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AN INVERSE PROBLEM FOR THE WAVE EQUATION
WITH ONE MEASUREMENT AND THE PSEUDORANDOM SOURCE

TAPIO HELIN, MATTI LASSAS AND LAURI OKSANEN

We consider the wave equation (∂2
t − 1g)u(t, x) = f (t, x), in Rn , u|R−×Rn = 0, where the metric

g = (g jk(x))nj,k=1 is known outside an open and bounded set M ⊂ Rn with smooth boundary ∂M . We
define a source as a sum of point sources, f (t, x) =

∑
∞

j=1 a jδx j (x)δ(t), where the points x j , j ∈ Z+,
form a dense set on ∂M . We show that when the weights a j are chosen appropriately, u|R×∂M determines
the scattering relation on ∂M , that is, it determines for all geodesics which pass through M the travel
times together with the entering and exit points and directions. The wave u(t, x) contains the singularities
produced by all point sources, but when a j = λ

−λ j
for some λ > 1, we can trace back the point source

that produced a given singularity in the data. This gives us the distance in (Rn, g) between a source
point x j and an arbitrary point y ∈ ∂M . In particular, if (M, g) is a simple Riemannian manifold and g
is conformally Euclidian in M , these distances are known to determine the metric g in M . In the case
when (M, g) is nonsimple, we present a more detailed analysis of the wave fronts yielding the scattering
relation on ∂M .

1. Introduction

In this paper we consider an inverse problem for the wave equation

(∂2
t −1g)u(t, x)= f (t, x) in (0,∞)×Rn,

u|t=0 = ∂t u|t=0 = 0,

where 1g is the Laplace–Beltrami operator corresponding to a Riemannian metric g(x)= [g jk(x)]nj,k=1,
that is,

1gu =
n∑

j,k=1

|g|−1/2 ∂

∂x j

(
|g|1/2g jk ∂

∂xk u
)
,

where |g| = det(g jk) and [g jk
]
n
j,k=1 = g(x)−1 is the inverse matrix of [g jk(x)]nj,k=1. We assume that

g jk ∈ C∞(Rn) and that there are c1, c2 > 0 such that

c1|ξ |
2
≤

n∑
j.k=1

g jk(x)ξ jξ k
≤ c2|ξ |

2, x, ξ ∈ Rn. (1)
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Moreover, we assume that the metric g is known outside an open and bounded set M ⊂ Rn having a
C∞-smooth boundary ∂M .

We choose the origin of the time axis so that the source f is active at time t = 0. To ensure compatibility
with the initial conditions, we let T0 < 0< T and define the measurement map L = Lg,

L : C∞c (T0, T )⊗C∞c (R
n)→ C∞((T0, T )× ∂M), L f = u|(T0,T )×∂M , (2)

where u is the solution of the wave equation

(∂2
t −1g)u(t, x)= f (t, x) in (T0, T )×Rn,

u|t=T0 = ∂t u|t=T0 = 0.
(3)

Above, C∞c (T0, T ) denotes the space of smooth functions having compact support in (T0, T ). Its dual
space, the space of generalized functions or distributions, is denoted by D′(T0, T ). Moreover, for functions
φ ∈ C∞c (T0, T ) and ψ ∈ C∞c (R

n), we denote their pointwise product by (φ⊗ψ)(t, x)= φ(t)ψ(x).
We remark that the assumption (1), together with the finite speed of propagation for the wave equation,

implies that the measurement L f does not depend on g jk(x), for |x |> R, when R is sufficiently large.
Thus we may assume without loss of generality that all the partial derivatives ∂αx g jk are bounded on Rn .

Let x j ∈ ∂M , j = 1, 2, . . . , be a dense sequence of points in ∂M , and let us consider point sources

fx j (t, x) := δ(t)δx j (x), j = 1, 2, . . . .

In order to study the measurements L fx j , we will use the Sobolev spaces (see [Triebel 1978])

H s
p(R

d) :=
{

f ∈ S′(Rd); ‖ f ‖H s
p(R

d ) :=
∥∥(1−1)s/2 f

∥∥
L p(Rd )

<+∞
}
,

H̃ s
p(U ) := { f ∈ H s

p(R
d); supp f ⊂ Ū },

H s
p(U ) := { f ∈ D′(U ); f = h|U for some h ∈ H s

p(R
d)},

where U ⊂ Rd is open and s ∈ R. When p = 2 we omit the subscript p in our notation, that is, we
write H s(U )= H s

2 (U ), etc. Moreover, we use projective topology on the tensor product X ⊗ Y of two
Banach spaces X and Y , that is, ‖z‖X⊗Y := inf

∑
j ‖x j‖X‖y j‖Y , where the infimum is taken over all

representations z =
∑

j x j ⊗ y j . We also use projective topology on tensor products of locally convex
spaces; see, e.g., [Trèves 1967, Definition 43.2]. The measurement L fx j can be defined in the sense of
the following lemma.

Lemma 1.1. Let p∈ (1, n/(n−1)) and let m ∈N satisfy m>(n+1)/4. Then the measurement operator L
defined in (2) has a unique continuous extension

L : H̃−1(T0, T )⊗ H−1
p (Rn)→ D′((T0, T )× ∂M).

We will prove Lemma 1.1 and other results presented in the introduction in Sections 3–6.
In this paper we study a single measurement Lh0 that simultaneously combines all the measurements

L fx j by adding them together with appropriate weights. When the measurements L fx j are summed
together, to the authors’ knowledge, there are no algorithms that can filter the value of a particular



AN INVERSE PROBLEM FOR THE WAVE EQUATION 889

measurement from the sum. We will ask, however, whether we can find the essential features given by
these measurements, like the travel times between points on ∂M , so that the metric could be determined
under certain geometric conditions. Our main result is that Lh0 determines the scattering relation 6M,g

for the manifold (M, g). Here h0(t, x) is an explicit source that we call pseudorandom; see Definition 1
in Section 2.

The scattering relation has been efficiently used to solve several geometric inverse problems [Dairbekov
and Uhlmann 2010; Pestov and Uhlmann 2006; Stefanov and Uhlmann 2008; 2009]. To define the
scattering relation, let T M denote the tangent space of M and let γ̇ denote the tangent vector of a smooth
curve γ : [a, b] → M . Let SM = {(x, ξ) ∈ T M; ‖ξ‖g = 1} be the unit sphere bundle on M and define

∂±SM =
{
(x, ξ) ∈ SM; x ∈ ∂M, ∓(ν, ξ)g > 0

}
,

where ν is the exterior normal vector of ∂M . Moreover, let τM,g(x, ξ) be the infimum of the set{
t ∈ (0,∞]; γx,ξ (t) ∈ ∂M

}
,

where γx,ξ denotes the geodesic on (M, g) with initial data (x, ξ) ∈ T M . We write τ = τM,g when the
manifold (M, g) is clear from the context. We define the infimum of the empty set to be +∞.

The scattering relation is the map 6 =6M,g,

6 : D(6)→ ∂+SM ×R, D(6)=
{
(x, ξ) ∈ ∂−SM; τ(x, ξ) <∞

}
,

defined by 6(x, ξ)=
(
γx,ξ (τ (x, ξ)), γ̇x,ξ (τ (x, ξ)), τ (x, ξ)

)
.

Our main result is the following.

Theorem 1.2. Let M ⊂ Rn , n ≥ 2 be an open and bounded set having a C∞-smooth boundary. Then
there is a generalized function h0(t, x) supported on {0} × ∂M and having the following properties:
Assume that g jk, g′jk ∈ C∞(Rn) are two Riemannian metric tensors satisfying (1). Moreover, assume that
g jk(x)= g′jk(x) for x ∈ Rn

\M. Let

T >max
(

sup
(x,ξ)∈∂−SM

τM,g(x, ξ), sup
(x,ξ)∈∂−SM

τM,g′(x, ξ)
)
,

and assume that
Lgh0 = Lg′h0 on (T0, T )× ∂M.

Then the scattering relations 6M,g and 6M,g′ of Riemannian manifolds (M, g) and (M, g′) are the same.
In particular, if (M, g) and (M, g′) are simple, the restrictions of the distance functions on the boundary
satisfy dM,g(x, y)= dM,g′(x, y) for x, y ∈ ∂M.

We remark that if sup∂−SM τ is infinite, then we prove the above result with measurements on an
infinite time interval, that is, we prove that the measurement u|(T0,∞)×∂M determines D(6) and 6.

Recall that a compact Riemannian manifold (M, g) with boundary is simple if it is simply connected,
any geodesic has no conjugate points, and ∂M is strictly convex with respect to the metric g. Any two
points of a simple manifold can be joined by a unique geodesic.
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The key idea of the proof of Theorem 1.2 is to use source h0(t, x)=
∑
∞

j=1 a j fx j . The point source
a j0 fx j0

produces a singularity, which is observed at a point y ∈ Rn
\ M at time t0 = d(x j0, y) with a

magnitude a j0β(x j0, y), where β is an unknown nonvanishing smooth function. Appropriate choice of
the weights a j allows us find the index j0 by looking at nearby singularities. Indeed, when x jk → x j0 and
jk→∞, we see that the asymptotic behavior of the magnitude a jkβ(x jk , y) as k→∞ will be that of the
weights a jk . Thus it is possible to factor out a jk in the magnitude and determine a j0 . This argument is
presented in Section 7 and gives us the distances d(x j , y) in (Rn, g) for arbitrary point y ∈ Rn

\M and a
source point x j .

Theorem 1.2 and boundary rigidity results for simple manifolds imply the following:

Corollary 1.3. Let M ⊂ Rn and let g jk, g′jk ∈ C∞(Rn) be two Riemannian metric tensors satisfying the
assumptions of Theorem 1.2. Let (M, g) and (M, g′) be simple Riemannian manifolds. Then:

(i) If n = 2 and
Lgh0 = Lg′h0 on (T0, T )× ∂M, (4)

then there is a diffeomorphism 8 : M→ M such that 8|∂M = Id and g =8∗g′.

(ii) For n ≥ 3, there is ε = εn,M > 0 such that if ‖g jk − δ jk‖C2(M) < εn , ‖g′jk − δ jk‖C2(M) < εn , and (4)
holds, then there is a diffeomorphism 8 : M→ M such that 8|∂M = Id and g =8∗g′.

(iii) If g jk(x)= a(x)δ jk and g′jk(x)= a′(x)δ jk , that is, the metric tensors are conformally Euclidian, and
(4) holds, then g jk(x)= g′jk(x) for x ∈ M.

Indeed, by Theorem 1.2, case (i) follows from [Pestov and Uhlmann 2005], case (ii) follows from
[Burago and Ivanov 2010], and (iii) from [Muhometov 1977; 1981; Muhometov and Romanov 1978].

If Uhlmann’s conjecture [2003], that the scattering relation determines the isometry type of nontrapping
compact manifolds with nonempty boundary, can be proven, then Corollary 1.3 holds for a more general
class of manifolds.

The problem of determining the metric g (possibly up to a diffeomorphism) given the measurement
Lh0 with only one function h0(t, x) is a formally determined inverse problem. Indeed, the formally
computed “dimension of the data,” that is, the dimension of (T0, T )× ∂M , is n and coincides with the
dimension of the set M on which the unknown functions g jk(x) are defined.

The formally determined inverse problems have been studied in many cases. For instance, the two-
dimensional Calderón inverse problem [Astala and Päivärinta 2006; Astala et al. 2005; Imanuvilov et al.
2010; Nachman 1996; Sylvester 1990] is formally determined. The same is true for the related inverse
problem for the Schrödinger equation in two dimensions [Bukhgeim 2008]. The corresponding inverse
problems in dimension n≥ 3 — see [Calderón 1980; Kenig et al. 2007; Lassas et al. 2003; Nachman 1988;
Sylvester and Uhlmann 1987] and references in [Greenleaf et al. 2009a; 2009b], are overdetermined —
that is, the dimension of the data is larger than the dimension of the unknown object. Similar classification
holds for the elliptic inverse problems on Riemannian manifolds [Guillarmou and Tzou 2010; 2011;
Lassas et al. 2003; Lee and Uhlmann 1989; 2001]. Moreover, the boundary rigidity problem [Kurylev
et al. 2010; Michel 1981; Muhometov 1977; 1981; Muhometov and Romanov 1978; Romanov 1987;
Stefanov and Uhlmann 2005] is formally determined in dimension n = 2 and overdetermined for n ≥ 3.
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Inverse problems in the time domain related to the Laplace–Beltrami operator 1g, namely the inverse
boundary value problem for the wave, heat, and dynamical Schrödinger equations with Dirichlet-to-
Neumann as data — see [Anderson et al. 2004; Belishev and Kurylev 1992; Katchalov and Kurylev 1998;
Katchalov et al. 2001] — are overdetermined in dimensions n≥ 2. However, these problems are equivalent
to the inverse boundary spectral problem (see [Katchalov et al. 2004]), and assuming that the eigenvalues
are simple, the Dirichlet-to-Neumann map at a generic Dirichlet boundary value determines the boundary
spectral data [Lassas 1995; 1998; Ramm 2001]. Thus, under generic conditions on the spectrum and on
the boundary value (that is, under the condition that the these data belong in some open and dense set), it
is possible to solve a formally determined inverse problem in time domain.

We point out that in this paper we do not impose any generic conditions on the geometry, and we give
an explicit construction of the boundary source. The boundary source considered in this paper is based
on the idea of imitating a realization of white noise, and due to the many useful properties of the white
noise process, we hope that the constructed source may be useful in the study of other inverse problems
requiring generic assumptions on the source.

Another formally determined hyperbolic inverse problem, namely measuring Neumann data when
the initial data (u|t=0, ∂t u|t=0) is nonzero and satisfies subharmonicity or positivity conditions, has been
studied using Carleman estimates [Bellassoued and Yamamoto 2008; Imanuvilov and Yamamoto 2003;
Isakov 2006; Klibanov 1992; Stefanov and Uhlmann 2011]. The present paper is closely related to these
studies, but we emphasize that we assume that the initial data for u vanishes.

Moreover, there are two approaches to solving the formally determined hyperbolic inverse problem
to determine a potential from a single boundary measurement. The first one uses Carleman estimates
analogous to the estimates mentioned above and assumes similar conditions on the initial data [Bukhgeim
and Klibanov 1981]. The second one relies on an adaptation of the Gelfand–Levitan method to multidimen-
sional problems [Rakesh and Sacks 2011; Rakesh 2003; 2008; Romanov 2002; Sacks and Symes 1985].

2. Pseudorandom source

In this section we define a special source h0(t, x) which we call pseudorandom. The specific assumptions
on the amplitudes are explained in Section 7. An important feature of the pseudorandom source is that it
is supported only on a single point in time.

Definition 1. Let x j ∈ ∂M , j = 1, 2, . . . , be a dense sequence of distinct points in ∂M , and let a j ∈ R,
j = 1, 2, . . . , with

∑
∞

j=1 |a j |<∞, be a sequence of distinct numbers.
We define the pseudorandom source on (x j )

∞

j=1 ⊂ ∂M with coefficients (a j )
∞

j=1 ⊂ R as the following
generalized function on R×Rn:

h0(t, x) :=
∞∑
j=1

a jδ(t)δx j (x), (x, t) ∈ Rn+1,

where δ(t) and δx j (x) are Dirac delta distributions on R and Rn , respectively.
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It is rather straightforward to show that h0 is well-defined. First, it is well known that δ(t)∈ H−1(R) and
δx j (x) ∈ C(Rn)′. Next, we have H 1

p′(R
n)⊂ C(Rn) when 1> n/p′, due to [Triebel 1978, Theorem 2.8.1].

According to [ibid., Theorem 2.6.1], the dual space satisfies (H 1
p′(R

n))′ = H−1
p (Rn) with 1/p′ = 1−1/p,

and hence C(Rn)′ ⊂ H−1
p (Rn) for 1< p < n/(n− 1). Since

∑
∞

j=1 |a j |<∞, we have
∞∑
j=1

a jδx j (x) ∈ H−1
p (Rn).

This yields that for any p ∈
(

1, n
n−1

)
and ε > 0, the pseudorandom source h0 satisfies

h0 ∈ H̃−1(−ε, ε)⊗ H̃−1
p (M). (5)

The spatial structure of the pseudorandom source can be motivated by the structure of the white noise.
In the 1-dimensional radar imaging models, white noise signals are considered to be optimal sources
when imaging a stationary scatterer [Toomay and Hannen 2004]. This is due to the fact that different
translations of the white noise signal are uncorrelated. In a similar fashion, we have the following property
for the pseudorandom source h0: for each x j0 and each sequence (x jk )

∞

k=1 converging to x j0 and satisfying
x jk 6= x j0 for all k ∈ Z+, it holds that a jk → 0. This property will be crucial in what follows.

A natural strategy to choose the points x j is by random sampling. The term pseudorandom refers to
the fact that algorithmic generators of random numbers use, in fact, a deterministic function to produce
a sequence of numbers, but the mixingness of the process is such that the user of the algorithm can
consider the numbers to be analogous to independent samples of a random variable. In this manner, the
pseudorandom source can be seen as an imitation of a realization of a noise process.

Another source of inspiration for us was a rather new measurement paradigm called compressed sensing
[Candès et al. 2006; Donoho 2006], where one aims for a sparse reconstruction of a linear problem using
a small number of noisy measurements. We point out that by using the pseudorandom source, one can
compress the measurements L fx j with point sources fx j into a single measurement Lh0.

3. Measurement map

In this section we prove that the measurement Lh0 is well-defined. Let us consider the operator W : f 7→ u
mapping f to the solution of (3). We call such an operator the solution operator for (3). First, we note that
by [Hörmander 1985, Theorem 23.2.2], the operator W : f 7→ u extends in a unique way to a continuous
linear operator

W : L1((T0, T ); H s(Rn)
)
→ C

(
[T0, T ]; H s+1(Rn)

)
, s ∈ R. (6)

Moreover, if f ∈ C∞([T0, T ]×Rn) and supp( f )b (T0, T ]×Rn , that is, supp( f ) is a compact subset of
(T0, T ]×Rn , then W f ∈ C∞([T0, T ]×Rn).

We will compose the operator W with the one-sided inverse I of the derivative ∂t , which is given by

Iu(t) :=
∫ t

T0

u(t ′)dt ′, u ∈ C∞c (T0, T ).
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One sees easily that this operator has a unique continuous linear extension I : H̃−1(T0, T )→ L2(T0, T ).
Next we prove Lemma 1.1 formulated in the introduction, that is, we prove that the measurement map

L has a unique continuous extension

H̃−1(T0, T )⊗ H−1
p (Rn)→ D′((T0, T )× ∂M). (7)

Proof of Lemma 1.1. For sufficiently large z ∈R+, the operator z−1g is an isomorphism between spaces
H s+2(Rn) and H s(Rn) as well as between spaces H s+2

p (Rn) and H s
p(R

n) for all integers s by [Shubin
1992].

By the definition of L , we have that L = Tr ◦W , where Tr is the trace operator

Tr(u)= u|(T0,T )×∂M , u ∈ C∞((T0, T )×Rn).

Let f ∈ C∞c ((T0, T )×Rn). Then the solution u =W f of the wave equation (∂2
t −1g)u = f can be

written in the form

W f = (z− ∂2
t )

m(z−1g)
−m W f +

m−1∑
j=0

(z− ∂2
t )

j (z−1g)
−1− j f. (8)

Now f = ∂t I f , where I f is C∞-smooth and satisfies supp(I f ) b (T0, T ] × Rn . By (6), W I f is
C∞-smooth and ∂t W I f =W∂t I f =W f . Hence

L f = ∂t(z− ∂2
t )

m Tr(z−1g)
−m W I f +

m−1∑
j=0

(z− ∂2
t )

j Tr(z−1g)
−1− j f. (9)

Let us next consider terms appearing in (9). First we consider extension of the operator

N∑
k=1

φk ⊗ψk 7→

N∑
k=1

(z− ∂2
t )

j Tr(z−1g)
−1− j (φk ⊗ψk)

=

N∑
k=1

(
(z− ∂2

t )
jφk
)
⊗
(
Tr(z−1g)

−1− jψk
)
, j = 0, . . . ,m− 1,

(10)

mapping C∞c (T0, T )⊗C∞c (R
n) to C∞((T0, T )× ∂M). By [Triebel 1978, Theorem 4.7.1], the maps

H−1
p (Rn)

(z−1g)
−1− j

−−−−−−→ H 1
p(R

n)
Tr
−→ B1−1/p

p,p (∂M)

are continuous, where B1−1/p
p,p (∂M) is the Besov space on ∂M . Thus the operator (10) has a continuous

extension in spaces (7).
Next, consider extension of the operator

N∑
k=1

φk ⊗ψk 7→

N∑
k=1

∂t(z− ∂2
t )

m Tr(z−1g)
−m W ((Iφk)⊗ψk) (11)

mapping C∞c (T0, T )⊗C∞c (R
n) to C∞((T0, T )× ∂M). As −1− n/p > −1− n, we have by [Triebel

1978, Theorem 2.8.1] a continuous embedding H−1
p (Rn) ↪→ H−1−n/2(Rn). Moreover, the operator
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I : H̃−1(T0, T )→ L2(T0, T ) and the embedding L2(T0, T )⊗H−1−n/2(Rn) ↪→ L2
(
(T0, T ); H−1−n/2(Rn)

)
are continuous. Thus, by (6),

W I : H̃−1(T0, T )⊗ H−1
p (Rn)→ C

(
[T0, T ]; H−n/2(Rn)

)
is continuous.

As (1−1g)
−m
:C
(
[T0, T ]; H−n/2(Rn)

)
→C

(
[T0, T ]; H−n/2+2m(Rn)

)
is continuous and− n

2+2m> 1
2 ,

we see that the operator

Tr(1−1g)
−m W I : H̃−1(T0, T )⊗ H−1

p (Rn)→ C
(
[T0, T ]; L2(∂M)

)
is continuous.

Combining the above results, we see that the operator (9) has a continuous extension to the spaces (7).
As the spaces C∞c (T0, T ) and C∞c (R

n) are dense in H̃−1(T0, T ) and H−1
p (Rn), respectively, we see that

the continuous extension of L is unique. �

4. Inner product of a solution and a source

Lemma 4.1. Let f ∈ C∞c ((T0, T )×M) and t0 ∈ (T0, T ) and let w ∈ C∞([T0, t0]×Rn) satisfy

(∂2
t −1g)w = 0, in (T0, t0)×Rn.

Then∫ t0

T0

∫
Rn

f (t, x)w(t, x) dt dV (x)=
∫

Rn

(
(∂t W f )(t0, x)w(t0, x)− (W f )(t0, x)(∂tw)(t0, x)

)
dV (x),

where dV (x) = |g|1/2 dx is the Riemannian volume measure of (Rn, g) and W : f 7→ u is the solution
operator of the wave equation (3).

Proof. By finite speed of propagation of waves [Ladyzhenskaya 1985, pp. 150–156], supp(W f (t)) is
compact in Rn . The claim follows by integration by parts:∫

Rn

(
(∂t u)(t0, x)w(t0, x)− u(t0, x)(∂tw)(t0, x)

)
dV (x)

−

∫
Rn

(
(∂t u)(T0, x)w(T0, x)− u(T0, x)(∂tw)(T0, x)

)
dV (x)

=

∫
(T0,t0)×Rn

(
(∂2

t −1g)u(t, x) w(t, x)− u(t, x) (∂2
t −1g)w(t, x)

)
dt dV (x)

=

∫
(T0,t0)×Rn

f (t, x)w(t, x) dt dV (x). �

Next, we will prove a generalization of the previous lemma for nonsmooth sources f . Denote by
B(0, R)= {x ∈ Rn

; |x |< R} the Euclidean ball. The finite speed of propagation for the wave equation
yields that there is R > 0 such that all f ∈ C∞c ((T0, T )×M) satisfy supp(W f )b (T0, T ]× B(0, R). We
define

� := B(0, R) \M . (12)
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Below, we use the fact (see [Evans 1998, Theorems 7.2.3/6 and 5.6.3/6]) that the operator W� : h 7→ v

mapping h to the solution of the equation

(∂2
t −1g)v(t, x)= 0 in (T0, T )×�,

v|(T0,T )×∂� = h,

v|t=T0 = 0, ∂tv|t=T0 = 0,

(13)

is continuous as a map W� : C∞c ((T0, T )× ∂�)→ C∞([T0, T ]× �̄).
We let t0 ∈ (T0, T ) and write

6 := {t0}×�. (14)

We denote the trace on 6 by Tr6 , that is, we define (Tr6 u)(x) := u(t0, x). Let ν = ν(z) denote the
exterior unit normal vector of ∂M at z.

Moreover, let U be an open subset (or a submanifold) of Rn , and let us denote by dV (or d S) the
Riemannian volume measure of (U, g). We embed the test functions into the spaces of distribution by
using the inner product of the space L2(U ; dV ), that is, we identify u ∈ C∞0 (U ) with the distribution

ψ 7→

∫
U

u(x)ψ(x) dV (x). (15)

We will denote the distribution pairing of u ∈ D′(U ) and ψ ∈ C∞0 (U ) by (u, ψ)D′(U ) and use analogous
notations for other distribution pairings.

Lemma 4.2. Let t0 ∈ (T0, T ) and define 6 by (14). Then operators Tr6 W� and Tr6 ∂t W� have unique
continuous extensions E′((T0, t0)× ∂�)→ D′(�).

Proof. Let v satisfy (13). Consider a function w ∈ C∞([T0, t0] × �̄) such that (∂t − 1g)w = 0 in
(T0, t0)×� and w|(T0,t0)×∂� = 0. Then

0=
∫
�×(T0,t0)

(
(∂t −1g)v

)
w− v

(
(∂t −1g)w

)
dV (x) dt

=

[∫
�

(
(∂tv)w− v(∂tw)

)
dV (x)

]t=t0

t=T0

+

∫
∂�×(T0,t0)

(
(∂νv)w− v(∂νw)

)
d S(x) dt

=

∫
�

(
(∂tv)w− v(∂tw)

)
dV (x)

∣∣∣∣
t=t0

−

∫
∂�×(T0,t0)

h(∂νw) d S(x) dt,

where ∂ν is the normal derivative on ∂�,
Denote by W1 : f1 7→ w the solution operator of the equation

(∂t −1g)w(t, x)= 0 in (T0, t0)×�,

w|(T0,t0)×∂� = 0,

w|t=t0 = f1, ∂tw|t=t0 = 0.

The operator W1 : C∞c (�)→ C∞([T0, t0] × �̄) is continuous, as can be seen using Theorems 7.2.3/6
and 5.6.3/6 of [Evans 1998]. Hence, the operator
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∂νW1 : C∞c (�)→ C∞([T0, t0]× ∂�), f 7→ ∂νW1 f |∂�

is continuous. Moreover,

(Tr6 ∂t W�h, f1)L2(�;dV ) = (h, ∂νW1 f1)L2((T0,t0)×∂�;dt⊗d S),

where ∂ν is the normal derivative on ∂�. We define the extension of Tr6 ∂t W� by identifying it with the
transpose (∂νW1)

t
: E′((T0, t0)× ∂�)→ D′(�) of the operator ∂νW1 : C∞c (�)→ C∞([T0, t0]× ∂�).

Similarly, we define the extension of Tr6 W� by the transpose (∂νW2)
t
: E′((T0, t0)× ∂�)→ D′(�)

of ∂νW2 : C∞c (�)→ C∞([T0, t0]× ∂�), where W2 : f2 7→ w is the solution operator of the equation

(∂t −1g)w(t, x)= 0 in (T0, t0)×�,

w|(T0,t0)×∂� = 0,

w|t=t0 = 0, ∂tw|t=t0 =− f2. �

Denote by d�(x, y), x, y ∈ �, the distance function of Riemannian manifold (�, g|�). Next we
generalize the result of Lemma 4.1 for a larger class of functions.

Lemma 4.3. Let t0 ∈ (0, T ) and ε > 0 satisfy [−ε, ε] ⊂ (T0, t0). Define 6 by (14). Let

f ∈ H̃−1(−ε, ε)⊗ H̃−1
p (M) and w ∈ C∞([T0, t0]×Rn)

satisfy
(∂2

t −1g)w = 0, in (T0, t0)×Rn.

Suppose that w(t0), ∂tw(t0) ∈ C∞c (�), and let χ ∈ C∞c (T0, t0) satisfy χ = 1 in a neighborhood of
[−ε, t0− r ], where

r := d�
(
supp(w(t0))∪ supp(∂tw(t0)), ∂�

)
.

Then
( f, w)E′(Rn×(T0,t0)) = (Tr6 ∂t W�χL f, w)D′(�)− (Tr6 W�χL f, ∂tw)D′(�), (16)

where we have defined L f = 0 on ∂B(0, R). Here we regard � as a Riemannian manifold (�, g|�).

Proof. We suppose first that f ∈C∞c ((−ε, ε)×M). Recall that W is solution operator of wave equation (3).
Then W f ( · , t)= 0 if t <−ε, and

L f = Tr∂� W f = χ Tr∂� W f, in (T0, t0− r)× ∂�,

where Tr∂� is the trace on (T0, T )× ∂�. As �∩M =∅, we have that (∂2
t −1g)W f = 0 in (T0, T )×�.

By uniqueness of the solution of (13),

W�χ Tr∂� W f =W f, in (T0, t0− r)×�.

By finite speed of propagation,

Tr6 ∂
j

t W�χ Tr∂� W f = Tr6 ∂
j

t W f, j = 0, 1,

on {t0}× supp(w(t0))∪ supp(∂tw(t0)). By Lemma 4.1, (16) holds.
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Then the claim follows, as the embeddings

C∞c (−ε, ε) ↪→ H̃−1(−ε, ε), C∞c (M) ↪→ H̃−1
p (M)

are dense and operators (Tr6 ∂
j

t W�)χL : H̃−1(−ε, ε)⊗ H̃−1
p (M)→ D′((T0, t0)× ∂�), j = 0, 1, are

continuous. �

5. Gaussian beams

We consider solutions of the wave equation which are known as Gaussian beams [Babich et al. 1985;
Babich and Ulin 1981; Ralston 1982]. These solutions have been constructed to analyze the propagation
of singularities for the wave equation in the presence of caustics. Here we use Gaussian beams as an
auxiliary technical tool to analyze singularities in the measurements.

Definition 2. Let ε > 0, N ∈ N and let γ be a unit speed geodesic on (Rn, g). A formal Gaussian beam
of order N propagating along geodesic γ is a function U N

ε of form

U N
ε (t, x)= ε−n/4 exp

{
−(iε)−1θ(t, x)

} N∑
m=0

um(t, x)(iε)m, t ∈ R, x ∈ Rn,

satisfying the following properties: The phase function θ and the amplitude functions um , with m =
0, 1, . . . , N , are complex-valued smooth functions. The phase function θ satisfies the conditions

θ(t, γ (t))= 0, Im θ(t, x)≥ C0(t)d(x, γ (t))2,

where C0(t) is a continuous strictly positive function. The amplitude function u0 satisfies u0(t, γ (t)) 6= 0.
Finally, for any compact set K b R×Rn , there is a constant C > 0 such that the inequality∣∣(∂2

t −1g)U N
ε (t, x)

∣∣≤ CεN−n/4

is satisfied uniformly for (t, x) ∈ K .

The construction of a formal Gaussian beam U N
ε (t, x) is considered in detail in [Katchalov et al. 2001,

Section 2.4]. Next, we recall the construction and pay attention to the properties of Gaussian beams
which we need later.

Let us write the geodesic γ in the usual coordinates of Rn as γ (t)=
(
γ 1(t), . . . , γ n(t)

)
. We construct

the phase function θ(t, x) at each time t ∈R in terms of a finite Taylor expansion in the x variable centered
at γ (t),

θ(t, x)=
∑
|α|≤N

θα(t)
α!

(x − γ (t))α,

where θα are smooth functions and N ∈ N.
Let e j = (δ1 j , . . . , δnj ) be multi-indices with the value 1 at the j-th place. For clarity, we use the

notation p j (t)= θe j (t) for the first-order coefficients and the notation H jk(t)= θα(t), α = e j + ek , for
the second-order coefficients in the expansion of θ .

The construction of a formal Gaussian beam consists of the following steps.
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(1) We define θ0(t)= 0 and p j (t)=
∑n

k=1 g jk(γ (t))γ̇ k(t), that is, the first-order coefficients p j (t) are
the covariant representation of the velocity vector γ̇ .

(2) The symmetric matrix H(t)= [H jk(t)]nj,k=1 of the second-order coefficients is obtained by solving a
Riccati equation, or an equivalent system of ordinary differential equations. We write H(t)= Z(t)Y (t)−1,
where the pair of complex n×n matrices (Z(t), Y (t)) is the solution of the system of ordinary differential
equations

d
dt

Y (t)= B(t)∗Y (t)+C(t)Z(t), Y |t=0 = Y 0,

d
dt

Z(t)=−D(t)Y (t)− B(t)Z(t), Z |t=0 = Z0.

Here we choose the initial values to be Z0
= i I and Y 0

= I , where I is the identity matrix and i
is the imaginary unit. The matrices B(t), C(t), and D(t) in Rn×n have components given by the
second derivatives of the Hamiltonian h(x, p)=

(∑n
j,k=1 g jk(x)p j pk

)1/2 evaluated in the point (x, p)=
(γ (t), p(t)):

B j
l =

∂2h
∂x l∂p j

; C jl
=

∂2h
∂p j∂pl

; D jl =
∂2h

∂x j∂x l .

The fact that the complex matrix Y (t) is invertible for all t ∈ R is crucial for the construction, and is
discussed in detail in [Katchalov et al. 2001, Section 2.4].

(3) The coefficients θα(t) of order |α| = m ≥ 3 are solved inductively, with respect to m. The coefficients
θα(t) are constructed using the coefficients θ̃α(t) defined so that∑

|α|=m

θ̃α(t)ỹα =
∑
|α|=m

θα(t)(x − γ (t))α,

for all ỹ= Y−1(t)(x−γ (t)), y ∈Cn . We obtain the coefficients θ̃α(t) by solving successive linear systems
of ordinary differential equations

d
dt
θ̃α(t)= Kα(t), θ̃α(0)= 0,

where Kα(t) depend on θβ(t) with |β| ≤ m− 1, the matrix H(t), the vector p(t), and the metric g jk and
its derivatives at γ (t).

(4) When the phase function θ(t, x) is constructed, the amplitude functions un(t, x) are solved using the
transport equations, or equivalently, the following ordinary differential equations. Let

um(t, x)=
∑
|α|≤N

ũm,α(t)ỹα, ỹ = Y−1(t)(x − γ (t)),

where the coefficients ũm,α(t) are obtained by solving the successive equations

d
dt

ũm,α(t)+ r(t)ũm,α(t)= Fm,α(t), ũm,α(0)= δm,0δ|α|,0,

where r(t) and Fm,α(t) depend on ũm′,β with |β| ≤ |α| + 2 and m′ ≤ m − 1, the function θ(t, x), the
metric g jk , and their derivatives at (t, x), x = γ (t).
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By the above construction, we have the following remark.

Remark 1. The phase function θ(t, x) and the amplitude functions um(t, x) at time t = 0 have the form

θ(0, x)=
n∑

j,k=1

g jk(y)ηk(x j
− y j )+ i |x − y|2,

where (y, η)= (γ (0), γ̇ (0)) is the initial data of the geodesic γ , u0(0, x)= 1, and um(0, x)= 0 for m > 0.
Hence, U N

ε (0, x) is dependent on the metric g jk only via g jk(y). Moreover, ∂tU N
ε (0, x), although of

more complex form, is dependent on the metric g jk only via ∂αg jk(y) for a certain finite collection of
multi-indices α ∈ Nn .

If the coefficients of an ordinary differential equation depend smoothly on some parameter, so does the
solution [Amann 1990], and thus we see using an induction that the phase function θ and the amplitude
functions um depend smoothly on the initial data (y, η)= (γ (0), γ̇ (0)) of the geodesic γ . In particular,
the amplitude function u0(t, x; y, η) satisfies

u0 ∈ C∞(R×Rn
× SRn). (17)

Thus far we have considered a formal Gaussian beam. By using continuous dependency of the solution
of the wave equation on the source term, one obtains the following results [Katchalov et al. 2001]:

Let γ be a unit speed geodesic, N ∈ N, ε > 0, and let U N
ε be a formal Gaussian beam of order N

propagating along geodesic γ . Let χ ∈C∞0 (R
n) be a function which is identically one in a neighborhood of

γ (0) and let t0> 0 and let R be the radius in (12). Then for j ∈N and α ∈Nn satisfying j+|α|< N−n/4,
there is C > 0 such that the solution wε of the wave equation,

(∂2
t −1g)wε(t, x)= 0, (t, x) ∈ (T0, t0)×Rn,

wε(t0, x)= χ(x)U N
ε (0, x),

∂twε(t0, x)=−χ(x)∂tU N
ε (0, x),

(18)

satisfies
sup

x∈B(0,R),t∈(T0,t0)

∣∣∂ j
t ∂

α
x
(
wε(t0− t, x)−U N

ε (t, x)
)∣∣≤ CεN−( j+|α|)−n/4. (19)

We call wε a Gaussian beam of order N propagating along geodesic γ backwards on time interval (T0, t0).

6. Determination of the travel times

Lemma 6.1. Let wε be a Gaussian beam of order N ≥ 1+ n/4 propagating along geodesic γ backwards
on time interval (T0, t0), that is, let wε be the solution of (18). Let h0 be the pseudorandom source

h0(t, x)=
∞∑
j=1

a jδ(t)δx j (x). (20)

If γ (t0) 6= x j for all j = 1, 2, . . . , then

lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)) = 0.
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Moreover, if γ (t0)= x j , then

lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)) = a j u0(t0, x j )|g|1/2(x j ),

where u0(t, x) is the first amplitude function of a formal Gaussian beam propagating along geodesic γ .

We remind the reader that the test functions are embedded in E′(Rn
× (T0, T )) using (15).

Proof. By (19), we have that

εn/4(h0, wε)E′(Rn×(T0,t0)) = ε
n/4

∞∑
j=1

a jU N
ε (t0, x j )|g|1/2(x j )+ O(ε)

=

∞∑
j=1

a j u0(t0, x j ) exp
{
−(iε)−1θ(t0, x j )

}
|g|1/2(x j )+ O(ε).

As Im θ(t0, x j )≥ C0(t0)d(x j , γ (t0)), we have that∣∣exp
{
−(iε)−1θ(t0, x j )

}∣∣= O(ε), if γ (t0) 6= x j .

Suppose that γ (t0)= x j . Then exp
{
−(iε)−1θ(t0, x j )

}
= 1 and there is a constant C > 0 depending on

γ and t0 such that∣∣∣εn/4(h0, wε)E′(Rn×(T0,t0))− a j u0(t0, x j )|g|1/2(x j )

∣∣∣
≤ C

j−1∑
k=1

|ak |
∣∣exp

{
−(iε)−1θ(t0, xk)

}∣∣+C
l∑

k= j+1

|ak |
∣∣exp

{
−(iε)−1θ(t0, xk)

}∣∣+C
∞∑

l+1

|al | + O(ε).

We may first choose large l ∈ N and then small ε > 0 so that the above three sums are arbitrarily small.
The case γ (t0) 6= x j for all j = 1, 2, . . . , is similar. �

Next we define an auxiliary function S(y0, η0, t0) which is nonzero if and only if there is j ∈ Z+ such
that γy0,η0(t0)= x j .

Definition 3. Let (y0, η0) ∈ T Rn be such that y0 ∈ �
int and ‖η0‖g = 1. We denote by γ (t; y0, η0) =

γy0,η0(t) the geodesic on (Rn, g) with γ (0) = y0, γ̇ (0) = η0. Moreover, let wε be a Gaussian beam of
order N ≥ 1+ n/4 propagating along γ (t; y, η) backwards on time interval (T0, t0). We define

S(y0, η0, t0) := lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)).

Lemma 6.2. Let (y0, η) ∈ S� and t0 ∈ (0, T ). Then Lh0, for pseudorandom source h0, and (�, g|�),
given as a Riemannian manifold, determine S(y0, η0, t0).

Proof. Let wε be a Gaussian beam of order N ≥ 1+ n/4 propagating along the geodesic γ ( · ; y0, η0)

backwards on time interval (T0, t0). We may choose the cut-off function χ in (18) so that wε(t0) and
∂twε(t0) lie in C∞c (�). As g|� is known, we have by Remark 1 that the initial data wε(t0), ∂twε(t0) are
known. Moreover, operators Tr6 ∂

j
t W�, j = 0, 1, 6 := {t0}×�, are known. After choosing a suitable
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cut-off function χ in Lemma 4.3, we have that the measurement Lh0 determines the distributional pairing
(h0, wε)E′(Rn×(T0,t)). Hence S(y0, η0, t0) is determined. �

The implicit function theorem yields the following remark. Note that t0 ∈ R in the remark is not
necessarily the first intersection time.

Remark 2. Let (y0, η0) ∈ SRn and t0 ∈ R satisfy(
γ (t0; y0, η0), γ̇ (t0; y0, η0)

)
∈ ∂±SM.

Then there are neighborhoods I ⊂ R and U ⊂ SRn of t0 and (y0, η0) and a smooth map ` :U → I such
that for t ∈ I and (y, η) ∈U ,

γ (t; y, η) ∈


M, for ± t <±`(y, η),

∂M, for t = `(y, η),

�, for ± t >±`(y, η).

We remind the reader that τ(x, ξ), (x, ξ) ∈ T Rn , is defined as the first intersection time with ∂M :

τ(y0, η0) := inf
{
t ∈ (0,∞]; γ (t; y0, η0) ∈ ∂M

}
.

In the following, we use the Sasaki metric on the tangent bundle T M .

Lemma 6.3. The first intersection times τ : S�→ (0,∞] and τ : ∂−SM→ (0,∞] are lower semicontin-
uous.

Proof. Let us consider τ on S�. Let a sequence ((y j , η j ))
∞

j=1 ⊂ S� converge to (y0, η0) ∈ S� as j→∞.
We write γ j (t) := γ (t; y j , η j ) and τ j := τ(y j , η j ).

We will show next that lim inf j→∞ τ j /∈ (0, τ0). Let t ∈ (0, τ0). Then γ0(t) /∈ ∂M and

d(γ0(t), ∂M) > 0.

Let j ∈ Z+. Suppose for a moment that τ j <∞. Noting that γ j is unit speed and γ j (τ j ) ∈ ∂M , we have

|t − τ j | ≥ d
(
γ j (t), γ j (τ j )

)
≥ d(γ j (t), ∂M).

If τ j =∞, then |t − τ j | =∞> d(γ j (t), ∂M).
The convergence γ j (t)→ γ0(t), as j→∞, implies that for large j ,

|t − τ j | ≥
d(γ0(t), ∂M)

2
> 0.

Hence, lim inf j→∞ τ j 6= t for all t ∈ (0, τ0).
Clearly lim inf j→∞ τ j ≥ 0, and there is J ∈ Z+ such that

τ j ≥ d(y j , ∂M)≥
d(y0, ∂M)

2
> 0, j ≥ J.

Hence, lim inf j→∞ τ j 6= 0 and lim inf j→∞ τ j ≥ τ0.
Let us consider τ on ∂−SM . Let a sequence ((y j , η j ))

∞

j=1 ⊂ ∂−SM converge to (y0, η0) ∈ ∂−SM as
j→∞. We write γ j (t) := γ (t; y j , η j ) and τ j := τ(y j , η j ).
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(y j , t j ) t = t j

t = τ(x, ξ)
(x, t (x, ξ))

t = 0
(γ (t j ), 0)

t = T0

M

γ (τ(x, ξ); x, ξ)

M(x, ξ)

(y j+1, η j+1)

(y j , η j )

Figure 1. On the left, the trajectory of a Gaussian beam propagating along geodesic
γ (t) := γ (t; y j , η j ) backwards on time interval (T0, t j ). If S(y j , η j , t j ) 6= 0, then
there is a point source at γ (t j ). On the right, a sequence (y j , η j ) ∈ S� converging to
(x, ξ) ∈ ∂−SM and trajectories of the corresponding geodesics.

Repeating the above argument, we see that lim inf j→∞ τ j /∈ (0, τ0). Thus it is enough to show that
lim inf j→∞ τ j 6= 0.

Remark 2 gives neighborhoods I ⊂ R and U ⊂ SRn of zero and (y0, η0) and a map ` : U → I of
boundary intersection times. We write V := U ∩ ∂−SM . As γ (0; x, ξ) ∈ ∂M for (x, ξ) ∈ V , we have
`= 0 in V . In particular, r := d

(
`(V ),R \ I

)
> 0. For large j , (γ j (0), γ̇ j (0)) ∈ V , and thus

γ j (t) ∈ M, t ∈ (0, r).

Hence, τ j ≥ r > 0 for large j , and lim inf j→∞ τ j ≥ τ0. �

We easily see the following continuity result for τ .

Lemma 6.4. Let ((y j , η j ))
∞

j=1 ⊂ S� converge to (x, ξ) ∈ ∂−SM in the Sasaki metric. Then

lim
j→∞

τ(y j , η j )= 0.

Theorem 6.5. Let (x, ξ) ∈ ∂−SM , and denote by J (x, ξ) the set of sequences

((t j ; y j , η j ))
∞

j=1 ⊂ (0,∞)× S�

for which

lim
j→∞

(y j , η j )= (x, ξ), lim
j→∞

t j ∈ (0,∞), S(y j , η j , t j ) 6= 0.
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The function S : S�× (0,∞)→ C determines τ : ∂−SM→ (0,∞] by the formula

τ(x, ξ)= inf
{

lim
j→∞

t j ; ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) for some ((y j , η j ))
∞

j=1 ⊂ S�
}
.

Moreover, if τ(x, ξ) <∞, then there is a sequence ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) satisfying

τ(x, ξ)= lim
j→∞

t j .

Proof. Let (x, ξ) ∈ ∂−SM and ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ). Let us show that τ(x, ξ) ≤ lim j→∞ t j . By
Lemma 6.4, τ j := τ(y j , η j )→ 0 as j→∞. We define

ỹ j := γ (τ j ; y j , η j ), ξ j := γ̇ (τ j ; y j , η j ).

As S(y j , η j , t j ) 6= 0, we have

γ (t j − τ j ; ỹ j , ξ j )= γ (t j ; y j , η j ) ∈ ∂M.

As lim j→∞ t j > 0 and lim j→∞ τ j = 0, we have t j − τ j > 0 for large j . Thus τ(ỹ j , ξ j ) ≤ t j − τ j for
large j . Moreover,

lim
j→∞

(ỹ j , ξ j )=
(
γ (0; x, ξ), γ̇ (0; x, ξ)

)
= (x, ξ).

In particular, (ỹ j , ξ j ) ∈ ∂−SM for large j . Hence, Lemma 6.3 gives

lim
j→∞

t j = lim
j→∞

(t j − τ j )≥ lim inf
j→∞

τ(ỹ j , ξ j )≥ τ(x, ξ).

In particular, we have proved the claim in the case τ(x, ξ)=∞.
Let us assume that τ(x, ξ)<∞. It is enough to show that there is a sequence ((t j ; y j , η j ))

∞

j=1 ∈ J (x, ξ)
satisfying τ(x, ξ)= lim j→∞ t j . We write

t0 := τ(x, ξ), z := γ (t0; x, ξ), ζ := −γ̇ (t0; x, ξ).

We have
(x, ξ)=

(
γ (t0; z, ζ ),−γ̇ (t0; z, ζ )

)
.

As (x, ξ) ∈ ∂−SM , Remark 2 gives neighborhoods I and U of t0 and (z, ζ ) and a map ` : U → I of
boundary intersection times. After choosing local coordinates around z, we may define

(y j , η j ) :=
(
γ (t j ; xk j , ζ ),−γ̇ (t j ; xk j , ζ )

)
,

where (xk j )
∞

j=1⊂U is a subsequence of the dense sequence of source points in (20) satisfying lim
j→∞

xk j = z
and (t j )

∞

j=1 ⊂ I satisfies
t j > `(xk j , ζ ), lim

j→∞
t j = `(z, ζ )= t0.

Clearly, ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) and

lim
j→∞

t j = t0 = τ(x, ξ). �
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7. Determination of the scattering relation

In the next theorem, we consider the pseudorandom source h0(t, x) with coefficients

a j = λ
−λ j
,

with some λ > 1, and make computations “modulo an error in A”, where

A = {−λ j
: j ∈ N}.

To this end, let m A(s) be the real number r such that s = r + a, where a ∈ A and r has the smallest
possible absolute value. In the case when both r and −r satisfy this condition, we choose the positive
value.

Lemma 7.1. Let (y0, η0) ∈ S�, t0 ∈ (0, T ), and suppose that S(y0, η0, t0) 6= 0. Then there is a sequence
((y j , η j ))

∞

j=1 ⊂ S� and (t j )
∞

j=1 ⊂ (0, T ) such that

(y j , η j )→ (y0, η0), t j → t0, S(y j , η j , t j )→ 0, as j→∞, S(y j , η j , t j ) 6= 0. (21)

Suppose, moreover, that the coefficients of the pseudorandom source h0 are a j = λ
−λ j

. Then for any
sequences ((y j , η j ))

∞

j=1 ⊂ T Rn and (t j )
∞

j=1 ⊂ (0, T ) satisfying (21), we have that

lim
j→∞

m A
(
logλ |S(y j , η j , t j )|

)
= logλ

∣∣u0
(
t0, γ (t0); y0, η0

)
|g|1/2(γ (t0))

∣∣,
where γ (t)= γ (t; y0, η0) and u0 is defined as in (17).

Proof. We will use the notation

γ j (t) := γ (t; y j , η j ), z j := γ j (t j ), S j := S(y j , η j , t j ), β j :=
∣∣u0(t j , z j ; y j , η j )|g|1/2(z j )

∣∣.
As S0 6= 0, we have that z0 = x j for some j = 1, 2, . . . . By continuity of the geodesic flow and density

of (x j )
∞

j=1 ⊂ ∂M , there exist a subsequence (xk j )
∞

j=1 ⊂ (x j )
∞

j=1 and sequences ((y j , η j ))
∞

j=1 ⊂ T Rn and
(t j )
∞

j=1 ⊂ (0, T ) such that

xk j → z0, (y j , η j )→ (y0, η0), t j → t0, as j→∞,

and z j = xk j 6= z0. Then |S j | = |ak j |β j 6= 0. As xk j 6= z0 and xk j → z0, we have that k j →∞ and thus
ak j → 0. By (17) and continuity of the geodesic flow, it holds that β j → β0 > 0. Hence S j → 0.

Next we use the assumption that a j = λ
−λ j

. Let ((y j , η j ))
∞

j=1 ⊂ T Rn and (t j )
∞

j=1 ⊂ (0, T ) satisfy (21).
As S j 6= 0, we have that |S j | = ak jβ j for some subsequence (ak j )

∞

j=1 ⊂ (a j )
∞

j=1. As S j → 0, we have
that ak j → 0. Moreover, sequence (log2 β j )

∞

j=1 is bounded. This boundedness, together with logλ ak j ∈ A
and logλ ak j →−∞, yields

m A(logλ ak j + logλ β j )= logλ β j

for large j ∈ N. Hence,
lim

j→∞
m A(logλ |S j |)= lim

j→∞
logλ β j = logλ β0. �
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Theorem 7.2. If the coefficients of the pseudorandom source h0 are a j = λ
−λ j

, then the functions
S : S�× (0,∞)→ C and τ : ∂−SM→ (0,∞] determine D(6) and

γ
(
τ(x, ξ); x, ξ

)
, (x, ξ) ∈ D(6).

Proof. Clearly τ on ∂−SM determines D(6). Let (x, ξ) ∈ D(6). By Theorem 6.5, we may choose
((t j ; y j , η j ))

∞

j=1∈ J (x, ξ) such that lim j→∞ t j =τ(x, ξ). As S(y j , η j , t j ) 6=0, we have γ (t j ; y j , η j )= xk j

for some subsequence (xk j )
∞

j=1 of the sequence of source points. By Lemma 7.1, the function S determines

|S(y j , η j , t j )|∣∣u0(t j , xk j ; y j , η j )|g|1/2(xk j )
∣∣ = ak j .

As a j , j ∈ Z+, are disjoint, this determines the index k j and thus also the point xk j . Moreover,

lim
j→∞

xk j = lim
j→∞

γ (t j ; y j , η j )= γ
(
τ(x, ξ); x, ξ

)
. �

The following result follows from Remark 2.

Lemma 7.3. Let us denote by X either S� or ∂−SM. Let (y0, η0) ∈ X satisfy

τ(y0, η0) <∞, γ̇
(
τ(y0, η0); y0, η0

)
/∈ Tz∂M,

where z = γ
(
τ(y0, η0); y0, η0

)
. Then there is a neighborhood V ⊂ X of (y0, η0) such that τ = ` in V ,

where ` :U→ I is the map of boundary intersection times defined in Remark 2 for neighborhoods U ⊂ X
and I ⊂ R of (y0, η0) and τ(y0, η0). In particular, τ is smooth in V .

Lemma 7.4. The set of (x, ξ) such that γ ( · ; x, ξ) is transverse to ∂M is open and dense in

∂SM := {(x, ξ) ∈ SM; x ∈ ∂M}.

Proof. As ∂−SM ∪ ∂+SM is open and dense in ∂SM , it is enough to show that the set of (x, ξ) such that
γ ( · ; x, ξ) is transverse to ∂M is open and dense in ∂±SM . By the parametric transversality theorem
[Hirsch 1976, Theorem 3.2.7], the claim follows from the fact that the evaluation map

Fev
: ∂±SM ×R→ Rn,

Fev
: (x, ξ, t) 7→ γ (t; x, ξ)

is transverse to ∂M . �

Lemma 7.5. Let (x0, ξ0) ∈ D(6). Then there is a sequence ((x j , ξ j ))
∞

j=1 ⊂ D(6) such that γ ( · ; x j , ξ j )

is transverse to ∂M and

lim
j→∞

(x j , ξ j )= (x0, ξ0), lim
j→∞

τ(x j , ξ j )= τ(x0, ξ0).

Proof. We write τ0 := τ(x0, ξ0) and

(z0, ζ0) :=
(
γ (τ0; x0, ξ0),−γ̇ (τ0; x0, ξ0)

)
.
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Remark 2 gives a map of boundary intersection times ` :U → I for neighborhoods U ⊂ SRn and I ⊂ R

of (z0, ζ0) and τ0. By Lemma 7.4, there is a sequence ((z j , ζ j ))
∞

j=1 ⊂ SM ∩U converging to (z0, ζ0) such
that γ ( · ; z j , ζ j ) is transverse to ∂M .

We define t j := `(z j , ζ j ) and

(x j , ξ j ) :=
(
γ (t j ; z j , ζ j ),−γ̇ (t j ; z j , ζ j )

)
.

Then (x j , ξ j )→ (x0, ξ0) as j →∞. In particular, there is J ≥ 1 such that (x j , ξ j ) ∈ ∂−SM for j ≥ J .
By Lemma 6.3,

τ(x0, ξ0)≤ lim inf
j→∞

τ(x j , ξ j )≤ lim sup
j→∞

τ(x j , ξ j )

≤ lim
j→∞

`(z j , ζ j )= `(z0, ζ0)= τ(x0, ξ0). �

Lemma 7.6. Let (x0, ξ0) ∈ D(6) be such that γ ( · ; x0, ξ0) is transverse to ∂M. Then there is (y0, η0) ∈

S� lying on the geodesic γ ( · ; x0, ξ0) and a neighborhood V ⊂ Sy0� of η0 such that the following
conditions hold.

(C1) The map η 7→ τ(y0, η) is smooth V → (0,∞).

(C2) The map
(x(η), ξ(η)) :=

(
γ (τ(y0, η); y0, η), γ̇ (τ (y0, η); y0, η)

)
(22)

is smooth V → D(6) and (x(η0), ξ(η0))= (x0, ξ0).

(C3) The map
˜̀(η) := τ(x(η), ξ(η))+ τ(y0, η) (23)

is smooth V → (0,∞).

(C4) There is a neighborhood W ⊂ ∂M of γ
(
τ(x0, ξ0); x0, ξ0

)
such that

η 7→ γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)
(24)

is a diffeomorphism V →W .

Proof. We write γ (t) := γ (t; x0, ξ0) and z0 := γ (τ(x0, ξ0)). By Remark 2, γ (−t) ∈ � for small t > 0.
Moreover, the points that are conjugate to z0 along γ are discrete on γ [Jost 2008].

Thus there is τ0 > 0 such that

(y0, η0) :=
(
γ (−τ0), γ̇ (−τ0)

)
is in S�, y0 is not conjugate to z0 along γ , τ(y0, η0)= τ0, and(

γ (τ0; y0, η0), γ̇ (τ0; y0, η0)
)
= (x0, ξ0).

By Lemma 7.3, there is a neighborhood V0 ⊂ Sy0� of η0 such that η 7→ τ(y0, η) is smooth in V0.
Hence, the function η 7→ (x(η), ξ(η)) maps η0 to (x0, ξ0) and is smooth in V0. Moreover, this smoothness,
transversality of γ ( · , x0, ξ0), and Lemma 7.3 imply that there is a neighborhood V1 ⊂ V0 of η0 such that



AN INVERSE PROBLEM FOR THE WAVE EQUATION 907

(x(η), ξ(η)) ∈ ∂−SM and η 7→ τ(x(η), ξ(η)) is smooth V1→ (0,∞). In particular, (x(η), ξ(η)) ∈ D(6)
for all η ∈ V1. We have shown that (y0, η0) and V1 satisfy (C1)–(C3).

We have (
γ (s; y0, η), γ̇ (s; y0, η)

)∣∣
s=t+τ(y0,η)

=
(
γ (t; x(η), ξ(η)), γ̇ (t; x(η), ξ(η))

)
. (25)

In particular, γ ( ˜̀(η0); y0, η0)= z0 and

γ ( ˜̀(η); y0, η)= γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)
∈ ∂M.

Moreover, as y0 is not conjugate to z0 along γ , there are neighborhoods V2 ⊂ V1, I0 ⊂ (0,∞) and
U0 ⊂ Rn of η0, ˜̀(η0) and z0 such that (t, η) 7→ γ (t; y0, η) is a diffeomorphism V2× I0→U0.

There is a neighborhood V ⊂ V2 of η0 such that ˜̀(V ) ⊂ I0. The graph of η 7→ ˜̀(η) is an (n − 1)-
dimensional submanifold on V × I0. Hence, the diffeomorphism (t, η) 7→ γ (t; y0, η) maps it onto an
(n− 1)-dimensional submanifold W of U0. Moreover, z0 ∈W and W ⊂ ∂M . Thus W is a neighborhood
of z0 in ∂M . �

Lemma 7.7. Let (x0, ξ0) ∈ D(6) and (y0, η0) ∈ S� satisfy conditions (C1)–(C4) of Lemma 7.6 for
neighborhoods V ⊂ Sy0� and W ⊂ ∂M of η0 and z0 := γ

(
τ(x0, ξ0); x0, ξ0

)
. We denote by F :W → V

the inverse map of (24). Then
grad∂M(

˜̀ ◦ F)|z=z0 = γ̇
>

z0
, (26)

where ˜̀ : V → (0,∞) is the function (23) and γ̇>z0
is the orthogonal projection of γ̇

(
τ(x0, ξ0); x0, ξ0

)
into

Tz0∂M.

Proof. Let σ : (−ε, ε)→W be a smooth curve such that σ(0)= z0. We define

0 : (−ε, ε)×R→ Rn, 0(s, t) := γ
(
t; y0, F(σ (s))

)
.

We write λ := ˜̀ ◦ F ◦ σ and ˜̀0 := ˜̀(η0). By (25),

0(s, λ(s))= γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)∣∣
η=F(σ (s)) = σ(s),

(∂t0)(0, ˜̀0)= γ̇ ( ˜̀0; y0, η0)= γ̇
(
τ(x0, ξ0); x0, ξ0

)
.

Hence
σ̇ (0)= ∂s0(s, λ(s))|s=0 = (∂s0)(0, ˜̀0)+ (∂t0)(0, ˜̀0)λ′(0).

The curve t 7→ 0(s, t) is a unit speed geodesic for all s ∈ (−ε, ε). Hence(
σ̇ (0), γ̇ (τ (x0, ξ0); x0, ξ0)

)
g =

(
(∂s0, ∂t0)g + λ

′(0)(∂t0, ∂t0)g
)∣∣

s=0,t= ˜̀0

= (∂s0, ∂t0)g|s=0,t= ˜̀0 + λ
′(0).

(27)

We define

L(s, l) :=
∫ l

0
|∂t0(s, t)|gdt, (s, l) ∈ (−ε, ε)× (0,∞).
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Then L(s, l), s ∈ (−ε, ε) is the length of a unit speed geodesic on the interval [0, l]. Thus L(s, l)= l for
all s ∈ (−ε, ε). We may derive an expression for ∂sL(s, l)|s=0 as in [Lee 1997, Proposition 6.5]:

∂sL(s, l)|s=0 =

∫ l

0
(Dt∂s0, ∂t0)g dt |s=0.

As t 7→ 0(s, t) is a geodesic, Dt∂t0(s, t)= 0, and thus

∂t(∂s0, ∂t0)g = (Dt∂s0, ∂t0)g.

Moreover, 0(s, 0)= y0 for all s ∈ (−ε, ε), and thus ∂s0(s, 0)= 0. Hence

0= ∂sL(s, l)|s=0 =

∫ l

0
∂t(∂s0, ∂t0)g dt |s=0 = (∂s0, ∂t0)g|s=0,t=l, l ∈ (0,∞).

By (27), we have

(σ̇ (0), γ>z0
)g =

(
σ̇ (0), γ̇ (τ (x0, ξ0); x0, ξ0)

)
g

= λ′(0)=
〈
d( ˜̀ ◦ F)|z=z0, σ̇ (0)

〉
T ∗z0
∂M×Tz0∂M =

(
σ̇ (0), grad∂M(

˜̀ ◦ F)|z=z0

)
g,

for all smooth curves σ in W such that σ(0)= z0, which proves the claim. �

Theorem 7.8. The functions τ : ∂−SM→ (0,∞] and

z : D(6)→ ∂M, z(x, ξ) := γ
(
τ(x, ξ); x, ξ

)
,

together with the Riemannian manifold (�, g|�), determine

γ̇
(
τ(x, ξ); x, ξ

)
, (x, ξ) ∈ D(6).

Proof. The functions τ and z on D(6) determine the set B of points (x0, ξ0) ∈ D(6) such that the
conditions (C1)–(C4) of Lemma 7.6 hold for some (y0, η0) ∈ S�.

Let (x0, ξ0) ∈ B. We write ζ0 := γ̇
(
τ(x0, ξ0); x0, ξ0

)
. The map

η 7→ z(x(η), ξ(η))

determines its local inverse. Hence τ and z determine the function F of Lemma 7.7, and thus they
determine γ̇>z0

by the formula (26). As ζ0 is a unit vector,

ζ0 = γ̇
>

z0
+ (1− |γ̇>z0

|
2)1/2νz0,

where νz0 is the unit exterior normal vector of ∂M . Hence τ and z determine ζ0 for all (x0, ξ0) ∈ B.
Let (x0, ξ0) ∈ D(6). By Lemmata 7.5 and 7.6, there is a sequence ((x j , ξ j ))

∞

j=1 ⊂ B such that

lim
j→∞

(x j , ξ j )= (x0, ξ0), lim
j→∞

τ(x j , ξ j )= τ(x0, ξ0).

Moreover, the functions τ and z determine the set of such sequences, and thus they determine

lim
j→∞

γ̇
(
τ(x j , ξ j ); x j , ξ j

)
= γ̇

(
τ(x0, ξ0); x0, ξ0

)
. �
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Theorems 6.5, 7.2 and 7.8 prove Theorem 1.2 formulated in the introduction.
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TWO-DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION WITH
RANDOM RADIAL DATA

YU DENG

We study radial solutions of a certain two-dimensional nonlinear Schrödinger (NLS) equation with
harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear
smoothing effect of Schrödinger equation with L p estimates of Laguerre functions, we are able to prove
an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an
application to the NLS equation without harmonic potential.

1. Introduction

Burq, Thomann and Tzvetkov [Burq et al. 2010] studied the nonlinear Schrödinger (NLS) equation on
R×Rd with harmonic potential

i∂t u+ (1− |x |2)u =±|u|p−1u, (1-1)

where the space dimension was one. The purpose of this paper is to extend their results to two space
dimensions. We will prove global well-posedness almost surely with respect to a Gaussian measure
supported on

⋂
δ>0 H−δ (see Section 1.2 for the definition), and we construct the Gibbs measure, absolutely

continuous with respect to this Gaussian, which we prove to be invariant.
We also study the NLS equation on R×Rd without harmonic potential, namely

i∂t u+1u =±|u|p−1u. (1-2)

In [Burq et al. 2010], it was noticed that using an explicit transform (referred to as the lens transform
in [Tao 2009]), we can obtain local and global well-posedness results of (1-2) from the corresponding
results of (1-1). This issue is also pursued here.

Like most earlier papers on random data theory of NLS equations in two or more dimensions, ours
considers only radial solutions. In the defocusing case in two dimensions, we can prove, when p ≥ 3
is an odd integer, almost-sure global well-posedness and measure invariance for (1-1) and almost-sure
global well-posedness and scattering for (1-2); in the focusing case, we have the same results only for
(1-1), when 1< p < 3.

MSC2010: primary 35Q55, 37L40, 37L50; secondary 37K05.
Keywords: nonlinear Schrödinger equation, supercritical NLS, random data, Gibbs measure, global well-posedness.
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1.1. NLS equation and probabilistic methods. The nonlinear Schrödinger equation (1-2) and its periodic
variant (which is solved on R×Td ) have been extensively studied over the last several decades. Beginning
with [Lebowitz et al. 1988; Bourgain 1994; 1996], it has been observed that low regularity local and
global solutions to (1-2) on R×Td can be obtained via randomization of initial data and construction of
Gibbs measure. This idea was later developed in a number of papers, for instance [Burq and Tzvetkov
2008a; 2008b; Nahmod et al. 2012; Oh 2009; 2010; Thomann and Tzvetkov 2010; Tzvetkov 2006; 2008].
In [Burq et al. 2010], the method mentioned above was first used to study (1-1).

There are three reasons why (1-1) is worth studying. First, the spectrum of the harmonic oscillator
H = −1 + |x |2 is discrete, so (1-1) can be approximated by ODEs, and the current techniques of
constructing Gibbs measure apply at least formally. Second, (1-1) is solved on R × Rd , where the
space domain is noncompact, while previous works usually involve a compact manifold. Also (1-1) is
related to (1-2) via the lens transform, so results about (1-1) may shed some light on the study of (1-2),
where probabilistic methods have not yet entered. Finally, (1-1) also arises naturally from the theory of
Bose–Einstein condensates, as noted in [Burq et al. 2010].

The major difficulty in the study of (1-1) is that the support of the Gaussian part of the Gibbs measure
contains functions with very low regularity. With radial symmetry the typical element in the support of
the Gibbs measure belongs to

⋂
δ>0 H−δ but not L2; without it the typical element does not even belong

to H1−d (the spaces Hσ , as defined in Section 1.2, are Sobolev spaces associated to H; see Section 3
for more details). A consequence of this is that we cannot expect even local well-posedness in the
deterministic sense for initial data of such low regularity. In fact in [Thomann 2008] local ill-posedness
for Hσ initial data was shown1, provided σ < σc := d/2− 2/(p− 1). In particular, we have σc → 1
as p→∞ for the two-dimensional defocusing equation; thus deterministic local well-posedness fails
completely for regularity below L2.

In [Burq et al. 2010], the problem was resolved by a probabilistic improvement of (weighted) Strichartz
estimate, and it was shown that Hδ/2e−it H f (ω) almost surely belongs to some weighted Lebesgue space
for δ < 1

2 (see [Burq et al. 2010, Lemma 6.2] for more details). Since σc <
1
2 in one dimension, local

well-posedness in this space could be proved. In two dimensions, however, it will be shown in the
Appendix that the distribution Hσ/2 f (ω) is almost surely not a locally integrable function (thus cannot
belong to any weighted space) when σ ≥ 1

2 . Since 1
2 fails to reach the σc threshold when p is large, we

have to use different tools to get local well-posedness. Fortunately, the nonlinear smoothing effect of
the NLS equation provides such a tool. To fully exploit this effect, we will work in Xσ,b spaces (see
Section 1.2 for definitions) and use multilinear eigenfunction estimates. This requires p to be an odd
integer, but we believe that by more delicate treatment we can remove this restriction and allow for all
1< p <∞.

When there is no radial symmetry, the support of the Gaussian will have such low regularity that we
cannot even define the Gibbs measure. It would be possible to use alternative Gaussians to get local
results, but then we do not have an invariant measure, so global results still seem out of reach. One

1The counterexample constructed in [Thomann 2008] was for (1-2), but it could be easily adapted to (1-1) as noted in
[Thomann 2009]; also one can check the proof there that the initial data could be made radial.
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possible way is to combine the probabilistic local result with the high-low analysis of Bourgain or the
I -method of Colliander, Keel, Staffilani, Takaoka and Tao. For progress in this direction, see [Colliander
and Oh 2012].

Finally, as we mentioned above, the study of (1-1) is closely related to the study of (1-2). The result
we obtain for (1-2) (see Theorem 1.2 below) is an almost-sure global well-posedness and scattering
result with supercritical initial data (the critical index of (1-2) is d/2− 2/(p− 1)→ 1 as p→∞ in two
dimensions, while the initial data is below L2), but due to the use of the lens transform, our result is
unsatisfactory in the sense that (i) the space in which uniqueness holds cannot be described in a simple
way, and (ii) the Gaussian measure in Theorem 1.2 does not arise naturally from (1-2), and we do not
know how to construct the Gibbs measure of (1-2). This may be an interesting problem for further study.

1.2. Notations and preliminaries. From now on we assume the spacial dimension d = 2, and all the
functions we consider are radial. Define the Hermite operator H =−1+|x |2. It has a complete series of
real L2

rad eigenfunctions

ek(x)=
1
√
π

L0
k(|x |

2) for k ≥ 0 (1-3)

with eigenvalue 4k+ 2. Here L0
k are Laguerre functions

L0
k(z)=

ez/2

k!
dk

dzk (z
ke−z).

Concerning these functions we have the basic pointwise estimates

∣∣Lα
k (z)

∣∣≤


C if 0≤ z ≤ 1/ν,
C(zν)−1/4 if 1/ν ≤ z ≤ ν/2,
Cν−1/4(ν1/3

+ |ν− z|)−1/4 if ν/2≤ z ≤ 3ν/2,
Ce−cz if z ≥ 3ν/2.

(1-4)

Here ν = 4k+ 2, C and c (possibly with subscripts) are positive constants varying from line to line, and
will be used in this way throughout this paper. For an introduction to Laguerre functions, see [Szegő
1975] or [Thangavelu 1993, Chapter 1]. The proof of (1-4) is also contained in [Erdélyi 1960; Askey and
Wainger 1965].

For σ ∈ R and 1≤ p ≤∞, we define the Sobolev spaces associated to H :

W
σ,p
rad =

{
u ∈ S′rad : ‖u‖Wσ,p =

∥∥Hσ/2u
∥∥

L p <∞
}
. (1-5)

We also write Wσ,2
rad =Hσ

rad.
We also define a class of spacetime Hilbert spaces associated to H , as

Xσ,brad =
{
u ∈ S′rad(R×R2) : ‖u‖Xσ,b =

∥∥Hσ/2
〈i∂t − H〉bu

∥∥
L2

t,x
<∞

}
, (1-6)

or use the radial Hermite expansion and Fourier transform to write

‖u‖2Xσ,b =
( ∞∑

k=0

(4k+ 2)σ
∫

R

(
1+ (τ + 4k+ 2)2

)b
|Ft 〈u, ek〉(τ )|

2 dτ
)1/2

,
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where as usual 〈t〉 = (|t |2+ 1)1/2, Ft denotes the Fourier transform (2π)−1/2
∫

R
e−iτ t f (t) dt in t , and

〈 f, g〉 denotes the L2(Rn) inner product of f and g. For an interval I we define a localized version of
this space by

‖u‖Xσ,b,I = inf
{
‖v‖Xσ,b : v(t)= u(t), t ∈ I

}
, (1-7)

and denote it by Xσ,b,Irad . When I = [−T, T ], we simply write Xσ,b,Trad . Since all the functions will be radial,
the “rad” subscript will be dropped from now on. Trivially Xσ,b,I is a separable Banach space (simply
restrict a countable dense subset of Xσ,b to I ).

We fix a smooth, nonincreasing function η such that 1= η(1)≥ η(x)≥ η(2)= 0 for all x . Using this
cutoff, we define Littlewood–Paley projections

1N = η
(2H

N 2

)
− η

(4H
N 2

)
(1-8)

for dyadic N . Then 1N = 0 for N ≤ 1, since the first eigenvalue of H is 2. Thus whenever we talk
about 1N , we always assume N ≥ 2.

We shall denote by #M the cardinality of a finite set M and by |E | the Lebesgue measure of a subset
set E of Euclidean space. We define A . B by A ≤ C B and define & and ∼ similarly. The constants
C j and c j will also be used freely, as indicated above. All these constants will ultimately depend on the
only parameter p in (1-1) and (1-2). Finally, we define the finite-dimensional subspace Vk to be the span
of {e j }0≤ j≤k . For a function g on R2 or I ×R2, where I is an interval, we define g◦k and g⊥k to be the
projection of g on Vk and V⊥k .

1.3. Statement of main results and plan for this paper. Fix a probability space (�,6,P) with a se-
quence of independent normalized complex Gaussians {gk} on � (which has density π−1e−|z|

2
dxdy, so

gk has mean 0 and variance 1), so that ω 7→ (gk(ω))k≥0 is injective, and the series

f (ω)=
∞∑

k=0

1
√

4k+ 2
gk(ω)ek (1-9)

converges2 in S′(R2) for all ω ∈ �. Then f = f (ω) is an S′(R2)-valued random variable, and is a
bijection between � and its range. Our main results can then be stated as follows.

Theorem 1.1. Consider the Cauchy problem{
i∂t u+ (1− |x |2)u =±|u|p−1u,
u(0)= f (ω)

(1-10)

and distinguish two cases: the sign is − and 1< p < 3, or the sign is + and p ≥ 3 is an odd integer. In
the former let σ = 0, and in the latter let 0 < σ < 1 be sufficiently close to 1, depending on p. In both
cases let 1> b > 1

2 be sufficiently close to 1
2 , depending on σ and p.

2For example, we may take the usual product space C∞ equipped with the product of complex Gaussian measures, and
coordinate functions g j , and choose the (full-measure) subset where |gk(ω)| = O(〈k〉10) as �, this can easily guarantee the
convergence of (1-9).
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Then almost surely in P, we have a unique global (strong) solution u in the affine space

Y= e−it H f (ω)+
⋂

T>0 Xσ,b,T , (1-11)

and we have continuous embeddings

Y⊂ e−it H f (ω)+C(R,Hσ (R2))⊂ C
(
R,
⋂
δ>0 H−δ(R2)

)
.

We also have a Gibbs measure on S′(R2), which is absolutely continuous with respect to the push forward
of P under f , and is invariant under the flow defined by (1-10).

Theorem 1.2. Let σ and b be as in Theorem 1.1. Consider the (defocusing) Cauchy problem{
i∂t u+1u = |u|p−1u
u(0)= f (ω)

(1-12)

with p ≥ 3 an odd integer. Then almost surely in P, we have a global (strong) solution u in the affine
space

Z= eit1 f (ω)+
⋂

T>0 Xσ,b,T , (1-13)

and we have a continuous embedding

Z⊂ eit1 f (ω)+C(R, Hσ (R2)).

Here Xσ,b,T is defined in the same way as in (1-6) and (1-7), but with H replaced by −1. We also have
an appropriate affine subspace Z′ of Z containing the solution u, in which uniqueness holds. Finally we
have a scattering result: There exist functions g± ∈ Hσ such that

lim
t→±∞

‖u− eit1( f (ω)+ g±)‖Hσ = 0. (1-14)

The rest of this paper is devoted to the proof of Theorems 1.1 and 1.2. In Section 2 we recall the linear
Strichartz and L2-based estimates with respect to the propagator e−it H . We will rely on the functional
calculus of H (thus the results hold for more general Schrödinger operators, though we do not discuss
this here). Some results in this section are standard and can be found for example in [Colliander and Oh
2012; Tao 2006]. In Section 3, we prove some large deviation bounds for Gaussian random variables, and
use these to construct the Gibbs measure of (1-1). In Section 4, which is the core of this paper, we use a
Littlewood–Paley decomposition and hypercontractivity of Gaussians to prove a multilinear estimate in
Xσ,b spaces, which shows the nonlinear smoothing effect. In Section 5, we put these estimates together to
develop a local Cauchy theory. Then in Section 6 we extend this to a global well-posedness result by
exploiting the invariance of truncated Gibbs measure under the flow of approximating ODEs. In Section 7
we introduce the lens transform and convert the result on (1-1) to one on (1-2), proving Theorem 1.2. In
Section 8, we show the invariance of the Gibbs measure, completing the proof of Theorem 1.1. Finally in
the Appendix, we discuss the typical regularity (in terms of H) on the support of the Gibbs measure.
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2. Functional calculus and Strichartz estimates

We begin with the following kernel estimate about the harmonic oscillator H .

Proposition 2.1. Let ψ be a Schwarz function; then for t > 0 the operator ψ(t H) is an integral operator
with kernel Kt(x, y), where

|Kt(x, y)|. t−1(1+ t−1/2
|x − y|)−N . (2-1)

The implicit constants in . depend only on N and ψ . In particular, these operators Kt are bounded
uniformly in t on Wσ,p for all σ ∈ R and 1≤ p ≤∞.

Proof. It was proved in [Dziubański 1998, Corollary 3.14] that, for any fixed N , the inequality (2-1)
holds, provided

ψ ∈ Sm
0 ([0,+∞))=

{
ψ ∈ S([0,+∞)) : ψ (k)(0)= 0, 0≤ k ≤ m

}
, (2-2)

where m is large enough depending on N (actually the same result was proved for any Schrödinger
operator with nonnegative polynomial potential). On the other hand, when ψ(z)= e−σ z with σ > 0, we
have from Mehler’s formula that

Kt(x, y)=
e−2σ t

π(1− e−4σ t)
exp

(
−

1
2

1+ e−4σ t

1− e−4σ t (|x |
2
+ |y|2)+

2e−2σ t

1− e−4σ t x · y
)
. (2-3)

Writing 2σ t = δ, we know

−
1
2

1+ e−2δ

1− e−2δ (|x |
2
+ |y|2)+

2e−δ

1− e−2δ x · y ≤−
c
δ
|x − y|2,

thus the kernel satisfies

0≤ Kt(x, y)≤
c1

δ
e−(c2/δ)|x−y|2 . t−1(1+ t−1/2

|x − y|)−N (2-4)

for any N . Now for any fixed m, there exists l such that any function f ∈ S([0,+∞)) can be written as

f (z)= f0(z)+
l∑

j=1

c j e−σ j z, (2-5)

where f0 ∈ Sm
0 ([0,+∞)) and σ j > 0. Combining the two results above, we have proved (2-1). The

uniform boundedness now follows from (2-1), Schur’s test, and commutativity of ψ(t H) and Hσ/2. �

Remark 2.2. The constants in Proposition 2.1 certainly depend on ψ and the Lebesgue or Sobolev
exponents, but this dependence can be safely ignored since throughout this paper we only use a finite
number of fixed cutoff functions ψ and a finite number of fixed exponents.

Corollary 2.3. Suppose 1≤ p ≤∞, σ1,2 ∈ R, R > 0 and g is a function.

(1) If σ1 ≥ σ2, and 〈g, ek〉 6= 0 only if 4k + 2 & R2 (for example, when g =
∑

N>R 1N h for some h),
then ‖g‖Wσ1,p & Rσ1−σ2‖g‖Wσ2,p .
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(2) If σ1 ≤ σ2, and 〈g, ek〉 6= 0 only if 4k + 2 . R2 (for example, when g =
∑

N≤R 1N h for some h),
then ‖g‖Wσ1,p & Rσ1−σ2‖g‖Wσ2,p .

(3) If 〈g, ek〉 6= 0 only if 4k + 2 ∼ R2 (for example, when R = N is dyadic and g =1N h for some h),
then ‖g‖Wσ1,p ∼ Rσ1−σ2‖g‖Wσ2,p .

(4) All the operators
∑

N>R 1N ,
∑

N≤R 1N and 1N are uniformly bounded from Wσ1,p to itself.

Proof. First (4) is obvious, since
∑

N<R 1N = η(t H) and 1N = η(t ′H)− η(2t ′H) for some t and t ′,
and

∑
N>R 1N = Id−

∑
N≤R 1N . Also it is clear that (1) and (2) implies (3). In proving these we may

assume min{σ1, σ2} = 0, since Hσ/2g satisfies the same properties as g.
To prove (1), choose a smooth cutoff ψ1 that equals 1 for x & 1 and equals 0 for very small x . Then in

(1) we have g = ψ1(R−2 H)g. Therefore we need to prove that

H−σ/2 Rσψ1(R−2 H)=
∑
k≥0

2−kσ/2ψ2(2−k R−2 H) (2-6)

is uniformly bounded on L p for σ > 0, where ψ2(x) = x−σ/2(ψ1(x)− ψ1(2−1x)) is a fixed smooth
compactly supported function. Using (2-1), we can estimate the kernel K (x, y) of H−σ/2 Rσψ1(R−2 H)
as

|K (x, y)|.
∑
k≥0

2−kσ/22k R2
〈2k/2 R|x − y|〉−N

= R2ψ3(R|x − y|), (2-7)

where
ψ3(x)=

∑
k≥0

2(1−σ/2)k〈2k/2x〉−N . (1+ |x |σ−2)〈x〉−N .

The last inequality is easily verified by considering |x | ≥ 1 and |x |< 1 separately. Therefore by Schur’s
test we have proved the uniform boundedness of the operator, thus proving (1). The proof of (2) is similar
and is left as an exercise. �

To get Sobolev and product estimates, we next need a lemma.

Lemma 2.4. For all 1< p <∞ and σ > 0, we have

‖g‖Wσ,p ∼ ‖〈∇〉
σ g‖L p +‖〈x〉σ g‖L p . (2-8)

In particular we have ‖g‖Wσ1,p . ‖g‖Wσ2,p for σ1 ≤ σ2.

Proof. See Dziubański and Głowacki [2009], who proved the same result for any Schrödinger operator
with nonnegative polynomial potential (the latter inequality also follows from Corollary 2.3). �

Proposition 2.5. We have the estimate

‖g‖Wσ1,q . ‖g‖Wσ2,q
′ (2-9)

if 1< q, q ′ <∞ and σ2− σ1 ≥ 2(1/q ′− 1/q)≥ 0, and the estimate∥∥∥∥ k∏
j=1

g j

∥∥∥∥
Wσ,p
.

k∑
j=1

‖g j‖Wσ,q j

∏
i 6= j

‖gi‖Lqi (2-10)
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if σ > 0 and 1< p, q j <∞ with 1≤ j ≤ k and
∑k

j=1 1/q j = 1/p.

Proof. In considering the first estimate we may assume σ1 = 0, and the inequality follows immediately
from Lemma 2.4 and the usual Sobolev inequality.

As for the second estimate, if the Wσ,p norm is replaced by the usual Sobolev W σ,p norm, then (2-10)
is a well-known result in Fourier analysis (for k = 2, but the general case easily follows from induction).
Now using Lemma 2.4, we only need to show

‖〈x〉σ g1 · · · gk‖L p . ‖〈x〉σ g1‖Lq1

k∏
j=2

‖g j‖Lq j ,

which is simply Hölder’s inequality. �

Before proving Strichartz and other estimates, we need a lemma, which gives a representation formula
of Xσ,b functions.

Lemma 2.6. Suppose σ, b ∈ R. Then for every u, if ‖u‖Xσ,b . 1, we have

u(t, x)=
∫

R

φ(λ)eiλt
∑

k

aλ(k)e−i(4k+2)t ek(x) dλ, (2-11)

where
∑

k(4k+ 2)σ |aλ(k)|2 = 1 for all λ ∈ R. Furthermore, if b > 1
2 , then we also have

∫
R
|φ(λ)| dλ. 1.

If b < 1
2 and Ft 〈u, ek〉(λ) is supported in {|λ+ 4k+ 2| ≤ K } for each k, where K & 1, then we also have∫

R
|φ(λ)| dλ. K 1/2−b.

Proof. Using radial Hermite expansion and Fourier transform, we can write

u(t, x)= (2π)−1/2
∑

k

∫
R

Ft 〈u, ek〉(τ )eitτ ek(x) dτ

= (2π)−1/2
∑

k

∫
R

Ft 〈u, ek〉(λ− 4k− 2)e−i(4k−2)t ek(x)eitλ dλ,

so we may choose

aλ(k)= (Ft 〈u, ek〉)(λ− 4k− 2) ·
(∑

l

(4l + 2)σ |Ft 〈u, el〉(λ− 4l − 2)|2
)−1/2

, (2-12)

and

φ(λ)= (2π)−1/2
(∑

l

(4l + 2)σ |Ft 〈u, el〉(λ− 4l − 2)|2
)1/2

. (2-13)

Then we clearly have
∑

k(4k+ 2)σ |aλ(k)|2 = 1 for each λ, and from the definition of Xσ,b norm we see
that ∫

R

〈λ〉2b
|φ(λ)|2 dλ= 1

2π
‖u‖2Xσ,b . 1. (2-14)
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If b > 1
2 , then 〈λ〉−b

∈ L2(R), and it follows from Cauchy–Schwartz that ‖φ‖L1 ≤ ‖〈λ〉bφ‖L2 ·

‖〈λ〉−b
‖L2 . 1. If instead b < 1

2 and u satisfies the support condition, then φ(λ)= 0 if |λ|> K . Again
from Cauchy–Schwartz,

‖φ‖L1 .

(∫
|λ|≤K
〈λ〉−2b dλ

)1/2

∼ K 1/2−b. �

Proposition 2.7. Suppose b > 1
2 , σ1,2 ∈ R, and 1< q2, r2 < 2< q, r, q1, r1 <∞. We have the following

estimates:
‖e−it H g‖Lr

t Lq
x ([−T,T ]×R2) . 〈T 〉

1/r
‖g‖L2 (2-15)

if 1
q +

1
r =

1
2 and g is defined on R2;∥∥∥∥∫ t

0
e−i(t−s)Hu(s) ds

∥∥∥∥
L

r1
t L

q1
x ([−T,T ]×R2)

. 〈T 〉1+
1

r1
−

1
r2 ‖u‖L

r2
t L

q2
x ([−T,T ]×R2) (2-16)

if 1
q1
+

1
r1
=

1
2 , 1

q2
+

1
r2
=

3
2 , and u is defined on [−T, T ]×R2;

‖u‖Lr
t W

σ1,q
x ([−T,T ]×R2) . 〈T 〉

1/r
‖u‖Xσ2,b,T (2-17)

if σ2− σ1 ≥ 1− 2
q −

2
r ≥ 0, and either u is defined on [−T, T ] ×R2, or u is defined on R×R2 and the

right side is replaced by ‖u‖Xσ2,b ;

‖u‖Xσ1,b−1,T . 〈T 〉
1

q2
−

1
2 ‖u‖L

q2
t W

σ1,q2
x ([−T,T ]×R2), (2-18)

if b < 1, q2 >
2

2−b , and either u is defined on [−T, T ] ×R2, or u is defined on R×R2, supported on
[−T, T ], and the left side is replaced by ‖u‖Xσ1,b−1 ; and finally

‖u‖C([−T,T ],Hσ1 (R2)) . ‖u‖Xσ1,b,T (2-19)

if u is defined on [−T, T ]×R2. In particular if T ≤ 1, all the implicit constants can be taken 1.

Proof. For (2-15), since e−it H is periodic, we may assume T . 1; thus 〈T 〉∼ 1. In addition, by subdividing
the interval [−T, T ], we may assume T is small enough. Substituting σ = i in Mehler’s formula (2-3),
we can easily see the integral kernel of e−it H is an L∞ function in the space variables with norm . |t |−1

for |t |. T . Now using the T T ∗ method we reduce (2-15) to∥∥∥∥∫ T

−T
e−i(t−s)Hu(s) ds

∥∥∥∥
Lr

t Lq
x ([−T,T ]×R2)

. ‖u‖
Lr ′

t Lq′
x ([−T,T ]×R2)

. (2-20)

Now we interpolate between L2 conservation and the L1
→ L∞ inequality deduced from the L∞

bound of the integral kernel, to get ‖e−iδH g‖Lq . |δ|
2
q−1
‖u‖Lq′ for |t | . T . Using this and the usual

Hardy–Littlewood–Sobolev fractional integral inequality, we immediately get (2-20).
Now from (2-15) and duality we easily get∥∥∥∥∫ T

0
e−i(t−s)Hu(s) ds

∥∥∥∥
L

r1
t L

q1
x ([−T,T ]×R2)

. 〈T 〉1+
1

r1
−

1
r2 ‖u‖L

r2
t L

q2
x ([−T,T ]×R2)
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for the exponents q1, r1, q2, r2; thus from the Christ–Kiselev lemma we get (2-16).
We now prove (2-19) and (2-17), under the assumption σ2−σ1 = 1− 2

q −
2
r = 0. Here we may assume

σ1 = 0. By the definition of X0,b,T we can assume that u is defined for all t ∈ R, and only need to
prove that the left side of each equation is controlled by ‖u‖X0,b . We shall use ‖ · ‖X to denote either
the norm 〈T 〉−1/r

‖ · ‖Lr
t Lq

x ([−T,T ]×R2) or ‖ · ‖C([−T,T ],L2(R2)), and from what we just proved, we know
‖e−it H g‖X . ‖g‖L2 . Assume ‖u‖X0,b . 1; by Lemma 2.6 we may write

u(t, x)=
∫

R

φ(λ)eiλt
∑

k

aλ(k)e−i(4k+2)t ek(x) dλ (2-21)

with ‖φ‖L1 . 1 and
∑

k |aλ(k)|
2
= 1 for each λ. Then we have

u =
∫

R

φ(λ)eiλt e−it H
(∑

k

aλ(k)ek

)
dλ.

From Minkowski and Cauchy–Schwartz we see that

‖u‖X . ‖φ‖L1 · sup
λ

∥∥∥∥eiλt e−it H
(∑

k

aλ(k)ek

)∥∥∥∥
X

. ‖φ‖L1 · sup
λ

∥∥∥∥∑
k

aλ(k)ek

∥∥∥∥
L2
. 1, (2-22)

proving (2-19) and this special case of (2-17). To prove (2-17) in general, we use Proposition 2.5 to
deduce

‖u‖Lr
t W

σ1,q
x ([−T,T ]×R2) . ‖u‖Lr

t W
σ2,q
′

x ([−T,T ]×R2)
. 〈T 〉1/r

‖u‖Xσ2,b,T ,

where 1
q ′ +

1
r =

1
2 (so that 2< q, q ′, r <∞ and σ2−σ1 ≥ 2( 1

q ′ −
1
q )≥ 0), and with obvious modifications

when u is globally defined.
Finally we prove (2-18). Again we may assume σ1 = 0. For v = u on [−T, T ] and v = 0 elsewhere,

we need to show

‖v‖X0,b−1 . 〈T 〉
1

q2
−

1
2 ‖u‖L

q2
t,x ([−T,T ]×R2). (2-23)

For any w with ‖w‖X0,1−b . 1, we have∣∣∣∣∫
R×R2

vw̄ dtdx
∣∣∣∣= ∣∣∣∣∫

[−T,T ]×R2
uw̄ dtdx

∣∣∣∣. ‖w‖L
q3
t,x ([−T,T ]×R2) · ‖u‖L

q2
t,x ([−T,T ]×R2), (2-24)

where q3 = q2/(q2 − 1). Thus by duality, we only need to prove ‖w‖L
q3
t,x
. 〈T 〉

1
2−

1
q3 ‖w‖X0,1−b for all

2< q3 <
2
b . Since the imaginary power 〈i∂t − H〉iτ is an isometry on L2

t,x , we can use Stein’s complex
interpolation to reduce to the cases (b, q3)= (1, 2) and (b1, 4), where b1 = (q3−4+bq3)/(2q3−4) < 1

2 .
The former is trivial by definition, and the latter is a special case of (2-17). �

Lemma 2.8. Fix σ, b ∈ R, 0< T ≤ 1 and a cutoff function ψ .
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(1) If −1
2 < b′ ≤ b < 1

2 , then for u ∈ Xσ,b we have

‖ψ(T−1t)u‖Xσ,b
′ . T b−b′

‖u‖Xσ,b . (2-25)

Also for u ∈ Xσ,b,T we have

‖u‖Xσ,b
′,T . T b−b′

‖u‖Xσ,b,T . (2-26)

(2) If 1
2 < b′ = b < 1, then for u ∈ Xσ,b with u(0)= 0, (2-25) holds, as well as the limit

lim
T→0
‖ψ(T−1t)u‖Xσ,b = 0. (2-27)

Proof. (1) If (2-25) is true, then for any u ∈ Xσ,b,T and any extension v ∈ Xσ,b of u, we have

‖u‖Xσ,b
′,T ≤ ‖ψ(T−1t)v‖Xσ,b

′ . T b−b′
‖v‖Xσ,b ,

provided ψ ≡ 1 on [−1, 1]. Taking the infimum over v, we get (2-26). Now we prove (2-25). Define the
operator Mu(t, x) := eit Hu(t, · )(x). We have

i∂t(Mu)= eit H(i∂t − H)u,

and therefore we get ‖u‖Xσ,b = ‖Mu‖Hb
t Hσ

x
. Since M also commutes with multiplication of functions of

time, we can reduce to ‖ψ(T−1t)v‖Hb′
t Hσ

x
. T b−b′

‖v‖Hb
t Hσ

x
. By eigenfunction expansion, we can further

reduce to

‖ψ(T−1t)g‖Hb′ . T b−b′
‖g‖Hb . (2-28)

By composition we may assume 0≤ b′ ≤ b or b′ ≤ b ≤ 0, by duality we may assume 0≤ b′ ≤ b, and by
interpolation we may assume b′ ∈ {0, b}.

