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A VECTOR FIELD METHOD APPROACH TO IMPROVED DECAY FOR
SOLUTIONS TO THE WAVE EQUATION ON A SLOWLY ROTATING KERR
BLACK HOLE

JONATHAN LUK

We prove that sufficiently regular solutions to the wave equation [, ® = 0 on the exterior of a suffi-
ciently slowly rotating Kerr black hole obey the estimates |®| < C(¢*)~*?*" on a compact region of r.
This is proved with the help of a new vector field commutator that is analogous to the scaling vector field
on Minkowski and Schwarzschild spacetime. This result improves the known robust decay rates that are
proved using the vector field method in the region of finite r and along the event horizon.
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1. Introduction

A major open problem in general relativity is that of the nonlinear stability of Kerr spacetimes. These
spacetimes are stationary axisymmetric asymptotically flat black hole solutions to the vacuum Einstein
equations

Ry, =0
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in 3+ 1 dimensions. They are parametrized by (M, a) representing respectively the mass and the specific
angular momentum of a black hole; see Section 2. It is conjectured that Kerr spacetimes are asymptoti-
cally stable. In the framework of the initial value problem, the stability of Kerr would mean that for any
solution to the vacuum Einstein equations with initial data close to the initial data of a Kerr spacetime,
its maximal Cauchy development has an exterior region that approaches a nearby, but possibly different,
Kerr spacetime.

To study the stability of Kerr spacetimes, it is important to first understand the corresponding linear
problem. One way to approach this is to study the linear scalar wave equation [g, ® = 0, where gg is
the metric on a fixed Kerr background and [, is the Laplace—Beltrami operator. This can be compared
with the proofs of the nonlinear stability of the Minkowski spacetime in which a robust understanding
of the quantitative decay properties of solutions to the linear wave equation plays a fundamental role
[Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005].

The Kerr family of spacetimes contains a one-parameter subfamily known as the Schwarzschild space-
times for which a = 0. It is natural when studying the wave equation on Kerr spacetimes to begin by
focusing on the wave equation on Schwarzschild spacetimes. Pointwise boundedness and decay of the
solutions to the wave equation on Schwarzschild spacetimes has been proved in [Wald 1979; Kay and
Wald 1987; Machedon and Stalker 2002; Blue and Sterbenz 2006; Dafermos and Rodnianski 2009;
Kronthaler 2007; Blue and Soffer 2006; Donninger et al. 2011; Tataru 2009]. In particular, Dafermos
and Rodnianski used the vector field method to show that on the exterior region of the Schwarzschild
spacetimes, including along the event horizon, solutions to the linear wave equation satisfy |®| < C(¢*)~!,
where t* is a regular coordinate (up to the event horizon) that approaches infinity towards null infinity.
In an earlier work [Luk 2010], we improved this decay rate. More precisely, we showed that sufficiently
regular solutions to the wave equation [J;® = 0 on the Schwarzschild black hole obey the estimates
|| <, (t*)73/2%7 for any n > 0 on a compact region of r, including along the event horizon and inside
the black hole.

This paper generalizes the result above to Kerr spacetimes where a << M. For Kerr spacetimes sat-
isfying this condition, Dafermos and Rodnianski [2011], and subsequently Andersson and Blue [2009],
have proved a decay rate in the exterior region of the Kerr spacetime, including along the event horizon,
of |®| < C(t*)~!*7, where t* is a regular coordinate to be defined later, and with #* we will define
a foliation of the exterior region of Kerr spacetime by the spacelike hypersurfaces X,«. Extending the
methods in [Luk 2010], we are able to improve this decay rate using the vector field method.

Theorem 1. Suppose Uy, ® =0. Then for all n > 0 and all M > 0 there exists ay such that the following
estimates hold on Kerr spacetimes with (M, a) for which a < ay.

(1) Improved decay of nondegenerate energy:

M

> / (DI @) < CREp(t*) 731,
=0 Y ZeNir=R}
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(2) Improved pointwise decay:

M
Y IDI@| < CRE () forr < R.
j=0

Here, D denotes derivatives in a regular coordinate system (See Section 2). Ey and E; depend only on
M and some weighted Sobolev norm of the initial data.

A more precise version of this theorem will be given in Section 6. Our proof relies on an analogue
of the scaling vector field on Minkowski spacetime. Recall that in Minkowski spacetime the vector field
S =19, + ra, is conformally Killing and satisfies [[],,, S] = 20J,,. Hence any estimates that hold for
® a solution to [J,,® = 0 would also hold for S®. However, S has a weight that is increasing with ¢.
Hence one can hope to prove a better estimate for ® using the estimates for S®. (See, for example,
[Klainerman and Sideris 1996]).

In [Luk 2010], we introduced an analogue of the scaling vector field on Schwarzschild spacetimes.
We defined, in the Regge—Wheeler tortoise coordinate (see Section 2), the vector field S =79, +r*9,+. In
[Luk 2010], we studied the commutator [, ST and showed that all the error terms can be controlled.
Thus, up to a loss of ¢"7 (for n arbitrarily small), S® obeys all the estimates of ® that were proved in
[Dafermos and Rodnianski 2009]. In particular, we showed that S®, like & itself, obeys a local integrated
decay estimate

t ry
/f (D*®)>drdt < CEx(t)>  fort <t <(1.1)¢,
t Jr
t rzl
// (SD*®) drdt < CE(t)™" fort <t <(1.1)¢.
t r

From this we proved an improved decay of the L? norm of D*®. We will explain the main idea in the
case k = 0. Firstly, the local integrated decay for ® would already imply on a sequence of ¢; slices, with
ti <tis1 < (1.1)%t;, that ® obeys a better decay rate, namely ®(#;) < C tl._3/ 2. We then introduced a new
method to use the estimates for S®, which can be explained heuristically as follows. Given any time ¢,
we find the largest #; < ¢ that has a better decay rate. Then we integrated from #; to ¢ using the vector

field S. At this point S has a weight that grows like . Hence we have, at least schematically,

r ry 1 r
/ ®(1)2dr < c([ (1) 2dr +17! / f S(®2) dr dt‘).
r r ti Jry

We then notice that the last term can be estimated by the local integrated decay estimates

t r t ry t )
/ / S(®2) dr dt‘ < c(/ / 2 dr dt +/ / (S®)2 dr dt) <12,
i Jr ti Jry ti Jr

Putting these together, we would get

r
/ & (1)%dr < Ct 7347,

rn
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Using this method, we also showed the improved decay for the L? norm of higher derivatives. Pointwise
decay estimate thus followed from standard Sobolev embedding.

In this paper we would like to carry out a similar argument. We introduce a scaling vector field (which
we again call §) which is the same as in [Luk 2010] at the asymptotically flat end, but is smooth up to and
across the event horizon. We will prove a local integrated decay estimate for S® and use the argument
in [ibid.] as outlined above to prove an improved decay rate. The most difficult part of the argument is
to control the error terms coming from the commutation of [J,, and (the modified) S, that is, the term
[Lgs, SI®. To control this, we need to use estimates for derivatives of @, which in turn are provided
by the energy estimates for the homogeneous equation [l,, ® = 0 proved in [Dafermos and Rodnianski
2011; 2008]. This term schematically looks like

[Oge» S1® = O(1) g @+ O(r 21 (D*® + DD +r DY D), (D

where Y is an angular derivative on the 2-sphere. The term O (1), ® vanishes since we are considering
g ® = 0. The other terms have the two desirable features. First, although § has a weight in #*, the
commutator is independent of #*, which is a result of d;+ being a Killing vector field. Second, these terms
decay as r — 00, which is a result of the asymptotic flatness of Kerr spacetimes. The last term would
appear to have less decay in r, which is also the case in Schwarzschild spacetimes. In that case, we
controlled this term in [Luk 2010] by commuting the equation with €2, the generators of the spherical
symmetry of Schwarzschild spacetimes. The quantity Q2® would then give us control over an extra power
of r. One difficulty that arises in the case of Kerr spacetimes is that they are not spherically symmetric.
Nevertheless, following [Dafermos and Rodnianski 2008], we can construct an analog of €2, call it 5,
that is an asymptotic symmetry, that is, the commutator [, , Q] would decay in r. The nondegenerate
energy of €@ would then control the last term in the above expression. Moreover, it is sufficient to define
Q only when r is very large since otherwise the factor in r can be absorbed by constants. However, in a

finite region of r, the commutator [, , S] would in general be large.

gk

To understand which quantities of S® have to be controlled, we rederive the energy estimates in
[Dafermos and Rodnianski 2008] in the slightly more general case of the inhomogeneous equation
Ugx @ = G. This would also immediately imply that for the linear inhomogeneous equation g, ® = G
with sufficiently regular and sufficiently decaying (both in space and time) G, the solution &, assuming
that the initial data is sufficiently regular, would decay with a rate of (+*) ™!+, precisely as that in [ibid.].
We will then apply this to the equations for Q® and S®. To derive these energy estimates, we will
use the (non-Killing) vector field multipliers N and Z. Here N is a modification of 9+ so that it is
timelike everywhere, including near the event horizon. The use of N tackles the issue of superradiance,
a difficulty that arises from the spacelike nature of d,+ near the event horizon. Z is an analogue of the
conformal vector field 129, + v2d, in Minkowski spacetime and is used to prove decay.

Since we will use vector field multipliers that have weights in t* and r, to prove the energy estimates
at t* = t for the inhomogeneous equation we would have to control the term (as well as other similar or
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// (t*)2r1+862
R(70,7)

where the integration over space and the #* interval [7g, ]. To prove the energy estimates for S, we

need to show that for G as in (1), this is bounded by C(7)7. We split this into two parts: r < %t* and
148 3428

more easily controlled terms)

r> %t*. Forr < %t*, we can replace r by r~ since G decays in r. Then, we use the fact that

Z// —]+5(Dkq>)2 S C_L,—Z-i-n'
RA.D Iz, o)N{r<5 t*}

Hence if we sum up the whole integral by integrating in [7g, (1.1)7p], [(1.1) 70, (1.1)270] etc., we will get

a bound of
[log7]+1

> A~y Tt
i=0

For r > %t*, we do not have a decay estimate for the integrated in time estimate. However, we would
still have an almost boundedness estimate:

N
2// rm(DF )2 < Col.
k=1 /@D TNz 1)

Notice, moreover, that G> ~ r~—3T3(D*®)? and this region we have r 3% < (+*)~2r~1+%, Hence we

again have
> ¢ = e
RAD 1, 0)N{r>5 t*}

and the required estimate followed in the same manner as in the case r < %t*.

With the modified S, which is smooth up to the event horizon (contrary to [Luk 2010]), we can prove
the improved decay estimates for the L? norm of ® and D® once these error terms are controlled. Using
the commutation with the Killing vector d;+, we would also have control for L? norm of Dak ®. Away
from the event horizon, this is sufficient to control all other derivatives by elliptic estimates. However,
since near the event horizon, d;+ is not Killing, we would not have control over other derivatives. Here,
we follow [Dafermos and Rodnianski 2008; 2011] and commute the equation with a version of the
red-shift vector field, Y. Once we control DY k8f;d> we can use the wave equation to control (any
derivatives of) A®, where A is the Laplace—Beltrami operator on the sphere, which is elliptic. We can
thus control derivatives of ® in any directions. We will show, moreover, that the commutator [, , Y ]
has the property that the inhomogeneous terms can be controlled once we have controlled the L? norm
of Dat’i ®. This implies that Y @ would decay in the same rate as 9, ® for which we have already derived
an improved decay rate.
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We now turn to some history of this problem. We mention some results on Kerr spacetimes with a > 0
here and refer the readers to [Dafermos and Rodnianski 2008; Luk 2010] for references on the corre-
sponding problem on Schwarzschild spacetimes. There has been a large literature on the mode stability
and nonquantitative decay of azimuthal modes. See for example [Press and Teukolsky 1973; Hartle and
Wilkins 1974; Whiting 1989; Finster et al. 2008; 2006] and references in [Dafermos and Rodnianski
2008]. The first global result for the Cauchy problem was obtained by Dafermos and Rodnianski [2011],
who proved that for a class of small, axisymmetric, stationary perturbations of Schwarzschild spacetime,
which include Kerr spacetimes that rotate sufficiently slowly, solutions to the wave equation are uniformly
bounded. Similar results were obtained later using an integrated decay estimate on slowly rotating Kerr
spacetimes by Tataru and Tohaneanu [2011]. Using the integrated decay estimate, Tohaneanu [2012]
also proved Strichartz estimates.

Decay for general solutions to the wave equation on sufficiently slowly rotating Kerr spacetimes
was first proved by Dafermos and Rodnianski [2008] with a quantitative rate of |®| < C(¢*)~1+C4. A
similar result was later obtained by Andersson and Blue [2009] using a physical space construction to
obtain an integrated decay estimate. In all of [Tataru and Tohaneanu 2011; Dafermos and Rodnianski
2008; Andersson and Blue 2009], the integrated decay estimate is proved and plays an important role.
All proofs of such estimates rely heavily on the separability of the wave equation, or equivalently, the
existence of a Killing tensor on Kerr spacetime. In a recent work, Dafermos and Rodnianski [2010]
show that assuming the integrated decay estimate (nondegenerate up to the event horizon if it exists) and
boundedness for the wave equation on an asymptotically flat spacetime, the decay rate |®| < C(t*)~!
holds. This in particular improves the rates in [Dafermos and Rodnianski 2008; Andersson and Blue
2009]. In a similar framework, but assuming in addition exact stationarity, Tataru [2009] proved a local
decay rate of (+*)~> using Fourier-analytic methods. This applies in particular to sufficiently slowly
rotating Kerr spacetimes. Dafermos and Rodnianski have recently announced a proof for the decay of
solutions to the wave equation on the full range of subextremal Kerr spacetimes a < M.

In view of the nonlinear problem, it is important to understand decay in a robust manner. In particular,
past experience shows that refined decay estimates might not be stable in nonlinear problems. The
vector field method is known to be robust and culminated in the proof of the stability of the Minkowski
spacetime [Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005]. We prove our decay
result using the vector field method with the expectation that the method will be useful for studying
nonlinear problems. As a model problem, we will study the semilinear equation with a null condition on
a fixed slowly rotating Kerr background. In a forthcoming paper that we will show the global existence
of solutions with small initial data for this class of equations. We will also study the asymptotic behavior
of these solutions. The null condition, which is a special structure of the nonlinearity, has served as an
important model for the proofs of the nonlinear stability of Minkowski spacetime and we hope that it
will find relevance to the problem of the nonlinear stability of Kerr spacetime.

We end the introduction with an overview of the paper. In Section 2, we will introduce the Kerr
geometry, including a few different coordinate systems that we will find useful in the rest of the paper.
In Section 4, we introduce the (non-Killing) vector field commutators that will be used. These include



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 559

the scaling vector field S, which is the main tool for obtaining improved decay rates. In Section 5, we
introduce the formalism for vector field multipliers. We then have all the notation necessary to state
the precise form of our main theorem in Section 6. In Sections 7, 8 and 9, we prove the main energy
estimates using the vector field multipliers N, X and Z. We write down the energy estimates in the most
general form, allowing for the possibility of controlling the inhomogeneous terms in different energy
norms. Such generality is unnecessary for the result in this paper, but will be useful in studying the
null condition. Starting from Section 10, we return to the homogeneous equation. In Section 10, we
write down the energy estimates proved in [Dafermos and Rodnianski 2008]. We then derive the energy
estimates after commuting with Y, € and S in Sections 11, 12 and 13 respectively. Finally, using the
estimates for S®, we prove the main theorem in Section 14.

2. Geometry of Kerr spacetime

2.1. Kerr coordinates. The Kerr metric in the Boyer—Lindquist coordinates takes the form

2 12
M 1+a cos” 6 2 29
gK=—<1——> dz2+—’22dr2+r2<1+%> de?
r(1 1 4 r

2cos? 6 2M
44 crozs ) -4 %
2 2 a2 )
a 2M a“sin“ 6 a sin” 6
r r r2(1+%) r(1+%)

In this paper, we will consider Kerr spacetimes with a small. It can then be thought of as a small
perturbation of Schwarzschild spacetimes because by setting a =0, we recover the Schwarzschild metric:

2M 2MN\ !
g5 = _<1 — _> di2 + (1 — —) dri+r3d6* +rksin’ 6 dg>.
rs rs

The Cauchy development of Kerr spacetimes can be described schematically by taking a two-dimensional
slice as in Figure 1.

Notice that (2) represents the metric on the exterior region (the right side in the diagram). In the
coordinate system above, this is the region {r > r}, where r is the larger root of A =r> —2Mr +a’.
This is the region that we will study. We foliate the exterior region of the Kerr spacetime by hypersurfaces
%, as depicted in the diagram. A precise definition of the hypersurface X, will be given in Section 3.3.
The coordinates in (2) are not regular at the event horizon %+ = {r = r, }. It will be helpful in the sequel
to use different coordinate systems on Kerr spacetimes. From now on we will call the coordinate system
on which the metric (2) is defined the Kerr (¢, r, 6, ¢) coordinates. We define a new coordinate system,
the Kerr (¢, r*, 0, ¢) coordinates, by

dr* _ r2+a?
dr =~ A
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T+t

Figure 1. Kerr spacetime.

where A = r?> —2Mr + a? is zero at the event horizon. In this coordinate system, the metric looks like

2 2
0
) dt* + A +a*)?(r* + a cos® 0)dr*? +r2(1 +4 COZS ) de?
r

2M
gK = — 1— _r(1+a2002829)

5 a> 2M  a’*sin’6 o
+r 1+—2+—m S 9d¢ —4aM
o (145

asin®o

a?cos? 6 )
2

dtdg.

r(l+

Since the definition of r* depends only on r, it is unambiguous to talk about the vector 9;.

