
ANALYSIS & PDE
Volume 6 No. 1 2013

msp



Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
ilaba@math.ubc.ca lebeau@unice.fr

László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France William Minicozzi II Johns Hopkins University, USA
Frank.Merle@u-cergy.fr minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany Yuval Peres University of California, Berkeley, USA
mueller@math.uni-bonn.de peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6 Tristan Rivière ETH, Switzerland
pisier@math.tamu.edu riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA Wilhelm Schlag University of Chicago, USA
irod@math.princeton.edu schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA Yum-Tong Siu Harvard University, USA
serfaty@cims.nyu.edu siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
tao@math.ucla.edu met@math.unc.edu

Gunther Uhlmann University of Washington, USA András Vasy Stanford University, USA
gunther@math.washington.edu andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA Steven Zelditch Northwestern University, USA
dvv@math.berkeley.edu zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2013 is US $160/year for the electronic version, and $310/year (+$35, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:zworski@math.berkeley.edu
mailto:aizenman@math.princeton.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:caffarel@math.utexas.edu
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:higson@math.psu.edu
mailto:vfr@math.berkeley.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS AND PDE
Vol. 6, No. 1, 2013

dx.doi.org/10.2140/apde.2013.6.1 msp

SOME RESULTS ON SCATTERING FOR LOG-SUBCRITICAL AND
LOG-SUPERCRITICAL NONLINEAR WAVE EQUATIONS

HSI-WEI SHIH

We consider two problems in the asymptotic behavior of semilinear second order wave equations. First,
we consider the Ḣ 1

x × L2
x scattering theory for the energy log-subcritical wave equation

�u = |u|4ug(|u|)

in R1+3, where g has logarithmic growth at 0. We discuss the solution with general (respectively
spherically symmetric) initial data in the logarithmically weighted (respectively lower regularity) Sobolev
space. We also include some observation about scattering in the energy subcritical case. The second
problem studied involves the energy log-supercritical wave equation

�u = |u|4u logα(2+ |u|2) for 0< α ≤ 4
3

in R1+3. We prove the same results of global existence and (Ḣ 1
x ∩ Ḣ 2

x )× H 1
x scattering for this equation

with a slightly higher power of the logarithm factor in the nonlinearity than that allowed in previous work
by Tao (J. Hyperbolic Differ. Equ., 4:2 (2007), 259–265).

1. Introduction

Consider the semilinear wave equation

�u := −∂2
t u+4u = f (u) on R×R3,

u(0, x)= u0(x),

∂t u(0, x)= u1(x),

(1)

where f is a complex-valued function. Let the potential function F : C→ R be a real-valued function
such that

2Fz̄(z)= f (z), (2)

with F(0) = 0 and u being the solution to (1) with initial data u0 ∈ Ḣ 1
x ∩ {φ :

∫
R3 F(φ) dx <∞} and

u1 ∈ L2
x . We can easily verify that the equation has conserved energy

E(u)(t) :=
∫

R3

1
2 |ut(t, x)|2+ 1

2 |∇u(t, x)|2+ F(u(t, x)) dx . (3)

MSC2010: 35L15.
Keywords: scattering, log-subcritical, radial Sobolev inequality.
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The main goal of the paper is to study the Ḣ 1
x × L2

x scattering theory for log-subcritical wave equations
with finite energy initial data, where the energy is defined by (3). In this paper, the term log-subcritical
wave equation refers to (1) with f defined by

f (z) :=
{
|z|4zg(|z|), |z| 6= 0,
0, |z| = 0,

(4)

where g : (0,∞)→ R is smooth, nonincreasing, and satisfies

g(x) :=


−log x, 0< x < 1

3 ,

∼ 1, 1
3 ≤ x < 1,

1, x ≥ 1.
(5)

We also prove global existence in the case of spherical symmetry for log-supercritical wave equations,
by which we mean equations of the form

�u = |u|4u logα(2+ |u|2) (6)

In this paper, we will allow 0< α ≤ 4
3 , extending the range 0< α ≤ 1 allowed in [Tao 2007]. We also

assume that the initial data is in the energy space, the set of data for which the energy (3) is finite.

Remark 1.1. We can easily compute that the potential function of log-subcritical wave equations (1), (4),
and (5) is

Fsub(z)=


−

1
6 |z|

6
(
log(|z|)− 1

6

)
, 0< |z|< 1

3 ,

∼
1
6 |z|

6, 1
3 ≤ |z|< 1,

1
6 |z|

6, |z| ≥ 1,

(7)

and the potential function of the log-supercritical wave equations (6) is

Fsup(z)∼ |z|6 logα(2+ |z|2). (8)

We quickly recall some common terminology associated to the scaling properties of (1). Consider
f (z)= |z|p−1z and let u be the solution of (1). By scaling, λ2/(1−p)u(t/λ, x/λ) is also a solution with
initial data λ2/(1−p)u0(t0/λ, x/λ) and λ(1+p)/(1−p)u1(t0/λ, x/λ). Hence the scaling of u preserves the
homogeneous Sobolev norm ‖u0‖Ḣ sc (R3)+‖u1‖Ḣ sc−1(R3) if

sc :=
3
2
−

2
p− 1

, or equivalently p = 1+
4

3− 2sc
.

Definition 1.2. For f (z)=|z|p−1z and a given value s, we call (1) an Ḣ s
x -critical (subcritical, supercritical)

nonlinear wave equation if p equals (is less than, is greater than) 1+4/(3−2s). In particular, when s = 1,
we call (1) an energy critical (subcritical, supercritical) nonlinear wave equation if p = 5 (p < 5, p > 5).

The results of global existence and uniqueness for the energy-critical (�u = |u|4u) and energy-
subcritical (�u = |u|p−1u, where p < 5) wave equations are already established by [Brenner and von
Wahl 1981; Struwe 1988; Grillakis 1990; 1992; Shatah and Struwe 1993; 1994; Kapitanski 1994; Ginibre
and Velo 1985]. It is natural to consider the decay of the solution, which we expect to behave linearly
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as t → ±∞. The decay estimate and scattering theory (see section 2 for definition) of critical wave
equations are shown in [Bahouri and Shatah 1998]; see also [Bahouri and Gérard 1999; Ginibre and Velo
1989; Nakanishi 1999]. Hidano [2001] (see also [Ginibre and Velo 1987]), by the property of conformal
invariance, proved that the solutions for certain subcritical wave equations ( 5

2 < p ≤ 3) scatter in the
weighted Sobolev space 6 := X × Y , where

X := H 1
x (R

3)∩ {φ : |x |∇φ ∈ L2
x(R

3)}, Y := L2
x(R

3)∩ {φ : |x |φ ∈ L2
x(R

3)}.

However, for energy subcritical equations, the Ḣ 1
x × L2

x scattering theory1 still remains open. In this
paper, we consider the solutions to the log-subcritical wave equations (1), (4), and (5) with finite energy
initial data. The global existence result is established in [Grillakis 1990; 1992; Kapitanski 1994; Nakanishi
1999]. We will prove that the solutions with a class of initial data scatter in Ḣ 1

x × L2
x . This class of data is

contained in logarithmically weighted Sobolev spaces X1× Y1, where

X1 : = Ḣ 1
x (R

3)∩ {φ : logγ (1+ |x |)∇φ ∈ L2
x(R

3)},

Y1 : = L2
x(R

3)∩ {φ : logγ (1+ |x |)φ ∈ L2
x(R

3)}
(9)

for some γ > 1
2 . For initial data in these spaces, we show that the potential energy of the solution decays

logarithmically for all large times. After dividing the time interval suitably, this decay helps us to control
the key spacetime norm ‖ f (u)‖L1

t L2
x
. This spacetime bound implies scattering (we will sketch the proof in

Section 2; see also [Bahouri and Shatah 1998]). Our proof of the spacetime bound involves establishing a
decay rate for certain constant-time norms of the solution and a bootstrap scheme motivated by that in
[Tao 2007]. We rely heavily on ideas from [Bahouri and Shatah 1998].

The second part of this paper considers the solution of log-subcritical wave equations with spherically
symmetric data. We prove that the solution u with initial data in X2× Y2 scatters in Ḣ 1

x × L2
x , where

X2 := Ḣ 1
x (R

3)∩
( ⋃
δ>0

Ḣ 1−δ
x (R3)

)
, Y2 := L2

x(R
3)∩

( ⋃
δ>0

Ḣ−δx (R3)
)
. (10)

Our proof again uses the ideas from [Tao 2007] and the classical Morawetz inequality; see [Morawetz
1968]. However, we need a slightly sharpened version of the bootstrap argument. We also give remarks
for some specific energy subcritical wave equations (see page 15 and following).

The third part of this paper studies global existence for log-supercritical wave equations. The global
regularity of energy supercritical wave equations (�u = |u|p−1u, where p > 5) is still open. In [Tao
2007], the author considered the log-supercritical wave equation

�u = u5 logα(2+ u2) (11)

with spherically symmetric initial data and established a global regularity result for 0<α≤ 1. For general
initial data, the same result for loglog-supercritical wave equations

�u = u5 logc(log(10+ u2))

1 Ḣ1
x × L2

x scattering is defined in Definition 2.1.
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with 0< c < 8
225 is obtained in [Roy 2009]. In the present paper, we extend the result in [Tao 2007] to

the range 0< α ≤ 4
3 , again for spherically symmetric data. This improvement is attained by employing

the potential energy bound in place of the kinetic energy bound used in [Tao 2007] for pointwise control.

2. Definitions, notation, and preliminaries

Throughout this paper, we use M . N to denote the estimate M ≤ C N for some absolute constant C
(which can vary from line to line).

We use Lq
t Lr

x to denote the spacetime norm

‖u‖Lq
t Lr

x (I×R3) :=

(∫
I

(∫
R3
|u(t, x)|r dx

)q/r

dt
)1/q

with the usual modifications when q or r is equal to infinity.

Definition 2.1. We say that a global solution u : R×R3
→ C to (1) scatters in Ḣ 1

x × L2
x (or Ḣ 1

x × L2
x

scattering) as t→+∞ (−∞) if there exists a linear solution v+ (v−) with initial data in Ḣ 1
x × L2

x such
that

‖u(t, x)− v+(t, x)‖Ḣ1
x×L2

x
→ 0 as t→+∞

(‖u(t, x)− v−(t, x)‖Ḣ1
x×L2

x
→ 0 as t→−∞).

Remark 2.2. We will sketch here that the spacetime bound,

‖ f (u)‖L1
t L2

x ([t0,∞)×R3) <∞ (12)

for some t0 > 0, of the solution u to (1) implies the Ḣ 1
x × L2

x scattering (as t→∞). Let

u ∈ C1
t (R, Ḣ 1

x (R
3))∩C0

t (R, L2
x(R

3))

be the solution to (1) and let v satisfy �v = 0 with initial data v0 ∈ Ḣ 1
x (R

3), v1 ∈ L2
x(R

3) (to be chosen
shortly). By Duhamel’s formula,

u(t, x)= cos
(
t
√
−4

)
u0(x)+

sin
(
t
√
−4

)
√
−4

u1(x)−
∫ t

0

sin
(
(t − τ)

√
−4

)
√
−4

f (u(τ )) dτ (13)

and

v(t, x)= cos
(
t
√
−4

)
v0(x)+

sin
(
t
√
−4

)
√
−4

v1(x), (14)

where the operators cos
(
t
√
−4

)
and sin

(
t
√
−4

)
/
√
−4 are defined by(

cos
(
t
√
−4

)
φ
)̂
(ξ)= cos(t |ξ |)φ̂(ξ)

and (
sin
(
t
√
−4

)
√
−4

φ

)̂
(ξ)=

sin(t |ξ |)
|ξ |

φ̂(ξ).
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Hence, that the solution u scatters and asymptotically approaches v in Ḣ 1
x × L2

x means that∥∥∥∥cos
(
t
√
−4

)
(u0− v0)+

sin
(
t
√
−4

)
√
−4

(u1− v1)−

∫ t

0

sin
(
(t − τ)

√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

→ 0 (15)

as t→∞. From basic trigonometric identities, we can verify that (15) is implied by∥∥∥∥(u0− v0)+

∫ t

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x

→ 0

and ∥∥∥∥(u1− v1)+

∫ t

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ

∥∥∥∥
L2

x

→ 0

as t→∞. Therefore, if(∫ t

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ,
∫ t

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ

)
(16)

converges in Ḣ 1
x × L2

x as t→∞, and we take

v0(x) := u0(x)−
∫
∞

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ,

v1(x) := u1(x)−
∫
∞

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ,

in (14), we then have, by (13), (14), and elementary trigonometric formulas,

‖u− v‖Ḣ1
x×L2

x
=

∥∥∥∥−∫ t

0

sin
(
(t−τ)

√
−4

)
√
−4

f (u(τ )) dτ +
∫
∞

0

cos
(
t
√
−4

)
sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ

+

∫
∞

0

sin
(
t
√
−4

)
cos

(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

=

∥∥∥∥∫ ∞
t

sin(t−τ)
√
−4

√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

. (17)

It remains to show two things:

(i) Our initial data v0, v1 are well-defined, that is, that (16) does indeed converge in Ḣ 1
x × L2

x .

(ii) The right side of (17) converges to 0 as t→∞.

The claim (i) can be shown in several ways, for example, by showing that

lim
N→∞

∥∥∥∥∫ ∞
N

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x

= 0 and lim
N→∞

∥∥∥∥∫ ∞
N

cos
(
−τ
√
−4

)
f (u(τ )) dτ

∥∥∥∥
L2

x

= 0,

where N ∈N. These two equalities follow from the dominated convergence theorem once we show that∫
∞

0

∥∥∥∥sin
(
−τ
√
−4

)
√
−4

f (u(τ ))
∥∥∥∥

Ḣ1
x

(τ ) dτ <∞ and
∫
∞

0

∥∥cos
(
−τ
√
−4

)
f (u(τ ))

∥∥
L2

x
(τ ) dτ <∞.
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But this follows quickly from (12) and the Plancherel theorem.
Claim (ii) has already been established in the discussion of claim (i). This concludes the argument that

the finiteness of (12) implies scattering.

Definition 2.3. We say that the pair (q, r) is admissible if 2≤ q, r ≤∞, (q, r) 6= (2,∞) and

1
q
+

1
r
≤

1
2
. (18)

Theorem 2.4 (Strichartz estimates for wave equation [Strichartz 1977; Kapitanski 1989; Ginibre and Velo
1995; Lindblad and Sogge 1995; Keel and Tao 1998]). Let I be a time interval and let u : I ×R3

→ C

be a Schwartz solution to the wave equation �u = G with initial data u(t0)= u0, ∂t u(t0)= u1 for some
t0 ∈ I . Then we have the estimates

‖u‖Lq
t Lr

x (I×R3)+‖u‖C0
t Ḣσ

x (I×R3)+‖∂t u‖C0
t Ḣσ−1

x (I×R3).‖u0‖Ḣσ
x (R

3)+‖u1‖Ḣσ−1
x (R3)+‖G‖L q̃′

t L r̃ ′
x (I×R3)

, (19)

where (q, r) and (q̃, r̃) are admissible pairs and obey the scaling condition

1
q
+

3
r
=

3
2
− σ =

1
q̃ ′
+

3
r̃ ′
− 2, (20)

and where q̃ ′ and r̃ ′ are conjugate to q̃ and r̃ , respectively. In addition, if u is a spherically symmetric
solution, we allow (q, r)= (2,∞).

We define the Strichartz space Sσ (I ) for any time interval I, as the closure of the Schwartz function on
I ×R3 under the norm

‖u‖Sσ (I ) := sup
(q,r) admissible

‖u‖Lq
t Lr

x (I×R3), (21)

where (q, r) satisfies (20).

Morawetz inequality [Morawetz 1968]. Let I be any time interval and u : I ×R3
→ C be the solution

to (1) with finite energy E. Let F be the potential function as in (2). Then∫
I

∫
R3

F(u)
|x |

dx dt . E . (22)

Spherically symmetric solutions. In the last part of this section, we assume that u is the spherically
symmetric solution to the log-subcritical wave equations (4), (5) (or log-supercritical wave equation (6))
and F is the corresponding potential function. We obtain the following a priori estimate for the solution.

Lemma 2.5 (pointwise estimate for spherically symmetric solution [Ginibre et al. 1992; Tao 2007]). Let
I be any time interval and let u : I ×R3

→ C be the spherically symmetric solution to the log-subcritical
wave equations (4), (5) (or log-supercritical wave equation (6)) with finite energy E and vanishing at∞.
Let F be the potential function. Then, for any t ∈ I ,

|x |2(F(u)1/2|u|)(t, x). E (23)



SCATTERING THEORY FOR LOG-SUBCRITICAL AND LOG-SUPERCRITICAL NLW 7

Proof. We tackle the log-subcritical case; the proof for the log-supercritical case is similar and easier.
Define φ(z) := (F(z))1/2z and r := |x |. From (7), we can compute that, for fixed t ,∣∣∂r (φ(u(t, x))

)∣∣. |u|3|∂r u|(t, x)χ{|u|≥1/3}(x)+ |u|3(−log |u|)1/2|∂r u|(t, x)χ{|u|<1/3}(x),

where χ is the characteristic function on R3. Then, by the fundamental theorem of calculus, Hölder’s
inequality, and energy conservation,

|φ(u(t, x))|.
∣∣∣∣∫ ∞

r

[
|u|3|∂r u|χ{|u|≥1/3}+ |u|3(−log |u|)1/2|∂r u|χ{|u|<1/3}

]
(t, s) ds

∣∣∣∣
.

(∫
∞

r

|u|6

s2 s2χ2
{|u|≥1/3} ds

)1/2(∫ ∞
r

|∂r u|2

s2 χ{|u|≥1/3}s2 ds
)1/2

+

(∫
∞

r

|u|6(−log |u|)
s2 s2χ2

{|u|<1/3} ds
)1/2(∫ ∞

r

|∂r u|2

s2 χ{|u|<1/3}s2 ds
)1/2

. 1
r2

(∫
R3

F(u) dx
)1/2

E1/2 . 1
r2 E . �

Inserting (23) into (22), we obtain that, for any time interval I ,∫
I

∫
R3

F5/4(u)|u|
1
2 dx dt ≤

∫
I

∫
R3

F(u)
|x |
· sup

x∈R3
(|x |F1/4(u)|u|1/2) dx dt . E3/2. (24)

This implies∫
I

∫
{|u|≤1/3}

|u|8(−log |u|)5/4 dx dt +
∫

I

∫
{|u|>1/3}

|u|8 dx dt . E3/2 (log-subcritical case) (25)

and ∫
I

∫
R3
|u|8 log5α/4(2+ |u|2) dx dt . E3/2 (log-supercritical case). (26)

3. Log-subcritical wave equations

In this section, we consider the scattering theory for log-subcritical wave equations. We can take advantage
of time reversal symmetry, and it suffices to prove that the solution u scatters in Ḣ 1

x × L2
x as t→∞.

Throughout this section, we use the notation

A =
{
(t, x) ∈ (0,∞)×R3

: |u|< 1
3

}
, B =

{
(t, x) ∈ (0,∞)×R3

: |u| ≥ 1
3

}
,

and for any interval I ,
AI = A∩ (I ×R3), BI = B ∩ (I ×R3). (27)

General initial data in log-weighted Sobolev spaces.

Theorem 3.1. Let γ > 1
2 and let u be the solution to the log-subcritical wave equations (1), (4), and (5)

with initial data
u0(x) ∈ X1, u1(x) ∈ Y1, (28)

where X1 and Y1 are defined by (9). Then u scatters in Ḣ 1
x × L2

x .
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Proof. We need some decay estimates for the equation with initial data satisfying (28).

Lemma 3.2. Let γ and u be as in Theorem 3.1. There exists T = T (‖u0‖X1, ‖u1‖Y1, γ )� 1 such that,
for τ > T , ∫

R3
F(u(τ, x)) dx . 1

log2γ τ
, (29)

where F(z)= Fsub(z) is defined by (7).

Proof. We essentially follow the proof of Lemma 2.1 in [Bahouri and Shatah 1998], with some changes.
Define

e[u](t, x) := 1
2 |∂t u(t, x)|2+ 1

2 |∇u(t, x)|2+ F(u(t, x)).

We claim that there exists Cγ = Cγ (‖u0‖X1, ‖u1‖Y1, γ )� 1 such that for s > Cγ ,∫
|x |>s

e[u](0, x) dx . 1
log2γ s

. (30)

We prove this claim in the Appendix and continue the proof of this lemma here. Choose T such that
T >max(C2

γ , log4γ T ). We aim to show that (29) holds for all τ > T .
Define the truncated forward light cone by

K b
a (c) := {(t, x) : a ≤ t ≤ b, |x | ≤ t + c, 0≤ a < b ≤∞}

and the boundary of the truncated cone by

Mb
a (c) := ∂K b

a (c)= {(t, x) : a ≤ t ≤ b, |x | = t + c, 0≤ a < b ≤∞}.

Fix τ > T and let s =
√
τ > Cγ . For any t1 > 0, the energy conservation law on the exterior of the

truncated forward light cone K t1
0 (s) implies that∫

|x |>s+t1
e[u](t1) dx + 1

√
2

flux(0, t1, s)=
∫
|x |>s

e[u](0) dx . 1
log2γ s

, (31)

where
flux(a, b, c) :=

∫
Mb

a (c)

{1
2

∣∣∣ut +
x ·∇u
|x |

∣∣∣2+ F(u)
}

dσ.

Hence ∫
|x |>s+τ

F(u(τ )) dx ≤
∫
|x |>s+τ

e[u](τ ) dx . 1
log2γ s

. 1
log2γ τ

, (32)

and it suffices to show that ∫
|x |≤s+τ

F(u(τ )) dx . 1
log2γ τ

. (33)

Define w(t, x)= u(t − s, x). The bound (33) is equivalent to∫
|x |≤s+τ

F(w(s+ τ)) dx . 1
log2γ τ

.

Set wt := ∂tw. Multiplying the equation f (w)−�w = 0 by twt + x · ∇w+w, we get
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∂t(t Q0+wtw)− div(t P0)+ R0 = 0, (34)

where

Q0 = e[w] +wt

( x
t
· ∇w

)
,

P0 =
x
t

(
w2

t − |∇w|
2

2
− F(w)

)
+∇w

(
wt +

x
t
· ∇w+

w

t

)
,

R0 = |w|
6g(|w|)− 4F(w),

with g defined by (5). Define the horizontal sections of the forward solid cone by

D(t) := {|x | ∈ R3
: |x | ≤ t}.

Fix 0< T1 < T2 and integrate (34) on K T2
T1
(0). By the divergence theorem, we have∫

D(T2)

(T2 Q0+wtw) dx−
∫

D(T1)

(T1 Q0+wtw) dx− 1
√

2

∫
M

T2
T1
(0)

(
t Q0+wtw+t P0

x
|x |

)
dσ+

∫
K

T2
T1
(0)

R0 dx dt

=: L1+ L2+ L3+ L4 = 0. (35)

Now, following the same steps as in [Bahouri and Shatah 1998], we define v(y) :=w(|y|, y). Since L3 is
the integral on MT2

T1
(0), using spherical coordinates, we obtain that

L3 =−

∫ T2

T1

∫
S2

r
(
vr +

v

r

)2
r2 dr dω+ 1

2

∫
S2

T 2
2 v

2(T2ω) dω− 1
2

∫
S2

T 2
1 v

2(T1)ω dω, (36)

L1 =

∫
D(T2)

{
T2

(
|wt |

2

2
+

1
2

(
wr +

1
r
w
)2
+

1
2r2 |∇ωw|

2
+ F(w)

)
+ r

(
wr +

1
r
w
)
wt

}
dx

−
1
2

∫
S2

T 2
2 v

2(T2ω) dω, (37)

and

L2 =−

∫
D(T1)

{
T1

(
|wt |

2

2
+

1
2

(
wr +

1
r
w
)2
+

1
2r2 |∇ωw|

2
+ F(w)

)
+ r

(
wr +

1
r
w
)
wt

}
dx

+
1
2

∫
S2

T 2
1 v

2(T1ω) dω. (38)

Since L4 ≥ 0, plugging (36), (37) and (38) into (35), we deduce that

T2

∫
D(T2)

F(w) dx ≤ CT1 E +
∫ T2

T1

∫
S2

T2

(
vr +

v

r

)2
r2 dr dω,

where C is a constant and E is the energy. Therefore,∫
D(T2)

F(w(T2)) dx ≤ C
T1

T2
E +

∫ T2

T1

∫
S2

(
vr +

v

r

)2
r2 dr dω. (39)
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For any T1 ≥ s, by (31), the second term in the right-hand side of (39) is controlled by∫ T2

T1

∫
S2

(
vr +

v

r

)2
r2 dr dω .

∫
M

T2
T1
(0)

{
1
2

∣∣∣wt +
x ·∇w
|x |

∣∣∣2} dσ . 1
log2γ s

. 1
log2γ τ

.

Now, choosing T2 = τ + s and T1 = (τ + s)/ log2γ τ >
√
τ = s, (39) implies∫

D(τ+s)
F(w(τ + s, x)) dx . 1

log2γ τ
. (40)

Combining (32) and (40), the lemma is proved. �

Before we prove Theorem 3.1, let’s observe the following fact. Let I be any time interval with length
3< |I |<∞. By Hölder’s inequality, we have that, for 0< δ < 2,

‖|u|4u(−log |u|)‖L1
t L2

x (I×R3)

≤ ‖u3−δ(−log |u|)(3−δ)/6‖L∞t L6/(3−δ)
x (I×R3)

‖u2
‖L2/(2−δ)

t L6/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L2/δ
t L∞x (I×R3)

= ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L2/δ
t L∞x (I×R3)

≤ ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L∞t L∞x (I×R3)|I |
δ/2.

If |u| ≤ 1
3 , we can estimate that

‖uδ(−log |u|)(3+δ)/6‖L∞t L∞x (I×R3) .
(1
δ

)1/2+δ/6
.

Letting δ = 2/log |I |, we obtain

‖|u|4u(−log |u|)‖L1
t L2

x (I×R3) . ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

log1/2
|I |. (41)

To complete the proof of Theorem 3.1, by Remark 2.2, it suffices to show that

‖ f (u)‖L1
t L2

x ([T,∞)×R3) <∞ for some T <∞.

Let J = (3i ,∞), where i is sufficiently large and to be determined later. Then

‖ f (u)‖L1
t L2

x (J×R3) . ‖|u|
4u(−log |u|)‖L1

t L2
x (AJ )
+‖|u|4u‖L1

t L2
x (BJ )
=: M1+M2.

Since (2+ δ, 6(2+ δ)/δ) is an admissible pair satisfying (20) for σ = 1, from Hölder’s inequality and
Lemma 3.2,

M2 ≤ ‖u‖3−δL∞t L6
x (BJ )
‖u‖2+δ

L2+δ
t L6(2+δ)/δ

x (BJ )
. 1
(log(3i ))(3−δ)/3γ

‖u‖2+δS1(J ). (42)

On the other hand, define interval Jk by subdividing J according to J =
⋃
∞

k=1(3
2k−1i , 32k i )=:

⋃
∞

k=1 Jk .
Define δk := 2/log |Jk |. By (41), Lemma 3.2, and the fact that the admissible pairs (4/(2− δk), 12/δk)
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satisfy (20) for σ = 1, we have

M1 ≤

∞∑
k=1

‖u5(−log |u|)‖L1
t L2

x (Jk×R3) .
∞∑

k=1

(
1

(log 32k−1i )(3−δk)/3γ
(log 32k i )1/2

)
‖u‖2

L
4/(2−δk )
t L

12/δk
x (Jk×R3)

.

( ∞∑
k=1

i1/2−(3−δk)/3γ · 2(k−1)(1/2−(3−δk)/3)γ
)
‖u‖2S1(J ).

Since γ > 1
2 , we can choose i sufficiently large such that

(
((3− δk)/3)γ − 1

2

)
> c > 0 for all k. Hence

M1 . i−c
∞∑

k=1

2−(k−1)c
‖u‖2S1(J ). (43)

Combining (42) and (43), for ε0 > 0 sufficiently small, we can choose i sufficiently large such that

‖ f (u)‖L1
t L2

x (J×R3) ≤ ε0(‖u‖2S1(J )+‖u‖
2+δ
S1(J )).

By the Strichartz estimate (19), we have

‖u‖S1(J ) ≤ C E1/2
+ ε0(‖u‖2S1(J )+‖u‖

2+δ
S1(J )).

From a continuity argument, we conclude that

‖u‖S1(J ) ≤ 2C E1/2.

This implies that

‖ f (u)‖L1
t L2

x (J×R3) <∞. �

Spherically symmetric initial data in lower regularity Sobolev spaces. In this subsection, we consider
the solutions to the log-subcritical wave equations with spherically symmetric initial data. If the finite
energy initial data are in any lower regularity Sobolev spaces, we obtain the Ḣ 1

x × L2
x scattering. The

spirit of the proof follows from [Tao 2007] and a slightly sharpened bootstrap argument in Lemmas 3.5
and 3.6.

Throughout this subsection, for given δ > 0, we denote

Z(t) := ‖u(t, x)‖Ḣ1−δ
x (R3)+‖∂t u(t, x)‖Ḣ−δx (R3). (44)

It is easy to show that Z(t) > 0 for any time t .2

Theorem 3.3. Let u be the solution to the log-subcritical wave equations (1), (4), (5) with spherically
symmetric initial data

u0(x) ∈ X2, u1(x) ∈ Y2, (45)

where X2 and Y2 are defined by (10). Then u scatters in Ḣ 1
x × L2

x .

To prove Theorem 3.3, we need some intermediate lemmas.

2If Z(t0)= 0 for some t0, it is easy to prove that the solution u has energy E(t0)= 0 and, hence, E(t)= 0 for any time t , by
energy conservation. This implies the solution u(t, x)≡ 0 for all t .
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Lemma 3.4. Let I = [a, b] be any interval where 0 ≤ a < b ≤ ∞ and let u be the solution to the
log-subcritical wave equations (1), (4), (5) with spherically symmetric initial data

u(a, x)= u0(x) ∈ Ḣ 1
x ∩ Ḣ 1−δ

x , ∂t u(a, x)= u1(x) ∈ L2
x ∩ Ḣ−δx

for some fixed 0< δ < 1
2 . Then there exists 0< ε(δ)� 1 such that for 0< ε < ε(δ),

‖u‖S1−δ(I ). Z(a)+(‖u‖1+ε/(2δ)S1−δ(I ) +‖u‖S1−δ(I ))
(
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
+‖u‖4L8

t,x (BI )

)(1
ε

)7/16
, (46)

where the constant hidden in (46) is independent of the interval I and ε.

Proof. By the Strichartz estimate (19),

‖u‖S1−δ(I ) . Z(a)+‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. (47)

Consider that

‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. ‖− |u|4u(log(|u|))‖L2/(2−δ)

t L2/(1+δ)
x (AI )

+‖|u|4u‖L2/(2−δ)
t L2/(1+δ)

x (BI )
=: N1+ N2

with AI and BI as in (27). By Hölder’s inequality,

N2 ≤ ‖u‖L2/(1−δ)
t L2/δ

x (BI )
‖u‖4L8

t,x (BI )
≤ ‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
. (48)

On the other hand, choosing ε(δ) sufficiently small such that for 0< ε < ε(δ),

0< 1
p
:=

8δ+ε−8δ2
+2εδ

8(2δ+ε)
≤

1
2
, 0< 1

q
:=
δ

2
+
ε(1−2δ)
8(2δ+ε)

≤
1
2
,

3
8
≈

12+5ε/(2δ)+5ε
32

<
7

16
.

It is clear that (p, q) is an admissible pair satisfying (20) for σ = 1− δ. By Hölder’s inequality and
interpolation theory, we can estimate that

N1 ≤ ‖|u|5−ε(−log |u|)5(4−ε/(2δ)−ε)/32
‖L2/(2−δ)

t L2/(1+δ)
x (AI )

‖|u|ε(−log |u|)(12+5ε/(2δ)+5ε)/32
‖L∞t,x (AI )

≤ ‖u‖1+ε/(2δ)
L p

t Lq
x (AI )
‖u(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
‖|u|ε(−log |u|)(12+5ε/(2δ)+5ε)/32

‖L∞t,x (AI ) (49)

. ‖u‖1+ε/(2δ)
L p

t Lq
x (AI )
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

)upn f rac12+5ε/(2δ)+5ε32
. (50)

The last factor of (50) comes from maximizing the last factor on the right of (49) using calculus. We note
that the constant hidden in the last inequality is independent of ε. By (48) and (50), we have

‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. ‖u‖1+ε/(2δ)S1−δ(I ) ‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

)7/16
+‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
.

From (47),

‖u‖S1−δ(I ). Z(a)+‖u‖1+ε/(2δ)S1−δ(I ) ‖|u|(−log |u|)5/32
‖

4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

) 7
16
+‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
.RHS of (46).

One can check that all constants hidden in the inequalities above are independent of the interval I and ε.
Hence, Lemma 3.4 is proved. �
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Lemma 3.5 (continuity argument). Let I (= [a, b]) and u satisfy the assumptions of Lemma 3.4, C be the
constant hidden in (46) and 0< ε(δ) be chosen in Lemma 3.4. Let ε0 = 1/(100C) and 0< ε < ε(δ) such
that Z(a)ε/(2δ) ≥ 1

2 and (2C)ε/(2δ) ≤ 2. We define

Q(I ) :=
(
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
+‖u‖4−ε/(2δ)−ε

L8
t,x (BI )

)
.

If ‖u‖L8
t,x (BI )

≤ 1 and Q(I )≤ ε0(ε
7/16/(Z(a)ε/(2δ))), we have

‖u‖S1−δ(I ) ≤ 2C Z(a).

Proof. We prove this lemma by contradiction. For 0 ≤ t ≤ b − a, from the dominated convergence
theorem, we have that the function 8(t) := ‖u‖S1−δ([a,a+t]) is nondecreasing and continuous in [0, b− a]
and 8(0)= 0. By the hypothesis and (46), we have

8(t)≤ C Z(a)+ 1
100(8(t)

1+ε/(2δ)
+8(t))

(
1

Z(a)ε/(2δ)

)
(51)

for all t ∈ [0, b− a]. Assume for contradiction that there exists t0 ∈ [0, b− a) such that 8(t0)= 2C Z(a).
If 2C Z(a) < 1, (51) implies that

2C Z(a)=8(t0)≤ C Z(a)+ 1
50
(2C Z(a))

(
1

Z(a)ε/(2δ)

)
≤

11
10

C Z(a).

On the other hand, if 2C Z(a)≥ 1, (51) implies that

2C Z(a)=8(t0)≤ C Z(a)+ 1
50
(2C Z(a))1+ε/(2δ)

(
1

Z(a)ε/(2δ)

)
≤

11
10

C Z(a).

We get contradictions in both situations, and the lemma is proved. �

Lemma 3.6 (finite division). Let I (= [a, b]) and u satisfy the assumptions of Lemma 3.4 and C be
the constant hidden in (46). We denote Zi = (2C)i Z(a), where i = 0, 1, 2, . . . . For any ε0 > 0, we
can choose ε � 1 and finitely many numbers a = T0 < T1 < T2 < · · · < TN < TN+1 = b, where
N = N (ε0, ε, δ, E, Z0,C), such that for I j := [T j , T j+1],

Q(I j )= ε0

(
ε7/16

Z ε/(2δ)j

)
(52)

for 0≤ j ≤ N − 1 and Q(IN )≤ ε0(ε
7/16/Z ε/(2δ)N ).

Proof. We observe that
∞∑

i=0

[
ε0

(
ε7/16

Z ε/(2δ)i

)]8/(4−ε/(2δ)−ε)

&ε0,Z0

{
ε7/(8−ε/(δ)−2ε)

∞∑
i=0

1
(2C)8iε/(8δ−ε−2δε)

}
→∞ as ε→ 0.

Therefore, by (25), we can choose ε sufficiently small such that

3
(∫ ∫

A
|u|8(−log |u|)5/4 dx dt +

∫ ∫
B
|u|8 dx dt

)
<

K∑
i=0

[
ε0

(
ε7/16

Z ε/(2δ)i

)]8/(4−ε/(2δ)−ε)

(53)

for some K = K (ε0, ε, δ, E, Z0,C).
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Fix this ε. If Q(I ) < ε0(ε
7/16/(Z ε/(2δ)0 )), we say T1 = b and the lemma is proved. Otherwise, we

can choose 0< T1 < b such that (52) holds for j = 0. Again, if Q([T1, b) < ε0(ε
7/16/(Z ε/(2δ)1 )), we say

T2 = b. Otherwise, we can choose T1 < T2 < b such that (52) holds for j = 1. By continuing this process,
we can choose a < T1 < T2 < · · · such that (52) holds for j = 0, 1, . . . . It suffices to show that this
process will stop in at most K + 1 steps. Indeed, assume that there are more than K + 1 subintervals
satisfying (52). Since

Q(I j )
8/(4−ε/(2δ)−ε)

≤ 3
(∫∫

AI j

|u|8(−log |u|)5/4 dx dt +
∫∫

BI j

|u|8 dx dt
)
,

for j = 0, 1, . . . , by our construction of I j , we have

K+1∑
j=0

ε0

(
ε7/16

Z ε/(2δ)j

)
=

K+1∑
j=0

Q(I j )
8/(4−ε/(2δ)−ε)

≤

K+1∑
i=0

3
(∫∫

AI j

|u|8(−log |u|)5/4 dx dt +
∫∫

BI j

|u|8 dx dt
)

≤ 3
(∫∫

A
|u|8(−log |u|)5/4 dx dt +

∫∫
B
|u|8 dx dt

)
.

This contradicts (53), and the lemma is proved. �

Corollary 3.7. Let I and u satisfy the assumptions of Lemma 3.4 and C be the constant hidden in (46). If
‖u‖L8

t,x (BI )
≤ 1, u ∈ L8/(1+2δ)

t,x (I ×R3).

Proof. Let ε(δ) be chosen in Lemma 3.4 and 0 < ε < ε(δ) satisfy Lemma 3.6, Z(a)ε/(2δ) ≥ 1
2 and

(2C)ε/(2δ) ≤ 2. Let {I j }
N
j=0 be the subintervals constructed by Lemma 3.6 such that (52) holds for

0≤ j ≤ N .
We claim that

‖u‖S1−δ(I j ) ≤ 2C Z j for 0≤ j ≤ N , (54)

where Z j = (2C) j Z(a). Indeed, by Lemma 3.5, (54) holds for j = 0. Again, if (54) holds for j = k− 1,
we have Z(Tk)≤ ‖u‖S1−δ(Ik−1) ≤ Zk . Since Z ε/(2δ)k ≥ Z(a)ε/(2δ) ≥ 1

2 , applying Lemma 3.5 on the interval
Ik , we obtain (54) for j = k. By induction on j , the claim is proved and this implies

‖u‖L8/(1+2δ)
t,x (I×R3)

≤

N+1∑
j=0

‖u‖S1−δ(I j ) ≤

N+1∑
j=0

(2C) j Z0 <∞. �

Corollary 3.8. Let u be the solution to the log-subcritical wave equations (1), (4), (5) with spherically
symmetric initial data

u(0, x)= u0(x) ∈ Ḣ 1
x ∩ Ḣ 1−δ

x , ∂t u(0, x)= u1(x) ∈ L2
x ∩ Ḣ−δx

for some fixed 0< δ < 1
2 . Then u ∈ L8/(1+2δ)

t,x (R+×R3).
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Proof. By (25), we can choose finitely many numbers 0= S0 < S1 < · · ·< SM−1 < SM =∞ such that
‖u‖L8

t,x (B[Sk ,Sk+1])
≤ 1 for 0≤ k ≤ M . By Corollary 3.7 and energy conservation, we have

(u(Sk, x), ∂t u(Sk, x)) ∈ (Ḣ 1
x ∩ Ḣ 1−δ

x )× (L2
x ∩ Ḣ−δx )

and ‖u‖L8/1+2δ
t,x ([Sk ,Sk+1]×R3)

<∞ for 0≤ k ≤ M . Hence

‖u‖L8/(1+2δ)
t,x (R+×R3)

≤

M∑
k=0

‖u‖L8/(1+2δ)
t,x ([Sk ,Sk+1]×R3)

<∞. �

To finish the proof of Theorem 3.3, by Remark 2.2, it suffices to show that ‖ f (u)‖L1
t L2

x ((T,∞)×R3) <∞

for some 0 < T < ∞. Since the initial data satisfy (45), we can choose some 0 < δ < 1
2 such that

u0 ∈ Ḣ 1
x (R

3)∩ Ḣ 1−δ
x (R3) and u1 ∈ L2

x(R
3)∩ Ḣ−δx (R3). Observe that

‖ f (u)‖L1
t L2

x ((T,∞)×R3)

. ‖|u|5(log(|u|))‖L1
t L2

x (AT )
+‖|u|5‖L1

t L2
x (BT )

. ‖u‖4/(1+2δ)
L8

t,x/(1+2δ)(AT )
‖u‖L2

t L∞x (AT )
‖u8δ/(1+2δ)(log(|u|))‖L∞t,x (AT )+‖u‖

4
L8

t,x (BT )
‖u‖L2

t L∞x (BT )

. ‖u‖L2
t L∞x ((T,∞)×R3)

[(1+2δ
8δ

)
‖u‖4/(1+2δ)

L8
t,x/(1+2δ)(AT )

+‖u‖4L8
t,x (BT )

]
,

where AT := A∩ ((T,∞)×R3) and BT := B∩ ((T,∞)×R3). The last inequality above is from the fact
that |u8δ/(1+2δ)(log(|u|))|. (1+ 2δ)/(8δ) for |u| ≤ 1

3 . By Corollary 3.8 and (25), for sufficiently small
ε > 0, we can choose T = T (ε) sufficiently large such that(1+2δ

8δ

)
‖u‖4/(1+2δ)

L8
t,x/(1+2δ)(AT )

+‖u‖4L8
t,x (BT )

< ε.

Hence, by the Strichartz inequality [Klainerman and Machedon 1993],

‖u‖L2
t L∞x ((T,∞)×R3) ≤ C E1/2

+ εC‖u‖L2
t L∞x ((T,∞)×R3).

Again for ε < 1/(2C), we have ‖u‖L2
t L∞x ((T,∞)×R3)< 2C E1/2 and this implies ‖ f (u)‖L1

t L2
x ((T,∞)×R3)<∞.

Energy subcritical nonlinear wave equations with specific spherically symmetric initial data. In the
last part of this section, we will discuss an observation, for energy subcritical nonlinear wave equations,
inspired by the proof of Theorem 3.3. For given 0<δ< 1

2 , let (u0, u1)∈ (Ḣ 1
x (R

3)∩Ḣ 1−δ
x (R3))×(L2

x(R
3)∩

Ḣ−δx (R3)) be spherically symmetric functions. In this subsection, we consider the energy-subcritical
nonlinear wave equation

�u = |u|4−εu, u(0, x)= u0(x), ∂t u(0, x)= u1(x), (55)

where we allow ε to depend on the given data (u0, u1). That is, we find a relation (R) (see Definition 3.10)
among ε, the energy E , and Z(0) as in (44), the lower regularity norm of the initial data, for which the
solution scatters. We remark that relation (R) holds for data large in both the energy and Ḣ 1−δ norms
provided that ε is taken sufficiently small (depending on the size of these norms). In [Lindblad and Sogge
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1995], scattering was established in Ḣ 1−δ for the Ḣ 1−δ critical nonlinear wave equation from small data.
Our remarks here are related to that work, for example, relation (R) quantifies the extent to which large
data can be allowed. Also, we will prove scattering in Ḣ 1, rather than Ḣ 1−δ.

In order to prove that u scatters in Ḣ 1
x × L2

x , It suffices to show that ‖u5−ε
‖L1

t L2
x ([T,∞)×R3) <∞ for

some T <∞. By the Strichartz estimate and Hölder’s inequality,

‖u‖L2
t L∞x ([T,∞)×R3) ≤ C E1/2

+C‖u5−ε
‖L1

t L2
x ([T,∞)×R3)

≤ C E1/2
+C‖u‖L2

t L∞x ([T,∞)×R3)‖u‖
4−ε
L8−2ε

t,x ([T,∞)×R3)
.

Following similar arguments as in the proof of Theorem 3.3, we only need to show that

‖u‖L8−2ε
t,x ([T,∞)×R3) <∞ for some T <∞.

Let ε0(δ) := 8δ/(1+ 2δ) (so that Ḣ 1−δ is the scale invariant norm for (55) with ε = ε0(δ)). We restrict to
the case 0< ε < ε0(δ).

In this case, (55) is Ḣ 1−δ-supercritical nonlinear wave equation. We denote

γε =
3ε

16δ− 5
2δε−

5
4ε
, κε =

8− 5
4ε

4−γε−ε
,

1
αε
=

1+2δ
8
+

3(1−2δ)
8(1+γε)

,
1
βε
=

1+2δ
8
−

1−2δ
8(1+γε)

.

Note that

(i) as ε→ ε0(δ), γε→ 4− ε and κε→∞;

(ii) (αε , βε) is an admissible pair satisfying (20) for σ = 1− δ.

Remark 3.9. Let u be the spherically symmetric solution to the energy-subcritical nonlinear wave
equation (55) with energy E . We observe that Lemma 2.5 holds for u. Hence, for any interval I = [a, b]
where 0≤ a < b ≤∞, (24) implies∫

I

∫
R3
|u(t, x)|8−5ε/4 dx dt ≤ C1 E3/2, (56)

where we can choose the constant C1 to be independent of ε. Moreover, by the Strichartz estimate,

‖u‖S1−δ(I ) ≤ C Z(a)+C‖u5−ε
‖L2

t /(2−δ)L
2/(1+δ)
x (I×R3)

. (57)

Definition 3.10. Given 0< δ < 1
2 , let 0< ε < ε0(δ), u be the solution to (55) with energy E and lower

regularity norm Z(0) > 0. We say that the triple (E, Z(0), ε) satisfies the relation (R) if

C1 E3/2
≤

( 1
2(2C)1+γε Z(0)γε

)κε 1
1−(2C)−γεκε

Lemma 3.11. Given 0< δ < 1
2 and 0< ε < ε0(δ), let

(u0, u1) ∈ (Ḣ 1
x (R

3)∩ Ḣ 1−δ
x (R3))× (L2

x(R
3)∩ Ḣ−δx (R3))

be spherically symmetric functions such that the triple (E, Z(0), ε) satisfies (R) and u is the solution to
(55). Then u ∈ L8/(1+2δ)

t,x (R+×R3).
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Proof. Since (E, Z(0), ε) satisfies (R), by (56) and an argument similar to that in proof of Lemma 3.6,
we can choose finitely many numbers 0= T0 < T1 < · · ·< TN < TN+1 =∞ such that

‖u‖4−γε−ε
L8−5ε/4

t,x ([Ti ,Ti+1]×R3)
=

1
2(2C)1+γε ((2C)i Z(0))γε

(58)

for 0≤ i ≤ N − 1 and

‖u‖4−γε−ε
L8−5ε/4

t,x ([TN ,TN+1]×R3)
≤

1
2(2C)1+γε ((2C)N Z(0))γε

.

We claim that
Z(Ti ) < (2C)i Z(0) (59)

and
‖u‖S1−δ([Ti ,Ti+1]) < (2C)i+1 Z(0) (60)

for 0≤ i ≤ N .
Observe that (59) is clearly true for i = 0 and Z(Ti )≤ ‖u‖S1−δ([Ti−1,Ti ]) for 1≤ i ≤ N . Hence it suffices

to show that (60) holds and then (59) is automatically true.
A similar proof to that of Lemma 3.5 applies here. Assume (60) is true for i ≤ j − 1. We aim to prove

(60) for i= j . (Note that (59) follows from our assumption when i= j .) Let φ(t)=‖u‖S1−δ([T j ,T j+t]). Then
φ is a continuous and nondecreasing function on [0, T j+1− T j ] and φ(0)= 0. Assume for contradiction
that there exists t0 ∈ [0, T j+1− T j ] such that φ(t0)= (2C) j+1 Z(0). By Hölder’s inequality, (57), (58),
and (59), we have

(2C) j+1 Z(0)= φ(t0)≤ C Z(T j )+C‖u5−ε
‖L2

t /(2−δ)L
2/(1+δ)
x ([T j ,T j+t0]×R3)

≤ C Z(T j )+C‖u‖1+γε
Lαεt Lβεx ([T j ,T j+t0]×R3)

‖u‖4−γε−ε
L8−5ε/4

t,x ([T j ,T j+t0]×R3)

≤ C Z(T j )+C‖u‖1+γεS1−δ([T j ,T j+t0])‖u‖
4−γε−ε
L8−5ε/4

t,x ([T j ,T j+t0]×R3)

≤ C(2C) j Z(0)+ 1
4[(2C) j+1 Z(0)]γε

‖u‖1+γεS1−δ([T j ,T j+t0])

< 1
2(2C) j+1 Z(0)+ 1

4[(2C) j+1 Z(0)]γε
×[(2C) j+1 Z(0)]1+γε

=
3
4(2C) j+1 Z(0).

The contradiction implies that (60) holds for i = j . By an inductive argument on i , the claim is proved.
To finish proving this lemma, we have

‖u‖L8/(1+2δ)
t,x (R+×R3)

≤

N+1∑
i=0

‖u‖S1−δ([Ti ,Ti+1]) ≤

N+1∑
i=0

(2C)i Z(0) <∞ �

Corollary 3.12. Let δ, ε, u0, u1 and u satisfy the assumptions of Lemma 3.11. Then u scatters in Ḣ 1
x ×L2

x .

Proof. By the above discussion, it suffices to show

‖u‖L8−2ε
t,x ([T,∞)×R3) <∞
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for some T <∞, since 0< ε < ε0(δ) is equivalent to 8/(1+2δ) < 8−2ε. The proof of L8−2ε
t,x spacetime

bound is straightforward by (56), Lemma 3.11, and interpolation theory. �

4. Log-supercritical wave equation

For spherically symmetric log-supercritical nonlinear wave equation (1), (6) with finite energy E , we
observe that the potential energy bound provides slightly better pointwise control, (26), of the solution
than the one from the kinetic energy bound3; see [Ginibre et al. 1992; Tao 2007]. In this section, we
consider a slightly more supercritical wave equation than the equation in [Tao 2007] and prove the same
global regularity result by using (26).

Theorem 4.1. Define

H̃ 2
x (R

3) := Ḣ 1
x (R

3)∩ Ḣ 2
x (R

3).

Let 0< α ≤ 4
3 and (u0, u1) be smooth, compactly supported, and spherically symmetric initial data with

energy E. Then there exists a global smooth solution to

�u = |u|4u logα(2+ |u|2), u(0, x)= u0(x), ∂t u(0, x)= u1(x). (61)

Furthermore, we have the universal bound of H̃ 2
x × H 1

x norm, which depends on both the energy E
and H̃ 2

x × H 1
x norm of the initial data, of the solution u; this implies that the solution u scatters in

H̃ 2
x (R

3)× H 1
x (R

3).4

Remark 4.2. This theorem was proved in [Tao 2007] for α = 1, and it is easy to get the same result for
α < 1 from that argument. We take advantage of (26) to extend the range of α up to 4

3 . In the remainder
of this section, we will essentially follow Tao’s argument to prove Theorem 4.1 using (26) and sketch the
proof of H̃ 2

x × H 1
x scattering. We will skip the argument providing an explicit H̃ 2

x × H 1
x universal bound

here; see [Tao 2007] for details.

We will use a well-known global continuation result (for a proof see [Sogge 1995], for example).

Theorem 4.3 (classical existence theory). Let u : [0, T ] × R3
→ C be a classical solution5 to (61)

satisfying

‖u‖L∞t L∞x ([0,T ]×R3) <∞.

Then there is δ > 0 such that one can extend the solution u to [0, T + δ]×R3.

Proof of Theorem 4.1. By time reversal symmetry, it suffices to consider the global existence and scattering
theory of u on R+×R3.

3The kinetic energy bound can only provide
∫

I
∫

R3 |u|8 logα(2+ |u|2) dx dt . E3/2.
4The definition of H̃2

x × H1
x scattering for the solution u is similar to Definition 2.1, but the Ḣ1

x × L2
x -norm is replaced by the

H̃2
x × H1

x -norm.
5We call u a classical solution to (1) if u solves (1) and is smooth and compactly supported for each time.
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By the Sobolev embedding theorem, for a classical solution u to (61) on [0, T ]×R3, we have

‖u‖L∞t L∞x ([0,T ]×R3) .
2∑

j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3). (62)

Hence, applying classical existence theory (Theorem 4.3), in order to show global existence, it suffices to
prove that for any fixed 0< T ≤∞, we have

2∑
j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3) <∞,

provided that u is the classical solution to (61) on [0, T ]×R3.
Let I = [a, b] ⊆ [0, T ] be any interval. We define

MI : =

∫
I

∫
R3
|u(t, x)|8 log5α/4(2+ |u(t, x)|2) dx dt,

NI : =

1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)+‖∇t,x∇
j
x u‖L∞t L2

x (I×R3),

DI : = ‖∇t,x u(a)‖
H1

x (R3)
.

In addition, we set D = ‖∇t,x u(0)‖
H1

x (R3)
.

From the Strichartz inequality, Hölder’s inequality, and (62), we have

NI ≤ C‖∇t,x u(a)‖H1
x (R

3)+C
1∑

j=0

‖∇
j
x (|u|

4u logα(2+|u|2))‖L1
t L2

x (I×R3)

≤ C DI +C
1∑

j=0

‖|u|4|∇ j
x u| log(2+|u|2)‖L1

t L2
x (I×R3)

≤ C DI +C‖|u|4 log5α/8(2+|u|2)‖L2
t L2

x (I×R3)

( 1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)‖ log3α/8(2+|u|2)‖L∞t L∞x (I×R3)

)

≤ C DI +C‖u log5α/32(2+|u|2)‖4L8
t L8

x (I×R3)

( 1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)‖ log(2+|u|2)‖3α/8L∞t L∞x (I×R3)

)
≤ C DI +C M1/2

I NI log3α/8(2+‖u‖2L∞t L2
x (I×R3)

)

≤ C DI +C M1/2
I NI log1/2(2+N 2

I ).

From the result in [Tao 2007, Corollary 3.2], for any ε0 > 0,

k∑
i=0

ε0

log(2+ (2C)i D)
→∞ as k→∞.

Hence, for any fixed ε0, the finiteness of M[0,T ] from (26) implies that we can choose finitely many
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numbers 0= T0 < T1 < · · ·< TK < TK+1 = T , with K depending on D, E , and ε0, such that

Mi :=

∫ Ti+1

Ti

∫
R3
|u(t, x)|8 log5α/4(2+ |u(t, x)|2) dx dt =

ε0

log(2+ (2C)i D)

for 0≤ i ≤ K − 1 and MK ≤ ε0/log(2+ (2C)K D).
Choosing ε0 = 1/(100C)2, by iteration and continuity arguments, we claim that N[Ti ,Ti+1] < (2C)i+1 D

for 0≤ i ≤ K .6 Indeed, assume that this claim is false for some i = j . Then there exists t0 ∈ (T j , T j+1)

such that N[T j ,t0] = (2C) j+1 D. We have

(2C) j+1 D ≤ C(2C) j D+C M1/2
j N[T j ,t0] log1/2(2+ N 2

[T j ,t0])

≤
1
2(2C) j+1 D+ log1/2(2+(2C) j+1 D)

100 log1/2(2+(2C) j D)
× (2C) j+1 D

≤
3
4(2C) j+1 D.

Thus the claim is proved by contradiction. This implies

2∑
j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3) ≤ N[0,T ] ≤
K∑

i=0

N[Ti ,Ti+1] <

K∑
i=0

(2C)i+1 D <∞.

The universal bound only depends on D and E7, indicating the global existence.
Now we sketch the proof of H̃ 2

x × H 1
x scattering. From a similar argument as the one discussed in

Remark 2.2, in order to prove H̃ 2
x (R

3)× H 1
x (R

3) scattering, it suffices to show that

‖|u|4u logα(2+ |u|2)‖L1
t H1

x (R+×R3) <∞. (63)

By the above discussion, the universal bound is independent of T . Hence we have NR+ <∞. By Hölder’s
inequality,

‖|u|4u logα(2+ |u|2)‖L1
t H1

x (R+×R3) . M1/2
R+

NR+ log1/2(2+ N 2
R+
) <∞. �

Appendix: Proof of (30)

Since (u0, u1) lies in X1× Y1, defined in (9), we have

‖u0‖
2
X1
≥

∫
R3
|∇u0|

2 log2γ (1+ |x |) dx & (log2γ s)
∫
|x |>s
|∇u0|

2 dx .

Hence ∫
|x |>s
|∇u0|

2 dx .
‖u0‖

2
X1

log2γ s
. (64)

Similarly, ∫
|x |>s
|u1|

2 dx .
‖u1‖

2
Y1

log2γ s
. (65)

6See the similar arguments in Lemma 3.5 and Corollary 3.8 or Proposition 3.1 in [Tao 2007].
7In fact, from corollary 3.2 in [Tao 2007], we have NR+ . (2+ D)(2+D)O(E) .
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Now, consider∫
|x |>s

F(u0(x)) dx =
∫
{|x |>s}∩{|u0|<1/3}

F(u0(x)) dx +
∫
{|x |>s}∩{|u0|≥1/3}

F(u0(x)) dx

.
∫
{|x |>s}∩{|u0|<1/3}

|u0|
6(−log |u0|) dx +

∫
{|x |>s}∩{|u0|≥1/3}

|u0|
6 dx =: I + II.

Let

I =
∫
{|x |>s}∩{|u0(x)|<1/|x |2/3}

|u0|
6(−log |u0|) dx +

∫
{|x |>s}∩{1/|x |2/3≤|u0(x)|≤1/3}

|u0|
6(−log |u0|) dx

=: I1+ I2.

When s is sufficiently large,

I1 .
∫
{|x |>s}∩{|u0|<1/|x |2/3}

|u0|
11/2

(
sup

|u0|<s−2/3
|u0|

1/2(−log |u0|)
)

dx

.
∫
|x |>s
|x |−11/3 dx . s−2/3 . 1

log2γ s
. (66)

Now we aim to prove that I2+ II . 1
log2γ s

for s sufficiently large. For α ∈ R, define

Q(α) :=
∫

R3

∣∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣∣2 dx .

We claim that
Q(α)≤ C(‖u0‖X1, E, α) for α ≤ γ, (67)

where E is the energy. Indeed, if α ≤ 0, by Hölder’s inequality and Hardy’s inequality,

Q(α)=
∫
|x |<3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx +
∫
|x |≥3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx

.α

∫
|x |<3
|u0|

2 dx +
∫

R3

∣∣∣ u0

|x |

∣∣∣2 dx . ‖u0‖
2
Ḣ1

x (R
3)
+

(∫
R3

F(u0) dx
)1/3

≤ C(E, α). (68)

Again, if 0< α ≤ γ ,

Q(α)=
∫

R3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx .α

∫
|x |<3
|u0|

2 dx +
∫

R3

∣∣∣u0 logα(2+ |x |)
|x |

∣∣∣2 dx

.

(∫
|x |<3
|u0|

6 dx
)1/3

+

∫
R3
|∇(u0 logα(2+ |x |))|2 dx

.α

(∫
R3

F(u) dx
)1/3

+

∫
R3
|∇u0 logα(2+ |x |)|2 dx +

∫
R3

∣∣∣u0 logα−1(2+ |x |)
2+ |x |

∣∣∣2 dx

. E1/3
+

∫
|x |<3
|∇u0|

2 dx +
∫
|x |≥3
|∇u0 logγ (1+ |x |)|2 dx + Q(α− 1)

. E1/3
+ E +‖u0‖X1 + Q(α− 1).

By an inductive argument and (68), the claim is proved.
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Fix s� 1. Let χ be the smooth radial function which equals 1 on {|x |> s}, 0 on {|x |< s/2}, 0≤ χ ≤ 1
and |∇χ |. 1/s. Then we have |∇χ |. 1/|x |. By the Sobolev embedding theorem and Hardy’s inequality,

log6γ s
∫
|x |>s
|u0|

6 dx

≤

∫
|x |>s
|u0|

6 log6γ (|x |) dx ≤
∫

R3
(χ |u0| logγ (2+ |x |))6 dx .

(∫
R3

∣∣∇(χu0 logγ (2+ |x |)
)∣∣2 dx

)3

.γ

(∫
R3
|∇χu0 logγ (2+ |x |)|2 dx +

∫
R3
|χ∇u0 logγ (2+ |x |)|2 dx +

∫
R3

∣∣∣∣χu0 logγ−1(2+ |x |)
2+ |x |

∣∣∣∣2 dx
)3

=: (J1+ J2+ J3)
3.

We can compute that

J2 .γ

∫
R3

∣∣∇u0 logγ (1+ |x |)
∣∣2 dx +

∫
|x |<3
|∇u0|

2 dx ≤ ‖u0‖
2
X1
+ E,

J3 . C(‖u0‖X1, E, γ ), by (67).

Since ∇χ . 1/|x |,

J1 .
∫
|x |>s/2

∣∣∣∣u0 logγ (2+ |x |)
|x |

∣∣∣∣2 dx .
∫
|x |>s/2

∣∣∣∣u0 logγ (2+ |x |)
2+ |x |

∣∣∣∣2 dx

. C(‖u0‖X1, E, γ ).

Hence log6γ s
∫
|x |>s |u0|

6 dx ≤ C(‖u0‖X1, E, γ ) for sufficiently large s. Then we deduce

II ≤
∫
|x |>s
|u0|

6 dx . 1
log6γ s

≤
1

log2γ s
. (69)

Similarly,

log6γ−1 s
∫
{|x |>s}∩{1/|x |2/3≤|u0|≤1/3}

|u0|
6(−log |u0|) dx . log6γ−1 s

∫
|x |>s
|u0|

6 log(|x |) dx

.
∫
|x |>s
|u0|

6 log6γ (|x |) dx . C(‖u0‖X1, E, γ ).

Therefore,

I2 .
1

log6γ−1 s
≤

1
log2γ s

. (70)

Combining (64), (65), (66), (69), and (70), we obtain (30).
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LOCALISATION AND COMPACTNESS PROPERTIES
OF THE NAVIER–STOKES GLOBAL REGULARITY PROBLEM

TERENCE TAO

In this paper we establish a number of implications between various qualitative and quantitative versions
of the global regularity problem for the Navier–Stokes equations in the periodic, smooth finite energy,
smooth H 1, Schwartz, and mild H 1 categories, and with or without a forcing term. In particular, we
show that if one has global well-posedness in H 1 for the periodic Navier–Stokes problem with a forcing
term, then one can obtain global regularity both for periodic and for Schwartz initial data (thus yielding
a positive answer to both official formulations of the problem for the Clay Millennium Prize), and can
also obtain global almost smooth solutions from smooth H 1 data or smooth finite energy data, although
we show in this category that fully smooth solutions are not always possible. Our main new tools are
localised energy and enstrophy estimates to the Navier–Stokes equation that are applicable for large data
or long times, and which may be of independent interest.

1. Introduction

The purpose of this paper is to establish some implications between various formulations of the global
regularity problem (either with or without a forcing term) for the Navier–Stokes system of equations,
including the four formulations appearing in the Clay Millennium Prize formulation [Fefferman 2006] of
the problem, and in particular to isolate a single formulation that implies these four formulations, as well
as several other natural versions of the problem. In the course of doing so, we also establish some new
local energy and local enstrophy estimates which seem to be of independent interest.

To describe these various formulations, we must first define properly the concept of a solution to
the Navier–Stokes problem. We will need to study a number of different types of solutions, including
periodic solutions, finite energy solutions, H 1 solutions, and smooth solutions; we will also consider a
forcing term f in addition to the initial data u0. We begin in the classical regime of smooth solutions.
Note that even within the category of smooth solutions, there is some choice in what decay hypotheses to
place on the initial data and solution; for instance, one can require that the initial velocity u0 be Schwartz
class, or merely smooth with finite energy. Intermediate between these two will be data which is smooth
and in H 1.

More precisely, we define:

The author is supported by NSF Research Award CCF-0649473, the NSF Waterman Award and a grant from the MacArthur
Foundation.
MSC2010: 35Q30, 76D05, 76N10.
Keywords: Navier–Stokes equation, global regularity.
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Definition 1.1 (Smooth solutions to the Navier–Stokes system). A smooth set of data for the Navier–
Stokes system up to time T is a triplet (u0, f, T ), where 0< T <∞ is a time, the initial velocity vector
field u0 : R

3
→ R3 and the forcing term f : [0, T ] × R3

→ R3 are assumed to be smooth on R3 and
[0, T ]×R3 respectively (thus, u0 is infinitely differentiable in space, and f is infinitely differentiable in
space-time), and u0 is furthermore required to be divergence-free:

∇ · u0 = 0. (1)

If f = 0, we say that the data is homogeneous.
The total energy E(u0, f, T ) of a smooth set of data (u0, f, T ) is defined by the quantity1

E(u0, f, T ) := 1
2

(
‖u0‖L2

x (R
3)+‖ f ‖L1

t L2
x ([0,T ]×R3)

)2
, (2)

and (u0, f, T ) is said to have finite energy if E(u0, f, T ) <∞. We define the H 1 norm H1(u0, f, T ) of
the data to be the quantity

H1(u0, f, T ) := ‖u0‖H1
x (R

3)+‖ f ‖L∞t H1
x (R

3) <∞,

and say that (u0, f, T ) is H 1 if H1(u0, f, T ) <∞; note that the H 1 regularity is essentially one derivative
higher than the energy regularity, which is at the level of L2, and instead matches the regularity of the
initial enstrophy

1
2

∫
R3
|ω0(t, x)|2 dx,

where ω0 := ∇ × u0 is the initial vorticity. We say that a smooth set of data (u0, f, T ) is Schwartz if, for
all integers α,m, k ≥ 0, one has

sup
x∈R3

(1+ |x |)k
∣∣∇αx u0(x)

∣∣<∞
and

sup
(t,x)∈[0,T ]×R3

(1+ |x |)k
∣∣∇αx ∂m

t f (x)
∣∣<∞.

Thus, for instance, the Schwartz property implies H 1, which in turn implies finite energy. We also say that
(u0, f, T ) is periodic with some period L > 0 if one has u0(x+ Lk)= u0(x) and f (t, x+ Lk)= f (t, x)
for all t ∈ [0, T ], x ∈ R3, and k ∈ Z3. Of course, periodicity is incompatible with the Schwartz, H 1, and
finite energy properties, unless the data is zero. To emphasise the periodicity, we will sometimes write a
periodic set of data (u0, f, T ) as (u0, f, T, L).

A smooth solution to the Navier–Stokes system, or a smooth solution, is a quintuplet (u, p, u0, f, T ),
where (u0, f, T ) is a smooth set of data, and the velocity vector field u : [0, T ]×R3

→ R3 and pressure
field p : [0, T ]×R3

→ R are smooth functions on [0, T ]×R3 that obey the Navier–Stokes equation

∂t u+ (u · ∇)u =1u−∇ p+ f (3)

and the incompressibility property
∇ · u = 0 (4)

1We will review our notation for space-time norms such as L p
t Lq

x , together with sundry other notation, in Section 2.
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on all of [0, T ]×R3, and also the initial condition

u(0, x)= u0(x) (5)

for all x ∈ R3. We say that a smooth solution (u, p, u0, f, T ) has finite energy if the associated data
(u0, f, T ) has finite energy, and in addition one has2

‖u‖L∞t L2
x ([0,T ]×R3) <∞. (6)

Similarly, we say that (u, p, u0, f, T ) is H 1 if the associated data (u0, f, T ) is H 1, and in addition one
has

‖u‖L∞t H1
x ([0,T ]×R3)+‖u‖L2

t H2
x ([0,T ]×R3) <∞. (7)

We say instead that a smooth solution (u, p, u0, f, T ) is periodic with period L > 0 if the associated data
(u0, f, T )= (u0, f, T, L) is periodic with period L , and if u(t, x+Lk)= u(t, x) for all t ∈ [0, T ], x ∈R3,
and k ∈ Z3. (Following [Fefferman 2006], however, we will not initially directly require any periodicity
properties on the pressure.) As before, we will sometimes write a periodic solution (u, p, u0, f, T ) as
(u, p, u0, f, T, L) to emphasise the periodicity.

We will sometimes abuse notation and refer to a solution (u, p, u0, f, T ) simply as (u, p) or even u.
Similarly, we will sometimes abbreviate a set of data (u0, f, T ) as (u0, f ) or even u0 (in the homogeneous
case f = 0).

Remark 1.2. In [Fefferman 2006], one considered3 smooth finite energy solutions associated to Schwartz
data, as well as periodic smooth solutions associated to periodic smooth data. In the latter case, one can of
course normalise the period L to equal 1 by a simple scaling argument. In this paper we will be focussed
on the case when the data (u0, f, T ) is large, although we will not study the asymptotic regime when
T →∞.

We recall the two standard global regularity conjectures for the Navier–Stokes equation, using the
formulation in [Fefferman 2006]:

Conjecture 1.3 (Global regularity for homogeneous Schwartz data). Let (u0, 0, T ) be a homogeneous
Schwartz set of data. Then there exists a smooth finite energy solution (u, p, u0, 0, T ) with the indicated
data.

Conjecture 1.4 (Global regularity for homogeneous periodic data). Let (u0, 0, T ) be a smooth homoge-
neous periodic set of data. Then there exists a smooth periodic solution (u, p, u0, 0, T ) with the indicated
data.

2Following [Fefferman 2006], we omit the finite energy dissipation condition ∇u ∈ L2
t L2

x ([0, T ]×R3) that often appears
in the literature, particularly when discussing Leray–Hopf weak solutions. However, it turns out that this condition is actually
automatic from (6) and smoothness; see Lemma 8.1. Similarly, from Corollary 11.1 we shall see that the L2

t H2
x condition in (7)

is in fact redundant.
3The viscosity parameter ν was not normalised in [Fefferman 2006] to equal 1, as we are doing here, but one can easily

reduce to the ν = 1 case by a simple rescaling.
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In view of these conjectures, one can naturally try to extend them to the inhomogeneous case as
follows:

Conjecture 1.5 (Global regularity for Schwartz data). Let (u0, f, T ) be a Schwartz set of data. Then
there exists a smooth finite energy solution (u, p, u0, f, T ) with the indicated data.

Conjecture 1.6 (Global regularity for periodic data). Let (u0, f, T ) be a smooth periodic set of data.
Then there exists a smooth periodic solution (u, p, u0, f, T ) with the indicated data.

As described in [Fefferman 2006], a positive answer to either Conjecture 1.3 or Conjecture 1.4, or a
negative answer to Conjecture 1.5 or Conjecture 1.6, would qualify for the Clay Millennium Prize.

However, Conjecture 1.6 is not quite the “right” extension of Conjecture 1.4 to the inhomogeneous
setting, and needs to be corrected slightly. This is because there is a technical quirk in the inhomogeneous
periodic problem as formulated in Conjecture 1.6, due to the fact that the pressure p is not required to be
periodic. This opens up a Galilean invariance in the problem which allows one to homogenise away the
role of the forcing term. More precisely, we have:

Proposition 1.7 (Elimination of forcing term). Conjecture 1.6 is equivalent to Conjecture 1.4.

We establish this fact in Section 6. We remark that this is the only implication we know of that can
deduce a global regularity result for the inhomogeneous Navier–Stokes problem from a global regularity
result for the homogeneous Navier–Stokes problem.

Proposition 1.7 exploits the technical loophole of nonperiodic pressure. The same loophole can also be
used to easily demonstrate failure of uniqueness for the periodic Navier–Stokes problem (although this
can also be done by the much simpler expedient of noting that one can adjust the pressure by an arbitrary
constant without affecting (3)). This suggests that in the nonhomogeneous case f 6= 0, one needs an
additional normalisation to “fix” the periodic Navier–Stokes problem to avoid such loopholes. This can be
done in a standard way, as follows. If one takes the divergence of (3) and uses the incompressibility (4),
one sees that

1p =−∂i∂ j (ui u j )+∇ · f, (8)

where we use the usual summation conventions. If (u, p, u0, f, T ) is a smooth periodic solution, then the
right-hand side of (8) is smooth and periodic and has mean zero. From Fourier analysis, we see that given
any smooth periodic mean-zero function F , there is a unique smooth periodic mean-zero function 1−1 F
with Laplacian equal to F . We then say that the periodic smooth solution (u, p, u0, f, T ) has normalised
pressure if one has4

p =−1−1∂i∂ j (ui u j )+1
−1
∇ · f. (9)

We remark that this normalised pressure condition can also be imposed for smooth finite energy solutions
(because ∂i∂ j (ui u j ) is a second derivative of an L1

x(R
3) function, and ∇ · f is the first derivative of an

L2
x(R

3) function), but it will turn out that normalised pressure is essentially automatic in that setting
anyway; see Lemma 4.1.

4Up to the harmless freedom to add a constant to p, this normalisation is equivalent to requiring that the pressure be periodic
with the same period as the solution u.
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It is well known that once one imposes the normalised pressure condition, the periodic Navier–Stokes
problem becomes locally well-posed in the smooth category (in particular, smooth solutions are now
unique, and exist for sufficiently short times from any given smooth data); see Theorem 5.1. Related
to this, the Galilean invariance trick that allows one to artificially homogenise the forcing term f is no
longer available. We can then pose a “repaired” version of Conjecture 1.6:

Conjecture 1.8 (Global regularity for periodic data with normalised pressure). Let (u0, f, T ) be a smooth
periodic set of data. Then there exists a smooth periodic solution (u, p, u0, f, T ) with the indicated data
and with normalised pressure.

It is easy to see that the homogeneous case f = 0 of Conjecture 1.8 is equivalent to Conjecture 1.4;
see, for example, Lemma 4.1 below.

We now leave the category of classical (smooth) solutions for now, and turn instead to the category of
periodic H 1 mild solutions (u, p, u0, f, T, L). By definition, these are functions

u, f : [0, T ]×R3/LZ3
→ R3, p : [0, T ]×R3/LZ3

→ R, u0 : R
3/LZ3

→ R3,

with 0< T, L <∞, obeying the regularity hypotheses

u0 ∈ H 1
x (R

3/LZ3),

f ∈ L∞t H 1
x ([0, T ]× (R3/LZ3)),

u ∈ L∞t H 1
x ∩ L2

t H 2
x ([0, T ]× (R3/LZ3)),

with p being given by (9), which obey the divergence-free conditions (4), (1) and obey the integral form

u(t)= et1u0+

∫ t

0
e(t−t ′)1(

−(u · ∇)u−∇ p+ f
)
(t ′) dt ′ (10)

of the Navier–Stokes equation (3) with initial condition (5); using the Leray projection P onto divergence-
free vector fields, we may also express (19) equivalently as

u(t)= et1u0+

∫ t

0
e(t−t ′)1(PB(u, u)+ P f )(t ′) dt ′, (11)

where B(u, v) is the symmetric bilinear form

B(u, v)i := − 1
2∂ j (uiv j + u jvi ). (12)

Similarly, we define periodic H 1 data to be a quadruplet (u0, f, T, L) whose H 1 norm

H1(u0, f, T, L) := ‖u0‖H1
x ((R

3/LZ3))+‖ f ‖L∞t H1
x ((R

3/LZ3))

is finite, with u0 divergence-free.
Note from Duhamel’s formula (20) that every smooth periodic solution with normalised pressure is

automatically a periodic H 1 mild solution.
As we will recall in Theorem 5.1 below, the Navier–Stokes equation is locally well-posed in the

periodic H 1 category. We can then formulate a global well-posedness conjecture in this category:
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Conjecture 1.9 (Global well-posedness in periodic H 1). Let (u0, f, T, L) be a periodic H 1 set of data.
Then there exists a periodic H 1 mild solution (u, p, u0, f, T, L) with the indicated data.

We may also phrase a quantitative variant of this conjecture:

Conjecture 1.10 (A priori periodic H 1 bound). There exists a function F : R+×R+×R+→ R+ with
the property that whenever (u, p, u0, f, T, L) is a smooth periodic normalised-pressure solution with
0< T < T0 <∞ and

H1(u0, f, T, L)≤ A <∞,

we have
‖u‖L∞t H1

x ([0,T ]×R3/LZ3) ≤ F(A, L , T0).

Remark 1.11. By rescaling, one may set L = 1 in this conjecture without any loss of generality; by
partitioning the time interval [0, T0] into smaller subintervals, we may also simultaneously set T0 = 1 if
desired. Thus, the key point is that the size of the data A is allowed to be large (for small A the conjecture
follows from the local well-posedness theory; see Theorem 5.1).

As we shall soon see, Conjecture 1.9 and Conjecture 1.10 are actually equivalent.
We now turn to the nonperiodic setting. In Conjecture 1.5, the hypothesis that the initial data be

Schwartz may seem unnecessarily restrictive, given that the incompressible nature of the fluid implies
that the Schwartz property need not be preserved over time; also, there are many interesting examples of
initial data that are smooth and finite energy (or H 1) but not Schwartz. In particular, one can consider
generalising Conjecture 1.5 to data that is merely smooth and H 1, or even smooth and finite energy, rather
than Schwartz5 of Conjecture 1.5. Unfortunately, the naive generalisation of Conjecture 1.5 (or even
Conjecture 1.3) fails instantaneously in this case:

Theorem 1.12 (No smooth solutions from smooth H 1 data). There exists smooth u0 ∈ H 1
x (R

3) such that
there does not exist any smooth finite energy solution (u, p, u0, 0, T ) with the indicated data for any
T > 0.

We prove this proposition in Section 15. At first glance, this proposition looks close to being a negative
answer to either Conjecture 1.5 or Conjecture 1.3, but it relies on a technicality; for smooth H 1 data,
the second derivatives of u0 need not be square-integrable, and this can cause enough oscillation in the
pressure to prevent the pressure from being C2

t (or the velocity field from being C3
t ) at the initial time6

t = 0. This theorem should be compared with the classical local existence theorem of Heywood [1980],
which obtains smooth solutions for small positive times from smooth data with finite enstrophy, but
merely obtains continuity at the initial time t = 0.

The situation is even worse in the inhomogeneous setting; the argument in Theorem 1.12 can be used
to construct inhomogeneous smooth H 1 data whose solutions will now be nonsmooth in time at all times,

5We are indebted to Andrea Bertozzi for suggesting these formulations of the Navier–Stokes global regularity problem.
6For most evolutionary PDEs, one can gain unlimited time differentiability at t = 0 assuming smooth initial data by

differentiating the PDE in time (see the proof of the Cauchy–Kowalesky theorem). However, the problem here is that the pressure
p in the Navier–Stokes equation does not obey an evolutionary PDE, but is instead determined in a nonlocal fashion from the
initial data u (see (9)), which prevents one from obtaining much time regularity of the pressure initially.
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not just at the initial time t = 0. Because of this, we will not attempt to formulate a global regularity
problem in the inhomogeneous smooth H 1 or inhomogeneous smooth finite energy categories.

