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BLOW-UP SOLUTIONS ON A SPHERE FOR THE 3D QUINTIC NLS IN THE
ENERGY SPACE

JUSTIN HOLMER AND SVETLANA ROUDENKO

We prove that if u(t) is a log-log blow-up solution, of the type studied by Merle and Raphaël, to the
L2 critical focusing NLS equation i∂t u +1u + |u|4/du = 0 with initial data u0 ∈ H 1(Rd) in the cases
d = 1, 2, then u(t) remains bounded in H 1 away from the blow-up point. This is obtained without
assuming that the initial data u0 has any regularity beyond H 1(Rd). As an application of the d = 1
result, we construct an open subset of initial data in the radial energy space H 1

rad(R
3) with corresponding

solutions that blow up on a sphere at positive radius for the 3D quintic (Ḣ 1-critical) focusing NLS
equation i∂t u+1u+|u|4u = 0. This improves the results of Raphaël and Szeftel [2009], where an open
subset in H 3

rad(R
3) is obtained. The method of proof can be summarized as follows: On the whole space,

high frequencies above the blow-up scale are controlled by the bilinear Strichartz estimates. On the other
hand, outside the blow-up core, low frequencies are controlled by finite speed of propagation.

1. Introduction

Consider the L2 critical focusing nonlinear Schrödinger equation (NLS)

i∂t u+1u+ |u|4/du = 0, (1-1)

where u = u(x, t) ∈ C and x ∈ Rd , in dimensions d = 1 and d = 2. It is locally well-posed in H 1(Rd)

and its solutions satisfy conservation of mass M(u), momentum P(u), and energy E(u):

M(u)= ‖u‖2L2, P(u)= Im
∫

ū ∇u dx, E(u)= 1
2‖∇u‖2L2 −

1
4/d + 2

‖u‖4/d+2
L4/d+2; (1-2)

see [Tao 2006, Chapter 3] and [Cazenave 2003, Chapter 4] for exposition and references. The Galilean
identity (see [Tao 2006, Exercise 2.5]) transforms any solution to one with zero momentum, so there is
no loss in considering only solutions u(t) such that P(u)= 0.

The unique (up to translation) minimal mass H 1 solution of

−Q+1Q+ |Q|4/d Q = 0, with Q = Q(x), (1-3)

is called the ground state. It is smooth, radial, real-valued and positive, and exponentially decaying; see
[Tao 2006, Appendix B]. In the case d = 1, we have explicitly

Q(x)= 31/4 sech1/2(x). (1-4)
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Weinstein [1982] proved that solutions to (1-1) with M(u) < M(Q) necessarily satisfy E(u) > 0 and
remain bounded in H 1 globally in time (that is, they do not blow up in finite time).

Building upon the earlier heuristic and numerical result of Landman, Papanicolaou, Sulem and Sulem
[Landman et al. 1988] and the first analytical result of Perelman [2001], Merle and Raphaël in a series
of papers (see [Merle and Raphaël 2005] and references therein) studied H 1 solutions to (1-1) such that

E(u) < 0, P(u)= 0, M(Q) < M(u) < M(Q)+α∗ (1-5)

for some small absolute constant α∗ > 0. They showed that any such solution blows up in finite time at
the log-log rate — more precisely, they proved that there exists a threshold time T0(u0)> 0 and a blow-up
time T (u0) > T0(u0) such that

‖∇u(t)‖L2
x
∼

( log|log(T − t)|
T − t

)1/2
for T0 ≤ t < T, (1-6)

where the implicit constant in (1-6) is universal. Also, with scale parameter λ(t)=‖∇Q‖L2/‖∇u(t)‖L2 ,
there exist parameters of position x(t) ∈ Rd and phase γ(t) ∈ R such that if we define the blow-up core

ucore(x, t)=
eiγ(t)

λ(t)d/2
Q
( x − x(t)

λ(t)

)
, (1-7)

and remainder ũ = u− ucore, then ‖ũ‖L2 ≤ α∗ and

‖∇ũ(t)‖L2 .
(

1
|log(T−t)|C(T−t)

)1/2
(1-8)

for some C > 1. There is, in addition, a well-defined blow-up point x0 := limt↗T x(t). We refer to
the region of space {x ∈ Rd

| |x − x0| > R}, for any fixed R > 0, as the external region. While the
Merle–Raphaël analysis accurately describes the activity of the solution in the blow-up core, the only
information it directly yields about the external region is the bound (1-8).

However, it is a consequence of the analysis in [Raphaël 2006] that in the case d = 1, H 1 solutions
in the class (1-5) have bounded H 1/2 norm in the external region all the way up to the blow-up time T .
In [Holmer and Roudenko 2011], we extended this result to the case d = 2. Raphaël and Szeftel [2009]
established for d = 1 that solutions with regularity H N for N ≥ 3 satisfying (1-5) remain bounded in the
H (N−1)/2 norm in the external region, and Zwiers [2011] extended this result to the case d = 2. These
results leave open the possibility that there is a loss of roughly half the regularity in passing from the
initial data to the solution in the external region at blow-up time. The first main result of this paper is that
such a loss does not occur. Specifically, we prove that H 1 solutions in the class (1-5) remain bounded in
the H 1 norm in the external region all the way up to the blow-up time, resolving an open problem posed
in [Raphaël and Szeftel 2009, Comment 1 on page 976].

Theorem 1.1. Consider dimension d = 1 or d = 2. Suppose that u(t) is an H 1 solution to (1-1) in the
Merle–Raphaël class (1-5) (no higher regularity is assumed). Let T > 0 be the blow-up time and x0 ∈Rd
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the blow-up point. Then for any R > 0,

‖∇u(t)‖L∞
[0,T ]L

2
|x−x0|≥R

≤ C, where C depends on R, T0(u0), and ‖∇u0‖L2 .1

We remark that H 1, the energy space, is a natural space in which to study the equation (1-1) since
the conservation laws (1-2) are defined and Lyapunov–Hamiltonian type methods, such as those used by
Merle and Raphaël in their blow-up theory, naturally yield coercivity on H 1 quantities.

The retention of regularity in the external region has applications to the construction of new blow-
up solutions, with special geometry, for L2 supercritical NLS equations. Using their partial regularity
methods, Raphaël [2006] and Raphaël and Szeftel [2009] constructed spherically symmetric finite-time
blow-up solutions to the quintic NLS

i∂t u+1u+ |u|4u = 0 (1-9)

in dimension d ≥ 2 that contract toward a sphere |x | = r0 ∼ 1 following the one-dimensional quintic
blow-up dynamics (1-6)(1-7) in the radial variable near r = r0. Specifically, they showed there exists
an open subset of initial data in some radial function class with corresponding solutions adhering to the
blow-up dynamics described above. In [Raphaël 2006], for d = 2, an open subset of initial data in the
radial energy space H 1

rad(R
2) was obtained. For d = 3, in which case (1-9) is Ḣ 1 critical, Raphaël and

Szeftel [2009] obtained an open subset of initial data in a comparably “thin” subset H 3
rad(R

3) of the radial
energy space H 1

rad(R
3).

As an application of the techniques used to prove Theorem 1.1, we prove, for d = 3, the existence of
an open subset of initial data in the full radial energy space H 1

rad(R
3). For the statement, take Q to be the

solution to (1-3) in the case d = 1, explicitly given by (1-4). The following theorem follows the motif
of the d = 3 case of [Raphaël and Szeftel 2009, Theorem 1] except that P, the initial data, is an open
subset of H 1

rad(R
3) rather than H 3

rad(R
3).

Theorem 1.2. There exists an open subset P ⊂ H 1
rad(R

3) such that the following holds true. Let u0 ∈ P

and let u(t) denote the corresponding solution to (1-9) in the case d = 3. Then there exist a blow-up time
0< T <+∞ and parameters of scale λ(t) > 0, radial position r(t) > 0, and phase γ(t) ∈ R such that if
we take

ucore(t, r) :=
1

λ(t)1/2
Q
(r − r(t)

λ(t)

)
eiγ(t)

and the remainder ũ(t) := u(t)− ucore(t), then the following hold:

(1) The remainder converges in L2: ũ(t)→ u∗ in L2(R3) as t ↗ T .

(2) The position of the singular sphere converges: r(t)→ r0 > 0 as t ↗ T .

1We did not see in the Merle–Raphaël papers the threshold time T0(u0) or the blow-up time T (u0) estimated quantitatively
in terms of properties of the initial data (‖∇u0‖L2 , E(u0), etc.). If such dependence could be quantified, then the constant C in
Theorem 1.1 could be quantified.
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(3) The solution contracts toward the sphere at the log-log rate:

λ(t)
( log|log(T − t)|

T − t

)1/2
→

√
2π

‖Q‖L2
as t ↗ T .

(4) The solution remains H 1-small away from the singular sphere: For each R > 0,

‖u(t)‖H1
|r−r(T )|≥R(R

3) ≤ ε.

The 3D quintic NLS equation (1-9) is energy-critical, and the global well-posedness and scattering
problem is one of several critical regularity problems that has received a lot of attention in the last decade
[Bourgain 1999; Colliander et al. 2008; Kenig and Merle 2006]. The global well-posedness for small
data in Ḣ 1 is classical and follows from the Strichartz estimates. Our Theorem 1.2 takes a large, but
special “prefabricated” approximate blow-up solution, and installs it near radius r = 1 on top of a small
global H 1 background. The main difficulty, of course, is showing that the two different components —
the blow-up portion on the one hand, and the evolution of the small Ḣ 1 background on the other — have
limited interaction and can effectively evolve separately. Thus, it is not surprising that the techniques to
prove Theorem 1.1 are relevant to this analysis.

We now outline the method used to prove Theorem 1.1. We start with a given blow-up solution u(t)
in the Merle–Raphaël class, and by scaling and shifting this solution, it suffices to assume that the blow-
up point is x0 = 0 and the blow-up time is T = 1, and moreover, (1-6) holds over times 0 ≤ t < 1.
Since (1-1) is L2 critical, the size of the L2 norm is highly relevant. By mass conservation, we know
that ‖PN u(t)‖L2

x
. 1 for all N and all 0 ≤ t < 1, where PN denotes the Littlewood–Paley frequency

projection. However, (1-6) shows that for N� (1−t)−(1+δ)/2, we have ‖PN u(t)‖L2
x
.N−1(1−t)−(1+δ)/2,

which is a better estimate for these large frequencies N . In Section 3, we show that this smallness of
high frequencies reinforces itself and ultimately proves that for N � (1 − t)−(1+δ)/2, the solution is
H 1 bounded. This is achieved using dispersive estimates typically employed in local well-posedness
arguments — the Strichartz and Bourgain’s bilinear Strichartz estimates — after the equation has been
restricted to high frequencies. We note that this improvement of regularity at high frequencies is proved
globally in space.

For the Schrödinger equation, frequencies of size N propagate at speed N , and thus, travel a distance
O(1) over a time N−1. Therefore, at time t < 1, a component of the solution in the blow-up core at
frequency N will effectively only make it out of the blow-up core and into the external region before
the blow-up time, provided N & (1− t)−1. Thus, we expect that the blow-up action, which is taking
place at frequency ∼ (1− t)−1/2 log|log(1− t)| � (1− t)−1, will not be able to exit the blow-up core
before blow-up time. This is the philosophy behind the analysis in Section 4. Recall that in Section 3,
we have controlled the solution at frequencies above (1− t)−(1+δ)/2. In Section 4, we apply a spatial
localization to the external region, and then look to control the remaining low frequencies, i.e., those
frequencies below (1− t)−(1+δ)/2. We examine the equation solved by P≤(1−t)−3/4ψu(t), where ψ is a
spatial restriction to the external region. In estimating the inhomogeneous terms, we can make use of the
frequency restriction to exchange α-spatial derivatives for a time factor (1− t)−3α/4. This enables us to
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prove a low-frequency recurrence: The H s size of the solution in the external region is bounded by the
H s−1/8 size of the solution in a slightly larger external region. Iteration gives the H 1 boundedness.

The structure of the paper is as follows. Preliminaries on the Strichartz and bilinear Strichartz estimates
appear in Section 2. The proof of Theorem 1.1 is carried out in Sections Section 3 and 4. The proof of
Theorem 1.2 is carried out in Section 5.

2. Standard estimates

All of the estimates outlined in this section are now classical and well known. Let PN , P≤N , and P≥N

denote the Littlewood–Paley frequency projections.
We say that (q, p) is an admissible pair if 2≤ p ≤∞ and

2
q
+

d
p
=

d
2
,

excluding the case d = 2, q = 2, and p =∞.

Lemma 2.1 (Strichartz estimate). If (q, p) is an admissible pair, then

‖ei t1φ‖Lq
t L p

x
. ‖φ‖L2

x
.

Proof. See [Strichartz 1977] and [Keel and Tao 1998]. �

Lemma 2.2 (Bourgain bilinear Strichartz estimate). Suppose that N1� N2. Then

‖PN1ei t1φ1 PN2ei t1φ2‖L2
t L2

x
.
(N d−1

1

N2

)1/2
‖φ1‖L2

x
‖φ2‖L2

x
, (2-1)

‖PN1ei t1φ1 PN2ei t1φ2‖L2
t L2

x
.
(N d−1

1

N2

)1/2
‖φ1‖L2

x
‖φ2‖L2

x
. (2-2)

Proof. For the 2D estimate (2-1), see [Bourgain 1998, Lemma 111]; the 1D case appears in [Colliander
et al. 2001, Lemma 7.1]; another nice proof is given in [Koch and Tataru 2007, Proposition 3.5], the
other dimensions are analogous. We review the 1D proof to show that the second estimate (2-2) holds
as well.

