+ DN{|r—3M|<§ M}
+  sup (5/ / IY (@)l +C@)7! /
pm

62),
rrelr'=1,741] Nf{lr—3M|<{ M}

where at the last step we used Proposition 21. Therefore,

/ TN @)k + / TN (@)nl. + / / KY(®) + / / KX ()
poe ' ¥H(t',7) R, )N{r<ry} R(t/,7)
gc(/ Jﬁ’(@)n%/—i—)// a,*cDG‘JrV/ eY(DG‘
P ! R(t'—1,7+1) R(t'—1,7+1)
+/f (|a,c1>|+r—1|q>|)|G|+// G2>
R(t'—1,7+1) R(t'—1,7+1)
< c(f IN (@ + )ff 8,*CI>GD +C @) // riHG?
. ‘ R =1, 7+ DN{Ir=3M|< i M)} R(r'—1,7+1)

+8 / f 00?4700, ) + 1y I (DI )
R(t'—1,7+1)

1

scf TN (@l +c@)! Z/ rIerG)? +6 // KXo (d)
= ' R(t'—1,7+1) R(z'—1,7+1)

7 m=0
+  sup (3’ / IY (@)l +C @) / GQ). (8)
pI 1

tref[t/'—1,7+1] San{lr—3M|<iM
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where at the last step we have used Propositions 10 and 21. Suppose sup,«¢(;/_j 4176’ fZ,* Jlf’ (@)n’él*
is achieved by t* = 7. Applying (8) on [1/, T], we get

1
/ J,iv(cb)n’gffcf J;V(cb)ngﬁaa’)—lz // r1+5(a,":G)2+5’// KX ()
X: P m=0 R(t'—1,7+1) R(t'—1,74+1)
+8’/ Jliv(cb)n§, +C  sup / G?,
T ' reelt'—1,t+11J Sn{lr—3M|< L M)

which, upon choosing §’" < % and subtracting the small term on both sides, gives

1
/ Jf(d))n’;ffc/ Jlﬁv(cb)n‘ét,+C(8’)_lz // r1+5(a,":G)2+5’// KX ()
¥: W m=0 R(t'—1,74+1) R(t'—1,7+1)

+C sup / G2,
rrelv’'=1,t+11 S Sn{lr—3M| <} M)

Therefore, plugging this back into (8), we have

/ T (®)nl. +/ Jﬁ(q>)n;‘€++f/ KN(<I>)+// KXo(®)
e ’ H(t',7) R/, )N{r<ry} R(t/,7)
§C/ TV (D)nk, +6' // KXo (®)+6 // KXo(d)
= ! R(t',7) R(z'—1,7)UR(T,7+1)

1
+CZ// r'P@NG?+C sup
m=0 R(t'—1,74+1)

tre[t/—1,7+1] /E,*ﬂ{|r3M<éM}

7/

G2

ccf
z

Ty (@), +6' / f KXo (@) 48’ f TN (@)n,
R(t/,T) X

1
+Cy // rI@NGY+C sup / G2,
mep Y YR —17+1) rrelv'—1,t+11 S Z=n{lr—3M| <} M}

where at the last step we have used Proposition 10. Finally, by choosing C§ < 1, we can absorb the

b

small terms into the left-hand side and achieve the conclusion of the proposition. U

In the proof of Proposition 26, there is a loss in derivative for G because we have to integrate by parts
in the region {|r —3M| < éM }. Therefore, if G is supported away from this region, we can repeat the
proof without this loss. In other words:

Proposition 27. Suppose G is supported away from {|r —3M| < %M }. Then

[ arom+ [ e [[ v+ [[ ko)
T, ’ 9(z',7) R, DNfr<ry} R(t’,7)

1
< C(/ JIIL\’((D)”% / + Z // r1+8G2+ sup / G2>.
T [ S Y el =1L e+ Epen(ir—3M|=5 M)
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This will be useful in Section 13.
In applications, it is useful to have both ways of estimating G.

Proposition 28. Let G = G| 4+ G; be any way to decompose the function G. Then

/ TY (®)nk +f Jliv(q>)ng€++f/ KN(<I>)+f/ KX0(®)
poe ’ (', 7) R(r’, T)N{r<ry} R(t’,7)
T+1 12 \2
< c( / IY (@)nf  + ( / ( / G%) dt*) + / / G?
x T/—1 X R(t'—1,7+1)

1
+Z// rI@NGy)* +  sup / G%).
o Y JRE@—1t+1) rrelv'=1,7+11 I Bn{lr—3M| < M}

In the estimates above, only the function ® and its o, derivative can be estimated without a loss around

<

the trapped set. To estimate the other derivatives, we need to commute with the Killing vector field 9;+.

Proposition 29. We have

[
R(t',7)
1 1 41 1/2 2 1
5C<Z/ J,iv<3{’fq>)n’§r,+2</ ( (8{’$Gl)z> dt*) +Z/f 01G1)?
m=0 oy m=0 -1 Py m=0 R(t'—1,7+1)

2 1
> rHOEG) + sup
=) Jra -1t

rrelr'=1,1+11 /z,m{|r—3Mg;M}

(o G2)2> .

Proof. Using Proposition 28 and the fact that 9+ is Killing, we immediately have the following estimate
for 9;+ P:

/ / r3 7 (0 ®)?
R(t’,7T)
T+1 1/2 2
§C</ TY (0 @)k + (/ ( (8,*G1)2) dt*) +// (3G 1)?
> ! -1 poye R(T'—1,74+1)

2

+Z// rl+5(81n*1G2)2+ sup / (8,*G2)2>.
R—1.741) rre[r'—Lr+11Een(ir—3M|= g M)

m=1

<

This would allow us to estimate all derivatives of ® except for the fact that the estimates for the angular
derivatives of @ degenerate around r = 3M:



JONATHAN LUK

// L e IV O+ 0@ 0) 4T 0 (0 @) 0 0?)
R(t',7) -

N T+1 21/2 2 )
J, (0P Lt e d + <G
e worome,+ ([ ([ ) ) o 2], e

1
+Z / / PP @EG) + sup Y / @ G2)>
0 YR =1, T+1) rrelv'=1t+1] SaN{lr—3M|<} M}

We now use this known estimate and construct another vector field to control the angular derivatives in the
region r ~ 3M. The argument is simple because the estimate is only local. Take f,, (r) to be compactly
support in 3M — %M <r<3M+ ‘—llM and identically equal to —1 in 3M — %M <r<3M+ %M. If we
consider X,, = fa., ()0« in Schwarzschild spacetime, we get that the coefficient in front of the terms
with angular derivatives is @ /2r, which is bounded below in 3M — %M <r<3M-+ %M . In other words,
one gets an estimate of the form

—1-48 2
// r T aa< L [V @
R(t',7T)

< c(f/%(, )(r_l_‘s]l{lr73M|ZéM}|Y7d>|2—I—r_l_‘s(arcb)z+r_1_5(8,*d>)2+r_3_5d>2)
7,7

+/ JliV(Q)n’gr—i—/ Jﬁ’(@)n’ér/—i-// (|a,c1>|+|r—1<1>|)|G|+// GZ). 9)
X, P R(t’,T) R(t',7)

Using a stability argument, (9) would hold also on Kerr spacetimes. One easily checks that the terms
with G on the right-hand side can be estimated in the same manner as before. Hence, the proposition
can be proved by applying Proposition 28. 0

9. Vector field multiplier Z and decay of nondegenerate energy

We follow the definition of Z in [Dafermos and Rodnianski 2008]. Let Z = uzé +v2L, where u and v
are the Schwarzschild coordinates u = %(t —rg)and v = %(t +r3),and L =0, and L =2V — L, where
V =0+ x(r)a/(2Mr)d4+ with x being a cutoff function that is identically 1 for r <r, — %(r; —ry)
and is compactly supported in {r <r, — ‘—ll(r; — r4+)}. With this definition, V is Killing except in the set
{ry — %(r; —ry ) <r<ry — %(r; —ry)}. Let w? = 4trg(1 — )/ r. Notice that while u — oo as one
approaches the event horizon, Z is continuous up to the event horizon due to the following (however, Z
is not C! and hence its deformation tensor is not continuous up to the event horizon):

Proposition 30. In the Kerr (t*, r, 0, ¢*) coordinates,

2r —2M

2ry —2M
Lz(l—u)aﬁ—(l—m( )a

In the null frame near the event horizon in Section 2.3, we can write

L=L"V+L P+ LAE,, where|L%) < C(1 - p).
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Heuristically, we want to show that in the region {r > r, },

/ JZV (@)l > 0.
TeN(rzry ) i

Moreover, we would like to have

2 2
u-+v
/ Jlf’wz(tb)n% zf uZ(LCI))Z—i-vz(LCI))Z—i-(u2+v2)|Y7CI>|2+( > )cb2
=.N0{r=ry) o Jsinzry) r

These are true modulo some error terms that can be controlled:

Proposition 31. We have

2 2, .2 2, 2.2 2 (W HV o
/ WA(L®)? + 02 (LD + @ + o)) VO + (5 | @
SN{rzry ) r

gcf JHZ’wZ(CD)n’ér+Cf

Proof. The proof is analogous to that in Minkowski spacetime [Morawetz 1975] and Schwarzschild

IN (@) +C*r? / TN (@)nf, .
Zfﬂ{rfr;}

T

spacetime [Dafermos and Rodnianski 2009]. Recall from the latter that on Schwarzschild spacetime, on
at slice,

z
&) u(@)nk,

1 2tr* (1 —p) r*(1—p)
= m(:ﬁ(up)z +u(LD)? + W+ )| Vo) + Tc1>a,c1> — fqﬂ).
Now, since ¢ and r* are stable under perturbation on {r > r,, — (r,, —r;)/4}, we have, on this set,
z 1 2tr*(1 —p) r*(1—uw)
") u(@nky > ﬁ(1)2(14c1>)2+u2(Lc1>)2+(u2+v2)|Y7<I>|2+f<I>8t*<1>—f<p2)

— Cer (W + 2 (VD) + 1 d?).

We now cut off ®. Define ® so that it is supported in {r > r, —(ry, —ry)/4} and equals @ in {r > r, }.
All the error terms arising from the cutoff will be controlled using the red-shift vector field:

. 1 . . .
TZ0% ($ynh z[ (vz(Lq>)2+u2(Lq>)2+(u2+v2)|W¢|2)
./zr " Z Sen(rzry —(ry —r)/4 V11— 1

2 (1 — 1/2}\ . *(] — 1/2}\ R R
L Sl DR P S Sl DR CHRPORNE YO SRR X SCINPEY Sy
r r

The term
2rE(l — )%, .
f M@gt*q)
e N{r=ry —(ry —rs)/4) r
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is to be handled by two different integrations by parts. Recall [Dafermos and Rodnianski 2009] that on
Schwarzschild spacetimes we have
2

t8,d =vLd+uLd —ro, & and 19,d= r’—*(uL&n —uLd) — i—*a
S S

®.

r's
Therefore, upon integrating by parts, we have on Schwarzschild spacetimes that

il — w2, .
/ rsd = 450
SNfr=ry —(ry —ry)/4) r

*
_ / ((1 — WP S WLE +uLd)d + Lo (1 - M)r(r*)z)ciﬂ) 6 de dr*
BN{rzry —(ry —ry)/4} r
* . A 1 *\2 N\
(1— ,u)r2<r—5(vLCD +uL®d)P + (5 (rsz) + r_5>q>2) dé d¢ dr*.
r r r

/zm{rzr;—<r; —r)/4)

Notice that in the equation above, we suppressed the volume form in our notation in the first line, while
when we write in coordinates as in the second and the third line, we write out the volume form explicitly.
Alternatively, we have

tri(l— w2,

/ ®9, D
Z.N{rzry —(ry —r4)/4) r

* £ 2 2 A
:f { 4}((1_M)FZ%(ULQ_ML¢)¢+%E)’*((1_M)r(t*)z)d)z) dod¢dr*
EN{rzry —(ry —ry)/

1) -, .
> @)d@dd)dr.

* A A A
(1— ;L)r2<t7(vLCD —uLd)d +

/Erﬂ{rzry—(ry—r+)/4}

We would like to imitate this integration by parts on Kerr spacetimes. On the domain of integration, we

have
t9,® =vL®+uLd —rio,; P, (10)
" t R R 2,
19,® = — (LD —uLd) — —d,: d. (11)
s s

The volume form on a constant ¢* slice on a Kerr spacetime is close to that on a Schwarzschild spacetime,
including in the region being considered. In other words, for r > r, — (r, —ry)/4,

dVols, = (r*(1 — )~ "? 4+ 0y (€)) dr dx*d x5.
Moreover, for r > r, — (ry, —ry)/4,

Oy = (1L =)+ O1(er ).
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Therefore, using (10), we have
/ tril—w'? .
S N{rzry —(ry —r1)/4) r

f ((rri+0() (WLO+uL®) P+ (18, ((1—r (rHH + 0(€)) ®?) drdx*dx"®
SeN{rzry —(ry —ry)/4}

_/E (I—M)l/2(< +0(er‘2)>(vLcI>+qu>)q>+<;( P _2))q>2)

Nrzry =(ry —ry)/4}

d9, d

Alternatively, we can integrate by parts after using (11):

3 =)'

Lm{rzr;—(r;—u)/zt} r
(1" + 0() (LD —uL®) + (50,((1 — w)r (1)) + 0(e)) &)

Cbat*

/Efﬁ{rzr;—(r;—r+)/4}

" t* 2 R
/ (1—,u)”2<(t—+0(er ))(qu>—qu>)<1>+( « ) + O(er ))qﬂ).
S N(r2ry —(ry —r4)/4) r 2

Therefore, we have

f ANCUS
Y

1
>
- L,ﬁ{r>ry—(ry—r+)/4} 2% l_ﬂ
26r%(1 1/2 . 172
+ Mcpaﬁap — & — Cer 2((u*> +v¥) (D)% + t*d?)
r r

1 207 AN2 L 207 A2 2, 2N w2
> WH(LD)> +u*(LD)* + (u” +v2) |V D)
/Em{rzry—vy—u)m} V=

WHLD)? +u*(LD)* + (u> + )|V %)

*(1 — 1/2 1 1 1/2
AW ré urdyd s L R C DRSPS
r 2 r2
(1 — )1/2 R )2 .
—i—i(vLCD uL<I>)<I>+§( ) — Cer 2((u* +v¥) (D)% + t*d?)
I’

r

>c(/ p((WL® +uL®)>+ (vLd — uLd)?)
N{r=>ry —(ry —r1)/4}
R R i R P SN R
F(1— @) (LD +uLld+ 582 + WL —uLld + )2 + 202 + )|V
r r
— Cer 2 ((u® 4+ v2)(DD)? + t*ci>2)>, (12)

where the last line is obtained by first completing the square and using ¢ < 1 — u < C in this region
of r. Let us for now ignore the error term and look at the other terms (which are manifestly positive).
By exactly the same argument as in [Dafermos and Rodnianski 2009], these positive terms provide good
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estimates:

/ w((WL® 4+ uL®)> + WLd — uLd)?)
SeN(rzry —(ry —r1)/4)

& WL 2 LAY NI
—I—(l—;L)((vLCD—l—uLd)—i——CD) + WLd —uLl+ — ) +2u> +v )|V D >
r
ZC/ (PLEP +2Ld + (2 4 TP+ 62)
SN {rzry —(ry —ry)/4}
+Ce/ r (W +07)(DD)? + 1+ D).
Se{rzry —(ry —ry)/4)

See [Dafermos and Rodnianski 2009] for the proof. This together with J ,iv (<i>)n’§r bounds the error term
in (12):

/ r 2 (U + 02 (DD)? + t9?)
S Nlrzry —(ry —ry)/4}

A . R 20,2,
< Cf <U2(Lq>)2 + (LD + (> + D) PP+ ‘1’2)
ZeN{rzry —(ry —ry)/4} g

+cf (Lb)?
Y N{r>1/4}

<C < 2(LE) + 1P (LE) + P+ )| VD +“ +” CDZ)

L,ﬂ{rZrY—(rY—r+)/4
+C/ IY (®)nly.
X
gc(/ w((WL® +uL®)? + (LD — uLd)?)
S N{r=ry —(ry —ry)/4}
2 s Tg a2 2 s 1T N2 2, 2w A2
+(1—M)((UL¢+MLCI>+—©> +(qu>—qu>+—cb) 120+ D)V ))
r r
+C / TN (@) .
o

Therefore, if € is chosen to be small enough, then (12) implies that
/ JZ (d)nl + / JN (@,
o P
u? +
zc/ ( 2L + 1AL + W + D)V + qﬂ) (13)
ScN{r=ry —(ry —ry)/4}

We note that ¢ here is independent of the choice of r, . With this bound we would like to estimate
sz d(t,r)2. Using (13), there exists a 7 € [y, ry, + 1] such that

/CIJ(I,F)Z:/ d(r, 7)) <Cr? / JlLZ’“’Z(dA))n% +/ TN @)k ).
s? s? . ’ . ’
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Then for every r € [ry, ry ], since ®(7,7) — P(7,r) = f: d,®dr, we have

/ ®(r,r)? < / Oz, /)2 +F—r) T (®)n
s? s? NI, 7] i

< cf TN (@)nf, +Cr—2(/ JE (@), +f J,iv(ci))n’i)
ZN{r=ry} P X

Now we need to obtain estimates for ® from that for ®. It is obvious that

(14)

2 2, .2 2 2, .2 ) UV
/ (PLOP + 1P (L) + (4 + 0D VO + = 0?)
e N{r=ry '} r

27 AN 2y A2 2 e WV o
5/ <v (LP)" 4+ u” (L) + (u” +v7) |V P +—2<I>)
. N{r=>ry ) r

201 AN2 L 207 A2 2 N vH 2 _“2—'_”2”
< (v (LD) +u”(LP)" + (u” +v)|VP|* + —5— >
S N{r=ry —(ry —ry)/4} "
and

Z A~ A
/ TZW(D)nk, + fz TN (@)nk

5/ JMZ’“JZ(CD)n’gr—I—f J/iV(CID)n;T—i-Cer
X P z

(where we have used Proposition 30 to show that the u? factor comes with a factor of 1 — )

< / JMZ’“’Z(d))n;T+ / IY (@), +Ct? / TN (@)n,
T poe =

Nfr<ry}
+COry — r+)( / JZ (d)nk + / 7 (&))n’ér)
PN X

< /2 JZ (@)nt + fz IN (@ +c7? /E TN (@)nk

rm{rfr;}

+%(/ J/Lz’wz(é)n’gr—l—f Jliv(é)nlgr) (15)
po P2

N 2 2
J, (@5 +Ct / P

N{r=ry} Z:N{r<ry}

for r, chosen to be sufficiently close to r,. Then
stttk [ o,
T Zf

z
5/2 JEv (<I>)n’§r+f J;LV(CD)n’éT—i-Ctz/ @ . O

po Erm{rfr;}

Remark. From this point onward, we consider r, to be fixed. We note again that r, is chosen so that
(5) and (15) hold.
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Remark. The proof of the proposition above in particular shows that
/ Jf’wz(cb)n’)ér +Cr2/ JY (@)nk >0.
. .N{r<ry}

To use this proposition, it is helpful to have a localized version of ®. This follows [Dafermos and
Rodnianski 2008; 2009]. The idea is to use the finite speed of propagation and cutoff & outside the
domain of dependence. Focus now on the time interval [t/, t]. Take G to be any smooth function
agreeing with G on the domain of dependence of the region (t* = 7, r < t/2). Let &)(‘L'/) = x®(7’) and
8,*53(r’ ) = x93+ (t’), where x is a cutoff function identically equal to 1 for r < 1707 and compactly
supported in r < 9 167 - The region for which yx is one is inside the domain of dependence of the region
t*=rt,r <t/2) 1fr <7t < (1.1)7'. We solve for Dng> =G.

With this definition of ®, we have two ways to estimate the nondegenerate energy of ®:

Proposition 32. We have

f Jliv(cf))n’éf/fc fz I (@)

.[/

f IV (@ < C? / J,iv(d>)n’§f,+C(T/)_2( / I (@), + /
o oN{r<ry} o X

T

J/f’wZ(QJ)n‘)ér,).
Proof. The first part is an easy application of Proposition 21:

[ s, <c | (D®Y + (7)) 20?)
o S N{Rr<f)

§C/ (D®)* +r 2% §C/ TN (@)nk .
Y N{R<r<=t1'} o ’

Following (14), we have

/ fDZSC(/ shom, + [ qﬂ).
Er/m{rfr;} E,/ﬂ{rfr;} T Er/ﬂ{r;frfr;r}

Using this and Proposition 31, we have

/ I (@)nf
<c f (DD + (1) 2?)
/ﬂ{r< '}
<C / (D®D)* + @?)
Son{r<ry}

+C(f’)_2/ (1L ®P + 0 (L0 + (4 + )| Y B +(u e )**)
D) /ﬁ{r;<r<if/}

§C2/ Jliv(¢)n’§/+C(r’)_2(/ J[f(cb)n’g,+/ Jlf’wz(cb)n’é,). 0
Zon{r<ry} T ¥ T y T
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The cutoff procedure above will also allow us to localize the estimates for the bulk term:

Proposition 33. Ler G = G| + G, be any way fo decompose the function G. Then for v’ <t < (1.1)7/,

we have

(1) the localized boundedness estimate

/ TV (®)n +f J;V(cb)nng/f KN(®)+f/ KX ()
=.N{r<t/2) ’ (', 7) ’ R, O)N{r<ry} R(r',ON{r<1r7}
T+1 1/2 2
5c< / J/iV(CD)n’grﬁ—( / ( / . G%) dt*)
o =1 \JSxn{r<5yr%)
+/f G2+Z/f r1 (0 Gy)?
@l(r’—l,r+l)ﬂ{r<7t* R('—1,t+D)N{r *}
2.
+  sup f G» )
trelv’'—1,7+11 I B n{lr —3M| < § MIN{r < 5%}

(2) the localized decay estimate

/ T (®)n + / TN (@)nky, + f f KN (®) + / / KXo(®)
S.nir<it) T Jueo Rz DN <ry) R D= 517
SC(tz f J,f*N’wZ(cb)ngT, +C / I (@)nf )
o SoN{r=<ry}
T+1 1/2
([ (L) @) ] i
r—1 e N{r< 5%} Rt =1+ DN{r<151*}

+Z// r @G>+ sup / G%).
R(r'— 1T+ DN{r<351%) e[t/ 11+ 11 J T n{Ir=3M|< § MIN{r < 751%)

Proof. Applying Proposition 28 to the equation [, ® = G, we have

/ TV (®)n +/ J;V(cb)nng// KN(&>)+// KX (@)
=N{r<it) ’ ¥(t',7) R, O)Nfr<ry} R ONfr<ir*}
i T+ N2 N2 i
ol e (L) ) )0
o '—1 PP R(r'—1,7+1)

1
> AU | G%>.
m=0 R(r'—1,7+1) tre[t'—1,t+1] E,*ﬂ{lr—f&leéM}
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Since by the finite speed of propagation, ® = ® in {r < %t*}, we have

/ T (®)n +/ J/iv(®)ng€++/f KN(CD)—I—f/ KX0(®)
ZeNlr=37) IR A ON(r=ry) R, ON(r=ir)
i o1 A2 N2 ~
SC(f J,iv(CD)n;T/—l—(/ (/ G%) dt*) +// Gt
o /=1 P R(z'—1,7+1)

+Z /f FH @G+ sup / Gg).
R(r'—1,7+1) e[t/ —1,t+1]1 Znflr—3M|< i M)

Now, we choose a particular G. Define G to be G for r < llot*, and O for r > lg—ot*. It can be easily
shown that one has the bounds

} m v <k m
Gl =Y |() o] = e I a6l for o= =
k=0 k=0

Therefore, we have

f T (@)n +/ J,jV(q>)n{;€++/f KN(cI>)+f/ KXo (®)
Erﬂ{rg%r} ! H(t',T) R, T)N{r=ry} R(t’,7)N{ r<lt*}
N T+1 1/2 5
sc(/ Jﬂ(d>)n;,+(/ (/ 6t) ")+ [[ G
o ’ '—1 M Ban{r<g5r+} R('—1, T+ DN{r< 5%}

+Z / / ARG | G%>.
R(x'— 1T+ DN{r < 551%) reelt/—1,t+11J Sen(lr—3M|< i M)

We can now conclude the proposition using Proposition 32. O
We can remove the degeneracy around r ~ 3M using an extra derivative.

Proposition 34. Let G = G| 4+ G, be any way to decompose the function G. Then for v/ <t < (1.1)1/,
we have

(1) the localized boundedness estimate

/ / KX'(®)
Rt ON{r<11*}

N T+1 1/2 2
<C(Zf JY @p et +Z(f (/2 y }(a Gl)) dt*)
I r<7t*
+ // amGl) + // 1+3(872G2)2
mZ:o R L+ DN{r< 5517} Z Rt =1, T+ DN{r<21%} !

1

+ sup /
rrelr'—1,t+1] ,— J S N{lr=3M|< g MIN{r < 151%)

(a;’:Gz>2> :
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(2) the localized decay estimate

/ / KX (@)
%(f/,r)ﬂ{rsét*}

1
<C(r‘22/ Jz+1vw (G4 c1>)n2 +CZ/
m=0 x

T+1

! 12
2
+C(Z</r’—1 </2,m{r5190t }(8 "Gv ) dt +Z /f%(r’—l +DNr<S (8 o

+Z / / r@nGy) + sup Z f o G2)>
R =1L T+DO(r=1507) rrelr'=1o+1] ) 0 J B N{Ir=3M|< g MIN(r < 1%}

Proof. We repeat the argument in Proposition 33, using Proposition 29 instead of 28. O

UNCHE VIS )

o N{r<ry}

When using the conservation law for Z, we can ignore the part of the bulk term that has a good sign.
Definition 35. Let K2 (®) = max{K 2% (), 0}.
Using the conservation law for the modified vector field, we have a one-sided bound:

Proposition 36.

/ JMZ””Z(CD)n’gr + / JZV (@)l
>, H(t',7)

SC(T/)Z/ J/f’(cp)n’gr, +/ ]MZ,wZ(cp)n’gr,
N{r=<ry o

+// Kf’wz(q>)+‘// WL®+v’Ld — twd)G|.
R(t',7) R(t',7)

Remark. In the proposition, the left-hand side is not claimed to be positive. Note, however, that the
right-hand side is positive by the remark on page 591.

Remark. We note also that

/ JZV (@)nl, >0
FH(t',T)

because Z and ngﬁ are both null and future directed and w? = 0 on the event horizon.

To show that fZ, JMZ’“’Z (CD)n’)ér is almost bounded, we will have to show that

N
/ TN (@l
oN{r<ry}

in fact decays:
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Proposition 37.

/ ERACOLSS
SeN{r<ir*}

<C?*t? IN (D) Ct? JZw% ()t

1.n- 1.1 2¢

+Cr2 // Kf~’”z(q>)+Cr—2(/f (u2L<1>+v2Lq>—;§wc1>)G’
R((1.1)-27,7) R((1.1)27,7)

T+1 1/2 2
+c((/ (/ G) “ar) +// G%)
1) 2—1 M Banfr< ) (D 2e =1L r+DN{r=551%)
+C(Z // rI G,y + sup / G%).
m—0 Y JRLD 2= Lr+DN{r< %) rel(1.)2r—1,7+1]J T N{lr=3M | < s MIN(r < 517}

Proof. By Proposition 33(2) applied to the #* interval [(1.1)"'z, 7], we have

// KN(<I>)<Ct_2/
R((1.1)" 1, t)ﬁ{r<ry Zan-le
(s ] TS n)

R 17— 1,+1)m{r<4*} t*e[(l‘l)_'rfl,r+1] EpN{lr—3M|<g M)

By taking the infimum there exists 7 € [(1.1)~'z, 7] such that

z
JEZANWT (@)l +C? IV (D)nk
" Zny-ls N Ziy-lz
2(1 -1 ﬂ{r<rY}

/ JY @)k <cr! // KN (®).
Z:N{r<ry} RAD e, o)N{r=ry}

Hence,

N
/ J, (cb)n’;f
iN{r<ry}

§Cr‘2f JMZJFN’“’Z(CD)n’)ém)_I +C2r_1/ T (®)ns
P ’ T )

- a.n-le
an-le N{r=<ry}

1
cr! (Z // rIOmG)? + sup / (;2).
m=0 %((].1)*1t—l,r+l)ﬂ{r§%t*} rre[(1.D)~lr—1,714+1] E,m{|r—3M|§%M}

We apply Proposition 33(2) to the ¢* interval [T, t] and use Proposition 28 and 36, getting

a.n-1¢
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/ (@,
X N{r=3r*}

< C(tZ/ J,erN’wZ(CD)n’;f—i-C/ TN (@)ns,)
DE P

T fm{rfr;}

1
+C<Z / / renG)2+ sup / GZ)
m=0 ¥ SR e —Lr+DN(r< 1507} el =1 r+1] Y B 0lir=3M|<g MIN(r= 1)

<Ct? (/2 JMZJFN’wZ (q>)nl£f+/ J’LZJFN’wZ(d))n%(l»lrlr)

T E(1.1)’1‘(

+c2T—1/ V@
Zany-1.NMr=ry) a.n-le

1

+C(Z // rIH Gy + sup / G2>

me0 Y YRAD T =1 e+ )0fr < 551} rel(1.)~le—1,041]J T N{Ir=3M | < L MIN(r< 317}

§C271/
Z;(1‘1)_

A
+C17? /f K2 (CI))+C‘(_2|/:/ W’ LO+v* Ld—iwd)G]|
R(1.D"7,7) R(.D"7,7)

1
+C(Z / / r @ G)2+ sup / GZ).
0 Y IR LN ) rrel(L) " t—1,0+1]J ZpN{Ir=3M| < g MIN{r < 15}

a.n-l¢

N U -2 Z+N,w? U
Ju (CD)”E(H),]T"FCT /2 gy YT (D),

1,N{r=ry} an-lr

Replacing [(1.D)~ 'z, 7] with [(1.1D) 727, (1.1)"!z], we get also

/ TN (@)nk
)

1
(1.1)—1fm{"§§t*}

< c ! /
(i

LCo? // Kf’wZC(CD)-i—Cf_Z)// WP Lo+0’ Lo~ Lwd)G|
R((LD 27, (1) 717 R(AH72r, D7)

1
+C<Z // r @ G)?
=0 R(LD2r—1, (LD e+ DN{r< g%}

+ sup f G2>
tre[(1.1)"2r—1,(1.1)"1r+1] Y Z=N{lr—3M|< s MIN{r< £51*}

N 7 -2 Z+N,w? H
JM (<I>)nz(l‘1r2r +Ct /z JM (P)ny,

1.)2¢
(1.02¢

-2 N{r=ry}

Therefore, plugging this result into the previous, we get
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/ (@,
ZN{r<ir*}

— _ z
<C*t7? / @ f JEU (@)nk
-2 Nr=ry} =

1.H=?r 1.H2¢

tCr2 // Kf’wZ(CIJ)—I—Ct_Z‘// (uzLdH—szCD—iwCD)G‘
R((1.1)~27,7) R((1.1)~27,7)

< /f 1+5(a )
R((L.D 201+ D)N{r=151*}

0
+ sup / Gz). U
rre[(1.1)21—1,741] S N{lr=3M|< g MIN{r < F51%}

Proposition 37 immediately gives control over the nondegenerate energy and conformal energy using

a.n-lz

Propositions 31 and 36, respectively:

Corollary 38. Forany y <1,

z
/ TV (@ +Cr? / TN (@)n,
P ZN{r<yt}

< c( / Jﬂszz(qp)n’gm +C / Ty (cp)ng0
)

70 z 70

+ff Kf’wZ(CD)Jr‘// (u2L<D+v2Ld>—%wd>)GD
R(70,7) R(70,7)

+C<Z /f ' OMGY? +  sup / (z*)2G2>.
R(ro—Lr+DN{r=150") rrelro—1,7+11J S N{Ir=3M|< EMIN(r < 517

Proof. By Proposition 31,

= / IN @k <C / JENYS (@) 4 CPe? / N (@),
ZeN{r=yt} P ToNfr=ry}

Therefore, by Propositions 36 and 37,

zZ
/E T2 (D)nk +Ct? / TN (@)nf,

T.N{r=<yt}

§C(f TN (@l +f JZ0 (@l +// K2 (@)
Tin-2e a.n=z S a.n=tz R((1.1)~21,7)
+ ‘/[ WL+ v LD — %wfb)GD
R((1.1)27,7)

1
+C‘L’2<Z // rIOmG)? + sup f G2).
0 Y YR 2T —1,7+1) rre[(1.)2r—=1,7+11 Y S=n{lr—3M| < MIN{r< 5%}

We then use the same estimate for [(1.1)~*z, (1.1)~2¢], [(1.1) "%z, (1.1)~*7], .. .. O
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The term [f;, . K f’wz (®) can be controlled. Here is where the control of the logarithmic diver-
gences from the red-shift vector field is crucially used.

