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ANTONIO BOVE, MARCO MUGHETTI AND DAVID S. TARTAKOFF

In this paper we consider a model sum of squares of complex vector fields in the plane, close to Kohn’s
operator but with a point singularity,

P D BB�CB�.t2l
Cx2k/B; B DDx C ixq�1Dt :

The characteristic variety of P is the symplectic real analytic manifold x D � D 0. We show that this
operator is C1-hypoelliptic and Gevrey hypoelliptic in Gs , the Gevrey space of index s, provided k < lq,
for every s � lq=.lq� k/D 1C k=.lq� k/. We show that in the Gevrey spaces below this index, the
operator is not hypoelliptic. Moreover, if k � lq, the operator is not even hypoelliptic in C1. This fact
leads to a general negative statement on the hypoellipticity properties of sums of squares of complex
vector fields, even when the complex Hörmander condition is satisfied.
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1. Introduction

In [Kohn 2005] (and [Bove et al. 2006]; see below) the operator

Em;k DLmLmCLmjzj
2kLm; Lm D

@

@z
� izjzj2.m�1/ @

@t
;

was introduced and shown to be hypoelliptic, yet to lose 2C .k � 1/=m derivatives in L2 Sobolev norms.
Christ [2005] showed that the addition of one more variable destroys hypoellipticity altogether. In those
seminal works, m D 1, but Kohn, A. Bove, M. Derridj, and D. S. Tartakoff generalized the results to
higher m in [Bove et al. 2006] and elsewhere.
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Subsequently, Bove and Tartakoff [2010] showed that Kohn’s operator with an added Oleinik-type
singularity, of the form studied in [Bove and Tartakoff 1997],

Em;k Cjzj
2.p�1/D2

y ;

is Gevrey s-hypoelliptic for any s � 2m=.p� k/ (here 2m> p > k). A related result is that the “real”
version, with X DDxC ixq�1Dt , where Dx D i�1@x ,

Rq;k Cx2.p�1/D2
y DXX �C .xkX /�.xkX /Cx2.p�1/D2

y

is sharply Gevrey s-hypoelliptic for any s � q=.p� k/, where q > p > k and q is an even integer.
In this paper we consider the operator

P D BB�CB�.t2l
Cx2k/B; B DDxC ixq�1Dt ; (1-1)

where k; l and q are positive integers, q even; see [Bove et al. 2010].
Observe that P is a sum of three squares of complex vector fields, but with a small change not altering

the results, we might make P a sum of two squares of complex vector fields in two variables, depending
on the same parameters: for example, BB�CB�.t2l Cx2k/2B.

Let us also note that the characteristic variety of P is fx D 0; � D 0g, a codimension-two real analytic
symplectic submanifold of T �R2 n 0, as in the case of Kohn’s operator. Moreover, the Poisson–Treves
stratification for P has a single stratum, thus coinciding with the characteristic manifold of P .

We want to analyze the hypoellipticity of P , both in C1 and in Gevrey classes. As we shall see, the
Gevrey classes play an important role. Here are our results:

Theorem 1.1. Let P be as in (1-1), q even.

(i) Suppose that
l >

k

q
: (1-2)

Then P is C1-hypoelliptic (in a neighborhood of the origin) with a loss of 2.q�1Ck/=q derivatives.

(ii) Assume that (1-2) is satisfied by the parameters l; k and q. Then P is Gevrey s-hypoelliptic for any
s, with

s �
lq

lq� k
: (1-3)

(iii) The value in (1-3) for the Gevrey hypoellipticity of P is optimal, that is, P is not Gevrey s-hypoelliptic
for any

1� s <
lq

lq� k
:

(iv) Assume now that
l �

k

q
: (1-4)

Then P is not C1-hypoelliptic.
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It is worth noting that the operator P satisfies the complex Hörmander condition, that is, the brackets
of the fields of length up to k C q generate a two-dimensional complex Lie algebra. Note that in the
present case the vector fields involved are B�, xkB and t lB, but only the first two enter in the brackets
spanning C2. Actually the third vector field, despite being, as we have said, completely irrelevant in
computing the elliptic brackets or the characteristic manifold, proves essential for the hypoellipticity of
the operator in the sense that it determines whether the operator turns out hypoelliptic (in some sense) or
not. As of now we do not have a thorough understanding of this phenomenon.

Corollary 1.2. The complex Hörmander condition does not imply C1-hypoellipticity for sums of squares
of complex vector fields.

The real Hörmander condition, using as vector fields both the real and the imaginary parts of the vector
fields defining P , does not imply C1-hypoellipticity either.

This also followed from Christ’s theorem [2005], but in this case we are in two variables instead of
three. We are not aware of any sufficient condition for C1-hypoellipticity of sums of squares of complex
vector fields, except the result proved in [Kohn 2005], according to which if the (complex) Lie algebra is
generated by the fields and their brackets of length at most 2, then the operator is C1-hypoelliptic.

Restricting ourselves to the case q even is no loss of generality, since the operator (1-1) corresponding
to an odd integer q is plainly hypoelliptic and actually subelliptic, that is, there is a loss of less than
two derivatives. This fact is due to special circumstances, that is, that the operator B� has a trivial
kernel in that case. Actually when q is odd, we have the estimate kuk1=q � CkB�uk, u 2 C1

0
.�/,

with � a subset of R2 that is open and containing the origin. From the straightforward inequality
jhPu;uij � kB�uk2, u 2 C1

0
.�/, we deduce that kuk2

1=q
� C jhPu;uij. The latter estimate can be used

to prove the hypoellipticity (subellipticity) of P . We stress that Kohn’s original operator, in the complex
variable z, automatically has an even q, while in the “real case” the parity of q does matter.

We want to discuss the issue of analytic (Gevrey) hypoellipticity. For sums of squares of real vector
fields, there is a conjecture due to F. Treves [1999; Bove and Treves 2004] stating a necessary and
sufficient condition for analytic hypoellipticity. To this end, one considers the characteristic set of the
operator and “decomposes” it into real analytic strata where the symplectic form has constant rank and
where the vector fields as well as their brackets up to a certain length have vanishing symbols, but there
exists at least a bracket of length greater by one whose symbol does not vanish. Roughly stated, the
conjecture says that if every stratum is a symplectic real analytic manifold, then the operator is analytic
hypoelliptic. In the case of the operator Rq;k (or Em;k), the stratification has just one stratum, coinciding
with the characteristic manifold, which is also a symplectic manifold. In [Kohn 2005; Bove et al. 2006] it
is proved that the operator is both C1 and analytic hypoelliptic.

From Theorem 1.1(iii), however, we deduce the following:

Corollary 1.3. Treves’s conjecture does not carry over to sums of squares of complex vector fields.

We also want to stress microlocal aspects of the theorem: the characteristic manifold of P is symplectic
in T �R2 of codimension two, and as such it may be identified with T �R n 0� f.t; �/ j � ¤ 0g (leaving
aside the origin in the � variable, i.e., the zero section.)
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On the other hand, the operator P .x; t;Dx; �/, thought of as a differential operator in the x-variable
depending on .t; �/ as parameters, for � > 0 has an eigenvalue of the form �2=q.t2l C a.t; �//, possibly
multiplied by a nonzero function of t . Here a.t; �/ denotes a (nonclassical) symbol of order �1 defined
for � > 0 and such that a.0; �/ � ��2k=q . Thus we may consider the pseudodifferential operator
ƒ.t;Dt / D Op

�
�2=q.t2l C a.t; �//

�
as defined in a microlocal neighborhood of our base point in the

characteristic manifold of P . One can show that the hypoellipticity properties of P are shared by ƒ; for
example, P is C1-hypoelliptic if and only if ƒ is.

The paper is organized as follows. In Sections 2–4 the operator ƒ.t;Dt / is computed and its hypoel-
lipticity properties are related to those of P . This is done following ideas of Boutet de Monvel, Helffer
and Sjöstrand using a calculus of pseudodifferential operators that degenerate on a symplectic manifold.
The sufficient part of the theorem is proved in this way. Since we do not want to encumber an already
lengthy paper with too many technical details, we decided to give only a sketchy description of the
pseudodifferential calculus, leaving it to the reader to fill in the (classical) proofs.

In order to prove the optimality of the Gevrey index in (1-3), we have to show that the pseudodifferential
operator ƒ.t;Dt / is hypoelliptic in that Gevrey class and not in any better class, that is, not in any class
of index closer to 1, the analytic class. We do this in Section 5. This brings in the question of determining
the hypoellipticity index for a pseudodifferential operator in one variable. A detailed treatment of the
general case is given in [Bove and Mughetti 2013]. In the present case, determining the Gevrey class
does not require the detailed construction of a Newton polygon, and things are definitely easier from the
technical point of view. This is why we include here the optimality proof for ƒ.t;Dt /.

In Section 6 we prove assertion (iii) of Theorem 1.1. The idea of the proof is to construct a solution of
the equation ƒ.t;Dt /uD 0 violating an a priori estimate which is necessary and sufficient for Gevrey
hypoellipticity. Such a solution is at first constructed only from a formal point of view. In a second step,
we make sure to have estimates allowing us to turn a formal solution into a true solution, albeit of an
equation of the form ƒ.t;Dt /v D g, where g, though not zero, is in an optimal Gevrey class Bs0 , where
these Gevrey classes Bs are characterized by arbitrarily small constants in the estimates of derivatives.

The proof of assertion (iv) of Theorem 1.1 is done in Section 7 using similar ideas, but one needs less
control on the formal solution.

2. The q-pseudodifferential calculus

The idea, attributed by J. Sjöstrand and M. Zworski [2007] to Schur, is essentially a linear algebra remark:
assume that the n� n matrix A has zero in its spectrum with multiplicity one. Then of course A is not
invertible, but, denoting by e0 the zero eigenvector of A, the matrix (in block form)�

A e0
te0 0

�
is invertible as an .nC 1/� .nC 1/ matrix in CnC1. Here te0 denotes the row vector e0.

All we want to do is apply this remark to the operator P whose part BB� has the same problem as the
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matrix A, that is, a zero simple eigenvalue. This occurs since q is even. (In the case when q is odd, P is
easily seen to be hypoelliptic.)

It is convenient to use self-adjoint derivatives from now on, so the vector field B� equals Dx � ixq�1Dt ,
where Dx D i�1@x . It will also be convenient to write B.x; �; �/ for the symbol of the vector field B,
that is, B.x; �; �/D �C ixq�1� , and analogously for the other vector fields involved. The symbol of P

can be written as

P .x; t; �; �/D P0.x; t; �; �/CP�q.x; t; �; �/CP�2k.x; t; �; �/; (2-1)

where
P0.x; t; �; �/D .1C t2l/.�2

Cx2.q�1/�2/C .�1C t2l/.q� 1/xq�2�;

P�q.x; t; �; �/D�2lt2l�1xq�1.�C ixq�1�/;

P�2k.x; t; �; �/D x2k.�2
Cx2.q�1/�2/� i2kx2k�1.�C ixq�1�/C .q� 1/x2kCq�2�:

It is evident at a glance that the different pieces into which P has been decomposed include terms of
different order and vanishing speed. We thus need to say something about the adopted criteria for the
above decomposition.