Denote u = ei t1(PN1φ1) and v = e±i t1(PN2φ2). Then in the 1D case,

ûv(ξ, τ )=
∫
ξ1+ξ2=ξ

P̂N1φ1(ξ1)P̂N2φ2(ξ2)δ(τ − (ξ
2
1 ± ξ

2
2 )) dξ1 (2-3)

=
1

|g′ξ1
(ξ1, ξ2)|

P̂N1φ1 P̂N2φ2|(ξ1,ξ2), (2-4)

where g(ξ1, ξ2)= τ − (ξ
2
1 ± ξ

2
2 ), thus, |g′ξ1

| = 2|ξ1± ξ2|. To estimate the L2
ξ,τ norm of uv, we square the

expression above and integrate in τ and ξ . Changing variables (τ, ξ) to (ξ1, ξ2) with τ = ξ 2
1 ± ξ

2
2 and

ξ = ξ1+ ξ2, we obtain dτdξ = J dξ1dξ2 with the Jacobian J = 2|ξ1± ξ2|, which is of size N2 (note that
± does not matter here, since N2� N1). Bringing the square inside, we get

‖uv‖2L2
x
.
∫
|ξ1|∼N1,|ξ2|∼N2

|φ̂1(ξ1)|
2
|φ̂2(ξ2)|

2 dξ1 dξ2

|ξ1± ξ2|
. 1

N2
‖φ1‖

2
L2

x
‖φ2‖

2
L2

x
. �
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Now we introduce the Fourier restriction norms. For ũ ∈ S(R1+d),

‖ũ‖Xs,b =
∥∥〈Dt 〉

b
〈Dx 〉

se−i t1ũ( · , t)
∥∥

L2
t L2

x
=

(∫
ξ

∫
τ

|̂ũ(ξ, τ )|2〈ξ〉2s
〈τ + |ξ |2〉2b dξ dτ

)1/2
.

If I ⊂ R is an open subinterval and u ∈ D′(I ×Rd), define

‖u‖Xs,b(I ) = inf
ũ
‖ũ‖Xs,b ,

where the infimum is taken over all distributions ũ ∈ S′(R1+d) such that ũ|I = u.

Lemma 2.3. If θ is a function such that supp θ ⊂ I , then for all 0< b < 1,

‖θu‖Xs,b . (‖θ‖L∞ +‖D
max(1/2,b)
t θ‖L2)‖u‖Xs,b(I ). (2-5)

If 0≤ b < 1
2 and χI is the (sharp) characteristic function of the time interval I , then

‖χI u‖Xs,b ∼ ‖u‖Xs,b(I ). (2-6)

Proof. It suffices to take s = 0. The inequality (2-5) follows from the fractional Leibniz rule. To
address (2-6), we note that Jerison and Kenig [1995] prove that ‖χ(0,+∞) f ‖Hb

t
. ‖ f ‖Hb

t
for − 1

2 < b< 1
2 .

Consequently, ‖χI f ‖Hb
t
. ‖ f ‖Hb

t
for any time interval I . Let ũ be an extension of u (meaning ũ|I = u)

so that ‖ũ‖X0,b ≤ 2‖u‖X0,b(I ). Then

‖χI u‖X0,b = ‖〈Dt 〉
be−i t1χI ũ‖L2

t L2
x

=
∥∥‖χI e−i t1ũ‖Hb

t

∥∥
L2

x
.
∥∥‖e−i t1ũ‖Hb

t

∥∥
L2

x

= ‖ũ‖X0,b ≤ 2‖u‖X0,b(I ).

On the other hand, the inequality ‖u‖X0,b(I ) . ‖χI u‖X0,b is trivial, since χI u is an extension of u|I . �

Lemma 2.4. If i∂t u+1u = f on a time interval I = (a1, a2) with |I | = O(1), then

(1) For 1
2 < b ≤ 1, taking I ′ = (a1−ω, a2+ω), 0< ω ≤ 1, we have

‖u(t)− ei(t−a1)1u(a1)‖X0,b(I ) . ω
1/2−b
‖ f ‖X0,b−1(I ′). (2-7)

(2) For 0≤ b < 1
2 ,

‖u(t)− ei(t−a1)1u(a1)‖X0,b(I ) . ‖ f ‖L1
I L2

x
. (2-8)

Moreover, for all b,

‖ei(t−a1)1φ‖X0,b(I ) . ‖φ‖L2
x
.

Proof. Without loss, we take a1 = 0. First we consider (2-7). Since, for t ∈ I ,

e−i t1u( · , t)= u(0)− iθ(t)
∫ t

0
e−i t ′1θ(t ′) f ( · , t ′) dt ′,
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where θ is a cutoff function such that θ(t)= 1 on I and supp θ ⊂ I ′, the estimate reduces to the space-
independent estimate ∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥
Hb

t

. ‖h‖Hb−1
t

for 1
2 < b ≤ 1 (2-9)

by (2-5). Now we prove estimate (2-9). Divide h = P≤1h+ P≥1h and use that∫ t

0
P≥1h(t ′)= 1

2

∫
(sgn(t − t ′)+ sgn(t ′))P≥1h(t ′) dt ′

to obtain the decomposition

θ(t)
∫ t

0
h(t ′) dt ′ = H1(t)+ H2(t)+ H3(t),

where

H1(t)= θ(t)
∫ t

0
P≤1h(t ′) dt ′,

H2(t)= 1
2θ(t)[sgn ∗P≥1h](t) dt ′,

H3(t)= 1
2θ(t)

∫
+∞

−∞

sgn(t ′)P≥1h(t ′) dt ′.

We begin by addressing term H1. By Sobolev embedding (recall 1
2<b≤1) and the L p

→ L p boundedness
of the Hilbert transform for 1< p <∞,

‖H1‖Hb
t
. ‖H1‖L2

t
+‖∂t H1‖L2/(3−2b)

t
.

Using that |I | = O(1) and ‖P≤1h‖L∞t . ‖h‖Hb−1
t

, we thus conclude

‖H1‖Hb
t
.
(
‖θ‖L2

t
+‖θ‖L2/(3−2b)

t
+‖θ ′‖L2/3−2b

t

)
‖h‖Hb−1

t
.

Next we address the term H2. By the fractional Leibniz rule,

‖H2‖Hb
t
. ‖〈Dt 〉

bθ‖L2
t
‖sgn ∗P≥1h‖L∞t +‖θ‖L∞t ‖〈Dt 〉

b(sgn ∗P≥1h)‖L2
t
.

However,

‖sgn ∗P≥1h‖L∞t . ‖〈τ 〉
−1ĥ(τ )‖L1

τ
. ‖h‖Hb−1

t
.

On the other hand,

‖〈Dt 〉
b sgn ∗P≥1h‖L2

t
. ‖〈τ 〉b〈τ 〉−1ĥ(τ )‖L2

τ
. ‖h‖Hb−1

t
.

Consequently,

‖H2‖Hb
t
. (‖〈Dt 〉

bθ‖L2
t
+‖θ‖L∞t )‖h‖Hb−1

t
.

For term H3, we have

‖H3‖Hb
t
. ‖θ‖Hb

t

∥∥∥∫ +∞
−∞

sgn(t ′)P≥1h(t ′) dt ′
∥∥∥

L∞t
.
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However, the second term is handled via Parseval’s identity∫
t ′

sgn(t ′)P≥1h(t ′) dt ′ =
∫
|τ |≥1

τ−1ĥ(τ ) dτ,

from which the appropriate bounds follow again by Cauchy–Schwarz. Collecting our estimates for H1,
H2, and H3, we have ∥∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥∥
Hb

t

. Cθ‖h‖Hb−1
t
,

where
Cθ = ‖θ‖L2

t
+‖θ ′‖L2/(3−2b)

t
+‖〈Dt 〉

bθ‖L2
t
+‖θ‖L2/(3−2b)

t
+‖θ‖L∞t . ω

1/2−b.

This completes the proof of (2-7). Next, we prove (2-8). We have

e−i t1u( · , t)= u(0)− i
∫ t

0
e−i t ′1 f ( · , t ′) dt ′,

and thus, (2-8) reduces, by (2-6), to∥∥∥χI

∫ t

0
g(t ′) dt ′

∥∥∥
Hb

t

. ‖g‖L1
I
, for 0≤ b < 1

2 . (2-10)

To prove (2-10), note that

χI (t)
∫ t

0
g(t ′) dt ′ = χI (t)[χI ∗ (gχI )](t).

Hence,

‖χI

∫ t

0
g(t ′) dt ′‖Hb

t
. ‖〈D〉bχI‖L2

t
‖g‖L1

I
.

The Fourier transform of χI is smooth and decays like |τ |−1 as |τ | →∞, and hence, ‖〈D〉bχI‖L2
t
<∞

for 0≤ b < 1
2 . �

Lemma 2.5 (Strichartz estimate). If (q, r) is an admissible pair, then we have the embedding

‖u‖Lq
I L p

x
. ‖u‖X0,1/2+δ(I ).

Proof. We reproduce the well-known argument. Replace u by an extension to t ∈R such that ‖u‖X0,1/2+δ ≤

2‖u‖X0,1/2+δ(I ). Write

u(x, t)=
∫
ξ

∫
τ

ei tτ ei x ·ξ û(ξ, τ ) dτ dξ.

Change variables τ 7→ τ − |ξ |2 and apply Fubini to obtain

u(x, t)=
∫
τ

ei tτ
∫
ξ

e−i t |ξ |2ei x ·ξ û(ξ, τ − |ξ |2) dξ dτ.

Define fτ (x) by f̂τ (ξ)= û(ξ, τ − |ξ |2). Then the above reads

u(x, t)=
∫
τ

ei tτ ei t1 fτ (x) dτ,
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and hence,

|u(x, t)| ≤
∫
τ

|ei t1 fτ (x)| dτ.

Apply the Strichartz norm, the Minkowski integral inequality, appeal to Lemma 2.1, and invoke Plan-
cherel to obtain

‖u‖Lq
I L p

x
.
∫
τ

‖ f̂τ (ξ)‖L2
ξ

dτ.

The argument is completed using Cauchy–Schwarz in τ (note that we need b> 1
2 , since

∫
R
〈τ 〉−2b dτ has

to be finite). �

Lemma 2.6 (Bourgain bilinear Strichartz estimate). Let N1� N2. Then

‖PN1u1 PN2u2‖L2
I L2

x
.
(N d−1

1

N2

)1/2
‖u1‖X0,1/2+δ(I )‖u2‖X0,1/2+δ(I ),

‖PN1u1 PN2u2‖L2
I L2

x
.
(N d−1

1

N2

)1/2
‖u1‖X0,1/2+δ(I )‖u2‖X0,1/2+δ(I ).

Proof. We reproduce the well-known argument. As in the proof of Lemma 2.5, taking f j,τ (x) defined
by f̂ j,τ (ξ)= û1(ξ, τ − |ξ |

2), we have

u j (x, t)=
∫
τ

ei tτ ei t1 f j,τ (x) dτ.

Plug these into the expression ‖PN1u1 PN2u2‖L2
t L2

x
, and then estimate using Lemma 2.2. �

We need to take b = 1
2 − δ in some places. In those situations, we use this:

Lemma 2.7 (interpolated Strichartz). Take d = 1 or d = 2 and suppose that 0 ≤ b < 1
2 and 2 ≤ p ≤∞

and 2< q ≤∞ satisfy

2
q
+

d
p
>

d
2
+ (1− 2b), (2-11)

2
q
−

1
p
≤

1
2

in the case d = 1 only (2-12)

(see Figure 1). Then

‖u‖Lq
I L p

x
. ‖u‖X0,b(I ). (2-13)

with implicit constant dependent upon the size of the gap from equality in (2-11).

Proof. Let

α :=
1
2

(2
q
+

d
p
−

d
2
− (1− 2b)

)
> 0. (2-14)

Using 0≤ θ ≤ 1 as an interpolation parameter, we aim to deduce (2-13) by interpolation between

‖u‖L q̃
t L p̃

x
. ‖u‖X0,b/(2(b−α)), (2-15)
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Figure 1. The enclosed triangular region gives the values of (1/q, 1/p) meeting the
hypotheses of Lemma 2.7. The top frame is the case d = 1 and the bottom frame is the
case d = 2. The proof of Lemma 2.7 involves interpolating between a point on the line
2/q + d/p = d/2 and the point (1/2, 1/2).
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with weight θ , for some Strichartz admissible pair (q̃, p̃), and the trivial estimate (equality, in fact)

‖u‖L2
t L2

x
. ‖u‖X0,0, (2-16)

with weight 1− θ . The interpolation conditions read

1
q
=
θ

q̃
+

1−θ
2

and 1
p
=
θ

p̃
+

1−θ
2
. (2-17)

Multiplying the first of these relations by 2 and adding d times the second, and using the Strichartz
admissibility condition for (q̃, p̃), we obtain

2
q
+

d
p
=

d
2
+ (1− θ).

