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In this paper we present a method to study global regularity properties of solutions of large-data critical
Schrödinger equations on certain noncompact Riemannian manifolds. We rely on concentration compact-
ness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words
we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the
corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao).

As an application we prove global well-posedness and scattering in H 1 for the energy-critical defocus-
ing initial-value problem
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1. Introduction

The goal of this paper is to present a somewhat general method to prove global well-posedness of critical1

nonlinear Schrödinger initial-value problems of the form

.i@t C�g/uD N.u/; u.0/D �; (1-1)

on certain noncompact Riemannian manifolds .M;g/. Here �g D gij .@ij � �
k
ij@k/ is the (negative)

Laplace–Beltrami operator of .M;g/. In Euclidean spaces, the subcritical theory of such nonlinear
Schrödinger equations is well established; see for example the books [Cazenave 2003; Tao 2006] for
many references. Many of the subcritical methods extend also to the study of critical equations with small

Ionescu was supported in part by a Packard Fellowship, and Staffilani by NSF Grant DMS 0602678. Pausader and Staffilani
thank the MIT/France program during which this work was initiated.
MSC2000: 35Q55.
Keywords: global well-posedness, energy-critical defocusing NLS, nonlinear Schrödinger equation, induction on energy.

1Here critical refers to the fact that when .M;g/D .R3; ıij /, the equation and the control (here the energy) are invariant
under the rescaling u.x; t/! �1=2u.�x; �2t/.
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data. The case of large-data critical Schrödinger equations is more delicate, and was first considered in
[Bourgain 1999] and [Grillakis 2000] for defocusing Schrödinger equations with pure power nonlinearities
and spherically symmetric data. The spherical symmetry assumption was removed in dimension d D 3

in [Colliander et al. 2008]; global well-posedness was then extended to higher dimensions d � 4 in
[Ryckman and Visan 2007; Visan 2007].

A key development in the theory of large-data critical dispersive problems was the article [Kenig and
Merle 2006], on spherically symmetric solutions of the energy-critical focusing NLS in R3. The methods
developed in this paper found applications in many other large-data critical dispersive problems, leading
to complete solutions or partial results. We adapt this point of view in our variable coefficient setting as
well.

To keep things as simple as possible on a technical level, in this paper we consider only the energy-
critical defocusing Schrödinger equation

.i@t C�g/uD ujuj4 (1-2)

in hyperbolic space H3. Suitable solutions of (1-2) on the time interval .T1;T2/ satisfy mass and energy
conservation, in the sense that the functions

E0.u/.t/ WD

Z
H3

ju.t/j2 d�; E1.u/.t/ WD
1

2

Z
H3

jrgu.t/j2 d�C
1

6

Z
H3

ju.t/j6 d� (1-3)

are constant on the interval .T1;T2/. Our main theorem concerns global well-posedness and scattering in
H 1.H3/ for the initial-value problem associated to (1-2).

Theorem 1.1. (a) (Global well-posedness.) If � 2H 1.H3/2 then there exists a unique global solution
u 2 C.R WH 1.H3// of the initial-value problem

.i@t C�g/uD ujuj4; u.0/D �: (1-4)

In addition, the mapping �! u is a continuous mapping from H 1.H3/ to C.R WH 1.H3//, and the
quantities E0.u/ and E1.u/ defined in (1-3) are conserved.

(b) (Scattering.) We have the bound

kukL10.H3�R/ � C.k�kH 1.H3//: (1-5)

As a consequence, there exist unique u˙ 2H 1.H3/ such that

ku.t/� eit�g u˙kH 1.H3/ D 0 as t !˙1: (1-6)

It was observed by Banica [2007] that hyperbolic geometry cooperates well with the dispersive nature
of Schrödinger equations, at least in the case of subcritical problems. In fact the long time dispersion of
solutions is stronger in hyperbolic geometry than in Euclidean geometry. Intuitively, this is due to the
fact that the volume of a ball of radius RC 1 in hyperbolic spaces is about twice as large as the volume

2Unlike in Euclidean spaces, in hyperbolic spaces Hd one has the uniform inequality
R

Hd jf j
2 d�.

R
Hd jrf j

2 d� for any
f 2 C1

0
.Hd /. In other words PH 1.Hd / ,!L2.Hd /.
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of a ball of radius R, if R� 1; therefore, as outgoing waves advance one unit in the geodesic direction
they have about twice as much volume to disperse into. This heuristic can be made precise; see [Anker
and Pierfelice 2009; Banica 2007; Banica et al. 2008; 2009; Banica and Duyckaerts 2007; Bouclet 2011;
Christianson and Marzuola 2010; Ionescu and Staffilani 2009; Pierfelice 2008] for theorems concerning
subcritical nonlinear Schrödinger equations in hyperbolic spaces (or other spaces that interpolate between
Euclidean and hyperbolic spaces). The theorems proved in these papers are stronger than the corresponding
theorems in Euclidean spaces, in the sense that one obtains better scattering and dispersive properties of
the nonlinear solutions.

We remark, however, that the global geometry of the manifold cannot bring any improvements in the
case of critical problems. To see this, consider only the case of data of the form

�N .x/DN 1=2 .N‰�1.x//; (1-7)

where  2 C1
0
.R3/ and ‰ WR3!H3 is a suitable local system of coordinates. Assuming that  is fixed

and letting N !1, the functions �N 2 C1
0
.H3/ have uniformly bounded H 1 norm. For any T � 0 and

 fixed, one can prove that the nonlinear solution of (1-4) corresponding to data �N is well approximated
by

N 1=2v.N‰�1.x/;N 2t/

on the time interval .�TN�2;TN�2/, for N sufficiently large (depending on T and  ), where v is the
solution on the time interval .�T;T / of the Euclidean nonlinear Schrödinger equation

.i@t C�/v D vjvj
4; v.0/D  : (1-8)

See Section 4 for precise statements. In other words, the solution of the hyperbolic NLS (1-4) with data
�N can be regular on the time interval .�TN�2;TN�2/ only if the solution of the Euclidean NLS (1-8)
is regular on the interval .�T;T /. This shows that understanding the Euclidean scale invariant problem
is a prerequisite for understanding the problem on any other manifold. Fortunately, we are able to use the
main theorem of Colliander et al. [2008] as a black box (see the proof of Lemma 4.2).

The previous heuristic shows that understanding the scaling limit problem (1-8) is part of understanding
the full nonlinear evolution (1-4), at least if one is looking for uniform control on all solutions below
a certain energy level. This approach was already used in the study of elliptic equations, first in the
subcritical case (where the scaling limits are easier) by Gidas and Spruck [1981] and also in the H 1

critical setting, see for example Druet, Hebey and Robert [Druet et al. 2004], Hebey and Vaugon [1995],
Schoen [1989] and (many) references therein. Note however that in the dispersive case, we have to
contend with the fact that we are looking at perturbations of a linear operator i@t C�g whose kernel is
infinite dimensional.

Other critical dispersive models, such as large-data critical wave equations or the Klein–Gordon
equation have also been studied extensively, both in the case of the Minkowski space and in other Lorentz
manifolds. See, for example, [Bahouri and Gérard 1999; Bahouri and Shatah 1998; Burq et al. 2008;
Burq and Planchon 2009; Grillakis 1990; 1992; Ibrahim and Majdoub 2003; Ibrahim et al. 2009; 2011;
Kapitanski 1994; Kenig and Merle 2008; Killip et al. 2012; Laurent 2011; Shatah and Struwe 1993; 1994;
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Struwe 1988; Tao 2006] for further discussion and references. In the case of the wave equation, passing
to the variable coefficient setting is somewhat easier due the finite speed of propagation of solutions.

Nonlinear Schrödinger equations such as (1-1) have also been considered in the setting of compact
Riemannian manifolds .M;g/; see [Bourgain 1993a; 1993b; Burq et al. 2004; 2005; Colliander et al.
2010; Gérard and Pierfelice 2010]. In this case the conclusions are generally weaker than in Euclidean
spaces: there is no scattering to linear solutions, or some other type of asymptotic control of the nonlinear
evolution as t !1. We note however the recent result of Herr, Tataru and Tzvetkov [Herr et al. 2011]
on the global well-posedness of the energy critical NLS with small initial data in H 1.T3/.

To simplify the exposition, we use some of the structure of hyperbolic spaces; in particular we exploit
the existence of a large group of isometries that acts transitively on Hd . However the main ingredients in
the proof are more basic, and can probably be extended to more general settings3. These main ingredients
are:

(1) a dispersive estimate such as (2-24), which gives a good large-data local well-posedness/stability
theory (Propositions 3.1 and 3.2);

(2) a good Morawetz-type inequality (Proposition 3.3) to exploit the global defocusing character of the
equation;

(3) a good understanding of the Euclidean problem, provided in this case by a result of Colliander, Keel,
Staffilani, Takaoka and Tao [Colliander et al. 2008, Theorem 4.1];

(4) some uniform control of the geometry of the manifold at infinity.

The rest of the paper is organized as follows: in Section 2 we set up the notations, and record the main
dispersive estimates on the linear Schrödinger flow on hyperbolic spaces. We prove also several lemmas
that are used later.

In Section 3 we collect all the necessary ingredients described above, and outline the proof of the main
theorem. The only component of the proof that is not known is Proposition 3.4 on the existence of a
suitable minimal energy blow-up solution.

In Section 4 we consider nonlinear solutions of (1-4) corresponding to data that contract at a point,
as in (1-7). Using the main theorem in [Colliander et al. 2008] we prove that such nonlinear solutions
extend globally in time and satisfy suitable dispersive bounds.

In Section 5 we prove our main profile decomposition of H 1-bounded sequences of functions in
hyperbolic spaces. This is the analogue of Keraani’s theorem [2001] in Euclidean spaces. In hyperbolic
spaces we have to distinguish between two types of profiles: Euclidean profiles which may contract at a
point, after time and space translations, and hyperbolic profiles which live essentially at frequency4 N D 1.
Hyperbolic geometry guarantees that profiles of low frequency N � 1 can be treated as perturbations.

3Two of the authors have applied a similar strategy to prove global regularity of the defocusing energy-critical NLS in other
settings, such as T3 [Ionescu and Pausader 2012a] and R�T3 [Ionescu and Pausader 2012b], where other issues arise due to the
presence of trapped geodesics or the lower power in the nonlinearity.

4Here we define the notion of frequency through the heat kernel, see (2-28).
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Finally, in Section 6 we use our profile decomposition and orthogonality arguments to complete the proof
of Proposition 3.4.

2. Preliminaries

In this subsection we review some aspects of the harmonic analysis and the geometry of hyperbolic spaces,
and summarize our notations. For simplicity, we will use the conventions in [Bray 1994], but one should
keep in mind that hyperbolic spaces are the simplest examples of symmetric spaces of the noncompact
type, and most of the analysis on hyperbolic spaces can be generalized to this setting (see, for example,
[Helgason 1994]).

Hyperbolic spaces: Riemannian structure and isometries. For integers d�2 we consider the Minkowski
space RdC1 with the standard Minkowski metric �.dx0/2C.dx1/2C: : :C.dxd /2 and define the bilinear
form on RdC1 �RdC1,

Œx;y�D x0y0
�x1y1

� � � � �xdyd :

Hyperbolic space Hd is defined as

Hd
D fx 2 RdC1

W Œx;x�D 1 and x0 > 0g:

Let 0D .1; 0; : : : ; 0/ denote the origin of Hd . The Minkowski metric on RdC1 induces a Riemannian
metric g on Hd , with covariant derivative D and induced measure d�.

We define G WD SO.d; 1/D SOe.d; 1/ as the connected Lie group of .d C 1/� .d C 1/ matrices that
leave the form Œ � ; � � invariant. Clearly, X 2 SO.d; 1/ if and only if

trX � Id;1 �X D Id;1; det X D 1; X00 > 0;

where Id;1 is the diagonal matrix diagŒ�1; 1; : : : ; 1� (since Œx;y�D�tx �Id;1 �y). Let KD SO.d/ denote
the subgroup of SO.d; 1/ that fixes the origin 0. Clearly, SO.d/ is the compact rotation group acting on
the variables .x1; : : : ;xd /. We define also the commutative subgroup A of G,

A WD

8<:as D

24 ch s sh s 0

sh s ch s 0

0 0 Id�1

35 W s 2 R

9=; ; (2-1)

and recall the Cartan decomposition

GD KACK; AC WD fas W s 2 Œ0;1/g: (2-2)

The semisimple Lie group G acts transitively on Hd and hyperbolic space Hd can be identified
with the homogeneous space G=K D SO.d; 1/=SO.d/. Moreover, for any h 2 SO.d; 1/ the mapping
Lh W Hd ! Hd , Lh.x/ D h � x, defines an isometry of Hd . Therefore, for any h 2 G, we define the
isometries

�h WL
2.Hd /!L2.Hd /; �h.f /.x/D f .h

�1
�x/: (2-3)
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We fix normalized coordinate charts which allow us to pass in a suitable way between functions defined
on hyperbolic spaces and functions defined on Euclidean spaces. More precisely, for any h 2 SO.d; 1/
we define the diffeomorphism

‰h W R
d
! Hd ; ‰h.v

1; : : : ; vd /D h � .
p

1Cjvj2; v1; : : : ; vd /: (2-4)

Using these diffeomorphisms we define, for any h 2 G,

z�h W C.R
d /! C.Hd /; z�h.f /.x/D f .‰

�1
h .x//: (2-5)

We will use the diffeomorphism ‰I as a global coordinate chart on Hd , where I is the identity element
of G. We record the integration formulaZ

Hd

f .x/ d�.x/D

Z
Rd

f .‰I .v//.1Cjvj
2/�1=2 dv (2-6)

for any f 2 C0.H
d /.