Let � be a positive number and consider the following canonical dilation in the variables .x; t; �; �/:

x! ��1=qx; t ! t; �! �1=q�; � ! ��:

It is then evident that P0 has the homogeneity property

P0

�
��1=qx; t; �1=q�; ��

�
D �2=qP0.x; t; �; �/: (2-2)

Analogously,
P�q

�
��1=qx; t; �1=q�; ��

�
D �2=q�1P�q.x; t; �; �/ (2-3)

and
P�2k

�
��1=qx; t; �1=q�; ��

�
D �2=q�.2k/=qP�2k.x; t; �; �/: (2-4)

Now these homogeneity properties help us in identifying some symbol classes suitable for P .

Definition 2.1. Following the ideas of [Boutet de Monvel and Trèves 1974; Boutet de Monvel 1974], we
define the class of symbols S

m;k
q .�;†/, where � is a conic neighborhood of the point .0; e2/ and †

denotes the characteristic manifold fx D 0; � D 0g, as the set of all C1 functions such that on any conic
subset of � with compact base,ˇ̌

@˛t @
ˇ
� @


x@
ı
�a.x; t; �; �/

ˇ̌
. .1Cj� j/m�ˇ�ı

�
j�j

j� j
C jxjq�1

C
1

j� j.q�1/=q

�k�
=.q�1/�ı

: (2-5)

We write S
m;k
q for S

m;k
q .R2 �R2; †/.

By a straightforward computation (see for example [Boutet de Monvel 1974]), we have S
m;k
q � S

m0;k0

q

if and only if m�m0 and

m�
q� 1

q
k �m0�

q� 1

q
k 0:
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S
m;k
q can be embedded in the Hörmander classes S

mC q�1
q

k�

�;ı
, where k� D maxf0;�kg and � D ı D

1=q � 1
2

. Thus we immediately deduce that

P0 2 S2;2
q ; P�q 2 S1;2

q � S
2;2C q

q�1

q ; and finally P�2k 2 S
2;2C 2k

q�1

q :

Definition 2.2 [Boutet de Monvel 1974]. With � and † as specified above, we define the class

Hm
q .�;†/D

1\
jD1

S
m�j ;� q

q�1
j

q .�;†/:

We write Hm
q for Hm

q .R
2 �R2; †/.

Now it is easy to see that P0, as a differential operator with respect to the variable x, depending on
the parameters t , � � 1, has a nonnegative discrete spectrum. Moreover, the dependence on � of the
eigenvalue is particularly simple, because of (2-2). Call ƒ0.t; �/ the lowest eigenvalue of P0. Then

ƒ0.t; �/D �
2=q Qƒ0.t/:

Moreover, ƒ0 has multiplicity one and Qƒ0.0/D 0, since BB� has a null eigenvalue with multiplicity
one. Denote by '0.x; t; �/ the corresponding eigenfunction. Because of (2-2), we have the following
properties of '0:

(a) For fixed .t; �/; '0 is exponentially decreasing with respect to x as x!˙1. In fact, because of
(2-2), setting y D x�1=q , we have '0.y; t; �/� e�yq=q .

(b) It is convenient to normalize '0 in such a way that k'0. � ; t; �/kL2.Rx/
D 1. This implies that a

factor ��1=2q appears. Thus we are led to the definition of a Hermite operator (see [Helffer 1977]
for more details).

Let †1 D �x† be the space projection of †.

Definition 2.3. We write H m
q for Hm

q .R
2
x;t �R� ; †1/, the class of all smooth functions in

1\
jD1

S
m�j ;� q

q�1
j

q .R2
x;t �R� ; †1/:

Here S
m;k
q .R2

x;t �R� ; †1/ denotes the set of all smooth functions such thatˇ̌
@˛t @

ˇ
� @


xa.x; t; �/

ˇ̌
. .1Cj� j/m�ˇ

�
jxjq�1

C
1

j� j.q�1/=q

�k� 

q�1

: (2-6)

Define the action of a symbol a.x; t; �/ in H m
q as the map

a.x; t;Dt /WC
1
0 .Rt / �! C1.R2

x;t /

defined by

a.x; t;Dt /u.x; t/D .2�/
�1

Z
eit�a.x; t; �/ Ou.�/ d�:
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This operator, modulo a regularizing operator (with respect to the variable t , but locally uniform in x),
is called a Hermite operator, and we denote by OPHm

q the corresponding class.

We need also the adjoint of the Hermite operators defined in Definition 2.3.

Definition 2.4. Let a 2H m
q . We define the map

a�.x; t;Dt /WC
1
0 .R2

x;t / �! C1.Rt /

as

a�.x; t;Dt /u.t/D .2�/
�1

ZZ
eit�a.x; t; �/ Ou.x; �/ dx d�;

where Ou.x; �/ denotes the Fourier transform of u with respect to the variable t . We denote by OPH�q
m

the related set of operators.

Lemma 2.5. Let a 2H m
q and b 2 S

m;k
q .

(i) The formal adjoint a.x; t;Dt /
� belongs to OPH�q

m and its symbol has the asymptotic expansion

�
�
a.x; t;Dt /

�
�
�

N�1X
˛D0

1

˛!
@˛�D˛

t a.x; t; �/ 2H m�N
q : (2-7)

(ii) The formal adjoint .a�.x; t;Dt //
� belongs to OPHm

q and its symbol has the asymptotic expansion

�
�
a�.x; t;Dt /

�
�
�

N�1X
˛D0

1

˛!
@˛�D˛

t a.x; t; �/ 2H m�N
q : (2-8)

(iii) The formal adjoint b.x; t;Dx;Dt /
� belongs to OPSm;k

q and its symbol has the asymptotic expansion

�
�
a.x; t;Dx;Dt /

�
�
�

N�1X
˛D0

1

˛!
@˛.�;�/D

˛
.x;t/a.x; t; �; �/ 2 Sm�N;k�N q=.q�1/

q : (2-9)

The following is a lemma on compositions involving the two different types of Hermite operators
defined above. First we give a definition of “global” homogeneity:

Definition 2.6. We say that a symbol a.x; t; �; �/ is globally homogeneous (abbreviated g.h.) of degree m

if for �� 1, a.��1=qx; t; �1=q�; ��/D �ma.x; t; �; �/. Analogously, we say that a symbol, independent
of �, of the form a.x; t; �/ is globally homogeneous of degree m if a.��1=qx; t; ��/D �ma.x; t; �/.

Let f�j .x; t; �; �/ 2 S
m;kCj=.q�1/
q , j 2 N; then there exists f .x; t; �; �/ 2 S

m;k
q such that f �P

j�0 f�j , that is, f �
PN�1

jD0 f�j 2 S
m;kCN=.q�1/
q . Thus f is defined modulo a symbol in

Sm;1
q D

\
h�0

Sm;h
q :
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Analogously, let f�j be globally homogeneous of degree m� k.q � 1/=q � j=q and such that for
every ˛; ˇ � 0 satisfies the estimatesˇ̌

@



.t;�/
@˛x@

ˇ

�
f�j .x; t; �; �/

ˇ̌
.
�
j�jC jxjq�1

C 1
�k�˛=.q�1/�ˇ

; .x; �/ 2 R2; (2-10)

for .t; �/ in a compact subset of R�R n 0 and every multi-index 
 . Then f�j 2 S
m;kCj=.q�1/
q .

Accordingly, let '�j .x; t; �/ 2H
m�j=q
q ; then there exists '.x; t; �/ 2H m

q such that ' �
P

j�0 '�j ,
that is, ' �

PN�1
jD0 '�j 2H

m�N=q
q , so that ' is defined modulo a regularizing symbol (with respect to

the t variable).
Similarly, let '�j be globally homogeneous of degree m�j=q and such that for every ˛, l � 0 satisfies

the estimates ˇ̌
@
ˇ

.t;�/
@˛x'�j .x; t; �/

ˇ̌
.
�
jxjq�1

C 1
��l�˛=.q�1/

; x 2 R; (2-11)

for .t; �/ in a compact subset of R�R n 0 and every multi-index ˇ. Then '�j 2H
m�j=q
q .

As a matter of fact, in the construction below we deal with asymptotic series of homogeneous symbols.
Next we give a brief description of the composition of the various types of operator introduced so far.

Lemma 2.7 [Helffer 1977, Formula 2.4.9]. Let a 2 S
m;k
q , b 2 S

m0;k0

q , with asymptotic globally homoge-
neous expansions

a�
X
j�0

a�j ; a�j 2 Sm;kCj=.q�1/
q ; g.h. of degree m�

q� 1

q
k �

j

q
;

b �
X
i�0

b�i ; b�i 2 Sm0;k0Ci=.q�1/
q ; g.h. of degree m0�

q� 1

q
k 0�

i

q
:

Then a ı b is an operator in OPSmCm0;kCk0

q with

�.a ı b/�

N�1X
sD0

X
q˛CiCjDs

1

˛!
�
�
@˛� a�j .x; t;Dx; �/ ıx D˛

t b�i.x; t;Dx; �/
�
2 SmCm0�N;kCk0

q : (2-12)

Here ıx denotes the composition with respect to the x-variable.

Lemma 2.8 [Boutet de Monvel 1974, Section 5; Helffer 1977, Sections 2.2, 2.3]. Let a 2H m
q , b 2H m0

q

and � 2 Sm00

1;0
.Rt �R� / with homogeneous asymptotic expansions

a�
X
j�0

a�j ; a�j 2H m�j=q
q ; g.h. of degree m�

j

q
;

b �
X
i�0

b�i ; b�i 2H m0�i=q
q ; g.h. of degree m0�

i

q
;

��
X
l�0

��l ; ��l 2 S
m00�l=q
1;0

; homogeneous of degree m00�
l

q
:

Then:
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(i) a ı b� is an operator in OP H
mCm0�1=q
q .R2; †/ with

�.aıb�/.x; t; �; �/�e�ix�
N�1X
sD0

X
q˛CiCjDs

1

˛!
@˛� a�j .x; t; �/D

˛
t
ONb�i.�; t; �/2HmCm0�1=q�N=q

q ; (2-13)

where the Fourier transform in D˛
t
ONb�i.�; t; �/ is taken with respect to the x-variable.

(ii) b� ı a is an operator in OPSmCm0�1=q
1;0

.Rt / with

�.b�ıa/.t; �/�

N�1X
sD0

X
q˛CjCiDs

1

˛!