Combining this relation with (2-14), we get θ = 2b−2α. We can then solve for q̃ and p̃ using (2-17). �

Lemma 2.8 (interpolated bilinear Strichartz). Let d = 1 or d = 2 and N1� N2. Then

‖PN1u1 PN2u2‖L2
I L2

x
.

N (d−1)/2
1

N 1/2−δ′
2

‖u1‖X0,1/2−δ(I )‖u2‖X0,1/2−δ(I ).

Proof. First, observe that
‖PN1u1 PN2u2‖L2

I L2
x
. ‖u1‖L4

I L4
x
‖u2‖L4

I L4
x
. (2-18)

In the case d = 1, L4
I L4

x interpolates between L6
I L6

x and L2
I L2

x , and thus ‖u j‖L4
I L4

x
. ‖u j‖X0,3/8+δ(I ) by

Lemma 2.7. We conclude that

‖PN1u1 PN2u2‖L2
I L2

x
. ‖u1‖X0,3/8+δ(I )‖u2‖X0,3/8+δ(I ).

Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 1.
In the case d = 2, we still begin with (2-18). Fix ε > 0 small. By Sobolev embedding,

‖PN j u j‖L4
I L4

x
. N ε

j ‖PN j u j‖L4
I L4/(1+2ε)

x
.

By Lemma 2.7, we have
‖PN j u j‖L4

I L4/(1+2ε)
x

. ‖u j‖X0,b

for any b > 1
2(1− ε). Plugging into (2-18), we obtain

‖PN1u1 PN2u2‖L2
I L2

x
. N 2ε

2 ‖u1‖X0,b‖u2‖X0,b for any b > 1
2(1− ε).

Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 2. �

Remark 2.9. After this section we will adopt new notation: Instead of Xs,1/2+δ we will simply write
Xs,1/2+. If an expression has two different Bourgain spaces, it will mean that the delta’s will be different.
Similarly, if an expression involves δ in the estimate on the right side, it will mean that this δ will be
different from the one that would be chosen for spaces such as Xs,1/2+ or L p−.

The following is a simple consequence of the pseudodifferential calculus; see [Stein 1993, Theorem1
on page 234 and Theorem 2 on page 237]; see also [Evans and Zworski 2003].
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Lemma 2.10. Suppose that φ is a smooth function on R such that ‖∂αx φ‖L∞ ≤ cα for all α ≥ 0. Then

‖P≥N (φg)−φP≥N g‖L2 . N−1
‖g‖L2 for N ≥ 1.

Proof. Let χ(ξ) be a smooth function that is 1 for |ξ | ≥ 1 and is 0 for |ξ | ≤ 1
2 . P≥N is a pseudodifferential

operator with symbol χ(N−1ξ) and Mφ , the operator of multiplication by φ, is a pseudodifferential
operator with symbol φ(x). The commutator [PN ,Mφ] has symbol with top-order asymptotic term
N−1χ ′(N−1ξ)φ′(x). The result then follows from the L2

→ L2 boundedness of 0-order operators. �

3. Additional high-frequency regularity

In this section, we begin the proof of Theorem 1.1 by showing improved regularity at high frequencies,
above the blow-up scale, with no restriction in space — this appears as Proposition 3.4 below. In Section 4
below, we will complete the proof of Theorem 1.1 by appealing to a finite-speed of propagation argument
for lower frequencies after we have restricted in space to outside the blow-up core.

Consider a solution u(t) to (1-1) in the Merle–Raphaël class (1-5); let T0 > 0 be the threshold time,
T > T0 the blow-up time and x0 the blow-up point, as described in the introduction. Our analysis
focuses on the time interval [T0, T ) on which the log-log asymptotics (1-6) kick in. Apply a space-time
(rescaling) shift, in which x = x0 is sent to x = 0 and the time interval [T0, T ) is sent to [0, 1), to obtain
a transformed solution that we henceforth still denote by u(t). Now the blow-up time is T = 1, the
blow-up point is x = 0, and (1-6) becomes2

‖∇u(t)‖L2
x
∼

( log|log(1− t)|
1− t

)1/2
, (3-1)

which is now valid for all 0 ≤ t < 1. Note that now, however, the time t = 0 “initial data”, which we
henceforth denote u0, does not correspond to the original initial data u0 in Theorem 1.1. We remark that
the estimate (1-8) on the remainder ũ(t) becomes

‖∇ũ(t)‖L2
x
. 1
(1−t)1/2|log(1−t)|

. (3-2)

In our analysis, the norm L∞I L2
x for an interval I = [0, T ′], T ′ < T , will be replaced by the norm

X0,1/2+(I ). While we have, from Lemma 2.5, the bound

‖u‖L∞I L2
x
. ‖u‖X0,1/2+(I ),

the reverse bound does not in general hold. Nevertheless, (3-1) indicates that the solution is blowing
up close to the scale rate (1− t)−1/2. Thus, the local theory combined with (3-1) implies a bound on
‖u‖X1,1/2+(I ), where log|log(1− T ′)| is weakened to (1− T ′)−δ.

2 The rescaling is the following. If we take u(x, t) in the original frame (for T0 ≤ t < T ), and let

u(x, t)= µd/2v(µ(x − x0), µ
2(t − T0))

with µ = (T − T0)
−1/2, then v(y, s) is defined in the modified frame (for 0 ≤ s < 1). Moreover, we have ‖∇v(s)‖L2

x
∼

(log|logµ−2(1− s)|)1/2(1− s)−1/2, so now the implicit constant of comparability in (3-1) depends on T − T0.
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Lemma 3.1. For I = [0, T ′] with T ′ < T , for 0< s ≤ 1, we have

‖u‖Xs, 1
2+
(I ) ≤ cs(1− T ′)−s(1+δ)/2, with cs ↗+∞ as s↘ 0.

The fact that cs diverges as s ↘ 0 results from the fact that (1-1) is L2-critical, and thus, the local
theory estimates break down at s = 0. At the technical level, some slack is needed in applying the
Strichartz and bilinear Strichartz estimates; hence, we need to take b= 1/2− δ in place of b= 1/2+ δ′.

Proof. We just carry out the argument for s= 1. Let λ(t)=‖∇u(t)‖−1
L2 . Let sk be the increasing sequence

of times3 such that λ(sk)= 2−k , so that ‖∇u(t)‖L2 doubles over [sk, sk+1]. From (3-1), we compute that
sk = 1− 2−2k log k. Note that sk+1− sk ≈ 2−2k log k. Hence, we can rescale the cutoff solution u(t) on
the time interval [sk, sk+1] to a solution u′ on the time interval [0, log k] so that ‖u′‖L∞

[0,log k]H
1
x
∼ 1. We

invoke the local theory over ∼ log k time intervals J each of unit size to obtain ‖u′‖X1,1/2+(J ) ∼ 1, which
are square summed to obtain ‖u′‖X1,1/2+(0,log k)∼ (log k)1/2. Returning to the original frame of reference,
we conclude that

‖u‖X1,1/2+(sk ,sk+1) . 2k(1+δ),

where a δ-loss is incurred in part from the (log k)1/2 factor but also from the b = 1
2 + δ weight in the X

norm. Thus,

‖u‖X1,1/2+(0,sK ) =

(K−1∑
k=1

22k(1+δ)
)1/2
∼ 2K (1+δ). �

Now suppose that u(t) satisfies (3-1). Let tk = 1− 2−k and Ik = [0, tk]. Then from (3-1) and mass
conservation, we have

‖P≥N u(t)‖L∞Ik L2
x
.

{
2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2,

1 for N ≤ 2k(1+δ)/2.
(3-3)

To refine (3-3), we will work with local-theory estimates and thus use the analogous bound on the
Bourgain norm X0,1/2+(Ik). From Lemma 3.1 we obtain

‖P≥N u‖X0,1/2+(Ik) . N−s
‖P≥N u‖Xs,1/2+(Ik) ≤ cs N−s2ks(1+δ)/2. (3-4)

We obtain from (3-4) that

‖P≥N u‖X0,1/2+(Ik) .

{
2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2,

2kδ′ for N ≤ 2k(1+δ)/2.
(3-5)

The next step is to run local-theory estimates to improve (3-5) at high frequencies. Frequencies
N . 2k

∼ (1− tk)−1 on Ik effectively do not make it out of the blow-up core before blow-up time due
to the finite speed of propagation for such frequencies.4 Hence, these low frequencies can be controlled
by spatial location, which we address in Section 4. On the other hand, (3-5) shows that the solution at

3One of the conclusions of the Merle–Raphaël analysis is the almost monotonicity of the scale parameter λ(t)=‖∇u(t)‖−1
L2 :

λ(t2) < 2λ(t1) for all t2 ≥ t1.
4Recall that for the Schrödinger equation, frequencies of size N propagate at speed N and thus travel a distance O(1) in

time N−1.
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frequencies N & 2k(1+δ)/2 is small. Thus, for these high frequencies, dispersive estimates might be able,
upon iteration, to show that the solution is even smaller at these high frequencies.

To chose an intermediate dividing point between the high frequencies that are capable of exiting the
blow-up core before blow-up time (N & 2k) and the frequency scale at which the blow-up is taking place
(N ∼ 2k/2(log k)1/2), we consider frequencies ≥ 23k/4 to be high frequencies and frequencies ≤ 23k/4

to be low frequencies. The goal of this section is Proposition 3.4 below, which shows that the high
frequencies are bounded in H 1. In Section 4 below, we will localize in space to the external region and
then control the low frequencies.

We first address the dimension d = 1 case.

Lemma 3.2 (high frequency recurrence in one dimension). Take d = 1. Let tk = 1−2−k and Ik = [0, tk].
Let u(t) be a solution such that (3-1) holds, and define

α(k, N )= ‖P≥N u‖X0,1/2+(Ik). (3-6)

Then there exists an absolute constant 0< µ� 1 such that for N ≥ 2k(1+δ)/2,

‖P≥N (u− ei t∂2
x u0)‖X0,1/2+(Ik) . 2k(1+δ)/2 N−1+δα(k+ 1, µN )+ 2kδα(k+ 1, µN )2. (3-7)

In particular, by Lemma 2.4,

α(k, N ). ‖P≥N u0‖L2
x
+ 2k(1+δ)/2 N−1+δα(k+ 1, µN )+ 2kδα(k+ 1, µN )2. (3-8)

Proof. By (2-7) of Lemma 2.4 with ω = 2−k−1 and I = Ik ,

‖P≥N (u− ei t∂2
x u0)‖X0,1/2+(Ik) . 2kδ

‖P≥N (|u|4u)‖X0,−1/2+(Ik+1).

In the rest of the proof, we estimate the right side of the estimate above, and we will just write Ik instead
of Ik+1 for convenience. By duality,

‖P≥N (|u|4u)‖X0,−1/2+(Ik) = sup
‖w‖X0,1/2−(Ik )=1

∫
Ik

∫
x∈R

P≥N (|u|4u) w dx dt.

Fix w with ‖w‖X0,1/2−(Ik) = 1 and let

J :=
∫

Ik

∫
x∈R

P≥N (|u|4u) w dx dt.

Then J can be decomposed into a finite sum of terms Jα, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

Jα :=
∫ tk

0

∫
x∈R

P≥N (u1u2u3u4u5) w dx dt

such that each term (after a relabeling of the u j for 1≤ j ≤ 5) falls into exactly one of the following two
categories.5

5Indeed, decompose each u j as u j = u j,lo + u j,med + u j,hi, where u j,lo = P≤N/160u j , u j,med = PN/160≤ ·≤N/20, and
u j,hi = P≥N/20u j . Then in the expansion of u1u2u3u4u5, at least one term must be “hi”; without loss take this to be u5.
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Note that w is frequency supported in |ξ |& N .

Case 1 (exactly one high). Each u j for 1≤ j ≤ 4 is frequency supported in |ξ | ≤µN and u5 is frequency
supported in |ξ | ≥ 8µN . In this case, we estimate as

|Jα| ≤ ‖u1‖L∞Ik L∞x ‖u2‖L∞Ik L∞x ‖u3u5‖L2
Ik

L2
x
‖u4w‖L2

Ik
L2

x
. (3-9)

For j = 1, 2, Gagliardo–Nirenberg and (3-1) implies

‖u j‖L∞Ik L∞x . ‖u j‖
1/2
L∞Ik L2

x
‖∂x u j‖

1/2
L∞Ik L2

x
. 2k(1+δ)/4. (3-10)

The bilinear Strichartz estimate (Lemma 2.6) yields

‖u3u5‖L2
Ik

L2
x
. N−1/2

‖u3‖X0,1/2+(Ik)‖u5‖X0,1/2+(Ik) . N−1/22kδα(k, µN ). (3-11)

The interpolated bilinear Strichartz estimate (Lemma 2.8) yields

‖u4w‖L2
Ik

L2
x
. N−1/2+δ

‖u4‖X0,1/2+(Ik)‖w‖X0,1/2−(Ik) . N−1/2+δ2kδ. (3-12)

Substituting (3-10), (3-11), and (3-12) into (3-9), we obtain

|Jα|. 2k(1+δ)/2 N−1+δα(k, µN ).