The Fourier transform on hyperbolic spaces. The Fourier transform (as defined by Helgason [1965] in
the more general setting of symmetric spaces) takes suitable functions defined on Hd to functions defined
on R�Sd�1. For ! 2 Sd�1 and � 2 C, let b.!/D .1; !/ 2 RdC1 and

h�;! W H
d
! C; h�;!.x/D Œx; b.!/�

i���;

where
�D .d � 1/=2:

It is known that
�gh�;! D�.�

2
C �2/h�;! ; (2-7)

where �g is the Laplace–Beltrami operator on Hd . The Fourier transform of f 2 C0.H
d / is defined by

the formula
Qf .�; !/D

Z
Hd

f .x/h�;!.x/ d�D

Z
Hd

f .x/Œx; b.!/�i��� d�: (2-8)

This transformation admits a Fourier inversion formula: if f 2 C1
0
.Hd / then

f .x/D

Z 1
0

Z
Sd�1

Qf .�; !/Œx; b.!/��i���
jc.�/j�2 d� d!; (2-9)

where, for a suitable constant C ,

c.�/D C
�.i�/

�.�C i�/

is the Harish-Chandra c-function corresponding to Hd , and the invariant measure of Sd�1 is normalized
to 1. It follows from (2-7) that

A�gf .�; !/D�.�
2
C �2/ Qf .�; !/: (2-10)
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We record also the nontrivial identityZ
Sd�1

Qf .�; !/Œx; b.!/��i���d! D

Z
Sd�1

Qf .��; !/Œx; b.!/�i���d!

for any f 2 C1
0
.Hd /, � 2 C, and x 2 Hd .

According to the Plancherel theorem, the Fourier transform f ! Qf extends to an isometry of L2.Hd /

onto L2.RC �Sd�1; jc.�/j�2d� d!/; moreoverZ
Hd

f1.x/f2.x/ d�D
1

2

Z
R�Sd�1

zf1.�; !/ zf2.�; !/jc.�/j
�2 d� d!; (2-11)

for any f1; f2 2 L2.Hd /. As a consequence, any bounded multiplier m W RC! C defines a bounded
operator Tm on L2.Hd / by the formula

BTm.f /.�; !/Dm.�/ � Qf .�; !/: (2-12)

The question of Lp boundedness of operators defined by multipliers as in (2-12) is more delicate if
p ¤ 2. A necessary condition for boundedness on Lp.Hd / of the operator Tm is that the multiplier m

extends to an even analytic function in the interior of the region Tp D f� 2 C W j=�j< j2=p�1j�g [Clerc
and Stein 1974]. Conversely, if p 2 .1;1/ and m W Tp! C is an even analytic function which satisfies
the symbol-type bounds

j@˛m.�/j � C.1Cj�j/�˛ for any ˛ 2 Œ0; d C 2�\Z and � 2 Tp; (2-13)

then Tm extends to a bounded operator on Lp.Hd / [Stanton and Tomas 1978].
As in Euclidean spaces, there is a connection between convolution operators in hyperbolic spaces and

multiplication operators in the Fourier space. To state this connection precisely, we normalize first the
Haar measures on K and G such that

R
K

1 dk D 1 andZ
G

f .g � 0/ dg D

Z
Hd

f .x/ d�

for any f 2 C0.H
d /. Given two functions f1; f2 2 C0.G/ we define the convolution

.f1 �f2/.h/D

Z
G

f1.g/f2.g
�1h/ dg: (2-14)

A function K W G! C is called K-biinvariant if

K.k1gk2/DK.g/ for any k1; k2 2 K: (2-15)

Similarly, a function K W Hd ! C is called K-invariant (or radial) if

K.k �x/DK.x/ for any k 2 K and x 2 Hd : (2-16)

If f;K 2 C0.H
d / and K is K-invariant then we define (compare to (2-14))

.f �K/.x/D

Z
G

f .g � 0/K.g�1
�x/ dg: (2-17)
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If K is K-invariant then the Fourier transform formula (2-8) becomes

zK.�; !/D zK.�/D

Z
Hd

K.x/ˆ��.x/ d�; (2-18)

where

ˆ�.x/D

Z
Sd�1

Œx; b.!/��i��� d! (2-19)

is the elementary spherical function. The Fourier inversion formula (2-9) becomes

K.x/D

Z 1
0

zK.�/ˆ�.x/jc.�/j
�2 d�; (2-20)

for any K-invariant function K 2 C1
0
.Hd /. With the convolution defined as in (2-17), we have the

important identity
B.f �K/.�; !/D Qf .�; !/ � zK.�/ (2-21)

for any f;K 2 C0.H
d /, provided that K is K-invariant5.

We define now the inhomogeneous Sobolev spaces on Hd . There are two possible definitions: using
the Riemannian structure g or using the Fourier transform. These two definitions agree. In view of (2-10),
for s 2 C we define the operator .��/s=2 as given by the Fourier multiplier �! .�2 C �2/s=2. For
p 2 .1;1/ and s 2 R we define the Sobolev space W p;s.Hd / as the closure of C1

0
.Hd / under the norm

kf kW p;s.Hd / D k.��/
s=2f kLp.Hd /:

For s 2 R let H s D W 2;s . This definition is equivalent to the usual definition of the Sobolev spaces
on Riemannian manifolds (this is a consequence of the fact that the operator .��g/

s=2 is bounded on
Lp.Hd / for any s 2C, <s � 0, since its symbol satisfies the differential inequalities (2-13)). In particular,
for s D 1 and p 2 .1;1/,

kf kW p;1.Hd / D k.��/
1=2f kLp.Hd / �p

�Z
Hd

jrgf j
p d�

�1=p

; (2-22)

where
jrgf j WD jD

˛fD˛
Nf j1=2:

We record also the Sobolev embedding theorem

W p;s ,!Lq if 1< p � q <1 and s D d=p� d=q: (2-23)

Dispersive estimates. Most of our perturbative analysis in the paper is based on the Strichartz estimates
for the linear Schrödinger flow. For any � 2H s.Hd /, s 2 R, let eit�g� 2 C.R WH s.Hd // denote the
solution of the free Schrödinger evolution with data �, i.e.,

Beit�g�.�; !/D z�.�; !/ � e�it.�2C�2/:

5Unlike in Euclidean Fourier analysis, there is no simple identity of this type without the assumption that K is K-invariant.
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The main inequality we need is the dispersive estimate6 (see [Anker and Pierfelice 2009; Banica 2007;
Banica et al. 2008; Ionescu and Staffilani 2009; Pierfelice 2008])

keit�gkLp!Lp0 . jt j�d.1=p�1=2/; p 2 Œ2d=.d C 2/; 2�; p0 D p=.p� 1/; (2-24)

for any t 2 R n f0g. The Strichartz estimates below then follow from a general theorem from [Keel and
Tao 1998].

Proposition 2.1 (Strichartz estimates). Assume that d � 3 and I D .a; b/�R is a bounded open interval.

(i) If � 2L2.Hd / then

keit�g�k
.L1t L2

x\L2
t L

2d=.d�2/
x /.Hd�I /

. k�kL2 : (2-25)

(ii) If F 2 .L1
t L2

xCL2
t L

2d=.dC2/
x /.Hd � I/ then



 Z t

a

ei.t�s/�g F.s/ ds






.L1t L2

x\L2
t L

2d=.d�2/
x /.Hd�I /

. kFk
.L1

t L2
xCL2

t L
2d=.dC2/
x /.Hd�I /

: (2-26)

To exploit these estimates in dimension d D 3, for any interval I � R and f 2 C.I WH�1.H3// we
define

kf kZ.I / WD kf kL10
t;x.H

3�I /;

kf kSk.I / WD k.��/
k=2f k.L1t L2

x\L2
t L6

x/.H3�I /; k 2 Œ0;1/;

kf kN k.I / WD k.��/
k=2f k

.L1
t L2

xCL2
t L

6=5
x /.H3�I /

; k 2 Œ0;1/:

(2-27)

We use the S1 norms to estimate solutions of linear and nonlinear Schrödinger equations. Nonlinearities
are estimated using the N 1 norms. The L10 norm is the “scattering” norm, which controls the existence
of strong solutions of the nonlinear Schrödinger equation, see Proposition 3.1 and Proposition 3.2 below.

Some lemmas. In this subsection we collect and prove several lemmas that will be used later in the paper.
For N > 0 we define the operator PN WL

2.H3/!L2.H3/,

PN WDN�2�geN�2�g ;

APNf .�; !/D�N�2.�2
C 1/e�N�2.�2C1/ Qf .�; !/:

(2-28)

One should think of PN as a substitute for the usual Littlewood–Paley projection operator in Euclidean
spaces that restricts to frequencies of size�N ; this substitution is necessary in order to have a suitable Lp

theory for these operators, since only real-analytic multipliers can define bounded operators on Lp.H3/

[Clerc and Stein 1974]. In view of the Fourier inversion formula we have

PNf .x/D

Z
H3

f .y/PN .d.x;y// d�.y/;

6In fact this estimate can be improved if jt j � 1, see [Ionescu and Staffilani 2009, Lemma 3.3]. This leads to better control
of the longtime behavior of solutions of subcritical Schrödinger equations in hyperbolic spaces, compared to the behavior of
solutions of the same equations in Euclidean spaces (see [Banica 2007; Banica et al. 2008; Ionescu and Staffilani 2009; Anker
and Pierfelice 2009]).
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where
jPN .r/j.N 3.1CN r/�5e�4r : (2-29)

The estimates in the following lemma will be used in Section 5.

Lemma 2.2. (i) Given � 2 .0; 1� there is R� � 1 such that for any x 2 H3, N � 1, and f 2H 1.H3/,

jPNf .x/j.N 1=2.kf � 1B.x;R�N�1/kL6.H3/C �kf kL6.H3//

where B.x; r/ denotes the ball B.x; r/D fy 2 H3 W d.x;y/ < rg.

(ii) For any f 2H 1.H3/,

kf kL6.H3/ . krf k
1=3

L2.H3/
sup
N�1
x2H3

�
N�1=2

jPNf .x/j
�2=3

:

Proof. (i) The inequality follows directly from (2-29):

jPNf .x/j.
Z

B.x;R�N�1/

jf .y/j jPN .d.x;y//j d�.y/C

Z
cB.x;R�N�1/

jf .y/j jPN .d.x;y//j d�.y/

. kf � 1B.x;R�N�1/kL6.H3/ �AN;0;6=5Ckf kL6.H3/ �AN;R�;6=5;

where, for R 2 Œ0;1/, N 2 Œ1;1/ and p 2 Œ1; 2�

AN;R;p WD

�Z
d.0;y/�RN�1

jPN .d.0;y//j
p d�.y/

�1=p

.
�Z 1

RN�1

jPN .r/j
p.sh r/2 dr

�1=p

.N 3

�Z 1
RN�1

.1CN r/�5pr2 dr

�1=p

.N 3�3=p.1CR/�1:

The inequality follows if R� D 1=�.

(ii) Such improved Sobolev embeddings in various settings have been used before, for example, in
[Bahouri and Gérard 1999; Keraani 2001]. For any f 2H 1.H3/ we have the identity

f D c

Z 1
ND0

N�1PN .f / dN: (2-30)

Thus, with A WD supN�0 kN
�1=2PNf kL1.H3/Z

H3

jf j6 d�.
Z

H3

Z
0�N1�:::�N6

jPN1
f j � : : : � jPN6

f j
dN1

N1

: : :
dN6

N6

d�

.A4

Z
H3

Z
0�N5�N6

N 2
5 jPN5

f jjPN6
f j

dN5

N5

dN6

N6

d�

.A4

Z
H3

Z 1
0

N jPNf j
2 dNd�;

where the last inequality follows by Schur’s lemma. The claim follows sinceZ
H3

Z 1
0

N jPNf j
2 dNd�D ck.��/1=2f k2

L2.H3/
;
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as a consequence of the Plancherel theorem and the definition of the operators PN , and, for any N 2 Œ0; 1/,

kN�1=2PNf kL1.H3/ . kP2f kL1.H3/: (2-31)
�

We will also need the following technical estimate:

Lemma 2.3. Assume  2H 1.H3/ satisfies

k kH 1.H3/ � 1; sup
K�1
t2R

x2H3

K�1=2
jPK eit�g .x/j � ı; (2-32)

for some ı 2 .0; 1�. Then, for any R> 0 there is C.R/� 1 such that

N 1=2
krgeit�g k

L5
t L

15=8
x .B.x0;RN�1/�.t0�R2N�2;t0CR2N�2//

� C.R/ı1=20 (2-33)

for any N � 1, any t0 2 R, and any x0 2 H3.