First suppose b′ = b; we want to prove that multiplication by ψ(T−1t) is bounded, independent of
T > 0, on H b. Since it is bounded on L2, we only need to show that it is also bounded on Ḣ b. By
rescaling we may set T = 1. For each g ∈ Ḣ b, we split g = g1+ g2, where ĝ1 is supported on {|ξ | ≤ 1}
and ĝ2 supported on {|ξ | ≥ 1}. Multiplication by ψ is obviously bounded from H 1 to Ḣ 1, and from L2

to L2. So it is bounded from H b to Ḣ b; thus ‖ψg2‖Ḣb . ‖g2‖Hb . ‖g‖Ḣb . Since b < 1
2 , we also know∫

|τ |≤1
|ĝ1(τ )| dτ .

∥∥|τ |b ĝ1(τ )
∥∥

L2([−1,1]) ·
∥∥|τ |−b

∥∥
L2([−1,1]) . ‖g1‖Ḣb . ‖g‖Ḣb .

Thus (ψg1)
∧(τ )= (ψ̂ ∗ ĝ1)(τ ) is bounded pointwise by 〈τ 〉−N

‖g‖Ḣb , since ψ̂ is Schwartz, and the result
follows.

Next suppose b′ = 0, we only need to prove the stronger result

‖ψ(T−1t)g‖L2 . T b
‖g‖Ḣb .

By rescaling we can set T = 1. Using the same splitting g= g1+g2, we have ‖ψg2‖L2 . ‖g2‖L2 . ‖g‖Ḣb ,
and |ψg1(τ )|. 〈τ 〉−N

‖g‖Ḣb . This proves (2-28) and hence (2-25).
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(2) We want to prove (2-25), and again we can reduce to (2-28), where we also have g(0) = 0. Using
the same arguments as in (1), we can further reduce to the boundedness on Ḣ b and assume T = 1. Split
g = g1+ g2 so that (though we are considering Ḣ b norm here, we still assume g ∈ H b, so ĝ ∈ L1)

ĝ2(τ )= χ|τ |≥1 · ĝ(τ )−
1
2

∫
|λ|≥1

ĝ(λ) dλ ·χ1≤|τ |≤2;

then ĝ1 is supported in {|τ | ≤ 2}, ĝ2 is supported in {|τ | ≥ 1}, both the ĝi have integral zero (since ĝ has
integral zero), and ‖gi‖Ḣb . ‖g‖Ḣb (since b > 1

2 , we have ‖ĝ‖L1({|τ |≥1}) . ‖|τ |
b ĝ‖L2 = ‖g‖Ḣb ). For g2

we have ‖ψg2‖Ḣb . ‖g2‖Hb . ‖g‖Ḣb as in (1); for g1 we have

(ψ̂g1)(τ )=

∫ 2

−2
(ψ̂(τ − ξ)− ψ̂(τ ))ĝ1(ξ) dξ.

By Cauchy–Schwartz

|(ψg1)
∧(τ )|. ‖g1‖Ḣb

(∫ 2

−2
|ξ |−2b

|ψ̂(τ − ξ)− ψ̂(τ )|2 dξ
)1/2

. 〈τ 〉−N
‖g‖Ḣb ,

and (2-28) follows. Finally, to prove (2-27), we first use the operator M and approximation by a finite
linear combination of eigenfunctions to reduce to ‖ψ(T−1t)g‖Hb → 0 (T → 0). Since this is easily
verified for Schwartz g, we only need to check any g ∈ H b with g(0) = 0 can be approximated by
Schwartz h also with h(0)= 0. But this easily follows since H b is embedded in L∞. �

Proposition 2.9. Suppose 1
2 < b < 1. We have∥∥∥∥∫ t

0
e−i(t−s)Hu(s) ds

∥∥∥∥
Xσ,b,T

. ‖u‖Xσ,b−1,T (2-29)

for T ≤ 1. Also for u ∈ Xσ,b,T , the function ‖u‖Xσ,b,δ is continuous for T ≥ δ > 0, and if u(0)= 0, it tends
to 0 as δ→ 0. Moreover, if p > 1

2 and

‖u− e−i(t−kδ)Hu(kδ)‖Xσ,b,[(k−1)δ,(k+1)δ] ≤ C (2-30)

for |k| ≤ K , then
‖u− e−it Hu(0)‖Xσ,b,K δ . c1K 2δ−b/2. (2-31)

Proof. For the operator M defined in the proof of Lemma 2.8 we have

M
(∫ t

0
e−i(t−s)Hu(s) ds

)
=

∫ t

0
Mu(s) ds; (2-32)

therefore we can again use an eigenfunction expansion to reduce the problem and see that (2-29) will
follow if the operator

g(t) 7→ Ig(t) := η(t)
∫ t

0
g(s) ds (2-33)

is bounded from H b−1
t to H b

t , where η is a fixed smooth function supported on [−3, 3] that equals 1 on
[−2, 2]. Choose a smooth compactly supported function ψ that equals 1 on [−10, 10], and choose φ
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supported on [−5, 5] that equals 1 on [−4, 4]. Then we have

Ig(t)= η(t)
∫ t

−∞

ψ(t − s)φ(s)g(s) ds− η(t)
∫ 0

−5
φ(s)g(s) ds. (2-34)

We know multiplication by η is bounded on H b, multiplication by φ is bounded on H 1−b (to prove these,
we first prove them in L2 and H 1 explicitly, then interpolate), and convolution with ψ ·χ[0,∞) is bounded
from H b−1 to H b, since its Fourier transform is controlled by 〈τ 〉−1. Thus the first term is bounded. For
the second term, we only need to prove |〈g, φ0〉|. ‖g‖Hb−1 , where φ0 = φ ·χ[0,5] with |φ̂0(τ )|. 〈τ 〉−1.
But this follows from Plancherel, Cauchy–Schwartz, and the assumption b > 1

2 . This proves (2-29).
Next we consider the function M(δ) := ‖u‖Xσ,b,δ , which is clearly nondecreasing. Since we only

consider 0< δ ≤ T , we may assume u is defined for t ∈ R and belongs to Xσ,b. For each δ > 0, denote
by M0 the left limit of the function M at point δ, and choose a sequence δn ↑ δ, and (by definition) a
sequence of vn such that vn ≡ u on [−δn, δn] and limn→∞‖vn‖Xσ,b ≤ M0. These vn have a subsequence
converging weakly to some v with ‖v‖Xσ,b ≤ M0. Using the embedding L∞t Hσ

x ⊃ Xσ,b, we easily see
v ≡ u on [−δ, δ]. This proves left continuity. To prove right continuity at δ, write M(δ)= M1. For any ε,
we choose v ≡ u on [−δ, δ] and ‖v‖Xσ,b < M1+ ε. Let u− v = w with w ≡ 0 on [−δ, δ], and define

wτ =
(
ψ(τ−1(t − δ))+ψ(τ−1(t + δ))

)
w,

for some suitable cutoff that equals 1 on a small neighborhood of 0. From the definition of wτ , we see that
for small τ , we have v+wτ ≡ u on a neighborhood of [−δ, δ]. From Lemma 2.8 we know ‖wτ‖Xσ,b→ 0
as τ → 0, thus ‖v+wτ‖Xσ,b < M1+ 2ε if τ is small enough. This proves right continuity. Finally, if
u(0)= 0, then

lim
δ→0
‖u‖Xσ,b,δ ≤ lim

τ→0
‖ψ(τ−1t)u‖Xσ,b = 0

for the same cutoff ψ .
Finally we prove (2-31). From (2-30) and the embedding ‖g‖L∞t Hσ

x
. ‖g‖Xσ,b,δ we see in particular

‖u(kδ)− e−ikδHu(0)‖Hσ . K . Now choose wk so that wk ≡ u− e−i(t−kδ)Hu(kδ) on [(k− 1)δ, (k+ 1)δ]
and ‖wk‖Xσ,b ≤ C , and choose a partition of unity ψk subordinate to the covering {((k− 1)δ, (k+ 1)δ)}
of [−K δ, K δ], so that ψk(t)= ψ̃k(t/δ− k) and ψ̃k have bounded Schwartz norms (this is well known).
We then have

w =
∑

k

ψkwk +
∑

k

ψke−i(t−kδ)H(u(kδ)− e−ikδHu(0))≡ v on [−K δ, K δ], (2-35)

and ‖w‖σ,b.K 2δ−b/2, since it is easy to check (by reducing to estimates of functions of t and interpolating
between L2 and H 1) that multiplication by ψk is bounded from Xσ,b to itself with norm . δ−b/2, and
that by definition

‖ψke−i(t−kδ)H(u(kδ)− e−ikδHu(0))‖Xσ,b = ‖u(kδ)− e−ikδHu(0)‖Hσ ‖ψk‖Hb . K δ1/2−b. �
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3. Construction of Gibbs measure

We will construct the Gibbs measure of (1-1) for 1< p <∞ (defocusing case) and 1< p < 3 (focusing
case). From the definition (1-9) of f , it is obvious that

‖ f (ω)‖2Hτ =

∞∑
k=0

(4k+ 2)−1+τ
|gk(ω)|

2. (3-1)

This expression is almost surely finite if τ < 0, and is almost surely infinite if τ ≥ 0. Thus we have

f (ω) ∈H0−
:=

⋂
δ>0

H−δ, (3-2)

almost surely in P. Define µ=P◦ f −1 to be the push-forward of P under f ; then we see that the typical
element in the support of µ belongs to any H−δ for all δ > 0, but does not belong to L2. We also define
µ◦2k = P ◦ ( f ◦2k )

−1, and µ⊥2k = P ◦ ( f ⊥2k )
−1. Now we prove two lemmas concerning linear and multilinear

estimates of the eigenfunctions ek(x) as defined in (1-3).

Lemma 3.1. For any 2≤ q ≤∞ and q 6= 4, write ν = 4k+ 2 for k ≥ 0; then we have

‖ek‖Lq (R2) . ν
−ρ(q), (3-3)

where ρ(q)=min
{ 1

2 −
1
q ,

1
q

}
. If q = 4 we have

‖ek‖L4(R2) . ν
−

1
4 log

1
4 ν. (3-4)

Proof. Since ek(x) = π−
1
2 L0

k(|x |
2), we easily see ‖ek‖Lq (R2) ∼ ‖L

0
k‖Lq (R+). Then we can use (1-4) to

compute

‖L0
k‖

4
L4(R+)

.
∫ 1/ν

0
dz+

∫ ν/2

1/ν
(zν)−1 dz+ν−1

∫ 3ν/2

ν/2

(
ν1/3
+ |ν− z|

)−1 dz+
∫
∞

3ν/2
e−cz dz

. ν−1 log ν. (3-5)

This proves (3-4). As for (3-3) we have

‖L0
k‖

q
Lq (R+)

.
∫ 1/ν

0
dz+

∫ ν/2

1/ν
(zν)−q/4 dz+ ν−q/4

∫ 3ν/2

ν/2

(
ν1/3
+ |ν− z|

)−q/4 dz+
∫
∞

3ν/2
e−cz dz

. ν−q/4+|1−q/4|
+ ν1−q/3

+ νmax(1−q/2,1−q/3)

. ν−qρ(q). �

Lemma 3.2. Suppose l ≥ 4 and n1, . . . , nl ≥ 0. Let ν j = 4n j +2 for 1≤ j ≤ l, and assume ν1 & · · ·& νl .
Then we have ∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣. ν−1/2
1 ν

−1/4
3 log ν1. (3-6)
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Moreover, if ν1 & ν
1+ε
2 for some ε > 0, then∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣. ν−N
1 for all N > 0. (3-7)

Proof. Recalling that Hen j =ν j en j and H is self-adjoint on L2(R2), we can compute using Proposition 2.5
and Lemma 3.1 that∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣≤ ν−m
1 ‖Hm(en2 · · · enl ) · en1‖L1

. ν−m
1 ‖en2 · · · enl‖H2m . ν−m

1

l∑
j=2

‖en j‖W2m,2(l−1)

∏
2≤i 6= j

‖eni‖L2(l−1) . (ν−1
1 ν2)

m .

If ν1 & ν
1+ε
2 , we can choose m large enough and prove (3-7). As for (3-6), we choose m = 1 and estimate∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣≤ ν−1
1 ‖H(en2 · · · enl ) · en1‖L1

. ν
−

5
4

1 log
1
4 ν1 · ‖en2 · · · enl‖W

2, 4
3

. ν
−

5
4

1 log
1
4 ν1 · ν2‖en2‖L4‖en3‖L4

∏
j≥4‖eni‖L4(l−3)

. ν
−

5
4

1 ν
3
4
2 ν
−

1
4

3 log
3
4 ν1 . ν

−
1
2

1 ν
−

1
4

3 log ν1. �

To state and prove the probabilistic L p estimates for our S′-valued random variable f , we first need a
result proved by Fernique.

Lemma 3.3 (Fernique). There exist absolute constants c, C such that for any finite-dimensional normed
vector space (V, ‖ · ‖), any centered Gaussian random variable f (ω) taking its value in V , and any
positive constant A, we have

E(ecA−2
‖ f (ω)‖2)≤ C (3-8)

if P(‖ f (ω)‖> A) < 1
10 .

Proof. See [Fernique 1975] or [Da Prato and Zabczyk 1992, Theorem 2.6]. �

Proposition 3.4. Fix 2< q <∞, 1< r <∞, 0<α<min( 2
q , 1− 2

q ), and two positive integers M > 10N.
For any g, we define

5g =
M∑

j=N−1

〈g, e j 〉e j . (3-9)

Then, for the random variable f as defined in (1-9), we have the large deviation estimates

P
(
‖5 f (ω)‖Wα,q > AN−δ

)
≤ Ce−cA2

, (3-10)

P
(
‖e−it H5 f (ω)‖Lr

t W
α,q
x ([−T,T ]×R2) > AN−δT 1/r)

≤ Ce−cA2
, (3-11)

where δ > 0 is some small positive exponent.
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Proof. We compute for each t ∈ [−π, π]

E
(
‖e−it H5 f (ω)‖q

W
α,q
x

)
=

∫
R2

E

∣∣∣∣ M∑
j=N−1

(4 j + 2)(α−1)/2g j (ω)e j (x)
∣∣∣∣q dx . (3-12)

Now by Khintchine’s inequality (the variant for Gaussians), we have

E

∣∣∣∣ M∑
j=N−1

(4 j + 2)(α−1)/2g j (ω)e j (x)
∣∣∣∣q . ( M∑

j=N−1

e j (x)2

(4 j + 2)1−α

)q/2

. (3-13)

Then integrating in x , using Minkowski’s inequality (since q > 2), we get

E
(
‖e−it H5 f (ω)‖q

W
α,q
x

)
.

( M∑
j=N−1

‖e j‖
2
Lq

(4 j + 2)1−α

)q/2

≤ C N−qδ, (3-14)

due to Lemma 3.1 and the assumption α < 2ρ(q). Now we can take t = 0 in (3-14) and use Markov’s
inequality and Lemma 3.3, and immediately get (3-10).

As for (3-11), we need a little more work. What we need is

P
(
‖e−it H5 f (ω)‖Lr

t W
α,q
x
> C N−δT 1/r)< 1

10 (3-15)

for large C . If the event in (3-15) happens, then there exists an integer l ≥ 0 such that∣∣{t ∈ [−T, T ] : ‖e−it H5 f (ω)‖W
α,q
x
> 2l N−δ

}∣∣> K 2−2rl T . (3-16)

For fixed t , due to (3-14) and Lemma 3.3, the probability that ‖e−it H5 f (ω)‖W
α,q
x
> 2l N−δ is less than

c1 exp(−c222l). We then use Fubini’s theorem to conclude that the probability that (3-16) happens is less
than K−1c122rl exp(−c222l). Then we sum over l ≥ 0 and choose K large enough so that this sum is less
than 1

10 . �

Corollary 3.5. For the same parameters q, r, α as in Proposition 3.4, we have

P
(
‖ f (ω)‖Wα,q > A

)
≤ Ce−cA2

, (3-17)

P
(
supk≥0‖ f ◦2k (ω)‖Wα,q > A

)
≤ Ce−cA2

, (3-18)

P
(
‖e−it H f (ω)‖Lr

t W
α,q
x ([−T,T ]×R2) > AT 1/r)

≤ Ce−cA2
, (3-19)

P
(
supk≥0‖e

−it H f ◦2k (ω)‖Lr
t W

α,q
x ([−T,T ]×R2) > AT 1/r)

≤ Ce−cA2
, (3-20)

lim
k→∞
‖ f ◦2k (ω)− f (ω)‖Wα,q +‖e−it H( f ◦2k (ω)− f (ω))‖Lr

t W
α,q
x ([−T,T ]×R2) = 0 almost surely in P. (3-21)

Proof. We know f ◦2k (ω)→ f (ω) and e−it H f ◦2k (ω)→ e−it H f (ω) in S′. If we can prove (3-18) and (3-20),
then almost surely in P, we have

sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
<∞, (3-22)
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and there must be a subsequence of {e−it H f ◦2k (ω)} converging weakly in Lr
t W

α,q
x . This weak limit must

be e−it H f (ω), so we know that

‖e−it H f (ω)‖Lr
t W

α,q
x
≤ sup

k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
<∞, (3-23)

almost surely in P. Thus (3-19) also holds true, with the same constants as in (3-20). Clearly (3-17) also
follows from (3-18) in the same way.

To prove (3-18) and (3-20), we use (3-10) and (3-11). For any k, the difference f ◦2k (ω)− f ◦2k−1(ω) is of
the form 5 f (ω) as defined in Proposition 3.4, with the parameter N ∼ 2k . We then have, for some δ > 0,

P
(
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
> A2−kδ/2T 1/r)

≤ c1e−c22kδ A2
. (3-24)

Choose c small enough; then
sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
> AT 1/r (3-25)

implies
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
> cA2−kδ/2T 1/r for some k ≥ 0. (3-26)

Now we can combine this with (3-24) to get

P
(
sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
> AT 1/r)

≤

∞∑
k=0

c3e−c42kδ A2
≤ c5e−c6 A2

. (3-27)

This proves (3-20). Clearly (3-18) also follows from (3-10) in the same way.
Finally we prove (3-21). From the discussion above we see

P
(
sup
k≥0

2kδ/2
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
<∞

)
= 1; (3-28)

thus with probability 1, the series

∞∑
k=0

e−it H( f ◦2k (ω)− f ◦2k−1(ω)) (3-29)

converges in Lr
t W

α,q
x . This can only converge to e−it H f (ω), and the same argument works for the space

Wα,q . �

Equation (1-1) is a hamiltonian PDE with formally conserved mass ‖u‖2L2 and Hamiltonian

E(u)= 〈Hu, u〉± 2
p+1
‖u‖p+1

L p+1 =

∫
Rn

(
|∇u|2+ |xu|2± 2

p+1
|u|p+1

)
dx . (3-30)

Recall that µ = P ◦ f −1 is a probability measure on S′(R2), the push-forward of P under f . In the
defocusing case, for all 1< p <∞, we define the Gibbs measure of (1-1) to be

dν = exp
(
−

2
p+1
‖u‖p+1

L p+1

)
dµ. (3-31)
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Since the integrand in (3-31) is well defined, bounded and positive, by Corollary 3.5, we know ν is finite
and mutually absolutely continuous with µ. We also define the truncated measures

dν2k = exp
(
−

2
p+1
‖u◦2k‖

p+1
L p+1

)
dµ. (3-32)

Since ‖u◦2k‖L p+1 →‖u‖L p+1 almost everywhere in µ, thanks to Corollary 3.5, we know ν2k → ν in the
strong sense that the total variation of ν2k − ν tends to 0.

In the focusing case, for 1< p < 3, we define the truncated measures dν2k = ρ2k dµ, where

ρ2k (u)= χ(‖u◦2k‖
2
L2 −α2k ) exp

( 2
p+1
‖u◦2k‖

p+1
L p+1

)
. (3-33)

Here χ is some compactly supported continuous function on R that equals 1 on a neighborhood of 0, and

α2k = E
(
‖ f ◦2k (ω)‖

2
L2

)
=

2k∑
j=0

1
4 j+2

. (3-34)

Clearly α2k . k for k ≥ 1. We define the Gibbs measure ν as the limit of these ν2k . More precisely:

Proposition 3.6. The functions ρ2k converge to a function ρ in Lr (µ) for all 1 ≤ r <∞. The measure
dν = ρ dµ is finite and absolutely continuous with respect to µ. We also know ν2k → ν in the strong sense
that the total variation of ν2k − ν tends to 0. Finally, we can choose a countable number of χ(m) so that
the union of the supports of the corresponding Radon–Nikodym derivatives ρ(m) has full µ measure in
S′(R2). If we have fixed χ , we will define ν to be the Gibbs measure of equation (1-1).

Proof. First we prove that ρ2k converges almost everywhere in µ, or equivalently, that ρ2k ( f (ω)) converges
almost surely in P. Consider

‖ f ◦2k (ω)‖
2
L2 −α2k =

k∑
j=0

|g j (ω)|
2
− 1

4 j + 2
, (3-35)

and see that it is a (partial) independent sum of random variables with zero mean and summable variance
(the variance of j -th term is ∼ ( j + 1)−2), so it converges almost surely. Thus by the continuity of χ , the
first factor χ(‖ f ◦2k (ω)‖

2
L2 − α2k ) in ρ2k ( f (ω)) converges almost surely. Next, since f ◦2k (ω)→ f (ω) in

L p+1 for almost surely ω ∈�, we know that the second factor also converges almost surely. Therefore,
ρ2k converges almost everywhere in µ, say to some ρ.

To prove ρ2k ( f )→ ρ( f ) in Lr (P), we need some uniform integrability conditions. This is provided
by the large deviation estimate

P
(
‖ f ◦2k (ω)‖

2
L2 −α2k ≤ β, ‖ f ◦2k (ω)‖L p+1 > A

)
≤ Ce−cAδ (3-36)

for some δ > p+1 and all large enough A, where β is such that χ(z)= 0 for |z| ≥ β. To prove (3-36) we
may assume A is sufficiently large, and set k0 ∈N so that 2k0 ∼ eAδ for some δ > 0 to be determined later.
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First we prove (3-36) is true for k ≤ k0+ 1, with β and A on the left side replaced by 2β and A/2. In
fact, by Hölder’s inequality, if

‖ f ◦2k (ω)‖
2
L2 ≤ α2k + 2β . k . Aδ and ‖ f ◦2k (ω)‖L p+1 > A/2, (3-37)

then

‖ f ◦2k (ω)‖Lq & Aσ and σ =
(q − 2)(p+ 1)− δ(q − p− 1)

(p− 1)q
, (3-38)

under the assumption p+ 1≤ q <∞. Since 2< q <∞, we know from Corollary 3.5 that

P(‖ f ◦2k (ω)‖Lq > Aσ )≤ Ce−cA2σ
. (3-39)

If 1< p < 3, then for q sufficiently large and δ sufficiently small, we have 2σ > p+ 1, so (3-36) is true
in this case.

Next we assume k ≥ k0+ 2. In this case we can prove

P(‖ f ◦2k (ω)− f ◦2k0 (ω)‖L p+1 > A/2)≤ c1 exp(−c2ec3 Ac4
). (3-40)

In fact, since f ◦2k (ω)− f ◦
2k0
(ω) is of the form 5 f (ω) as defined in Proposition 3.4, with the parameter

N ∼ 2k0 , by Proposition 3.4 we immediately get (3-40) (notice N ∼ eAδ ).
Now if ‖ f ◦2k (ω)‖

2
L2 ≤ αk +β and ‖ f ◦2k (ω)‖L p+1 > A, then we have three possibilities.

(1) If ‖ f ◦2k (ω)− f ◦
2k0
(ω)‖L p+1 > A/2, then we are already done, since this probability is controlled due

to (3-40).

(2) If ‖ f ◦
2k0
(ω)‖L p+1 > A/2 and ‖ f ◦

2k0
(ω)‖2L2 ≤ αk0 + 2β, then we may set k = k0 in the arguments from

(3-37) to (3-39), and again get the desired bound.

(3) If ‖ f ◦2k (ω)‖
2
L2 ≤ α2k +β as well as ‖ f ◦

2k0
(ω)‖2L2 > α2k0 + 2β, then

‖ f ◦2k (ω)‖
2
L2 −‖ f ◦2k0 (ω)‖

2
L2 − (α2k −α2k0 )≤−β (3-41)

or equivalently

Y =
2k∑

j=2k0+1

1− |g j |
2

4 j + 2
≥ β. (3-42)

Noticing that Y is an independent sum with standard deviation

κ =

( 2k∑
j=2k0+1

1
(4 j + 2)2

)1/2

. 2−k0/2 ≤ c1e−c2 Ac3
, (3-43)
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we can compute

E(exp(Y/2κ))=
2k∏

j=2k0+1

E
(

exp
(κ(1− |g j |

2)

2(4 j + 2)

))

=

2k∏
j=2k0+1

(
eκ/(2(4 j+2))

(
1+

κ

2(4 j + 2)

)−1)
≤

2k∏
j=2k0+1

ecθ2
j /(4(4 j+2)2κ2)

= ec/4. (3-44)

Here we have used the fact that E(e−λ|g|
2
) = (1+ λ)−1 when λ > −1, and g is a normalized complex

Gaussian; and that ex(1+ x)−1
≤ ecx2

for large c, and 0≤ x ≤ 1
2 . Therefore we have obtained

P(Y > β)≤ e−cκ−1
≤ c1 exp(−c2ec3 Ac4

). (3-45)

This completes the proof of (3-36). The other conclusions now follow easily from this large deviation
estimate, except the one regarding the support of ρ. We choose a sequence of cutoff functions χ(m) so
that χ(m) ≡ 1 on [−γm, γm] with γm ↑ ∞. By our previous discussions, after discarding null sets, the
function ρ(m) will be nonzero wherever

lim
k→∞

∣∣‖ f ◦2k (ω)‖
2
L2 −α2k

∣∣≤ γm . (3-46)

Since this limit exists almost surely, and γm ↑∞, we know almost surely, (3-46) will hold for at least one
m. So the union of support of these ρ j will have full µ measure. �

Now in both defocusing and focusing case we have defined the Gibbs measure ν and the approximating
measure ν2k . They will be used in Section 6 to obtain global well-posedness, and the invariance of ν will
be proved in Section 8.

4. Multilinear analysis in Xσ,b spaces

First let us recall the hypercontractivity property of complex Gaussians. To make equations easier to
write, we introduce the notation in which u− represents some element in {u, ū} for any complex number u.
This will be used throughout the rest of the paper. The first result about hypercontractivity was proved in
[Nelson 1973]. Here we use a formulation of this property taken from [Thomann and Tzvetkov 2010].

Proposition 4.1. Suppose l, d ≥ 1, and a random variable S has the form

S =
∑

0≤n1,...,nl≤d

cn1,...,nl · g
−

n1
(ω) · · · g−nl

(ω), (4-1)

where cn1,...,nl ∈ C, and the (gn)0≤n≤d are independent normalized complex Gaussians; then we have the
estimate

(E|S|p)1/p
≤
√

l + 1(p− 1)l/2(E|S|2)1/2 for all p ≥ 2.

Proof. This is basically a restatement of [Thomann and Tzvetkov 2010, Proposition 2.4]. There the
authors required n j ≥ 1 and n1 ≤ · · · ≤ nl , but an easy modification will immediately settle this. The
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only difference is that here we may have gn j or ḡn j , but if we write gn = (γn + iγ̃n)/
√

2 where γn and γ̃n

are mutually independent normalized real Gaussians, then ḡn = (γn− iγ̃n)/
√

2. So S is again written as a
linear combination of products of independent normalized real Gaussians. Then the result follows in the
same way as in [Thomann and Tzvetkov 2010]. �

Next we want to adapt the result in Proposition 4.1 to our specific case to yield a large deviation bound
on appropriate multilinear expressions of Gaussians.

Proposition 4.2. Let N1 ≥ · · · ≥ Nl ≥ 2 be dyadic numbers such that N1 ≥ 103 N2. Assume for n ≥ 0 and
4n+ 2≤ 10N 2

1 that we have independent normalized complex Gaussians {wn}. Also let % be any integer,
and let δn1,...,nl be arbitrary complex numbers with absolute value ≤ 1. Define

4=
{
(n1, . . . , nl) : n j ≥ 0, 1

10
≤

4n j + 2
N 2

j
≤ 10 (1≤ j ≤ l),

l∑
j=1

ε j (4n j + 2)= %
}

(4-2)

with ε j =±1; then we have

P

({∣∣∣∣ ∑
(n1,...,nl )∈4

δn1,...,nlw
−

n1
(ω) · · ·w−nl

(ω)

∣∣∣∣> K
l∏

j=2

N j

})
≤ c1 exp(−c2K c3). (4-3)

Here all the constants depend only on l.

Proof. We denote the sum on the left side of (4-3) by S. Using Proposition 4.1, we can get

(E|S|p)1/p
≤
√

l + 1(p− 1)l/2 A,

where we denote A = (E|S|2)1/2. By Markov’s inequality, we in particular have

P(|S|> K A)≤ (K A)−p
· E|S|p ≤ K−p(l + 1)p/2(p− 1)lp/2 for all p ≥ 2.

If K ≥ 2
√

l + 1, we may choose p = 1+ K 2/ l2−2/ l(l + 1)−1/ l
≥ 2 in the inequality above to obtain

P(|S|> K A)≤ 2−p
≤ c1e−c2 K c3

.

By choosing the constants appropriately, we can guarantee that this also hold for K < 2
√

l + 1. Now
what remains is to prove that A .

∏l
j=2 N j , or equivalently

E|S|2 .
l∏

j=2

N 2
j .

Now we expand the square to get

E|S|2 =
∑

δn1,...,nl δ̄m1,...,ml1n1,...,nl ,m1,...,ml ,

where the sum is taken over all (n1, . . . , nl,m1, . . . ,ml) ∈4×4, and

1n1,...,nl ,m1,...,ml = E

( l∏
j=1

w−n j
w−m j

)
.
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Since each of the δ and 1 has absolute value . 1 (depending on l) in any possible case, we will be done
once we establish that

#
{
(n1, . . . , nl,m1, . . . ,ml) ∈4×4 :1n1,...,nl ,m1,...,ml 6= 0

}
.

l∏
j=2

N 2
j . (4-4)

The crucial observation is that, due to the independence assumption, if the expectation 1 is nonzero,
then any integer that appears in (n1, . . . , nl,m1, . . . ,ml) must appear at least twice. Next, due to our
assumption N1 ≥ 103 N2, we know n1 = m1, and any integer that appears in (n2, . . . , nl,m2, . . . ,ml)

must appear at least twice. If we permute all the different integers appearing in this (2l − 2)-tuple as
σ1>σ2> · · ·>σr , then with r and all σi fixed, we have at most (2l−2)2l−2 choices for the (2l−2)-tuple;
also due to the linear relation enjoyed by both (n1, . . . , nl) and (m1, . . . ,ml), the (2l − 2)-tuple will
uniquely determine n1 and m1. Thus we only need to show for each possible 1 ≤ r ≤ 2l, there are
.
∏l

j=2 N 2
j choices for (σ1, . . . , σr ). Now for each 1 ≤ i ≤ r , since each σ j (1 ≤ j ≤ i) appear in

the (2l − 2)-tuple at least twice (and different σ j cannot appear at the same place), there must exist
1≤ j1 ≤ i < i + 1≤ j2 such that σ j1 ∈ {n j2,m j2}. This implies

4σi + 2≤ 4σ j1 + 2. N 2
j2 . N 2

i+1,

so for each 1≤ i ≤ r , there are at most N 2
i+1 choices for σi , and necessarily 1≤ r ≤ l− 1. Therefore, for

each r ≤ l − 1, we have at most
r∏

i=1

N 2
i+1 .

l∏
j=2

N 2
j

choices for (σ1, . . . , σr ). �

Proposition 4.3. Suppose p ≥ 3 is an odd integer. We choose σ and b so that 0 < σ < 1 is sufficiently
close to 1 depending on p, and 1> b > 1

2 is sufficiently close to 1
2 depending on σ and p. Let T be small

enough depending on b, σ and p. Then we can find a set �T ⊂ � and a positive number θ that only
depends on σ, b and T , so that P(�T ) ≤ c1e−c2T−c3 , and that the following holds: For any t0 ∈ R and
ω ∈�c

T , if for each 1≤ j ≤ p, a function u j on [−T, T ]×R2 is given by either

u j = e−i(t+t0)H f (ω), (4-5)

or

‖u j‖Xσ,b,T . 1, (4-6)

then we have

‖u−1 · · · u
−

p ‖Xσ,b−1,T . T θ . (4-7)

Here all the constants will depend on σ, b and p.

Proof. In what follows, if an estimate holds for ω outside a set with measure ε, we simply say it holds
“with exceptional probability ε”. We will use various exponents q j , and each of them will remain the
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same throughout the proof. First we can use Lemma 2.8 to estimate

‖u−1 · · · u
−

p ‖Xσ,b−1,T . T 2b−1
‖u−1 · · · u

−

p ‖Xσ,3b−2,T ,

since − 1
2 < b− 1< 3b− 2< 1

2 . Thus we only need to prove

‖u−1 · · · u
−

p ‖Xσ,3b−2,T . T 1/2−b, (4-8)

with exceptional probability ≤ c1 exp(−c2T−c3). Recalling the Littlewood–Paley projections (1-8), we
have

u =
∑
N≥2

uN , (4-9)

where for simplicity we write uN =1N u. Thus we only need to estimate the terms (note (uN )
−
= (u−)N

since the Littlewood–Paley projectors are real)

p∏
j=1

(u j )
−

N j
,

where we have fixed a choice between u j and ū j , and between (4-5) and (4-6), for each u j . Define

A = {1≤ j ≤ p : u j given by (4-5)}, and B = {1≤ j ≤ p : u j given by (4-6)}.

Let

A=
{
(N1, . . . , Np) : N j > 103

∑
i 6= j

Ni for some j ∈ B
}
. (4-10)

We first consider the sum of terms with (N1, . . . , Np) ∈A, and rewrite it as∑
j∈B

∑
(Ni )i 6= j

∏
i 6= j

(ui )
−

Ni
·

( ∑
N j>103

∑
i 6= j Ni

(u j )
−

N j

)
. (4-11)

To bound this expression we only need to consider a fixed j0 ∈ B, and without loss of generality, we may
assume j0 = p. For each (N1, . . . , Np−1) if we write

uhi
p =

∑
Np>103

∑p−1
i=1 Ni

(u p)Np , (4-12)

then we only need to prove

S := ‖(u1)
−

N1
· · · (u p−1)

−

Np−1
(uhi

p )
−
‖Xσ,3b−2,T . T 1/2−b(max

j<p
N j )
−θ (4-13)

for some θ > 0, with exceptional probability ≤ c1 exp(−c2T−c3(max j<p N j )
c4) (note that when we take

the sum over all (N1, . . . , Np−1), we still get an expression ≤ c1e−c2T−c3 ).
To prove (4-13), we use Propositions 2.5 and 2.7 to estimate (for simplicity, we shall omit the spacetime

domain [−T, T ]×R2 in the following estimates, but one should keep in mind that we are working on a
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very short time

S. ‖(u1)
−

N1
· · · (u p−1)

−

Np−1
(uhi

p )
−
‖L

q1
t W

σ,q1
x

(4-14)

. ‖(uhi
p )
−
‖L4

t Wσ,4
x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x
+

p−1∑
j=1

‖(uhi
p )
−
‖L4

t,x
‖(u j )

−

N j
‖L

q2
t W

σ,q2
x

∏
j 6=i<p

‖(ui )
−

Ni
‖L

q2
t,x

. ‖(uhi
p )
−
‖L4

t Wσ,4
x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x
+

p−1∑
j=1

Nσ
j ‖(u

hi
p )
−
‖L4

t,x

p−1∏
i=1

‖(ui )
−

Ni
‖L

q2
t,x

(4-15)

. ‖u−p ‖L4
t Wσ,4

x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x

(4-16)

.
p∏

j=2

‖(u j )
−

N j
‖L

q2
t,x
, (4-17)

where in (4-15) and (4-16) we have used Corollary 2.3 (recall the definition of uhi
p ). In (4-17) we have

used Proposition 2.7 and the assumption that p ∈ B. For the parameters, we choose q1>
4
3 and sufficiently

close to 4
3 depending on p, and p−1

q2
=

1
q1
−

1
4 , and check that (4-14) indeed hold, provided b is sufficiently

close to 1
2 , depending on q1 (see Proposition 2.7, with b there replaced by 3b− 1).

Now we proceed to analyze the expression (4-17). Choose 1≤ j ≤ p− 1 so that N j =maxi<p Ni . If
j ∈ B, then from Corollary 2.3 and Proposition 2.7 we have

‖(u j )
−

N j
‖L

q2
t,x
. N−εj ‖u j‖L

q2
t W

ε,q2
x
. N−εj ‖u j‖Xσ,b,T . N−εj , (4-18)

provided σ − ε > 1− 4
q2

(note q2 > 4 from our choice of exponents above). This can be achieved if ε is
small enough depending on q2, and σ is sufficiently close to 1 depending on q2 and ε. If instead j ∈ A,
then from Corollary 2.3 we have

‖(u j )
−

N j
‖L

q2
t,x
. N−εj ‖u j‖L

q2
t W

ε,q2
x
= N−εj ‖e

−i(t+t0)H f (ω)‖L
q2
t W

ε,q2
x
. (4-19)

The norm in the last expression equals the Lq2
t W

ε,q2
x norm of e−it H f (ω) on the interval [t0− T, t0+ T ].

Since T < 1, we may expand this interval to an interval with length 2π . Since e−it H f (ω) has period 2π
in t , we may replace the enlarged norm by the norm on [−π, π]. Then we could use Corollary 3.5 to
bound

N−εj ‖e
−i(t+t0)H f (ω)‖L

q2
t W

ε,q2
x
. T

1
10p (

1
2−b)N

−
ε
2

j (4-20)

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ), provided 0< ε < 2

q2
. Therefore in each

case we have

‖(u j )
−

N j
‖L

q2
t,x
. T

1
10p (

1
2−b)N−θj , (4-21)

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ), for some θ > 0.
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Then we treat the terms with i 6= j . If i ∈ B, we can use Proposition 2.7 to bound ‖(ui )
−

Ni
‖L

q2
t,x
. 1; if

i ∈ A, we can use Corollary 3.5 to bound

‖(ui )
−

Ni
‖L

q2
t,x
. T

1
10p (

1
2−b)N

θ
10p
j

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ). Putting these together, we have shown

(4-17). T 1/2−b(max
j<p

N j )
−θ (4-22)

for some θ > 0, with exceptional probability ≤ c1 exp(−c2T−c3(max j<p N j )
c4). This takes care of the

sum of terms with (N1, . . . , Np) ∈A.
For (N1, . . . , Np) 6∈A, we are going to prove

J = ‖v−1 · · · v
−

p ‖Xσ,3b−2,T . T 1/2−b(max
j≥1

N j )
−θ , (4-23)

where v j = (u j )N j , with exceptional probability ≤ c1 exp(−c2T−c3(max j≥1 N j )
c4). This, together with

the analysis above, clearly implies (4-7). Now without loss of generality, assume N1 =max j≥1 N j . If
1 ∈ B, then we have N1 ∼ max j≥2 N j . By switching the role of 1 and p in the argument above and
replacing uhi

1 by v1 (note v1 also satisfy the estimates about uhi
1 that we would use), we can prove (4-22)

with the role of 1 and p switched. Since N1 ∼max j≥2 N j , this also proves (4-23).
Now we assume that N1=max j≥1 N j and 1∈ A. If N1. N (1+σ)/(3σ−1)

j0 (note this exponent is > 1) for
some j0 ≥ 2, then we may assume j0 = 2. Now use the same arguments as in (4-14) (but with different
exponents), we have

J . ‖v−1 v
−

2 · · · v
−

p ‖L
q1
t W

σ,q1
x

(4-24)

. (‖v−1 ‖L4
t Wσ,4

x
‖v−2 ‖L4

t,x
+‖v−1 ‖L2

t,x
‖v−2 ‖L4

t Wσ,4
x
)

p∏
j=3

‖v−j ‖L
q4
t,x

+

p∑
j=3

‖v−1 ‖L4
t,x
‖v−2 ‖L4

t,x
‖v−i ‖L

q4
t W

σ,q4
x

∏
3≤i 6= j

‖v−j ‖L
q4
t,x

.

( p∑
j=1

Nσ
j

)
‖v−1 ‖L4

t,x
‖v−2 ‖L4

t,x

p∏
j=3

‖v−j ‖L
q4
t,x

(4-25)

. N
1+σ

4
1 N

1+σ
4

2 ‖v−1 ‖L4
t,x
‖v−2 ‖L4

t,x

p∏
j=3

‖v−j ‖L
q4
t,x

(4-26)

. ‖v−1 ‖
L4

t W
1+σ

4 ,4
x

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

p∏
j=3

‖v−j ‖L
q4
t,x
, (4-27)

where p−2
q4
=

1
q1
−

1
2 and q4 > 4. Here in (4-25) and (4-27) we have used Corollary 2.3 and the fact that

v j = (u j )N j , while in (4-26) we have used N j . N1 . N (1+σ)/(3σ−1)
2 for all j .
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Now we analyze the expression (4-27). If 2 ∈ B, then by Corollary 2.3 and Proposition 2.7 we have
(note N1 . N 2

2 when σ > 3
5 )

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

. N
−

1
24

1 ‖v−2 ‖
L6

t W
2σ
3 ,4

x

. N
−

1
24

1 ‖u2‖Xσ,b,T . N
−

1
24

1 , (4-28)

provided 2σ
3 > 1+σ

4 +
1

12 and σ > 2σ
3 +

1
6 , which is true for σ > 4

5 . If 2 ∈ A (which is the case for 1), we
can use the arguments from (4-19) to (4-20) to get

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

. N
−

1−σ
16

1 ‖u−2 ‖
L4

t W
3+σ

8 ,4
x

. T
1

10p (
1
2−b)N

−
1−σ
32

1 (4-29)

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ), thanks to Corollary 3.5, and the hypothesis

σ < 1 (hence 3+σ
8 < 1

2 ).
Then we treat the terms with j ≥ 3. If j ∈ B, we can use Proposition 2.7 to bound ‖v−j ‖L

q4
t,x
. 1; if

j ∈ A, we can use Corollary 3.5 to bound

‖v−j ‖L
q4
t,x
. T

1
10p (

1
2−b)N

1−σ
100p

1

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). Putting these together, we have proved

(4-27). T 1/2−b N−θ1 , (4-30)

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ) for some θ > 0. Thus we have proved (4-23) in this

case.
In the final case, we assume that N1 > (10p)3(max j≥2 N j )

1+σ
3σ−1 , which in particular implies N1 >

103∑
j≥1 N j , and that 1 ∈ A. For each j ∈ B, by definition we can extend u j to be a function on R×R2

(still denoted by u j ) with Xσ,b norm . 1. The relation v j = (u j )N j also extends to t ∈ R, giving an
extension of v j also. Choose ζ0 smooth, supported on [−2, 2] and equaling 1 on [−1, 1] and define
ζ(t)= ζ0(T−1t). We are to prove

‖ζ · v−1 · · · v
−

p ‖Xσ,3b−2 . T 1/2−b N−θ1 (4-31)

for the extended v j , with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). For a function w on R×R2

radial in x , we split w = wne+wfa, with

Ft 〈wne, ek〉(τ )= χ{|τ+4k+2|≤N γ

1 }
·Ft 〈w, ek〉(τ ), (4-32)

and wfa by replacing the ≤ by >. We now split the product in (4-31) into fa and ne parts and estimate
them separately.
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We first estimate the fa part of product as (due to the presence of ζ , we can work on time interval
[−2T, 2T ] in the time-Lebesgue norms below, thus gaining powers in T )

‖(ζ · v−1 · · · v
−

p )fa‖Xσ,3b−2 . N−γ /36
1 ‖ζ · v−1 · · · v

−

p ‖Xσ,−4/9 (4-33)

. N−γ /36
1 ‖ζ · v−1 · · · v

−

p ‖L3/2
t W

σ,3/2
x

(4-34)

. Nσ−γ /36
1

∏
i

‖v−i ‖L3p/2
t,x
. (4-35)

Here in (4-33) we have used the definition of the fa-projection and that b is close to 1
2 (in particular,

b < 1
2 +

1
108 ); in (4-34) we have used Proposition 2.7; in (4-35) we have combined Corollary 2.3 and

Proposition 2.5. Now for each i , if i ∈ B then (provided σ is close to 1 depending on p)

‖v−i ‖
L

3p
2

t,x

. ‖vi‖Xσ,b . 1.

If i ∈ A (such as i = 1) we have

‖v−i ‖
L

3p
2

t,x

. T
1

10p (
1
2−b)N

1
p

1

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). Therefore, we have (4-35). T 1/2−b N−θ1

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ), provided γ > 108.

Now we estimate the ne part of the product. Choose v0 so that ‖v0‖X0,2−3b . 1. Since we are taking the
ne part, we may assume v0 = v0,ne. The aim is to estimate |J| (recall H is self-adjoint), where

J=

∫
R×R2

v−1 · · · v
−

p · (ζHσ/2v̄0). (4-36)

We use Lemma 2.6 to write down

v j (x, t)=
∫

R

φ j (λ j )eiλ j t
∑

k

a j
λ j
(k)e−i(4k+2)t ek(x) dλ j (4-37)

for j ∈ B ∪ {0}, where the parameters satisfy∑
k

|a0
λ0
(k)|2 . 1 (4-38)

for each λ0. Since v0 = v0,ne, we also have ‖φ0‖L1 . N
3γ (b− 1

2 )

1 . For j ∈ B, since v j = (u j )N j , we know
a j
λ j
(n j )= 0 unless 1

10 ≤ (4n j + 2)/N 2
j ≤ 10, and hence∑
4n j+2∼N 2

j

|a j
λ j
(k)|2 . N−2σ

j . (4-39)

Also since b > 1
2 , we have ‖φ j‖L1 . 1.
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For the sake of convenience, in the following proof, we shall use v∼(n, τ ) to denote Ft 〈v, en〉(τ ).
Thus from (4-37) we have

v∼j (n j , τ j )= (2π)1/2a j
τ j+4n j+2(n j )φ j (τ j + 4n j + 2) (4-40)

for j ∈ B. If j ∈ A we have

v∼j (n j , τ j )= (2π)1/2e−i(4n j+2)t0
θ j (n j )gn j (ω)√

4n j + 2
δ(τ j + 4n j + 2), (4-41)

where

θ j (n j )= η
(2(4n j + 2)

N 2
j

)
− η

(4(4n j + 2)
N 2

j

)
.

Clearly |θ j | ≤ 2, and θ j 6= 0 only when 1
10 ≤ (4n j + 2)/N 2

j ≤ 10 (note we have fixed N j ). Finally, for
j = 0 we have (we may assume ζ is real)

(ζHσ/2v0)
∼(n0, τ0)= (4n0+ 2)σ/2 ·

∫
R

a0
%0+4n0+2(n0)φ0(%0+ 4n0+ 2)ζ̂ (τ0− %0) d%0. (4-42)

We write γ j =v
∼

j for j≥1, and γ0= (ζHσ/2v0)
∼. From the rules of Fourier transform and orthogonality

of ek , we have

J= (2π)−(p−2)/2
∑

n1,...,n p,n0

κn0
n1,...,n p

∫
D

p∏
j=0

(γ j (n j , τ j ))
− dτ1 · · · dτp, (4-43)

where

κn0
n1,...,n p

=

∫
R2

en1(x) · · · en p(x)en0(x) dx, (4-44)

and

D=

{
(τ1, . . . , τp, τ0) : τ0 =

p∑
j=1

ε jτ j

}
, (4-45)

with ε j =±1 depending on the choice of v j or v̄ j . We notice that ε j = 1 if and only if the corresponding
γ−j equals γ j . Now plug in (4-40), (4-41), and (4-42), and use the change of variables λ j = τ j + 4n j + 2
for j ∈ B, λ0 = %0+ 4n0+ 2; we get

J= 2π
∑

n1,...,n p,n0

κn0
n1,...,n p

∫ ∏
j∈B∪{0}

dλ j

∏
j∈B

φ j (λ j )a
j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
·a0
λ0
(n0)

−φ0(λ0)

× ζ̂

(∑
j∈B

ε jλ j − λ0−

p∑
j=1

ε j (4n j + 2)+ (4n0+ 2)
)−

× (4n0+ 2)σ/2 exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)
. (4-46)
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Here the terms corresponding to j ∈ A are delta functions and have already been incorporated in the final
expression. Letting % = (4n0+ 2)−

∑p
j=1 ε j (4n j + 2), we can further reduce the expression to

J= (2π)p+ 1
2
∑
%∈Z

∫ ∏
j∈B∪{0}

φ j (λ j ) dλ j · ζ̂

(∑
j∈B

ε jλ j − λ0+ %

)−

×

∑
S%

κn0
n1,...,n p

(4n0+ 2)σ/2
∏

j∈B∪{0}

a j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2

× exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)
,

S% =

{
(n0, . . . , n p) :

1
10
≤

4n j + 2
N 2

j
≤ 10 ( j ≥ 1), (4n0+ 2)−

p∑
j=1

ε j (4n j + 2)= %
}
. (4-47)

Noticing that ζ̂ = T ζ̂0(T · ), and that ζ̂0 is a Schwartz function, we have∑
%∈Z

|ζ̂ (λ+ %)|.
∑
%∈Z

T 〈T (λ+ %)〉−2 . 1 (4-48)

for all λ ∈ [0, 1], and by periodicity, for all λ ∈ R. Therefore∑
%∈Z

∫ ∏
j∈B∪{0}

|φ j (λ j )| dλ j · ζ̂

∣∣∣∣(∑
j∈B

ε jλ j − λ0+ %

)∣∣∣∣. N
3γ (b− 1

2 )

1 . (4-49)

Since we choose b close enough to 1
2 depending on σ and p, and γ does not have any dependence on b

whatsoever (we may simply take γ = 200), (4-31) will follow if∣∣∣∣∑
S%

κn0
n1,...,n p

(4n0+ 2)σ/2×
∏

j∈B∪{0}

a j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
× exp

(
−it0

∑
j∈A

(4n j + 2)ε j

)∣∣∣∣
. T 1/2−b N−δ1 (4-50)

for all possible choices of t0 ∈ R, % ∈ Z, λ j ∈ R( j ∈ B ∪ {0}), {a j
λ j
(k)} satisfying (4-38) and (4-39),

with δ > 0 depending on σ and p, but not on b.
Next, by Cauchy–Schwartz in the sum with respect to n0, we can further estimate the left side of (4-50)

by(∑
n0

(4n0+ 2)σ ×
∣∣∣∣∑
S%,n0

κn0
n1,...,n p

∏
j∈B

b j (n j )
−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2

× exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)∣∣∣∣2)1/2

, (4-51)

where S%,n0 = {(n1, . . . , n p) : (n0, . . . , n p) ∈ S%}, and b j (k)= a j
λ j
(k).
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Concerning the inner sum of (4-51), we have (recall that 1
10 ≤ (4n j + 2)/N 2

j ≤ 10 for each 1≤ j ≤ p)∣∣∣∣∑
S%,n0

κn0
n1,...,n p

∏
j∈B

b j (n j )
−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
· e−it0

∑
j∈A(4n j+2)ε j

∣∣∣∣ (4-52)

.
∑
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

|b j (n j )| (4-53)

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

∑
4n j+2∼N 2

j

|b j (n j )|

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

(N 2
j N−2σ

j )1/2 (4-54)

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

N 1−σ
j ,

where in (4-53) we write 2 = {(n j ) j∈A : (n1, . . . , n p) ∈ S%,n0} for fixed (n j ) j∈B , and τ n0
n1,...,n p =

κ
n0
n1,...,n p

∏
j∈A θ j (n j )(4n j+2)−1/2. One should notice that for all (n j ) j∈A∈2, by definition the expression

exp(−it0
∑

j∈A(4n j + 2)ε j ) is a fixed constant with absolute value 1, which can be extracted. In (4-54)
we have used Cauchy–Schwartz and (4-39).

Let us fix % and n0, and (n j ) j∈B . We also assume |4n0+2−%|. N 2
1 (otherwise S%,n0 would be empty).

Since the set 2 has the form of 4 in (4-2) and N1 > 103∑
j∈A−{1} N j , we can use Proposition 4.2 to get∣∣∣∣∑

2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣≤ K
∏

j∈A−{1}

N j · sup
2

|τ n0
n1,...,n p

|, (4-55)

with exceptional probability ≤ c1 exp(−c2K c3). We choose K = T 1/2−b N (1−σ)/200
1 (4n0 + 2)(1−σ)/400,

then the corresponding exceptional probability is ≤ c1 exp(−c2T−c3 N c4
1 (4n0 + 2)c5). If we add up

these probabilities with respect to all possible choices of % and (n j ) j∈B∪{0}, we still get an expression
≤ c1 exp(−c2T−c3 N c4

1 ) (there are . N 2
1 choices for each n j ( j ∈ B), and for fixed n0, there are . N 2

1
choices of %). Therefore with exceptional probability ≤ c1 exp(−c2T−c3 N c4

1 ), we have

(4-51). T 1/2−b N
1−σ
200

1

∏
j∈B

N 1−σ
j

∏
j∈A−{1}

N j

(∑
n0

(4n0+ 2)σ+
1−σ
200 sup

Sµ,n0

|τ n0
n1,...,n p

|
2
)1/2

(4-56)

. T 1/2−b N
1−σ
200 −1

1

∏
j∈B

N 1−σ
j

(∑
n0

(4n0+ 2)σ+
1−σ
200 sup

Sµ,n0

|κn0
n1,...,n p

|
2
)1/2

. (4-57)

To complete the proof of Proposition 4.3, we are going to estimate κn0
n1,...,n p . Let ν(0) ≥ · · · ≥ ν(p)

be the nonincreasing permutation of ν j = 4n j + 2 (where 0 ≤ j ≤ p). If ν0 ≥ N 2(1+(1−σ)/200)
1 , from

Lemma 3.2 we have |κn0
n1,...,n p |. ν

−100
0 . If ν0 < N 2(1+(1−σ)/200)

1 , since N1 & (max j≥2 N j )
(σ+1)/(3σ−1), we

see that if ν0 ≤ max j≥2 ν j , then ν1 & max j 6=1 ν
(σ+1)/(3σ−1)
j and |κn0

n1,...,n p | . N−100
1 ; if ν0 > max j≥2 ν j ,
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then ν(2) ≥max j≥2 ν j and from Lemma 3.2 we have

|κn0
n1,...,n p

|. ν
−

1
2

(0) ν
−

1
4

(2) log ν(0) . N−1
1 (max

j≥2
N j )
−

1
2 log N1. (4-58)

Therefore we have

(4-57). T 1/2−b N
1−σ
200 −1

1

∏
j∈B

N 1−σ
j

×

( ∑
ν0<N

2(1+ 1−σ
200 )

1

(N1)
2(σ+ 1−σ

200 )(1+
1−σ
200 )N−2

1 (max
j≥2

N j )
−1 log2 N1+

∑
ν0≥N

2(1+ 1−σ
200 )

1

(4n0+ 2)−198
)1/2

. T 1/2−b N−θ0
1 log N1 · (max

j≥2
N j )
−

1
2
∏
j∈B

N 1−σ
j

. T 1/2−b N
−
θ0
2

1 (max
j≥2

N j )
−

1
2
∏
j∈B

N 1−σ
j ,

where

θ0 = 1−
1− σ
100
− σ −

(1+ σ)(1− σ)
200

−
(1− σ)2

40000
>

1− σ
2

> 0. (4-59)

Finally, since 1 ∈ A, we have

(max
j≥2

N j )
−

1
2
∏
j∈B

N 1−σ
j . (max

j≥2
N j )
−

1
2+(p−1)(1−σ) . 1, (4-60)

provided σ > 1− 1/(2(p− 1)).
Having considered all the different cases, we have now finished the proof of Proposition 4.3. �

From now on we will fix σ and b as stated in Proposition 4.3. We have an easy corollary:

Corollary 4.4. There exist some θ > 0 and T0 > 0, such that the following holds: For all 0 < T < T0,
there exists a set �T ⊂� such that P(�T )≤ c1e−c2T−c3 and for all ω 6∈�T , the mapping

u 7→ e−it H f (ω)∓ i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds (4-61)

is a contraction mapping from the affine ball

e−it H f (ω)+{v : ‖v‖Xσ,b,T ≤ T θ
} (4-62)

to itself.

Proof. Suppose u = e−it H f (ω)+ v, where ‖v‖Xσ,b,T ≤ T θ
≤ 1. From Proposition 2.9 we have

M :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds

∥∥∥∥
Xσ,b,T

.
∥∥|u|p−1u

∥∥
Xσ,b−1,T

=
∥∥(e−it H f (ω)+ v)

p+1
2 · (e−it H f (ω)+ v̄)

p−1
2
∥∥

Xσ,b−1,T .
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If we expand the product, then each term has the form as in Proposition 4.3 (namely, u−1 · · · u
−
p with each

u j either equal to e−it H f (ω) or has Xσ,b,T norm . 1); thus we have M . T θ0 for some θ0 depending
only on σ, b and p; thus if we choose θ < θ0 and T0 small enough, then the mapping does map the affine
ball to itself.

In addition, if ui = e−it H f + vi with ‖vi‖Xσ,b,T ≤ T θ for i ∈ {1, 2}, then

D :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|u1(s)|p−1u1(s)− |u2(x)|p−1u2(s)) ds

∥∥∥∥
Xσ,b,T

.
∥∥|u1|

p−1u1− |u2|
p−1u2

∥∥
Xσ,b−1,T

.
∑

F

‖(u1− u2)
−

p−1∏
k=1

u−jk‖Xσ,b−1,T ,

where F is some finite set, and each jk ∈ {1, 2}. Since u1− u2 = v1− v2 ∈ Xσ,b,T , and each u j is the sum
of two terms, one being e−it H f (ω), the other having Xσ,b,T norm . 1, we can use Proposition 4.3 to
estimate D. T θ0‖v1−v2‖Xσ,b,T for all ω 6∈�T . Thus the result follows if we choose T small enough. �

5. Local well-posedness results

In proving local in time results, we will not care about the ± sign in (1-10). First we define the truncated
Cauchy problem {

i∂t u+ (1− |x |2)u = (±|u|p−1u)◦2k

u(0)= f ◦2k (ω)
(5-1)

for each k ≥ 1. When k =∞, we understand that v◦2∞ = v, so this is just the original equation (1-10).
If k <∞, we solve (5-1) in the finite-dimensional space V2k . We will consider two cases depending on
whether p ≥ 3 odd or 1< p < 3.

5.1. The algebraic case. Here we assume p≥ 3 is an odd integer, so we can use the estimates is Section 4.

Proposition 5.1. Suppose T > 0 is sufficiently small. There exists a set �T (possibly different from the
one in Proposition 4.3), such that P(�T ) ≤ c1 exp(−c2T−c3), and when ω 6∈ �T , for each 1 ≤ k ≤∞,
(5-1) has a unique solution

u ∈ e−it H f ◦2k (ω)+Xσ,b,T (5-2)

on [−T, T ], satisfying

‖u− e−it H f ◦2k (ω)‖Xσ,b,T ≤ T θ . (5-3)

Proof. When k =∞, the existence and uniqueness directly follows from 4.4 via Picard iteration. Now we
assume 1≤ k <∞, then the equation (5-1) is just an ODE, so the solution is unique, and exists until its
norm approaches infinity. Thus we only need to obtain the control on each of these solutions, uniformly
in k. To this end we need the following modification of Proposition 4.3.
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Lemma 5.2. For each T sufficiently small, we can find a set (still denoted by �T ), such that P(�T ) ≤

c1 exp(−c2T−c3), and in Proposition 4.3, if one replaces some u j by any (u j )
◦

2k j
or (u j )

⊥

2k j
, the result still

holds true. Moreover, if there is at least one (u j )
⊥

k j
, then the left side of (4-7) tends to zero (uniformly in

all choices of u j ) as this k j →∞.

Proof. We use the notations as in Proposition 4.3. Noting that the projections u◦2k and u⊥2k are uniformly
bounded on Xσ,b,T , we may assume the modification is only for j ∈ A. Since f ◦2k (ω)= f (ω)− f ⊥2k (ω)

and the result is true when all terms are still u j , we may assume each term is either u j or (u j )
⊥

2k j
, with at

least one (u j )
⊥

2k j
.

For each (k j ), we follow exactly the proof of Proposition 4.3. Suppose L =max j 2k j ; then in the dyadic
decomposition we only need to consider the terms max j∈A N j & L (for example, if (N1, . . . , Np)∈A with
the largest being N1, then max j≥2 N j & L; otherwise we have max j N j & L). On the other hand, all the
probabilistic Lebesgue/Sobolev estimates of f (ω) we used in Proposition 4.3 come from Corollary 3.5;
thus they also hold for f ⊥2k (ω) = f (ω)− f ◦2k (ω) uniformly in k. As for the multilinear estimates of
Gaussians (Proposition 4.2), they indeed hold for fixed k j , because fixing k j (and replacing f (ω) by
f (ω)◦

2k j
) corresponds to adding constraints n j ≤ 2k j in the set 4 in (4-2), which does not affect the

estimates in (4-4) (which is based on upper bounds of the cardinals of some sets). Therefore for fixed k j , the
estimates about each individual term (including the “grouped” terms in A) in the proof of Proposition 4.3
still hold, with constants independent of k j . Therefore, we have

‖Modified(u−1 · · · u
−

p )‖Xσ,b,T .
∑

max j N j &L

T θ (max
j

N j )
−θ . T θ L−θ/2,

with exceptional probability not exceeding∑
max j N j &L

c1 exp(−c2T−c3(max
j

N j )
c4)≤ c5 exp(−c6T−c7 Lc8),

which implies

‖Modified(u−1 · · · u
−

p )‖Xσ,b,T . T θ (max
j

2k j )−θ/2,

for all possible choices of k j , with exceptional probability not exceeding∑
(k j )

c5 exp(−c6T−c7(max
j

2k j )c8). c9 exp(−c10T−c11).

If we choose this final exceptional set as our �T , we easily see that all requirements are satisfied. �

Remark 5.3. In Proposition 4.3 and Lemma 5.2, the estimates still hold when the Xσ,b,T norm is replaced
by Xσ,b,I (but with T θ on the right side of (4-7) unchanged), for any interval I ⊂ [−T, T ], and ω outside
a single �T . One can check the proof that all estimates do not become worse with [−T, T ] replaced by I .
In particular we can get a contraction mapping as in Corollary 4.4 for interval [−T, 0] or [−T1, T1] for
T1 ≤ T .
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Using Lemma 5.2, we can now proceed with the proof of Proposition 5.1. Suppose for some k that
u = e−it H f ◦2k (ω)+ v is a maximal solution to (5-1) (strictly speaking the T below should be another
T ′ denoting the lifespan of u, but we will ignore this, in view of Remark 5.3). Then outside the �T

constructed in Lemma 5.2 we have

‖v‖Xσ,b,T =

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(

|u(s)|p−1u(s)
)◦

2k ds
∥∥∥∥

Xσ,b,T

.
∥∥|u|p−1u

∥∥
Xσ,b−1,T

=
∥∥(e−it H f ◦2k (ω)+ v)

p+1
2 · (e−it H f ◦2k (ω)+ v̄)

p−1
2
∥∥

Xσ,b−1,T .

Each term in the expansion of the final product has the form as in Lemma 5.2 (namely
∏

j (u
−

j )
◦

2k j
with

1≤ k j ≤∞, and each u j either equal to e−it H f (ω) or has Xσ,b,T norm . ‖v‖Xσ,b,T ). Therefore for some
θ > 0 we get

‖v‖Xσ,b,T . T θ (1+‖v‖Xσ,b,T )
p
;

since v ∈ Xσ,b,T and v(0)= 0, we know ‖v‖Xσ,b,t → 0 as t→ 0. The local norm is continuous in t ; thus
we can use a bootstrap argument to get ‖v‖Xσ,b,T ≤ T θ/2. Note this also works for the original equation,
showing that (5-3) holds for the solution of (1-10) with any k. The uniqueness of (1-10) now follows
from Corollary 4.4. �

5.2. The subcubic case. Here we assume 1 < p < 3, and we do not need any multilinear estimate to
solve the local problem.

Proposition 5.4. Suppose T > 0 is sufficiently small. There exists a set �T (possibly different from the
one in Proposition 4.3), such that P(�T ) ≤ c1 exp(−c2T−c3), and when ω 6∈ �T , for each 1 ≤ k ≤∞,
(5-1) has a unique solution

u ∈ e−it H f ◦2k (ω)+X0,b,T (5-4)

on [−T, T ], satisfying
‖u− e−it H f ◦2k (ω)‖X0,b,T ≤ T θ . (5-5)

Proof. The proof here is almost the same as Proposition 5.1. In fact, once we can obtain∥∥|e−it H f ◦2k (ω)+ v|
p−1(e−it H f ◦2k (ω)+ v)

∥∥
X0,b−1,T . T θ (1+‖v‖p

X0,b,T ) (5-6)

and ∥∥|u|p−1u− |u′|p−1u′
∥∥

X0,b−1,T . T θ
‖v− v′‖X0,b,T · (1+‖v‖X0,b,T +‖v′‖X0,b,T )p−1 (5-7)

for all 1 ≤ k ≤ ∞ and ω 6∈ �T , where u = e−it H f ◦2k (ω)+ v and u′ = e−it H f ◦2k (ω)+ v
′, we can use

Proposition 2.9 and argue as in the proof of Corollary 4.4 to show that for ω 6∈�T ,

u 7→ e−it H f (ω)∓ i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds

is a contraction mapping from
e−it H f (ω)+{v : ‖v‖X0,b,T ≤ T θ

}
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to itself, for some θ > 0. Also we will have the same estimates on solutions to (5-1) as in Proposition 5.1,
which is enough for the proof.

To prove (5-7), we simply compute (again we omit the time domain [−T, T ] here)∥∥|u|p−1u− |u′|p−1u′
∥∥

X0,b−1,T

. T 2b−1∥∥(u− u′)(|u| + |u′|)p−1∥∥
Lq

t,x
(5-8)

. T 2b−1
‖v− v′‖L pq

t,x
· (‖u‖L pq

t,x
+‖u′‖L pq

t,x
)p−1 (5-9)

. T 2b−1
‖v− v′‖X0,b,T (‖v‖X0,b,T +‖v′‖X0,b,T +‖e−it H f ◦2k (ω)‖L pq

t,x
)p−1 (5-10)

. T b− 1
2 ‖v− v′‖X0,b,T · (‖v‖X0,b,T +‖v′‖X0,b,T + 1)p−1, (5-11)

outside �T , where P(�T ) ≤ c1 exp(−c2T−c3). In (5-8) we have used Proposition 2.7 and Lemma 2.8,
and required 1

2 < b< 2
3 , 2> q > 2

3−3b . In (5-9) we have used Hölder and required 1< pq <∞. In (5-10)
we have used (Hölder in time and) Proposition 2.7 and required 2 < pq < 4. In (5-11) we have used
Corollary 3.5 to bound

‖e−it H f ◦2k (ω)‖L
r2
t L

q2
x
. T−

2b−1
100p ,

with exceptional probability ≤ c1 exp(−c2T−c3). Therefore, we may choose q so that 4
3 < q < 2 and

2< pq < 4 (such q exists because 1< p < 3). Then we may choose 1
2 < b < 1− 2

3q , and see that all the
requirements indeed hold. This completes the proof of (5-7).

The estimate (5-6) follows from the same choice of exponents and similar arguments. The only
difference is that we will have a term ‖e−it H f ◦2k (ω)‖L

r1
t L

q1
x

, which is fine as long as 2< q1 <∞. �

5.3. Approximating by ODEs. Here we will prove that almost surely, uniform global bounds on the
solutions to the truncated equations (5-1) for infinitely many k <∞ implies the global existence and
uniqueness for the original equation (1-10).

Proposition 5.5. Let [−T, T ] be a time interval, where we assume T is large. Suppose for ω belonging
to some set E , there exists a subsequence {k j } j≥0 ↑∞ (possibly depending on ω) such that each of the
equations (5-1) with k = k j has a unique solution u j on [−T, T ] and that

sup
j
‖u j − e−it H f ◦

2k j (ω)‖Xσ,b,T <∞. (5-12)

Then almost surely ω ∈ E , the equation (1-10) possesses a unique solution u on [−T, T ] such that
u ∈ e−it H f (ω)+Xσ,b,T . Moreover for this subsequence we have

lim
j→∞
‖u j − e−it H f ◦

2k j (ω)− (u− e−it H f (ω))‖Xσ,b,T = 0. (5-13)

Proof. For ω ∈ E , with small exceptional probability (tending to 0 as A→∞), we may choose a sequence
u j solving (5-1) with k = k j ↑∞, and

‖u j − e−it H f ◦
2k j (ω)‖Xσ,b,T ≤ A (5-14)
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for all j . Then we choose an integer M large enough depending on T and A. We are going to prove for
each 1≤m ≤ M that (1-10) has a unique solution u ∈ e−it H f (ω)+Xσ,b,mT/M on the interval [−mT

M , mT
M ],

and
lim

j→∞
‖u j − e−it H f ◦

2k j (ω)− (u− e−it H f (ω))‖Xσ,b,mT/M → 0, (5-15)

for ω outside the fixed set �T/M that is constructed in the proof of Lemma 5.2. Since P(�T/M)→ 0 as
M→∞, this clearly contains the conclusion we need.

Now we proceed by induction on m. First assume p ≥ 3 is odd. Supposing the conclusion holds for
m − 1 (including m = 1), we will prove it for m. Write δ = M−1T and t0 = (m − 1)δ, we know the
solution u exists and is unique on [−t0, t0], and we want to extend it to [−(t0+ δ), t0+ δ]. Without loss
of generality we consider the half-line t > 0.

From (5-14) and (5-15) we have

lim
j→∞
‖u j (t0)− u(t0)+ e−it0 H f ⊥

2k j (ω)‖Hσ = 0, (5-16)

and ‖u(t0)− e−it0 H f (ω)‖Hσ ≤ A. We would like to solve the equation (1-1) with initial data u(t0) on
[−δ, δ], and argue as in Corollary 4.4. Here the linear term is not e−it H f (ω), but

e−it Hu(t0)= e−i(t+t0)H f (ω)+ v,

where v is the linear evolution of some function with Hσ norm . A; thus ‖v‖Xσ,b,δ . A (this is easily
proved by introducing a cutoff and using δ ≤ 1). Since ω 6∈ �T/M , we can use the full strength of
Proposition 4.3 and Lemma 5.2. In particular we can proceed as in the proof of Corollary 4.4 and obtain

M :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|w1(s)|p−1w1(s)) ds

∥∥∥∥
Xσ,b,δ

. δθ0 Ap
≤ δθ ,

and

D=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|w1(s)|p−1w1(s)− |w2(x)|p−1w2(s)) ds

∥∥∥∥
Xσ,b,δ

. δθ0 Ap−1
‖h1− h2‖Xσ,b,δ <

1
2‖h1− h2‖Xσ,b,δ ,

for allwi = e−it Hu(t0)+hi with ‖hi‖Xσ,b,δ ≤ δ
θ , provided M is large enough (δ is small enough) depending

on T and A. Then we can use Picard iteration and the same bootstrap argument to prove that the original
solution u can be uniquely extended to [t0, t0+ δ] (and by symmetry, to the other side).

It remains to prove (5-15) for m. First we know

lim
j→∞

∥∥e−i(t−t0)Hu j (t0)− e−i(t−t0)Hu(t0)+ e−it H f ⊥
2k j (ω))

∥∥
Xσ,b,[t0−δ,t0+δ]

= 0,

which is a consequence of (5-16). In view of the induction hypothesis, we only need to prove3

lim
j→∞

∥∥u j − e−i(t−t0)Hu j (t0)− (u− e−i(t−t0)Hu(t0))
∥∥

Xσ,b,[t0−δ,t0+δ]
= 0,

3Here we have used the following fact: Given two intervals [x, y] and [z, w] with x < z < y <w, for some constant C we
have ‖u‖Xσ,b,[x,w] ≤ C(‖u‖Xσ,b,[x,y] +‖u‖Xσ,b,[z,w]). This is easily proved by using a partition of unity.
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which, after a translation of time, is equivalent to

lim
j→∞

∥∥w j − e−it Hw j (0)− (w− e−it Hw(0))
∥∥

Xσ,b,δ
= 0, (5-17)

where w j is a solution of the truncated equation with k = k j , and w j (0)= u j (t0); and w is a solution of
the original equation with w(0)= u(t0). Write w j −w = h = hli + hno, where

hli = e−it H(u j (t0)− u(t0))=−e−i(t+t0)H f ⊥
2k j (ω)+ e−it Hλ j , (5-18)

with ‖λ j‖Hσ → 0, and

hno =∓i
∫ t

0
e−i(t−s)H((|w j |

p−1w j − |w|
p−1w)◦

2k j − (|w|
p−1w)⊥

2k j (s)
)

ds

=∓i
∫ t

0
e−i(t−s)H(|w j |

p−1w j − |w|
p−1w)◦

2k j (s) ds− (w− e−it Hw(0))⊥
2k j . (5-19)

Now we need to prove ‖hno‖Xσ,b,δ → 0. Since w− e−it Hw(0) ∈ Xσ,b,δ, the second term in (5-19) tends
to zero in Xσ,b,δ as j →∞. For the first term, we estimate the norm without the final projection. The
expression in parentheses can be written as a linear combination of terms like z−1 · · · z

−
p , where z1 is

either hno, or e−i(t+t0)H f ⊥
2k j
(ω), or e−it Hλ j which has Xσ,b,δ norm→ 0. For i ≥ 2, each zi is one of the

following:

(1) e−i(t+t0)H f ◦
2k j
(ω). This is within the applicability of Lemma 5.2 since ω 6∈�T/M .

(2) w j − e−i(t+t0)H f ◦
2k j
(ω). This has Xσ,b,δ norm . A since w j (t)= u j (t + t0), due to (5-14).

(3) One of the components of w j −w. These include hno and e−i(t+t0)H f ⊥
2k j
(ω), as well as another term

with Xσ,b,δ norm . A. Since ω 6∈�T/M , these terms are controllable using Lemma 5.2.

If z1 = e−i(t+t0)H f ⊥
2k j
(ω), then from Proposition 2.9 and Lemma 5.2, the corresponding term tends to

0 as j→∞ (since hno is bounded in Xσ,b,δ independent of j ; see below). If z1 is the term with Xσ,b,δ

tending to 0, the same conclusion holds. If z1 = hno, then the norm of the corresponding term is bounded
by δθ‖hno‖Xσ,b,δ (‖hno‖Xσ,b,δ + A)p−1. Therefore we have

‖hno‖Xσ,b,δ . δ
θ
‖hno‖Xσ,b,δ (‖hno‖Xσ,b,δ + A)p−1

+ o(1),

as j → ∞. By (5-14) and the Picard argument above, we know ‖hno‖Xσ,b,δ . A independent of j .
Therefore, if we choose δ small enough (M large enough), we must have ‖hno‖Xσ,b,δ = o(1).

The proof when 1 < p < 3 is basically the same, using linear estimates (Corollary 3.5) instead of
Proposition 4.3. We will also need a variant of Lemma 5.2, but the proof of this is not hard and is
essentially contained in Proposition 3.4 and Corollary 3.5. �

6. Global well-posedness

In what follows, we fix a sufficiently large T and a positive integer M such that M & T 2.
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First let us consider the truncated equation (5-1), which is an ODE on the finite-dimensional space V2k .
If we identify V2k with R2k+1

+2 by the coordinates

g =
2k∑

j=0

(a j + ib j )e j , (6-1)

then it is easy to check that (5-1) becomes

∂t a j =
∂E0

∂b j
, ∂t b j =−

∂E0

∂a j
, (6-2)

with Hamiltonian

E0(a j , b j )=

2k∑
j=0

(2 j + 1)(a2
j + b2

j )±
1

p+ 1

∥∥∥∥ 2k∑
j=0

(a j + ib j )e j

∥∥∥∥p+1

L p+1
. (6-3)

If we denote the solution flow of this equation by 82k ,t , then the following is true by the theory of
Hamiltonian ODEs and straightforward computation: The map (t, x) 7→82k ,t(x) is defined on the whole
spacetime domain R× V2k (this is a consequence of the conservation of L2 norm; see (6-4) below). For
each t ∈ R, 82k ,t is a homeomorphism from V2k to itself. If p ≥ 3 is odd, it is a diffeomorphism and
preserves the quantities

‖g‖2L2 =

2k∑
j=0

(a2
j + b2

j ) and E = 2E0 (6-4)

and the Lebesgue measure. If 1 < p < 3, it (and its inverse) can be approximated, uniformly on each
compact subset of V2k , by a sequence of pairs of diffeomorphisms that preserve the quantities (6-4) and
the Lebesgue measure. Therefore 82k ,t itself also preserves (6-4) and the Lebesgue measure.

From above we know that 82k ,t preserves the measure

ν◦2k = π
−1−2k

ζ · e−E
2k∏

j=0

da j db j (6-5)

on V2k , where ζ = 1 in the defocusing case, and ζ = χ(‖g‖2L2 − α2k ) in the focusing case as in (3-33).
By the definition of µ and ν2k (see Section 3) we have

ν2k = (ρ2k ·µ◦2k )⊗µ
⊥

2k = ν
◦

2k ⊗µ
⊥

2k , (6-6)

in both cases, where we understand that µ◦2k and µ⊥2k are measures on V2k and V⊥2k respectively, and
identify V with4 V2k × V⊥2k . From this we immediately see, for each Borel set J of V2k , that

ν2k
(
{g : g◦2k ∈ J }

)
= ν2k

(
{g : g◦2k ∈ (82k ,t)

−1(J )}
)
. (6-7)

4Here V is some space on which µ is supported. The exact choice of V is unimportant; for example, we may choose
V = S′(R2), or V =

⋂
δ>0 H−δ(R2).
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Now we fix the choice
J = JM =

{
g◦2k : g ∈ f

(
�c

T/M
)}c
,

where �T/M is constructed in the proof of Lemma 5.2. Consider the maximal m0 ≤ M + 1 so that the
solution u of equation (5-1) satisfies∥∥u− e−i(t−mT/M)Hu(mT/M)

∥∥
Xσ,b,[(m−1)T/M,(m+1)T/M] ≤ 1 (6-8)

for all |m| ≤ m0− 1. If m0 = M + 1, from Proposition 2.9 we know that u is defined on [−T, T ] and

‖u− e−it H f ◦2k (ω)‖Xσ,b,T . M3. (6-9)

If m0 ≤ M , then for some choice of ± sign, we have 82k ,±m0T/M( f ◦2k (ω)) ∈ JM . In fact, if this fails, then
we can use Propositions 5.1 and 5.4 to extend the solution to [−(m0+ 1)T/M, (m0+ 1)T/M] with (6-8)
remaining true, thus contradicting the definition of m0. Now we use (6-7) and sum over m0 ≤ M to get

(ν2k ◦ f )
({
ω : (6-9) fails

})
. M · ν2k

({
g : g◦2k ∈ JM

})
. (6-10)

In the defocusing case we have ν2k ≤ µ. Using Fubini’s theorem we get

µ
({

g : g◦2k ∈ J c
M
})
≥ µ( f (�c

T/M))≥ 1− c1 exp(−c2T−c3 Mc3), (6-11)

hence
(ν2k ◦ f )

({
ω : (6-9) fails

})
. c1 M exp(−c2T−c3 Mc3). (6-12)

In the focusing case we have

dν2k

dµ
(g)= ρ2k (g)= χ(‖g◦2k‖

2
L2 −α2k ) exp

( 2
p+1
‖g◦2k‖

p+1
L p+1

)
. (6-13)

This function, by Proposition 3.6, has bounded L2(µ) norm, so by Cauchy–Schwartz we get

ν2k
({

g : g◦2k ∈ JM
})
.
(
µ
({

g : g◦2k ∈ JM
}))1/2

≤ c1 exp(−c2T−c3 Mc3), (6-14)

which again implies (6-12). We summarize our results in the following proposition.

Proposition 6.1. For fixed T and k, there exists a subset5 �k ⊂� such that (ν2k ◦ f )(�c
k)= 0, and for

ω ∈�k , equation (5-1) has a unique solution uk on [−T, T ], and that

sup
k

∫
�k

exp
(
‖uk − e−it H f ◦2k (ω)‖

θ
Xσ,b,T

)
d(ν2k ◦ f )(ω) <∞ (6-15)

for some θ > 0.

Proof. We choose
�k =

⋂
M&T 2

Z M :=
⋂

M&T 2

{
ω : (6-9) fails for M

}
.

5This should not be confused with the �T notation defined above, since our �k is for k ≥ 1 here!
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From the discussion above we easily see ν2k ( f (�c
k))≤ limM→∞ ν2k ( f (Z M))= 0. Also for ω 6∈ Z M the

solution uk to (5-1) exists and is unique, and satisfies

‖uk − e−it H f ◦2k (ω)‖Xσ,b,T . M3.

In other words we have

(ν2k ◦ f )
(
ω ∈�k : ‖uk − e−it H f ◦2k (ω)‖Xσ,b,T > A

)
≤ ν2k ( f (Z M))≤ c1 exp(−c2 Ac3),

for all A > T 100, where M ∼ A1/3 is an integer. Since ν2k ◦ f is uniformly integrable, the part with small
A is also under control. The claim then follows. �

With Propositions 5.5 and 6.1, we are ready to prove the global well-posedness part of Theorem 1.1.
Denote the integrand in (6-15) by ηk(ω), understanding ηk(ω)= 0 when ω 6∈�k . Since ν2k → ν in the
strong sense and (ν2k ◦ f )(�c

k)= 0, we have (ν ◦ f )(�c
k)→ 0, and we fix a subsequence {kl} such that∑

l(ν ◦ f )(�c
kl
) <∞ and hence (ν ◦ f )(lim supl→∞�

c
kl
)= 0. From Proposition 6.1, we get

sup
l

∫
�

ρ2kl ( f (ω))ηkl (ω) dP(ω) <∞. (6-16)

From the proof of Proposition 3.6, we see ρ2kl ◦ f → ρ ◦ f almost surely, so by Fatou’s lemma we get

lim inf
l→∞

ηkl (ω) <∞, (6-17)

almost surely in P, on the set where ρ( f (ω)) 6= 0. By the definition of ηk , if (6-17) holds, then either
ω ∈�kl for infinitely many l, or there exists a subsequence {kl j } j≥0 ↑∞, such that (5-1) has a unique
solution ukl j

for k = k j on [−T, T ], and

sup
j
‖ukl j
− e−it H f ◦

2
kl j
(ω)‖Xσ,b,T <∞.

In the former case we get a null set (actually a set with null ν ◦ f measure, but ν ◦ f is mutually absolutely
continuous with P on the set where ρ( f (ω)) 6= 0), while in the latter case we can use Proposition 5.5
to deduce that, except for another null set, (1-10) also has a unique solution u on [−T, T ] such that
u ∈ e−it H f (ω)+Xσ,b,T .

Therefore, for each T > 0, except for a null set, the equation (1-10) has a unique solution u ∈
e−it H f (ω)+Xσ,b,T for ω in the support of ρ ◦ f . In the defocusing case, this support itself has full
probability in �; in the focusing case, it follows from Proposition 3.6 that we can choose a countable
number of cutoff χ so that the (countable) union of the support of the corresponding ρ ◦ f has full
probability. In any case we have found a subset of � having full probability, such that when ω does
belong to this set, (1-10) has a unique solution u ∈ e−it H f (ω)+Xσ,b,T . We then take another countable
union to get that, almost surely in P, equation (1-10) has a unique solution u on R×R2 such that

u ∈ e−it H f (ω)+Xσ,b,T ⊂ e−it H f (ω)+C([−T, T ],Hσ (R2))

⊂ C([−T, T ],
⋂
δ>0

H−δ(R2))
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for all T > 0. This completes the proof.

Remark 6.2. In fact, from the argument we can extract a polynomial bound on the solution; namely we
can prove that for each large A, with exceptional probability ≤ c1 exp(−c2 Ac3) we have

‖u− e−it H f (ω)‖Xσ,b,T ≤ A〈T 〉C

for all T > 0, with some constant C . We omit the details.

7. Transforming into NLS without harmonic potential

As we have mentioned before, the idea of introducing the lens transform and reducing (1-2) to (1-1) is
inspired by the arguments in [Burq et al. 2010]. First we define the lens transform [Tao 2009, Section 2;
Burq et al. 2010, Section 10]:

Lu(t, x)= 1
cos(2t)

u
( tan(2t)

2
,

x
cos(2t)

)
e−i|x |2 tan(2t)/2, (7-1)

where u is defined on R×R2, and Lu is defined on (−π4 ,
π
4 )×R2. By a simple computation we deduce

(i∂t − H)(Lu)(t, x)= (cos(2t))−2L((i∂t +1)u)(t, x). (7-2)

For the inverse transform

L−1u(t, x)= (1+ 4t2)−
1
2 u
( tan−1(2t)

2
, (1+ 4t2)−

1
2 x
)

ei|x |2t/(1+4t2), (7-3)

we have

(i∂t +1)(L
−1u)(t, x)=

1
1+ 4t2 L−1((i∂t − H)u)(t, x). (7-4)

Next we prove that the transform L−1 maps the space Xσ,b,δ to Xσ,b,T , where 0≤ σ, b ≤ 1, 0< δ < π
4 ,

and T = 1
2 tan(2δ). First by using a cutoff, we are reduced to proving that u 7→ L−1(χ · u) is bounded

from Xσ,b to Xσ,b, where χ = χ(t) is any smooth function having compact support in |t |< π
4 . First we

fix σ . By interpolation, we can assume b ∈ {0, 1}. If we can prove the result in the case b = 0, then using
the identity

‖u‖2Xσ,1 = ‖u‖
2
Xσ,0 +‖(i∂t − H)‖2Xσ,0

(which remains true with X replaced by X and −H replaced by 1) and (7-4), we see

‖L−1(χ · u)‖Xσ,1 . ‖u‖Xσ,0 +‖(i∂t − H)(χu)‖Xσ,0, (7-5)

because v = (i∂t − H)(χu) has compact support in |t | < π
4 , and hence equals χ1v for some other χ1.

Since the last term in (7-5) is clearly controlled by ‖u‖Xσ,1 , we can conclude the proof for b= 1. Therefore
we may only consider b = 0. Here it is easily seen that we only need to prove that multiplication by
eiλ|x |2 is uniformly bounded from Hσ to Hσ for 0≤ σ ≤ 1 and |λ| ≤ 1. By another interpolation we may
further reduce to σ ∈ {0, 1}. The σ = 0 case is obvious; the σ = 1 case follows from the observation

∇(eiλ|x |2
· f )= eiλ|x |2(∇ + 2iλx) · f.
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Thus we have the desired bound for all 0≤ σ, b ≤ 1.
Using (7-2) or (7-4) we can compute that u is a solution for the Cauchy problem (1-12) on R, if and

only if v = Lu is a solution for the Cauchy problem{
i∂tv+ (1− |x |2)v = (cos(2t))p−3

· |v|p−1v,

v(0)= f (ω)
(7-6)

on |t |< π
4 . Moreover, if

v− e−it H f (ω) ∈ Xσ,b,δ (7-7)

with δ < π
4 , then from the discussion above we see that

u−L−1(e−it H f (ω)) ∈ Xσ,b,T ,

with T = 1
2 tan(2δ)→∞ as δ→ π

4 . From (7-4) we see that L−1(e−it H f (ω)) has initial value f (ω) and
annihilates i∂t +1; thus it must be eit1 f (ω). Thus (1-13) will follow6 if (7-7) holds for all δ < π

4 . Also
from (7-3), the constants in the Hσ

x → Hσ
x boundedness remains under control even near the boundary

points ±π4 . Thus (1-14) will follow if

lim
t→±π/4

(v(t)− e−it H f (ω)) exists in Hσ . (7-8)

What we will prove is that almost surely in P, (7-6) has a unique (strong) solution v for |t | ≤ π
4

such that v− e−it H f (ω) ∈ Xσ,b,π/4. As is demonstrated above, this implies (7-7) and (7-8), and hence
Theorem 1.2.

The proof is basically the same as (1-10). Noticing m(t)= (cos(2t))p−3 has all its derivatives bounded
on R, we see that multiplication by m(t) is bounded from any Xσ,b (and hence any Xσ,b,T ) to itself.
Therefore, the proof from Proposition 4.3 to Lemma 5.2 goes without any difficulty, as if this additional
factor were not present. In the proof of Proposition 5.5, when we extend the solution to a larger interval,
we must solve another Cauchy problem, which is no longer (7-6), since this equation is not autonomous.
This, however, is not a problem; since we just replace m(t) by some m(t − t0) that obeys the same
derivative estimates as m(t), we can use the same exceptional set as in Proposition 4.3, Lemma 5.2 and
Proposition 5.5, and the other discussions remain unchanged.

The only difficulty we face is the lack of a (formally) invariant measure. This is compensated, however,
by a monotonicity property, which was first observed in [Burq et al. 2010].

Lemma 7.1. Consider the truncated Cauchy problem{
i∂tv+ (1− |x |2)v = (cos(2t))p−3

· (|v|p−1v)◦2k ,

v(0)= f ◦2k (ω);
(7-9)

then for its solution v, the quantity

E(t, v(t))= 〈Hv, v〉+
2(cos(2t))p−3

p+ 1
‖v‖

p+1
L p+1

6The space Z′ ⊂ Z in which we have uniqueness will be the image of the space Y defined in (1-11) under L−1; as we have
said before, we do not have a simple characterization for this.
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is monotonically nonincreasing in |t | for |t | ≤ π
4 .

Proof. We directly compute

dE

dt
=−

2(p− 3)(cos(2t))p−4 sin(2t)
p+ 1

‖v(t)‖p+1
L p+1,

which is nonpositive for 0≤ t ≤ π
4 , and nonnegative for −π4 ≤ t ≤ 0. �

We argue as in Section 6, but we fix T = π
4 here. If we could prove

µ
(
{g : g◦2k ∈ J }

)
≥ ν2k

(
{g :82k ,t(g

◦

2k ) ∈ J }
)

(7-10)

for −π4 ≤ t ≤ π
4 , where, of course, 82k ,t is now the solution flow of (7-6), then combining this inequality

with (6-11) we can get (6-12). Starting from this point, we can follow the argument in Section 6 word by
word to get almost surely global well-posedness of (7-6) on [−π4 ,

π
4 ].

The proof of (7-10) is also simple. By Lemma 7.1

ν2k ({g :82k ,t(g
◦

2k ) ∈ J })= π−1−2k
∫

J1

e−E(g)
2k∏

j=0

da j db j

≤ π−1−2k
∫

J1

e−E(t,g(t))
2k∏

j=0

da j db j ≤

∫
J

dµ◦2k = µ({g : g◦2k ∈ J }),

where J1 = {h ∈ V2k :82k ,t(h) ∈ J }. Here we have used the invariance of the Lebesgue measure under
82k ,t , which can be directly verified; see [Burq et al. 2010, Lemma 8.3]. Therefore we have completed
the proof of Theorem 1.2.

8. Invariance of Gibbs measure

Now we return to the final assertion of Theorem 1.1, and prove the invariance of the Gibbs measure ν
under the solution flow of (1-10). More precisely:

Proposition 8.1. Denote the solution flow of (1-10) by 8t . There exists a subset 6 ⊂ S′(R2) such that it
has full µ measure, and 8t becomes a one-parameter group from 6 to 6 preserving the measure ν (in the
focusing case, for each choice of cutoff function χ ).

Proof. We only consider the defocusing case. In the focusing case we need to take another countable
intersection corresponding to the cutoff χ chosen, but otherwise the proof is completely analogous.
Clearly the set �T in Proposition 4.3 and Lemma 5.2 can be chosen so that e−it H f (�c

T )= f (�c
T ).