Case 2 (at least two high). Both u4 and u5 are frequency supported in |ξ | ≥ µN (no restrictions on u j

for 1≤ j ≤ 3). Then we estimate as

|Jα| ≤ ‖u1‖L6
Ik

L6+δ
x
‖u2‖L6

Ik
L6

x
‖u3‖L6

Ik
L6

x
‖u4‖L6

Ik
L6

x
‖u5‖L6

Ik
L6

x
‖w‖L6

Ik
L6−δ′

x
. (3-13)

For 2≤ j ≤ 3 we invoke the Strichartz estimate (Lemma 2.5) and (3-5) to obtain

‖u j‖L6
Ik

L6
x
. ‖u j‖X0,1/2+(Ik) ≤ 2kδ. (3-14)

For 4≤ j ≤ 5 we invoke the Strichartz estimate (Lemma 2.5) and (3-6) to obtain

‖u j‖L6
Ik

L6
x
. ‖u j‖X0,1/2+ ≤ α(k, µN ). (3-15)

For j = 1, by Sobolev embedding, the Strichartz estimate (Lemma 2.5), and (3-5),

‖u1‖L6
Ik

L6+
x
. ‖Dδ

x u1‖L6
Ik

L6
x
. ‖u1‖Xδ,1/2+(Ik) . 2kδ. (3-16)

By the interpolated Strichartz estimate (Lemma 2.7), we have

‖w‖L6
t L6−

x
. ‖w‖X0,1/2−(Ik) = 1. (3-17)

Using (3-14)–(3-17) in (3-13),
|Jα|. 2kδα(k, µN )2. �

In the 2D case, we will just go ahead and assume that N ≥ 23k/4 to reduce confusion with deltas.

Case 1 corresponds to u1,lou2,lou3,lou4,lou5,hi and Case 2 corresponds to everything else (at least one u j for 1 ≤ j ≤ 4 must
be “med” or “hi”. Hence, we can take µ= 1/160.
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Lemma 3.3 (high frequency recurrence, 2D). Take d = 2. Let tk = 1− 2−k and Ik = [0, tk]. Let u(t) be
a solution such that (3-1) holds and define

α(k, N ) := ‖P≥N u‖X0,1/2+(Ik). (3-18)

Then there exists an absolute constant 0< µ� 1 such that for N & 23k/4,

‖P≥N (u− ei t1u0)‖X0,1/2+(Ik) . 2kδN−1/6+δα(k+ 1, µN ). (3-19)

In particular, by Lemma 2.4,

α(k, N ). ‖P≥N u‖L2
x
+ 2kδN−1/6+δα(k+ 1, µN ). (3-20)

Proof. By Lemma 2.4 (2-7) with I = Ik and ω = 2−k−1,

‖P≥N (u− ei t1u0)‖X0,1/2+(Ik) . 2kδ
‖P≥N (|u|2u)‖X0,−1/2+(Ik+1).

In the remainder of the proof, we estimate the right side, and for convenience take Ik+1 to be Ik . By
duality,

‖P≥N (|u|2u)‖X0,−1/2+(Ik) = sup
‖w‖X0,1/2−(Ik )=1

∫
Ik

∫
x∈R

P≥N (|u|2u) w dx dt.

Fix w with ‖w‖X0,1/2−(Ik) = 1 and let

J :=
∫

Ik

∫
x∈R

P≥N (|u|2u) w dx dt.

Then J can be decomposed into a finite sum of terms Jα, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

Jα :=
∫ tk

0

∫
x∈R

P≥N (u1u2u3) w dx dt

such that each term (after a relabeling of the u j for 1≤ j ≤ 3) falls into exactly one of the following two
categories.6 Note that w is frequency supported in |ξ |& N .

Case 1′ (exactly one high). Both u1 and u2 are frequency supported in |ξ | ≤ N 5/6 and u3 is frequency
supported in |ξ | ≥ N/12. In this case, we estimate as

|Jα|. ‖u1w‖L2
Ik

L2
x
‖u2u3‖L2

Ik
L2

x
.

By the interpolated bilinear Strichartz estimate (Lemma 2.8),

‖u1w‖L2
Ik

L2
x
. (N 5/6)1/2 N−1/2+δ

‖u1‖X0,1/2−(Ik)‖w‖X0,1/2−(Ik) . N−1/12+δ2kδ,

6Indeed, decompose u j =u j,lo+u j,med+u j,hi, where u j,lo= P
≤N 5/6 u j , u j,med= PN 5/6≤ ·≤N/12, and u j,hi= P≥N/12u j .

Then at least one term must be “hi”; take it to be u3. Case 1′ corresponds to u1,lou2,lou3,hi and Case 2′ corresponds to all other
possibilities. Hence, we can take µ= 1/12.
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and by Lemma 2.6 directly,

‖u2u3‖L2
Ik

L2
x
. (N 5/6)1/2 N−1/2+δ

‖u2‖X0,1/2+(Ik)‖u3‖X0,1/2+(Ik) . N−1/12+δ2kδα(k, µN ).

Combining yields
|Jα|. N−1/6+δ2kδα(k, µN ).

Case 2′ (at least two high). Here we suppose that u2 is frequency supported in |ξ | ≥ N 5/6 and u3 is
frequency supported in |ξ | ≥ µN ; we make no assumptions about u1. Then we estimate as

|Jα|. ‖u1‖L4
Ik

L4+δ
x
‖u2‖L4

Ik
L4

x
‖u3‖L4

Ik
L4

x
‖w‖L4

Ik
L4−δ

x
.

For u1, we use Sobolev embedding and (3-5) to obtain

‖u1‖L4
Ik

L4+δ
x
. ‖Dδ

x u1‖L4
Ik

L4
x
. ‖u1‖X

δ, 1
2+
(Ik) . 2kδ.

Since N & 23k/4, we have N 5/6 & 25k/8
� 2k(1+δ)/2, and thus by Lemma 2.5 and (3-5),

‖u2‖L4
Ik

L4
x
. 2k(1+δ)/2 N−5/6 . (2k(1+δ)N−2/3)N−1/6

. 2kαN−1/6, since N & 23k/4.

For u3, we use Lemma 2.5 and (3-18) to obtain

‖u3‖L4
Ik

L4
x
. α(k, µN ).

Combining, we obtain (changing deltas)

|Jα|. 2kδN−1/6α(k, µN ). �

The main result of this section is the following. It states that high frequencies (those strictly above
23k/4) are H 1 bounded on Ik . Moreover, if we subtract the linear flow, we obtain H 4/3−δ boundedness
for frequencies above 23k/4 in the case d = 1 and H 7/6−δ boundedness for frequencies above 23k/4 in the
case d = 2.7

Proposition 3.4. Let tk = 1− 2−k , Ik = [0, tk], and let u(t) be a solution to (1-1) such that (3-1) holds.
Then we have

‖P≥23k/4u(t)‖L∞Ik H1
x
. ‖P≥23k/4u(t)‖X1,1/2+(Ik) . 1.

Moreover, we have the following regularity above H 1 after the linear flow of the initial data is removed:
For any 0≤ s ≤ 4

3 − δ in the case d = 1 and for any 0≤ s ≤ 7
6 − δ in the case d = 2, we have

‖P≥23k/4(u(t)− ei t1u0)‖L∞Ik H s
x
. ‖P≥23k/4(u(t)− ei t1u0)‖Xs,1/2+δ(Ik) . 1. (3-21)

7 In fact, the threshold ≥ 23k/4, to obtain H1 boundedness (but not (3-21)), can be replaced by 2k(1+δ)/2 for any δ > 0; in
the d = 1 case, one can appeal to Lemma 3.2 with a strictly smaller choice of δ in order to obtain a nontrivial gain upon each
application of Lemma 3.2. The number of applications of Lemma 3.2 is still finite number but δ-dependent. In the 2D case,
Lemma 3.3 would first need to be rewritten. We have stated the proposition with threshold ≥ 23k/4 because this is all that is
needed in Section 4, and it allows us to avoid confusion with multiple small parameters.
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Proof. We carry out the d = 1 case in full, which is a consequence of Lemma 3.2. The d = 2 case follows
from Lemma 3.3 in a similar way.

By (3-5), we start with the knowledge that α(k, N ). 2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2. Note

‖P≥N u0‖L2
x
. N−1

‖∇u0‖L2
x
. N−1.

By (3-8) in Lemma 3.2,

α(k, N ). N−1
+ 2k(1+δ)/2 N−1+δα(k+ 1, µN ). (3-22)

Application of (3-22) m times gives

α(k, N ). N−1
(m−1∑

j=0

(2k(1+δ)/2 N−1+δ) j
)
+ (2k(1+δ)/2 N−1+δ)mα(k+m, µm N ).

Since N ≥ 23k/4, we have 2k/2 N−1 . N−1/3. Taking m = 7 we obtain α(k, N ). N−1. Substituting this
into (3-7) of Lemma 3.2, we obtain

‖P≥N (u(t)− ei t∂2
x u0)‖X0,1/2+(Ik) . 2k(1+δ)/2 N−2+δ . N−4/3+δ. �

4. Finite speed of propagation

Recall that the main result of the last section was Proposition 3.4, which showed that the solution at
frequencies ≥ 23k/4 is H 1 bounded on Ik . This was achieved without applying any restriction in space.
In this section, we apply a spatial restriction to |x | ≥ R (outside the blow-up core), and study the low
frequencies ≤ 23k/4 on Ik . Since frequencies of size N propagate at speed N , and thus travel a distance
O(1) over a time N−1, we expect that frequencies of size . 2k involved in the blow-up dynamics will
be incapable of exiting the blow-up core |x | ≤ R before blow-up time.

Since Ik = [0, tk] and tk = 1− 2−k , restricting to frequencies ≤ 23k/4 on Ik for each k is effectively
equivalent to inserting a time-dependent spatial frequency projection P≤(1−t)−3/4 . The main technical
Lemma 4.3 below shows that, for 0 < r1 < r2 <∞, the H s size of the solution in the external region
|x | ≥ r2 is bounded by the H s−1/8 size of the solution in the slightly larger external region |x | ≥ r1.
This lemma is proved by studying the equation solved by P≤(1−t)−3/4ψu, where ψ is a spatial cutoff.
In estimating the inhomogeneous terms of this equation, we use that the presence of the P≤(1−t)−3/4

projection enables an exchange of α spatial derivatives for a factor of (1− t)−3α/4. This is the manner in
which finite speed of propagation is implemented. Lemma 4.3 is the main recurrence device for proving
Proposition 4.4, giving the H 1 boundedness of the solution in the external region, completing the proof
of Theorem 1.1.

Before getting to Lemma 4.3, we begin by using the method of Raphaël [2006], based on the use of
local smoothing and (3-2), to achieve a small gain of regularity.8

8In the d = 1 case, we obtain a gain of 2/5 derivatives in this first step, but in fact the proof could be rewritten to achieve a
gain of s < 1/2 derivatives. The reason s = 1/2 derivatives cannot be achieved in one step is the failure of the H1/2 ↪→ L∞

embedding needed to estimate the nonlinear term. One could achieve 1/2 derivatives by running the same argument twice, but
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Lemma 4.1 (a little regularity, d = 1 case). Suppose d = 1. Suppose that u(t) solving (1-1) with H 1

initial data satisfies (3-1). Fix R > 0. Then

‖〈Dx 〉
2/5ψRu‖L∞

[0,1)L
2
x
. 1,

where ψR(x) = ψ(x/R) and ψ(x) is a smooth cutoff with ψ(x) = 1 for |x | ≥ 1/2 and ψ(x) = 0 for
|x | ≤ 1/4.

Proof. Let w = ψRu and q = ψR/2u. Then w solves the equation

i∂tw+ ∂
2
xw =−|q|

4w+ 2∂x(ψ
′

R u)−ψ ′′R u= F1+ F2+ F3.

Apply 〈Dx 〉
2/5, and estimate with I = [T1, 1) using the (dual) local smoothing estimate for the F2 term:

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+‖〈Dx 〉

2/5 F1‖L1
I L2

x

+‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
+‖〈Dx 〉

2/5 F3‖L1
I L2

x
.

We begin by estimating term F1. By the fractional Leibniz rule,

‖D2/5
x F1‖L1

I L2
x
. ‖|q|4‖L1

I L∞x
‖D2/5

x w‖L∞I L2
x
+‖D2/5

x |q|
4
‖L1

I L5/2
x
‖w‖L∞I L10

x
.

.
(
‖|q|4‖L1

I L∞x
+‖D2/5

x |q|
4
‖L1

I L5/2
x

)
‖D2/5

x w‖L∞I L2
x
.

By Sobolev/Gagliardo–Nirenberg embedding and (3-2),

‖|q|4‖L∞x +‖D
2/5
x |q|

4
‖L5/2

x
. ‖q‖2L2

x
‖∂xq‖2L2

x
. (1− t)−1(log(1− t)−1)−2.

Applying the L1
I time norm, we obtain a bound by (log(1− T1)

−1)−1. Hence,

‖〈Dx 〉
2/5 F1‖L1

I L2
x
. (log(1− T1)

−1)−1
‖〈Dx 〉

2/5w‖L∞I L2
x
.

Next, we address term F2. We have

‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
. ‖〈Dx 〉

9/10q‖L2
I L2

x
. ‖q‖1/10

L∞I L2
x
‖‖〈∂x 〉q‖

9/10
L2

x
‖L2

I
.

From (3-2), we have ‖∂xq‖L2
x
. (T − t)−1/2

|log(1− t)|−1 and hence

‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
. (1− T1)

1/10.