Proof. We may assume RD 1, x0 D 0, t0 D 0. It follows from (2-32) that for any K > 0 and t 2 R

kPK eit�g kL1.H3/ . ıK1=2; kPK eit�g kL6.H3/ . 1I

therefore, by interpolation,
kPK eit�g kL12.H3/ . ı1=2K1=4:

Thus, for any K > 0 and t 2 R,

krg.PK eit�g /kL12.H3/ . ı1=2K1=4.KC 1/;

which shows that, for any K > 0 and N � 1,

N 1=2
krg.PK eit�g /k

L5
t L

15=8
x .B.0;N�1/�.�N�2;N�2//

. ı1=2K1=4.KC 1/N�5=4: (2-34)

We will prove below that, for any N � 1 and K �N ,

krg.PK eit�g /kL2
x;t .B.0;N�1/�.�N�2;N�2// . .NK/�1=2: (2-35)

Assuming this and using the energy estimate

krg.PK eit�g /kL1t L2
x.H3�R/ . 1;

we have, by interpolation,

krg.PK eit�g /kL5
t L2

x.B.0;N�1/�.�N�2;N�2// . .NK/�1=5:

Therefore, for any N � 1 and K �N

N 1=2
krg.PK eit�g /k

L5
t L

15=8
x .B.0;N�1/�.�N�2;N�2//

.N 1=5K�1=5: (2-36)

The desired bound (2-33) follows from (2-34), (2-36), and the identity (2-30).
It remains to prove the local smoothing bound (2-35). Many such estimates are known in more general

settings; see, for example, [Doi 1996]. We provide below a simple self-contained proof specialized to
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our case. Assuming N � 1 fixed, we will construct a real-valued function aD aN 2 C1.H3/ with the
properties

jD˛aD˛aj. 1 in H3;

j�g.�ga/j.N 3 in H3;

X ˛X˛ �N 1B.0;N�1/ .X ˛X ˇD˛Dˇa in H3 for any vector-field X 2 T .H3/:

(2-37)

Assuming such a function is constructed, we define the Morawetz action

Ma.t/D 2=

Z
H3

D˛a.x/ � Nu.x/D˛u.x/ d�.x/;

where u WD PK eit�g . A formal computation (see [Ionescu and Staffilani 2009, Proposition 4.1] for a
complete justification) shows that

@tMa.t/D 4<

Z
H3

D˛Dˇa �D˛uDˇ Nu d��

Z
H3

�g.�ga/ � juj2 d�:

Therefore, by integrating on the time interval Œ�N�2;N�2� and using the first two properties in (2-37),

4

Z N�2

�N�2

Z
H3

<.D˛Dˇa �D˛uDˇ Nu/ d� dt

� 2 sup
jt j�N�2

jMa.t/jC

Z N�2

�N�2

Z
H3

j�g.�ga/j � juj2 d� dt

. sup
jt j�N�2

ku.t/kL2.H3/ku.t/kH 1.H3/CN 3

Z N�2

�N�2

ku.t/k2
L2.H3/

dt .K�1
CNK�2:

The desired bound (2-35) follows, in view of the inequality in the last line of (2-37) and the assumption
K �N since a is real valued.

Finally, it remains to construct a real-valued function a 2 C1.H3/ satisfying (2-37). We are looking
for a function of the form

a.x/ WD Qa.ch r.x//; r D d.0;x/; Qa 2 C1.Œ1;1//: (2-38)

To prove the inequalities in (2-37) it is convenient to use coordinates induced by the Iwasawa decomposition
of the group G: we define the global diffeomorphism

ˆ W R2
�R! H3; ˆ.v1; v2; s/D tr.ch sC e�s

jvj2=2; sh sC e�s
jvj2=2; e�sv1; e�sv2/;

and fix the global orthonormal frame

e3 WD @s; e1 WD es@v1 ; e2 WD es@v2 :

With respect to this frame, the covariant derivatives are

De˛eˇ D ı˛ˇe3; De˛e3 D�e˛; De3
e˛ DDe3

e3 D 0 for ˛; ˇ D 1; 2:
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See [Ionescu and Staffilani 2009, Section 2] for these calculations. In this system of coordinates we have

ch r D ch sC e�s
jvj2=2: (2-39)

Therefore, for a as in (2-38), we have

D3aD .sh s� e�s
jvj2=2/ � Qa0.ch r/; D1aD v1

� Qa0.ch r/; D2aD v2
� Qa0.ch r/:

Using the formula

D˛DˇaD e˛.eˇ.a//� .De˛eˇ/.a/; ˛; ˇ D 1; 2; 3;

we compute the Hessian:

D1D1aD .v1/2 Qa00.ch r/C ch r Qa0.ch r/; D2D2aD .v2/2 Qa00.ch r/C ch r Qa0.ch r/;

D1D2aDD2D1aD v1v2
Qa00.ch r/; D3D3f D .sh s� e�s

jvj2=2/2 Qa00.ch r/C ch r Qa0.ch r/;

D1D3aDD3D1aD v1.sh s� e�s
jvj2=2/ Qa00.ch r/;

D2D3aDD3D2aD v2.sh s� e�s
jvj2=2/ Qa00.ch r/:

Therefore, using again (2-39),

D˛aD˛aD .sh r/2. Qa0.ch r//2; �gaD ..ch r/2� 1/ Qa00.ch r/C 3.ch r/ Qa0.ch r/; (2-40)

and

X ˛X ˇD˛DˇaD ch r Qa0.ch r/jX j2C Qa00.ch r/.X 1v1
CX 2v2

CX 3.sh s� e�s
jvj2=2//2: (2-41)

We fix now Qa such that

Qa0.y/ WD .y2
� 1CN�2/�1=2; y 2 Œ1;1/:

The first identity in (2-37) follows easily from (2-40). To prove the second identity in (2-37), we use
again (2-40) to derive

�gaD b.ch r/; where b.y/D 3y.y2
� 1CN�2/�1=2

�y.y2
� 1/.y2

� 1CN�2/�3=2:

Using (2-40) again, it follows that

j�g.�ga/j. y2.y2
� 1CN�2/�3=2 where y D ch r;

which proves the second inequality in (2-37). Finally, using (2-41),

X ˛X ˇD˛Dˇa� ch r Qa0.ch r/jX j2� ..ch r/2� 1/j Qa00.ch r/j jX j2

DN�2 ch r..ch r/2� 1CN�2/�3=2
jX j2;

which proves the last inequality in (2-37). This completes the proof of the lemma. �
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3. Proof of the main theorem

In this section we outline the proof of Theorem 1.1. The main ingredients are a local well-posedness and
stability theory for the initial-value problem, which in our case relies only on the Strichartz estimates in
Proposition 2.1, a global Morawetz inequality, which exploits the defocusing nature of the problem, and a
compactness argument, which depends on the Euclidean analogue of Theorem 1.1 proved in [Colliander
et al. 2008].

We start with the local well-posedness theory. Let

PD f.I;u/ W I � R is an open interval and u 2 C.I WH 1.H3//g

with the natural partial order

.I;u/� .I 0;u0/ if and only if I � I 0 and u0.t/D u.t/ for any t 2 I:

Proposition 3.1 (local well-posedness). Assume � 2H 1.H3/. Then there is a unique maximal solution
.I;u/D .I.�/;u.�// 2 P, 0 2 I , of the initial-value problem

.i@t C�g/uD ujuj4; u.0/D � (3-1)

on H3� I . The mass E0.u/ and the energy E1.u/ defined in (1-3) are constant on I , and kukS1.J / <1

for any compact interval J � I . In addition,

kukZ.IC/ D1 if IC WD I \ Œ0;1/ is bounded;

kukZ.I�/ D1 if I� WD I \ .�1; 0� is bounded:
(3-2)

In other words, local-in-time solutions of the equation exist and extend as strong solutions as long as
their spacetime L10

x;t norm does not blow up. We complement this with a stability result.

Proposition 3.2 (stability). Assume I is an open interval, � 2 Œ�1; 1�, and Qu 2 C.I WH 1.H3// satisfies
the approximate Schrödinger equation

.i@t C�g/ QuD � Quj Quj
4
C e on H3

� I:

Assume in addition that
k QukL10

t;x.H
3�I /C sup

t2I

k Qu.t/kH 1.H3/ �M; (3-3)

for some M 2 Œ1;1/. Assume t0 2 I and u.t0/ 2H 1.H3/ is such that the smallness condition

ku.t0/� Qu.t0/kH 1.H3/CkekN 1.I / � � (3-4)

holds for some 0< � < �1, where �1 � 1 is a small constant �1 D �1.M / > 0.
Then there exists a solution u 2 C.I WH 1.H3// of the Schrödinger equation

.i@t C�g/uD �ujuj4 on H3
� I;

and
kukS1.H3�I /CkQukS1.H3�I / � C.M /; ku� QukS1.H3�I / � C.M /�: (3-5)
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Both Proposition 3.1 and Proposition 3.2 are standard consequences of the Strichartz estimates and
Sobolev embedding theorem (2-23); see, for example, [Colliander et al. 2008, Section 3]. We will use
Proposition 3.2 with �D 0 and with �D 1 to estimate linear and nonlinear solutions on hyperbolic spaces.

We next state the global Morawetz estimate:

Proposition 3.3 [Ionescu and Staffilani 2009, Proposition 4.1]. Assume that I � R is an open interval,
and u 2 C.I WH 1.H3// is a solution of the equation

.i@t C�g/uD ujuj4 on H3
� I:

Then, for any t1; t2 2 I ,

kuk6
L6.H3�Œt1;t2�/

. sup
t2Œt1;t2�

ku.t/kL2.H3/ku.t/kH 1.H3/: (3-6)

Next, recall the conserved energy E1.u/ defined in (1-3). For any E 2 Œ0;1/ let S.E/ be defined by

S.E/D supfkukZ.I /;E
1.u/�Eg;

where the supremum is taken over all solutions u 2C.I WH 1.H3// defined on an interval I and of energy
less than E. We also define

Emax D supfE;S.E/ <1g:

Using Proposition 3.2 with Qu� 0; e � 0, I D R, M D 1, �� 1, one checks that Emax > 0. It follows
from Proposition 3.1 that if u is a solution of (1-2) and E.u/ <Emax, then u can be extended to a globally
defined solution which scatters.

If Emax D C1, then Theorem 1.1 is proved, as a consequence of Propositions 3.1 and 3.2. If we
assume that Emax < C1, then, there exists a sequence of solutions satisfying the hypothesis of the
following key proposition, to be proved later.

Proposition 3.4. Let uk 2 C..�Tk ;T
k/ WH 1.H3//, k D 1; 2; : : : , be a sequence of nonlinear solutions

of the equation
.i@t C�g/uD ujuj4;

defined on open intervals .�Tk ;T
k/ such that E.uk/! Emax. Let tk 2 .�Tk ;T

k/ be a sequence of
times with

lim
k!1

kukkZ.�Tk ;tk/ D lim
k!1

kukkZ.tk ;T k/ DC1: (3-7)

Then there exists w0 2 H 1.H3/ and a sequence of isometries hk 2 G such that, up to passing to a
subsequence, uk.tk ; h

�1
k
�x/! w0.x/ 2H 1 strongly.

Using these propositions we can now prove our main theorem.

Proof of Theorem 1.1. Assume for contradiction that Emax <C1. Then, we first claim that there exists a
solution u 2 C..�T�;T

�/ WH 1/ of (1-2) such that

E.u/DEmax and kukZ.�T�;0/ D kukZ.0;T �/ DC1: (3-8)
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Indeed, by hypothesis, there exists a sequence of solutions uk defined on intervals Ik D .�Tk ;T
k/

satisfying E.uk/�Emax and

kukkZ.Ik/!C1:

But this is exactly the hypothesis of Proposition 3.4, for suitable points tk 2 .�Tk ;T
k/. Hence, up to

a subsequence, we get that there exists a sequence of isometries hk 2 G such that �hk
.uk.tk//! w0

strongly in H 1. Now, let u 2 C..�T�;T
�/ W H 1.H3// be the maximal solution of (3-1) with initial

data w0, in the sense of Proposition 3.1. By the stability theory Proposition 3.2, if kukZ.0;T �/ <C1,
then T � D C1 and kukkZ.tk ;C1/ � C.kukZ.0;C1// which is impossible. Similarly, we see that
kukZ.�T�;0/ DC1, which completes the proof of (3-8).