2.2. Schwarzschild coordinates. In order to compare calculations on Kerr spacetimes to calculations
on Schwarzschild spacetimes, it is helpful to exhibit a diffeomorphism between the two. We do so
by defining an explicit map between the coordinate functions (¢, 7, 8, ¢) on a Kerr spacetime and the
coordinate functions (g, rs, fs, ¢s) on a Schwarzschild spacetime with the same mass. These will be
defined differently near and away from the event horizon. Take

xU)z{l if r <ry —3(ry —r3),

. — 1, —
0 ifr>r, — 7(ry —7r4),

where ., as above, is the larger root of A =72 —2Mr +a” and ry > ry is a constant to be determined
later. With this x (), we can then define

r32~ —2Mrg = r2—2Mr —|—a2,
ts+ x(rs)2Mlog(rs —2M) =t + x (r)h(r), where
Os =6,
¢s=¢+ x(r)P(r), where

dh(r) B 2Mr
dr — r2=2Mr+a?’

dP(r) . a
dr — r2—=2Mr+a?’
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Then, by identifying (¢, rs, 05, ¢s) with the corresponding coordinate functions on Schwarzschild space-
times, we have a diffeomorphism between Kerr spacetimes and Schwarzschild spacetimes. This coor-
dinate system will be used and will be called the Schwarzschild (s, s, 65, ¢s) coordinates on Kerr
spacetimes. Once we have this diffeomorphism, we can put any system of Schwarzschild coordi-
nates on Kerr spacetimes. These include the Schwarzschild (tg, rs, 05, ¢s) coordinates, where 15 =
ts+ x(rs)2Mlog (rs —2M) and rg, Os, ¢s are defined as above. We also define

1" =15 =tg+ x (rs)2M log(rs —2M)

and use the Kerr (t*, r, 6, ¢*) coordinates. Notice that 9, = 8,;.

It is common to denote on Schwarzschild spacetimes u = 2M /rs. We will take the same notation on
Kerr spacetimes, with the understanding that it is always defined with respect to the Schwarzschild rg
coordinates. In particular (1 — p) approaches 0 as r — r (the event horizon).

Another system of Schwarzschild coordinates can be defined by considering two coordinate charts
on the standard unit 2-sphere and introducing a system of coordinates (x?, X 5) on each of them. We
then define the Schwarzschild (¢g, rs, xg‘, X f) coordinates in the obvious manner. Using this coordinate
system and the diffeomorphism as above, we have, for small a,

(8K )ap — (8)ap < €r 2. 3)
This smallness assumption will be used throughout this paper.
2.3. Null frame near event horizon. Some extra cancellations for the estimates near the event horizon

are best captured using a null frame. Hence we define a null frame {V, Y , E1, E3} in the region r <ry,
where r is to be determined later. On the event horizon,

V =0 + 84,*

2M7"+
is the Killing null generator. A direct computation shows that it satisfies
VV V=« V,

where « is a strictly positive number on the event horizon. We want to extend V to a null frame. On
the event horizon, define ¥ first on a 2-sphere given by a fixed t* to be null, orthogonal to the 2-sphere
and require that gg (V, f’) = —2. Define also locally an orthonormal frame {E;, E;} tangent to the fixed
2-sphere. In the sequel, we will only need to work with a local null frame. We then extend this null
frame off the fixed 2-sphere on the event horizon (with Vig=V) by requiring

V¥ =V;V =V, E =0, )

where A € {1, 2}. Then extend this null frame using the isomorphisms generated by V. The equations
above hold everywhere. If we choose r, close enough to r, we still have, by Taylor’s theorem,

VoV =kV+b"Y +b'E| +b*Es, (5)
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where « is a strictly positive function in 4 < r <r, bounded away from 0, and [b*| < C (1 — p).
In Schwarzschild spacetime, consider the frame on 2 given by {(r§ sin 95)_18¢S, ry 1895}. Then we
get

V=(4+md;+ (-, Y=0;—0 Ei=ry'dy Ey=(rssinfs) oy

Since we consider Kerr spacetimes on which the metric is close to that on a Schwarzschild spacetime,
the null frame can be expressed in (t*, r, 6, ¢*) coordinates as

V=(+mdp+1—p)d+01(€)d, Er=r"8+ 01(e)d,
Y =8 — 8, + 01(€)9, Ey = (rsin®) 194 + 04 (€)d.

Alternatively, if we write E,, where o = 1, 2, 3, 4, for the null frame, we have

(14+wdp+ (1 —wd, =V + 01(€)Ey, 9 =rE+ 01(€)Eq,
O — 0, =Y + 01(€)Eq, g =rsin0Es+ O1(€)E,.

We also define the vector fields V, ¥, E|, E; outside {r < ry } by requiring them to be compactly sup-
ported in {r < r;’ } (for some r;’ to be determined) and invariant under the one-parameter families of
isometries generated by 9, and dg4+. Notice that in particular there is no requirement that the vector
fields form a null frame in the region {r, <r < r;r .

3. Notation

3.1. Constants. Throughout this paper, we will use C to denote a large constant and c to denote a small
constant. They can be different from line to line. We will also use A to denote bootstrap constants and
we think of A to be large, that is, A > C. We also use the notation O;(1) and O;(¢) to denote terms that
are bounded up to a constant by 1 and €, with bounds that improve by r~! for each derivative up to the
i-th derivative. We will also use the notation f ~ g todenote cf < g <Cf.

There are some constants that we will choose in the proof. The following are values of r in the Kerr
coordinates:

r+<r;<r;r<%M<RQ.

We will fix r;r and r, in Remarks and , respectively.
There are also smallness parameters that can be thought of as obeying

O<d<eknkKe.

We use € to denote the smallness of the specific angular momentum a of the spacetimes that we are
working on. We use n ~ Ce to denote the loss in the decay rate of the solutions to the wave equation
as compared to that on Schwarzschild spacetimes. We use e to construct the nondegenerate energy, and
use § and &’ as small parameters whenever they are needed. The parameters § and 8’ need not be fixed
from line to line.
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3.2. Values of t*. We will adopt the following as much as possible: We denote by t* a general value
of t*. In particular, it will be used for integration variables. We denote by t the t* value for which we
want an estimate and by 1y the t* value where the initial data is posed. We will always assume 7y > 1
and the reader can think of 7o = 1. When integrating, we will often denote the endpoints by 7’ and 7.
Finally, at a few places we will need to choose a particular value of #* in an interval. This is usually done
to achieve the maximum or minimum of the energy quantities. We often denote such choices as 7.

3.3. Integration.
Definition 1. Define the following sets:

o 3, ={t*=1}.

e Rt T)={r' <r* <t}

s K, t)={r=r,, 7' <t*<71}.
When integrating on these sets, we will normally integrate with respect to the volume form, which we
suppress. On X, the volume form is \/det g |x_. On R(7’, 7), the volume form is v/det gx. However, on
the event horizon ¥(z’, t), the surface is null and the metric is degenerate. Nevertheless, on #(z’, ), the
integrand will always be of the form J“nléw’ where n’éw is the normal to #(t’, ). We will hence take

the volume form corresponding to the (arbitrarily) chosen normal. Occasionally, we will also integrate
over the topological 2-spheres given by fixing r and r. We will denote the volume form by dA =

Jvdetgkls2.

For some computations, however, it is more convenient to write down the volume form explicitly in
coordinates. In our notation, the following two expressions denote the same integral:

/ f=/ fy/detgxly. drd de.
o P

When we write the integrals, we will often use [/ to denote an integral over a spacetime region and
use [ denote an integral over a spacelike or null hypersurface.
The volume form on X;+ can be compared with that on R(z’, 7). In particular, we have

[t = [ ()2

4. Vector field commutators

In this section, we discuss the vector field commutators that we will use in this article. One obvious such
vector field is the Killing vector field d;+, which satisfies

[l:ng, al*] = 0

In addition to d;,+, we will use three non-Killing vector fields S, Y and Q; to control higher derivatives of
the solution ®. We introduce S, a new vector field, to obtain the improved decay rate for the solution .
We will follow [Dafermos and Rodnianski 2008; 2011], defining the commutator Y to estimate ® near
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the event horizon. We will use the vector fields €2;, which are analogues of the angular momentum vector
fields in Schwarzschild spacetime, to control the error terms coming from the commutator [, , S].

4.1. Vector field commutators under metric perturbations. Some computations are easier in Schwarz-
schild spacetime than in Kerr spacetime. In the sequel, we will often consider a fixed vector field on
the differentiable structure of the Schwarzschild exterior. We now show that for such vector fields, the
commutators with [, and [, are close to each other as long as a is chosen to be sufficiently small:

Proposition 2. Consider either the Schwarzschild (tg‘, rs, xg‘, X 5) coordinates or (tg,rs > ry, x?, X SB)
coordinates. Suppose V is a vector field defined on either of these coordinates. Then

2 2
[Ty — Oy, VIO < Cer_2<z Zm3x|amv°‘||akcp|),
m=1 k=1

where 9 is the coordinate derivative for the coordinate system on which V is defined.

Proof. We rewrite
Ogs = 857 8,0 + 120, and gy = 8% 95,05 + 1% 0y

Using (g )ap — (g5)ap| < €r 2 and |8, (gx)ap — (g5)ap)| < €72, we have /= detgx —/— detgs| <
er~2 and |9y (/— detgg — /— detgs)| < er—2. Therefore,

sup |¢5” —gK|+SUP|773 n%| < Cer™2.

a.p
Therefore,
(O = Oy, VIO < (8% — 857005 V7)3, @] +2| (8 — 8510 V7 30, |
2 2 +|(n§ — n%) (0. V7 )0, @|
< CE’"_Z(ZZSUPIB’"V“ |akq>|) _
m=1 k=1

4.2. Commutator S. We construct a commuting vector field S on Schwarzschild that is different from
[Luk 2010] and is stable under perturbation.
Define S = t;“a,; + h(rs)0,g, where

h(r) r—2M ifr ~2M,
r =
(r+2Mlog(r —2M) —3M —2Mlog M)(1 — ) ifr > R,

for some large R, and it is interpolated so that it is smooth and nonnegative. For r > R, since t* =1, this
agrees with the definition in [Luk 2010]. Therefore we have

r* r* 2r* r* 3r*
[DgS,S]=(2+ ”)Dg5+3<——1— "‘)ar*+2((—_1>— “)z)&, ©)
r r\r r 2r

r

where A is the Laplace-Beltrami operator on the standard sphere. In the coordinates (¢*, r, 8, ¢),

Ogs = —a1 (r) 87 + o2 (r) 9% + a3 (r) 3,8, + aa(r)d; + as(r)d, + A.
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The crucial observation is that all ¢; are smooth and bounded and depend only on r. Noting that «; does
not depend on ¢, we have

[Oggs S1= B1 (r) 37 + Ba(r)d? + B3(r)8, 8, + Ba(r)d; + Bs(r)d, + Po(r) .

Again, it is important to note that all §; are smooth, bounded and depend only on ». The form of g; for
r > R is given by (6).
We consider the same vector field S on Kerr. Using Proposition 2, and noting that " S* is bounded
for m > 1, we have for r > R
‘[DgK, S1o — <2+ ﬂ)mg,(cb = —<r— - “)a,@ —2((1 - 1) - M)ACD‘
r r

r r\r 2r

2
< cer (Y lo*al),

k=1

and forr <R,

2
[Ogy, S19| §CZ|D’<<I>|.
k=1

4.3. Commutator S’ii. Let ©2; be a basis of vector fields of rotations in Schwarzschild spacetimes. An
explicit realization can be

cos ¢ cos b sin ¢ cos 0

Q:{a,' By 4 P  cos pdy — a}.
p» SIN Py + Sind $, COS Py b

Define 5,- = x (r)2; to be cutoff so that it is supported in {r > Rg} and equals 2; for r > Rqo + 1 for

sin 6

some large Rg. On Schwarzschild spacetimes, €2; is Killing and therefore Q; is Killing for r > R + 1.
Therefore,

[Ogg, 1= 5 (r) (3% +9),

where x is some function that depends only on r and is supported in {Rq < r < Rg + 1}.
Using Proposition 2, we have

[Oge» 1P| < Cr2(10°®| 4 [ D).

8K

Moreover, since €2; vanishes for r < Rg, we have trivially

[O,.,Q]®=0 forr < Rgq.

8K

From now on, we write € to denote any one of the €2;, while taking the norm to be |S~2d>| = ;19 P|.
This commutator is useful for gaining powers of r near spatial infinity. In particular we have

Y| < Cr ' |Qd].

This extra power of r is essential for controlling the error terms arising from the commutation of [,
with S.
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4.4. Commutator Y. Let ¥, as in Section 2.3, be a vector field that is null near the event horizon, is
normalized with respect to another null vector V and is cut off to be compactly supported in {r < r;r }.

Proposition 3. On Kerr spacetimes such that € is small, we have
[Ogy, Y1 —kV2®| < C(I1D3p®| + €| D*®| + |DD|)  forr <ry,
where k > ¢ > 0 is as in (5).

Proof. The principal term for the commutator [[g,, Y]® is 2(?)71’“DMDU©, where (?)n,w is the defor-
mation tensor defined by (Y)rr,w = %(D,L Y, v+ D, }A’M). We look at three terms that are useful in deriving
the estimates.

(Y)jTVV _ g(D‘A/f’ ‘7) = —g(f/, Dy, ‘7) =2k,
[P, = [5eDe . B+ gD, 7. 7)) = Ce,
|(i,)jTEAEB| = \%(g(DEBi}’ E4) +g(DEA?’ EB))| = Ce,

where the smallness in the second and third line come from the assumption that we are close to Schwarz-
schild. Notice also that for r < r,, V is CO close to 0y«. Therefore, in the commutator, the main term
is

KY2®.

All the other second order terms either have a 9,+ derivative or small. O

5. The basic identities for currents

5.1. Vector field multipliers. We consider the conservation laws for ® satisfying [J,® = 0. Define the
energy-momentum tensor
Tw = 0, D0, D — 8,00 DI, .

We note that 7},, is symmetric and the wave equation implies that D*T},, = 0. Given a vector field V#,
we define the associated currents

TV (@) =V"T,(®) and KY(®) =V, T (),
where V), is the deformation tensor defined by
W, = 2DV, + D, V).

In particular, KV (®) = (V)n,w = 0 if V is Killing. Since the energy-momentum tensor is divergence
free,
DM (@) =K" (D).
We also define the modified currents
TP (@) = T} (@) + §(wd, ®* — 9, wd?),
KV"(®)=K"(®)+ jwd"®3,® — 1 H,wd>.
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Then
D*J) " (@) =K"" (D).

We integrate by parts with this in the region bounded by ., £,/ and % (z/, ). We denote this region
as R(t’, t). We denote the future-directed normal to X, by n%r.

Proposition 4. We have

/ T} (@)ny + / T (@l 0+ / / KV (@) = f 1 (@)nf
v H(r',7) R(t',1) z

<

Vv 14 14 Vv
p Ht (/1) R(T/,7) )

</

One can similarly define the quantities above for the inhomogeneous wave equation [J,® = F. In this
case, the energy-momentum is no longer divergence free. Instead, we have

DMT,, = F3,®.

In this case,
D" J)(®) = K" (®)+FV"3,.

For the modified current,
D*J) (@) =K""(®)+ ;Fwd + FV"'9,P.

Proposition 5. We have

f JIY(QD)n’ér—i—/ Jj(@)n’;ﬁ(T,J)Jr// KV(CD):/ J (@)%, —// FV'3,,
" FH(t',1) R(t’,T) P R(t',T)

14 v 14
/ L (d>)n‘£,+/ I (<I>)n§e+<fcr>+// K" (@)
" (', 1) R(t',7)
=/ Jl’wv(dl')n’é,—i—// (—3Fw®—FV"3,®).
2y f R(',7)

5.2. Vector field multipliers under metric perturbations. If we consider Kerr spacetimes such that €
is small, vector fields multipliers are stable if defined in the Schwarzschild coordinates (¢*, r, x4, xB)
or (t,r >ry, x4, x8). We can consider a fixed vector field defined on the differentiable structure of a
Schwarzschild exterior and compare the currents obtained using the Schwarzschild metric and the Kerr
metric.

Proposition 6. Consider either the Schwarzschild (t5, rs, xg‘, xf) coordinates or (tg,rs > ry, x?, xg)
coordinates. Suppose V is a vector field defined on either of these coordinates. Then

|(15V’wv)u(¢)n’§ —(J,g’“’v)u(ob)n’; | < Cer™? max|V*|(3®)?
T T o
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and

vl oy gV —2(( kyra ) 2 m 2)
K" (@) — K" (@)] < Cer k%:lmjxw V. +|w|)(0D) + 21:2|a w|d?).
=0, m=1,

6. Statement of the main theorem

With the currents defined, we can state our main theorem.

Main Theorem. Suppose Uy, ® = 0. Then for alln > 0, R > ry and all M > 0O there exists ay such
that the following estimates hold in the region {ry <r < R} on Kerr spacetimes with (M, a) for which
a < ay.

(1) Improved decay of nondegenerate energy:

14
> (D’ @)?
j=0

:N{r<R}
042

sce (3 [ apetapsony, v Y [ apentapr@ont, )
z i , b 0
m=0 K] m-+k+j<€+5 0

(2) Improved pointwise decay:

14
D ID/9]

j=0 t+4

N 1/2
5 CRT—3/2+17<Z / JEEN sl 4+ Y / J,f*CN’wZ(at’fY"Q’q’)”'ém) '
=0 T ekt j<t+7 % 0

Here the vector field N will be defined in Section 7, and the vector field Z with the modifying function
w? will be defined in Section 9.

Remark. We will show that although Jﬂz’wz (®) n’él* is not always nonnegative, JMZJFCN"”Z (D) n‘él* is
nonnegative for sufficiently large C. Hence all the energy quantities in the theorem are nonnegative.

Remark. Since we have the improved decay of the nondegenerate energy, the theorem above can be
extended beyond the event horizon. More precisely, for any r, € (r_, ry), where r_ is the smaller root
of A =r?—2Mr — a?, the theorem holds up to r > r, for D understood as a regular derivative inside
the black hole, and with the constant depending also on 7. The proof is similar to that in [Luk 2010].

7. Vector field multiplier N, and mild growth of nondegenerate energy

Kerr spacetime has a Killing vector field 9;. The conservation law gives

/ JMT(CD)n’)éT—i—/ Il (®)nf, :/ (@) +// % PG.
s ¥(z0,7) e R(70,7)

We add to the Killing vector field 9; a red-shift vector field. Here, we use the “nonregular” red-shift
vector field as in [Dafermos and Rodnianski 2008]. Under this construction, N, is C° but not C' at the
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event horizon #*. Compared to the smooth construction in [ibid.], this construction will provide extra
control for some derivatives near .
Define

Y =y(n)Y + 30V,

where
1 1

T Uogtr=rpy? ™ 2= "hegr

By this definition Y is compactly supported in {r < r;“ } and is invariant under the isomorphisms generated
by 0;« and 9.

yi(r)y=1

Proposition 7. Let N, = 0;« + Y. For any e, there is a corresponding choice of € K e and ry such that
for every integer p, there exists c, > 0 such that

Jlivf(d))ngg+ ~ (D‘;d))2 +e Z (DEg, )2 on the event horizon,
Es€{E, Er}
I @l ~ > (Dg, @)’ +e(Dg, @) forr <ry,
Ey€{E),E2,V)
JliV“(CD)n’}ér ~ 2:(8CI>)2 forr >ry inthe (t*,r, x4, xB) coordinates,

KV (®) = cpe(llogr = r)l? (D @)% + Y (Dp, @) + (D ®)%)  forr <17,
A
KNe(@) < CeJliV”(CI))n‘ZLT forry <r <ry.