We define6=61∩62, where61 is the set of all g∈S′(R2) so that (1-1) (with initial data u(0)= g) has
a unique solution7 u on R that belongs to e−it H g+Xσ,b,T for all T > 0. This has full µ measure due to the
global well-posedness part of Theorem 1.1. Also62 is defined to be62= f (lim infi→∞�

c
γ 2−i )+Hσ , and

this also has full µmeasure for small enough γ due to our control on P(�T ). Clearly6 has full µmeasure,

7It is a bit vague to say u is a “solution” when g is only a distribution; but since we are considering 62 also, we can assume
here e−it H g ∈ Lq

t,x on any finite time interval, for appropriate q, and then the definition of 61 becomes rigorous.
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and 8t is uniquely defined on 6. If we can prove 8t(6)⊂6, then they obviously form a (measurable)
one-parameter group. Clearly 8t(6) ⊂ 62 since for a solution u we have u(t) ∈ e−it Hu(0)+Hσ . To
prove 8t(6) ⊂ 61, we only need to prove that if u is a solution of (1-10) with u(0) ∈ 62, then it is
automatically unique. Since all u(t) ∈ 62, by bootstrap arguments we only need to prove short time
uniqueness. Write u(0)= f (ω)+ h with ‖h‖Hσ = A and ω 6∈�c2−i for all large enough i . Repeating the
extension argument in Proposition 5.5, we see for i large enough depending on A that ω 6∈�c2−i and the
solution is unique for |t | ≤ c2−i . This proves the existence of 6.

Now we only need to prove that for each measurable set E ⊂6 and t ∈ R, we have

ν(8t(E))≥ ν(E). (8-1)

We may assume |t | ≤ 1. Write

5i0,A =61 ∩

(
{h : ‖h‖Hσ ≤ A}+

⋂
i≥i0

f (�c
c2−i )

)
and

5′A =
{
g ∈6 :

∥∥u− e−it H g
∥∥

Xσ,b,2
≤ A

}
.

By a limiting argument we can further assume E ⊂5i0,A ∩5
′

A for some i0 and A. Note that this implies
8t(E)⊂5i0,C A for |t | ≤ 2 and some constant C .

Let T be small enough depending on i0 and A, we only need to prove (8-1) for |t | ≤ T and E ⊂5i0,C A

(since we can iterate to get the result for |t | ≤ 1). Write 5=5i0,C A and define 9(g)= u−e−it H g, where
u is the solution to (1-1) with initial data g, and consider the mapping

91 :5→ Xσ,b,T ×C∞, g 7→ (9(g), (〈g, ek〉)k≥0),

where in C∞ we use the standard metric. This mapping is clearly injective (thus it induces a metric on 5)
and, as will be explained in Remark 8.2, its image is a Borel set of the product space (denoted by Y ). By
a theorem in measure theory [Halmos 1950], the finite Borel measure ν ◦9−1

1 on the complete separable
metric space Y is regular. For each measurable set E ⊂5 we can find a compact set K ⊂91(E) such that
(ν ◦9−1

1 )(91(E)−K ) < ε; thus 9−1
1 (K )⊂ E is compact in the induced metric and ν(E−9−1

1 (K )) < ε.
Therefore, we only need to prove (8-1) for compact sets E ⊂5. Due to Propositions 5.1 and 5.4, when T
is small enough depending on i0 and A, the map 82k ,t will be defined on E ⊂5 for each k and |t | ≤ T .
Thus by the invariance of ν◦2k under the solution flow 82k ,t , we have

ν2k
({

g : g◦2k =82k ,t(h
◦

2k ), h ∈ E
})
≥ ν2k (E).

Let k→∞, noticing that the total variation of ν2k − ν tends to zero, we only need to prove that

lim sup
k→∞

{
g : g◦2k =82k ,t(h

◦

2k ), h ∈ E
}
⊂8t(E).

Now suppose that for a subsequence k j ↑∞, we have g◦
2k j
=82k j ,t((hk j )

◦

2k j
), and by compactness, assume

hk j → h with respect to the induced metric. We are going to prove g =8t(h).
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First of all, we have
lim

k→∞

∥∥82k ,t(h
◦

2k )−8t(h)+ e−it H h⊥2k

∥∥
Hσ = 0, (8-2)

uniformly for |t | ≤ T and h ∈ E . In fact, if T is small enough, we may assume h = h1 + h2, where
h1 ∈ f (�c

T ′), 2T ≤ T ′ ≤ 4T , and ‖h2‖Hσ ≤ C A. Since T ′ is small enough depending on A, we can
almost repeat8 the proof of Proposition 5.5 to get that the Xσ,b,T

′

norm tends to 0. Since the Xσ,b,T
′

norm
is not less than the spacial Hσ norm at time t , (8-2) follows.

From (8-2) we get
lim

j→∞

∥∥g◦
2k j − (8t(hk j ))

◦

2k j

∥∥
Hσ = 0,

and we only need to prove

lim
k→∞

∥∥(8t(hk j ))
◦

2k j − (8t(h))◦2k j

∥∥
Hσ = 0. (8-3)

But since hk j → h with respect to the induced metric, we only need to prove that ‖(hk j )
◦

2k j
−h◦

2k j
‖Hσ → 0.

For i ≥ j we have (
82ki ,t((hki )

◦

2ki )
)◦

2k j = g◦
2k j =82k j ,t((hk j )

◦

2k j ),

and by using (8-2) once more we see that

(8t(hki ))
◦

2k j = (8t(hk j ))
◦

2k j + o(1)

as i ≥ j→∞. Again using that hk j → h, we deduce

lim
i≥ j→∞

∥∥(hki − hk j )
◦

2k j

∥∥
Hσ = 0. (8-4)

In particular, we see that limi→∞(hki )
◦

2k j
exists in Hσ for each j . By the definition of the metric, this

limit must be h◦
2k j

. Therefore we get

lim
i→∞

∥∥(h− hki )
◦

2k j

∥∥
Hσ = 0. (8-5)

Combining (8-4) with (8-5), we finally see that lim j→∞‖(hk j )
◦

2k j
−h◦

2k j
‖Hσ = 0. This completes the proof

of Theorem 1.1. �

Remark 8.2. To show that 91(5) is a Borel set in the product metric space, we only need to show that
9 is injective, 9(5) is a Borel set in Xσ,b,T , and the map 9−1

:9(5)→5 is Borelian. To this end we
notice

9(g)=−i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds, (8-6)

where u = u(g) is the solution map of (1-2), and g = u(0).9 Then we can decompose 9 as

9 : g 7→ u(g) 7→ |u(g)|p−1u(g) 7→9(g),

8Actually we do not have the a priori bound on the nonlinear part of truncated equations, but since h1 ∈�T ′ with T ′ small
depending on A, it is not hard to get this from scratch.

9Here we also require g ∈H−ε for appropriate ε, so that u ∈ C(R,H−ε) in which u(0) makes sense.
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and see that at each step the mapping is injective, and the image of any Borel set is again Borelian (for
example, the set u(5) can be characterized as the set of all u such that u − e−it Hu(0) ∈ Xσ,b, that u
satisfies equation (1-2), and that u(0) ∈5, so it is Borelian). Hence the claim.

Appendix. Typical regularity on the support of µ

In this appendix we shall prove that if σ ≥ 1
2 , then almost surely Hσ/2 f (ω) is not a (locally integrable)

function. More precisely, almost surely in P, we have

ψ · Hσ/2 f (ω) 6∈ L1(R2) (A-1)

for any smooth compactly supported ψ that is not identically zero.
To prove this, first notice that we can find a countable number of ψ j such that each is compactly

supported and equals 1 on some annular region a < |x |< b, and for any other ψ there exists η ∈ L∞ and
j such that ψ j = ψ · η. So we only need to consider a fixed ψ j (which we write ψ below) and assume it
equals 1 for a < |x |< b. Here we use an asymptotic formula of L0

k proved in [Erdélyi 1960]:

L0
k(z)=

1
√

2π
(νz)−1/4 cos θ + O(ν−3/4), (A-2)

where a2 < z < b2 and ν = 4k+ 2 is large, and

θ =
ν(φ+ sinφ)−π

4
, φ = cos−1 ν− 2z

ν
.

From (A-2) we easily deduce that

L0
k(z)= 1/

√
2π(νz)−1/4 cos(

√
νz−π/4)+ O(ν−3/4),

and hence for each k

‖ekψ‖L1 &
∫

a2<z<b2
|L0

k(z)| dz & ν−1/4. (A-3)

Now we define the Gaussian random variable

hM,N (ω)=

M∑
k=0

(4k+ 2)(σ−1)/2gk(ω)η(H/N 2)(ekψ),

whose range lies in a finite-dimensional space, and use Lemma 3.3 to get the lower bound

P(‖hM,N (ω)‖L1 ≥ cEM,N )≥
1

10

with some absolute constant c, where

EM,N = E(‖hM,N (ω)‖L1)=

∫
R2

E

(∣∣∣∣ M∑
k=0

(4k+ 2)(σ−1)/2gk(ω)ek,N (x)
∣∣∣∣) dx

∼

∫
R2

( M∑
k=0

(4k+ 2)σ−1
|ek,N (x)|2

)1/2

dx &
( M∑

k=0

(4k+ 2)σ−1
‖ek,N‖

2
L1

)1/2

,
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and ek,N = η(N−2 H)(ekψ). Now for fixed N , we let M→∞ to get

hM,N → η(N−2 H)(Hσ/2 f (ω) ·ψ)

in S almost surely, since for fixed n (say n ≤ 3N ), the inner product 〈en, ekψ〉 is rapidly decreasing in k
(using integration by parts). In particular we have almost surely L1 convergence and hence (by taking
upper limit of a sequence of sets)

P(‖η(N−2 H)(Hσ/2 f (ω) ·ψ)‖L1 ≥ cEN )≥
1
10 ,

where

EN = lim inf
M→∞

EM,N &

( ∞∑
k=0

(4k+ 2)σ−1
‖ek,N‖

2
L1

)1/2

.

By the uniform boundedness of η(N−2 H), we know η(N−2 H)g→ g in L1 for any g ∈ L1, so we have

lim inf
N→∞

EN &

( ∞∑
k=0

(4k+ 2)σ−1
‖ekψ‖

2
L1

)1/2

&

( ∞∑
k=0

(4k+ 2)σ−3/2
)1/2

=∞,

due to (A-3). Now we take another upper limit, and see that with probability ≥ 1
10 , we have

lim sup
N→∞

‖η(N−2 H)(Hσ/2 f (ω) ·ψ)‖L1 =∞. (A-4)

Now (A-4) implies (A-1), again because of the uniform boundedness of η(N−2 H) on L1. Therefore
we have proved that (A-1) holds with positive probability. Since it is clearly a tail event (because ek ·ψ

themselves are Schwartz functions), it must hold with probability one.
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SCHRÖDINGER OPERATORS
AND THE DISTRIBUTION OF RESONANCES IN SECTORS

TANYA J. CHRISTIANSEN

The purpose of this paper is to give some refined results about the distribution of resonances in potential
scattering. We use techniques and results from one and several complex variables, including properties
of functions of completely regular growth. This enables us to find asymptotics for the distribution of
resonances in sectors for certain potentials and for certain families of potentials.

1. Introduction

The purpose of this paper is to prove some results about the distribution of resonances in potential
scattering. In particular, we study the distribution of resonances in sectors and give asymptotics of the
“expected value” of the number of resonances in certain settings.

More precisely, we consider the operator −1+ V , where V ∈ L∞comp(R
d) and 1 is the (nonpositive)

Laplacian. Then, except for a finite number of values of λ, RV (λ)= (−1+ V − λ2)−1, Im λ > 0, is a
bounded operator on L2(Rd) for λ in the upper half-plane. When d is odd and χ ∈ L∞comp(R

d) satisfies
χV = V , χRV (λ)χ has a meromorphic continuation to the lower half-plane. The poles of χRV (λ)χ

are called resonances, and are independent of choice of χ satisfying these hypotheses. Resonances are
analogous to eigenvalues not only in their appearance as poles of the resolvent, but also because they
appear in trace formulas much as eigenvalues do [Bardos et al. 1982; Guillopé and Zworski 1997; Melrose
1982]. Physically, they may be thought of as corresponding to decaying waves.

Let nV (r) denote the number of resonances of −1+V , counted with multiplicity, with norm at most r .
When d = 1, asymptotics of nV (r) are known:

lim
r→∞

nV (r)
r
=

2
π

diam(supp(V ))

[Zworski 1987]; see also [Froese 1997; Regge 1958; Simon 2000]. Moreover, “most” of the resonances
occur in sectors about the real axis, in the sense that for any ε > 0,

lim
r→∞

#
{
λ j pole of RV (λ) : | arg λ j −π |< ε or | arg λ j − 2π |< ε

}
r

=
2
π

diam(supp(V ))

[Froese 1997]. These results are valid for complex-valued V . The case d = 1 is exceptional, though: in
higher dimensions much less is known.
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MSC2010: primary 35P25, 81U05; secondary 47A40.
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Now we turn to d ≥ 3 odd, where the question is more subtle. If V ∈ L∞(Rd) has support in
B(0, a)= {x ∈ Rd

: |x | ≤ a}, then

d
∫ r

0

nV (t)− nV (0)
t

dt ≤ cdadrd
+ o(rd), (1-1)

where cd is defined in (3-5) and depends only on the dimension. Zworski [1989a] showed that such
a bound holds, and Stefanov [2006] identified the optimal constant cd . There are examples for which
equality holds in (1-1) [Zworski 1989b; Stefanov 2006]. Lower bounds have proved more elusive. The
current best-known general quantitative lower bound is for nontrivial real-valued V ∈ C∞c (R

d
;R):

lim sup
r→∞

nV (r)
r

> 0 (1-2)

[Sá Barreto 2001]. On the other hand, there are nontrivial complex-valued potentials V for which
χRV (λ)χ has no poles [Christiansen 2006].

We wish to single out the set for which asymptotics actually hold in (1-1). This is the set defined, for
a > 0, as

Ma =
{

V ∈ L∞(Rd) : supp V ⊂ B(0, a) and nV (r)= cdadrd
+ o(rd) as r→∞

}
. (1-3)

We remark that it is equivalent to require, as r→∞, that nV (r)= cdadrd
+ o(rd) or

d
∫ r

0
t−1(nV (t)− nV (0)

)
dt = cdadrd

+ o(rd).

The set Ma contains infinitely many radial potentials. By results from [Zworski 1989b; Stefanov 2006],
this set contains any potential of the form V (x)= v(|x |), where v ∈ C2([0, a]) is real-valued, v(a) 6= 0,
and V (x)= 0 for |x |> a. Additionally, it contains infinitely many complex-valued potentials which are
isoresonant with these real-valued radial potentials [Christiansen 2008].

We now can state some results. For the first, we set, for ϕ < θ , nV (r, ϕ, θ) to be the set of poles of
RV (λ), counted with multiplicity, with norm at most r and with argument between ϕ and θ inclusive.

Proposition 1.1. Let V ∈Ma . Then, if 0< ϕ < θ < π ,

nV (r, π +ϕ, π + θ)=
1

2πd
s̃d(ϕ, θ)rdad

+ o(rd) as r→∞,

where
s̃d(ϕ, θ)= h′d(θ)− h′d(ϕ)+ d2

∫ θ

ϕ

hd(s) ds,

and hd(θ) is as defined in (3-4).

If V is real-valued, then λ0 is a resonance of −1+ V if and only if −λ0 is a resonance. In this case,
for V ∈Ma and 0< θ < π ,

nV (r, π, π + θ)=
1

2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd
+ o(rd). (1-4)

Here, as elsewhere in this paper, we are concerned with the behavior as r →∞. Thus, one should
understand that statements of the type f (r)=g(r)+o(r p) are statements which hold for r sufficiently large.
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Corollary 1.4 shows that (1-4) holds for any V ∈Ma . These results show that any potential in Ma must
have resonances distributed regularly in sectors, as well as being distributed regularly in balls centered
at the origin. A result like this proposition and Corollary 1.4 is, for the special potentials of the form
V (x)= v(|x |) mentioned earlier, implicit in [Zworski 1989b] and [Stefanov 2006]. Here we derive it as a
corollary of some complex-analytic results, and note that it holds for any potential V ∈Ma . We note
that this proposition could, in fact, follow as a corollary to Theorem 1.3. However, we prefer to give a
separate proof that uses standard results for functions of completely regular growth.

In the following theorem, we use the notation NV (r)=
∫ r

0 (1/t)
(
nV (t)− nV (0)

)
dt and NV (r, ϕ, θ)=∫ r

0 (1/t)
(
nV (r, ϕ, θ)− nV (0, ϕ, θ)

)
dt . This theorem shows that there are many potentials for which

something close to the optimal upper bound on the resonances is achieved.

Theorem 1.2. Let � ⊂ Cp be an open connected set. Suppose that V (z) = V (z, x) is holomorphic in
z ∈�, that V (z, x) ∈ L∞(Rd) for each z ∈�, and that V (z, x)= 0 if |x |> a. Suppose in addition that
for some z0 ∈�, V (z0) ∈Ma . Then there is a pluripolar set E ⊂� so that

lim sup
r→∞

NV (z)(r)
rd =

cdad

d
for all z ∈� \ E .

Moreover, for any θ > 0, θ < π , there is a pluripolar set Eθ so that

lim sup
r→∞

NV (z)(r, π, π + θ)
rd ≥ lim

ε↓0

ad

2πd2 h′d(ε)

for all z ∈� \ Eθ .

For example, for a family of potentials satisfying the conditions of the theorem, one may take, for
z ∈ C, V (z) = zV1 + (1 − z)V0, where V0 ∈ Ma and V1 ∈ L∞(Rd) have support in B(0, a). Since
h′d(0+)= limε↓0 h′d(ε) > 0 (see Lemma 3.3), the second statement of the theorem is meaningful. This
result is of particular interest since resonances near the real axis are considered the more physically
relevant ones.

We recall the definition of a pluripolar set in Section 2. Here we mention that a pluripolar set is
small. A pluripolar set E ⊂ Cp has R2p Lebesgue measure 0, and if E ⊂ C is pluripolar, E ∩R has
one-dimensional Lebesgue measure 0 (see, for example, [Lelong and Gruman 1986; Ransford 1995]).
Thus the statements of Theorem 1.2 hold for “most” values of z ∈�.

If we take a weighted average over a family of potentials, a kind of expected value, we are able to find
asymptotics analogous to those which hold for a potential in Ma . In the statement of the next theorem
and later in the paper, we use the notation dL(z)= d Re z1d Im z1 . . . d Re z pd Im z p.

Theorem 1.3. Suppose the hypotheses of Theorem 1.2 are satisfied. Then for any ψ ∈ Cc(�),∫
�

ψ(z)nV (z)(r) dL(z)= cdadrd
∫
�

ψ(z) dL(z)+ o(rd)

as r→∞. Additionally, we have, for 0< ϕ < θ < π ,∫
�

ψ(z)nV (z)(r, ϕ+π, θ +π) dL(z)= 1
2πd

s̃d(ϕ, θ)rdad
∫
�

ψ(z) dL(z)+ o(rd),
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where s̃d is as defined in Proposition 1.1. Moreover, for 0< θ < π ,∫
�

ψ(z)nV (z)(r, π, θ +π) dL(z)= 1
2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd

∫
�

ψ(z) dL(z)+ o(rd).

Corollary 1.4. Let V ∈Ma . For any 0< θ < π ,

nV (r, π, θ +π)=
1

2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd
+ o(rd) (1-5)

and, for any 0< ϕ < π ,

nV (r, ϕ+π, 2π)= 1
2πd

[
−h′d(ϕ)+ d2

∫ π

ϕ

hd(s) ds
]

adrd
+ o(rd) (1-6)

as r→∞.

This corollary follows from Theorem 1.3 by taking V (z) equal to the constant (in z) potential V . We
could instead give a more direct proof by, essentially, simplifying the proof of Proposition 5.3 and then
applying Lemma 5.4.

It is worth noting that the coefficients of rd in (1-5) and (1-6) are positive, so that in any sector in the
lower half-plane which touches the real axis, the number of resonances grows like rd .

The proofs of the results here are possible because of the optimal upper bounds on

lim sup
r→∞

r−d ln
∣∣det SV (reiθ )

∣∣,
0 < θ < π , proved in [Stefanov 2006] (see Theorem 3.2 here). These, combined with some one-
dimensional complex analysis, are used to prove Proposition 1.1, and could be used to give a direct proof
of Corollary 1.4. The proofs of the other theorems use, in addition to one-dimensional complex analysis,
some facts about plurisubharmonic functions. Many of the complex-analytic results which we shall use
are recalled in Section 2.

Again, we emphasize that we are concerned here with large r behavior of resonance counting functions,
and consequently of other functions as well. Thus, statements of the type f (r)= g(r)+ o(r p) are to be
understood as holding for large values of r .

2. Some complex analysis

In this section we recall some definitions and results from complex analysis in one and several variables.
We will mostly follow the notation and conventions of [Levin 1964; Lelong and Gruman 1986]. We also
prove a result, Proposition 2.2, for which we are unaware of a proof in the literature.

The upper relative measure of a set E ⊂ R+ is

lim sup
r→∞

meas(E ∩ (0, r))
r

.

A set E ⊂ R+ is said to have zero relative measure if it has upper relative measure 0.
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If f is a function holomorphic in the sector ϕ < arg z < θ , we shall say f is of order ρ if

lim sup
r→∞

ln ln
(
maxϕ<φ<θ | f (reiφ)|

)
ln r

= ρ.

We shall further restrict ourselves to functions of order ρ and finite type, so that

lim sup
r→∞

ln
(
maxϕ<φ<θ | f (reiφ)|

)
rρ

<∞.

We shall use similar definitions for a function holomorphic in a neighborhood of a closed sector. In
this section only, we shall, following [Levin 1964], use the notation h f for the indicator function (or
indicator) of a function f of order ρ:

h f (θ)
def
= lim sup

r→∞

(
r−ρ ln | f (reiθ )|

)
.

Suppose f is a function analytic in the angle (θ1, θ2) and of order ρ and finite type there. The function f
is of completely regular growth on some set of rays RM (M is the set of values of θ ) if the function

h f,r (θ)
def
=

ln | f (reiθ )|

rρ

converges uniformly to h f (θ) for θ ∈M when r goes to infinity taking on all positive values except
possibly for a set EM of zero relative measure. The function f is of completely regular growth in the
angle (θ1, θ2) if it is of completely regular growth on every closed interior angle.

Functions of completely regular growth have zeros that are rather regularly distributed. For a function
f holomorphic in {z : θ1 < arg z < θ2} we define m f (r, ϕ, θ), for θ1 < ϕ < θ < θ2, to be the number of
zeros of f (z) in the sector ϕ ≤ arg z ≤ θ , |z| ≤ r .1

Theorem 2.1 [Levin 1964, Chapter III, Theorem 3]. If a holomorphic function f (z) of order d and
finite type has completely regular growth within an angle (θ1, θ2), then for all values of ϕ and θ with
θ1 < ϕ < θ < θ2, except possibly for a denumerable set, the following limit will exist:

lim
r→∞

m f (r, ϕ, θ)
rd =

1
2πd

s̃ f (ϕ, θ),

where
s̃ f (ϕ, θ)=

[
h′f (θ)− h′f (ϕ)+ d2

∫ θ

ϕ

h f (s) ds
]
.

The exceptional denumerable set can only consist of points for which h′f (θ + 0) 6= h′f (θ − 0).

In the following proposition, we use the notation m f (r) to denote the number of zeros of a function f ,
counted with multiplicity, with norm at most r . It is likely that some of the hypotheses included here could
be relaxed. However, when we apply this proposition, f will be the determinant of the scattering matrix,
perhaps multiplied by a rational function, and many of these hypotheses are natural in such applications.

1More standard notation would be n(r, ϕ, θ), but we have already defined nV (r, ϕ, θ) to be something else.
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Let f (z) be a function meromorphic on C. Then f (z)= g1(z)/g2(z), with g1, g2 entire. The functions
g1 and g2 are not uniquely determined. However, the order of f can be defined to be

min
{
max(order of g1, order of g2): f (z)= g1(z)/g2(z) with g1, g2 entire

}
.

It is possible to define the order of a meromorphic function by using the Nevanlinna characteristic function,
yielding the same result.

Proposition 2.2. Let f be a function meromorphic in the complex plane, with neither zeros nor poles on
the real line. Suppose all the zeros of f lie in the open upper half-plane, and all the poles in the open
lower half-plane. Furthermore, assume f is of order d > 1, h f is finite for 0≤ θ ≤ π , and h f (θ0) 6= 0 for
some θ0, 0< θ0 < π . Suppose in addition that∫ r

0

f ′(t)
f (t)

dt = o(rd) as r→±∞, (2-1)

and that the number of poles of f with norm at most r is of order at most d. If

lim inf
r→∞

m f (r)
rd =

d
2π

∫ π

0
h f (θ) dθ,

then f is of completely regular growth in the angle (0, π).

Before proving the proposition, we note that Govorov [1965; 1967] has studied the issue of completely
regular growth of functions holomorphic in an angle. This is discussed in [Levin 1964, Appendix VIII,
Section 2]. This is somewhat different than what we consider, since we use the assumption that f is
meromorphic and of order d on the plane. Thus Govorov uses different restrictions on the distribution of
the zeros of f .

Proof. The proof of this proposition follows in outline the proof of the analogous theorem for entire
functions in the plane [Levin 1964, Chapter IV, Theorem 3]. Rather than using Jensen’s theorem, though,
it uses the equality∫ r

0

m f (t)
t

dt =
1

2π
Im
∫ r

0

1
t

∫ t

−t

f ′(s)
f (s)

ds dt +
1

2π

∫ π

0
ln | f (reiθ )| dθ (2-2)

if | f (0)| = 1, which follows using the proof of [Froese 1998, Lemma 6.1].
By [Levin 1964, Property (4), Chapter I, Section 12],

lim inf
r→∞

m f (r)
rd ≤ lim inf

r→∞
dr−d

∫ r

0

m f (t)
t

dt. (2-3)

We note [ibid., Chapter I, Theorem 28] that for any ε > 0, there is an R > 0 so that

r−d ln | f (reiθ )| ≤ h f (θ)+ ε, for r > R, 0≤ θ ≤ π. (2-4)

Using this, (2-2), and our assumptions on the behavior of f on the real axis, we see that

lim sup
r→∞

r−d
∫ r

0

m f (t)
t

dt ≤
1

2π

∫ π

0
h f (θ) dθ.
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Combining this with (2-3) and using our assumptions on m f (r), we get

lim
r→∞

r−d
∫ r

0

m f (t)
t

dt =
1

2π

∫ π

0
h f (θ) dθ.

Thus using (2-2) and (2-1) again, we have

lim
r→∞

∫ π

0

[
h f (θ)− r−d ln | f (reiθ )|

]
dθ = 0,

and, using (2-4),

lim
r→∞

∫ π

0

∣∣h f (θ)− r−d ln | f (reiθ )|
∣∣ dθ = 0.

Since we have assumed f is of order d , we may write f as the quotient of two entire functions, each
of order at most d . Then we may apply [Levin 1964, Chapter 2, Theorem 7] to find that for every η > 0,
there is a set Eη of positive numbers of upper relative measure less than η so that if r 6∈ Eη, the family of
functions of θ ,

h f,r (θ)
def
= r−d ln | f (reiθ )|,

is equicontinuous in the angle 0< ε0 ≤ θ ≤ π − ε0.
Now let θ2 > θ1, with [θ1, θ2] ⊂ (0, π). Given η > 0 and ε > 0 we can, by the above result, find a

δ > 0 with [θ1− δ, θ2+ δ] ⊂ (0, π) and a set Eη of upper relative measure at most η so that if θ ∈ [θ1, θ2],
r 6∈ Eη, and |ϕ− θ |< δ, then |h f,r (θ)−h f,r (ϕ)|< ε/4 and |h f (θ)−h f (ϕ)|< ε/4. Then for 0< |k|< δ,
r 6∈ Eη, and θ ∈ [θ1, θ2],

|h f,r (θ)− h f (θ)|<
ε

2
+

1
k

∫ θ+k

θ

|h f,r (ϕ)− h f (ϕ)| dϕ

≤
ε

2
+

1
k

∫ π

0
|h f,r (ϕ)− h f (ϕ)| dϕ.

Since the integral goes to 0 as r→∞, we have shown that |h f,r (θ)−h f (θ)|<ε for r > rε , r 6∈ Eη. Since
η > 0 and ε > 0 are arbitrary, we have, by [Levin 1964, Chapter III, Lemma 1], that f is of completely
regular growth in [θ1, θ2]. Since θ1, θ2 were arbitrary except that [θ1, θ2] ⊂ (0, π), we have proved the
proposition. �

We shall also need some basics about plurisubharmonic functions and pluripolar sets. We use notation
as in [Lelong and Gruman 1986] and direct the reader to this reference for more details.

Let �⊂ Cp be an open connected set. A function 9 :�→ [−∞,∞) is said to be plurisubharmonic
if 9 6≡ −∞, 9 is upper semicontinuous, and

9(z)≤ 1
2π

∫ 2π

0
9(z+wreiθ ) dθ

for all w, r such that z+uw ∈� for all u ∈C, |u| ≤ r . A classic example of a plurisubharmonic function
is ln | f (z)|, where f (z) is holomorphic. A subset E ⊂ � ⊂ Cp is said to be pluripolar if there is a
function 9 plurisubharmonic on � so that E ⊂ {z :9(z)=−∞}.
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For the convenience of the reader, we recall an additional fact from several complex variables that we
shall need.

Proposition 2.3 [Lelong and Gruman 1986, Proposition 1.39]. Let {9q} be a sequence of plurisub-
harmonic functions uniformly bounded above on compact subsets in an open connected set � ⊂ Cp,
with lim supq→∞9q ≤ 0, and suppose that there exist ξ ∈ � such that lim supq→∞9q(ξ) = 0. Then
A = {z ∈� : lim supq→∞9q(z) < 0} is pluripolar in �.

3. The functions sV (λ)= det SV (λ) and hd(θ)

For V ∈ L∞comp(R
d) and χ ∈ L∞comp(R

d) with χV = V , we have χRV (λ)χ = χR0(λ)χ(I +V R0(λ)χ)
−1.

Since for any χ with compact support in Rd , ‖χR0(λ)χ‖ ≤ cχ/|λ| when Im λ ≥ 0, we see that RV (λ)

can have only finitely many poles in the closed upper half-plane.
For V ∈ L∞comp(R

d), let SV (λ) be the associated scattering matrix and sV (λ)= det SV (λ). With at most
finitely many exceptions, the poles of sV (λ) coincide with the poles of RV (λ), and the multiplicities agree.
Moreover, sV (λ)sV (−λ)= 1.

Lemma 3.1 [Christiansen 2005, Lemma 3.1]. Let V ∈ L∞comp(R
d
;C). For λ ∈ R, there is a CV so that∣∣∣ d

dλ
ln sV (λ)

∣∣∣≤ CV |λ|
d−2

whenever |λ| is sufficiently large.

In fact, if supp V ⊂ B(0, a), there is a constant αd = αd,a , so that it suffices to take |λ| ≥ 2αd‖V ‖∞
for such a bound to hold. We note that for λ ∈ R, |λ| ≥ 2αd‖V ‖∞, under these same assumptions on V ,

‖SV (λ)− I‖ ≤ C |λ|−1. (3-1)

This is relatively easy to see from an explicit representation of the scattering matrix; see, for example, the
proof of the lemma just stated in [Christiansen 2005]. The constants in the statement of that lemma and
in (3-1) can be chosen to depend only on the dimension, ‖V ‖∞, and the support of V . We note that it
follows from Lemma 3.1, (3-1), and (2-2) that as r→∞,∫ r

0

nV (t)
t

dt =
∫ π

0
ln
∣∣det SV (reiθ )

∣∣ dθ + O(rd−1). (3-2)

Let
ρ(z) def
= ln 1+

√
1−z2

z
−

√
1− z2, 0< arg z < π. (3-3)

This is a function which arises in studying the asymptotics of Bessel functions; see [Olver 1954]. To
define the square root which appears here, take the branch cut on the negative real axis and define ρ to be
a continuous function in {0< arg z < π} ∪ (0, 1) and use the principal branches of the logarithm and the
square root when z ∈ (0, 1).

We use some notation from [Stefanov 2006]. Set, for 0< θ < π ,

hd(θ)
def
=

4
(d − 2)!

∫
∞

0

[−Re ρ]+(teiθ )

td+1 dt (3-4)
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and set hd(0)= 0, hd(π)= 0. Further, define

cd
def
=

d
2π

∫ π

0
hd(θ) dθ =

2d
π(d − 2)!

∫
Im z>0

[−Re ρ]+(z)
|z|d+2 dx dy. (3-5)

This is the constant cd that appears in (1-1).
The next result is adapted from [Stefanov 2006, Theorem 5]; the original result covers a much larger

class of operators.

Theorem 3.2. Let V ∈ L∞(Rd) be supported in B(0, a).

(a) For any θ ∈ [0, π],

ln |sV (reiθ )| ≤ hd(θ)adrd
+ o(rd) as r→∞, (3-6)

and the remainder term depends on V and is uniform for 0< δ ≤ θ ≤ π − δ for any δ ∈ (0, π).

(b) For any δ > 0,

ln |sV (reiθ )| ≤ (hd(θ)ad
+ δ)rd

+ o(rd) as r→∞

uniformly in θ ∈ [0, π].

We remark that both of these statements are about “large r” behavior, so that the possibility that sV

has a finite number of poles in the upper half-plane does not affect the validity of the statements.
It is important to note several things about the bounds in this theorem. One is that although Stefanov’s

theorem is stated only for self-adjoint operators (hence V real), it is equally valid when we allow complex-
valued potentials. In fact, the proof of (a) in [Stefanov 2006, Theorem 5] uses self-adjointness only to
obtain a bound on the resolvent for λ in the upper half-plane. A similar bound is true for the operator
−1+ V when V is complex-valued. The proof of (b) uses the fact that ln |sV (λ)| = 1 for real V and
λ ∈ R. For complex-valued V , the proof in [Stefanov 2006] of (b) can be adapted by using (3-1) and
Lemma 3.1 to show that

∣∣ln |sV (λ)|
∣∣ ≤ C(1+ |λ|)d−1 for λ ∈ R with |λ| ≥ 2αd‖V ‖∞. Here C can be

chosen to depend only on d, ‖V ‖∞, and the diameter of the support of V .
Likewise, the particulars of the operator enter only through the diameter of the support of the perturbation

(for us, the diameter of the support of V , which is 2a) and the aforementioned bound on the resolvent in
the good half-plane Im λ > 0. Thus, it is easy to see that the estimates of Theorem 3.2 are uniform in V
as long as supp V ⊂ B(0, a), ‖V ‖∞ ≤ M , and r ≥ 2αd M .

We note that the upper bound (1-1) on the integrated resonance-counting function holds with the
constant cd defined in (3-5) even if V is complex-valued. This follows from the proof in [Stefanov 2006].
In fact, the proof uses the bounds recalled in Theorem 3.2 and the identity (2-2). Together with the bounds
in Lemma 3.1 and (3-1), these prove (1-1), even when V is complex-valued.

We shall want to understand the function hd(θ) better. Note that for 0< θ ≤ π/2,

hd

(
π

2
+ θ

)
= hd

(
π

2
− θ

)
.

This can be seen directly using the definition of hd and ρ.
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Lemma 3.3. The function hd(θ), defined in (3-4), is C1 on (0, π). Moreover,

h′d(0+)
def
= lim

ε↓0
h′d(ε)=

√
π

0
( d−1

2

)
(d − 2)!0

(
1+ d

2

) .
Proof. We note [Olver 1954, Section 4] that Re ρ(z) < 0 if 0 < arg z < π and |z| > |z0(arg z)|, where
z0(θ) is the unique point in C with argument θ and which lies on the curve given by

±(s coth s− s2)1/2+ i(s2
− s tanh s)1/2, 0≤ s ≤ s0.

Here s0 is the positive solution of coth s = s. Furthermore, Re ρ(z) > 0 if z is in the upper half-plane but
|z|< |z0(arg z)|. Hence, recalling the definition of hd , we have

hd(θ)=
4

(d − 2)!

∫
∞

|z0(θ)|

[−Re ρ](teiθ )

td+1 dt.

Using the definition of ρ in (3-3) and the following comments, we see that ρ is in fact a smooth
function of z with 0< arg z < π , |z|> 0. Since |ρ(z)|/|z| → 1 when |z| →∞ in this region, the integral
defining hd is absolutely convergent. Likewise, since

∂

∂θ
ρ(teiθ )=−i

√
1− (teiθ )2,

we have ∣∣∣∣−Re
[
∂
∂θ
ρ(teiθ )

]
td+1

∣∣∣∣≤ Ct−d ,

and the integral ∫
∞

|z0(θ)|

−Re
[
∂
∂θ
ρ(teiθ )

]
td+1 dt

converges absolutely. A computation shows that |z0| is a C1 function of θ for θ in (0, π), and that
limε↓0(∂/∂θ)|z0| is finite. Thus, using that Re ρ(z0(θ))= 0 and the regularity of the derivative of |z0|(θ),
we get

d
dθ

hd(θ)=
4

(d−2)!

∫
∞

|z0(θ)|

Re i
√

1− (teiθ )2

td+1 dt,

which is continuous in θ . Thus hd is C1 on (0, π), we have

h′d(0+)=
4

(d−2)!

∫
∞

1

√
t2− 1
td+1 dt,

and a computation now finishes the proof of the lemma. �

If d = 3, we can compute that

h3(θ)=
4
9

(
sin(3θ)+Re

(1− z2
0(θ))

3/2

|z0(θ)|3

)
,

where z0(θ) is as in the proof of the lemma. We comment that the sin(3θ) term is missing from the first
remark following the statement of [Stefanov 2006, Theorem 5].
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4. Proof of Proposition 1.1

We can now give the proof of Proposition 1.1, which follows by combining Theorem 2.1, Proposition 2.2,
and [Stefanov 2006, Theorem 5].

Recall that SV (λ) is the scattering matrix associated with the operator −1+V , and sV (λ)= det SV (λ).
Then sV has a pole at λ if and only if sV has a zero at −λ, and the multiplicities coincide. Moreover, with
at most a finite number of exceptions, the poles of sV (λ) coincide, with multiplicity, with the zeros of
RV (λ).

If sV (λ) has poles in the closed upper half-plane, it has only finitely many, say λ1, . . . , λm , where the
poles are repeated according to multiplicity. Set

f (λ)=
m∏

j=1

(λ− λ j )

λ+ λ j
sV (λ).

We check that f satisfies the hypotheses of Proposition 2.2. Note that f and sV (λ) have the same order
and they have the same indicator function for 0≤ θ ≤π . We know that sV has order at most d by [Zworski
1997, Theorem 7]. Moreover, for any M chosen large enough that sV has no zeros or poles bigger than
M on the real line, for r > M we have∫ r

0

f ′(t)
f (t)

dt =
∫ r

M

s ′V (t)
sV (t)

dt + O(1).

Using (3-1) and Lemma 3.1, we see that∫ r

M

s ′V (t)
sV (t)

dt = O(rd−1) as r→∞,

yielding ∫ r

0

f ′(t)
f (t)

dt = O(rd−1) as r→∞. (4-1)

A similar argument gives the same bound for r → −∞. It remains to check the hypotheses on the
indicator function; this is done in the next paragraph.

From [Stefanov 2006, Theorem 5], recalled here in Theorem 3.2, for 0≤ θ ≤ π and large r ,

r−d ln | f (reiθ )| ≤ adhd(θ)+ o(1),

where we have some uniformity in θ . Thus, using (2-2) and (4-1), we get

lim sup
r→∞

r−d NV (r)= lim sup
r→∞

r−d 1
2π

∫ π

0
ln | f (reiθ )|dθ ≤ ad

2π

∫ π

0
hd(θ)dθ.

But since V ∈Ma ,
lim

r→∞
r−d NV (r)=

cdad

d
=

ad

2π

∫ π

0
hd(θ) dθ,

and we see that we must have

lim sup
r→∞

r−d ln | f (reiθ )| = adhd(θ), for almost every θ ∈ (0, π).
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The left-hand side of the above equation is the value of the indicator function of f at θ . But the indicator
function of f is continuous on (0, π) [Levin 1964, Section 16, point (a) on p. 54], and so is hd(θ). Thus
we must have

lim sup
r→∞

r−d ln | f (reiθ )| = adhd(θ) for θ ∈ (0, π).

Applying Proposition 2.2 to f (λ), we see that f (λ) is a function of completely regular growth in
the upper half-plane. Since hd(θ) is a C1 function of θ for θ ∈ (0, π), we get the proposition from
Theorem 2.1.

5. Proof of Theorem 1.3

This section proves Theorem 1.3. We begin by outlining the strategy of the proof.
For 0 < ϕ < θ < 2π , recall the notation nV (r, ϕ, θ) for the number of poles of RV (λ) in the sector
{z : |z| ≤ r, ϕ ≤ arg z ≤ θ}. A representative claim of the theorem is that with V (z), � as in the statement
of the theorem, 0< θ < π ,∫

�

ψ(z)nV (z)(r, π, θ +π) dL(z)= 1
2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd

∫
�

ψ(z) dL(z)+ o(rd) (5-1)

as r →∞ for any ψ ∈ Cc(�). We prove this via the intermediate step of showing that (5-1) holds
for ψ which is the characteristic function of any suitable ball in � (Proposition 5.7). To get (5-1) for
ψ ∈ Cc(�), we cover the support of ψ with the union of a finite number of small disjoint balls and a set
of small volume. On each small ball, we can approximate ψ by its value at the center of the ball and
apply Proposition 5.7. This and the necessary estimates are done in the proof of the theorem which ends
this section.

The proof of Proposition 5.7 is done in a number of steps. We set

NV (r, ϕ, θ)=
∫ r

0

1
t
(
nV (t, ϕ, θ)− nV (0, ϕ, θ)

)
dt.

Lemma 5.2 gives
∫ θ

0 NV (r, π, θ ′+π) dθ ′ as a sum of two integrals involving ln |sV | and an error of order
rd−1. This follows from an application of one-dimensional complex analysis, Lemma 3.1, and (3-1). Next
we consider the function

9(z, r, ρ) def
=

1
vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0
NV (z′)(r, π, θ ′+π) dθ ′dL(z′).

Here we use B(z, ρ) to be the ball with center z and radius ρ in Cp. Thus the function 9 is the average
over balls of varying center z. Fix ρ small, and consider this as a function of z and r . Lemma 5.2 is
used to show that 9 is the sum of a function 91 which is plurisubharmonic in z and a function which is
O(rd−1). The proof of Proposition 5.3 uses a combination of properties of plurisubharmonic functions
and the fact that r−d NV (z′)(r, π, θ ′+π) is not negative and can be (locally) uniformly bounded above for
large r to prove an “averaged” in θ and r version of (5-1) for ψ the characteristic function of a ball in �
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satisfying some conditions. Propositions 5.5 and then 5.7 eliminate the need to average in θ and r , using
Lemma 5.4.

The proofs of the other claims of Theorem 1.3 are quite similar; the proof of Proposition 5.6 and the
final proof of the theorem indicate the differences.

Now we turn to proving the theorem. We shall need an identity related to both (2-2) and to what Levin
[1964, Chapter 3, Section 2] calls a generalized formula of Jensen. We define, following [Levin 1964],
for a function f meromorphic in a neighborhood of arg z = θ and with | f (0)| = 1,

J r
f (θ)

def
=

∫ r

0

ln | f (teiθ )|

t
dt. (5-2)

This integral is well-defined even if f has a zero or pole with argument θ .

Lemma 5.1. Let f be holomorphic in ϕ ≤ arg z ≤ θ , let | f (0)| = 1, let f have no zeros with argument ϕ
or θ and with norm less than r , and let m(r, ϕ, θ) be the number of zeros of f in the sector ϕ < arg z < θ ,
|z| ≤ r . Then∫ r

0

m(t, ϕ, θ)
t

dt

=
1

2π

∫ r

0

∂

∂θ
J t

f (θ)
dt
t
+

1
2π

∫ r

0

1
t

∫ t

0

∂

∂s
arg f (seiϕ) ds dt + 1

2π

∫ θ

ϕ

ln | f (reiω)| dω. (5-3)

Proof. Using the argument principle and the Cauchy–Riemann equations just as in [Levin 1964, Chapter 3,
Section 2], we see that

2πm(r ′, ϕ, θ)=
∫ r ′

0

∂

∂t
arg f (teiϕ) dt +

∫ r ′

0

1
t
∂

∂θ
ln | f (teiθ )| dt + r ′

∫ θ

ϕ

∂

∂r ′
ln | f (r ′eiω)| dω

when there are no zeros on the boundary of the sector. As in [Levin 1964], by dividing by 2πr ′ and
integrating from 0 to r in r ′, we obtain the lemma. �

We note that |sV (0)| = 1, since sV (λ)sV (−λ)= 1.

Lemma 5.2. Suppose V ∈ L∞comp(R
d). Then for 0< θ < π ,∫ θ

0
NV (r, π, θ ′+π) dθ ′ = 1

2π

∫ r

0
J t

sV
(θ)

dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (reiω)| dω dθ ′+ O(rd−1)

as r→∞. The error can be bounded by c〈rd−1
〉, where the constant depends only on ‖V ‖∞, the support

of V , and d.

Proof. Recall that with at most a finite number of exceptions, λ0 is a pole of RV (λ) if and only if −λ0 is
a zero of sV (λ), and the multiplicities coincide. As in the proof of Proposition 1.1, if sV (λ) has poles
λ1, . . . , λm in the closed upper half-plane, we introduce the function

f (λ)=
(λ− λ1) . . . (λ− λm)

(λ+ λ1) . . . (λ+ λm)
sV (λ),
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which is holomorphic in the closed upper half-plane. The poles of sV in the closed upper half-plane
correspond to eigenvalues, and the number of such poles can be bounded by a constant depending on d ,
‖V ‖∞, and the support of V . Note that f has no zeros on the real line and that sV and f have all but
finitely many of the same zeros. Moreover, ln | f (reiθ )| = ln |sV (reiθ )| + O(1) for r→∞, 0≤ θ ≤ π .

Choose 0< M <∞ so that sV (λ) has no zeros in the upper half-plane with norm greater than or equal
to M . This constant M can be chosen to depend only on ‖V ‖∞, the support of V , and d . Now, by using
the relationship between the poles of RV (λ) and the zeros of sV = det SV and the relationships between
f and sV just mentioned, and applying Lemma 5.1 to f , we see that for r > M , 0< θ ′ < π ,

NV (t, π, θ ′+π)=
1

2π

∫ r

M

∂

∂θ ′
J t

sV
(θ ′)

dt
t
+

1
2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt

+
1

2π

∫ θ ′

0
ln |sV (reiω)| dω+ O((ln r)2) (5-4)

if f has no zeros with argument θ ′ and norm not exceeding r . Here we are using that∫ M

0

∂

∂θ ′
J t

f (θ
′)

dt
t
= O(1)

and∫ r

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt

=

∫ r

M

1
t

∫ t

M

d
dt ′

arg f (t ′) dt ′dt +
∫ r

M

1
t

∫ M

0

d
dt ′

arg f (t ′) dt ′dt +
∫ M

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt.

But ∫ r

M

1
t

∫ M

0

d
dt ′

arg f (t ′) dt ′dt = O(ln r) and
∫ M

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt = O(1).

Additionally, for t→∞,
d
dt

arg f (t)= d
dt

arg sV (t)+ O
(1

t

)
.

These remainders can be bounded using constants depending only on ‖V ‖∞, supp V , and d .
Notice that for fixed value of r > M , there are only finitely many values of θ ′ with sV having a zero

with argument θ ′ and norm at most r . We integrate (5-4) in θ ′ from 0 to θ and, as in the proof of Jensen’s
equality, use the fact that both sides of the equation below are continuous functions of θ , to get∫ θ

0
NV (r, π, θ ′+π) dθ ′ = 1

2π

∫ r

M
J t

sV
(θ)

dt
t
−

1
2π

∫ r

M
J t

sV
(0)dt

t

+
θ

2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt + 1
2π

∫ θ

0

∫ θ ′

0
ln |sV (reiω)| dω dθ ′+ O((ln r)2).

The bounds of Lemma 3.1 and (3-1) mean that, as r→∞,

1
2π

∫ r

M
J t

sV
(0)dt

t
= O(rd−1)
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and
θ

2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt = O(rd−1),

where the bounds can be made uniform in V with support contained in a fixed compact set and ‖V ‖∞
bounded. Moreover, we note that

∫ M
0 J t

SV
(θ)(dt/t)= O(1). �

We shall need some notation for the results which follow. Let � ⊂ Cd ′ be an open set containing a
point z0. For ρ > 0 small enough that B(z0, ρ) ⊂ �, we define �ρ to be the connected component of
{z ∈� : dist(z, �c) > ρ} which contains z0.

Proposition 5.3. Let V , z0, � satisfy the assumptions of Theorem 1.2, let ρ > 0 be small enough that
B(z0, 2ρ)⊂�, and let �ρ be as defined above. Then, for z ∈�2ρ , 0< θ < π ,

9(z, r, ρ) def
=

1
vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0
NV (z′)(r, π, θ ′+π) dθ ′dL(z′)

=
1

2π
adrd

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
+ o(rd)

as r→∞.

Proof. First note that since 0 ≤ d NV (z)(z, π, θ + π) ≤ cdrdad
+ o(rd), and the bound is uniform on

compact sets of z, we get that holding ρ fixed, r−d9( · , r, ρ) is a family uniformly continuous in z for z
in compact sets of �2ρ .

We shall use Lemma 5.2. Note that by Stefanov’s results recalled in Theorem 3.2, for large r ,

1
2π

∫ r

0
J t

sV (z)
(θ)

dt
t
≤

1
2π

1
d2 hd(θ)adrd

+ o(rd),

where the term o(rd) can be bounded uniformly in z in compact sets of �ρ . Recall that this is a statement
about large r behavior, and holds even if sV (z) has poles in the upper half-plane, since it has at most
finitely many. By the same argument, for large r ,∫ θ

0

∫ θ ′

0
ln |sV (z)(reiω)| dω dθ ′ ≤

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′adrd

+ o(rd).

Using Lemma 5.2, we find that

9(z, r, ρ)= 1
2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ r

0
J t

sV (z′)(θ)
dt
t

dL(z′)

+
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0

∫ θ ′

0
ln |sV (z′)(reiω)| dω dθ ′dL(z′)+ O(rd−1).

Let M = 2αd maxz∈�ρ ‖V (z)‖∞ and set, for r > M ,

91(z, r, ρ)=
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ r

M
J t

sV (z′)
(θ)

dt
t

dL(z′)

+
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0

∫ θ ′

0
ln |sV (z′)(reiω)| dω dθ ′dL(z′),
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and note that
9(z, r, ρ)=91(z, r, ρ)+ O(rd−1).

By the bounds above,

91(z, r, ρ)≤
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
adrd
+ o(rd). (5-5)

Using [Lelong and Gruman 1986, Proposition I.14] and the fact that ln |sV (z)(λ)| is a plurisubharmonic
function of z ∈ � when |λ| > 2αd‖V (z)‖∞ and λ lies in the upper half-plane, we see that 91(z, r, ρ)
is a plurisubharmonic function of z ∈�2ρ . Since by Proposition 2.2, sV (z0)(λ) is of completely regular
growth in 0< arg λ < π , using Lemma 5.2 and [Levin 1964, Chapter III, Section 2, Lemma 2],

lim
r→∞

r−d
∫ θ

0
NV (z0)(r, π, θ

′
+π) dθ ′ = 1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

By the most basic property of plurisubharmonic functions,

91(z0, r, ρ)≥
1

2π

∫ r

M
J t

sV (z0)
(θ)

dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (z0)(reiω)| dω dθ ′.

But the right-hand side of this equation is
∫ θ

0
NV (z0)(r, π, θ

′
+π) dθ ′+ O(rd−1), so we see that

lim inf
r→∞

r−d91(z0, r, ρ)≥
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

Combining this with (5-5), we find

lim
r→∞

r−d91(z0, r, ρ)=
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad . (5-6)

Using this and the upper bound (5-5) on 91, since 91 is plurisubharmonic in z, it follows from [Lelong
and Gruman 1986, Proposition 1.39] (recalled here in Proposition 2.3) that for any sequence {r j }, r j→∞,
there is a pluripolar set E ⊂�ρ (which may depend on the sequence) so that

lim sup
j→∞

r−d
j 91(z, r j , ρ)=

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad

for all z ∈�ρ \ E . Since limr→∞ r−d
(
91(z, r, ρ)−9(z, r, ρ)

)
= 0, the same conclusion holds for 9 in

place of 91.
Suppose there is some z1 ∈�2ρ and some sequence r j →∞ so that

lim
j→∞

r−d
j 9(z1, r j , ρ) <

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

Then, using the uniform continuity of r−d9(z, r, ρ) in z, we find there must be an ε > 0 so that

lim sup
j→∞

r−d
j 9(z, r j , ρ) <

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad
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for all z ∈ B(z1, ε). But since B(z1, ε) is not contained in a pluripolar set, we have a contradiction. Thus

lim
r→∞

r−d9(z, r, ρ)= 1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad

for all z ∈�2ρ . �

The following lemma will be used to remove the need to average in θ as in Proposition 5.3.

Lemma 5.4. Let M(r, θ) be a function so that for any fixed positive r0 >C0, M(r0, θ) is a nondecreasing
function of θ , and suppose

lim
r→∞

r−d
∫ θ

0
M(r, θ ′) dθ ′ = α(θ)

for θ1 < θ < θ2. Then if α is differentiable at θ , then

lim
r→∞

r−d M(r, θ)= α′(θ).

Proof. Let ε > 0. Then, since M(r, θ) is nondecreasing in θ ,∫ θ+ε

0
M(r, θ ′) dθ ′−

∫ θ

0
M(r, θ ′) dθ ′ ≥ εM(r, θ),

which, under rearrangement, yields

r−d M(r, θ)≤ r−d

∫ θ+ε
0 M(r, θ ′) dθ ′−

∫ θ
0 M(r, θ ′) dθ ′

ε
.

Thus
lim sup

r→∞
r−d M(r, θ)≤ α(θ+ε)−α(θ)

ε
.

Likewise, we find
lim inf

r→∞
r−d M(r, θ)≥ α(θ)−α(θ−ε)

ε
.

Since both these equalities must hold for all ε > 0, the lemma follows from the assumption that α is
differentiable at θ . �

The following proposition follows from Proposition 5.3, but is stronger as it does not require averaging
in the θ ′ variables.

Proposition 5.5. Let V , z0, � satisfy the assumptions of Theorem 1.2, and let ρ > 0 and �ρ be as in
Proposition 5.3. Then for z ∈�2ρ , 0< θ < π , as r→∞,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r, π, θ +π) dL(z′)= 1
2π

adrd
(

1
d2 h′d(θ)+

∫ θ

0
hd(ω) dω

)
+ o(rd).

Proof. This follows from applying Lemmas 5.4 and 3.3 to the results of Proposition 5.3. �

Proposition 5.5 does not give results for the counting function for all the resonances (note that we
cannot have θ = π ). The following fills this gap.
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Proposition 5.6. Let V , z0, � satisfy the assumptions of Theorem 1.2, and let ρ > 0 and �ρ be as in
Proposition 5.3. Then for z ∈�2ρ , as r→∞,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r) dL(z′)= 1
2π

adrd
∫ θ

0
hd(ω) dω+ o(rd).

Proof. The proof of this is very similar to that of Proposition 5.3. In fact, the main difference is the use
of (2-2), which together with Lemma 3.1 and (3-1) gives us, by handling possible poles in the upper
half-plane using a method similar to the proof of Lemma 5.2,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r) dL(z′)=91(z, r, ρ)+ O(rd−1),

where
91(z, r, ρ)=

1
Vol(B(z, ρ))

1
2π

∫
z′∈B(z,ρ)

∫ π

0
ln |sV (z′)(reiθ )| dθ dL(z′).

Using that 91 is plurisubharmonic in z, the proof now follows just as in Proposition 5.3. �

The following proposition is much like Propositions 5.5 and 5.6, but eliminates the average in the r
variable.

Proposition 5.7. Let V, �, z0 satisfy the conditions of Theorem 1.2, and let ρ and �ρ be as in
Proposition 5.3. Then for 0< θ < π , z ∈�2ρ ,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

nV (z′)(r, π, θ +π) dL(z′)= adrd

2π

(
1
d

h′d(θ)+ d
∫ θ

0
hd(θ) dθ

)
+ o(rd)

and
1

Vol(B(z, ρ))

∫
z′∈B(z,ρ)

nV (z′)(r) dL(z′)= d
2π

adrd
∫ π

0
hd(θ) dθ + o(rd)

as r→∞.

Proof. This proof follows from Propositions 5.5 and 5.6, using, in addition, a result like that of [Stefanov
2006, Lemma 1] or Lemma 5.4. �

Proof of Theorem 1.3. Let M =max(1+ |ψ(z)|), and for ρ > 0 small enough that B(z0, ρ)⊂�, set �ρ
to be the connected component of {z ∈� : dist(z, �c) > ρ} which contains z0. Given ε > 0, choose ρ > 0
such that B(z0, 2ρ)⊂� and so that

vol
(
suppψ ∩ (� \�2ρ)

)
<

ε

10Med(cdad + 1)
. (5-7)

Since ψ is continuous with compact support, we can find a δ1 > 0, δ1 < ρ so that if |z− z′|< δ1, then

|ψ(z)−ψ(z′)|<
ε

10ed(1+ vol suppψ)(adcd + 1)
.

We may find a finite number J of disjoint balls B(z j , ε j ) so that ε j < δ1, z j ⊂�2ρ , and

vol
(
suppψ \

⋃J
1 B(z j , ε j )

)
+ vol

(⋃J
1 B(z j , ε j ) \ suppψ

)
<

ε

4Med(adcd + 1)
.
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Let π ≤ ϕ′ ≤ θ ′ ≤ 2π . Now∫
ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)

=

J∑
j=1

∫
B(z j ,ε j )

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)+
∫

suppψ\(∪B(z j ,ε j ))

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z).

We will use that the bound (1-1) implies that nV (z)≤ edcdadrd
+ o(rd). By our choice of B(z j , ε j ),∣∣∣∣∫

suppψ\(∪B(z j ,ε j ))

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)
∣∣∣∣≤ ε4(rd

+ o(rd)).

By our choice of δ1 and the assumption that ε j < δ1, we have∣∣∣∣ J∑
j=1

∫
B(z j ,ε j )

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)−
J∑

j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r, ϕ′, θ ′) dL(z)
∣∣∣∣≤ ε5(rd

+ o(rd)).

By Proposition 5.7, if 0< θ < π ,

J∑
j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r, π, π + θ)dL(z)

=

( J∑
j=1

ψ(z j ) vol(B(z j , ε j ))

)
1

2π
adrd

(
1
d

h′d(θ)+ d
∫ θ

0
hd(ω)dω

)
+ o(rd),

and
J∑

j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r) dL(z)=
( J∑

j=1

ψ(z j ) vol(B(z j , ε j ))

)
d

2π
adrd

∫ π

0
hd(ω) dω+ o(rd).

Again using our choice of δ1, z j , and ε j , we have∣∣∣∣ J∑
j=1

ψ(z j ) vol(B(z j , ε j ))−

∫
ψ(z) dL(z)

∣∣∣∣< 2ε
5(cdad + 1)

.

Thus we have shown that given ε > 0, if 0< θ < π ,∣∣∣∣∫ ψ(z)nV (z)(r, π, θ +π) dL(z)− adrd

2π

∫
ψ(z)dL(z)

(
1
d

h′d(θ)+ d
∫ θ

0
hd(ω) dω

)∣∣∣∣
≤ εrd

+ o(rd) (5-8)

and ∣∣∣∣∫ ψ(z)nV (z)(r) dL(z)− cdadrd
∫
ψ(z) dL(z)

∣∣∣∣≤ εrd
+ o(rd). (5-9)

Thus we have proved the first and third statements of the theorem. The second statement of the theorem
follows from the other two. �
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6. Proof of Theorem 1.2

This proof uses some ideas similar to those used in the proofs of Propositions 5.3 and 5.6. In fact, because
the proofs are so similar, we shall only give an outline.

Note that by (2-2), (3-1), and Lemma 3.1, using an argument similar to the proofs of Lemma 5.2 and
Proposition 5.3,

NV (z)(r)=9(z, r)+ o(rd−1),

where

9(z, r)= 1
2π

∫ π

0
ln |sV (z)(reiθ )| dθ

is, for fixed (large) r a plurisubharmonic function of z ∈ �̃b�. Since

lim sup
r→∞

r−d9(z, r)≤ ad

2π

∫ π

0
hd(θ) dθ

and this maximum is achieved at z = z0 ∈�, we get the first part of the Theorem by applying [Lelong
and Gruman 1986, Proposition 1.39], recalled in Proposition 2.3.

To obtain the second part, note that as in the proof of Proposition 5.3, for 0< θ < π ,∫ θ

0
NV (z)(r, π, θ ′+π) dθ ′ =92(z, r, θ)+ o(rd),

where

92(z, r, θ)=
1

2π

∫ r

M
J t

sV (z)(θ)
dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (z)(reiω)| dω dθ ′.

Since this is a plurisubharmonic function of z ∈ �̃, �̃b�, if M is chosen so that M ≥ 2αd max
z∈�̃
‖V ‖∞,

an argument using Proposition 2.3 as in the proof of Proposition 5.3 shows that there exists a pluripolar
set Eθ ⊂� so that

2π lim sup
r→∞

r−d92(z, r, θ)= ad
(

1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
for all z ∈� \ Eθ . Again, we use that this equality holds when z = z0. Then

lim sup
r→∞

r−d
∫ θ

0
NV (z)(r, π, π + θ ′) dθ ′ =

ad

2π

(
hd(θ)

d2 +

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
for z ∈� \ Eθ . (6-1)

For 0< θ < π ,
h′d(θ)

d2 +

∫ θ

0
hd(ω) dω

is a nondecreasing function of θ . This can be seen by using

lim
r→∞

r−dnṼ (r, π, π + θ)=
1

2πd

(
h′d(θ)+ d2

∫ θ

0
hd(ω) dω

)
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for Ṽ ∈M1, and clearly the left-hand side is a nondecreasing function of θ . This, along with the fact that
limθ↓0 hd(θ)= 0, implies that

1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′ ≥

θ

d2 h′d(0+)

for small θ > 0. Therefore, using (6-1), for z ∈� \ Eθ ,

lim sup
r→∞

r−d
∫ θ

0
NV (z)(r, π, π + θ ′) dθ ′ ≥

θad

2πd2 h′d(0+),

and so we must have

lim sup r−d NV (z)(r, π, π + θ)≥
ad

2πd2 h′d(0+)

for the same values of z. �
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1. Introduction and main results

This study was initiated in [Auscher and Axelsson 2011] — henceforth referred to as [Part I] — where
the reader will find a comprehensive historical account of the theory of boundary value problems for
second-order equations of divergence form. Before we come to our work here, let us connect more
deeply to even earlier references going back to the seminal work of Stein and Weiss [1960] that paved
the way for the development of Hardy spaces H p on the Euclidean space in several dimensions. Their
key discovery was to look at the system of differential equations in the upper half-space satisfied by the
gradient F = (∂t u,∇x u) of a harmonic function u on the upper half-space, to which they gave the name
of conjugate system or M. Riesz system. The system of differential equations is in fact a generalized
Cauchy–Riemann system which can be put into a vector-valued ODE form. They did not exploit this
ODE structure but used instead subharmonicity properties of |F |p for p > n−1

n to define the (harmonic)
Hardy spaces H p as the space of those conjugate systems satisfying

sup
t>0

∫
Rn
|F(t, x)|p dx <∞

and to prove that the elements in this space have boundary values

F(t, x)→ F(0, x)

in the L p norm and almost everywhere nontangentially. Further, they proved that elements in H p can be
obtained as Poisson integrals of their boundary traces. In other words, there is a one-to-one correspondence
between H p and its trace space Hp. By using Riesz transforms, the trace space Hp is in one-to-one
correspondence with the space defined by taking the first component of trace elements. As they pointed
out, it was nothing new for p> 1 as we get L p, but for p≤ 1 it gave a new space. Over the years, this last
space turned out to have many characterizations, including the ones with Littlewood–Paley functionals of
[Fefferman and Stein 1972] and the atomic ones of [Coifman 1974] and [Latter 1978], and is now part of
a rich and well understood family of spaces.

In our earlier work with McIntosh [Auscher et al. 2010b], and in [Part I], we wrote down the Cauchy–
Riemann equations corresponding to the second-order equation and the key point was a further algebraic
transformation that transformed this system to a vector-valued ODE. In some sense, we were going back
in time since elliptic equations with nonsmooth coefficients have been developed by other methods since
then (see [Kenig 1994]). In this respect, it is no surprise in view of the above discussion that we denote our
trace spaces by H. They are in a sense generalized Hardy spaces, and this notation was used as well in our
earlier work with Hofmann [Auscher et al. 2008]. We shall use again such notation and terminology here.
What today allows the methods of Hardy spaces to be applicable in the case of nonsmooth coefficients,
are the quadratic estimates related to the solution of the Kato conjecture for square roots. These are a
starting point of the analysis. Indeed, the quadratic estimates are equivalent to the fact that two Hardy
spaces split the function space topologically, as it is the case for the classical upper and lower Hardy
spaces in complex analysis, essentially from the F. and M. Riesz theorem on the boundedness of the
Hilbert transform. So in a sense everything looks like the case of harmonic functions (for p = 2 at this
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time). But this is not the case. The difference is in the last step, taking only one component of the trace
of a conjugate system. This may or may not be a one-to-one correspondence, which translates to well- or
ill-posedness for the boundary value problems of the original second-order equation.

See also [Axelsson et al. 2009] for a different generalization of Stein–Weiss conjugate systems of
harmonic functions. There conjugate differential forms on Lipschitz domains were constructed by inverting
a generalized double layer potential equation on the boundary.

Let us introduce some notation in order to state our results. Our system of equations is of the form

divx A∇xu(x)=
( n∑

i, j=0

m∑
β=1

∂i (A
α,β

i, j ∂ j uβ)(x)
)
α=1,...,m

= 0, x ∈�, (1)

where ∂i =
∂
∂xi

, 0≤ i ≤ n, and the matrix of coefficients is A= (Aα,βi, j (x))
α,β=1,...,m
i, j=0,...,n ∈ L∞(�;L(C(1+n)m)),

n,m ≥ 1. We emphasize that the methods used here work equally well for systems (m ≥ 2) as for
equations (m = 1). For the time being, �=O1+n

:= {x ∈ R1+n ; |x|< 1} for the unit ball in R1+n (see
the end of the introduction for more general Lipschitz domains). The coefficient matrix A is assumed to
satisfy the strict accretivity condition∫

Sn
Re(A(r x)∇xu(r x),∇xu(r x)) dx ≥ κ

∫
Sn
|∇xu(r x)|2 dx (2)

for some κ > 0, uniformly for a.e. r ∈ (0, 1) and u ∈ C1(O1+n
;Cm) where we use polar coordinates

x = r x , r > 0, x ∈ Sn , and dx is the standard (nonnormalized) surface measure on Sn
= ∂O1+n . The

optimal κ is denoted κA. This ellipticity condition is natural when viewing A as a perturbation of its
boundary trace. See below.

The boundary value problems we consider are to find u ∈ D′(O1+n
;Cm) solving (1) in distribution

sense, with appropriate interior estimates of ∇xu and Dirichlet data in L2, or Neumann data in L2, or
regular Dirichlet data with gradient in L2. Note that since we shall impose distributional ∇xu ∈ L loc

2 , u
can be identified with a function u ∈W 1,loc

2 (O1+n,Cm), i.e., with a weak solution. In order to study these
boundary value problems, our task, and this is the first main core of the work, is to obtain L2 a priori
estimates.

As in [Part I], where we worked in the upper half-space R1+n
+ , we reduce (1) to a first-order system

with the conormal gradient as unknown function, so the strategy and the scale-invariant estimates are
similar. See [Part I, Road Map] for an overview. Some changes will arise in the algebraic setup and in
the analysis though. Here, the curvature of the boundary (the sphere) will play a role in the algebraic
setup, making the unit circle slightly different from the higher dimensional spheres. In addition, owing
to the fact that the boundary is compact, we may use Fredholm theory to obtain representations and
solvability by only making assumptions on the coefficients near the boundary. We shall focus on this
part here and give full details. We also mention that the whole story relies on a quadratic estimate for
a first-order bisectorial operator acting on the boundary function space. On the upper half-space, this
estimate was already available from [Axelsson et al. 2006b] as a consequence of the strategy to prove the
Kato conjecture on Rn . We shall need to prove it on the sphere, essentially by localization and reduction
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to [Axelsson et al. 2006a], where such estimates were proved for first-order operators with boundary
conditions. An implication of independent interest is the solution to the Kato square root on Lipschitz
manifolds. This is explained in Section 8.

As is known already for real equations (m = 1) from work of Caffarelli, Fabes and Kenig [Caffarelli
et al. 1981], solvability requires a Dini square regularity condition on the coefficients in the transverse
direction to the boundary. So it is natural to work under a condition of this type. We use the discrepancy
function and the Carleson condition introduced in [Dahlberg 1986]. For a measurable function f on
O1+n , set

f ∗(x) := ess sup
y∈W o(x)

| f ( y)|, (3)

where W o(x) denotes a Whitney region around x ∈O1+n and

‖ f ‖C := sup
r(Q)<c

(
1
|Q|

∫∫
(e−r(Q),1)Q

f ∗(x)2
dx

1− |x|

)1/2

for some fixed c < 1, (4)

where the supremum is over all geodesic balls Q ⊂ Sn of radius r(Q) < c. We make the standing
assumption on A throughout that there exists A1 a measurable coefficient matrix on Sn , identified with
radially independent coefficients in O1+n , such that E( y) := A( y)− A1(y), y = y/| y|, satisfies the large
Carleson condition

‖E‖C <∞. (5)

The choice of c is irrelevant. Note that this means in particular that E∗ vanishes on Sn in a certain sense
and so A1(y)= A( y/| y|). In fact, it can be shown as in [Part I] that if there is one such A1, it is uniquely
defined, ‖A1‖∞ ≤ ‖A‖∞ and κA1 ≥ κA. So we call A1 the boundary trace of A. It turns out that this is a
very natural assumption with our method, implying a wealth of a priori information about weak solutions
as stated in Theorem 1.1. Such a result applies in particular to all systems with radially independent
coefficients since E= 0 in that case.

For a function f defined in O1+n , its truncated modified nontangential maximal function is defined as
in [Kenig and Pipher 1993] by

Ñ o
∗
( f )(x) := sup

1−τ<r<1

(
|W o(r x)|−1

∫
W o(r x)

| f ( y)|2 d y
)1/2

, x ∈ Sn, (6)

for some fixed τ < 1. Note that changing the value of τ will not affect the results. We shall use the
notation fr (x) := f (r x) for 0< r < 1, x ∈ Sn . Our main result is the following.

Theorem 1.1 (a priori representations and estimates; existence of a trace; Fatou-type convergence).
Consider coefficients A∈ L∞(O1+n

;L(C(1+n)m)) which are strictly accretive in the sense of (2) and satisfy
(5) with boundary trace A1. Consider u ∈ W 1,loc

2 (O1+n
;Cm) which satisfies (1) in O1+n distributional

sense.

(i) Suppose ‖Ñ o
∗
(∇xu)‖L2(Sn) <∞. Then:
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(a) ∇xu has limit

lim
r→1

1
1− r

∫
r<|x|<(1+r)/2

|∇xu(x)− g1(x)|2 dx = 0 (7)

for some g1 ∈ L2(Sn
;C(1+n)m) with ‖g1‖L2(Sn;C(1+n)m) . ‖Ñ o

∗
(∇xu)‖L2(Sn).

(b) r 7→ ur belongs to C(0, 1; L2(Sn
;Cm)) and has L2 limit u1 at the boundary with

‖ur − u1‖L2(Sn;Cm) . 1− r,

and u1 ∈W 1
2 (S

n
;Cm).

(c) Fatou-type results: For almost every x ∈ Sn ,

lim
r→1
|W o(r x)|−1

∫
W o(r x)

u( y) d y = u1(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

∂t u( y) d y = (g1)⊥(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

(A∇xu)‖( y)d y = (A1g1)‖(x),

and if m = 1 (equations) or n = 1 (unit disk) we also have

lim
r→1
|W o(r x)|−1

∫
W o(r x)

∇xu( y) d y = g1(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

(A∇xu)( y) d y = (A1g1)(x).

(ii) Suppose
∫

O1+n |∇xu|2(1− |x|) dx <∞. Then:

(a) r 7→ ur belongs to C(0, 1; L2(Sn
;Cm)) and has L2 limit

lim
r→1
‖ur − u1‖L2(Sn;Cm) = 0

for some u1 ∈ L2(Sn
;Cm).

(b) We have a priori estimates

‖Ñ o
∗
(u)‖2L2(Sn) .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 , (8)

‖ur‖
2
L2(Sn;Cm) . r−(n−1)

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 , r ∈ (0, 1). (9)

(c) Fatou-type results: For almost every x ∈ Sn ,

lim
r→1
|W o(r x)|−1

∫
W o(r x)

u( y) d y = u1(x).
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The definition of the normal component ( · )⊥ and tangential part ( · )‖ of a vector field will be given
later. Not stated here are representation formulas giving ansatzes to find solutions as they use a formalism
defined later. In particular, we introduce a notion of a pair of conjugate systems associated to a solution.
We note that the nontangential maximal estimate (8) was already proved in the R1+n

+ setting of [Part I].
Again, this is an a priori estimate showing that, under the assumption ‖E‖C <∞, the class of weak
solutions with square function estimate

∫
O1+n |∇xu|2(1− |x|) dx <∞ is contained in the class of weak

solutions with nontangential maximal estimate ‖Ñ o
∗
(u)‖2 <∞. The almost everywhere convergences of

Whitney averages are new. They apply as well to the setup in [Part I].
Theorem 1.1 enables us to make the following rigorous definition of well-posedness of the BVPs.

Definition 1.2. Consider coefficients A∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2).

• By the Neumann problem with coefficients A being well-posed, we mean that given ϕ ∈ L2(Sn
;Cm)

with
∫

Sn ϕ(x) dx=0, there is a function u ∈W 1,loc
2 (O1+n

;Cm)with estimates ‖Ñ o
∗
(∇xu)‖L2(Sn)<∞,

unique modulo constants, solving (1) and having trace g1 = limr→1(∇xu)r in the sense of (7) such
that (A1g1)⊥ = ϕ.

• Well-posedness of the regularity problem is defined in the same way, but replacing the boundary
condition (A1g1)⊥ = ϕ by (g1)‖ = ϕ, for a given ϕ ∈ R(∇S)⊂ L2(Sn

;Cnm).

• By the Dirichlet problem with coefficients A being well-posed, we mean that given ϕ ∈ L2(Sn
;Cm),

there is a unique function u ∈ W 1,loc
2 (O1+n

;Cm) with estimates
∫

O1+n |∇xu|2(1 − |x|) dx < ∞,
solving (1) and having trace limr→1 ur = ϕ in the sense of almost everywhere convergence of
Whitney averages.

For the Neumann and regularity problem when ‖E‖C <∞, for equations (m = 1) or in the unit disk
(n = 1) or any system for which A is strictly accretive in pointwise sense, the trace can also be defined in
the sense of almost everywhere convergence of Whitney averages of ∇xu and the same for the conormal
derivative (A∇xu)⊥. The operator ∇S denotes the tangential gradient. See Section 3.

For the Dirichlet problem, the trace is defined for the almost everywhere convergence of Whitney
averages. When ‖E‖C <∞, Theorem 1.1 shows that it is the same as the trace in L2 sense. We remark
that we modified the meaning of the boundary trace in the definition of the Dirichlet problem compared
to [Part I]. This modification can be made there as well and the same results hold.

We now come to our general results on these BVPs. A small Carleson condition, but only near the
boundary, is further imposed to obtain invertibility of some operators. The second result is on the precise
relation between Dirichlet and regularity problems. The first and third are perturbations results for radially
dependent and independent perturbations respectively. The last is a well-posedness result for three classes
of radially independent coefficients.

Theorem 1.3. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2). There exists ε > 0 such that, if A satisfies the small Carleson condition

lim
τ→1
‖χτ<r<1(A− A1)‖C < ε (10)
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and the Neumann problem with coefficients A1 is well-posed, then the Neumann problem is well-posed
with coefficients A.

The corresponding perturbation result for the regularity and Dirichlet problems also holds. For the
Neumann and regularity problems, the solution u for datum ϕ has estimates∫

|x|<1/2
|∇xu|2 dx . ‖Ñ o

∗
(∇xu)‖22 ≈ ‖ϕ‖

2
2.

For the Dirichlet problem, the solution u for datum ϕ has estimates

‖Ñ o
∗
(u)‖22 ≈ sup

1/2<r<1
‖ur‖

2
2 ≈

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn
ϕ(x)dx

∣∣∣∣2 ≈ ‖ϕ‖22.
An ingredient of the proof is the following relation between Dirichlet and regularity problems, in the

spirit of [Kenig and Pipher 1993, Theorem 5.4].

Theorem 1.4. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2). There exists ε > 0 such that, if A satisfies the small Carleson condition (10), then the regularity
problem with coefficients A is well-posed if and only if the Dirichlet problem with coefficients A∗ is
well-posed.

Theorem 1.5. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). If the Neumann problem with coefficients A1 is well-posed, then there exists
ε > 0 such that the Neumann problem with coefficients A′1 ∈ L∞(Sn

;L(C(1+n)m)) is well-posed whenever
‖A1− A′1‖∞ < ε. The corresponding perturbation results for the regularity and Dirichlet problems also
hold.

Theorem 1.6. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). The Neumann, regularity and Dirichlet problems with coefficients A1 are
well-posed if

(1) either A1 is Hermitian, i.e., A∗1 = A1,

(2) or A1 has block form, i.e., (A1)⊥‖ = 0 = (A1)‖⊥ in the normal/tangential splitting of C(1+n)m (see
Section 3),

(3) or A1 has Hölder regularity C s(Sn
;L(C(1+n)m)), s > 1

2 .

Proof of Theorems 1.1, 1.3, 1.5 and 1.6. For Theorem 1.1, the L2-limits and L2-estimates of solutions
follow from Theorem 12.4 and Corollary 12.8 respectively. The nontangential maximal estimate (8) is in
Theorem 14.1. Almost everywhere convergence of averages follows from Theorems 15.2 and 15.5.

The well-posedness results in Theorem 1.6 are in Propositions 17.16, 17.15 and 17.17. The radially
independent perturbation result in Theorem 1.5 is in Theorem 17.13. The well-posedness result for
radially dependent coefficients with good boundary trace in Theorem 1.3 is in Theorem 17.14. �

Our next result is the following semigroup representation, analogous to the result in [Auscher 2009] in
the upper half-space. It is interesting to note that for harmonic functions u, it gives a direct proof (without
passing through nontangential maximal function or sup−L2 estimates) that

∫
O1+n |∇xu|2(1−|x|) dx<∞
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implies a representation by Poisson kernel from its trace (also shown to exist). We have not seen this
argument in the literature. Another interesting feature is that it points out the importance of well-posedness
of the Dirichlet problem when dealing with more general coefficients.

Theorem 1.7. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A1 is well-posed. Then
the mapping

Pr : L2(Sn
;Cm)→ L2(Sn

;Cm) : u1 7→ ur ,

where u is the solution to the Dirichlet problem with datum u1, defines a bounded operator for each
r ∈ (0, 1]. The family (Pr )r∈(0,1] is a multiplicative C0-semigroup (i.e., Pr Pr ′ =Prr ′ and Pr→ I strongly
in L2 when r → 1) whose infinitesimal generator A (i.e., Pr = e(ln r)A) has domain D(A) contained in
W 1

2 (S
n
;Cm). Moreover, D(A)=W 1

2 (S
n
;Cm) if and only if the Dirichlet problem with coefficients A∗1 is

well-posed.

As mentioned above two classes of weak solutions compare: the one with square function estimates is
contained in the one with nontangential maximal control. It is thus interesting to examine this further.
Does the opposite containment holds? How do well-posedness in the two classes compare? Clearly
uniqueness in the larger class implies uniqueness in the smaller, and conversely for existence. As we
shall see, positive answers come a posteriori to solvability.

Definition 1.8. The Dirichlet problem with coefficients A is said to be well-posed in the sense of Dahlberg
if, given ϕ ∈ L2(Sn

;Cm), there is a unique weak solution u ∈W 1,loc
2 (O1+n

;Cm) to divx A∇xu = 0 with
estimates ‖Ñ o

∗
(u)‖2 <∞ and convergence of Whitney averages to ϕ, almost everywhere with respect to

surface measure on Sn .

This definition has the merit to be natural not only for equations but for systems as well. For real
equations, this is equivalent to the usual one as Ñ o

∗
can be replaced by the usual pointwise nontangential

maximal operator by the De Giorgi–Nash–Moser estimates on weak solutions. Even in this case, observe
that the control ‖Ñ o

∗
(u)‖2 <∞ does not enforce the almost everywhere convergence property. Thus

existence of the limit is part of the hypothesis in Definition 1.8, as compared to Definition 1.2. A first
result is the following.

Theorem 1.9. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). Assume that the Dirichlet and regularity problems with coefficients A1 are
well-posed in the sense of Definition 1.2. Then, all weak solutions to divx A1∇xu = 0 with ‖Ñ o

∗
(u)‖2 <∞

are given by the semigroup of Theorem 1.7. In particular, the Dirichlet problem with coefficients A1 is
well-posed in the sense of Dahlberg.

Theorem 1.4 implies the same conclusion for the coefficients A∗1. The next results are only for real
equations where the theory based on elliptic measure brings more information. For (complex) equations,
the strict accretivity in the sense of (2) is equivalent to the usual pointwise accretivity, which is the same
as the strict ellipticity for real coefficients.
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Theorem 1.10. Consider an equation with real coefficients A ∈ L∞(O1+n
;L(R1+n)), which are strictly

elliptic. Assume further that the small Carleson condition (10) holds. Then the following statements are
equivalent.

(i) The Dirichlet problems with coefficients A and A∗ are well-posed in the sense of Dahlberg.

(ii) The Dirichlet problems with coefficients A and A∗ are well-posed in the sense of Definition 1.2.

Moreover, in this case the solutions for coefficients A (resp. A∗) from a same datum are the same.

Note that, by Theorem 1.4, we can replace (ii) by (ii′): the regularity problems with coefficients A and
A∗ are well-posed. When A = A∗, all the problems in (i) and (ii′) are well-posed by [Kenig and Pipher
1993] so there is nothing to prove. For (even nonsymmetric) real coefficients A alone, the direction from
(ii′) to (i) was known from [Kenig and Pipher 1993] (without assuming the Carleson condition) and the
converse is unknown. It seems that making the statement invariant under taking adjoints solves the issue.
We mention the equivalence in [Kilty and Shen 2011] concerning L p versions of this statement for self-
adjoint constant coefficient systems on Lipschitz domains (in this case, the L2 result is known and used).

Our last result is well-posedness of the regularity problem under a transversal square Dini condition on
the coefficients, analogous to the result obtained by Fabes, Jerison and Kenig [Fabes et al. 1984] for the
Dirichlet problem with real and symmetric A. This partly answers Problem 3.3.13 in [Kenig 1994].

Theorem 1.11. Consider an equation with coefficients A ∈ L∞(O1+n
;L(C1+n)), which are strictly

accretive in the pointwise sense. There exists ε > 0 such that, if A satisfies the small Carleson condition
(10) and its boundary trace A1 is real and continuous, then the Dirichlet problem with coefficients A
is well-posed in the sense of Definition 1.2 and in the sense of Dahlberg, and the regularity problem
with coefficients A is well-posed. In particular, this holds if A is real, continuous in O1+n and the Dini
square condition

∫
0w

2
A(t)

dt
t <∞ holds, where wA(t) = sup{|A(r x)− A(x)| ; x ∈ Sn, 1− r < t}. The

corresponding results hold in O2 for the Neumann problem with coefficients A.

Proofs of Theorems 1.7 and 1.9 are in Sections 18 and proofs of Theorems 1.10 and 1.11 are in
Section 19.

We end this introduction with a remark on the Lipschitz invariance of the above results. Let�⊂R1+n be
a domain which is Lipschitz diffeomorphic to O1+n and let ρ :O1+n

→� be the Lipschitz diffeomorphism.
Denote the boundary by 6 := ∂� and the restricted boundary Lipschitz diffeomorphism by ρ0 : Sn

→6.
Given a function ũ : �→ Cm , we pull it back to u := ũ ◦ ρ : O1+n

→ Cm . By the chain rule, we
have ∇xu = ρ∗(∇ yũ), where the pullback of an m-tuple of vector fields f , is defined as ρ∗( f )(x)α :=
ρt(x) f α(ρ(x)), with ρt denoting the transpose of Jacobian matrix ρ. If ũ satisfies div y Ã∇ yũ = 0
in �, with coefficients Ã ∈ L∞(�;L(C(1+n)m)), then u will satisfy divx A∇xu = 0 in O1+n , where
A ∈ L∞(O1+n

;L(C(1+n)m)) are the “pulled back” coefficients defined as

A(x) := |J (ρ)(x)|(ρ(x))−1 Ã(ρ(x))(ρt(x))−1, x ∈O1+n. (11)

Here J (ρ) is the Jacobian determinant of ρ.
The Carleson condition, nontangential maximal functions and square functions on � correspond to

ones on Sn under pullback, so that 1− |x| becomes δ( y) the distance to 6. In particular, the condition
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for Ã amounts to ‖E‖C <∞ with E defined from A. We remark that pullbacks allow to replace normal
directions by oblique (but transverse) ones to the sphere in the Carleson condition on the coefficients:
take ρ :O1+n

→O1+n to be a suitable Lipschitz diffeomorphism.
The boundary conditions on ũ on 6 translate in the following way to boundary conditions on u on Sn .

• The Dirichlet condition ũ = ϕ̃ on 6 is equivalent to u = ϕ on Sn , where ϕ := ϕ̃ ◦ ρ0 ∈ L2(Sn
;Cm).

• The Dirichlet regularity condition ∇6 ũ = ϕ̃ on 6 (∇6 denoting the tangential gradient on 6) is
equivalent to ∇Su = ϕ on Sn , where ϕ := ρ∗0 (ϕ̃) ∈ R(∇S)⊂ L2(Sn

;Cnm).

• The Neumann condition (ν, Ã∇ yũ) = ϕ̃ on 6 (ν being the outward unit normal vector field on
6) with

∫
6
ϕ̃(y) dy = 0 is equivalent to (En, A∇xu) = ϕ on Sn with

∫
Sn ϕ(x) dx = 0, where ϕ :=

|J (ρ0)|ϕ̃ ◦ ρ0 ∈ L2(Sn
;Cm).

In this way the Dirichlet/regularity/Neumann problem with coefficients Ã in the Lipschitz domain � is
equivalent to the Dirichlet/regularity/Neumann problem with coefficients A in the unit ball O1+n , and it
is straightforward to extend the results on O1+n above to Lipschitz domains �.

The plan of the paper is as follows. In Section 2, we transform the second-order equation (1) into a
system of Cauchy–Riemann type equations. In Section 3, the Cauchy–Riemann equations are integrated
to a vector-valued ODE for the conormal gradient of u and a second ODE is introduced to construct
a vector potential. The infinitesimal generators D0 and D̃0 for these ODE with radially independent
coefficients are studied in Sections 4 and 6, and it is shown in Section 7 that D0 and D̃0 have bounded
holomorphic functional calculi. Section 5 treats special features of elliptic systems in the unit disk. In
Section 9 we define the natural function spaces Xo and Yo for the BVPs and we describe in Section 10
how to construct solutions from the semigroups generated by

|D0| =

√
D2

0 and |D̃0| =

√
D̃2

0 .

In Section 11, the ODE with radially dependent coefficients for the conormal gradient from Section 4 is
reformulated as an integral equation involving an operator SA, which is shown to be bounded on the natural
function spaces for the BVPs. In Section 12, we obtain representation for Xo- and Yo-solutions. These
representations are further developed in Section 13 where we introduce the notion of a pair of conjugate
systems for (1), allowing to prove in Sections 14 and 15 nontangential maximal estimates and Fatou-type
results. Crucial for the solvability of (1) is the invertibility of I − SA. In Section 16, we apply Fredholm
theory to show that I − SA is invertible on the natural spaces whenever the small Carleson condition (10)
holds, which proves that it suffices to assume transversal regularity of A near the boundary only. (For
BVPs on the unbounded half-space studied in [Part I], the needed compactness was not available.) We
then study well-posedness in Section 17: this is where we prove the perturbation results, the equivalence
Dirichlet/regularity up to taking adjoints and obtain classes of radially independent coefficients for which
well-posedness holds. The Section 18 deals with uniqueness issues, on comparisons of different classes of
solutions upon some well-posedness assumptions. We conclude the article in Section 19 with a discussion
in the special case of real equations (m = 1) for which we obtain further results.
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2. Generalized Cauchy–Riemann system

Following [Auscher et al. 2008; 2010b] and [Part I], the starting point of our analysis is that solving for
u the divergence form system (1) amounts to solving for its gradient g a system of Cauchy–Riemann
equations.

Proposition 2.1. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)). If u is a weak solution to the

equation divx A∇xu = 0 in O1+n , then g := ∇xu ∈ L loc
2 (O1+n

;C(1+n)m) is a solution of the generalized
Cauchy–Riemann system {

divx(Ag)= 0,
curlx g = 0,

(12)

in O1+n
\ {0} distribution sense. Conversely, if g ∈ L loc

2 (O1+n
;C(1+n)m) is a solution to (12) in O1+n

\ {0}
distribution sense, then there exists a weak solution u to divx A∇xu = 0 in O1+n , such that g = ∇xu in
O1+n distribution sense.

Proof. If u is given, then g := ∇xu has the desired properties and the equation is even satisfied in O1+n

distribution sense. Conversely, assume g is given and satisfies (12) in O1+n
\ {0} distribution sense. Then

the next lemma applied to both operators divx and curlx implies that 0 is a removable singularity and that
(12) holds in O1+n distribution sense. Thus one can define a distribution u in O1+n such that g = ∇xu,
hence divx A∇xu = 0 in O1+n . That u is a weak solution follows from g ∈ L loc

2 (O1+n
;C(1+n)m). �

Lemma 2.2. Let X be a homogeneous first-order partial differential operator on R1+n mapping Ck-valued
distributions to C`-valued distributions, k, ` ∈ Z+. If h ∈ L loc

2 (O1+n
;Ck) and Xh = 0 in distributional

sense on O1+n
\ {0}, then Xh = 0 in O1+n-distributional sense.

Proof. Let φ ∈ C∞0 (O
1+n
;C`). We need to show that

∫
O1+n (X∗φ, h) dx = 0. To this end, let ηε be a

smooth radial function with ηε = 0 on {|x|< ε}, ηε = 1 on {2ε < |x|< 1} and ‖∇ηε‖∞ . ε−1. Then∫
O1+n

ηε(X∗φ, h) dx =
∫

O1+n
(X∗(ηεφ), h) dx−

∫
O1+n

((X∗ηε)φ, h) dx

=−

∫
O1+n

((X∗ηε)φ, h) dx.

As ε→ 0, the left hand side converges to
∫

O1+n (X∗φ, h) dx, whereas∣∣∣∣∫
O1+n

((X∗ηε)φ, h) dx
∣∣∣∣. 1

ε

∫
ε<|x|<2ε

|h|dx . ε(n−1)/2
(∫

ε<|x|<2ε
|h|2 dx

)1/2

→ 0.

This proves the lemma. �

3. The divergence form equation as an ODE

We introduce a convenient framework to transform the Cauchy–Riemann system into an ODE.
We systematically use boldface letters x, y, . . . to denote variables in R1+n and indicate the variable

for differential operators in R1+n: for example, ∇x . . . . We denote points on Sn by x, y, . . . and the
standard (nonnormalized) surface measure on Sn by dx . Polar coordinates are written x = r x , with r > 0
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and x ∈ Sn . For a function f defined in O1+n , we write fr (x) := f (r x), x ∈ Sn , for the restriction to the
sphere with radius 0< r < 1, parametrized by Sn .

The radial unit vector field we denote by En = En(x) := x/|x|. Vectors v ∈ R1+n , we split v = v⊥En+ v‖,
where v⊥ := (v, En) is the normal component and v‖ := v−v⊥En is the angular or tangential part of v, which
is a vector orthogonal to En. Note that v⊥ is a scalar, but v‖ is a vector. In the plane, i.e., when n = 1, we
denote the counter clockwise angular unit vector field by Eτ , and we have v= v⊥En+(v, Eτ)Eτ . For an m-tuple
of vectors v = (vα)1≤α≤m , we define its normal components and tangential parts componentwise as

(v⊥)
α
:= (vα)⊥, (v‖)

α
:= (vα)‖.

The tangential gradient, divergence and curl on the unit sphere are denoted by ∇S , divS and curlS

respectively. The gradient acts component-wise on tuples of scalar functions, whereas the divergence and
curl act vector-wise on tuples of vector fields. In polar coordinates, the R1+n differential operators are

∇xu = (∂r ur )En+ r−1
∇Sur ,

divx f = r−n∂r
(
rn( fr )⊥

)
+ r−1 divS( fr )‖,

curlx f = r−1
En ∧
(
∂r (r( fr )‖)−∇S( fr )⊥

)
+ r−1 curlS( fr )‖.