We now claim that the solution u obtained in the previous step can be extended to a global solution.
Indeed, using Proposition 3.1, it suffices to see that there exists ı > 0 such that, for all times t 2 .�T�;T

�/,

kukZ..t�ı;tCı/\.�T�;T �// � 1:

If this were not true, there would exist a sequence ık!0 and a sequence of times tk 2 .�T�Cık ;T
��ık/

such that

kukZ.tk�ık ;tkCık/ � 1: (3-9)

Applying Proposition 3.4 with uk D u, we see that, up to a subsequence, �hk
.uk.tk//! w strongly in

H 1 for some translations hk 2G. We consider z the maximal nonlinear solution with initial data w, then
by the local theory Proposition 3.1, there exists ı > 0 such that

kzkZ.�ı;ı/ �
1
2
:

Proposition 3.2 gives that kukZ.tk�ı;tkCı/ � 1=2C ok.1/, which again contradicts our hypothesis (3-9).
In other words, we proved that if Emax <1 then there is a global solution u 2 C.R WH 1/ of (1-2) such
that

E.u/DEmax and kukZ.�1;0/ D kukZ.0;1/ DC1:

We claim now that there exists ı > 0 such that for all times,

ku.t/kL6 � ı: (3-10)

Indeed, otherwise, we can find a sequence of times tk 2 .0;1/ such that u.tk/! 0 in L6. Applying
again Proposition 3.4 to this sequence, we see that, up to a subsequence, there exist hk 2 G such that
�hk

.u.tk//! w in H 1 with w D 0. But this contradicts conservation of energy.
But now we have a contradiction with the Morawetz estimate (3-6), which shows that Emax DC1 as

desired. �

Propositions 3.1 and 3.2 are standard consequences of the Strichartz estimates, while Proposition 3.3
was proved in [Ionescu and Staffilani 2009]. Therefore it only remains to prove Proposition 3.4. We collect
the main ingredients in the next two sections and complete the proof of Proposition 3.4 in Section 6.
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4. Euclidean approximations

In this section we prove precise estimates showing how to compare Euclidean and hyperbolic solutions of
both linear and nonlinear Schrödinger equations. Since the global Euclidean geometry and the global
hyperbolic geometry are quite different, such a comparison is meaningful only in the case of rescaled
data that concentrate at a point.

We fix a spherically symmetric function � 2 C1
0
.R3/ supported in the ball of radius 2 and equal to 1

in the ball of radius 1. Given � 2 PH 1.R3/ and a real number N � 1 we define

QN� 2 C10 .R3/; .QN�/.x/D �.x=N
1=2/ � .e�=N�/.x/;

�N 2 C10 .R3/; �N .x/DN 1=2.QN�/.N x/;

fN 2 C10 .H3/; fN .y/D �N .‰
�1
I .y//;

(4-1)

where ‰I is defined in (2-4). Thus QN� is a regularized, compactly supported7 modification of the
profile �, �N is an PH 1-invariant rescaling of QN�, and fN is the function obtained by transferring �N

to a neighborhood of 0 in H3. We define also

E1
R3.�/D

1

2

Z
R3

jr�j2 dxC
1

6

Z
R3

j�j6 dx:

We will use the main theorem of [Colliander et al. 2008], in the following form.

Theorem 4.1. Assume  2 PH 1.R3/. Then there is a unique global solution v 2 C.R W PH 1.R3// of the
initial-value problem

.i@t C�/v D vjvj
4; v.0/D  ; (4-2)

and 

jrvj


L1t L2

x\L2
t L6

x.R3�R/
� zC .E1

R3. //: (4-3)

This solution scatters in the sense that there exists  ˙1 2 PH 1.R3/ such that

kv.t/� eit� ˙1k PH 1.R3/
! 0 (4-4)

as t !˙1. If  2H 5.R3/, then v 2 C.R WH 5.R3// and sup
t2R

kv.t/kH 5.R3/ .k kH 5.R3/
1:

The main result in this section is the following lemma:

Lemma 4.2. Assume � 2 PH 1.R3/, T0 2 .0;1/, and � 2 f0; 1g are given, and define fN as in (4-1).

(i) There is N0 D N0.�;T0/ sufficiently large such that for any N � N0 there is a unique solution
UN 2 C..�T0N�2;T0N�2/ WH 1.H3// of the initial-value problem

.i@t C�g/UN D �UN jUN j
4; UN .0/D fN : (4-5)

7This modification is useful to avoid the contribution of � coming from the Euclidean infinity, in a uniform way depending
on the scale N .
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Moreover, for any N �N0,

kUN kS1.�T0N�2;T0N�2/ .E1

R3
.�/ 1: (4-6)

(ii) Assume "1 2 .0; 1� is sufficiently small (depending only on E1
R3.�/), and let �0 2 H 5.R3/ satisfy

k� ��0k PH 1.R3/
� "1. Let v0 2 C.R WH 5/ denote the solution of the initial-value problem

.i@t C�/v
0
D �v0jv0j4; v0.0/D �0:

For R;N � 1 we define

v0R.x; t/D �.x=R/v
0.x; t/; .x; t/ 2 R3

� .�T0;T0/;

v0R;N .x; t/DN 1=2v0R.N x;N 2t/; .x; t/ 2 R3
� .�T0N�2;T0N�2/;

VR;N .y; t/D v
0
R;N .‰

�1
I .y/; t/ .y; t/ 2 H3

� .�T0N�2;T0N�2/:

(4-7)

Then there is R0 � 1 (depending on T0 and �0 and "1) such that, for any R�R0,

lim sup
N!1

kUN �VR;N kS1.�T0N�2;T0N�2/ .E1

R3
.�/ "1: (4-8)

Proof. All of the constants in this proof are allowed to depend on E1
R3.�/; for simplicity of notation we

will not track this dependence explicitly. Using Theorem 4.1 we have

krv0k.L1t L2
x\L2

t L6
x/.R3�R/ . 1; sup

t2R

kv0.t/kH 5.R3/ .k�0kH 5.R3/
1: (4-9)

We will prove that for any R0 sufficiently large there is N0 such that VR0;N is an almost-solution of
(4-5), for any N � N0. We will then apply Proposition 3.2 to upgrade this to an exact solution of the
initial-value problem (4-5) and prove the lemma.

Let

eR.x; t/ WD
�
.i@t C�/v

0
R � �v

0
Rjv
0
Rj

4
�
.x; t/D �

�
�
�

x

R

�
� �

�
x

R

�5�
v0.x; t/jv0.x; t/j4

CR�2v0.x; t/.��/
�

x

R

�
C 2R�1

3X
jD1

@jv
0.x; t/@j�

�
x

R

�
:

Since jv0.x; t/j.k�0k
H 5.R3/

1, see (4-9), it follows that

3X
kD1

j@keR.x; t/j.k�0k
H 3.R3/

1ŒR;2R�.jxj/ �

�
jv0.x; t/jC

3X
kD1

j@kv
0.x; t/jC

3X
k;jD1

j@k@jv
0.x; t/j

�
:

Therefore
lim

R!1



jreRj




L2
t L2

x.R3�.�T0;T0//
D 0: (4-10)

Letting
eR;N .x; t/ WD

�
.i@t C�/v

0
R;N � �v

0
R;N jv

0
R;N j

4
�
.x; t/DN 5=2eR.N x;N 2t/;
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it follows from (4-10) that there is R0 � 1 such that, for any R�R0 and N � 1,

jreR;N j




L1
t L2

x.R3�.�T0N�2;T0N�2//
� "1: (4-11)

With VR;N .y; t/D v
0
R;N

.‰�1
I
.y/; t/ as in (4-7), let

ER;N .y; t/ W D
�
.i@t C�g/VR;N � �VR;N jVR;N j

4
�
.y; t/

D eR;N .‰
�1
I .y/; t/C�gVR;N .y; t/� .�v

0
R;N /.‰

�1
I .y/; t/:

(4-12)

To estimate the difference in the formula above, let @j , j D 1; 2; 3, denote the standard vector-fields on
R3 and z@j WD .‰I /�.@j / and induced vector-fields on H3. Using the definition (2-4) we compute

gij .y/ WD gy.z@i ; z@j /D ıij �
vivj

1Cjvj2
; y D‰I .v/:

Using the standard formula for the Laplace–Beltrami operator in local coordinates

�gf D jgj
�1=2z@i.jgj

1=2gijz@jf /

we derive the pointwise bound

ˇ̌
zr

1
�
�gf .y/��.f ı‰I /.‰

�1
I .y//

�ˇ̌
.

3X
kD1

j‰�1
I .y/jk�1

j zr
kf .y/j;

for any C 3 function f W H3! C supported in the ball of radius 1 around 0, where, by definition, for
k D 1; 2; 3

j zr
kh.y/j WD

X
k1Ck2Ck3Dk

ˇ̌
z@

k1

1
z@

k2

2
z@

k3

3
h.y/

ˇ̌
:

Therefore the identity (4-12) gives the pointwise bound

j zr
1ER;N .y; t/j. jreR;N j.‰

�1
I .y/; t/C

3X
kD1

X
k1Ck2Ck3Dk

j‰�1
I .y/jk�1

ˇ̌
@

k1

1
@

k2

2
@

k3

3
v0R;N .‰

�1
I .y/; t/

ˇ̌
. jreR;N j.‰

�1
I .y/; t/CR3N 3=2

X
k1Ck2Ck32f1;2;3g

ˇ̌
@

k1

1
@

k2

2
@

k3

3
v0R.N.‰

�1
I .y/; t/

ˇ̌
:

Using also (4-11), it follows that for any R0 sufficiently large there is N0 such that for any N �N0

jrgER0;N j




L1
t L2

x.H3�.�T0N�2;T0N�2//
� 2"1: (4-13)
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To verify the hypothesis (3-3) of Proposition 3.2, we use (4-9) and the integral formula (2-6) to estimate,
for N large enough,

kVR0;N kL10
x;t .H

3�.�T0N�2;T0N�2//C sup
t2.�T0N�2;T0N�2/

kVR0;N .t/kH 1.H3/

. kv0R0;N
kL10

x;t .R
3�.�T0N�2;T0N�2//C sup

t2.�T0N�2;T0N�2/

krv0R0;N
.t/kL2.R3/

D kv0R0
kL10

x;t .R
3�.�T0;T0//

C sup
t2.�T0;T0/

krv0R0
.t/kL2.R3/

. 1:

(4-14)

Finally, to verify the inequality on the first term in (3-4) we estimate, for R0;N large enough,

kfN �VR0;N .0/kH 1.H3/ . k�N � v
0
R0;N

.0/k PH 1.R3/
D kQN� � v

0
R0
.0/k PH 1.R3/

� kQN� ��k PH 1.R3/
Ck� ��0k PH 1.R3/

Ck�0� v0R0
.0/k PH 1 � 3"1:

(4-15)

The conclusion of the lemma follows from Proposition 3.2, provided that "1 is fixed sufficiently small
depending on E1

R3.�/. �

As a consequence, we have:

Corollary 4.3. Assume  2 PH 1.R3/, " > 0, I � R is an interval, and

jr.eit� /j




L
p
t L

q
x.R3�I /

� "; (4-16)

where 2=pC 3=q D 3=2, q 2 .2; 6�. For N � 1 we define, as before,

.QN /.x/D �.x=N
1=2/ � .e�=N /.x/;  N .x/DN 1=2.QN /.N x/; z N .y/D  N .‰

�1
I .y//:

Then there is N1 DN1. ; "/ such that, for any N �N1,

jrg.e
it�g z N /j




L

p
t L

q
x.H3�N�2I /

.q ": (4-17)

Proof. As before, the implicit constants may depend on E1
R3. /. We may assume that  2 C1

0
.R3/.

Using the dispersive estimate (2-24), for any t ¤ 0,

k.��g/
1=2.eit�g z N /kLq

x.H3/ . jt j3=q�3=2
k.��g/

1=2 z N kLq0

x .H3/
. jt j3=q�3=2



jr N j




L
q0

x .R3/

. jt j3=q�3=2N 3=q�3=2:

Thus, for T1 > 0, 

jrg.e
it�g z N /j




L

p
t L

q
x.H3�ŒRn.�T1N�2;T1N�2/�/

. T
�1=p
1

:

Therefore we can fix T1 D T1. ; "/ such that, for any N � 1,

jrg.e
it�g z N /j




L

p
t L

q
x.H3�ŒRn.�T1N�2;T1N�2/�/

.q ":

The desired bound on the remaining interval N�2I \ .�T1N�2;T1N�2/ follows from Lemma 4.2(ii)
with �D 0. �
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5. Profile decomposition in hyperbolic spaces

In this section we show that given a bounded sequence of functions fk 2H 1.H3/ we can construct certain
profiles and express the functions fk in terms of these profiles. In other words, we prove the analogue of
Keraani’s theorem [2001] in hyperbolic geometry.

