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AN INVERSE PROBLEM FOR THE WAVE EQUATION
WITH ONE MEASUREMENT AND THE PSEUDORANDOM SOURCE

TAPIO HELIN, MATTI LASSAS AND LAURI OKSANEN

We consider the wave equation (8,2 — Au(t,x) = f(t,x), in R", u|g_xp: = 0, where the metric
g =(gjk (x))’j’.’ «—1 18 known outside an open and bounded set M C R" with smooth boundary M. We
define a source as a sum of point sources, f(,x) = Z?’;l aj; (ij (x)8(t), where the points x;, j € Z,,
form a dense set on 0 M. We show that when the weights a; are chosen appropriately, u|rxa determines
the scattering relation on d M, that is, it determines for all geodesics which pass through M the travel
times together with the entering and exit points and directions. The wave u(z, x) contains the singularities
produced by all point sources, but when a; = 1~* for some A > 1, we can trace back the point source
that produced a given singularity in the data. This gives us the distance in (R", g) between a source
point x; and an arbitrary point y € M. In particular, if (M, g) is a simple Riemannian manifold and g
is conformally Euclidian in M, these distances are known to determine the metric g in M. In the case
when (M, g) is nonsimple, we present a more detailed analysis of the wave fronts yielding the scattering
relation on oM.

1. Introduction

In this paper we consider an inverse problem for the wave equation
(8> — Agu(t,x)= f(t,x) in (0, 00) x R",
uli=0 = dutls=0 =0,

where A is the Laplace—Beltrami operator corresponding to a Riemannian metric g(x) = [g jk(x)];?’ k=1

that is, R
_ 0 ik 0
Agu = Z 14 1/2m<|g|l/zgjkwu>,
Jok=1

where |g| = det(g;x) and [gfk];!’k:1 = g(x)~! is the inverse matrix of [gx ()T} ;- We assume that
gjk € C*°(R") and that there are c1, ¢ > 0 such that

clg? < Y guEE <calel?, x. & eR". (1)

jk=1
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Moreover, we assume that the metric g is known outside an open and bounded set M C R" having a
C°°-smooth boundary d M.

We choose the origin of the time axis so that the source f is active at time t = 0. To ensure compatibility
with the initial conditions, we let Tp < 0 < T and define the measurement map L = L,

L:CX(To, T)® CX(R") — C™((To, T) x M),  Lf =ulcr,1yxom. 2
where u is the solution of the wave equation

(97 — Au(t,x) = f(t.x) in (Tp.T) x R", .
u|I=T0 = al”llZTo =0.
Above, C°(Ty, T) denotes the space of smooth functions having compact support in (7p, T'). Its dual
space, the space of generalized functions or distributions, is denoted by @'(Tp, T'). Moreover, for functions
¢ € CX(To, T) and Y € C°(R"), we denote their pointwise product by (¢ ® ¥)(t, x) = ¢ (t) ¥ (x).

We remark that the assumption (1), together with the finite speed of propagation for the wave equation,
implies that the measurement Lf does not depend on g« (x), for [x| > R, when R is sufficiently large.
Thus we may assume without loss of generality that all the partial derivatives 97 g jx are bounded on R".

Letx; €M, j=1,2,..., be adense sequence of points in dM, and let us consider point sources

fo,(t, %) =808, (x), j=1,2,....

In order to study the measurements Lf,,, we will use the Sobolev spaces (see [Triebel 1978])

Hy®RY) = {f € S ®RD: I f ey = [ (1 =AY f|| 1y oy < 00},
Hy(U) :=1{f € Hy(R*); supp f C U},
Hy(U) :={f € 9'(U); f = h|y for some h € H3(R")},

where U C R? is open and s € R. When p = 2 we omit the subscript p in our notation, that is, we
write H*(U) = H; (U), etc. Moreover, we use projective topology on the tensor product X ® Y of two
Banach spaces X and Y, that is, ||z||xgy := infzj lx;llx|lyjlly, where the infimum is taken over all
representations z = Zj xj ®y;. We also use projective topology on tensor products of locally convex
spaces; see, €.g., [Treves 1967, Definition 43.2]. The measurement L ij can be defined in the sense of
the following lemma.

Lemma 1.1. Let p € (1, n/(n—1)) and let m € N satisfy m > (n+1) /4. Then the measurement operator L
defined in (2) has a unique continuous extension

L:H YT, T)® HyN(RY) — 9 ((Ty, T) x aM).

We will prove Lemma 1.1 and other results presented in the introduction in Sections 3-6.

In this paper we study a single measurement LA that simultaneously combines all the measurements
Lfx; by adding them together with appropriate weights. When the measurements Lfy; are summed
together, to the authors’ knowledge, there are no algorithms that can filter the value of a particular
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measurement from the sum. We will ask, however, whether we can find the essential features given by
these measurements, like the travel times between points on d M, so that the metric could be determined
under certain geometric conditions. Our main result is that Lh determines the scattering relation Xy o
for the manifold (M, g). Here ho(t, x) is an explicit source that we call pseudorandom; see Definition 1
in Section 2.

The scattering relation has been efficiently used to solve several geometric inverse problems [Dairbekov
and Uhlmann 2010; Pestov and Uhlmann 2006; Stefanov and Uhlmann 2008; 2009]. To define the
scattering relation, let 7M denote the tangent space of M and let y denote the tangent vector of a smooth
curve y :[a,b] — M. Let SM = {(x,&) € TM; ||&||¢ = 1} be the unit sphere bundle on M and define

0LSM ={(x,&) € SM; x € IM, F(v,£), >0},
where v is the exterior normal vector of 9 M. Moreover, let Ty ¢ (x, &) be the infimum of the set
{t €(0,00]; yue(t) € IM},

where y, ¢ denotes the geodesic on (M, g) with initial data (x, &) € TM. We write T = 1) , when the
manifold (M, g) is clear from the context. We define the infimum of the empty set to be 4-oc0.
The scattering relation is the map ¥ = Xy g,

T:9(E) > . SM xR, D) ={(x,§) €d_SM; t(x,§) < oo},

defined by X (x, &) = (yr.e((x, ), yr e (t(x, ), T(x, §)).
Our main result is the following.

Theorem 1.2. Let M C R", n > 2 be an open and bounded set having a C*°-smooth boundary. Then
there is a generalized function ho(t, x) supported on {0} x dM and having the following properties:
Assume that g i, g} « € C(R") are two Riemannian metric tensors satisfying (1). Moreover, assume that
gjk(x) = g (x) forx e R"\ M. Let

Tomax( swp Tug(nE), s me(n ),
(x,6)€d_SM (x,6)€d_SM

and assume that
Lgho = Lg/h() on (To, T) X dM.

Then the scattering relations Xy, and Xy ¢ of Riemannian manifolds (M, g) and (M, g') are the same.
In particular, if (M, g) and (M, g') are simple, the restrictions of the distance functions on the boundary
satisfy dﬁ’g(x, y) = dﬂ’g,(x, y)forx,y € oM.

We remark that if sup, ¢,, T is infinite, then we prove the above result with measurements on an
infinite time interval, that is, we prove that the measurement |z, oc)x s determines @(%) and X.

Recall that a compact Riemannian manifold (M, g) with boundary is simple if it is simply connected,
any geodesic has no conjugate points, and d M is strictly convex with respect to the metric g. Any two
points of a simple manifold can be joined by a unique geodesic.
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o
j=1
ajy fx;, produces a singularity, which is observed at a point y € R* \ M at time 7o = d(x},, y) with a

The key idea of the proof of Theorem 1.2 is to use source h(t, x) = Y :_ | a; fx;. The point source
magnitude aj,B(x;,, y), where B is an unknown nonvanishing smooth function. Appropriate choice of
the weights a; allows us find the index jo by looking at nearby singularities. Indeed, when x; — x;, and
Jk — 00, we see that the asymptotic behavior of the magnitude a;, B(x;,, y) as k — oo will be that of the
weights a,. Thus it is possible to factor out @, in the magnitude and determine a,. This argument is
presented in Section 7 and gives us the distances d(x;, y) in (R", g) for arbitrary point y € R" \ M and a
source point x;.
Theorem 1.2 and boundary rigidity results for simple manifolds imply the following:

Corollary 1.3. Let M C R" and let g j, g;. « € CP(R") be two Riemannian metric tensors satisfying the
assumptions of Theorem 1.2. Let (M, g) and (M, g') be simple Riemannian manifolds. Then:

(1) Ifn=2and
Lgho=Lgho on(Ty, T) x IM, “4)

then there is a diffeomorphism ® : M — M such that ® |3y =1d and g = ®.,¢’.

(i) Forn > 3, there is € = €,y > O such that if || gjx — 8jkllc2omy < €ns ||g;.k —Sjkllc2my < €n, and (4)
holds, then there is a diffeomorphism ® : M — M such that ®|3p =1d and g = ®.g’.

(iii) If gji(x) = a(x)djx and g}k(x) = a’(x)8 jk, that is, the metric tensors are conformally Euclidian, and
(4) holds, then g ji(x) = g}k(x)for xeM.

Indeed, by Theorem 1.2, case (i) follows from [Pestov and Uhlmann 2005], case (ii) follows from
[Burago and Ivanov 2010], and (iii) from [Muhometov 1977; 1981; Muhometov and Romanov 1978].

If Uhlmann’s conjecture [2003], that the scattering relation determines the isometry type of nontrapping
compact manifolds with nonempty boundary, can be proven, then Corollary 1.3 holds for a more general
class of manifolds.

The problem of determining the metric g (possibly up to a diffeomorphism) given the measurement
Lhg with only one function hy(¢, x) is a formally determined inverse problem. Indeed, the formally
computed “dimension of the data,” that is, the dimension of (7p, T) x M, is n and coincides with the
dimension of the set M on which the unknown functions g (x) are defined.

The formally determined inverse problems have been studied in many cases. For instance, the two-
dimensional Calderén inverse problem [Astala and Piivirinta 2006; Astala et al. 2005; Imanuvilov et al.
2010; Nachman 1996; Sylvester 1990] is formally determined. The same is true for the related inverse
problem for the Schrodinger equation in two dimensions [Bukhgeim 2008]. The corresponding inverse
problems in dimension n > 3 — see [Calderén 1980; Kenig et al. 2007; Lassas et al. 2003; Nachman 1988;
Sylvester and Uhlmann 1987] and references in [Greenleaf et al. 2009a; 2009b], are overdetermined —
that is, the dimension of the data is larger than the dimension of the unknown object. Similar classification
holds for the elliptic inverse problems on Riemannian manifolds [Guillarmou and Tzou 2010; 2011;
Lassas et al. 2003; Lee and Uhlmann 1989; 2001]. Moreover, the boundary rigidity problem [Kurylev
et al. 2010; Michel 1981; Muhometov 1977; 1981; Muhometov and Romanov 1978; Romanov 1987,
Stefanov and Uhlmann 2005] is formally determined in dimension n = 2 and overdetermined for n > 3.
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Inverse problems in the time domain related to the Laplace-Beltrami operator A,, namely the inverse
boundary value problem for the wave, heat, and dynamical Schrédinger equations with Dirichlet-to-
Neumann as data— see [Anderson et al. 2004; Belishev and Kurylev 1992; Katchalov and Kurylev 1998;
Katchalov et al. 2001] — are overdetermined in dimensions n > 2. However, these problems are equivalent
to the inverse boundary spectral problem (see [Katchalov et al. 2004]), and assuming that the eigenvalues
are simple, the Dirichlet-to-Neumann map at a generic Dirichlet boundary value determines the boundary
spectral data [Lassas 1995; 1998; Ramm 2001]. Thus, under generic conditions on the spectrum and on
the boundary value (that is, under the condition that the these data belong in some open and dense set), it
is possible to solve a formally determined inverse problem in time domain.

We point out that in this paper we do not impose any generic conditions on the geometry, and we give
an explicit construction of the boundary source. The boundary source considered in this paper is based
on the idea of imitating a realization of white noise, and due to the many useful properties of the white
noise process, we hope that the constructed source may be useful in the study of other inverse problems
requiring generic assumptions on the source.

Another formally determined hyperbolic inverse problem, namely measuring Neumann data when
the initial data (u|,—o, 0;u|;=0) is nonzero and satisfies subharmonicity or positivity conditions, has been
studied using Carleman estimates [Bellassoued and Yamamoto 2008; Imanuvilov and Yamamoto 2003;
Isakov 2006; Klibanov 1992; Stefanov and Uhlmann 2011]. The present paper is closely related to these
studies, but we emphasize that we assume that the initial data for u vanishes.

Moreover, there are two approaches to solving the formally determined hyperbolic inverse problem
to determine a potential from a single boundary measurement. The first one uses Carleman estimates
analogous to the estimates mentioned above and assumes similar conditions on the initial data [Bukhgeim
and Klibanov 1981]. The second one relies on an adaptation of the Gelfand—Levitan method to multidimen-
sional problems [Rakesh and Sacks 2011; Rakesh 2003; 2008; Romanov 2002; Sacks and Symes 1985].

2. Pseudorandom source

In this section we define a special source hg(z, x) which we call pseudorandom. The specific assumptions
on the amplitudes are explained in Section 7. An important feature of the pseudorandom source is that it
is supported only on a single point in time.

Definition 1. Let x; € M, j =1,2, ..., be a dense sequence of distinct points in M, and let a; € R,
j=1,2,..., with Zj’;l laj| < oo, be a sequence of distinct numbers.

We define the pseudorandom source on (x j)?i | C dM with coefficients (a j)ﬁ‘;l C R as the following
generalized function on R x R":

ho(t,x) := Y a;8(t)8,,(x), (x,1) e R™,
j=1

where §(7) and dy; (x) are Dirac delta distributions on R and R", respectively.
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It is rather straightforward to show that A is well-defined. First, it is well known that §(t) € H ~I(R) and
8x;(x) € C(R")". Next, we have H;,([R{”) C C(R™) when 1 > n/p’, due to [Triebel 1978, Theorem 2.8.1].
According to [ibid., Theorem 2.6.1], the dual space satisfies (H;,([R{”))’ = Hp_] (R"y with1/p'=1—-1/p,
and hence C(R")’ C Hp_l([R”) for 1 < p <n/(n—1). Since Z?’;l laj| < oo, we have

o0
> a8, (x) € H'(R).
j=1

This yields that for any p € (1, #) and € > 0, the pseudorandom source A satisfies

hoe H ' (—e, €)@ H, ' (M). )

The spatial structure of the pseudorandom source can be motivated by the structure of the white noise.
In the 1-dimensional radar imaging models, white noise signals are considered to be optimal sources
when imaging a stationary scatterer [Toomay and Hannen 2004]. This is due to the fact that different
translations of the white noise signal are uncorrelated. In a similar fashion, we have the following property
for the pseudorandom source hg: for each x, and each sequence (x;, )72 | converging to x j, and satisfying
xj, #xj, forall k € Z, it holds that a;, — 0. This property will be crucial in what follows.

A natural strategy to choose the points x; is by random sampling. The term pseudorandom refers to
the fact that algorithmic generators of random numbers use, in fact, a deterministic function to produce
a sequence of numbers, but the mixingness of the process is such that the user of the algorithm can
consider the numbers to be analogous to independent samples of a random variable. In this manner, the
pseudorandom source can be seen as an imitation of a realization of a noise process.

Another source of inspiration for us was a rather new measurement paradigm called compressed sensing
[Candes et al. 2006; Donoho 2006], where one aims for a sparse reconstruction of a linear problem using
a small number of noisy measurements. We point out that by using the pseudorandom source, one can
compress the measurements Lfy; with point sources f;; into a single measurement Lhy.

3. Measurement map

In this section we prove that the measurement Lh is well-defined. Let us consider the operator W : f — u
mapping f to the solution of (3). We call such an operator the solution operator for (3). First, we note that
by [Hormander 1985, Theorem 23.2.2], the operator W : f > u extends in a unique way to a continuous
linear operator

W:L'((To, T); H*(R") — C([To, T1; H*T'(RY), seR. (6)

Moreover, if f € C*°([Tp, T] x R") and supp(f) € (Ty, T] x R", that is, supp(f) is a compact subset of
(Ty, T] x R*, then Wf € C*°([Tp, T] x R").
We will compose the operator W with the one-sided inverse $ of the derivative d;, which is given by

t
Su(t) ::/ u(@hdt', ueCX (T, T).
T

0
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One sees easily that this operator has a unique continuous linear extension J : H! (Ty, T) — L*(Ty, T).
Next we prove Lemma 1.1 formulated in the introduction, that is, we prove that the measurement map
L has a unique continuous extension

H (T, T)® H,'(R") > 9'((Ty, T) x OM). (7

Proof of Lemma 1.1. For sufficiently large z € R, the operator z — A, is an isomorphism between spaces
HST2(R™) and H*(R") as well as between spaces H ;*2(R”) and H,(R") for all integers s by [Shubin
1992].

By the definition of L, we have that L = Tr oW, where Tr is the trace operator

Tr(u) = ulry,ryxom, u € CF((To, T) x R").

Let f € CX°((To, T) x R"). Then the solution u = W f of the wave equation (8[2 — Ag)u = f can be
written in the form

m—1
Wf=@=0)"G=A) "W+ ) =) =A™ ®)
j=0
Now f = 9,9 f, where $ f is C*°-smooth and satisfies supp($ f) € (Tp, T] x R". By (6), W3 f is
C®°-smooth and o, W9 f = Wo,$ f = Wf. Hence
m—1
Lf =0z —0)"Tr(z— A "WIf+ Y (z—07) Trz — Ap) "'/ £. )
j=0

Let us next consider terms appearing in (9). First we consider extension of the operator

N N
Dot @Y Y (2= 01 Tz — A~ (ke @ W)

k=1 k=1 (10)

N
=3 (=) ® (i — A" T), j=0,....m—1,
k=1

mapping C°(Tp, T) ® C°(R") to C*°((Ty, T) x 0M). By [Triebel 1978, Theorem 4.7.1], the maps

Ag)™Im

_ J
Hy'(R") Ll H\®Y 5 BL-VP@M)

are continuous, where B1 1/ P(3M) is the Besov space on d M. Thus the operator (10) has a continuous
extension in spaces (7).
Next, consider extension of the operator

N N
Y he®Yi> Y (2= 0P Te(z— Ap) " W((Ie) ® i) (11)

k=1 k=1
mapping CX°(Ty, T) ® C°(R") to C*°((Tp, T) x dM). As —1 —n/p > —1 —n, we have by [Triebel
1978, Theorem 2.8.1] a continuous embedding Hp_ YR — H~1="2(R"). Moreover, the operator
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$:H (T, T)— L%(Ty, T) and the embedding L2(Ty, T)@H ~'~"/2(R") — L*((To, T); H~'7"2(RM))
are continuous. Thus, by (6),

W$:H \(To. T)® H, ' (R") — C([To, T); H"/*[R"))

is continuous.
As(1-Ag)™": C([To, Tl; H_"/Z(R”)) — C([To, TI; H_”/2+2”’([R”)) is continuous and —%+2m > %,
we see that the operator

Tr(1— A) "W H N (To, ) ® H, ' (R") > C([To. T1; L* (M)

is continuous.

Combining the above results, we see that the operator (9) has a continuous extension to the spaces (7).
As the spaces C°(Tp, T) and C2°(R") are dense in H! (Ty, T) and H » LR, respectively, we see that
the continuous extension of L is unique. (I

4. Inner product of a solution and a source
Lemma4.1. Let f € C°((Ty, T) x M) and to € (To, T) and let w € C*([Ty, to] x R") satisfy
(32— Apw =0, in(To, 10) x R".

Then

/T f, )wt, x)dtdV(x) = f (W) (o, x)w (10, x) = (W[)(t0, x)(w) (10, X)) dV (x),

0 R Rn

where dV (x) = |g|'/? dx is the Riemannian volume measure of (R", g) and W : f + u is the solution

operator of the wave equation (3).

Proof. By finite speed of propagation of waves [Ladyzhenskaya 1985, pp. 150-156], supp(W £ (¢)) is
compact in R". The claim follows by integration by parts:

/Rn((atu)(to, x)w(to, x) — u(t, x)(d,w) (0, x)) dV (x)
—/ (@) (To, x)w(To, x) — u(To, x)(3w)(To, x)) dV (x)
= /(T - (87 — Apu(t, x) w(t, x) —u(t, x) (3} — Ag)w(t, x)) dt dV (x)

:/ ft, x)w(t,x)dtdV(x). g
(To,t9) xR"

Next, we will prove a generalization of the previous lemma for nonsmooth sources f. Denote by
B(0, R) = {x € R"; |x| < R} the Euclidean ball. The finite speed of propagation for the wave equation
yields that there is R > 0 such that all f € C2°((Ty, T) x M) satisfy supp(W f) € (To, T1x B(0, R). We

define .
Q:=BO,R)\ M. (12)
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Below, we use the fact (see [Evans 1998, Theorems 7.2.3/6 and 5.6.3/6]) that the operator Wg : h — v
mapping / to the solution of the equation

(32 — Au(t,x) =0 in (Tp, T) x Q,
vl(n. 100 = h, (13)
V=1, =0, 0v|;=1, =0,

is continuous as a map Wq : C2°((To, T) x 02) = C*°([To, T x Q).
We let 1y € (Ty, T) and write
Y= {n} x Q. (14)

We denote the trace on X by Try, that is, we define (Try u)(x) := u(#, x). Let v = v(z) denote the
exterior unit normal vector of dM at z.

Moreover, let U be an open subset (or a submanifold) of R”, and let us denote by dV (or dS) the
Riemannian volume measure of (U, g). We embed the test functions into the spaces of distribution by
using the inner product of the space L>(U; dV), that is, we identify u € C°(U) with the distribution

WHLu(x)W(x)dV(x). (15)

We will denote the distribution pairing of u € 9'(U) and ¢ € C3°(U) by (u, ¥)ar ) and use analogous
notations for other distribution pairings.

Lemma 4.2. Let ty € (Ty, T) and define ¥ by (14). Then operators Try Wq and Try 0, Wq have unique
continuous extensions €' ((Ty, to) X 0Q2) — D'(Q).

Proof. Let v satisfy (13). Consider a function w € C*®([Ty, fp] x Q) such that (3, — Ag)w = 0 in
(TQ, t()) x € and U)|(T0’;0)><3Q =0. Then

0:/ (0 — Av)w —v((8; — Ap)w) dV (x) dt
Qx(To,t0)

= |:/ ((8,v)w — v(a,w))dv(x)]
Q

= / ((8,v)w — U(atU))) dv(x)
Q

=ity

H[ (@ vow)dsw
Q% (To, 1)

t=To

—/ h(,w)dS(x)dt,
t=tq 02 (To,10)

where 9, is the normal derivative on 052,
Denote by Wi : f1 — w the solution operator of the equation

Wl (7,1 x99 = 0,
w|t=t0 = f1, 3tw|t:to =0.

The operator Wy : C2°(2) — C*([To, to] x Q) is continuous, as can be seen using Theorems 7.2.3/6
and 5.6.3/6 of [Evans 1998]. Hence, the operator
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W1 :CZ(Q) = CP([To, to] x 3Q), f > 0,Wiflig
is continuous. Moreover,

(Trs 9, Wah, f1)r2@.av) = (b, 0 Wi f1) 12((Ty,10) x 02 d1@dS)

where 0, is the normal derivative on d€2. We define the extension of Try d; W, by identifying it with the

transpose (3, W1)" : €' ((To, 1p) x 9K2) — @' (K2) of the operator 9, W : C2°(Q2) — C*([Ty, tp] x I).
Similarly, we define the extension of Try Wgq by the transpose (9, W2)' : €' ((Tp, to) x d2) — D' ()

of 9, W, : C°(2) — C>°([To, to] x 0K2), where W, : f> — w is the solution operator of the equation

(0 —Agw(r, x) =0 in (To, fo) X L2,

W1y, xa02 = 0,
w|t=to =0, atwlt:to =—f. U

Denote by dq(x, y), x,y € Q, the distance function of Riemannian manifold (<, glg). Next we
generalize the result of Lemma 4.1 for a larger class of functions.

Lemma 4.3. Letty € (0, T) and € > 0 satisfy [—¢, €] C (T, to). Define ¥ by (14). Let
fed (e, @ H (M) and weC¥(Ty, 1] x R")

satisfy
(32— Apw =0, in(To, 10) x R".

Suppose that w(ty), d,w(ty) € C° (), and let x € CX(To, to) satisfy x = 1 in a neighborhood of

[—e, to — r], where
r:=dg (supp(w(to)) U supp(d;w(tp)), 852).

Then
(f, We® x(1,1)) = (Trs 0 Wax Lf, w)ay @) — (Trs Wax Lf, 0iw)a (), (16)

where we have defined Lf = 0 on dB(0, R). Here we regard Q2 as a Riemannian manifold (2, g|q).

Proof. We suppose first that f € C2°((—e, €) x M). Recall that W is solution operator of wave equation (3).
Then Wf(-,t)=0ift < —e, and

Lf:TI’aQ Wf:XTI‘aQ Wf, in (Ty, to— 1) X 092,

where Tryg is the trace on (Tp, T) x Q2. As N M = @, we have that (3> — Ag)Wf =0in (Tp, T) x Q.
By uniqueness of the solution of (13),

Wax Tryq Wf: Wf, in (Ty, tg —7) X Q.
By finite speed of propagation,
Trs 8/ Wox Trao Wf =Trs 8 Wf,  j =0, 1,

on {tp} x supp(w(tp)) Usupp(d;w(p)). By Lemma 4.1, (16) holds.
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Then the claim follows, as the embeddings
CX(—€,€) > H '(=e,€), CX(M)— H,' (M)

are dense and operators (Try athQ)XL : ﬁ_l(—e, ® ﬁp_l(M) — @' ((Toy, 1) x 0R2), j =0, 1, are
continuous. U

5. Gaussian beams

We consider solutions of the wave equation which are known as Gaussian beams [Babich et al. 1985;
Babich and Ulin 1981; Ralston 1982]. These solutions have been constructed to analyze the propagation
of singularities for the wave equation in the presence of caustics. Here we use Gaussian beams as an
auxiliary technical tool to analyze singularities in the measurements.

Definition 2. Let € > 0, N € N and let y be a unit speed geodesic on (R”, g). A formal Gaussian beam
of order N propagating along geodesic y is a function UGN of form
N
UN(t,x) =€ expl—=Ge) 70t 1)} ) um(t. x)(©)", teR, xR,
m=0
satisfying the following properties: The phase function 6 and the amplitude functions u,,, with m =
0,1,..., N, are complex-valued smooth functions. The phase function 0 satisfies the conditions

6(1,y(1)) =0, Imb(t,x) = Cot)d(x, y (1)),

where Cy(¢) is a continuous strictly positive function. The amplitude function ug satisfies ug(¢, y (¢)) # 0.
Finally, for any compact set K € R x R", there is a constant C > 0 such that the inequality

|82 — AUN (1, x)| < CeVN 4
is satisfied uniformly for (¢, x) € K.

The construction of a formal Gaussian beam UéN (t, x) is considered in detail in [Katchalov et al. 2001,
Section 2.4]. Next, we recall the construction and pay attention to the properties of Gaussian beams
which we need later.

Let us write the geodesic y in the usual coordinates of R" as y (1) = (y'(¢), ..., y"(1)). We construct
the phase function 6 (¢, x) at each time ¢ € R in terms of a finite Taylor expansion in the x variable centered

at y (1),

On (1)
0, x)= ) ———(x—y),
ol
la|<N
where 6, are smooth functions and N € N.

Let e; = (41, ..., 8,j) be multi-indices with the value 1 at the j-th place. For clarity, we use the
notation p;(t) = 0,,(t) for the first-order coefficients and the notation Hji (1) = 0,4 (7), @ = e; + ¢y, for
the second-order coefficients in the expansion of 6.

The construction of a formal Gaussian beam consists of the following steps.
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(1) We define 6p(r) =0 and p;(z) = Zzzl gjk(y(t)))'/k(t), that is, the first-order coefficients p;(r) are
the covariant representation of the velocity vector y.

(2) The symmetric matrix H (1) = [H jx (t)];f, w— Of the second-order coefficients is obtained by solving a
Riccati equation, or an equivalent system of ordinary differential equations. We write H () = Z OY (@) !,
where the pair of complex n x n matrices (Z(t), Y (¢)) is the solution of the system of ordinary differential
equations

Lyt =BO YO +COZM,  Viep=Y",

%Z(t) =—D(Y(t)— B Z(t), Zl|—o=Z".

Here we choose the initial values to be Z° = iJ and Y° = I, where [ is the identity matrix and i
is the imaginary unit. The matrices B(¢), C(¢), and D(¢) in R**" have components given by the
second derivatives of the Hamiltonian A (x, p) = (Z;’ ke &jk(X) pj pk)l/ 2 evaluated in the point (x, p) =
(y (@), p(®)):

9h 3h

i 9%h
= ) Djl = .
ap;opi dxJox!

_ .ol
P axlap;”

The fact that the complex matrix Y (¢) is invertible for all ¢ € R is crucial for the construction, and is
discussed in detail in [Katchalov et al. 2001, Section 2.4].

(3) The coefficients 6,(¢) of order || = m > 3 are solved inductively, with respect to m. The coefficients
0y (t) are constructed using the coefficients O (1) defined so that

D )7 =D Ot x =y (1),

loe|=m lee|=m

forall y = Y ' )(x— y(t)), y € C". We obtain the coefficients 0~a () by solving successive linear systems
of ordinary differential equations

45 oy — 5 (0) =
770 =Ka(®),  02(0) =0,

where K, () depend on 6g(¢) with || < m — 1, the matrix H (t), the vector p(¢), and the metric g and
its derivatives at y ().

(4) When the phase function 6 (¢, x) is constructed, the amplitude functions u, (¢, x) are solved using the
transport equations, or equivalently, the following ordinary differential equations. Let

(1, ) =Y o OF,  F=YH O -y @),

le|<N
where the coefficients i,, ,(¢) are obtained by solving the successive equations

d - ~ ~
Eum,a(t) +r(t)“m,a(t) = ‘O}m,a(t)a um,a(o) = 5m,08\oz|,0’
where r(t) and %, o (¢) depend on i, g with |B| < |a|+2 and m’ < m — 1, the function 6(z, x), the

metric g jx, and their derivatives at (¢, x), x = y (7).
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By the above construction, we have the following remark.

Remark 1. The phase function 6(t, x) and the amplitude functions u,, (¢, x) at time ¢t = 0 have the form

n
00,x)= Y gun* () —y))+ilx —y%,
Jok=1
where (y, n) = (y(0), y (0)) is the initial data of the geodesic y, uo(0, x) =1, and u,, (0, x) =0 for m > 0.
Hence, UGN (0, x) is dependent on the metric g;; only via g;x(y). Moreover, 9, UGN (0, x), although of
more complex form, is dependent on the metric g;; only via 3% g« (y) for a certain finite collection of
multi-indices o € N,

If the coefficients of an ordinary differential equation depend smoothly on some parameter, so does the
solution [Amann 1990], and thus we see using an induction that the phase function 6 and the amplitude
functions u,, depend smoothly on the initial data (y, n) = (y(0), y(0)) of the geodesic y. In particular,
the amplitude function ug (¢, x; y, n) satisfies

up € C¥(R x R" x SR"). (17)

Thus far we have considered a formal Gaussian beam. By using continuous dependency of the solution
of the wave equation on the source term, one obtains the following results [Katchalov et al. 2001]:

Let y be a unit speed geodesic, N € N, € > 0, and let UGN be a formal Gaussian beam of order N
propagating along geodesic y. Let x € C;°(R") be a function which is identically one in a neighborhood of
y(0) and let #p > 0 and let R be the radius in (12). Then for j € N and o € N" satisfying j+ || < N —n/4,
there is C > 0 such that the solution w, of the wave equation,

0 — Agwe(t, x) =0, (¢, x) € (To, 1) x R",
we(to, ) = x (W)U (0, x), (18)
dwe (1o, x) = —x (03U, (0, x),

satisfies ‘ .
sup  [8/ 0% (we(to —t,x) — UN (2, x))| < CeN-UHlah=n/, (19)
x€B(0,R),te(Tp,ty)

We call w, a Gaussian beam of order N propagating along geodesic y backwards on time interval (7p, ).
6. Determination of the travel times

Lemma 6.1. Let w, be a Gaussian beam of order N > 1+ n /4 propagating along geodesic y backwards
on time interval (Ty, ty), that is, let w. be the solution of (18). Let hqy be the pseudorandom source

ho(t,x) =Y a;8(t)8y,(x). (20)

j=1
Ify(to) #xj forall j =1,2,..., then

lim En/4(h0, we)%’(R"X(ToJo)) =0.
e—0



900 TAPIO HELIN, MATTI LASSAS AND LAURI OKSANEN
Moreover, if y (1) = x, then
. 4 1/2
111%6"/ (ho, We)e @ x (Ty.10)) = @juo(to, X)) gl *(x;),
€—>

where uy(t, x) is the first amplitude function of a formal Gaussian beam propagating along geodesic y .
We remind the reader that the test functions are embedded in €¢'(R" x (Ty, T')) using (15).

Proof. By (19), we have that

e.¢]
" (ho, w)e @ oy = €Y a;UN (10, x)1gl"(x)) + O(e)
j=1

= Zajuo(to, Xj) exp{—(ie)*IQ(to, xj)}lgll/z(xj) + O(e).
j=1

As Im O (1, Xj) > C()(l‘())d(xj‘, ¥ (tp)), we have that
lexp{—(ie)'0to, x) }| = O (), if y (1) # x;.

Suppose that y (fo) = x;. Then exp{ —(@ie) o1, x j)} =1 and there is a constant C > 0 depending on
y and f¢ such that

€"*(ho, W) e x (Ty.10)) — @ o (1o, xj)|g|l/2(xj)‘
j—1 l S
<C Y lallexp{—(Gie) "0t x0) } |+ C Y lail[exp{—(Gie) 0t x)}| + C Y la| + O (e).
k=1 k=j+1 I+1
We may first choose large [ € N and then small € > 0 so that the above three sums are arbitrarily small.
The case y(fy) # x; forall j =1,2,...,is similar. O

Next we define an auxiliary function S(yg, 1o, fo) Which is nonzero if and only if there is j € Z such
that Yyo0,1m0 (tg) = Xj.

Definition 3. Let (yg, n9) € TR”" be such that yg € Q" and Imollg = 1. We denote by y (¢; yo, no) =
Yyo.no (1) the geodesic on (R", g) with ¥ (0) = yo, ¥ (0) = no. Moreover, let w, be a Gaussian beam of
order N > 14 n/4 propagating along y (¢; y, n) backwards on time interval (7p, fp). We define

S(yo, no, to) 1= SII_I)I(I) En/4(h0, we)‘@/(R"x(To,to))-

Lemma 6.2. Let (yg, n) € SQ and ty € (0, T). Then Lhy, for pseudorandom source hg, and (2, g|q),
given as a Riemannian manifold, determine S(yo, 1o, to).

Proof. Let w. be a Gaussian beam of order N > 1 4 n/4 propagating along the geodesic y (- ; yo, 7o)
backwards on time interval (Tp, fp). We may choose the cut-off function x in (18) so that w.(#y) and
9, we(tg) lie in C2°(2). As glgq is known, we have by Remark 1 that the initial data we (fg), 9, we (7o) are
known. Moreover, operators Try Btj Wa, j=0,1, X :={f} x 2, are known. After choosing a suitable
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cut-off function x in Lemma 4.3, we have that the measurement L/ determines the distributional pairing
(ho, we)e e x(Ty,1))- Hence S(yo, 10, to) is determined. O

The implicit function theorem yields the following remark. Note that #y € R in the remark is not
necessarily the first intersection time.

Remark 2. Let (yg, n9) € SR" and fg € R satisfy

(v (to; Yo, 10), ¥ (to; Y0, n0)) € d+SM.
Then there are neighborhoods I C R and U C SR” of ¢y and (yg, no) and a smooth map ¢ : U — I such
that for ¢ € I and (y,n) € U,
M, for £t < =£l(y,n),
Yy y,m) € yoM, fort=1L(y,n),
Q, for =t > £4(y, n).

We remind the reader that 7(x, £), (x, &) € TR", is defined as the first intersection time with d M:

T (y0, no) := inf{z € (0, 0ol; ¥ (1 yo, o) € IM }.
In the following, we use the Sasaki metric on the tangent bundle 7M.

Lemma 6.3. The first intersection times T : SQ2 — (0, oo] and 7 : I_SM — (0, oo] are lower semicontin-

uous.

Proof. Let us consider T on S2. Let a sequence ((y;, nj))?ozl C S converge to (yg, n9) € S as j — oo.
We write y;(t) :== y(t; y;,n;) and t; :=1(y;, ;).
We will show next that liminf;_, o, 7; ¢ (0, 79). Let t € (0, 79). Then yy(¢) ¢ dM and

d(yo(t),dM) > 0.
Let j € Z. Suppose for a moment that 7; < oo. Noting that y; is unit speed and y;(z;) € dM, we have

It —7;1 = d(y;(0), yj(z))) = d(y; (1), 0M).

If r; = oo, then [t — 7| =00 > d(y;(t), IM).
The convergence y;(t) — yo(?), as j — oo, implies that for large j,

. d(yo(1), M)

0.
2

|l—‘L’j|

Hence, liminf;_, o, 7; # ¢ for all # € (0, 79).
Clearly liminf;_, o 7; > 0, and there is J € Z, such that

d(yo, dM)
_— >

Hence, liminf;_, o 7; # 0 and liminf;_,  7; > 0.
Let us consider T on 0_SM. Let a sequence ((y;, nj))ﬁ‘;l C 0_SM converge to (g, o) € 9_SM as
J — oo. We write y; (1) :=y(t; y;,n;) and 7; :=t(y;, n;).
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(j» 1)) t=t; y(T(x, 6);x,8)
t=1t(x,§)
(x,t(x,8))
(x,8)
Vj+1sMja1)
t=0
(y().0) (vj>nj)
t=T,
M

Figure 1. On the left, the trajectory of a Gaussian beam propagating along geodesic
y(t) := y(t; yj, n;) backwards on time interval (7o, ¢;). If S(y;,n;,t;) # 0O, then
there is a point source at y(¢;). On the right, a sequence (y;, n;) € SQ2 converging to
(x,&) € 0_SM and trajectories of the corresponding geodesics.

Repeating the above argument, we see that liminf; . 7; ¢ (0, 79). Thus it is enough to show that
liminf;_, o 7; #0.

Remark 2 gives neighborhoods / C R and U C SR”" of zero and (yo, 790) and amap £ : U — [ of
boundary intersection times. We write V :=U NJd_SM. As y(0; x, &) € M for (x,&) € V, we have
¢ =01n V. In particular, r := d(E(V), [F\R\I) > 0. For large j, (y;(0), y;(0)) € V, and thus

vi®)eM, te(0,r).
Hence, t; > r > 0 for large j, and liminf; . 7; > 0. |
We easily see the following continuity result for t.

Lemma 6.4. Let ((y;, 77‘,));’.":1 C SQ2 converge to (x, &) € 0_SM in the Sasaki metric. Then

111’1’1 ‘L’(yj, ﬂj) =0.
Jj—00

Theorem 6.5. Let (x, &) € 0_SM, and denote by J (x, &) the set of sequences
(5 yjs D52 C (0, 00) x S

for which

Iim (y;,n;) =(x,§), lim t; €(0,00), S(yj,nj t;)#0.
]*)OO ]4)00
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The function S : SQ x (0, o0) — C determines t : 0_-SM — (0, co] by the formula
T(x,§) =inf{jlir&tj; ()5 v, 1NFZ) € I (x, &) for some (y;, 1;)F2; C SR}
Moreover, if T(x, &) < 00, then there is a sequence ((t;; y;, nj));?‘;l € J(x, &) satisfying
T(x, &)= jli)n;otj.

Proof. Let (x,&) € 0_SM and ((z;; y;, nj));?‘;l € J(x,&). Let us show that t(x,&) <lim;_, ;. By
Lemma 6.4, 7; :=t(y;,n;) — 0 as j — 0o. We define
yi=v(Tiying), &=y v, n)).
As S(yj,nj, tj) #0, we have
y(tj— 1355, 8) =y yj,nj) € IM.

As limj_, o t; > 0 and lim;_, o 7; = 0, we have t; — 7; > O for large j. Thus 7(y;,&;) <t; —t; for
large j. Moreover,

lim (77, &) = (v(0; x,£), ¥ (0; x, ) = (x, £).

J—> 00

In particular, (y;,&;) € 0_SM for large j. Hence, Lemma 6.3 gives

lim ¢; = lim (¢; — 7;) > liminf 7 (y;, §;) > ©(x, §).
j—o0 j—00 j—00

In particular, we have proved the claim in the case t(x, §) = oc.

Let us assume that 7 (x, §) < oo. It is enough to show that there is a sequence ((¢;; y;, nj));?ozl eJ(x,&)
satisfying 7(x, §) =lim;_, o ;. We write

to:=t(x,8), z:=y{o;x,§), ¢:=—yyx,&).
We have
(x, &) = (v (to; 2, ©), =y (t0; 2, 0)).
As (x,&) € 0_SM, Remark 2 gives neighborhoods / and U of fy and (z,¢) and amap £ : U — [ of
boundary intersection times. After choosing local coordinates around z, we may define
jmy) = (v @ xi,, O, =y (153 xi,, 0)),

where (x;) 721 C U is a subsequence of the dense sequence of source points in (20) satisfying lim x;, =z
. i |
and (1;)72, C [ satisfies jmo00
t;>0(x;. ¢),  lim 1, =40(z,¢) =1o.
j—o00

Clearly, ((1;; y;, n;)j2; € J(x,§) and

lim t; =t =1(x, §). O

j—oo
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7. Determination of the scattering relation
In the next theorem, we consider the pseudorandom source A (¢, x) with coefficients
aj = )f’\j,
with some XA > 1, and make computations “modulo an error in A”, where
A={=A:jeN}.

To this end, let m 4(s) be the real number » such that s = » + a, where a € A and r has the smallest
possible absolute value. In the case when both r and —r satisfy this condition, we choose the positive
value.

Lemma 7.1. Let (yo, no) € S, ty € (0, T), and suppose that S(yo, no, to) # 0. Then there is a sequence
(vj, mj)jZ; C S and ()32, C (0, T) such that

()’j»’lj)—>(y0a770), tj_>t05 S(y]’njat])_)09 asj_>oo9 S(y]anjvt])#o (21)

Suppose, moreover, that the coefficients of the pseudorandom source hg are a; = A= Then for any
sequences ((y;, nj))?‘;l C TR" and (tj)?o | C (0, T) satisfying (21), we have that

El

Jlim ma(log; 1S(y. 1y 1))1) = log; [uo(to, ¥ t0): yo. 1mo) 81" (y (10))

where vy (t) = y(t; yo, no) and ug is defined as in (17).

Proof. We will use the notation
yi) =y 0. 2=y, Sji=S0n. ), Bji=luolty, zjs v nplgl (@)

As S # 0, we have that zo = x; for some j =1, 2, .... By continuity of the geodesic flow and density
of (x;)72; C dM, there exist a subsequence (x;)72; C (x;)52, and sequences ((y;,n;)?2; C TR" and
()52, C (0, T) such that

X, —> 20, (¥j,nj) = (Yo, mo), tj —>1to, asj— oo,

and zj = x¢; # zo. Then [S;| = |ak;|B; # 0. As xi; # zo and xx; — zo, we have that k; — oo and thus
ax; — 0. By (17) and continuity of the geodesic flow, it holds that f; — o > 0. Hence S; — 0.

Next we use the assumption that a; = A~ Let (), nj));?’;l C TR" and (fj);?il C (0, T) satisty (21).
As §; # 0, we have that [S;| = a, B, for some subsequence (akj)?‘”:1 C (aj)?‘;l. As §; — 0, we have
that ax; — 0. Moreover, sequence (log, 8 j)‘]’.';l is bounded. This boundedness, together with log; a;; € A
and log; ax; — —o0, yields

m4(log, ax; +log; B;) =log, B;

for large j € N. Hence,
lim m4(log, |S;]) = lim log, B; = log, Bo. (Il
J—>0 j—>00
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Theorem 7.2. If the coefficients of the pseudorandom source hy are a; = )L_)‘j, then the functions
S:8Q2x%x(0,00) > Candt:9_SM — (0, oo] determine D(X) and

y(t(x,):x,8), (x,§) e D(T).

Proof. Clearly T on 0_SM determines D(X). Let (x, &) € D(X). By Theorem 6.5, we may choose

(5 yj, 771'))511 €J(x,§)suchthatlim;_ . t;=7(x,§). As S(y;, nj, t;) #0, wehave y (;; y;, nj)=xkj

for some subsequence (xkj)?oz1 of the sequence of source points. By Lemma 7.1, the function S determines

[S(yj,mj, 1))l
. 12 = ;-
oty ;3 yj, n 1812 (k)|

As aj, j € Z, are disjoint, this determines the index k; and thus also the point x,. Moreover,

lim x, = lim y(5: ;. n) =y (t(x, §); x, §). O

The following result follows from Remark 2.

Lemma 7.3. Let us denote by X either SQ or a_SM. Let (yo, no) € X satisfy

T(¥0, m0) <00, ¥ (T(yo. M0); yo. m0) ¢ T.0M,

where 7z = y(r (yo, 10); Yo, 170). Then there is a neighborhood V C X of (yo, no) such thatt =£inV,
where £ : U — I is the map of boundary intersection times defined in Remark 2 for neighborhoods U C X
and I C R of (yo, no) and t(yo, no). In particular, T is smooth in V.

Lemma 7.4. The set of (x, &) such that y(-; x, &) is transverse to M is open and dense in
0SM :={(x,&) e SM; x € oM}.

Proof. As 0_SM U9, SM is open and dense in dSM, it is enough to show that the set of (x, &) such that
y(-; x, &) is transverse to d M is open and dense in 0+ SM. By the parametric transversality theorem
[Hirsch 1976, Theorem 3.2.7], the claim follows from the fact that the evaluation map

F®:0.5M xR — R",
F: (x, &6, 0) > y(t;x,8)
is transverse to OM. ]

Lemma 7.5. Let (xo, &) € D(X). Then there is a sequence ((x;, Sj))?ozl C D(X) such that y(-; x;,§;)
is transverse to oM and

lim (x;, &) = (x0,&0), lim ©(x;,&;) = t(x0, &0).
J—>00 J—>00
Proof. We write 1y := t(x9, &) and

(20, 20) == (¥ (z0; X0, §0), —¥ (703 X0, £0)).
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Remark 2 gives a map of boundary intersection times £ : U — [ for neighborhoods U C SR" and I C R
of (20, {o) and 79. By Lemma 7.4, there is a sequence ((z;, g“j))s?ozl C SMNU converging to (zo, {o) such
that y(-; zj, {;) is transverse to O M.

We define ¢; := £(z;, {;) and

Then (x;, §;) — (x0, §0) as j — oo. In particular, there is J > 1 such that (x;,§;) € 9_SM for j > J.
By Lemma 6.3,

7(x0, §0) <liminft(x;, &;) <limsupt(x;, §;)
J > j—o0

< lim £z, £) = £(zo. §0) = T (x0. §0)- O
Lemma 7.6. Let (xo, &) € D(X) be such that y (- ; xg, &) is transverse to dM. Then there is (yo, o) €

SQ lying on the geodesic y (- xo, &) and a neighborhood V C S, Q2 of no such that the following
conditions hold.

(C1) The map n+— t(y9, n) is smooth V — (0, 00).

(C2) The map
(x(m), Em) = (¥ o, s Yo, ), ¥ (T (o, M) Yo, ) (22)

is smooth V. — D(X) and (x (1), §(n0)) = (xo, §o)-

(C3) The map N
() == t(x(m), ) +1(yo0, n) (23)

is smooth V. — (0, 00).

(C4) There is a neighborhood W C oM ofy(t (x0, &0); xo, 50) such that

0>y (T, Em); x(n), () (24)

is a diffeomorphism V. — W.

Proof. We write y(t) := y(t; xo0, &) and zg := v (t(x0, &0)). By Remark 2, y(—t) € Q for small ¢ > 0.
Moreover, the points that are conjugate to zo along y are discrete on y [Jost 2008].
Thus there is 75 > 0 such that

(Yo, 10) == (¥ (—70), y (—10))
is in S€2, yy is not conjugate to zg along y, t(yg, n0) = 7o, and
(¥ (05 y0. m0), ¥ (T03 Y0, 1m0)) = (x0, &0).

By Lemma 7.3, there is a neighborhood Vy C §,,€2 of ng such that n — t(yo, 1) is smooth in V.
Hence, the function n — (x(17), £(n)) maps ng to (xg, &) and is smooth in Vj. Moreover, this smoothness,
transversality of y (-, xg, &), and Lemma 7.3 imply that there is a neighborhood V| C Vj of ng such that
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(x(n), M) € -SM and n > t(x(n), (1)) is smooth V; — (0, co). In particular, (x(17), £(n)) € D(%)
for all n € V. We have shown that (yg, ng) and V) satisfy (C1)—(C3).
We have

(v (5350, 1), 765350 M)y pryom = (7 @ XL EMD), ¥ (13 x (), E()). (25)
In particular, y (¢(no); Yo, no) = zo and

y€m); yo, m) =y (x(x(m), Em); x(n), E()) € IM.

Moreover, as yg is not conjugate to zg along y, there are neighborhoods V, C Vi, Iy C (0, co) and
Uy C R" of ng, 57(170) and zg such that (¢, n) — y (¢; yo, 1) is a diffeomorphism V, x Iy — Up.

There is a neighborhood V C V, of 5y such that Z(V) C Iy. The graph of n — Z(n) isan (n —1)-
dimensional submanifold on V x [y. Hence, the diffeomorphism (¢, n) — y (¢; yo, n) maps it onto an
(n — 1)-dimensional submanifold W of Uy. Moreover, zg € W and W C dM. Thus W is a neighborhood
of zoin M. O

Lemma 7.7. Let (xg, &) € D(X) and (yg, no) € S satisfy conditions (C1)—(C4) of Lemma 7.6 for
neighborhoods V .C Sy Q2 and W C OM of ng and zo := y(r(xo, &o); xo, 50)- We denote by F : W — V
the inverse map of (24). Then

gradyy (o Flo=zy = 7y, (26)

where £ :V — (0, 00) is the function (23) and Vz—(l)— is the orthogonal projection of y (7: (x0, £0); X0, SO) into
T,,0M.

Proof. Let o : (—e, €) — W be a smooth curve such that o (0) = zo. We define
[:(—€,e)xR—>R", T(s,0):=y(r; yo, F(0(5))).
We write A := £ o F oo and £y := £(no). By (25),
T(s, 4(5) =y (T, E); x0), EM) |, _pos) =),
3,1)(0, £0) =y (£o; Yo, m0) = 7 (v (x0, §0); X0, &0)-
Hence ) )
6(0) = 3;T'(s, A(s))]s=0 = (8sT)(0, £o) + (3,T)(0, £9)2"(0).

The curve ¢t — I'(s, t) is a unit speed geodesic for all s € (—¢, €). Hence

(6(0). 7 (z(x0. £0): x0. &), = (BT, B T)g + 2 OV BT D)) | 1z,

, 27)
= (T, 8,D)gl,_g,z, + 2/ (0).

We define l
L(s, ) ::/ 10; (s, 1)|gdt, (s,1) € (—€, €) x (0, 00).
0
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Then £(s, 1), s € (—¢, €) is the length of a unit speed geodesic on the interval [0, []. Thus £(s,[) =1 for
all s € (—e, €). We may derive an expression for d;F(s, [)|s—o as in [Lee 1997, Proposition 6.5]:

05 L(s, 1)]|s=0 = /OZ(D,BSF, 0 1) g dt]s—o.
As t+— I'(s, t) is a geodesic, D;9,I"(s, t) = 0, and thus
0,05, ;") g = (D; 05T, 0;T") .
Moreover, I'(s, 0) = yg for all s € (—¢, €), and thus 9,I"(s, 0) = 0. Hence
0=0;&L(s, |s=0 = fOl 005, 0;") g dt[s—0 = (05T, 3; ") gls=0,i=1, 1 € (0, 00).
By (27), we have
(6(0). y.)g = (6(0), ¥ (x (x0. &) X0 Eo))g
=40 =(d(0 Pz, 6 O)) . gagoer, g = (60, gradypy (€0 Flo=zy) .
for all smooth curves o in W such that o (0) = zp, which proves the claim. O
Theorem 7.8. The functions t : 0_SM — (0, oo] and
2:D(Z) > oM, z(x,§) :=y(t(x,§):x,§),
together with the Riemannian manifold (2, g|q), determine
y(t(r, 6 x,€),  (x,§) € D(D).

Proof. The functions t and z on D(X) determine the set B of points (xg, o) € D(X) such that the
conditions (C1)—(C4) of Lemma 7.6 hold for some (yg, n9) € SS2.
Let (xo, &) € B. We write ¢ := y (7 (x0, &0); X0, £). The map

n>z(x(m),&Mm))

determines its local inverse. Hence t and z determine the function F of Lemma 7.7, and thus they
determine ))ZI by the formula (26). As ¢y is a unit vector,

o=y, + 1=y H" 0,

where v, is the unit exterior normal vector of d M. Hence t and z determine ¢, for all (xo, &) € B.
Let (x9, §0) € D(X). By Lemmata 7.5 and 7.6, there is a sequence ((x;, éj));?’;] C B such that

lim (x;,&;) = (x0,80), lim 7(x;,&;) = t(x0, &0).
j—o0 J—>00
Moreover, the functions t and z determine the set of such sequences, and thus they determine

jlir&y(r(xj,éj);xj,éj)=)}(T(Xo,$0);xo,§0)- 0
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Theorems 6.5, 7.2 and 7.8 prove Theorem 1.2 formulated in the introduction.
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TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH
RANDOM RADIAL DATA

YU DENG

We study radial solutions of a certain two-dimensional nonlinear Schrodinger (NLS) equation with
harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear
smoothing effect of Schrodinger equation with L? estimates of Laguerre functions, we are able to prove
an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an
application to the NLS equation without harmonic potential.

1. Introduction

Burq, Thomann and Tzvetkov [Burq et al. 2010] studied the nonlinear Schrédinger (NLS) equation on
R x RY with harmonic potential

10u + (A — |xP)u = x|u|Pu, (1-1)

where the space dimension was one. The purpose of this paper is to extend their results to two space
dimensions. We will prove global well-posedness almost surely with respect to a Gaussian measure
supported on (5. %% (see Section 1.2 for the definition), and we construct the Gibbs measure, absolutely
continuous with respect to this Gaussian, which we prove to be invariant.

We also study the NLS equation on R x R? without harmonic potential, namely

i0u + Au = x|u|”u. (1-2)

In [Burqg et al. 2010], it was noticed that using an explicit transform (referred to as the lens transform
in [Tao 2009]), we can obtain local and global well-posedness results of (1-2) from the corresponding
results of (1-1). This issue is also pursued here.

Like most earlier papers on random data theory of NLS equations in two or more dimensions, ours
considers only radial solutions. In the defocusing case in two dimensions, we can prove, when p > 3
is an odd integer, almost-sure global well-posedness and measure invariance for (1-1) and almost-sure
global well-posedness and scattering for (1-2); in the focusing case, we have the same results only for
(1-1), when 1 < p < 3.

MSC2010: primary 35Q55, 37L40, 37L50; secondary 37K05.
Keywords: nonlinear Schrodinger equation, supercritical NLS, random data, Gibbs measure, global well-posedness.
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1.1. NLS equation and probabilistic methods. The nonlinear Schrédinger equation (1-2) and its periodic
variant (which is solved on R x T¢) have been extensively studied over the last several decades. Beginning
with [Lebowitz et al. 1988; Bourgain 1994; 1996], it has been observed that low regularity local and
global solutions to (1-2) on R x T4 can be obtained via randomization of initial data and construction of
Gibbs measure. This idea was later developed in a number of papers, for instance [Burq and Tzvetkov
2008a; 2008b; Nahmod et al. 2012; Oh 2009; 2010; Thomann and Tzvetkov 2010; Tzvetkov 2006; 2008].
In [Burgq et al. 2010], the method mentioned above was first used to study (1-1).

There are three reasons why (1-1) is worth studying. First, the spectrum of the harmonic oscillator
H = —A + |x|? is discrete, so (1-1) can be approximated by ODEs, and the current techniques of
constructing Gibbs measure apply at least formally. Second, (1-1) is solved on R x R, where the
space domain is noncompact, while previous works usually involve a compact manifold. Also (1-1) is
related to (1-2) via the lens transform, so results about (1-1) may shed some light on the study of (1-2),
where probabilistic methods have not yet entered. Finally, (1-1) also arises naturally from the theory of
Bose-Einstein condensates, as noted in [Burq et al. 2010].

The major difficulty in the study of (1-1) is that the support of the Gaussian part of the Gibbs measure
contains functions with very low regularity. With radial symmetry the typical element in the support of
the Gibbs measure belongs to (- %% but not L?; without it the typical element does not even belong
to %'~ (the spaces #, as defined in Section 1.2, are Sobolev spaces associated to H; see Section 3
for more details). A consequence of this is that we cannot expect even local well-posedness in the
deterministic sense for initial data of such low regularity. In fact in [Thomann 2008] local ill-posedness
for % initial data was shown', provided o < o, :=d/2 —2/(p — 1). In particular, we have o, — 1
as p — oo for the two-dimensional defocusing equation; thus deterministic local well-posedness fails
completely for regularity below L2.

In [Burq et al. 2010], the problem was resolved by a probabilistic improvement of (weighted) Strichartz
estimate, and it was shown that H%/?¢="H f (@) almost surely belongs to some weighted Lebesgue space
for § < % (see [Burq et al. 2010, Lemma 6.2] for more details). Since o, < % in one dimension, local
well-posedness in this space could be proved. In two dimensions, however, it will be shown in the
Appendix that the distribution H°/? f () is almost surely not a locally integrable function (thus cannot
belong to any weighted space) when o > % Since % fails to reach the o, threshold when p is large, we
have to use different tools to get local well-posedness. Fortunately, the nonlinear smoothing effect of
the NLS equation provides such a tool. To fully exploit this effect, we will work in %" spaces (see
Section 1.2 for definitions) and use multilinear eigenfunction estimates. This requires p to be an odd
integer, but we believe that by more delicate treatment we can remove this restriction and allow for all
1< p<oo.

When there is no radial symmetry, the support of the Gaussian will have such low regularity that we
cannot even define the Gibbs measure. It would be possible to use alternative Gaussians to get local
results, but then we do not have an invariant measure, so global results still seem out of reach. One

IThe counterexample constructed in [Thomann 2008] was for (1-2), but it could be easily adapted to (1-1) as noted in
[Thomann 2009]; also one can check the proof there that the initial data could be made radial.
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possible way is to combine the probabilistic local result with the high-low analysis of Bourgain or the
I-method of Colliander, Keel, Staffilani, Takaoka and Tao. For progress in this direction, see [Colliander
and Oh 2012].

Finally, as we mentioned above, the study of (1-1) is closely related to the study of (1-2). The result
we obtain for (1-2) (see Theorem 1.2 below) is an almost-sure global well-posedness and scattering
result with supercritical initial data (the critical index of (1-2)is d/2—2/(p —1) — 1 as p — o0 in two
dimensions, while the initial data is below L?), but due to the use of the lens transform, our result is
unsatisfactory in the sense that (i) the space in which uniqueness holds cannot be described in a simple
way, and (ii) the Gaussian measure in Theorem 1.2 does not arise naturally from (1-2), and we do not
know how to construct the Gibbs measure of (1-2). This may be an interesting problem for further study.

1.2. Notations and preliminaries. From now on we assume the spacial dimension d = 2, and all the
functions we consider are radial. Define the Hermite operator H = —A + |x|?. It has a complete series of

2 . .
real L ; eigenfunctions |

er(x) = NG

with eigenvalue 4k + 2. Here 582 are Laguerre functions

FU|x*  for k>0 (1-3)

/2 gk
oy
@) =T gEe -
Concerning these functions we have the basic pointwise estimates

C if0<z=<1/v,

C(zv) 14 if1/v<z<v/2,
@) = 1-4
[# @) < Cv AR -z V% ifv/2 <z<3v/2, (-4

Ce ¢t if z>3v/2.

Here v =4k + 2, C and c (possibly with subscripts) are positive constants varying from line to line, and
will be used in this way throughout this paper. For an introduction to Laguerre functions, see [Szegd
1975] or [Thangavelu 1993, Chapter 1]. The proof of (1-4) is also contained in [Erdélyi 1960; Askey and
Wainger 1965].

For o e Rand 1 < p < 0o, we define the Sobolev spaces associated to H:

WOl ={u e llullwer = ||H"/2”||Ln < oo}. (1-5)

rad — rad °

. 0’,2 _ o
We also write W4 = %7 ;.

We also define a class of spacetime Hilbert spaces associated to H, as
XTE = {u € FlogR X R ¢ |lullgos = | HO* (3, — H) ul||,» < oo}, (1-6)

rad —

or use the radial Hermite expansion and Fourier transform to write

00 1/2
lull2,, = (Z(4k +2)° /;(1 + (7 + 4k + 2)2)b|@t(u, er) (1) dt) ,
k=0
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where as usual (t) = (J¢|*> + 1)'/2, %, denotes the Fourier transform (2;r)~1/2 fR e T £(t)dt in ¢, and
(f, g) denotes the L*(R") inner product of f and g. For an interval I we define a localized version of
this space by

llullggoos = inf{|[vllgeos : v (1) = u(t), t €1}, (1-7)

and denote it by %% When I =[—T, T], we simply write 9b

rad rad
the “rad” subscript will be dropped from now on. Trivially #°°%-! is a separable Banach space (simply

‘T Since all the functions will be radial,

restrict a countable dense subset of X% to I).

We fix a smooth, nonincreasing function n such that 1 =5 (1) > n(x) > n(2) = 0 for all x. Using this

cutoff, we define Littlewood—Paley projections

av=n(5)=n(5%) -9
for dyadic N. Then Ay =0 for N < 1, since the first eigenvalue of H is 2. Thus whenever we talk
about Ay, we always assume N > 2.

We shall denote by #M the cardinality of a finite set M and by | E| the Lebesgue measure of a subset
set E of Euclidean space. We define A < B by A < CB and define 2 and ~ similarly. The constants
C; and c; will also be used freely, as indicated above. All these constants will ultimately depend on the
only parameter p in (1-1) and (1-2). Finally, we define the finite-dimensional subspace Vj to be the span
of {e;}o<j<k. For a function g on R? or I x R?, where [ is an interval, we define g and gkL to be the
projection of g on V; and Vkl.

1.3. Statement of main results and plan for this paper. Fix a probability space (€2, X, P) with a se-
quence of independent normalized complex Gaussians {g;} on €2 (which has density n_le_mzdxdy, SO
8k has mean 0 and variance 1), so that w — (g (w))r>0 is injective, and the series

f@) i L o) (1-9)

w) = — g (w)e -
o Jakg e

convelrges2 in 9'(R?) for all w € . Then f = f(w) is an 9’ (R?)-valued random variable, and is a

bijection between 2 and its range. Our main results can then be stated as follows.

Theorem 1.1. Consider the Cauchy problem

1-10
u(0) = f(w) (10

and distinguish two cases: the signis — and 1 < p < 3, or the sign is + and p > 3 is an odd integer. In

{iatu + (A = |xP)u = ul”"u,

the former let 0 = 0, and in the latter let 0 < o < 1 be sufficiently close to 1, depending on p. In both
cases let 1 > b > % be sufficiently close to %, depending on o and p.

ZFor example, we may take the usual product space C* equipped with the product of complex Gaussian measures, and
coordinate functions g ;, and choose the (full-measure) subset where [gi (w)| = O ((k) 1O) as €2, this can easily guarantee the
convergence of (1-9).
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Then almost surely in P, we have a unique global (strong) solution u in the affine space
Y =e" " fw)+ Ny &7, (1-11)
and we have continuous embeddings
Y Ce ™ (o) +CR, #°(R?) C G(R, M=o H°(R?)).

We also have a Gibbs measure on &' (R?), which is absolutely continuous with respect to the push forward
of P under f, and is invariant under the flow defined by (1-10).

Theorem 1.2. Let o and b be as in Theorem 1.1. Consider the (defocusing) Cauchy problem

{iat”+A”=lulp“u (1-12)

u(0) = f(w)

with p > 3 an odd integer. Then almost surely in P, we have a global (strong) solution u in the affine
space

% =e"2 f(w) + Ny X707, (1-13)
and we have a continuous embedding
% C ' f (@) +6(R, H (R)).

Here X7 is defined in the same way as in (1-6) and (1-7), but with H replaced by —A. We also have
an appropriate affine subspace %' of ¥ containing the solution u, in which uniqueness holds. Finally we
have a scattering result: There exist functions g+ € H® such that

lim [u—e"®(f(w)+ g+)llgs =0. (1-14)
t—+oo

The rest of this paper is devoted to the proof of Theorems 1.1 and 1.2. In Section 2 we recall the linear
Strichartz and L?-based estimates with respect to the propagator e /# . We will rely on the functional
calculus of H (thus the results hold for more general Schrédinger operators, though we do not discuss
this here). Some results in this section are standard and can be found for example in [Colliander and Oh
2012; Tao 2006]. In Section 3, we prove some large deviation bounds for Gaussian random variables, and
use these to construct the Gibbs measure of (1-1). In Section 4, which is the core of this paper, we use a
Littlewood—Paley decomposition and hypercontractivity of Gaussians to prove a multilinear estimate in
%°-? spaces, which shows the nonlinear smoothing effect. In Section 5, we put these estimates together to
develop a local Cauchy theory. Then in Section 6 we extend this to a global well-posedness result by
exploiting the invariance of truncated Gibbs measure under the flow of approximating ODEs. In Section 7
we introduce the lens transform and convert the result on (1-1) to one on (1-2), proving Theorem 1.2. In
Section 8, we show the invariance of the Gibbs measure, completing the proof of Theorem 1.1. Finally in
the Appendix, we discuss the typical regularity (in terms of H) on the support of the Gibbs measure.
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2. Functional calculus and Strichartz estimates

We begin with the following kernel estimate about the harmonic oscillator H.

Proposition 2.1. Let  be a Schwarz function; then for t > 0 the operator W (t H) is an integral operator
with kernel K;(x, y), where

K, (e, ) Sttt a7 2 —yp . @2-1)

The implicit constants in < depend only on N and . In particular, these operators K, are bounded
uniformly int on WP foralloc e Rand 1 < p < o0.

Proof. 1t was proved in [Dziubaniski 1998, Corollary 3.14] that, for any fixed N, the inequality (2-1)
holds, provided

¥ € ([0, +00)) = {¢ € L([0, +00)) : y ¥ (0) =0, 0 <k <m]}, (2-2)

where m is large enough depending on N (actually the same result was proved for any Schrédinger
operator with nonnegative polynomial potential). On the other hand, when ¥/ (z) = e~ % with o > 0, we
have from Mehler’s formula that

e—20t 1 l+e—4at
o

5 ) 26—26t
Kz(X,Y)=meX —Ew(m + Iyl )+WX')’>- (2-3)

Writing 20t = §, we know

1l1+4e2 2e7° c 5
51 25(|X| +|y|)+ﬁx'}’§—g|)€—y|,
thus the kernel satisfies
0= Ki(w,y) = e @M <l (1 P -y~ (2-4)

for any N. Now for any fixed m, there exists / such that any function f € ([0, +00)) can be written as

I
f@=fo)+ ) cje ", (2-5)
j=1
where fy € ¥/ ([0, +00)) and o; > 0. Combining the two results above, we have proved (2-1). The

uniform boundedness now follows from (2-1), Schur’s test, and commutativity of ¢ (t H) and H °/2. 0O

Remark 2.2. The constants in Proposition 2.1 certainly depend on i and the Lebesgue or Sobolev
exponents, but this dependence can be safely ignored since throughout this paper we only use a finite
number of fixed cutoff functions ¥ and a finite number of fixed exponents.

Corollary 2.3. Suppose 1 < p <oo, 012 €R, R > 0and g is a function.

(1) If o1 > 03, and (g, ex) # 0 only if 4k +2 > R? (for example, when g = Y N-gr Anh for some h),
then ||gllwor Z R ™21 gllwer.
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(2) If o1 < 0, and (g, ex) # 0 only if 4k +2 < R? (for example, when g = Y N<r Anh for some h),
then ||gllwerr 2 R7 || gllworr. B

(3) If (g, ex) # 0 only if 4k +2 ~ R? (for example, when R = N is dyadic and g = Ayh for some h),

then || g|lwerr ~ R'2|[glyorr.

(4) All the operators ) . p An, D N g An and Ay are uniformly bounded from WP to itself.
Proof. First (4) is obvious, since ) "y _r Ay =n(tH) and Ay = n(t'H) — n(2t'H) for some ¢ and ¢/,
and ) y.p Ay =Id—) "y _r An. Also it is clear that (1) and (2) implies (3). In proving these we may
assume min{oq, o2} =0, sin_ce He/ 2g satisfies the same properties as g.

To prove (1), choose a smooth cutoff | that equals 1 for x 2 1 and equals 0 for very small x. Then in
(1) we have g = ¥, (R 2H) g. Therefore we need to prove that

H™°PR°y1(RH) =) 27"y, 2*R7*H) (2-6)
k>0

is uniformly bounded on L” for o > 0, where ¥»(x) = x~°/2(y;(x) — ¥1(27'x)) is a fixed smooth
compactly supported function. Using (2-1), we can estimate the kernel K (x, y) of H=°/>R%y;{(R™2H)
as
K (e, IS Y 27 P2 R 2R Ix — y )™ = RPys(RIx — y)), 2-7)
k>0

where
Ya(x) =Y 207K 20N < (14 1x |7 ) () V.
k>0

The last inequality is easily verified by considering |x| > 1 and |x| < 1 separately. Therefore by Schur’s
test we have proved the uniform boundedness of the operator, thus proving (1). The proof of (2) is similar
and is left as an exercise. ([l

To get Sobolev and product estimates, we next need a lemma.

Lemma 2.4. Forall1 < p < oo and o > 0, we have

lgllwor ~ 1{V)7 gllr + 11{x)° gllLr- (2-8)
In particular we have || g||lworr < ||gllwezr for o1 < 0.

Proof. See Dziubarski and Gtowacki [2009], who proved the same result for any Schrédinger operator
with nonnegative polynomial potential (the latter inequality also follows from Corollary 2.3). (I

Proposition 2.5. We have the estimate

lgllwera S Mg llyporar (2-9)

ifl <q,q <ooandoy—o;>2(1/q' —1/q) > 0, and the estimate

k

[1e

j=l1

Wo.p

k
S gl [ Jlgilza (2-10)
j=1 i#]
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ifo>0and1<p.q; <ocowithl < j<kandY_ 1/q;=1/p.

Proof. In considering the first estimate we may assume o = 0, and the inequality follows immediately
from Lemma 2.4 and the usual Sobolev inequality.

As for the second estimate, if the W*>? norm is replaced by the usual Sobolev W ? norm, then (2-10)
is a well-known result in Fourier analysis (for £ = 2, but the general case easily follows from induction).
Now using Lemma 2.4, we only need to show

k
1) g1+ grllee S 107 gillea [ Jllgj Nz,
j=2
which is simply Holder’s inequality. U

Before proving Strichartz and other estimates, we need a lemma, which gives a representation formula
of %°*» functions.

Lemma 2.6. Suppose o, b € R. Then for every u, if |ullgor < 1, we have

u(t,x) = / d(L)et Z a;, (ke {2 (x) da, (2-11)
R k

where ), (4k + 2)% |ay (k)|? = 1 for all . € R. Furthermore, if b > %, then we also have fR|¢(A)| dr < 1.
Ifb < % and F(u, er)(A) is supported in {|A + 4k +2| < K} for each k, where K 2 1, then we also have
JrloGyldr S K20

Proof. Using radial Hermite expansion and Fourier transform, we can write
u(t, x) = m)"1? Z /I; F,(u, er)(T)e T e (x) dt
k
= (2x)" 12 Z /R Fo(u, ex) O — 4k — 2)e 1D (x)el™ di,
k
so we may choose

—1/2
ar (k) = (F (u, ex)) (h — 4k —2) - (2(41 +2)7|F (u, e1) (o — 4 — 2)|2) : (2-12)
[

and

000 = @m) (Y@ 42715 . e -4 ) -13)
l

Then we clearly have ), (4k +2)7|a, (k)|?> = 1 for each A, and from the definition of Z”” norm we see
that

[ 010G 8= St S 1. -14)
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If b > 1, then (A)~% € L%(R), and it follows from Cauchy-Schwartz that [|¢[;1 < [[(X)’¢]l,2 -
(AP 2 < 1. If instead b < % and u satisfies the support condition, then ¢ (1) =0 if |A| > K. Again
from Cauchy—Schwartz,

1/2
||¢>||L15</ <x>—2”dx) ~ K0, O
[A|<K

Proposition 2.7. Suppose b > %, o12€R,and 1 < gz, <2 <gq,r, q1,r < oo. We have the following
estimates:

le ™ gll 1y ragor rixmey S (T g2 (2-15)

ifé + % = % and g is defined on R?;
t

‘/ e IU=9IH () ds
0

ifqll-l-l=%, l+%=%,anduisdeﬁnedon[—T,T]><[R§2;

1+ 1
) ,S <T> non ”u”L;zLZZ([—T,T]x[RZ) (2'16)
L LI ([-T.T1xR?)

1
”u”L,”WZl’q([—T,T]XIRZ) 5 (T) /r||u||%"’2~b-7 (2'17)

ifoo—o1>1-— %1 — % > 0, and either u is defined on [—T, T] x R2, or u is defined on R x R2 and the
right side is replaced by ||u||gor.53

1 _1
”u”%(’hb*IvT S (T)= = ”u”L;ﬂwgl"h([,]"]‘]xRZ)’ (2-18)

ifb<1,q > ﬁ, and either u is defined on [—T, T] x R2, or u is defined on R x R2, supported on

[—T, T, and the left side is replaced by ||u|lyo,.-1; and finally

Nulleq—r, 71,91 ®2)) S Nttllgpor o (2-19)
ifu is defined on [—T, T x R?. In particular if T < 1, all the implicit constants can be taken 1.

Proof. For (2-15), since e "H is periodic, we may assume 7 < 1; thus (7') ~ 1. In addition, by subdividing
the interval [—T, T'], we may assume 7 is small enough. Substituting o =i in Mehler’s formula (2-3),

we can easily see the integral kernel of e H is an L function in the space variables with norm < |¢|~!

for || < T. Now using the T T* method we reduce (2-15) to

T
H / e =9 H (5) ds (2-20)
-T

e ”L{/Lz/([—T,T]sz)'

S
LI LY([-T,T1xR?)

Now we interpolate between L? conservation and the L' — L™ inequality deduced from the L
bound of the integral kernel, to get ||e*i‘3Hg||Lq < |<‘S|%_1 llull o for |t| S T. Using this and the usual
Hardy-Littlewood—Sobolev fractional integral inequality, we immediately get (2-20).

Now from (2-15) and duality we easily get

T .
‘/ e IU=9OH () ds

1+ 1
§<T> " Hu”L?Lf{z([—T,T]xW)
0

L LI ([-T.T1xR?)




922 YU DENG

for the exponents gy, r1, g2, r2; thus from the Christ—Kiselev lemma we get (2-16).

We now prove (2-19) and (2-17), under the assumption o, —o; =1 — % — 2 —(. Here we may assume

r

o1 = 0. By the definition of ¥*%7 we can assume that u is defined for all € R, and only need to
prove that the left side of each equation is controlled by ||u||¢0.». We shall use || - || x to denote either

the norm (7)~ V7| - ||L;LZ([—T,T]xR2) or || - lgq—7.77.L2(m2))» and from what we just proved, we know
”e—itH

gllx < llgll2. Assume ||u||gos < 1; by Lemma 2.6 we may write

u(t,x) = / d(L)e Zax(k)e—““k“)’ek (x) dx (2-21)
R &

with [|¢]l;1 STand ), |a; (k)|?> = 1 for each A. Then we have

u= /R P (M) e itH (Xk: a,\(k)ek> da.

From Minkowski and Cauchy—Schwartz we see that

ei)»tefitH ( Z ak(k)€k>
k
> ank)ex
k

proving (2-19) and this special case of (2-17). To prove (2-17) in general, we use Proposition 2.5 to

lullz S @l - sup
» x

<1, (2-22)
L2

SNl - sup
2

deduce
1

||M||L;'W;1’q([—T,T]><R2) Sz ”u”Lf"i/V?’q/([—T,T]xRZ) g (T) /r”u”%fz-bf»

1

q/
when u is globally defined.

1

where — + % = % (sothat2 <g,q',r <ooand o —o1 > 2(% — 3) > 0), and with obvious modifications

Finally we prove (2-18). Again we may assume o1 = 0. For v=u on [—7, T'] and v = 0 elsewhere,
we need to show

11
”v”%(”’*l S (T)« 2 HMHLZZX([—T,T]XRZ)‘ (2-23)

For any w with ||w||go.1-» < 1, we have

/R . vw dfdx' = ’/[ A Uw dfdx' SHwllps (1 rixrey - 1l (-1 r1xme) (2-24)
X —T,T1x

1 1
<AT)2 93 || w||go.1-» for all

~

we can use Stein’s complex

where g3 = g2/(q> — 1). Thus by duality, we only need to prove |w]|| L%

2<qg3< % Since the imaginary power (id; — H) is an isometry on L,Z,;,
interpolation to reduce to the cases (b, g3) = (1, 2) and (b, 4), where by = (g3 — 4+ bq3)/(2g3 —4) < %

The former is trivial by definition, and the latter is a special case of (2-17). ([l

Lemma 2.8. Fixo,b e R,0 < T <1 and a cutoff function .
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(D) If—% <b <b< %, then for u € X% we have
T <7t 2-25
IV (T Dullgor S llatll g (2-25)

Also for u € 7T we have

litllogorr < T2 Nut | gpoor. (2-26)
) If L <b' = b < 1, then for u € %° with u(0) = 0, (2-25) holds, as well as the limit

}imOHl//(T_lt)uH%a,h =0. (2-27)

Proof. (1) If (2-25) is true, then for any u € ¥%>T and any extension v € ¥%” of u, we have
tllggorr < I (T O0llgorr S TP N[0]lg00,

provided ¢ = 1 on [—1, 1]. Taking the infimum over v, we get (2-26). Now we prove (2-25). Define the
operator Mu(t, x) :=e"Hu(t, - )(x). We have

10, (Mu) = ¢"H (13, — H)u,

and therefore we get ||u||qor = || Mul| HP9es - Since M also commutes with multiplication of functions of
time, we can reduce to || w(T_lt)vlle/%n < yald ||v||ch%g. By eigenfunction expansion, we can further
t X X

reduce to
(T 08l e ST Y llgll o (2-28)

By composition we may assume 0 <’ < b or b’ < b <0, by duality we may assume 0 < b’ < b, and by
interpolation we may assume b’ € {0, b}.