Proposition 39. We have

/f K2 (@) < C// £ Y (P)nk +r4d>)+e// KN ().
R(t’,7) R, )N{r>ry } R, )N{r=<ry}

Proof. See [Dafermos and Rodnianski 2008]. Il
The bulk term arising from the inhomogeneous term G can also be controlled.

Proposition 40.

V/ (uzl_JCD—szLCI)—}LwCD)G‘
R(70,7)

<o [[ K@)+ [ (KN (@)
Rz, 0)N{r<1r7) Rt N (r<ry )

+8 sup ( / JEN (@)l 4 (1)} J,ﬁ’(cp)n’;r*)
nfr= L) SaN{r<2 M)

t*€[1o,7]

T 172 2
+C@)" IZ// (t*)2r1+5(a;’:G)2+C(5’)1(/ (f rZGZ) dt*)
R(zo, TIN{r<1r*} 1 N Zxn{r=1r)

+C@)7" sup / (") G>.
o N{ry <r< L My

t*€lt, 7] J X

Proof. Two regions require particular care. The first is the region {r < r }, since the coefficients of the
vector field Z are not bounded as r — ry. The other is the region {|r —3M| < %M }. This is where
trapping occurs and where the integrated decay estimate degenerates or loses derivatives. We first look
at the region {r < r,} using the null frame:

/f WLP+v°Ld — twd)G
R(ro, T)N{r=ry}

SC//%( . _}((f*)2+(r§)2)(lvvq>G|+(1_“)|V?¢G|+(1—M)ZIVEA<DG|)

A
(using Proposition 30)

< c// (Y (lloglr — 14|21V ®G| + V0G| + Y |V, BG)
R(ro,T)N{r=<ry} A

= (2 (lloglr — 74 |1'(Vy @) + (V0> + 3 (Vi ®)?)
R(t0,T)N{r<ry} A

| (G
R(ro,D)N{r=ry}

= ey @+ [ ("G
R(t0,T)N{r=<ry} R(to, T)N{r<ry}
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For the region {r, <r < %SM }, where trapping occurs, we integrate by parts in ¢* so that the bulk term
does not have 9,+®, which cannot be controlled by the integrated decay estimate.

|f/ (u@cb+v2Lq>—§wq>)G‘
R(v0,1)N{ry <r<E M}

§C// (t*>2|ar<1>G|+<r*>2|<1>aﬁG|+r*|<I>G|+/ r2|d>G|+/ 20G|
R(r0.7)N{ry <r<¥ M} ol .

Xy

12 1
o( / f (@ + 0,0 <§ ! f / (t*)z(at’i’G)2>
m(TO,T)Q{YS%M} m—0 Qt(ro,r)ﬂ{r;grgz—gsM}

+a/f T2 TN (®)ns +5’/
— — 25 T
Erm{ryfrfryffM} ETO

+C©)7 ! sup / (t*)*G?,
Nfry <r<2 M}

t*€l1,7]

1/2

A

2 JN (@)nk
- 25 0 n Zy
Nry <r<% M}

using Proposition 21. We then move to the region {%M <r< %t*}:

‘// U?L®+1’Ld — twd)G
R0, DHNF M<r=;1*)
= C// ((t")?[0®| + 1*|@))|G|
R(w0, NP M<r<31*)
1/2
R(ro, DN E M=r<tr+) ‘
12
X (/./ (r3+5 4 (t*)2r1+6)G2)
?]t(ro,r)ﬂ{%Mfrf%t*}

12
R(ro, DN E M=r<ir+) '

12
Rz, HNZ M=<r=<1r*}

Finally, we estimate in the region {r > %t*}:

‘f/ W2L® +v2Ld — Luwd)G
R0, DN{r=11%)

172
A
<c s (f st om w7 [ st )
t*elr, 71 \J S N{r=>1r#} ZN{r<ry}

T 12
x/ (/ r2G2) dr*,
7 Nfr=11%)

where we have used Proposition 31. The proposition follows from Cauchy—Schwarz. U

We have therefore proved the following decay result associated to the vector field Z.
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Proposition 41. For sufficiently small positive § and 8 and 0 < y < 1, there exist ¢ = ¢(8, y) and
C = C(6, y) such that the following estimate holds for any solution to L, ® = G:

c/ Jf’wz(¢)n’§r+rzf JN (@),
. SN(r=yr)

< C/ JMZ-FCN’wZ(CI))I/LérO +C // t*r_1+5KX1(CI))
Sy R(70,7)

+C¢ f / ()2 KX (D) 4+ C(8' + €) / / ") KN (D)
R(zo, TIN{r<%1*} R(r0,T)N{r=ry}

T 1/2 2 1
+C(5’)—1( f ( / r2G2) dt*) +C(5’)—12 / / )01 G)?
0 \JZxN{r=1r%) 0 ¢ R0, ON{r<151%}

+C@Ht sup (t")2G2.

t*elro. 1] J Senfry <r<B M)

10. Estimates for solutions to L1, ® =0

From this point on, we consider [l,, ® = 0. In this section, we write down the energy estimates derived
by Dafermos and Rodnianski [2008]. These will be used in later sections.

Proposition 42.
7’ f L@y te / JZN (@)t
ZN{r<st} PR
2
z
<Ct’ Z(/ VA AT IS +/ JliV(B,"fQD)nlém),
m=0 Y 1 Zr

Proof. We introduce the bootstrap assumptions:

2
r2/ I (@)nt —|—c/ JENY (@)nl §A2r’72/ JERENOT Gyl | (16)
Efﬂ{rféf} ’ P ! m=0 2:'[0 K
2
z z
1:2/ 1 Jliv(at*QJ)n%r—i—c/ JENT (@)nl §Ar1+’72/ JEreN @ oy, . (7
Erﬂ{rfzf} X m=0 21'0

Here we think of 7 as a small positive number. We divide the interval [y, 7] dyadically into 79 < 7] <
<11 <1, =1 with 7,41 < (1.1)7; and n the smallest integer for doing such division. We then
have n ~ log|t — t’|. We can now apply Proposition 33 on the intervals [7;_1, 7;] and use the bootstrap



602 JONATHAN LUK

assumption (16):

// KXo () + f/ KN (@)
R(ti—1,T)N{r<31*} Rty w)Nr=ry}

< C(ri_Z/ ]5,102((1))11% -+ C/ JIILV(CD)H% _ )
b fi-1 S._ Nir<ry} fi-l

i1

2
< CA Z / Jlf+CN’wZ(8f2d>)n’§T .
m=0 Z‘0 0

Similarly, we can apply Proposition 33 on the intervals [z;_1, 7;] for 9,® and use the bootstrap assump-
tion (17):

// KX0 (3, D) + // K™ (8;+®)
R(Ti_1,T){r<51%} R(Ti—1,T)N{r=<ry}

< C<Ti_2/ _]Mz,wz (al‘* (D)nl;: + C/ J:LV (at* q>)nl£ >
. i Tq_ Nir<ry} K

i—1

2
<CAr ™ Z/E JIHEN oty .
0

m=0

By Proposition 29, we have

1
—1+6 - X N
//% K l(at*CD)gCZf VAKCHETISS
i—1,Ti) m=0 PR

By Propositions 29 and 34, we have

// r—H-(SKX](q))S C// le (CD) +CTI-_1+6 /f KX| (CD)
R(ti_1,7) Rz, T)N{r<41%} R(zi—1,1)N{r= %1%}
2
<CA7; "y / JrEN oyt
—0/%x
Applying Proposition 41, we get

c f JEN (@)l 2 / IY @)k,
T Efﬂ{rf]/‘f}

< cf JEreN et @l +c// rr PR (@)
e R (t0,7)

+cs // ()2 KX (@) + C (8 +¢) / ()2 KN (®)
R(zo, TIN{r<1r%} R0, IN{r<ry }

n—1 2
< (C + <C +CA+CA* (28 + e)) > rﬁ> > / TN oy,
i=0 7 m=0"%%
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<(C+n NC+CA+CA* (28 —i—e))r”)Zf JEHENWE Gy D)ty .

Now take A large, € =1/(4C) and 8’ = €/2, we improve (16). Applying Proposition 41 again, this time
to 0, P, we have

V4
c/ JMZ"” (at*q>)n’§r+12/ Jli\’(at*q))n‘gr
po Z.N{r<yr}

< C/ JlfﬁLCN,wZ (at*q))l’lg:ro +C // [*r71+5KX1(8[*CD)
z

70 R(70,7)
+C8/f/ (") KX"(at*CD)+C(8 +¢€) // (t*)ZKN(B,*QD)
%(ro,f)ﬂ{rglt*} R(z0,T)N{r=<ry}
n—1
(C+CZT,+CA(25’+6)Zr )Z/ JEHENT Gy Oynly
=0

<(C+Ct+CA(28’+e)tl+”)Z/ JEHENT P)n .

Now taking A large, 8’ = € and ¢ sufficiently small, we also improve (17). O
In particular, the theorem of Dafermos and Rodnianski [2008] is retrieved.

Corollary 43 (Dafermos and Rodnianski). Suppose Ug, ® = 0. Then for all n > 0 and all M > 0 there
exists ag such that the following estimates hold on Kerr spacetimes with (M, a) for which a < ay:

(1) The boundedness of nondegenerate energy:

/ J (@) + / J (@), + / / KN (@)+ / f K*(@)=C f VARCOLISE
T _ 70
z, ¥(70,7) R(t0,1)N{r=ry} R(t',7) PN

(2) The decay of nondegenerate energy:

1
12/ Jliv(QD)n’gr—i-c/ JILZ‘LN’“’Z(fD)n’gT SCr1+”Zf JZ+CN“’ (o CI>)nE ,
2 N{r<yrt} po

2
12/ Jﬁ’(@)n’ér—i-c/ JEN (@)l <t Z/ T AR CHE VI
X.N{r<yrt} PN

(3) The decay of local integrated energy: For v/ <1 < (1.1)7/,

2
f/ KX°(<I>)+// KN(CD)SCT_2+"Z/ JZ+CNw o c1>)nE ,
R, DNfr<ier) R, ONr<ry ) 0 T
3
// KXI(CD) SCT_2+n Z/ JZ-‘rCNw (a CD)nE
R, TINfr<5r*) p—— >
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Proof. Part 1 follows directly from Proposition 25. Part 2 contains two statements. The second is a
restatement of Proposition 42. The first is evident from the proof of Proposition 42. Part 3 again has
two statements. For the first, we revisit the proof of Proposition 42. The bootstrap assumptions are true;
hence it holds. For the second statement, we note by comparing Propositions 33 and 34 that K X' can be
estimated in the same way as K X° except for an extra derivative. The second statement in 3 can then be
proved by rerunning the argument in Proposition 42 with an extra derivative. O

11. Estimates for ¥ ® and elliptic estimates

Away from the event horizon, we can control all higher order derivatives simply by commuting with 9«
and using standard elliptic estimates. We write down a general version of the estimates in which we have
inhomogeneous terms.

Proposition 44. Suppose Uy, ® = G. For m > 1 and for any a, we have
(1) the boundedness of weighted energy,

m—1 m—2
/ r“(Dm@)zgca,m<Z / r Iy @ oms + / r“(DjG)z),
Erﬁ{rzr;} j=0 P j=0 P

(2) and the boundedness of local energy, that is, forany 0 <y < y/,
m—1 i
/ re(D"®)? < ca,m,y,y,(z / r* N @ dynk +7oF2 / rP TN (@)nk
Y N{ry <r<yt*} =0 Y N{r<y’t*} ’ poe ’
m—2
Y|
j=0"%

Proof. This is obvious for m = 1 (even without the restriction r > r’). We will proceed by induction.
Take § < (ry —ry)/4. Assume

m—1 m—2 ) m-—3
> / r® (D’ @) §C<Z f r* N @l omb +3° / r"‘(DfG)z).
j=1 .N{r=ry, —26} =0 > =0 I

We want to show

m—1 m—2
/ ra(qu>)2 < C(Z/ rajliv(at]*QD)n’é + Z/ r“(DJ'G)2)’
cN{r=ry =6} j=0 P ! j=0 T

which would then imply the conclusion. Denote by Ag, the Laplace-Beltrami operator for the metric

r“(DjG)2>.
}

Nr<y’t*

gk restricted on the spacelike hypersurface on which ¢* is constant. Since 9;+ is Killing, the operator is
defined independent of *. Then we have
k+1
(A, DF1®| <C D |D/ @)
j=1
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Denote by V the spatial derivatives with respect to the spatial coordinate variables in the Schwarzschild
(t5, 75, x}q, x%) coordinate system. On the set {r > r, — (ry, —ry)/4}, Ag, is elliptic and therefore
controls all spatial derivatives:

f r*(D"®)*
cN{r=ry =6}
<C / r*((Agy D™ 20)? + (D" d)? + (317 VD)2 + (37 D)?)
Erﬂ{rZr;—28}
m—1
<C / re ((szAgk ®)2+ > (DI @) + 17207 4+ (97 V&) + (3] <1>)2>
N{r=ry =28}

j=1

The last two terms are obviously bounded by C |, s J /iv (8,’13_l CD)n;T . The second term can be bounded us-
ing the induction hypothesis. The third term can be bounded using the Hardy inequality in Proposition 21.
Finally, to estimate the first term we use the equation [1,, ® = G. Then, by the form of the Kerr metric,
Age®=G—g"" 92D —2g" 9 3,9, ®. Therefore,

/ r()l(Dm—zAgK q>)2
X.N{r>r, —26}

<c| P 9-9) + (D" 2G))
X:N{r>r, =28}

m—1 m—2
< C<Z /Z r% J;,]Lv(atj* Cp)n';;r + Z f ra(DjG)Q.),
j=0""r j=0" %

where at the last step we have used the induction hypothesis for d;« ®. We have thus proved the bounded-
ness of weighted energy. To prove the second part of the proposition, consider the function y (r/t)® (1)
for a fixed time #* = 7, where x : R>9 — R is supported in {x < y’} and is identically 1 in {x < y}.
Now

ey ® = xG 417150, ®+ 1723 @,

where x and )% are supported in {y <t*/r < y’}. Thus, by the estimate just proved,

f ré(D" ®)*
X N{ry <r<yr}

m—1 m—2
<C, (Z/ r*JN (3] @)nk +/ rrie? 4y
P20/ ENlrsyr T Jsinfyrsr<yry) (20 Iy

m—1 m—2
<Cq (Z / r*JN @) ok, + 1P f rPIN (@l +° /
j=0 ZN{r<y’t*} P j=0 Z.nf

by the Hardy inequality in Proposition 21. O

r (D’ G)2)
}

r*(D’ G)Z),

r<y’t*}
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Remark. The boundedness of local energy should be seen as a decay result because for example for the
homogeneous equation, the right-hand side of the inequality decays.

Near the event horizon, higher order derivatives can be controlled by commuting with the red-shift
vector field as in [Dafermos and Rodnianski 2008; 2011]. The computation here will be completely
local, that is, only in the region {r <r, }.

We have the following estimate for higher order derivatives:

Proposition 45. Suppose Uy, ® = G. For everym > 1,

D"®) < C 7y oL Y*d)nk + /
/;],ﬁ{riry( )< < Z /;ﬂr<ry ( )nz Z

(D’ G)2).
Jtk<m—1 XcN{r=ry}

Proof. This is obvious for m = 1. We will proceed by induction. Suppose, for some m > 2 that

m—1

J N qJ vk
Z/);ﬁr<ry (D CD) <C< Z Lﬂ{r<ry J (a ch)nz +Zf

jtk<m—2 X:N{r=ry}

(D’ G)2>. (18)

Since g, (3;+®) = 9;+G, this immediately implies

(8« D" )? <c( / JN(afYkob)n + /
/;Tﬂ{rSr } ' Z . N{r<r,} r Z

j+k<m—1

DjG)2>. (19)

N{r<ry'}

Since [, @ =AG, we have [, ()}<I>) =YG+ O(1)(D?® + D®). Then using the induction hypothesis
(18) (both on Y ® and @), we have

Z / (D’ Y ®)?

ZeN{r=ry}
<c( > / VACES anr Vi +Z/ (D/YG)2+Z/ (Df'q>)2>
Jk<m—2 N{r=ry} XN{r=ry )
< C( > / IN@LY oy + Z/ (DJ'G)2>. (20)
Jtk<m—1 ZN{r=ry} N{r=ry}

Using the null frame {V, ¥, E;, E»},
Oge (D™ 2®) = —4V,V, D" 20 + AD"*® + P D" *,

where P; denotes a first order differential operator. Notice that we also have

m—1
| T (D™ 20)| = [0y, D" 2]® + D" 2G| < C(Z|D/¢| + |D’”2G|).
j=0
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Now using a standard L? elliptic estimate on the sphere, we have

m—1
V2D 2®’dA < C (D"72G)*+ ) (DI ®)>+ (D" 'V;0)* | dA,
S? S? j=0

where we notice that the constant can be chosen uniformly because the metric on the sphere is everywhere
close to that of the standard metric. Therefore, after integrate over {r; < r < r,} and applying (18)
and (20), we have

m—1

f V2D 2 < cf (D" 2G)? + Z(chb)2 + (D", @)%
Z.Nfr<ry} SeN{r=ry} i—0
J
< c< > f JY @l P* oy, + Z/ (DjG)Z). 1)
jtk<m—1 N r<rY} b ﬂ{r<rY}

Combining (19), (20) and (21), we have

(D" ®)? < c< f IY @) *oml + /
»/E,ﬂ{rfry Z XcN{r=ry} ! Z. Z

(D’ G)Z). 0
jtk<m z.N{ r<ry

We show that the currents associated to Y¥® can actually be controlled. Again, in view of the nonlinear
problem, we work in the setting of an inhomogeneous equation.

Proposition 46. Suppose Uy, ® = G. For every k > 0,

/ JY(* o)l + / JN(* o)l + / / KN (Y o)
Snfr<ri) o Juan i R(r, r)m{r<r;}

§C<Z

jAm<k?®

+ @+ JV (3].@ + // DG )
va/;t(r TN r<23M( ( )nz*) Z Rz, T)N r<23M( )

Proof. We prove the proposition by induction on k. The k = O case is trivial because the right-hand side

N N
f ﬂ{r<r+}J @Y D)nk +Z I @)@y

<ry z ﬂ{r<rY}

simply contains more terms than the left hand side. We suppose the proposition is true for k < ko —1 for
some ko > 1. Commuting [, with Y for ko times, we get

ko
g YO0 = ko7 o + 0 ()98- + 0(€) DM+ 0(1) Y DI + Y6
j=1
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We now use the energy identity for the vector field N, that is, Proposition 9 for Y*®. Notice that Y is
supported in {r < r;,r } and therefore each term is supported in the same set. Then

/ N (ronl + / TN (yrodnt, + / / KN (7hp)
S.N{r<ry) " %00 i R(10,0)N{r<ry )

:f J,y(?"ocb)n’g +e/f KY (Yh)
by 0 R(w,T)Nfry <r<ry)

+ // (0 YR D + e YR+ @) <—/<’<° Yiorlo + 0(1) Yo, @
R(t0,T)N{r=<ry}

0

ko
+0@) Do+ 0(1)) DI+ ?"G).
j=1

The crucial observation in [Dafermos and Rodnianski 2011] is that one of the inhomogeneous terms has
a good sign and thus gives

f J;iv(f/koq))n/)ér -I-/ Jliv(l?kofb)n‘gr —|—// KN (7h o) +/f (PRt )2
e *('o) R, ON(r<ry ) A7)

§C<f 7Y Yk"fb)n f/ KN(Yk"CD)—i—e// (DXt )2
X /ﬂ{r<ry} 97{(1' )N{r <r<rY} R(t’, f)ﬂ{r<rY}

oo [ o[ aver)
Rt ONr<ry} R, )N{r<ry) R, )N{r<rf}
k0+l
§C<f IN (PR D)nk: +Z/f (D! ®)? —i—e// (DMt )2
Zon{r<r) Rt O)N{ry <r<ri} Rz, T)N{r<ry}
Sl s ][ aor).
R/, )N{r=ry} R/, O)N{r=ry} %(r’,r)ﬁ{rgr)f}

Using Proposition 44 with an appropriate cutoff, we have

ko+1

2 Il (Do)’
R, )N{ry <r<rY}
ko—1
<C // (@ + JN (@l ok )+ // (DJG))
(Z R ONr<Z M)} % Z R ONr<Z M)}
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Using Proposition 45, we get

ko
> 0'oy
j=1 R(t', O)N{r=ry}

j+m<ko—1 R, ON{r=ry} R(t/, r)ﬂ{r<rY

< ( > / I (). Y’"cb)nE,JrZ/ VGRSV
j4m<ko—1 o0 r<ry b ﬂ{r<ry}
) ko—1
+ Z ff J/iv(('it]*YmcD)nE + Z /f (DJG) )
Jj+m<ko—1 %(t’,r)ﬁ{rE%M} R(T/, r)ﬂ{r<23M

using the induction hypothesis (on 9; ® instead of @) at the last step. Similarly, using Proposition 45,

€ / / (D*+1)?
R/, ON{r=ry}

( // IN@LYm Pl + Z // (DfG)2>
j4m<ko R/, ON{r=ry} R, O)N{r=<ry}
<c6(// IV Yk°<1>)n2*+2/ 1N @0yt
R ON(r<ry) Sonlr<ry)
ko
+ f/ JN(a D)k, + // (DjG)z),
Z R(t’, )N r<22M JXZ(; %(r’,t)ﬂ{rﬁ%M}

where again the induction hypotheses is used at the last step. All these together give

/ TN (@)t + / JNRo)nk + / / KN (Y5 )
pom H(t0,7) R(z0,T)N{r=<ry}

<c( > /mq I LY ot +Z/ I @l @ynt

Jm<ko 2N r<rY
+ / / (@ + 7Y @l oyl )+ / (DIGY?
Z R, )Nr<E M) Z Z

R HNr<E M)

+e // J[f(?koqnn’;*).
R, N(r<ry) '
The proposition can be proved by noticing that

f / INyhoml <c / / KN(hp).
R/, T)N{r=ry} R(to,T)N{r=<ry }
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and absorbing the small term to the left-hand side. U

We now specialize to the case [, @ = 0. The proposition above implies that the behavior of Y*® is
determined by the behavior of 9;Y ® in the region {r < %M )

Proposition 47. Fix k > 0. Suppose Ug, ® = 0 and suppose for some constants a, B > 0 (independents

of T) that

k .

Z (@ + JN @B, D)t )y < CBT Y.

—~ Jsanir=2m o
Then

> [ et < c( > [ areiiment, +B),
Jj+m=k Ze j+m<k P

and

> // KN(a,f;?%)SC(z’)—“(Z/ JN @LYm o) +B).
R, ONr=<ry } ) 0

jtm=k jtm=<k* =0

Remark. In the applications, we will apply this proposition with B being some energy quantity of the
initial condition.

Proof. We will proof this with a bootstrap argument. Suppose for all t that

> / Jﬁ(atﬂ?’"d))n’érSAr_“( > f JN @Y dyn +B>. (22)
J+m§k Erﬂ{rSr;r} j—H’l’lSk 2'[0 0

This obviously holds initially for any A > 1 (and in particular independent of ®). By taking 7’ =1 — K,
for some (large and to be chosen) constant K and t > 2K, Proposition 46 implies

> < / IN @Yoy + / f 7y (a,f;?mcp)ng[*)
= N{r<rf} R(t—K,0)N{r<ry}

J+m=k

k
Nealy ® NcqJ ®
< C( > i @.Y" o)k +;)/z TN (3] ynky

jtm<k Y Be-kNr=ry Nir<ri)

k
+) / / (2 + JY (3. ®)n's *))
0 R(r—K. 0Nr<2 M) !

§C< > / . J,ﬁv(a,f;?mcb)n’;rKJrKBf—“),
j+m<k Se_xN{r=ry}
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using the assumption of the proposition and using Proposition 44). Using the bootstrap assumption, we
further see that this expression satisfies the bound

< C(A(t - K)“"( > /E JliV(S,J;I?mQD)n’érO + B) + KBt_"‘)
0

j+m<k

gcfa( > A/ J,jv(a,’;?m@)n;erABJrKB).
Jj+m=<k E,O

Notice that C is independent of K. By selecting a t* slice, we have that for some 7,
/ Yol < CKlfa< > A/ I @@Ly ot + AB +KB).
Z:N{r<ry} j+m<k PR

Now apply Proposition 46 on [7, 7] to get

> / IN@LYm oty
Tm{rfr;—}

Jj+m<k
k
Nal v N, aj
SC( > / RACARINESS / A
j+m<k X:N{r=<ry} =0 Z.N{r<ry}
k .
+) f / (@2 +JY (a,f*cb)n’;*))
im0 REDNr<B M) !

< CK_I‘L'_a( > A/ J,f’(at-i?%)n’gm +AB+ BK) +CB(K+1)1™®
Jj+m<k Z‘70

<CAK 't Z/ I @LY" ot +(CAK™' +CK +C)BT ™.
Jj+m<k X7

This will improve (22) if we choose K =4C and A sufficiently large. Hence we have proved
> / IN@LYmdnk < cf—“( > / JN@LYm o+ B).
: Zr m{’”S’j—} i P2 0
Jjtm=k Y Jj+m=<k 0
To prove the second statement, we simply use the first statement and Proposition 46. U
We can use Corollary 43 to show the decay of Yo,

Corollary 48. Suppose O, ® = 0. Then for v/ <t < (1.1)7/,

> / IV @LYm oy,
Erm{rfr;}

jtm=<k
P>

J+m=k

k+2
N ql v Z+CN (9]
/ ACASISTERDY / JE (at]*d>)n’gro),
g j=0 X
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Z f/ KN @@LV D)
j+m<k R(t’,7)N{ r<rY
k+2
< —2+'7( > f JN @@LV oyl +Z/ JEFEN @), <I>)n2>

Jj+m=<k

12. Estimates for §<I>

In this section, we would like to prove estimates for Q®. The estimates for Q@ are useful to provide
an extra factor of r in the energy estimates.

Proposition 49. We have

f V2o < c/ IV (®, 0D, QD). ,
SeN{rzry} ’

T

/f rl‘SIWCDIZSC// r TN (@, 9 ®, QD)
R, T)N{r>ry } R(t',7) !

// r1—5|y72c1>|25c// KX1(®, 3, D) + KX (QD).
R/, O)N{r=ry ) R(t',7)

To prove such estimates, we commute [, with €. Recall from Section 4.3 that
[0 Q10| < Cr2(D*®|+|DP))
everywhere, and

[y, 20D =0

for r < Ro. Now suppose [, & = 0. We have

—1
O, Q)= Q/[0,,., Q0 7 1o = Gg .
8K 8K s
j=0

Since [D, ?2] = D, we have
-1 041
Ga.l < Crz(ZuDzszfcm + Do)+ |ch1>|),
Jj=0 j=0

and Ggq ¢ is supported in {r > Rq]}.