Proof. Tt is obvious that Y is timelike and future-oriented for r < r, . Since 9;+ is casual in the exterior
region of Schwarzschild spacetime and is null only on the event horizon, for every small e > 0, there
exists sufficiently small € > 0 such that N, is timelike and future-directed on Kerr spacetimes up to the
event horizon. The first two estimates hold since in Kerr spacetime, 9;« is e-close to V on the event
horizon. The third estimate holds because outside a small (depending on €) neighborhood of the event
horizon, d,+ is timelike.

To show that K¢ (®) has the required positivity near the event horizon, we compute the deformation
tensor. First, notice that

3Dyr

(r —ry)(log(r —ry))*

Dyyy = Dyyr =
Using this we have
O = gK(D{/(yl?"F)’ZV), V)= —gx(mY+nV, Dy V) =2yik+b" ys,
6D;r

) S
Vrig =gk Dynf +32V). ) =~ =

B 3Dyr
(r—ry)(log(r—ry)*

Droo =Lex (DY +32V), V) +1ex (Dy(n Y +32V), V) = +y1c+y2b",
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Moreover, we have

g mpp . Ve, g, = 0().

Notice that
Ty~ (Dy @)%, Tpp~ (D@2, Typ ~ VO,

and that (Y)n‘; Ey (Y)n? E and Vg ,Ep have no terms of the form (Dy ®)2. Hence we can choose ry
sufficiently close to ry so that forry <r <ry,

c

Y . 2
) = Dy G S logr =l

(g @2+ (D, 7).
A

Since 9+ is Killing, and KVe(®) = eK ¥ (), we have

1
(r—rp)log(r—ry)|

KNe(d) > ce(x(D);CD)z + - ((Dy®)* + Z(DEA c1>)2)> forr <r,,
A

Finally, since Jﬁ’*n’i* controls all derivatives in the region r, <r < r;r , we have
KN (@) < CeJ ) (d)ny  forry <r=<rj. O
Definition 8. We call the positive quantity |, s J /ive (D) n’ér the nondegenerate energy.

The following identity determines how the nondegenerate energy changes with t.

Proposition 9. Let ® satisfy Ug, ® = G. Then

/ INe(@)n, + / TNe(@)n, + f / K (@)
pom ¥(z0,7) R(ro, T)N{r=<ry}

:/ J[je(cb)nlg —I—e// KY(d>)+/ 0D+ eY D)G.
b 0 R(w0,D)Nfry <r<ry) R(10,7)

0

The estimates given by the vector field N are sufficient to show that, modulo inhomogeneous terms,
the quantity . s J If’" (P) n’ér cannot grow too much in a short time interval:

Proposition 10. Let ® satisfy U, ® = G. For e sufficiently small, e < e and 0 < T — v/ <1, we have

/ TN(@)ns, + / T (@)nly, <4 f I (@)nf  +C / / G>.
z H(t',T) z R(t’,7T)

Proof. We first note that

T
// KY(¢)§C/ / TN (®) ny, d7,
Rt ON{ry <r<ryi} v Jz;

<
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with C independent of e and € whenever € <« e < 1. Then, by Proposition 9,

/ TYe(@)nk, + / TN @)nly. + / / K@)
pom H(t',7) R, )N{r=ry}

:/ JliV“(QD)n’ér,—i—e// KY(d>)+/ (3D +eY DG
P %(r’,r)ﬁ{r; =r=ry }

R(t',T)
T
5/ J,ﬁVe(cb)n’;,JrCe/ / J,ivf(cb)n’;dfw’/f (0 ® + Y ®))* + (8~ G’
b i  Jx; ’ R, T) R(r',T)
T
< / TN (@)’ +(C8' +2Ce) / / TN(@)nk dT +(8)7! f f G>.
PN ’ v JE; ' R(t',7)

By Gronwall’s inequality and absorbing (8’)~! into the constant C, we have

/ IN(@)nk, <2 / JYe(@yny +C / / G*.
>, p R(T',7)

T

Now the estimate for the term horizon follows from Proposition 9. (]

8. Integrated decay estimates and boundedness of nondegenerate energy

In this section we would like to show an integrated decay estimate. We first follow [Luk 2010] to
construct a vector field and prove an integrated decay estimate for the terms near spatial infinity. That
construction is in turn inspired by [Sterbenz 2005]. In [Luk 2010], the decay rate in r of this integrated
decay estimate is crucial for controlling the error terms arising from the vector field commutator S. In
the sequel, such an estimate will also facilitate many computations as we prove the full integrated decay
estimate.

In view of the red shift, all derivatives of ® can be controlled near the event horizon. However, we
would also like to prove an integrated decay estimate that controls @ itself near the event horizon. This
is in contrast to the integrated decay estimate in [Dafermos and Rodnianski 2008], which degenerates
near the event horizon. This extra control is useful as we are considering the inhomogeneous problem.

The proof of the integrated decay estimate for a finite region of » away from the horizon follows that in
[Dafermos and Rodnianski 2008]. The one difference here is that we do not assume the boundedness of
f .7, live (@)n’ér (even after ignoring inhomogeneous terms). We would instead like to prove the bound-
edness of f):r J live(CI))n‘ér using the integrated decay estimates. We will, however, use Proposition 10.

The reader should think of this integrated decay estimates as analogous to the estimates associated to
the vector field X in [Dafermos and Rodnianski 2009; 2011; Luk 2010]. However, it is impossible to
obtain such estimates using a vector field in Kerr spacetimes and we therefore resort to a phase space
analysis; see [Alinhac 2009].

To perform the phase space analysis, we will take the Fourier transform in the variable ¢*, take the
Fourier series in the variable ¢* and express the dependence on the 6 variable in oblate spheroidal
harmonics. Carter [1968] discovered that with this decomposition, the wave equation can be separated.
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However, to take the Fourier transform in the variable 7*, we need ® to be at least in L2. To this end,
we perform a cutoff in the variable ¢*.

8.1. Estimates near spatial infinity. In this subsection, we follow [Luk 2010] to construct a vector field
X = f(r*)d,+ such that the spacetime integral that can be controlled with a good weight in r.
Proposition 11 [Luk 2010, Proposition ~8]. In Schwarzschild spacetimes, using (t, r*, x4 xB ) coordi-
nates, there exists X §= f r*)0,+ and w§ supported inr > 173M , such that

KX (@) 2 (10, 0)2 + 1 VO +r37002)  for r* > max{100, 100M)
and

‘/2 JE @)l ‘ <C /2 T (@)nk .
This implies via stability (since the vector field is supported away from the event horizon) the following:
Proposition 12. In Kerr spacetimes, using (t*, r, x4, xB) coordinates, there exists X and wX supported
inr> %M such that for some large R,
KX (@) > g (r7' 2 (00 0)2 + 1 Y OP 47370 ®%) — Crer2(0,. @) forr* > R

and

% X
‘/E Jlf,w (d))n’ér‘ SC/E Jli\’e(cb)n’ér.

Now it is easy to construct the following vector field on Schwarzschild spacetimes:

A

Proposition 13. In Schwarzschild spacetimes, in (t, r*, x4, xB) coordinates, there exists X §= f (r*) 0,

. 13
supported inr > =M such that

KX(@) > cr 100, 0)2 — COr 2 (0, @) + VD2 +r370D2)  for r* > max{100, 100M)

and
‘/E s¥ @t | SC/E TV (@)l

Proof. Let f be supported appropriately and let f(r*) = 1/(1+r*)® whenever r* is large. O
As before, a stability argument gives this:

Proposition 14. In Kerr spacetimes, in (t*, r, x*, xB) coordinates, there exists X supportedinr > %M
such that for some large R,

K}?(Cb) > cr 1789 D)% — C;((r_l_‘s(ar*CD)z L WWoPR +r 3302 forr* > R

and
| /E X @mg | <c /E IV @l

X

Now using the vector field X+ % (cz/C )v()}v( and modifying function w*, we get the following estimate:



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 573

Proposition 15. For € sufficiently small,

[[ st v
R(ro, T)N{r=R}

5C(fJ;Ve(cb)nngr/J;V(qnn’;er // (T3 (@) n’ét*+<l>2)+/ (|a,<1>|+r—1|q>|)|G|>.

P Xy R (w0, 0N ZE M<r<R) R (10,7)

8.2. Estimates near the event horizon. The integrated decay estimates shown in [Dafermos and Rod-
nianski 2008] are degenerate around the event horizon. Here we will prove the corresponding estimates
near the event horizon. In view of the availability of the red-shift estimate K¢, we will focus on the
zeroth order term ®2. It turns out that we can use a construction in [Luk 2010].

A

Proposition 16. In Schwarzschild spacetimes, in (t, r*, x*, x8) coordinates, there exists X;, = Jrn(r®)o,+

and wX" supported in r < %M such that
KX (@) 2 ¢((3, @) + VDL + @) forr <ry
and

X X
)/2 JXnw (CD)ngr‘ §C/Z JN (@) and |TX (@) nlh, | < CIN (@)l

Proof. Let
M3 w33

ar*:— —3,*,
=% = Xy ™

Xn= fu(rg)dy: = —X(F)W

where x (r) is a cutoff function that is compactly supported in r < %M and is identically 1 forr <r, .
Also, let

A(1 —
Wb =2f0t+ T e,

From now on, we will focus on the behavior when r < r, and treat the terms in {r, <r < %M } as
errors. Recall that on Schwarzschild spacetime,

2=3w) f@r")
2r

KXh’th f/(r*)

(@) = (8- ®)* + |V |
l—n

1

1 "o % 4 1"y % Mmoo 2“ * 2
—Z(T——f(r)+—fo»+~3fv>——;6—4va>)¢.
— MU r r r

We now look at the sign of this expression for r <r . Itis easy to see that the coefficient for (9, ®)? is
positive:

prr—p) _ c(l—p)

f™) =0 =, folr) = (I +4p—22 = 3

El
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The coefficient of | ¥ ®|? is also clearly positive. A computation shows that

1 4 2
"+ G -G f
7 r r r

w8192 + (128 + (=784 + 1 (464 + (=28 + (52 + (=3 +41)))))
4(4+ u2)*

We want to show that P () = 1924 (128 + pu(—784 4 (464 4+ (=28 4+ (524 (—3+4w)))))) > 1/7
for 16/23 < pu <1.

First, 192 4 128 — 784u% +4641° = 16(—12 — 20 +29%) (n — 1) > 0.

Now 52 — 3 + 4u? reaches its minimum at 3/8. Hence, 52 — 310 + 4% > 823/16.

Finally —28 4+ #(52 — 3 +4u?) > —28 +11/20-823/16 > 93/320.

Therefore, P(u) > 1023/6400 > 1/7 for 16/23 < u < 1. Therefore, for r <ry,

K50 (@) > (8, @) + |V D 4 02).
The second and third statements,

‘ /2 Jlf’““’xh(cb)n’érlgc /E JN@l and |75 (@)l | < CTN (@)l

follow from the boundedness of f; and wX* and that on the Schwarzschild horizon 9, = 9,+. Hence in
both estimates, the constants are independent of e for e small. (|

Because X, and w*" are actually smooth up to the event horizon, we have this via a stability argument:

Proposition 17. In Kerr spacetimes, using (ts, rs, xé, xg) coordinates, there exists X;, and wXn sup-
ported inr < 2—83M such that

KX (@) > ¢®? — Ce(3p-®)2 — Ce(8, D) forr <ry

and

X, Xp
‘ /E Jlf’“wh(d>)n%1‘§C /E TR (@l and I (@)nke | < CJY(@)nky,

Together with the red shift, we then have an integrated decay estimate near the event horizon:

Proposition 18.

f / (@7 + KN (@)
R(z0,T)N{r=<ry'}
< c( / IN(@)nk, + / J,ive(op)n;m + / f o (D% 4 TN (P)n )
P 21'0 %(TO»T)m{ry SrSYM}

][/ (|8,*¢|+r_1|d>|)|G|+‘f/ (at*fb+eYCI>)GD.
%(To,f)ﬂ{rﬁ%M} %(TO,T)W{VSZT;SM}
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8.3. Cutoff, decomposition and separation. Following [Dafermos and Rodnianski 2008], we define the
cutoff 7, = £, where £ = x (t* — 1 — 1) x(—t* — 14 1'), for some smooth cutoff function y (x) that
is identically 1 for x < —1 and has support on {x < 0}. Then

O, @7 = £G +2D*® Dy 4+ P & =: F.

We then decompose in frequency. We decompose the Fourier transform in ¢ of & into Fourier series in
¢ and oblate spheroidal harmonics:

O =" RY,(1)Sme(aw, cos0)e™?.
m,

We also decompose the inhomogeneous term F (which comes both from the original inhomogeneous
term G and the cutoff):

F=>"F(r)Sne(aw, cos0)e™?.

m,l
Letting ¢ be a sharp cutoff with such that £ =1 for |x| <1 and ¢ =0 for |x| > 1, we define

o
<I>b=/ tfor) Y RU)Sulaw, cosf)e™ e dw,

m,Ldm () <A

00
Oy = / {(w/wy) Z Ry (r)Smi(aw, cos 9)€im¢eiwtdw,

m,Ld (@) >4

cbuZ/ (A—@/w) Y. Ry (MSwmlaw, cosd)e™ e dw,

m, A (0)>Apw?

cbﬁ:/ (1—¢(w/w)) Z R2,(r)Smi(aw, cos 0)e™ e dw.

m, o (@) <Ayw?

In this decomposition, we think of w; as large and A, as small.

8.4. The trapped frequencies. Trapping occurs for ®;. An integrated decay estimate is proved in de-
tail in [Dafermos and Rodnianski 2008, Section 5.3.3]. The first term on right side in the following
proposition is different from that in [ibid.], but the inequality still holds as a result of the proof of the
corresponding inequality there.

Proposition 19.

//g;{( )(chi'i‘)((arcpﬂ)z+X]l{|r_3M|Z%M}Jliv(q>D)nl;:,*)
—00,00

o.¢]
§C/ (aﬁq>;,)2+Cef (a¢*c1>§,)2+/ dt*/ Qf @ +a®) P F o ((r* +ah) 2 oT)
H(—00,00) H(—00,00) —00 r>R

A
+ f/(r*+a*)F,®%)——— sin0 d¢ dO dr*+6' / / (D)2 4-(8,+®%)2+C(8) ! / / F2,
rc+a RN{r<R} RN{r=R}
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where y is a weight that degenerates at infinity and near the event horizon and f is increasing and
f=tan '(r* —a — Ja)/a —tan~ (=1 —a)~V2 for r > R for some fixed .

8.5. The untrapped frequencies. For each of the pieces that are untrapped, that is, ®, for e =b, d or f,
Dafermos and Rodnianski [2008] constructed a vector field X, such that

/ f XN @l +B2) < C f / K¥(0,),
R(—00,00) R(—00,00)

where x is a weight function that both degenerates at infinity and vanishes around the event horizon.
Using this vector field and the conservation identity, they showed the following:

Proposition 20.

// X ((Jlivf(q)b) + J,ivf(q’d) + Jli\’(cpt))n/;r (@24 D2+ q>§))
R(—00,00)

<C f Iy (@)nfe. +C @) / / F*
#(—00,00) F(—00,00)N{r=<R}

R(—00,00)N{r <R} ! T {r<3¥M}’n )y,
o0
+/ dt*f (2f(r2+a2)1/2(Fb + Fy+ Fu)ar*((r2+a2)1/2cbz,)
—00 {r=R}

+ (02 + @) (Fy + Fo+ F)®L)—2 sin60 de o dr*,
r<+a

where x and f are exactly as in Proposition 19.

Proof. This inequality is essentially borrowed from Dafermos and Rodnianski [2008, Section 5.3.4]. The
only difference is the first term on it right side. They used the estimate

/ TX(@)nlhy, <C / I (@T)ns .
H(—00,00) P

<

Here, we have not proved boundedness of the solution and hence we are content with the estimate

/ TX(@nlhy, <C / TN @ )nky, .

%(—00,00) #(—00,00)

This estimate holds for C independent of e because X, is constructed as f 9, and, on the event horizon,
3= O(1)V 4+ O(€)Ey4. O
8.6. The integrated decay estimates. To add up the estimates in the previous sections, we need a Hardy-

type inequality:

Proposition 21. For R’ < R,

/ 2o’ < C / reJ Y (P)nl
=.N{r=R)} S.N{r=R") '
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Proof. Let k(r) be defined by solving k'(r, 0, ¢) = r®=2vol, where vol = vol(r, 6, ¢) is the volume
density on X, with r, 8, ¢ coordinates, with boundary condition k(R’, 8, ¢) = 0. Now

/ ré 22 = f / / - K (r)®*dr do d¢
21— ry
=2 /ff k(r)®0,®dr do d¢
k(r)2 1/2 1/2
52( f / / 0 (8,<I>)2drd9d¢) ( / / / k/(r)d>2drd«9dd)> )

Since vol ~ 2, k(r) ~ r**" and k' (r) ~ r*, we have (1 +k(r)2)/(1 +k'(r)) ~ r¢vol. ]

We now add up the estimates for ®,, &4, &; and Py.