First suppose b’ = b; we want to prove that multiplication by ¥ (7 ~'¢) is bounded, independent of
T > 0, on H”. Since it is bounded on L2, we only need to show that it is also bounded on H”. By
rescaling we may set 7 = 1. For each g € H?, we split g = g + g», where 2, is supported on {|§| < 1}
and g, supported on {|£| > 1}. Multiplication by v is obviously bounded from H' to H', and from L2
to L2. So it is bounded from H? to H?; thus gl ge S Nez2llme S gl ge- Since b < %, we also know

/ Ia@ldr 1P 81 @ agragy - e oy S 81l S gl o
T|=

Thus (¥ g1)"(t) = (¥ * &1)(t) is bounded pointwise by ()| gl z», since ¥ is Schwartz, and the result
follows.
Next suppose b’ = 0, we only need to prove the stronger result

Iy (T~ '0)gll S Tllgll -

By rescaling we can set 7 = 1. Using the same splitting g = g1+ g2, we have [[¥ g2 S llg2llzz S gl gos
and | g1 (v)| < (t) V| gll o This proves (2-28) and hence (2-25).
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(2) We want to prove (2-25), and again we can reduce to (2-28), where we also have g(0) = 0. Using
the same arguments as in (1), we can further reduce to the boundedness on H" and assume 7 = 1. Split
¢ = g1 + g so that (though we are considering H” norm here, we still assume g € H?, so § € L!)

~ ~ 1 ~
82(T) = Xje1=1-8(T) — 5 / g dA- xi<jri<2;
2 Jiuz

then g; is supported in {|t| < 2}, &> is supported in {|7| > 1}, both the g; have integral zero (since ¢ has
integral zero), and [1gi | < gl (since b > 1, we have 121111 pejs 1)y < 117178112 = gl o). For g2
we have [¥g2ll go S 82lla» S llgll g as in (1); for g1 we have

2
(We(r) =/2(1ﬁ(f—$)—lﬁ(f))§1(€)d5-

By Cauchy—Schwartz

2 1/2
(W) (D)] < ||g1||Hb</2|s|—2”|¢<r—s>—¢<r>|2ds> SO Vgl ge,

and (2-28) follows. Finally, to prove (2-27), we first use the operator M and approximation by a finite
linear combination of eigenfunctions to reduce to || (T~ 't)g| > — 0 (T — 0). Since this is easily
verified for Schwartz g, we only need to check any g € H” with g(0) = 0 can be approximated by
Schwartz h also with #(0) = 0. But this easily follows since H b is embedded in L. U

Proposition 2.9. Suppose % <b < 1. We have

t
/ e =9 H , (5) ds < Nlullggoo—r.7 (2-29)
0

%ﬂ,b.T

for T < 1. Also for u € X", the function ||u||ge..s is continuous for T > 8 > 0, and if u(0) = 0, it tends
to 0 as § — 0. Moreover, if p > % and

||l — e‘i(’_"a)Hu(ch) Il ogob.16—138,6e+181 < C (2-30)

for k| < K, then
lu — e H iy (0) |l opors < ey K250, (2-31)

Proof. For the operator M defined in the proof of Lemma 2.8 we have

M( / e W=OH () ds) = / Mu(s) ds; (2-32)
0 0

therefore we can again use an eigenfunction expansion to reduce the problem and see that (2-29) will
follow if the operator

t
g(t) = 9g(1) := n(t)/o g(s)ds (2-33)

is bounded from th 1t H?, where 7 is a fixed smooth function supported on [—3, 3] that equals 1 on
[—2, 2]. Choose a smooth compactly supported function y that equals 1 on [—10, 10], and choose ¢
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supported on [—5, 5] that equals 1 on [—4, 4]. Then we have

t 0
Fg(t) = n(t) / V(i — )¢ ()g(s) ds — n(0) / 0 ds, (2-34)

We know multiplication by 7 is bounded on H”, multiplication by ¢ is bounded on H!~? (to prove these,
we first prove them in L? and H' explicitly, then interpolate), and convolution with ¥ - x[0.oc) is bounded
from H”~! to H®, since its Fourier transform is controlled by (z)~'. Thus the first term is bounded. For
the second term, we only need to prove |(g, ¢o)| < llgll go-1, Where ¢o = ¢ - xj0.5; With |q§o(t)| < ()~ L.
But this follows from Plancherel, Cauchy—Schwartz, and the assumption b > % This proves (2-29).
Next we consider the function M (8) := | u||gs.s.5, Which is clearly nondecreasing. Since we only
consider 0 < § < T, we may assume u is defined for r € R and belongs to %°°?. For each § > 0, denote
by My the left limit of the function M at point §, and choose a sequence &, 1 §, and (by definition) a
sequence of v, such that v, = u on [—§,, §,] and lim,_, o ||V ||or < My. These v, have a subsequence
converging weakly to some v with |[v||yes < My. Using the embedding L% S D %, we easily see
v =u on [—4§, 8]. This proves left continuity. To prove right continuity at §, write M (§) = M,. For any e,
we choose v =u on [—6, 8] and ||v]|ger < M| +€. Let u —v = w with w = 0 on [—§, §], and define

we=(WE =) +ya 't +8))w,

for some suitable cutoff that equals 1 on a small neighborhood of 0. From the definition of w,, we see that
for small 7, we have v+ w; = u on a neighborhood of [—§, §]. From Lemma 2.8 we know ||w ||go.0 — O
as T — 0, thus ||v 4+ w ||ger < M1 4 2€ if 7 is small enough. This proves right continuity. Finally, if
u(0) =0, then

lim ||t || gons < Hm [y (™ )il gpos = 0
§—0 =0

for the same cutoff .

Finally we prove (2-31). From (2-30) and the embedding || g|| s < ||gllgpors We see in particular
lu(k8) — e~ *Hy(0)||5c < K. Now choose wy, so that wy = u — e =*)Hy (k8 on [(k — 1)8, (k + 1)8]
and ||wyg|lge» < C, and choose a partition of unity 1 subordinate to the covering {((k — 1)§, (k+ 1)3)}
of [—K§, K§], so that Y (f) = ¥ (t/8 — k) and ;. have bounded Schwartz norms (this is well known).
We then have

w=Y " Yew+ Y Yre O w(ks) — e *Hy0) =v on [-K8, K], (2-35)
k k

and ||wl|y., < K2870/2, since it is easy to check (by reducing to estimates of functions of ¢ and interpolating
between L? and H') that multiplication by v is bounded from ¥ to itself with norm < §%/2, and
that by definition

e RO (4 (k) — e TFH Y (0)) [l gpor = (k) — e T FHu(O) |l9¢s 1Vl o S KSV27P. O
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3. Construction of Gibbs measure

We will construct the Gibbs measure of (1-1) for 1 < p < oo (defocusing case) and 1 < p < 3 (focusing
case). From the definition (1-9) of f, it is obvious that

L @) 5 =D @k +2)"" g (o). (3-1)
k=0

This expression is almost surely finite if T < 0, and is almost surely infinite if T > 0. Thus we have

fl) e ®" =, (3-2)

>0

almost surely in P. Define 1 = P o f~! to be the push-forward of P under f; then we see that the typical
element in the support of x belongs to any %% for all § > 0, but does not belong to L?. We also define
,u;k =Po( fzcjc)_l, and M; =Po( fzi)_l. Now we prove two lemmas concerning linear and multilinear
estimates of the eigenfunctions e;(x) as defined in (1-3).

Lemma 3.1. Forany?2 < g < oo and q # 4, write v =4k + 2 for k > 0; then we have
lexllLogey S v"9, (3-3)

where p(q) = min{% - } If g =4 we have

11

q’4q
1 1

||€k||L4(R2) S voa logZ V. (3-4)

Proof. Since e;(x) = =2 %9(|x|?), we easily see |lex [l o2y ~ |0l Lo+ Then we can use (1-4) to

compute
1/v v/2 3v/2 . 00
5 [ der [ @ e [P e [ e
0 1/v v/2 3v/2
< p~! logv. (3-5)
This proves (3-4). As for (3-3) we have
1/v v/2 3v/2 s 00
||££2||%"(|R+)5/ dZ+/ (ZV)_q/4dZ+l)_q/4/ (U1/3+|U—Z|) q dz+/ e_CZdZ
0 /v v/2 3v/2
< pma/AHl=q/4l o 1=a/3 | max(1—¢/2,1-q/3)
< p~aP @) 0
Lemma 3.2. Supposel >4 andny,...,ng>0. Letv;=4n;+2for 1 < j <I, and assume v 2, - - - 2 ;.
Then we have
—1/2. —1/4
fz en () -+ en ()| S v vy log vy (3-6)
R
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Moreover, if vi 2 v21+6 for some € > 0, then

f en, (x) e (x)| Sv;N forall N > 0. (3-7)
R2

Proof. Recalling that He,; =v;e,; and H is self-adjoint on L?(R?), we can compute using Proposition 2.5
and Lemma 3.1 that

f enl(-x)"'em(-x)
R2

=< vl_m”Hm(enz e enl) . enl ||Ll

/

— - -1
S len, - enllzen Svi™ Y llenllypmaon [T lew llzze-n S oy fva)™.
j=2 2<i#]

Ifv; 2 v21+€, we can choose m large enough and prove (3-7). As for (3-6), we choose m = 1 and estimate

f en, (x)---ep(x)
RZ

—1
S vl ”H(el’lz te en[) : enl “Ll

~

_3 1
Sy logt vy len, - -enll o4

_5 1
S vyt log® vp - vollen, e llens e[ 1 s allen oo

31, 11
1 2 2.,74
vy vy *logd vy S, vy floguy. ]

Al

SV
To state and prove the probabilistic L? estimates for our ¥’-valued random variable f, we first need a
result proved by Fernique.

Lemma 3.3 (Fernique). There exist absolute constants c, C such that for any finite-dimensional normed

vector space (V, || - ||), any centered Gaussian random variable f(w) taking its value in V, and any
positive constant A, we have

[E(eCAQIIf(w)IIz) <C (3-8)
ifP(If @) > A) < 5.
Proof. See [Fernique 1975] or [Da Prato and Zabczyk 1992, Theorem 2.6]. O

Proposition 34. Fix2<g<oo, 1 <r<oo, O<a < min(%, 1— %), and two positive integers M > 10N.

For any g, we define
M

Mg= Y (g.e)le;. (3-9)

j=N-1
Then, for the random variable f as defined in (1-9), we have the large deviation estimates
P(ITLf (@) llwes > AN ) < Ce™A, (3-10)
P(lle™ T1f @)l s 7. 77xm2) > AN°TV7) < Ce=A, (3-11)

where § > 0 is some small positive exponent.
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Proof. We compute for each ¢ € [—m, 7]

q

E(lle™ T (@) §q) = /Rz E dx. (3-12)

M
Y @i+ g (w)e;(x)
j=N-1

Now by Khintchine’s inequality (the variant for Gaussians), we have

q M

.(X)Z q/2
S( Y S _a) . (3-13)
S @i+t

Then integrating in x, using Minkowski’s inequality (since g > 2), we get

M
El Y @i+ D gi(w)e;(x)

j=N-1

M

y lej I3, \*? _
E(le ltan(w)n?Wg,q)g( > # <CN9%, (3-14)
j=N-1

due to Lemma 3.1 and the assumption o < 2p(g). Now we can take t = 0 in (3-14) and use Markov’s
inequality and Lemma 3.3, and immediately get (3-10).
As for (3-11), we need a little more work. What we need is

P(He‘itHHf(w)HL;Wz,q >CN’T") < & (3-15)
for large C. If the event in (3-15) happens, then there exists an integer / > 0 such that
{t e[-T. T1: e "MTIf (@)llyyes > 2'N°}| > K272'T. (3-16)

For fixed ¢, due to (3-14) and Lemma 3.3, the probability that [|e™"#T1f (w)||sy=s > 2'N 7% is less than
c1 exp(—c22%'). We then use Fubini’s theorem to conclude that the probability that (3-16) happens is less
than K ~'¢12%"! exp(—c»2%). Then we sum over / > 0 and choose K large enough so that this sum is less
than 11—0. O

Corollary 3.5. For the same parameters q, r, @ as in Proposition 3.4, we have

Pl f (@) llas > A) < Ce™ 4, (3-17)

P(supgsoll £ (@)llayes > A) < Ce™ (3-18)

P(lle™ " f (@)l oo 7ixmey > ATV7) < Ce™eA, (3-19)
P(supy=olle ™™ fy (@)l Lo (_r.71wm2) > AT") < Ce 4, (3-20)

Jim || 5 (@) = f (@)l + lle™ M (f @) = [ @)l gayss 1,71cm2) =0 almost surely in P. (3-21)

Proof. We know fzi (w) = f(w) and e itH fz‘i (w) — e‘i’Hf(a)) in &', If we can prove (3-18) and (3-20),
then almost surely in [, we have

suplle_i’Hfzok (@) gy < 00, (3-22)
k=0
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and there must be a subsequence of {e H foi ()} converging weakly in Lj W, This weak limit must
be e H f(w), so we know that

—itH —itH
le ™ f @)l rapen < suplle™ ™ f5. (@) s < 00, (3-23)
k>0

almost surely in P. Thus (3-19) also holds true, with the same constants as in (3-20). Clearly (3-17) also
follows from (3-18) in the same way.

To prove (3-18) and (3-20), we use (3-10) and (3-11). For any £, the difference fz"k (w) — fﬁH (w) 1s of
the form ITf (w) as defined in Proposition 3.4, with the parameter N ~ 2%. We then have, for some § > 0,

P(lle™ ™ (f5.(0) = fr @)l ayaa > A27OPTT) < ¢pemea?A%, (3-24)
Choose ¢ small enough; then
suplle ™ f3 (@)l rygea > ATV (3-25)
k>0
implies
le M (£5. () — foi (@) || prapea > cA27R2TYT for some k > 0. (3-26)
2 2 LWy

Now we can combine this with (3-24) to get
: ad kS A2 2
P(suplle ™ 5 (@)l yapes > ATY7) < e3¢ < e5emoH (3-27)
k=0 o k=0
This proves (3-20). Clearly (3-18) also follows from (3-10) in the same way.

Finally we prove (3-21). From the discussion above we see

P(i‘i%’ 292 (5 () — frior (@) yags < 00) = 1; (3-28)

thus with probability 1, the series

o0

Y e (f5(@) = fra (@) (3-29)

k=0

converges in LW, This can only converge to e " f(w), and the same argument works for the space
W, O

Equation (1-1) is a hamiltonian PDE with formally conserved mass ||u ||i2 and Hamiltonian
E) = (Hu,u) £ =2l 23 = [ (196 + a2 ulr ) d (3-30)
' p+17 L e, p+1 :

Recall that = P o f~! is a probability measure on ¥'(R?), the push-forward of P under f. In the
defocusing case, for all 1 < p < 0o, we define the Gibbs measure of (1-1) to be

2
dv = exp(—m ||u||fL’jj,) du. (3-31)
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Since the integrand in (3-31) is well defined, bounded and positive, by Corollary 3.5, we know v is finite
and mutually absolutely continuous with . We also define the truncated measures

2 o np+l
dvy = exp(—mnuzk 17 ) di. (3-32)

Since ||u;k |r+1 — |lu|lz»+1 almost everywhere in u, thanks to Corollary 3.5, we know vyx — v in the
strong sense that the total variation of v« — v tends to 0.
In the focusing case, for 1 < p < 3, we define the truncated measures dvyx = pox diw, where

o 2 o
por(u) = x (2 — o) exp (sl ). (3-33)

Here x is some compactly supported continuous function on R that equals 1 on a neighborhood of 0, and

2k
ax = E(| f(@)ll7.) = Z 4].%. (3-34)
j=0

Clearly apx < k for k > 1. We define the Gibbs measure v as the limit of these v,«. More precisely:

Proposition 3.6. The functions p,x converge to a function p in L" () for all 1 <r < oco. The measure
dv = p du is finite and absolutely continuous with respect to j1. We also know vy — v in the strong sense
that the total variation of vor — v tends to 0. Finally, we can choose a countable number of x(m) so that
the union of the supports of the corresponding Radon—Nikodym derivatives p.ny has full i measure in
F'(R?). If we have fixed x, we will define v to be the Gibbs measure of equation (1-1).

Proof. First we prove that p,« converges almost everywhere in p, or equivalently, that o« (f (w)) converges
almost surely in . Consider

k

oo 2 (@)~ 1
| £ @)1 72 = o = 12_30 T (3-35)

and see that it is a (partial) independent sum of random variables with zero mean and summable variance
(the variance of j-th term is ~ (j + 1)72), so it converges almost surely. Thus by the continuity of x, the
first factor x (|| fz"k (a))||i2 — ape) in por (f (w)) converges almost surely. Next, since fz"k (w) = f(w) in
LP+! for almost surely w € Q, we know that the second factor also converges almost surely. Therefore,
ok converges almost everywhere in u, say to some p.

To prove py (f) — p(f) in L" (P), we need some uniform integrability conditions. This is provided
by the large deviation estimate

P(If5 @22 — o < B 1 f5 @)l > A) < Ce™ (3-36)

for some § > p+1 and all large enough A, where 8 is such that x (z) =0 for |z| > B. To prove (3-36) we
may assume A is sufficiently large, and set kg € N so that 2¢0 ~ ¢ for some 8 > 0 to be determined later.
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First we prove (3-36) is true for k < ko + 1, with 8 and A on the left side replaced by 28 and A/2. In
fact, by Holder’s inequality, if

If5 @) <an+28 SkSAY and || f5(@)lpm > A/2, (3-37)
then
2@l 2 A7 and o= @Z2@ED=0G=p=D) (3-38)
(p—Dyq
under the assumption p 4+ 1 < g < 0o. Since 2 < g < 0o, we know from Corollary 3.5 that
P(l f5. (@)l > A7) < Ce™4”. (3-39)

If 1 < p < 3, then for ¢ sufficiently large and § sufficiently small, we have 20 > p 4 1, so (3-36) is true
in this case.
Next we assume k > ko + 2. In this case we can prove

Pl f3 (@) = fyig @)l o1 > A/2) < c1 exp(—cze™™™). (3-40)

In fact, since f; (w) — (w) is of the form I1f (w) as defined in Proposition 3.4, with the parameter

o
N ~ 2% by Proposition 3.4 we immediately get (3-40) (notice N ~ eAﬁ).
Now if || f2°k (w) ||i2 <oi+ B and || f;}c (w)||p+1 > A, then we have three possibilities.

(D) If || /5 (@) — i @)L+t > A/2, then we are already done, since this probability is controlled due
to (3-40).

) If || 2‘10 (w)||p+1 > A/2 and || 2",(0 (a))lli2 < o, + 28, then we may set k = ko in the arguments from

(3-37) to (3-39), and again get the desired bound.

(3) If || f (@) 17, < @z + B as well as || 3, (@) 17, > gt + 28, then
I £y @172 = [l fig @) 172 — (ot2x — i) < —P (3-41)
or equivalently
2k 2
1—1g,l
Y = —=_ > 3-42
Z 4j+2 ~ p (5-42)
j=2k041

Noticing that Y is an independent sum with standard deviation

2k 1/2
§ : 1 / —ko/2 — A3
K = ( m) 52 0 <cie 2 o, (3-43)
j=2ko41
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we can compute

k(1= g1
E(exp(Y/2k)) = [E<exp(,—>)
jzl;)[H 2(4j+2)
2k : 2k
_ K/(2(4j+2))<1 K )_ ) < O} [A@JHD) _ je/4 (344
[1 (e Taivy) )T [T ¢ (3-44)
j=2+1 j=2k0+1

Here we have used the fact that E(e—*I8 ‘2) = (14+A)~! when A > —1, and g is a normalized complex
Gaussian; and that e* (1 + X)) < e for large c, and 0 < x < % Therefore we have obtained

P(Y > B) <e ' <cjexp(—cae™™). (3-45)

This completes the proof of (3-36). The other conclusions now follow easily from this large deviation
estimate, except the one regarding the support of p. We choose a sequence of cutoff functions x,) so
that x(n) = 1 on [—¥u, ¥m] With y,, 1 co. By our previous discussions, after discarding null sets, the
function p(,) will be nonzero wherever

Jim [l £ @) 172 — oot | < Y- (3-46)

Since this limit exists almost surely, and y,, 1 0o, we know almost surely, (3-46) will hold for at least one
m. So the union of support of these p; will have full u measure. U

Now in both defocusing and focusing case we have defined the Gibbs measure v and the approximating
measure vy. They will be used in Section 6 to obtain global well-posedness, and the invariance of v will
be proved in Section 8.

4. Multilinear analysis in #°°? spaces

First let us recall the hypercontractivity property of complex Gaussians. To make equations easier to
write, we introduce the notation in which u~ represents some element in {u, u} for any complex number .
This will be used throughout the rest of the paper. The first result about hypercontractivity was proved in
[Nelson 1973]. Here we use a formulation of this property taken from [Thomann and Tzvetkov 2010].

Proposition 4.1. Suppose |, d > 1, and a random variable S has the form
S= Y Cnpns 8y (@) g (@), (4-1)
0<ny,..., n<d

where ¢y, .. n, € C, and the (8,)0<n<a are independent normalized complex Gaussians; then we have the
estimate

(EISINHYP < VT+1(p— D2EISPH? forall p>2.

Proof. This is basically a restatement of [Thomann and Tzvetkov 2010, Proposition 2.4]. There the
authors required n; > 1 and n; < --- < ny, but an easy modification will immediately settle this. The
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only difference is that here we may have 8n; OF &n;, but if we write g, = (Yn +1%4)/ /2 where ¥, and y,
are mutually independent normalized real Gaussians, then g, = (y,, —iy,)/ V2. S0 S is again written as a
linear combination of products of independent normalized real Gaussians. Then the result follows in the
same way as in [Thomann and Tzvetkov 2010]. O

Next we want to adapt the result in Proposition 4.1 to our specific case to yield a large deviation bound
on appropriate multilinear expressions of Gaussians.

Proposition 4.2. Let Ny > --- > N; > 2 be dyadic numbers such that Ny > 103 N,. Assume for n > 0 and
4n+2 < 10N 12 that we have independent normalized complex Gaussians {w,}. Also let o be any integer,

and let 8y, ..., be arbitrary complex numbers with absolute value < 1. Define

.....

l

u—{(nl,...,nl).n] >0, 55 < w2 <100 <j<D), ;ej(4n]+2)_g} (4-2)
with €; = %1; then we have
I
P({ Z Snpmy Wy, (@) - - - wn_l(a))' > K HNj}) <ciexp(—cK). 4-3)
(nl,...,n[)EE j=2

Here all the constants depend only on I.

Proof. We denote the sum on the left side of (4-3) by S. Using Proposition 4.1, we can get
EISINY? <VT+1(p—1)"4A,
where we denote A = (E|S|?)!/2. By Markov’s inequality, we in particular have
P(S| > KA) <(KA)™"-E|S|P <K P+ 1)P*(p—1"P? forall p=>2.
If K >21+1, we may choose p =1+ K212=2/1( 4+ 1)~Y1 > 2 in the inequality above to obtain
P(S| > KA) <277 < cje— K7,

By choosing the constants appropriately, we can guarantee that this also hold for K < 24/l + 1. Now
what remains is to prove that A < ]_[lj:2 N, or equivalently

l
EISPSTNG-
j=2

Now we expand the square to get

where the sum is taken over all (ny,...,n;,my,...,m;) € 8 x &, and
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Since each of the § and A has absolute value < 1 (depending on /) in any possible case, we will be done
once we establish that

#{, . onmy, L m) € BXE Agynmym 70} ST NG (4-4)

The crucial observation is that, due to the independence assumption, if the expectation A is nonzero,
then any integer that appears in (ny, ..., n;, my, ..., m;) must appear at least twice. Next, due to our
assumption Nj > 103N, we know n; = m;, and any integer that appears in (n2, ..., n;, mo, ..., my)
must appear at least twice. If we permute all the different integers appearing in this (2/ — 2)-tuple as
01> 07 > - - - > o,, then with r and all o; fixed, we have at most (2] —2)%~2 choices for the (2] — 2)-tuple;
also due to the linear relation enjoyed by both (ny,...,n;) and (my, ..., m;), the (2 — 2)-tuple will
uniquely determine n; and m;. Thus we only need to show for each possible 1 < r < 2[, there are
< ]_[1].22 N]Z choices for (o1, ...,0,). Now for each 1 <i < r, since each o;(1 < j < i) appear in
the (21 — 2)-tuple at least twice (and different o; cannot appear at the same place), there must exist
I<ji<i<i+1=Z<j,suchthatoj €{nj,, mj}. Thisimplies

2 2

so for each 1 <i < r, there are at most Nl.2+1 choices for o;, and necessarily 1 <r </ — 1. Therefore, for
each r <[/ — 1, we have at most

l
lL[ Ni2+1 S l—[ N/2
i=1 =

choices for (o1, ...,0,). U

Proposition 4.3. Suppose p > 3 is an odd integer. We choose o and b so that 0 < o < 1 is sufficiently
close to 1 depending on p,and 1 > b > % is sufficiently close to % depending on o and p. Let T be small
enough depending on b, o and p. Then we can find a set Qr C Q2 and a positive number 6 that only
depends on o, b and T, so that P(Q7) < c1e~2T" 2, and that the following holds: For any ty € R and
w € Q. ifforeach 1 < j < p,a functionuj on[-T,T] x R? is given by either

uj=e O £ (), (4-5)
or
llujllgeorr S 1, (4-6)
then we have
luy -y llggoorr ST (4-7)

Here all the constants will depend on o, b and p.

Proof. In what follows, if an estimate holds for @ outside a set with measure €, we simply say it holds
“with exceptional probability €”. We will use various exponents ¢, and each of them will remain the
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same throughout the proof. First we can use Lemma 2.8 to estimate

luy - u ggoomrr S T

Iy -t g2,
since —% <b—-1<3bh-2< % Thus we only need to prove

ey - - g STV2P, 4-8)
with exceptional probability < ¢ exp(—coT ). Recalling the Littlewood—Paley projections (1-8), we

=y uy, (4-9)

N>2

have

where for simplicity we write uy = Axnu. Thus we only need to estimate the terms (note (uy)~ = (u ™)
since the Littlewood—Paley projectors are real)

p
[Twpy,.
j=1
where we have fixed a choice between u; and u j, and between (4-5) and (4-6), for each u ;. Define

A={1<j<p:ujgivenby (4-5)}, and B={1=<j<p:u;givenby (4-6)}.

Let
&ﬁ:{(Nl,...,Np):Nj>IO3ZNl- forsomejeB}. (4-10)
i#]j
We first consider the sum of terms with (Ny, ..., N,) € s, and rewrite it as

ZZH%)M( )3 <uj>&,.)- (-11)

JEB (Ni)ixj i#] Nj>1033",,; N;

To bound this expression we only need to consider a fixed jo € B, and without loss of generality, we may
assume jo = p. For each (Ny, ..., N,_y) if we write

W= Y (. 4-12)
Npy>103 P N,
then we only need to prove

& = Gy, -+ (p-1)yy, @) gz STV (max Np)™ (4-13)

for some 6 > 0, with exceptional probability < ¢y exp(—c2T~“*(max;., N;)*) (note that when we take
the sum over all (Ny, ..., N,_1), we still get an expression < cre— 2™,

To prove (4-13), we use Propositions 2.5 and 2.7 to estimate (for simplicity, we shall omit the spacetime
domain [—T, T] x R? in the following estimates, but one should keep in mind that we are working on a



936 YU DENG

very short time

& <Ny, -+ (p-1y, @)™ agyea (4-14)

r—1 p—1
SN paages [ TH@Dy N + Y NG s 1@y lpmgee [T 1@y, e
~ p L;‘WX’ J Nj Lt,x P Lt,x J Nj Lr Wx L/ N; Lt,x

j=1 j=1 j#i<p
p—1 p—1 p—1
SN N ppos [ TN M2 + D NTI@R) T lps, [ TI@oy, e (4-15)
j=1 S =l i=1 ’
p—1
Sy psges [ TGN e (4-16)
j=1
p
STThwpy, e, (4-17)

j=2

where in (4-15) and (4-16) we have used Corollary 2.3 (recall the definition of u’;j). In (4-17) we have
used Proposition 2.7 and the assumption that p € B. For the parameters, we choose g > % and sufficiently
close to ;—‘ depending on p, and ”q—_zl = qil — }‘, and check that (4-14) indeed hold, provided b is sufficiently
close to %, depending on ¢; (see Proposition 2.7, with b there replaced by 30 — 1).

Now we proceed to analyze the expression (4-17). Choose 1 < j < p — 1 so that N; = max; ., N;. If

Jj € B, then from Corollary 2.3 and Proposition 2.7 we have
@y e S N7e il oyen S N €l llgnnr S NS (4-18)

providedo —e > 1 — % (note g, > 4 from our choice of exponents above). This can be achieved if € is
small enough depending on ¢, and o is sufficiently close to 1 depending on ¢; and €. If instead j € A,
then from Corollary 2.3 we have

1wy, e S NNl e = Ny € le 08 f @) ngyen. (4-19)

The norm in the last expression equals the L?“Wf;qz norm of e *H f(w) on the interval [to — T, to+ T1].
Since T < 1, we may expand this interval to an interval with length 2. Since e "# f(w) has period 27
in ¢, we may replace the enlarged norm by the norm on [—, w]. Then we could use Corollary 3.5 to
bound

. 1 (1
NNl O £ (@) || e S TOCPN,

;e (4-20)

for all 79, with exceptional probability < cjexp(—c, T~ NJC.“), provided 0 < € < q%. Therefore in each
case we have

1
Iy, lm < TGN, (4-21)

with exceptional probability < cjexp(—cyT ™ Nj‘.'4 ), for some 6 > 0.
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Then we treat the terms with i # j. If i € B, we can use Proposition 2.7 to bound || (u;) .|l L <1;if
i € A, we can use Corollary 3.5 to bound

L
10p

Ny, e S TN
for all 7y, with exceptional probability < cj exp(—cy T~ NJC.“). Putting these together, we have shown

4-17) S T2 (max N;)~° (4-22)
J<pP

for some 6 > 0, with exceptional probability < c¢j exp(—c,T ~(max;., N;)). This takes care of the
sum of terms with (Ny, ..., N,) € .
For (Ny, ..., N,) ¢ s, we are going to prove

J =y v llgmavar S Tl/z_b(mai( N, (4-23)
J=

where v; = (u;)y;, with exceptional probability < c; exp(—c,T~“(max;>; N;)“). This, together with
the analysis above, clearly implies (4-7). Now without loss of generality, assume Ny = max ;> N;. If
1 e B, then we have Ni ~ max >, N;. By switching the role of 1 and p in the argument above and
replacing u i by vy (note v; also satisfy the estimates about ul’ that we would use), we can prove (4-22)
with the role of 1 and p switched. Since N1 ~ max ;> N;, this also proves (4-23).

Now we assume that Ny =max;>; N; and 1 € A. If N < N](.OHU)/GU_U (note this exponent is > 1) for
some jo > 2, then we may assume jo = 2. Now use the same arguments as in (4-14) (but with different
exponents), we have

JSvyv, - U;”Ltqlwiﬂl (4-24)

S U7 paapgs 03 s+ 1072 103 sy T Tl

j=3
p
+ ) oy s oy s v lgsgea [T 071
Jj=3 3<i#j
p p
5(2 ;’)||v;||L¢x||v;||L¢_X]‘[nv;nL;@ (4-25)
j=1 j=3
Ve
SN oy Iz lvs Nz, ﬂ||v s (4-26)
j=3
P
Sl sse o3l ase [ Tl07 1l s (4-27)
1 LA, 4172 LA, # 14]’—3 J UL

where pq—:2 = ql—l — % and g4 > 4. Here in (4-25) and (4-27) we have used Corollary 2.3 and the fact that

vj = (u;)n;, while in (4-26) we have used N; < N; S NZ(HU)/GU_U for all j.
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Now we analyze the expression (4-27). If 2 € B, then by Corollary 2.3 and Proposition 2.7 we have
(note Ny < N3 when o > 2)

o I, e s SNy 24||v2 |I 204NN 24||uzllgeabT<N =, (4-28)

1
LWy x

. 20 1+o
provided ¥ > == + 15 12

can use the arguments from (4-19) to (4-20) to get

and o > 2 + 1, which is true for o > 2. If 2 € A (which is the case for 1), we

1
oy ey SNy ® lluy |l s, STO2TPNS (4-29)

L,“WXT’ Liw, 8"

for all 7y, with exceptional probability < ¢ exp(—c2 T~ N;*), thanks to Corollary 3.5, and the hypothesis
o < 1 (hence 3+” <.

Then we treat the terms with j > 3. If j € B, we can use Proposition 2.7 to bound ||vj_ I L% < 1;if
j € A, we can use Corollary 3.5 to bound

1-0
7 104 < TR0 N
for all 1y, with exceptional probability < c¢j exp(—c, TN f“). Putting these together, we have proved
4-27) STV>7PNE, (4-30)
with exceptional probability < c; exp(—c,T % N;*) for some 6 > 0. Thus we have proved (4-23) in this
case.
1+o
In the final case, we assume that N; > (10 p)3(max =2 N j)3c%1, which in particular implies N; >
103 ijl Nj, and that 1 € A. For each j € B, by definition we can extend u; to be a function on R x R2
(still denoted by u ;) with %" norm < 1. The relation v j = (uj)n; also extends to ¢ € R, giving an

extension of v; also. Choose ¢y smooth, supported on [—2, 2] and equaling 1 on [—1, 1] and define
() = CO(T_II). We are to prove

18 -vy v, llgosr— < T1/2_bN1_9 (4-31)

for the extended v;, with exceptional probability < c¢j exp(—c,7~N;*). For a function w on R x R?
radial in x, we split w = wy, + wy,, with

Fi(Whe, ex)(T) = X{|f+4k+2|§1vly} -F(w, er) (), (4-32)

and wy, by replacing the < by >. We now split the product in (4-31) into fa and ne parts and estimate
them separately.



TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA 939

We first estimate the fa part of product as (due to the presence of ¢, we can work on time interval
[—2T, 2T] in the time-Lebesgue norms below, thus gaining powers in 7T')

— - -y /36 - —
1@ -7 v dallaosnz S NG v -0 o (4-33)
—y/36 — —
SN v vl g (4-34)
—y/36 —
SN TIr Waere (4-35)

1

Here in (4-33) we have used the definition of the fa-projection and that b is close to % (in particular,
b < % + ﬁ); in (4-34) we have used Proposition 2.7; in (4-35) we have combined Corollary 2.3 and
Proposition 2.5. Now for each i, if i € B then (provided o is close to 1 depending on p)

o I sp S Nvillgges S 1
L;

Ifi € A (suchasi = 1) we have

o7l s STHRC Ny
L%
for all 7y, with exceptional probability < ¢ exp(—c2T~“N;*). Therefore, we have (4-35) < T!/2=b N o
with exceptional probability < c; exp(—c2 T~ N;*), provided y > 108.
Now we estimate the ne part of the product. Choose vg so that ||vg||go2-3 < 1. Since we are taking the
ne part, we may assume vg = Vg p.. 1he aim is to estimate |J| (recall H is self-adjoint), where

J= / vy vy - (CHO ). (4-36)
RxR2

‘We use Lemma 2.6 to write down

vj(x,1) = f ¢ (A" a{j (k)e " WHFD ) (x) dr; (4-37)
R
k

for j € B U {0}, where the parameters satisfy
Y la) 0P S (4-38)

k

_1

for each Ag. Since vy = vg ne, We also have |pollz1 < ny(b 2). For j € B, since v; = (uj)Nj, we know

a,{j (n;) =0 unless % <(n;+ 2)/N]2 < 10, and hence

Yo la P SN (4-39)
4nj+2~N7

: 1
Also since b > 5, we have [|¢; || <1.
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For the sake of convenience, in the following proof, we shall use v~ (n, 7) to denote F,(v, e,)(7).
Thus from (4-37) we have

vy (nj. ;) = @2m)'"%a g+4nj+2(nj)¢j(rj +4n; +2) (4-40)
for j € B. If j € A we have

0j(nj)gn; (w)

v’.\/(n ;. _L,) — (277)]/26_i(4n'i+2)t0
JE 4n;+2

8(tj+4n; +2), (4-41)

where w> _ (W).

0;(n) = (=L :
Nj Nj

Clearly 0] <2, and 6; # 0 only When <@n;+2)/ N 2 < 10 (note we have fixed N;). Finally, for
j =0 we have (we may assume ¢ is real)

(€ Hv0)™ (no, 10) = (4no +2)°* - /R gy +any2(10)$0(00 +4n0 +2)L (70 — o) doo.  (4-42)

We write y; = vj” for j > 1, and yp= (¢ H?/*vy)~. From the rules of Fourier transform and orthogonality
of ey, we have

P
J=Q@m)~ A 3 a0 f [t dri---dr,, (4-43)
Aoy np,ng D j=0
where
K;llo """" ny = /W en, (x) - “en, (x)ey, (x) dx, (4-44)
and
p
[D)={(1'1,...,‘cp,ro):to:Zejtj}, (4-45)

j=1
with €; = &1 depending on the choice of v; or v;. We notice that €; = 1 if and only if the corresponding
Y equals y;. Now plug in (4-40), (4-41), and (4-42), and use the change of variables A; =1; +4n; +2
for j € B, .o = 00 +4no + 2; we get

0, <nj>gn,< w)

J=2n / [T ar []¢i0pa) mp~ [] s s -ag) (n0)~ po(ro)
n,..., npnO jeBU{0} JJEB ! R jeA

X2(2@')\]’—Ko—ZEj(4nj+2)+(4n0+2)>

jeB j=1

x (4ng + 2)°/? exp(—ito Z(4n i+2e j>. (4-46)
jeA
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Here the terms corresponding to j € A are delta functions and have already been incorporated in the final

expression. Letting o = (4no+2) — 5’: | €j(4n; +2), we can further reduce the expression to
— (2m)P*2 Z/ 1_[ $j(x;)dr; ;(Ze,k —A0+Q>
oe”? jeBU{0} jeB

6;(n))g,, (@)

n a/2
<Lt o+ TT oo T1= 700

JjeBU0}
X exp(—iz‘o Z(4nj +2)ej>,
jeA
1 4n ; +2
SQ={(n0,...,np)'—0 / <10(j=1), 4no+2)— Zej(4nj+2) } (4-47)

j j=1
Noticing that g: = Tfo(T -), and that Eo is a Schwartz function, we have

Y RO+ISY T{TO+0) 251 (4-48)
oA 0l
for all A € [0, 1], and by periodicity, for all A € R. Therefore

Z/ [T 14,)1dr,; g(ze],\ —)\0+Q>‘<N3y(b b 4.49)

o€l JjeBU{0} jeB

Since we choose b close enough to % depending on o and p, and y does not have any dependence on b
whatsoever (we may simply take y = 200), (4-31) will follow if

, 0i(nj)g, (@)
w o @no+2)2x T af ap [ e x exp(—ito ) :(4n~+2)e->
Niyeeny n, A J J J
, jeBO) jea VAnjt2

JjeA

STYPPNT? (4-50)

for all possible choices of 70 € R, 0 € Z, A; € R(j € BU{0}), {a{f(k)} satisfying (4-38) and (4-39),
with § > 0 depending on o and p, but not on b. ‘

Next, by Cauchy—Schwartz in the sum with respect to ng, we can further estimate the left side of (4-50)
by

()8, (w)
(Z(4n0+2) X ‘SZ Knl ..... np l_[b (n/) l_[ J\/4/7_|_

no JjEB jeA
X exp(—ito Z(4n‘,~ + 2)6,)
jeA

@.ng

2\ 12
) , (4-51)

where S,y = {(n1,...,np) 1 (ng,...,n,) €Sy}, and b (k) = a{j (k).
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Concerning the inner sum of (4-51), we have (recall that % <@n;+2)/N 2<10foreach 1 < J<p

0;(n;)g,. (w)
Z Kp! 1_[ bi(n;)~ 1_[ IO T it X jea (nj+2)€j (4-52)
‘ Seng JEB \/LIT
Z ’Z ey Hgn_j(w) Hlbj(nj)| (4-53)
(nj)jen” © JjEA jeB
S sup Zf ..... wllen@| T Do 1bj@)l
(nj)jes jeA JEB 4n;+2~N?
< sup Z‘L’ """ l_[gn () H(NZ —2011/2 (4-54)
(n/)]EB ® jGA jeB
< sup Z ..... np l_[g;](a)) 1_[ N}_U,
(njjes | g jeA ieB
where in (4-53) we write © = {(n;)jea : (n1,...,n,) € Sy} for fixed (n})jep, and 1, np, =
Kny,... np HjeA 0; (nj)(4nj+2)_l/2. One should notice that for all (n;) je4 € ©, by definition the expression

exp(—ifo ) je A(dn;+2)e;) is a fixed constant with absolute value 1, which can be extracted. In (4-54)
we have used Cauchy—Schwartz and (4-39).
Let us fix ¢ and ng, and (n;) jep. We also assume [4ng+2—o| S le (otherwise S, ,, would be empty).

Since the set ® has the form of & in (4-2) and Ny > 103} 1y Nj, we can use Proposition 4.2 to get

jeA—{

,,,,,

<k J] Nj-sgph:lo n > (4-55)

with exceptional probability < cj exp(—c2K ). We choose K = Tl/z_le(l_")/zoo(4n0 +2)(1=0)/400,
then the corresponding exceptional probability is < c¢j exp(—c2 T~ Ni*(4ng + 2)). If we add up
these probabilities with respect to all possible choices of ¢ and (n;) jepujoy, we still get an expression
< ciexp(—c2 T~ Ny*) (there are < N12 choices for each n;(j € B), and for fixed no, there are < le
choices of o). Therefore with exceptional probability < c; exp(—c,T~N;*), we have

.....

1o 1/2
@sy ST PN™ TN [ N (Z(4no+2)”+ M sup |70 ,,p|2) (4-56)

jeB jeA—(1) Swng
. . 12
STVON TN (Z(4no+2)”+200 sup IKZ’?,.A.,nPIZ) - (4-57)
jeB ng #ano

To complete the proof of Proposition 4.3, we are going to estimate &’ . Let vy > -+ = y(p)

2(14+(1- a)/200) . from

.....

be the nonincreasing permutatlon of vy =4n; +2 (where 0< ] < p). If vg > N

.....

see that if vy < max;>>v;, then V] 2 max ;. U(UH)/GG b

nd licn?

.....



TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA 943
then v(2) > max;>; v; and from Lemma 3.2 we have

5yl S V0 Vo) log voy SNy (maxN )~ log Ni. (4-58)

ni,.
Therefore we have

el
_ 1/2—b py 200 1 l—o
451 <T N, | | N;

jeB
-~ 1/2
x < Yo et ED R N 2 (max Nj)~ Mog? Ni+ Y (4no+ 2)198>
v0<N2(1+ 6 l)()ZNZ(H )
_ _1 _
/= jeB
— 1 _
STl/Z le 2 (mj;(NJ) 3 l_[N]l (T’
= JjeB
where 5
1-— 1 1— 1— 1—
po=1-1"9_, (tol=o) (d-0)" 1-0 (4-59)
100 200 40000 2
Finally, since 1 € A, we have
(maxN )2 [~ < (maxN )2t p=D-0) < (4-60)
jeB
providedo > 1—1/2(p — 1)).
Having considered all the different cases, we have now finished the proof of Proposition 4.3. (]

From now on we will fix o and b as stated in Proposition 4.3. We have an easy corollary:

Corollary 4.4. There exist some 6 > 0 and Ty > 0, such that the following holds: For all 0 < T < Ty,
there exists a set Qr C Q such that P(Q7) < c1e=T"? and for all w € Qr, the mapping

ur> e f () Fi /0 I )P (5)) ds (4-61)
is a contraction mapping from the affine ball
e f@)+ (v [vllgonr < T°) (4-62)
to itself.

Proof. Suppose u = e H f(w) + v, where ||v||gosr < T? < 1. From Proposition 2.9 we have

-

i / eOH (14 ()P u(s)) ds
0

< o

%a.b,T
u H%Gb LT

=™ f(@)+v)T - (e H f(w)+ )T

%U,h*l,T‘
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If we expand the product, then each term has the form as in Proposition 4.3 (namely, u; - - - u,, with each
u; either equal to e iH f(w) or has %2 T norm < 1); thus we have 9 < T% for some 6y depending
only on o, b and p; thus if we choose 6 < 6y and T small enough, then the mapping does map the affine
ball to itself.

In addition, if u; = e "H f 4 v; with ||v;|lqesr < TY fori € {1, 2}, then

D= Hq:i / e OH (4 ()P uy (5) — Jua(0) 1P ua(s)) ds
0

9o.b, T

< a1 ey = Jual P || g

p—1
S N —uz)” [ ug llges-rr,
F k=1

where [ is some finite set, and each jj € {1, 2}. Since u; —ur, = vy — vy € %5 T and each u; is the sum
of two terms, one being e “H f(w), the other having ¥%”T norm < 1, we can use Proposition 4.3 to
estimate ® < T%||v; — va|lqos.r for all @ & Q7. Thus the result follows if we choose 7' small enough. [J

5. Local well-posedness results

In proving local in time results, we will not care about the =+ sign in (1-10). First we define the truncated
Cauchy problem
{iatu+(A—|x|2)u = ([ul”" )3, 5-1)

u(0) = f5 (@)
for each k > 1. When k = 00, we understand that v5., = v, so this is just the original equation (1-10).

If k£ < oo, we solve (5-1) in the finite-dimensional space V,«. We will consider two cases depending on
whether p >3 oddor 1 < p < 3.

5.1. The algebraic case. Here we assume p > 3 is an odd integer, so we can use the estimates is Section 4.

Proposition 5.1. Suppose T > 0 is sufficiently small. There exists a set Qr (possibly different from the
one in Proposition 4.3), such that P(Q7) < c1 exp(—cyT ™), and when o & Qr, for each 1 < k < o0,
(5-1) has a unique solution

uee M5 (w)+ 47T (5-2)

on [T, T], satisfying
lu — e H £ (@) llgoor < T (5-3)

Proof. When k = oo, the existence and uniqueness directly follows from 4.4 via Picard iteration. Now we
assume 1 < k < oo, then the equation (5-1) is just an ODE, so the solution is unique, and exists until its
norm approaches infinity. Thus we only need to obtain the control on each of these solutions, uniformly
in k. To this end we need the following modification of Proposition 4.3.
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Lemma 5.2. For each T sufficiently small, we can find a set (still denoted by Q27), such that P(Qr) <
c1 exp(—c2T ™), and in Proposition 4.3, if one replaces some u ; by any (u j)zkj or (u j)i‘f" the result still
holds true. Moreover, if there is at least one (u j)kL/ , then the left side of (4-7) tends to zero (uniformly in
all choices of u ) as this kj; — oo.

Proof. We use the notations as in Proposition 4.3. Noting that the projections u3, and ui are uniformly
bounded on X7 we may assume the modification is only for j € A. Since f2°k (w) = f(w) — fi (w)
and the result is true when all terms are still # ;, we may assume each term is either u ; or (u j);/_ , with at
least one (uj);(j.

For each (k;), we follow exactly the proof of Proposition 4.3. Suppose L = max; 2%/ ; then in the dyadic
decomposition we only need to consider the terms max je4 N; 2 L (for example, if (N1, ..., N,) € A with
the largest being Ny, then maxj>» N; 2 L; otherwise we have max; N; 2 L). On the other hand, all the
probabilistic Lebesgue/Sobolev estimates of f(w) we used in Proposition 4.3 come from Corollary 3.5;
thus they also hold for fzj,;(a)) = f(w) — f2°k (w) uniformly in k. As for the multilinear estimates of
Gaussians (Proposition 4.2), they indeed hold for fixed k;, because fixing k; (and replacing f(w) by
f (a));kj) corresponds to adding constraints n; < 2%i in the set Z in (4-2), which does not affect the
estimates in (4-4) (which is based on upper bounds of the cardinals of some sets). Therefore for fixed k ;, the
estimates about each individual term (including the “grouped” terms in ) in the proof of Proposition 4.3
still hold, with constants independent of k ;. Therefore, we have

Modified(uy - - 1)) || xerr S Z T%max N;) =% <1172,
max; N; 2L

with exceptional probability not exceeding

Z crexp(—c2 T~ (max N;)*) < csexp(—ceT L),
man szL /
which implies
[Modified(u - - u))) || xerr < T%(max24)~%/2,
J

for all possible choices of k;, with exceptional probability not exceeding
Z csexp(—ceT " (max 2kiyesy < g exp(—cioT ~M).
&) !
If we choose this final exceptional set as our 7, we easily see that all requirements are satisfied. [

Remark 5.3. In Proposition 4.3 and Lemma 5.2, the estimates still hold when the %°-**T norm is replaced
by %ot (but with T? on the right side of (4-7) unchanged), for any interval I C [—T, T'], and w outside
a single Q7. One can check the proof that all estimates do not become worse with [—7, T'] replaced by /.
In particular we can get a contraction mapping as in Corollary 4.4 for interval [T, 0] or [T, T1] for
T, <T.
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Using Lemma 5.2, we can now proceed with the proof of Proposition 5.1. Suppose for some k that
u=e itH f2°k (w) + v is a maximal solution to (5-1) (strictly speaking the T below should be another
T’ denoting the lifespan of u, but we will ignore this, in view of Remark 5.3). Then outside the Q7
constructed in Lemma 5.2 we have

t
Ve = H Fi f eI (Ju() P~ u(s)) 3 ds
0

< [l

%a,b.T
u ||%a.b71,T
= @™ f5 (@) + )T @ L5 (@) + D)7 | goirr-

Each term in the expansion of the final product has the form as in Lemma 5.2 (namely [ | j (”;);’i/ with
1 <kj < o0, and each u; either equal to e H £ (w) or has %% T norm < ||v||ge.s.r). Therefore for some
0 > 0 we get

lvllger S T A+ 0]l )P

since v € 2T and v(0) = 0, we know |v|lge.sc — 0 as t — 0. The local norm is continuous in ¢; thus
we can use a bootstrap argument to get ||v||gos.r < T9/2. Note this also works for the original equation,
showing that (5-3) holds for the solution of (1-10) with any k. The uniqueness of (1-10) now follows
from Corollary 4.4. U

5.2. The subcubic case. Here we assume 1 < p < 3, and we do not need any multilinear estimate to
solve the local problem.

Proposition 5.4. Suppose T > 0 is sufficiently small. There exists a set Qp (possibly different from the
one in Proposition 4.3), such that P(Q7) < c1exp(—cyT ™), and when o & Qr, for each 1 < k < oo,

(5-1) has a unique solution
uee () + o0 (5-4)

on [T, T], satisfying
lu — e £5 () lgosr < T. (5-5)

Proof. The proof here is almost the same as Proposition 5.1. In fact, once we can obtain
e ™™ £ (@) +v|”" (e (@) + V) | gosrr STOA+ 011 5007) (5-6)

and
—1 —1 0 —1
[al?= = 11PN [ s S TN0 = V' llgonr - (1+ [[0llgon + 10 [l007)? (5-7)

forall 1 <k < oo and w ¢ Qr, where u = e‘i’Hfzok (w) +vand u' = e‘itHfz"k (w) + v/, we can use
Proposition 2.9 and argue as in the proof of Corollary 4.4 to show that for w & Qr,

t
uHe—itHf(a)):Fi/ e~ =9H (14, ()P~ u(s)) ds
0

is a contraction mapping from
eH £ (@) + (v |vllgonr < T
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to itself, for some 6 > 0. Also we will have the same estimates on solutions to (5-1) as in Proposition 5.1,
which is enough for the proof.
To prove (5-7), we simply compute (again we omit the time domain [—T7, T here)

(I T T Lo il

ST =) ul + 1P . (5-8)
ST o — v/ - lael o + el )P~ (5-9)
ST = llgonr (Jvllgonr + 10 llgoor + e f5. @) p0)" ! (5-10)
ST 3 o — ' lgonr - ([0llgosr + [0 llgosr + 1P, (5-11)

outside 27, where P(Q27) < ¢y exp(—c2T ). In (5-8) we have used Proposition 2.7 and Lemma 2.8,
and required % <b< %, 2>q > ﬁ. In (5-9) we have used Holder and required 1 < pg < oo. In (5-10)
we have used (Holder in time and) Proposition 2.7 and required 2 < pg < 4. In (5-11) we have used
Corollary 3.5 to bound

—itH ro § < —%
le ™ f5 @)l ST 07,

with exceptional probability < c¢; exp(—cT ). Therefore, we may choose ¢ so that % < g <?2and
2 < pg < 4 (such g exists because 1 < p < 3). Then we may choose % <b<l1- %, and see that all the
requirements indeed hold. This completes the proof of (5-7).

The estimate (5-6) follows from the same choice of exponents and similar arguments. The only
difference is that we will have a term ||e~"H Lo (@) L which is fine as long as 2 < g; < o0. [l

5.3. Approximating by ODEs. Here we will prove that almost surely, uniform global bounds on the
solutions to the truncated equations (5-1) for infinitely many k£ < oo implies the global existence and
uniqueness for the original equation (1-10).

Proposition 5.5. Let [T, T] be a time interval, where we assume T is large. Suppose for w belonging
to some set E, there exists a subsequence {k;} ;>0 1 00 (possibly depending on w) such that each of the
equations (5-1) with k = k; has a unique solution u; on [T, T and that

suplluj —e " £ (@) gorr < 00, (5-12)
J

Then almost surely w € E, the equation (1-10) possesses a unique solution u on [—T, T] such that
u e M f(w)+ %901 Moreover for this subsequence we have

lim [|u; — e " £5 () — (u— e f())llgpor = 0. (5-13)
j—o00 2%

Proof. For w € E, with small exceptional probability (tending to 0 as A — 00), we may choose a sequence
u; solving (5-1) with k = k; 1 oo, and

lluj = e_ilezokj () llggorr < A (5-14)
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for all j. Then we choose an integer M large enough depending on 7" and A. We are going to prove for
each 1 <m < M that (1-10) has a unique solution u € e~ '# f () +%>"T/M on the interval [— 2L, 2L,
and

lim [|u; — e " £, () — (u— e £ () llggoomriv — 0, (5-15)
j—oo 24

for w outside the fixed set 27,y that is constructed in the proof of Lemma 5.2. Since P(Q27/y) — 0 as
M — o0, this clearly contains the conclusion we need.

Now we proceed by induction on m. First assume p > 3 is odd. Supposing the conclusion holds for
m — 1 (including m = 1), we will prove it for m. Write § = M~'T and t) = (m — 1)8, we know the
solution u exists and is unique on [—fy, fp], and we want to extend it to [—(#y + §), fo + §]. Without loss
of generality we consider the half-line # > 0.

From (5-14) and (5-15) we have

lim JJu (o) — u(to) + ¢ % £ (@) 3¢ =0, (5-16)
j—00
and ||u(tg) — e 0H f(w)|lser < A. We would like to solve the equation (1-1) with initial data u(#y) on
[—3, 8], and argue as in Corollary 4.4. Here the linear term is not e tH f(w), but
e*itHu(to) — e*i(l‘i“to)Hf(a)) + v,

where v is the linear evolution of some function with #° norm < A; thus ||v||gess < A (this is easily
proved by introducing a cutoff and using § < 1). Since w ¢ Qr/y, we can use the full strength of
Proposition 4.3 and Lemma 5.2. In particular we can proceed as in the proof of Corollary 4.4 and obtain

<shAr <8,
%a,b,ﬁ

t
M= Hq:i / e OH (1 ()P wy (5)) ds
0

and
@:‘

i /0 I (i ()17 w1 (5) — [wa ()P wa(s)) d

%U‘/),S

SSMAP Iy = hallgess < 5llhy = hollgoo,

for all w; = e "Hu(ty) +h; with || A ||gess <89, provided M is large enough (8 is small enough) depending
on T and A. Then we can use Picard iteration and the same bootstrap argument to prove that the original
solution u can be uniquely extended to [z, fo + 8] (and by symmetry, to the other side).

It remains to prove (5-15) for m. First we know

JILILIO He—i(l—l())Huj(tO) _e—i(l—l‘O)Hu(tO) +e—il‘Hf2Jk_j ((,()))

gpo.b.lig—8,10+81 = 0,

which is a consequence of (5-16). In view of the induction hypothesis, we only need to prove’

lim ”uj _e—i(t—tO)H e—i(t—to)H

. u(to)) || goblig-sig+s1 = 0,
j—oo

u;j(to) — (u—

3Here we have used the following fact: Given two intervals [x, y] and [z, w] with x < z < y < w, for some constant C we
have [|ulgo,6,0x,w1 < C(|ltllgpo.b,1x,y1 + [tllgpo.b,1z,w1). This is easily proved by using a partition of unity.
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which, after a translation of time, is equivalent to

lim [|w; —e P w;(0) — (w— e "Hw(0)) | 4045 =0, (5-17)
j—o00

where w; is a solution of the truncated equation with k =k, and w;(0) = u;(#); and w is a solution of
the original equation with w(0) = u(ty). Write w; —w = h = h;; + hy,, where

hii = e (u(19) — u(tg)) = —e UTOH f;j (@) +e "y, (5-18)

with [[A[l%- — 0, and
t
ho = Fi /0 e IR (w17 wy = JwlP T w)% = (wlP T w)g, (5)) ds
t
— q:i/ e T OH (1=l — |w|P—1w)§kj (s)ds — (w — e_"Hw(O))szj . (5-19)
0

Now we need to prove ||h,,]|gobs — 0. Since w — e H ) (0) € %P9 the second term in (5-19) tends
to zero in ¥°°%% as j — oo. For the first term, we estimate the norm without the final projection. The
expression in parentheses can be written as a linear combination of terms like z; - - -z}, where z; is
either h,,,,, or e‘i(’“‘))Hfzfj (w), or e_i’HAj which has %% norm — 0. For i > 2, each z; is one of the

following:
(1) e i+ H [5; (@). This is within the applicability of Lemma 5.2 since © & Q7.
2) w;— e_i(’”")Hf;kj (w). This has %% norm < A since w;(t) =u;(t+19), due to (5-14).
(3) One of the components of w; — w. These include £,, and e i+ H f;j (w), as well as another term

with Z%2% norm < A. Since o & Q7. these terms are controllable using Lemma 5.2.

If z; = e i+ H fzij (w), then from Proposition 2.9 and Lemma 5.2, the corresponding term tends to
0 as j — oo (since h,, is bounded in g9o-b.8 independent of j; see below). If z; is the term with go-b-8
tending to 0, the same conclusion holds. If z; = h,,,, then the norm of the corresponding term is bounded
by 8%(|hnollgpe66 (|| Ano l|gpebs + A)P~1. Therefore we have

IAnollgzos S 8 Inollseos (Nanollgzons + AYP~" 4 o(1),

as j — o0o. By (5-14) and the Picard argument above, we know || /,,|lq00s < A independent of j.
Therefore, if we choose § small enough (M large enough), we must have ||/, /o005 = 0(1).

The proof when 1 < p < 3 is basically the same, using linear estimates (Corollary 3.5) instead of
Proposition 4.3. We will also need a variant of Lemma 5.2, but the proof of this is not hard and is
essentially contained in Proposition 3.4 and Corollary 3.5. (I

6. Global well-posedness

In what follows, we fix a sufficiently large T and a positive integer M such that M > T2,
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First let us consider the truncated equation (5-1), which is an ODE on the finite-dimensional space V.
If we identify Vo« with R*"'+2 by the coordinates

2k
g= (aj+ibje;, (6-1)
j=0
then it is easy to check that (5-1) becomes
0E 0E
daj =0, dbj=———, (6-2)
Bbj Baj
with Hamiltonian
2k | 2k 1
Eolaj.by) =Y Qj+ D@ +b3) £ ——| (a; +ib))e; (6-3)
j=0 p + 1 j=0 Lp+!

If we denote the solution flow of this equation by @, ,, then the following is true by the theory of
Hamiltonian ODEs and straightforward computation: The map (¢, x) = @y ,(x) is defined on the whole
spacetime domain R x V,« (this is a consequence of the conservation of L? norm; see (6-4) below). For
each t € R, ®x , is a homeomorphism from Vy to itself. If p > 3 is odd, it is a diffeomorphism and
preserves the quantities
2k
lgl> =) (aj+b7) and E=2E, (6-4)
j=0
and the Lebesgue measure. If 1 < p < 3, it (and its inverse) can be approximated, uniformly on each
compact subset of V«, by a sequence of pairs of diffeomorphisms that preserve the quantities (6-4) and
the Lebesgue measure. Therefore @, , itself also preserves (6-4) and the Lebesgue measure.
From above we know that ®,« , preserves the measure
2k
vy =" ¢ e [ dajdb; (6-5)
j=0

on Vy«, where ¢ = 1 in the defocusing case, and { = X(||g||2L2 — aye) in the focusing case as in (3-33).
By the definition of © and vy« (see Section 3) we have

ok = (0r - 13%) ® Ho = Vi ® Ui, (6-6)

in both cases, where we understand that '“Zk and ,uzﬁ, are measures on V5« and Vj respectively, and
identify V with* Vy x VZ%. From this we immediately see, for each Borel set J of V«, that

v ({g: g5 € 7)) = v ({g : g5 € (@ ) (D)}). (6-7)

4Here V is some space on which p is supported. The exact choice of V is unimportant; for example, we may choose
V=9 ®R?,o0r V=50 % (R?).
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Now we fix the choice
J=Jy= {g;k . g e f(QCT/M)}C,

where Qr/) is constructed in the proof of Lemma 5.2. Consider the maximal mo < M + 1 so that the
solution u of equation (5-1) satisfies

||u - e_i(t_mT/M)Hu(m T/M) ||%o,h,[(mq)T/M,(mH)T/M] <1 (6-8)
for all |m| <mgy— 1. If mg = M + 1, from Proposition 2.9 we know that u is defined on [T, T'] and
lu — e 5 (@) o S M. (6-9)

If mo < M, then for some choice of & sign, we have ®ox y,, 7,1 (f5; (@) € Jy. In fact, if this fails, then
we can use Propositions 5.1 and 5.4 to extend the solution to [—(mo+ 1)T /M, (mo+ 1)T /M] with (6-8)
remaining true, thus contradicting the definition of my. Now we use (6-7) and sum over my < M to get

(oo f({w: (6-9) fails}) <M vy ({g: g5 € Im})- (6-10)
In the defocusing case we have vy« < w. Using Fubini’s theorem we get

n({g: g% € Ji}) = n(f(QF 1)) = 1—crexp(—caT M), (6-11)
hence
(a0 f)({w: (6-9) fails}) < c1 M exp(—c, T~ M), (6-12)
In the focusing case we have

dl)zk
du

o 2 ° 1
() = o2 () = x 8372 — o) exp (-7 57 ) (6-13)
This function, by Proposition 3.6, has bounded L? (1) norm, so by Cauchy—Schwartz we get

o ° 1/2 . .
Uzk({g D8k € JM}) S (,u({g D8k € JM})) / <ciexp(—c T M%), (6-14)
which again implies (6-12). We summarize our results in the following proposition.

Proposition 6.1. For fixed T and k, there exists a subset® Qi C Q such that (vy o f )(82;) =0, and for
w € Q, equation (5-1) has a unique solution uy on [—T, T], and that

sup / exp(lluk — e " £5:(@)[50.r) d(vai 0 f)(w) < 00 (6-15)
k Qr
for some 6 > 0.
Proof. We choose
Q= () Zu:= [ {@: (69 fails for M}.

M>T? M>T?

5This should not be confused with the Q7 notation defined above, since our €2 is for £ > 1 here!
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From the discussion above we easily see vy (f(€2))) < limps_ o0 Ve (f(Zpr)) = 0. Also for w & Zy the
solution u to (5-1) exists and is unique, and satisfies

g — e f3 (@) lgonr S M.
In other words we have
(v 0 f)(@ € R : llug — e £ @) llgmir > A) < vy (f(Z)) < €1 exp(—2A%),

for all A > T'%, where M ~ A'/3 is an integer. Since vy o f is uniformly integrable, the part with small
A is also under control. The claim then follows. ]

With Propositions 5.5 and 6.1, we are ready to prove the global well-posedness part of Theorem 1.1.
Denote the integrand in (6-15) by ¢ (@), understanding 7 (w) = 0 when @ & Q4. Since vy« — v in the
strong sense and (vy« o f)(£2;) =0, we have (v o f)(2;) — 0, and we fix a subsequence {k;} such that
> (o f)(Q;'/) < oo and hence (v o f)(limsup,_, o, Qzl) = 0. From Proposition 6.1, we get

sup / P2 (f (@)1 (@) AP (@) < oo. (6-16)
Q
From the proof of Proposition 3.6, we see py, o f — p o f almost surely, so by Fatou’s lemma we get
lim inf n, () < oo, (6-17)
[—o00

almost surely in [P, on the set where p(f(w)) # 0. By the definition of 5y, if (6-17) holds, then either
w € S, for infinitely many /, or there exists a subsequence {k;;};>0 1 00, such that (5-1) has a unique
solution Uy, fork =kj; on [T, T], and

supllug, — e f5, (@)llgasr < 00.
J

In the former case we get a null set (actually a set with null vo f measure, but vo f is mutually absolutely
continuous with P on the set where p(f(w)) # 0), while in the latter case we can use Proposition 5.5
to deduce that, except for another null set, (1-10) also has a unique solution u on [—T7, T'] such that
uee M f(w) x0T,

Therefore, for each T > 0, except for a null set, the equation (1-10) has a unique solution u €
e H £ (@) + %°PT for w in the support of p o f. In the defocusing case, this support itself has full
probability in €2; in the focusing case, it follows from Proposition 3.6 that we can choose a countable
number of cutoff x so that the (countable) union of the support of the corresponding p o f has full
probability. In any case we have found a subset of €2 having full probability, such that when @ does
belong to this set, (1-10) has a unique solution u € e H () +%%PT We then take another countable
union to get that, almost surely in [P, equation (1-10) has a unique solution # on R x R? such that

uee ™ fw)y+x70T ce ™ f(w) + 6T, T], #° (R?))

Ce(-T.T][ )% ®R)
>0
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for all T > 0. This completes the proof.

Remark 6.2. In fact, from the argument we can extract a polynomial bound on the solution; namely we
can prove that for each large A, with exceptional probability < cj exp(—c2A*) we have

lu — e f(w)llggonr < A(T)C

for all T > 0, with some constant C. We omit the details.

7. Transforming into NLS without harmonic potential

As we have mentioned before, the idea of introducing the lens transform and reducing (1-2) to (1-1) is
inspired by the arguments in [Burq et al. 2010]. First we define the lens transform [Tao 2009, Section 2;
Burq et al. 2010, Section 10]:

1 tan(2z) X —ijx2 tan(20) /2
— ‘1
Fult, x) = o0 ”( 2 cos(2t))e ’ 7D

where u is defined on R x R?, and %u is defined on (=7 7) X R2. By a simple computation we deduce
(9, — H)(Pu)(t, x) = (cos(2t)) >L((1d, + A)u)(z, x). (7-2)

For the inverse transform

tan™!' (21
P ule, x) = (1 +4) b (2 2( )

a +4t2)—%x>ei|x|2z/(l+4t2), (7-3)

we have

(10, + A) (& 'w) (¢, x) = 27118, — Hu)(, x). (7-4)

1+ 412

Next we prove that the transform Pl maps the space %03 to X0bT where0<o,b<1,0<8 < %,
and T = % tan(28). First by using a cutoff, we are reduced to proving that u > £~!(x - u) is bounded
from #°* to X%?, where x = x (¢) is any smooth function having compact support in || < 7- First we
fix o. By interpolation, we can assume b € {0, 1}. If we can prove the result in the case b = 0, then using
the identity

1501 = NallZo0 + G0 — HD 00

(which remains true with & replaced by X and — H replaced by A) and (7-4), we see
1L G- )Lt S uellagmo + 110, — H) Geue) oo, (7-5)

because v = (id; — H)(xu) has compact support in |f| < %, and hence equals ;v for some other x;.
Since the last term in (7-5) is clearly controlled by ||« ||s0.1, we can conclude the proof for b = 1. Therefore
we may only consider b = 0. Here it is easily seen that we only need to prove that multiplication by
M i uniformly bounded from #° to H? for 0 <o <1 and |A| < 1. By another interpolation we may
further reduce to o € {0, 1}. The o = 0 case is obvious; the & = 1 case follows from the observation

V(eik\xlz )= eiklxlz(v + 2iix) - f.
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Thus we have the desired bound for all 0 <o, b < 1.
Using (7-2) or (7-4) we can compute that u is a solution for the Cauchy problem (1-12) on R, if and
only if v = %u is a solution for the Cauchy problem

{ia,v+(A— |x]?)v = (cos(2£))P3 - |v|P~ L, 7-6)
v(0) = f(w)

on [t| < 7. Moreover, if
v— e—iIHf(w) c %U,b,(s (7_7)

with § < %, then from the discussion above we see that
u— g—](e—itHf(a))) c XU,b,T’

with T = ] tan(28) — oo as § — Z. From (7-4) we see that £~! (¢ '# f(®)) has initial value f(w) and
annihilates 19, + A; thus it must be e'2 f(w). Thus (1-13) will follow® if (7-7) holds for all § < %. Also
from (7-3), the constants in the 3¢ — H? boundedness remains under control even near the boundary
points 7. Thus (1-14) will follow if

lim (v(r) —e "M f(w)) exists in H°. (7-8)
t—+m /4

What we will prove is that almost surely in P, (7-6) has a unique (strong) solution v for |¢| < %
such that v — e "H f(w) e go-b7/4 - As is demonstrated above, this implies (7-7) and (7-8), and hence
Theorem 1.2.

The proof is basically the same as (1-10). Noticing m(t) = (cos(2t))” ~3 has all its derivatives bounded
on R, we see that multiplication by m(¢) is bounded from any %Y (and hence any %oy to itself.
Therefore, the proof from Proposition 4.3 to Lemma 5.2 goes without any difficulty, as if this additional
factor were not present. In the proof of Proposition 5.5, when we extend the solution to a larger interval,
we must solve another Cauchy problem, which is no longer (7-6), since this equation is not autonomous.
This, however, is not a problem; since we just replace m(t) by some m(t — #y) that obeys the same
derivative estimates as m (), we can use the same exceptional set as in Proposition 4.3, Lemma 5.2 and
Proposition 5.5, and the other discussions remain unchanged.

The only difficulty we face is the lack of a (formally) invariant measure. This is compensated, however,
by a monotonicity property, which was first observed in [Burq et al. 2010].

Lemma 7.1. Consider the truncated Cauchy problem
{iatv + (A = [x[H)v = (cos(20)P 7> - (Jv|P~ ),
v(0) = f5.(@);

then for its solution v, the quantity

(7-9)

2(cos2)P
€(r,v(t)) = (Hv,v) + T||v|lL1z+]

5The space ¥’ C % in which we have uniqueness will be the image of the space % defined in (1-11) under ¢~ 1: as we have
said before, we do not have a simple characterization for this.
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. . . L x
is monotonically nonincreasing in |t| for |t| < 7.
Proof. We directly compute

dé 2(p — 3)(cos(2t))P~*sin(21) Pt
- = ||v(t)||Lp+lv
dr p+1

which is nonpositive for 0 <t < %, and nonnegative for —% <t <O0. O

We argue as in Section 6, but we fix T = 7 here. If we could prove

n({g: g€ J}) =vu(lg: P (g5) € J}) (7-10)

for —% <t < 7, where, of course, ®,« , is now the solution flow of (7-6), then combining this inequality
with (6-11) we can get (6-12). Starting from this point, we can follow the argument in Section 6 word by
word to get almost surely global well-posedness of (7-6) on [—7F, 7.

The proof of (7-10) is also simple. By Lemma 7.1

2k
o —1-2k —
g @ (g3 € ) =1 [ PO [T aaan,
Ji j=0
2k
5”_1_2k/ e *0) [T da;db; S/ dpse = pu({g : g5 € I},
Ji - J
j=0

where J; = {h € Vi : Oy ,(h) € J}. Here we have used the invariance of the Lebesgue measure under
®y« ,, which can be directly verified; see [Burq et al. 2010, Lemma 8.3]. Therefore we have completed
the proof of Theorem 1.2.

8. Invariance of Gibbs measure

Now we return to the final assertion of Theorem 1.1, and prove the invariance of the Gibbs measure v
under the solution flow of (1-10). More precisely:

Proposition 8.1. Denote the solution flow of (1-10) by ®,. There exists a subset = C &' (R?) such that it
has full ;@ measure, and ®, becomes a one-parameter group from % to X preserving the measure v (in the
focusing case, for each choice of cutoff function ).

Proof. We only consider the defocusing case. In the focusing case we need to take another countable
intersection corresponding to the cutoff x chosen, but otherwise the proof is completely analogous.
Clearly the set Q7 in Proposition 4.3 and Lemma 5.2 can be chosen so that e itH ¢ (Q7) = f(Q%).

We define ¥ = XN X,, where X is the setof all g € 9’ (R?) so that (1-1) (with initial data u (0) = g) has
a unique solution’ u on R that belongs to e "H g +%>T for all T > 0. This has full « measure due to the
global well-posedness part of Theorem 1.1. Also X, is defined to be Xy = f (liminf;_, o Q;z_i )+ #°, and
this also has full u measure for small enough ¢ due to our control on P(£27). Clearly X has full 4 measure,

It is a bit vague to say u is a “solution” when g is only a distribution; but since we are considering ¥, also, we can assume
here ¢~ H ge L? , on any finite time interval, for appropriate ¢, and then the definition of X; becomes rigorous.
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and @, is uniquely defined on X. If we can prove ®,(X) C X, then they obviously form a (measurable)
one-parameter group. Clearly ®,(X) C X, since for a solution u we have u(t) € e Hy (0) 4+ %°. To
prove ®,(X) C X1, we only need to prove that if u is a solution of (1-10) with u(0) € X,, then it is
automatically unique. Since all u(¢) € X, by bootstrap arguments we only need to prove short time
uniqueness. Write u(0) = f(w) + h with ||h|l% = A and o & Q.- for all large enough i. Repeating the
extension argument in Proposition 5.5, we see for i large enough depending on A that w & Q,- and the
solution is unique for |¢| < ¢27¢. This proves the existence of X.
Now we only need to prove that for each measurable set £ C ¥ and ¢t € R, we have

V(P (E)) = v(E). (8-1)
We may assume || < 1. Write

Mg =210 (00 Ml < AL+ () £25)
>
and
My={geX:|u —e_i’Hg”%”_,,,2 < A}.

By a limiting argument we can further assume E C IT;, o N IT; for some ig and A. Note that this implies
®,(E) C I;,,ca for [t| <2 and some constant C.

Let T be small enough depending on iy and A, we only need to prove (8-1) for || <T and E C I1;, ca
it

(since we can iterate to get the result for [#| < 1). Write I1 =I1;, c4 and define W(g) =u—e~ Hgo where

u is the solution to (1-1) with initial data g, and consider the mapping
Wy — 2707 X €%, g (W(g), ({8, e)k=0)

where in C* we use the standard metric. This mapping is clearly injective (thus it induces a metric on IT)
and, as will be explained in Remark 8.2, its image is a Borel set of the product space (denoted by Y). By
a theorem in measure theory [Halmos 1950], the finite Borel measure v o W ! on the complete separable
metric space Y is regular. For each measurable set £ C I1 we can find a compact set K C W (E) such that
(vo\Dfl)(llll(E) —K) < €; thus lIlfl(K) C E is compact in the induced metric and v(E — \Ilfl(K)) <e.
Therefore, we only need to prove (8-1) for compact sets E C I1. Due to Propositions 5.1 and 5.4, when T
is small enough depending on iy and A, the map ®,« , will be defined on E C I for each k and [7| < T.
Thus by the invariance of v}, under the solution flow ®, ;, we have

Uzk({g D 8ok = Por s (hy), h € E}) > vy (E).
Let k — oo, noticing that the total variation of v,x — v tends to zero, we only need to prove that

limsup{g : g5 = P, (h5), h € E} C ®,(E).

k—o00

Now suppose that for a subsequence k; 1 0o, we have g;kj =D t((hkj);kj ), and by compactness, assume
hy; — h with respect to the induced metric. We are going to prove g = ®;(h).
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First of all, we have
kli)n;o | ®ae, () — @i (h) + e " Hhy

o =0, (8-2)

uniformly for |f| < T and h € E. In fact, if T is small enough, we may assume & = h; + h;, where
hy € f(5), 2T < T' < 4T, and ||hz|l% < CA. Since T’ is small enough depending on A, we can
almost repeat® the proof of Proposition 5.5 to get that the %7 norm tends to 0. Since the %°*"7" norm
is not less than the spacial #° norm at time ¢, (8-2) follows.

From (8-2) we get
=0,

Jim 5, — (@00, )3 e

and we only need to prove

=0. (8-3)

kgrglo”(q)t(hk/));kf — (@) s

But since h; — h with respect to the induced metric, we only need to prove that || (f, ;k,- — h;kj ll5¢- — 0.

Fori > j we have
(o ((i)3)) 5y = 85 = Py, (B3,

and by using (8-2) once more we see that

(@4 (i), = (@4 (i), +o(1)

asi > j — oo. Again using that hx; — h, we deduce
i — R [ =0, (8-4)

In particular, we see that lim,-_)oo(hki);kj exists in #° for each j. By the definition of the metric, this
limit must be h;kj . Therefore we get

Tim [¢h = )3, |, =0 5

Combining (8-4) with (8-5), we finally see that lim; _, || (hkj);kj — h;kj |ls¢c = 0. This completes the proof

of Theorem 1.1. |

Remark 8.2. To show that W, (IT) is a Borel set in the product metric space, we only need to show that
W is injective, W(IT) is a Borel set in %°bT and the map W~! : W(IT) — IT is Borelian. To this end we
notice

1
W(g) =—i / eI (Ju(s)|P u(s)) ds, (8-6)
0
where u = u(g) is the solution map of (1-2), and g = 1(0).° Then we can decompose ¥ as

Wigu(g) > lu(@l”ulg) — ¥(g),

8Actuallly we do not have the a priori bound on the nonlinear part of truncated equations, but since h; € Q7 with T’ small
depending on A, it is not hard to get this from scratch.
9Here we also require g € ¥ ¢ for appropriate €, so that u € €(R, #~¢) in which u(0) makes sense.
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and see that at each step the mapping is injective, and the image of any Borel set is again Borelian (for
example, the set u(IT) can be characterized as the set of all u such that u — e My (0) € %0, that u
satisfies equation (1-2), and that u(0) € II, so it is Borelian). Hence the claim.

Appendix. Typical regularity on the support of 1

In this appendix we shall prove that if o > % then almost surely H°/? f () is not a (locally integrable)

function. More precisely, almost surely in [P, we have
v-H"f(0) ¢ L' R (A-1)

for any smooth compactly supported i that is not identically zero.

To prove this, first notice that we can find a countable number of ¥; such that each is compactly
supported and equals 1 on some annular region a < |x| < b, and for any other i there exists n € L* and
J such that ¥; = ¢ - . So we only need to consider a fixed v; (which we write ¥ below) and assume it
equals 1 for a < |x| < b. Here we use an asymptotic formula of 582 proved in [Erdélyi 1960]:

1 _ _
P(z) = vz) V4 coso + 034 , A-2
where a® < z < b* and v = 4k + 2 is large, and
0— v(¢+si:¢)—rr, ¢=cos_1 v—2z'
v

From (A-2) we easily deduce that
PUz) = 1/V2m (vz) Y cos(yvz — /4) + 0 (v /%),
and hence for each k

lexllp > / 92 dz > vV, (A3)
a’<z<b?