Definition 50. EQ,e:/f r'Gh ,+  sup / Ga.i’
R(t'—1,7+1) t*e[t/—1,7+1] Et*ﬁ{|r73M\§%M}

This is the error term for the energy estimates for QL. We show that this can be controlled.
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Proposition 51. We have

1 -1 ¢
Ea. sCZZ// KX°<a;f§“zfq>>+cZ// KXo (301 ).
m=0 j=0 R(t'—1,7+1)N{r>Rq} m=0 R(t'—1,7+D)N{r>Rq}
Proof.
// I"1+6G%2 ‘
R(T'—1,7+1) '
-1 £+1
= CZ / 1’73+5((DZQJ¢)2—}—(DQJ (I))Z)+CZ / r73+8(D]cD)2
J=0 qur —1, 4+ 1D)Nfr=Re) J=0 g~ 1, D)Nfr=Re)
1 e—1 ¢
<C) ). / / rR N ORGPl +C Y / / P IN @ Dl
m=0j=0 gz~ 1.t3 DhN{r=Ra) m=0 go(/—1, e+ D)Nfr=Ro}
1 e—1 ¢
SCZZ” KX°<32’391®)+CZ/[ K*o@n ).
m=0 j=0 " YR —Lt+DN{r=Ro} 0 ? YR’ =1,7+DN{r=Ra}
By choosing Rg sufficiently large, the second term of Eq , vanishes. (|

We can show that the nondegenerate energy of QL@ is almost bounded.

Proposition 52. Suppose Uy, ® = 0. Then

/ I (@ pnk + f TN (@ Dynly, + f / KV Qo)+ f K% (@ o)
N A IR R(t0,0)N{r<ry} R(10,7)

sc Y [ sei@om,.
itj<t?En

Proof. We prove this by induction on £. The £ = 0 case is true by setting G = 0 in Proposition 28. We
assume that the proposition is true for £ < £y — 1. This in particular implies, after a commutations with
the Killing vector field 9+, that

lo—1

Y[ xradesc ¥ [ sYei@em
20/ IR Ty o

i+j<m+ey—1
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By Propositions 27 and 51,

f V(@ ok + f I (@QLoynl, + f / KN Qo) + / / KXo Qb )
PN " . R(z0.1)Nfr=ry} R(10.7)

O 1 2 2
§C</ TN (Qd)nly +// r'Gg ,+  sup / Gwo)
) 0 R(T'—1,74+1) rrelr'—1,t+11 S Z=n{lr—3M| < M}

0

1 £o—1
< c(/ Iy Qo +Cy Y f KX 3m %) @)
Ty m=0 j=0 R(ro—1,7+1)N{r=Rq}
Lo
+CY // KXO(a,":cb))
0 Y R(w—1,7+DN{r=Ra}

N
<C > /2 I (0.9 ol .
0

i+j<{o

Remark. Only the £ =1 case will be used.

13. Estimates for S®

We will now use the energy estimates that we have derived to control S®. In particular, we would like
to prove a local integrated decay estimate for S®. This will be used in the next section where we prove
our main theorem. Recall from Section 4.2 that for r large

* * *

[Ogy, S10 = (247 “)ngcb—g(r__l_2r*M>ar*q>—z<(r——1)—3r ) ao|

r r r r

and that for r < R, we have
2
[y, S1®| < C(Z|Dkq>|).
k=1
From now on we will prove estimates for S® by considering the wave equation that it satisfies. We
will assume, as before, [1,, ® =0 and let G denote the commutator term, that is, [, (S®) = G. If we

look at our estimates in the previous sections, we will need to control G in three different norms. We
now consider them separately.

Proposition 53. Ler v/ <1t < (1.1)t’. Then

£
Z // r1+6(a;¥G)2
R

= JJra 104
et Y ([ gpari@ens v [ arr@en )
mak+j<t+3 Y Er PN
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and

14

Z f/ r1+3(atnzG)2
R L+ DN{r< 5517}

m=0
<crn Y ( / JE@RYEY oy, +C / 7Y (a;’:?ks’if'd>)n’§,0>.
mtk+j<t+4 N Fro 0

In other words, we can get more decay if we localize and allow an extra derivative.

4
Z // I”]+8(3;11G)2
=0 R(t'—1,7+1)

L
=C). /f r (1 DX D)? 4 (3 DD)? + (rd AD)?)
m=0 R(t'—1,74+1)

(noting that the § in the two lines are different)

<C f/ FrI N Yk p)nt,
Z ( R =1, 7+ DN{r<ir) w %

m+k<{+1
+ / / rt Y (a;’:s‘ikqnn;*)
R(T'—1,r+DN{r=1r%) !

(by Proposition 44, 45 and 49)

<Cc Y ,—w(f Jf,wz(a;’m)n‘grﬁc/ J,jv(a;ffk@)n;m)

m+k<€+3 Xy, R
T+1 5 .
+C Y / (t*)—3+s(f JE (o @)ns +c/ VAGH Gl VIS )dt*
mk<t43 '—1 2'[0 0 ZTO 70
- T+1 -
+c Y / (t*)—3+a</ Jlﬁ’(a;mqnn’gm) .
m<t+17 71 R

(using Corollaries 43, 48 and Proposition 52)

mtktj<e+3 N Fro K

We then move on to the localized version:

¢
Z / r1+5 (a;’l;l G)2
o0 Y YR =L+ DN{r<g5%}

¢
<C), // r3t (@ D2®)? 4 (97 DD)? + (rd AD)?)
0 Y Y RE =1L+ DN{r< g5+
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<C Z ( // re Y (o YCID)nE* // rt g (o YCD)nE>

m+k<t+1

R =1L T+DO(r=517) Rt =1 T+DN{ S <r<195)
+CZ< / / PN o QCD)nE) (by Proposition 44, 45 and 49)
R(r'—1,e+DN{rr<r< Y
<C z‘“'?(/ JEU (ar dynl. +C/ TN (Y ®)nk. )
m+k<{+4 Zr o
T+1
+C Y / (r*)3+5(/ JZ0 (ardynls. +C/ TN @Y dynk, ) dr*
m+k<t+377 "1 Iy Iy
—i—CZ/ (%) (/ JN(8 QCD)nE )dt* (using Corollaries 43, 48 and Proposition 52)
'—1 E,O
<cr M (f JEUT @G oy, +c/ JN(aMYka¢)n§,O). O
mak+j<t+4 U e ! 7

To estimate the inhomogeneous term in the region r < %t*, we will also need to estimate a term not
integrated over ¥, which arises from the integration by parts.

Proposition 54. Fort’ <t < (1.1)7/,

14

sup Z/ (3" G)?
rrelr'—1r+1] , =0 I Ten{lr=3M| < g M}

0
<cr Y (/ JE (ar Y dynl +c/ TN @O0 o)nly. )
PR

mj<€+3 RN
Proof.
£
sup ) / 3G
rrelr'=1,14+1] 0 I T N{Ir=3M|< g M}
l
<C  sup / (D*9M D)% + (DI D)% + (r K7 D))
rreft'=Lt+l1]  —5J Tpx0{ry <r<g M}

41
<C sup ( / JN(a D)k, + f JN(QB'"CD)n )
rre[r’'—1,7+1] ZO Nfry <r<2 M} % nz N{ry <r<Z M) =

(by Proposition 44 and 49)
<cr Yy (/ gz (3mQJ<D)nl§rO+C/ TN (< @) )
m+j<t43 N Er Iy

(using Corollary 43 and Proposition 52). [
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Finally, we estimate the third norm:

14

T 1/2 2
Proposition 55. Z( / ( / { l}rz(a,":G)z) dt*) <crm Y
T0 ZpN{r=51*

N amaJj 1
/ I @Opy ol
m=0 m+j<t+37 >

Proof.

T 1/2 2
> ( / < / rz(a;’,ZG)z) dt*)
T0 Z,*Q{FZ%I*}

o

T 1/2 2
f (r*)~1+9 ( / 1 (D*®)? + (D3 D) + (rz)sa;’:@)z)) dt*)
T Ez*ﬁ{rzzt*}

m=0 0
T £+1 4 - 1/2 2
SC( f (t*)1+5(2 / IN@EomE + ) / Jg(szam)ng*) dt*)
T0 m=0 po m=0 po
<ct" f JY @R Py 0
m+j<t+3" ¥

Now that we have control of the inhomogeneous terms in the equation g, ® = G, we can prove the
decay of S®. To this end, we will introduce the bootstrap assumptions:

4
¢ fz T2 (0 SDIn, + 1 /E T (0= S PNk

N{r<yrt}

2
z VA AL~
SATZ/ JEEEN @ sy + ATy f TNt @oryt ) oy . (23)
m=1" ¥ m+k+j<5? >

c / JEU (SOl + 7 / TN (S,
PP X.N{r<yrt}

2
EAZ”(Z [ azrenetansomt v Y [ J;f*CN’“’Z(a:f?k?zf@)n‘ém)' .
m=0 o m—+k+j<5 3

We think of A as some large constant to be chosen. We will improve the constants A and A? in the
assumptions above. Under these two assumptions, we will get the following three estimates for the bulk

terms:
Proposition 56.
2 A~
/ /% . KX1(3,+8®) < c(n;l /2 ) JY @ som +m+§;55 /E ) J5+CN’wZ(8ﬂYQf®)n’§TO).

Proof. The follows by Proposition 29 applied to the equation [, (3« S®) = 9;+G, taking 7’ =19, G1 =0,
and G, = 9;+G. Then use Propositions 53 and 54 to estimate the terms with G. U
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Proposition 57. For v’ <t < (1.1)t/, we have

// KN (3,+S®) + // KX0(9,+S®) + // rrIH KX (SD)
?R(r’,r)ﬂ{rﬁr;} %(r’,r)ﬂ{rﬁ%t*} R(19,7)

< CA(r_z /E JMZ”“Z(SCD)n’“E‘T, +C / Ty (SCIJ)n%T,)

oN{r<ry}

veart o [t pitiont,
m+k+j<5 ¥

</

Proof. By Propositions 33 and 34, taking G; = 0 and G, = G, and using Propositions 53 and 54 to
estimate the terms with G, we have

// KN(B,*SCD)+/f KXO(B,*SCD)—i-// KX (S®)
R, ON{r<ry} %(r’,r)ﬂ{rg%t*} %(fo,r)ﬂ{rf%t*}

< CA(‘L’_Z/
)

z
Juz’“’ (Sd))n’éT, +C f

N{r<ry}

7Y (S@)nér,)

</

veart o [t pigiont,
m+k—+j<5 % F10

It remains to estimate 7 ~ 70 K X1 in the region r > %t*. Here, we will use crucially the decay in r. Clearly,

// P EX(SD) < oS f/ KX (SD).
R(zo, TIN{r=11%} R(t0,7)

Then we can estimate the right-hand side by Proposition 29, taking t/ = 19, G| =0 and G, = 3+G.
Then use Propositions 53 and 54 to estimate the terms with G. O

Proposition 58. Fort’ <t < (1.1)7/,

/ f KN (S®) + f / KX (S®)
R, N(r<ry) R(r,OON{r<51%)

< CA2<‘L’_2/
>

JZV (So)nk, +C/

SoN{r<ry}

Ty (SCD)n‘Z‘f,)

<

+CATT Y / J,f+CN~wZ(a;’:1?§“zfq>)n§m.
m4k+j<4? Zr

Proof. This follows from using Proposition 33, taking G; = 0 and G, = G, and using Propositions 53
and 54 to estimate the terms with G. U

We are now ready to retrieve the bootstrap assumptions. First, we retrieve the assumption (23):
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Proposition 59.

¢ / JZ0 (3p S + 72 / T (0 S Pk
T, ZNr=yr)

SO

I\)I'—‘

JEHEN W g S®)ny +3 lacn ¥y / J,f+CN-wZ(a;’:1?k§“zfq>)n‘gfo
K] m+k+j<5

Proof. By Proposition 41,

¢ f J,f’wz (0 SP)ns +1° / TN (9SO
T N{r<yrt}
Scf JILZ+CN’“’Z(8?*SCI))”;:0 +C// 148 g Xa (0+SD)

0 R(10,T)

+Cé§’ // ()2 KX0 (9« SP) + C(8' + €) / ()2 KN (3;+S®)
R(to, T)N{r<51*} R (o, T)N{r<ry }

T 1/2
+C(<S/)‘1(/ (/ r2(8,*G)2) dt) +C()! 2// (t*)2r1+5(a;:z(;)2
70 \JZxN{r=11%) " R(ro, TIN[r< 151

10!

+C@)" sup / (t")2(3G)>.
r*ﬂ{ <r< M}

t*€l1,7]

It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. O
We can now retrieve the bootstrap assumption (24).

Proposition 60.

c / JZ (Sl + 1 / JN(sont,
p" 2.N{r<yrt}

<A21"<Z/ JEHCNT g SP)ny + > / JEHENT (g PR Dyl )

m—+k+j<5
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Proof. By Proposition 41,
¢ / JEU (Sl + 1 / IV (S®)nl
X ZN{r<yt}

EC/ Jlf-‘rCN,wZ(Sq))lfl'l)ér +C/:/ t*r—1+5KX1(SCD)
2y, 0 R (t0.7)

+C¢ / / (") KX (SD) + C(§ +¢) / / ("> KN (SD)
R0, D)N{r<1r%) R0, DN{r<ry }

T 172 2 1
+C(5/)—l(/ (/ r2G2> dl,*) +C(5/)—l Z // (t*)2r1+5(atr;lG)2
0 \JZxN{r=>1r%) 0 J R0, ON{r<151%}

+C@)! sup (t")2G2.

trelro. ] J Senfry <r< B M)
It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. (|
We have thus shown the following:

Proposition 61. For all n> 0, there exists € >0 small enough such that for Kerr spacetimes satisfying (3),
the following estimates hold:

c / JZ (Sl + 1 / JN(Sont,
x, zNlr<y)

2
scory [ aEevtarsomt wco Y [ gpenepi@iont,
m=0" > m+k+j<5 ¥

Moreover, for t/ <t < (1.1)7/,

/ / KN (S®) + f f KX (S®)
R, )N[r<ry ) R, DNfr<ter)

2
<Ct Yy f JE+CN’WZ(8flS¢)n’§TO +Cr N f JEHENWT (mp Gy LIV
m=0" % m+k+j<5 g

and

/ / KX1(S®)
%(ﬂ,r)ﬁ{rs%t*}

3
_ z _ 7z A~
<Ccr ) / JEAENY Qs +Cr Y f JEHENWT QY QI dynk,
0 0
m=0 z:TO m+k+j<6 EI0

Proof. The first statement is proved by the bootstrap above. Since the bootstrap assumptions are true, the
conclusion in Proposition 58 is also true; hence the second statement is true. The third statement makes
use of the fact that KX! can be estimated in the same way as K X° with an extra derivative. O
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14. Improved decay for the linear homogeneous wave equation

To use the estimates for S®, we need to integrate along integral curves of S. We first find the integral
curves by solving the ordinary differential equation

drs _ h(rs)

drg t3

where h(rg) is as in the definition of S. Hence the integral curves are given by

d
exp (f(rs)o h(:i))

5

= constant,

where 7y > 2M can be chosen arbitrarily. Let o = ¢*, and consider (o, p, x*, x%) as a new system of

coordinates. Notice that

h(rs) 1
B = = s 8k = S,

Now for each fixed p, we have

®%(1) < (7)) +

/ ~S( )da’

T/

Integrating along a finite region of p, we get

P2 P2 P2 T 2
/ ®% (1) dp 5/ ®% (1)) dp+/ / =
P1 P1 pi Jo 'O

We would like to change coordinates back to (tg, rs, x?, xg ). Since h(rg) is everywhere positive, (p, T)

CI>S<I>’do dp.

would correspond to a point with a larger value of r than (p, t’). Therefore,

drs
/m¢%wigg§£ﬂ@2m
r+

h(rs)
S/ ®2( ) (f(rs)o h(rs) / f”
e T'h(rs)

We have to compare exp ( f (rs)o 7 (r )/ h(rs) with the volume form. Very close to the horizon, we have
h(rs) =rg—2M. Hence

e p(f(Fs)o h(rg) )

— 5 drdt*.
tsh(rs)

dry . dr'
Ui i) _ i1y

h(rs) rs—2M
The corresponding expression on the compact set [ry, R] is obviously bounded. Hence we have
P2 (r (7’
/ ( )SC(/ (, )—i—// I%QDSCDl). (25)
X N{r<r} T o N{r<r} T R, T)N{r<r} (t )

This easily implies the following improved decay for the nondegenerate energy:
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Proposition 62. / @2 < CRI_1 (// o2+ // (S@)z) R.
=.N{r<R} R((L.D L7, 1)N{r<R} R((1.1)"r,1)N{r <R}

Proof. By choosing an appropriate 7 € [(1.1)~ 'z, 7], we have

/ o?<cr! // @2,
Y:N{r<R} gt((l‘l)*lr,t)ﬁ{r<R}

Now, apply (25) with " = 7, we have

2 ®? 2
@2 <Cr Al ‘—cpsq:‘
. 7 " *)2
Y. N{r<R} Y:N{r<R} R(T,T)N{r<R} (
< Ct_1<// q>2+// (S'SD)Z),
R((1.1)~17,7)N{r <R) R((1.1)~Lr,0)N{r <R}

using Cauchy—Schwarz for the second term. U
We can now conclude with the improved decay for solutions to the homogeneous wave equation.

Proof of Main Theorem. By Corollaries 43, 62 and 61, we have

/ ®? < Crr™! <// 2 + // (S<I>)2)
=.N{r<R} RL.D I, 0)N{r<R} R(1L.D~ 1, 0)N{r<R}

< Cpe! / / (K¥0(®) + KX0(SD))
R(1.D~ 1z, 1)N{r<R}

2
-3+ Z+CN,w? I Z+CN,w? 537 ) o
<Cpt ”(E fz Js v (aﬁSCD)nE,O‘" § /z i W (B;ZZYQfd))n):ro)
m=0 0 m+k+j<5 0

Similarly we can use Proposition 62 for the derivatives of ®. By Corollary 43, 62 and 61, we have

/ (D)
2.N{r<R}
scRr—l( f / (DD + f / (SD@)Z)
R, 1)N{r<R} R, 1)N{r<R}

< Cpr! / / (KX (@) + KX (S®))
R(A1. DLz, 1)N{r<R} . .
(since we have the commutation [D, S]= D)

3
—3+47 Z+CN,wZ jam 2 Z4+CN,w? jamv & j "
< Cpr (§ /2 J? @rsPIng + Y- /2 JZ @Y Q @)nzm)
m=0" 1 m+k+j<6 " >0

By commuting with 9+, we get

/ (Dd5 )?
S.N{r<R}
+3

—347 Z+CN,w? jqm n Z4+CN,w? jam &S j wn
< Cpr (Z /E J? @rsdIng + Y /E J? @Y Q @)nzm).
m=0 0 m-—+k+j<€+6 K
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Without loss of generality, we can take R > 2873M . Then, by Proposition 47,

> [ ek,
Erﬂ{rfr;—}

jtm=<t
{+3
gcRr—3+"(Z/ JEEEN S syl + Y / JZHENT Gy QY Dyl )
m=0" X7 ° m+k+j<{+6 Xy °

Hence, by Proposition 44 and 45,

14
e
j=0 Z:N{r<R}

42
< CRT_HH(Z / JMZ-l—CN,wZ (8;25@”%% n Z / JMZ-i-CN,wZ (3Zf?§jq))”l§z0>'
m=0" >t m-+k+j <645 ¥
The pointwise decay statement follows from standard Sobolev embedding. O

15. Discussion

Out main paper holds in the set {ry <r < R} for any fixed R. It is however interesting also to derive the
same estimates, for example, in the set {r; <r < %t*}. This can be achieved by proving the full decay
result when we commuted the equation with QL. Using this we can prove (with more loss in derivatives)
that

|| < CE@*) 3217 and | D®| < CE(t*) 211+,

for r < %t*. This will be useful in studying nonlinear problems. This decay rate will be proved as a
corollary in our forthcoming paper on the null condition.
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ON THE BOGOLYUBOV-RUZSA LEMMA

ToM SANDERS

Our main result is that if A4 is a finite subset of an abelian group with |4 + A| < K|A|, then 24 — 24
contains an O(log®" 2 K)-dimensional coset progression M of size at least exp(—O(log®V 2K))| 4.

1. Introduction

Croot and Sisask [2010] introduced a fundamental new method to additive combinatorics and, although
they have already given a number of applications, our present purpose is to give another. Specifically,
we shall prove the following.

Theorem 1.1 (Bogolyubov—Ruzsa lemma for abelian groups). Suppose that G is an (discrete) abelian
group and A, S C G are finite nonempty sets such that | A+ S| < K min{|A|, |S|}. Then (A—A)+(S—-S)
contains a proper symmetric d(K)-dimensional coset progression M of size exp(—h(K))| A+ S|. More-
over, we may take d(K) = O(log® 2K) and h(K) = O(log® 2K log 21og 2K).

We should take a moment to justify the name, which is slightly nonstandard. Bogolyubov’s lemma
(the idea for which originates in [Bogolyubov 1939]) is usually stated for sets of large density in the
ambient group, rather than small doubling, and asserts that the fourfold sumset of a thick set contains a
large Bohr set.

Ruzsa [1994], on his way to proving Freiman’s theorem, showed that a set with small doubling could
be sensibly embedded into a group where it is thick. He then applied Bogolyubov’s lemma and proceeded
to show that a Bohr set contains a large generalised arithmetic progression which could then be pulled
back. In doing all this he implicitly proved the first version of Theorem 1.1 in Z—although, with
different bounds — and this motivates the name.

This result has many variants (although the form given above seems to be a fairly useful one) and
in light of this the history is not completely transparent. Certainly most proofs of Freiman’s theorem
broadly following the model of [Ruzsa 1994] will implicitly prove a result of this shape. With this in
mind the extension from Z to arbitrary abelian groups is due to Green and Ruzsa [2007], and the first
good bounds to Schoen [2011] for certain classes of groups.

There are many applications of results of this type, particularly since their popularisation by Gowers
[1998], and we shall deal with a number of these in Section 11 at the end of the paper. To help explain
the main ideas we include a discursive sketch of the paper after the next section, which simply sets some
notation.

MSC2010: 11L07.
Keywords: Freiman, Fourier analysis, sumsets, generalised arithmetic progressions, coset progressions, small doubling.
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2. Notation

The main tool used in the paper is Fourier analysis on groups for which the classic reference is [Rudin
1990]. We deal almost exclusively with finite groups in the paper, but to be complete we shall need
slightly more generality.

Suppose that G is a locally compact topological group. We write C(G) for the space of continuous
complex-valued functions on G. More generally if R C C we write C(G, R) for the continuous R-valued
functions on G.

The group structure on G induces an action of G on C(G) called translation. In particular if x € G
and f € C(G) then we write

px(f)(y):= f(yx) forall y €G. (2-1)

We also write M (G) for the space of regular Borel measures on G and can extend p to these in the
natural way: for x € G and u € M(G), px (1) is the measure induced by

C(G) = C(G): [ / £60) du(r).

The group structure on G is reflected in M (G) in a fairly natural way and we define the convolution of
two measures i, v € M (G) to be the measure p * v induced by

C(G) = C(G): [ / FGey) du(x) dv ().

There is a family of privileged measures on G called Haar measures. These are the translation-invariant
measures on G: € M(G) is a Haar measure on G if px () = p for all x € G.

Given a Haar measure ¢t on G we can extend p in the obvious way from (2-1) to define the right
regular representation p : G — Aut(L?(x)). More than this we can define the convolution of two
functions f,g € L'(u) by

frglo) = / Fg(" %) du(y) forall x € G,

There are two particularly useful instances of Haar measure depending on the topology on G: if G is
compact we write g for the Haar probability measure on G, while if G is discrete we write g for the
Haar counting measure on G, which assigns mass 1 to each element of G.

Of course, if G is finite it is both discrete and compact so one has both probability measure and
counting measure to choose from. The measures are multiples of each other as g is just the measure
assigning mass |G|~! to each element of G. More generally given a finite set X we write uy for the
measure assigning mass | X |~! to each x € X.

When it is relevant we shall indicate whether we are taking a finite group G to be compact or discrete
by declaring the group either compact, so that ¢ is to be used, or discrete so that §g is to be used. The
reader should be aware that this has the effect of changing the normalisations in convolutions.
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The above all works for general finite groups G, but when G is also abelian convolution operators can
be written in a particularly simple form with respect to the Fourier basis which we now recall.
We write G for the dual group, that is the finite abelian group of homomorphisms y : G — S, where
={zeC:|z| =1}. Given u € M(G) we define ji € €°°((A?) by

ay) = /Vdu forally € G,

and extend thisto f € L'(ug) by f fd/,LG It is easy to check that t* v =i-D for all u,v € M(G)
andf*g fgforallfgeL(ug)

3. A sketch of the argument

Assuming the hypotheses of Theorem 1.1 our objective will be to show that there is a large, low-
dimensional coset progression M correlated with 4 + .S, meaning such that

1445 * parllgoo () > 1 —0(1).

This is essentially the statement of Theorem 10.1 later, and Theorem 1.1 can be derived from it by a
simple pigeonholing argument.

A simplified argument: the case of good modelling. We shall assume that we have good modelling in
the sense of [Green and Ruzsa 2007], meaning that we shall assume that the sets A and S have density
K~ in the ambient group. This can actually be arranged in the two cases of greatest interest: F and
Z and facilitates considerable simplifications.

A very useful observation in [Lépez and Ross 1975] is that because the support of j 4 * 4 g is contained
in A + S we have the identity

(lats * p—s, pa) = 1.

Now, suppose we had a coset progression M over which 144 * (t_g was in some sense invariant,
meaning

Mars*p—s*prp —layrs * pu_sllere) < €lllarsller G- (3-1)

Then Holder’s inequality and the Lopez—Ross identity tell us that

(Lats * s * g 11a) — 1 < €l Lagsller oyl all o6y < €K7

and it follows by averaging that A + S is correlated with M provided that € ~ K~1/?,

The traditional Fourier analytic approach to finding an M such that (3-1) holds is not particularly
efficient, but recently Croot and Sisask showed that there is, at least, a set Z such that we have (3-1)
with Z in place of M and

11G(Z) = exp(—O(e *plog K)) g (A).
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Moreover, they noted by the triangle inequality that one can endow Z with the structure of a k-fold
sumset, so that we have (3-1) with kX in place of M and

16 (X) = exp(=O(k*e > plog K)) g (A) = exp(—O(k* log® K)) g (A), (3-2)

where the third term is by optimising the choice of p ~ log K given that ¢ ~ K —1/p,
What we actually end up with after all this is a set X with density as described in (3-2) such that

k
(Lags * s pi, pea) > 1= o(1). (3-3)

Now, by the usual sorts of applications of Plancherel’s theorem and Cauchy—Schwarz we find that most
of the Fourier mass of the inner product is concentrated on those characters in Spec; /,(1x) provided
2k ~ K, and so we choose k ~ log K.

With most of the Fourier mass supported on Specy /,(1x), it follows that the integrand in (3-3) corre-
lates with any set which approximately annihilates Spec /5 (1x). It remains to show that the approximate
annihilator of Spec; /, (1x) — that is the Bohr set B with Spec, /,(1x) as its frequency set— contains a
large coset progression.

We can now apply Chang’s theorem to get that B is low-dimensional and then the usual geometry of
numbers argument tells us that this Bohr set contains a large coset progression, and the result is proved.

Extending the argument: the case of bad modelling. We now drop the assumption of good modelling,
and the argument proceeds in essentially the same way up until the application of Chang’s theorem above.

In this case Chang’s theorem does not provide good bounds. Instead what we do is note that the set
X satisfies a relative polynomial growth condition

|nX| < n0(1°g4K)|X| foralln > 1.

This lets us produce a Bohr set containing X which behaves enough like a group for a relative version
of Chang’s theorem to hold, whilst at the same time X is much denser in the Bohr set than it would be
in the modelling group.

Since we are not using modelling what we have just done does not actually give us a Bohr set of low
dimension, but rather a Bohr set of size comparable to X' which has a lower order of polynomial growth
on a certain range. It turns out that the usual argument that shows a low-dimensional Bohr set contains
a large coset progression can be adapted relatively easily to this more general setting and this gives us
our final ingredient.

These arguments are spread over the paper as follows. The simplified argument up to (3-3) is es-
sentially contained in Section 4. Then, in Section 5, we record the basic properties of Bohr sets we
need before Section 6, which has the relative version of Chang’s theorem, and Section 7, which puts
the material together to take a set satisfying a relative polynomial growth condition and produce a large
Bohr superset.

After the material on Bohr sets we have Section 8 which records some standard covering lemmas and
then Section 9 where we show how to find a large coset progression in a Bohr set with relative polynomial
growth. Finally the argument is all put together in Section 10.
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4. Freiman-type theorems in arbitrary groups

In this section we are interested in Frefman-type theorems in arbitrary, possibly nonabelian, groups.
There has been considerable work towards such results, although often with restrictions on the type of
nonabelian groups considered, or rather weak bounds. We direct the reader to [Green 2009] for a survey,
but our interest is narrower, lying with a crucial result of Tao [2010, Proposition C.3] which inspires the
following.

Proposition 4.1. Suppose that G is a (discrete) group, A, S C G are finite nonempty sets such that
|AS| < Kmin{|A|,|S|}, and k € N is a parameter. Then A=Y ASS™' contains X* where X is a
symmetric neighbourhood of the identity with size §(k, K)|AS|. Moreover, we may take 6(k, K) =
exp(—O(k? log? 2K)).

Note that this result is a very weak version of Theorem 1.1 but for any group, not just abelian groups,
and despite its weaknesses, its generality makes it useful in some situations.

Proposition 4.1 was essentially proved in [Croot and Sisask 2010, Theorem 1.6] with weaker K-
dependence in the bound, using the p = 2 version of their Lemma 4.3 below. It turns out that we shall be
able to show the above bound by coupling the large p case of their result with the Lopez—Ross identity.

The key proposition of this section, then, is the following.

Proposition 4.2. Suppose that G is (discrete) a group, A, S, T C G are finite nonempty sets such that
|AS| < K|A| and |TS| < L|S|, and k € N and € € (0, 1] are a pair of parameters. Then there is a
symmetric neighbourhood of the identity X C G with

|X| = exp(—O(e 2k?log 2K log 2L))|T|

such that
| g—1 % 1g8 * pLg—1(x)—1| SeforallxeXk.