We use the boundary function space L2(Sn
;V), writing the norm ‖ · ‖2, of L2 sections of the complex

vector bundle

V :=

[
Cm

(TCSn)m

]
over Sn , where Cm is identified with the trivial vector bundle and TCSn denotes the complexified tangent

bundle of Sn . The elements of this bundle are written in vector form f =
[
α

β

]
=
[
α β

]t
, and we write

f⊥ := α, f‖ := β for the normal component and tangential part. Note that V is isomorphic to the trivial
vector bundle C(1+n)m , when identifying scalar, i.e., Cm-valued, functions and m-tuples of radial vector
fields. More precisely, the isomorphism is V3

[
α β

]t
7→ αEn+β ∈C(1+n)m , for α ∈Cm and β ∈ (TCSn)m .

The differential operators on Sn can be seen as unbounded operators. We use D(A),R(A),N(A) for
the domain, range and null space respectively of unbounded operators. Then

∇S : L2(Sn
;Cm)→ L2(Sn

; (TCSn)m)

and its adjoint

−divS : L2(Sn
; (TCSn)m)→ L2(Sn

;Cm),

with domains D(∇S) = W 1
2 (S

n
;Cm) and D(divS) = {g ∈ L2(Sn

; (TCSn)m) ; divS g ∈ L2(Sn
;Cm)}, are

closed unbounded operators with closed range. The condition g∈R(divS)=N(∇S)
⊥ is that

∫
Sn g(x) dx=0

so R(divS) is of codimension m in L2(Sn
;Cm). Also when n ≥ 2, R(∇S)= N(curlS), and when n = 1,

g ∈ R(∇S) if and only if
∫

S1(g(x), Eτ) dx = 0. Thus R(∇S) is of codimension m in L2(S1
;Cm) when

n = 1, and infinite codimension when n ≥ 2.
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Definition 3.1. In L2(Sn
;V), we define operators

D :=
[

0 −divS

∇S 0

]
and N :=

[
−I 0
0 I

]
,

where D(D) :=
[

D(∇S)

D(divS)

]
. Write N+ f := 1

2(I + N ) f =
[

0
f‖

]
and N− f := 1

2(I − N ) f =
[

f⊥
0

]
.

A basic observation is that the two operators D and N anticommute, i.e.,

N D =−DN .

Of fundamental importance in this paper are the closed orthogonal subspaces

H := R(D)=
[
R(divS)

R(∇S)

]
and H⊥ := N(D)=

[
N(∇S)

N(divS)

]
.

We consistently denote by PH the orthogonal projection onto H. We remark that

N+H⊥ =

{[
0
f‖

]
; divS f‖ = 0

}
and N−H⊥ =

{[
c
0

]
; c ∈ Cm

}
,

constants being identified to constant functions. It can be checked that (2) is equivalent to A is strictly
accretive on

H1 := {g ∈ L2(Sn
;C(1+n)m) ; g‖ ∈ R(∇S)}, (13)

uniformly for a.e. r ∈ (0, 1). More precisely, the accretivity assumption on A rewrites

n∑
i, j=0

m∑
α,β=1

∫
Sn

Re(Aα,βi, j (r x)gβj (x)g
α
i (x)) dx ≥ κ

n∑
i=0

m∑
α=1

∫
Sn
|gαi (x)|

2 dx, (14)

for all g ∈ H1, a.e. r ∈ (0, 1). In fact, as we shall see in Lemma 5.1 this is equivalent to pointwise
strict accretivity when n = 1 (unit disk), but this is in general not the case when n ≥ 2 except if m = 1
(equations).

Using the notation above, we can identify H1 with[
L2(Sn

;Cm)

R(∇S)

]
and see that H is a subspace of codimension m in H1.

On identifying C(1+n)m with V, the space of coefficients L∞(O1+n
;L(C(1+n)m)) identifies with

L∞(O1+n
;L(V)), so that we can split any coefficients A as

A(r x)=
[

A⊥⊥(r x) A⊥‖(r x)
A‖⊥(r x) A‖‖(r x)

]
,

with A⊥⊥(r x) ∈ L(Cm
;Cm), A⊥‖(r x) ∈ L((Tx Sn)m,Cm), A‖⊥(r x) ∈ L(Cm, (Tx Sn)m) and A‖‖(r x) ∈

L((Tx Sn)m, (Tx Sn)m). Note also that A⊥⊥(r x)= (A(r x)En, En).
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With our accretivity assumption (14), the component A⊥⊥(r · ) seen as a multiplication operator is
invertible on L2(Sn

;Cm), thus as a matrix function it is invertible in L∞(Sn
;Cm). This is the reason why

strict accretivity on H1 is needed, and not only on H, so that the transformed coefficient matrix Â below
can be formed in the next result. We make the above identification for coefficients A without mention.

We can now state the two results on which our analysis stands. Proposition 3.3 reformulates this
Cauchy–Riemann system (12) further, by solving for the r -derivatives, as the vector-valued ODE (17) for
the conormal gradient f defined below. This formulation is well suited for the Neumann and regularity
problems. For the Dirichlet problem, we use instead a similar first-order system formulation of the
equation; see Proposition 3.5. As explained in [Part I, Section 3], the vector-valued potential v appearing
there should be thought of as containing some generalized conjugate functions as tangential part. In
the case of the unit disk, we make this rigorous in Section 5 and come back to this in Section 13. The
fundamental object is the following.

Definition 3.2. The conormal gradient of a weak solution u to divx A∇xu = 0 in O1+n is the section
f : R+× Sn

→ V defined by

ft = e−(n+1)t/2
[
(Agr )⊥

(gr )‖

]
, (15)

where r = e−t and g =∇xu. The map gr 7→ ft is called the gradient-to-conormal gradient map.

Proposition 3.3. The pointwise transformation

A 7→ Â :=
[

A−1
⊥⊥

−A−1
⊥⊥

A⊥‖
A‖⊥A−1

⊥⊥
A‖‖− A‖⊥A−1

⊥⊥
A⊥‖

]
is a self-inverse bijective transformation of the set of bounded matrices which are strictly accretive on H1.

For a pair of coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) and B ∈ L∞(R+× Sn

;L(V)) which are strictly
accretive on H1 and such that B = Â, the gradient-to-conormal gradient map gives a one-to-one
correspondence, with inverse the conormal gradient-to-gradient map

ft 7→ gr = r−
n+1

2 ((B ft)⊥En+ ( ft)‖), (16)

where t = ln(1/r), between solutions g ∈ L loc
2 (O1+n

;C(1+n)m) to the Cauchy–Riemann system (12) in
O1+n

\ {0} distribution sense, and solutions f ∈ L loc
2 (R+;H), with

∫
∞

1 ‖ ft‖
2
2 dt <∞, to the equation

∂t f + (DB+ n−1
2 N ) f = 0, (17)

in R+× Sn distributional sense.

Recall that the Ricci curvature of Sn is n− 1, so the constant n−1
2 is related to curvature. On the other

hand, the exponent n+1
2 appearing in the correspondence gr ↔ ft is the only exponent for which no

powers of r remain in (17). It turns out that this also makes the gradient-to-conormal gradient map an L2

isomorphism, since ∫
O1+n
|g|2 dx ≈

∫ 1

0
‖gr‖

2
2rndr ≈

∫
∞

0
‖ ft‖

2
2 dt. (18)
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Proof. The stated properties of the matrix transformation are straightforward to verify, using the observation
that e(n+1)t Re(Bt ft , ft)= Re(Ar gr , gr ). See [Part I, Proposition 4.1] for details.

(i) Assume first that the equations (12) hold on O1+n
\ {0}. In polar coordinates x = r x , the equations

divx(Ag)= 0, curlx(g)= 0 give{
r−n∂r (rn(Ag)⊥)+ r−1 divS(Ag)‖ = 0,
∂r (rg‖)−∇Sg⊥ = 0.

Next we pull back the equations to R+ × Sn . Write (Ag)⊥ = r−(n+1)/2 f⊥ and (Ag)‖ = A‖⊥g⊥ + A‖‖g‖.
Then g⊥ = r−(n+1)/2 A−1

⊥⊥
( f⊥− A⊥‖ f‖) and g‖ = r−(n+1)/2 f‖, and the equations further become{

r−n∂r (r (n−1)/2 f⊥)+ r−(n+3)/2 divS(B‖⊥ f⊥+ B‖‖ f‖)= 0,
∂r (r (1−n)/2 f‖)− r−(n+1)/2

∇S(B⊥⊥ f⊥+ B⊥‖ f‖)= 0.

Using product rule for ∂r and the chain rule −r∂r = ∂t , this yields the equation (17).
It remains to check that ft ∈H for almost every t > 0. This is equivalent to (Ar gr )⊥ ∈ R(divS) and

(gr )‖ ∈R(∇S) for a.e. r ∈ (0, 1). To see (Ar gr )⊥ ∈R(divS) amounts to seeing that
∫

Sn (Ar gr )⊥dx = 0. We
apply Gauss’s theorem as follows. For any radial function φ ∈ C∞0 (O

1+n
;Cm), the divergence equation

gives
∫

O1+n (Ag,∇φ) dx = 0. Taking, for a.e. r ∈ (0, 1), the limit as φ approaches the characteristic
function for balls {|x| < r} shows that

∫
r Sn (Ag)⊥dx = 0. To check (gr )‖ ∈ R(∇S) we distinguish first

n= 1. In that case, a similar application of Stokes’ theorem shows that
∫

S1(Eτ , gr ) dx = 0 for a.e. r ∈ (0, 1).
For n ≥ 2, that curlS((gr )‖)= 0 is a consequence of curlx g = 0 and the general fact that pullbacks and
the exterior derivative commute. Hence ft ∈H.

(ii) Conversely, assume that (17) holds and ft ∈H for a.e. t > 0. Define the corresponding function g ∈
L loc

2 (O1+n
;C(1+n)m) by the conormal gradient-to-gradient map and note that curlS((gr )‖)= 0. Reversing

the rewriting of the equations in (i) shows that divx(Ag) = 0, curlx(g) = 0 hold on O1+n
\ {0}. This

proves the proposition. �

Corollary 3.4. For any coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2), gradients of weak solutions to (1) in O1+n are in one-to-one correspondence with R+ × Sn

distributional solutions to the equation (17), belonging to L loc
2 (R+;H) with estimate

∫
∞

1 ‖ ft‖
2
2 dt <∞.

Proof. Combine Proposition 2.1 and Proposition 3.3. �

There is a second way of constructing weak solutions, which we now describe.

Proposition 3.5. Let A and B = Â be as in Proposition 3.3. Assume that v ∈ L loc
2 (R+;D(D)) with∫

∞

1 ‖Dvt‖
2
2dt <∞ satisfies

∂tv+ (B D− n−1
2 N )v = 0 (19)

in R+× Sn distributional sense. Then

ur := r−
n−1

2 (vt)⊥, r = e−t
∈ (0, 1),

extends to a weak solution of divx A∇xu = 0 in O1+n , and Dv equals the conormal gradient of u.
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Proof. By definition of u in the statement, (Dv)‖ =∇Sv⊥ = r (n+1)/2(r−1
∇Su). On the other hand, taking

the normal component of ∂tv+ (B D− n−1
2 N )v = 0 gives

∂tv⊥− A−1
⊥⊥
(divS v‖+ A⊥‖∇Sv⊥)+ σv⊥ = 0,

or equivalently
(Dv)⊥ =−divS v‖ =−A⊥⊥(∂t + σ)v⊥+ A⊥‖∇Sv⊥

= r (n+1)/2(A⊥⊥∂r u+ A⊥‖r−1
∇Su)= r (n+1)/2(A∇xu)⊥.

These equations hold in O1+n
\ {0}. Next, applying D to (19) yields(

∂t + DB+ n−1
2 N

)
(Dv)= 0.

Thus f := Dv satisfies (17) and ft ∈R(D)=H. By Corollary 3.4, there is a weak solution ũ in O1+n of the
divergence form equation associated to f . In particular, f‖= r (n+1)/2(r−1

∇S ũ) and f⊥= r (n+1)/2(A∇x ũ)⊥.
Applying the conormal gradient-to-gradient map, we deduce ∇x ũ =∇xu in O1+n

\ {0} distribution sense.
In particular, u = ũ+ c in O1+n

\ {0} for some constant c. As ũ+ c is also a weak solution in O1+n to the
divergence form equation with coefficients A, this provides us with the desired extension for u. �

For perturbations A of radially independent coefficients, Corollary 12.8(i) proves a converse of this
result, i.e., the existence of such a vector-valued potential v containing a given solution u to divx A∇xu= 0
as normal component. We do not know whether such v can be defined for general coefficients (except in
O2, see Section 5).

Remark 3.6. Assume that the coefficients A are defined in R1+n and that the accretivity condition (2) or
(14) holds for a.e r ∈ (0,∞). As in Proposition 3.3, there is also a one-to-one correspondence between
solutions g ∈ L loc

2 (R1+n
\O1+n; L2(Sn

;V)) to divx(Ag)= 0, curlx g = 0 in the exterior of the unit ball
and solutions f : R−→H to the equation ∂t f + (DB+ n−1

2 N ) f = 0 for t < 0 in L2(R−;H). Also, as
in Proposition 3.5, L loc

2 -solutions v : R−→ L2(Sn
;D(D)) to the equation ∂tv+ (B D− n−1

2 N )v = 0 for
t < 0, give weak solutions u to divx A∇xu = 0 in the exterior of the unit ball.

4. Study of the infinitesimal generator

In this section, we study the infinitesimal generators DB0+
n−1

2 N and B0 D− n−1
2 N for the vector-valued

ODEs appearing in (17) and (19) for radially independent coefficients

B0 = Â1 ∈ L∞(Sn
;L(V)),

strictly accretive on H with constant κ = κB0 > 0. Note that strict accretivity of A1 on H1 is needed for
the construction of B0 = Â1 as a multiplication operator. Once we have B0, only strict accretivity of
B0 on H is needed in our analysis. This has the following consequences used often in this work. First,
B0 :H→ B0H is an isomorphism. Second, the map PH B0 is an isomorphism of H.

The first operator will be used to get estimates of ∇xu, needed for the Neumann and regularity problems.
The second operator will be used to get estimates of the potential u, needed for the Dirichlet problem.
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Definition 4.1. Let σ ∈ R. Define the unbounded linear operators

D0 := DB0+ σN and D̃0 := B0 D− σN

in L2(Sn
;V), with domains D(D0) := B−1

0 D(D) and D(D̃0) := D(D) respectively. Here B−1
0 (X) :=

{ f ∈ L2 ; B0 f ∈ X}. When more convenient, we use the notation DA1 := D0 and D̃A1 := D̃0.

For these two operators, we have the following intertwining and duality relations.

Lemma 4.2. In the sense of unbounded operators, we have D0 D = DD̃0 and (D̃A1)
∗
= DB∗0 − σN =

−N (D Â∗1+ σN )N.

Proof. The proof is straightforward, using the identity B∗0 = N Â∗1 N for the second statement. �

Proposition 4.3. In L2 = L2(Sn
;V), the operator D0 is a closed unbounded operator with dense domain.

There is a topological Hodge splitting

L2 =H⊕ B−1
0 H⊥,

i.e the projections P1
B0

and P0
B0

onto H and B−1
0 H⊥ in this splitting are bounded. The operator D0 leaves

H invariant, and the restricted operator D0 :H→H, with domain D(D0)∩H, is closed, densely defined,
injective, onto, and has a compact inverse.

If σ 6= 0, then D0 : L2→ L2 is also injective and onto, and D0|B−1
0 H⊥ = σN.

If σ = 0, then D0 = DB0, N(D0)= B−1
0 H⊥ and R(D0)=H are closed and invariant. In particular,

when n = 1, dim N(D0)= 2m = dim(L2/R(D0)).

Proof. The splitting is a consequence of the strict accretivity of B0 on H, and it is clear that H is invariant
under D0. Note that

(i N )(DB0+ σN )= (i N D)B0+ iσ,

where i N is unitary on L2 as well as H, and where i N D =−i DN is a self-adjoint operator with range
H. This shows that D0 is closed, densely defined, injective and onto on H, and on L2 when σ 6= 0, as a
consequence of properties of operators such as (i N D)B0 stated in [Auscher et al. 2010b, Proposition 3.3].

Next we show that D0 : H→ H has a compact inverse. Write D0 = D(PH B0)+ σN . Since PH B0

is an isomorphism on H, it suffices to prove that the inverse of D : H→ H is compact. Note that
D(∇S) = W 1

2 (S
n
;Cm) is compactly embedded in L2(Sn

;Cm) by Rellich’s theorem. In particular ∇S :

R(divS)→ R(∇S) has compact inverse. Since ∇∗S =−divS , it follows that divS : R(∇S)→ R(divS) has a
compact inverse as well. This proves that the inverse of D is compact on H.

The remaining properties when σ 6= 0 and σ = 0 are straightforward and are left to the reader. �

Proposition 4.4. In L2 = L2(Sn
;V), the operator D̃0 is a closed unbounded operator with dense domain.

There is a topological Hodge splitting
L2 = B0H⊕H⊥,

i.e the projections P̃1
B0

and P̃0
B0

onto B0H and H⊥ in this splitting are bounded. Here H⊥ ⊂ D(D̃0) and
D̃0 leaves H⊥ invariant.
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If σ 6= 0, then D̃0 : L2→ L2 is also injective and onto, and D̃0|H⊥ =−σN.
If σ = 0, then D̃0 = B0 D, N(D̃0)=H⊥ and R(D̃0)= B0H is closed. In particular, the subspace B0H

is invariant under D̃0 and when n = 1, dim N(D̃0)= 2m = dim(L2/R(D̃0)).

Proof. These results for D̃0 follow from Proposition 4.3 by duality, using Lemma 4.2. �

Remark 4.5. The reader familiar with [Axelsson et al. 2006b] and [Part I] should note carefully the
following fundamental difference between the cases σ 6= 0 and σ = 0. When σ = 0, each of the operators
D0 and D̃0 is of the type considered in the papers just cited, and each has two complementary invariant
subspaces. On the other hand when σ 6= 0, the operator D0 has in general only the invariant subspace H,
and D̃0 only has the invariant subspace H⊥. One can define an induced operator D̃0 on the quotient space
L2/H

⊥, but this cannot be realized as an action in a subspace complementary to H⊥ in L2 in general.
As σ will be set to n−1

2 this means for us a difference in the treatment of n = 1 (space dimension 2) and
n ≥ 2 (space dimension 3 and higher).

We prove here a technical lemma for later use.

Lemma 4.6. There is a unique isomorphism

H→ L2/H
⊥
: h 7→ h̃ (20)

such that D0h = Dh̃ for h ∈H∩D(D0).

Proof. When σ = 0, we can take h̃ := B0h ∈ B0H≈ L2/H
⊥ as D0h = DB0h = Dh̃.

When σ 6= 0, we use that D : L2→H is surjective with null space H⊥. This defines h̃ for h ∈H∩D(D0).
With D−1 the compact inverse of D :H→H, the equation D0h = Dh̃ is equivalent to

PH B0h+ σD−1 Nh = PHh̃. (21)

This shows that (20) extends to a bounded map since ‖h̃‖L2/H⊥ ≈ ‖PHh̃‖2. Moreover, since PH B0 is an
isomorphism on H, we have also the lower bound ‖h‖2 . ‖PH B0h‖2 . ‖h̃‖L2/H⊥ +‖D

−1h‖2, which
shows that (20) is a semi-Fredholm operator. If h̃ = 0, then (21) implies h ∈ H ∩D(D0). Therefore
D0h = 0 and (20) is injective. Since the range contains the dense subspace D(D)/H⊥, invertibility
follows. �

5. Elliptic systems in the unit disk

In dimension n = 1, i.e., for the unit disk O2
⊂R2 with boundary S1, some special phenomena occurs. In

this section we collect these results.

Lemma 5.1. If n = 1 and A is strictly accretive in the sense of (2), then A is pointwise strictly accretive,
i.e.,

Re(A(x)v, v)≥ κ|v|2, for all v ∈ C2m, and a.e. x ∈O2.

Proof. By scaling and continuity, it suffices to consider v=
[
(zα) (wα)

]t
∈C2m , withwα 6=0, α=1, . . . ,m.

In (2), let
uα(reiθ ) := (ik)−1wαeik r

r0
zα
wα η(eiθ )eikθ , α = 1, . . . ,m,
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with a smooth function η : S1
→ R, k ∈ Z+ and r0 ∈ (0, 1). Using polar coordinates and letting k→∞

yields

Re
∫

S1
(A(r0x)v, v) |η(x)|2 dx ≥ κ|v|2

∫
S1
|η(x)|2 dx, for a.e. r0 ∈ (0, 1).

Taking |η|2 to be an approximation to the identity at a given point x ∈ S1 now proves the pointwise strict
accretivity in the statement. �

Definition 5.2. Assume that A ∈ L∞(O2
;L(C2m)) is pointwise strictly accretive. Given a weak solution

u ∈W 1,loc
2 (O2

;Cm) to divx A∇xu = 0, we say that a solution ũ ∈W 1,loc
2 (O2

;Cm) to J∇x ũ = A∇xu is a
conjugate of u, where J :=

[ 0
I
−I

0

]
.

We note that since A∇xu is divergence-free, there always exists a conjugate of u, unique modulo constants
in Cm . The notion of conjugate solution for two dimensional divergence form equations, in the scalar
case m = 1, goes back to Morrey. See [Morrey 1966]. Note that when A= I , the system J∇x ũ =∇xu is
the anti Cauchy–Riemann equations.

Lemma 5.3. Assume that A ∈ L∞(O2
;L(C2m)) is pointwise strictly accretive. Let u ∈W 1,loc

2 (O2
;Cm)

be a weak solution to divx A∇xu = 0. Then

A∇xu = J∇x ũ ⇐⇒
{
(A∇xu)⊥ =−(∇x ũ)‖
( Ã∇x ũ)⊥ = (∇xu)‖

}
⇐⇒ Ã∇x ũ = J t

∇xu =⇒ divx Ã∇x ũ = 0,

where Ã is the conjugate coefficient defined by

Ã := J t A−1 J.

We have

Ã =
[

(d−ca−1b)−1 (d−ca−1b)−1ca−1

a−1b(d−ca−1b)−1 a−1
+a−1b(d−ca−1b)−1ca−1

]
if A =

[
a b
c d

]
.

When m = 1, this reduces to Ã = (det A)−1 At .

Here, we have identified the tangential part ( · )‖ with its component along Eτ . (See below.)

Proof. The equivalences and implication are verified from Ã = J t A−1 J . The explicit formula for
Ã is classical if m = 1. If m ≥ 2, the proposed formula for Ã can be checked by a straightforward
computation. Note that a, b, c, d ∈ L∞(O2

;L(Cm)) and all the entries of Ã as well: the inverses are
pointwise multiplications. We omit further details. �

We next show that the vector-valued potential v in Proposition 3.5 contains, along with u as normal
component, its conjugate ũ as tangential component. To do that, it is convenient to identify V with the
trivial bundle C2m by identifying the tangential component β to the tangential part β Eτ ∈ (TCS1)m .

Given this identification, D becomes

D =
[

0 −∂Eτ
∂Eτ 0

]
,
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where ∂Eτ denotes the tangential counter clockwise derivative of m-tuples of scalar functions on S1. A
coefficient A ∈ L∞(O2

;L(C2m)) is thus identified with its matrix representation in the moving frame
{En, Eτ }. We remark that this identification commutes with the matrix J .

Proposition 5.4. Let A ∈ L∞(O2
;L(C2m)) be pointwise strictly accretive and let

B := Â ∈ L∞(O2
;L(C2m)).

Assume that v =
[
u ũ

]t
∈ L loc

2 (R+;D(D)) with
∫
∞

1 ‖Dvt‖
2
2 dt <∞ is a R+× Sn distributional solution

to ∂tv+ B Dv = 0 as in Proposition 3.5, so that ur = (vt)⊥, r = e−t , is a weak solution to divx A∇xu = 0
in O2. Then ũ is a conjugate to u.

Conversely, given a weak solution u to divx A∇xu = 0 in O2 and a conjugate ũ, the potential vector
v =

[
u ũ

]t
has the above properties.

Note that the construction of v this way is a feature of two-dimensional systems as compared to higher
dimensions.

Proof. Applying J t to ∂tv+ B Dv = 0 gives ∂t(J tv)+ B̃ D(J tv)= 0 with B̃ = J t B J , since J D = D J .
A calculation shows that B̃ = ̂̃A. Applying Proposition 3.5 shows that ũr = (J tvt)⊥ is a weak solution to
divx Ã∇x ũ = 0. Also we know that Dv and Dṽ are respectively equal to the conormal gradients of u and
ũ, and since J tv = ṽ, this gives the middle term in the equivalence of Lemma 5.3. Thus ũ is a conjugate
of u. The converse is immediate to check and left to the reader. �

We finish this section with the following simple expressions for the projections P0
B0

and P̃0
B0

of
Propositions 4.3 and 4.4 when n = 1. We still make the identification V≈ C2m .

Lemma 5.5. Let A1 ∈ L∞(O2
;L(C2m)) be pointwise strictly accretive radially independent coefficients,

and let B0 := Â1 ∈ L∞(O2
;L(C2m)) the corresponding coefficients. Then

P̃0
B0

g =
(∫

S1
B−1

0 dx
)−1 ∫

S1
B−1

0 g dx, g ∈ L2(S1
;C2m),

and P0
B0
= B−1

0 P̃0
B0

B0.

Proof. By accretivity, (
∫

S1 B−1
0 dx)−1 is a bounded operator (called the harmonic mean of B0). If g ∈ B0H,

then B−1
0 g ∈H and

∫
S1 B−1

0 g dx = 0, hence P̃0
B0

g = 0, follows. On the other hand, if g ∈H⊥, then g is
constant, and therefore the right hand side equals(∫

S1
B−1

0 dx
)−1 (∫

S1
B−1

0 dx
)

g = g.

This proves the expression for P̃0
B0

. The formula for P0
B0

comes from the similarity relation

DB0 = B−1
0 (B0 D)B0. �
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6. Resolvent estimates

In this section we prove that the spectra of D0 and D̃0 are contained in certain double hyperbolic regions,
and we estimate the resolvents. For parameters 0 < ω < ν < π/2 and σ ∈ R, define closed and open
hyperbolic regions in the complex plane by

Sω,σ := {x + iy ∈ C ; (tan2 ω)x2
≥ y2
+ σ 2
},

So
ν,σ := {x + iy ∈ C ; (tan2 ν)x2 > y2

+ σ 2
},

Sω,σ+ := {x + iy ∈ C ; (tanω)x ≥ (y2
+ σ 2)1/2},

So
ν,σ+ := {x + iy ∈ C ; (tan ν)x > (y2

+ σ 2)1/2}.

When σ = 0, we drop the subscript σ in the notation for the sectorial regions.

Proposition 6.1. On L2 = L2(Sn
;V), there is a constant ω ∈ (0, π/2), depending only on ‖B0‖∞ and

the accretivity constant κB0 , such that the spectra of the operators D0 and D̃0 are contained in the double
hyperbolic region Sω,σ . Moreover, there are resolvent bounds

‖(λ− D0)
−1
‖L2→L2, ‖(λ− D̃0)

−1
‖L2→L2 ≤

1√
y2+ σ 2/ tanω− |x |

,

for all λ= x + iy /∈ Sω,σ . These same estimates hold for the restriction D0 :H→H.

Proof. (i) To prove the spectral estimates for D0, assume that

(DB0+ σN − x − iy)u = f.

Introduce the auxiliary operator Ny := iσN − y I , and note that ‖Ny‖ = ‖N−1
y ‖
−1
=
√

y2+ σ 2. Multiply
with Ny and rewrite as

(Ny D)B0u+ i(y2
+ σ 2)u = Ny f + x Nyu. (22)

Now split the function u as
u = u1+ u0 ∈H⊕ B−1

0 H⊥,

and note that ‖u‖ ≈ ‖u1‖+‖u0‖. Apply the associated bounded projections P i
B0

to (22) to get

(Ny D)B0u1+ i(y2
+ σ 2)u1 = P1

B0
Ny f + x P1

B0
Nyu,

0+ i(y2
+ σ 2)u0 = P0

B0
Ny f + x P0

B0
Nyu.

Take the imaginary part of the inner product between the first equation and B0u1 (using that Ny D is
self-adjoint), and the second equation and u0 to get

(y2
+ σ 2)Re(u1, B0u1)= Im (P1

B0
Ny f, B0u1)+ Im (x P1

B0
Nyu, B0u1),

(y2
+ σ 2)‖u0‖

2
= Im (P0

B0
Ny f, u0)+ Im (x P0

B0
Nyu, u0).

Using the strict accretivity of B0 on H gives the estimate

(y2
+ σ 2)‖u‖2 ≤ C1

√
y2+ σ 2(‖ f ‖‖u‖+ |x |‖u‖2),
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for some constant C1 <∞. Thus ‖u‖ ≤ (
√

y2+ σ 2/C1− |x |)−1
‖ f ‖.

(ii) To prove a similar lower bound on D̃0, assume that (B0 D− σN − x − iy)u = f , and rewrite as

B0 DN−1
y Nyu+ i Nyu = f + xu. (23)

Write Nyu = B0u1+ u0 ∈ B0H⊕H⊥. Apply the bounded projections P̃ i
B0

to (23) to get

B0(DN−1
y )B0u1+ i B0u1 = P̃1

B0
f + x P̃1

B0
u,

0+ iu0 = P̃0
B0

f + x P̃0
B0

u.

Recall that B0 :H→ B0H is an isomorphism and apply its inverse B−1
0 : B0H→H to the first equation.

Then take the imaginary part of the inner product between the first equation and B0u1 (using that DN−1
y

is self-adjoint), and the second equation and u0 to get

Re(u1, B0u1)= Im (B−1
0 P̃1

B0
f, B0u1)+ Im (x B−1

0 P̃1
B0

u, B0u1),

‖u0‖
2
= Im (P̃0

B0
f, u0)+ Im (x P̃0

B0
u, u0).

Using the strict accretivity of B0 on H gives the estimate

(y2
+ σ 2)‖u‖2 ≤ C2(|x |‖u‖+‖ f ‖)(y2

+ σ 2)1/2‖u‖,

for some constant C2 <∞. Thus ‖u‖ ≤ (
√

y2+ σ 2/C2− |x |)−1
‖ f ‖.

(iii) Using that DB0 + σN and B∗0 D + σN are adjoint operators, combining the results in (i) and
(ii) shows that both operators D0− λ and D̃0− λ are onto, with bounded inverse, when λ /∈ Sω,σ . Here
ω := arctan(max(C1,C2)). The estimates on H follow. �

We shall also need the following off-diagonal estimates for the resolvents, both in L2 and in L p for p
near 2.

Lemma 6.2. (i) There exist ε, α > 0 such that for | 1p −
1
2 |< ε, closed sets E, F ⊂ Sn and f ∈ L p(Sn

;V)

with supp f ⊂ E and t ∈ R,

‖(I + i t D0)
−1 f ‖L p(F) . e−αd(E,F)/|t |

‖ f ‖L p(E),

where d(E, F) is the distance between the sets E and F.
(ii) There exist q > 2 with 1

2−
1
q < ε, and α > 0 such that for closed sets E, F ⊂ Sn and f ∈ L2(Sn

;V)

with supp f ⊂ E and f‖ = 0 and |t | ≤ 1,

‖(I + i t D0)
−1 f ‖Lq (F) . |t[

−n( 1
2−

1
q )e−αd(E,F)/|t |

‖ f ‖L2(E),

Proof. We first prove (i). The case p = 2 follows the argument in [Auscher et al. 2010a, Proposition 5.1].
It remains to prove L p boundedness for p near 2 as, the Lq off-diagonal bounds follow by interpolation
with the L2 off-diagonal bounds for q between p and 2.

For f ∈ L p ∩ L2, we let h = (I + i t D0)
−1 f and wish to prove ‖h‖p . ‖ f ‖p when p is near 2 and

uniformly in t . To prove this, we rewrite the equation (I + i t D0)h = f first as (I + i tσN + i t DB0)h = f
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and then in terms of a divergence form equation, with coefficients A1 = B̂0. Write h =
[
(A1h̃)⊥ h̃‖

]t
and

f =
[
(A1 f̃ )⊥ f̃‖

]t
. Then {

(1− i tσ)(A1h̃)⊥− i t divS(A1h̃)‖ = (A1 f̃ )⊥,
(1+ i tσ)h̃‖+ i t∇S h̃⊥ = f‖.

Using the second equation to eliminate h̃‖ in the first equation, and letting z = (1+ i tσ)−1, we obtain

Lh̃⊥ =
[
1 −i t z̄ divS

] [z̄(A1)⊥⊥ f̃⊥+ (z̄− z)(A1)⊥‖ f̃‖
−z(A1)‖‖ f̃‖

]
with

L :=
[
1 −i t z̄ divS

]
A1

[
1

−i t z∇S

]
=
[
1 −iτ divS

]
Aθ

[
1

−iτ∇S

]
and Aθ = D−θ A1 Dθ with t z = eiθτ , τ = |t z|, and Dθ the diagonal matrix with entries 1, eiθ in the
normal/tangential splitting. We note that Aθ is strictly accretive on H1 with the same constants as A1, and
that |z| ≤ 1 and |τ | ≤ |σ |−1. We claim that L is invertible from the Sobolev space W 1

p(S
n
;Cm) equipped

with the scaled norm

‖u‖W 1
p
:=

(∫
Sn
(|u(x)|2+ |τ∇Su(x)|2)p/2 dx

)1/p

(24)

to its dual, with bounds independent of τ, θ , for p in a neighborhood of 2.
To prove this, if we rescale from the sphere Sn of radius 1 to the sphere Sn

1/τ of radius 1/τ , we obtain
the same equation with Aθ , A1, z± unchanged, f (x), h(x) replaced by f (τ x), h(τ x), and τ divS , τ∇S

replaced by divSn
1/τ

, ∇Sn
1/τ

, and we want to show ‖h(τ · )‖L p(Sn
1/τ )
. ‖ f (τ · )‖L p(Sn

1/τ )
(with implicit constant

uniform in τ, θ ). Thus it is enough to set τ = 1 and work on Sn , as long as we only use estimates on Sn

which hold (with same constant) on Sn
1/τ as well.

Having set τ = 1, we have, for 1< p, q <∞ such that 1
p +

1
q = 1, estimates

‖Lu‖W−1
p
≤ ‖Aθ‖∞‖u‖W 1

p
= ‖A1‖∞‖u‖W 1

p
,

where ‖u‖W−1
p
:= sup‖v‖W 1

q
=1 |(u, v)| and (u, v) denotes the L2(Sn

;Cm) pairing extended in the sense of
distributions. For p = q = 2, the accretivity assumption on Aθ yields ‖Lu‖W−1

2
≥ κ‖u‖W 1

2
. Applying

the extrapolation result of Šneı̆berg [1974] to the complex interpolation scale {W 1
p}1<p<∞, shows the

existence of ε > 0 such that

‖Lu‖W−1
p
≈ ‖u‖W 1

p
,

for
∣∣1

p −
1
2

∣∣ < ε. (Even for τ 6= 1, one can verify that the Sobolev norms given by (24) on Sn
1/τ (with

τ∇S replaced ∇Sn
1/τ

) are equivalent to the ones given by the complex interpolation method, with constant
independent of τ . Hence ε depends only on the ellipticity constants and dimension, and is thus independent
of τ, θ .) Applying this isomorphism, we obtain the resolvent estimate

‖h‖p ≈ ‖h̃⊥‖p +‖h̃‖‖p . ‖h̃⊥‖W 1
p
+‖ f̃‖‖p . ‖ f ‖p.



1006 PASCAL AUSCHER AND ANDREAS ROSÉN

In the second step we used h̃‖ = −ieiθ
∇S h̃⊥+ z f̃‖ and |z| ≤ 1 (recall we have rescaled and set τ = 1).

In the third step we used the fact that
[
1 −i divS

]
: L p(Sn

;C(1+n)m) → W−1
p is an isometry since[

1 −i∇S
]t
:W 1

q → Lq(Sn
;C(1+n)m) is one. This finishes the proof of (i).

To prove the inequality (ii), the above argument shows that Lh̃⊥ = z−(A1)⊥⊥ f̃⊥ and h̃‖ =−i t z+∇S h̃⊥.
Having rescaled in the same way, the Sobolev embedding L2 ⊂ W−1

q for some q > 2 with 1
2 −

1
q < ε,

allows us to conclude that h ∈ Lq(Sn
;V) and since we assume |t | ≤ 1, we have |τ | ≈ |t | and obtain

‖h‖q . |t |
−n( 1

2−
1
q )‖ f ‖2, the power coming from scaling. It suffices to interpolate again with the L2

off-diagonal decay, and conclude for any exponent between 2 and q . �

We state the following useful corollary. Here and subsequently, Ñ p
∗ is defined as Ñ∗ replacing L2

averages by L p averages and M is the Hardy–Littlewood maximal operator.

Corollary 6.3. For ε as above and
∣∣ 1

p −
1
2

∣∣< ε, we have the pointwise inequalities

Ñ p
∗
((I + i t D0)

−1 f ). M(| f |p)1/p,

Ñ p
∗
((I + i t D̃0)

−1 f ). M(| f |p)1/p,

and, for some p < 2 with 1
p −

1
2 < ε,

Ñ∗(((I + i t D̃0)
−1 f )⊥). M(| f |p)1/p.

Proof. We fix a Whitney region W0 =W (t0, x0) in R+× Sn . Then

|W0|
−1
∫

W0

∣∣(I + i t D0)
−1 f (x)

∣∣pdt dx . M(| f |p)(x0)

follows directly from the off-diagonal decay of Lemma 6.2 as in [Auscher et al. 2008, Proposition 2.56].
Next, |W0|

−1
∫

W0

∣∣(I + i t D̃0)
−1 f (x)

∣∣p dt dx . M(| f |p)(x0) follows by testing against g ∈ Lq(W0;V),
supported in W0 with 1/p+ 1/q = 1. We have∫

W0

(
(I + i t D̃0)

−1 f (x), g(t, x)
)

dt dx =
∫ c0t0

t0/c0

(
f, (I − i t D̃∗0)

−1gt
)

dt

so that for each fixed t , using that D̃∗0 = DB∗0 − σN has the same form as D0, we can use the Lq

off-diagonal decay for each t ≈ t0 and obtain for any M > 0,

|W0|
−1
∫

W0

|(I + i t D̃0)
−1 f (x)|p dt dx .

∑
j≥2

2− j M
|B(x0, 2 j t0)|−1

∫
B(x0,2 j t0)

| f (x)|p dx, (25)

using standard computations on annuli around B(x0, t0) in Sn . Details are left to the reader.
The last estimate starts in the same way with g ∈ L2(W0;V), but since we want to estimate the normal

component of (I + i t D̃0)
−1 f we assume that (gt)‖ = 0 for each t . The second estimate in Lemma 6.2,

implies that (I − i t D̃∗0)
−1gt =: ht has Lq estimates with decay. Thus using Hölder’s inequality on
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t0/c0

( f, ht) dt with exponent q on ht and dual exponent on f yields(
|W0|

−1
∫

W0

∣∣((I + i t D̃0)
−1 f )⊥(x)

∣∣2dt dx
)1/2

.
∑
j≥2

2− j M
(
|B(x0, 2 j t0)|−1

∫
B(x0,2 j t0)

| f (x)|p dx
)1/p

(26)

and the conclusion follows. �

7. Square function estimates and functional calculus

All the remainder of this article rests on the square function estimate below.

Theorem 7.1. Let n ≥ 1. The operator D0 = DB0 + σN , with σ ∈ R fixed but arbitrary, has square
function estimates ∫

∞

0
‖t D0(1+ t2 D2

0)
−1 f ‖22

dt
t
≈ ‖ f ‖22, for all f ∈ R(D0).

The estimate . holds for all f ∈ L2(Sn,Cm). The same estimates hold for D̃0 = B0 D− σN.

Proof. Note that equivalence can only hold on R(D0)= R(D0), which equals L2(Sn
;V) if σ 6= 0 and H

if σ = 0. By standard duality arguments, the estimates & on R(D0) follows from the estimates . for D∗0 .
See [Albrecht et al. 1996]. Further D∗0 is of type D̃0. Hence it is enough to prove∫

∞

0
‖t D0(1+ t2 D2

0)
−1 f ‖22

dt
t
. ‖ f ‖22 (27)

for all f ∈ L2(Sn
;V), and similarly for D̃0. Consider first the operator D0.

(i) We first reduce (27) to ∫ 1

0

∥∥t DB0(1+ t2(DB0)
2)−1 f

∥∥2
2

dt
t
. ‖ f ‖22 (28)

for all f ∈ L2(Sn
;V). First note that∫

∞

1

∥∥t D0(I + t2 D2
0)
−1 f

∥∥2
2

dt
t
.
∫
∞

1

∥∥t2 D2
0(I + t2 D2

0)
−1 f

∥∥2
2

dt
t3 .

∫
∞

1
‖ f ‖22

dt
t3 ≈ ‖ f ‖22,

using that D0 has bounded inverse by Proposition 4.3. (When n = 1, write f = f1+ f0 ∈H⊕ B−1
0 H⊥.

The above estimate goes through for f1, and the contribution from f0 is zero.) For the integral
∫ 1

0 , we
may ignore the zero-order term in D0, using the idea from [Auscher et al. 2010a, Section 9]. Indeed,∥∥(I + i t D0)

−1 f − (I + i t DB0)
−1 f

∥∥
2 =

∥∥(I + i t D0)
−1i tσN (I + i t DB0)

−1 f
∥∥

2 . |t | ‖ f ‖2.

Since 2i t D0(I + t2 D2
0)
−1
= (I − i t D0)

−1
− (I + i t D0)

−1, and similarly for DB0, subtraction yields∫ 1

0

∥∥t D0(I + t2 D2
0)
−1 f

∥∥2
2

dt
t
.
∫ 1

0

∥∥t DB0(I + t2(DB0)
2)−1 f

∥∥2
2

dt
t
+

∫ 1

0
t dt ‖ f ‖22.
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(ii) Next, using a partition of unity, it suffices to show that∫ 1

0

∥∥ζ t DB0(I + t2(DB0)
2)−1 f

∥∥2
2

dt
t
. ‖ f ‖22, (29)

when ζ is a smooth cutoff that is 1 on a neighborhood of supp f . Indeed, L2-off diagonal estimates of
t DB0(1+ t2(DB0)

2)−1 from Lemma 6.2 and again

2i t DB0(I + t2(DB0)
2)−1
= (I − i t DB0)

−1
− (I + i t DB0)

−1

show in this case that
‖(1− ζ )t DB0(I + t2(DB0)

2)−1 f ‖22 . t2
‖ f ‖22.

(iii) To prove (29), we assume that f and ζ are supported inside the lower hemisphere, which we
parametrize by On using stereographic coordinates:

ρ : Rn
→ Sn

: y 7→ x =
|y|2− 1
|y|2+ 1

e0+
2y
|y|2+ 1

,

where e0 ∈ R1+n is a fixed unit normal vector to Rn
⊂ R1+n , which covers all Sn , except the north pole

e0 ∈ Sn . Note that ρ is a conformal map with length dilation d−1 and Jacobian determinant dx/dy = d−n ,
where

d(y) := (|y|2+ 1)/2.

Let T : Rn
→ R1+n

: y 7→ ∂yρ(y) be the differential of ρ, and note that T t T = d−2 I . Define adjoint
rescaled pullbacks and pushforwards

ρ∗ : L2(ρ(O
n);V)→ L2(O

n
;C(1+n)m) :

[
f⊥ f‖

]t
7→
[
d−n( f⊥ ◦ ρ) T t( f‖ ◦ ρ)

]t
,

ρ∗ : L2(O
n
;C(1+n)m)→ L2(ρ(O

n);V) :
[
g⊥ g‖

]t
7→
[
(g⊥ ◦ ρ−1) (dnT g‖) ◦ ρ−1

]t
.

Note that (ρ∗)−1
=

[
dn 0
0 d2−n

]
ρ∗. We claim that

ρ∗D = Dρ

[
dn 0
0 d2−n

]
ρ∗, where Dρ :=

[
0 −divy

∇y 0

]
.

Indeed, the tangential part of the equation is the chain rule, and the normal component is the adjoint
statement. We consider Dρ as a self-adjoint closed unbounded operator in L2(O

n
;C(1+n)m) with domain

D(Dρ) :=

[
H 1

0 (O
n
;Cm)

D(divy)

]
,

where H 1
0 denotes the Sobolev W 1

2 functions vanishing at the boundary Sn−1.
Next we map coefficients B0 in ρ(On) to coefficients Bρ := (ρ∗)−1 B0(ρ

∗)−1 in On , and claim that
Bρ is strictly accretive on R(Dρ). To see this, let g ∈ R(Dρ). Then curly g‖ = 0 and g‖ is normal on
∂On (or if n = 1 we have

∫ 1
−1 g‖dy = 0). Writing g = ρ∗ f and extending f by 0 outside ρ(On), it
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follows that f ∈ H1. (To see this, write g‖ = ∇yu with u ∈ H 1
0 (O

n
;Cm), and extend u by 0 to an

H 1(Rn
;Cm)-function.) The assumed strict accretivity of B0 on H1 gives

Re
∫

On
(Bρg, g) dy = Re

∫
On
((ρ∗)

−1 B0 f, ρ∗ f ) dy = Re
∫

Sn
(B0 f, f ) dx ≥ κ

∫
Sn
| f |2 dx ≈

∫
On
|g|2 dy.

Thus we obtain a bisectorial operator DρBρ in L2(O
n
;C(1+n)m), and we observe the intertwining relation

ρ∗DB0 f = Dρ

[
dn 0
0 d2−n

]
ρ∗ρ∗Bρρ∗ f = DρBρρ∗ f.

for f supported in the lower hemisphere. In On , let K := {|y|≤ 1/4}. By rotational invariance, it is enough
to consider those f = (ρ∗)−1g with g supported on K and ζ = (ρ∗)−1η = η ◦ ρ−1 with η ∈ C∞0 (R

n) be
such that η = 1 on {|y| ≤ 1/2} and supp η ⊂ {|y| ≤ 3/4}. Using ηg = g and understanding η, ζ as the
operators of pointwise multiplication by η, ζ , one can check the identity

ζ(I + i t DB0)
−1 f − (ρ∗)−1η2(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1(ηg)− ζ(ρ∗)−1η(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1 (η(I + i t DρBρ)− ρ∗(I + i t DB0)(ρ

∗)−1η
)
(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1i t[η, Dρ]Bρ(I + i t DρBρ)−1g.

As in (i) above, subtracting the corresponding equation with t replaced by −t , yields the estimate

‖ζ t DB0(I + t2(DB0)
2)−1 f − (ρ∗)−1η2t DρBρ(I + t2(DρBρ)2)−1g‖2 . |t |‖g‖2,

since [η, Dρ] is bounded. As ‖ f ‖2 ≈ ‖g‖2 by the support conditions, (29) will follow from∫ 1

0
‖t DρBρ(I + t2(DρBρ)2)−1g‖22

dt
t
. ‖g‖22, for all g ∈ L2(O

n
;C(1+n)m).

(iv) The latter square function estimate follows from combining [Axelsson et al. 2006a, Theorem 2] and
[Axelsson et al. 2006b, Proposition 3.1(iii)], the latter purely being of functional analytic content. (See
[Auscher et al. 2010a, Section 10.1] where this is pointed out.)

(v) Consider now D̃0. Similarly one can reduce to prove . for B0 D. On N(B0 D)=H⊥, this is trivial.
On R(B0 D) = B0H we use that B0 D is similar to DB0 on R(DB0) = H through the isomorphism
B0 : H→ B0H. Thus the square function upper estimate for B0 D follows by similarity from the one
for DB0. �

The square function estimates from Theorem 7.1 provide bounds on the So
ν,σ -holomorphic functional

calculus of the operators D0 and D̃0, adapting the techniques described in [Albrecht et al. 1996]. Write

H(So
ν,σ ) := {holomorphic b ; So

ν,σ → C},

H∞(So
ν,σ ) := {b ∈ H(So

ν,σ ) ; sup{|b(λ)| ; λ ∈ So
ν,σ }<∞},

9(So
ν,σ ) := {b ∈ H(So

ν,σ ) ; |b(λ)|.min(|λ|a, |λ|−a), for some a > 0}.
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We summarize the result for the So
ν,σ -holomorphic functional calculus in the following corollary. The

proof is a straightforward adaption of the results in [Albrecht et al. 1996].

Corollary 7.2. Assume σ ∈ R and D0 = DB0+ σN. Fix ω < ν < π/2. There is a unique continuous
Banach algebra homomorphism

H∞(So
ν,σ )→ L(R(D0)) : b 7→ b(D0),

with bounds ‖b(D0) f ‖2 ≤ C(supSo
ν,σ
|b(λ)|)‖ f ‖2 for all f ∈ R(D0), where C only depends on ‖B0‖∞,

κB0 , n and σ , and with the following two properties. If b ∈9(So
ν,σ ) then

b(D0)=
1

2π i

∫
γ

b(λ)(λ− D0)
−1dλ ∈ L(R(D0)),

where γ := ∂Sθ,σ , ω < θ < ν, oriented counter clockwise around Sω,σ . For any b ∈ H∞(So
ν,σ ) we have

strong convergence

lim
k→∞
‖bk(D0) f − b(D0) f ‖2 = 0, for each f ∈ R(D0),

whenever bk ∈ 9(So
ν,σ ), k = 1, 2, . . . , are uniformly bounded, i.e., supk,λ |bk(λ)| <∞, and converges

pointwise to b.
The corresponding results hold for D̃0 = B0 D− σN replacing D0 by throughout.

We remark that the square function estimates in Theorem 7.1 hold when ψ(z)= z(1+ z2)−1 is replaced
by any ψ ∈9(So

ν ) which is nonzero on both components of So
ν,σ . We have∫

∞

0
‖ψ(t D0) f ‖22

dt
t
≈ ‖ f ‖22, for all f ∈ R(D0). (30)

A similar extension of the square function estimates holds for D̃0.
Fundamental operators in this paper are the following.

Definition 7.3. (i) Let χ+(λ) and χ−(λ) be the characteristic functions for the right and left half planes.
Define spectral projections E±0 := χ

±(D0) and Ẽ±0 := χ
±(D̃0) on R(D0) and R(D̃0) respectively.

(ii) Define closed and dense defined operators 3= |D0| := sgn(D0)D0 and 3̃= |D̃0| := sgn(D̃0)D̃0 on
L2(Sn

;V). Here |λ| := λ sgn(λ) and sgn(λ) := χ+(λ)−χ−(λ).

Define operators e−t3 and e−t3̃ on R(D0) and R(D̃0) respectively by applying Corollary 7.2 with
b(λ)= e−t |λ|, t > 0.

When σ = 0, R(D̃0)= B0H= B0R(D0) are strict subspaces of L2 and it is convenient to extend the
above operators to all L2. Using the Hodge splitting L2 = B0H⊕H⊥, on H⊥ the operator D̃0 = B0 D is
already 0 and 3̃= |B0 D| is naturally defined by 0. Using the other Hodge splitting L2 =H⊕ B−1

0 H⊥,
on B−1

0 H⊥ the operator D0 = DB0 is already 0 and 3= |DB0| is naturally defined by 0. It follows that
e−t3̃ and e−t3 are naturally extended to L2, by letting e−t3̃

|H⊥ := I and e−t3
|B−1

0 H⊥ := I .
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However, for the projections the extension is more subtle. Indeed, we see for the functional calculus of
D̃0 = DB0− σN that

b(D̃0)= b(−σN )=
[

b(σ )I 0
0 b(−σ)I

]
on H⊥ when σ 6= 0 using the definition of N . As we are mainly interested in σ = n−1

2 , it is more natural
for consistency of notation towards applications to divergence form equations to define the operators for
σ = 0 by continuity σ → 0+. Thus set

b(B0 D) := b(B0 D|B0H)P̃1
B0
+

[
b(0+)I 0

0 b(0−)I

]
P̃0

B0
,

where b(0±) := lim±λ∈Sω+,λ→0 b(λ), assuming the limits exist, b(B0 D|B0H) is the operator from Corollary
7.2 and P̃ i

B0
, i = 0, 1, denote the projections from Proposition 4.4 onto the subspaces in the Hodge splitting

L2 = B0H⊕H⊥.
Similarly, for σ 6= 0, we have D0 = DB0+ σN so D0 = σN on B−1

0 H⊥. For σ = 0, set

b(DB0) := b(DB0|H)P1
B0
+ P0

B0

[
b(0−)I 0

0 b(0+)I

]
,

where P i
B0

, i = 0, 1, denote the projections from Proposition 4.3 onto the subspaces in the Hodge splitting
L2 =H⊕ B−1

0 H⊥. Remark that P0
B0

on the left of the matrix is needed to obtain an element in B−1
0 H⊥.

An elementary calculation shows that this extension of the functional calculus coincides with (b̄(B∗0 D))∗,
where b̄(λ)= b(λ̄), and that the extended functional calculi of D0 and D̃0 thus obtained are intertwined
by D.

Taking b(λ)= λ or λ sgn(λ), this provides us with the zero extension that we already chose so this is
consistent. For the projections, this leads to the following definition.

Definition 7.4. When σ = 0, extend Ẽ±0 , E±0 originally defined on R(B0 D) = B0H and R(DB0) = H

respectively from Definition 7.3 to operators on all L2(Sn
;V), letting{

Ẽ±0 f := N∓ f for all f ∈H⊥,

E±0 f := P0
B0

N± f for all f ∈ B−1
0 H⊥.

Lemma 7.5. With L2= L2(Sn
;V), the spectral projections E±0 and Ẽ±0 are bounded, we have topological

spectral splittings
L2 = E+0 L2⊕ E−0 L2,

restricting to H= E+0 H⊕ E−0 H in the subspace H invariant under D0, and

L2 = Ẽ+0 L2⊕ Ẽ−0 L2,

restricting to H⊥= Ẽ+0 H⊥⊕ Ẽ−0 H⊥ in the subspace H⊥ invariant under D̃0. We also have the intertwining
relation

E±0 D = DẼ±0 (31)

so that D : Ẽ±0 L2→ E±0 H is surjective.
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If σ ≥ 0, then in the latter splitting we have Ẽ±0 = N∓ in H⊥. Hence Ẽ+0 H⊥ = N−H⊥ and Ẽ−0 H⊥ =

N+H⊥. (On the other hand, if σ < 0, then Ẽ±0 = N± in H⊥.)

Proof. When σ 6= 0, R(D̃0)= L2 and L2 = R(D0) by Proposition 6.1. Boundedness on L2 follows from
Corollary 7.2. The intertwining property is a consequence of Lemma 4.2. The surjectivity of D easily
follows from the spectral subspaces and using D : L2→H surjective and the splittings. That Ẽ±0 = N∓

in H⊥ when σ > 0 comes from D̃0 =−σN in H⊥ and χ±(−σN )= N∓. The case σ = 0 follows from
Definition 7.4. We leave further details to the reader. �

8. A detour to Kato’s square root on Lipschitz surfaces

Let 6 be a surface in R1+n , assumed to be Lipschitz diffeomorphic to Sn through a bilipschitz map
ρ0 : Sn

→ 6. Let dσ denote surface measure on 6. Consider, for n,m ≥ 1, coefficient matrices
H ∈ L∞(6;L((TC6)

m)) (with TC6 denoting the complexified tangent bundle) and h ∈ L∞(6;L(Cm)),
assumed to be strictly accretive in the sense that

Re
∫
6

(H(x)∇6u(x),∇6u(x)) dσ(x)≥ κ
∫
6

|∇6u(x)|2 dσ(x),

Re(h(x)z, z)≥ κ|z|2, a.e. x ∈6,

for all u ∈W 1
2 (6;C

m) and z ∈ Cm , and some κ > 0. Then L := −div6 H∇6 , with div6 := −(∇6)∗ in
L2(6; dσ), constructed by the method of sesquilinear forms, is a maximal accretive operator and hL
is defined on D(L) and can be shown to be an ω-sectorial operator on L2(6; dσ) for some 0< ω < π .
Thus it has a square root and we have

Theorem 8.1. The square root of the operator hL =−h div H∇6 has domain D(
√

hL)=W 1
2 (6;C

m),
and estimates ‖

√
hLu‖2 ≈ ‖∇6u‖2.

In particular for h = 1, we obtain a version of the Kato square root problem on Lipschitz surfaces 6.
The presence of h makes the theorem invariant under bilipschitz changes of variables as we shall see in
the proof.

Our Theorems 7.1 and 8.1 are inspired by [Axelsson et al. 2006b, Theorem 7.1], and a comparison of
these two results is in order. The main novelty in Theorems 7.1 and 8.1, is that these do not require the
coefficients B0 or H to be pointwise strictly accretive, which was needed for the localization argument
in [Axelsson et al. 2006b, Theorem 7.1]. This theorem considered more general forms on 6, and more
general compact Lipschitz surfaces 6. It is straightforward to extend our results Theorems 7.1 and 8.1
here to more general compact Lipschitz manifolds. On the other hand, we do not know how to extend our
localization argument here to the case of forms, unless pointwise strict accretivity is assumed.

We also mention that A. Morris [2010] proved similar results on embedded (possibly noncompact)
Riemannian manifolds with bounds on the second fundamental form and a lower bound on Ricci curvature.

Proof of Theorem 8.1. A calculation shows the pullback formula

(h div6 H∇6u)(ρ0(x))= (h̃ divS H̃∇S(u ◦ ρ0))(x), x ∈ Sn,
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where h̃(x) = |J (ρ0)(x)|−1h(ρ0(x)) and H̃(x) := |J (ρ0)(x)|(ρ0(x))−1 H(ρ0(x))(ρ0
t(x))−1. So we as-

sume that 6 = Sn from now on. Let D be as in Definition 3.1 and let

B0 :=

[
h 0
0 H

]
∈ L∞(Sn

;L(V)).

Then B0 is strictly accretive on the space H1 from (13) and

B0 D =
[

0 −h divS

H∇S 0

]
.

Thus by Theorem 7.1, with σ = 0, we have bounded functional calculus of B0 D in B0H. Following
[Auscher et al. 1997b], we have for u ∈ D(∇S) that[√

hLu
0

]
=

√
(B0 D)2

[
u
0

]
= sgn(B0 D)B0 D

[
u
0

]
= sgn(B0 D)

[
0

H∇Su

]
,

so that ‖
√

hLu‖2 ≈ ‖H∇Su‖2 ≈ ‖∇Su‖2, using that sgn(B0 D) is bounded and invertible on B0H and
that H is bounded above and below on R(∇S). �

Remark 8.2. It is interesting to note that we apply Theorem 7.1 with σ = 0 no matter what the dimension
is. If n ≥ 2, Kato’s square root problem on Sn is not directly linked to the boundary operator appearing in
(17), associated to the equation divx A∇xu = 0 on O1+n , with Â =

[ h
0

0
H

]
, i.e., when one can separate

in the equation radial derivatives from tangential derivatives. This is different from the case of the half
space (Rn replacing Sn) and emphasizes the role of curvature.

In view of Section 4, the second-order operator on the boundary associated to this divx A∇x on O1+n ,
comes from

(B0 D− σN )2 =
[
−hL + σ 2 0

0 −H∇Sh divS +σ
2

]
,

with σ = (n− 1)/2. Thus, the naturally associated Kato square root is
√
−hL + σ 2, and one has∥∥∥√−hL + (n−1

2 )2 u
∥∥∥

2
≈ ‖∇Su‖2+ n−1

2 ‖u‖2.

9. Natural function spaces

By Corollary 3.4, our method to study and construct solutions u to the divergence form equation (1)
consists in translating this equation to the ODE (17) for the conormal gradient f in R+× Sn . Conormal
gradients of variational solutions belong to L2(R+× Sn

;V) as noted in (18). The appropriate function
spaces for f with Dirichlet/Neumann boundary data for u in L2(Sn

;Cm) are the following.

Definition 9.1. The (truncated) modified nontangential maximal function of f defined on R+× Sn , is

Ñ∗( f )(x) := sup
0<t<c0

t−(1+n)/2
‖ f χs<1‖L2(W (t,x)), x ∈ Sn,

where
W (t, x) := {(s, y) ∈ R+× Sn ; |y− x |< c1t, c−1

0 < s/t < c0}
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for some fixed constants c0 > 1, c1 > 0. We assume that c0 ≈ 1 and c1 << 1, so that the Whitney regions
W (t, x) are nondegenerate for t < c0. For a function f0 on O1+n , we have Ñ o

∗
( f0) = Ñ∗( f ) where

f (t, x) := f0(e−t x), which properly defines Ñ o
∗

in the introduction.
The (truncated) modified Carleson norm of f in R+× Sn is

‖ f ‖C :=
(

sup
r(Q)<r0

1
|Q|

∫∫
(0,r(Q))×Q

ess sup
W (t,x)

| f |2
dt dx

t

)1/2

,

and the sup is taken over geodesic balls Q ⊂ Sn with volume |Q|, and with radius r(Q) less than some
fixed constant r0 << 1. For a function f0 on O1+n , we have ‖ f0‖C = ‖ f ‖C where f (t, x) := f0(e−t x),
which corresponds to ‖ f0‖C as in (4).

Note that changing the parameters c1, c1 does not affect the results.

Definition 9.2. (i) For g :O1+n
→ C(1+n)m , define norms

‖g‖2Yo :=

∫
O1+n
|g(x)|2(1− |x|) dx,

‖g‖2Xo := ‖Ñ o
∗
(g)‖22+

∫
|x|<e−1

|g(x)|2 dx.

Let Yo and Xo be the Hilbert/Banach spaces of functions g for which the respective norm is finite.

(ii) For f : R+× Sn
→ V, define norms

‖ f ‖2Y :=
∫
∞

0
‖ ft‖

2
2 min(t, 1) dt,

‖ f ‖2X := ‖Ñ∗( f )‖22+
∫
∞

1
‖ ft‖

2
2 dt.

Let Y and X be the Hilbert/Banach spaces of sections f for which the respective norm is finite.

The gradient-to-conormal gradient map of Proposition 3.3 is an isomorphism Yo
→ Y and Xo

→ X.

Lemma 9.3. There are estimates

sup
0<t<1/2

1
t

∫ 2t

t
‖ fs‖

2
2 ds . ‖Ñ∗( f )‖22 .

∫ 1

0
‖ fs‖

2
2

ds
s
, f ∈ L loc

2 (R+× Sn
;V).

Denoting by Y∗ the dual space of Y relative to L2(R+× Sn
;V), i.e., the space of functions f such that∫

∞

0 ‖ ft‖
2
2 max(t−1, 1) dt <∞, we have continuous inclusions of Banach spaces

Y∗ ⊂ X⊂ L2(R+× Sn
;V)⊂ Y.

Note that Lemma 9.3 shows that another choice of threshold than t = 1 in the definition of the norms
for X and Y would result in equivalent norms.

Proof. The L loc
2 (L2) estimates of ‖Ñ∗( f )‖2 is an adaption of the corresponding result for R1+n

+ , proved
in [Part I, Lemma 5.3]. The remaining statements, except possibly that X ⊂ L2(R+ × Sn

;V), are
straightforward consequences. To verify this embedding of X, we use the lower bound on ‖Ñ∗( f )‖2 to
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estimate∫
∞

0
‖ ft‖

2
2 dt =

∞∑
k=0

∫ 2−k

2−k−1
‖ ft‖

2
2 dt +

∫
∞

1
‖ ft‖

2
2 dt .

∞∑
k=0

2−k−1
‖Ñ∗( f )‖22+

∫
∞

1
‖ ft‖

2
2 dt = ‖ f ‖2X. �

The following lemma gives necessary and (different) sufficient conditions for a multiplication operator
E to map X into Y∗. Write

‖E‖C∩L∞ := ‖E‖C +‖E‖L∞(R+×Sn).

Lemma 9.4. For functions E : R+× Sn
→ C(1+n)m , define the multiplicator norm ‖E‖∗ := ‖E‖X→Y∗ =

sup‖ f ‖X=1 ‖E f ‖Y∗ . Then we have estimates

‖E‖L∞(R+×Sn) . ‖E‖∗ . ‖E‖C∩L∞ .

Proof. This is an adaption to the unit ball of [Part I, Lemma 5.5]. As in that proof, the estimate
‖E‖∞ . ‖E‖∗ follows from the L loc

2 estimates in Lemma 9.3. For the second estimate we write

‖E f ‖2Y∗ =
∫ a

0
‖Et ft‖

2
2

dt
t
+

∫
∞

a
‖Et ft‖

2
2 dt.

As in [Part I, Lemma 5.5], the first term is estimated with Whitney averaging and Carleson’s theorem. The
second term is controlled with ‖E‖∞. In total, this gives the bound ‖E f ‖Y∗ . ‖E‖C‖ f ‖X+‖E‖∞‖ f ‖X

as desired. �

Remark 9.5. It has been recently proved in [Hytönen and Rosén 2012] that ‖E‖∗ & ‖E‖C∩L∞ so all of
our results use in fact the same condition on E.

We end this section by introducing an auxiliary subspace Yδ of Y.

Definition 9.6. For δ > 0, define the norm

‖ f ‖2Yδ
:=

∫
∞

0
‖ ft‖

2
2 min(t, 1)eδt dt.

Let Yδ be the Hilbert spaces of sections f : R+× Sn
→ V such that ‖ f ‖Yδ

is finite.

Clearly Yδ ⊂ Y. The motivation for introducing Yδ is the following result.

Proposition 9.7. Given coefficients A ∈ L∞(O1+n
;L(C(1+n)m)), which are strictly accretive on H1, there

is δ > 0 such that ∫
∞

1
‖ ft‖

2
2eδt dt .

∫
∞

1/2
‖ ft‖

2
2 dt,

for all f ∈ L loc
2 (R+;H) solving ∂t f + (DB + n−1

2 N ) f = 0. Hence, if f ∈ Y ∩ L loc
2 (R+;H) and

∂t f + (DB+ n−1
2 N ) f = 0, then f ∈ Yδ and ‖ f ‖Yδ

. ‖ f ‖Y.

The proof of Proposition 9.7 uses reverse Hölder inequalities.
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Theorem 9.8. Fix c > 1. There exist C <∞ and p > 2 depending only on n,m, the ellipticity constants
‖A‖∞, κA of A and c, such that for any ball B with cB ⊂O1+n and any weak solution to divx(A∇xu)= 0
in O1+n , we have (∫

B
|∇xu|p dx

)1/p

≤ C
(∫

cB
|∇xu|2 dx

)1/2

.

Proof. This result is due to N. Meyers [1963] for equations. Here, we make sure that the result extends to
elliptic systems in the sense of Gårding by giving appropriate references. We begin by noting that the
usual Caccioppoli inequality for weak solutions(∫

B
|∇xu|2 dx

)1/2

≤ Cr
(∫

cB
|u|2 dx

)1/2

for any ball B so that cB ⊂O1+n , with r its radius, holds for any system that is elliptic in the sense of
the Gårding inequality (2). Although not stated like this in [Campanato 1980, Theorem 1.5, p. 46], the
proof only uses Gårding’s inequality. See also [Auscher and Qafsaoui 2000], where the proof is done
explicitly for second- and higher-order equations and it is said (p. 315) that this applies in extenso to
such systems. The constant C depends only on n, m, κ , ‖A‖∞ and c. Now, this combined with Poincaré
inequality yields (∫

B
|∇xu|2 dx

)1/2

≤

(∫
cB
|∇xu|q dx

)1/q

for 2(n+ 1)/(n+ 3) < q < 2. Finally, Gehring’s method for improvement of reverse Hölder inequalities
with increase of radii, presented in [Giaquinta 1983, Theorem 6.3], applies. �

Proof of Proposition 9.7. Corollary 3.4 shows that f is the conormal gradient of a weak solution to
divx A∇xu = 0 in O1+n . By Hölder’s inequality and Theorem 9.8, we have for g =∇xu the estimate(∫

|x|<e−1
|g(x)|2|x|−δ dx

)1/2

.

(∫
|x|<e−1

|g(x)|p dx
)1/p

.

(∫
|x|<e−1/2

|g(x)|2 dx
)1/2

for 0< δ < (n+ 1)(p− 2)/p. This translates to the stated estimate for f , using the gradient-to-conormal
gradient map from Definition 3.2. �

10. Semigroups and radially independent coefficients

In this section and subsequent ones, we set σ = n−1
2 .

In this section, fix radially independent coefficients A1 and B0 = Â1. We show how to obtain weak
solutions of divx A1∇xu = 0 inside and outside O1+n using the semigroups associated to 3 and 3̃. Later,
we show all weak solutions with prescribed growth towards the boundary have a representation in terms
of these semigroups.

Theorem 10.1. Let f0 belong to the spectral subspace E+0 H. Then

ft := e−t3 f0
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gives an H-valued solution to ∂t f +D0 f =0, in the strong sense f ∈C1(R+; L2)∩C0(R+;D(D0)) and in
R+×Sn distribution sense. (In particular f is the conormal gradient of a weak solution of divx A1∇xu= 0
in O1+n .) The function f has L2 limit limt→0 ft = f0 and rapid decay ‖∂ j

t ft‖2 ≤ C j,k/tk
‖ f0‖2, for each

k ≥ j ≥ 0. Moreover, we have estimates

‖∂t f ‖Y ≈ ‖ f0‖2 ≈ ‖ f ‖X.

If instead f0 belongs to the spectral subspace E−0 H, then define ft := et3 f0 for t < 0. Then ∂t f +D0 f
vanishes for t < 0. (In particular f is the conormal gradient of a weak solution of divx A1∇xu = 0 in
Rn
\O1+n .) Limits and estimates as above hold for ft , t < 0.

Proof. (i) The rapid decay of ft follows from the lower bound on D0|H from Proposition 4.3, giving

‖∂
j

t ft‖2 = ‖3
j e−t3 f0‖2 . ‖(D0)

k− j3 j e−t3 f0‖2 ≈ t−k
‖(t3)ke−t3 f0‖2 . t−k

‖ f0‖2.

(ii) That f is the conormal gradient of a solution follows from Corollary 3.4 and it is straightforward to
show that the ODE ∂t f + D0 f = 0 is satisfied in the strong and distribution sense.

(iii) Next, ‖∂t f ‖2Y≤
∫
∞

0 ‖∂t ft‖
2
2tdt , and the square function estimate

∫
∞

0 ‖∂t ft‖
2
2tdt≈‖ f0‖

2
2 follows from

(30), since ∂t ft =−3e−t3 f0. This together with the decay from (i) with j = 1 shows ‖ f0‖2 ≈ ‖∂t f ‖Y.

(iv) It remains to show that ‖ f0‖2 ≈ ‖ f ‖X. For this, the decay from (i) with j = 0 implies it is enough
to prove ‖Ñ∗ f ‖2 ≈ ‖ f0‖2. The proof is an adaptation of the results on R1+n

+ from [Auscher et al. 2008,
Proposition 2.56] as follows.

The estimate ‖Ñ∗( f )‖2 & ‖ f0‖2 follows from Lemma 9.3. Next consider the estimate .. We follow
the argument in [Auscher et al. 2008, Proposition 2.56]. By the reverse Hölder inequalities noted in the
proof of Proposition 9.7 applied to a weak solution of the divergence form equation with coefficients A1

associated with f = e−t |D0| f0, we can bound L2 averages by L p averages for some p<2, i.e., Ñ∗ f . Ñ p
∗ f

in a pointwise sense (up to changing to constants c0, c1). Since ψ(λ)= e−|λ|− (1+ iλ)−1
∈9(So

ν,σ ), it
follows from Lemma 9.3 and Theorem 7.1, or more precisely (30), that

‖Ñ p
∗
(ψ(t D0) f0)‖2 . ‖Ñ∗(ψ(t D0) f0)‖2 . ‖ f0‖2.

For ht := (I + i t D0)
−1 f0 we have ‖Ñ p

∗ (h)‖2 . ‖M(| f0|
p)1/p
‖2 . ‖ f0‖2 by Corollary 6.3 and the

boundedness of M on L2/p. We have proved that ‖Ñ∗ f ‖2 . ‖ f0‖2.

(v) The modifications for f0 ∈ E−0 H are straightforward, and the correspondence with u follows from
applying the methods of Proposition 3.3. �

Remark 10.2. The assumption σ = n−1
2 is used in part (iv) to pass from Ñ∗ to Ñ p

∗ with some p < 2.
Thus, for any σ ∈ R, f0 ∈H and p < 2, we have ‖Ñ p

∗ ( f )‖2 . ‖ f0‖2. The converse, however, is not clear
because p < 2, and this shows that the value of σ is significant.

Theorem 10.3. Let v0 ∈ Ẽ+0 L2. Then

vt := e−t3̃v0
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gives a solution to ∂tv+ D̃0v = 0, in the strong sense v ∈ C1(R+; L2)∩C0(R+;D(D̃0)) and in R+× Sn

distributional sense. (In particular r−σ (vt)⊥ extends to a weak solution of divx A1∇xu = 0 in O1+n as in
Proposition 3.5.) The function v has L2 limit limt→0 vt = v0 and rapid decay ‖∂ j

t vt‖2 ≤ C j,k/tk
‖v0‖2 for

each k ≥ j ≥ 0. (When σ = 0, this estimate for j = 0 only holds for v0 ∈ R(D̃0)∩ Ẽ+0 L2.) Moreover, for
p < 2, we have estimates

‖∂tv‖Y+‖Ñ p
∗
(v)‖2+‖Ñ∗(v⊥)‖2 . ‖v0‖2.

In dimension n = 1, we have ‖v‖X ≈ ‖v0‖2.
If instead v0 ∈ Ẽ−0 L2, then define vt := et3̃v0 for t < 0. Then ∂tv+ D̃0v = 0 for t < 0. (In particular

r−σ (vt)⊥ satisfies divx A1∇xu = 0 in Rn
\O1+n as in Proposition 3.5.) Limits and estimates as above

hold for vt , t < 0.

Proof. The proof, except for the nontangential maximal estimates, is identical to that of Theorem 10.1,
using Proposition 4.4 and Corollary 6.3. When n ≥ 2, the estimate of ‖Ñ∗(v⊥)‖2 follows, using the same
ψ as above and reduction to ‖Ñ∗((I + i t D̃0)

−1v0)⊥)‖2, from Corollary 6.3 and the maximal theorem.
When n = 1, one uses the splitting in Proposition 4.4: we have that e−t3̃ is the identity on H⊥ and that 3̃
on B0H is similar to 3 on H, so ‖v‖X ≈ ‖v0‖2 follows from Theorem 10.1.

The modifications when v0 ∈ Ẽ−0 L2 are straightforward. �

11. The ODE in integral form

Following [Part I], for radially dependent coefficients we solve (17) for f by rewriting it as

∂t f + (DB0+ σN ) f = DE f, where Et := B0− Bt .

Recall that solutions ft belong to H, where H splits into E+0 H and E−0 H by Lemma 7.5, with E±0 =χ
±(D0)

on H. Applying E±0 , integrating formally each subequation and subtracting the obtained equations we
obtain

ft = e−t3E+0 f0+

∫ t

0
e−(t−s)3E+0 DEs fs ds−

∫
∞

t
e−(s−t)3E−0 DEs fs ds, (32)

provided limt→0 ft = f0 and limt→∞ ft = 0 in appropriate sense. We first study proper definition,
boundedness of the integral operators in (32) on appropriate spaces and their limits. The justification of
(32) is done in Section 12.

Lemma 11.1. If f ∈ L loc
2 (R+;H) satisfies ∂t f + (DB+σN ) f = 0 in R+× Sn distributional sense, then

−

∫ t

0
∂sη
+

ε (t, s)e−(t−s)3E+0 fs ds =
∫ t

0
η+ε (t, s)e−(t−s)3E+0 DEs fs ds,

−

∫
∞

t
∂sη
−

ε (t, s)e−(s−t)3E−0 fs ds =
∫
∞

t
η−ε (t, s)e−(s−t)3E−0 DEs fs ds,

for all t > 0. The bump functions η±ε are constructed as follows. Let η0(t) to be the piecewise linear
continuous function with support [1,∞), which equals 1 on (2,∞) and is linear on (1, 2). Then let
ηε(t) := η0(t/ε)(1− η0(2εt)) and η±ε (t, s) := η0(±(t − s)/ε)ηε(t)ηε(s).
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Proof. Follow [Part I, Proposition 4.4]. �

Define for f ∈ L loc
2 (R+; L2(Sn

;V)),

SεA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3E+0 DEs fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3E−0 DEs fs ds.

In fact, this formula makes sense by extension thanks to the following algebraic relations.

Lemma 11.2. We have SεA ft = ŜεA ft − σ ŠεA ft = DS̃εA ft , where

ŜεA ft :=

∫ t

0
η+ε (t, s)3e−(t−s)3 Ê+0 Es fs ds+

∫
∞

t
η−ε (t, s)3e−(s−t)3 Ê−0 Es fs ds,

ŠεA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3 Ě+0 Es fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3 Ě−0 Es fsds,

S̃εA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3̃ Ẽ−0 Es fs ds.

Here Ê±0 := E±0 B−1
0 P̃1

B0
, Ě±0 := E±0 N B−1

0 P̃1
B0

, with P̃1
B0

as in Proposition 4.4.

Proof. Here, B−1
0 denotes the inverse of the isomorphism B0 :H→ B0H. Since N(D)=H⊥, we have

E±0 D = E±0 D P̃1
B0
= E±0

(
(DB0+ σN )− σN

)
B−1

0 P̃1
B0
= D0 Ê±0 − σ Ě±0 ,

Using that e−u3 and e−u33 extend to bounded operators on H, this also shows that e−u3E+0 D extend to
bounded operators on L2 for u > 0. We now readily obtain SεA = ŜεA− σ ŠεA. The identity SεA = DS̃εA is a
consequence of the intertwining relation

b(D0)D = Db(D̃0)

between the two functional calculi. �

Theorem 11.3. Assume ‖E‖∗ <∞. We have bounded operators

SεA : X→ X, SεA : Y→ Y,

with norms . ‖E‖∗, uniformly for ε > 0. In the space X there is a limit operator SX
A ∈ L(X;X) such that

lim
ε→0
‖SεA f − SX

A f ‖L2(a,b;L2) = 0, for any f ∈ X, 0< a < b <∞.

The same bounds and limits hold for ŜεA and ŠεA on X.
In the space Y, there is a limit operator SY

A ∈ L(Y;Y) such that

lim
ε→0
‖SεA f − SY

A f ‖Y = 0, for any f ∈ Y.

The same bounds and limits hold for ŜεA and ŠεA on Y.
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Let SA := limε→0 SεA, ŜA := limε→0 ŜεA and ŠA := limε→0 ŠεA denote the limit operators on Y from
Theorem 11.3. Since X is densely embedded in Y, these limit operators restricts to the corresponding
limit operators on X from Theorem 11.3.

One sees that SA = ŜA− σ ŠA holds, and that

SA ft = lim
ε→0

(∫ t−ε

ε

e−(t−s)3E+0 DEs fs ds−
∫ ε−1

t+ε
e−(s−t)3E−0 DEs fsds

)
,

with convergence in L2(a, b; L2) for any 0< a < b <∞, both on Y and X.

Proof. The proof is essentially an application of [Part I, Section 6], where the results were proved
abstractly. Given Theorems 7.1 and 10.1, these results from that paper apply. In particular, this makes use
of the holomorphic So

ω,σ operational calculus of D0, where more general operator-valued holomorphic
functions are applied to D0. It is straightforward, given Theorem 7.1, to adapt the results in [Part I,
Sections 6–7] and construct this So

ω,σ operational calculus of D0, and we omit the details.

(i) Consider the operators ŜεA : X→ X. Here [Part I, Theorem 6.5] shows that ŜεA : L2(R+, dt; L2)→

L2(R+, dt; L2) are uniformly bounded, with norm . ‖E‖∞, and converge strongly in L(L2(R+, dt; L2))

as ε→ 0. Moreover, [Part I, Theorem 6.8] applies and shows that

ŜεA ft = Ẑ ε(E f )t + ηε(t)e−t3
∫
∞

0
ηε(s)3e−s3 Ê+0 Es fs ds

where Ẑ ε : L2(R+, dt/t; L2)→ L2(R+, dt/t; L2) are uniformly bounded and converge strongly as ε→ 0.
These estimates build on the square function estimates and make use of the operational calculus for D0.
On the other hand, using Theorem 10.1 and Theorem 7.1, the last term has estimates∥∥∥∥ηε(t)e−t3

∫
∞

0
ηε(s)3e−s3 Ê+0 Es fs ds

∥∥∥∥
X

.

∥∥∥∥∫ ∞
0

ηε(s)3e−s3 Ê+0 Es fs ds
∥∥∥∥

2

= sup
‖h‖2=1

∣∣∣∣∫ ∞
0
(s3∗e−s3∗h, ηε(s)Ê+0 Es fs)

ds
s

∣∣∣∣
. ‖ηεE f ‖Y∗ . ‖E‖∗‖ f ‖X,

and is seen to converge strongly in L(X, L2(a, b; L2)) for any 0< a < b<∞, as in [Part I, Lemma 6.9].
Piecing these estimates together, we obtain

‖ŜεA f ‖X . ‖Ẑ ε(E f )‖L2(dt/t;L2)+‖Ẑ
ε(E f )‖L2(dt;L2)+‖Ŝ

ε
A f − Ẑ ε(E f )‖X

. ‖E‖∗‖ f ‖X+‖E‖∞‖ f ‖L2(dt;L2)+‖E‖∗‖ f ‖X,

with strong convergence in L(X, L2(a, b; L2)).

(ii) For the operators ŠεA : X→ X, we note that the estimates for ŜεA go through when replacing Ê±0 by
Ě±0 . Since ŠεA =3

−1 ŜεA (with Ê±0 replaced by Ě±0 ) and 3−1
: L2(dt/t;H)→ L2(dt/t;H) is bounded, it

only remains to estimate the term ηε(t)e−t3
∫
∞

0 ηε(s)e−s3 Ě+0 Es fs ds. But again using the boundedness
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of 3−1 gives∥∥∥∥ηε(t)e−t3
∫
∞

0
ηε(s)e−s3 Ě+0 Es fs ds

∥∥∥∥
X

.

∥∥∥∥∫ ∞
0

ηε(s)e−s3 Ě+0 Es fs ds
∥∥∥∥

2

.

∥∥∥∥3 ∫ ∞
0

ηε(s)e−s3 Ě+0 Es fs ds
∥∥∥∥

2
,

and the rest of the estimates go though as for ŜεA. Altogether, this proves the stated bounds and convergence
for SεA : X→ X.

(iii) Next consider the operators ŜεA : Y→ Y. We have

‖ŜεA f ‖Y ≤ ‖ŜεA(χt<1 f )‖Y+‖ŜεA(χt>1 f )‖Y ≤ ‖ŜεA(χt<1 f )‖L2(tdt;L2)+‖Ŝ
ε
A(χt>1 f )‖L2(dt;L2)

. ‖E‖∗‖χt<1 f ‖L2(tdt;L2)+‖E‖∞‖χt>1 f ‖L2(dt;L2)

. ‖E‖∗‖ f ‖Y,

where the L2(tdt; L2) estimate follows from [Part I, Proposition 7.1] and the L2(dt; L2) estimate from
[Part I, Proposition 6.5], along with convergence. This immediately gives the estimates for ŠεA :Y→Y

since 3−1
: L2(tdt;H)→ L2(tdt;H) and 3−1

: L2(dt;H)→ L2(dt;H) are bounded. �

Denote by C(a, b; L2) the space of continuous functions (a, b) 3 t 7→ vt ∈ L2(Sn
;V).

Theorem 11.4. Assume ‖E‖∗ <∞. If n ≥ 2, then S̃εA f ∈ C(0,∞; L2) for any f ∈ Y. There are bounds
‖S̃εA ft‖2 . ‖E‖∗‖ f ‖Y, uniformly for all f ∈ Y, t, ε > 0, and for each f ∈ Y there is a limit function
S̃A f ∈ C(0,∞; L2) such that limε→0 ‖S̃εA ft − S̃A ft‖2 = 0 locally uniformly for t > 0. We have the
expression

S̃A ft =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
e−(s−t)3̃ Ẽ−0 Es fs ds, (33)

where the integrals are weakly convergent in L2 for all f ∈ Y and t > 0. Finally, SA f = DS̃A f holds in
R+× Sn distributional sense for each f ∈ Y.

If n = 1, then the above results hold if Y is replaced by Yδ, for any fixed δ > 0.

Proof. (i) Consider first the case n ≥ 2. The proof is a adaption of the proof of [Part I, Proposition 7.2],
which we refer to for further details. We split the (0, t)-integral∫ t

0
η+ε (t, s)e−(t−s)3̃(I − e−2s3̃)Ẽ+0 Es fs ds+ e−t3̃

∫ t

0
η+ε (t, s)e−s3̃ Ẽ+0 Es fs ds,

The same duality estimate of the second term as in [Part I, Proposition 7.2], given Theorem 10.1 and
Lemma 4.2, goes through here. For the first term, we note the estimate

‖e−(t−s)3̃(I − e−2s3̃)‖.min
(s

t
, 1, 1

t−s

)
.
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For t ≤ 2, this yields the bound ‖E‖∞
∫ t

0 (s/t)‖ fs‖2 ds . ‖E‖∞‖ f ‖Y. On the other hand, for t ≥ 2 we
have the estimate

‖E‖∞

(∫ 1

0

s
t
‖ fs‖2 ds+

∫ t−1

1

1
t − s
‖ fs‖2 ds+

∫ t

t−1
‖ fs‖2 ds

)
. ‖E‖∞‖ f ‖Y.

The (t,∞)-integral is estimated similarly, by splitting it∫
∞

t
η−ε (t, s)e−(s−t)3̃(I − e−2t3̃)Ẽ−0 Es fs ds+ e−t3̃

∫
∞

t
η−ε (t, s)e−s3̃ Ẽ+0 Es fs ds,

The second term is estimated as before, and for the first term we note the estimates ‖e−(s−t)3̃(I−e−2t3̃)‖.
min(t/s, 1, 1/(s− t)), which give the bound

‖E‖∞

(∫ t+1

t

t
s
‖ fs‖2 ds+

∫
∞

t+1

1
s− t
‖ fs‖2 ds

)
. ‖E‖∞‖ f ‖Y.

(ii) Consider next the case n = 1. Since e−t3̃
= I on H⊥ and Ẽ±0 = N∓ on H⊥, we also need to estimate

the L2-norm of (∫ t

0
η+ε (t, s)P̃0

B0
Es fs

)
⊥

−

(∫
∞

t
η−ε (t, s)P̃0

B0
Es fs

)
‖

,

uniformly for t > 0, where P̃0
B0

is projection onto H⊥ from Proposition 4.4. So it is enough to obtain the
bound ∥∥∥∥∫ ∞

0
|P̃0

B0
Es fs | ds

∥∥∥∥
2
. ‖E‖∗‖ f ‖Yδ

.

On the one hand, we obtain from Proposition 9.7 the estimate∥∥∥∥∫ ∞
1
|P̃0

B0
Es fs | ds

∥∥∥∥
2
. ‖E‖∞

∫
∞

1
‖ fs‖2 ds . ‖E‖∞

(∫
∞

1
‖ fs‖

2
2eδsds

)1/2

. ‖E‖∞‖ f ‖Yδ
.

On the other hand, note that A, hence B−1
0 , is pointwise strictly accretive by Lemma 5.1 and by the

explicit expression in Lemma 5.5 (expressed in other coordinates), P̃0
B0

maps into constant functions and
|P̃0

B0
u|.

∫
S1 |u(x)|dx . Thus∥∥∥∥∫ 1

0
|P̃0

B0
Es fs | ds

∥∥∥∥
2
.
∫ 1

0

∫
S1
|Es(x)|| fs(x)|dx ds.

Pick h : R+× S1
→ V such that |hs(x)| = 1 and |Es(x)hs(x)| = |Es(x)| when s < 1, and hs(x) = 0

when s > 1. Cauchy–Schwarz inequality yields∫ 1

0

∫
S1
|Es(x)|| fs(x)| ds dx . ‖Eh‖Y∗‖ f ‖Y ≤ ‖E‖∗‖h‖X‖ f ‖Y . ‖E‖∗‖ f ‖Y.

This completes the proof of the estimate of ‖S̃εA ft‖2.
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(iii) As in the proof of [Part I, Proposition 7.2], replacing η±ε by η±ε −η
±

ε′ in the estimates shows convergence
of S̃εA and yield the expression for the limit operator. The relation SA = DS̃A follows at the limit from the
relation in Lemma 11.2. �

We turn to boundary behavior of the integral operators at t = 0.

Lemma 11.5. Assume ‖E‖∗ <∞.

(i) Let f ∈ X (or f ∈ Y) and define f 0
:= SA f . Then f 0 and f satisfy

(∂t + D0) f 0
= DE f

in R+× Sn distributional sense. If f ∈ X, then there are limits

lim
t→0

t−1
∫ 2t

t
‖SA fs − h−‖22 ds = 0,

where h− := −
∫
∞

0 e−s3E−0 DEs fs ds ∈ E−0 H has bounds ‖h−‖2 . ‖ f ‖X.

(ii) Let n ≥ 2. If f ∈ Y and v := S̃A f , then

(∂t + D̃0)v = E f

in R+× Sn distributional sense, and there are limits

lim
t→0
‖S̃A ft − h̃−‖2 = 0,

where h̃− := −
∫
∞

0 e−s3̃ Ẽ−0 Es fs ds ∈ Ẽ−0 L2 has bounds ‖h̃−‖2 . ‖ f ‖Y. If n = 1, these results for S̃A f
hold when replacing Y by Yδ, for any fixed δ > 0.

Proof. (i) By the convergence properties of SεA from Theorem 11.3, it suffices to show that for φ ∈
C∞0 (R+× Sn

;C(1+n)m) there is convergence∫ (
(−∂tφt + B∗0 D+ σN )φt , f εt

)
dt→

∫
(Dφs,Es fs) ds, ε→ 0,

where f εt := SεA ft . For the term (0, t)-integral, Fubini’s theorem and integration by parts gives∫
∞

0

∫ t

0
η+ε (t, s)((−∂t +3

∗)φt , e−(t−s)3E+0 DEs fs) ds dt

=−

∫
∞

0

(∫
∞

s
η+ε (t, s)D(E+0 )

∗∂t(e−(t−s)3∗φt) dt,Es fs

)
ds

=

∫
∞

0

(∫
∞

s
(∂tη

+

ε )(t, s)D(E+0 )
∗e−(t−s)3∗φt dt,Es fs

)
ds→

∫
∞

0
(D(E+0 )

∗φs,Es fs) ds.

Adding the corresponding limit for the (t,∞)-integral, we obtain in total the limit
∫
∞

0 (Dφs,Es fs) ds,
since D((E+0 )

∗
+ (E−0 )

∗)= ((E+0 + E−0 )D)
∗
= D∗ = D.

To prove the limit of SA ft for f ∈ X, we note from the proof of Theorem 11.3 that

SA ft = Z A ft + e−t3
∫
∞

0
e−s3E−0 DEs fs ds,
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where Z A f ∈ Y∗. When taking limits ε→ 0, we have used [Part I, Theorem 6.8 and Lemma 6.9]. This
proves the stated limit.

(ii) To prove (∂t + D̃0)v = E f , we let t ∈ (a, b) and differentiate S̃εA f to get

∂t S̃εA ft =
1
ε

∫ 2ε

ε

e−s3̃(Ẽ+0 Et−s ft−s + Ẽ−0 Et+s ft+s)ds− D̃0(S̃εA ft),

for small ε. The first term on the right is seen to converge to E f in L2(a, b; L2) as ε → 0, with an
argument as in [Part I, Theorem 8.2]. Note that this uses Ẽ+0 + Ẽ−0 = I , which holds also when n = 1
by Definition 7.4. Letting ε→ 0, we obtain ∂tv = E f − D̃0v in distributional sense, since (a, b) was
arbitrary.

The limit for S̃A ft when f ∈ Y (or Yδ when n = 1) is proved as in [Part I, Proposition 7.2 and
Lemma 6.9]. In particular, this uses an identity

S̃A ft = Z̃ A ft + e−t3̃
∫
∞

0
e−s3̃ Ẽ−0 Es fs ds,

with Z̃ A f ∈ C(0,∞; L2) and limt→0 Z̃ A ft = 0 in L2. �

12. Representation and traces of solutions

We now come to the heart of the matter. The natural classes of solutions for the Dirichlet and Neumann
problems, with L2 boundary data, use the spaces Yo

≈ Y and Xo
≈ X from Definition 9.2.

Definition 12.1. (i) By a Yo-solution to the divergence form equation, with coefficients A, we mean a
weak solution u of divx A∇u = 0 in O1+n with ‖∇xu‖Yo <∞.

(ii) By an Xo-solution to the divergence form equation, with coefficients A, we mean the gradient
g := ∇xu of a weak solution u of divx A∇u = 0 in O1+n with ‖g‖Xo <∞.

Note the slight abuse of notation when referring to the gradient ∇xu rather than u as an Xo-solution.
The reason for this convention, here as well as in [Part I], is that the Neumann and regularity problems
are BVPs for g (and not for the potential u), and Xo-solutions is the natural class of solutions for these
problems. This point of view is the one that lead us to our representations. However, when more
convenient we call the potential u itself an Xo-solution.

Remark 12.2. (i) No boundary trace is assumed in our definitions, but will be deduced.

(ii) The seminorm ‖∇xu‖Yo on Yo-solutions is modulo constants, which is unusual for Dirichlet problems.
Once we have shown that Yo-solutions have boundary traces, we will be able to put constants back
in the norm in a natural way.