In the homogeneous setting, though, we can get around this technical obstruction by introducing the
notion of an almost smooth finite energy solution (u, p, u0, f, T ), which is the same concept as a smooth
finite energy solution, but instead of requiring u, p to be smooth on [0, T ] × R3, we instead require
that u, p are smooth on (0, T ] ×R3, and for each k ≥ 0, the functions ∇k

x u, ∂t∇
k
x u,∇k

x p exist and are
continuous on [0, T ] ×R3. Thus, the only thing that almost smooth solutions lack when compared to
smooth solutions is a limited amount of time differentiability at the starting time t = 0; informally, u
is only C1

t C∞x at t = 0, and p is only C0
t C∞x at t = 0. This is still enough regularity to interpret the

Navier–Stokes equation (3) in the classical sense, but is not a completely smooth solution.
The “corrected” conjectures for global regularity in the homogeneous smooth H 1 and smooth finite

energy categories are then:

Conjecture 1.13 (Global almost regularity for homogeneous H 1). Let (u0, 0, T ) be a smooth homoge-
neous H 1 set of data. Then there exists an almost smooth finite energy solution (u, p, u0, 0, T ) with the
indicated data.

Conjecture 1.14 (Global almost regularity for homogeneous finite energy data). Let (u0, 0, T ) be a
smooth homogeneous finite energy set of data. Then there exists an almost smooth finite energy solution
(u, p, u0, 0, T ) with the indicated data.

We carefully note that these conjectures only concern existence of smooth solutions, and not uniqueness;
we will comment on some of the uniqueness issues later in this paper.

Another way to repair the global regularity conjectures in these settings is to abandon smoothness
altogether, and work instead with the notion of mild solutions. More precisely, define a H 1 mild solution
(u, p, u0, f, T ) to be fields u, f : [0, T ]×R3

→R3, p : [0, T ]×R3
→R, u0 :R

3
→R3 with 0< T <∞,

obeying the regularity hypotheses

u0 ∈ H 1
x (R

3),

f ∈ L∞t H 1
x ([0, T ]×R3),

u ∈ L∞t H 1
x ∩ L2

t H 2
x ([0, T ]×R3),

with p being given by (9), which obey (4), (1), and (10) (and thus (11)). Similarly, define the concept of
H 1 data (u0, f, T ).

We then have the following conjectures in the homogeneous setting:

Conjecture 1.15 (Global well-posedness in homogeneous H 1). Let (u0, 0, T ) be a homogeneous H 1 set
of data. Then there exists an H 1 mild solution (u, p, u0, 0, T ) with the indicated data.

Conjecture 1.16 (A priori homogeneous H 1 bound). There exists a function F : R+×R+→ R+ with
the property that whenever (u, p, u0, 0, T ) is a smooth H 1 solution with 0< T < T0 <∞ and

‖u0‖H1
x (R

3) ≤ A <∞,
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we have
‖u‖L∞t H1

x ([0,T ]×R3) ≤ F(A, T0).

We also phrase a global-in-time variant:

Conjecture 1.17 (A priori global homogeneous H 1 bound). There exists a function F : R+→ R+ with
the property that whenever (u, p, u0, 0, T ) is a smooth H 1 solution with

‖u0‖H1
x (R

3) ≤ A <∞,

then
‖u‖L∞t H1

x ([0,T ]×R3) ≤ F(A).

In the inhomogeneous setting, we will state two slightly technical conjectures:

Conjecture 1.18 (Global well-posedness from spatially smooth Schwartz data). Let (u0, f, T ) be data
obeying the bounds

sup
x∈R3

(1+ |x |)k |∇αx u0(x)|<∞

and
sup

(t,x)∈[0,T ]×R3
(1+ |x |)k |∇αx f (x)|<∞

for all k, α ≥ 0. Then there exists an H 1 mild solution (u, p, u0, f, T ) with the indicated data.

Conjecture 1.19 (Global well-posedness from spatially smooth H 1 data). Let (u0, f, T ) be an H 1 set of
data, such that

sup
x∈K
|∇

α
x u0(x)|<∞

and
sup

(t,x)∈[0,T ]×K
|∇

α
x f (x)|<∞

for all α ≥ 0 and all compact K . Then there exists an H 1 mild solution (u, p, u0, f, T ) with the indicated
data.

Needless to say, we do not establish7 any of these conjectures unconditionally in this paper. However,
as the main result of this paper, we are able to establish the following implications:

Theorem 1.20 (Implications). (i) Conjectures 1.9 and 1.10 are equivalent.

(ii) Conjecture 1.9 implies Conjecture 1.8 (and hence also Conjectures 1.6 and 1.4).

(iii) Conjecture 1.9 implies Conjecture 1.19, which is equivalent to Conjecture 1.18.

(iv) Conjecture 1.19 implies Conjectures 1.13 and 1.5 (and hence also Conjecture 1.3).

(v) Conjecture 1.13 is equivalent to Conjecture 1.14.

(vi) Conjectures 1.13, 1.15, 1.16, and 1.17 are all equivalent.

7Indeed, the arguments here do not begin to address the main issue in any of these conjectures, namely the analysis of
fine-scale (and turbulent) behaviour. The results in this paper do not prevent singularities from occurring in the Navier–Stokes
flow; but they can largely localise the impact of such singularities to a bounded region of space.
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Figure 1. Known implications between the various conjectures described here (existence
of smooth or mild solutions, or local or global quantitative bounds in the periodic,
Schwartz, H 1, or finite energy categories, with or without normalised pressure, and
with or without the f = 0 condition) and also in [Tao 2007] (the latter conjectures and
implications occupy the far left column). A positive solution to the red problems, or a
negative solution to the blue problems, qualify for the Clay Millennium prize, as stated
in [Fefferman 2006].

The logical relationship between these conjectures, given by the implications above (as well as some
trivial implications, and the equivalences in [Tao 2007]), is displayed in Figure 1.

Among other things, these results essentially show that in order to solve the Navier–Stokes global
regularity problem, it suffices to study the periodic setting (but with the caveat that one now has to
consider forcing terms with the regularity of L∞t H 1

x ).
Theorem 1.20(i) is a variant of the compactness arguments used in [Tao 2007] (see also [Gallagher 2001;

Rusin and Šverák 2011]), and is proven in Section 7. Part (ii) of this theorem is a standard consequence
of the periodic H 1 local well-posedness theory, which we review in Section 5. In the homogeneous f = 0
case it is possible to reverse this implication by the compactness arguments mentioned previously; see
[Tao 2007]. However, we were unable to obtain this converse implication in the inhomogeneous case.
Part (iv) is similarly a consequence of the nonperiodic H 1 local well-posedness theory, and is also proven
in Section 5.
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Part (vi) is also a variant of the results in [Tao 2007], with the main new ingredient being a use of
concentration compactness instead of compactness in order to deal with the unboundedness of the spatial
domain R3, using the methods from [Bahouri and Gérard 1999; Gérard 1998; Gallagher 2001]. We
establish these results in Section 14.

The more novel aspects of this theorem are parts (iii) and (v), which we establish in Sections 12 and 13
respectively. These results rely primarily on a new localised enstrophy inequality (Theorem 10.1) which
can be viewed as a weak version of finite speed of propagation8 for the enstrophy 1

2

∫
R3 |ω(t, x)|2 dx ,

where ω := ∇ × u is the vorticity. We will also obtain a similar localised energy inequality for the energy
1
2

∫
R3 |u(t, x)|2 dx , but it will be the enstrophy inequality that is of primary importance to us, as the

enstrophy is a subcritical quantity and can be used to obtain regularity (and local control on enstrophy can
similarly be used to obtain local regularity). Remarkably, one is able to obtain local enstrophy inequalities
even though the only a priori controlled quantity, namely the energy, is supercritical; the main difficulty
is a harmonic analysis one, namely to control nonlinear effects primarily in terms of the local enstrophy
and only secondarily in terms of the energy.

Remark 1.21. As one can see from Figure 1, the precise relationship between all the conjectures discussed
here is rather complicated. However, if one is willing to ignore the distinction between homogeneous
and inhomogeneous data, as well as the (rather technical) distinction between smooth and almost smooth
solutions, then the main implications can then be informally summarised as follows:

• (Homogenisation) Without pressure normalisation, the inhomogeneity in the periodic global regularity
conjecture is irrelevant: the inhomogeneous regularity conjecture is equivalent to the homogeneous
one.

• (Localisation) The global regularity problem in the Schwartz, H 1, and finite energy categories are
“essentially” equivalent to each other.

• (More localisation) The global regularity problem in any of the above three categories is “essentially”
a consequence of the global regularity problem in the periodic category.

• (Concentration compactness) Quantitative and qualitative versions of the global regularity problem
(in a variety of categories) are “essentially” equivalent to each other.

The qualifier “essentially” here though needs to be taken with a grain of salt; again, one should consult
Figure 1 for an accurate depiction of the implications.

The local enstrophy inequality has a number of other consequences, for instance allowing one to
construct Leray–Hopf weak solutions whose (spatial) singularities are compactly supported in space; see
Proposition 11.9.

Remark 1.22. Since the submission of this manuscript, the referee pointed out that the partial regularity
theory of Caffarelli, Kohn, and Nirenberg [1982] also allows one to partially reverse the implication in

8Actually, in our setting, “finite distance of propagation” would be more accurate; we obtain an L1
t bound for the propagation

velocity (see Proposition 9.1) rather than an L∞t bound.
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Theorem 1.20(iii), and more specifically to deduce Conjecture 1.8 from Conjecture 1.19. We sketch the
referee’s argument in Remark 12.3.

2. Notation and basic estimates

We use X . Y , Y & X , or X = O(Y ) to denote the estimate X ≤ CY for an absolute constant C . If we
need C to depend on a parameter, we shall indicate this by subscripts; thus for instance X .s Y denotes
the estimate X ≤ CsY for some Cs depending on s. We use X ∼ Y as shorthand for X . Y . X .

We will occasionally use the Einstein summation conventions, using Roman indices i, j to range
over the three spatial dimensions 1, 2, 3, though we will not bother to raise and lower these indices; for
instance, the components of a vector field u will be ui . We use ∂i to denote the derivative with respect to
the i-th spatial coordinate xi . Unless otherwise specified, the Laplacian 1= ∂i∂i will denote the spatial
Laplacian. (In Lemma 12.1, though, we will briefly need to deal with the Laplace–Beltrami operator 1S2

on the sphere S2.) Similarly, ∇ will refer to the spatial gradient ∇ = ∇x unless otherwise stated. We use
the usual notations ∇ f , ∇ · u, ∇ × u, for the gradient, divergence, or curl of a scalar field f or a vector
field u.

It will be convenient (particularly when dealing with nonlinear error terms) to use schematic notation,
in which an expression such as O(uvw) involving some vector- or tensor-valued quantities u, v, w denotes
some constant-coefficient combination of products of the components of u, v, w respectively, and similarly
for other expressions of this type. Thus, for instance, ∇×∇×u could be written schematically as O(∇2u),
|u× v|2 could be written schematically as O(uuvv), and so forth.

For any centre x0∈R3 and radius R>0, we use B(x0, R) :={x ∈R3
: |x−x0|≤ R} to denote the (closed)

Euclidean ball. Much of our analysis will be localised to a ball B(x0, R), an annulus B(x0, R)\B(x0, r),
or an exterior region R3

\B(x0, R) (and often x0 will be normalised to the origin 0).
We define the absolute value of a tensor in the usual Euclidean sense. Thus, for instance, if u = ui is a

vector field, then |u|2 = ui ui , |∇u|2 = (∂i u j )(∂i u j ), |∇2u|2 = (∂i∂ j uk)(∂i∂ j uk), and so forth.
If E is a set, we use 1E to denote the associated indicator function; thus 1E(x)= 1 when x ∈ E and

1E(x) = 0 otherwise. We sometimes also use a statement in place of E ; thus for instance 1k 6=0 would
equal 1 if k 6= 0 and 0 when k = 0.

We use the usual Lebesgue spaces L p(�) for various domains � (usually subsets of Euclidean space
R3 or a torus R3/LZ3) and various exponents 1≤ p≤∞, which will always be equipped with an obvious
Lebesgue measure. We often write L p(�) as L p

x (�) to emphasise the spatial nature of the domain �.
Given an absolutely integrable function f ∈ L1

x(R
3), we define the Fourier transform f̂ : R3

→ C by the
formula

f̂ (ξ) :=
∫

R3
e−2π i x ·ξ f (x) dx;

we then extend this Fourier transform to tempered distributions in the usual manner. For a function f
which is periodic with period 1, and thus representable as a function on the torus R3/Z3, we define the
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discrete Fourier transform f̂ : Z3
→ C by the formula

f̂ (k) :=
∫

R3/Z3
e−2π ik·x f (x) dx

when f is absolutely integrable on R3/Z3, and extend this to more general distributions on R3/Z3 in the
usual fashion. Strictly speaking, these two notations are not compatible with each other, but it will always
be clear in context whether we are using the nonperiodic or the periodic Fourier transform.

For any spatial domain � (contained in either R3 or R3/LZ3) and any natural number k ≥ 0, we define
the classical Sobolev norms ‖u‖H k

x (�)
of a smooth function u :�→ R by the formula

‖u‖H k
x (�)
:=

( k∑
j=0

‖∇
j u‖2L2

x (�)

)1/2

,

and say that u ∈ H k
x (�) when ‖u‖H k

x (�)
is finite. Note that we do not impose any vanishing conditions at

the boundary of �, and to avoid technical issues we will not attempt to define these norms for nonsmooth
functions u in the event that � has a nontrivial boundary. In the domain R3 and for s ∈ R, we define the
Sobolev norm ‖u‖H s

x (R
3) of a tempered distribution u : R3

→ R by the formula

‖u‖H s
x (R

3) :=

(∫
R3
(1+ |ξ |2)s |û(ξ)|2 dξ

)1/2

.

Strictly speaking, this conflicts slightly with the previous notation when k is a nonnegative integer, but
the two norms are equivalent up to constants (and both norms define a Hilbert space structure), so the
distinction will not be relevant for our purposes. For s >− 3

2 , we also define the homogeneous Sobolev
norm

‖u‖Ḣ s
x (R

3) :=

(∫
R3
|ξ |2s
|û(ξ)|2 dξ

)1/2

,

and let H s
x (R

3), Ḣ s
x (R

3) be the space of tempered distributions with finite H s
x (R

3) or Ḣ s
x (R

3) norm
respectively. Similarly, on the torus R3/Z3 and s ∈ R, we define the Sobolev norm ‖u‖H s

x (R
3/Z3) of a

distribution u : R3/Z3
→ R by the formula

‖u‖H s
x (R

3/Z3) :=

(∑
k∈Z3

(1+ |k|2)s |û(k)|2
)1/2

;

again, this conflicts slightly with the classical Sobolev norms H k
x (R

3/Z3), but this will not be a serious
issue in this paper. We define H s

x (R
3/Z3) to be the space of all distributions u with finite H s

x (R
3/Z3)

norm, and H s
x (R

3/Z3)0 to be the codimension-one subspace of functions or distributions u which are
mean-zero in the sense that û(0)= 0.
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In a similar vein, given a spatial domain � and a natural number k ≥ 0, we define Ck
x (�) to be the

space of all k times continuously differentiable functions u :�→ R whose norm

‖u‖Ck
x (�)
:=

k∑
j=0

‖∇
j u‖L∞x (�)

is finite9. Given any spatial norm ‖‖Xx (�) associated to a function space Xx defined on a spatial domain
�, and a time interval I , we can define mixed-norms ‖u‖L p

t Xx (I×�) on functions u : I ×�→ R by the
formula

‖u‖L p
t Xx (I×�) :=

(∫
I
‖u(t)‖p

Xx (�)
dt
)1/p

when 1≤ p <∞, and
‖u‖L∞t Xx (I×�) := ess supt∈I ‖u(t)‖Xx (�),

assuming in both cases that u(t) lies in X (�) for almost every �, and then let L p
t Xx(I ×�) be the

space of functions (or, in some cases, distributions) whose L p
t Xx(I ×�) is finite. Thus, for instance,

L∞t C2
x (I×�)would be the space of functions u : I×�→R such that for almost every x ∈ I , u(t) :�→R

is in C2
x (�), and the norm

‖u‖L∞t C2
x (I×�) := ess supt∈I ‖u(t)‖C2

x (�)

is finite.
Similarly, for any natural number k ≥ 0, we define Ck

t Xx(I ×�) to be the space of all functions
u : I ×�→ R such that the curve t 7→ u(t) from I to Xx(�) is k times continuously differentiable, and
such that the norm

‖u‖Ck
t Xx (I×�) :=

k∑
j=0

‖∇
j u‖L∞t Xx (I×�)

is finite.
Given two normed function spaces X, Y on the same domain (in either space or space-time), we can

endow their intersection X ∩ Y with the norm

‖u‖X∩Y := ‖u‖X +‖u‖Y .

For us, the most common example of such hybrid norms will be the spaces

X s(I ×�) := L∞t H s
x (I ×�)∩ L2

x H s+1
x (I ×�), (13)

defined whenever I is a time interval, s is a natural number, and � is a spatial domain, or whenever
I is a time interval, s is real, and � is either R3 or R3/Z3. The X s spaces (particularly X1) will play
a prominent role in the (subcritical) local well-posedness theory for the Navier–Stokes equations; see

9Note that if � is noncompact, then it is possible for a smooth function to fail to lie in Ck(�) if it becomes unbounded or
excessively oscillatory at infinity. One could use a notation such as Ck

x,loc(�) to describe the space of functions that are k times
continuously differentiable with no bounds on derivatives, but we will not need such notation here.
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Section 5. The space X0 will also be naturally associated with energy estimates, and the space X1 with
enstrophy estimates.

All of these above function spaces can of course be extended to functions that are vector or tensor-valued
without difficulty (there are multiple ways to define the norms in these cases, but all such definitions will
be equivalent up to constants).

We use the Fourier transform to define a number of useful multipliers on R3 or R3/Z3. On R3, we
formally define the inverse Laplacian operator 1−1 by the formula

1̂−1 f (ξ) :=
−1

4π2|ξ |2
f̂ (ξ), (14)

which is well-defined for any tempered distribution f : R3
→ R for which the right-hand side of (14) is

locally integrable. This is for instance the case if f lies in the k-th derivative of a function in L1
x(R

3) for
some k ≥ 0, or the k-th derivative of a function in L2

x(R
3) for some k ≥ 1. If f ∈ L1

x(R
3), then as is well

known, one has the Newton potential representation

1−1 f (x)=
−1
4π

∫
R3

f (y)
|x − y|

dy. (15)

Note in particular that (15) implies that if f ∈ L1
x(R

3) is supported on some closed set K , then 1−1 f
will be smooth away from K . Also observe from Fourier analysis (and decomposition into local and
global components) that if f is smooth and is either the k-th derivative of a function in L1

x(R
3) for some

k ≥ 0, or the k-th derivative of a function in L2
x(R

3) for some k ≥ 1, then 1−1 f will be smooth also.
We also note that the Newton potential −1/(4π |x − y|) is smooth away from the diagonal x = y.

Because of this, we will often be able to obtain large amounts of regularity in space in the “far field”
region when |x | is large, for fields such as the velocity field u. However, it will often be significantly
more challenging to gain significant amounts of regularity in time, because the inverse Laplacian 1−1

has no smoothing properties in the time variable.
On R3/Z3, we similarly define the inverse Laplacian operator 1−1 for distributions f : R3/Z3

→ R

with f̂ (0)= 0 by the formula

1̂−1 f (k) :=
−1k 6=0

4π2|k|2
f̂ (k). (16)

We define the Leray projection Pu of a (tempered distributional) vector field u : R3
→ R3 by the

formula
Pu :=1−1(∇ ×∇ × u).

If u is square-integrable, then Pu is the orthogonal projection of u onto the space of square-integrable
divergence-free vector fields; from Calderón–Zygmund theory, we know that the projection P is bounded
on L p

x (R
3) for every 1< p <∞, and from Fourier analysis we see that P is also H s

x (R
3) for every s ∈R.

Note that if u is square-integrable and divergence-free, then Pu = u, and we thus have the Biot–Savart
law

u =1−1(∇ ×ω), (17)
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where ω := ∇ × u.
In either R3 or R3/LZ3, we let et1 for t > 0 be the usual heat semigroup associated to the heat equation

ut =1u. On R3, this takes the explicit form

et1 f (x)=
1

(4π t)3/2

∫
R3

e−|x−y|2/4t f (y) dy

for f ∈ L p
x (R

3) for some 1≤ p ≤∞. From Young’s inequality, we thus record the dispersive inequality

‖et1 f ‖Lq (R3) . t3/2q−3/2p
‖ f ‖L p(R3) (18)

whenever 1≤ p ≤ q ≤∞ and t > 0.
We recall Duhamel’s formula

u(t)= e(t−t0)1u(t0)+
∫ t

t0
e(t−t ′)1(∂t u−1u)(t ′) dt ′ (19)

whenever u : [t0, t]×�→ R is a smooth tempered distribution, with � equal to either R3 or R3/Z3.
We record some linear and bilinear estimates involving Duhamel-type integrals and the spaces X s

defined in (13), which are useful in the local H 1 theory for the Navier–Stokes equation:

Lemma 2.1 (Linear and bilinear estimates). Let [t0, t1] be a time interval, let � be either R3 or R3/Z3,
and suppose that u : [t0, t1]×�→ R and F : [t0, t1]×�→ R are tempered distributions such that

u(t)= e(t−t0)1u(t0)+
∫ t

t0
e(t−t ′)1F(t ′) dt ′. (20)

Then we have the standard energy estimate10

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L1

t H s
x ([t0,t1]×�)

(21)

for any s ≥ 0, as well as the variant

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L2

t H s−1
x ([t0,t1]×�) (22)

for any s ≥ 1. We also note the further variant

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L4

t L2
x ([t0,t1]×�)

(23)

for any s < 3/2.
We also have the bilinear estimate

‖∇(uv)‖L4
t L2

x ([t0,t1]×�)
. ‖u‖X1([t0,t1]×�)‖v‖X1([t0,t1]×�) (24)

for any u, v : [t0, t1]×R3
→ R, which in particular implies (by a Hölder in time) that

‖∇(uv)‖L2
t L2

x ([t0,t1]×R3) . (t1− t0)1/4‖u‖X1([t0,t1]×R3)‖v‖X1([t0,t1]×R3). (25)

10We adopt the convention that an estimate is vacuously true if the right-hand side is infinite or undefined.
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Proof. The estimates11 (22), (23), (24) are established in [Tao 2007, Lemma 2.1, Proposition 2.2]. The
estimate (21) follows from the F = 0 case of (21) and Minkowski’s inequality. �

Finally, we define the Littlewood–Paley projection operators on R3. Let ϕ(ξ) be a fixed bump function
supported in the ball {ξ ∈ R3

: |ξ | ≤ 2} and equal to 1 on the ball {ξ ∈ R3
: |ξ | ≤ 1}. Define a dyadic

number to be a number N of the form N = 2k for some integer k. For each dyadic number N , we define
the Fourier multipliers

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ),

P̂>N f (ξ) := (1−ϕ(ξ/N )) f̂ (ξ),

P̂N f (ξ) := ψ(ξ/N ) f̂ (ξ) := (ϕ(ξ/N )−ϕ(2ξ/N )) f̂ (ξ).

We similarly define P<N and P≥N . Thus for any tempered distribution, we have f =
∑

N PN f in a weakly
convergent sense at least, where the sum ranges over dyadic numbers. We recall the usual Bernstein
estimates

‖Ds PN f ‖L p
x (R3) .p,s,Ds N s

‖PN f ‖L p
x (R3),

‖∇
k PN f ‖L p

x (R3) ∼k,s N k
‖PN f ‖L p

x (R3),

‖P≤N f ‖Lq
x (R3) .p,q N 3/p−3/q

‖P≤N f ‖L p
x (R3),

‖PN f ‖Lq
x (R3) .p,q N 3/p−3/q

‖PN f ‖L p
x (R3),

(26)

for all 1 ≤ p ≤ q ≤∞, s ∈ R, k ≥ 0, and pseudodifferential operators Ds of order s; see, for example,
[Tao 2006, Appendix A].

We recall the Littlewood–Paley trichotomy: an expression of the form PN ((PN1 f1)(PN2 f2)) vanishes
unless one of the following three scenarios holds:

• (Low-high interaction) N2 . N1 ∼ N .

• (High-low interaction) N1 . N2 ∼ N .

• (High-high interaction) N . N1 ∼ N2.

This trichotomy is useful for obtaining estimates on bilinear expressions, as we shall see in Section 9.
We have the following frequency-localised variant of (18):

Lemma 2.2. If N is a dyadic number and f : R3
→ R has Fourier transform supported on an annulus

{ξ : |ξ | ∼ N }, then we have

‖et1 f ‖Lq (R3) . t3/2q−3/2p exp(−ct N 2)‖ f ‖L p(R3) (27)

for some absolute constant c > 0 and all 1≤ p ≤ q ≤∞.

11Strictly speaking, the result in [Tao 2007] was stated for the torus rather than R3, but the argument works without
modification in either domain, after first truncating u(t0), F to be Schwartz to avoid technicalities at infinity, and using a standard
density argument.
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Proof. By Littlewood–Paley projection, it suffices to show that

‖et1PN f ‖Lq (R3) . t3/2q−3/2p exp(−ct N 2)‖ f ‖L p(R3)

for all test functions f . By rescaling, we may set t = 1; in view of (18) we may then set N ≥ 1. One then
verifies from Fourier analysis that et1PN is a convolution operator whose kernel has an L∞x (R

3) and an
L1

x(R
3) norm that are both O(exp(−cN 2)) for some absolute constant c > 0, and the claim follows from

Young’s inequality. �

From the uniform smoothness of the heat kernel, we also observe the estimate

‖et1 f ‖Ck
x (K ) .k,K ,T,p exp(−cT r2)‖ f ‖L p

x (R3) (28)

whenever 0≤ t ≤ T , 1≤ p ≤∞, k ≥ 0, K is a compact subset of R3, r ≥ 1, f is supported on the set
{x ∈ R3

: dist(x, K )≥ r}, and some quantity cT > 0 depending only on T . In practice, this estimate will
be an effective substitute for finite speed of propagation for the heat equation.

3. Symmetries of the equation

In this section we review some well known symmetries of the Navier–Stokes flow that transform a given
smooth solution (u, p, u0, f, T ) to another smooth solution (ũ, p̃, ũ0, f̃ , T̃ ), as these symmetries will be
useful at various points in the paper.

The simplest symmetry is the spatial translation symmetry

ũ(t, x) := u(t, x − x0),

p̃(t, x) := p(t, x − x0),

ũ0(x) := u0(x − x0),

f̃ (t, x) := f (t, x − x0),

T̃ := T,

(29)

valid for any x0 ∈ R3; this transformation clearly maps mild, smooth, or almost smooth solutions to
solutions of the same type, and also preserves conditions such as finite energy, H 1, periodicity, pressure
normalisation, or the Schwartz property. In a similar vein, we have the time translation symmetry

ũ(t, x) := u(t + t0, x),

p̃(t, x) := p(t + t0, x),

ũ0(x) := u(t0, x),

f̃ (t, x) := f (t + t0, x),

T̃ := T − t0,

(30)

valid for any t0 ∈ [0, T ]. Again, this maps mild, smooth, or almost smooth solutions to solutions of
the same type (and if t0 > 0, then almost smooth solutions are even upgraded to smooth solutions). If
the original solution is finite energy or H 1, then the transformed solution will be finite energy or H 1
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also. Note however that if it is only the original data that is assumed to be finite energy or H 1, as
opposed to the solution, it is not immediately obvious that the time-translated solution remains finite
energy or H 1, especially in view of the fact that the H 1 norm (or the enstrophy) is not a conserved
quantity of the Navier–Stokes flow. (See however Lemma 8.1 and Corollary 11.1 below.) The situation
is particularly dramatic in the case of Schwartz data; as remarked earlier, time translation can instantly
convert12 Schwartz data to non-Schwartz data, due to the slow decay of the Newton potential appearing
in (9) (or of its derivatives, such as the Biot–Savart kernel in (17)).

Next, we record the scaling symmetry

ũ(t, x) :=
1
λ

u
( t
λ2 ,

x
λ

)
,

p̃(t, x) :=
1
λ2 p

( t
λ2 ,

x
λ

)
,

ũ0(x) :=
1
λ

u
( x
λ

)
,

f̃ (t, x) :=
1
λ3 f

( t
λ2 ,

x
λ

)
,

T̃ := Tλ2,

(31)

valid for any λ > 0; it also maps mild, smooth, or almost smooth solutions to solutions of the same type,
and preserves properties such as finite energy, finite enstrophy, pressure normalisation, periodicity, or the
Schwartz property, though note in the case of periodicity that a solution of period L will map to a solution
of period λL . We will only use scaling symmetry occasionally in this paper, mainly because most of the
quantities we will be manipulating will be supercritical with respect to this symmetry. Nevertheless, this
scaling symmetry serves a fundamentally important conceptual purpose, by making the key distinction
between subcritical, critical (or dimensionless), and supercritical quantities, which can help illuminate
many of the results in this paper (and was also crucial in allowing the author to discover13 these results in
the first place).

We record three further symmetries that impact upon the issue of pressure normalisation. The first is
the pressure shifting symmetry

ũ(t, x) := u(t, x),

p̃(t, x) := p(t, x)+C(t),

ũ0(x) := u0(x),

f̃ (t, x) := f (t, x),

T̃ := T,

(32)

12This can be seen for instance by noting that moments such as
∫

R3 ω1(t, x)(x2
2 − x2

3 ) dx are not conserved in time, but must
equal zero whenever u(t) is Schwartz.

13The author also found dimensional analysis to be invaluable in checking the calculations for errors. One could, if one
wished, exploit the scaling symmetry to normalise a key parameter (for example, the energy E , or a radius parameter r ) to equal
one, which would simplify the numerology slightly, but then one would lose the use of dimensional analysis to check for errors,
and so we have elected to largely avoid the use of scaling normalisations in this paper.
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valid for any smooth function C : R→ R. This clearly maps smooth or almost smooth solutions to
solutions of the same type, and preserves properties such as finite energy, H 1, periodicity, and the Schwartz
property; however, it destroys pressure normalisation (and thus the notion of a mild solution). A slightly
more sophisticated symmetry in the same spirit is the Galilean symmetry

ũ(t, x) := u
(

t, x −
∫ t

0
v(s) ds

)
+ v(t),

p̃(t, x) := p
(

t, x −
∫ t

0
v(s) ds

)
− x · v′(t),

ũ0(x) := u0(x)+ v(0),

f̃ (t, x) := f
(

t, x −
∫ t

0
v(s) ds

)
,

T̃ := T,

(33)

valid for any smooth function v : R→ R3. One can carefully check that this symmetry indeed maps mild,
smooth solutions to smooth solutions and preserves periodicity (recall here that in our definition of a
periodic solution, the pressure was not required to be periodic). On the other hand, this symmetry does not
preserve finite energy, H 1, or the Schwartz property. It also clearly destroys the pressure normalisation
property.

Finally, we observe that one can absorb divergences into the forcing term via the forcing symmetry

ũ(t, x) := u(t, x),

p̃(t, x) := p(t, x)+ q(t, x),

ũ0(x) := u0(x),

f̃ (t, x) := f (t, x)+∇ · q(t, x),

T̃ := T,

(34)

valid for any smooth function P : [0, T ]×R3
→R3. If the new forcing term f̃ still has finite energy or is

still periodic, then the normalisation of pressure is preserved. In the periodic setting, we will apply (34)
with a linear term q(t, x) := x · a(t), allowing one to alter f by an arbitrary constant a(t). In the finite
energy or H 1 setting, one can use (34) and the Leray projection P to reduce to the divergence-free case
∇ · f = 0; note, though, that this projection can destroy the Schwartz nature of f . This divergence-free
reduction is particularly useful in the case of normalised pressure, since (9) then simplifies to

p =−1−1∂i∂ j (ui u j ). (35)

One can of course compose these symmetries together to obtain a larger (semi)group of symmetries.
For instance, by combining (33) and (34), we observe the symmetry



44 TERENCE TAO

ũ(t, x) := u
(

t, x −
∫ t

0
v(s) ds

)
+ v(t),

p̃(t, x) := p
(

t, x −
∫ t

0
v(s) ds

)
,

ũ0(x) := u0(x)+ v(0),

f̃ (t, x) := f
(

t, x −
∫ t

0
v(s) ds

)
+ v′(t),

T̃ := T,

(36)

for any smooth function v : R→ R3. This symmetry is particularly useful for periodic solutions; note
that it preserves both the periodicity property and the normalised pressure property. By choosing v(t)
appropriately, we see that we can use this symmetry to normalise periodic data (u0, f, T, L) to be
mean-zero in the sense that ∫

R3/LZ3
u0(x) dx = 0 (37)

and ∫
R3/LZ3

f (t, x) dx = 0 (38)

for all 0≤ t ≤ T . By integrating (3) over the torus R3/LZ3, we then conclude with this normalisation
that u remains mean-zero for all times 0≤ t ≤ T :∫

R3/LZ3
u(t, x) dx = 0. (39)

The same conclusion also holds for periodic H 1 mild solutions.

4. Pressure normalisation

The symmetries in (32), (34) can alter the velocity field u and pressure p without affecting the data
(u0, f, T ), thus leading to a breakdown of uniqueness for the Navier–Stokes equation. In this section we
investigate this loss of uniqueness, and show that (in the smooth category, at least) one can “quotient out”
these symmetries by reducing to the situation (9) of normalised pressure, at which point uniqueness can
be recovered (at least in the H 1 category).

More precisely, we show:

Lemma 4.1 (Reduction to normalised pressure). (i) If (u, p, u0, f, T ) is an almost smooth finite energy
solution, then for almost every time t ∈ [0, T ], one has

p(t, x)=−1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x)+C(t), (40)

for some bounded measurable function C : [0, T ] → R.
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(ii) If (u, p, u0, f, T ) is a periodic smooth solution, then there exist smooth functions C : [0, T ] → R

and a : [0, T ] → R3 such that

p(t, x)=−1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x)+ x · a(t)+C(t). (41)

In particular, after applying a Galilean transformation (33) followed by a pressure-shifting trans-
formation (32), one can transform (u, p, u0, f, T ) into a periodic smooth solution with normalised
pressure.

Remark 4.2. Morally, in (i) the function C should be smooth (at least for times t > 0), which would then
imply that one can apply a pressure-shifting transformation (32) to convert (u, p, u0, f, T ) into a smooth
solution with normalised pressure. However, there is the technical difficulty that in our definition of a
finite energy smooth solution, we do not a priori have any control of time derivatives of u in any L p

x (R
3)

norms, and as such we do not have time regularity on the component 1−1∂i∂ j (ui u j ) of (40). In practice,
though, this possible irregularity of C(t) will not bother us, as we only need to understand the gradient
∇ p of the pressure, rather than the pressure itself, in order to solve the Navier–Stokes equations (3).

Proof. We begin with the periodic case, which is particularly easy due to Liouville’s theorem (which,
among other things, implies that the only harmonic periodic functions are the constants). We may
normalise the period L to equal 1. Fix an almost smooth periodic solution (u, p, u0, f, T ). Define the
normalised pressure p0 : [0, T ]×R3

→ R by the formula

p0 := −1
−1∂i∂ j (ui u j )+1

−1
∇ · f. (42)

As u, f are smooth and periodic, p0 is smooth also, and from (8) one has 1p =1p0. Thus one has

p = p0+ h,

where h : [0, T ]×R3
→R is a smooth function with h(t) harmonic in space for each time t . The function

h need not be periodic; however, from (3) we have

∂t u+ (u · ∇)u =1u−∇ p0−∇h+ f.

Every term aside from ∇h is periodic, and so ∇h is periodic also. Since ∇h is also harmonic, it must
therefore be constant in space by Liouville’s theorem. We therefore may write

h(t, x)= x · a(t)+C(t)

for some a(t) ∈ R3 and C(t) ∈ R; since h is smooth, a,C are smooth also, and the claim follows.
Now we turn to the finite energy case; thus (u, p, u0, f, T ) is now an almost smooth finite energy

solution. By the time translation symmetry (30) with an arbitrarily small time shift parameter t0, we may
assume without loss of generality that (u, p, u0, f, T ) is smooth (and not just almost smooth). We define
the normalised pressure p0 by (42) as before; then for each time t ∈ [0, T ], one sees from (8) that

p(t)= p0(t)+ h(t)
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for some harmonic function h(t) : R3
→ R. As u, f are smooth and finite energy, one sees from (42) that

p0 is bounded on compact subsets of space-time; since p is smooth, we conclude that h is bounded on
compact subsets of space-time also. From harmonicity, this implies that all spatial derivatives ∇kh are
also bounded on compact subsets of space time. However, as noted previously, we cannot impose any
time regularity on p0 or h because we do not have decay estimates on time derivatives of u.

It is easy to see that h is measurable. To obtain the lemma, it suffices to show that h(t) is a constant
function of x for almost every time t .

Let [t1, t2] be any interval in [0, T ]. Integrating (3) in time on this interval, we see that

u(t2, x)− u(t1, x)+
∫ t2

t1
(u · ∇)u(t, x) dt =

∫ t2

t1
1u(t, x)−∇ p(t, x)+ f (t, x) dt.

Next, let χ : R3
→ R be a smooth compactly supported spherically symmetric function of total mass 1.

We integrate the above formula against (1/R3)χ(x/R) for some large parameter R, and conclude after
some integration by parts (which is justified by the compact support of χ and the smooth (and hence C1)
nature of all functions involved) that

R−3
∫

R3
u(t2, x)χ

( x
R

)
dx − R−3

∫
R3

u(t1, x)χ
( x

R

)
dx − R−4

∫ t2

t1

∫
R3

u(t, x)
(
u(t, x) · ∇χ

)( x
R

)
dx dt

= R−5
∫ t2

t1

∫
R3

u(t, x)(1χ)
( x

R

)
dx dt + R−3

∫ t2

t1

∫
R3
∇ p(t, x)χ

( x
R

)
dx dt

+ R−3
∫ t2

t1

∫
R3

f (t, x)χ
( x

R

)
dx dt.

From the finite energy hypothesis and the Cauchy–Schwarz inequality, one easily verifies that

lim
R→∞

R−3
∫

R3
u(ti , x)χ

( x
R

)
dx = 0,

lim
R→∞

R−4
∫ t2

t1

∫
R3

u(t, x)
(
u(t, x) · ∇χ

)( x
R

)
dx dt = 0,

lim
R→∞

R−5
∫ t2

t1

∫
R3

u(t, x)(1χ)
( x

R

)
dx dt = 0,

lim
R→∞

R−3
∫ t2

t1

∫
R3

f (t, x)χ
( x

R

)
dx dt = 0,

and thus

lim
R→∞

R−3
∫ t2

t1

∫
R3
∇ p(t, x)χ

( x
R

)
dx dt = 0. (43)

Next, by an integration by parts and (42), we can express

R−3
∫ t2

t1

∫
R3
∇ p0(t, x)χ

( x
R

)
dx dt
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as

R−4
∫ t2

t1

∫
R3

ui u j (t, x)
(
∇1−1∂i∂ jχ

)( x
R

)
dx dt + R−3

∫ t2

t1

∫
R3

fi (t, x)
(
∇1−1∂iχ

)( x
R

)
dx dt.

From the finite energy nature of (u, p, u0, f, T ) we see that this expression goes to zero as R→∞.
Subtracting this from (43), we conclude that

lim
R→∞

R−3
∫ t2

t1

∫
R3
∇h(t, x)χ

( x
R

)
dx dt = 0. (44)

The function x 7→
∫ t2

t1
∇h(t, x) is weakly harmonic, and hence harmonic. By the mean-value property of

harmonic functions (and our choice of χ ), we thus have

R−3
∫ t2

t1

∫
R3
∇h(t, x)χ

( x
R

)
dx dt =

∫ t2

t1
∇h(t, 0) dt,

and thus ∫ t2

t1
∇h(t, 0) dt = 0.

Since t1, t2 were arbitrary, we conclude from the Lebesgue differentiation theorem that ∇h(t, 0) = 0
for almost every t ∈ [0, T ]. Using spatial translation invariance (29) to replace the spatial origin by an
element of a countable dense subset of R3, and using the fact that harmonic functions are continuous,
we conclude that ∇h(t) is identically zero for almost every t ∈ [0, T ], and so h(t) is constant for almost
every t as desired. �

We note a useful corollary of Lemma 4.1(i):

Corollary 4.3 (Almost smooth H 1 solutions are essentially mild). Let (u, p, u0, f, T ) be an almost
smooth H 1 solution. Then (u, p̃, u0, f, T ) is a mild H 1 solution, where

p̃(t, x) := −1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x).

Furthermore, for almost every t ∈ [0, T ], p(t) and p̃(t) differ by a constant (and thus ∇ p =∇ p̃).

Proof. By Lemma 4.1(i), ∇ p is equal to ∇ p̃ almost everywhere; in particular, ∇ p = ∇ p̃ is a smooth
tempered distribution. The claim then follows from (3) and the Duhamel formula (19). �

5. Local well-posedness theory in H1

In this section we review the (subcritical) local well-posedness theory for both periodic and nonperiodic
H 1 mild solutions. The material here is largely standard (and in most cases has been superseded by the
more powerful critical well-posedness theory); for instance the uniqueness theory already follows from
[Prodi 1959] and [Serrin 1963], the blowup criterion already is present in [Leray 1934], the local existence
theory follows from [Kato and Ponce 1988], regularity of mild solutions follows from [Ladyzhenskaya
1967], the stability results given here follow from the stronger stability results of [Chemin and Gallagher
2009], and the compactness results were already essentially present in [Tao 2007]. However, for the
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convenience of the reader (and because we want to use the X s function spaces defined in (13) as the basis
for the theory) we shall present all this theory in a self-contained manner. There are now a number of
advanced local well-posedness results at critical regularity, most notably that of [Koch and Tataru 2001],
but we will not need such powerful results here.

We begin with the periodic theory. By taking advantage of the scaling symmetry (31), we may set the
period L equal to 1. Using the symmetry (36), we may also restrict attention to data obeying the mean
zero conditions (37), (38), and thus u0 ∈ H 1

x (R
3/Z3)0 and f ∈ L∞t H 1

x ([0, T ]×R3/Z3)0.

Theorem 5.1 (Local well-posedness in periodic H 1). Let (u0, f, T, 1) be periodic H 1 data obeying the
mean-zero conditions (37), (38).

(i) (Strong solution). If (u, p, u0, f, T, 1) is a periodic H 1 mild solution, then

u ∈ C0
t H 1

x ([0, T ]×R3/Z3).

In particular, one can unambiguously define u(t) in H 1
x (R

3/Z3) for each t ∈ [0, T ].

(ii) (Local existence). If (
‖u0‖H1

x (R
3/Z3)+‖ f ‖L1

t H1
x (R

3/Z3)

)4T ≤ c (45)

for a sufficiently small absolute constant c > 0, then there exists a periodic H 1 mild solution
(u, p, u0, f, T, 1) with the indicated data with

‖u‖X1([0,T ]×R3/Z3) . ‖u0‖H1
x (R

3/Z3)+‖ f ‖L1
t H1

x (R
3/Z3)

and more generally

‖u‖X k([0,T ]×R3/Z3) .k,T,‖u0‖Hk
x (R3/Z3),‖ f ‖L1

t Hk
x (R3/Z3)

1

for each k ≥ 1. In particular, one has local existence whenever T is sufficiently small depending on
H1(u0, f, T, 1).

(iii) (Uniqueness). There is at most one periodic H 1 mild solution (u, p, u0, f, T, 1) with the indicated
data.

(iv) (Regularity). If (u, p, u0, f, T, 1) is a periodic H 1 mild solution, and (u0, f, T, 1) is smooth, then
(u, p, u0, f, T, 1) is smooth.

(v) (Lipschitz stability). Let (u, p, u0, f, T, 1) be a periodic H 1 mild solution with the bounds 0<T ≤T0

and
‖u‖X1([0,T ]×R3/Z3) ≤ M.

Let (u′0, f ′, T, 1) be another set of periodic H 1 data, and define the function

F(t) := et1(u′0− u0)+

∫ t

0
e(t−t ′)1( f ′(t ′)− f (t ′)) dt ′.

If the quantity ‖F‖X1([0,T ]×R3/Z3) is sufficiently small depending on T , M , then there exists a periodic
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mild solution (u′, p′, u′0, f ′, T, 1) with

‖u− u′‖X1([0,T ]×R3/Z3) .T,M ‖F‖X1([0,T ]×R3/Z3).

Proof. We first prove the strong solution claim (i). The linear solution

et1u0+

∫ t

0
e(t−t ′)1P f (t ′) dt ′

is easily verified to lie in C0
t H 1

x ([0, T ]×R3/Z3), so in view of (11), it suffices to show that∫ t

0
e(t−t ′)1PB(u(t ′), u(t ′)) dt ′

also lies in C0
t H 1

x ([0, T ]×R3/Z3). But as u is an H 1 mild solution, u lies in X1([0, T ]×R3/Z3), so by
(24), PB(u, u) lies in L4

t L2
x([0, T ]×R3/Z3). The claim (i) then follows easily from (22).

Now we establish local existence (ii). Let δ := ‖u0‖H1
x (R

3/Z3)+‖ f ‖L1
t H1

x (R
3/Z3); thus by (45) we have

δ4T ≤ c. Using this and (25), (22), one easily establishes that the nonlinear map u 7→8(u) defined by

8(u)(t) := et1u0+

∫ t

0
e(t−t ′)1PB

(
u(t ′), u(t ′)+ P f (t ′)

)
dt ′

is a contraction on the ball{
u ∈ X1([0, T ]×R3/Z3) : ‖u‖X1([0,T ]×R3/Z3) ≤ Cδ

}
if C is large enough. From the contraction mapping principle, we may then find a fixed point of 8 in this
ball, and the claim (ii) follows (the estimates for higher k follow from variants of the above argument and
an induction on k, and are left to the reader).

Now we establish uniqueness (iii). Suppose, in order to get a contradiction, that we have distinct
solutions (u, p, u0, f, T, 1) and (u′, p′, u0, f, T, 1) for the same data. Then we have

‖u‖X1([0,T ]×R3/Z3), ‖u
′
‖X1([0,T ]×R3/Z3) ≤ M.

To show uniqueness, it suffices to do so assuming that T is sufficiently small depending on M , as the
general case then follows by subdividing [0, T ] into small enough time intervals and using induction.
Subtracting (11) for u, u′ and writing v := u′− u, we see that

v(t)=
∫ t

0
e(t−t ′)1P

(
2B(u(t ′), v(t ′))+ B(v(t ′), v(t ′))

)
dt ′,

and thus by (22),
‖v‖X1([0,T ]×R3/Z3) . MT 1/4

‖v‖X1([0,T ]×R3/Z3).

If T is sufficiently small depending on M , this forces ‖v‖X1([0,T ]×R3/Z3) = 0, giving uniqueness up to
time T ; iterating this argument gives the claim (iii).

Now we establish regularity (iv). To abbreviate the notation, all norms will be on [0, T ]×R3/Z3. As u
is an H 1 mild solution, it lies in X1, and hence by (25), PB(u, u) lies in L4

t L2
x . Applying (11), (23), and the

smoothness of u0, f , we conclude that u∈ X s for all s< 3
2 . In particular, by Sobolev embedding we see that
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u ∈ L∞t L12
x , ∇u ∈ L2

t L12
x ∩ L∞t L12/5

x , and ∇2u ∈ L2
t L12/5

x , and hence PB(u, u) ∈ L2
t H 1

x ([0, T ]×R3/Z3).
Returning to (11), (23), we now conclude that u∈ X2([0, T ]×R3/Z3). One can then repeat these arguments
iteratively to conclude that u ∈ X k([0, T ] ×R3/Z3) for all k ≥ 1, and thus u ∈ L∞t Ck([0, T ] ×R3/Z3)

for all k ≥ 0. From (9) we then have p ∈ L∞Ck([0, T ]×R3/Z3) for all k ≥ 0, and then from (3) we have
∂t u ∈ L∞t Ck([0, T ]×R3/Z3) for all k ≥ 0. One can then obtain bounds on ∂t p and then on higher time
derivatives of u and t , giving the desired smoothness, and the claim (iv) follows.

Now we establish stability (v). It suffices to establish the claim in the short-time case when T is
sufficiently small depending only on M (more precisely, we take M4T ≤ c for some sufficiently small
absolute constant c > 0), as the long-time case then follows by subdividing time and using induction.
The existence of the solution (u′, p′, u′0, f ′0, T, 1) is then guaranteed by (ii). Evaluating (11) for u, u′ and
subtracting, and setting v := u′− u, we see that

v(t)= F +
∫ t

0
e(t−t ′)1P(2B(u, v)+ B(v, v))(t ′) dt ′

for all t ∈ [0, T ]. Applying (22), (25), we conclude that

‖v‖X1 . ‖F‖X1 + T 1/4(‖u‖X1 +‖v‖X1)‖v‖X1,

where all norms are over [t0, t1]×R3. Since ‖u‖X1 +‖v‖X1 is finite, we conclude (if T is small enough)
that ‖v‖X1([0,T ]×R3/Z3) . ‖F‖X1([0,T ]×R3/Z3), and the claim follows. �

We may iterate the local well-posedness theory to obtain a dichotomy between existence and blowup.
Define an incomplete periodic mild H 1 solution (u, p, u0, f, T−

∗
, 1) from periodic H 1 data (u0, f, T∗, 1)

to be fields u : [0, T∗)×R3/Z3
→ R3 and v : [0, T∗)×R3/Z3

→ R such that for any 0 < T < T∗, the
restriction (u, p, u0, f, T, 1) of (u, p, u0, f, T−

∗
, 1) to the slab [0, T ] × R3/Z3 is a periodic mild H 1

solution. We similarly define the notion of an incomplete periodic smooth solution.

Corollary 5.2 (Maximal Cauchy development). Let (u0, f, T, 1) be periodic H 1 data. Then at least one
of the following two statements holds:

• There exists a periodic H 1 mild solution (u, p, u0, f, T, 1) with the given data.

• There exist a blowup time 0< T∗ < T and an incomplete periodic H 1 mild solution

(u, p, u0, f, T−
∗
, 1)

up to time T−
∗

, which blows up in H 1 in the sense that

lim
t→T−∗

‖u(t)‖H1
x (R

3/Z3) =+∞.

We refer to such solutions as maximal Cauchy developments.

A similar statement holds with “H 1 data” and “H 1 mild solution” replaced by “smooth data” and
“smooth solution” respectively.

Next we establish a compactness property of the periodic H 1 flow.
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Proposition 5.3 (Compactness). If (u(n)0 , f (n), T, 1) is a sequence of periodic H 1 data obeying (37),
(38) which is uniformly bounded in H 1

x (R
3/Z3)0× L∞t H 1

x ([0, T ]×R3/Z3)0 and converges weakly14 to
(u0, f, T, 1), and (u, p, u0, f, T, 1) is a periodic H 1 mild solution with the indicated data, then for n
sufficiently large, there exist periodic H 1 mild solutions (u(n), p(n), u(n)0 , f (n), T, 1) with the indicated
data, with u(n) converging weakly in X1([0, T ] ×R3/Z3) to u. Furthermore, for any 0 < τ < T , u(n)

converges strongly in X1([τ, T ]×R3/Z3) to u.
If u(n)0 converges strongly in H 1

x (R
3/Z3)0 to u0, then one can set τ = 0 in the previous claim.

Proof. This result is essentially in [Tao 2007, Proposition 2.2], but for the convenience of the reader we
give a full proof here.

To begin with, we assume that u(n) converges strongly in H 1
x (R

3/Z3)0 to u0, and relax this to weak
convergence later. In view of the stability component of Theorem 5.1, it suffices to show that F (n)

converges strongly in X1([0, T ]×R3/Z3) to zero, where

F (n)(t) := et1(u(n)0 − u0)+

∫ t

0
e(t−t ′)1P( f (n)(t ′)− f (t ′)) dt ′.

We have that u(n)0 − u0 converges strongly in H 1
x (R

3/Z3) to zero, while f (n)− f converges weakly in
L∞t H 1

x ([0, T ] × R3/Z3)→ 0, and hence strongly in L2
t L2

x([0, T ] × R3/Z3). The claim then follows
from (22).

Now we only assume that u(n) converges weakly in H 1
x (R

3/Z3)0 to u0. Let 0 < τ < T be a suffi-
ciently small time; then from local existence (Theorem 5.1(ii)) we see that u(n) and u are bounded in
X1([0, τ ]×R3/Z3) uniformly in n by some finite quantity M . Writing v(n) := u(n)− u, we obtain from
(11) the difference equation

v(n)(t)= F (n)(t)+
∫ t

0
e(t−t ′)1P

(
B(u, v(n))+ B(u(n), v(n))

)
(t ′) dt ′.

Since u(n)0 − u0 converges weakly in H 1
x (R

3/Z3) to zero, it converges strongly in L2
x(R

3/Z3) to zero too.
Using (21) as before, we see that F (n) converges strongly in X0([0, τ ]×R3/Z3) to zero. From (22) we
thus have

‖v(n)‖X0 . o(1)+‖B(u, v(n))‖L2
t H−1

x
+‖B(u(n), v(n))‖L2

t H−1
x
,

where o(1) goes to zero as n→∞, and all space-time norms are over [0, τ ]×R3/Z3. From the form of
B and Hölder’s inequality, we have

‖B(u(n), v(n))‖L2
t H−1

x
. ‖O(u(n)v(n))‖L2

t L2
x
. τ 1/4

‖u(n)‖L∞t L6
x
‖v(n)‖

1/2
L∞t L2

x
‖v(n)‖

1/2
L2

t L6
x
. Mτ 1/4

‖v(n)‖X0,

and similarly for B(u, v(n)), and thus

‖v(n)‖X0 . o(1)+Mτ 1/4
‖v(n)‖X0 .

14Strictly speaking, we should use “converges in the weak-* sense” or “converges in the sense of distributions” here, in order
to avoid the pathological (and irrelevant) elements of the dual space of L∞t H1

x that can be constructed from the axiom of choice.



52 TERENCE TAO

Thus, for τ small enough, one has
‖v(n)‖X0 = o(1),

which among other things gives weak convergence of u(n) to u in [0, τ ]×R3/Z3. Also, by the pigeonhole
principle, one can find times τ (n) in [0, τ ] such that

‖v(n)(τ (n))‖H1
x (R

3/Z3) = o(1).

Using the stability theory, and recalling that τ is small, this implies that

‖v(n)(τ )‖H1
x (R

3/Z3) = o(1);

thus u(n)(τ ) converges strongly to u(τ ). Now we can use our previous arguments to extend u(n) to all of
[0, T ]×R3/Z3 and obtain strong convergence in X1([τ, T ]×R3/Z3), as desired. �

Now we turn to the nonperiodic setting. We have the following analogue of Theorem 5.1:

Theorem 5.4 (Local well-posedness in H 1). Let (u0, f, T ) be H 1 data.

(i) (Strong solution). If (u, p, u0, f, T, 1) is an H 1 mild solution, then

u ∈ C0
t H 1

x ([0, T ]×R3).

(ii) (Local existence and regularity). If(
‖u0‖H1

x (R
3)+‖ f ‖L1

t H1
x (R

3)

)4T ≤ c (46)

for a sufficiently small absolute constant c > 0, then there exists a H 1 mild solution (u, p, u0, f, T )
with the indicated data, with

‖u‖X1([0,T ]×R3) . ‖u0‖H1
x (R

3)+‖ f ‖L1
t H1

x (R
3),

and more generally
‖u‖X k([0,T ]×R3) .k,‖u0‖Hk

x (R3),‖ f ‖L1
t Hk

x (R3),1

for each k ≥ 1. In particular, one has local existence whenever T is sufficiently small depending on
H1(u0, f, T ).

(iii) (Uniqueness). There is at most one H 1 mild solution (u, p, u0, f, T ) with the indicated data.

(iv) (Regularity). If (u, p, u0, f, T, 1) is an H 1 mild solution, and (u0, f, T ) is Schwartz, then u and p
are smooth; in fact, one has ∂ j

t u, ∂ j
t p ∈ L∞t H k([0, T ]×R3) for all j, k ≥ 0.

(v) (Lipschitz stability). Let (u, p, u0, f, T ), (u′, p′, u′0, f ′, T ) be H 1 mild solutions with the bounds
0< T ≤ T0 and

‖u‖X1([0,T ]×R3), ‖u
′
‖X1([0,T ]×R3) ≤ M.

Define the function

F(t) := et1(u′0− u0)+

∫ t

0
e(t−t ′)1( f ′(t ′)− f (t ′)) dt ′.
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If the quantity ‖F‖L2
t L2

x ([0,T ]×R3) is sufficiently small depending on T , M , then

‖u− u′‖X1([0,T ]×R3) .T,M ‖F‖L2
t L2

x ([0,T ]×R3).

Proof. This proceeds by repeating the proof of Theorem 5.1 verbatim. The one item which perhaps
requires some care is the regularity item (iv). The arguments from Theorem 5.1 yield the regularity

u ∈ X k([0, T ]×R3)

for all k ≥ 0 without difficulty. In particular, u ∈ L∞t H k
x ([0, T ]×R3) for all k ≥ 0. From (9) and Sobolev

embedding, one then has p ∈ L∞t H k
x ([0, T ] ×R3) for all k ≥ 0, and then from (3) and more Sobolev

embedding, one has ∂t u ∈ L∞t H k
x ([0, T ]×R3) for all k ≥ 0. One can then obtain bounds on ∂t p and then

on higher time derivatives of u and t , giving the desired smoothness, and the claim (iv) follows. (Note
that these arguments did not require the full power of the hypothesis that (u0, f, T ) was Schwartz; it
would have sufficed to have u0 ∈ H k

x (R
3) and f ∈ C j

t H k
x (R

3) for all j, k ≥ 0.) �

From the regularity component of the above theorem, we immediately conclude that Conjecture 1.19
implies Conjecture 1.5, which is one half of Theorem 1.20(iv).

We will also need a more quantitative version of the regularity statement in Theorem 5.4.

Lemma 5.5 (Quantitative regularity). Let (u, p, u0, f, T ) be an H 1 mild solution obeying (46) for a
sufficiently small absolute constant c > 0, and such that

‖u0‖H1
x (R

3)+‖ f ‖L1
t H k

x (R
3) ≤ M <∞.

Then one has

‖u‖L∞t H k
x ([τ,T ]×R3) .k,τ,T,M 1

for all natural numbers k ≥ 1 and all 0< τ < T .

Proof. We allow all implied constants to depend on k, T,M . From Theorem 5.1 we have

‖u‖X1([0,T ]×R3) . 1,

which already gives the k = 1 case. Now we turn to the k ≥ 2 case. From (25) we have

‖PB(u, u)‖L4
t L2

x ([0,T ]×R3) . 1,

while from Fourier analysis one has

‖et1u0‖L∞t H k
x ([τ,T ]×R3) .τ 1.

From this and (11), (21) we see that

‖u‖X s([τ,T ]×R3) .s,τ 1
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for all s < 3
2 . From Sobolev embedding we conclude

‖u‖L∞t L12
x ([τ,T ]×R3) .τ 1,

‖∇u‖L2
t L12

x ([τ,T ]×R3) .τ 1,

‖∇u‖L∞t L12/5
x ([τ,T ]×R3)

.τ 1,

‖∇
2u‖L2

t L12
x ([τ,T ]×R3) .τ 1,

and hence
‖PB(u, u)‖L2

t H1
x ([τ,T ]×R3) . 1.

Returning to (11), (23), we now conclude that

‖u‖X2([τ,T ]×R3) .τ 1,

which gives the k = 2 case. One can repeat these arguments iteratively to then give the higher k cases. �

We extract a particular consequence of the above lemma:

Proposition 5.6 (Almost regularity). Let (u, p, u0, 0, T ) be a homogeneous H 1 mild solution obeying
(46) for a sufficiently small absolute constant c> 0. Then u, p are smooth on [τ, T ]×R3 for all 0<τ < T ;
in fact, all derivatives of u, p lie in L∞t L2

x([τ, T ]×R3). If furthermore u0 is smooth, then (u, p, u0, 0, T )
is an almost smooth solution.

Proof. From Lemma 5.5 we see that

u ∈ L∞t H k
x ([τ, T ]×R3)

for all k ≥ 0 and 0 < τ < T . Arguing as in the proof of Theorem 5.4(iv), we conclude that u, p are
smooth on [τ, T ]×R3.

Now suppose that u0 is smooth. Then (since u0 is also in H 1
x (R

3)) et1u0 is smooth15 on [0, T ]×R3,
and in particular one has

ηet1u0 ∈ L∞t H k
x ([0, T ]×R3)

for any smooth, compactly supported cutoff function η :R3
→R. Meanwhile, by arguing as in Lemma 5.5

one has
PB(u, u) ∈ L4

t L2
x([0, T ]×R3). (47)

Using (11), (21), one concludes that

ηu ∈ X s([0, T ]×R3)

for all cutoff functions η and all s < 3
2 . Continuing the arguments from Lemma 5.5, we conclude that

ηPB(u, u) ∈ L2
t H 1

x ([0, T ]×R3)

15To obtain smoothness at a point (t0, x0), one can for instance split u0 into a smooth compactly supported component and a
component that vanishes near x0 but lies in H1

x (R
3), and verify that the contribution of each component to et1u0 is smooth at

(t0, x0).
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for all cutoffs η. Using (11), (23) (and using (28), (47) to deal with the far field contribution of PB(u, u),
and shrinking η as necessary), one then concludes that

ηu ∈ X2([0, T ]×R3)

for all cutoffs η. Repeating these arguments iteratively, one eventually concludes that

ηu ∈ X k([0, T ]×R3)

for all cutoffs η, and in particular

u ∈ L∞t H k
x ([0, T ]× K )

for all k ≥ 0 and all compact sets K . By Sobolev embedding, this implies that

u ∈ L∞t Ck
x ([0, T ]× K )

for all k ≥ 0 and all compact sets K .
We also have u ∈ X1([0, T ]×R3), and hence

u ∈ L∞t H 1
x ([0, T ]×R3).

In particular,

ui u j ∈ L∞t L1
x([0, T ]×R3) (48)

and

ui u j ∈ L∞t Ck
x ([0, T ]× K )

for all k ≥ 0 and compact K . From this and (9) (splitting the inverse Laplacian 1−1 smoothly into local
and global components), one has

p ∈ L∞t Ck
x ([0, T ]× K );

inserting this into (3), we then see that

∂t u ∈ L∞t Ck
x ([0, T ]× K ) (49)

for all k ≥ 0 and compact K .
This is a little weaker than what we need for an almost smooth solution, because we want ∇ku, ∇k p,

∂t∇
k p to extend continuously down to t = 0, and the above estimates merely give L∞t C∞x control on these

quantities. To upgrade the L∞t control to continuity in time, we first observe16 from (49) and integration
in time that we can at least make ∇ku extend continuously to t = 0:

u ∈ C0
t Ck

x ([0, T ]× K ).

In particular,

ui u j ∈ C0
t Ck

x ([0, T ]× K ) (50)

16An alternate argument here would be to approximate the initial data u0 by Schwartz divergence-free data (using Lemma 12.1)
and to use a limiting argument and the stability and regularity theory in Theorem 5.1; we omit the details.
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for all k ≥ 0 and compact K .
Now we consider ∇k p in a compact region [0, T ]× K . From (9) we have

∇
k p(t, x)=∇k∂i∂ j

∫
R3

1
4π |x − y|

ui u j (t, y) dy.

Using a smooth cutoff, we split the Newton potential 1/(4π |x − y|) into a “local” portion supported on
B(0, 2R) and a “global” portion supported outside of B(0, R), where R is a large radius. From (50) one
can verify that the contribution of the local portion is continuous on [0, T ] × K , while from (48) the
contribution of the global portion is Ou(1/R3). Sending R→∞, we conclude that ∇k p is continuous
on [0, T ]× K , and thus

p ∈ C0
t Ck

x ([0, T ]× K )

for all k ≥ 0 and compact K . Inserting this into (3), we then conclude that

∂t u ∈ C0
t Ck

x ([0, T ]× K )

for all k ≥ 0 and compact K , and so we have an almost smooth solution as required. �

Remark 5.7. Because u has the regularity of L∞t H 1
x , we can continue iterating the above argument a little

more, and eventually get u ∈ C2
t Ck

x ([0, T ]× K ) and p ∈ C1
t Ck

x ([0, T ]× K ) for all k ≥ 0 and compact K .
Using the vorticity equation (see (84) below), one can then also get ω ∈ C3

t Ck
x ([0, T ]× K ) as well. But

without further decay conditions on higher derivatives of u (or of ω), one cannot gain infinite regularity
on u, p, ω in time; see Section 15.

On the other hand, it is possible to use energy methods and the vorticity equation (84) to show (working
in the homogeneous case f = 0 for simplicity) that if u0 is smooth and the initial vorticity ω0 := ∇ × u0

is Schwartz, then the solution in Proposition 5.6 is in fact smooth, with ω remaining Schwartz throughout
the lifespan of that solution; we omit the details.

As a corollary of the above proposition we see that Conjecture 1.19 implies Conjecture 1.13, thus
completing the proof of Theorem 1.20(iv).

As before, we obtain a dichotomy between existence and blowup. Define an incomplete mild H 1 solution
(u, p, u0, f, T−

∗
) from H 1 data (u0, f, T∗) to be fields u : [0, T∗)×R3

→R3 and v : [0, T∗)×R3
→R such

that for any 0< T < T∗, the restriction (u, p, u0, f, T, 1) of (u, p, u0, f, T−
∗
, 1) to the slab [0, T ]×R3

is a mild H 1 solution. We similarly define the notion of an incomplete smooth H 1 solution.

Corollary 5.8 (Maximal Cauchy development). Let (u0, f, T ) be H 1 data. Then at least one of the
following two statements holds:

• There exists a mild H 1 solution (u, p, u0, f, T ) with the given data.

• There exist a blowup time 0< T∗ < T and an incomplete mild H 1 solution (u, p, u0, f, T−
∗
) up to

time T−
∗

that blows up in the enstrophy norm in the sense that

lim
t→T−∗

‖u(t)‖H1
x (R

3) =+∞.
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Remark 5.9. In the second conclusion of Corollary 5.8, more information about the blowup is known.
For instance, in [Iskauriaza et al. 2003] it was demonstrated that the L3

x(R
3) norm must also blow up (in

the homogeneous case f = 0, at least).

6. Homogenisation

In this section we prove Proposition 1.7.
Fix smooth periodic data (u0, f, T, L); our objective is to find a smooth periodic solution

(u, p, u0, f, T, L)

(without pressure normalisation) with this data. By the scaling symmetry (31), we may normalise the
period L to equal 1. Using the symmetry (36), we may impose the mean-zero conditions (37), (38) on
this data.

By hypothesis, one can find a smooth periodic solution (ũ, p̃, u0, 0, T, 1) with data (u0, 0, T, 1).
By Lemma 4.1, and applying a Galilean transform (33) if necessary, we may assume the pressure is
normalised, which in particular makes (ũ, p̃, u0, 0, T, 1) a periodic H 1 mild solution.

By the Galilean invariance (33) (with a linearly growing velocity v(t) := 2wt), it suffices to find a
smooth periodic solution (u, p, u0, fw, T ) (this time with pressure normalisation) for the Galilean-shifted
data (u0, fw, T ), where

fw(t, x) := f (t, x −wt2),

and w ∈ R3 is arbitrary. Note that the data (u0, fw, T ) continues to obey the mean-zero conditions (37),
(38) and is bounded in H 1

x (R
3/Z3)0 × L∞t H 1

x ([0, T ] ×R3/Z3)0 uniformly in w. We now make a key
observation:

Lemma 6.1. If α ∈ R3/Z3 is irrational in the sense that k · α 6= 0 in R/Z for all k ∈ Z3
\{0}, then

fλα converges weakly (or more precisely, converges in the sense of space-time distributions) to zero in
L∞t H 1

x ([0, T ]×R3/Z3)0.

Proof. It suffices to show that ∫ T

0

∫
R3/Z3

fλα(t, x)φ(t, x) dx dt→ 0

for all smooth functions φ : [0, T ]×R3/Z3
→R. Taking the Fourier transform, the left-hand side becomes∑

k∈Z3

∫ T

0
e−2π iλkt2

·α f̂ (t)(k)φ̂(t)(−k) dt,

with the sum being absolutely convergent due to the rapid decrease of the Fourier transform of φ(t).
Because f has mean zero, we can delete the k = 0 term from the sum. This makes k · α nonzero by
irrationality, and so by the Riemann–Lebesgue lemma, each summand goes to zero as λ→∞. The claim
then follows from the dominated convergence theorem. �
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Let α ∈ R3/Z3 be irrational. By the above lemma, (u0, fλα, T, 1) converges weakly to (u0, 0, T, 1)
while being bounded in H 1

x (R
3/Z3)0× L∞t H 1

x (R
3/Z3)0. As (u0, 0, T, 1) has a periodic mild H 1 solution

(ũ, p̃, u0, 0, T, 1), we conclude from Proposition 5.3 that for λ sufficiently large, (u0, fλα, T, 1) also has
a periodic mild H 1 solution, which is necessarily smooth since u0 and fλα are smooth. The claim follows.

Remark 6.2. Suppose that (u0, f,∞, 1) is periodic H 1 data extending over the half-infinite time interval
[0,+∞). The above argument shows (assuming Conjecture 1.4) that one can, for each 0 < T <∞,
construct a smooth periodic (but not pressure-normalised) solution (u(T ), p(T ), u0, f, T, 1) up to time T
with the above data, by choosing a sufficiently rapidly growing linear velocity v(T ) = 2w(T )t , applying a
Galilean transform, and then using the compactness properties of the H 1 local well-posedness theory.
As stated, this argument gives a different solution (u(T ), p(T ), u0, f, T, 1) for each time T (note that we
do not have uniqueness once we abandon pressure normalisation). However, it is possible to modify
the argument to obtain a single global smooth periodic solution (u, p, u0, f,∞, 1) (which is still not
pressure-normalised, of course), by using the ability in (33) to choose a nonlinear velocity v(t) rather
than a linear one. By reworking the above argument, and taking v(t) to be a sufficiently rapidly growing
function of t , it is then possible to obtain a global smooth periodic solution (u, p, u0, f,∞, 1) to the
indicated data; we omit the details.

7. Compactness

In this section we prove Theorem 1.20(i) by following the compactness arguments of [Tao 2007]. By the
scaling symmetry (31), we may normalise L = 1.

We first assume that Conjecture 1.10 holds, and deduce Conjecture 1.9. Suppose for contradiction that
Conjecture 1.9 failed. By Corollary 5.2, there thus exists an incomplete periodic pressure-normalised
mild H 1 solution (u, p, u0, f, T−

∗
, 1) such that

lim
t→T−∗

‖u(t)‖H1
x (R

3/Z3) =∞. (51)

By Galilean invariance (36), we may assume that u0 and f (and hence u) have mean zero.
Let (u(n)0 , f (n), T∗, 1) be a sequence of periodic smooth mean-zero data converging strongly in

H 1
x (R

3/Z3)0× L∞t H 1
x ([0, T∗]×R3/Z3)0

to the periodic H 1 data (u, f, T∗, 1). For each time 0 < T < T∗, we see from Theorem 5.1 that for n
sufficiently large, we may find a smooth solution (u(n), p(n), u(n)0 , T, 1)with this data, with u(n) converging
strongly in L∞t H 1

x ([0, T ]×R3/Z3) to u. By Conjecture 1.10, the L∞t H 1
x ([0, T ]×R3/Z3) norm of u(n)

is bounded uniformly in both T and n, so by taking limits as n→∞, we conclude that ‖u(t)‖H1
x (R

3/Z3)

is bounded uniformly for 0≤ t < T∗, contradicting (51) as desired.
Conversely, suppose that Conjecture 1.9 held, but Conjecture 1.10 failed. Carefully negating all the

quantifiers, we conclude that there exists a time 0< T0<∞ and a sequence (u(n), p(n), u(n)0 , f (n), T (n), 1)
of smooth periodic data with 0< T (n) < T0 and H1(u(n)0 , f (n), T (n), 1) uniformly bounded in n, such that

lim
n→∞
‖u‖L∞t H1

x ([0,T (n)]×R3/Z3) =∞. (52)
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Using Galilean transforms (36), we may assume that u(n)0 , f (n) (and hence u(n)) have mean zero. From the
short-time local existence (and uniqueness) theory in Theorem 5.1, we see that T (n) is bounded uniformly
away from zero. Thus by passing to a subsequence, we may assume that T (n) converges to a limit T∗
with 0< T∗ ≤ T0.

By sequential weak compactness, we may pass to a further subsequence and assume that for each 0<
T < T∗, (u

(n)
0 , f (n), T, 1) converges weakly (or more precisely, in the sense of distributions) to a periodic

H 1 limit (u0, f, T, 1); gluing these limits together, one obtains periodic H 1 data (u0, f, T∗, 1), which
still has mean zero. By Conjecture 1.9, we can then find a periodic H 1 mild solution (u, p, u0, f, T∗, 1)
with this data, which then necessarily also has mean zero.

By Theorem 5.1 and Proposition 5.3, we see that for every 0< τ < T < T∗, u(n) converges strongly in
L∞t H 1

x ([τ, T ]×R3/Z3) to u. In particular, for any 0< T < T∗, one has

lim sup
n→∞

‖u(n)(T )‖H1
x (R

3/Z3) ≤ ‖u‖L∞t H1
x ([0,T∗]×R3/Z3) <∞.

Taking T sufficiently close to T∗ and then taking n sufficiently large, we conclude from Theorem 5.1 that

lim sup
n→∞

‖u(n)‖L∞t H1
x ([T,T (n)]×R3/Z3) <∞;

also, from the strong convergence in L∞t H 1
x ([τ, T ]×R3/Z3), we have

lim sup
n→∞

‖u(n)‖L∞t H1
x ([τ,T ]×R3/Z3) <∞

for any 0< τ < T , and finally from the local existence (and uniqueness) theory in Theorem 5.1, one has

lim sup
n→∞

‖u(n)‖L∞t H1
x ([0,τ ]×R3/Z3) <∞

for sufficiently small τ . Putting these bounds together, we contradict (52), and the claim follows.

Remark 7.1. It should be clear to the experts that one could have replaced the H 1 regularity in the
above conjectures by other subcritical regularities, such as H k for k > 1, and obtained a similar result to
Theorem 1.20(i).

As remarked previously, the homogeneous case f = 0 of Theorem 1.20(i) was established in [Tao
2007]. We recall the main results of that paper. We introduce the following homogeneous periodic
conjectures:

Conjecture 7.2 (A priori homogeneous periodic H 1 bound). There exists a function F :R+×R+×R+→

R+ with the property that whenever (u, p, u0, 0, T, L) is a smooth periodic homogeneous normalised-
pressure solution with 0< T < T0 <∞ and

H1(u0, 0, T, L)≤ A <∞,

then

‖u‖L∞t H1
x ([0,T ]×R3/LZ3) ≤ F(A, L , T0).
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Conjecture 7.3 (A priori homogeneous global periodic H 1 bound). There exists a function

F : R+×R+→ R+

with the property that whenever (u, p, u0, 0, T, L) is a smooth periodic homogeneous normalised-pressure
solution with

H1(u0, 0, T, L)≤ A <∞,

then

‖u‖L∞t H1
x ([0,T ]×R3/LZ3) ≤ F(A, L).

Conjecture 7.4 (Global well-posedness in periodic homogeneous H 1). Let (u0, 0, T, L) be a homoge-
neous periodic H 1 set of data. Then there exists a periodic H 1 mild solution (u, p, u0, 0, T, L) with the
indicated data.

Conjecture 7.5 (Global regularity for homogeneous periodic data with normalised pressure). Suppose
(u0, 0, T ) is a smooth periodic set of data. Then there exists a smooth periodic solution (u, p, u0, 0, T )
with the indicated data and with normalised pressure.

In [Tao 2007, Theorem 1.4] it was shown that Conjectures 1.4, 7.2, 7.3 are equivalent. As implicitly
observed in that paper also, Conjecture 1.4 is equivalent to Conjecture 7.5 (this can be seen from
Lemma 4.1), and from the local well-posedness and regularity theory (Theorem 5.1 or [Tao 2007,
Proposition 2.2]), we also see that Conjecture 7.5 is equivalent to Conjecture 7.4.

8. Energy localisation

In this section we establish the energy inequality for the Navier–Stokes equation in the smooth finite
energy setting. This energy inequality is utterly standard (see for example [Scheffer 1976]) for weaker
notions of solutions, so long as one has regularity of L2

t H 1
x , but (somewhat ironically) requires more

care in the smooth finite energy setting, because we do not assume a priori that smooth finite energy
solutions lie in the space L2

t H 1
x . The methods used here are local in nature, and will also provide an

energy localisation estimate for the Navier–Stokes equation (see Theorem 8.2).
We begin with the global energy inequality.

Lemma 8.1 (Global energy inequality). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Then

‖u‖L∞t L2
x ([0,T ]×R3)+‖∇u‖L2

t L2
x ([0,T ]×R3) . E(u0, f, T )1/2. (53)

In particular, u lies in the space X1([0, T ]×R3).

Proof. To abbreviate the notation, all spatial norms here will be over R3.
Using the forcing symmetry (34), we may set f to be divergence-free, so in particular by Corollary 4.3

we have

∇ p(t)=∇ p̃(t) (54)
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for almost all times t , where
p̃ =−1−1∂i∂ j (ui u j ). (55)

As (u, p, u0, f, T ) is finite energy, we have the a priori hypothesis

‖u‖L∞t L2
x ([0,T ]×R3) ≤ A

for some A<∞, though recall that our final bounds are not allowed to depend on this quantity A. Because
u is smooth, we see in particular from Fatou’s lemma that

‖u(t)‖L2
x
≤ A (56)

for all t ∈ [0, T ].
Taking the inner product of the Navier–Stokes equation (3) with u and rearranging, we obtain the

energy density identity

∂t
(1

2 |u|
2)
+ u · ∇

( 1
2 |u|

2)
=1

( 1
2 |u|

2)
− |∇u|2− u · ∇ p+ u · f. (57)

We would like to integrate this identity over all of R3, but we do not yet have enough decay in space
to achieve this, even with the normalised pressure. Instead, we will localise by integrating the identity
against a cutoff η4, where η(x) := χ((|x | − R)/r), χ : R→ R+ is a fixed smooth function that equals 0
on [0,+∞] and 1 on [−∞,−1], and 0< r < R/2 are parameters to be chosen later. (The exponent 4
is convenient for technical reasons, in that η4 and ∇(η4) share a large common factor η3, but it should
be ignored on a first reading.) Thus we see that η4 is supported on the ball B(0, R) and equals 1 on
B(0, R− r), with the derivative bounds

∇
jη = O(r− j ) (58)

for j = 0, 1, 2. We define the localised energy

Eη4(t) :=
∫

R3

1
2 |u|

2(t, x)η4(x) dx . (59)

Clearly we have the initial condition

Eη4(0). E(u0, f ). (60)

Because η4 is compactly supported and u is almost smooth, Eη4 is C1
t , and we may differentiate under

the integral sign and integrate by parts without difficulty; using (54), we see for almost every time t that

∂t Eη4 =−X1+ X2+ X3+ X4+ X5, (61)

where X1 is the dissipation term

X1 :=

∫
R3
|∇u|2η4 dx = ‖η2

∇u‖2L2
x
, (62)

X2 is the heat flux term

X2 :=
1
2

∫
R3
|u|21(η4) dx,
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X3 is the transport term

X3 := 4
∫

R3
|u|2u · η3

∇η dx,

X4 is the forcing term

X4 :=

∫
R3

u · f η4 dx,

and X5 is the pressure term

X5 := 4
∫

R3
u p̃η3
∇η dx .