The main ingredient in the proof of this is the following result, which is essentially due to Croot and
Sisask [2010, Proposition 3.3]. To prove it they introduced the idea of sampling from physical space
rather than Fourier space — sampling in Fourier space can be seen as the main idea in Chang’s theorem.
Not only does this work in settings where the Fourier transform is less well behaved, but it also runs
much more efficiently, which leads to the superior bounds.

We include the proof since it is the pivotal ingredient of this paper, and we frame it in such a way as
to emphasise the parallels with Chang’s theorem.

Lemma 4.3 (Croot-Sisask). Suppose that G is a (discrete) group, [ € LP?(G) for p=2and S, T C G
are nonempty with |ST| < K|S|. Then thereisat € T andaset X C Tt~ with | X | > (2K)_0(€_21’)|T|
such that

lox(f *pns) = f*uslere) <e€llfllerey forallx e X.

Proof. Let zq,...,z; be independent uniformly distributed S-valued random variables, and for each
y € G define Z;(y) := p,—1(f)(¥) — f * ns(y). For fixed y, the variables Z;(y) are independent and
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have mean zero, so it follows by the Marcinkiewicz—Zygmund inequality and Holder’s inequality that

k k p/2 k
Sz <o [(LI1Zmr) adsomr ey [z i,
i=1

i=1 i=1

p

L (uf)

Summing over y and interchanging the order of summation we get

k » k
YD ziy < O(p)P/ZkP/Z—I/Z D 1Ziw)IP duk. 4-1)
yeG li=1 LP(uy) i=1yeG

On the other hand,

1/p
(Z |z,~(y>|1’) — 1 Zillerie) < oz (Nllri@r + 1 * Bslencoy <21/ ler
yeqG

by the triangle inequality. Dividing (4-1) by k? and inserting the above and the expression for the Z;s

[5>

yeG

we get

1 & p
£ 2P () =/ xus ()| dils(@) = 0(pk™" 1/ 126"

i=1

Pick k = O(e~2p) such that the right-hand side is at most (|| f ller(Gy/4)? and write L for the set
of x € § x---x § (where the Cartesian product is k-fold) for which the integrand above is at most
(€l fller(G)/2)?; by averaging ,ng,(Lc) <277 and so Mlg(L) =>1-277> %

Now, A :={(t,...,t):t € T} has LAC ST x---x ST, whence |LA| < 2K¥|L| and so

(Ia* a1, 11 % 10)p2(Gxexe) = 1L #1812 (g gy = APILI/2KE,

by the Cauchy—Schwarz inequality since the adjoint of g + 17 * g is g + 1;—1 * g and similarly for
g gx1a.

By averaging it follows that at least |A|2/2K¥ pairs (z, ) € A x A have 1,1 %1(zy~1) >0, and
hence there is some 7 € T such that there is a set X C T¢~! of size at least |T'|/2K¥ elements with
lp—1x1p(x,...,x)>0forall x € X.

Thus for each x € X there is some z(x) € L and y(x) € L such that y(x); = z(x);x. But then by
the triangle inequality we get

lox—1(f *ps) — f*pusllerc)

k k
1 1
< p-l(— o ,—«f))—f*us n p_](_ o _—l(f)—f*us) |
x k ; z(x); 2(6) x i ; z(x); 2(6)
However, since py is isometric on £7(G) we see that
@ @

px(fxps)—=f*us S |72 Pyt () —f*us +H— Pzt () = *ies :
7 (G) k ; y(x); £(G) k ; z(x); €7 (G)
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and we are done since z(x), y(x) € L. O

The important thing to note about the Croot—Sisask lemma is that the p-dependence of the size of
the set X is very good. The natural Fourier analytic analogue (essentially given in [Bourgain 1990], and
clearly exposited in [Sisask 2009]) gives an exponentially worse bound. To make use of this strength we
use the aforementioned Lépez—Ross identity.

Proof of Proposition 4.2. We apply Lemma 4.3 to the function f := 14g and with the set S™! (so that
ISTIT=1 < L|S™!)) to get a set X with | X| = (2L)O€ *k*P)| T| such that

€|l
lox(las * pg—1) — las * g-1lerc) < % for all x € X.

Since p is isometric on £7(G) and pg; is the identity we may certainly assume that X is a symmetric
neighbourhood of the identity. Furthermore, by the triangle inequality we have

lox (Las * pg—1) — Las % g—1llery < €e lasllerg) —forall x € XX

Now for any (real) function g we have

g1 % 8(X) —pyg—1 % g(lg) = pyg—1 * (px(g) — ) (1g) = (a4, px(g) — g)-

Thus by Holder’s inequality we have

lng—1 % g(x) —pyg—1 *g(1e)| < lallgr ()l ox (&) — gller 6)-
Putting g = 145 * ;tg—1 we conclude that

elmaler )lltasller )
e
e|A|1/P/|AS|1/1’ eKl/P
< <
elA| e

=1 % Las * pg—1(x) — pyg—1 x Lys * pg-1(1g)| <

for all x € X*. Putting p := 2 + log K we get the conclusion.

Proof of Proposition 4.1. We simply take T = A, L = K and € = % in Proposition 4.2.

5. Basic properties of Bohr sets

Following [Bourgain 2008] we use a slight generalisation of the traditional notion of Bohr set, letting
the width parameter vary according to the character. The advantage of this definition is that the meet of
two Bohr sets in the lattice of Bohr sets is then just their intersection.

Throughout the section we let G be a finite (compact) abelian group. A set B is called a Bohr set if
there is a frequency set T of characters on G, and a width function § € (0,2]" such that

B={xeG:|l-y(x)|<d, forall y eT}.
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Technically the same Bohr set can be defined by different frequency sets and width functions; we make
the standard abuse that when we introduce a Bohr set we are implicitly fixing a frequency set and width
function.

There is a natural way of dilating Bohr sets which will be of particular use to us. For a Bohr set B and
p € RT we denote by B, the Bohr set with frequency set I' and width function! p§ so that, in particular,
B = B and more generally (B,), = Bpy.

Given two Bohr sets B and B’ we define their intersection to be the Bohr set with frequency set TUT”
and width function § A 8. A simple averaging argument (see [Tao and Vu 2006, Lemma 4.20] but also
the end of Lemma 4.3) can be used to see that the intersection of several Bohr sets is large.

Lemma 5.1 (intersections of Bohr sets). Suppose that (B(i)){.‘ | is a sequence of Bohr sets. Then

k j k j
ne (N1 BO) =TT, na(BY,).

Proof Let A :={(x,...,x) € GK:x e G} and S := BS)Z X---xBY;)Z. Then

/1A*1_A1S*1_S digr :/(1A*1S)2du(;k > ugr (A g (S)? (5-1)

by Cauchy—Schwarz. The integrand on the left-hand side is at most pt g (A)pgr (S) and it is supported
onthesetof x e A— A =Asuchthat lgx1_g(x)>0.Butif lg*1_g(y,...,»)> 0 then

X . . x ) X _
€ mi:l (Bfl/)2 - Bgl/)z) C mi:l Bfl) = (/\ile(l))L

Hence

k .
frgr (supp 1o % 1_alg * 1_g) < g (Njm; BO) D pgr (D),

and inserting this in (5-1) we get

16 (NsZy BOY D g (82 g (S) = pugie (A)2 i ()2

The result follows after some cancelation and noting that pg« (S) is just the right-hand side of the
inequality in the statement of the lemma. |

Note that if B is a Bohr set whose frequency set has one element, and whose width function is the
constant function 2 then there is an easy lower bound for jug(By) as the length of a certain arc on a
circle:

wG(By) = %arccos(l —2%) = %min{n, 2}. (5-2)

From this we immediately recover the usual lower bound on the size of a Bohr set with a larger frequency

set from this and the preceding lemma.?

I Technically width function y — min{ 08y, 2}.
2To recover the bound in [Tao and Vu 2006, Lemma 4.20] some adjustments need to be made as our definition of a Bohr set
is in terms of y (x) being close to 1 rather than arg y (xx) being close to 0.
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Bourgain [1999] developed the idea of Bohr sets as approximate substitutes for groups, and since then
his techniques have become an essential tool in additive combinatorics. To begin with we define the
entropy of a Bohr set B to be

pG(B2)

nG(B 1/2)'
A trivial covering argument shows that B, can be covered by exp(/(B)) translates of B, and if B is
actually a subgroup then s(B) = 0. It is often desirable to have a uniform bound on /(Bjg) for all
8 € (0, 2], and such a bound is called the dimension of B in other work. Here, however, it is crucial that

h(B) :=1log

we do not insist on this.

We shall be particularly interested in Bohr sets which grow in a reasonably regular way because they
will function well as approximate groups. In light of the definition of entropy (which encodes growth
over a fixed range) we say that a Bohr set B is C-regular if

1 - MG(BI+17)
14+ Ch(B)In| = pe(B)

for all n with || < 1/Ch(B). Crucially such Bohr sets are commonplace.

<1+ Ch(B)n|

Lemma 5.2. There is an absolute constant Cg, such that if B is a Bohr set then there is some A € [1, 2]
such that B, is Cg-regular.

The proof is by a covering argument and follows [Tao and Vu 2006, Lemma 4.24], for example. From
now on we say that a Bohr set B is regular if it is Cg-regular.

Finally, we write 8, for the probability measure induced on B, by g, and B for B;. These measures
function as approximate analogues for Haar measure, and the following useful lemma of Green and
Konyagin [2009] shows how they can used to describe a sensible version of the annihilator of a Bohr set.

Lemma 5.3. Suppose that B is a regular Bohr set. Then

y: 1By =k} Cly 1=y (x)| = O(h(B)c™" p) forall x € B},
Proof. First, suppose that | 3 (y)| =k and y € B,. Then

B Bi_
1=v0le <1 [ @ dpr- [y dpeo < “EEEBZ) oG8

provided p < 1/Cgh(B). The result is proved. |

6. The large spectrum and Chang’s theorem

Given a probability measure 1, a function f € L1 (1) and a parameter € € (0, 1] we define the e-spectrum
of f w.r.t. ju to be the set

Spec(f. 1) :={y € G : |(fdw) " ()| = €ll £l L1y -

This definition extends the usual one from the case © = pg. We shall need a local version of a result of
Chang [2002] for estimating the “complexity” or “entropy” of the large spectrum.
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Given a set of characters A and a function w : A — D :={z € C: |z]| < 1} we define
Poa =[] A +Rew(@)i).
AEA

and call such a function a Riesz product for A. It is easy to see that all Riesz products are real nonnegative
functions. They are at their most useful when they also have mass close to 1: the set A is said to be
K-dissociated w.r.t.  if

/pw,A du <exp(K) forallw:A — D.
In particular, being 0-dissociated w.r.t. (L is the usual definition of being dissociated. This relativised
version of dissociativity has a useful monotonicity property.

Lemma 6.1 (monotonicity of dissociativity). Suppose that |1 is another probability measure, A is K-
dissociated w.r.t. u, N’ C A and K’ = K. Then A’ is K’'-dissociated w.r.t. |1/ * Ji.

Conceptually the next definition is inspired by the discussion of quadratic rank Gowers and Wolf give
in [Gowers and Wolf 2011]. The (K, u)-relative entropy of a set I' is the size of the largest subset A C T’
such that A is K-dissociated w.r.t. (.

Lemma 6.2 (Chang bound [Sanders 2012, Lemma 4.6]). Suppose that 0 % f € L*(u) and write L fi=
(FAEI ||f||zll(ﬂ). Then the set Spec,(f. ) has (1, ju)-relative entropy O(e~*log2Ly).

The proof of this goes by a Chernoft-type estimate, the argument for which follows [Green and Ruzsa
2007, Proposition 3.4], and then the usual argument from [Chang 2002].

Although Chang’s theorem cannot be significantly improved (see [Green 2003; 2004] for a discussion),
there are some small refinements and discussions of their limitations in [Shkredov 2006; 2007; 2008].

Low entropy sets of characters are majorised by large Bohr sets, a fact encoded in the following
lemma. The proof is a minor variant of [Sanders 2012, Lemma 6.3].

Lemma 6.3 (annihilating dissociated sets). Suppose that B is a regular Bohr set and A is a set of
characters with (n, B)-relative entropy k. Then there is a set A of size at most k and some

p=Qn/(1+h(B)(k +log2n~"))
such that for all y € A we have
1—y(x)| = O(kv+pp 'h(B,)) forallx e By AB,,p',veR"
where B’ is the Bohr set with constant width function 2 and frequency set A.

Proof. Let L := [log, 3k2(k + 1)n~17, the reason for which choice will become apparent, and define

BT i=BiyLo* Bk %P

where 8, occurs L times in the expression. By regularity (of B) we can pick p € (2(n/(14+h(B))L), 1]
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such that B, is regular and we have the pointwise inequality

,8 < "G (BH-Lp)
G (B)

It follows that if A is n/2-dissociated w.r.t. BT then A is n-dissociated w.r.t. 8, and hence A has size at
most k. From now on all dissociativity will be w.r.t. B7.

We put ; :=in/2(k + 1) and begin by defining a sequence of sets Ag, A1, ... iteratively such that
A; is n;-dissociated. We let Ao := @ which is easily seen to be 0-dissociated. Now, suppose that we

Bt <(1+n/3)B*.

have defined A; as required. If there is some y € A\ A; such that A; U {y} is ;4+1-dissociated then let
Ajt1:= A; U{y}. Otherwise, terminate the iteration.

Note that for all i <k + 1, if the set A; is defined then it is certainly n/2-dissociated and so |A;| < k.
However, if the iteration had continued for k + 1 steps then |Ag4 | > k. This contradiction means that
there is some i < k such that A := A; is n;-dissociated and A; U {y} is not n;-dissociated for any
Yy € A \ A;.

It follows that we have a set A of at most k characters such that for all ¥ € A\ A there is a function
®: A — D and v € D such that

/pw,A(l +Revy)dBt > exp(nit1).

Now, suppose that y € A. If y € A then the conclusion is immediate, so we may assume that y € A\ A.
Then, since A is n;-dissociated, we see that

— U
‘/Pw,AV dB™ | > exp(]i41) —exp(;) = D)
Applying Plancherel’s theorem we get
n o ~ ~
D S > PoaMBT=n|<3* sup By —1IE.
( + ) AeSpan(A) A€Span(A)

Given the choice of L there is some A € Span(A) such that |B p(y —A)| = % By Lemma 5.3 we see that
y—Ae{y 1=y (x)| = O("h(Bp)) for all x € (Bp)p}.
On the other hand, by the triangle inequality if A € Span(A) then
refy' :|1—y'(x)| <kv forall x € B},

and the result follows from a final application of the triangle inequality. O

7. Containment in a Bohr set

The object of this section is to show the following result.
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Proposition 7.1. Suppose that G is a finite (compact) abelian group, d = 1 and X is a finite subset of G
with pg(mX) <n?pug(X) foralln =1 and k € (0, 1] is a parameter. Then there is a regular Bohr set B
such that

X — X C By and ug(B;) < exp(O(d log2dk ) g (X).

What is important here is that given a set of relative polynomial growth we have produced a Bohr
set which contains the original set, and which has controlled growth over a fixed range of dilations.
Extending this range down to zero can be done but involves considerable additional work as well as
being unnecessary for our arguments.

The next lemma is the key ingredient that provides us with an appropriate Bohr set. The idea originates
with [Green and Ruzsa 2007, Lemma 2.3], but the lemma we record is more obviously related to [Tao
and Vu 2006, Proposition 4.39].

Lemma 7.2. Suppose that G is a finite (compact) abelian group, A, S C G have
ne(A+S) < Kpg(A) and |Lirs(v)| = (1 —e)ug (4 + S).
Then |1 —y(s)| < V23Ke foralls € S —S.

Proof. By hypothesis there is a phase w € S! such that
[ L sordng = Trs )| > (1 - Ouca+ ).
It follows that
[ arsit=orPang =2 [ Lars(-wy)dug < 2enc(4+ ).

and so if yg, y1 € S then

[l =0y GorPdue < [ Larsii-oyPdug < 2euc(a+ ).
However, the Cauchy—Schwarz inequality tells us that

1=y (o —y)I> <2(1 =0y (o) () + [1 -0y (y)yx)[?)
for all x € G, whence
/ Lall =y (yo—y1)Pdug < epg(4 + S),
and the result follows. O

To prove the proposition we use an idea from [Schoen 2003], first introduced to Frefman-type problems
in [Green and Ruzsa 2007]. The essence is that if we have sub-exponential growth of a set then we
can apply the Cauchy—Schwarz inequality and Parseval’s theorem in a standard way to get a Fourier
coefficient of very close to maximal value.
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Proof of Proposition 7.1. By the pigeonhole principle there is some / = O(d log 2d) such that ug(/ X) <

2116((I —1)X). We let B’ be the Bohr set with width function the constant function 1 5 and frequency

set I' := Spec;_.(1;x) where we pick € := 27102,
It follows by Lemma 7.2 applied to 4 = (/ — 1) X and S = X that

[1—y(x)| < V232.e=k/8 forallx € X —X and y € Specy_.(1;x),

and hence that X — X C BI’{/4
It remains to show that the Bohr set is not too large. Begin by noting that

(k)\2 1 (k) 2 pe(IX)*!
[ e = gy ([ W ane) = 20— o

where 1( ) denotes the k-fold convolution of 1; x with itself, and the inequality is Cauchy—Schwarz and
then the hypothes1s. On the other hand, by Parseval’s theorem

Yoo WP < —ucX))*2 D Lx ()

y#Spec;—(17x) veG

pe(1X)*!

< exp(- kg (X < B

for some k = O(dk~'1og2dx™"). In particular, from (7-1) we have
— 1 k
> < [ af)duc.
y#Spec; _e(11x)

It then follows from Parseval’s theorem and the triangle inequality that

Yoo x>

y€Spec)_(1;x) ye@ y¢éSpec;_(17x)
k k k
> [ afraue - [afane =5 [ airduc.
On the other hand by the triangle inequality | ,g/ )= % if y € I' since § < % whence
o ZX)Zk—l
I 2k 21 i 2% 5 pa(
Y Lx MBI = 4 oo x») T

yeG y€Speci—(17x)

But, by Parseval’s theorem and Hélder’s inequality we have

S xR ()1 = / 19« )2 dpig

k
*) 4 1® Y pe(X)?
<y * 156 lni@)llB * BllLece)y = ———%,—
IXILY(G) ()] (B
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and so
16 (B') < (kD) ng(1X) < exp(O(d log 2dk™ ")) g (X).

Finally we apply Lemma 5.2 to get a regular Bohr set B with B, C B} and B, D B;/c /4 50 the result is
proved. O

8. Covering and growth in abelian groups

Covering lemmas are a major tool in additive combinatorics and have been since their development in
[Ruzsa 1999]. This was further extended in [Green and Ruzsa 2006], and such lemmas play a pivotal
role in the nonabelian theory as was highlighted by Tao [2008a], where we do not have many other
techniques.

While the most basic form of covering lemmas do work in the nonabelian setting, there is a refined
argument due to Chang [2002] that does not port over so easily.

Lemma 8.1 (Chang’s covering lemma [Tao and Vu 2006, Lemma 5.31]). Suppose that G is an (discrete)
abelian group and A, S C G are finite sets with |nA| < K"|A| foralln = 1 and |A+ S| < L|S|. Then
there is a set T with |T| = O(K log2K L) such that®

ACSpan(T)+ S —S.

We shall also need the following slight variant which provides a way in abelian groups to pass from
relative polynomial growth on one scale to all scales.

Lemma 8.2 (variant of Chang’s covering lemma). Suppose that G is an (discrete) abelian group and
A, S C G are finite sets with |kA + S| < 2K|S|. Then there is a set T C A with |T| < k such that
A CSpan(T)+ S —S.

Proof. Let T be a maximal S-dissociated subset of A, that is a maximal subset of A such that
(0. T+S)N('.T+S)=2 forallo#o €{0,1}T.

Now suppose that x’ € A\ T and write T’ := T U{x'}. By the maximality of 7 there are elements o, 0’ in
{0, 137" such that (0.7’ +S)N(0".T'+S) # . Now if o = o', then (o|r.T+S)N(c'|r.T+A) # 2,
contradicting the fact that 7" is S-dissociated. Hence, without loss of generality, 0’ = 1 and o/, = 0,
whence

x'eo|r.T—o|r.T+S—S CSpan(T)+ S —S.

We are done unless | 7’| = k; assume it is and let 77 C T be a set of size k. Denote {0.7' : o € {0, 1}7"}
by P and note that P C kA, whence

#|S| = |P+S|< kA + S| <2¥|s].
This contradiction completes the proof. O

3Recall that Span(T) :={} ", 0¢.t 10 € {—1,0, 1}'}.
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Although this is a result in abelian groups, it has many parallels with Milnor’s proof [1968] establishing
the dichotomy between polynomial growth and exponential growth in solvable groups.

The above lemma is particularly useful for controlling the order of relative polynomial growth through
the next result, an idea introduced in [Green and Ruzsa 2006].

Lemma 8.3. Suppose that G is an (discrete) abelian group, X C G and2X — X C Span(T)+ X — X
for some set T of size k. Then

(n+ DX —X|<Qn+D*IX=X| foralln=1.
Proof. By induction it is immediate that
m+ DX —-X CnSpan(T) + X — X,

and it is easy to see that |n Span(T')| < (2n + 1)* from which the result follows. |

9. Lattices and coset progressions

The geometry of numbers seems to play a pivotal role in proofs of Freiman-type theorems, and we
direct the reader to [Tao and Vu 2006, Chapter 3.5] or [Green 2002b] for a much more comprehensive

discussion.
Recall that A is a lattice in R¥ if there are linearly independent vectors vy, ..., v; such that A =
vV Z +---+viZ; we call vy, ..., v abasis for A. Furthermore, a set K in RX is called a convex body

if it is convex, open, nonempty and bounded.
We require the following application of John’s theorem and Minkowski’s second theorem, which
provides us with a way of producing a generalised arithmetic progression from some sort of “convex

progression”.*

Lemma 9.1 [Tao and Vu 2006, Lemma 3.33]. Suppose that K is a symmetric convex body and A is
a lattice, both in RY. Then there is a proper d-dimensional progression P in K N A such that |P| =
exp(—O0(d log2d))|K N A|.

The exp(—O(d log d)) factor should not come as a surprise: consider packing a d-dimensional cube
(playing the role of the generalised progression) inside a d-dimensional sphere.

The question remains of how to find a “convex progression”, and to do this Ruzsa [1994] introduced
an important embedding. Suppose that G is a (discrete) finite abelian group and I' C G. Then we define
a map

Rr:G — C(T,R)

1
X+ Rr(x): ' >Ry —~ T arg(y(x)),
11

4 A more formal notion of convex progression is introduced by Green [2002b], where a detailed discussion and literature
survey may be found.



642 TOM SANDERS

where the argument is taken to lie in (—, 7r]. Note that Ry preserves inverses, meaning that Rp(—x) =
—Rr(x), and furthermore if?

IR (xDllcary + -+ IRt (xa2) lerm) < 3
then
Rr(x1+---+x4) = Rr(x1) +---+ Rr(xg).

This essentially encodes the idea that Rt behaves like a Frefman morphism.® We shall use this embed-
ding to establish the following proposition.

Proposition 9.2. Suppose that G is a finite abelian group, d € N and B is a Bohr set such that

16 (Baatys) <29 116 (Bs) for some § < 1(3d + 1).

Then Bg contains a proper coset progression M of dimension at most d satisfying the estimate Bg(M ) =

exp(—0(d log2d)).

Proof. We write T for the frequency set of B and note that we may assume that L := [\ {kery :y € T'}

is trivial. Indeed, if it is nontrivial we may quotient out by it without impacting the hypotheses of the

proposition; we call the quotiented Bohr set B’ and note that Bs = Bé + L from which the result follows.
To start with note that if x € By, then

1
| Rr () lcr,r) < - arccos(1 —n*/2) < 21,

and so since 2(3d + 1)§ < % we have that if xq,...,x34741 € Bg then
Rr(xi+--+x3441) = Rr(x1) +-+-+ Rr(x3441). (9-1)
By hypothesis we then have
|(3d + 1) Rr(Bs)| = [Rr((3d + 1) Bs)| < [(3d + 1) Bs|
< |Baa+nsl <291Bs| = 27| Rr(By)|.

Apply the variant of Chang’s covering lemma in Lemma 8.2 to the set Rr(Bs) (which is symmetric
since Rr preserves inverses and Bg is symmetric) to get a set X C Rp(Bg) with | X| < d such that

3Rr(Bs) C Span(X) + 2R (Bg).

Writing V' for the real subspace of C(I', R) generated by X we see that dim V' < d and (by induction)
that
an(Bg) cV+ ZRF(BS)

for all n. Now, suppose that v € 2R (Bjg). It follows that
n.v €2nRr(Bs) CV +2Rr(Bs).

SRecall that if X is a normed space then | - |y denotes the norm on that space, so that I fllea,r = I1f lLoe(r)-
6We direct the unfamiliar reader to [Tao and Vu 2006, Chapter 5.3].
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for all naturals n. Since 2R (Bjg) is finite we see that there are two distinct naturals n and n’ and some
element w € 2R (Bg) such that n.v,n’.v € V + w. It follows that (n —n’).v € V whence v € V since
V is a vector space and n # n’. We conclude that Rr(Bg) C V.

Let E be the group generated by B which is finite, and note that H := Rp(E)+ C(T, Z) is a closed
discrete subgroup of C(I', R), where C(I", Z) is the group of Z-valued functions on I'. Since H is a
closed discrete subgroup of C(I', R) contained in V/, it is also a closed discrete subgroup of V. Since V
is certainly generated by Rr(Bgs) and H D Rr(Bg) we see that A := H NV has finite covolume and
so is a lattice in V.

Let p be the unique solution to |1 —exp(27ip)| = n in the range [O, %] and write O, for the p-cube
in C(I", R), which is a symmetric convex body in C(I', R), and so K := V' N Q,, is a symmetric convex
body in V. Now, by Lemma 9.1 the set K N A contains a proper d-dimensional progression P of size
exp(—O0(dlog2d))|K NA].

To see this note that by (9-1), Rr|p; is a Frefman 2-homomorphism. Now, if x, x2,x3,x4 € Bs
satisfy

Rr(x1) + Rr(xz) = Rr(x3) + Rr(x4)

then
Rr(x1 +x2 —x3—x4) = Rr(x1) + Rr(x2) + Rr(=x3) + Rr(—x4) = 0.

However, Rr(x) =0if and only if y(x) =1 for all y € I, which is to say if and only if x € L. Since L is
trivial we conclude that x| +x, = x3 +x4 and hence that Rr is injective on Bg, and Rlil : Rr(Bg) — Bg
is a Freiman 2-homomorphism.

On the other hand, by (9-1) Rr : Bs — Rr(Bjg) is a Freiman 2-homomorphism, and therefore also a
Freiman 2-isomorphism; hence its inverse Rlil : Rr(Bg) — Bg is one as well.

Since B = R;l (K NA), we are done by, for example, [Tao and Vu 2006, Proposition 5.24], which
simply says that the image of a proper coset progression under a Freiman isomorphism of order at least
2 is a proper coset progression of the same size and dimension; in particular R;l (P) is a proper coset
progression of size exp(—O(d log2d))| Bs| and dimension at most d. |

10. Proof of the main theorem

The result driving Theorem 1.1 is the following which brings together all the ingredients of the paper.

Theorem 10.1. Suppose that G is a finite abelian group, A, S C G have |A + S| < Kmin{|4|, |S|},
and € € (0, 1] is a parameter. Then there is a proper coset progression M with

O(e21ogl 267 1K)
) |4+ S|,

dim M = O(e 2 1log® 2¢ 7' K) and |M | =
2log K
such that for any probability measure |1 supported on M we have
4]
A+ S|

[Lats * mllgoo(e) = 1 —€ and |1y * pillgoo () = (1 —€)
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Proof. We start by thinking of G as discrete and using counting measure. By Pliinnecke’s inequality
[Tao and Vu 2006, Corollary 6.28] there is a nonempty set S’ C S such that

. 2 /
K min{| 4], |S|}) < x2Sy
S| S|
Note, in particular, that since |4 + 4 + S’| = |A| we have |S’| = |S|/K? from the second inequality.
Applying the inequality again we get a nonempty set A’ C A such that

A+ (A+S)+ A4+ S")| < KA/,

|A+A+S’|s(

and it follows that
(A+S)+(A+S) < KA+ S (10-1)

Now we apply Proposition 4.2 with T' = A to get a symmetric neighbourhood of the identity X such
that
|X| = exp(—O0(e2k?log? 2K))|A + S|

since |A| = |4 + S|/K, and
g % 15 x g/ (x)—1| <e€/4 forall x € kX. (10-2)

In the first instance it follows that k. X C (A +S’)—(4+S’). On the other hand, by the Pliinnecke-Ruzsa
estimates [Tao and Vu 2006, Corollary 6.29] applied to (10-1) we have

141((A+S") = (A+ S)| < K**! |4+ S'| = exp(O(l log K + ¢ k2 1og? K))| X]|,

and hence
|41k X| < exp(O(l log 2K + € 2k? log? 2K))| X |.

We put / = [e2k?log2K], so that
|3k + 1) X| < |4kl X| < 2k1-0G 102 2K) | x|
Hence we can pick k such that
1+loge 'K <k = O(log2¢ ' K) and |(3k] + 1) X | < 2¥! | x|.

By the variant of Chang’s covering lemma in Lemma 8.2 there is some set T of size at most k/ =
O(e 2 log* 2¢ 7' K) such that 3X C Span(T') + 2X, and hence (by Lemma 8.3)

|(n +2)X)| <nOC€ 218" 267 B o x| forall n > 1.
On the other hand |2.X| < 27| X|, and so (rescaling the measure to think of G as compact) we have
neg(nX) < pO€ ?log* 267! K) g (X) foralln = 1.

Now, by Proposition 7.1 applied to the set X there is a d = O(kllog2kix~") (which we may also
assume is at least 1) and a regular Bohr set B such that

X — X C Byz and pug(B2) < exp(d) g (X).
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Let ¢ be the absolute constant in the following technical lemma and note that since X is a neighbourhood
of the identity, X C B and B(X) = exp(—d).