(iii) For any Xo-solution g, the potential u has a boundary trace in appropriate sense (replacing pointwise
values by averages) and the trace belongs to W 1

2 (S
n
;Cm). This is essentially in [Kenig and Pipher

1993]. We also recover this from our representations. See Section 13.

Here and subsequently, we use the notation e−t3g to denote the function (t, x) 7→ (e−t3g)(x). Similarly
for e−t3̃g.
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Xo-solutions. We begin with representation and boundary trace for solutions of the corresponding ODE.

Theorem 12.3. Assume that ‖E‖∗ <∞. Let f ∈ X. Then f ∈ L loc
2 (R+;H) satisfies

∂t f +
(
DB+ n−1

2 N
)

f = 0

in R+× Sn distributional sense if and only if f satisfies the equation

ft = e−t3h++ SA ft , for some h+ ∈ E+0 H. (34)

In this case, f has limit

lim
t→0

t−1
∫ 2t

t
‖ fs − f0‖

2
2 ds = 0, (35)

where f0 := h++ h− and h− := −
∫
∞

0 e−s3E−0 DEs fs ds ∈ E−0 H, with estimates

max(‖h+‖2, ‖h−‖2)≈ ‖ f0‖2 . ‖ f ‖X.

If furthermore I − SA is invertible on X, then

f = (I − SA)
−1e−t3h+ (36)

and ‖ f ‖X . ‖h+‖2.

Proof. The proof is an adaption of [Part I, Theorem 8.2], to which we refer for details. Here is a quick
summary.

We show that f satisfies (17) if and only if f satisfies (34). Assume (17) and apply Lemma 11.1.
Letting ε→ 0 and applying Theorem 11.3, we obtain the stated equation for f , with h+ as a certain weak
limit as in part (i) of the proof of [Part I, Theorem 8.2], with 3= |D0| here.

Conversely, if f ∈ X satisfies (34), then we apply Lemma 11.5 with f o
:= f − e−t3h+. Since

(∂t + D0)e−t3h+ = 0 and e−t3h+ ∈ X by Theorem 10.1, it follows that f satisfies (17).
Lemma 11.5 also shows existence of the limit f0. The stated estimates follow as in part (iii) of the

proof of [Part I, Theorem 8.2].
If I − SA is invertible, (36) follows immediately from (34), and the estimate ‖ f ‖X . ‖h+‖2 follows

again from Theorem 10.1. �

Theorem 12.4. Assume that ‖E‖∗ <∞. Then g is an Xo-solution to the divergence form equation with
coefficients A if and only if the corresponding conormal gradient f ∈ X satisfies the equation

ft = e−t3h++ SA ft , for some h+ ∈ E+0 H. (37)

In this case, g has limit

lim
r→1

1
1− r

∫
r<|x|<(1+r)/2

|g(x)− g1(x)|2 dx = 0,

where g1 := (B0 f0)⊥En+ ( f0)‖ and ‖g1‖2 . ‖g‖Xo holds. If furthermore I − SA is invertible on X, then
‖h+‖2 ≈ ‖g1‖2 ≈ ‖g‖Xo .
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Proof. The equivalence follows from Corollary 3.4 and Theorem 12.3. The limit and the estimates follow
on applying the conormal gradient-to-gradient map of Proposition 3.3 from the ones satisfied by f . �

It is worth specifying the previous theorem in the case of radially independent coefficients.

Corollary 12.5. Assume A is radially independent. Then any Xo-solution has corresponding conormal
gradient given by f = e−t3h+ for a unique h+ ∈ E+0 H.

Remark 12.6. A careful examination of the proof of Theorem 12.3 in the case of radially independent
coefficients, shows in fact that for f ∈ L loc

2 (R+;H) the weaker condition sup0<t<1/2
1
t

∫ 2t
t ‖ fs‖

2
2 ds <∞

is sufficient to obtain this corollary, as in this case SA = 0.

Yo-solutions. We now turn to representations and boundary behavior pertaining to Yo-solutions.

Theorem 12.7. Assume that ‖E‖∗ <∞ and f ∈ Y.

(i) Then f ∈ L loc
2 (R+;H) satisfies ∂t f + (DB + n−1

2 N ) f = 0 in R+× Sn distributional sense if and
only if f satisfies the equation

ft = De−t3̃h̃++ SA ft , for some h̃+ ∈ Ẽ+0 L2. (38)

Here h̃+ is unique modulo Ẽ+0 H⊥ and ‖h̃+‖L2/H⊥ . ‖ f ‖Y, and if furthermore I − SA is invertible
on Y then

f = (I − SA)
−1 De−t3̃h̃+ (39)

with ‖ f ‖Y . ‖h̃+‖L2/H⊥ .

(ii) If (38) holds, let vt := e−t3̃h̃++ S̃A ft . Then f = Dv and ∂tv+ (B D− n−1
2 N )v = 0, and vt has L2

limit
lim
t→0
‖vt − v0‖2 = 0, (40)

where v0 := h̃++ h̃− and h̃− :=−
∫
∞

0 e−s3̃ Ẽ−0 Es fs ds ∈ Ẽ−0 L2, with estimates ‖h̃−‖2 . ‖ f ‖Y and

‖vt‖2 . ‖h̃+‖2+‖ f ‖Y, for all t > 0. (41)

Proof. The proof is an adaption, with some modifications, of [Part I, Theorem 9.2], to which we refer for
omitted details.

(i) Assume (17). We apply Lemma 11.1 to f . Letting ε→ 0 and applying Theorem 11.3, we obtain for
f the equation

ft = f̃t + SA ft ,

with the limit f̃t := limε→0 ε
−1
∫ 2ε
ε

e−(t−s)3E+0 fs ds. From here, one can proceed as in [Part I, Theo-
rem 9.2] to represent f̃t as D0e−t3h+ for some h+ ∈ E+0 H, or use a simpler argument (owing to the
boundedness of the boundary here): since D0 : E+0 H→ E+0 H is surjective, there exists ht ∈ E+0 H such
that f̃t = D0ht . From there and f̃t0+t = e−t3 f̃t0 , we conclude as in [Part I] that the weak L2-limit
h+ := limt→0 ht exists and that f̃t = D0e−t3h+.
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To write D0e−t3h+ as De−t3̃h̃+ for some h̃+ ∈ Ẽ+0 L2, we use Lemma 4.6. Indeed, there is an
isomorphism M :H→ L2/H

⊥ with D0 = D ◦M on D(D0). It is easy to see that the restriction of M
to E+0 H maps onto Ẽ+0 L2/Ẽ+0 H⊥. Now, on D(D0), D0e−t3

= e−t3D0 = e−t3D ◦M = De−t3̃
◦M . By

density and boundedness, the left and right terms agree on H. Thus, h̃+ = Mh+ ∈ Ẽ+0 L2/Ẽ+0 H⊥ satisfies
D0e−t3h+ = De−t3̃h̃+.

We conclude that ft = De−t3̃h̃++ S̃A ft , with estimates

‖h̃+‖L2/H⊥ ≈ ‖h
+
‖2 ≈ ‖D0e−t3h+‖Y = ‖ f − SA f ‖Y . ‖ f ‖Y. (42)

The middle equivalence uses Theorem 10.1.

(i′) Conversely, if f ∈ Y satisfies (38) for some h̃+ ∈ Ẽ+0 L2, then we apply Lemma 11.5 with

f o
= f − De−t3̃h̃+ = f − D0e−t3h+,

with h+ ∈ E+0 H given by the isomorphism above. Since (∂t + D0)D0e−t3h+ = 0, it follows that f
satisfies (17). For the estimate of ‖ f ‖Y when I − SA is invertible on Y, use that the last estimate in (42)
in this case is ≈.

(ii) Lemma 11.5 and Theorem 11.4 show the ODE satisfied by v, existence of the limit v0 and the estimates
of ‖vt‖2 and ‖h̃−‖2. This completes the proof. �

Corollary 12.8. Assume that ‖E‖∗ <∞. With the notation from Theorem 12.7, the following holds.

(i) Any Yo-solution u to the divergence form equation has representation ur = r−
n−1

2 (vt)⊥ with r = e−t ,
for some v as in Theorem 12.7, boundary trace in the sense limr→1 ‖ur − u1‖2 = 0, and there are
estimates

‖ur‖2 . r−
n−1

2 ‖∇xu‖Yo +

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣ , r ∈ (0, 1).

(ii) The map taking Yo-solutions u to boundary functions h̃+ = Ẽ+0 v0 ∈ Ẽ+0 L2 is well-defined and
bounded in the sense that

‖h̃+‖2 . ‖∇xu‖Yo +

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣ .

(iii) If furthermore I − SA is invertible on Y, then this map is an isomorphism and its inverse Ẽ+0 L2 3

h̃+→ u ∈ {Yo-solutions} is given by

ur := r−
n−1

2
(
(I + S̃A(I − SA)

−1 D)e−t3̃h̃+
)
⊥
, (43)

with estimates ‖∇xu‖Yo + |
∫

Sn u1(x) dx | ≈ ‖h̃+‖2.

Proof. (i) Let f be the conormal gradient of u and define h̃+ and v applying Theorem 12.7. As in the
proof of Proposition 3.5, it follows that

ur = r−σ (vt)⊥+ c

for some c ∈ Cm , where r = e−t
∈ (0, 1) and σ = n−1

2 .
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Recall that by (38), h̃+ is uniquely defined in Ẽ+0 L2 modulo Ẽ+0 H⊥ and we now use this freedom
to choose it in Ẽ+0 L2 such that c = 0. Indeed, by Lemma 7.5, Ẽ+0 H⊥ = N−H⊥ = {[c 0]t ; c ∈ Cm

} and
since 3̃= σ I on H⊥, we have

e−t3̃([c 0]t)= e−σ t
[c 0]t , c ∈ Cm . (44)

(The superscript t of the brackets denotes transpose.) Replacing h̃+ by h̃+ − [c 0]t , then ft remains
unchanged, e−t3̃h̃+ is replaced by e−t3̃h̃+−e−σ t

[c 0]t , and (vt)⊥ by (vt)⊥−e−σ t c. Thus we may assume
c = 0.

As vt has an L2(Sn
;C(1+n)m) limit v0 when t → 0, one can set u1 := (v0)⊥ and ur converges in

L2(Sn
;Cm) to u1. For the estimate on ‖ur‖2 it suffices to prove

‖ur −m‖2 . r−
n−1

2 ‖∇xu‖Yo, r ∈ (0, 1).

with m the mean value of u1 on Sn . We may assume that m = 0 as by (44) this amounts to modifying h̃+

modulo N−H⊥ without changing the conormal gradient f of u. We have

‖ur‖2 ≤ r−σ‖vt‖2 . r−σ (‖h̃+‖2+‖ f ‖Y).

By orthogonal projection onto N−H⊥, it follows ‖h̃+‖2 ≈ ‖h̃+‖L2/H⊥ +|
∫

Sn (h̃+)⊥dx | since h̃+ ∈ Ẽ+0 L2.
We can now conclude since ‖h̃+‖L2/H⊥ . ‖ f ‖Y and, since m = 0,∣∣∣∣∫

Sn
(h̃+)⊥(x) dx

∣∣∣∣= ∣∣∣∣∫
Sn
(u1− (h̃−)⊥)(x) dx

∣∣∣∣. ‖h̃−‖2 . ‖ f ‖Y.

(ii) The argument using (44) shows that given a Yo-solution u and its conormal gradient f , there
exists h̃+ ∈ Ẽ+0 L2 such that ur = r−σ (e−t3̃h̃+ + S̃A ft)⊥. Moreover, h̃+ = Ẽ+0 v0 by construction
and the estimate ‖h̃+‖2 . ‖∇xu‖Yo +

∣∣∫
Sn u1(x) dx

∣∣ follows from the above argument. To define
the map and prove its boundedness, it suffices to show uniqueness of such h̃+ ∈ Ẽ+0 L2. So assume
ur =r−σ (e−t3̃h̃++S̃A ft)⊥=r−σ (e−t3̃h̃+1 +S̃A ft)⊥ with f the conormal gradient of u and h̃+, h̃+1 ∈ Ẽ+0 L2.
This implies that ft = De−t3̃h̃+ + SA ft = De−t3̃h̃+1 + SA ft so we know that h̃+ − h̃+1 ∈ Ẽ+0 H⊥ by
Theorem 12.7. As Ẽ+0 H⊥ = N−H⊥, write h̃+ − h̃+1 = [c 0]t , with c ∈ Cm . We have from (44) that
0= r−σ (e−t3̃(h̃+− h̃+1 ))⊥ = c.

(iii) Given h̃+ ∈ Ẽ+0 L2, define

ft := (I − SA)
−1 De−t3̃h̃+, vt := e−t3̃h̃++ S̃A ft , ur := r−σ (vt)⊥.

By Theorem 10.3 and Lemma 11.5, v satisfies the equation ∂tv+D̃0v=0, and by Proposition 3.5, u extends
to a Yo-solution and f is the conormal gradient of u. For the continuity estimate ‖∇xu‖Yo+

∣∣∫
Sn u1(x) dx

∣∣
. ‖h̃+‖2, Theorem 12.7 implies ‖ f ‖Y . ‖h̃+‖2 and

∣∣∫
Sn u1(x) dx

∣∣. ‖u1‖2 . ‖v0‖2 . ‖h̃+‖2+‖ f ‖Y

. ‖h̃+‖2. This map clearly inverts the map in (ii). This completes the proof. �

It is worth specifying the Corollary 12.8 in the case of radially independent coefficients.

Corollary 12.9. Assume A is radially independent. Then any Yo-solution is given by u= r−
n−1

2 (e−t3̃h̃+)⊥
for a unique h̃+ ∈ Ẽ+0 L2 with ‖h̃+‖2 ≈ ‖∇xu‖Yo +

∣∣∫
Sn u1 dx

∣∣ .
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Conclusion. It is clear from (36) that provided I − SA is invertible on X, the ansatz

E+0 H→ X : h+ 7→ ft = (I − SA)
−1e−t3h+

maps onto all conormal gradients of Xo-solutions to the divergence form equation with coefficients A.
Similarly, (43) implies that provided I − SA is invertible on Y, the ansatz

Ẽ+0 H→ Yo
: h̃+ 7→ ur := r−

n−1
2

(
(I + S̃A(I − SA)

−1 D)e−t3̃h̃+
)
⊥

,

maps onto all Yo-solutions to the divergence form equation with coefficients A.
Thus we have a way of constructing solutions and our two main goals towards well-posedness results

are the following.
First understand when invertibility of I − SA holds. This will be done in Section 16.
Secondly, introduce the boundary maps that connect the traces of solutions to the data for the BVPs

and invert them. This is the object of Section 17.
Before we do this, we continue with different a priori representations of solutions in the next section.

This will be useful to prove nontangential maximal estimates and obtain convergence of Fatou type at the
boundary.

13. Conjugate systems

The results in the preceding section allow to represent Xo-solutions in terms of the conormal gradient
f . Actually, if one is interested in u itself, one can try to further describe the corresponding potential
vector v. Similarly, representation of Yo-solutions is embedded into a potential vector v but it could be
interesting to describe the properties of the conormal gradient f . Both are related by the rule Dv = f .
This leads us to the following notion.

Definition 13.1. A pair of conjugate systems to the divergence equation with coefficients A is a pair
(v, f ) ∈ L loc

2 (R+; L2(Sn
;V))× L loc

2 (R+; L2(Sn
;V)) with

(i) vt ∈ D(D) for almost every t and
∫
∞

1 ‖Dvt‖
2
2 dt <∞,

(ii) v is an R+× Sn-distributional solution of (19),

(iii) ft = Dvt for almost every t > 0,

(iv) f is a H-valued R+× Sn-distributional solution of (17).

By Proposition 3.5 and its proof, a pair of conjugate systems is completely determined by v satisfying
(i) and (ii). That is, f defined by (iii) automatically satisfies (iv). Moreover, the function

ur := r−(n−1)/2(vt)⊥, r = e−t
∈ (0, 1), (45)

extends to a weak solution of divx A∇xu = 0 in O1+n and f must be the conormal gradient of u. We say
that a weak solution u and a pair of conjugate systems (v, f ) to the divergence form equation for which
(45) holds are associated.
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It is our goal to give a description of the pair (not only f or v) in each case. Recall that in integrating
Dv = f , vt is only determined by ft modulo H⊥ so there is a choice to make.

Theorem 13.2. Assume ‖E‖∗ <∞. Let u be an Xo- or Yo-solution. Then u has an L2(Sn
;Cm) trace u1

at the boundary and there exists an associated pair of conjugate systems given by{
vt = e−t3̃v0+ w̃t ,

ft = e−t3 f0+wt ,
(46)

with the following properties.

(i) If u is an Xo-solution, then u1∈W 1
2 (S

n
;Cm), (v0, f0)∈D(D)×H with Dv0= f0, ‖∇Su1‖2.‖ f0‖2.

‖∇xu‖Xo , ‖v0‖2. ‖∇xu‖Xo+
∣∣∫

Sn u1 dx
∣∣, Dw̃t =wt ∈Y∗, vt ∈C(R+; L2) and ‖vt−v0‖2+‖w̃t‖2=

O(t) for t > 0.

(ii) If u is a Yo-solution, then u1 ∈ L2(Sn
;Cm), (v0, f0) ∈ L2

× Ẇ−1
2 (Sn

;V) with Dv0 = f0, ‖u1‖2 .
‖v0‖2+‖ f0‖Ẇ−1

2
. ‖∇xu‖Yo+

∣∣∫
Sn u1dx

∣∣, Dw̃t =wt ∈Y, vt ∈C(R+; L2) and ‖vt−v0‖2+‖w̃t‖2=

O(1) for t > 0 and o(1) for t→ 0.

Besides Xo- and Yo-solutions to the divergence form equation, we shall in the following sections also
consider the following classical class of variational solutions.

Definition 13.3. By a variational solution to the divergence form equation, with coefficients A, we mean
a weak solution of divx A∇u = 0 in O1+n with ‖∇xu‖2 <∞.

It is illuminating to see how the representation for variational solutions lies in between the ones for Xo-
and Yo-solutions, independently of solvability issues which are well-known for variational solutions. We
state this result without proof as it is not used in this paper. Note that, as compared to Theorem 13.2, the
Carleson condition ‖E‖∗ <∞ is not needed in the following result.

Proposition 13.4. Let u be a variational solution to the divergence form equation with coefficients A.
Then u has an L2(Sn

;Cm) trace u1 at the boundary and there exists an associated pair of conjugate
systems given by (46) with the following properties:

u1∈W 1/2
2 (Sn

;Cm), (v0, f0)∈D(|D|1/2)×Ẇ−1/2
2 (Sn

;V) with Dv0= f0, ‖v0‖2.‖∇xu‖2+
∣∣∫

Sn u1 dx
∣∣,

‖u1‖Ẇ 1/2
2
. ‖ f0‖Ẇ−1/2

2
. ‖∇xu‖2, Dw̃t = wt ∈ L2(R

+
; L2), vt ∈ C(R+; L2) and ‖vt − v0‖2+‖w̃t‖2 =

O(t1/2) for t > 0.
Here Ẇ 1/2

2 is equipped with homogeneous norm and Ẇ−1/2
2 is its dual.

Proof of Theorem 13.2. (i) From Theorem 12.3, we have

ft = e−t3h++ SA ft = e−t3 f0+wt , wt := SA ft − e−t3h−.

with f0 = h++ h− ∈H, ‖ f0‖2 . ‖∇xu‖Xo and h− =−
∫
∞

0 e−s3E−0 DEs fs ds.
We define v0, h̃+, h̃− and v as follows: h̃+ is the unique element in Ẽ+0 L2/Ẽ+0 H⊥ such that Dh̃+ =

h+(= D0(D−1
0 h+)), h̃− := −

∫
∞

0 e−s3̃ Ẽ−0 Es fs ds, v0 = h̃++ h̃− and

vt := e−t3̃h̃++ S̃A ft = e−t3̃v0+ w̃t , w̃t := S̃A ft − e−t3̃h̃−.
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Clearly, h̃+ ∈ D(D). Next, 3̃h̃− ∈ L2 because E f ∈ Y∗, so h̃− ∈ D(D)= D(3̃) and Dh̃− = h−. So
v0 ∈ D(D) and Dv0 = f0.

The estimate on ‖e−t3̃v0− v0‖2 follows from v0 ∈ D(D).
Next, Dw̃t = wt by construction and wt ∈ Y∗ from the proof of Lemma 11.5. (In fact, wt is nothing

but Z A ft defined in that proof.)
The estimate on ‖w̃t‖2 follows from

w̃t =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
(e−(s−t)3̃

− e−(t+s)3̃)Ẽ−0 Es fs ds+ e−t3̃
∫ t

0
e−s3̃ Ẽ−0 Es fs ds,

using E f ∈Y∗, the uniform boundedness of the semigroup and its decay at infinity. Details are left to the
reader.

Eventually, as in Corollary 12.8, one can adjust h̃+ by adding an element in N−H⊥ such that u and v
satisfy (45). In particular, u has an L2 trace. It also follows that f is the conormal gradient of u with a
limit f0 when t→ 0 by (35). So u1 ∈W 1

2 (S
n
;Cm) with ‖∇Su1‖2 . ‖ f0‖2.

(ii) By Corollary 12.8, we have description of

vt = e−t3̃h̃++ S̃A ft = e−t3̃v0+ w̃t , w̃t = S̃A ft − e−t3̃h̃−,

with v0 = h̃++ h̃− such that u and v satisfy (45) and of trace and growth estimates for ‖e−t3̃v0− v0‖2+

‖w̃t‖2. It remains to consider the representation of f . We have by Theorem 12.7,

ft = De−t3̃h̃++ SA ft = De−t3̃v0+wt , wt = SA ft − De−t3̃h̃− = Dw̃t .

Define f0 := Dv0 in distribution sense, so that f0 ∈ Ẇ−1
2 (Sn

;V) and ‖ f0‖Ẇ−1
2
. ‖v0‖2. We obtain

ft = e−t3 f0+wt

and here, the action of e−t3 is extended to Ẇ−1
2 (Sn

;V) by extending the intertwining formula De−t3
=

e−t3̃D. �

14. Non-tangential maximal estimates

Theorem 14.1. Assume ‖E‖C∩L∞ <∞. Then any Yo-solution to the divergence form equation with
coefficients A satisfies

‖u1‖
2
2 . ‖Ñ

o
∗
(u)‖22 .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 .

When n = 1, the conjugate ũ of a Yo-solution u also satisfies the estimates

‖ũ1‖
2
2 . ‖Ñ

o
∗
(ũ)‖22 .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

ũ1(x) dx
∣∣∣∣2 .

The proof follows the strategy of [Part I] with a slight modification in view of preparing the proof of
almost everywhere nontangential convergence.
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Proof. The estimate ‖Ñ o
∗
(u)‖2 & ‖u1‖2 follows from Lemma 9.3 and Corollary 12.8(i). For the upper

bound, we proceed as follows. From the representation ur = r−σ (vt)⊥ with vt = e−t3̃v0 + w̃t in
Theorem 13.2, it is enough to bound ‖Ñ∗((e−t3̃v0)⊥)‖2 and ‖Ñ∗(w̃⊥)‖2. Theorem 10.3, and Lemma 14.2
below, show that

‖Ñ o
∗
(u)‖2 . ‖v0‖2+‖ f ‖Y . ‖h̃+‖2+‖h̃−‖2+‖ f ‖Y . ‖h̃+‖L2/H⊥ +

∣∣∣∣∫
Sn

h̃+
⊥

dx
∣∣∣∣+‖ f ‖Y,

and ‖h̃+‖L2/H⊥ . ‖ f ‖Y,
∣∣∫

Sn h̃+
⊥

dx
∣∣ = ∣∣∫Sn (u1 − h̃−

⊥
) dx

∣∣ . ∣∣∫
Sn u1 dx

∣∣ + ‖ f ‖Y, as in the proof of
Corollary 12.8.

When n = 1, replacing A by the conjugate coefficients Ã defined in Section 5 in the above argument,
and using |∇x ũ| ≈ |∇xu|, proves the estimates for ‖Ñ o

∗
(ũ)‖2. �

Lemma 14.2. Assume ‖E‖C∩L∞ <∞. Then we have, for each p < 2,

‖Ñ p
∗
(w̃)‖2+‖Ñ∗(w̃⊥)‖2 . ‖E‖C∩L∞‖ f ‖Y.

Here Ñ p
∗ is defined similarly to Ñ∗, replacing L2 averages by L p averages. When n = 1, we also have

‖Ñ∗(w̃‖)‖2 . ‖E‖C∩L∞‖ f ‖Y.

Furthermore, these estimates hold with w̃ replaced by the truncation χt<τ w̃, and ‖ f ‖2Y replaced by∫
∞

0 ‖ ft‖
2
2 min(t, τ ) dt , for any τ < 1.

Proof. The proof will follow closely the strategy of [Part I, Lemma 10.2] on R1+n
+ . We remark that

Ñ p
∗ ≤ Ñ∗ pointwise. Thus we will work with Ñ∗, and indicate when we need to consider Ñ p

∗ or the
normal component. Recall that Ñ∗ estimates the truncation of the function to t < 1.

(i) From w̃t = S̃A ft − e−t3̃h̃− and the definition of h̃−,

w̃t =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
e−(s−t)3̃ Ẽ−0 Es fs ds+ e−t3̃

∫
∞

0
e−s3̃ Ẽ−0 Es fs ds

=

∫ t

0
e−(t−s)3̃(1−e−2s3̃)Ẽ+0 Es fsds−

∫
∞

t
e−(s−t)3̃(1−e−2t3̃)Ẽ−0 Es fs ds+ e−t3̃

∫ t

0
e−s3̃Es fs ds

= I1− I2+ I3.

Note that Ẽ+0 + Ẽ−0 = I (also in dimension n = 1) is used in getting I3. For the first two terms, we use
Schur estimates as follows. Since ‖e−(t−s)3̃(I − e−2s3̃)‖. s/t , we have, as in [Part I, Lemma 10.2],

‖Ñ∗(I1)‖
2
2 .

∫ 1

0

(∫ t

0
st−1
‖ fs‖2ds

)2 dt
t
. ‖χt<1 f ‖2Y.

Similarly, since ‖e−(s−t)3̃(I − e−2t3̃)‖. t/s, we have

‖Ñ∗(I2)‖
2
2 .

∫ 1

0

(∫
∞

t
ts−1
‖ fs‖2 ds

)2 dt
t
.
∫ 1

0

(∫
∞

t
t/s2 ds

)(∫
∞

t
t‖ fs‖

2
2 ds

)
dt
t

.
∫
∞

0

(∫ min(s,1)

0
t

dt
t

)
‖ fs‖

2
2 ds = ‖ f ‖2Y.
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Note that the estimates so far hold for all w̃, not only for its normal component. By inspection, the
stated estimates of the truncated maximal function hold for these terms.

(ii) It remains to consider I3= e−t3̃
∫ t

0 e−s3̃Es fs ds. To make use of off-diagonal estimates in Lemma 6.2,
we need to replace e−t3̃ by the resolvents (I + i t D̃0)

−1. To this end, define ψt(z) := e−t |z|
− (1+ i t z)−1

and split the integral

e−t3̃
∫ t

0
e−s3̃Es fs ds = ψt(D̃0)

∫
∞

0
e−s3̃Es fs ds−

∫
∞

t
ψt(D̃0)e−s3̃Es fs ds

+

∫ t

0
(I + i t D̃0)

−1(e−s3̃
− I )Es fs ds+ (I + i t D̃0)

−1
∫ t

0
Es fs ds.

For the first term, square function estimates show that ψt(D̃0) : L2 → Y∗ ⊂ X is continuous, and
Theorem 11.4 shows ‖

∫
∞

0 e−s3̃Es fs ds‖2 . ‖ f ‖Y (or . ‖ f ‖Yδ
when n = 1, but ‖ f ‖Yδ

. ‖ f ‖Y for
conormal gradients of solutions by Proposition 9.7). For the second and third terms, we proceed as above
for I1 and I2 by Schur estimates using ‖ψt(D̃0)e−s3̃

‖. t/s, and ‖(I + i t D̃0)
−1(e−s3̃

− I )‖. s/t.

(iii) It remains to estimate (I + i t D̃0)
−1
∫ t

0 Es fs ds, and this is where we use ‖E‖C . Consider first Ñ p
∗ .

Fix a Whitney box W0 =W (t0, x0). We proceed by a duality argument in the spirit of Corollary 6.3, and
bound ‖(I + i t D̃0)

−1
∫ t

0 Es fs ds‖L p(W0) by testing against h ∈ Lq(W0;V), 1/p+ 1/q = 1. As in step
(iii) of the proof of [Part I, Lemma 10.2], this leads to a pointwise estimate implying∥∥∥∥Ñ p

∗

(
(I + i t D̃0)

−1
∫ t

0
Es fs ds

)∥∥∥∥
2
. ‖E‖C‖ f ‖Y.

Since the proof here is essentially the same as there, but replacing Rn by Sn , using area and maximal
functions on Sn instead, we omit the details. The main ingredients are the L p off-diagonal estimates for
(I + i t D̃∗0)

−1 from Lemma 6.2(i) and the tent space estimate [Coifman et al. 1985, Theorem 1(a)] of
Coifman, Meyer and Stein.

To estimate Ñ∗((I + i t D̃0)
−1
∫ t

0 Es fs ds)⊥), we proceed by duality as above. We now instead test
against h ∈ L2(W0;V) with h‖ = 0 and use the L2→ Lq off-diagonal estimates for (I + i t D̃∗0)

−1 from
Lemma 6.2(ii) to obtain ∥∥∥∥Ñ∗

((
(I + i t D̃0)

−1
∫ t

0
Es fs ds

)
⊥

)∥∥∥∥
2
. ‖E‖C‖ f ‖Y.

It remains to see that, when n = 1, the Ñ∗ estimate also applies to the tangential part w‖. Consider
the transformed conjugate coefficients B̃ = ̂̃A and B̃0 =

̂̃A1 from the proof of Proposition 5.4, and let
Ẽ := B̃0 − B̃. Then f̃ := J t f solves (∂t + DB̃) f̃ = 0, which yields the estimate of ‖Ñ∗(w‖)‖2 since
(S̃A f )‖ = (J t S̃A f )⊥ = (S̃Ã f̃ )⊥. This completes the proof. �

Remark 14.3. The proof also shows a priori estimates for the operators S̃A when f is not supposed to
be a conormal gradient of a solution. Assume ‖E‖C∩L∞ <∞. If n ≥ 2, then we have for each p < 2,

‖Ñ p
∗
(S̃A f )‖2+‖Ñ∗((S̃A f )⊥)‖2 . ‖E‖C∩L∞‖ f ‖Y, f ∈ Y.
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When n = 1, we have for each δ > 0,

‖Ñ∗(S̃A f )‖2 . ‖E‖C∩L∞‖ f ‖Yδ
, f ∈ Yδ.

15. Almost everywhere nontangential convergence

Since solutions are not defined in a pointwise sense, the classical notion of nontangential convergence at
a boundary point x is replaced here by

lim
r→1
|W o(r x)|−1

∫
W o(r x)

h( y) d y exists,

which we call convergence of Whitney averages at x because the region W o(r x) is a Whitney ball. Note
that since the Whitney balls at x cover a truncated cone with vertex x , it really amounts to a nontangential
convergence. Besides, a slight modification of the proofs below yields limits of averages on Whitney
regions W o(z) for z in a fixed cone with vertex at x0, as |z| → 1. The exact choice of the Whitney balls
does not matter.

Definition 15.1. Let h be a function in O1+n with range in the bundle V in the sense that h(r x) ∈Vx for
all r > 0 and x ∈ Sn . Let x0 ∈ Sn and 1≤ p <∞. We say that the Whitney averages of h converge at x0

in L p sense to c ∈ Vx0 if for any/some section cx0 ∈ C∞(Sn
;V) with cx0(x0)= c,

lim
r→1
|W o(r x0)|

−1
∫

W o(r x0)

|h( y)− cx0(y)|
pd y = 0.

Here W o(x) denotes a Whitney ball in O1+n centered at x. We say that the Whitney averages of h converge
in L p sense almost everywhere to h0 with respect to surface measure if this happens with c = h0(x0) for
almost every point x0 ∈ Sn . For functions with values in a trivial bundle, the sections cx0 are just constant
functions.

Note that the limit does not depend on the choice of the section cx0 , so this explains the “any/some”
and it suffices to prove the existence of the limit for one chosen section. Clearly this notion entails
convergence of Whitney averages.

Theorem 15.2. Let A be coefficients with ‖E‖C∩L∞ < ∞. Let u be a Yo-solution to the divergence
form equation with coefficients A and let u1 be the boundary trace of u given by Corollary 12.8. Then
Whitney averages of u converge in L2 sense almost everywhere to u1. In particular, Whitney averages of
u converge almost everywhere to u1.

The result also holds for the R1+n
+ setup of [Part I], with almost identical proof.

Proof. As in the proof of Theorem 13.2, we can write

u(x)= eσ t(e−t3̃v0+ w̃t)⊥(x),

where x = e−t x , σ = n−1
2 , v0 ∈ L2 with ‖v0‖2 . ‖∇xu‖Yo +

∣∣∫
Sn u1dx

∣∣ and u1 = (v0)⊥.



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1035

Let p < 2 as in the third inequality of Corollary 6.3. Let x0 be a point on Sn , and let B(x0, t) be the
surface ball centered at x0 with radius t . Adapting the usual Lebesgue point argument for p = 1, it is
seen that for almost all points x0

lim
t→0
|B(x0, t)|−1

∫
B(x0,t)

|v0(x)− vx0(x)|
pdx = 0

for any section vx0 ∈ C∞(Sn
;V) with vx0(x0)= v0(x0) and one can further assume Dvx0 = 0, which in

particular implies that its normal component is the constant scalar function (v0(x0))⊥ = u1(x0). The key
point is the identity

u(x)− u1(x0)= (eσ t e−t3̃(v0− vx0))⊥(x)+ eσ t(w̃t)⊥(x), (47)

which follows since D̃0vx0 =−σNvx0 , and hence 3̃vx0 = σvx0 and eσ t e−t3̃vx0 = vx0 .
From Theorem 14.1, ‖Ñ∗(χt<τ w̃⊥)‖2→ 0 as τ → 0. Thus we can assume that the Whitney averages

of w̃⊥ converge to 0 in L2 sense at x0. It remains to show, with hx0 := v0− vx0 ,

lim
t0→0
|W (t0, x0)|

−1
∫

W (t0,x0)

|(eσ t e−t3̃hx0)⊥(x)|
2 dt dx = 0.

As in [Stein 1970, Chapter VII, Theorem 4], the rest of the argument consists in using the maximal
estimates in Theorem 10.3 with some adaptation. As we do not have pointwise bounds on the operators
that substitute the Poisson kernel we also have to handle more technicalities. Let 0 < c0t0 < τ with
t0, τ < 1 to be chosen and c−1

0 t0 < t < c0t0. In the L2 average, write

(eσ t e−t3̃hx0)⊥ = ((1+ i tσ)(I + i t D̃0)
−1hx0)⊥+ (e

σ t e−t3̃hx0 − (1+ i tσ)(I + i t D̃0)
−1hx0)⊥.

For the first term, we use (26). Fixing t and taking only the L2 average in x , this gives us a bound∑
j≥2

2− j
(
|B(x0, 2 j t)|−1

∫
B(x0,2 j t)

|hx0(x)|
p dx

)1/p

.

This is controlled by
M p
τ (hx0)(x0)+ (t0/τ)M p(hx0)(x0),

where M is the Hardy–Littlewood maximal operator over surface balls on Sn , M p(h) := M(|h|p)1/p, and
the subscript τ means that we restrict the maximal operator to balls having radii less than τ . This control
is obtained by truncating the sum at 2 j

≈ τ/t and using that t ≈ t0. The average in t now yields the same
bound.

For the second term, we note that (eσ t e−t3̃
− (1+ i tσ)(I + i t D̃0)

−1)vx0 = 0. Thus we may replace
hx0 by v0 in this term, and write it

(eσ tψ(t D̃0)v0)⊥+ (eσ t
− (1+ iσ t)−1)((I + i t D̃0)

−1v0)⊥.

with ψ(λ) := e−|λ|− (1+ iλ)−1. The first term has estimates

‖Ñ∗(χt<τψ(t D̃0)v0)‖
2
2 .

∫ τ

0
‖ψ(t D̃0)v0‖

2
2

dt
t
→ 0, τ → 0,
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by Lemma 9.3 and square function estimates. Therefore we can assume that Whitney averages of
(eσ tψ(t D̃0)v0)⊥ converge to 0 in L2 sense at x0. By Theorem 10.3, the second is controlled by

τM p(v0)(x0).

Thus it remains to show convergence to zero of

M p
τ (hx0)(x0)+ (t0/τ)M p(hx0)(x0)+ τM p(v0)(x0).

Since M p(v0)∈ L2(Sn) as p< 2, we can further assume for x0 that M p(v0)(x0)<∞. For such fixed x0 it
follows that M p(hx0)(x0)≤M p(v0)(x0)+M p(vx0)(x0)<∞. We now make M p

τ (hx0)(x0)+τM p(v0)(x0)

small by choosing τ small. Then choose t0 < τ to make (t0/τ)M p(hx0)(x0) small. All the constraints on
x0 are met almost everywhere and this completes the proof. �

Remark 15.3. The proof of almost everywhere convergence for averages applies to v (with Ñ p
∗ , p < 2,

if n ≥ 2). The starting point is

eσ tvt(x)− vx0(x)= eσ t e−t3̃(v0− vx0)(x)+ eσ t w̃t(x)

replacing (47) and the rest of the proof is as above. The only needed modification of the argument is that
we now use (25) instead of (26). We obtain almost everywhere convergence of Whitney averages of eσ tv

in L p sense to v0 for p < 2. Of course, the term eσ t can easily be removed in the end. This factor was
needed in order to have eσ t e−σ3̃ = I on N(D).

Corollary 15.4. Assume that A satisfies ‖E‖C∩L∞ < ∞ and is such that all weak solutions u to the
divergence form equation with coefficients A, for some fixed constant c > 1, satisfy the local boundedness
property

sup
x∈B
|u(x)| ≤ C

(
|cB|−1

∫
cB
|u( y)|2d y

)1/2

,

with a constant C independent of u and of closed balls B with cB ⊂O1+n . Then any Yo-solution to the
divergence form equation with coefficients A converges nontangentially almost everywhere to its boundary
trace.

The local boundedness property is a classical consequence of local Hölder regularity for weak solutions.
For real equations (m = 1), the latter follows from [Moser 1961; De Giorgi 1957]. For small complex L∞
perturbations of real equations, this is from [Auscher 1996]. For two dimensional systems (n = 1), local
regularity follows immediately from reverse Hölder inequalities described in Theorem 9.8 and Sobolev
embeddings. For any dimension and system (m ≥ 1, n ≥ 1), with continuous in O1+n or vmo coefficients,
this is explicitly done in [Auscher and Qafsaoui 2000].

Proof. Applying the local boundedness property to u − u1(x0) on Whitney balls yields the desired
convergence for almost every x0 from Theorem 15.2. �

We know describe new almost everywhere convergence results for Xo-solutions.
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Theorem 15.5. Let A be coefficients with ‖E‖C∩L∞ <∞. Let g be an Xo-solution with potential u to the
divergence form equation with coefficients A. Then for any p < 2, Whitney averages of g⊥ = ∂t u, and of
(Ag)‖ = (A∇xu)‖, converge in L p sense almost everywhere to (g1)⊥ and (A1g1)‖ respectively, where g1

is the boundary trace of g given by Theorem 12.4.
Furthermore, if we have pointwise ellipticity conditions on A, then the Whitney averages of ∇xu and

∂νA u converge in L p sense almost everywhere to g1 and (A1g1)⊥ respectively.
Finally, in all cases, Whitney averages of the potential u converge almost everywhere in L2 sense to u1.

Recall that pointwise ellipticity holds when m = 1 (equations) or n = 1 (two dimensional systems).
If A is continuous in O1+n , then pointwise accretivity can be deduced from the strict accretivity in the
sense of (2), for any m, n. See [Friedman 1976], for example. We do not know if this convergence of
∇xu and ∂νA u holds when m ≥ 2 and n ≥ 2 in general.

Proof. We begin with the convergence for u. It is a straightforward consequence of the growth ‖vt−v0‖2=

O(t) for t > 0 in Theorem 13.2 and u(x)− u1(x)= (e−σ tvt − v0)⊥(x). Let us turn to the gradient.
By Theorem 13.2 we have ft = e−t3 f0+wt for some f0 ∈H and w ∈ Y∗. From the correspondence

between g and f in Proposition 3.3, it follows that, modulo a rescaling, (g)⊥En+ (Ag)‖ equals B f . Thus
we need to prove convergence of Whitney averages of

Bt ft = e−t3̃(B0 f0)+ (B0e−t3
− e−t3̃B0) f0−Et e−t3 f0+ Btwt .

It is clear that any Y∗ element has Whitney averages converging almost everywhere to 0 in L2 sense.
This applies to the last three terms. Indeed, we have ‖w‖Y∗ < ∞, and hence ‖Bw‖Y∗ < ∞. Also
‖Et e−t3 f0‖Y∗ . ‖E‖∗‖e−t3 f0‖X <∞. Furthermore, using B0(I + i t DB0)

−1
= (I + i t B0 D)−1 B0, we

write(
B0e−t3

− e−t3̃B0
)

f0

= B0
(
e−t |DB0+σN |

− (I + i t (DB0+ σN ))−1) f0+ B0
(
(I + i t (DB0+ σN ))−1

− (I + i t DB0)
−1) f0

+
(
(I + i t B0 D)−1

− (I + i t (B0 D− σN ))−1)B0 f0+
(
(I + i t (B0 D− σN ))−1

− e−t |B0 D−σN |)B0 f0.

Square-function (that is, Y∗) estimates hold for the first and fourth terms, whereas the second and third
terms have L2 norms bounded by Ct . Hence χt<1(B0e−t3

− e−t3̃B0) ∈ Y∗.
For the term e−t3̃(B0 f0) we proceed as in the proof of Theorem 15.2, modified as in Remark 15.3.
To complete the proof, we now assume that A is pointwise elliptic. Up to rescaling, we have to prove

convergence of Whitney averages of the conormal gradient f of u. To see this, write f = B−1
0 (B0 f )

using that B0 is now invertible in L∞(Sn
;L(V)), seen as radial coefficients on O1+n . Now the same

argument as above replacing Bt by B0 shows that the Whitney averages of B0 f converge in L p sense to
B0 f0 almost everywhere for any p < 2. We claim that the notion of convergence in L p-sense of Whitney
averages is stable when p< 2 under multiplication by bounded radially independent coefficients. Assume
that h has such a convergence property and let M ∈ L∞(Sn

;L(V)). Select smooth sections hx0 and Mx0

with hx0(x0)= h(x0) and Mx0(x0)= M(x0). Then take the L p(W (t0, x0) average of

M(y)h( y)−Mx0(y)hx0(y)= (M(y)−Mx0(y))h( y)+Mx0(y)(h( y)− hx0(y))
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with y = e−t y ∈W (t0, x0). For the second term, one uses the assumption on h and that Mx0 is bounded.
For the first term, use Hölder inequality with exponents 1/p = 1/r +1/q and p < r < 2. The exponent q
falls on M(y)−Mx0(y) and Lebesgue convergence theorem applies (this is a further almost everywhere
constraint on x0). The exponent r falls on h which has uniform control by assumption. �

16. Fredholm theory for (I − SA)
−1

We saw in Section 12 that the invertibility of I − SA on X (resp. Y) allows to represent Xo (resp. Yo)
solutions through Cauchy type extensions

f = (I − SA)
−1e−t3E+0 f0

(resp. f = (I − SA)
−1 De−t3̃ Ẽ+0 v0)). Working in the space X or Y, it is clear from Theorem 11.3 that

I − SA is invertible provided ‖E‖∗ is small enough. In this section, we use Fredholm operator theory to
relax this condition and show that it suffices to assume this smallness only near the boundary t = 0. Our
discussion in this section is limited to the specific but relevant case where σ = n−1

2 .

Theorem 16.1. Assume that ‖E‖∗ <∞, so that SA is bounded on X and Y. There exists ε > 0 such that
if E satisfies the small Carleson condition

lim
τ→0
‖χt<τE‖∗ < ε, (48)

then I − SA is invertible on X and Y.

We remark that (48) is equivalent to the small Carleson condition (10). The proof of Theorem 16.1
requires the following lemmas.

Lemma 16.2. Assume ‖E‖∗ <∞. Then I − SA is injective on X.

Proof. Assume that f ∈ X satisfies f = SA f . Lemma 11.5 shows that f has trace h− ∈ E−0 H. As
X⊂ L2(R+; L2) and f is valued in H, we have f ∈ L2(R+;H). Extend f to f 1

∈ L2(R;H), letting

f 1
t :=

{
ft , t > 0,
et3h−, t ≤ 0.

To verify that f 1 satisfies ∂t f 1
+ (DB1

+σN ) f 1
= 0 in R× Sn distributional sense, where B1

t := Bt for
t>0 and B1

t = B0 for t ≤0, consider a test function φ ∈C∞0 (R×Sn
;C(1+n)m) and let ξε(t) :=1−η0(|t |/ε),

where η0 is the function from Lemma 11.1. Then∫
R

((−∂t + (B1)∗D+ σN )φ, f 1) dt

=

∫
R

(
((−∂t + (B1)∗D+ σN )((1− ξε)φ), f 1)+ ((−∂t + (B1)∗D+ σN )(ξεφ), f 1)

)
dt

= 0+
∫

R

ξε((−∂t + (B1)∗D+ σN )φ, f 1) dt + ε−1
∫ 2ε

ε

(φt , f 1
t ) dt − ε−1

∫
−ε

−2ε
(φt , f 1

t ) dt

→ 0+ (φ0, h−)− (φ0, h−)= 0,
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with φ0(x) :=φ(0, x), using that the equation holds both in R+ and R−. Hence ∂t f 1
+(DB1

+σN ) f 1
= 0

in all R× Sn . Since σ = n−1
2 , extending Proposition 3.3 from O1+n to all R1+n (see Remark 3.6), we see

that f 1 corresponds to a function g1
∈ L2(R

1+n
;C(1+n)m) solving divx(A1g1) = 0, curlx g1

= 0 in all
R1+n , with A1 corresponding to B1. To verify that this forces g1, and therefore f 1 and f , to vanish, note
that for any fixed R> 0 we can find u such that g1

=∇xu, where
∫
|x|<2R |u|

2 dx . R2
∫
|x|<2R |g

1
|
2 dx by

Poincaré’s inequality and the implicit constant is independent of R. Take a test function η∈C∞0 (|x|< 2R)
with η = 1 on |x|< R with |∇xη|. R−1, and use that divx(A1g1)= 0 in the distributional sense to get∫
|x|<R
|g1
|
2 dx . Re

∫
(A1g1,∇xu)ηdx =−Re

∫
(A1g1,∇xη)u dx

.

(∫
R<|x|<2R

|g1
|
2 dx

)1/2 (∫
|x|<2R

|g1
|
2 dx

)1/2

.

(∫
R<|x|<2R

|g1
|
2 dx

)1/2

‖g1
‖2.

Letting R→∞ this shows that g1
= 0, which proves the lemma. �

Lemma 16.3. Assume ‖E‖∗ <∞ and fix τ > 0. Then there are lower bounds

‖ f ‖L2(τ,∞;H) . ‖(I − SA) f ‖L2(τ/2,∞;H),

where the implicit constant depends on τ , for all f ∈ L2(R+;H) such that ft = 0 for t < τ .

Proof. By Lemma 11.5, f and f 0
:= (I − SA) f satisfy (∂t + DB0+σN ) f 0

= (∂t + DB+σN ) f . As in
Proposition 3.3 combined with Proposition 2.1, this can be translated to{

divx(A1g0)= divx(Ag),
curlx g0

= curlx g,

in O1+n distributional sense, where g0
r = r−(n+1)/2((B0 f 0

t )⊥En+( f 0
t )‖) and gr = r−(n+1)/2((B ft)⊥En+( ft)‖).

Write O1+n
τ := {|x|< e−τ }, so that O1+n

τ ⊂O1+n
τ/2 . In particular, the last equation implies that there is a

potential u :O1+n
τ/2 → Cm such that

g− g0
=∇xu in O1+n

τ/2 ,

and we may choose u so that ‖u‖L2(O
1+n
τ/2 )
. ‖g− g0

‖L2(O
1+n
τ/2 )

. Fix η ∈ C∞0 (O
1+n) such that η|O1+n

τ
= 1

and supp η ⊂O1+n
τ/2 . Using the first equation and supp g ⊂O1+n

τ gives

Re
∫
(Ag, g− g0) dx = Re

∫
(Ag,∇x(ηu)) dx = Re

∫
(Ag0,∇x(ηu)) dx

= Re
∫

O1+n
τ/2

(
A1g0, η(g− g0)+ (∇xη)u

)
dx . ‖g0

‖L2(O
1+n
τ/2 )
‖g− g0

‖L2(O
1+n
τ/2 )
.

Note that (gr )‖ = r−(n+1)/2( ft)‖ ∈ R(∇S), so that gr ∈ H1. The accretivity (14) of Ar , for each fixed
r ∈ (0, 1), and integration for 0< r < e−τ imply that
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‖g‖2
L2(O

1+n
τ )
. Re

∫
O1+n
τ

(Ag, g) dx ≤ Re
∫

O1+n
τ

(Ag, g− g0) dx+‖g‖L2(O
1+n
τ )‖g

0
‖L2(O

1+n
τ )

. ‖g‖L2(O
1+n
τ )‖g

0
‖L2(O

1+n
τ/2 )
+‖g0

‖
2
L2(O

1+n
τ/2 )
,

and hence that ‖g‖L2(O
1+n
τ ) . ‖g

0
‖L2(O

1+n
τ/2 )

. By the isomorphism (18), this translates to ‖ f ‖L2(τ,∞;H) .

‖ f 0
‖L2(τ/2,∞;H) and proves the lemma. �

Lemma 16.4. Assume ‖E‖∗ <∞. Let η :R+→R be a Lipschitz function, that is |η(t)−η(s)| ≤C |t− s|
for all t, s > 0. Then the commutator

[η, SA] = ηSA− SAη

is a compact operator on L2(R+, dt; L2).

Proof. Write SA = ŜA− σ ŠA as in Theorem 11.3. Since ŠA =3
−1 ŜA, except that Ê±0 are replaced by

Ě±0 , it is enough to show compactness of [η0, ŜA]. It suffices to verify that

F(3) : ft 7→

∫ t

0
(η(t)− η(s))3e−(t−s)3 fs ds, (49)

is a compact operator on L2(R+, dt;H). (The proof below only depends on the fact that 3 has compact
resolvents.) Indeed, by duality this implies that also ft 7→

∫
∞

t (η(t)− η(s))3e−(s−t)3 fs ds is compact,
upon changing 3 to 3∗. Since Ê±0 E are bounded L2(R+; L2)→ L2(R+;H) and commute with η, we
conclude that [η, ŜA] is compact.

Consider the symbol

F(λ) : ft 7→

∫ t

0
(η(t)− η(s))λe−(t−s)λ fs ds.

To estimate the norm of this integral operator, acting in L2(R+;C) for fixed λ ∈ So
ν,σ+, we apply Schur

estimates as in [Part I, Lemma 6.6]. We need to estimate

sup
t>0

∫ t

0
|(η(t)− η(s))λe−(t−s)λ

| ds+ sup
s>0

∫
∞

s
|(η(t)− η(s))λe−(t−s)λ

|dt.

Using Lipschitz regularity, the first integral has estimate∫ t

0
(t − s)λ1e−(t−s)λ1dt = λ−1

1

∫ tλ1

0
xe−x dx . λ−1,

where λ1 := Re λ≈ |λ| for λ ∈ So
ν,σ+, and a similar estimate for the second integral gives the bound

‖F(λ)‖L2(R+;C)→L2(R+;C) . λ
−1.

It is also clear that F(λ) defines a compact operator on L2(R+;C) (for example truncate the kernel and
show from the Schur estimates that F(λ) is a uniform limit of Hilbert–Schmidt operators).

Consider now the Dunford integral

F(3)=
1

2π i

∫
∂Sθ,σ+

F(λ)(λ−3)−1dλ, ω < θ < ν.
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From the compactness of F(λ) : L2(R+;C)→ L2(R+;C), and of (λ−3)−1
:H→H by Proposition 4.3,

we deduce the compactness of F(λ)(λ−3)−1
: L2(R+;H)→ L2(R+;H) (for example by approximating

(λ−3)−1 uniformly by finite rank operators). Since ‖F(λ)(λ−3)−1
‖ . λ−2, the Dunford integral

converges in norm, at least when σ > 0, and we conclude that F(3) is a compact operator on L2(R+;H)

(for example, approximate with Riemann sums, using norm continuity of λ 7→ F(λ)(λ−3)−1). In
dimension n = 1, i.e., σ = 0, note that λ= 0 does not belong to the spectrum of D0 on H. Hence it is not
needed to integrate through λ= 0 in the Dunford integral, in which case the Dunford integral converges
in norm also here. This proves the lemma. �

Lemma 16.5. Assume ‖E‖∗ <∞. Let 0< a < b <∞ and write χ0 := χ(0,a) and χ∞ := χ(b,∞) for the
characteristic functions of these intervals. Then

χ0SAχ∞ : X→ X and χ∞SAχ0 : Y→ Y

are compact operators.

Proof. As in the proof of Lemma 16.4, we may replace SA by ŜA as straightforward modifications of the
proof below give the result for ŠA.

(i) We claim that the integral operator

F(λ) ft :=

∫ a

0
λe−(t−s)λ fs ds

is a Hilbert–Schmidt (hence compact) operator F(λ) : L2(0, a; sds)→ L2(b,∞; dt). Indeed, a straight-
forward calculation shows that∫

∞

b

∫ a

0
|λe−(t−s)λ

|
2s ds dt ≤ a

4 e−2(b−a)λ.

As in the proof of Lemma 16.4, it follows by operational calculus that

L2(0, a; sds;H)→ L2(b,∞;H) : ft 7→

∫ a

0
3e−(t−s)3 fs ds

is compact. Since Ê−0 E is bounded on L2(0, a; sds;H), this proves that χ∞ ŜAχ0 : Y→ Y is compact.

(ii) To prove that χ0 ŜAχ∞ : X→ X is compact, it suffices to show that

L2(b,∞;H)→ X : ft 7→ χ0(t)
∫
∞

b
3e−(s−t)3 fs ds (50)

is compact, since Ê−0 E is bounded on L2(b,∞;H). To prove this, we write, for t < a,∫
∞

b
3e−(s−t)3 fs ds

=

∫
∞

b
3e−(s+t)3 fs ds+

∫
∞

b
(I − e−2t3)3e−(s−t)3 fs ds

= e−t3e−δ3
∫
∞

b
3e−(s−δ)3 fs ds+

(
√

te−(a−t)3 I − e−2t3
√

t3

)
e−δ3

∫
∞

b
33/2e−(s−a−δ)3 fs ds

= I1+ I2,
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where δ > 0 is small enough. The Cauchy–Schwarz inequality shows that the integral expressions in
both I1 and I2 define bounded operators L2(b,∞;H)→H, whereas e−δ3 = D−1

0 (D0e−δ|D0|) is compact
on H by Proposition 4.3. For I1, the factor e−t3

:H→ X is bounded by Theorem 10.1. Since Y∗ ⊂ X,
boundedness of the first factor in I2 follows from boundedness of

√
te−(a−t)3 for t ∈ (0, a), and square

function estimates for 3 since ψ(λ)= (1− e−2λ)/
√
λ ∈9(So

ν+). This completes the proof. �

Proof of Theorem 16.1. (i) Consider first invertibility in the space X. By Theorem 11.3, we have
‖SA‖X→X . ‖E‖∗, for any perturbation of coefficients E. Thus, for any τ > 0

‖SA f ‖X ≤ C‖χt<τE‖∗‖ f ‖X, whenever ft = 0 for t > τ,

with C independent of τ . This follows upon writing E f = (χt<τE) f . Under the hypothesis, we can
choose τ > 0 such that C‖χt<τE‖∗ ≤ 1/2. We obtain

‖(I − SA) f ‖X ≥ ‖ f ‖X−
1
2‖ f ‖X =

1
2‖ f ‖X, whenever ft = 0 for t > τ.

Next consider an arbitrary f ∈ X. Pick η0 ∈ C∞(R+) such supp η0 ⊂ [0, τ ] and η0 = 1 for t < τ/2.
Write η1 := 1−η0. Then ‖(I−SA)(η0 f )‖X≥

1
2‖η0 f ‖X, and Lemma 16.3 shows that ‖(I−SA)(η1 f )‖X&

‖η1 f ‖X. This gives

‖ f ‖X ≤ ‖η0 f ‖X+‖η1 f ‖X . ‖(I − SA)(η0 f )‖X+‖(I − SA)(η1 f )‖X

≤ ‖η0(I − SA) f ‖X+‖[η0, SA] f ‖X+‖η1(I − SA) f ‖X+‖[η1, SA] f ‖X

. ‖(I − SA) f ‖X+‖[η0, SA] f ‖X.

To show that [η0, SA] : X→ X is compact, we write

[η0, SA] = χ0[η0, SA] + (1−χ0)[η0, SA] = χ0SA(1− η0)+ (1−χ0)[η0, SA],

where χ0 := χ(0,τ/4). Hence, compactness of the first term is granted from Lemma 16.5. Next, as the X

and L2 norms are the same away from the boundary, Lemma 16.4 implies that the second term is compact
from X→ X. This shows that I − SA : X→ X is a semi-Fredholm operator.

To see that it is a Fredholm operator with index 0, note that the lower estimate on I − SA above goes
through with E replaced by αE, α ∈ [0, 1]. Apply the method of continuity. Since I − SA is injective on
X by Lemma 16.2, it follows that it is invertible.

(ii) Consider now invertibility in the space Y. That I − SA : Y→ Y is a Fredholm operator with index 0
follows as in (i), provided we show that [η0, SA] : Y→ Y is compact. Here we write

[η0, SA] = [η0, SA]χ0+ [η0, SA](1−χ0)= (η0− 1)SAχ0+ [η0, SA](1−χ0),

and Lemmas 16.5 and 16.4 are applied in the same way.
To verify bijectivity, we note that X⊂ Y is a dense continuous inclusion, where I − SA : X→ X is an

isomorphism. This implies that I − SA :Y→Y has dense range, hence is an isomorphism since its index
is 0. �
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17. Solvability of BVPs

Characterization of well-posedness. For A such that I − SA is invertible, we introduce boundary maps
and characterize well-posedness in terms of their invertibility.

Definition 17.1. For coefficients A such that ‖E‖∗ <∞ and I − SA : X→ X is invertible, define the
perturbed Hardy projection

E+A h := E+0 h− E−0

∫
∞

0
e−s3DEs fs ds, h ∈ L2(Sn

;V),

where f := (I−SA)
−1e−t3E+0 h. Write E−A := I−E+A . Here, E±0 denote the Hardy projections associated

to the corresponding radially independent coefficients A1.

Proposition 17.2. The operators E±A : L2(Sn
;V)→ L2(Sn

;V) are bounded projections and the range
E+A H ⊂ H consists of all traces f0 of conormal gradients f of Xo-solutions to the divergence form
equation with coefficients A in O1+n .

Proof. That E±A are bounded follows from their construction. The projection property (E±A )
2
= E±A

follows from E+0 E−0 = 0. Next, the statement about the range follows from Theorem 12.3. �

Definition 17.3. For coefficients A such that ‖E‖∗ <∞ and I − SA : Y→ Y is invertible, define the
perturbed Hardy projection

Ẽ+A h̃ := Ẽ+0 h̃− Ẽ−0

∫
∞

0
e−s3̃Es fs ds, h̃ ∈ L2(Sn

;V),

where f := (I − SA)
−1 De−t3̃ Ẽ+0 h̃. Write Ẽ−A := I − Ẽ+A . Here, Ẽ±0 denote the Hardy projections

associated to the corresponding radially independent coefficients A1.

Proposition 17.4. The operators Ẽ±A : L2(Sn
;V)→ L2(Sn

;V) are bounded projections and {(Ẽ+A h̃+)⊥ ;
h̃+ ∈ Ẽ+0 L2} consists of all traces of Yo-solutions to the divergence form equation with coefficients A in
O1+n .

Proof. That Ẽ±A are bounded follows from their construction. The projection property (Ẽ±A )
2
= Ẽ±A

follows from Ẽ+0 Ẽ−0 = 0. Next, the statement about the trace space follows from Corollary 12.8(ii). �

We remark that, unlike the case of r -independent coefficients, the complementary projections E−A and
Ẽ−A are in general not related to solutions of a divergence form equation in the complementary domain
R1+n

\O1+n .

Proposition 17.5. For coefficients A such that I − SA is invertible on X for (i) and (ii), or I − SA is
invertible on Y for (iii), the following hold.

(i) The Neumann problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

E+0 H→H⊥ : h+ 7→ (E+A h+)⊥ (51)

is an isomorphism.
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(ii) The regularity problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

E+0 H→H‖ : h+ 7→ (E+A h+)‖ (52)

is an isomorphism.

(iii) The Dirichlet problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

Ẽ+0 L2(Sn
;V)→ L2(Sn

;Cm) : h̃+ 7→ (Ẽ+A h̃+)⊥ (53)

is an isomorphism.

Proof. (i) The ansatz (36) in Theorem 12.3 gives is a one-to-one correspondence between h+ ∈ E+0 H and
conormal gradients f = (I − SA)

−1e−t3h+ of Xo-solutions to the divergence form equation. Moreover,
f0 = E+A h+ by Proposition 17.2. Under this correspondence, invertibility of h+ 7→ (E+A h+)⊥ translates
to well-posedness of the Neumann problem. The proof of (ii) is similar.

(iii) The ansatz (43) from Corollary 12.8(iii) gives a one-to-one correspondence between h̃+ ∈ Ẽ+0 L2

and Yo-solutions u to the divergence form equation. Moreover, (Ẽ+A h̃+)⊥ = u1 by Proposition 17.4.
Under this correspondence, invertibility of h̃+ 7→ (Ẽ+A h̃+)⊥ translates to well-posedness of the Dirichlet
problem. �

Equivalence between Dirichlet and regularity problems. We show that the Dirichlet and regularity
problems are the same up to taking adjoints.

Proposition 17.6. Assume that A are coefficients such that I − SA is invertible on X and I − SA∗ is
invertible on Y. Then the regularity problem with coefficients A is well-posed if and only if the Dirichlet
problem with coefficients A∗ is well-posed.

It is not clear to us whether invertibility of I − SA on X implies or is implied by invertibility of I − SA∗

on Y. Thus we assume both. We need three lemmas, the first being useful reformulations of invertibility
of the Dirichlet boundary map, the second an identity between Hardy projections and the third an abstract
principle.

Lemma 17.7. The maps

Ẽ+0 L2(Sn
;V)→ L2(Sn

;Cm) : h̃+ 7→ (Ẽ+A h̃+)⊥

and

Ẽ+0 (L2(Sn
;V)/H⊥)→ L2(Sn

;Cm)/Cm
: h̃+ 7→ (Ẽ+A h̃+)⊥

are simultaneous isomorphisms.

Proof. This amounts to mod out H⊥. We recall that H⊥ is preserved by 3̃ and Ẽ±0 , and annihilated by
D, so from the definition Ẽ+A h̃+ = Ẽ+0 h̃+ ∈ H⊥ for h̃+ ∈ H⊥. By Lemma 7.5, (Ẽ+0 h̃+)⊥ = (h̃+)⊥ for
h̃+ ∈H⊥, so Ẽ+0 (L2(Sn

;V)/H⊥)→ L2(Sn
;Cm)/Cm

: h̃+ 7→ (Ẽ+A h̃+)⊥ is a well defined map. That the
two maps simultaneously are isomorphisms can now be verified from {(Ẽ+A h̃+)⊥ ; h̃+ ∈H⊥} = Cm . �



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1045

Lemma 17.8. On L2(Sn
;V) we have the duality relation

(E−A )
∗
= N Ẽ+A∗N . (54)

Proof. The proof of this duality builds on the formula

(DA1)
∗
=−N D̃A∗1 N

on L2(Sn
;V) from Lemma 4.2 with A1 equal to the boundary trace of A and where we used the notation

at the end of Definition 4.1. Using this observation and short hand notation E±0 = E±A1
, 3 = |DA1 |,

Ẽ±0 = Ẽ±A∗1 and 3̃= |D̃A∗1 |, it follows that we have

(E±0 )
∗
= N Ẽ∓0 N , 3∗ = N3̃N .

Note that when n = 1, these identities can be also checked from the extensions of the projections in
Definition 7.4. This implies that∫

∞

0
(N f̃t ,Et(SA f )t) dt =

∫
∞

0
(N (SA∗ f̃ )s,Es fs) ds, f̃ ∈ Y, f ∈ X,

which follows from Fubini’s theorem and the formula defining SεA from Lemma 11.2, and then letting
ε→ 0 using boundedness on X and Y. Details are left to the reader. Note that SA∗ is defined using the
coefficients Ẽt := Â∗1− Â∗, while Et = Â1− Â. This duality relation between SA and SA∗ clearly extends
to their resolvents.

For h, h̃ ∈ L2, using the isomorphism assumption on I − SA and I − SA∗ , we let

f = (I − SA)
−1e−t3E+0 h ∈ X and f̃ := (I − SA∗)

−1 De−s3̃ Ẽ+0 h̃ ∈ Y

and calculate

(Nh̃, E+A h)= (Nh̃, E+0 h)−
∫
∞

0
(Nh̃, E−0 e−s3DEs fs) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N De−s3̃ Ẽ+0 h̃,Es((I − SA)

−1e−t3E+0 h)s) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N ((I − SA∗)

−1 De−s3̃ Ẽ+0 h̃)t ,Et e−t3E+0 h) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N Ẽ−0 e−t3̃Ẽt f̃t , h) dt = (N Ẽ−A∗ h̃, h).

This completes the proof. �

Lemma 17.9. Assume that N± and E± are two pairs of complementary projections in a Hilbert space H,
i.e., (N±)2 = N± and N++ N− = I , and similarly for E±. Then the adjoint operators (N±)∗ and (E±)∗

are also two pair of complementary projections on H∗, and the restricted projection N+ : E+H→ N+H

is an isomorphism if and only if (N−)∗ : (E−)∗H∗→ (N−)∗H∗ is an isomorphism.

Proof. This is [Auscher et al. 2008, Proposition 2.52]. �
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Proof of Proposition 17.6. We apply the abstract result as follows. Here H is the Hilbert space R(D)⊂
L2(Sn

;V)= L2 and we realize its dual H∗ as L2/H
⊥. The operators N± are those from Definition 3.1:

N+ : f 7→
[

0
f‖

]
and N− : f 7→

[
f⊥
0

]
.

As both preserve H, their adjoints induce operators on H∗. We choose E+ = E+A and E− = E−A . By
Proposition 17.5(ii) and reformulating (52) using N+, well-posedness of the regularity problem for
A∗ is equivalent to N+ : E+A∗H→ N+H being an isomorphism. By Lemma 17.9 this is equivalent to
(N−)∗ : (E−A∗)

∗H∗→ (N−)∗H∗ being an isomorphism. By (54) with the roles of A and A∗ reversed,
and written as an identity on H∗ since both terms preserve H⊥, this translates into (N−)∗ : Ẽ+A H∗→

(N−)∗H∗ is an isomorphism. Using the definition of Ẽ+A , (N−)∗ = N− and H∗ = L2/H
⊥, this amounts

to Ẽ+0 (L2/H
⊥) → L2(Sn

;Cm)/Cm
: h̃+ 7→ (Ẽ+A h̃+)⊥ is an isomorphism. Using Lemma 17.7 and

Proposition 17.5(iii), this means that the Dirichlet problem for A is well-posed. �

Perturbation results. Proposition 17.6 shows that it suffices to consider the Neumann and regularity
problems and to study invertibility of the maps (51) and (52). Note that for r-independent coefficients
A = A1, we have E+A = E+0 and therefore (E+A h+)⊥ = h+

⊥
and (E+A h+)‖ = h+

‖
.

Lemma 17.10. Assume that A are coefficients such that I − SA is invertible on X. Then the maps (51)
and (52) are injective.

Proof. Assume that h+ ∈ E+0 H is such that (E+A h+)⊥ = 0. As in Theorem 12.3, let f ∈ X be such
that f0 = E+A h+, so that we are assuming ( f0)⊥ = 0. For the corresponding Xo-solution g = ∇xu to
divx Ag = 0, Green’s formula shows that∫

O1+n
(Ag, g) dx =

∫
Sn
(A1g1)⊥u1 dx,

where g ∈ Xo
⊂ L2(O

1+n
;C(1+n)m), (A1g1)⊥ = ( f0)⊥ ∈ L2(Sn

;Cm) and u ∈ H 1(O1+n
;Cm). The

accretivity of A then shows that g = 0. Hence f = 0 and h+ = E+0 f0 = 0.
The proof that the map h+ 7→ (E+A h+)‖ is injective is similar. In this case, we use that u1 is constant,

and f0 ∈H so that
∫

Sn ( f0)⊥dx = 0. �

We can now derive two perturbations results. Our first result is about L∞ perturbation within the class
of radially independent coefficients. We need two preliminary lemmas.

Lemma 17.11. Let Pt be bounded projections in a Hilbert space H which depend continuously on a
parameter t ∈ (−δ, δ), and let S :H→K be a bounded operator into a Hilbert space K. If S : P0H→K

is an isomorphism, then there exists 0< ε < δ, such that S : Pt H→K is an isomorphism when |t |< ε. If
each S : Pt H→ K is a semi-Fredholm operators with index it , then all indices it are equal.

Proof. The first conclusion is in [Axelsson et al. 2006b, Lemma 4.3] and the second one is proved similarly
using in addition the continuity method. �



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1047

Proposition 17.12. The operators χ+(DB0 + σN ) ∈ L(H), defined for strictly accretive coefficients
A1 ∈ L∞(Sn

;L(V)) and σ ∈ R, depend continuously on A1 and σ .

Proof. This is a corollary of Theorem 7.1 and [Auscher et al. 2008, Proposition 2.42]. �

Here, note that for fixed σ we called this operator E+0 . Only its action on H matters for well-posedness
issues. In particular, this does not depend on the extension defined in Definition 7.4 when σ = 0.

Theorem 17.13. Assume that A1 are r-independent coefficients for which the Neumann problem is well-
posed. Then there exists ε > 0 such that the Neumann problem is well-posed for any r-independent
coefficients A′1 such that ‖A1− A′1‖∞ < ε. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. Lemma 17.11 and Proposition 17.12 give the result for Regularity and Neumann problems as in
[Auscher et al. 2008]. For the Dirichlet problem, apply Proposition 17.6. �

The second result is perturbation from radially independent to radially dependent coefficients.

Theorem 17.14. Assume that A1 are r-independent coefficients for which the Neumann problem is
well-posed. Then there exists ε > 0 such that the Neumann problem is well-posed for any r-dependent
coefficients A such that limτ→0 ‖χt<τEt‖∗ < ε. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. The condition on the coefficients implies that I − SA is invertible on X and I − SA∗ invertible on
Y by Theorem 16.1.

We write the map (51) as

(E+A h+)⊥ = h+
⊥
+

(
E−0

∫ τ

0
e−s3DEs fs

)
⊥

+

(
e−(τ/2)3E−0

∫
∞

τ

e−(s−τ/2)3DEs fs

)
⊥

=: h+
⊥
+ (h1)⊥+ (e−(τ/2)3h2)⊥,

for h+ ∈ E+0 H, where ‖ f ‖X . ‖h+‖2 by Theorem 12.3. By assumption the map E+0 H→H⊥ : h+ 7→ h+
⊥

is invertible. By [Part I, Lemma 6.9], the norm of E+0 H→H⊥ : h+ 7→ (h1)⊥ is . ‖χt<τEt‖∗. Fix τ small
enough so that E+0 H→H⊥ : h+ 7→ (h++ h1)⊥ is invertible. For the last term, we then have estimates

‖h2‖2 .
∫
∞

τ

‖e−(s−τ/2)3D‖2→2‖E‖∞‖ fs‖2 ds . ‖E‖∞

∫
∞

τ

s−1
‖ fs‖2 ds

. ‖E‖∞

(∫
∞

τ

‖ fs‖
2
2 ds

)1/2

. ‖E‖∞‖ f ‖X . ‖E‖∞‖h+‖2.

Here we used the estimate

‖e−(s−τ/2)3Dg‖2 . ‖3e−(s−τ/2)3(D0− σN )B−1
0 PB0Hg‖2 . ((s− τ/2)−2

+ σ(s− τ/2)−1)‖g‖2.

It follows that E+0 H→H⊥ : h+ 7→ (e−(τ/2)3h2)⊥ is a compact operator since e−(τ/2)3 is compact as a
consequence of Proposition 4.3. We conclude that E+0 H→H⊥ : h+ 7→ (E+A h+)⊥ is a Fredholm operator
with index 0. Lemma 17.10 shows that it is injective, hence an isomorphism.
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Replacing normal components ( · )⊥ by tangential parts ( · )‖ in the proof above shows the result for the
regularity problem. Proposition 17.6 then gives the result for the Dirichlet problem. �

Positive results. We now give examples of radially dependent coefficients for which one has well-
posedness. Given Theorems 17.13 and 17.14, this induces results for perturbed coefficients.

Proposition 17.15. If A are r-independent coefficients, and if A is a block matrix, i.e., A⊥‖ = 0 = A‖⊥,
then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Consider the
projections E±A = E±0 . As the maps (51) and (52) act on E+0 H⊂H, it suffices to consider their action on
H throughout this proof. In this case, we have E0 := sgn(DB0+ σN )= E+0 − E−0 . Consider also the H

preserving projections N± from Definition 3.1. Define the anticommutator

C := 1
2(E0 N + N E0).

Since B0 is a block matrix, N commutes with B0, which shows that N E0 N = N sgn(DB0+ σN )N =
sgn(N (DB0+ σN )N )=− sgn(DB0− σN ), using N D =−DN . Hence,

C = (E0+ N E0 N )N/2= (sgn(DB0+ σN )− sgn(DB0− σN ))N/2

= ((DB0)
2
+ σ 2)−1/2((DB0+ σN )− (DB0− σN ))N/2= σ((DB0)

2
+ σ 2)−1/2,

and it follows from Proposition 4.3 that C is a compact operator on H.
We claim that

(2E+0 )N
+
|E+0 H = I +C |E+0 H, N+(2E+0 )|N+H= I +C |N+H,

(2E+0 )N
−
|E+0 H = I −C |E+0 H, N−(2E+0 )|N−H= I −C |N−H.

The first identity follows from the computation

(2E+0 )N
+h+ = E+0 (I + N )h+ = h++ 1

2(I + E0)Nh+

= h++ 1
2(Nh++ 2Ch+− N E0h+)= h++Ch+, for all h+ ∈ E+0 H,

and the other three identities are proved similarly. This proves that the maps E+0 H→ H⊥ : h+ 7→ h+
⊥

and E+0 H→H‖ : h+ 7→ h+
‖

are Fredholm operators for any σ ∈ R, and for σ = 0 it follows that they are
isomorphisms. By Lemma 17.11, the indices of these operators are zero for any σ ∈R, and Lemma 17.10
implies that in fact the operators are isomorphisms for σ = (n− 1)/2. �

Proposition 17.16. If A are r-independent coefficients, and if A is Hermitian, i.e., A∗ = A, then the
Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Let h+ ∈ E+0 H

and define ft := e−t3h+. By Theorem 10.1, we have ∂t ft + D0 ft = 0, limt→0 ft = h+ and rapid decay
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of ft as t→∞. We calculate

(Nh+, B0h+)=−
∫
∞

0
∂t(N ft , B0 ft) dt =

∫
∞

0

(
(N D0 ft , B0 ft)+ (N ft , B0 D0 ft)

)
dt

=

∫
∞

0

(
((N DB0+ DB∗0 N ) ft , B0 ft)+ σ( ft , (B0+ N B0 N ) ft)

)
dt

= σ

∫
∞

0
( ft , (B0+ B∗0 ) ft) dt.

On the last line, we used that A∗ = A, or equivalently B∗0 = N B0 N , so that N DB0+ DB∗0 N = 0. This
gives the estimate ∣∣−(h+

⊥
, (B0h+)⊥)+ (h+‖ , (B0h+)‖)

∣∣. σ ∫ ∞
0
‖ ft‖

2
2 dt.

From this we deduce the estimate

‖h+‖22 . Re(h+, B0h+). |(h+
⊥
, (B0h+)⊥)| + ‖ f ‖2L2(R+;H)

. ‖h+
⊥
‖2‖h+‖2+‖ f ‖2L2(R+;H)

.

This shows that the map (51) is a semi-Fredholm map, if we prove that the map H→ L2(R+;H) given
by h 7→ (e−t3h)t>0 is compact. To see this, note that square function estimates for D0 give the estimate∫

∞

0
‖ ft‖

2
2 dt =

∫
∞

0
‖ψt(D0)(3

−1/2 f )‖22
dt
t
. ‖3−1/2 f ‖22,

where ψt(z) :=
√

t |z|e−t |z|, and 3−1/2 can be seen to be a compact operator on H by Proposition 4.3.
Taking Ps = χ+(DBs

+ σN ) in Lemma 17.11, where Bs , s ∈ [0, 1], denotes the straight line in
L∞(Sn

;L(V)) from I to B0, shows that the index of the map (51) is 0. By Lemma 17.10, this map is in
fact an isomorphism.

The proof for the regularity problem is similar, using instead the estimate

‖h+‖22 . |(h
+

‖
, (B0h+)‖)| + ‖ f ‖2L2(R+;H)

. ‖h+
‖
‖2‖h+‖2+‖ f ‖2L2(R+;H)

. �

Proposition 17.17. If A is a Hölder regular C1/2+ε(Sn
;L(C(1+n)m)), r-independent coefficients, for

some ε > 0, then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

For the proof, we need the following lemmas.

Lemma 17.18. Let B0 ∈ C1/2+ε(Sn
;L(V)) be the matrix associated to A. Then for all f, g ∈ H,

|([|D|1/2, B0] f, g)|. ‖ f ‖2‖g‖2.

Lemma 17.19. Under the same assumptions, D(|D|1/2)∩H = D(|D0|
1/2)∩H with equivalent graph

domain norms.

Proof of Proposition 17.17. Consider first the Neumann and regularity problems. Let h+ ∈ E+0 H and
define ft := e−t3h+. By Theorem 10.1, we have ∂t ft+D0 ft = 0 and limt→0 ft = h+ and limt→∞ ft = 0
with rapid decay. We begin with the observation that (sgn(D)h+, h+)= Re(∇S(−divS ∇S)

−1/2h+
⊥
, h+
‖
).
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Thus |(sgn(D)h+, h+)| ≤ ‖h+
⊥
‖2‖h+‖ ‖2. Now, we calculate for fixed T > 0

(sgn(D)h+, h+)− (sgn(D) fT , fT )

=−

∫ T

0
∂t(sgn(D) ft , ft) dt =

∫ T

0

(
(sgn(D)(DB0+ σN ) ft , ft)+ ( ft , sgn(D)(DB0+ σN ) ft)

)
dt

= 2 Re
∫ T

0
(|D|B0 ft , ft) dt = 2 Re

∫ T

0

(
(B0|D|1/2 ft , |D|1/2 ft) dt + ([|D|1/2, B0] ft , |D|1/2 ft)

)
dt,

using that sgn(D)D = |D| and sgn(D)N + N sgn(D)= 0 in the third equality and Lemma 17.19 in the
last since ft ∈ D(|D0|

1/2)∩H⊂ D(|D|1/2). Accretivity of B0 and Lemma 17.18 lead to the estimate∫ T

0
‖|D|1/2 ft‖

2
2 dt . ‖h+

⊥
‖2‖h+‖ ‖2+ |(sgn(D) fT , fT )| +

∫ T

0
‖ ft‖2‖|D|1/2 ft‖2 dt,

and by absorption, to the same estimate but with last term equal
∫ T

0 ‖ ft‖
2
2 dt . Due the rapid decay of

‖ ft‖2 when t→∞, we conclude that∫
∞

0
‖|D|1/2 ft‖

2
2 dt . ‖h+

⊥
‖2‖h+‖ ‖2+

∫
∞

0
‖ ft‖

2
2 dt.

Since ‖|D0|
1/2 ft‖2 . ‖|D|1/2 ft‖2+‖ ft‖2 from Lemma 17.19, we may replace D by D0 in the left hand

side. Since square function estimates for D0 give∫
∞

0
‖|D0|

1/2 ft‖
2
2 dt =

∫
∞

0
‖(t |D0|)

1/2e−t |D0|h+‖22
dt
t
≈ ‖h+‖22,

this implies

‖h+‖22 . ‖h
+

⊥
‖2‖h+‖ ‖2+

∫
∞

0
‖ ft‖

2
2 dt.

Well-posedness of the Neumann and regularity problems now follows as in the proof of Proposition 17.16.
Proposition 17.6 then gives the result for the Dirichlet problem. �

Proof of Lemma 17.18. Note that D2 agrees on H with the (positive) Hodge–Laplace operator

1S := −

[
divS ∇S 0

0 ∇S divS − curl∗S curlS

]
,

where curlS : L2(Sn
; (TCSn)m)→ L2(Sn

; ∧
2(TCSn)m) is the tangential curl/exterior derivative on Sn .

Since f, g ∈H, we have

([|D|1/2, B0] f, g)= ([11/4
S , B0] f, g)

and it suffices to prove that [11/4
S , B0] is bounded on L2. Since the action of B0 mixes functions and

vector fields, some care has to be taken.

(i) First, by functional calculus we can replace 1S by T0 =1S + λ for any λ ∈ R+, to be chosen large
later, as 11/4

S − (1S + λ)
1/4 is bounded.
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(ii) Next, the commutator estimate is a local problem and by a partition of unity argument and rotational
invariance of the assumptions, we can assume that f is supported in the lower hemisphere and it is enough
to show that ‖ζ [T 1/4

0 , B0] f ‖2 . ‖ f ‖2 when the smooth scalar function ζ is 1 a neighborhood of the
support of f . Indeed (1− ζ )[T 1/4

0 , B0] f =−[[ζ, T 1/4
0 ], B0] f , where the inner commutator is seen to be

bounded on L2.

(iii) Now using rescaled pullback ρ∗ to Rn from the proof of Theorem 7.1 yields ρ∗(T0 f ) = T1(ρ
∗ f )

with

T1 := −

[
divRn d2−n

∇Rn dn 0
0 ∇Rn dn divRn d2−n

− dn−2 curl∗Rn d4−n curlRn

]
+ λI

in L2(R
n
;C(1+n)m), with d(y)= (|y|2+ 1)/2 inside |y|< 1 and extended to a smooth function on Rn ,

with d(y)= 2 for |y|> 2 and 1
2 ≤ d(y)≤ 2 for all y. Any extension would do since ρ∗ f is supported in

|y|< 1. (The proof of this equality builds on the fundamental differential geometric fact that the standard
pullback operation intertwines ∇ on Sn and Rn , as well as curl, and the adjoint results for div and curl∗.
Note that the rescaled pullback ρ∗ from Theorem 7.1 equals the standard pullback on vectors, but is d−n

times the standard pullback on scalars.) A further calculation shows that T1 =−divRn d2
∇Rn + R+ λI ,

where R is a first-order differential operator with smooth coefficients and divRn d2
∇Rn acts componentwise

on C(1+n)m-valued functions. Note that the coefficients of R must vanish outside |y|< 2 by construction.
We now choose λ large enough to guarantee the accretivity condition Re(T1g, g)≥ δ‖g‖2

W 1
2

with δ > 0

and all g ∈W 1
2 (R

n
;C(1+n)m). Consider K , η and g as in the proof of Theorem 7.1 and ζ = (ρ∗)−1η and

f = (ρ∗)−1g. We claim that ‖ζT 1/4
0 f − (ρ∗)−1η2T 1/4

1 g‖2 . ‖g‖2 ≈ ‖ f ‖2. For both operators Ti , we
use the identity

T 1/4
i = c

∫
∞

0
s1/2Ti (I + s2Ti )

−1ds = c
∫
∞

0
(I − (I + s2Ti )

−1)
ds

s3/2 . (55)

The part with s > 1 gives rise to a bounded operator for each Ti . For the integral of the difference over
s < 1, we use the identity obtained as in Theorem 7.1

ζ(I + s2T0)
−1 f − (ρ∗)−1η2(I + s2T1)

−1g = ζ(I + s2T0)
−1(ρ∗)−1s2

[η, T1](I + s2T1)
−1g

so that
‖ζ(I + s2T0)

−1 f − (ρ∗)−1η2(I + s2T1)
−1g‖2 . s‖g‖2,

using that the commutator [η, T1] is a first-order operator.

(iii) We are reduced to showing that [T 1/4
1 , B̃0] is bounded on L2(R

n
;C(1+n)m) with B̃0 := ρ

∗B0(ρ
∗)−1

of B0 on |y| ≤ 1 extended to a bounded matrix function of class C1/2+ε on Rn . We now eliminate the R
part of T1. Set T2 := −divRn d2

∇Rn +1 acting componentwise in L2(R
n
;C(1+n)m). The chosen extension

of d insures that T2 is accretive (in fact self-adjoint) as T1. We claim that T 1/4
1 − T 1/4

2 is bounded. We
use again (55) for each Ti . The part with s > 1 gives rise to a bounded operator for each Ti . For the s < 1
integral of the difference, we use ‖(I + s2T1)

−1
− (I + s2T2)

−1
‖. s by the resolvent formula, because

Ti have same second-order term. This proves the claim.
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(iv) Hence, it remains to estimate the commutator C = [T 1/4
2 , B̃0]. Since T2 acts componentwise, so

does T 1/4
2 and the commutator consists of a matrix of commutators with each component of B̃0. Thus it

suffices to estimate C = [T 1/4
2 , b] in L2(R

n
;C), with b scalar-valued. To see this, we use the different

representation for T 1/4
2 to obtain

C = c
∫
∞

0
[s2T2e−s2T2, b]

ds
s3/2 .

The s > 1 integral is trivially bounded, using boundedness of b and s2T2e−s2T2 . For s < 1, we have
‖[s2T2e−s2T2, b]‖L2→L2 . s1/2+ε using pointwise decay and regularity for the kernel of s2T2e−s2T2 and
regularity of b. See, for example, [Auscher 1996] where it is proved that under continuity of the coefficients
(here d2), the kernel of the semigroup e−sT2 , s < 1, has Gaussian estimates (this is in fact due to Aronson
for real measurable coefficients) and Hölder regularity in each variable with any exponent in (0, 1), in
particular larger that 1

2 + ε. From here, the same estimates hold for sT2e−sT2 =−s∂se−sT2 by analyticity
of the semigroup. This takes care of the s < 1 integral. Further details are left to the reader. �

Proof of Lemma 17.19. Recall that D0 = DB0+ σN . As before, by a representation formula it is easy to
prove that |DB0+σN |1/2−|DB0|

1/2 is bounded on L2. Hence we may replace D0 by DB0. We remark
that H is invariant for both D and DB0.

As PH B0 is an isomorphism of H, for f ∈H, f ∈ D(|DB0|) if and only if PH B0 f ∈ D(|D|) and in
this case

‖|DB0| f ‖2 ≈ ‖DB0 f ‖2 ≈ ‖D(PH B0 f )‖2 ≈ ‖|D|(PH B0 f )‖2.

Complex interpolation for sectorial operators (see [Auscher et al. 1997a]) shows that for f ∈ H, f ∈
D(|DB0|

1/2) if and only if PH B0 f ∈ D(|D|1/2) and

‖|DB0|
1/2 f ‖2 ≈ ‖|D|1/2(PH B0 f )‖2.

Next, for f ∈H∩D(|D|1/2), we have |D|1/2 f ∈H so that

‖|D|1/2 f ‖2 ≈ ‖PH B0|D|1/2 f ‖2.

Thus it suffices to show that for f ∈H, f ∈ D(|D|1/2) if and only if PH B0 f ∈ D(|D|1/2). This is where
we use the regularity of B0 to yield ‖|D|1/2(PH B0 f )− PH B0|D|1/2 f ‖2 . ‖ f ‖2 when f ∈H as a direct
consequence of Lemma 17.18 and the fact that D and PH commute. �

Remark 17.20. Using the T 1 theorem, the commutator C of the proof of Lemma 17.18 is bounded on
L2 when (−1+ 1)1/4b ∈ BMO (and b ∈ L∞). The converse is also true. This can be shown to be a
regularity condition between C1/2 and C1/2+ε. So well-posedness holds under this condition (expressed
in local coordinates on the coefficients of B0). This is probably the best conclusion we can draw from
this method. However, we suspect that Cε should be enough in general.

18. Uniqueness

The following is the class of solutions in Definition 1.8.



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1053

Definition 18.1. By a Do-solution to the divergence form equation, with coefficients A, we mean a weak
solution of divx A∇u = 0 in O1+n with ‖Ñ o

∗
(u)‖2 <∞.

Note that unlike the previous classes, Do-solutions are defined through an estimate on u itself, not on
the gradient ∇xu.

Under the Carleson control on the discrepancy, we know that Yo-solutions are Do-solutions. We
would like to know the converse. At this stage we need assumption of well-posedness in the sense of
Definition 1.2. It goes via identification with variational solutions for smooth data which will be also
useful later.

Lemma 18.2. Let A be coefficients such that ‖E‖∗ <∞ and I − SA is invertible on Y and on X, and
assume that the regularity problem and the Dirichlet problem in the sense of Definition 1.2 both are well
posed. Let ϕ ∈ L2(Sn

;Cm) be Dirichlet datum such that ∇Sϕ ∈ L2(Sn
; (TCSn)m). Then the solution u to

the Dirichlet problem in the sense of Definition 1.2 coincides with the variational solution with datum ϕ.

Proof. By Proposition 17.5, there is a unique h+ ∈ E+0 H such that (E+A h+)‖ = ∇Sϕ, since the regularity
problem is well-posed. From Lemma 7.5, we know that D : Ẽ+0 L2→ E+0 H is surjective. Let h̃+ ∈ Ẽ+0 L2

be such that Dh̃+ = h+. Consider now ϕ̃ := (Ẽ+A h̃+)⊥. We claim that ∇Sϕ̃ =∇Sϕ. Indeed, this follows
from taking the tangential part in the intertwining formula

DẼ+A = E+A D,

which is readily verified from Lemma 4.2 and definitions of Ẽ+A , E+A . Thus ϕ̃−ϕ is constant. As in the
proof of Corollary 12.8, by adding a normal constant in Ẽ+0 H⊥ to h̃+, we may assume that ϕ̃ = ϕ.

Given this h̃+, the solution u to the Dirichlet problem with datum ϕ is given by the normal component
of

v :=
(

I + S̃A(I − SA)
−1 D

)
e−t3̃h̃+

as in Corollary 12.8(iii). Next, we have

f := Dv = (I − SA)
−1e−t3h+

and f is the conormal gradient to the solution to the regularity problem with datum ∇Sϕ. In particular
f ∈ X⊂ L2(R+× Sn

;V) by Lemma 9.3.
Translated to O1+n , this shows that the solution u to the Dirichlet problem with datum ϕ has ∇xu ∈

L2(O
1+n
;C(1+n)m). This shows that u is a variational solution. Uniqueness of the Dirichlet problem in

this class completes the proof. �

Remark 18.3. Note that since X⊂ L2(R+× Sn
;V), solutions to the regularity and Neumann problem

always coincide with the variational solutions, by the uniqueness of such. In the setting of the half-space,
as in [Auscher et al. 2010b] and [Part I], it was shown in [Axelsson 2010] that this uniqueness result does
not hold. As pointed out in [Auscher et al. 2010b, Remark 5.6], the problem occurs at infinity for the
regularity and Neumann problems, which explains why uniqueness holds for the bounded ball. Although
the analogue of [Axelsson 2010] for the Dirichlet problem on the ball is not properly understood at the
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moment, Theorem 19.4 below shows that uniqueness of solutions essentially holds also for the Dirichlet
problem on the unit ball.

Proposition 18.4. Let A be radially independent coefficients and assume that the regularity problem and
the Dirichlet problem in the sense of Definition 1.2 are both well-posed. Then all Do-solutions are given
by u = e−σ t(e−t3̃h̃+)⊥ for a unique h̃+ ∈ Ẽ+0 L2. In particular, the class of Do-solutions is the same as
the class of Yo-solutions, and the estimate

‖Ñ o
∗
(u)‖22 ≈

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2

holds for all weak solutions.