The dissipation term X1 is nonnegative, and will be useful in controlling some of the other terms present
here. The heat flux term X2 can be bounded using (56) and (58) by

X2 .
A2

r2 ,

so we turn now to the transport term X3. Using Hölder’s inequality and (58), we may bound

X3 .
1
r
‖uη2
‖

3/2
L6

x
‖u‖3/2L2

x
, (63)

and thus by (56) and Sobolev embedding

X3 .
A3/2

r
‖∇(uη2)‖

3/2
L2

x
.

By the Leibniz rule and (62), (56), (58), one has

‖∇(uη2)‖L2
x
. X1/2

1 +
A
r
,

and thus

X3 .
A3/2

r
X3/4

1 +
A3

r5/2 .

Now we move on to the forcing term X4. By Cauchy–Schwarz, we can bound this term by

X4 . E1/2
η4 a(t),

where a(t) := ‖ f (t)‖L2
x (B(0,R)). Note from (2) that∫ T

0
a(t) dt . E(u0, f, T )1/2. (64)

Now we turn to the pressure term X5. From (55) we have

X5 =

∫
R3

O
(
u(1−1

∇
2(uu))η3

∇η
)
.

We will argue as in the estimation of X4, but we will first need to move the η3 weight past the singular
integral 1−1

∇
2. We therefore bound X5 = X5,1+ X5,2, where

X5,1 =

∫
R3

O
(
u(1−1

∇
2(uuη3))∇η

)
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and
X5,2 =

∫
R3

O
(
u[1−1

∇
2, η3
](uu)∇η

)
,

where [A, B] := AB − B A is the commutator and η3 is interpreted as the multiplication operator
η3
: u 7→ η3u. For X6,1, we apply Hölder’s inequality and (58) to obtain

X5,1 .
1
r
‖u‖L2

x
‖1−1

∇
2(uuη3)‖L2

x
.

The singular integral 1−1
∇

2 is bounded on L2, so it may be discarded; applying Hölder’s inequality
again, we conclude that

X5,1 .
1
r
‖u‖3/2L2

x
‖uη2
‖

3/2
L6

x
.

This is the same bound (63) used to bound X3, and so by repeating the X3 analysis, we conclude that

X5,1 .
A3/2

r
X3/4

1 +
A3

r5/2 .

As for X5,2, we observe from direct computation of the integral kernel that when r = 1, [1−1
∇

2, χ3
] is a

smoothing operator of infinite order (see [Kato and Ponce 1988]), and in particular

‖[1−1
∇

2, η3
] f ‖L2

x
. ‖ f ‖L1

x

in the r = 1 case. In the general case, a rescaling argument then gives

‖[1−1
∇

2, η3
] f ‖L2

x
.

1
r3/2 ‖ f ‖L1

x
.

Applying Hölder’s inequality and (56), we conclude that

X5,2 .
A3

r5/2 .

Putting all the estimates together, we conclude that

∂t Eη4 ≤−X1+ O
(

A2

r2 +
A3/2

r
X3/4

1 +
A3

r5/2 + E1/2
η4 a(t)

)
.

By Young’s inequality, we have

−
1
2 X1+ O

(
A3/2

r
X3/4

1

)
.

A6

r4

and
A3

r5/2 .
A2

r2 +
A6

r4 ,

and so we obtain

∂t Eη4 + X1 .
A2

r2 +
A6

r4 + E1/2
η4 a(t), (65)



64 TERENCE TAO

and hence for almost every time t ,

∂t
(
Eη4 + E(u0, f, T )

)1/2
. E(u0, f, T )−1/2

(
A2

r2 +
A6

r4

)
+ a(t).

By the fundamental theorem of calculus, (64), and (60), we conclude that

Eη4(t)1/2 . E(u0, f, T )1/2+ E(u0, f, T )−1/2
(

A2

r2 +
A6

r4

)
T

for all t ∈ [0, T ] and all sufficiently large R; sending r, R→∞ and using the monotone convergence
theorem, we conclude that

‖u‖L∞t L2
x ([0,T ]×R3) . E(u0, f, T )1/2.

In particular, we have
Eη4(t). E(u0, f, T )

for all r, R; inserting this back into (65) and integrating, we obtain that∫ T

0
X1(t) dt .

(
A2

r2 +
A6

r4

)
T + E(u0, f, T ).

Sending r, R→∞ and using monotone convergence again, we conclude that

‖∇u‖L2
t L2

x ([0,T ]×R3) . E(u0, f, T )1/2,

and Lemma 8.1 follows. �

We can bootstrap the proof of Lemma 8.1 as follows. A posteriori, we see that we may take A .
E(u0, f, T )1/2. If we return to (65), we may then obtain

∂t(Eη4 + e)1/2 . e−1/2
(

E(u0, f, T )
r2 +

E(u0, f, T )3

r4

)
+ a(t),

where e > 0 is an arbitrary parameter which we will optimise later. From the fundamental theorem of
calculus, we then have

E1/2
η4 . Eη4(0)1/2+ e1/2

+ e−1/2
(

E(u0, f, T )
r2 +

E(u0, f, T )3

r4

)
T +‖ f ‖L1

t L2
x
,

where the L1
t L2

x norm is over [0, T ]× B(0, R); optimising in e, we conclude that

E1/2
η4 . Eη4(0)1/2+

(
E(u0, f, T )

r2 +
E(u0, f, T )3

r4

)1/2

T 1/2
+‖ f ‖L1

t L2
x
.

Inserting this back into (65) and integrating, we also conclude that∫ T

0
X1(t) dt .

(
Eη4(0)1/2+

(
E(u0, f, T )

r2 +
E(u0, f, T )3

r4

)1/2

T 1/2
+‖ f ‖L1

t L2
x

)2

.

Applying spatial translation invariance (29) to move the origin from 0 to an arbitrary point x0, we
deduce an energy localisation result:
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Theorem 8.2 (Local energy estimate). Let (u, p, u0, f, T ) be a finite energy almost smooth solution with
f divergence-free. Then for any x0 ∈ R3 and any 0< r < R/2, one has

‖u‖L∞t L2
x ([0,T ]×B(x0,R−r))+‖∇u‖L2

t L2
x ([0,T ]×B(x0,R−r))

. ‖u0‖L2
x (B(x0,R))+‖ f ‖L1

t L2
x ([0,T ]×B(x0,R))+

E(u0, f, T )1/2T 1/2

r
+

E(u0, f, T )3/2T 1/2

r2 . (66)

Remark 8.3. One can verify that the estimate (66) is dimensionally consistent. Indeed, if L denotes a
length scale, then r, R, E(u0, f ) have the units of L , T has the units of L2, u has the units of L−1, and
all terms in (66) have the scaling of L1/2. Note also that the global energy estimate 8.1 can be viewed as
the limiting case of (66) when one sends r, R to infinity.

Remark 8.4. A minor modification of the proof of Theorem 8.2 allows one to replace the ball B(x0, R)
by an annulus

B(x0, R′)\B(x0, R)

for some 0< R < R′ with r < (R′− R)/2, R/2, with the smaller ball B(x0, R− r) being replaced by the
smaller annulus

B(x0, R′− r)\B(x0, R+ r).

The proof is essentially the same, except that the cutoff η has to be adapted to the two indicated annuli
rather than to the two indicated balls; we omit the details. Sending R′ → ∞ using the monotone
convergence theorem, we deduce in particular an external local energy estimate of the form

‖u‖L∞t L2
x ([0,T ]×(R3\B(x0,R+r)))+‖∇u‖L2

t L2
x ([0,T ]×(R3\B(x0,R+r)))

. ‖u0‖L2
x (R

3\B(x0,R))+‖ f ‖L1
t L2

x ([0,T ]×(R3\B(x0,R)))+
E(u0, f, T )1/2T 1/2

r
+

E(u0, f, T )3/2T 1/2

r2 , (67)

whenever 0< r < R/2.

Remark 8.5. The hypothesis that f is divergence-free can easily be removed using the symmetry (34),
but then f needs to be replaced by P f on the right-hand side of (66).

Remark 8.6. Theorem 8.2 can be extended without difficulty to the periodic setting, with the energy
E(u0, f, T ) being replaced by the periodic energy

EL(u0, f, T ) := 1
2

(
‖u0‖L2

x (R
3/LZ3)+‖ f ‖L1

t L2
x ([0,T ]×R3/LZ3)

)2

as long as the radius R of the ball is significantly smaller than the period L of the solution, for example,
R < L/100. The reason for this is that the analysis used to prove Theorem 8.2 takes place almost entirely
inside the ball B(x0, R), and so there is almost no distinction between the finite energy and the periodic
cases. The only place where there is any “leakage” outside of B(x0, R) is in the estimation of the term
X5,2, which involves the nonlocal commutator [1−1

∇
2, η3
]. However, in the regime R < L/100, one

easily verifies that the commutator essentially obeys the same sort of kernel bounds in the periodic setting
as it does in the nonperiodic setting, and so the argument goes through as before. We omit the details.
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Remark 8.7. Theorem 8.2 asserts, roughly speaking, that if the energy of the data is small in a large ball,
then the energy will remain small in a slightly smaller ball for future times T ; similarly, (67) asserts that
if the energy of the data is small outside a ball, then the energy will remain small outside a slightly larger
ball for future times T . Unfortunately, this estimate is not of major use for the purposes of establishing
Theorem 1.20, because energy is a supercritical quantity for the Navier–Stokes equation, and so smallness
of energy (local or global) is not a particularly powerful conclusion. To achieve this goal, we will need
a variant of Theorem 8.2 in which the energy 1

2

∫
|u|2 is replaced by the enstrophy 1

2

∫
|ω|2, which is

subcritical and thus able to control the regularity of solutions effectively.

Remark 8.8. It should be possible to extend Theorem 8.2 to certain classes of weak solutions, such as
mild solutions or Leray–Hopf solutions, perhaps after assuming some additional regularity on the solution
u. We will not pursue these matters here.

9. Bounded total speed

Let (u, p, u0, f, T ) be an almost smooth finite energy solution. Applying the Leray projection P to (3)
(and using Corollary 4.3), we see that

∂t u =1u+ PB(u, u)+ P f (68)

for almost all times t , where B(u, v)=O(∇(uv)) was defined in (12). As all expressions here are tempered
distributions, we thus have the Duhamel formula (11), which we rewrite here as

u(t)= et1u0+

∫ t

0
e(t−t ′)1(PO(∇(uu))+ P f

)
(t ′) dt ′. (69)

One can then insert the a priori bounds from Lemma 8.1 into (69) to obtain further a priori bounds on
u in terms of the energy E(u0, f, T ) (although, given that (53) was supercritical with respect to scaling,
any further bounds obtained by this scheme must be similarly supercritical).

Many such bounds of this type already exist in the literature. For instance:17

• One can bound the vorticity ω := ∇ × u in L∞t L1
x norm [Constantin 1990; Qian 2009].

• One can bound ∇2u in L4/3,∞
t,x [Constantin 1990; Lions 1996].

• More generally, for any α ≥ 1, one can bound ∇αu in L4/(α+1),∞
t L4/(α+1),∞

x [Vasseur 2010; Choi
and Vasseur 2011].

• For any k ≥ 0, one can bound tk∂k
t u in L2

t,x [Chae 1992].

• One can bound ∇u in L1/2
t L∞x [Foiaş et al. 1981].

• For any r ≥ 0 and k ≥ 1, one can bound Dr
t ∇

s
x u in L2/(4r+2k−1)

t L2
x [Foiaş et al. 1981; Doering and

Foias 2002; Duff 1990].

17These bounds are usually localised in both time and space, or are restricted to the periodic setting, and some bounds were
only established in the model case f = 0; some of these bounds also apply to weaker notions of solution than classical solutions.
For the purposes of this exposition we will not detail these technicalities.
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• For any 1≤ m ≤∞, one can bound ω in L2m/(4m−3)
t L2m

x [Gibbon 2012].

• One can bound moments of wave-number like quantities [Doering and Gibbon 2002; Cheskidov and
Shvydkoy 2011].

In this section we present another a priori bound which will be absolutely crucial for our localisation
arguments, and which (somewhat surprisingly) does not appear to be previously in the literature:

Proposition 9.1 (Bounded total speed). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Then we have

‖u‖L1
t L∞x ([0,T ]×R3) . E(u0, f, T )1/2T 1/4

+ E(u0, f, T ). (70)

We observe that the estimate (70) is dimensionally consistent with respect to the scaling (31). Indeed,
if L denotes a length scale, then T scales like L2, u scales like L−1, and E0 scales like L , so both sides
of (70) have the scaling of L .

Before we prove this proposition rigorously, let us first analyse equation (68) heuristically, using
Littlewood–Paley projections, to get some feel of what kind of a priori estimates one can hope to establish
purely from (68) and (53). For the simplicity of this exposition we shall assume f = 0. We consider a
high-frequency component uN := PN u of the velocity field u for some N � 1. Applying PN to (68), and
using the ellipticity of 1 to adopt the heuristic18 PN1∼−N 2 PN and PN P∇ ∼ N PN , we arrive at the
heuristic equation

∂t uN =−N 2uN +O(N PN (u2)).

Let us cheat even further and pretend that PN (u2) is analogous to uN uN (in practice, there will be more
terms than this, but let us assume this oversimplification for the sake of discussion). Then we have

∂t uN =−N 2uN +O(Nu2
N ).

Heuristically, this suggests that the high-frequency component uN should quickly damp itself out into
nothingness if |uN | � N , but can exhibit nonlinear behaviour when |uN | � N . Thus, as a heuristic, one
can pretend that uN has magnitude� N on the regions where it is nonnegligible.

This heuristic, coupled with the energy bound (53), already can be used to informally justify many of
the known a priori bounds on Navier–Stokes solutions. In particular, projecting (53) to the uN component,
one expects that

‖uN‖L2
t L2

x
. N−1 (71)

(dropping the dependencies of constants on parameters such as E0 and being vague about the space-time
region on which the norms are being evaluated), which by Bernstein’s inequality implies that

‖uN‖L2
t L∞x
. N 1/2.

However, with the heuristic that |uN | � N on the support of uN , we expect that

‖uN‖L1
t L∞x
.

1
N
‖uN‖

2
L2

t L∞x
. 1;

18One can informally justify this heuristic by inspecting the symbols of the Fourier multipliers appearing in these expressions.
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summing in N (and ignoring the logarithmic divergence that results, which can in principle be recovered
by using Bessel’s inequality to improve upon (71)), we obtain a nonrigorous derivation of Proposition 9.1.

We now turn to the formal proof of Proposition 9.1. All space-time norms are understood to be
over the region [0, T ] ×R3 (and all spatial norms over R3) unless otherwise indicated. We abbreviate
E0 := E(u0, f, T ). From (53) and (2) we have the bounds

‖u‖L∞t L2
x
. E1/2

0 , (72)

‖∇u‖L2
t L2

x
. E1/2

0 , (73)

‖u0‖L2
x
+‖ f ‖L1

t L2
x
. E1/2

0 . (74)

We expand out u using (69). For the free term et1u0, one has by (18)

‖et1u0‖L∞x . t−3/4
‖u0‖L2

x

for t ∈ [0, T ], so this contribution to (70) is acceptable by (74). In a similar spirit, we have

‖e(t−t ′)1P f (t ′)‖L∞x . (t − t ′)−3/4
‖P f (t ′)‖L2

x
. (t − t ′)−3/4

‖ f (t ′)‖L2
x
,

and so this contribution is also acceptable by the Minkowski and Young inequalities and (74).
It remains to show that ∥∥∥∥∫ t

0
e(t−t ′)1O(P∇(uu)(t ′)) dt ′

∥∥∥∥
L1

t L∞x

. E0.

By Littlewood–Paley decomposition, the triangle inequality, and Minkowski’s inequality, we can bound
the left-hand side by

.
∑

N

∫ T

0

∫ t

0

∥∥PN e(t−t ′)1O(P∇(uu)(t ′))
∥∥

L∞x
dt ′ dt.

Using (27) and bounding the first-order operator P∇ by N on the range of PN , we may bound this by

.
∑

N

∫ T

0

∫ t

0
exp

(
−c(t − t ′)N 2)N‖PN O(uu)(t ′)‖L∞x dt ′ dt

for some c > 0; interchanging integrals and evaluating the t integral, this becomes

.
∑

N

∫ T

0
N−1
‖PN O(uu)(t ′)‖L∞x dt ′. (75)

We now apply the Littlewood–Paley trichotomy (see Section 2) and symmetry to write

PN O(uu)=
∑

N1∼N

∑
N2.N

PN O(uN1uN2)+
∑

N1&N

∑
N2∼N1

PN O(uN1uN2),
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where uN := PN u. For N1, N2 in the first sum, we use Bernstein’s inequality to estimate

‖PN O(uN1uN2)‖L∞x . ‖uN1‖L∞x ‖uN2‖L∞x

. N 3/2
1 ‖uN1‖L2

x
N 3/2

2 ‖uN2‖L2
x

. N (N2/N1)
1/2
‖∇uN1‖L2

x
‖∇uN2‖L2

x
.

For N1, N2 in the second sum, we use Bernstein’s inequality in a slightly different way to estimate

‖PN O(uN1uN2)‖L∞x . N 3
‖O(uN1uN2)‖L1

x

. N 3
‖uN1‖L2

x
‖uN2‖L2

x

. N (N/N1)
2
‖∇uN1‖L2

x
‖∇uN2‖L2

x
.

Applying these bounds, we can estimate (75) by

.
∑

N

∑
N1∼N

∑
N2.N

(N2/N1)
1/2
∫ T

0
‖∇uN1(t

′)‖L2
x
‖∇uN2(t

′)‖L2
x

dt ′

+

∑
N

∑
N1&N

∑
N2∼N1

(N/N1)
2
∫ T

0
‖∇uN1(t

′)‖L2
x
‖∇uN2(t

′)‖L2
x

dt ′.

Performing the N summation first and then using Cauchy–Schwarz, one can bound this by

.
∑
N1&1

∑
N2.N1

(N2/N1)
1/2aN1aN2 +

∑
N1&1

∑
N2∼N1

aN1aN2,

where
aN := ‖∇uN‖L2

t L2
x
.

But from (73) and Bessel’s inequality (or the Plancherel theorem), one has∑
N

a2
N . E0,

and the claim (70) then follows from Schur’s test (or Young’s inequality).

Remark 9.2. An inspection of this argument reveals that the L∞x norm in (70) can be strengthened to a
Besov norm (Ḃ0,∞

1 )x , defined by

‖u‖
(Ḃ0,∞

1 )x
:=

∑
N

‖PN u‖L∞x .

Remark 9.3. An inspection of the proof of Proposition 9.1 reveals that the time-dependent factor T 1/4

on the right-hand side of Proposition 9.1 was only necessary in order to bound the linear components

et1u0+

∫ t

0
e(t−t ′)1(P f )(t ′) dt ′

of the Duhamel formula (69). If one had some other means to bound these components in L1
t L∞x by a

bound independent of T (for instance, if one had some further control on the decay of u0 and f , such as
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L1
x and L1

t L1
x bounds), then this would lead to a similarly time-independent bound in Proposition 9.1,

which could be useful for analysis of the long-time asymptotics of Navier–Stokes solutions (which is not
our primary concern here).

Remark 9.4. It is worth comparing the (supercritical) control given by Proposition 9.1 with the well-
known (critical) Prodi–Serrin–Ladyzhenskaya regularity condition [Prodi 1959; Serrin 1963; Ladyzhen-
skaya 1967; Fabes et al. 1972; Struwe 1988], a special case of which (roughly speaking) asserts that
smooth solutions to the Navier–Stokes system can be continued as long as u is bounded in L2

t L∞x , and
the equally well known (and also critical) regularity condition of Beale, Kato, and Majda [1984], which
asserts that smooth solutions can be continued as long as the vorticity

ω := ∇ × u (76)

stays bounded in L1
t L∞x .

Remark 9.5. As pointed out by the anonymous referee, one can also obtain L1
t L∞x bounds on the velocity

field u by a Gagliardo–Nirenberg type interpolation between the L1/2
t L∞x bound on ∇u from [Foiaş et al.

1981] with the L2
t L6

x bound on u arising from the energy inequality and Sobolev embedding.

Although we will not need it in this paper, Proposition 9.1 when combined with the Picard well-
posedness theorem for ODE yields the following immediate corollary, which may be of use in future
applications:

Corollary 9.6 (Existence of material coordinates). Let (u, p, u0, f, T ) be a finite energy smooth solution.
Then there exists a unique smooth map 8 : [0, T ]×R3

→ R3 such that

8(0, x)= x

for all x ∈ R3, and
∂t8(t, x)= u(8(t, x))

for all (t, x)∈ [0, T ]×R3, and furthermore8(t) :R3
→R3 is a diffeomorphism for all t ∈ [0, T ]. Finally,

one has
|8(t, x)− x |. E(u0, f, T )1/2T 1/4

+ E(u0, f, T )

for all (t, x) ∈ [0, T ]×R3.

Remark 9.7. One can extend the results in this section to the periodic case, as long as one assumes
normalised pressure and imposes the additional condition T ≤ L2, which roughly speaking ensures that
the periodic heat kernel behaves enough like its nonperiodic counterpart that estimates such as (18) are
maintained; we omit the details. (Without normalised pressure, the Galilean invariance (33) shows that
one cannot hope to bound the L1

t L∞x norm of u by the initial data, and even energy estimates do not work
any more.) When the inequality T ≤ L2 fails, one can still obtain estimates (but with weaker bounds) by
using the crude observation that a solution which is periodic with period L is also periodic with period
kL for any positive integer k, and choosing k to be the first integer such that T ≤ (kL)2.
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10. Enstrophy localisation

The purpose of this section is to establish a subcritical analogue of Theorem 8.2, in which the energy
1
2

∫
|u|2 is replaced by the enstrophy 1

2

∫
|ω|2. Because the latter quantity is not conserved, we will need

a smallness condition on the initial local enstrophy; however, the initial global enstrophy is allowed to be
arbitrarily large (or even infinite).

Theorem 10.1 (Enstrophy localisation). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Let B(x0, R) be a ball such that

‖ω0‖L2
x (B(x0,R))+‖∇ × f ‖L1

t L2
x ([0,T ]×B(x0,R)) ≤ δ (77)

for some δ > 0, where ω0 := ∇ × u0 is the initial vorticity. Assume the smallness condition

δ4T + δ5 E(u0, f, T )1/2T ≤ c (78)

for some sufficiently small absolute constant c > 0 (independent of all parameters). Let 0< r < R/2 be a
quantity such that

r > C
(
E(u0, f, T )+ E(u0, f, T )1/2T 1/4

+ δ−2) (79)

for some sufficiently large absolute constant C (again independent of all parameters). Then

‖ω‖L∞x L2
x ([0,T ]×B(x0,R−r))+‖∇ω‖L2

t L2
x ([0,T ]×B(x0,R−r)) . δ.

Remark 10.2. Once again, this theorem is dimensionally consistent (and so one could use (31) to
normalise one of the nondimensionless parameters above to equal 1 if desired). Indeed, if L is a unit of
length, then u has the units of L−1, ω has the units of L−2, E(u0, f, T ), r, R have the units of L , T has the
units of L2, and δ has the units of L−1/2 (so in particular δ4T and δ5 E(u0, f, T )1/2T are dimensionless).

Remark 10.3. The smallness of δ4T also comes up, not coincidentally, as a condition in the local well-
posedness theory for the Navier–Stokes at the level of H 1; see (46). The smallness of δ5 E(u0, f, T )1/2T
is a more artificial condition, and it is possible that a more careful argument would eliminate it, but we
will not need to do so for our applications. For future reference, it will be important to note the fact that δ
is permitted to be large in the above theorem, so long as the time T is small.

Remark 10.4. A variant to Theorem 10.1 can also be deduced from the result19 in [Caffarelli et al. 1982,
Theorem D]. Here, instead of assuming a small L2 condition on the enstrophy, one needs to assume
smallness of quantities such as

∫
R3(|u0(x)|2/|x − x0|)dx for all sufficiently large x0, and then regularity

results are obtained outside of a sufficiently large ball in space-time.

We now prove the theorem. Let (u, p, u0, f, T ), B(x0, R), δ, r be as in the theorem. We may use spatial
translation symmetry (29) to normalise x0 = 0. We assume c > 0 is a sufficiently small absolute constant,
and then assume C > 0 is a sufficiently large constant (depending on c). We abbreviate E0 := E(u0, f, T ).

In principle, this is a subcritical problem, because the local enstrophy 1
2

∫
B(x0,R)

|ω|2 (or regularised
versions thereof) is subcritical with respect to scaling (31). As such, standard energy methods should

19We thank the anonymous referee for this observation.
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in principle suffice to keep the enstrophy small for small times (using the smallness condition (78), of
course). The main difficulty is that the local enstrophy is not fully coercive: it controls ω (and, to a lesser
extent, u) inside B(x0, R), but not outside B(x0, R); while we do have some global control of the solution
thanks to the energy estimate (Lemma 8.1), this is supercritical and thus needs to be used sparingly. We
will therefore expend a fair amount of effort to prevent our estimates from “leaking” outside B(x0, R);
in particular, one has to avoid the use of nonlocal singular integrals (such as the Leray projection or
the Biot–Savart law) and work instead with more local techniques such as integration by parts. This
will inevitably lead to some factors that blow up as one approaches the boundary of B(x0, R) (actually,
for technical reasons, we will be using a slightly smaller ball B(x0, R′(t)) as our domain). It turns out,
however, that thanks to a moderate amount of harmonic analysis, these boundary factors can (barely) be
controlled if one chooses exactly the right type of weight function to define the local enstrophy (it has to
be Lipschitz continuous, but no better).

We turn to the details. We will need an auxiliary initial radius R′ = R′(0) in the interval [R− r/4, R]
which we will choose later (by a pigeonholing argument). Given this R′, we then define a time-dependent
radius function

R′(t) := R′−
1
c

∫ t

0
‖u(s)‖L∞x (R3) ds.

From Proposition 9.1 one has
R′(t)≥ R′− Oc(E0+ E1/2

0 T 1/4),

and thus (by (79)) one has
R′(t)≥ R− r/2

if the constant C in (79) is sufficiently large depending on c. The reason we introduce this rapidly
shrinking radius is that we intend to “outrun” all difficulties caused by the transport component of the
Navier–Stokes equation when we deploy the energy method. Note that the bounded total speed property
(Proposition 9.1) prevents us from running the radius down to zero when we do this.

We introduce a time-varying Lipschitz continuous cutoff function

η(t, x)=min
(
max(0, c−0.1δ2(R′(t)− |x |)), 1

)
.

This function is supported on the ball B(0, R′(t)) and equals one on B(0, R′(t)− c0.1δ−2), and is radially
decreasing; in particular, from (79), we see that η is supported on B(0, R) and equals 1 on B(0, R− r) if
C is large enough. As t increases, this cutoff shrinks at speed (1/c)‖u(t)‖L∞x (R3), leading to the useful
pointwise estimate

∂tη(t, x)≤−
1
c
‖u(t)‖L∞x (R3)|∇xη(t, x)|, (80)

which we will use later in this argument to control transport-like terms in the energy estimate (or more
precisely, the enstrophy estimate).

Remark 10.5. It will be important that η is Lipschitz continuous but no better; Lipschitz is the minimal
regularity for which one can still control the heat flux term (see Y3 below), but is also the maximal
regularity for which there is enough coercivity to control the nonlinear term (see Y6 below). The argument
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is in fact remarkably delicate, necessitating a careful application of harmonic analysis techniques (and in
particular, a Whitney decomposition of the ball).

We introduce the localised enstrophy

W (t) := 1
2

∫
R3
|ω(t, x)|2η(t, x) dx . (81)

From the hypothesis (77) one has the initial condition

W (0). δ2, (82)

and to obtain the proposition, it will suffice to show that

W (t).c δ
2 (83)

for all t ∈ [0, T ].
As u is almost smooth, W is C1

t . As in Section 8, we will compute the derivative ∂t W . We first take
the curl of (3) to obtain the well-known vorticity equation

∂tω+ (u · ∇)ω =1ω+O(ω∇u)+∇ × f. (84)

This leads to the enstrophy equation

∂t
1
2 |ω|

2
+ (u · ∇) 1

2 |ω|
2
=1(1

2 |ω|
2)− |∇ω|2+O(ωω∇u)+ω · (∇ × f ).

All terms in this equation are smooth. Integrating this equation against the Lipschitz, compactly supported
η and integrating by parts as in Section 8 (interpreting derivatives of η in a distributional sense), we
conclude that

∂t W =−Y1− Y2+ Y3+ Y4+ Y5+ Y6, (85)

where Y1 is the dissipation term

Y1 :=

∫
R3
|∇ω|2η,

Y2 is the recession term

Y2 := −
1
2

∫
R3
|ω|2∂tη,

Y3 is the heat flux term

Y3 :=
1
2

∫
R3
|ω|21η,

Y4 is the transport term

Y4 :=
1
2

∫
R3
|ω|2u · ∇η,

Y5 is the forcing term

Y5 :=

∫
R3
ω · (∇ × f )η,

and Y6 is the nonlinear term

Y6 :=

∫
R3

O(ωω∇u)η.
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The term Y1 is nonnegative, and will be needed to control some of the other terms. The term Y2 is also
nonnegative; by (80) we see that ∫

R3
|ω|2|∇η|. c‖u(t)‖L∞x (R3)Y2. (86)

We skip the heat flux term Y3 for now and use (86) to bound the transport term Y4 by

|Y4|. cY2. (87)

Now we turn to the forcing term Y5. By Cauchy–Schwarz and (81), we have

|Y5|.W 1/2a(t),

where
a(t) := ‖∇ × f ‖L2

x (B(0,R)).

Note from (77) that ∫ T

0
a(t) dt . δ. (88)

We return now to the heat flux term Y3. Computing the distributional Laplacian20 of η in polar
coordinates, we see that

Y3 . b(t),

where b(t)= bR′(t) is the quantity

b(t) := c−0.1δ2 R2
∫

S2
|ω(t, R′(t)α)|2 dα+ c−0.2δ4

∫
R′(t)−c0.1δ−2≤|x |≤R′(t)

|ω(t, x)|2 dx,

and dα is surface measure on the unit sphere S2. (Note that while 1η also has a component on the sphere
|x | = R′(t)− c0.1δ−2, this component is negative and thus can be discarded.)

To control b(t), we take advantage of the freedom to choose R′. From Fubini’s theorem and a change
of variables, we see that ∫ R

R− r
4

∫ T

0
bR′(t) dt d R′ . c−0.1δ2

∫ T

0

∫
R3
|ω(t, x)|2 dx .

From Lemma 8.1, the right-hand side is O(δ2 E0/c0.1). Thus, by the pigeonhole principle, we may select
a radius R′ such that ∫ T

0
b(t) dt .

δ2 E0

c0.1r
,

and in particular, by (79), ∫ T

0
b(t) dt . δ2 (89)

if C is large enough.

20Alternatively, if one wishes to avoid distributions, one can regularise η by a small epsilon parameter to become smooth,
compute the Laplacian of the regularised term, and take limits as epsilon goes to zero. One can also rescale either R or δ (but not
both) to equal 1 to simplify the computations.
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Henceforth we fix R′ so that (89) holds. We now turn to the most difficult term, namely the nonlinear
term Y6. Morally speaking, the ∇u term in Y6 has the “same strength” as ω, and so Y6 is heuristically as
strong as ∫

R3
O(ω3)η.

A standard Whitney decomposition of the support of η, followed by rescaled versions of the Sobolev
inequality, bounds this latter expression by

O
((∫

R3
|ω|2η

)1/2(∫
R3
|∇ω|2η

))
.

If we could similarly bound Y6 by this expression by an analogous argument, this would greatly simplify
the argument below. Unfortunately, the relationship between ∇u and ω is rather delicate (especially when
working relative to the weight η), and we have to perform a much more involved analysis (though still
ultimately one which is inspired by the preceding argument).

We turn to the details. We fix t and work in the domain

� := B(0, R′(t)).

We apply a Whitney-type decomposition, covering � by a boundedly overlapping collection of balls
Bi = B(xi , ri ) with radius

ri :=
1

100 min(dist(xi , ∂�), c0.1/δ2).

In particular, we have
η ∼ c−0.1δ2ri (90)

on B(xi , 10ri ). We can then bound

|Y6|. c−0.1δ2
∑

i

ri

∫
Bi

|ω|2|∇u|.

The first step is to convert ∇u into an expression that only involves ω (modulo lower-order terms), while
staying inside the domain �. To do this, we first observe from the divergence-free nature of u that

1u =∇ ×∇ × u =∇ ×ω.

Let ψi be a smooth cutoff to the ball 3Bi := B(xi , 3ri ) that equals 1 on 2Bi := B(xi , 2ri ). On 2Bi , we
thus have the local Biot–Savart law

u = O(1−1
∇(ψiω))+ v,

where v is harmonic on 2Bi . In particular, from Sobolev embedding one has

‖v‖L2
x (2Bi ) . ‖ψiω‖L6/5

x (R3)
+‖u‖L2

x (2Bi ).

From Hölder’s inequality one has

‖ψiω‖L6/5
x (R3)

. ri‖ω‖L2
x (2Bi ),
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while from the mean value principle for harmonic functions one has

‖∇v‖L∞x (Bi ) . r−5/2
i ‖v‖L2

x (2Bi ).

We conclude that
‖∇v‖L∞x (Bi ) . r−3/2

i ‖ω‖L2
x (2Bi )+ r−5/2

i ‖u‖L2
x (2Bi ),

and we thus have the pointwise estimate

|∇u|. |∇1−1
∇(ψiω)| + r−3/2

i ‖ω‖L2
x (2Bi )+ r−5/2

i ‖u‖L2
x (2Bi )

on Bi . We can thus bound |Y6| ≤ Y6,1+ Y6,2, where

Y6,1 . c−0.1δ2
∑

i

ri

∫
Bi

|ω|2 Fi (91)

and
Fi := |∇1

−1
∇(ψiω)| + r−3/2

i ‖ω‖L2
x (2Bi )

and

Y6,2 . c−0.1δ2
∑

i

r−3/2
i ‖u‖L2

x (2Bi )

∫
Bi

|ω|2.

Let us first deal with Y6,2, which is the only term not locally controlled by the vorticity alone. If the
ball Bi is contained in the annular region

{x ∈� : |x | ≥ R′(t)− c0.1δ−2
},

which is the region where η is not constant, then we use Hölder to get the bound

r−3/2
‖u‖L2

x (2Bi ) . ‖u‖L∞x (R3)

and observe that c−0.1δ2
= |∇η| on Bi . Thus, by (86), the contribution of this term to Y6,2 is O(c0.9Y2).

If instead the ball Bi intersects the ball B(0, R′(t)− c0.1δ−2), then ri ∼ c0.1δ−2 and η ∼ 1 on Bi , and we
use Lemma 8.1 to obtain the bound

r−3/2
i ‖u‖L2

x (2Bi ) . c−0.15δ3 E1/2
0 ,

and then by (81), (78) the contribution of this case is

O(c−0.25δ5 E1/2
0 W )= O(c0.75W/T );

and thus
Y6,2 . c0.9Y2+ c0.75W/T .

Now we turn to Y6,1. From Plancherel’s theorem we have

‖∇1−1
∇(ψiω)‖L2

x (R
3) . ‖ψiω‖L2

x (R
3) . ‖ω‖L2

x (2Bi ),

and thus
‖Fi‖L2

x (Bi ) . ‖ω‖L2
x (2Bi ).
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From Hölder’s inequality we thus have

Y6,1 . c−0.1δ2
∑

i

r3/2
i ‖ω‖

2
L6

x (Bi )
‖ω‖L2

x (2Bi ).

To deal with this, we let wi denote the averages

wi :=

(
1
|3Bi |

∫
3Bi

|ω|2
)1/2

;

then
‖ω‖L2

x (2Bi ) . r3/2
i wi .

Also, from the Sobolev inequality one has

‖ω‖L6
x (Bi ) . ‖ωψi‖L6

x (R
3) . ‖∇(ωψi )‖L2

x (R
3) . ‖∇ω‖L2

x (3Bi )+ r−1
i ‖ω‖L2

x (3Bi ) . ‖∇ω‖L2
x (3Bi )+ r1/2

i wi ,

and thus
Y6,1 . c−0.1δ2

∑
i

r3
i wi‖∇ω‖

2
L2

x (3Bi )
+ c−0.1δ2

∑
i

r4
i w

3
i . (92)

To deal with the first term of (92), observe from (81) and (90) that∑
i

r4
i w

2
i . c0.1δ−2W, (93)

and in particular
wi . c0.05δ−1W 1/2r−2

i (94)

for all i . We may thus bound

c−0.1δ2
∑

i

r3
i wi‖∇ω‖

2
L2

x (3Bi )
. c−0.05δW 1/2

∑
i

ri‖∇ω‖
2
L2

x (3Bi )
,

which by (90) and the bounded overlap of the Bi is

. c0.05δ−1W 1/2
∫
�

|∇ω|2η . c0.05δ−1W 1/2Y1.

The second term of (92), c−0.1δ2∑
i r4

i w
3
i , is trickier to handle. Call a ball “large” if its radius is at least

10−4c−0.1δ−2 (say), and “small” otherwise. To deal with the small balls we use the Poincaré inequality.
From this inequality, we see in particular that∣∣∣∣( 1

|3Bi |

∫
3Bi

|ω|2
)1/2

−

(
1
|3B j |

∫
3B j

|ω|2
)1/2∣∣∣∣. (r−1

i

∫
10Bi

|∇ω|2
)1/2

whenever Bi , B j intersect. (Indeed, the Poincaré inequality implies that both terms in the left-hand side
are within O((r−1

i

∫
10Bi
|∇ω|2)1/2) of |(1/|10Bi |)

∫
10Bi

ω|.) In other words, we have

|wi −w j |. r−1/2
i

(∫
10Bi

|∇ω|2
)1/2

(95)

whenever Bi , B j intersect.
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Now for any small ball Bi , we may assign a “parent” ball Bp(i) which touches the ball but has radius
at least 1.001 (say) times as large as that of Bi . We may iterate this until we reach a large ball Ba(i), and
write

wi ≤ wa(i)+
∑
k≥0

|wpk(i)−wpk+1(i)|,

where the sum is over all k for which pk+1(i) is well-defined; note that this inequality also holds for large
balls if we set a(i)= i . Taking cubes and using Hölder’s inequality, we obtain

w3
i . w

3
a(i)+

∑
k≥0

(1+ k)10
|wpk(i)−wpk+1(i)|

3,

and so we can bound c−0.1δ2∑
i

r4
i w

3
i by

. c−0.1δ2
∑

i

r4
i w

3
a(i)+ c−0.1δ2

∑
k≥0

(1+ k)10
∑

i

r4
i |wpk(i)−wpk+1(i)|

3.

If one fixes a large ball B j , one easily checks that
∑

i :a(i)= j
r4

i . r4
j , and thus

c−0.1δ2
∑

i

r4
i w

3
a(i) . c−0.1δ2

∑
j :r j>10−4c0.1δ−2

r4
jw

3
j ;

applying (94) and (93), we thus have

c−0.1δ2
∑

i

r4
i w

3
a(i) . c−0.25δ5W 1/2

∑
j

r4
jw

2
j . c−0.15δ3W 3/2.

Similarly, if one fixes a small ball B j , one verifies that∑
k≥0

(1+ k)10
∑

i :pk(i)= j

r4
i . r4

j ,

and thus

c−0.1δ2
∑
k≥0

(1+ k)10
∑

i

r4
i |wpk(i)−wpk+1(i)|

3 . c−0.1δ2
∑

j :r j≤10−4c0.1δ−2

r4
j |w j −wp( j)|

3.

From (94) (once) and (95) (twice) one has

|w j −wp( j)|
3 . c0.05δ−1W 1/2r−3

j

∫
10B j

|∇ω|2,

and so we may bound the preceding expression by

. c−0.05δW 1/2
∑

j

r j

∫
10B j

|∇ω|2,

which by (90) and the bounded overlap of the B j can be bounded by

. c0.05δ−1W 1/2
∫
�

|∇ω|2η . c0.05δ−1W 1/2Y1.
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Putting the Y6,1 bounds together, we conclude that

Y6,1 . c−0.15δ3W 3/2
+ c0.05δ−1W 1/2Y1;

collecting the bounds for Y1, . . . , Y6, we thus have

∂t W ≤−Y1+ O
(
c0.05δ−1W 1/2Y1+ c−0.15δ3W 3/2

+ c0.75W/T + a(t)W 1/2
+ b(t)

)
.

To solve this differential inequality we use the continuity method. Suppose that 0≤ T ′ ≤ T is a time for
which

sup
t∈[0,T ′]

W (t)≤ c−0.01δ2. (96)

Then, if c is small enough, we can absorb the O(c0.05δ−1W 1/2Y1) term by the −Y1 term, and can also
use this bound and (78) to obtain

c−0.15δ3W 3/2 . c−0.155δ4W . c0.75W/T

and
a(t)W 1/2 . c−0.005δa(t).

We thus have
∂t W . c0.75W/T + c−0.005δa(t)+ b(t).

From Gronwall’s inequality and (82), (88), (89), we thus have

sup
t∈[0,T ′]

W (t). c−0.005δ2.

For c a small enough absolute constant, this is (slightly) better than the hypothesis (96), and so from the
continuity method (and (82)), we conclude that

sup
t∈[0,T ]

W (t). c−0.005δ2,

and the claim (83) follows. The proof of Theorem 10.1 is now complete.

Remark 10.6. As with Remark 8.4, we may adapt the proof of Theorem 10.1 to an annulus, replacing the
ball B(x0, R) with an annulus B(x0, R′)\B(x0, R) for some 0< R < R′ with 0< r < R/2, (R′− R)/2,
and replacing the smaller ball B(x0, R− r) with the smaller annulus B(x0, R′− r)\B(x0, R+ r). To do
this, one has to replace the cutoff η (which was shrinking inside the ball B(x0, R) towards B(x0, R− r))
with a slightly more complicated cutoff (which is shrinking inside the annulus B(x0, R′)\B(x0, R) towards
the smaller annulus B(x0, R′− r)\B(x0, R+ r)). However, aside from this detail, the proof method is
essentially identical and is omitted. Sending R′ to infinity and using the monotone convergence theorem,
we may in fact replace the annulus B(x0, R′)\B(x0, R) with the exterior region R3

\B(x0, R), and the
annulus B(x0, R′− r)\B(x0, R+ r) with R3

\B(x0, R+ r).

Theorem 10.1 asserts, roughly speaking, that if the H 1
x norm of the data is small on a ball, then for a

quantitative amount of later time, the H 1
x norm of the solution remains small on a slightly smaller ball.
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As the H 1 norm is subcritical, we expect this sort of result to persist to higher regularities, in the spirit of
[Serrin 1962]. It is therefore unsurprising that this is indeed the case:

Proposition 10.7 (Higher regularity). Let (u, p, u0, f, T ) be a finite energy almost smooth solution with
T ≤ T∗. Let B(x0, R), η, δ, r obey the conditions (77), (78), (79) from Theorem 10.1. Then for any
compact subset K in the interior of B(x0, R− r) and any k ≥ 1, one can bound

‖∇
ku‖L∞t L2

x ([0,T ]×K )+‖∇
k+1u‖L2

t L2
x ([0,T ]×K ) .k,K ,E(u0, f,T ),δ,T∗,R,Ak 1,

where

Ak :=

k∑
j=0

‖∇
j u0‖L2

x (B(x0,R))+‖∇
j f ‖L∞t L2

x ([0,T ]×B(x0,R)).

In particular, one has
‖u‖X k([0,T ]×K ) .k,K ,E(u0, f,T ),δ,T∗,R,Ak 1.

Proof. We allow all implied constants to depend on k, K , E(u0, f, T ), δ, T∗, R, Ak . We introduce a
compact set

K ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 ⊂ K5 ⊂ B(x0, R− r),

with each set lying in the interior of the next set. Let η be a smooth function supported on K2 that equals 1
on K1; we allow implied constants to depend on η.

We begin with the k = 1 case. From Theorem 10.1 one already has

‖ω‖L∞t L2
x ([0,T ]×K1)+‖∇ω‖L2

t L2
x ([0,T ]×K1)

. 1.

To pass from ω to u, we use integration by parts. Since ω = ∇ × u and u is divergence-free, a standard
integration by parts shows that

1
2

∫
R3
|ω|2η =

∫
R3
|∇u|2η+

∫
R3

O(|u|2∇2η).

By Lemma 8.1, the error term is O(1), and so we have∫
K
|∇u|2 . 1.

Similarly, by replacing ω and u by their derivatives, we also see that

1
2

∫
R3
|∇ω|2η =

∫
R3
|∇

2u|2η+
∫

R3
O(|∇u|2∇2η).

By Lemma 8.1, the error term is O(1) after integration in time, and so we also have∫ T

0

∫
K
|∇

2u|2 dx dt . 1

as desired.
We now turn to the k = 2 case. This is the most difficult, as we currently only control regularities

that are half a derivative better than the critical regularity (which would place u in H 1/2
x ), and wish to
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boost this to three halves of a derivative above critical; this requires at least two iterations of the Duhamel
formula. The arguments will be analogous to the regularity arguments in Theorem 5.1 or Lemma 5.5. By
(68) we see that uη obeys the truncated equation

∂t(ηu)−1(ηu)= ηO(P∇(uu))+ ηP f +O(∇u∇η)+O(u∇2η) (97)

for almost all t . Meanwhile, from the k = 1 case and Lemma 8.1, we already have the estimates

‖u‖L∞t L2
x ([0,T ]×R3)+‖∇u‖L∞t L2

x ([0,T ]×K4)+‖∇
2u‖L2

t L2
x ([0,T ]×K4)

. 1, (98)

and from the definition of A2, we have

‖∇
j u0‖L2

x (B(x0,R))+‖∇
j f ‖L∞t L2

x ([0,T ]×B(x0,R)) . 1 (99)

for j = 0, 1, 2.
We claim that all terms on the right-hand side of (97) have an L4

t L2
x([0, T ]×R3) norm of O(1). The

only difficult term here is ηPO(∇(uu)); the other three terms on the right-hand side are easily estimated
in L4

t L2
x (and even in L2

t L2
x ) using (98) and (99). We now estimate

‖ηO(P∇(uu))‖L4
t L2

x ([0,T ]×R3).

We split uu = η̃uu+ (1− η̃)uu, where η̃ is a smooth cutoff supported on K4 that equals 1 on K3. For the
contribution of the nonlocal portion (1− η̃), one can use the smoothness of the kernel of the operator
P away from the origin to bound this contribution by . ‖O(uu)‖L4

t L1
x ([0,T ]×R3), which is acceptable by

(98); for future reference, we note that this argument bounds this contribution in L2
t L2

x norm as well as in
L4

t L2
x norm. For the local portion η̃uu, we discard the η and P projections and bound this by

. ‖O(∇(η̃uu))‖L4
t L2

x ([0,T ]×R3).

But this is acceptable by (24).
We have now placed the right-hand side of (97) in L4

t L2
x([0, T ]×R3) with norm O(1). Meanwhile,

from (99), the initial data u0η is in H 2
x (R

3) with norm O(1). Applying the energy estimate (23), we
conclude that

‖uη‖L∞t H3/2−σ
x ([0,T ]×R3)

+‖uη‖L2
t H5/2−σ

x ([0,T ]×R3)
.σ 1

for any σ > 0. A similar argument (shifting the compact sets) also gives

‖uη′‖L∞t H3/2−σ
x ([0,T ]×R3)

+‖uη′‖L2
t H5/2−σ

x ([0,T ]×R3)
.σ 1,

where η′ is a smooth function supported on K5 that equals 1 on K4. In particular, by Sobolev embedding,
on [0, T ]× K4, u is in L∞t L12

x , ∇u is in L2
t L12

x ∩ L∞t L12/5
x , and ∇2u is in L2

t L12/5
x , which together with

(98) and the Hölder inequality now allows one to conclude that O(∇(η̃uu)) has an L2
t H 1

x ([0, T ] ×R3)

norm of O(1). Repeating the previous arguments, we now conclude that the right-hand side of (97) lies



82 TERENCE TAO

in L2
t H 1

x ([0, T ]×R3) with norm O(1), and hence by (22),

‖ηu‖L∞t H2
x ([0,T ]×R3)+‖ηu‖L2

t H3
x ([0,T ]×R3),

which gives the k = 2 case.
The higher k cases are proven by similar arguments, but are easier as we now have enough regularity

to place u in L∞t L∞x ([0, T ]× K5) with norm O(1); we leave the details to the reader. (For instance, to
establish the k = 3 case, one can verify using the estimates already obtained from the k = 2 case that the
right-hand side of (97) has an L2

t H 1
x ([0, T ]×R3) norm of O(1). �

Remark 10.8. As in Remark 9.7, one can extend the results here to the periodic setting so long as one
has T ≤ L2 and R ≤ L; we omit the details.

For our application to constructing Leray–Hopf weak solutions, we will need a generalisation of
Theorem 10.1 to the case when one has hyperdissipation. More precisely, we introduce a small hyperdis-
sipation parameter ε > 0, and consider solutions (u(ε), p(ε), u0, f, T ) to the regularised Navier–Stokes
equation, which are defined precisely as with the usual concept of a Navier–Stokes solution, but with (3)
replaced by the regularised variant

∂t u(ε)+ (u(ε) · ∇)u(ε) =1u(ε)− ε12u(ε)−∇ p(ε)+ f. (100)

With hyperdissipation, the global regularity problem becomes much easier (the energy is now subcritical
rather than supercritical), and indeed it is not difficult to use energy methods (see, for example, [Lions
1969]) to show the existence of a unique almost smooth finite energy solution to this regularised equa-
tion (u(ε), p(ε), u0, f, T ) from any given smooth finite energy data (u0, f, T ). The energy estimate in
Lemma 8.1 remains true in this case (uniformly in ε), and one easily verifies that one obtains an additional
estimate

ε

∫ T

0

∫
R3
|∇

2u(t, x)|2 dt dx . E(u0, f, T ) (101)

in this hyperdissipative setting. One can also verify (with a some tedious effort) that Proposition 9.1 also
holds in this hyperdissipative setting as long as ε is sufficiently small, basically because the hyperdissipative
heat operators et (1−ε12) obey essentially the same estimates (18), (27) as et1 if 0 ≤ t ≤ T and ε is
sufficiently small depending on T ; we omit the details.

One can define the vorticity ω(ε) := ∇×u(ε) of a regularised solution as before. This vorticity obeys an
equation almost identical to (84), but with an additional hyperdissipative term −ε∇2ω(ε) on the right-hand
side. One can then repeat the proof of Theorem 10.1 with this additional term. Integrating by parts a
large number of times, one obtains a similar decomposition to (85) for the derivative of the localised
enstrophy, but with the addition of a negative term −ε

∫
R3 |∇

2ω|2η on the right-hand side, plus some
boundary terms which are bounded by b̃(t), where

b̃(t) :=
∑

r=R′(t),R′(t)−c0.1δ−2

εc−0.1δ2 R2
∫

S2
|∇ω(t, rα)|2 dα+ εc−0.2δ4

∫
R′(t)−c0.1δ−2≤|x |≤R′(t)

|∇ω(t, x)|2 dx

is a hyperdissipative analogue of b(t). By using the same averaging argument used to bound
∫ T

0 b(t)dt



LOCALISATION AND COMPACTNESS FOR NAVIER–STOKES 83

for typical R′, one can also simultaneously obtain a comparable bound for
∫ T

0 b̃(t)dt (taking advantage
of the additional estimate (101)). The rest of the argument in Theorem 10.1 works with essentially no
changes; we omit the details. The proof of Proposition 10.7 is also essentially identical, after one notes
that energy estimates such as (22) continue to hold in the hyperdissipative setting. Summarising, we
obtain:

Proposition 10.9. Theorem 10.1 and Proposition 10.7 continue to hold in the presence of hyperdissipation,
uniformly in the limit ε→ 0.

11. Consequences of enstrophy localisation

We now give a number of applications of the enstrophy localisation result, Theorem 10.1. Many of these
applications resemble existing results in the literature, but with weaker decay hypotheses on the initial
data and solution (in particular, we will usually only assume either finite energy or finite H 1 norm); the
main point is that the localisation afforded by Theorem 10.1 can significantly reduce the need to assume
any stronger decay hypotheses.

We begin with the observation that finite energy smooth solutions automatically have bounded enstrophy
if the initial data has bounded enstrophy:

Corollary 11.1 (Bounded enstrophy). Let (u, p, u0, f, T ) be an almost smooth, finite energy solution,
such that the initial data (u0, f, T ) has finite H 1 norm. Then u ∈ X1([0, T ] × R3); in particular,
(u, p, u0, f, T ) is an H 1 solution.

Proof. Let δ > 0 be small enough (depending on E(u0, f, T ), T ) that the condition (78) holds. As
(u0, f, T ) has finite H 1 norm, we have

‖ω0‖L2
x (R

3)+‖∇ × f ‖L1
t L2

x ([0,T ]×R3) <∞.

By the monotone convergence theorem, we thus have for R sufficiently large that

‖ω0‖L2
x (R

3\B(0,R))+‖∇ × f ‖L1
t L2

x ([0,T ]×(R3\B(0,R))) ≤ δ.

Applying Theorem 10.1 (inverted as in Remark 10.6), we conclude that

‖ω‖L∞x L2
x ([0,T ]×(R3\B(0,R+r)))+‖∇ω‖L2

t L2
x ([0,T ]×(R3\B(0,R+r))) . δ

for some finite radius r , if R is sufficiently large; in particular, ω lies in L∞t L2
x ∩ L2

t H 1
x in the exterior

region [0, T ]× (R3
\B(0, R+r)). On the other hand, as u is almost smooth, ω also lies in L∞t L2

x ∩ L2
t H 1

x

in the interior region [0, T ]× B(0, R+ r + 1) (say). Gluing these two bounds together, we conclude that

ω ∈ L∞t L2
x ∩ L2

t H 1
x ([0, T ]×R3);

meanwhile, from Lemma 8.1 one has

u ∈ L∞t L2
x ∩ L2

t H 1
x ([0, T ]×R3).

Since u is divergence-free and ω =∇ × u, the claim then follows from Fourier analysis. �
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Remark 11.2. From Corollary 5.8 we know that smooth solutions to the Navier–Stokes solutions can be
continued in time as long as the H 1 norm remains bounded. However, Corollary 11.1 certainly does not
allow one to solve the global regularity problem for Navier–Stokes, because the proof heavily relies on
the solution u being complete rather than incomplete, and thus it is (almost) smooth all the way up to the
final time T , and not just smooth on [0, T ). Instead, what Corollary 11.1 does is to show that the solution
from H 1 data is well-behaved when one is sufficiently close to spatial infinity; in particular, it does not
prevent turbulent behaviour in bounded regions of space-time.

Remark 11.3. If (u, p, u0, 0, T ) is an almost smooth homogeneous finite energy solution, then by
Lemma 8.1 we see that u(t) ∈ H 1

x (R
3) for almost every time t ∈ [0, T ]. Applying the time translation

symmetry (30) for a small time shift t0, we can then convert the finite energy data to H 1 data, and then by
Corollary 11.1, we conclude that in fact u(t) ∈ H 1

x (R
3) for all nonzero times t ∈ (0, T ], and furthermore

that u(t) is bounded in H 1
x as soon as t is bounded away from zero.

Since H 1 almost smooth solutions with normalised pressure are automatically H 1 mild solutions, for
which uniqueness was established in Theorem 5.4, we thus have uniqueness in the almost smooth finite
energy category from smooth H 1 data:

Corollary 11.4 (Unconditional uniqueness). Let (u0, f, T ) be smooth H 1 data. Then there is at most one
almost smooth finite energy solution (u, p, u0, f, T ) with this data and with normalised pressure.

This result resembles the standard “weak-strong uniqueness” results in the literature, such as those in
[Prodi 1959; Serrin 1963; Germain 2006; 2008]. The main novelty here is the lack of decay hypotheses
beyond the finite energy hypothesis; note that the almost smoothness of the solution gives plenty of
integrability on compact regions of space, but does not imply any global integrability in space.

Remark 11.5. We conjecture that one still retains uniqueness even if the data (u0, f, T∗) is merely smooth
and finite energy, rather than smooth and H 1. Note from Lemma 8.1 that u(t) has finite H 1

x (R
3) norm

for almost every time t , which in principle allows one to enforce uniqueness after any given positive time
(in the homogeneous case f = 0, at least), but it is not clear to the author how to prevent instantaneous
failure of uniqueness at the initial time t = 0 with only a smooth finite energy hypothesis on the initial
data. It may however be possible to adapt the “weak-strong” uniqueness results of Germain [2006; 2008]
to this category, perhaps in combination with the local H 1 control given by Theorem 10.1.

We now use the enstrophy localisation result to study solutions as they approach a (potential) blowup
time T∗.

Proposition 11.6 (Uniform smoothness outside a ball). Let (u, p, u0, f, T−
∗
) be an incomplete almost

smooth H 1 solution with normalised pressure for all times 0< T < T∗. Then there exists a ball B(0, R)
such that

u, p, f, ∂t u ∈ L∞t Ck
x ([0, T∗)× K ) (102)

for all k ≥ 0 and all compact subsets K of R3
\B(0, R).
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We remark that similar results were obtained by Caffarelli, Kohn, and Nirenberg [1982] assuming
additional spatial decay hypotheses on the data at infinity, and in particular that

∫
R3 |u0(0, x)|2|x |dx <∞.

The main novelty in this proposition is that one only assumes square-integrability of u0 and its first
derivatives, without any further decay assumption.

Proof. From the argument in the proof of Corollary 11.1 (noting that the bounds are uniform for all times
T in a compact set), one can already find a ball B(0, R0) for which

u ∈ X1(
[0, T∗)× (R3

\B(0, R0))
)
.

Using Proposition 10.7, we then conclude the existence of a larger ball B(0, R) such that

u ∈ X k([0, T∗)× K )

for all k ≥ 1 and all compact subsets K of R3
\B(0, R). From this, Sobolev embedding, and (9) (using

the smoothness of the kernel of ∇k1−1 away from the origin), we obtain (102) for u, p, f as desired. If
one then applies (3) and solves for ∂t u, one obtains the bound for ∂t u also. �

Remark 11.7. From (102) one can continuously extend u up to the portion {T∗}× (R3
\B(0, R)) of the

boundary (compare the partial regularity theory in [Caffarelli et al. 1982]). However, we were unable
to demonstrate that u could be extended smoothly up to the boundary (or even that ∂t u is continuous in
time at the boundary). The problem is due to the nonlocal effects of pressure; the solution u could be
blowing up at time T∗ in the interior of B(0, R), leading (via (9)) to time oscillations of the pressure in K
(which cannot be directly damped out by the smoothness of the 1−1 kernel, which only attenuates spatial
oscillations), which by (3) could lead to time oscillations of the solution u in K . Indeed, as Theorem 1.12
shows, these time oscillations can have a nontrivial effect on the regularity of the solution.

Remark 11.8. For future reference, we observe that Proposition 11.6 did not require the full space-time
smoothness on f ; it would suffice to have f ∈ L∞t Ck

x ([0, T∗)× K ) for all k ≥ 0 and compact K in order
to obtain the conclusion (102). This is because at no stage in the argument was it necessary to differentiate
f in time.

In a similar spirit, we may construct Leray–Hopf weak solutions that are spatially smooth outside of a
ball for any fixed time T . More precisely, define a Leray–Hopf weak solution (u, p, u0, f, T ) to smooth
finite energy data (u0, f, T ) to be a distributional solution u ∈ X0([0, T ]×R3) to (3) (after expressing
this equation in divergence form) which is continuous in time in the weak topology of L2

x(R
3), and which

obeys the energy inequality

1
2‖u(t)‖

2
L2

x (R
3)
+

∫ t

0
‖∇u(t)‖2L2

x (R
3)

dx ≤ E(u0, f, T ). (103)

The existence of such solutions was famously demonstrated in [Leray 1934] for arbitrary finite energy
data (u0, f, T ); the singularities of these solutions were analysed in a vast number of papers, which are
too numerous to cite here, but we will point out in particular the seminal work [Caffarelli et al. 1982].

Our main regularity result for Leray–Hopf solutions is as follows.
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Proposition 11.9 (Existence of partially smooth Leray–Hopf weak solutions). Let (u0, f, T ) be smooth
H 1 data. Then there exists a Leray–Hopf weak solution (u, p, u0, f, T ) to the given data and a ball
B(0, R) such that u is spatially smooth in [0, T ] × (R3

\B(0, R)) (that is, for each t ∈ [0, T ], u(t) is
smooth outside of B(0, R)).

Again, similar results were obtained in [Caffarelli et al. 1982] under stronger decay hypotheses on the
initial data. We also remark that weak solutions which were only locally of finite energy, from data of
uniformly locally finite energy, were constructed in [Lemarié-Rieusset 1999]; the ability to localise the
weak solution construction in this fashion is similar in spirit to the results in the proposition.

Proof. (Sketch) We use a standard hyperdissipation21 regularisation argument. Let ε > 0 be a small
parameter, and consider the almost smooth finite-energy solution (u(ε), p(ε), u0, f, T ) to the regularised
Navier–Stokes system (100), which can be shown to exist by energy methods. By Proposition 10.9,
we can extend Theorem 10.1 and Proposition 10.7 (and thence Proposition 11.6) to these regularised
solutions u(ε), with bounds that are uniform in ε as ε→ 0. As a consequence, we can find a ball B(0, R)
independent of ε such that for every compact set K outside of B(0, R) and every k ≥ 0, ∇ku(ε) lies
in L∞t L∞x ([0, T∗] × K ) uniformly in N . If we then extract a weak limit point u of the u(ε), then by
standard arguments one verifies that u is a Leray–Hopf weak solution which is spatially smooth outside
of B(0, R). �

Remark 11.10. As before, we are unable to demonstrate regularity of u in time due to potential nonlocal
effects caused by the pressure, which could in principle cause singularities inside B(0, R) to create time
singularities outside of B(0, R).

Remark 11.11. Uniqueness of Leray–Hopf solutions remains a major unsolved problem, for which
we have nothing new to contribute; in particular, we do not assert that all Leray–Hopf solutions from
smooth data obey the conclusions of Proposition 11.9. However, if (u0, f,∞) is globally defined smooth
H 1 data, the argument above gives a single global Leray–Hopf weak solution (u, p, u0, f,∞) with
the property that, for each finite time T <∞, there exists a radius RT <∞ such that u is smooth in
[0, T ]× (R3

\B(0, R)). If we restrict to the case f = 0, then from (103) we see that ‖∇u(t)‖L2
x (R

3) must
become arbitrarily small along some sequence of times t = tn going to infinity. If ‖∇u(t)‖L2

x (R
3) is small

enough depending on E(u0, 0,∞), then standard perturbation theory arguments (see, for example, [Kato
1984]) allow one to obtain a smooth, bounded enstrophy solution from the data u(t) on (t,+∞), which
by the uniqueness theory of Serrin [1963] must match the Leray–Hopf weak solution u on (t,+∞). As
such, we conclude in the homogeneous smooth H 1 case that one can construct a global Leray–Hopf weak
solution which is spatially smooth outside of a compact subset of space-time [0,+∞)×R3. Again, we
emphasise that this global weak solution need not be unique.

21It may also be possible to use other regularisation methods here, such as velocity regularisation, to construct the Leray–Hopf
weak solution; however, due to the delicate nature of the proof of the localised enstrophy estimate (Theorem 10.1), we were not
able to verify that this estimate remained true in the velocity-regularised setting, uniformly in the regularisation parameter, due to
the less favourable vorticity equation in this setting.
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12. Smooth H1 solutions

The purpose of this section is to establish Theorem 1.20(iii). To do this, we will need the ability to localise
smooth divergence-free vector fields, as follows.

Lemma 12.1 (Localisation of divergence-free vector fields). Let T > 0, 0< R1 < R2 < R3 < R4, and let
u : [0, T )× (B(0, R4)\B(0, R1))→ R3 be spatially smooth and divergence-free, such that

u, ∂t u ∈ L∞t Ck
x
(
[0, T )× (B(0, R4)\B(0, R1))

)
for all k ≥ 0 and ∫

|x |=r
u(t, x) · n dα(x)= 0 (104)

for all R1 < r < R4 and t ∈ [0, T ), where n is the outward normal and dα is surface measure. Then
there exists a spatially smooth and divergence-free vector field ũ : [0, T )× (B(0, R4)\B(0, R1))→ R3

which agrees with u on [0, T ) × (B(0, R2)\B(0, R1)) but vanishes on [0, T ) × (B(0, R4)\B(0, R3)).
Furthermore, we have

ũ, ∂t u ∈ L∞t Ck
x
(
[0, T )× (B(0, R4)\B(0, R1))

)
for all k ≥ 0.

Finally, if we have
1≤ 2R2 ≤ R3 . R2,

then we have the more quantitative bound

‖ũ‖L∞t H k([0,T )×(B(0,R4)\B(0,R1))) .k ‖u‖L∞t H k+1([0,T )×(B(0,R4)\B(0,R1))) (105)

for any k. (This latter property will come in handy in the next section.)

Note that the hypothesis (104) is necessary, as can be seen from Stokes’ theorem. Lemmas of this type
first appear in [Bogovskii 1980].

Proof. One can obtain this lemma as a consequence of the machinery of compactly supported divergence-
free wavelets [Lemarie-Rieusset 1992], but for the convenience of the reader we give a self-contained
proof here.

Let X denote the vector space of all divergence-free smooth functions u : B(0, R4)\B(0, R1)→ R3

obeying the mean zero condition ∫
|x |=r

u(x) · n dα(x)= 0 (106)

for all R1 < r < R4, and such that ‖u‖Ck((0,R4)\B(0,R1)) <∞ for all k. It will suffice to construct a linear
transformation P : X→ X that is bounded22 from Ck+2 to Ck , that is,

‖Pu‖Ck((0,R4)\B(0,R1)) .R1,R2,R3,R4,k ‖u‖Ck+2((0,R4)\B(0,R1))

22One can reduce this loss of regularity by working in more robust spaces than the classical Ck spaces, such as Sobolev
spaces H s or Hölder spaces Ck,α , but we will not need to do so here.
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for all k ≥ 0, and such that Pu equals u on B(0, R2)\B(0, R1) and vanishes on B(0, R4)\B(0, R3), as
one can then simply define ũ(t) := Pũ(t) for each t ∈ [0, T ).

We now construct P . We work in polar coordinates x = rα with R1 ≤ r ≤ R4 and α ∈ S2 (thus
avoiding the coordinate singularity at the origin), and decompose u(r, α) as the sum of a radial vector
field ur (r, α)α for some scalar field ur and an angular vector field uα(r, α) which is orthogonal to α; thus,
for fixed r , uα(r) can be viewed as a smooth vector field on the unit sphere S2 (that is, a smooth section
of the tangent bundle of S2). The divergence-free condition on u in these coordinates then reads

∂r ur (r)+
1
r
∇α · uα(r)= 0, (107)

while the mean-zero condition (106) reads∫
S2

ur (r, α) dα = 0.

Note that either of these conditions implies that ∂r ur (r) has mean zero on S2 for each r . From (107) and
Hodge theory, we see that

uα(r)= r1−1
α ∇α∂r ur (r)+ v(r),

where 1−1
α inverts the Laplace–Beltrami operator 1α on smooth mean-zero functions on S2 and v(r) is a

smooth divergence-free vector field on S2 that varies smoothly with r .
Let η : [R1, R4] → R+ be a smooth function that equals 1 on [R1, R2] and vanishes on [R3, R4]. Set

ũr := η(r)ur

and
ũα(r)= r1−1

α ∇α∂r ũr (r)+ η(r)v(r)

and
T u := ũ := ũrα+ ũα.

One then easily verifies that ũ is smooth and divergence-free and obeys (106), depends linearly on u,
equals u on B(0, R2)\B(0, R1), and vanishes on B(0, R4)\B(0, R4). It is also not difficult (using the
fundamental solution of 1−1

α ) to see that T maps Ck+2 to Ck (with some room to spare). The claim
follows.

Finally, we prove (105). It suffices to show that

‖T u‖H k(B(0,R3)\B(0,R2)) .k 1

whenever k ≥ 0, and u ∈ X is such that

‖u‖H k+2(B(0,R4)\B(0,R1)) . 1.

Henceforth all spatial norms will be on B(0, R3)\B(0, R2), and all implied constants may depend
on k. As u has an H k+1 norm of O(1), ur and hence ũr has an H k+1 norm of O(1) also. As for ũα , we
observe from the Leibniz rule that

ũα = ηuα + (r∂rη(r))1−1
α ∇αur (r).



LOCALISATION AND COMPACTNESS FOR NAVIER–STOKES 89

As u has an H k+1 norm of O(1), we know r−i
∇

i
α∂

j
r uα has an L2 norm of O(1) whenever i + j ≤ k+ 1,

which (using elliptic regularity in the angular variable) implies that r−i
∇

i
α∂

j
r ũα has an L2 norm of O(1)

whenever i + j ≤ k. This gives ũ = ũr + ũα, an H k norm of O(1), as claimed. �

We can now establish Theorem 1.20(iii):

Theorem 12.2. Suppose Conjecture 1.9 is true. Then Conjecture 1.19 is true.

Proof. In view of Corollary 5.8, it suffices to show that if (u, p, u0, f, T−
∗
) is an incomplete H 1 mild

solution up to time T∗, with u0, f spatially smooth in the sense of Conjecture 1.19, then u does not blow
up in enstrophy norm; thus

lim sup
t→T−∗

‖u(t)‖H1
x (R

3) <∞.

Let R > 0 be a sufficiently large radius. By arguing as in Corollary 11.1, we have

u ∈ L∞t H 1
x (R

3
\B(0, R)),

and thus the blowup must be localised in space:

lim sup
t→T−∗

‖u(t)‖H1
x (B(0,R)) <∞. (108)

By Proposition 11.6 and Remark 11.8 (and increasing R if necessary), we also have

u, p, f, ∂t u ∈ L∞t Ck
x
(
[0, T∗)× (B(0, 5R)\B(0, 2R))

)
(109)

for all k ≥ 0. From Stokes’ theorem and the divergence-free nature of u, we also have∫
|x |=r

u(t, x) · n dα(x)= 0

for all r > 0 and t ∈ [0, T ). Applying Lemma 12.1, we can then find a spatially smooth divergence-free
vector field ũ : [0, T )× (B(0, 5R)\B(0, 2R))→ R3 which agrees with u on B(0, 3R)\B(0, 2R) and
vanishes outside of B(0, 4R), with

ũ, ∂t ũ ∈ L∞t Ck
x (B(0, 5R)\B(0, 2R)) (110)

for all k ≥ 0. We then extend ũ by zero outside of B(0, 5R) and by u inside of B(0, 2R); then ũ is now
smooth on all of [0, T )×R3.

Let η be a smooth function supported on B(0, 5R) that equals 1 on B(0, 4R). We define a new forcing
term f̃ : [0, T )×R3

→ R by the formula

f̃ := ∂t ũ+ (ũ · ∇)ũ−1ũ+∇(pη); (111)

then f̃ is spatially smooth and supported on B(0, 5R) and agrees with f on B(0, 3R). From this and
(110), (109) we easily verify that

f̃ ∈ L∞t H 1
x ([0, T∗)×R3).
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Note from taking divergences in (111) and using the compact support of pη, ũ, f̃ that

pη =−1−1((ũ · ∇)ũ)+1−1
∇ · f̃ .

Thus, (ũ, pη, ũ(0), f̃ , T−
∗
) is an incomplete H 1 pressure-normalised (and hence mild) solution with

all components supported in B(0, 5R). If we then choose a period L larger than 10R, we may embed
B(0, 5R) inside R3/LZ3 and obtain an incomplete periodic smooth solution(

ι(ũ), ι(pη), ι(ũ(0)), ι( f̃ ), T−
∗
, L
)
,

where we use ι( f ) to denote the extension by zero of a function f supported in B(0, 5R), after embedding
the latter in R3/LZ3. By construction, we then have

ι( f̃ ) ∈ L∞t H 1
x ([0, T∗)×R3/LZ3).

As {T∗} has measure zero, we may arbitrarily extend f̃ to [0, T∗] ×R3/LZ3 while staying in L∞t H 1
x .

Applying either Conjecture 1.9 (and the uniqueness component to Theorem 5.1) or Conjecture 1.10, we
conclude that

ι(ũ) ∈ L∞t H 1
x ([0, T∗)×R3/LZ3),

which implies (since u and ũ agree on B(0, R)) that

u ∈ L∞t H 1
x ([0, T∗)× B(0, R)),

which contradicts (108). The claim follows. �

Observe that if we omit the embedding of B(0, 5R) in R3/LZ3 in the preceding argument, we can also
deduce Conjecture 1.19 from Conjecture 1.18. Since Conjecture 1.19 clearly implies Conjecture 1.18 as
a special case, we obtain Theorem 1.20(iii).

Remark 12.3. The referee has pointed out a variant of the argument above using the partial regularity
theory of Caffarelli, Kohn, and Nirenberg [1982], which allows one to partially reverse the above
implications, and in particular deduce Conjecture 1.8 from Conjecture 1.19. We sketch the argument as
follows. Assume Conjecture 1.19, and assume for contradiction that Conjecture 1.8 fails; thus, there is
a periodic solution with smooth inhomogeneous data which first develops singularities at some finite
time T , and in particular at some location (T, x0). We may extend the solution beyond this time as a
weak solution. Applying a periodic version of the theory in [Caffarelli et al. 1982], we see that the set
of singularities has zero one-dimensional parabolic measure, which among other things implies that the
set of radii r > 0 such that the solution is singular at (T, x) for some x with |x − x0| = r has measure
zero. Because of this, one can find radii r2 > r1 > 0 such that the solution is smooth in the annular region
{(t, x) : 0≤ t ≤ T ; r1≤ |x−x0| ≤ r2}. By smoothly truncating the solution u to this annulus as in the proof
of Theorem 12.2, one can then create a nonperiodic H 1 mild solution to the inhomogeneous Navier–Stokes
equation with spatially smooth data which develops a singularity at (T, x0) while remaining smooth up to
time T , contradicting Conjecture 1.19 (when combined with standard uniqueness and regularity results,
such as those in Theorem 5.4).
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13. Smooth finite energy solutions

In this section we establish Theorem 1.20(v). It is trivial that Conjecture 1.14 implies Conjecture 1.13, so
it suffices to establish:

Theorem 13.1. Suppose that Conjecture 1.13 is true. Then Conjecture 1.14 is true.

Proof. Let (u0, 0, T ) be smooth homogeneous finite energy data. Our task is to obtain an almost smooth
finite energy solution (u, p, u0, 0, T ) with this data. We allow all implied constants to depend on u0.

We use a regularisation argument. Let Nn be a sequence of frequencies going to infinity, and set
u(n)0 := P≤Nn u0; then u(n)0 converges to u0 strongly in L2

x(R
3), and (u(n)0 , 0, T ) is smooth H 1 data

for each n. Thus, by hypothesis, we may find a sequence of almost smooth finite energy solutions
(u(n), p(n), u(n)0 , 0, T ) with this data.

One could try invoking weak compactness right now to extract a solution, but as is well known, one
only obtains a Leray–Hopf weak solution by doing so, which need not be smooth. So we will first work
to establish some additional regularity on the sequence (after passing to a subsequence as necessary)
before extracting a weakly convergent limit.

Since the (u(n)0 , 0, T ) are uniformly bounded in energy, we see from Lemma 8.1 that

‖u(n)‖X0([0,T ]×R3) . 1. (112)

Now let 0< τ0 < T/2 be a small time. From (112) and the pigeonhole principle, we may find a sequence
of times τ (n) ∈ [0, τ0] such that

‖u(n)(τ (n))‖H1
x (R

3) . τ
−1
0 .

Passing to a subsequence, we may assume that τ (n) converges to a limit τ ∈ [0, τ0]. If we then take
τ ′ ∈ [τ, 2τ0] sufficiently close to τ , we may apply Lemma 5.5 and conclude that

‖u(n)(τ ′)‖H10
x (R

3) .τ,τ ′,τ0 1

(say) for all sufficiently large n. Passing to a further subsequence, we may then assume that u(n)(τ ′)
converges weakly in H 10

x (R
3) (and thus locally strongly in H 9

x ) to a limit u′0 ∈ H 10
x (R

3). By hypothesis,
we may thus find an almost smooth H 1 solution (u′, p′, u′0, 0, T − τ ′) with this data.

Meanwhile, by time translation symmetry (30), (u(n)( ·+ τ ′), p(n)( ·+ τ ′), u(n)(τ ′), 0, T − τ ′) is also a
sequence of almost smooth H 1 solutions. Since u(n)(τ ′) converges locally strongly in H 9

x (R
3) to u′0, we

would like to conclude that u(n)(t + τ ′) also converges locally strongly to u(t) in H 1
x (R

3), uniformly in
t ∈ [0, T − τ ′]. This does not quite follow from the standard local well-posedness theory in Theorem 5.4,
because this theory requires strong convergence in the global H 1

x (R
3) norm. However, we may take

advantage of the local enstrophy estimates to spatially localise the local well-posedness theory, as follows.
Let ε > 0 be a small quantity (depending on the solution u′ = (u′, p′, u′0, 0, T − τ ′)) to be chosen later,

and let R > 0 be a sufficiently large radius (depending on ε and (u′, p′, u′0, 0, T − τ ′)) to be chosen later.
Since u′0 is in H 10

x (R
3), we see from monotone convergence that

‖u′0‖H10
x (R

3\B(0,R)) . ε, (113)
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if R is sufficiently large depending on ε. Since the u(n)(τ ′) converge locally strongly in H 1
x (R

3) to u′0,
we conclude that

‖u(n)(τ ′)‖H10
x (B(0,10R)\B(0,R)) . ε,

if n is sufficiently large depending on R, ε. Applying Theorem 10.1, we conclude (if R is large enough
depending on u′0 and T − τ ′) that

‖u(n)( · + τ ′)‖X1([0,T−τ ′]×(B(0,9R)\B(0,2R))) . ε,

for n sufficiently large depending on R, ε. Using Duhamel’s formula (and Corollary 4.3) repeatedly as in
the proof of Proposition 10.7, we may in fact conclude that

‖∂ i
t u(n)( · + τ ′)‖L∞t H6

x ([0,T−τ ′]×(B(0,8R)\B(0,3R))) .u′,T ε (114)

(say) for i = 0, 1, taking R large enough depending on u′, T, ε to ensure that the contributions to the
Duhamel formula coming outside B(0, 9R) or inside B(0, 2R) are negligible, and taking n sufficiently
large as always.