Proposition 22.
// L s L I (@ T8, @)% +r 0007
R(t’,T)

< c( / JY(@)nk + / VACOTISIES / T3 (P)nly,
e X H(t',7)

T

+// (Iar*d>|+r‘1|<I>I)IG|+‘/f (at*d>+eYCI>)G|
R(t'—1,7+1) %(f’—l,T-i-l)ﬂ{rf%M}

+// G2).
R(t'—1,t+1)

Proof. Since the function f appears identically in Propositions 19 and 20, we can add up the estimates
to obtain

f /% . (XU (@o) + T (@) + Ly, spgys 1y I (Pe) + T (@I + 4 (@F + F + DF + 7))
< C/ T (@)nky, +C(8)7! // F?
H(t'—1,7+1) R(—00,00)N{r<R}
+Cé ff (PL) + (3 PL) + Ly 23y T2 (DL
P (—00,00)N{r <R} =8 !
o0
b Car [ @pet ) P R Fot B ) P
—00 {r>R}
+ 02+ a)(F + Fot Fy+ F)®L)—2 sin0 dg do dr*.
r<+a
By the definition of the cutoff, we have the pointwise equalities

F=F+F+ F,+ F;.
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Therefore, we have

// XLy sz Lo T (RTINS, + X (7))
R(—00,00)

< C/ TN(@)nly. +C(8)7! // F?
H(r'=1,7+1) R(—00,00)N{r<R}

+ 8’ / / (CINERNCRTINEE S TSI C IR
R(—00,00)N{r<R}

/ dr* f 2f@*+a)' PFo((r* +a®)'POL) + f/(r* +a )Fcbf) i sinf d¢ db dr*.
{r>R} a’

First, by Proposition 10, we have

f @ty <€ / @l +C f Ty @'y, + / T (@i
(' —1,7+1) P >, %(z',7)
Recall that

F =£G+2D*®Dy& + ®,, £.

By the definition of &, the last two terms are supported in the * range (' — 1, T")U(z, T+ 1). Moreover,
since & depends only on ¢*, the only terms involving D® are 9,+® and O(e)d4+P. Using this, we
immediately have the following with C independent of e as long as € < e:

ceH™! / f F?
R(—00,00)N{r<R}
<cEH™! (// G + // (r 2% 4 T (D)nk, *)).
R('—1,7+DN{r<R)} R(t'—1,7")UR(T,T+1) !

Similarly, we have

/ dt/ F02+a)FOL,—2 sin0 d do dr*
{r=R) r’+a’

50(// r_1|<I>||GI+// (r_2d>2+JliV"(CI>)n’§t*)).
R(t'—1,7+1) R(t'—1,")UR(T,T+1)

The other term with F' is more delicate to estimate. One of the terms in the expansion does not have
sufficient decay in r:

(0]
/ dt*/ 2f(r2+a2)1/2Fa,*((r2+a2)1/2c1>§,)r2$a2sined¢d9dr*
- r>R}

gc(/f r—1|c1>||G|+// (r_2<I>2+JliV”(CI>)n’)éI*))
R(t'—1,7+1) R(t'—1,7)UR(t,T+1)

o
+/ dt*/ 21 +aH) Po0,, £0,-((rF +a*) D) ZA > sin6 dp do dr*
—o0 {r>R} reta
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Nevertheless, noting that £ is independent of 7*, an integration by parts in r* would give

A
r2+a?

o0
/ dt*/{ }2f<r2+a2>1/2<mg,{sar*<<r2+a2>1/2<1>>s sin6 dp df dr*
—00 r>R

:—/ dt*/ (r2+a2)d>2$DgK§8,*<f%) sin6 d¢ d6 dr* + boundary terms
—00 (r>R} r<+a

<C // r_2CI>2,
R(t'—1,7)UR(T, 7+1)

where the boundary terms can be controlled (after possibly changing R) by pigeonholinginr € [R, R+1].
By the mild growth estimate of Proposition 10, the estimate near the event horizon from Proposition 18
and the Hardy inequality of Proposition 21,

/ A (r 2o+ JliV“(CD)n’gt*)

(r/=1,7)UR(7,7+1)
< C(/ J;L\’e(cp)n’gr, +/ Jlj\’f(cb)n’ér, +// GZ).
) po R(t'—1,7")UR(T,T+1)

Therefore, using all the estimates above and noticing the support of £, we have

<

// Xy spgz tan 0 (@, + @)
R(t',T)

<c@)! f I @ns , +C @)~ / INe(@)n, +C / TNe(@)nly,
2y poN J(v',7)

+c// r_1|<I>||G|—|—C(8/)_1// G?
R(T'—1,7+1) R(t'—1,7+1)

2 2 N,
+C3/ _/.Li(.[/ Onr<R) D+ (ar*q)) + l{rS%M}JM (q))”l;:,*

We add to this the estimates near spatial infinity and the event horizon, that is, Propositions 15 and 18,
to get

o Ne —1-6 2 3-8
// S RIS PV CO ST S S L DRE T S
R(t’,7)
<cEy! /
T,
+C// (|ar*¢|+r_1|¢|)|G|+C‘f/ (3 ® 4V D)C
R(t'—1,7+1) %(T,—l»f-i-l)ﬂ{rS%M}

+C@)! // G*+C¥’ /f O+ (@) + 1y, 2y S (P
R(t'—1,7+1) R(r'—1,7+1)N{r<R} -

I (@ +C@)! /

: J,iV"(QD)n’)ér +C / J,iVe(cD)n{;(f+

H(t',T)
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By choosing &’ sufficiently small and absorbing (8’)~! into the constant C, we can absorb the last term:
//%( / )r_l_‘sIl{lr_3M|Z%M}J/iV“(d>)n’§t* +r1 70,9 +r 09
T/, T

< C/ Jlf’e(cp)n’g , +C/ ]/i\’e(CID)n%r—{—C/ Jlive(cp)n’;{+
P i =, ¥H(t',7)

+C// (Iar*cl>|+r‘1|<l>|)|G|+C‘// (a,*cb+eyc1>)G)
R -1, 7+DN{r<E m} A1 e+ DN{r<Z M)

+C / f G>.
R(t'—1,7+1)

using Proposition 10 and 21 at the last step. ]
Definition 23. From now on, we write

KX0(@) =r™ 170y, sy a0 (@ 4171 70(0,0)7 40002,

KX (@) =r "0 7Y (@)nl +r 37002,
This is a slight abuse of notation because these “currents” do not arise directly from a vector field.

8.7. Boundedness of the nondegenerate energy.

Proposition 24. Let ® satisfy [, ® = G. For e sufficiently small and € < e, we have

/ TN (@)n, + f INe(@)nly. + / f K@)
M (', T) R, O)N{r=<ry}
< c</ JNe(@ynle |+ ‘// 090G+ ‘f/ eY 0G|
S ' R(t'—1,7+1) R(t'—1,7+1)
+// <|a,d>|+r—1|<1>|>|G|+// GZ).
R(t'—1,7+1) R(t'—1,74+1)

T
/f KY(®) < C/ / TNe(®)nk, di*,
R(t', T)N{ry Srfr;f} v JX;

with C independent of e and € whenever € < e < 1. At this point, we choose ry < %M < 2—83M . Hence

Proof. We recall that

this term can be controlled by the integrated decay estimates. Then, by Proposition 9,

/ TN (@)n, + f TNe(@)nly. + f / K@)
po H(t',T) R/, 0)N{r=ry}
=/ Jlivf(¢)n’§/+e// KY(¢)+// (0D +eY PG
D ‘ R(t',N(ry <r<ry} R(’,7)

T
< / Je(@)nf,  +Ce / / TN (@)nly, dT + / / (0@ +eYP)G
T v JEn{ry <r<r) R(t',7)
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< / J,iv“(cb)n’ér,—l—Ce( / TV (@)l + f T (@)nf |+ / TN (@),
o p N (1)

+/f (|8,d>|+r_]|d>|)|G|—|—f/ GZ)
R(t'—1,7+1) R(t'—1,7+1)

+ ‘// (8,*d>—|—eY<I>)G’.
R(t',T)

Hence, the proposition holds if e is chosen to be sufficiently small. (I

Remark. From this point on, we will consider r;,“ and e to be fixed. After ¢ is fixed, the vector field N,
will be written simply as N.

We now estimate the inhomogeneous terms in Proposition 24:

Proposition 25.

/ T (®)nk +[ J,iv(q>)n{;€++/f KN(CD)—i—/[ KXo(®)
pe ’ H(t',7) R/, )N{r<ry} R(t/,7)

T+1 1/2 2
gc(/ Jlf’(q>)n‘§,+(/ (/ G2) dt*) +// G2).
= ! /—1 Py R(T',7)

Proof. Adding the estimates in Propositions 22 and § times the estimates in Proposition 24, we have

f T (@)nk +/ Jﬁ(q>)n§;€++// KN(CD)—l—Sf/ KX0(®)
>, i 9(t',7) R(t',DNfr<ry} R(t',7)
§C(f J/iv(cb)n’ér,—i-// (Iad>|+r_1|d>|)|G|+// G2>
b R(z'—1,7+1) R('—1,7+1)
N N
+C8(L J (@)’ +f%(r/ , g (@)n;+>
12 pr4l 1/2
< C( / JY (@ 4+ sup ( f 7Y (CD)n’gt*) f ( / GZ) dr*
= rre[t’'—1,1+11\J = =1 poe
+// G2) +c5(/ TN (@)nk +/ Jg(q»n{;ﬁ),
R(r'—1,7+1) T, HE IR

where at the last step we have used Proposition 21. Choosing C§ < %, we can absorb the last term to the

</

1.'/

left side to get

[ oarome+ [ e [ kv@)+s [ ke
ol ’ (', 7) R(r', N{r<ry} R(,7)
1/2 pr4l 1/2
sc( / JZLV(CD)n’éT,—F sup (/ ]Iiv(cb)n’ét*) / ( / GZ) dr*
X t*e[t/—1,7+1] pap /-1 pIFS
M) o
R(t'—1,7+1)
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By considering the estimate above on [t/, T], where T is when the supremum on the right-hand side is
achieved, and using Proposition 10, we get

/ J,ﬁV(cb)nngf J,fv(q>)n{;€++// KN(<I>)+8/f KXo(d)
o ' %(t',7) R, D)N(r<ry) R(1,7)

T+1 2
< C( f T (@, + ( / ( Gz)l/zdr*> )
7/ /-1 E,*

We plug this into (7) and apply Cauchy—Schwarz to prove the proposition. (I

We can also estimate the inhomogeneous terms not in L'L? but in L?L?, provided that we allow
some extra factors of r and some loss of derivatives in G. This is especially useful for estimating the
commutator terms from S, which do not have sufficient decay in ¢* in the interior to be estimated in L' L.
More precisely:

Proposition 26. / T (@)n + / TN (@)l +// KN(d>)+// KXo (®)
pom FH(t', 1) R, )N{r=<ry} R(t’,T)

5c</ I (@) +Z/f P @ENG) +  sup / GZ).
= R(t'—1,74+1) rrelr’'—1,7+11 J B n{lr—3M|<§ M}

Proof. By Propositions 22 and 24,

/ T (®)nk +[ Jﬁ(@)n{;€++// KN(CD)—i—S/f KXo(®)
" ’ H(t',T) R/, )N{r<ry} R(t’,T)
§C<f Jlf’e(dD)n‘gr,—i—‘// at*an’
. R(t'—1,7+1)
+V/ eYd>G‘+// (|a,c1>|+r—‘|<1>|)|G|+// G2>
R(t'—1,74+1) R(t'—1,7+1) R(t'—1,7+1)
+C8/( / T (®)n + / Jliv(¢)n§€+).
>, (1)

Choosing C8’ < 5, we can absorb the last term into the left hand side to get

/ TN (®)nk +f JN(<I>)nw+// KN(GD)—i-/f KXo ()
po H(t',T) R/, )N{r=<ry} R(t’,T)
§C(/ Jﬁ’(@)n‘é/—l—‘f/ a,*ch‘Jr)f/ eYdDG‘
. T R(t'—1,74+1) R(t'—1,74+1)
+/f (|8r<I>|+r_1|d>|)|G|—|—f/ GZ).
R(t'—1,7+1) R(t'—1,74+1)
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For the bulk error term, we focus at the region {|r —3M| < %M } and integrate by parts.

‘// 8 ®G
R(t'—1,t+D)N{Ir—3M|< 1M}
55/// ¢2+C(5/)—1f/ 3G
R(e'—1, 1+ DN{Ir—3M|< 1 M) R(r'—LT+DN{Ir—3M|< g M)
+ V @G) + ’/ <I>G‘
SeiN{lr=3M|< M) oo1N{r=3M|<g M)
<y / f 02 4 C(8)! / f (0-G)*
R(r'—1,r+DN{r=3M|<} M) R(T—1t+D)N{|r—3M| < M}
+  sup (8/ r_24>2+C(3/)_]f GZ)
t*elt/'—1,7+1] S N{lr—3M|< g M} s N{Ir=3M|= g M}

<4 / f 372 (87! / f (8,+G)?
R('— LT+ DN{Ir—3M|<§ M} R('—1L,T+DN{Ir—3M|<§ M}

+  sup (5/ f IY @)k +C@E)! f
poye

2
G )
tre[t/—1,7+1] ZN{lr—3M|<i M}

where at the last step we used Proposition 21. Therefore,

/ T (®)nk +f J,ﬁv(q>)n{;€++f/ KN(CD)—i—/f KXo ()
pom ' FH(t', 1) R/, )Nr=<ry} R(t’,T)
gc(/ Jﬁ(d))n‘g,ik‘// 8,*¢G‘+‘// Y 0G|
. ’ R(z'—1,7+1) R(z'—1,7+1)
+/f (|a,c1>|+r—‘|q>|)|G|+// GZ)
R(t'—1,7+1) R(t'—1,7+1)
< C(/ TY( @)k + ‘// at@GD +c@)! f/ r'tG?
T i Rz =1, 7+ DN{Ir—3M|<§ M} R(z'—1,7+1)

+6 //%/_1 m)(r_s—aq)z+r—1_s(a,q>)2+11{6@}1;7@)”;[*)

ccf
z

1
IY (@)l +C )7 Z/ I OnG): + 6 /f KXo ()
' 0 Y R =1L T+1) R('—1,7+1)

+  sup (5/ / TN (@)nf  +C@)™! / G2>. ®)
E,*

rreft/'—1,t+1] Zx0{lr—3M|< i M}

7/
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where at the last step we have used Propositions 10 and 21. Suppose sup;«¢[;/—j ;4178 er* J;iv (CI>)n’§[*
is achieved by t* = T. Applying (8) on [t/, T], we get

1
/ I (@ <C / IY (@)l +C@EH Y / / rI@nG)? 4o / / K% (d)
X; )2 m=0 R(r'—1,74+1) R(r'—1,7+1)

+' / IV (@nlh +C sup / .
P2 e[t/ —1,t+11 J S N{Ir—3M|< s M)

T

which, upon choosing §’ < % and subtracting the small term on both sides, gives

1
/ I (@ <C / IY (@)l +CE) Y / / rI@nG)?+o / / KXo (d)
; DI m=0 R(t'—1,7+1) R(t'—1,7+1)

+C sup / G?,
t*e[t’/—1,7+1] 2,*0{\r—3M|§éM}

Therefore, plugging this back into (8), we have

[t s [ e ] ko [ K@)
pom ’ H(t',T) R, O)Nr=<ry} R(t’,7)
§C/ TN (@b +6 // KX°(<I>)+8/// KXo (d)
Sy ’ R(t',7T) R(t'—1,7)UR(T,T+1)
1
+C Z // r1+8(8,'fG)2+C sup
=0 R(t'—1,7+1)

teft/'—1,7+1] /;J,*ﬂ{|r3M|§§M}

<C / TN (@), +8 / / KX0(@)+C&’ / TN (@)nk,
P ’ R(t',7) T '

1
+CZ f/ r1+8(8t’i‘G)2+C sup
m=0 R(t'—1,7+1)

reft/'—1,7+1] />:,m{|r—3M|§;M}

G2

G2
where at the last step we have used Proposition 10. Finally, by choosing C§ < %, we can absorb the

small terms into the left-hand side and achieve the conclusion of the proposition. U

In the proof of Proposition 26, there is a loss in derivative for G because we have to integrate by parts
in the region {|r —3M| < %M }. Therefore, if G is supported away from this region, we can repeat the
proof without this loss. In other words:

Proposition 27. Suppose G is supported away from {|r —3M| < %M }. Then

/ TN @)k + / TN (@)nl. + / f KN (@) + f / KX ()
po ' H(t',T) R, T)N{r=ry} R(t',7)

1
3 C(/ J,iv(q’)"lé & Z ff PG sup / Gz)_
I ! m=0 R(t'—1,74+1) ree[r'—1,7+1] Z,*ﬂ{\r—3M|§éM}
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This will be useful in Section 13.
In applications, it is useful to have both ways of estimating G.

Proposition 28. Let G = G| + G, be any way to decompose the function G. Then

/ T (®)nl +/ JliV(CIJ)ng‘e++// KN(<I>)+// KXo(®)
po ’ H(t',7) R/, T)N{r<ry} R(t/,7)
T+1 1/2
el reont ([ () o)
o /—1 Xx R(t'—1, r+1)

1
> ARG | G%)
oo Y SR —17+1) rrelr’'—1,7+11 J 2 n{lr—3M|<§ M}

In the estimates above, only the function ® and its 9, derivative can be estimated without a loss around
the trapped set. To estimate the other derivatives, we need to commute with the Killing vector field d;«.