Proof. Let u be a Do-solution. For almost every ρ ∈ (0, 1), ∇Suρ ∈ L2(Sn
; (TCSn)m) and uρ ∈ L2(Sn

;Cm).
Fix such ρ. As in the proof of Lemma 18.2, we can find h+ρ ∈ E+0 H, h̃+ρ ∈ Ẽ+0 L2 with Dh̃+ρ = h+ρ ,

(h+ρ )‖=∇Suρ and (h̃+ρ )⊥=uρ on Sn . Using radial independence, the function ũρ(r x) := eσ t(e−t3̃h̃+ρ )⊥(x)
(here, ρ is fixed and e−t

= r ∈ (0, 1)) thus extends to a solution of the divergence form equation with
coefficients A, and it is a variational solution by Lemma 18.2. Since x 7→ u(ρx) is also a variational
solution and agrees with ũρ on Sn , we conclude by uniqueness that u(ρr ·)= eσ t(e−t3̃h̃+ρ )⊥ as L2(Sn

;Cm)-
functions for all e−t

= r ∈ (0, 1], and almost every ρ ∈ (0, 1).
From this representation, we see that the right hand side is continuous in t , with range in L2, so the

left hand side is continuous in r . We also have ‖uρr‖2 . ‖h̃+ρ ‖2 ≈ ‖uρ‖2 for every r ∈ ( 1
2 , 1] and almost

every ρ ∈ (0, 1). The last equivalence comes from the well-posedness of the Dirichlet problem, and the
implicit constants are independent of ρ. Since

sup
1/2<ρ<1

(1− ρ)−1
∫ ρ+1

2

ρ

‖us‖2ds . ‖Ñ o
∗
(u)‖2 <∞,

we conclude that ‖h̃+ρ ‖2 is bounded for 1
2 < ρ < 1. Consider a weak limit h̃+ ∈ Ẽ+0 L2 of a subsequence

h̃+ρn
with ρn→ 1. Reversing the roles of ρ and r , for almost every r < 1, uρnr converges in L2(Sn

;Cm)

to ur , so that ur = eσ t(e−t3̃h̃+)⊥. Extending to all r , the representation is proved.
In particular, this shows that the classes of Yo-solutions and of Do-solutions of Lu = 0 coincide under

our assumptions. �

Note that the full force of ‖Ñ o
∗
(u)‖2 <∞ is not used and the condition

sup
1/2<r<1

r−1
∫ 1−r

1−2r
‖uρ‖2dρ <∞

suffices in the proof of Proposition 18.4.

Remark 18.5. If A is not r-independent, we need to know that A(ρ · ) satisfies the large Carleson
condition for all 1

2 < ρ < 1 to run the argument. This is not clear if we just assume this for A. However,
if we assume that A is continuous on O1+n and satisfies the square Dini condition of Theorem 1.11, then
this can be checked.
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Proof of Theorem 1.7. We consider A1 ∈ L∞(Sn
;L(C(1+n)m)), radially independent coefficients which

are strictly accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A1 is
well-posed. By Corollary 12.9, we have Pr u1 = r−σ (e−t3̃v0)⊥ with r = e−t and v0 given by the inverse
of the well-posedness map (53) from applied to u1. The assumed uniqueness of the solution u allows
us to prove the product rule of Pr by considering Pr u1 as another boundary data. The existence of
the generator with domain contained in W 1

2 (S
n
;Cm) is as in [Auscher 2009] in the setting of the upper

half-space. There, the if direction was deduced using the duality principle between Dirichlet and regularity.
An examination of the argument there reveals that the only if direction was implicit. We can repeat the
same duality argument using Proposition 17.6. �

Proof of Theorem 1.9. By Proposition 18.4 we know that the two classes of Do- and Yo-solutions are the
same. Thus the assumed well-posedness for Yo-solutions carries over to Do-solutions. This completes
the proof. �

19. New well-posedness results for real equations

We now specialize to the case of equations (m = 1) with real coefficients, and make this assumption for
the coefficients A throughout this section unless mentioned otherwise. For such equations the theory
of solvability for the Dirichlet problem using nontangential maximal control is rather complete for real
symmetric equations, but not so much for non symmetric equations. In [Kenig et al. 2000], the extensions
of the tools for real non symmetric equations are discussed and we refer there for details.

We have developed a strategy using square functions rather than nontangential maximal functions and
our goal here is to tie this up. It is convenient to introduce the square function

S(u)(x)=
(∫

y∈0x

|∇u( y)|2
d y

(1− | y|)n−1

)1/2

, x ∈ Sn,

(0x denoting a truncated cone with vertex x and axis the line (0, x)) and the divergence form operator
L := −divx A∇x . We note that a weak solution to Lu = 0 is in Yo if and only if S(u) ∈ L2(Sn), the
measure being the surface measure. We have so far studied Yo-solutions and well-posedness in this
class, which is convenient to denote here by well-posedness in Yo. (This was called “in the sense of
Definition 1.2” in the introduction.)

Recall that by a Do-solution of Lu = 0, we mean a weak solution with ‖Ñ o
∗
(u)‖2 <∞. As said in

the introduction, we may replace Ñ o
∗
(u) by the usual pointwise nontangential maximal function. For the

Dirichlet problem, we shorten well-posedness in the sense of Dahlberg in Definition 1.8 to well-posedness
in Do.

On regular domains such as O1+n , there is always a unique variational solution u ∈W 1
2 (O

1+n), which
is in addition continuous in O1+n , to the Dirichlet problem with data ϕ ∈ C(Sn) by results of Littman,
Stampacchia and Weinberger [Littman et al. 1963] which extend to real nonsymmetric equations (see
[Kenig et al. 2000]). Thus, it is natural to ask whether this solution satisfies ‖Ñ o

∗
(u)‖2 ≤ C‖ϕ‖2 with C

depending on the Lipschitz character of Sn . By a density argument, it suffices to do this for smooth ϕ,
say ϕ ∈ C1(Sn). If this is the case, then the Dirichlet problem (D)2 is said to be solvable.
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From the maximum principle and Harnack’s inequalities, one can study the L-elliptic measure ω, say
at 0, which is the probability measure C(Sn)3 ϕ 7→ u(0) with u the above solution. The question whether
ω is absolutely continuous with respect to surface measure is central.

The result, somehow folklore but we have not seen it stated explicitly in the literature, summarizing
the state of the art is the following.

Theorem 19.1. Let L = −divx A∇x be a real elliptic operator in O1+n , n ≥ 1. Then the following
statements are equivalent.

(i) The Dirichlet problem is well-posed in Do.

(ii) (D)2 is solvable.

(iii) The L-elliptic measure w is absolutely continuous with respect to surface measure and its Radon–
Nikodym derivative k satisfies the reverse Hölder B2 condition, i.e., there is a constant C <∞ such
that for all surface balls B on Sn ,(

|B|−1
∫

B
k2(x) dx

)1/2

≤ C |B|−1
∫

B
k(x) dx .

Proof. The proof that (ii) is equivalent to (iii) is stated for real nonsymmetric operators in [Kenig et al.
2000, p. 241]. The proof that (i) implies (ii) is trivial. For ϕ ∈ C(Sn), the variational solution is bounded,
hence satisfies ‖Ñ o

∗
(u)‖2 <∞ since O1+n is bounded. By uniqueness in (i), it is the unique solution

and the continuity estimate that follows from well-posedness shows ‖Ñ o
∗
(u)‖2 ≤ C‖ϕ‖2. So (ii) holds.

It remains to see (ii) implies (i). Existence and continuity estimate are granted from (D)2. Uniqueness
follows the argument in [Fabes et al. 1984, p. 125–126], using the equivalent assumption (iii) instead of
(ii). The extension to nonsymmetric real operators is allowed from the details in [Kenig et al. 2000]. �

Theorem 19.2. Let L be an elliptic operator with real coefficients. Then all weak solutions to Lu = 0
satisfy ‖S(u)‖L2(dµ) . ‖Ñ

o
∗
(u)‖L2(dµ) for any A∞ measure µ with respect to L-elliptic measure.

Proof. This is the result of [Dahlberg et al. 1984] where this is proved when L = L∗. Aside from properties
of solutions that are valid for all real operators (see [Kenig et al. 2000]), the proof on the use of [Dahlberg
et al. 1984, (7), p. 101], which is an integration by parts and is valid as is in the nonsymmetric case. This
is why the A∞ property with respect to L-elliptic measure intervenes in the hypotheses. Further details
are in [Dahlberg et al. 1984]. �

Corollary 19.3. Let L be an elliptic operator with real coefficients. Assume that the Dirichlet problem is
well-posed in Do for L. Then all weak solutions to Lu = 0 satisfy ‖S(u)‖2 . ‖Ñ o

∗
(u)‖2. In particular,

Do-solutions of Lu = 0 are Yo-solutions of Lu = 0 under this assumption.

Proof. By Theorem 19.1, L-elliptic measure is A∞ with respect to surface measure, and vice-versa by
[Coifman and Fefferman 1974]. So ‖S(u)‖Yo . ‖Ñ o

∗
(u)‖2 follows from Theorem 19.2. �

Note that Corollary 19.3 and Proposition 18.4 are close but incomparable. First, Proposition 18.4
applies to systems of equations, whereas Corollary 19.3 applies to radially dependent coefficient. Secondly,
the well-posedness assumptions are different. The next results reconciles the two approaches.
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Theorem 19.4. Let L = −divx A∇x be a real elliptic operator in O1+n , n ≥ 1. Assume further that L
has coefficients with limτ→0 ‖χt<τEt‖C∩L∞ sufficiently small. The following statements are equivalent.

(i) The Dirichlet problem is well-posed in Do for L and L∗.

(ii) The Dirichlet problem is well-posed in Yo for L and L∗.

Moreover, in this case the solutions for L (resp. L∗) from a same datum are the same.

Proof. It suffices to prove the conclusion for L in each case as the assumptions are invariant under taking
adjoints.

Assume (i). Uniqueness in Y0 is immediate since the class of Do-solutions a priori contains the
class Yo-solutions when ‖E‖C∩L∞ <∞. Next, for the existence, there is by assumption a unique Do-
solution with given boundary datum ϕ ∈ L2(Sn). Since the Dirichlet problem is well-posed in Do for L ,
Corollary 19.3 shows that this solution is in fact a Yo-solution.

Conversely, assume (ii). By Theorem 19.1, it suffices to show that (D)2 is solvable for L . To this
end, it suffices to consider ϕ ∈ C1(Sn) and the associated variational solution u. By Lemma 18.2, which
applies because of Theorem 16.1 (I − SA is invertible on X and on Y) and Proposition 17.6, u coincides
with the solution in the sense of Definition 1.2, that is, it is a Yo-solution. Now Theorem 14.1 provides
the nontangential maximal estimate that shows that (D)2 is solvable for L . �

Added in proof. In the context of the upper half-space, it was recently shown by Hofmann, Kenig,
Mayboroda and Pipher [Hofmann et al. 2012], that the conclusion of Corollary 19.3 is valid a priori for
all real operators with transversally independent coefficients, whether or not the Dirichlet problem is
well-posed in Do for L and without resorting to the A∞ property of the L-elliptic measure, which they
subsequently prove. Hence, for transversally independent coefficients, the two classes of solutions of L
are the same, and well-posedness in each class is simultaneous. Presumably, the conclusion should be the
same on the ball for operators with radially independent coefficients.

Remark 19.5. In the case of radially independent coefficients (or more generally for continuous, Dini
square coefficients) Proposition 18.4 (or the remark that follows it) proves the converse also for systems.

We can generalize results from [Kenig and Pipher 1993] to nonsymmetric perturbations of r -independent
real symmetric operators.

Corollary 19.6. In O1+n , the Dirichlet problem is well-posed in Do for all real operators L with coeffi-
cients A such that limτ→0 ‖χt<τEt‖C∩L∞ is small enough and its boundary trace A1 real symmetric.

Proof. Let L1 be the second-order operator with r-independent coefficients A1. By Proposition 17.16,
we know that the Dirichlet problem for L1 = L∗1 is well-posed in Yo. Thus, by Theorem 17.14, it is
well-posed in Yo for L and L∗. Thus, we conclude with Theorem 19.4. �

We continue with generalizations of results in [Fabes et al. 1984], where well-posedness for Dirichlet
was obtained for real symmetric coefficients. Well-posedness for regularity (which we denote here by
well-posedness in Xo) is new.
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Theorem 19.7. Assume that A are coefficients with limτ→0 ‖χt<τEt‖C∩L∞ small enough and boundary
trace A1 which is real and continuous. Then the Dirichlet problem is well-posed in Do and in Yo, and the
regularity problem in Xo is well-posed. In particular, this holds for real continuous coefficients in O1+n

satisfying the Dini square condition∫
0
w2

A(t)
dt
t
<∞, where wA(t)= sup{|A(r x)− A(x)| ; x ∈ Sn, 1− r < t}.

Proof. Let L1 be the operator with coefficients A1. Recall that under smallness of limτ→0 ‖χt<τEt‖C∩L∞ ,
it suffices to prove the result for L1 by Theorem 17.14. Next, by Proposition 17.6, the regularity problem
(in Xo) for L1 is well-posed if and only if the Dirichlet problem for L∗1 is well-posed in Yo. On applying
Theorem 19.4, it suffices to prove that the Dirichlet problem with coefficients A1 is well-posed in Do, as
the same would then hold for A∗1 by symmetry of the assumptions. To do this, we prove that L1-elliptic
measure satisfies property (iii) in Theorem 19.1. The argument is inspired by the one in [Fabes et al.
1984, pp. 139–140].

Assume first we work on some boundary region of O1+n . For r small, set

Qr = {ρy ∈ (0, 1)× Sn ; 1− r < ρ < 1, y ∈ B(x0, r)},

where B(x0, r) is a surface ball of radius r , with real radially independent coefficients A1 being the
restriction of some matrix defined on O1+n that we still denote by A1 and which is close in L∞ to the
constant matrix A1(x0). Let g be a C1 nonnegative function supported on the part of the boundary of
Qr/2 in Sn . Let v be the variational solution to the Dirichlet problem L1v = 0 in Qr/2 and v = g on the
boundary of Qr/2 in Sn and v = 0 on the part of the boundary that is contained in O1+n . Recall that
v ∈W 1

2 (Qr/2)∩C(Qr/2). By Theorem 17.13, because A1 is L∞ close to a (constant) matrix for which
one knows well-posedness by Proposition 17.17, one can construct the unique solution u in O1+n to the
Dirichlet problem in Yo with u = g on Sn , that is L1u = 0 with

∫
O1+n |∇xu|2(1− |x|) dx ≤ C‖g‖22. As

g ∈ C1(Sn), we know on applying Lemma 18.2 that the solution u is variational, i.e., u ∈W 1
2 (O

1+n). We
can apply Stampacchia’s minimum principle to obtain first that u ≥ 0 in O1+n , and next the maximum
principle in Qr/2 to conclude that v ≤ u. From there, it remains to repeat the argument in [Fabes et al.
1984], to obtain that v(ρy)≤ C(1− ρ)−n/2

‖g‖2 for all ρy ∈ Qr/4, which in turn, yields an L2 estimate
on the Radon–Nikodym derivative of the L1-elliptic measure.

The localization argument as in [Fabes et al. 1984], and using the continuity of A1 to cover a layer of
the boundary with a finite number of such small Qr/2, allows us to conclude. �

Corollary 19.8. With the same assumption as above and n = 1, then the Neumann problem with coeffi-
cients A is well-posed in Xo.

Proof. By the results in Section 5, it follows that the Neumann problem for coefficients A is well-posed
in Xo if and only if the regularity problem for conjugate coefficients Ã is well-posed in Xo. The latter
follows from the previous result since Ã satisfies the same assumption as A. �



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1059

Remark 19.9. As in [Fabes et al. 1984], the Dini square condition in the normal direction can be replaced
by a Dini square condition in a C1 transverse direction to the sphere. It suffices to perform locally changes
of variables that transform the transverse direction to normal ones.
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THE TWO-PHASE STEFAN PROBLEM: REGULARIZATION
NEAR LIPSCHITZ INITIAL DATA BY PHASE DYNAMICS

SUNHI CHOI AND INWON KIM

In this paper we investigate the regularizing behavior of two-phase Stefan problem near initial Lipschitz
data. A description of the regularizing phenomena is given in terms of the corresponding space-time scale.

1. Introduction

Consider u0(x) : BR(0)→ R with R� 1 and u0 ≥−1, |{u0 = 0}| = 0 and u0(x)=−1 on ∂BR(0) (see
Figure 1). The two-phase Stefan problem can be formally written as

ut −1u = 0 in {u > 0} ∪ {u < 0},

ut/|Du+| = |Du+| − |Du−| on ∂{u > 0},

u( · , 0)= u0,

u =−1 on ∂BR(0).

(ST2)

Here Du denotes the spatial derivative of u, and u+ and u− respectively denote the positive and negative
parts of u, i.e,

u+ :=max(u, 0) and u− := −min(u, 0).

Br0

BR
00

u>0
u<0

Figure 1. Initial setting of the problem.

I. Kim is partially supported by NSF grant number 0970072.
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The classical Stefan problem describes the phase transition between solid/liquid or liquid/liquid interface
(see [Meirmanov 1992; Oleinik et al. 1993]). In our setting, we consider a bounded domain �0 ⊂ BR(0)
and initial data u0(x) such that

{u0 > 0} =�0 and {u0 < 0} = BR(0)−�0.

To avoid complications at infinity, we consider the problem in the domain Q = BR(0)× [0,∞). For
simplicity we have set u =−1 on ∂BR(0); our analysis presented in this paper applies to (ST2) with the
generalized Dirichlet condition

u = f (x, t) < 0 on ∂BR(0),

where f (x, t) is smooth.
Since our initial data will be only locally Hölder continuous, we employ the notion of viscosity solutions

to discuss the evolution of the problem. Viscosity solutions for (ST2) were originally introduced by
Athanasopoulos et al. [1996] (see also [Caffarelli and Salsa 2005]). As for existence and uniqueness of
viscosity solutions for (ST2), we refer to [Kim and Požár 2011].

Note that the second condition of (ST2) states that the normal velocity Vx,t at each free boundary point
(x, t) ∈ ∂{u > 0} is given by

Vx,t = (|Du+| − |Du−|)(x, t)= (Du+(x, t)− Du−(x, t)) · νx,t ,

where νx,t denotes the spatial unit normal vector of ∂{u > 0} at (x, t), pointing inward with respect to the
positive phase {u > 0}.

In this paper we investigate the regularizing behavior of the free boundary ∂{u > 0}. Our main
result states that when 00 := ∂{u0 > 0} is locally a Lipschitz graph with small Lipschitz constant, then
the free boundary immediately regularizes and becomes smooth after t = 0. Moreover we provide a
natural space-time scale for such regularization. More precisely, for x0 ∈ 00, we show that the free
boundary regularizes in Bd(x0) by the time t (x0, d) given in (1-3) (see Theorem 1.1, and also the heuristic
discussion below (1-3)). Corresponding results have been obtained in recent studies on the one-phase
free boundary problems [Choi et al. 2007; 2009; Choi and Kim 2010], but the presence of two phases
poses new challenges in the analysis. For example there is no generic class of global solutions other
than radial solutions where topological changes are ruled out. In the one-phase setting we relied on
the fact that solutions with star-shaped initial data stay star-shaped over time: this is no longer true in
the two-phase setting (see Remark 3.2). More importantly, the interface motion is no longer monotone
and competition between positive and negative fluxes across the free boundary necessitates additional
localization procedure (see the remarks below Theorem 1.1).

The celebrated results of [Athanasopoulos et al. 1996; 1998] state that if the solution of (ST2) stays
close to a Lipschitz profile in the unit space-time neighborhood B1(0)×[0, 1], then the solution is indeed
smooth in half of the neighborhood, that is, in B1/2(0)× [1/2, 1]. The main step in our analysis is to
prove that the free boundary ∂{u > 0} stays close to a locally Lipschitz profile in any given scale. Proving
this step corresponds to the derivation of several Harnack-type inequalities for our problem, which are of
independent interest.
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Before discussing our result in detail, let us introduce precise conditions on the initial data.

(I-a) �0 and u0 are star-shaped with respect to a ball Br0(0)⊂�0.

Observe that then the Lipschitz constant L of ∂�0 is determined by r0 and d0, where

d0 := sup{dist(x, Br0(0)) : x ∈ ∂�0}.

In other words, there exist h = h(r0) and L = L(r0, d0) such that for any x0 ∈ ∂�0, after rotation of
coordinates, one has the representation

Bh(x0)∩�0 = {(x ′, xn) : x ′ ∈ Rn−1, xn ≤ f (x)}, (1-1)

where f is a Lipschitz function with Lip f ≤ L . For simplicity, we set h = 1.
For a locally Lipschitz domain such as �0, there exist growth rates 0 < β < 1 < α such that the

following holds: Let H be a positive harmonic function in �0∩ B2(x), x ∈ ∂�0, with Dirichlet condition
on ∂�0 ∩ B2(x), and with value 1 at x − en . (Here en is the direction of the axis for the Lipschitz graph
near x .) Then for x − sen ∈�0 ∩ B1(x),

sα ≤ H(x − sen)≤ sβ . (1-2)

Below we list conditions on the range of the Lipschitz constant L of the initial positive phase �0.

(I-b) L < Ln for a sufficiently small dimensional constant Ln so that

5/6≤ β < α ≤ 7/6.

The remaining conditions are on the regularity of u0.

(I-c) −N0 ≤1u0 ≤ N0 in �0 ∪ (BR(0)−�0), where N0 is some constant.

(I-d) For x ∈ ∂�0, we may let en = x/|x | after a rotation. Then for small s > 0 (for 0< s < 1/10),

|Du0(x ± sen)| ≥ Csα−1.

Note that (I-c) and (I-d) hold for u0 which is smooth in its positive and negative phases and is harmonic
near the initial free boundary, that is, −1u0 = 0 in the set ({u0 > 0} ∪ {u0 < 0})∩ {x : dist(x, ∂�0)≤ 1}.

We mention that, roughly speaking, the series of the hypothesis (Ia)–(Id) suggests that we have in mind
an initial positive phase �0 whose boundary is “almost” C1 (that is, a small perturbation of a C1 boundary
in its Lipschitz norm), and initial data u0 whose rescaled profile is “almost” harmonic near ∂�0. The
smallness assumption on L given in (I-b) is to avoid waiting time phenomena (see [Athanasopoulos et al.
1996; Choi and Kim 2006]), and is most natural in the spirit of previous results [Athanasopoulos et al.
1996; 1998]. The assumption on u0 is introduced to ensure that the initial data does not perturb the initial
geometry of �0 too much (see the discussion in [Choi and Kim 2010]). We expect that regularization of
the interface over time should hold for general continuous initial data u0.

For a function u(x, t) : Rn
×[0,∞)→ R, let us write

�(u) := {u > 0}, �t(u) := {u( · , t) > 0},
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and
0(u) := ∂{u > 0}, 0t(u) := ∂{u( · , t) > 0}.

Since 00 = ∂{u( · , 0) > 0} = ∂{u( · , 0) < 0} in our setting, this property is preserved for later times, i.e.,

0t(u)= ∂{u( · , t) > 0} = ∂{u( · , t) < 0} for all t > 0;

see [Rogers and Berger 1984; Götz and Zaltzman 1991; Kim and Požár 2011].
For x0 ∈ 00 = 00(u), we may let en = x0/|x0| after a rotation. Then we define

t (x0, r) :=min
{ r2

u+(x0−ren, 0)
,

r2

u−(x0+ren, 0)

}
. (1-3)

Some remarks concerning t (x0, r) are in order. In one-phase case (where u− ≡ 0), it was shown in
[Choi et al. 2007] that

t (x0, r)∼ sup{t > 0 : u(x0+ ren, t)= 0},

i.e., t (x0, r) is the time it takes for the free boundary to reach x0+ ren . In our (two-phase) case t (x0, r)
is the time it takes for the free boundary to reach x0+ ren if we evolve the free boundary only according
to the dominant phase with bigger size of u. In particular 0(u) moves at most by distance r by the time
t (x0, r). It turns out that t (x0, r) is the correct time scale for the solutions in r-neighborhood of x0 to
“mix” and regularize the interface (Theorem 1.1(3)). See the paragraph below Theorem 1.1 for further
heuristics based on scaling properties of our problem.

Suppose u is a solution of (ST2) with initial data u0 satisfying (Ia)–(Id) with �0(u)⊂ BR(0). Due to
(Ia)–(Ib), for sufficiently small r and given x0 ∈ 00 the initial free boundary 00 is given by the graph of a
Lipschitz function in Br (x0). After a rotation if necessary, we may assume that

�0 ∩ Br (x0)= {x + x0 : x = (x ′, xn), xn ≤ f (x ′)},

where f is a Lipschitz function with Lipschitz constant L < Ln . We summarize our main results:

Theorem 1.1 (cf. Theorem 5.6, Theorem 5.7 and Corollary 5.8). Let u, �0, r and f be as above. There
exists d0 > 0 depending only on n and N0 such that the following holds for r ≤ d0:

(1) In 6r := B2r (x0)×[t (x0, r)/2, t (x0, r)], we have

0(u)= {(x + x0, t) : x = (x ′, xn), xn ≤ f (x ′, t)},

where f (x ′, t) is a C1 function of space and time. Moreover, there exists a positive dimensional
constant c0 and 1< m < 2 such that

|Dx ′ f (x ′, t)− Dx ′ f (y′, t)| ≤ c0

(
− log

∣∣∣ xr ′− y′

r

∣∣∣)−m
,

|∂t f (x ′, t)− ∂t f (x ′, s)| ≤ c0

(
− log

∣∣∣ t
t (x0, r)

−
s

t (x0, r)

∣∣∣)−1/3
.

(2) u is a classical solution of (ST2) in 6r in the sense that

(i) Du+ exists in �(u) and is continuous up to �(u);
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(ii) Du− exists in �(u) and is continuous up to 6r ∩ (R
n
−�(u));

(iii) the free boundary condition is satisfied in the classical sense, i.e.,

Vx,t = (|Du+| − |Du−|)(x, t) on 0(u)∩6r .

(3) There exists a positive dimensional constant M such that

M−1 u+(x0− ren, 0)
r

≤ |Du+|(x, t)≤ M
u+(x0− ren, 0)

r
and

M−1 u−(x0+ ren, 0)
r

≤ |Du−|(x, t)≤ M
u−(x0+ ren, 0)

r
in 6r .

Remark 1.2. Our result extends to the case where the star-shaped condition (I-a)–(I-b) is replaced by:

(I-ab) �0 is locally Lipschitz with a sufficiently small Lipschitz constant.

See the discussion in Section 6.

The one phase version of the above result was proved in [Choi and Kim 2010] (see Theorem 2.16 in
Section 2). Let us briefly motivate our result below in the context of the existing literature.

For a given reference point (x0, t0) ∈ Rn
×[0,∞) and positive constants r and c, one can rescale the

solution u of (ST2) as

ũ := 1
c

u
(

x0+ r x, t0+
r2

c
t
)
. (1-4)

Then ũ satisfies the free boundary problem{
r ũt −1ũ = 0 in {ũ > 0} ∪ {ũ < 0},
V = |Dũ+| − |Dũ−| on ∂{ũ > 0},

(P̃)

in a corresponding neighborhood of the origin. Let e1, . . . , en be an orthonormal basis of Rn , so that
x ∈ Rn can be written as x = (x ′, xn), with xn = x · en . Choose (x0, t0)= (x0, 0) with x0 ∈ 00(u). By our
hypothesis, after a change of coordinates if necessary, there exists a Lipschitz function f : Rn−1

→ R

with a small Lipschitz constant such that

�0(u)∩ B2r (x0)= {x : xn ≤ f (x ′)}.

Let us choose
c =max{u+(x0− ren, 0), u−(x0+ ren, 0)} (1-5)

so that one of ũ+(−en, 0) and ũ−(+en, 0) equals 1, and the other is less than 1.
Now suppose that we can show the following two conditions:

(A) |ũ|(x, t)≤ C in B1(0)×[0, 1] with a constant C > 0 independent of x0 and r .

(B) The level sets of ũ are Lipschitz graphs in space and time with small Lipschitz constant in
B1(0)×[0, 1].
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Then Theorem 1.1 follows from the results of [Athanasopoulos et al. 1996] applied to ũ. Indeed, (B)
can be replaced by a relaxed version (B′) as stated below, which is sufficient to derive Theorem 1.1 due
to the results of [Athanasopoulos et al. 1998].

(B′) The level sets of ũ are ε-monotone with respect to cones of directions Wx(θ
x , e) and Wt(θ

t , ν) with
ν ∈ span(en, et), and π/2− θ x and ε sufficiently small.

(For the meaning of ε-monotonicity and the space and time cones Wx and Wt , see Definition 2.1.)
In our case (A) can be verified using previously known results in the one-phase Stefan problem

(Lemma 3.3 and Lemma 3.4). Unfortunately, as shown in [Choi and Kim 2010], verifying (B′) for all
scales r turns out to be as difficult as showing (B) or the full regularity of u. Since ũ no longer satisfies
the heat equation, one loses control of the change of u over time. For this reason it is necessary to show
(B′) for all level sets of ũ, not just for the free boundary 0(ũ). Indeed, in this article we will first show
that ũ (scaled correspondingly for the two-phase) is ε-monotone in the space variable (Lemma 3.1), and
then we show that 0(ũ) is ε-monotone in the space-time variables (Corollary 4.4 and Lemma 4.7). Then
in Section 5 we use the ε-monotonicity obtained from previous sections, the almost-harmonicity of ũ
(Lemma 3.6), as well as the iteration methods originating from [Athanasopoulos et al. 1996; 1998] to
show directly that ũ is a classical solution and u satisfies (B) and (B′) (Section 5). The arguments in
Section 5 are mostly drawn from [Athanasopoulos et al. 1996; 1998] as well as [Choi et al. 2007; 2009].

Let us now illustrate the underlying ideas in the analysis in Section 4, where we show the ε-monotonicity
of the solution over time. In terms of the original solution u, verifying (A) and (B′) corresponds to
analyzing u over the time interval [0, t (x0, r)], where t (x0, r) is given by

t (x0, r) := r2/c,

and c is as given in (1-5). Note that t (x0, r) coincides with the one given by (1-3).
Heuristically speaking, there are two possible scenarios for interface regularization, depending on its

initial configuration in the local neighborhood:

(1) One of the phases has much bigger flux than the other, i.e.,

u+(x0− sen, 0)� u−(x0+ sen, 0) or u−(x0− sen, 0)� u−(x0+ sen, 0)

for s comparable to r .
In this case one-phase-like phenomena (regularization by the dominant phase as obtained in

Theorem 2.16) are expected. As mentioned above, in this case the time interval for regularization of
the free boundary in r -neighborhood is proportional to the distance it has traveled.

(2) Both phases are in balance, i.e.,

u+(x0− sen, 0)∼ u−(x0+ sen, 0) (1-6)

for s comparable to r .
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In this case one expects regularization due to competition between two phases, resulting in
Lipschitz-like behavior over time. Again the corresponding time interval for regularization amounts
to t (x0, r) given in (1-3).

To make the above heuristics rigorous, in Section 4 we will introduce a decomposition procedure based
on Harnack-type inequalities, which illustrates local dynamics near the free boundary: roughly speaking,
for a given r > 0 we divide Br (x0)× {t = 0} into regions where (1-6) holds for 0 < s � r (balanced
region) and the rest of domain (unbalanced region). (See detailed definitions of these regions in Section 4.)
Of course the main issue is whether the dynamics of one region affect the other, in particular whether
the one-phase-type dynamics of the unbalanced region breaks the property (1-6) in the balanced region
for future times. We will show that this does not happen (Proposition 4.3), due to a fast regularization
property in the unbalanced region (Proposition 3.7 and Lemma 4.7) as well as Harnack-type inequalities
(Lemmas 4.5 and 4.6) in the balanced region.

Let us finish this section with an outline of the paper. In Section 2 we introduce preliminary results and
notation, including the regularity results in the one-phase Stefan problem (Theorem 2.16). Sections 3 to 5
consist of the proof of Theorem 1.1; in Section 3 we prove some properties on the evolution of solutions
of (ST2) with star-shaped data. In addition to Harnack inequalities, we show that the solution stays near
the star-shaped profile for a unit time (Lemma 3.1), which in turn yields that the solution stays very close
to harmonic functions (Lemma 3.6). This establishes that (B′) holds in the space variable. Making use
of the results in Section 3, we perform a decomposition procedure in Section 4, to show that (A) holds
for ũ (Proposition 4.3) and that (B′) holds for 0(ũ) (Corollary 4.4). This completes the main step in our
analysis. In Section 5 we describe the rather technical iteration procedure leading to further regularization,
and we complete the proof of Theorem 1.1 by combining arguments from [Athanasopoulos et al. 1996;
1998; Choi et al. 2007; 2009] (Theorem 5.7 and Corollary 5.8). In Section 6 we discuss a generalized
proof of the corresponding regularization result (Theorem 6.1) when the star-shapedness of the initial
data (I-a) and (I-b) are replaced by the local version (I-ab).

2. Preliminary lemmas and notation

We introduce some notation.

• For x ∈ Rn , denote by x = (x ′, xn) ∈ Rn−1
×R, where xn = x · en .

• Let Br (x) be the space ball of radius r , centered at x .

• Let Qr := Br (0)×[−r2, r2
] be the parabolic cube and let Kr := Br (0)×[−r, r ] be the hyperbolic cube.

• A caloric function in �∩ Qr will denote a nonnegative solution of the heat equation, vanishing along
the lateral boundary of �.

• For x0 ∈ 00 and en = x0/|x0|, define

t (x0, d) :=min
{ d2

u+(x0−den, 0)
,

d2

u−(x0+den, 0)

}
.
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• C is called a universal constant if it depends only on the dimension n and the regularity constant N0

of u0.

• We say a ∼ b if there exists a dimensional constant C > 0 such that C−1b ≤ a ≤ Cb.

• Lastly let us recall the definition of ε-monotonicity. Let Wx(θ
x , e) and Wt(θ

t , ν) with e ∈ Rn and
ν ∈ span(en, et), respectively, denote a spatial circular cone of aperture 2θ x and axis in the direction of e,
and a two-dimensional space-time cone in (en, et) plane of aperture 2θ t and axis in the direction of ν.

Definition 2.1. (a) Given ε > 0, a function w is called ε-monotone in the direction τ if

u(p+ λτ)≥ u(p) for any λ≥ ε.

(b) w is ε-monotone in a cone of directions Wx(θ
x , e) or Wt(θ

t , ν) if w is ε-monotone in every direction
in the cone.

Next we state preliminary results that are important in our analysis. The first lemma is a direct
consequence of the interior Harnack inequalities proved in [Caffarelli and Cabré 1995].

Lemma 2.2. Suppose w(x) : Rn
→ R has bounded Laplacian. Then w is Hölder continuous with its

constant depending on the Laplacian bound.

Lemma 2.3 [Fabes et al. 1984, Theorem 3]. Let � be a domain in Rn
×R such that (0, 0) is on its lateral

boundary. Suppose � is a Lip1,1/2 domain, i.e.,

�= {(x ′, xn, t) : |x ′|< 1, |xn|< 2L , |t |< 1, xn ≤ f (x ′, t)},

where f satisfies | f (x ′, t)− f (y′, s)| ≤ L(|x ′− y′|+ |t− s|1/2.) If u is a caloric function in �, then there
exists C = C(n, L), where L is the Lipschitz constant for �, such that

u(x, t)
v(x, t)

≤ C
u(−Len,

1
2)

v(−Len,−
1
2)

for (x, t) ∈ Q1/2.

Lemma 2.4 [Athanasopoulos et al. 1996, Theorem 1]. Let � be a Lipschitz domain in Rn
×R, i.e.,

Q1 ∩�= Q1 ∩ {(x, t) : xn ≤ f (x ′, t)},

where f satisfies | f (x, t)− f (y, s)| ≤ L(|x − y| + |t − s|). Let u be a caloric function in Q1 ∩� with
(0, 0) ∈ ∂� and u(−en, 0)=m > 0 and supQ1

u = M. Then there exists a constant C , depending only on
n, L , m/M such that

u(x, t + ρ2)≤ Cu(x, t − ρ2)

for all (x, t) ∈ Q1/2 ∩� and for 0≤ ρ ≤ dx,t .

Lemma 2.5 [Athanasopoulos et al. 1996, Lemma 5]. Let u and � be as in Lemma 2.4. Then there exist
a, δ > 0 depending only on n, L , m/M such that

w+ := u+ u1+a and w− := u− u1+a
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are subharmonic and superharmonic, respectively, in Qδ ∩�∩ {t = 0}.

Next we state several properties of harmonic functions:

Lemma 2.6 [Dahlberg 1979]. Let u1, u2 be two nonnegative harmonic functions in a domain D of Rn of
the form

D = {(x ′, xn) ∈ Rn−1
×R : |x ′|< 2, |xn|< 2L , xn > f (x ′)},

with f a Lipschitz function with constant less than L and f (0) = 0. Assume further that u1 = u2 = 0
along the graph of f . Then in

D1/2 = {|x ′|< 1, |xn|< L , xn > f (x ′)}

we have

0< C1 ≤
u1(x ′, xn)

u2(x ′, xn)
·

u2(0, L)
u1(0, L)

≤ C2,

with C1,C2 depending only on L.

Lemma 2.7 [Jerison and Kenig 1982]. Let D, u1 and u2 be as in Lemma 2.6. Assume further that

u1(0, L/2)
u2(0, L/2)

= 1.

Then, u1(x ′, xn)/u2(x ′, xn) is Hölder continuous in D1/2 for some coefficient α, both α and the Cα norm
of u1/u2 depending only on L.

Lemma 2.8 [Caffarelli 1987]. Let u be as in Lemma 2.6. Then there exists c > 0 depending only on L
such that for 0< d < c, ∂

∂xn
u(0, d)≥ 0 and

C1
u(0, d)

d
≤
∂u
∂xn

(0, d)≤ C2
u(0, d)

d
,

where Ci = Ci (M).

Lemma 2.9 [Jerison and Kenig 1982, Lemma 4.1]. Let� be Lipschitz domain contained in B10(0). There
exists a dimensional constant βn > 0 such that for any ζ ∈ ∂�, 0< 2r < 1 and positive harmonic function
u in �∩ B2r (ζ ), if u vanishes continuously on B2r (ζ )∩ ∂�, then for x ∈�∩ Br (ζ ),

u(x)≤ C
(
|x−ζ |

r

)βn
sup{u(y) : y ∈ ∂B2r (ζ )∩�},

where C depends only on the Lipschitz constants of �.

Next, we point out that we use the notion of viscosity solutions for our investigation. When {u0 = 0} is
of zero Lebesgue measure, it was proved in [Kim and Požár 2011] that the viscosity solution of (ST2) is
unique and coincides with the usual weak solutions. (See [Kim and Požár 2011] for the definition as well
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as other properties of viscosity solutions.) Below we state important properties of viscosity solutions for
(ST2) that relate our solutions to the one-phase version of our problem,

ut −1u = 0 in {u > 0},
ut/|Du| = |Du| on ∂{u > 0},
u( · , 0)= u0 ≥ 0.

(ST1)

Lemma 2.10. Suppose u is a viscosity solution of (ST2). Then:

(a) u is caloric in its positive and negative phases.

(b) −u is also a viscosity solution of (ST2) with boundary data −g.

(c) u+=max(u, 0) (or u−=−min(u, 0)) is a viscosity subsolution of (ST1) with initial data u+0 (or u−0 ).

We say that a pair of functions u0, v0 : D→ [0,∞) are (strictly) separated (denoted by u0 ≺ v0) in
D ⊂ Rn if:

(i) The support of u0, supp(u0)= {u0 > 0}, restricted to D is compact.

(ii) u0(x) < v0(x) in supp(u0)∩ D.

Lemma 2.11 [Kim and Požár 2011, Comparison principle]. Let u, v be, respectively, viscosity sub- and
supersolutions of (ST2) in D× (0, T )⊂ Q with initial data u0 ≺ v0 in D. If u ≤ v on ∂D and u < v on
∂D ∩�(u) for 0≤ t < T , then u( · , t)≺ v( · , t) in D for t ∈ [0, T ).

Below we state a distance estimate for the free boundary and Harnack inequality for the one-phase
solution u of (ST1).

Lemma 2.12 [Choi and Kim 2010, Lemma 2.2]. Let u be given as in Theorem 2.16. There exists
t0 = t0(N0,M0, n) > 0 such that if x0 ∈ 00 and t ≤ t0, then

1
C

t1/(2−α)
≤ d(x0, t)≤ Ct1/(2−β), (2-1)

where α and β are given in (1-2), C depends on N0, M0 and n, and d(x0, t) denotes the distance that 0
moved from the point x0 during the time t , i.e.,

d(x0, t) := sup{d : u(x0+ den, t) > 0}.

Lemma 2.13 [Choi and Kim 2010, Lemma 2.3]. Let u be given as in Theorem 2.16. There exists d0

depending on N0, M0 and n such that if x0 ∈ 00 and d ≤ d0, then

u(x0− den, t)≤ Cu(x0− den, 0) for 0≤ t ≤ t (x0, d),

where C depends on N0, M0 and n.

The following monotonicity formula by Alt–Caffarelli–Friedman prevents the scenario that both phases
compete with large pressure in our problem.
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Lemma 2.14 [Alt et al. 1984]. Let h+ and h− be nonnegative continuous functions in B1(0) such that
1h± ≥ 0 and h+ · h− = 0 in B1(0). Then the functional

φ(r)= 1
r4

∫
Br (0)

|Dh+|2

|x |n−2 dx
∫

Br (0)

|Dh−|2

|x |n−2 dx

is monotone increasing in r , 0< r < 1.

Corollary 2.15. Let ∂�0 ⊂ Rn be star-shaped with respect to the ball B1(0) ⊂ �0 and suppose that
B4/3(0)⊂�0 ⊂ B5/3(0). Let h+ be the harmonic function in �0− B1(0) with boundary values h+ = 0
on ∂�0, and h+ = 1 on ∂B1(0). Let h− be the harmonic function in B2(0)−�0 with boundary values
h− = 0 on ∂�0, and h− = 1 on ∂B2(0). Then there exists a sufficiently large dimensional constant M > 0
such that

h+(x0− ren)

r
≥ M implies

h−(x0+ ren)

r
≤ 1

for x0 ∈ ∂�0, en = x/|x | and 0≤ r ≤ 1/6.

Proof. This follows from Lemma 2.14, since(h+(x0− ren)

r
·

h−(x0+ ren)

r

)2
∼

1
(2r)4

∫
Br/2(x0−ren)

|Dh+|2

|x − x0|n−2 dx ·
∫

Br/2(x0+ren)

|Dh−|2

|x − x0|n−2 dx

≤
1

(2r)4

∫
B2r (x0)

|Dh+|2

|x − x0|n−2 dx ·
∫

B2r (x0)

|Dh−|2

|x − x0|n−2 dx

= φ(2r)≤ φ(1/3)≤ Cn. �

Lastly, let us finish this section by stating the results obtained in [Choi and Kim 2010] for the one-phase
version of our problem in the local setting:

Theorem 2.16 [Choi and Kim 2010, Theorem 0.1]. Suppose a nonnegative function u(x, t) is a solution
of (ST1) in B2(0)×[0, 1], 0 ∈ 00(u), with the initial data u0 ≥ 0 satisfying (I-b), (I-c) and (I-d) in B2(0).
Suppose the initial data satisfies

{u(x, 0)≥ 0} = {x + x0 : xn ≤ f (x ′)}

in B1(0), where f is a Lipschitz function with Lipschitz constant L < Ln . Further, suppose u0(−en)= 1
and supB2(0)×[0,1] u ≤ M0.

For given r > 0, let us define

t (x0, r) :=
r2

u(x0+ren, 0)
.

Then there exists a small c0 > 0 depending on M0 and n such that in 6r = Br (x0)×[t (x0, r)/2, t (x0, r)]
for r ≤ c0, we have:

(1) Theorem 1.1(1) holds for u.



1074 SUNHI CHOI AND INWON KIM

(2) u is a classical solution of (ST1) in 6r in the sense that the spatial derivative Du exists in �(u) and
is continuous up to �(u), and the free boundary condition is satisfied in the classical sense, i.e.,

Vx,t = |Du|(x, t) on 0(u)∩6r .

(3) There exists a positive constant M depending on M0 and n such that

M−1 u(x0− ren, 0)
r

≤ |Du|(x, t)≤ M
u(x0− ren, 0)

r
.

(4) If x ∈ 00(u)∩ Bc0(0) and x + ren ∈ 0t(u)∩ Bc0(0), then

M−1 u(x − ren, 0)
r

≤ |Du(x + ren, t)| = Vx+ren,t ≤ M
u(x − ren, 0)

r
,

where M depends on n and M0. In particular,

r
t
∼ |Du(x + ren, t)| ∼

u(x − ren, 0)
r

.

Theorem 2.16 states that the free boundary regularizes in a scale proportional to the distance it has
traveled. Note that the regularity results hold up to the initial time and all the regularity assumptions are
imposed only on the initial data.

3. Properties of solutions with star-shaped initial data

Lemma 3.1. If �0 and u0 are star-shaped with respect to the ball Br0(0)⊂�0, then �t(u) and u( · , t)
stays σ -close to star-shaped for all 0≤ t ≤ 1

3σ
1/5 (see Figure 2).

Proof. Step 1. For any a > 0, the parabolic scaling (x, t)→ (ax, a2t) preserves both the heat operator

6

Dtk
(1+ 4r2)Dtk

∂�tk

Figure 2. Approximation of the positive phase by a star-shaped domain.
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and the boundary motion law in (ST2). Therefore, for any σ > 0 the function

u1(x, t) := u
(
(1+ σ)(x − x0)+ x0, (1+ σ)2t

)
is also a viscosity solution of (ST2) with corresponding initial data.

Step 2. Choose x0 ∈ Br0(0). Take a small c0 > 0 such that Br0+c0(0)⊂�0. We claim that for 0≤ δ≤ σ 6/5,

u1(x, 0)≤ u(x, δ) in BR(0)− Br0+c0(0) (3-1)

if σ is small enough. To show (3-1), let us introduce another function

ũ(x, 0) := u
(
(1+ 1

2σ)(x − x0)+ x0, 0
)
.

Also let v∗ be the solution of the one phase problem (ST1) with initial data u−0 , and with v∗= 1 on ∂BR(0).
Note also that, due to Lemma 2.10, u− is a subsolution of (ST1) with initial data v∗(x, 0)= u−(x, 0).

Thus by Lemma 2.11, v∗ ≤ u−. It follows that �t(v
∗) ⊂ �t(u) ⊂ �t(u). Hence by Lemma 2.12

applied to −v∗,
�0(ũ)⊂�t(u) for 0≤ t ≤ σ 7/6.

Moreover, due to our assumption,
ũ(x, 0)≤ u0(x).

Therefore, the maximum principle for caloric functions implies

w(x, t)≤ u(x, t),

where w solves the heat equation in the cylindrical domain D=�0(ũ)×[0, σ 7/6
] with initial data ũ(x, 0)

and zero boundary data on ∂�0(ũ)×[0, σ 7/6
].

Now wt solves the heat equation in D,

wt =1w ≥−C at t = 0 and wt = 0 on ∂�0(ũ).

Therefore we conclude that wt ≥−C in D. In particular

w(x, δ)≥ ũ(x, 0)−Cδ. (3-2)

Next we compare u1(x, 0) with w(x, δ). Observe that for x ∈ BR(0)− Br0+c0(0),

u1(x, 0)= ũ(x, 0)+
∫ σ

σ/2

(
(x − x0) · Du((1+ s)(x − x0)+ x0, 0)

)
ds ≤ ũ(x, 0)− c0σ

7/6

≤ ũ(x, 0)−Cσ 6/5

≤ w(x, δ)≤ u(x, δ)

for 0≤ δ ≤ σ 6/5, where the first inequality follows from our assumption (I-d) on u0, the second inequality
follows if σ is sufficiently small, and the third inequality follows from (3-2). Hence we conclude (3-1).

Step 3. Our goal is to prove that for 0≤ δ ≤ σ 6/5,

u1(x, t)≤ u2(x, t) := u(x, t + δ) (3-3)
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in (BR(0)− Br0+c0(0))×[0, σ
1/5
]. Note that the inequality holds at t = 0 by Step 2. However, we need

a few more arguments since we do not know yet if the lateral boundary data on ∂Br0+c0(0) is properly
ordered.

Suppose
�(u1)⊂�(u) for 0≤ t ≤ t0

and �(u1) contacts ∂�(u) for the first time at t = t0. Observe then that

f (x, t) := u(x, t + δ)− u1(x, t)

solves the heat equation in �(u1) with nonnegative boundary data for 0≤ t ≤ t0, with

f (x, 0)≥ 0 in BR(0)− Br0+c0(0).

Indeed, following the computation given above, it follows that

f (x, 0)≥ c0σ in Br0+c0(0)− Br0+c0/2(0).

On the other hand, due to the fact that wt ≥−C and δ ≤ σ 6/5, we have

f (x, 0)≥ (w(x, δ)−w(x, 0))+ (w(x, 0)− u1(x, 0))≥−Cσ 6/5 in Br0+c0/2(0).

Therefore we have
f (x, t) > 0 on ∂Br0+c0(0)×[0, t0]

if t0� 1. But then this contradicts Lemma 2.11 applied to the region (BR(0)− Br0+c0(0))×[0, t0].

Step 4. From (3-3) of Step 3, we obtain

u
(
(1+ σ)(x − x0)+ x0, (1+ σ)2t

)
≤ u(x, t + δ) (3-4)

in (BR(0)−Br0+c0(0))×[0, σ
1/5
] for any x0 ∈ Br0(0), as long as σ and δ are sufficiently small and satisfy

0≤ δ ≤ σ 6/5. As a result, for 0≤ t ≤ 1
3σ

1/5, we can choose δ = σ(2+ σ)t ≤ σ 6/5 such that

(1+ σ)2t = t + δ.

It follows then from (3-4) that the function u( · , t) is σ -monotone with respect to the cone of directions Wx

in (BR(0)−Br0+c0(0)) for t ∈[0, 1
3σ

1/5
]. (Here Wx ={ν∈ Sn

:ν= (x−x0)/|x−x0| for some x0∈ Br0(0)}.)
�

Remark 3.2. For x ∈ 00, we may let en = x/|x | after a rotation. Then, due to (I-b),

t (x, d) :=min
{ r2

u+(x−ren, 0)
,

r2

u−(x+ren, 0)

}
∈ [r7/6, r5/6

] � r4/5, (3-5)

where t (x, r) is the time it takes for the free boundary to regularize in Br (0). Therefore, we have, for
0≤ t ≤ t (x0, r),

u( · , t) is r4-monotone with respect to Wx in (BR(0)− Br0+c0(0)).
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This property will ensure that our solution u has its level sets close to Lipschitz graphs in the space
variable in an appropriate scale, which serves as the first step towards the regularization argument; see
Lemma 3.6.

Lemma 3.3 (Harnack at t = 0). Let u be as in Theorem 1.1. For x ∈ 00, we may set en = x/|x | after a
rotation. Then for all s > 0 and for 0≤ t ≤ t (x, s) we have

u+(x − sen, t)≤ C1u+(x − sen, 0) and u−(x + sen, t)≤ C1u−(x + sen, 0),

where en = x/|x |.

Proof. Let v∗∗ solve the one-phase Stefan problem (ST1) with initial data v∗∗0 (x)= u+0 (x). Then v∗∗ is
also a solution of (ST2) with u0(x)≤ v∗∗0 (x), and thus by Lemma 2.11 we have

u(x, t)≤ v∗∗(x, t).

Therefore it follows from one-phase Harnack inequality applied for v∗∗(x, t) that

u+(x − sen, t)≤ v∗∗(x − sen, t)≤ C1v
∗∗(x − sen, 0)= C1u(x − sen, 0)

for 0≤ t ≤ t0, where t0 = s2/u(x − sen, 0)≥ t (x, s).
As for u−(x, t), we compare u− with the solution v∗ of (ST1) with initial data v∗0(x) = u−0 (x) and

with boundary data v∗ = 1 on ∂BR(0). The rest of the argument is parallel to the above one. �

Lemma 3.4 (backward Harnack at t = 0). Let u be as in Theorem 1.1. Let x ∈ 00 and let en = x/|x | after
a rotation. Then for s > 0 and for 0≤ t ≤ t (x, s),

u+(x − sen, 0)≤ C1u+(x − sen, t) and u−(x + sen, 0)≤ C1u−(x + sen, t).

Proof. We will only show the lemma for u+. The other part follows by a parallel argument. Let v∗ solve
the one phase problem (ST1) with initial data u−0 and with boundary data 1 on ∂BR(0). Then −v∗ is also
a solution of (ST2) with −v∗0 ≤ u0, and thus by Lemma 2.11, −v∗ ≤ u. This inequality implies that

{v∗ = 0} ⊂ {u ≥ 0}.

Note that �(v∗) moves according to the one-phase dynamics, which have been studied in detail in
[Choi and Kim 2006]. In particular we know that �(v∗) will be Lipschitz at each time. Moreover, for a
boundary point (x, t) ∈ 0(v∗) and d := dist(x, 00(v

∗)), the normal velocity Vx,t satisfies

Vx,t = |Dv∗(x, t)| ∼
v∗(x + 2den, 0)

2d
≤ dβ−1

≤ t (β−1)/(2−α), (3-6)

where the last inequality follows from Lemma 2.12. Let v∗(x, t) solve the heat equation in {v∗ = 0} with
initial data u0(x) and boundary data 0 on the lateral boundary of ∂{v∗ = 0}, i.e., v∗ solves

∂tv∗−1v∗ = 0 in {v∗ = 0} = BR(0)×[0, 1] −�(v∗),
v∗(x, 0)= u0(x) on {v∗ = 0} ∩ {t = 0},
v∗ = 0 on ∂{v∗ = 0} ∩ {t > 0}.
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Since
�(v∗)= {v

∗
= 0} ⊂ {u ≥ 0},

we have v∗(x, t)≤ u(x, t) in {v∗ = 0}. Moreover, for any given t > 0, ṽ−(x, s) := v∗(
√

t x, ts) satisfies
the assumptions of Lemma 2.5. Thus it follows that v∗( · , t) is ta-close to a harmonic function in B√t(x)
for some a > 0, where x ∈ 00. Moreover, due to the assumption on the initial data, (v∗)t =1v∗ ≥−C at
t = 0. Also on 0(v∗),

(v∗)t/|Dv∗| = −(v∗)t/|Dv∗| = −|Dv∗| ≥ −t (β−1)/(2−α).

Here the first equality follows since (v∗)t/|Dv∗| and −(v∗)t/|Dv∗| are the normal velocities of their
respective level sets 0(v∗) and 0(v∗), but 0(v∗)=0(v∗) by definition. The second equality follows since
v∗ solves the one phase problem (ST1), and the last inequality follows from (3-6).

Since �(v∗) is Lipschitz and 0t(v∗)= 0t(v
∗) is regularized in space over time (see Theorem 2.16),

(3-6) also holds for |Dv∗|.
Hence on 0(v∗),

(v∗)t =−|Dv∗||Dv∗| ≥ −t2(β−1)/(2−α) >−t−2/5,

where α and β are the growth rates defined in (1-2), and the last inequality follows from the assumption (I-b).
Since (v∗)t solves a heat equation in �(v∗), it follows that for x ∈ 00,

(v∗)t ≥−t−2/5 in B√t/2(x −
√

ten)×[0, t]. (3-7)

Then since v∗(x −
√

ten, 0)≥ (
√

t)α ≥ (
√

t)7/6 = t7/12, for x ∈ 00 we have

v∗(x −
√

ten, t)= v∗(x −
√

ten, 0)+
∫ t

0
(v∗)t(x −

√
sen, s) ds ≥ v∗(x −

√
ten, 0)− 5

3 t3/5

≥
1
2v∗(x −

√
ten, 0)+ 1

2 t7/12
−

5
3 t3/5

≥
1
2v∗(x −

√
ten, 0)

if t is sufficiently small. It follows that

u+(x −
√

ten, 0)= v∗(x −
√

ten, 0)≤ 2v∗(x −
√

ten, t)≤ 2u+(x −
√

ten, t),

where the first inequality follows from (3-7).
Since 0(v∗) = 0(v∗) is Lipschitz in a parabolic scaling, v∗ is almost harmonic. Hence v∗( · , t) is

bigger than the harmonic function ωt(x) in �t(v∗)∩ B√t(x) with its value

ωt(x −
√

ten)= (C1)
−1u+(x −

√
ten, 0).

Note that if 0≤ t ≤ t (x, s), then s <
√

t . Hence for 0≤ t ≤ t (x, s),

C1u+(x − sen, t)≥ C1v∗(x − sen, t)≥ C1ω
t(x − sen)≥ Cu+(x − sen, 0),

where the last inequality follows since the one-phase result implies a power law on the movement of
0(v∗)=0(v∗) (see Lemma 2.5 of [Choi et al. 2007]), and this yields a bound on u+(x−sen, 0)/ωt(x−sen).
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Similar arguments apply to u−, if we consider the function v∗∗ solving (ST1) with initial data u+0 , and
the function v? solving the heat equation in {v∗∗ = 0} with initial data u0 and with boundary data 0 on
0(v∗∗) and −1 on ∂BR(0). �

Lemma 3.5 (distance estimate at t = 0). Let u be as in Theorem 1.1. Let x ∈ 00 and let en = x/|x | after
a rotation. Let s be a sufficiently small positive constant. If

|u+(x − sen, 0)|
s

≤ m and
|u−(x + sen, 0)|

s
≤ m,

then for t ∈ [0, s/m],
d(x, t)= sup{r : x + ren or x − ren ∈ 0t(u)} ≤ s.

Proof. Let v∗∗ solve (ST1) with initial data u+0 , and let v∗ solve (ST1) with initial data u−0 and with v∗= 1
on ∂BR(0). Then by comparison, −v∗ ≤ u ≤ v∗∗ and the lemma follows from the one-phase result of
Theorem 2.16. �

In the next lemma, we approximate our solution by harmonic functions.
Note that, due to Lemma 3.1, We know that the rescaled function ũ(x, t) as given in (1-4) satisfies the

condition (B′) in the space variable. On the other hand, it is not clear if the level sets of u are close to
Lipschitz graphs in the time variable. The approximation by harmonic functions given by Lemma 3.6, as
well as Harnack-type inequalities obtained at t = 0 and at future times, will ensure us that 0(u) is almost
Lipschitz in the time variable as well (Corollary 4.4). This fact will serve as the first step towards the
regularization procedure in Section 5.

Lemma 3.6 (spatial regularity in the whole domain). Let u be as in Theorem 1.1. Then there exists a
positive constant r0 depending only on n such that for x0 ∈ 00 and 0 < r < r0, there exists a function
ω(x, t) := ω+(x, t)−ω−(x, t) that satisfies:

(a) ω( · , t) is harmonic in its positive and negative phase in (1+ r)�t(u)− (1− r)�t(u), and �(ω+),
�(ω−) are star-shaped with respect to Br0(0) given in (I-a).

(b) For a dimensional constant C > 0, we have

ω+(x, t)≤ u+(x, t)≤ Cω+((1− r5/4)x, t) and ω−(x, t)≤ u−(x, t)≤ Cω−((1+ r5/4)x, t)

in Br (x0)×[r2, t (x0, r)].

Note that t (x0, r)≥ r7/6
≥ r2, and ∂{ω+ > 0} need not be ∂{ω− > 0}.

Proof. Step 1. We will only show the lemma for u+. For a given x0 ∈00, we may assume that en = x0/|x0|

after a rotation.
First we will construct a barrier function v1 which will serve as a supersolution of (ST2). For this, let

us first consider the viscosity solution u? of (ST1) with the initial data u+0 for 0≤ t ≤ t0. We may assume
that for t0 small compared to R the support of u? stays inside BR(0). Let us define

�?
+
:= {u? > 0}, 0? := ∂{u? = 0}, �?

−
:= BR(0)×[0, t0] −�?+.
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Now let v1 solve the heat equation in �?
+

and in �?
−

, with initial data u0 and with v1 =−1 on ∂BR(0).
In other words, v1 = v

+

1 − v
−

1 , where
∂tv
+

1 −1v
+

1 = 0 in �?
+
,

v+1 (x, 0)= u+0 (x) on {t = 0},
v+1 = 0 on 0?,

and 
∂tv
−

1 −1v
−

1 = 0 in �?
−
,

v−1 (x, 0)= u−0 (x) on {t = 0},
v−1 = 0 on 0?,
v−1 = 1 on ∂BR(0)×[0, 1].

Note that v1 solves the heat equation in two regions �?
+

and �?
−

, with free boundary 0?. Also note that
v+1 = u? and ∂tv

+

1 = |Dv
+

1 |
2 on 0? since the boundary 0? is obtained from the one phase problem with

initial data u+0 . Hence we can observe that v1 is a supersolution of the two-phase problem (ST2).
Similarly one can construct a subsolution of (ST2): let us consider ũ?: the viscosity solution of (ST1)

in BR(0)×[0, t0] with the initial data u−0 and fixed boundary data 1 on ∂BR(0)×[0, t0]. Let us define

�̃?
−
:= {ũ? > 0}, 0̃? := ∂{ũ? = 0}, �̃?

+
:= BR(0)×[0, t0] − �̃?−.

Now let v2 solve the heat equation in two regions �̃?
−

and �̃?
+

, with boundary data 0 on 0̃? and −1
on ∂BR(0), and with initial data u0. Note that v−2 = ũ?. Then v2 is a subsolution of (ST2), and by
comparison,

v2 ≤ u ≤ v1. (3-8)

Hence the free boundary of u is trapped between the free boundaries of v1 and v2. Note that the free bound-
aries 0? and 0̃? of v1 and v2 are obtained from the one-phase problem (ST1). Hence by Theorem 2.16(a),
0? and 0̃? are Lipschitz in space in Bd(x0) for a small constant d > 0. Also, Theorem 2.16(c) implies
that for δ ∈ [d/2, d] and x0+ δen ∈ 0

?
t , the normal velocity Vx0+δen,t of 0? at (x0+ δen, t) satisfies

Vx0+δen,t = |Dv
+

1 (x0+ δen, t)| ∼ d
t
∼

u+0 (x0− den)

d
≤ dβ−1.

Since d/t ≤ dβ−1, we obtain

t ≥ d2−β > d2.

Hence the above speed bound of 0? implies that �?
+

and �?
−

are Lipschitz in space and time, in parabolic
scaling. Then by Lemma 2.5, v+1 and v−1 are almost harmonic up to a d-neighborhood of their free
boundaries for t ≥ d2. Similarly, we obtain that v+2 and v−2 are almost harmonic up to a d-neighborhood
of their free boundaries for t ≥ d2.

Next we fix r ≤ d. Note that if t ≤ t (x0, r), then by Theorem 2.16(c), both of the sets 0t(v1) and
0t(v2) are within distance r of 00(u) in Br (x0) during this time. In particular, arguments parallel to the
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ones in the proofs of Lemmas 2.1 and 2.3 in [Choi and Kim 2010] yield that

sup{u(y, s) : (y, s) ∈ Bd(x0)×[0, d2
]} ∼ u(x − den, 0).

Now using the almost harmonicity of v+1 and v+2 , we conclude that for 0≤ t ≤ t (x0, r),

v2(x0− 2ren, t)∼ u0(x0− 2ren, 0)∼ v1(x0− 2ren, t). (3-9)

Step 2. Observe that by the definition of t (x0, r) and the assumption on the growth rates of u0,

r2−β
≤ t (x0, r)≤ r2−α

≤ r5/6
:= τ. (3-10)

Due to Lemma 3.1, we know that at each time, �t(u) is τ 5-close to a star-shaped domain Dt up to the
time t = τ , i.e.,

Dt ⊂�t(u)⊂ (1+ τ 5)Dt ⊂ (1+ r4)Dt (3-11)

for 0≤ t ≤ τ .
Also note that by the first inequality of (3-10) with β ≥ 5/6,

t (z, r13/20)≥ r13(2−β)/20 > τ for any z ∈ 00.

Hence we can apply Lemma 3.3 for s = r13/20 up to the time τ . Then by Lemma 3.3 and (3-11) with
β ≥ 5/6,

u(x, t)≤ r (13/20)(5/6)
= r13/24

for x ∈ ∂(1− r13/20)D0 and for 0≤ t ≤ τ . Then by the τ 5-monotonicity of u,

u(x, t)≤ r13/24 on BR(0)− (1− r13/20
+ r4)D0 (3-12)

for 0 ≤ t ≤ τ . Since 0t(u) is located between the free boundaries 0? and 0̃? of one-phase problem,
Lemma 2.12 with β ≥ 5/6 implies that 0(u) stays in the τ 6/7-neighborhood of 00(u) up to τ . Also (3-11)
implies that ∂Dt stays in the τ 5-neighborhood of 0t(u) up to τ . Hence we obtain that ∂Dt stays in the
τ 5/6-neighborhood of ∂D0 up to the time τ . Since τ 5/6

= r25/36 < r13/20, (3-12) implies

u(x, t)≤ r13/24 on BR(0)− Ds (3-13)

for any 0≤ s, t ≤ τ .

Step 3. Let

t0 = 0≤ t1 = r2
≤ t2 = 2r2

≤ · · · ≤ tk0 = k0r2
≤ τ

and fix a number b such that
5/4≤ b < 61/48.

We will construct a supersolution of (ST2) in

(BR(0)− (1+ rb)Dtk )×[tk, tk+1].
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Let wk(x) be the harmonic function in

6 := (1+ 4rb)Dtk − Dtk ,

with boundary data zero on ∂(1 + 4rb)Dtk and Cnr13/24 on ∂Dtk , where Cn is a sufficiently large
dimensional constant. Extend wk(x) by 0 to Rn

−6. Next define

8k(x, t) := inf{wk(y) : |x − y| ≤ rb
− (t − tk)1

2rb−2
}

in (BR(0) − (1 + rb)Dtk ) × [tk, tk+1]. We claim that the function 8k is a supersolution of (ST2) in
(BR(0)− (1+ rb)Dtk )×[tk, tk+1], since our constant b satisfies

rb−2 > r13/24−b. (3-14)

For simplicity, write8=8k . To check that8 is a supersolution, first note that8( · , t) is superharmonic
in its positive set and 8t ≥ 0. Hence we only need to show that

8t
|D8|

≥ |D8| on 0(8). (3-15)

Due to the definition of 8, 0t(8) has an interior ball of radius at least rb/2 for tk ≤ t ≤ tk+1. This and
the superharmonicity of 8 in the positive set yield that

|D8| ≤ Cr13/24

rb on 0(8)

for a dimensional constant C > 0. Moreover 0(8) evolves with normal velocity 1
2rb−2. Since (3-14)

holds for our choice of b (i.e., for 5/4≤ b < 61/48), we conclude that (3-15) holds for r smaller than a
dimensional constant r(n). Now we compare u with 8 on

(BR(0)− (1+ rb)Dtk )×[tk, tk+1].

Note that by (3-13),

u+ ≤8 on ∂(1+ rb)Dtk

if Cn is chosen sufficiently large. Also at t = tk , (3-11) implies

u( · , tk)≤ 0≤8( · , tk) on BR(0)− (1+ rb)Dtk .

Hence we get u ≤8 in (Rn
− (1+ rb)Dtk )×[tk, tk+1]. This implies

�(u)⊂�(8)∪ ((1+ rb)Dtk ×[tk, tk+1]) := �̃(8) (3-16)

for tk ≤ t ≤ tk+1.

Step 4. Next we let v(x, t) solve the heat equation in

�̃(8)− ((1− 3r)�0(u)×[tk, tk+1])
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with initial data v( · , tk)= u( · , tk) and boundary data zero on 0(8) and v= u on (1−3r)00(u). Observe
that, due to (3-16), we have

u+ ≤ v for tk ≤ t ≤ tk+1. (3-17)

Since �̃(8) is star-shaped and expands with its normal velocity < rb−2, which is less than r−1,
Lemma 2.5 applies to ṽ(x, t) := v(r x, r2t). In particular there exists a constant C > 0 such that

(1/C)v(x, t)≤ h1(x, t)≤ Cv(x, t)

for (tk + tk+1)/2 ≤ t ≤ tk+1, where h1( · , t) is the harmonic function in �t(v)− (1− 2r)�0(u) with
boundary data zero on 0t(v) and v on (1− 2r)00(u).

Hence we conclude that
u+ ≤ v ≤ Ch1

in (BR(0)− (1− 2r)�0(u))×[(tk + tk+1)/2, tk+1].

Step 5. Similar arguments, now pushing the boundary purely by the minus phase given by the harmonic
function, yield that

5t := {x ∈ Dtk : dist(x, ∂Dtk )≥ 3rb
+

1
2rb−2(t − tk)} ⊂�t(u)

for tk ≤ t ≤ tk+1. Let w(x, t) solve the heat equation in

5− ((1− 3r)�0(u)×[tk, tk+1]))

with initial data u( · , tk) and boundary data zero on ∂5, and u on (1−3r)00(u). Then u ≥w(x, t). Since
5 is star-shaped and it shrinks with its normal velocity < rb−2, which is less than r−1, Lemma 2.5 applies
to w̃(x, t) := w(r x, r2t). In particular there exists C > 0 such that

u+ ≥ w ≥ (1/C)h2

for (tk+ tk+1)/2≤ t ≤ tk+1, where h2( · , t) is the harmonic function in 5t−(1−2r)�0(u) with boundary
data coinciding with that of w.

Step 6. Lastly we will show that h1 and h2 are not too far apart, i.e.,

h1(x, t)≤ Ch2(x − 8rben, t), (3-18)

with a dimensional constant C > 0. Since u is between (1/C)h2 and Ch1, this will conclude our proof
for (tk + tk+1)/2≤ t ≤ tk+1. Then by changing the time intervals [tk, tk+1] to [tk + r2/2, tk+1+ r2/2], we
obtain the lemma for any t ∈ [r2, t (x0, r)].

To prove (3-18), observe that by the construction of v and w,

�t(w)⊂�t(v)⊂ (1+ 8rb)�t(w).

Since tk+1− tk = r2, Lemma 2.12 implies

sup{d(x, 0t(u)) : x ∈ 0tk (u)} ≤ r12/7
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for t ∈ [tk, tk+1]. Then by (3-11),

sup{d(x, 0t(u)) : x ∈ ∂Dtk } ≤ r12/7
+ r4
� rb (3-19)

for t ∈ [tk, tk+1]. Then we obtain

v2(x, t)≤ v(x, t)≤ v1
(
(1− 4rb)x, (1− 4rb)2(t − tk)+ tk

)
(3-20)

for tk ≤ t ≤ tk+1, where the first inequality follows from (3-8) and (3-17), and the second inequality
follows from the comparison principle along with (3-8), v( · , tk)= u( · , tk) and (3-19). Similarly,

v2
(
(1+ 4rb)x, (1+ 4rb)2(t − tk)+ tk

)
≤ w(x, t)≤ v1(x, t). (3-21)

Combing (3-20) and (3-21), we get

v2
(
(1+ 4rb)x, (1+ 4rb)2(t − tk)+ tk

)
≤ w(x, t), v(x, t)

≤ v1
(
(1− 4rb)x, (1− 4rb)2(t − tk)+ tk

)
.

This and (3-9) yield

v(x0− 2ren, t)∼ w(x0− 2ren, t)∼ u(x0− 2ren, 0).

It follows that

w(x, t)≤ v(x, t)≤ Cw(x − 8rben, t) on (1− 2r)00×[tk, tk+1].

Hence due to Dahlberg’s lemma, we conclude that

h1(x, t)≤ C1v(x, t)≤ C2w(x − 8rben, t)≤ C3h2(x − 8rben, t)

in Br (x0)× [(tk + tk+1)/2, tk+1]. Since the inequality holds for any 5/4 ≤ b < 61/48, we obtain the
lemma. �

Next we show that in the “unbalanced” region, where one phase has much larger flux than the other,
the regularization process occurs similarly to the one in the one-phase problem. This observation will be
useful for the analysis in Section 4.

Proposition 3.7 (regularization in unbalanced region I). Let u be as given in Theorem 1.1. For a fixed
x0 ∈ 00(u), we may let en = x0/|x0| after a rotation. Suppose that either

u+(x0− ren, 0)≥ Mu−(x0+ ren, 0) or u−(x0+ ren, 0)≥ Mu+(x0− ren, 0)

for M > Mn , where Mn is a sufficiently large dimensional constant. Then, for r ≤ 1/Mn , there exists a
dimensional constant C > 0 such that

|Du+(x, t)| ≤ C
u+(x0− ren, 0)

r
and |Du−(x, t)| ≤ C

u−(x0+ ren, 0)
r

in Br (x0)×[t (x0, r)/2, t (x0, r)].
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Remark 3.8. 1. In the next section, we will extend Proposition 3.7 to later times, i.e., to x0 ∈ 0t0 (see
Lemma 4.7).

2. The situation given in Proposition 3.7 is essentially a perturbation of the one-phase case in [Choi and
Kim 2010]. The main step in the proof is the verification of this observation; by barrier arguments we
will show that our solution is very close to a rescaled version of the one-phase solution, for which the
regularity of solutions is well-understood (see Theorem 2.16).

Proof of Proposition 3.7. Without loss of generality, we may assume that

u+(x0− ren, 0)≥ Mu−(x0+ ren, 0).

Step 1. First we will show that after a small amount of time u becomes almost harmonic near the free
boundary. Lemmas 3.3 and 3.4 imply that for 0≤ t ≤ t (x0, r),

u+(x0− ren, t)∼ u+(x0− ren, 0), u−(x0+ ren, t)∼ u−(x0+ ren, 0). (3-22)

Also note that, by the assumption on the initial data u0, Lemma 3.6 holds at t = 0. In other words, there
exists a function ω(x, 0)= ω0(x) such that:

(a) ω0 is harmonic in its positive and negative phases in (1+ r)�0(u)− (1− r)�0(u).

(b) �(ω+0 ) and �(ω−0 ) are star-shaped.

(c) In Br (x0), we have

ω+0 (x)≤ u+0 (x)≤ Cω+0 ((1− r5/4)x), (3-23)

ω−0 (x)≤ u−0 (x)≤ Cω−0 ((1+ r5/4)x). (3-24)

Next we will improve (3-23) and (3-24) for later times to obtain the inequalities with C = (1+ ra) for
t ≥ r3/2. By the distance estimate in Lemma 2.12, the free boundary of u moves less that r9/7 < r5/4

during the time t = r3/2. Then we let v1 solve

∂tv1 =1v1 in (1+ 2r5/4)�0(ω
+)×[0, r3/2

],

∂tv1 =1v1 in (BR(0)− (1+ 2r5/4)�0(ω
+))×[0, r3/2

],

v1( · , 0)= u+0 on (1+ 2r5/4)�0(ω
+),

v1( · , 0)=−u−0 on BR(0)− (1+ 2r5/4)�0(ω
+),

v1 = 0 on (1+ 2r5/4)00(ω
+)×[0, r3/2

],

v1 =−1 on ∂BR(0)×[0, r3/2
].

Similarly, we let v2 solve the heat equation in two cylindrical regions,

(1− 2r5/4)�0(ω
+)×[0, r3/2

], and (BR(0)− (1− 2r5/4)�0(ω
+))×[0, r3/2

]

with initial data u+0 and −u−0 , and with lateral boundary data zero on (1− 2r5/4)00(ω
+)×[0, r3/2

] and
−1 on ∂BR(0)×[0, r3/2

]. Then, by comparison,

v2 < u < v1. (3-25)
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Also by Lemma 2.5 with β ≥ 5/6,

|v1− v2| ≤ r5/4×5/6
= r25/24.

Note that on (1− r6/7)00(ω
+),

|v1| ≥ r (6/7)α ≥ r6/7×7/6
= r

and thus for a1 = 1/24,

|v1− v2| ≤ ra1 |v1| on (1− r6/7)00(ω
+). (3-26)

Similarly,

|v1− v2| ≤ ra1 |v2| on (1+ r6/7)00(ω
+). (3-27)

Now, v1 and v2 are almost harmonic in the r3/4-neighborhood of their boundaries for 1
2r3/2

≤ t ≤ r3/2

by Lemma 2.5. Then the almost harmonicity of v1 and v2 with (3-25)–(3-27) imply the following: For
1
2r3/2

≤ t ≤ r3/2, there exist positive harmonic functions ω̃+( · , t) and ω̃−( · , t) defined respectively in

�t(v
+

2 )∩ (BR(0)− (1− r1−b)�0(ω
+)) and �t(v

−

1 )∩ (1+ r1−b)�0(ω
+)),

where b = 1/7, such that for some a > 0,

ω̃+(x, t)≤ u+(x, t)≤ (1+ ra)ω̃+((1− 4r5/4)x, t) (3-28)

and

ω̃−(x, t)≤ u−(x, t)≤ (1+ ra)ω̃−((1+ 4r5/4)x, t). (3-29)

Now on the time interval [0, r3/2
] +

1
2 kr3/2, 1≤ k ≤ m, we construct v1 and v2 so that they solve the

heat equation in the cylindrical domains with

0(v1)= (1+ 2r5/4)01
2 kr3/2(ω

+)×
[ 1

2 kr3/2, (1+ 1
2 k)r3/2],

0(v2)= (1− 2r5/4)01
2 kr3/2(ω

+)×
[ 1

2 kr3/2, (1+ 1
2 k)r3/2].

By a similar argument to the one above, we then obtain harmonic functions ω̃±( · , t) satisfying (3-28)
and (3-29) for

1
2(1+ k)r3/2

≤ t ≤ (1+ 1
2 k)r3/2.

Hence we conclude (3-28) and (3-29) for r3/2
≤ t ≤ t (x0, r).

Step 2. Next we rescale u(x, t) as

ũ(x, t) := α−1u(r x + x0, r2α−1t) in 2Qx0,
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where α := u+(x0− ren, 0)� r1/2. Then ũ(x, t) solves
(α∂t −1)ũ = 0 in �(ũ),

V = |Dũ+| − |Dũ−| on 0(ũ),

ũ(−en, 0)= 1,

ũ(en, 0)=−1/N , where N ≥ M.

Furthermore, (3-22) implies that for 0≤ t ≤ 1,

ũ+(−en, t)∼ 1, ũ−(en, t)∼ 1/N .

Let w̃ be the corresponding rescaled version of ω̃ given in (3-28) and (3-29), then in Br−b(0)∩�0(ũ) we
have

(1− ra)w̃+((1+ 4r5/4)x, αr−1/2)≤ ũ+(x, αr−1/2)≤ w̃+(x, αr−1/2) (3-30)

and

(1− ra)w̃−(x, αr−1/2)≤ ũ−(x, αr−1/2)≤ w̃−((1+ 4r5/4)x, αr−1/2). (3-31)

Here note that

αr−1/2
=
√

r ·
u+(x0− ren, t0)

r
≤ r1/3.

Lastly, for given x0 ∈ 0(ũ)∩ B1(0), an argument similar to the one in (3-7) implies that

ũ(x, t)≤ (1+ rb)ũ(x, 0) in ∂B(1/2)r−b(r−ben)×[0, 1]. (3-32)

Step 3. We claim that we can construct a supersolution U1 and a subsolution U2 of (ST2) such that

U2(x, t)≤ ũ(x, t)≤U1(x, t)≤U2(x −
√
εen, t) in B1(0)×[αr−1/2, 1],

and so that U2 is a smooth solution with uniformly Lipschitz boundary in space and time. Then for
sufficiently small r > 0 the lemma will follow from analysis parallel to that of [Athanasopoulos et al.
1998].

To illustrate the main ideas, let us first assume that:

(a) (3-30) and (3-31) hold in the entire ring domain R×[0, 1], where

R := {x : d(x, 00(ũ))≤ r−b
}.

(b) ũ(x, t)≤ (1+ rb)ũ(x, 0) on ∂R×[0, 1].

Let

6 := {x : d(x,Rn
−�0)≤ r−b

}× [αr−1/2, 1],
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and let U+1 be the solution of the one-phase Hele-Shaw problem in 6,
1U+1 = 0 in {U+1 > 0} ∩6,

∂tU+1 = |DU+1 |
2 on ∂{U+1 > 0} ∩6,

U+1 (x, αr−1/2)= w̃+(x, αr−1/2),

U+1 (x, t)= (1+ rb)ũ(x, 0) for x ∈ ∂6.

(HS)

Let
U1 =U+1 −U−1 in R×[αr−1/2, 1],

where U−1 ( · , t) is the harmonic function in R−�(U+1 ) with boundary data

U−1 = 0 on 0(U+1 ), U−1 = C/N on ∂R−�(U+1 ).

Then U1 is a supersolution of (ST2) in 6, and thus by Lemma 2.11 and the assumptions (a)–(b) we have
ũ ≤U1 in 6.

Step 4. The construction of the subsolution U2 is a bit less straightforward. We use

U+2 (x, t) := (1− ε) sup
|y−x |≤

√
ε(1−c(t))

U+1 ((1+
√
ε)y, t),

where ε = 1/N and c(t) := t4/5. Then we define

U2 =U+2 −U−2 in R×[αr−1/2, 1],

where R is the ring domain as given above and U−2 ( · , t) is the harmonic function in R−�(U+2 ) with
fixed boundary data zero on 0(U+2 ) and C/N on ∂R−�(U+2 ). Then U2 satisfies the free boundary
condition

VU2 ≤ (1+ ε)|DU+2 | −
√
εc′(t).

Therefore, U2 is a subsolution of (ST2) if we can show that
√
εc′(t)≥ ε|DU+2 | + |DU−2 | on 0(U2) (3-33)

and
∫ 1

0 c′(s) ds ≤ 1.
The analysis performed in [Choi and Kim 2010], as in the proof of (c) of Theorem 2.16, yields that at

a fixed time t , 0(U1) regularizes in the scale of d := d(t) that solves

t = d2

U1(−den, 0)
.

Therefore,

|DU+2 | ∼
U+2 (−den, 0)

d
and |DU−2 | ∼

U−2 (den, 0)
d

on
0(U2)×[t/2, t].
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Observe that since β ≥ 5/6,

U+2 (−den, 0)≤ d5/6 and U−2 (den, 0)≤ εd5/6,

then we have

ε
U+2 (−den, 0)

d
+

U−2 (den, 0)
d

≤ εd−1/6
≤
√
εt−1/5.

where the last inequality follows from

t = d2/U1(−den, 0)≤ d2/dα ≤ d5/6.

Hence c(t)= t4/5 satisfies (3-33), and we conclude that U2 is a subsolution of (ST2) in 6.
Now we can use the fact that

U2 ≤ ũ ≤U1 in Bc(0)×[αr−1/2, c]

to conclude that ũ is
√
ε- close to a Lipschitz (and smooth) solution U1 in B1(0)×[1/2, 1], confirming (B′).

Moreover (A) holds due to Lemma 3.3 and Lemma 3.4. Once we can confirm this, we can conclude our
proof by using the results of [Athanasopoulos et al. 1998] with the choice of a sufficiently small ε.

Step 5. Now we proceed to the general proof without the simplified assumptions (a) and (b) in Step 3,
which are replaced by the local inequalities (3-30)–(3-32). For this we need to perturb the initial data
outside of B1(0) (see Section 4, pages 2781–2783 of [Choi et al. 2009]), to obtain functions W1(x) and
W2(x) that satisfy:

(a) {Wk > 0} with k = 1, 2 is star-shaped and coincides with �αr−1/2(w̃) in Br−b(0).

(b) {W2 > 0} ⊂�αr−1/2(w̃)⊂ {W1 > 0}.

(c) d(x, {Wk > 0})≥ r−b with k = 1, 2 for x ∈ 0αr−1/2(w̃)∩ (Rn
− B2r−b(0)).

(d) Wk is harmonic in {Wk > 0}− K with boundary data zero on 0(Wk) and (1+ rb)w̃(x, αr−1/2) on
∂K , where

K = {x : d(x, 0(Wk))≥ r−b
}.

Let Uk be the solution of Hele-Shaw problem in

Rn
−

1
2{Wk > 0}× [αr−1/2, 1]

with initial data W1 and with lateral boundary data (1+ rb)w̃(x, αr−1/2). Due to Proposition 4.1 of
[Choi et al. 2009], for sufficiently small r > 0, the level sets of U1 are then εc-close to those of U2 in
B1(0)×[0, 1]. Hence we can use U2 instead of U1 in Step 4 and proceed as in Step 4 to conclude. �

4. Decomposition based on local phase dynamics

Throughout the rest of the paper, let u be as in Theorem 1.1, and fix x0 ∈ 00 and a sufficiently small
constant r > 0. We will prove the regularization of the solution u in Br (x0)×[t (x0, r)/2, t (x0, r)]. After
a rotation if necessary, we may assume that x0/|x0| = en .
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Let us fix a constant M ≥ Mn , where Mn is a sufficiently large dimensional constant. If the ratio
between u+(x0−ren, 0) and u−(x0+ren, 0) is bigger than M , then we can directly apply Proposition 3.7
to prove the main theorem. Therefore we assume that

M−1u−(x0+ ren, 0)≤ u+(x0− ren, 0)≤ Mu−(x0+ ren, 0). (4-1)

Let

C0 :=max
{u+(x0− ren, 0)

r
,

u−(x0+ ren, 0)
r

}
. (4-2)

Then since u+0 and u−0 are comparable with harmonic functions, C0 is less than a constant depending on
n and M (See Corollary 2.15). Also note that

C0 ≥ rα−1
≥ r1/6.

Let us now sort out the initial free boundary points where the flux from one phase dominates the flux
from the other phase. Let us define

A+ =
{

x ∈ 00 ∩ B2r (x0) :
u+(x − sen, 0)

s
≥ MC0 for some s with r5/4

≤ s ≤ r
}
,

A− =
{

x ∈ 00 ∩ B2r (x0) :
u−(x + sen, 0)

s
≥ MC0 for some s with r5/4

≤ s ≤ r
}
.

We then write

A = A+ ∪ A−.

Throughout the paper we will let en = x/|x | for any boundary point x , after a necessary rotation.

Lemma 4.1. Let u be as given in Theorem 1.1, and let M and C as given above.

(a) If
u+(x − sen, 0)

s
≥ MC0 for some s ≤ r, then

u+(x − sen, 0)
s

≤ C0.

(b) If
u−(x + sen, 0)

s
≥ MC0 for some s ≤ r, then

u−(x + sen, 0)
s

≤ C0.

Proof. Since u±0 are comparable with harmonic functions h±, we can argue similarly as in Corollary 2.15.
Observe that

u+0 (x − sen)

s
·

u−0 (x + sen)

s
∼

h+(x − sen)

s
·

h−(x + sen)

s
.
√
φ(r). C2

0 . �

Now for x ∈ A+, there exists a largest constant rx < r such that

u+(x − rx en, 0)
rx

= MC0.

We then define

Qx = Brx (x)×
[
0, rx

MC0

]
.
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Qx

*
0

x
0

6

B   (x  )   [0,t (x , r)]r 0 0

Figure 3. Decomposition of the domain.

Also for x ∈ A−, we can similarly define rx and Qx . Now we define

6 := Br (x0)×[0, t (x0, r)] −
⋃
x∈A

Qx ;

see Figure 3. 6 is then the region where the fluxes from both sides are initially balanced. Our aim in this
section is to prove that the balance is kept over time, so that the interface remains close to a Lipschitz
graph over time.

The following statement is a direct consequence of the definition of 6.

Lemma 4.2. If x ∈ 00 ∩60, then for all r5/4
≤ s ≤ r ,

u+(x − sen, 0)
s

,
u−(x + sen, 0)

s
≤ MC0.

The next proposition, the main result in this section, states that the solution is “well-behaved” in 6.

Proposition 4.3. There exists a dimensional constant K > 0 such that for all (x, t) ∈ 0 ∩6,

u+(x − sen, t)
s

,
u−(x + sen, t)

s
< K MC0 for r5/4

≤ s ≤ r. (4-3)

Before proving Proposition 4.3, we show an immediate consequence of it; we are ready to show that
0(u) is close to a Lipschitz graph in time as well as in space.

Corollary 4.4. For (x, t) ∈0∩6, suppose (x+ken, t+τ) ∈0. Then there exists a dimensional constant
K1 > 0 such that

|k| ≤ r5/4 if τ ∈
[
0, r5/4

K1 MC0

]
.

Proof. Due to Lemma 3.6, at any time 0≤ t ≤ t (x0, r), we have

h+(x, t)≤ u+(x, t)≤ C1h+(x − r5/4en, t) (4-4)
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and

h−(x, t)≤ u−(x, t)≤ C1h−(x + r5/4en, t), (4-5)

in Br (x0), where the function h := h+( · , t)− h−( · , t) is harmonic in its positive and negative phases in
(1+ r)�t(u)− (1− r)�t(u), and the domains �(h+) and �(h−) are both star-shaped with respect to
Br0(0).

Let us pick (y0, t0) ∈ 0 ∩6. Due to Proposition 4.3, (4-4) and the Harnack inequality for harmonic
functions, we have

sup
y∈B10r5/4 (y0)

u(y, t0)≤ CC1K MC0r5/4, (4-6)

where C is a dimensional constant. On the other hand, due to Lemma 3.1 and t5
0 ≤ r25/6, we have

u( · , t0)≤ 0 in B(1/2)r5/4(y0+ r5/4en). (4-7)

Let

y1 := y0+ r5/4en, C2 := CC1K MC0, r(t) := 1
2r5/4

−C3(t − t0),

where C3 = CC2. Next we define φ(x, t) in the domain

5 := B2r5/4(y1)×
[
t0, t0+

r5/4

C3

]
such that 

−1φ( · , t)= 0 in B2r5/4(y1)− Br(t)(y1),

φ = 2C2r5/4 on ∂B2r5/4(y1),

φ = 0 in Br(t)(y1).

Then by (4-4)–(4-7), u ≺ φ at t = t0 in 5. Let T0 be the first time when u hits φ from below in 5. Since
(4-6) also holds for any (x, t) ∈ 0 ∩6 in place of (y0, t0), we have u < φ on the parabolic boundary of
5∩ {t0 ≤ t ≤ T0}. On the other hand, if C is chosen sufficiently large, then

φt

|Dφ|
= C3 ≥ |Dφ| on ∂Br(t)(y1)×

[
t0, t1 := t0+

r5/4

4C3

]
,

and thus φ is a supersolution of (ST1). This and Lemma 2.11 applied to u and φ in5 yields a contradiction,
and we conclude that 0(u) lies outside of B 1

4 r5/4(y0+ r5/4en) for t0 ≤ t ≤ t1.
Similarly, by constructing a negative radial barrier and comparing it with u, one can show that 0(u)

lies outside of B 1
4 r5/4(y0− r5/4en) for t0 ≤ t ≤ t1. This concludes the proof. �

For x0 ∈ 0t0 , define

t (x0, r) :=min
{ r2

u+(x0−ren, t0)
,

r2

u−(x0+ren, t0)

}
.

We now proceed to show our main result, Proposition 4.3. First we show Harnack-type inequalities for
positive times.
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Lemma 4.5 (Harnack at later times). Fix s ∈ [r5/4, r ]. If (y0, t0) ∈ 0 ∩6, then

u+(y0− sen, t0)≥ c1u+(y0− sen, t0+ τ) and u−(y0+ sen, t0)≥ c1u−(y0+ sen, t0+ τ)

for 0≤ τ ≤ t (y0, s)/2 and c1 > 0.

Proof. We will show the lemma for u+, the statement for u− follows via parallel arguments.

Step 1. Let (y0, t0) ∈ 0 ∩6 and let s ∈ [r5/4, r ]. Let h+ be given as in (4-4). Due to Lemma 3.3 and
Lemma 3.4, we have

h+(y0− 2ren, t1)≤ u+(y0− 2ren, t1)≤ Cu+(y0− 2ren, t2)≤ Ch+(y0− (2r + r5/4)en, t2)

for 0≤ t1, t2 ≤ t0+ t (y0, r)/2. (Here note that y0 ∈ Br (x0).) In particular

u+(y0− 2ren, t)≤ Ch+(y0− (2r + r5/4)en, t0)≤ C1h+(y0− 2ren, t0) (4-8)

for t ≤ t0+ t (y0, s)/2.

Step 2. Now let v∗∗ solve (ST1) in (Rn
− (1− 2r)Dt0)× [t0, t0+ t (y0, s)/2] with initial and boundary

data C2h+(x − 2sen, t). Since s ≥ r5/4, (4-4) implies

�t(u)⊂�t0(v
∗∗)⊂�t(v

∗∗) in B2s(y0)×[t0, t0+ t (y0, s)/2]. (4-9)

Then by (4-9), (4-8) and (4-4),

u+ ≤ v∗∗ in Bs(y0)×[t0, t0+ t (y0, s)/2]

if we choose C2 as a multiple of C1 by a dimensional constant. Moreover, due to the Harnack inequality
for one-phase (ST1), one can conclude that

u+(y0− sen, t0+ τ)≤ v∗∗(y0− sen, t0+ τ)

≤ Cv∗∗(y0− sen, t0)

= CC2h+(y0− 3sen, t0)

≤ C3h+(y0− sen, t0)≤ C3u+(y0− sen, t0)

for

0≤ τ ≤ s2

v∗∗(y0−sen, t0)
∼ t (y0, s)/2.

Here the first inequality uses the fact u+ ≤ v∗∗, the second uses the Harnack inequality for v∗∗, the third
one uses the Harnack inequality for harmonic functions and the last one uses (4-4). �

Lemma 4.6 (backward Harnack). Suppose that (4-3) holds up to time t = T0 ≤ t (x0, r). If (y0, t0) ∈ 0
and t0 ≤ T0, then for 0≤ τ ≤ t (y0, s)/2,

u+(y0− sen, t0)≤ Cu+(y0− sen, t0+ τ) and u−(y0+ sen, t0)≤ Cu−(y0+ sen, t0+ τ),

where 0≤ s ≤ r and C is a universal constant.
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Proof. We will show the argument for u+, due to the symmetric nature of the claim. The argument here
will be similar to that of Lemma 3.4, replacing the initial data u+0 and u−0 (used in the construction of
barriers) by h+(x, t0) and h−(x, t0) given in (4-4)–(4-5).