Now we define the Gaussian random variable

M
hn (@) =Y (4k+2)7" g (@)n(H/N*)(ex ),
k=0

whose range lies in a finite-dimensional space, and use Lemma 3.3 to get the lower bound
P(lhyn @)l = cEmn) = 15

with some absolute constant ¢, where

M
D @k +2) D g (@)er v (x)
k=0

Eyin = E(lharn (@)l 1) = /R [E<

>dx
1/2

M 1/2 M
~ / 2(Z<4k+2>”1|ek,N<x>|2) dr 2 (Z(4k+2)“1||ek,N||i.) :
R \k=0 k=0
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and ex y = n(N"2H)(ex). Now for fixed N, we let M — oo to get
hy,y = n(NZH)(H? f (@) - 4)

in & almost surely, since for fixed n (say n < 3N), the inner product (e,, ex¥) is rapidly decreasing in k
(using integration by parts). In particular we have almost surely L! convergence and hence (by taking
upper limit of a sequence of sets)

P(In(N">H)(H"? f (@) - ¥)||11 = cEn) > 75,

where

00 1/2
. —1 2
Ey = lllwnllélofEM,N 2 (;(% +2)° ||€k,N||L1) :

By the uniform boundedness of n(N~2H), we know n(N~2H)g — g in L' for any g € L', so we have

o0 1/2 00 1/2
liminf Ey > (Z(4k +2)°! ||ek¢||§]> > (Z(4k + 2)0—3/2> = 00,
k=0 k=0

N—o0

due to (A-3). Now we take another upper limit, and see that with probability > %, we have

limsup|ln(N "2 H)(H"? f (@) - )| 11 = oo (A-4)
N—o0
Now (A-4) implies (A-1), again because of the uniform boundedness of n(N —2H) on L'. Therefore
we have proved that (A-1) holds with positive probability. Since it is clearly a tail event (because ey -
themselves are Schwartz functions), it must hold with probability one.
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SCHRODINGER OPERATORS
AND THE DISTRIBUTION OF RESONANCES IN SECTORS

TANYA J. CHRISTIANSEN

The purpose of this paper is to give some refined results about the distribution of resonances in potential
scattering. We use techniques and results from one and several complex variables, including properties
of functions of completely regular growth. This enables us to find asymptotics for the distribution of
resonances in sectors for certain potentials and for certain families of potentials.

1. Introduction

The purpose of this paper is to prove some results about the distribution of resonances in potential
scattering. In particular, we study the distribution of resonances in sectors and give asymptotics of the
“expected value” of the number of resonances in certain settings.

More precisely, we consider the operator —A + V, where V € ngmp(Rd ) and A is the (nonpositive)
Laplacian. Then, except for a finite number of values of A, Ry (A) = (—A+V — A1 Imi >0, isa
bounded operator on L?(R?) for A in the upper half-plane. When d is odd and x ngmp([R{d ) satisfies
xV =V, xRy())x has a meromorphic continuation to the lower half-plane. The poles of x Ry (1) x
are called resonances, and are independent of choice of x satisfying these hypotheses. Resonances are
analogous to eigenvalues not only in their appearance as poles of the resolvent, but also because they
appear in trace formulas much as eigenvalues do [Bardos et al. 1982; Guillopé and Zworski 1997; Melrose
1982]. Physically, they may be thought of as corresponding to decaying waves.

Let ny (r) denote the number of resonances of —A 4 V, counted with multiplicity, with norm at most r.

When d = 1, asymptotics of ny (r) are known:

fim ) _ %diam(supp(V))

r—00 r

[Zworski 1987]; see also [Froese 1997; Regge 1958; Simon 2000]. Moreover, “most” of the resonances
occur in sectors about the real axis, in the sense that for any € > 0,

#iAd;pole of Ry(A):|argh; —m| <e€or|argh; —2m| <€ 2
AP v() | argh; — | |arga; — 27| }:_diam(supp(v))

r—00 r T
[Froese 1997]. These results are valid for complex-valued V. The case d = 1 is exceptional, though: in

higher dimensions much less is known.
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Now we turn to d > 3 odd, where the question is more subtle. If V e L®(R“) has support in
B(0,a) ={x e R?: |x| <a)}, then

derdtfcdadrd+0(rd)’ (1-1)
0

where ¢, is defined in (3-5) and depends only on the dimension. Zworski [1989a] showed that such
a bound holds, and Stefanov [2006] identified the optimal constant c¢;. There are examples for which
equality holds in (1-1) [Zworski 1989b; Stefanov 2006]. Lower bounds have proved more elusive. The
current best-known general quantitative lower bound is for nontrivial real-valued V € C2° (R?: R):

. ny(r)
lim sup
r—oo F

>0 (1-2)

[S4 Barreto 2001]. On the other hand, there are nontrivial complex-valued potentials V for which
X Ry (X)) x has no poles [Christiansen 2006].

We wish to single out the set for which asymptotics actually hold in (1-1). This is the set defined, for
a >0, as

M, ={VeL®RY) : suppV C B(0,a) and ny(r) = cqa’r? +o@?) as r — oo}. (1-3)

We remark that it is equivalent to require, as r — oo, that ny (r) = cqa®r? +o@r?) or

dfrtl(nv(t) —ny(0)) dt = cqa’r? + o(r?).
0

The set 2, contains infinitely many radial potentials. By results from [Zworski 1989b; Stefanov 2006],
this set contains any potential of the form V (x) = v(|x|), where v € C 2([0, a]) is real-valued, v(a) # 0,
and V (x) =0 for |x| > a. Additionally, it contains infinitely many complex-valued potentials which are
isoresonant with these real-valued radial potentials [Christiansen 2008].

We now can state some results. For the first, we set, for ¢ < 8, ny (r, ¢, ) to be the set of poles of
Ry (1), counted with multiplicity, with norm at most r and with argument between ¢ and 6 inclusive.

Proposition 1.1. Let V € IM,. Then, if0 < <0 <,

ny(r 7+, 7 +0) = ﬁ@,«p, 0)rlal +o0(r?) as r — oo,

where 0

5400, 0) = W, (0) — Wy (@) + d° / ha(s) ds,
(4

and hy(0) is as defined in (3-4).

If V is real-valued, then A is a resonance of —A + V if and only if —Xo is a resonance. In this case,
forVedM,and0 <0 <,
1

ny(r,m,m+6)= rmd

9
|:h2,(9) + dzf ha(s) dsi|adrd +o(r). (1-4)
0

Here, as elsewhere in this paper, we are concerned with the behavior as r — oo. Thus, one should
understand that statements of the type f(r) =g(r)+o(r?) are statements which hold for r sufficiently large.
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Corollary 1.4 shows that (1-4) holds for any V € 9,. These results show that any potential in 9, must
have resonances distributed regularly in sectors, as well as being distributed regularly in balls centered
at the origin. A result like this proposition and Corollary 1.4 is, for the special potentials of the form
V(x) = v(|x|) mentioned earlier, implicit in [Zworski 1989b] and [Stefanov 2006]. Here we derive it as a
corollary of some complex-analytic results, and note that it holds for any potential V € 91,. We note
that this proposition could, in fact, follow as a corollary to Theorem 1.3. However, we prefer to give a
separate proof that uses standard results for functions of completely regular growth.

In the following theorem, we use the notation Ny (r) = for(l/t)(nv(t) — nV(O)) dt and Ny (r, ¢, 0) =
for 1/ t)(nv(r, ©,0) —ny(0, @, 9)) dt. This theorem shows that there are many potentials for which
something close to the optimal upper bound on the resonances is achieved.

Theorem 1.2. Let Q C C? be an open connected set. Suppose that V(z) = V (z, x) is holomorphic in
z € Q, that V(z, x) € L®(R?) for each z € Q, and that V (z, x) = 0 if |x| > a. Suppose in addition that
for some zg € Q, V(z0) € M,. Then there is a pluripolar set E C Q so that

NV(Z)(V) . cdad
rd

lim sup
r—>0o0

forall 7€ Q\E.

Moreover, for any 8 > 0, 0 < 1, there is a pluripolar set Eg so that

NV(Z)(F, 7'[,7T+9) . ad ’
>lim——=h
rd - elg)l 2w d? d(E)

lim sup
r—>00

forall z € Q\ Ey.

For example, for a family of potentials satisfying the conditions of the theorem, one may take, for
z€C, V(z) =zVi + (1 — )V, where Vy € M, and V| € L®(RY) have support in B(0, a). Since
h!;(04) =lim¢ o h);(€) > O (see Lemma 3.3), the second statement of the theorem is meaningful. This
result is of particular interest since resonances near the real axis are considered the more physically
relevant ones.

We recall the definition of a pluripolar set in Section 2. Here we mention that a pluripolar set is
small. A pluripolar set E C C? has R?” Lebesgue measure 0, and if £ C C is pluripolar, E N R has
one-dimensional Lebesgue measure 0 (see, for example, [Lelong and Gruman 1986; Ransford 1995]).
Thus the statements of Theorem 1.2 hold for “most” values of z € Q.

If we take a weighted average over a family of potentials, a kind of expected value, we are able to find
asymptotics analogous to those which hold for a potential in 971,. In the statement of the next theorem
and later in the paper, we use the notation d¥£(z) =d Rez1dImz;...dRez,d Imz,.

Theorem 1.3. Suppose the hypotheses of Theorem 1.2 are satisfied. Then for any ¥ € C.(2),

/ Y (ny ) (r) dL(z) = cqa’r? / ¥ (2) d9(z) +o(r?)
Q Q

as r — oo. Additionally, we have, for 0 < ¢ <6 <,

/ Y@y 9+ 7,0+ 1) dL@) = 5 5a(p, O)r'a / ¥(2) d£(2) + o),
Q nd Q
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where 54 is as defined in Proposition 1.1. Moreover, for 0 <6 < m,

%]
/w(z)nv(z)(r, 7,0 +m)dL(z) = %[hi,(@) +d2/ ha(s) dsj|adrd/ W (2) dL(z) + o(r?).
Q nd 0 Q
Corollary 1.4. Let V € M,. Forany0 <0 <,
0
ny(r. 7,0+ 1) = | 1,0 + a2 [ ha(s)ds |adr? + o(rd) (1-5)
2md 0
and, forany 0 < ¢ < m,
v+, 2m) = 5 b+ [haas Jadr o (1-6)
%

asr — OQ.

This corollary follows from Theorem 1.3 by taking V (z) equal to the constant (in z) potential V. We
could instead give a more direct proof by, essentially, simplifying the proof of Proposition 5.3 and then
applying Lemma 5.4.

It is worth noting that the coefficients of r¢ in (1-5) and (1-6) are positive, so that in any sector in the
lower half-plane which touches the real axis, the number of resonances grows like <.

The proofs of the results here are possible because of the optimal upper bounds on

lim sup r~In|det Sy (re'”)|,
r—0o0
0 < 6 < &, proved in [Stefanov 2006] (see Theorem 3.2 here). These, combined with some one-
dimensional complex analysis, are used to prove Proposition 1.1, and could be used to give a direct proof
of Corollary 1.4. The proofs of the other theorems use, in addition to one-dimensional complex analysis,
some facts about plurisubharmonic functions. Many of the complex-analytic results which we shall use
are recalled in Section 2.

Again, we emphasize that we are concerned here with large r behavior of resonance counting functions,
and consequently of other functions as well. Thus, statements of the type f(r) = g(r) + o(r?) are to be
understood as holding for large values of r.

2. Some complex analysis

In this section we recall some definitions and results from complex analysis in one and several variables.
We will mostly follow the notation and conventions of [Levin 1964; Lelong and Gruman 1986]. We also
prove a result, Proposition 2.2, for which we are unaware of a proof in the literature.

The upper relative measure of a set E C Ry is

meas(E N (0, r))

lim sup
r—00 r

A set E C Ry is said to have zero relative measure if it has upper relative measure 0.
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If f is a function holomorphic in the sector ¢ < argz < 6, we shall say f is of order p if

In In(max, < ret®
lim sup (maxy<g<o | f(re'?)|) —
r—00 Inr

We shall further restrict ourselves to functions of order p and finite type, so that

In(maxyg<p | f(re'?)|) e

lim sup P
’

r—>o0

We shall use similar definitions for a function holomorphic in a neighborhood of a closed sector. In
this section only, we shall, following [Levin 1964], use the notation & ¢ for the indicator function (or
indicator) of a function f of order p:
hp©) < lim sup (m In| £ (re'®)]).
r—0o0

Suppose f is a function analytic in the angle (61, 6;) and of order p and finite type there. The function f
is of completely regular growth on some set of rays Rgy (901 is the set of values of 6) if the function
gef In | f (re')|
hpr(0) € =0
converges uniformly to & ¢ () for 6 € 9 when r goes to infinity taking on all positive values except
possibly for a set Egy of zero relative measure. The function f is of completely regular growth in the
angle (01, 0) if it is of completely regular growth on every closed interior angle.

Functions of completely regular growth have zeros that are rather regularly distributed. For a function

S holomorphic in {z : 8| < argz < 6,} we define m ¢ (r, ¢, 8), for 6 < ¢ <6 < 6,, to be the number of
zeros of f(z) in the sector ¢ <argz <6, |z| <r.!

Theorem 2.1 [Levin 1964, Chapter III, Theorem 3]. If a holomorphic function f(z) of order d and
finite type has completely regular growth within an angle (0, 6»), then for all values of ¢ and 0 with
01 < ¢ < 0 < 6y, except possibly for a denumerable set, the following limit will exist:

. myg(r,,0) 1 .
1 == " 99 ’
o ansf (.9

r—0o0 rd

where 6
Sr(p,0) = |:h’f(0) — h’f(q)) +d2/ hy(s) ds:|.
@

The exceptional denumerable set can only consist of points for which h’f(G +0) # h/f 6 —0).

In the following proposition, we use the notation m ¢ (r) to denote the number of zeros of a function f,
counted with multiplicity, with norm at most r. It is likely that some of the hypotheses included here could
be relaxed. However, when we apply this proposition, f will be the determinant of the scattering matrix,
perhaps multiplied by a rational function, and many of these hypotheses are natural in such applications.

I'More standard notation would be n(r, ¢, 0), but we have already defined ny (r, ¢, 6) to be something else.
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Let f(z) be a function meromorphic on C. Then f(z) = g1(z)/g2(2), with g1, g» entire. The functions
g1 and g are not uniquely determined. However, the order of f can be defined to be

min{max(order of g1, order of g7): f(z) = g1(2)/g2(z) with g1, g entire}.

It is possible to define the order of a meromorphic function by using the Nevanlinna characteristic function,
yielding the same result.

Proposition 2.2. Let f be a function meromorphic in the complex plane, with neither zeros nor poles on

the real line. Suppose all the zeros of f lie in the open upper half-plane, and all the poles in the open

lower half-plane. Furthermore, assume f is of order d > 1, hy is finite for 0 <0 <, and h y(8) # 0 for
some 0y, 0 < 6y < 7. Suppose in addition that

0]

o f@)

and that the number of poles of f with norm at most r is of order at most d. If

d T
lim inf L") :—/ hp(0)do,
2 0

dt =o(r?) as r — +oo, (2-1)

r—oco pd
then f is of completely regular growth in the angle (0, 7).

Before proving the proposition, we note that Govorov [1965; 1967] has studied the issue of completely
regular growth of functions holomorphic in an angle. This is discussed in [Levin 1964, Appendix VIII,
Section 2]. This is somewhat different than what we consider, since we use the assumption that f is
meromorphic and of order d on the plane. Thus Govorov uses different restrictions on the distribution of
the zeros of f.

Proof. The proof of this proposition follows in outline the proof of the analogous theorem for entire
functions in the plane [Levin 1964, Chapter IV, Theorem 3]. Rather than using Jensen’s theorem, though,
it uses the equality

Tmy@ L1 /’l TG L/” it i
/0 . dt—znlm Y e dsdt+2n ; In|f@re')| do (2-2)

if | f(0)| = 1, which follows using the proof of [Froese 1998, Lemma 6.1].
By [Levin 1964, Property (4), Chapter I, Section 12],

r t
lim inf mfy) <lim inf dr ¢ f @ e (2-3)
0

r—oo r r—00 t

We note [ibid., Chapter I, Theorem 28] that for any € > 0, there is an R > 0 so that
rIn|fre®) <hs@)+e, for r>R,0<6<m. (2-4)

Using this, (2-2), and our assumptions on the behavior of f on the real axis, we see that

r [ 1 T
lim sup r_d/ mf—()dtg—/ h £ (8) df.
0 t 2 0

r—00
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Combining this with (2-3) and using our assumptions on m ¢ (r), we get

r t 1 s
im =4 [ D g L[ 6 a6.
5 s
0 T Jo

r—00 t

Thus using (2-2) and (2-1) again, we have
b/

lim [ [hp(®)—r “In|f(re'?)|]do =0,

r—00 0

and, using (2-4), .
limf |h (@) —r~“In|f(re'”)|| do = 0.

0

r—o0

Since we have assumed f is of order d, we may write f as the quotient of two entire functions, each
of order at most d. Then we may apply [Levin 1964, Chapter 2, Theorem 7] to find that for every n > 0,
there is a set E), of positive numbers of upper relative measure less than 5 so that if » ¢ E,, the family of

functions of 6,
def _

hir©) = r~In|f(re’”)],
is equicontinuous in the angle 0 < €p <6 < — €.
Now let 6, > 0y, with [0, 8,] C (0, 7). Given n > 0 and € > 0 we can, by the above result, find a
8 > 0 with [6; — 8, 6>+ 6] C (0, ) and a set E,, of upper relative measure at most 7 so that if 6 € [0y, 61],
r¢ Ey, and |p —0| <4, then |hys,(0) —hy, (@) <e€/4and |hs(0) —hr(p)| <e/4. Thenfor 0 < |k| <6,
r Q’ E77’ and 0 € [91, 92],
€

0+k
1
@) =hy @1 <547 [ @ —hs @l

1 T
§€+—/ s (@) — h ()] do.
2% ),

Since the integral goes to 0 as r — oo, we have shown that |h 7, (0) —h ¢ (0)| <€ forr >r.,r ¢ E,. Since
n > 0 and € > 0 are arbitrary, we have, by [Levin 1964, Chapter III, Lemma 1], that f is of completely
regular growth in [0}, 6,]. Since 0y, 6, were arbitrary except that [0, 6,] C (0, ), we have proved the
proposition. (Il

We shall also need some basics about plurisubharmonic functions and pluripolar sets. We use notation
as in [Lelong and Gruman 1986] and direct the reader to this reference for more details.

Let 2 C C? be an open connected set. A function ¥ : Q — [—o00, 00) is said to be plurisubharmonic
if W # —oo, W is upper semicontinuous, and

1 2 )
V(z) < 5— / W(z+wre'?)do
2w J

for all w, r such that z +uw € Q for all u € C, |u| <r. A classic example of a plurisubharmonic function
is In| f(z)|, where f(z) is holomorphic. A subset £ C Q C C? is said to be pluripolar if there is a
function W plurisubharmonic on 2 so that £ C {z: ¥(z) = —o0}.
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For the convenience of the reader, we recall an additional fact from several complex variables that we
shall need.

Proposition 2.3 [Lelong and Gruman 1986, Proposition 1.39]. Let {W,} be a sequence of plurisub-

harmonic functions uniformly bounded above on compact subsets in an open connected set 2 C CP,

with limsup,_, . W, < 0, and suppose that there exist § € Q such that limsup,_, ., W, (§) = 0. Then
={z€ Q:lim SUP, 00 g (z) < 0} is pluripolar in Q.

3. The functions sy (A) = det Sy (L) and /4(0)

For V e ngmp(Rd) and x € Lcomp([Rd) with xV =V, we have x Ry (M) x = x Ro(M) x (I +V Ro(AM) )~ L.
Since for any y with compact support in R, || x Ro(M) x| < ¢y /IA| when Im A > 0, we see that Ry (4)
can have only finitely many poles in the closed upper half-plane.

For V e ngmp([Rd), let Sy (A) be the associated scattering matrix and sy (A) = det Sy (). With at most
finitely many exceptions, the poles of sy (1) coincide with the poles of Ry (1), and the multiplicities agree.

Moreover, sy (L)sy (—A) = 1.
Lemma 3.1 [Christiansen 2005, Lemma 3.1]. Let V € L2

comp

(R4; C). For A € R, there is a Cy so that
‘—d Insy ()| < Cylaf=2
dxr -
whenever |\| is sufficiently large.

In fact, if supp V C B(0, a), there is a constant oy = o4.4, SO that it suffices to take |A| > 2a4]| V|00
for such a bound to hold. We note that for A € R, || > 24| V|0, under these same assumptions on V/,

ISy(L) — 1] < Clx|~". (3-1)

This is relatively easy to see from an explicit representation of the scattering matrix; see, for example, the
proof of the lemma just stated in [Christiansen 2005]. The constants in the statement of that lemma and
in (3-1) can be chosen to depend only on the dimension, ||V ||, and the support of V. We note that it
follows from Lemma 3.1, (3-1), and (2-2) that as r — o0,

"ny (1) i i0 d-1
—di= [ In |det Sy (re'®)| do + O (™). (3-2)
0 0

Let T—=
,o(z)déf 1+vi=z2 —vV1-2z2, O<argz <. (3-3)
This is a function which arises in studylng the asymptotics of Bessel functions; see [Olver 1954]. To
define the square root which appears here, take the branch cut on the negative real axis and define p to be
a continuous function in {0 < argz < 7} U (0, 1) and use the principal branches of the logarithm and the
square root when z € (0, 1).
We use some notation from [Stefanov 2006]. Set, for 0 < 6 < 7,

wr 4 * [—Re p] (1¢')
ha(®) = (d—2)!_/ (a1

dt (3-4)
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and set hy(0) =0, hy(r) = 0. Further, define

def d [T 2d / [—Re p]4(2)
Imz>0

=5 Jy MO =2 o) vz G-2)

This is the constant ¢, that appears in (1-1).
The next result is adapted from [Stefanov 2006, Theorem 5]; the original result covers a much larger
class of operators.

Theorem 3.2. Let V € L®(R?) be supported in B(0, a).
(a) Forany 6 €0, ],

In|sy (re')| < hg(@)a®r® +or?) as r — oo, (3-6)

and the remainder term depends on V and is uniform for 0 < § <6 <m — § for any é € (0, ).

(b) Forany é > 0,

In|sy (re'®)| < (hg(@®)a® +8)r* +o(r?) as r — oo
uniformly in 6 € [0, ].

We remark that both of these statements are about “large r” behavior, so that the possibility that sy
has a finite number of poles in the upper half-plane does not affect the validity of the statements.

It is important to note several things about the bounds in this theorem. One is that although Stefanov’s
theorem is stated only for self-adjoint operators (hence V real), it is equally valid when we allow complex-
valued potentials. In fact, the proof of (a) in [Stefanov 2006, Theorem 5] uses self-adjointness only to
obtain a bound on the resolvent for A in the upper half-plane. A similar bound is true for the operator
—A + V when V is complex-valued. The proof of (b) uses the fact that In |sy (A)| = 1 for real V and
A € R. For complex-valued V, the proof in [Stefanov 2006] of (b) can be adapted by using (3-1) and
Lemma 3.1 to show that |In |sy (1)]| < C(1 + [A])?~! for A € R with [A| > 204||V [|os. Here C can be
chosen to depend only on d, ||V |, and the diameter of the support of V.

Likewise, the particulars of the operator enter only through the diameter of the support of the perturbation
(for us, the diameter of the support of V, which is 2a) and the aforementioned bound on the resolvent in
the good half-plane Im A > 0. Thus, it is easy to see that the estimates of Theorem 3.2 are uniform in V
as long as supp V C B(0, a), ||V |leo <M, and r > 204 M.

We note that the upper bound (1-1) on the integrated resonance-counting function holds with the
constant ¢y defined in (3-5) even if V is complex-valued. This follows from the proof in [Stefanov 2006].
In fact, the proof uses the bounds recalled in Theorem 3.2 and the identity (2-2). Together with the bounds
in Lemma 3.1 and (3-1), these prove (1-1), even when V is complex-valued.

We shall want to understand the function A ,(0) better. Note that for 0 < 0 < /2,

ha(% +6) =ha(5 -0).

This can be seen directly using the definition of 44 and p.
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Lemma 3.3. The function hy(9), defined in (3-4), is C' on (0, ). Moreover,

1,0+ Llim b/ (€) = V7 re) :
¢ el ! d-2'T(1+9)

Proof. We note [Olver 1954, Section 4] that Re p(z) < 0if 0 < argz < 7 and |z| > |zo(arg z)|, where
z0(0) is the unique point in C with argument 6 and which lies on the curve given by

+(s coths —52)1/2 +i(s2 —stanhs)l/z, 0<s <sp.

Here sg is the positive solution of coth s = s. Furthermore, Re p(z) > 0 if z is in the upper half-plane but
|z| < |zo(argz)|. Hence, recalling the definition of /4,4, we have

4 /°° [—Re p](te'?)
d =2 Jizoy 19!

Using the definition of p in (3-3) and the following comments, we see that p is in fact a smooth

ha(0) = dt.

function of z with 0 < argz < 7, |z| > 0. Since |p(z)|/|z] = 1 when |z] — oo in this region, the integral
defining A, is absolutely convergent. Likewise, since

L p(te®) = —iy/T= ()2,

we have

—Re[-Z p(te'?
el o

and the integral

/‘X’ —Re[%p(teie)] it
|

d+1
200)] 1

converges absolutely. A computation shows that |zg| is a C ! function of 6 for 6 in (0, ), and that
lim¢ (0/06)|z0| is finite. Thus, using that Re p(z¢(6)) = 0 and the regularity of the derivative of |zo|(6),

4 ® Reiy/1—(tei?)? dt

@d=2! Ji00)) ! ’

we get

d -
gha®) =

which is continuous in 6. Thus kg4 is C' on (0, ), we have

REVIEE |
h;,(O—l—) = 4 dt,
d-2)! J, pd+1
and a computation now finishes the proof of the lemma. O

If d = 3, we can compute that
(1 —15(9))3/2>
120(0) ’

where z¢(0) is as in the proof of the lemma. We comment that the sin(36) term is missing from the first

hﬂ®=gem6m+Re

remark following the statement of [Stefanov 2006, Theorem 5].
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4. Proof of Proposition 1.1

We can now give the proof of Proposition 1.1, which follows by combining Theorem 2.1, Proposition 2.2,
and [Stefanov 2006, Theorem 5].

Recall that Sy (A) is the scattering matrix associated with the operator —A + V, and sy (A) = det Sy (1).
Then sy has a pole at A if and only if sy has a zero at —X, and the multiplicities coincide. Moreover, with
at most a finite number of exceptions, the poles of sy (1) coincide, with multiplicity, with the zeros of
Ry (X).

If sy (1) has poles in the closed upper half-plane, it has only finitely many, say A1, ..., A,,, where the
poles are repeated according to multiplicity. Set

m

o (=2
f(k)—J]:[l Ty sy (A).

We check that f satisfies the hypotheses of Proposition 2.2. Note that f and sy (1) have the same order
and they have the same indicator function for 0 <6 < . We know that sy has order at most d by [Zworski
1997, Theorem 7]. Moreover, for any M chosen large enough that sy has no zeros or poles bigger than
M on the real line, for r > M we have

r /t roo/ 1

fUdt:/ v o).
o f@) m Sy ()

Using (3-1) and Lemma 3.1, we see that

roof t
/wdt=0(rd_l) as r — 00,
m Sy (1)

yielding
T @
o f()

A similar argument gives the same bound for r — —oo. It remains to check the hypotheses on the

dt =09 as r - oo. 4-1)

indicator function; this is done in the next paragraph.
From [Stefanov 2006, Theorem 5], recalled here in Theorem 3.2, for 0 <0 < 7 and large r,

r~n| f(re'®)| <a®hy(0) +o(1),

where we have some uniformity in 8. Thus, using (2-2) and (4-1), we get

b g ) d T
lim sup r Ny (r) =lim sup L [ | f(ré'®)do < <= | hq6)de.
27'[ 0 27'[ 0

r—o0 r—0o0

But since V € I,

d d T
lim r Ny (r)=94C =L | h,0)de,
r—00 d 27‘[ 0

and we see that we must have

lim sup r 4 In|f(re’®)| =a’hy(0), for almost every 6 € (0, ).
r—00
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The left-hand side of the above equation is the value of the indicator function of f at 6. But the indicator
function of f is continuous on (0, ) [Levin 1964, Section 16, point (a) on p. 54], and so is i4(6). Thus
we must have
lim sup r“1In|f(re'®) =a’hy(0) for 6 € (0, ).
r—00

Applying Proposition 2.2 to f(A), we see that f()) is a function of completely regular growth in
the upper half-plane. Since /4(6) is a C! function of § for 6 € (0, 7), we get the proposition from
Theorem 2.1.

5. Proof of Theorem 1.3

This section proves Theorem 1.3. We begin by outlining the strategy of the proof.

For 0 < ¢ < 0 < 27, recall the notation ny (r, ¢, 8) for the number of poles of Ry (A) in the sector
{z:lz| <r, ¢ <argz <0}. A representative claim of the theorem is that with V (z), Q as in the statement
of the theorem, 0 < 0 < 7,

0
/W(Z)nv(z)(r,nﬁ—i-n)d&ﬁ(z)=%[h;(é)%—dz/ hd(s)ds]adrd/w(z)diﬁ(z)+o(rd) (5-1)
Q nd 0 Q

as r — oo for any ¥ € C.(2). We prove this via the intermediate step of showing that (5-1) holds
for ¥y which is the characteristic function of any suitable ball in €2 (Proposition 5.7). To get (5-1) for
Y e C.(S2), we cover the support of v with the union of a finite number of small disjoint balls and a set
of small volume. On each small ball, we can approximate i by its value at the center of the ball and
apply Proposition 5.7. This and the necessary estimates are done in the proof of the theorem which ends
this section.

The proof of Proposition 5.7 is done in a number of steps. We set

"1
NV(r’(pve):/ ;(nV(tsgoae)_nV(O’goae))dt
0

Lemma 5.2 gives f09 Ny (r, 7,0 + ) df’ as a sum of two integrals involving In |sy | and an error of order
r4=1. This follows from an application of one-dimensional complex analysis, Lemma 3.1, and (3-1). Next
we consider the function

def

6
V(z,r,p) = / Ny (r, m, 0 +m)do'dL(7).
0

1
vol(B(z, p)) /Z/GB(M)
Here we use B(z, p) to be the ball with center z and radius p in C?. Thus the function W is the average
over balls of varying center z. Fix p small, and consider this as a function of z and r. Lemma 5.2 is
used to show that W is the sum of a function W; which is plurisubharmonic in z and a function which is
O (r?~1). The proof of Proposition 5.3 uses a combination of properties of plurisubharmonic functions
and the fact that r =4 Ny (r, 7, 8’ + ) is not negative and can be (locally) uniformly bounded above for
large r to prove an “averaged” in 6 and r version of (5-1) for i the characteristic function of a ball in €2
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satisfying some conditions. Propositions 5.5 and then 5.7 eliminate the need to average in 6 and r, using
Lemma 5.4.

The proofs of the other claims of Theorem 1.3 are quite similar; the proof of Proposition 5.6 and the
final proof of the theorem indicate the differences.

Now we turn to proving the theorem. We shall need an identity related to both (2-2) and to what Levin
[1964, Chapter 3, Section 2] calls a generalized formula of Jensen. We define, following [Levin 1964],
for a function f meromorphic in a neighborhood of arg z = 6 and with | f(0)| =1,

r i0
RO / Inlf@eDl (5-2)
0 t

This integral is well-defined even if f has a zero or pole with argument 6.

Lemma 5.1. Let [ be holomorphic in ¢ <argz <0, let | f(0)] =1, let f have no zeros with argument ¢
or 0 and with norm less than r, and let m(r, ¢, 0) be the number of zeros of f in the sector ¢ < argz <0,
|z| <r. Then

/ m(t’(p’e)dt
0 t

S S AN S B A A iy L/G iw -
_27rf0 8«9Jf(9)t +27r/0 t/(; 8Sargf(se )det+2n (pln|f(re )dw. (5-3)

Proof. Using the argument principle and the Cauchy—Riemann equations just as in [Levin 1964, Chapter 3,
Section 2], we see that

" - "1 9 ~ ) :
2am(r’, ¢, 0) = / —arg f(te'?) dt —l—/ P In|f(te'®)| dt + r// —1In|f('e')|dw
0 0

ot 0 or’

when there are no zeros on the boundary of the sector. As in [Levin 1964], by dividing by 277" and
integrating from O to r in 7/, we obtain the lemma. O

‘We note that |sy (0)| = 1, since sy (A)sy(—A) = 1.

Lemma 5.2. Suppose V € LY __(RY). Then for0 <6 <,

comp

0 r 0 po
/Nv(r,n,e’+n)d9/:L/ J! (9)ﬂ+L/f In sy (re'®)| do d6’ + O (=)
0 27'[ 0 v t 27'[ 0o Jo

as r — oo. The error can be bounded by c(r¢="), where the constant depends only on ||V || o, the support

of V,and d.

Proof. Recall that with at most a finite number of exceptions, Ag is a pole of Ry (A) if and only if —Ag is
a zero of sy (A), and the multiplicities coincide. As in the proof of Proposition 1.1, if sy (A1) has poles
A, ..., Ay in the closed upper half-plane, we introduce the function

L= A) (A=)
A O )

f) sy (2),
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which is holomorphic in the closed upper half-plane. The poles of sy in the closed upper half-plane
correspond to eigenvalues, and the number of such poles can be bounded by a constant depending on d,
IV ]loo, and the support of V. Note that f has no zeros on the real line and that sy and f have all but
finitely many of the same zeros. Moreover, In | f(re'®)| =1In|sy(re'?)|+ 0(1) forr — 00,0 <6 <.

Choose 0 < M < oo so that sy (1) has no zeros in the upper half-plane with norm greater than or equal
to M. This constant M can be chosen to depend only on ||V ||, the support of V, and d. Now, by using
the relationship between the poles of Ry (A) and the zeros of sy = det Sy and the relationships between
f and sy just mentioned, and applying Lemma 5.1 to f, we see that forr > M, 0 <6’ < 7,

Ny(t,m, 0 +7T)— / WJJV(G )—+—f / a7 arg sy (t") dt'dt

9/
+— / In|sy(re'®)|dw+ O((nr)?) (5-4)
2 [

if f has no zeros with argument 6" and norm not exceeding r. Here we are using that

M
fo ZreHd = o)

and

rl Id , ,

/Ot/(;dt/argf(t)dtdt
("1 (" a N "1 (M4 N M1t a N o
_A;Al%argf(t)dtdt+/M;/o Wargf(t)dtdtik ; n Oﬁargf(t)dtdt.

/ / argf(t)dtdt O(nr) and / / argf(t)dt/dt o).

But

Additionally, for t — oo,

d d 1
Eargf(t) = aTtargsv(t)—l— 0(;)

These remainders can be bounded using constants depending only on ||V ||, supp V, and d.

Notice that for fixed value of r > M, there are only finitely many values of 8" with sy having a zero
with argument 6’ and norm at most . We integrate (5-4) in 6’ from 0 to 6 and, as in the proof of Jensen’s
equality, use the fact that both sides of the equation below are continuous functions of 6, to get

0 1 1 [ dt
foNv<r,n,9/+n)d9’=2n/ J! (9)——5 RO

/ / argsv(t)dtdt+—// In|sy (re'®)| dwdd’ + O((Inr)?).

The bounds of Lemma 3.1 and (3-1) mean that, as r — o0,

T dt d—1
231/MJSV(O)t_O(r )
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and

/ /dt/argsv(t)dtdt o,

where the bounds can be made uniform in V with support contained in a fixed compact set and ||V ||~
bounded. Moreover, we note that fOM J év @)dt/t) =0(). O

We shall need some notation for the results which follow. Let & € C¢ be an open set containing a
point zg. For p > 0 small enough that B(zg, p) C 2, we define €2, to be the connected component of
{z € Q:dist(z, Q°) > p} which contains zg.

Proposition 5.3. Let V, zg, Q2 satisfy the assumptions of Theorem 1.2, let p > 0 be small enough that
B(zo0,2p) C Q, and let Q, be as defined above. Then, for z € 2,,0 <0 <,

0
Wz, rp) & ! / Ny (r, 0, 0" + 1) d6'd%(2)

vol(B(z, p)) Z€B(z,p) JO

1 gafl " / d
=5 ar <ﬁhd(9) —{—/0 /0 hy(w)dwdb ) +o(r?)
asr — oo.
Proof. First note that since 0 < dNy)(z, 7,0 + 1) < car®a® + o(r?), and the bound is uniform on
compact sets of z, we get that holding p fixed, 7~ W(-, r, p) is a family uniformly continuous in z for z
in compact sets of Q.

We shall use Lemma 5.2. Note that by Stefanov’s results recalled in Theorem 3.2, for large r,

| - dt 11 d
2n/0 Jsvm(é)t =50 dzhd(e)a o),

where the term o(r¢) can be bounded uniformly in z in compact sets of ﬁp. Recall that this is a statement
about large r behavior, and holds even if sy (z) has poles in the upper half-plane, since it has at most
finitely many. By the same argument, for large r,

0’ o’
// lnlsv(z)(re“")|da)d9 <[/ ha(w) dw d'a®ré + o(r?).

Using Lemma 5.2, we find that

Yz, 2= Vol(B(» o)) NG d$
@ rp)= ZJTVOI(B(Z 0)) /ZEB(Z p)/ Yv(z)( ) @)
0/
L iow ’ ’ d—1
T Vol(B(z. o)) In|syn(re'®)| dowdd’'d£(Z) + 0@ ).
27 Vol(B(z, p)) Z,eB(Z’p)fO/O lsv ) (re )| @)+ 0@

Let M =2y max_ .o IV (2)|lco and set, for r > M,

d
Uiz p) = (9)% dL()

m ieB(z p) / e

6/
+ / / In |sv(z)(re’“’)| dodd'd¥(7),
'eB(z,p)

2 Vol(B(z P)) /Z
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and note that
W(z, 7 p0)=Y(z,rp0)+00"h.

By the bounds above,
1 /1 0 (o'
U(z,7,p) < = 55ha(0) + ha(w) dwdb’ Ja®r® + o(r?). (5-5)
2 d2 0 Jo

Using [Lelong and Gruman 1986, Proposition 1.14] and the fact that In [sy(;)(1)| is a plurisubharmonic
function of z € 2 when |[A] > 20|V ()|l and A lies in the upper half-plane, we see that W (z, r, p)
is a plurisubharmonic function of z € €2,,. Since by Proposition 2.2, sy, (1) is of completely regular
growth in 0 < arg A < 7, using Lemma 5.2 and [Levin 1964, Chapter I1I, Section 2, Lemma 2],

9/
lim r~ / Ny () (r, 0, 60' + ) db' = (dzhd(9)+/ / ha(w) da)d@/)

r—o0

By the most basic property of plurisubharmonic functions,
v s T @l L )| de do!
G0 z 50 | @+ o0 || nlvey e dode’

0
But the right-hand side of this equation is / Ny (o) (r, 1,0’ + 1) d6’ + O (r?™1), so we see that
0

r—0o00

0 ro’
. . —d 1 1 1\ ,d
lim inf »~“W(z9, 7, p) > 3 (—dzhd(é) +f0 /0 hg(w)dwdb )a
Combining this with (5-5), we find

9/
lim r~ \111(20,r p) = (dzhd(G) —I—/ / hg(w) da)d9> (5-6)

r—00

Using this and the upper bound (5-5) on Wy, since W, is plurisubharmonic in z, it follows from [Lelong
and Gruman 1986, Proposition 1.39] (recalled here in Proposition 2.3) that for any sequence {r;}, rj — 00,
there is a pluripolar set £ C €2, (which may depend on the sequence) so that

9/
lim sup r; Ny, (z, rj,p) = I (dzhd(e)—l-/ / hd(w)da)dQ/)
j—oo

for all z € 2, \ E. Since lim, _, r— (\Ifl (z,r, p) —VW(z,r, p)) =0, the same conclusion holds for ¥ in
place of ;.
Suppose there is some z; € €2, and some sequence r; — 00 so that

6/
lim r \ll(zl,rj,,o)< ! <d2hd(9)+// hd(a))dwde)

]—)OO

Then, using the uniform continuity of r_d\ll(z, r, p) in z, we find there must be an € > 0 so that

9/
lim sup ;W G, 75, p) < 5 <d2hd<9>+f f hd<w>dwd9>

]—)OO
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for all z € B(zy, €). But since B(zy, €) is not contained in a pluripolar set, we have a contradiction. Thus

0 po
: —d _ 1 L 7 ,d
Tim r w(z,r,p)—2ﬂ<d2hd(e>+/ofo hd(a»dwde)a

for all z € €2, U
The following lemma will be used to remove the need to average in 6 as in Proposition 5.3.

Lemma 5.4. Let M (r, 0) be a function so that for any fixed positive ro > Co, M (rg, 0) is a nondecreasing
function of 6, and suppose

r—0o0

0
lim r_d/ M(r,0)do' = a®)
0

for 0y < 0 < 0. Then if « is differentiable at 0, then

lim r =M, 0) = o' (0).

r—00
Proof. Let € > 0. Then, since M(r, 8) is nondecreasing in 6,

0+¢€ [%
M(r,0") d@'—/ M(r,0)do > eM(r,0),
0 0

which, under rearrangement, yields

0+e / / 0 / ’
M@, 0)Ydo' — [ M((r,8")do
r*dM(r, 0) < pd0 ( ) fo ( ) .

€

Thus
lim sup r M, 0) <

r—0o0

a(@+e)—a(f)
€

Likewise, we find
lim inf r~*M(r, ) >

r—oQ

a(@)—a(@—e¢)

— e

Since both these equalities must hold for all € > 0, the lemma follows from the assumption that « is
differentiable at 6. O

The following proposition follows from Proposition 5.3, but is stronger as it does not require averaging
in the 0’ variables.

Proposition 5.5. Let V, zo, Q2 satisfy the assumptions of Theorem 1.2, and let p > 0 and Q, be as in
Proposition 5.3. Then for z € Q2,,,0 <6 <m,asr — o0,

0
1 N1 o4 d( 1., / ) J
_ Nyn(r,m,0+m)d¥(7) = —a’r‘| —h,(0)+ hg()dw | + o).
VO](B(Z, ,0)) B @O V(Z)( ) ( ) T d2 d( ) 0 d( ) ( )

Proof. This follows from applying Lemmas 5.4 and 3.3 to the results of Proposition 5.3. (I

Proposition 5.5 does not give results for the counting function for all the resonances (note that we
cannot have 6 = ). The following fills this gap.
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Proposition 5.6. Let V, zo, Q satisfy the assumptions of Theorem 1.2, and let p > 0 and 2, be as in
Proposition 5.3. Then for z € Q,, as r — o0,

0
1 1
- N nNr dg Z/ :—adrd/ h w dCl)+0 i"d.
Vol(BG. ) ey, vy (r)dL(z) = ; a(w) )

Proof. The proof of this is very similar to that of Proposition 5.3. In fact, the main difference is the use
of (2-2), which together with Lemma 3.1 and (3-1) gives us, by handling possible poles in the upper
half-plane using a method similar to the proof of Lemma 5.2,

1 / d—1
- Nyh(r)d¥L(Z) =V (z,r, p)+ O(r )
B ) g MO 45 =i )+ ¢

where | . .
V(2,7 0) = o s / In |sy () (re’®)|d0 d%(2).
(GO = TR 3 oy Jy IV )
Using that W is plurisubharmonic in z, the proof now follows just as in Proposition 5.3. O

The following proposition is much like Propositions 5.5 and 5.6, but eliminates the average in the r
variable.

Proposition 5.7. Let V, Q, zo satisfy the conditions of Theorem 1.2, and let p and 2, be as in
Proposition 5.3. Then for 0 < 0 <, z € Q,,
ad’,d

1 1 0
(B(z. p) ny () (r. . 0 + 1) dE() = —h’9+dfh 9d9>+0rd
Vol(B(z, p)) JeB(z,p) Vet )42z 2 (d a®) 0 a(©) %)

and

1 / d a4 d/n d
—_— nyn(r)d*(Z) = —a‘r hy(0)do +o(r
Vol (B ) oo n vy (r)dL(z) = ; a(0) )

asr — OQ.

Proof. This proof follows from Propositions 5.5 and 5.6, using, in addition, a result like that of [Stefanov
2006, Lemma 1] or Lemma 5.4. O

Proof of Theorem 1.3. Let M = max(1 + | (2)]), and for p > 0 small enough that B(zo, p) C £2, set 2,
to be the connected component of {z € Q : dist(z, 2¢) > p} which contains zg. Given € > 0, choose p > 0
such that B(zg, 2p) C Q2 and so that

€
10Med(cga? +1)

vol (supp ¥ N (\ ) < (5-7)

Since r is continuous with compact support, we can find a §; > 0, 8§; < p so that if |z — 7| < 81, then
€
10e4 (1 + vol supp ¥)(acy +1)°

We may find a finite number J of disjoint balls B(z;, €;) so that €; < §1, z; C £, and

1V (2) — ¥ ()] <

€
4Med(adcys+ 1)

vol(supp ¥ \ U/ B(zj, €))) +vol(U{ B(z;,€;) \supp ) <
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Letw <¢' <6 <2m. Now

/ V@nvio (¢, 8 d2()

J

-2 /B( )w(z)nv@(r’ ¥, 00 dL@) +/ Y (@ny ) (r, ¢, 0) dL().

j=1 supp Y \(UB(zj,€;))

We will use that the bound (1-1) implies that ny (z) < edcgatr? 4+ o(r?). By our choice of B(zj, €;),

Y (@ny e (@', 0) dL(2)

f < %(rd +o0(rh)).
supp Y\ (UB(zj,€;))

By our choice of §; and the assumption that €; < §;, we have

J

J
> /B LG ¢,0)de(@) - /B Y@y @ 0) dL()
i 2j:€j j=1

€,d d
=507 +o0).

=1 (zj,€;)

By Proposition 5.7, if 0 < 0 < m,

J
3 / V@ ny o (7, +0)dE()
= B(zj.€))

J %
_ (Z ¥ (z,) vol(B(z;, ej))> Seatr <§h;(0) + d/ hd(a))da)> +o(r),
j=1 0
and
J

J T
> /B ( )w<z Dy () dL () = (Z ¥ (z;) vol(B(z, € ,-))) %adrd /0 ha(w) do + o(r?).
i Zj:€j j=1

j=l1
Again using our choice of §1, z;, and €;, we have

2e
<
5(cqad +1)

J
> ) vol(BGy ) - [ v d()
=1

Thus we have shown that given € > 0,if 0 <6 < 7,

d.,.d 0
[v@moemormase -5 [ @i (gro+d | hwao)
0
<erf+o0r? (5-8)

and
<er? +o@r?). (5-9)

' f POy () dEE) — caar? f V(@) dL()

Thus we have proved the first and third statements of the theorem. The second statement of the theorem
follows from the other two. ]
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6. Proof of Theorem 1.2

This proof uses some ideas similar to those used in the proofs of Propositions 5.3 and 5.6. In fact, because
the proofs are so similar, we shall only give an outline.

Note that by (2-2), (3-1), and Lemma 3.1, using an argument similar to the proofs of Lemma 5.2 and
Proposition 5.3,

Ny (r) =W (z,r) +o(r?™h),
where

1 (7 :
WG =3 [Cinlsvooe”ido
is, for fixed (large) r a plurisubharmonic function of z € Q € Q. Since

d b
lim sup r W (z, ) < “—f ha(0) do
2 Jo

r—0o0

and this maximum is achieved at z = z¢ € 2, we get the first part of the Theorem by applying [Lelong
and Gruman 1986, Proposition 1.39], recalled in Proposition 2.3.
To obtain the second part, note that as in the proof of Proposition 5.3, for 0 < 6 < 7,

6
/ NV(Z)(r’ T, 9/+7r)d9/=\112(z,r, 0)_"_0(,,61)’
0
where

L[ di 1 (" ~
Uy (z,r, Q)ZZ/MJ;V(Z)(Q)T—FE/O /(; In sy (re')| dwdb’.

Since this is a plurisubharmonic function of z € Q, Q € Q, if M is chosen so that M > 204 max = 1Vl oos
an argument using Proposition 2.3 as in the proof of Proposition 5.3 shows that there exists a pluripolar
set Eg C 2 so that

1 o
2r lim sup r_d\llg(z, r,0)= a? (Ehd(e) +f / hg(w) dwd@’)
0 JO

r—o0

for all z € Q\ Ey. Again, we use that this equality holds when z = zg. Then

ha(0)

9/
lim sup r~ /NV(Z)(rJTn—i-@)dG/ 271( // hd(a))dwd9> for z € Q\ Ey. (6-1)

r—0o0

For0 <6 <, .
h(0)
d2

0
+/ hy(w)dow
0

is a nondecreasing function of 6. This can be seen by using

r—oQ

1 0
lim r~ny(r, 7w, m +6) = - d(hd(0)+d2/ hd(a))da)>
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for V € 9, and clearly the left-hand side is a nondecreasing function of 6. This, along with the fact that
limg o hg(6) = 0, implies that

1 o .0
_ha®) + /O fo haw) dodd’ = o 04)

for small 6 > 0. Therefore, using (6-1), for z € Q\ Ey,

0 d
Oa
li Y T, T +0)do > ——h,(0+),
m g 7 [ Wm0 2 0
and so we must have J
lim sup r*de(Z) (ry,m,m+0) > 2ﬂd2h'd(0—|—)
for the same values of z. ([
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We continue the development, by reduction to a first-order system for the conormal gradient, of L?
a priori estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for
divergence-form second-order complex elliptic systems. We work here on the unit ball and more generally
its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the
discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by
proving a general result concerning a priori almost everywhere nontangential convergence at the boundary.
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1. Introduction and main results

This study was initiated in [Auscher and Axelsson 2011] — henceforth referred to as [Part I] — where
the reader will find a comprehensive historical account of the theory of boundary value problems for
second-order equations of divergence form. Before we come to our work here, let us connect more
deeply to even earlier references going back to the seminal work of Stein and Weiss [1960] that paved
the way for the development of Hardy spaces H? on the Euclidean space in several dimensions. Their
key discovery was to look at the system of differential equations in the upper half-space satisfied by the
gradient F' = (d;u, V,u) of a harmonic function « on the upper half-space, to which they gave the name
of conjugate system or M. Riesz system. The system of differential equations is in fact a generalized
Cauchy—Riemann system which can be put into a vector-valued ODE form. They did not exploit this
ODE structure but used instead subharmonicity properties of |F|? for p > % to define the (harmonic)
Hardy spaces H? as the space of those conjugate systems satisfying

sup |F(t,x)|” dx < o0
t>0 JR”

and to prove that the elements in this space have boundary values
F(t,x)— F(,x)

in the L? norm and almost everywhere nontangentially. Further, they proved that elements in H” can be
obtained as Poisson integrals of their boundary traces. In other words, there is a one-to-one correspondence
between H? and its trace space #P. By using Riesz transforms, the trace space #?” is in one-to-one
correspondence with the space defined by taking the first component of trace elements. As they pointed
out, it was nothing new for p > 1 as we get L?, but for p <1 it gave a new space. Over the years, this last
space turned out to have many characterizations, including the ones with Littlewood—Paley functionals of
[Fefferman and Stein 1972] and the atomic ones of [Coifman 1974] and [Latter 1978], and is now part of
a rich and well understood family of spaces.

In our earlier work with Mclntosh [Auscher et al. 2010b], and in [Part I], we wrote down the Cauchy—
Riemann equations corresponding to the second-order equation and the key point was a further algebraic
transformation that transformed this system to a vector-valued ODE. In some sense, we were going back
in time since elliptic equations with nonsmooth coefficients have been developed by other methods since
then (see [Kenig 1994]). In this respect, it is no surprise in view of the above discussion that we denote our
trace spaces by 7. They are in a sense generalized Hardy spaces, and this notation was used as well in our
earlier work with Hofmann [Auscher et al. 2008]. We shall use again such notation and terminology here.
What today allows the methods of Hardy spaces to be applicable in the case of nonsmooth coefficients,
are the quadratic estimates related to the solution of the Kato conjecture for square roots. These are a
starting point of the analysis. Indeed, the quadratic estimates are equivalent to the fact that two Hardy
spaces split the function space topologically, as it is the case for the classical upper and lower Hardy
spaces in complex analysis, essentially from the F. and M. Riesz theorem on the boundedness of the
Hilbert transform. So in a sense everything looks like the case of harmonic functions (for p =2 at this
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time). But this is not the case. The difference is in the last step, taking only one component of the trace
of a conjugate system. This may or may not be a one-to-one correspondence, which translates to well- or
ill-posedness for the boundary value problems of the original second-order equation.

See also [Axelsson et al. 2009] for a different generalization of Stein—Weiss conjugate systems of
harmonic functions. There conjugate differential forms on Lipschitz domains were constructed by inverting
a generalized double layer potential equation on the boundary.

Let us introduce some notation in order to state our results. Our system of equations is of the form

n m
divy AVyu(x) = ( > Zai(A;f’fajuﬁ)(x)) =0, xeqQ, (1)
i,j=0 =1 a=L,...m
where 9; = 387 0 <i < n, and the matrix of coefficients is A = (A?f’jﬁ (x))ff’f:ofjj."';lm € Loo(S2; L(CUAMmYy,
n,m > 1. We emphasize that the methods used here work equally well for systems (m > 2) as for
equations (m = 1). For the time being, @ = O'*" := {x € R'*" ; |x| < 1} for the unit ball in R'*" (see
the end of the introduction for more general Lipschitz domains). The coefficient matrix A is assumed to
satisfy the strict accretivity condition

/ Re(A(rx)Veu(rx), Vou(rx))dx > « |qu(rx)|2 dx )
n g
for some « > 0, uniformly for a.e. r € (0,1) and u € C L@, C™) where we use polar coordinates
x=rx,r>0,x €S, and dx is the standard (nonnormalized) surface measure on S” = d0'™". The
optimal « is denoted k4. This ellipticity condition is natural when viewing A as a perturbation of its
boundary trace. See below.

The boundary value problems we consider are to find u € @'(0'*"; C™) solving (1) in distribution
sense, with appropriate interior estimates of V,u and Dirichlet data in L;, or Neumann data in L,, or
regular Dirichlet data with gradient in L,. Note that since we shall impose distributional V,u € LIZOC, u

can be identified with a function u € W21

loc@l+n_©m) .., with a weak solution. In order to study these
boundary value problems, our task, and this is the first main core of the work, is to obtain L? a priori
estimates.

As in [Part I], where we worked in the upper half-space [Rif", we reduce (1) to a first-order system
with the conormal gradient as unknown function, so the strategy and the scale-invariant estimates are
similar. See [Part I, Road Map] for an overview. Some changes will arise in the algebraic setup and in
the analysis though. Here, the curvature of the boundary (the sphere) will play a role in the algebraic
setup, making the unit circle slightly different from the higher dimensional spheres. In addition, owing
to the fact that the boundary is compact, we may use Fredholm theory to obtain representations and
solvability by only making assumptions on the coefficients near the boundary. We shall focus on this
part here and give full details. We also mention that the whole story relies on a quadratic estimate for
a first-order bisectorial operator acting on the boundary function space. On the upper half-space, this
estimate was already available from [Axelsson et al. 2006b] as a consequence of the strategy to prove the
Kato conjecture on R”. We shall need to prove it on the sphere, essentially by localization and reduction
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to [Axelsson et al. 2006a], where such estimates were proved for first-order operators with boundary
conditions. An implication of independent interest is the solution to the Kato square root on Lipschitz
manifolds. This is explained in Section 8.

As is known already for real equations (m = 1) from work of Caffarelli, Fabes and Kenig [Caffarelli
et al. 1981], solvability requires a Dini square regularity condition on the coefficients in the transverse
direction to the boundary. So it is natural to work under a condition of this type. We use the discrepancy
function and the Carleson condition introduced in [Dahlberg 1986]. For a measurable function f on
O set

J @) = esssup [ f()], 3)

yeWwe(x)

where W?(x) denotes a Whitney region around x € O'*" and

1 d 12
I flic:= sup <— // f*x)? ad ) for some fixed ¢ < 1, 4)
r@)<c \1Ql JJe—r@ 10 1 — x|

where the supremum is over all geodesic balls Q C S” of radius r(Q) < ¢. We make the standing

assumption on A throughout that there exists A; a measurable coefficient matrix on S”, identified with
radially independent coefficients in O'*7, such that €(y) := A(y) — A1(y), y = y/|y|, satisfies the large
Carleson condition

I€]lc < oo. (5

The choice of ¢ is irrelevant. Note that this means in particular that €* vanishes on S” in a certain sense
and so A;(y) = A(y/|y|). In fact, it can be shown as in [Part I] that if there is one such Ay, it is uniquely
defined, ||Alloo < |Allco and x4, > k4. So we call A; the boundary trace of A. It turns out that this is a
very natural assumption with our method, implying a wealth of a priori information about weak solutions
as stated in Theorem 1.1. Such a result applies in particular to all systems with radially independent
coefficients since € = 0 in that case.

For a function f defined in @!*", its truncated modified nontangential maximal function is defined as
in [Kenig and Pipher 1993] by

1—t<r<l

N 12
N2(f)(x):= sup (|W"<rx>|—1 /W » )If(y)lzdy> , xes", (©6)

for some fixed T < 1. Note that changing the value of t will not affect the results. We shall use the
notation f.(x):= f(rx) for0 <r <1, x € §”. Our main result is the following.

Theorem 1.1 (a priori representations and estimates; existence of a trace; Fatou-type convergence).
Consider coefficients A € Loo(O'"; L(CUTM™Y) which are strictly accretive in the sense of (2) and satisfy
(5) with boundary trace Ay. Consider u € Wzl’loc(®l+”; C™) which satisfies (1) in O distributional
sense.

(1) Suppose ||ﬁ:(qu)||L2(Sn) < 00. Then:
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(a) Vyu has limit

) 1
lim
r>11—r

/ |Veu(x) — g1(x)[*dx =0
r<lx|<(l4r)/2

for some gy € Ly(S™; CHH™) with || g1l 1, (sn.casmmy S NS (Vi) ||y (sm)-

(b) ¥ > u, belongs to C(0, 1; Lo(S8™; C™)) and has L, limit u; at the boundary with
lur —urllLysmemy S 1—r,
andu, € WZI(S”; c™.

(c) Fatou-type results: For almost every x € §",

1im|W0<rx>|—1/ u(y)dy = ur(x),
r—1 We(rx)

lim | W)~ / du(y) dy = (g1, (x),
r—1 We(rx)

lim [ W )]~ / (AVeu),(0)dy = (Argn), (x),
r—1 We (rx)

and if m = 1 (equations) or n = 1 (unit disk) we also have

lim W)~ / Veu(y)dy = g1(x),
r—1 Wo(rx)

fim W0l [ avamdy = (g
r— We(rx

(1) Suppose f@1+n |Veu|>(1 —|x|) dx < oco. Then:
(a) r — u, belongs to C(0, 1; Lo(S™; C™)) and has L, limit

lim Jlu, —uillL,(sm0m =0
r—1

for some uy € Lp(S™; C™).
(b) We have a priori estimates

2

’

1NN, 5y S / Ve = e dx +
@ n

f ui(x)dx
2
/ ui(x)dx

1im|W”<rx>|—1/ u(y)dy = 1 (x).
}’*)1 W”(rx)

2 —(n—1 2
e 12, smem S 7" )/. IVeul*(1— |x]) dx +
@+n

(¢c) Fatou-type results: For almost every x € §",

, re(0,1).
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The definition of the normal component (- ), and tangential part (- ), of a vector field will be given
later. Not stated here are representation formulas giving ansatzes to find solutions as they use a formalism
defined later. In particular, we introduce a notion of a pair of conjugate systems associated to a solution.
We note that the nontangential maximal estimate (8) was already proved in the IRLJF" setting of [Part IJ.
Again, this is an a priori estimate showing that, under the assumption ||€||¢ < oo, the class of weak
solutions with square function estimate f®1+n |Veu|?(1 — |x]) dx < oo is contained in the class of weak
solutions with nontangential maximal estimate ||ﬁf (u)|l2 < oco. The almost everywhere convergences of
Whitney averages are new. They apply as well to the setup in [Part I].

Theorem 1.1 enables us to make the following rigorous definition of well-posedness of the BVPs.

Definition 1.2. Consider coefficients A € Lo, (O!'*"; £(C!*"™)) which are strictly accretive in the sense
of (2).

» By the Neumann problem with coefficients A being well-posed, we mean that given ¢ € L,(S"; C™)
with [, ¢(x) dx =0, there is a function u € Wzl’loc(([])”"; C™) with estimates || N2 (Vi) Il L, (sm) < 00,
unique modulo constants, solving (1) and having trace g = lim,_, | (Vyu), in the sense of (7) such
that (A181). = ¢.

o Well-posedness of the regularity problem is defined in the same way, but replacing the boundary
condition (A1g1), = ¢ by (g1), = ¢, for a given ¢ € R(Vg) C Lo(S"; C").

By the Dirichlet problem with coefficients A being well-posed, we mean that given ¢ € L, (S"; C"),
there is a unique function u € Wzl’loc(@)””; C™) with estimates ;. IVeu|>(1 — |x|)dx < oo,
solving (1) and having trace lim,_,| u, = ¢ in the sense of almost everywhere convergence of
Whitney averages.

For the Neumann and regularity problem when ||€||c < oo, for equations (m = 1) or in the unit disk
(n = 1) or any system for which A is strictly accretive in pointwise sense, the trace can also be defined in
the sense of almost everywhere convergence of Whitney averages of V,u and the same for the conormal
derivative (AV,u),. The operator Vg denotes the tangential gradient. See Section 3.

For the Dirichlet problem, the trace is defined for the almost everywhere convergence of Whitney
averages. When ||€||¢ < 0o, Theorem 1.1 shows that it is the same as the trace in L, sense. We remark
that we modified the meaning of the boundary trace in the definition of the Dirichlet problem compared
to [Part I]. This modification can be made there as well and the same results hold.

We now come to our general results on these BVPs. A small Carleson condition, but only near the
boundary, is further imposed to obtain invertibility of some operators. The second result is on the precise
relation between Dirichlet and regularity problems. The first and third are perturbations results for radially
dependent and independent perturbations respectively. The last is a well-posedness result for three classes
of radially independent coefficients.

Theorem 1.3. Consider coefficients A € Loo(O'F; L(CUTM™Y) which are strictly accretive in the sense
of (2). There exists € > 0 such that, if A satisfies the small Carleson condition

rh—>rnl ||Xr<r<1(A_Al)||C <€ (10)
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and the Neumann problem with coefficients A\ is well-posed, then the Neumann problem is well-posed
with coefficients A.
The corresponding perturbation result for the regularity and Dirichlet problems also holds. For the

Neumann and regularity problems, the solution u for datum ¢ has estimates
2 v 2 o 2
/ [Veul"dx SN (Vaw) |3 = llell3.
|x|<1/2

For the Dirichlet problem, the solution u for datum ¢ has estimates
2

R~ sup i~ [ wara-tsax+| [ ocodr| ~ 1o
Ol+n sn

1/2<r<l1

An ingredient of the proof is the following relation between Dirichlet and regularity problems, in the
spirit of [Kenig and Pipher 1993, Theorem 5.4].

Theorem 1.4. Consider coefficients A € Loo(OM"; 2(CATM™Y) which are strictly accretive in the sense
of (2). There exists € > 0 such that, if A satisfies the small Carleson condition (10), then the regularity
problem with coefficients A is well-posed if and only if the Dirichlet problem with coefficients A* is
well-posed.

Theorem 1.5. Consider radially independent coefficients A; € Loo(S™; L(C1HD™M)) which are strictly
accretive in the sense of (2). If the Neumann problem with coefficients A1 is well-posed, then there exists
€ > 0 such that the Neumann problem with coefficients A} € Loo(S"; L(CIHMmY) is well-posed whenever
A1 — Al llo < €. The corresponding perturbation results for the regularity and Dirichlet problems also

hold.

Theorem 1.6. Consider radially independent coefficients A; € Loo(S™; L(C1HD™M)) which are strictly
accretive in the sense of (2). The Neumann, regularity and Dirichlet problems with coefficients A are
well-posed if

(1) either Ay is Hermitian, i.e., A} = Ay,

(2) or Ay has block form, i.e., (A1), = 0 = (A}),. in the normal/tangential splitting of CU+mm (see
Section 3),

(3) or Ay has Holder regularity CS(S™; L(CUTMmy) s > %

Proof of Theorems 1.1, 1.3, 1.5 and 1.6. For Theorem 1.1, the L,-limits and L,-estimates of solutions
follow from Theorem 12.4 and Corollary 12.8 respectively. The nontangential maximal estimate (8) is in
Theorem 14.1. Almost everywhere convergence of averages follows from Theorems 15.2 and 15.5.
The well-posedness results in Theorem 1.6 are in Propositions 17.16, 17.15 and 17.17. The radially
independent perturbation result in Theorem 1.5 is in Theorem 17.13. The well-posedness result for
radially dependent coefficients with good boundary trace in Theorem 1.3 is in Theorem 17.14. (Il

Our next result is the following semigroup representation, analogous to the result in [Auscher 2009] in
the upper half-space. It is interesting to note that for harmonic functions u, it gives a direct proof (without
passing through nontangential maximal function or sup — L, estimates) that f@)m |Veu|?(1—|x])dx < oo
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implies a representation by Poisson kernel from its trace (also shown to exist). We have not seen this
argument in the literature. Another interesting feature is that it points out the importance of well-posedness
of the Dirichlet problem when dealing with more general coefficients.

Theorem 1.7. Consider radially independent coefficients A| € Loo(S"; L(CUTM™Y) which are strictly
accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A1 is well-posed. Then
the mapping

@r . Lz(Sn; G:m) — Lz(Sn; Cm) UL Uy,

where u is the solution to the Dirichlet problem with datum u1, defines a bounded operator for each
r € (0, 1]. The family (P,),<(0.1] is a multiplicative Co-semigroup (i.e., P, P, =P, and P, — I strongly
in Ly when r — 1) whose infinitesimal generator s (i.e., P, = ") has domain D(sd) contained in
W21 (8"™; C™). Moreover, D(A) = W2] (8"; C™) if and only if the Dirichlet problem with coefficients A7 is
well-posed.

As mentioned above two classes of weak solutions compare: the one with square function estimates is
contained in the one with nontangential maximal control. It is thus interesting to examine this further.
Does the opposite containment holds? How do well-posedness in the two classes compare? Clearly
uniqueness in the larger class implies uniqueness in the smaller, and conversely for existence. As we
shall see, positive answers come a posteriori to solvability.

Definition 1.8. The Dirichlet problem with coefficients A is said to be well-posed in the sense of Dahlberg
if, given ¢ € L,(S"; C™), there is a unique weak solution u € Wzl’loc(@)”"; C™) to divy AV,u =0 with
estimates ||ﬁ J(u)|l2 < oo and convergence of Whitney averages to ¢, almost everywhere with respect to
surface measure on S”.

This definition has the merit to be natural not only for equations but for systems as well. For real
equations, this is equivalent to the usual one as ﬁ: can be replaced by the usual pointwise nontangential
maximal operator by the De Giorgi—-Nash—Moser estimates on weak solutions. Even in this case, observe
that the control ||ﬁ: (u)|l2 < oo does not enforce the almost everywhere convergence property. Thus
existence of the limit is part of the hypothesis in Definition 1.8, as compared to Definition 1.2. A first
result is the following.

Theorem 1.9. Consider radially independent coefficients A; € Loo(S"; L(CUTM™Y) which are strictly
accretive in the sense of (2). Assume that the Dirichlet and regularity problems with coefficients A| are
well-posed in the sense of Definition 1.2. Then, all weak solutions to divy A1Vyeu =0 with ||ﬁjf w2 < o0
are given by the semigroup of Theorem 1.7. In particular, the Dirichlet problem with coefficients Ay is
well-posed in the sense of Dahlberg.

Theorem 1.4 implies the same conclusion for the coefficients A}. The next results are only for real
equations where the theory based on elliptic measure brings more information. For (complex) equations,
the strict accretivity in the sense of (2) is equivalent to the usual pointwise accretivity, which is the same
as the strict ellipticity for real coefficients.



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 991

Theorem 1.10. Consider an equation with real coefficients A € Loo (0" L(R'T™)), which are strictly
elliptic. Assume further that the small Carleson condition (10) holds. Then the following statements are
equivalent.

(1) The Dirichlet problems with coefficients A and A* are well-posed in the sense of Dahlberg.
(ii) The Dirichlet problems with coefficients A and A* are well-posed in the sense of Definition 1.2.
Moreover, in this case the solutions for coefficients A (resp. A*) from a same datum are the same.

Note that, by Theorem 1.4, we can replace (ii) by (ii’): the regularity problems with coefficients A and
A* are well-posed. When A = A*, all the problems in (i) and (ii") are well-posed by [Kenig and Pipher
1993] so there is nothing to prove. For (even nonsymmetric) real coefficients A alone, the direction from
(ii") to (i) was known from [Kenig and Pipher 1993] (without assuming the Carleson condition) and the
converse is unknown. It seems that making the statement invariant under taking adjoints solves the issue.
We mention the equivalence in [Kilty and Shen 2011] concerning L, versions of this statement for self-
adjoint constant coefficient systems on Lipschitz domains (in this case, the L, result is known and used).

Our last result is well-posedness of the regularity problem under a transversal square Dini condition on
the coefficients, analogous to the result obtained by Fabes, Jerison and Kenig [Fabes et al. 1984] for the
Dirichlet problem with real and symmetric A. This partly answers Problem 3.3.13 in [Kenig 1994].

Theorem 1.11. Consider an equation with coefficients A € Lo (QF"; L(CHM)), which are strictly
accretive in the pointwise sense. There exists € > 0 such that, if A satisfies the small Carleson condition
(10) and its boundary trace A\ is real and continuous, then the Dirichlet problem with coefficients A
is well-posed in the sense of Definition 1.2 and in the sense of Dahlberg, and the regularity problem

with coefficients A is well-posed. In particular, this holds if A is real, continuous in Q1" and the Dini
square condition fo wi (t)dt—t < o0 holds, where w4 (t) = sup{|A(rx) — Ax)|;x € §", 1 —r < t}. The
corresponding results hold in ©? for the Neumann problem with coefficients A.

Proofs of Theorems 1.7 and 1.9 are in Sections 18 and proofs of Theorems 1.10 and 1.11 are in
Section 19.

We end this introduction with a remark on the Lipschitz invariance of the above results. Let @ C R!*" be
a domain which is Lipschitz diffeomorphic to O'*" and let p : O'*" — Q be the Lipschitz diffeomorphism.
Denote the boundary by X := 92 and the restricted boundary Lipschitz diffeomorphism by pg : $" — X.

Given a function 7 : Q@ — C™, we pull it back to u := @i o p : O'*" — C™. By the chain rule, we
have V,u = p*(V,u), where the pullback of an m-tuple of vector fields f, is defined as p*(f)(x)* :=
Bt (x) f*(p(x)), with B’ denoting the transpose of Jacobian matrix p. If u satisfies div,, Avyﬂ =0
in Q, with coefficients A € Lo (Q; L(CIH™M)), then u will satisfy divy AV,u = 0 in Q'+, where
A € Lo (07 L(CU+M™M)) are the “pulled back” coefficients defined as

Ax) = T (@) @) ApEN (P E), x0T (11)

Here J(p) is the Jacobian determinant of p.
The Carleson condition, nontangential maximal functions and square functions on 2 correspond to
ones on S" under pullback, so that 1 — |x| becomes §(y) the distance to X. In particular, the condition
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for A amounts to I€]lc < oo with € defined from A. We remark that pullbacks allow to replace normal
directions by oblique (but transverse) ones to the sphere in the Carleson condition on the coefficients:
take p : O'*" — Q!*" to be a suitable Lipschitz diffeomorphism.

The boundary conditions on # on X translate in the following way to boundary conditions on u on S”".

o The Dirichlet condition &t = ¢ on X is equivalent to u = ¢ on §", where ¢ := @ o pg € L, (S"; C™).

» The Dirichlet regularity condition Vst = ¢ on X (Vy denoting the tangential gradient on X) is
equivalent to Vsu = ¢ on §", where ¢ := p;(¢) € R(Vg) C Lp(S"; C™™).

o The Neumann condition (v, AVyIZ) = @ on X (v being the outward unit normal vector field on
%) with [5 ¢(y)dy =0 is equivalent to (i1, AV,u) = ¢ on §" with [, ¢(x) dx =0, where ¢ :=
[J(po)|@ o po € Lo(S"; C™).

In this way the Dirichlet/regularity/Neumann problem with coefficients A in the Lipschitz domain €2 is
equivalent to the Dirichlet/regularity/Neumann problem with coefficients A in the unit ball O'*", and it
is straightforward to extend the results on @'*” above to Lipschitz domains 2.

The plan of the paper is as follows. In Section 2, we transform the second-order equation (1) into a
system of Cauchy—Riemann type equations. In Section 3, the Cauchy—Riemann equations are integrated
to a vector-valued ODE for the conormal gradient of # and a second ODE is introduced to construct
a vector potential. The infinitesimal generators Dy and Dy for these ODE with radially independent
coefficients are studied in Sections 4 and 6, and it is shown in Section 7 that Dy and 50 have bounded
holomorphic functional calculi. Section 5 treats special features of elliptic systems in the unit disk. In
Section 9 we define the natural function spaces &° and ¥ for the BVPs and we describe in Section 10
how to construct solutions from the semigroups generated by

|Do| =/D3 and |Do| =,/D}.

In Section 11, the ODE with radially dependent coefficients for the conormal gradient from Section 4 is
reformulated as an integral equation involving an operator S 4, which is shown to be bounded on the natural
function spaces for the BVPs. In Section 12, we obtain representation for &°- and ¥Y°-solutions. These
representations are further developed in Section 13 where we introduce the notion of a pair of conjugate
systems for (1), allowing to prove in Sections 14 and 15 nontangential maximal estimates and Fatou-type
results. Crucial for the solvability of (1) is the invertibility of / — S4. In Section 16, we apply Fredholm
theory to show that / — Sy4 is invertible on the natural spaces whenever the small Carleson condition (10)
holds, which proves that it suffices to assume transversal regularity of A near the boundary only. (For
BVPs on the unbounded half-space studied in [Part I], the needed compactness was not available.) We
then study well-posedness in Section 17: this is where we prove the perturbation results, the equivalence
Dirichlet/regularity up to taking adjoints and obtain classes of radially independent coefficients for which
well-posedness holds. The Section 18 deals with uniqueness issues, on comparisons of different classes of
solutions upon some well-posedness assumptions. We conclude the article in Section 19 with a discussion
in the special case of real equations (m = 1) for which we obtain further results.
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2. Generalized Cauchy-Riemann system

Following [Auscher et al. 2008; 2010b] and [Part I], the starting point of our analysis is that solving for
u the divergence form system (1) amounts to solving for its gradient g a system of Cauchy—Riemann
equations.

Proposition 2.1. Consider coefficients A € Loo(Q'1"; L(CUHD™Y)) If u is a weak solution to the
equation divy AVyu = 0in Q'™ then g := Vyu € LY@ CUHMm) is g solution of the generalized

Cauchy—Riemann system

{divx(Ag) =0, (12)

curl, g =0,

in @117\ {0} distribution sense. Conversely, if g € LY°(Q'*"; CU+M™M) s a solution to (12) in O\ {0}
distribution sense, then there exists a weak solution u to divy AVyu = 0 in O such that g=Vyuin
O distribution sense.

Proof. If u is given, then g := V,u has the desired properties and the equation is even satisfied in @'+
distribution sense. Conversely, assume g is given and satisfies (12) in O'*7\ {0} distribution sense. Then
the next lemma applied to both operators div, and curl, implies that O is a removable singularity and that
(12) holds in O!*" distribution sense. Thus one can define a distribution u in @'*” such that g = V,u,
hence divy AV,u =0 in O'*”. That u is a weak solution follows from g € L12°°(®1+”; cU+mmy, O

Lemma 2.2. Let X be a homogeneous first-order partial differential operator on R'" mapping C*-valued
distributions to Ct-valued distributions, k, ¢ € Zy. Ifh e leOC (@' C*) and Xh = 0 in distributional
sense on O\ {0}, then Xh = 0 in O'*"-distributional sense.

Proof. Let ¢ € C°(0'™; C*). We need to show that [;,1,(X*¢, h) dx = 0. To this end, let 7. be a
smooth radial function with n. =0 on {|x| < €}, ne =1 on {2¢€ < |x| < 1} and ||V7¢|loo < €', Then

f UAWWWNkz/i(XWm@ﬁﬂh—/ (X1, h) dx
@H—n @H—n @H—n

=—f (X*n0). b dx.
Ql+n

As € — 0, the left hand side converges to f®1+n (X*¢, h) dx, whereas

1 1/2
< - / |hldx < e=D/2 (/ |h|2dx> — 0.
€ Je<|x|<2e e<|x|<2e

This proves the lemma. O

f (X*ne)p, h) dx
Ql+n

3. The divergence form equation as an ODE

We introduce a convenient framework to transform the Cauchy—Riemann system into an ODE.

We systematically use boldface letters x, y, ... to denote variables in R!*" and indicate the variable
for differential operators in R'*": for example, V, .... We denote points on S” by x, y, ... and the
standard (nonnormalized) surface measure on S” by dx. Polar coordinates are written x = rx, with r > 0
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and x € S". For a function f defined in @'+, we write f,(x) := f(rx), x € §"*, for the restriction to the
sphere with radius 0 < r < 1, parametrized by S”.

The radial unit vector field we denote by 7 = 71(x) := x/|x|. Vectors v € R!*", we split v = v, 7 + v,
where v, := (v, n) is the normal component and v := v —v, 11 is the angular or tangential part of v, which
is a vector orthogonal to 7. Note that v, is a scalar, but v, is a vector. In the plane, i.e., when n = 1, we
denote the counter clockwise angular unit vector field by 7, and we have v =v, 7+ (v, T)T. For an m-tuple
of vectors v = (v*)1<¢<m, We define its normal components and tangential parts componentwise as

W)* =", ()" =%,

The tangential gradient, divergence and curl on the unit sphere are denoted by Vg, divg and curlg
respectively. The gradient acts component-wise on tuples of scalar functions, whereas the divergence and
curl act vector-wise on tuples of vector fields. In polar coordinates, the R'*" differential operators are

Vyeu = 0pu)i+r~'Vsu,,
divy £ =r""0,(r"(f).) +r " divs(f),
curly f=r"'aA (8, (r(f)) — Vs(f).) +r " curls(f),.

We use the boundary function space L,(S"; V"), writing the norm || - ||, of L sections of the complex

Py— Cm
V= [(TCS"W]

over S", where C™ is identified with the trivial vector bundle and 7¢S" denotes the complexified tangent

vector bundle

bundle of S”. The elements of this bundle are written in vector form f = [Z] = [a /8][, and we write

fiL:=u«a, f, := B for the normal component and tangential part. Note that V" is isomorphic to the trivial
vector bundle C1""  when identifying scalar, i.e., C"™-valued, functions and m-tuples of radial vector
fields. More precisely, the isomorphism is V" > [a ,B]t > an+p e CUHMM for o € C" and B € (TcS™)™.