Proposition 29. We have

f f KX (®)
R(t',T)

T+1 172 2
< (Zf I @ d>)n2/+2(/ ( Gl)) dt) +Z/f " G1)?
/-1 X R(t'—1, ‘E+1)

1

+Z// rOMG) +  sup Zf o G2)2)
R(r'—1,7+1) rrelt'—1e+1] , —) JExn{Ir=3M|< g M)

Proof. Using Proposition 28 and the fact that 9, is Killing, we immediately have the following estimate
for 0,+®

/ / r7 (0 ®)°
R(t',T)
7+1 1/2 2
sC(/ Jﬁ(az*d>)n’g,+(/ ( <at*G1>2) dz*) +// (3-G1)*
o ! -1 pos R(r'—1,74+1)

T
2

+y / / rH@nGy) +  sup / (BI*GZ)Z).
— 7 IR -1+ rrelv'=1,t+11J Zn{lr-3M|< 1 M}

m

This would allow us to estimate all derivatives of ® except for the fact that the estimates for the angular
derivatives of ® degenerate around r = 3M:
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/f (o RV £ SR O D A (A SRR L )
R(t’,7)

T+1

1 1 172 21
5C<Z/ J,iv(a;’:@)n;,+2(/ ( (8,’5!G1)2> dt*) +Z// 37 Gy)?
m=0"%v' A CL e I mep? JRE =1+

2 1
+Z// FH@mGy)?+  sup Z/ (8;13G2)2).
0 JRE =17+ rrelr'—11+1] ,— J T N{lr—3M|< g M)

We now use this known estimate and construct another vector field to control the angular derivatives in the
region r ~ 3M. The argument is simple because the estimate is only local. Take f,, (r) to be compactly
support in 3M — }‘M <r<3M+ }LM and identically equal to —1 in 3M — %M <r<3M+ %M. If we
consider X, = fan(r)dy+ in Schwarzschild spacetime, we get that the coefficient in front of the terms
with angular derivatives is i /2r, which is bounded below in 3M — %M <r<3M+ %M . In other words,
one gets an estimate of the form

—1-6 2
// r ]1{|,_3M|§éM}|Y7cI>|
R(t',7)

SC(//%( K L A CA L UL L
R(t',T

+f J,jV(cb)n;TJr/ J,ﬁV(cp)n‘g,Jrf/ (|8rd>|+|r_ld>|)|G|+/ Gz>. )
=, Y T R(T',7) R(',7)

Using a stability argument, (9) would hold also on Kerr spacetimes. One easily checks that the terms
with G on the right-hand side can be estimated in the same manner as before. Hence, the proposition
can be proved by applying Proposition 28. (Il

9. Vector field multiplier Z and decay of nondegenerate energy

We follow the definition of Z in [Dafermos and Rodnianski 2008]. Let Z = MZL +v2L, where u and v
are the Schwarzschild coordinates u = %(t —rg)and v = %(z +r3),and L =9, and L =2V — L, where
V =0+ x(r)a/(2Mr)d4+ with x being a cutoff function that is identically 1 for r <r, — %(r; —ry)
and is compactly supported in {r <r, — }L(r; — r4)}. With this definition, V is Killing except in the set
{ry — %(r; —ry) <r<ry — }‘(r; —ry)}. Let w? = 4trg(1 — )/ r. Notice that while u — oo as one
approaches the event horizon, Z is continuous up to the event horizon due to the following (however, Z
is not C' and hence its deformation tensor is not continuous up to the event horizon):

Proposition 30. In the Kerr (t*, r, 0, ¢*) coordinates,

2ry — 2M>
— ] 0,.

L=(=mie—(=m (3

In the null frame near the event horizon in Section 2.3, we can write

L=L"V+L P +LAE,, where|L% < C(1 - p).
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Heuristically, we want to show that in the region {r > r, },

f JZ0 (@)nt > 0.
ZN(rzry) '

Moreover, we would like to have

2 2
u-—+v
/ JEY (@l > / uz(L<D)2+v2(L<I>)2+(u2+v2)|Vd>|2+( : )<b2
Ten{rzry ) T Utz r

These are true modulo some error terms that can be controlled:
Proposition 31. We have
2 2, 2 2 2, .2 2 (WA
/ u”(L®)” + v (L®)" 4 (u” +vI)|[VO|* + | —5— |®
ZN{r=ry} r
<C / JE (@ +C / TN (@) +C31? / TN (@)nf .
P P2 Erm{rfr;}

Proof. The proof is analogous to that in Minkowski spacetime [Morawetz 1975] and Schwarzschild
spacetime [Dafermos and Rodnianski 2009]. Recall from the latter that on Schwarzschild spacetime, on
at slice,

wZ
") (@)nl
_ 1
Vi

Now, since ¢ and r* are stable under perturbation on {r > r, — (r, —r;)/4}, we have, on this set,

( 2(L®)? + 1P (LD)? + (u? + 02| VO + qu,cp — r*(lr—_“)qﬂ).

1
V1=p

V4
T ) (@, >

2tr*(1 —
quat*q)_
r

(L +P L O P+ +07) [V DL+ T2 g2)
r
— Cer 2 ((u? + V1) (V)2 + 17 ®?).

We now cut off ®. Define ® so that it is supportedin {r >r, —(r, —r4)/4} and equals ® in {r >r, }.
All the error terms arising from the cutoff will be controlled using the red-shift vector field:

. 1 . . .
JZ0 (St > f (vz(LCD)2+u2(L,<I>)2+(u2+v2)|Y7<I>|2)
./;, ’ ¥z Senrzry —(ry —r) /4 V1=

2rE1—mw)'? . . rE1 =,
N re(l—uw) Doy d rsd—mw " e
r r

2 Cer 2((u? +v)(VD)? + 1 d?).

The term
2erE(l—)V2 . .
/ Mq)at*q;.
ZeN{r=ry —(ry —r4)/4) r
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is to be handled by two different integrations by parts. Recall [Dafermos and Rodnianski 2009] that on
Schwarzschild spacetimes we have

~ ~ ~ ~ ~ n N 2 n
19,d =vLd+uld—r}3,;d and 19,0 = rL*(vch —uLd) - i—*a,;cp.
S N

Therefore, upon integrating by parts, we have on Schwarzschild spacetimes that

¥l — %, .
/ Mcba,*cb
SN{rzry —(ry —r)/4} r

ra ~ A N
= f ((1 —wWr* 2 (WLO +uL®)® + 53, (1 — ,U,)r(r*)z)cbz) dode dr*
e N{r>ry —(ry —ry)/4} r
1> rd

(1—,u)r2<r7s(vL<i>+uL<i>)<i>+<§ " +7S)<i>2)d9d¢dr*.

/Erﬂ{rzry—(ry—r+)/4}

Notice that in the equation above, we suppressed the volume form in our notation in the first line, while
when we write in coordinates as in the second and the third line, we write out the volume form explicitly.
Alternatively, we have

trg(l — w2

f b9, d
S N{r=ry —(ry —r4)/4) r

= / ((1 — WP (wLd —uLd)d + Lo, ((1 - /L)r(t*)z)ci)2> dode dr*
TN{r=ry —(ry —r4)/4) r
1 (t*)Z

2 7

- a —u)rz(t?(vLCi)—uL&D)fi)—l— ci>2) d6 d dr*.

/;Jzﬂ{r>ry(ryr+)/4}

We would like to imitate this integration by parts on Kerr spacetimes. On the domain of integration, we

have
19, =vLd+uLd—rid,; P, (10)
.t n . 2.
19, = — (VLd —uL®) — —9,:b. (11)
s s

The volume form on a constant ¢* slice on a Kerr spacetime is close to that on a Schwarzschild spacetime,
including in the region being considered. In other words, for r > r, — (ry, —r1)/4,

dVols, = (r*(1 — )~ V2 + 01 (e)) dr dx*d x®.
Moreover, for r > ry, — (ry —ry4)/4,

orp = (1= )+ O1(er™)d,.
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Therefore, using (10), we have

ry(l—w)'? .

/ Py,
SN {r=ry —(ry —ry)/4} r
:/ ((rri+0(€)(WLO+uL®) D+ (18, (1—wr (rH* + 0(e)) %) drdx"dx®
SN(rzry —(ry —r1)/4)
12 ) 1(r 5)2 iy
_ (1—p) (( L O(er™ ))(vch+qu>)q>+( )) )
Serzry —(ry —ry)/4) 2

Alternatively, we can integrate by parts after using (11):

»/Ezﬂ{rzr;—(r;—r+)/4} r

((rt* + 0(€) (VLD —uL®)® + (39, ((1 — )r 1)) + 0(€)) d?)

»/Ezﬂ{rzry_—(r;—u)/“}

(t*)? _
(1—M)1/2< +0(er ) (wLd —uLd)d + +O0(er ) q>2)
/zfn{rzr;—(r;—m)m} ( ) (2 )

Therefore, we have

[ @,
P
-, =
XN {r=ry —(ry —ry)/4} 1 1%
LA '

D3 d —
r r

WHL®)? +u*(LD)* + (u + )| VD)

WHL®)? +u(LD)* + ® + )|V D)

— Cer 2((u* + vH)(DD)? + 1*d?)

>

/Erﬂ{r>ry—(ry—r+)/4} 1 —K

*(] — 1/2 1 1 1/2
P TN S Y S Ul D e
r 2 r2
(1 — /2 )2 .
+&(UL(D—MLCD)CD+E( LS
r r2

— Cer 2((u* + vH)(DD)? + 1*d?)

zc</ W(WL® +uld)? + wLd — uLd)?)
ScN{rzry —(ry —r4)/4}

o o A o A~ 1. o
(1 = (LD +uLd+ 53) + WL —uLd+ = d)2 + 20 + )|V D[?)
r r
— Cer 2 ((u® + v*)(DD)? + t*ciﬂ)), (12)

where the last line is obtained by first completing the square and using ¢ < 1 — u < C in this region
of r. Let us for now ignore the error term and look at the other terms (which are manifestly positive).
By exactly the same argument as in [Dafermos and Rodnianski 2009], these positive terms provide good
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estimates:

f w((WLD +uL®)> + (VLD — uLd)?)
S N(rzry —(ry —r1)/4)

2 s Tg a2 2 AP 2 2 w2
+(1—p,)<(vL<I>+uLCI>+—CI>) +(qu>—qu>+—<1>) +2(u” +v7) |V )
r

>cC

f ( LD +ud (LB + (a2 + o)) VB + 5 +“ c1>2)
Sy —(ry —r)/4)

—I—Ce/ (WP + 0D (DD)? + D).
ScN{rzry —(ry —r4)/4}

See [Dafermos and Rodnianski 2009] for the proof. This together with J lf’ (é)n’éf bounds the error term
in (12):

f 2 (W + 02 (D)2 + 1 d?)
S N{rzry —(ry —ry)/4)

scf (Lo +12Ld) + +v)|vd>|+”+”&>)
SeN{rzry —(ry —ry)/4}

+C (LD)?
Y N{r>t/4}

<C

/ ( LD +ud (LB + () VP + 5 +” c1>2)
Sy~ —r)/4)

+c/ I (@)nf
P2
< c(/ w((WL® +uL®)?> + LD —uLd)?)
ScN{r=ry —(ry —ry)/4}
N2 * N2
4 s Tsa 2 A 2 2w 2
+(1—,LL)<<UL<D+MLCD+—CD) —i—(vLCD—uLfD—i-—d)) F 2P+ )|V ))
r r
+C / IY (@) .
=, ‘
Therefore, if € is chosen to be small enough, then (12) implies that
Z »n A
f JEW(D)nk + / TN (@)nk
e P
2+
Zc/ (LB + 2 Ld) + @+ VIR + = 82). (13)
) ﬂ{r>rY—(rY —ry)/4}

We note that ¢ here is independent of the choice of r,. With this bound we would like to estimate
sz & (1, r)3. Using (13), there exists a 7 € [y, 7, + 1] such that

/d)(r,?)zzf d(r, 7)) <Cr? / JMZ””Z(QAJ)n% +/ TN @)k ).
s? s? . ’ ol i
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Then for every r € [ry, ry ], since ®(7,7) — P(r,r) = frf 0, ®dr, we have

/ d(t, r)2 < / d(t, f)2 + @7 —r) Jliv(dl')n%
s? s? . N[r7] '

< C/ J,iv(fb)n%f + Ct_2<f JMZ’"’Z(Ci>)11’§r +/ Jﬁ(é)n;)
.N{r=ry} X X

Now we need to obtain estimates for ® from that for ®. It is obvious that

(14)

/ (v (L) + uX(LD)* + (u? + 12|V D +“ +” c1>)
S.N{r=ry}

s/ (v (LH)? +12(L D) + 2 + ) YD + +” &)
. Nfr=ry}

u? +v A
5/ (PLdP 42 + (2 4 DI+ 7).
> ﬂ{r>r;—(r;—r+)/4}

and

/ JZ (Dynt + / IN (@l
%, e

z
5/ Jo (¢)n’§r+/ Jliv(q))n;r—{—CTZ/ . J:’(@)n’gr—l-Crz/ @’
Er ZT Ern{rfry } Er m{rfry }

(where we have used Proposition 30 to show that the u? factor comes with a factor of 1 — )

< / JEU (@)nl + / Y@k +C? / TN (@)nf,
T P Z.N{r<ry}

+C(r;—r+)</ Jf’wz(&))nlér-l—/ Jg(é)#ﬁf)
T ET

z
5[ JE (CD)n;T—i-/ J,iv(q>)n’gr+0r2/ N (@),
P X SN{r<ry}

1 / ZwZ ;&N 1 / N &N\, M~ )
+ = JoV (D)nk + J N (DP)n (15)
2( o I e s, w X

for r, chosen to be sufficiently close to 7. Then
f Ji,wz(&))nér + / I (Pyn,
T 2T
5[ Jf’wZ(CD)n;T—i—/ J,iv(q>)n’gr+0r2/ Y@y . O
PR Pl TeNfr<ry}

Remark. From this point onward, we consider r, to be fixed. We note again that r, is chosen so that
(5) and (15) hold.
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Remark. The proof of the proposition above in particular shows that
/ Jf’wZ(QD)n’é +Ct? f I (@)nk >0.
T i X m{rf";} i

To use this proposition, it is helpful to have a localized version of ®. This follows [Dafermos and
Rodnianski 2008; 2009]. The idea is to use the finite speed of propagation and cutoff & outside the
domain of dependence. Focus now on the time interval [t/, 7]. Take G to be any smooth function
agreeing with G on the domain of dependence of the region (t* =, r < 7/2). Let &D(t’) = x® (1) and
3P (1) = x 8+ D ('), where x is a cutoff function identically equal to 1 for r < %‘L’/ and compactly
supported in r < %‘E/ . The region for which x is one is inside the domain of dependence of the region
t*=rt,r<t/2)if ' <7 < (1.1)T". We solve for DgKCTJ =G.

With this definition of ®, we have two ways to estimate the nondegenerate energy of ®:

Proposition 32. We have

L.

/ IY (dyn < C? fz y }JI’LV(CD)n’;r,JkC(r’)_Z( / I (@) + / Jlf’“’z(CD)n’ér,).
7 </ rSrY ’

!

I (dm <C /E I (@)

T/

T T 2'{

Proof. The first part is an easy application of Proposition 21:

J

I (@5 <C /

S N{R<r<57’

(D®)* + (t)) 2 d?)
o }

gcf (DD)* +r?®?) gcf TN (@)nf, .
SoN{R<r<21') '

0T )

Following (14), we have

f <I>2§C<f J;V(cb)n’§,+/ <I>2>.
SoN{r<ry} SoN{r<ry} ! SoN{ry <r<ri}

Y

Using this and Proposition 31, we have

/ I (@)
)

=C / (D®)* + (r)) 2 9?)
Er/ﬂ{rfl%r’}
<c| (D®)? + @?)
oN{r<ry}
2 2 2.2 2 2.2 2 u? 4+ v? 5
+C@')” / <u (L®)* + v (LD)* + (u” +v°) |V P| +<—2 >q>)
N{ry Srgl—gor’} r

<cC? f gy (cp)n’gr,JFC(r’)Z( / I (@)l + f waz(cp)ngr/) O
Er/ﬂ{rfry} P ’

T/ T
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The cutoff procedure above will also allow us to localize the estimates for the bulk term:

Proposition 33. Let G = G| + G, be any way to decompose the function G. Then for v’ <t < (1.1)7/,

we have

(1) the localized boundedness estimate

f IV @l + / IV @l + / / KN (@) + / / K% (@)

2.N{r<t/2} i H(z',T) R/, T)N{r<ry}) g{(r’,f)ﬂ{rS%[*}
T+1 1/2 2
=o(f o= ([ ([ ) @)

7/ '—1 [*ﬂ{r<mt*}
+f/ G2+Z// rI (B G,)?
R(t'—1,7+1)N{ r<7t* R(t'—1,t+1)N{r *}
+ sup / Gzz);
et/ 1L1+11 S T N{Ir=3M| < § MIN{r < 551*)

(2) the localized decay estimate

f T (®)n +f J,§V(¢)ng€++// KN(<I>)+// KXo (®)
z.n{r<it) ' ¥(t',7) R, DN{r<ry’} R ONfr=1r*)

5c(12/ JEHNw? (q>)n2/+c/ I3 (@) )
o XoN{r<ry}

T

T+1 1/2
AU i) ) c
'—1 ,m{r<—t*} R(t'—1 r+1)m{r<—z*}
+Z / | AU | G%)-
R(t'—1,74+1)N{ r<7t*} t*e[t'—1,7+1] S ZxN{|r— 3M|< M}ﬂ{r< 51}

Proof. Applying Proposition 28 to the equation [, ® = G, we have

f TN @)k + / TN (@)nl. + / / KY(®) + f / KX ()
ZNfr<;37) ! H('\7) R, Nr<ry} R, ON{r<1r)
3 ot N2 N2 }
§C(/ J/f’(d))n‘gr, + (/ (/ G%) dt*) +// G?
o /=1 pos R(T'—1,7+1)

I
E )
%(r’—l,r—i—l) el —1,r 411 S n{lr—3M|< g M)

m=0
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Since by the finite speed of propagation, ® = ® in {r < %t*}, we have

/ 1 Jg(@)n’ér—{—/ J,f(@)ng€++f/ i KN(<I>)+// 1 KXo (d)
ZNfr=<;7) H(t',7) R, T)N{r<ry } R, ON(r<1r)
) T+1 y 1/2
sc(f, weome ([ () Gl> ) off
o /-1 pones R(t'—1 r+1)

Bl )
R(T'—1, .[+1) t*e[r’—l,‘H—l] E,*ﬂ{\r—3M|S%M}

Now, we choose a particular G. Define G to be G for r < 17—0t*, and O for r > %t*. It can be easily
shown that one has the bounds

B m * \ k "
G| <C Z)((I*T> oG = e YN FarTrG) for = for
k=0 k=0

Therefore, we have

/ T (@)n + / TN (@)l + / / KN (@) + / / KXo (®)
Zrﬂ{rg%r} ¥H(t',7) R/, T)N{r<ry} R(t/, r)ﬂ{r<lt*}
- T+1 1/2 5
el 0 (o L
o ' '—1 M Eanfr<gyrt) R~ 1T+ DN{r<15t*}

Bl )
G~ 1, e+ DN{r 3} el —1e+1]J S 0{lr=3M|< g M}

10

We can now conclude the proposition using Proposition 32. (]
We can remove the degeneracy around r ~ 3M using an extra derivative.