Term F3 is comparatively straightforward. Indeed, we obtain

‖〈Dx 〉
2/5 F3‖L1

I L2
x
. ‖u‖3/5L∞I L2

x
‖‖〈∂x 〉ψ2u‖2/5L2

x
‖L1

I
. (1− T1)

4/5.

Collecting the estimates above, we obtain

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+ (log(1− T1)

−1)−1
‖〈Dx 〉

2/5w‖L∞I L2
x
+ (1− T1)

1/10.

this is unnecessary since we only need a small gain of s > 0 to complete the proof of our main new Lemma 4.3/Proposition 4.4
below, which enables us to reach the full s = 1 gain. One cannot achieve a gain of s > 1/2 by the method employed in the proof
of Lemma 4.1 alone due to the term ∂x (ψ

′
R u).
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By taking T1 sufficiently close to 1 so that (log(1− T1)
−1)−1 beats out the (absolute) implicit constants

furnished by the estimates, we obtain

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+ (1− T1)

1/10. �

Lemma 4.2 (a little regularity, d = 2 case). Suppose d = 2. Suppose that u(t) solving (1-1) with H 1

initial data satisfies (3-1). Fix R > 0. Then

‖〈Dx 〉
1/2ψRu‖L∞

[0,1)L
2
x
. 1,

where ψR(x)=ψ(x/R) and ψ(x) is a smooth cutoff with ψ(x)= 1 for |x | ≥ 1
2 and ψ(x)= 0 for |x | ≤ 1

4 .

Proof. Let w = ψRu and q = ψR/2u, and take ψ̃ =∇xψR and ˜̃ψ =1xψR . Then w solves the equation

i∂tw+1w =−|q|2w+ 2∇x · (ψ̃ u)− ˜̃ψ u = F1+ F2+ F3.

Apply 〈Dx 〉
1/2, and estimate with I = [T1, 1) using the (dual) local smoothing estimate for the term F2:

‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x

. ‖〈Dx 〉
1/2w0‖L2

x
+‖〈Dx 〉

1/2 F1‖L4/3
I L4/3

x
+‖F2‖L2

I L2
x
+‖〈Dx 〉

1/2 F3‖L1
I L2

x
.

Before we begin treating term F1, let us note that by (3-2), ‖∇q‖L2
x
. (1− t)−1/2(log(1− t)−1)−1 and

hence ‖∇q‖L2
I L2

x
. (log(1−T1)

−1)−1/2. By the fractional Leibniz rule and Sobolev/Gagliardo–Nirenberg
embedding,

‖D1/2
x |q|

2
‖L2

x
. ‖D1/2

x q‖L4
x
‖q‖L4

x
. ‖q‖1/2L2

x
‖∇q‖3/2L2

x
.

Hence,
‖D1/2

x |q|
2
‖L4/3

I L2
x
. ‖q‖1/2L∞I L2

x
‖∇q‖3/2

L2
I L2

x
. (log(1− T1)

−1)−3/4. (4-1)

Also, we have
‖q‖L4

x
. ‖D1/2

x q‖L2
x
. ‖q‖1/2L2

x
‖∇q‖1/2L2

x
,

and hence
‖q‖2L4

I L4
x
. ‖q‖L∞I L2

x
‖∇q‖L2

I L2
x
. (log(1− T1)

−1)−1/2. (4-2)

Now we proceed with the estimates for term F1. By the fractional Leibniz rule (in x),

‖〈Dx 〉
1/2 F1‖L4/3

I L4/3
x
. ‖〈Dx 〉

1/2
|q|2‖L4/3

I L2
x
‖w‖L∞I L4

x
+‖|q|2‖L2

I L2
x
‖〈Dx 〉

1/2w‖L4
I L4

x
.

By (4-1) and (4-2), we obtain

‖〈Dx 〉
1/2 F1‖L4/3

I L4/3
x
. (log(1− T1)

−1)−1/2(‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x
).

Next, we treat the F2 term. Again since ‖∇q‖L2
x
. (1− t)−1/2(log(1− t)−1)−1,

‖F2‖L2
I L2

x
. (log(1− T1)

−1)−1.

The F3 term is comparatively straightforward.
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Collecting the estimates above, we have

‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x

. ‖〈Dx 〉
1/2w(T1)‖L2

x
+ (log(1− T1)

−1)−1

+ (log(1− T1)
−1)−1/2(‖〈Dx 〉

1/2w‖L∞I L2
x
+‖〈Dx 〉

1/2w‖L4
I L4

x
).

By taking T1 sufficiently close to 1, we obtain

‖〈Dx 〉
1/2w‖L∞I L2

x
. ‖〈Dx 〉

1/2w(T1)‖L2
x
+ (log(1− T1)

−1)−1. �

Lemma 4.3 (low frequency recurrence). Let d = 1 or d = 2, 0< R ≤ r1 < r2 and 1
8 ≤ s ≤ 1. Let ψ1(x)

and ψ2(x) be smooth radial cutoff functions such that

ψ1(x)=
{

0 on |x | ≤ r1,

1 on |x | ≥ 1
2(r1+ r2)

and ψ2(x)=
{

0 on |x | ≤ 1
2(r1+ r2),

1 on |x | ≥ r2.

Then
‖Ds

xψ2u‖L∞
[0,1)L

2
x
. 1+‖〈Dx 〉

s−1/8ψ1u‖L∞
[0,1)L

2
x
.

Proof. Let χ(ρ) be a smooth function such that χ(ρ) = 1 for |ρ| ≤ 1 for χ(ρ) = 0 for |ρ| ≥ 2. Let
P− = P≤(T−t)−3/4 be the time-dependent multiplier operator defined by P̂ f (ξ) = χ((T − t)3/4|ξ |) f̂ (ξ)
(where the Fourier transform is in space only). Note that the Fourier support of P at time tk = 1− 2−k

is . 23k/4. We further have that

∂t P− f = 3
4 i(1− t)−1/4 Q Dx f + P∂t f,

where Q = Q(1−t)−3/4 is the time-dependent multiplier

Q̂ f (ξ)= χ ′((1− t)3/4|ξ |) f̂ (ξ).

Note that the Fourier support of Q at time tk = 1− 2−k is ∼ 23k/4. Note also that if g = g(x) is any
function, then

‖P Dα
x g‖L2

x
≤ (1− t)−3α/4

‖g‖L2
x
. (4-3)

Let w = P−ψ2u. Taking ψ̃2 =∇xψ2 and ˜̃ψ2 =1xψ2, we have

i∂tw+1w =−i(1− t)−1/4 Q · ∇x w− P−ψ2|u|4/du+ 2P−∇x · [ψ̃2u] − P−˜̃ψ2u

= F1+ F2+ F3+ F4.

By the energy method,

‖Ds
xw‖

2
L∞
[0,1)L

2
x
. ‖Ds

xw(0)‖
2
L2

x
+

∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds+ 10

4∑
j=2

‖Ds
x F j‖

2
L1
[0,1)L

2
x
.

For term F1, we argue as follows. Let Q̃ be a projection onto frequencies of size (1− t)−3/4. Then∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds .

∫ 1

0
(1− s)−1/4

‖D1/2+s
x Q̃ψ2u(s)‖2L2

x
ds.
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Applying (4-3) with α = 1
2 , we can control the above by∫ 1

0
(1− s)−1

‖Ds
x Q̃ψ2u(s)‖2L2

x
ds.

Dividing the time interval [0, 1)=
⋃
∞

k=1[tk, tk+1), we bound the above by

+∞∑
k=1

2k
∫ tk+1

tk
‖Ds

x P23k/4ψ2u(s)‖2L2
x

ds .
+∞∑
k=1

‖Ds
x P23k/4ψ2u(s)‖2L∞

[tk ,tk+1)
L2

x
,

where P23k/4 is the projection onto frequencies of size ∼ 23k/4 (and not . 23k/4). However, writing
u(t)= ei t1u0+ (u(t)− ei t1u0), the above is controlled by (taking s = 1, the worst case)

∞∑
k=1

‖∇x P23k/4u0‖
2
L2

x
+

+∞∑
k=1

‖∇x P23k/4(u(t)− ei t1u0)‖
2
L2

x
.

By (3-21) of Proposition 3.4,

‖∇x u0‖
2
L2

x
+

+∞∑
k=1

2−k/8 . 1.

In conclusion, for term F1 we obtain∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds . 1.

We next address term F2. Insert ψ2ψ
4/d+1
1 = ψ2, then apply (4-3) with α = s to obtain (in the worst

case s = 1),

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4ψ2|u|4/du‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖ψ1u‖4/d+1
L2(4/d+1)

x
‖L1
[0,1)
.

We consider the cases d = 1 and d = 2 separately. When d = 1,

‖ψ1u‖L10
x
. ‖D2/5

x ψ1u‖L2
x
. 1,

by Lemma 4.1. Consequently,

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖L1
[0,1)
. 1.

On the other hand, when d = 2, we have

‖ψ1u‖L6
x
. ‖D2/3

x ψ1u‖L2
x
. ‖D1/2

x ψ1u‖2/3L2
x
‖∇xψ1u‖1/3L2

x
. (1− t)−1/6

by Lemma 4.2 and (3-2). Consequently,

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4(1− t)−1/6

‖L1
[0,1)
. 1.

Next, we address term F3. By (4-3) with α = 9/8,

‖Ds
x F3‖L1

[0,1)L
2
x
. ‖(1− t)−27/32

‖L1
[0,1)
‖Ds−1/8

x (ψ̃2u)‖L∞
[0,1)L

2
x
.
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Since ‖(1− t)−27/32
‖L1
[0,1)
∼ 1 and the support of ψ̃2 is contained in the set where ψ1 = 1, we have

‖Ds
x F3‖L1

[0,1)L
2
x
. ‖〈Dx 〉

s−1/8ψ1u‖L∞
[0,1)L

2
x
.

Finally, we consider F4. We have

‖Ds
x F4‖L1

[0,1)L
2
x
. ‖〈∇x 〉P−ψ1u‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖L1
[T1,1)
‖u‖L∞

[0,1)L
2
x
. 1

by (4-3) with α = 1. �

Proposition 4.4. Suppose that u(t) solving (1-1) with H 1 initial data satisfies (3-1). Fix R > 0. Then

‖u‖L∞
[0,1)H

1
|x |≥R
. 1.

Proof. Iterate Lemma 4.3 eight times on successively larger external regions. �

Proposition 4.4 completes the proof of Theorem 1.1.

5. Application to 3D standing sphere blow-up

We now outline the proof of Theorem 1.2 utilizing the techniques of Section 3 and 4. Theorem 1.2
pertains to radial solutions of (1-9). We define the initial data set P as in9 Raphaël and Szeftel [2009,
Definition 1, page 980–1], except that condition (v) is replaced by ‖ũ0‖H1(|r−1|≥1/10) ≤ ε

5. The goal
then becomes to complete the proof of the bootstrap Proposition 1 on page 982, where the “improved
regularity estimates” (35)–(37) are effectively replaced with

‖u(t)‖L∞
[0,t1]

H1
|x |≤1/2
≤ ε.

Let us formulate a more precise statement:

Proposition 5.1 (partial bootstrap argument). Let Q be the 1D ground state given by (1-4), and let ε > 0,
T > 0 be fixed with T ≤ ε200. Suppose that u(t) is a radial 3D solution to

i∂t u+1u+ |u|4u = 0

on an interval [0, T ′] ⊂ [0, T ) such that the following “bootstrap inputs” hold:

(1) There exist parameters λ(t) > 0, γ(t) ∈ R, and |r(t)− 1| ≤ 1/10, such that if we define

ũ(r, t)= u(r, t)− 1
λ(t)1/2

Q
(r − r(t)

λ(t)

)
, (5-1)

then, for 0≤ t ≤ T ′,

‖∇u(t)‖L2
x
= λ(t)−1

∼

( log|log(T − t)|
T − t

)1/2
, (5-2)

and
‖∇ũ(t)‖L2

x
. 1
|log(T−t)|1+(T−t)1/2

. (5-3)

9We are considering the case dimension d = 3 (in their notation N = 3).
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(2) Interior Strichartz control: ‖〈∇〉u(t)‖L5
[0,T ′]L

30/11
|x |≤1/2
≤ ε.

(3) Initial data remainder control: ‖〈∇〉ũ0‖L2
x
≤ ε5.

Then we have the following “bootstrap output”:

‖〈∇〉u(t)‖L∞
[0,T ′]L

2
|x |≤1/2
+‖〈∇〉u(t)‖L5

[0,T ′]L
30/11
|x |≤1/2

. ε5. (5-4)

The goal of this section is to prove Proposition 5.1, which shows that the bootstrap input (2) is rein-
forced. Proposition 5.1 is, however, an incomplete bootstrap and by itself does not establish Theorem 1.2.
The analysis which uses (5-4) to reinforce the bootstrap assumption (1) is rather elaborate but will be
omitted here as it follows the arguments in [Raphaël 2006] and [Raphaël and Szeftel 2009]. Moreover,
these papers demonstrate how the assertions in Theorem 1.2 follow.

The proof of Proposition 5.1 follows the methods developed in Section 3–4 used to prove Theorem 1.1.
We do not, however, rescale the solution so that T = 1 as was done in Section 3.