Z
@˛�
Nb�i.x; t; �/D

˛
t a�j .x; t; �/ dx 2S

mCm0�1=q�N=q
1;0

.Rt /: (2-14)

(iii) a ı� is an operator in OPHmCm00

q . Furthermore, its asymptotic expansion is given by

�.a ı�/�

N�1X
sD0

X
q˛CjClDs

1

˛!
@˛� a�j .x; t; �/D

˛
t ��l.t; �/ 2H mCm00�N=q

q : (2-15)

Lemma 2.9. Let a.x; t;Dx;Dt / be an operator in the class OPSm;k
q .R2; †/ and b.x; t;Dt / 2 OPHm0

q

with g.h. asymptotic expansions

a�
X
j�0

a�j ; a�j 2 Sm;kCj=.q�1/
q ; g.h. of degree m�

q� 1

q
k �

j

q
;

b �
X
i�0

b�i ; b�i 2H m0�i=.q�1/
q ; g.h. of degree m0�

i

q
:

Then a ı b 2 OPHmCm0�k.q�1/=q
q and has a g.h. asymptotic expansion of the form

�.a ı b/�

N�1X
sD0

X
qlCiCjDs

1

l!
@l
�a�j .x; t;Dx; �/

�
Dl

t b�i. � ; t; �/
�
2H mCm0�k.q�1/=q�N=q

q : (2-16)

Lemma 2.10. Let a.x; t;Dx;Dt / be an operator in OPSm;k
q .R2; †/, let b�.x; t;Dt / 2OPH�q

m0 , and let
�.t;Dt / 2 OPSm00

1;0.Rt /, with homogeneous asymptotic expansions

a�
X
j�0

a�j ; a�j 2 Sm;kCj=.q�1/
q ; g.h. of degree m�

q� 1

q
k �

j

q
;

b �
X
i�0

b�i ; b�i 2H m0�i=.q�1/
q ; g.h. of degree m0�

i

q
;

��
X
l�0

��l ; ��l 2 S
m00�l=q
1;0

; homogeneous of degree m00�
l

q
:

Then
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(i) b�.x; t;Dt / ı a.x; t;Dx;Dt / 2 OPH�q
mCm0�..q�1/=q/k with g.h. asymptotic expansion

�.b� ıa/�

N�1X
sD0

X
qlCiCjDs

1

l!
Dl

t

�
a�j .x; t;Dx; �/

���
@l
�b�i. � ; t; �/

�
2Hq

mCm0�k.q�1/=q�N=q: (2-17)

(ii) �.t;Dt / ı b�.x; t;Dt / 2 OPH�q
m0Cm00 with asymptotic expansion

�.� ı b�/�

N�1X
sD0

X
q˛CiClDs

1

˛!
@˛� ��l.t; �/D

˛
t b�i.x; t; �/ 2H m0Cm00�N=q

q : (2-18)

The proofs of Lemmas 2.7–2.9 are obtained with the calculus developed by Boutet de Monvel [1974]
and Helffer [1977], slightly generalized to handle general q. The proof of Lemma 2.10 is performed
taking the adjoint and involves a combinatorial argument; we sketch it here.

Proof. We prove item (i). The proof of (ii) is similar and simpler.
Since

b�.x; t;Dt / ı a.x; t;Dx;Dt /D
�
a.x; t;Dx;Dt /

�
ı b�.x; t;Dt /

�
��
;

using Lemmas 2.5 and 2.7, we first compute

�
�
a.x; t;Dx;Dt /

�
ı b�.x; t;Dt /

�
�

D

X
˛;l;p;i;j�0

1

l!˛!p!
@˛Cp
� D˛

t

�
a�j .x; t;Dx; �/

���
@l
�D

lCp
t b�i. � ; t; �/

�
D

X

�0

1


 !
@
�D



t

� X
ˇ;i;j�0

1

ˇ!
.�Dt /

ˇ
�
a�j .x; t;Dx; �/

���
@ˇ� b�i. � ; t; �/

��
;

where .�Dt /
ˇ
�
a�j .x; t;Dx; �/

�� is the formal adjoint of the operator with symbol D
ˇ
t a�j .x; t; �; �/

as an operator in the x-variable, depending on .t; �/ as parameters. Here we used (A-2) in Appendix A.
Hence

�
�
b�.x; t;Dt / ı a.x; t;Dx;Dt /

�
D

X
l�0

1

l!
@l
�D

l
t �

�X

�0

1


 !
@


�D



t

� X
ˇ;i;j�0

.�Dt /ˇ

ˇ!

�
a�j .x; t;Dx; �/

���
@
ˇ
� b�i. � ; t; �/

���

D

X
ˇ;i;j�0

1

ˇ!
D
ˇ
t

�
a�j .x; t;Dx; �/

���
@ˇ� b�i. � ; t; �/

�
D

X
s�0

X
qˇCiCjDs

1

ˇ!
D
ˇ
t

�
a�j .x; t;Dx; �/

���
@ˇ� b�i. � ; t; �/

�
;

because of (A-3) in Appendix A. �
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3. Computation of the “degenerate eigenvalue”

We are now in a position to start computing the symbol of ƒ.
Let us first examine the minimum eigenvalue and the corresponding eigenfunction of P0.x; t;Dx; �/

in (2-1), as an operator in the x-variable. It is well known that P0.x; t;Dx; �/ has a discrete set of
nonnegative, simple eigenvalues depending in a real analytic way on the parameters .t; �/.

P0 can be written in the form LL�C t2lL�L, where LDDxC ixq�1� . The kernel of L� is a one-
dimensional vector space generated by '0;0.x; �/ D c0�

1=2q exp.�.xq=q/�/, c0 being a normalization
constant such that

k'0;0. � ; �/kL2.Rx/
D 1:

We remark that in this case � is positive. For negative values of � , the situation is much better since the
following proposition holds:

Proposition 3.1 [Boutet de Monvel 1974]. The localized operator of P in (1-1), which is LL�, is injective
in a cone near � < 0. Hence the operator P is subelliptic.

Denoting by '0.x; t; �/ the eigenfunction of P0 corresponding to its lowest eigenvalue ƒ0.t; �/, we
obtain that '0.x; 0; �/D '0;0.x; �/ and that ƒ0.0; �/D 0. As a consequence, the operator

P D BB�CB�.t2l
Cx2k/B; B DDxC ixq�1Dt (3-1)

is not “maximally” hypoelliptic, that is, hypoelliptic with a loss of 2� 2=q derivatives.
Next we give a more precise description of the t-dependence of both the eigenvalue ƒ0 and its

corresponding eigenfunction '0 of P0.x; t;Dx; �/.
It is well known that there exists an " > 0 small enough that the operator

…0 D
1

2� i

I
j�jD"

�
�I �P0.x; t;Dx; �/

��1
d�

is the orthogonal projection onto the eigenspace generated by '0. Note that…0 depends on the parameters
.t; �/. The operator LL� is thought of as an unbounded operator in L2.Rx/ with domain

B2
q .Rx/D

n
u 2L2.Rx/

ˇ̌
x˛Dˇ

xu 2L2; 0� ˇC
˛

q�1
� 2

o
: (3-2)

We have
.�I �P0/

�1
D
�
I C t2l

�
�A.I C t2lA/�1

��
.�I �LL�/�1;

where AD .LL���I/�1L�L. Plugging this into the formula defining …0, we get

…0 D
1

2� i

I
j�jD"

.�I �LL�/�1 d��
1

2� i
t2l

I
j�jD"

A.I C t2lA/�1.�I �LL�/�1 d�:

Hence

'0 D…0'0;0 D '0;0� t2l 1

2� i

I
j�jD"

A.I C t2lA/�1.�I �LL�/�1'0;0 d�

D '0;0.x; �/C t2l
Q'0.x; t; �/: (3-3)
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Since …0 is an orthogonal projection, k'0. � ; t; �/kL2.Rx/
D 1.

As a consequence, since P0 DLL�C t2lL�L, we obtain that

ƒ0.t; �/D hP0'0; '0i D t2l
kL'0;0k

2
CO.t4l/: (3-4)

We point out that L'0;0 ¤ 0. Observe that, in view of (2-2), writing u�.x/D u.��1=qx/,

ƒ0.t; ��/D min
u2B2

q

kuk
L2D1

˝
P0.x; t;Dx; ��/u.x/;u.x/

˛

D min
u2B2

q

kuk
L2D1

�
P0

�
��1=qx; t; �1=qDx; ��

� u�.x/

�1=.2q/
;

u�.x/

�1=.2q/

�

D �2=q min
v2B2

q

kvk
L2D1

˝
P0.x; t;Dx; �/v.x/; v.x/

˛
D �2=qƒ0.t; �/: (3-5)

This shows that ƒ0 is homogeneous of degree 2=q with respect to the variable � .
Since '0 is the unique normalized solution of the equation

�
P0.x; t;Dx; �/�ƒ0.t; �/

�
u. � ; t; �/D 0;

from (2-2) and (3-5) it follows that '0 is globally homogeneous of degree 1=.2q/. Moreover, '0 is rapidly
decreasing with respect to the x-variable smoothly dependent on .t; �/ in a compact subset of R2 n 0.
Using estimates of the form (2-11), we can conclude that '0 2H

1=.2q/
q .

Let us start now the construction of a right parametrix of the operator"
P .x; t;Dx;Dt / '0.x; t;Dt /

'�
0
.x; t;Dt / 0

#

as a map from C1
0
.R2
.x;t/

/�C1
0
.Rt / into C1.R2

.x;t/
/�C1.Rt /. In particular, we are looking for an

operator such that"
P .x; t;Dx;Dt / '0.x; t;Dt /

'�
0
.x; t;Dt / 0

#
ı

"
F.x; t;Dx;Dt /  .x; t;Dt /

 �.x; t;Dt / �ƒ.t;Dt /

#
�

"
IdC1

0
.R2/ 0

0 IdC1
0
.R/

#
: (3-6)

Here  and  � denote operators in OPH1=2q
q and OPH�q

1=2q respectively, and F 2 OPS�2;�2
q and

ƒ 2 OPS2=q
1;0

. Moreover, the sign � means equality modulo a regularizing operator.
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From (3-6) we obtain four relations:

P .x; t;Dx;Dt / ıF.x; t;Dx;Dt /C'0.x; t;Dt / ı 
�.x; t;Dt /� Id; (3-7)

P .x; t;Dx;Dt / ı .x; t;Dt /�'0.x; t;Dt / ıƒ.t;Dt /� 0; (3-8)

'�0 .x; t;Dt / ıF.x; t;Dx;Dt /� 0; (3-9)

'�0 .x; t;Dt / ı .x; t;Dt /� Id: (3-10)

We are going to find the symbols F ,  and ƒ as asymptotic series of globally homogeneous symbols:

F �
X
j�0

F�j ;  �
X
j�0

 �j ; ƒ�
X
j�0

ƒ�j ; (3-11)

where the symbols F�j ,  �j and ƒ�j are globally homogeneous of order �2=q� j=q, 1=.2q/� j=q

and 2=q� j=q respectively; see for example Definition 2.6 and (3-5).
From Lemma 2.7, we obtain that

�.P ıF /�
X
s�0

X
q˛CiCjDs

1

˛!
�
�
@˛�P�j .x; t;Dx; �/ ıx D˛

t F�i.x; t;Dx; �/
�
;

where we denote by P�j the globally homogeneous parts of degree 2=q� j=q of the symbol of P , so
that P D P0CP�qCP�2k . Furthermore, from Lemma 2.8(i), we may write that

�.'0 ı 
�/� e�ix�

X
s�0

X
q˛CiDs

1

˛!
@˛� '0.x; t; �/D

˛
t
ON �i.�; t; �/:

Analogously, Lemmas 2.9 and 2.8(iii) give

�.P ı /�
X
s�0

X
qlCiCjDs

1

l!
@l
�P�j .x; t;Dx; �/

�
Dl

t �i. � ; t; �/
�
;

�.'0 ıƒ/�
X
s�0

X
q˛ClDs

1

˛!
@˛� '0.x; t; �/D

˛
t ƒ�l.t; �/:

Finally, Lemmas 2.10(i) and 2.8(ii) yield

�.'�0 ıF /�
X
s�0

X
qlCjDs

1

l!
Dl

t

�
F�j .x; t;Dx; �/

���
@l
�'0. � ; t; �/

�
and

�.'�0 ı /�
X
s�0

X
q˛CjDs

1

˛!