Proposition 34. Let G = G| + G, be any way to decompose the function G. Then for T’ <t < (1.1)7/,
we have

(1) the localized boundedness estimate

/ / KX (@)
R(t/, t)ﬂ{r<lt*}

+1
<C(Z[ TN @yt +Z</ (/
/-1 Nfr %
5> I/ ,”»3G1)2+Z// PGy
R/ =17+ DN < 7517 0 IR =L+ DN < F1%)
1

O"Gy) )1/2dt*)2

m=0

+ sup (3% G2) >

relr'—1Lt+1], [2,m{|r—3M|5gM}n{r§]"Oz*}
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(2) the localized decay estimate

// K (@)
R(t/, r)ﬂ{r<lt*}

<C( —2zf Jz+1vw (G CID)nZ/—{—CZf

T+1

1
+C<Z(/T,_1 <f2,m{r§19 (0+G1) >1 dt +Z f/%(ﬂ_lﬂrm . (8 G1)>

I3 (3 Dy, )

SoN{r<ry}

+ Z f / P OMGy)? +  sup / 0" G») )
oo Y YR =1L+ DN{r<75%) e[t/ =1 t+1] ) —0 J e N{lr=3M| < g MIN{r < g51%}
Proof. We repeat the argument in Proposition 33, using Proposition 29 instead of 28. (Il

When using the conservation law for Z, we can ignore the part of the bulk term that has a good sign.
Definition 35. Let k2" (@) = max{K 2% (®), 0}.
Using the conservation law for the modified vector field, we have a one-sided bound:

Proposition 36.

VA zZ
/ Jlf’w (P)n, + / Jlf’“’ (®)nky,
B H(t',T)

< C(T/)Z/ I (@)nf +/ Jﬂz,wz(@n‘gr,
N{r<ry'}

<

+// Kf’wz(d>)+‘// W LO+ v LD — Lwd)G|.
R(t',7) R(t',7)

Remark. In the proposition, the left-hand side is not claimed to be positive. Note, however, that the
right-hand side is positive by the remark on page 591.

Remark. We note also that

/ JZV (@)nlk, =0
H(t',T)

because Z and ng€+ are both null and future directed and w? = 0 on the event horizon.

To show that /Ef JMZ*“’Z(dD)n‘éT is almost bounded, we will have to show that

N
/ TN (@l
oN{r<ry}

in fact decays:
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Proposition 37.

a.n-1z

< CZI_Z/ TN (@ +Cr—2/ JZ0 (@)n
X2, Mr=ry} o 2

1.n2¢

+Ct? // Kf’wz(q))-l—C‘L'_z)// (u2L<I>+v2L<I>—A%w<I>)G)
R(1.1)"27,7) R(1.1)"27,7)

T+1 1/2
+ C(( / ( / G3) / / G%)
(D201 V Enfr< 5%} RULD2r—Lr+DN{r=<151*}
1
+C<Z f/ rI @ G,)? + sup / G%).

m=0 ¥ JRAD =1 e DN{r < 5517) rrel(1.) 2t —1,7+11J ZeN{Ir=3M| < EMIN{r < F51)
Proof. By Proposition 33(2) applied to the ¢* interval [(1.1)"!t, ], we have
// KN (@) §Cr_2/ JZN (@)l +C2/ T (@)nk

R((L) T, 0Nfr=ry} b n Bt Mr<ry)

+C(Z / / rIOmG)? + sup f GZ).
RULD =L r+DN{r=<51%) rre[(L.) "1t —1,741] J ZN{lr—3M| < § M}

By taking the infimum there exists T € [(1. 1)~'z, 7] such that

a.n-l¢
1.n-1z

/ Y (@ <cr! // KN(®).
Z:0{r<ry} RAD e, o)Nfr=ry}

Hence,

N
/ Ju (<I>)n’§f
ZiN{r=<ry}

sCr_Z/ JEN (@l +C2r_1/ TN (®@)nk,
b b= B 1N

a.n-le an-1.Mr=ry}
( / / rienG): + sup f GZ).
RLD =17+ DN{r< 51+ rrel(1.1) " 1—1,7411/ 2 N{lr—3M|<§ M}

We apply Proposition 33(2) to the t* interval [7, ] and use Proposition 28 and 36, getting

a.n-1z
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N 1%
/ GO
S N{r<5t*}

§C(r_2/ JEN (@ynk +C/ TN (@)nfs,)

TiN{r=ry}

( / / rI @G>+ sup / GZ)
R~ T =114+ DNfr< 2%} rre[(LD) "1t —1,741] J SN{lr—3M|< I MIN{r<F51%)

<Ct? (/2 J/lZ+N’wz(q))nl§f+f J"ZJFN’WZ(CI))”;(LD*H)

4 Z(1.1)*1r
2_-—1 N m
+C*t fz . AU
an-tNr=ry}
+C(Z / / PORG+ sup f Gz>
RULD =1L+ DN{r=< 5%} tre[(1.1) "1t —1,74+1] J T=N{lr—3M|< E MIN{r<F51*)
SCZTI/ J,f’(CD)n’é X +C12/ 15+N,wz(q))n,é 1
B -1 Nlrsry} an=te Z-1s a.n-le

+Cr 72 f/ Kf"’z(d>)+c?r—2|f/ W LO+v’ Ld—iwd)G]|
R(L.D~'7,7) R(L.D"7,7)

+C(Z // rI Gy 4+ sup / Gz).
R(LD T =1, r+DN{r< 5%} rre[(1.D) " t—1,741] d T N{lr=3M|< g MINfr < 51*)

Replacing [(1.D)7 'z, o] with [(1.D %z, (1.1)"!z], we get also

N M
/ 1 JM (q))”2,
z 1,N{r<51*}

(1.n=

— _ z
<C*t! JN (@)nl, +Ct7? JZENWT (@)nk,
- H (1.n72¢ s an=2r
2(1 -2 N{r<ry'} z

1.H2¢

-2 Z,w? -2 2 2 1
+Ct Ky C(@)+Crt (u"Ld+v L@—ZwCD)G
R((1.1)"27,(1.1)"17) R(1.1)"27,(1.1)"17)

1
C(Z f/ rI O G)?
0 Y JRLD2e =1, (LD~ 4+ DN{r < 1524}

+ sup / G2)
rre[(L) 20— 1,(L.D o411/ EpN{lr—=3M| < g MIN(r < 151%)

Therefore, plugging this result into the previous, we get
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N 12
/ GO
Z.N{r<51*}

< C%—Z/ TN (@)nk, +Cr—2/ JZ0 (@)n
_ (.27 M
E(H),grﬂ{rfry} b

1.)2¢

+Cr? /f Kf’wz(dD)-i-Cr_z‘// 2L+ v LD — %wdD)G‘
%((1.1)—2r,r) %((1.1)—2r,r)
1
+C<Z // riHamG)?
0 ¢ YR(AD2r—Lr+DN{r<151%)

+ sup / G2>. ]
rrel(1.D)2r— 10411 Y T N{Ir=3M|< g MIN{r < 751%)

Proposition 37 immediately gives control over the nondegenerate energy and conformal energy using

a.n-1z

Propositions 31 and 36, respectively:

Corollary 38. Forany y < 1,

VA
/ TP ( @)k +C? / TN (@)nf,
T ZN{r<yrt}

< C(/ ‘]szwZ (cp)n’;ro + C/ JIILV(CID)n’gt0
b

70 2 L)

+// Kf’wZ(CD)—i-‘// (uzgq>+v2Lq>—}qu>)G‘)
R(10,7) R(70,7)

1
+C(Z // ' @26+ sup f (t*)ZGQ).
o Y YR@o—1Lr+DN{r<f5r*) trelro—1LT+11J ZxN{Ir=3M | MIN{r<F51%}

Proof. By Proposition 31,

= f IY (@ <C / JZN (@) 4 2 / TN (@)nf, .
X.N{r<yrt} o D)

Nr<ry}

Therefore, by Propositions 36 and 37,

/ JMZ’“JZ(CD)n’;r—l—Crz / IV (@),
hoM X.N{r<yrt}

§C<f2

N n
Jy (<I>)nz(l_l)72r —|—/

2:(l.l)*zr

z
JE @l +f/ K2 (@)
(1.n=2 R(1.1)722,7)
2 2 1
/)
R((1.1)27,7)

1
+C12<Z // r @Gy + sup / G2>.
= I 2e-140) rrel(1.)2t—1,0+1]J Sn{Ir=3M|< i Mynfr<1%)

We then use the same estimate for [(1.1)"*z, (1.1)~2¢], [(1.1) %z, (1.1)"*7], .. .. U

1.)2¢
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The term | f%( 0.7) Kf’wZ(QD) can be controlled. Here is where the control of the logarithmic diver-
gences from the red-shift vector field is crucially used.

Proposition 39. We have

// Kf’wZ(QD) <C /f TN (@ +rTd) e f/ () KN (D).
R(t',T) R(t', )N{r>ry } ' R/, )Nr=<ry}

Proof. See [Dafermos and Rodnianski 2008]. O
The bulk term arising from the inhomogeneous term G can also be controlled.

Proposition 40.

‘// (u24q>+v2Lq>—iwq>)G}
R(t0,7)

<& / / (t*) 2 KXo (D) + & / / )2 KN (@)
R(ro, T)Nfr<51*} R0, D)N{r<ry }

+68' sup (f JMZJFN’“’Z(q))n’“E‘*—i—(t*f
Sen(r=1r%) !

t*€[19,1]

I @)
Sn{r<2m) !

1 t 12 2
+C@)! Zf/ (t*)2r1+5(8t"fG)2+C(5/)—1<[ </ r2G2> dt*)
m=0? I R(T0, DN <317} 10 W Ean{r=1r)

+C@)7! sup / (t")?G>.
E,*ﬂ{r;SrS%M}

t*elto,7]

Proof. Two regions require particular care. The first is the region {r < r }, since the coefficients of the
vector field Z are not bounded as r — r. The other is the region {|r — 3M| < %M }. This is where
trapping occurs and where the integrated decay estimate degenerates or loses derivatives. We first look
at the region {r < r,} using the null frame:

// WL®+v°Ld — twd)G
R(zo.ON(r<ry )

sc//%( @R EDIITOG]+ (1= IV G]+ (= Y IV, 86D
70,T)N{r<ry

A
(using Proposition 30)

sc/f (2 (lloglr — 14|21V BG| + V0G| + ¥ Ve, &Gl
R(wo,T)N{r=<ry} A

= ff ()2 (lloglr —ry [1'(Vy @) + (V3 @) + 3 (Vie, @)
R(wo,T)N{r<ry}

A
+C(5/)71 ff (t*)ZGz
R(zo,T)N{r=<ry}

<d f / @’ KM (@) + @) / / ()G
R(z0,T)Nr=<ry} R(z0,T)Nr=<ry}
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For the region {r, <r < %M }, where trapping occurs, we integrate by parts in ¢* so that the bulk term
does not have 9, ®, which cannot be controlled by the integrated decay estimate.

‘// (uzL,QD—i—szCIJ—A%wCD)G‘
R(t0.0)N{ry <r<F M)

§C// (t*)2|8,d>G|—|—(t*)2|d>8,*G|+t*|d>G|+/ 12|¢G|+/ 2| PG|
R(r0, )N {ry <r<¥ M} =, )

T

12,1 1/2
[0 (L)
R0, DNr=F M) oY SR 0Ny <r<E M)

H// T (@) +5’f 73 J) (D)
SeNlry <r<ry <3 M) ‘ Eroﬂ{r;SrS%SM} 0
+C@H7' sup / (+*)2G2,
t*el7o,7] Et*m{r;fi’f%M}

using Proposition 21. We then move to the region {%M <r< %t*}:

(// W2L®+ 0L — Lwd)G
R0, 1) P M<r<}1*}

SC// ((t*)*|0®| + 1*|@))|G|
%(TO’T)H{%MSVS%I*}

1/2
(o, DONF M=<r=j1*) '

1/2
X <// (r3+5 4 (t*)2r1+5)G2)
R(ro, DN B M <r<it+)

1/2
(o, DONF M=<r=j1*) '

1/2
R(ro, DN B M <r<it+)

Finally, we estimate in the region {r > %t*}:

‘// W2L® +v2Ld — Luwd)G
R(r0,T)N{r= 11}

1/2
z
<C sup ( f JET (@ + () / J,iv@)n%,*)
t*elry, 7] \J e N{r=> 11} xN{r<ry)

T 1/2
X / (/ r2G2) dt*,
79 \J ZxN{r=117)

where we have used Proposition 31. The proposition follows from Cauchy—Schwarz. U

We have therefore proved the following decay result associated to the vector field Z.
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Proposition 41. For sufficiently small positive § and §8' and 0 < y < 1, there exist ¢ = ¢(8,y) and
C = C(8, y) such that the following estimate holds for any solution to U, ® = G:

z
¢ / TP (@)n + 17 f TN (@)n,
P X.N{r<yrt}

§C/ JMZ“LCN’“’Z(QD)n’;TO—i—C// Fro KX ()
)

7 R(70,7)

+Cé' // (t") KXO(¢)+C(5/+€)// )2 KN ()
R(ro, DN{r<11%) R(z0,1)N{r<ry )

T 1/2
+C(5’)—1(/ </ r2Gz> dt > +C ()t Z// )" G)?
10 \JZxN{r=>1r7) R(t0, TIN{r< 151}

+C@H7t sup / (") G>.
SN{ry Sr<3g M)

t*€l1,7]

10. Estimates for solutions to L1, ® =0

From this point on, we consider [1,, ® = 0. In this section, we write down the energy estimates derived
by Dafermos and Rodnianski [2008]. These will be used in later sections.

Proposition 42.

2 N Z+N,w?

T / (@ e / TN (@)nk
z.Nfr<it) A

2
scfﬂz(/ JE (o o)y / J;V(a;’:@né,o).
m=0 E )

0

Proof. We introduce the bootstrap assumptions:

rzf TN (@)nf, +c/ JEN (@ <A2r”2/ JEHEN? oy . (16)
z ﬁ{r<lr} p

r2/ TN (- @)nk, +c/ JEN (@ <Ar]+'72f JEHENw g oy . (17)
=.Nfr<ic) p>

m=0

Here we think of n as a small positive number. We divide the interval [, T] dyadically into 79 < 71 <
- <11 <1, =1 with 7,4 < (1.1)7; and n the smallest integer for doing such division. We then
have n ~ log|t — t’|. We can now apply Proposition 33 on the intervals [t;_1, 7;] and use the bootstrap
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assumption (16):

f/ KXo (®) + /f KN (®)
R(i—1,7)N{r<51*} Rz, T)Nr<ry}

sc<r;2 / JEV (@l +C f TN (@)n )
¥ fi-l Se_ Nirsry} fi-l

Ti—1

2
< CA% > / J,LZ+CvaZ(a;’:q>)n‘;r .
m=0 z 0

Similarly, we can apply Proposition 33 on the intervals [7;_1, ;] for 9, ® and use the bootstrap assump-
tion (17):

/ f KXo, 0) + / / KN (3 ®)
R(ti1.TNr <317} R(ri—1, )N {r<ry}

< C(‘L’i_Z/
R

2
—1 z
<CAr, "y f A CHE ST
0
m=0" X1

JE @y, +C /

TN (8- D)y, ])
Eriflm{rfr;} -

By Proposition 29, we have

1
—148 - X N w
f/w RN @0) < C > :/ Y @k, .
Ti—1,Ti) m=0 PR

By Propositions 29 and 34, we have

// rI KX (@)< C// KX (@) +Cr ' // KX1(®)
R(Ti-1,7i) R(ri1,T)N{r<51%} R(ri1,1)N{r=51%}

2
<CAr ™" Z/E T AR CHE VL
0

m=0

Applying Proposition 41, we get
c / JEN (@)t 472 / IV (@)l
P EeN{r=<yrt}

< c/ JMZJFCN'“’Z(CD)n’érO-i—C// A G ()
Zy R(t0,7)

+Cé f / (") KX (@) 4+ C(8 +¢) f (t*)2 KN (d)
R(rg, T)Nfr<51%) R0, T)N{r <ry }

n—1 2
< (C + (c +CA+CA* (28 + e)) > r,.") > / A (CALOLSN
i=0 7/ m=0"%n
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<(C—|—77_1(C+CA+CA2(25/+6))‘L'77)Z/ JZ+CNw €K o1>)nZ

Now take A large, ¢ =1n/(4C) and 8’ = €/2, we improve (16). Applying Proposition 41 again, this time
to d;+ P, we have

zZ
c / TP @ @)k, +1° f T (0 @)k
. ZN{r<yt}

< Cf JlwaCN,wZ(at*(D)nléro +C/:/ t*r71+5KX1(8t*q))
x

7 R(70,7)

+C¢’ // (t*)*KX0(3- @) + C (&' +e)/f (t*)2 KN (8, D)
{)]t(ro,r)ﬂ{rglz*} R(t0,0)N{r=<ry }

n—1

(C+CZt,+CA(28 +e)Zr )2/ SN ot

<(C+Ct+CAQS +e)r1+'7)2/ JEHENT g D)ty .

Now taking A large, 8’ = € and ¢ sufficiently small, we also improve (17). (I
In particular, the theorem of Dafermos and Rodnianski [2008] is retrieved.

Corollary 43 (Dafermos and Rodnianski). Suppose U, ® = 0. Then for all n > 0 and all M > O there
exists ag such that the following estimates hold on Kerr spacetimes with (M, a) for which a < ag:

(1) The boundedness of nondegenerate energy:

f ) (@)n + / J (@)l + f f KN (®)+ / / KX (@) =C / VACOLSSE
T — 70
. ¥ (70, 7) R(w0,D)N{r=ry} R(t',7) Zy

(2) The decay of nondegenerate energy:

IZ/E { }J;V(cb)n’;TH/ JZ+Nw (P)nf, <cf1+"2/ JZ+CNw G <1>)nE ,
Nr=yt T

r2/ J;V(@)n’;TH/ JEN (@) SCT”Z/ JEHENWE g o .
. .N{r<yrt} PP

(3) The decay of local integrated energy: For v’ <t < (1.1)7/,

// KX°(®)+f/ KV(@) <Ct” 2*’?2/ JEHCN W om o)y
R(t’ t)ﬂ{r< t*} R/, ON{r=ry}

]l K@ zcr Y [ e g
R ONfr<ir m=0" 7
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Proof. Part 1 follows directly from Proposition 25. Part 2 contains two statements. The second is a
restatement of Proposition 42. The first is evident from the proof of Proposition 42. Part 3 again has
two statements. For the first, we revisit the proof of Proposition 42. The bootstrap assumptions are true;
hence it holds. For the second statement, we note by comparing Propositions 33 and 34 that KX! can be
estimated in the same way as K X0 except for an extra derivative. The second statement in 3 can then be
proved by rerunning the argument in Proposition 42 with an extra derivative. (I

11. Estimates for ¥ ® and elliptic estimates

Away from the event horizon, we can control all higher order derivatives simply by commuting with 9«
and using standard elliptic estimates. We write down a general version of the estimates in which we have
inhomogeneous terms.