Remark 5.2. Let us list some notational conventions for the rest of the section. We take tk = T − 2−k

and denote Ik = [0, tk]. Let v(r, t)= ru(r, t), and consider v as a 1D function in r extended to r < 0 as
an odd function. Note that v solves

i∂tv+ ∂
2
r v =−r−4

|v|4v.

The frequency projection PN will always refer to the 1D frequency projection in the r -variable. The
Bourgain norm ‖v‖Xs,b refers to the 1D norm in the r -variable.

Let λ0 = λ(0) and take k0 ∈ N such that 2−k0/2(log k0)
−1/2
∼ λ0. We then have T ∼ 2−k0 . The

assumption T ≤ ε40 equates to 2−k0/8 ≤ ε5. Note that λ(tk)= 2−k/2(log k)−1/2.

Lemma 5.3 (smallness of initial data). Under the assumption (3) in Proposition 5.1 on the initial data,
and with v0 = ru0, we have

‖P
≥23k0/4∂rv0‖L2

r
+‖∂rv0‖L2

r≤1/2
. ε5.

Proof. Let ṽ0 = r ũ0. Since ∂r ṽ0 = ũ0+ r∂r ũ0, we have by Hardy’s inequality

‖∂r ṽ0‖L2
r
. ‖|x |−1ũ0‖L2

x
+‖∇ũ0‖L2

x
. ‖∇ũ0‖L2

x
. ε5.

Recalling the definition of ũ0 = ũ(0) in (5-1) (with t = 0), we have

v0 =
r
λ

1/2
0

Q
(r − r0

λ0

)
+ ṽ0.

The result then follows from the exponential localization and smoothness of Q. �

Lemma 5.4 (radial Strichartz). Suppose that u(t) is a 3D radial solution to

i∂t u+1u = f.

Let v(r, t)= ru(r, t) and g(r, t)= r f (r, t) and consider v as a 1D function in r (extended to be odd), so
that

i∂tv+ ∂
2
r v = g.
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Then for (q, r) and (q̃, r̃) satisfying the 3D admissibility condition,

‖r2/p−1v‖Lq
t L p

r
. ‖v0‖L2

r
+‖r2/p′−1g‖

L q̃′
t L p̃′

r
.

Proof. The left side is equivalent to ‖∇u‖Lq
t L p

x
and the right side is equivalent to ‖u0‖L2

x
+‖ f ‖

L q̃′
t L p̃

x
, so

it is just a restatement of the 3D Strichartz estimates. �

Lemma 5.5 (3D to 1D conversion). Suppose that u(x) is a 3D radial function, and write u(r) = u(x).
Let v(r)= ru(r). Then for 1< p < 3, we have

‖r2/p−1∂rv‖L p
r
. ‖∇x u‖L p

x
. (5-5)

Also for 3
2 < p <+∞, we have

‖∇x u‖L p
x
. ‖r2/p−1∂rv‖L p

r
. (5-6)

Consequently, for 3D admissible pairs (q, p) such that 2≤ p < 3, we have

‖∇u‖Lq
t L p

x
∼ ‖r2/p−1∂rv‖Lq

t L p
r
. (5-7)

We remark that q = 5 and p = 30
11 falls within the range of validity for (5-7).

Proof. The proof of (5-5) and (5-6) is a standard application of the Hardy inequality.
First, we prove (5-5). Using v = ru,

r2/p−1∂rv = r2/p∂r u+ r2/p−1u,

and thus,
‖r2/p−1∂rv‖L p

r
≤ ‖r2/p∂r u‖L p

r
+‖r2/p−1u‖L p

r
.

We have, for r > 0,

u(r)=−(u(+∞)− u(r))=
∫
+∞

s=1

d
ds
(u(sr)) ds =

∫
+∞

s=1
u′(sr)r ds.

By the Minkowski integral inequality,

‖r2/p−1u‖L p
r
≤

∫
+∞

s=1
‖u′(sr)r2/p

‖L p
r>0

ds.

Changing variable r 7→ s−1r , we obtain that the right-hand side is bounded by(∫ +∞
s=1

s−3/p ds
)
‖r2/pu′‖L p

r>0

and the s integral is finite provided p < 3.
Next, we prove (5-6). We have

r2/p∂r u = r2/p∂r (r−1v)=−r2/p−2v+ r2/p−1∂rv,

and hence,
‖r2/p∂r u‖L p

r
≤ ‖r2/p−2v‖L p

r
+‖r2/p−1∂rv‖L p

r
.
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We have

v(r)= v(r)− v(0)=
∫ 1

s=0

d
ds
(v(sr)) ds =

∫ 1

s=0
v′(sr)r ds.

By the Minkowski integral inequality,

‖r2/p−2v‖L p
r
≤

∫ 1

s=0
‖v′(sr)r2/p−1

‖L p
r

ds.

Changing variable r 7→ s−1r in the right side, we obtain

‖r2/p−2v‖L p
r
≤

(∫ 1

s=0
s−3/p+1ds

)
‖v′(r)r2/p−1

‖L p
r

and the s integral is finite provided p > 3
2 . �

The replacement for Lemma 3.1 is Lemma 5.6 below. The difference is that in Lemma 5.6, we only
use b < 1

2 when working at Ḣ 1 regularity.

Lemma 5.6. Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold. Then for 1
2 − δ ≤

b < 1
2 ,

‖∂rv‖X0,b(Ik) . 2kb(log k)b+1/2
= (T − t)−b(log|log(T − t)|)b+1/2. (5-8)

Also, for 1
2 − δ < b < 1

2 + δ,
‖v‖X0,b(Ik) .δ 2kδ

= (T − t)−δ. (5-9)

Proof. We will only carry out the proof of (5-8), which stems from (5-2).10 The proof of (5-9) is similar,
and stems from the bound on ‖u(t)‖H δ obtained from interpolation between (5-2) and mass conservation.

In the proof below, T has no relation to the T representing blow-up time in the rest of the article.
Let λ= λ(tk)= 2−k/2(log k)−1/2. Let r = λR, x = λX , and t = λ2T + tk . Define the functions

V (R, T )= λ1/2v(λR, λ2T + tk)= λ1/2v(r, t),

U (X, T )= λ1/2u(λX, λ2T + tk)= λ1/2u(x, t).

Note that the identity v(r)= ru(r) corresponds to V (R)= λRU (R).
We study V (R, T ) on T ∈ [0, log k], which corresponds to t ∈ [tk, tk+1]. We have ‖V ‖L2

R
= ‖v‖L2

r
∼

O(1) (by mass conservation) and ‖∂R V ‖L2
R
= λ‖∂rv‖L2

r
. Hence, ‖∂R V ‖L∞

[0,log k]L
2
R
= O(1). The equation

satisfied by V is
i∂T V + ∂2

R V =−λ−4 R−4
|V |4V .

Let J = [a, b] be a unit-sized time interval in [0, log k]. Then by Lemma 2.4,

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 +‖∂R(λ
−4 R−4

|V |4V )‖L1
J L2

R
.

10The need to take b < 1/2 comes from Lemma 2.4, (2-7) versus (2-8); when working at Ḣ1 regularity near the origin, we
cannot suffer any loss of derivatives. The fact that ‖∂rv‖X0,b(Ik ) for b < 1/2 is only a Ḣ1 subcritical quantity is of no harm as
the only application of (5-8) in the subsequent arguments is to control the solution for r ≥ 1/2, where the equation is effectively
L2 critical.
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Let χ1(r) = 1 for r ≤ 1
4 and suppχ1 ⊂ B(0, 3

8). Let χ2 = 1− χ1. Let g1 = ∂R(λ
−4 R−4χ1(λR)|V |4V )

and g2 = ∂R(λ
−4 R−4χ2(λR)|V |4V ), so that the above becomes

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 +‖g1‖L1
J L2

R
+‖g2‖L1

J L2
R
. (5-10)

We begin with estimating ‖g2‖L1
J L2

R
. We have

‖g2‖L1
J L2

R
. ‖V 5

‖L1
J L2

R
+‖V 4(∂R V )‖L1

J L2
R
. (5-11)

We now treat the first term in (5-11). Of course, ‖V 5
‖L1

J L2
R
=‖V ‖5

L5
J L10

R
. By Sobolev embedding ‖V ‖L10

R
.

‖D2/5
R V ‖L2

R
and by Hölder,

‖V ‖L5
J L10

R
. |J |1/10

‖D2/5
R V ‖L10

J L2
R
. |J |1/10(‖V ‖L10

J L2
R
+‖∂R V ‖L10

J L2
R
)

≤ |J |1/10(|J |1/10
‖V ‖L∞J L2

R
+‖∂R V ‖L10

J L2
R
).

Using that ‖V ‖L∞J L2
R
∼ 1, that |J | ∼ 1 and Lemma 2.7, provided 2

5 < b < 1
2 , we have

‖V ‖L5
J L10

R
. |J |1/10(1+‖∂R V ‖X0,b). (5-12)

We now treat the second term in (5-11), similarly estimating the term ‖V ‖L10
R

. We have

‖V 4∂R V ‖L1
J L2

R
. |J |7/20

‖V ‖4L10
J L10

R
‖∂R V ‖L4

J L10
R

. |J |7/20(1+‖∂R V ‖L10
J L2

R
)4‖∂R V ‖L4

J L10
R
.

Appealing to Lemma 2.7, provided 9
20 < b < 1

2 , we obtain

‖V 4∂R V ‖L1
J L2

R
. |J |7/20(1+‖∂R V ‖X0,b)

5. (5-13)

Combining (5-12) and (5-13), we have

‖g2‖L1
J L2

R
. |J |7/20(1+‖∂R V ‖X0,b)

5. (5-14)

Next we estimate ‖g1‖L1
J L2

R
. By rescaling,

‖g1‖L1
J L2

R
= λ‖∂r (χ1r−4

|v|4v)‖L1
[tk ,tk+1]

L2
r
.

Letw= χ̃1u, where χ̃1=1 on suppχ1 but supp χ̃1⊂ B(0, 1
2). Replacing u=r−1v, we obtain ∂r (rχ1u5)=

∂r (rχ1w
5), and hence,

‖g1‖L2
R
. λ(‖w‖5L10

r
+‖rw4∂rw‖L2

r
). λ(‖|x |−1/5w‖5L10

x
+‖w4

∇w‖L2
x
). (5-15)

By Hardy’s inequality and 3D Sobolev embedding,

‖|x |−1/5w‖L10
x
. ‖D1/5

x w‖L10
x
. ‖∇w‖L30/11

x
.

By Hölder’s inequality and 3D Sobolev embedding,

‖w4
∇w‖L2

x
≤ ‖w‖4L30

x
‖∇w‖L30/11

x
. ‖∇w‖5

L30/11
x

.
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Returning to (5-15) and invoking (2) of Proposition 5.1,

‖g1‖L1
Ik

L2
r
. λ‖∇w‖5

L5
Ik

L30/11
x
. λε5. (5-16)

By putting (5-14) and (5-16) into (5-10), we obtain

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 + |J |7/20(1+‖∂R V ‖X0,b(J ))
5
+ λε5.

From this, we conclude that we can take |J | sufficiently small (but still “unit-sized”11) so that it follows
that

‖∂R V ‖X0,b(J ) ≤ O(1).

Square summing over unit-sized intervals J filling [0, log k],

‖∂R V ‖X0,b([0,log k]) . (log k)1/2.

This estimate scales back to

‖∂rv‖X0,b([tk ,tk+1]) . (log k)1/2λ(tk)−2b
= 2kb(log k)b+1/2.

Now square sum over k from k = 0 to k = K to obtain a bound of 2K b(log K )b+1/2 over the time interval
IK , which is the claimed estimate (5-8). �

The analogue of Lemma 3.2 will be Lemma 5.7 below. We note that as a consequence of Lemma 5.6,
the hypothesis of Lemma 5.7 below is satisfied with α(k, N )= 2−k/2 N−1.

Lemma 5.7 (high-frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold,
and let12

β(k, N ) := ‖P≥N∂rv‖X0,1/2−(Ik).

Then there exists an absolute constant 0< µ� 1 such that for N ≥ 2k(1+δ)/2, we have

β(k, N )+‖r2/p−1 P≥N∂rv‖Lq
Ik

L p
r

. ‖P≥N∂rv0‖L2
r
+ 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ 2−kδ

+ ε5 (5-17)

for all 3D admissible (q, p).

Proof. Note that v solves
i∂tv+ ∂

2
r v =−r |u|4u =−r−4

|v|4v.

Let χ1(r) be a smooth function such that χ1(r) = 1 for |r | ≤ 1
4 and χ1 is supported in |r | ≤ 3

8 . Let
χ2 = 1−χ1. Apply P≥N∂r to obtain

(i∂t + ∂
2
r )P≥N∂rv = g1+ g2,

11Meaning: with size independent of any small parameters like ε or λ
12Note the inclusion of one derivative in the definition of β, in contrast to the choice of definition for α in Proposition 3.4.
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where
g j (r)=−P≥N∂r (χ j r−4

|v|4v) for j = 1, 2.

Then by Lemma 2.413 and Lemma 5.4,

‖P≥N∂rv‖X0,1/2−(Ik)+‖r
2/p−1 P≥N∂rv‖Lq

Ik
L p

r
. ‖P≥N∂rv0‖L2

r
+‖g1‖L1

Ik
L2

r
+‖g2‖L1

Ik
L2

r
.