Given .f; t0; h0/ 2L2.H3/�R�G we define

…t0;h0
f .x/D .e�it0�gf /.h�1

0 x/D .�h0
e�it0�gf /.x/: (5-1)

As in Section 4 — see (4-1) — given � 2 PH 1.R3/ and N � 1, we define

TN�.x/ WDN 1=2 z�.N‰�1
I .x//; where z�.y/ WD �.y=N 1=2/ � .e�=N�/.y/; (5-2)

and observe that

TN W
PH 1.R3/!H 1.H3/ is a bounded linear operator with kTN�kH 1.H3/ . k�k PH 1.R3/

: (5-3)

Definition 5.1. (1) We define a frame to be a sequence Ok D .Nk ; tk ; hk/2 Œ1;1/�R�G, kD 1; 2; : : : ,
where Nk � 1 is a scale, tk 2 R is a time, and hk 2 G is a translation element. We also assume that
either Nk D 1 for all k (in which case we call fOkgk�1 a hyperbolic frame) or that Nk %1 (in
which case we call fOkgk�1 a Euclidean frame). Let Fe denote the set of Euclidean frames,

Fe D
˚
OD f.Nk ; tk ; hk/gk�1 W Nk 2 Œ1;1/; tk 2 R; hk 2 G; Nk %1

	
;

and let Fh denote the set of hyperbolic frames,

Fh D
˚
zOD f.1; tk ; hk/gk�1 W tk 2 R; hk 2 G

	
:

(2) We say that two frames f.Nk ; tk ; hk/gk�1 and f.N 0
k
; t 0

k
; h0

k
/gk�1 are orthogonal if

lim
k!1

�
j ln.Nk=Nk0/jCN 2

k jtk � t 0k jCNkd.hk � 0; h0k � 0/
�
DC1: (5-4)

Two frames that are not orthogonal are called equivalent.

(3) Given � 2 PH 1.R3/ and a Euclidean frame OD fOkgk�1 D f.Nk ; tk ; hk/gk�1 2 Fe, we define the
Euclidean profile associated with .�;O/ as the sequence z�Ok

, where

z�Ok
WD…tk ;hk

.TNk
�/; (5-5)

The operators … and T are defined in (5-1) and (5-2).

(4) Given  2 H 1.H3/ and a hyperbolic frame zO D fzOkgk�1 D f.1; tk ; hk/gk�1 2 Fh we define the
hyperbolic profile associated with . ; zO/ as the sequence z zOk

, where

z zOk
WD…tk ;hk

 : (5-6)
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Definition 5.2. We say a sequence .fk/k bounded in H 1.H3/ is absent from a frame ODf.Nk ; tk ; hk/gk

if its localization to O converges weakly to 0, i.e., if for all profiles z�Ok
associated to O, we have

lim
k!1

hfk ; z�Ok
iH 1�H 1.H3/ D 0: (5-7)

Remark 5.3. (i) If OD .1; tk ; hk/k is a hyperbolic frame, this is equivalent to saying that

…
�tk ;h

�1
k
fk * 0

as k!1 in H 1.H3/.

(ii) If O is a Euclidean frame, this is equivalent to saying that for all R> 0

gR
k .v/D �.v=R/N

�1=2

k

�
…
�tk ;h

�1
k
fk

�
.‰I .v=Nk// * 0

as k!1 in PH 1.R3/.

We prove first some basic properties of profiles associated to equivalent/orthogonal frames.

Lemma 5.4. (i) Assume fOkgk�1 D f.Nk ; tk ; hk/gk�1 and fO0
k
gk�1 D f.N

0
k
; t 0

k
; h0

k
/gk�1 are two

equivalent Euclidean frames (or hyperbolic frames), and � 2 PH 1.R3/ (or � 2 H 1.H3/). Then
there is �0 2 PH 1.R3/ (or �0 2H 1.H3/) such that, up to a subsequence,

lim
k!1

kz�Ok
� z�0O0

k

kH 1.H3/ D 0; (5-8)

where z�Ok
; z�0

O0
k

are as in Definition 5.1.

(ii) Assume fOkgk�1D f.Nk ; tk ; hk/gk�1 and fO0
k
gk�1D f.N

0
k
; t 0

k
; h0

k
/gk�1 are two orthogonal frames

(either Euclidean or hyperbolic) and z�Ok
; z O0

k
are associated profiles. Then

lim
k!1

ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
C lim

k!1



z�Ok
z O0

k




L3.H3/

D 0: (5-9)

(iii) If z�Ok
and z Ok

are two Euclidean profiles associated to the same frame, then

lim
k!1

hrg
z�Ok
;rg
z Ok
iL2�L2.H3/ D lim

k!1

Z
H3

D˛ z�Ok
D˛
z Ok

d�

D

Z
R3

r�.x/ � r .x/dx D hr�;r iL2�L2.R3/

Proof. (i) The proof follows from the definitions if fOkgk�1; fO
0
k
gk�1 are hyperbolic frames: by passing

to a subsequence we may assume limk!1�t 0
k
C tk D Nt and limk!1 h0

k
�1

hk D
Nh, and define

�0 WD…Nt ; Nh�:

To prove the claim if fOkgk�1; fO
0
k
gk�1 are equivalent Euclidean frames, we decompose first, using

the Cartan decomposition (2-2)

h0k
�1

hk Dmkask
nk ; mk ; nk 2 K; sk 2 Œ0;1/: (5-10)
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Therefore, using the compactness of the subgroup K and the definition (5-4), after passing to a subsequence,
we may assume that

lim
k!1

Nk=N
0
k DN ; lim

k!1
N 2

k .tk � t 0k/D Nt ; lim
k!1

mk Dm; lim
k!1

nk D n; lim
k!1

Nksk D Ns: (5-11)

We observe that for any N � 1,  2 PH 1.R3/, t 2 R, g 2 G, and q 2 K

…t;gq.TN /D…t;g.TN q/; where  q.x/D  .q
�1
�x/:

Therefore, in (5-10) we may assume that

mk D nk D I; h0k
�1

hk D ask
:

With Nx D .Ns; 0; 0/, we define

�0.x/ WDN 1=2.e�i Nt��/.N x� Nx/; �0 2 PH 1.R3/;

and define z�0, z�0
N 0

k

, and z�0
O0

k

as in (5-5). The identity (5-8) is equivalent to

lim
k!1

kTN 0
k
�0��

h0
k

�1
hk

ei.t 0
k
�tk/�g .TNk

�/kH 1.H3/ D 0: (5-12)

To prove (5-12) we may assume that �0 2C1
0
.R3/, � 2H 5.R3/, and apply Lemma 4.2(ii) with �D 0.

Let v.x; t/D .eit��/.x/ and, for R� 1,

vR.x; t/D �.x=R/v.x; t/; vR;Nk
.x; t/DN

1=2

k
vR.Nkx;N 2

k t/; VR;Nk
.y; t/D vR;Nk

.‰�1
I .y/; t/:

It follows from Lemma 4.2(ii) that for any " > 0 sufficiently small there is R0 sufficiently large such that,
for any R�R0,

lim sup
k!1



ei.t 0
k
�tk/�g .TNk

�/�VR;Nk
.t 0k � tk/




H 1.H3/

� ": (5-13)

Therefore, to prove (5-12) it suffices to show that, for R large enough,

lim sup
k!1



�
hk
�1h0

k

.TN 0
k
�0/�VR;Nk

.t 0k � tk/




H 1.H3/
. ";

which, after examining the definitions and recalling that �0 2 C1
0
.R3/, is equivalent to

lim sup
k!1



N 0k
1=2
�0.N 0k‰

�1
I .h0k

�1
hk �y//�N

1=2

k
vR.Nk‰

�1
I .y/;N 2

k .t
0
k � tk//




H 1

y .H3/
. ":

After changing variables y D‰I .x/ this is equivalent to

lim sup
k!1



N 0k
1=2
�0.N 0k‰

�1
I .h0k

�1
hk �‰I .x///�N

1=2

k
vR.Nkx;N 2

k .t
0
k � tk//




PH 1

x .R3/
. ":

Since, by definition, �0.z/DN 1=2v.N z� Nx;�Nt/, this follows provided that

lim
k!1

Nk‰
�1
I .h0k

�1
hk �‰I .x=Nk//�x D Nx for any x 2 R3:

This last claim follows by explicit computations using (5-11) and the definition (2-4).
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(ii) It suffices to prove that one can extract a subsequence such that (5-9) holds. We analyze three cases:

Case 1: O;O0 2 Fh. We may assume that �; 2 C1
0
.H3/ and select a subsequence such that either

lim
k!1

jtk � t 0k j D1 (5-14)

or
lim

k!1
tk � t 0k D Nt 2 R; lim

k!1
d.hk � 0; h0k � 0/D1: (5-15)

Using (2-24) it follows that

k…t;h�kL6.H3/ C k…t;h.�g�/kL6.H3/ .� .1Cjt j/�1

k…t;h kL6.H3/Ck…t;h.�g /kL6.H3/ . .1Cjt j/�1;

for any t 2 R and h 2 G. Thus

z�Ok
z O0

k




L3.H3/

� k…tk ;hk
�kL6.H3/ k…t 0

k
;h0

k
 kL6.H3/ .�; .1Cjtk j/�1.1Cjt 0k j/

�1; (5-16)

andˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�g
z�Ok
� z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g .�g�/ � d�

ˇ̌̌̌
. k�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .�g�/kL6.H3/k kL6=5.H3/ .�; .1Cjtk � t 0k j/

�1:

The claim (5-9) follows if the selected subsequence satisfies (5-14).
If the selected subsequence satisfies (5-15) then, as before,ˇ̌̌̌ Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g� ��g d�

ˇ̌̌̌
. k�g kL2.H3/ � ke

�i Nt�g� � e�i.tk�t 0
k
/�g�kL2.H3/C

Z
H3

je�i Nt�g�j � j�h�1
k

h0
k
�g j d�:

The first limit in (5-9) follows. Using the bound (5-16), the second limit in (5-9) also follows, up to a
subsequence, if lim supk!1 jtk j D1. Otherwise, we may assume that limk!1 tk D T , limk!1 t 0

k
D

T 0 D T � Nt and estimate

z�Ok
z O0

k




L3.H3/

D ke�itk�g�hk
� � e�it 0

k
�g�h0

k
 kL3.H3/

.�; ke�itk�g� � e�iT�g�kL6.H3/

Cke�it 0
k
�g � e�iT 0�g kL6.H3/Cke

�iT�g� ��h�1
k

h0
k
.e�iT 0�g /kL3.H3/:

The second limit in (5-9) follows in this case as well.

Case 2: O 2 Fh, O0 2 Fe. We may assume that � 2 C1
0
.H3/ and  2 C1

0
.R3/. We estimateˇ̌̌̌ Z

H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

…tk ;hk
.�g�/ �…t 0

k
;h0

k
.TN 0

k
 / d�

ˇ̌̌̌
.� kTN 0

k
 kL2.H3/ .�; N 0k

�1
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and 

z�Ok
z O0

k




L3.H3/

� k…tk ;hk
�kL1.H3/



…t 0
k
;h0

k
.TN 0

k
 /




L3.H3/

. k�g�kL2.H3/



.��g/
1=4.TN 0

k
 /




L2.H3/
.�; N 0k

�1=2
:

The limits in (5-9) follow.

Case 3: O;O0 2 Fe. We may assume that �; 2 C1
0
.R3/ and select a subsequence such that either

lim
k!1

Nk=N
0
k D 0; (5-17)

or
lim

k!1
Nk=N

0
k DN 2 .0;1/; lim

k!1
N 2

k jtk � t 0k j D1; (5-18)

or

lim
k!1

Nk=N
0
k DN 2 .0;1/; lim

k!1
N 2

k .tk � t 0k/D Nt 2 R; lim
k!1

Nkd.hk � 0; h0k � 0/D1: (5-19)

Assuming (5-17) we estimate, as in Case 2,ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

…tk ;hk
.�g.TNk

�// �…t 0
k
;h0

k
.TN 0

k
 / d�

ˇ̌̌̌
. k�g.TNk

�/kL2.H3/kTN 0
k
 kL2.H3/ .�; NkN 0k

�1

and

z�Ok
z O0

k




L3.H3/

�


…tk ;hk

.TNk
�/




L9.H3/
�


…t 0

k
;h0

k
.TN 0

k
 /




L9=2.H3/

.


.��g/

7=12.TNk
�/




L2.H3/
�


.��g/

5=12.TN 0
k
 /




L2.H3/
.�; N

1=6

k
N 0k
�1=6

:

The limits in (5-9) follow in this case.
To prove the limit (5-9) assuming (5-18), we estimate first, using (2-24),

k…t;h.TNf /kL6.H3/ .f .1CN 2
jt j/�1; (5-20)

for any t 2 R, h 2 G, N 2 Œ0;1/, and f 2 C1
0
.R3/. Thus

z�Ok

z O0
k




L3.H3/

�


…tk ;hk

.TNk
�/




L6.H3/



…t 0
k
;h0

k
.TN 0

k
 /




L6.H3/

.�; .1CN 2
k jtk j/

�1.1CN 0k
2
jt 0k j/

�1;

and ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

z�Ok
��g
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/ ��g.TN 0
k
 / d�

ˇ̌̌̌
.


�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/




L6.H3/



�g.TN 0
k
 /




L6=5.H3/

.�; .1CN 2
k jtk � t 0k j/

�1:
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The claim (5-9) follows if the selected subsequence verifies (5-18).
Finally, it remains to prove the limit (5-9) if the selected subsequence verifies (5-19). For this we will

use the following claim: if .gk ;Mk/k�1 2G� Œ1;1/, limk!1Mk D1, limk!1Mkd.gk �0; 0/D1,
and f;g 2 PH 1.R3/ then

lim
k!1

ˇ̌̌̌Z
H3

�gk
.��g/

1=2.TMk
f /�.��g/

1=2.TMk
g/ d�

ˇ̌̌̌
Ck�gk

.TMk
f /�.TMk

g/kL3.H3/D 0: (5-21)

Assuming this, we can complete the proof of (5-9). It follows from (5-12) that if f 2 PH 1.R3/ and
fskgk�1 is a sequence with the property that limk!1N 2

k
sk D Ns 2 R then

lim
k!1

ke�isk�g .TNk
f /�TN 0

k
f 0kH 1.H3/ D 0; (5-22)

where f 0.x/DN 1=2.e�i Ns�f /.N x/. We estimateˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

.��g/
1=2�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/ � .��g/1=2.TN 0
k
 / d�

ˇ̌̌̌
.
ˇ̌̌̌Z

H3

.��g/
1=2�

h0
k

�1
hk
.TN 0

k
�0/ � .��g/1=2.TN 0

k
 / d�

ˇ̌̌̌
Ck k PH 1.R3/

�


�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/��
h0

k

�1
hk
.TN 0

k
�0/




H 1.H3/
:

In view of (5-21) and (5-22), both terms in the expression above converge to 0 as k!1, as desired. If
limk!1N 2

k
jtk j D1 then, using (5-20), we estimate

kz�Ok
z O0

k
kL3.H3/ � k…tk ;hk

.TNk
�/kL6.H3/k…t 0

k
;h0

k
.TN 0

k
 /kL6.H3/ .�; .1CN 2

k jtk j/
�1;

which converges to 0 as k!1. Otherwise, up to a subsequence, we may assume that limk!1N 2
k

tk D

T 2 R, limk!1 and write

z�Ok
z O0

k




L3.H3/

D


�

h0
k

�1
hk

e�itk�g.TNk
�/ � e�it 0

k
�g.TN 0

k
 /




L3.H3/
:

This converges to 0 as k!1, using (5-21) and (5-22), as desired.
It remains to prove the claim (5-21). In view of the PH 1.R3/!H 1.H3/ boundedness of the operators

TN , we may assume that f;g 2 C1
0
.R3/ and replace TMk

f and TMk
g by M

1=2

k
f .Mk‰

�1
I
.x// and

M
1=2

k
g.Mk‰

�1
I
.x// respectively, up to small errors. Then we notice that the supports of these functions

become disjoint for k sufficiently large (due to the assumption limk!1Mkd.gk � 0; 0/D1). The limit
(5-21) follows.

(iii) By the boundedness of TNk
, it suffices to consider the case when �; 2 C1

0
.R3/. In this case, we

have 

rg

�
TNk

� �N
1=2

k
�.Nk‰

�1
I � /

�


L2.H3/

! 0

as k!1. Hence, by the unitarity of …tk ;hk
, it suffices to compute

lim
k!1

Nk

˝
rg

�
�.Nk‰

�1
� /
�
;rg

�
 .Nk‰

�1
I � /

�˛
L2�L2.H3/

D

Z
R3

r�.x/ � r .x/dx;

which follows after a change of variables and use of the dominated convergence theorem. �



WELL-POSEDNESS OF ENERGY-CRITICAL SCHRÖDINGER EQUATIONS IN CURVED SPACES 731

Our main result in this section is the following.

Proposition 5.5. Assume that .fk/k�1 is a bounded sequence in H 1.H3/. Then there are sequences
of pairs .��;O�/ 2 PH 1.R3/ �Fe and . � ; zO�/ 2 H 1.H3/ �Fh, �; � D 1; 2; : : : , such that, up to a
subsequence, for any J � 1,

fk D

X
1���J

z�
�

O
�

k

C

X
1���J

z �
zO�

k

C rJ
k ; (5-23)

where z��
O
�

k

and z �
zO�

k

are the associated profiles in Definition 5.1, and8

lim
J!1

lim sup
k!1

sup
N�1
t2R

x2H3

N�1=2
jPN eit�g rJ

k j.x/D 0: (5-24)

Moreover the frames fO�g��1 and fzO�g��1 are pairwise orthogonal. Finally, the decomposition is
asymptotically orthogonal in the sense that

lim
J!1

lim sup
k!1

ˇ̌̌̌
E1.fk/�

X
1���J

E1.z�
�

O
�

k

/�
X

1���J

E1. z �
zO�

k

/�E1.rJ
k /

ˇ̌̌̌
D 0; (5-25)

where E1 is the energy defined in (1-3).

The profile decomposition in Proposition 5.5 is a consequence of the following finitary decomposition.

Lemma 5.6. Let .fk/k�1 be a bounded sequence of functions in H 1.H3/ and let ı 2 .0; ı0� be sufficiently
small. Up to passing to a subsequence, the sequence .fk/k�1 can be decomposed into 2J C 1DO.ı�2/

terms
fk D

X
1���J

z�
�

O
�

k

C

X
1���J

z �
zO�

k

C rk ; (5-26)

where z��
O
�

k

and z �
zO�

k

are Euclidean and hyperbolic profiles, respectively, associated to the sequences

.��;O�/ 2 PH 1.R3/�Fe and . � ; zO�/ 2H 1.H3/�Fh as in Definition 5.1.
Moreover the remainder rk is absent from all the frames O�, zO� , 1� �; � � J and

lim sup
k!1

sup
N�1
t2R

x2H3

N�1=2
jeit�g PN rk j.x/� ı: (5-27)

In addition, the frames O� and zO� are pairwise orthogonal, and the decomposition is asymptotically
orthogonal in the sense that

krgfkk
2
L2 D

X
1���J

krg
z�
�

O
�

k

k
2
L2 C

X
1���J

krg
z �
zO�

k

k
2
L2 Ckrgrkk

2
L2 C ok.1/ (5-28)

where ok.1/! 0 as k!1.

8It is convenient to use the critical norm kN�1=2PN eit�gf kL1
N;x;t

to measure smallness of the remainder in (5-24), as it
already selects the parameters of the frames. Other critical norms have been used as well; see, for example, [Keraani 2001] and
[Laurent 2011]. In any case, by Sobolev and Strichartz estimates, one obtains full control of the Z norm of the remainders, see
(6-1).
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We show first how to prove Proposition 5.5 assuming the finitary decomposition of Lemma 5.6.

Proof of Proposition 5.5. We apply Lemma 5.6 repeatedly for ı D 2�l , l D 1; 2; : : : and we obtain the
result except for (5-25). To prove this, it suffices from (5-28) to prove the addition of the L6-norms. But
from Lemma 2.2 and (5-24), we see that

lim sup
J!1

lim sup
k!1

krJ
k kL6.H3/ D 0

so that
lim sup
J!1

lim sup
k!1

�ˇ̌
kfkk

6
L6 �kfk � rJ

k k
6
L6

ˇ̌
CkrJ

k k
6
L6

�
D 0: (5-29)

Now, for fixed J , we see thatˇ̌̌̌ˇ̌
fk � rJ

k

ˇ̌6
�

X
1���J

ˇ̌
z�
�

O
�

k

ˇ̌6
�

X
1���J

ˇ̌
z �
zO�

k

ˇ̌6 ˇ̌̌̌
.J

X
1�˛¤ˇ�J

ˇ̌
z�˛O˛

k

ˇ̌ ˇ̌
z�
ˇ

O
ˇ

k

ˇ̌5
C

X
1�˛¤ˇ�J

ˇ̌
z ˛
zO˛

k

ˇ̌ ˇ̌
z 
ˇ

zO
ˇ

k

ˇ̌5
C

X
1��;��J

�ˇ̌
z�
�

O
�

k

ˇ̌ ˇ̌
z �
zO�

k

ˇ̌5
C
ˇ̌
z�
�

O
�

k

ˇ̌5ˇ̌ z �
zO�

k

ˇ̌�
so that ˇ̌̌̌

fk � rJ

k



6

L6 �

X
1���J



z��
O
�

k



6

L6 �

X
1���J



 z �
zO�

k



6

L6

ˇ̌̌̌
.J

X
˛;ˇ



f ˛k f ˇk 

L3

where the summation ranges over all pairs .f ˛
k
; f

ˇ

k
/ of profiles such that f ˛

k
¤ f

ˇ

k
and where we have

used the fact that the L6 norm of each profile is bounded uniformly. From Lemma 5.4(ii), we see that
this converges to 0 as k!1. The identity (5-25) follows using also (5-29). �

Proof of Lemma 5.6. For .gk/k a bounded sequence in H 1.H3/, we let

ı..gk/k/D lim sup
k!1

sup
N�1
t2R
h2G

N�
1
2

ˇ̌
PN

�
eit�g gk.h � 0//

ˇ̌
: (5-30)

If ı..fk/k/� ı, then we let J D 0 and fk D rk and Lemma 5.6 follows. Otherwise, we use inductively
the following:

Claim. Assume .gk/k is a bounded sequence in H 1.H3/ which is absent from a family of frames .O˛/˛�A

and such that ı..gk/k/� ı. Then, after passing to a subsequence, there exists a new frame O0 which is
orthogonal to O˛ for all ˛ �A and a profile z�O0

k
of free energy

lim
k!1

krg
z�O0

k
kL2 & ı (5-31)

such that gk �
z�O0

k
is absent from the frames O0 and O˛, ˛ �A.

Once we have proved the claim, Lemma 5.6 follows by applying repeatedly the above procedure.
Indeed, we let .f ˛

k
/k be defined as follows: .f 0

k
/k D .fk/k and if ı..f ˛

k
/k/� ı, then apply the above
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claim to .f ˛
k
/k to get a new sequence

f ˛C1
k
D f ˛k �

z�
O˛C1

k

:

By induction, .f ˛
k
/k is absent from all the frames Oˇ , ˇ � ˛. This procedure stops after a finite number

(O.ı�2/) of steps. Indeed, since f ˛
k
D f ˛�1

k
� z�O˛

k
is absent from O˛

k
, we get from (5-7) that

krgf
˛�1

k k
2
L2 D krgf

˛
k k

2
L2 Ckrg

z�O˛
k
k

2
L2 C 2hf ˛k ;

z�O˛
k
iH 1�H 1.H3/

D krgf
˛

k k
2
L2 Ckrg

z�O˛
k
k

2
L2 C ok.1/

and therefore by induction,

krgfkk
2
L2 D

X
1�˛�A

krg
z�O˛k

2
L2 Ckrgf

A
k k

2
L2 C ok.1/:

Since each profile has a free energy & ı, this is a finite process and Lemma 5.6 follows.

Now we prove the claim. By hypothesis, there exists a sequence zOk D .Nk ; tk ; hk/k such that the
lim supk!1 in (5-30) is greater than ı=2. If lim supk!1Nk D1, then, up to passing to a subsequence,
we may assume that fzOkgk�1 D O0 is a Euclidean frame. Otherwise, up to passing to a subsequence, we
may assume that Nk !N � 1 and we let O0 D f.1; tk ; hk/kgk�1 be a hyperbolic frame. In all cases, we
get a frame O0 D f.Mk ; tk ; hk/kgk�1 such that

ı=2� lim
k!1

N
� 1

2

k

ˇ̌
PNk

.eitk�g /gk

ˇ̌
.hk � 0/D lim

k!1

ˇ̌˝
…
�tk ;h

�1
k

gk ;N
� 1

2

k
PNk

.ı0/
˛
L2�L2.H3/

ˇ̌
(5-32)

for some sequence Nk comparable to Mk .
Now, we claim that there exists a profile QfO0

k
associated to the frame O0 such that

lim sup
k!1

krg
QfO0

k
kL2 . 1

and

…
�tk ;h

�1
k

QfO0
k
�N

� 5
2

k
eN�2

k
�g .ı0/! 0

strongly in H 1.H3/. Indeed, if O0 is a hyperbolic frame, then f WDN�
5
2 eN�2�gı0. If Nk !1, we let

f .x/ WD .4�/�
3
2 e�jxj

2=4 D e�ı0. By the unitarity of … it suffices to see that

kN
� 5

2

k
eN�2

k
�gı0�TNk

f kH 1.H3/! 0 (5-33)

which follows by inspection of the explicit formula

.ez�gı0/.P /D
1

.4�z/
3
2

e�z r

sinh r
e�

r 2

4z

for r D dg.0;P /.
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Since gk is absent from the frames O˛ , ˛ �A, and we have a nonzero scalar product in (5-32), we see
from the discussion after Definition 5.2 that O0 is orthogonal to these frames.