Z
@˛� N'0.x; t; �/D

˛
t  �j .x; t; �/ dx:
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Let us consider the terms globally homogeneous of degree 0. We obtain the relations

P0.x; t;Dx; �/ ıx F0.x; t;Dx; �/C'0.x; t; �/˝ 0. � ; t; �/D Id; (3-12)

P0.x; t;Dx; �/
�
 0. � ; t; �/

�
�ƒ0.t; �/'0.x; t; �/D 0; (3-13)�

F0.x; t;Dx; �/
���
'0. � ; t; �/

�
D 0; (3-14)Z

N'0.x; t; �/ 0.x; t; �/ dx D 1: (3-15)

Here we denoted by '0 ˝  0 the operator uD u.x/ 7! '0

Z
N 0u dx; '0 ˝  0 must be a globally

homogeneous symbol of degree zero.
Conditions (3-13) and (3-15) imply that  0 D '0. Moreover, (3-13) yields that

ƒ0.t; �/D
˝
P0.x; t;Dx; �/'0.x; t; �/; '0.x; t; �/

˛
L2.Rx/

;

coherently with the notation chosen above. Conditions (3-12) and (3-14) are rewritten as

P0.x; t;Dx; �/ ıx F0.x; t;Dx; �/D Id�…0;

F0.x; t;Dx; �/
�
'0. � ; t; �/

�
2 Œ'0�

?;

whence (compare (3-2))

F0.x; t;Dx; �/D

(�
P0.x; t;Dx; �/j

Œ'0�
?\B2

q

��1 on Œ'0�
?;

0 on Œ'0�:
(3-16)

Since P0 is q-globally elliptic with respect to .x; �/ smoothly depending on the parameters .t; �/, one
can show that F0.x; t;Dx; �/ is actually a pseudodifferential operator whose symbol satisfies (2-10) with
mD k D�2, j D 0, and is globally homogeneous of degree �2=q.

From now on we assume that q < 2k and that 2k is not a multiple of q; the complementary cases are
analogous.

Because of the fact that P�j D 0 for j D 1; : : : ; q� 1, relations (3-12)–(3-15) are satisfied at degree
�j=q, j D 1; : : : ; q�1, by choosing F�j D 0,  �j D 0, ƒ�j D 0. Then we must examine homogeneity
degree �1 in Equations (3-7)–(3-10). We get

P�q ıx F0CP0 ıx F�qC @�P0 ıx DtF0C'0˝ �qC @�'0˝Dt'0 D 0; (3-17)

P0. �q/CP�q.'0/C @�P0.Dt'0/�ƒ�q'0�Dtƒ0@�'0 D 0; (3-18)

.F�q/
�.'0/� .DtF

�
0 /.@�'0/D 0; (3-19)

h �q; '0iL2.Rx/
ChDt'0; @�'0iL2.Rx/

D 0: (3-20)

First we solve with respect to  �q D h �q; '0iL2.Rx/
'0 C  

?
�q 2 Œ'0� ˚ Œ'0�

?. From (3-20), we
immediately get that

h �q; '0iL2.Rx/
D�hDt'0; @�'0iL2.Rx/

: (3-21)
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Equation (3-18) implies that

P0

�
h �q; '0i'0

�
CP0. 

?
�q/D�P�q.'0/� @�P0.Dt'0/Cƒ�q'0CDtƒ0@�'0:

Thus, using (3-21) we obtain

Œ'0�
?
3 P0. 

?
�q/D�P�q.'0/� @�P0.Dt'0/Cƒ�q'0CDtƒ0@�'0ChDt'0; @�'0iƒ0'0;

whence

ƒ�q D
˝
P�q.'0/C @�P0.Dt'0/�Dtƒ0@�'0; '0

˛
L2.Rx/

� hDt'0; @�'0iƒ0; (3-22)

 �q D�hDt'0; @�'0iL2.Rx/
'0CF0

�
�P�q.'0/� @�P0.Dt'0/CDtƒ0@�'0

�
; (3-23)

since, by (3-16), F0'0 D 0. From (3-19) we deduce that for every u 2L2.Rx/,

…0F�quD
˝
u; .DtF

�
0 /.@�'0/

˛
L2.Rx/

'0 D
�
'0˝ .DtF

�
0 /.@�'0/

�
u:

Let �!�q D P�q ıx F0C @�P0 ıx DtF0C'0˝ �qC @�'0˝Dt'0. Then from (3-16), applying F0

to both sides of (3-17), we obtain that

.Id�…0/F�q D�F0!�q:

Therefore we deduce that
F�q D '0˝ .DtF

�
0 /.@�'0/�F0!�q: (3-24)

Inspecting (3-23) and (3-24), we see that  �q is in H
1=2q�1
q and is globally homogeneous of degree

1=2q� 1, while F�q is in S
�2;�2Cq=.q�1/
q and is globally homogeneous of degree �2=q� 1.

From (3-22) we have that ƒ�q is in S
2=q�1
1;0

and is homogeneous of degree 2=q�1. Moreover, P�q is
O.t2l�1/, Dt'0 is estimated by t2l�1 for t! 0 because of (3-3), Dtƒ0 is also O.t2l�1/, andƒ0DO.t2l/

because of (3-4). We thus obtain that

ƒ�q.t; �/D O.t2l�1/: (3-25)

This ends the analysis of the terms of degree �1 in (3-6).
From now until the end of the proof we assume that 2l > 2k=q. The complementary case can be

obtained analogously.
We iterate this procedure arguing in the same way. We would like to point out that the first homogeneity

degree that arises and is not a negative integer is �2k=q. (We are availing ourselves of the fact that 2k

is not a multiple of q. If it is a multiple of q, the above argument applies literally, but we need also the
supplementary remark that we are going to make in the sequel.)

At homogeneity degree �2k=q we do not see the derivatives with respect to t or � of the symbols
found at the previous levels, since they would only account for a negative integer degree of homogeneity.

In particular, condition (3-8) for homogeneity degree �2k=q reads as

P0 �2k CP�2k'0�'0ƒ�2k D 0:
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Taking the scalar product of the above equation with the eigenfunction '0 and recalling that

'0. � ; t; �/




L2.Rx/
D 1;

we obtain that
ƒ�2k.t; �/D hP�2k'0; '0iL2.Rx/

ChP0 �2k ; '0iL2.Rx/
: (3-26)

Now, because of the structure of P�2k , hP�2k'0; '0iL2.Rx/
> 0, while the second term on the right,

which is equal to h �2k ; '0i
Nƒ0, vanishes for t D 0. Thus we deduce that

ƒ�2k.0; �/ > 0: (3-27)

Let j0 be a positive integer such that

j0q < 2k < .j0C 1/q: (3-28)

In the sequel we need some information on the behavior of the symbol ƒ�.j0C1/. To obtain this, we
make a proof by induction.

Suppose that

ƒ�j .t; �/D

�
O.t2l�j=q/ for j=q D 0; : : : ; j0;

0 if j=q is not an integer � j0

(3-29)

and

 �j .t;x; �/D

�
O.t2l�j=q/ for j=q D 0; : : : ; j0;

0 if j=q is not an integer � j0:
(3-30)

Let us write the symbols of (3-7)–(3-10) at the homogeneity degree �.j0C 1/. From (3-8), we haveX
q˛CiCjD

q.j0C1/

1

˛!
@˛�P�j .x; t;Dx; �/

�
D˛

t  �i. � ; t; �/
�
�

X
q˛CiD
q.j0C1/

1

˛!
@˛� '0.x; t; �/D

˛
t ƒ�i.t; �/D 0:

This can be rewritten as

P0. �.j0C1/q/�'0ƒ�.j0C1/q

D�

X
q˛CiCjDq.j0C1/

i<q.j0C1/

1

˛!
@˛�P�j .D

˛
t  �i/ C

X
q˛CiDq.j0C1/

i<q.j0C1/

1

˛!
@˛� '0D˛

t ƒ�i : (3-31)

Taking the scalar product of (3-31) with '0 and using the equalities k'0kL2.Rx/
D 1 andƒ0.t; �/DO.t2l/

and the self-adjointness of P0, we at once find, because of the inductive hypothesis, that ƒ�.j0C1/q D

O.t2l�.j0C1//.
In order to show that  �.j0C1/q D O.t2l�.j0C1//, set

 �.j0C1/q.x; t; �/D

Z
R

'0.y; t; �/ �.j0C1/q.y; t; �/ dy �'0.x; t; �/C 
?
�.j0C1/q.x; t; �/; (3-32)
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where  ?
�.j0C1/q

2 Œ'0�
?. Let us consider then (3-10). At the homogeneity level �.j0C 1/, it can be

written asZ
R

'0.y; t; �/ �.j0C1/q.y; t; �/ dy D�
X

q˛CjD.j0C1/q
˛>0

1

˛!

Z
@˛� '0.y; t; �/D

˛
t  �j .y; t; �/ dy:

By (3-30), we conclude that the scalar product in the left-hand side of the above identity is O.t2l�.j0C1//.
Let us now consider (3-31). Applying F0 to both sides of (3-31) and taking both Equation (3-32) and the
inductive hypothesis into account allows us to conclude that

 ?
�.j0C1/q D O.t2l�.j0C1//:

We have thus proved:

Theorem 3.2. The operator ƒ defined in (3-6) is a pseudodifferential operator with symbol ƒ.t; �/ 2
S

2=q
1;0

.Rt �R� /. The symbol of ƒ has an asymptotic expansion of the form

ƒ.t; �/�

j0X
jD0

ƒ�jq.t; �/C
X
s�0

�
ƒ�2k�sq.t; �/Cƒ�.j0C1/q�sq.t; �/

�
: (3-33)

Here ƒ�p has homogeneity 2=q�p=q and

ƒ�jq.t; �/D O.t2l�j / for
�

j D 0; : : : ; j0C 1 if 2l > 2k=q,
j D 0; : : : ; 2l � 1 if 2l � 2k=q,

(3-34)

while

ƒ�2k satisfies (3-27) and t�2lƒ0.t; �/jtD0
> 0: (3-35)

Furthermore, as a consequence of the calculus for real analytic symbols, ƒr�sq.t; �/, with r D�2k or
r D�.j0C 1/q, satisfies the estimatesˇ̌

@
ˇ
t @
˛
�ƒr�sq.t; �/

ˇ̌
� C

1CsC˛Cˇ
ƒ

˛!ˇ! s! .1Cj� j/2=qCr=q�s�˛; (3-36)

where Cƒ denotes a positive constant depending only on the symbol ƒ. (See Section 5 below for more
details.) In particular, ƒ.t; �/ is a real analytic symbol in the sense of Boutet de Monvel [1972].