The differential operators on S” can be seen as unbounded operators. We use D(A), R(A), N(A) for
the domain, range and null space respectively of unbounded operators. Then

Vs : L*(S"; C™) — Ly(S"; (TeS™)™)

and its adjoint
—divg : Ly(S™: (TeS™M™) — L*(S™; C™),

with domains D(Vyg) = W21 (§7; C™) and D(divs) = {g € L»(S"; (TcS™H)™) ; divs g € L?(S™; C™)}, are
closed unbounded operators with closed range. The condition g € R(divg) =N (V)1 is that f o &(x)dx=0
so R(divy) is of codimension m in L2(S"; C™). Also when n > 2, R(Vy) = N(curlg), and when n = 1,
g € R(Vy) if and only if fsl(g(x), 7)dx = 0. Thus R(Vy) is of codimension m in L>(S'; C™) when
n = 1, and infinite codimension when n > 2.
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Definition 3.1. In L,(S"; V'), we define operators

L 0 —diVS L —10
D'_[Vs 0 ] and N.—|:O I]’

D(Vs)

where D(D) := |:D(diV5)

]. Write NTf := (I +N) f = [?
Il

A basic observation is that the two operators D and N anticommute, i.e.,

i|and N f=30I-N)f= [{;]

ND = —DN.

Of fundamental importance in this paper are the closed orthogonal subspaces

N(Vs)
N(divg) |

R(divg)

% :=R(D) = [ R(VS)

] and %l::N(D):[

We consistently denote by Py the orthogonal projection onto #. We remark that

N+%J‘:{|:?i|;diVSf|=0} and N_%J'ZH:(C)};CECIM},
Il

constants being identified to constant functions. It can be checked that (2) is equivalent to A is strictly
accretive on

¥, 1= {g € Lo(S"; c1+mmy . g € R(Vg)}, (13)

uniformly for a.e. r € (0, 1). More precisely, the accretivity assumption on A rewrites

n m n m
> / Re(A7 (ro)g) (0)gf () dx = Y ) / 87 (o) dx, (14)
i,j=0a,p=1"%" i=0 a=1Y%"
for all g € ¥, a.e. r € (0, 1). In fact, as we shall see in Lemma 5.1 this is equivalent to pointwise
strict accretivity when n = 1 (unit disk), but this is in general not the case when n > 2 except if m = 1
(equations).
Using the notation above, we can identify #; with
[Lz(S"; C’”)]
R(Vs)
and see that 7€ is a subspace of codimension m in #;.
On identifying CU+"™ with %, the space of coefficients Loo(Q!*"; £(C!1*+"™)) identifies with
Loo (017 L(9)), so that we can split any coefficients A as

A (rx) ALH (rx)]

A= [Au(rx) Ay (rx)

with A, (rx) € L(C™; C™), Ay, (rx) € LT, S")™,C™), AL(rx) € L(C", (T, S")™) and A (rx) €
LT S™™, (T, S™)™). Note also that A, (rx) = (A(rx)n, n).
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With our accretivity assumption (14), the component A, (r -) seen as a multiplication operator is
invertible on L, (S"; C™), thus as a matrix function it is invertible in L, (S"; C™). This is the reason why
strict accretivity on # is needed, and not only on 7, so that the transformed coefficient matrix A below
can be formed in the next result. We make the above identification for coefficients A without mention.

We can now state the two results on which our analysis stands. Proposition 3.3 reformulates this
Cauchy-Riemann system (12) further, by solving for the r-derivatives, as the vector-valued ODE (17) for
the conormal gradient f defined below. This formulation is well suited for the Neumann and regularity
problems. For the Dirichlet problem, we use instead a similar first-order system formulation of the
equation; see Proposition 3.5. As explained in [Part I, Section 3], the vector-valued potential v appearing
there should be thought of as containing some generalized conjugate functions as tangential part. In
the case of the unit disk, we make this rigorous in Section 5 and come back to this in Section 13. The
fundamental object is the following.

Definition 3.2. The conormal gradient of a weak solution u to divy AVyu =0 in O is the section
f Rt x 8" — ¥ defined by

_ —(+D)/2 (Agrh] |
fi=e [(gn. ’ (2

where r = ¢~ and g = V,u. The map g, > f; is called the gradient-to-conormal gradient map.

Proposition 3.3. The pointwise transformation

- AT! —A7lA
A A= J_J_i 11 iH ]
|:AILA¢L1 AHH - AHLAL IALH

ul

is a self-inverse bijective transformation of the set of bounded matrices which are strictly accretive on ;.

For a pair of coefficients A € Lo (01", L(CUH+M™mY) and B € Loo(Ry x §™; L(V)) which are strictly
accretive on %, and such that B = A, the gradient-to-conormal gradient map gives a one-to-one
correspondence, with inverse the conormal gradient-to-gradient map

fir> g =17 (Bf) .7 + (£, (16)

where t =1In(1/r), between solutions g € L12°C (@7, CcU+mMmy 1o the Cauchy—Riemann system (12) in
O\ {0} distribution sense, and solutions f € leoc([RJr; ), with floo Il fe ||% dt < 00, to the equation

Wf+DB+"5IN)f =0, (17)
in Ry x 8" distributional sense.

Recall that the Ricci curvature of S” is n — 1, so the constant % is related to curvature. On the other
hand, the exponent % appearing in the correspondence g, <> f; is the only exponent for which no
powers of r remain in (17). It turns out that this also makes the gradient-to-conormal gradient map an L,

1 0
/ |g|2dx%/ ||gr||%r"dr~/ T (18)
@H—n 0 0

isomorphism, since
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Proof. The stated properties of the matrix transformation are straightforward to verify, using the observation
that e +1? Re(B; fi, fi) =Re(A,g,, g-). See [Part I, Proposition 4.1] for details.

(i) Assume first that the equations (12) hold on @!*"\ {0}. In polar coordinates x = rx, the equations
divy (Ag) =0, curl,(g) =0 give

{”ﬂar(r”(Ag)L) +r1divs(Ag), =0,
9r(rg)) — Vsg. =0.

Next we pull back the equations to Ry x S”. Write (Ag), =r~"*D/2f and (Ag), = A, .g. + A8
Then g, = r="+D2ATI(f, — AL f) and g, = r~"TD/2 £, and the equations further become

{r_”ar(r(”_l)/zﬂ) +r= "2 divg (B, f. + By f) =0,
O (r=m2 £y —p= D2y (B f + By, f;) = 0.

Using product rule for 9, and the chain rule —rd, = 9,, this yields the equation (17).

It remains to check that f; € 7 for almost every ¢ > 0. This is equivalent to (A, g,), € R(divg) and
(gr); € R(Vy) forae. r € (0, 1). Tosee (A,g,). € R(divs) amounts to seeing that fsn (Arg-) . dx =0. We
apply Gauss’s theorem as follows. For any radial function ¢ € C{° (O'*"; C™), the divergence equation
gives f®1+n (Ag, V¢)dx = 0. Taking, for a.e. r € (0, 1), the limit as ¢ approaches the characteristic
gn(Ag)1dx = 0. To check (g,); € R(Vs) we distinguish first
n=1. In that case, a similar application of Stokes’ theorem shows that |, (T, g-)dx=0forae.re(0,]1).
For n > 2, that curlg((g,),) = 0 is a consequence of curl, g = 0 and the general fact that pullbacks and
the exterior derivative commute. Hence f; € #.

function for balls {|x| < r} shows that fr

(i1) Conversely, assume that (17) holds and f; € # for a.e. t > 0. Define the corresponding function g €
leoc (Qtn, cU+mm) by the conormal gradient-to-gradient map and note that curls((g,),) = 0. Reversing
the rewriting of the equations in (i) shows that div,(Ag) = 0, curl,(g) = 0 hold on @'*" \ {0}. This
proves the proposition. O

Corollary 3.4. For any coefficients A € Lo (O'"; L(CIHIMYy which are strictly accretive in the sense
of (2), gradients of weak solutions to (1) in O'*" are in one-to-one correspondence with Ry x S"
distributional solutions to the equation (17), belonging to L12°°([R+; %) with estimate |, 100 Il f¢ ||% dt < oo.

Proof. Combine Proposition 2.1 and Proposition 3.3. ]
There is a second way of constructing weak solutions, which we now describe.

Proposition 3.5. Let A and B = A be as in Proposition 3.3. Assume that v € LY (Ry; D(D)) with
foo | D, ||3dt < oo satisfies
1 el
8;U+(BD—%N)U:O (19)

in Ry x 8" distributional sense. Then
n—1
up =12 (v), r=e ' €(0,1),

extends to a weak solution of divy AV,eu =0 in O'*" and Dv equals the conormal gradient of u.
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Proof. By definition of u in the statement, (Dv), = Vgv, = r D2 =1V gy). On the other hand, taking
the normal component of d;v + (BD — %N Yyv =0 gives

dv, — AT (divs v, + A, Vsv,) +ov, =0,

or equivalently
(Dv), = —divsvyy=—A,,(0; +o)v, + A, Vsv,

=r"D2A Bu+ A Veu) = r"TY2(AV)
These equations hold in @'+ \ {0}. Next, applying D to (19) yields
(3 + DB + "5 N)(Dv) =0.

Thus f := Du satisfies (17) and f, € R(D) = %. By Corollary 3.4, there is a weak solution i in ©'*" of the
divergence form equation associated to f. In particular, f, =r®*+D/2(r=1Vgii) and f, =r"+tD/2(AV, @),
Applying the conormal gradient-to-gradient map, we deduce Vit = V,u in O+ \ {0} distribution sense.
In particular, u = ii + ¢ in ©'*"\ {0} for some constant c. As ii + ¢ is also a weak solution in @'*" to the
divergence form equation with coefficients A, this provides us with the desired extension for u. U

For perturbations A of radially independent coefficients, Corollary 12.8(i) proves a converse of this
result, i.e., the existence of such a vector-valued potential v containing a given solution u to div, AV,u =0
as normal component. We do not know whether such v can be defined for general coefficients (except in
0?2, see Section 5).

Remark 3.6. Assume that the coefficients A are defined in R!™” and that the accretivity condition (2) or
(14) holds for a.e r € (0, 00). As in Proposition 3.3, there is also a one-to-one correspondence between
solutions g € LIZOC([RH” \ OH7: Ly (8™ V)) to dive(Ag) = 0, curl, g = 0 in the exterior of the unit ball
and solutions f : R_ — ¥ to the equation o, f + (DB + ”2;1N)f =0fort <0in Ly(R_; ). Also, as
in Proposition 3.5, L12°°—soluti0ns v:R_ — L,(S"; D(D)) to the equation d,v + (BD — %N)v =0 for
t <0, give weak solutions u to divy AV,u =0 in the exterior of the unit ball.

4. Study of the infinitesimal generator

In this section, we study the infinitesimal generators D By+ ”—EIN and ByD — %N for the vector-valued
ODEs appearing in (17) and (19) for radially independent coefficients

By = A € Loo(S"; £(V)),

strictly accretive on ¢ with constant k = kg, > 0. Note that strict accretivity of A; on ¥ is needed for
the construction of By = A, as a multiplication operator. Once we have By, only strict accretivity of
By on ¥ is needed in our analysis. This has the following consequences used often in this work. First,
By : # — B# is an isomorphism. Second, the map Py By is an isomorphism of #.

The first operator will be used to get estimates of V, u, needed for the Neumann and regularity problems.
The second operator will be used to get estimates of the potential u, needed for the Dirichlet problem.
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Definition 4.1. Let o € R. Define the unbounded linear operators
Dy:=DBy+oN and Dg:=ByD—0N

in Ly(8"; "), with domains D(Dy) := B 1D(D) and D(DO) = D(D) respectlvely Here B (X)
{f €Ly ; Byf € X}. When more convenient, we use the notation Dy, := Dy and DAl = 5

For these two operators, we have the following intertwining and duality relations.

Lemma 4.2. In the sense of unbounded operators, we have DyD = D50 and (5 A)*=DBj—oN =
—~N(DA7+oN)N.

Proof. The proof is straightforward, using the identity Bj = N A N for the second statement. ]

Proposition 4.3. In L, = L,(S™; V'), the operator Dy is a closed unbounded operator with dense domain.
There is a topological Hodge splitting

L,=%& By ',

i.e the projections Péo and Pgo onto ¥ and B, Y91 in this splitting are bounded. The operator Dy leaves
# invariant, and the restricted operator Dq : 3 — ¥, with domain D(Dy) N ¥, is closed, densely defined,
injective, onto, and has a compact inverse.

If o #0, then Do : Lo, — Ly is also injective and onto, and D0|BO*‘?€L =oN.

If 0 =0, then Dy = DBy, N(Dgy) = BO_I%J‘ and R(Dg) = ¥ are closed and invariant. In particular,
when n = 1, dim N(Dy) = 2m = dim(L,/R(Dy)).

Proof. The splitting is a consequence of the strict accretivity of By on ¥, and it is clear that # is invariant
under Dg. Note that
(iN)(DBy+oN)=(iND)By+io,

where i N is unitary on L, as well as €, and where iND = —i DN is a self-adjoint operator with range
7. This shows that Dy is closed, densely defined, injective and onto on 3, and on L, when o # 0, as a
consequence of properties of operators such as (i N D) By stated in [Auscher et al. 2010b, Proposition 3.3].

Next we show that Dy : # — % has a compact inverse. Write Dy = D(Py¢By) + o N. Since Py Bj
is an isomorphism on #, it suffices to prove that the inverse of D : # — ¥ is compact. Note that
D(Vy) = W21 (8"; C™) is compactly embedded in L,(S"; C™) by Rellich’s theorem. In particular Vg :
R(divs) — R(Vy) has compact inverse. Since Vi = —divyg, it follows that divg : R(Vs) — R(divg) has a
compact inverse as well. This proves that the inverse of D is compact on #.

The remaining properties when o # 0 and o = 0 are straightforward and are left to the reader. ]

Proposition 4.4. In L, = L,(S"*; V'), the operator 50 is a closed unbounded operator with dense domain.
There is a topological Hodge splitting
Ly = BoH & ¥+,

i.e the projections ﬁzlao and 1320 onto Bo¥ and ¥ in this splitting are bounded. Here %+ C D(ﬁo) and
50 leaves ¥+ invariant.
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If o #0, then 50 : Ly — Ly is also injective and onto, and 50|%L = —oN.

Ifo =0, then 50 = ByD, N(5o) =%+ and R(ﬁo) = By is closed. In particular, the subspace By
is invariant under 50 and when n = 1, dim N(Bo) =2m = dim(Lg/R(ﬁO)).
Proof. These results for Dy follow from Proposition 4.3 by duality, using Lemma 4.2. ([l
Remark 4.5. The reader familiar with [Axelsson et al. 2006b] and [Part I] should note carefully the
following fundamental difference between the cases o # 0 and o = 0. When o = 0, each of the operators
Dy and Dy is of the type considered in the papers just cited, and each has two complementary invariant
subspaces. On the other hand when o # 0, the operator Dy has in general only the invariant subspace #,
and Dy only has the invariant subspace %*. One can define an induced operator Dy on the quotient space
L,/%*, but this cannot be realized as an action in a subspace complementary to % in L, in general.
As o will be set to "T’l this means for us a difference in the treatment of n = 1 (space dimension 2) and
n > 2 (space dimension 3 and higher).

We prove here a technical lemma for later use.

Lemma 4.6. There is a unique isomorphism
H— Lo/HEh>h (20)
such that Dyh = Dh for h € 3N D(Dy).

Proof. When o =0, we can take hi= Boh € By# ~ Lz/?f’fl as Doh = DByh = Dh.
When o 0, we use that D : L, — % is surjective with null space 9¢-. This defines & for h € #¥ND(Dy).
With D! the compact inverse of D : % — %, the equation Dyh = Dh is equivalent to

PyBoh +0 D" 'Nh = Pyh. (21)

This shows that (20) extends to a bounded map since ||ﬁ|| Lo/t = ||P§7€f~l||2. Moreover, since Py By is an
isomorphism on ¥, we have also the lower bound |||y < || Py Bohll2 < ||}~l||L2/%L + ||D~ A2, which
shows that (20) is a semi-Fredholm operator. If h = 0, then (21) implies & € 7 N D(Dg). Therefore
Doh = 0 and (20) is injective. Since the range contains the dense subspace D(D)/%"*, invertibility
follows. [l

5. Elliptic systems in the unit disk

In dimension n = 1, i.e., for the unit disk ©> C R? with boundary S', some special phenomena occurs. In
this section we collect these results.

Lemma 5.1. Ifn =1 and A is strictly accretive in the sense of (2), then A is pointwise strictly accretive,

ie.,

Re(A(x)v, v) > k|v|?, forallve C*, and a.e. x € 0.
Proof. By scaling and continuity, it suffices to consider v = [(za) (wa)]t eC? withwy #0,a=1,...,m.
In (2), let

; - kL g
u®(re'?y ;= (ik) 'wge' 0 nee*?, a=1,...,m,
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with a smooth function n: S' — R, k € Z, and r¢ € (0, 1). Using polar coordinates and letting k — oo
yields

Re/ (A(rox)v,v)ln(x)|2dx2K|v|2/ In(x)|>dx, forae.rge(0,1).
S1 S1

Taking |n|? to be an approximation to the identity at a given point x € S' now proves the pointwise strict
accretivity in the statement. ]

Definition 5.2. Assume that A € L,,(0?; £(C>™)) is pointwise strictly accretive. Given a weak solution

ue W21’1°°(®2; C™) to divy AV,u = 0, we say that a solution i € WZI’IOC(G)Z; C™) to JVyit = AVyu is a
0-1
1 o)

conjugate of u, where J := [
We note that since AV, u is divergence-free, there always exists a conjugate of u, unique modulo constants
in C™. The notion of conjugate solution for two dimensional divergence form equations, in the scalar
case m = 1, goes back to Morrey. See [Morrey 1966]. Note that when A = I, the system JV,it = Vyu is

the anti Cauchy—Riemann equations.

Lemma 5.3. Assume that A € Lo (0% £(C*")) is pointwise strictly accretive. Let u € W21 loc (0% C™)
be a weak solution to divy AVyu = 0. Then

(AVyu), = —(fot)”

AV,u=JV,.u < { ~
* * (AVyii), = (Vyu),

} — AVii=J'Veu = div, AV,ii =0,

where A is the conjugate coefficient defined by

A:=JA"1.
We have
: [ @—ca'p)! (d—ca='b)"ca™! iFa=ld b
“la ‘b d—ca b)) a"+a'b(d—ca ') ea! e d|”

When m = 1, this reduces to A = (det A)~' A”.
Here, we have identified the tangential part (- ), with its component along 7. (See below.)

Proof. The equivalences and implication are verified from A=J'A""J. The explicit formula for
A is classical if m = 1. If m > 2, the proposed formula for A can be checked by a straightforward
computation. Note that a, b, c,d € Lo (0% £(C™)) and all the entries of A as well: the inverses are
pointwise multiplications. We omit further details. O

We next show that the vector-valued potential v in Proposition 3.5 contains, along with u as normal
component, its conjugate i as tangential component. To do that, it is convenient to identify V" with the
trivial bundle C>” by identifying the tangential component f to the tangential part 8T € (TcS")".

0 —o0z
D=
[a; 0 ]

Given this identification, D becomes
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where 9; denotes the tangential counter clockwise derivative of m-tuples of scalar functions on S'. A
coefficient A € Lo, (0?%; £(C¥™)) is thus identified with its matrix representation in the moving frame
{n, T}. We remark that this identification commutes with the matrix J.

Proposition 5.4. Let A € Loo(0%; L(CHM)) be pointwise strictly accretive and let
B := A € Loo(0%; £(C*™)).

Assume that v = [u 12][ € LIZOC([RJF; D(D)) with floo || Dv; ||% dt < oo is a Ry x S" distributional solution

! is a weak solution to divy AVyu =0

to ;v + BDv = 0 as in Proposition 3.5, so that u, = (v;),, r = e~
in Q2. Then il is a conjugate to u.
Conversely, given a weak solution u to divy AVyu =0 in O? and a conjugate it, the potential vector

v = [u 12][ has the above properties.

Note that the construction of v this way is a feature of two-dimensional systems as compared to higher
dimensions.

Proof. Applying J* to 3,v + BDv = 0 gives 3,(J'v) + BD(J'v) = 0 with B = J'BJ, since JD = DJ.
A calculation shows that B = A. Applying Proposition 3.5 shows that i, = (J'v,), is a weak solution to
divy AV,ii =0. Also we know that Dv and D7 are respectively equal to the conormal gradients of u and
i, and since J'v = v, this gives the middle term in the equivalence of Lemma 5.3. Thus # is a conjugate
of u. The converse is immediate to check and left to the reader. ]

We finish this section with the following simple expressions for the projections Pgo and 1320 of
Propositions 4.3 and 4.4 when n = 1. We still make the identification V' ~ C?".

Lemma 5.5. Let A; € Loo(02; L(C*™)) be pointwise strictly accretive radially independent coefficients,
and let By := A | € Loo(0?; L(C?™)) the corresponding coefficients. Then

-1
Ppg= (/Sl B! dx) /Sl By'gdx, geLys';C™),
and Py = By' P} By.

Proof. By accretivity, ( f ¢ By ! dx)~!is a bounded operator (called the harmonic mean of By). If g € By,
then Bo_lg € # and fsl Bo_lg dx =0, hence IN’gOg =0, follows. On the other hand, if g € %, then g is
constant, and therefore the right hand side equals

([ 5t ([ mar)e=s

This proves the expression for ﬁgo. The formula for Pgo comes from the similarity relation

DBy = B; ' (ByD)By. O
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6. Resolvent estimates

In this section we prove that the spectra of Dy and Dy are contained in certain double hyperbolic regions,
and we estimate the resolvents. For parameters 0 < w < v < 7 /2 and o € R, define closed and open
hyperbolic regions in the complex plane by
Soo:={x+iyeC; (tan2 a))x2 > y2 +O’2},
Syo i ={x+iyeC; (tan’ v)x% > y> + o2},
Swvot ={x+iy €C: (tanw)x = (y* +07)"/?},
Spoy ={x+iyeC; (tanv)x > (> +oH)1/2).
When o = 0, we drop the subscript o in the notation for the sectorial regions.

Proposition 6.1. On L, = Ly(S"; V"), there is a constant w € (0, w/2), depending only on || Byl and
the accretivity constant k g, such that the spectra of the operators Dy and Dy are contained in the double
hyperbolic region S, . Moreover, there are resolvent bounds

1

VY2402 /tanw — x|

forall A =x4iy ¢ S, . These same estimates hold for the restriction Dy : ¥ — .

1G- = Do)l 2y L. 1 = Do) Ml 1, <

Proof. (i) To prove the spectral estimates for Dy, assume that
(DBy+0oN —x—iy)u=f.

Introduce the auxiliary operator Ny :=io N — yI, and note that | N, | = ||Ny‘1 7' = /y2 + 2. Multiply
with N and rewrite as
(NyD)Bou +i(y* +0?)u = Ny f +xNyu. (22)

Now split the function u as
U=1ui+uge€ %QBBO_I%L,

and note that ||u|| = ||u|| + ||uoll. Apply the associated bounded projections Pgo to (22) to get
(NyD)Bouy +i(y* +0*uy = Py Ny f +x Py Nyu,
0+i(y* +0Hug = Py Nyf +xP Nyu.

Take the imaginary part of the inner product between the first equation and Bou; (using that Ny D is
self-adjoint), and the second equation and u to get

(v* +0?) Re(u1, Bour) =Im (P, Ny f, Bou) +1Im (x Pg Nyu, Bouy),
O + D) |lugll? = Im (P Ny f, uo) +Im (x Py Ny, ug).
Using the strict accretivity of By on # gives the estimate

O+ oD ull? < Crv/y2+ o2 f I lull + x| ul?),
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for some constant C; < oo. Thus |u| < (vV/y2+02/Ci —|x)" I fIl.
(ii) To prove a similar lower bound on Dy, assume that (BgD —o N —x —iy)u = f, and rewrite as

BoDN; ' Nyu+iNyu = f +xu. (23)
Write Nyu = Bouy +ug € Byt @ L. Apply the bounded projections ﬁéo to (23) to get

Bo(DN; ") Bouy +iBouy = Py f +xPju,
. 50 50
O+iug= Pp f+xPpu.
Recall that By : 9 — Bod€ is an isomorphism and apply its inverse B ' By% — % to the first equation.
Then take the imaginary part of the inner product between the first equation and Bou; (using that DN Y !
is self-adjoint), and the second equation and ug to get
Re(uy, Bour) = Im (B, ' P} f, Bouy) +1Im (x By ' Py u, Bouy),

luoll* =Tm (Pp, £, uo) +1Im (x Py, u, uo).
Using the strict accretivity of By on # gives the estimate
02+ o)) ul® < Collxull +1LF DG? + ) 2 ull,

for some constant C, < co. Thus |u| < (vV/y24+02/Cy— x| fII.

(iii) Using that DBy +o N and B;D + o N are adjoint operators, combining the results in (i) and
(ii) shows that both operators Dy — A and 50 — A are onto, with bounded inverse, when A ¢ S, ,. Here
w = arctan(max(C;, C3)). The estimates on 7€ follow. O

We shall also need the following off-diagonal estimates for the resolvents, both in L, and in L, for p
near 2.

Lemma 6.2. (i) There exist €, « > 0 such that for |% — %l <¢€,closed sets E, F C §" and f € L ,(S";Y)
withsupp f C E andt € R,

I +itDo) ™" fliL, iy S e EDM £l k),

where d(E, F) is the distance between the sets E and F.
(ii) There exist g > 2 with % — 5 < €, and a > 0 such that for closed sets E, F C §8" and f € L,(S™; V)
with supp f C E and f, =0and |t| <1,

_a(l_1y _
I +itDo) ™" fllz,ry S 1[0 e @ dEDM £y,

Proof. We first prove (i). The case p = 2 follows the argument in [Auscher et al. 2010a, Proposition 5.1].
It remains to prove L, boundedness for p near 2 as, the L, off-diagonal bounds follow by interpolation
with the L, off-diagonal bounds for g between p and 2.

For f e L,NLy, weleth=(I +itDo)~! f and wish to prove ||all, S| fIl, when p is near 2 and
uniformly in ¢. To prove this, we rewrite the equation (I it Dg)h = f firstas (I +ito N +itDBg)h = f
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and then in terms of a divergence form equation, with coefficients A} = BO Write h = [(Alh) L ”] and

f= [(Alf)L f”][ Then

{(1 —i10) (A1), — it divs(Aih), = (A1 f)..
(1+ito)h, +itVsh, = f,.

Using the second equation to eliminate fz” in the first equation, and letting z = (1 4ito)~!, we obtain

Lﬁj_ —[1 —itzdi Z(AI)LLfLJF(Z_ZN)(Al)L'ﬁ}
[ 11z 1VS]|: _Z(Al)mfu

with
b emn Lty ] mia )

and Ag = D_yA Dy with 7 = ¢'%t, T = |tz|, and Dy the diagonal matrix with entries 1, ¢! in the
normal/tangential splitting. We note that Ay is strictly accretive on | with the same constants as A, and
that |z| < 1 and |7| < |o|~!. We claim that L is invertible from the Sobolev space WII,(S”; C™) equipped
with the scaled norm

1/p
Il = ( S (Ju @) + |7 Vsu ) ?)P? dx) (24)

to its dual, with bounds independent of 7, 6, for p in a neighborhood of 2.

To prove this, if we rescale from the sphere " of radius 1 to the sphere S} /e of radius 1/t, we obtain
the same equation with Ag, A, z+ unchanged, f(x), h(x) replaced by f(tx), h(tx), and 7 divg, TVyg
replaced by div St Vs’f/,’ and we want to show ||i(t-)]|| L)) S < | f(T)] Ly(S},) (with implicit constant
uniform in 7, ). Thus it is enough to set T = 1 and work on S”, as long as we only use estimates on S”
which hold (with same constant) on S} /c as well.

Having set T = 1, we have, for 1 < p, g < oo such that % + % =1, estimates

[Lully 1 = l[Aolloollullwy = llA1loollullwy,

where ||u||W L= SUpyy) 1= |(u, v)| and (u, v) denotes the L,(S™; C™) pairing extended in the sense of
dlstrlbutlons For p = g = 2, the accretivity assumption on Ay yields ||Lu||W 1> /<||u||W1 Applying
the extrapolation result of Sneiberg [1974] to the complex interpolation scale {W }1<p<oo, shows the
existence of € > 0 such that

ILully o+~ Nullw,,
for |— — —‘ < €. (Even for 7 # 1, one can verify that the Sobolev norms given by (24) on S} It (with
TV replaced Vsq’/r) are equivalent to the ones given by the complex interpolation method, with constant

independent of 7. Hence € depends only on the ellipticity constants and dimension, and is thus independent
of 7, 6.) Applying this isomorphism, we obtain the resolvent estimate

Al 2~ sl + Wyl S N lwy + 1Al S U1



1006 PASCAL AUSCHER AND ANDREAS ROSEN

In the second step we used sz = —ie'?Vsh, + Zf” and |z| <1 (recall we have rescaled and set 7 = 1).
In the third step we used the fact that [1 —i divs] s Ly(S™; cU+mmy _ Wp_ Uis an isometry since
[1 —iVS]t : qu — L, (8"; CU+mm)y s one. This finishes the proof of (i).

To prove the inequality (ii), the above argument shows that Lh 1=2-(A) .. f " and ﬁ” —itz+ stz L.
Having rescaled in the same way, the Sobolev embedding L, C W ! for some g > 2 w1th 5 — é <e,
allows us to conclude that 2 € L,(S";7) and since we assume |t| <1, we have || = [t] and obtain

ally < |l|_”(7“)||f||2, the power coming from scaling. It suffices to interpolate again with the L,
off-diagonal decay, and conclude for any exponent between 2 and q. (]

We state the following useful corollary. Here and subsequently, N? is defined as N, replacing L,
averages by L, averages and M is the Hardy—Littlewood maximal operator.

Corollary 6.3. For € as above and |— — —| < €, we have the pointwise inequalities

NP((I+itDo)~" f) S M £IP)VP,
NPT +itDo)~" ) S M fI)'?,

1
and, for some p < 2 wit ——§<€

N.(((I +itDo) ™ f),) SMfIMYP.

Proof. We fix a Whitney region Wy = W (%9, xo) in Ry x §". Then
Wol ™ [ |1 ieD0y | dr d S MGG
Wo

follows directly from the off-diagonal decay of Lemma 6.2 as in [Auscher et al. 2008, Proposition 2.56].
Next, |Wol™" [y, [(T + itDg)~" f(x)|” dt dx < M(] £17)(xo) follows by testing against g € L, (Wo; ),
supported in Wy with 1/p +1/g = 1. We have

~ Colo ~
/ ((I +itDo)~" f(x), g(t, x)) dt dx =/ (f, (I —itD§)'g)at
Wo fo/co
so that for each fixed ¢, using that Df = DBE)k — o N has the same form as Dj, we can use the L,
off-diagonal decay for each ¢t = #y and obtain for any M > 0,

Wol ™ [ 1D P drdx £ 2 M B 2 [ (peorar @)
Wo

j>2 B(Xoijlo)

using standard computations on annuli around B(x, fo) in S”. Details are left to the reader.

The last estimate starts in the same way with g € L, (Wy; "), but since we want to estimate the normal
component of (1 + 1'1‘50)_1 f we assume that (g;); = O for each ¢. The second estimate in Lemma 6.2,
implies that (I — i tf)g‘)_] & =: h; has L, estimates with decay. Thus using Holder’s inequality on
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colo

10/co (f, hy) dt with exponent g on h; and dual exponent on f yields

- 1/2
(Iwor1 fW |1 +itD0)_1f)L(x)|2a’t dx)

Sy oM <|B<xo, zfzo)rl/B

i>2 (x0,2710)

1/p
Lfo)l? dX> (26)
and the conclusion follows. |

7. Square function estimates and functional calculus

All the remainder of this article rests on the square function estimate below.
Theorem 7.1. Let n > 1. The operator Dy = DBy + o N, with o € R fixed but arbitrary, has square
function estimates

o0 dt
/ ltDo(1+*DY) ™" f113 -~ I3, forall f € R(Dy).
0

The estimate < holds for all f € Ly(S", C™). The same estimates hold for Do = ByD — o N.

Proof. Note that equivalence can only hold on R(Dgy) = R(Dg), which equals L,(S"; V') if o # 0 and 3
if o = 0. By standard duality arguments, the estimates 2 on R(Dp) follows from the estimates < for Dj.
See [Albrecht et al. 1996]. Further Dy is of type Dy. Hence it is enough to prove

OO 2 21 o2 41 2
lzDo(L+2°Dg) =" f5 s SIfIs (27)

0
for all f € L,(S™; %), and similarly for 50. Consider first the operator Dy.
(1) We first reduce (27) to

! 2 21 42 4t 2
[1DBo(1+ 2B f]l; - SIS13 (28)
0

for all f € L,(S"; V). First note that

* dt o dt > dt
fl ||ID0(1+IZD§)_1f||§T§f1 ||r203<1+r2D3>—1f||§t—35/1 1£12 25 = 1£112

using that Dy has bounded inverse by Proposition 4.3. (When n =1, write f = fi + fo € #® B, Lget.
The above estimate goes through for f], and the contribution from fy is zero.) For the integral fol, we
may ignore the zero-order term in Dy, using the idea from [Auscher et al. 2010a, Section 9]. Indeed,

|(1+itDo)™" f = (I +itDBy)" f||, = |(I +itDo) it N(I +itDB) " £ ||, S ltl 1 £ -

Since 2itDo(I +1>D})~' = (I —itDy)~! — (I +itDy) ™', and similarly for DBy, subtraction yields

1 d 1 d 1
/0 ||ID0(1+t2D§)_1f“§7t5/0 HIDBO(1+12(DBO)2)_1f“§TI"‘fO tdr | £13.
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(i1) Next, using a partition of unity, it suffices to show that

1 d
fo |¢tDBo(I + 2 (DB £ 7’ S5, (29)

when ¢ is a smooth cutoff that is 1 on a neighborhood of supp f. Indeed, L,-off diagonal estimates of
tDBy(1 +t>(DBy)?)~! from Lemma 6.2 and again

2itDBy(I +t>(DBy)*) ' = (I —itDBy) ' = (I +itDBy)~!
show in this case that
I(1 =)t DBo(I +1*(DB)*) ' £1I5 S 21 £113.

(iii) To prove (29), we assume that f and ¢ are supported inside the lower hemisphere, which we
parametrize by Q" using stereographic coordinates:

Iy —1 2y

o R"— Sy x= eo+ ,
IyI>+1 IyI>+1

where eg € R'*" is a fixed unit normal vector to R” C R!*", which covers all S, except the north pole
eo € S". Note that p is a conformal map with length dilation @' and Jacobian determinant dx /dy = d ™",
where

d(y) := (Iy]* +1)/2.

Let T :R" - R 1y > dyp(y) be the differential of p, and note that 7'T = d~?1. Define adjoint
rescaled pullbacks and pushforwards

p* 1 La(p(Q"); 1) — La(@"; CH™) [, fi] > [d"(frop) T'(fiop)]'.
pit Lo(@"; CIH™) 5 Ly(p(@"): ) : [g. &1] > [(grop™) (@' Tgpop~'] .

n
Note that (o)~ = |:C(1) dg_n] p*. We claim that
dr 0 0 —div
* — * R y
p"D=D, |:O dz_”:| p", where D, := [Vy 0 :| .

Indeed, the tangential part of the equation is the chain rule, and the normal component is the adjoint
statement. We consider D, as a self-adjoint closed unbounded operator in L,(0"; CU+mm)y with domain

1 n. om
D(D,) = [HO(@) ; C )]

D(divy)

where HO1 denotes the Sobolev Wz1 functions vanishing at the boundary §"~!.

Next we map coefficients By in p(O") to coefficients B, := (ps) "' Bo(p*)~! in ©", and claim that
B, is strictly accretive on R(D,). To see this, let g € R(D,). Then curl, g, = 0 and g, is normal on
00" (or if n = 1 we have f_ll gidy = 0). Writing ¢ = p* f and extending f by O outside p(0"), it
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follows that f € 3. (To see this, write g, = Vyu with u € H(} (0"; C™), and extend u by O to an
H'(R"; C™)-function.) The assumed strict accretivity of By on ¥ gives

Re/ (Bpg,g)dy=Ref ((p*)lBof,p*f)dy=Re/(Bof,f)dxzx Iflzdx%f gP dy.
o o S0 s o

Thus we obtain a bisectorial operator D, B, in L,(O0"; CU+mm) "and we observe the intertwining relation

p*DByf =D, |:0 dzn]p p«Bpp™ f =DpByp™ f.

for f supported in the lower hemisphere. In O", let K := {|y| < 1/4}. By rotational invariance, it is enough
to consider those f = (p*)~!g with g supported on K and ¢ = (p*)"'n =no p~! with n € C°(R") be
such that n = 1 on {|y| < 1/2} and suppn C {|y| < 3/4}. Using ng = g and understanding n, ¢ as the
operators of pointwise multiplication by n, ¢, one can check the identity

t(I+itDBy)~" f — (p*)"'n*(I +itD,B,) g
=¢(I +itDBo)~ (p") " (ng) —¢(p")'nUI +itD,B,) " 'g
=¢(I +itDBo) ' (p*) " (n(I +itD,B,) — p*(I +itDBy)(p*)'n) (I +itD,B,) 'g
=¢(I+itDBy) ' (p*) " litln, D,)B,(I +itD,B,) 'g.

As in (i) above, subtracting the corresponding equation with ¢ replaced by —¢, yields the estimate
16t DBo(1 +1*(DB)*) ™' f = (") 0’1 D, By(I +1° (D Bp)) ~'gll2 S Itllg 2.

since [n, D,] is bounded. As || f]l2 ~ ||g|l> by the support conditions, (29) will follow from

1
- dt
/ 11Dy B, (I +1*(D,yBp)") gl — S llgllz,  forall g € Lo(©"; €™,
0

(iv) The latter square function estimate follows from combining [Axelsson et al. 2006a, Theorem 2] and
[Axelsson et al. 2006b, Proposition 3.1(iii)], the latter purely being of functional analytic content. (See
[Auscher et al. 2010a, Section 10.1] where this is pointed out.)

(v) Consider now 50. Similarly one can reduce to prove < for ByD. On N(ByD) = %L, this is trivial.
On R(ByD) = By# we use that ByD is similar to DBy on R(DBy) = 3 through the isomorphism
By : # — Bo#. Thus the square function upper estimate for ByD follows by similarity from the one
for DBy. |

The square function estimates from Theorem 7.1 provide bounds on the S ;-holomorphic functional
calculus of the operators Dy and Do, adapting the techniques described in [Albrecht et al. 1996]. Write
H(S; ) := {holomorphic b ; S} , — C},
Huo(S0,) == {b e H(S3,) 5 sup{|b(A)] 5 & € 52} < oo},
W(Sy,):=1{be H(S),) ; [b()| Smin(JA|%, [A]7*), for some a > 0}.
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We summarize the result for the S7 ;-holomorphic functional calculus in the following corollary. The
proof is a straightforward adaption of the results in [Albrecht et al. 1996].

Corollary 7.2. Assume o0 € Rand Dy = DBy + o N. Fix w <v < /2. There is a unique continuous
Banach algebra homomorphism

Hoo (S} 5) = L(R(Dy)) : b+ b(Dy),

with bounds ||b(Dy) f |2 < C(Supsg(, (b f 12 for all f € R(Dy), where C only depends on || Byl| oo,
KBy,  and o, and with the following two properties. If b € W(S] ;) then

1
b(Dy) = i / b(3)(h — Do)~'d1r € £(R(Dy)),
14

where y :=0S8p.+, w < 8 < v, oriented counter clockwise around S,, . For any b € Hy (S} ) we have
strong convergence

Jim [1be(Do) f —b(Do) fll2 =0, for each f € R(Do),

whenever by € V(SY ), k = 1,2, ..., are uniformly bounded, i.e., sup; ; |bx(1)| < 00, and converges
pointwise to b.

The corresponding results hold for Do = BoD — o N replacing Dy by throughout.
2)—1

We remark that the square function estimates in Theorem 7.1 hold when ¢ (z) = z(14z is replaced

by any ¢ € W(S)) which is nonzero on both components of S ;. We have

© d
/O WD) SIZS ~ 113, forall f € R(Dy). (30)

A similar extension of the square function estimates holds for 50.
Fundamental operators in this paper are the following.

Definition 7.3. (i) Let x "(X) and x ~ (1) be the characteristic functions for the right and left half planes.
Define spectral projections E(:)IE := x*(Dy) and Eéﬁ = Xi(ﬁo) on R(Dg) and R(ﬁo) respectively.

(i1) Define closed and dense defined operators A = | Dg| := sgn(Dg) Do and A= |50| = sgn(ﬁo)ﬁo on
Lo(S™; V). Here |A| := Asgn()) and sgn(X) := x (L) — x ~(1).

t tA

Define operators e '* and e~'* on R(Dg) and R(5o) respectively by applying Corollary 7.2 with

b(LM) =e " r>0.

When o =0, R(5O) = Bo¥ = BoR(Dy) are strict subspaces of L, and it is convenient to extend the
above operators to all L,. Using the Hodge splitting L, = By @ #~, on ¥~ the operator Do = ByD is
already 0 and A = |ByD)| is naturally defined by 0. Using the other Hodge splitting L, = % & By 9L,
on By 19+ the operator Dy = D By is already 0 and A = | D By| is naturally defined by 0. It follows that

—tA

e~ "N and e~ are naturally extended to L, by letting e ~"* |51 := I and €_IA|BO—1%l =1.
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However, for the projections the extension is more subtle. Indeed, we see for the functional calculus of
Do=DBy—oN that
~ b(o)l 0
D = — =
b(Dg) =b(—o N) [ 0 b(—a)[]

on ¥+ when o # 0 using the definition of N. As we are mainly interested in o = %, it is more natural
for consistency of notation towards applications to divergence form equations to define the operators for
o = 0 by continuity o — 0. Thus set

~ b(0+)1 0 ~

where b(0%) :=limy;cs,, 10 b(A), assuming the limits exist, b(BoD|p,) is the operator from Corollary
7.2 and ﬁéo, i =0, 1, denote the projections from Proposition 4.4 onto the subspaces in the Hodge splitting
Ly = By @ ¥+

Similarly, for o # 0, we have Dy = DBy+ 0N so Dy =o N on By '9%~*. For o =0, set

b(0—)1 0 ]

b(DBo)::b(DBo|%)Pz]30+Pgo|: 0  bO+)I

where Péo, i =0, 1, denote the projections from Proposition 4.3 onto the subspaces in the Hodge splitting
L, =3%® B, 19¢L. Remark that Pgo on the left of the matrix is needed to obtain an element in B, gL,
An elementary calculation shows that this extension of the functional calculus coincides with (b(B;D))*,
where b(1) = b(1), and that the extended functional calculi of Dy and 50 thus obtained are intertwined
by D.

Taking b(A) = A or A sgn(A), this provides us with the zero extension that we already chose so this is
consistent. For the projections, this leads to the following definition.

Definition 7.4. When o = 0, extend ESE, ESE originally defined on R(ByD) = By and R(DBy) = ¥
respectively from Definition 7.3 to operators on all L, (S"; V"), letting

EXf:=N7¥f for all f € #*,
Eyf:=PjN*f forall fe By ¥

Lemma 7.5. With L, = L,(S8"; V), the spectral projections E(:)t and E(:)t are bounded, we have topological
spectral splittings
Ly=E{L,®E; Ly,

restricting to ¥ = E(_)” #H @ E ¥ in the subspace ¥ invariant under Dy, and
L, = EJLz (&) EO_Lz,

restricting to #+ = E{f ¥+ @EO_ KL in the subspace ¥+ invariant under Dy. We also have the intertwining
relation
EXD=DE} 31)

so that D : EgELz — ESE% is surjective.
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If o > 0, then in the latter splitting we have ESE = NTF in %*. Hence E(T%l = N~%* and EO_%L =
N*tHL. (On the other hand, if o < 0, then EX = Ntin%t)

Proof. When o # 0, R(EO) = L, and L, = R(Dy) by Proposition 6.1. Boundedness on L, follows from
Corollary 7.2. The intertwining property is a consequence of Lemma 4.2. The surjectivity of D easily
follows from the spectral subspaces and using D : L, — % surjective and the splittings. That E(:)t =NT
in %+ when o > 0 comes from 50 = —o N in ¥ and x*(—o N) = NF. The case o = 0 follows from
Definition 7.4. We leave further details to the reader. (I

8. A detour to Kato’s square root on Lipschitz surfaces

Let ¥ be a surface in R!*™", assumed to be Lipschitz diffeomorphic to " through a bilipschitz map
po - S — X. Let do denote surface measure on X. Consider, for n, m > 1, coefficient matrices
H e Loo(Z; L(TcX)™)) (with Tc X denoting the complexified tangent bundle) and /& € Lo (X; L(C™)),
assumed to be strictly accretive in the sense that

Re / (H (x)Vsu(x), Vsu(x) do(x) = © / V(o) do(x),
) )
Re(h(x)z,2) > k|z|>, ae.xe X,

forall u € W21 (X;C™) and z € C™, and some « > 0. Then L := —divy HVy, with divyg := —(Vg)* in
L,(X; do), constructed by the method of sesquilinear forms, is a maximal accretive operator and hL
is defined on D(L) and can be shown to be an w-sectorial operator on L;(X; do) for some 0 < w < 7.
Thus it has a square root and we have

Theorem 8.1. The square root of the operator hL. = —h div HV'sy, has domain D(v/hL) = WZI(E; cm™,
and estimates ||~ hLul|, = ||[Vsu||>.

In particular for 27 = 1, we obtain a version of the Kato square root problem on Lipschitz surfaces X.
The presence of & makes the theorem invariant under bilipschitz changes of variables as we shall see in
the proof.

Our Theorems 7.1 and 8.1 are inspired by [Axelsson et al. 2006b, Theorem 7.1], and a comparison of
these two results is in order. The main novelty in Theorems 7.1 and 8.1, is that these do not require the
coefficients By or H to be pointwise strictly accretive, which was needed for the localization argument
in [Axelsson et al. 2006b, Theorem 7.1]. This theorem considered more general forms on X, and more
general compact Lipschitz surfaces . It is straightforward to extend our results Theorems 7.1 and 8.1
here to more general compact Lipschitz manifolds. On the other hand, we do not know how to extend our
localization argument here to the case of forms, unless pointwise strict accretivity is assumed.

We also mention that A. Morris [2010] proved similar results on embedded (possibly noncompact)
Riemannian manifolds with bounds on the second fundamental form and a lower bound on Ricci curvature.

Proof of Theorem 8.1. A calculation shows the pullback formula

(hdivg HVzu)(po(x)) = (hdivs HVs(uo po))(x), x € S",
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where /1(x) = |J (po) (x)|~"h(po(x)) and H(x) := 17 (00) (X)[(po(x)) ™ H (po(x)) (po’ (x)) ™. So we as-
sume that ¥ = S$” from now on. Let D be as in Definition 3.1 and let

By := [g 2] € Loo(S"; L(V)).

Then By is strictly accretive on the space #; from (13) and

0 —h divs:|

BoD = |:HVS 0

Thus by Theorem 7.1, with o = 0, we have bounded functional calculus of ByD in Byd. Following
[Auscher et al. 1997b], we have for u € D(Vy) that

~vhLu 7| u u 0
[ 0 |=V (BoD) ol = sgn(ByD)ByD 0l = sgn(ByD) HVu |’
so that ||« hLull, = ||HVsull2 & || Vsull2, using that sgn(ByD) is bounded and invertible on By# and
that H is bounded above and below on R(Vy). O

Remark 8.2. It is interesting to note that we apply Theorem 7.1 with o = 0 no matter what the dimension
is. If n > 2, Kato’s square root problem on S” is not directly linked to the boundary operator appearing in
(17), associated to the equation divy AV,u =0 on O, with A= [g 2
in the equation radial derivatives from tangential derivatives. This is different from the case of the half

], i.e., when one can separate

space (R" replacing §") and emphasizes the role of curvature.
In view of Section 4, the second-order operator on the boundary associated to this div, AV, on O'*",
comes from

_ 2

0 —HVghdivg +0?

with o = (n — 1) /2. Thus, the naturally associated Kato square root is ~/—hL + o2, and one has

[V=hL+ 592 u| ~ 1Vsula+ 25 fule,

9. Natural function spaces

By Corollary 3.4, our method to study and construct solutions u to the divergence form equation (1)
consists in translating this equation to the ODE (17) for the conormal gradient f in Ry x S$". Conormal
gradients of variational solutions belong to Lo (R x S$"; ) as noted in (18). The appropriate function
spaces for f with Dirichlet/Neumann boundary data for u in L,(S"; C™) are the following.

Definition 9.1. The (truncated) modified nontangential maximal function of f defined on Ry x §”, is

No(f)x) = sup T2 fx lnwaenyy, x €S,

O<t<co

where
W(t,x):={(s,y) e Ry x 8" ; |y —x]| <cit, c(;l < s/t <co}
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for some fixed constants ¢y > 1, ¢; > 0. We assume that co ~ 1 and ¢; << 1, so that the thtney regions
W (t, x) are nondegenerate for t < ¢y. For a function fy on O'*", we have ij (fo) = N* (f) where
f(t, x) ;= fo(e "x), which properly defines ﬁf in the introduction.

The (truncated) modified Carleson norm of f in Ry x S" is

||f||03=( sup / esssup | f|
r(Q)<r0 |Q| 0.7(Q)x0 W(t.x)

and the sup is taken over geodesic balls Q C S" with volume | Q|, and with radius r(Q) less than some
fixed constant ro << 1. For a function fy on @'*”, we have || fyllc = || fllc where f(t, x) := fo(e™"x),

2dtdx>1/2

which corresponds to || follc as in (4).
Note that changing the parameters ¢y, c; does not affect the results.

Definition 9.2. (i) For g : O!*" — CU+"™ define norms
lg 13 :=f g (o) 21 — |x]) dx,
®1+ﬂ

Igll2, = ||ﬁ::(g)||%+/ g dx.

|x|<e™!
Let %° and %° be the Hilbert/Banach spaces of functions g for which the respective norm is finite.

(1) For f: Ry x 8" — V', define norms
(o)
LF113 = / If:I3 mingz, 1) dt,
0

1113 = III\NI*(f)II§+/I TAL:

Let Y and & be the Hilbert/Banach spaces of sections f for which the respective norm is finite.
The gradient-to-conormal gradient map of Proposition 3.3 is an isomorphism ¥° — % and &° — ¥.

Lemma 9.3. There are estimates
L 2 0o <IN 2« 1 2ds loc n
sup  — I fsllzds SANCOIZS | Ifslla—s  feLy Ry x S5 Y).
0<t<1/2 t 0 S
Denoting by Y* the dual space of M relative to Lr(Ry. x §"; V), i.e., the space of functions f such that
fooo | f¢ II% max(t~!, 1) dt < oo, we have continuous inclusions of Banach spaces

Y CHC Ly (R xS V) CY.

Note that Lemma 9.3 shows that another choice of threshold than t = 1 in the definition of the norms
for & and Y would result in equivalent norms.

Proof. The L12°C(L2) estimates of ||]V*( P)ll2 is an adaption of the corresponding result for [Rf", proved
in [Part I, Lemma 5.3]. The remaining statements, except possibly that X C Lo(R; x §"; V), are
straightforward consequences. To verify this embedding of &, we use the lower bound on ||ﬁ*( 2 to
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estimate
00 o 27k 00 > N 00
[unar=3" [ wsiacs [ usigan s Y2 R+ [ iABar =15 O
0 k=0 2=k= 1 k=0 1

The following lemma gives necessary and (different) sufficient conditions for a multiplication operator
€ to map ¥ into Y*. Write

€llcnLy = €llc + 1€l Lo (ry xS

Lemma 9.4. For functions € : R, x 8" — CUM™  define the multiplicator norm ||€|s := ||€||lx—a* =
SUP| £lp=1 I€ f |lo«. Then we have estimates

€l Lae@exsmy S 1€ls S N€llenLe-

Proof. This is an adaption to the unit ball of [Part I, Lemma 5.5]. As in that proof, the estimate
1€lloo < 1€l follows from the leOC estimates in Lemma 9.3. For the second estimate we write

~

I€fII3 = ’ 1€ f:113 [~ €, f113 dt.
0 t

As in [Part I, Lemma 5.5], the first term is estimated with Whitney averaging and Carleson’s theorem. The
second term is controlled with ||€||o. In total, this gives the bound ||€ f|lax < 16l cll flloe + 1€ llooll f Il
as desired. O

Remark 9.5. Tt has been recently proved in [Hyt6nen and Rosén 2012] that ||€]|, =,

~

||%||C(]Loo so all of
our results use in fact the same condition on €.

We end this section by introducing an auxiliary subspace ¥s of %Y.

Definition 9.6. For § > 0, define the norm

o0
1f13, = / £ 12 minGe, 1)e dr.
0

Let Ys be the Hilbert spaces of sections f : Ry x $" — ¥ such that || f||«, is finite.
Clearly ¥s C . The motivation for introducing %; is the following result.

Proposition 9.7. Given coefficients A € Loo(Q'"; L(CIHD™Y) which are strictly accretive on ¥y, there

is 8§ > 0 such that
o0 o0
/ Il filI5€* drsf Il £:113 dt,
1 1/2

for all f € LY*(Ry; %) solving 3 f + (DB + "5 N)f = 0. Hence, if f € ¥ N LY(Ry; %) and
f+(DB+"N)f=0,then f € Vs and | fllo, S I f Il

The proof of Proposition 9.7 uses reverse Holder inequalities.
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Theorem 9.8. Fix ¢ > 1. There exist C < oo and p > 2 depending only on n, m, the ellipticity constants
|Allo, k4 Of A and c, such that for any ball B with cB c O and any weak solution to divy (AV,u) =0

in O we have
1/p 1/2
(f |qu|”dx> 50(/ |qu|2dx> .
B cB

Proof. This result is due to N. Meyers [1963] for equations. Here, we make sure that the result extends to
elliptic systems in the sense of Garding by giving appropriate references. We begin by noting that the
usual Caccioppoli inequality for weak solutions

1/2 1/2
(/ |qu|2dx> <Cr (/ |u|2dx>
B cB

for any ball B so that cB C O'*", with r its radius, holds for any system that is elliptic in the sense of
the Garding inequality (2). Although not stated like this in [Campanato 1980, Theorem 1.5, p. 46], the
proof only uses Garding’s inequality. See also [Auscher and Qafsaoui 2000], where the proof is done
explicitly for second- and higher-order equations and it is said (p. 315) that this applies in extenso to
such systems. The constant C depends only on n, m, k, ||Alle and c. Now, this combined with Poincaré

1/2 1/q
(/ |qu|2dx) 5<f |qu|qu>
B cB

for 2(n+1)/(n 4+ 3) < g < 2. Finally, Gehring’s method for improvement of reverse Holder inequalities

inequality yields

with increase of radii, presented in [Giaquinta 1983, Theorem 6.3], applies. ]

Proof of Proposition 9.7. Corollary 3.4 shows that f is the conormal gradient of a weak solution to
divy AV,u =0 in O'*". By Holder’s inequality and Theorem 9.8, we have for g = V,u the estimate

1/2 1/p "
</|| . Ig(x)|2|x|—6dx) g(/l | |g(x)|de> 5(/” » |g(x)|2dx)

for0 <8 < (m+1)(p—2)/p. This translates to the stated estimate for f, using the gradient-to-conormal
gradient map from Definition 3.2. U

10. Semigroups and radially independent coefficients

In this section and subsequent ones, we set ¢ = ”T_l

In this section, fix radially independent coefficients A; and By = ZT We show how to obtain weak
solutions of divy A|Vyu = 0 inside and outside O'*” using the semigroups associated to A and A. Later,
we show all weak solutions with prescribed growth towards the boundary have a representation in terms
of these semigroups.

Theorem 10.1. Let fy belong to the spectral subspace Ear 3. Then

fir=e™f
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gives an ¥-valued solution to 3, f + Do f =0, in the strong sense f € C! (Ry; LZ)DCO([Rq; D(Dy)) and in
R x S" distribution sense. (In particular f is the conormal gradient of a weak solution of divy A;Vyu =0
in O'*".) The function f has L, limit lim,_q f; = fo and rapid decay ||8,jﬁ||2 < Cj,k/tk||f0||2,for each
k > j = 0. Moreover, we have estimates

19; flloy 2 Il foll2 = 1l f ll2¢-

If instead fy belongs to the spectral subspace E, ¥, then define f; .= e'M fofort <0. Then d, f + Do f
vanishes for t < 0. (In particular f is the conormal gradient of a weak solution of divy, A Vyu =0 in
R™\ Q1)) Limits and estimates as above hold for f;,t < 0.

Proof. (i) The rapid decay of f; follows from the lower bound on Dy|y from Proposition 4.3, giving
18/ fill = 1A7e™ foll2 S (D) T A e™™ folla = 17 H [ MY e folla S 17411 follo-

(ii) That f is the conormal gradient of a solution follows from Corollary 3.4 and it is straightforward to
show that the ODE 9, f 4+ Dy f = 0 is satisfied in the strong and distribution sense.

(iii) Next, || 8,f||%y < fooo ||0; f+ ||§tdt, and the square function estimate fooo ||0; f; ||§tdt R ||f0||% follows from
(30), since 9, f, = —Ae "2 f,. This together with the decay from (i) with j = 1 shows || foll2 ~ [19; f l|.

(iv) It remains to show that || fo||> = || f ||. For this, the decay from (i) with j = 0 implies it is enough
to prove |Iﬁ* fll2 = |l foll2. The proof is an adaptation of the results on [R{f" from [Auscher et al. 2008,
Proposition 2.56] as follows.

The estimate ||ﬁ*( 2 Z |l foll2 follows from Lemma 9.3. Next consider the estimate <. We follow
the argument in [Auscher et al. 2008, Proposition 2.56]. By the reverse Holder inequalities noted in the
proof of Proposition 9.7 applied to a weak solution of the divergence form equation with coefficients A
associated with f =e~"1P0l £, we can bound L, averages by L, averages for some p <2, 1i.e., ]V*f < ]fo
in a pointwise sense (up to changing to constants cg, c1). Since ¥ (A) = e M _1+inle V(S ), it
follows from Lemma 9.3 and Theorem 7.1, or more precisely (30), that

INZ (4 (t Do) fo)ll2 < 1N« (¥ (¢ Do) fo)ll2 S 1l foll2.

For hy := (I +itDo)™" fo we have [Nl < IM(1fol")"7ll2 < Il foll2 by Corollary 6.3 and the
boundedness of M on L;,,. We have proved that ||ﬁ*f||2 < foll2-

(v) The modifications for fy € E, ¥ are straightforward, and the correspondence with u follows from
applying the methods of Proposition 3.3. ]

Remark 10.2. The assumption o = ”—gl is used in part (iv) to pass from N, to N? with some p<2.

Thus, for any 0 € R, fp € # and p < 2, we have ||]\~]f(f)||2 < |l foll. The converse, however, is not clear
because p < 2, and this shows that the value of o is significant.

Theorem 10.3. Let vy € Ear L,. Then
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gives a solution to d,v + 501) =0, in the strong sense v € C! (Ry; L) N CO(R+; D(BO)) and in RT x §"
distributional sense. (In particular r—° (v;), extends to a weak solution of divy A|Vyu =0 in O™ as in
Proposition 3.5.) The function v has Ly limit lim;_.o v; = vg and rapid decay ||8tj ey < ijk/tk||v0||2for
each k > j > 0. (When o =0, this estimate for j = 0 only holds for vg € R(ﬁo) N E(TLZ.) Moreover, for
P < 2, we have estimates

13, vlly + N2 )12 + N 12 S Nlvolla-

In dimension n = 1, we have ||v|ly =~ ||vo|2.

If instead vy € E(; L,, then define v, := e’[\vofort < 0. Then 9;v + 501) =0fort <0. (In particular
r=%(v;), satisfies divy A;Veu = 0 in R" \ Ot as in Proposition 3.5.) Limits and estimates as above
hold for v, t <O.

Proof. The proof, except for the nontangential maximal estimates, is identical to that of Theorem 10.1,
using Proposition 4.4 and Corollary 6.3. When n > 2, the estimate of ||ﬁ* (vy)]l2 follows, using the same
Y as above and reduction to ||ﬁ*((1 +i tﬁo)_l v0)1)ll2, from Corollary 6.3 and the maximal theorem.
When n = 1, one uses the splitting in Proposition 4.4: we have that e~ A is the identity on 9¢* and that A
on By is similar to A on #, so ||v||¢ ~ ||vo|l2 follows from Theorem 10.1.

The modifications when vy € Eo_ L, are straightforward. O

11. The ODE in integral form
Following [Part I], for radially dependent coefficients we solve (17) for f by rewriting it as
o f+(DBy+oN)f=D€f, whereé, :=By— B;.

Recall that solutions f; belong to ¥, where ¥ splits into E(J)r ¥ and E; 3 by Lemma 7.5, with ESE = x*(Dy)
on . Applying Eoi, integrating formally each subequation and subtracting the obtained equations we
obtain

t [e¢)
fi=eES fo+ / e UTINESDE, fyds — / e SINESDE, £y ds, (32)
0 t

provided lim,_,o f; = fo and lim,_,» f; = O in appropriate sense. We first study proper definition,
boundedness of the integral operators in (32) on appropriate spaces and their limits. The justification of
(32) is done in Section 12.

Lemma 11.1. If f € L12°°([R{+; ¥0) satisfies 0; f + (DB +o N) f =0in Ry x S" distributional sense, then

t

t
—/ dnd (t, )e TINES fids =/ nt(t, )e” "INEF DS, f, ds,
0 0

oo oo
_/ asn;(t, s)e—(S—l‘)AEO_fS ds = / r]é_(t, s)e—(S—l)AEO—D%SfS dS,
t t

for all t > 0. The bump functions nf are constructed as follows. Let n°(t) to be the piecewise linear
continuous function with support [1, 0c0), which equals 1 on (2, 00) and is linear on (1,2). Then let

ne(1) :=1°(t/e)(1 = n°(2e1)) and nZ (1, 5) 1= n° (1t — 5)/€)Ne (1)1 ().
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Proof. Follow [Part I, Proposition 4.4]. |

Define for f € LYS(R*; Lo(S"; 7)),

t o0
Sgﬁ;:/ nd(t, )e TINEF DS, f, ds—/ o (t, s)e” STONES D, f, ds.
0

t

In fact, this formula makes sense by extension thanks to the following algebraic relations.

Lemma 11.2. We have S f, = S f; — 0 85 f; = DSS f. where

o0

t
SS fr = / nd(t, s)Ae” TINETE, fids + / no (t,s)Ae CTONES €, £y ds,
0 t

o0

t
Sjﬁ::/ nj(t,s)e—<f—S>AEo+%sfsds—/ o (t,s)e” STINESE, fids,
0

t

t - o0 7~
Sgﬁ::/ nd(t, )e TINESE, £, ds—/ e (t, s)e” CTINESE, f, ds.
0 t

Here ESE = EgBalﬁéo, ES‘L = E(;_LNBo_lﬁéo, with ﬁéo as in Proposition 4.4.
Proof. Here, By ! denotes the inverse of the isomorphism By : % — Bo#. Since N(D) = %+, we have
EfD=E;DPy = E;((DBy+0N) —oN)By ' Py = DyEy — o Ey,

—ul

Using that e and e*“A A extend to bounded operators on %, this also shows that e‘“AEar D extend to

bounded operators on L; for u > 0. We now readily obtain S§ = :S‘i — aS’f\. The identity S§ = ng is a
consequence of the intertwining relation

b(Do)D = Db(Do)
between the two functional calculi. O
Theorem 11.3. Assume ||€||. < 0o. We have bounded operators
S X —->%, S5:Y->Y,
with norms < ||€|«, uniformly for € > 0. In the space ¥ there is a limit operator Sig € L(X; X) such that

111% 1SS S =S4 fllis@pi,y =0, forany f€%,0<a<b < oc.
€—

The same bounds and limits hold for §Z and S’Z on¥.

In the space %Y, there is a limit operator ij € L(Y; Y) such that
lir% 1SS f — S?f”oy =0, forany fe%.
€—

The same bounds and limits hold for :8’\2 and 5’2 on%.
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Let Sy :=lim._,¢ S5, §A = lim¢_,¢ §§ and S A = lim._,g S’Z denote the limit operators on %Y from
Theorem 11.3. Since ¥ is densely embedded in %, these limit operators restricts to the corresponding
limit operators on & from Theorem 11.3.

One sees that Sy = §A —o8 4 holds, and that

t—e €
Safi = lim ( / e TINESDE, fyds — / e MRS D%stds)
€—> €

t+e

with convergence in Ly (a, b; Ly) for any 0 <a < b < 0o, both on Y and ¥.

Proof. The proof is essentially an application of [Part I, Section 6], where the results were proved
abstractly. Given Theorems 7.1 and 10.1, these results from that paper apply. In particular, this makes use
of the holomorphic Sg , operational calculus of Dy, where more general operator-valued holomorphic
functions are applied to Dy. It is straightforward, given Theorem 7.1, to adapt the results in [Part I,
Sections 6-7] and construct this SL”M operational calculus of Dy, and we omit the details.

(1) Consider the operators §2 : X — X. Here [Part I, Theorem 6.5] shows that 3’;3 :Ly(R4, dt; Ly) —
L>(Ry4, dt; Ly) are uniformly bounded, with norm < ||€|| 0, and converge strongly in £(L, (R4, dt; L))
as € — 0. Moreover, [Part I, Theorem 6.8] applies and shows that

S5 fi = Z(Ef) + ne(t)e™ / Ne(s)Ae*NES€, f ds
0

where Z¢ : Lo(Ry,dt/t; Ly) — Lo(Ry, dt/t; Ly) are uniformly bounded and converge strongly as € — 0.
These estimates build on the square function estimates and make use of the operational calculus for Dy.
On the other hand, using Theorem 10.1 and Theorem 7.1, the last term has estimates

o0

< m(s)Ae*mE‘J%sfs ds

%

o0
ne(t)e / Ne($)Ae*MELE, fy ds
0

2

X —~ ds
f (sA*e N, ne(5)EFS, f,

= sup
All2=1

S Ine€ fllays S M€l f s

and is seen to converge strongly in £(&, Ly (a, b; L;)) for any 0 < a < b < 00, as in [Part I, Lemma 6.9].
Piecing these estimates together, we obtain

IS5 e SNZEE Lot j:La) + 1 ZE P Laariny + 1S5S — ZE@Ef)l
SHENl £l + 1€ ool £ | Lacar: o) + €1l f Nl

with strong convergence in £(¥, Ly (a, b; Ly)).

(11) For the operators S€ X — &, we note that the estimates for S; go through when replacing E EF by
EZE. Since §§ = A~ 156 (with E replaced by EZ) and A" : La(dt/1; %) — La(dt/t; %) is bounded it
only remains to estimate the term . (t)e " fo Ne(s)e™* ’\EaL €5 fs ds. But again using the boundedness
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of A~! gives

oo
Ue(t)efm / ne(s)eixAEa—%sfs ds
0

00
S H/ ne(s)e M EJ €, fyds
X 0

2

’

00
S HAf ne(s)e *MEJE, fy ds
0 2

and the rest of the estimates go though as for :S'\i Altogether, this proves the stated bounds and convergence
for §G : ¥ — «.

(iii) Next consider the operators §§ 1Y — Y. We have

155 flly < 1SS Otret My + 1S5 Otes1 )y < NS5 Ote<1 Ol Loiedr; ) + 1S5 o1 ) Locar: o)
S €Nl xe<t flla@dr; o) + 1€locll Xes1 f 1 Lo 1)
S €Nl f Ny,

where the L, (tdt; Ly) estimate follows from [Part I, Proposition 7.1] and the L,(d¢; L,) estimate from
[Part I, Proposition 6.5], along with convergence. This immediately gives the estimates for S’f‘ Y > Y
since A~ La(tdt; ) — Lo(tdt; %) and A~' : Lo(dt; %) — Lo(dt; ¥) are bounded. [l

Denote by C(a, b; L;) the space of continuous functions (a, b) > t +— v, € Lo(S"; V).

Theorem 11.4. Assume ||€||. < 0o. If n > 2, then §§f € C(0, oo; L)) for any [ € Y. There are bounds
||§Zﬁ||2 S €Nl f oy, uniformly for all f € Y, t, e > 0, and for each f € %Y there is a limit function
Saf € C(0,00; Ly) such that lim._q ||S f; — Sa fill2 = O locally uniformly for t > 0. We have the
expression

t . o0 %~
Saf = / e UTINELE fds — / e STONE S, £y ds, (33)
0 t

where the integrals are weakly convergent in L, for all f € Y and t > 0. Finally, S f = DS4 f holds in
Ry x S™ distributional sense for each f € Y.
If n = 1, then the above results hold if %Y is replaced by Ys, for any fixed 6 > 0.

Proof. (1) Consider first the case n > 2. The proof is a adaption of the proof of [Part I, Proposition 7.2],
which we refer to for further details. We split the (0, 7)-integral
t

t e e ~ v T o~
/ nd(t, 5)e” TINI —eTFMNESE frds + e / nd(t, )eMESE, £y ds,
0 0

The same duality estimate of the second term as in [Part I, Proposition 7.2], given Theorem 10.1 and
Lemma 4.2, goes through here. For the first term, we note the estimate

e C9R — e Ry Smin(2,1, L),
t t—s
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For ¢ <2, this yields the bound ||€|| o fot(s/t)||fs||2 ds < €]looll flly. On the other hand, for 7 > 2 we
have the estimate

1 t—1 t
s 1
1€ 1l 0o (/ _||fs||2ds+/ —Ilfsllzds-i-/ IIfsllzdS)SJll%lloollfllo.u-
o ! 1 I—s -1

The (¢, 0o)-integral is estimated similarly, by splitting it
[e.¢] ~ ~ ~ o0 A~
/ ne(t,8)e” STONI — e M ESE frds +e ' / no(t,s)e “NEF€, £y ds,
t t

The second term is estimated as before, and for the first term we note the estimates ||e ¢~/ A (I—e 2 [\) <
min(z/s, 1, 1/(s —t)), which give the bound

t+1 ¢ ©
€1l 00 (/ ;”fs”ZdS +/ h”fs”st) S € looll fllay-
t t -

+1

(ii) Consider next the case n = 1. Since e '* = I on %+ and Eoi = N¥ on %+, we also need to estimate

( f ni(t,S)ﬁgo%sfv) —( / ooni(t,s)ﬁgo%sfs),
0 1 t I

uniformly for ¢ > 0, where 1320 is projection onto ¥ from Proposition 4.4. So it is enough to obtain the

the L,-norm of

bound

oo ~,
H / |PY %, fslds
0

On the one hand, we obtain from Proposition 9.7 the estimate

SNEN S lleys.
2

0o 00 00 1/2
”f | PR € flds ,Sn%noo/ ||fs||zds5||%||oo</ ||fs||%e““ds> S looll f Nl
1 2 1 1

On the other hand, note that A, hence B, ! is pointwise strictly accretive by Lemma 5.1 and by the
explicit expression in Lemma 5.5 (expressed in other coordinates), Pgo maps into constant functions and
|PYul S fi lu(x)|dx. Thus

1
S/ / €51 fs(x)|dx ds.
2 Jo Jst

1
H f PO, £l ds
0

Pick i : Ry x S' — 9 such that |, (x)| = 1 and |€,(x)hs(x)| = |€,(x)| when s < 1, and hg(x) =0
when s > 1. Cauchy-Schwarz inequality yields

1
/ /1 [€s O fs () ds dx S N€RNley= Nl flly < 1€M< Allzell £l S NENIS Nl
0 JSs

This completes the proof of the estimate of ||§2 fill2-
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(iii) As in the proof of [Part I, Proposition 7.2], replacing nf by nei — nf in the estimates shows convergence
of Ej and yield the expression for the limit operator. The relation Sy = DS follows at the limit from the
relation in Lemma 11.2. O

We turn to boundary behavior of the integral operators at t = 0.

Lemma 11.5. Assume ||€]|, < o0.

(i) Let f € X (or f € %) and define f°:= Ss f. Then f° and f satisfy
(3 + Do) f* = DEf
in Ry x S§" distributional sense. If f € &, then there are limits
21
lim ¢! / ISafs —h ™ |5ds =0,
t—0 ¢
where h™ := — fooo e_SAEO_D%&fs ds € Ej ¥ has bounds ||h~ |2 S || f Il
(i) Letn > 2. If f €Y and v := Sa f, then
@+ Doyv =%¢f
in Ry x 8" distributional sense, and there are limits
lim [|Ss fi =~ ]2 =0,
t—0

where h™ := — fooo e‘“N\EO_%ZSfS ds € EO_LZ has bounds ||}~z_ l2 SN fllw. If n = 1, these results for §Af
hold when replacing M by Ys, for any fixed 5 > O.

Proof. (i) By the convergence properties of S§ from Theorem 11.3, it suffices to show that for ¢ €
Co (R x S™; CU+mmy there is convergence

[ (a0.+5iD+oNs 1 )dt — [o e syds. e,

where f := S f;. For the term (0, #)-integral, Fubini’s theorem and integration by parts gives
o0 t
f / N (t, (=0 + A"y, e "TIVES D, f,) ds dt
0o Jo
o o .
— [T wesn@irae N opares.) as
0
o O;)g R o
-/ ( | Gty pEs eI g, %sfs) ds— [0 9 s ds
0 s 0

Adding the corresponding limit for the (¢, oco)-integral, we obtain in total the limit fOOO(Drps, Es f5)ds,
since D((E{)* 4+ (Ey)*) = (Ef + E;)D)* = D* = D.
To prove the limit of S4 f; for f € &, we note from the proof of Theorem 11.3 that

[e.0]
SAf,=zAf,+e“‘/ e “ME; D%, f, ds,
0
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where Z 4 f € Y*. When taking limits € — 0, we have used [Part I, Theorem 6.8 and Lemma 6.9]. This
proves the stated limit.

(i1) To prove (0, + 130)1) =%f,welett € (a, b) and differentiate §Z f to get

~ 1 % < ~ ~ ~ ~
9 fi= / M EFE s fios + B Eras fras)ds — Do(S5 1),
€

for small €. The first term on the right is seen to converge to € f in Ly(a, b; Ly) as € — 0, with an
argument as in [Part I, Theorem 8.2]. Note that this uses Ear + Eo_ = I, which holds also when n =1
by Definition 7.4. Letting ¢ — 0, we obtain d,v =€ f — 501) in distributional sense, since (a, b) was
arbitrary.

The limit for §A f: when f € % (or Y5 when n = 1) is proved as in [Part I, Proposition 7.2 and
Lemma 6.9]. In particular, this uses an identity

e .
Safi=Zaf +e“‘/ e NE €, fyds,
0
with Z4 f € C(0, 00; L) and lim;_,0 Z4 f; =0in L. O

12. Representation and traces of solutions

We now come to the heart of the matter. The natural classes of solutions for the Dirichlet and Neumann
problems, with L, boundary data, use the spaces Y° ~ Y and ¥’ ~ & from Definition 9.2.

Definition 12.1. (i) By a ¥°-solution to the divergence form equation, with coefficients A, we mean a
weak solution u of divy AVu =0 in O with || Vyeu||ae < 00.

(i1) By an &°-solution to the divergence form equation, with coefficients A, we mean the gradient
g := V,u of a weak solution u of divy AVu =0 in O'*" with || gy < o0.

Note the slight abuse of notation when referring to the gradient V,u rather than u as an Z°-solution.
The reason for this convention, here as well as in [Part I], is that the Neumann and regularity problems
are BVPs for g (and not for the potential u), and ¥°-solutions is the natural class of solutions for these
problems. This point of view is the one that lead us to our representations. However, when more
convenient we call the potential u itself an &°-solution.

Remark 12.2. (i) No boundary trace is assumed in our definitions, but will be deduced.

(i1) The seminorm || Vyu||ayo on Y°-solutions is modulo constants, which is unusual for Dirichlet problems.
Once we have shown that Y°-solutions have boundary traces, we will be able to put constants back
in the norm in a natural way.

(iii) For any ¥°-solution g, the potential u has a boundary trace in appropriate sense (replacing pointwise
values by averages) and the trace belongs to W21 (8"; C™). This is essentially in [Kenig and Pipher
1993]. We also recover this from our representations. See Section 13.

—tA —tA

Here and subsequently, we use the notation e

for e Mg,

g to denote the function (¢, x) — (e~ '* g)(x). Similarly
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X°-solutions. We begin with representation and boundary trace for solutions of the corresponding ODE.
Theorem 12.3. Assume that ||€||« < oo. Let f € X. Then f € L12°°([R€+; ) satisfies
f+(DB+"5N)f=0

in Ry x 8" distributional sense if and only if f satisfies the equation

fi=e"“ht +Saf,, forsomeht e EfK. (34)
In this case, f has limit )
!
tim e~ [ 114 folds =0, (35)
t— t
where fo:=h*+h~and h™ := — [;° e *NE; D, f; ds € Ey %, with estimates

max (|22, 1A~ 12) 2 |l foll2 S I1f llze-
If furthermore I — S4 is invertible on X, then
f=U—-S) e nt (36)
and || flle S NA 7T L2

Proof. The proof is an adaption of [Part I, Theorem 8.2], to which we refer for details. Here is a quick
summary.

We show that f satisfies (17) if and only if f satisfies (34). Assume (17) and apply Lemma 11.1.
Letting € — 0 and applying Theorem 11.3, we obtain the stated equation for f, with 4™ as a certain weak
limit as in part (i) of the proof of [Part I, Theorem 8.2], with A = |Dy| here.

Conversely, if f € ¥ satisfies (34), then we apply Lemma 11.5 with f° := f — e "*h*. Since
(3; + Dg)e " hT =0 and e"*h* € ¥ by Theorem 10.1, it follows that f satisfies (17).

Lemma 11.5 also shows existence of the limit fy. The stated estimates follow as in part (iii) of the
proof of [Part I, Theorem 8.2].

If I — S, is invertible, (36) follows immediately from (34), and the estimate || f|le < ||h™]> follows
again from Theorem 10.1. ]

Theorem 12.4. Assume that ||€||, < 0o0. Then g is an X¥°-solution to the divergence form equation with
coefficients A if and only if the corresponding conormal gradient | € % satisfies the equation

fi=e "™ hT +S4f,, forsomehT e EJ%. (37)
In this case, g has limit
1
lim f 1800) — g1 ()P dx =0,
r=1 1 —=r Jcpxi<a4n2

where g1 := (Bo fo),.1n + (fo), and ||g1]l2 < || gllae holds. If furthermore I — S4 is invertible on %, then
1A% 122~ llgill2 ~ g lloe-




1026 PASCAL AUSCHER AND ANDREAS ROSEN

Proof. The equivalence follows from Corollary 3.4 and Theorem 12.3. The limit and the estimates follow

on applying the conormal gradient-to-gradient map of Proposition 3.3 from the ones satisfied by f. U
It is worth specifying the previous theorem in the case of radially independent coefficients.

Corollary 12.5. Assume A is radially independent. Then any &°-solution has corresponding conormal
gradient given by f = e~"“h™ for a unique h* € E; ¥.

Remark 12.6. A careful examination of the proof of Theorem 12.3 in the case of radially independent
coefficients, shows in fact that for f € L12°C(R+; #) the weaker condition supy_, i /» % ft2t Il fs ||% ds <00
is sufficient to obtain this corollary, as in this case S4 = 0.