We apply Chang’s theorem relative to B to get that Spec,.(lx, B) = Spec.(ux) has (1, B)-relative
entropy

r=0(clog2|1xllL2(p) I1x L1 ) = O(d).

It follows from Lemma 6.3 that there is a set of characters A of size r and a p = Q(1/(1 4+ h(B))r) such
that for all y € Spec,(ux) we have

1—y(x)| = O(r+ p'rh(B)h(B,)) forallx € By A By,

where B’ is the Bohr set with width function the constant function 2 and frequency set A. Provided
p = k we see that

G (X) < png(Bpja) < g (Biy2) and ug(Bp) < ng(B2) < exp(d)ug(X),
and so it follows that (B), h(B,) < d. It follows that p = Q(1/d?) and
I1—y(x)| = O(vd + p'd®) forall x € By A B, and y € Spec, (jx).
Pick p' = Q(e/d3K?) and v = Q(e/K?d) such that B” := By A B, has
|1 —y(x)| <e/4K* forall x € B” and y € Spec,.(ix).

In particular
/A 2 70(1)
pLv=Q(«1/K*d"").

For each A € A write B® for the Bohr set with frequency set {1} and width function the constant
function 2, thus B}, = Ajea Bl(,k). By Lemma 5.1 we see that

A
16 (By) 2 16 (Byy ) [ | ne(By)y).
ALEA

On the other hand, since B® has a frequency set of size 1 we see (from (5-2)) that
ne(BY) = %min{n’, 2.
Now, if np’/2 = k we have
nG(By) = (mv/2m)" ne (X)),
and on the other we have g (B) <exp(d)ug(X). Let ¢ = 1 be a natural such that
(1673t + 1)v™ 1) exp(d) < 2" and t = O(d log 2dK).
Then if n € [+ (3¢ + 1), $(37 + 1)) we have

PLG(BE/:;;.H)n) < 2tl'LG(B;/7/)~
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We now apply Proposition 9.2 to get that B;’/ contains a proper coset progression M of dimension at
most ¢ and size (2[)“00 ) G (X). The result is proved on an application of the next lemma provided
such a choice of 1 is possible. This can be done if « can be chosen such that

!/

0

—_— > y

83+ 1)«
which can be done with k = Q(e 2 K~9M) 'and working this back gives that t = O(e 2 1og® 2¢ 1 K)
and the result. O

The next lemma is here simply to avoid interrupting the flow of the previous argument, and the hy-
potheses are set up purely for that setting. The proof is simply a series of standard Fourier manipulations.

Lemma 10.2. There is an absolute constant ¢ > 0 such that if G is a finite abelian group, A, S, X C G
have |A + S| < Kmin{|A],|S|}, S’ C S has |S'| = |S|/K?, k = loge™ ' K is a natural number such
that

g * lgp s x g/ (x)—1] <€/4 forall x € kX,

and M is a set such that
I1—y(x)| <€/4K* forall x € M and y € Spec,(iix). (10-3)

then for any probability measure | supported on M we have
4]
A+ S|

[Tats * llgoe)y = 1—€ and |14 pllgeo(g) = (1 —¢)
Proof. Integrating the first hypothesis we get
k
{pma * Lags % s ) — 1] < €/4,

where ,ugc) denotes the k-fold convolution of py with itself. By Fourier inversion we have

Y Lars NI s (ix (k= 1| <e/4. (10-4)
y€G

The triangle inequality, Cauchy—Schwarz and Parseval’s theorem in the usual way tell us that

— __ _ ng(A+S")
|Lars MDA its' (V)| < ne(A+ SHI Al 2 @ IS 28y =
2 SO e (Due(S)

yeG

< K?. (10-5)

Then, by the triangle inequality, for any probability measure u supported on M we have
|i(y)—1| <e/4K? forall y € Spec,(ix). (10-6)

We conclude that

k — ~ — —_ —~ ~
E = |(Lags # o g+ usy ) 5 ) — 1| = ‘Z Latrs WA EA (s ()ix () —1
yeG
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is at most Sy + S, + 53, where

si=| ¥ 1?5@)@@)@@)@(y)k(m(y)ﬁ—1)‘,
y&Spec. (1x)

Si=| Y 1Z+\Sf(y)pa(y>;f§(y)@(y)k(|ﬁ(y>|2—1)‘,
y €Spec.(1x)

Syi= Y Lays MEais )ity (n)k - 1‘-
-

By the triangle inequality and (10-5) we see that

Si< osup | WIF) Mars W mains (v)| < K> < e/4

v &Spec (1x) yeC

for a suitable choice of ¢ = Q(1), since k > loge ™! K; by (10-5) and (10-6) we see that

Sp<2  sup |RG) 1Y L s DI Es (V)| < 2(e/4KP) K? < €/2;
v €Spec, (1x) o

and finally by (10-4) we see that S3 < €/4, so that E < €. It follows from this that

k
(Lacrsr % [0 pa % fis % 1) % p) = 1—e,

and hence by averaging that

pne(A4)
pe(A+S")

The lemma is proved. O

I1a+s * ptllLoee) = 1—€ and |14 % p|Loo(g) = (1 —€)

It is worth making a couple of remarks before continuing. First, Theorem 10.1 can be extended to
infinite abelian groups by embedding the sets there in a finite group via a sufficiently large Freiman
isomorphism. This is the finite modelling argument of [Green and Ruzsa 2007, Lemma 2.1], but we
shall not pursue it here.

The expected e-dependence in Theorem 10.1 may be less clear than the K-dependence. The argument
we have given works equally well for the so-called popular difference set in place of 144 g, that is the
set

D(A,S):={xeG:1y4x1g5(x)=ce/K}

for sufficiently small ¢. On the other hand Wolf [2010], developing the niveau set construction of Ruzsa
[1987; 1991], showed that even finding a large sumset in such popular difference sets is hard, and it
seems likely that her arguments can be adapted to cover the case of D(A4,S) containing a proportion
1 — € of a sumset.
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Understanding this, even in the model setting of G = [},

e-dependence would probably yield better analysis of inner products of the form (14 * 1 g, 17) which

would be of great interest since a better

are of importance in, for example, Roth’s theorem [Roth 1953; 1952].
We are now in a position to prove Theorem 1.1 by an easy pigeonhole argument.

Proof of Theorem 1.1. Freiman 2-embed the sets A and S into a finite group (via, for example, the
method of [Green and Ruzsa 2007, Lemma 2.1]); if we can prove the result there then it immediately
pulls back.

Apply Theorem 10.1 with € = %(1 + +/2) to get a proper d-dimensional coset progression M . Note
that we may assume the progression is symmetric by translating it and possibly shrinking it by a factor
of exp(d); this has no impact on the bounds. Thus we put

M=H+{x1.1+-+xg.lg:|li| <L; foralll <i<d}
where L1,...,L; €N, H <G and x1,...,x7 € G. Write
My :=H+{x;.1+-+x4.1g: ;| <nL; foralll <i<d},
and note that | M| < exp(O(d))|M;3|. On the other hand if jn < % we have
My C Mgy Coo- CMyjayjn = My,

so it follows that there is some = Q(1/d) and i < j = O(d) such that | M /5 4;5| < 21/2|M1/2+(,~_1),7|.
Since n = Q(1/d) we easily have that | M| = exp(—O(d logd))|M|. On the other hand if we apply
the conclusion of Theorem 10.1 with
= WMy opin + 1Mooy
IMi/24inl +|Mij24G-1)]

we get an element x such that
[(x+A+S)NMyjpqinl +1(x+A+S)NMizq -1yl
is at least
(I =e)(I My 24inl + | Mi24i-1)5)-

But then if z € M) we get

Lats *1-(4+8)(2) = Iyt a+5 * (x4 4+5)(2)
Z Lt A+ )NM1j24in ¥ 1=t A+)NM1 24 -1) (7)
> |[(x+ A+ S) N Myjpqiy| + |24+ (x + A+ S) N My 24 —1)n)]
—[((x+A+S)N M) U+ ((x+ A+ S) N Myjaq 1))
> |(x+ A+ S8) N Myjaqig|+ |(x+ A+ S) N My jaq—1yn| — | Mij24in]
= (1= (14 v2)€)|My/24 -1y > 0,

and it follows that (4 — A) + (S — ) contains M,,. Tracking through the bounds we get the result. [J
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11. Concluding remarks and applications

To begin with we should remark that in the case when G has bounded exponent or is torsion-free, we can
get slightly better bounds and the argument is much simpler because of the presence of a good modelling
lemmas. In the first case we get the following result, a proof of which (in the case G = [)) is contained
in the Appendix as it is so short.

Theorem 11.1 (Bogolyubov—Ruzsa lemma for bounded exponent abelian groups). Suppose G is an
abelian group of exponent r and A, S C G are finite nonempty sets such that |A + S| < K min{|A|, |S|}.
Then (A — A) + (S — S) contains a subspace V of size exp(— Oy (log* 2K))|A + S|.

In the second, the material of Sections 5-9 can be replaced by similar but more standard arguments
because of the following modelling lemma.

Lemma 11.2 (modelling for torsion-free abelian groups [Ruzsa 2009, Theorem 3.5]). Suppose that G
is a torsion-free abelian group, A C G is a finite nonempty set and k = 2 is a natural. Then for every
q=|kA—kA|thereisaset A" C Awith|A'| = |A|/k such that A’ is Freiman k-isomorphic to a subset
of 7/qZ.

Theorem 11.3 (Bogolyubov—Ruzsa lemma for torsion-free abelian groups). Suppose that G is a torsion-
free abelian group and A, S C G are finite nonempty sets such that |A + S| < K min{|A|, |S|}. Then
(A—A)+ (S —S) contains a proper symmetric d(K)-dimensional coset progression M of size

exp(—h(K))|4+ S|.
Moreover, we may take d(K) = O(log* 2K) and h(K) = O(log* 2K log 2log 2K).
Returning to Theorem 1.1 it is easy to see that we must have d(K), h(K) = Q(log K) by considering
a union of +/K coset progressions of dimension log, V'K, and even achieving this bound may be hard
without refining the definition of a coset progression. (See the comments of Green in [Tao 2008b] for a
discussion of this.)

The paper [Schoen 2011] was a major breakthrough in proving the first good bounds for (a slight
variant of) Theorem 1.1; it was essentially shown that one could take

d(K). h(K) = O(exp(O(y/Tog K)))

for torsion-free or bounded-exponent abelian groups.

Indeed, it should be clear that while we do not use [Schoen 2011] directly in the proof of Theorem 1.1,
it has had a considerable influence on the present work and the applications which now follow are from
the end of that paper as well.

Freiman’s theorem. As an immediate corollary of Theorem 1.1 and Chang’s covering lemma we have
the following.

Theorem 11.4 (Freiman’s theorem for abelian groups). Suppose that G is an (discrete) abelian group
and A C G is finite with |A - A| < K| A|. Then A is contained in a d(K)-dimensional coset progression
M of size at most exp(h(K))|A|. Moreover, we may take d(K), h(K) = O(K log®® 2K).
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By considering a union of K dissociated translates of a coset progression it is easy to see that we must
have d(K), h(K) = Q(K), so the result is close to best possible.

Green and Ruzsa [2007] provided the first bounds of d(K), h(K) = O(K*T°(1), and the peppering
of their work throughout this paper should indicate the importance of their ideas.

Schoen [2011] improved the bounds to O(K31°(1) and to O(K'*+°(M) for certain classes of groups,
and in [Cwalina and Schoen 2010] the structure is further elucidated with particular emphasis on getting
good control on the dimension.

The U3-inverse theorem. Theorem 1.1 can be inserted into the various U *-inverse theorems of Tao and
Green [2008] for finite abelian groups of odd order, and Samorodnitsky [2007] (see also [Wolf 2009])
for [} to improve the bounds there. In particular one gets the following.

Theorem 11.5 (U*(F%)-inverse theorem). Suppose that f € L*(F%) has ||f||U3([Fg) = 8| fll oo r2)-
Then there is a quadratic polynomial q : ' — F, such that

(2 (=17 L2gny| = exp(=0(log®M 28 ) || f | Lo en)-

In fact the connection between good bounds in results of this type and good bounds in Freiman-type
theorems is quite clearly developed by Green and Tao [2010] and Lovett [2010].

Long arithmetic progressions in sumsets. The question of finding long arithmetic progressions in sets
of integers is one of central interest in additive combinatorics. The basic question has the following form:
suppose that Aq,..., A C{1,..., N} all have density at least «. How long an arithmetic progression
can we guarantee that 41 4 --- + A contain?

For one set this is addressed by the notoriously difficult Szemerédi’s theorem [1969; 1975], where
the best quantitative work is that of Gowers [1998; 2001]; for two sets the longest progression is much
longer with the state of the art due to Green [2002a]; for three sets or more the results get even stronger
with the work of Freiman, Halberstam and Ruzsa [Freiman et al. 1992]; and finally for eight sets or more,
longer again by the recent work of Schoen [2011].

Theorem 1.1 yields an immediate improvement for the case of four sets or more.

Theorem 11.6. Suppose that Ay, ..., A4 C{1,..., N} all have density at least . Then Ay +---+ Ay

. . . . —0(1) 941
contains an arithmetic progression of length N O(log 2e77)

Proof. Since |A; + Aj| <207 '|A4;| for all i, j we have, by averaging, that there is a symmetric set 4 of
density () such that Ay, ..., A4 each contains a translate of A. In particular, the longest progression
in A— A+ A— A is contained in a translate of A + A, + A3 + Aja.

Now, by Theorem 1.1 the set A — A + A — A contains an 0(10g0(1) o~ !)-dimensional coset progres-
sion M of size exp(—O(logO(l) a~1))N. Since Z is torsion-free the progression is just a generalised
progression which certainly contains a 1-dimensional progression of length |M | 1/dimM " The result is
proved. O

It is not clear that this result gives the best possible conclusion for & sets as k tends to infinity, but if one
were interested in this no doubt some improvement could be squeezed out by delving into the main proof.
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A(4)-estimate for the squares. Inserting Theorem 1.1 into a result from [Chang 2004] (itself developed
from an argument of Bourgain in [Johnson and Lindenstrauss 2001]) yields the following A (4)-estimate
for the squares.

Theorem 11.7. Suppose that ny, ..., ny are naturals. Then

/

This is essentially equivalent to inserting Theorem 1.1 into the proof of [Schoen 2011, Theorem §]

k 4
Y “exprin})| d6 = O(k? exp(—Q(log®™ 2k))).

i=1

and Gowers’ [1998] version of the Balog—Szemerédi lemma [1994]. In any case a conjecture of Rudin
[1960] suggests that the bound O(k2+oM)y is likely to be true, and the above is not even a power-type
improvement on the trivial upper bound of k3.

The Konyagin—-taba theorem. Theorem 1.1 inserted into the argument at the end of [Schoen 2011]
yields the following quantitative improvement to a result from [Konyagin and Laba 2006].

Theorem 11.8 (Konyagin—taba theorem). Suppose that A is a set of reals and o € R is transcendental.
Then
|A 4+ a.A| = exp(2(1og® D 2| A)))| A|.

What is particularly interesting here is that there is a simple construction which shows that there are
arbitrarily large sets A with |4 + «.A4| = exp(O(y/log |A|))|A].

Appendix: Proof of Theorem 11.1

Our objective in this appendix is to prove the following result.

Theorem A.1. Suppose that G :=F}, and A C G has density o > 0. Then there is a subspace V < G
with cod V = O(log* 20" such that V C 4A.

We have distilled this argument out because it is short and just uses the two ingredients of the Croot—
Sisask lemma and Chang’s theorem. For the reader interested in a little more motivation the sketch after
the introduction may be of more interest.

In the rather special setting of [} it is known from [Green and Ruzsa 2007, Proposition 6.1] that if
|A+ A| < K|A| then A is Freiman 8-isomorphic to a set A’ of density K~2(1) in some F, from which
we get the following corollary of Theorem A.1.

Corollary A.2. Suppose that G := 7, and A C G has |A+ A| < K|A|. Then there is a subspace V < G
with |V | = exp(—O(log* 2K))|A| such that V C 4A.

In this setting the result of Croot and Sisask is the following.

Lemma A.3 (Croot-Sisask). Suppose that G := ", f € L?(G) and A C G has density a > 0. Then
thereis an a € A and a set T with ug(T) = (a/2)0(6_21’) such that

loe (f *pa) = f * pallLee) <€l fllLr) forallteT.
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Additionally we have:
Lemma A.4 (Chang’s theorem). Suppose that G :=F} and A C G has density a > 0. Then
cod Spece(p,A)J‘ = 0(e ?log2a™ ).
Proof of Theorem A.1. We begin by noting that
(loa* L. La) = (laa. Lo % 1g) = o, (A-1)

By the Croot-Sisask lemma applied with f := 1,4 we geta set T C G with ug(T) = (a/2)0(k21’)
such that
lpr(logx14)— 1o % 14llLr(G) S a/4ke forallt eT.

By the triangle inequality this gives
lo:(log*14) =124 % 14llLrg) <a/de forallz €kT,
and so on integrating (and applying the triangle inequality again) we have
124 %14 % ;#" —lag* LallLr(G) < a/de.
By Holder’s inequality we get
EYERVE M(Tk), La) = (loa % 1. Lo S ae' T/ P70 /40,

Choosing p = 1+ loga ™! and inserting (A-1) we have

(2a % 1a 5 1§ 14) —a? <@?/4,
and so by the triangle inequality

SEYERVE. ,bb(;(), l4)rrG) = 3a2/4.

Now, put V := Specl/z(uT)J- and g 1= 1y % 14 % ,uglf), so that

(g 14) — (g * py. 14)| = ‘ Y LaWIL)Par(n)¥| <27 <a?/s,
ygv+L

by Parseval’s theorem, the definition of V' and by taking k = O(log 2a™!) a sufficiently large natural. It
follows by the triangle inequality that

(k)

k
(Log s Lask g % py.lg) > a?/2,

and so, by averaging, that ||15 4 * wy || Lo (G) > % We conclude that 44 contains V' by the pigeon-hole
principle and the result is proved on applying Chang’s theorem to see that

cod V = O(log 2ug(T)™1) = O(log* 207 1). O
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REAL ANALYTICITY AWAY FROM THE NUCLEUS OF PSEUDORELATIVISTIC
HARTREE-FOCK ORBITALS

ANNA DALL’ ACQUA, SOREN FOURNALIS,
THOMAS BSTERGAARD SGRENSEN AND EDGARDO STOCKMEYER

We prove that the Hartree—Fock orbitals of pseudorelativistic atoms, that is, atoms where the kinetic energy
of the electrons is given by the pseudorelativistic operator ~/—A + 1 — 1, are real analytic away from the
origin. As a consequence, the quantum mechanical ground state of such atoms is never a Hartree—Fock
state.

Our proof is inspired by the classical proof of analyticity by nested balls of Morrey and Nirenberg.
However, the technique has to be adapted to take care of the nonlocal pseudodifferential operator, the
singularity of the potential at the origin, and the nonlinear terms in the equation.

1. Introduction and results

In [Dall’ Acqua et al. 2008], three of the present authors studied the Hartree—Fock model for pseudorela-
tivistic atoms, and proved the existence of Hartree—Fock minimizers. Furthermore, they proved that the
corresponding Hartree—Fock orbitals (solutions to the associated Euler-Lagrange equation) are smooth
away from the nucleus, and that they decay exponentially. In this paper we prove that all of these orbitals
are, in fact, real analytic away from the origin. Apart from intrinsic mathematical interest, analyticity
of solutions has important consequences. For example, in the nonrelativistic case, the analyticity of the
orbitals was used in [Friesecke 2003; Lewin 2004a] to prove that the quantum mechanical ground state is
never a Hartree—Fock state (or, more generally, is never a finite linear combination of Slater determinants).
A direct consequence of our main regularity result is that this also holds in the pseudorelativistic case.

Our proof also shows that any H'/?-solution ¢ : R> — C to the nonlinear equation

Z
(J—A+1w—¢7wiowﬂ*rrvwzkw (1)

which is smooth away from x = 0, is in fact real analytic there. As will be clear from the proof, our
method yields the same result for solutions to equations of the form

(—A+m)o+Vo+lplfo =rgp, )
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where V has a finite number of point singularities (but is analytic elsewhere), under certain conditions
onm,s,V, and k (see Remark 1.2 below). We believe this result is of independent interest, but stick
concretely to the case of pseudorelativistic Hartree—Fock orbitals, since this was the original motivation
for the present work.

We consider a model for an atom with N electrons and nuclear charge Z (fixed at the origin), where

the kinetic energy of the electrons is described by the expression \/ (Iplc)? + (mc?)? — mc?. This model
takes into account some (kinematic) relativistic effects; in units where i = ¢ = m = 1, the Hamiltonian
becomes

I
Hr—ivp-vapl+ > Pl 3)

X — X
l<i<j<N ! il

||Mz

with T(p) = E(p) —a~ ' = {/|p?+ a2 —a~ ! and V(x) = Za/|x|. Here, a is Sommerfeld’s fine
structure constant; physically, o >~ 1/137.

The operator H acts on a dense subspace of the N-particle Hilbert space #r = /\f\’: 1L2(IR§3) of
antisymmetric functions. (We will not consider spin since it is irrelevant for our discussion.) It is bounded
from below on this subspace if and only if Za < 2/m (see [Lieb and Yau 1988]; for a number of other
works on this operator, see [Carmona et al. 1990; Daubechies and Lieb 1983; Fefferman and de la Llave
1986; Herbst 1977; Lewis et al. 1997; Nardini 1986; Weder 1975; Zhislin and Vugalter 2002]).

The (quantum) ground state energy is the infimum of the quadratic form q defined by H, over the
subset of elements of norm 1 of the corresponding form domain. Hence, it coincides with the infimum
of the spectrum of H considered as an operator acting in #r. A corresponding minimizer is called a
(quantum) ground state of H.

In the Hartree—Fock approximation, instead of minimizing the quadratic form q in the entire N-particle
space #(r, one restricts to wavefunctions W which are pure wedge products, also called Slater determinants:

W(xg, .. det(u; (xj))l =1 “4)

1
SXN) = ——
v N!
with {ui}f’: , orthonormal in L?*(R?) (called orbitals). Notice that this way, W € #p and [|W||2qsv) = 1.

The Hartree—Fock ground state energy is the infimum of the quadratic form q defined by H over such
Slater determinants:

EME(N, Z, a) := inf{ q(¥, W) | ¥ Slater determinant }. (5)
Inserting W of the form in (4) into q formally yields

My, . uy) = q(v, W)

N
=a”! Z/R% {4 G [T (=iV)uj1(x) = V(@) ()} dx

/ / 4 ()| |uf(y)|2d iyl Z / / uj(e)u; (x)u; (y)u;(y) dxdy. (6)
3 Jw3 3 JR3

lx =yl 2y x =yl

l\)l

1<i,j<N
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In fact, u; € H'?(R?), 1 <i < N, is needed for this to be well-defined (see Section 3 for a detailed
discussion), and so (5)—(6) can be written

EY(N, Z, ) =inf{ € uy, ..., un) | (uy, ..., uy) € My}, (7)
My ={ @i, ... uy) e (HPPRN| (ui,u;) =8; ). (8)

Here ( , ) denotes the scalar product in L?(R%). The existence of minimizers for the problem (7)—(8)
was proved in [Dall’ Acqua et al. 2008] when Z > N — 1 and Za < 2/m. (Note that such minimizers are

generally not unique since €HF

is not convex; see [Fournais et al. 2009]). The existence of infinitely many
distinct critical points of the functional €"¥ on .ty was proved recently (under the same conditions) in
[Enstedt and Melgaard 2009].

The Euler-Lagrange equations of the problem (7)—(8) are the Hartree—Fock equations,

P
T V) — ; +«a
[(T(—iV) — Vg ] @) E:/w - dy)e )

N
_“Z (/R3 Md}’)‘ﬂj(x) =¢ggi(x), 1<i<N. (9
j=1

lx — yl

Here the ¢; are the Lagrange multipliers of the orthonormality constraints in (8). (The naive Euler—
Lagrange equations are more complicated than (9), but can be transformed to (9); see [Fournais et al.
2009].) Note that (9) can be reformulated as

hepi =€i¢p;, 1=<i=<N, (10)
with hy, the Hartree—Fock operator associated to ¢ = {¢1, ..., ¢y}, formally given by
hou = [T (=iV) = V]u+aRyu —aKyu, (1D

where Ryu is the direct interaction, given by the multiplication operator defined by

Ry () —Z/ loi P 1)

3 |x — yl

and K, u is the exchange term, given by the integral operator

Al @i(yu(y)
(Kq:u)(x):E (/ R dy><pj(x)- (13)
j=1

RS x—yl

The equations (9) (or equivalently (10)) are called the self-consistent Hartree—Fock equations. One
has that oess(hy) = [0, 00) and that, when in addition N < Z, the operator h, has infinitely many
eigenvalues in [—a~!, 0) (see [Dall’Acqua et al. 2008, Lemma 2]; the argument given there holds for
any ¢ ={¢1,...,¢n}, @i € H'2(R3), as long as Za < 2/m). If (@1, ..., ¢n) € My is a minimizer for



660 ANNA DALL’ACQUA, SOREN FOURNAIS, THOMAS @. SORENSEN AND EDGARDO STOCKMEYER

the problem (7)—(8), then the ¢; solve (10) with &) <&y <... <eyn < 0the N lowest eigenvalues of the
operator hy [Dall’ Acqua et al. 2008].

In [Dall’ Acqua et al. 2008] it was proved that solutions {¢y, ..., ¢y} to (9)— and, more generally,
all eigenfunctions of the corresponding Hartree—Fock operator i, — are smooth away from x = 0 (the
singularity of V'), and that (for the ¢; for which ¢; < 0) they decay exponentially. (The solutions studied
in [Dall’ Acqua et al. 2008] came from a minimizer of €, but the proof trivially extends to the solutions
(@, nen = {{(pi’, R <,0”1\,}}nGN to (9) found in [Enstedt and Melgaard 2009], and to all the eigenfunctions
of the corresponding Hartree—Fock operators mentioned above). The main theorem of this paper is the
following, which completely settles the question of regularity away from the origin of solutions to the
equations (9).

Theorem 1.1. Let Za < 2/m, and let N > 2 be a positive integer such that N < Z + 1. Let ¢ =
Lo on), 0 e H2(RY, i =1, ..., N, be solutions to the pseudorelativistic Hartree—Fock equations
{p N} @ p q
in (9).
Then, fori=1,..., N,
i € CO(R*\ {0}), (14)

that is, the Hartree—Fock orbitals are real analytic away from the origin in R>.

Remark 1.2. (i) The restrictions Za <2/m, N < Z+1, and N > 2 are only made to ensure existence of

172

H'/?-solutions to (9). In fact, our proof proves analyticity away from x = 0 for H'/?>-solutions to (9) for

172_solutions

any Za. For the case N =1, (9) reduces to (T — V)¢ = e¢ and our result also holds for H
to this equation (see also (iv) and (v) below about more general V for which the result also holds for
the linear equation). More interestingly, the result also holds for H'/2-solutions to (1) (which, strictly

speaking, cannot be obtained from (9) by any choice of N).
(ii) The statement also holds for any eigenfunction of the associated Hartree—Fock operator given by (11).
(iii) It is obvious from the proof that the theorem holds true if we include spin.

(iv) As will also be clear from the proof, the statement of Theorem 1.1 (appropriately modified) also
holds for molecules. More explicitly, for a molecule with K nuclei of charges Zi, ..., Zg, fixed at
Ri,...,Rx € R, replace V in (9) by Zle Vi with Vi (x) = Zra/|1x — Ri|, Zra < 2/m. Then, for
N <1+ Zle Zy, Hartree—Fock minimizers exist (see [Dall’ Acqua et al. 2008, Remark 1(viii)]), and the
corresponding Hartree—Fock orbitals are real analytic away from the positions of the nuclei, i.e., belong
to C*(R*\{Ry, ..., Rg}).

(v) Another approximation to the full quantum mechanical problem is the multiconfiguration self-consistent
field method (MC-SCF). Here one minimizes the quadratic form g defined by the operator H given in (3)
(or, more generally, with V from (iv)) over the set of finite sums of Slater determinants instead of only on
single Slater determinants as in Hartree—Fock theory. If minimizers exist they satisfy what is called the
multiconfiguration equations (MC equations). For more details, see [Fournais et al. 2009; Friesecke 2003;
Lewin 2004b]. As will be clear from the proof, the statement of Theorem 1.1 also holds for solutions to
these equations.
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(vi) In fact, for V we only need the analyticity of V away from finitely many points in R?, and certain
integrability properties of V¢; in the vicinity of each of these points, and at infinity; for more details, see
Remark 4.1.

(vii) As will be clear from the proof, the statement of Theorem 1.1 also holds for other nonlinearities than
the Hartree—Fock term in (9), namely |go|k<p as in (2) (for k even; for k odd, one needs to take (pk+1). The
LP-space in which one needs to study the problem (see Proposition 2.1 and the description of the proof
below for details) needs to be chosen depending on k in this case (the larger the k, the larger the p).

(viii) Also, as will be clear from the proof, the result holds if T(—iV) = |V| (i.e., T(p) = |p]) in (9).
In (35) below, E(p)~! should then be replaced by (|p| + 1)~! (and 1 added to ="' + ¢;). The only
properties of E( p)~! used are in Lemmas C.1 and C.2, which follow also for (| p| 4+ 1)~! from the same
methods with minor modifications. Similarly, one can replace 7' (p) with (—A + a )%, s e[1/2,1].

(ix) The result of Theorem 1.1 in the nonrelativistic case (7' (—iV) replaced by —a A in (3)) was proved
in [Friesecke 2003; Lewin 2004a]; see also the discussion below. In this case, it is furthermore known
[Fournais et al. 2009] that, for x € B, (0) for some r > 0, ¢; (x) = (pi(l)(x) + |x|gol.(2) (x) with <pl.(1), <pl.(2) €

C”(B(0)).

Combining the argument in [Friesecke 2003; Lewin 2004a] with the analyticity away from the position
of the nucleus of solutions to the MC equations (see Remark 1.2(v)) we readily obtain the following
result.