We let p̃(n) be the normalised pressure, defined by (9); by Corollary 4.3, p̃(n)(t) and p(n)(t) differ by a
constant C(t) for almost every t . Using (9), (114) and Lemma 8.1, we see that

‖ p̃(n)‖L∞t H2
x ([0,T−τ ′]×(B(0,7R)\B(0,4R))) .u′,T ε,

if R is large enough depending on u′, T, ε.
Applying Lemma 12.1, we may find divergence-free smooth vector fields ũ(n) : [τ ′, T ] ×R3

→ R3

which agree with u(n) on [τ ′, T ]× B(0, 5R) but vanish outside of [τ ′, T ]× B(0, 6R), with

‖∂ i
t ũ(n)( · + τ ′)‖L∞t H5

x ([0,T−τ ′]×(B(0,8R)\B(0,3R))) .u′,T ε (115)

(say) for n sufficiently large and i = 0, 1.
Let η be a smooth function that equals 1 on B(0, 6R), is supported on B(0, 7R), and obeys the usual

derivative bounds in between. We then consider the smooth solutions(
ũ(n)( · + τ ′), η p̃(n)( · + τ ′), ũ(n)(τ ′), f̃ (n), T − τ ′

)
, (116)

where

f̃ (n) :=
(
∂t ũ(n)+ ũ(n) · ∇ũ(n)−1ũ(n)+∇(ηp(n))

)
( · + τ ′).

By construction, f̃ ′ and f̃ (n) are smooth and supported on [0, T − τ ′]× (B(0, 7R)\B(0, 5R)), and the
(116) are smooth, compactly supported solutions. From the preceding bounds on ũ(n), p̃(n), we see that

‖ f̃ (n)‖L∞t H1
x ([0,T−τ ]×R3) .u′,T ε

for n sufficiently large.
Also, using (113), (115) we have

‖ũ(n)(τ ′)− u′0‖H1
x (R

3) .u′,T ε
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for n sufficiently large. If ε is sufficiently small, we conclude from the local H 1 well-posedness theory
(Theorem 5.4) that

‖ũ(n)( · + τ ′)− u′‖X1([0,T−τ ′]×R3) .u′,T ε,

and in particular

‖u(n)( · + τ ′)− u′‖X1([0,T−τ ′]×B(0,R)) .u′,T ε

for n large enough. Sending ε to zero (and R to infinity), we conclude that u(n)( ·+ τ ′) converges weakly
to u′. In particular, we see that any weak limit of the u(n) is smooth on [τ ′, T ]×R3 (and furthermore, the
weak limit is unique in this space-time region).

The above analysis was for a single choice of τ . Choosing τ to be a sequence of times going to zero
(and repeatedly taking subsequences of the u(n) and diagonalising as necessary), we may thus arrive at
a subsequence u(n) with the property that there is a unique weak limit u of the u(n), which is smooth
on (0, T ] ×R3. If we then set p by (9), we see on taking distributional limits that (u, p, u0, 0, T ) is a
Leray–Hopf weak solution to the initial data (u0, 0, T ).

To finish the argument, we need to show that (u, p, u0, 0, T ) is almost smooth at (0, x0) for every
x0 ∈ R3. Fix x0, and let R > 0 be a large radius. As u0 is smooth, ‖u0‖H1(B(x0,5R)) is finite, and
hence ‖u(n)0 ‖H1(B(x0,5R)) is uniformly bounded. Applying Theorem 10.1 (recalling that the u(n) have
uniformly bounded energy), we conclude (for R large enough) that there exists 0 < τ < T such that
‖u(n)‖X1([0,τ ]×B(x0,4R)) is uniformly bounded in n. Using Duhamel’s formula as in Proposition 11.6,
and noting that u(n) is uniformly smooth on B(x0, 4R), we conclude that ‖u(n)‖L∞t Ck((0,τ ]×B(x0,3R)) is
uniformly bounded for all k ≥ 0. Taking weak limits, we conclude that

u ∈ L∞t Ck((0, τ ]× B(x0, 3R))

for all k ≥ 0. From this and (9) (and Lemma 8.1), we also see that

p ∈ L∞t Ck((0, τ ]× B(x0, 2R))

for all k ≥ 0. Using (3), we conclude that

∂t u ∈ L∞t Ck((0, τ ]× B(x0, 2R))

for all k ≥ 0. A similar argument also shows that

∂t u(n) ∈ L∞t Ck((0, τ ]× B(x0, 2R))

uniformly in n. From this, we see that the ∇k
x u(n) are uniformly Lipschitz in a neighbourhood of (0, x0).

Since ∇k
x u(n) converges weakly to the smooth function ∇k

x u in (0, T ]×R3, and also converges strongly
at time zero in H 1

x (R
3) to the smooth function ∇k

x u0, we conclude that ∇k
x u can be extended in a locally

Lipschitz continuous manner from (0, T ]×R3 to [0, T ]×R3 in such a way that it agrees with ∇k
x u0 at

time zero.
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Now we consider derivatives ∇k p of the pressure near (0, x0). Let ε > 0 be arbitrary. Then by the
monotone convergence theorem, we see that if R′ > 0 is a sufficiently large radius, then

‖u0‖L2
x (R

3\B(x0,R′)) ≤ ε,

and thus

‖u(n)0 ‖L2
x (R

3\B(x0,R′)) . ε

for n large enough.
By Theorem 8.2, we conclude that if R′ is large enough, there exists a time 0< τ < T such that

‖u(n)‖L∞t L2
x ([0,τ ]×(R3\B(x0,2R′))) . ε,

and hence on taking weak limits,

‖u‖L∞t L2
x ([0,τ ]×(R3\B(x0,2R′))) . ε.

On the other hand, as ∇ku is continuous at t = 0, u(t) converges in Ck(B(x0, 2R′)) to u0 as t→ 0 for
any k ≥ 0. From this and (9) (and the decay of derivatives of the kernel of 1−1 away from the origin),
we see that

lim sup
(t,x)→(0,x0);t>0

|∇
k p(t, x)−∇k p0(x0)|.k ε

for any k ≥ 0, where p0 is defined from u0 using (9). Sending ε→ 0 and R′→∞, we conclude that ∇k p
extends continuously to ∇k p0(x0) at (0, x0), and thus extends continuously to ∇k p0 on all of the initial
slice {0} ×R3. By (3) we conclude that ∂t∇

ku also extends continuously to the initial slice, with the
Navier–Stokes equation (3) being obeyed both for times t > 0 and times t = 0. We have thus constructed
an almost smooth finite energy solution (u, p, u0, 0, T ) as desired. �

Remark 13.2. We emphasise that Theorem 13.1 only establishes existence of a smooth finite energy
solution (assuming Conjecture 1.13), and not uniqueness; see Remark 11.5. However, it is not difficult
to see from the argument that one can at least ensure that the solution constructed is independent of the
choice of time T , and can thus be extended to a single global smooth finite energy solution. (Alternatively,
from Lemma 8.1 we see that the enstrophy of the solution will become arbitrarily small for a sequence of
times going to infinity, so for a sufficiently large time one can in fact construct a global smooth solution
by standard perturbation theory techniques.)

Remark 13.3. One can modify the above argument to also establish Conjecture 1.14 with a nonzero
Schwartz forcing term f , provided of course that one also assumes Conjecture 1.13 can be extended to
the same class of f . We have not, however, investigated the weakest class of forcing terms f for which
the argument works, though certainly finite energy seems insufficient.

14. Quantitative H1 bounds

In this section we prove Theorem 1.20(vi). We begin with some easy implications. Firstly, it is trivial
that Conjecture 1.17 implies Conjecture 1.16, and from the local well-posedness and regularity theory
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in Theorem 5.4 (or Corollary 5.8), we see that Conjecture 1.16 implies Conjecture 1.15, which in turn
implies Conjecture 1.13 (thanks to Proposition 5.6).

Next, we observe from Theorem 5.1 and Lemma 5.5 that given any H 1 data (u0, 0, T ), there exists a
time 0<τ < T such that one has an H 1 mild solution (u, p, u0, 0, τ )with u(τ ) smooth. If Conjecture 1.13
holds, then one can then continue the solution in an almost smooth finite energy manner (and hence in an
almost smooth H 1 manner, thanks to Corollary 11.1) from τ up to T . Normalising the pressure of this
latter solution using Lemma 4.1 and gluing the two solutions together, we obtain an H 1 mild solution up
to time T . From this we see that Conjecture 1.13 implies Conjecture 1.15.

Now we show that Conjecture 1.16 implies Conjecture 1.17. Suppose that one has homogeneous H 1

data (u0, 0, T ) with
‖u0‖H1

x (R
3) ≤ A <∞.

By Conjecture 1.16 (which implies Conjecture 1.15), we may obtain a mild H 1 solution (u, p, u0, 0, T ),
which is smooth for positive times. Our objective is to show that

‖u‖L∞t H1
x ([0,T ]×R3) .A 1.

Let ε > 0 be a quantity depending on A to be chosen later. We may assume that T is sufficiently large
depending on ε, A; otherwise the claim will follow immediately from Conjecture 1.16. Using Lemma 8.1
and the pigeonhole principle, we may then find a time 0< T1 < T with T1 .A 1 such that

‖∇u(T1)‖L2
x (R

3) ≤ ε.

Meanwhile, from energy estimates, one has

‖u(T1)‖L2
x (R

3) .A 1.

On [T1, T ], we split u = u1+ v, where u1 is the linear solution u1(t) := e(t−T1)u(T1) and v := u − u1.
From (21), one thus has

‖u1‖X0 .A 1

and
‖∇u1‖X0 . ε.

From (11), (22) one has

‖v‖X1([T1,T ]×R3) .
∥∥O(u1∇u1+ u1∇v+ v∇u1+ v∇v)

∥∥
L2

t L2
x ([T1,T ]×R3)

.

We now estimate various contributions to the right-hand side. We begin with the nonlinear term O(v∇v).
By Hölder (and dropping the domain [T1, T ]×R3 for brevity) followed by Lemma 8.1, we have

‖O(v∇v)‖L2
t L2

x
. ‖∇v‖1/2

L2
t L6

x
‖∇v‖

1/2
L∞t L2

x
‖v‖

1/2
L∞t L6

x
‖v‖

1/2
L2

t L6
x
. ‖v‖3/2X1 ‖v‖X1/2

0
.A ‖v‖

3/2
X1 .

A similar argument gives

‖O(v∇u1)‖L2
t L2

x
. ‖∇u1‖X0‖v‖

1/2
X1 ‖v‖

1/2
X0
. ε‖v‖X1
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and

‖O(u1∇u1)‖L2
t L2

x
. ‖∇u1‖X0‖∇u1‖

1/2
X0 ‖u1‖

1/2
X0
‖.A ε

3/2

and

‖O(u1∇v)‖L2
t L2

x
. ‖∇v‖X0‖∇u1‖

1/2
X0 ‖u1‖

1/2
X0
.A ε

1/2
‖v‖X1

and thus

‖v‖X1 .A ε
3/2
+ ε1/2

‖v‖X1 +‖v‖
3/2
X1 .

If ε is small enough depending on A, a continuity argument in the T variable then gives

‖v‖X1 .A ε
3/2

and thus

‖u‖X1([T1,T ]) .A 1.

Using this and the triangle inequality, we conclude that Conjecture 1.16 implies Conjecture 1.17.
We now turn to the most difficult implication:

Proposition 14.1 (Concentration compactness). If Conjecture 1.15 is true, so is Conjecture 1.16.

We now prove this proposition. The methods are essentially those of [Gallagher 2001] (which are
in turn based in [Bahouri and Gérard 1999; Gérard 1998]), which treated the (more difficult) critical
analogue of this implication; indeed, one can view Proposition 14.1 as a subcritical analogue of the critical
result [Gallagher 2001, Corollary 1]. For the convenience of the reader, though, we give a self-contained
proof here, which does not need the full power of the machinery in the previously cited papers because
we are now working in a subcritical regularity H 1 rather than a critical regularity such as Ḣ 1/2, and as
such one does not need to consider the role of the scaling symmetry (31).

We first make the remark that to prove Conjecture 1.16, it suffices to do so with the condition

‖u0‖H1
x (R

3) ≤ A (117)

replaced by (say)

‖u0‖H100
x (R3) ≤ A. (118)

To see this, observe that if we take data u0 in H 1
x (R

3), then from Theorem 5.4 and Lemma 5.5 there
exists a time T1 > 0 depending only on A such that

‖u‖L∞t H1
x ([0,min(T,T1)]×R3) .A 1,

and such that

‖u(T1)‖H100
x (R3) .A 1

if T > T1. From this and time translation symmetry (30), we see that we can deduce the H 1
x (R

3) version
of Conjecture 1.16 from the H 100

x (R3) version.



LOCALISATION AND COMPACTNESS FOR NAVIER–STOKES 97

Now suppose for contradiction that the H 100
x (R3) version of Conjecture 1.16 failed. Carefully negating

the quantifiers, we can find a sequence (u(n), p(n), u(n)0 , 0, T (n)) of smooth homogeneous H 1 solutions,
with T (n) uniformly bounded, and u(n)0 uniformly bounded in H 100

x (R3), such that

lim
n→∞
‖u(n)‖L∞t H1

x ([0,T (n)]×R3) =∞. (119)

By Lemma 4.1 we may assume that these solutions have normalised pressure.
If we were working on a compact domain, such as R3/Z3, we could now extract a subsequence of

the u(n)0 that converged strongly in a lower regularity space, such as H 99
x (R

3/Z3). But our domain R3 is
noncompact, and in particular has the action of a noncompact symmetry group, namely the translation
group τx0u(x) := u(x − x0). However, as is well known, we have a substitute for compactness in this
setting, namely concentration compactness. Specifically:

Proposition 14.2 (Profile decomposition). Let u(n)0 ∈ H 100
x (R3) be a sequence with

lim sup
n→∞

‖u(n)0 ‖H100
x (R3) ≤ A,

and let ε > 0. Then, after passing to a subsequence, there exists a decomposition

u(n)0 =

J∑
j=1

τx (n)j
w j,0+ r (n)0 ,

where |J |.A,ε 1, w1,0, . . . , wJ,0 ∈ H 100
x (R3), x (n)j ∈ R3, and the remainder r (n)0 obeys the estimates

lim sup
n→∞

‖r (n)0 ‖H100
x (R3) ≤ A

and

lim sup
n→∞

‖r (n)0 ‖L∞x (R3) ≤ ε. (120)

Furthermore, for any 1≤ j < j ′ ≤ J , one has

|x (n)j − x (n)j ′ | →∞, (121)

and for any 1≤ j ≤ J , the sequence τ
−x (n)j

r (n)0 converges weakly in H 100
x (R3) to zero.

Finally, if the u(n)0 are divergence-free, then the w j,0 and r (n)0 are also divergence-free.

Proof. See, for example, [Gérard 1998]. We sketch the (standard) proof as follows. If

‖u(n)0 ‖L∞x (R3) ≤ ε

for all sufficiently large n, then there is nothing to prove (just take J = 0 and r (n)0 := u(n)0 ). Otherwise,
after passing to a subsequence, we can find a sequence x (n)1 ∈ R3 such that |u(n)0 (x (n)1 )| ≥ ε/2 (say). The
sequence τ

−x (n)1
u(n)0 is then bounded in H 100

x (R3) and bounded away from zero at the origin; by passing
to a further subsequence, we may assume that it converges weakly in H 100

x (R3) to a limit w1, which
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then has an H 100
x (R3) norm of &A,ε 1 and is asymptotically orthogonal in the Hilbert space H 100

x (R3) to
τ
−x (n)1

u(n)0 . We then have the decomposition

u(n)0 = τx (n)1
w1,0+ u(n),10 ,

and from an application of the cosine rule in the Hilbert space H 100
x (R3), one can verify that

lim sup
n→∞

‖u(n),10 ‖
2
H100

x (R3)
≤ A2

− c

for some c > 0 depending only on ε, A. We can then iterate this procedure OJ,ε(1) times to obtain the
desired decomposition. �

We apply this proposition with a value of ε > 0 depending on A, T to be chosen later. The w j,0 lie
in H 100

x (R3), and thus by the assumption that Conjecture 1.15 is true, we can find mild H 1 solutions
(w j , p j , w j,0, 0, T ) with this data. By Theorem 5.1, we have

‖w j‖X100 <∞

for each 1≤ j ≤ J , and to abbreviate the notation, we adopt the convention that the space-time domain is
understood to be [0, T ]×R3.

Next, we consider the remainder term r (n)0 . From (21) one has

‖et1r (n)0 ‖X100 . A,

while from (120) one has

‖et1r (n)0 ‖L∞t L∞x . ε

for n sufficiently large. Interpolating between the two, we soon conclude that

‖et1r (n)0 ‖X1 .A,T ε
c

for some absolute constant c > 0. If we take ε sufficiently small depending on A, T , we can use stability
of the zero solution (see Theorem 5.1; one could also have used here the results from [Chemin and
Gallagher 2009]) to conclude the existence of a mild H 1 solution (r (n), p(n)∗ , r

(n)
0 , 0, T ) with this data,

with the estimates
‖r (n)‖X1 .A,T ε

c
; (122)

from Theorem 5.1, we then also have

‖r (n)‖X100 .A,T 1.

We now form the solution

(ũ(n), p̃(n), u(n)0 , f̃ (n), T ),

where the velocity field ũ(n) is given by

ũ(n) :=
J∑

j=1

τx (n)j
w j + r (n),
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the pressure field p̃(n) is given by (9), and the forcing term f̃ (n) is given by the formula

f̃ (n) := ∂t ũ(n)−1ũ(n)− PB(ũ(n), ũ(n)).

This is clearly a mild H 1 solution, with

‖ũ(n)‖X100 .A,T,ε 1.

We now estimate f̃ (n). From (68) for the solutions τx (n)j
w j + r (n), we have an expansion of f̃ (n) purely

involving nonlinear interaction terms:

f̃ (n) =
∑

1≤ j< j ′≤J

PO(∇(τx (n)j
w j , τx (n)j ′

w j ′))+
∑

1≤ j<J

PO(∇(τx (n)j
w j , r (n))).

In particular, from the triangle inequality and translation invariance we have

‖ f̃ (n)‖L2
t L2

x
.

∑
1≤ j< j ′≤J

∥∥O(∇(w j , τx (n)j ′ −x (n)j
w j ′))

∥∥
L2

t L2
x
+

∑
1≤ j<J

∥∥O(∇(w j , τ−x (n)j
r (n)))

∥∥
L2

t L2
x
.

But by (121) and Sobolev embedding,

τx (n)j ′ −x (n)j
w j ′ and τ

−x (n)j
r (n)

are bounded in L∞t L∞x and converge locally uniformly to zero, and so we conclude that

lim
n→∞
‖ f̃ (n)‖L2

t L2
x
= 0.

From this and the stability theory in Theorem 5.4, we conclude that for n large enough, there is an H 1

mild solution (u(n), p(n), u(n)0 , 0, T ) with

lim
n→∞
‖ũ(n)− u(n)‖X1 = 0,

and in particular

lim sup
n→∞

‖u(n)‖L∞t H1
x ([0,T ]×R3) <∞.

By the uniqueness theory in Theorem 5.4, this solution must agree with the original solutions

(u(n), p(n), u(n)0 , 0, T (n))

on [0, T (n)
]×R3; but then we contradict (119). Proposition 14.1 follows.

15. Nonexistence of smooth solutions

In this section we establish Theorem 1.12. Informally, the reason for the irregularity is as follows.
Assuming normalised pressure, one concludes from (9) that

p = O(1−1
∇

2(uu)).
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If one then differentiates this twice in time, using (3) to convert time derivatives of u into 1u plus
lower-order terms and using integration by parts to redistribute derivatives, we eventually obtain (formally,
at least) a formula of the form

∂2
t p = O(1−1

∇
2(1u1u))+ lower-order terms.

But if u0 is merely assumed to be smooth and in H 1, then 1u can grow arbitrarily fast at infinity at time
t = 0, and this should cause p to fail to be C2

t at time zero.
We turn to the details. To eliminate the normalised pressure assumption, we will work with ∇ p instead

of p, and thus we will seek to establish bad behaviour for ∇∂2
t p at time t = 0. For technical reasons it is

convenient to work in the weak topology in space. The key quantitative step is the following:

Proposition 15.1 (Quantitative failure of regularity). Let u0 : R
3
→ R3 be smooth, divergence-free, and

compactly supported, and let ψ :R3
→R be smooth, compactly supported, and have total mass

∫
R3 ψ = 1.

Let R,M, ε > 0. Then there exists a smooth divergence-free compactly supported function u1 which
vanishes on B(0, R) with

‖u1‖H1
x (R

3) . ε

and such that if (u, p, u0+ u1, 0, T ) is a mild H 1 (and hence smooth, by Proposition 5.6) solution with
data (u0+ u1, 0, T ), then ∣∣∣∣∫

R3
∇∂2

t p(0, x)ψ(x) dx
∣∣∣∣> M. (123)

Let us assume this proposition for now and conclude Theorem 1.12. We will use an argument
reminiscent of that used to establish the Baire category theorem or the uniform boundedness principle.
Let ψ : R3

→ R be a fixed smooth, compactly supported function with total mass 1. We will need a
rapidly decreasing sequence

ε(1) > ε(2) > · · ·> 0

of small quantities to be chosen later, with each ε(n) sufficiently small depending on the previous
ε(1), . . . , ε(n−1). Applying Proposition 15.1 recursively starting with u0 = 0, one can then find a sequence
of smooth, divergence-free, and compactly supported functions u(n)1 for n = 1, 2, . . . such that

‖u(n)1 ‖H1
x (R

3) . ε
(n),

with u(n)1 vanishing on B(0, 1/ε(n)), such that if (u(n), p(n), u(n)0 , 0, T (n)) is a mild H 1 (and hence smooth)
solution with data

u(n)0 := u(1)1 + · · ·+ u(n)1 ,

then ∣∣∣∣∫
R3
∇∂2

t p(n)(0, x)ψ(x) dx
∣∣∣∣> 1/ε(n). (124)

Furthermore, each u(n)1 depends only on ε(1), . . . , ε(n), and in particular is independent of ε(n+1).
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By the triangle inequality (and assuming the ε(n) decay fast enough), the data u(n)0 is strongly convergent
in H 1

x (R
3) to a limit u0 =

∑
∞

n=1 u(n)1 ∈ H 1
x (R

3), with

‖u0− u(n)0 ‖H1
x (R

3) . ε
(n+1).

If we make each ε(n+1) sufficiently small depending on u(n)0 , and hence on ε(1), . . . , ε(n), then the u(n)1
will have disjoint supports; as each u(n)1 is smooth and divergence-free, this implies that

u0 =

∞∑
n=1

u(n)1

is also smooth and divergence-free.
Applying Theorem 5.1, we may then take the times T (n)

= 1 (if the ε(n) are small enough), and
(u(n), p(n), u(n)0 , 0, 1) will converge to a mild H 1 solution (u, p, u0, 0, 1) in the sense that u(n) converges
strongly in X1([0, 1]×R3) to u. Indeed, from the Lipschitz stability property, we see (if the ε(n) decay
fast enough) that

‖u− u(n)‖X1([0,1]×R3) . ε
(n+1).

Also, u, u(n) are bounded in X1([0, 1]×R3) by O(1). Using (9) and Sobolev embedding, this implies

‖p− p(n)‖L∞t L3
x ([0,1]×R3) . ε

(n+1),

and so if one sets

F (n)(t) :=
∫

R3
∇ p(n)(t, x)ψ(x) dx

and

F(t) :=
∫

R3
∇ p(t, x)ψ(x) dx,

then from integration by parts, we have

‖F − F (n)‖L∞t ([0,1]) . ε
(n+1). (125)

Meanwhile, each F (n) is smooth, and F continuous, from Proposition 5.6, and from (124) one has

|∂2
t F (n)(0)| ≥ 1/ε(n).

In particular, if ε(n+1) is sufficiently small depending on F (n) (which in turn depends on ε(1), . . . , ε(n)),
one has from Taylor’s theorem with remainder that∣∣F (n)(2(ε(n+1))0.1)− 2F (n)((ε(n+1))0.1)+ F (n)(0)

∣∣
(ε(n+1))0.2

&
1
ε(n)

.

Applying (125), we conclude that∣∣F(2(ε(n+1))0.1)− 2F((ε(n+1))0.1)+ F(0)
∣∣

(ε(n+1))0.2
&

1
ε(n)

,
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if ε(n+1) is sufficiently small depending on ε(1), . . . , ε(n). In particular,

lim sup
h→0+

|F(2h)− 2F(h)+ F(0)|
h2 =+∞,

which by Taylor’s theorem with remainder implies that F is not smooth at 0.
We claim that the data u0 gives the desired counterexample to Theorem 1.12. Indeed, suppose for

contradiction that there was a smooth solution (ũ, p̃, u0, 0, T ) for some T > 0. By shrinking T , we may
assume T ≤ 1. By Lemma 4.1, we see that p̃(t) has normalised pressure up to a constant for almost
every t , and thus after adjusting p̃(t) by that constant, (ũ, p̃, u0, 0, T ) is a mild H 1 solution. Using the
uniqueness property in Theorem 5.1, we conclude that u = ũ, and p(t) and p̃(t) differ by a constant for
almost every t , and hence (by continuity of both p and p̃) for every t . In particular, ∇ p =∇ p̃, and so

F(t)=
∫

R3
∇ p̃(t, x)ψ(x) dx .

But as p̃ is smooth on [0, T ]×R3, F is smooth at 0, a contradiction.

Remark 15.2. The above argument showed that ∇ p failed to be smooth at t = 0; by using (3), we
conclude that the velocity field u must then also be nonsmooth at t = 0 (though the velocity u has one
more degree of time regularity than the pressure p). Thus the failure of regularity is not just an artefact of
pressure normalisation. Using the vorticity equation (84), one can then show a similar failure of time
regularity for the vorticity, although again one gains an additional degree of time differentiability over the
velocity u.

The irregularities in time stem from the unbounded growth of high derivatives of the initial data. If
one assumes that all spatial derivatives of u0 are in L2

x(R
3), that is, that u0 ∈ H∞(R3), then one can

prove iteratively23 that all time derivatives of u and p at time zero are bounded, and also have first spatial
derivatives in H∞(R3) (basically because the first derivative of the kernel of the Leray projection is
integrable at infinity). In particular, u and p now remain smooth at time 0.

It remains to establish Proposition 15.1. Fix u0, ψ, R,M, ε, and let u1 be a smooth divergence-free
compactly supported function u1 vanishing on B(0, R) with H 1

x (R
3) norm O(ε) to be chosen later. Let

(u, p, u0+u1, 0, T ) be a mild H 1 solution with this given data. By Theorem 5.1, this is a smooth solution,
with all derivatives of u, p lying in L∞t L2

x . From Lemma 4.1 we thus have

∇ p =−∇1−1∂i∂ j (ui u j ) (126)

for almost all times t . But both sides are smooth in [0, T ]×R3, so this formula is valid for all times t
(and in particular at t = 0). In particular, we may apply a Leray projection P to (3) and conclude that

∂t u =1u+ PB(u, u). (127)

We differentiate (126) once in time to obtain

∇∂t p =−2∇1−1∂i∂ j (ui∂t u j ).

23We thank Richard Melrose for this observation.
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Expanding out ∂t u j using (3), we obtain

∇∂t p =−2∇1−1∂i∂ j (ui1u j )+O
(
1−1
∇

3(u PB(u, u))
)
.

Writing
∂i∂ j (ui1u j )=−2∂i∂ j ((∂kui )(∂ku j ))+O(∇4(uu)),

we thus have

∇∂t p = 2∇1−1∂i∂ j (∂kui∂ku j )+O(1−1
∇

5(uu))+O
(
1−1
∇

3(u PB(u, u))
)
.

We differentiate this in time again and use (127) to obtain

∇∂2
t p = 4∇1−1∂i∂ j (∂kui∂k1u j )

+O
(
1−1
∇

3((∇u)∇PB(u, u))
)

+O(1−1
∇

5(u∂t u))

+O
(
1−1
∇

3((∂t u)PB(u, u))
)

+O
(
1−1
∇

3(u PB(u, ∂t u))
)
.

We can write ∂kui∂k1u j =−(1ui )(1u j )+O(∇(∇u1u)), so that

∇∂2
t p =−4∇1−1∂i∂ j (1ui1u j )

+O(1−1
∇

4(∇u1u))

+O
(
1−1
∇

3((∇u)∇PB(u, u))
)

+O(1−1
∇

5(u∂t u))

+O
(
1−1
∇

3((∂t u)PB(u, u))
)

+O
(
1−1
∇

3(u PB(u, ∂t u))
)
.

Integrating this against ψ , we may thus expand∫
R3
∇∂2

t p(0, x)ψ(x) dx = 4X0+

5∑
i=1

O(X i ),

where

X0 :=

∫
R3
(∂i∂ j∇1

−1ψ)1ui1u j , X1 :=

∫
R3
(∇41−1ψ)∇u1u,

X2 :=

∫
R3
(∇31−1ψ)∇u∇PB(u, u), X3 :=

∫
R3
(∇51−1ψ)u∂t u,

X4 :=

∫
R3
(∇31−1ψ)(∂t u)PB(u, u), X5 :=

∫
R3
(∇31−1ψ)u PB(u, ∂t u),

with all expressions being evaluated at time 0.
From (127) and Sobolev embedding, one has

‖∂t u(0)‖L2
x (R

3) .u0 1+‖u1‖H2
x (R

3).
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Meanwhile, if ε is small enough, we see that

‖u(0)‖H1
x (R

3) .u0 1,

and thus from the Gagliardo–Nirenberg inequality,

‖u(0)‖L∞x (R3) .u0 (1+‖u1‖H2
x (R

3))
1/2.

From many applications of the Sobolev and Hölder inequalities (and, in the case of X5, an integration by
parts to move the derivative off of ∂t u), we conclude that

|X i |.u0,ψ (1+‖u1‖H2
x (R

3))
3/2,

for i = 1, 2, 3, 4, 5. In a similar spirit, one has

X0 =

∫
R3
(∂i∂ j∇1

−1ψ)1u1,i1u1, j + Ou0,ψ(1+‖u1‖H2
x (R

3)).

To demonstrate (123), it thus suffices to exhibit a sequence u(n)1 : R
3
→ R3 of smooth divergence-free

compactly supported vector fields supported outside of B(0, R) such that∣∣∣∣∫
R3
(∂i∂ j∇1

−1ψ)1u(n)1,i1u(n)1, j

∣∣∣∣&R,ψ ‖u
(n)
1 ‖

2
H2

x (R
3)
,

with
‖u(n)1 ‖H1

x (R
3)→ 0 and ‖u(n)1 ‖H2

x (R
3)→∞.

We construct u(n)1 explicitly as the “wave packet”

u(n)1 (x) := n−5/2
∇ ×9(n)(x0),

where e1, e2, e3 is the standard basis, x0 ∈ R3 is a point (independent of n) outside of B(0, R+ 1) to be
chosen later, and

9(n)(x)= χ(x) sin(nξ · x)η,

where ξ ∈R3 is a nonzero frequency (independent of n) to be chosen later, η∈R3 is a nonzero direction, and
χ :R3

→R is a smooth bump function supported on B(0, 1) to be chosen later. Note from construction that
u(n)1 is smooth, divergence-free, and supported on B(x0, 1), and thus vanishing on B(0, R) for R0 > R+1.
One can compute that

‖u(n)1 ‖H1
x (R

3)�χ n−1/2 and ‖u(n)1 ‖H2
x (R

3)�χ n1/2,

as long as χ is not identically zero. To conclude the theorem, it thus suffices to show that∣∣∣∣∫
R3
(∂i∂ j∇1

−1ψ)1u(n)1,i1u(n)1, j

∣∣∣∣�R0,ψ,χ n

if R0 and n are large enough.
Observe that

u(n)1 (x) := n−3/2 sin(nξ · (x − x0))χ(x − x0)(ξ × η)+ O(n−5/2)
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and similarly

1u(n)1 (x) := −n1/2
|ξ |2 sin(nξ · (x − x0))χ(x − x0)(ξ × η)+ O(n−1/2),

and so by choosing χ appropriately and using the Riemann–Lebesgue lemma, it suffices to find x0, ξ, η∈R3

such that
(∂i∂ j∇1

−1ψ)(ξ × η)i (ξ × η) j (x0) 6= 0.

But as ψ has mean one, we see that ∇31−1ψ(x0) is not identically zero for x0 large enough, and the
claim follows.
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A VARIATIONAL PRINCIPLE FOR CORRELATION FUNCTIONS
FOR UNITARY ENSEMBLES, WITH APPLICATIONS

DORON S. LUBINSKY

In the theory of random matrices for unitary ensembles associated with Hermitian matrices, m-point
correlation functions play an important role. We show that they possess a useful variational principle.
Let � be a measure with support in the real line, and Kn be the n-th reproducing kernel for the associated
orthonormal polynomials. We prove that, for m� 1,

det
�
Kn.�;xi ;xj /

�
1�i;j�m

Dm! sup
P

P 2.x/R
P 2.t/ d��m.t/

where the supremum is taken over all alternating polynomials P of degree at most n� 1 in m variables
x D .x1;x2; : : : ;xm/. Moreover, ��m is the m-fold Cartesian product of �. As a consequence, the
suitably normalized m-point correlation functions are monotone decreasing in the underlying measure �.
We deduce pointwise one-sided universality for arbitrary compactly supported measures, and other limits.

1. Introduction

Let � be a positive measure on the real line with infinitely many points in its support, and
R

xj d�.x/

finite for j D 0; 1; 2; : : : . Then we may define orthonormal polynomials

pn.x/D nxn
C � � � ; n > 0;

satisfying Z
pnpm d�D ımn:

The n-th reproducing kernel is

Kn.�;x; t/D

n�1X
jD0

pj .x/pj .t/

and the n-th Christoffel function is

�n.�;x/D 1=Kn.�;x;x/D 1
ı n�1X

jD0

p2
j .x/: (1-1)

Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.
MSC2010: 15B52, 60B20, 60F99, 42C05, 33C50.
Keywords: orthogonal polynomials, random matrices, unitary ensembles, correlation functions, Christoffel functions.

109

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-1
http://dx.doi.org/10.2140/apde.2013.6.109
http://msp.org


110 DORON S. LUBINSKY

It admits an extremal property that is very useful in investigating asymptotics of orthogonal polynomials
[Nevai 1986; Simon 2011]:

�n.�;x/D inf
deg.P/<n

R
P .t/2 d�.t/

P2.x/
:

Equivalently,

Kn.�;x;x/D sup
deg.P/<n

P2.x/R
P .t/2 d�.t/

: (1-2)

We shall prove a direct generalization for det ŒKn.�;xi ;xj /�1�i;j�m, a determinant that plays a key role
in analysis of random matrices.

Random Hermitian matrices rose to prominence with the work of Eugene Wigner, who used their
eigenvalues as a model for scattering theory of heavy nuclei. One places a probability distribution on
the entries of an n by n Hermitian matrix. When expressed in “spectral form”, that is, as a probability
distribution on the (real) eigenvalues x1;x2; : : : ;xn, it has the form

P.n/.x1;x2; : : : ;xn/D

�Q
1�j<k�n.xk �xj /

2
�

d�.x1/ d�.x2/ � � � d�.xn/R
� � �
R �Q

1�j<k�n.tk � tj /2
�

d�.t1/ � � � d�.tn/
I

see [Deift 1999, p. 102]. Given 1�m� n, we define the m-point correlation function

Rn
m.�Ix1; : : : ;xm/D

n!

.n�m/!

R
� � �
R �Q

1�j<k�n.xk �xj /
2
�

d�.xmC1/ � � � d�.xn/R
� � �
R �Q

1�j<k�n.tk � tj /2
�

d�.t1/ � � � d�.tn/
: (1-3)

Thus Rn
m is, up to normalization, a marginal distribution, where we integrate out xmC1;xmC2; : : : ;xn.

Note that we exclude from Rn
m a factor of �0.x1/�

0.x2/ � � ��
0.xm/, which is used by Deift. It is a well

established fact [Deift 1999, p. 112] that

Rn
m.�Ix1;x2; : : : ;xm/D det

�
Kn.�;xi ;xj /

�
1�i;j�m

: (1-4)

Again, we emphasize that in [Deift 1999], as distinct from this paper, �0 is absorbed into Kn. Since much
of the interest lies in asymptotics as n!1, for fixed m, it is obviously easier to handle asymptotics of
this fixed size determinant, than to deal with the .n�m/-fold integral in (1-3).

Rn
m can be used to describe the local spacing of m-tuples of eigenvalues. For example, if mD 2, and

B � R is measurable, then [Deift 1999, p. 117]Z
B

Z
B

Rn
2.�I t1; t2/ d�.t1/ d�.t2/

is the expected number of pairs .t1; t2/ of eigenvalues, with both t1; t2 2 B.
Of course there are other settings for random matrices that do not involve orthogonal polynomials.

There one considers a class of matrices (such as normal matrices or symmetric matrices) where the
elements of the matrix are independently distributed, or there are appropriate bounds on the dependence.
The methods are quite different, but remarkably, similar limiting results arise [Erdős 2011; Erdős et al.
2010; 2011; Forrester 2010; Tao and Vu 2011].
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The formulation of our main result involves ALm
n , the alternating polynomials of degree at most n

in m variables. We say that P 2ALm
n if

P .x1;x2; : : : ;xm/D
X

0�j1;j2;:::;jm�n

cj1j2���jm
x

j1

1
x

j2

2
� � �xjm

m ; (1-5)

so that P is a polynomial of degree less than or equal to n in each of its m variables, and in addition is
alternating, so that for every pair .i; j / with 1� i < j �m,

P .x1; : : : ;xi ; : : : ;xj ; : : : ;xm/D�P .x1; : : : ;xj ; : : : ;xi ; : : : ;xm/: (1-6)

Thus swapping variables changes the sign. Sometimes, these are called skew-symmetric polynomials.
Observe that if Pi is a univariate polynomial of degree less than or equal to n for each i D 1; 2; : : : ;m,

then
P .t1; t2; : : : ; tm/D det

�
Pi.tj /

�
1�i;j�m

2ALm
n : (1-7)

The set of such determinants of polynomials is a proper subset of ALm
n . It is well known, and easy to

see, that every alternating polynomial is the product of a Vandermonde determinant and a symmetric
polynomial. Thus P 2ALm

n if and only if

P .t1; t2; : : : ; tm/D

� Y
1�i<j�m

.tj � ti/

�
S.t1; t2; : : : ; tm/;

where S is symmetric, and of degree less than or equal to n�mC 1 in each variable.
Given a fixed m, we shall use the notation

x D .x1;x2; : : : ;xm/; t D .t1; t2; : : : ; tm/

while ��m denotes the m-fold Cartesian product of �, so that

d��m.t/D d�.t1/d�.t2/ � � � d�.tm/: (1-8)

We prove:

Theorem 1.1. Let m� 1, n�mC 1. Let x D .x1;x2; : : : ;xm/ be an m-tuple of real numbers. Then

det
�
Kn.�;xi ;xj /

�
1�i;j�m

Dm! sup
P2ALm

n�1

.P .x//2R
.P .t//2 d��m.t/

: (1-9)

The supremum is attained for

P .t/D det
�
Kn.�;xi ; tj /

�
1�i;j�m

: (1-10)

We could also just take the supremum in (1-9) over the strictly smaller class of determinants of the
form (1-7). An immediate, but important, consequence is:

Corollary 1.2. Rn
m.�Ix1;x2; : : : ;xm/ is a monotone decreasing function of �, and a monotone increas-

ing function of n.
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Despite an extensive literature search, I have not found Theorem 1.1 or Corollary 1.2 in the rich
literature on random matrices. At the very least, they must be new to those interested in universality
limits, because of the applications they have there. We shall present some in Section 2.

The proof of Theorem 1.1 is based on multivariate orthogonal polynomials built from �. Given m� 1,
and nonnegative integers j1; j2; : : : ; jm, we define

Tj1;j2;:::;jm
.x1;x2; : : : ;xm/Ddet.pji

.xk//1�i;k�mDdet

26664
pj1
.x1/ pj1

.x2/ : : : pj1
.xm/

pj2
.x1/ pj2

.x2/ : : : pj2
.xm/

:::
:::

: : :
:::

pjm
.x1/ pjm

.x2/ : : : pjm
.xm/

37775 : (1-11)

We show that the fTj1;j2;:::;jm
gj1<j2<���<jm

form an orthogonal family with respect to ��m, and moreover,
the m-point correlation function admits an expansion as a sum of squares of fTj1;j2;:::;jm

g, just as does
Kn in terms of squares of the orthonormal polynomials. We shall need an associated reproducing kernel,

Km
n .�;x; t/D

1

m!

X
1�j1<j2<���<jm�n

Tj1;j2;:::;jm
.x/Tj1;j2;:::;jm

.t/: (1-12)

Theorem 1.3. (a) Let 0� j1 < j2 < � � �< jm and 0� k1 < k2 < � � �< km. ThenZ
Tj1;j2;:::;jm

.t/Tk1;k2;:::;km
.t/ d��m.t/Dm! ıj1k1

ıj2k2
� � � ıjmkm

: (1-13)

(b) For P 2ALm
n�1, and x 2 Rn,

P .x/D

Z
P .t/Km

n .�;x; t/ d��m.t/: (1-14)

(c) For x; t 2 Rn,
det
�
Kn.�;xi ; tj /

�
1�i;j�m

Dm! Km
n .�;x; t/: (1-15)

In particular,

det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

X
1�j1<j2<���<jm�n

.Tj1;j2;:::;jm
.x//2: (1-16)

Remarks. (a) In the case mD 1, (1-16) reduces to (1-1) for Kn.�;x;x/. After an extensive literature
search, we found that (1-16) already appears for general m in [Erdős 2011, Section 1.5.3]. We may
also express it as

det
�
Kn.�;xi ;xj /

�
1�i;j�m

D
1

m!

X
1�j1;j2;:::;jm�n

.Tj1;j2;:::;jm
.x//2; (1-17)

as Tj1;j2;:::;jm
vanishes if any two indices ji are equal.

(b) The expression (1-15) may also be thought of as a Christoffel–Darboux formula, for it expresses the
sum (1-12) in a compact form involving an m�m determinant.

One consequence of the variational principle is a lower bound for ratios of correlation functions:
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Theorem 1.4. Let m� 2, n�mC1, and x1;x2; : : : ;xm be distinct real numbers. Define a measure � by

d�.t/D d�.t/

mY
jD2

.t �xj /
2:

Then

Kn.�;x1;x1/�
det
�
Kn.�;xi ;xj /

�
1�i;j�m

det
�
Kn.�;xi ;xj /

�
2�i;j�m

�
1

m
Kn�mC1.�;x1;x1/

mY
jD2

.x1�xj /
2: (1-18)

The upper bound is a well known consequence of inequalities for positive definite matrices. It is the
lower bound that is new.

This paper is organized as follows: in Section 2, we state some applications of Theorem 1.1 to
asymptotics and universality limits. In Section 3, we first prove Theorem 1.3, and then deduce Theorem 1.1
and Corollary 1.2, followed by Theorem 1.4. Theorems 2.1, 2.2, and 2.3 are proved in Section 4.
Theorem 2.4 is proved in Section 5, and Theorem 2.5 and Corollary 2.6 in Section 6.

2. Applications to asymptotics and universality limits

The extremal property (1-2) is essential in proving the following: if � is any measure with support
in Œ�1; 1�, then at every Lebesgue point x of � in .�1; 1/,

lim inf
n!1

1

n
Kn.�;x;x/�

0.x/�
1

�
p

1�x2
: (2-1)

Here �0 is understood as the Radon–Nikodym derivative of the absolutely continuous part of �. This is
more commonly formulated for Christoffel functions as

lim sup
n!1

n�n.�;x/� �
0.x/�

p
1�x2:

Barry Simon calls this the Máté–Nevai–Totik upper bound. See, for example, [Máté et al. 1991; Simon
2011, Theorem 5.11.1, p. 334; Totik 2000].

Under additional conditions, including regularity of �, there is equality in (2-1), with a full limit. We
say that � is regular in the sense of Stahl, Totik, and Ullman, or just regular, if the leading coefficients fng

of its orthonormal polynomials satisfy

lim
n!1

n
1=n
D

1

cap.supp Œ��/
: (2-2)

Here cap.supp Œ��/ is the logarithmic capacity of the support of �. We shall need only a very simple
criterion for regularity, namely a version of the Erdős–Turán criterion: if the support of � consists of
finitely many intervals, and �0 > 0 a.e. with respect to Lebesgue measure in that support, then � is regular
[Stahl and Totik 1992, p. 102].
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Máté, Nevai and Totik [Máté et al. 1991] showed that if � is a regular measure with support Œ�1; 1�,
and in some subinterval I of .�1; 1/, we haveZ

I

log�0 > �1; (2-3)

then for a.e. x 2 I ,

lim
n!1

1

n
Kn.�;x;x/�

0.x/D
1

�
p

1�x2
: (2-4)

Totik gave a far-reaching extension of this to measures with compact support J [Totik 2000; 2009].
Here one needs the equilibrium measure �J for the compact set J , as well as its Radon–Nikodym
derivative, which we denote by !

J
. Thus �J is the unique probability measure that minimizes the energy

integral “
log

1

js� t j
d�.s/ d�.t/

amongst all probability measures � with support in J [Ransford 1995; Saff and Totik 1997]. If I is some
subinterval of J , then �J is absolutely continuous in I , and moreover, !J > 0 in the interior Io of I . In
the special case J D Œ�1; 1�, we have

d�J .x/D !J .x/ dx D
dx

�
p

1�x2
:

Totik showed that if � is regular, and in some subinterval I of J , we have (2-3), then

lim
n!1

1

n
Kn.�;x;x/�

0.x/D !J .x/ for a.e. x 2 I : (2-5)

Further developments are explored in [Simon 2011].
It is a fairly straightforward consequence of this last relation, and the Christoffel–Darboux formula,

that, for m� 2 and a.e. .x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J
.xj /

�0.xj /
: (2-6)

The right-hand side is interpreted as 1 if any �0.xj / D 0. Thus, the matrix ŒKn.�;xi ;xj /�1�i;j�m

behaves essentially like its diagonal. We shall prove this in Section 4. Without having to assume regularity,
or (2-3), we can use Theorem 1.1 to prove one-sided versions of (2-6).

For measures � with compact support J , and x 2 J , we let

!�.x/D inff!L.x/ WL� J is compact, �jL is regular, x 2Lg: (2-7)

Since �L decreases as L increases, one can roughly think of !� as the density of the equilibrium measure
of the largest set to whose restriction � is regular. In the sequel, J o denotes the interior of J .

Theorem 2.1. Let � have compact support J , of positive Lebesgue measure, and let !
J

denote the
equilibrium density of J . Let m� 1.
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(a) For Lebesgue a.e. .x1;x2; : : : ;xm/ 2 .J
o/m,

lim inf
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!
J
.xj /

�0.xj /
: (2-8)

The right-hand side is interpreted as1 if any �0.xj /D 0.

(b) Suppose that I is a compact subset of J consisting of finitely many intervals, for which (2-3) holds.
Then, for Lebesgue a.e. .x1;x2; : : : ;xm/ 2 Im,

lim sup
m!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!�.xj /

�0.xj /
: (2-9)

A perhaps more impressive application of Theorem 1.1 is to universality limits in the bulk, which
describe local spacing of eigenvalues of random Hermitian matrices [Deift 1999; Deift and Gioev 2009;
Forrester 2010; Mehta 1991]. One of the more standard formulations, for a measure � supported on Œ�1; 1�,
is

lim
n!1

�
�0.x/�

p
1�x2

n

�m

Rn
m

�
�IxC a1

�
p

1�x2

n
; : : : ;xC am

�
p

1�x2

n

�
D lim

n!1

�
�0.x/�

p
1�x2

n

�m

det
�
Kn

�
�IxC ai

�
p

1�x2

n
;xC aj

�
p

1�x2

n

��
1�i;j�m

D det.S.ai � aj //1�i;j�m;

where

S.t/D
sin� t

� t
(2-10)

is the sine (or sinc) kernel. There is a vast literature for universality limits, especially in the case where �
is replaced by varying weights. A great many methods have been applied, including classical asymptotics
for orthonormal polynomials, Riemann Hilbert techniques, and theory of entire functions of exponential
type [Baik et al. 2003; 2008; Deift 1999; Deift and Gioev 2009; Deift et al. 1999; Findley 2008; Forrester
2010; Levin and Lubinsky 2008; Lubinsky 2009a; Simon 2008a; 2011; Totik 2009].

For fixed measures � with compact support J , the most general pointwise result is due to Totik [2009].
It asserts that if � is regular, while (2-3) holds in some interval I in the support, then, for a.e. x 2 I , and
all real a1; a2; : : : ; am, there are limits for the scaled reproducing kernels that immediately yield

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m:

Simon [2008a; 2008b] had a similar result, proved using Jost functions. Totik used the comparison method
of [Lubinsky 2009a], together with “polynomial pullbacks”. Without any local or global restrictions on �,
we showed in [Lubinsky 2012] that universality holds in measure in f�0 > 0g D fx W �0.x/ > 0g.

We prove pointwise, almost everywhere, one-sided universality, without any local or global restrictions
on �:



116 DORON S. LUBINSKY

Theorem 2.2. Let � have compact support J , and let !
J

denote the equilibrium density of J . Let m� 1.

(a) For a.e. x 2 J o\f�0 > 0g, and for all real a1; a2; : : : ; am,

lim inf
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
� det.S.ai � aj //1�i;j�m: (2-11)

(b) Suppose that I is a compact subset of J consisting of finitely many intervals, for which (2-3) holds.
Then for a.e. x 2 I , and for all real a1; a2; : : : ; am,

lim sup
n!1

�
�0.x/

n!�.x/

�m

Rn
m

�
�IxC

a1

n!�.x/
; : : : ;xC

am

n!�.x/

�
� det.S.ai � aj //1�i;j�m: (2-12)

Pointwise universality at a given point x seems to usually require at least something like �0 being
continuous at x, or x being a Lebesgue point of �. Indeed, when �0 has a jump discontinuity, the
universality limit is different from the sine kernel [Foulquié Moreno et al. 2011], and involves de Branges
spaces [Lubinsky 2009b]. In our next result, we show that one can still bound the behavior of the
correlation function above and below near such a given x. It is noteworthy, though, that pure singularly
continuous measures can exhibit sine kernel behavior [Breuer 2011].

Theorem 2.3. Let � have compact support J , be regular, and let !
J

denote the equilibrium density of J .
Assume that the singular part �s of � satisfies, at a given x in the interior of J ,

lim
h!0C

�s Œx� h;xC h�=hD 0: (2-13)

Assume moreover that the derivative �0 of the absolutely continuous part of � satisfies

0< C1 D lim inf
t!x

�0.t/� lim sup
t!x

�0.t/D C2 <1: (2-14)

Then, for all real a1; a2; : : : ; am,

C�m
2 det.S.ai � aj //1�i;j�m � lim inf

n!1

�
1

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!J .x/
; : : : ;xC

am

n!
J
.x/

�
� lim sup

n!1

�
1

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!J .x/
; : : : ;xC

am

n!
J
.x/

�
� C�m

1 det.S.ai � aj //1�i;j�m:

(2-15)

At the boundary of the support of the measure (referred to as the edge of the spectrum in random
matrix theory), the universality limit takes a different form [Forrester 2010; Kuijlaars and Vanlessen
2002]. For fixed measures that behave like Jacobi weights near the endpoints, they involve the Bessel
kernel of order ˛ > �1:

J˛.u; v/D
J˛.
p

u/
p
vJ 0˛.
p
v/�J˛.

p
v/
p

uJ 0˛.
p

u/

2.u� v/
:
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Here J˛ is the usual Bessel function of the first kind and order ˛. Using a comparison method, the author
proved [Lubinsky 2008] that if � is a regular measure on Œ�1; 1�, and � is absolutely continuous in some
left neighborhood .1��; 1� of 1, and there �0.t/D h.t/.1� t/˛ , where h.1/ > 0 and h is continuous at 1,
then

lim
n!1

1

2n2
QKn

�
�; 1�

a

2n2
; 1�

b

2n2

�
D J˛.a; b/; (2-16)

uniformly for a, b in compact subsets of .0;1/. Here, and in the sequel,

QKn.�;x;y/D �
0.x/1=2�0.y/1=2Kn.�;x;y/:

When ˛ � 0, we may allow also a; b D 0. This has the immediate consequence that, for m � 2, and
a1; a2; : : : ; am > 0,

lim
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

�� mY
jD1

�0
�

1�
aj

2n2

��
D det.J˛.ai ; aj //1�i;j�m: (2-17)

Under weak conditions at the edge, we can prove one-sided universality:

Theorem 2.4. Let � have support contained in Œ�1; 1� and let 1 be the right endpoint of that support.
Assume that � is absolutely continuous near 1, and, for some ˛ > �1,

0< C1 D lim inf
t!1�

�0.t/.1� t/�˛ � lim sup
t!1�

�0.t/.1� t/�˛ D C2 <1: (2-18)

Then, for a1; a2; : : : ; am > 0,

liminf
n!1

�
1

2n2

�m

Rn
m

�
�I1�

a1

2n2
; : : : ;1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�
�

�
C1

C2

�m

det.J˛.ai ;aj //1�i;j�m:

(2-19)
If ˛ � 0, we may also allow a1; a2; : : : ; am � 0.

We note that if, in addition, � has support Œ�1; 1� and is regular, then we may replace the lim inf by
lim sup, the asymptotic lower bound by an upper bound, provided we replace .C1=C2/

m by .C2=C1/
m.

Our final result has a comparison or “localization” flavor, generalizing similar results for Christoffel
functions. Recall that a set J �R is said to be regular for the Dirichlet problem [Ransford 1995; Stahl and
Totik 1992] if, for every function f continuous on J , there exists a function harmonic in NCnJ , continuous
on C, whose restriction to J is f . Of course, this is confusing when juxtaposed with the notion of a
regular measure!

Theorem 2.5. Let �, � have compact support J and both be regular. Assume that J is regular with
respect to the Dirichlet problem. Let � 2 J and �0.�/, �0.�/ be finite and positive, with

lim
dist.I;�/!0

�.I/

�.I/
D
�0.�/

�0.�/
; (2-20)
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where the limit is taken over intervals I of length jI j, and dist.I; �/D supfjx � �j W x 2 Ig. Let m � 1.
Assume that, for n� 1,

yn D .y1n;y2n; : : : ;ymn/

is a vector of real numbers satisfying

lim
n!1

�
max

1�j�m
jymj � �j

�
D 0; (2-21)

and

lim
"!0C

�
lim sup
n!1

ˇ̌̌̌
Km
Œn.1˙"/�

.�;yn;yn/

Km
n .�;yn;yn/

� 1

ˇ̌̌̌�
D 0: (2-22)

Then

lim
n!1

Km
n .�;yn;yn/

Km
n .�;yn;yn

/
D

�
�0.�/

�0.�/

�m

: (2-23)

Of course, in (2-22), Œn.1˙ "/� denotes the integer part of n.1˙ "/. As an immediate consequence, we
obtain:

Corollary 2.6. Let �, � have compact support J and be regular. Assume that J is regular with respect to
the Dirichlet problem. Let x 2 J and �0.x/, �0.x/ be finite and positive, with (2-20) holding at � D x.
Assume that, for given m� 2 and all real a1; a2; : : : ; am,

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m: (2-24)

Then, for all real a1; a2; : : : ; am,

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m: (2-25)

3. Proofs of Theorems 1.1, 1.3, 1.4 and Corollary 1.2

Proof of Theorem 1.3(a). We use � and � to denote permutations of .1; 2; : : : ;m/ with respective signs "�
and "�. We see that

I D

Z
� � �

Z
Tj1;j2;:::;jm

.t1; t2; : : : ; tm/Tk1;k2;:::;km
.t1; t2; : : : ; tm/ d�.t1/ � � � d�.tm/

D

X
�;�

"�"�

Z
� � �

Z �
mQ

iD1

pj�.i/.ti/

��
mQ

iD1

pk�.i/.ti/

�
d�.t1/ � � � d�.tm/

D

X
�;�

"�"�

mY
iD1

ıj�.i/k�.i/ D
X
�;�

"�"�

mY
`D1

ıj`k
�.��1.`//

; (3-1)

where ��1 is the inverse of the permutation � . For a term in this last sum to be nonzero, we need

j` D k�.��1.`// for all 1� `�m: (3-2)
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Since j1 < j2 < � � �< jm and k1 < k2 < � � �< km, we see that this will fail unless

�.��1.`//D ` for all 1� `�m:

Indeed, if �.��1.i// ¤ i for some smallest i , then ji�1 D ki�1 but either ji D k�.��1.i// � kiC1 or
ji D k�.��1.i// � ki�1. In the former case, all of ji ; jiC1; : : : ; jm > ki , and ki is omitted from the
equalities in (3-2), a contradiction. In the latter case, we obtain ji � ji�1, contradicting the strict
monotonicity of the j ’s. Thus necessarily �D � , so (3-1) becomes, under (3-2),

I D
X
�

"2
� Dm!: �

Proof of Theorem 1.3(b). We first show that every P 2ALm
n�1 is a linear combination of the T polynomials.

We can write

P .x1;x2; : : : ;xm/D
X

0� Pj1;j2;:::;jm<n

cj1j2���jm
pj1
.x1/pj2

.x2/ � � �pjm
.xm/:

Because of the alternating property (1-6), and the linear independence of

fpj1
.x1/pj2

.x2/ � � �pjm
.xm/g1�j1;j2;:::;jm�n;

necessarily, when we swap indices jk and j`, the coefficients change sign; that is,

cj1���jk ���j` ���jm
D�cj1���j` ���jk ���jm

:

In particular, coefficients vanish if any two subscripts coincide. More generally, this implies that if � is a
permutation of f1; 2; : : : ;mg with sign "� , then

cj�.1/j�.2/���j�.m/ D "�cj1j2���jm
:

Next, given distinct 0 � j1; j2; : : : ; jm < n, let Qj1 < Qj2 < � � � < Qjm denote these indices in increasing
order. We can write, for some permutation � ,

ji D Qj�.i/; 1� i �m:

Conversely, for the given f Qjig, every such permutation � defines indices fjig with 0� j1; j2; : : : ; jm < n.
Thus

P .x1;x2; : : : ;xm/D
X

0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

X
�

"�p Qj�.1/
.x1/p Qj�.2/

.x2/ � � �p Qj�.m/
.xm/

D

X
0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

det
�
p Qji
.xk/

�
1�i;k�m

D

X
0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

T Qj1
Qj2��� Qjm

.x1;x2; : : : ;xm/: (3-3)

Inasmuch as each T Qj1
Qj2��� Qjm

lies in ALm
n�1, we have shown that ALm

n�1 is the linear span of the T



120 DORON S. LUBINSKY

polynomials, and (3-3) is an orthogonal expansion. Orthogonality in the form (1-13) gives

c Qj1
Qj2��� Qjm

D
1

m!

Z
P .t/T Qj1

Qj2��� Qjm
.t/ d��m.t/:

Now our definition (1-12) of the reproducing kernel gives (1-14). �

Proof of Theorem 1.3(c). Fix x D .x1;x2; : : : ;xm/. Let

P .t/D P .t1; t2; : : : ; tm/D det
�
Kn.�;xi ; tj /

�
1�i;j�m

: (3-4)

By successively extracting the sums from the 1st, 2nd, . . . , m-th rows, we see that

P .t/D det

264
Pn�1

j1D0 pj1
.x1/pj1

.t1/ : : :
Pn�1

j1D0 pj1
.x1/pj1

.tm/
:::

: : :
:::Pn�1

jmD0 pjm
.xm/pjm

.t1/ : : :
Pn�1

jmD0 pjm
.xm/pj1

.tm/

375
D

n�1X
j1D0

� � �

n�1X
jmD0

�
pj1
.x1/ � � �pjm

.xm/
�
Tj1j2���jm

.t1; t2; : : : ; tm/:

When ji D jk for distinct i; k, then Tj1j2���jm
D 0. Thus only terms with j1; j2; : : : ; jm distinct are

nonzero. As in the proof of Theorem 1.3(b), given distinct 0� j1; j2; : : : ; jm < n, we can write, for some
permutation � uniquely determined by these indices,

ji D Qj�.i/

where 0� Qj1 < Qj2 < � � �< Qjm < n. As there, this yields

P .t/D
X

0� Qj1< Qj2<���< Qjm<n

X
�

"�
�
p Qj�.1/

.x1/ � � �p Qj�.m/
.xm/

�
T Qj1
Qj2��� Qjm

.t1; t2; : : : ; tm/

D

X
0� Qj1< Qj2<���< Qjm<n

T Qj1
Qj2��� Qjm

.x1;x2; : : : ;x/T Qj1
Qj2��� Qjm

.t1; t2; : : : ; tm/:

So
det
�
Kn.�;xi ; tj /

�
1�i;j�m

D P .t/Dm! Km
n .�;x; t/;

and we have (1-15). Then (1-16) follows from (1-12). �

Proof of Theorem 1.1. By the reproducing kernel relation (1-14), and Cauchy–Schwarz, for all P 2ALm
n�1,

P .x/2 �

�Z
P .t/2 d��m.t/

��Z
Km

n .�;x; t/
2 d��m.t/

�
D

�Z
P .t/2 d��m.t/

�
Km

n .�;x;x/:

Thus

Km
n .�;x;x/� sup

P2ALm
n�1

.P .x//2R
.P .t//2 d��m.t/

: (3-5)

By choosing P as in (3-4), we obtain equality in (3-5). Now (1-9) follows from (1-15). �

Proof of Corollary 1.2. This follows immediately from (1-9) and the positivity of all the terms there. �
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Proof of Theorem 1.4. The upper bound in (1-18) is a standard inequality for determinants involving
symmetric positive definite matrices. See, for example, [Beckenbach and Bellman 1961, Theorem 7,
p. 63]. For the lower bound, let R.t2; t3; : : : ; tm/ 2ALn�1

m�1. Let P be a univariate polynomial of degree
less than or equal to n� 1 satisfying P .xj /D 0, 2� j �m. Let

S.t1; t2; : : : ; tm/D

mX
jD1

P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/:

We claim that S 2ALn�1
m . Suppose we swap the variables tk and t`, where 1� k < `�m. The terms

involving P .tk/ and P .t`/ before the variable swap are

P .tk/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; t`; t`C1; : : : ; tm/

CP .t`/.�1/`R.t1; : : : ; tk�1; tk ; tkC1; : : : ; t`�1; t`C1; : : : ; tm/

and become, after swapping tk ; t`,

P .t`/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; tk ; t`C1; : : : ; tm/

CP .tk/.�1/`R.t1; : : : ; tk�1; t`; tkC1; : : : ; t`�1; t`C1; : : : ; tm/:

Using `� k � 1 swaps of adjacent variables in each R term, the alternating property of R gives

�
˚
P .t`/.�1/`R.t1; : : : ; tk�1; tk ; tkC1; : : : ; t`�1; t`C1; : : : ; tm/

CP .tk/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; t`; t`C1; : : : ; tm/
	
:

In the remaining terms P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/ with j ¤ k; `, we swap tk and t`, and
use the alternating property to obtain �P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/. So we have proved
that S 2ALn

m. Moreover, as P has zeros at x2;x3; : : : ;xm, we have

S.x1;x2; : : : ;xm/D�P .x1/R.x2;x3; : : : ;xm/:

Next, by Cauchy–Schwarz,Z
S2 d��m

�m

Z mX
jD1

P2.tj /R
2.t1; : : : ; tj�1; tjC1; : : : ; tm/ d�.t1/ � � � d�.tm/

Dm2

�Z
P2 d�

��Z
R2 d��.m�1/

�
:

Then (1-9) gives

det
�
Kn.�;xi ;xj /

�
1�i;j�m

�m!
S2.x1;x2; : : : ;xm/R

S2 d��m
�

m!

m2

P2.x1/R
P2 d�

R2.x2; : : : ;xm/R
R2 d��.m�1/

:

Write

P .t/D P1.t/

mY
jD2

.t �xj /;
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where P1 is any polynomial of degree at most n�m. Next, take the supremum over P1 of degree at most
n�m and R 2ALn�1

m�1. Recalling the definition of � and (1-2) gives

det
�
Kn.�;xi ;xj /

�
1�i;j�m

�
m!

m2
Kn�mC1.�;x1;x1/

� mY
jD2

.x1�xj /
2

�
1

.m�1/!
det
�
Kn.�;xi ;xj /

�
2�i;j�m

:

This gives the lower bound in (1-18). �

4. Proofs of Theorems 2.1, 2.2, and 2.3

Lemma 4.1. Let � have compact support J , let � be regular, and assume that I is a subset of the
support consisting of finitely many intervals in which (2-3) holds. Let m � 2. Then, for Lebesgue a.e.
.x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J
.xj /

�0.xj /
: (4-1)

Proof. We already know that, for a.e. x 2 I ,

lim
n!1

1

n
Kn.�;x;x/

�0.x/

!
J
.x/
D 1; (4-2)

by Totik’s result (2-5). (Formally, the integral condition (2-3) follows in each of the intervals whose
union is I , and hence (2-5) does.) We next show that there is a set E of Lebesgue measure 0 such that for
distinct x;y 2 InE, both (4-2) holds, and

lim
n!1

1

n
Kn.�;x;y/

�
�0.x/�0.y/

!J .x/!J
.y/

�1=2

D 0: (4-3)

These last two assertions give the result. Indeed for distinct x1;x2 � � �xm 2 InE, we have

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

mY
jD1

�0.xj /

!
J
.xj /
D

X
�

"�

mY
iD1

�
1

n
Kn.�;xi ;x�.i//

�
�0.xi/�

0.x�.i//

!
J
.xi/!J

.x�.i//

�1=2�

D

mY
iD1

�
1

n
Kn.�;xi ;xi/

�0.xi/

!J .xi/

�
C o.1/D 1C o.1/;

by (4-2) and (4-3). Of course the set of x1;x2; : : : ;xm where any two xi D xj with i ¤ j has Lebesgue
measure 0 in Im.

We turn to the proof of (4-3). It follows from (4-2) that there is a set E of measure 0 such that,
for x 2 InE, we have

lim
n!1

1

n
p2

n.x/D lim
n!1

1

n
.KnC1.�;x;x/�Kn.�;x;x//D 0:

Then, for distinct x, y, the Christoffel–Darboux formula gives, for x, y 2 InE,

1

n
Kn.�;x;y/D

1

n

n�1

n

pn.x/pn�1.y/�pn�1.x/pn.y/

x�y
D o.1/:
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Here we are also using the fact that fn�1=ng is bounded as � has compact support. �

Proof of Theorem 2.1(a). Since J D supp Œ�� is compact, we can find a decreasing sequence of compact
sets fJ`g1`D1

such that each J` consists of finitely many disjoint closed intervals, and

J D

1\
`D1

J`:

(This follows by a straightforward covering of J by open intervals, and using compactness, then closing
them up; at the .`C 1/-st stage, we ensure that J`C1 � J` by intersecting those intervals in J`C1 with
those in J`.) For `� 1, let

d�`.x/D d�.x/C
1

`
!J`.x/ dx; (4-4)

so that we are adding a (small) multiple of the equilibrium measure for J` to �. Because !
J`
> 0 in the

interior of each J`, we have �0
`
> 0 a.e. in J`, so �` is a regular measure [Stahl and Totik 1992, p. 102].

Moreover, !
J`

is positive and continuous in each compact subinterval I of the interior of J`, soZ
I

log�0` > �1: (4-5)

By Lemma 4.1, for a.e. .x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�`;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J`
.xj /

�0
`
.xj /

:

As �` � �, Corollary 1.2 gives

lim inf
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!
J`
.xj /

�0
`
.xj /

: (4-6)

Since a countable union of sets of the form Im exhausts J m
`

, this last relation actually holds for a.e.
.x1;x2; : : : ;xm/ 2 J m

`
. Now, by [Totik 2009, Lemma 4.2], uniformly for x in compact subsets of an

open set contained in J ,
lim
`!1

!J`
.x/D !J .x/: (4-7)

Moreover, !
J

is positive and continuous in that open set. We can now let `!1 in (4-6) and use the
fact that the left-hand side in (4-6) is independent of ` to obtain (2-8). �

Proof of Theorem 2.1(b). Let L be a compact subset of supp Œ�� such that �jL is regular. LD I is one
such choice, because of the Szegő condition (2-3). We may assume that I �L, since !L decreases as L

increases. Let
d�.x/D �0.x/jL dx; (4-8)

so that d� is the restriction to L of the absolutely continuous part of �. Here
R

I log �0 > �1, so �
satisfies the hypotheses of Lemma 4.1, while �� �, so Corollary 1.2, followed by Lemma 4.1, gives, for
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a.e. .x1;x2; : : : ;xm/ 2 Im,

lim sup
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

� lim sup
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!L.xj /

�0.xj /
I

recall that �0 D �0 in I �L. Now take the infimum over all such L and use the fact that the left-hand
side is independent of L. �

We turn to:

Proof of Theorem 2.2(a). Let �` and J` be as in the proof of Theorem 2.1(a). It then follows from results
of Totik [2009, Theorem 2.3] and/or Simon [2011, Theorem 5.11.13, p. 344] that, for a.e. x 2 J`, and all
real a1; a2; : : : am, and 1� i; j �m,

lim
n!1

1

n
Kn

�
�`;xC

ai

n
;xC

aj

n

�
D
!

J`
.x/

�0
`
.x/

S..ai � aj /!J`
.x//:

Consequently,

lim
n!1

1

nm
Rn

m

�
�`IxC

a1

n
; : : : ;xC

am

n

�
D

�
!

J`
.x/

�0
`
.x/

�m

det
�
S..ai � aj /!J`

.x//
�
1�i;j�m

:

Now we use the fact that �� �`, and Corollary 1.2: for a.e. x 2 J , and all a1; a2; : : : ; am,

lim inf
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J`
.x/

�0
`
.x/

�m

det
�
S..ai � aj /!J`

.x//
�
1�i;j�m

: (4-9)

Moreover we have (4-7). We can now let `!1 in (4-9), and use the fact that the left-hand side in (4-9)
is independent of ` to obtain (2-11), with a scale change. �

Proof of Theorem 2.2(b). Let L and � be as in the proof of Theorem 2.1(b). We can use the aforementioned
results of Totik applied to �, to obtain, for a.e. x 2 I , and real a1; a2; : : : ; am,

lim
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
D

�
!L.x/

�0.x/

�m

det
�
S..ai � aj /!L.x//

�
1�i;j�m

: (4-10)

Now we use the fact that � � �, and that �0 D �0 in I � L and Corollary 1.2: for a.e. x 2 I , and real
a1; a2; : : : ; am,

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!L.x/

�0.x/

�m

det
�
S..ai � aj /!L.x//

�
1�i;j�m

:

Now choose a sequence of compact subsets L of supp Œ�� such that !L.x/ converges to the infimum !�.x/.
�

Proof of Theorem 2.3. Let � 2 .0;C1/, and choose ı > 0 such that, in .x� ı;xC ı/,

C1� �� �
0
� C2C �:
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Here �0 denotes the derivative of the absolutely continuous component of �. Define

d� D d� in Jn.x� ı;xC ı/

and
d�.t/D d�s.t/C .C1� �/ dt in .x� ı;xC ı/:

Then d� � d�, and � is regular on J (see [Stahl and Totik 1992, Theorem 5.3.3, p. 148]). Moreover,
the derivative �0 of the absolutely continuous part of � exists and equals C1� � in .x� ı;xC ı/, while
(2-13) implies that

lim
h!0

�s Œx� h;xC h�=hD 0:

By a theorem of Totik [2009, Theorem 2.3], we obtain, for the given x and real a1; a2; : : : ; am, that

lim
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
D

�
!

J
.x/

C1� �

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

: (4-11)

Note that the Lebesgue condition for the local Szegő function required by Totik is satisfied because �0 is
smooth (even constant) near x. Then Corollary 1.2 gives

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J
.x/

C1� �

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

:

As the left-hand side is independent of �, we obtain

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J
.x/

C1

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

:

The lower bound is similar. �

5. Proof of Theorem 2.4

Let
w.t/D .1� t/˛; t 2 .�1; 1/:

Choose ı > 0 such that � is absolutely continuous in .1� ı; 1/, satisfying there

.C1� ı/w.t/� �
0.t/� .C2C ı/w.t/:

Here C1, C2 are as in (2-18). Let

d�.t/D d�.t/C .C2C ı/w.t/ dt in .�1; 1� ı�

and
d�.t/D .C2C ı/w.t/ dt in .1� ı; 1�:

Then
d� � d� in Œ�1; 1�:
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Note too that, in .1� ı; 1/, the derivative �0 of the absolutely continuous component of � satisfies

�0.t/

�0.t/
�

C1� ı

C2C ı
: (5-1)

Inasmuch as w > 0 in .�1; 1/, � is a regular measure in the sense of Stahl, Totik and Ullman, while
�0.t/.1� t/�˛ is continuous and positive at 1. By a result of the author [Lubinsky 2008, Theorem 1.2],

lim
n!1

1

2n2
QKn

�
�; 1�

a

2n2
; 1�

b

2n2

�
D J˛.a; b/;

uniformly for a, b in compact subsets of .0;1/. If ˛ � 0, we may also allow a, b to lie in compact
subsets of Œ0;1/. Then, for m� 2, Corollary 1.2 and (5-1) give, for a1; a2; : : : ; am > 0,

lim inf
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�

�

�
C1� ı

C2C ı

�m

lim inf
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�

D

�
C1� ı

C2C ı

�m

det.J˛.ai ; aj //1�i;j�m:

Now let ı! 0C. �

6. Proofs of Theorem 2.5 and Corollary 2.6

We begin with a lemma that uses the by now classical technique of Totik involving fast decreasing
polynomials:

Lemma 6.1. Assume the hypotheses of Theorem 2.5, except that we do not assume (2-22), nor that � is
regular. Let " 2 .0; 1/. Then

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
�

�
�0.�/

�0.�/

�m

: (6-1)

Proof. We may assume that the common support J of � and � is contained in Œ�1; 1�, as a linear
transformation of the variable changes the limits in a trivial way. Let � > 0, and

c D
�0.�/

�0.�/
:

Our hypothesis (2-20) ensures that we can choose ı > 0 such that

�.I/

�.I/
� .cC �/ for I � Œ� � ı; �C ı�: (6-2)
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Let n� 4=" and `D `.n/D
�

1
2
"n
�
, so that n�`� Œn.1�"/�. We may choose a polynomial R` of degree

less than or equal to ` and � 2 .0; 1/ such that

0�R` � 1 in Œ�2; 2�;

jR`.t/� 1j � �` in Œ�ı=2; ı=2�; (6-3)

jR`.t/j � �
` in Œ�2;�ı�[ Œı; 2�: (6-4)

The crucial thing here is that � is independent of `, depending only on ı. These polynomials are easily
constructed from the approximations to the sign function of Ivanov and Totik [1990, Theorem 3, p. 3].
For the given � and n, we let

‰n.t/D‰n.t1; t2; : : : ; tm/D

mY
jD1

R`.� � tj /:

Observe that this is a symmetric polynomial in t1; t2; : : : ; tm. Moreover, for large enough n, we have
from (2-21), (6-3), and (6-4),

‰n.yn/� .1� �
`/mI (6-5)

j‰n.t/j � �
l in Œ�1; 1�mnQ; (6-6)

where
QD

n
.t1; t2; : : : ; tm/ W max

1�j�m
j� � tj j � ı

o
:

Next, let P1 2ALm
n�`�1, and set P D P1‰n. We see that P 2ALm

n�1. Using (6-2), (6-6), we see thatZ
P2 d��m

� .cC �/m
Z

Q

P2
1 d��m

CkP1k
2
L1.J m/�

2`

Z
J mnQ

d��m: (6-7)

Now we use the regularity of �, and the fact that J is regular for the Dirichlet problem. These properties
imply that [Stahl and Totik 1992, Theorem 3.2.3(v), p. 68]

lim
n!1

�
sup

deg.T /�n

kT k2
L1.J /R
jT 2j d�

�1=n

D 1:

The supremum is taken over all univariate polynomials T of degree at most n. By successively applying
this in each of the m variables, we see that

kP1k
2
L1.J m/ � .1C o.1//n

Z
P2

1 d��m;

where the o.1/ term is crucially independent of P1. Thus we may continue (6-7) asZ
P2 d��m

� .cC �/m
�Z

P2
1 d��m

��
1C .1C o.1//n�n"

�
:

Since also
P2.yn/� P2

1 .yn/.1CO.�"n//;
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we see from (3-5), with an appropriate choice of P1, that

Km
n .�;yn;yn/�

P2.yn/R
P2 d��m

� sup
P12ALm

n�`�1

P2
1
.yn/.1CO.�"n//

.cC �/m.
R

P2
1

d��m/.1C .1C o.1//n�n"/

D
1C o.1/

.cC �/m
Km

n�`.�;yn;yn/:

Thus

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
� .cC �/�m:

As the left-hand side is independent of �, we obtain (6-1). �

Proof of Theorem 2.5. Lemma 6.1 asserts that

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
�

�
�0.�/

�0.�/

�m

:

Swapping the roles of � and �, Lemma 6.1 also gives

lim inf
n!1

Km
Œn.1C"/�

.�;yn;yn/

Km
n .�;yn;yn/

�

�
�0.�/

�0.�/

�m

:

Now we apply our hypothesis (2-22) and let "! 0C. �

Proof of Corollary 2.6. We apply Theorem 2.5 with � D x and, for n� 1,

yn D

�
xC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
:

This satisfies (2-21) with � D x. Now det ŒS.ai � aj /�1�i;j�m > 0, so our hypothesis (2-24) easily
implies (2-22). Then (1-4) and Theorem 2.5 give the result. �
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RELATIVE KÄHLER–RICCI FLOWS AND THEIR QUANTIZATION

ROBERT J. BERMAN

Let � W X! S be a holomorphic fibration and let L be a relatively ample line bundle over X. We define
relative Kähler–Ricci flows on the space of all Hermitian metrics on L with relatively positive curvature
and study their convergence properties. Mainly three different settings are investigated: the case when the
fibers are Calabi–Yau manifolds and the case when LD˙KX=S is the relative (anti)canonical line bundle.
The main theme studied is whether “positivity in families” is preserved under the flows and its relation
to the variation of the moduli of the complex structures of the fibers. The “quantization” of this setting
is also studied, where the role of the Kähler–Ricci flow is played by Donaldson’s iteration on the space
of all Hermitian metrics on the finite rank vector bundle ��L! S . Applications to the construction of
canonical metrics on the relative canonical bundles of canonically polarized families and Weil–Petersson
geometry are given. Some of the main results are a parabolic analogue of a recent elliptic equation of
Schumacher and the convergence towards the Kähler–Ricci flow of Donaldson’s iteration in a certain
double scaling limit.

1. Introduction 131
2. The general setting 137
3. The Calabi–Yau setting 148
4. The (anti)canonical setting 162

1. Introduction

1A. Background. On an n-dimensional Kähler manifold .X; !0/ Hamilton’s Ricci flow [Hamilton 1982]
on the space of Riemannian metrics on X preserves the Kähler condition of the initial metric and may be
written as the Kähler–Ricci flow

@!t

@t
D�Ric!t : (1-1)

When X is a Calabi–Yau manifold (which here will mean that the canonical line bundle KX is holomor-
phically trivial) it was shown by Cao [1985] that the corresponding flow in the space of Kähler metrics
in Œ!0� 2 H 2.X;R/ has a large time limit. The limit is thus a fixed point of the flow which coincides
with the unique Ricci flat Kähler metric in Œ!0�, whose existence was first established by Yau [1978] in
his celebrated proof of the Calabi conjecture. The non-Calabi–Yau cases when Œ!0� is the first Chern
class c1.L/ of L D rKX , where r D ˙1, have also been studied extensively (where �r! is added to
the right side in (1-1)). In general the fixed points of the corresponding Kähler–Ricci flows are hence

MSC2010: 14J32, 32G05, 32Q20, 53C55.
Keywords: Kähler–Ricci flow, positivity, Kähler–Einstein metric, balanced metric, Weil–Petersson metric.
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Kähler–Einstein metrics of negative (r D 1) and positive (r D �1) scalar curvature. The convergence
towards a fixed point — when it exists — in the latter positive case (i.e., X is a Fano manifold) was only
established very recently by Perelman (unpublished) and by Tian and Zhu [2007].