Y-solutions. We now turn to representations and boundary behavior pertaining to Y°-solutions.
Theorem 12.7. Assume that ||€||. < oo and f €Y.
(1) Then f € LIZOC([R{JF; #0) satisfies o; f + (DB + %N)f =0in Ry x S" distributional sense if and
only if f satisfies the equation

fi= De At 4 Safi, forsomeh™ e E(J{Lz. (38)

Here h is unique modulo ESF%L and ”]:L+||L2/%L < |\ fllw, and if furthermore I — S 4 is invertible
on%y then

f=U—-8S)"'De” i (39)
with || flle S 1811 e

(1) If (38) holds, let v; := e IART + gAft. Then f = Dv and 0;,v+ (BD — "T_IN)U =0, and v; has L,

limit
tlii% v, —voll2 =0, (40)
where vg:=ht +h~ and h~ := — fooo e*S[\EO*%SfS ds € EJLZ, with estimates |h~ || S| fllw and
lvella S 1AT 2+ 11 fllow,  forallt > 0. (41)

Proof. The proof is an adaption, with some modifications, of [Part I, Theorem 9.2], to which we refer for
omitted details.

(i) Assume (17). We apply Lemma 11.1 to f. Letting ¢ — 0 and applying Theorem 11.3, we obtain for
f the equation

fi=fi+Saf
2¢ _

with the limit f, = lime_ e} fe e _S)AESr fs ds. From here, one can proceed as in [Part I, Theo-
rem 9.2] to represent f; as Doe "*ht for some ht € Ear €, or use a simpler argument (owing to the
boundedness of the boundary here): since Dy : EO+ 7 — EO+ € is surjective, there exists h; € Ear € such
that f, = Dgyh,. From there and f,0+, = ¢ 1A fto, we conclude as in [Part I] that the weak L;-limit

ht :=1lim,_, h, exists and that f, = Dye "*ht.
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To write Dge '“h™* as De~"Mit for some At e ES_LQ, we use Lemma 4.6. Indeed, there is an
isomorphism M : # — L,/ %L with Dy = D o M on D(Dy). It is easy to see that the restriction of M
to EF% maps onto Ef Lo/ EF%+. Now, on D(Dy), Dye ™A = e **Dy=e"*DoM = De~'A o M. By
density and boundedness, the left and right terms agree on %. Thus, At = Mht € Ear Lo/ Eg ¥+ satisfies
Doe " ht = De AT

We conclude that f; = De™’ Ajpt 4 EA fi, with estimates

A 1z, 5er = 10T Nl & | Doe™ *h* |y = | f = Saflly S If Nl (42)
The middle equivalence uses Theorem 10.1.

(i") Conversely, if f € ¥ satisfies (38) for some ht e Ear L,, then we apply Lemma 11.5 with
f0=f—De it = f — Doe " Mht,

with ht € E(;r % given by the isomorphism above. Since (3, + Do) Doe "“h* = 0, it follows that f
satisfies (17). For the estimate of || f ||y when I — Sy is invertible on %, use that the last estimate in (42)
in this case is ~.

(i) Lemma 11.5 and Theorem 11.4 show the ODE satisfied by v, existence of the limit vy and the estimates
of ||v;||» and ||ﬁ_||2. This completes the proof. O

Corollary 12.8. Assume that ||€||, < co. With the notation from Theorem 12.7, the following holds.

. . . . . _nl . _
(i) Any Y°-solution u to the divergence form equation has representation u, =r~ 2 (v;), withr =e™',

for some v as in Theorem 12.7, boundary trace in the sense lim,_. 1 |\u, —u1|2 = 0, and there are

/ ui(x)dx

(ii) The map taking M°-solutions u to boundary functions h™ = ESL vy € Ear L, is well-defined and

estimates

_n=1
lurlla S 772 [IVaullae + , re(0,1).

bounded in the sense that

Vit o < Vet + ‘/ w1 (x) dx
Sﬂ

(iii) If furthermore I — Sy is invertible on N, then this map is an isomorphism and its inverse E{f Ly>
ht — u € {Y°-solutions) is given by
uy =7 (L + 84 = Sp) "' Dye i) (43)
with estimates | Vyullao + | [g u1(x) dx| = [|i*]5.
Proof. (i) Let f be the conormal gradient of u and define 4% and v applying Theorem 12.7. As in the
proof of Proposition 3.5, it follows that
up =r""(v;), +c

for some ¢ € C", where r = e~ " € (0,1) and 0 = "T_l
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Recall that by (38), ht s uniquely defined in E +L2 modulo E +9+ and we now use this freedom
to choose it in E+L2 such that ¢ = 0. Indeed, by Lemma 7.5, EJF%L N=%' ={[c 0];ceC™} and
since A = oI on %+, we have

6712\([0 O]I) =€7UI[C O]t’ ce (Dm. (44)

(The superscript 7 of the brackets denotes transpose.) Replacing 2t by At —[c O], then f, remains
unchanged, et s replaced by e~ "Mt —e=o![¢ 0], and (vs), by (v;), —e~°’c. Thus we may assume
c=0.

As v; has an Ly (S"; C'+™) limit vy when r — 0, one can set u; := (vg), and u, converges in
L,(S™; C™) to u;. For the estimate on |ju, ||, it suffices to prove

ot
lur —mlly Sr= 7 | Veullae, 7 e€(0,1).

with m the mean value of ©; on S”. We may assume that m = 0 as by (44) this amounts to modifying ht
modulo N~ %' without changing the conormal gradient f of u. We have

lurllz <7 Mol S AR 2+ 1 f ).
By orthogonal projection onto N~ %=, it follows ||z ]|» ~ ||h+||L2/%L +1 [ (h),dx| since h™ € E+L2.

We can now conclude since ||h+||L2/%L < I fll and, since m =0,

) 1 — () D)) dx| SMh 2 S f Nl

(W), (x)dx| =

Sn
(i) The argument using (44) shows that gi\jen a Y’-solution u and its conormal gradient f, there
exists At € E;Lg such that u, = r~(e"*h™ + S4f,).. Moreover, h* = Egvo by construction
and the estimate ||fz+||2 < [ Vett|lae + | f on U1 (x) dx| follows from the above argument. To define
the map and prove its boundedness, it suffices to show uniqueness of such ht e E(;r L>. So assume
Uy =r""(e Mt 4S84 f) =r° (e_“\ﬁ;r+§Af,)l with f the conormal gradient of u and /T, fzf € EJLZ.
This implies that f; = De~"Mh* + Ss f, = De™"™h} 4 Sa f, so we know that i+ — i € Ef %" by
Theorem 12.7. As Ej 9%+ = N=9%", write A — h+ [c 0], with ¢ € C™. We have from (44) that
0=r—( "Mt - hf))L =c.

(iii) Given it € E L, define

fii=—- SO De ARt v = e MR 4 Safi, w=r"()..

By Theorem 10.3 and Lemma 11.5, v satisfies the equation o, U—l-B()v =0, and by Proposition 3.5, u extends
to a Y-solution and f is the conormal gradient of u. For the continuity estimate || Vit ||ayo + ‘ f g u1(x)dx ‘

< 1A ||, Theorem 12.7 implies || f[loy S 1A (12 and | fg. w1 (x) dx| < llurll2 S lvolla S AT 2 + 1 £ llay
< ||k 2. This map clearly inverts the map in (ii). This completes the proof. U

It is worth specifying the Corollary 12.8 in the case of radially independent coefficients.

Corollary 12.9. Assume A is radially independent. Then any Y°-solution is given by u = rt (e™! ;\fﬁ) n
for a unique h* € E+L2 with |t & || Veu || + {fs,, uy dx‘
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Conclusion. 1t is clear from (36) that provided I — Sy is invertible on ¥, the ansatz
Ef#—%:ht— fi=U—S) e 0t

maps onto all conormal gradients of &“-solutions to the divergence form equation with coefficients A.

Similarly, (43) implies that provided I — S4 is invertible on %, the ansatz

EXot— v it s up = r'T ((1 +SaI - SA)_lD)e_’;‘fer)L,

maps onto all Y?-solutions to the divergence form equation with coefficients A.

Thus we have a way of constructing solutions and our two main goals towards well-posedness results
are the following.

First understand when invertibility of / — S4 holds. This will be done in Section 16.

Secondly, introduce the boundary maps that connect the traces of solutions to the data for the BVPs
and invert them. This is the object of Section 17.

Before we do this, we continue with different a priori representations of solutions in the next section.
This will be useful to prove nontangential maximal estimates and obtain convergence of Fatou type at the
boundary.

13. Conjugate systems

The results in the preceding section allow to represent ¥°-solutions in terms of the conormal gradient
f. Actually, if one is interested in u itself, one can try to further describe the corresponding potential
vector v. Similarly, representation of Y°-solutions is embedded into a potential vector v but it could be
interesting to describe the properties of the conormal gradient f. Both are related by the rule Dv = f.
This leads us to the following notion.

Definition 13.1. A pair of conjugate systems to the divergence equation with coefficients A is a pair
(v, f) € LY (Ry: Lo(S"; V) x LY (Ry; La(S"; V) with
(1) v, € D(D) for almost every ¢ and floo ||th||%dt < 00,
(ii) v is an R™ x S"-distributional solution of (19),
(iii) f; = Dv, for almost every ¢t > 0,

(iv) f is a ¥-valued RT x S"-distributional solution of (17).

By Proposition 3.5 and its proof, a pair of conjugate systems is completely determined by v satisfying
(1) and (ii). That is, f defined by (ii1) automatically satisfies (iv). Moreover, the function

up=r~ V20N, r=e"€(0,1), (45)

extends to a weak solution of divy AVyu =0 in O'*" and f must be the conormal gradient of u. We say
that a weak solution u and a pair of conjugate systems (v, f) to the divergence form equation for which
(45) holds are associated.
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It is our goal to give a description of the pair (not only f or v) in each case. Recall that in integrating
Dv = f, v, is only determined by f; modulo % so there is a choice to make.

Theorem 13.2. Assume ||€||, < oo. Let u be an X°- or Y°-solution. Then u has an L,(S"; C™) trace u
at the boundary and there exists an associated pair of conjugate systems given by

{v,:e"[\vo—kuﬁ,, (46)

ft = e_tAfO+ Wy,
with the following properties.

(1) Ifu is an X°-solution, then u| € W21 (8™; C™), (vo, fo) € D(D)x¥ with Dvy= fo, |Vsuill2 S| foll2 <
| Veullgeo, lvollz S ||qu||%o+|/s,, uydx|, D; =w; €¥*, v, € C(RT; Ly) and ||v; —vollr+ | Ws ]2 =
O(t) fort > 0.

(i) If u is a Y°-solution, then u; € Ly(S"; C™), (vo, fo) € L* x WQ_I(S”; V) with Dvg = fo, |luill2 <
lvoll2+ 1l folly 1 S IVxttllyo + | [0 urdx|, Dy =w; €W, v; € C(RT; L) and ||v; — voll2+ ||y |12 =
OQ) fort > 0ando(1) fort — 0.

Besides &°- and %Y°-solutions to the divergence form equation, we shall in the following sections also
consider the following classical class of variational solutions.

Definition 13.3. By a variational solution to the divergence form equation, with coefficients A, we mean
a weak solution of divy AVu =0 in O'*" with || Veull» < 0.

It is illuminating to see how the representation for variational solutions lies in between the ones for &°-
and %Y?-solutions, independently of solvability issues which are well-known for variational solutions. We
state this result without proof as it is not used in this paper. Note that, as compared to Theorem 13.2, the
Carleson condition ||€]|, < oo is not needed in the following result.

Proposition 13.4. Let u be a variational solution to the divergence form equation with coefficients A.
Then u has an L,(S"; C™) trace uy at the boundary and there exists an associated pair of conjugate
systems given by (46) with the following properties:

uy € Wy'2(8": €, (vo, fo) € DUDIY?)x Wy (8™ V) with Dvo= fo, [volla S I Veeulla+| fgu w1 dx],
lutllyire S M folly2 S I Vxulla, Dy = wy € La(R™; La), v, € C(R™; La) and |lv; — voll2 + [y l2 =
0(t1/2)f0rt > 0.

Here W21 s equipped with homogeneous norm and Wz_ Y2 is its dual.

Proof of Theorem 13.2. (i) From Theorem 12.3, we have

fi=e M hT+Safi=e " fotw, w i=Safi—e " h.

with fo=h"+h" €%, || fol2 S | Veulge and h~ = — [[° e Y E; D%, f; ds.
We define vo, 7T, A~ and v as follows: At is the unique element in 1??4(;FL2/Z?J(J)”27€L such that DAt =
ht (= Do(Dy ' h*)), h™ = — [ e ME €, fyds, vo=h* +h~ and

—tAT T —tA ~ ~ S —tAT—
voi=e M Sufi=e Mg+, W i=Safi—e MhT.
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Clearly, hte D(D). Next, Ah™ € L, because € f € Y*, so h~ e D(D) = D([\) and Dhi— =h~. So
Vo € D(D) and DU() = fo.

*’Avo — vg||2 follows from vy € D(D).

The estimate on ||e
Next, Dw; = w; by construction and w; € Y* from the proof of Lemma 11.5. (In fact, w;, is nothing
but Z 4 f; defined in that proof.)

The estimate on ||w; ||, follows from
t - 00 - - -t -
W, = / e TINEFE, fods — / (eI — e UTIMEE, frds +e7' / e *MEy €, fids,
0 t 0

using € f € Y*, the uniform boundedness of the semigroup and its decay at infinity. Details are left to the
reader.

Eventually, as in Corollary 12.8, one can adjust ht by adding an element in N~ such that x and v
satisfy (45). In particular, # has an L, trace. It also follows that f is the conormal gradient of u# with a
limit fo when # — 0 by (35). So u; € W, (8"; C™) with || Vsuill2 < | foll2.

(i1) By Corollary 12.8, we have description of

ne ~ iR - ~ ~ —tAT—
v=e Mt +Safi=e v+, W =Safi—e MhT,

t

with vy = h* +h~ such that u and v satisfy (45) and of trace and growth estimates for ||e™ [\vo —voll2 +

|[w;]l2. It remains to consider the representation of f. We have by Theorem 12.7,
fi=De "Mt £ 84 = De vyt w,,  w, = Saf, — De” "M~ = D,
Define fo := Duy in distribution sense, so that fo € W5 (5" ¥) and | follyi;1 S llvoll2. We obtain

fi= e_tAfO + wy

and here, the action of e " is extended to Wz_ Lasm by extending the intertwining formula De~"" =

e AD. O

14. Non-tangential maximal estimates

Theorem 14.1. Assume ||€|cnL,, < 00. Then any Y°-solution to the divergence form equation with
coefficients A satisfies

2
2 Y 2 2
il S IR S [ VP = b+ | [ e dx
Ql+n n
When n = 1, the conjugate u of a ¥°-solution u also satisfies the estimates
2

il SIN@IES [ Vel —|x|>dx+‘/ i1 (x) dx
Ql+n sn

The proof follows the strategy of [Part I] with a slight modification in view of preparing the proof of
almost everywhere nontangential convergence.
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Proof. The estimate ||ﬁ;’ (w)|l2 Z lluy |2 follows from Lemma 9.3 and Corollary 12.8(i). For the upper
bound, we proceed as follows. From the representation u, = r~°(v;), with v, = e"[\vo + w; in
Theorem 13.2, it is enough to bound ||ﬁ*((e_”~‘vo)L)||2 and ||ﬁ*(uh)||2. Theorem 10.3, and Lemma 14.2
below, show that

INS@) 2 S llvolla + 1 Flley SUAT 2+ 1A N2+ 1 flly S A I 9 + V hrdx|+ 1 f o,
Sn

and 5% 1,56t S 1 f Nl
Corollary 12.8.
When n = 1, replacing A by the conjugate coefficients A defined in Section 5 in the above argument,

Johtdx| = | [euuy — h7)dx| < | [0 urdx| + || fllw, as in the proof of

and using |V, ii| & |V,u|, proves the estimates for ||ﬁ;’(ﬁ)||2. [l
Lemma 14.2. Assume ||€|cnr,, < 0o. Then we have, for each p < 2,
N2 D)2 + I N2 (B 12 S 1€lcnra £ lla.

Here N is defined similarly to N, replacing Ly averages by L, averages. When n =1, we also have

1N 2 S 1€l ezl flla.

Furthermore, these estimates hold with W replaced by the truncation ;.. w, and | f ||02y replaced by
00 2 .
Jo~ W f I3 min(z, T) dt, for any T < 1.

Proof. The proof will follow closely the strategy of [Part I, Lemma 10.2] on [Rf". We remark that
NP < N, pointwise. Thus we will work with N,, and indicate when we need to consider N? or the
normal component. Recall that N, estimates the truncation of the function to ¢ < 1.

(i) From i, = S4 fi— ¢~"M = and the definition of h,
t -~ o o0 -~ o - o0 -~ o
W, = f e UINERE, fds — / e CTINESE frds +e N f e ME €, fyds
0 t 0
t N - o0 N _ . -
= f eI —e BN E €, fids — f e SN —e M ME € frds e f e N, fods
0 t 0

=L —-0L+ I

Note that Eg + E(; = [ (also in dimension n = 1) is used in getting /3. For the first two terms, we use
Schur estimates as follows. Since [|e” 94 (1 —e=2M)|| < s/t, we have, as in [Part I, Lemma 10.2],
2

- 1 t 3 dt
||N*(11)||%§f0 </0 st lllfsllzdS) 75||x,<1f||%y.

Similarly, since ||e*(3*t)[\ - e*ZtA)ll <t/s, we have

- 5 1 00 X th 1 00 5 o0 s dt
||N*<12>||25/ (/ s~ ||fs||2ds) —5/ (f /s ds) (/ tllfsllzdS)—
0 ' t 0 ' ' t
00 min(s, 1) dt
5/ (/ t—)llfslléclS=||f|I%-
0 0 4
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Note that the estimates so far hold for all w, not only for its normal component. By inspection, the
stated estimates of the truncated maximal function hold for these terms.
(i1) It remains to consider I3 =e™! A f(; e—shg s fs ds. To make use of off-diagonal estimates in Lemma 6.2,
we need to replace e " by the resolvents (1 + it D). To this end, define Vi(2) = e Rl — Q1 +ir)™!
and split the integral

- t - - o] - o] - -
e A / e M€, fy ds = ¥ (Do) f e e fods — / Vi (Do)e Y€, fy ds
0 0 t
t 5 o t
+f (I +itDy)" (e A — D&, f, ds+(l+itD0)_1/ €5 [y ds.
0 0

For the first term, square function estimates show that 1/f,(l~)0) : Ly, — ¥* C ¥ is continuous, and
Theorem 11.4 shows || fooo e“‘[\%sfs dslla S I flly (or S | flly, when n =1, but || flly, S || flloy for
conormal gradients of solutions by Proposition 9.7). For the second and third terms, we proceed as above
for I; and I by Schur estimates using ||, (Do)e ™| <t /s, and |(I +it Do)~ (e — )| < s/t

(iii) It remains to estimate (I + z't5())_1 fot €, fs ds, and this is where we use ||€||¢. Consider first ﬁf
Fix a Whitney box Wy = W (19, x¢). We proceed by a duality argument in the spirit of Corollary 6.3, and
bound ||(1 + itDy)~! fo[ €5 fsdsllL,(w,) by testing against h € L,(Wo; V), 1/p+1/qg = 1. As in step
(iii) of the proof of [Part I, Lemma 10.2], this leads to a pointwise estimate implying

t
‘Nf ((I—i—ith)lf & fs ds>
0

Since the proof here is essentially the same as there, but replacing R" by S”, using area and maximal

Slélcl flla.
2

functions on §" instead, we omit the details. The main ingredients are the L, off-diagonal estimates for
I+ rﬁg)*l from Lemma 6.2(i) and the tent space estimate [Coifman et al. 1985, Theorem 1(a)] of
Coifman, Meyer and Stein.

To estimate ﬁ*((l +i t50)_] fot €sfsds).), we proceed by duality as above. We now instead test
against h € Ly(Wy; V) with hy =0 and use the L, — L, off-diagonal estimates for (I +i tﬁg‘)_l from

Lemma 6.2(ii) to obtain
t
'N* (((1 vithy ! [, ds> )
0 1

It remains to see that, when n = 1, the N, estimate also applies to the tangential part w,. Consider

S €l flly.
2

the transformed conjugate coefficients B =A and By = A, from the proof of Proposition 5.4, and let
E = Eo — B. Then f := J' f solves (3; + DE)f = 0, which yields the estimate of ||ﬁ*(w”)||2 since
(§Af)” = (J’§Af)L = (ng)r This completes the proof. O

Remark 14.3. The proof also shows a priori estimates for the operators S4 when f is not supposed to
be a conormal gradient of a solution. Assume [|€é||cnr,, < oo. If n > 2, then we have for each p < 2,

INPSa )l + IN(SaH) D2 SMI€Nere I flly,  f €Y.
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When n = 1, we have for each § > 0,

INSa 52 S NElcnrglfllay.  f € Ys.

15. Almost everywhere nontangential convergence

Since solutions are not defined in a pointwise sense, the classical notion of nontangential convergence at
a boundary point x is replaced here by

1im|W"(rx)|_1/ h(y)dy exists,
r—1 We (rx)

which we call convergence of Whitney averages at x because the region W°(rx) is a Whitney ball. Note
that since the Whitney balls at x cover a truncated cone with vertex x, it really amounts to a nontangential
convergence. Besides, a slight modification of the proofs below yields limits of averages on Whitney
regions W°(z) for z in a fixed cone with vertex at xg, as |z| — 1. The exact choice of the Whitney balls
does not matter.

Definition 15.1. Let 4 be a function in O'*” with range in the bundle V" in the sense that i (rx) € V', for
allr >0and x € $". Let xg € S” and 1 < p < co. We say that the Whitney averages of h converge at x
in L, sense to ¢ € V', if for any/some section ¢y, € C*(S8"; V') with ¢y, (x9) = c,

. —1

lim |W* (rxo)| / |h(y) — cx,(MIPdy = 0.
r— 1 W() (rxo)

Here W°(x) denotes a Whitney ball in ©!*” centered at x. We say that the Whitney averages of h converge

in L, sense almost everywhere to hy with respect to surface measure if this happens with ¢ = ho(xo) for

almost every point xo € S”. For functions with values in a trivial bundle, the sections c,, are just constant

functions.

Note that the limit does not depend on the choice of the section cy,, so this explains the “any/some”
and it suffices to prove the existence of the limit for one chosen section. Clearly this notion entails
convergence of Whitney averages.

Theorem 15.2. Let A be coefficients with ||€||cnr,, < 00. Let u be a Y°-solution to the divergence
form equation with coefficients A and let u; be the boundary trace of u given by Corollary 12.8. Then
Whitney averages of u converge in L, sense almost everywhere to uy. In particular, Whitney averages of
u converge almost everywhere to u.

The result also holds for the [R{f” setup of [Part I], with almost identical proof.
Proof. As in the proof of Theorem 13.2, we can write
u(x) = e (e~ Mg + 1)), (x),

where x = e 'x,0 = %, vo € Ly with |Jvgll2 < [ Vett|laye + ‘fsn uldx} and u; = (vg),.
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Let p < 2 as in the third inequality of Corollary 6.3. Let xo be a point on S”, and let B(xo, t) be the
surface ball centered at xo with radius ¢. Adapting the usual Lebesgue point argument for p =1, it is
seen that for almost all points xg

lir%IB(XO, t)II/ [uo(x) — vy, (X)|Pdx =0
— B

(x0,7)
for any section vy, € C*°(S"; V') with vy, (x0) = vo(xo) and one can further assume Dv,, = 0, which in
particular implies that its normal component is the constant scalar function (vg(xg)). = u(xg). The key
point is the identity

() — 1 (x0) = (€% e (vg — 1)) () + €7 (y), (x), (47)

which follows since Dyvy, = —0 Nv,,, and hence Av,, = ovy, and e"’e"Ava = Uy,

From Theorem 14.1, ||]V*(Xt<rzbl)||2 — 0 as T — 0. Thus we can assume that the Whitney averages
of w, converge to 0 in L; sense at x¢. It remains to show, with Ay, := vo — vy,
lim |W(t0,x0)|_1/ |(e‘”e_“~\hx0)l(x)|2dt dx =0.
to—0 W (10, x0)
As in [Stein 1970, Chapter VII, Theorem 4], the rest of the argument consists in using the maximal
estimates in Theorem 10.3 with some adaptation. As we do not have pointwise bounds on the operators

that substitute the Poisson kernel we also have to handle more technicalities. Let 0 < cofg < T with
to, T < 1 to be chosen and ¢, 1to <t < coty. In the L, average, write

(e ). = (1 +ito)(I +itDo) ' hyy). + (7 e M hyy — (1 +ito) (I +it D) hyy)..
For the first term, we use (26). Fixing ¢ and taking only the L, average in x, this gives us a bound

Y o (|B<xo, 2fr)|1/
B

jz2

1/p
_ |th(x)|pdx> .
(x0,271)

This is controlled by
MY (hy) (x0) + (to/T)MP (hyy) (x0),

where M is the Hardy—Littlewood maximal operator over surface balls on ", M? (h) := M (|h|?)'/?, and
the subscript T means that we restrict the maximal operator to balls having radii less than 7. This control
is obtained by truncating the sum at 2/ & /¢ and using that ¢ ~ ty. The average in # now yields the same
bound.

For the second term, we note that (e‘”e_’]\ —(1+ito)(I + itﬁo)_l)vx0 = 0. Thus we may replace
hy, by vo in this term, and write it

("W (tDo)vo), + (€' — (1 +iot) ™) (I +it Do)~ vp)..

with ¥ (1) := e~ — (1 4+ix)~!. The first term has estimates

~ ~ T ~ dt
||N*<x,<fw(tDo>vo)||%5/0 I (t Do)vo I3 —=0, -0,
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by Lemma 9.3 and square function estimates. Therefore we can assume that Whitney averages of
(e?"r (t Do)vg), converge to 0 in L sense at xo. By Theorem 10.3, the second is controlled by

T M (v9) (x0).
Thus it remains to show convergence to zero of
MY (hyy)(x0) + (to/T)MP (hy,) (x0) + TMP (v0) (x0).

Since MP (vg) € L(S™) as p <2, we can further assume for x¢ that M? (vy) (xg) < co. For such fixed xg it
follows that M? (hy,)(x0) < M7 (vo)(x0)+MP (vy,)(x0) < o00. We now make Mt (hxy) (x0) +TMP (v9)(x0)
small by choosing T small. Then choose #y < 7 to make (to/7)M? (hy,)(xo) small. All the constraints on
Xxo are met almost everywhere and this completes the proof. O

Remark 15.3. The proof of almost everywhere convergence for averages applies to v (with N?, p <2,
if n > 2). The starting point is

€% 0, (X) — Vg (1) = €7 e M Wy — ) (x) + €711 (x)

replacing (47) and the rest of the proof is as above. The only needed modification of the argument is that
we now use (25) instead of (26). We obtain almost everywhere convergence of Whitney averages of e”’v
in L, sense to vy for p < 2. Of course, the term e’ can easily be removed in the end. This factor was
needed in order to have e®’¢=°A = on N(D).

Corollary 15.4. Assume that A satisfies ||€|cnr,, < oo and is such that all weak solutions u to the
divergence form equation with coefficients A, for some fixed constant ¢ > 1, satisfy the local boundedness

property
1/2
sup [14(x)| SC<ICBI_1/ |u<y)|2dy> ,
cB

xeB
with a constant C independent of u and of closed balls B with cB C O'*". Then any ¥°-solution to the
divergence form equation with coefficients A converges nontangentially almost everywhere to its boundary

trace.

The local boundedness property is a classical consequence of local Holder regularity for weak solutions.
For real equations (m = 1), the latter follows from [Moser 1961; De Giorgi 1957]. For small complex L,
perturbations of real equations, this is from [Auscher 1996]. For two dimensional systems (n = 1), local
regularity follows immediately from reverse Holder inequalities described in Theorem 9.8 and Sobolev
embeddings. For any dimension and system (m > 1, n > 1), with continuous in O or vmo coefficients,
this is explicitly done in [Auscher and Qafsaoui 2000].

Proof. Applying the local boundedness property to u — u;(xp) on Whitney balls yields the desired
convergence for almost every x¢ from Theorem 15.2. (I

We know describe new almost everywhere convergence results for ¥°-solutions.
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Theorem 15.5. Let A be coefficients with ||€||cnL,, < 0o. Let g be an X°-solution with potential u to the
divergence form equation with coefficients A. Then for any p < 2, Whitney averages of g, = d;u, and of
(Ag); = (AVyu),, converge in L, sense almost everywhere to (g1), and (A1g1), respectively, where g
is the boundary trace of g given by Theorem 12.4.

Furthermore, if we have pointwise ellipticity conditions on A, then the Whitney averages of Vyu and
0y, u converge in L, sense almost everywhere to g\ and (A1), respectively.

Finally, in all cases, Whitney averages of the potential u converge almost everywhere in L, sense to u;.

Recall that pointwise ellipticity holds when m =1 (equations) or n = 1 (two dimensional systems).

If A is continuous in @!1”, then pointwise accretivity can be deduced from the strict accretivity in the
sense of (2), for any m, n. See [Friedman 1976], for example. We do not know if this convergence of
Vxu and 9,,,u holds when m > 2 and n > 2 in general.

Proof. We begin with the convergence for u. It is a straightforward consequence of the growth ||v; —vgll2 =
O(¢) for t > 0 in Theorem 13.2 and u(x) — u1(x) = (¢ ?"v, — vg), (x). Let us turn to the gradient.

By Theorem 13.2 we have f; = e~ fo + w, for some fy € % and w € Y*. From the correspondence
between g and f in Proposition 3.3, it follows that, modulo a rescaling, (g),7 + (Ag), equals Bf. Thus
we need to prove convergence of Whitney averages of

B, f; = e "M (By fo) + (Boe ™™ — e"A By) fo — €re ™ fo + Biw,.

It is clear that any Y* element has Whitney averages converging almost everywhere to 0 in L, sense.
This applies to the last three terms. Indeed, we have ||w|y+ < 0o, and hence ||Bw|a+ < co0. Also
€67 follays < 11€]lslle™ folle < oo. Furthermore, using Bo(I +itDBy)~! = (I +itByD)~' By, we
write

(Boe—tl\ _ e_t[\BO)fO
= Bo(e 1PN — (I +it(DBy+0N))™") fo+ Bo(( +it(DBy+0N))™' — (I +itDBo)™") fo
+ (I +itByD)™" — (I +it(BoD — o N))"")Bo fo+ (I +it(ByD — o N)) ™' — e "1BoP=oNN\ By fi)

Square-function (that is, Y*) estimates hold for the first and fourth terms, whereas the second and third
terms have L, norms bounded by Ct. Hence x;-;(Boe™"* — e~tA By) € ¥*.

For the term ™! [‘(Bo fo) we proceed as in the proof of Theorem 15.2, modified as in Remark 15.3.

To complete the proof, we now assume that A is pointwise elliptic. Up to rescaling, we have to prove
convergence of Whitney averages of the conormal gradient f of u. To see this, write f = By LBy f)
using that By is now invertible in L (S"; £(7')), seen as radial coefficients on O'*". Now the same
argument as above replacing B; by By shows that the Whitney averages of By f converge in L, sense to
By fo almost everywhere for any p < 2. We claim that the notion of convergence in L ,-sense of Whitney
averages is stable when p < 2 under multiplication by bounded radially independent coefficients. Assume
that /2 has such a convergence property and let M € L (S"; £(7')). Select smooth sections &, and My,
with Ay, (xo) = h(xo) and My, (xo) = M (xp). Then take the L, (W (1o, xo) average of

M()h(y) — My (V) ho (y) = (M(y) = My (y)DA(Y) + My, (¥) (h(y) — o ()
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with y =e™"y € W(t, xo). For the second term, one uses the assumption on 4 and that M, is bounded.
For the first term, use Holder inequality with exponents 1/p =1/r +1/q and p < r < 2. The exponent g
falls on M (y) — M,,(y) and Lebesgue convergence theorem applies (this is a further almost everywhere
constraint on xp). The exponent r falls on 4 which has uniform control by assumption. O

16. Fredholm theory for (I — S N

We saw in Section 12 that the invertibility of / — S4 on & (resp. %) allows to represent X° (resp. Y°)
solutions through Cauchy type extensions

f=U-S) e ES fo

(resp. f = — SA)_IDe_t;‘ Ea“vo)). Working in the space X or %, it is clear from Theorem 11.3 that

I — S, is invertible provided ||€||. is small enough. In this section, we use Fredholm operator theory to

relax this condition and show that it suffices to assume this smallness only near the boundary ¢t = 0. Our
n—1

discussion in this section is limited to the specific but relevant case where o = *5-.

Theorem 16.1. Assume that ||€]|. < 00, so that S, is bounded on ¥ and %Y. There exists € > 0 such that
if € satisfies the small Carleson condition

hm ||Xt<r%g”* <E€, (48)
7—0

then I — S, is invertible on ¥ and V.

We remark that (48) is equivalent to the small Carleson condition (10). The proof of Theorem 16.1
requires the following lemmas.

Lemma 16.2. Assume ||€||x < 0o. Then I — Sy is injective on X.

Proof. Assume that f € & satisfies f = S4 f. Lemma 11.5 shows that f has trace h~ € E; #. As
X C Ly(Ry; L) and f is valued in #, we have f € Ly(Ry; #). Extend f to fle L)(R; %), letting

£l It t >0,
P et h—, <.

To verify that f! satisfies 3, f' + (DB' +oN) f! =0in R x S" distributional sense, where B,1 := B, for
t>0and B} = By for t <0, consider a test function ¢ € C§°(Rx §"; CUT™) and let & (1) := 1 —n°(|t| /€),
where 7° is the function from Lemma 11.1. Then

/((—at+(B‘)*D+oN>¢,f‘)dt
R
— [ (€04 BY D+ aN) (1 =€06). )+ (=8 + (B D+oN) ). ) dr

2e —€
=0+/ E((—=3+(BY'D+oN)p, fdt+e ' | (¢, fHdr —61/ (¢r, £ dt
R 2e

€ —

— 04 (o, ™) = (do. k") =0,
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with ¢ (x) := ¢ (0, x), using that the equation holds both in Ry and R_. Hence 3 f'+(DB'+oN) 1 =0

in all R x §". Since o = “>1, extending Proposition 3.3 from O'*" to all R'*" (see Remark 3.6), we see

that f! corresponds to a function g! € L, (R'"*"; CU+M™) solving div,(A'g!) =0, curl, g! =0 in all
R!t" with Al corresponding to Bl. To verify that this forces gl, and therefore f Iand f, to vanish, note
that for any fixed R > 0 we can find u such that g' = V,u, where f|x\<2R lul>dx < R? f‘x|<2R |g'|? dx by
Poincaré’s inequality and the implicit constant is independent of R. Take a test function n € C;°(]x| <2R)
with n =1 on |x| < R with |[V,n| < R™!, and use that div,(A'g!) = 0 in the distributional sense to get

/ 1" dx gRe/(Algl, Veu)ndx = —Ref(Algl, Venudx
|[x|<R

1/2 1/2 1/2
5(/ |g1|2dx) (/ |g1|2dx) 5(/ |g1|2dx> 15"l
R<|x|<2R |x|<2R R<|x|<2R

Letting R — oo this shows that g! = 0, which proves the lemma. ]

Lemma 16.3. Assume ||€||x < 0o and fix t > 0. Then there are lower bounds

I f Laz.o0i9) SN = Sa) fllLy(z/2.00:9) 5
where the implicit constant depends on t, for all f € Ly(Ry; ) such that f;, =0 fort < t.

Proof. By Lemma 11.5, f and f°:= (I — Sy) f satisfy (3, + DBy+0oN) f* = (3, + DB+0oN) f. Asin
Proposition 3.3 combined with Proposition 2.1, this can be translated to

divy (A18%) = divy (Ag),
curl, g% = curl, g,

in O'*" distributional sense, where g° =r="+D/2((By £2) 71+ (f2)) and g, = r =" FtV2((Bf,) i+ (f)1).
Write @l” = {|x| < e 7}, so that @?” C @ijzn . In particular, the last equation implies that there is a
potential u : @iﬁ” — C™ such that

¢—¢"=Veu in @lj’zn,

and we may choose u so that ||u||L2(@i/+2,,) Slg-— g0||L2(®i/+2n). Fix n € C80(®1+n) such that Nlgi+n =1

and suppn C @iﬁ” Using the first equation and supp g C @i*" gives

Re / (Ag. g — g% dx = Re / (Ag, Vi (n)) dx = Re / (Ag", Vs Gru)) dx
— Re / (A18%. n(s — %)+ (V) dx < 180 o s — 8% ot
@ij,zn ~ L2(®1/2) L2(®z/2)

Note that (g,), = r~"TD/2(f,), € R(Vs), so that g, € #;. The accretivity (14) of A,, for each fixed
r € (0, 1), and integration for 0 < r < e~" imply that
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2 0 0
1812 g1, S Re f@ (Ag.g)dx <Re /@ (Agg— g dx + gl o 80 o
0 02

S ”g”Lz(U)ﬁ") ”g ”Lz(@i;rzﬂ) + ”g ”LZ(G’ﬁzn)’
and hence that ||g||L2(®%+n) < ”gO”L2(®i72n). By the isomorphism (18), this translates to || f || L, (r.co:5) S
I f 0|| La(z/2,00;3¢) and proves the lemma. |
Lemma 16.4. Assume ||€]|x < 0o. Let n: Ry — R be a Lipschitz function, that is |n(t) —n(s)| < C|t —s|
forallt,s > 0. Then the commutator

[, Sal=nSa— San

is a compact operator on Ly(Ry, dt; L»).

Proof. Write S4 = Su— 084 as in Theorem 11.3. Since S4 = A~1Sy, except that E\(;—L are replaced by
ESE, it is enough to show compactness of [, §A]. It suffices to verify that

t
F(A): fi > f (1) —n(s)Ae I £ ds, (49)
0

is a compact operator on Lo (R, dt; ¥). (The proof below only depends on the fact that A has compact
resolvents.) Indeed, by duality this implies that also f; — ftoo (1) —n(s))Ae DA £ ds is compact,
upon changing A to A*. Since E\gc% are bounded Ly(R4; Ly) — Ly(Ry; #) and commute with 1, we
conclude that [n, §A] is compact.

Consider the symbol

t
FQ\): fi> / (1) —n(s)re I £ ds.
0

To estimate the norm of this integral operator, acting in Ly (R, ; C) for fixed A € S ., , we apply Schur

estimates as in [Part I, Lemma 6.6]. We need to estimate

sup / |(n(t) — n(s)re” "% ds + sup / |(n(t) — n(s)re” "4 dr.
0 K

t>0 s>0

Using Lipschitz regularity, the first integral has estimate

t 281
/ (t —s)hje Mg = Al_l / xe *dx <A
0 0

where A; :=ReA ~ |A| for A € S, , and a similar estimate for the second integral gives the bound

IF Iy, :0)— La®, ) S AT
It is also clear that F'(X) defines a compact operator on Ly (R4 ; C) (for example truncate the kernel and
show from the Schur estimates that F'()) is a uniform limit of Hilbert—Schmidt operators).
Consider now the Dunford integral

1
F(A):—./ FOA—A)"'dr, w<6<v.
Tl aS{),G+
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From the compactness of F'(1) : Ly(R4; C) = Lo(Ry; C), and of (A — A7V —% by Proposition 4.3,
we deduce the compactness of F(A)(A—A)~': Ly(Ry; %) — La(R,; %) (for example by approximating
(A — A)~! uniformly by finite rank operators). Since ||F(A)(A — A)~'|| < A2, the Dunford integral
converges in norm, at least when o > 0, and we conclude that F'(A) is a compact operator on Lo (R4 ; )
(for example, approximate with Riemann sums, using norm continuity of A — F(X)(A — A)~H. In
dimension n = 1, i.e., 0 = 0, note that A = 0 does not belong to the spectrum of Dy on #. Hence it is not
needed to integrate through A = 0 in the Dunford integral, in which case the Dunford integral converges
in norm also here. This proves the lemma. O

Lemma 16.5. Assume ||€||, < 00. Let 0 < a < b < 00 and write Xy := X(0,a) and Xoo := X(b,00) fOT the
characteristic functions of these intervals. Then

X0SAXoo : X > X and XooSaxo: Y — Y
are compact operators.

Proof. As in the proof of Lemma 16.4, we may replace S4 by Sy as straightforward modifications of the
proof below give the result for Sa.

(i) We claim that the integral operator

F(A) f, := / re U £ ds
0

is a Hilbert—Schmidt (hence compact) operator F(X) : L>(0, a; sds) — Lo(b, oo; dt). Indeed, a straight-
forward calculation shows that

o0 a
/ / he 9% 25 ds dr < Le 2%
b Jo -
As in the proof of Lemma 16.4, it follows by operational calculus that

L>(0, a; sds; ) — Ly(b, 00; ¥) : f; — f Ae Um0 £ ds
0

is compact. Since E\a € is bounded on L,(0, a; sds; ¥), this proves that XooTS‘\A X0 : Y — Y is compact.

(i1) To prove that X0§A Xoo - & — & is compact, it suffices to show that
o0
Lo(b, 00; %) — X : f, > Xo(t)/ Ae”CTDA £ ds (50)
b
is compact, since Eo_ € is bounded on L (b, 0o; ¥). To prove this, we write, for t < a,
o
/ Ae 67N £ods
b [e.¢] o0
— / Ae—(S-H‘)AfS ds +/ (1 _ E_ZtA)Ae_(S_t)Afs ds
b b

s 00 s I — e—2t1\
— ¢ AN / Ae G~ )Afs ds + (\/;e_(”_tm—
b

oo
—5A 3/2  —(s—a—38)A
e AN'<e fsds
VIA ) /b ‘
=5+ I,
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where § > 0 is small enough. The Cauchy—Schwarz inequality shows that the integral expressions in
both /; and I, define bounded operators L, (b, oo; 9€) — ¥, whereas e %4 = Dy’ Y(Dye=81P0ly is compact
on ¥ by Proposition 4.3. For I}, the factor e A % — % is bounded by Theorem 10.1. Since Y* C ¥,
boundedness of the first factor in I, follows from boundedness of +/fe~ @94 for ¢ € (0, a), and square

function estimates for A since (1) = (1 —e™?")/ Ve W (Sy,). This completes the proof. [l

Proof of Theorem 16.1. (i) Consider first invertibility in the space ¥. By Theorem 11.3, we have
ISalle—a < |I€]l«, for any perturbation of coefficients €. Thus, for any 7 > 0

Saflle = Clixi<cell«ll flle.  whenever f; =0forzt >z,

with C independent of t. This follows upon writing € f = (x;<:€)f. Under the hypothesis, we can
choose t > 0 such that C|| x;<: €|« < 1/2. We obtain

1= Sa) flle = I f e = 511f e = 51 fllze, whenever f; =0 for 7 > z.

Next consider an arbitrary f € &. Pick no € C*(R4) such suppno C [0, 7] and 5o = 1 for 7 < 7/2.
Write 51 := 1 —no. Then [|(I —Sa)(no f)llz > 3|70 f |12, and Lemma 16.3 shows that || (1 — S4) (1 f) [l
71 f . This gives

I fllse < Nmo fllee + limi flle S WA = Sa) o Hllee + 1L = Sa) (i )l
< llnol — Sa) flle + llno, Salflle 4+ lm (I — Sa) fllee + 101, Salfllx
S = Sa) flle + o, Salfllx.

To show that [ng, Sa] : & — & is compact, we write

[0, Sal = xolno, Sal+ (1 — xo)[no, Sal = x0Sa(1 —no) + (1 — x0)[no, Sal,

where xo := x(0,:/4)- Hence, compactness of the first term is granted from Lemma 16.5. Next, as the &
and L, norms are the same away from the boundary, Lemma 16.4 implies that the second term is compact
from & — &. This shows that I — S4 : & — & is a semi-Fredholm operator.

To see that it is a Fredholm operator with index 0, note that the lower estimate on / — S4 above goes
through with € replaced by a€, « € [0, 1]. Apply the method of continuity. Since I — Sy is injective on
% by Lemma 16.2, it follows that it is invertible.

(ii) Consider now invertibility in the space . That I — S4 : ¥ — % is a Fredholm operator with index 0
follows as in (i), provided we show that [ng, Sa] : ¥ — Y is compact. Here we write

[10, Sal=[no, Salxo+[no, Sal(1 — xo0) = (Mo — 1)Saxo+ [n0, Sal(1 — xo0),

and Lemmas 16.5 and 16.4 are applied in the same way.

To verify bijectivity, we note that & C %Y is a dense continuous inclusion, where I — S, : € — & is an
isomorphism. This implies that / — S4 : Y — Y has dense range, hence is an isomorphism since its index
is 0. ]
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17. Solvability of BVPs
Characterization of well-posedness. For A such that I — S, is invertible, we introduce boundary maps

and characterize well-posedness in terms of their invertibility.

Definition 17.1. For coefficients A such that [|€||, < oo and I — S4 : £ — & is invertible, define the
perturbed Hardy projection

Efh:=Efh—E, / e*MDE fyds, heLy(S;V),
0

where f 1= (1 —Sy) " le™ A Earh. Write £, :=1— E:{. Here, Egt denote the Hardy projections associated
to the corresponding radially independent coefficients Aj.

Proposition 17.2. The operators EZE 2 Lo(S™; V) — Lo(S™; V) are bounded projections and the range
E:{% C ¥ consists of all traces fy of conormal gradients f of X°-solutions to the divergence form

equation with coefficients A in Q'+,

Proof. That Eff are bounded follows from their construction. The projection property (Eff)2 = E;Jf
follows from Ear E, = 0. Next, the statement about the range follows from Theorem 12.3. ]

Definition 17.3. For coefficients A such that ||€]ls < oo and I — S4 : Y — Y is invertible, define the
perturbed Hardy projection

o0 X ~
Efh:=Efh—E; / e e fyds, heLy(S";V),
0
where f := (I — SA)*IDe*’[\EO*fz. Write EX =1 - Ej. Here, ESE denote the Hardy projections

associated to the corresponding radially independent coefficients A;.

Proposition 17.4. The operators I:fj‘t 2 Lo (8™ V) — Lo(S8™; V') are bounded projections and {(EszJr) s
hte E(J)r Lo} consists of all traces of Y°-solutions to the divergence form equation with coefficients A in
o'+

Proof. That Ej‘ are bounded follows from their construction. The projection property (Ef)2 = Eiﬁ
follows from Ear Eo_ = (. Next, the statement about the trace space follows from Corollary 12.8(ii). [

We remark that, unlike the case of r-independent coefficients, the complementary projections E, and

~

E’, are in general not related to solutions of a divergence form equation in the complementary domain
RH—n \ @H—n‘

Proposition 17.5. For coefficients A such that I — Sy is invertible on ¥ for (i) and (ii), or I — Sy4 is
invertible on %Y for (iii), the following hold.

(1) The Neumann problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if
Ef9— %, :h" — (EfhY), (51)

is an isomorphism.
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(i1) The regularity problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if
Ef9— %, :h"t— (EfhT), (52)

is an isomorphism.

(iii) The Dirichlet problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if
EfLy(S"; ) — La(S"; €™t ht > (ERT), (53)
is an isomorphism.

Proof. (i) The ansatz (36) in Theorem 12.3 gives is a one-to-one correspondence between h™t € EaL € and
conormal gradients f = (I — S4)~'e "*h* of ¥°-solutions to the divergence form equation. Moreover,
fo=E}h™ by Proposition 17.2. Under this correspondence, invertibility of h™ > (ETh™), translates
to well-posedness of the Neumann problem. The proof of (ii) is similar.

(iii) The ansatz (43) from Corollary 12.8(iii) gives a one-to-one correspondence between ht e E{)’r Ly
and Y°-solutions u to the divergence form equation. Moreover, (E;{fzﬂ L = u; by Proposition 17.4.
Under this correspondence, invertibility of A — (E;{fﬁ) . translates to well-posedness of the Dirichlet
problem. ]

Equivalence between Dirichlet and regularity problems. We show that the Dirichlet and regularity
problems are the same up to taking adjoints.

Proposition 17.6. Assume that A are coefficients such that I — S, is invertible on X and I — Sux is
invertible on %Y. Then the regularity problem with coefficients A is well-posed if and only if the Dirichlet
problem with coefficients A* is well-posed.

It is not clear to us whether invertibility of / — S4 on & implies or is implied by invertibility of 7 — S+
on Y. Thus we assume both. We need three lemmas, the first being useful reformulations of invertibility
of the Dirichlet boundary map, the second an identity between Hardy projections and the third an abstract
principle.

Lemma 17.7. The maps
EfLy(S"; %) — Ly(S"; €™ s ht > (EShT),
and
E§ (La(S™; ) /%) — La(8"; €™ /C" : bt > (ESRY),
are simultaneous isomorphisms.

Proof. This amounts to mod out 9. We recall that %~ is preserved by A and EF, and annihilated by
D, so from the definition Ejiz* = Ea“fz* € 9+ for ht € %+. By Lemma 7.5, (Earfﬁh = (h), for
ht e 3, so Ef (La(S™; ) /%5) — La(S™; C™)/C" : ht > (ESh™), is a well defined map. That the
two maps simultaneously are isomorphisms can now be verified from {(E:{EJF) i hte ¥t =Cc". O
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Lemma 17.8. On L,(S™; V') we have the duality relation
(E{)*=NELN. (54)
Proof. The proof of this duality builds on the formula
(Da)* =—NDa:N

on L,(8"; V) from Lemma 4.2 with A; equal to the boundary trace of A and where we used the notation
at the end of Definition 4.1. Using this observation and short hand notation E, £ = Efl, A = |Dgy,l,
ESE = Ejf* and A = |5AT |, it follows that we have
1
(EX)*=NEJN, A*=NAN.
Note that when n = 1, these identities can be also checked from the extensions of the projections in

Definition 7.4. This implies that

/0 (Nf,,%,(SAf),)dt:/O (N(Sa- f)s, € f)ds, fe, feX,

which follows from Fubini’s theorem and the formula defining S from Lemma 11.2, and then letting
€ — 0 using boundedness on ¥ and %Y. Details are left to the reader. Note that S4+ is defined using the
coefficients %t = A\T — Z;, while €; = Z\l — A. This duality relation between S4 and S+ clearly extends
to their resolvents.

For h, he L,, using the isomorphism assumption on I — S4 and I — S4+, we let

f=U-S) e Efhe® and f:=(- SA*)—lDe—“‘Egﬁ ey
and calculate
oo
(Nh, Efh) = (Nh, E;h) —/ (Nh, Ey e A D%, f,) ds
0
~ ~ o0 N o~ ~
=(NEyh,h) +/ (NDe“Efh, €,((1 — Sa)'e " Efh),) ds
0
~ ~ o0 o~ ~
= (NEy h,h) +f (N(I — Sa) "' De ™" Efh),, ¢ "M EJh) ds
0
~ ~ o0 ~ A~ ~ ~ ~
=(NEyh,h) +/ (NEye '"™& f;, h)dt = (NE.h,h).
0

This completes the proof. O

Lemma 17.9. Assume that N* and E* are two pairs of complementary projections in a Hilbert space ¥,
e, (NH?>=N*and Nt + N~ =1, and similarly for E®*. Then the adjoint operators (N*)* and (E®)*
are also two pair of complementary projections on ¥*, and the restricted projection Nt : ET# — NT%
is an isomorphism if and only if (N7)* : (E7)*#* — (N )*¥* is an isomorphism.

Proof. This is [Auscher et al. 2008, Proposition 2.52]. U
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Proof of Proposition 17.6. We apply the abstract result as follows. Here ¥ is the Hilbert space R(D) C
L>(S"; V) = L, and we realize its dual #* as L,/%". The operators N* are those from Definition 3.1:

N+:fr—>|:;)"i| and N_Zfl—>|:};lj|.

As both preserve %, their adjoints induce operators on #*. We choose E* = E;{ and E- = E,. By
Proposition 17.5(ii) and reformulating (52) using N+, well-posedness of the regularity problem for
A* is equivalent to N* : EX,% — N3 being an isomorphism. By Lemma 17.9 this is equivalent to
(NT)* : (E)*#* — (N7)*3t* being an isomorphism. By (54) with the roles of A and A* reversed,
and written as an identity on %* since both terms preserve =, this translates into (N 7)* : Ej%* —
(N7)*¥* is an isomorphism. Using the definition of Ef,(N")*=N"and %* = L, /%, this amounts
to EO*(LZ/%L) — Lp(8™;, C™/C™ . ht > (If'ivj{fz*)l is an isomorphism. Using Lemma 17.7 and
Proposition 17.5(iii), this means that the Dirichlet problem for A is well-posed. O

Perturbation results. Proposition 17.6 shows that it suffices to consider the Neumann and regularity
problems and to study invertibility of the maps (51) and (52). Note that for r-independent coefficients
A=Ay, wehave E} = E; and therefore (Efh™), =hT and (Ejh"), = .

Lemma 17.10. Assume that A are coefficients such that I — Sy is invertible on X. Then the maps (51)
and (52) are injective.

Proof. Assume that it € Ef 9 is such that (EfhT), = 0. As in Theorem 12.3, let f € % be such
that fy = EXh*, so that we are assuming (fy), = 0. For the corresponding ¥°-solution g = V,u to
div, Ag =0, Green’s formula shows that

/ (Ag.g)dx = | (A1g1).u1dx,
@1+n sn

where g € X° C Lo(O'"; CI+my (A1g1). = (fo). € Lo(S";C™) and u € H'(O'*"; C™). The
accretivity of A then shows that g =0. Hence f =0 and h™ = EO+ fo=0.

The proof that the map h™* > (E:{th)” is injective is similar. In this case, we use that u; is constant,
and fy € % so that [, (fo).dx =0. O

We can now derive two perturbations results. Our first result is about L, perturbation within the class
of radially independent coefficients. We need two preliminary lemmas.

Lemma 17.11. Let P, be bounded projections in a Hilbert space ¥ which depend continuously on a
parameter t € (—38,8), and let S : # — I be a bounded operator into a Hilbert space K. If S : PoH — K
is an isomorphism, then there exists 0 < € < 8, such that S : P,#H — K is an isomorphism when |t| < €. If

each S : P,# — A is a semi-Fredholm operators with index i,, then all indices i; are equal.

Proof. The first conclusion is in [Axelsson et al. 2006b, Lemma 4.3] and the second one is proved similarly
using in addition the continuity method. U
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Proposition 17.12. The operators x+t(DBy + o N) € L(¥), defined for strictly accretive coefficients
Al € Loo(S™; (V) and o € R, depend continuously on Ay and o.

Proof. This is a corollary of Theorem 7.1 and [Auscher et al. 2008, Proposition 2.42]. (I

Here, note that for fixed o we called this operator E('f . Only its action on 7€ matters for well-posedness
issues. In particular, this does not depend on the extension defined in Definition 7.4 when o = 0.

Theorem 17.13. Assume that A\ are r-independent coefficients for which the Neumann problem is well-
posed. Then there exists € > 0 such that the Neumann problem is well-posed for any r-independent
coefficients A’ such that |A; — A llec < €. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. Lemma 17.11 and Proposition 17.12 give the result for Regularity and Neumann problems as in
[Auscher et al. 2008]. For the Dirichlet problem, apply Proposition 17.6. U

The second result is perturbation from radially independent to radially dependent coefficients.

Theorem 17.14. Assume that A| are r-independent coefficients for which the Neumann problem is
well-posed. Then there exists € > 0 such that the Neumann problem is well-posed for any r-dependent
coefficients A such that lim;_.q || x; <z 6; ||« < €. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. The condition on the coefficients implies that / — Sy is invertible on & and I — S+ invertible on
%Y by Theorem 16.1.
We write the map (51) as
T (00)
(Exht), =ht+ (EO— / e A D, fs) + <e—<f/2>AEO— f e~ O/ D fs)
0 1 1

T

= b+ (hy) + (e hy)

for h™ € EJ %, where || f |l < |hT]|2 by Theorem 12.3. By assumption the map Ef 9 — %, : h* +—> hT
is invertible. By [Part I, Lemma 6.9], the norm of Eg?)‘f — ¥, :hT— (h), s S xr<c%:l«. Fix T small
enough so that Ef % — 3, : h* +— (h* + hy), is invertible. For the last term, we then have estimates

o0 o0
Ihalla < / le™ 22Dl l1€ ool £ ll2 ds S (1€ 100 / s fillads
T T

00 , 1/2
S II%IIOO(/ I fsll2 dS) SH€lsoll fllze S M€lloollA™ 2.
T
Here we used the estimate

le™¢~/2A Dglly S [|Ae™CTPA(Dy — o NYBy ! Ppyeglla S (s — T/2) 2+ o (s — 7/2) Dligll.

It follows that EJ % — 3¢, : h™ > (e~ /P2 hy), is a compact operator since e~ (*/24

is compact as a
consequence of Proposition 4.3. We conclude that Ear H—H,  hT — (E:{th) 1 1s a Fredholm operator

with index 0. Lemma 17.10 shows that it is injective, hence an isomorphism.
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Replacing normal components (- ), by tangential parts (- ), in the proof above shows the result for the
regularity problem. Proposition 17.6 then gives the result for the Dirichlet problem. (I

Positive results. We now give examples of radially dependent coefficients for which one has well-
posedness. Given Theorems 17.13 and 17.14, this induces results for perturbed coefficients.

Proposition 17.15. If A are r-independent coefficients, and if A is a block matrix, i.e., A,y =0=A,,,
then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Consider the
projections E t= ESE. As the maps (51) and (52) act on Ear ¥ C K, it suffices to consider their action on
7€ throughout this proof. In this case, we have Ey :=sgn(DBy+oN) = EO+ — E, . Consider also the 3¢
preserving projections N* from Definition 3.1. Define the anticommutator

C := 3(EoN + NEy).

Since By is a block matrix, N commutes with By, which shows that NEgN = N sgn(DBy+0oN)N =
sgn(N(DBy+0oN)N)=—sgn(DBy—oN),using ND = —DN. Hence,
C=(Eg+NE9N)N/2 = (sgn(DBy+0oN)—sgn(DBy—oN))N/2

= ((DBy)*+0%) > (DBy+0N) —(DBy— o N))N/2 =0 ((DBy)* +07) /2,

and it follows from Proposition 4.3 that C is a compact operator on J.
We claim that

QENDNTIpige=1+Clgige.  NTQEDIvrae=1+Clysa.
QENDN Ipsoe=1—Clgige. N QEDIy-5=1—Cly-u.
The first identity follows from the computation
QEONThY = Ef(I + N)h™ =h™ + 5(I + E))Nh*
=h"+I(Nht +2Ch" — NEgh") =h* + Ch*, forallh® € Ef#%,
and the other three identities are proved similarly. This proves that the maps Ear H—H, ht—>ht
and Ear H— %, :ht— hﬁ’ are Fredholm operators for any o € R, and for o = 0 it follows that they are

isomorphisms. By Lemma 17.11, the indices of these operators are zero for any o € R, and Lemma 17.10
implies that in fact the operators are isomorphisms for o = (n — 1) /2. (I

Proposition 17.16. If A are r-independent coefficients, and if A is Hermitian, i.e., A* = A, then the
Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Let At € E(')Ir Jt
and define f, :=e"AhT. By Theorem 10.1, we have 9, f; + Do f; =0, lim,_,o f; = h" and rapid decay
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of f; ast — oco. We calculate

o0

Nt Bty == [ g Bufde = [ (VDo Bofi) + (N BoDo ) dr

= fo ((NDBo+DB{N) fi, Bofi) +0 (fi, (Bo+NBoN) i) di

—o /0 (i (Bo+ BY) ) dr.

On the last line, we used that A* = A, or equivalently Bj = N BoN, so that NDBy+ DBjN = 0. This
gives the estimate

o0
|—(ht, (Boh™).) + (b, (Boh™)))| 56/ I £ 113 dt.
0
From this we deduce the estimate
113 S Re(h™, Boh™) < (B, (Boh )OI+ 1712, 90 S I 218 2+ 1F 12,0

This shows that the map (51) is a semi-Fredholm map, if we prove that the map # — L, (R,; #) given
by h+— (e7"2h),~¢ is compact. To see this, note that square function estimates for Dy give the estimate

/0 I £l13 dt = /0 1Y+ (Do) (A~ 1/2f>||2 La12p2,

where v, (z) := /f]z]e ', and A~!/2 can be seen to be a compact operator on ¥ by Proposition 4.3.
Taking Py = xT(DB®* + oN) in Lemma 17.11, where B®, s € [0, 1], denotes the straight line in
Loo(S™; L(V)) from [ to By, shows that the index of the map (51) is 0. By Lemma 17.10, this map is in
fact an isomorphism.

The proof for the regularity problem is similar, using instead the estimate

113 S 1 Boh I+ I 1, o0 S MBI 2+ 11, 50 O

Proposition 17.17. If A is a Holder regular C'/7+¢(8"; L(CUHM™)), r-independent coefficients, for

some ¢ > 0, then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.
For the proof, we need the following lemmas.

Lemma 17.18. Let By € C'/2T¢(S"; L(V)) be the matrix associated to A. Then for all f, g € ¥,
I(LUIDIY2, Bol f- ) S 1 f112llg -

Lemma 17.19. Under the same assumptions, D(|D|'/?) N % = D(|Dy|'/?) N % with equivalent graph
domain norms.

Proof of Proposition 17.17. Consider first the Neumann and regularity problems. Let AT € EO+ d€ and
define f, := e 'Ah*. By Theorem 10.1, we have 9, f; + Do f; =0 and lim; .o f; =T and lim,_, o f; =0
with rapid decay. We begin with the observation that (sgn(D)h*, h*) = Re(Vg(—divs Vs)~/2h T, h).
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Thus [(sgn(D)h™, k)| < ||k [|2]1h;[l2. Now, we calculate for fixed T > 0
(sgn(DYh™, k™) — (sgn(D) fr, fr)

T

T
2—/0 3t(Sgn(D)fz,ft)dt=/o ((sgn(D)(DBy+0N) fi, f) + (fi,sgn(D)(DBy+ o N) f,)) dt

T T
=2Ref (ID|Bo fr, f,)dr=2Re/ ((BoIDI' f,, IDI"* f,) dt + (ID|"2, Bol fy, IDI'? f2)) dt,
0 0

using that sgn(D)D = |D| and sgn(D)N + N sgn(D) = 0 in the third equality and Lemma 17.19 in the
last since f; € D(|Dg|'/?) N% C D(|D|'/?). Accretivity of By and Lemma 17.18 lead to the estimate

T T
/0 |||D|”2ﬁ||%drs||hf||z||hr||z+|<sgn(D>fT,fT>|+/o I £ 201D £ 12 at,

and by absorption, to the same estimate but with last term equal fOT Il fr ||§ dt. Due the rapid decay of
| £+l when t — oo, we conclude that

o0 o0
/ |||D|1/2fr||%df§IIhfllzllhTIIer/ T
0 0

Since ||| Dol fill2 < 1ID1VY2 filla + |l £ |2 from Lemma 17.19, we may replace D by Dy in the left hand
side. Since square function estimates for Dy give

oo 12 112 > 172 —11Dol 4 g2 41 12
Dol ™"~ fill5 dt = (| Dol) "~e h™3 e 1™ 115,
0 0

this implies
o0
1A+ I3 < ||hj||2||h|+||z+/ 1 £ 13 dr.
0

Well-posedness of the Neumann and regularity problems now follows as in the proof of Proposition 17.16.
Proposition 17.6 then gives the result for the Dirichlet problem. (I

Proof of Lemma 17.18. Note that D? agrees on ¥ with the (positive) Hodge—Laplace operator

Ac = _ diVS VS 0
5= 0 Vs divs — curl§ curlg |

where curlg : Ly(S™; (TeS™)™) — Lao(S™; A2(TeS™)™) is the tangential curl/exterior derivative on S”.
Since f, g € #, we have

1/4
([1DI"2, Bolf. ) = (IAg". Bolf. 8)
and it suffices to prove that [Al/ 4, By] is bounded on L,. Since the action of By mixes functions and
vector fields, some care has to be taken.

(i) First, by functional calculus we can replace Ag by Top = Ag + A for any A € R™, to be chosen large
later, as A;M — (Ag+ )% is bounded.
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(i1) Next, the commutator estimate is a local problem and by a partition of unity argument and rotational
invariance of the assumptions, we can assume that f is supported in the lower hemisphere and it is enough
to show that ||§[T1/ 4 Bolfll2 < Il fll2 when the smooth scalar function ¢ is 1 a neighborhood of the
support of f. Indeed (1 — ¢)[T; 1/4 ,Bolf =— 1/4
bounded on L;.

1, Bolf, where the inner commutator is seen to be

(iii) Now using rescaled pullback p* to R"” from the proof of Theorem 7.1 yields p*(To ) = T1(p* f)
with

[dian d*>"Vgad" 0
Tl =

= A
0 Vred" divgs d>™" — d" % curl, d*" curan] *

in Ly(R"; C1+™) with d(y) = (|y|*> + 1)/2 inside |y| < 1 and extended to a smooth function on R”,
with d(y) =2 for |y| > 2 and % <d(y) <2 forall y. Any extension would do since p* f is supported in
|y| < 1. (The proof of this equality builds on the fundamental differential geometric fact that the standard
pullback operation intertwines V on S" and R”, as well as curl, and the adjoint results for div and curl*.
Note that the rescaled pullback p* from Theorem 7.1 equals the standard pullback on vectors, but is d ™"
times the standard pullback on scalars.) A further calculation shows that 77 = —divg» d*Vgn + R+ A1,
where R is a first-order differential operator with smooth coefficients and divgs d*Vgn acts componentwise
on CU*M™_yalued functions. Note that the coefficients of R must vanish outside |y| < 2 by construction.
We now choose X large enough to guarantee the accretivity condition Re(77 g, g) > d||g ||2 W) with § > 0

and all g € W2 (R"; CH+mmy Consider K, n and g as in the proof of Theorem 7.1 and ¢ = (p*)~'n and
f=(p")"'g. We claim that ||z 7,"* f — (p*)"'n*T,"*gll < llgll2 & || f Il2. For both operators 7;, we
use the identity

Til/“:c/ s'VPT (1 + 52Ty~ 1ds—c[ 1=+ H L L (55)
0

The part with s > 1 gives rise to a bounded operator for each 7;. For the integral of the difference over
s < 1, we use the identity obtained as in Theorem 7.1

A+ To)  f — () ' U +52T) g = ¢ +52To) (0"~ 's%n, 11U +57T1) " 'g

so that
IEU +5*To) "' f — (") ' +57T) gl Ssliglla,

using that the commutator [7, 71] is a first-order operator.

(iii) We are reduced to showing that [T11/4, Bo] is bounded on Ly (R"; CU+Mm) with By := p* By(p*) ™!
of By on |y| < 1 extended to a bounded matrix function of class C'/?*¢ on R". We now eliminate the R
part of 7. Set Tp := —divpn d*Vgn + 1 acting componentwise in L, (R"; CU+mmy The chosen extension
/4 _ 1/ * is bounded. We
use again (55) for each 7;. The part with s > 1 gives rise to a bounded operator for each T;. For the s < 1

of d insures that 7 is accretive (in fact self-adjoint) as 71. We claim that T,

integral of the difference, we use ||({ + S2TH ' =T +s2T) 7Y < s by the resolvent formula, because
T; have same second-order term. This proves the claim.
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(iv) Hence, it remains to estimate the commutator C = [Tzl/ 4, Eo]. Since T, acts componentwise, SO
does Tzl/ * and the commutator consists of a matrix of commutators with each component of By. Thus it
suffices to estimate C = [T21/ 4, b] in L,(R"™; C), with b scalar-valued. To see this, we use the different

representation for TZI/ * to obtain

[
C—c/0 [s°Tre™* 2,b]—s3/2.

The s > 1 integral is trivially bounded, using boundedness of b and ssze_Ssz. For s < 1, we have
I[s2Toe="T2, b]|| L1, < 81/27€ using pointwise decay and regularity for the kernel of s2Te="> and
regularity of b. See, for example, [Auscher 1996] where it is proved that under continuity of the coefficients
(here d?), the kernel of the semigroup e—T2 s < 1, has Gaussian estimates (this is in fact due to Aronson
for real measurable coefficients) and Holder regularity in each variable with any exponent in (0, 1), in
particular larger that % + €. From here, the same estimates hold for sThe *"> = —s3,¢ "> by analyticity

of the semigroup. This takes care of the s < 1 integral. Further details are left to the reader. (I

Proof of Lemma 17.19. Recall that Do = DBy 4 o N. As before, by a representation formula it is easy to
prove that |[DBg+ o N| 1/2 _|DBy|'/? is bounded on L,. Hence we may replace Dy by D By. We remark
that 7€ is invariant for both D and D By.
As Py By is an isomorphism of 7, for f € #, f € D(|DBy|) if and only if Py By f € D(|D]) and in
this case
1D Bolfll2 = [IDBofll2~ | D(PxBo )2~ IDI(PyBof)ll2

Complex interpolation for sectorial operators (see [Auscher et al. 1997a]) shows that for f € #, f €
D(]DBy|'/?) if and only if Py By f € D(|D|'/?) and
11D Bo|'? fll2 ~ 1D (PxBo f) 2
Next, for f € #¥ND(|D|'/?), we have |D|'/? f € % so that
11D f 12 || Py Bo| D' f 2.

Thus it suffices to show that for f € %, f € D(|D|'/?) if and only if PyByf € D(|D|'/?). This is where
we use the regularity of By to yield |||D|"/2(PyBo f) — PsBo|D|'/? fll» < || f1l2 when f € % as a direct
consequence of Lemma 17.18 and the fact that D and Py commute. U

Remark 17.20. Using the 7'1 theorem, the commutator C of the proof of Lemma 17.18 is bounded on
L, when (—A + 1)/4h € BMO (and b € Lo). The converse is also true. This can be shown to be a
regularity condition between C'/? and C'/?*¢. So well-posedness holds under this condition (expressed
in local coordinates on the coefficients of By). This is probably the best conclusion we can draw from
this method. However, we suspect that C* should be enough in general.

18. Uniqueness

The following is the class of solutions in Definition 1.8.
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Definition 18.1. By a %?-solution to the divergence form equation, with coefficients A, we mean a weak
solution of divy AVu =0 in O'*" with [[N? ()|, < oo.

Note that unlike the previous classes, %°-solutions are defined through an estimate on u itself, not on
the gradient V,u.

Under the Carleson control on the discrepancy, we know that Y°-solutions are %°-solutions. We
would like to know the converse. At this stage we need assumption of well-posedness in the sense of
Definition 1.2. It goes via identification with variational solutions for smooth data which will be also
useful later.

Lemma 18.2. Let A be coefficients such that ||€||. < 0o and I — Sy is invertible on Y and on X, and
assume that the regularity problem and the Dirichlet problem in the sense of Definition 1.2 both are well
posed. Let ¢ € Lo(S"; C™) be Dirichlet datum such that Vs € Lo(S™; (TcS™)™). Then the solution u to
the Dirichlet problem in the sense of Definition 1.2 coincides with the variational solution with datum .

Proof. By Proposition 17.5, there is a unique h™ € EJ ¢ such that (E:{th)H = V¢, since the regularity
problem is well-posed. From Lemma 7.5, we know that D : Ef L, — E{ % is surjective. Let i+ € Ej La
be such that D™ = h™. Consider now ¢ := (E:{EJF)L. We claim that Vg¢ = Vg¢. Indeed, this follows
from taking the tangential part in the intertwining formula

DEf =E/D,

which is readily verified from Lemma 4.2 and definitions of ET, EX. Thus ¢ — ¢ is constant. As in the
proof of Corollary 12.8, by adding a normal constant in Ear 9+ to A, we may assume that ¢ = ¢.

Given this &7, the solution u to the Dirichlet problem with datum ¢ is given by the normal component
of

vi= (I +Sa(1 — SA)*1D>e*“~\ﬁJr
as in Corollary 12.8(iii). Next, we have
fi=Dv=(—S4) e M n"

and f is the conormal gradient to the solution to the regularity problem with datum Vg¢. In particular
feXC LRy xS V) by Lemma 9.3.

Translated to O'*", this shows that the solution u to the Dirichlet problem with datum ¢ has V,u €
L,(@'*; c+7my This shows that u is a variational solution. Uniqueness of the Dirichlet problem in
this class completes the proof. ]

Remark 18.3. Note that since & C L,(R4 x S™; V"), solutions to the regularity and Neumann problem
always coincide with the variational solutions, by the uniqueness of such. In the setting of the half-space,
as in [Auscher et al. 2010b] and [Part I], it was shown in [Axelsson 2010] that this uniqueness result does
not hold. As pointed out in [Auscher et al. 2010b, Remark 5.6], the problem occurs at infinity for the
regularity and Neumann problems, which explains why uniqueness holds for the bounded ball. Although
the analogue of [Axelsson 2010] for the Dirichlet problem on the ball is not properly understood at the
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moment, Theorem 19.4 below shows that uniqueness of solutions essentially holds also for the Dirichlet
problem on the unit ball.

Proposition 18.4. Let A be radially independent coefficients and assume that the regularity problem and
the Dirichlet problem in the sense of Definition 1.2 are both well-posed. Then all 9°-solutions are given

byu= e (e M hTy, for a unique hte EJLZ. In particular, the class of 9°-solutions is the same as

/ ui(x)dx

Proof. Let u be a 9°-solution. For almost every p € (0, 1), Vsu, € Lo(S"; (TcS")™) and u, € Lo (S"; C™).
Fix such p. As in the proof of Lemma 18.2, we can find h:; € EJ%, fz:; € EJLQ with Dﬁ;; = h;,

(h})y=Vsu, and (ﬁ;)'r)l =u, on S". Using radial independence, the function i, (rx) := e‘”(e_’[\fz;)l(x)
—t

the class of Y°-solutions, and the estimate

2
||N:<u)||%%f |Veul*(1 — |x]) dx +
®1+n

holds for all weak solutions.

(here, p is fixed and e =r € (0, 1)) thus extends to a solution of the divergence form equation with
coefficients A, and it is a variational solution by Lemma 18.2. Since x + u(px) is also a variational
solution and agrees with i1, on §”, we conclude by uniqueness that u(pr-) = e‘”(e_’[\ﬁ;r)L as L?(S"; C™)-
functions for all =" =r € (0, 1], and almost every p € (0, 1).

From this representation, we see that the right hand side is continuous in ¢, with range in L;, so the
left hand side is continuous in 7. We also have [|u,,||> < ||ﬁ;f||2 A |lu, |2 for every r € (%, 1] and almost
every p € (0, 1). The last equivalence comes from the well-posedness of the Dirichlet problem, and the
implicit constants are independent of p. Since

pTH
sup (1) [ uclads SIFZ 01 < .
1/2<p<l 0
we conclude that ||l§;r||2 is bounded for % < p < 1. Consider a weak limit ht e E(J{ L, of a subsequence
ﬁ;’n with p, — 1. Reversing the roles of p and r, for almost every r < 1, u,,, converges in Lo(S"; C")
to u,, so that u, = e (e™! ;\ﬁ+) 1. Extending to all r, the representation is proved.

In particular, this shows that the classes of Y°-solutions and of %°-solutions of Lu = 0 coincide under

our assumptions. ([l

Note that the full force of ||ﬁ: (u)]|2 < oo is not used and the condition
| 1—-r
sup r- / llupll2dp < 00
1/2<r<l1 1-2r

suffices in the proof of Proposition 18.4.

Remark 18.5. If A is not r-independent, we need to know that A(p - ) satisfies the large Carleson
condition for all % < p < 1 to run the argument. This is not clear if we just assume this for A. However,
if we assume that A is continuous on O'+” and satisfies the square Dini condition of Theorem 1.11, then
this can be checked.
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Proof of Theorem 1.7. We consider A| € Lo (S"; L(CUHM™MY), radially independent coefficients which
are strictly accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A; is
well-posed. By Corollary 12.9, we have P, u; =r—° (e_”N‘ vp), With r =e™" and vy given by the inverse
of the well-posedness map (53) from applied to u;. The assumed uniqueness of the solution u allows
us to prove the product rule of P, by considering P,u; as another boundary data. The existence of
the generator with domain contained in W21 (S™; C™) is as in [Auscher 2009] in the setting of the upper
half-space. There, the if direction was deduced using the duality principle between Dirichlet and regularity.
An examination of the argument there reveals that the only if direction was implicit. We can repeat the

same duality argument using Proposition 17.6. U

Proof of Theorem 1.9. By Proposition 18.4 we know that the two classes of %°- and %Y°-solutions are the
same. Thus the assumed well-posedness for Y°-solutions carries over to %°-solutions. This completes
the proof. (I

19. New well-posedness results for real equations

We now specialize to the case of equations (m = 1) with real coefficients, and make this assumption for
the coefficients A throughout this section unless mentioned otherwise. For such equations the theory
of solvability for the Dirichlet problem using nontangential maximal control is rather complete for real
symmetric equations, but not so much for non symmetric equations. In [Kenig et al. 2000], the extensions
of the tools for real non symmetric equations are discussed and we refer there for details.

We have developed a strategy using square functions rather than nontangential maximal functions and
our goal here is to tie this up. It is convenient to introduce the square function

_ 2 dy 12 n
S (x) = (/yr Vu(y) W) . xes,

(I"y denoting a truncated cone with vertex x and axis the line (0, x)) and the divergence form operator
L := —divy AV,. We note that a weak solution to Lu = 0 is in ¥? if and only if S(u) € L,(S"), the
measure being the surface measure. We have so far studied Y°-solutions and well-posedness in this
class, which is convenient to denote here by well-posedness in Y°. (This was called “in the sense of
Definition 1.2” in the introduction.)

Recall that by a 9?-solution of Lu = 0, we mean a weak solution with ||ﬁ:(u)||2 < 00. As said in
the introduction, we may replace ]V: (u) by the usual pointwise nontangential maximal function. For the
Dirichlet problem, we shorten well-posedness in the sense of Dahlberg in Definition 1.8 to well-posedness
in 9°.

On regular domains such as @'+, there is always a unique variational solution u € W21 (O'*), which
is in addition continuous in @'+, to the Dirichlet problem with data ¢ € C(S") by results of Littman,
Stampacchia and Weinberger [Littman et al. 1963] which extend to real nonsymmetric equations (see
[Kenig et al. 2000]). Thus, it is natural to ask whether this solution satisfies ||]V*0(u)||2 < C|l¢ll» with C
depending on the Lipschitz character of S”. By a density argument, it suffices to do this for smooth ¢,
say p € C 1(§™). If this is the case, then the Dirichlet problem (D), is said to be solvable.
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From the maximum principle and Harnack’s inequalities, one can study the L-elliptic measure w, say
at 0, which is the probability measure C(S") > ¢ > u(0) with u the above solution. The question whether
w is absolutely continuous with respect to surface measure is central.

The result, somehow folklore but we have not seen it stated explicitly in the literature, summarizing
the state of the art is the following.

Theorem 19.1. Let L = —div, AV, be a real elliptic operator in O'*", n > 1. Then the following

statements are equivalent.
(i) The Dirichlet problem is well-posed in 9°.
(i1) (D), is solvable.