We consider a solution v1 of (ST1) in

5 := (1+ r)�t0 ×[t0, t0+ t (y0, s)/2]

with initial and lateral boundary data C1h−. Then v1 ≤ u in 5. Now let v2 solve the heat equation in
{v1 = 0}× [t0, t0+ t (y0, s)/2] with initial data

v2( · , t0)=
{

h+( · , t0) in {v1( · , t0)= 0}− (1− r){h+( · , t0) > 0},

h̃( · ) in (1− r){h+( · , t0) > 0},

where h̃( · ) is a C2 extension function of h+( · , t0) chosen so that h̃( · )≤ u+( · , t0). The rest of the proof
is the same as that of Lemma 3.4. �

Next we show that in the unbalanced region, possibly forming at positive times, the fast regularization
phenomena still holds. This lemma will be used in the proof of Proposition 4.3 to show that there cannot
be a severe unbalance of flux in the initially balanced region 6.

Lemma 4.7 (regularization in unbalanced region II). For a fixed (x0, t0) ∈ 0(u), suppose that

u+(x0− ren, t0)≥ Mu−(x0+ ren, t0) or u−(x0+ ren, t0)≥ Mu+(x0− ren, t0)

for M > Mn , where Mn is a dimensional constant. Then for r ≤ 1/Mn , there exists a dimensional constant
C > 0 such that

|Du+| ≤ C
u+(x0− ren, t0)

r
and |Du−| ≤ C

u−(x0+ ren, t0)
r

in Br (x0)×[t0+ t (x0, r)/2, t0+ t (x0, r)].

Proof. The proof of this lemma is parallel to that of Proposition 3.7. We use the Harnack and backward
Harnack inequalities (Lemmas 4.5 and 4.6) instead of Lemmas 3.3 and 3.4. �

We are now ready to prove our main result, Proposition 4.3. Observe that (4-3) holds up to some
T0 > 0 by Lemma 4.2 and Lemma 3.3.

Proof of Proposition 4.3. Let K be a sufficiently large dimensional constant such that K � M . Let us
assume that (4-3) breaks down for u+ for the first time at t = T0. Then

u+(z0− sen, T0)

s
= K MC0 (4-10)

for some (z0, T0) ∈ 0 ∩6 and r5/4
≤ s ≤ r . Let

h = sup
{

h :
u+(z0− ken, T0)

k
≥ M2C0 for s ≤ k ≤ h

}
. (4-11)
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Note that h < r/2 due to Lemma 3.3 and the definition of C0, and h > 2s due to Lemma 3.6. By the
definition of h we have

u+(z0− hen, T0)

h
= M2C0. (4-12)

Let us find the largest time t0 before T0 such that for some (y0, t0) ∈ 0

T0− t0 =
t (y0, h)

2
and

y0

|y0|
=

z0

|z0|
.

Then Lemma 4.5 implies

u+(y0− hen, t0)
h

∼
u+(y0− hen, T0)

h
∼

u+(z0− hen, T0)

h
= M2C0.

Since u+( · , t0) and u−( · , t0) are comparable to harmonic functions (Lemma 3.6), a similar argument as
in Lemma 4.1 implies that

u−(y0+ hen, t0)
h

. C0 .
1

M2

u+(y0− hen, t0)
h

.

Hence by Lemma 4.7, we have

|Du+( · , T0)| ∼ M2C0 in Bh(y0).

Since Bs(z0)⊂ Bh(y0), this would contradict (4-10) as K � M . �

Due to Lemma 3.6, Proposition 4.3 and Corollary 4.4, we have shown that condition (A) holds and
that the level sets of u are close to a Lipschitz graph, and 0(u) is close to a Lipschitz graph in space and
time (see the detailed description of this fact in the next section). However, we do not yet have sufficient
control of the change of u over time to verify the condition (B′). We will therefore prove Theorem 1.1 by
carrying out a modified argument, combining arguments from [Athanasopoulos et al. 1996; 1998] and
[Choi et al. 2007; 2009].

5. Further regularization based on flatness

Let u, 00 be as given in Theorem 1.1. Recall that x0 ∈ 00 and r > 0 are fixed, and they satisfy (4-1). Let
C0 be as given in (4-2) and t (x0, r) as given in (1-3).

Our goal is to prove the regularization of the free boundary after the time t (x0, r)/2 in Br (x0). Define

6r (x0) := Br (x0)×[t (x0, r)/2, t (x0, r)] ⊂6.

Let us briefly review the information we have on u so far. As a result of Proposition 4.3, condition (A)
holds up to

t = t (x0, r)≤ Cr2−α < r3/4.

Also due to Lemma 3.6, our solution u is ε-monotone in Qr (x0) with respect to a space cone Wx(en, θ0)

satisfying
|θ0−π | = O(L),
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where L is the Lipschitz constant of the initial domain �0 given by (1-1).
Moreover Qr (x0)⊂ 6, and thus Corollary 4.4 and Lemma 3.1 yield that the free boundary 0(u) is

r4/3-monotone in Qr (x0) with respect to the time cone Wt(en, tan−1(1/K1 MC0)) and the space cone
Wx(en, θ0). Here θ0 is the angle corresponding to the Lipschitz constant of 00, and t (x0, r)= r/C0.

On the other hand, by Lemma 3.3 and the definition of C0,

u(x0− ren,
1
2 t (x0, r))

C0r
∼ 1.

Since Qr (x0)⊂6, Proposition 4.3 implies

u(x, t)
C0r

. K M in Br (x0)×[t (x0, r)/2, t (x0, r)].

The main difficulty in applying the method of [Athanasopoulos et al. 1996; 1998] lies in the fact that
we cannot guarantee the ε-monotonicity of the solution u in the time variable (although we can obtain, as
above, the r4/3-monotonicity of the free boundary 0(u)). To go around this difficulty, we will first use
the parabolic scale to improve the regularity of the solution in space. Consider the function

ū(x, t) := 1
C0r

u
(
r x + x0, r2t + 1

2 t (x0, r)
)
. (5-1)

In [Athanasopoulos et al. 1996; 1998], it was important that initially the time derivative of the solution
was assumed to be controlled by the spatial derivative, i.e.,

|ut | ≤ C(|Du+| + |Du−|). (5-2)

Using (5-2) one can prove that the direction vectors

Du+

|Du+|
(−len, t) and

Du−

|Du−|
(len, t)

do not change much for 0≤ t ≤ l. This is pivotal in the regularization procedure since then 0(u) regularizes
along the direction of the “common gain” obtained by those two direction vectors, the regularity of
0(u) then makes the above two vectors line up better in a smaller scale, which contributes to further
regularization of 0(u) in a finer scale. In our case we do not know a priori that 0(u) is Lipschitz in either
space or in time; in fact the Lipschitz continuity of 0(u) in time will be proved in the very last stage of
Section 5 (see Theorem 5.7). Therefore, we do not have (5-2), and thus extra care is required to show
that the spatial gradients Du± do not change their directions too rapidly.

In the following series of results, we will assume that ū is given by (5-1). The lemmas and theorems
will be proved to in the order they are stated, to improve the regularity of ū in multiple steps.

Lipschitz continuity in space. First we prove that the ε-monotonicity of 0(ū) improves to Lipschitz
continuity. Let a = C0r . Then, in the domain B1(0)×[−1/a, 1/a], ū(x, t) solves{

ūt −1ū = 0 in {ū > 0},

V = a(|Dū+| − |Dū−|) on ∂{ū > 0}.
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Here note that

r7/6
≤ rα ≤ a ≤ rβ ≤ r5/6.

In this scale, since ū is caloric and 0(ū) is r1/3-close to a Lipschitz graph in space and time, it follows
that so is ū in B1/2(0)×[−1/a+ 1, 1/a].

Note that in above step we are losing a lot of information over time; 0(ū) is in fact r1/3-close to a
Lipschitz graph moving very slowly in time, but this does not guarantee that ū also changes slowly in
time.

We then follow the iteration process in Lemma 7.2 of [Athanasopoulos et al. 1996] to show this:

Lemma 5.1. If r is sufficiently small, then there exist 0< c, d < 1/2 such that ū is λr1/3-monotone in the
cone of directions Wx(θx − rd , en) and Wt(θt − rd , ν) in the domain B1−r c(0)×[(−1+ r c)/a, 1/a].

One can then iterate above lemma to improve the ε-monotonicity to full monotonicity, and state the
result in terms of ū:

Lemma 5.2. ū is fully monotone in B1/2(0)×[0, 1/a] for the cone

C1 :=Wx(θx − rd , en)∪Wt(θt − rd , ν)

for some constant 0< d < 1/2.

Regularity in time away from the free boundary. Now we suppose that ū is Lipschitz in space and time.
Then in particular, we have the Lipschitz regularity of u in space (and very weak Lipschitz regularity of u
in time). We are interested in proving the following type of statement:

Lemma 5.3 (enlargement for the cone of monotonicity). There exists λ > 0 such that if ū is Lipschitz
with respect to the cone of monotonicity 3x(en, θ0) in B1(0)× [−1/a, 1/a], then in the half domain
B1/2(0)× [−1/(2a), 1/(2a)], ū is Lipschitz with respect to the cone of monotonicity 3x(ν, (1+ λ)θ0)

with some unit vector ν.

To prove the enlargement of the cone, we take a closer look at the change of ū over time, in the interior
region. More precisely, we need the following lemma, which follows the approach taken in [Choi et al.
2007; 2009].

Lemma 5.4. We have

|ūt | ≤ a|Dū|2 ≤ Ca in [B1/2(en)∪ B1/2(−en)]× [−1/(2a), 1/(2a)],

where C is a dimensional constant.

Proof. Step 1. The proof is similar to that of Lemma 8.3 of [Choi et al. 2009]. Note that ūt is a caloric
function in �+(ū) and �−(ū). Let us prove the lemma for ū+, since parallel arguments apply to ū−.

Step 2. We divide ūt into two parts. More precisely, let

ūt = v1+ v2,
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where both functions v1 and v2 are caloric in �+(ū), v1 has the initial data zero and the boundary data
a|Dū+|(|Dū+| − |Dū−|) on 0(ū), and v2 has the initial data ūt( · ,−1/a) and the boundary data zero
on 0(ū).

Step 3. For v1, we need to use the absolute continuity of the caloric measure with respect to the harmonic
measure, as well as the Lipschitz continuity of the free boundary. We proceed as in Lemma 8.3 of [Choi
et al. 2007]. Note that we have

|Dū+| ∼ |Dū−| ∼ 1

in [B1/2(en)∪ B1/2(−en)] × [−1/a, 1/a]: this follows from the assumption in (4-1), and Lemmas 3.3
and 3.4. Therefore we can proceed as in Lemma 8.3 of [Choi et al. 2007] to obtain

v1(x, t)≤ a
∫
0(ū)∩{−1/a≤s≤t}

|Dū+|2dω(x,t) ≤ a|Dū|2(x, t),

where ω(x,t) is the caloric measure for �(ū), and

v1(x, t)≥ a
∫
0(ū)∩{−1/a≤s≤t}

−|Dū−|2dω(x,t) ≥−a|Dū|2(x, t).

Step 4. As for v2, we conclude that it must be smaller than a caloric function solved in the whole domain
with the absolute value of its initial data. The advantage is that then we can use the heat kernel. Note that
the initial data is given at t =−1/a and has compact support. The initial data is given by vt ≤ (C/a)ven ,
where ven (x, t) is comparable to the derivative of a harmonic function in a Lipschitz domain.

Therefore the heat kernel representation is given as

1
(t + 1/a)n/2+1

∫
|xn − yn| exp−|x−y|2/(t+1/a) v(y,−1/a) dy.

Since t ∈ [0, 1/a] and k exp−ak2
≤ C exp−(a/2)k

2
, we get the effect of O(a). �

Further regularity in space. Now that we have sufficient information on the change of u over time, we
change the scale following the one introduced in (1-4), and consider the function

v(x, t) := 1
C0r

u
(

r x + x0,
r

C0
t + 1

)
. (5-3)

Note that C0 = r−1c(x0, r), and thus v coincides with ũ defined in (1-4) with the choice of c = rC0.
Due to the previous results, this function is Lipschitz continuous, in space and time, away from the

free boundary. The following lemma suggests that the cone of monotonicity improves away from the free
boundary, as we look at smaller scales. The proof is parallel to that of Lemma 8.4 in [Athanasopoulos
et al. 1998].

Lemma 5.5. Let v given by (5-3). Suppose that there exist constants δ > 0 and 0≤ A ≤ B, µ := B− A,
such that

α(Dv,−en)≤ δ and A ≤
vt

−en · Dv
≤ B
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in B1/6(−
3
4 en)× (−δ/µ, δ/µ) with δ/µ < r . Then there exist a unit vector ν ∈ Rn and positive constants

r0, b0 < 1 depending only on A, B and n such that

α(Dv(x, t), ν)≤ b0δ in B1/8(−
3
4 en)×

(
−r0

δ

µ
, r0

δ

µ

)
.

Now we can proceed as in Section 6 of [Choi et al. 2009] to obtain further regularity, using Lemma 5.4
instead of the uniform upper bound on |Du| up to the free boundary.

Theorem 5.6. 0(v) is C1 in space in Q1/2. In particular, there exist dimensional constants l0, C0 > 0
such that for a free boundary point (x0, t0) ∈ 0(v), 0(v)∩ (B2−l (x0)×[t0− 2−l, t0+ 2−l

] is a Lipschitz
graph in space with Lipschitz constant less than C0/ l if l ≥ l0.

Regularity in time up to the free boundary. Lastly, proceeding as in Sections 7–8 of [Choi et al. 2009]
yields the differentiability of 0(v) in time. The main step in the argument is the following proposition:
the statement and its proof is parallel to those of Theorem 7.2 in [Choi et al. 2009] and the blow-up
argument as in Section 8 of [Choi et al. 2009]:

Theorem 5.7. 0(v) is differentiable in space and time. More precisely there exist dimensional constants
l0> 0 and 1<γ < 2 such that for (x0, t0)∈0(v)∩Q1, if l > l0 then 0(v)∩(B2−l (x0)×[t0−2−l, t0+2−l

]

is a Lipschitz graph in space with Lipschitz constant less than l−γ , and Lipschitz graph in time with
Lipschitz constant less than l−1/3.

Corollary 5.8.

C−1
≤ |Dv+|(x, t)≤ C, C−1

≤
|Dv−|(x, t)
v(−en, t)

≤ C

in Q1/2, where C = C(n).

6. General case: solutions with locally Lipschitz initial data

In this section, we present how to extend the result of the main theorem to solutions with locally Lipschitz
initial data. Our setting is as follows. Suppose �0 is a bounded region in BR(0). Suppose u is a solution
of (ST2) with u0 ≥ −1, u0 = −1 in BR(0) and u0 ≤ M0. Further suppose that �0 is locally Lipschitz,
that is, for any x0 ∈ 00, 00 ∩ B1(x0) is Lipschitz with a Lipschitz constant L ≤ Ln .

Let the initial data u0 solve 1u0 = 0 in B1(x0). Then we claim that the parallel statements as in
Theorem 1.1 hold in B2d0(x0)×[t (x0, d0)/2, t (x0, d0)], where d0 is a constant depending on n and M0.
More precisely:

Theorem 6.1. Suppose u is a solution of (ST2) with initial data u0 such that −1 ≤ u0 ≤ M0. Further
suppose that for x0 ∈ 00, 00 ∩ B1(x0) is Lipschitz with a Lipschitz constant L ≤ Ln and 1u0 = 0 in the
positive and negative phases of u0 in B1(x0). Then there exists a constant d0 > 0 depending on n and M0

such that (a) and (b) of Theorem 1.1 hold for u and d ≤ d0.

The proof of the above theorem is parallel to that of Theorem 1.1 in Section 5, after proving the
following lemma.
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Figure 4. Locally Lipschitz initial domain.

Lemma 6.2. There exists a solution v of (ST2) with star-shaped initial data such that the level sets of u
and v are εd0-close to each other in B2d0(x0) up to the time t (x0, d0; u), where d0 > 0 is sufficiently small.
In particular, u and 0(u) are ε-monotone in a cone of Wx and Wt in B2d0(x0)×[t (x0, d0)/2, t (x0, d0)].

Even though our equation is nonlocal, the behavior in a far-away region would not affect much the
behavior of the solution in the unit ball, if the solution behaves “reasonably” outside the unit ball. For
example, in the star-shaped case, we know at least that the free boundary is almost locally Lipschitz at
each time. In the locally Lipschitz case, we control the solution by putting an upper bound M0 on the
initial data u0. We will argue that in a sufficiently small subregion of B1(x0)× [0, 1], the solution is
mostly determined by the local initial data in B1(x0). The perturbation method in the proof of Lemma 2.4
in [Choi et al. 2007] will be adopted here. Write B1(x0)= B1.
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Step 1. Construct a star-shaped region �′ ⊂ BR(0) such that:

(a) �′ ∩ B1 =�0 ∩ B1.

(b) �′ is star-shaped with respect to every x ∈ K ⊂�′ for a sufficiently large ball K .

Let v+0 be the harmonic function in �′− K with boundary data 1 on ∂K , and 0 on ∂�′. Next, let v−0
be the harmonic function in BR(0)−�′ with boundary data 1 on ∂BR(0), and 0 on ∂�′. Let B2 be a
concentric ball in B1 with the radius of εk0 , i.e.,

B2 = Bεk0 (x0)⊂ B1(x0)= B1.

Let k0 be sufficiently large. Then by Lemma 2.7, a normalization of v±0 by a suitable constant multiple
yields that for any x ∈ B2,

1− ε ≤
u0(x)
v0(x)

≤ 1+ ε. (6-1)

Let v solve (ST2) with initial data v0 = v
+

0 − v
−

0 . Then Theorem 1.1 applies for v since v0 is star-shaped
with respect to K .

For the proof of the claim, we will find a sufficiently small d0 such that v is εd0-close to u in B2d0(x0)

up to the time t (x0, d0). More precisely, we will construct a supersolution w1 and a subsolution w2 of
(ST2) such that in some small ball Bh(x0), we have

w2 ≤ u ≤ w1

and the level sets of w1 and w2 are hε close to the level sets of v.

Step 2. Let k1 and k2 be large constants which will be determined later. Define

H± := (00(v)± ε
k0+k1en)∩ B2.

Let
d0 := ε

k0+k1+k2

and let t (d0) := t (x0, d0; v)= t (x0, d0; u). First note that

t (d0)≥ d2−β
0 ≥ ε7(k0+k1+k2)/6.

Hence for v to be almost harmonic in a scale much larger than εk0+k1 , we need
√

t (d0) > ε
k0 , i.e.,

7(k0+ k1+ k2)/12< k0.

Observe that by the construction of H± and d0,√
t (d0)� radius(B2)� dist(H±, 00)� max

x∈0t∩B2,0≤t≤t (d0)
dist(x, 00), (6-2)

where the last inequality follows from Lemma 2.12 if we choose k2 ≥ 2k1. If k2 is sufficiently large, then
one can prove from the last inequality of (6-2) and the bound on vt that

1− ε ≤ |v(x, t)|
|v0(x)|

=
|v(x, t)|
|u0(x)|

≤ 1+ ε on H±×[0, t (d0)]. (6-3)
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Step 3. We do have an estimate, Lemma 2.12, on how far the boundaries move away for the local one-phase
case. If we take the one-phase versions with initial data u+0 and u−0 , and compare with u, then we obtain
that 0(u)∩ B2 stays in the d(2−α)/(2−β)0 -neighborhood of 00(u)∩ B2 up to the time t (d0)= t (x0, d0). In
other words, the free boundary of u moves less than d5/7

0 in B2 up to the time t (d0).
Now we let S be the region between H+ and H−. To construct a subsolution (or supersolution) in

S, we take the fixed boundary data (1− ε)v0(x) on H− (or H+), and (1+ ε)v0(x) on H+ (or H−). To
control the effect from the side ∂B2∩ S, we bend the free boundary 0t(v) by d5/7

0 on each side of ∂B2∩ S,
using the conformal mapping 8̂ (or 8̆). (See Section 4 of for the definitions of 8̂ and 8̆.) More precisely,
we bend the free boundary of v downward (or upward) using the conformal map 8̂ (or 8̆), and solve the
heat equation in there. Then similar arguments as in Lemmas 4.1 and 4.3 of [Choi and Kim 2010] yield
that the solution is still (almost) a supersolution, and it stays close to the original solution.
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C∞ SPECTRAL RIGIDITY OF THE ELLIPSE

HAMID HEZARI AND STEVE ZELDITCH

We prove that ellipses are infinitesimally spectrally rigid among C∞ domains with the symmetries of the
ellipse.

An isospectral deformation of a plane domain �0 is a one-parameter family �ε of plane domains
for which the spectrum of the Euclidean Dirichlet (or Neumann) Laplacian 1ε is constant (including
multiplicities). We say that �ε is a C1 curve of C∞ plane domains if there exists a C1 curve of
diffeomorphisms ϕε of a neighborhood of �0 ⊂R2 with ϕ0 = id and with �ε = ϕε(�0). The infinitesimal
generator X = dϕε/dε is a vector field in a neighborhood of �0 which restricts to a vector field along
∂�0; we denote by Xν = ρ̇ν its outer normal component. With no essential loss of generality we may
assume that ϕε |∂�0 is a map of the form

x ∈ ∂�0→ x + ρε(x)νx , (1)

where ρε ∈ C1([0, ε0],C∞(∂�0)), ε0 > 0 and ρ0 = 0. We put

ρ̇(x)= δρ (x) := d
dε

∣∣∣
ε=0
ρε(x).

An isospectral deformation is said to be trivial if �ε '�0 (up to isometry) for sufficiently small ε. A
domain �0 is said to be spectrally rigid if all isospectral deformations �ε are trivial. The domain �0 is
called infinitesimally spectrally rigid if ρ̇ = 0 (up to rigid motions) for all isospectral deformations.

In this article, we use the Hadamard variational formula of the wave trace (apparently for the first
time) to study spectral rigidity problems (Theorem 2). Our main application is the infinitesimal spectral
rigidity of ellipses among C1 curves of C∞ plane domains with the symmetries of an ellipse. We orient
the domains so that the symmetry axes are the x-y axes. The symmetry assumption is then that each ϕε is
invariant under (x, y)→ (±x,±y).

Theorem 1. Suppose that �0 is an ellipse and that �ε is a C1 Dirichlet (or Neumann) isospectral
deformation of �0 through C∞ domains with Z2×Z2 symmetry. Then Xν = 0 or equivalently ρ̇ = 0.

As discussed in Sections 0.2 and 3.2, Theorem 1 implies that ellipses admit no isospectral deformations
for which the Taylor expansion of ρε at ε = 0 is nontrivial. A function such as e−1/ε2

for which the Taylor
series at ε = 0 vanishes is called flat at ε = 0.

The first author is partially supported by NSF grant DMS-0969745 and the second author is partially supported by NSF grant
DMS-0904252.
MSC2010: 35PXX.
Keywords: inverse spectral problems, spectral rigidity, isospectral deformations, ellipses.
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Corollary 1. Suppose that �0 is an ellipse and that ε→�ε is a C∞ Dirichlet (or Neumann) isospectral
deformation through Z2×Z2 symmetric C∞ domains. Then ρε must be flat at ε = 0. In particular, there
exist no nontrivial real analytic curves ε→�ε of Z2×Z2 symmetric C∞ domains with the spectrum of
an ellipse.

Spectral rigidity of the ellipse has been expected for a long time and is a kind of model problem in
inverse spectral theory. Ellipses are special since their billiard flows and maps are completely integrable.
It was conjectured by G. D. Birkhoff that the ellipse is the only convex smooth plane domain with a
completely integrable billiard. We cannot assume that the deformed domains �ε have this property,
although the results of [Siburg 2000; Zelditch 1998] come close to showing that they do. The results are
somewhat analogous to the spectral rigidity of flat tori or the sphere in the Riemannian setting.

The main novel step in the proof is the Hadamard variational formula for the wave trace (Theorem 2),
which holds for all smooth Euclidean domains �⊂ Rn satisfying standard “cleanliness” assumptions. It
is of independent interest and may have applications to spectral rigidity beyond the setting of ellipses.
We therefore present the proof in detail. (See also [Golse and Lochak 2003], where a variational formula
for the Selberg’s trace formula on compact Riemann surfaces is derived.)

The main advance over prior results is that the domains �ε are allowed to be C∞ rather than real
analytic. Much less than C∞ could be assumed for the domains �ε , but we do not belabor the point. For
real analytic domains a length spectral rigidity result for analytic domains with the symmetries of the
ellipse was proved in [Colin de Verdière 1984]. The method does not apply directly to 1-isospectral
deformations of ellipses since the length spectrum of the ellipse may have multiplicities and the full
length spectrum might not be a 1-isospectral invariant. If it were, then Siburg’s results would imply that
the marked length spectrum is preserved [Siburg 1999; 2000; 2004]. In [Zelditch 2009; 2000] it is shown
that analytic domains with one symmetry are spectrally determined if the length of the minimal bouncing
ball orbit and one iterate is a 1-isospectral invariant. The prior results on 1-isospectral deformations
that we are aware of are contained in the articles [Guillemin and Melrose 1979a; Popov and Topalov
2003; 2012] and concern deformations of boundary conditions. To our knowledge, the only prior results
on 1-isospectral deformations of the domain are contained in [Marvizi and Melrose 1982]. Marvizi
and Melrose [1982] introduce new spectral invariants and prove certain rigidity results, but they do not
apparently settle the case of the ellipse (see also [Amiran 1993; 1996] for further attempts to apply them
to the ellipse). It would be desirable to remove the symmetry assumption (to the extent possible), but
symmetry seems quite necessary for our argument. Further discussion of prior results can be found in the
earlier arXiv posting of this article [Hezari and Zelditch 2010].

0.1. Theorem on variation of the wave trace. We now state a general result on the variation of the wave
trace on a domain with boundary under variations of the boundary.

To state the result, we need some notation. We denote by

EB(t)= cos
(
t
√
−1B

)
and SB(t)=

sin
(
t
√
−1B

)
√
−1B

(2)

the even and odd wave operators of a domain � with boundary conditions B. We recall that EB(t) has a
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distribution trace as a tempered distribution on R. That is, EB(ϕ)=
∫

R
ϕ(t)EB(t) dt is of trace class for

any ϕ ∈ C∞0 (R); we refer to [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] for background.
The Poisson relation of a manifold with boundary gives a precise description of the singularities of

this distribution trace in terms of periodic transversal reflecting rays of the billiard flow, or equivalently
periodic points of the billiard map. For the definitions of “billiard map”, “clean”, “transversal reflecting
rays”, etc., we refer to [Guillemin and Melrose 1979a; 1979b; Petkov and Stoyanov 1992]. A periodic
point of the billiard map β : B∗∂�→ B∗∂� on the unit ball bundle B∗∂�= {(q, ζ ) ∈ T ∗∂�; |ζ |< 1}
of the boundary corresponds to a billiard trajectory, i.e an orbit of the billiard flow 8t on S∗�. We define
the length of the periodic orbit of β to be the length of the corresponding billiard trajectory in S∗�. Note
that the period of a periodic point of β is ambiguous since it could refer to this length or to the power
of β. We also denote by Lsp(�) the length spectrum of �, that is, the set of lengths of closed billiard
trajectories. The perimeter of � is denoted by |∂�|.

In the following deformation theorem, the boundary conditions are fixed during the deformation and
we therefore do not include them in the notation. We also do not include ε in our notation for 1 even
though all Laplacians below are associated with �ε and hence dependent on ε.

Theorem 2. Let �0 ⊂ Rn be a C∞ convex Euclidean domain with the property that the fixed point sets of
the billiard map are clean. Then, for any C1 variation of �0 through C∞ domains �ε , the variation of the
wave traces δ Tr cos(t

√
−1), with Dirichlet (or Neumann) boundary conditions is a classical conormal

distribution for t 6= m|∂�0| (m ∈ Z) with singularities contained in Lsp(�0). For each T ∈ Lsp(�0) for
which the set FT of periodic points of the billiard map β of length T is a d-dimensional clean fixed point
set consisting of transverse reflecting rays, there exist nonzero constants C0 independent of ρ̇ such that,
near T , the leading order singularity is

δ Tr cos(t
√
−1)∼

t
2
<

{( ∑
0⊂FT

C0

∫
0

ρ̇ γ1 dµ0

)
(t − T + i0+)−2−(d/2)

}
,

modulo lower order singularities. The sum is over the connected components 0 of FT . Here δ = d
dε

∣∣∣
ε=0

and γ1(q, ζ )=
√

1− |ζ |2.

The function γ1 on B∗∂� is defined in (27) and appeared earlier in [Hassell and Zelditch 2004]. The
densities dµ0 on the fixed point sets of β and its powers are very similar to the canonical densities defined
in Lemma 4.2 of [Duistermaat and Guillemin 1975], and further discussed in [Guillemin and Melrose
1979a; Popov and Topalov 2003; 2012]. The constants C0 are explicit and depend on the boundary
conditions. We suppress the exact formulae since we do not need them, but their definition is reviewed in
the course of the proof.

To clarify the dimensional issues, we note that there are four closely related definitions of the set of
closed billiard trajectories (or closed orbits of the billiard map). The first is the fixed point set of the
billiard flow 8T at time T in T ∗�. The second is the set of unit vectors in the fixed point set. The third
is the fixed point set of the billiard flow restricted to T ∗∂��, the set of covectors with foot points at the
boundary. The fourth is the set of periodic points of the billiard map β on B∗∂� of length T , where as
above the length is defined by the length of the corresponding billiard trajectory. The dimension d refers
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to the dimension of the latter which we show by FT . In the case of the ellipse, for instance, d = 1; the
periodic points of a given length form invariant curves for β.

To prove Theorem 2, we use the Hadamard variational formula for the Green’s kernel to give an exact
formula for the wave trace variation (Lemma 1). We then prove that it is a classical conormal distribution
and calculate its principal symbol.

It is verified in [Guillemin and Melrose 1979a] that the ellipse satisfies the cleanliness assumptions.

Corollary 2. For any C1 variation of an ellipse through C∞ domains �ε , the leading order singularity
of the wave trace variation is

δ Tr cos(t
√
−1)∼

t
2
<

{( ∑
0⊂FT

C0

∫
0

ρ̇ γ1 dµ0

)
(t − T + i0+)−5/2

}
,

modulo lower-order singularities, where the sum is over the connected components 0 of the set FT of
periodic points of β (and its powers) of length T .

0.2. Flatness issues. We now discuss an apparently new flatness issue in isospectral deformations. The
rather technical assumption that �ε is a C1 family of C∞ domains rather than a C∞ family in the ε
variable is made to deal with a somewhat neglected and obscure point about isospectral deformations.
Isospectral deformations are curves in the “manifold” of domains. The curve might be a nontrivial C∞

family in ε but the first derivative ρ̇ might vanish at ε = 0. Thus, infinitesimal spectral rigidity is at least
apparently weaker than spectral rigidity. We impose the C1 regularity to allow us to reparametrize the
family and show that the first derivative of any C1 reparametrization must be zero. This is not the primary
focus of Theorem 1, but with no additional effort the proof extends to the C1 case.

This flatness issue does not seem to have arisen before in inverse spectral theory, even when the main
conclusions are derived from infinitesimal rigidity. The main reason is that first-order perturbation theory
very often requires analytic perturbations (i.e., analyticity in the deformation parameter ε), and so most
(if not all) prior results on isospectral deformations assume that the deformation is real analytic. But our
proof is based on Hadamard’s variational formula, which is valid for C1 perturbations of domains and
so we can study this more general situation. Further, the prior spectral rigidity results [Guillemin and
Kazhdan 1980] are proved for an open set of domains and metrics and therefore flatness at all points
implies triviality of the deformations. We are only deforming the one-parameter family of ellipses and
therefore cannot eliminate flat isospectral deformations by that kind of argument. We also note that there
could exist continuous but nondifferentiable isospectral deformations.

0.3. Pitfalls and complications. The route taken in the proof of Theorem 1, and the flatness issues just
discussed, reflect certain technical issues that arise in the inverse problem.

First is the issue of multiplicities in the eigenvalue spectrum or in the length spectrum. The multiplicities
of the 1-eigenvalues of the ellipse (for either Dirichlet or Neumann boundary conditions) appear to be
almost completely unknown. If a sufficiently large portion of the eigenvalue spectrum were simple (i.e., of
multiplicity one), one could simplify the proof of Theorem 1 by working directly with the eigenfunctions
and their semiclassical limits (as in the first arXiv posting of this article, [Hezari and Zelditch 2010]).
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The dual multiplicity of the length spectrum is also largely unknown for the ellipse. Without length
spectral simplicity one cannot work with the wave trace invariants. Our proof relies on the observation in
[Guillemin and Melrose 1979a] that the multiplicities have to be one (modulo the symmetry) for periodic
orbits that creep close enough to the boundary.

Second is the issue of cleanliness. Theorem 2 and Corollary 2 would apply to any of the deformed
domains �ε if the fixed points sets were known to be clean. One could then use the conclusion of
Corollary 2 to rule out flat isospectral deformations. However, we do not know that the fixed point sets are
clean for the deformed domains even though we do know that they have the same wave trace singularities
as the ellipse. Equality of the wave traces for isospectral deformations of ellipses shows that the periodic
points of β of �ε can never be nondegenerate. Hence the deformations are very nongeneric. It is plausible
that equality of wave traces forces the sets of periodic points to be clean invariant curves of dimension
one. But we do not know how to prove this kind of inverse result at this time.

1. Hadamard variational formula for wave traces

In this section we consider the Dirichlet and Neumann eigenvalue problems for a C1 one-parameter family
of smooth Euclidean domains �ε ⊂ Rn ,{

−1Bε9 j (ε)= λ
2
j (ε)9 j (ε) in �ε,

Bε9 j (ε)= 0,
(3)

where the boundary condition Bε could be Bε9 j (ε)=9 j (ε)|∂�ε (Dirichlet) or ∂νε9 j (ε)|∂�ε (Neumann).
Here, λ2

j (ε) are the eigenvalues of −1Bε , enumerated in order and with multiplicity, and ∂νε is the interior
unit normal to �ε . We do not assume that λ2

j (ε) and 9 j (ε) are C1 in ε.
We will use Hadamard’s variational formula for the variation of Green’s kernels, and adapt the formula

to give the variation of the (regularized) trace of the wave kernel. Our references are [Garabedian 1964;
Peetre 1980; Fujiwara et al. 1978; Ozawa 1982; Fujiwara and Ozawa 1978].

To state our main variational Lemma 1 we introduce some notation. We denote by dq the surface
measure on the boundary ∂� of a domain �, and by ru = u|∂� the trace operator. We use Sb

B(t, q ′, q) ∈
D′(R×∂�×∂�) for the following boundary traces of the Schwartz kernel SB(t, x, y)∈D′(R×Rn

×Rn)

of SB(t) defined in (2):

Sb
B(t, q ′, q)=

{
rq ′rq∂νq′

∂νq SD(t, q ′, q) (Dirichlet),

∇
T
q ′∇

T
q rq ′rq SN (t, q ′, q)+ rq ′rq 1q ′ SN (t, q ′, q) (Neumann).

(4)

Here, the subscripts q ′, q refer to the variable involved in the differentiating or restricting. According
to convenience, we may also indicate this by subscripting with indices 1, 2, referring to the first and
second variables in the kernel. For instance,

∂

∂νq′
K (q ′, q)= ∂

∂ν1

K (q ′, q).

We may also use the notations ∂ν and ∂/∂ν interchangeably to refer to the inward normal derivative. Here,
∇

T corresponds to tangential differentiation which is the gradient associated to the hypersurface ∂�.
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Lemma 1. The variation of the wave trace with boundary conditions B is given by

δ Tr EB(t)=
t
2

∫
∂�0

Sb
B0
(t, q, q)ρ̇(q) dq.

We summarize by writing
δ Tr EB(t)=

t
2

Tr∂�0 ρ̇ Sb
B .

Here, δ = d
dε
|ε=0 and the equality is understood in the sense of distributions; meaning if ϕ ∈C∞0 (R) then

δ Tr
(∫

ϕ(t)EB(t) dt
)
=

∫
∂�0

(∫
t
2
ϕ(t)Sb

B0
(t, q, q) dt

)
ρ̇(q) dq.

We note that the right hand side is well defined because the kernel of the operator
∫
ϕ(t)SB0(t) dt is

smooth up to the boundary.
We prove the lemma by relating the variation of the wave trace to the known variational formula for

the Green’s function (resolvent kernel). We now review the latter.

1.1. Hadamard variational formula for Green’s function. Here by the Green’s function G Bε (λ, x, y) of
�ε , with the boundary condition Bε , we mean the integral kernel of the resolvent RB(λ)= (−1Bε−λ

2)−1

where =λ> 0. We also define RB(λ) for λ ∈R by RB(λ+ i0+) (that the limit exists follows, for example,
from Theorem 3.1.11 of [Hörmander 1983]). The variational formula below is valid for both of these
resolvents (also for =λ < 0). Since the domains of G Bε (λ, x, y) depend on ε we first have to make our
definition of δ precise.

Definition. Let uε ∈ C1([0, ε0],D′(�ε)) with ε0 > 0, be a C1 family of distributions in �ε . We use δuε
or u̇ to represent the first variation of uε at ε = 0 as a distribution in �0:

δuε =
d
dε

∣∣∣
ε=0

uε .

We note that if α ∈ C∞0 (�0) then for ε small supp(α)⊂�ε , and therefore we can define δuε by

(δuε)(α)=
d
dε

∣∣∣
ε=0
(uε(α)).

However, the problem with this definition is that it defines u̇ only in the interior of �0 and not at the
boundary even if uε is defined there. Below we will see another definition of u̇, using diffeomorphisms,
which resolves this issue.

In the statement of the formulas we will not include ε in our notation. In the Dirichlet case, the classical
Hadamard variational formula states that, under a C1 deformation �ε ,

δG D(λ, x, y)=
∫
∂�0

∂

∂ν2
G D(λ, x, q) ∂

∂ν1
G D(λ, q, y)ρ̇(q) dq. (5)

In the Neumann case,

δG N (λ, x, y)

=

∫
∂�0

∇
T
2 G N (λ, x, q) · ∇T

1 G N (λ, q, y)ρ̇(q) dq − λ2
∫
∂�0

G N (λ, x, q)G N (λ, q, y)ρ̇(q) dq. (6)
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We briefly review the proof of the Hadamard variational formula to clarify the definition of δG B(λ, x, y)
and of the other kernels. We give the proof for the variation of the resolvent RB(λ) with =λ > 0. From
this we can obtain the analogous formula for δRB(λ+ i0+) by taking =λ→ 0+. Following [Peetre 1980],
we write the inhomogeneous problem{

(−1− λ2)u = f in �(λ ∈ C, =λ > 0),
u = 0 (resp. ∂νu = 0) on ∂�,

in terms of the energy integral

E(u, v)=
∫
�

∇u · ∇v dx − λ2
∫
�

uv dx =
∫
�

v(−1− λ2)u dx −
∫
∂�

v∂νu dq,

where ∂ν is the inward unit normal. The inhomogeneous problem is to solve

E(u, v)=
∫
�

f v dx,

where v is a smooth test function which vanishes to order 1 (resp. 0) on ∂� for the Dirichlet (resp.
Neumann) problem. We denote the energy density by e(u, v)=∇u · ∇v− λ2uv.

We now vary the problems over a one-parameter family of domains. We use one-parameter families
of smooth diffeomorphisms ϕε of a neighborhood of �0 ⊂ Rn to define the one-parameter families
�ε = ϕε(�0) of domains. We assume ϕε to be a C1 curve of diffeomorphisms with ϕ0 = id.

The variational derivative of the solution is defined as follows: Let uε be a C1 curve of functions in
H s(�ε). Then ϕ∗ε uε ∈ H s(�0) and d(ϕ∗ε uε)/dε is a continuous curve in H s(�0). Put

X =
d
dε

∣∣
ε=0ϕε and θX u = d

dε

∣∣∣
ε=0
ϕ∗ε uε .

Assume that u0 ∈ H s+1(�0). Then u̇, defined by

u̇ = θX u− Xu0,

exists in H s(�0). This gives a new definition of u̇ which has a well-defined restriction to ∂�0 (for s ≥ 1),
and it agrees with u̇ defined above in the interior of �0. Further, let v be a test function on �0 and use
ϕ−1∗
ε v as a test function on �ε . Now rewrite the boundary problems as∫

�ε

e(uε, (ϕ−1
ε )∗v) dx =

∫
�ε

fε((ϕ−1
ε )∗v) dx .

Changing variables, one pulls back the equation to �0 as∫
�0

eε(ϕ∗ε uε, v)ϕ∗ε dx =
∫
�0

(ϕ∗ε fε)vϕ∗ε dx,

where

eε(w, v) := ϕ∗ε (e(ϕ
−1∗
ε w, ϕ−1∗

ε v)).
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Then, by the computations of [Peetre 1980, (8) and (10)] we have∫
�0

u̇(−1− λ2)v dx

=

∫
�0

ḟ v dx +
∫
∂�0

f vρ̇ dq +
∫
∂�0

(∇u0 · ∇v− λ
2u0v)ρ̇ dq +

{
λ2
∫
∂�0

u0vρ̇dq (Dirichlet),
0 (Neumann).

(7)

To obtain (5)–(6), at least formally, one puts

uε(x)= G Bε (λ, z, x), v(x)= G B0(λ, y, x), fε(x)= δz(x)

where z ∈ �̊. Thus u̇(x)= δG B(λ, z, x) and ḟ = 0. Since z ∈ �̊ we have z ∈�ε for sufficiently small
ε and one easily verifies that (7) implies (5)–(6). The Green’s kernel depends on ε as smoothly as the
coefficients of operator 1̃ε on �0 defined by the pulled back energy form.

1.2. Proof of Lemma 1. Rather than the Green’s function, we are interested in the Hadamard variational
formula for the wave kernels EB(t), SB(t) in (2), or more precisely, for their distribution traces. We will
give two proofs for the lemma.

First proof. By the definition of the distribution trace, we only need the variational formula for traces
of variations δ

∫
R

eiλt ψ̂(t)EB(t) dt of integrals of these kernels against test functions ψ̂(t)eiλt
∈ C∞0 (R),

which are simpler because the Schwartz kernels are smooth.
We derive the Hadamard variational formula for wave traces from that of the Green’s function by using

the identities

−iλRB(λ)=

∫
∞

0
eiλt EB(t) dt, d

dt
SB(t)= EB(t). (8)

Using integration by parts (and =λ > 0), we get

RB(λ)=

∫
∞

0
eiλt SB(t) dt. (9)

We will assume that ψ̂ is supported in R+ since in the wave trace we localize its support to the length of
a closed geodesic. Hence by (8),∫

R

ψ̂(t)eiλt EB(t) dt =
∫

R

ψ(µ)

∫
∞

0
ei(λ−µ)t EB(t) dt dµ

=−i
∫

R

ψ(µ)(λ−µ)RB(λ−µ) dµ. (10)

This implies that

δ

∫
R

ψ̂(t)eiλt EB(t) dt =−i
∫

R

ψ(µ)(λ−µ)δRB(λ−µ) dµ.

That we can pass δ under the integral sign can be justified using the dominated convergence theorem and
we leave the proof to the reader. In the Dirichlet case, it follows from (10), (5), (8) and (9) that
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δ

∫
R

ψ̂(t)eiλt ED(t, x, y) dt

=−i
∫

R

(λ−µ)ψ(µ)

∫
∂�0

∂ν2 G D(λ−µ, x, q)∂ν1 G D(λ−µ, q, y)ρ̇(q) dq dµ

=

∫
R

∫
∞

0
ei(λ−µ)tψ(µ)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 G D(λ−µ, q, y)ρ̇(q) dq dµ dt

=

∫
R

∫
∞

0

∫
∞

0
ei(λ−µ)(t+t ′)ψ(µ)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 SD(t ′, q, y)ρ̇(q) dq dµ dt dt ′

=

∫
∞

0

∫
∞

0
eiλ(t+t ′)ψ̂(t + t ′)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 SD(t ′, q, y)ρ̇(q) dq dt dt ′

=

∫
∞

0

∫
∂�0

eiλτ ψ̂(τ )

(∫ τ

0
∂ν2 ED(τ − t ′, x, q)∂ν1 SD(t ′, q, y)dt ′

)
ρ̇(q) dq dτ.

The inner integral is the same if we change the argument of ED to t ′ and that of SD to τ − t ′. We then
average the two, set x = y, integrate over �0 and use the angle addition formula for sin to obtain

δ Tr
∫

R

ψ̂(t)eiλt ED(t) dt = 1
2

∫
∂�0

∫
R

tψ̂(t)eiλt∂ν1∂ν2 SD(t, q, q)ρ̇(q) dt dq. (11)

The proof in the Neumann case is similar and left to the reader. We notice that in the above argument we
have commuted the operations δ and Tr:

δ Tr
∫

R

ψ̂(t)eiλt ED(t) dt = Tr δ
∫

R

ψ̂(t)eiλt ED(t) dt. (12)

To show this we first put Kε(x, y)=
∫

R
ψ̂(t)eiλt ED(t, x, y) dt . We then note that Kε(x, y) is a C1 curve

in C∞(�ε ×�ε), in the sense that (d/dε)ϕ∗ε Kε(x, y) is a continuous curve in C∞(�0×�0). Therefore
both traces in (12) are the integrals of their corresponding kernels on the diagonal and hence (12) is
equivalent to

d
dε

∣∣∣
ε=0

∫
�ε

Kε(x, x) dx =
∫
�0

d
dε

∣∣∣
ε=0

Kε(x, x) dx .

However we have to be careful since the domain of integration on the left hand side depends on ε and under
the variation it contributes an integral along the boundary. More precisely, since (d/dε)ϕ∗ε (Kε(x, x)) is a
continuous curve in C∞(�0) and hence uniformly bounded, by the dominated convergence theorem

d
dε

∣∣∣
ε=0

∫
�ε

Kε(x, x) dx = d
dε

∣∣∣
ε=0

∫
�0

ϕ∗ε (Kε(x, x))ϕ∗ε (dx)

=

∫
�0

d
dε

∣∣∣
ε=0

Kε(x, x)dx +
∫
∂�0

K0(q, q)ρ̇(q) dq.

But the second integral is zero in the Dirichlet case because K0(q, q)= 0 for all q ∈ ∂�0. (Note: this
term does not vanish in the Neumann case but it cancels out with a term which appears in the analogous
computations). This concludes the first proof of Lemma 1. �
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Second proof. This derivation is based on the Hadamard variational formulas for eigenvalues. When λ2
j (0)

is a simple eigenvalue (i.e., of multiplicity one), Hadamard’s variational formula for Dirichlet eigenvalues
of Euclidean domains states that if ε→�ε is C1 then

δ(λ2
j (ε))=−

∫
∂�0

(∂ν9 j (q))2ρ̇(q) dq,

where 9 j is an L2 normalized eigenfunction for the eigenvalue λ2
j (0). See [Garabedian 1964]. However

if the eigenvalue λ2
j (0) is multiple with multiplicity m(λ j (0)) and if {λ2

j,k(ε)}
m(λ j (0))
k=1 is the perturbed set

of eigenvalues, then we cannot assume that λ2
j,k(ε) are C1 in ε (although this is known to be true for

symmetric operators on finite-dimensional spaces. See, for example, Theorem II.6.8 of [Kato 1980]). But
as we shall see, the sum

∑m(λ j (0))
k=1 λ2

j,k(ε) is C1 in ε and there exists a Hadamard’s variational formula
for it which can be derived from the one for Green’s function. In fact we prove a slightly more general
statement. For the sake of convenience we let R̃Bε (z) = (−1Bε − z)−1 where z /∈Spec(−1Bε ) and we
use G̃ Bε (z, x, y) for its integral kernel. Now let g(z) be a holomorphic function on the right half-plane
<(z) > 0. We will show that

δ

m(λ j (0))∑
k=1

g(λ2
j,k(ε))=−g′(λ2

j (0))
m(λ j (0))∑

k=1

∫
∂�0

(∂ν9 j,k(q))2ρ̇(q) dq, (13)

where {9 j,k}
m(λ j (0))
k=1 is an orthonormal basis for the eigenspace of the multiple eigenvalue λ2

j (0). Lemma 1
follows easily from (13) by putting g(z)= cos(t

√
z):

δ Tr EB(t)= δ
∑

cos(tλ j,k)=−t
∑

j

sin(tλ j (0))
2λ j (0)

( m(λ j (0))∑
k=1

∫
∂�0

(∂ν9 j,k)
2ρ̇(q) dq

)
=

t
2

∫
∂�0

∂ν1∂ν2 SB(t, q, q)ρ̇(q) dq.

We have pushed the operation δ under the sum. This can be done because for a test function ϕ(t) the sums∑∫
cos(tλ j,k(ε))ϕ(t) dt and

∑∫
d
dε

cos(tλ j,k(ε))ϕ(t)dt

are (by Weyl’s law) uniformly convergent in ε.
It remains to prove (13). Let γ be a circle in C centered at λ2

j (0) such that no other eigenvalues of
−1B0 are in the interior of γ or on γ . We define

Tg,ε =−
1

2π i

∫
γ

g(z)R̃Bε (z) dz.

By the Cauchy integral formula, it is clear that at ε = 0 we have Tg,0 = g(Pλ2
j (0)
) where Pλ2

j (0)
is the

orthogonal projector on the eigenspace of λ2
j (0). Since the eigenvalues λ2

j,k(ε) vary continuously in ε, for
ε small these are the only eigenvalues of −1Bε in γ . Therefore Tg,ε is the total projector (the direct sum
of projectors) associated with {λ2

j,k(ε)}
m
k=1. The operator Tg,ε is C1 in ε. See, for example, Theorem II.5.4
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of [Kato 1980]. Although this theorem is stated for operators on finite dimensional spaces but the same
proof works for our case. It is basically because the resolvent (and so the Green’s function) is C1 in ε.
We now write

δ

m(λ j (0))∑
k=1

g(λ2
j,k(ε))= δ Tr(Tg,ε)=−Tr 1

2π i

∫
γ

g(z)δ R̃Dε
(z) dz

=−

∫
�0

∫
∂�0

∫
γ

1
2π i

g(z) ∂
∂ν2

G D(z, x, q) ∂
∂ν1

G D(z, q, x)ρ̇(q) dz dq dx

=−

∫
�0

∫
∂�0

∫
γ

1
2π i

g(z)
(λ2

j (0)−z)2

m∑
k=1

(∂ν9 j,k(q))2(9 j,k(x))2ρ̇(q) dz dq dx

=−g′(λ2
j (0))

m(λ j (0))∑
k=1

∫
∂�0

(∂ν9 j,k |∂�0)
2ρ̇(q) dq.

We leave it to the reader to show that, on the first line one can commute δ with Tr by means of the
dominated convergence theorem.

There exist similar Hadamard variational formulas in the Neumann case. When the eigenvalue is
simple, we have

δ(λ2
j )=

∫
∂�0

(
|∇

T
q (9 j (q))|2− λ2

j (0)(9 j (q))2
)
ρ̇(q) dq, (14)

For a multiple eigenvalue we sum over the expressions over an orthonormal basis of the eigenspace. The
result does not depend on a choice of orthonormal basis. Similar computation using (14) follows to show
Lemma 1 for the Neumann case. �

2. Proof of Theorem 2

We now study the singularity expansion of δ Tr cos(t
√
−1B) and prove Theorem 2. At first sight, one

could do this in two ways: by taking the variation of the spectral side of the formula, or by taking the
variation of the singularity expansion. It seems simpler and clearer to do the former since we do not
know how the invariant tori of the integrable elliptical billiard deform under an isospectral deformation.
For example, one difficulty in taking the variation of the singularity expansion is that we do not know
whether the fixed point set of an isospectral deformation �ε of domain �0 (satisfying the conditions of
Theorem 2) is necessarily clean. Hence, even though we know that the wave trace of �ε has the same
type of singularity as the one for �0, but we cannot apply the method of stationary phase and compute
the principal term in the singularity expansion of the wave trace of �ε .

In this section we will drop the subscript 0 in �0 and we assume � is a smooth convex domain.
The variational formula for δ Tr cos(t

√
−1B) is given in Lemma 1. In the Dirichlet case, by (4),

Tr∂� ρ̇ Sb
D = π∗ 1

∗ρ̇ (r1r2 Nν1 Nν2 SD(t, x, y)), (15)
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where Nν is any smooth vector field in � extending ν, and where the subscripts indicate the variables on
which the operator acts. In the Neumann case by (4),

Tr∂� ρ̇ Sb
N = π∗ 1

∗ρ̇
(
(∇T

1 ∇
T
2 r1r2+ r1r2 1x)SN (t, x, y)

)
. (16)

Here, 1 : ∂�→ ∂�× ∂� is the diagonal embedding q→ (q, q) and π∗ (the pushforward of the natural
projection π : ∂�×R→ R) is the integration over the fibers with respect to the surface measure dq.
The duplication in notation between the Laplacian and the diagonal is regrettable, but both are standard
and should not cause confusion. Since SB(t, x, y) is microlocally a Fourier integral operator near the
transversal periodic reflecting rays of FT , it will follow from (15) that the trace is locally a Fourier integral
distribution near t = T .

We are assuming that the set of periodic points of the billiard map corresponding to space-time billiard
trajectories of length T ∈ Lsp(�) is a submanifold FT of B∗∂�. We thus fix T ∈ Lsp(�) consisting
only of periodic reflecting rays, that is, we assume T 6= m|∂�| (|∂�| being the perimeter) for m ∈ Z.
In order to study the singularity of the boundary trace near a component FT of the fixed point set, we
construct a pseudo-differential cutoff χT = χT (t, Dt , q, Dq) ∈ 9

0(R× ∂�) whose complete symbol
χT (t, τ, q, ζ ) has the form χT (q, ζ/τ) with χT (y, ζ ) supported in a small neighborhood of the fixed
point set FT ⊂ B∗∂�, equals one in a smaller neighborhood, and in particular vanishes in a neighborhood
of the glancing directions in S∗∂� = ∂(B∗∂�). Since the symbol of χT is independent of t we will
instead use χT (Dt , q, Dq). We may assume that the support of the cutoff is invariant under the billiard
map β. Therefore we need to study the operator

π∗1
∗ ρ̇ χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

B, (17)

and compute its symbol. To do this we first study the operators r and SB(t) and review their basic
properties. Next we study the composition

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B,

and compute its symbol. Finally in Lemma 7 we take composition with π∗1∗ ρ̇ and calculate the symbol
of (17).

2.1. FIOs and their symbol. We recall that the principal symbol σI of a Fourier integral distribution

I =
∫

RN
eiϕ(x,θ)a(x, θ) dθ, I ∈ I m(M,3ϕ),

of order m is defined in terms of the parametrization

ιϕ : Cϕ = {(x, θ) : dθϕ = 0} → (x, dxϕ) ∈3ϕ ⊂ T ∗M

of the associated Lagrangian 3ϕ . It is a half-density on 3ϕ given by σI = (ιϕ)∗(a0|dCϕ |
1/2), where a0 is

the leading term of the classical symbol a ∈ Sm+n
4−

N
2 (M ×RN ), n = dim M and

dCϕ :=
dc

|D(c, ϕ′θ )/D(x, θ)|
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is the Gelfand–Leray form on Cϕ , where c is a system of coordinates on Cϕ . For notation and background
we refer to [Hörmander 1985b, Chapter XXV]. When I (x, y) ∈ I m(X ×Y,3) is the kernel of an FIO it
is very standard to use the symplectic form ωX −ωY on X × Y and define

ιϕ : Cϕ = {(x, y, θ) : dθϕ = 0} → (x, dxϕ, y,−dyϕ) ∈3ϕ ⊂ T ∗X × T ∗Y.

We will call 3ϕ the canonical relation of I (x, y).

2.2. The restriction operator r as an FIO. The restriction r to the boundary lies in I 1/4(∂�×Rn, 0∂�),
with the canonical relation

0∂� =
{
(q, ζ, q, ξ) ∈ T ∗∂�× T ∗∂�Rn

; ξ |Tq∂� = ζ
}
. (18)

The adjoint then satisfies r∗ ∈ I 1/4(Rn
× ∂�,0∗∂�), where

0∗∂� =
{
(q, ξ, q, ζ ) ∈ T ∗∂�Rn

× T ∗∂�; ξ |Tq∂� = ζ
}
.

Here, T ∗∂�Rn is the set of covectors to Rn with footpoint on ∂�. We parametrize 0∂� (18) by T ∗+∂� (�),
the inward pointing covectors, using the Lagrange immersion

ι0∂�(q, ξ)= (q, ξ |Tq (∂�), q, ξ). (19)

To prove these statements, we introduce Fermi normal coordinates (q, xn) along ∂�, that is, x=expq(xnνq)

where νq is the interior unit normal at q . Let ξ= (ζ, ξn)∈T ∗(q,xn)
Rn denote the corresponding symplectically

dual fiber coordinates. In these coordinates, the kernel of r is given by

r(q, (q ′, x ′n))= Cn

∫
Rn

ei〈q−q ′,ζ 〉−i x ′nξn dξndζ. (20)

The phase ϕ(q, (q ′, x ′n), (ζ, ξn)) = 〈q − q ′, ζ 〉 − x ′nξn is nondegenerate and its critical set is Cϕ =
{(q, q ′, x ′n, ξn, ζ ); q ′ = q, x ′n = 0}. The Lagrange map ιϕ : (q, q, 0, ξn, ζ )→ (q, ζ, q, ζ, ξn) embeds
Cϕ → T ∗∂�× T ∗Rn and maps onto 0∂�. The adjoint kernel has the form K ∗(x, q) = K (q, x) and
therefore has a similar oscillatory integral representation. It is clear from ((20)) that the order of r as an
FIO is 1

4 . Also, in the parametrization (19), the principal symbol of r is σr = |dq ∧ dζ ∧ dξn|
1/2.

2.3. Background on parametrices for SB(t). We first review the Fourier integral description of EB(t),
SB(t) microlocally near transversal reflecting rays. This is partly for the sake of completeness, but mainly
because we need to compute their principal symbols (and related ones) along the boundary. Although
the principal symbols are calculated in the interior in [Guillemin and Melrose 1979b, Proposition 5.1;
Marvizi and Melrose 1982, Section 6; Petkov and Stoyanov 1992, Section 6], the results do not seem
to be stated along the boundary (i.e., the symbols are not calculated at the boundary). The statements
we need are contained in Theorem 3.1 of [Chazarain 1976] (and its proof), and we largely follow its
presentation.

We need to calculate the canonical relation and principal symbol of the wave group, its derivatives and
their restrictions to the boundary. We begin by recalling that the propagation of singularities theorem for
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the mixed Cauchy–Dirichlet (or Neumann) problem for the wave equation states that the wave front set
of the wave kernel satisfies

WF(SB(t, x, y))⊂
⋃
±

3±,

where 3± = {(t, τ, x, ξ, y, η) : (x, ξ) = 8t(y, η), τ = ±|η|y} ⊂ T ∗(R×�×�) is the graph of the
generalized (broken) geodesic flow, that is, the billiard flow 8t . For background we refer to [Guillemin
and Melrose 1979b; Petkov and Stoyanov 1992; Chazarain 1973; 1976; Hörmander 1985a, Theorem
23.1.4; 1985b, Proposition 29.3.2]. For the application to spectral rigidity, we only need a microlocal
description of wave kernels away from the glancing set, that is, in the hyperbolic set microlocally near
periodic transversal reflecting rays. In these regions, there exists a microlocal parametrix due to Chazarain
[1976], which is more fully analyzed in [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] and
applied to the ellipse in [Guillemin and Melrose 1979a].

The microlocal parametrices for EB and SB are constructed in the ambient space R×Rn
×Rn . Since

EB=d SB/dt it suffices to consider the latter. Then there exists a Fourier integral (Lagrangian) distribution,

S̃B(t, x, y)=
∞∑

j=−∞

S j (t, x, y), with S j ∈ I−
1
4−1(R×Rn

×Rn, 0
j
±),

which microlocally approximates SB(t, x, y) modulo a smooth kernel near a transversal reflecting ray.
The sum is locally finite hence well-defined. The canonical relation of S̃B is contained in a union

0 =
⋃
±, j∈Z

0
j
± ⊂ T ∗(R×Rn

×Rn)

of canonical relations 0 j
± corresponding to the graph of the broken geodesic flow with j reflections.

Notice we let j ∈ Z which is different from [Chazarain 1976] where j goes from 0 to∞ and where the
two graphs 0 j

± and 0− j
± are combined.

We know discuss these graphs more precisely. We first recall some useful notation from [Chazarain
1976] with a slight adjustment. We have two Hamiltonian flows g±t corresponding to the Hamiltonians
±|η|. For (y, η) in T ∗� or (y, η) in T ∗∂�Rn where η is transversal to ∂� and is pointing inward, we define

t1
±
(y, η)= inf

{
t > 0 : πg±t(y, η) ∈ ∂�

}
,

t−1
±
(y, η)= sup

{
t < 0 : πg±t(y, η) ∈ ∂�

}
.

In this notation we have t−1
± =−t1

∓
. We define t j

± inductively for j > 0 (resp. j < 0) to be the time of
j-th reflection for the flow g±t as t increases (resp. decreases). Then we put

λ1
±
(y, η)= g±t1

±(y,η)(y, η) ∈ T ∗∂�Rn,

λ−1
±
(y, η)= g±t−1

± (y,η)(y, η) ∈ T ∗∂�Rn.

Next we define ̂λ1
±(y, η) to be the reflection of λ1

±
(y, η) at the boundary. That is, it has the same

foot point y and the same tangential projection as λ1
±
(y, η) but opposite normal component. Similarly
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we define ̂
λ−1
± (y, η). Flowing ̂λ1

±(y, η) (resp. ̂
λ−1
± (y, η)) by g±t as t increases (resp. decreases) and

continuing the same procedure we get t j
±(y, η) and λ j

±(y, η) for all j ∈ Z. We also set T j
± =

∑ j
k=1 tk

±
for

j > 0 and T j
± =

∑ j
k=−1 tk

±
for j < 0.

The canonical graph 0 j
± can now be written as

0
j
± =

{{
(t, τ, g±t(y, η), y, η) : τ =±|η|y

}
j = 0,{

(t, τ, g±(t−T j
±(y,η)) ̂

λ
j
±(y, η), y, η) : τ =±|η|y

}
j ∈ Z, j 6= 0.

(21)

For each j ∈ Z,
⋃
±
0

j
± is the union of two canonical graphs, which we refer to as its branches or

components (see Figure 3.2 of [Guillemin and Melrose 1979b] for an illustration). These two branches
arise because

SB(t)=
1

2i
√
−1B

(
ei t
√
−1B − e−i t

√
−1B

)
is the sum of two terms whose canonical relations are respectively the graphs of the forward/backward
broken geodesic flow and which correspond to the two halves τ > 0, τ < 0 of the characteristic variety
τ 2
− |η|2 = 0 of the wave operator.

2.3.1. Symbol of SB(t, x, y) in the interior. In the boundaryless case of [Duistermaat and Guillemin
1975], the half-density symbol of ei t

√
−1g is a constant multiple (Maslov factor) of the canonical graph

volume half-density σcan = |dt ∧ dy ∧ dη|1/2 on 0+ in the graph parametrization (t, y, η)→ 0+ =

(t, |η|g, gt(y, η), y, η). In the boundary case for EB(t) the symbol in the interior is computed in Corollary
4.3 of [Guillemin and Melrose 1979b] as a scalar multiple of the graph half-density. It is a constant
multiple of the graph half-density

σcan,± = |dt ∧ dy ∧ dη|1/2 (22)

in the obvious graph parametrization of 0 j
± in (21); the constant equals 1

2 in the Neumann case and
1
2(−1) j in the Dirichlet case. However in [Guillemin and Melrose 1979b] the symbols are not calculated
at the boundary.

Remark. We will have four modes of propagation at the boundary: in addition to the two ± branches
corresponding to τ > 0 and τ < 0, at the boundary, the boundary condition requires two modes of
propagation corresponding to the two “sides” of ∂�. To illustrate this we first discuss a simple model of
the upper half space.

2.3.2. Upper half space; a local model for one reflection. Let Rn
+
= {(x ′, xn) ∈ Rn−1

×R : xn ≥ 0} be
the upper half space. Denote by S0(t, x, y) the kernel of sin(t

√
−1)/

√
−1 of Euclidean Rn . Then{

SD(t, x, y)= S0(t, x, y)− S0(t, x, y∗),

SN (t, x, y)= S0(t, x, y)+ S0(t, x, y∗),

where y∗ ∈ Rn
−

is the reflection of y through the boundary Rn−1
×{0}. Indeed, y→ y∗ is an isometry,

so both kernels satisfy �EB = 0 (in either the x or y variable) and have the correct initial conditions
since y∗ /∈ Rn

+
. Further they satisfy the correct boundary conditions: it is clear that SD(t, x, y) = 0 if
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y ∈ Rn−1
+ × {0} since y∗ = y for such points. Also, if xn = 0 then SD(t, x, y) = 0 since SD(t, x, y) is

a function of the distance |x − y| and |x − y| = |x − y∗| if xn = 0. Similarly, the normal derivative is
∂/∂yn , so the normal derivatives cancel for SN (t, x, y) when yn = 0. Also, S0(t, x, y∗) = S0(t, x∗, y)
and S0(t, x, y) = S0(t, y, x), so the same calculation applies in the x variable. The canonical relation
associated to SN and SD is the union of the canonical relations of S0 and of S∗0 = S0(t, x, y∗). More
precisely, by our notation in (21),

WF(SB(t, x, y))⊂ 00
±
∪01
±
∪0−1
±
.

Note that this example is asymmetric in past and future: the forward trajectory may intersect boundary,
but then backward one does not. Also, in this example for j > 1 and j <−1 the graphs 0 j

± are empty.

2.3.3. Symbol of SB(t, x, y) at the boundary. Since we want to restrict kernels and symbols to the
boundary, we introduce further notation for the subset of the canonical relations lying over boundary
points. Following [Chazarain 1976], we denote by

A0
±
= {(0, τ, y, η, y, η) : τ =±|η|y}

the subset of 00
±

with t = 0. Under the flow ψ t
±

of the Hamiltonian τ ± |ξ |x on R×Rn , it flows out to
the graph 00

±
(denoted by C0

±
in [loc. cit., (2.11)]). One then defines A1

±
⊂ 00

±
(resp. A−1

± ⊂ 0
0
±

) as the
subset lying over R+× ∂�×� (resp. R−× ∂�×�). Still following Chazarain, we denote by ξ→ ξ̂ the
reflection map for (q, ξ) ∈ T ∗q Rn, q ∈ ∂�. That is, ξ̂ has the same tangential projection as ξ but opposite
normal component. We then have

01
±
=

⋃
t∈R

ψ t
±

Â1
±

and 0−1
±
=

⋃
t∈R

ψ t
±

Â−1
±
,

as the flow out under the Euclidean space-time geodesic flow of Â1
±

and Â−1
± . Thus, along the boundary,

for t > 0 (resp. t < 0) A1
±

and Â1
±

(resp. A−1
± and Â−1

± ) both lie in the canonical relation of EB(t), SB(t).
In a similar way one defines A2

±
to be the subset of 01

±
lying over R+×∂�×� and Â2

±
to be its reflection.

Then also A2
±
∪ Â2
±

lies in the canonical relation. Similarly one defines A j
± and Â j

± for all j ∈ Z.

Remark. Since we are interested in the singularity of the trace at t = T > 0 we will only consider the
graphs 0 j

± for j ≥ 0. Regardless of this, because δ Tr EB(t) is even in t it has the same singularity at
t = T and t =−T .

The symbols of EB(t) and SB(t) are half-densities on the associated canonical relations, and therefore
are sums of four terms at boundary points, that is, there is a contribution from each of A j

± and Â j
±. In the

interior, there is only a contribution from the ± components.
The following lemma gives formulas for the principal symbol of SB (and therefore EB) on 0 j

± and its
restriction to 0∂� ◦ (A

j
± ∪ Â j

±).

Lemma 2. Let e± be the principal symbol of S̃B when restricted to 0± =
⋃

j 0
j
±. Let σr be the principal

symbol of the boundary restriction operator r .
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1. In the interior, on 0 j
±, up to Maslov factors we have:

Dirichlet case: e± =
(−1) j

2τ
σcan,± =±

(−1) j

2|η|
σcan,±.

Neumann case: e± =
1

2τ
σcan,± =±

1
2|η|

σcan,±.

2. At the boundary, on 0∂� ◦ A j
± = 0∂� ◦ Â j

± we have:

Dirichlet case: σr ◦ e±(t
j
±,±τ,

̂
λ

j
±(y, η), y, η)=−σr ◦ e±(t

j
±,±τ, λ

j
±(y, η), y, η).

Neumann case: σr ◦ e±(t
j
±,±τ,

̂
λ

j
±(y, η), y, η)= σr ◦ e±(t

j
±,±τ, λ

j
±(y, η), y, η).

Proof. These formulas are obtained from the transport equations in [Chazarain 1976, (b′0)–(e
′

0), p. 175].
We now sketch the proof.

The transport equations for the symbols of EB, SB determine how they propagate along broken
geodesics. As in the boundaryless case, the principal symbol has a zero Lie derivative, LHτ+|ξ |σE = 0,
in the interior along geodesics. The important point for us is the rule by which they are reflected at the
boundary. Let σB be the principal symbol of the boundary restriction operator B defined in (3) (B = r
under Dirichlet and B = r N under Neumann boundary conditions) and let σ0 be the principal symbol of
the restriction operator to t = 0. Then:

(b0) : (d2/dt2
−1B)S̃B ∼ 0 =⇒ (b′0) : Lψ t

±
e± = 0;

(c0) : S̃B |t=0 ∼ 0 =⇒ (c′0) : σ0 ◦ e+(0,τ, y,η, y,η)+ σ0 ◦ e−(0,−τ, y,η, y,η)= 0;

(d0) :
d
dt

∣∣∣
t=0

S̃B ∼ δ(x − y) =⇒ (d ′0) : τ
(
σ0 ◦ e+(0,τ, y,η, y,η)− σ0 ◦ e−(0,−τ, y,η, y,η)

)
= σI ;

(e0) : BS̃B ∼ 0 =⇒ (e′0) : σB ◦ e± = σB ◦
(
e±|A j

±

)
+ σB ◦

(
e±| Â j

±

)
= 0.

(23)

Here σI is the principal symbol of the identity operator. The implication (b0) H⇒ (b′0) follows, for
example, from Theorem 5.3.1 of [Duistermaat and Hörmander 1972]. The other implications are obvious.
From (c′0) and (d ′0) we get

(σ0 ◦ e±)(y, η, y, η)= (−1) j

2τ
σI on T ∗�.

But by (b′0), the symbol e± is invariant under the flow ψ t
±

and therefore the first part of the lemma follows
but only on 00

±
. The second part of the lemma follows from (e′0). The first term of (e′0) is known from the

previous transport equations. Hence (e′0) determines the “reflected symbol” at the j-th impact time and
impact point. In the Dirichlet case, B is just r the restriction to the boundary and so the reflected principal
symbol is simply the opposite of the direct principal symbol. In the Neumann case, B is the product of
the symbol 〈λ1

±
(y, η), νy〉 of the inward normal derivative times restriction r . The reflected symbol thus
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equals the direct symbol since the sign is canceled by the sign of the 〈 ̂λ1
±(y, η), νy〉 = −〈λ

1
±
(y, η), νy〉

factor. Thus, the volume half-density is propagated unchanged in the Neumann case and has a sign change
at each impact point in the Dirichlet case. Thus on 0 j

± and after j reflections, the Dirichlet wave group
symbol is (−1) j times 1/2τ times the graph half-density and the Neumann symbol is 1/2τ times the
graph half-density. �

2.4. χT (Dt, q′, Dq′)χT (Dt, q, Dq)Sb
B(t, q′, q) is a Fourier integral operator.

Lemma 3. We have

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q ′, q) ∈ I (1/2)+1−(1/4)(R× ∂�× ∂�,0∂,±).

Here, 0∂,± =
⋃

j∈Z 0
j
∂,±, with

0
j
∂,± :=

{
(t, τ, q ′, ζ ′, q, ζ ) ∈ T ∗(R× ∂�× ∂�) : ∃ ξ ′ ∈ T ∗q ′R

n, ξ ∈ T ∗q Rn
:

(t, τ, q ′, ξ ′, q, ξ) ∈ 0 j
±, ξ

′
|Tq′∂�

= ζ ′, ξ |Tq∂� = ζ
}
.

Proof. We only show the proof in the Dirichlet case. The Neumann case is very similar. The kernel
χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

D(t, q ′, q) for fixed t is the Schwartz kernel of the composition

χT ◦ (r N ) ◦ SD(t) ◦ (N ∗ r∗) ◦χ∗T : L
2(∂�)→ L2(∂�), (24)

where r∗ is the adjoint of r : H 1/2(�)→ L2(∂�).
To prove the lemma, we use that r is a Fourier integral operator with a folding canonical relation, and

that the composition (24) is transversal away from the tangential directions to ∂�, where SB(t) fails to
be a Fourier integral operator. The cutoff χT removes the part of the canonical relation near the fold
locus and near the normal directions N ∗∂� (where the composition (r N ) ◦ SD(t) ◦ (N ∗ r∗) fails to be
well-behaved as an FIO), hence the composition is a standard Fourier integral operator.

By the results cited above in [Chazarain 1976; Guillemin and Melrose 1979b; Petkov and Stoyanov
1992; Marvizi and Melrose 1982], microlocally away from the gliding directions, the wave operator SB(t)
is a Fourier integral operator associated to the canonical relations 0 j

±. Since 0 j
± is a union of graphs of

canonical transformations, its composition (away from the normal bundle N ∗∂�), with the canonical
relation of r D

:= r N is automatically transversal. The further composition with the canonical relation of
r D∗ is also transversal. Hence, the composition is a Fourier integral operator with the composed wave
front relation and the orders add. Taking into account that we have two boundary derivatives, we need to
add 1

2 to the order.
To determine the composite relation, we note that

8± : R× T ∗∂�Rn
→ T ∗R× T ∗�× T ∗∂�Rn,

8±(t, q, ζ, ξn) := (t,±|ζ + ξn|,8
t(q, ζ, ξn), q, ζ, ξn)

(25)

parametrizes the graph of the (space-time) billiard flow with initial condition on T ∗∂�Rn . Here, ζ ∈ T ∗∂�
and ξn ∈ N ∗

+
∂�, the inward pointing (co)normal bundle. 8± is a homogeneous folding map with folds
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along R× T ∗∂� (see, e.g., [Hörmander 1985a] for background). It follows that SD(t) ◦ (N ∗r∗)χ∗T is a
Fourier integral operator of order one associated to the canonical relation{

(t,±|ξ |,8t(q, ξ), q, ξ |T ∗∂�
}
⊂ T ∗(R×�× ∂�),

and is a local canonical graph away from the fold singularity along T ∗∂�. Composing on the left by
the restriction relation produces a Fourier integral operator with the stated canonical relation. The two
normal derivatives N of course do not change the relation. �

2.5. Symbol of χT (Dt, q′, Dq′)χT (Dt, q, Dq)Sb
B(t, q′, q). The next step is to compute the principal

symbols of the operators in Lemma 3.
To state the result, we need some further notation. We denote points of T ∗∂�Rn by (q, 0, ζ, ξn) as

above, and put τ =
√
|ζ |2+ ξ 2

n . We note that ξn is determined by (q, ζ, τ ) by ξn =
√
τ 2− |ζ |2, since it is

inward pointing. The coordinates q, ζ are symplectic, so the symplectic form on T ∗∂� is dσ = dq ∧ dζ.
Also, below when we write |β j (q, ζ/τ)| we mean the norm of the fiber component of β j (q, ζ/τ) or
when we write τβ j (q, ζ/τ) we mean that τ is multiplied in the fiber component only. We now relate the
graph of the billiard flow (25) with initial and terminal point on the boundary to the billiard map (after j
reflections) by the formula

8T j (q, 0, ζ, ξn)=
(
τβ j

(
q, ζ
τ

)
, ξ ′n(q, ζ, ξn)

)
, (26)

where ξ ′n = τ
√

1−
∣∣β j (q, ζ/τ)

∣∣2. We also put

γ (q, ζ, τ )=

√
1−
|ζ |2

τ 2 and γ1(q, ζ )=
√

1− |ζ |2. (27)

It is the homogeneous (of degree zero) analogue of the function denoted by γ in [Hassell and Zelditch
2004].

Further, we parametrize the canonical relation 0 j
∂,+ of Lemma 3 using the billiard map β and its

powers. We define the j -th return time T j (q, ξ) of the billiard trajectory in a codirection (q, ξ) ∈ T ∗q � to
be the length the j-link billiard trajectory starting at (q, ξ) and ending at a point 8T j (q,ξ)(q, ξ) ∈ T ∗∂��.
It is the same as T j

+(q, ξ). Then we define

ι∂, j,+ : R+× T ∗∂�→ T ∗(R× ∂�× ∂�),

ι∂, j,+(τ, q, ζ )=
(

T j (q, ξ(q, ζ, τ )), τ,
(
τβ j

(
q, ζ
τ

))
, q, ζ

)
, (28)

where
ξ(q, ζ, τ )= ζ + ξnνq , |ζ |

2
+ |ξn|

2
= τ 2.

The map (28) parametrizes 0 j
∂,+ of Lemma 3.

Proposition 4. In the coordinates (τ, q, ζ ) ∈ R+× T ∗∂� of (28), the principal symbol of

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q ′, q)
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on 0 j
∂,+ is as follows:

• in the Dirichlet case:

σ j,+(q, ζ, τ )= C D
j,+χT

(
q, ζ
τ

)
χT

(
β j
(

q, ζ
τ

))
γ 1/2(q, ζ, τ )γ 1/2

(
τβ j

(
q, ζ
τ

)
, τ
)
τ |dq ∧ dζ ∧ dτ |1/2;

• in the Neumann case:

σ j,+(q, ζ, τ )= C N
j,+χT

(
q, ζ
τ

)
χT

(
β j
(

q, ζ
τ

))
γ−1/2(q, ζ, τ )γ−1/2

(
τβ j

(
q, ζ
τ

)
, τ
)

×

(〈
ζ, β j

(
q, ζ
τ

)〉
− τ

)
|dq ∧ dζ ∧ dτ |1/2, (29)

where the C B
j,+ are certain constants (Maslov factors).

Proof. We only show the computations in the Dirichlet case. The Neumann case is very similar and uses
(4) which will produce an additional factor of τ 〈ζ, β j (q, ζ/τ)〉− τ 2.

By Lemma 2, the principal symbol of SB(t) consists of four pieces at the boundary, one for each mode
A j
±, Â j

±. The symbol for the − mode of propagation is equal to that for the + mode of propagation under
the time reversal map ξ →−ξ . Further by part 2 of Lemma 2, the symbol at the boundary (adjusted by
taking normal derivatives in the Dirichlet case) is invariant under the reflection map ξ→ ξ̂ at the boundary
due to the boundary conditions. Hence we only calculate the A j

+ component and use the invariance
properties to calculate the symbol on the other components.

We therefore assume that the symbol of SB is 1/2τ times the graph half-density |dt ∧ dx ∧ dξ |1/2

on 0 j
+. We need to compose this graph half-density on the left by the symbol ξn |dq ∧ dζ ∧ dξn|

1/2 of
r D
= r N , and on the right by the symbol ξ ′n |dq ′ ∧ dζ ′ ∧ dξ ′n|

1/2 of the adjoint r D∗
= N ∗r∗. Therefore

we compute the restriction of the 0 j
+ component onto 0 j

∂,+ and we remember to multiply the symbol by
ξnξ
′
n = τ

2γ (q, ζ, τ )γ (τβ j (q, ζ
τ
), τ )) and also by 1/2τ at the end.

It is simplest to use symbol algebra and pullback formulae to calculate it [Duistermaat and Guillemin
1975]. One can also try to compute the symbol of this composition directly by using the oscillatory
integral representations of these operators but that computation is more complicated. The composition is
equivalent to the pullback of the symbol under the pullback

0
j
∂ = (i∂�× i∂�)∗0 j , (30)

of the canonical relation of the SB by the canonical inclusion map

i∂�× i∂� : R× ∂�× ∂�→ R×Rn
×Rn.

We recall that a map f : X→ Y is transversal to W ⊂ T ∗Y if d f ∗η 6= 0 for any η ∈W . If f : X→ Y is
smooth and 0 ⊂ T ∗Y is Lagrangian, and if f and π : T ∗Y → Y are transverse then f ∗0 is Lagrangian.
Since

(i∂�× i∂�)∗(t, τ,8t(q, ξ), q, ξ)= (t, τ,8t(q, ξ)|T ∂�, q, ξ |T ∂�)

at a point over (i∂�× i∂�)(t, q ′, q), and since τ = |ξ | 6= 0, it is clear that i∂�× i∂� is transversal to π .
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We now claim that on the pullback of 0 j , using the parametrization (28),

(i∂�× i∂�)∗|dt ∧ dx ∧ dξ |1/2 = γ−1/2(q, ζ, τ )γ−1/2
(
τβ j

(
q,
ζ

τ

)
, τ
)
|dq ∧ dζ ∧ dτ |1/2, (31)

where γ is defined in (27). To see this, we use the pullback diagram

0 j
≺

π
F

α
� (i∂�× i∂�)∗0 j

⊂ T ∗(R× ∂�× ∂�)

T ∗(R×Rn
×�)

i

g
≺
π

N∗(graph(i∂�× i∂�))

π

g

Here, F is the fiber product, N∗ graph(i∂� × i∂�) is the conormal bundle to the graph, and the map
α : F→ (i∂�× i∂�)∗0 j is the natural projection to the composition [Duistermaat and Guillemin 1975].
Since the composition is transversal, Dα is an isomorphism [loc. cit.]. The graph of i∂�× i∂� is the set
{(t, q, q ′, t, q, q ′) : (t, q, q ′)∈R×∂�×∂�} and its conormal bundle is (in the Fermi normal coordinates),

N∗(graph(i∂�× i∂�))=
{
(t, τ, q, ζ, q ′, ζ ′, t,−τ, q,−ζ+ξn, q ′,−ζ ′+ξ ′n), (q, ζ, ξn), (q ′, ζ ′, ξ ′n) ∈ T ∗∂�Rn

}
⊂ T ∗(R× ∂�× ∂�×R×Rn

×Rn).

The half-density produced by the pullback diagram takes the exterior tensor product of the canonical
half-density ∣∣dt ∧ dτ ∧ dq ∧ dζ ∧ dξn ∧ dξ ′n ∧ dq ′ ∧ dζ ′

∣∣1/2
on N∗(graph(i∂�× i∂�)) and

|dt ′ ∧ dx ′ ∧ dξ ′|1/2 on 0 j
⊂ T ∗(R×Rn

×Rn)

at a point of the fiber product (where the T ∗(R×Rn
×Rn) components are equal) and divides by the

canonical half-density ∣∣dt ′ ∧ dτ ′ ∧ dq ′ ∧ dζ ′ ∧ dx ′n ∧ dξ ′n ∧ dx ′ ∧ dξ ′
∣∣1/2

on the common T ∗R× T ∗Rn
× T ∗Rn component.

Since τ ′= τ , the factors of |dt ′∧dτ ′∧dq ′∧dζ ′∧dξ ′n∧dx ′∧dξ ′|1/2 cancel in the quotient half-density,
leaving the half-density

|dt ∧ dq ∧ dζ ∧ dξn|
1/2

|dx ′n|1/2

on the composite. The numerator is a half-density on R× T ∗∂�Rn . We write it more intrinsically in the
following lemma. Note that it explains the first of our two γ factors.

Lemma 5. Let 8=8+ be the parametrization (25). Then

|dt ∧ dq ∧ dζ ∧ dξn|
1/2
=

∣∣∣∣ ξn√
|ζ |2+ ξ 2

n

∣∣∣∣−1/2 ∣∣8∗�T ∗Rn
∣∣1/2

as half-densities on R× T ∗∂�Rn .
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Proof. We have

8∗�T ∗Rn

dt ∧ dq ∧ dζ ∧ dξn
=�T ∗Rn

( d
dt
8t(q, ζ, ξn), d8t ∂

∂q j
, d8t ∂

∂ζ j
, d8t ∂

∂ξn

)
=�T ∗Rn

(
Hg,

∂

∂q j
,
∂

∂ζ j
,
∂

∂ξn

)
=

ξn√
|ζ |2+ ξ 2

n

�T ∗Rn

(
∂

∂xn
,
∂

∂q j
,
∂

∂ζ j
,
∂

∂ξn

)
=

ξn√
|ζ |2+ ξ 2

n

,

since
d
dt
8t(q, η, ξn)= Hg =

ξn√
|ζ |2+ ξ 2

n

∂

∂xn
+ · · ·

is the Hamilton vector field of g =
√

g2, g2
= ξ 2

n + (g
′)2 where · · · represent vector fields in the span

of ∂/∂q j , ∂/∂ζ j , ∂/∂ξn . Finally, we use that d8t is a symplectic linear map and that q, xn, ζ, ξn are
symplectic coordinates. Note that we have evaluated the symplectic volume form at the domain point, not
the image point. �

Next we consider the points in the image of 8 on R× T ∗∂�Rn where x ′n = 0 and take the quotient by
|dx ′n|

1/2, resulting in a half-density on 0 j
∂ . The next result explains the origin of the second γ factor.

Lemma 6. In the subset0 j
∂ ⊂8(R×T ∗∂�Rn)where x ′n=0 and where t=T j , we have (in the parametrizing

coordinates (28)),

|dt ∧ dq ∧ dζ ∧ dξn|
1/2

|dx ′n|1/2
=
∣∣((β j )∗γ−1) dq ∧ dη∧ dτ

∣∣1/2 .
Proof. By Lemma 5, it suffices to rewrite

|dx ′n|
−1/2 ∣∣8∗�T ∗Rn

∣∣1/2
in the coordinates (τ, q, η) of ι∂, j,+ in (28). We observe that x ′n =8

∗xn . Hence

|dx ′n|
−1/2∣∣8∗�T ∗Rn

∣∣1/2 = ∣∣∣∣8∗�T ∗Rn

|dxn|

∣∣∣∣1/2= ∣∣((β j )∗γ−1) dq ∧ dζ ∧ dτ
∣∣1/2.

In the last equality, we have used (26), the equality
�T ∗Rn

|dxn|
= |dq ∧ dζ ∧ dξn|, and the fact that β is

symplectic. Indeed, by (26),

8∗(dq ∧ dζ ∧ dξn)=
(
τ(β j )∗

(
dq ∧ d ζ

τ

)
∧8∗dξn

)
=

(
τ(β j )∗

(
dq ∧ d ζ

τ

)
∧8∗d

√
τ 2− |ζ |2

)
= dq ∧ dζ ∧8∗ τdτ√

τ 2−|ζ |2
=
(
(β j )∗γ−1) dq ∧ dζ ∧ dτ.

Note that τ(β j )∗(dq ∧ d ζ
τ
)= dq ∧ dζ |β j (q,ζ ). �

Combining Lemma 6 with Lemma 5 completes the proof of (31) and Proposition 4. �
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2.6. Trace along the boundary: composition with π∗1∗. We now take the trace along the boundary of
this operator. Analogously to [Duistermaat and Guillemin 1975; Guillemin and Melrose 1979a; Marvizi
and Melrose 1982], we define 1 : R× ∂�→ R× ∂�× ∂� to be the diagonal embedding and π∗ to be
integration over ∂�.

Lemma 7. If the fixed point sets of period T of βk are clean for all k and form a submanifold FT of
B∗∂� of dimension d (with connected components 0), then

π∗1
∗ρ̇ χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

B(t, q ′, q) ∈ I (d/2)+(1/2)+1−(1/4)(R, T ∗T R),

where
T ∗T R=

⋃
±
3T,± =

⋃
±
{(T,±τ) : τ ∈ R+},

and its principal symbol on 3T,± is given by

c±τ (d+2)/2
√

dτ ,

where

c± =
∑
0⊂FT

C±0

∫
0

ρ̇ γ1 dµ0

and c− = c̄+ the complex conjugate of c+.

Proof. The calculation of the principal symbol of the trace of a Fourier integral operator in [Duistermaat
and Guillemin 1975] is valid for the boundary restriction of the wave kernel, since it only uses that it is
π∗1

∗ composed with a Fourier integral kernel with a known symbol and canonical relation. Hence we
follow the proof closely and refer there for further details.

As in [Guillemin and Melrose 1979a], the composition of π∗1∗ with

ρ̇χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q, q ′) (32)

is clean if and only if the fixed point set of βk corresponding to periodic orbits of period T is clean. When
the fixed point set has dimension d in the ball bundle B∗∂�, composition with π∗1∗ adds d/2 to the
order [Duistermaat and Guillemin 1975, (6.6)]. Combining with Lemma 3, we obtain the order

d
2
+

1
2
+ 1− 1

4
.

Hence under the cleanliness assumption, it follows that δ Tr cos t
√
−1B is a Lagrangian distribution

on R with singularities at t ∈ Lsp(�). As discussed in [loc. cit.] for the upper/lower half lines 3T,± in
T ∗T R, I

d
2+

5
4 (R,3T,±) consists of multiples of the distribution∫

∞

0
τ (d+2)/2e±iτ(t−T )dτ = (t − T ± i0)−(d+4)/2.

The principal symbol of this Fourier integral distribution is τ (d+2)/2
√

dτ . Therefore to conclude the
Lemma we only need to compute the coefficients of this symbol in the trace.



1128 HAMID HEZARI AND STEVE ZELDITCH

This coefficient is computed in a universal way from the principal symbol of (32) computed from
Proposition 4. Following the proof in [loc. cit.], the coefficient of τ (d+2)/2

√
dτ is

c± =
∑
0⊂FT

C±0

∫
0

ρ̇ γ1 dµ0,

where FT is the fixed point set of β (and its powers) in B∗∂�. The sum is over the connected components
0 of FT . Here, dµ0 is the restriction to 0 of a density dµ on FT which is the pushforward (under the
natural projection map) of the canonical density defined on the fixed point set of 8T on S∗∂��. This
canonical density is defined in Lemma 4.2 of [Duistermaat and Guillemin 1975]. We note that the
distribution c+(t − T + i0)−(d+4)/2

+ c−(t − T − i0)−(d+4)/2 is real only if c− = c̄+. This completes the
proof of the lemma. �

The lemma also completes the proof of the Theorem 2.

Remark. As a check on the order, we note that for the wave trace in the interior and for nondegenerate
closed trajectories, the singularities are of order (t − T + i0)−1. When the periodic orbits are degenerate
and the unit vectors in the fixed point sets have dimension d , the singularity increases to order

(t − T + i0)−1−d
2 .

If we formally take the variation of the wave trace, the singularity should increase to order

(t − T + i0)−1−d
2−1.

In comparison, the boundary trace in the Dirichlet case involves two extra derivatives of the wave
kernel and composition with (−1)−1/2. Compared to the interior trace, this adds one net derivative and
order to the trace singularity. We claim that the restriction to the boundary does not further change the
order compared to the interior trace. This can be seen by considering the method of stationary phase
for oscillatory integrals with Bott–Morse phase functions, whose nondegenerate critical manifolds are
transverse to the boundary. If we restrict the integral to the boundary, we do not change the number
of phase variables in the integral, but we simultaneously decrease the number of variables by one and
the dimension of the fixed point set by one. The number of nondegenerate directions stays the same. It
follows that the singularity order of the variational trace goes up by one overall unit compared to the
interior trace, consistently with the formal variational calculation.

3. Case of the ellipse and the proof of Theorem 1

In this section we let �0 be an ellipse. In this case, the fixed point sets are clean fixed point sets for 8t in
T ∗�0 and for β in B∗∂�0 [Guillemin and Melrose 1979a, Proposition 4.3]. In fact the fixed point sets
FT of β in B∗∂�0 form a one dimensional manifold. Thus d = 1 and Corollary 2 follows.

As is well-known, both the billiard flow and billiard map of the ellipse are completely integrable. In
particular, except for certain exceptional trajectories, the periodic points of period T form a Lagrangian
tori in S∗�0, and the homogeneous extensions of the Lagrangian tori are cones in T ∗�0. The exceptions
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are the two bouncing ball orbits through the major/minor axes and the trajectories which intersect the
foci or glide along the boundary. The fixed point sets of 8T intersect the coball bundle B∗∂�0 of the
boundary in the fixed point sets of the billiard map β : B∗∂�0→ B∗∂�0 (for background we refer to
[Petkov and Stoyanov 1992; Guillemin and Melrose 1979a; 1979b; Hassell and Zelditch 2004; Toth and
Zelditch 2012] for instance). Except for the exceptional orbits, the fixed point sets are real analytic curves.
For the bouncing ball rays, the associated fixed point sets are nondegenerate fixed points of β.