A distinctive feature of Kähler geometry is that a Kähler metric ! may be locally described in terms
of a local function �, such that ! D ddc�. In the integral case, that is, when Œ!0�D c1.L/ is the first
Chern class of an ample line bundle L!X , this just amounts to the global fact that the space of Kähler
metrics ! in c1.L/ may be identified with the space HL of smooth metrics h on the line bundle L with
positive curvature form !, modulo the action of R on HL by scalings. Locally, h D e�� and we will
refer to the additive object � as a weight on L (see Section 2A). In this notation the Kähler–Einstein
equations may be expressed as Monge–Ampère equations on HL. For example, on a Calabi–Yau manifold
!� WD ddc� is Ricci flat precisely when

.ddc�/n=n!D �; (1-2)

where � is the canonical probability measure on X such that � D in2

�^ N�, for � a suitable global
holomorphic n-form trivializing KX (to simplify the notion we will in the following always assume that
the volume of the given class Œ!0� is equal to one, so that !n

0
=n! defines a probability measure on X for

any ! 2 Œ!0�/. By letting � depend on � in a suitable way general Kähler–Einstein metrics are obtained.
As emphasized by Yau [1987] one can expect to obtain approximations to Kähler–Einstein metrics

by using holomorphic sections of high powers of a line bundle. In this direction Donaldson [2009]
introduced certain iterations on the “quantization” (at level k/ of the space HL of Kähler metrics in c1.L/.
Geometrically, this quantized space, denoted by H.k/, is the space of all Hermitian metrics on the finite-
dimensional vector space H 0.X; kL/ of global holomorphic sections of kL, where kL denotes the k-th
tensor power of L, in our additive notation (for the definition see Section 2D). In other words H.k/ can
be identified with the symmetric space GL.Nk ;C/=U.Nk/ of Nk �Nk Hermitian matrices which in
turn, using projective embeddings, corresponds to the space of level k Bergman metrics on L. The fixed
points of Donaldson’s iteration are called balanced metrics at level k (with respect to �/ and they first
appeared in the previous work of Bourguignon, Li, and Yau [Bourguignon et al. 1994]. Again, in the
˙KX -setting one lets � depend on � in a suitable way leading to different settings (see below). In the
limit when L is replaced by a large tensor power it has very recently been shown that balanced metrics in
the different settings indeed converge to Kähler–Einstein metrics [Wang 2005; Keller 2009; Berman et al.
2009]. It was pointed out in [Donaldson 2009] that it seems likely that these iterations can be viewed as
discrete approximations of the Ricci flow. This will be made precise and confirmed in the present paper
(Theorem 3.15 and Theorem 4.18).

1B. Outline of the present setting and the main results. The aim of the present paper is to study relative
versions of the Kähler–Ricci flow and Donaldson’s iteration (in the various settings). More precisely, the
geometric setting is that of a holomorphic fibration � WX!S of relative dimension n and a relatively ample
line bundle L! X. The fibration will mainly be assumed to be a proper submersion over a connected
base, so that all fibers are diffeomorphic (for general quasiprojective morphisms see Section 4E). Note
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that in applications S typically arises as a moduli space or Teichmüller space and X as the corresponding
universal family.

The main points that will be considered are

� the question whether “positivity in families” is preserved under the flows;

� the convergence of the “quantized” (finite-dimensional) setting of Donaldson’s iteration towards the
Kähler–Ricci flow setting in the “semiclassical” limit (i.e., the large k-limit).

More precisely, denote by HL=S the space of all metrics on L which are fiberwise of positive curvature.
In other words, HL=S is an infinite-dimensional fiber bundle over S whose fibers are of the form HL, as
in the previous section. The relative Kähler–Ricci flows are defined as suitable flows on HL=S such that
the induced flow of curvature forms restricts to the usual Kähler–Ricci flow fiberwise: we will say that
“positivity is preserved under the flow” if, for any initial metric with positive curvature (in all directions
on X/, the evolved metric also has positive curvature for all times; that is, the flow induces a flow of
Kähler forms on the total space X of the fibration (and not only along the fibers).

As will be explained below, the two points above are closely related. For example, the preservation of
positivity in the relative Kähler–Ricci flow setting can be seen as a limiting version of the well-known
positivity of direct image bundles in the quantized setting (the latter positivity is a fundamental tool in
complex geometry; see [Kawamata 1982; Berndtsson 2009a], for example). As another application of
the convergence in the second point above (in the absolute case when S is a point) we will deduce the
uniform convergence of Donaldson’s canonically balanced metrics from the well-known convergence of
the Kähler–Ricci flow (Theorem 4.20).

The Calabi–Yau setting. Let us first summarize the main results in the setting when the fibers are Calabi–
Yau. It should however be stressed that the setting when the fibers are canonically polarized appears to be
the one most suited for geometric applications (see below). In the Calabi–Yau setting flow �t in HL=S is
defined fiberwise by

@�t

@t
D log

.ddc�t /
n=n!

�
; (1-3)

with � a measure as in (1-2). Of course, adding the pull-back of a time-dependent function on the base S

to the right side of the previous equation does not alter the induced flows of the fiberwise restricted Kähler
forms dX dc

X
�t , but it certainly effects the flow of ddc�t on X which will typically not preserve the

initial Kähler property.
One of the main results of the present paper is a parabolic evolution equation along the flow (1-3) for

the function

c.�/ WD
1

n
.ddc�/nC1=.dX dc

X �/
n
^ ids ^ d Ns

on X which is well-defined when S is embedded in C. The point is that c.�/> 0 precisely when ddc� > 0

on X. The evolution equation for c.�t / reads (Theorem 3.3)�
@

@t
��!X

t

�
c.�t /D jA!t

j
2

!X
t

�!WP; (1-4)
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where !X
t denotes the flow of the fiberwise restricted curvature forms, A!t

is a certain representative of the
Kodaira–Spencer class of the fiber Xs and !WP is the pull-back to X of the (generalized) Weil–Petersson
form on the base S ; by a result of Tian [1987] and Todorov [1989], which we will reprove, !WP can be
represented by the global squared L2-norm of A!KE for!KE the unique Ricci flat metric in c1.L/. Applying
the maximum principle then gives (Corollary 3.4) that the initial condition ddc�0 > 0 implies that

ddc�t > �t!WP (1-5)

(and similarly when the initial curvature is semipositive). By its very definition !WP vanishes at s

precisely when the infinitesimal deformation of the complex structure on the fibers Xs (i.e., the Kodaira–
Spencer class) vanishes at s. In particular, if the fibration � W X! S is holomorphically trivial, then,
by inequality (1-5), positivity is indeed preserved along the flow. This latter situation appears naturally
in Kähler geometry. Indeed, if the base S is an annulus in C and �s is rotationally invariant, then �s

corresponds to a curve in HL and c.�s/ is then the geodesic curvature of the curve �s when HL is
equipped with its symmetric space Riemannian metric (see [Chen 2000] and references therein). In the
nonnormalized KX -setting (see Section 4) the equation (1-4) can be seen as a parabolic generalization
of a very recent elliptic equation of Schumacher [2008].

Similarly, the “quantized” version of the previous setting is studied, that is, the relative version of
Donaldson’s iteration. It gives an iteration on the space of all Hermitian metrics H on the finite rank vector
bundle ��kL!S for any positive integer k (recall that the fiber of ��L over s is, by definition, the space
H 0.Xs;Ls/ of all global holomorphic sections on the fiber Xs with values in LjXs

/. More precisely, we will
study the equivalent fiberwise iteration �.k/m in HL=S obtained by applying the (scaled) Fubini–Study map
to Donaldson’s iteration. It will be called the relative Bergman iteration at level k. When the discrete time
m tends to infinity it is shown (Theorem 3.9) that the iteration converges to a fiberwise balanced weight:

�.k/m ! �
.k/
1

in the C1-topology on Xs , uniformly with respect to s. It is also observed that an analogue of the
inequality (1-5) holds; that is,

ddc�.k/m � �
k

m
!WP: (1-6)

This turns out to be a simple consequence of a recent theorem of Berndtsson [2009a] about the curvature of
vector bundles of the form ��.LCKX=S /. We also confirm Donaldson’s expectation about the semiclassi-
cal limit when the level k tends to infinity. More precisely, it is shown that, in the double scaling limit where
m=k! t , the (relative) Bergman iteration at level k approaches the (relative) Kähler–Ricci flow (1-3):

�.k/m ! �t (1-7)

uniformly on X. In particular, combining this convergence with (1-6) gives an alternative proof of the
semipositivity in the inequality (1-5). Moreover, by taking mDmk such that m=k !1 this gives a
dynamical construction of solutions to the inhomogeneous Monge–Ampère equation (1-2) in the setting
where � is any fixed volume form (Corollary 3.16).
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The (anti)canonical setting. The previous results also have analogues in the setting when the ample
line bundle L is either the relative canonical line bundle KX=S over X or its dual, which we write
as LD˙KX=S in our additive notation. The starting point is the fact that any metric hD e�� on ˙KX

induces, by the very definition of KX , a volume form on X which may be written suggestively as e˙� .
The previous constructions, that is, the relative Kähler–Ricci flows and the Donaldson iteration, can
then be repeated word for word for these �-dependent measures �D �.�/. For example, the relative
Kähler–Ricci flows are defined by

@�t

@t
D log

�
.ddc�t /

n=n!

e˙�t

�
; (1-8)

and we obtain (Theorem 4.7) a corresponding parabolic equation for c.�t /:�
@

@t
� .�!X

t
�˙1/

�
c.�t /D jA!t

j
2

!X
t

;

and as a consequence the flows always preserve positivity (Corollary 4.9) in these settings. In fact, in the
case of infinitesimally nontrivial fibration the flows will even improve the positivity; that is, any initial
weight which is merely semipositively curved instantly becomes positively curved under the flows. In
the CKX -setting the unique fixed point of the flow (1-8) is the (fiberwise) normalized Kähler–Einstein
weight uniquely determined by

e��KE D .!KE/
n=n!;

where !KE is the unique Kähler–Einstein metric on X (Corollary 4.3). The corresponding elliptic
equation for c.�KE/ was first obtained by Schumacher [2008] who used it to deduce the following
interesting result: �KE is always semipositively curved on the total space of X and strictly positively
curved for an infinitesimally nontrivial fibration. As a consequence he obtained several applications to
the geometry of moduli spaces. For example, applied to the case when X! S is the universal curve over
the Teichmüller space of Riemann surfaces of genus g � 2 it gives, when combined with Berndtsson’s
theorem (Theorem 3.10), a new proof of the hyperbolicity result of Liu, Sun, and Yau [Liu et al. 2008]
saying that the curvature of the Weil–Petersson metric on the Teichmüller space is dual Nakano positive.

In the �KX -setting the relative Kähler–Ricci flow will diverge for generic initial data. But using the
convergence on the level of Kähler forms, established by Perelman and Tian and Zhu, will show that,
if the Fano manifold X admits a unique positively curved Kähler–Einstein metric !KE, the flow does
converge to a weight for !KE in the normalized ˙KX -setting. This latter setting is simply obtained by
normalizing the volume forms e˙� used above.

We will also use the relative Bergman iteration to obtained a “quantized” version of Schumacher’s result:
the canonical “semibalanced” metric at level k on KX=S , which by definition is fiberwise normalized
and balanced, is smooth with semipositive curvature on X (Corollary 4.16) and strictly positively curved
in the case of an infinitesimally nontrivial fibration. As a consequence the semibalanced metric gives
an alternative to the canonical metric on kKX=S introduced in [Narasimhan and Simha 1968] (see also
Kawamata 1982; Tsuji 2011; Berndtsson and Păun 2008a for positivity properties of this latter metric).
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In Section 4E some of the results concerning the setting when KX is ample are generalized to projective
fibrations of varieties of general type (i.e., KX is merely big) and the corresponding canonical semibalanced
metric is shown to have a positive curvature current (Theorem 4.21). Relations to deformation invariance
of plurigenera [Siu 1998] are also briefly discussed.

1C. Further relations to previous results. A variant of Donaldson iteration (but with a single param-
eter k) in the KX -setting was introduced by Tsuji [2006]. He proved convergence in the L1-topology
towards the normalized Kähler–Einstein weight �KE in the large k-limit (see [Song and Weinkove 2010]
for a proof of uniform convergence) and deduced the semipositivity result for �KE of Schumacher referred
to above. These works of Tsuji and Schumacher provided an important motivation for the present one.
Steve Zelditch has also informed the author of a joint work in progress with Jian Song, where they
show that the linearization of Tsuji’s iteration at the fixed point coincides with the linearization of the
Kähler–Ricci flow. It should also be pointed out that another discretization of the Kähler–Ricci flow on a
Fano manifold was studied by Rubinstein [2008] and Keller [2009].

The C 0-convergence of the Bergman iteration at a fixed level k in the Calabi–Yau setting (or more
generally in the setting of a fixed measure �/ was pointed out by Donaldson [2009] and the proof was
sketched. Sano [2006] provided an explicit proof in the constant scalar curvature setting (see Section 4F).

It is also interesting to compare with the very recent work of Fine [2010] concerning the constant scalar
curvature setting. He shows that a continuous version of Donaldson’s iteration in this latter setting, called
balancing flows, converges to the Calabi flow, when the latter flow exists. Julien Keller and Huai-Dong
Cao have informed the author of a joint work in progress where an analogue of Fine’s balancing flows in
the Calabi–Yau setting (or more generally in the setting of a fixed volume form �) is shown to converge
to a flow on metrics, which however is different than the Kähler–Ricci flow.

There are also, at last tangential, relations to the work of Gross and Wilson [2000], where fibrations
with Calabi–Yau fibers are considered. In particular, they construct certain semiflat Kähler metrics ! on
the fibration X; that is, ! is fiberwise Ricci flat. Such metrics first appeared in the string theory literature
[Greene et al. 1990]. In this terminology the inequality (1-5) shows that the relative Kähler–Ricci flow
deforms any given Kähler metric to a semiflat one, when there is no variation of the moduli of the complex
structure of the fibers. More generally, this latter statement holds in a double scaling limit when the
variation of the complex structure is very small in the sense that !FS.st /t ! 0 as t !1.

A Kähler–Ricci flow on compact fibrations X with Calabi–Yau fibers was also considered recently
by Song and Tian [2012]. But they consider the usual (i.e., nonrelative) Kähler–Ricci flow (with r D 1)
when the canonical line bundle is only semiample and relatively trivial (i.e., the base S is the canonical
model of X). They prove that the flow collapses the fibers so that the limit is the pull-back of metric on
the base S solving a “twisted” Kähler–Einstein equation where the twist is described by the (generalized)
Weil–Petersson form !FS.

1D. Organization of the paper. In Section 2 a general setting is introduced and the associated relative
Kähler–Ricci flow and its quantization are defined. General convergence criteria for the flows are given.
In the following two sections the general setting is applied to get convergence results in particular settings
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of geometric relevance: the Calabi–Yau setting (Section 3) and the (anti)canonical setting (Section 4).
The new feature of these convergence results for the Kähler–Ricci flows is that the convergence takes
place on the level of weights, that is, for the potentials of the evolving Kähler metrics. Furthermore,
the main question whether “positivity in families” is preserved under the flows is studied in these two
sections and relations to Weil–Petersson geometry are also discussed. It is also shown that the quantized
flows converge to Kähler–Ricci flows in the large tensor power limit. Applications to canonical metrics
on relative canonical bundles are also given.

2. The general setting

In this section we will consider a general setup that will subsequently be applied to particular settings in
Sections 3 and 4.

We assume we are given a holomorphic submersion � W X!S of relative dimension n over a connected
base and a relatively ample line bundle L! X. In the absolute case when S is a point we will often use
the notation L!X for the corresponding ample line bundle. In this latter case we will write HL for the
space of all smooth Hermitian metrics on L with positive curvature form. In the relative case we will
denote by HL=S the space of all metrics on L which are fiberwise of positive curvature. We will denote
by c1.L/ the first Chern class of L, normalized so that it lies in H 1;1.X /\H 2.X;Z/. To simplify the
formulas to be discussed we will also assume that the relative volume of L is equal to one; that is,

V WD

Z
X

c1.L/
n=n!D 1

for some (and hence any) fiber X . The general formulas may then be obtained by trivial scalings by V at
appropriate places. When considering tensor powers of L, written as kL in additive notation, we will
always assume that kL is very ample (which is true for k sufficiently large).

2A. The weight notation for HL. It will be convenient to use the “weight” representation of a metric h

on L: locally, any metric h on L may be represented as hD e�� , where h is the pointwise norm of a
local trivializing section s of L. We will call the additive object � a “weight” on L. One basic feature of
this formalism is that even though the functions representing � are merely locally defined the normalized
curvature form of the metric h may be expressed as

!� WD ddc� WD
i

2�
@N@�

which is hence globally well-defined (but it does not imply that ! is exact!). The normalizations are
made so that Œ!� �D c1.L/ 2H 1;1.X /\H 2.X;Z/. In the absolute setting we will denote by HL the
space of all weights such that !� > 0. In other words, the map � 7! !� establishes an isomorphism
between HL=R and the space of Kähler metrics in c1.L/. In the relative setting we will denote by HL=S

the space of all smooth weights on L such that the restriction to each fiber is of positive curvature.
After fixing a reference weight �0 in HL the map � 7! u WD � � �0 identifies the affine space of

all smooth weights on L with the vector space C1.X /. Moreover, the subspace HL of all positively
curved smooth weights gets identified with the open convex subspace H! WD fu W ddcuC !0 > 0g
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of C1.X /, where !0 denotes the Kähler form ddc�0. The L1-closure of H! is usually called the space
of all !0-plurisubharmonic functions in the literature [Guedj and Zeriahi 2005]. In fact, all the results
in the present paper whose formulation does not use that the given class Œ!0� is integral are valid in the
more general setting when HL is replaced by H! (with essentially the same proofs). However, since the
quantized setting (Section 2D) only makes sense for integral classes we will stick to the weight notation
in the following.

2B. The measure �� and associated functionals on HL. First consider the absolute case when S is a
point. In each particular setting studied in Sections 3 and 4 we will assume given a function � on HL,
� 7! �.�/ (also denoted by ��), taking values in the space of volume forms on X , which is exact in
the following sense. First observe that we may identify �.�/ with a one-form on the affine space HL by
letting its action on a tangent vector v 2 C1.X / at the point � 2HL be defined by

h�.�/; vi WD

Z
X

v �.�/:

The assumption on �.�/ is then simply that this one-form is closed and hence exact; that is, there is a
functional I� on HL such that dI� D �:

dI�.�t /

dt
D

Z
X

@�t

@t
��t

(2-1)

for any path �t in HL. The functional is determined up to a constant which will be fixed in each particular
setting to be studied. We will also assume that for any fixed v 2 C1.X / the functional � 7! h�.�/; vi is
continuous with respect to the L1-topology on HL.

Two particular examples of such exact one-forms and their antiderivatives that will be used repeatedly
are as follows:

� The Monge–Ampère measure � 7! .ddc�/n=n! WDMA.�/. Its antiderivative [Mabuchi 1986] will
be denoted by E.�/, normalized so that E.�0/D 0 for a fixed reference weight �0 in HL. Integrating
along line segments in HL gives an explicit expression for E, but it will not be used here.

� � 7! �0 for a volume form �0 on X , fixed once and for all with I�0
.�/ WD

R
X .� ��0/ �0. Since

we have already fixed a reference weight �0 it will be convenient to take �0 WD .ddc�0/
n=n!.

Given �D �.�/ we define the associated functional

F� WD E� I�:

By construction its critical points in HL are precisely the solutions to the Monge–Ampère equation

.ddc�/n=n!D �.�/: (2-2)

We will say that �.�/ is normalized if it is a probability measure for all �. Equivalently, this means
that I� is equivariant under scalings; that is, I�.�C c/D I�.�/C c which in turn is equivalent to F�
being invariant under scalings.
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In the relative setting we assume that �s.�/ is a smooth family of measures on the fibers Xs as above,
parametrized by s 2 S .

Properness and coercivity. We first recall the definition of the well-known J -functional, defined with
respect to a fixed reference weight �0 (see [Berman et al. 2009] for a general setting and references). It is
the natural higher-dimensional generalization of the (squared) Dirichlet norm on a Riemann surface and
it will play the role of an exhaustion function of HL=R (but without specifying any topology!). In our
notation J is simply given by the scale-invariant function

J D�F�0
:

We will then say that a functional G is proper if

J !1 D) G!1

and coercive if there exists ı > 0 and Cı such that

G� ıJ �Cı:

Note that ı may be taken arbitrarily small at the expense of increasing Cı . In many geometric applications
properness (and coercivity) of suitable functionals can be thought as analytic versions of algebro-geometric
stability (compare Remark 4.2).

2C. The relative Kähler–Ricci flow with respect to ��. Given an initial weight �0 2HL=S the relative
Kähler–Ricci flow in HL=S is defined by the fiberwise parabolic Monge–Ampère equation

@�t

@t
D log

.ddc�t /
n=n!

�.�t /
(2-3)

for �t smooth over X� Œ0;T �, where T � 0. We will make the following assumptions on the flow which
will all be satisfied in the particular settings studied in Sections 3 and 4.

Analytical assumptions on the flow.

� Existence: The flow exists and is smooth over X� Œ0;1Œ.

� Uniqueness: Any fixed point in HL of the flow is unique mod R.

� Stability: For any l > 0 and M > 0 there is a constant Bl;M only depending on the upper bound on
the Cl -norm of the initial weight �0 (with respect to a fixed reference weight) and a lower bound on
the absolute value of ddc�0 such that

k�t ��0kCl .X�Œ0;M �/ � Bl;M (2-4)

(locally uniformly with respect to s in the relative setting).

It follows immediately that � is fixed under the flow if and only if it solves the Monge–Ampère equation
(2-2). Note that since we have assumed that Vol.L/D 1, a necessary condition to be stationary is that
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X �� D 1. For any solution �t and fixed fiber X D Xs the Kähler metrics !t on X obtained as the

restricted curvature forms of �t hence evolve according to

@!t

@t
D�Ric!t � ��; (2-5)

where Ric!t in the Ricci curvature of the Kähler metric !t and �� D ddc log�.�/.
Thanks to the following simple lemma the Kähler–Ricci flow is “gradient-like” for the functional F�.

For the Fano case, see [Chen and Tian 2002].

Lemma 2.1. The functional F� is increasing along the Kähler–Ricci flow on HL (defined with respect
to ��/. Moreover, it is strictly increasing at �t unless �t is stationary.

Proof. Differentiating along the flow gives

dF.�t /

dt
D

Z
X

log
MA.�t /

�.�t /

�
MA.�t /��.�t /

�
D

Z
X

log
MA.�t /

�.�t /

�
MA.�t /

�.�t /
� 1

�
�.�t /� 0

where the last inequality follows since both factors in the last integrand clearly have the same sign. �

If, moreover, �.�/ is normalized then both terms appearing in the definition of F� are monotone:

Lemma 2.2. Assume that �.�/ is normalized. Then the functionals �I� and E are both increasing along
the Kähler–Ricci flow on HL with respect to �.�/. Moreover, they are strictly increasing at �t unless �t

is stationary.

Proof. Differentiating along the flow gives

�
dI.�t /

dt
D�

Z
X

log
MA.�t /

�.�t /
�.�t /� 0

using Jensen’s inequality applied to the concave function f .t/D log t on RC in the last step (recall that
MA.�t /, �.�t / are both probability measures). Similarly,

dE.�t /

dt
D

Z
X

log
MA.�t /

�.�t /
MA.�t /D�

Z
X

log
�.�t /

MA.�t /
MA.�t /� 0;

again using Jensen’s inequality, but with the roles of MA.�t /, �.�t / reversed. The statement about strict
monotonicity also follows from Jensen’s inequality since f .t/D log t is strictly concave. �

From the previous lemma we deduce the following compactness property of the flow.

Lemma 2.3. Assume that �.�/ is normalized and that the associated functional �F� is coercive. Then
there is a constant C such that J.�t / � C and

R
j�t � �0j�0 � C along the Kähler–Ricci flow for �t

(with respect to �.�/).

Proof. Combining the monotonicity of F� and the assumption that F� be coercive (and in particular
proper) immediately gives the first inequality J.�t /� C . Next, by the definition of coercivity there are
ı 2 �0; 1 Œ and Cı > 0 such that I��E� ıI�0

� ıE�Cı; that is,

ıI�0
� .�1C ı/EC I�CCı
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along the flow. Since by the previous lemma �E and I� are both bounded from above along the flow it
follows that there is a constant A such that I�0

�A along the flow. Finally, by basic pluripotential theory
the set f� 2HL W J.�/� C; I�0

.�/� C g is relatively compact in the L1-topology [Berman et al. 2009].
This proves the last inequality in the statement of the lemma. �

The next proposition shows that, under suitable assumptions, the Kähler–Ricci flow with respect to a
normalized measure �� converges on the level of weights precisely when it converges on the level of
Kähler metrics. In Sections 3 and 4 the proposition will be applied to the usual geometric Kähler–Ricci
flows, where the convergence is already known to hold on the level of Kähler metrics. To simplify
the notation we will only state the result in the absolute case, the extension to the relative case being
immediate.

Proposition 2.4. Assume that �.�/ is normalized and that the associated functional �F� is coercive.
Let �t evolve according to the Kähler–Ricci flow defined with respect to �� and write !t D ddc�t . Then
the following three statements are all equivalent:

� The sequence of Kähler metrics !t is relatively compact in the C1-topology on X ; that is, for any
positive integer l the sequence !t is uniformly bounded in the Cl -norm on X .

� The weights converge: �t ! �1 2HL in the C1-topology on X as t !1.

� The Kähler metrics !t ! !1 in the C1-topology on X , where !1 is a Kähler form.

Proof. Assume that the first point of the proposition holds. Then it is a basic fact that the sequence of
normalized weights Q�t WD �t �Ct , where Ct WD I�0

.�t /, is relatively compact in the C1-topology on X

and converges to Q�1 2HL (as is seen by inverting the associated Laplacians). By the previous lemma
jCt j �D for some positive constant D and hence f�tg is also relatively compact in the C1-topology
on X .

In the rest of the argument we will use the Cl -topology on HL for l a large fixed integer. Let K WD f�tg

be the closure of f�tg which is relatively compact in HL by the previous argument. Denote by  0 an
accumulation point in K:

lim
j
�tj D  0:

By continuity of the “time s flow map” (which follows immediately from the stability assumption on the
flow) and the semigroup structure of the flow we deduce that

lim
j
�tjCs D  s

for any fixed s > 0. In other words, K is in fact compact and invariant under the “time s flow map”. Note
also that by monotonicity

lim
t

E.�t /D E. 0/D sup
K

E: (2-6)

Assume now to get a contradiction that  s ¤  0. By the strict monotonicity in Lemma 3.8 we have that
E. s/ > E. 0/, contradicting (2-6) (since  s 2 K as explained above). Hence,  0 is a fixed point of the
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flow and hence, by the uniqueness assumption on the flow, it is determined up to an additive constant.
This means that for any two limit points  0 and  0

0
of the flow there is a constant C such that

 0� 
0
0 D C:

But as explained above E. 0/DE. 0
0
/ and hence, by the scaling equivariance of E, it follows that C D 0.

All in all this means that we have shown that the flow �t converges, in the C1-topology on X , to a
limit �1 in HL, that is, that the second point of the proposition holds. The rest of the implications are
trivial. �

Remark 2.5. The coercivity is used to make sure that the compactness property of the flow �t holds
without normalizing �t (say, by subtracting I�0

.�t /). If one only assumes properness then the same
proof shows that the statement still holds upon replacing �t by �t � I�0

.�t / (which, of course, does not
effect the curvature forms). The same remark applies to Proposition 2.9 below.

2D. Quantization: The Bergman iteration on HL. Proceeding fiberwise it will be enough to consider
the absolute case when S is a point and we are given an ample line bundle L! X . For any positive
integer k such that kL is very ample the quantization at level k of the space HL is defined as the space
H.k/ of all Hermitian metrics on the Nk-dimensional complex vector space H 0.X; kL/. Hence, H.k/

may be identified with the symmetric space GL.Nk ;C/=U.Nk/. In the relative setting H.k/ is replaced
by the space of all Hermitian metrics on the rank-Nk vector bundle ��.kL/ over the base S (compare
the discussion at the bottom of page 156).

Fix a volume form �� on X depending on � as above. Then any given � 2HL induces a Hermitian
metric Hilb.k/.�/ defined by

Hilb.k/.�/.f; f / WD
Z

X

jf j2e�k� d�� ;

giving a map
Hilb.k/ WHL!H.k/:

There is also a natural injective map (independent of ��/ in the reverse direction, called the (scaled)
Fubini–Study map FS.k/:

FS.k/.H / WD log
�

1

Nk

NkX
iD1

jf H
i j

2

�
where .f H

i / is any basis in H 0.X; kL/ that is orthonormal with respect to H .
Donaldson’s iteration (with respect to ��) on the space H.k/ is then obtained by iterating the composed

map
T .k/

WD Hilb.k/ ıFS.k/ WH.k/
!H.k/;

and its fixed points are called balanced metrics at level k (with respect to �).
In order to facilitate the comparison with the Kähler–Ricci flow it will be convenient to consider the

(essentially equivalent) iteration on the space HL obtained by iterating the map FS.k/ ıHilb.k/. This
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latter iteration will be called the Bergman iteration at level k (with respect to ��) and we will denote the
m-th iterate by �.k/m and call the parameter m discrete time. Hence, the iteration immediately enters the
finite-dimensional submanifold FS.H.k//�HL of Bergman metrics at level k and stays there forever.
By the very definition of the Bergman iteration it may be written as the difference equation

�
.k/
mC1
��.k/m D

1

k
log �.k/.�.k/m /;

where �.k/.�/ is the Bergman function at level k associated to .�� ; �/; that is,

�.k/.�/D
1

Nk

X
iD1

jfi j
2e�k� ;

where fi is an orthonormal basis with respect to the Hermitian metric Hilb.k/.�; �/. Note that the
Bergman measure �.k/.�/�� is a probability measure on X and independent of the choice of orthonormal
bases. It plays the role of the Monge–Ampère measure in the quantized setting.

It will also be convenient, following [Donaldson 2009], to study functionals defined directly on the
space H.k/. Fixing the reference metric H

.k/
0
WDHilb.k/.�0/2H.k/ we may identify H.k/ with the space

of all rank Nk Hermitian matrices. We define

F.k/� .H / WD �
1

Nkk
log det H � I� ıFS.k/.H /;

whose critical points in H.k/ are precisely the balanced metrics (with respect to ��); this is proved exactly
as in the particular cases considered in [Donaldson 2005; Berman et al. 2009]. We will also consider the
following functional on HL:

L.k/.�/ WD �
1

Nkk
log det Hilb.k/.�� ; �/;

normalized so that L.k/.� C c/ D L.k/.�/ C c. Equivalently, we could have defined L.k/ as the
antiderivative of the one-form on HL defined by integration against the Bergman measure �.k/.�/�� .

Monotonicity. The following monotonicity properties were shown in [Donaldson 2009] in the particular
setting considered there (where �� is independent of �/. See also [Donaldson 2005] for the setting when
�.�/DMA.�/ (compare Section 4F). The main new observation here is that concavity of I� implies
monotonicity.

Lemma 2.6. Assume that �� is normalized. Then the following monotonicity with respect to the discrete
time m holds along the Bergman iteration �.k/m on HL (defined with respect to ��/:

� The functional L.k/ is increasing along the Bergman iteration and strictly increasing at �.k/m

unless �.k/m is stationary. Equivalently, the functional �log det is strictly increasing along the
Donaldson iteration in H.k/ away from balanced metrics.
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� If I� is concave on the space HL with respect to the affine structure then it is decreasing along
the iteration and strictly decreasing at �.k/m unless �.k/m is stationary. Equivalently, the functional
I� ıFS.k/ is strictly decreasing along the Donaldson iteration in H.k/ away from balanced metrics.

Proof. The proof of the first point is essentially the same as in Donaldson’s setting [2009], but for
completeness we repeat it here. By definition

L.k/.�mC1/�L.k/.�m/D�
1

Nkk
log

det Hilb.k/.�mC1/

det Hilb.k/.�m/
:

By the concavity of log and Jensen’s inequality we hence get

L.k/.�mC1/�L.k/.�m/� �
1

k
log

1

Nk

NkX
iD1

kfik
2

T .Hilb.k/.�m//
;

where fi is an orthonormal basis with respect to the Hermitian metric Hilb.k/.�m/ and where by definition
T .Hilb.k/.�m//DHilb.k/.FS.Hilb.k/.�m///. Writing out the norms explicitly shows that the right-hand
side above may be written as

�
1

k
log
�

1

Nk

�
NkP
iD1

jfi j
2
. P

iD1

jfi j
2

�
�FS.Hilb.k/.�m//

�
D�

1

k
log.1/D 0;

using that �� is normalized. This proves the first point.
To prove the second point we use that I� is assumed concave and that, by definition, �� D dI� as a

differential, to get

I�.�
.k/
mC1

/� I�.�
.k/
m /�

Z
.�
.k/
mC1
��.k/m / �

�
.k/
m
D

1

k

Z
log �.k/.�.k/m / �

�
.k/
m

�
1

k
log

Z
�.k/.�.k/m / �

�
.k/
m
D 0;

using the definition of the iteration and Jensen’s inequality in the last step (and the fact that �.k/.�/��
and �� are both probability measures). This proves the monotonicity of I�. The statement about strict
monotonicity follows immediately from the fact that log t is strictly concave. �

Properness and coercivity. Properness and coercivity of functionals on H.k/ are defined as in Section 2C,
but with the functional J replaced by its quantized version on the space H.k/:

J .k/.H / WD �F.k/�0
WD I�0

ıFS.k/C
1

kNk

log det H:

The content of the following lemma is essentially contained in the proof of Proposition 3 in [Donaldson
2009]. We will fix a metric H0 2H.k/. For any given H0-orthonormal basis .fi/ we can then identify a
Hermitian metric H with a matrix and we will denote by H� the diagonal matrix with entries e��i on
the diagonal.
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Lemma 2.7.

� For � 2 CNk let �� D FS.k/.H�/ WD
1

k
log
�

1

Nk

X
i
ek�i jfi j

2

�
. There is a constant C such that

max
i
�i � I�0

.��/CC:

� The functional J .k/ is an exhaustion function on H.k/=R� with respect to its usual topology.

� In particular, the set of all H 2H.k/ such that

�log det H � �C; .I�0
ıFS/.H /� C (2-7)

is relatively compact.

Proof. For the benefit of the reader we repeat Donaldson’s simple proof: let imax be an index such that
maxi �i D �imax . Clearly,

max
i
�i C

1

k
log
�

1

Nk

jfimax j
2

�
� �� �max

i
�i C

1

k
log
�

1

Nk

X
i

jfi j
2

�
; (2-8)

and hence integrating over X and using the first inequality above gives

max
i
�i C

Z
X

.log.jfimax j
2/��0/ d�0 � I�0

.��/;

which proves the lemma since it is well-known that I�0
. / >�1 for any psh (plurisubharmonic) weight

 if �0 is a smooth volume form (as follows from the local fact that any psh function is in L1/ and in
particular �C WD I�.log.jfimax j

2// > �1. This proves the first point. As for the second and third one
we first note that any Hermitian metric H can be represented by a diagonal matrix (which we write in
the form H�) after perhaps changing the basis .fi/ above. Moreover, by the compactness of U.N / the
constant C in the previous point can be taken to be independent of the base .fi/.

Next, it will be enough to prove the last point of the lemma (the second point then follows since we
may by scaling invariance assume that det.H�/D 1). We may assume that infi �i D �0 and since, by
assumption,

�log det H D
X

i

�i � �C

we get
� inf

i
�i � C C

X
i¤0

�i � C C .N � 1/max
i
�i :

By the assumption .I�0
ı FS/.H / � C and the first point of the lemma the right-hand side above is

bounded from above and hence we conclude that so is � infi �i . All in all this means that maxi j�i j is
uniformly bounded from above by a constant; that is, H stays in a relatively compact subset of H.k/. �

Remark 2.8. The proof of the previous lemma shows that the conclusion of the lemma remains valid for
any choice of a fixed reference weight �0 and probability measure �0 (which are used in the definition
of J .k/) such that

R
X log.jf j ��0/ �0 is finite for any section f 2H 0.X; kL/.
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Criteria for convergence in the large time limit.

Proposition 2.9. Assume that �� is normalized, that I� is decreasing along the Bergman iteration,
that F

.k/
� is coercive and that there is at most one balanced metric (modulo scaling). Then, for any

given positive integer k the following holds: in the large time limit, that is, when m!1, the weights
�
.k/
m ! �

.k/
1 in the C1-topology on X . Moreover, in the relative setting the convergence is uniform with

respect to the base parameter s.

Proof. (a) Uniform convergence. We equip FS.H.k//, that is, the space of all Bergman weights at level k,
with the topology induced by the sup norm. It is not hard to see that this is the same topology as the
one induced from the finite-dimensional symmetric space H.k/ D GL.Nk ;C/=U.Nk/ with its usual
Riemannian metric, or with respect to the operator norm on GL.Nk ;C/. Hence, it will be enough to
prove the convergence of Donaldson’s iteration in H.k/.

Since �� is assumed normalized, Lemma 2.6 shows that �log det H is uniformly bounded from below
along the Donaldson iteration in H.k/. Moreover, by assumption I�� ı FS.k/ is uniformly bounded
from above along the Donaldson iteration. Hence, just as in the proof of Lemma 2.3 it follows from
the coercivity assumption that I�0

ı FS.k/ is also uniformly bounded from above along the Donaldson
iteration. But then it follows from Lemma 2.7 that the iteration H

.k/
m stays in a compact subset of H.k/.

Now let K WD fH
.k/
m g be the closure of the orbit of T .k/ which is relatively compact in H.k/ by the

previous argument. Denote by G an accumulation point

lim
j

H .k/
mj
DG

in H.k/. By the continuity of H 7! T .k/.H / on H.k/ we deduce that

lim
j

T .k/.H .k/
mj
/D T .k/.G/:

In other words, K is in fact compact and invariant under T .k/. Note also that by monotonicity

lim
j
.�log det H .k/

mj
/D�log det G D sup

K
.�log det/:

Assume now to get a contradiction that T .k/.G/¤G. By the strict monotonicity in Lemma 3.8 we have
log det.T .k/G/ > log det G, contradicting (2-6) (since T .k/.G/ 2 K). All in all this means that we have
shown that the subsequence .H .k/

mj / of Donaldson iterations converges to a fixed point, that is, a balanced
metric. By the assumption on uniqueness up to scaling it follows, again using monotonicity (just like in
the proof of Proposition 2.4), that all accumulation points coincide; that is, the iteration converges.

(b) Higher order convergence. To simplify the notation we set k D 1 and write �.k/m D �m. First note that
the L1-estimate above is uniform over S , as follows by combining the monotonicity of the functionals
with the uniform boundedness of the initial weight �0. By the uniform convergence of �m it will hence
be enough to prove that @˛X .h0=hmC1/


L1.X /

� C˛ k.hm=h0/kL1.X / (2-9)
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where hm D e��m and @˛
X

denotes a real linear differential operator on X of order ˛ (note that while hm

globally corresponds to a metric on L the quotient h0=hmC1 defines a global function on X ). Accepting
this estimate for the moment the uniform convergence of .hm/ hence gives that k@˛

X
.h0=hm/kL1.X / is

uniformly bounded in m and since hm=h0! h1=h0 it then follows that k@˛
X
.�m��0/kL1.X / is also

uniformly bounded in m. Hence, standard compactness arguments show the C1-convergence of .�m/.
Finally, the estimate (2-9) is a consequence of the following quasiexplicit integral formula for the

Bergman function familiar from the theory of determinantal random point processes (see [Berman 2008]
and references therein):

�.�/.x/D

Z
y2X N�1

f .x;y/e�.���0/.x/e�.���0/.y/ d��.y/
˝N�1=Z� ; Z� WD

Z
X N

f0e�.���0/ d�˝N
�

where f .x1;x2; : : : ;xN /Djdet1�i;j�N .fi.xi//i;j j
2e��0.x1/ � � � e��0.xN / and .fi/ is any given orthonor-

mal base with respect to the Hermitian metric Hilb.1/.�0/ on H 0.X;L/ (note that Z� appears as the
normalizing constant). We have used the notation �.x; : : : ;xm/D �.x1/C � � �C�.xm/. In particular,

.h0=hmC1/.x/D

Z
y2X N�1

f .x;y/e�.�m��0/.y/ d��.y/
˝N�1=Z�m

and hence differentiating with respect to x by applying @˛
X

gives

j@˛X .h0=hmC1/.x/j D

ˇ̌̌̌Z
.@˛X f .x;y//e

�.���0/.y/ d��.y/
˝N�1=Z�

ˇ̌̌̌
�

A˛

Z�m

e�.�m��0/


L1.X /
;

where A˛ is a constant independent of m. Since, by the uniform convergence of �m, we have Z�m
>C >0

for some positive constant C , this concludes the proof of the estimate (2-9). �

The following basic lemma gives a natural criterion for the assumptions (apart from the monotonicity
of I�) in the previous theorem to be satisfied.

Lemma 2.10. Suppose that G is a functional on H.k/ which is geodesically strictly convex with respect
to the symmetric Riemann structure and strictly convex modulo scaling. Then G has at most one critical
point (modulo scaling). Moreover, if it has some critical point then G is coercive.

Proof. Uniqueness follows immediately from strict convexity and hence we turn to the proof of coercivity.
By a simple compactness argument it will be clear that, after fixing a reference metric H0 2H.k/, which
we take to be a critical point of G, it is enough to prove coercivity along any fixed geodesic passing
through H0. To this end let Ht be a geodesic in H.k/ starting at H0, that is, the orbit of the action of a
one-parameter subgroup of GL.Nk/. In the notation of Lemma 2.7 this means that Ht DHt� for � 2CN

fixed. By scaling invariance we may assume that the determinant of Ht vanishes along the geodesic.
Integrating the upper bound in (2-8) over X gives

J.Ht /D 0C .I�0
ıFS/.Ht /� C t CD:
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Now, let f .t/D G.Ht /. Since by assumption f is convex and 0 is a critical point, we have df=dt � 0

for all t . Hence, if we fix some number � > 0, then

f .t/� f .0/C

Z t

�

.df=ds/ ds:

But by the assumption on strict convexity the latter integrand is bounded from below by some ı > 0. All
in all this shows that

G.Ht /� ıt �A�
ı

C
J.Ht /�A0;

which finishes the proof. �

Large k asymptotics. Next, we will recall the following proposition, which is the link between the
Bergman iteration and the Kähler–Ricci flow. It is essentially due to Bouche and Tian, apart from the
uniformity with respect to �. In fact, a complete asymptotic expansion in powers of k holds as was
proved by Catlin and Zelditch and the uniformity can be obtained by tracing through the same arguments
(as remarked in connection to Proposition 6 in [Donaldson 2001]). For references see the recent survey
[Zelditch 2009].

Proposition 2.11. Assume that the volume form �� depends smoothly on �. Then the following uniform
convergence for the corresponding Bergman function �.k/.�/ holds: there is an integer l such that

sup
X

ˇ̌̌̌
�.k/.�/�

.ddc�/n=n!

��

ˇ̌̌̌
� C=k

for all weights � such that ddc� is uniformly bounded from above in Cl -norm with ddc� uniformly
bounded from below by some fixed Kähler form.

3. The Calabi–Yau setting

First consider the absolute case where we assume given an ample line bundle L!X . In this section we
will the apply the general setting introduced in the previous section to the case when the measure � is
independent of �. We will assume that it is normalized, that is, a probability measure. We will mainly be
interested in the case when X is a Calabi–Yau manifold, which induces a canonical probability measure
� on X defined by

�D cn�^ N�

where� is any given holomorphic n-form trivializing the canonical line bundle KX and cn is a normalizing
constant. In the relative Calabi–Yau setting, where each fiber is assumed to be a Calabi–Yau manifold,
this hence yields a canonical smooth family of measures on the fibers.

For a fixed reference element �0 2HL we set

I�.�/ WD

Z
X

.� ��0/ �;

which is equivariant under the usual actions of the additive group R: I�.�C c/D I�.�/C c. Moreover,
by definition the associated functional �F� is coercive.
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3A. The relative Kähler–Ricci flow. The convergence on the level of Kähler forms in the following
theorem is due to Cao (apart from the uniqueness, which was first shown by Calabi). We just observe
that, since � is normalized, the convergence of the flow also holds on the level of weights.

Theorem 3.1. The Kähler–Ricci flow on HL with respect to� exists for all times t 2 Œ0;1Œ and the solution
�t is smooth on X � Œ0;1Œ. Moreover, �t ! �1 uniformly in the C1- topology on X when t !1,
where �1 is the unique (modulo scaling) solution to the inhomogeneous Monge–Ampère equation (1-2).
More precisely, all the analytical assumptions in Section 2C are satisfied. In the Calabi–Yau case !1 is
Ricci flat.

Proof. As shown in [Cao 1985], !t ! !1 in the C1-topology. But then it follows from Proposition 2.4
that �t ! �1 uniformly in the C1-topology on X . The smoothness in the relative case was not stated
explicitly in [Cao 1985] but follows from basic maximum principle arguments. �

Preliminaries: Kodaira–Spencer classes and Weil–Petersson geometry. In this section we will assume that
the base S is one-dimensional and embedded as a domain in C. Recall that the infinitesimal deformation
of the complex structures on the smooth manifold Xs as s varies is captured by the Kodaira–Spencer
class �. @

@s
/ 2H 0;1.T 1;0Xs/ [Voisin 2007]. When the fibers are Calabi–Yau manifolds the “size” of the

deformation is measured by the (generalized) Weil–Petersson form !WP (see [Fujiki and Schumacher
1990]) on the base S . It was extensively studied by Tian [1987] and Todorov [1989] when the base S is a
moduli space of Calabi–Yau manifolds and X is the corresponding Kuranishi family. The form !WP is
defined by

!WP

�
@

@s
;
@

@s

�
WD kAC Y k

2
!

C Y
; (3-1)

where AC Y denotes the unique representative in the Kodaira–Spencer class �.@=@s/ 2 H 1;0.T 1;0Xs/

that is harmonic with respect to a given Ricci flat metric !
C Y

on Xs and the L2-norm is computed with
respect to this latter metric. Moreover, as shown in [Todorov 1989] the following formula holds:

kAC Y k
2
!

C Y
D
@2 �

@s@Ns
;  �.s/ WD log in2

Z
Xs

�s ^
N�s; (3-2)

where�s denotes a holomorphic family of nontrivial holomorphic n-forms on Xs for s2U , a neighborhood
of a fixed point s in S . More generally, for an arbitrary smooth base S the .1; 1/-form !WP on S may
be defined as the curvature of the holomorphic line bundle ��.K�=S / on S . It is in the latter form that
!WP will appear in the proof of Theorem 3.3 below. In fact, the formula (3-1) may then be deduced from
Theorem 3.3 (see Remark 3.7).

Next we will explain how, for a fixed base parameter s, a weight � on the line bundle L! X! S

induces the following two objects:

� a .0; 1/-form A� with values in T 1;0Xs representing the Kodaira–Spencer class �. @
@s
/ in H 0;1.T 1;0Xs/;

� a function c.�/ on X measuring the positivity (or lack of positivity) of ddc� on X in terms of the
positivity of the restrictions of ddc� to the fibers Xs .
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In fact A� will only depend on the family, parametrized by s, of two-forms !s obtained as the restrictions
of the curvature form !� on X to all fibers Xs , while c.�/ will depend on the whole form !� .

Trivial fibrations. Assume that � W X! S is a holomorphically trivial fibration, so that X is embedded
in C � X and that L D ��L where L ! X is an ample line bundle. Given a smooth family of
weights �.s; � / on L!X with strictly positive curvature form !X

�
WD dX dc

X
� (for s fixed) one obtains

a smooth vector field V� of type .1; 0/ as the “complex gradient” of @s�:

ıV�!
X
�.s;� / D @X .@s�/; (3-3)

where ıV� denotes interior multiplication (i.e., contraction) with V� . Now the .0; 1/-form A� with values
in T 1;0X (for s fixed) is simply defined by

A� WD �@X V� (3-4)

Denote by !X
t the curvature forms on X evolving with respect to the time parameter t according to

the Kähler–Ricci flow (for s fixed). The Laplacian on X with respect to !X
t will be denoted by �!X

t
.

Given �.s; � / we define the following function on X:

c.�/ WD
1

n
.ddc�/nC1=.dX dc

X �/
n
^ ids ^ d Ns: (3-5)

Note that, since !X
�
> 0 on X , we have that c.�/ > 0 at .s;x/ 2 X if and only if ddc� > 0 at .s;x/.

General submersions. Next we turn to the case of a general holomorphic submersion � W X! S . Any
given point in X has a neighborhood U such that the fibration � W U!S is holomorphically trivial and the
restriction LU is isomorphic to ��L over U. We introduce local holomorphic coordinates .z; s/ on U such
that s defines a local holomorphic coordinate on S and the projection � W U!S corresponds to .z; s/ 7! s.
Hence, the vector field V� defined above is locally defined, but in general not globally well-defined on X.
However, the expression (3-4) turns out to still be globally well-defined. For completeness we will give a
proof of this well-known fact [Schumacher 2008; Fujiki and Schumacher 1990]:

Proposition 3.2. The .0; 1/-form A� with values in T 0;1Xs , locally defined by formula (3-4), is globally
well-defined. It represents the Kodaira–Spencer class in H 0;1.T 1;0Xs/.

Proof. Step 1. The locally defined expression

W� WD
@

@s
�V�

defines a global vector field on X of type .1; 0/.
Indeed W� may be characterized as the horizontal lift of @=@s with respect to the .1; 1/-form ddc�

on X, which is nondegenerate along fibers. To see this first note that

d�.W�/D
@

@s
and ddc�.W� ; ker d�/D 0: (3-6)

The first point is trivial and the second one follows from a direct calculation: locally we may decompose

ddc� D dzdc
z �C�s Nsds ^ NdsC .@z�s/^ dsC .@z�s/^ d Ns:
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Hence, for any fixed index i ,

ddc�

�
W� ;

@

@Nzi

�
D�dzdc

z �

�
V� ;

@

@Nzi

�
C 0C

�
@

@Nzi
�s

�
C 0D 0;

using the definition (3-3) of V� in the last step. Finally, note that the properties (3-6) determine W�

uniquely: if W 0 is another local vector field satisfying (3-6) then clearly Z WDW� �W 0 satisfies

d�.Z/D 0 and ddc�.Z; ker d�/D 0:

In particular, Z is tangential to the fibers and ddc�.Z; NZ/ D 0. But since ddc� is assumed to be
nondegenerate along the fibers it follows that Z D 0.

Step 2. A�.s/D .@W�/Xs
and A�.s/ represents the Kodaira–Spencer class in H 0;1.T 1;0Xs/.

The first formula above follows immediately from a local computation and the second one then follows
directly from the definition of the Kodaira–Spencer class (where W� may be taken as any smooth lift
to T 1;0X of the vector field @=@s [Voisin 2007]). �

As for the function c.�/ defined by formula (3-5) it is still well-defined as we have fixed an embedding
of S in C.

Conservation of positivity along the relative Kähler–Ricci flow. Next comes one of the main results of
the present paper:

Theorem 3.3. Let � W X! S be a proper holomorphic submersion with Calabi–Yau fibers and let L be a
relatively ample line bundle over X. Assume that the base S is a domain in C. The following equation
holds along the corresponding relative Kähler–Ricci flow:�

@

@t
��!X

t

�
c.�/D jA� j

2

!X
t

�kAC Y k
2

!X
C Y

: (3-7)

Proof. Since it will be enough to prove the identity at a fixed point x in X in some local holomorphic
coordinates and trivializations we may as well assume that !� is the Euclidean metric at the point x, that
is, that the complex Hessian matrix .@2�=@zi

N@zj / is the identity for z D 0 (corresponding to the fixed
point x in X ). Moreover, we may assume that locally the holomorphic n-form � may be expressed as
�D dz1 ^ � � � ^ dzn. Partial derivatives with respect to s will be indicated by a subscript s and partial
derivatives with respect to zi and Nzj by subscripts i and Nj respectively. If hD .hij / is a Hermitian matrix
we will write .hij / for the matrix H�1. The summation convention according to which repeated indices
are to be summed over will be used. Next, we turn to the proof of the theorem which is based on a direct
and completely elementary calculation.

Step 1. The following formula holds in the case of a holomorphically trivial fibration:

@

@t
c.�/D �iNis NsC�sNi�s Nj�i Njk Nk

��i Njs�i Njs ��sNi�s Nj�ik Nl
�

j Nkl
� 2<.�

k NksNi
�si/C 2<.�

k Nls
�

k Nl Ni
�sNi/:

To see this first recall that
c.�/D �s Ns �<

�
�sNi�s Nj�

i Nj
�
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and hence (using that �i Nj D ıij at z D 0, so that @�i Nj=@t D�@� Nji=@t at z D 0)

@

@t
c.�/D

@

@t
�s Ns � 2<

�
@

@t
�sNi

�
�sNi C .�sNi�s Nj /

@

@t
� Nji (3-8)

Using the definition of the relative Kähler–Ricci flow in the Calabi–Yau case and the simple fact that the
linearization of  7! log det. 

k Nl
/ at  is given by u 7!�! u, where �! uD  k Nlu

k Nl
is the Laplacian

with respect to the Kähler metric ! , hence gives
@

@t
c.�/D .log.det�i Nj //s Ns � 2<..log det.�

k Nl
//sNi�si/C .�si�s Nj /.log.det�

k Nl
//i Nj

D .�i Njs�
i Nj /Ns � 2<.�

k Nls
�k Nl/Ni�sNi C .�sNi�s Nj /.�ik Nl

�k Nl/ Nj

D �iNis Ns ��i Njs�j Ni Ns � 2<.�
k NksNi

�sNi ��k Nls
�

l NkNi
�sNi/C .�sNi�s Nj /.�i Njk Nk

��
ik Nl
�

j Nkl
/

(again using �i Nj D ıij at z D 0), finishing the proof of Step 1.

Step 2. The following formula holds in the case of a trivial fibration:

c.�/
k Nk
D �

k Nks Ns
C .�sNi�s Nj /.�k Nkj Ni

/� 2.�sNi�s Nj /� NkNim�k Nmj ��ksNi�ksNi �� NksNi
� NksNi
C 2<.�ksNi�s Nj� Nkj Ni

/

C 2<.� NksNi
�s Nj /� Nkj Ni

� 2<� NkksNi
�sNi :

To see this we first differentiate c.�/ with respect to zk to get

c.�/k D �ks Ns � Œ.�sNi�s Nj /k�
i Nj
C .�sNi�s Nj /.�

i Nj /k �D �ks Ns � .�ksNi�s Nj C� NksNi
�s Nj /�

i Nj
� .�sNi�s Nj /.�

i Nj /k :

Next, note that if h is a function with values in the space of Hermitian matrices and @ a derivation
satisfying the Leibniz rule, then

@.h�1/D�h�1.@h/h�1:

In particular, if h.0/D I then the following holds at 0:

. Nh�1/
k Nk
D� Nh

k Nk
C . Nh Nk

Nhk C
Nhk
Nh Nk/:

Applying this to hD .�i Nj / (when expanding the term A below) gives

c.�/
k Nk
D �

k Nks Ns
�
�
Œ.�ksNi�sNi/ Nk C .� NksNi

�sNi/ Nk �� .�ksNi�s Nj C� NksNi
�sj /� Nki Nj

�
�A

D �
k Nks Ns
�
�
Œ� NkksNi

�sNi C�ksNi�ksNi C�k NksNi
�sNi C� NksNi

� NksNi
�� .�ksNi�s Nj C� NksNi

�s Nj /� Nki Nj

�
�A;

where

A WD .�sNi�s Nj / Nk.�
i Nj /k C .�sNi�s Nj /.�

i Nj /
k Nk
D�.�sNi�s Nj / Nk�kj Ni C .�sNi�s Nj /.��k Nkj Ni

C 2<.� NkNim�k Nmj //

D�.�
sNi Nk
�s Nj C�sNi�s Njk/�kj Ni � .�sNi�s Nj /.�k Nkj Ni

C 2<.� NkNim�k Nmj //:

Hence,

c.�/
k Nk
D �

k Nks Ns
� Œ� NkksNi

�sNi C�ksNi�ksNi C�k NksNi
�sNi C� NksNi

� NksNi
�C .�ksNi�s Nj C� NksNi

�s Nj /� Nkj Ni

C.�
sNi Nk
�sNi C�sNi�sNik/�kj Ni C .�sNi�s Nj /�k Nkj Ni

� 2<.�sNi�s Nj� NkNim�k Nmj /;
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which finishes the proof of Step 2.

Step 3: End of proof of the theorem for a trivial fibration. Subtracting the formulas from the previous
steps gives, due to the cancellation of several terms,

@

@t
c.�/�c.�/

k Nk
D �

s Nm Nk
�

s Nm Nk
C.�sNi�s Nj /� NkNim�k Nmj �2<.� Nsk Nm

�
s Nl
� Nkl Nm

/D
X
m;k

ˇ̌̌̌
�

s Nm Nk
�

X
l

�
s Nl
� Nk Nml

ˇ̌̌̌2
:

Finally, note that

�
s Nm Nk
�

X
l

�
s Nl
� Nk Nml

D .�s Nm/ Nk � .� Nml/ Nk

X
l

�
s Nl
D .�

s Nl
�mNl/ Nk D .Vm/ Nk

(using �i Nj D ıij at z D 0), where V D .V1; : : : ;Vn/ is the .0; 1/-vector field (3-3) expressed in local
normal coordinates. This hence finishes the proof of the theorem in the case of a trivial fibration.

Step 4. We show that (3-7) holds for a general holomorphic submersion. As recalled above, any given
point P D .x; s0/ in X has a neighborhood U such that the fibration � W U! �.U/ (where we after
shrinking S may assume that �.U/D S ) is holomorphically trivial and the restriction LjU is isomorphic
to ��L over U. We denote by .z; s/ a choice of holomorphic coordinates on U trivializing the fibration.
Moreover, when X! S is a relative Calabi–Yau manifold we may furthermore choose .z; s/ with the
property that there is a family�s of nowhere vanishing holomorphic n-forms on the fibers Xs such that the
restriction of �s to Us ( WDU\Xs) coincides with the restriction of dz WD dz1^� � �^dzn to Us . Indeed,
first observe that we may choose �s so that �s D fs.z/ dz on U, where f .z; s/ WD fs.z/ is holomorphic
in .z; s/ and invertible, with respect to any given holomorphic coordinates .z; s/ as above. This amounts
to the well-known fact that the direct image sheaf ��.K�=S / naturally defines a holomorphic line bundle
on S or equivalently that any�s0

may be extended to�s such that�s^ds is a holomorphic .nC1/-form
on X (which for example follows from the Ohsawa–Takegoshi extension theorem; see [Berndtsson 2009a]
for a more general setting). We may now (after perhaps shrinking U again) write f .z; s/D @g.z; s/=@z1

for some holomorphic functions g on U and define new holomorphic coordinates .�; s/ on U (after
perhaps again shrinking U) by letting �i WD g for i D 1 and �i WD zi for i > 1. By construction we then
have �sjUs

D d�jUs
, as desired.

We can now repeat the previous local computation; the only new contribution comes from the derivatives
on the local function  �.s/ defined by formula (3-2), which appear in the definition of the relative Kähler–
Ricci flow (1-3) in the Calabi–Yau case. Indeed, locally this latter flow may be written as

@�

@t
D log det.�

k Nl
/� �.s/

and the only new contribution to the previous calculations hence come from the term �. �.s//s Ns which
appears in the calculation of .@�=@t/s Ns . Combining formulae (3-1), (3-2) hence proves that (3-7) holds
locally on X. Since all objects appearing in the formula are globally well-defined, this finishes the proof
of Step 4. �
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Now the maximum principle for parabolic equations [Protter and Weinberger 1967] implies the
following:

Corollary 3.4. Let L! X! S be a line bundle over a fibration as in the previous theorem.

� If the fibration is holomorphically trivial, then the function c.t/ WD infX c.�/ is, for a fixed value
on s, increasing along the relative Kähler–Ricci flow and hence the flow preserves (semi)positivity of
the curvature of �.

� For a holomorphically trivial fibration X D X �S , with L the pull-back of an ample line bundle
L! X , the flow improves the positivity of a generic initial weight in the following sense: if �0 is
a semipositively curved weight on L over X � S such that @�=@s does not vanish identically on
X � fsg for any s, then �t is strictly positively curved on X �S for t > 0.

� In the general case the (semi)positivity of the curvature of the weight on � � t � on the R-line
bundle L� tKX=S is preserved under the flow; that is,

ddc�t � �t!WP

for all t (and similarly in the strict case).

Proof. The first and third points follow from the maximum principle exactly as in the proof of Corollary 4.9
below. The second point is proved as follows: If strict positivity does not hold then one concludes (see
the proof of Corollary 4.9 below) that �A�0

D @X V�0
vanishes identically on X for some s0; that is,

the corresponding vector field V�0
defined by (3-3) is holomorphic on X . But, it is a well-known fact

that any such holomorphic vector field V 1;0 vanishes identically when X is a Calabi–Yau manifold and
hence @�=@s vanishes identically on X � fs0g, giving a contradiction. The vanishing of V 1;0 may be
proved as follows: by a Bochner–Weitzenbock formula V 1;0 is covariantly constant with respect to any
Ricci flat metric on X . Moreover, the imaginary part VI satisfies !�0

.VI ; � /D df for some real smooth
function f . But since !X

�0
> 0 on X � fs0g the latter equation forces the vanishing of VI at any point

where f achieves it maximum and hence VI � 0 on X . Similarly, the real part VR of V 1;0 vanishes
identically (by replacing df with dcf ). �

Of course, in the case of an infinitesimally nontrivial fibration the inequality in the previous corollary
is useless for the limit �1, but its interest lies in the fact that it gives a lower bound on the (possible) loss
of positivity along the relative Kähler–Ricci flow, which is independent of the initial data.

Remark 3.5. Throughout the paper we assume, for simplicity, that the initial weight �0 has relatively
positive curvature, when restricted to the fibers of the X. But, as in the previous corollary, we do allow �0

to have merely semipositive curvature over the total space X. However, using recent developments for
the Kähler–Ricci flow [Song and Tian 2009] the relative Kähler–Ricci flows are actually well-defined
for any smooth weight �0 which has merely relatively semipositive curvature and �t becomes relatively
positively curved for any t > 0. Using this result the previous corollary can be seen to be valid for a
general semipositively curved initial weight �0. Even more generally, as shown in [Song and Tian 2009],
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the flow is well-defined for any (possibly singular) �0 with positive curvature current such that �0 is
locally bounded and the Monge–Ampère measure .ddc�0/

n has local densities in Lp for some p > 1.

Evolution of the curvature of the top Deligne pairing. For a general smooth base S (i.e., not necessarily
embedded in C) the weight � on L naturally induces a closed .1; 1/-form ‚�.s/ on S expressed as

‚� WD ��..ddc�/nC1=.nC 1/!/:

Equivalently, for any local holomorphic curve C � S with tangent vector @=@s 2 TS ,

‚�

�
@

@s
;
@

@Ns

�
WD

Z
�s

c.�/!n
�=n!

where s 2 C and � is the induced map � W X! C . Geometrically, the form ‚� on S may be described
as the curvature of the Hermitian holomorphic line bundle .L; �/nC1 over S defined as the top Deligne
pairing of the Hermitian holomorphic line bundle .L; �/! X! S (see [Deligne 1987]; the relevance of
Deligne pairings for Kähler geometry has been emphasized by Phong and Sturm [2004]). The form ‚�

also appears as a multiple of the curvature of the Quillen metric on the determinant of the direct image of
a certain virtual vector bundle over X (see [Fujiki and Schumacher 1990] and references therein).

Similarly, one can define a .1; 1/-form !WP� on S depending on � by letting

!WP�

�
@

@s
;
@

@Ns

�
WD

Z
�s

jA�.s/j
2!n
�=n!:

It can be checked that this yields a well-defined .1; 1/-form on X. Anyhow this latter fact is also a
consequence of the following corollary of the previous theorem.

Corollary 3.6. We make the same assumptions as in the previous theorem. Let ‚�t
be the curvature

form on S of the top Deligne pairing of .L; �/! X! S , where �t evolves according to the relative
Kähler–Ricci flow in the Calabi–Yau case. Then

@

@t
‚�.s/D���

�
R!X

�
.ddc�/nC1=.nC 1/!

�
C!WP�t

�!WP;

where R!X
�

denotes the fiberwise scalar curvature of the metric !� .

Proof. We may without loss of generality assume that S is embedded in Cs . Then

@

@t

Z
�s

c.�/!n
�=n!D

Z
�s

@

@t
c.�/!n

�=n!C

Z
c.�/

!n�1
�

.n� 1/!
^ ddc @

@t
�:

Now, by the definition of the Kähler–Ricci flow in the Calabi–Yau case,

!n�1
�

.n� 1/!
^ ddc @

@t
� D

!n�1
�

.n� 1/!
^ .�Ric.!X

� //DW �R!X
�
!n
�=.nC 1/!;

where we have used the definition of the (normalized) scalar curvature R!X
�

of the Kähler metric !X
�

in
the last step. Finally, integrating the formula in the previous theorem finishes the proof of the corollary. �
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Remark 3.7. If the initial weight � for the Kähler–Ricci flow is taken so that !� restricts to a Ricci flat
metric on all fibers of X, then � is stationary for the Kähler–Ricci flow and hence the previous corollary
(and the proof of the previous theorem) shows thatZ

�s

jA�.s/j
2!n
�=nD

@2 �

@s@Ns
I

that is, !WP D dsdc
s in2

log
R

Xs
� ^ N�. Since, by Proposition 4.5 below, A�.s/ is harmonic on each

fiber Xs with respect to the Ricci flat restriction !� , this implies the equivalence between (3-1) and (3-2).

3B. Quantization: The Bergman iteration on HL. In this section we will specialize and develop the
general results in Section 2D to the present setting where we have fixed a family of probability measures �s

(independent of �/ on the fibers �s .

Convergence and positivity of the Bergman iteration at a fixed level k. The following monotonicity
properties were shown by Donaldson [2009] in the present setting.

Lemma 3.8. The functionals �I� and L.k/ are both increasing along the Bergman iteration on HL with
respect to �. Moreover, they are strictly increasing at �.k/m unless �.k/m is stationary.

Proof. Since I� is affine and in particular concave on the affine space of all smooth weights the lemma
follows immediately from Lemma 2.6. �

We can now prove the convergence of the Bergman iteration at a fixed level k in the present setting.

Theorem 3.9. Let L!X be an ample line bundle and � a fixed volume form on X giving unit volume
to X . Assume a smooth initial weight �0 is given. For any given positive integer k the following holds: in
the large time limit, that is, when m!1, the weights �.k/m converge to �.k/1 in the C1-topology on X .
Moreover, in the relative setting the convergence is locally uniform with respect to the base parameter s.

Proof. By the previous lemma �I� is increasing and by definition �F
.k/
� is coercive. Moreover, as shown

in [Berman et al. 2009] balanced weights are unique modulo scaling and hence all the convergence criteria
in Proposition 2.9 are satisfied. �

Conservation of positivity. Recall that, given a relatively ample line bundle L over a fibration � W X! S

as above, the corresponding direct image bundle ��.LCKX=S /! S is the vector bundle such that
the fiber over s is naturally identified with the space H 0.X;LCKX / of all holomorphic n-forms f
on X WD Xs with values in L WD LX (as is well-known this is indeed a vector bundle, as shown using
vanishing theorems). Moreover, any given weight � on L induces a Hermitian metric on ��.kLCKX=S /

whose fiberwise restriction will be denoted by HilbLCKX
.�/:

HilbLCKX
.�/.f; f / WD in2

Z
X

f ^f e�� :

The point is that there is no need to specify an integration measure � thanks to the twist by the relative
canonical line bundle KX=S . We will have great use for the following recent results of Berndtsson.
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Theorem 3.10. Let � W X! S be a proper holomorphic submersion and let L be a relatively ample line
bundle over X equipped with a smooth weight with semipositive curvature. Then:

� [Berndtsson 2009a] The curvature of the Hermitian vector bundle over S defined as the direct image
bundle ��.LCKX=S / is semipositive in the sense of Nakano (and in particular in the sense of
Griffiths).

� (See [Berndtsson 2011, Theorem 1.2 and subsequent discussion].) The vector bundle ��.LCKX=S /

has strictly positive curvature in the sense of Griffiths if either the curvature form of � is strictly
positive over all of X or strictly positive along the fibers of � WX!S and the fibration is infinitesimally
nontrivial (i.e., the Kodaira–Spencer classes are nontrivial for all s 2 S/.

We will only use the following simple consequence of Theorem 3.10 (compare [Berndtsson 2009a;
Berndtsson and Păun 2008b]):

Corollary 3.11. Under the assumptions in the first point of the previous theorem we have

ddc.FS.k/ ıHilbkLCKX=S
/.�/� 0 (3-9)

and the inequality is strict under the assumptions in the second point of the theorem.

Proof. We will denote the line bundle kLCKX=S over X by F and the vector bundle ��.F/ over S by E

(and its dual by E�/. First note that the weight on F that we are interested in may be written as

.FS ıHilbF/.s;xs/D log sup
fs2Es

jfs.xs/j
2

kf .xs/k
2
D log jƒ.s;xs/j

2; (3-10)

where ƒ.s;xs/ is the element in E�s˝ Fs defined by

.ƒ.s;xs/fs/ WD fs.xs/:

Now let t 7! .st ;xst
/ be a local holomorphic curve in X with t 2 � (the unit-disc). Trivializing F in

a neighborhood of the previous curve we may pull back ƒ.s;xs/ to a holomorphic section ƒt of E�

over the unit-disc and identify the weight defined by (3-10) with a function log jƒt j
2 on �. We have to

prove that this latter function is (strictly) psh. But this follows from the following well-known fact: a
vector bundle E!� is (strictly) positive in the sense of Griffiths if and only if log.kƒtk

2/ is (strictly)
subharmonic on � where ƒ is any nontrivial holomorphic section of the dual vector bundle E�. For
example, to get the required (strict) subharmonicity one just notes that, after a standard computation,

@2 log.kƒtk
2/

@t @Nt
ˇ̌
tD0
� �

‚E�.ƒ0; ƒ0/

kƒ0k
2

;

where ‚E� at t is the Hermitian endomorphism of E�t representing the curvature of E. By the previous
theorem ‚E is (strictly) positive which is equivalent to ‚E� being (strictly) negative and the corollary
hence follows from the previous inequality. �

We next obtain a “quantized” version of Corollary 3.4.
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Corollary 3.12. Let � W X! S be a proper holomorphic submersion with Calabi–Yau fibers and let L be
a relatively ample line bundle over X.

� When � is holomorphically trivial the relative Bergman iteration preserves semipositivity of the
curvature of �.

� In the case of a general submersion with Calabi–Yau fibers,

ddc�
.k/

.m/
� �

m

k
!WP

for all m.

Proof. For simplicity first consider the case of a trivial fibration. Fix a holomorphic n-form � on X WDX0

trivializing KX . Under the assumption that X! S is holomorphically trivial � extends to a holomorphic
n-form on all of X such that  � WD log

R
Xs

in2

�^ N� is independent of s. In this notation

Hilb.k/.�.s; � //.f; f / WD
Z

Xs

jf j2e�.k�.s;� /� �.s//in2

�^ N�:

Now consider the fiberwise isomorphism

j W H 0.X; kL/!H 0.X; kLCKX /; j .f /D f ˝�;

which clearly satisfies Hilb.k/.�.s; � //D e �j �HilbLCKX
.�.s; � //. This means that, up to a multiplica-

tive constant independent of s, the map j is an isometry when H 0.Xs; kLCKXs
/DH 0.X; kLCKX=S /Xs

is equipped with its natural Hermitian product. In particular, by (3-9),

ddc� � 0 D) ddc.FS.k/ ıHilb.k//.�/� 0:

Iterating hence proves the first point in the statement of the corollary. Finally, for a general submersion
the same argument gives, but now taking into account the fact that  � depends on s, that

ddc� � 0 D) ddc.FS.k/ ıHilb.k//.�/� �ddc �.s/=k D�!WP.s/=k;

using formula (3-2) in the last equality. Replacing � with FS.k/ ıHilb.k/� �.s/ and iterating hence
finishes the proof of the corollary. �

Convergence towards the Kähler–Ricci flow. The following very simple proposition will turn out to be
very useful:

Proposition 3.13. The following monotonicity holds for the Bergman iteration at level k (with respect
to �). Assume that �.k/m �  

.k/
m . Then �.k/

mC1
�  

.k/
mC1

. In particular, the Bergman iteration decreases the
distance in HL defined with respect to the sup norm d.�;  / WD supX j� � j.

Proof. By definition we have

�
.k/
mC1
D �.k/m C

1

k
log �.k/.k�.k/m /D

1

Nk

X
i

jfi j
2:
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By a well-known identity for Bergman kernels,X
iD1

jfi j
2.x/D sup

f 2H 0.X ;kL/

�
jf .x/j2

.Z
X

jf j2e�k�m d�

�
:

But this latter expression is clearly monotone in �m proving the first statement of the proposition. As for
the last statement just let C WD supX j�

.k/
m � 

.k/
m j so that

�.k/m �  .k/m CC;  .k/m � �.k/m CC:

Applying the first statement of the proposition finishes the proof. �

Remark 3.14. The previous proposition can be seen as a “quantum” analog of the corresponding result for
the Kähler–Ricci flow (1-3), which follows directly from the maximum principle for the Monge–Ampère
operator and its parabolic analogue.

Now we can prove the following theorem, which is one of the main results in this paper.

Theorem 3.15. Let L! X be an ample line bundle and � a volume form on X giving unit volume
to X . Fix a smooth weight �0 on L, whose curvature form is fiberwise strictly positive, and consider the
corresponding Bergman iteration �.k/m at level k and discrete time m, as well as the Kähler Ricci flow �t —
both defined with respect to �. Then there is a constant C such that

sup
X

j�.k/m ��m=k j � C m=k2:

In particular, if mk is a sequence such that mk=k! t , then

�.k/mk
! �t

uniformly on X . Moreover, in the relative setting C is locally bounded in the base parameter s if �
depends smoothly on s.

Proof. Write  k;m D �m=k and F .k/. /D 1
k

log �.k/. /.

Step 1. We have  k;mC1� k;mDF .k/. k;m/CO.1=k2/ for all .k;m/, where the error term is uniform
in .k;m/. (In the following we will take that as a definition of O.1=k/, etc.)

To prove this we write the left-hand side as

1

k

�
�m=kC1=k ��m=k

1=k

�
D

1

k

�
@�t

@t
ˇ̌
tDm=k

CO.1=k/

�
using that

ˇ̌
@2�t=@

2t
ˇ̌
� C on X � Œ0;T � by Theorem 3.1. More precisely, by the mean value theorem

the error term O.1=k/ may be written as
1

k

@2�t

@2t
.�/=2

for some � 2 Œ0; 1=k�.
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Since �t evolves according to the Kähler–Ricci flow this means that

 k;mC1� k;m D
1

k
log
�
.ddc�m=k/

n=n!

�

�
CO.1=k2/:

But by Proposition 2.11 we have that

F .k/.�m=k/D
1

k
log
�
.ddc�m=k/

n=n!

�

�
CO.1=k2/;

where the error term is uniformly bounded in .m; k/ for m=k � T by Theorem 3.1. In fact, as is
well-known the uniform estimates (2-4) on the “space-derivatives” of �t in Theorem 3.1 also hold for
all time-derivatives dr�t=d

r t (and in particular for r D 1 and r D 2 used above). This is well-known
and shown by differentiating the flow equation with respect to time and applying the maximum principle
repeatedly. Hence, T may be taken to be equal to infinity, which finishes the proof of Step 1.

Step 2. Given Step 1 and the fact that the Bergman iteration decreases the sup norm, we have

sup
X

j�.k/m � k;mj � C m=k2: (3-11)

We will prove this by induction over m (for k fixed), the statement being trivially true for mD 0. By
Step 1 there is a uniform constant C such that

sup
X

ˇ̌
 k;mC1� . k;mCF .k/. k;m//

ˇ̌
� C.1=k2/

for all .m; k/. Now we fix the integer k and assume as an induction hypothesis that (3-11) holds for m

with C the constant in the previous inequality. By Proposition 3.13,

sup
X

ˇ̌
. k;mCF .k/. k;m//� .�

.k/
m CF .k/.�.k/m //

ˇ̌
� sup

X

j k;m��
.k/
m j � C m=k2

with the same constant C as above, using the induction hypothesis in the last step. Combining this
estimate with the previous inequality gives

sup
X

j k;mC1��
.k/
mC1
j � C m=k2

CC=k2;

proving the induction step and hence Step 2. �

Of course, it seems natural to expect that C1-convergence holds but we leave this problem for the
future.

Combining the previous corollary with Theorem 3.15 and the variational principle in [Berman et al.
2009] (the C1-convergence rather uses [Keller 2009; Wang 2005]) now gives the following:

Corollary 3.16. The conservation of semipositivity of the curvature of �t in Corollary 3.4 holds. For a
fixed initial data �0 D �

.k/
0
2HL the following convergence results hold for the Bergman iteration �.k/m :

� For any sequence mk such that mk=k!1 the convergence �.k/mk
! �1 holds in the L1-topology

on X . Moreover, if it is also assumed that mk=k2!0 then the convergence holds in the C 0-topology.
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� The balanced weights �.k/1 WD limm!1 �
.k/
m at level k converge, when k!1, in the C1-topology,

to the weight �1 which is the large time limit of the corresponding Kähler–Ricci flow (and in
particular a solution to the corresponding inhomogeneous Monge–Ampère equation).

In the relative case the convergence holds fiberwise locally uniformly with respect to the base parameter s.