(ii1) The L-elliptic measure w is absolutely continuous with respect to surface measure and its Radon—
Nikodym derivative k satisfies the reverse Holder B, condition, i.e., there is a constant C < 0o such
that for all surface balls B on S",

1/2
(|B|1/ kz(x)dx) §C|B|1fk(x)dx.
B B

Proof. The proof that (ii) is equivalent to (iii) is stated for real nonsymmetric operators in [Kenig et al.
2000, p. 241]. The proof that (i) implies (ii) is trivial. For ¢ € C(S"), the variational solution is bounded,
hence satisfies ||ﬁ: (u)|l2 < oo since @!*" is bounded. By uniqueness in (i), it is the unique solution
and the continuity estimate that follows from well-posedness shows ||ﬁfk’ @) ]l2 < C|lell2- So (ii) holds.
It remains to see (ii) implies (i). Existence and continuity estimate are granted from (D),. Uniqueness
follows the argument in [Fabes et al. 1984, p. 125-126], using the equivalent assumption (iii) instead of
(i1). The extension to nonsymmetric real operators is allowed from the details in [Kenig et al. 2000]. [J

Theorem 19.2. Let L be an elliptic operator with real coefficients. Then all weak solutions to Lu =0
satisfy [|S W) 1@y S NINS @) Ly for any As, measure (u with respect to L-elliptic measure.

Proof. This is the result of [Dahlberg et al. 1984] where this is proved when L = L*. Aside from properties
of solutions that are valid for all real operators (see [Kenig et al. 2000]), the proof on the use of [Dahlberg
et al. 1984, (7), p. 101], which is an integration by parts and is valid as is in the nonsymmetric case. This
is why the A, property with respect to L-elliptic measure intervenes in the hypotheses. Further details
are in [Dahlberg et al. 1984]. O

Corollary 19.3. Let L be an elliptic operator with real coefficients. Assume that the Dirichlet problem is
well-posed in 9° for L. Then all weak solutions to Lu = 0 satisfy ||Su)]2 < ||ﬁf(u) 2. In particular,
9°-solutions of Lu = 0 are Y°-solutions of Lu = 0 under this assumption.

Proof. By Theorem 19.1, L-elliptic measure is A, with respect to surface measure, and vice-versa by
[Coifman and Fefferman 1974]. So || S () ||ape < |Iﬁf (u)]|, follows from Theorem 19.2. [l

Note that Corollary 19.3 and Proposition 18.4 are close but incomparable. First, Proposition 18.4
applies to systems of equations, whereas Corollary 19.3 applies to radially dependent coefficient. Secondly,
the well-posedness assumptions are different. The next results reconciles the two approaches.
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Theorem 19.4. Let L = —divy AV, be a real elliptic operator in O'*", n > 1. Assume further that L
has coefficients with lim; ¢ || ;<<€ |lcnL., sufficiently small. The following statements are equivalent.

(1) The Dirichlet problem is well-posed in 9° for L and L*.
(ii) The Dirichlet problem is well-posed in Y° for L and L*.

Moreover, in this case the solutions for L (resp. L*) from a same datum are the same.

Proof. It suffices to prove the conclusion for L in each case as the assumptions are invariant under taking
adjoints.

Assume (i). Uniqueness in ¥° is immediate since the class of %°-solutions a priori contains the
class Y?-solutions when ||€|cnz,, < oo. Next, for the existence, there is by assumption a unique %°-
solution with given boundary datum ¢ € L,(S"). Since the Dirichlet problem is well-posed in %° for L,
Corollary 19.3 shows that this solution is in fact a Y°-solution.

Conversely, assume (ii). By Theorem 19.1, it suffices to show that (D), is solvable for L. To this
end, it suffices to consider ¢ € C 1(S™) and the associated variational solution u. By Lemma 18.2, which
applies because of Theorem 16.1 (I — S4 is invertible on & and on %) and Proposition 17.6, u coincides
with the solution in the sense of Definition 1.2, that is, it is a Y?-solution. Now Theorem 14.1 provides
the nontangential maximal estimate that shows that (D), is solvable for L. O

Added in proof. In the context of the upper half-space, it was recently shown by Hofmann, Kenig,
Mayboroda and Pipher [Hofmann et al. 2012], that the conclusion of Corollary 19.3 is valid a priori for
all real operators with transversally independent coefficients, whether or not the Dirichlet problem is
well-posed in %° for L and without resorting to the Ao, property of the L-elliptic measure, which they
subsequently prove. Hence, for transversally independent coefficients, the two classes of solutions of L
are the same, and well-posedness in each class is simultaneous. Presumably, the conclusion should be the
same on the ball for operators with radially independent coefficients.

Remark 19.5. In the case of radially independent coefficients (or more generally for continuous, Dini
square coefficients) Proposition 18.4 (or the remark that follows it) proves the converse also for systems.

We can generalize results from [Kenig and Pipher 1993] to nonsymmetric perturbations of r-independent
real symmetric operators.

Corollary 19.6. In O'*" the Dirichlet problem is well-posed in %° for all real operators L with coeffi-
cients A such that lim;_,¢ || x;<:€;llcnL., is small enough and its boundary trace A real symmetric.

Proof. Let L be the second-order operator with r-independent coefficients A;. By Proposition 17.16,
we know that the Dirichlet problem for L = L} is well-posed in %°. Thus, by Theorem 17.14, it is
well-posed in Y for L and L*. Thus, we conclude with Theorem 19.4. ]

We continue with generalizations of results in [Fabes et al. 1984], where well-posedness for Dirichlet
was obtained for real symmetric coefficients. Well-posedness for regularity (which we denote here by
well-posedness in &°) is new.
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Theorem 19.7. Assume that A are coefficients with lim; ¢ || ;<< é:llcnL., sSmall enough and boundary
trace Ay which is real and continuous. Then the Dirichlet problem is well-posed in 9° and in ¥°, and the
regularity problem in X° is well-posed. In particular, this holds for real continuous coefficients in Q1+"

satisfying the Dini square condition

/wi(r)? <00, where wa(t) =sup{|A(rx)—AXx)|;xeS", 1—r <t}.
0

Proof. Let L be the operator with coefficients A;. Recall that under smallness of lim; ¢ || ;< é:llcnL..»
it suffices to prove the result for L; by Theorem 17.14. Next, by Proposition 17.6, the regularity problem
(in %) for Ly is well-posed if and only if the Dirichlet problem for L7 is well-posed in %°. On applying
Theorem 19.4, it suffices to prove that the Dirichlet problem with coefficients A; is well-posed in 9, as
the same would then hold for A} by symmetry of the assumptions. To do this, we prove that Li-elliptic
measure satisfies property (iii) in Theorem 19.1. The argument is inspired by the one in [Fabes et al.
1984, pp. 139-140].

Assume first we work on some boundary region of ©@!*”. For r small, set

Or={pye 0, ) x8";1-r<p<l,yeBx,n}

where B(xg, r) is a surface ball of radius r, with real radially independent coefficients A; being the
restriction of some matrix defined on Q'*” that we still denote by A; and which is close in L, to the
constant matrix A;(xg). Let g be a C!' nonnegative function supported on the part of the boundary of
QO,2 in §". Let v be the variational solution to the Dirichlet problem Ljv =01in Q,/; and v = g on the
boundary of Q,/; in §" and v = 0 on the part of the boundary that is contained in O'*+". Recall that
Ve Wzl(Qr 2)NC (QT/g). By Theorem 17.13, because A; is Lo, close to a (constant) matrix for which
one knows well-posedness by Proposition 17.17, one can construct the unique solution « in @'+ to the
Dirichlet problem in ¥° with u = g on §”, that is Lju = 0 with f@m |Veul?(1 —|x])dx < C||g||%. As
g € C'(8™), we know on applying Lemma 18.2 that the solution  is variational, i.e., u € W21 (O'*m). We
can apply Stampacchia’s minimum principle to obtain first that u > 0 in ©'*”, and next the maximum
principle in Q,/ to conclude that v < u. From there, it remains to repeat the argument in [Fabes et al.
19841, to obtain that v(py) < C(1 — p)/?|g|l» for all py € O, /4, which in turn, yields an L, estimate
on the Radon—Nikodym derivative of the L-elliptic measure.

The localization argument as in [Fabes et al. 1984], and using the continuity of A; to cover a layer of
the boundary with a finite number of such small Q, >, allows us to conclude. O

Corollary 19.8. With the same assumption as above and n = 1, then the Neumann problem with coeffi-
cients A is well-posed in %°.

Proof. By the results in Section 5, it follows that the Neumann problem for coefficients A is well-posed
in & if and only if the regularity problem for conjugate coefficients Ais well-posed in ¥°. The latter
follows from the previous result since A satisfies the same assumption as A. U
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Remark 19.9. As in [Fabes et al. 1984], the Dini square condition in the normal direction can be replaced
by a Dini square condition in a C! transverse direction to the sphere. It suffices to perform locally changes
of variables that transform the transverse direction to normal ones.
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THE TWO-PHASE STEFAN PROBLEM: REGULARIZATION
NEAR LIPSCHITZ INITIAL DATA BY PHASE DYNAMICS

SUNHI CHOI AND INWON KIM

In this paper we investigate the regularizing behavior of two-phase Stefan problem near initial Lipschitz
data. A description of the regularizing phenomena is given in terms of the corresponding space-time scale.

1. Introduction

Consider ug(x) : BR(0) > R with R > 1 and ug > —1, [{ug =0}| =0 and up(x) = —1 on d Bx(0) (see
Figure 1). The two-phase Stefan problem can be formally written as

u;— Au=0 in {u >0}U{u <0},
u,/|Dut|=|Dut|—|Du~| on d{u >0},

i/l | = | =1 | { } (ST2)
u(-,0) =uop,

u=-—1 on dBg(0).

Here Du denotes the spatial derivative of u, and u™ and u™ respectively denote the positive and negative

parts of u, i.e,

ut :=max(u,0) and u” :=—min(u, 0).

Figure 1. Initial setting of the problem.
I. Kim is partially supported by NSF grant number 0970072.
MSC2010: 35KS5, 35R35, 76D27.
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The classical Stefan problem describes the phase transition between solid/liquid or liquid/liquid interface
(see [Meirmanov 1992; Oleinik et al. 1993]). In our setting, we consider a bounded domain 2o C B (0)
and initial data ug(x) such that

{up >0} = and {ug <0} = Br(0)— Q.

To avoid complications at infinity, we consider the problem in the domain Q = Bz (0) x [0, 00). For
simplicity we have set u = —1 on d Bg(0); our analysis presented in this paper applies to (ST2) with the
generalized Dirichlet condition

u= f(x,t) <0 ondBg(0),

where f(x, t) is smooth.

Since our initial data will be only locally Holder continuous, we employ the notion of viscosity solutions
to discuss the evolution of the problem. Viscosity solutions for (ST2) were originally introduced by
Athanasopoulos et al. [1996] (see also [Caffarelli and Salsa 2005]). As for existence and uniqueness of
viscosity solutions for (ST2), we refer to [Kim and Pozar 2011].

Note that the second condition of (ST2) states that the normal velocity V, ; at each free boundary point
(x,1) € a{u > 0} is given by

Ve =(Du"| = |Du~)(x, 1) = (Du* (x, 1) = Du™ (x, 1) - vy,

where v, , denotes the spatial unit normal vector of d{u > 0} at (x, ¢), pointing inward with respect to the
positive phase {u > 0}.

In this paper we investigate the regularizing behavior of the free boundary d{u > 0}. Our main
result states that when g := 9{u¢ > 0} is locally a Lipschitz graph with small Lipschitz constant, then
the free boundary immediately regularizes and becomes smooth after t = 0. Moreover we provide a
natural space-time scale for such regularization. More precisely, for xo € I'g, we show that the free
boundary regularizes in B;(xg) by the time ¢ (xg, d) given in (1-3) (see Theorem 1.1, and also the heuristic
discussion below (1-3)). Corresponding results have been obtained in recent studies on the one-phase
free boundary problems [Choi et al. 2007; 2009; Choi and Kim 2010], but the presence of two phases
poses new challenges in the analysis. For example there is no generic class of global solutions other
than radial solutions where topological changes are ruled out. In the one-phase setting we relied on
the fact that solutions with star-shaped initial data stay star-shaped over time: this is no longer true in
the two-phase setting (see Remark 3.2). More importantly, the interface motion is no longer monotone
and competition between positive and negative fluxes across the free boundary necessitates additional
localization procedure (see the remarks below Theorem 1.1).

The celebrated results of [Athanasopoulos et al. 1996; 1998] state that if the solution of (ST2) stays
close to a Lipschitz profile in the unit space-time neighborhood B;(0) x [0, 1], then the solution is indeed
smooth in half of the neighborhood, that is, in Bj,,(0) x [1/2, 1]. The main step in our analysis is to
prove that the free boundary d{u > 0} stays close to a locally Lipschitz profile in any given scale. Proving
this step corresponds to the derivation of several Harnack-type inequalities for our problem, which are of
independent interest.
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Before discussing our result in detail, let us introduce precise conditions on the initial data.
(I-a) €20 and u( are star-shaped with respect to a ball B, (0) C Q.

Observe that then the Lipschitz constant L of 0€2g is determined by r¢ and dy, where
do := sup{dist(x, B,,(0)) : x € 0Qp}.

In other words, there exist 4 = h(rg) and L = L(rg, do) such that for any xo € 929, after rotation of
coordinates, one has the representation

By (x0) N Qo = {(x/, x,) : x' e R" 1, x, < ()}, (-1

where f is a Lipschitz function with Lip f < L. For simplicity, we set & = 1.

For a locally Lipschitz domain such as €2y, there exist growth rates 0 < 8 < 1 < « such that the
following holds: Let H be a positive harmonic function in Q29 N By (x), x € dL2p, with Dirichlet condition
on 929 N By(x), and with value 1 at x — e,. (Here ¢, is the direction of the axis for the Lipschitz graph
near x.) Then for x — se, € Q20N B (x),

s“fH(x—sen)fs’g. (1-2)
Below we list conditions on the range of the Lipschitz constant L of the initial positive phase €2g.

(I-b) L < L, for a sufficiently small dimensional constant L, so that
5/6 <B<a<T/6.
The remaining conditions are on the regularity of u.

(I-c) =Ny < Aug < Ny in Qo U (Bg(0) — Q), where Ny is some constant.

(I-d) For x € 929, we may let e, = x/|x| after a rotation. Then for small s > 0 (for 0 < s < 1/10),
|Dug(x £ se,)| > Cs* .

Note that (I-c) and (I-d) hold for ug which is smooth in its positive and negative phases and is harmonic
near the initial free boundary, that is, —Aug = 0 in the set ({ug > 0} U {up < 0}) N {x : dist(x, 3€2) < 1}.

We mention that, roughly speaking, the series of the hypothesis (Ia)—(Id) suggests that we have in mind
an initial positive phase ¢ whose boundary is “almost” C' (that is, a small perturbation of a C' boundary
in its Lipschitz norm), and initial data ¢ whose rescaled profile is “almost” harmonic near d€29. The
smallness assumption on L given in (I-b) is to avoid waiting time phenomena (see [Athanasopoulos et al.
1996; Choi and Kim 2006]), and is most natural in the spirit of previous results [ Athanasopoulos et al.
1996; 1998]. The assumption on uy is introduced to ensure that the initial data does not perturb the initial
geometry of €2y too much (see the discussion in [Choi and Kim 2010]). We expect that regularization of
the interface over time should hold for general continuous initial data u.

For a function u(x, t) : R" x [0, 00) — R, let us write

Qu):={u>0}, Qw):={u(-,t) >0},
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and
I'(w):=0d{u>0}, TI;(u):=0d{u(-,t)>0}.

Since I'g = d{u(-,0) > 0} = d{u(-, 0) < 0} in our setting, this property is preserved for later times, i.e.,
Cy(u) =0{u(-,t) >0} =0{u(-,t) <0} forall > 0;

see [Rogers and Berger 1984; Gotz and Zaltzman 1991; Kim and Pozar 2011].
For xg € ' = I'p(u), we may let e, = xo/|xo| after a rotation. Then we define
2 2

. r r i
t(xo, 1) = mln{ ut(xo—re,,0) u=(xo+rey,, 0) } (-3

Some remarks concerning ¢ (xg, ) are in order. In one-phase case (where u~ = 0), it was shown in
[Choi et al. 2007] that
t(xg,7r) ~sup{t > 0:u(xg+re,, t) =0},

i.e., t(xg, r) is the time it takes for the free boundary to reach xo 4 re,. In our (two-phase) case ¢ (xg, )
is the time it takes for the free boundary to reach xo + re, if we evolve the free boundary only according
to the dominant phase with bigger size of u. In particular I" (1) moves at most by distance r by the time
t(xg, r). It turns out that #(xg, ) is the correct time scale for the solutions in r-neighborhood of xg to
“mix” and regularize the interface (Theorem 1.1(3)). See the paragraph below Theorem 1.1 for further
heuristics based on scaling properties of our problem.

Suppose u is a solution of (ST2) with initial data u satisfying (Ia)—(Id) with ¢ (x) C Br(0). Due to
(Ia)—(Ib), for sufficiently small » and given xo € I'g the initial free boundary I'g is given by the graph of a
Lipschitz function in B, (xp). After a rotation if necessary, we may assume that

Q0N B, (x0) = {x +x0: x = (x', x,), x5 < f(XN)},
where f is a Lipschitz function with Lipschitz constant L < L,. We summarize our main results:

Theorem 1.1 (cf. Theorem 5.6, Theorem 5.7 and Corollary 5.8). Let u, Qq, r and f be as above. There
exists dy > 0 depending only on n and Ny such that the following holds for r < dy:

(1) In 2, := By, (xg) X [t(x0,7)/2, t(xg, )], we have
C(u) ={(x+x0,1) :x = (x', x,), xu < f(x', 1)},

where f(x',t) is a C! function of space and time. Moreover, there exists a positive dimensional

)"

~1/3
00— f (o) < o ~log it = )

(2) u is a classical solution of (ST2) in X, in the sense that

constant cy and 1 < m < 2 such that

/
D f(x'.1) = Dt D] = o~ log| ¥~ &

(i) Du™ exists in Q(u) and is continuous up to Qu);
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(i) Du~ exists in Q2 (u) and is continuous up to X, N (R" — Q2 (u));
(iii) the free boundary condition is satisfied in the classical sense, i.e.,

Vo= (Du"|=|Du)(x,1) onT)NE,.

(3) There exists a positive dimensional constant M such that

L ut(xo—rey, 0) ut(xg—rep, 0)

M~ <|Dut|(x,t) <M

r r

and

_1u" (xo+re,, 0) < \Du"|(r 1) < Mu_(xo—i—ren, 0)

M
in X,
Remark 1.2. Our result extends to the case where the star-shaped condition (I-a)—(I-b) is replaced by:
(I-ab) €2q is locally Lipschitz with a sufficiently small Lipschitz constant.

See the discussion in Section 6.

The one phase version of the above result was proved in [Choi and Kim 2010] (see Theorem 2.16 in
Section 2). Let us briefly motivate our result below in the context of the existing literature.

For a given reference point (xo, fp) € R" x [0, co) and positive constants r and ¢, one can rescale the
solution u of (ST2) as

~ 1 r?
u:.= —u<x0+rx,to+—t). (1-4)
c ¢
Then u satisfies the free boundary problem
ri; —Au=0 in{z>0}U{u <0}, (F)
V =|Du*|—|Da~| on d{a > 0},
in a corresponding neighborhood of the origin. Let eq, ..., e, be an orthonormal basis of R", so that

x € R™ can be written as x = (x', x,,), with x,, = x - e,. Choose (xg, o) = (x0, 0) with xo € I'y(u). By our
hypothesis, after a change of coordinates if necessary, there exists a Lipschitz function f : R"~! — R
with a small Lipschitz constant such that

Qo(u) N By (x0) = {x 1 x, < f(xN}.

Let us choose
C=max{u+(x0_ren70)au_(x0+renao)} (1_5)
so that one of it (—e,, 0) and i~ (+e,, 0) equals 1, and the other is less than 1.

Now suppose that we can show the following two conditions:

(A) |a|(x,t) < C in B1(0) x [0, 1] with a constant C > 0 independent of x( and r.

(B) The level sets of & are Lipschitz graphs in space and time with small Lipschitz constant in
B1(0) x [0, 1].
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Then Theorem 1.1 follows from the results of [Athanasopoulos et al. 1996] applied to #. Indeed, (B)
can be replaced by a relaxed version (B’) as stated below, which is sufficient to derive Theorem 1.1 due
to the results of [Athanasopoulos et al. 1998].

(B’) The level sets of i are e-monotone with respect to cones of directions W, (6*, e) and W, (6’, v) with
v € span(e,, ¢;), and /2 — 6* and € sufficiently small.

(For the meaning of e-monotonicity and the space and time cones W, and W;, see Definition 2.1.)

In our case (A) can be verified using previously known results in the one-phase Stefan problem
(Lemma 3.3 and Lemma 3.4). Unfortunately, as shown in [Choi and Kim 2010], verifying (B’) for all
scales r turns out to be as difficult as showing (B) or the full regularity of u. Since u no longer satisfies
the heat equation, one loses control of the change of u over time. For this reason it is necessary to show
(B’) for all level sets of i, not just for the free boundary I' (7). Indeed, in this article we will first show
that u (scaled correspondingly for the two-phase) is e-monotone in the space variable (Lemma 3.1), and
then we show that I (i1) is e-monotone in the space-time variables (Corollary 4.4 and Lemma 4.7). Then
in Section 5 we use the e-monotonicity obtained from previous sections, the almost-harmonicity of &
(Lemma 3.6), as well as the iteration methods originating from [Athanasopoulos et al. 1996; 1998] to
show directly that # is a classical solution and u satisfies (B) and (B’) (Section 5). The arguments in
Section 5 are mostly drawn from [Athanasopoulos et al. 1996; 1998] as well as [Choi et al. 2007; 2009].

Let us now illustrate the underlying ideas in the analysis in Section 4, where we show the e-monotonicity
of the solution over time. In terms of the original solution u, verifying (A) and (B’) corresponds to
analyzing u over the time interval [0, ¢ (xo, r)], where 7 (xg, r) is given by

t(xo, 1) :=r?%/c,

and c is as given in (1-5). Note that ¢ (xg, ) coincides with the one given by (1-3).
Heuristically speaking, there are two possible scenarios for interface regularization, depending on its
initial configuration in the local neighborhood:

(1) One of the phases has much bigger flux than the other, i.e.,
ut(xo—se,,0) > u" (x0+5€,,0) or u”(xo—se, 0) Ku (xo+se,, 0)

for s comparable to r.

In this case one-phase-like phenomena (regularization by the dominant phase as obtained in
Theorem 2.16) are expected. As mentioned above, in this case the time interval for regularization of
the free boundary in r-neighborhood is proportional to the distance it has traveled.

(2) Both phases are in balance, i.e.,
u™ (xo — seq, 0) ~ u” (xo +sey, 0) (1-6)

for s comparable to r.
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In this case one expects regularization due to competition between two phases, resulting in
Lipschitz-like behavior over time. Again the corresponding time interval for regularization amounts
to t(xg, r) given in (1-3).

To make the above heuristics rigorous, in Section 4 we will introduce a decomposition procedure based
on Harnack-type inequalities, which illustrates local dynamics near the free boundary: roughly speaking,
for a given r > 0 we divide B, (xp) x {t = 0} into regions where (1-6) holds for 0 < s < r (balanced
region) and the rest of domain (unbalanced region). (See detailed definitions of these regions in Section 4.)
Of course the main issue is whether the dynamics of one region affect the other, in particular whether
the one-phase-type dynamics of the unbalanced region breaks the property (1-6) in the balanced region
for future times. We will show that this does not happen (Proposition 4.3), due to a fast regularization
property in the unbalanced region (Proposition 3.7 and Lemma 4.7) as well as Harnack-type inequalities
(Lemmas 4.5 and 4.6) in the balanced region.

Let us finish this section with an outline of the paper. In Section 2 we introduce preliminary results and
notation, including the regularity results in the one-phase Stefan problem (Theorem 2.16). Sections 3 to 5
consist of the proof of Theorem 1.1; in Section 3 we prove some properties on the evolution of solutions
of (ST2) with star-shaped data. In addition to Harnack inequalities, we show that the solution stays near
the star-shaped profile for a unit time (Lemma 3.1), which in turn yields that the solution stays very close
to harmonic functions (Lemma 3.6). This establishes that (B") holds in the space variable. Making use
of the results in Section 3, we perform a decomposition procedure in Section 4, to show that (A) holds
for & (Proposition 4.3) and that (B") holds for I' (iz) (Corollary 4.4). This completes the main step in our
analysis. In Section 5 we describe the rather technical iteration procedure leading to further regularization,
and we complete the proof of Theorem 1.1 by combining arguments from [Athanasopoulos et al. 1996;
1998; Choi et al. 2007; 2009] (Theorem 5.7 and Corollary 5.8). In Section 6 we discuss a generalized
proof of the corresponding regularization result (Theorem 6.1) when the star-shapedness of the initial
data (I-a) and (I-b) are replaced by the local version (I-ab).

2. Preliminary lemmas and notation

We introduce some notation.

o For x € R, denote by x = (x’, x,,) € R*~! x R, where x,, = x - e,.

e Let B,(x) be the space ball of radius r, centered at x.

e Let O, := B, (0) x [—r2, r?] be the parabolic cube and let K, := B, (0) x [—r, r] be the hyperbolic cube.

» A caloric function in 2 N Q, will denote a nonnegative solution of the heat equation, vanishing along
the lateral boundary of €2.

e For xg € I'g and e,, = xo/|x0|, define

d? d? }

1(xo,d) := mm{ ut(xo—de,,0)” u=(xo+dey,, 0)



1070 SUNHI CHOI AND INWON KIM

« C is called a universal constant if it depends only on the dimension n and the regularity constant Ng
of up.

* We say a ~ b if there exists a dimensional constant C > 0 such that C “p<a<Cb.

o Lastly let us recall the definition of e-monotonicity. Let W, (6%, ¢) and W,(0’, v) with e € R" and
v € span(e,, e;), respectively, denote a spatial circular cone of aperture 26* and axis in the direction of e,
and a two-dimensional space-time cone in (e,, ¢;) plane of aperture 20" and axis in the direction of v.

Definition 2.1. (a) Given € > 0, a function w is called e-monotone in the direction 7 if
u(p+rt) >u(p) forany A >e.
(b) w is e-monotone in a cone of directions W, (6%, e) or W, (6", v) if w is e-monotone in every direction
in the cone.

Next we state preliminary results that are important in our analysis. The first lemma is a direct
consequence of the interior Harnack inequalities proved in [Caffarelli and Cabré 1995].

Lemma 2.2. Suppose w(x) : R" — R has bounded Laplacian. Then w is Holder continuous with its
constant depending on the Laplacian bound.

Lemma 2.3 [Fabes et al. 1984, Theorem 3]. Let Q be a domain in R" x R such that (0, 0) is on its lateral

1172 domain, i.e.,

boundary. Suppose Q2 is a Lip
Q={(",x,,0): x| <1, x| <2L,|t] <1,x, < f(x', 1)},

where f satisfies | f (x', 1) — £y, )| < L(Ix" — y'| + |t —s|'/2.) If u is a caloric function in 2, then there
exists C = C(n, L), where L is the Lipschitz constant for 2, such that

ux, 1) _ C u(—Lep, %)
v(x,1) = y(—Le,, —%)

for (x,t) € Q1.
Lemma 2.4 [ Athanasopoulos et al. 1996, Theorem 1]. Let 2 be a Lipschitz domain in R" x R, i.e.,

Q1NQ=01N{x,1):x, < f(x', 1)},

where f satisfies | f(x,t) — f(y,s)| < L(lx —y|+ |t — s|). Let u be a caloric function in Q| N Q2 with
(0,0) € 92 and u(—ey, 0) =m > 0 and sup, u = M. Then there exists a constant C, depending only on
n, L, m/M such that

u(x,t+p?) < Cu(x,t—p?)

forall (x,t) € Q12N Qand for0 < p <dy,;.

Lemma 2.5 [Athanasopoulos et al. 1996, Lemma 5]. Let u and Q2 be as in Lemma 2.4. Then there exist
a, 6 > 0depending only on n, L, m/M such that

wy =u+u't and w_=u—u't
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are subharmonic and superharmonic, respectively, in Qs N QN {t = 0}.
Next we state several properties of harmonic functions:

Lemma 2.6 [Dahlberg 1979]. Let u1, uy be two nonnegative harmonic functions in a domain D of R" of
the form

D={(',x) eR" I xR:|x'| <2, |xu] <2L,x, > f(x)},

with f a Lipschitz function with constant less than L and f(0) = 0. Assume further that uy = uy =0
along the graph of f. Then in

Dip={lx"| <1,|x;] <L,x, > f(x")}

we have
/
0<C < ur(x’, xn) u2(0, L) <G
ur(x’, xp) u1(0, L)

with Cy1, Co depending only on L.
Lemma 2.7 [Jerison and Kenig 1982]. Let D, u; and u, be as in Lemma 2.6. Assume further that

u(0,L/2)
ur(0,L/2)

Then, uy(x', x,)/us(x’, x,,) is Holder continuous in 51/2 for some coefficient a, both a and the C* norm
of uy/u, depending only on L.

Lemma 2.8 [Caffarelli 1987]. Let u be as in Lemma 2.6. Then there exists ¢ > 0 depending only on L
such that for 0 < d < c, %M(O, d) > 0and

u(0,d) d)
d

u(O d)

Cy (Od)<C

where C; = C;(M).

Lemma 2.9 [Jerison and Kenig 1982, Lemma 4.1]. Let Q2 be Lipschitz domain contained in B19(0). There
exists a dimensional constant 8, > 0 such that for any ¢ € 992, 0 < 2r < 1 and positive harmonic function
u in QN By, (8), if u vanishes continuously on By (£) N AK2, then for x € QN B, (¢),

< o=ty :y€dB Q
u(x) < p sup{u(y) : y € B2 (£) N2},
where C depends only on the Lipschitz constants of .

Next, we point out that we use the notion of viscosity solutions for our investigation. When {ug = 0} is
of zero Lebesgue measure, it was proved in [Kim and Pozar 2011] that the viscosity solution of (ST2) is
unique and coincides with the usual weak solutions. (See [Kim and Pozar 2011] for the definition as well
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as other properties of viscosity solutions.) Below we state important properties of viscosity solutions for
(ST2) that relate our solutions to the one-phase version of our problem,

u;— Au=0 in {u > 0},
uy/|Du| = |Dul on 0{u > 0}, (ST1)
u(-,0)=up>0.

Lemma 2.10. Suppose u is a viscosity solution of (ST2). Then:

(a) u is caloric in its positive and negative phases.
(b) —u is also a viscosity solution of (ST2) with boundary data —g.
(¢) ut =max(u, 0) (oru™ = —min(u, 0)) is a viscosity subsolution of (ST1) with initial data uar (orugy).
We say that a pair of functions ug, vg : D — [0, 00) are (strictly) separated (denoted by ug < vg) in
D C R"if:
(i) The support of ug, supp(ug) = {up > O}, restricted to D is compact.
(i) uo(x) < vo(x) in supp(up) N D.

Lemma 2.11 [Kim and Pozar 2011, Comparison principle]. Let u, v be, respectively, viscosity sub- and
supersolutions of (ST2) in D x (0, T) C Q with initial data uy < vg in D. Ifu <von oD andu < v on
DN Q) for0<t <T,thenu(-,t) <v(-,t)in D fort [0, T).

Below we state a distance estimate for the free boundary and Harnack inequality for the one-phase
solution u of (ST1).

Lemma 2.12 [Choi and Kim 2010, Lemma 2.2]. Let u be given as in Theorem 2.16. There exists
to = to(No, My, n) > 0 such that if xy € I'g and t < ty, then

%tl/(z_"‘) <d(xo, 1) <Ct"/*P), 2-1)

where o and B are given in (1-2), C depends on Ny, My and n, and d(xg, t) denotes the distance that I’
moved from the point xo during the time t, i.e.,

d(xg,t) :=sup{d : u(xo +de,, t) > 0}.

Lemma 2.13 [Choi and Kim 2010, Lemma 2.3]. Let u be given as in Theorem 2.16. There exists d
depending on No, My and n such that if xo € T'g and d < dy, then

u(xo—dey,t) < Cu(xo—de,,0) for 0 <t =<t(xp,d),
where C depends on Ny, My and n.

The following monotonicity formula by Alt—Caffarelli-Friedman prevents the scenario that both phases
compete with large pressure in our problem.
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Lemma 2.14 [Alt et al. 1984]. Let hy and h_ be nonnegative continuous functions in B1(0) such that
Ahy >0and hy -h_ =0in B1(0). Then the functional

1 |Dhy|? |Dh_?
d(r)=— 5 dx 5 dx
r* Jp.o) X" B,(0) 1X|"”

is monotone increasing inr,0 <r < 1.

Corollary 2.15. Let 029 C R" be star-shaped with respect to the ball B1(0) C Q¢ and suppose that
B4/3(0) C Q0 C Bs;3(0). Let hy be the harmonic function in Qo — B1(0) with boundary values h, =0
on 020, and ho =1 on dB1(0). Let h_ be the harmonic function in B,(0) — Qo with boundary values
h_=00n 0, and h— =1 on d B2(0). Then there exists a sufficiently large dimensional constant M > 0

such that

heOo=ren) S pp implies =0T _y
r

for xg € 02, e, =x/|x|and 0 <r <1/6.

Proof. This follows from Lemma 2.14, since

h+(xo—ren) h_ (xo—i-ren) |Dh+|2 |Dh,|2
( Tv v n—2 dx - —n_zdx
d r (27’) By (xo—ren) |x — xo Byj2(xo+ren) |x — xo|
Dhy|? Dh_|?
LS VI
(2r) Ba, (xo) 1X — Xo" Bay (xo) 1X — Xol"
=¢Q2r)=¢(1/3) =Cy. O

Lastly, let us finish this section by stating the results obtained in [Choi and Kim 2010] for the one-phase
version of our problem in the local setting:

Theorem 2.16 [Choi and Kim 2010, Theorem 0.1]. Suppose a nonnegative function u(x, t) is a solution
of (ST1) in B(0) x [0, 1], 0 € ['g(u), with the initial data ug > 0 satisfying (I-b), (I-c) and (I-d) in B,(0).
Suppose the initial data satisfies

{u(x,0) >0} = {x +x0:x, < f(x))}

in B1(0), where f is a Lipschitz function with Lipschitz constant L < L,. Further, suppose up(—e,) = 1
and Susz(O)X[Oyl] u=< MO.
For given r > 0, let us define

72

1(x0, 1) = u(xo+rey, 0)

Then there exists a small co > 0 depending on My and n such that in ¥, = B, (xg) X [t (xg,7)/2, t(x0, )]

forr < co, we have:

(1) Theorem 1.1(1) holds for u.
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(2) u is a classical solution of (ST1) in X, in the sense that the spatial derivative Du exists in Q2 (u) and

is continuous up to Qu), and the free boundary condition is satisfied in the classical sense, i.e.,
Ver=I|Dul(x,t) onT'(u)NZ,.
(3) There exists a positive constant M depending on My and n such that

Mflu(xo—ren,O) u(xg—rey, 0)

<|Dul|(x,t) <M
p

4) Ifx eTo(u) N B, (0) and x +re, € 't () N B, (0), then

- ,0 - ,0
e Tren 0 e 1) = Verres < piE=ren 9
r r

where M depends on n and M. In particular,

u(x —re,, 0
§~ \DuCx +ren, 1)) ~ Y0
r

Theorem 2.16 states that the free boundary regularizes in a scale proportional to the distance it has
traveled. Note that the regularity results hold up to the initial time and all the regularity assumptions are
imposed only on the initial data.

3. Properties of solutions with star-shaped initial data

Lemma 3.1. If Qo and ug are star-shaped with respect to the ball B,,(0) C Qo, then Q;(u) and u(-,t)
stays o -close to star-shaped for all 0 <t < %0’1/5 (see Figure 2).

Proof. Step 1. For any a > 0, the parabolic scaling (x, 1) — (ax, a’t) preserves both the heat operator

(1 +4r2)Dl‘k

0%,

Figure 2. Approximation of the positive phase by a star-shaped domain.
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and the boundary motion law in (ST2). Therefore, for any o > 0 the function
ui(x,t) = u((l +0)(x — xp) + xp, (1 +0)2t)
is also a viscosity solution of (ST2) with corresponding initial data.
Step 2. Choose xq € By, (0). Take a small ¢ > 0 such that By, (0) C 9. We claim that for 0 <8 < 0%/,
ui(x,0) <u(x,d8) in Br(0) — Byy4¢,(0) (3-1
if o is small enough. To show (3-1), let us introduce another function
i(x,0) :=u((1+ 30)(x — x0) +x0, 0).

Also let v* be the solution of the one phase problem (ST1) with initial data u, , and with v* =1 on 9 B (0).
Note also that, due to Lemma 2.10, u~ is a subsolution of (ST1) with initial data v*(x, 0) = u~(x, 0).
Thus by Lemma 2.11, v* < u~. It follows that ;(v*) C 2;(u) C 2;(u). Hence by Lemma 2.12
applied to —v*,
Qo) C Qu) for0<t<o'/C.

Moreover, due to our assumption,
u(x, 0) < uo(x).
Therefore, the maximum principle for caloric functions implies
w(x, 1) <u(x,1),

where w solves the heat equation in the cylindrical domain D = Q¢(iz) x [0, o7/6] with initial data i (x, 0)
and zero boundary data on 92y (iz) x [0, a1/9].
Now w; solves the heat equation in D,

w,=Aw>—-Catr=0 and w,=0o0n0Ry(u).
Therefore we conclude that w, > —C in D. In particular
w(x,d8) >u(x,0) —Cé. (3-2)

Next we compare u;(x, 0) with w(x, §). Observe that for x € Br(0) — By;4,(0),

e

ui(x,0) = ii(x, 0) +/ ((x = x0) - Du((1 +5)(x — x0) + X0, 0)) ds <ii(x, 0) — coo "/
7 <ii(x,0) — Co®*
< w(x,d) <u(x,?)
for 0 < 8 < 0%, where the first inequality follows from our assumption (I-d) on u, the second inequality

follows if o is sufficiently small, and the third inequality follows from (3-2). Hence we conclude (3-1).

Step 3. Our goal is to prove that for 0 < § < %/,

ui(x,t) <ur(x,t):=u(x,t+95) (3-3)
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in (Br(0) — Byy+¢,(0)) x [0, o !/3]. Note that the inequality holds at + = 0 by Step 2. However, we need
a few more arguments since we do not know yet if the lateral boundary data on 0 By, (0) is properly
ordered.
Suppose
Qu) C Q) for0<t=<p

and 2 (u;) contacts 02 (u) for the first time at ¢t = #y. Observe then that
f,t)=ulx,t+68)—ui(x,t)
solves the heat equation in €2(u#;) with nonnegative boundary data for 0 < ¢ < ¢y, with
f(x,0) =0 in Br(0) — By, (0).
Indeed, following the computation given above, it follows that
F,0) = oo in Bryray(0) = Bryrag/2(0).
On the other hand, due to the fact that w, > —C and & < ¢%/3, we have
f(x,0) = (wlx, 8) —w(x, 0) + (w(x, 0) —u1(x,0)) = =Co®> in Byyye2(0).

Therefore we have
f(x, 1) >0 on 0B+ (0) x [0, 1]

if 1o < 1. But then this contradicts Lemma 2.11 applied to the region (Bg(0) — By,+¢,(0)) x [0, to].
Step 4. From (3-3) of Step 3, we obtain

u((l—l—(r)(x—xo)—i—xo, (1+0)2t) <u(x,t+596) (3-4)

in (Bgr(0) — Byy+¢,(0)) x [0, o '/3] for any xo € B,,(0), as long as o and § are sufficiently small and satisfy
0<8<0%3 Asaresult, for0<r < %01/5, we can choose 8§ = o (2 + o)t < %3 such that

(1+0)’t=1t+34.

It follows then from (3-4) that the function u( -, #) is o -monotone with respect to the cone of directions W,
in (Br(0)— By, (0)) fort €[0, 10'/3]. (Here W, ={v € §":v = (x —x¢)/|x —xo| for some x € B, (0)}.)

O
Remark 3.2. For x € 'y, we may let ¢, = x/|x| after a rotation. Then, due to (I-b),
. : r’ r? 7/6 .5/6 4/5
Hox, d) = mln{u+(x—ren, 0) u=(x+rey,, 0)} €l < (3-5)

where ¢ (x, r) is the time it takes for the free boundary to regularize in B, (0). Therefore, we have, for
0 <7 =t(xo,r),

4

u(-,t)is r*-monotone with respect to Wy in (Bgr(0) — By +¢,(0)).
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This property will ensure that our solution u has its level sets close to Lipschitz graphs in the space
variable in an appropriate scale, which serves as the first step towards the regularization argument; see
Lemma 3.6.

Lemma 3.3 (Harnack at t =0). Let u be as in Theorem 1.1. For x € Ty, we may set e,, = x /| x| after a
rotation. Then for all s > 0 and for 0 <t <t(x, s) we have

ut(x —se,, 1) < Ciut(x —se,, 0) and u (x +sey, t) < Ciu~ (x +se,, 0),
where e, = x /|x]|.

Proof. Let v** solve the one-phase Stefan problem (ST1) with initial data vj*(x) = u{f (x). Then v** is
also a solution of (ST2) with uo(x) < v3*(x), and thus by Lemma 2.11 we have

u(x, 1) <v*(x, ).
Therefore it follows from one-phase Harnack inequality applied for v**(x, ) that
ut(x —se,, t) <v™*(x —se,, 1) < C1v™* (x —sey, 0) = Cru(x — sey, 0)

for 0 <t <1y, where 1y = sz/u(x —se,,0) >1(x,s).
As for u™ (x, t), we compare u~ with the solution v* of (ST1) with initial data vj(x) = u (x) and
with boundary data v* = 1 on d Bg(0). The rest of the argument is parallel to the above one. (Il

Lemma 3.4 (backward Harnack at t =0). Let u be as in Theorem 1.1. Let x € 'y and let e, = x /| x| after
a rotation. Then for s > 0 and for 0 <t <t(x,s),

ut(x —se,, 0) < Ciut(x —se,, 1) and u (x +se,, 0) < Cru~ (x +sey, 1).

Proof. We will only show the lemma for u™. The other part follows by a parallel argument. Let v* solve
the one phase problem (ST1) with initial data u, and with boundary data 1 on 9 B(0). Then —v* is also
a solution of (ST2) with —v; < uo, and thus by Lemma 2.11, —v* < u. This inequality implies that

{(v* =0} C {u>0}.

Note that €2 (v*) moves according to the one-phase dynamics, which have been studied in detail in
[Choi and Kim 2006]. In particular we know that 2 (v*) will be Lipschitz at each time. Moreover, for a
boundary point (x, ¢) € I'(v*) and d := dist(x, ['g(v*)), the normal velocity V, ; satisfies

* 2de,, 0
Ves = DV (x, )] ~ ”(%de") < df1 < B-D/C) (3-6)

where the last inequality follows from Lemma 2.12. Let v, (x, t) solve the heat equation in {v* = 0} with
initial data uo(x) and boundary data O on the lateral boundary of d{v* = 0}, i.e., v, solves

v, — Av, =0 in {v* =0} = Bg(0) x [0, 1] — Q(v*),
v(x,0) =ug(x) on {*=0}N{r=0},
v, =0 on d{v* =0} N{r > 0}.
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Since
Qy) ={v" =0} C{u=>0},

we have v, (x, 1) <u(x,t) in {v* = 0}. Moreover, for any given t > 0, 7~ (x, 5) := v*(4/7x, ts) satisfies
the assumptions of Lemma 2.5. Thus it follows that v*( -, #) is %-close to a harmonic function in B Vi)
for some a > 0, where x € I'g. Moreover, due to the assumption on the initial data, (v4); = Av, > —C at
t =0. Also on I'(vy),

(vs)e/| Dy | = —(v*), /| Dv*| = — | Dv*| > —¢ P~ D/Z=),

Here the first equality follows since (v4);/|Dv,| and —(v*);/|Dv*| are the normal velocities of their
respective level sets I'(v,) and I"(v*), but I'(v*) = I'(v,) by definition. The second equality follows since
v* solves the one phase problem (ST1), and the last inequality follows from (3-6).
Since 2 (v,) is Lipschitz and I';(v,) = I';(v*) is regularized in space over time (see Theorem 2.16),
(3-6) also holds for |Duv,|.
Hence on I'(vy),
(We)s = —|Dv¥|| Du,| = —2P~D/C=) o =215,

where o and § are the growth rates defined in (1-2), and the last inequality follows from the assumption (I-b).
Since (v4); solves a heat equation in €2 (v,), it follows that for x € Iy,

() = =177 in B s 5(x — /1ey) x [0, 1]. (3-7)
Then since v, (x — v/Tey, 0) > (V1)* > (/1) =17/12 for x € 'y we have
Ve(x — NTen, 1) = v.(x — /ey, 0) + /t(v*)t(x — sey,5)ds > v (x —te,,0) — 3177
’ > Lo, (x — Vieg, 0) + L17/12 = 3,35
> Ju,(x — V/te,, 0)
if ¢ is sufficiently small. It follows that
ut (x — ey, 0) = v (x — Vten, 0) < 2v.(x — Ve, 1) < 2uT(x — ey, 1),

where the first inequality follows from (3-7).
Since I'(v,) = I'(v*) is Lipschitz in a parabolic scaling, v, is almost harmonic. Hence v, (-, t) is
bigger than the harmonic function o’ (x) in €, (vs) N B i) with its value

o' (x — Vie,) = (C)™'ut (x — Vie,, 0).
Note that if 0 < < t(x, s), then s < /7. Hence for 0 <t < t(x, s),
Ciu™(x —seq, 1) > Cvu(x — sy, 1) > Cro' (x —sey) > Cu™ (x — se,, 0),

where the last inequality follows since the one-phase result implies a power law on the movement of
['(v*) =T (v4) (see Lemma 2.5 of [Choi et al. 2007]), and this yields a bound on u™* (x —se,,, 0) /o' (x—se,).
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Similar arguments apply to u~, if we consider the function v** solving (ST1) with initial data uar , and
the function v* solving the heat equation in {v** = 0} with initial data u( and with boundary data 0 on
I'(v**) and —1 on d B (0). O

Lemma 3.5 (distance estimate at t = 0). Let u be as in Theorem 1.1. Let x € 'y and let e, = x/|x| after
a rotation. Let s be a sufficiently small positive constant. If

™ (x —sen, 0)] _ and IM_(X+sen,0)ISm

f— b
N N

then fort € [0, s/m],

d(x,t)=sup{r:x+re,orx —re, €'t ()} <s.

Proof. Let v** solve (ST1) with initial data uar , and let v* solve (ST1) with initial data u, and with v* =1
on d Bg(0). Then by comparison, —v* < u < v** and the lemma follows from the one-phase result of
Theorem 2.16. U

In the next lemma, we approximate our solution by harmonic functions.

Note that, due to Lemma 3.1, We know that the rescaled function i (x, ¢) as given in (1-4) satisfies the
condition (B’) in the space variable. On the other hand, it is not clear if the level sets of u are close to
Lipschitz graphs in the time variable. The approximation by harmonic functions given by Lemma 3.6, as
well as Harnack-type inequalities obtained at t = 0 and at future times, will ensure us that I'(u) is almost
Lipschitz in the time variable as well (Corollary 4.4). This fact will serve as the first step towards the
regularization procedure in Section 5.

Lemma 3.6 (spatial regularity in the whole domain). Let u be as in Theorem 1.1. Then there exists a
positive constant ro depending only on n such that for xg € I'g and 0 < r < ry, there exists a function
w(x,t):=w"(x,1) — o (x,1t) that satisfies:

(@) w(-,1t) is harmonic in its positive and negative phase in (1 +r)Q2,;(u) — (1 —r)2; (u), and QL (w™),
Q(w™) are star-shaped with respect to B,,(0) given in (I-a).

(b) For a dimensional constant C > 0, we have
o e, ) <uT(x, ) <Cot (A =r"*x,1) and o (x,t) <u"(x,1) < Co ((14+r"Mx, 1)
in B, (xo) x [r?, t(xo, r)].
Note that 7 (xg, r) > r’/® > r?, and 3{w* > 0} need not be d{w~ > 0}.

Proof. Step 1. We will only show the lemma for u™. For a given x( € ', we may assume that e,, = xo/|xo|
after a rotation.

First we will construct a barrier function v; which will serve as a supersolution of (ST2). For this, let
us first consider the viscosity solution u* of (ST1) with the initial data uar for 0 <t < fy. We may assume
that for #y small compared to R the support of u* stays inside Br(0). Let us define

QL i={u">0}, I':=03u" =0}, Q:=Bgr(0)x]I0,15]—Qr.
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Now let vy solve the heat equation in 2% and in * , with initial data u¢ and with vy = —1 on d Bg(0).
In other words, v| = vfr — v, , where

dvy —Avf =0 inQY,

v (x,0)=uf (x) on{r=0}

vfr =0 on I'*,
and

v, —Av;, =0 inQ,

v, (x,0) =uy(x) onf{r=0},

v, =0 on I'*,

vy =1 on dBg(0) x [0, 1].
Note that vy solves the heat equation in two regions €% and Q*, with free boundary I'*. Also note that
vfr =u* and o, v]L = |var 2 on I'* since the boundary I'* is obtained from the one phase problem with
initial data u(J)r . Hence we can observe that v; is a supersolution of the two-phase problem (ST2).

Similarly one can construct a subsolution of (ST2): let us consider &*: the viscosity solution of (ST1)

in Bg(0) x [0, #o] with the initial data u, and fixed boundary data 1 on 9 Bz(0) x [0, #o]. Let us define

Q= {a*>0), T*:=a{a*=0}, Q% :=Br(0)xI0,1]—Q".

Now let v, solve the heat equation in two regions Q* and ﬁjr, with boundary data O on [ and —1
on dBg(0), and with initial data ug. Note that v, = u*. Then v is a subsolution of (ST2), and by
comparison,

vy <u<v. (3-8)

Hence the free boundary of u is trapped between the free boundaries of v; and v,. Note that the free bound-
aries T'™* and T* of vy and v, are obtained from the one-phase problem (ST1). Hence by Theorem 2.16(a),
I'* and T* are Lipschitz in space in B;(xg) for a small constant d > 0. Also, Theorem 2.16(c) implies
that for § € [d/2, d] and x¢ + de, € I'}, the normal velocity Vi 4se,.. of I'* at (xo 4 8e,, t) satisfies

d _ug(xo—dey) _

B—1
t d =dm

Vx0+8en,t = |DU?_(X() +dep, 1) ~

Since d/t < dP~!, we obtain

t>d* P> 4%

Hence the above speed bound of I'* implies that 2, and ©2* are Lipschitz in space and time, in parabolic
scaling. Then by Lemma 2.5, v;r and v, are almost harmonic up to a d-neighborhood of their free
boundaries for t > d2. Similarly, we obtain that v; and v, are almost harmonic up to a d-neighborhood
of their free boundaries for t > d°.

Next we fix r < d. Note that if + < #(xp, r), then by Theorem 2.16(c), both of the sets I';(v;) and
I'; (vy) are within distance r of I'g(«) in B, (xp) during this time. In particular, arguments parallel to the
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ones in the proofs of Lemmas 2.1 and 2.3 in [Choi and Kim 2010] yield that
sup{u(y, ) : (y,5) € Ba(xo) x [0, d*1} ~ u(x —de,, 0).
Now using the almost harmonicity of vfr and v;“ , we conclude that for 0 <t < r(xg, r),

va(xg —2re,, t) ~ ug(xg — 2re,, 0) ~ vi(xg — 2re,, t). (3-9)

Step 2. Observe that by the definition of ¢ (xg, r) and the assumption on the growth rates of ug,
2P < t(xg,r) < P2 < 30— 1, (3-10)

Due to Lemma 3.1, we know that at each time, €2, (u) is 7°-close to a star-shaped domain D; up to the
time t =1, i.e.,
D, CQu)c(+7°)D, c(1+rYD, (3-11)

forO<t<r.

Also note that by the first inequality of (3-10) with 8 > 5/6,
t(z, r13/20) > p1BC=P/20 5 = for any z € .

Hence we can apply Lemma 3.3 for s = r!/2% up to the time 7. Then by Lemma 3.3 and (3-11) with
B =5/6,
M()C, f) < r(13/20)(5/6) — }’13/24

for x € 8(1 —r'3/2%) Dy and for 0 < ¢ < 7. Then by the 7°-monotonicity of u,
u(x,t) <r'®? on Br(0) — (1 — 32 4 rH Dy (3-12)

for 0 <t < t. Since I';(u) is located between the free boundaries I'* and T™* of one-phase problem,
Lemma 2.12 with 8 > 5/6 implies that I' () stays in the 7%7-neighborhood of T'g(x) up to 7. Also (3-11)
implies that 3 D, stays in the 7°-neighborhood of I'; (1) up to 7. Hence we obtain that 3 D, stays in the
7>/%-neighborhood of d Dy up to the time 7. Since 7°/¢ = r23/36 < r13/20 (3.12) implies

u(x, 1) <r3?* on Bg(0) — D (3-13)

forany 0 <s,7 <.

Step 3. Let

and fix a number b such that
5/4 <b < 61/48.

We will construct a supersolution of (ST2) in

(Br(0) — (14 r)Dy) x [t tr11].
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Let w*(x) be the harmonic function in

¥ :=1+4"D, —D,,
with boundary data zero on d(1 + 4rb)D,k and C,r'3/?* on 0Dy, where C, is a sufficiently large
dimensional constant. Extend w* (x) by 0 to R* — X. Next define

O (x, 1) = infwk(y) : [x — y| < ¥ — (t — ) 1072

in (Bgr(0) — (1 + rb)D,k) X [t, tr+1]. We claim that the function dF is a supersolution of (ST2) in
(Br(0) — (1 + rb)D,k) X [tx, ty+1], since our constant b satisfies

rb72 > p13/240, (3-14)

For simplicity, write & = ®*. To check that ® is a supersolution, first note that ® - , ¢) is superharmonic
in its positive set and ®; > 0. Hence we only need to show that

@,
| DD

>|D®| onT'(d). (3-15)

Due to the definition of @, I',(®) has an interior ball of radius at least r” /2 for t, <t <tyy1. This and
the superharmonicity of @ in the positive set yield that

Cr13/24
b

|D®P| < on ['(D)

for a dimensional constant C > 0. Moreover I'(®) evolves with normal velocity %rb —2. Since (3-14)
holds for our choice of b (i.e., for 5/4 < b < 61/48), we conclude that (3-15) holds for » smaller than a
dimensional constant r(n). Now we compare u with ® on

(Br(0) — (1 +7r)Dy,) x [tr, trs1].

Note that by (3-13),
ut<® ond(l+r")D,

if C,, is chosen sufficiently large. Also at t = #;, (3-11) implies
u(-, ) <0< ®(-, ) on Br(0)—(1+r")Dy,.
Hence we getu < ® in (R" — (1 + rb)D,k) X [tx, tx+1]1. This implies
Qu) Cc @)Ul —i—rb)D,k X [ty te1]) = QD) (3-16)

fort, <t < tygy1.

Step 4. Next we let v(x, t) solve the heat equation in

Q(®) — (1= 3r)Q0u) x [t tr41])



THE TWO-PHASE STEFAN PROBLEM 1083

with initial data v( -, tx) = u( -, ;) and boundary data zero on I'(®) and v =u on (1 —3r)I"g(u). Observe
that, due to (3-16), we have
ut <v forfy <t <try. (3-17)

b— 1

Since Q(®) is star-shaped and expands with its normal velocity < r?~2, which is less than r~!,

Lemma 2.5 applies to v(x, t) := v(rx, r2t). In particular there exists a constant C > 0 such that
(1/C)v(x, 1) <hi(x,1) < Cu(x, 1)

for (tx + tx41)/2 <t < tyy1, where hy(-,t) is the harmonic function in €2;(v) — (1 — 2r)Qg(u) with
boundary data zero on I';(v) and v on (1 —2r)o(u).
Hence we conclude that
ut <v<Ch
in (Bg(0) — (1 —2r)Q0o(u)) X [(tk + tk1)/2, trt1].
Step 5. Similar arguments, now pushing the boundary purely by the minus phase given by the harmonic
function, yield that

M, := {x € D, : dist(x, dDy,) > 3r" + 1r’72(t — 1)} C Q:(w)
for ty <t <t41. Let w(x, t) solve the heat equation in

IT— ((1 =3r)Qo(u) X [t, tis1]))

with initial data u( -, #;) and boundary data zero on 911, and u# on (1 —3r)o(u). Then u > w(x, t). Since

b-2

IT is star-shaped and it shrinks with its normal velocity < ?~2, which is less than r—!', Lemma 2.5 applies

to w(x,t) :=w(rx, r’t). In particular there exists C > 0 such that
ut=w>(1/C)hy

for (tp +1tx41)/2 <t < tyy1, where hy( -, t) is the harmonic function in I, — (1 —2r) 2 («) with boundary
data coinciding with that of w.

Step 6. Lastly we will show that 4, and A, are not too far apart, i.e.,
hi(x,1) < Chy(x —8rle,, 1), (3-18)

with a dimensional constant C > 0. Since u is between (1/C)h, and Chy, this will conclude our proof
for (¢ + tx+1)/2 <t < ty+1. Then by changing the time intervals [#, tx+1] to [t + r2/2, ter1 + r2/2], we
obtain the lemma for any ¢ € [r?, t(xg, r)].

To prove (3-18), observe that by the construction of v and w,

Q (w) € 2(v) € (1+8r")Q (w).
Since ty41 — tx = r?, Lemma 2.12 implies

sup{d(x, T, (u)) : x € Ty, (u)} < r'?/7
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for t € [#, ty+1]. Then by (3-11),
sup{d(x, T;(u)) :x € 9D, } < r'?7 4 r* < b (3-19)

for t € [#, tx+1]. Then we obtain
v(x, 1) < vx, 1) < v (1 =4r")x, (1 =42 — 1) + 1) (3-20)

for #; <t < tx+1, where the first inequality follows from (3-8) and (3-17), and the second inequality
follows from the comparison principle along with (3-8), v(-, t) = u(-, t;) and (3-19). Similarly,

v ((1+4rP)x, A+ 4r")2 (1 — ) + 1) < w(x, 1) < vi(x, 1). (3-21)
Combing (3-20) and (3-21), we get
v ((L4+4rP)x, A +4rP)2(t — 1) + 1) < w(x, 1), v(x, 1)
< v ((1—4rP)x, A —4r")(t — tx) + 1)

This and (3-9) yield

v(xg —2re,, t) ~ w(xg—2re,, t) ~ u(xg — 2re,, 0).
It follows that
w(x, 1) <v(x, 1) < Cwx —8re,, 1) on (1 —2r)To X [t trr1].
Hence due to Dahlberg’s lemma, we conclude that
hi(x,t) < Cv(x,t) < Crw(x — 8rle,, 1) < Cihy(x — 8rle,, t)

in B, (xg) X [(tx + tx+1)/2, ty+1]. Since the inequality holds for any 5/4 < b < 61/48, we obtain the
lemma. O

Next we show that in the “unbalanced” region, where one phase has much larger flux than the other,
the regularization process occurs similarly to the one in the one-phase problem. This observation will be
useful for the analysis in Section 4.

Proposition 3.7 (regularization in unbalanced region I). Let u be as given in Theorem 1.1. For a fixed
xo € Do(u), we may let e, = xo/|xo| after a rotation. Suppose that either

u+(x0—ren,0)ZMu_(x0+ren,0) or u_(xo—l—re,,,O)ZMu+(xo—ren,O)

for M > M, where M, is a sufficiently large dimensional constant. Then, for r < 1/M,, there exists a
dimensional constant C > 0 such that
ut(xg—rey,, 0 u (xo+rey, 0
|Dut(x,1)] < CM and |Du”(x,1)| < CM
r

in B, (x0) x [t(x0,7)/2, t(x0, 7)].
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Remark 3.8. 1. In the next section, we will extend Proposition 3.7 to later times, i.e., to xo € I';, (see
Lemma 4.7).

2. The situation given in Proposition 3.7 is essentially a perturbation of the one-phase case in [Choi and
Kim 2010]. The main step in the proof is the verification of this observation; by barrier arguments we
will show that our solution is very close to a rescaled version of the one-phase solution, for which the
regularity of solutions is well-understood (see Theorem 2.16).

Proof of Proposition 3.7. Without loss of generality, we may assume that

ut (xg —rey, 0) > Mu™ (xo+rey, 0).

Step 1. First we will show that after a small amount of time u becomes almost harmonic near the free

boundary. Lemmas 3.3 and 3.4 imply that for 0 <t < ¢(xg, r),
ut(xo—rey, 1) ~ut(xo—re,, 0), u (xo+reyt)~u (xo+rey,0). (3-22)
Also note that, by the assumption on the initial data ug, Lemma 3.6 holds at # = 0. In other words, there
exists a function w(x, 0) = wo(x) such that:
(a) wp is harmonic in its positive and negative phases in (1 +r)Qo(u) — (1 —r)Q2o(u).
(b) @ (a)ar ) and Q(w,, ) are star-shaped.
(¢) In B, (xp), we have
wf (x) <ud (x) < Cof (1 —r "), (3-23)
wy (%) <uy (x) < Cay ((1+r7Hx). (3-24)

Next we will improve (3-23) and (3-24) for later times to obtain the inequalities with C = (1 4 r?) for
t > r3/2. By the distance estimate in Lemma 2.12, the free boundary of u moves less that /7 < r>/4

during the time # = r3/2. Then we let v; solve
dur=Av in (1+2r7HQo(") x [0, r¥2],
v = Avy in (Bg(0) — (1 +2rHQ(w)) x [0, r3/2],

vi(-,0)=u;  on (1+2r*)Qy(w™),
vi(+,0)=—uy on Bg(0) — (1 +2r/"Qy(w™),
v =0 on (14 2rTy(w™) x [0, r3/],
v =—1 on dBr(0) x [0, r3/?].

Similarly, we let v, solve the heat equation in two cylindrical regions,
(1 =2r"MQ0 (") x[0,r*?], and (B (0) — (1—2r""H) Q@) x [0, %]

with initial data uar and —u,, , and with lateral boundary data zero on (1 — 2r3/MTo(wh) x [0, r3/2] and
—1 on 3B (0) x [0, r3/2]. Then, by comparison,

V) <u <. (3-25)
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Also by Lemma 2.5 with § > 5/6,

vy — vy| < F/4XS/6 = 2524,

Note that on (1 — r®7)y(w™),

|U1| > r(6/7)a > r6/7X7/6 —
and thus for a; = 1/24,
lvg —va| <79 vy| on (1 —r%T)To(w™). (3-26)
Similarly,
lur —va| <79 vl on (1+7r%7)To(w™). (3-27)

Now, v; and v, are almost harmonic in the 3/ 4—neighborhood of their boundaries for %r3/ 2<r<pi?
by Lemma 2.5. Then the almost harmonicity of v, and v, with (3-25)—(3-27) imply the following: For
%r3/ 2 <t < r3/?, there exist positive harmonic functions @ (-, ¢) and @ (-, t) defined respectively in

Q) N(BrO) — (1 —r'"™")Qp(@")) and Q@) N1 +r")Q(w™)),
where b = 1/7, such that for some a > 0,
ST, <ut ) <A +rHa((1—4r%x, 1) (3-28)

and

O (x, ) <u"(x,1) < (1 +rHa (A +4r"*x, 1). (3-29)

Now on the time interval [0, r3/2] + %kr3/ 2 1 <k < m, we construct v; and v, so that they solve the
heat equation in the cylindrical domains with

_ 5/4
T(vy) = (1 +2r )F%M2

L) = -2rry,

(@) x [5kr??, (14 307,
(@b x [3kr?2, (1 + $0)r 2.

By a similar argument to the one above, we then obtain harmonic functions &= ( -, t) satisfying (3-28)
and (3-29) for

Ya+kri? <t <1+ or2.

Hence we conclude (3-28) and (3-29) for r3/2 <t < t(xg, r).

Step 2. Next we rescale u(x, t) as

ax, 1) :=a 'ulrx +x0, r’a”'t) in 204,
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where o := ut (xg —re,, 0) < r'/2. Then @i (x, t) solves

V =|Diit|— |Di~| onT (),
ﬁ(_ens O) = 1’

u(e,,0)=—-1/N, where N > M.
Furthermore, (3-22) implies that for 0 <t <1,
it (—e,, t)~1, i (e, t)~1/N.

Let w be the corresponding rescaled version of @ given in (3-28) and (3-29), then in B,-»(0) N Qo (1) we
have

A —rHot (A +4Hx, ar V) < it (x, ar ™) <0t (x, ar™1?) (3-30)

and

A=rH9 (x, ar ) < (x, ar V) <~ (A +4r"*x, ar™1?). (3-31)

Here note that

+
uT(xg—rey, t
O[r_l/ZZ\/;- (0 n 0)51’1/3.
r

Lastly, for given x¢ € I'(&z) N B1(0), an argument similar to the one in (3-7) implies that

i(x, 1) < (14+7rP)i(x,0) in 3B 25 (r Pey) x [0, 1]. (3-32)

Step 3. We claim that we can construct a supersolution U; and a subsolution U, of (ST2) such that
Us(x,1) <ii(x, 1) SUi(x, 1) < Up(x —/eey, 1) in Bi(0) x [ar™'/2, 1],

and so that U; is a smooth solution with uniformly Lipschitz boundary in space and time. Then for
sufficiently small » > O the lemma will follow from analysis parallel to that of [Athanasopoulos et al.
1998].

To illustrate the main ideas, let us first assume that:

(a) (3-30) and (3-31) hold in the entire ring domain ® x [0, 1], where
R = {x:d(x, To@@)) <r "}
(®) a(x, 1) < (1+r®i(x, 0) on 9% x [0, 1].

Let
Yo={x:dx,R"— Q) <r "}y x [ar~1?,1],
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and let U 1+ be the solution of the one-phase Hele-Shaw problem in X,

AU =0 in {U'>0}NZ,
U, =|DU}? on o{U;" > 0}N X,
8 (HS)
Ul"r(x, ar V2 = ot (x, ar=17?),
Ul (x, 1) = (1 +rb)ii(x, 0) forx € 9%.

Let
Uy=Uf-U in®x[ar V2 1],

where U, (-, ) is the harmonic function in R — Q (U 1+ ) with boundary data
U =0 onI'(Uf), U =C/N ondk—QU).

Then U, is a supersolution of (ST2) in X, and thus by Lemma 2.11 and the assumptions (a)-(b) we have
u<U;in X.

Step 4. The construction of the subsolution U; is a bit less straightforward. We use

Uy (x,1):=(1—¢) sup U (1 + ey, 1),
I EN(EO)

where € = 1/N and c(t) := t*/>. Then we define
Up=Uf —U; inRx[ar™'/? 1],

where % is the ring domain as given above and U, (-, ¢) is the harmonic function in R — 2 (U2+ ) with
fixed boundary data zero on F(UZJr )and C/N on 0R — Q(U2+ ). Then U, satisfies the free boundary
condition

Vu, < (1+€)|DU, | — Jec'(t).
Therefore, U, is a subsolution of (ST2) if we can show that
Ve (t) > €|DUS |+ |DU; | onT(Uy) (3-33)

and fol c(s)ds <1.
The analysis performed in [Choi and Kim 2010], as in the proof of (c) of Theorem 2.16, yields that at
a fixed time ¢, I'(U}) regularizes in the scale of d := d(¢) that solves

d2
L= U(de, 0y
Therefore,
DU ~ U (—dey, 0) and |DUS |~ U, (dey, 0)
d d
on

T(Us) x [t/2, 1].
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Observe that since § > 5/6,
Uf (—de,,0) <d°® and U, (dey,0) < ed”/,

then we have . B
€U2 (—de,, 0) 4 U, (dey, 0)
d d

where the last inequality follows from

<ed V8 < Jer™ 15,

t =d*/ U (—dey, 0) <d*/d* < d/®.

Hence c(r) = t*/3 satisfies (3-33), and we conclude that U, is a subsolution of (ST2) in X.
Now we can use the fact that

Uy <ii<U; in B.(0) x [ar~ "2, ¢]

to conclude that i is /€- close to a Lipschitz (and smooth) solution U in By (0) x [1/2, 1], confirming (B').
Moreover (A) holds due to Lemma 3.3 and Lemma 3.4. Once we can confirm this, we can conclude our
proof by using the results of [Athanasopoulos et al. 1998] with the choice of a sufficiently small €.

Step 5. Now we proceed to the general proof without the simplified assumptions (a) and (b) in Step 3,
which are replaced by the local inequalities (3-30)—(3-32). For this we need to perturb the initial data
outside of B (0) (see Section 4, pages 2781-2783 of [Choi et al. 2009]), to obtain functions W (x) and
Ws(x) that satisfy:

(a) {Wy > 0} with k =1, 2 is star-shaped and coincides with ,,-12(w) in B,-»(0).
(b) {W2 >0} C Qy,-12(w) C {W; > 0}.
() d(x,{Wy >0} >r"?withk=1,2forx € [y—12(0) N (R" — By,—4(0)).

(d) Wy is harmonic in {W} > 0} — K with boundary data zero on I"'(W) and (1 + Y (x, ar~1/?) on
0K, where
K ={x:d(x, [ (W) >rb).

Let Uy be the solution of Hele-Shaw problem in
R* — 1{Wy > 0} x [ar™'/2, 1]

with initial data W, and with lateral boundary data (1 + Y (x, ar—?). Due to Proposition 4.1 of
[Choi et al. 2009], for sufficiently small r > 0, the level sets of U are then ec-close to those of U, in
B1(0) x [0, 1]. Hence we can use U, instead of U; in Step 4 and proceed as in Step 4 to conclude. [l

4. Decomposition based on local phase dynamics

Throughout the rest of the paper, let u# be as in Theorem 1.1, and fix xo € 'y and a sufficiently small
constant » > 0. We will prove the regularization of the solution u in B, (xg) x [ (xo, ¥)/2, t (xg, r)]. After
a rotation if necessary, we may assume that xo/|xg| = e,.
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Let us fix a constant M > M,, where M, is a sufficiently large dimensional constant. If the ratio
between ut (xo —re,, 0) and u~ (xo+re,, 0) is bigger than M, then we can directly apply Proposition 3.7
to prove the main theorem. Therefore we assume that

M_lu_(xo +re,, 0) < u+(x0 —re,, 0) < Mu™ (xg+re,, 0). 4-1)
Let
Com max{u+(x0 —re,, 0), u" (xo+rey, 0) } 4-2)
r r

Then since ug and u, are comparable with harmonic functions, Cy is less than a constant depending on
n and M (See Corollary 2.15). Also note that

Co>r21>,l/6,

Let us now sort out the initial free boundary points where the flux from one phase dominates the flux
from the other phase. Let us define

T(x — 0
AT = {x e 'oN By, (xp) : M > M Cy for some s with P <s < r},
s
- , 0 .
AT = {x € I'oN By (x0) : M > M Cy for some s with P4 <s< r}.
S
We then write
A=ATUA".

Throughout the paper we will let e, = x/|x| for any boundary point x, after a necessary rotation.

Lemma 4.1. Let u be as given in Theorem 1.1, and let M and C as given above.

_ +(x —
(x —se,, 0) u(x sen,0)<

+
(a) If% > MCy for some s <r, then Co.

s
u (x +sey, 0) -
s

(b) If > MCy for some s <r, then

u- (x +sep, 0) C
Z ot 0.
S

+

Proof. Since u are comparable with harmonic functions h¥*, we can argue similarly as in Corollary 2.15.
Observe that

ug (x —sey) g (x+seq) ht(x —sey,) Ch™(x+sen) _

o(r) < CR. O
S R) S

Now for x € AT, there exists a largest constant r, < r such that

u+(x —rxen, 0) — MC,.

I'x

We then define

0. = B, (x) x [o, Mr—z,o]
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/\

Figure 3. Decomposition of the domain.

Also for x € A™, we can similarly define r, and Q,. Now we define

% = B, (x0) x [0, 1 (x0. )] — ] Qx:
xeA
see Figure 3. X is then the region where the fluxes from both sides are initially balanced. Our aim in this
section is to prove that the balance is kept over time, so that the interface remains close to a Lipschitz
graph over time.
The following statement is a direct consequence of the definition of X.

Lemma 4.2. If x € ['gN Xy, then for all Pt <s<r,

ut(x —se,,0) u=(x+sep,, 0) -

N N

MCy.

The next proposition, the main result in this section, states that the solution is “well-behaved” in X.
Proposition 4.3. There exists a dimensional constant K > 0 such that for all (x,t) e ' NZ,

+ _ —_
T msen ) WIS g o <s < (4-3)
N S

Before proving Proposition 4.3, we show an immediate consequence of it; we are ready to show that
I"(u) is close to a Lipschitz graph in time as well as in space.

Corollary 4.4. For (x,t) e ' NZ, suppose (x +key,, t + 1) € I'. Then there exists a dimensional constant
Ky > 0 such that

5/4
= 5/4 . |: - ].
k=¥ if e |0, e

Proof. Due to Lemma 3.6, at any time 0 <t < ¢(xg, r), we have

WY ety <ut(x, 1) < Ctht(x —r¥/%e,, 1) (4-4)
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and
h=(x, 1) <u=(x,1) < Cih™ (x + 1%, 1), (4-5)

in B, (xo), where the function 4 := h*(-, 1) —h~(-,t) is harmonic in its positive and negative phases in
(14+7r)Q,u)— (1 —r)Q(u), and the domains Q (h™) and Q (k™) are both star-shaped with respect to
B,,(0).
Let us pick (yg, fo) € I' N X. Due to Proposition 4.3, (4-4) and the Harnack inequality for harmonic
functions, we have
sup  u(y, to) < CCiKMCor>/*, (4-6)
YEB,,5/4(y0)

where C is a dimensional constant. On the other hand, due to Lemma 3.1 and tg < r?/% we have
u(-, 1) <0 in By a5 (vo + 17 %ey). 4-7)

Let
vii=yo+rle,,  Cr:i=CCIKMCo, r(1):=3r"" = Cs3(t —10),

where C3 = CC,. Next we define ¢ (x, t) in the domain

F3/4
IT:= By,s14(y1) X [to, to+ C_3]
such that

—A¢(-,1) =0 in Bysu(y1) — Bry(y1),

¢ =2Cr>* on 3B,,54(y1),

$»=0 in Brr)(y1).
Then by (4-4)—(4-7), u < ¢ at t =ty in I1. Let Ty be the first time when u hits ¢ from below in IT. Since
(4-6) also holds for any (x, ) € ' N X in place of (yy, #p), we have u < ¢ on the parabolic boundary of
I[TN{fy <t < Tp}. On the other hand, if C is chosen sufficiently large, then

¢
|Dé|
and thus ¢ is a supersolution of (ST1). This and Lemma 2.11 applied to u and ¢ in IT yields a contradiction,
and we conclude that I"(«) lies outside of B 1 ws54(Yo + rte,) fortg <t <t.
Similarly, by constructing a negative radial barrier and comparing it with «, one can show that I" ()

5/4
=C3> Dl on 3B, (y1) x [ro, 0= 1o+ r—],
4C,

lies outside of B 1,574 (yo — r3/%e,) for ty < t < t;. This concludes the proof. O

For xg € I';,, define

2 2

. r r
t(xp,7) = mln{ , }
(xo. 7) ut(xo—ren, to) u=(xo+rey, to)

We now proceed to show our main result, Proposition 4.3. First we show Harnack-type inequalities for
positive times.
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Lemma 4.5 (Harnack at later times). Fix s € [/, r]. If (yo, to) € ' N X, then
ut(yo — sen, 1) = cru™ (yo —sen, to+7) and u” (yo+sen, t0) = cru” (yo +seq, to+17)
for0 <t <t(yo,s)/2andc; > 0.

Proof. We will show the lemma for u™, the statement for u~ follows via parallel arguments.

Step 1. Let (yo, 7o) e ' N X and let s € [r3/4,r]. Let h™ be given as in (4-4). Due to Lemma 3.3 and
Lemma 3.4, we have

B (yo —2ren, t1) <uT(yo — 2ren, t1) < Cu™ (yo —2ren, t2) < Cht (yo — 2r +1r"%)e,, 12)
for 0 <t,t <ty+1t(yo, r)/2. (Here note that yy € B,(xp).) In particular
ut(yo —2req, t) < Ch(yo — 2r +r>*eq, 19) < C1h™ (yo — 2ren, to) (4-8)

fort <ty +1t(yo,s)/2.

Step 2. Now let v** solve (ST1) in (R" — (1 —2r)Dy,) X [to, to + ¢ (Yo, §)/2] with initial and boundary
data Coht(x — 2se,, t). Since s > r/4, (4-4) implies

Q(u) C 2, (v*™) C (™) in Bas(yo) X [0, to +1(yo, 5)/21. (4-9)
Then by (4-9), (4-8) and (4-4),
ut <v™ in By(yo) X [to, to +t (3o, 5)/2]

if we choose C; as a multiple of C; by a dimensional constant. Moreover, due to the Harnack inequality
for one-phase (ST1), one can conclude that
ut (yo—sen, to+1) <V (yo — Sen, to+ 1)
< Cv™(yo — sen, to)
= CCoh ™" (yo — 3sen, 1)
< C3h™ (yo — sen, 10) < Csu™ (yo — sep, o)

for

S2

o<r<—
T T v (yo—sey, fo)

~t(y0,5)/2.

Here the first inequality uses the fact ut < v**, the second uses the Harnack inequality for v**, the third
one uses the Harnack inequality for harmonic functions and the last one uses (4-4). U

Lemma 4.6 (backward Harnack). Suppose that (4-3) holds up to time t = Ty < t(xg, r). If (yo, tp) € T
and ty < Ty, then for 0 < t <t(yo, 5)/2,

ut(yo—sen, to) < Cut(yo—sen, to+71) and u" (yo+sen, 10) < Cu~ (yo+sen, to+17),

where 0 < s <r and C is a universal constant.
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Proof. We will show the argument for u™, due to the symmetric nature of the claim. The argument here
will be similar to that of Lemma 3.4, replacing the initial data ua” and u (used in the construction of
barriers) by h™t (x, tp) and h™ (x, to) given in (4-4)—(4-5).

We consider a solution v of (ST1) in

IT:=14+r)Q, x [t, 1o+ 1 (0, 5)/2]

with initial and lateral boundary data C;A~. Then vy < u in I1. Now let v, solve the heat equation in
{vi =0} x [to, to + t (o, 5) /2] with initial data

h* (- t0) inf{vi(-,10) =0} — (1 =r){h" (-, 1) > O},

vair= {fz(.) in (1—r){h*(-. 1) >0},

where fz( -) is a C? extension function of 27 (-, ty) chosen so that fl( ) <ut(-,to). The rest of the proof
is the same as that of Lemma 3.4. Il

Next we show that in the unbalanced region, possibly forming at positive times, the fast regularization
phenomena still holds. This lemma will be used in the proof of Proposition 4.3 to show that there cannot
be a severe unbalance of flux in the initially balanced region X.

Lemma 4.7 (regularization in unbalanced region I). For a fixed (xg, ty) € I'(u), suppose that
ut(xo—ren, 10) > Mu=(xo+re,, to) or u (xo+res, to) > Mu" (xg—rey, t)

for M > M,,, where M,, is a dimensional constant. Then for r <1/M,, there exists a dimensional constant
C > 0 such that

ut(xo—rey, t u" (xo+rey, t
\Dut| < C (xo ns 10) and |Du-|<C (xo +ren, to)
r

in By (xo) X [to+t(x0,7)/2, to +t(x0, )]

Proof. The proof of this lemma is parallel to that of Proposition 3.7. We use the Harnack and backward
Harnack inequalities (Lemmas 4.5 and 4.6) instead of Lemmas 3.3 and 3.4. ]

We are now ready to prove our main result, Proposition 4.3. Observe that (4-3) holds up to some
Tp > 0 by Lemma 4.2 and Lemma 3.3.