Proposition 44. Suppose Uy, ® = G. For m > 1 and for any a, we have
(1) the boundedness of weighted energy,

m—1 m—2
/ ra(qu>)2 <Cqum (Z / r“Jlf](atj*QD)n’;r + Z/ r“(DjG)2>,
Efﬂ{rZr;} j=0 X j=0 P

(2) and the boundedness of local energy, that is, forany 0 <y < v/,

m—1
/ re(D"®)? < ca,m,y,y/(z / r*JN @) ok, +7oF? / rP 7N (®)nk
Zrﬂ{r;iri)/t*} j=0 N{r<y’t*} i P ‘
m—2
|
j=0""%

Proof. This is obvious for m = 1 (even without the restriction r > r,’). We will proceed by induction.
Take § < (ry —ry)/4. Assume

m—1 m—2 ) m=3
> / r“(D]d>)2§C<Z / rJY @l ol + ) / r“(DJG)2>.
io1 Eentrzry 28) ooE i s

We want to show

m—1 m—2
/ (D" ®)? < c(Z/ rJ N @ o)nk, + Z/ r“(Df'G)2>,
:N{r=ry, =8} =0 2 =0 P>

which would then imply the conclusion. Denote by Ag, the Laplace-Beltrami operator for the metric

r*(D’ G)2>.
)

N{r<y’'t*

gk restricted on the spacelike hypersurface on which ¢* is constant. Since 9;+ is Killing, the operator is
defined independent of *. Then we have

k+1
[Age, D¥10] §CZ|D-’<I>|.
j=1
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Denote by V the spatial derivatives with respect to the spatial coordinate variables in the Schwarzschild
(15, 75, x_]g, xé) coordinate system. On the set {r > r, — (ry, —ry)/4}, Ag, is elliptic and therefore
controls all spatial derivatives:

/ ré (D" ®)*
N{r=ry, =48}

< c/ r*((Agy D" 2®)? + (D1 0)? + (37 V D)% + (371 D)?)
.N(r=ry —28)

m—1
<C / re ((Dm_zAgk ©)’+ Y (DI @) +r 207+ (327 V) + (3! c1>)2)
Erﬂ{rzr;—ZS} j=1

m—1
t*
ing the induction hypothesis. The third term can be bounded using the Hardy inequality in Proposition 21.

The last two terms are obviously bounded by C |, s J /iv (o (D)n’)ér . The second term can be bounded us-

Finally, to estimate the first term we use the equation [l,, ® = G. Then, by the form of the Kerr metric,
Age®=G —g"" 92 ® —2g" %" 3,43, ®. Therefore,

/ re(D"™ Ag, ®)?
:N{r=ry, =26}

<c| P05 )+ (D" 26))
ZcN{r=ry, =28}

m—1 m—2
<o(X [ raraiont + Y [ rwicr)
j=0"% j=0"%

where at the last step we have used the induction hypothesis for 9, ®. We have thus proved the bounded-
ness of weighted energy. To prove the second part of the proposition, consider the function y (r/t)®(7)
for a fixed time t* = 7, where x : R>9 — R is supported in {x < y’} and is identically 1 in {x < y}.
Now

Oy ®=xG+17 179,04+ 1724,

where ¥ and )% are supported in {y <t*/r < y’}. Thus, by the estimate just proved,

/ ré(D" ®)?
BeN{ry sr<yt*}

m—1
<Ca (Zf r*J N (3] oty +/ re Tt 4
j=0 Y ENlr=y't} N {yt<r=<y'tv}

m—2

>/ r“(Df'G)Z)
ZN{r=y't*}

j=0
m—1 m—2

<Cq (Z / r* 1Y @)@k, + 1P / PPN (@ +)° / r*(D/ G)2>,
j=0 ZeN{r=<y’r*} P2 j=0 ZeN{r<y’t*}

by the Hardy inequality in Proposition 21. O
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Remark. The boundedness of local energy should be seen as a decay result because for example for the
homogeneous equation, the right-hand side of the inequality decays.

Near the event horizon, higher order derivatives can be controlled by commuting with the red-shift
vector field as in [Dafermos and Rodnianski 2008; 2011]. The computation here will be completely
local, that is, only in the region {r <r,}.

We have the following estimate for higher order derivatives:

Proposition 45. Suppose Uy, ® = G. For everym > 1,

m—2
/ (D" ®)? < c( / IN@L Vo +)° f
.N{r=ry} XN{rsry) =0 P

Proof. This is obvious for m = 1. We will proceed by induction. Suppose, for some m > 2 that

m—3
/ IN@Lv*oml +)° / (DjG)z). (18)
2N y j=0 ZeNfr<ry}

(DjG)z).
jAk<m—1 rm{rfr;}

m—1

7y 2
Z/;rﬂ{rir;}(D ? SC( Z

=0 jtk<m—2 rsry}

Since [, (3;+®P) = 9;+G, this immediately implies

m—2
/ (at*Dm—ICI))z S C< / Jliv(atj*?k(b)nl;t + Z /
e N{r<ry} ZeN{r<ry} j=0 N

Since [, @ = G, we have [, (I?CD) =YG+ O(1)(D*® + D®). Then using the induction hypothesis
(18) (both on Y® and ®), we have

m—1
Z/ (DY ®)?
j=0 ZN{r<ry}

(D’ G)2>. (19)
)

Jtk<m—1 rsry

m—3 m—1
=c( ¥ paiens o3 [ ety [ wier)
Jj+k<m—2 EcN{r=ry} j=0 P =0 YeN{r=ry}
. m—2
< c( / IN@LY o +) (D G)Z). (20)
jtk=m—1¢ ZeOr=ryl im0 U ENlr=ry}

Using the null frame {V, Y, E;, E»},
g (D" 72®) = —4V,; Ve, D" 20 + AD"2® + P D" 2,

where P; denotes a first order differential operator. Notice that we also have

m—1
| T (D" 2®)| = [Ty, D" 2]1® + D™ 2G| < C(Z|Df<b| + |D’"—2G|).
j=0
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Now using a standard L? elliptic estimate on the sphere, we have

m—1

/SlezD’"_2<I>|2dA <C Lz ((Dm—26)2 +) (DIo) + (Dm—lv?cp)z) dA,
j=0

where we notice that the constant can be chosen uniformly because the metric on the sphere is everywhere
close to that of the standard metric. Therefore, after integrate over {r; < r < r,} and applying (18)
and (20), we have

m—1

/ |V2D"29)? < c/ (D"2G)* + Z(Df'cp)2 +(D"'V, @)%
=:N{r<ry} e N{r<ry} j=0

<c< Z /qu IN @)V o)k +Z/

N{r=ry}

(DjG)2>. (21)

Combining (19), (20) and (21), we have

/ (D’"cI>)2<C< Z f JN(af Y o)nk +Z/
XN{r=ry} SN{r=ry}

jtk<m N{r=ry}

(D’ G)2>. 0

We show that the currents associated to Y¥® can actually be controlled. Again, in view of the nonlinear
problem, we work in the setting of an inhomogeneous equation.

Proposition 46. Suppose Uy, & = G. For every k > 0,

f TN (P*®ynk, +/ TN (Y @)n +/f KN (r )
Efﬂ{rfr;r} i ¥H(t',7) t R(t',T)N] r<r;}

<c< > /Emm I @), qu>)n2,+2f JN @) oy

Jjt+m=<k N r<rY
k
+ /[ (@%+ J N @yl )+ // (DjG)2>.
jgo R ONr<R M) > Z R(t', ONfr=3 M)

Proof. We prove the proposition by induction on k. The k = 0 case is trivial because the right-hand side
simply contains more terms than the left hand side. We suppose the proposition is true for k < ko — 1 for
some ko > 1. Commuting [, with Y for ko times, we get

ko
O Y50 = kb7t e + 0(1) 758, @ + 0(e) D + 0(1) Z D/® + YhG.
j=1
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We now use the energy identity for the vector field N, that is, Proposition 9 for Y¥®. Notice that ¥ is
supported in {r < r;r } and therefore each term is supported in the same set. Then

f TN (Frodnk + / TN (FRodynk + / f KN (7hop)
2,ﬂ{r<ry} #(t0,7) R(t0,T)N{r<ry}

=/ Jév(ffk()@)n’ém —i—e// KY (Yhoo)
po R(to,T)Nry <r<rY }

0

+ // (0 YR D + eYFt 1 ) (—K’W"O“ ®+ 01"y,
R(t,T)Nfr<r}

=ry ko
+0@E© Do+ 0(1)) D/ + ?kc).
j=1

The crucial observation in [Dafermos and Rodnianski 2011] is that one of the inhomogeneous terms has
a good sign and thus gives

/ JN (Ropynl +f JN PRopynt +// KN()?kocp)_|_f/ (Phot1 )2
" H(t', 1) R, T)N{r=<ry} R(t',7)

§C(/ 7Y Yk°d>)n // KN(Y"OCI>)+6// (DXt @)?
Erzﬂ{r<r)f} R, )N{ry <r<rY} R(t’, )N r<rY}

+f JY (0940 1CI>)nZ*+Z// iop+ [[ (Y“G))
R(t’ r)ﬁ{r<ry R(t’,T)N r<ry} R(t’,7)N{ r<rY}
ko+1
gc(/ TN (YR ®ynky +Z// (D’ ®)? +e// (DRl )2
/ﬂ{r<ry R(t', T)N{ry <r<r,,} R/, O)N{r=ry}
+/f IV @ PHo 1q>)nz*+2// (qu>)2+// (?kog)z>.
R/, ON{r=ry} R(t', ON{r=ry} %(r’,t)ﬂ{rgr;'}

Using Proposition 44 with an appropriate cutoff, we have

ko+1

2 I/ (Diop
R, T)N{ry <r<rY}
ko—1
<C< // (q>2_|_JN(8 d))nz*)—i—Z// DJG)z)
R, ONr<E M} R, ONr<E M}
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Using Proposition 45, we get

ko

> (/o
R/, )N{r=ry}

j=1
_ ko—2
( > // JN(arJ*quD)”%,*JFZf/ (DJG)z)
R, O)N{r=<ry} =0 R/, )N{r=ry}

Jj+m<ko—
> / J’V(a,f;l?'"ep)nZ +Zf JN @) oy
jm<ko—1 Mgl r<r r<ry
ko—1
T Z // JN(aJ Ymcp)nZ*Jerf (DJG)z),
itmeko—17 IRE ONr=F M) R ONr<Z M)}

using the induction hypothesis (on ;i ® instead of @) at the last step. Similarly, using Proposition 45,

€ / / (DMt @)?
R, T)N{r=<ry}

k—1
( > f/ IV (), Y’"CD)n’i*—i—Z// (DjG)z)
R, ONr<ry} =0 R, )N{r=<ry}

Jj+m=<ko
§Ce(f/ JN Yk"cb)nz +Z JN(B CID)nE
Rt ONr=ri} ZN{r<ri)
ko . kO
+> / / JN@lomls +3° / / (DJG)Z),
o0/ e onir=F M) im0 Y IR ONr=F M)

where again the induction hypotheses is used at the last step. All these together give

/ Jli\/(?k()cb)nlét +/ J/iV(?kOCI))I/l';r + /f KN(?](OCD)
X, H(79,7) R(o,T)N{r=<ry}

5c< > / TN QLY D)y +Z/ NCESTS
son{r<ri}

JHm=ko =y Zonlrsry

ko ko

+Z/f (<I>2+Jliv(8,];d>)n’§*)+2/ (D'G)?
=0 R, O)Nr<2 M) ! =0 R, DN[r<2 M}

+e// J;V(?k()cp)n’g*).
R, )Nfr<ry} '
The proposition can be proved by noticing that

// TN (YRodynk | < c// KN (o).
R, T)N{r=<ry} R(ro,T)N{r<ry}
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and absorbing the small term to the left-hand side. U

We now specialize to the case [, ® = 0. The proposition above implies that the behavior of Y D is
determined by the behavior of 9;¥ ® in the region {r < 2873M }.

Proposition 47. Fix k > 0. Suppose Uy, ® = 0 and suppose for some constants a, B > 0 (independents

of T) that
k .
> (@2 + JN (3L d)n ) < BT
oo Enr=2m wo g
Then
jHm<k ’ T jm<k ¥ Tro
and

3 // KN(a,J;?’"@)SC(r’)“(Z/ IY @@LV o)n —I—B).
R, O)N{r=ry} X °

j+m<k j+m=<k

Remark. In the applications, we will apply this proposition with B being some energy quantity of the
initial condition.

Proof. We will proof this with a bootstrap argument. Suppose for all 7 that
> f IN@LIm ot < Af—a( 3 / Jy (a,-’;?mqp)ngm + B). (22)
Jj+m=k ZeNfr=ry) j+m=<k ¥ X1

This obviously holds initially for any A > 1 (and in particular independent of ®). By taking ' =17 — K,
for some (large and to be chosen) constant K and t > 2K, Proposition 46 implies

3 ( / JN@LYm o)k, + / / IV @ I?mCD)n’ét*)
= N{r<rf} R(r—K,0)N{r<ry}

Jjtm=<k
) k
JNOLY" o+ /
/E,Kn{rsm o e ; e

SC(Z

Jj+m=k

+
FSVY

k
+ // (@2 + JN (3. d)n. *)>
]2:(:) R(t—K.0N[r<2 M) w Z

/ IN@LY" o+ KBI_O‘),
Ef—Kn{rfr;—}

Vo
} J. (3] @)nf,

SC(Z

JjH+m=<k
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using the assumption of the proposition and using Proposition 44). Using the bootstrap assumption, we
further see that this expression satisfies the bound

< C(A(r — K)_‘"( Z

Jj+m=k

§Cr_‘"< > A/ Jliv(af;)?mCI))n’gro—l—AB—i—KB).
Jj+m=k Xy

fz 7y (a,f;?'"cb)n’gro + B) + KBt“")
0

Notice that C is independent of K. By selecting a ¢* slice, we have that for some 7,

/ JN (P oml chlfa< 3 A/ J,iv(at];?m@)n’gro—l—AB—l—KB).
ZeN{r=<ry} jHm=<k g

Now apply Proposition 46 on [7, 7] to get

> [ aYeiimem
E.N{r<r '

j+m<k v
k
Nai vy N aJj
< C< > / RACAKISESY / AL
j+m<k ZeN{r=ry} =0 =N{r<ri}

k

" // (q’2+JN(8£cI>)n"*>>
jgo REDONr<F M) w % 5,

SCK_lr_"‘( 3 A/E J,ﬁv(a,f;?'"q>)n’;m+AB+BK) +CB(K+ 1t
0

Jjtm=k
<CAK 't Y / JY@LY" @y +(CAK™ +CK +C)BT ™.
j+m<k z:f()
This will improve (22) if we choose K = 4C and A sufficiently large. Hence we have proved

IN@LY™ )nk §Cr_°‘<
> [ e, >

/ J,ﬁ"(&ﬂ?mq:)ngm-i-B).
jm<k j4m<k? o

To prove the second statement, we simply use the first statement and Proposition 46. U
We can use Corollary 43 to show the decay of Yro.
Corollary 48. Suppose U, ® =0. Then for v' <t < (1.1)7/,
IV @3] 7" ynls
> [ e,

jtm=<k
k+2

§Cr—2+'7( 3 /E I QLY oy +y fz JﬁCN(a,’;cb)n‘é,o)v
j=0

Jj+m=<k 70 70
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Z // KN @Y o)
R

j+m<k (T, oN{r=ry'}

k+2
_2+T]< Z / JN(a] qu))nz _,’_Z/ JZ+CN(8 q))nz )

j+m<k

12. Estimates for Qb

In this section, we would like to prove estimates for Q'®. The estimates for Q@ are useful to provide
an extra factor of r in the energy estimates.

Proposition 49. We have

/ rPV2 el < C/ TN (@, 3@, QP)nk
X:N{r=ry} '

T

// r1—5|$<72q>|2§cf/ r 1IN (@, 8@, Q)N
R, ON{r=ry '} R(t’,7) !

// r1—5|x72c1>|25cf/ KX (D, 8,+®@) + KX0(Q).
R, ONr=ry '} R(t’,7)

To prove such estimates, we commute [, with Q. Recall from Section 4.3 that
[Ogy. Q1| < Cr2(1D*®| + D))

everywhere, and

[Ogy, QIO =0
for r < Rq. Now suppose [l,, & = 0. We have
—1
O (Q10) =) 0/ [0, QIQ" /10 = Gay.
j=0

Since [D, 52] = D, we have

il +1
Ga.l = Crz(ZﬂDz@j‘Dl +|ID )+ Y |Df'c1>|),
Jj=0 j=0

and Gq ¢ is supported in {r > Rgq}.

Definition 50. Eq .= // r' G ¢t sup f Ga.’.
R(v—1,7+1) rrelv'—1,t+11 S Z=n{lr—3M| <} M}

This is the error term for the energy estimates for QL ®. We show that this can be controlled.
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Proposition 51. We have

1 -1 ¢
EWSCZZf/ KXO(a:i‘SNZ-@HCZf/ K*o @ ).
w0 j=0 ¢ YA —LT+DN(r=Ra) o ¢ SR =17+ )N{r=Re)
Proof.
f/ I"1+8G?2 '
R’ —1,7+1) '
-1 £+1
<C)_ / / rRP (DR 0) + (DRI +C Y / / r(DI )
I=0 @1, e+ DNfr=Re) I=0 (v —1, 2+ DNr=Ra)
1 €1 ¢
<CcY f r N O Q oyl +C Y / r3 TN (O d)nky,.
m=0j=0 R(t'—1,7+1)N{r>Rq} m=0 R(t'—1,7+DN{r>Rq}
1 -1 ¢
SCZZ/ KX°(85391®>+CZ[ KXo ®).
=0 =0 JRE'—Lt+DN{r=Ro) o SR -1+ DN{r=Ra}
By choosing Rg, sufficiently large, the second term of Egq ¢ vanishes. (I

We can show that the nondegenerate energy of QL@ is almost bounded.