The term ‖g2‖L1
t L2

r
is controlled in a manner similar to the analysis in the proof of Lemma 3.2. For this

term, χ2 r−4 and ∂r (χ2 r−4) are smooth bounded functions, with all derivatives bounded. By Lemma 2.10,

‖g2‖L2
r
. ‖P≥N 〈∂r 〉v

5
‖L2

r
+ N−1

‖〈∂r 〉v
5
‖L2

r
. (5-18)

By an analysis similar to the proof of Lemma 3.2, utilizing the bounds in Lemma 5.6, we obtain

‖P≥N 〈∂r 〉v
5
‖L1

Ik
L2

r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2. (5-19)

Also by the Strichartz estimates, as in the proof of Lemma 5.6 above,

‖〈∂r 〉v
5
‖L1

Ik
L2

r
. ‖Dδv‖4X0,b

‖∂Rv‖X0,b . 2k(1+δ)/2. (5-20)

Inserting (5-19) and (5-20) into (5-18), we obtain

‖g2‖L1
Ik

L2
r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2. (5-21)

The last term, N−12k(1+δ)/2, gives the contribution 2−kδ in (5-17) due to the restriction N ≥ 2k(1+δ)/2

(different deltas).
Next we address ‖g1‖L1

Ik
L2

r
. We estimate away P≥N by

‖g1‖L1
Ik

L2
r
. ‖g̃1‖L1

Ik
L2

r
, (5-22)

where (ignoring complex conjugates)
g̃1 = ∂r (r−4χ1v

5).

Let w = χ̃1u, where χ̃1 = 1 on suppχ1 but supp χ̃1 ⊂ B(0, 1
2). Replacing u = r−1v, we obtain g̃1 =

∂r (rχ1u5)= ∂r (rχ1w
5), and hence,

‖g̃1‖L2
r
. ‖w‖5L10

r
+‖rw4∂rw‖L2

r
. ‖|x |−1/5w‖5L10

x
+‖w4

∇w‖L2
x
.

By Hardy’s inequality and 3D Sobolev embedding,

‖|x |−1/5w‖L10
x
. ‖D1/5

x w‖L10
x
. ‖∇w‖L30/11

x
.

By Hölder’s inequality and 3D Sobolev embedding,

‖w4
∇w‖L2

x
≤ ‖w‖4L30

x
‖∇w‖L30/11

x
. ‖∇w‖5

L30/11
x

.

13We were able to obtain the L1
Ik

L2
r right side (without δ loss), because we took b < 1/2 in the Bourgain norm.
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Hence, ‖g̃1‖L2
r
. ‖∇w‖5

L30/11
x

. Returning to (5-22) and invoking (2) of Proposition 5.1,

‖g1‖L1
Ik

L2
r
. ‖∇w‖5

L5
Ik

L30/11
x
. ε5. �

The analogue of Proposition 3.4 is this:

Proposition 5.8 (high-frequency control). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then for any 3D Strichartz admissible pair (q, p), we have

‖P≥23k/4∂rv‖X0,1/2−(Ik)+‖r
2/p−1 P≥23k/4∂rv‖Lq

Ik
L p

r
. ε5.

Proof. Several applications of Lemma 5.7, just as Proposition 3.4 is deduced from Lemma 3.2. �

Due to the Ḣ 1 criticality of the problem, we do not have improved regularity of v(t)− ei t∂2
r v0 as was

the case in Proposition 3.4. As a substitute, we can use the methods of Lemma 5.7 to obtain the following
lemma:

Lemma 5.9 (additional high-frequency control). Suppose that the assumptions of Proposition 5.1 and
Remark 5.2 hold. Then (+∞∑

k=k0

‖P23k/4∂rv‖
2
L∞
[tk−1,tk ]

L2
r

)1/2

. ε5. (5-23)

Proof. It suffices to prove the estimate with the sum terminating at k = K , provided we obtain a bound
independent of K . For each k in k0 ≤ k ≤ K , write the integral equation on Ik . For t ∈ [tk−1, tk]

v(t)= ei t∂2
r v0− i

∫ t

0
ei(t−t ′)∂2

r (r−4
|v|4v(t ′)) dt ′.

Apply P23k/4∂r to obtain

P23k/4∂rv(t)= P23k/4ei t∂2
r ∂rv0− i

∫ t

0
ei(t−t ′)∂2

r P23k/4∂r (r−4
|v|4v(t ′)) dt ′.

Estimate

‖P23k/4∂rv‖L∞
[tk−1,tk ]

L2
r
≤ ‖P23k/4∂rv0‖L2

r
+‖P23k/4∂r (r−4

|v|4v)‖L1
Ik

L2
r
.

By the inequality (a+ b)2 ≤ 2a2
+ 2b2, this implies

‖P23k/4∂rv‖
2
L∞
[tk−1,tk ]

L2
r
. ‖P23k/4∂rv0‖

2
L2

r
+‖P23k/4∂r (r−4

|v|4v)‖2L1
Ik

L2
r
.

Let χ1(r) be a smooth function such that χ1(r) = 1 for |r | ≤ 1
4 and χ1 is supported in |r | ≤ 3

8 . Let
χ2 = 1−χ1. Let g j = P23k/4∂r (χ jr−4

|v|4v) for j = 1, 2.
Recall that in the proof of Lemma 5.7, we showed that

‖P≥N∂rχ2r−4
|v|4v‖L1

Ik
L2

r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2,
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and Proposition 5.8 showed that β(k, 23k/4). 1. Combining gives ‖g2‖L1
Ik

L2
r
. 2−k/8, and hence,( K∑

k=k0

‖g2‖
2
L1

Ik
L2

r

)1/2

. 2−k0/8 ≤ ε5.

Now we address g1. Let w = χ̃1u. For each k, lengthen Ik to I := IK to obtain

K∑
k=k0

‖g1‖
2
L1

Ik
L2

r
. ‖P23k/4∂r (r−4χ1|w|

4w)‖2
`2

k L1
I L2

r
.

By the Minkowski inequality, for any space-time function F , we have

‖P23k/4 F‖`2
k L1

I L2
r
≤ ‖P23k/4 F‖L1

I `
2
k L2

r
. ‖F‖L1

I L2
r
.

Hence,
K∑

k=k0

‖g1‖
2
L1

Ik
L2

r
. ‖∂r (χ1r−4

|w|4w)‖2L1
I L2

r
.

At this point we proceed as in Lemma 5.7 to obtain a bound by ε5. �

Now we begin to insert spatial cutoffs away from the blow-up core and obtain the missing low fre-
quency bounds. The first step is to obtain a little regularity above L2, since it is needed in the proof of
Lemma 5.11.

Lemma 5.10 (small regularity gain). Suppose that the assumptions of Proposition 5.1 and Remark 5.2
hold. Let ψ3/4(r) be a smooth function such that ψ3/4(r) = 1 for |r | ≤ 3

4 and ψ3/4(r) = 0 for |r | ≥ 7
8 .

Then
‖〈Dr 〉

3/7ψ3/4v‖L∞
[0,T )L

2
r
. ε5.

Proof. Taking ψ = ψ3/4, let w = ψv. Then

i∂tw+ ∂
2
r w = ψ(i∂t + ∂

2
r )v+ 2∂r (ψ

′v)−ψ ′′v

=−r−4ψ |v|4v+ 2∂r (ψ
′v)−ψ ′′v = F1+ F2+ F3.

Local smoothing and energy estimates provide the estimate

‖D3/7
r w‖L∞

[0,T )L
2
r

. ‖D3/7
r w0‖L2

r
+‖D3/7

r F1‖L1
[0,T )L

2
r
+‖D−1/2

r D3/7
r F2‖L2

[0,T )L
2
r
+‖D3/7

r F3‖L1
[0,T )L

2
r
. (5-24)

We begin with the F1 estimate. Let ψ̃ be a smooth function such that

ψ̃(r)=


0 if r ≤ 1

4 ,

1 if 1
2 ≤ r ≤ 7

8 ,

0 if r ≥ 7
8 .

Let q = r−1ψ̃v. By writing 1= (1− ψ̃4)+ ψ̃4, we obtain

F1 =−(1− ψ̃4)ψr−4
|v|4v− |q|4w.
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Note that (1− ψ̃4)ψ is supported in |r | ≤ 1
2 and ψ̃4ψ is supported in 1

4 ≤ |r | ≤
15
16 .

For the term (1− ψ̃4)ψr−4
|v|4v, we appeal to the bootstrap hypothesis (2) in the same way we did in

the proof of Lemma 5.7 to obtain a bound by ε5. As for the term |q|4w, by the fractional Leibniz rule,

‖D3/7
r (|q|4w)‖L1

[0,T )L
2
r
. ‖D3/7

r |q|
4
‖L1
[0,T )L

7/3
r
‖w‖L∞

[0,T )L
14
r
+‖|q|4‖L1

[0,T )L
∞
r
‖D3/7

r w‖L∞
[0,T )L

2
r
.

By Sobolev embedding and Gagliardo–Nirenberg,

‖D3/7
r |q|

4
‖L7/3

r
+‖|q|4‖L∞r . ‖q‖

2
L2

r
‖∂r q‖2L2

r
and ‖w‖L14

r
. ‖D3/7

r w‖L2
r
.

Hence,

‖D3/7
r (|q|4w)‖L1

[0,T )L
2
r
. ‖q‖2L∞

[0,T )L
2
r
‖∂r q‖2L2

[0,T )L
2
r
‖D3/7

r w‖L∞
[0,T )L

2
r
.

By (5-3), ‖∂r q‖L2
[0,T )L

2
r
. (|log T |)−1 . (log ε−1)−1. Consequently, we obtain

‖D3/7
r F1‖L1

[0,T )L
2
r
. ε5
+ (log ε−1)−1

‖D3/7
r w‖L∞

[0,T )L
2
r
.

As for F2, we start by bounding

‖D−1/2
r D3/7

r F2‖L2
[0,T )L

2
r
. ‖D13/14

r (ψ ′ v)‖L2
[0,T )L

2
r
.

On the support of ψ ′, we have v = rq. Noting that on the support of ψ ′ we have r ∼ 1 and using the
interpolation, we get

‖D13/14
r (ψ ′rq)‖L2

r
. ‖q‖L2

r
+‖q‖1/14

L2
r
‖∂r q‖13/14

L2
r
.

By (5-3),

‖‖∂r q‖13/14
L2

r
‖L2
[0,T )
. T 1/28 . ε5.

Consequently,

‖D−1/2
r D3/7

r F2‖L2
[0,T )L

2
r
. T 1/2

+ T 1/28 . ε5.

Finally, for the term F3, we estimate

‖D3/7
r F3‖L1

[0,T )L
2
r
. ‖q‖L1

[0,T )L
2
r
+‖∂r q‖L1

[0,T )L
2
r
. T + T 1/2 . ε5.

Collecting the above estimates and inserting into (5-24), we obtain

‖D3/7
r w‖L2

[0,T )L
2
r
. ‖D3/7

r w0‖L2
r
+ (log ε−1)−1

‖D3/7
r w‖L∞

[0,T )L
2
r
+ ε5,

and the result follows (by bootstrap assumption (3), ‖D3/7
r w0‖L2

r
. ε5). �

We will need to apply the following lemma eight times in the proof of Proposition 5.12 below. As in
Section 4, the use of the frequency projection P.(T−t)−3/4 and the process of exchanging derivatives for
time factors via (5-25) is essentially an appeal to the finite speed of propagation for low frequencies.
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Lemma 5.11 (low frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Let 5

8 < r1 < r2 <
3
4 and 1

8 ≤ s ≤ 1. Let ψ1(r) and ψ2(r) be smooth cutoff functions such that

ψ1(r)=
{

1 on |r | ≤ r1,

0 on |r | ≥ 1
2(r1+ r2)

and ψ2(r)=
{

1 on |r | ≤ 1
2(r1+ r2),

0 on |r | ≥ r2.

Then

‖Ds
r (ψ1v)‖L∞

[0,T )L
2
r
. ‖Ds−1/8

r (ψ2v)‖L∞
[0,T )L

2
r
+ ε5.

Proof. Let χ(ξ)= 1 for |ξ | ≤ 1 and χ(ξ)= 0 for |ξ | ≥ 2 be a smooth function. Let P = P≤(T−t)−3/4 be the
time-dependent multiplier operator defined by P̂ f (ξ)= χ((T − t)3/4ξ) f̂ (ξ) (where Fourier transform is
in space only). Note that the Fourier support of P at time T − t = 2−k is . 23k/4. We further have that

∂t P f = 3
4 i(T − t)−1/4 Q∂r f + P∂t f,

where Q = Q(T−t)−3/4 is the time-dependent multiplier

Q̂h(ξ)= χ ′((T − t)3/4ξ) ĥ(ξ).

Note that the Fourier support of Q at time t = T − 2−k is ∼ 23k/4. Note also that if g = g(r) is any
function, then

‖P Dα
r g‖L2

r
≤ (T − t)−3α/4

‖g‖L2
r
. (5-25)

Let ψ̃ be a smooth function such that

ψ̃(r)=


0 if |r | ≤ 1

4 ,

1 if 1
2 ≤ |r | ≤

1
2(r1+ r2),

0 if |r | ≥ r2.

Let w = P≤(T−t)−3/4 Ds
r (ψ1v). By Proposition 5.8, it suffices to show that

‖w‖L∞
[0,T )L

2
r
. ‖Ds−1/8

r (ψ2v)‖L∞
[0,T )L

2
r
+ ε5.