Theorem 1.3. Let V be a (quantum) ground state of the operator H given in (3). Then W is not a finite
linear combination of Slater determinants.

Remark 1.4. The same holds with V as in Remark 1.2(iv).

Description of the proof of Theorem 1.1. The proof of Theorem 1.1 is inspired by the standard Morrey—
Nirenberg proof of analyticity of solutions to general (linear) elliptic partial differential equations with
real analytic coefficients by “nested balls” [Morrey and Nirenberg 1957]. A good presentation of this
technique can be found in [Hormander 1969]. (Other proofs using a complexification of the coordinates
also exist and have been applied to both linear and nonlinear equations; see [Morrey 2008] and references
therein.)

In [Hormander 1969] one proves L?-bounds on derivatives of order k of the solution in a ball B, (of
some radius r) around a given point. These bounds should behave suitably in k in order to make the
Taylor series of the solution converge locally, thereby proving analyticity.

The proof of these bounds is inductive. In fact, for some ball Bg with R > r, one proves the bounds
on all balls B, with r < p < R, with the appropriate (with respect to k) behavior in R — p. The base
of induction is provided by standard elliptic estimates. In the induction step, one has to bound k + 1
derivatives of the solution in the ball B,. To do so, one divides the difference B\ B, into k+ 1 nested balls
using k + 1 localization functions with successively larger supports. Commuting m of the k derivatives
(in the case of an operator of order m) with these localization functions produces (local) differential
operators of order m — 1, with support in a larger ball. These local commutator terms are controlled by
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the induction hypothesis, since they contain one derivative less. For the last term — the term where no
commutators occur — one then uses the equation.

This approach poses new technical difficulties in our case, due to the nonlocality of the kinetic energy
T(p) =+~—A+a=2—a~! and the nonlinearity of the terms Ry and Ky ;.

The nonlocality of the operator ~/—A + a2 implies that, as opposed to the case of a differential
operator, the commutator of the kinetic energy with a localization function is not localized in the support
of the localization function. That is, when resorting to proving analyticity by differentiating the equation,
the localization argument described above introduces commutators which are (nonlocal) pseudodifferential
operators. Now the induction hypothesis does not provide control of these terms. Furthermore, it is
far from obvious that the singularity of the potential V outside Br does not influence the regularity in
By, of the solution through these operators (or rather, through the nonlocality of +/—A +«a~2). Loosely
speaking, the singularity of the nuclear potential can be felt everywhere. (Note that if we would not have
a (singular) potential V one could proceed as in [Frank and Lenzmann 2010] and prove global analyticity
by showing exponential decay of the solutions in Fourier space.)

We overcome this problem by a new localization argument which enable us to capture in more detail the
action of high order derivatives on nested balls (manifested in Lemma B.1 in the appendix). This, together
with very explicit bounds on the (smoothing) operators ¢ E(p)~' D? x for x and ¢ with disjoint supports
(see Lemma C.2), are the main ingredients in solving the problem of nonlocality. The estimates are on
PE(p)~'DPx (not ¢ E(p)DPy), since we invert E(p) (turning the equation into an integral operator
equation, see (35)). Our method of proof would also work in the nonrelativistic case, since the integral
operators (—A 4+ 1)~! and E(p)~! enjoy similar properties.

The second major obstacle is the (morally cubic) nonlinearity of the terms Ry¢; and Ky ¢;.

To illustrate the problem, we discuss proving analyticity by the above method (local L2-estimates) for
solutions u to the equation Au = u>. When differentiating this equation (and therefore 1), the application
of Leibniz’s rule introduces a sum of terms. After using Holder’s inequality on each term (the product
of three factors, each a number of derivatives on u), one needs to use a Sobolev inequality to “get back
down to L?” in order to use the induction hypothesis. Summing the many terms, the needed estimate
does not come out (in fact, some Gevrey-regularity would follow, but not analyticity).

In the quadratic case this can be done (that is, for the equation Au = u? this problem does not occur),
but in the cubic case, one looses too many derivatives.

The second insight of our proof is that this problem of loss of derivatives may be overcome by
characterizing analyticity by growth of derivatives in some L” with p > 2. When working in L? for p > 2,
the loss of derivatives in the Sobolev inequality mentioned above is less (as seen in Theorem D.1). Choosing
p sufficiently large allows us to prove the needed estimate. The operator estimates on ¢ E(p)~' DP x
mentioned above therefore have to be L?-estimates. In fact, using L? — L9 estimates, one can also deal
with the problem that the singularity of the nuclear potential V can be felt everywhere.

Note that taking p = oo would avoid using a Sobolev inequality altogether (L being an algebra), but
the needed estimates on ¢ E (p)~! D x cannot hold in this case. For local equations an approach to handle
the loss of derivatives (due to Sobolev inequalities) exists. This was carried out in [Friedman 1958],
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where analyticity of solutions to elliptic partial differential equations with general analytic nonlinearities
was proved. Friedman works in spaces of continuous functions. In this approach, one needs to have a
sufficiently high degree of regularity of the solution beforehand (it is not proved along the way). Also,
since the elliptic regularity in spaces of continuous functions have an inherent loss of derivative, one
needs to work on a sufficiently small domain in order for the method to work. We prefer to work in
Sobolev spaces since this is the natural setting for our equation and since the needed estimates on the
resolvent are readily obtained in these spaces.

For an alternative method of proof (one fixed localization function, to the power k, and estimating in a
higher order Sobolev space (instead of in L?) which is also an algebra), see [Kato 1996] (for the equation
Au = u?) and [Hashimoto 2006] (for general second order nonlinear analytic PDEs).

Additional technical difficulties occur due to the fact that the cubic terms, Ry¢; and K, ¢;, are actually
nonlocal.

Note that in the proof that nonrelativistic Hartree—Fock orbitals are analytic away from the positions of
the nuclei (see [Friesecke 2003; Lewin 2004b]), the nonlinearities are dealt with by cleverly rewriting the
Hartree—Fock equations as a system. One introduces new functions ¢; ; = [¢; @] * | - |~!, which satisfy
—A¢; j =4mg;¢;. This eliminates the terms Ry¢;, Ky¢;, turning these into quadratic products in the
functions ¢;, ¢; j, hence one obtains a (quadratic and local) nonlinear system of elliptic second order
equations with coefficients analytic away from the positions of the nuclei. The result now follows from
the results cited above [Kato 1996; Morrey 2008]. (In fact, this argument extends to solutions of the more
general multiconfiguration self-consistent field equations, see [Friesecke 2003; Lewin 2004b].)

This idea cannot readily be extended to our case. The operator E(p) is a pseudodifferential operator
of first order, so when rewriting the Hartree—Fock equations as described above, one obtains a system
of pseudodifferential equations. This system is, as before, of second (differential) order in the auxiliary
functions ¢; ;, but only of first (pseudodifferential) order in the original functions ¢;. Hence, the leading
(second) order matrix is singular elliptic. Hence (even if we ignore the fact that the square root is nonlocal)
the above argument does not apply.

To summarize, our approach is as follows. We invert the kinetic energy in the equation for the orbitals
thereby obtaining an integral equation to which we apply successive differentiations. The localization
argument of Lemma B.1 together with the smoothing estimates on ¢ E (p)~' D? x handle the nonlocality
of this equation. By working in L? for suitably large p one can afford the necessary loss of derivatives
from using Sobolev inequalities when treating the nonlinear terms.

2. Proof of analyticity

In order to prove that the ¢; are real analytic in R? \ {0} it is sufficient, by [Krantz and Parks 2002,
Proposition 2.2.10], to prove that for every xo € R*\ {0} there exists an open set U € R?\ {0} containing
X(, and constants €, R > 0, such that (with Ny := N U {0})

|
18P0 (x)| <€ % for all x € U and all B € Nj. (15)
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Let xo € R\ {0}, and let w be the ball Bg(xg) with center xo and radius R := min{l, |xo|/4}. For
8 > 0 we denote by w; the set of points in w at distance larger than § from dw, i.e.,

ws = {x cw|d(x, dw) > 8). (16)

By our choice of w we have ws = Br_s(xg). Therefore ws = & for § > R. In particular, by our choice of
R,

ws=2 for §>1. (17

For 2 CR" and p > 1 we let L”(£2) denote the usual L”-space withnorm || f || .r(@) = (fQ | f(x)|? dx)l/p.
We write || fll, = | f | Lrw3)- In the following we equip the Sobolev space W™:7(€2), 2 C R", m € N
and p €[1, 0co), with the norm

lullwnriy ==Y 1DullLr()- (18)

lo|<m
Theorem 1.1 follows from the following proposition.

Proposition 2.1. Let Za < 2/w, and let N > 2 be a positive integer such that N < Z + 1. Let ¢ =
{o1,..., 0N}, @i € HI/Z(IR3), i=1,..., N, be solutions to the pseudorelativistic Hartree—Fock equations
in (9). Let xo € R?\ {0}, R = min{1, |xo|/4}, and @ = Bg(xg). Define ws = Br_s(xq) for 5 > 0.

Then for all p > 5 there exist constants C, B > 1 such that for all j € N, for all € > 0 such that
€j <R/2,and foralli € {l,..., N} we have

e?'DP il Lo,y < CBYPY forall p e N with |B] < j. (19)

Given Proposition 2.1, the proof that the ¢; are real analytic is standard, using Sobolev embedding. We
give the argument here for completeness. We then give the proof of Proposition 2.1 in the next section.

Let U = Bg/2(x0) = wg/2 € w. Using Theorem D.5 and (19) we have ¢; € C(U). Therefore it suffices
to prove (15) for |8] > 1. Fixi € {1, ..., N} and consider § € Ng \ {0} an arbitrary multiindex. Setting
j = 18] and € = (R/2)/j it follows from Proposition 2.1 (since €j = R/2) that there exist constants
C, B > 1 such that

B\ 8l 2B\ 8l
IDPgilrwn =C(2) =C(52) 1817, (20)

with C, B independent of the choice of 8. By Theorem D.5 (see also Remark D.6) there exists a constant
K4 = K4(p, xo) such that, for all g’ € N3 \ {0},
lo|+18]

lol+18']
2BY o1 +181)

sup | DF 0 (0)] = Ko Y 10" ¥ gilluniue < Ke Y C(5

xeU o<1 lo|<1

using (20). Using that R <1 < B, that #{o € Ng | |o| = 1} = 3, and that, from (A.7),

1+p’ c !
(1+181)""! < 2F B!,

V2
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this implies that for all 8’ € N} \ {0},

DF 01 ()] < (SeK4CB)(2ezB>ﬁ’I|IB,|' o
su (X L.
xeg vi TN V27 R R

Since |o|! < 39lo! for all o € N (see (A.4) in the appendix), this implies that

4|

sup | D? ¢ (x)] <€ (22)

el RlIs1’

for some €, % > 0. This proves (15). Hence ¢; is real analytic in R\ {0}. This finishes the proof of
Theorem 1.1.
It therefore remains to prove Proposition 2.1.

Remark 2.2. We here give explicit choices for the constants C and B in Proposition 2.1.

Let
L= max H / lpa(Y)en(¥)] (J’)(Pb(.)’)| H . (23)
1<a,b<N Il Jp3 | —y| 0
Note that by (29) below, this is finite since ¢; € H'/?(R?),i=1,..., N
Furthermore, let A = A(xg) > 1 be such that, for all o € N2,
sup |D°V (x)| < Al°H o1 (24)

Xew
The existence of A follows from the real analyticity in @ = Bg(xp) (recall that R = min{1, |xg|/4}) of
V = Za|-|7! (see e.g. [Krantz and Parks 2002, Proposition 2.2.10]). Assume without restriction that
A> o~ +maxi<i<p |8l
Let K1 = K (p), K» = K»>(p), and K3 = K3(p) be the constants in Lemma C.1, Corollary D.2, and
Corollary D.4, respectively (see Appendices C and D below). Then let

C> = max {K1, 256v/2/7}, (25)
C3 =max {47 (1 +2C1/R*) K3, 1607 K5 K3} (26)
Choose
C> max 11, 10illwirwys 19l L35 )),@|xo|3(2—1’>/<21’>||<pi||2,
e{l,...N} @ 2RX0))

[48\/_ N 1536V2

A+ 48\/_C1—+n—]||¢i||3}~ 27)

2| x0

That C < oo follows from the smoothness away from x =0 of the ¢; [Dall’ Acqua et al. 2008, Theorem 1(ii)]
and the fact that, since ¢; € HI/Z(R3), 1 <i<N,wehave ¢; € L3([R3), 1 <i <N, by Sobolev’s inequality.
Then choose

B > max {48AC2, C*, 4c2, (160C2K>C3)2, (24N C2/Z)2, 16K3} (28)

where C, is the constant (related to a smooth partition of unity) introduced in (B.3). In particular, B > 48.
We will prove Proposition 2.1 with these choices of C and B.
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3. Proof of the main estimate

We first make (6) more precise, thereby also explaining the choice of Jly in (8). By Kato’s inequality
[Kato 1995, (5.33) p. 307],

2
/ TO e < %/ plIf(P)Pdp  for feH2@®) 29)
R R

x|

(where f (p) = 2m)3/? fR3 e *P f(x) dx denotes the Fourier transform of f), and the KLMN theorem
[Reed and Simon 1975, Theorem X.17] the operator hg given as

ho=T(=iV)—-V (30)
is well-defined on H'/?(R?) (and bounded below by — o~ 1) as a form sum when Za < 2/7, that is,
(u, hov) = (E(p)"*u, E(p)"*v) —a ' (u, v) — (VY?u, VV2v)  for u,ve H'/?(R?). (31)

By abuse of notation, we write E(p) for the (strictly positive) operator E(—iV) = +/—A +a~2. For
(@1, ..., 9nN) € My, the function R, given in (12) belongs to L>(R?) (using Kato’s inequality above),
and the operator K, given in (13) is Hilbert-Schmidt (see [Dall’ Acqua et al. 2008, Lemma 2]). As
a consequence, when Za < 2/m, the operator hy, in (11) is a well-defined self-adjoint operator with
quadratic form domain H 1/2(R3) such that

(u, hpv) = (u, hov) +a(u, Ryv) —a(u, K,v) for u,ve H'*(R?). (32)
Since (u, Ryu) — (u, Kyu) > 0 for any u € L?*(R3), also hg is bounded from below by — a L.
Then, for (u1, ..., uy) € My, the precise version of (6) becomes

N
€ (uy, ... um—Za—l(uj,hou,-)

1 )Pl F 1
2 Z /R%fw lx =yl 2

1<i,j<N

//uj(x)ui(x)ui(y)”/(y)dxdy (33)
R3

1<”<N lx — y|

The considerations on R, and K, above imply that also the nonlinear terms in (33) are finite for
u;e H2(R?*,1<i <N.

If (@1, ..., @n) €My is a critical point of €HF in (33), then ¢ = {1, . .., @y} satisfies the self-consistent
HF-equations (10) with the operator 4, defined above.

Note that E(p) is a bounded operator from H 172(R3) to H~!/2(R?), and recall that (29) shows that
V also defines a bounded operator from H 12(R3) to H'2(R3) (for any Za). As noted above, both
Ry and K, are bounded operators on L?(R?) when (o1, ..., 9n) € My. In particular, this shows that if
(@1, ..., 0n) € My solves (10), then

E(p)pi —a 'oi — Vo +aRpp; —aKpp = gip;, 1<i<N, (34)
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hold as equations in H™2(RY). Using that E(p)~! is a bounded operator from H™ V2R3 to H'2(R3),
this implies that, as equalities in H'/2(R?) (and therefore, in particular, in L?(R3)),

¢i=E(P)"'Voi —aE(p)" ' Ropi +@E(p) ' Kypi + (@ ' +e)E(P)'pi, 1<i<N. (35
Proof of Proposition 2.1. The proof is by induction on j € Ny. More precisely:

Definition 3.1. For p > 1 and j € Ny, let ?(p, j) be the statement:
Forall e > 0 withej < R/2,and alli € {1,..., N} we have

P DPgill Lo,y < CBY! forall B eNg with |B] < j, (36)
where C, B > 1 are the constants in Remark 2.2.

Then Proposition 2.1 is equivalent to the statement: For all p > 5, #(p, j) holds for all j € Ny. This
is the statement we will prove by induction on j € Nj.

Base of induction. For convenience, we prove P(p, j) for both j = 0 and j = 1. Note that #(p, 0)
trivially holds since (see Remark 2.2)

C=C(p)> max ||¢;llLr(w)- (37)
1<i<N
Also ?(p, 1) holds by the choice of C, since

C=C(p)> max [DugillLrcw)- (38)
vel(l,2,3}

Namely, since we € w, (36) holds for || = 0 (and all € > 0) using (37). For § € Ny with || =1=
(i.e., B=¢, forsome v e{l,2,3}),andalle >0 withe =¢j < R/2 < 1,

PNDPgillLr(w,) = €l Dvill Lo < IDv@illLr@w) < C < CB = CBPl, (39)

Here we again used that w. C w, (38), and that B > 1 (see Remark 2.2).

Induction hypothesis:
Let p>5and j € Ny, j > 1. Then P(p, j) holds for all j < j. (40)

We now prove that P(p, j+1) holds. Note that to prove this, it suffices to study 8 € Ng with |B|=j+1.
Namely, assume € > O is such that e(j +1) < R/2 and let § € Ng with |8] < j+ 1. Then |B8] < j and
€j < R/2 so, by the definition of w; and the induction hypothesis,

PNDP il oy < € IDP@illLrwy) < CBYP. (41)
It therefore remains to prove that

€PIDP il Lo (o1 <C BPY forall € >0 with €(j+1) <R/2 and all 8 € Nj with |8 = j+1. (42)
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Remark 3.2. To use the induction hypothesis in its full strength, it is convenient to write, for £ > 0, € > 0
such thatel < R/2,and o € Ng with 0 < |o]| < J,

U 2
ID?¢illLr ey = 1D @illLr(w,;) With €= oy /=t

so that, by the induction hypothesis (applied on the term with € and 7) we get that

1D gillriwn <€(2) " = c (D)7 (B)" @3)

Compare this with (36). With the convention that 0% = 1, (43) also holds for |o| = 0.
We choose a function ¢ (depending on j) satisfying
(ONS Cgo(we(j+3/4)), 0<d <, with ® =1 on We(j+1)- (44)

Then
IDP @i ll L weijny) < IPDP @il . (45)

The estimate (42) —and hence, by induction, the proof of Proposition 2.1 —now follows from the
equations (35) for the ¢;, (45) and the following two lemmas.

Lemma 3.3. Assume the induction hypothesis (40) holds. Let ® be as in (44). Then foralli € {1, ..., N},
alle > Owithe(j+1) < R/2, and all B € N with |B| = j+1, both ®DPE(p)~'V¢; and PDPE(p)~'¢;
belong to L?(R?), and

: C(B\¥
oD’ E@) Vel < 7(2) (46)

_ _ C /B\ Al
I +e) @D Em el = 2(2) 7)

where C, B > 1 are the constants in (36) (see also Remark 2.2).

Lemma 3.4. Assume the induction hypothesis (40) holds. Let ® be as in (44). Then for all i €
{1,....N}alle >0withe(j+1) < R/2, and all B € N} with |B| = j + 1, both ®DPE(p)~'R,¢; and
<I>D/3E(p)_1K,,,(p,~ belong to L?(R?), and

B\ Bl

o)

- B\ Bl
le ®DPEp) " Kpoilly = ()

a

le ®DE(p) ™ Ryl =

[@ T

where C, B > 1 are the constants in (36) (see also Remark 2.2).

Remark 3.5. Fora, b e{l,..., N}, let U, ; denote the function
Uy p(x) =f PaNOW) ) RS, (48)
RS |x —
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In particular, ||U, pllec < Cj foralla, b e {1, ..., N} (see (23)). Using (12) and (13), we can write

N N
Rogi=> Urepi. Kopi=Y Uirpr. (49)
=1 =1

Hence Lemma 3.4 follows from the following lemma and the fact that Za <2/ < 1.

Lemma 3.6. Assume the induction hypothesis (40) holds. Let ® be as in (44). Fora,b e {1, ..., N}, let
U,.p be given by (48). Then for alla,b,i € {1,..., N}, alle > 0withe(j+1) < R/2,and all B € NS
with |8l = j + 1, ®DPE(p)~'U, p¢;: belong to LP(R?), and

: cz (B\F
10D Ep) Uaseilly = S (2) (50)

where C, B > 1 are the constants in (36) (see also Remark 2.2).

It therefore remains to prove Lemmas 3.3 and 3.6. This will be done in the two following sections. [

4. Proof of Lemma 3.3

We prove Lemma 3.3 by proving (46) and (47) separately.

Proof of (46). Let o € N3 and v € {1, 2, 3} be such that 8 = o +¢,, so that D = D, D’. Notice that
|o| = j. Choose localization functions { Xk}k _o and {nk}k _o as in Appendix B. Since Vg; € H™!/2(R?),
and E(p)~' maps H*(R?) to H*t(R3) for all s € R, Lemma B.1 (with £ = Jj) implies that

j—1
®DPE(p)~'[Veil _qu E(p)"'DPy D~ P[Vi] + > @D, E(p)~' D [ni, DD+ [V ]
k=0 k=0

+®D,E(p)”"'D°[n;Veil, (51)

as an identity in H~#I¥1/2(R3) (we have also used that E(p)~' commutes with derivatives on any
H*(R%)). Here, [ -, -] denotes the commutator. Also, |B¢| =k, |ux|l = 1, and 0 < g, xx < 1. (For the
support properties of ng, xx, see Appendix B.) We will prove that each term on the right side of (51)
belong to L”(R3), and bound their norms. The proof of (46) will follow by summing these bounds.

The first sum in (51). Let 6; be the characteristic function of the support of y; (which is contained in
w). Since V is smooth on the closure of w it follows from the induction hypothesis that the Do hx [Vei]
belong to L? () for any o’ € w. Also, the operator @DUE(p)*lDﬁk X« is bounded on L?(R?) (as we
will observe below). Therefore we can estimate, for k € {0, ..., j},
I®D,E(p)~' DP i D7 P [Villl, = I(PE(p) ™' D, D 3106 D” P4 [V illl,
<IPE(p)~' DD xillm, 164 D [Villl,.  (52)
Here, || - [, is the operator norm on &, := B(L” (R3)), the bounded operators on L” (R3).

For k = 0, the first factor on the right side of (52) can be estimated using Lemma C.1 (since |8y| = 0).
This way, since || xolloo = [®llcc = 1,

IPE(p)~ ' Duxolla, < K1, (53)
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with K| = K{(p) the constant in (C.1).
For k > 0, the first factor on the right side of (52) can be estimated using (C.4) in Lemma C.2 (with
t=1,q"=p = p). Since
dist(supp xx,supp @) > ek —1+1/4)

and ||k lloo = | Pllo = 1, this gives (since (Bx +e,)! < (|Bx] + 1)! = (k + 1)!) that

_ 324/2 (k + 1)! 8 k25632 /8\k
®E(p)~' D, D < < ). 54
I2E(P) tilla, = == (e(k—1+1/4)) ==-0) 64
It follows from (53) and (54) that, for all k € {0, ..., j}, v € {1, 2, 3},
_ 8\
I9EP) ™ DD il < () (55)

with C; as defined in (25).
It remains to estimate the second factor in (52). Recall the definition of the constant A in (24). It
follows from (24) and (17) that, for all € > 0, £ € Ny, and o € NS,

€l sup |D7V(x)| < Al g1 g1l (56)

XEwWey

with wey € w as in defined in (16).
For k = j, since B; = o, we find, by (56) and the choice of C (see Remark 2.2), that

10;Voillp < 1VIiLew)llgillLrw) < CA. (57)
The estimate for k € {0, ..., j — 1} is a bit more involved. We get, by Leibniz’s rule, that
10 D° PVl < > (“;ﬁ")nekmvnoo 164 D7 i . (58)
u=<o—Ppx

Now, supp 6k = supp xx € we(j—k+1/4), $0 by (56), for all u < o — By,

166D Vloo < sup  |D*V(x)| <e AW 1 (G —k)~IH, (59)

X EWe(j—k+1/4)
By the induction hypothesis (in the form discussed in Remark 3.2),
= 60
P (60)

o — B — ul\" M By lo—pinl
( € ) '
It follows from (58), (59), and (60) that (using that |o'| = j, |Bx| = k, and (A.6), summing over m = |u|)

16 D P il < 1D P il Lo (o) < c(

j—k—m

. J—k .
o—pi ' B j—k j—k\m!(j —k—m) A"
16D Vel < CA(2) m§< w ) e (5) (61)
Note that, by (A.7), for 0 <m < j —k,
(j—k>m!(j—k—m)j_k_m< RVi—k 62)
m G-kyi* = Jj—k—mem
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To see the last inequality, look at the cases 0 <m < (j —k)/2 and j —k > m > (j — k) /2 separately.
Hence (since B > 2A, see Remark 2.2), for any k € {0, ..., j — 1},

. Jj—k .
6:0° vl < ca(£) ‘S ()" =2ca(2y ‘ (63)
m=0
Note that, by (57), the same estimate holds true if k = j.
So, from (52), (55), (63), the fact that € < 1 (since €(j + 1) < R/2 < 1/2), and the choice of B (in
particular, B > 16; see Remark 2.2), it follows that

zJ:cDD E(p)~'DP D PVl <2caC (E)jzjj (ﬁ)k
P v D Xk Qi p_ 2 c P B
canes(®) =517

The second sum in (51). Note first that [n;, D**] = —(D"*n;) (recall that |ug| = 1; see Lemma B.1).

Comparing the second sum in (51) with the first sum in (51), one sees that the second sum is
the first one with j replaced by j — 1 and y; replaced by — D" n;. Having now a derivative on the
localization functions we have one derivative less falling on the term V ¢;. More precisely, the operator
DB+t contains |0 — Bryi| = j — (k+ 1) = (j — 1) — k derivatives instead of |0 — x| = j — k
in D°~Px. Then, to control D°P+1[V ;] (with the same method used above for D° A [V¢;]) we
need that supp D*ny, is contained in w¢((j—1)—k+1/4)- Indeed we have much more: as for x; we have
supp D" ny C we(j—k41/4) € Oe((j—1)—k+1/4)- Finally, || D*n; |l < Cy/€, with Cy > 0 the constant in
(B.3) in the appendix.

It follows that the second sum in (51) can be estimated as the first one, up to one extra factor of C, /e
and up to replacing j by j — 1 in the estimate (64). Hence, using that € < 1, and the choice of B (see
Remark 2.2), we get that

= C B\/-!
> @DEP) T DA, DD Ve | = SEc@ac)()
=0 » € €
Jj Jj+1
scarc(8)Y =S(B)7. )
€ 12\ €
The last term in (51). It remains to study
®DPE(p)~'[n;Veil. (66)

We split V in two parts, one supported around x = 0, and one supported away from x = 0, and study the
two terms separately. We will prove below that this way, n; V ¢; is actually a function in L' (R¥) 4+ L3(RY).
Upon using suitable operator bounds on ® D? E(p)~!x (for some suitable smooth x’s), combined with
bounds on the norms of the two parts of n;V ¢;, we will finish the proof.

Let p = |xol/4, and let 6, and 6,/ be the characteristic functions of the balls B,(0) and B, >(0),
respectively. Choose ¥, € C5°(R*) with supp X, € B,(0), 0 < ¥, < 1, and X, = 1 on B,,2(0). Note that
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then

dist(supp . supp %) = "' = 2p, (67)

by the choice of w = Bg(xo), R = min{l, |xo|/4}, since supp ® € w¢(j+1) S .
Now,

®DPE(p)~'[njVeil= ®DPE(p) '[n; VX0l + ®DPE(p) ' In; V(A - %,)eil- (68)

For the first term in (68), we use Lemma C.2, withp=1,q=p/(p—1), and t= p. Then p, t € [1, 00)
and q > 1, and q~' + p~! = 1. We get that (recall (67) and that ¥,6, = X,),

I®DPE(p)~"' n;VHpo0illl, < I®DPEP) ' Fplla, I VOpeill:

1B —r
s%ﬁﬂ!<%> @0 (e(1B1+2 =3) " IVepilh. (69)

Here we used that || ® oo = [|¥,llec = 1 and that n; = 1 where 6, # 0. Note that j + 1 < e~! (since, by
assumption, €(j + 1) < R/2 < 1/2). Therefore,

Br<IBll=(+ D=+ <e VD=L (70)

Note furthermore that since |f|=j+1>2and t> 1,

1/t

(t(B1+2)=3) " =1, (71)
independently of 8. It follows that
B ~ 4ﬁ |xo| (B=2p)/p 16/|x0| 18I
I®DPE(p)~" [n;V Xpillly < —(— V6,0l : (72)
T 2 €
Using Schwarz’s inequality and that Zo < 2/,
2
1VO,pilli < IVO,ll2ll@illz = Zav/|xolm | @ill2 < ﬁ\/ lxolllgi |2 (73)
(Note that ||V6,]|; < oo &t < 3.) It follows from (72), (73), and the choice of B and C (see Remark 2.2)
that
1B ;
—1 ~ 32 32-p)/2 16/|x0| C /B j+1
[@D"E) ™" ;v Zpeill, < - leol P p)||¢i||2< =) =5(5) -

We now consider the second term in (68). Recall that & is supported in w,(;j+1) and
dist(supp @, suppn;) > €(j + 1/4). (75)
Again, we use Lemma C.2, this time withp =3, q=p/(p—1),and t =3p/(2p + 3). Then
p ' g+ t=2, pell,00), q>1, rell,3/2)

1

(since p > 3),and q~' + p~! = 1. This gives
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|®DPEP) ;v = X0,
<|®D’E(p)~'n; ||9733P [V =%,

42 8 Bl 3/t-2 1/t ~
< B! (e(j n 1/4)) (e(j+1/4)) (UB1+2)=3) IV = X)) o llgill3.