We point out that the operator ƒ.t;Dt / defined above, modulo an elliptic factor of order 2=q� 2k=q,
has a form of the type

t2lD
2k=q
t C 1: (3-37)

The latter operator is Gs-hypoelliptic for s � s0 D lq=.lq� k/. To get a rough idea of this fact, if q D 1,
let us consider the equation t2lD2k

t uC u D 0. The behavior of u can be obtained by WKB, solving
t2l.'0/2k C 1D 0, which yields '.t/D !t�l=kC1 and u� ei' , where ! is a suitable complex constant.
This gives u 2Gl=.l�k/.
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4. C 1-hypoellipticity of P : sufficient part

In this section we prove the C1-hypoellipticity of P . This is accomplished by showing that the
hypoellipticity of P follows from the hypoellipticity of ƒ and proving that ƒ is hypoelliptic if condition
(1-2) is satisfied. As a matter of fact, the hypoellipticity of P is equivalent to the hypoellipticity of ƒ, so
that the structure of ƒ in Theorem 3.2 may be used to prove assertion (ii) in Theorem 1.1.

We state without proof:

Lemma 4.1. Let a2S
m;k
q be properly supported with k � 0. Then Op a is continuous from H s

loc.R
2/

to H
s�mCk.q�1/=q
loc .R2/. Let ' 2H

mC1=2q
q be properly supported. Then Op' is continuous from

H s
loc.R/ to H s�m

loc .R2/. Moreover, '�.x; t;Dt / is continuous from H s
loc.R

2/ to H s�m
loc .R/.

Repeating the argument above for a left parametrix, we can find symbols F 2 S
�2;�2
q ,  2H

1=2q
q

and ƒ 2 S
2=q
1;0

as in (3-11) such that"
F.x; t;Dx;Dt /  .x; t;Dt /

 �.x; t;Dt / �ƒ.t;Dt /

#
ı

"
P .x; t;Dx;Dt / '0.x; t;Dt /

'�
0
.x; t;Dt / 0

#
�

"
IdC1

0
.R2/ 0

0 IdC1
0
.R/

#
: (4-1)

From (4-1) we get the pair of relations

F.x; t;Dx;Dt / ıP .x; t;Dx;Dt /D Id� .x; t;Dt / ı'
�
0 .x; t;Dt /; (4-2)

 �.x; t;Dt / ıP .x; t;Dx;Dt /Dƒ.t;Dt / ı'
�
0 .x; t;Dt /: (4-3)

Proposition 4.2. If ƒ is hypoelliptic with a loss of ı > 0 derivatives, then P is also hypoelliptic with a
loss of derivatives equal to

2
q� 1

q
C ı:

The converse is also true. Furthermore, ƒ is C1-hypoelliptic if and only if P is C1-hypoelliptic.

Proof. Assume that Pu 2H s
loc.R

2/. From Lemma 4.1 we have

FPu 2H
sC2=q
loc .R2/:

By (4-2) we have u� '�
0

u 2H
sC2=q
loc .R2/. Again, using Lemma 4.1,  �Pu 2H s

loc.R/, so that by (4-3),
ƒ'�

0
u 2H s

loc.R/. The hypoellipticity of ƒ yields then that '�
0

u 2H
sC2=q�ı
loc .R/. From Lemma 4.1 we

obtain that  '�
0

u 2H
sC2=q�ı
loc .R/. Thus

uD .Id� '�0 /uC '
�
0 u 2H

sC2=q�ı
loc :

This proves the first sentence of the proposition. The proof of the other assertions is similar. �
Next we prove the hypoellipticity of ƒ under the assumption that l > k=q.
First we want to show that there exists a smooth nonnegative function M.t; �/ such that

M.t; �/� C jƒ.t; �/j; jƒ
.˛/

.ˇ/
.t; �/j � C˛;ˇM.t; �/.1Cj� j/��˛Cıˇ; (4-4)

where ˛, ˇ are nonnegative integers, C , C˛;ˇ are suitable positive constants, and the inequality holds for
t in a compact neighborhood of the origin and j� j large. Moreover, � and ı are such that 0� ı < � � 1.
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We actually need to check the above estimates for ƒ only when � is positive and large.
Let us choose �D 1, ı D k=lq < 1 and

M.t; �/D �2=q
�
t2l
C ��2k=q

�
;

for � � c � 1. It is then evident, from Theorem 3.2, that the first of the conditions in (4-4) is satisfied.
The second condition in (4-4) is also straightforward for ƒ0Cƒ�2k , because of (3-27) and (3-4). To
verify the second condition in (4-4) for ƒ�jq , q 2 f1; : : : ; j0g, we have to use property (3-34) in the
statement of Theorem 3.2. Finally, the verification is straightforward for the lower-order parts of the
symbol in (3-33). Using Theorem 22.1.3 of [Hörmander 1985], we see that there exists a parametrix
for ƒ. Moreover, from the proof of the same theorem, we get that the symbol of any parametrix satisfies
the same estimates that ƒ�1 satisfies, that is,ˇ̌
D
ˇ
t D˛

� ƒ
�1.t; �/

ˇ̌
� C˛;ˇ

�
�2=q.t2l

C ��2k=q/
��1

.1C �/�˛C.k= lq/ˇ
� C˛;ˇ.1C �/

2k=q�2=q�˛Ck=lqˇ;

for t in a compact set and � � C . Thus the parametrix obtained from Theorem 22.1.3 of [Hörmander
1985] has a symbol in S

2k=q�2=q

1;k=lq
.

Theorem 4.3. ƒ has a parametrix whose symbol belongs to S
2k=q�2=q

1;k=lq
and is hypoelliptic with a loss of

2k=q derivatives, that is, ƒu 2H s
loc implies u 2H

sC2=q�2k=q
loc .

Theorem 4.3 together with Proposition 4.2 proves assertion (i) of Theorem 1.1.

5. Analytic symbols and Gevrey regularity

The purpose of this section is to prove the second statement in Theorem 1.1. To this end, we need to
work with real analytic symbols and their asymptotic expansions.

Let us first define the symbol classes of Section 2 for analytic symbols. Since the coefficients of P are
analytic, we are interested only in symbols with real analytic regularity.

Definition 5.1. We define the class of symbols S
m;k
q;a .�;†/, where � is a conic neighborhood of the

point .0; e2/ and † denotes the characteristic manifold fx D 0; � D 0g, as the set of all C! functions
such that on any conic subset of � with compact base,ˇ̌
@˛t @

ˇ
� @


x@
ı
�a.x; t; �; �/

ˇ̌
� C 1C˛CˇC
Cı˛!ˇ! 
 ! ı! .1Cj� j/m�ˇ�ı

�
j�j

j� j
C jxjq�1

C
1

j� j.q�1/=q

�k�
=.q�1/�ı

; (5-1)

for j.�; �/j � B.ˇC ı/, where B > 0 is a suitable constant.
We write S

m;k
q for S

m;k
q;a .R

2 �R2; †/.

Likewise, with the same notations of Definition 2.3, we need the C! version of the Hermite symbols:

Definition 5.2. We write H m
q;a for Hm

q;a.R
2
x;t � R� ; †1/, the class of all real analytic functions inT1

jD1 S
m�j ;�q=.q�1/j
q;a .R2

x;t �R� ; †1/. Here S
m;k
q;a .R

2
x;t �R� ; †1/ is the set of all smooth functions
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such thatˇ̌
@˛t @

ˇ
� @


xa.x; t; �/

ˇ̌
. C 1C˛CˇC
˛!ˇ! 
 ! .1Cj� j/m�ˇ

�
jxjq�1

C
1

j� j.q�1/=q

�k�
=.q�1/
; (5-2)

for j� j � Bˇ, where B denotes a suitable positive constant.
Actually our Hermite operators are better than this and using an easy generalization of Proposition 2.10

in [Grigis and Rothschild 1983], we define the action of a symbol a.x; t; �/ in H m
q;a as the map

a.x; t;Dt /WG
s.Rt /\C10 .Rt / �!Gs.R2

x;t /;

for any s > 1, defined by

a.x; t;Dt /u.x; t/D .2�/
�1

Z
eit�a.x; t; �/ Ou.�/ d�:

Such an operator, modulo a regularizing operator (with respect to the t variable), is called a Hermite
operator, and we denote by OPHm

q;a the corresponding class. When it is clear from the context, to keep
the notation simple, we shall omit the subscript a.

The adjoint of a (C!) Hermite operator is defined exactly as in Definition 2.4.
Next we define suitable cutoff functions that will be used several times in what follows.

Lemma 5.3. Let t > 1. There exists a family of cutoff functions !j 2 Gt .Rn
x/, 0 � !j .x/ � 1, for

j D 0; 1; 2; : : : , such that:

(1) !j � 0 if jxj � 2R.j C 1/t , !j � 1 if jxj � 4R.j C 1/t , with R an arbitrary positive constant.

(2) There is a suitable constant C! , independent of j , ˛, R, such that

jD˛!j .x/j � C j˛jC1
!

�
R.j C 1/t�1

��j˛j if j˛j � 3j ; (5-3)

and
jD˛!j .x/j � .RC!/

j˛jC1 ˛!t

jxjj˛j
for every ˛: (5-4)

Proof. Pick a function  2Gt .R/\C1
0
.R/ satisfying  � 0, supp � fjxj � 1

4
g, and

R
 .x/ dx D 1.

Let �R denote the characteristic function of the interval Œ�2R�r=2; 2RCr=2�. Set  a.x/D a�1 .x=a/.
Then

'N D �R � r � r=N � � � � � r=N„ ƒ‚ …
N times

has support contained in Œ�2R� r; 2RC r � and is identically equal to 1 on Œ�2R; 2R�. We have, for any
˛, and for any ˇ �N ,

D˛Cˇ'N D �R �D˛ r �D r=N � � � � �D r=N„ ƒ‚ …
ˇ times

� r=N � � � � � r=N :

Whence
jD˛Cˇ'N j � .4RC r/C ˛C1

 
˛!t r�˛

�
kD kL1

N

r

�̌
:
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Now we define
!j .x/D 1�'3j

�
jxj

.j C 1/t

�
:

Assertion (1) of the lemma and the estimate (5-3) are then a consequence of the definitions and estimates
above, once we choose r D 2R. Let us now turn to (5-4). We have

jD˛!j .x/j � 6RC ˛C1
 

˛!t 1

Œ2R.jC1/t �˛
:

On the support of D˛!j we have jxj � 4R.j C 1/t , which implies the conclusion. �

Lemma 5.4. Let s > 1. There exists a family of cutoff functions !j 2 Gs.Rn
x/, 0 � !j .x/ � 1, j D

0; 1; 2; : : : , such that:

(1) !j � 0 if jxj � 2R.j C 1/, !j � 1 if jxj � 4R.j C 1/, with R an arbitrary positive constant.