Note that w solves

i∂tw+ ∂
2
r w =−

3
4(T − t)−1/4 Q∂r Ds

r (ψ1v)− P Ds
r (ψ1r−4

|v|4v)+ 2P∂r Ds
r (ψ
′

1v)− P Ds
r (ψ
′′

1 v)

= F1+ F2+ F3+ F4.

By the energy method, we obtain

‖w‖2L∞t L2
r
≤ ‖w0‖

2
L2

r
+

∫ T

0
|〈F1, w〉L2

r
| + 10

4∑
j=2

‖F j‖
2
L1
[0,T )L

2
r
.
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We estimate F1 using Lemma 5.9 as follows.14 Let Q̃ be a projection onto frequencies of size ∼
(T − t)−3/4 (importantly, not . (T − t)−3/4). Then∫ T

0
|〈F1, w〉L2

r
|.

∫ T

0
(T − t)−1/4

‖Q̃ D1/2+s
r (ψ1v)‖

2
L2

r
.

It suffices to take s = 1, the worst case. The presence of Q̃ allows for the exchange D1/2
r ∼ (T − t)−3/8,

which gives ∫ T

0
|〈F1, w〉L2

r
|.

∫ T

0
(T − t)−1

‖Q̃∂r (ψ1v)‖
2
L2

r
.

By decomposing [0, T )=
⋃
∞

k=k0
[tk, tk+1], and using that (T − t)−1

= 2k on [tk, tk+1], we have∫ T

0
(T − t)−1

‖Q̃∂r (ψ1v)‖
2
L2

r
=

∞∑
k=k0

∫
[tk ,tk+1]

2k
‖P23k/4∂r (ψ1v)‖

2
L2

r
.

Since |[tk, tk+1]| = 2−k , the above is controlled by
∑
∞

k=k0
‖P23k/4∂r (ψ1v)‖

2
L∞
[tk ,tk+1]

L2
r
, the square root of

which is bounded by ε5 (by Lemma 5.9).
For the nonlinear term F2, by writing 1= 1− ψ̃4

+ ψ̃4, we have

F2 =−P Ds
r (r
−4(1− ψ̃4)ψ1|v|

4v)− P Ds
r (r
−4ψ̃4ψ1|v|

4v)= F21+ F22.

The support of (1− ψ̃4)ψ1 is contained in |r | ≤ 1
2 , and we can use the bootstrap hypothesis (2) to obtain

‖F21‖L1
[0,T )L

2
r
. ε5,

as was done in the proof of Lemma 5.7 (for any s ≤ 1). For F22, taking ṽ = ψ2v and noting that
ψ1ψ2 = ψ1, we have F22 = P Ds

r (r
−4ψ̃4ψ1|ṽ|

4ṽ). By (5-25) with α = 1
8 ,

‖F22‖L1
[0,T )L

2
r
≤
∥∥(T − t)−3/32

‖Ds−1/8
r (r−4ψ̃4ψ1|ṽ|

4ṽ)‖L2
r

∥∥
L1
[0,T )
.

Since ψ̃ is supported in 1
4 ≤ |r | ≤ r2, the function ψ̃4ψ1r−4 is smooth and compactly supported. By the

fractional Leibniz rule,

‖Ds−1/8
r (r−4ψ̃4ψ1|ṽ|

4ṽ)‖L2
r
. ‖ṽ‖4L∞r ‖〈Dr 〉

s−1/8ṽ‖L2
r
. ‖D3/7

r ṽ‖
7/2
L2

r
‖∂r ṽ‖

1/2
L2

r
‖〈Dr 〉

s− 1
8 ṽ‖L2

r
.

Using the bound ‖∂r ṽ‖L2
r
≤ (T − t)−1/2 from (5-3) and the bound on ‖D3/7

r ṽ‖L∞
[0,T )L

2
r

from Lemma 5.10,
we obtain

‖F22‖L1
[0,T )L

2
r
. ‖(T − t)−3/32(T − t)−1/4

‖L1
[0,T )
‖〈Dr 〉

s−1/8ṽ‖L∞
[0,T )L

2
r
. ε5
‖〈Dr 〉

s−1/8ṽ‖L∞
[0,T )L

2
r
.

To bound F3, we use (5-25) with α = 9
8 to obtain

‖F3‖L1
[0,T )L

2
r
. ‖(T − t)−27/32

‖L1
[0,T )
‖Ds−1/8

r ṽ‖L∞
[0,T )L

2
r
.

14It seems that the energy method is needed here, since it furnishes
∫ T

0 |〈F1, w〉L2
r
|; we cannot see a way to estimate

‖F1‖L1
[0,T )L

2
r
. Indeed, by pursuing the method here, one ends up with a bound ‖F1‖L1

[0,T )L
2
r

.
∑
∞
k=k0
‖P23k/4ψ1v‖L2

r
, which

is not controlled by Lemma 5.9, since it is not a square sum.
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The F4 term is more straightforward than F3, since there is one fewer derivative. �

The H 1 control will complete part of the bootstrap estimate (5-4) in Proposition 5.1:

Proposition 5.12 (H 1 control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then

‖∂rv‖L∞
[0,T )L

2
|r |≤5/8

. ε5.

Proof. Let rk =
5
8 +

1
64(k − 1). Apply Lemma 5.11 on [rk, rk+1] for k = 1, . . . , 8 to obtain collectively

by Lemma 5.10 that

‖∂rv‖L∞
[0,T )L

2
|r |≤5/8

. ε5
+‖v‖L2

|r |≤3/4
≤ ε5. �

Proposition 5.13 (local smoothing control). Let the assumptions of Proposition 5.1 and Remark 5.2
hold. Let ψ9/16 be a smooth function such that ψ9/16(r) = 1 for |r | ≤ 9

16 and ψ9/16(r) = 0 for |r | ≥ 5
8 .

Then

‖D3/2
r (ψ9/16v)‖L2

[0,T )L
2
r
. ε5.

Proof. Let χ(ξ) = 1 for |ξ | ≤ 1 and χ(ξ) = 0 for |ξ | ≥ 2 be a smooth function. Let χ− = χ and
χ+ = 1 − χ . Let P− be the Fourier multiplier with symbol χ−((T − t)3/4ξ) and P+ be the Fourier
multiplier with symbol χ+((T − t)3/4ξ). Then I = P−+ P+ for each t , and P− projects onto frequencies
. (T − t)−3/4, while P+ projects onto frequencies & (T − t)−3/4. Letting Q be the Fourier multiplier
with symbol 3

4χ
′((T − t)3/4ξ), we have ∂t P± f =±i(T − t)−1/4 Q∂r f + P∂t f . Note that Q has Fourier

support in |ξ | ∼ (T − t)−3/4.
First, we can discard low frequencies. From Proposition 5.12 and (5-25) with α = 1

2 ,

‖D3/2
r P−ψ9/16v‖L2

[0,T )L
2
r
. ‖(T − t)−3/8∂rψ9/16v‖L2

[0,T )L
2
r
. T 1/8

‖∂rψ9/16v‖L∞
[0,T )L

2
r
. ε5.

For the high-frequency portion, D3/2
r P+ψ9/16v, we first need to dispose of the spatial cutoff. We have

D3/2
r P+ψ9/16 = ψ9/16 D3/2

r P++ [D3/2
r P+, ψ9/16].

The leading order term in the symbol of the commutator [D3/2
r P+, ψ9/16], by the pseudodifferential

calculus, is ξ 1/2χ+(ξ(T − t)3/4)ψ ′(r) + ξ 3/2(T − t)3/4χ ′
+
(ξ(T − t)3/4)ψ ′(r). Hence, we obtain the

bound

‖[D3/2
r P+, ψ9/16]〈Dr 〉

−1/2
‖L2

r→L2
r
. 1,

independently of t . Thus, ‖[D3/2
r P+, ψ9/16]v‖L2

[0,T )L
2
r

is easily bounded by Proposition 5.12.
It remains to show that ‖ψ9/16 D3/2

r P+v‖L2
[0,T )L

2
r
. ε5, the estimate for the high-frequency portion with

no spatial cutoff to the right of the frequency cut-off. To obtain local smoothing via the energy method,
we need to introduce the pseudodifferential operator A of order 0 with symbol exp(−(sgn ξ)(tan−1 r)),
where sgn ξ is a smoothed signum function. Note that by the sharp Gärding inequality, A is positive.
The key property of A is

∂2
r A f = A∂2

r f − 2i(1+ r2)−1 Dr A f + B f,
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where B is an order 0 pseudodifferential operator. The first-order term i(1+ r2)−1 Dr A f will generate
the local smoothing estimate.

Let w = AP+v. By the sharp Gärding inequality,

‖ψ9/16 D3/2
r P+v‖L2

[0,T )L
2
r
. ‖(1+ r2)−1/2 D3/2

r w‖L2
[0,T )L

2
r

and it suffices to prove that ‖(1+ r2)−1/2 D3/2
r w‖L2

[0,T )L
2
r
. ε5. The equation satisfied by w is

i∂tw+ ∂
2
r w+ 2i(1+ r2)−1 Drw = (T − t)−1/4 AQ∂rv− AP+r−4

|v|4v+ Bv = F1+ F2+ F3,

where B is a order 0 operator (satisfying bounds independent of t). By applying ∂r and pairing this
equation with ∂rw (energy method), we obtain, upon time integration,

‖∂rw‖
2
L∞
[0,T )L

2
r
+‖(1+ r2)−1/2 D3/2

r w‖2L2
[0,T )L

2
r
.
∫ T

0
|〈∂r F1, w〉| + 10‖∂r F2‖

2
L1
[0,T )L

2
r
+ 10‖∂r F3‖

2
L1
[0,T )L

2
r
.

The F3 term is easily controlled using Proposition 5.12.
The F1 term is controlled as in the proof of Lemma 5.11 (a similar first term). For the F2 term, let ψ

be a smooth function such that ψ(r)= 1 for |r | ≤ 1
4 and ψ(r)= 0 for |r | ≤ 1

2 . Writing 1=ψ5
+(1−ψ5),

we have

F2 = AP+ψ5r−4
|v|4v+ AP+(1−ψ5)r−4

|v|4v = F21+ F22.

We estimate ‖∂r F21‖L1
[0,T )L

2
r

as we did in the proof of Lemma 5.7. For the term F22, takeψ+= (1−ψ5)r−4,
and note that ψ+ is smooth and well localized. In the proof of Lemma 5.7 (see (5-18) and (5-21)), we
showed that

‖P≥N∂rψ+|v|
4v‖L1

Ik
L2

r
. 2k(1+δ)/2 N δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2.

Furthermore, Proposition 5.8 showed that β(k, 23k/4). 1. Combining with the above gives

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
. 2−k/8.

Thus,

‖∂r F22‖L1
[0,T )L

2
r
.
∞∑

k=k0

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
.
∞∑

k=k0

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
. 2−k0/8 . ε5. �

Proposition 5.14 (Strichartz control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2
hold. Then

‖r2/p−1∂rv‖Lq
[0,T )L

p
|r |≤1/2

. ε5.

Proof. Let ψ be a smooth function such that ψ(r)= 1 for |r | ≤ 1
2 and ψ(r)= 0 for |r | ≥ 9

16 . Let w=ψv.
Then w solves

i∂tw+ ∂
2
r w =−ψr−4

|v|4v+ 2∂r (ψ
′v)−ψ ′′v = F1+ F2+ F3.
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By the Strichartz estimate and dual local smoothing estimate, we obtain

‖r2/p−1∂rw‖Lq
[0,T )L

p
r
. ‖∂rw0‖L2

r
+‖∂r F1‖L1

[0,T )L
2
r
+‖D−1/2

r ∂r F2‖L2
[0,T )L

2
r
+‖∂r F3‖L1

[0,T )L
2
r
.

Let ψ̃ be a smooth function such that ψ̃(r) = 1 for |r | ≤ 1
4 and ψ̃(r) = 0 for |r | ≥ 1

2 . By writing
1= ψ̃5

+ (1− ψ̃5), we have

F1 =−ψψ̃
5r−4
|v|4v−ψ(1− ψ̃5)r−4

|v|4v = F11+ F12.

Since the support of ψψ̃5 is contained in |r | ≤ 1
2 , we can estimate the term ‖∂r F11‖L1

[0,T )L
2
r

by ε5 using
bootstrap assumption (2) as in the proof of Lemma 5.7. Since (1− ψ̃5)ψr−4 is a bounded and smooth
function,

‖∂r F12‖L1
[0,T )L

2
r
. ‖〈∂r 〉v

5
‖L1
[0,T )L

2
|r |≤5/8

. T ‖〈∂r 〉v‖
5
L∞
[0,T )L

2
|r |≤5/8

. ε5.

Also, by Proposition 5.13,

‖D1/2
r F2‖L2

[0,T )L
2
r
. ‖〈Dr 〉

3/2ψ9/16v‖L2
[0,T )L

2
r
. ε5.

Finally,
‖∂r F3‖L1

[0,T )L
2
r
. T ‖〈∂r 〉v‖L∞

[0,T )L
2
|r |≤5/8

. ε5

by Proposition 5.12. Collecting the estimates above, we obtain the claimed bound. �

This completes the proof of Proposition 5.1 (via Lemma 5.5).
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