As before, we used that || @[ = [[7;]lec = 1. Note that

T

1Bl :
181! G+ D!
ﬂ!(j+1/4> = lﬂlmz32|ﬂlmf32m

Since €(j + 1) < R/2 < 1 and v < 3/2 it follows that (e(j + 1/4))3/“_2 < 1. Also, by the choice of p,
the definition of V, and since Za < 2/7,

(76)

(1=, V()| < 2% < 10
lxo| — m|xo]

It follows from (77) (and that 0 < 1 — X, < 1 —6,,2), (71), (76), and the choice of C and B (see
Remark 2.2), that foralli =1, ..., N (recall that |8| = j + 1)

eR’. (77)

~ 442 16 32\B  C /B\I*!
B =l _ . . e ~ (2
| @07 B ;v (1 =Tl < == el () = 55(0) (78)
It follows from (68), (74), and (78) that
BE(-11n Vo C (B!
lep?Em ' ivell, < 5(5) - (79)
The estimate (46) now follows from (51) and the estimates (64), (65), and (79). Il

Proof of (47). The constant functions W; (x) = a~! 4 &; trivially satisfy the conditions on V (= Z«| - )
needed in the proof above. In fact, having assumed A > ol +max;<;<n |&;| (see Remark 2.2), (24) (and
therefore (56)) trivially holds for W;. Also, for the term ODPE( p)_1 [, Wig;] we proceed directly as
for the term ®DPE(p)~'[n iV (1 —X,)eil above (but without any splitting in X, and 1 — X,), using that
|W;(x)| < A, x € R3. The proof of (47) therefore follows from the proof of (46) above, by the choice of
C and B (see Remark 2.2).

This finishes the proof of Lemma 3.3. U

Remark 4.1. In fact, with a simple modification the arguments above (the local L?”-bound on the two
terms in (68)) can be made to work just assuming that, for all s > 0,

Voi € L'(By(0)), Vg e L*(R*\ B,(0)). (80)

5. Proof of Lemma 3.6

Proof of (50). Similarly to the case of the term with V in Lemma 3.3, we here use the localization
functions introduced in Appendix B. With the notation as in the previous section (in particular, 8 =0 +e,
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with |o| = j), Lemma B.1 (with £ = j) implies that

®DPE(p)~ [Uapi]
J Jj—1
=Y ®D,E(p)"' D* 3y D" P [Usppil + Y ®DyE(p)~' DP[ne, DM 1D P41 [Uy 5]
k=0 k=0
+®D,E(p) ' D7 Uapeil,  (81)
as an identity in H —IBI(R3). As in the proof of Lemma 3.3, [ -, - ] denotes the commutator, |B;| = &,
il =1, and O < g, xx < 1. (For the support properties of 1, xx, see Appendix B.) As in the previous
section, we will prove that each term on the right side of (81) belong to L”(R?), and bound their norms.
The claim of the lemma will follow by summing these bounds.

The first sum in (81). We first proceed like for the similar sum in the proof of Lemma 3.3 (see (52), and
after). Let 0; be the characteristic function of the support of xi. It follows from the induction hypothesis,
using that — AU, , = 47w ¢,¢p, and Theorems D.5 and D.3, that the D"_ﬁk[Ua,bga,-] belong to L?(w') for
any o’ € w. As before, the operator ®D, E(p)~ ' DP x; is bounded on L?(R?). Then, for k € {0, ..., j},

|®DuE(p)™ D i D7 Pi{Uupiil |, = | (@E(p) ™' Dy D 306 D* P [Ua il

< |®E(p)~" D, D xilla, 10 D P [Uapi]| (82)

.
The first factor on the right side of (82) was estimated in the proof of Lemma 3.3 (see (55)): For all
kef0,...,j},ve{l,2,3},

_ 8\F
I9E®) ™ DD il < () (83)

with C; the constant in (25).
It remains to estimate the second factor in (82). For k = j, since B; = o, we find that, by (23) and the
choice of C and B (see Remark 2.2),

B\ /2
10;Uap@ill p < NUapllocll@illLr <C1C=C{=]) . (84)
€
In the last inequality we also used that € <1 (since e(j + 1) < R/2 < 1).
The estimate for k € {0, ..., j — 1} is more involved. We get, by Leibniz’s rule, that
1607 P Wasill, = Y2 (7)o" Uaiy 07 H g, (85)
n=o—pk

We estimate separately each term on the right side of (85).
We separate into two cases.
If + = 0 then, using the induction hypothesis (i.e., P(p, j —k); recall that supp 6k C we(j—k)) and (23),

j—k j—k+1/2
600D Pl < ci0(£) T < 5(2) (36)

= 2\e

In the last inequality we used the choice of B (see Remark 2.2) and that € < 1.
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If 0 < & < 0 — Bk, then (since supp xi S we(j—k+1/4)) Holder’s inequality (with 1/p=1/(3p)+2/(3p))
and Corollary D.2 give

16k (D U, p)(D° P 1))l
<16 D" Uy pll3ps2 10 D” i |13

—Be— )
= K2”DMUa’bI|L3”/2(ws(j—k+1/4>) | D7~ Pty

DO Bk
||Wl’p(we(j—k+l/4)) 1D

bi ”Ll’(we(, k+1/4)) " (87)

Here, K3 is the constant in Corollary D.2, and & = 2/p < 1. Note that we(j_r+1/4) = Br(xo) with
re[R/2,1],since e(j + 1) < R/2 and R = min{1, |xg|/4}

We will use Lemma 5.3 below to bound the first factor in (87). The last two factors we now bound
using the induction hypothesis.

If u e NS is such that 0 < u < o — f, then the induction hypothesis (in the form discussed in
Remark 3.2) gives (recall here (18) and that |o| = j, | Bx| = k) that for the last two factors in (87) we have

=k — |l N T gy gkt
o—Br—u J— =
| D7 ”LP(wE(, ki) = [C(] —k+ 1/4) (5 ) ®

and (using that B > 1 (see Remark 2.2) and e(j —k+1/4) <e(j+1)<R/2<1)

o=Br—H . 110
”D (pl ”Wl’p(we(_j—k+l/4))

N~k lul e .o j—k—lul+1 PR
<[c ] k—|ul (E)] |M|+3C ].k [l +1 (E)J i+
j—k+1/4 € j—k+1/4 €

j—k— (A RS N e e
< 4o (=i lmltd (%) . (89)
j—k+1/4 ¢
It follows from (88) and (89) that for all u € Ng with 0 < u <o — B,
J—k—|u|+6
1D g, 1D <car(ByTT (I |
AW (@c(j—kr1/a) ' L”<we<f ker1/4) — € J—k+1/4

(90)
From (87), Lemma 5.3, and (90) (using (A.6) in the appendix, summing over m = |u|), it follows that

> (Yoo v 0P|,

O<p=<o—px

Jkr0 38 ik (G —k—m A )T (g 1 4y
<C3C%K2( ) g <J ) (j— k+1/4)J —k+6

1\ B(m+1/4) \*72
X[(ﬁ) +ﬂ(€(j_k+1/4)) ] oD

Here, C; is the constant from (26). Recall also that 6 =2/ p.
We prove that form € {1, ..., j — k},

92)

4o () I\ (G —k—m+ 1)Jk=mt0 gy 41 /4)m <1061/ L 1
<m ) _ j—k+6 )
(J—k+1/4) m
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Note first that, since e (j —k+1/4) <e(j+1) <1,
(j—k+1/4)11270 < —1/240 (93)

This shows that the inequality in (92) is true form = j —k > 0, since 8 < 1. For m < j —k, we use (A.8)
in the appendix, and (93), to get that (since (1 4+ 1/n)" <e)

<J~_k) (j—k—m~+1)J=k=m+6 (g -1 /4)™m - e/12 (j—k—m—l—l)ee_l/zwi o4)
m (j—k+1/4)i—k+6 = V2 (j—k—m)1/2 Jm'
Since 8 < 1/2 and m < j —k — 1, we have that

(j—k—m+1)¢

i ==V 99

The estimate (92) for m € {1, ..., j —k — 1} now follows from (94)—(95) (since 4%¢>/12/ /7 < 10).
Inserting (92) in (91) (and using again €(j —k +1/4) <1 and 20 — 2 < 0) we find that

Z (Oﬁﬂk) |6k (D" Uy p) (D~ P14y Hp

O<p<o—pk
3 B\/ _"+‘9 —1/246 1 1
=10C C3K2(?> Z Bz—ze m2—26

m=1

< 1oc3c31<2(l:) /2%(2%) (96)

where we used that & <2/5, B > 4 (see Remark 2.2), and Z m=%° <1 +/ —6/5 dx = 6 to estimate

JB) — VB BXY ot m>2 = /B’

m=1

This is the very essential reason for needing p > 5.
By the choice of B (see Remark 2.2) it follows that

o B\ J—k+1/2
> (oo v e, <5 () ©98)
O<p=<o—px
From (85), (86), and (98) it follows that for all k € {0, ..., j — 1},
o B\ J—k+1/2
100" Wapeilll, <C( ) (99)

Using (82), (83), (84), and (99) it follows for the first sum in (81) that
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J
Y ®DE(p) Dy DO (U i)
k=0

J
<Gy ) 8 D7 U bl
p k=0

J

<ac(BY (Y. (100)

Since B > 16 (see Remark 2.2) the last sum is less than 2 and so for the first term in (81) we finally get,
by the choice of B (see Remark 2.2) that

< 2Czc(§)
€

p

j+1/2 j+1
j+1/ - Ccz (B)] '

—_— 101
=N (101)

J
Y ODE(p)' Dy DT Uy ppi])
k=0

€

The second sum in (81). By the same arguments as for the second sum in (51) (see after (64)), it follows
that the second sum in (81) can be estimated as the first one, up to one extra factor of C, /e (with C, > 0
the constant in (B.3) in the appendix) and up to replacing j by j — 1 in the estimate (101). Hence, by the
choice of B (see Remark 2.2)

j—1

Y ®D,E(p)~' D¥[ni, DD P [U, o]
k=0

j j+1
5% Ccz (E)J < Ccz (E)J ' (102)
€ 12N \ € 12N \ €

The last term in (81). Since o + e, = B, the last term in (81) equals
®DPE(p)~' njUaseil.

We proceed exactly as for the term ®DPE(p)~![n V(1 —X,)ei]in (68) (but without any splitting in ),
and 1 — X,), except that the estimate in (77) is replaced by || Uy plloo < C (see (23)). It follows, from the
choice of B and C (see Remark 2.2) that (recall that |8|=j + 1)

1D E(p)~"[n;Uap@illl, < 1®DPE(P) "'njllas, 1Uapeills

42 30N\IBl  CZ /B\I+!
—ZCillgillz (2= —(Z) . 1
=—=cilleils(=)" = 55(2) (103)
The estimate (50) now follows from (81) and the estimates (101), (102), and (103).
This finishes the proof of Lemma 3.6. (|

It remains to prove Lemma 5.3 below (L3?/?-bound on derivatives of the Newton potential U, ; of
products of orbitals, ¢, p).

In the next lemma we first give an L3P/?-estimate on the derivatives of the product of the orbitals ¢;,
needed for the proof of the bound in Lemma 5.3 below.

Lemma 5.1. Assume the induction hypothesis (40) holds. Then, foralla,b € {1,..., N}, all B € NS with
Bl <j—1,and all € > O withe(|B|+ 1) < R/2,

__ B\ 181+260
|02 @) 3019 = 10KIC2A+VIBD(Z) (104)

with Ky from Corollary D.2, C from Remark 2.2, and 6 = 6(p) =2/p.



678 ANNA DALL’ACQUA, SOREN FOURNAIS, THOMAS @. SORENSEN AND EDGARDO STOCKMEYER

Proof. By Leibniz’s rule and Schwarz’s inequality we get

1DP (@) 12020y 1) < Z(ﬁ)||D'*<pa||Lsp(wem+l)>||Dﬂ—“¢b||m<wew).
w=p

We use Corollary D.2 (with we(gj+1) = B/ (x0), r = R — €(|8| + 1); note that r € [R/2, 1], since
€(]Bl+1) < R/2 and R = min{l, |xg|/4}). This gives, with K, from Corollary D.2 and 6 =2/ p,

B, 2 B\inw.. 1é W 1=
1D (@a@o) | L3v2 w1101 = K3 Z(M)”D Pallrr gy 1P all Loy
n=p

— 0 — 1-6
<N DP 05 1%y 12700l Ly (105)

We now use the induction hypothesis (in the form discussed in Remark 3.2) on each of the four factors in
the sum on the right side of (105). Note that, by assumption, e(|8| +1) <e€j < R/2 and |u| < |u|+1 <
|8l + 1 < j (similarly, |8 — u| < |B — |+ 1 < j). Recalling (18), we therefore get, for all u € Ng such
that © < B,

w0 W 1-0
||D (pa||W1.p(w€(‘m+]))||D goa”Lh(we(lﬂlJrl))

et NN T L sl gy el + 1\ gyt
<le(arn) O] (o) @ we(G) (]
< pc(B)" Gl DI

€ (18] + Dlrl+o ’
since (recall that e(|8|+1) < R/2<1and B > 1)

|M||m
(el + DI

Proceeding similarly for the other two factors in (105), we get (using (A.6) in the appendix and summing

e(IBl+1HB ' < 1.

over m = |uu|) that

Z (ﬁ) “ Du(pa ||L3p(wg(|5|+1)) “ D'B_M(/)b ||L3p(a)g(|5|+1))
n<p Bl

0 1-6
sk (BY S BN [n D" LB =m D P | (-]
<16°(CK) (?) Z(m) (18] +1)IBI+20 :

(106)

m=0
We simplify the sum in m. Note that for m = 0 and m = |§|, the summand is bounded by 1. Therefore,
for || < 1 the estimate (104) follows from (106), since 2 - 16Y < 7. It remains to consider | 8| > 2. For
m > 1, m < |B|, we can use (A.8) in the appendix to get (since (1 +1/n)" <e) that

Z (ﬁ) || DM(Pa “L}/’(a)é(‘ﬁHl)) || Dﬂ_ﬂ(ﬂb ||L31’(a)5(w+1))

O=p<p 1/12

e 1g11A+12 - B [on g 1y (1B1—m+1)]

(BI+ VP L o JBT=m

=

(CK2)2 (1662 (?)er

&‘

21
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Since the function

f)y=@+D(Bl—x+1D, xell,[Bl—-1],
has its maximum (which is (|8]/2 + 1)?) at x = |8|/2, and since

1B1—1

1 1B 1
B v e vy =

m=1

we get
_ B\ IBI+20
Y (VD 0l IDP 0100,y < 12<16e2>9\/§(61<2>2 Bi(T) - aom
O<u<p
The estimate (104) now follows from (105), (106), and (107), since 61/12(1662)0«/7[/2 <10and2-167 <7
(recall that p > 5). This finishes the proof of Lemma 5.1. O

The next two lemmas, used in the proof above of Lemma 3.6, control the L3P2_norm of derivatives of
Uyp.

Lemma 5.2. Define U, , by (48). Then foralla,be{l,..., N}, andall n € NS with || <2,
1D Ul 3020y < 47 K3(C*+2C1/R?), (108)
with K3 from Corollary D.4, C from Remark 2.2, Cy from (23), and R = min{1, |x¢|/4}.

Proof. Recall that w = Br(xg), R =min{l1, |x¢|/4}. Using (18), and Corollary D.4, we get, for all i € NS
with |u| <2,

1
D" Ul L3rr@wy < NWUapllw2rr ey < K31 AUabllL302(Bop o)) + 53 1Uab | L302(Bypixoyy - (109)
R
By the definition of U, ; (see (48)) we have
—AUup(x) =4m @, (x)pp(x) for x € IR3, (110)

and ||U, plloo < C1 (see (23)). Hence, from (109), Holder’s inequality, and the choice of C (see Remark 2.2;
recall also that p > 5)

1
ID*Uapll L3020y < 47 K3 { %all 230 (Bag xo)) 190 1 L3P (B (xo)) T+ ﬁlan,b||oo|BzR(x0)|2/3p}
<4mwK3(C*42C(/R?). O

Lemma 5.3. Assume the induction hypothesis (40) holds, and define U, , by (48). Then for all a, b €
{1,...,N},allk € {0,...,j—1},allp,eN(3)with | < j—k,andalle >0 withe(j+1) < R/2,

”DMUa,bI|L31’/2(w6(_/_1<+1/4))
B\ (Il 1A N L o o B0 (14 N
=6A(Y2) (SE) +actiu(2) Rl na . (11
<GC; <€ S rr1a +C3 [l < P kr1/4 (111)
with 8 =0(p) =2/p, C and B from Remark 2.2, and Cs the constant in (26).
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Proof. It m:=|u| <2, (111) follows from Lemma 5.2 and the definition of C3 in (26), since e (j —k+1/4) <
€(j+1)<R/2<1,and C, B > 1 (see Remark 2.2).

If m :=|u| > 3 then we write & = p,y—2 +e,, +ey, withv; € {1,2,3},i =1, 2, |pm—2| =m —2. Then
by the definition of the W23P/2_porm (recall (18)) we find that

” DMUa,b ||L3l’/2(w5(j D¥m=2 Ua,b ” W2’31’/2(a)5(j

—k+1/4)) =| —k+1/4))
= 1 D" 2Uq b llw2302(wz, 11110 (112)
with €; such that
Exm—14+1/4)=€e(j—k+1/4). (113)

To estimate the norm in (112) we will again use that U, , satisfies (110). Applying D*»-2 to (110) and
using the elliptic a priori estimate in Corollary D.4 (withr =rj=R—€;(m—14+1/4) and 6 =8, =€, /4;
recall that w, = Br_,(xp)) we get

_ 6K3
”DMUCI,}?||L3P/2(we(j_k+1/4)) S 47-[K3”Dﬂm72 (wa(ph)||L3P/2(a)gl(,,,,1))+?”Dum72 Ua,h||L3p/2(wgl(m,1))’ (114)

with K3 = K3(p) the constant in (D.9). Notice that for this estimate we needed to enlarge the domain,
taking the ball with a radius €; /4 larger.

We now iterate the procedure (on the second term on the right side of (114)), with €; (i =2, ..., L%J)
such that
Em—=2i+14+1/4)=¢€_1(m—=210—-1)+1), (115)

and withr =r; = R—¢€;(m —2i + 14 1/4) and § = §; = €; /4. Note that (113) and (115) imply that

—k+1/4
G>E > > =ed ST 1/ fori=2,...,LﬂJ (116)
m—1+1/4 2
and
€Em—=2i4+1)<é&_1m—-20—-D+1)=<...<€m—1)<e(j—k+1/4). 117

We get (with [])_, =1 and |1, _2;| = m — 2i),

L7]
o 16K
ID" Ua bl 13072, Hl,4))_4n1<32 1D 2 (0a @) | L3072 WH

i=1 ) =1 643
2
16K3 m
+( )HD/‘vm 251 Ua b“L3P/2(w€ =) i J+1)) (118)
é2
=1 ¢
Using (116), and Lemma 5.1 foreachi =1, ..., L%J fixed (note that €;(m —2i + 1) < R/2 by (117)

since €(j + 1) < R/2) we get that

16K3 B\Mmt20-2(m—1+1/4 m+20-2 16K53 i—1
I‘Lln 1) 2 2 — D
1D (@) |12 gy -1 }_[1 & = 20K2€ m( € ) < j—k+1/4 B2 ’

(119)
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with K2 from Corollary D.2, and @ = 6(p) = 2/p. Here we also used that 1 + «/m —2i < 2./m. Note
that Z, ] (16K /B?)I7! < 2 since B? > 32K3 (see Remark 2.2). It follows that

A 161<3
4 K3 Y (1092 (@) | 02 wl_[ =

i=1 4

< 16071K22K3C2«/m(§> mrl/a . (120)
c J—ktl/a

We now estimate the last term in (118). Let § =m — 2[5 ] € {0, 1} (depending on whether m is even
or odd). Then, using (116) and Lemma 5.2, we get that

L7]
16K3 Hon—
(1_[ )||D 25 U, b||L3P/2(w m =214 J+1)

=1 Eﬁ
s (L5 (2L (s
- : € j—k+1/4) \ m—1+1/4
2 2 ﬁ m m+1/4 m

Here we also used that m > 3 and K3 > 1 (see Corollary D.4), that C > 1 and B > 16K3 (see Remark 2.2),
and thate(j —k+1/4) <1.

Combining (118), (120), and (121) finishes the proof of (111) in the case m = |u| > 3.

This finishes the proof of Lemma 5.3. (|

Appendix A: Multiindices and Stirling’s formula

For o = (01, 02, 03) € Ng we let |o| ;== 01 + 07 + 03, and

0
D° :=D{'Dy’D3’, D,:= —i = —ia,, v=1273. (A.])
0x,
This way,
glol glol
97 = = = ol pe,
ax° " ox]'x3x3 =D

We let 0! := 0! 03! 03!, and, for n € Ny,

(”) o (A2)

o o! o1l oy! 03!
With this notation we have the multinomial formula, for x = (x1, x2, x3) € R? and n € Ny,
X1+ x+x3)" = (n)x“. A3
(rtxt+x)" = () (A3)

neN}
lul=n
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Here, x# := x| x5?x}". It follows that

lo|t <3lg! forall o €N, (A.4)

since, using (A.2), that (1, 1, )* =1 forall u € N2, and (A.3),

@:(|U|)S Z <|Z|)(1’1’1)M:(1+1+1)|U|:3|6|'

o! o
MENS
|ul=lo|
We also define
o o!
( ) -7 (A.5)
2 u! (o —p)!

foro, u e Ng with u < o, thatis, u, <o,,v=1, 2, 3. Note that for all o € NS and k € Ny (see [Kato

1996, Proposition 2.1]),
> =) (*0

n=o,|ul=k

Finally, by [Abramowitz and Stegun 1992, 6.1.38], we have the following generalization of Stirling’s
formula: For m € N,

m! = 2rm"+3 exp(—m n %) for some & = 9 (m) € (0, 1), (A7)
andsoforn,me N, m <n,
(n)_ 1 n"t1/2 o d(n) O@m) Y —m)
m) = Jag m 2 (n—my =12 CP\ 120 T Tom T 1200 —m)

e1/12 nn—|—1/2

= \/E mm-‘rl/Z(n _m)n—m+1/2'

(A.8)

Appendix B: Choice of the localization

Recall that, for xo € R?\ {0} and R = min{1, |xo|/4}, we have defined w = Br(xp), ws = Bgr—_s(x0),
and that € > 0 is such that €(j 4+ 1) < R/2. Also, recall (see (44)) that we have chosen a function ®
(depending on j) satisfying

(ONS Cgo(a)e(j+3/4)), 0<d <1, with ® =1 on We(j+1)- B.1)

For j € N we choose functions { Xk}i:Ov and {nk}izo (all depending on j) with the following properties
(for an illustration, see Figures 1 and 2). The functions { Xk}zjc:o are such that

X0 € Cgo(we(j+1/4)) with xo=1 on We(j+1/2),
and, fork=1,..., ],

Xk=1 on @ej—k+1/2) \ Oe(j—k+1+1/4)s

Xk € C3°(We(j—k+1/4)) With {
0 WHel=hrl/d Xk =0 on R\ (@c(jok+1/4) \ Oe(j—k+1+1/2))-
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@ = Bg(xo) Wek = Br_er(x9) € @ do
Xo R/2 €(j+1) - 2 e
Figure 1. The geometry of w = Bg(xg) and the wc;r = Br_ex (X0).
@ Xj
e 1 1 1
e(j+1) €j € dw
no N nj-1 nj
- 1 T 1 1
e(j+1) €j e(j—1) € dw
Figure 2. The localization functions.
Finally, the functions {n }izo are such that for k =0, ..., j,
. =1 R3 i ,
77k c COO(R?)) Wlth { 77k on \a)é(] k+1/4)
=0 on we;—kt1/2)-
Moreover we ask that
xo+mo=1 on R3,
Xe+tm =1 on R\ weij—kr141/4) for k=1,..., ], (B.2)

Nk = Xke1+ kg1 on R for k=0,...,j—1.

Furthermore, we choose these localization functions such that, for a constant C, > 0 (independent of
€, k,j,B)and forall g € Ng with |8| = 1, we have that

C C
|D? xi(x))| 5?* and |DPni(x)| 5?*, (B.3)

fork=0,...,j,and all x € R’
The next lemma shows how to use these localization functions.
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Lemma B.1. For j € N fixed, choose functions {Xk}izo, and {’)k}/{:() as above, and let o € Ng with
lo| = j. For £ e Nwith £ < j, choose multiindices {,Bk}ﬁzo such that

\Bel =k fork=0,...,€6, Pe_i <P fork=1,...,¢, and B <o.

Then for all g € ¥ (R?),

L -1
D°g = Z Dy D" Prg + Z DP [y, DD Prig 4 Py, D7 Prg, (B.4)
k=0 k=0

with py = Br+1 — Pr fork =0, ..., £ —1 (hence, |ux| = 1).

Proof. We use induction on £ from £ = 1 to £ = j. We start by proving the claim for £ = 1. By using
property (B.2) of the localization functions and that 8; = By + (o = o (since By = 0) we find that

D°g = xoD’g+noD’g = xoD° g +noD’ P HHog. (B.5)

The first term on the right side of (B.5) is the term corresponding to £ = 0 in the first sum in (B.4). In the
second term in (B.5), commuting the derivative through 7g, we find that

oD’ ~FHiog = DHono D7 Frg 4 [ng, D*1D" P1g.
Since ng = x1 + 11 by property (B.2), this implies that
noDﬁ—ﬂl-Hcog — DﬂlxlDU—ﬂlg + DﬂlmDU—ﬂlg + [0, DMO]DU—}glg. (B.6)

The identity (B.4) for £ = 1 follows from (B.5) and (B.6).
We now assume that (B.4) holds for £ — 1 for some £ > 2, i.e.,

-1 =2
D°g = Z DPr XkDU_ﬂkg + Z DPr [k, DMk]DU—ﬁng + DPe- Ne—1 DU—ﬂzflg’ (B.7)
k=0 k=0
and prove it then holds for £. Since B,_; = B¢ — n¢—1 we can rewrite the last term on the right side of

(B.7) as
DB 77[71Dg_ﬂ(_1g — DB ﬂgleG_ﬂ(—HM_'g.
Again, commuting the w,_;-derivative through n,_; this implies that
DBt ne_1DJ_ﬁz71g — DBe-1tie m_lDa—ﬁzg + pPe- (o1, Duzfl]DG—ﬂzg

=D (ne+ x) D P g+ DP ey, DM 1D g, (B.8)

using (B.2). Collecting together (B.7) and (B.8) proves that (B.4) holds for £.
The claim of the lemma then follows by induction. O
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Appendix C: Norms of some operators on L? (R?)

In this section we prove two lemmas on bounds on certain operators involving the operator E(p) =

NV—=A+a2.
Lemma C.1. Let the operators S, = E(p)~'D,, v € {1, 2, 3}, be defined for f € $(R?) by

s.H@ =0 [ P EE b fdp.

with f(p) = (27)3/? fR3 e %P f(x) dx the Fourier transform of f. (Here, p = (p1, p2, p3).)
Then, for all p € (1, 00), the S, extend to bounded operators, S, : LP(R3) — LP(R%), v € {1, 2, 3}.
Clearly. S, lla, = 1S lla, . v # 1. We let

Ky =Ki(p) :=Stlla,- (C.1)

Proof. This follows from [Sogge 1993, Theorem 0.2.6] and the Remarks right after it. In fact, since (by
induction),

DY (puE(p)™") =P, (pE(P) ',y eN,

for some polynomials P, , of degree |y|+ 1, the functions m, (p) = p, E( p)~! are smooth and satisfy
the estimates

|Dym, (p)| < Cyolpl™, v eNg,
for some constants C, , > 0, which is what is needed in the reference above. U
For p, q € [1, o0], denote by | - |5, ] the operator norm on bounded operators from LP(R3) to LY9(R%).

Lemma C.2. Forall p,t € [1,00), g € (1,00), withp~' +q7 ' +v71 =2, all @ > 0, all B € N} (with
1Bl > 1ift=1),and all &, xy € C*(R>) N L>®(R3) with

dist(supp(x), supp(®)) > d, (C.2)
the operator ®E(p)~'DP x is bounded from LP(R?) to (LY(R3)) = LY (R3) (withq~ ' +q* ' = 1), and
_ 42 Bl o, .
IPE(P) " D xllm, . < ——B! ( ) 2 (e (181 +2) = 3) " 1@l l oo (C3)
In particular, (Whent =1, i.e., q* = p),
_ 3272 Bl /g\IBI-1
19ER) D xllg, = == (5) T Il (€4

forall B € N} with |B] > 1.
Proof. We use duality. Let f, g € #(R?). Note that, since ®f, D?(xg) € L?(R?), the spectral theorem,

and the formula

1 1/00 1 dt 0 (C.5)

—_— = —, x>0, .
ﬁ T Jo X+l‘\/2
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imply that
“1np 1 [ dt ) 8
(L PEMP) 'DPxe)== [ — (£ ®(=A+a?+0)"'DPyp).
mJo i

By using the formula for the kernel of the operator (—A + a2 4+1)~! [Reed and Simon 1975, (IX.30)],
and integrating by parts, we get

e~ Vot x—y| dt
(f, DE(p) ' DPyg) = / f FOo @) / S DMl dxdy
R3 lx — NG

SOl ) ﬂe‘m'ﬂ' axdy &
=, /0 R3f(x)<l>(x)/R3(Dym)x(y)g(y) x y\—/;.