(2) There is a suitable constant C! , independent of j , ˛, R, such that

jD˛!j .x/j � C j˛jC1
! R�j˛j if j˛j � 3j ; (5-5)

and
jD˛!j .x/j � .RC!/

j˛jC1 ˛!s

jxjj˛j
for every ˛: (5-6)

Proof. The proof is the same as the proof of Lemma 5.3, but the !j are defined as

!j .x/D 1�'3j

�
jxj

j C 1

�
: �

We wish now to define the asymptotic expansion of a symbol in the analytic category.
Let f�j .x; t; �; �/ 2 S

m;kCj=.q�1/
q;a , j 2 N[f0g, satisfying an estimate of the formˇ̌

@˛t @
ˇ
� @


x@
ı
�f�j .x; t; �; �/

ˇ̌
� C 1C˛CˇC
CıCj˛!ˇ! 
 ! ı! j !1=q.1Cj� j/m�ˇ�ı

�
j�j

j� j
C jxjq�1

C
1

j� j.q�1/=q

�k�
=.q�1/�ı

; (5-7)

for j.�; �/j � B.j C ˇ C ı/; then there exists f .x; t; �; �/ 2 S
m;k
q;a such that f �

P
j�0 f�j , that is,

f �
PN�1

jD0 f�j 2 S
m;kCN=.q�1/
q;a , and thus f is defined modulo a symbol in S

m;1
q;a D

T
h�0 S

m;h
q;a .

We point out that the cutoff functions defined in Lemma 5.4 are used to actually sum the formal seriesP1
jD0 fj to obtain the symbol f .

Let f�j be globally homogeneous of degree m� k.q� 1/=q� j=q and such that for every ˛; ˇ � 0

satisfies the estimatesˇ̌
@



.t;�/
@˛x@

ˇ

�
f�j .x; t; �;�/

ˇ̌
�C ˛CˇC
CjC1˛!ˇ! 
 ! j !

1
q
�
j�jCjxjq�1

C1
�k� ˛

q�1
�ˇ
; .x; �/2R2; (5-8)

for .t; �/ in a compact subset of R�R n 0 and every multi-index 
 . Then f�j 2 S
m;kCj=.q�1/
q;a .

Accordingly, let '�j .x; t; �/ 2H
m�j=q
q;a ; then there exists '.x; t; �/ 2H m

q;a such that ' �
P

j�0 '�j ,
that is, ' �

PN�1
jD0 '�j 2H

m�N=q
q , so that ' is defined modulo a symbol analytically regularizing with

respect to the t variable.
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We again point out that the cutoff functions defined in Lemma 5.4 are used to actually sum the formal
series

P1
jD0 'j to obtain the symbol '.

Similarly, let '�j be globally homogeneous of degree m�j=q and such that for every ˛; l � 0 satisfies
the estimatesˇ̌

@
ˇ

.t;�/
@˛x'�j .x; t; �/

ˇ̌
� C ˛CˇCjC1˛!ˇ! j !1=q

�
jxjq�1

C 1
��l�˛=.q�1/

; x 2 R; (5-9)

for .t; �/ in a compact subset of R�R n 0 and every multi-index ˇ. Then '�j 2H
m�j=q
q;a .

Proposition 5.5. Let F be the operator defined in (3-6). F 2 Op.S2;2
q;a / and maps functions in Gs into

itself. A similar statement holds for the symbols in H m
q;a.

We skip the details of the analytic and Gevrey calculus in these classes of symbols. Suffice it to say
that it is a totally standard matter and one may consult [Boutet de Monvel and Krée 1967; Boutet de
Monvel 1972].

We explicitly remark that the symbols constructed in (3-6) and (4-1), F ,  , ƒ belong to the (analytic)
classes S

�2;�2
q;a , H

1=2q
q;a and S

2=q
1;0;a

and satisfy better estimates than the above (see [Grigis and Rothschild
1983, Proposition 2.10; Métivier 1981, Section 2]).

We are now ready to prove the second assertion in Theorem 1.1. First we prove:

Proposition 5.6. The operator P in (1-1) is Gs.R2/-hypoelliptic if and only if ƒ in (3-33) is Gs.R/-
hypoelliptic.

Proof. Let us assume first that ƒ is Gs-hypoelliptic and that Pu 2 Gs . Due to (4-2), (4-3) and
Proposition 5.5, we have both FPu and  �Pu 2 Gs . From the latter, we get that ƒ'�

0
u 2 Gs , which

implies that '�
0

u 2Gs , whence  '�
0

u 2Gs . We thus obtain that u 2Gs .
Let us assume first that P is Gs-hypoelliptic and that ƒu 2 Gs . This time we use (3-8) and (3-10).

We have P uD '0ƒu 2Gs , which implies that  u 2Gs . Finally, u� '�
0
 u 2Gs . �

Next we have only to show that ƒ is Gs-hypoelliptic for every s � s0D lq=.lq�k/, in order to prove:

Theorem 5.7. Let P be as in (1-1). Then P is Gevrey s-hypoelliptic for every s � s0, where

s0 D
lq

lq� k
:

Proof. In order to see that ƒ.t;D/ is Gevrey s-hypoelliptic for every s � s0, we are going to show that
we can construct a parametrix with symbol in the class S

2k=q�2=q

1;k=lq;.s/
, where the latter is defined as the set

of all smooth, that is, C1, functions a.t; �/ satisfying the estimatesˇ̌
@
ˇ
t @
˛
� a.t; �/

ˇ̌
� C 1C˛Cˇ˛!ˇ!s.1�.k= lq//.1Cj� j/2k=q�2=q�˛C.k= lq/ˇ;

for t in a compact set of the real line, for every ˛, ˇ, � 2R, with 1Cj� j �Bˇs; here B and C are suitable
positive constants depending only on the symbol a.

As a matter of fact, we do not need symbols exhibiting a Gevrey dependence on the variables: analytic
dependence is all we get; nevertheless, the general theory allows Gevrey behavior at no cost. Actually
s0.1� k= lq/D 1.
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Arguing as in the proof of Proposition 4.2, we choose a weight function

M.t; �/D �2=q
�
t2l
C ��2k=q

�
; � � 1:

We have the estimates

M.t; �/� C jƒ.t; �/j;ˇ̌
@
ˇ
t @
˛
�ƒ.t; �/

ˇ̌
� C 1C˛Cˇ˛!ˇ!s.1�k=.lq//M.t; �/.1Cj� j/�˛C.k= lq/ˇ:

The existence of a parametrix a.t; �/ for ƒ.t; �/, and hence the conclusion, is a standard consequence of
the calculus in the Gevrey classes. �

6. Optimality in Gevrey spaces

This section is devoted to the proof of the third assertion of Theorem 1.1. By Proposition 5.6, it is enough
to show that ƒ.t;Dt / is not Gs-hypoelliptic for 1� s < s0.

To clarify our technique, let us consider a couple of examples reminiscent of the form (3-37). We
stress here the fact that the operators we consider are a much simpler instance of ƒ, the operator we are
interested in.

Example 1. Consider the operator

L.t; @t /D t2@t C aC bt;

where aD i
4

, b D�1
2

. We will show that L is not Gs-hypoelliptic for 1� s < 2. Consider the equation
L.t; @t /uD

i
4

. Arguing by contradiction, every solution u is certainly better than G2-regular.
Let us look for a solution u in the form

u.t/D

Z C1
0

ei�2te�� d�:

One can easily see that this function u is actually a solution of LuD 0. On the other hand,

@˛t u.0/D i˛
Z C1

0

e���2˛ d� � ˛!2:

The latter estimate contradicts our assumption that u is better than G2.

Unfortunately, it almost never occurs that the solution has a neat representation of the form above.
We are instead forced to represent u as an integral containing both a phase function and an amplitude
function. Moreover, the amplitude has to be constructed as a formal series whose convergence must
be specifically defined and studied. As a motivation for our technique, we show this on the following,
formally slightly different example.

Example 2. Consider the operator
L.t; @t /D t2@t C

i

4
:
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We want to “solve” the equation L.t; @t /uD 0. First of all, we look for the solution u.t/ in the form

u.t/D

Z C1
0

ei�2tv.�/ d�;

where v has to be specified.
We proceed formally to find a candidate for v. We have

L.t; @t /uDL.t; @t /

Z C1
0

ei�2tv.�/ d�D
i

4

Z C1
0

ei�2t

�
�@2

�C 1�
1

�
@�C

1

�2

�
v.�/ d�: (6-1)

The operator in parentheses has the form P0.@�/C �
�1P1.@�/C �

�2P2.@�/, where

P0.@�/D�@
2
�C 1:

In order to put in evidence the phase factor, we write v.�/D e��v1.�/. As a consequence, we have

L.t; @t /uD
i

4

Z C1
0

ei�2te��
�
�@2

�C 2@�C
1

�
�

1

�
@�C

1

�2

�
v1.�/ d�:

The operator in parentheses still does not have the right form, since the phase factor e�� is not enough
to guarantee that v1 has an asymptotic expansion, for large �, in decreasing powers of �. This, in the
end, would give an obstruction to the iterative solution of the “transport” equations. Hence, let us write
v1.�/D �

� Qv.�/, where both � and Qv are to be determined. Bringing the factor �� to the left and choosing
�D�1

2
has the effect of canceling the terms of the form ��1 Qv. We eventually get

L.t; @t /uD
i

4

Z C1
0

ei�2te����1=2

�
�@2

�C 2@�C
3
4

1

�2

�
Qv.�/ d�

D
i

4

Z C1
0

ei�2te����1=2

�
P0.@�/C

1

�2
P2.@�/

�
Qv.�/ d�:

We write P2.@�/ even if P2 is actually a multiplication operator, to stress the fact that this circumstance
is particular to the present example but has no interest in the general case.

The next step is to construct Qv formally. To do that, we look for Qv in the form

Qv.�/D

1X
kD0

v2k.�/;

where the v2k are obtained solving the triangular infinite system (transport equations)

P0.@�/v2k.�/C
1

�2
P2v2k�2.�/D 0; k D 0; 1; 2; : : : ;

with the convention that v2k is identically zero if its subscript is negative.
Choose v0.�/� 1. Next we prove:

Minilemma. If � � 1, we have jv2k.�/j � �
�k for k D 0; 1; 2; : : : .
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Proof. By induction. It is evident for k D 0. Assume that jv2k�2.�/j � �
�.k�1/. For v2k we have the

equation v00
2k
� 2v0

2k
D .3

4
/��2v2k�2. By the inductive assumption, the absolute value of the right-hand

side of the equation can be estimated by ��.kC1/.
Now a solution y.�/, vanishing at infinity, of the equation y00� 2y0 D f can be written as

y.�/D 1
2

Z C1
�

f .�/d� � 1
2

Z C1
�

e�2.���/f .�/ d�:

It is now evident that if jf .�/j � ��.kC1/, we have that jy.�/j � ��k , thus concluding the proof. �

Turning back to our example, we immediately see that the series formally defining Qv does not converge
on the whole positive real axis. To deal with this fact, pick up a C1 cutoff function � such that �� 0

for � � 2, �� 1 for � � 3, and 0� �� 1. It is then evident that

w.�/D �.�/

1X
kD0

v2k.�/

is a convergent series defining a smooth bounded function. We have

P0wC
1

�2
P2w D g;

where

g D��00
1X

kD0

v2k � 2�0
1X

kD1

v02k C 2�0
1X

kD1

v2k :

We emphasize that the same argument of the lemma gives us analogous estimates for the derivatives of
the v2k , so that there is no problem for the convergence of the series in the expression of g.