Now, in the case O0 is a hyperbolic frame, we let  2H 1.H3/ be any weak limit of …
�tk ;h

�1
k

gk . Then,
passing to a subsequence, we may assume that for any ' 2H 1.H3/,˝

rg.…�tk ;h
�1
k

gk � /;rg'
˛
L2�L2 D

˝
rg.gk �…tk ;hk

 /;rg…tk ;hk
'
˛
L2�L2 ! 0;

so that g0
k
D gk �…tk ;hk

 is absent from O0. In particular, we see from (5-32) that

ı=2�
ˇ̌

lim
k!1

˝
…
�tk ;h

�1
k

gk ; �gN�
5
2 .eN�2�gı0/

˛
L2�L2

ˇ̌
�
ˇ̌˝
 ;�gN�

5
2 .eN�2�gı0/

˛
L2�L2

ˇ̌
. krg kL2.H3/

so that (5-31) holds. Finally, to prove that g0
k

is also absent from the frames O˛ , 1� ˛ �A it suffices by
hypothesis to prove this for z O0

k
, but this follows from Lemma 5.4(ii).

In the case Nk !1, we first choose R> 0 and we define

�R
k .v/D �.v=R/N

� 1
2

k
.…
�tk ;h

�1
k

gk/.‰I .v=Nk//; (5-34)

where � is a smooth cut-off function as in (4-1). This sequence satisfies

lim sup
k!1

kr�R
k kL2.R3/ . lim sup

k!1

krggkkL2.H3/

and therefore has a subsequence which is bounded in PH 1.R3/ uniformly in R > 0. Passing to a
subsequence, we can find a weak limit �R 2 PH 1.R3/. Since the bound is uniform in R> 0, we can let
R!1 and find a weak limit � such that

�R *�

in H 1
loc and � 2 PH 1.R3/. Now, for ' 2 C1

0
.R3/, we have

TNk

' �N
1
2

k
'.Nk‰

�1
I /




H 1.H3/

! 0

as k!1 and with Lemma 5.4(iii), we compute that

hgk ; �g z'O0
k
iL2�L2.H3/ D h…�tk ;h

�1
k

gk ; �gTNk
'iL2�L2.H3/

D
˝
…
�tk ;h

�1
k

gk ; �gN
1
2

k
'.Nk‰

�1
I � /

˛
L2�L2.H3/

C ok.1/

D h�;�'iL2�L2.R3/C ok.1/

D�hz�O0
k
; z'O0

k
iH 1�H 1.H3/C ok.1/:

(5-35)

In particular, g0
k
D gk �

z�O0
k

is absent from O0 and from (5-32), we see that (5-31) holds. Finally, from
Lemma 5.4(ii) again, g0

k
is absent from all the previous frames.

This finishes the proof of the claim and hence the proof of the finitary statement.



WELL-POSEDNESS OF ENERGY-CRITICAL SCHRÖDINGER EQUATIONS IN CURVED SPACES 735

6. Proof of Proposition 3.4

In this section, we first give the proof of Proposition 3.4 assuming a few lemmas that we prove at the end.

Proof of Proposition 3.4. Using the time translation symmetry, we may assume that tk D 0 for all k � 1.
We apply Proposition 5.5 to the sequence .uk.0//k which is bounded in H 1.H3/ and we get sequences of
pairs .��;O�/ 2 PH 1.R3/�Fe and . � ; zO�/ 2H 1.H3/�Fh, �; � D 1; 2; : : : , such that the conclusion
of Proposition 5.5 holds. Up to using Lemma 5.4(i), we may assume that for all �, either t

�

k
D 0 for all k

or .N �

k
/2jt

�

k
j !1 and similarly, for all �, either t�

k
D 0 for all k or jt�

k
j !1.

Case I: all profiles are trivial, �� D 0,  � D 0 for all �; �. In this case, we get from Strichartz estimates,
(5-24) and Lemma 2.2(ii) that uk.0/D rJ

k
satisfies

keit�g .uk.0//kZ.R/ . keit�g .uk.0//k
3
5

L6
t L18

x

keit�g .uk.0//k
2
5

L1t L6
x

. kruk.0/k
11
15

L2

�
sup

N�1;t;x

N�
1
2 jeit�g PN .uk.0//j.x/

� 4
15
! 0

(6-1)

as k!1. Applying Lemma 6.1, we see that

kukkZ.R/ � ke
it�g uk.0/kL10

t;x.H
3�R/Ckuk � eit�g uk.0/kS1.R/! 0

as k!1, which contradicts (3-7).

Now, for every linear profile z��
O
�

k

(resp. z �
zO�

k

), define the associated nonlinear profile U
�

e;k
(resp. U �

h;k
)

as the maximal solution of (1-2) with initial data U
�

e;k
.0/D z�

�

O
�

k

(resp. U �
h;k
.0/D z �

zO�
k

). We may write

U



k
if we do not want to discriminate between Euclidean and hyperbolic profiles.

We can give a more precise description of each nonlinear profile.

(1) If O� 2 Fe is a Euclidean frame, this is given in Lemma 6.2.

(2) If t�
k
D 0, letting .I� ;W �/ be the maximal solution of (1-2) with initial data W �.0/D  � , we see

that for any interval J b I� ,

kU �
h;k.t/��h�

k
W �.t � t�k /kS1.J /! 0 (6-2)

as k!1 (indeed, this is identically 0 in this case).

(3) If t�
k
!C1, then we define .I� ;W �/ to be the maximal solution of (1-2) satisfying9

kW �.t/� eit�g �kH 1.H3/! 0

as t !�1. Then, applying Proposition 3.2, we see that on any interval J D .�1;T /b I� , we
have (6-2). Using the time reversal symmetry u.t;x/! Nu.�t;x/, we obtain a similar description
when t�

k
!�1.

9Note that .I� ;W �/ exists by Strichartz estimates and Lemma 6.1.
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Case IIa: there is only one Euclidean profile, i.e., there exists � such that uk.0/D z�
�

O
�

k

Cok.1/ in H 1.H3/.

Applying Lemma 6.2, we see that U
�

e;k
is global with uniformly bounded S1-norm for k large enough.

Then, using the stability Proposition 3.2 with QuD U
�

e;k
, we see that for all k large enough,

kukkZ.I / .Emax 1

which contradicts (3-7).

Case IIb: there is only one hyperbolic profile, i.e., there is � such that uk.0/D z 
�
zO�

k

C ok.1/ in H 1.H3/.
If t�

k
!C1, then, using Strichartz estimates, we see that

krgeit�g…t�
k
;h�

k
 �k

L10
t L

30
13
x .H3�.�1;0//

D krgeit�g �k
L10

t L
30
13
x .H3�.�1;�t�

k
//
! 0

as k!1, which implies that keit�g uk.0/kZ.�1;0/! 0 as k!1. Using again Lemma 6.1, we see
that, for k large enough, uk is defined on .�1; 0/ and kukkZ.�1;0/! 0 as k!1, which contradicts
(3-7). Similarly, t�

k
!�1 yields a contradiction. Finally, if t�

k
D 0, we get that

�.h�
k
/�1uk.0/!  �

converges strongly in H 1.H3/, which is the desired conclusion of the proposition.

Case III: there exists � or � and � > 0 such that

2� < lim sup
k!1

E1.z�
�

O
�

k

/; lim sup
k!1

E1. z �
zO�

k

/ <Emax� 2�: (6-3)

Taking k sufficiently large and maybe replacing � by �=2, we may assume that (6-3) holds for all k. In
this case, we claim that, for J sufficiently large,

U
app
k
D

X
1���J

U
�

e;k
C

X
1���J

U �
h;k C eit�g rJ

k D U J
prof;k C eit�g rJ

k

is a global approximate solution with bounded Z norm for all k sufficiently large.
First, by Lemma 6.2, all the Euclidean profiles are global. Using (5-25), we see that for all � and all k

sufficiently large, E1.U �
h;k
/ <Emax� �. By (6-2), this implies that E1.W �/ <Emax� � so that by the

definition of Emax, W � is global and by Proposition 3.2, U �
h;k

is global for k large enough and

kU �
h;k.t/��hk

W �.t � t�k /kS1.R/! 0 (6-4)

as k!1.

Now we claim that
lim sup
k!1

krgU
app
k
kL1t L2

x
� 4E

1
2
max (6-5)

is bounded uniformly in J . Indeed, we first observe using (5-25) that

krgU
app
k
kL1t L2

x
� krgU J

prof;kkL1t L2
x
CkrgrJ

k kL2
x

� krgU J
prof;kkL1t L2

x
C .2Emax/

1
2 :
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Using Lemma 6.3, we get that for fixed t and J ,

krgU J
prof;k.t/k

2

L2
x
�

X
1�
�2J

krgU



k
k

2

L1t L2
x
C 2

X

¤
 0

hrgU



k
.t/;rgU


 0

k
.t/iL2�L2

� 2
X

1�
�2J

E1.U



k
/C ok.1/� 2EmaxC ok.1/;

where ok.1/! 0 as k!1 for fixed J .
We also have

lim sup
k!1

krgU
app
k
k

L10
t L

30
13
x

.Emax;� 1 (6-6)

is bounded uniformly in J . Indeed, from (6-3) and (5-25), we see that for all 
 and all k sufficiently large
(depending maybe on J ), E1.U




k
/ <Emax� � and from the definition of Emax, we conclude that

sup


kU




k
kZ.R/ .Emax;� 1:

Using Proposition 3.2, we see that this implies that

sup


krgU




k
k

L
10
3

t;x

.Emax;� 1:

Besides, using Lemma 6.1, we obtain that

krgU



k
k

2

L
10
3

t;x

.E1.U



k
/

if E1.U



k
/� ı0 is sufficiently small. Hence there exists a constant C D C.Emax; �/ such that, for all 
 ,

and all k large enough (depending on 
 ),

krgU



k
k

2

L
10
3

t;x

� CE1.U



k
/.Emax;� 1;

kU



k
k

2

L10
t;x

. krgU



k
k

2

L10
t L

30
13
x

� CE1.U



k
/.Emax;� 1;

(6-7)

the second inequality following from Hölder’s inequality between the first and the trivial bound

krgU



k
kL1t L2

x
� 2E1.U




k
/:

Now, using (6-7) and Lemma 6.3, we see thatˇ̌̌̌
krgU J

prof;kk
10
3

L
10
3

t;x

�

X
1�˛�2J

krgU ˛
k k

10
3

L
10
3

t;x

ˇ̌̌̌
�

X
1�˛¤ˇ�2J

k.rgU ˛
k /

7
3rgU

ˇ

k
kL1

t;x

.Emax;�

X
1�˛¤ˇ�2J

k.rgU ˛
k /rgU

ˇ

k
k

L
5
3
t;x

.Emax;� ok.1/:

Consequently,

krgU J
prof;kk

10
3

L
10
3

t;x

�

X
1�˛�2J

krgU ˛
k k

10
3

L
10
3

t;x

C ok.1/

.Emax;� C
X

1�˛�2J

E1.U ˛
k /C ok.1/.Emax;� 1
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and using Hölder’s inequality and (6-5), we get (6-6).
Using (6-5) and (6-6) we can apply Proposition 3.2 to get ı>0 such that the conclusion of Proposition 3.2

holds.
Now, for F.x/D jxj4x, we have

eD
�
i@t C�g

�
U

app
k
�U

app
k
jU

app
k
j
4
D

X
1�˛�2J

�
.i@t C�g/U

˛
k �F.U ˛

k /
�
C

X
1�˛�2J

F.U ˛
k /�F.U

app
k
/:

The first term is identically 0, while using Lemma 6.4, we see that taking J large enough, we can ensure
that the second is smaller than ı given above in L2

t H
1; 6

5
x -norm for all k large enough. Then, since

uk.0/D U
app
k
.0/, Sobolev’s inequality and the conclusion of Proposition 3.2 imply that for all k large,

and all interval J

kukkZ.J / . kukkS1.J / � kuk �U
app
k
kS1.J /CkU

app
k
kS1.R/ .Emax;� 1

where we have used (6-6). Then, we see that uk is global for all k large enough and that uk has uniformly
bounded Z-norm, which contradicts (3-7). This ends the proof.

Criterion for linear evolution.

Lemma 6.1. For any M > 0, there exists ı > 0 such that for any interval J � R, if

krg�kL2.H3/ �M and keit�g�kZ.J / � ı;

then for any t0 2 J , the maximal solution .I;u/ of (1-2) satisfying u.t0/D eit0�g� satisfies J � I and

ku� eit�g�kS1.J / � ı
3;

kukS1.J / � C.M; ı/:
(6-8)

Besides, if J D .�1;T /, then there exists a unique maximal solution .I;u/, J � I of (1-2) such that

lim
t!�1

krg.u.t/� eit�g�/kL2.H3/ D 0 (6-9)

and (6-8) holds in this case too. The same statement holds in the Euclidean case when .H3;g/ is replaced
by .R3; ıij /.