Notice that the integrand is different from zero only for |[x — y| > d, due to the assumption (C.2). Hence,

by Fubini’s theorem,

(roE@ D0 = [ [ FeoHe-yGmdxdy, 6

with F(x) = f(x)®(x), G(y) = x(y)g(y), and

(_1)\ﬂ| 00 ﬂe—\/T-lel dt
H(2) = Hapa(@) =1 12)(2) /0 (Dz Tm)ﬁ'

Now, by (C.8) in Lemma C.3 below, uniformly for o > 0,

V2 B! PLpoo oy dt V2 Bl 7
|H(2)| 51{|‘|Zd}(z)4n2 ] (|z|> /O e Vi \/Zﬁ :]l{|‘|zd}(Z) 2 |Z|2(|Z|) )

and so, forall @ > 0, t € [1, 00), and all B € Ng (with |B] > 1ifr=1),

o) 1/¢
IH|. < <4n>”t£ﬂ!8'f"( /d (|z|—'ﬂ‘2)’|z|2d|z|>
V2

= (4m) /P27 e
T

o] _
pr(5) 2 (eapl+2)-3)

From this, (C.6), and Young’s inequality [Lieb and Loss 2001, Theorem 4.2] (notice that Cy < 1), follows
that, with p, g, t € [1,00), p~ ' +q '+ =2,

[(f, ®PE(p) "' DPx )| < I Fllal HIeI Gl

2 1Bl e
s(4n)”t£ﬂ!(§) 2 (c(1B1+2)=3) I F 4l Gl

4 18I i
_iﬁ'( ) a2 (218142~ 3) I leel o gl

Since ¥(R?) is dense in both LP(R?) and L% (R?), this finishes the proof of the lemma. O
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Lemma C.3. Foralls >0, x € R? \ {0}, and B € N3,

1| 2B/ 8\l
p 1 S
"l = T <|x|> ’ €7
—s|x|
it ﬁﬁ’(i)'ﬂ'e—ﬂxv; s
x| lx| x|

Proof. We will use the Cauchy inequalities [Hérmander 1973, Theorem 2.2.7]. To avoid confusion with
the Euclidean norm | - | (in R? or in C?), we denote by | - |c the absolute value in C.
Let, for w = (w;, wa, w3) € C3 and r > 0,

Pw)={zeC||zy—wylc <7, v=1,2,3} (C.9)

be the polydisc with polyradius r = (r, r, r). The Cauchy inequalities then state that if u is analytic in
P3(w) and if SUP, ¢ p3(w) [U(2)|c = M, then

195u(w)|c < MB!r~P1 forall B eNg. (C.10)

We take w = x € R*\ {0} € C? and choose r = |x|/8. We prove below that then we have (with
22:=Y3_2€0)
Re(z?) > 1|x|* for z € P} (x). (C.11)

It follows that /72 := exp(%Log z?) is well-defined and analytic on P?(x) with Log being the principal
branch of the logarithm.
We will also argue below that

Re(vz2) > Lix| for z € P (x). (C.12)
Then (by (C.11)) for all z € P3(x),
Vz2le = Vi22le = VIRe 22| > |x|/V2. (C.13)
and (by (C.12)), for all s >0 and all z € Pf(x),

|exp(—sv/22)| ¢ = exp(—s Re(v/22)) < exp(—sx|/2). (C.14)

Therefore, (C.7) and (C.8) follow from (C.10), (C.13), and (C.14).
It remains to prove (C.11) and (C.12).
For z € P,3(x), write z = x +a +ib with a, b € R? satisfying |z, —xvlé = af + b% < (|x|/8)2. Then

2Z2=|x+al®—|b*+2i(x +a)-b,
so, with e = 1/8,

Re(z?) = |x|* + |a]* +2x -a— ||

> (1 —olx*+2—e Dlal* — (al* + b = Z|x|* > x>
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This establishes (C.11) .
It follows from (C.11) that, with Arg the principal branch of the argument,

LA lArg(zz) <2 for ze P3(x). (C.15)
4 72 — 4 !
Furthermore (still for z € Pr3 (x)), because of (C.15),
Re(v/z2) = |22]1/* cos(L Arg(z?)) = [2%1/%//2. (C.16)
Combining with (C.11) we get (C.12).
This finishes the proof of the lemma. U

Appendix D: Needed results

In this section we gather some results from the literature which are needed in our proofs.

Theorem D.1 [Adams and Fournier 2003, Theorem 5.8]. Let Q2 be a domain in R" satisfying the cone
condition. Let m e N, p € (1,00). If mp > n,letp <q<oo;ifmp=n,letp <q<oo;ifmp <n, let
p <q<p*=np/(n—mp). Then there exists a constant K depending on m, n, p, q and the dimensions of
the cone C providing the cone condition for Q, such that for all u € W™ (Q),

lullzacgy < K ety gy Nl 0o (D.1)
where 6 = (n/mp) — (n/mq).

We write K = K (m, n, p, q, ). We always use Theorem D.1 withn =3, m =1, and p = p, q =3p for
some p > 3. Hence mp > n, p <q<o0,and 6 =60(p) =2/p < 1. Moreover, we always use it with Q2
being a ball, whose radius in all cases is bounded from above by 1 and from below by R/2 for some
R > 0 fixed.

Let Ko = Ko(p) = K(1, 3, p, 3p, B1(0)) with B;(0) € R? the unit ball (which does satisfy the cone
condition). Note that then, by scaling, (D.1) implies that for all r < 1 and all x¢ € R3,

0
|

— 0 1-6
il 308, e < Kor =1l oo 1811705, (D22)

with 0 =2/p.
To summarize, we therefore have:

Corollary D.2. Let p > 3 and R € (0, 1]. Then there exists a constant K,, depending only on p and R,
such that for allr € [R/2, 1], xo € R, and all u € WP (B, (xy)),

[ 1-6
||u||L3P(B,(xO)) = KZ””HWl,p(Br(xO))”””Lp(Br(xO))» (D.3)

with6 =2/p.

Here,
K> = Ka(p, R) = 2/R)*?Ko(p), (D.4)

where Ko(p) = K(1, 3, p, 3p, B1(0)) in Theorem D.1 above.
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Theorem D.3 [Chen and Wu 1998, Theorem 4.2]. Let Q2 be a bounded domain in R" and let a'/ € C(R),
bl,ce L®(Q) i, je(l,...,n},withx, A > 0 such that

n

Za"fgigjzusﬂ forall x e Q, & e R, (D.5)
i,j=1

n n

Y la @ + Y 16 e + llel@) < A. (D.6)

i,j=1 i=l

Suppose u € WIZO’CP(Q) satisfies

n n
Lu = Z —aijDiDju+ZbiDiu+cu:f. (D.7)

i,j=1 i=1
Then for any Q' € L,
1
lelwer @y = {51 s @+ Il vy | (D3)

where C depends only on n, p, A/A, dist{Q', 0Q}, and the modulus of continuity of the a'’s.

We use Theorem D.3 in the case where ' and €2 are concentric balls (and with n =3, p = 3p/2,
a'l = §; s b’ = ¢ = 0; hence A = A = 1). Reading the proof of the theorem above with this case in
mind (see [Chen and Wu 1998, Lemma 4.1] in particular), one can make the dependence on dist{$2’, 92}
explicit. More precisely:

Corollary D.4. Forall p > 1 there exists a constant K3 = K3(p) > 1 such that

lullw2sor2s, o < K3{ I Aull 302, s cxon + 8Nl o2, s o0 |- D.9)
for all u € W?3P/2(B, 1s(x)) (with xg € R, r, 8 > 0).

Theorem D.5 [Evans 1998, Theorem 5, Section 5.6.2 (Morrey’s inequality)]. Let 2 be a bounded, open
subset in R", n > 2, and suppose 02 is Cl. Assume n < p<oo,andu € Wl’p(Q). Then u has a version
u* € COY(Q), for y = 1 —n/p, with the estimate

[Nl co @) < Kallullwrr - (D.10)
The constant K4 depends only on p, n, and €.

Here, u* is a version of the given u if u = u™ a.e. Above,

lu(x) —u(y)|
Il oy gy := sup lu(x)| 4+ sup ————. (D.11)
e xeQ x,yeQ lx — yl¥
xF£y

Of course, sup,cq [u(x)| < llull cor -

Remark D.6. In [Evans 1998, p. 245] a definition of the W™ P-norm is used which is slightly different
from ours (see (18)), but which is an equivalent norm by the equivalence of norms in finite-dimensional
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vector spaces. Therefore, (D.10) holds with our definition of the norm, though the constant K4 is not the
same as the one in [Evans 1998, Theorem 5, Section 5.6.2].
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SEMICLASSICAL TRACE FORMULAS AND HEAT EXPANSIONS

YVES COLIN DE VERDIERE

In a recent paper (J. Phys. A 43:47 (2011), 474028), B. Helffer and R. Purice compute the second term of a
semiclassical trace formula for a Schrodinger operator with magnetic field. We show how to recover their
formula by using the methods developed by Riemannian geometers in the seventies for heat expansions.

Introduction

There is a strong similarity between the expansions of the heat kernel as worked out by people in
Riemannian geometry in the seventies, starting with the famous “Can one hear the shape of a drum?”
by Mark Kac [1966] and continuing with [Berger 1966; McKean and Singer 1967] (see also the books
[Berger et al. 1971; Gilkey 1975]), and the so-called semiclassical trace formulas developed by people
in semiclassical analysis, starting with [Helffer and Robert 1983]. In fact, this is not only a similarity,
but, as we will prove, each of these expansions, even if they differ when expressed numerically for some
example, can be deduced from the other one as formal expressions of the fields.

Let us look first at the heat expansion on a smooth closed Riemannian manifold of dimension d, (X, g),
with the (negative) Laplacian Agl. The heat kernel e(¢, x, y), with ¢t > 0 and x, y € X, is the Schwartz
kernel of exp(tAg): the solution of the heat equation u; — Agu = 0 with initial datum u is given by

ut,3) = [ elx o) .
The function e(t, x, x) admits, as t — 07, the following asymptotic expansion:

€(I,X,X) ~ (47_[[)—11'/2(1 +a1(x)t +"'+a[(X)[l +)

The a; are given explicitly in [Gilkey 2004, p. 201] for / < 3, and are known for / < 5 [Avramidi 1990; Ven
1998]. See also the related works [Hitrik 2002; Hitrik and Polterovich 2003a; 2003b; Polterovich 2000].
They are universal polynomials in the components of the curvature tensor and its covariant derivatives.
For example, ag = 1 and a; = 74 /6, where 74 is the scalar curvature.

The previous asymptotic expansion gives the expansion of the trace by integration over X and has
been used as an important tool in spectral geometry:

o0
trace(e’2¢) = / e(t, x,x)|dx|g = Z et
X
k=1

MSC2010: 35P20, 35505, 58J35.
Keywords: trace formula, magnetic fields, heat expansion, synchronous gauge.
n this note, we will not follow the usual sign convention of geometers, but the convention of analysts
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where —A; =0 <—A, <--- < —Aj <--- is the sequence of eigenvalues of —A, with the usual convention
about multiplicities. If d = 2, this gives

1 2 (X
trace(e’2¢) = - (Area(X )+ X6( )
wt

t+ 0(z2))

where x(X) is the Euler characteristic of X.

There is an extension of the previous expansion in the case of Laplace type operators on fiber bundles:
the coefficients of the expansion are then polynomials in the covariant derivatives of the curvature of the
metric and of the connection on the fiber bundle. The heat expansion can be reinterpreted as an expansion
of the Schwartz kernel of f(—#%Ag) on the diagonal x = y in powers of 4 with f(u) = exp(—u) and
t = k2. This is a particular case of the semiclassical trace.

Let us describe the semiclassical setting in the flat case: ﬁ;, is a self-adjoint %-pseudodifferential
operator with Weyl symbol H(x, £) in some open domain X in R4, or more generally on a Riemannian
manifold. Let / € ¥(R) and look at f (I-AI;,). Under some suitable assumptions (ellipticity at infinity in &)
on H, f (fAIh) is a pseudodifferential operator whose Weyl symbol f*(H) is a formal power series in
h, given, using the Moyal product denoted by , by the following formula (see [Gracia-Saz 2005] for
explicit formulas and Section 4.2 therein for a proof; see also [Charles 2003]) at the point zg € T* X:

S*(H)(z0) = i)™~ %f")(H(Zo)) (H— H(z0))*" (z0). (1)
=0~

From the previous formula, we see that the symbol of f (ﬁh) at the point z depends only of the Taylor
expansions of H at the point z and of f at the point H(z). Helffer and Purice [2010] have studied the case
of the magnetic Schrodinger operator whose Weyl symbol is H, y(x,§) = qu;l (& —aj(x)* + V()
and show that the Schwartz kernel of f (Iflh,a,y) at the point (x, x) admits an asymptotic expansion of
the form

[f (Hpa))(x.x) = Qmh)~ th”(Z f SOUENR? + V()0 (x,s)|ds|)

j=0

where the Q;IIV (x, &) are polynomials in & calculated from the Taylor expansions of the magnetic field
B = da and V at the point x. The proof in [Helffer and Purice 2010] uses a pseudodifferential calculus
adapted to the magnetic field.
We will give a simplified version of the expansion replacing the (non-unique) Q b (x &) by functions
J l (x) which are uniquely defined and are given by universal O(d)-invariant polynomlals of the Taylor
expansions of B and V at the point x. We present then two ways to compute the P

e we can first use Weyl’s invariant theory (see [Gilkey 2004]) in order to reduce the problem to the
determination of a finite number of numerical coefficients; then simple examples, like harmonic
oscillator and constant magnetic field, allow to determine (part of) these coefficients.
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e The Pj.l? I’V are related in a very simple way to the coefficients of the heat expansion; it is possible to
compute the Pfl’ Y from the knowledge of the a; for j + 1 </ < 3j. This is enough to recompute
the coefficient of % and also, in principle, the coefficients of #* in the expansion, because the a; are
known up to / = 6 in the case of a flat metric (see [Ven 1998]).

In this note, we will first describe precisely the semiclassical expansion for Schrédinger operators (in
the case of an Euchdean metric) and the properties of the functions P (x) Then, we will show how
to compute the P (x) using an adaptation of the method used for the heat kernel (Weyl’ s theorem on
invariants and exp11c1t examples). Finally, we will explain how the a; are related to the P b (x) This
gives us two proofs of the main formula given in [Helffer and Purice 2010]; this paper Was the initial
motivation to this work.

1. Semiclassical trace for Schrodinger operators

In what follows, X is an open domain in R?, equipped with the canonical Euclidean metric, and Q¥ (X)
will denote the space of smooth exterior differential forms in X. Let us give a Schrédinger operator,
with a smooth magnetic field B = lei <j<d bijdx;i A dx; (a closed real 2-form) and a smooth electric
potential V' (a real-valued smooth function) in X. We assume that V' is bounded from below. We will
assume also that the 2-form B is exact and can be written B = da and we introduce the Schrédinger
operator defined by

hod 2
Hy oy = Z (l—@ —aj (X)) + V(x).

j=1

The Weyl symbol of Hy, 4 1 is H, y(x,§) = ||& —a(x)||*> + V(x). We denote by ]—Alh,a’y a self-adjoint
extension of Hj 4 in L%(X,|dx]). Let us give / € #(R) and ¢ € C°(X) and consider the trace of
of (I-Alh,a,y) as a distribution on X x R (the density of states):

Trace(f (Fpap)) = /X Zhaw (@) X)) dx].

where Zj, , 1 (g)(x) is the value at the point (x, x) of the Schwartz kernel of f(ﬁh,ay).

Theorem 1. We have the following asymptotic expansion in powers of h:

Zha,v(8)(x) ~

1=3j
(2h)~ d[ [, e+ veoy ag + th’( PR [ rOaer + v |ds|)}

=1 I=j+1

We have the explicit formulas

B,V B,V
Py =—¢(AV +IBI?), Py =—1lIVVIP

B,V
Pyy =—135(8IVBI® + [d* BII* + 12(AB|B) + 3A%V).
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Here | B|* = Zl§i<j§d bl.zj, d* : Q%(X) — QUX) is the formal adjoint of d used in the definition of
the Hodge Laplacian on exterior forms. If d = 3, || B|| is the Euclidean norm of the vector field associated
to B.

The Pfl’ V(x) are polynomials of the derivatives of B and V at the point x. Moreover, if A, |, ¢ are
constants and we define .* () (x) = f(Ax), we have the following scaling properties:
ALA*(B),A*(V
) Pj,l (B),A* (V)

B.u*v —j) pB.V
@ P00 = p2 D P ().

(x) =A% PJB;V(Ax). This will be used with x = 0.

@) P50 = PV ().

@) P;f’V(x) = Pf;V(x).

(5) The PJ.BI’V are invariant by the natural action of the orthogonal group O(d) on the Taylor expansions
of B and V at the point x.

Remark 1. From the statement of the theorem, we see that the expansion of the density of states is
independent of the chosen self-adjoint extension.

As a consequence, we can get the following full trace expansion under some more assumptions:

Corollary 1. Let us assume that Eq = infV < Eo = liminf,_, 5y V(x) and that we have chosen
the Dirichlet boundary conditions. Let f € CS°(] — 00, Ex|), then the trace of f(Hy q,y) admits the
asymptotic expansion

Tiace( (s ~ Qo) [ ([ i+ veoy g+
o0 . 1=3j
oS PR [ rOaer + veoylas) ax.
j=1  I=j+1 R

The coefficient of h* can be written as

1
=T FPUEN + V) (AV(x) + 2| BX)II?) [dx dE|.
X xR4

The expansion follows from [Helffer and Robert 1983]. An integration by part in x gives
/X SOUENRP +VEDIVV )P ldx| =~ /X SEUEN? + VDAV () ldx].

2. Existence of the %-expansion of Z} , v

Using Theorem 2 in the Appendix, we can work in R? with @ and V compactly supported. The existence
of the expansion is known in general from [Helffer and Robert 1983] and the calculus of the symbol of
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S (Hy g p). We get

00 kj
[X Zhay ()X)P(x) |dx| = Quh)™ > " n¥ Y f ¢ (x) fD(Hyp(x,6)0; 1 (x, &) |dx dE|
=0

j=0

where the Q; ;(x, &) are polynomials in the Taylor expansion of H, j at the point (x, ). The previous
expansion is valid for any (admissible) pseudodifferential operator. In the case of Schrédinger operators
we can make integrations by part in the integrals [ f ¢ )(Ha’V(x, £))Q; 1(x,&)|d&| which reduces to a
similar formula where we can replace the Q; ;(x,&) by the P; ;(x). This is based on the expansion of
Q; 1 as a polynomial in & in powers of (§ —a): odd powers give 0 and even powers can be reduced using

d (& —aj) f P (Hap)1(3g,)dE) = 2018 —aj |* f D (Hop)dg + O (Hy p)dE.

We have only to check that the powers of £ in Q; ;(x,&) are less than /: this is based on Equation (1).
The coefficients of the /-th Moyal power of H, y(z) — Hg 1 (29) are homogeneous polynomials of degree
[ in the derivatives of H, y(z). At the point z = z( only derivatives of order > 1 are involved. They are
all of degree < 1 in £. Using gauge invariance at the point x (Section 3), we can assume that a(x) = 0.

3. Gauge invariance
If S : X — R is a smooth function, we have
Trace(¢e SO £ (Hy g,1)e" SO = Trace(df (Hp.a,1))

and
IS f( 1y 0 3)e SO = (o as.y).

Hence, we can chose any local gauge a in order to compute the expansion: using the synchronous
gauge (see Section 4), we get the individual terms

B,V
[ 1Ot P 10
for the expansion, where the PjBl’V(x) depend only of the Taylor expansions of B and V' at the point x.

4. The synchronous gauge

The main idea is to find an appropriate gauge a adapted to the point xy where we want to make the
symbolic computation. In a geometric language, we use the trivialization of the bundle by parallel
transportation along the rays: the potential @ vanishes on the radial vector field.> Here, this is simply the
fact that, for any closed 2-form B on R?, there exists an unique 1-form a = Z?:] ajdx;j sothat da = B

and Zj-lzl xjaj = 0.

2This gauge is sometimes called the Fock—Schwinger gauge; in [Atiyah et al. 1973], it is called the synchronous framing.
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We will do that for the Taylor expansions degree by degree. In what follows we will use a decomposition
for 1-forms, but it works also for k-forms.

Let us denote by Qé‘\, the finite dimensional vector space of k -differential forms on R? whose coefficients
are homogeneous polynomials of degree N and by W = Z;i:l xj 0/0x; the radial vector field. The

1

exterior differential induces a linear map from Q’]‘\, into Qé‘\,t and the inner product ¢(W) a map from

1

Qé‘v into QII‘V_JFII. They define complexes which are exact except at k = N = 0. Moreover, we have a

situation similar to Hodge theory:
k k— k+1
Qy =dQ, &)

This is due to Cartan’s formula: the Lie derivative of a form w € Qlfv satisfies, from the direct calculation,
Eww = (k + N)w, and, by Cartan’s formula, Lo = d(t(W)w) + 1«(W)dw. So

w= ﬁ dW)w) +1(W)dw) .

It remains to show that this is a direct sum: if w = da = «(W)y, we have t(W)w = 0 and dw = 0; from
the previous decomposition, we see that w = 0. Let us denote by J ¥ w, where w is a differential form of
degree k, the form in QI]‘\, which appears in the Taylor expansion of w.

We get:

Proposition 1. If P(J%, J'a,---, JNa) is a polynomial in the Taylor expansion of the 1-form a at some
order N which is invariant by a — a + dS, P is independent of J%a and

1 Ny_ p(lg1 . L N
P(Jla,--,J a)—P(2J {W)B. g L(W)B)

is a polynomial of the Taylor expansion of B to the order N — 1.

S. Properties of the P; ;

5.1. Range of | for j fixed. From the scaling properties, we deduce that, in a monomial
D*' Biy j, "'DakBik,jkDﬁl V...DPmy,

belonging to P;j;, we have k +2m = 2(I — j) and k + |aq| + -+ + |og| + |Bi]| + -+ + |Bm| = 2/.
Moreover, for j > 1, k +m > 1and |B,| > 1. Hence j + 1 </ < 3j. The previous bounds are sharp:
take the monomials A/ V and ||[VV||?/ which give / = j + 1 and / = 3j.

5.2. Invariance properties.

(1) Let us assume that we look at the point x = 0 and consider the operator D, (f)(x) = f(ux). We
have

Dy o Hy gy 0Dy = Hpjpu, 40D, VoD, -
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The same relation is true for any function f (flh, 4,v) and then we have, looking at the Schwartz
kernels and using the Jacobian ud of Dy:

PEYO [ O +vonidg = w2 P o) [ rOqel® + voy el

(2) We have
~ )5
Hh,ua,qu =K H,’;i,a,V'

: . . : . . BV
(3) Changing V into V + ¢ gives a translation by ¢ in the function f but does not change the Pj’ [
(4) Changing B into — B gives a complex conjugation in the computations. The final result is real-valued.

(5) Orthogonal invariance is clear: an orthogonal change of coordinates around the point x preserves
the density of states.

5.3. The case d = 2. We deduce from the scaling properties and invariance by the orthogonal group,
that there exists constants ag, by, ¢4 so that PlBiV(x) =agAV +bg||B||?, P13(x)=cq||VV]>.

6. Explicit examples

The calculation for the harmonic oscillators and the constant magnetic fields allows to determine the
constants agz, by, cg.

d2

6.1. Harmonic oscillators. Let us consider Q = —A? e + x? with d = 1. The kernel of P(¢, x, y) of
X

exp(—?£2) is given by the Mehler formula:

P(t,x,y) = (Qrh sinh(2th))_%exp cosh(2th)(x? + y?) — ny)) .

: (
2h sinh(2th)
Hence

P(t,x,x) ~ 2Quh) le ™ (/ e—’fzdg) (1=r2(2 = 3x%) 3+ 0(h%)).
R

Hence Py »(x) = —V"(x)/6 and P;3(x) =—V'(x)?/12.
Similarly, in dimension d > 1, we get Py (x) = —AV(x)/6 and P; 3(x) = —|VV|?/12.

6.2. Constant magnetic field. Let us consider the case of a constant magnetic field B in the plane and
denote by Q(7, x, y) the kernel of exp(—tHp ). We have (see [Avron et al. 1978])

B

QX %) = i Bih

Hence the asymptotic expansion
O(t.x,x) = 2nh)~? / exp(—t[|§]|*) |d&|(1 — 2% B*/6 + O(h%)):

hence Py »(x) = —B?/6 and Py 3(x) =0.
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Using the normal form B = byydx1 A dxy + bzsdxz Adxsq + -+, we get in dimension d > 2 the
values Py 5(x) = —||B||?/6 and P; 3(x) = 0.

7. Heat expansion from the semiclassical expansions

We have tfll aV = flﬁ Jiav- Using the expansion of Theorem 1 with f(E) =e"E, we get easily
the point-wise expansion of the heat kernel on the diagonal as ¢ — 07:

exp— 0 (3. ) ~ —’”’”Z( )3 f;V(x))(—z)’.

1/35j<I-1

In particular, a;(x) = —V/(x) and the coefficient a,(x) is given by
az(x) = 3V (x)* = ¢ AV(x) — ¢ | B>

This formula agrees with Equation (3) of Theorem 3.3.1 in [Gilkey 2004].
This gives another way to compute the P; ;: if, as power series in ¢,

oo oo
> Dot =Dy ay (i,
1=0 =0

we have
BV
P (x) = bi(x).
1/3<j<l-1

Pfl’V is the sum of monomials homogeneous of degree 2(/ — j) in b; where B and its derivatives have
weights 1 while V' and its derivatives have weights 2.

The heat coefficients a; on flat spaces are known for / < 6 from [Ven 1998]. This is enough to check the
term in 42 (uses a, and a3) in [Helffer and Purice 2010] and to compute the term in A% in the semiclassical
expansion (uses the a; for 3 </ <6).

We have also a mixed expansion writing tH haV = H Jih.Jta, V> WE get a power series expansion in

powers of % and ¢ valid in the domain #%¢ — 0 and 0 < ¢ < f, for the point-wise trace of exp(—tﬁ hav):

1
Zt’h(x)wme—tV(X)(l+ Z hZJ( l)l (X))

j=1
jH1<I<3j

This shows that the integrals [, V(x)K|dx| and Jx PjBl’V(x) |dx| are recoverable from the semiclassical
spectrum.

Appendix: functional calculus in domains and self-adjoint extensions (after Johannes Sjostrand)

The content of this Appendix is due to Johannes Sjostrand. I thank him very much for this contribution.

Let X ¢ R? be an open set. We say that a linear operator 4 is a WDO in X, with Weyl symbol « if,
for any compact K C X, A4 acts on functions supported in K as a WDO of Weyl symbol a.
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Theorem 2. Let Hy, 4,y be a Schrodinger operator with magnetic field given by

N 2
Hhay =) (?Wj —aj (x)) + V().
J

=1

defined in some open domain X C Re. We assume that a and V are smooth in X and that V is bounded
from below, so that Hy, 4.y admits some self-adjoint extensions on the Hilbert space L?(X,|dx|). One of
them will be denoted by ﬁh,a’y. Then, for any f € ¥(R), f(ﬁh,a’[/), given by the functional calculus,
is a semiclassical WD O in X whose symbol is given by Equation (1) and is independent of the chosen
extension.

The proof uses a multicommutator method already used by Helffer and Sjostrand [1984].

Proof. We introduce, for s € R, the semiclassical (#-dependent) Sobolev spaces
5=t e 'R | 0py (1 + 1817 2ul 12 < 00}

with the norm
lulls == [Ops (1 + 1E1%)*2u| 2.

The (h-dependent) norm || A||s, s, is the norm of A as linear operator from %;l to %;2. A linear operator
K is smoothing if, for all 51, s2, || K||s,,s, = O(h°°). This implies that the Schwartz kernel of K is
smooth with all derivatives locally O(A°°). We have the

Lemma 1. Let Y be an open set in R%. Let Pj = Pj(h), j =0,1 betwo self-adjoint operators on Hilbert
spaces ¥j = L*(Xj, |dx|) with Y € Xo € X; € R4 and with domains Dj so that CS°(Y) C9D; C ;.
Let us assume that, on C°(Y), Py = Py = Hy 4y (= P).

Then, for any f € CS°(R), f(Po)— f(Py) is smoothing on Y. In particular, the densities of states
[f(P)](x,x), j =0,1, coincide in Y modulo O(h*>).

Assuming Lemma 1, Theorem 2 follows by extending @ and V' smoothly outside Y so that they have
compact support in R, We take Y € X = X C R? = X;. It follows that P is essentially self-adjoint
and the functional calculus for P; follows then easily from [Helffer and Robert 1983]. The result is valid
even for f € ¥(R) because CS° is dense in ¥ and the result of [Helffer and Robert 1983] is valid for

f € & and the resulting formulas for the symbols are continuous w.r. to the topology of &. O
Proof. Proof of Lemma 1 If y € C°(Y), then, for z ¢ R and j, k € {0, 1}, we have on L2(Y):
(Pj—2)"lox=xo(Pr—2)"' = (Pi—2) '[P XI(Px —2)"" (2)

Let xo < x1 <--- < xn with,for/ =0,--- | N, x; € CS°(Y) and, for/ =0,--- ,N—1, x;(1—x;41) =0.
By iterating (2) and using x;41[P, x;] = [P, x1], we find:

(Pr—2)"oxo=x10(Po—2) " xo—x20(Po—2) '[P, x1](Po—z) ' xo + -+

£ xn(Po—2) [P xn—1](Po —2) '[P, xn—2] -+ (Po—2) " xo
F(Pr—2) [P, xN)(Po—2)" - (Po—2)" 0o
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Let us give now xo, ¥ € CS°(Y') with disjoints supports. By choosing the y; for / > 0 with supports
disjoint from the support of ¥, we see, using Equation (2), that, for any NV,

19(P1 =2 xollo.2 = O 32/ 7VFD).
The standard a priori elliptic estimates

lulls+2,2, = C (I(P=2)ulls,q, + llulls,e,)

forzre KeCand Q1 € R, € R4, allow to prove that, for any N, s, there exists M (N, s) so that

1 (Pr—2) " Yollss+ N2 = O@BN |3z MN:9)) 3)

Let x € C°(Y) so that x = 1 on the support of x¢. Let us apply multiplication by y to the right and to
the left in (2) and choose ¥ with support disjoint from xq so that [P, x]J¥ = [P, x]. Inserting ¥ this way
in (2), we get, using (3),

xo(P1—2)""xo—x0(Po—2)""x0 = K,

and, for any N, there exists M (N) so that | K|_y n = OhN 3z7MN)). We now apply the formula
(known to some people as the “Helffer—Sjostrand formula”, proved for example in [Dimassi and Sjostrand
1999, p. 94-95]), valid for / € CS°(R) and f an almost holomorphic extension of f:

7y = [ oz ferp ==L,

where dL(z) is the canonical Lebesgue measure in the complex plane. From this, we see that f(Pg) —
f(Py) is smoothing in Y. |
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