Replacing Qv by w, we see that we have found a function h.t/ with

h.t/D

Z C1
0

ei�2te����1=2w.�/ d�

such that

L.t; @t /hD

Z C1
0

ei�2te����1=2g.�/ d�:

We observe now that the function in the right-hand side of the above equality is in fact of class C! , since
supp g � Œ2; 3�. On the other hand,

@˛t h.0/D i˛
Z C1

0

e����1=2C2˛w.�/ d�:

Since v0 � 1, we see that

j@˛t h.0/j � ı˛C1˛!2;

with ı small and positive; that is, h is not better than G2 even though the right-hand side is real analytic.
This ends the proof that L is G2-hypoelliptic and not better.
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We make a few remarks on this example. First: in general, just one cutoff is not enough to sum the
formal series of the v2k’s. A more complex technique is required. Second: solving the transport equations
has been possible because there is a “gain” in the decreasing rate of the functions v2k . In general, one
also has to control the growth rate of the coefficients of the differential operators defining the operator
in parentheses under the integral sign in the second line of (6-1). As a last remark, the conclusion will
not follow in general by an easy computation of the derivatives of (the analog of) h. Instead we need to
violate an a priori estimate being equivalent to the Gs-hypoellipticity. Such an estimate was proved by
Métivier [1980].

6.1. Construction of a formal solution. We recall from Theorem 3.2 the form of the pseudodifferential
operator ƒ (the L in Examples 1 and 2 above).

ƒ.t; �/�

j0X
jD0

ƒ�jq.t; �/C
X
s�0

�
ƒ�2k�sq.t; �/Cƒ�.j0C1/q�sq.t; �/

�
:

In view of Proposition 3.1, we may assume that � > 0. Then

ƒ.t; �/�

j0X
jD0

ƒ�jq.t; 1/�
2=q�j

C

X
s�0

�
ƒ�2k�sq.t; 1/�

2=q�2k=q�s
Cƒ�.j0C1/q�sq.t; 1/�

2=q�.j0C1/�s
�
:

Multiply on the right by the elliptic factor ��2=qC2k=q and keep (3-34) in mind (Theorem 3.2); we then
obtain the following expression of the real analytic symbol ƒ:

ƒ.t; �/��2=qC2k=q
�

j0C1X
hD0

t2l�hah.t/�
2k=q�h

C Qa0.t/C

1X
hD1

�
Qah.t/�

�h
Cbh.t/�

2k=q�.j0C1/�h
�
; (6-2)

where

ah.t/D t�2lChƒ�hq.t; 1/ for hD 0; : : : ; j0C 1;

Qah.t/Dƒ�2k�hq.t; 1/ for h� 0;

bh.t/Dƒ�.j0C1/q�hq.t; 1/ for h� 1:

We point out that ah, Qah, bh are real analytic functions near the origin.
Moreover, from (3-35) and (3-36) in Theorem 3.2, we have

a0.0/; Qa0.0/ > 0; (6-3)

and

j@˛t Qah.t/j � C 1ChC˛˛! h! ; j@˛t bh.t/j � C 1ChC˛˛! h! ; (6-4)

for t in a (relatively compact) neighborhood of the origin and h� 1.
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In order to simplify the notation, we denote again by ƒ.t; �/ the symbol on the left-hand side of (6-2).
It will also be useful to employ a more compact notation:

ƒ.t; �/�

j0X
hD0

t2l�hah.t/�
2k=q�h

C

1X
hD0

ch.t/�
�h=q: (6-5)

Here we replaced the expansion (6-2), where there is an order scaling by units, with a (more general)
expansion exhibiting a scaling by multiples of 1=q. In particular, (6-3) becomes

a0.0/; c0.0/ > 0 (6-6)

and the estimates (6-4) become
j@˛t ch.t/j � C 1ChC˛˛! h!1=q: (6-7)

Furthermore, we shall use in the sequel the equalities

ch.t/� 0; for hD 1; : : : ; q.j0C 1/� 2k � 1; q.j0C 1/� 2kC 1; : : : ; q� 1; (6-8)

and
cq.j0C1/�2k.t/D O.t2l�.j0C1//: (6-9)

To obtain a formal null solution ƒ.t;Dt /; we expand in power series the coefficients in the expression
of ƒ in (6-5); actually this is not an approximation, since the coefficients are real analytic functions.
Interchanging the summation signs, we have

ƒ.t;Dt /�
X
n�0

� j0X
hD0

ahnt2l�hCnD
2k=q�h
t C

1X
jD0

cjntnD
�j=q
t

�
: (6-10)

Here the conditions (6-6)–(6-9) become

a00; c00 > 0; (6-11)

jahnj � C 1Cn
a ; jcjnj � C 1CjCn

a j !1=q for hD 0; : : : ; j0 and j ; n� 0 (6-12)

(where Ca denotes a positive constant independent of h, j and n),

cjn D 0 for n� 0 and j D 1; : : : ; q.j0C 1/� 2k � 1; q.j0C 1/� 2kC 1; : : : ; q� 1; (6-13)

cq.j0C1/�2k;n D 0 for 0� n< 2l � .j0C 1/: (6-14)

The next step is to formally apply the operator ƒ as defined in (6-10) to a function of the form

A.u/.t/D

Z C1
0

eit�s0
u.�/ d�; (6-15)

where s0 has been defined in Theorem 5.7 and u denotes a rapidly decreasing function with support
bounded away from the origin. We search for a u such that ƒ.t;Dt /A.u/.t/D 0 formally.

Applying a not necessarily integer power of Dt to A.u/ means multiplying u by the corresponding
power of �. In order to write the contribution due to multiplication by a power of t , we need:
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Lemma 6.1.1. Let s0 have the same meaning as before. Then�
�@�

1

is0�s0�1

�n

D

nX
hD0


nh
1

�s0n�h
@h
�; (6-16)

where the 
nh (which now contain s0) are complex constants satisfying estimates of the form

j
nhj � C 0nCh



n!

h!
� C nCh


 .n� h/!: (6-17)

Here both C 0
 and C
 are positive constants depending on s0 only. In particular, we have 
nn D .i=s0/
n,

and for convenience set 
00 D 1.

Proof. It is enough to prove the first inequality. Arguing by induction, one easily sees that the coefficients

nh satisfy the recurrence relations


nC1;0D�
i

s0

�

n0.s0.nC1/�1/

�
; 
nC1;nC1D

i

s0

nn; 
nC1;hD

i

s0

�

nh�1�.s0.nC1/�h�1/
nh

�
:

An induction argument allows us to conclude. �

We then have the formula, for m 2 R and n 2 N,

tnDm
t A.u/.t/D

Z C1
0

eit�s0

�
�@�

1

is0�s0�1

�n

�ms0u.�/ d�:

Using this formula repeatedly as well as Lemma 6.1.1, we get

ƒ.t;Dt /A.u/.t/D

Z C1
0

eit�s0
P .�;D�/u.�/ d�; (6-18)

where

P .�; @�/D

1X
nD0

(
j0X

hD0

2l�hCnX
pD0

ahn
2l�hCn;p
1

�s0.2l�hCn/�p
@p
� �

s0.2k=q�h/

C

1X
jD0

nX
pD0

cjn
np
1

�s0n�p
@p
� �
�s0j=q

)
:

(6-19)

We use the notation

@p
� .�

�u/D

pX
˛D0

�
p

˛

�
.�/p�˛�

��pC˛@˛�u; (6-20)

where .�/ˇ is the Pochhammer symbol, defined by

.�/ˇ D �.�� 1/ : : : .��ˇC 1/; .�/0 D 1; � 2 C: (6-21)

We point out that the following identity is a trivial consequence of the definition of s0:

s0
2k

q
� .s0� 1/2l D 0: (6-22)
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Using (6-22) and the preceding identities, we obtain the expression for P

P .�; @�/D

1X
nD0

(
j0X

hD0

2l�hCnX
pD0

pX
˛D0

ahn
2l�hCn;p

�
p

˛

�
�

�
s0

�
2k

q
� h

��
p�˛

��2l�s0nC˛@˛�

C

1X
jD0

nX
pD0

pX
˛D0

cjn
np

�
p

˛

��
�s0

j

q

�
p�˛

��s0n�s0j=qC˛@˛�

)
: (6-23)

Define now the coefficients

Ah˛n D

2l�hCnX
pD˛


2l�hCn;p

�
p

˛

��
s0

�2k

q
� h

��
p�˛

(6-24)

and

Bj˛n D

nX
pD˛


np

�
p

˛

��
�s0

j

q

�
p�˛

: (6-25)

In particular, A0;2l;0 D 
2l;2l D .i=s0/
2l and B000 D 1.

Lemma 6.1.2. For h 2 f0; : : : ; jog, n� 0, ˛ 2 f0; : : : ; 2l � hC ng, we have

jAh˛nj � C 2l�hCnC1
A

.2l � hC n/!

˛!
: (6-26)

For j ; n� 0, ˛ 2 f0; : : : ; ng, we have

jBj˛nj � C
nCs0.j=q/C1
B

n!

˛!
: (6-27)

Proof. Let us first consider the Ah˛n. Since, for r D 0; : : : ;p�˛� 1,ˇ̌
s0.2k=q� h/� r

ˇ̌
D
ˇ̌
s0.2k=q� h/� 1� .r � 1/

ˇ̌
� bs0.2k=q/cC r C 1;

we have ˇ̌̌̌�
s0

�
2k

q
� h

��
p�˛

ˇ̌̌̌
�

�j
s0

2k

q

k
Cp�˛

�
!�j

s0
2k

q

k�
!

� C p�˛.p�˛/! ;

for a convenient positive constant C . We may then write, due to (6-17), that

jAh˛nj �

2l�hCnX
pD˛

C 2l�hCnCp

 C p�˛ .2l � hC n/!

p!

�
p

˛

�
.p�˛/!� C 2l�hCn

A

.2l � hC n/!

˛!

for a suitable positive constant CA. This proves the first statement. The second is proved in an analogous
way and we omit the details. �

Using the definitions (6-24), (6-25), the operator P in (6-23) can be rewritten as

P .�; @�/D

1X
nD0

(
j0X

hD0

2l�hCnX
˛D0

ahnAh˛n�
�2l�s0nC˛@˛� C

1X
jD0

nX
˛D0

cjnBj˛n�
�s0n�s0j=qC˛@˛�

)
: (6-28)
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Setting

QAn˛ D

minfj0;2lCn�˛gX
hD0

ahnAh˛n; (6-29)

the above expression of P can be slightly simplified:

P .�; @�/D

1X
nD0

(
2lCnX
˛D0

QAn˛�
�2l�s0nC˛@˛� C

1X
jD0

nX
˛D0

cjnBj˛n�
�s0n�s0j=qC˛@˛�

)
: (6-30)

Moreover, the estimate of Lemma 6.1.2 carries over to QAn˛:

Lemma 6.1.3. For n� 0, ˛ 2 f0; : : : ; 2l C ng, we have

j QAn˛j � C 2lCnC1
QA

.2l C n/!