Proof. The first statement follows immediately by combining Theorem 3.15 and the previous corollary,
since semipositivity is preserved under uniform limits of weights. Hence, we turn to the proof of the first
point. It is based on the following inequalities:

lim sup
k!1

I�.�
.k/
mk
/� I�.�1/; lim inf

k!1
E.�.k/mk

/� E.�1/: (3-12)

To prove these inequalities take a sequence m0
k

such that m0
k
=k! t and m0

k
�mk . By monotonicity

(Lemma 3.8),
I�.�

.k/
mk
/� I�.�

.k/
m0k

/:

Hence, letting k!1 and using that �.k/m0k
! �t uniformly (by Theorem 3.15) gives

lim sup
k!1

I�.�
.k/
mk
/� I�.�t /:

Finally, letting t !1 and using Theorem 3.1 proves the first inequality in (3-12). As for the second
inequality in (3-12), it is similarly proved by noting that, by monotonicity,

L.k/
�
�
.k/

m0
k

�
� L.k/.�.k/mk

/:

To proceed we will use that  k !  uniformly in HL implies that

L.k/. k/! E. /:

To see this recall that this is well-known when  k D  for all k (as follows for example from
Proposition 2.11, saying that the convergence holds for the differentials dL.k/ and dE; for more general
convergence results see [Berman and Boucksom 2010]). But then the general case follows easily from
the fact that L.k/ is monotone in the argument  and scaling equivariant. Hence, letting k!1 gives,
since  k WD �

.k/
m0k
! �t uniformly, that

E.�t /� lim inf
k!1

L.k/.�.k/mk
/:

The proof of the second inequality in (3-12) is finished by using that (as shown in [Berman et al.
2009]), for any sequence . k/ in HL,

lim sup
k!1

L.k/. k/� lim inf
k!1

E. k/:

Now, adding up the two inequalities in (3-12) gives

lim inf
k!1

F.�.k/mk
/� F.�1/:
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But then it follows from the variational results in [Berman et al. 2009] that

lim
k!1

F.�.k/mk
/D F.�1/ (3-13)

and
ddc�.k/mk

! ddc�1 (3-14)

in the weak topology of currents. Next, note that by the inequalities (3-12) the sequence �.k/mk
is contained

in a compact subset of HL equipped with the L1-topology (compare the proof of Lemma 2.3) and hence
we may assume (perhaps after passing to a subsequence) that �.k/mk

!  in the L1-topology. But then
the convergence in (3-14) forces  D �1CC for some constant C . Hence, it will be enough to prove
that C D 0. To this end, note that combining (3-13) and the inequalities (3-12) shows that the latter
inequalities are in fact equalities. In particular,

lim
k!1

E.�.k/mk
/D E.�1/:

By the scaling equivariance of E it hence follows that C D 0, which finishes the proof of the first point. If
one assumes that mk=k2! 0 then it follows immediately from combining Theorem 3.1 and Theorem 3.15
that the convergence holds uniformly on X , that is, in the C 0-topology.

To prove the second point in the statement of the corollary note that replacing �.k/mk
by �.k/1 in the

previous argument gives, just as before, that �.k/1 ! �1 in the L1-topology. Moreover, since it was
shown in [Keller 2009; Wang 2005] that the convergence of the corresponding curvature forms holds in
the C1-topology this proves the second point. �

4. The (anti)canonical setting

In this section we will consider another particular case of the general setting in Section 2 arising when
the line bundle L WD rKX is ample, where r D 1 or r D�1 (for any fiber X of the fibration). Hence, X

is necessarily of general type in the former “positive” case and a Fano manifold in the latter “negative”
setting. We will also refer to these two different settings as the ˙KX -settings.

By the very definition of the canonical line bundle any weight � on ˙KX determines a canonical
scale-invariant probability measure �˙.�/ on X , where

�˙.�/ WD e˙�=

Z
X

e˙�

(with a slight abuse of notation), so that �˙.�C c/D �˙.�/. Equivalently, �˙.�/ may be identified
with the one-form on H˙KX

obtained as the differential of the following functional I˙.�/ on H˙KX
:

I˙.�/ WD ˙ log
Z

X

e˙� ; �˙.�/D dI˙:

A characteristic feature of the ˙KX -setting is that the antiderivative I˙ is canonically defined (i.e., not
only up to scaling). As a consequence there is a canonical normalization condition for weights that will
occasionally be used below, namely the condition that I˙.�/D 0.



RELATIVE KÄHLER–RICCI FLOWS AND THEIR QUANTIZATION 163

We will also have use, as before, for the equivariant functional

F˙ WD E� I˙;

where E is the functional defined in Section 2B (with respect to a fixed reference weight in ˙KX ).1

Note that the critical points of F˙ on H˙KX
are the Kähler–Einstein weights �, that is, the weights such

that !� is a Kähler–Einstein metric on X (compare Theorem 4.1 below).
It will also be important to consider a nonnormalized variant of �˙.�/ defined by

�0˙.�/ WD e˙�

(which is the differential of the nonequivariant functional � 7!
R

e˙�). In the sequel we will refer
to the two different settings defined by �˙.�/ and �0

˙
.�/ as the normalized ˙KX -setting and the

nonnormalized˙KX -setting, respectively. It should be pointed out that it is the latter one which usually
appears in the literature on the Kähler–Ricci flow (see for example [Cao 1985; Tian and Zhu 2007; Phong
et al. 2007]).

4A. The relative Kähler–Ricci flow. According to the general construction in Section 2 each particular
setting introduced above comes with an associated relative Kähler–Ricci flow. For future reference we
will write out the fiberwise flow in the nonnormalized ˙KX -setting in local holomorphic coordinates:

@�

@t
D log det

�
1

�

@2�

@zi@ Nzj

�
=n!� .˙�/: (4-1)

The normalized and nonnormalized settings induce the same evolution of the fiberwise curvature forms
!t :

@!t

@t
D�Ric!t �˙!t ; (4-2)

in c1.˙KX /.2

In particular, if !t converges to !1 in the large time limit, then !1 is necessarily a Kähler–Einstein
metric, which is of negative scalar curvature in the KX -setting and positive scalar curvature in the
�KX -setting.

The main virtue of the Kähler–Ricci flow in the normalized setting as compared with the nonnormalized
one is that the first one is convergent precisely when the flow of curvature forms !t is. On the other
hand, as will be seen later the flow in the nonnormalized setting (and its quantized version) has better
monotonicity and positivity properties.

Theorem 4.1. The Kähler–Ricci flow in the ˙KX -settings always exists and is smooth on X � Œ0;1Œ.
More precisely, all the analytical assumptions in Section 2C are satisfied. In the normalized KX -setting it
converges to a Kähler–Einstein metric of negative scalar curvature. In the �KX -setting the flow converges
to a Kähler–Einstein metric of positive scalar curvature under the assumptions that H 0.TX /D 0 and X

1Note that F˙ is minus the functional introduced in [Tian 2000].
2In the literature this latter flow of Kähler forms is sometimes referred to as the normalized Kähler–Ricci flow, as opposed to

Hamilton’s original flow, but our use of the term “normalized” is different and only applies on the level of weights on L.
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a priori admits a Kähler–Einstein metric. Furthermore, in the relative case the convergence is locally
uniform with respect to the base parameter s.

Apart from the uniqueness statement, the first part of the previous theorem is due to Cao [1985]. The
convergence on the level of Kähler metrics in the Fano case, that is, when �KX is ample, was proved by
Perelman (unpublished) and Tian and Zhu [2007]. The convergence on the level of weights then follows
directly from Proposition 2.4 and the known coercivity of the functionals �F˙; the coercivity of �FC
follows immediately from Jensen’s inequality, while the coercivity of �F� was shown in [Phong et al.
2008], confirming a conjecture of Tian. The uniqueness in the difficult case of �KX is due to Bando and
Mabuchi (for a comparatively simple proof see [Berman et al. 2009]).

Remark 4.2. The first key analytical ingredient in the proof of the convergence of the flow of Kähler
metric !t in the Fano case (i.e., the �KX -setting) is an estimate of Perelman saying that the Ricci
potential ht of !t , when suitably normalized, is always bounded along the Kähler–Ricci flow for !t (see
[Tian and Zhu 2007; Phong et al. 2007]). In fact, in the present notation ht coincides (modulo signs) with
the time derivative of �t evolving according to the normalized Kähler–Ricci flow in the �KX -setting. The
second key ingredient is the fact that the existence of a Kähler–Einstein metric implies that �FC is proper
(and conversely [Tian 2000; Phong et al. 2008]). As is well-known there are, in general, obstructions to
existence of Kähler–Einstein metrics in the �KX -setting. According to a conjecture of Yau the existence
of a Kähler–Einstein metric should be equivalent to a suitable notion of algebraic stability (in the sense of
geometric invariant theory). From this point of view the properness (or coercivity) assumption on the
functional �FC can be considered as an analytic stability [Tian 2000].

Definition. A weight �KE on ˙KX will be called a normalized Kähler–Einstein weight if I˙.�KE/D 0,
or equivalently if e˙�KE D !n

KE=n!.

Hence, there is precisely one normalized Kähler–Einstein weight on CKX when it is ample. The
following simple corollary of Theorem 4.1 and Remark 4.2 illustrates the difference between the normal-
ized and nonnormalized settings.

Corollary 4.3. In the CKX -setting the nonnormalized flow (4-1) always converges to the normalized
Kähler–Einstein weight.

Proof. Write �0t for the evolution under the Kähler–Ricci flow in the nonnormalized KX -setting so that

�0t D �t CCt ;

where Ct is a constant for each t . Since � 7! .ddc�/n is invariant under scalings, comparing the two
flow equations gives

@Ct

@t
D�Ct � IC.� t /: (4-3)

Let Dt WD Ct � I.�t /. Then we get

@Dt

@t
D�Dt C �t ; where �t WD

@IC.�t /

@t
:
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In the CKX -setting Theorem 4.1 implies that �t ! 0; it follows for elementary reasons that Dt ! 0.
Indeed, assume for a contradiction that Dt does not converge to 0. Then @ log jDt j=@t !�1; that is,
jDt j � Cıe

�t.1�ı/ ! 0 for 0 < ı � 1, giving a contradiction. Finally, in the nonnormalized �KX -
setting it was shown in [Phong et al. 2007] (building on [Chen and Tian 2002]) that there is a constant
c0 such that �0t converges. But then it follows immediately from combining the scaling invariance of
� 7! .ddc�/n and the scaling equivariance of �0� that the flow diverges exponentially for any other
choice of constant c0. �
Remark 4.4. In the nonnormalized �KX -setting (under the assumptions in the previous theorem) it was
shown in [Phong et al. 2007] (building on [Chen and Tian 2002]) that the flow converges when the initial
weight �0 is replaced by �0C c0 for a unique constant c0. The argument in the proof of the previous
corollary then gives that for a generic initial weight the flow is divergent.

4B. Weil–Petersson geometry. As before we may in the following assume that the base S is embedded
in C. In the relative ˙KX -setting the (generalized) Weil–Petersson form !WP on S was introduced in
[Koiso 1983] (see also [Fujiki and Schumacher 1990] for generalizations):

!WP

�
@

@s
;
@

@Ns

�
WD kAKEk

2
!KE

; (4-4)

where AKE denotes the unique representative in the Kodaira–Spencer class �. @
@s
/ 2H 0;1.T 1;0Xs/ which

is harmonic with respect to the Kähler–Einstein metric on Xs and the L2-norm is computed with respect
to this latter metric. In fact, as shown in [Fujiki and Schumacher 1990, Proposition 4.12], AKE D�N@V!s

,
where V!s

is the local vector field defined by formula (3-3). This is a consequence of the following
proposition proved in [Fujiki and Schumacher 1990].

Proposition 4.5. Let � W X! S be a proper holomorphic submersion and !s a smooth family of 2-forms
on the fibers Xs such that !s is Kähler–Einstein on Xs . Then A!s

is the unique element in H 0;1.T Xs/

which is harmonic with respect to !s .

Note that “harmonic” lifts of vector fields were previously used by Siu [1986] in the context of
Weil–Petersson geometry.

Remark 4.6. When the relative dimension is one the space H 0;1.T Xs/ is isomorphic to H 1;0..T Xs/
�/D

H 0.2K�s
/ under Serre duality. Hence, the Weil–Petersson form as defined in terms of harmonic represen-

tatives then coincides with the metric on X introduced by Weil in the case when X is the universal family
over Teichmüller space. As conjectured by Weil and subsequently proved by Ahlfors this latter .1; 1/-form
is closed and hence Kähler. In the higher-dimensional case, it was observed in [Fujiki and Schumacher
1990] that the Kähler property of !WP as defined by (4-4) follows immediately from Corollary 4.10 below.

By an application of the implicit function theorem (in appropriate Banach spaces) the smoothness of
the family !s (and of the associated normalized weight) in the previous proposition is automatic in the
CKX -case case, as well as in the �KX case if there are no nontrivial holomorphic vector fields tangential
to the fibers of the fibration (see Theorem 6.3 in [Fujiki and Schumacher 1990]).

Now we can prove the following variant of Theorem 3.3.



166 ROBERT J. BERMAN

Theorem 4.7. Let � W X! S be a proper holomorphic submersion. Assume that ˙KX=S is relatively
ample and that �t evolves according to the Kähler–Ricci flow in the nonnormalized setting. Then

@c.�t /

@t
D�!X

t
c.�t /�˙c.�t /CjA�t

j
2

!X
t

: (4-5)

In particular, if �KE is a fiberwise normalized Kähler–Einstein weight, then

�!KEc.�KE/�˙c.�KE/CjA!KE j
2

!X
KE
D 0:

Proof. To simplify the notation we will only consider the CKX -setting, but the proof in the �KX setting
is essentially the same. We will just indicate the simple modifications of the proof of Theorem 3.3 which
arise in the present setting.

Let us first consider the modifications to the calculation of the t -derivative of c.�/ that arise from the
additional term �� appearing in the calculation of the time derivative �t , since now

@

@t
�t D log det.�

k Nl
/��

in local coordinates. To this end we assume to simplify the notation that X is one-dimensional (but the
general argument is essentially the same). First recall that, according to formula (3-8),

@

@t
c.�/D

@

@t
�s Ns �

�
.�s Nz�s Nz/t�

�1
z Nz � .�s Nz�s Nz/�

�2
z Nz

@

@t
�z Nz

�
:

Hence, the additional contribution referred to above is of the form

B WD .��/s Ns � 2<.��s Nz�s Nz/�
�1
z Nz C�s Nz�s Nz�

�2
z Nz .��z Nz/D .��s Ns/C 2j�s Nzj

2��1
z Nz ��s Nz�s Nz�

�1
z Nz D�c.�/:

Hence, the local calculations in the Calabi–Yau case give that

@

@t
c.�/D�!t

c.�/� c.�/CjA� j
2

!X
t

:

Finally, since a normalized Kähler–Einstein weight is stationary for the nonnormalized Kähler–Ricci flow
this finishes the proof of the theorem. �

The last fiberwise elliptic equation in the previous corollary (in the KX -setting) was first obtained by
Schumacher [2008], who used the maximum principle to deduce an interesting consequence:

Corollary 4.8. Let � W X!S be a fibration as in the previous theorem and assume that KX=S is relatively
ample. Then the canonical fiberwise Kähler–Einstein weight �KE on KX=S is smooth with semipositive
curvature form on X. Moreover, if the Kodaira–Spencer classes of the fibration are nontrivial for all s,
then the curvature form of �KE is strictly positive on X.

The first part of the corollary was also shown by Tsuji [2006; 2011] using his iteration. Similarly, by
a simple application of the parabolic maximum principle we deduce the following corollary from the
parabolic equation in the previous theorem.
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Corollary 4.9. We make the same assumptions as in the previous theorem. Let � t evolve according to the
Kähler–Ricci flow in the nonnormalized˙KX -setting. If the initial weight has (semi)positive curvature
form on X then so has � t for all t . More precisely, .ddc� t /xz

> 0 (in all nC1 directions) at any point xs

in the fiber Xs unless .ddc�0/
nC1 and A�0

vanish identically on Xs .

Proof. As usual we may assume that S is embedded in C. Let us start with the semipositive case
where the conclusion follows from the weak maximum principle. Indeed, assume to get a contradiction
that c.�t /� 0 on X for t D 0 but that there is .t; s;x/ such that at .t; s;x/ we have c.�t /.s;x/ < 0. By
optimizing over .x; t/ we may also assume that @.eatc.�t //=@t � 0, �!X

t
c.�t /� 0. Then (4-5) gives

0� eat

�
ac.�t /C

@c.�t /

@t

�
D eat

�
�!X

t
c.�t /� .a˙ 1/c.�t /CjA�t

j
2

!X
t

�
:

But if a is chosen so that a˙ 1> 0, the right-hand side above is strictly positive, giving a contradiction.
To handle the remaining cases we invoke the following well-known strong maximum principle for the
heat operator (which by standard argument can be reduced to the corresponding local statement in [Protter
and Weinberger 1967]): let ht � 0 satisfy

@ht

@t
��gt

ht on Œ0;T ��X

for any smooth family gt of Riemannian metrics. Then either ht > 0 for all t > 0 or h0 � 0. In our case
we set ht D eatc.�t / with aD�˙ 1 and conclude that if it is not the case that c.�t / > 0 for all t > 0

then c.�0/� 0 and hence
@

@t
c.�t /tD0 D jA�0

j
2

!X
0

:

If we now assume, to get a contradiction, that the right-hand side above is strictly positive at x0 then it
follows that there is an � > 0 such that c.�t /.x0/ > 0 for t 2 .0; �Œ; that is, for such t it is not the case
that c.�t /� 0 on X . Hence, as explained above c.�t / > 0 on all of �0;1Œ�X , which yields the desired
contradiction. �

In particular, the previous corollary says that if the fibration X is infinitesimally nontrivial then the
nonnormalized Kähler–Ricci flows instantly make any semipositively curved initial weight strictly positive.

Next we note that integrating the last formula in the previous theorem immediately gives the following
corollary first shown by Fujiki and Schumacher [1990, Theorem 7.9].

Corollary 4.10. We make the same assumptions as in the previous theorem. Let �KE be the weight of a
smooth metric on˙KX=S which restricts to a normalized Kähler–Einstein weight on each fiber. Then

��..ddc�KE/
nC1=.nC 1/!/D˙!WP

on S , where �� denotes the fiber integral. In particular, if S is effectively parametrized (i.e., all Kodaira–
Spencer classes are nontrivial) then ˙��.ddc��/

nC1 and hence the Weil–Petersson metric !WP is a
Kähler form on the base S .
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Remark 4.11. It follows immediately from the previous corollary that when X is a Fano manifold the
normalized Kähler–Einstein weight �KE never has semipositive curvature on all of X if the family is
effectively parametrized. Combining this fact with Corollary 4.9 shows that the relative Kähler–Ricci
flow in the nonnormalized KX -setting never converges in the L1.X/-topology for an initial weight �0

with semipositive curvature form on an effectively parametrized fibration X.

4C. Quantization: The Bergman iteration. The (normalized) Bergman iteration in the ˙KX -setting
on H˙KX

is defined precisely as in Section 3B, but using the probability measure�˙.�/ in the definition of
Hilb.k/.�; �˙.�//. Similarly, the nonnormalized Bergman iteration is defined in terms of the measure �0

˙
.

The virtue of the nonnormalized setting is that the corresponding Hilbert norms correspond to the “adjoint”
norms appearing in Berndtsson’s Theorem 3.10:

Hilb.k/.�; ��0
˙
/.f; f / WD in2

Z
X

f ^ Nf e�.k˙1/�
WD Hilb.k�1/LCKX

.�/ (4-6)

for L D ˙KX . Moreover, they are clearly decreasing in � (for k � 1) and hence the analogue of
Proposition 3.13 of the corresponding Bergman iteration holds:

Proposition 4.12. Consider the Bergman iteration �.k/m in the nonnormalized˙KX -setting and assume
that �.k/m �  

.k/
m . Then �.k/

mC1
�  

.k/
mC1

. Moreover, if d.�;  / denotes the sup norm of � � then

d. mC1; �mC1/� d. mC1; �mC1/

�
1˙

1

k

�
:

In particular, the Bergman iteration decreases the distance d.�;  / in the nonnormalized KX -setting.

Proof. Given the discussion preceding the proposition we just have to prove the claimed property of
the distance d . But this follows directly from the monotonicity in the first part combined with the fact
that log �.k/.�mC c/=k D log �.k/.�m/=k �˙ c

k
, which in turn follows from �0

˙
.�C c/ WD e˙.�Cc/ D

�0
˙
.�/e˙c . �

On the other hand, the following monotonicity of functionals holds in the normalized setting:

Lemma 4.13. The functionals �I�˙ and L.k/ are increasing along the normalized Bergman iteration

on H˙KX
. Moreover, they are strictly increasing at �.k/m unless �.k/m is stationary (when k > 1 in the case

of I�C).

Proof. By the general Lemma 2.6 L.k/ is increasing and I� is decreasing under the iteration, since
� 7! I�.�/ is concave with respect to the affine structure by Jensen’s inequality. To show that I

.k/
C is

increasing in the KX -setting just observe that

IC.�
.k/
mC1

/�IC.�
.k/
m /WDlog

R
e.�

.k/

mC1
��

.k/
m /e�

.k/
mR

e�
.k/
m

Dlog
Z
.�.k//

1
k �.�.k/m /�log

��Z
�.k/.�.k/m / �

�1
k
�
D0;

using Jensen’s inequality applied to the concave function t 7! t1=k , which is strictly concave for k > 1. �
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Convergence of the Bergman iteration at a fixed level k.

Theorem 4.14. The Bergman iteration �.k/m at level k converges, when the discrete time m!1, to a
balanced weight �.k/1 in the following settings:

� the normalized KX -setting;

� the normalized �KX -setting if it is a priori assumed that there exists some balanced metric at level
k and H 0.TX /D 0;

� the normalized �KX -setting for k sufficiently large under the assumption that X admits a Kähler–
Einstein metric and H 0.TX /D 0;

� the nonnormalizedCKX -setting, where the limiting balanced weight is the unique normalized one.

Proof. Proof of the first point: By the previous lemma �I� is increasing and as shown in [Berman
et al. 2009] �F

.k/
� is coercive (as follows immediately from Jensen’s inequality). Moreover, as shown in

[Berman et al. 2009] balanced weights are unique modulo scaling and hence all the convergence criteria
in Proposition 2.9 are hence satisfied.

Proof of the second point: By the previous lemma �I� is increasing and as shown in [Berman et al. 2009]
it follows immediately from Berndtsson’s theorem (Theorem 3.10) applied to L D �KX that �F

.k/
�

is strictly convex modulo scaling. Hence, the convergence follows by combining Proposition 2.9 and
Lemma 2.10.

Proof of the third point: The fact that �F
.k/
� is coercive was shown in [Berman et al. 2009] (using the

corresponding coercivity of �F� on HL). Given this coercivity the convergence follows as in the previous
point.

Proof of the fourth point: Let .�0/.k/m D �
.k/
m CC

.k/
m denote the nonnormalized Bergman iteration in the

KX -setting. By the definition of the Bergman iteration (compare (4-10) below),

.C
.k/
mC1
�C .k/

m /D�C .k/
m =k � I.�.k/m /=k

where by the first point above I.�
.k/
m /! I1 when m!1. Set Dm WD C

.k/
m C I.�

.k/
m /. Then

DmC1 D

�
1�

1

k

�
DmC �m;

where �m D .I.�
.k/
mC1

/� I.�
.k/
m //! 0 as m!1. It follows for elementary reasons that Dm ! 0;

that is, C
.k/
m !�I1 showing that .�0/.k/m indeed converges and IC..�

0/
.k/
m /! 0, proving the second

point. For completeness we finally show that Dm! 0. Assume for a contradiction that this is not the
case. Then DmC1=Dm! 1� 1

k
and hence Dm � Cı.1�

1
k
C ı/m! 0 for ı sufficiently small, giving a

contradiction. �

The convergence in the fourth point above also follows immediately from the contracting property of
the corresponding iteration (compare the proof of Theorem 4.20 below). We also note the following direct
consequence of Berndtsson’s theorem (Theorem 3.10), using formula (4-6) in the nonnormalized setting.
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Corollary 4.15. The Bergman iteration in the nonnormalized ˙KX -setting preserves the (semi)positivity
of the curvature of the initial weight. Moreover, if the fibration X is assumed infinitesimally nontrivial
then any initial weight on ˙KX=S which is semipositively curved and strictly positively curved along the
fibers of X becomes strictly positively curved under the iteration.

Combining the previous corollary and Theorem 4.14 now gives the following:

Corollary 4.16. Let � WX!S be a proper holomorphic submersion with KX=S relatively ample. Let �.k/

be the weight on KX=S obtained by requiring that its restriction to any fiber is the unique normalized
balanced weight at level k; i.e,

R
Xs

e�
.k/

D 1. Then �.k/ is smooth with semipositive curvature form.
Moreover, if the fibration X is assumed infinitesimally nontrivial then �.k/ is strictly positively curved.

Proof. Since positivity and smoothness are local notions it is enough to prove the corollary when S is
embedded in C.

Smoothness: By definition �.k/DFS.k/.H .k// where H .k/ is an element in the finite-dimensional smooth
manifold H.k/ uniquely determined by G.k/.H .k/; s/D 0 [Berman et al. 2009], where G.k/ is the smooth
map defined by

G.k/.H .k/; s/ WD .T .k/
� I; IC ıFS.k// 2H.k/

�R:

Moreover, as shown in [Berman et al. 2009] the linearization of T .k/� I is invertible modulo scaling
(since it represents the differential of a functional on H .k/ which is strictly convex modulo scaling).
Hence, the claimed smoothness follows from the implicit function theorem.

Positivity: Since KX=S is assumed relatively ample it admits a smooth weight �0, which has fiberwise
positive curvature form. After adding a sufficiently large multiple of the pull-back from the base of jsj2 we
may assume that �0 has positive curvature over X. By the last point of the previous theorem the Bergman
iteration �.k/m in the nonnormalized KX -setting with initial weight �0 yields a sequence of weights
on KX=S converging, when m!1, uniformly to the unique normalized balanced weight �.k/ at level k.
As a consequence ddc�.k/ � 0 on X. Moreover, if the fibration X is assumed infinitesimally nontrivial
the previous corollary shows that applying the Bergman iteration to �.k/ yields a strictly positively curved
metric. But since �.k/ is fixed under the iteration this finishes the proof of the corollary. �

Corollary 4.17. Let � W X! S be the universal curve of the Teichmüller space of complex curves of a
genus g � 2. Fix a positive integer k (for g D 2 we assume that k � 2). Under the natural isomorphism

.T 1;0S/� D ��.2KX=S /

the fiberwise normalized balanced weight �.k/ on KX=S at level k (appearing in the previous corollary)
induces a Hermitian metric !.k/ on S with a curvature which is dually Nakano positive. Moreover, when
k!1 the metric !.k/ converges towards the Weil–Petersson metric !WP pointwise on S .

Proof. As is classical the assumptions on k ensure that KX=S is very ample. By the previous corollary �.k/

is a smooth weight on KX=S ! X with strictly positive curvature and hence the L2-metric on the direct
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image bundle ��.LCKX=S / (with L D KX=S ) induced by �.k/ has, according to the first point in
Theorem 3.10, a curvature which is positive in the sense of Nakano. Since

T 1;0Sjs DH 1.T 1;0Xs/ŠH 0.2KXs
/�;

this proves the first statement. To prove the pointwise convergence on S of !.k/ towards !WP it is enough
to prove that

e��
.k/

! e��KE

in L1
loc.X / for X D Xs (since, by definition, it implies the pointwise convergence of the corresponding

Hermitian metrics on ��.LCKX=S /). But this convergence follows from the L1 convergence of �.k/

towards �KE (Theorem 4.14) combined with the fact that J.�.k// is uniformly bounded, as shown in
[Berman et al. 2009] (see Lemma 6.4 therein). Alternatively, it follows immediately from the uniform
convergence in Theorem 4.20 below. �

The convergence in the previous corollary should be compared with the approximation results for the
Weil–Petterson metric for moduli spaces of higher-dimensional manifolds recently obtained in [Keller and
Lukic 2009]. The approximating Kähler metrics !0

k
in that work are related to different balanced metrics,

namely those defined with respect to Donaldson’s original setting [2001] (where �.�/DMA.�/).

Convergence towards the Kähler–Ricci flow.

Theorem 4.18. The following convergence results hold in all settings introduced in the beginning of
Section 4 (i.e., in the (non)normalized ˙KX -settings). Fix a smooth and strictly psh initial weight �0

on˙KX and consider the corresponding Bergman iteration �.k/m at level k and discrete time m, as well
as the corresponding Kähler Ricci flow �t . Then there is a constant A such that

sup
X

j�.k/m ��m=k j �Am=k2 (4-7)

uniformly in .m; k/ satisfying m=k � T (in the KX -setting A is independent of T ). In particular, if mk

is a sequence such that mk=k! t , then �.k/mk
! �.t/ uniformly on X and

ddc�.k/mk
! !t

on X in the sense of currents, where !t evolves according to the corresponding Kähler–Ricci flow (4-2).
The corresponding result also holds for the corresponding nonnormalized flows and in the relative setting,
where the convergence is locally uniform with respect to the base parameter s.

Proof. In the case of the nonnormalized KX -setting (denoted by primed objects) the proof of Theorem 3.15
carries over essentially verbatim, thanks to the last statement in Proposition 4.12 and Corollary 4.3 which
gives the uniformity with respect to T 2 Œ0;1�. To handle the nonnormalized �KX -setting we need to
modify the previous argument slightly. More precisely, we will prove that

sup
X

j�.k/m ��m=k j �A

�
1C

1

k

�m

m=k2: (4-8)
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Accepting this for the moment the claimed convergence when mk=k! t follows using that�
1C

1

k

�m

D

��
1C

1

k

�k�m=k

� em=k
� eT ;

when m=k � T . To prove (4-8) first observe that Step 1 in the proof of Theorem 3.15 still applies for
.m; k/ such that m=k � T (using Proposition 2.11 applied to the nonnormalized �KX -setting). In other
words, there is a constant A (depending on T ) such that

sup
X

ˇ̌
 k;mC1� . k;mCF .k/. k;m//

ˇ̌
�A.1=k2/

for all .m; k/ such that m=k � T . Now we fix the integer k and assume as an induction hypothesis
that (4-7) holds for m with A the constant in the previous inequality. By Proposition 3.13,

sup
X

ˇ̌
. k;mCF .k/. k;m//� .�

.k/
m CF .k/.�.k/m //

ˇ̌
� sup

X

j k;m��
.k/
m j

�
1C

1

k

�
�

�
A
�
1C

1

k

�m
m=k2

��
1C

1

k

�
with the same constant A as above, using the induction hypothesis in the last step. Combining this
estimate with the previous inequality gives

sup
X

j k;mC1��
.k/
mC1
j �A

�
1C

1

k

�mC1
m=k2

CA=k2:

But using that 1� .1C 1
k
/mC1 in the last term above proves the induction step and hence finishes the

proof of the estimate (4-8).
To treat the Kähler–Ricci flows �t in the normalized settings we write

�0t D �t CCt ;

where Ct is a constant for each t . Then

@Ct

@t
D�I˙.�

0
t /: (4-9)

Indeed, by the definition of the flow �0t and �t , we have

@�0t
@t
D log

�
MA.�0t /�˙�

0
t

�
;

@� t

@t
D log

�
MA.� t /�˙�t

�
C˙ I˙.� t /:

By scale invariance we may as well replace �t with �0t on the right side of the second equation above and
hence subtracting the second equation from the first one proves (4-9).

Similarly, writing
.�0/.k/m D �

.k/
m CC .k/

m ;

we obtain the following difference equation, using that the map � 7! �.k/.�/, defined with respect to �˙,
is scale-invariant:

C
.k/
mC1
�C .k/

m D�
1

k
I˙..�

0/.k/m /: (4-10)
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Now, as explained above, the estimate (4-7) holds for the primed objects and hence by the scaling
equivariance of I˙: ˇ̌

I˙.�
0
m=k/� I˙..�

0/.k/m /
ˇ̌
�Am=k2: (4-11)

A simple version of the argument given in the proof of Theorem 4.18 now shows, by comparing the
differential equation (4-9) with the difference equation (4-10) and using (4-11), that

jC .k/
m �Cm=k j � Bm=k2

for a uniform constant B. All in all this hence finishes the proof of the theorem. �

We also have the following analogue of Corollary 3.16:

Corollary 4.19. For a fixed initial data �0 D �
.k/
0
2 H˙KX

the following convergence results hold

for the Bergman iteration �.k/m in the normalized ˙KX -setting (in the �KX -setting it is assumed that
H 0.TX /D 0 and X a priori admits a Kähler–Einstein metric):

� For any sequence mk such that mk=k!1 the convergence �.k/mk
! �1 holds in the L1-topology

on X .

� The balanced weights �.k/1 WD limm!1 �
.k/
m at level k converge, when k!1, in the C1-topology,

to the weight �1 which is the large time limit of the corresponding Kähler–Ricci flow.

Moreover, the convergence in the second point also holds in the nonnormalized KX -setting, where the
limit �1 coincides with the canonical Kähler–Einstein weight �KE. In the relative case all convergence
results hold fiberwise locally uniformly with respect to the base parameter s.

Proof. The proof of the first two points proceeds exactly as in the previous setting (again using the
variational characterization in [Berman et al. 2009]). As for the claimed convergence in the nonnormalized
setting it is obtained by noting that the large m limit .�0/.k/m in the nonnormalized setting is the unique
balanced weight such that I˙..�

0/
.k/
1 / D 0. In other words, .�0/.k/1 D �

.k/
1 � I˙.�

.k/
1 /, where �.k/1 is

the large m limit of the iteration in the normalized setting. But by the second point above this means
that .�0/.k/1 ! �1 � I˙.�1/ in L1 (also using the continuity with respect to the L1-topology of the
functional I˙ on compacts; compare [Berman et al. 2009]). By uniqueness, this means that the limit must
be �KE. �

4D. Uniform convergence of the balanced weights in the KX -setting. Next we point out that in the
KX -setting the convergence of the balanced weights is actually uniform (the proof is independent of the
variational proof of a weaker convergence given in [Berman et al. 2009]). The proof simply uses that �.k/

is close to �tk
where �t is the corresponding Kähler–Ricci flow and tk is a suitable sequence tending to

infinity.

Theorem 4.20. Let �.k/ be the balanced weight at level k on the canonical line bundle KX (in the
nonnormalized setting). When k !1, the weights �.k/ converge uniformly towards the normalized
Kähler–Einstein weight �KE.
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Proof. Fix a smooth and positively curved weight �0 on KX and denote by �.k/m the Bergman iteration at
level k with initial data �.k/

0
D �0. By Proposition 4.12 the map whose iterations define the Bergman

iterations is a contraction mapping with contracting constant q D .1� 1
k
/ < 1 and hence it follows from

the Banach fixed point theorem that�.k/��.k/m


L1
�

qm

.1� q/

�.k/
1
��0


L1

:

By definition we have �.k/
1
� �0 D

1
k

log �.k�/, which, according to Proposition 2.11, is uniformly
bounded by a constant times 1

k
log k; hence

�.k/��.k/m


L1
� C

��
1�

1

k

�k�m=k

log k:

Next we take the sequence mDmk WD Œk
3=2� where Œc� denotes the smallest integer which is larger than c.

Then tk WDmk=k D k1=2!1 as k!1 and since .1� 1
k
/k ! e�1 < 1 we conclude that�.k/m ��0


L1
! 0

as k!1. If now �t denotes the Kähler–Ricci flow in the nonnormalized KX -setting we have, according
to Theorem 4.18, that �.k/m ��mk=k


L1
! 0

using that mk=k2!1. Finally, since �tk
! �KE uniformly as tk !1 this proves the theorem. Of

course, the last convergence is not really needed for the proof as we may as well start with �0 D �KE

which is trivially fixed under the Kähler–Ricci flow. �

It should be pointed out that the uniform convergence in the previous theorem has been previously
obtained by Berndtsson (who also related it to Tsuji’s iteration [Tsuji 2006]), using a different approach —
see the announcement in [Berndtsson 2009c]. But hopefully the relation to the convergence of the
Kähler–Ricci flow above may shed some new light on the convergence.

4E. Families of varieties of general type and comparison with the NS metric. The quantized setting
concerning the case when KX is ample admits a straightforward generalization to the case when KX is
merely Q-effective [Lazarsfeld 2004]. For simplicity we will only discuss the case when KX is big; that
is, X is a nonsingular variety of general type. Moreover, we will no longer assume that the map � is a
submersion. More precisely, we are given a surjective quasiprojective morphism � W X! S between
nonsingular varieties such that the generic fiber is a variety of general type. We denote by S0 the maximal
Zariski open subset of S such that � restricted to X0 WD ��1.S0/ is a submersion, that is, a smooth
morphism (and hence the fibers of S0 are nonsingular varieties of general type).

Let us first consider the general absolute case, where we are given a line bundle L! X and an
integer k such that kL is effective; that is, H 0.X; kL/ ¤ f0g. The main new feature in this more
general setting is that any Bergman weight  k at level k, that is,  k 2 FS.k/.H.k//, will usually have
singularities; that is, it defines a singular metric on L with positive curvature form. More precisely, the
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weight k k on kL is singular precisely along the base locus Bs.kL/ of kL, that is, the intersection of
the zero sets of all elements in H 0.kL/. Anyway, the difference of any two Bergman metrics is clearly
bounded. Moreover, when L D KX the measure � k

WD e k has a smooth density which vanishes
precisely along Bs.kL/. As a consequence, we may fix such a reference (singular) weight �0 WD  k and
the reference measure �0 WD e k . Then Lemma 2.7 still applies (as explained in the remark following
the lemma). As a consequence the proof of the convergence of the Bergman iteration to a balanced
weight at level k in the nonnormalized KX -setting (Theorem 4.14) is still valid as long as kKX is
effective. Combining this latter convergence with the generalizations [Berndtsson and Păun 2008b; 2008a]
of Berndtsson’s theorem (Theorem 3.10) and the invariance of plurigenera [Siu 1998] then gives the
following generalization of Corollary 4.16:

Theorem 4.21. Let � W X! S be a surjective quasiprojective morphism such that the generic fiber is a
variety of general type. Then, for k sufficiently large there is a unique singular weight �.k/ on the relative
canonical line bundle KX=S ! X with positive curvature current, such that the restriction of �.k/ to any
fiber over S0 is a normalized and balanced weight at level k. Moreover, the weight �.k/ is smooth on the
Zariski open set defined as the complement in X of

S
s2S0 Bs.kKXs

/[��1.S �S0/.

Proof. Let us first prove the positivity statement. As before we may assume that S is a domain in C. First
we consider the behavior over the set S0, that is, where the fibration is a submersion. Fix s0 2 S0 and
write X D Xs0

. Let .fi/ be a basis in H 0.X; kKX /. By the invariance of plurigenera [Siu 1998] s0 has a
neighborhood U � S0 with holomorphic sections Fi of kKX=S ! U such that Fi restricts to fi on X .
After perhaps shrinking U we may hence assume that the restrictions of Fi to any fiber give a basis in
H 0.Xs; kKXs

/. Now let �0 WD
1
k

log
�

1
Nk

P
jFi j

2
�

so that �0 is a singular weight on KX=S over U with
positive curvature and such that �0 restricts to a Bergman weight at level k on each fiber. In particular,Z

Xs

jf j2e�.k�1/�0 <1 (4-12)

for any f 2H 0.Xs; kKXs
/. Decomposing, as before, kKX D .k � 1/LCKX with LDKX , but now

using Theorem 3.5 in [Berndtsson and Păun 2008b], shows that the curvature current of the weight
�
.k/
1
WD FS.k/ ıHilb.k/.�0/ on KX=S is positive over U . Since, by definition, �.k/

1
is still fiberwise a

Bergman weight at level k we may iterate the same argument and conclude that �.k/m has a positive
curvature current for any m. Now, as explained in the discussion before the statement of the theorem,

m!1 D) sup
Xs

j�.k/m ��.k/j ! 0;

locally uniformly with respect to s, where �.k/ is the unique normalized fiberwise balanced weight at
level k. In particular, it follows that �.k/ has a curvature current which is positive over S0.

To prove the claimed extension property of �.k/ over S �S0 first note that, writing X DXs for a fixed
fiber,

�.k/ � �
.k/
NS WD log

�
sup

f 2H 0.X ;kKX /

�
jf j2=k

.Z
X

.f ^ Nf /1=k

��
; (4-13)
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where k�
.k/
NS is the weight of the Narasimhan–Simha (NS) metric on kKX=S [Narasimhan and Simha

1968; Kawamata 1982; Tsuji 2011; Berndtsson and Păun 2008a]. Accepting this for the moment we can
use the result in [Berndtsson and Păun 2008a] saying that �.k/NS is locally bounded from above, with a
constant which does not blow up as s converges to a point in S �S0 (this is proved by an L2=k variant of
the local Ohsawa–Takegoshi L2-extension theorem). By the inequality (4-13) it hence follows that �.k/

is also locally bounded from above by the same constant and then the claimed extension property follows
from basic pluripotential theory.

Finally, to prove the inequality (4-13) fix a point x 2X . By the extremal definition of Bergman kernels
there are sections fi (depending on x) such that

�.k/.x/D
1

k
log
�

1

Nk

jf1j
2.x/

�
and �.k/ D

1

k
log
�

1

Nk

X
i

jfi j
2

�
on X . Since

R
X e�

.k/

D 1 it hence follows thatZ
X

�
1

Nk

f1 ^
Nf1

�1=k

� 1;

which finishes the proof of the inequality (4-13), since f1=.Nk/
1=2 is a candidate for the supremum

defining �.k/NS .
As for the last smoothness statement in the theorem it is proved exactly as in Corollary 4.16, using

that ��.kKX=S / is a locally trivial vector bundle over S0. Indeed, it follows as before that the fiberwise
normalized balanced metrics H

.k/
s , which by the local freeness may be identified with a family in GL.Nk/,

form a smooth family. Applying the Fubini–Study map to get �.k/ then introduces the singular locus
described in the statement of the theorem. �

Remark 4.22. If one does not invoke the invariance of plurigenera in the proof of the previous theorem
then the same argument gives the slightly weaker statement where S0 is replaced by the intersection
of S0 with a Zariski open set where ��.kKX=S / is a locally trivial vector bundle. If one could then prove
that the extension of �.k/ is such that the integrability condition (4-12) holds over all of S , then the
invariance of plurigenera would follow from a well-known version of the Ohsawa–Takegoshi extension
theorem. It would be interesting to see if this approach is fruitful in the nonprojective Kähler case where
the invariance of plurigenera is still open. When �.k/ is replaced by the weight of the NS-metric �.k/NS
(see formula (3-14)) this approach was used in [Tsuji 2011] to give a new proof of the invariance of
plurigenera (in the projective case).

It should also be pointed out that (singular) Kähler–Einstein metrics and Kähler–Ricci flows have been
studied recently for KX big. For example, using the deep finite generation of the canonical ring there is a
unique Kähler–Einstein weight with minimal singularities which satisfies the Monge–Ampère equation

.ddc�KE/
n=n!D e�KE

on a Zariski open set in X [Eyssidieux et al. 2009; Boucksom et al. 2010]. It seems likely that the
positivity result in Corollary 4.8 can be extended to families of such singular weights �KE. But there are
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several regularity issues which need to be dealt with. Moreover, it also seems likely that the canonical
balanced weights �.k/ converge to �KE, when KX is big, but this would require a generalization of
the convergence results in [Berman et al. 2009] (which only concern ample line bundles). This latter
conjectural convergence should be compared with the convergence of the weight of the NS-metrics proved
in [Berman and Demailly 2012], saying that �.k/NS converges in L1 (and uniformly on compacts of an
Zariski open set) to

�can WD sup
�
 W

Z
X

e D 1

�
;

where the sup is taken over all singular weights  on KX with positive curvature current. In particular,
�KE � �can, which is consistent with the inequality (4-13).

4F. Comparison with the constant scalar curvature and other settings. Given an ample line bundle L!

X the absolute setting when �.�/ WD .ddc�/n=n! was studied in depth by Donaldson [2001; 2005]. Of
course, in this setting the Kähler–Ricci flow is trivial, but the corresponding quantized setting and the
study of its large k limit is highly nontrivial. In fact, it was shown in [Donaldson 2001] that, if it is a priori
assumed that c1.L/ contains a Kähler metric ! with constant scalar curvature and if H 0.TX /Df0g, then
the curvature forms of any sequence of balanced weights converge in the C1-topology to !. Moreover,
Donaldson showed that such balanced weights do exist for k sufficiently large. As earlier shown by Zhang
this latter fact is equivalent to the polarized variety .X; kL/ being stable in the sense of Chow–Mumford
(with respect to a certain action of the group SL.Nk/). An explicit proof of the convergence of the
Bergman iteration in this setting was given in [Sano 2006] (see also [Donaldson 2005]).

Note that in this setting the functional I� is precisely the functional E (compare the beginning of
Section 2). Since E is well-known to be concave on HL with respect to the affine structure and E ı FS is
geodesically convex on H.k/ the convergence of the corresponding Bergman iteration is also a consequence
of Proposition 2.9.

It should also be pointed out that the role of the Kähler–Ricci flow of Kähler metrics in this setting is
played by the Calabi flow. Indeed, as shown in [Fine 2010], the balancing flow, which is a continuous
version of Donaldson’s iteration, converges, at the level of Kähler metrics, in the large k limit to the
Calabi flow. More precisely, the balancing flow H

.k/
t is simply the scaled gradient flow on the symmetric

space H.k/ of the functional F.k/ in this setting and the convergence holds for the curvature forms of the
weights FS.k/.Ht / in HL.

Remark 4.23. Another, less studied, setting of geometric relevance (see [Berndtsson 2009b]) appears
when we let

�.�/ WD
1

Nl

NlX
iD1

fi ^
Nfie
�l�

for a fixed integer l where fi is an orthonormal basis for H 0.lLCKX / equipped with the Hermitian metric
induced by �. When LD�KX and l D 1 this is precisely the normalized �KX -setting. In the general
case I�.�/ is essentially the induced metric on the top exterior power of the Hilbert space H 0.lLCKX /.
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Moreover, as soon as the corresponding functional F
.k/
� has a critical point and H 0.TX / D f0g the

assumptions for convergence in Proposition 2.9 are satisfied (see [Berndtsson 2009b]).
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Sharp resolvent bounds for nonselfadjoint semiclassical elliptic quadratic differential operators are
established, in the interior of the range of the associated quadratic symbol.
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1. Introduction and statement of result

It is well known that the spectrum of a nonselfadjoint operator does not control its resolvent, and that
the latter may become very large even far from the spectrum. Understanding the behavior of the norm
of the resolvent of a given nonselfadjoint operator is therefore a natural and basic problem, which has
recently received considerable attention, in particular, within the circle of questions around the notion of
the pseudospectrum [Trefethen and Embree 2005]. Some general upper bounds on resolvents are provided
by abstract operator theory, and, restricting our attention to the setting of semiclassical pseudodifferential
operators on Rn , relevant for this note, we recall a rough statement of such bounds, following [Dencker et al.
2004; Markus 1988; Viola 2012]. Assume that P = pw(x, h Dx) is the semiclassical Weyl quantization
on Rn of a complex-valued smooth symbol p with Re p ≥ 0, belonging to a suitable symbol class and
satisfying an ellipticity condition at infinity, guaranteeing that the spectrum of P is discrete in a small
neighborhood of the origin. Then the norm of the L2-resolvent of P is bounded from above by a quantity
of the form O(1) exp(O(1)h−n), provided that z ∈ neigh(0,C) is not too close to the spectrum of P .
On the other hand, the available lower bounds on the resolvent of P , coming from the pseudospectral
considerations, are typically of the form C−1

N h−N , N ∈ N, or (1/C)e1/(Ch), provided that p enjoys some
analyticity properties [Dencker et al. 2004]. Therefore, there appears to be a substantial gap between
the available upper and lower bounds on the resolvent, especially when n ≥ 2. The purpose of this note
is to address the issue of bridging this gap in the particular case of an elliptic quadratic semiclassical
differential operator on Rn , and to establish a sharp upper bound on the norm of its resolvent.

Sjöstrand has benefited from support from the Agence Nationale de la Recherche under the references JC05-52556 and
ANR-08-BLAN-0228-01, as well as a FABER grant from the Conseil régional de Bourgogne.
MSC2010: 15A63, 35P05, 47A10, 53D22.
Keywords: nonselfadjoint operator, resolvent estimate, spectrum, quadratic differential operator, FBI-Bargmann transform.
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Let q be a complex-valued quadratic form:

q : Rn
x ×Rn

ξ → C, (x, ξ) 7→ q(x, ξ). (1-1)

We shall assume throughout the following discussion that the quadratic form q is elliptic on R2n , in the
sense that q(X)= 0, X ∈ R2n , precisely when X = 0. In this case, according to Lemma 3.1 of [Sjöstrand
1974], if n > 1, there exists λ ∈ C, λ 6= 0, such that Re(λq) is positive definite. In the case when n = 1,
the same conclusion holds, provided that the range of q on R2 is not all of C [Sjöstrand 1974; Hitrik
2004], which we assume in what follows. After a multiplication of q by λ, we may and do henceforth
assume that λ= 1, so that

Re q > 0. (1-2)

It follows that the range 6(q) = q(R2n) of q on R2n is a closed angular sector with a vertex at zero,
contained in the union of {0} and the open right half-plane.

Associated to the quadratic form q is the semiclassical Weyl quantization qw(x, h Dx), 0 < h ≤ 1,
which we view as a closed densely defined operator on L2(Rn), equipped with the domain

{u ∈ L2(Rn) : qw(x, h Dx)u ∈ L2(Rn)}.

The spectrum of qw(x, h Dx) is discrete, and following [Sjöstrand 1974], we shall now recall its explicit
description. See also [Boutet de Monvel 1974]. To that end, let us introduce the Hamilton map F of q ,

F : C2n
→ C2n,

defined by the identity

q(X, Y )= σ(X, FY ), X, Y ∈ C2n. (1-3)

Here the left-hand side is the polarization of q , viewed as a symmetric bilinear form on C2n , and σ is the
complex symplectic form on C2n . We notice that the Hamilton map F is skew-symmetric with respect to
σ , and, furthermore,

FY = 1
2 Hq(Y ), (1-4)

where Hq = q ′ξ · ∂x − q ′x · ∂ξ is the Hamilton field of q .
The ellipticity condition (1-2) implies that the spectrum of the Hamilton map F avoids the real axis,

and, in general, we know from Section 21.5 of [Hörmander 1985] that if λ is an eigenvalue of F , so is
−λ, and the algebraic multiplicities agree. Let λ1, . . . , λn be the eigenvalues of F , counted according to
their multiplicity, such that λ j/ i ∈6(q), j = 1, . . . , n. Then the spectrum of the operator qw(x, h Dx) is
given by the eigenvalues of the form

h
n∑

j=1

λ j

i
(2ν j,`+ 1), ν j,` ∈ N∪ {0}. (1-5)

We notice that Spec(qw(x, h Dx))⊂6(q), and from [Pravda-Starov 2007] we also know that

Spec(qw(x, h Dx))∩ ∂6(q)=∅,

provided that the operator qw(x, h Dx) is not normal.
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Here is the main result of this work.

Theorem 1.1. Let q : Rn
x ×Rn

ξ → C be a quadratic form such that Re q is positive definite. Let �b C.
There exists h0 > 0, and for every C > 0 there exists A > 0 such that

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤ A exp(Ah−1), (1-6)

for all h ∈ (0, h0], and all z ∈ �, with dist
(
z,Spec(qw(x, h Dx))

)
≥ 1/C. Furthermore, for all C > 0,

L ≥ 1, there exists A > 0 such that for h ∈ (0, h0], we have

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤ A exp

(
Ah−1 log 1

h

)
, (1-7)

if the spectral parameter z ∈� is such that

dist
(
z,Spec(qw(x, h Dx))

)
≥ hL/C.

Remark 1.2. Assume that the elliptic quadratic form q, with Re q > 0, is such that the Poisson bracket
{Re q, Im q} does not vanish identically, and let z ∈ 6(q)o, z /∈ Spec(qw(x, h Dx)). Here 6(q)o is the
interior of 6(q). Then it follows from the results of [Dencker et al. 2004; Pravda-Starov 2008] that we
have the following lower bound for (qw(x, h Dx)− z)−1, as h→ 0:

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≥

1
C0

e1/(C0h), C0 > 0.

It follows that the upper bound (1-6) is of the right order of magnitude, when z ∈ 6(q)o ∩�, |z| ∼ 1,
avoids a closed cone ⊂6(q)∪ {0}, containing the spectrum of qw(x, h Dx).

Remark 1.3. In Section 4, we give a simple example of an elliptic quadratic operator on R2, for which
the associated Hamilton map has a nonvanishing nilpotent part in its Jordan decomposition, and whose
resolvent exhibits the superexponential growth given by the right-hand side of (1-7), in the region of
the complex spectral plane where |z| ∼ 1, dist

(
z,Spec(qw(x, h Dx))

)
∼ h. On the other hand, sharper

resolvent estimates can be obtained when the Hamilton map F of q is diagonalizable. In this case, we
shall see in Section 4 that the bound (1-7) improves to the following, when z ∈� and h ∈ (0, h0]:

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤

AeA/h

dist
(
z,Spec(qw(x, h Dx))

) . (1-8)

Remark 1.4. Let z0 ∈ Spec(qw(x, h Dx))∩� and let

5z0 =
1

2π i

∫
∂D
(z− qw(x, h Dx))

−1 dz

be the spectral projection of qw(x, h Dx), associated to the eigenvalue z0. Here D ⊂� is a small open
disc centered at z0, such that the closure D avoids the set Spec(qw(x, h Dx))\{z0}, and ∂D is its positively
oriented boundary. Assume for simplicity that the quadratic form q is such that its Hamilton map is
diagonalizable. Then it follows from (1-8) that

5z0 = O(1) exp(O(1)h−1) : L2(Rn)→ L2(Rn).
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In the context of elliptic quadratic differential operators in dimension one, resolvent bounds have been
studied in particular, in [Boulton 2002; Davies 2000; Davies and Kuijlaars 2004]. We should also mention
the general resolvent estimates in [Dencker et al. 2004; Sjöstrand 2010], valid for h-pseudodifferential
operators when the spectral parameter is close to the boundary of the range of the corresponding symbol.

The plan of this note is as follows. In Section 2, we make an essentially well-known reduction of our
problem to the setting of a quadratic differential operator acting in a Bargmann space of holomorphic
functions, convenient for the subsequent analysis. Section 3 is devoted to suitable a priori elliptic
estimates, valid for holomorphic functions vanishing to a high, h-dependent order at the origin. The proof
of Theorem 1.1 is completed in Section 4 by some elementary considerations in the space of holomorphic
polynomials on Cn , of degree not exceeding O(h−1).

2. The normal form reduction

We shall be concerned here with a quadratic form q : T ∗Rn
→ C, such that Re q is positive definite. Let

F be the Hamilton map of q , introduced in (1-3). When λ ∈ Spec(F), we let

Vλ = Ker((F − λ)2n)⊂ T ∗Cn (2-1)

be the generalized eigenspace belonging to the eigenvalue λ. The symplectic form σ is then nondegenerate
viewed as a bilinear form on Vλ× V−λ.

We introduce the stable outgoing manifold for the Hamilton flow of the quadratic form i−1q , given by

3+ :=
⊕

Im λ>0

Vλ ⊂ T ∗Cn. (2-2)

It is then true that 3+ is a complex Lagrangian plane such that q vanishes along 3+, and Proposition 3.3
of [Sjöstrand 1974] states that the complex Lagrangian 3+ is strictly positive in the sense that

1
i
σ(X, X) > 0, 0 6= X ∈3+. (2-3)

We also define

3− =
⊕

Im λ<0

Vλ ⊂ T ∗Cn, (2-4)

which is a complex Lagrangian plane such that q vanishes along3−, and from the arguments of [Sjöstrand
1974] we also know that 3− is strictly negative in the sense that

1
i
σ(X, X) < 0, 0 6= X ∈3−. (2-5)

The complex Lagrangians 3+ and 3− are transversal, and following [Helffer and Sjöstrand 1984;
Sjöstrand 1987], we would like to implement a reduction of the quadratic form q to a normal form by
applying a linear complex canonical transformation which reduces 3+ to {(x, ξ) ∈ C2n

: ξ = 0} and 3−

to {(x, ξ) ∈ C2n
: x = 0}. We shall then be able to implement the canonical transformation in question

by an FBI–Bargmann transform. Let us first simplify q by means of a suitable real linear canonical
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transformation. When doing so, we observe that the fact that the Lagrangian 3− is strictly negative
implies that it is of the form

η = A−y, y ∈ Cn,

where the complex symmetric n × n matrix A− is such that Im A− < 0. Here (y, η) are the standard
canonical coordinates on T ∗Rn

y that we extend to the complexification T ∗Cn
y . Using the real linear

canonical transformation (y, η) 7→ (y, η− (Re A−)y), we reduce 3− to the form η= i Im A−y, and by a
diagonalization of Im A−, we obtain the standard form η =−iy. After this real linear symplectic change
of coordinates and the conjugation of the semiclassical Weyl quantization qw(x, h Dx) of q by means of
the corresponding unitary metaplectic operator, we may assume that 3− is of the form

η =−iy, y ∈ Cn, (2-6)

while the positivity property of the complex Lagrangian 3+ is unaffected, so that, in the new real
symplectic coordinates, extended to the complexification, 3+ is of the form

η = A+y, Im A+ > 0. (2-7)

Let

B = B+ = (1− i A+)−1 A+, (2-8)

and notice that the matrix B is symmetric. Let us introduce the FBI–Bargmann transform

T u(x)= Ch−3n/4
∫

eiϕ(x,y)/hu(y) dy, x ∈ Cn, C > 0, (2-9)

where

ϕ(x, y)= i
2
(x − y)2− 1

2
(Bx, x). (2-10)

The associated complex linear canonical transformation on C2n

κT : (y,−ϕ′y(x, y)) 7→ (x, ϕ′x(x, y)) (2-11)

is of the form

κT : (y, η) 7→ (x, ξ)= (y− iη, η+ i Bη− By), (2-12)

and we see that the image of 3− : η =−iy under κT is the fiber {(x, ξ) ∈ C2n
: x = 0}, while κT (3

+) is
given by the equation {(x, ξ) ∈ C2n

: ξ = 0}.
We know from [Sjöstrand 1996] that for a suitable choice of C > 0 in (2-9), the map T is unitary:

T : L2(Rn)→ H80(C
n), (2-13)

where

H80(C
n)= Hol (Cn)∩ L2(Cn

: e−280/h L(dx)),

and 80 is a strictly plurisubharmonic quadratic form on Cn , given by

80(x)= supy∈Rn (− Imϕ(x, y))= 1
2((Im x)2+ Im(Bx, x)). (2-14)
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We also recall [Sjöstrand 1996] that the canonical transformation κT in (2-11) maps R2n bijectively onto

380 :=

{(
x,

2
i
∂80

∂x
(x)
)
: x ∈ Cn

}
. (2-15)

As explained in Chapter 11 of [Sjöstrand 1982], the strict positivity of κT (3
+)= {(x, ξ) ∈ C2n

: ξ = 0}
with respect to 380 implies that the quadratic weight function 80 is strictly convex, so that

80(x)∼ |x |2, x ∈ Cn. (2-16)

Next we have the exact Egorov property [Sjöstrand 1996],

T qw(y, h Dy)u = q̃w(x, h Dx)T u, u ∈ S(Rn), (2-17)

where q̃ is a quadratic form on C2n given by q̃ = q ◦ κ−1
T . Therefore it follows that

q̃(x, ξ)= Mx · ξ, (2-18)

where M is a complex n× n matrix. We have

Hq̃ = Mx · ∂x −M tξ · ∂ξ ,

and using (1-4), we see that the corresponding Hamilton map

F̃ = 1
2

(
M 0
0 −M t

)
maps (x, 0) ∈ κT (3

+) to (1/2)(Mx, 0). Now F and F̃ are isospectral, and we conclude that, with the
agreement of algebraic multiplicities, the following holds:

Spec(M)= Spec(2F)∩ {Im λ > 0}. (2-19)

Therefore the problem of estimating the norm of the resolvent of qw(x, h Dx) on L2(Rn) is equivalent to
controlling the norm of the resolvent of the quadratic operator q̃w(x, h Dx), acting in the space H80(C

n),
where the quadratic weight 80 enjoys the property (2-16).

In what follows, it will be convenient to reduce the matrix M in (2-18) to its Jordan normal form.
To this end, let us notice that we can implement this reduction by considering a complex canonical
transformation of the form

κC : C
2n
3 (x, ξ) 7→ (C−1x,C tξ) ∈ C2n, (2-20)

where C is a suitable invertible complex n×n matrix. On the operator level, associated to the transformation
in (2-20), we have the operator u(x) 7→ |det C |u(Cx), which maps the space H80(C

n) unitarily onto
the space H81(C

n), where 81(x) = 80(Cx) is a strictly plurisubharmonic quadratic weight such that
κC(380)=381 . We notice that the property

81(x)∼ |x |2, x ∈ Cn (2-21)

remains valid.
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We summarize the discussion pursued in this section in the following result.

Proposition 2.1. Let q : Rn
x ×Rn

ξ → C be a quadratic form with Re q > 0. The operator

qw(x, h Dx) : L2(Rn)→ L2(Rn),

equipped with the domain

D(qw(x, h Dx))= {u ∈ L2(Rn) : (x2
+ (h Dx)

2)u ∈ L2(Rn)},

is unitarily equivalent to the quadratic operator

q̃w(x, h Dx) : H81(C
n)→ H81(C

n),

with the domain

D(q̃w(x, h Dx))= {u ∈ H81(C
n) : (1+ |x |2)u ∈ L2

81
(Cn)}.

Here

q̃(x, ξ)= Mx · ξ,

where M is a complex n× n block-diagonal matrix, each block being a Jordan matrix. The eigenvalues of
M are precisely those of 2F in the upper half-plane, and the quadratic weight function 81(x) satisfies

81(x)∼ |x |2, x ∈ Cn.

We have the ellipticity property

Re q̃
(

x,
2
i
∂81

∂x
(x)
)
∼ |x |2, x ∈ Cn. (2-22)

Remark 2.2. The normal form reduction described in Proposition 2.1 is close to the corresponding
discussion of Section 3 in [Sjöstrand 1974]. Here, for future computations, it will be convenient for us to
work in the Bargmann space H81(C

n).

3. An elliptic estimate

Following the reduction of Proposition 2.1, here we concern ourselves with the quadratic operator
q̃w(x, h Dx), acting on H81(C

n). The purpose of this section is to establish a suitable a priori estimate
for holomorphic functions, vanishing to a high, h-dependent order at the origin, instrumental in the proof
of Theorem 1.1. The starting point is the following observation, which comes directly from Lemma 4.5
in [Gérard and Sjöstrand 1987], and whose proof we give only for the convenience of the reader.

Lemma 3.1. Let u ∈ Hol(Cn) and assume that ∂αu(0)= 0, |α|< N , and that 0< C0 < C1 <∞. Then

‖u‖L∞(B(0,C0)) ≤

(
N

C1

C1−C0

)(
C0

C1

)N

‖u‖L∞(B(0,C1)). (3-1)

Here B(0,C j )= {x ∈ Cn
: |x | ≤ C j }, j = 0, 1.
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Proof. By Taylor’s formula, we have

u(x)=
∫ 1

0

(1− t)N−1

(N − 1)!

( d
dt

)N
u(t x) dt.

We may assume that |x | = C0 and apply Cauchy’s inequalities so that∣∣∣( d
dt

)N
u(t x)

∣∣∣≤ C N
0 N !

(C1−C0t)N ‖u‖L∞(B(0,C1)).

It suffices therefore to remark that the expression

N
∫ 1

0

(1− t)N−1

(C1/C0− t)N dt

does not exceed
N

C1/C0−1

(
C0

C1

)N−1

. �

Let K > 0 be fixed and assume that u ∈ H81(C
n) is such that ∂αu(0) = 0, when |α| < N . Using

Lemma 3.1, we write

‖u‖2H81 (B(0,K ))
≤ ‖u‖2L2(B(0,K ))

≤ OK (1)‖u‖2L∞(B(0,K )) ≤ OK (1)N 2e−2N
‖u‖2L∞(B(0,K e))

≤ OK (1)N 2e−2N
‖u‖2L2(B(0,(K+1)e)) ≤ OK (1)N 2e−2N e(2/h)C1(K+1)2e2

‖u‖2H81
. (3-2)

In the last inequality we used that 81(x)≤ C1|x |2 for some C1 ≥ 1. It follows that

‖u‖H81 (B(0,K )) ≤ OK (1)e−1/2h
‖u‖H81

, (3-3)

provided that the integer N satisfies

N ≥
2C1(K + 1)2e2

+ 1
h

. (3-4)

In what follows, we shall let N0 = N0(K ) ∈ N, N0 ∼ h−1, be the least integer which satisfies (3-4).
It is now easy to derive an a priori estimate for functions in H81(C

n), which vanish to a high order at
the origin. Let χ ∈ C∞0 (C

n), 0≤ χ ≤ 1, be such that supp (χ)⊂ {x ∈ Cn
: |x | ≤ K }, with χ(x)= 1 for

|x | ≤ K/2. If u ∈ H81(C
n) is such that (1+ |x |2)u ∈ L2

81
(Cn), we have the quantization-multiplication

formula [Sjöstrand 1990], valid for z in a compact subset of C,

((1−χ)(q̃w(x, h Dx)− z)u, u)L2
81

=

∫
(1−χ(x))

(
q̃
(

x,
2
i
∂81

∂x
(x)
)
− z

)
|u(x)|2e−281(x)/h L(dx)+O(h)‖u‖2H81

.

The ellipticity property

Re q̃
(

x,
2
i
∂81

∂x
(x)
)
≥
|x |2

C0
, x ∈ Cn, (3-5)

valid for some C0 > 1, implies that, on the support of 1−χ , we have
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Re
(

q̃
(

x,
2
i
∂81

∂x
(x)
)
− z

)
≥
|x |2

2C0
,

provided that |z| ≤ K 2/8C0. Restricting the attention to this range of z’s and using the Cauchy–Schwarz
inequality, we obtain that∫

(1−χ(x))|u(x)|2e−281(x)/h L(dx)≤ OK (1)‖(q̃w(x, h Dx)− z)u‖H81
‖u‖H81

+OK (h)‖u‖2H81
. (3-6)

If u ∈ H81(C
n), (1+|x |2)u ∈ L2

81
(Cn), is such that ∂αu(0)= 0 for all α ∈Nn with |α|< N0, an application

of (3-3) shows that the left-hand side of (3-6) is of the form

‖u‖2H81
+OK (h∞)‖u‖2H81

.

We may summarize the discussion so far in the following proposition.

Proposition 3.2. Let K > 0 be fixed and assume that u ∈ H81(C
n), (1+ |x |2)u ∈ L2

81
(Cn), is such that

∂αu(0)= 0, |α|< N0, where N0 ∼ h−1 is the least integer such that

N0 ≥
2C1(K + 1)2e2

+ 1
h

.

Here 81(x)≤ C1|x |2, C1 ≥ 1. Assume also that |z| ≤ K 2/8C0, where C0 > 1 is the ellipticity constant in
(3-5). Then we have the following a priori estimate, valid for all h > 0 sufficiently small:

‖u‖H81
≤ O(1)‖(q̃w(x, h Dx)− z)u‖H81

.

We finish this section by discussing norm estimates for the linear continuous projection operator

τN : H81(C
n)→ H81(C

n),

given by

τN u(x)=
∑
|α|<N

(α!)−1(∂αu(0))xα. (3-7)

As in Proposition 3.2, we shall be concerned with the case when N ∈N satisfies N ∼ h−1. The projection
operator τN is highly nonorthogonal — nevertheless, using the strict convexity of the quadratic weight 81,
establishing an exponential upper bound on its norm will be quite straightforward, as well as sufficient
for our purposes. In the following, we shall use the fact that

1
C1
|x |2 ≤81(x)≤ C1|x |2, C1 ≥ 1. (3-8)

Notice also that [τN , q̃w(x, h Dx)] = 0.

Proposition 3.3. Assume that N ∈ N is such that Nh ≤ O(1). There exists a constant C > 0 such that

‖τN‖L(H81 (C
n),H81 (C

n)) ≤ CeC/h . (3-9)
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Proof. We first observe that when deriving the bound (3-9), it suffices to restrict the attention to the space
of holomorphic polynomials, which is dense in H81(C

n). Indeed, the analysis in [Sjöstrand 1974] tells us
that the linear span of the generalized eigenfunctions of the quadratic operator qw(x, h Dx) is dense in
L2(Rn), which implies the density of the holomorphic polynomials in H81(C

n). Let

u(x)=
∑
|α|≤N1

aαxα (3-10)

for some N1, where we may assume that N1 > N . We have

τN u =
∑
|α|<N

aαxα,

and therefore, using (3-8), we see that

‖τN u‖2H81
≤ ‖τN u‖2H8` , (3-11)

where 8`(x)= |x |2/C1. When computing the expression in the right-hand side of (3-11), we notice that
since 8` is radial, we have

(xα, xβ)H8` = 0, α 6= β,

while

(xα, xα)H8` =

n∏
j=1

∫
|x j |

2α j e−2|x j |
2/C1h L(dx j ),

which is immediately seen to be equal to (
C1h

2

)n+|α|

πnα!.

It follows that

‖τN u‖2H81
≤

∑
|α|<N

|aα|2
(

C1h
2

)n+|α|

πnα!. (3-12)

On the other hand, (3-8) also gives that

‖u‖2H81
≥ ‖u‖2H8u

, (3-13)

where 8u(x)=C1|x |2, and arguing as above, it is straightforward to see that the right-hand side of (3-13)
is given by the expression ∑

|α|≤N1

|aα|2
( h

2C1

)n+|α|
πnα!.

We conclude that when u ∈ H81(C
n) is a holomorphic polynomial of the form (3-10),

‖u‖2H81
≥

∑
|α|<N

|aα|2
( h

2C1

)n+|α|
πnα!. (3-14)

Combining (3-12), (3-14), and recalling the fact that Nh≤O(1), we obtain the result of the proposition. �
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4. The finite-dimensional analysis and end of the proof

In this section we analyze the resolvent of the quadratic operator q̃w(x, h Dx) acting on the finite-
dimensional space Im τN , where τN is the projection operator introduced in (3-7) and N ∼ h−1. This will
allow us to complete the proof of Theorem 1.1. For m = 0, 1, . . . , define the finite-dimensional subspace
Em ⊂ H81(C

n) as the linear span of the monomials xα, with |α| = m. We have

Im τN =

N−1⊕
m=0

Em .

We may notice here that

νm := dim Em =
1

(n− 1)!
(m+ 1) · · · (m+ n− 1), (4-1)

and also that each space Em is invariant under q̃w(x, h Dx). We shall equip Im τN with the basis

ϕα(x) := (πnα!)−1/2h−n/2(h−1/2x)α, |α|< N , (4-2)

which will be particularly convenient in the following computations, since the normalized monomials ϕα
form an orthonormal basis in the weighted space H8(Cn), where 8(x)= (1/2)|x |2. We have

Im τN ⊂ H81(C
n)∩ H8(Cn),

in view of the strict convexity of the weights.
Let us first derive an upper bound on the norm of the inverse of the operator

z− q̃w(x, h Dx) : Em→ Em, 0≤ m < N ∼ h−1,

assuming that Em has been equipped with the H8-norm. Let λ1, . . . , λn be the eigenvalues of the Hamilton
map F of q in the upper half-plane, repeated according to their algebraic multiplicity. According to
Proposition 2.1, we then have

q̃w(x, h Dx)= q̃wD(x, h Dx)+ q̃wN (x, h Dx),

where

q̃wD(x, h Dx)=

n∑
j=1

2λ j x j h Dx j +
h
i

n∑
j=1

λ j , (4-3)

is the diagonal part, while

q̃wN (x, h Dx)=

n−1∑
j=1

γ j x j+1h Dx j , γ j ∈ {0, 1}, (4-4)

is the nilpotent one. It is also easily seen that the operators q̃wD(x, h Dx) and q̃wN (x, h Dx) commute. It
will be important for us to have an estimate of the order of nilpotency of the operator q̃wN (x, h Dx) acting
on the space Em .
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Lemma 4.1. Let n ≥ 2, m ≥ 1, and let Em(n) be the space of homogeneous polynomials of degree m in
the variables x1, x2, . . . , xn . The operator

N :=

n−1∑
j=1

x j+1∂x j : Em(n)→ Em(n)

is nilpotent of order m(n− 1)+ 1.

Proof. When α = (α1, . . . , αn), |α| = m, let us write

S(α)=
n∑

j=1

jα j ,

and notice that m ≤ S(α)≤ nm. We have

Nxα =
∑
|α′|=m

S(α′)=S(α)+1

cα′xα
′

,

and similarly for powers Npxα , but with S(α′)= S(α)+ p. It follows that Nm(n−1)+1xα must vanish, as

S(α′)= S(α)+m(n− 1)+ 1≥ mn+ 1

is impossible. We also notice that Nm(n−1)xm
1 = Cxm

n 6= 0, for some C 6= 0. �

In what follows, we shall only use that the operator q̃wN (x, h Dx) : Em→ Em is nilpotent of order O(m),
with the implicit constant depending on the dimension n only.

It is now straightforward to derive a bound on the norm of the inverse of the operator

z− q̃w(x, h Dx) : Em→ Em,

when the space Em is equipped with the H8-norm. The matrix D(m) of the operator q̃wD(x, h Dx) with
respect to the basis ϕα, |α| = m, is diagonal, with the eigenvalues of q̃w(x, h Dx),

µα =
h
i

n∑
j=1

λ j (2α j + 1), |α| = m,

along the diagonal. On the other hand, using (4-2), we compute

x j+1∂x jϕα = α
1/2
j (α j+1+ 1)1/2ϕα−e j+e j+1, 1≤ j ≤ n− 1,

where α = (α1, . . . , αn) and e1, . . . , en is the canonical basis in Rn . It follows that

q̃wN (x, h Dx)ϕα =

n−1∑
j=1

−ihγ jα
1/2
j (α j+1+ 1)1/2ϕα−e j+e j+1, (4-5)

and hence the entries (N(m)α,β)=
(
(q̃wN (x, h Dx)ϕβ, ϕα)

)
, |α| = |β| =m, of the matrix N(m) :Cνm→Cνm

of q̃wN (x, h Dx) : Em→ Em with respect to the basis {ϕα}, are bounded in modulus by

hα1/2
j (α j+1+ 1)1/2 ≤ h(m+ 1)≤ O(1),
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since |α| = m and m does not exceed N = O(h−1). Furthermore, from (4-5), it follows that the matrix
N(m) has no more than n−1 nonzero entries in any column, and a similar reasoning shows that each row
of N(m) also has no more than n−1 nonzero entries. Since we have just seen that the entries in N(m) are
O(1), an application of Schur’s lemma shows that that the operator norm of N(m) on Cνm does not exceed(

sup
β

∑
α

|N(m)α,β |
)1/2(

sup
α

∑
β

|N(m)α,β |
)1/2

≤ O(1).

Now the inverse of the νm × νm matrix

z−D(m)−N(m) : Cνm → Cνm

is given by

(z−D(m))−1
∞∑
j=0

(
(z−D(m))−1N(m)

) j
, (4-6)

and according to Lemma 4.1 and the fact that
[
q̃wD(x, h Dx), q̃wN (x, h Dx)

]
= 0, we know that the Neumann

series in (4-6) is finite, containing at most O(m) terms. It follows that

(z−D(m)−N(m))−1
=

exp(O(m))
d(z, σm)O(m)

: Cνm → Cνm , (4-7)

where d(z, σm)= inf|α|=m |z−µα| is the distance from z ∈C to the set of eigenvalues {µα} of q̃w(x, h Dx),
restricted to Em .

Using the fact that Im τN is the orthogonal direct sum of the spaces Em , 0 ≤ m ≤ N − 1, we may
summarize the discussion so far in the following result.

Proposition 4.2. Assume that N ∈N is such that Nh≤O(1), and let us equip the finite-dimensional space
Im τN ⊂ H81(C

n)∩ H8(Cn) with the H8-norm, where 8(x) = (1/2)|x |2. Assume that z ∈ C satisfies
dist(z,Spec(q̃w(x, h Dx)))≥ hL/C , for some C > 0, L ≥ 1. Then we have

(z− q̃w(x, h Dx))
−1
= O(1) exp

(
O(1)h−1 log 1

h

)
: Im τN → Im τN . (4-8)

Assuming that dist
(
z,Spec(q̃w(x, h Dx))

)
≥ 1/C , the bound (4-8) improves to

(z− q̃w(x, h Dx))
−1
= O(1) exp(O(1)h−1) : Im τN → Im τN . (4-9)

Remark 4.3. Assume that the quadratic form q is such that the nilpotent part in the Jordan decomposition
of the Hamilton map F is trivial. The quadratic operator q̃w(x, h Dx) acting on H8(Cn) is then normal,
and therefore, the estimate (4-8) improves to

‖(z− q̃w(x, h Dx))
−1
‖L(Im τN ,Im τN ) ≤

1
dist

(
z,Spec(q̃w(x, h Dx))

) .
Example 4.4. Let n = 2. Consider the semiclassical Weyl quantization of the elliptic quadratic form

q̃(x, ξ)= 2λ
2∑

j=1

x jξ j + x2ξ1, λ=
i
2
,
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acting on H8(C2). The eigenvalues of q̃w(x, h Dx) are of the form µα = h(|α| + 1), |α| ≥ 0, and writing

q̃wD(x, h Dx)= 2λ
2∑

j=1

x j h Dx j +
2λh

i
, q̃wN (x, h Dx)= x2h Dx1,

we have

q̃wD(x, h Dx)ϕα = µαϕα,

and

q̃wN (x, h Dx)ϕα =−ih(α1(α2+ 1))1/2ϕα−e1+e2, (4-10)

where the ϕα were introduced in (4-2).

Let |α| = m, and let us write, following (4-6),

(q̃w(x, h Dx)− z)−1ϕα = (µα − z)−1
m∑

j=0

(µα − z)− j (q̃wN (x, h Dx))
jϕα. (4-11)

It is then natural to take α = (m, 0), and using (4-10), a straightforward computation shows that, for
0≤ j ≤ m,

(q̃wN (x, h Dx))
jϕ(m,0) = (−ih) j

√
j !m!

(m− j)!
ϕ(m− j, j).

Let z = 1 and take m = h−1
∈ N so that µα − z = h. By Parseval’s formula,

‖(q̃w(x, h Dx)− z)−1ϕ(m,0)‖
2
H8 =

m∑
j=0

h−2h−2 j h2 j j !m!
(m− j)!