Proposition 52. Suppose U, @ = 0. Then

/ TN (R ) +/ J,iv(?z%)ngﬁJr// KN(s~2€<D)+// KX (Ql o)
Pl " . Rz, VN{r<ry ) R(t0.7)

<C > / I (0.9 ol .
Xy

i+j<t” ¥

Proof. We prove this by induction on £. The £ = 0 case is true by setting G = 0 in Proposition 28. We
assume that the proposition is true for £ < £y — 1. This in particular implies, after a commutations with
the Killing vector field d,+, that

Lo—1

Z/f KYo@nQiey<c / TN (3.Q dynky .
j=0 R(70,7) ETO 0

i+j<m+lo—1
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By Propositions 27 and 51,

/ JN(sz%cb)nZ / JN(s#ch)n%+ +// KN QM) + / KX0(Ql)
ho H(79,7) R(to, T)N{r=<ry} R(t0,7)

gc(/ JN(sz%cp)n2 /f r'Gg , +  sup / Géz())
s R —1T+D) relr'~Lr+11Jan(r=3m|<inmy

0
1 £o—1

gc(/ TN (@ ®)nk, +CZZ// KXo/ @)
g

w0 =0 ¥ JR@o-Lr+DNIr=Ra)

Lo

+CZ// KXO(a;lZ@))
—o Y R(—1Lt+DN{r=Re}

m=
<C ) J,jV (a;;fzfq»n’gm.
i+j<lo

Remark. Only the £ =1 case will be used.

13. Estimates for S®

We will now use the energy estimates that we have derived to control S®. In particular, we would like
to prove a local integrated decay estimate for S®. This will be used in the next section where we prove
our main theorem. Recall from Section 4.2 that for r large

o 1= (4 2) 0025 1= 2o (£ -1) - 52}

r\r r r
2
< Cer_2(Z|8k<I>|),
k=1

and that for r < R, we have
2
[y, SIO| < C(Z|D"<I>|>.
k=1
From now on we will prove estimates for S® by considering the wave equation that it satisfies. We
will assume, as before, [l,, ® =0 and let G denote the commutator term, that is, [, (S®) = G. If we

look at our estimates in the previous sections, we will need to control G in three different norms. We
now consider them separately.

Proposition 53. Let v/ <t < (1.1)t'. Then

f/ 1+5(8 G)2
R(t'—1,74+1)

<cr 't M3 </E gz (amykszf'q>)n;m+cf JN(amYkQ-’QD)n’éro).

mk+j<t43 0
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and

¢
Z[/ rl+8(atr:lG)2
0 Y YR =1L+ DN{r < 351%}

e Y ([ gpaiaen vo [ araen )
mktj<t+4 N Zro >

In other words, we can get more decay if we localize and allow an extra derivative.

l
Z // r1+5(8,'1’G)2
R(t'—1,7+1)

L
<Ccy / / r (@7 D) + (9]t DP)? + (rof £ D))
m=0 R(t'—1,74+1)

(noting that the § in the two lines are different)

<C // 1N @Yk pynt,
Z ( R('—1, T+ DN{r<31*} wt >

m+k<t+1
+ / f r3t N (o Qk <I>)n’§*>
R(T'—1,r+DN{r=1r%) !

(by Proposition 44, 45 and 49)

<Cc Y f—1+n(/ jMZ,wz(a[’ffb)n%m—l—C/ J,iv(a;':fkqnn‘;ro)

m+k<€+3 Xy Xy,

T+1 2 .
+C / (t*)_3+8< / JEv@p oy, +C f TN @Y D)nk >dt*
mk<t+377 "1 Xy K Xy K
- T+1 -
+C Z / (t*)—3+5( / TN (01 Q@)nk, >dt*
m<{+1 t'=1 o K

(using Corollaries 43, 48 and Proposition 52)

cot ¥ ([ uprepraens vo [ ptopr@ent, )
mAk+j<t+3 N Er ‘0

‘We then move on to the localized version:

¢
Z / r1+8(at}’;lG)2
0 Y YR =1L+ DN{r< 3514}

l
<C). // r3 (M D ) 4 (0" D) 4 (10" AD)?)
R

=0 (=1 T+ DN{r<551%}
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<=Cc Y ( f[ PN @Y )nt. + // rt N o YCIJ)nE*)

k<C+1
MHEF gL Dnir<ie) Rr —1 T+ DN sr< 1)

+C Z (// 348 JN(E) QdD)n ) (by Proposition 44, 45 and 49)
m=0 %(r/,l,f+1)m{%,*<r<1g(t) }

<C > r_2+”(/ JZ (o oty +c/ TV @ YCID)nZ>

mtk<0+4 Xy X
+C Y / (t*)~3F (f JE (3 dynls. +C/ TN (ORY D)ny ) dr*
m+k<t+377 "1 Iy Iy
+C Z / (%) 730 (/ JN(8 QCID)nZ ) dt* (using Corollaries 43, 48 and Proposition 52)
=771 0
<ct y (/ JE (amykgfq>)n’§,0+c/ T @pY*Q) dynk ) O
mk+j<t+4 N o g

To estimate the inhomogeneous term in the region r < %t*, we will also need to estimate a term not
integrated over t*, which arises from the integration by parts.

Proposition 54. Fort’' <t < (1.1)7/,

14

sup Zf G)?
rrelr'—1,1+11, Z,*ﬂ{\r—3M|S%M}

<crt N (/ T2 (omSY Dyl +c/ TN (@O o)nly )
g

m+j<€+3 R
Proof.

14

sup Y / (O G)?
rrelr'—1t+11,— J T N{lr=3M|< g M)

14

<C sup Z/ ((D*31 D) + (DI D)% + (r £ D)?)
t*e[t’'—1,7+1] =0 E,*ﬂ{r; <p< 25M

{+1
<C sup ( / TN @ d)nk, + / TN Qo o)nly )
rrelr’'=1r+1] Z Zplry <r<¥ M) i Z N{ry <r<Z M)

(by Proposition 44 and 49)

<cr Yy (/ JZ0 (amSY dynls. +cf TN (9 d)nly. )

m+j<t+3 N X

(using Corollary 43 and Proposition 52). [J
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Finally, we estimate the third norm:

¢ T

172 2
Proposition 55. Z( / ( / rz(a;’:Gﬂ) dt*) <ct"
10 \J ZxN{r=>11%)

Noamaj "
/ I @ oyl .
m=0 m+j<t+3 7 =10

Proof.

T 1/2 2
Z < / ( / r2(a;tzG)2> dt*)
10 \JZN{r=>1r+}

m=0
14 T 1/2 2
§CZ(/ (z*)‘1+5(/ ((D2d>)2—|—(D8t’i’d>)2—|—(rAB;’,Z':I))Z)) dz*)
m=0 70 E,*ﬂ{ri%t*}

. 41 14 ~ 1/2 2
< C(/ (f*)_HB(Z/E I @p ot + Z/E JliV(Qat"fGD)n’ét*) dt*)
o m=0 " = m=0 " =*

<ct" Y / Ty @ oyt . 0
m+j<t+3 Y >0

Now that we have control of the inhomogeneous terms in the equation g, ® = G, we can prove the
decay of S®. To this end, we will introduce the bootstrap assumptions:

c / JZ0 (3p SO + 12 / I @3- SD)n,
T ZNfr=yt)

2
V4 VA Ag o~
< At § :/ JMZ*CN"” (B;QSCD)n’éIO—I—AtH” § : / JMZ+CN’“’ (at’i‘Y"QJCD)n’;rO, (23)
m=1" % m+k+j<5 7 X1

c / JZ0 (St + 12 / IV (St
z, Z.N{r=yt}

2
2 Z+CN,w? (ar 0 Z+CN,wZ jam vk w
<A r"<§ /}: JM w (8I’JSCI>)nZIO+ E /2 Jﬂ YRY QJCD)”XTO)- (24)
m=0" *1 m+k+j<5

We think of A as some large constant to be chosen. We will improve the constants A and A? in the
assumptions above. Under these two assumptions, we will get the following three estimates for the bulk

terms:
Proposition 56.
2 ~
/ /% K M@ 50) < C(,; fz ) Iy @S +m+;<5 fz ) JEHON W gy Gy @)n‘gro).

Proof. The follows by Proposition 29 applied to the equation [, (3;+S®) = 9;+G, taking v’ =19, G| =0,
and G, = 9;+G. Then use Propositions 53 and 54 to estimate the terms with G. U
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Proposition 57. For v/ <t < (1.1)t/, we have

f/ KN (9+SP) + f/ KX0(3,SP) + /f rm KX (SD)
R, T)Nfr<ry ) R, ONfr<Lr*) R(10,7)

SCA(r2 / JEM(SP)nk  +C / 7Y (SCD)n’ér/)
7/ /ﬂ{r<r;}

+CAT ! Z / JZ+CN’”(am szfcp)n
m+k+j<5

Proof. By Propositions 33 and 34, taking G; = 0 and G, = G, and using Propositions 53 and 54 to
estimate the terms with G, we have

f/ KN (8,+S®) + // KX0(3,-S®) + // KX1(S®)
R, )N(r=ry} R, DNfr<irr) R(t0,TIN{r<51*}

SCA(I_Z / JEM (Sl +C / A (S@)n’ér,)
</ /ﬂ{r<rY}

+CATT Y / JZ+CNw(a'"YszJ<1>)n2
m+k+j<5

It remains to estimate » ~'*° K X1 in the region r > %t*. Here, we will use crucially the decay in r. Clearly,

// prIH KX (SP) < cr I // KX (SD).
R(rg,T)Nfr=51*) R(19,7)

Then we can estimate the right-hand side by Proposition 29, taking 7’ = 19, G; =0 and G, = 9,+G.
Then use Propositions 53 and 54 to estimate the terms with G. ]

Proposition 58. Fort’' <t < (1.1)7/,

// KN (S®) + // KX0(S®)
R, T)Nfr<ry} R ONfr<ir*)

SCA2<r_2 / JMZ’“’Z(Sd))nlér,-I—C / Y (Sq))n’ér,)
o oN{r=<ry}

+CA T N / JIHEN oY QI Dyl
mtk+j<4 ¥ ¥

Proof. This follows from using Proposition 33, taking G| = 0 and G, = G, and using Propositions 53
and 54 to estimate the terms with G. ]

We are now ready to retrieve the bootstrap assumptions. First, we retrieve the assumption (23):
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Proposition 59.

c/ waz(at*seb)n‘gﬁﬂ/ TN (0 S DI,
P ZN{r=yr}

2

z zZ AL~

< %Aer JreNw (8flS<D)n’§IO+%Ar1+’7 > / JreNw (8:;‘YkQJ<D)n’§TO
=172 m—+k+j<5 Zr

Proof. By Proposition 41,

c/ J,f~wz(a,*sq>)n‘§r+r2/ T (0 SO,
T Y.N{r<yrt}

< c/ J,LZ+CN~wZ(aﬁsq>)n’g +c// Fr KX (9, S D)
Ty, o R(10.7)

+cs ff (t )ZKXO(a,*S®)+C(5/+e)// (*)? K" (0, S®)
R(zo, T)N{r<11*} R0, TIN{r<ry }

T 1/2
+c<3’)1(/ (/ r2(8,*G)2> dt ) +C(8)~ Ifo (r )2t (@mG)?
1 \JZN{r=5r%} R0, T)Nr <251

10!

+C@)~" sup / (%)% (8+G)?.
Ny <r<Z M)

t*€lty,7] J X

It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. (]
We can now retrieve the bootstrap assumption (24).

Proposition 60.

c / JEUT (Sl + 7 / TSPk
. ZN{r=yr}

<A2r’7<2/ JEHENT Gy Sy + > / JZHENT G Pk Dyl )

m+k+j<5
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Proof. By Proposition 41,
¢ / JEV (SOl + 7 / IN (Sl
ol X N{r=yt}

< c/ TNt (sl +c// oKX (SD)
z

7 R(70,7)

+Cé /f (")’ KX (SD) + C (8 +¢) / () KN (SD)
R(w0,T)N{r<51*} R(t0,T)N{r=<ry}

T 1/2
+C(5’)1</ (/ r2G2> dt) +C@H! Zf/ (z*)2r1+5(a;’:G)2
10 \J ZxN{r>1r%) R(wo, TIN{r<1yt*

10!

+C@H7t sup (") G>.

t*elr, 11 S Bnfry <r<2 M)
It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. (I
We have thus shown the following:

Proposition 61. For all n > 0, there exists € >0 small enough such that for Kerr spacetimes satisfying (3),
the following estimates hold:

c / JEUT (Sl + 7 / IV (SOt
. ZN{r=yr}

<cf"2f JEHENT SOy +Ct" Y / JERENT gmy Y oy

m=0 m—+k+j<5

Moreover, for t/ <t < (1.1)7,

// KN(S®) + /f KXo (S®)
R(, T)N(r<ry} R(¢, )N{r<ir)

2
CT_2+UZ/ JZ+CNUJ (a Sq))nz +Cr_2+'7 Z / JMZ—FCN’wZ(a?:??Zj(D)n%TO
mk+j<5 ¥ T

and

/ / KX (S®)
R, DNfr<ier)

_2-‘,-1’] Zf JZ+CN w? (8 Sq))nz +C.L_—2+?7 Z / JMZ'FCN,wZ(a[Zl?’S"Zj(D)n%TO
mtk+j<6" >

Proof. The first statement is proved by the bootstrap above. Since the bootstrap assumptions are true, the
conclusion in Proposition 58 is also true; hence the second statement is true. The third statement makes
use of the fact that KX can be estimated in the same way as K X° with an extra derivative. (I
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14. Improved decay for the linear homogeneous wave equation

To use the estimates for S®, we need to integrate along integral curves of S. We first find the integral
curves by solving the ordinary differential equation

drs _ h(rs)

drg ts

where h(rg) is as in the definition of S. Hence the integral curves are given by

d
' eXP(f(rs)o h(:z))
p = —————>" = constant,

5
where rg > 2M can be chosen arbitrarily. Let o = ¢*, and consider (o, p, x4, x8) as a new system of

coordinates. Notice that
h(rs) 1
0 = ——0py + 0 = —S.

t* N t*

Now for each fixed p, we have

d% (1) < X)) +

T
/ —S(<I>2)da‘.
¢ O

Integrating along a finite region of p, we get

P2 P2 P2 T 2
f d>2(r)dp§f <1>2(r’>dp+/ / 2
Pl Pl o Ju 1O

We would like to change coordinates back to (z5, rs, x?, xf ). Since h(ryg) is everywhere positive, (o, 7)

c1>5q>‘ do dp.

would correspond to a point with a larger value of r than (p, t’). Therefore,

drS
f ? o2 (1) s R P, h(’s))dr
r+

th(rs)
[ e

We have to compare exp( I (rrss Yo 7 (r )/ h(rs) with the volume form. Very close to the horizon, we have
h(rs) =rs—2M. Hence

exp( /), h(rs>)

dr dt*.
tsh(rs)

d)Sd)‘

drs dr
e ich) _ i1y

h(rs) rs —2M
The corresponding expression on the compact set [ry, R] is obviously bounded. Hence we have
<D2 q)Z /
/ ® _ c(/ (f ) +// |%q>sq>|). 25)
Y. N{r<ry} T oN{r<r} T R(t’,T)N{r<ry} (t )

This easily implies the following improved decay for the nondegenerate energy:
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Proposition 62. f ®% < Crr ! (/f o2+ f/ (S<I>)2) R.
>.N{r<R} RA.D~ I, 0)N{r<R} R(1.D~ 1z, 1)N{r<R}

Proof. By choosing an appropriate T € [(1.1)"!z, 7], we have

/ o2 <cr! // o2,
Y:N{r<R} %((1.1)*1r,r)ﬂ{r<R}

Now, apply (25) with t/ = 7, we have

2 P? 2
.N{r <R} S:Nr<R} T ac onir<ry! ()
< cf—l(f/ <1>2 +// (S<1>)2),
R, 1)N{r<R} R, 1)N{r<R}

using Cauchy—Schwarz for the second term. (|
We can now conclude with the improved decay for solutions to the homogeneous wave equation.

Proof of Main Theorem. By Corollaries 43, 62 and 61, we have

/ P2 < Cpr! (// P> +/f (Sq>)2>
>.N{r<R} R(A1.D~Lr,1)N{r<R} R(1.D~ L, 1)N{r<R}

<Cgt! / / (KX0(®) + KX (SD))
R(A. DLz, 1)N{r<R}

2
< CRT—3+U(Z/ JMZ+CN,wZ(8['fSCD)néT + Z / JlLZ-i-CN,wZ(aI,:lfvﬁjq))nl}éT )
= 0 . ) 0
m=0 0 m+k+j<5 0

Similarly we can use Proposition 62 for the derivatives of ®. By Corollary 43, 62 and 61, we have

/ (D®)?
. N{r<R}

< Cpr! ( / / (D) + / / <SD<I>>2>
R((1.1)~17,0)N{r <R} R, 0)N{r <R}

< Cpr! f f (KX (@) + KX (5D))
R, 1)N{r <R} ) )
(since we have the commutation [D, ST = D)

3
§CRT_3+’7(§ f JEEONT rsynt, + ) / JEHENT Gy QI Dyl )
b o > o
m=0" ~70 m+k+j<6" <%0

By commuting with 9d,+, we get

/ (Dd%®@)?
2:N{r<R}
£+3

SCRr_3+”(Zf JEENE sl + Y f JEHENT g1 P I Dyl )
b o , b o
m=0" =7 m4+k+j<€4+6 " <70
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Without loss of generality, we can take R > %M . Then, by Proposition 47,

Z / VALCH Y’”CD)n

j+m<t b ﬂ{r<r

+3
<Cgrt~ Hn(Z/ JZ+CNw (9% ScI))nZ + Z f JZ+CNw (8’"Y§2’d>)n )

mAk+j<€+6

Hence, by Proposition 44 and 45,

Z / (D’ ®)?

=.N{r<R}
£+2
<Cgt~ 3+’?(Z/ JEHCNT g Somy + Y / JZHENT (gm P T Dyl )
m+k+j<t+5
The pointwise decay statement follows from standard Sobolev embedding. ]

15. Discussion

Out main paper holds in the set {r; <r < R} for any fixed R. It is however interesting also to derive the
same estimates, for example, in the set {r,. <r < %t*}. This can be achieved by proving the full decay
result when we commuted the equation with QL. Using this we can prove (with more loss in derivatives)
that

|B| < CE(r*)™¥* 1 and  |D®| < CE(t*)~3/2 =2+,

for r < %t*. This will be useful in studying nonlinear problems. This decay rate will be proved as a
corollary in our forthcoming paper on the null condition.
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