Proof of Lemma 6.1. The first part is a direct consequence of Proposition 3.2. Indeed, let v D eit�g�.
Then clearly (3-3) is satisfied while using Strichartz estimates,

krgvjvj
4
k

L2
t L

6
5
x .J�H3/

� kvk4Z.J /krgeit�g�k
L10

t L
30
13
x .J�H3/

.M ı4;

thus we get (3-4). Then we can apply Proposition 3.2 with � D 1 to conclude. The second claim is
classical and follows from a fixed point argument. �
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Description of a Euclidean nonlinear profile. Let

zFe D
˚
.Nk ; tk ; hk/k 2 Fe W tk D 0 for all k or lim

k!1
N 2

k jtk j D1
	
;

zFh D
˚
.1; tk ; hk/k 2 Fh W tk D 0 for all k or lim

k!1
jtk j D1

	
:

Lemma 6.2. Assume � 2 PH 1.R3/ and .Nk ; tk ; hk/k 2 zFe. Let Uk be the solution of (1-2) such that
Uk.0/D…tk ;hk

.TNk
�/.

(i) For k large enough, Uk 2 C.R WH 1/ is globally defined, and

kUkkZ.R/ � 2 QC .E1
R3.�//: (6-10)

(ii) There exists a Euclidean solution u 2 C.R W PH 1.R3// of

.i@t C�/uD ujuj4 (6-11)

with scattering data �˙1 defined as in (4-4) such that the following holds, up to a subsequence: for
any " > 0, there exists T .�; "/ such that for all T � T .�; "/ there exists R.�; ";T / such that for all
R�R.�; ";T /, we have

kUk � QukkS1.jt�tk j�TN�2
k
/ � "; (6-12)

for k large enough, where

.�h�1
k
Quk/.t;x/DN

1=2

k
�.Nk‰

�1
I .x/=R/u.Nk‰

�1
I .x/;N 2

k .t � tk//:

In addition, up to a subsequence,

kUkk
L10

t H
1; 30

13
x \L

10
3

t H
1; 10

3
x .H3�fN 2

k
jt�tk j�T g/

� " (6-13)

and for any˙.t � tk/� TN�2
k

,

krg

�
Uk.t/�…tk�t;hk

TNk
�˙1

�
kL2 � "; (6-14)

for k large enough (depending on �; ";T;R).

Proof. We may assume that hk D I for any k.
If tk D 0 for any k then the lemma follows from Lemma 4.2 and Corollary 4.3: we let u be the

nonlinear Euclidean solution of (6-11) with u.0/D � and notice that for any ı > 0 there is T .�; ı/ such
that

kruk
L

10=3
x;t .R3�fjt j�T .�;ı/g/

� ı:

The bound (6-12) follows for any fixed T � T .�; ı/ from Lemma 4.2. Assuming ı is sufficiently small
and T is sufficiently large (both depending on � and "), the bounds (6-13) and (6-14) then follow from
Corollary 4.3 (which guarantees smallness of 1˙.t/ �eit�g Uk.˙N�2

k
T .�; ı// in L

10=3
t H

1;10=3
x .H3�R/)

and Lemma 6.1.
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Otherwise, if limk!1N 2
k
jtk j D1, we may assume by symmetry that N 2

k
tk !C1. Then we let u

be the solution of (6-11) such that 

r.u.t/� eit��/




L2.R3/
! 0

as t ! �1 (thus ��1 D �). We let Q� D u.0/ and apply the conclusions of the lemma to the frame
.Nk ; 0; hk/k 2 Fe and Vk.s/, the solution of (1-2) with initial data Vk.0/D �hk

TNk
Q�. In particular, we

see from the fact that N 2
k

tk !C1 and (6-14) that

kVk.�tk/�…tk ;hk
TNk

�kH 1.H3/! 0

as k!1. Then, using Proposition 3.2, we see that

kUk �Vk. � � tk/kS1.R/! 0

as k!1, and we can conclude by inspecting the behavior of Vk . This ends the proof. �

Noninteraction of nonlinear profiles.

Lemma 6.3. Let z�Ok
and z O0

k
be two profiles associated to orthogonal frames O and O0 in zFe [ zFh. Let

Uk and U 0
k

be the solutions of the nonlinear equation (1-2) such that Uk.0/ D z�Ok
and U 0

k
.0/ D z O0

k
.

Suppose also that E1.z�Ok
/ <Emax� � (resp. E1. z O0

k
/ <Emax� �) if O 2 Fh (resp. O0 2 Fh). Then

sup
T2R

ˇ̌
hrgUk.T /;rgU 0k.T /iL2�L2.H3/

ˇ̌
CkUkrgU 0kk

L5
t L

15
8

x .H3�R/
Ck.rgUk/rgU 0kk

L
5
3
t;x.H

3�R/

! 0 (6-15)

as k!1.

Proof. It suffices to prove (6-15) up to extracting a subsequence, and fix " > 0 sufficiently small.
We only provide the proof that the second norm in (6-15) decays; the other two claims are similar.

Applying Lemma 6.2 if Uk is a profile associated to a Euclidean frame (respectively (6-4) if Uk is a
profile associated to a hyperbolic frame), we see that

kUkkS1 CkU 0kkS1 �M <C1

and that there exist R and ı such that

krgUkkL10
t L

30=13
x \L

10=3
x;t ..H3�R/nSR

Nk ;tk ;hk
/
CkUkkL10

x;t ..H
3�R/nSR

Nk ;tk ;hk
/ � ";

sup
S;h

�
krgUkkL10

t L
30=13
x \L

10=3
x;t .Sı

Nk ;S;h
/
CkUkkL10

x;t .S
ı
Nk ;S;h

/

�
� ";

(6-16)

where

Sa
N;T;h WD

˚
.x; t/ 2 H3

�R W dg.h
�1
�x; 0/� aN�1 and jt �T j � a2N�2

	
: (6-17)

A similar claim holds for U 0
k

with the same values of R, ı.
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If Nk=N
0
k
!1, then for k large enough we estimate

kUkrgU 0kk
L5

t L
30
16
x

� kUkrgU 0kk
L5

t L
30
16
x .SR

Nk ;tk ;hk
/
CkUkrgU 0kk

L5
t L

30
16
x ..H3�R/nSR

Nk ;tk ;hk
/

� kUkkL10
t;x
krgU 0kkL10

t L
30
13 .Sı

N 0
k
;tk ;hk

/
CkUkkL10

t;x..H
3�R/nSR

Nk ;tk ;hk
/krgU 0kk

L10
t L

30
13
x

.M ":

The case when N 0
k
=Nk !1 is similar.

Otherwise, we can assume that C�1 �Nk=N
0
k
� C for all k, and then find k sufficiently large that

SR
Nk ;tk ;hk

\SR
N 0

k
;t 0

k
;h0

k

D∅. Using (6-16) it follows as before that

kUkrgU 0kk
L5

t L
30
16
x

.M ":

Hence, in all cases,

lim sup
k!1

kUkrgU 0kk
L5

t L
15
8

x

.M ":

The convergence to 0 of the second term in (6-15) follows. �

Control of the error term.

Lemma 6.4. With the notations in the proof of Proposition 3.4,

lim
J!1

lim sup
k!1





rg

�
F.U

app
k
/�

X
1�˛�2J

F.U ˛
k /
�





L2
t L

6
5
x

D 0: (6-18)

Proof. Fix "0 > 0. For fixed J , we let

U J
prof;k D

X
1���J

U
�

e;k
C

X
1���J

U �
h;k D

X
1�
�2J

U



k

be the sum of the profiles. Then we separate



rg

�
F.U

app
k
/�

X
1�˛�2J

F.U ˛
k /
�





L2
t L

6
5
x

�





rg

�
F.U

app
k
/�F.U J

prof;k/
�





L2
t L

6
5
x

C





rg

�
F.U J

prof;k/�
X

1�˛�2J

F.U ˛
k /
�





L2
t L

6
5
x

:

We first claim that, for fixed J ,

lim sup
k!1





rg.F.U
J
prof;k/�

X
1�˛�2J

F.U ˛
k //






L2

t L
6
5
x

D 0: (6-19)

Indeed, using thatˇ̌̌̌
rg

�
F

� X
1�˛�2J

U ˛
k

�
�

X
1�˛�2J

F.U ˛
k /

�ˇ̌̌̌
.

X
˛¤ˇ;


jU



k
j
3
jU ˛

k rgU
ˇ

k
j;
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we see that



rg

�
F.U J

prof;k/�
X

1�˛�2J

F.U ˛
k /

�




L2

t L
6
5
x

.
X
˛¤ˇ;


kU



k
k

3

L10
t;x

kU ˛
k rgU

ˇ

k
k

L5
t L

15
8

x

:

Therefore (6-19) follows from (6-15) since the sum is over a finite set and each profile is bounded in L10
t;x

by (6-7).
Now we prove that, for any given "0 > 0,

lim sup
J!1

lim sup
k!1



rg

�
F.U

app
k
/�F.U J

prof;k/
�



L2
t L

6
5
x

. "0: (6-20)

This would complete the proof of (6-18). We first remark that, from (6-6), U J
prof;k has bounded L10

t H
1; 30

13
x -

norm, uniformly in J for k sufficiently large. We also let j0 D j0."0/ independent of J be such that10

sup
˛�j0

lim sup
k!1

kU ˛
k kL10

t;x
. "0: (6-21)

Now we compute



rg.F.U
J
prof;k C eit�g rJ

k /�F.U J
prof;k//




L2

t L
6
5
x

.
5X

jD1

1X
pD0



rp
g .e

it�g rJ
k /

j
r

1�p
g .U J

prof;k/
5�j




L2

t L
6
5
x

:

Since both U J
prof;k and eit�g rJ

k
are bounded in L10

t H
1; 30

13
x uniformly in J , if there is at least one term

eit�g rJ
k

with no derivative, we can bound the norm in the expression above by

rp
g .e

it�g rJ
k /

j
r

1�p
g .U J

prof;k/
5�j




L2

t L
6
5
x

.Emax;� ke
it�g rJ

k kL10
t;x

uniformly in J , so that taking the limit k!1 and then J !1, we get 0. Hence we need only consider
the term 


.U J

prof;k/
4
rg.e

it�g rJ
k /





L2
t L

6
5
x

:

Expanding further .U J
prof;k/

4 and using Lemma 6.3 and (6-7), we see that

lim sup
k!1

k.U J
prof;k/

4
rg.e

it�g rJ
k /k

L2
t L

6
5
x

D lim sup
k!1

X
1�˛�J

k.U ˛
k /

4
rg.e

it�g rJ
k /k

L2
t L

6
5
x

. lim sup
k!1

X
1�˛�J

kU ˛
k k

3

L10
t;x

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x

.Emax;� lim sup
k!1

X
1�˛�j0

E1.U ˛
k /kU

˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x

C lim sup
k!1

X
j0�˛�J

E1.U ˛
k /kU

˛
k kL10

t;x
krg.e

it�g rJ
k /k

L10
t L

30
13
x

10The fact that j0 exists follows from (5-25) and (6-7).
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where j0 is chosen in (6-21). Consequently, using the summation formula for the energies (5-25), we get

lim sup
k!1



.U J
prof;k/

4
rg.e

it�g rJ
k /




L2
t L

6
5
t

.Emax;� "0C sup
1�˛�j0

lim sup
k!1



U ˛
k rg.e

it�g rJ
k /




L5
t L

15
8

x

:

Finally, we obtain from Lemma 2.3 that for any profile U ˛
k

,

lim
J!1

lim sup
k!1

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .H3�R/
D 0: (6-22)

This would imply (6-20) and hence complete the proof of Lemma 6.4. To prove (6-22), fix " > 0. For U ˛
k

given, we consider the sets Sa
N;T;h

as defined in (6-17). For R large enough we have, using (6-16),

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x ..H3�R/nSR
Nk ;tk ;hk

/

� kU ˛
k kL10

x;t ..H
3�R/nSR

Nk ;tk ;hk
/krg.e

it�g rJ
k /k

L10
t L

30
13
x

.Emax;� ":

Now in the case of a hyperbolic profile U �
h;k

, we know that W � as in (6-2) satisfies W � 2L10
x;t .H

3�R/.
We choose W �;0 2 C1c .H3 �R/ such that

kW �
�W �;0

kL10
x;t .H

3�R/ � ":

Using (6-4) we see that there exists a constant C�;" such that

kU �
h;k
rg.e

it�g rJ
k
/k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
� k.U �

h;k ��h�
k
W �;0. � � t�k //rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/

CkW �;0
kL1t;x

krg.e
it�g rJ

k /k
L5

t L
15
8

x .SR
Nk ;tk ;hk

/

.Emax;� "CC�;"krg.e
it�g rJ

k /k
L5

t L
15
8

x .SR
Nk ;tk ;hk

/
:

In the case of a Euclidean profile, we choose v 2 C1c .R3 �R/ such that

ku� vkL10
t;x.R

3�R/ � ";

for u given in Lemma 6.2. Then, using (6-12), we estimate as before

kU
�

e;k
rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� "CC�;".N

�

k
/

1
2 krg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
:

Therefore, we conclude that in all cases,

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� "CC˛;".N

˛
k /

1
2 krg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
:

Finally we use Lemma 2.3 and (5-24) to conclude that

lim
J!1

lim sup
k!1

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� ":

Since " was arbitrary, we obtain (6-22) and hence finish the proof. �
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