, (4-12)

and the right-hand side can be estimated from below simply by discarding all terms except when j = m.
An application of Stirling’s formula shows that

‖(q̃w(x, h Dx)− z)−1ϕ(m,0)‖H8 ≥ m! ≥ exp
( 1

2h
log 1

h

)
,

for all h > 0 sufficiently small, and therefore, we see that the result of Proposition 4.2 cannot be improved.
Let us finally notice that, as can be checked directly, the quadratic operator q̃w(x, h Dx) acting on H8(C2)

is unitarily equivalent, via an FBI-Bargmann transform, to the quadratic operator

q(x, h Dx) : L2(Rn)→ L2(Rn),

of the form

q(x, h Dx)= q0(x, h Dx)−
i
2

a∗2a1,

where

q0(x, h Dx)=−
1
2 h21+ 1

2 x2
=

1
2(a
∗

1a1+ a∗2a2)+ h

is the semiclassical harmonic oscillator, while

a∗j = x j − h∂x j , a j = x j + h∂x j , j = 1, 2
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are the creation and annihilation operators, respectively. See also [Caliceti et al. 2007].
We shall now complete the proof of Theorem 1.1 in a straightforward manner, combining our ear-

lier computations and estimates. Elementary considerations analogous to those used in the proof of
Proposition 3.3 show that for some constant C > 0, we have, when u ∈ Im τN ,

‖u‖H81
≤ CeC/h

‖u‖H8, ‖u‖H8 ≤ CeC/h
‖u‖H81

. (4-13)

Here we recall that N ∼ h−1. It follows therefore that the result of Proposition 4.2,

(z− q̃w(x, h Dx))
−1
= O(1) exp

(
O(1)h−1 log

1
h

)
: Im τN → Im τN , (4-14)

also holds when the space Im τN ⊂ H81(C
n)∩ H8(Cn) is equipped with the H81-norm, at the expense of

an O(1) loss in the exponent. The same conclusion holds for the bound (4-9).
Let � b C and assume that z ∈ � ⊂⊂ C is such that dist

(
z,Spec(q̃w(x, h Dx))

)
≥ hL/C for some

L ≥ 1 and C > 0 fixed. Then, according to Proposition 3.2, there exists N0 ∈ N, N0 ∼ h−1, such that if
u ∈ H81(C

n) is such that (1+ |x |2)u ∈ L2
81
(Cn), then, using that [q̃w(x, h Dx), τN0] = 0, we get, for all

h > 0 small enough,

‖(1− τN0)u‖H81
≤ O(1)‖(q̃w(x, h Dx)− z)(1− τN0)u‖H81

≤ O(1) exp(O(1)h−1)‖(q̃w(x, h Dx)− z)u‖H81
. (4-15)

Here we also used Proposition 3.3. On the other hand, the bound (4-14) and Proposition 3.3 show that

‖τN0u‖H81
≤ O(1) exp

(
O(1)h−1 log 1

h

)
‖τN0(q̃

w(x, h Dx)− z)u‖H81

≤ O(1) exp
(

O(1)h−1 log 1
h

)
‖(q̃w(x, h Dx)− z)u‖H81

. (4-16)

Combining (4-15) and (4-16), we obtain the bound (1-7). The estimate (1-6) follows in a similar way,
and hence, the proof of Theorem 1.1 is complete. �
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BILINEAR HILBERT TRANSFORMS ALONG CURVES
I: THE MONOMIAL CASE

XIAOCHUN LI

We establish an L2
× L2 to L1 estimate for the bilinear Hilbert transform along a curve defined by a

monomial. Our proof is closely related to multilinear oscillatory integrals.

1. Introduction

Let d ≥ 2 be a positive integer. We consider the bilinear Hilbert transform along a curve 0(t)= (t, td),
defined by

H0( f, g)(x)= p.v.
∫

R

f (x − t)g(x − td)
dt
t
, (1-1)

where f, g are Schwartz functions on R.
The main theorem we prove in this paper is:

Theorem 1.1. The bilinear Hilbert transform along the curve 0(t)= (t, td) can be extended to a bounded
operator from L2

× L2 to L1.

Remark 1.2. It can be shown, with a little modification of our method, that the bilinear Hilbert transforms
along polynomial curves (t, P(t)) are bounded from L p

× Lq to Lr whenever (1/p, 1/q, 1/r) is in the
closed convex hull of

( 1
2 ,

1
2 , 1

)
,
( 1

2 , 0, 1
2

)
and

(
0, 1

2 ,
1
2

)
. The condition d ∈N is not necessary. Indeed, d

can be any positive real number that is not equal to 1.

This problem is motivated by the Hilbert transform along a curve 0 = (t, γ (t)), defined by

H0( f )(x1, x2)= p.v.
∫

R

f
(
x1− t, x2− γ (t)

)dt
t
,

and the bilinear Hilbert transform, defined by

H( f, g)(x)= p.v.
∫

R

f (x − t)g(x + t)dt
t
.

Among various curves, one simple model case is the parabola (t, t2) in the two-dimensional plane. This
work was initiated by Fabes and Rivière [1966] in order to study the regularity of parabolic differential
equations. In the last thirty years, considerable work on this type of problem has been done. A nice survey
on this type of operators can be found in [Stein and Wainger 1978]. For curves on homogeneous nilpotent

This research was partially supported by the NSF.
MSC2010: primary 42B20, 42B25; secondary 46B70, 47B38.
Keywords: bilinear Hilbert transform along curves.
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Lie groups, the L p estimates were established in [Christ 1985a]. The work for the Hilbert transform
along more general curves with certain geometric conditions, such as the “flat” case, can be found in
papers by Christ [1985b], Duoandikoetxea and J. L. Rubio de Francia [1986], and Nagel, Vance, Wainger
and Weinberg [Nagel et al. 1983]. The general results were established recently in [Christ et al. 1999] for
the singular Radon transforms and their maximal analogues over smooth submanifolds of Rn with some
curvature conditions.

In recent years there has been a very active trend of harmonic analysis using time-frequency analysis to
deal with multilinear operators. A breakthrough on the bilinear Hilbert transform was made by Lacey and
Thiele [1997; 1999]. Following their work, the field of multilinear operators has been actively developed,
to the point that some of the most interesting open questions have a strong connection to analysis on
nilpotent groups. For instance, the trilinear Hilbert transform

p.v.
∫

f1(x + t) f2(x + 2t) f3(x + 3t)dt
t

has a hidden quadratic modulation symmetry which must be accounted for in any proposed method of
analysis. This nonabelian character is explicit in the work of B. Host and B. Kra [2005], who characterize
the characteristic factor of the corresponding ergodic averages

N−1
N∑

n=1

f1(T n) f2(T 2n) f3(T 3n)−→

3∏
j=1

E( f j | N).

Here, (X,A, µ, T ) is a measure-preserving system, and N⊂A is the sigma-field which describes the
characteristic factor, related to certain 2-step nilpotent groups. The limit above is in the sense of L2-norm
convergence, and holds for all bounded f1, f2, f3.

The ergodic analogue of the bilinear Hilbert transform along a parabola is the nonconventional bilinear
average

N−1
N∑

n=1

f1(T n) f2(T n2
)−→

2∏
j=1

E( f j | Kprofinite),

where Kprofinite ⊂A is the profinite factor, a sub-σ -field of the maximal abelian factor of (X,A, µ, T ).
The proof of the characteristic factor result above, due to Furstenberg [1990], utilizes the characteristic
factor for the three-term result. We are indebted to M. Lacey for bringing Furstenberg’s theorems to our
attention. However, a notable fact is that our proof for the bilinear Hilbert transform along a monomial
curve does not have to go through the trilinear Hilbert transform. The proof provided in this article relies
heavily on the concept of a “quadratic uniformity”, inspired by [Gowers 1998].

Another prominent theme is the relation of the bilinear Hilbert transforms along curves and the
multilinear oscillatory integrals. The bilinear Hilbert transforms along curves are closely associated to the
multilinear oscillatory integrals of the type

3λ( f1, f2, f3)=

∫
B

f1(x · v1) f2(x · v2) f3(x · v3)eiλϕ(x) dx, (1-2)
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where B is the unit ball in R3, v1, v2, v3 are vectors in R3, and the phase function ϕ satisfies a nondegenerate
condition ∣∣∣∣ 3∏

j=1

(∇ · v⊥j )ϕ(x)
∣∣∣∣≥ 1. (1-3)

Here v⊥j is a unit vector orthogonal to v j , for each j . For a polynomial phase ϕ with the nondegenerate
condition (1-3), it was proved in [Christ et al. 2005] that

∣∣3λ( f1, f2, f3)
∣∣≤ C(1+ |λ|)−ε

3∏
j=1

‖ f j‖∞ (1-4)

holds for some positive number ε. For the particular vectors v and the nondegenerate phase ϕ encountered
in our problem, an estimate similar to (1-4) still holds. However, one of the main difficulties arises
from the falsity of L2 decay estimates for the trilinear form 3λ. It is to overcome this difficulty that we
introduce the quadratic uniformity, which plays the role of a bridge connecting two spaces L2 and L∞.

The method used in this paper essentially works for those curves on nilpotent groups. It is possible to
extend Theorem 1.1 to the general setting of nilpotent Lie groups. But we will not pursue this in this
article. There are some related questions one can pose. Besides the generalization to the more general
curves, it is natural to ask the corresponding problems in higher-dimensional cases and/or in multilinear
cases. For instance, in the trilinear case, one can consider

T ( f1, f2, f3)(x)= p.v.
∫

f1(x + t) f2(x + p1(t)) f3(x + p2(t))
dt
t
. (1-5)

Here p1, p2 are polynomials of t . The investigation of such problems will be discussed in subsequent
papers.

2. A decomposition

Let ρ1 be a standard bump function supported on
[1

2 , 2
]
, and let

ρ(t)= ρ1(t)1{t>0}− ρ1(−t)1{t<0}.

It is clear that ρ is an odd function. To obtain the Lr estimates for H0 , it is sufficient to get Lr estimates
for T0 defined by T0 =

∑
j∈Z T0, j , where T0, j is

T0, j ( f, g)(x)=
∫

f (x − t)g(x − td)2 jρ(2 j t) dt. (2-1)

Let L be a large positive number (larger than 2100). By Lemma 9.1, we have that if | j | ≤ L ,∥∥T0, j ( f, g)
∥∥

r ≤ CL‖ f ‖p‖g‖q

for all p, q > 1 and 1/p+1/q = 1/r , where the operator norm CL depends on the upper bound L . Hence
in the following we only need to consider the case when | j |> L . In fact we prove the following theorem.
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Theorem 2.1. Let T0, j be defined as in (2-1). Then the bilinear operator TL =
∑

j∈Z:| j |>L T0, j is bounded
from L2

× L2 to L1.

Clearly Theorem 1.1 follows from Theorem 2.1 and Lemma 9.1. The rest of the article is devoted to a
proof of Theorem 2.1.

We begin the proof of Theorem 2.1 by constructing an appropriate decomposition of the operator T0, j .
This is done by an analysis of the bilinear symbol associated with the operator.

Expressing T0, j in dual frequency variables, we have

T0, j ( f, g)(x)=
∫∫

f̂ (ξ)ĝ(η)e2π i(ξ+η)xm j (ξ, η) dξ dη,

where the symbol m j is defined by

m j (ξ, η)=

∫
ρ(t) exp

(
−2π i(2− jξ t + 2−d jηtd)

)
dt. (2-2)

First we introduce a resolution of the identity. Let 2 be a Schwarz function supported on (−1, 1) such
that 2(ξ)= 1 if |ξ | ≤ 1

2 . Set 8 to be a Schwartz function satisfying

8̂(ξ)=2

(
ξ

2

)
−2(ξ) .

Then 8 is a Schwartz function such that 8̂ is supported on
{
ξ : 1

2 < |ξ |< 2
}

and∑
m∈Z

8̂

(
ξ

2m

)
= 1 for all ξ ∈ R\{0}, (2-3)

and for any m0 ∈ Z,

8̂m0(ξ) :=

m0∑
m=−∞

8̂

(
ξ

2m

)
=2

(
ξ

2m0+1

)
, (2-4)

which is a bump function supported on (−2m0+1, 2m0+1).
From (2-3), we can decompose T0, j into two parts: T0, j,1 and T0, j,2, where T0, j,1 is given by∑

m∈Z

∑
m′∈Z:

|m′−m|>10d

∫∫
f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m′

)
m j (ξ, η) dξ dη, (2-5)

and T0, j,2 is defined by∑
m∈Z

∑
m′∈Z:

|m′−m|≤10d

∫∫
f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m′

)
m j (ξ, η) dξ dη. (2-6)

Define md by
md(ξ, η)=

∫
ρ(t) exp

(
−2π i(ξ t + ηtd)

)
dt. (2-7)

Clearly m j (ξ, η)=md(2− jξ, 2−d jη). In T0, j,1, the phase function φξ,η(t)= ξ t + ηtd does not have any
critical point in a neighborhood of the support of ρ, and therefore a very rapid decay can be obtained
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Figure 1. Decomposition of the (ξ, η)-plane for
∑

m Tm when d = 2.

by integration by parts so that we can show that
∑

j T0, j,1 is essentially a finite sum of paraproducts
(see Section 3). A critical point of the phase function may occur in T0, j,2, and therefore the method of
stationary phase must be brought to bear in this case, exploiting in particular the oscillatory term. This
case requires the most extensive analysis. Heuristically, the decomposition is made according to the
curvature of the curve (t, td). For example, for the parabola case, the frequency space is broken into
parabolic regions {(ξ, η) : η ∼ 2−mξ 2

}, as shown in the figure. Naturally, the 2−εm decay estimate is
expected in order to sum up all parabolic regions.

Notice that there are only finitely many m′ if m is fixed in (2-6). Without loss of generality, we
can assume m′ = m. Then in order to get the Lr estimates for

∑
j T0, j,2, it suffices to prove the Lr

boundedness of
∑

m Tm , where the Tm are defined by

Tm( f, g)(x)=
∑
| j |>L

∫∫
f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m

)
m j (ξ, η) dξ dη. (2-8)

It can be proved that T0 =
∑

m≤0 Tm is equal to
∑

m≤0 O(2m/2)5m , where 5m is a paraproduct studied
in Theorem 3.1. This can be done by Fourier series and the cancellation condition of ρ, and thus T0 is
essentially a paraproduct. We omit the details, since they are exactly the same as those in Section 3 for
the case

∑
j T0, j,1. Therefore, the most difficult term is

∑
m≥1 Tm . For this term, we have the following

theorem.

Theorem 2.2. Let Tm be a bilinear operator defined as in (2-8). Then there exists a constant C such that∥∥∥∥∑
m≥1

Tm( f, g)
∥∥∥∥

1
≤ C‖ f ‖2 ‖g‖2 (2-9)

holds for all f, g ∈ L2.
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A delicate analysis is required for proving this theorem. We prove it on page 204. Theorem 2.1 follows
from Theorem 2.2 and the boundedness of

∑
j T0, j,1. The rest of the article is organized as follows.

In Section 3, the Lr -boundedness will be established for
∑

j T0, j,1. Some crucial bilinear restriction
estimates will appear in Section 4 and as a consequence Theorem 2.2 follows. Sections 5–8 are devoted
to a proof of the bilinear restriction estimates.

3. Paraproducts and uniform estimates

In this section we prove that
∑

j T0, j,1 is essentially a finite sum of certain paraproducts bounded from
L p
× Lq to Lr .

First let us introduce the paraproduct encountered in our problem. Let j ∈Z, L1, L2 be positive integers
and M1,M2 be integers. Then

ω1, j =

[
2L1 j+M1

2
, 2 · 2L1 j+M1

]
and

ω2, j = [−2L2 j+M2, 2L2 j+M2] .

Let 81 be a Schwartz function whose Fourier transform is a standard bump function supported on a
small neighborhood of

[ 1
2 , 2

]
or
[
−2,−1

2

]
, and 82 be a Schwartz function whose Fourier transform is a

standard bump function supported on [−1, 1] and 8̂2(0)= 1. For l ∈ {1, 2} and n1, n2 ∈ Z, define 8l, j,nl

by
8̂l, j,nl (ξ)=

(
e2π inl ( · )8̂l( · )

)( ξ

2Ll j+Ml

)
.

It is clear that 8̂l, j,nl is supported on ωl, j . For locally integrable functions fl , we define fl, j by

fl, j,nl (x)= fl ∗8l, j,nl (x).

We now define a paraproduct to be

5L1,L2,M1,M2,n1,n2( f1, f2)(x)=
∑
j∈Z

2∏
l=1

fl, j,nl (x). (3-1)

For this paraproduct, we have the following uniform estimates.

Theorem 3.1. For any p1 > 1, p2 > 1 with 1/p1+ 1/p2 = 1/r , there exists a constant C independent of
M1,M2, n1, n2 such that∥∥5L1,L2,M1,M2,n1,n2( f1, f2)

∥∥
r ≤ C

(
1+ |n1|

)10(1+ |n2|
)10
‖ f1‖p1 ‖ f2‖p2, (3-2)

for all f1 ∈ L p1 and f2 ∈ L p2 .

The case r > 1 can be handled by a telescoping argument. The case r < 1 is more complicated and
requires a time-frequency analysis. A proof of Theorem 3.1 can be found in [Li 2008]. The constant C in
Theorem 3.1 may depend on L1, L2. It is easy to see that C is O(max{2L1, 2L2}). It is possible to get a
much better upper bound, such as O

(
log(1+max{L2/L1, L1/L2})

)
, by tracking the constants carefully
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in the proof in [Li 2008]. But we do not need the sharp constant in this article. The independence on
M1,M2 is the most important issue here.

We now return to
∑

j T0, j,1. This sum can be written as TL ,1+ TL ,2, where TL ,1 is a bilinear operator
defined by ∑

| j |>L

∑
m∈Z

∑
m′∈Z

m′<m−10d

∫∫
f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m′

)
m j (ξ, η) dξ dη,

and TL ,2 is a bilinear operator given by∑
| j |>L

∑
m′∈Z

∑
m∈Z

m<m′−10d

∫∫
f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m′

)
m j (ξ, η) dξ dη.

It is standard to verify that TL ,1 and TL ,2 are paraproducts as defined in (3-1). Hence the L p
×Lq

→ Lr

estimates of these paraproducts follow from Theorem 3.1, for all p, q > 1 and 1/p+ 1/q = 1/r .

4. Bilinear Fourier restriction estimates

Let d ≥ 2,m ≥ 0, j ∈ Z. We define a bilinear Fourier restriction operator of f, g by

B j,m( f, g)(x)= 2−(d−1) j/2
∫

R

R8 f
(
2−(d−1) j x − 2m t

)
R8g(x − 2m td)ρ(t) dt if j ≥ 0 (4-1)

and

B j,m( f, g)(x)= 2(d−1) j/2
∫

R

R8 f (x − 2m t)R8g(2(d−1) j x − 2m td)ρ(t) dt if j < 0, (4-2)

where R8 f and R8g are the Fourier (smooth) restrictions of f, g on the support of 8̂ respectively. More
precisely, R8 f, R8g are given by

R̂8 f (ξ)= f̂ (ξ)8̂(ξ), (4-3)

R̂8g(ξ)= ĝ(ξ)8̂(ξ). (4-4)

By inserting absolute values throughout and applying the Cauchy–Schwarz inequality, the boundedness
of B j,m from L2

× L2 to L1 follows immediately. Moreover, since the Fourier transforms of f, g are
restricted on the support of 8̂, we actually can improve the estimate. Let us state the improved estimates
in the following theorems, which are of independent interest.

Theorem 4.1. Let d ≥ 2 and B j,m be defined as in (4-1) and (4-2). If L ≤ | j | ≤ m/(d − 1), then there
exists a constant C independent of j,m such that∥∥B j,m( f, g)

∥∥
1 ≤ C 2

(d−1)| j |−m
8 ‖ f ‖2 ‖g‖2 for all f, g ∈ L2. (4-5)

Theorem 4.2. Let d ≥ 2 and B j,m be defined as in (4-1) and (4-2). If | j | ≥ m/(d − 1), then there exist a
positive number ε0 and a constant C independent of j,m such that∥∥B j,m( f, g)

∥∥
1 ≤ C max

{
2

m−(d−1)| j |
3 , 2−ε0m}

‖ f ‖2 ‖g‖2 for all f, g ∈ L2. (4-6)
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The positive number ε0 in Theorem 4.2 can be chosen to be 1/(8d). Theorem 4.1 can be proved by a
T T ∗ method. However, the T T ∗ method fails when | j |> m/(d − 1). To obtain Theorem 4.2, we will
employ a method related to the uniformity of functions.

Now we can see that Theorem 2.2 is a consequence of Theorems 4.1 and 4.2.

Proof of Theorem 2.2. Define a bilinear operator T j,m to be

T j,m( f, g)(x)=
∫∫

f̂ (ξ)ĝ(η)e2π i(ξ+η)x8̂

(
2− jξ

2m

)
8̂

(
2−d jη

2m

)
m j (ξ, η) dξ dη. (4-7)

Let γ j,m be defined by

γ j,m =


2
(d−1)| j |−m

8 if | j | ≤ m
d−1

,

max
{
2

m−(d−1)| j |
3 , 2−ε0m

}
if | j | ≥ m

d−1
.

(4-8)

A rescaling argument and Theorems 4.1 and 4.2 yield∥∥T j,m( f, g)
∥∥

1 ≤ Cγ j,m‖ f ‖2 ‖g‖2. (4-9)

Since
∑
m

Tm =
∑
m

∑
j :| j |≥L

T j,m , we obtain∥∥∥∥∑
m≥1

Tm( f, g)
∥∥∥∥

1
≤ C

∑
m≥1

∑
j :| j |≥L

γ j,m‖ f j,m‖2 ‖g j,m‖2, (4-10)

where

f̂ j,m(ξ)= f̂ (ξ)8̂
(

ξ

2 j+m

)
,

ĝ j,m(η)= ĝ(η)8̂
(

η

2d j+m

)
.

Clearly the right-hand side of (4-10) is bounded by C‖ f ‖2‖g‖2. Therefore, we finish the proof of
Theorem 2.2.

Since t is localized, it is sufficient to consider B̃ j,m,n given by

B̃ j,m =B j,m1∗I . (4-11)

Here I is an interval whose size is 2(d−1)| j |+m and 1∗I = 1I ∗φk , where φk(x) equals 2−kφ(2−k x) for a
given nonnegative Schwartz function φ whose Fourier transform is a standard bump function on

[
−

1
2 ,

1
2

]
.

In what follows, we still use B j,m to denote the localized operator B̃ j,m .

Trilinear forms. Let f1, f2, f3 be measurable functions supported on 1
16 ≤ |ξ | ≤

39
16 . Define a trilinear

form 3 j,m( f1, f2, f3) by

3 j,m( f1, f2, f3) :=
〈
B j,m( f̌1, f̌2), f̌3

〉
. (4-12)

Theorems 4.1 and 4.2 can be reduced to the following theorems respectively.
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Theorem 4.3. Let d ≥ 2 and3 j,m( f1, f2, f3) be defined as in (4-12). If | j | ≤m/(d−1), then there exists
a constant C independent of j,m such that∣∣3 j,m( f1, f2, f3)

∣∣≤ C 2
−(d−1)| j |−m

2 2−
m−(d−1)| j |

6 ‖ f1‖2 ‖ f2‖2 ‖ f3‖2 (4-13)

for all f1, f2, f3 ∈ L2.

Theorem 4.4. Let d ≥ 2 and 3 j,m( f1, f2, f3) be defined as in (4-12). If | j | ≥m/(d− 1), then there exist
a positive number ε0 and a constant C independent of j,m such that∣∣3 j,m( f1, f2, f3)

∣∣≤ C max
{
2
−(d−1)| j |+m

2 , 2−ε0m}
‖ f1‖2 ‖ f2‖2 ‖ f̂3‖∞ (4-14)

holds for all f1, f2 ∈ L2 and f̂3 ∈ L∞ such that f1, f2, f3 are supported on 1
16 ≤ |ξ | ≤

39
16 .

A proof of Theorem 4.3 will be provided in Section 5, and a proof of Theorem 4.4 will be given in
Section 7.

5. Stationary phases and trilinear oscillatory integrals

In this section we provide a proof of Theorem 4.3 by utilizing essentially a T T ∗ method. In this case,
one cannot reduce the problem to the standard paraproduct problem because the critical points of the
phase function may occur in a neighborhood of 1

2 ≤ |t | ≤ 2, say 1
4 ≤ |t | ≤

5
2 , which provides a stationary

phase for the Fourier integral md . This stationary phase gives a highly oscillatory factor in the integral.
We expect a suitable decay from the highly oscillatory factor.

Let 3 j,m( f1, f2, f3) = 〈B j,m( f̌1, f̌2), f̌3〉. To prove Theorem 4.3, it suffices to prove the following
L2 estimate for the trilinear form 3 j,m( f1, f2, f3):∣∣3 j,m( f1, f2, f3)

∣∣≤ C 2
−(d−1)| j |−m

2 2−
m−(d−1)| j |

6 ‖ f1‖2 ‖ f2‖2 ‖ f3‖2 (5-1)

holds for all f1, f2, f3 ∈ L2. Clearly 3 j,m( f1, f2, f3) can be expressed as

2−(d−1) j/2
∫∫

f1(ξ)8̂(ξ) f2(η)8̂(η) f3
(
2−(d−1) jξ + η

)
md(2mξ, 2mη) dξ dη

if j > 0, and as

2(d−1) j/2
∫∫

f1(ξ)8̂(ξ) f2(η)8̂(η) f3
(
ξ + 2(d−1) jη

)
md(2mξ, 2mη) dξ dη

if j ≤ 0,
Whenever ξ, η ∈ supp 8̂, the second-order derivative of the phase function φm,ξ,η(t)= 2m(ξ t + ηtd)

is comparable to 2m . We only need to focus on the worst situation, when there is a critical point of the
phase function in a small neighborhood of supp ρ. Thus the method of stationary phase yields

md(2mξ, 2mη)∼ 2−m/2 exp
(
icd2mξ d/(d−1)η−1/(d−1)), (5-2)

where cd is a constant depending only on d (see [Sogge 1993; Stein 1993]). Henceforth we reduce
Theorem 4.3 to the following lemma.
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Proposition 5.1. Let 3∗j,m be defined by

3∗j,m( f1, f2, f3)=

∫∫
f1(ξ)8̂(ξ) f2(η)8̂(η) f3

(
2−(d−1) jξ + η

)
exp

(
icd2mξ

d
d−1η

−
1

d−1
)

dξ dη (5-3)

if j > 0, and by

3∗j,m( f1, f2, f3)=

∫∫
f1(ξ)8̂(ξ) f2(η)8̂(η) f3

(
ξ + 2(d−1) jη

)
exp(icd2mξ

d
d−1η

−
1

d−1
)

dξ dη. (5-4)

if j ≤ 0. There exists a positive constant C such that∣∣3∗j,m( f1, f2, f3)
∣∣≤ C 2−

m−(d−1)| j |
6 ‖ f1‖2 ‖ f2‖2 ‖ f3‖2 (5-5)

holds for all f1, f2, f3 ∈ L2.

Proof. Without loss of generality, we assume that 8̂ is supported on
[1

2 , 2
]

or
[
−2,−1

2

]
. And we only

give a proof for the case j > 0, since a similar argument yields the case j ≤ 0. Let φd,m be a phase
function defined by

φd,m(ξ, η)= cdξ
d/(d−1)η−1/(d−1),

and let b1 = 1−2−(d−1) j and b2 = 2−(d−1) j . Changing variables ξ 7→ ξ −η and η 7→ b1ξ +b2η, we have
that 3∗j,m( f1, f2, f3) equals∫∫

f1(ξ − η) f2(b1ξ + b2η) f3(ξ)8̂(ξ − η)8̂(b1ξ + b2η)ei 2mφd,m(ξ−η,b1ξ+b2η) dξ dη.

Thus, by Cauchy–Schwarz, we dominate |3∗j,m( f1, f2, f3)| by∥∥Td, j,m( f1, f2)
∥∥

2‖ f3‖2,

where Td, j,m is defined by

Td, j,m( f1, f2)(ξ)=

∫
f1(ξ − η) f2(b1ξ + b2η)8̂(ξ − η)8̂(b1ξ + b2η)ei 2mφd,m(ξ−η,b1ξ+b2η) dη.

It is easy to see that
∥∥Td, j,m( f1, f2)

∥∥2
2 equals∫ (∫∫

F(ξ, η1, η2)G(ξ, η1, η2)ei 2m(φd,m(ξ−η1,b1ξ+b2η1)−φd,m(ξ−η2,b1ξ+b2η2))dη1 dη2

)
dξ,

where
F(ξ, η1, η2)= ( f18̂)(ξ − η1)( f18̂)(ξ − η2),

G(ξ, η1, η2)= ( f28̂)(b1ξ + b2η1)( f28̂)(b1ξ + b2η2).

Changing variables η1 7→ η and η2 7→ η+ τ , we see that
∥∥Td, j,m( f1, f2)

∥∥2
2 equals∫ (∫∫

Fτ (ξ − η)Gτ (b1ξ + b2η)ei 2m(φd,m(ξ−η,b1ξ+b2η)−φd,m(ξ−η−τ,b1ξ+b2(η+τ))) dξ dη
)

dτ,

where
Fτ ( · )= ( f18̂)( · )( f18̂)( · − τ),

Gτ ( · )= ( f28̂)( · )( f28̂)( · + b2τ).
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Changing coordinates to (u, v)= (ξ − η, b1ξ + b2η), the inner integral becomes∫∫
Fτ (u)Gτ (v) exp

(
i 2m Q̃τ (u, v)

)
du dv, (5-6)

where Q̃τ is defined by

Q̃τ (u, v)= φd,m(u, v)−φd,m(u− τ, v+ b2τ).

When j is large enough, the mean value theorem yields∣∣∂u∂v Q̃τ (u, v)
∣∣≥ Cτ, (5-7)

if u, v, u− τ, v+ b2τ ∈ supp8̂.
A well-known theorem of Hörmander on the nondegenerate phase [Hörmander 1973; Phong and Stein

1994] gives for (5-6) the estimate

C min
{
1, 2−m/2

|τ |−1/2}
‖Fτ‖2 ‖Gτ‖2.

Hence, by the Cauchy–Schwarz inequality,
∥∥Td, j,m( f1, f2)

∥∥2
2 is bounded by

τ0‖ f1‖
2
2 ‖ f2‖

2
2+C

∫
τ0<|τ |<10

min
{
1, 2−m/2

|τ |−1/2}
‖Fτ‖2 ‖Gτ‖2 dτ

for any τ0 > 0. By one more use of the Cauchy–Schwarz inequality,
∥∥Td, j,m( f1, f2)

∥∥2
2 is dominated by(

τ0+Cτ−1/2
0 2−m/22(d−1) j/2

)
‖ f1‖

2
2 ‖ f2‖

2
2 for any τ0 > 0. Thus we have∣∣3∗j,m( f1, f2, f3)
∣∣≤ C 2

(d−1) j−m
6 ‖ f1‖2 ‖ f2‖2 ‖ f3‖2. (5-8)

This completes the proof of Proposition 5.1. �

It is easy to see that ∣∣3∗j,m( f1, f2, f3)
∣∣≤ C 2−εm‖ f1‖2 ‖ f2‖2 ‖ f3‖2 (5-9)

fails for all | j | ≥ m/(d − 1). Indeed, let us only consider the case j > m/(d − 1). Assume that (5-9)
holds for all j > m/(d − 1). Let j→∞; then (5-9) implies∣∣3∗m( f1, f2, f3)

∣∣≤ C 2−εm‖ f1‖2 ‖ f2‖2 ‖ f3‖2, (5-10)

where

3∗m( f1, f2, f3)=

∫∫
f1(ξ)8̂(ξ) f2(η)8̂(η) f3(η) exp

(
icd2mξ d/(d−1)η−1/(d−1)) dξ dη.

Simply taking f2 = f3, we obtain

sup
η∼1

∣∣∣∣∫ f1(ξ)8̂(ξ) exp
(
icd2mξ d/(d−1)η−1/(d−1)) dξ

∣∣∣∣≤ C 2−εm‖ f1‖2. (5-11)

This clearly cannot be true, and hence we get a contradiction. Therefore, (5-9) does not hold for
j > m/(d − 1). Hence the T T ∗ method cannot work for the case | j | > m/(d − 1). In the following
sections, we have to introduce a concept of uniformity and employ a “quadratic” Fourier analysis.
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6. Uniformity

We introduce a concept related to a notion of uniformity employed by Gowers [1998]. A similar uniformity
was utilized in [Christ et al. 2005]. Let σ ∈ (0, 1], let Q be a collection of some real-valued measurable
functions, and fix a bounded interval I in R.

Definition 6.1. A function f ∈ L2(I) is σ -uniform in Q if∣∣∣∣∫
I

f (ξ)e−iq(ξ)dξ
∣∣∣∣≤ σ‖ f ‖L2(I) (6-1)

for all q ∈ Q. Otherwise, f is said to be σ -nonuniform in Q.

Theorem 6.2. Let L be a bounded sublinear functional from L2(I) to C, let Sσ be the set of all functions
that are σ -uniform in Q, and let

Uσ = sup
f ∈Sσ

|L( f )|
‖ f ‖L2(I)

. (6-2)

Then, for all functions in L2(I),

|L( f )| ≤max{Uσ , 2σ−1 Q}‖ f ‖L2(I), (6-3)

where
Q = sup

q∈Q
|L(eiq)|. (6-4)

Proof. Clearly the complement Sc
σ is a set of all functions that are σ -nonuniform in Q. Let us set

A := sup
f ∈L2(I)

|L( f )|
‖ f ‖L2(I)

and A1 := sup
f ∈Sc

σ

|L( f )|
‖ f ‖L2(I)

.

Clearly A =max{A1,Uσ }. In order to obtain (6-3), it suffices to prove that if Uσ < A1, then

A1 ≤ 2σ−1 Q. (6-5)

For any ε > 0, there exists a function f ∈ Sc
σ such that

(A1− ε)‖ f ‖L2(I) ≤ |L( f )|. (6-6)

Let 〈 · , · 〉I be an inner product on L2(I) defined by

〈 f, g〉I =
∫

I
f (x)g(x) dx,

for all f, g ∈ L2(I). Since f is σ -nonuniform in Q, there exists a function q in Q such that∣∣〈 f, eiq
〉I
∣∣≥ σ‖ f ‖L2(I). (6-7)

There exists g ∈ L2(I) (depending on f ) such that g ⊥ eiq , ‖g‖L2(I) = 1, and

f = 〈 f, g〉I g+
〈 f, eiq

〉I

|I |
eiq . (6-8)

Sublinearity of L and the triangle inequality then yield∣∣L( f )
∣∣≤ ∣∣〈 f, g〉I

∣∣∣∣L(g)∣∣+ |I |−1∣∣〈 f, eiq
〉I
∣∣∣∣L(eiq)

∣∣. (6-9)
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Notice that A = A1 if Uσ < A1 and

〈 f, f 〉I =
∣∣〈 f, g〉I

∣∣2+ |I |−1∣∣〈 f, eiq
〉I
∣∣2. (6-10)

Then from (6-6) and (6-9), we have

(A1− ε)‖ f ‖L2(I) ≤ A1‖ f ‖L2(I)

√
1−

∣∣〈 f, eiq〉I
∣∣2

|I |〈 f, f 〉I
+ |I |−1∣∣〈 f, eiq

〉I
∣∣Q. (6-11)

Applying the elementary inequality
√

1− x ≤ 1− x/2 if 0≤ x ≤ 1, we then get

A1 ≤
2‖ f ‖L2(I)∣∣〈 f, eiq〉I

∣∣Q+ ε|I |
2‖ f ‖2L2(I)∣∣〈 f, eiq〉I

∣∣2 . (6-12)

From (6-7), we have
A1 ≤ 2σ−1 Q+ 2ε|I |σ−2. (6-13)

Now let ε→ 0, and we then obtain (6-5). Therefore we complete the proof. �

7. Estimates of the trilinear forms

We now start to prove Theorem 4.4, and we only present the details for the case j > 0, since the other case
can be done similarly. Without loss of generality, in the following sections we assume that fi is supported
on Ii for i ∈ {1, 2, 3}, where Ii is either

[ 1
16 ,

39
16

]
or
[
−

39
16 ,−

1
16

]
. Let Q1 be a set of some functions defined

by
Q1 =

{
aξ d/d−1

+ bξ : 2m−100
≤ |a| ≤ 2m+100 and a, b ∈ R

}
. (7-1)

Proposition 7.1. Let f18̂1 be σ -uniform in Q1, and let j > 0 and3 j,m( f1, f2, f3) be defined as in (4-12).
Then there exists a constant C independent of j,m, n, f1 such that

∣∣3 j,m( f1, f2, f3)
∣∣≤ C 2−

(d−1) j
2 −

m
2 max

{
2−100m, 2

−(d−1) j+m
2 , σ

} 3∏
i=1

‖ fi‖L2(Ii ) (7-2)

holds for all f2 ∈ L2(I2) and f3 ∈ L2(I3).

Proof. Since B j,m is supported in an interval with size 2(d−1) j+m , without loss of generality, we may
assume that it is restricted to the interval I0=[0, 2(d−1) j+m

]. Let 1m,l =1Im,l , where Im,l =[2ml, 2m(l+1)].
Also let B j,m,l be a bilinear operator defined by

B j,m,l( f, g)(x)=B j,m( f, g)(x)1m,l(x),

for all f, g. Decompose 3 j,m( f1, f2, f3) into
∑

l 3 j,m,l , where

3 j,m,l( f1, f2, f3)=
〈
B j,m,l( f̌1, f̌2), f̌3

〉
.

Let αm,l be a fixed point in the interval Im,l . And set F81, j,m,l(x, t) to be

F81, j,m,l(x, t) := R81 f̌1
(
2−(d−1) j x − 2m t

)
− R81 f̌1

(
2−(d−1) jαm,l − 2m t

)
.
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Split B j,m,l( f̌1, f̌2) into two terms:

B(1)
j,m,l( f̌1, f̌2)+B(2)

j,m,l( f̌1, f̌2),

where B(1)
j,m,l( f̌1, f̌2) is equal to

2−(d−1) j/2
∫

R

F81, j,m,l(x, t)R81 f̌2(x − 2m td)ρ(t) dt
(
1∗I0
(x)1m,l(x)

)
,

and B(2)
j,m,l( f̌1, f̌2) equals

2−(d−1) j/2
∫

R

R81 f̌1
(
2−(d−1) jαm,l − 2m t

)
R81 f̌2(x − 2m td)ρ(t) dt

(
1∗I0
(x)1m,l(x)

)
.

For i = 1, 2, let 3(i)j,m( f1, f2, f3) denote∑
l

〈
B(i)

j,m,l( f̌1, f̌2), f̌3
〉
.

We now start to prove that∣∣3(1)j,m( f1, f2, f3)
∣∣≤ 2−(d−1) j/22−(d−1) j+m

‖ f̌1‖∞ ‖ f̌2‖2 ‖ f̌3‖2. (7-3)

The mean value theorem and the smoothness of 81 yield that for x ∈ Im,l ,∣∣F81, j,m,l(x, t)
∣∣≤ C‖ f̌1‖∞2−(d−1) j

∣∣x −αm,l
∣∣≤ C 2−(d−1) j+m

‖ f̌1‖∞. (7-4)

Because |t | ∼ 1 when t ∈ supp ρ, B(1)
j,m,l( f̌1, f̌2) can be written as

2−(d−1) j/2
∫

R

F81, j,m,l(x, t)
∑

l0

(
1m,l+l0 R81 f̌2

)
(x − 2m td)ρ(t) dt

(
1∗I0
(x)1m,l(x)

)
, (7-5)

where l0 is an integer between −10 and 10. Taking absolute values throughout and applying (7-4) plus
the Cauchy–Schwarz inequality, we then estimate

∣∣3(1)j,m( f1, f2, f3)
∣∣ by

C 2−(d−1) j/22−(d−1) j+m
‖ f̌1‖∞

10∑
l0=−10

∑
l

∥∥1m,l+l0 R81 f̌2
∥∥

2

∥∥1m,l f̌3
∥∥

2,

which clearly gives (7-3) by one more use of the Cauchy–Schwarz inequality.
We now prove that ∣∣3(1)j,m( f1, f2, f3)

∣∣≤ 2−(d−1) j/22−m
‖ f̌1‖1 ‖ f̌2‖2 ‖ f̌3‖2. (7-6)

From (7-5), we get that 3(1)j,m( f1, f2, f3) equals

2−(d−1) j/2
10∑

l0=−10

∑
l

3 j,m,l0,l,1( f1, f2, f3)−3 j,m,l0,l,2( f1, f2, f3),

where 3 j,m,l0,l,1( f1, f2, f3) is equal to∫
R2

R81 f̌1
(
2−(d−1) j x − 2m t

)(
1m,l+l0 R81 f̌2

)
(x − 2m td)ρ(t)

(
1∗I0

1m,l f̌3
)
(x) dt dx
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and 3 j,m,l0,l,2( f1, f2, f3) equals∫
R2

R81 f̌1
(
2−(d−1) jαm,l − 2m t

)(
1m,l+l0 R81 f̌2

)
(x − 2m td)ρ(t)

(
1∗I0

1m,l f̌3
)
(x) dt dx .

The Cauchy–Schwarz inequality yields that∣∣3 j,m,l0,l,2( f1, f2, f3)
∣∣≤ C 2−m

‖ f̌1‖1
∥∥1m,l+l0 R81 f̌2

∥∥
2‖1m,l f̌3‖2. (7-7)

In order to obtain a similar estimate for3 j,m,l0,l,1( f1, f2, f3), we change variables by u= 2−(d−1) j x−2m t
and v = x − 2m td to express 3 j,m,l0,l,1( f1, f2, f3) as∫∫

R81 f̌1(u)
(
1m,l+l0 R81 f̌2

)
(v)ρ(t (u, v))

(
1∗I0

1m,l f̌3
)
(x(u, v)) dudv

J (u, v)
,

where J (u, v) is the Jacobian ∂(u, v)/∂(x, t). It is easy to see that the Jacobian ∂(u, v)/∂(x, t)∼ 2m . As
for 3 j,m,l0,l,1, we dominate the previous integral by

C 2−m
∫ ∣∣R81 f̌1(u)

∣∣∥∥1m,l+l0 R81 f̌2
∥∥

2

(∫ ∣∣∣∣(1m,l f̌3
)
(x(u, v))ρ(t (u, v))

∣∣∣∣2dv
)1/2

du.

Notice that |∂x/∂v| ∼ 1 whenever t ∈ supp ρ. We then estimate∣∣3 j,m,l0,l,1( f1, f2, f3)
∣∣≤ C 2−m

‖ f̌1‖1
∥∥1m,l+l0 R81 f̌2

∥∥
2 ‖1m,l f̌3‖2; (7-8)

(7-6) follows from (7-7) and (7-8). An interpolation of (7-3) and (7-6) then yields

∣∣3(1)j,m( f1, f2, f3)
∣∣≤ C 2−

(d−1) j
2 −

m
2 2
−(d−1) j+m

2
3∏

i=1

‖ fi‖L2(Ii ). (7-9)

We now turn to prove that

∣∣3(2)j,m( f1, f2, f3)
∣∣≤ CN 2−

(d−1) j
2 −

m
2 max{2−100m, σ }

3∏
i=1

‖ fi‖L2(Ii ). (7-10)

In dual frequency variables, 3(2)j,m( f1, f2, f3) can be expressed as

10∑
l0=−10

∑
l

2−
(d−1) j

2

∫∫
f1(ξ)8̂1(ξ) exp(2π i 2−(d−1) jαm,lξ)F̂2,m,l0,l(η)m(ξ, η)F̂3,m,l(η) dξ dη,

where

m(ξ, η)=

∫
ρ(t)exp

(
−2π i(2mξ t + 2mηtd)

)
dt, (7-11)

F2,m,l0,l = 1m,l+l0 R81 f̌2, and F3,m,l = 1∗I0
1m,l f̌3.

If η is not in a small neighborhood of 8̂1, then there is no critical point of the phase function φξ,η(t)=
ξ t + ηtd occurring in a small neighborhood of supp ρ. Integration by parts gives a rapid decay O(2−Nm)
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for m. Thus in this case, we dominate
∣∣3(2)j,m,n( f1, f2, f3)

∣∣ by

CN 2−Nm
3∏

i=1

‖ fi‖L2(Ii ), (7-12)

for any positive integer N . We now only need to consider the worst case, when there is a critical point
of the phase function φξ,η(t)= ξ t + ηtd in a small neighborhood of supp ρ. In this case, η must be in a
small neighborhood of 8̂1, and the stationary phase method gives

m(ξ, η)∼ 2−m/2 exp
(
2π icd2mη−1/(d−1)ξ d/(d−1)), (7-13)

where cd is a constant depending on d only. Thus the principal term of 3(2)j,m( f1, f2, f3) is

10∑
l0=−10

∑
l

2−
(d−1) j

2 −
m
2

∫∫
f1(ξ)8̂1(ξ)eiφd,m,η(ξ) F̂2,m,l0,l(η)8̂2(η)F̂3,m,l(η) dξ dη,

where 8̂2 is a Schwartz function supported on a small neighborhood of 8̂1, and

φd,m,η(ξ)= 2πcd2mη−1/(d−1)ξ d/(d−1)
+ 2π 2−(d−1) jαm,lξ.

The key point is that the integral in the previous expression can be viewed as an inner product of F3,m,l

and MF2,m,l0,l , where M is a multiplier operator defined by

M̂ f (η)=md, j,m(η) f̂ (η).

Here the multiplier md, j,m is given by

md, j,m(η)=

∫
f1(ξ)8̂1(ξ)eiφd,m,η(ξ)dξ. (7-14)

Observe that φd,m,η(ξ)+bξ is in Q1 for any b ∈R and η ∈ supp 8̂2. Thus σ -uniformity in Q1 of f1 yields

‖md, j,m‖∞ ≤ Cσ‖ f1‖L2(I1). (7-15)

And henceforth we dominate 3(2)j,m( f1, f2, f3) by

10∑
l0=−10

∑
l

2−
(d−1) j

2 −
m
2 σ‖ f1‖L2(I1)

∥∥F2,m,l0,l
∥∥

2 ‖F3,m,l‖2,

which clearly is bounded by

2−
(d−1) j

2 −
m
2 σ

3∏
i=1

‖ fi‖L2(Ii ). (7-16)

Now (7-10) follows from (7-12) and (7-16). Combining (7-9) and (7-10), we finish the proof. �

Corollary 7.2. Let 3 j,m( f1, f2, f3) be defined as in (4-12). Then there exists a constant C independent
of j,m, n such that∣∣3 j,m( f1, f2, f3)

∣∣≤ C max
{
2−100m, 2

−(d−1) j+m
2 , σ

}
‖ f1‖L2(I1) ‖ f2‖L2(I1) ‖ f̂3‖∞ (7-17)
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holds for all f1 ∈ L2(I1) which are σ -uniform in Q1, f2 ∈ L2(I2) and f̂3 ∈ L∞.

Proof. Since there is a smooth restriction factor 1∗I0
in the definition of B j,m , the right-hand side of (7-2)

can be sharpened to

C 2−
(d−1) j

2 −
m
2 max

{
2−100m, 2

−(d−1) j+m
2 , σ

}
‖ f1‖L2(I1) ‖ f2‖L2(I2)

∥∥1∗∗(d−1) j+m,n f̌3
∥∥

2, (7-18)

which is clearly bounded by

C max
{
2−100m, 2

−(d−1) j+m
2 , σ

}
‖ f1‖L2(I1) ‖ f2‖L2(I1) ‖ f̂3‖∞. �

Proposition 7.3. Let3 j,m( f1, f2, f3) be defined as in (4-12). Then there exists a constant C independent
of j,m, n such that ∣∣3 j,m(eiq1, f2, f3)

∣∣≤ C 2−D(d−1)m/2
‖ f2‖L2(I2) ‖ f̂3‖∞ (7-19)

holds for all q1 ∈ Q1, f2 ∈ L2(I2) and f̂3 ∈ L∞, where D(d − 1) is the positive constant defined in (8-3).

A proof of Proposition 7.3 will be provided in Section 8.

Proof of Theorem 4.4. Corollary 7.2, Proposition 7.3 and Theorem 6.2 yield that
∣∣3 j,m( f1, f2, f3)

∣∣ is
dominated by

C
(

max
{
2−100m, 2

−(d−1) j+m
2 , σ

}
+

2−D(d−1)m/2

σ

)
‖ f1‖L2(I1) ‖ f2‖L2(I1) ‖ f̂3‖∞ (7-20)

for all f1 ∈ L2(I1), f2 ∈ L2(I2) and f̂3 ∈ L∞. Take σ to be 2−D(d−1)m/4; then we have∣∣3 j,m( f1, f2, f3)
∣∣≤ C max

{
2
−(d−1) j+m

2 , 2−D(d−1)m/4}
‖ f1‖L2(I1) ‖ f2‖L2(I1) ‖ f̂3‖∞. (7-21)

This gives the desired estimate for the case j > 0. Similarly, for j 6= 0, we have∣∣3 j,m( f1, f2, f3)
∣∣≤ C max

{
2
(d−1) j+m

2 , 2−m/8}
‖ f1‖L2(I1) ‖ f2‖L2(I1) ‖ f̂3‖∞. (7-22)

Combining (7-21) and (7-22) proves Theorem 4.4. �

8. Proof of Proposition 7.3

Lemma 8.1. Let l ≥ 1. Let I1 and I2 be fixed bounded intervals, and let ϕ : I1× I2 : R satisfy∣∣∂ l
x∂yϕ(x, y)

∣∣≥ 1 for all (x, y) ∈ I1× I2. (8-1)

Assume an additional condition holds in the case l = 1:∣∣∂2
x ∂yϕ(x, y)

∣∣ 6= 0 for all (x, y) ∈ I1× I2. (8-2)

Set
D(l)=

{
1/(2l) if l ≥ 2,
1/(2+ ε) if l = 1,

(8-3)

for some ε > 0. Then there exists a constant depending on the length of I1 and I2 but independent of ϕ, λ
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and the locations of I1 and I2 such that∣∣∣∣∫∫
I1×I2

eiλϕ(x,y) f (x)g(y) dx dy
∣∣∣∣≤ C(1+ |λ|)−D(l)‖ f ‖2 ‖g‖2, for all f, g ∈ L2. (8-4)

This lemma is related to a two-dimensional van der Corput lemma proved in [Carbery et al. 1999].
The case l ≥ 2 was proved in [Carbery et al. 1999], and a proof of the case l = 1 can be found in [Phong
and Stein 1994]. The estimates on D(l) in (8-3) are not sharp. With some additional convexity conditions
on the phase function ϕ, one can improve D(l) to 1/(l + 1) (see [Carbery et al. 1999] for some such
improvements). But in this article we do not need to pursue the sharp estimates.

Lemma 8.2. Let c, τ ∈ R and ϕ be a function defined by

ϕc(x, y)=
(
x − y1/d

+ c
)d
. (8-5)

Define Qc, j.τ (x, y) by

Qc, j,τ (x, y)= ϕc(x, y)−ϕc
(
x + 2−(d−1) jτ, y+ τ

)
. (8-6)

Then there exists a constant Cd depending only on d such that∣∣∂d−1
x ∂y Qc, j,τ (x, y)

∣∣≥ Cd |τ | (8-7)

for all y such that y+ τ ∈ [2−100, 2100
]. Moreover, if d = 2,∣∣∂x∂

2
y Qc, j,τ (x, y)

∣∣≥ Cd |τ | (8-8)

for all y such that y+ τ ∈ [2−100, 2100
].

Proof. A direct computation yields

∂d−1
x ∂y Qc, j,τ (x, y)= Cd

(
(y+ τ)(1/d)−1

− y(1/d)−1). (8-9)

Hence the desired estimate (8-7) follows immediately from the mean value theorem. The bound (8-8) can
be obtained similarly. �

Lemma 8.3. Let I be a fixed interval of length 1, and let θ be a bump function supported on
[ 1

100 , 2
]

(or[
−2,− 1

100

]
). Suppose that φd, j,m is a phase function defined by

φd, j,m(x, y)= Cd, j,m2m(x − y1/d
+ c j,m

)d
, (8-10)

where Cd, j,m, c j,m are constants independent of x, y such that 2−200
≤ |Cd, j,m | ≤ 2200. Let 3d, j,m,I be a

bilinear form defined by

3d, j,m,I ( f, g)=
∫∫

eiφd, j,m(x,t) f
(
x − 2−(d−1) j t

)
g(x)1I (x)θ(t) dx dt. (8-11)

Then we have ∣∣3d, j,m,I ( f, g)
∣∣≤ Cd2−D(d−1)m/2

‖ f ‖2 ‖g‖∞ (8-12)

for all f ∈ L2 and g ∈ L∞, where Cd is a constant depending only on d.
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Proof. The bilinear form 3d, j,m,I ( f, g) equals
〈
Td, j,m,I (g), f

〉
, where Td, j,m,I is defined by

Td, j,m,I g(x)=
∫

exp
(
iφd, j,m(x + 2−(d−1) j t, t)

)
(g1I )

(
x + 2−(d−1) j t

)
θ(t) dt. (8-13)

By a change of variables,
∥∥Td, j,m,I g

∥∥2
2 can be expressed as∫ (∫∫

ei8d, j,m,τ (x,t)Gτ

(
x + 2−(d−1) j t

)
2τ (t) dx dt

)
dτ,

where
8d, j,m,τ (x, t)= φd, j,m

(
x + 2−(d−1) j t, t

)
−φd, j,m

(
x + 2−(d−1) j t + 2−(d−1) jτ, t + τ

)
,

Gτ (x)= (1I g)(x)(1I g)
(
x + 2−(d−1) jτ

)
,

2τ (t)= θ(t)θ(t + τ).

Changing coordinates (x, t) 7→ (u, v) by u = x + 2−(d−1) j t and v = t , we write the inner double integral
in the previous integral as∫∫

exp
(
iCd, j,m2m Qc j,m , j,τ (u, v)

)
Gτ (u)2τ (v) du dv,

where Qc j,m , j,τ is defined as in (8-6). From (8-7), (8-8) and Lemma 8.1, we then estimate
∥∥Td, j,m,I g

∥∥2
2

by

Cd

∫ 10

−10
min

{
1, 2−D(d−1)mτ−D(d−1)}

‖Gτ‖2 ‖2τ‖2 dτ,

which clearly is bounded by
Cd2−D(d−1)m

‖g‖2
∞
.

Hence (8-12) follows and therefore we complete the proof. �

We now turn to the proof of Proposition 7.3. For simplicity, we assume ρ is supported on
[ 1

8 , 2
]
. For

any function q1 = aξ d/(d−1)
+ bξ ∈ Q1, we have

R81
ˇ(eiq1)(x)=

∫
8̂1(ξ) exp(iaξ d/(d−1)) exp(i(x + b)ξ) dξ, (8-14)

where |a| ∼ 2m . The stationary phase method yields that the principal part of (8-14) is

P(q1)(x)= Cd |a|−1/2 exp(ic1a−(d−1)(x + b)d)8̂1
(
c2a−(d−1)(x + b)d−1), (8-15)

where Cd , c1, c2 are constants depending only on d. Thus to obtain Proposition 7.3, it suffices to prove
that there exists a constant C such that∣∣3̃ j,m(eiq1, f2, f3)

∣∣≤ C 2−
D(d−1)m

2 ‖ f̌2‖2 ‖ f̌3‖∞ (8-16)

holds for all q1 ∈ Q1, f̌2 ∈ L2, and f̌3 ∈ L∞, where 3̃ j,m,n(eiq1, f2, f3) is defined to be

2−(d−1) j/2
∫∫

P(q1)
(
2−(d−1) j x − 2m t

)
f̌2
(
x − 2m td)(1∗I0

f̌3
)
(x)ρ(t) dt dx .
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Observe that 8̂1 is supported essentially in a bounded interval away from 0. Thus we can restrict the
variable x in a bounded interval Id, j,m whose length is comparable to 2(d−1) j+m and reduce the problem
to showing that ∣∣3 j,m,Id, j,m ( f2, f3)

∣∣≤ C 2−
D(d−1)m

2 ‖ f̌2‖2‖ f̌3‖∞ (8-17)

for an absolute constant C and all f̌2 ∈ L2, f̌3 ∈ L∞, where 3 j,m,n,Id, j,m ( f2, f3) is equal to

2−
(d−1) j

2 −
m
2

∫∫
Pd, j,m(2−(d−1) j x − 2m t) f̌2(x − 2m td)(1Id, j,m f̌3)(x)ρ(t) dt dx . (8-18)

Here
Pd, j,m(x)= exp(ic1a−(d−1)(x + b)d)8̂1

(
c2a−(d−1)(x + b)d−1). (8-19)

Let I be an interval of length 1. A rescaling argument then reduces (8-17) to an estimate of a bilinear
form 3 j,m,n,I associated to I , that is,∣∣3 j,m,I ( f, g)

∣∣≤ C 2−
D(d−1)m

2 ‖ f ‖2‖g‖∞, (8-20)

where 3 j,m,I ( f, g) is defined by∫∫
Pd, j,m

(
2m x − 2m t

)
f
(
x − 2−(d−1) j td)g(x)1I (x)ρ(t) dt dx .

Notice that

Pd, j,m(2m x − 2m t)= exp(iCd, j,m2m(x − t + c j,m)
d)8̂1

(
CdCd,m(x − t + cm)

d−1), (8-21)

where Cd, j,m,Cd,m, c j,m, cm,Cd are constants such that |Cd, j,m |, |Cd,m | ∈ [2−100, 2100
]. Clearly

8̂1
(
CdCd,m(x − t + cm)

d−1)
can be dropped by utilizing Fourier series since 8̂1 is a Schwartz function, because x ∈ I, t ∈ supp ρ are
restricted in bounded intervals. Then (8-20) can be reduced to Lemma 8.3 by a change of variable td

7→ t .
This proves Proposition 7.3.

9. Appendix

In this appendix, we consider a simple bilinear operator associated to a polynomial curve without
singularity. A counterexample is given to indicate that the range of (1/p, 1/q, 1/r) must depend on the
degree of the polynomial when the linear term does not vanish. Let ρ be a Schwartz function supported
in the union of two intervals

[
−2,− 1

2

]
and

[1
2 , 2

]
.

Lemma 9.1. Let P be a real polynomial with degree d ≥ 2. And let 2 ≤ n ≤ d. Suppose that the n-th
order derivative of P , P (n), does not vanish. Let T ( f, g)(x)=

∫
f (x − t)g(x − P(t))ρ(t) dt. Then T is

bounded from L p
× Lq to Lr for p, q > 1, r > (n− 1)/n and 1/p+ 1/q = 1/r .

Proof. We may without loss of generality restrict x , and hence likewise the supports of f, g, to fixed
bounded intervals whose sizes depend on the coefficients of the polynomial P . This is possible because
of the restriction |t | ≤ 2 in the integral. Let us restrict x in a bounded interval IP . It is obvious that T is
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bounded uniformly from L∞× L∞ to L∞ and from L p
× L p′ to L1 for 1≤ p ≤∞ and 1/p+ 1/p′ = 1.

When P ′(t) 6= 1 in 1
2 ≤ |t | ≤ 2, the boundedness from L1

× L1 to L1 can be obtained immediately by
changing variable u = x − t and v = x − P(t), since the Jacobian ∂(u, v)/∂(x, t)= 1− P ′(t). Thus T
is bounded from L1

× L1 to L1/2, since x is restricted to a bounded interval IP , and then the lemma
follows by interpolation. When there is a real solution in 1

2 ≤ |t | ≤ 2 to the equation P ′(t)= 1, the trouble
happens at a neighborhood of t0, where t0 ∈

{
t : 1

2 ≤ |t | ≤ 2
}

is the real solution to P ′(t) = 1. There
are at most d − 1 real solutions to the equation P ′(t)− 1 = 0. Thus we only need to consider a small
neighborhood containing only one real solution t0 to P ′(t)= 1. Let I (t0) be a small neighborhood of t0
which contains only one real solution to P ′(t)− 1= 0. We should prove that∫

IP

∣∣∣∣∫
I (t0)

f (x − t)g(x − P(t))ρ(t) dt
∣∣∣∣r dx ≤ CP‖ f ‖rp‖g‖

r
q , (9-1)

for p > 1, q > 1 and r > (n− 1)/n with 1/p+ 1/q = 1/r . Let ρ0 be a suitable bump function supported
in 1

2 ≤ |t | ≤ 2 such that
∑

j ρ0(2 j t)= 1. To get (9-1), it suffices to prove that there is a positive ε such
that ∫

IP

∣∣∣∣∫
I (t0)

f (x − t)g(x − P(t))ρ(t)ρ0(2 j (t − t0)) dt
∣∣∣∣r dx ≤ C 2−ε j

‖ f ‖rp‖g‖
r
q , (9-2)

for all large j , p > 1, q > 1 and r > (n− 1)/n with 1/p+ 1/q = 1/r , since (9-1) follows by summing
for all possible j ≥ 1. By a translation argument, we need to show that∫

IP

∣∣∣∣∫ f (x − t)g(x − P1(t))ρ0(2 j t) dt
∣∣∣∣r dx ≤ C 2−ε j

‖ f ‖rp‖g‖
r
q , (9-3)

for all large j , p > 1, q > 1 and r > (n − 1)/n with 1/p+ 1/q = 1/r , where P1 is a polynomial of
degree d defined by P1(t)= P(t+ t0)− P(t0). It is clear that P ′1(0)= 1 and P (n)1 6= 0. When |t | ≤ 2− j+1,
|P1(t)| ≤ CP2− j for some constant CP ≥ 1 depending on the coefficients of P . Let IP = [aP , bP ] and
AN be defined by

AN =
[
aP + NCP2− j , aP + (N + 1)CP2− j] for N =−1, . . . ,

(bP − aP) · 2 j

CP
.

Notice that for a fixed x ∈ IP , x− t, x− P1(t) is in AN−1∪ AN ∪ AN+1 for some N . So we can restrict x
in one of the AN . Now let TN ( f, g)(x)= 1AN (x)

∫
f (x− t)g(x− P1(t))ρ0(2 j t) dt . Due to the restriction

of x , we only need to show that ∥∥TN ( f, g)
∥∥r

r ≤ C 2−ε j
‖ fN‖

r
p‖gN‖

r
q (9-4)

for all large j ≥ 1, p> 1, q > 1 and r > (n−1)/n with 1/p+1/q = 1/r , where fN = f 1AN , gN = g1AN

and C is independent of N .
By inserting absolute values throughout, we get that TN maps L p

× Lq to Lr with a bound C 2− j

uniform in N , whenever (1/p, 1/q, 1/r) belongs to the closed convex hull of the points (1, 0, 1), (0, 1, 1)
and (0, 0, 0). Observe that P ′1(t) = 1+

∑d−1
k=2

(
P (k)1 (0)/(k− 1)!

)
tk−1 since P ′1(0) = 1. By P (n)1 (0) 6= 0
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and applying the Cauchy–Schwarz inequality, we obtain, for all j large enough,∫ ∣∣TN ( f, g)(x)
∣∣1/2dx ≤ CP2− j/2

‖TN ( f, g)‖1/21

≤ CP2− j/22(n−1) j/2
‖ f ‖1/21 ‖g‖

1/2
1 = CP2(n−2) j/2

‖ f ‖1/21 ‖g‖
1/2
1 .

Hence, an interpolation then yields a bound C 2−ε j for all triples of reciprocal exponents within the convex
hull of

(
1, 1/(n− 1), n/(n− 1)

)
,
(
1/(n− 1), 1, n/(n− 1)

)
, (1, 0, 1), (0, 1, 1) and (0, 0, 0). This finishes

the proof of (9-4). Therefore we complete the proof of Lemma 9.1 �

Notice that if P is a monomial td , then the lower bound for r in Lemma 9.1 can be improved to 1
2 .

This is because P1(t)= P(t + t0)− P(t0)= (t + t0)d − td
0 has nonvanishing P (2)1 (0) when 1

2 ≤ |t0| ≤ 1.
We now give a counterexample to indicate that the lower bound (n− 1)/n for r is sharp in Lemma 9.1.

Proposition 9.2. Let d, n be integers such that d ≥ 2 and 2 ≤ n ≤ d. There is a real polynomial Q of
degree d ≥ 2 whose n-th order derivative does not vanish such that TQ is unbounded from L p

× Lq to Lr

for all p, q > 1 and r < (n− 1)/n with 1/p+ 1/q = 1/r , where TQ is the bilinear operator defined by
TQ( f, g)(x)=

∫
f (x − t)g(x − Q(t))ρ(t) dt.

Proof. Let A be a very large number. We define Q(t) by

Q(t)= 1
Ad!

(t − 1)d + 1
An!

(t − 1)n + (t − 1). (9-5)

It is sufficient to prove that if TQ is bounded from L p
× Lq to Lr for some p, q > 1 and 1/r = 1/p+1/q ,

then r ≥ (n− 1)/n. Suppose there is a constant C such that
∥∥TQ( f, g)

∥∥
r ≤ C‖ f ‖p‖g‖q for all f ∈ L p

and g ∈ Lq . Let δ be a small positive number, and let fδ = 1[0,2nδ] and gδ = 1[1−δ,1]. Let D1 be the
intersection point of the curves x = Q(t)+1 and x = t+2nδ in the t x-plane with t > 1, and let D2 be the
intersection point of the curves x = Q(t)+ 1− δ and x = t in the t x-plane with t > 1. Let D1 = (t1, x1)

and D2 = (t2, x2). Then

1+ 21−1/n(An!)1/nδ1/n
≤ t1 ≤ 1+ 2(An!)1/nδ1/n and

1+ 2−1/n(An!)1/nδ1/n
≤ t2 ≤ 1+ (An!)1/nδ1/n.

Thus we have
1+ 21−1/n(An!)1/nδ1/n

+ 2nδ ≤ x1 ≤ 1+ 2(An!)1/nδ1/n
+ 2nδ and

1+ 2−1/n(An!)1/nδ1/n
≤ x2 ≤ 1+ (An!)1/nδ1/n.

When A is large and δ is small, any horizontal line between line x = x1 and line x = x2 has a line segment
of length δ/2 staying within the region bounded by curves x = t , x = Q(x)+ 1− δ, x = t + 2nδ and
x = Q(t)+ 1. Hence, we have ∥∥TQ( fδ, gδ)

∥∥r
r ≥

(
δ
2

)r
(An!)1/nδ1/n

100
. (9-6)

By the boundedness of TQ , we have∥∥TQ( fδ, gδ)
∥∥r

r ≤ Cr (2nδ)r/pδr/q
= Cr 2nr/pδ.
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By (9-6), we have

δr
≤

1002r+nr/pCr

(An!)1/n δ
n−1

n . (9-7)

Since A can be chosen to be a very large number and δ can be very small, (9-7) implies r ≥ (n− 1)/n,
which completes the proof of Proposition 9.2. �
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A GLUING FORMULA FOR THE ANALYTIC TORSION
ON SINGULAR SPACES

MATTHIAS LESCH

To my family

We prove a gluing formula for the analytic torsion on noncompact (i.e., singular) Riemannian manifolds.
Let M D U [@M1

M1, where M1 is a compact manifold with boundary and U represents a model of
the singularity. For general elliptic operators we formulate a criterion, which can be checked solely
on U , for the existence of a global heat expansion, in particular for the existence of the analytic torsion
in the case of the Laplace operator. The main result then is the gluing formula for the analytic torsion.
Here, decompositions M DM1 [Y M2 along any compact closed hypersurface Y with M1, M2 both
noncompact are allowed; however a product structure near Y is assumed. We work with the de Rham
complex coupled to an arbitrary flat bundle F ; the metric on F is not assumed to be flat. In an appendix
the corresponding algebraic gluing formula is proved. As a consequence we obtain a framework for
proving a Cheeger–Müller-type theorem for singular manifolds; the latter has been the main motivation
for this work.

The main tool is Vishik’s theory of moving boundary value problems for the de Rham complex which
has also been successfully applied to Dirac-type operators and the eta invariant by J. Brüning and the
author. The paper also serves as a new, self-contained, and brief approach to Vishik’s important work.
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1. Introduction

The Cheeger–Müller theorem [Cheeger 1979a; Müller 1978; 1993] on the equality of the analytic and
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In his seminal work, Cheeger [1979b; 1983] initiated the program of “extending the theory of the
Laplace operator to certain Riemannian spaces with singularities”. Since then a lot of work on this
program has been done. It is impossible to give a proper account here, but let us mention [Brüning and
Seeley 1988; 1987], Melrose [1993] and collaborators, and Schulze [1991] and collaborators. While the
basic spectral theory (index theory, heat kernel analysis) for several types of singularities (cones [Lesch
1997], cylinders [Melrose 1993], cusps [Müller 1983], edges [Mazzeo 1991]) is fairly well understood, an
analogue of the Cheeger–Müller theorem has not yet been established for any type of singular manifold,
except compact manifolds with boundary.

We will not solve this problem in this paper. However, we will provide a framework for attacking the
problem.

To describe this we must go back a little. Let M be a Riemannian manifold (boundaryless but not
necessarily compact; also the interior of a manifold with boundary is allowed) and let P0 be an elliptic
differential operator acting on the sections �1.E/ of the Hermitian vector bundle E. We consider P0 as
an unbounded operator in the Hilbert space L2.M;E/ of L2-sections of E. Moreover, we assume P0 to
be bounded below; for example, P0 DDtD for an elliptic operator D. Fix a bounded below self-adjoint
extension P � �C > �1.

We know that e�tP is an integral operator with a smooth kernel kt .x;y/ which on the diagonal has a
pointwise asymptotic expansion

kt .x;x/�t&0

1X
jD0

aj .x/ t
j�dim M

ord P : (1-1)

This asymptotic expansion is uniform on compact subsets of M and hence if, e.g., M is compact, it may
be integrated over the manifold to obtain an asymptotic expansion for the trace of e�tP . For general
noncompact M one cannot expect the operator e�tP to be of trace class. Even if it is of trace class and
even if the coefficients aj .x/ in (1-1) are integrable, integration of (1-1) does not necessarily lead to an
asymptotic expansion of Tr.e�tP /. It is therefore a fundamental problem to give criteria which ensure
that e�tP is of trace class and such that there is an asymptotic expansion

Tr.e�tP /�t&0

X
<˛!1

0�k�k.˛/

a˛k t˛ logk t: (1-2)

It is not realistic to find such criteria for arbitrary open manifolds. Instead one looks at geometric
differential operators on manifolds with singular exits which occur in geometry. A rather generic
description of this situation can be given as follows: suppose that there is a compact manifold M1 �M

and a “well understood” model manifold U such that

M D U [@M1
M1: (1-3)

We list a couple of examples for U which are reasonably well understood and which are of geometrical
significance:
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1. Smooth boundary. U D .0; �/ � Y is a cylinder with metric dx2 C gY over a smooth compact
boundaryless manifold Y . Then M is just the interior of a compact manifold with boundary. To this
situation the theory of elliptic boundary value problems applies. Heat trace expansions are established,
for example, for all well-posed elliptic boundary value problems associated to Laplace-type operators
[Grubb 1999].

2. Isolated asymptotically conical singularities. U D .0; �/�Y with metric dx2Cx2gY .x/. Then M

is a manifold with an isolated (asymptotically) conical singularity. This is the best understood case of
a singular manifold; it is impossible here to do justice to all the scientists who contributed. So we just
reiterate that its study was initiated by Cheeger [1979b; 1983].

3. Simple edge singularities. In the hierarchy of singularities of stratified spaces, which are in general of
iterated cone type, this is the next simple class after isolated conical ones: simplifying a little, U is of the
form .0; �/�F �B with metric dx2Cx2gF .x/CgB.x/. The heat trace expansion and the existence of
the analytic torsion for this class of singularities has been established recently by Mazzeo and Vertman
[2012].

4. Complete cylindrical ends. This case is at the heart of Melrose’s celebrated b-calculus [1993]. An
exact b-metric on .0; �/ � Y is of the form dx2=x2 C gY . Making the change of variables x D e�y

we obtain a metric cylinder .� log �;1/� Y with metric dy2C gY . M is then a complete manifold.
Therefore, the Laplacian, for example, is essentially self-adjoint. However, it is not a discrete operator
and hence its heat operator is not of trace class.

5. Cusps. Cusps occur naturally as singularities of Riemann surfaces of constant negative curvature. A
cusp is given by U D .0;1/� Y with metric dx2C e�2xgY . Then M has finite volume. As in the
previous case, however, the Laplacian is not a discrete operator. In this situation (and also in the previous
one) one employs methods from scattering theory. There has been seminal work on this by Werner Müller
[1992].

The results of this paper apply to situations where the operator P is discrete (has compact resolvent).
This is the case in the examples 1–3 above, but not in 4 and 5. Nevertheless we are confident that our
method can be extended to relative heat traces and relative determinants, for example, for surfaces of
finite area.

To explain our results without becoming too technical, suppose that for PU DP �U and P1DP �M1

(of course suitable extensions have to be chosen for PU and P1) we have proved expansions (1-2). Then
in terms of a suitable cut-off function ' which is 1 in a neighborhood of M1 one expects to hold:

Principle 1.1 (Duhamel’s principle for heat asymptotics; informal version). If PU and P1 are discrete
with trace-class heat kernels then so is P and

Tr.e�tP /D Tr.'e�tP1/CTr..1�'/e�tPU /CO.tN / as t ! 0C; for all N: (1-4)

We reiterate that the heat operator is a global operator. On a closed manifold its short-time asymptotic
expansion is local in the sense that the heat trace coefficients are integrals over local densities as described
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above. This kind of local behavior cannot be expected on noncompact manifolds. However, Principle 1.1
shows that the heat trace coefficients localize near the singularity; they may still be global on the singularity
as is the case, for example, for Atiyah–Patodi–Singer boundary conditions [Atiyah et al. 1975].

Principle 1.1 is a folklore theorem which appears in various versions in the literature. In Section 3
below we will prove a fairly general rigorous version of it (Corollary 3.7).

Once the asymptotic expansion (1-2) is in place one obtains, via the Mellin transform, the meromorphic
continuation of the �-function

�.P I s/ WD
X

�2spec.P/nf0g

��s
D

1

�.s/

Z 1
0

t s�1 Tr..I �…ker P /e
�tP / dt: (1-5)

Let us specialize to the de Rham complex. Suppose that we have chosen an ideal boundary condition
(essentially this means that we have chosen closed extensions for the exterior derivative) .D;D/ for the
de Rham complex such that the corresponding extensions �j D D�j Dj CDj�1D�

j�1
of the Laplace

operators satisfy (1-2). Then we can form the analytic torsion of .D;D/:

log T .D;D/ WD
1

2

X
j�0

.�1/j j
d

ds

ˇ̌̌̌
sD0

�.�j I s/: (1-6)

For a closed manifold the celebrated Cheeger–Müller theorem [Cheeger 1979a; Müller 1978] relates
the analytic torsion to the combinatorial torsion (Reidemeister torsion).

In terms of the decomposition (1-3) the problem of proving a CM-type theorem for the singular
manifold M decomposes into the following steps.

(1) Prove that the analytic torsion exists for the model manifold U .

(2) Compare the analytic torsion with a suitable combinatorial torsion for U .

(3) Prove a gluing formula for the analytic and combinatorial torsion and apply the known Cheeger–
Müller theorem for the manifold with boundary M1.

A gluing formula for the combinatorial torsion is more or less an algebraic fact due to Milnor; see also
the Appendix. The following theorem, which follows from our gluing formula, solves (3) under a product
structure assumption:

Theorem 1.2. Let M be a singular manifold expressed as (1-3) and assume that near @M1 all structures
are product. Then for establishing a Cheeger–Müller theorem for M it suffices to prove it for the model
space U of the singularity.

The theorem basically says that, under product assumptions, one gets step (3) for free. Otherwise the
specific form of U is completely irrelevant. We conjecture that the product assumption in Theorem 1.2
can be dispensed with. This would follow once the anomaly formula of Brüning and Ma [2006] were
established for the model U of the singularity; this would allow us to compare the analytic torsion
for .U;g/ to the torsion of .U;g1/, where g1 is product near @M1 and coincides with g outside a
relatively compact collar.
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The theorem is less obvious than it sounds since torsion invariants are global in nature. However, we
will show here that under minimal technical assumptions the analytic torsion satisfies a gluing formula.
That the combinatorial torsion satisfies a gluing formula is a purely algebraic fact (see Appendix). The
blueprint for our proof is a technique of moving boundary conditions due to Vishik [1995] who applied it
to prove the Cheeger–Müller theorem for compact manifolds with smooth boundary. Brüning and the
author [Brüning and Lesch 1999] applied Vishik’s moving boundary conditions to generalized Atiyah–
Patodi–Singer nonlocal boundary conditions and to give an alternative proof of the gluing formula for
the eta-invariant. We emphasize, however, that the technical part of the present paper is completely
independent of (and in our slightly biased view simpler than) [Vishik 1995]. Also we work with the
de Rham complex coupled to an arbitrary flat bundle F . Besides the product structure assumption we do
not impose any restrictions on the metric hF on F ; in particular hF is not assumed to be flat.

We note here that in the context of closed manifolds gluing formulas for the analytic torsion have been
proved in [Vishik 1995; Burghelea et al. 1999], and recently [Brüning and Ma 2013]. In contrast our
method applies to a wide class of singular manifolds.

Some more comments on conic singularities, the most basic singularities, are in order: let .N;g/ be
a compact closed Riemannian manifold and let CN D .0; 1/�N with metric dx2C x2g be the cone
over N . We emphasize that sadly near @CN D f1g �N we do not have product structure. Let g1 be a
metric on CN that is product near f1g �N and that coincides with g near the cone tip.

Vertman [2009] gave formulas for the torsion of the cone .CN;g/ in terms of spectral data of the cone
base. What is still not yet understood is how these formulas for the analytic torsion can be related to a
combinatorial torsion of the cone, at least not in the interesting odd-dimensional case. For CN even-
dimensional, Hartmann and Spreafico [2010] express the torsion of .CN;g/ in terms of the intersection
torsion introduced by A. Dar [1987] and the anomaly term of Brüning and Ma [2006]. If it were also
possible to apply the latter to the singular manifold CN to compare the torsion of the metric cone .CN;g/

to that of the cone .CN;g
1
/, where the metric near f1g �N is modified to a product metric, then one

would obtain a (very sophisticated) new proof of Dar’s theorem that for an even-dimensional manifold with
conical singularities the analytic and the intersection torsions both vanish.1 It would be more interesting,
of course, to have this program worked out in the odd-dimensional case.

The paper is organized as follows. Section 2 serves to introduce some terminology and notation. In a
purely functional analytic context we discuss self-adjoint operators with discrete dimension spectrum;
this terminology is borrowed from Connes and Moscovici’s celebrated paper [1995] on the local index
theorem in noncommutative geometry. For Hilbert complexes [Brüning and Lesch 1992] whose Laplacians
have discrete dimension spectrum one can introduce the analytic torsion. We state a formula for the
torsion of a product complex (Proposition 2.3) and in Section 2B we collect some algebraic facts about
determinants and the torsion of a finite-dimensional Hilbert complex. The main result of the section
is Proposition 2.4 which, under appropriate assumptions, provides a variation formula for the analytic
torsion of a one-parameter family of Hilbert complexes.

1 For this to hold one needs to assume that the metric on the twisting bundle F is also flat.
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In Section 3 we discuss the gluing of operators in a fairly general setting: we assume that we
have two pairs .Mj ;P

0
j /, j D 1; 2, consisting of Riemannian manifolds M m

j and elliptic operators P0
j

such that each Mj is the interior of a manifold Mj with compact boundary Y (Mj is not necessarily
compact). Let W D Y � .�c; c/ be a common collar of Y in M1 and in M2 such that @M1D Y �f1g and
@M2DY �f�1g and such that P0

1
coincides with P0

2
over W . Then P0

j give rise naturally to a differential
operator P0 D P0

1
[P0

2
on M WD .M1 n .Y � .0; c///[Y �f0g .M2 n .Y � .�c; 0///. Without becoming

too technical here we will show in Proposition 3.5 that certain semibounded symmetric extensions Pj ,
j D 1; 2, of P0

j satisfying a noninteraction condition (3-18) give rise naturally to a semibounded self-
adjoint extension of P0. Furthermore, if the Pj have discrete dimension spectrum outside W (compare
the paragraph before Corollary 3.7), then the operator P has discrete dimension spectrum and up to
an error of order O.t1/ the short-time heat trace expansion of P can be calculated easily from the
corresponding expansions of Pj .

We also prove similar results for perturbed operators of the form Pj CVj , where Vj is a certain non-
pseudodifferential operator; such operators will occur naturally in Section 5, our main technical section.