Proof of Proposition 4.3. Let K be a sufficiently large dimensional constant such that K > M. Let us
assume that (4-3) breaks down for u™ for the first time at t = Tp. Then

ut(zo — sen, To)

=KMCy (4-10)
N
for some (zo, Tp) e T N'E and /4 <s <r. Let
t(zo —ken, Tt
h=sup{h S p 10 S v2c, fors gkgh}. (4-11)
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Note that 47 < r/2 due to Lemma 3.3 and the definition of Cy, and & > 2s due to Lemma 3.6. By the

definition of 4 we have
”+(ZO — hep, To)

h
Let us find the largest time #y before Ty such that for some (yg, #9) € I’

= M>C,. (4-12)

t(yo, h) Yo 20
and — =

To—tg =

2 ol 2ol
Then Lemma 4.5 implies
ut(yo—hen,to) _u(yo—hen, To) _u"(z0—hen, To)
h h h

Since u™ (-, tp) and u~ (-, ty) are comparable to harmonic functions (Lemma 3.6), a similar argument as

= M>C,.

in Lemma 4.1 implies that

u= (yo+ hey, 1)

1 u™(yo— hen, 1)
p .

< Cp < —
~ 0N e h

Hence by Lemma 4.7, we have
|Du* (-, To)| ~ M?Co  in By(y0)-
Since B;(z0) C B (yo), this would contradict (4-10) as K > M. O

Due to Lemma 3.6, Proposition 4.3 and Corollary 4.4, we have shown that condition (A) holds and
that the level sets of u are close to a Lipschitz graph, and I" () is close to a Lipschitz graph in space and
time (see the detailed description of this fact in the next section). However, we do not yet have sufficient
control of the change of u over time to verify the condition (B"). We will therefore prove Theorem 1.1 by
carrying out a modified argument, combining arguments from [Athanasopoulos et al. 1996; 1998] and
[Choi et al. 2007; 2009].

5. Further regularization based on flatness

Let u, ['g be as given in Theorem 1.1. Recall that xo € 'y and r > 0 are fixed, and they satisfy (4-1). Let
Cyp be as given in (4-2) and #(xg, r) as given in (1-3).
Our goal is to prove the regularization of the free boundary after the time ¢ (xo, r)/2 in B, (xp). Define

X1 (x0) 1= Br(xo) X [t(x0,7)/2, 1(x0, )] C X.

Let us briefly review the information we have on u so far. As a result of Proposition 4.3, condition (A)
holds up to

t=1(xg,r) <Cri® <34,

Also due to Lemma 3.6, our solution u is e-monotone in Q,(xp) with respect to a space cone W, (e,, 6p)
satisfying
6o — 7| = O(L),
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where L is the Lipschitz constant of the initial domain €2¢ given by (1-1).

Moreover Q,(xg) C X, and thus Corollary 4.4 and Lemma 3.1 yield that the free boundary I' () is
r*3-monotone in Q,(xo) with respect to the time cone W, (e,, tan~!(1/K{MCy)) and the space cone
W, (en, 6p). Here 6y is the angle corresponding to the Lipschitz constant of I'g, and ¢ (xg, r) = r/Co.

On the other hand, by Lemma 3.3 and the definition of Cj,

1
M(XO —rey, zt(-x07 r)) ~
Cor

1.

Since Q,(xg) C X, Proposition 4.3 implies

ulx, 1) S KM in Br(xo) x [t(x0,7)/2, t(x0,7)].
C()I”

The main difficulty in applying the method of [Athanasopoulos et al. 1996; 1998] lies in the fact that
we cannot guarantee the e-monotonicity of the solution u in the time variable (although we can obtain, as

4/3

above, the r*/°-monotonicity of the free boundary I'(«#)). To go around this difficulty, we will first use

the parabolic scale to improve the regularity of the solution in space. Consider the function

u(x,t):= CLoru(rx +x0,r2t+%t(xo,r)). (5-1)

In [Athanasopoulos et al. 1996; 1998], it was important that initially the time derivative of the solution
was assumed to be controlled by the spatial derivative, i.e.,

|u;| < C(|1Du™| +|Du”|). (5-2)

Using (5-2) one can prove that the direction vectors

Du™ Du~
m(—len, t) and m(lem t)

do not change much for 0 <¢ </. This is pivotal in the regularization procedure since then I" (i) regularizes
along the direction of the “common gain” obtained by those two direction vectors, the regularity of
I"'(u) then makes the above two vectors line up better in a smaller scale, which contributes to further
regularization of I"(«) in a finer scale. In our case we do not know a priori that I () is Lipschitz in either
space or in time; in fact the Lipschitz continuity of I'(x) in time will be proved in the very last stage of
Section 5 (see Theorem 5.7). Therefore, we do not have (5-2), and thus extra care is required to show
that the spatial gradients Du® do not change their directions too rapidly.

In the following series of results, we will assume that u is given by (5-1). The lemmas and theorems
will be proved to in the order they are stated, to improve the regularity of # in multiple steps.

Lipschitz continuity in space. First we prove that the e-monotonicity of I"(#) improves to Lipschitz
continuity. Let a = Cyr. Then, in the domain B;(0) x [—1/a, 1/a], u(x, t) solves
{ﬁt—Aﬁzo in {u > 0},
V =a(|Dut|—|Dia"|) on d{u > 0}.
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Here note that

P10 <y <aq <P <30,

In this scale, since i is caloric and ' (i) is r!/3

that so is u in By2(0) x [-1/a+1, 1/a].
Note that in above step we are losing a lot of information over time; I'(it) is in fact »!/3-close to a

-close to a Lipschitz graph in space and time, it follows

Lipschitz graph moving very slowly in time, but this does not guarantee that # also changes slowly in
time.
We then follow the iteration process in Lemma 7.2 of [Athanasopoulos et al. 1996] to show this:

Lemma 5.1. Ifr is sufficiently small, then there exist 0 < ¢, d < 1/2 such that it is Ar'/3>-monotone in the
cone of directions W, (0, — r¢, e,) and W, (0, — r?, v) in the domain Bj_,(0) x [(—1 + r)/a, 1/al.

One can then iterate above lemma to improve the e-monotonicity to full monotonicity, and state the
result in terms of u:

Lemma 5.2. u is fully monotone in By ,,(0) x [0, 1/a] for the cone
1= WO —r’ ) UW (6, — 1, v)
for some constant 0 <d < 1/2.

Regularity in time away from the free boundary. Now we suppose that u is Lipschitz in space and time.
Then in particular, we have the Lipschitz regularity of u in space (and very weak Lipschitz regularity of u
in time). We are interested in proving the following type of statement:

Lemma 5.3 (enlargement for the cone of monotonicity). There exists . > O such that if u is Lipschitz
with respect to the cone of monotonicity Ay (e, 6p) in B1(0) x [—1/a, 1/a], then in the half domain
B1,2(0) x [=1/(2a), 1/(2a)], u is Lipschitz with respect to the cone of monotonicity A, (v, (1 + A)6p)
with some unit vector v.

To prove the enlargement of the cone, we take a closer look at the change of u over time, in the interior
region. More precisely, we need the following lemma, which follows the approach taken in [Choi et al.
2007; 2009].

Lemma 5.4. We have
lit,| < a|Dii|* < Ca in [Bija(en) U B1ja(—en)] x [—1/Q2a), 1/(2a)],
where C is a dimensional constant.

Proof. Step 1. The proof is similar to that of Lemma 8.3 of [Choi et al. 2009]. Note that i; is a caloric
function in Q7 (i) and Q7 (). Let us prove the lemma for i, since parallel arguments apply to iz~.

Step 2. We divide u, into two parts. More precisely, let

I’_tt =V +v2’
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where both functions v and v, are caloric in Q7 (it), v has the initial data zero and the boundary data
a|Dut|(|Dut| — |Du~|) on I'(it), and v, has the initial data it,(-, —1/a) and the boundary data zero
on I'(n).

Step 3. For vy, we need to use the absolute continuity of the caloric measure with respect to the harmonic

measure, as well as the Lipschitz continuity of the free boundary. We proceed as in Lemma 8.3 of [Choi
et al. 2007]. Note that we have

|Dut| ~ |Dia |~ 1

in [By,2(e,) U Byj2(—ey)] x [—1/a, 1/a]: this follows from the assumption in (4-1), and Lemmas 3.3
and 3.4. Therefore we can proceed as in Lemma 8.3 of [Choi et al. 2007] to obtain

vi(x, 1) Sa/ D" Pde™" < a|Dil*(x, 1),
F@n{—1/a<s<t}
where w™? is the caloric measure for 2 (i), and

vi(x, 1) > a/ —|Di " Pdo™" > —a|Di|*(x, t).
C@)N{—1/a<s<t}

Step 4. As for vy, we conclude that it must be smaller than a caloric function solved in the whole domain
with the absolute value of its initial data. The advantage is that then we can use the heat kernel. Note that
the initial data is given at # = —1/a and has compact support. The initial data is given by v; < (C/a)v,,,
where v,, (x, t) is comparable to the derivative of a harmonic function in a Lipschitz domain.

Therefore the heat kernel representation is given as

1

Cy—v|2
me—ynlew RP/ED oy, ~1/a) dy.

Since ¢ € [0, 1/a] and k exp_”k2 <C exp_("/z)kz, we get the effect of O (a). U
Further regularity in space. Now that we have sufficient information on the change of u over time, we
change the scale following the one introduced in (1-4), and consider the function

v(x,t) = CLoru(rx + xo, CLot + 1). (5-3)

Note that Co = r~'c(xo, ), and thus v coincides with & defined in (1-4) with the choice of ¢ = rCy.

Due to the previous results, this function is Lipschitz continuous, in space and time, away from the
free boundary. The following lemma suggests that the cone of monotonicity improves away from the free
boundary, as we look at smaller scales. The proof is parallel to that of Lemma 8.4 in [Athanasopoulos
et al. 1998].

Lemma 5.5. Let v given by (5-3). Suppose that there exist constants § > 0and0 <A < B, u:= B — A,

such that
v
a(Dv, —e,) <8 and A< S — <B
—e, - Dv
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in Bl/ﬁ(—%en) X (=8/m,8/) with 8/ < r. Then there exist a unit vector v € R" and positive constants
ro, bo < 1 depending only on A, B and n such that

a(Dv(x,1),v) <bod in Bys(—32e,) X (-roé, l’oé)-
w

Now we can proceed as in Section 6 of [Choi et al. 2009] to obtain further regularity, using Lemma 5.4
instead of the uniform upper bound on |Du| up to the free boundary.

Theorem 5.6. T'(v) is C' in space in Q; 2. In particular, there exist dimensional constants ly, Co > 0
such that for a free boundary point (xg, ty) € I'(v), I'(v) N (By-1(xg) X [to — 27 t0+2Nisa Lipschitz
graph in space with Lipschitz constant less than Cy/ 1 if | > I.

Regularity in time up to the free boundary. Lastly, proceeding as in Sections 7-8 of [Choi et al. 2009]
yields the differentiability of I"(v) in time. The main step in the argument is the following proposition:
the statement and its proof is parallel to those of Theorem 7.2 in [Choi et al. 2009] and the blow-up
argument as in Section 8 of [Choi et al. 2009]:

Theorem 5.7. T'(v) is differentiable in space and time. More precisely there exist dimensional constants
lo>0and 1 <y <2 such that for (xo, ty) € T (V)N Qy, ifl > lo then T (v) N (By-1 (x0) x [tg—27, tg+27]
is a Lipschitz graph in space with Lipschitz constant less than [7Y, and Lipschitz graph in time with
Lipschitz constant less than [~'/3,

Corollary 5.8.
DV 1) _

c'<|pvf|x,)<C, C'< <
v(_ena t)

in Q1/2, where C = C(n).

6. General case: solutions with locally Lipschitz initial data

In this section, we present how to extend the result of the main theorem to solutions with locally Lipschitz
initial data. Our setting is as follows. Suppose €2g is a bounded region in Bg(0). Suppose u is a solution
of (ST2) with ug > —1, ug = —1 in Bg(0) and ug < My. Further suppose that 2 is locally Lipschitz,
that is, for any xg € I'g, ['g N B (xp) is Lipschitz with a Lipschitz constant L < L,,.

Let the initial data ug solve Aug = 0 in B{(xg). Then we claim that the parallel statements as in
Theorem 1.1 hold in By, (xo) X [#(x0, do)/2, t (x0, do)], where dy is a constant depending on n and M.
More precisely:

Theorem 6.1. Suppose u is a solution of (ST2) with initial data ug such that —1 < ug < My. Further
suppose that for xo € I'g, ['o N By (xg) is Lipschitz with a Lipschitz constant L < L, and Aug =0 in the
positive and negative phases of ug in B1(xg). Then there exists a constant dy > 0 depending on n and M,
such that (a) and (b) of Theorem 1.1 hold for u and d < d.

The proof of the above theorem is parallel to that of Theorem 1.1 in Section 5, after proving the
following lemma.



1100 SUNHI CHOI AND INWON KIM

Figure 4. Locally Lipschitz initial domain.

Lemma 6.2. There exists a solution v of (ST2) with star-shaped initial data such that the level sets of u
and v are edy-close to each other in Byg,(xo) up to the time t(xg, do; u), where dy > 0 is sufficiently small.
In particular, u and I" (u) are e-monotone in a cone of Wy and W; in Bog,(xo) X [t (x0, do)/2, t(x0, dp)].

Even though our equation is nonlocal, the behavior in a far-away region would not affect much the
behavior of the solution in the unit ball, if the solution behaves “reasonably” outside the unit ball. For
example, in the star-shaped case, we know at least that the free boundary is almost locally Lipschitz at
each time. In the locally Lipschitz case, we control the solution by putting an upper bound My on the
initial data ug. We will argue that in a sufficiently small subregion of Bj(xg) x [0, 1], the solution is
mostly determined by the local initial data in Bj(xp). The perturbation method in the proof of Lemma 2.4
in [Choi et al. 2007] will be adopted here. Write Bj(xg) = Bj.
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Step 1. Construct a star-shaped region ' C Bg(0) such that:
(a) Q/ﬂBl = QQﬂBl.
(b) ' is star-shaped with respect to every x € K C Q' for a sufficiently large ball K.

Let vS’ be the harmonic function in " — K with boundary data 1 on 0K, and 0 on 92’. Next, let vy
be the harmonic function in Bg(0) — " with boundary data 1 on d Bg(0), and 0 on 92’. Let B, be a
concentric ball in B; with the radius of €%, i.e.,

By = B_i(x0) C Bi(xp) = B.

Let ko be sufficiently large. Then by Lemma 2.7, a normalization of vSE by a suitable constant multiple
yields that for any x € B>,

<l+e. (6-1)

Let v solve (ST2) with initial data vy = USL — v, . Then Theorem 1.1 applies for v since vy is star-shaped
with respect to K.

For the proof of the claim, we will find a sufficiently small dy such that v is edp-close to u in By, (xo)
up to the time ¢ (xo, dp). More precisely, we will construct a supersolution w; and a subsolution w, of
(ST2) such that in some small ball By (xg), we have

w2 <u < wp

and the level sets of w; and w, are he close to the level sets of v.

Step 2. Let k1 and k; be large constants which will be determined later. Define
H* := (Ty(v) £ ™e,) N B,.

Let
dO - Ek0+k' +ko

and let 7 (dy) :=t (xq, do; v) = t(xg, do; u). First note that
t(do) > dg—ﬂ > T kotki+k) /6
Hence for v to be almost harmonic in a scale much larger than €k0t*1 | we need /7 (dy) > €%, i.e.,
T(ko + ki +k2)/12 < ko.
Observe that by the construction of H* and d,

\/@ > radius(B) > dist(HE, Tg) > max dist(x, I'o), (6-2)
x€lNBy,0<t<t(dp)

where the last inequality follows from Lemma 2.12 if we choose kp > 2k;. If k; is sufficiently large, then
one can prove from the last inequality of (6-2) and the bound on v, that

l—e < VOO Jolx, D)

- 1 Hi . -
= o) ~ oty S 1He o HTxI0,1(do)] (6-3)
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Step 3. We do have an estimate, Lemma 2.12, on how far the boundaries move away for the local one-phase

case. If we take the one-phase versions with initial data M(J)r and u, , and compare with u, then we obtain
that I" (1) N B, stays in the dézfa)/ @2=p )—neighborhood of To(u) N By up to the time 7 (dy) = ¢ (xo, dp). In
other words, the free boundary of u moves less than dg/ "in B; up to the time ¢ (dp).

Now we let S be the region between H' and H~. To construct a subsolution (or supersolution) in
S, we take the fixed boundary data (1 — €)vg(x) on H~ (or HT), and (1 + €)vo(x) on H* (or H™). To
control the effect from the side d B, NS, we bend the free boundary I';(v) by dg/ 7 on each side of BN S,
using the conformal mapping @ (or ®). (See Section 4 of for the definitions of ® and ®.) More precisely,
we bend the free boundary of v downward (or upward) using the conformal map ® (or @), and solve the
heat equation in there. Then similar arguments as in Lemmas 4.1 and 4.3 of [Choi and Kim 2010] yield
that the solution is still (almost) a supersolution, and it stays close to the original solution.
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C* SPECTRAL RIGIDITY OF THE ELLIPSE

HAMID HEZARI AND STEVE ZELDITCH

We prove that ellipses are infinitesimally spectrally rigid among C* domains with the symmetries of the
ellipse.

An isospectral deformation of a plane domain 2 is a one-parameter family €2, of plane domains
for which the spectrum of the Euclidean Dirichlet (or Neumann) Laplacian A¢ is constant (including
multiplicities). We say that Q. is a C' curve of C* plane domains if there exists a C! curve of
diffeomorphisms ¢, of a neighborhood of 29 C R? with ¢o = id and with Q. = ¢ (2p). The infinitesimal
generator X = d¢./de is a vector field in a neighborhood of €y which restricts to a vector field along
0920; we denote by X, = pv its outer normal component. With no essential loss of generality we may
assume that ¢¢|yq, is a map of the form

X €0y — X + pe(X) vy, )

where p. € C'([0, €y], C*®(3)), €0 > 0 and py = 0. We put

P =8 (0 1= S| oo,

An isospectral deformation is said to be trivial if Q¢ >~ Q¢ (up to isometry) for sufficiently small €. A
domain € is said to be spectrally rigid if all isospectral deformations €2, are trivial. The domain 2 is
called infinitesimally spectrally rigid if o = O (up to rigid motions) for all isospectral deformations.

In this article, we use the Hadamard variational formula of the wave trace (apparently for the first
time) to study spectral rigidity problems (Theorem 2). Our main application is the infinitesimal spectral
rigidity of ellipses among C' curves of C* plane domains with the symmetries of an ellipse. We orient
the domains so that the symmetry axes are the x-y axes. The symmetry assumption is then that each ¢ is
invariant under (x, y) — (&x, £y).

Theorem 1. Suppose that Q is an ellipse and that Q. is a C' Dirichlet (or Neumann) isospectral
deformation of Qo through C*° domains with Z, x Z, symmetry. Then X, = 0 or equivalently p = 0.

As discussed in Sections 0.2 and 3.2, Theorem 1 implies that ellipses admit no isospectral deformations
for which the Taylor expansion of p. at € = 0 is nontrivial. A function such as e~!/ < for which the Taylor
series at € = 0 vanishes is called flat at ¢ = 0.

The first author is partially supported by NSF grant DMS-0969745 and the second author is partially supported by NSF grant
DMS-0904252.

MSC2010: 35PXX.

Keywords: inverse spectral problems, spectral rigidity, isospectral deformations, ellipses.

1105


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2012.5-5
http://dx.doi.org/10.2140/apde.2012.5.1105
http://msp.org

1106 HAMID HEZARI AND STEVE ZELDITCH

Corollary 1. Suppose that Qq is an ellipse and that € — Q. is a C* Dirichlet (or Neumann) isospectral
deformation through 7, x 7, symmetric C*° domains. Then p. must be flat at € = 0. In particular, there
exist no nontrivial real analytic curves € — Q¢ of 7o x Z, symmetric C*° domains with the spectrum of

an ellipse.

Spectral rigidity of the ellipse has been expected for a long time and is a kind of model problem in
inverse spectral theory. Ellipses are special since their billiard flows and maps are completely integrable.
It was conjectured by G. D. Birkhoff that the ellipse is the only convex smooth plane domain with a
completely integrable billiard. We cannot assume that the deformed domains €2, have this property,
although the results of [Siburg 2000; Zelditch 1998] come close to showing that they do. The results are
somewhat analogous to the spectral rigidity of flat tori or the sphere in the Riemannian setting.

The main novel step in the proof is the Hadamard variational formula for the wave trace (Theorem 2),
which holds for all smooth Euclidean domains 2 C R” satisfying standard “cleanliness” assumptions. It
is of independent interest and may have applications to spectral rigidity beyond the setting of ellipses.
We therefore present the proof in detail. (See also [Golse and Lochak 2003], where a variational formula
for the Selberg’s trace formula on compact Riemann surfaces is derived.)

The main advance over prior results is that the domains €2, are allowed to be C* rather than real
analytic. Much less than C* could be assumed for the domains €2, but we do not belabor the point. For
real analytic domains a length spectral rigidity result for analytic domains with the symmetries of the
ellipse was proved in [Colin de Verdiere 1984]. The method does not apply directly to A-isospectral
deformations of ellipses since the length spectrum of the ellipse may have multiplicities and the full
length spectrum might not be a A-isospectral invariant. If it were, then Siburg’s results would imply that
the marked length spectrum is preserved [Siburg 1999; 2000; 2004]. In [Zelditch 2009; 2000] it is shown
that analytic domains with one symmetry are spectrally determined if the length of the minimal bouncing
ball orbit and one iterate is a A-isospectral invariant. The prior results on A-isospectral deformations
that we are aware of are contained in the articles [Guillemin and Melrose 1979a; Popov and Topalov
2003; 2012] and concern deformations of boundary conditions. To our knowledge, the only prior results
on A-isospectral deformations of the domain are contained in [Marvizi and Melrose 1982]. Marvizi
and Melrose [1982] introduce new spectral invariants and prove certain rigidity results, but they do not
apparently settle the case of the ellipse (see also [Amiran 1993; 1996] for further attempts to apply them
to the ellipse). It would be desirable to remove the symmetry assumption (to the extent possible), but
symmetry seems quite necessary for our argument. Further discussion of prior results can be found in the
earlier arXiv posting of this article [Hezari and Zelditch 2010].

0.1. Theorem on variation of the wave trace. We now state a general result on the variation of the wave
trace on a domain with boundary under variations of the boundary.
To state the result, we need some notation. We denote by

sin(rv/=Ap )
—Ag

the even and odd wave operators of a domain 2 with boundary conditions B. We recall that E(¢) has a

Ep(1) =cos(ty/—Ap) and Sp(t) = (2)
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distribution trace as a tempered distribution on R. That is, Ep(p) = fR o(t)Ep(t)dt is of trace class for
any ¢ € C3°(R); we refer to [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] for background.

The Poisson relation of a manifold with boundary gives a precise description of the singularities of
this distribution trace in terms of periodic transversal reflecting rays of the billiard flow, or equivalently
periodic points of the billiard map. For the definitions of “billiard map”, “clean”, “transversal reflecting
rays”, etc., we refer to [Guillemin and Melrose 1979a; 1979b; Petkov and Stoyanov 1992]. A periodic
point of the billiard map g8 : B*92 — B*92 on the unit ball bundle B*0Q2 = {(¢g,¢) € T*0R2; || < 1}
of the boundary corresponds to a billiard trajectory, i.e an orbit of the billiard flow ®’ on $*Q. We define
the length of the periodic orbit of 8 to be the length of the corresponding billiard trajectory in S*€2. Note
that the period of a periodic point of 8 is ambiguous since it could refer to this length or to the power
of 8. We also denote by Lsp(£2) the length spectrum of €2, that is, the set of lengths of closed billiard
trajectories. The perimeter of €2 is denoted by [9€2].

In the following deformation theorem, the boundary conditions are fixed during the deformation and
we therefore do not include them in the notation. We also do not include € in our notation for A even
though all Laplacians below are associated with €2, and hence dependent on e.

Theorem 2. Let Qg C R" be a C* convex Euclidean domain with the property that the fixed point sets of
the billiard map are clean. Then, for any C" variation of Qg through C*® domains Q. the variation of the
wave traces 8 Tr cos(ta/—A ), with Dirichlet (or Neumann) boundary conditions is a classical conormal
distribution for t # m|dQ2q| (m € Z) with singularities contained in Lsp(S2). For each T € Lsp(£2p) for
which the set Fr of periodic points of the billiard map B of length T is a d-dimensional clean fixed point
set consisting of transverse reflecting rays, there exist nonzero constants Cr independent of p such that,
near T, the leading order singularity is

S Trcos(ta/—A) ~ % 5}%{( Z Cr f PV dﬂr) (t — T+i0+)_2_(d/2)},
r

cFr

. .. . d
modulo lower order singularities. The sum is over the connected components I" of Fr. Here § = —

d
and y1(q. ) = VI —[C . ‘

The function y; on B*9€2 is defined in (27) and appeared earlier in [Hassell and Zelditch 2004]. The
densities d ur on the fixed point sets of 8 and its powers are very similar to the canonical densities defined

e=0

in Lemma 4.2 of [Duistermaat and Guillemin 1975], and further discussed in [Guillemin and Melrose
1979a; Popov and Topalov 2003; 2012]. The constants Cr are explicit and depend on the boundary
conditions. We suppress the exact formulae since we do not need them, but their definition is reviewed in
the course of the proof.

To clarify the dimensional issues, we note that there are four closely related definitions of the set of
closed billiard trajectories (or closed orbits of the billiard map). The first is the fixed point set of the
billiard flow ®7 at time T in T*Q. The second is the set of unit vectors in the fixed point set. The third
is the fixed point set of the billiard flow restricted to 7,2, the set of covectors with foot points at the
boundary. The fourth is the set of periodic points of the billiard map 8 on B*3€2 of length 7', where as
above the length is defined by the length of the corresponding billiard trajectory. The dimension d refers
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to the dimension of the latter which we show by F7. In the case of the ellipse, for instance, d = 1; the
periodic points of a given length form invariant curves for §.

To prove Theorem 2, we use the Hadamard variational formula for the Green’s kernel to give an exact
formula for the wave trace variation (Lemma 1). We then prove that it is a classical conormal distribution
and calculate its principal symbol.

It is verified in [Guillemin and Melrose 1979a] that the ellipse satisfies the cleanliness assumptions.

Corollary 2. For any C! variation of an ellipse through C™ domains Q., the leading order singularity
of the wave trace variation is

8 Treos(1+/~A) ~§m{( > cp/pyl dw) (t—T+i0+)_5/2},
r
I'cFr

modulo lower-order singularities, where the sum is over the connected components " of the set Fr of
periodic points of B (and its powers) of length T.

0.2. Flatness issues. We now discuss an apparently new flatness issue in isospectral deformations. The
rather technical assumption that €, is a C' family of C* domains rather than a C* family in the €
variable is made to deal with a somewhat neglected and obscure point about isospectral deformations.
Isospectral deformations are curves in the “manifold” of domains. The curve might be a nontrivial C*
family in € but the first derivative p might vanish at € = 0. Thus, infinitesimal spectral rigidity is at least
apparently weaker than spectral rigidity. We impose the C! regularity to allow us to reparametrize the
family and show that the first derivative of any C' reparametrization must be zero. This is not the primary
focus of Theorem 1, but with no additional effort the proof extends to the C' case.

This flatness issue does not seem to have arisen before in inverse spectral theory, even when the main
conclusions are derived from infinitesimal rigidity. The main reason is that first-order perturbation theory
very often requires analytic perturbations (i.e., analyticity in the deformation parameter €), and so most
(if not all) prior results on isospectral deformations assume that the deformation is real analytic. But our
proof is based on Hadamard’s variational formula, which is valid for C! perturbations of domains and
so we can study this more general situation. Further, the prior spectral rigidity results [Guillemin and
Kazhdan 1980] are proved for an open set of domains and metrics and therefore flatness at all points
implies triviality of the deformations. We are only deforming the one-parameter family of ellipses and
therefore cannot eliminate flat isospectral deformations by that kind of argument. We also note that there
could exist continuous but nondifferentiable isospectral deformations.

0.3. Pitfalls and complications. The route taken in the proof of Theorem 1, and the flatness issues just
discussed, reflect certain technical issues that arise in the inverse problem.

First is the issue of multiplicities in the eigenvalue spectrum or in the length spectrum. The multiplicities
of the A-eigenvalues of the ellipse (for either Dirichlet or Neumann boundary conditions) appear to be
almost completely unknown. If a sufficiently large portion of the eigenvalue spectrum were simple (i.e., of
multiplicity one), one could simplify the proof of Theorem 1 by working directly with the eigenfunctions
and their semiclassical limits (as in the first arXiv posting of this article, [Hezari and Zelditch 2010]).
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The dual multiplicity of the length spectrum is also largely unknown for the ellipse. Without length
spectral simplicity one cannot work with the wave trace invariants. Our proof relies on the observation in
[Guillemin and Melrose 1979a] that the multiplicities have to be one (modulo the symmetry) for periodic
orbits that creep close enough to the boundary.

Second is the issue of cleanliness. Theorem 2 and Corollary 2 would apply to any of the deformed
domains €2, if the fixed points sets were known to be clean. One could then use the conclusion of
Corollary 2 to rule out flat isospectral deformations. However, we do not know that the fixed point sets are
clean for the deformed domains even though we do know that they have the same wave trace singularities
as the ellipse. Equality of the wave traces for isospectral deformations of ellipses shows that the periodic
points of 8 of 2. can never be nondegenerate. Hence the deformations are very nongeneric. It is plausible
that equality of wave traces forces the sets of periodic points to be clean invariant curves of dimension
one. But we do not know how to prove this kind of inverse result at this time.

1. Hadamard variational formula for wave traces

In this section we consider the Dirichlet and Neumann eigenvalue problems for a C! one-parameter family
of smooth Euclidean domains 2. C R”,

{ —Ap¥j(€) =23 (e)¥;(€) in Q,

B.V(e) =0, ©)

where the boundary condition B could be B.W;(e) = W;(€)|yq, (Dirichlet) or 9,,W;(€)[ye, (Neumann).
Here, )»? (¢) are the eigenvalues of —Ap_, enumerated in order and with multiplicity, and 9,, is the interior
unit normal to 2.. We do not assume that A?(e) and W;(¢) are Cline.

We will use Hadamard’s variational formula for the variation of Green’s kernels, and adapt the formula
to give the variation of the (regularized) trace of the wave kernel. Our references are [Garabedian 1964;
Peetre 1980; Fujiwara et al. 1978; Ozawa 1982; Fujiwara and Ozawa 1978].

To state our main variational Lemma 1 we introduce some notation. We denote by dg the surface
measure on the boundary 92 of a domain €2, and by ru = u|3q the trace operator. We use Sg (t,q',q) €
%' (R x 02 x 9R2) for the following boundary traces of the Schwartz kernel Sg(z, x, y) € @'(R x R” x R")
of Sp(t) defined in (2):

Fq'Tq0v,0v,Sp(t. 4. q) (Dirichlet),

Sp(t.q' )= @

V;VqTrq/rqSN (t,q'.q)+ryrg Ay Sn(t,q',q) (Neumann).
Here, the subscripts ¢’, g refer to the variable involved in the differentiating or restricting. According
to convenience, we may also indicate this by subscripting with indices 1, 2, referring to the first and
second variables in the kernel. For instance,

a

0
9 K(q/? Q) = _K(q/’ q)
Vq/

0y,

We may also use the notations d,, and d/dv interchangeably to refer to the inward normal derivative. Here,
VT corresponds to tangential differentiation which is the gradient associated to the hypersurface 3<2.
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Lemma 1. The variation of the wave trace with boundary conditions B is given by

t .
5TrEB(t)=§f S (.4, 0)5() dq.
9920

We summarize by writing
§TrEg(t) = %Trago p Sh.

Here, § = i|E:0 and the equality is understood in the sense of distributions; meaning if ¢ € C§”(R) then

de
sl [oeswar) = [ ([ Loosieand)iwa

We note that the right hand side is well defined because the kernel of the operator [ ¢(r)Sg,(¢) dt is
smooth up to the boundary.

We prove the lemma by relating the variation of the wave trace to the known variational formula for
the Green’s function (resolvent kernel). We now review the latter.

1.1. Hadamard variational formula for Green’s function. Here by the Green’s function Gp_(A, x, y) of
2., with the boundary condition B, we mean the integral kernel of the resolvent Rp(A) = (—Ap,_— A2)~1
where I\ > 0. We also define Rg()) for A € R by Rz (A +i0") (that the limit exists follows, for example,
from Theorem 3.1.11 of [Hormander 1983]). The variational formula below is valid for both of these
resolvents (also for IJA < 0). Since the domains of Gp_ (%, x, y) depend on € we first have to make our
definition of § precise.

Definition. Let u, € C'([0, 9], 9'(R2)) with €y > 0, be a C! family of distributions in Q.. We use i,
or 1 to represent the first variation of u, at € = 0 as a distribution in Qq:

_d
" de

We note that if o € C;°(£20) then for € small supp(a) C €2, and therefore we can define du. by

Sue Ue.

e=0

Guo@=-L| @e@).

However, the problem with this definition is that it defines «# only in the interior of €2y and not at the
boundary even if u. is defined there. Below we will see another definition of i, using diffeomorphisms,
which resolves this issue.

In the statement of the formulas we will not include € in our notation. In the Dirichlet case, the classical
Hadamard variational formula states that, under a C' deformation €2,

0 d .
5GD()»,x,y)=/ 8—GD()»,X,61)8—GD()»,61,y)P(Q)dCI- (5)
3 V2 V1

In the Neumann case,

SGn(A, x,y)

=/Q v{GNu,x,q)-VITGNu,q,y)p(q)dq—Az/Q GnOLx, Q)G (A, q, )p(q)dg.  (6)
320 9820
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We briefly review the proof of the Hadamard variational formula to clarify the definition of G g (X, x, y)
and of the other kernels. We give the proof for the variation of the resolvent Rp(A) with I\ > 0. From
this we can obtain the analogous formula for § R (A +i0") by taking IA — 0. Following [Peetre 1980],
we write the inhomogeneous problem

(A= u=f in QL eC, Jr>0),
u=0 (resp. d,u =0) on I,

in terms of the energy integral

E(u,v):/ Vu-Vvdx—)?/uvdx:/ v(—A—Az)udx—/ vo,udgq,
Q Q Q El9’

where 9, is the inward unit normal. The inhomogeneous problem is to solve

E(u,v)z/ fvdx,
Q

where v is a smooth test function which vanishes to order 1 (resp. 0) on 92 for the Dirichlet (resp.
Neumann) problem. We denote the energy density by e(u, v) = Vu - Vv — A2uv.

We now vary the problems over a one-parameter family of domains. We use one-parameter families
of smooth diffeomorphisms ¢, of a neighborhood of ¢ C R" to define the one-parameter families
Q¢ = ¢ () of domains. We assume ¢, to be a C! curve of diffeomorphisms with ¢y = id.

The variational derivative of the solution is defined as follows: Let u, be a C' curve of functions in
H*(R2). Then ¢}u. € H*(20) and d(¢}u.)/de is a continuous curve in H*(€2p). Put

d

d
= %Lzowe and Oyu = Tc E:O(pjue.

Assume that ug € H*+t1(Qq). Then i, defined by
i =0xu— Xuop,

exists in H*(£2p). This gives a new definition of & which has a well-defined restriction to d€2¢ (for s > 1),
and it agrees with u defined above in the interior of 2. Further, let v be a test function on ¢ and use

@ *v as a test function on . Now rewrite the boundary problems as

/ e(ue, (=) v) dx = / (@) ) dx.
Qe Qe

Changing variables, one pulls back the equation to €2 as

/ ec(@lue, Vgidx = | (@ fverdx,
Q() Q0

where

—1x —1x

eé (w? v) = (p:(e(gog w’ (pe v))
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Then, by the computations of [Peetre 1980, (8) and (10)] we have

/ w(—A —2Hvdx
Qo

A2 Joq, #ovpdg  (Dirichlet),

:/ fvdx—l—/ fv,i)dq+/ (Vuo~VU—)»2M0U),5dQ+{ N
Qo 9 9820 0

(Neumann).

To obtain (5)—(6), at least formally, one puts
ue(x) =Gp, (A, z,x), v(x)=Gp,(%,y,x), felx)=235.(x)

where z € Q. Thus it(x) =38G (A, z, x) and f = 0. Since z € £ we have z € Q. for sufficiently small
€ and one easily verifies that (7) implies (5)—(6). The Green’s kernel depends on € as smoothly as the
coefficients of operator A, on €2 defined by the pulled back energy form.

1.2. Proof of Lemma 1. Rather than the Green’s function, we are interested in the Hadamard variational
formula for the wave kernels Eg(¢), Sp(¢) in (2), or more precisely, for their distribution traces. We will
give two proofs for the lemma.

First proof. By the definition of the distribution trace, we only need the variational formula for traces
of variations 8 fR eM @(I)E p(t) dt of integrals of these kernels against test functions @(t)ei“ € C°(R),
which are simpler because the Schwartz kernels are smooth.

We derive the Hadamard variational formula for wave traces from that of the Green’s function by using
the identities

oo
—iARp(\) = / eMEg(t) dt, %Sg(t) = Ep(1). ®)
0
Using integration by parts (and IA > 0), we get
OO .
Rp(L) = / ™ Sp(1)dt. 9)
0

We will assume that 1} is supported in R} since in the wave trace we localize its support to the length of
a closed geodesic. Hence by (8),

f J (0™ Eg(t)di = / v / " 0 By () di di
R R 0

——i [ V06— RaG~ 0 . (10)

This implies that

8 /R Y ()e™ Ep(t)dt = —i fR (), — SR (A — ) dpu.

That we can pass 6 under the integral sign can be justified using the dominated convergence theorem and
we leave the proof to the reader. In the Dirichlet case, it follows from (10), (5), (8) and (9) that
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8/ (e Ep(t, x,y)dt
R
=i [(G=0v @) [ 8.Go0 = . @) Gol~ . 5@ da dn
R 982
o0 . ;
=/f e‘“_“)’xlf(u)f 3 Ep(t,x,q)d,Gp(h — 1, q, )p(q) dg du dt
R JO Q2
o0 o0 . ,
_ / / / GOy [ o En, x, )0 Sp(t g, )6(q) dg dpudt di’
R JO 0 0920
o0 o0 . A
:/ / e’”’“)x//(t-i—t/)f o, Ep(t,x,9)0,,Sp(t',q,y)p(q)dqdt dt’
0 0 020
o0 . n T
:/ / e’“lﬁ(r)(/ BVZED('E—t/,x,q)avlSD(t’,q,y)d/)/i(q)dqdr.
0 0920 0

The inner integral is the same if we change the argument of Ep to ¢’ and that of Sp to T — ¢'. We then
average the two, set x = y, integrate over 2o and use the angle addition formula for sin to obtain

5Tr f b (e Ep(tydi = L / / O 0,0, Sp (1, 4, )P (@) di dg. (11
R 2 Joo, Jr

The proof in the Neumann case is similar and left to the reader. We notice that in the above argument we
have commuted the operations é and Tr:

5Tr/ U (e Ep(1) dt=Tr5f U ()e™ Ep(1) dt. (12)
R R

To show this we first put K.(x, y) = fR @(t)e“"ED(t, x,y)dt. We then note that K. (x, y) is a C! curve
in C®(Q. x ), in the sense that (d /de)pt Ke(x, y) is a continuous curve in C®(Qo x Qo). Therefore
both traces in (12) are the integrals of their corresponding kernels on the diagonal and hence (12) is

/Ks(x,x)dxzf 4
e=0 QE QO d€

However we have to be careful since the domain of integration on the left hand side depends on € and under

equivalent to

4
de

Kc(x,x)dx.

e=0

the variation it contributes an integral along the boundary. More precisely, since (d/de)p}(K:(x, x)) is a
continuous curve in C*® () and hence uniformly bounded, by the dominated convergence theorem

4a
de

d . )
SZO/SZEKG(X’X)dx:E‘e:OLO we(Ke(X,x))qof(dx)

d .
=/ — Ke(x,x)dx+/ Ko(g,q)p(q) dq.
Q0 de e=0 Q0

But the second integral is zero in the Dirichlet case because Ky(gq, ¢) = 0 for all g € 9L2y. (Note: this
term does not vanish in the Neumann case but it cancels out with a term which appears in the analogous
computations). This concludes the first proof of Lemma 1. U



1114 HAMID HEZARI AND STEVE ZELDITCH

Second proof. This derivation is based on the Hadamard variational formulas for eigenvalues. When )»? 0)
is a simple eigenvalue (i.e., of multiplicity one), Hadamard’s variational formula for Dirichlet eigenvalues
of Euclidean domains states that if € — 2 is C! then

50.2(e) = — /d @) (@) dg,

where W; is an L? normalized eigenfunction for the eigenvalue AZ. (0). See [Garabedian 1964]. However

if the eigenvalue Az (0) is multiple with multiplicity m (A ;(0)) and if {)L NG )}Zmi 7OV 55 the perturbed set

of eigenvalues, then we cannot assume that )»55 ((€) are C Vin e (although this is known to be true for
symmetric operators on finite-dimensional spaces. See, for example, Theorem I1.6.8 of [Kato 1980]). But

A 0
A )) k(e) is C! in € and there exists a Hadamard’s variational formula

as we shall see, the sum ),
for it which can be derived from the one for Green’s function. In fact we prove a slightly more general
statement. For the sake of convenience we let R B.(2) = (—Ap, — z)~! where z ¢Spec(—Ap,) and we
use 53( (z, x, y) for its integral kernel. Now let g(z) be a holomorphic function on the right half-plane

N(z) > 0. We will show that

m(x;(0)) m(2;(0))

5 Z 205 () =—g'(35(0)) Z / (0¥ (9))*p(q) dg. (13)

where {W, k}km(kl 7OV i an orthonormal basis for the eigenspace of the multiple eigenvalue )»3 (0). Lemma 1

follows easily from (13) by putting g(z) = cos(r4/2):

m (A 0))

/ (0¥ ) p(q)dq)

STrEg(t) = 3§ Zcos(tkj,k) = _tzw (
I j

=§/ 01,00, S5(1. 4. 0)p(q) dg.
920

We have pushed the operation § under the sum. This can be done because for a test function ¢ (#) the sums

chos(zxj,k(e))w(t) dt and Z/ %cos(n\j,k(e))@(mdr

are (by Weyl’s law) uniformly convergent in €.
It remains to prove (13). Let y be a circle in C centered at )»? (0) such that no other eigenvalues of
—Ap, are in the interior of y or on y. We define

1
Tge = _Z_m/yg(Z)RB‘(Z) dz.

By the Cauchy integral formula, it is clear that at € = 0 we have T, o = g(PAz «0)) Where P)\z(o) is the
orthogonal projector on the eigenspace of AZ(O) Since the eigenvalues kz x(€) Vary contlnuously in €, for
€ small these are the only eigenvalues of — A B, in y. Therefore Ty . is the total projector (the direct sum
of projectors) associated with {A k(e)} +—1- The operator Tg . is C'ine. See, for example, Theorem I1.5.4
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of [Kato 1980]. Although this theorem is stated for operators on finite dimensional spaces but the same
proof works for our case. It is basically because the resolvent (and so the Green’s function) is C! in e.
We now write

m(;(0))

5 3 g(2,(€) =8Tr(Ty) = —Tr = / g(2)8Rp, (2) dz
Y

21
k=1

1 9 9 )
—fQO me/ %g(z)a—UGD(z,x,q)a—vGu(z,q,x)p(q)dqudx

= [ | T Z(a W@ (U0 g) e d d

m(%;(0))

6500 3 / (0,9 kls,)* (@) dg.

We leave it to the reader to show that, on the first line one can commute § with Tr by means of the
dominated convergence theorem.

There exist similar Hadamard variational formulas in the Neumann case. When the eigenvalue is
simple, we have

8(:) = fa . (VI (¥ @) * = 2350)(¥;(9)?) p(q) dq. (14)

For a multiple eigenvalue we sum over the expressions over an orthonormal basis of the eigenspace. The
result does not depend on a choice of orthonormal basis. Similar computation using (14) follows to show
Lemma 1 for the Neumann case. O

2. Proof of Theorem 2

We now study the singularity expansion of 8 Trcos(t+/—Ap) and prove Theorem 2. At first sight, one
could do this in two ways: by taking the variation of the spectral side of the formula, or by taking the
variation of the singularity expansion. It seems simpler and clearer to do the former since we do not
know how the invariant tori of the integrable elliptical billiard deform under an isospectral deformation.
For example, one difficulty in taking the variation of the singularity expansion is that we do not know
whether the fixed point set of an isospectral deformation €2, of domain €2 (satisfying the conditions of
Theorem 2) is necessarily clean. Hence, even though we know that the wave trace of Q¢ has the same
type of singularity as the one for €2¢, but we cannot apply the method of stationary phase and compute
the principal term in the singularity expansion of the wave trace of €2..

In this section we will drop the subscript 0 in Qg and we assume €2 is a smooth convex domain.

The variational formula for § Tr cos(t+/—Ap) is given in Lemma 1. In the Dirichlet case, by (4),

Traq 6 S = A*p (r1r2Ny, Ny Sp(t, X, y)), (15)



1116 HAMID HEZARI AND STEVE ZELDITCH

where N, is any smooth vector field in €2 extending v, and where the subscripts indicate the variables on
which the operator acts. In the Neumann case by (4),

Traq p Sy =7 A*p (V] V3 rira +r1r2 A Sy (t, x, y)). (16)

Here, A : 902 — 02 x 0€2 is the diagonal embedding ¢ — (g, ¢) and m, (the pushforward of the natural
projection 7 : 322 x R — R) is the integration over the fibers with respect to the surface measure dgq.
The duplication in notation between the Laplacian and the diagonal is regrettable, but both are standard
and should not cause confusion. Since Sg (¢, x, ¥) is microlocally a Fourier integral operator near the
transversal periodic reflecting rays of Fr, it will follow from (15) that the trace is locally a Fourier integral
distribution near t =T .

We are assuming that the set of periodic points of the billiard map corresponding to space-time billiard
trajectories of length 7' € Lsp(£2) is a submanifold Fr of B*9€2. We thus fix T € Lsp(2) consisting
only of periodic reflecting rays, that is, we assume T 7# m|0€2| (|9€2| being the perimeter) for m € Z.
In order to study the singularity of the boundary trace near a component Fr of the fixed point set, we
construct a pseudo-differential cutoff xr = xr (¢, D;, q, Dy) € UO(R x 9Q2) whose complete symbol
x7(t, 7, q, ¢) has the form x7(q, ¢/7) with x7(y, ¢) supported in a small neighborhood of the fixed
point set Fr C B*9€2, equals one in a smaller neighborhood, and in particular vanishes in a neighborhood
of the glancing directions in §*9Q = 9(B*92). Since the symbol of xr is independent of ¢ we will
instead use x7(D;, q, D;). We may assume that the support of the cutoff is invariant under the billiard
map B. Therefore we need to study the operator

7 A* p xr(Di,q', D) xr(Dy, q, Dy)Sh, (17)

and compute its symbol. To do this we first study the operators » and Sp(¢) and review their basic
properties. Next we study the composition

XT(DI’ q/’ Dq/)XT(DZ" q7 Dq}Sb )

and compute its symbol. Finally in Lemma 7 we take composition with 7, A* p and calculate the symbol
of (17).

2.1. FIOs and their symbol. We recall that the principal symbol o; of a Fourier integral distribution
1= /RN e Dax,0)do, 1el™M,A,),
of order m is defined in terms of the parametrization
Ly Co={(x,0):dpp =0} > (x,dr¢p) e Ay CT*M

of the associated Lagrangian A,. It is a half-density on A, given by o7 = (t(p)*(a(ﬂdc ) |1/2), where aq is
N
the leading term of the classical symbol a € Smti—y (M x RN), n = dim M and

d = dc
€ 7 ID(c, ¢)/D(x, 0)|
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is the Gelfand—Leray form on C,, where c is a system of coordinates on C,. For notation and background
we refer to [Hormander 1985b, Chapter XXV]. When [ (x, y) € I"(X x Y, A) is the kernel of an FIO it
is very standard to use the symplectic form wy — wy on X x Y and define

ty:Cp=A{(x,y,0) :dgp =0} > (x,dxp, y, —dyp) € Ay CT*X x T*Y.
We will call A, the canonical relation of I(x, y).

2.2. The restriction operator r as an FIO. The restriction r to the boundary lies in / 4QQ xR, Tya),
with the canonical relation

Toa={(q.2,9.8) e T*IQ x TjoR"; &|r,00 =} (18)
The adjoint then satisfies 7* € I'/4(R" x 3R, '), where
Mo =1a.§.4,0) € TjoR" x T* 98 7,00 = ¢ }.

Here, T;,R" is the set of covectors to R" with footpoint on d€2. We parametrize I'yq (18) by Ta*s;r (R2),
the inward pointing covectors, using the Lagrange immersion

ir,0 (@, &) =(q, &l1,09), 9, §)- (19)

To prove these statements, we introduce Fermi normal coordinates (g, x,,) along 0€2, thatis, x =exp, g (xXnvg)

where v, is the interior unit normal at g. Let§ = (¢, §,) € T{; )

dual fiber coordinates. In these coordinates, the kernel of r is given by

R" denote the corresponding symplectically

r(q, (q/, x;l)) — Cn/ ei(q—q/’l)—ixéfndgnd;‘ (20)

n

The phase ¢(q, (¢', x,), (£, &) = (¢ — q’, ¢) — x,,&, is nondegenerate and its critical set is C, =
{(q. 49" x,,64,8):q" = g, x,, = 0}. The Lagrange map ¢, : (¢, 4, 0,4,,¢) — (q.¢,q,¢, &) embeds
Cy — T*0Q x T*R" and maps onto I'3o. The adjoint kernel has the form K*(x, g) = K(g, x) and
therefore has a similar oscillatory integral representation. It is clear from ((20)) that the order of r as an
FIO is %. Also, in the parametrization (19), the principal symbol of r is o, = |dg Ad¢ A dE,|'/%.

2.3. Background on parametrices for Sg(t). We first review the Fourier integral description of Ep(¢),
Sp(¢) microlocally near transversal reflecting rays. This is partly for the sake of completeness, but mainly
because we need to compute their principal symbols (and related ones) along the boundary. Although
the principal symbols are calculated in the interior in [Guillemin and Melrose 1979b, Proposition 5.1;
Marvizi and Melrose 1982, Section 6; Petkov and Stoyanov 1992, Section 6], the results do not seem
to be stated along the boundary (i.e., the symbols are not calculated at the boundary). The statements
we need are contained in Theorem 3.1 of [Chazarain 1976] (and its proof), and we largely follow its
presentation.

We need to calculate the canonical relation and principal symbol of the wave group, its derivatives and
their restrictions to the boundary. We begin by recalling that the propagation of singularities theorem for
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the mixed Cauchy—Dirichlet (or Neumann) problem for the wave equation states that the wave front set
of the wave kernel satisfies
WF(Sp(t, x. ) C | Ax,
+

where AL ={(t,7,x,&, y,n): (x,&) = D' (y,n), T ==£[nly} C T*(R x 2 x Q) is the graph of the
generalized (broken) geodesic flow, that is, the billiard flow ®’. For background we refer to [Guillemin
and Melrose 1979b; Petkov and Stoyanov 1992; Chazarain 1973; 1976; Hormander 1985a, Theorem
23.1.4; 1985b, Proposition 29.3.2]. For the application to spectral rigidity, we only need a microlocal
description of wave kernels away from the glancing set, that is, in the hyperbolic set microlocally near
periodic transversal reflecting rays. In these regions, there exists a microlocal parametrix due to Chazarain
[1976], which is more fully analyzed in [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] and
applied to the ellipse in [Guillemin and Melrose 1979a].

The microlocal parametrices for Eg and Sp are constructed in the ambient space R x R" x R". Since
Ep=dSp/dt it suffices to consider the latter. Then there exists a Fourier integral (Lagrangian) distribution,

oo
Spt,x )= Si(t.x,y), with S; e T R x R x R", T]),
j=—00
which microlocally approximates Sg (¢, x, y) modulo a smooth kernel near a transversal reflecting ray.
The sum is locally finite hence well-defined. The canonical relation of Sp is contained in a union

Fr= | JricT* ®xR" xR
+,jez

of canonical relations Fi corresponding to the graph of the broken geodesic flow with j reflections.
Notice we let j € Z which is different from [Chazarain 1976] where j goes from 0 to co and where the
two graphs Fi and F;j are combined.

We know discuss these graphs more precisely. We first recall some useful notation from [Chazarain
1976] with a slight adjustment. We have two Hamiltonian flows g*' corresponding to the Hamiltonians
+[n|. For (y, n) in T*Q or (y, n) in T;,R" where 7 is transversal to d€2 and is pointing inward, we define

ti(y,n) =inf{r > 0:wg* (y, ) € 32},
11! (v, m) =sup{t <0:7g™ (v, 1) € 9Q2}.

In this notation we have ¢ I = —t}F. We define ti inductively for j > O (resp. j < 0) to be the time of
j-th reflection for the flow g*' as ¢ increases (resp. decreases). Then we put

1 W
ALy, ) = gm0 (y, ) € TR,
_ -1
A ) =g O (y, ) € TyR™

o —

Next we define AL (y, n) to be the reflection of )»i(y, n) at the boundary. That is, it has the same
foot point y and the same tangential projection as A (y, n) but opposite normal component. Similarly
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we define 23" (y, n). Flowing AL(y, n) (resp. 23" (y, m)) by g
continuing the same procedure we get ti(y n) and A’ (y, ) for all j € Z. We also set Ti = Zk 1 1 K for

J >0andeE_Zk:_1 tk for j < 0.

The canonical graph I']. can now be written as
i (o g Gumsym s T =) j=0, on
i =
[, 7, g=0-Ti0 ML (o Lum.y.miTt==xnly} jez, j#0.

For each j € Z, | .. F:Jt is the union of two canonical graphs, which we refer to as its branches or
components (see Figure 3.2 of [Guillemin and Melrose 1979b] for an illustration). These two branches

+ as t increases (resp. decreases) and

arise because
Sp(t) = 1 (ei’V_AB —e_”V_AB)
2i/—Ap
is the sum of two terms whose canonical relations are respectively the graphs of the forward/backward
broken geodesic flow and which correspond to the two halves T > 0, T < 0 of the characteristic variety

—|n]? = 0 of the wave operator.

2.3.1. Symbol of Sp(t, x,y) in the interior. In the boundaryless case of [Duistermaat and Guillemin
19751, the half-density symbol of '’ ~2¢ is a constant multiple (Maslov factor) of the canonical graph

172 on T'y. in the graph parametrization (¢, y,n) — I'y =

volume half-density .. = |dt A dy A dn|
(t, Inlg, &' (¥, n), y. ). In the boundary case for Eg(t) the symbol in the interior is computed in Corollary
4.3 of [Guillemin and Melrose 1979b] as a scalar multiple of the graph half-density. It is a constant

multiple of the graph half-density
Ocant = |dt Ady Adn]'? (22)

in the obvious graph parametrization of Fi in (21); the constant equals 5 in the Neumann case and
5( 1)/ in the Dirichlet case. However in [Guillemin and Melrose 1979b] the symbols are not calculated
at the boundary.

Remark. We will have four modes of propagation at the boundary: in addition to the two & branches
corresponding to T > 0 and t < 0, at the boundary, the boundary condition requires two modes of
propagation corresponding to the two “sides” of d€2. To illustrate this we first discuss a simple model of
the upper half space.

2.3.2. Upper half space; a local model for one reflection. Let R% = {(x’, x,) € R""! x R : x,, > 0} be
the upper half space. Denote by Sy (7, x, y) the kernel of sin(t+/—A)/+/—A of Euclidean R". Then
Sp(t, x,y) = So(t, x, y) — So(t, x, y),
Sn(t, x,y) = So(t, x, y) + So(t, x, y*),
where y* € R” is the reflection of y through the boundary R"~! x {0}. Indeed, y — y* is an isometry,

so both kernels satisfy [JEg = O (in either the x or y variable) and have the correct initial conditions
since y* ¢ R’ . Further they satisfy the correct boundary conditions: it is clear that Sp(z, x, y) = 0 if
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y € [R’}r_l x {0} since y* = y for such points. Also, if x, = 0 then Sp(¢, x, y) = 0 since Sp(¢, x, y) is
a function of the distance |x — y| and |x — y| = |x — y*| if x, = 0. Similarly, the normal derivative is
d/9yy, so the normal derivatives cancel for Sy (¢, x, y) when y, = 0. Also, So(z, x, ¥y*) = So(t, x*, y)
and Sy(t, x, y) = So(¢, y, x), so the same calculation applies in the x variable. The canonical relation
associated to Sy and Sp is the union of the canonical relations of Sy and of S§ = So(¢, x, y*). More
precisely, by our notation in (21),

WF(Sp(t,x,y)) cTouriurg’.

Note that this example is asymmetric in past and future: the forward trajectory may intersect boundary,
but then backward one does not. Also, in this example for j > 1 and j < —1 the graphs '/ are empty.

2.3.3. Symbol of Sp(t,x,y) at the boundary. Since we want to restrict kernels and symbols to the
boundary, we introduce further notation for the subset of the canonical relations lying over boundary
points. Following [Chazarain 1976], we denote by

AL =1{0, 7, y,n,y, 1) : T ==Enly}

the subset of Fi with £ = 0. Under the flow . of the Hamiltonian 7 £ |§|, on R x R”, it flows out to
the graph Foi (denoted by Ci in [loc. cit., (2.11)]). One then defines Ali - Fi (resp. A;l C F?E) as the
subset lying over R4 x 9€2 x € (resp. R_ x d€2 x €2). Still following Chazarain, we denote by & — ’S\the
reflection map for (¢, §) € T/R", g € 9K2. That is, /E\ has the same tangential projection as & but opposite
normal component. We then have

ri=JviAl and ri'=[Jvidy",
teR teR
as the flow out under the Euclidean space-time geodesic flow of ;11 and ;1\;1. Thus, along the boundary,
for t > 0 (resp. t < 0) Ai and ;ll (resp. A;l and ;4\;1) both lie in the canonical relation of Ep(t), Sp(t).
In a similar way one defines Ai to be the subset of Fle lying over Ry x 0€2 x 2 and A\i to be its reflection.
Then also A U Xzi lies in the canonical relation. Similarly one defines Ai and ;11 forall j € Z.

Remark. Since we are interested in the singularity of the trace at t = T > 0 we will only consider the
graphs I, for j > 0. Regardless of this, because § Tr Eg(t) is even in it has the same singularity at
t=Tandt=-T.

The symbols of Eg(t) and Sp(¢) are half-densities on the associated canonical relations, and therefore
are sums of four terms at boundary points, that is, there is a contribution from each of Ai and ;fi In the
interior, there is only a contribution from the £ components.

The following lemma gives formulas for the principal symbol of Sp (and therefore Ep) on Fi and its
restriction to 'y o (AﬂlE U Zi).

Lemma 2. Let e be the principal symbol of Sp when restricted to Ty = U i Fi. Let o, be the principal
symbol of the boundary restriction operator r.
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1. In the interior, on Fi, up to Maslov factors we have:

—_1)J —_1)J
Dirichlet case: ey = ( 21) Ocan,+ = Zl:(zio'can,j:-
T Inl
1 1
Neumann case: et = 5 Ocant = :I:z_acan,:t~
T nl

2. At the boundary, on I'yq o Aft =TIyqo A\Ji we have:

Dirichlet case: o, oei(tjj[, +7, Ai(y, n),y,N) =—0y0 ei(ti, +7, )Lfc(y, n),y,n).
Neumann case: oy 0ex(tl, £, My, ), y, ) =0, oex(rd, 1, ML (v, 1), v, ).

Proof. These formulas are obtained from the transport equations in [Chazarain 1976, (by)—(e;), p. 175].
We now sketch the proof.

The transport equations for the symbols of Ep, Sp determine how they propagate along broken
geodesics. As in the boundaryless case, the principal symbol has a zero Lie derivative, £y, . 0 =0,
in the interior along geodesics. The important point for us is the rule by which they are reflected at the
boundary. Let op be the principal symbol of the boundary restriction operator B defined in (3) (B =r
under Dirichlet and B = r N under Neumann boundary conditions) and let o be the principal symbol of
the restriction operator to t = 0. Then:

(bo) : (d*/dt* — Ap)Sp ~ 0 => (b)) : Ly e+ =0;

(co) : Spli=o ~ 0 = (¢() :000e4+(0,7,y,1n,y,n)+0p0e_(0,—7,y,n,y,n) =0;
R (23)
(do) : ar t:OSB ~f(x—y) = (d{)) : ‘L'(G()O€+(0, T,v,n,y,n) —opoe_(0,—1,y,1,y, n)) =0y

(e0) : BSp ~0 = (ef)):aBoei=aBo(ei|Ai)+aBo(ei|gi) =0.

Here o; is the principal symbol of the identity operator. The implication (bg) = (b;)) follows, for
example, from Theorem 5.3.1 of [Duistermaat and Hérmander 1972]. The other implications are obvious.
From (c;)) and (d;) we get

-1/
(Gooei)(y,n,y,n)=(2r) o on T*Q.

But by (by,), the symbol e is invariant under the flow 1/ and therefore the first part of the lemma follows
but only on Fi. The second part of the lemma follows from (66). The first term of (e()) is known from the
previous transport equations. Hence (e()) determines the “reflected symbol” at the j-th impact time and
impact point. In the Dirichlet case, B is just r the restriction to the boundary and so the reflected principal
symbol is simply the opposite of the direct principal symbol. In the Neumann case, B is the product of
the symbol ()»L(y, 1), vy) of the inward normal derivative times restriction r. The reflected symbol thus
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—

equals the direct symbol since the sign is canceled by the sign of the ()Ll_L y,m,vy) = —(ALE (v, m), vy)
factor. Thus, the volume half-density is propagated unchanged in the Neumann case and has a sign change
at each impact point in the Dirichlet case. Thus on Fi and after j reflections, the Dirichlet wave group
symbol is (—1)/ times 1/27 times the graph half-density and the Neumann symbol is 1/27 times the
graph half-density. U

24. xr (D¢, q', Dg)xr(Dy, q, Dq)Sfg (t, q’, q) is a Fourier integral operator.

Lemma 3. We have
x7(Dy,q's Dy xr(Dy, q, D) Sh(t,q', q) € V2T DR % §Q x 9Q, Tp 4).

— J ;
Here,T'y + =z I'y 4o with

M, ={(1.49.¢.9.0) e T"Rx3Qx Q) :I&' € TIR", £ e T)R":
(t.7.4".&.q.8) €T, &lr00=0" Elrpa=¢}.

Proof. We only show the proof in the Dirichlet case. The Neumann case is very similar. The kernel
xt(D:,q", Dg)xr(Dy, q, Dq)S’l’) (t,q’, q) for fixed ¢ is the Schwartz kernel of the composition

xro(r N)oSp(t)o (N* r)o xi: L*(Q) — L*(3), (24)

where r* is the adjoint of r : H'/2(Q) — L*(3Q).

To prove the lemma, we use that r is a Fourier integral operator with a folding canonical relation, and
that the composition (24) is transversal away from the tangential directions to 92, where S (¢) fails to
be a Fourier integral operator. The cutoff x7 removes the part of the canonical relation near the fold
locus and near the normal directions N*9€2 (where the composition (r N) o Sp(t) o (N* r*) fails to be
well-behaved as an FIO), hence the composition is a standard Fourier integral operator.

By the results cited above in [Chazarain 1976; Guillemin and Melrose 1979b; Petkov and Stoyanov
1992; Marvizi and Melrose 1982], microlocally away from the gliding directions, the wave operator Sp(#)
is a Fourier integral operator associated to the canonical relations Fi. Since Fi is a union of graphs of
canonical transformations, its composition (away from the normal bundle N*9<2), with the canonical
relation of #© := r N is automatically transversal. The further composition with the canonical relation of
rP* is also transversal. Hence, the composition is a Fourier integral operator with the composed wave
front relation and the orders add. Taking into account that we have two boundary derivatives, we need to
add % to the order.

To determine the composite relation, we note that

O R TyoR" — T*R x T*Q x T;oR",
D4 (1, q,¢, Sn) = (tv :t|§ +‘Sn|7 th(q7 g, gﬂ)s q,¢, Sn)

parametrizes the graph of the (space-time) billiard flow with initial condition on T;,R". Here, ¢ € T*9Q2

(25)

and &, € N70%, the inward pointing (co)normal bundle. ® is a homogeneous folding map with folds
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along R x T*0%2 (see, e.g., [Hormander 1985a] for background). It follows that Sp(¢) o (N*r*)x7 is a
Fourier integral operator of order one associated to the canonical relation

{0, 28], @' (q,8), ¢, Elrvan) C TR x 2 x 99Q),

and is a local canonical graph away from the fold singularity along 7*9€2. Composing on the left by
the restriction relation produces a Fourier integral operator with the stated canonical relation. The two
normal derivatives N of course do not change the relation. (Il

2.5. Symbol of x1 (D¢, q', Dy) xr(Dy, q, Dq)SZ (t,q’, q). The next step is to compute the principal
symbols of the operators in Lemma 3.

To state the result, we need some further notation. We denote points of T,;,R" by (¢, 0, ¢, §,) as
above, and put T = /| |> + &2. We note that &, is determined by (g, ¢, 7) by &, = /72 —|¢|?, since it is
inward pointing. The coordinates ¢, ¢ are symplectic, so the symplectic form on T*9Q2 is do =dg A d¢.
Also, below when we write |8/ (q, ¢/T)| we mean the norm of the fiber component of 8/(q, {/T) or
when we write 87 (¢, ¢ /T) we mean that T is multiplied in the fiber component only. We now relate the
graph of the billiard flow (25) with initial and terminal point on the boundary to the billiard map (after j
reflections) by the formula

71(q,0,¢.6) = (v8/ (4. £ ). £1(0. ¢. &), 6)

where &, = r\/l —|Bi(g. ;/r)|2. We also put

)
V(q,é“,f)=\/1—|i—|2 and y1(q, ) =v1-1¢]% (27)

It is the homogeneous (of degree zero) analogue of the function denoted by y in [Hassell and Zelditch
2004].

Further, we parametrize the canonical relation Fg’ 4 of Lemma 3 using the billiard map g and its
powers. We define the j-th return time 7'/ (g, §) of the billiard trajectory in a codirection (g, §) € T/2t0
be the length the j-link billiard trajectory starting at (¢, £) and ending at a point ®7'@¥) (g, &) € T}, Q.
It is the same as TJ{ (g, &). Then we define

by ot Ry X T*0Q2 — TH*(R x 92 x 0R2),

)4 (7 4. 0) = (TJ'(q,s(q, cone (6 (0.2)) a ;>, 28)

T
where
£(q, ¢, 1) =C+Ev,, (¢ HE1F =17
The map (28) parametrizes Fg’ " of Lemma 3.

Proposition 4. In the coordinates (z, q, ¢) € Ry x T*0Q2 of (28), the principal symbol of

XT(DZV q/a Dq’)XT(Dh q, Dq)Sg(t7 q/a Q)
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J oo .
onT'y | is as follows:

e in the Dirichlet case:
0j+(q, ¢, 1) = Cf+XT(q, %)m(ﬁj(q, %))VUZ(C], Z, r)y”(fﬁj(q, %) r)r ldg Adg AdT|'?;
e in the Neumann case:

70060 =Cloxr (9. D) (80 7))y 6. 0r 2 (w80, 2) )

x <<§ ﬁj<q, %)) - r) ldg Ad AdT|V?, (29)

where the C f 4 are certain constants (Maslov factors).

Proof. We only show the computations in the Dirichlet case. The Neumann case is very similar and uses
(4) which will produce an additional factor of (¢, 8/ (¢, ¢ /1)) — T°.

By Lemma 2, the principal symbol of Sp(#) consists of four pieces at the boundary, one for each mode
Al , ;fft The symbol for the — mode of propagation is equal to that for the + mode of propagation under
the time reversal map & — —&. Further by part 2 of Lemma 2, the symbol at the boundary (adjusted by
taking normal derivatives in the Dirichlet case) is invariant under the reflection map & — £ at the boundary
due to the boundary conditions. Hence we only calculate the A{r component and use the invariance
properties to calculate the symbol on the other components.

We therefore assume that the symbol of Sp is 1/27 times the graph half-density |dt A dx A dE|'/?
on Fi. We need to compose this graph half-density on the left by the symbol &, |dg A d¢ AdE,|'/? of
r? =r N, and on the right by the symbol &, |[dg’ Ad¢' AdE)|'/? of the adjoint rP* = N*r*. Therefore
we compute the restriction of the Fi component onto I' j _+ and we remember to multiply the symbol by
£,& = ‘L'Z)/(q, ., )y (Bl (q, %), 7)) and also by 1/2t at the end.

It is simplest to use symbol algebra and pullback formulae to calculate it [Duistermaat and Guillemin
1975]. One can also try to compute the symbol of this composition directly by using the oscillatory
integral representations of these operators but that computation is more complicated. The composition is
equivalent to the pullback of the symbol under the pullback

I = (isq X ige)"T/, (30)
of the canonical relation of the Sp by the canonical inclusion map
iga Xign : Rx 92 x 02 —- R xR" x R".

We recall that a map f : X — Y is transversal to W C T*Y it df*n #AOforanyne W. If f: X —> Y is
smooth and I' C T*Y is Lagrangian, and if f and 7 : T*Y — Y are transverse then f*I" is Lagrangian.
Since

(i3§2 X ii)Q)*(ts T, th(q’ 5), q, S) = (t7 T, q)t(Q7 S)|T3Q7 q, ‘i:lTBQ)

at a point over (iyq X i3q)(t, ¢’, q), and since T = |&| # 0, it is clear that iy X isq is transversal to 7.
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We now claim that on the pullback of I'/, using the parametrization (28),

<mgximﬁﬂthdxAdsH”==y*”%q,arnf*ﬂ(vﬂ(q,%)J)|qud;AdrPﬂ, (31)

where y is defined in (27). To see this, we use the pullback diagram

ri il F ad (isq X i30)*T7 C T*(R x 9Q x 99)

i T

T*(R x R" x Q) <— N*(graph(isq X iya))
Here, F is the fiber product, N* graph(iyn X izq) is the conormal bundle to the graph, and the map
a: F — (iyg X iyq) TV is the natural projection to the composition [Duistermaat and Guillemin 1975].
Since the composition is transversal, D« is an isomorphism [loc. cit.]. The graph of iy X iyq is the set
{(t,q.q9'.t,q,q9"):(t,q,q") € Rx Q2 x 9} and its conormal bundle is (in the Fermi normal coordinates),

N*(graph(iaﬂ X iBQ)) = {(tv T, q, 4‘7 q/7 é‘/v t, _Tv qv _§+Sn7 q/7 _§/+$y/l)7 (q’ é" S}’l)’ (q/7 é‘/, éy/l) € TQ*QRn}
CT*(Rx Q2 x Q2 x R x R" x R").

The half-density produced by the pullback diagram takes the exterior tensor product of the canonical
half-density

|dt AdT Adg Ade AdE, AdELAdg' ANdE! |

on N*(graph(isq X iyn)) and
ldt' Adx' AdE'|M? onT/ Cc TH*(R x R" x R")

at a point of the fiber product (where the 7*(R x R" x R") components are equal) and divides by the
canonical half-density
|dt’ Andt' Adg' AdE Adx, AdELAdx AdE'|?

on the common T*R x T*R" x T*R" component.

Since T’ = 1, the factors of |dt' Adt' Adq’ AdE' AdE] Adx' AdE'|Y/? cancel in the quotient half-density,
leaving the half-density

|dt Adg AdE AdE,|'?
|dx)|1/2

on the composite. The numerator is a half-density on R x T;,R". We write it more intrinsically in the
following lemma. Note that it explains the first of our two y factors.

Lemma 5. Let ® = @ be the parametrization (25). Then

&
VICP?+ &2

12
dt Adg AdE AdEy|V? = ‘ | 0% Qegen |

as half-densities on R x T;R".
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Proof. We have
Q*QT*R’!
dt Ndg NdL NdE,

d 9 9 9
=QT*Rn<ECDt(q,§,§n) dCD’a— dcpff ch>’as )
j n

ad ad ]
= QT*R" (Hg, gj, a_é'j’ E)

=€_nQT*R,,(i 9 2 0 )zf_n
VIEP+E2 Oxu’ 3q;7 88,7 96w/ JltP+EF

d o €n 0
—¢ s Il Sn =Hy = ———

is the Hamilton vector field of g = /g2, g* = E,% + (g’)? where - - - represent vector fields in the span
of 3/dq;, 8/3¢j, 3/9&,. Finally, we use that d®’ is a symplectic linear map and that ¢, x,, ¢, &, are
symplectic coordinates. Note that we have evaluated the symplectic volume form at the domain point, not

since

the image point. U

Next we consider the points in the image of ® on R x 7,,R" where x; = 0 and take the quotient by
|dx! |1/, resulting in a half-density on Fg. The next result explains the origin of the second y factor.

Lemma 6. In the subset Fg C ®(RxT,oR") where x;, =0 and where t = T/, we have (in the parametrizing
coordinates (28)),

|dt Adg Ad AdE,|Y?

INk — 1/2
|12 — By dg ndnnde|".

Proof. By Lemma 5, it suffices to rewrite

x| 72 | % Qe |2

in the coordinates (7, g, ) of Ly j+ in (28). We observe that x;, = ®*x,. Hence

Qg |1/
x| 72| @* Qg | = ‘cb* | =)y Hdg nde nde|.
|d x|
In the last equality, we have used (26), the equality |dT* | = |dg Nnd¢ A d§,|, and the fact that 8 is
I’l

symplectic. Indeed, by (26),
*(dg AL AdE,) = (t(,Bj)*(dq A d%) A d)*ds,,)
- (r(,Bj)*(dq /\d%) AD*d\T2 — |;|2)

:dq/\dg/\CD*Td—t ((ﬁ Yy —1)dq/\d§/\dt.
Note that 7(87)*(dg Ad%) = dg AdE|gr . H

Combining Lemma 6 with Lemma 5 completes the proof of (31) and Proposition 4. U
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2.6. Trace along the boundary: composition with w,A*. We now take the trace along the boundary of
this operator. Analogously to [Duistermaat and Guillemin 1975; Guillemin and Melrose 1979a; Marvizi
and Melrose 1982], we define A : R x 02 — R x Q2 x dQ2 to be the diagonal embedding and =, to be
integration over 0€2.

Lemma 7. If the fixed point sets of period T of B* are clean for all k and form a submanifold Fr of
B*9Q2 of dimension d (with connected components T"), then

1 A*p x7(Dy, q's D) xr(Dyry q, D) S (t, g, q) € [PTADH=UD (R TRy,

where
TTR=UL A7+ =U (T, £71): T e Ry},

and its principal symbol on At 4 is given by

cErd+2)/2 \/E’
where
=Y C?/ﬁmdur
'CFr r
and ¢~ = ¢+ the complex conjugate of ¢™.

Proof. The calculation of the principal symbol of the trace of a Fourier integral operator in [Duistermaat
and Guillemin 1975] is valid for the boundary restriction of the wave kernel, since it only uses that it is
. A* composed with a Fourier integral kernel with a known symbol and canonical relation. Hence we
follow the proof closely and refer there for further details.

As in [Guillemin and Melrose 1979a], the composition of 7, A* with

pxr(Dy,q', D) xr(Dy, q, D)S5(t, q.q) (32)

is clean if and only if the fixed point set of 8 corresponding to periodic orbits of period 7 is clean. When
the fixed point set has dimension d in the ball bundle B*92, composition with 7, A* adds d/2 to the
order [Duistermaat and Guillemin 1975, (6.6)]. Combining with Lemma 3, we obtain the order

d 1 1
§+§+1—Z.

Hence under the cleanliness assumption, it follows that § Trcos #./—Ap is a Lagrangian distribution
on R with singularities at # € Lsp(£2). As discussed in [loc. cit.] for the upper/lower half lines A7 4+ in
T/R, 1 §+3 (R, A7 +) consists of multiples of the distribution

o0
/ T(d-‘rz)/zeil‘[([—'r)dt — (t — T+ io)—(d+4)/2'
0

The principal symbol of this Fourier integral distribution is 7@*2/2\/dt. Therefore to conclude the
Lemma we only need to compute the coefficients of this symbol in the trace.
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This coefficient is computed in a universal way from the principal symbol of (32) computed from
Proposition 4. Following the proof in [loc. cit.], the coefficient of r@+D/2 [dT is

= C?Lfbyldura
I'cFr r
where Fr is the fixed point set of 8 (and its powers) in B*9€2. The sum is over the connected components
I" of Fr. Here, dur is the restriction to I' of a density du on Fr which is the pushforward (under the
natural projection map) of the canonical density defined on the fixed point set of ®7 on S50 2. This
canonical density is defined in Lemma 4.2 of [Duistermaat and Guillemin 1975]. We note that the
distribution ¢ (r — T +i0)~@+9/2 4 ¢=(r — T — i0)~@+%/2 is real only if ¢~ = ¢*. This completes the
proof of the lemma. ]

The lemma also completes the proof of the Theorem 2.

Remark. As a check on the order, we note that for the wave trace in the interior and for nondegenerate
closed trajectories, the singularities are of order (1 — T 4 i0)~!. When the periodic orbits are degenerate
and the unit vectors in the fixed point sets have dimension d, the singularity increases to order

d
t—-T+4i0)" 2.
If we formally take the variation of the wave trace, the singularity should increase to order
o 1d
—T+i0)" 27",

In comparison, the boundary trace in the Dirichlet case involves two extra derivatives of the wave

kernel and composition with (—A)~1/2

. Compared to the interior trace, this adds one net derivative and
order to the trace singularity. We claim that the restriction to the boundary does not further change the
order compared to the interior trace. This can be seen by considering the method of stationary phase
for oscillatory integrals with Bott—Morse phase functions, whose nondegenerate critical manifolds are
transverse to the boundary. If we restrict the integral to the boundary, we do not change the number
of phase variables in the integral, but we simultaneously decrease the number of variables by one and
the dimension of the fixed point set by one. The number of nondegenerate directions stays the same. It
follows that the singularity order of the variational trace goes up by one overall unit compared to the

interior trace, consistently with the formal variational calculation.

3. Case of the ellipse and the proof of Theorem 1

In this section we let £ be an ellipse. In this case, the fixed point sets are clean fixed point sets for ®’ in
T*Q¢ and for B in B*3€2¢ [Guillemin and Melrose 1979a, Proposition 4.3]. In fact the fixed point sets
Fr of B in B*0€( form a one dimensional manifold. Thus d = 1 and Corollary 2 follows.