Since the final step of the proof uses results of [Guillemin and Melrose 1979a], we briefly review the
description of the billiard map of the ellipse �0 := x2/a+ y2/b = 1 (with a > b > 0) in that article. In
the interior, there exist for each 0< Z ≤ b a caustic set given by a confocal ellipse

x2

E + Z
+

y2

Z
= 1,

where E = a− b, or for −E < Z < 0 by a confocal hyperbola. Let (q, ζ ) be in B∗∂�0 and let (q, ξ) in
S∗�0 be the unique inward unit normal to boundary that projects to (q, ζ ). The line segment (q, rξ) will
be tangent to a unique confocal ellipse or hyperbola (unless it intersects the foci). We then define the
function Z(q, ζ ) on B∗∂�0 to be the corresponding Z . Then Z is a β-invariant function and its level
sets {Z = c} are the invariant curves of β. The invariant Leray form on the level set is denoted by duZ
[loc. cit., (2.17)]; thus the symplectic form of B∗∂�0 is dq ∧ dζ = d Z ∧ duZ . A level set has a rotation
number and the periodic points live in the level sets with rational rotation number. As it is explained in
[loc. cit., p. 143] the Leray form duZ restricted to a connected component 0 of FT is a constant multiple
of the canonical density dµ0.

As mentioned in the introduction, the well-known obstruction to using trace formula calculations such
as in Theorem 2 is multiplicity in the length spectrum, that is, existence of several connected components
of FT . A higher dimensional component is not itself a problem, but there could exist cancellations among
terms coming from components with different Morse indices, since the coefficients C0 are complex. This
problem arose earlier in the spectral theory of the ellipse in [loc. cit.]. The key Proposition 4.3 there shows
that there is a sufficiently large set of lengths T for which FT has one component up to (q, ζ )→ (q,−ζ )
symmetry. Since it is crucial here as well, we state the relevant part:

Proposition 8 [Guillemin and Melrose 1979a, Proposition 4.3]. Let T0 = |∂�0|. Then for every interval
(mT0− ε, mT0), for m = 1, 2, 3, . . . , there exist infinitely many periods T ∈ Lsp(�0) for which FT is the
union of two invariant curves which are mapped to each other by (q, ζ )→ (q,−ζ ).

Since for an isospectral deformation δ Tr cos(t
√
−1)= 0, we obtain from Theorem 2:

Corollary 9. Suppose we have an isospectral deformation of an ellipse �0 with velocity ρ̇. Then for each
T in Proposition 8 for which FT is the union of two invariant curves 01 and 02 which are mapped to each
other by (q, ζ )→ (q,−ζ ) we have ∫

0 j

ρ̇ γ1 duZ = 0, j = 1, 2.

Proof. From Theorem 2 we get
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<

{( 2∑
j=1

C0 j

∫
0 j

ρ̇ γ1 dµ0 j

)
(t − T + i0)−2−(d/2)

}
= 0.

Since ρ̇ and γ1 are invariant under the time reversal map (q, ζ )→ (q,−ζ ), the two integrals are identical.
Also by directly looking at the stationary phase calculations it can be shown that the Maslov coefficients
C01 and C02 are also the same. Thus the corollary follows. �

3.1. Abel transform. The remainder of the proof of Theorem 1 is identical to that of Theorem 4.5 of
[Guillemin and Melrose 1979a] (see also [Popov and Topalov 2003]). For the sake of completeness, we
sketch the proof.

Proposition 10. The only Z2×Z2 invariant function ρ̇ satisfying the equations of Corollary 9 is ρ̇ = 0.

Proof. First, we may assume ρ̇ = 0 at the endpoints of the major/minor axes, since the deformation
preserves the Z2 × Z2 symmetry and we may assume that the deformed bouncing ball orbits will not
move and are aligned with the original ones. Thus ρ̇(±

√
a)= ρ̇(±

√
b)= 0.

The Leray measure may be explicitly evaluated [Guillemin and Melrose 1979a, eq. 2.18]. By a change
of variables with Jacobian J , and using the symmetric properties of ρ̇, the integrals become

A(Z)=
∫ a

b

ρ̇(t) γ1 J (t) dt
√

t − (b− Z)
, (33)

for an infinite sequence of Z accumulating at b. The function A(Z) is smooth in Z for Z near b. It
vanishes infinitely often in each interval (b− ε, b), hence is flat at b. The k-th Taylor coefficient at b is

A(k)(b)=
∫ a

b
ρ̇(t) γ1 J (t)t−k−(1/2)dt = 0. (34)

Since the functions t−k span a dense subset of C[b, a], it follows that ρ̇ ≡ 0. �

3.2. Infinitesimal rigidity and flatness. We now show that infinitesimal rigidity implies flatness and
prove Corollary 1. As mentioned, the Hadamard variational formula is valid for any C1 parametrization
�α(ε) of the domains �ε . For each one we have δρα(ε)(x)≡ 0.

Assume ρε(x) is not flat at ε = 0 and let εk be the first nonvanishing term in the Taylor expansion of
ρε(x) at ε = 0. Then

ρε(x)= εk ρ
(k)(x)
k!
+ εk+1ρ

(k+1)(x)
(k+ 1)!

+ · · · . (35)

We then reparametrize the family by ε→ α(ε) := ε1/k so that

ρα(ε)(x)=
ρ(k)(x)

k!
ε+ O(ε1+1/k).

By Hadamard’s variational formulae we get δρα(ε)(x)= ρ(k)(x)≡ 0, a contradiction.
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A NATURAL LOWER BOUND FOR THE SIZE OF NODAL SETS

HAMID HEZARI AND CHRISTOPHER D. SOGGE

We prove that, for an n-dimensional compact Riemannian manifold .M;g/, the .n � 1/-dimensional
Hausdorff measure jZ�j of the zero-set Z� of an eigenfunction e� of the Laplacian having eigenvalue
��, where �� 1, and normalized by

R
M
je�j

2dVg D 1 satisfies

C jZ�j � �
1
2

�Z
M

je�j dVg

�2

for some uniform constant C . As a consequence, we recover the lower bound jZ�j& �.3�n/=4.

The purpose of this brief note is to prove a natural lower bound for the .n�1/-dimensional Hausdorff
measure of nodal sets of eigenfunctions. To wit:

Theorem 1. Let .M;g/ be a compact manifold of dimension n and e� an eigenfunction satisfying

��ge� D �e�; and
Z

M

je�j
2 dVg D 1:

Then if Z�D fx 2M W e�.x/D 0g is the nodal set and jZ�j its .n�1/-dimensional Hausdorff measure,
we have

�
1
2

�Z
M

je�j dVg

�2

� C jZ�j; �� 1; (1)

for some uniform constant C . Consequently,

�
3�n

4 . jZ�j; �� 1: (2)

Inequality (2) follows from (1) and the lower bounds in [Sogge and Zelditch 2011a]

�
1�n

8 .
Z

M

je�j dVg: (3)

The lower bound (2) is due to Colding and Minicozzi [2011]. Yau [1982] conjectured that �
1
2 � jZ�j.

This lower bound �
1
2 . jZ�j was verified in the two-dimensional case by Brüning [1978] and indepen-

dently by Yau (unpublished). The bounds in (2) seem to be the best known ones for higher dimensions,
although Donnelly and Fefferman [1988; 1990] showed that, as conjectured, jZ�j � �

1
2 , if .M;g/ is

assumed to be real analytic.
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The first “polynomial type” lower bounds appear to be those given in [Colding and Minicozzi 2011]
and [Sogge and Zelditch 2011a] (see also [Mangoubi 2011]). As we shall point out, inequality (1)
cannot be improved and it to some extent unifies the approaches in [Colding and Minicozzi 2011] and
[Sogge and Zelditch 2011a]. As was shown in the latter paper, the L1-lower bounds in (3) follow from
Hölder’s inequality and the Lp eigenfunction estimates of [Sogge 1988] for the range where 2 < p �

2.nC 1/=.n� 1/. These too cannot be improved, but it is thought better Lp-bounds hold for a typical
eigenfunction or if one makes geometric assumptions such as negative curvature (cf. [Sogge and Zelditch
2010; 2011b]). Thus, it is natural to expect to be able to improve (3) and hence the lower bounds (2) for
all eigenfunctions on manifolds with negative curvature, or for “typical” eigenfunctions on any manifold.
Of course, Yau’s conjecture that jZ�j � �

1
2 would be the ultimate goal, but understanding when (3) can

be improved is a related problem of independent interest.

Let us now turn to the proof of Theorem 1. We shall use an identity from [Sogge and Zelditch 2011a]:Z
M

je�j .�gC�/f dVg D 2

Z
Z�

jrge�jf dSg; (4)

Here dSg is the Riemannian surface measure on Z�, and rg is the gradient coming from the metric and
jrguj is the norm coming from the metric, meaning that in local coordinates

jrguj2g D

nX
jkD1

gjk.x/@j u@ku: (5)

Identity (4) follows from the Gauss–Green formula and a related earlier identity was proved by Dong
[1992].

As in [Hezari and Wang 2011], if we take f � 1 and apply Schwarz’s inequality we get

�

Z
M

je�j dVg � 2jZ�j
1=2

�Z
Z�

jrge�j
2 dSg

�1=2

: (6)

Thus we would have (1) if we could prove that the energy of e� on its nodal set satisfies the natural
bounds Z

Z�

jrge�j
2 dSg . �

3
2 : (7)

We shall do this by choosing a different auxiliary function f . This time we want to use

f D
�

1C�e2
�Cjrge�j

2
g

� 1
2 : (8)

If we plug this into (4) we get that

2

Z
Z�

jrge�j
2
gdSg �

Z
M

je�j .�gC�/
�

1C�e2
�Cjrge�j

2
� 1

2 dVg:

Since we have the L2-Sobolev bounds

ke�kH s.M / DO.�
s
2 /; (9)
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it is clear that

�

Z
M

je�j
�

1C�e2
�Cjrge�j

2
g

� 1
2 dVg DO.�

3
2 /;

and thus to prove (7), it suffices to show thatZ
M

je�j�g

�
1C�e2

�Cjrge�j
2
g

� 1
2 dVg DO.�

3
2 /: (10)

To prove this we first note that

@k

�
1C�e2

�Cjrge�j
2
g

� 1
2 D

�e�@ke�C
1
2
@k jrge�j

2
g�

1C�e2
�
Cjrge�j

2
� 1

2

I

from this and (9) we deduce thatZ
M

je�j
ˇ̌
rg

�
1C�e2

�Cjrge�j
2
� 1

2
ˇ̌
dVg DO.�/:

This means that the contribution of the first order terms of the Laplace–Beltrami operator (written in
local coordinates) to (10) are better than required, and so it suffices to show that in a compact subset K

of a local coordinate patch we haveZ
K

je�j
ˇ̌̌
@j@k

�
1C�e2

�Cjrge�j
2
� 1

2

ˇ̌̌
dVg DO.�

3
2 /: (11)

A calculation shows that @j@k

�
�e2
�
Cjrge�j

2
� 1

2 equals

�

�
�e�@j e�C

1
2
@j jrge�j

2
g

��
�e�@ke�C

1
2
@k jrge�j

2
g

�
�

1C�e2
�
Cjrge�j

2
� 3

2

C
�@j e�@ke�C�e�@j@ke�C

1
2
@j@k jrge�j

2
g�

1C�e2
�
Cjrge�j

2
� 1

2

:

If jDmf j D
P
j˛jDm j@

˛f j, then by (5)

@k jrge�j
2
DO.jD2e�j jDe�jC jDe�j

2/;

and
@j@k jrge�j

2
g DO.jD3e�j jDe�jC jD

2e�j
2
CjD2e�j jDe�jC jDe�j

2/:

Therefore,

@j@k

�
�e2
�Cjrge�j

2
� 1

2

DO

 
�2je�j

2jDe�j
2CjD2e�j

2jDe�j
2CjDe�j

4�
1C�e2

�
Cjrge�j

2
� 3

2

!

CO

 
�jDe�j

2C�je�j jD
2e�jC jD

3e�j jDe�jC jD
2e�j

2CjD2e�j jDe�jC jDe�j
2�

1C�e2
�
Cjrge�j

2
� 1

2

!
:
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This implies that the integrand in the left side of (11) is dominated by�
�

1
2 jDe�j

2
C��

1
2 jD2e�j

2
CjDe�j

2
�

C
�
�

1
2 jDe�j

2
C�

1
2 je�j jD

2e�jC je�j jD
3e�jC�

� 1
2 jD2e�j

2
CjD2e�j je�jC jDe�j je�j

�
;

leading to (11) after applying (9). �

Remarks.

� We could also have taken f to be .�C�e2
�
Cjrge�j

2/
1
2 and obtained the same upper bounds, but

there does not seem to be any advantage to doing this.

� Inequality (1) cannot be improved. There are many cases when the L1 and L2-norms of eigen-
functions are comparable. For instance, for the sphere the zonal functions have this property and it
is easy to check that their nodal sets satisfy jZ�j � �

1
2 , which means that for zonal functions (1)

cannot be improved.

� There are many cases where inequality (1) can be improved. For instance, the L2-normalized
highest weight spherical harmonics Qk have eigenvalues � D �k � k2, and L1-norms � k�

n�1
4

(see e.g., [Sogge 1986]). This means that for the highest weight spherical harmonics the left side
is proportional to �

3�n
4 even though here too jZ�j � �

1
2 . Similarly, the highest weight spherical

harmonics saturate (7). It is because of functions like the highest weight spherical harmonics that the
current techniques only seem to yield (2). Note that inequality (2) gives the correct lower bound in
the trivial case where the dimension n is one. As the dimension increases, the bound gets worse and
worse due to the fact that (3) is saturated by functions like the highest weight spherical harmonics
(“Gaussian beams”) whose mass is supported on a ��

1
4 neighborhood of a geodesic and the volume

of such a tube decreases geometrically as n increases. (See [Bourgain 2009; Sogge 2011] for related
work on this phenomena.)

� W. Minicozzi pointed out to us that (7) also follows from the identity

2

Z
Z�

jrge�j
2 dSg D�

Z
M

sgn.e�/ divg

�
jrge�j rge�

�
dVg: (12)

and (9). Like the proof of (4) in [Sogge and Zelditch 2011a], the identity (12) follows from an
application of the divergence theorem applied to each of the nodal domains of e�.
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EFFECTIVE INTEGRABLE DYNAMICS
FOR A CERTAIN NONLINEAR WAVE EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

We consider the following degenerate half-wave equation on the one-dimensional torus:

i∂t u− |D|u = |u|2u, u(0, · )= u0.

We show that, on a large time interval, the solution may be approximated by the solution of a completely
integrable system — the cubic Szegő equation. As a consequence, we prove an instability result for large
H s norms of solutions of this wave equation.

1. Introduction

Let us consider, on the one-dimensional torus T, the “half-wave” equation

i∂t u− |D|u = |u|2u, u(0, · )= u0. (1)

Here |D| denotes the pseudodifferential operator defined by

|D|u =
∑
|k|ukeikx , u =

∑
k

ukeikx .

This equation can be seen as a toy model for nonlinear Schrödinger equations on degenerate geometries
leading to lack of dispersion. For instance, it has the same structure as the cubic nonlinear Schrödinger
equation on the Heisenberg group, or associated with the Grušin operator. We refer to [Gérard and Grellier
2010a; 2010b] for more detail.

We endow L2(T) with the symplectic form

ω(u, v)= Im(u, v),

where (u, v) denotes the inner product on L2(T). Equation (1) may be seen as the Hamiltonian system
related to the energy function H(u) := 1

2(|D|u, u)+ 1
4‖u‖

4
L4 . In particular, H is invariant by the flow,

which also admits the conservation laws

Q(u) := ‖u‖2L2, M(u) := (Du, u).

However, Equation (1) is a nondispersive equation. Indeed, it is equivalent to the system

i(∂t ± ∂x)u± =5±(|u|2u), u±(0, · )=5±(u0), (2)

MSC2010: 35B34, 35B40, 37K55.
Keywords: Birkhoff normal form, nonlinear wave equation, perturbation of integrable systems.
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where u± =5±(u). Here, 5+ denotes the orthogonal projector from L2(T) onto

L2
+
(T) :=

{
u =

∑
k≥0

ukeikx , (uk)k≥0 ∈ `
2
}

and 5− := I −5+.
Though the scaling is L2-critical, the first iteration map of the Duhamel formula

u(t)= e−i t |D|u0− i
∫ t

0
e−i(t−τ)|D|(|u(τ )|2u(τ ))dτ

is not bounded on H s for s < 1
2 . Indeed, such boundedness would require the inequality∫ 1

0
‖e−i t |D| f ‖4L4(T)

dt . ‖ f ‖4H s/2 .

However, testing this inequality on functions localized on positive modes, for instance, shows that this
fails if s < 1

2 (see the Appendix for more detail).
Proceeding as in the case of the cubic Szegő equation [Gérard and Grellier 2010a, Theorem 2.1],

i∂tw =5+(|w|
2w), (3)

one can prove the global existence and uniqueness of solutions of (1) in H s for any s ≥ 1
2 . The proof

uses in particular the a priori bound of the H 1/2-norm provided by the energy conservation law.

Proposition 1. Given u0 ∈ H
1
2 (T), there exists u ∈ C(R, H

1
2 (T)) unique such that

i∂t u− |D|u = |u|2u, u(0, x)= u0(x).

Moreover if u0 ∈ H s(T) for some s > 1
2 , then u ∈ C(R, H s(T)).

Similarly to the cubic Szegő equation, the proof of Proposition 1 provides only bad large time estimates:

‖u(t)‖H s . eeCs t
.

This naturally leads to the question of the large time behavior of solutions of (1). In order to answer
this question, a fundamental issue is the decoupling of nonnegative and negative modes in system (2).
Assuming that initial data are small and spectrally localized on nonnegative modes, a first step in that
direction is given by the next simple proposition, which shows that u−(t) remains smaller in H 1/2

uniformly in time.

Proposition 2. Assume

5+u0 = u0 = O(ε) in H
1
2 (T).

Then, the solution u of (1) satisfies

sup
t∈R

‖5−u(t)‖
H

1
2
= O(ε2).
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Proof. By the energy and momentum conservation laws, we have

(|D|u, u)+ 1
2‖u‖

4
L4 = (|D|u0, u0)+

1
2‖u0‖

4
L4, (Du, u)= (Du0, u0).

Subtracting these equalities, we get

2(|D|u−, u−)+ 1
2‖u‖

4
L4 =

1
2‖u0‖

4
L4 = O(ε4);

hence

‖u−‖2
H

1
2
= O(ε4). �

This decoupling result suggests neglecting u− in the system (2) and hence comparing the solutions of
(1) to those of

i∂tv− Dv =5+(|v|2v),

which can be reduced to (3) by the transformation v(t, x)= w(t, x − t).
Our main result is the following.

Theorem 1.1. Let s > 1 and u0 =5+(u0) ∈ L2
+
(T)∩ H s(T) with ‖u0‖H s = ε, for ε > 0 small enough.

Denote by v the solution of the cubic Szegő equation

i∂tv− Dv =5+(|v|2v), v(0, · )= u0. (4)

Then, for any α > 0, there exists a constant c = cα < 1 such that

‖u(t)− v(t)‖H s = O(ε3−α) for t ≤
cα
ε2 log

1
ε
. (5)

Furthermore, there exists c > 0 such that

‖u(t)‖L∞ = O(ε) for all t ≤
c
ε3 . (6)

Remarks. 1. If we rescale u as εu, Equation (1) becomes

i∂t u− |D|u = ε2
|u|2u, u(0, · )= u0,

with ‖u0‖H s = 1. On the latter equation, it is easy to prove that u(t)= e−i t |D|u0+ o(1) for t � 1/ε2, so
that nonlinear effects only start for 1/ε2 . t . Rescaling v as εv in (4), Theorem 1.1 states that the cubic
Szegő dynamics appear as the effective dynamics of (1) on a time interval where nonlinear effects are
taken into account.

2. As pointed out before, (4) reduces to (3) by a simple Galilean transformation. Equation (3) has been
studied in [Gérard and Grellier 2010a; 2010b; 2012], where its complete integrability is established
together with an explicit formula for its generic solutions. Consequently, the first part of Theorem 1.1
provides an accurate description of solutions of (1) for a reasonably large time. Moreover, the second part
of Theorem 1.1 claims an L∞ bound for the solution of (1) on an even larger time. This latter bound is
closely related to a special conservation law of (3), namely, some Besov norm of v— see Section 2 below.
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3. In the case of small Cauchy data localized on nonnegatives modes, system (2) can be reformulated
as a — singular — perturbation of the cubic Szegő equation (3). Indeed, write u0 = εw0 and u(t, x)=
εw(ε2t, x − t); then w = w++w− solves the system

i∂tw+ =5+(|w|
2w),

i(ε2∂t − 2∂x)w− = ε
25−(|w|

2w).
(7)

Notice that, for ε = 0 and 5+w0 = w0, the solution of this system is exactly the solution of (3). It is
therefore natural to ask how much, for ε > 0 small, the solution of system (7) stays close to the solution
of Equation (3). Since Equation (3) turns out to be completely integrable, this problem appears as a
perturbation of a completely integrable infinite-dimensional system. There is a lot of literature on this
subject (see the books [Kuksin 1993; Craig 2000; Kappeler and Pöschel 2003] for KAM theory). In
the case of the 1D cubic NLS equation and the modified KdV equation, with special initial data such
as solitons or 2-solitons, we refer to [Holmer and Zworski 2007; 2008; Holmer et al. 2007; 2011] and
references therein. Here we emphasize that our perturbation is more singular and that we deal with general
Cauchy data.

4. The proof of Theorem 1.1 is based on a Poincaré–Birkhoff normal form approach, similarly to [Bambusi
2003; Grébert 2007] for instance. More specifically, we prove that (4) turns out to be a Poincaré–Birkhoff
normal form of (1), for small initial data with only nonnegative modes.

As a corollary of Theorem 1.1, we get the following instability result.

Corollary 1. Let s > 1. There exist a sequence of data un
0 and a sequence of times t (n) such that, for

any r ,

‖un
0‖H r → 0,

while the corresponding solution of (1) satisfies

‖un(t (n))‖H s ' ‖un
0‖H s

(
log

1
‖un

0‖H s

)2s−1

.

It is interesting to compare this result to what is known about the cubic NLS. In the one-dimensional case,
the cubic NLS is integrable [Zakharov and Shabat 1972] and admits an infinite number of conservation
laws which control the regularity of the solution in Sobolev spaces. As a consequence, no such norm
inflation occurs. This is in contrast with the 2D cubic NLS case for which Colliander, Keel, Staffilani,
Takaoka, and Tao [2010] exhibited small initial data in H s which give rise to large H s solutions after a
large time.

In our case, the situation is different. Although the cubic Szegő equation is completely integrable, its
conservation laws do not control the regularity of the solutions, which allows a large time behavior similar
to the one proved in [Colliander et al. 2010] for 2D cubic NLS [Gérard and Grellier 2010a, Section 6,
Corollary 5]. Unfortunately, the time interval on which the approximation (5) holds does not allow to
infer large solutions for (1), but only solutions with large relative size with respect to their Cauchy data —
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see Section 3 below. A time interval of the form [0, 1/ε2+β
] for some β > 0 would be enough to construct

large solutions for (1) for some H s-norms.

We close this introduction by mentioning that O. Pocovnicu solved a similar problem for Equation (1)
on the line by using the renormalization group method instead of the Poincaré–Birkhoff normal form
method. Moreover, she improved the approximation in Theorem 1.1 by introducing a quintic correction
to the Szegő cubic equation [Pocovnicu 2011].

The paper is organized as follows. In Section 2 we recall some basic facts about the Lax pair structure
for the cubic Szegő equation (3). In Section 3, we deduce Corollary 1 from Theorem 1.1. Finally, the
proof of Theorem 1.1 is given in Section 4.

2. The Lax pair for the cubic Szegő equation and some of its consequences

In this section, we recall some basic facts about Equation (3) (see [Gérard and Grellier 2010a] for more
detail). Given w ∈ H 1/2(T), we define (see, e.g., [Peller 1982; Nikolski 2002]) the Hankel operator of
symbol w by

Hw(h)=5+(wh̄), h ∈ L2
+
.

It is easy to check that Hw is a C-antilinear Hilbert–Schmidt operator. In [Gérard and Grellier 2010a], we
proved that the cubic Szegő flow admits a Lax pair in the following sense. For simplicity let us restrict
ourselves to the case of H s solutions of (3) for s > 1

2 . By [ibid., Theorem 3.1], there exists a mapping
w ∈ H s

7→ Bw, valued into C-linear bounded skew-symmetric operators on L2
+

, such that

H−i5+(|w|2w) = [Bw, Hw]. (8)

Moreover,

Bw =
i
2

H 2
w − iT|w|2,

where Tb denotes the Toeplitz operator of symbol b, given by Tb(h) =5+(bh). Consequently, w is a
solution of (3) if and only if

d
dt

Hw = [Bw, Hw]. (9)

An important consequence of this structure is that the cubic Szegő equation admits an infinite number
of conservation laws. Indeed, denoting by W (t) the solution of the operator equation

d
dt

W = BwW, W (0)= I,

the operator W (t) is unitary for every t , and

W (t)∗Hw(t)W (t)= Hw(0).

Hence, if w is a solution of (3), then Hw(t) is unitarily equivalent to Hw(0). Consequently, the spectrum of
the C-linear positive self-adjoint trace class operator H 2

w is conserved by the evolution. In particular, the
trace norm of Hw is conserved by the flow. A theorem by Peller [1982, Theorem 2, p. 454] states that the
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trace norm of a Hankel operator Hw is equivalent to the norm of w in the Besov space B1
1,1(T). Recall

that the Besov space B1
= B1

1,1(T) is defined as the set of functions w such that ‖w‖B1
1,1

is finite, where

‖w‖B1
1,1
= ‖S0(w)‖L1 +

∞∑
j=0

2 j
‖1 jw‖L1;

here w = S0(w)+
∑
∞

j=01 jw stands for the Littlewood–Paley decomposition of w. It is standard that B1

is an algebra included into L∞ (in fact into the Wiener algebra). The conservation of the trace norm of
Hw therefore provides an L∞ estimate for solutions of (3) with initial data in B1.

The space B1 and formula (8) will play an important role in the proof of Theorem 1.1. In particular,
the last part will follow from the fact that ‖u(t)‖B1 remains bounded by ε for t � 1/ε3. The fact that
H s(T)⊂ B1 for s > 1, explains why we assume s > 1 in the statement.

3. Proof of Corollary 1

As observed in [Gérard and Grellier 2010a, Section 6.1, Proposition 7, and Section 6.2, Corollary 5], the
equation

i∂tw =5+(|w|
2w) , w(0, x)=

a0 ei x
+ b0

1− p0ei x

with a0, b0, p0 ∈ C, |p0|< 1 can be solved as

w(t, x)=
a(t) ei x

+ b(t)
1− p(t)ei x

where a, b, p satisfy an explicitly solvable ODE system.
In the particular case when

a0 = ε, b0 = εδ, p0 = 0, wε(0, x)= ε(ei x
+ δ) ,

one finds

1−
∣∣∣p ( π

2ε2δ

)∣∣∣2 ' δ2,

so that, for s > 1
2 , ∥∥∥wε( π

2ε2δ

)∥∥∥
H s
'

ε

δ2s−1 .

Let vε be the solution of

i(∂t + ∂x)vε =5+(|vε|
2vε) , vε(0, x)= ε(ei x

+ δ).

Then vε(t, x)= wε(t, x−t), so that ∥∥∥vε( π

2ε2δ

)∥∥∥
H s
'

ε

δ2s−1 .

Choose

ε =
1
n
, δ =

C
log n

,
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with C large enough that if t (n) := π/(2ε2δ) then t (n) < c log(1/ε)/ε2, where c = cα in Theorem 1.1 for
α = 1, say. Set un

0 := vε(0, · ). As ‖un
0‖H s ' ε, the previous estimate reads∥∥∥vε( π

2ε2δ

)∥∥∥
H s
' ‖un

0‖H s

(
log

1
‖un

0‖H s

)2s−1

.

Applying Theorem 1.1, we get the same information about ‖un(t (n))‖H s .

4. Proof of Theorem 1.1

First of all, we rescale u as εu so that Equation (1) becomes

i∂t u− |D|u = ε2
|u|2u, u(0, · )= u0 (10)

with ‖u0‖H s = 1.

4.1. Study of the resonances. We write the Duhamel formula as

u(t)= e−i t |D|u(t),

with

û(t, k)= û0(k)− iε2
∑

k1−k2+k3−k=0

I (k1, k2, k3, k),

where

I (k1, k2, k3, k)=
∫ t

0
e−iτ8(k1,k2,k3,k)û(τ, k1)û(τ, k2)û(τ, k3) dτ,

and

8(k1, k2, k3, k4) := |k1| − |k2| + |k3| − |k4|.

If 8(k1, k2, k3, k4) 6= 0, an integration by parts in I (k1, k2, k3, k4) provides an extra factor ε2; hence
the set of (k1, k2, k3, k4) such that 8(k1, k2, k3, k4)= 0 is expected to play a crucial role in the analysis.
This set is described in the following lemma.

Lemma 1. Given (k1, k2, k3, k4) ∈ Z4,

k1− k2+ k3− k4 = 0 and |k1| − |k2| + |k3| − |k4| = 0

if and only if at least one of the following properties holds:

(a) k j ≥ 0 for all j .

(b) k j ≤ 0 for all j .

(c) k1 = k2 and k3 = k4.

(d) k1 = k4 and k3 = k2.
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Proof. Consider (k1, k2, k3, k4) ∈ Z4 such that k1− k2+ k3− k4 = 0, |k1|− |k2|+ |k3|− |k4| = 0, and the
k j are not all nonnegative or all nonpositive. Let us prove in that case that either k1 = k2 and k3 = k4,
or k1 = k4 and k3 = k2. Without loss of generality, we can assume that at least one of the k j is positive,
for instance k1. Then, subtracting both equations, we get that |k3| − k3 = |k2| − k2+ |k4| − k4. If k3 is
nonnegative, both k2 and k4 must be nonnegative; hence all the k j are nonnegative. Assume now that k3

is negative. At least one among k2, k4 is negative. If both of them are negative, then k3 = k2+ k4 but this
would imply k1 = 0 which is impossible by assumption. So we get either that k3 = k2 (and so k1 = k4) or
k3 = k4 (and so k1 = k2). This completes the proof of the lemma. �

4.2. First reduction. We get rid of the resonances corresponding to cases (c) and (d) by applying the
transformation

u(t) 7→ e2i tε2
‖u0‖

2
L2 u(t) (11)

which, since the L2 norm of u is conserved, leads to the equation

i∂t u− |D|u = ε2(|u|2− 2‖u‖2L2)u, u(0, · )= u0. (12)

Notice that this transformation does not change the H s norm. The Hamiltonian function associated to
(12) is given by

H(u)= 1
2(|D|u, u)+ 1

4ε
2(‖u‖4L4 − 2‖u‖4L2)= H0(u)+ ε2 R(u),

where
H0(u) : = 1

2(|D|u, u),

R(u) : = 1
4(‖u‖

4
L4 − 2‖u‖4L2)=

1
4

( ∑
k1−k2+k3−k4=0

k1 6=k2,k4

uk1uk2uk3uk4 −

∑
k∈Z

|uk |
4
)
.

4.3. The Poincaré–Birkhoff normal form. We claim that under a suitable canonical transformation on
u, H can be reduced to the Hamiltonian

H̃(u)= H0(u)+ ε2 R̃(u)+ O(ε4),

where
R̃(u)= 1

4

∑
(k1,k2,k3,k4)∈R

uk1uk2uk3uk4,

with

R=
{
(k1, k2, k3, k4) : k1−k2+k3−k4 = 0; k1 6= k2; k1 6= k4; k j ≥ 0 for all j or k j ≤ 0 for all j

}
.

We look for a canonical transformation as the value at time 1 of some Hamiltonian flow. In other
words, we look for a function F such that its Hamiltonian vector field is smooth on H s and on B1, so
that our canonical transformation is ϕ1, where ϕσ is the solution of

d
dσ
ϕσ (u)= ε2 X F (ϕσ (u)), ϕ0(u)= u. (13)
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Recall that, given a smooth real valued function F , its Hamiltonian vector field X F is defined by

d F(u).h =: ω(h, X F (u)),

and, given functions F,G admitting Hamiltonian vector fields, their Poisson bracket {F,G} is defined by

{F,G}(u)= ω(X F (u), XG(u)).

Let us make some preliminary remarks about the Poisson brackets.
In view of the expression of ω, we have

{F,G} := dG.X F =
2
i

∑
k

(∂k̄ F∂k G− ∂k̄ G∂k F)

where ∂k F stands for ∂F/∂uk and ∂k̄ F for ∂F/∂uk . In particular, if F and G are respectively homogeneous
of order p and q, then their Poisson bracket is homogeneous of order p+ q − 2.

Lemma 2. Set

F(u) :=
∑

k1−k2+k3−k4=0

fk,k2,k3,k4uk1uk2uk3uk4,

where

fk1,k2,k3,k4 =


i

4(|k1|−|k2|+|k3|−|k4|)
if |k1| − |k2| + |k3| − |k4| 6= 0,

0 otherwise.

Then X F is smooth on H s, s > 1
2 , as well as on B1, and

{F, H0}+ R = R̃,

‖DX F (u)h‖. ‖u‖2‖h‖,

where the norm is taken either in H s, s > 1
2 , or in B1.

Proof. First we make a formal calculation with F given by

F(u) :=
∑

k1−k2+k3−k4=0

fk1,k2,k3,k4uk1uk2uk3uk4

for some coefficients fk1,k2,k3,k4 to be determined later. We compute

{F, H0} =
1
i

∑
k1−k2+k3−k4=0

(−|k1| + |k2| − |k3| + |k4|) fk1,k2,k3,k4uk1uk2uk3uk4,

so that equality {F, H0}+ R = R̃ requires

fk1,k2,k3,k4 =


i

4(|k1|−|k2|+|k3|−|k4|)
if |k1| − |k2| + |k3| − |k4| 6= 0,

0 otherwise.
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One can easily check that the function F is explicitly given by

F(u)= 1
2 Im

(
(D−1

0 u−, |u+|2u+)− (D−1
0 u+, |u−|2u−)− (D−1

0 |u+|
2, |u−|2)

)
,

where D−1
0 is the operator defined by

D−1
0 u(x)=

∑
k 6=0

uk

k
eikx .

Notice that, since functions |u+|2 and |u−|2 are real valued, the quantity (D−1
0 |u+|

2, |u−|2) is purely
imaginary, and therefore is equal to i times its imaginary part.

In view of the formula above, the Hamiltonian vector field X F (u) is a sum of products of terms
involving the maps f 7→ f̄ , f 7→ D−1

0 f , f 7→5± f , ( f, g) 7→ f g. These maps are continuous on H s and
on B1. Hence, X F is smooth and its differential satisfies the claimed estimate on H s, s > 1

2 , and B1. �

The proof of the following technical lemma is based on straightforward calculations.

Lemma 3. The function R̃ and its Hamiltonian vector field are given by

R̃(u)= 1
4(‖u+‖

4
L4 +‖u−‖4L4)+Re((u, 1) (u−, u2

−
))− 1

2(‖u+‖
4
L2 +‖u−‖4L2),

i X R̃(u)=5+(|u+|
2u+)+5−(|u−|2u−)− 2‖u+‖2L2u+− 2‖u−‖2L2u−+ (u2

−
, u−)

+2(1, u)5−(|u−|2)+ (1, u)u2
−
,

where we have set u± :=5±(u).
The maps X{F,R} and X

{F,R̃} are smooth homogeneous polynomials of degree five on B1 and on H s for
every s > 1

2 .

We now perform the canonical transformation

χε := exp(ε2 X F ).

Lemma 4. Set ϕσ := exp(ε2σ X F ) for−1≤ σ ≤ 1. There exist m0 > 0 and C0 > 0 so that, for any u ∈ B1

so that ε‖u‖B1 ≤ m0, ϕσ (u) is well defined for σ ∈ [−1, 1] and

‖ϕσ (u)‖B1 ≤
3
2‖u‖B1,

‖ϕσ (u)− u‖B1 ≤ C0ε
2
‖u‖3B1,

‖Dϕσ (u)‖B1→B1 ≤ eC0ε
2
‖u‖2

B1 .

Moreover, the same estimates hold in H s, s > 1
2 , with some constants m(s) and C(s).

Proof. Write ϕσ as the integral of its derivative and use Lemma 2 to get

sup
|σ |≤τ

‖ϕσ (u)‖B1 ≤ ‖u‖B1 +Cε2 sup
|σ |≤τ

‖ϕσ (u)‖3B1, 0≤ τ ≤ 1. (14)

We now use the following standard bootstrap lemma.
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Lemma 5. Let a, b, T > 0 and τ ∈ [0, T ] 7→ M(τ ) ∈ R+ be a continuous function satisfying

M(τ )≤ a+ bM(τ )3 for all τ ∈ [0, T ].

Assume that
√

3b M(0) < 1 and
√

3b a < 2
3 . Then M(τ )≤ 3

2a for all τ ∈ [0, T ].

Proof. For the convenience of the reader, we give the proof of Lemma 5. The function f : z ≥ 0 7→ z−bz3

attains its maximum at zc = 1/
√

3b, equal to fm = 2/(3
√

3b). Consequently, since a is smaller than fm

by the second inequality,
{z ≥ 0 : f (z)≤ a} = [0, z−] ∪ [z+,+∞)

with z− < zc < z+ and f (z−)= a. Since M(τ ) belongs to this set for every τ and since M(0) belongs to
the first interval by the first inequality, we conclude by continuity that M(τ ) ≤ z− for every τ . By the
concavity of f , f (z)≥ 2

3 z for z ∈ [0, zc], hence z− ≤ 3
2a. �

Let us come back to the proof of Lemma 4. If ε‖u‖B1 <
2

3
√

3C
, Equation (14) and Lemma 5 imply that

sup
|σ |≤1
‖ϕσ (u)‖B1 ≤

3
2‖u‖B1, (15)

which is the first estimate. For the second one, we write for |σ | ≤ 1,

‖ϕσ (u)− u‖B1 = ‖ϕσ (u)−ϕ0(u)‖B1 ≤ |σ | sup
|s|≤|σ |

∥∥∥∥ d
ds
ϕs(u)

∥∥∥∥
B1
≤ C0ε

2
‖u‖3B1,

where the last inequality comes from Lemma 2 and estimate (15).
It remains to prove the last estimate. We differentiate the equation satisfied by ϕσ and use again

Lemma 2 to obtain

‖Dϕσ (u)‖B1→B1 ≤ 1+ ε2
∣∣∣∣∫ σ

0
‖DX F (ϕτ (u))‖B1→B1‖Dϕτ (u)‖B1→B1 dτ

∣∣∣∣
≤ 1+C0ε

2
‖u‖2B1

∣∣∣∣∫ σ

0
‖Dϕτ (u)‖B1→B1dτ

∣∣∣∣ ,
and Gronwall’s lemma yields the result. Analogous proofs give the estimates in H s . �

Let u satisfy the assumption of Lemma 4 in B1 or in H s for some s > 1
2 .

Let us compute H ◦χε = H ◦ϕ1 as the Taylor expansion of H ◦ϕσ at time 1 around 0. One gets

H ◦χε = H ◦ϕ1 = H0 ◦ϕ1+ ε
2 R ◦ϕ1

= H0+
d

dσ
[H0 ◦ϕσ ]σ=0+ ε

2 R+
∫ 1

0

(
(1− σ)

d2

dσ 2 [H0 ◦ϕσ ] + ε
2 d

dσ
[R ◦ϕσ ]

)
dσ

= H0+ ε
2({F, H0}+ R)+ ε4

∫ 1

0
((1− σ){F, {F, H0}}+ {F, R}) ◦ϕσ dσ

= H0+ ε
2 R̃+ ε4

∫ 1

0

(
(1− σ){F, R̃}+ σ {F, R}

)
◦ϕσ dσ

=: H0+ ε
2 R̃+ ε4

∫ 1

0
G(σ ) ◦ϕσ dσ.
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By Lemma 3, one gets
sup

0≤σ≤1
‖XG(σ )(w)‖ ≤ C‖w‖5

where the norm stands for the B1 norm or the H s norm. Since

XG(σ )◦ϕσ (u)= Dϕ−σ (ϕσ (u)).XG(σ )(ϕσ (u)),

we conclude from Lemma 4 that, if ε‖u‖B1 ≤ m0,

‖XG(σ )◦ϕσ (u)‖B1 ≤ C‖u‖5B1 .

As a consequence, one can write

X H◦χε = X H0 + ε
2 X R̃ + ε

4Y,

where, if ε‖u‖B1 ≤ m0, then
‖Y (u)‖B1 . ‖u‖5B1 .

An analogous estimate holds in H s , s > 1
2 .

4.4. End of the proof. We first deal with the B1-norm of a solution u of (12). We are going to prove
that ‖u(t)‖B1 = O(1) for t � 1/ε3 by the following bootstrap argument. We assume that for some K
large enough with respect to ‖u0‖B1 , for some T > 0, for all t ∈ [0, T ], we have ‖u(t)‖B1 ≤ 10K , and
we prove that if T � 1/ε3, ‖u(t)‖B1 ≤ K for t ∈ [0, T ]. This will prove the result by continuity.

Set, for t ∈ [0, T ],
ũ(t) := χ−1

ε (u(t)),

so that ũ is a solution of
i∂t ũ− |D|ũ = ε2i X R̃(ũ)+ ε

4iY (ũ).

Moreover, by Lemma 4,
‖ũ(t)− u(t)‖B1 . ε2

‖u‖3B1

and so by the hypothesis, ‖ũ(t)‖B1 ≤ 11K if ε is small enough. In view of the expression of the
Hamiltonian vector field of R̃ in Lemma 3, the equation for ũ reads{

i∂t ũ+− Dũ+ = ε2
(
5+(|ũ+|2ũ+)− 2‖ũ+‖2L2 ũ++

∫
T
|ũ−|2ũ−

)
+ ε4iY+(ũ),

i∂t ũ−+ Dũ− = ε2
(
5−(|ũ−|2ũ−)− 2‖ũ−‖2L2 ũ−+ 2(1, ũ)5−(|ũ−|2)+ (1, ũ)ũ2

−

)
+ ε4iY−(ũ).

Notice that all the Hamiltonian functions we have dealt with so far are invariant by multiplication by
complex numbers of modulus 1, hence their Hamiltonian vector fields satisfy

X (eiθ z)= eiθ z,

so that the corresponding Hamiltonian flows conserve the L2 norm. Hence ũ has the same L2 norm as u,
which is the L2 norm of u0. In particular, |(1, ũ)| ≤ ‖u0‖L2 .
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Moreover, as ‖u0‖B1 . ‖u0‖H s = O(1) since s > 1, ũ0 satisfies

‖ũ0− u0‖B1 . ε2

by Lemma 4, so that, as u0− = 0, we get ‖ũ0−‖B1 = O(ε2). Then we obtain from the second equation

sup
0≤τ≤t

‖ũ−(τ )‖B1 . ε2
+ ε2t ( sup

0≤τ≤t
‖ũ−(τ )‖3B1 + sup

0≤τ≤t
‖ũ−(τ )‖2B1)+ ε

4t K 5.

Let M(t)= 1
ε

sup0≤τ≤t ‖ũ−(τ )‖B1 , so that, if t ≤ T ,

M(t). ε+ ε3T M(t)2(1+ εM(t))+ ε3T .

As 3m2
≤ 1+ 2m3 for any m ≥ 0, we get

M(t). ε+ ε3T M(t)3+ ε3T .

Using Lemma 5, we conclude that, if T � 1/ε3,

sup
0≤τ≤T

‖ũ−(τ )‖B1 � ε.

For further reference, notice that, if T . 1
ε2 log 1

ε
, this estimate can be improved to

sup
0≤τ≤T

‖ũ−(τ )‖B1 . ε2−α for all α > 0.

We come back to the case T � 1/ε3. From the estimate on ũ−, we infer

‖ũ+‖2L2 = ‖ũ‖2L2 +O(ε2)= ‖u0‖
2
L2 +O(ε2),

and the equation for ũ+ reads

i∂t ũ+− Dũ+ = ε2 (5+(|ũ+|2ũ+)− 2‖u0‖
2
L2 ũ+

)
+ ε4iY+(ũ)+O(ε5)+O(ε4)ũ+.

Since ũ0+ is not small in B1, we have to use a different strategy to estimate ũ+. We use the complete
integrability of the cubic Szegő equation, especially its Lax pair and the conservation of the B1-norm.

At this stage it is of course convenient to cancel the linear term ‖u0‖
2
L2 ũ+ by multiplying ũ+(t) by

e2iε2t‖u0‖
2
L2 . As pointed out before, this change of unknown is completely transparent to the above system.

This leads to
i∂t ũ+− Dũ+ = ε25+(|ũ+|2ũ+)+ ε4Y+(ũ)+O(ε5)+O(ε4)ũ+.

Notice that all the O terms above are measured in B1 norm. We now appeal to the results recalled in
Section 2. We introduce the unitary family U (t) defined by

i∂tU − DU = ε2(T|ũ+|2 −
1
2 H 2

ũ+)U, U (0)= I,

so that, using formula (8),

i∂t(U (t)∗Hũ+(t)U (t))= ε
4U (t)∗HY+(ũ)+O(ε)+O(1)ũ+U (t).
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Then, we use the theorem from [Peller 1982] that states, as recalled in Section 2, that the trace norm of a
Hankel operator of symbol b is equivalent to the B1-norm of b to obtain

‖ũ+(t)‖B1 ' Tr|Hũ+(t)|

. Tr|Hũ0+ | + ε
4
∫ t

0
(Tr|HY+(ũ)(τ )| +Tr|Hũ+(τ )| + ε) dτ

. ‖ũ0+‖B1 + ε4
∫ t

0
(‖ũ(τ )‖5B1 +‖ũ+(τ )‖B1 + ε) dτ

so that as ‖ũ(t)‖B1 ≤ 11K ,
‖ũ+(t)‖B1 . ‖ũ0+‖B1 + ε4t (11K )5,

and, if t � 1/ε3 and ε is small enough,

‖ũ(t)‖B1 ≤
K
10
.

Using again the second estimate in Lemma 4, we infer

‖u(t)‖B1 ≤ K .

Finally, using the inverse of transformation (11) and multiplying u by ε, we obtain estimate (6) of
Theorem 1.1.

We now estimate the difference between the solution of the wave equation and the solution of the cubic
Szegő equation. Since we have applied transformation (11), we have to compare in B1 the solution u of
(12) to the solution v of equation

i∂tv− Dv = ε2(5+(|v|
2v)− 2‖u0‖

2
L2v) , v(0)= u0.

Notice that, as u0 is bounded in H s , s > 1, and as the B1 norm is conserved by the cubic Szegő flow,

‖v(t)‖B1 ' ‖u0‖B1 . ‖u0‖H s = O(1).

We shall prove that, for every α > 0, there exists cα > 0 such that,

‖u(t)− v(t)‖B1 ≤ ε2−α for all t ≤
cα
ε2 log

1
ε
.

In view of the previous estimates, it is enough to prove that, on the same time interval,

‖ũ+(t)− v(t)‖B1 ≤ ε2−α,

where ũ+ satisfies {
i∂t ũ+− Dũ+ = ε2 (5+(|ũ+|2ũ+)− 2‖u0‖

2
L2 ũ+

)
+O(ε4),

ũ+(0)= ũ0,+.
(16)

As ‖ũ(t)‖B1 . 1, ‖v(t)‖B1 . 1, ‖ũ0,+− u0‖B1 ≤ ε2
‖u0‖B1 . ε2 and

(i∂t − D)(ũ+− v)= ε25+(|ũ+|2ũ+− |v|2v− 2‖u0‖
2
L2(ũ+− v))+O(ε4),
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we get, using that B1 is an algebra on which 5+ acts,

‖ũ+(t)− v(t)‖B1 . ε2
+ ε4t + ε2

∫ t

0
‖ũ+(τ )− v(τ)‖B1 dτ.

This yields
‖ũ+(t)− v(t)‖B1 . (ε2

+ ε4t)eε
2t
;

hence, for t ≤ cα
ε2 log 1

ε
,

‖ũ+(t)− v(t)‖B1 ≤ ε2−α.

We now turn to the estimates in H s for s > 1.
From the equation on v and the a priori estimate in B1, it follows that ‖v(t)‖H s ≤ AeAε2t , t > 0, so

that ‖v(t)‖H s ≤ N (ε) for t ≤ (c/ε2) log(1/ε), 0< c� 1, where N (ε) := Aε−cA.
Let us assume that for some T > 0,

‖u(t)‖H s ≤ 10N (ε) for all t ∈ [0, T ].

We are going to prove that, for every α > 0, there exists cα > 0 such that, if

T ≤
cα
ε2 log

1
ε
,

then
‖u(t)− v(t)‖H s ≤ ε2−α for all t ∈ [0, T ]

Since ‖v(t)‖H s ≤ N (ε) for t ≤ (c/ε2) log(1/ε), this will prove the result by a bootstrap argument.
As before, we perform the same canonical transformation

ũ(t) := χ−1
ε (u(t)),

to get the solution of
i∂t ũ− |D| ũ = ε2i X R̃(ũ)+ ε

4iY (ũ).

By Lemma 4,
‖ũ(t)− u(t)‖H s . ε2 N (ε)3

and so ‖ũ(t)‖H s . N (ε). Therefore it suffices to prove that

‖ũ(t)− v(t)‖H s ≤ ε2−α for all t ∈ [0, T ].

We first deal with ũ−. A similar argument to the one developed in B1 gives that for, for 0≤ t . 1
ε2 log 1

ε
,

sup
0≤τ≤t

‖ũ−(τ )‖H s ≤ Cαε2−α

for every α > 0.
It remains to estimate the H s norm of ũ+− v. Notice that

‖ũ0,+− u0‖H s ≤ ε2
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by Lemma 4. We use the following inequality — recall that B1
⊂ L∞:∥∥5+(|u|2u−|v|2v)

∥∥
H s .

(
‖u‖2B1+‖v‖

2
B1

)
‖u−v‖H s+

(
‖v‖H s+‖u−v‖H s

)(
‖u‖B1+‖v‖B1

)
‖u−v‖B1 .

Plugging this into a Gronwall inequality, in view of the previous estimates, we finally get

‖ũ+(t)− v(t)‖H s ≤ ε2−α

for t ≤ cα
ε2 log 1

ε
. This completes the proof.

Appendix: A necessary condition for wellposedness

In this section, we justify that the boundedness in H s of the first iteration map of the Duhamel formula

F(t)= e−i t |D| f − i
∫ t

0
e−i(t−τ)|D|(|F(τ )|2 F(τ )) dτ

implies ∫ 1

0
‖e−i t |D| f ‖4L4(T)

dt . ‖ f ‖4H s/2 .

Indeed, assume the inequality∥∥∥∥∫ 1

0
e−i(1−τ)|D|(|e−iτ |D| f |2e−iτ |D| f )dτ

∥∥∥∥
H s
. ‖ f ‖3H s .

We compute the scalar product of the expression in the left hand side with e−i |D| f and we get∫ 1

0
‖e−iτ |D| f ‖4L4dτ . ‖ f ‖3H s‖ f ‖H−s .

If we assume first that f is spectrally supported, that is if f =1N f for some N , then ‖ f ‖H±s ' N±s
‖ f ‖L2

and the preceding inequality becomes∫ 1

0
‖e−iτ |D| f ‖4L4dτ . N 2s

‖ f ‖4L2 .

Finally, for general f =
∑

N 1N ( f ), we used the Littlewood–Paley estimate

‖g‖4L4 .
∑

N

‖1N g‖4L4

to get ∫ 1

0
‖e−iτ |D| f ‖4L4dτ . ‖ f ‖4H s/2 .
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NONLINEAR SCHRÖDINGER EQUATION
AND FREQUENCY SATURATION

RÉMI CARLES

We propose an approach that permits to avoid instability phenomena for the nonlinear Schrödinger
equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off,
global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between
the exact solution and its approximation can be measured according to the regularity of the exact solution,
with different accuracy according to the cases considered.

1. Introduction

We consider the nonlinear Schrödinger equation

i∂t u+1u = ε|u|2σu, (t, x) ∈ I ×Rd , u|t=0 = u0, (1-1)

for some time interval I 3 0, with ε = 1 (defocusing case) or ε =−1 (focusing case). The aim of this
paper is to propose an approach to overcome the lack of local well-posedness in Sobolev spaces with
nonnegative regularity.

Recall two important invariances associated to (1-1):

• Scaling: if u solves (1-1), then for λ > 0, so does uλ(t, x) := λ1/σu(λ2t, λx). This scaling leaves
the Ḣ sc

x -norm invariant, with sc = d/2− 1/σ .

• Galilean: if u solves (1-1), then for v ∈ Rd , so does eiv·x−i |v|2t/2u(t, x − vt). This transform leaves
the L2

x -norm invariant.

These two arguments suggest that the critical Sobolev regularity to solve (1-1) is max(sc, 0). Indeed,
if sc > 0, local well-posedness from H s(Rd) to H s(Rd) for s > sc has been established in [Cazenave
and Weissler 1990], and if sc < 0, local well-posedness from H s(Rd) to H s(Rd) for s > 0 has been
established in [Tsutsumi 1987].

If sc > 0, pathological phenomena have been exhibited for initial data in H s(Rd) with 0 < s < sc;
Gilles Lebeau has proved a “norm inflation” phenomenon for the wave equation ∂2

t u −1u + u p
= 0,

x ∈ R3, p ∈ 2N+ 1, p > 7 [Lebeau 2001; Métivier 2004]. The analogous result for (1-1) is this:

This work was supported by the French ANR project R.A.S. number ANR-08-JCJC-0124-01.
MSC2010: primary 35Q55; secondary 35A01, 35B30, 35B45, 35B65.
Keywords: nonlinear Schrödinger equation, well-posedness, approximation.
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Theorem 1.1 [Christ et al. 2003; Burq et al. 2005]. Let σ > 1. Assume that sc = d/2− 1/σ > 0, and let
0< s < sc. There exists a family (uh

0)0<h61 in S(Rd) with

‖uh
0‖H s(Rd )→ 0 as h→ 0,

a solution uh to (1-1) and 0< th
→ 0, such that

‖uh(th)‖H s(Rd )→+∞ as h→ 0.

The argument of the proof consists in considering concentrated initial data

u0(x)= hs−d/2(log 1/h)−αa0

( x
h

)
, with h→ 0,

and showing that for very short time, the Laplacian can be neglected in (1-1). The above result then stems
from its (easy) counterpart in the ODE case, by choosing a suitable α > 0. In the spirit of [Lebeau 2005],
the above result has been strengthened to a “loss of regularity” in [Alazard and Carles 2009; Carles 2007;
Thomann 2008]. The assumptions and conclusion are similar to that in Theorem 1.1; the only difference
is that uh(th, · ) is measured in H k(Rd) for any k > s/(1+ σ(sc− s)), so k is allowed to be smaller than
s. In all the cases mentioned here, the lack of uniform continuity of the nonlinear flow map near the
origin is due to the appearance of higher and higher frequencies on a very short time scale. If sc < 0,
similar pathological phenomena have been established in H s(Rd) with s < 0, where on the contrary, low
frequencies are ignited; see [Bejenaru and Tao 2006; Carles et al. 2012; Christ et al. 2003; Kenig et al.
2001]. In the rest of this paper, we focus on nonnegative regularity, s > 0.

The goal of this paper is twofold. First, we want to investigate a method to remove the pathology
mentioned above, causing a lack of well-posedness for (1-1), in a deterministic way, as opposed to the
probabilistic approach initiated in [Burq and Tzvetkov 2008a; 2008b] for the wave equation. The other
motivation is related to numerical simulations for (1-1), where high frequencies may be a source of
important errors; see for instance [Ignat and Zuazua 2012], a reference which will be discussed in further
detail in Sections 3 and 4.

We show that with a suitable cut-off on the high frequencies of the nonlinearity, the obstructions to
local well-posedness vanish, and the problem becomes globally well-posed: the nonlinear evolution of
any initial datum in L2(Rd) can be controlled a priori, an information which may be useful for numerics,
since we do not have to decide if the initial datum belongs to a full measure set or not. This strategy is
validated inasmuch as this procedure yields a good approximation of the solution to (1-1) as the cut-off
tends to the identity. Note that this approach can be viewed as a deterministic counterpart of the one
presented in [Burq et al. 2012] (see also [Burq 2011]). There, for the one-dimensional L2-supercritical
defocusing nonlinear Schrödinger equation, the authors construct a Gibbs measure such that, among other
features, the pathological phenomenon described in Theorem 1.1 occurs for a set of initial data whose
measure is zero: on the support of the Gibbs measure, the Cauchy problem is globally well-posed, and
a scattering theory is available. Both points of view aim at showing that norm inflation in the sense of
Theorem 1.1 is a rare phenomenon: in [Burq et al. 2012], the authors give a rigorous meaning to this
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statement in an abstract way, while we are rather interested in a recipe to avoid instabilities for sure, by a
suitable approximation of the equation, which can be used typically for numerical simulations.

Our choice of cutting off the high frequencies instead of, for instance, the values of the function itself
is indeed motivated by numerics, where it is standard to filter out high frequencies (sometimes without
even saying so). In an appendix, we discuss another approach, consisting in saturating the values of the
nonlinearity. One could of course combine both approaches, frequency and physical saturations.

Notation. We define the Fourier transform by the formula

f̂ (ξ)= F( f )(ξ)= 1
(2π)d/2

∫
Rd

e−i x ·ξ f (x) dx, f ∈ S(Rd).

We write a . b if there exists C such that a 6 Cb. In the presence of a small parameter h, the notation
indicates that C is independent of h ∈ (0, 1].

2. From instability to global well-posedness

Let χ : Rd
→ [0, 1] be a smooth function, equal to one on the unit ball, and even: χ(−x)= χ(x) for all

x ∈ Rd . It may be compactly supported, in the Schwartz class S(Rd), or with a slower decay at infinity.
For simplicity, we will not discuss sharp assumptions on χ . We define the frequency “cut-off” 5 as the
Fourier multiplier

5̂( f )(ξ)= χ(ξ) f̂ (ξ).

As pointed out in the introduction, in the examples constructed to prove the lack of local well-posedness,
the mechanism of high frequencies amplification occurs at the level of the ordinary differential equation.
We discuss some strategies to saturate high frequencies at the ODE level first, with ε = 1 for simplicity.

2A. Candidates at the ODE level. The first possibility to prevent the appearance of high frequencies by
nonlinear self-interaction consists in saturating the whole nonlinearity:

i∂tv =5(|v|
2σv). (2-1)

This can be viewed as an extremely simplified version of the I -method (see [Colliander et al. 2002]).
Another choice consists in saturating the high frequencies in the “nonlinear multiplicative potential” only,
that is |v|2σ . For σ ∈ N, we propose two possibilities,

i∂tv =5(|v|
2σ )v, (2-2)

i∂tv =
(
5(|v|2)

)σ
v. (2-3)

In the cubic case σ =1, the last two approaches obviously coincide. These approaches have two advantages
over (2-1):

• They preserve gauge invariance. If v solves the equation, then so does veiθ for any constant θ ∈ R.

• They preserve conservation of mass.
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To see the second point, rewrite 5( f ) as K ∗ f , with K (x) = (2π)−d/2χ̂(−x). Since χ is even and
real-valued, so is K , and therefore ∂t |v|

2
= 0 in (2-2) and (2-3). This identity leads to the conservation of

the L2-norm at the PDE level.
Before passing to the PDE case, we conclude this section by showing that even at the ODE level, cutting

off high frequencies in the initial data does not suffice to prevent the appearance of higher frequencies in
the solution for positive time. For a ∈ S(Rd) and s > 0, consider the solution vh to

i∂tv
h
= |vh

|
2σvh, vh(0, x)= hs−d/2a

( x
h

)
.

Then vh
|t=0 is bounded in H s(Rd), uniformly in h ∈ (0, 1], and if â is compactly supported (in B(0, R)),

then v̂h
|t=0 is compactly supported (in B(0, R/h)). Since ∂t |v

h
|
2
= 0, we have the explicit formula

vh(t, x)= hs−d/2a
( x

h

)
exp

(
−i th2σ(s−d/2)

∣∣∣a( x
h

)∣∣∣2σ).
We check that for t > 0, as h→ 0, the homogeneous Sobolev norms behave like

‖vh(t)‖Ḣ k ≈ hs−2kσ(s−d/2)−k tk,

at least for k ∈ N. The above quantity is unbounded as h→ 0 if

k > s
1+2σ(s−d/2)

.

Therefore, if s<d/2, vh(t, · ) is unbounded in H s(Rd) for t > 0, as h→ 0: cutting off the high frequencies
in the initial data does not suffice to control the frequency support of the solution. On the other hand,
the models (2-2) and (2-3) prevent the appearance of high frequencies by nonlinear self-interaction. The
above mechanism is essentially the one that leads to the norm inflation phenomenon in [Burq et al. 2005;
Christ et al. 2003; Lebeau 2001], except that in those papers, the approximation by an ODE is used only
on a time interval where the H s-norm becomes unbounded, but not the H k-norm for any k < s. The above
mechanism at the PDE level leads to the loss of regularity [Alazard and Carles 2009; Carles 2007; Lebeau
2005; Thomann 2008], where indeed k is allowed to be smaller than s, as recalled in the introduction.
Roughly speaking, the appearance of oscillations is quite similar to the above ODE example; in the PDE
case, the numerology is different, and the proof is more intricate.

2B. Choice at the PDE level. We consider now the equations

i∂t u+ P(D)u = ε5(|u|2σ )u, (2-4)

i∂t u+ P(D)u = ε
(
5(|u|2)

)σ
u, (2-5)

where P(D) is a Fourier multiplier with a real-valued symbol P : Rd
→ R,

P̂(D) f = P(ξ) f̂ (ξ).

The L2-norm of u is formally independent of time:

d
dt

∫
Rd
|u(t, x)|2 dx = 0. (2-6)
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In view of this conservation and of the Young inequality

‖5( f )‖L∞ 6 ‖K‖L∞‖ f ‖L1, (2-7)

the option (2-5) seems more interesting than (2-4), and we have the following result.

Theorem 2.1. Let σ ∈ N, ε ∈ {±1}, P : Rd
→ R and χ ∈ S(Rd) even and real-valued.

• For any u0 ∈ L2(Rd), (2-5) has a unique solution u ∈C(R; L2(Rd)) such that u|t=0= u0. Its L2-norm
is independent of time; (2-6) holds.

• If in addition u0 ∈ H s(Rd), s ∈ N, then u ∈ C(R; H s(Rd)).

• The flow map u0 7→ u is uniformly continuous from the balls in L2(Rd) to C(R; L2(Rd)). More
precisely, for all u0, v0 ∈ L2(Rd), there exists C depending on σ , ‖K‖L∞ , ‖u0‖L2 and ‖v0‖L2 such
that, for all T > 0,

‖u− v‖L∞([−T,T ];L2(Rd )) 6 ‖u0− v0‖L2(Rd )e
CT , (2-8)

where u and v denote the solutions to (2-5) with initial data u0 and v0, respectively.

• More generally, let s ∈N. For all u0, v0 ∈ H s(Rd), there exists C depending on σ , ‖K‖W s,∞ , ‖u0‖H s

and ‖v0‖H s such that for all T > 0,

‖u− v‖L∞([−T,T ];H s(Rd )) 6 ‖u0− v0‖H s(Rd )e
CT . (2-9)

Remark 2.2. As pointed out in [Cazenave et al. 2011], even if the solution is constructed by a fixed point
argument, the continuity of the flow map is not trivial in general. In the case of Schrödinger equations
(1-1), continuity of the flow map in H s(Rd) is known only in a limited number of cases: see [Tsutsumi
1987] for s = 0, [Kato 1987] for s = 1 and s = 2, and [Cazenave et al. 2011] for 0< s < 1.

Proof. First, recall that S(t)= e−i t P(D) is a unitary group on Ḣ s(Rd), s ∈R. Duhamel’s formula associated
to (2-5) reads

u(t)= S(t)u0− iε
∫ t

0
S(t − τ)

(
(K ∗ |u|2)σu

)
(τ ) dτ. (2-10)

The local existence in L2 stems from a standard fixed point argument in

X (T )=
{
u ∈ C([−T, T ]; L2(Rd))

∣∣ ‖u‖L∞([−T,T ];L2) 6 2‖u0‖L2
}
.

Denote by 8(u)(t) the right hand side of (2-10). In view of (2-7), for t ∈ [−T, T ],

‖8(u)(t)‖L2 6 ‖u0‖L2 +

∫
−T

∥∥((K ∗ |u|2)σu
)
(τ )
∥∥

L2 dτ

6 ‖u0‖L2 +

∫ T

−T

∥∥K ∗ |u(τ )|2
∥∥σ

L∞ ‖u(τ )‖L2 dτ

6 ‖u0‖L2 +‖K‖σL∞
∫ T

−T
‖u(τ )‖2σ+1

L2 dτ.

By choosing T > 0 sufficiently small, we see that X (T ) is stable under the action of 8. Note that in the
case of the model (2-4), the above estimate would have to be adapted, forcing us to work in a space smaller
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than X (T ) (L2 regularity in space would no longer be sufficient in general). Contraction is established in
the same way:

‖8(u)(t)−8(v)(t)‖L2 6
∫ T

−T

∥∥((K ∗ |u|2)σu
)
(τ )−

(
(K ∗ |v|2)σv

)
(τ )
∥∥

L2 dτ

6
∫ T

−T

∥∥((K ∗ |u|2)σ − (K ∗ |v|2)σ )u∥∥L2 dτ +
∫ T

−T

∥∥((K ∗ |v|2)σ )(u− v)∥∥L2 dτ.

Using the estimate |aσ − bσ |. (|a|σ−1
+ |b|σ−1)|a− b|, and (2-7) again, we infer

‖8(u)(t)−8(v)(t)‖L2

. ‖K‖σL∞
∫ T

−T

(
‖u‖2σ−1

L2 +‖v‖2σ−1
L2

)
‖u− v‖L2‖u‖L2 dτ +‖K‖σL∞

∫ T

−T
‖v‖2σL2‖u− v‖L2 dτ,

where all the functions inside the integrals are implicitly evaluated at time τ . Choosing T > 0 possibly
smaller, 8 is a contraction on X (T ). Note that this small time T depends only on σ , ‖K‖L∞ and ‖u0‖L2 .
Since the L2-norm of u is preserved (see [Cazenave 2003] for a rigorous justification), the construction
of a local solution can be repeated indefinitely, hence global existence and uniqueness at the L2 level.

Global existence in H s(Rd) for s ∈ N then follows easily, thanks to the estimate∥∥(K ∗ |u|2)σu
∥∥

H s .
∑

|α|+|β|=s

∥∥∂α(K ∗ |u|2)σ ∂βu
∥∥

L2 . ‖K‖σW s,∞‖u‖σL2‖u‖H s .

The continuity of the flow map in L2 is obtained by resuming the estimate written to establish the
contraction of 8: For t > 0,

‖u(t)− v(t)‖L2 6 ‖u0− v0‖L2 +‖K‖σL∞
∫ t

0

(
‖u‖2σL2 +‖v‖

2σ
L2

)
‖u− v‖L2 dτ

6 ‖u0− v0‖L2 +‖K‖σL∞
(
‖u0‖

2σ
L2 +‖v0‖

2σ
L2

) ∫ t

0
‖u− v‖L2 dτ,

where we have used the conservation of the L2-norm. Proceeding similarly for t < 0, Gronwall’s lemma
then yields (2-8) for C depending only of σ , ‖K‖L∞ , ‖u0‖L2 and ‖v0‖L2 . Finally, (2-9) is obtained in a
similar fashion. �

Remark 2.3. The proof of continuity of the flow map is easy. This is in sharp contrast with the case of
the equation without frequency cut-off. In the case of Schrödinger equations (P(ξ)=−|ξ |2), continuity
is more intricate to establish (see [Tsutsumi 1987]), and is true only for L2-subcritical nonlinearities,
σ 6 2/d, from [Christ et al. 2003].

We note that even for large σ , global well-posedness in L2 is available, in sharp contrast with the
nonlinear Schrödinger equation (1-1). Even in the focusing case ε = −1, the high frequency cut-off
prevents finite time blow-up. In (2-9), consider v0 = v = 0 and s = 1 for instance: by comparison with
the case of (1-1), we see that the constant C necessarily depends on K (or equivalently on χ), and is
unbounded as χ converges to the Dirac mass. The frequency cut-off 5 removes the instabilities, and
prevents finite time blow-up.
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Remark 2.4 (Hamiltonian structure in the cubic case). If σ = 1, (2-4) and (2-5) coincide. We have the
equivalence

χ even and real-valued ⇐⇒ K even and real-valued.

This implies that under the assumption of Theorem 2.1, (2-5) has an Hamiltonian structure, and the
conserved energy is

H(u)=
∫

Rd
u(x)P(D)u(x) dx + ε

2

∫∫
K (x − y)|u(y)|2|u(x)|2 dxdy.

3. Convergence in the smooth case

Suppose that P(D) converges to 1 and that 5 converges to Id, does the solution to (2-5) then converge
to the solution of NLS? We show that this is the case under suitable assumptions on these convergences,
at least in the case where the solution to the limiting Equation (1-1) is very smooth. In the sequel, the
convergence is indexed by h ∈ (0, 1].

Proposition 3.1. Let σ ∈ N. We assume that P and 5 verify the following properties:

• There exist α, β > 0 such that Ph(ξ)=−|ξ |
2
+O(hα〈ξ〉β).

• χh(ξ)= χ (hξ), with χ ∈ S(Rd
; [0, 1]) even, real-valued, χ = 1 on the unit ball.

Denote by uh the solution to (2-5) with Ph and χh , such that uh
|t=0 = u|t=0. Suppose that the solution to

(1-1) satisfies u ∈ L∞([0, T ]; H s+β), for some s > d/2. Then

‖u− uh
‖L∞([0,T ];H s) . hmin(α,β).

Example 3.2. The above assumption on Ph is satisfied with α = 1 and β = 2 in the following cases:

• Ph(ξ)=
−|ξ |2

1+h|ξ |2
.

• Ph(ξ)=−
1
h

arctan(h|ξ |2).

The second example is borrowed from [Debussche and Faou 2009], where this truncated operator appears
naturally when discretizing the Laplacian for numerical schemes.

Remark 3.3. In this result, no assumption is needed on the possible decay of χ at infinity.

Proof. Let wh
= u− uh . It satisfies wh

|t=0 = 0 and

i∂tw
h
+ Ph(D)wh

= ε(5h(|u|2))σu− ε(5h(|uh
|
2))σuh

+ (Ph(D)−1) u+ ε
(
|u|2σ − (5h(|u|2))σ

)
u,

where we have denoted by 5h the Fourier multiplier of symbol χh . Denote by Rh(u) the second line,
which corresponds to a source term. In view of the assumption on Ph , there exists C independent of
h ∈ (0, 1] such that

‖Ph(D) f −1 f ‖H s 6 Chα‖ f ‖H s+β for all f ∈ H s+β(Rd).
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We also have, by the Plancherel formula,

‖(1−5h) f ‖2H s =

∫
Rd
(1−χ(hξ))2〈ξ〉2s

| f̂ (ξ)|2dξ

6
∫
|ξ |>1/h

〈ξ〉2s
| f̂ (ξ)|2dξ 6 h2β

∫
|ξ |>1/h

〈ξ〉2s+2β
| f̂ (ξ)|2dξ 6 h2β

‖ f ‖2H s+β .

Therefore,

‖Rh(u)‖L∞([0,T ];H s) . hmin(α,β)
‖u‖L∞([0,T ];H s+β ).

Now since s > d/2, H s(Rd) is an algebra, and there exists C independent of h such that∥∥(5h(|u|2))σu− (5h(|uh
|
2))σuh

∥∥
H s 6 C‖χ̂‖σL1

(
‖u‖2σH s +‖uh

‖
2σ
H s

)
‖u− uh

‖H s ,

where the Young inequality that we have used is not the same as in Section 2:

‖K ∗ f ‖L2 6 ‖K‖L1‖ f ‖L2 .

This is essentially the only way to obtain an estimate independent of h ∈ (0, 1]. Indeed, 5h( f )= Kh ∗ f ,
with

Kh(x)=
1

(2π)d/2hd χ̂
(
−x
h

)
.

The result then stems from a bootstrap argument: so long as

‖uh
‖L∞([0,t];H s) 6 1+‖u‖L∞([0,T ];H s),

Gronwall’s lemma yields

‖u− uh
‖L∞([0,t];H s) . hmin(α,β)

‖u‖L∞([0,T ];H s+β ).

Therefore, up to choosing h sufficiently small, this estimate is valid up to t = T . �

Such a convergence result can be compared to the one proved in [Ignat and Zuazua 2012] to prove the
convergence of numerical approximations. The approach there is a bit different though, inasmuch as the
frequency cut-off does not affect the nonlinearity (as in (2-5)), but the initial data: consider a solution
vh to

i∂tv
h
+ Ph(D)vh

= ε|vh
|
2σvh, vh

|t=0 =5hu0.

Ignat and Zuazua proved that the discrete analogue of 5hu− vh is small. Proposition 3.1 differs from
their results in several aspects:

• The context in [Ignat and Zuazua 2012] is discrete.

• Only the low frequency part of u, 5hu, is shown to be well approximated.

• The regularity assumption on u may be much weaker.
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As mentioned above, the second point is due to the choice of the model. However, as discussed in
Section 2A, controlling the high frequencies of the initial data must not be expected to ensure a control of
high frequencies of the solution vh for positive time.

The third point is due to the use of Strichartz estimates in [Ignat and Zuazua 2012]. In the next section,
we show that in the presence of dispersion (with Ph(ξ) = −|ξ |

2), Proposition 3.1 can be adapted to
rougher data.

4. Convergence using dispersive estimates

We first recall a standard definition.

Definition 4.1. A pair (p, q) 6= (2,∞) is admissible if p > 2, q > 2, and

2
p
= d

(1
2
−

1
q

)
.

We shall consider (2-5) when P(D) is exactly the Laplacian, and not an approximation as in Proposi-
tion 3.1. The reason is that when P is bounded, then no Strichartz estimate is available, as we now recall.
Let S( · ) be bounded on H s for all s > 0. By the Sobolev embedding, for all (p, q) (not necessarily
admissible) with 26 q <∞, there exists C > 0 such that for all u0 ∈ H d/2−d/q(Rd), and all finite time
interval I ,

‖S( · )u0‖L p(I ;Lq (Rd ))6C‖S( · )u0‖L p(I ;Hd/2−d/q (Rd ))6C‖u0‖L p(I ;Hd/2−d/q (Rd ))=C |I |1/p
‖u0‖Hd/2−d/q (Rd ).

If the Fourier multiplier P is bounded, the above estimate cannot be improved, in sharp contrast with the
result provided by the Strichartz estimates.

Proposition 4.2 [Carles 2011]. Let d > 1, and P ∈ L∞(Rd
;R). Write S(t) = e−i t P(D). Suppose that

there exist an admissible pair (p, q), an index k ∈ R, a time interval I 3 0, |I |> 0, and a constant C > 0
such that

‖S( · )u0‖L p(I ;Lq (Rd )) 6 C‖u0‖H k(Rd ) for all u0 ∈ H k(Rd).

Then necessarily k > 2/p = d/2− d/q.

We now state the main result of this section.

Theorem 4.3. Let σ ∈ N and T > 0. We assume that χh(ξ)= χ (hξ), with χ ∈ S(Rd) even, real-valued,
χ = 1 on B(0, 1). Let u solve (1-1), and consider the solution uh to

i∂t uh
+1uh

= ε
(
5h
(
|uh
|
2))σuh, uh

|t=0 = u0.

1. Suppose that σ = 1 and d 6 2. If u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];L2)−→

h→0
0.

2. Suppose that σ = 1 and d = 3.
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• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];H1)−→

h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖u− uh
‖L∞([0,T ];L2) . hs and ‖u− uh

‖L∞([0,T ];H1) . hs−1.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖u− uh
‖L∞([0,T ];L2) . hs and ‖u− uh

‖L∞([0,T ];H1)−→
h→0

0.

If in addition s > 1, then

‖u− uh
‖L∞([0,T ];H1) . hs−1.

Remark 4.4. Suppose u0 sufficiently smooth. If ε =+1 (defocusing case), the bounds for u are known
in several cases, with T > 0 arbitrarily large. On the contrary, if ε =−1 (focusing case), T may have
to be finite, bounded by a blow-up time. See [Cazenave 2003; Ginibre and Velo 1984]. Typically, if
σ = d = 1, then the assumption of the first point is fulfilled for all T > 0 as soon as u0 ∈ L2(R), for
ε ∈ {±1}, from [Tsutsumi 1987], and if σ > 1, d 6 2, the assumption of the third point is fulfilled for all
T > 0 as soon as u0 ∈ H s(Rd), for ε =+1, from [Ginibre and Velo 1984].

Proof. For fixed h > 0, Theorem 2.1 shows that uh
∈ C(R; H k), with k = 0, 1 or s according to the cases

considered in the assumptions of the theorem. Of course, the bounds provided by Theorem 2.1 blow up
as h→ 0 if k > 0.

As in the proof of Proposition 3.1, let wh
= u−uh . The equation satisfied by wh is simpler than in the

proof of Proposition 3.1, since Ph(D)=1:

i∂tw
h
+1wh

= ε
(
5h(|u|2)

)σ
u− ε

(
5h(|uh

|
2)
)σ

uh
+ ε

(
|u|2σ −

(
5h(|u|2)

)σ )u.
We resume the notation

Rh(u)= ε
(
|u|2σ −

(
5h(|u|2)

)σ )u and 5h( f )= Kh ∗ f,

with Kh(x)= (2π)−d/2h−d χ̂(−x/h). From the Young inequality, we have, for all q ∈ [1,∞],

‖5h( f )‖Lq 6 ‖Kh‖L1‖ f ‖Lq 6 ‖χ̂‖L1‖ f ‖Lq , (4-1)

an estimate which is uniform in h > 0. Introduce the Lebesgue exponents

q = 2σ + 2, p = 4σ+4
dσ

, θ =
2σ(2σ+2)
2−(d−2)σ

.

The pair (p, q) is admissible, and

1
q ′
=

2σ
q
+

1
q
,

1
p′
=

2σ
θ
+

1
p
. (4-2)
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For t > 0, write L j
t Lk
= L j ([0, t]; Lk(Rd)). From the Strichartz estimates (see [Cazenave 2003]),

‖wh
‖L p

t Lq∩L∞t L2 .
∥∥(5h(|u|2)

)σ
u−

(
5h(|uh

|
2)
)σ

uh
∥∥

L p′
t Lq′ +‖R

h(u)‖
L

p′1
t Lq′1

.
(
‖u‖2σLθt Lq +‖u

h
‖

2σ
Lθt Lq

)
‖wh
‖L p

t Lq +‖Rh(u)‖
L

p′1
t Lq′1

,

where we have used the Hölder inequality and (4-1), and where (p1, q1) is an admissible pair whose
value will be given later.

If σ = 1 and d 6 2, then θ 6 p, and we infer

‖wh
‖L p

t Lq∩L∞t L2 . t1/θ−1/p(
‖u‖2σL p

t Lq +‖u
h
‖

2σ
L p

t Lq

)
‖wh
‖L p

t Lq +‖Rh(u)‖
L

p′1
t Lq′1

.

In the first case of the theorem, we assume u ∈ L p([0, T ]; Lq), since p = 8/d and q = 4 for σ = 1.
We use again a bootstrap argument: so long as ‖uh

‖L p
t Lq 6 2‖u‖L p

t Lq , we divide the interval [0, T ] into
finitely many small intervals so the first term of the right hand side is absorbed by the left hand side
(recall that p is finite), and we have

‖wh
‖L p

t Lq∩L∞t L2 . ‖Rh(u)‖
L

p′1
t Lq′1

.

The bootstrap argument is validated provided that ‖Rh(u)‖
L

p′1
T Lq′1
→ 0 as h→ 0.

If we have only σ < 2/(d − 2), then by the Sobolev embedding,

‖u‖Lθt Lq 6 t1/θ
‖u‖L∞t H1 .

In the same way as above,

‖∇wh
‖L p

t Lq∩L∞t L2 .
∥∥∇((5h(|u|2)

)σ
u−

(
5h(|uh

|
2)
)σ

uh)∥∥
L p′

t Lq′ +‖∇Rh(u)‖
L

p′1
t Lq′1

.

The first term of the right hand side is controlled by∥∥(5h(|u|2)
)σ
∇u−

(
5h(|uh

|
2)
)σ
∇uh

∥∥
L p′

t Lq′ +
∥∥u∇

(
5h(|u|2)

)σ
− uh
∇
(
5h(|uh

|
2)
)σ∥∥

L p′
t Lq′ . (4-3)

Introducing the factor (5h(|u|2))σ∇uh , the first term is estimated by∥∥(5h(|u|2)
)σ
∇wh

∥∥
L p′

t Lq′ +
∥∥((5h(|u|2)

)σ
−
(
5h(|uh

|
2)
)σ )
∇uh

∥∥
L p′

t Lq′

.
∥∥5h(|u|2)

∥∥σ
Lθ/2t Lq/2 ‖∇w

h
‖L p

t Lq +
(
‖u‖2σ−2

Lθt Lq +‖u
h
‖

2σ−2
Lθt Lq

) ∥∥|u|2− |uh
|
2∥∥

Lθ/2t Lq/2 ‖∇uh
‖L p

t Lq

. ‖u‖2σLθt Lq ‖∇w
h
‖L p

t Lq +
(
‖u‖2σ−1

Lθt Lq +‖u
h
‖

2σ−1
Lθt Lq

) ∥∥wh
∥∥

Lθt Lq ‖∇uh
‖L p

t Lq

. t2σ/θ
‖u‖2σL∞t H1 ‖∇w

h
‖L p

t Lq + t2σ/θ(
‖u‖2σ−1

L∞t H1 +‖u
h
‖

2σ−1
L∞t H1

) ∥∥wh
∥∥

L∞t H1 ‖∇uh
‖L p

t Lq .

Proceeding similarly for the other term in (4-3), splitting [0, T ] into finitely many time intervals where the
terms containing wh on the right hand side can be absorbed by the left hand side, and using a bootstrap
argument, we end up with

‖wh
‖L p

t W 1,q∩L∞t H1 . ‖Rh(u)‖L
p′1
t W 1,q′1 .
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Therefore, it suffices to show that for some admissible pair (p1, q1), the source term converges to 0
in L p′1([0, T ]; Lq ′1) (if σ = 1 and d 6 2) or in L p′1([0, T ];W 1,q ′1) (in the other cases), so the bootstrap
argument is completed. In addition, the rate of converge of the source term, if any, yields a rate of
convergence for wh . The theorem then stems from the following lemma, in which (p, q) is given by
(4-2).

Lemma 4.5. Let T > 0. The source term Rh(u) can be controlled as follows.

1. Suppose that σ = 1 and d 6 2. If u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖Rh(u)‖L p′ ([0,T ];Lq′ )−→h→0
0.

2. Suppose that σ = 1 and d = 3.

• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖Rh(u)‖L p′ ([0,T ];W 1,q′ )−→h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1) . hs−1.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1)−→
h→0

0.

If in addition s > 1, then

‖Rh(u)‖L1([0,T ];H1) . hs−1.

Proof of Lemma 4.5. For the first case, we use the Hölder inequality, in view of (4-2):

‖Rh(u)‖
L p′

T Lq′ = ‖(1−5h)(|u|2)u‖L p′
T Lq′ 6 ‖(1−5h)(|u|2)‖Lθ/2T Lq/2‖u‖L p

T Lq .

We note that for σ = 1, q = 4, so by the Plancherel theorem,

‖(1−5h)(|u|2)‖2L2 =

∫
Rd
(1−χ(hξ))2 |F(|u|2)(ξ)|2dξ 6

∫
|ξ |>1/h

|F(|u|2)(ξ)|2dξ.

By assumption, u ∈ L p([0, T ]; L4)⊂ Lθ ([0, T ]; L4), thus |u|2 ∈ Lθ/2([0, T ]; L2), and by the Plancherel
theorem, F(|u|2) ∈ Lθ/2([0, T ]; L2). The first point of the lemma then stems from the dominated
convergence theorem.

For the first case of the second point, we note that now θ > p, so the above argument must be
adapted, and we have to estimate the gradient of Rh(u) in the same space as above. Since we have
L∞([0, T ]; H 1(R3))⊂ Lθ ([0, T ]; L4(R3)), the dominated convergence theorem yields

‖Rh(u)‖
L p′

T Lq′ −→h→0
0.
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We now estimate ∇Rh(u). Write

‖∇Rh(u)‖
L p′

T Lq′ 6 ‖(1−5h)(|u|2)‖Lθ/2T L2‖∇u‖L p
T L2 +‖(1−5h)∇

(
|u|2

)
‖

L(1/θ+1/p)−1
T L2

‖u‖LθT L2

. ‖(1−5h)(|u|2)‖L∞T L2‖∇u‖L p
T L2 +‖(1−5h)∇(|u|2)‖L(1/θ+1/p)−1

T L2
‖u‖L∞T L2 .

By the same argument as above,

‖(1−5h)(|u|2)‖L∞T L2‖∇u‖L p
T L2 −→

h→0
0.

We note that u bounded in L∞([0, T ]; H 1(R3)) ⊂ Lθ ([0, T ]; L4(R3)), and ∇u bounded in L p
T L4, so

∇|u|2 is bounded in L(1/θ+1/p)−1

T L2. Invoking Plancherel theorem and the dominated convergence theorem
like above, we infer that

‖(1−5h)∇(|u|2)‖L(1/θ+1/p)−1
T L2

‖u‖L∞T L2 −→
h→0

0.

This completes the proof for the first case of the second point.
For the remaining cases, we use that H s(Rd) is embedded into L∞(Rd): for fixed t ,

‖Rh(u)(t)‖L2 .
(
‖u(t)‖2σ−2

L∞ +‖5h(|u(t)|2)‖σ−1
L∞

)
‖(1−5h)(|u(t)|2)‖L2‖u(t)‖L∞

. ‖u(t)‖2σ−1
L∞ ‖(1−5h)(|u(t)|2)‖L2 . ‖u(t)‖2σ−1

H s ‖(1−5h)(|u(t)|2)‖L2 .

Like in the proof of Proposition 3.1, we use the estimate

‖(1−5h) f ‖L2 6 hs
‖ f ‖H s , (4-4)

and since H s(Rd) is an algebra,

‖Rh(u)‖L∞([0,T ];L2) . hs
‖u‖2σ+1

L∞([0,T ];H s).

To conclude the proof, we estimate ∇Rh(u) in L2(Rd). We compute

∇Rh(u)= σ |u|2σ−2((1−5h)(∇(|u|2))
)
u+

(
|u|2σ − (5h(|u|2))σ

)
∇u,

+ σ
(
|u|2σ−2

− (5h(|u|2))σ−1)5h(∇(|u|2))u,

where the second line is zero if σ = 1. We estimate successively, thanks to (4-1),∥∥|u|2σ−2 ((1−5h) (∇(|u|2))
)

u
∥∥

L2 6 ‖u‖
2σ−1
L∞

∥∥(1−5h)(|u|2)
∥∥

H1 ,∥∥(|u|2σ − (5h(|u|2))σ
)
∇u
∥∥

L2 6 ‖u‖
2σ−2
L∞

∥∥(1−5h) (|u|2)
∥∥

L∞ ‖∇u‖L2,

and, if σ > 2,∥∥(|u|2σ−2
− (5h(|u|2))σ−1)5h(∇(|u|2))u

∥∥
L2 . ‖u‖

2σ−4
L∞ ‖(1−5h)(|u|2)‖L2‖∇(|u|2)‖L2‖u‖L∞

. ‖u‖2σ−2
L∞ ‖(1−5h)(|u|2)‖L2‖∇u‖L2 .

Since we have H s(Rd) ↪→ L∞(Rd), we end up with

‖∇Rh(u)‖L2 . ‖u‖2σ−2
H s ‖(1−5h)(|u|2)‖H1 .
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If s > 1, (4-4) yields, since in addition s > d/2,

‖(1−5h)(|u|2)‖H1 . hs−1
‖|u|2‖H s . hs−1

‖u‖2H s .

If s = 1 (a case which may occur only if d = 1, since s > d/2), we write

‖∇(1−5h)(|u|2)‖2L2 6
∫
|ξ |>1/h

|F(∇(|u|2))(ξ)|2dξ.

Now since ∇(|u|2) = 2 Re ū∇u and u ∈ H 1(R) ↪→ L∞(R), ∇u ∈ L2(R), we conclude thanks to the
dominated convergence theorem. �

This completes the proof of Theorem 4.3, by choosing (p1, q1)= (p, q) or (∞, 2). �

Appendix: Physical saturation of the nonlinearity

Instead of cutting off the high frequencies, one may be tempted to saturate the nonlinear potential, by
replacing |u|2 not by 5(|u|2) but by f (|u|2) where f is smooth, equal to the identity near the origin,
and constant at infinity. Note also that a saturated nonlinearity may be in better agreement with physical
models (recall however that (1-1) appears in rather different physical contexts, such as quantum mechanics,
optics, and even fluid mechanics), since typically the power-like nonlinearity in (1-1) may stem from a
Taylor expansion; see [Lannes 2011; Sulem and Sulem 1999]. More precisely, let f ∈ C∞(R;R) such
that

f (s)=
{

s if 06 s 6 1,
2 if s > 2.

(A-1)

The analogue of the Fourier multiplier 5h is defined as

fh(|u|2)=
1
h

f (h|u|2),

and we replace (2-5) with

i∂t uh
+ Ph(D)uh

= ε
(

fh(|uh
|
2)
)σ

uh, (A-2)

so the formal conservation of the L2-norm still holds. We could also consider

fh(|u|2)=
|u|2

1+ h|u|2
. (A-3)

In both cases, the main aspect to notice is that fh is bounded and z 7→ fh(|z|2)σ z is globally Lipschitzian.
We infer the analogue of Theorem 2.1, at least in the L2 case.

Proposition A.1. Let σ ∈ N, ε ∈ {±1}, P : Rd
→ R and f given either by (A-1) or by (A-3).

• For any u0 ∈ L2(Rd), (A-2) has a unique solution uh
∈ C(R; L2(Rd)) such that uh

|t=0 = u0. Its
L2-norm is independent of time.
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• The flow map u0 7→ uh is uniformly continuous from the balls in L2(Rd) to C(R; L2(Rd)). More
precisely, for all u0, v0 ∈ L2(Rd), there exists C depending on σ , h, ‖u0‖L2 and ‖v0‖L2 such that for
all T > 0,

‖uh
− vh
‖L∞([−T,T ];L2(Rd )) 6 ‖u0− v0‖L2(Rd )e

CT ,

where uh and vh denote the solutions to (A-2) with data u0 and v0, respectively.

Introduce

Fh(s)=
∫ s

0
fh(y)σdy.

We check that the following conservation of energy holds:

d
dt

(∫
Rd

uh(t, x)Ph(D)uh(t, x) dx + ε
∫

Rd
Fh(|u(t, x)|2) dx

)
= 0.

Proving the analogue of Proposition 3.1 is easy in the case (A-1), since the last source term for the error
wh is now

Rh(u)=
(
|u|2σ − fh(|u|2)σ

)
u,

and under the assumptions of Proposition 3.1, u ∈ L∞([0, T ]×Rd), so there exists h0 > 0 such that for
0< h 6 h0,

|u(t, x)|2σ = fh(|u(t, x)|2)σ for all (t, x) ∈ [0, T ]×Rd .

Therefore, this source term simply vanishes for h sufficiently small. In the case (A-3), we can use the
relation

|Rh(u)| =
∣∣(|u|2σ − fh(|u|2)σ

)
u
∣∣. h|u|2

1+ h|u|2
|u|2σ+1, (A-4)

and the Schauder lemma to get a source term which is O(h) in H s(Rd), for s > d/2.

Proposition A.2. Let σ ∈N. We assume that P is such that Ph(ξ)=−|ξ |
2
+O(hα〈ξ〉β) for some α, β > 0.

Denote by uh the solution to (A-2) with Ph and fh , such that uh
|t=0 = u|t=0. Suppose that the solution to

(1-1) satisfies u ∈ L∞([0, T ]; H s+β), for some s > d/2.

• In the case (A-1), ‖u− uh
‖L∞([0,T ];H s) . hα.

• In the case (A-3), ‖u− uh
‖L∞([0,T ];H s) . hmin(α,1).

In the case (A-1), proving an analogue to Theorem 4.3 seems to be more delicate though, and we
choose not to investigate this aspect here. On the other hand, in the case (A-3), using the estimate (A-4),
Strichartz estimates and Hölder inequalities with the “standard” Lebesgue exponents (in the same fashion
as in the proof of Theorem 4.3, see [Cazenave 2003]), we have, with steps similar to those presented in
the proof of Theorem 4.3:

Theorem A.3. Let σ ∈ N and T > 0. Let u solve (1-1), and consider a solution uh to

i∂t uh
+1uh

= ε

(
|uh
|
2

1+ h|uh|2

)σ
uh, uh

|t=0 = u0.
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1. If σ 6 2/d, and u ∈ L∞([0, T ]; L2)∩ L(4σ+4)/dσ ([0, T ]; L2σ+2), then

‖u− uh
‖L∞([0,T ];L2)−→

h→0
0.

2. Suppose that σ = 1 and d = 3.

• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];H1)−→

h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖u− uh
‖L∞([0,T ];H1) . h.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖u− uh
‖L∞([0,T ];H1) . h.
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