In Section 4 we describe the details of the gluing situation, review Vishik’s moving boundary conditions
for the de Rham complex in this context, and introduce various one-parameter families of de Rham
complexes. The main technical result of the paper is Theorem 4.1 which analyzes the variation of the
torsions of these various families of de Rham complexes. The proof of Theorem 4.1 occupies the whole
Section 5. The proof is completely independent of Vishik’s original approach. The main feature of our
proof is a gauge transformation à la Witten of the de Rham complex which transforms the de Rham
operator, originally a family of operators with varying domains, onto a family of operators with constant
domain; this family can then easily be differentiated by the parameter.

Theorem 6.1 in Section 6 then finally is the main result of the paper, whose proof, thanks to Theorem 4.1,
is now more or less an exercise in diagram chasing.

The Appendix contains the analogues of our main results for finite-dimensional Hilbert complexes.

The paper has a somewhat lengthy history. The material of Sections 4 and 5, in the context of smooth
manifolds only, was developed in the summer of 1999, while I was on a Heisenberg fellowship in Bonn.
In light of the negative feedback received at conferences I felt that the subject was dying and abandoned it.

In recent years there has been revived interest in generalizing the Cheeger–Müller theorem to manifolds
with singularities [Mazzeo and Vertman 2012; Vertman 2009; Müller and Vertman 2011; Hartmann
and Spreafico 2010]. I noticed that my techniques (an adaption of Vishik’s work [1995] plus simple
observations based on Duhamel’s principle) do not require the manifold to be closed. The bare minimal
assumptions required for the analytic torsion to exist (“discrete dimension spectrum”; see Section 2) and a
mild but obvious noninteraction restriction on the choice of the ideal boundary conditions (Definition 3.4)
for the de Rham complex actually suffice to prove a gluing formula for the analytic torsion. Since a more
concise and more accessible account of the long and important paper [Vishik 1995] is overdue anyway,
I eventually made a final effort to write up this paper, in part because Werner Müller and Boris Vertman
had been pushing me to do so.
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2. Operators with meromorphic �-function

Let H be a separable complex Hilbert space, T a nonnegative self-adjoint operator in H with p-summable
resolvent for some 1� p <1. The summability condition implies that T is a discrete operator; that is,
the spectrum of T consists of eigenvalues of finite multiplicity with C1 being the only accumulation
point. Moreover,

Tr.e�tT /D
X

�2spec T

e�t�
D dim ker T CO.e�t�1/ as t !1 (2-1)

and
Tr.e�tT /DO.t�p/ as t ! 0C: (2-2)

Here �1 WDmin.spec T n f0g/ denotes the smallest nonzero eigenvalue of T .
As a consequence, the �-function

�.T I s/ WD
X

�2spec.T /nf0g

��s
D

1

�.s/

Z 1
0

t s�1 Tr..I �…ker T /e
�tT / dt (2-3)

is a holomorphic function in the half plane <s > p; …ker T denotes the orthogonal projection onto ker T .

Definition 2.1. Following [Connes and Moscovici 1995] we say that T has discrete dimension spectrum if
�.T I s/ extends meromorphically to the complex plane C such that on finite vertical strips j�.s/�.T I s/jD
O.jsj�N /, j=sj !1, for each N . Denote by †.T / the set of poles of the function �.s/�.T I s/.

It then follows that for fixed real numbers a<b there are only finitely many poles in the strip a<<s<b.
Moreover, as explained, e.g., in [Brüning and Lesch 1999, Section 2], the discrete dimension spectrum
condition is equivalent to the existence of an asymptotic expansion

Tr.e�tT / �t!0C

X
˛2�†

0�k�k.˛/

a˛k t˛ logk t: (2-4)

Furthermore, there is the following simple relation between the coefficients of the asymptotic expansion
and the principal parts of the Laurent expansion at the poles of �.s/�.T I s/:

�.s/�.T I s/ �
X
˛2�†

0�k�k.˛/

a˛k.�1/kk!

.sC˛/kC1
�

dim ker T

s
: (2-5)

2A. Hilbert complexes and the analytic torsion. We use the convenient language of Hilbert complexes
as outlined in [Brüning and Lesch 1992]. Recall that a Hilbert complex .D;D/ consists of a sequence of
Hilbert spaces Hj , 0�j �N , together with closed operators Dj mapping a dense linear subspace Dj �Hj

into HjC1. The complex property means that actually ran Dj �DjC1 and DjC1 ıDj D 0. We say that a
Hilbert complex has discrete dimension spectrum if all its Laplace operators �j DD�j Dj CDj�1D�

j�1

do have discrete dimension spectrum in the sense of Definition 2.1. Note that since �j has compact
resolvent, .D;D/ is automatically a Fredholm complex, by [loc. cit., Theorem 2.4]. For a Hilbert complex
.D;D/ which is Fredholm, the finite-dimensional cohomology group H j .D;D/D ker Dj= ran Dj�1 is
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the quotient space of the Hilbert space ker Dj by the closed subspace ran Dj�1 and therefore is naturally
equipped with a Hilbert space structure. From the Hodge decomposition [Brüning and Lesch 1992,
Corollary 2.5]

Hj D ker Dj \ ker D�j�1˚ ran Dj�1˚ ran D�j D ker�j ˚ ran Dj�1˚ ran D�j ; (2-6)

one then sees that the natural isomorphism OH j .D;D/ WD ker�j D ker Dj \ ker D�
j�1
!H j .D;D/ is

an isometric isomorphism. We will always tacitly assume that the cohomology groups are equipped with
this natural Hilbert space structure.

Recall the Euler characteristic

�.D;D/ WD
X
j�0

.�1/j dim H j .D;D/D
X
j�0

.�1/j dim ker�j : (2-7)

The discrete dimension spectrum assumption implies the validity of the McKean–Singer formula

�.D;D/D
X
j�0

.�1/j Tr.e�t�j / for t > 0: (2-8)

Definition 2.2. Let .D;D/ be a Hilbert complex with discrete dimension spectrum. The analytic torsion
of .D;D/ is defined by

log T .D;D/ WD
1

2

X
j�0

.�1/j j
d

ds

ˇ̌̌̌
sD0

�.�j I s/:

If �.�j I s/ has a pole at s D 0 then by d
ds
jsD0�.�j I s/ we understand the coefficient of s in the Laurent

expansion at 0.
Obviously log T .D;D/ can be defined under the weaker assumption that the function

F.D;DI s/ WD
1

2

X
j�0

.�1/j j �.�j I s/ (2-9)

extends meromorphically to C.

The analytic torsion can also be expressed in terms of the closed and coclosed Laplacians: put

�j ;cl WD�j � ran Dj�1 DDj�1D�j�1 � ran Dj�1; (2-10)

�j ;ccl WD�j � ran D�j DD�j Dj � ran D�j : (2-11)

Note that by definition �0;ccl D 0 and �N;cl D 0 act on the trivial Hilbert space f0g; recall that N is
the length of the Hilbert complex. By the Hodge decomposition (2-6) the operators �j ;cl and �j ;ccl are
invertible. Moreover,

�jC1;clDj � ran D�j DDj�j ;ccl: (2-12)

Hence the eigenvalues of �j ;ccl and �jC1;cl coincide including multiplicities. Putting for the moment
Aj WD Tr.e�t�j ;cl/D Tr.e�t�j�1;ccl/ for j � 1 and A0 WD 0 we therefore have

Tr.e�t�j /� dim H j .D;D/D Tr.e�t�j ;cl/CTr.e�t�j ;ccl/DAj CAjC1; (2-13)



A GLUING FORMULA FOR THE ANALYTIC TORSION ON SINGULAR SPACES 229

and henceX
j�0

.�1/j j .Tr.e�t�j /� dim H j .D;D//

D

X
j�0

.�1/j j .Aj CAjC1/D
X
j�0

.�1/j jAj �

X
j�0

.�1/j .j � 1/Aj

D

X
j�0

.�1/j Tr.e�t�j ;cl/D�
X
j�0

.�1/j Tr.e�t�j ;ccl/: (2-14)

To avoid cumbersome distinction of cases we understand that Tr.e�t�0;ccl/D 0.

Proposition 2.3. Let .D0;D0/, .D00;D00/ be two Hilbert complexes with discrete dimension spectrum. Let
.D;D/ WD .D0;D0/ Ő .D00;D00/ be their tensor product. Denote by �0, �00, � the Laplacians of .D0;D0/,
.D00;D00/, .D;D/, respectively.

Then the function F.D;DI s/ WD 1
2

P
j�0.�1/j j �.�j I s/ extends meromorphically to C. More pre-

cisely, in terms of the corresponding function for the complexes .D0;D0/, .D00;D00/ we have the equations

�.D;D/D �.D0;D0/ ��.D00;D00/; (2-15)

F.D;DI s/D �.D0;D0/ �F.D00;D00I s/C�.D00;D00/ �F.D0;D0I s/I (2-16)

in particular

log T .D;D/D �.D0;D0/ � log T .D00;D00/C�.D00;D00/ � log T .D0;D0/: (2-17)

Proof. This is an elementary calculation; compare [Vishik 1995, Proposition 2.1] and [Ray and Singer
1971, Theorem 2.5]. Since

�k D

M
iCjDk

�0i ˝ I C I ˝�00j ;

we have
ker.�k ��/D

M
�0C�00D�

M
iCjDk

ker.�0i ��
0/˝ ker.�00j ��

00/: (2-18)

This proves (2-15), which follows also from the Künneth theorem for Hilbert complexes [Brüning and
Lesch 1992, Corollary 2.15]. Furthermore,X
k�0

.�1/kk Tr e�t�k

D

X
k�0

.�1/kk
X

iCjDk

X
�02spec�0

i

�002spec�00
j

e�t�0e�t�00
D

X
i;j�0

.�1/iCj .iCj /
X

�02spec�0
i

�002spec�00
j

e�t�0e�t�00

D

�X
i�0

.�1/i Tr e�t�0
i

��X
j�0

.�1/j j Tr e�t�00
j

�
C

�X
j�0

.�1/j Tr e�t�00
j

��X
i�0

.�1/ii Tr e�t�0
i

�
: (2-19)

The claim now follows from (2-3) and the McKean–Singer formula (2-8) applied to �0i , �
00
j . �
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Next we state an abstract differentiability result (compare [Dai and Freed 1994, Appendix; Bohn 2009,
Appendix D]).

Proposition 2.4. Let .D� ;D� /, where � 2 J � R, be a one-parameter family of Hilbert complexes with
discrete dimension spectrum. Let ��j D .D

�
j /
�D�

j CD�
j�1

.D�
j�1

/� be the corresponding Laplacians.
Assume that

(1) HT .D
� ;D� /.t/D

P
j�0.�1/j j Tr.e�t��

j / is differentiable in .t; �/ 2 .0;1/�J and

d

d�
HT .D

� ;D� /.t/D t
d

dt
Tr.Pe�t�� / (2-20)

with some operator P in H D
L

j�0 Hj with P .I C�� /�N bounded for some N ;

(2) �� is a graph smooth family of self-adjoint operators with constant domain and dim ker�� indepen-
dent of � ;

(3) there is an asymptotic expansion

Tr.Pe�t�� / �t!0C

X
˛2�†

0�k�k.˛/

a�˛k t˛ logk t; (2-21)

which is locally uniformly in � and with a�
˛k

depending smoothly on � ;

(4) a�
0k
D 0 for k > 0; that is, in the asymptotic expansion (2-21) there are no terms of the form t0 logk t

for k > 0.

Then � 7! log T .D� ;D� / is differentiable and

d

d�
log T .D� ;D� /D�1

2
LIM
t!0C

Tr.Pe�t�� /C 1
2

LIM
t!1

Tr.Pe�t�� /D�1
2
a�00C

1
2

Tr.P � ker�� /:

Here LIMt!a stands, as usual, for the constant term in the asymptotic expansion as t ! a. In (1) we
have used the abbreviation �� WD

L
j�0�

�
j .

Proof. Assumptions (2) and (3) of Proposition 2.4 guarantee that in the following we may interchange
differentiation by s and by � :

2
d

d�
log T .D� ;D� /D

d

d�

d

ds

ˇ̌̌̌
sD0

1

�.s/

Z 1
0

t s�1
X
j�0

.�1/j j Tr.e�t��
j �…ker��

j
/dt

D
d

ds

ˇ̌̌̌
sD0

1

�.s/

Z 1
0

t s d

dt
Tr.Pe�t�� /dt

D�
d

ds

ˇ̌̌̌
sD0

s

�.s/

Z 1
0

t s�1 Tr.Pe�t�� /dt

D�
d

ds

ˇ̌̌̌
sD0

s

�.s/

��
a�

00

s
C c�0 C c�1 sC � � �

�
�

Tr.P � ker�� /
s

�
D�a�00CTr.P � ker�� /: (2-22)
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Assumption (1) was used in the second equality and assumptions (3), (4) were used in the penultimate
equality. Without assumption (4) the higher derivatives of the function 1=�.s/ at s D 0 would cause
additional terms. Assumption (2) guarantees in particular that Tr.…ker��

j
/ is independent of � . �

2B. Torsion of a finite-dimensional Hilbert complex. This subsection mainly serves the purpose of
fixing some notation. Let H1, H2 be finite-dimensional Hilbert spaces. For a linear map T WH1!H2

we put

Det.T / WD det.T �T /1=2: (2-23)

If T WH1!H2, S WH2!H3 are linear maps then obviously Det.TS/D Det.T /Det.S/. Further-
more, given orthogonal decompositions Hj D H

.1/
j ˚H

.2/
j , j D 1; 2, such that with respect to these

decompositions we have

T D

�
T1 T12

0 T2

�
; (2-24)

then Det.T /D Det.T1/Det.T2/.

Let 0! C 0 d0
�! C 1 d1

�! � � �
dn�1
�! C n! 0 be a finite-dimensional Hilbert complex. Then the torsion

of this complex satisfies

log T .C �; d/D
X
p�0

.�1/p log Det.dp W ker d?p ! im dp/DW log �.C �; d/: (2-25)

Needless to say each finite-dimensional Hilbert complex is automatically a Hilbert complex with discrete
dimension spectrum. In fact, since the zeta function is entire in this case, for the Laplacian of the complex
the set †.�/ defined in Definition 2.1 then equals the set of poles of the �-function, f0;�1;�2; : : : g.

The following two standard results about the torsion and the determinant will be needed at several
places. The first one is elementary; the second one is due to Milnor [1966].

Lemma 2.5. Let .C �
k
; dk/, kD1; 2, be finite-dimensional Hilbert complexes and ˛ W .C �

1
; d1/! .C �

2
; d2/

be a chain isomorphism. Then

log �.C �1 ; d
1/D log �.C �2 ; d

2/C
X
j�0

.�1/j log Det. j̨ W C
j
1
! C

j
2
/

�

X
j�0

.�1/j log Det. j̨ ;� WH
j .C �1 ; d

1/!H j .C �2 ; d
2//: (2-26)

Proof. For complexes of length 2 the formula follows directly from (2-24). Then one proceeds by
induction on the length of the complexes C1, C2. We omit the elementary but a little tedious details. �

Proposition 2.6 [Milnor 1966, Theorem 3.1/3.2]. Let 0! C1
˛
�! C

ˇ
�! C2! 0 be an exact sequence

of finite-dimensional Hilbert complexes and let

H W 0!H 0.C1/
˛�
�!H 0.C /

ˇ�
�!H 0.C2/

ı
�!H 1.C1/! � � � (2-27)
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be their long exact cohomology sequence. Then

log �.C �; d/D log �.C �1 ; d
1/C log �.C �2 ; d

2/C log �.H/

�

X
j�0

.�1/j log �
�
0! C

j
1

˛
! C j ˇ

! C
j
2
! 0

�
: (2-28)

In fact the proposition as stated is a combination of [Milnor 1966, Theorem 3.2] and Lemma 2.5. The
last term in (2-28) does not appear in [Milnor 1966, Theorem 3.2] since there one is given preferred
bases of C1, C , C2 which are compatible. In our Hilbert complex setting the preferred bases are the
orthonormal ones. The last term in (2-28) makes up for the fact that in general it is not possible to choose
orthonormal bases of C1, C , C2 which are compatible in the sense of [loc. cit.]. For a proof in the more
general von Neumann setting see [Burghelea et al. 1999, Theorem 1.14].

For future reference we note that for the acyclic complex .0! C
j
1

˛
!C j

ˇ
!C

j
2
! 0/ of length 2 on

the right of (2-28) it follows from the definition (2-25) that

log �
�
0! C

j
1

˛
! C j ˇ

! C
j
2
! 0

�
D

1
2

log Det
�
C

j
1

˛�˛
�! C

j
1

�
�

1
2

log Det
�
C

j
2

ˇˇ�

�! C
j
2

�
: (2-29)

Finally, we remind the reader of the (trivial) fact that if in Proposition 2.6 the complex C equals
C1 ˚ C2, ˛ the inclusion and ˇ the projection onto the second summand, then log �.H/ D 0 and
log �.C �; d/D log �.C �

1
; d1/C log �.C �

2
; d2/.

3. Elementary operator gluing and heat kernel estimates on noncompact manifolds

3A. Standing assumptions. Let M m be a Riemannian manifold of dimension m; it is essential to note
that M m is not necessarily complete; see Figure 1. Furthermore, let P0 W �

1
c .M;E/! �1c .M;E/

be a second-order formally self-adjoint elliptic differential operator acting on the compactly supported
sections, �1c .M;E/, of the Hermitian vector bundle E. We assume that P0 is bounded below and we fix

singular ends
boundary conditions
may interact

conic end

cone tip
not part
of M

some
singular
end

end with elliptic
boundary condition
(but boundary component not part of M )

collar .�c; 0/�Y

boundary conditions at
Y and on singular ends
do not interact

K

M

Y 2M nM

Figure 1. Example of a singular manifold.
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once and for all a bounded below self-adjoint extension P of P0 in the Hilbert space of square-integrable
sections L2.M;E/, for example, the Friedrichs extension.

Later on we will need a class of operators which is slightly more general than (pseudo)differential
operators. For our purposes it will suffice to consider an auxiliary operator

V WH s
loc.M;E/!H s�1

comp.M;E/; (3-1)

which for each real s maps the space H s
loc.M;E/ of sections, which are locally of Sobolev class s,

continuously into the space of compactly supported sections of Sobolev class s� 1; see [Shubin 2001,
Section I.7]. We assume that V is symmetric with respect to the L2-scalar product on E; that is,
hVf;gi D hf;Vgi for f 2H 1

loc.M;E/, g 2L2
loc.M;E/.

Finally, we assume that V is confined to a compact subset K�M in the sense that

M'V D VM' D 0; (3-2)

for any smooth function vanishing in a neighborhood of K. Equation (3-2) implies that V commutes
with M' for any smooth function which is constant in a neighborhood of K. Our main example is the
operator Q�� defined after (5-8) below.

In view of (3-1) and the ellipticity of P0, the operator V is P -bounded with arbitrarily small bound;
thus P CV is self-adjoint and bounded below as well.

With regard to the mapping property (3-1) of V we introduce the space Opa
c .M;E/ of linear operators A

mapping H s
loc continuously into H s�a

comp and whose Schwartz kernel KA is compactly supported. Obvious
examples are pseudodifferential operators with compactly supported Schwartz kernel, but also certain
Fourier integral operators. The point is that elements in Opc are not necessarily pseudolocal. Note that V

is in Op1
c .M;E/.

The set-up outlined in this Section 3A will be in effect during the remainder of Section 3.

3B. Heat kernel estimates for P C V .

Lemma 3.1. For all s � 0 we have D.P CV /s DD.P s/. Furthermore, the operator e�t.PCV /, t > 0,
has a smooth integral kernel.

Proof. By complex interpolation [Taylor 1996, Section 4.2] it suffices to prove the first claim for sD k 2N

where it follows easily by induction exploiting the elliptic regularity for P and (3-1).
Consequently, e�t.PCV / is a self-adjoint operator which maps L2.M;E/ into\

k�0

D..P CV /k/D
\
k�0

D.Pk/; (3-3)

and the latter is contained in �1.M;E/ by elliptic regularity. This implies smoothness of the kernel
of e�t.PCV /. �

Proposition 3.2. Let A 2 Opa
c .M;E/, B 2 Opb

c .M;E/ with compactly supported Schwartz kernels
KA, KB . Denote by �j WM �M !M , j D 1; 2, the projections onto the first and second factor and
suppose that �2.supp KA/\�1.supp KB/D∅ and �2.supp KA/\KD∅. (For K, see Section 3A.)
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Then Ae�t.PCV /B is a trace class operator and

kAe�t.PCV /Bktr DO.t1/; t ! 0C: (3-4)

Here O.t1/ is an abbreviation for O.tN / for any N ; the O-constant may depend on N . Further-
more, k � ktr denotes the trace norm on the Schatten ideal of trace class operators.

Proof. (Compare [Lesch 1997, Section I.4].) Since the Schwartz kernels are compactly supported it
suffices to prove that for all real ˛, ˇ and all N > 0 we have

kAe�t.PCV /Bk˛;ˇ DO.tN /; t ! 0C: (3-5)

Here, k � k˛;ˇ stands for the mapping norm between the Sobolev spaces

H˛.�2.supp KB/;E/ and Hˇ.�1.supp KA/;E/:

The O-constant may depend on A, B, ˛, ˇ, N .
Equation (3-5) follows from Duhamel’s formula by a standard bootstrapping argument as follows: note

first that the mapping properties of A, B and P CV imply that, for real ˛,

kAe�t.PCV /Bk˛;˛�a�b DO.1/; t ! 0C: (3-6)

Assume by induction that, for fixed l , N , for all A, B satisfying our assumptions and for all real ˛,

kAe�t.PCV /Bk˛;˛�a�bCl DO.tN /; t ! 0C: (3-7)

Fix plateau functions �, ',  2 C1c .M / with the following properties:

(1) ' � 1 in a neighborhood of �2.supp KA/ and supp' \KD∅.

(2)  � 1 in a neighborhood of �1.supp KB/.

(3) �� 1 in a neighborhood of supp' and supp�\KD∅.

(4) supp�\ supp D∅.

Then
kAe�t.PCV /Bk˛;˛�a�bClC1=2 D kA'e�t.PCV / Bk˛;˛�a�bClC1=2

� C1k'e�t.PCV / k˛�b;˛�bClC1=2: (3-8)

From

.@t CP CV /'e�t.PCV / D �ŒP0; '�e
�t.PCV / ; (3-9)

where ŒP0; '� denotes the commutator between the differential expression P0 and multiplication by ',
we infer

'e�t.PCV / D

Z t

0

�e�.t�s/.PCV /�ŒP0; '�e
�s.PCV / dsI (3-10)
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here we have used the assumptions on the supports of �,  , ' and (3-2). In the displayed formulas we
wrote, to save some space, �,  , ' for the multiplication operators M�, M , M' .

For Q̨ D ˛� b we now find

k'e�t.PCV / k
Q̨ ; Q̨ClC 1

2
�

Z t

0

k�e�.t�s/.PCV /�k
Q̨�1Cl; Q̨ClC 1

2
kŒP0; '�e

�s.PCV / k Q̨ ; Q̨�1Cl ds:

(3-11)
Since ŒP0; '� is in Op1

c we find, using (3-7),

kŒP0; '�e
�s.PCV / k Q̨ ; Q̨�1Cl DO.sN / as s! 0C: (3-12)

Furthermore, denoting by C a constant such that P � �C C 1,

k�e�u.PCV /�k
Q̨�1Cl; Q̨ClC 1

2

�k.PCVCC /
Q̨Cl�1

2 �k Q̨�1Cl;0 k.PCVCC /
3
4 e�u.PCV /

k0;0 k�.PCVCC /�
Q̨ClC1=2

2 k0; Q̨ClC 1
2
: (3-13)

The first and the third factors on the right are bounded while for the second factor we have, by the spectral
theorem,

k.P CV CC /3=4e�u.PCV /
k0;0 DO.u�3=4/ as u! 0C: (3-14)

Thus

k'e�t.PCV / k Q̨ ; Q̨ClC1=2 � C1

Z t

0

.t � s/�3=4sN ds DO.tNC1=4/; t ! 0C: (3-15)

Thus we have improved the parameters l and N in (3-7) by 1
2

and 1
4

, respectively, and therefore the result
follows by induction. �

Proposition 3.3. Under the standing assumptions of Section 3A, let ',  2C1.M / with supp'\supp 
being compact (the individual supports of ' or  may be noncompact!) such that d', d are compactly
supported and that supp d' \KD∅D supp d \K. Furthermore, assume that multiplication by ' and
by  preserves D.P CV /DD.P /.

Then for t > 0 the operator 'e�t.PCV / is trace class and

k'e�t.PCV / ktr DO.t�m=2�0/; t ! 0C: (3-16)

If supp' \ supp D∅ then the right-hand side can be improved to O.t1/, t ! 0C.

Here O.t�m=2�0/ is an abbreviation for O.t�m=2��/ for any � > 0; the O-constant may depend on �.

Proof. Assume first that additionally  is compactly supported. Again applying Duhamel we find

'e�t.PCV / D

Z t

0

e�.t�s/.PCV /ŒP0; '�e
�s.PCV / ds: (3-17)

Now apply Lemma 3.1 and Proposition 3.2 to the operator ŒP0; '�e
�s.PCV / . If supp' \ supp 6D∅

then the trace norm estimate is a simple consequence of Sobolev embedding and the established mapping
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M1

M2

possibly
noncompact
end

Y

K1

K2

possibly
noncompact
end

U D .�c; c/�Y

tubular neighborhood of Y

Figure 2. The gluing situation.

properties. If supp' \ supp D ∅ then Proposition 3.2 implies kŒP0; '�e
�s.PCV / ktr D O.t1/ and

the claim follows in this case.
Since e�t.PCV / is self-adjoint the roles of ',  may be interchanged by taking adjoints and hence the

proposition is proved if ' or  is compactly supported. The general case now follows from (3-17) since
the compactness of supp d' implies the compactness of the support of the Schwartz kernel of ŒP0; '�. �

3C. Operator gluing. Now we assume that we have two triples .Mj ;P
0
j ;Vj /, j D 1; 2, consisting of

Riemannian manifolds M m
j and operators P0

j , Vj satisfying the standing assumptions of Section 3A.
Furthermore, we assume that each Mj is the interior of a manifold Mj with compact boundary Y (it is

essential that Mj is not necessarily compact). Let U D Y � .�c; c/ be a common collar of Y in M1 and
in M2, such that @M1 D Y � f1g and @M2 D Y � f�1g.

We assume that the sets Kj corresponding to Vj (cf. (3-2)) lie in Mj nU and that P0
1

coincides with P0
2

over U . Then the P0
j gives rise naturally to a differential operator P0 D P0

1
[P0

2
on

M WD
�
M1 n .Y � .0; c//

�
[Y �f0g

�
M2 n .Y � .�c; 0//

�
;

and the Vj to an operator V D V1C V2 2 Op1
c .M;E/, where E is the bundle obtained by gluing the

bundles E1 and E2 in the obvious way (due to (3-2) the operators V1, V2 extend to M in a natural way).

Definition 3.4. By C1
U
.Mj / we denote the space of those smooth functions ' 2 C1.Mj / such that ' is

constant in a neighborhood of Mj nU and ' � 0 in a neighborhood of @Mj ; see Figure 3.

graph of ' 2 C1U .M /

singular end

U
Y

M

Figure 3. Schematic sketch of a function in C1
U
.M /. The line indicates the manifold M ;

to the left are the possible noncomplete ends. On the right there is the collar U .
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A function ' 2 C1
U
.Mj / extends by 0 to a smooth function on M .

Proposition 3.5. Let Pj , j D 1; 2, be closed symmetric extensions of P0
j which are bounded below and

for which

'D.P�j /�D.Pj / for all ' 2 C1U .Mj /: (3-18)

For a fixed pair of functions 'j 2 C1
U
.Mj /, j D 1; 2, put

D.P / WD
˚
f 2D.P0

max/
ˇ̌
'jf 2D.Pj /; j D 1; 2

	
DH 2

comp.U;E/C'1D.P1/C'2D.P2/: (3-19)

D.P / is indeed independent of the particular choice of 'j and the operator P which is defined by
restricting P0

max D .P
0/� to D.P / is self-adjoint and bounded below. V is P -bounded with arbitrarily

small bound and hence P CV is self-adjoint and bounded below as well.
Furthermore, if for fixed j 2 f1; 2g we have ',  2 C1

U
.Mj / satisfying (3-18), then the operator

'e�t.PjCV / �'e�t.PCV / is trace class and its trace norm is O.t1/ as t ! 0C.

Remark 3.6. 1. It is not assumed that 'e�t.PjCV / or 'e�t.PCV / is of trace class individually!

2. Equation (3-18) says that the “boundary conditions” at the exits of M1 and M2 are separated. We
illustrate this with an example: let M1 D

�
�1; 1

2

�
, M2 D

�
�

1
2
; 1
�
, U D

�
�

1
2
; 1

2

�
, M D .�1; 1/, and let

P0
1
D P0

2
D �d2=dx2 D � be the Laplacian on functions. Let P

per
1

be the Laplacian � on M1 with
periodic boundary conditions. These boundary conditions are not separated and indeed for ' 2C1

�
�1; 1

2

�
with '.x/D 1 for x � �1

4
and '.x/D 0 for x � 1

4
the space 'D.P per

1
/ equals 'H 2

��
� 1; 1

2

��
and this

is not contained in D.P
per
1
/.

However, for any pair of self-adjoint extensions Pj of P0
j , j D 1; 2, with separated boundary conditions

at the ends of the intervals Mj one has 'D.Pj /�D.Pj /; that is, the condition (3-18) is satisfied and
Proposition 3.5 applies to this pair.

Proof. Since H 2
comp.U;E/ � D.P0

j ;min/ the second equality in (3-19), the symmetry of P and the
independence of D.P / of the particular choice of 'j are easy consequences of (3-18).

To prove self-adjointness let f 2D.P�/. We claim that for '1 2 C1
U
.M1/ we have '1f 2D.P

�
1
/.

Indeed for g 2D.P1/ we have

h'1f;P1gi D hf; '1P1gi D hf; Œ'1;P
0
1 �giC hf;P'1gi: (3-20)

Since supp d'1 � U is compact and since Œ'1;P
0
1
� is a compactly supported first-order differential

operator on U we find

� � � D hŒP0
1 ; '1�f C'1P�f;gi; (3-21)

proving '1f 2D.P
�
1
/. In view of (3-18) we see, by choosing another plateau function  2 C1

U
.M1/

with  '1 D '1, that '1f 2D.P1/. In the same way we conclude '2f 2D.P2/ for '2 2 C1
U
.M2/ and

thus f 2D.P /.
To prove the trace class property and the trace estimate we choose another plateau function �2C1

U
.Mj /

such that �� 1 in a neighborhood of supp with �� 2 C1c .Mj /; hence � also satisfies (3-18).
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Consider first Kt WD �e�t.PjCVj / ��e�t.PCV / . KtD0 D 0 and

.@t CP CV /Kt D ŒP
0
j ; ��e

�t.PjCVj / � ŒP0; ��e�t.PCV / : (3-22)

Here we have used that multiplication by � commutes with V and Vj ; see (3-2). Propositions 3.2 and 3.3
now imply that Kt is trace class for t > 0 and that kKtktr DO.t1/ as t ! 0C. Consequently

k�'e�t.PjCV / ��'e�t.PCV / ktr � k'k1 kKtktr DO.t1/:

To .1��/'e�t.PjCV / �.1��/'e�t.PCV / we can apply Proposition 3.3 since .supp /\supp.1��/D
∅ and the proof is complete. �

Finally, we discuss heat expansions. Under the assumptions of Proposition 3.5 assume that Pj CVj

has discrete dimension spectrum outside U . By this we understand that for ' 2 C1
U
.Mj / the operator

'e�t.PjCVj / is trace class and that there is an asymptotic expansion of the form (2-4) with a˛k D a˛k.'/.
Then:

Corollary 3.7. Under the additional assumption of discrete dimension spectrum for Pj CVj outside U

the operator P CV has discrete dimension spectrum and for any ' 2 C1
U
.M1/ we have

Tr.e�t.PCV //D Tr.'e�t.P1CV1//CTr..1�'/e�t.P2CV2//CO.t1/ as t ! 0C: (3-23)

Proof. This is immediate from Proposition 3.5 and the discrete dimension spectrum assumption. �

We add, however, a little more explanation since the term “discrete dimension spectrum outside U ”
might lead to some confusion: since K\U D∅ (cf. (3-2) and the second paragraph of this section, on
page 236) for f 2�1c .U;E/ we have .PCV /f DPf . The classical interior parametric elliptic calculus
(see [Shubin 2001], for example) then implies that for ' 2 C1c .U / there is an asymptotic expansion

Tr.'e�t.PCV //�t&0

X
j�0

aj .P; '/ tj�m=2; (3-24)

where aj .P; '/D
R

M Qaj .x;P /'.x/ dx and Qaj .x;P / are the local heat invariants of P . Thus over any
compact subset in the interior of M nK the discrete dimension spectrum assumption follows from standard
elliptic theory and hence is a nonissue. Rather it is a condition on the behavior of P on noncompact
“ends” and a condition on V over K.

3D. Ideal boundary conditions with discrete dimension spectrum. The remarks of Section 3C extend
to ideal boundary conditions of elliptic complexes in a straightforward fashion. Let X be a Riemannian
manifold which is the interior of a Riemannian manifold X with compact boundary Y , and let U D

.�c; 0/� Y be a collar of the boundary. Since X is allowed to be noncompact it is not excluded that
away from U there are “ends” of X which can be completed by adding another boundary component;
see Figure 1.

As an example which illustrates what can happen consider a compact manifold Z with boundary,
where @ZD Y1[Y2[Y3 consists of the disjoint union of three compact closed manifolds Yj , j D 1; 2; 3.
Attach a cone C.Y3/ D Y3 � .0; 1/ with metric dr2C r2gY3

to Y3 (and smooth it out near Y3 � f1g).
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Then put X WD .Z n .Y1[Y2//[Y3
C.Y3/ and X WD .Z nY2/[Y3

C.Y3/. Then Y1 plays the role of Y

above, but X is not compact. Compare Figure 1 on page 232.
When introducing closed extensions (that is to say, boundary conditions) for elliptic operators on X it

is important that the boundary conditions at Y1 and Y2 on the one hand, and on the cone on the other, do
not interact in order to ensure (3-18) holds.

Leaving this example behind, let .�1c .E/; d/ be an elliptic complex and let .D;D/ be an ideal
boundary condition for .�1c .E/; d/— that is, a Hilbert complex such that Dj , j D 1; 2, is a closed
extension of dj .

We say that the ideal boundary condition .D;D/ has discrete dimension spectrum outside U if the
Laplacians �j DD�j Dj CDj�1D�

j�1
have discrete dimension spectrum outside U ; cf. the paragraph

before Corollary 3.7. Then Proposition 3.5 and Corollary 3.7 hold for the Laplacians.
More concretely, let X , Y be as before and let .F;r/ be a flat bundle over X . Assume that we are

given an ideal boundary condition .D;D/ of the de Rham complex .��.X IF /; d/ with values in the flat
bundle F with discrete dimension spectrum over the open set X nU , U D .�c; 0/� Y . Fix a smooth
function ' 2 C1.�c; 0/ which is 1 near �c and 0 near 0 and extend it to a smooth function on X in the
obvious way.

We then define the absolute and relative boundary conditions at Y as follows:

Dj .X IF / WD 'D.Dj /C .1�'/D.dj ;max/; Dj .X;Y IF / WD 'D.Dj /C .1�'/D.dj ;min/: (3-25)

The Laplacians of the maximal and minimal ideal boundary conditions are, near Y , realizations of local
elliptic boundary conditions (see, e.g., [Gilkey 1995, Section 2.7]). This, together with Proposition 3.5
and Corollary 3.7 applied to M1 DX , M2 D Y � .�c; 0/, U D Y � .�c;�c=2/, implies that the Hilbert
complexes .D.X IF /; d/ and .D.X;Y IF /; d/ are Hilbert complexes with discrete dimension spectrum.

4. Vishik’s moving boundary conditions

4A. Standing assumptions. We discuss here Vishik’s [1995] moving boundary conditions for the de Rham
complex in our slightly more general setting. Let X be a (not necessarily compact or complete!)
Riemannian manifold; see Figure 1. Furthermore, let .F;r/ be a flat bundle with a (not necessarily flat)
Hermitian metric hF . We assume furthermore that X contains a compact separating hypersurface Y �X

such that in a collar neighborhood W D .�c; c/�Y all structures are product. In particular we assume
that rF is in temporal gauge on W ; that is, rF �W D �� QrF for a flat connection QrF on F �Y , where
� denotes the natural projection map W ! Y . In other words X is obtained by gluing two manifolds
with boundary X˙ along their common boundary Y where all structures are product near Y ; compare
Figure 2.

We make the fundamental assumption that

we are given ideal boundary conditions .D˙;D˙/ of the twisted de Rham
complexes .��.X ı;˙IF /; d/ which have discrete dimension spectrum over
U˙ WDX˙ nW . We put X cut WDX�qXC.

(4-1)
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4B. Some exact sequences and the main deformation result. As explained in Section 3D we therefore
have the following Hilbert complexes with discrete dimension spectrum: D�.X˙IF / (absolute boundary
condition at Y ), D�.X˙;Y IF / (relative boundary condition at Y ), D�.X IF / (continuous transmission
condition at Y ). By construction we have the exact sequences of Hilbert complexes

0 // D�.X�;Y IF / �
� ˛� // D�.X IF /

ˇ // D�.XCIF / // 0; (4-2)

0 // D�.X˙;Y IF / �
� ˙ // D�.X˙IF /

i�
˙ // D�.Y IF / // 0; (4-3)

0 // D�.X�;Y IF /˚D�.XC;Y IF /
� �̨CC˛�// D�.X IF /

r // D�.Y IF / // 0: (4-4)

Here ˛˙ are extensions by 0, ˇ is the pullback (i.e., restriction) to XC, ˙ is the natural inclusion of the
complex D�.X˙;Y IF / with relative boundary condition at Y into the complex D�.X˙IF / with absolute
boundary condition, and i˙ W Y ,!X˙ is the inclusion map. Finally r! D

p
2

2
.i�C!C i��!/D

p
2i�
˙
!

for ! 2D�.X IF /.
It is a consequence of standard trace theorems for Sobolev spaces that i�

˙
WD�.X˙IF /!D�.Y IF /

is well-defined; see, for example, [Paquet 1982; Lions and Magenes 1972; Brüning and Lesch 2001,
Section 1]. To save some space we have omitted the operator D from the notation in the complexes in
(4-2), (4-3), and (4-4). Clearly, the complex differential is always the exterior derivative on the indicated
domains.

Each of the complexes (4-2)–(4-4) induces a long exact sequence in cohomology. We abbreviate these
long exact cohomology sequences by

H..X�;Y /;X;XCIF /; H..X˙;Y /;X˙;Y IF /; H..X�;Y /[ .XC;Y /;X;Y IF /;

respectively. The long exact cohomology sequences of the complexes (4-2), (4-3), (4-4) are exact
sequences of finite-dimensional Hilbert spaces and therefore their torsion �.H. � � � // is defined; cf. (2-25).
The Euler characteristics — see (2-7) — of the complexes in (4-2)–(4-4) are denoted by �.X˙;Y IF /,
�.X˙IF /, �.X IF /, �.Y IF /, etc.

Next we introduce parametrized versions of the exact sequences (4-2) and (4-4). The idea is due to
Vishik [1995] who applied it to give a new proof of the Ray–Singer conjecture for compact smooth
manifolds with boundary. Namely, for � 2 R consider the following ideal boundary condition of the
twisted de Rham complex on the disjoint union X cut DX�qXC:

D
j

�
.X IF / WD

˚
.!1; !2/ 2D

j .X�IF /˚Dj .XCIF /
ˇ̌

cos � � i��!1 D sin � � i�C!2

	
: (4-5)

We will see that for each real � the complex .D�
�
.X IF /; d/ is indeed a Hilbert complex with discrete

dimension spectrum. In fact near Y it is a realization of a local elliptic boundary value problem for
the de Rham complex on the manifold X cut, and away from Y we may apply Corollary 3.7 and our
assumption (4-1) that the Hilbert complexes .D˙;D˙/ have discrete dimension spectrum over X˙ nW .

For � D 0 we have D�
�
.X IF /DD�.X�;Y IF /˚D�.XCIF /, and for � D �=4 we see that the total

Gauss–Bonnet operators dCd� of the complexes D�=4.X IF / and D.X IF / coincide (see [Vishik 1995,
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Proposition 1.1, p. 16]). Hence the family of complexes .D�
�
.X IF /; d� / interpolates in a sense between

the direct sum D�.X�;Y IF /˚D�.XCIF / and the complex D�.X IF / on the manifold X .
The parametrized versions of (4-2), (4-4) are then

0 // D�.X�;Y IF / �
� ˛� // D�

�
.X IF /

ˇ� // D�.XCIF / // 0; (4-6)

0 // D�.X�;Y IF /˚D�.XC;Y IF /
� �CC�// D�

�
.X IF /

r� // D�.Y IF / // 0; (4-7)

where ˛�!D .!; 0/ is extension by 0, ˇ� .!1; !2/D!2 is restriction to XC, C˚�.!1; !2/D .!1; !2/

is inclusion and r� .!1; !2/ D sin � � i��!1C cos � � i�C!2. We denote by H� ..X
�;Y /;X;XCIF / and

H� ..X
�;Y /[ .XC;Y /;X;Y IF / be the corresponding long exact cohomology sequences.

We denote the cohomology groups of the complex D�
�
.X IF / by H

j

�
.X IF /; the corresponding space

of harmonic forms will be denoted by OH j

�
.X IF /. For the next result we need some more notation.

Let H be a Hilbert space and let T W H! H be a bounded linear operator. For a finite-dimensional
subspace V � H we write Tr.T �V / for Tr.PV TPV / where PV is the orthogonal projection onto V .
If ej , j ; : : : ; n, is an orthonormal basis of V then

Tr.T �V /D

nX
jD1

hTej ; ej i: (4-8)

We will apply this to ˇ� on the space H
j

�
.X IF /. If ej , j ; : : : ; n, is an orthonormal basis of OH j

�
.X IF /

then

Tr.ˇ� �H
j

�
.X IF //D

nX
jD1

kej �XCk2
XC
D

nX
jD1

Z
XC

ej ^�ej : (4-9)

After these preparations we are able to state our main technical result. It is inspired by Lemma 2.2 and
Section 2.6 in [Vishik 1995].

Theorem 4.1. The functions

� 7! log T .D�� .X IF //; log �.H� ..X
�;Y /;X;XCIF //; log �.H� ..X

�;Y /[ .XC;Y /;X;Y IF //

are differentiable for 0< � < �=2. Moreover, for 0< � < �=2,

d

d�
log T .D�� .X IF //D

2

sin 2�

h
�

X
j�0

.�1/j Tr.ˇ� �H
j

�
.X IF //C�.XCIF /

i
�tan � ��.Y IF /; (4-10)

d

d�
log �

�
H� ..X

�;Y /;X;XCIF /
�
D

2

sin 2�

h
�

X
j�0

.�1/j Tr.ˇ� �H
j

�
.X IF //C�.XCIF /

i
; (4-11)

d

d�
log �

�
H� ..X

�;Y /[ .XC;Y /;X;Y IF /
�
D

d

d�
log T .D�� .X IF //: (4-12)
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Furthermore, with H� standing for either H� ..X
�;Y /;X;XCIF / or H� ..X

�;Y /[.XC;Y /;X;Y IF /,
the map

� 7! log T .D�� .X IF //� log �.H� / (4-13)

is differentiable for 0� � < �=2.

The proof of Theorem 4.1 will occupy Section 5.

5. Gauge transforming the parametrized de Rham complex à la Witten

Consider the manifold X as described in Section 4. Recall that in the collar W WD .�c; c/�Y of Y all
structures are assumed to be product. We introduce W cut WD .�c; 0��Y q Œ0; c/�Y . Furthermore, let
S WW cut!W cut, .t;p/ 7! .�t;p/ be the reflection map at Y . Finally, we introduce the map

T W��.W cut
IF /!��.W cut

IF /; T .!1; !2/ WD .S
�!2;�S�!1/: (5-1)

T is a skew-adjoint operator in L2.W cut; ƒ�T �W cut˝F / with T 2 D �I . Note furthermore that T

commutes with the exterior derivative d . We denote by D� (on X cut or W cut) the closed extension of the
exterior derivative with boundary conditions as in (4-5) along Y . More precisely, D� acts on the domain

D
j

�
.W IF / WD

˚
.!1; !2/ 2D.dj ;max/

ˇ̌
cos � � i��!1 D sin � � i�C!2

	
: (5-2)

The operator family has varying domain. In order to obtain variation formulas for functions of D�

we will apply the method of gauge-transforming D� onto a family with constant domain; compare, for
instance, [Douglas and Wojciechowski 1991] and [Lesch and Wojciechowski 1996].

We choose a cut-off function ' 2 C1c ..�c; c/� Y / with ' � 1 in a neighborhood of f0g � Y and
which satisfies '.�t;p/D '.t;p/; .t;p/ 2 .�c; c/�Y . Then we introduce the gauge transformation

ˆ� WD e�'T
D cos.�'/I C sin.�'/T W��.W cut

IF /!��.W cut
IF /: (5-3)

Since e�'.t;p/T D 1 for jt j sufficiently close to c,ˆ� extends in an obvious way to a unitary transformation
of L2.ƒ�T �X cutIF / which maps smooth forms to smooth forms.

Lemma 5.1. For � , � 0 2 R the operator ˆ� maps D
j

� 0
.X IF / onto D

j

�C� 0
.X IF /, and accordingly

D
j

� 0
.W cutIF / onto D

j

�C� 0
.W cutIF /. Furthermore,

ˆ��D�C� 0ˆ� DD� 0
C � ext.d'/T: (5-4)

Proof. It obviously suffices to prove the lemma for W cut. Consider .!1; !2/ 2D
j

� 0
.W cutIF /. Then

i��ˆ� .!1; !2/D cos � � i��!1C sin � � i�C!2; (5-5)

i�Cˆ� .!1; !2/D cos � � i��!2� sin � � i�C!1: (5-6)

A direct calculation now shows

cos.� C � 0/ i��ˆ� .!1; !2/D sin.� C � 0/ i�Cˆ� .!1; !2/; (5-7)

proving the first claim. The formula (5-4) follows since T commutes with exterior differentiation. �
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Note that D�=4C � ext.d'/T is a deformed de Rham operator acting on smooth differential forms
on the smooth manifold X (respectively, W ). T is not a differential operator. However, the reflection
map S allows us to identify .�c; 0/�Y with .0; c/�Y and hence sections in a vector bundle E over
.�c; 0/�Yq.0; c/�Y may be viewed as sections in the vector bundle E˚S�E over .0; c/�Y . Therefore,
since supp.d'/ is compact in .�c; 0/� Y q .0; c/� Y , T may be viewed as a bundle endomorphism
acting on the bundle .ƒ�T �.0; c/ � Y / ˝ .F ˚ F /. In particular employing the classical interior
parametric elliptic calculus, as, for example, in [Shubin 2001], we infer that the Laplacian corresponding
to D�=4C� ext.d'/T has discrete dimension spectrum over any such compact neighborhood of supp.d'/
which does have positive distance from ˙c �Y .

From now on let
QD�
WDD�=4

C � ext.d'/T; (5-8)

with domain D�
�D�=4

.X IF / and Q�� D . QD� /� QD� C QD� . QD� /� the corresponding Laplacian. On the

collar .�c; c/� Y the operator Q�� is of the form P C V as discussed in Section 3A, where P is the
form Laplacian and V D Q�� �� is induced by � ext.d'/T . The subset K of (3-2) is the support of d'.
The operator Q�� is now obtained as in (3-19) by gluing the domains of the form Laplacians of the given
de Rham complexes on X˙. Proposition 3.5 and Corollary 3.7 now give:

Theorem 5.2. The Hilbert complexes D�
�
.X IF / defined in (4-5) are Hilbert complexes with discrete

dimension spectrum.

Theorem 5.3. For 0< � < �=2 the Hilbert complexes D�
�
.X IF / satisfy (1)–(4) of Proposition 2.4. More

precisely,

d

d�
HT .D

�

� .X IF //D�t
d

dt

4

sin 2�

X
j�0

.�1/j Tr.ˇ�e�t��
j / (5-9)

and X
j�0

.�1/j Tr.ˇ�e�t��
j /D �.XCIF /� sin2 � ��.Y IF /CO.t1/; (5-10)

as t ! 0C.

5A. Proof of Theorem 5.3. Note that

d

d�
D�=4

D ext.d'/T D Œd; 'T �: (5-11)

Let us reiterate that although Œd; 'T � is strictly speaking not a 0th-order differential operator it may be
viewed as one over .ƒ�T �.0; c/�Y /˝ .F ˚F /, which implies that it lies in Op0

c .W
cut/� Op0

c .X
cut/.

We remind the reader of the definition of the closed and coclosed Laplacians in (2-10), (2-11). We find

d

d�
Tr.e�t��p;ccl/D

d

d�
Tr.e�t Q��p;ccl/D�t Tr

�
.. QD�

p /
t ext.d'/T C .ext.d'/T /t QD�

p /e
�t Q��p;ccl

�
D�t Tr

�
..D�

p /
t ext.d'/T C .ext.d'/T /tD�

p /e
�t��p;ccl

�
; (5-12)

where in the last line we have used that ˆ� commutes with ext.d'/T .
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Next let .en/n2N be an orthonormal basis of ran.D�
p /
� consisting of eigenvectors of ��p;ccl to eigen-

values �n > 0. Then . Qen D �
�1=2
n en/n is an orthonormal basis of ran D�

p consisting of eigenvectors of
��

pC1;cl (see (2-10), (2-11) and thereafter). Equation (5-12) gives

d

d�
Tr.e�t��p;ccl/D�t

X
n

h.d�p /
t ext.d'/Te�t��p;cclen; eni � t

X
n

he�t��p;cclen; .d
�
p /

t ext.d'/Teni

D �2t<

�X
n

h.d�p /
t ext.d'/Te�t��p;cclen; eni

�
: (5-13)

Stokes’ theorem and the boundary conditions will allow us to rewrite the individual summands of the last
sum. To this end let !, � 2D.��p/. Then since d' is compactly supported in the interior of W cut we
have

h.d�p /
t ext.d'/T!; �i D hext.d'/T!; d�i D hd' ^T!; d�i D hd.'T!/; d�i � h'T d!; d�i

D

Z
@X cut

T! ^ Q�d�Ch'T!; d td�i � h'T d!; d�i: (5-14)

Here, Q� denotes the natural isometry
Vp

T �M ˝F !
Vm�p

T �M ˝F|. In the last equality we have
applied Stokes’ theorem on the manifold with boundary X cut. Note that 'T! is a compactly supported
(locally of Sobolev class at least 2) form on X cut.

The boundary of X cut consists of two copies of Y with opposite orientations. To calculate the integral
in the last equation we orient Y as the boundary of XC. Then using that ! and � satisfy the boundary
conditions (4-5) at Y we findZ
@X cut

T! ^ Q�d�D

Z
Y

i�C.T! ^ Q�d�/� i��.T! ^ Q�d�/D�

Z
Y

i��! ^ i�C Q�d�C i�C! ^ i�� Q�d�

D�.tan � C cot �/
Z

Y

i�C.! ^ Q�d�/D�
2

sin 2�

�Z
XC

d! ^ Q�d�C .�1/j!j! ^ d Q�d�

�
D�

2

sin 2�
.hd!; d�iXC � h!; d

td�iXC/: (5-15)

Here h � ; � iXC denotes the L2-scalar product of forms over XC.
Plugging into (5-14) gives

h.d�p /
t ext.d'/T!; �i D h'T!; d td�i � h'T d!; d�i �

2

sin 2�
.hd!; d�iXC � h!; d

td�iXC/: (5-16)

Similarly,

h.ext.d'/T /tD�
p!; �i D hd

td!; 'T �i � hd!; 'T d�i �
2

sin 2�
.hd!; d�iXC � h!; d

td�iXC/: (5-17)

We now apply (5-16) to the summands on the right of (5-13) and find using (2-12)

h.d�p /
t ext.d'/Te�t��p;cclen; eni D h'Te�t��p;ccl��p;cclen; eni � h'Te�t��

pC1;cl��pC1;cl Qen; Qeni

�
2

sin 2�

�
hˇ�e�t��

pC1;cl��pC1;cl Qen; Qeni � hˇ�e�t��p;ccl��p;cclen; eni
�
; (5-18)
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and summing over n gives
d

d�
Tr.e�t��p;ccl/D�2t<

�
Tr.'Te�t��p;ccl��p;ccl/�Tr.'Te�t��

pC1;cl��pC1;cl/
�

C
4t

sin 2�
<
�
Tr.ˇ��

�
pC1;cle

�t��
pC1;cl/�Tr.ˇ��

�
p;ccle

�t��p;ccl/
�

D 2t
d

dt

2

sin 2�

�
Tr.ˇ�e�t��p;ccl/�Tr.ˇ�e�t��

pC1;cl/
�
: (5-19)

Here we have used that, since 'T is skew-adjoint, Tr.'TA/ is purely imaginary for every self-adjoint
trace class operator A and similarly that since ˇ� is self-adjoint that Tr.ˇ�A/ is real. Consequently,
using (2-14),

d

d�
HT .D

�

� .X IF //D
d

d�

X
j�0

.�1/jC1 Tr.e�t��
j;ccl/D�2t

d

dt

2

sin 2�

X
j�0

.�1/j Tr.ˇ�e�t��
j /: (5-20)

Finally, for calculating the asymptotic expansion (5-10) as t! 0C we may again invoke Corollary 3.7.
The asymptotic expansion (5-10) on X cut differs from the corresponding expansion for the double
�XCqXC by an error term O.t1/; here �XC stands for XC with the opposite orientation. However,
on the double �XCqXC we may write down the heat kernel for ��p explicitly in terms of the heat
kernels for �p with relative and absolute boundary conditions at Y [Vishik 1995, (2.118), p. 60]. Namely,
let �r

p, �a
p be the Laplacians of the relative and absolute de Rham complexes on XC as in (3-25) and

denote by E
p;r=a
t their corresponding heat kernels. Let S be the reflection map which interchanges the

two copies of XC in �XCqXC. Its restriction to W is the reflection map S defined before (5-1) and
hence denoting it by the same letter is justified.

Finally, let E
p
t .x;y/ be the heat kernel of ��=4p on �XCqXC, that is, the Laplacian with continuous

transmission boundary conditions at Y . The absolute/relative heat kernels are given in terms of E
p
t by

E
p;a
t D .E

p
t CS� ıE

p
t /�XC; E

p;r
t D .E

p
t �S� ıE

p
t /�XC: (5-21)

More generally, we put for x, y 2 �XCqXC:

E
p;�
t .x;y/ WD

�
E

p
t .x;y/C cos.2�/.S� ıE

p
t /.x;y/ if x;y 2XC;

sin.2�/Ep
t .x;y/ if x 2 .�XC/; y 2XC:

(5-22)

One immediately checks that E
p;�
t is the heat kernel of ��p on �XCqXC. Consequently

Tr.ˇ�e�t��p /D Tr.ˇ�E
p
t /C cos.2�/Tr.S� ıE

p
t /D cos2.�/Tr.Ep;a

t /C sin2.�/Tr.Ep;r
t /: (5-23)

In view of our standing assumptions (Section 4A) the complexes D�.XC;Y IF / and D�.XCIF / are
Fredholm complexes, so the McKean–Singer formula (2-8) holds and hence taking alternating sums yieldsX

j�0

.�1/j Tr.ˇ�e�t��
j /Dcos2� ��.XCIF /Csin2� ��.XC;Y IF /D�.XCIF /�sin2� ��.Y IF /; (5-24)

and the proof of (5-10) is complete. In the last equality we used that �.XCIF /D�.XC;Y IF /C�.Y IF /I
this formula follows from the exact sequence (4-4). �
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5B. Proof of Theorem 4.1.

Proof of (4-10). Combining Proposition 2.4 and Theorem 5.3 we find

d

d�
log T .D�� .X IF //

D�
1

2

�4

sin 2�
.�.XCIF /� sin2 � �.Y IF //C

1

2

�4

sin 2�
Tr
�X

j�0

.�1/jˇ� �H
j

�
.X IF /

�
D

2

sin 2�

�
�

X
j�0

.�1/j Tr.ˇ� �H
j

�
.X IF //C�.XCIF /

�
� tan � ��.Y IF /; (5-25)

which is the right-hand side of (4-10). �

Proof of (4-11) and (4-12). Let 0 < �; � 0 < �=2 and consider the following commutative diagram
(cf. (4-6)):

0 // D�.X�;Y IF /
˛� //

id
��

D�
�
.X IF /

ˇ� //

��;�0

��

D�.XCIF / //

�
C

�;�0

��

0

0 // D�.X�;Y IF /
˛�0 // D�

� 0
.X IF /

ˇ�0 // D�.XCIF / // 0;

(5-26)

where ��;� 0 and �C
�;� 0

are Hilbert complex isomorphisms, defined by

��;� 0.!1; !2/D

�
!1;

tan �
tan � 0

!2

�
; �C

�;� 0
.!2/D

tan �
tan � 0

!2:

Hence we obtain a cochain isomorphism between the long exact cohomology sequences of the upper and
lower horizontal exact sequences (F omitted to save horizontal space):

� � �H k.X�;Y /
˛�;� //

id
��

H k
�
.X /

ˇ�;� //

��;�0;�
��

H k.X�/
ı� //

�
C

�;�0;�
��

H kC1.X�;Y / � � �

id
��

� � �H k.X�;Y /
˛�0;� // H k

� 0
.X /

ˇ�0;� // H k.X�/
ı�0 // H kC1.X�;Y / � � �

(5-27)

Let e1; : : : ; er be an orthonormal basis of H k
�
.X IF /. Then

Det.�k
�;� 0;�/

2
D Det.h��;� 0;�ei ; ��;� 0;�ej i

r
i;jD1/I (5-28)

hence
d

d� 0

ˇ̌̌̌
� 0D�

log Det.�k
�;� 0;�/

2
D Tr

���
d

d� 0

ˇ̌̌̌
� 0D�

��;� 0;�ei ; ej

�
C

�
ei ;

d

d� 0

ˇ̌̌̌
� 0D�

��;� 0;�ej

��r

i;jD1

�

D�2
2

sin 2�

rX
jD0

hˇ�ej ; ej i D �2
2

sin 2�
Tr.ˇ� �H k

� .X IF //I (5-29)
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see (4-8). Furthermore, since �C
�;� 0

is multiplication by tan �=tan � 0 we have

Det.�C
�;� 0;�

/D

�
tan �
tan � 0

��.XCIF /
; (5-30)

and hence
d

d� 0

ˇ̌̌̌
� 0D�

log Det.�C
�;� 0;�

/2 D�2
2

sin 2�
�.XCIF /: (5-31)

By Lemma 2.5 we have

log �.H� 0..X
�;Y /;X;XCIF //� log �.H� ..X

�;Y /;X;XCIF //

D
1
2

log Det.��;� 0;�/
2
�

1
2

log Det.�C
�;� 0;�

/2I (5-32)

combined with (5-29) and (5-31) we therefore find (4-11).
That the left-hand side of (4-12) equals the right-hand side of (4-10) is proved analogously. One just

has to replace the commutative diagram (5-26) by

0 // D�.X�;Y IF /˚D�.XC;Y IF /
CC�//

id˚�C
�;�0

��

D�
�
.X IF /

r� //

��;�0

��

D�.Y IF / //

 �;�0

��

0

0 // D�.X�;Y IF /˚D�.XC;Y IF /
CC�// D�

� 0
.X IF /

r�0 // D�.Y IF / // 0;

(5-33)

where  �;� 0.!/D
sin �
sin � 0

!. See also (A-20) and thereafter. �

Proof of the differentiability of (4-13) at 0. The problem is that the dimensions of the cohomology groups
H

j

�
.X IF / may jump at 0; note that the isomorphism ��;� 0 defined after (5-27) between D�

�
.X IF / and

D�
� 0
.X IF / is defined only for 0 < �; � 0 < �=2. By our standing assumptions of Section 4A (see also

Section 3D), D�.X�;Y IF / and D�.XCIF / are Hilbert complexes with discrete dimension spectrum.
Hence we may choose a> 0 such that a is smaller than the smallest nonzero eigenvalues of the Laplacians
of D�.X�;Y IF / and D�.XC;Y IF /. Furthermore, we denote by …p

�
the orthogonal projection onto

H
p

�;a
.X IF / WD

M
0��<a

ker.��p ��/: (5-34)

Since for � D 0 the complex D�
�
.X IF / is canonically isomorphic to the direct sum D�.X�;Y IF /˚

D�.XCIF / and since the gauge-transformed Laplacian Q�� of D�
�
.X IF / in view of (5-8) certainly

depends smoothly on � there exists a �0 > 0 such that the projection …p

�
depends smoothly on � for

0� � < �0. In particular,
rank…p

�
D dim H

p

�D0
.X IF /

is constant for 0� � < �0.
.H �

�;a
.X IF /; d/ is a finite-dimensional Hilbert complex and the orthogonal projections …p

�
give rise

to a natural orthogonal decomposition of Hilbert complexes

D�� .X IF /DW .H
�

�;a.X IF /; d/˚D��;a.X IF /: (5-35)
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By construction of …p
a we have

log T .D�� .X IF //D log �.H ��;a.X IF /; d/C log T .D��;a.X IF //; (5-36)

and � 7! log T .D�
�;a
.X IF // is differentiable for 0� � < �0.

Since surjectivity is an open condition we conclude that the sequence

0 // H�.X�;Y IF / �
� ˛� // H�

�;a
.X IF /

ˇ� // H�.XCIF / // 0 (5-37)

is exact for 0� � < �1 � �0. Here, ˛� is defined in the obvious way while

ˇ� WD orthogonal projection onto H�.XCIF / of !�XC: (5-38)

Note that the differentials of the left and right complexes vanish and hence so do their torsions. The
space of harmonics of the middle complex equals the space of harmonics of the complex D�

�
.X IF /

and hence the cohomology of the middle complex is (isometrically) isomorphic to the cohomology of
D�
�
.X IF /. One immediately checks that the long exact cohomology sequence of (5-37) is exactly the

exact cohomology sequence H..X�;Y /;X;XCIF /. Hence Proposition 2.6 yields

log �.H��;a.X IF //D log �.H..X�;Y /;X;XCIF //

�

X
p�0

log �
�
0!H p.X�;Y IF /

˛�
!H

p

�;a
.X IF /

ˇ�
!H p.XCIF /! 0

�
: (5-39)

This shows the differentiability of the difference log �.H�
�;a
.X IF //� log �.H..X�;Y /;X;XCIF // at

� D 0. In view of (5-36) the claim is proved. �

6. The gluing formula

We can now state and prove the main result of this paper. The standing assumptions (Section 4A) are still
in effect. Furthermore, we will use freely the notation introduced in Section 4B.

Theorem 6.1. For the analytic torsions of the Hilbert complexes D�.X˙;Y IF /, D�.X˙IF /, D�.X IF /
we have the following formulas:

log T .D�.X IF //D log T .D�.X�;Y IF //C log T .D�.XCIF //

C log �
�
H..X�;Y /;X;XCIF /

�
�

1
2

log 2 ��.Y IF /; (6-1)

log T .D�.X�IF //D logT .D�.X�;Y IF //ClogT .D�.Y IF //Clog�
�
H..X�;Y /;X�;Y IF /

�
; (6-2)

log T .D�.X IF //D log T .D�.X�;Y IF //C log T .D�.XC;Y IF //

C log �
�
H..X�;Y /[ .XC;Y /;X;Y IF /

�
C log T .D�.Y IF //: (6-3)

6A. Proof of Theorem 6.1. In the course of the proof we will make heavy use of Theorem 4.1.
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Proof of (6-1). As noted after (4-5) we have for � D 0 that D�
�D0

.X IF /DD�.X�;Y IF /˚D�.XCIF /

and that for � D �=4 the complexes D�
�D�=4

.X IF / and D�.X IF / are isometric. Hence we have

log T .D�.X IF //� log T .D�.X�;Y IF //� log T .D�.XCIF //

D log T .D��=4.X IF //� log T .D��D0.X IF //

D log T .D��=4.X IF //� log �.H�=4..X
�;Y /;X;XCIF //� log T .D��D0.X IF //

C log �
�
H�D0..X

�;Y /;X;XCIF /
�
C log �

�
H�=4..X

�;Y /;X;XCIF /
�
: (6-4)

Recall that for �D0 the complexD�
�D0

.X IF / is just the direct sum complexD�.X�;Y IF /˚D�.XCIF /
and hence log �.H�D0..X

�;Y /;X;XCIF // D 0 (see also the sentence after (2-29)). Furthermore,
log �.H�=4..X

�;Y /;X;XCIF //D log �.H..X�;Y /;X;XCIF //; hence by Theorem 4.1

� � � D

Z �=4

0

� tan �d� �.Y IF /C log �
�
H..X�;Y /;X;XCIF /

�
D�

1
2

log 2 �.Y IF /C log �
�
H..X�;Y /;X;XCIF /

�
; (6-5)

and we arrive at (6-1). �

Proof of (6-2). Consider � >0 and apply the proved equation (6-1) to the manifold X�� WDX�[Y Œ0; ���Y .
Then
log T .D�.X�� IF //D log T .D�.X�;Y IF //C log T .D�.Œ0; ���Y IF //

�
1
2

log 2 �.Y IF /C log �
�
H..X�� ;Y /;X

�
� ; Œ0; ���Y IF /

�
: (6-6)

For the cylinder Œ0; ���Y it is well-known (it also follows easily from Proposition 2.3) that

�.Œ0; ���Y IF /D�.Y IF /D �.Y / rank F; (6-7)

log T .D�.Œ0; ���Y IF //D log T .D�.Y IF // �.Œ0; ��/C�.Y IF / log T .D�.Œ0; ��/

D log T .D�.Y IF //C 1
2

log.2�/ �.Y IF /: (6-8)

Hence

log T .D�.X�� IF //D log T .D�.X�;Y IF //C log T .D�.Y IF //

C
1
2

log � �.Y IF /C log �.H..X�� ;Y /;X
�
� ; Œ0; ���Y IF //: (6-9)

In the sequel we will, to save some space, omit the bundle F from the notation in commutative diagrams.
Our first commutative diagram is

� � � // H k.X�;Y /
˛�;� //

 ��
��

H k.X�� /
ˇ� //

 ��
��

H k.Œ0; ���Y / //

���
��

� � �

� � � // H k.X�;Y / // H k.X�/ // H k.Y / // � � �

(6-10)

The first row is the long exact cohomology sequence of (4-2) for X�� DX�[Y Œ0; ���Y instead of X ;
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the second row is the long exact cohomology sequence of (4-2) for X DX�[Y XC. The map  � is a
diffeomorphism X�!X�� obtained as follows: choose a diffeomorphism f W Œ�c; 0�! Œ�c; �� such that
f .x/D x for x near �c and f .x/D xC � for x near 0. Then  � is obtained by patching the identity on
X� n Œ�c; 0��Y and f � idY . Furthermore �� W Y ! Œ0; ���Y;p 7! .�;p/.

For a harmonic form ! 2 D.dk;max/\D..dk�1;max/
�/ � �k.Œ0; ��� Y IF / one has ! D ����� .!/

(� W Œ0; ���Y ! Y the projection) and thusZ
Œ0;���Y

! ^ Q�! D �

Z
Y

���! ^ Q��
�
�!: (6-11)

Therefore the determinant (in the sense of (2-23)) of ��� on the cohomology is given by ��
1
2
�.Y IF /.

Consequently by Lemma 2.5

log �
�
H..X�� ;Y /;X

�
� ; Œ0; ���Y IF /

�
D log �

�
H..X�;Y /;X�;Y IF /

�
�

1
2

log ��.Y IF /

C log Det
�
 �� WH

�.X�;Y IF /!H�.X�;Y IF /
�

� log Det
�
 �� WH

�.X�� IF /!H�.X�IF /
�
: (6-12)

Summing up (6-9), (6-12)

log T .D�.X�� IF //D log T .D�.X�;Y IF //C log T .D�.Y IF //C log �
�
H..X�;Y /;X�;Y IF /

�
C log Det

�
 �� WH

�.X�;Y IF /!H�.X�;Y IF /
�

� log Det
�
 �� WH

�.X�� IF /!H�.X�IF /
�
: (6-13)

As �! 0 the determinants of

 �� WH
�.X�;Y IF /!H�.X�;Y IF //; resp.,  �� WH

�.X�� IF /!H�.X�IF //

tend to 1 and we obtain (6-2). �

Proof of (6-3). We note that �
�
H� ..X

�;Y /[ .XC;Y /;X;Y IF /
�ˇ̌
�D0
D �

�
H..XC;Y /;XC;Y IF /

�
;

hence by (4-12) and (4-13)

log T .D��D�=4.X IF //� log �
�
H� ..X

�;Y /[ .XC;Y /;X;Y IF /
�ˇ̌
�D�=4

D log T .D��D0.X IF //� log �
�
H� ..X

�;Y /[ .XC;Y /;X;Y IF /
�ˇ̌
�D0

D log T .D�.X�;Y IF //C log T .D�.XCIF //� log �
�
H..XC;Y /;XC;Y IF /

�
D log T .D�.X�;Y IF //C log T .D�.XC;Y IF //C log T .D�.Y IF //; (6-14)

where in the last equality we have used the proved identity (6-2). �

Appendix: The homological algebra gluing formula

We present here the analogues of Theorems 6.1 and 4.1 for finite-dimensional Hilbert complexes. This
applies, for example, to the cochain complexes of a triangulation twisted by a unitary representation of
the fundamental group; see, e.g., [Müller 1993, Section 1].
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Let .C �j ; d
j /, j D 1; 2, be finite-dimensional Hilbert complexes. Let .B�; d/ be another such Hilbert

complex and assume that we are given surjective homomorphisms of cochain complexes

rj W .Cj ; d
j /! .B; d/; j D 1; 2: (A-1)

We denote by Cj ;r � Cj the kernel of rj , by ˛ W C1! C1˚C2 the inclusion and by ˇ W C1˚C2! C2

the projection onto the second factor.
For � 2 R we define the following homological algebra analogue of the complex D�

�
.X IF / of (4-5)

by putting

.C1˚� C2/
j
WD
˚
.�1; �2/ 2 C

j
1
˚C

j
2

ˇ̌
cos � � r1�1 D sin � � r2�2

	
: (A-2)

.C1˚�C2; dDd1˚d2/ is a subcomplex of .C1˚C2; d
1˚d2/. For �D0 we have C1˚�C2DC1;r˚C2

and for � D �=4 we have a homological algebra analogue of the complex D�
�
.X IF /.

Furthermore, we have the following analogues of the exact sequences (4-3), (4-6), (4-7) (note that the
exact sequences (4-2), (4-4) are special cases of the exact sequences (4-6), (4-7)):

0! Cj ;r

j
�! Cj

rj
�! B! 0; (A-3)

0! C1;r

˛�
�! C1˚� C2

ˇ�
�! C2! 0; (A-4)

0! C1;r ˚C2;r

1C2
�! C1˚� C2

r�
�! B! 0: (A-5)

Here, j is the natural inclusion, ˇ� D ˇ�C1˚� C2, ˛� .�/ D .�; 0/, and r� .�1; �2/ D sin � � r1 �1C

cos � � r2�2. Denote by H.Cj ;r ;Cj ;B/, H.C1;r ;C1˚� C2;C2/, H.C1;r ˚C2;r ;C1˚� C2;B/ the long
exact cohomology sequences of (A-3), (A-4), (A-5), respectively.

Since all complexes are finite-dimensional we have Lemma 2.5 and Proposition 2.6 at our disposal.
The latter applied to (A-3) immediately gives the analogue of (6-2):

log �.C1/D log �.C1;r /C log �.B/C log �.H.C1;r ;C1;B//: (A-6)

The other claims of Theorems 6.1 and 4.1 have exact counterparts in this context as summarized in the
following:

Theorem A.2. (1) The functions

� 7! log �.C1˚� C2/; log �.H.C1;r ;C1˚� C2;C2//; log �.H.C1;r ˚C2;r ;C1˚� C2;B//

are differentiable for 0< � < �=2. Moreover, for 0< � < �=2,

d

d�
log �.C1˚�C2/D

2

sin 2�

�
�

X
j�0

.�1/j Tr.ˇ� �H j .C1˚�C2//C
X
j�0

.�1/j Tr.ˇ� �.C1˚�C2/
j /

�
;

(A-7)

d

d�
log �.H.C1;r ;C1˚�C2;C2//D

2

sin 2�

�
�

X
j�0

.�1/j Tr.ˇ� �H j .C1˚�C2//C�.C2/

�
; (A-8)
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and
d

d�
log �.H.C1;r˚C2;r ;C1˚�C2;B//

D
2

sin 2�

�
�

X
j�0

.�1/j Tr
�
ˇ� �H j .C1˚�C2/

�
C�.C2/

�
�tan ��.B/: (A-9)

Furthermore,
� 7! log T .C1˚� C2/� log �.H� / (A-10)

is differentiable for 0� � < �=2. Here, H� stands for either

H.C1;r ;C1˚� C2;C2/ or H.C1;r ˚C2;r ;C1˚� C2;B/:

(2) Under the additional assumption that the rj are partial isometries we have

d

d�
log �.C1˚� C2/D

d

d�
log �.H.C1;r ˚C2;r ;C1˚� C2;B// (A-11)

and

log �.C1˚� C2/D log �.C1;r /C log �.C2;r /C log �.H.C1;r˚C2;r ;C1˚� C2;B// (A-12)

D log �.C1;r /C log �.C2/C log �.H.C1;r ;C1˚� C2;C2//C log cos � �.B/: (A-13)

When comparing the last formula with Theorem 6.1 one should note that for � D �=4 we have

log cos � D log
1
p

2
D�

1
2

log 2:

Proof. For 0< �; � 0 < �=2 we have the cochain isomorphism (cf. (5-26))

��;� 0 W C1˚� C2! C1˚� 0 C2; .�1; �2/ 7!

�
�1;

tan �
tan � 0

�2

�
I (A-14)

hence by Lemma 2.5

log �.C1˚� C2/D log �.C1˚� 0 C2/�
X
j�0

.�1/j log Det.��;� 0�H j .C1˚� C2//

C

X
j�0

.�1/j log Det.��;� 0�.C1˚� C2/
j /: (A-15)

Taking d=d� 0 at � 0 D � yields (A-7).
Next we look at the analogues of (5-26) and (5-27):

0 // C1;r

˛� //

id
��

C1˚� C2

ˇ� //

��;�0

��

C2
//

Q��;�0

��

0

0 // C1;r

˛�0 // C1˚� 0 C2

ˇ�0 // C2
// 0;

(A-16)

where Q��;� 0.�/D
tan �
tan � 0

�, and at the corresponding isomorphism between the long exact cohomology
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sequences

� � �H k.C1;r /
˛�;� //

id
��

H k.C1˚� C2/
ˇ�;� //

��;�0;�
��

H k.C2/
ı� //

Q��;�0;�
��

H kC1.C1;r / � � �

id
��

� � �H k.C1;r /
˛�0;� // H k.C1˚� 0 C2/

ˇ�0;� // H k.C2/
ı�0 // H kC1.C1;r / � � �

(A-17)

Following the argument after (5-27) we find that

d

d� 0

ˇ̌̌̌
� 0D�

log Det.�j

�;� 0;�
/2 D�2

2

sin 2�
Tr.ˇ� �H j .C1˚� C2//; (A-18)

d

d� 0

ˇ̌̌̌
� 0D�

log Det. Q�j

�;� 0;�
/D�2

2

sin 2�
dim C

j
2
; (A-19)

and hence with Lemma 2.5 applied to (A-17) we arrive at (A-8).
The analogue of (5-33) is

0 // C1;r ˚C2;r

1˚2 //

id˚Q��;�0
��

C1˚� C2

r� //

��;�0

��

B //

 �;�0D
tan �
tan � 0 id

��

0

0 // C1;r ˚C2;r

˛�0 // C1˚� 0 C2

r�0 // B // 0:

(A-20)

We apply Lemma 2.5 to the induced isomorphism of the long exact cohomology sequences and find

log �.H.C1;r ˚C2;r ;C1˚� C2;B//� log �.H.C1;r ˚C2;r ;C1˚� 0 C2;B//

D�

X
j�0

.�1/j log Det.��;� 0;� WH
j
!H j /C

X
j�0

.�1/j log Det. Q��;� 0;� WH
j
!H j /

C

X
j�0

.�1/j log Det.‰�;� 0;� WH
j
!H j /; (A-21)

where H j is shorthand for the respective cohomology groups. Since Q��;� 0 and ��;� 0 are multiplication
operators we have

X
j�0

.�1/j log Det. Q��;� 0;� WH
j
!H j /D �.C2;r / log

tan �
tan � 0

; (A-22)

X
j�0

.�1/j log Det.‰�;� 0;� WH
j
!H j /D �.B/ log

sin �
sin � 0

; (A-23)

and together with (A-18) we obtain
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d

d�
log �

�
H.C1;r ˚C2;r ;C1˚� C2;B/

�
D

2

sin 2�

�
�

X
j�0

.�1/j Tr
�
ˇ� �H j .C1˚� C2/

�
C�.C2;r /

�
�

cos �
sin �

�.B/: (A-24)

Taking into account that �.C2;r /D �.C2/��.B/ (see (A-3)) and that

cos �
sin �

�
2

sin 2�
D� tan �;

we find (A-9).
Next we apply Proposition 2.6 to the exact sequence (A-4) and get

log �.C1˚� C2/D log �.C1;r /C log �.C2/C log �.H.C1;r ;C1˚� C2;C2//

C
1

2

X
j�0

.�1/j log Det.ˇˇ� W C j
2
! C

j
2
/: (A-25)

Here we have used (2-29) and that ˛ is a partial isometry and thus ˛�˛ D id. Analogously, we infer
from (A-5) that

log �.C1˚� C2/D log �.C1;r /C log �.C2;r /C log �.H.C1;r ˚C2;r ;C1˚� C2;B//

C
1

2

X
j�0

.�1/j log Det.r� r�� W B
j
! Bj /: (A-26)

From (A-25) and (A-26) one deduces the differentiability statement (A-10).
Finally we discuss the case that the maps rj , j D1; 2 are partial isometries. Then for .�1; �2/2C1˚�C2,

� 2 B we calculate

hr� .�1; �2/; bi D sin � � hr1�1; biC cos � � hr2�2; bi D h.�1; �2/; .sin � � r�1 b; cos � � r�2 b/i: (A-27)

If r1 and r2 are partial isometries then .sin � � r�
1

b; cos � � r�
2

b/ 2 C1˚� C2 and hence it equals r�
�
.b/.

Consequently r� r�
�

b D .sin2 � C cos2 �/b D b and thus Det.r� r�
�
W Bj ! Bj / D 1. Therefore (A-26)

reduces to (A-12).
Similarly, one calculates

Det.ˇˇ� W C j
2
! C

j
2
/D .1C tan2/� dim Bj

I (A-28)

then (A-13) follows from (A-25). �
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