As is well-known, both the billiard flow and billiard map of the ellipse are completely integrable. In
particular, except for certain exceptional trajectories, the periodic points of period 7 form a Lagrangian
tori in $*€2g, and the homogeneous extensions of the Lagrangian tori are cones in 7*2y. The exceptions
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are the two bouncing ball orbits through the major/minor axes and the trajectories which intersect the
foci or glide along the boundary. The fixed point sets of ® intersect the coball bundle B*3 of the
boundary in the fixed point sets of the billiard map g8 : B*3Q2g — B*9Qq (for background we refer to
[Petkov and Stoyanov 1992; Guillemin and Melrose 1979a; 1979b; Hassell and Zelditch 2004; Toth and
Zelditch 2012] for instance). Except for the exceptional orbits, the fixed point sets are real analytic curves.
For the bouncing ball rays, the associated fixed point sets are nondegenerate fixed points of 5.

Since the final step of the proof uses results of [Guillemin and Melrose 1979a], we briefly review the
description of the billiard map of the ellipse Q2 := x?/a + y?>/b = 1 (with a > b > 0) in that article. In
the interior, there exist for each 0 < Z < b a caustic set given by a confocal ellipse

x2 y2

E+z 'z~
where E =a — b, or for —E < Z < 0 by a confocal hyperbola. Let (¢, ¢) be in B*9<2( and let (g, &) in
S*Qp be the unique inward unit normal to boundary that projects to (g, ¢). The line segment (g, r&) will
be tangent to a unique confocal ellipse or hyperbola (unless it intersects the foci). We then define the
function Z(g, £) on B*92 to be the corresponding Z. Then Z is a S-invariant function and its level

17

sets {Z = c} are the invariant curves of B. The invariant Leray form on the level set is denoted by du ,
[loc. cit., (2.17)]; thus the symplectic form of B*92 is dg Ad{ =dZ Ndu,. A level set has a rotation
number and the periodic points live in the level sets with rational rotation number. As it is explained in
[loc. cit., p. 143] the Leray form du , restricted to a connected component I' of Fr is a constant multiple
of the canonical density dur.

As mentioned in the introduction, the well-known obstruction to using trace formula calculations such
as in Theorem 2 is multiplicity in the length spectrum, that is, existence of several connected components
of Fr. A higher dimensional component is not itself a problem, but there could exist cancellations among
terms coming from components with different Morse indices, since the coefficients Cr are complex. This
problem arose earlier in the spectral theory of the ellipse in [loc. cit.]. The key Proposition 4.3 there shows
that there is a sufficiently large set of lengths 7" for which Fr has one component up to (g, {) — (¢, —¢)
symmetry. Since it is crucial here as well, we state the relevant part:

Proposition 8 [Guillemin and Melrose 1979a, Proposition 4.3]. Let Ty = |020|. Then for every interval
(mTy—e€, mTy), form=1,2,3, ..., there exist infinitely many periods T € Lsp(2g) for which Fr is the
union of two invariant curves which are mapped to each other by (q, ¢) — (g, —¢).

Since for an isospectral deformation § Tr cos(r4/—A) = 0, we obtain from Theorem 2:

Corollary 9. Suppose we have an isospectral deformation of an ellipse Qo with velocity p. Then for each
T in Proposition 8 for which Fr is the union of two invariant curves I'y and I'y which are mapped to each
other by (q, ¢) — (q, —¢) we have

/ pyidu, =0, j=12.
r‘.

J

Proof. From Theorem 2 we get
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2

m{(} qv/'pmdum>(r—r+un4*W”}=o
. I ’
J:] J

Since p and y; are invariant under the time reversal map (q, ¢) — (g, —¢), the two integrals are identical.
Also by directly looking at the stationary phase calculations it can be shown that the Maslov coefficients
Cr, and Cr, are also the same. Thus the corollary follows. u

3.1. Abel transform. The remainder of the proof of Theorem 1 is identical to that of Theorem 4.5 of
[Guillemin and Melrose 1979a] (see also [Popov and Topalov 2003]). For the sake of completeness, we
sketch the proof.

Proposition 10. The only 7, x 7, invariant function p satisfying the equations of Corollary 9 is p = 0.

Proof. First, we may assume p = 0 at the endpoints of the major/minor axes, since the deformation
preserves the Z, x Z, symmetry and we may assume that the deformed bouncing ball orbits will not
move and are aligned with the original ones. Thus p(4+/a) = ,é(:l:\/z) =0.

The Leray measure may be explicitly evaluated [Guillemin and Melrose 1979a, eq. 2.18]. By a change
of variables with Jacobian J, and using the symmetric properties of o, the integrals become

Cp@) i J()dt
A(Z) = —_— 33
(2) fh —%-2) (33)

for an infinite sequence of Z accumulating at ». The function A(Z) is smooth in Z for Z near b. It
vanishes infinitely often in each interval (b — €, b), hence is flat at b. The k-th Taylor coefficient at b is

AP (p) = / u p) y J(Or = 1Ddr = 0. (34)
b

Since the functions % span a dense subset of C[b, a], it follows that p = 0. U

3.2. Infinitesimal rigidity and flatness. We now show that infinitesimal rigidity implies flatness and
prove Corollary 1. As mentioned, the Hadamard variational formula is valid for any C! parametrization
Qq(e) of the domains €2¢. For each one we have §pq ) (x) = 0.

Assume p, (x) is not flat at € = 0 and let €* be the first nonvanishing term in the Taylor expansion of
pe(x) at € = 0. Then
kp(k)(x) +Ek+1p(k+l)(x)

k! Grin T 35)

Pe(x) =€

We then reparametrize the family by € — a(¢) := €!/¥ so that

p® (x)

4 €+ 0Tk,

Pa(e)(x) =

By Hadamard’s variational formulae we get §pq ) (x) = p® (x) =0, a contradiction.
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A NATURAL LOWER BOUND FOR THE SIZE OF NODAL SETS

HAMID HEZARI AND CHRISTOPHER D. SOGGE

We prove that, for an n-dimensional compact Riemannian manifold (M, g), the (n — 1)-dimensional
Hausdorff measure |Zy | of the zero-set Z) of an eigenfunction e, of the Laplacian having eigenvalue
—A, where A > 1, and normalized by [}, lex|?dV, = 1 satisfies

2
C|Zy| = 22 (/ |eA|dVg)
M

for some uniform constant C. As a consequence, we recover the lower bound | Z; | > AG—0/4,

The purpose of this brief note is to prove a natural lower bound for the (r# — 1)-dimensional Hausdorff
measure of nodal sets of eigenfunctions. To wit:

Theorem 1. Let (M, g) be a compact manifold of dimension n and e, an eigenfunction satisfying
—Agey = Aey, and / |ek|2dVg =1.
M

Thenif Z; ={x € M : e)(x) = 0} is the nodal set and | Z, | its (n — 1)-dimensional Hausdorff measure,
we have

D=

2
A (/ |ex|dvg) =<C|Z,|, A=1, (1)
M

for some uniform constant C. Consequently,
3—
VAR =2} )

Inequality (2) follows from (1) and the lower bounds in [Sogge and Zelditch 2011a]

1

AE 5/ lex| d Vg. 3)
M

The lower bound (2) is due to Colding and Minicozzi [2011]. Yau [1982] conjectured that k% ~ |Z,|.
This lower bound A2 < |Z,| was verified in the two-dimensional case by Briining [1978] and indepen-
dently by Yau (unpublished). The bounds in (2) seem to be the best known ones for higher dimensions,
although Donnelly and Fefferman [1988; 1990] showed that, as conjectured, | Z; | ~ A%, if (M, g) is
assumed to be real analytic.
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The first “polynomial type” lower bounds appear to be those given in [Colding and Minicozzi 2011]
and [Sogge and Zelditch 2011a] (see also [Mangoubi 2011]). As we shall point out, inequality (1)
cannot be improved and it to some extent unifies the approaches in [Colding and Minicozzi 2011] and
[Sogge and Zelditch 2011a]. As was shown in the latter paper, the L!-lower bounds in (3) follow from
Holder’s inequality and the L? eigenfunction estimates of [Sogge 1988] for the range where 2 < p <
2(n+1)/(n—1). These too cannot be improved, but it is thought better L?-bounds hold for a typical
eigenfunction or if one makes geometric assumptions such as negative curvature (cf. [Sogge and Zelditch
2010; 2011b]). Thus, it is natural to expect to be able to improve (3) and hence the lower bounds (2) for
all eigenfunctions on manifolds with negative curvature, or for “typical” eigenfunctions on any manifold.
Of course, Yau’s conjecture that | Z; | ~ A2 would be the ultimate goal, but understanding when (3) can
be improved is a related problem of independent interest.

Let us now turn to the proof of Theorem 1. We shall use an identity from [Sogge and Zelditch 2011a]:
[ lel@gnrave=2 [ Vel s s, @
M Z,

Here d Sy is the Riemannian surface measure on Z, and V, is the gradient coming from the metric and
|Vgu| is the norm coming from the metric, meaning that in local coordinates

n
|Vgu|§, = Z gjk(x)0judgu. 5)
jk=1

Identity (4) follows from the Gauss—Green formula and a related earlier identity was proved by Dong
[1992].
As in [Hezari and Wang 2011], if we take f = 1 and apply Schwarz’s inequality we get

1/2
x[ lex| dVy < 2|Z3|'/? (/ |vgex|2dsg) . (6)
M Z)

Thus we would have (1) if we could prove that the energy of e, on its nodal set satisfies the natural
bounds

/ Veer|2dS, <23, )
Z),
We shall do this by choosing a different auxiliary function f. This time we want to use

1
f=(1+%ef+|Vgerl3)2. (8)

If we plug this into (4) we get that
1
2/ |VgerlodSg < / lex] (Ag + ) ( 1+ ref +|Vger|*)? dVg.
Z M

Since we have the L2-Sobolev bounds

leallzrs ary = O(A2), )
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it is clear that
1 3
f leal (14 4e} +|Vger|2)2 dVe = O(3),

and thus to prove (7), it suffices to show that
1
/ lexl Ag(1+1e} +|Vgen2)? dVe = 0(.2). (10)
To prove this we first note that

rerdren + 50k Veerly

1
(1+kei + |Vges|?)?

from this and (9) we deduce that
1
[ leal Wg( 1 +Aei + |Vge;h|2)2 ‘ dVe = O(N).
M

This means that the contribution of the first order terms of the Laplace—Beltrami operator (written in
local coordinates) to (10) are better than required, and so it suffices to show that in a compact subset K
of a local coordinate patch we have

1
/ |eA|‘ajak(1+xe§+|vgek|2)2 (11)
K

1
A calculation shows that 9;0x (Ae; + |Vgep|*)? equals

_()\ekaje)\ + %aﬂvgeﬂ;)(lekaké’k + %8klvge,\|2) Adje)drey +Areydjorey + 5 8 8k|Vgek|

3
(14 21ef +[Vger|?)? (1+Aex+|vgek|2)
If [D™ f| = 3" |g1=m 0% /] then by (5)
I |Vger|> = O(|D%ex| | Dey| + | Desl?),

and
3;0k|Vger |2 = O(|D*e;| | Dey | + | D*ey|* + | D?es| | Dey | + | Dey|?)
jOk|Vgey g ey ey ey ey ey ey .

Therefore,

8,0k (Ae? + |Vges|? )
_ 0<)‘2|€x|2|D€A|2 D% PIDe  + |D€x|4)
(1 —H\ei + |Vgerl?)?
N O<X|D€A|2+X|€x| D%, | + |Des| [ Dey | + |D2€x|2 +|D%e; | |Dey | + |D€x|2)
(1 +)xex + |Vge;t|2)
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This implies that the integrand in the left side of (11) is dominated by
(A2|Dey ) + 472 D3¢, |* + | Dey )
+ (12 1Des 2 + 23 leal D2er] + leal [ D*er| + 472 | D2es 2 + [ DPes] eg] + [ Dexl e ).
leading to (11) after applying (9). O

Remarks.

¢ We could also have taken f to be (A + kei + |Vgeyn |2)% and obtained the same upper bounds, but
there does not seem to be any advantage to doing this.

* Inequality (1) cannot be improved. There are many cases when the L' and L2-norms of eigen-
functions are comparable. For instance, for the sphere the zonal functions have this property and it
is easy to check that their nodal sets satisfy |Z; | ~ )»%, which means that for zonal functions (1)
cannot be improved.

o There are many cases where inequality (1) can be improved. For instance, the L2-normalized
highest weight spherical harmonics Q have eigenvalues A = Ay ~ k2, and L!-norms ~ Kt
(see e.g., [Sogge 1986]). This means that for the highest weight spherical harmonics the left side
is proportional to A*7" even though here too |Z; | ~ Az, Similarly, the highest weight spherical
harmonics saturate (7). It is because of functions like the highest weight spherical harmonics that the
current techniques only seem to yield (2). Note that inequality (2) gives the correct lower bound in
the trivial case where the dimension 7 is one. As the dimension increases, the bound gets worse and
worse due to the fact that (3) is saturated by functions like the highest weight spherical harmonics
(“Gaussian beams”) whose mass is supported on a ATd neighborhood of a geodesic and the volume
of such a tube decreases geometrically as n increases. (See [Bourgain 2009; Sogge 2011] for related

work on this phenomena.)

e W. Minicozzi pointed out to us that (7) also follows from the identity
2 /Z |Vge)&|2 dSe = — /M sgn(ey) divg( |Vger| Vge; ) dVg. (12)
A

and (9). Like the proof of (4) in [Sogge and Zelditch 2011a], the identity (12) follows from an
application of the divergence theorem applied to each of the nodal domains of e, .
Acknowledgments
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EFFECTIVE INTEGRABLE DYNAMICS
FOR A CERTAIN NONLINEAR WAVE EQUATION

PATRICK GERARD AND SANDRINE GRELLIER

We consider the following degenerate half-wave equation on the one-dimensional torus:
idu —|Dlu= |ul*u, u(0,-)=uo.

We show that, on a large time interval, the solution may be approximated by the solution of a completely
integrable system — the cubic Szegd equation. As a consequence, we prove an instability result for large
H* norms of solutions of this wave equation.

1. Introduction
Let us consider, on the one-dimensional torus T, the “half-wave” equation
idu—|Du=ulPu, u,-)=uy. (1)

Here | D| denotes the pseudodifferential operator defined by
|D|u = Z k|luge™,  u= Zukeikx.
k

This equation can be seen as a toy model for nonlinear Schrodinger equations on degenerate geometries
leading to lack of dispersion. For instance, it has the same structure as the cubic nonlinear Schrodinger
equation on the Heisenberg group, or associated with the GruSin operator. We refer to [Gérard and Grellier
2010a; 2010b] for more detail.

We endow L?(T) with the symplectic form

o(u,v) =Im(u, v),

where (u, v) denotes the inner product on L*(T). Equation (1) may be seen as the Hamiltonian system
related to the energy function H (1) := %(lDlu, u)+ }LHu ||AL'4. In particular, H is invariant by the flow,
which also admits the conservation laws

Q) :=llulljs, M) :=(Du,u).
However, Equation (1) is a nondispersive equation. Indeed, it is equivalent to the system
i3 +0ur = Me(ul’u), u(0, ) =T+ (up), (2)

MSC2010: 35B34, 35B40, 37K55.
Keywords: Birkhoff normal form, nonlinear wave equation, perturbation of integrable systems.
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where u1 = T4 (u). Here, T1.. denotes the orthogonal projector from L?(T) onto

Li(T):= {u =Y uge™, (=0 € 62}
k=0
and IT_ :=1 —T1,.
Though the scaling is L>-critical, the first iteration map of the Duhamel formula

t
u(r):e—”'D'uo—i/ e Oy () Pu(r))dT
0

is not bounded on H* for s < % Indeed, such boundedness would require the inequality

1
—it|D 4 4
[ 1P gyt S 1 Wy
0

However, testing this inequality on functions localized on positive modes, for instance, shows that this
fails if s < % (see the Appendix for more detail).
Proceeding as in the case of the cubic Szegd equation [Gérard and Grellier 2010a, Theorem 2.1],

idw =T, (Jw|*w), 3)

one can prove the global existence and uniqueness of solutions of (1) in H* for any s > % The proof

1/2

uses in particular the a priori bound of the H'/“-norm provided by the energy conservation law.

Proposition 1. Given ug € H > (T), there existsu € C(R, H > (T)) unique such that
i0;u—|Dlu= |u|2u, u(0, x) = up(x).
Moreover if ug € H*(T) for some s > %, thenu € C(R, H*(T)).

Similarly to the cubic Szeg6 equation, the proof of Proposition 1 provides only bad large time estimates:
Cst
lu@) s S

This naturally leads to the question of the large time behavior of solutions of (1). In order to answer
this question, a fundamental issue is the decoupling of nonnegative and negative modes in system (2).
Assuming that initial data are small and spectrally localized on nonnegative modes, a first step in that
direction is given by the next simple proposition, which shows that x_(f) remains smaller in H'/?

uniformly in time.

Proposition 2. Assume
Maug=uo=0() in H2(T).

Then, the solution u of (1) satisfies

sup [TT_u(r)|| 1 = 0(e?).
teR H2
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Proof. By the energy and momentum conservation laws, we have
(IDlu, w) + 3 llully = (| Dluo, uo) + 3 luoly+, (Du, u) = (Duo, uo).
Subtracting these equalities, we get
2(1Dlu—, u) + 3 llullys = 5lluolls = 0"
hence

||u_||21 =0(eh). O

(S]]

This decoupling result suggests neglecting u_ in the system (2) and hence comparing the solutions of
(1) to those of

i9,v— Dv = I, (Jv]*v),

which can be reduced to (3) by the transformation v (¢, x) = w(¢, x —t).
Our main result is the following.

Theorem 1.1. Lets > 1 and ug = I (up) € L%F(T) N H(T) with ||ug||gs = €, for e > 0 small enough.
Denote by v the solution of the cubic Szegd equation

id,v—Dv =TI (Jv]*v), v(0,-)=u. (4)

Then, for any a > 0, there exists a constant ¢ = ¢, < 1 such that

lu(t) = o)l ge = 0> fort < ‘;—2 log é 5)
Furthermore, there exists ¢ > 0 such that
lu(®)llix = 0e) forall 1 < =, (©)
Remarks. 1. If we rescale u as eu, Equation (1) becomes
idu—|Dlu = &*|ul*u, u(0,-) = uo,

with |lug|| g+ = 1. On the latter equation, it is easy to prove that u(¢) = e~ Plyg+0(1) fort < 1/€2, so
that nonlinear effects only start for 1/¢% < t. Rescaling v as v in (4), Theorem 1.1 states that the cubic
Szegd dynamics appear as the effective dynamics of (1) on a time interval where nonlinear effects are
taken into account.

2. As pointed out before, (4) reduces to (3) by a simple Galilean transformation. Equation (3) has been
studied in [Gérard and Grellier 2010a; 2010b; 2012], where its complete integrability is established
together with an explicit formula for its generic solutions. Consequently, the first part of Theorem 1.1
provides an accurate description of solutions of (1) for a reasonably large time. Moreover, the second part
of Theorem 1.1 claims an L°° bound for the solution of (1) on an even larger time. This latter bound is
closely related to a special conservation law of (3), namely, some Besov norm of v — see Section 2 below.
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3. In the case of small Cauchy data localized on nonnegatives modes, system (2) can be reformulated
as a— singular — perturbation of the cubic Szeg6 equation (3). Indeed, write ug = ewg and u(z, x) =
sw(e?t, x —1); then w = w4 + w_ solves the system

idwy = My (w*w),

7
(620, — 20 ) w_ = &*TI_(|w|*w). @

Notice that, for ¢ = 0 and IT;wp = wy, the solution of this system is exactly the solution of (3). It is
therefore natural to ask how much, for ¢ > 0 small, the solution of system (7) stays close to the solution
of Equation (3). Since Equation (3) turns out to be completely integrable, this problem appears as a
perturbation of a completely integrable infinite-dimensional system. There is a lot of literature on this
subject (see the books [Kuksin 1993; Craig 2000; Kappeler and Pdschel 2003] for KAM theory). In
the case of the 1D cubic NLS equation and the modified KdV equation, with special initial data such
as solitons or 2-solitons, we refer to [Holmer and Zworski 2007; 2008; Holmer et al. 2007; 2011] and
references therein. Here we emphasize that our perturbation is more singular and that we deal with general
Cauchy data.

4. The proof of Theorem 1.1 is based on a Poincaré-Birkhoff normal form approach, similarly to [Bambusi
2003; Grébert 2007] for instance. More specifically, we prove that (4) turns out to be a Poincaré—Birkhoff
normal form of (1), for small initial data with only nonnegative modes.

As a corollary of Theorem 1.1, we get the following instability result.

Corollary 1. Let s > 1. There exist a sequence of data uy and a sequence of times t™ such that, for
anyr,

lugll - — 0,

while the corresponding solution of (1) satisfies

2s—1
™ () || s 2= |y | s <log ~ ) :
2 || s

It is interesting to compare this result to what is known about the cubic NLS. In the one-dimensional case,
the cubic NLS is integrable [Zakharov and Shabat 1972] and admits an infinite number of conservation
laws which control the regularity of the solution in Sobolev spaces. As a consequence, no such norm
inflation occurs. This is in contrast with the 2D cubic NLS case for which Colliander, Keel, Staffilani,
Takaoka, and Tao [2010] exhibited small initial data in H® which give rise to large H* solutions after a
large time.

In our case, the situation is different. Although the cubic Szegd equation is completely integrable, its
conservation laws do not control the regularity of the solutions, which allows a large time behavior similar
to the one proved in [Colliander et al. 2010] for 2D cubic NLS [Gérard and Grellier 2010a, Section 6,
Corollary 5]. Unfortunately, the time interval on which the approximation (5) holds does not allow to
infer large solutions for (1), but only solutions with large relative size with respect to their Cauchy data—
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see Section 3 below. A time interval of the form [0, 1/£27#] for some B > 0 would be enough to construct
large solutions for (1) for some H*-norms.

We close this introduction by mentioning that O. Pocovnicu solved a similar problem for Equation (1)
on the line by using the renormalization group method instead of the Poincaré—Birkhoff normal form
method. Moreover, she improved the approximation in Theorem 1.1 by introducing a quintic correction
to the Szegd cubic equation [Pocovnicu 2011].

The paper is organized as follows. In Section 2 we recall some basic facts about the Lax pair structure
for the cubic Szeg6 equation (3). In Section 3, we deduce Corollary 1 from Theorem 1.1. Finally, the
proof of Theorem 1.1 is given in Section 4.

2. The Lax pair for the cubic Szeg6 equation and some of its consequences

In this section, we recall some basic facts about Equation (3) (see [Gérard and Grellier 2010a] for more
detail). Given w € H'/>(T), we define (see, e.g., [Peller 1982; Nikolski 2002]) the Hankel operator of
symbol w by

Hy(h) =T (wh), hel?.

It is easy to check that H,, is a C-antilinear Hilbert—Schmidt operator. In [Gérard and Grellier 2010a], we
proved that the cubic Szegd flow admits a Lax pair in the following sense. For simplicity let us restrict
ourselves to the case of H*® solutions of (3) for s > % By [ibid., Theorem 3.1], there exists a mapping
w € H* — B,, valued into C-linear bounded skew-symmetric operators on L2, such that

H_in, (jwpw) = [Bw, Hyl. (8)

Moreover,
B, = iH2 —iT
w 5w UL )2,

where T} denotes the Toeplitz operator of symbol b, given by Ty, (h) = I1,(bh). Consequently, w is a

solution of (3) if and only if

iH = [By,, Hy] 9
dt w — wo wi-

An important consequence of this structure is that the cubic Szegd equation admits an infinite number
of conservation laws. Indeed, denoting by W (¢) the solution of the operator equation

d
—W=B,W, WO =I,
o w 0)

the operator W (¢) is unitary for every ¢, and
W) Hy@yW (t) = Hy ).

Hence, if w is a solution of (3), then H,,(;) is unitarily equivalent to H,, ). Consequently, the spectrum of
the C-linear positive self-adjoint trace class operator H? is conserved by the evolution. In particular, the
trace norm of H,, is conserved by the flow. A theorem by Peller [1982, Theorem 2, p. 454] states that the
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trace norm of a Hankel operator H,, is equivalent to the norm of w in the Besov space Bl1 (1. Recall
that the Besov space B! = B11 1 (T) is defined as the set of functions w such that ||w|| B, is finite, where

oo
lwligr, = IS0l + 24w
, =
here w = So(w) + Z;io A jw stands for the Littlewood—Paley decomposition of w. It is standard that B!
is an algebra included into L°° (in fact into the Wiener algebra). The conservation of the trace norm of
H,, therefore provides an L* estimate for solutions of (3) with initial data in B!

The space B! and formula (8) will play an important role in the proof of Theorem 1.1. In particular,

the last part will follow from the fact that [|u(z)|| 51 remains bounded by ¢ for r < 1/¢3. The fact that
H*(T) C B! for s > 1, explains why we assume s > 1 in the statement.

3. Proof of Corollary 1

As observed in [Gérard and Grellier 2010a, Section 6.1, Proposition 7, and Section 6.2, Corollary 5], the
equation
e +b
0w = H+(|w|2w) , w(,x)= ao—+.0
1= poe'*

with ag, by, po € C, |po| < 1 can be solved as

a(t) e +b(1)
w(t,x) = ——7>>
1= p(t)e™
where a, b, p satisfy an explicitly solvable ODE system.
In the particular case when

ao=¢, bp=¢8, po=0, we(0,x)=¢e*+3),

one finds

so that, for s > %,
€

7T ~
Hw8<2825>‘ e 8Bl

i3+ 00ve = T (v *ve) . ve(0, x) = e(e™ +36).

Let v, be the solution of

Then v (¢, x) = w. (¢, x—1), so that

T N &
Uf(zgza) HH T

Choose
C

zlogn’

1
e=—, &6
n
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with C large enough that if 1™ := 7r/(2625) then t™ < clog(1/e)/e?, where ¢ = ¢, in Theorem 1.1 for
a =1, say. Set ug :=v,:(0, ). As |lug|lgs = ¢, the previous estimate reads

ve(505: )| = gl (10 Ly
_— ~Nu s .
e\ 2e25) |l e = Mol 08 s

Applying Theorem 1.1, we get the same information about ||u,, (t")]| 5.

4. Proof of Theorem 1.1
First of all, we rescale u as eu so that Equation (1) becomes
idu—|Dlu=e*ulPu, u, )=up (10)
with ||ug||gs = 1.
4.1. Study of the resonances. We write the Duhamel formula as

u(t) =e"Plu),

with
a ky=aok) —ie* Y Ik, ka, k3, k),
ki—ky+ks—k=0
where
I(k1, ko, k3, k) = /0 Tk (o kAT R k) d
and

D(ky, ko, k3, ka) := k1| — |ko| + |k3| — |k4].

If ©(ky, ko, k3, k4) # 0, an integration by parts in I (ky, k2, k3, k4) provides an extra factor ¢2; hence
the set of (ki, k2, k3, k4) such that @ (ky, ko, k3, ks) = O is expected to play a crucial role in the analysis.
This set is described in the following lemma.

Lemma 1. Given (ky, k2, k3, ks) € Z*,
ki —ky+ks—ks=0 and |ki| — lkao|+ |k3| — |ks| =0
if and only if at least one of the following properties holds:
(@) kj >0 forall j.
(b) kj <0 forall j.
(c) ki =ky and k3 = k4.
(d) ky = kq and kz = k.
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Proof. Consider (ky, ka, k3, k4) € Z* such that k; —ky + k3 — k4 = 0, |k1| — |ka| + |k3] — |k4| = 0, and the
k; are not all nonnegative or all nonpositive. Let us prove in that case that either k| = k» and k3 = k4,
or k1 = k4 and k3 = kp. Without loss of generality, we can assume that at least one of the k; is positive,
for instance k. Then, subtracting both equations, we get that |k3| — k3 = |ka| — ko + |ka| — k4. If k3 is
nonnegative, both k; and k4 must be nonnegative; hence all the k; are nonnegative. Assume now that k3
is negative. At least one among kp, k4 is negative. If both of them are negative, then k3 = ky 4 k4 but this
would imply k; = 0 which is impossible by assumption. So we get either that k3 = k, (and so k; = k4) or
k3 = k4 (and so k; = k»). This completes the proof of the lemma. O

4.2. First reduction. We get rid of the resonances corresponding to cases (c) and (d) by applying the
transformation
fen2 2
u(e) > el ) (11)

which, since the L2 norm of u is conserved, leads to the equation
idu —|Dlu = e*(Jul* = 2l|ull?)u, u(0,-) = uo. (12)
Notice that this transformation does not change the H® norm. The Hamiltonian function associated to
(12) is given by
H () = 5(I1Dlu, w) + z&*(lull o = 2llullj2) = Ho(u) + e*R(w),

where
Ho(u) : = 5(|Dlu, u),

1 S —
R(u):=i<||u||i4—2||u||iz)=z( > uklukzukgum—kar‘).

ky—ky+k3—k4=0 keZ
ky ko kg

4.3. The Poincaré-Birkhoff normal form. We claim that under a suitable canonical transformation on
u, H can be reduced to the Hamiltonian

Hu) = Ho(u) +&*Ru) + 0(e*),

where

= 1 [
R(M) = Z Z U Uy U3 UKy
(kl,kz,k3,k4)€%

with
R = {(kl,kz,kg,k4) ck1—ko+k3—ks =0; ki #ko; ki #ks; kj >0 forallj ork; <0 for allj}.

We look for a canonical transformation as the value at time 1 of some Hamiltonian flow. In other
words, we look for a function F such that its Hamiltonian vector field is smooth on H® and on B!, so
that our canonical transformation is ¢, where ¢, is the solution of

d
75 o) =" Xr(po (),  @o(w) =u. (13)
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Recall that, given a smooth real valued function F, its Hamiltonian vector field X ¢ is defined by
dF(u).h =:wh, Xru)),
and, given functions F, G admitting Hamiltonian vector fields, their Poisson bracket { F, G} is defined by
{F,G}u) =w(XFu), X¢W)).

Let us make some preliminary remarks about the Poisson brackets.
In view of the expression of w, we have

2
{(F,G}:=dG.Xr =~ E (0 F oG — 9;Go F)
i
k

where 0y F stands for d ' /0uy and 0 F for 0 F'/duy. In particular, if " and G are respectively homogeneous
of order p and g, then their Poisson bracket is homogeneous of order p + g — 2.

Lemma 2. Set

F(u) = Z S ko ks g Wiy Wiy Uiy Uy
ki1—ko+kz—kqs=0
where .
i
4|k | — 2|+ k3] — 1 kal)
0 otherwise.

if lki| — |ka| + k3| — |ka| # O,
fkl,k2,k3,k4 =

Then X r is smooth on H*, s > %, as well as on B, and
{F.Ho)+R=R,

IDX p k|l < lul®lAl],

where the norm is taken either in H*, s > % orin B'.

Proof. First we make a formal calculation with F given by
F(u) = Z fkl,kz,k3,k4uk1@uk3u_k4
k1 —ko+k3—ks=0
for some coefficients f, , .k, to be determined later. We compute
1 -
(F.Hy =~ > (=lkil+ kol = ksl + [Kal) S yoks stk Wiy s Bk
! k1 —ko+k3z—ks=0
so that equality {F, Hp} + R = R requires
i
4(lkr| = k2| + k3| —[kal)
0 otherwise.

if |ki| — |ka| + k3| — |ka| # O,
S ko ks kg =
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One can easily check that the function F is explicitly given by
F(u) = 3Im((Dg 'u—, |uy Puy) = (D u, Ju—Pus) — (Dg Hug 12, lu- 1),

where D Uis the operator defined by

_ Uk ikx
Dolu(x)zzﬁek .

k0

Notice that, since functions |u+|2 and |u_|* are real valued, the quantity (D, 1|u+|2, lu_|?) is purely
imaginary, and therefore is equal to i times its imaginary part.

In view of the formula above, the Hamiltonian vector field X (u) is a sum of products of terms
involving the maps f +— f, f Do_lf, f—=T1f, (f, g)— fg. These maps are continuous on H* and
on B'. Hence, X is smooth and its differential satisfies the claimed estimate on H*, s > % and B'. O

The proof of the following technical lemma is based on straightforward calculations.
Lemma 3. The function R and its Hamiltonian vector field are given by
R(w) = gl s+ 170 +Re(Gu, D) ey 1)) = 5(Nlus 13 + lulI32),
iX ) = T (e Pus) + T QuePus) = 2l g = 2llu- | u— + @, us)
+2(1, - (Ju_|*) + (1, wu?,

where we have set u4 = I14+(u).

The maps X (r gy and X (F.Ry are smooth homogeneous polynomials of degree five on B! and on H* for

every s > %

We now perform the canonical transformation
o 2
Xe :=exp(e“XF).

Lemma 4. Set ¢, :=exp(e’0 Xr) for —1 <o < 1. There exist mo > 0 and Co > 0 so that, for any u € B'
so that e||u|| g1 < mo, ¢, (1) is well defined for o € [—1, 1] and

3
oo )l g1 < 5llullpr,

2 3
oo (u) —ullpr < Coe”llullg,

Coe?lul*
|Dos )l g pt <e 0Tl

1

Moreover, the same estimates hold in H*, s > 5, with some constants m(s) and C((s).

Proof. Write ¢, as the integral of its derivative and use Lemma 2 to get

sup llgo ()l gr < llullgr +Ce® sup oo @Iy, 0<tT <L (14)

o<t o<t

We now use the following standard bootstrap lemma.
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Lemmas. Leta,b, T >0andt €[0,T]— M(t) € Ry be a continuous function satisfying
M(t) <a+bM(t)® forallt €0, T).
Assume that ~/3b M (0) < 1 and ~/3ba < % Then M(7) < %a forallt €[0,T].

Proof. For the convenience of the reader, we give the proof of Lemma 5. The function f :z > 0+ z —bz>
attains its maximum at z. = 1/+4/3b, equal to f,, = 2/(3+4/3b). Consequently, since a is smaller than f,
by the second inequality,

{z=0: f(z) <a}=[0,z_]U[zy, +00)

with z_ <z, < z4 and f(z—) = a. Since M () belongs to this set for every t and since M (0) belongs to
the first interval by the first inequality, we conclude by continuity that M (t) < z_ for every 7. By the

concavity of f, f(z) > 3z for z € [0, z.], hence z_ < 3a. 0
2 . .
Let us come back to the proof of Lemma 4. If ¢||u|| 31 < ——, Equation (14) and Lemma 5 imply that
p llull B 3/3C q ply
sup [lgo )l g1 < 3llullp, (15)

loj<1

which is the first estimate. For the second one, we write for |o| < 1,

2 3
< Co?lull}s,
B!

d
— s (u)

oo (u) —ullpr = llgs () — @o(u)llp1 < |o| sup s

Is|<lo]

where the last inequality comes from Lemma 2 and estimate (15).
It remains to prove the last estimate. We differentiate the equation satisfied by ¢, and use again
Lemma 2 to obtain

IDgs )l g1 pr < 1+ € / IDX F (@ W)l g1 pr 11 Do (W) g1 g1 dT

0

< 1+ Coe?|lull%,

’

o
/ | Do: ()|l g1 prdt
0

and Gronwall’s lemma yields the result. Analogous proofs give the estimates in H*. ]

1
E.
Let us compute H o x. = H o ¢; as the Taylor expansion of H o ¢, at time 1 around 0. One gets

Let u satisfy the assumption of Lemma 4 in B! or in H® for some s >
Hoyx, = Hog =H00¢]+82Rog01
d 5 ! d? , d
=Ho+ ——[Hoo¢slo=0+ &R+ (I1—-0)—-—=[Hoops]+e"——[Rogs] ) do
do 0 do do
1
= Hy+£2(F. H0}+R)+84/ (1= 0)(F. {F. Ho)) + (F. R} gy do
0
~ 1 ~
=H0+82R+84/ (4 =o)F. Ry +0lF. RY) ogydo
0

1
=: Hy+¢’R + e4f G(0)og, do.
0
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By Lemma 3, one gets
sup [ Xgo)(w) < Cllwl?

0<o<l1

where the norm stands for the B! norm or the H® norm. Since

XG(0)op, () = Do (905 (1)) X G (o) (¢ (1)),

we conclude from Lemma 4 that, if e||u|| g1 < myo,
5
X6 0)00, Wl g1 < Cllull:-
As a consequence, one can write
XHoy, = Xuy + 2 X 5 + %Y,

where, if e||u|| g1 < mo, then
5
1Y @)l S llullp-

1

An analogous estimate holds in H*, s > 5.

4.4. End of the proof. We first deal with the B'-norm of a solution u of (12). We are going to prove
that |lu(t)||zpr = 0() for t « 1 /83 by the following bootstrap argument. We assume that for some K
large enough with respect to ||ug| 51, for some T > 0, for all ¢ € [0, T], we have ||u(¢)| g1 < 10K, and
we prove that if 7 < 1/&3, |u(t)|| g1 < K for t € [0, T]. This will prove the result by continuity.

Set, fort € [0, T],

i) = x; (),
so that u is a solution of
it — |Dlii = % X 5 (i) + &*i Y (@)
Moreover, by Lemma 4,

~ 2,113
@) —u@®lip < e llullp

and so by the hypothesis, ||i(f)||z1 < 11K if & is small enough. In view of the expression of the
Hamiltonian vector field of R in Lemma 3, the equation for i reads

ity — Dty = &* (H+(|ﬁ+|2b~l+) - 2||b~l+||izb~l+ + [t |1f7—|zﬁ—) + ety ),
i+ D =e* (M_(ja_*a_) = 2l|a—|3,0— 42, )A_(ja_*) + (1, w)a2) +&*iY_(@).

Notice that all the Hamiltonian functions we have dealt with so far are invariant by multiplication by
complex numbers of modulus 1, hence their Hamiltonian vector fields satisfy

X(eiez) = eiez,

so that the corresponding Hamiltonian flows conserve the L? norm. Hence ii has the same L? norm as u,
which is the L? norm of ug. In particular, |(1, )| < |luo|lz2-
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Moreover, as |lugll gt < |luollgs = O(1) since s > 1, i satisfies
~ 2
o —uollpr S €
by Lemma 4, so that, as ug_ = 0, we get |[ug_| g =0 (€%). Then we obtain from the second equation

sup [lii—(D)llg1 S e+t (sup a—(0)l% + sup lli—(D)l5) +e*tK.

O<t<t 0<t<t 0<t<t
Let M(t) = é Supg<,<, li— ()| g1, so that, if t < T,
M@) Se+ETM@)*(1+eM(t)) +€°T.
As 3m? < 14 2m? for any m > 0, we get
M(t) Se+eTM@1) +&°T.
Using Lemma 5, we conclude that, if T < 1/¢3,

sup flu—()llpr K&

0<t<T

For further reference, notice that, if T < iz log %, this estimate can be improved to
e

sup li— (D)l pn <e*® forall > 0.
0<t<T

We come back to the case T < 1/&>. From the estimate on ii_, we infer
la 172 = llall7> +0(e%) = luoll 7z +0(e?),
and the equation for i reads
i,y — Dity = & (Ty (i [Pii4) = 2luoll i+ ) + &Yy (@) +0(&”) + 0t
Since iy is not small in B!, we have to use a different strategy to estimate ii,. We use the complete

integrability of the cubic Szegd equation, especially its Lax pair and the conservation of the B'-norm.

At this stage it is of course convenient to cancel the linear term ||u0||2212+ by multiplying . (¢) by
2
L2, As pointed out before, this change of unknown is completely transparent to the above system.

This leads to

282t ||uol|
e

i0yiiy — Dily = 2Tl (i Yiiy) + 'Y (@) + 0(%) + 0(e)it ..

Notice that all the O terms above are measured in B! norm. We now appeal to the results recalled in
Section 2. We introduce the unitary family U (¢) defined by

iU — DU =¢&*(Tjz,p— 3H; YU, U©)=1,
so that, using formula (8),

i3, (U ()" Hz, 1)U (1)) = &*U (t)* Hy, (i) +0(e)+ 01y, U (1).
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Then, we use the theorem from [Peller 1982] that states, as recalled in Section 2, that the trace norm of a
Hankel operator of symbol b is equivalent to the B'-norm of b to obtain

()N pr = Tr|Hz, o)

t
g TI‘|H,;0+| —|—84/ (Tr|Hy+(;,)(r)| +TI‘|H,;+(‘E)| +e)drt
0

t
< Nliio+ 1l g1 +s“f a1 + i (D) | g1 + &) dt
0
so that as [|i(7)| g < 11K,
iy Ol g < lldorllg +e*t(11K)°,

and, if r <« 1 /83 and ¢ is small enough,

- K
Hllp < —.
le®lsr = 15

Using again the second estimate in Lemma 4, we infer

lu@®lp < K.

Finally, using the inverse of transformation (11) and multiplying u by ¢, we obtain estimate (6) of
Theorem 1.1.

We now estimate the difference between the solution of the wave equation and the solution of the cubic
Szeg equation. Since we have applied transformation (11), we have to compare in B! the solution u of
(12) to the solution v of equation

i3;v — Dv = > (I (Jv*v) = 2fluolF>v) ,  v(0) = u.
Notice that, as ug is bounded in H*, s > 1, and as the B! norm is conserved by the cubic Szegé flow,
) llp1 2 luollp < luoll s = O(1).
We shall prove that, for every o > 0, there exists ¢, > 0 such that,

2—«

|
lu(t) —v(@)llp <& forall i < % log —.
& &

In view of the previous estimates, it is enough to prove that, on the same time interval,

~ 2—
i (@) — vl g <7,

where i satisfies

(16)

i0yii+ — Diiy = & (T (i [*i4) = 2lluoll7 i) +0(eh),
ui(0) =ug 4.

Aslla@®llp ST, l@llp S 1, ldo+ —uollpr < &?lluollpr < &> and

(i0; — D)(iiy —v) = Ty (|iiy ity — [v]*v = 2luol|72 (4 — v)) + O(e*),
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we get, using that B! is an algebra on which IT, acts,

13
|m+ay—wnmﬂ582+e%+f2/|m+a)—vuw3uh.
0

This yields
~ 2
i () = vl g1 S (€2 +e*ne’;
c 1
hence, for t < =% log =,
=2 08y )
i+ () —v@®) g <&
‘We now turn to the estimates in H® for s > 1.
From the equation on v and the a priori estimate in B', it follows that |[v(¢)| zs < AeAezt, t>0,so0

that |[v(¢)||gs < N(e) for t < (c/e?)log(1/e), 0 <c < 1, where N (g) := Ag 4,
Let us assume that for some 7 > 0,

lu(@®)||gs < 10N (e) forallre]0,T].

We are going to prove that, for every o > 0, there exists ¢, > 0 such that, if

Ca

T <
o2

1
log —,
£
then
lu(t) —v@)||gs < 27 forallz €0, T]

Since ||[v(®)||lgs < N(g) fort < (c/s2) log(1/¢), this will prove the result by a bootstrap argument.
As before, we perform the same canonical transformation

(1) == x. @),
to get the solution of
it — |D|ii = % X z(it) + &*i Y (@)
By Lemma 4,
li(6) —u@)llas S >N (e)?

and so ||i(t)| g < N(e). Therefore it suffices to prove that

i) —v()|| gs <& forallt €0, T].
1

We first deal with iZ_. A similar argument to the one developed in B! gives that for, for 0 <t < 8% log -

sup [|ii—(v) |l s < Co&™™®
0<t<t

for every o > 0.
It remains to estimate the H* norm of . — v. Notice that

- 2
lltto,+ —uollus <&
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by Lemma 4. We use the following inequality — recall that B! ¢ L™:

| T e = [0 P0) | e < (el +101050) Nl = vll s+ (10l s+ = vl ) (lull g+ vl 1) = vl
Plugging this into a Gronwall inequality, in view of the previous estimates, we finally get

2—a

lus () —v@)llus <e

fort < g—g log é This completes the proof.

Appendix: A necessary condition for wellposedness
In this section, we justify that the boundedness in H* of the first iteration map of the Duhamel formula
F(r)y=e Pl f /Ot e ORI F ()2 F (7)) dt
implies
| e e S

0

Indeed, assume the inequality

1
‘/ 1 (1=DIDl (| =i7ID] £12,=i7ID] £y

0
We compute the scalar product of the expression in the left hand side with e~#!P! f and we get

3
S s
H.Y

1
—it|D| ;4 3
f le™ P £ 14 vt < A1 L .
0

If we assume first that f is spectrally supported, that is if f = Ay f for some N, then || f || g+ ~ NE5|| £l
and the preceding inequality becomes

1
[ 1 e N
Finally, for general f =)\ Ay(f), we used the Littlewood—Paley estimate

lellFs S llanell;
N

to get
1
—it|D| ¢y 4 4
/0 le 1P F I e < L F 1.
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NONLINEAR SCHRODINGER EQUATION
AND FREQUENCY SATURATION

REMI CARLES

We propose an approach that permits to avoid instability phenomena for the nonlinear Schrodinger
equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off,
global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between
the exact solution and its approximation can be measured according to the regularity of the exact solution,
with different accuracy according to the cases considered.

1. Introduction

We consider the nonlinear Schrddinger equation
i+ Au=elul*u, (¢, x)el xR,  uy—9=uo, (1-1)

for some time interval I > 0, with € = 1 (defocusing case) or € = —1 (focusing case). The aim of this
paper is to propose an approach to overcome the lack of local well-posedness in Sobolev spaces with
nonnegative regularity.

Recall two important invariances associated to (1-1):

e Scaling: if u solves (1-1), then for A > 0, so does u, (¢, x) := AM/7u(x2t, Ax). This scaling leaves
the Hy*-norm invariant, with s, = d/2 —1/o.

« Galilean: if u solves (1-1), then for v € R, so does ei”'x_i‘”‘zt/zu(t, x — vt). This transform leaves
the Lﬁ—norm invariant.

These two arguments suggest that the critical Sobolev regularity to solve (1-1) is max(s., 0). Indeed,
if s, > 0, local well-posedness from H S(RY) to H*(R?) for s > s, has been established in [Cazenave
and Weissler 1990], and if s. < 0, local well-posedness from H S(RY) to HS(R?) for s > 0 has been
established in [Tsutsumi 1987].

If 5. > 0, pathological phenomena have been exhibited for initial data in H*(RY) with 0 < s < s.;
Gilles Lebeau has proved a “norm inflation” phenomenon for the wave equation 8,2u —Au+uf =0,
x € R3, p €2N+1, p > 7 [Lebeau 2001; Métivier 2004]. The analogous result for (1-1) is this:

This work was supported by the French ANR project R.A.S. number ANR-08-JCJC-0124-01.
MSC2010: primary 35Q55; secondary 35A01, 35B30, 35B45, 35B65.
Keywords: nonlinear Schrodinger equation, well-posedness, approximation.
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Theorem 1.1 [Christ et al. 2003; Burq et al. 2005]. Let o > 1. Assume that s =d /2 —1/0 > 0, and let
0 < s < s¢. There exists a family (ug)o<h<1 in $(RY) with

||ug”Hx(Rd) -0 ash—0,
a solution u" to (1-1) and 0 < t" — 0, such that
" (") | s ey — +00  ash — 0.

The argument of the proof consists in considering concentrated initial data

X

uo() = h* 42 (log 1/ h)~“ao :

) with h — 0.

and showing that for very short time, the Laplacian can be neglected in (1-1). The above result then stems
from its (easy) counterpart in the ODE case, by choosing a suitable o > 0. In the spirit of [Lebeau 2005],
the above result has been strengthened to a “loss of regularity” in [Alazard and Carles 2009; Carles 2007;
Thomann 2008]. The assumptions and conclusion are similar to that in Theorem 1.1; the only difference
is that u” (¢", -) is measured in H*(R¥) for any k > s/(1+4+o0(s. —s)), so k is allowed to be smaller than
s. In all the cases mentioned here, the lack of uniform continuity of the nonlinear flow map near the
origin is due to the appearance of higher and higher frequencies on a very short time scale. If s, < 0,
similar pathological phenomena have been established in H*(R?) with s < 0, where on the contrary, low
frequencies are ignited; see [Bejenaru and Tao 2006; Carles et al. 2012; Christ et al. 2003; Kenig et al.
2001]. In the rest of this paper, we focus on nonnegative regularity, s > 0.

The goal of this paper is twofold. First, we want to investigate a method to remove the pathology
mentioned above, causing a lack of well-posedness for (1-1), in a deterministic way, as opposed to the
probabilistic approach initiated in [Burq and Tzvetkov 2008a; 2008b] for the wave equation. The other
motivation is related to numerical simulations for (1-1), where high frequencies may be a source of
important errors; see for instance [Ignat and Zuazua 2012], a reference which will be discussed in further
detail in Sections 3 and 4.

We show that with a suitable cut-off on the high frequencies of the nonlinearity, the obstructions to
local well-posedness vanish, and the problem becomes globally well-posed: the nonlinear evolution of
any initial datum in L*(R?) can be controlled a priori, an information which may be useful for numerics,
since we do not have to decide if the initial datum belongs to a full measure set or not. This strategy is
validated inasmuch as this procedure yields a good approximation of the solution to (1-1) as the cut-off
tends to the identity. Note that this approach can be viewed as a deterministic counterpart of the one
presented in [Burq et al. 2012] (see also [Burq 2011]). There, for the one-dimensional L2—supercritical
defocusing nonlinear Schrodinger equation, the authors construct a Gibbs measure such that, among other
features, the pathological phenomenon described in Theorem 1.1 occurs for a set of initial data whose
measure is zero: on the support of the Gibbs measure, the Cauchy problem is globally well-posed, and
a scattering theory is available. Both points of view aim at showing that norm inflation in the sense of
Theorem 1.1 is a rare phenomenon: in [Burq et al. 2012], the authors give a rigorous meaning to this
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statement in an abstract way, while we are rather interested in a recipe to avoid instabilities for sure, by a
suitable approximation of the equation, which can be used typically for numerical simulations.

Our choice of cutting off the high frequencies instead of, for instance, the values of the function itself
is indeed motivated by numerics, where it is standard to filter out high frequencies (sometimes without
even saying so). In an appendix, we discuss another approach, consisting in saturating the values of the
nonlinearity. One could of course combine both approaches, frequency and physical saturations.

Notation. We define the Fourier transform by the formula

1

f($)=@(f)($)=W

/ e f(x)dx, fePRY.
Rd

We write a < b if there exists C such that a < Cb. In the presence of a small parameter /, the notation
indicates that C is independent of 4 € (0, 1].

2. From instability to global well-posedness

Let x : R? — [0, 1] be a smooth function, equal to one on the unit ball, and even: x(—x) = x(x) for all
x € R, It may be compactly supported, in the Schwartz class $(R?), or with a slower decay at infinity.
For simplicity, we will not discuss sharp assumptions on y. We define the frequency “cut-off” IT as the
Fourier multiplier

0(f)() = x &) F&).

As pointed out in the introduction, in the examples constructed to prove the lack of local well-posedness,
the mechanism of high frequencies amplification occurs at the level of the ordinary differential equation.
We discuss some strategies to saturate high frequencies at the ODE level first, with € = 1 for simplicity.

2A. Candidates at the ODE level. The first possibility to prevent the appearance of high frequencies by
nonlinear self-interaction consists in saturating the whole nonlinearity:

idv=TI(|v|*"v). (2-1)

This can be viewed as an extremely simplified version of the /-method (see [Colliander et al. 2002]).
Another choice consists in saturating the high frequencies in the “nonlinear multiplicative potential” only,
that is [v|?°. For o € N, we propose two possibilities,
id,v =Mo", (2-2)
idv = (TI(Jv[*) . (2-3)
In the cubic case o =1, the last two approaches obviously coincide. These approaches have two advantages
over (2-1):
o They preserve gauge invariance. If v solves the equation, then so does ve’? for any constant 6 € R.

» They preserve conservation of mass.
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To see the second point, rewrite I[T1(f) as K * f, with K(x) = (2m)~%/?%(—x). Since x is even and
real-valued, so is K, and therefore 9;|v|?> = 0 in (2-2) and (2-3). This identity leads to the conservation of
the L%-norm at the PDE level.

Before passing to the PDE case, we conclude this section by showing that even at the ODE level, cutting
off high frequencies in the initial data does not suffice to prevent the appearance of higher frequencies in
the solution for positive time. For a € P(R?) and s > 0, consider the solution v" to

i =", W0, x) = hs_d/za(%).
Then vh|t=0 is bounded in H*(R?), uniformly in £ € (0, 1], and if @ is compactly supported (in B(0, R)),
then vh|t:o is compactly supported (in B(0, R/ h)). Since 9;|v"|? = 0, we have the explicit formula

v (t, x) = hs_d/za(%) exp(—'thza(s_d/z) ‘a(%) 20).

We check that for ¢t > 0, as = — 0, the homogeneous Sobolev norms behave like

” vh (1) ”H" ~ hs—ZkU(s—d/Z)—ktk’

at least for k € N. The above quantity is unbounded as & — 0 if

N

k> o ts—d/a)

Therefore, if s <d /2, vl (¢, -) is unbounded in H* (R?) fort >0, as h — 0: cutting off the high frequencies
in the initial data does not suffice to control the frequency support of the solution. On the other hand,
the models (2-2) and (2-3) prevent the appearance of high frequencies by nonlinear self-interaction. The
above mechanism is essentially the one that leads to the norm inflation phenomenon in [Burq et al. 2005;
Christ et al. 2003; Lebeau 2001], except that in those papers, the approximation by an ODE is used only
on a time interval where the H*-norm becomes unbounded, but not the H*-norm for any k < s. The above
mechanism at the PDE level leads to the loss of regularity [Alazard and Carles 2009; Carles 2007; Lebeau
2005; Thomann 2008], where indeed k is allowed to be smaller than s, as recalled in the introduction.
Roughly speaking, the appearance of oscillations is quite similar to the above ODE example; in the PDE
case, the numerology is different, and the proof is more intricate.

2B. Choice at the PDE level. We consider now the equations
i0u+ P(Dyu = eTl(|u*)u, (2-4)
i0,u+ P(D)u = e ((Jul*)"u, (2-5)

where P (D) is a Fourier multiplier with a real-valued symbol P : R — R,

P(D)f = PE) [ ).

The L?-norm of u is formally independent of time:

if lu(t, x)|>dx =0. (2-6)
dt Rd
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In view of this conservation and of the Young inequality

ITECAH [z < WK Lol Izt (2-7)
the option (2-5) seems more interesting than (2-4), and we have the following result.
Theorem 2.1. Leto €N, € € {£1}, P : R? — R and x € (R?) even and real-valued.

e Foranyuge€ L2(R?), (2-5) has a unique solution u € C (R; L2(R%)) such that Uj=0 = Uo. Its L?-norm
is independent of time; (2-6) holds.

o Ifin addition ug € H*(R?%), s € N, then u € C(R; H* (R?)).

o The flow map ug — u is uniformly continuous from the balls in L>(R?) to C(R; L>*(R%)). More

precisely, for all ug, vy € L?*(R?), there exists C depending on o, | K || L, ||uoll 12 and || vo| 12 such
that, forall T > 0,

cT
lu = vl pooq—7, 71 L2R0)) < ko — voll L2@aye™ ", (2-8)
where u and v denote the solutions to (2-5) with initial data uy and vy, respectively.
o More generally, let s € N. For all ug, v € H* (R?), there exists C depending on o, || K ||ws., ||uoll gs
and ||vg|| gs such that for all T > 0,
CcT
lu —vllpooq—7,71; Hs @YY < llUo — voll gs maye™ " (2-9)

Remark 2.2. As pointed out in [Cazenave et al. 2011], even if the solution is constructed by a fixed point
argument, the continuity of the flow map is not trivial in general. In the case of Schrédinger equations
(1-1), continuity of the flow map in H S(R9) is known only in a limited number of cases: see [Tsutsumi
1987] for s = 0, [Kato 1987] for s = 1 and s = 2, and [Cazenave et al. 2011] for0 < s < 1.

Proof. First, recall that S(r) = e tP(D) g g unitary group on HS (R?), s € R. Duhamel!’s formula associated
to (2-5) reads

t
u(t) =St)ug —ie / S(t — ) ((K *ul)u)(r) dr. (2-10)
0
The local existence in L? stems from a standard fixed point argument in
X(T)={ue CU=T, T L*®R)) | llull (1.73.02) < 2llutoll 2}

Denote by @ (u)(t) the right hand side of (2-10). In view of (2-7), for ¢t € [T, T1],

1D @) (@) 12 < lluoll 2 +/T|| ((K s |u?)u) ()] . de

T
< ||uo||Lz+f | K * u (@] ()l 2 de
-T

T
20+1 dT

< ||uo||Lz+||K||‘sz (o) |2
T

By choosing T > 0 sufficiently small, we see that X (T') is stable under the action of &. Note that in the
case of the model (2-4), the above estimate would have to be adapted, forcing us to work in a space smaller
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than X (T) (L? regularity in space would no longer be sufficient in general). Contraction is established in
the same way:

T
1 (u) (1) — D) (D) .2 <fT||(<K* ul®)7u)(r) = ((K % [v]*)7v) (D) | . d*

T

T
</ ||((K*|u|2)”—(K*|v|2)“)u||L2dr+/ (K * [v])7) @ —v) | dr.

T T

Using the estimate |a® — b7 | < (lal®~ ' +1b|°YH]a — b], and (2-7) again, we infer
1P @) (@) — P)(@)Il2

T T
20—1 20—1 2
snKuzm/ (lely3 ™" + 10132 )||u—v||Lz||u||der+||1<||zoo/ JI3 e = vll 2 dr,
-T -T

where all the functions inside the integrals are implicitly evaluated at time t. Choosing T > 0 possibly

smaller, ® is a contraction on X (7). Note that this small time T depends only on o, || K ||~ and ||ug]| 2.

Since the L2-norm of u is preserved (see [Cazenave 2003] for a rigorous justification), the construction

of a local solution can be repeated indefinitely, hence global existence and uniqueness at the L? level.
Global existence in H* (R?) for s € N then follows easily, thanks to the estimate

K s ul)ul e S D0 0% (K 1w 0%u]| o S NK Wpse el ol s
lae|+|Bl=s

The continuity of the flow map in L? is obtained by resuming the estimate written to establish the
contraction of ®: For ¢t > 0,

t
2 2
l[u(®) = v (@)l 2 < lluo — voll 2 + IIKIIZw/ (el + vll35) lu — vl 2 dT
0

t
2 2
< ||uo—v0||L2+IIKII(Zoo(IIMOIIL‘Z+||vo||L§)/ llu — vl 2 dr,
0

where we have used the conservation of the L?-norm. Proceeding similarly for ¢ < 0, Gronwall’s lemma
then yields (2-8) for C depending only of o, ||K||z~, ||uoll;2 and ||vg]|;2. Finally, (2-9) is obtained in a
similar fashion. (]

Remark 2.3. The proof of continuity of the flow map is easy. This is in sharp contrast with the case of
the equation without frequency cut-off. In the case of Schrodinger equations (P (&) = —|&|?), continuity
is more intricate to establish (see [Tsutsumi 1987]), and is true only for L?-subcritical nonlinearities,
o < 2/d, from [Christ et al. 2003].

We note that even for large o, global well-posedness in L? is available, in sharp contrast with the
nonlinear Schrodinger equation (1-1). Even in the focusing case € = —1, the high frequency cut-off
prevents finite time blow-up. In (2-9), consider vo = v =0 and s = 1 for instance: by comparison with
the case of (1-1), we see that the constant C necessarily depends on K (or equivalently on x), and is
unbounded as x converges to the Dirac mass. The frequency cut-off IT removes the instabilities, and
prevents finite time blow-up.
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Remark 2.4 (Hamiltonian structure in the cubic case). If 0 = 1, (2-4) and (2-5) coincide. We have the
equivalence
x even and real-valued <= K even and real-valued.

This implies that under the assumption of Theorem 2.1, (2-5) has an Hamiltonian structure, and the
conserved energy is

H(u)zf mmmummg//z«x—y>|u<y>|2|u<x>|2dxdy.
Rd

3. Convergence in the smooth case

Suppose that P(D) converges to A and that IT converges to Id, does the solution to (2-5) then converge
to the solution of NLS? We show that this is the case under suitable assumptions on these convergences,
at least in the case where the solution to the limiting Equation (1-1) is very smooth. In the sequel, the
convergence is indexed by & € (0, 1].

Proposition 3.1. Let o € N. We assume that P and T1 verify the following properties:
o There exist a, B > 0 such that P,(§) = —|&|* + O(h* (£)P).
o xn(&) = x (hE), with x € $(R?; [0, 1]) even, real-valued, x = 1 on the unit ball.

Denote by u” the solution to (2-5) with Py and xy,, such that M|ht:() = u,—o. Suppose that the solution to
(1-1) satisfies u € L>°([0, T1; H*P), for some s > d /2. Then

llu — u"|| oo,y 15y S ™R,

Example 3.2. The above assumption on Py, is satisfied with @ = 1 and 8 = 2 in the following cases:

e2
o« Py(§) = #ﬁgp

« Py(§) = arctan(hlg ).

The second example is borrowed from [Debussche and Faou 2009], where this truncated operator appears
naturally when discretizing the Laplacian for numerical schemes.

Remark 3.3. In this result, no assumption is needed on the possible decay of x at infinity.

h

Proof. Let w" = u — u". It satisfies W)

0= 0 and
idw" 4+ Py (DYw" = e(T;,(|u|*))° u — e (T, (|u" %) u"
+ (Py(D) — Ay u+e(Jul® — (T, (Ju?)7)u,

where we have denoted by ITj, the Fourier multiplier of symbol xj,. Denote by R"(u) the second line,
which corresponds to a source term. In view of the assumption on Pj, there exists C independent of
h € (0, 1] such that

| Pu(D)f — Af s < Ch®|| f || gs+s forall fe HP(RY).
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We also have, by the Plancherel formula,
(L= T f Iy = f (= x(h&)* (€)1 F ) Pdg
R
< / ()21 F @) Pde < n? / (E)2T T (&) PdE < hP)| f1205.
|§1>1/h |E|>1/h
Therefore,
IR )| oo 73115y S B™ P Nl oo o, 7; s+ -
Now since s > d/2, H*(RY) is an algebra, and there exists C independent of / such that
| (T (el ?) 71 = (T (" P) 7| o < CURNG ) (el 3 + N 155 ) e — ] s,

where the Young inequality that we have used is not the same as in Section 2:

1K s fllz < KNl fll e

This is essentially the only way to obtain an estimate independent of 4 € (0, 1]. Indeed, I1;,(f) = Kp, * f,
with

e
Knl) = yampa X (7x>

The result then stems from a bootstrap argument: so long as

" || oo o, ey < 1+ el oo go,73: 1)
Gronwall’s lemma yields
= u" || oo qo,01: 15y S A™™ Pl Loo 0.7 115+ -
Therefore, up to choosing £ sufficiently small, this estimate is validupto ¢t =T. ]

Such a convergence result can be compared to the one proved in [Ignat and Zuazua 2012] to prove the
convergence of numerical approximations. The approach there is a bit different though, inasmuch as the
frequency cut-off does not affect the nonlinearity (as in (2-5)), but the initial data: consider a solution
v to

190" + Pu(D)" = e 770", wi_ = hu.
Ignat and Zuazua proved that the discrete analogue of I1u — vy, is small. Proposition 3.1 differs from
their results in several aspects:

o The context in [Ignat and Zuazua 2012] is discrete.

e Only the low frequency part of u, I1,u, is shown to be well approximated.

» The regularity assumption on # may be much weaker.
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As mentioned above, the second point is due to the choice of the model. However, as discussed in
Section 2A, controlling the high frequencies of the initial data must not be expected to ensure a control of
high frequencies of the solution v” for positive time.

The third point is due to the use of Strichartz estimates in [Ignat and Zuazua 2012]. In the next section,
we show that in the presence of dispersion (with P,(§) = —|& 1), Proposition 3.1 can be adapted to
rougher data.

4. Convergence using dispersive estimates
We first recall a standard definition.
Definition 4.1. A pair (p, g) # (2, co) is admissible if p > 2, ¢ > 2, and
2 1 1
2-i(3-1)
p 2 q
We shall consider (2-5) when P (D) is exactly the Laplacian, and not an approximation as in Proposi-
tion 3.1. The reason is that when P is bounded, then no Strichartz estimate is available, as we now recall.
Let S(-) be bounded on H* for all s > 0. By the Sobolev embedding, for all (p, g) (not necessarily

admissible) with 2 < g < oo, there exists C > 0 such that for all ug € H d/2=d/q (IRd), and all finite time
interval 7,

1
ISCuoll o r: oy < CINSCuoll Loz mrar-asamayy < Clluoll Loz mrar-asagayy = CH P luoll grar-asa a.

If the Fourier multiplier P is bounded, the above estimate cannot be improved, in sharp contrast with the
result provided by the Strichartz estimates.

Proposition 4.2 [Carles 2011]. Letd > 1, and P € L®(R%; R). Write S(t) = e ""*(P). Suppose that
there exist an admissible pair (p, q), an index k € R, a time interval I 50, |I| > 0, and a constant C > 0
such that

ISCYuoll o1 Laway) < Clluoll pegay  for all ug € H*®RY).
Then necessarily k >2/p=d/2—d/q.
We now state the main result of this section.

Theorem 4.3. Let o € Nand T > 0. We assume that x,(§) = x (h&), with x € $(R?) even, real-valued,
x = 1on B(0, 1). Let u solve (1-1), and consider the solution ul to

iu" + Au" = e(l'[h(|uh|2))auh, ”|ht:0 = uo.
1. Suppose that o =1 and d < 2. Ifu € L>([0, T1; L?) N L¥4([0, T1; L*), then
h
— o ([0.T]: 0.
lu—u" |l Lo, 71;L2) P

2. Suppose that o =1 and d = 3.
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o Ifu,Vu e L°°([0, T1; L>) N L¥?([0, T1; L*), then
llu — | Lo,y 1) T 0.
o Ifu e L*([0, T]; H), with s > 3/2, then
lu— "l o2y S and lu—u"l|p~qorymny Sh"
3. Suppose that o > 1 and d < 2. Ifu € L*°([0, T]; H*), withs > 1 and s > d /2, then
lu — "l o702y S and lu—u"l|pqo.r)m) P 0.

If in addition s > 1, then

h s—1
lu —u™lpooqo. ity S

Remark 4.4. Suppose u( sufficiently smooth. If € = +1 (defocusing case), the bounds for u are known
in several cases, with T > 0 arbitrarily large. On the contrary, if € = —1 (focusing case), T may have
to be finite, bounded by a blow-up time. See [Cazenave 2003; Ginibre and Velo 1984]. Typically, if
o =d = 1, then the assumption of the first point is fulfilled for all 7 > 0 as soon as uy € L*(R), for
€ € {£1}, from [Tsutsumi 1987], and if o > 1, d < 2, the assumption of the third point is fulfilled for all
T > 0 as soon as ug € H*(R?), for € = +1, from [Ginibre and Velo 1984].

Proof. For fixed h > 0, Theorem 2.1 shows that u”* € C(R; H¥), with k =0, 1 or s according to the cases
considered in the assumptions of the theorem. Of course, the bounds provided by Theorem 2.1 blow up
ash— 0if k > 0.

As in the proof of Proposition 3.1, let w” = u — u". The equation satisfied by w” is simpler than in the
proof of Proposition 3.1, since P,(D) = A:

idw" + Aw'" =€ (M (u1»)” u — e (") u + e(Jul® — (T (ul») )u.
We resume the notation
R"(w) = e(lu*” — (Mxp(u®)")u and  T(f) = Ky f
with Kp(x) = (Zn)*d/zh*dj(\(—x/h). From the Young inequality, we have, for all g € [1, o],
ITL (e < UKpllpll flle < UK Nz f DLz, (4-1

an estimate which is uniform in 4 > 0. Introduce the Lebesgue exponents

p= 40 +4 0 — 20 (20 +2)

9=+, io "S-

The pair (p, ¢g) is admissible, and

1_2 1 1 _2,

, = 4-2
g q g p 0 -2

S =
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For ¢ > 0, write L/ L¥ = L/ ([0, t]; L*(R9)). From the Strichartz estimates (see [Cazenave 2003]),
1"l anezers < (M) u = (") w |y + IR @) L
(||u||LeLq + llu ||L9Lq)||wh||L;’Lq + ”Rh(u)||Lj’3Lqi’
where we have used the Holder inequality and (4-1), and where (p;, ¢1) is an admissible pair whose

value will be given later.
Ifo =1andd <2, then 6 < p, and we infer

1/6—1 h h
||w ||LquﬂLooL2 <t / /p(||u||LPLq+” ||Lqu)||w ||L,qu+||R (u)”Lp/qu;
t

In the first case of the theorem, we assume u € L? ([0, T]; L?), since p = 8/d and ¢ = 4 for o = 1.
We use again a bootstrap argument: so long as ||u” || rrre < 2llullpr g, we divide the interval [0, T'] into
finitely many small intervals so the first term of the right hand side is absorbed by the left hand side
(recall that p is finite), and we have

h h
10"l cpranizere S IRM@N b
The bootstrap argument is validated provided that | R" (w)| p L —0ash — 0.
1

If we have only o < 2/(d —2), then by the Sobolev embeddlng,

(170

Nl pope <77 Mull oo

In the same way as above,
”thllL;’LmL;sz < ||V((Hh(|u|2))" u— (Hh(|uh|2))" ,,,h) || . + ”th(”)”L,”? e
The first term of the right hand side is controlled by
[ (T (Qul®))” V= (L )" V| + [V (Ta(ul®)” =V (@ )|y @3)
Introducing the factor (I, (|u|?))® Vu", the first term is estimated by
[ (T ael)” Voo [+ (T ul®)” = ([ )7 Vil |
ST 7oz 0 19w gz + (Ml 75+ 155 2) Nl = 1" P oz e 190" 11
S350 IV o+ (a5 + 1155 70) " [ g0 196" 12 10

20/0 h 20/6 20—1 hj20—1 l/ h
SNl e IV W N+ 0277 (el 3500+ 1 135500 ) T oo g 19" W1 -

Proceeding similarly for the other term in (4-3), splitting [0, 7] into finitely many time intervals where the
terms containing w” on the right hand side can be absorbed by the left hand side, and using a bootstrap
argument, we end up with

h h ’
lw'll Lrwranpemt S IR @)L 1w
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Therefore, it suffices to show that for some admissible pair (pi, q1), the source term converges to 0
in LPi ([0, T1; qu) (ifo=1andd <2)orin L7 ([0, T1; Wl’qi) (in the other cases), so the bootstrap
argument is completed In addition, the rate of converge of the source term, if any, yields a rate of

convergence for w”. The theorem then stems from the following lemma, in which (p, ¢) is given by
(4-2).

Lemma 4.5. Let T > 0. The source term Rh(u) can be controlled as follows.

1. Suppose that o =1 and d < 2. Ifu € L>([0, T1; L?) N L¥4([0, T1; L*), then
”Rh (”)”Lp’([oj];m’) h——>()) 0.

2. Suppose that 0 =1 and d = 3.

o Ifu, Vu € L°([0, T1; L?) N L¥4([0, T1; L*), then
IR @)l o, 7y, = -
o IfueL>®(0,T]; H®), with s > 3/2, then
IR" @)l Liqoriezy SH and IR @)l iqo.rzmny S B
3. Suppose thato > 1 andd < 2. Ifu € L*°([0, T]; H®), withs > 1 and s > d /2, then
IR" @)lziqo.riezy Sh* and IR @lpiqo, i = 0-

If in addition s > 1, then
h -1
IR*)lLqo.rymy SH°

Proof of Lemma 4.5. For the first case, we use the Holder inequality, in view of (4-2):
IR @)l = Q= TL) el < =T Q) o2 a0l 10

We note that for 0 = 1, ¢ = 4, so by the Plancherel theorem,

I = TR ()17 =/ (1= x RN | F (lu*)©)PdE < f |F(lul*)(©)Pdt.
Rd E|>1/h

By assumption, u € L?([0, T]; L*) c LY([0, T]; L*), thus |u|> € L?/2([0, T]; L?), and by the Plancherel
theorem, F(|u|?) € L92([0, T]; L?). The first point of the lemma then stems from the dominated
convergence theorem.

For the first case of the second point, we note that now 6 > p, so the above argument must be
adapted, and we have to estimate the gradient of R (i) in the same space as above. Since we have
L%([0, T]; H'(R*) c LY([0, T]; L*(R?)), the dominated convergence theorem yields

h
IR )l — 0.
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We now estimate VR” (u). Write
IVRA GOl e < N =T Qe g2y 1Vl g 124 1A =TIV () U g1 el 22
SN =T Qul) e 2 1Vaell p g2 + 111 = Hh)V(IuIZ)||L<Tl/e+1/p>—1L2 llull Lo 2

By the same argument as above,

2
L= T0) el e 2Vl g2 > 0.

We note that u bounded in L>([0, T]; H'(R})) c LY([0, T]; L*(R%)), and Vu bounded in LY L*, so
V|u|? is bounded in L(Tl/ 0+1/P7' L2, Invoking Plancherel theorem and the dominated convergence theorem
like above, we infer that

_ V(lul? _ — 0.
(1 = TIp) V(Jul )||L<T1/e+1/p> ol h—>00

This completes the proof for the first case of the second point.
For the remaining cases, we use that H S(RY) is embedded into L>®(R4): for fixed ¢,

IR w)()ll > < (lu@)13% % + T Qa1 I = T Q) P 2 (@) | o
SN 13% A = ) (u @) )2 S Hu@ 175 1 = ) (u@) ) ) 2.
Like in the proof of Proposition 3.1, we use the estimate
I =TI fll2 < BN f Nl (4-4)

and since H*(R?) is an algebra,

20+1
||R () ||L°°([0 TLEL?) S Sk ”””Lgo—t[oj];ys)-

To conclude the proof, we estimate VR"(u) in L2(R?). We compute
VR"(u) = o ul* (1 = Tp) (V(|ul*))u + (lu]* — TT(ul*)”) Vu
o (Jul? 2 = (M (ul®) TRV () *)u,

where the second line is zero if o = 1. We estimate successively, thanks to (4-1),

=2 (1 =11 (V(QulP)) a2 < Null3% | (=TT (ulP)]| 1

(1l = M Qu )Y V| o < Tl 7% | =T (ul®) || 1Vl 2,
and, if o > 2,
(12 = (T ()7 YTV QD) 2 S el 7% 1= T QP 2 IV Q)
Sl %20 = TR (ulP) 2l Vaull 2.

Since we have H* (R?) — L®°(R?), we end up with

IVR ) 12 < el 32111 = TL) () || e
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If s > 1, (4-4) yields, since in addition s > d/2,
I =T QulP e S A P s SR lull .

If s = 1 (a case which may occur only if d = 1, since s > d/2), we write

IV = ) (P12 <f

[E1>1

|F(V (Jul?) (&) dE.
/h

Now since V(|u|?) = 2ReitVu and u € H'(R) < L®(R), Vu € L?(R), we conclude thanks to the
dominated convergence theorem. (I

This completes the proof of Theorem 4.3, by choosing (p;, q1) = (p, g) or (o0, 2). O

Appendix: Physical saturation of the nonlinearity

Instead of cutting off the high frequencies, one may be tempted to saturate the nonlinear potential, by
replacing lu|? not by I1(|u|?) but by f (lu|?) where f is smooth, equal to the identity near the origin,
and constant at infinity. Note also that a saturated nonlinearity may be in better agreement with physical
models (recall however that (1-1) appears in rather different physical contexts, such as quantum mechanics,
optics, and even fluid mechanics), since typically the power-like nonlinearity in (1-1) may stem from a
Taylor expansion; see [Lannes 2011; Sulem and Sulem 1999]. More precisely, let f € C*(R; R) such
that

s 1fOo<s <1,
_ A-1
Fs) :2 ifs>2. (A1)
The analogue of the Fourier multiplier I1, is defined as
1
Fullul®y = 3 f (hlul®),
and we replace (2-5) with
iu" + Py(Dyu" = € (fu((u"1»)” u®, (A-2)
so the formal conservation of the L2-norm still holds. We could also consider
fullu)?) = P (A-3)
h 1+ hlu?

In both cases, the main aspect to notice is that f}, is bounded and z — f}(|z|*)? z is globally Lipschitzian.
We infer the analogue of Theorem 2.1, at least in the L? case.

Proposition A.1. Let o € N, € € {1}, P : R — R and f given either by (A-1) or by (A-3).

e For any ug € L*(RY), (A-2) has a unique solution u" € C(R; L*(RY)) such that ufl,:o = ug. Its

L?-norm is independent of time.
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o The flow map uo — u” is uniformly continuous from the balls in L*(R%) to C(R; L*>(R%)). More
precisely, for all uy, vg € L*(RY), there exists C depending on o, h, ||\ug||r2 and ||vol| 12 such that for
all T >0,

h o h cT
lu" — v o=, 11, 2Ry < o — voll 2maye™ ",
where u" and v" denote the solutions to (A-2) with data uo and vy, respectively.

Introduce

fmwzﬁjmw%y

We check that the following conservation of energy holds:

d

_</ ﬁh(t,x)Ph(D)uh(t,x)dx+e/ Fh(lu(t,x)|2)dx):0.
dt Rd Rd

Proving the analogue of Proposition 3.1 is easy in the case (A-1), since the last source term for the error

w’ is now

R"(u) = (|ul* — fr((ul®? )u,

and under the assumptions of Proposition 3.1, u € L*°([0, T'] x R4), so there exists & > 0 such that for
O<h < h(),
u(t, X)1** = fu(lu(t, )| forall (,x) €[0, T] x RY.

Therefore, this source term simply vanishes for / sufficiently small. In the case (A-3), we can use the

relation 5
hlu
| | |M |20+1

— , A4
1+ hlu|? (A-4)

IRy ()| = | (1u)* — fr(lul»)u| <

and the Schauder lemma to get a source term which is O(k) in H® (RY), for s > d /2.

Proposition A.2. Let o € N. We assume that P is such that P, (§) = —|&|> +0(h®(£)P) for some o, B > 0.
Denote by u” the solution to (A-2) with P, and [, such that ”|ht:0 = u,—o. Suppose that the solution to
(1-1) satisfies u € L°°([0, T1; H#), for some s > d /2.

o In the case (A-1), |lu — u" || L~qo.71.15) S h*.

o In the case (A-3), |lu — u"|| Lo 7,15y S A™N@ D,

In the case (A-1), proving an analogue to Theorem 4.3 seems to be more delicate though, and we
choose not to investigate this aspect here. On the other hand, in the case (A-3), using the estimate (A-4),
Strichartz estimates and Holder inequalities with the “standard” Lebesgue exponents (in the same fashion

as in the proof of Theorem 4.3, see [Cazenave 2003]), we have, with steps similar to those presented in
the proof of Theorem 4.3:

Theorem A.3. Let o € N and T > 0. Let u solve (1-1), and consider a solution u™ to

h h u" 2 7 h I
. o o
io;u" + Au _6<—1+h|uh|2> U, Uy =uo.
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1. Ifo <2/d,and u € L*®([0, T]; L?) N L@ +H/do ([0, T; L>°+2), then
llu — u” | oo o, 73: 22 Py 0.

2. Suppose thato =1 and d = 3.
o Ifu,Vu e L°°([0, T1; L>) N L¥%([0, T1; L*), then

lu = "l oo,y 0
o Ifue L>®(0,T]; H®), with s > 3/2, then
lu —u" || oo,y 11y S e
3. Suppose that o0 > 1 and d < 2. Ifu € L*°([0, T]; H*), withs > 1 and s > d /2, then
lu — u" | oo, 7y 11y S -
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