˛!
: (6-31)

For reasons that will become apparent in the sequel, we prefer to write the operator P in a way where
the factorial growth of the coefficients is coupled with a corresponding negative power of the variable �,
that is,

P .�; @�/D

1X
nD0

(
2lCnX
˛D0

QAn˛

�2lCn�˛
��.s0�1/n@˛� C

1X
jD0

nX
˛D0

cjnBj˛n

�n�˛Cj=q
��.s0�1/.nCj=q/@˛�

)
: (6-32)

We point out that the powers of � in the above expression of P are all negative. However, if we were now
to attempt to find a formal solution to PuD 0 by solving iteratively the transport equations obtained by
looking for a u in the form

P
k�0 uk , we would not be able to conclude that the sequence uk decreases

with respect to � in such a way that we can asymptotically sum the series for u. In other words, we wish
u to behave as a symbol and we want to compute its asymptotic expansion for large �, but for the time
being, there is no guarantee that the symbols uk would have a decreasing order in � when k goes to
infinity.

A way around this is to introduce a phase function and to write u as u.�/D eiˆ.�/v.�/, in such a way
that the negative powers of � in the expression of P which are not negative enough are canceled by ˆ.�/.
This is what we do in the next step.

Using the Faà di Bruno formula, we have

e�iˆ@n
�e

iˆ
D .@�C iˆ�/

n
D e�iˆ

nX
hD0

�
n

h

�
.@h
�e

iˆ/@n�h
�

D

nX
hD0

hX
kD1

ik
X

k1;:::;khP
i kiDkP
i ikiDh

�
n

h

�
h!

k1! � � � kh!

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

@n�h
� :



HYPOELLIPTIC AND NONHYPOELLIPTIC SUMS OF SQUARES OF COMPLEX VECTOR FIELDS 401

Here ˆ.k/� D @kC1
� ˆ and ˆ� Dˆ

.0/
� . Plugging this formula into (6-32), we obtain

e�iˆ.�/P .�; @�/e
iˆ.�/

D

1X
nD0

2lCnX
˛D0

X̨
hD0

hX
kD1

ik
X

k1;:::;khP
i kiDkP
i ikiDh

�
˛

h

�
h!

k1! : : : kh!

QAn˛

�2lCn�˛
��.s0�1/n

hY
pD1

�ˆ.p�1/
�

p!

�kp

@˛�h
�

C

1X
nD0

1X
jD0

nX
˛D0

X̨
hD0

hX
kD1

ik
X

k1;:::;khP
i kiDkP
i ikiDh

�
˛

h

�
h!

k1! : : : kh!

cjnBj˛n

�n�˛Cj=q
��.s0�1/.nCj=q/

hY
pD1

�ˆ.p�1/
�

p!

�kp

@˛�h
� :

(6-33)

Our purpose is to cancel all terms containing powers ��� with 0> �� � �1 and no derivatives. This is
closely connected with the form of the (asymptotic expansion of the) operator ƒ and is actually performed
by choosing a phase function ˆ of the form

ˆ�.�/D

M0X
jD0

'j�
�.s0�1/j

C'�1�
�1; M0 D

j
1

s0�1

k
: (6-34)

Here b : : : c denotes the integer part and the 'j , j D�1; 0; : : : ;M0, are complex numbers to be chosen
later.

Let us find the terms in both summands in (6-33) where there are no derivatives and the power of � is not
below �1. To this end, we remark that only ˆ� plays a role since, because of (6-34), ˆ.k/� .�/D o.��1/

if k � 1.
Let us focus first on the first summand in (6-33). The terms with no derivatives correspond to ˛ D h.

The terms where only first derivatives of ˆ appear have k1 D k D h. Moreover, since 2l C n�˛ is an
integer, we necessarily must have either 2l C n�˛ D 0 and 0� n�M0, or 2l C n�˛ D 1 and nD 0.

Let us consider the second summand in (6-33). Similarly to the preceding case, ˛D h and k1D k D h.
Moreover, we necessarily have nD ˛. In view of (6-13) and (6-14), either j D 0 and 0 � n �M0, or
j D q.j0C 1/� 2k and nD 2l � .j0C 1/ if j0 D 0 (that is, 2k < q.)

It turns out to be useful to have a notation for the family of indices in both the first and second
summands in (6-33) corresponding to terms that do not contribute to the eikonal equation. We call these
two families of indices A and B respectively. We have

AD
˚
.n; ˛; h; k/

ˇ̌
n>M0

	
[
˚
.n; ˛; h; k/

ˇ̌
0� n�M0; .˛; h; k/¤ .2lCn; 2lCn; 2lCn/

	
[
˚
.n; ˛; h; k/

ˇ̌
.n; ˛; h; k/¤ .0; 2l�1; 2l�1; 2l�1/

	
; (6-35)

BD
˚
.n; j ; ˛; h; k/

ˇ̌
n>M0

	
[
˚
.n; j ; ˛; h; k/

ˇ̌
0� n�M0; .j ; ˛; h; k/¤ .0; n; n; n/

	
[
˚
.n; j ; ˛; h; k/

ˇ̌
j D q�2k; nD 2l�1; .˛; h; k/¤ .n; n; n/; if j0 D 0

	
: (6-36)
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The terms contributing to the eikonal equation are then

M0X
nD0

i2lCn QAn;2lCn�
�.s0�1/nˆ2lCn

� C ��1i2l�1 QA0;2l�1ˆ
2l�1
�

C

M0X
nD0

inc0nB0nn�
�.s0�1/nˆn

�C incq�2k;2l�1Bq�2k;2l�1;2l�1�
�1ˆ2l�1

� ; (6-37)

where the last term of the expression above is present only if j0D 0. Note that there is a kind of “principal
part” in the above expression, namely the part not containing negative powers of �. This part is obtained
by setting nD 0. Now by (6-29),

i2l QA0;2l D i2la00A0;2l;0 D i2la00.i=s0/
2l
D a00s�2l

0 > 0;

where the next to last equality is due to (6-24) and the positivity is a consequence of (6-11). On the other
hand, again by (6-11) and (6-24), c00B000 D c00 > 0.

Lemma 6.1.4. Consider the equation

M0X
nD0

��.s0�1/n
�
anˆ

2lCn
� C bnˆ

n
�

�
C 
��1ˆ2l�1

� D O.��1�ı/: (6-38)

Here an, bn, 
 denote complex numbers and a0, b0 > 0; ı is a positive rational number.
Then there is a function ˆ�.�/, � > 0, of the form (6-34), satisfying (6-38) with

ı D .M0C 1/.s0� 1/� 1> 0

and such that
Imˆ�.�/ > 0 modulo O.��.s0�1//: (6-39)

Proof. To start with, we remark that the equation

a0ˆ
2l
� C b0 D O.��.s0�1//

is satisfied by ˆ�.�/ in (6-34), where a0'
2l
0
C b0 D 0. Of course we are always free to choose '0 such

that Im'0 > 0. We now argue by induction. Assume that we determined '0; : : : ; 'k�1 and solved (6-38)
modulo o.��.k�1/.s0�1//. Let us compute the coefficient of ��k.s0�1/ in (6-38), with k �M0. First we
observe that if ˛ denotes the multi-index .˛0; ˛1; : : : ; ˛M0

/ with ˛r 2 ZC and ' denotes the complex
vector .'0; '1; : : : ; 'M0

/, we have

ˆj
�.�/D

X
j˛jDj

j !

˛!
'˛��.s0�1/

PM0
pD0

p˛p modulo O.��1/.

The coefficient of ��k.s0�1/ is then given by
kX

jD0

 
aj

X
j˛jD2lCjP
p p˛pDk�j

.2l C j /!

˛!
'˛C bj

X
j˛jDjP

p p˛pDk�j

j !

˛!
'˛

!
:
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The constraint on
P

p p p̨ forces the index p to run from 0 to k � j , and it is clear that if j > 0, the first
summand above cannot contain 'k , since ˛k�jC1 D � � � D ˛M0

D 0. Consider thus the term with j D 0.
Then ˛k is zero or one. The first case is similar to the previous cases, so that ˛k must be one. Then since
˛1 D � � � D ˛k�1 D 0, we see that ˛0 D 2l � 1, thus yielding the coefficient of ��k.s0�1/ containing 'k :

2la0'
2l�1
0 'k :

Arguing analogously, we can see that 'k is never contained in terms coming from the second summand.
This allows us to uniquely determine 'k , since a0; '0 ¤ 0.

The argument for '�1 is completely similar and we omit it. �

The above lemma gives the existence of the phase function ˆ of the form (6-34) such that in the
expression of e�iˆPeiˆ there are no terms without derivatives in which � has an exponent greater than
or equal to �1. We stress that the reason why we need this fact will become apparent when we have to
solve the transport equations, which thus far have not played a role.

Thus the operator e�iˆPeiˆ now has the form

e�iˆ.�/P .�; @�/e
iˆ.�/

D

1X
nD0

2lCnX
˛D0

X̨
hD0

hX
kD1

.n;˛;h;k/2A

ik
X

k1;:::;khP
i kiDkP
i ikiDh

�
˛

h

�
h!

k1! � � � kh!

QAn˛

�2lCn�˛
��.s0�1/n

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

@˛�h
�

C

1X
nD0

1X
jD0

nX
˛D0

X̨
hD0

hX
kD1

.n;j ;˛;h;k/2B

ik
X

k1;:::;khP
i kiDkP
i ikiDh

�
˛

h

�
h!

k1! � � � kh!

cjnBj˛n

�n�˛Cj=q
��.s0�1/.nCj=q/

�

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

@˛�h
� CO.��.1Cı//: (6-40)

Here the last term is a consequence of (6-37) and Lemma 6.1.4, where we defined ı.

Lemma 6.1.5. Let ˆ be as in (6-34) and denote by Cˆ a positive constant such that j'j j � Cˆ for
j D�1; 0; 1; : : : ;M0. Then

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

D ��.h�k/

kM0X
t1D1�ıh;k

kX
t2D0

k�k1�t1CM0t2�kM0

c.k1;:::;kh/;t1;t2
��.s0�1/t1�t2 ; (6-41)

where k D

hX
iD1

ki , hD

hX
iD1

iki , and ıh;k is the usual Kronecker symbol. Moreover, we have the estimate

jc.k1;:::;kh/;t1;t2
j �

�
t1C t2C k

k

�
C k
ˆ: (6-42)

Proof. We argue by induction on h. If hD 1, then k D 1 and k1 D 1, so that (6-41) is trivial. Assume
now that h> 1 and suppose that (6-41) holds for every h0 < h. There are two cases:
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Case I. If kh ¤ 0, then from h D
Ph

iD1 iki , we obtain that kh D 1 and k1; : : : , kh�1 D 0, and hence
k D 1. Then

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

D
1

h!

�M0X
jD0

'j�
�.s0�1/j

C'1�
�1

�.h�1/

D ��.h�1/

� M0X
t1D1

c.0;:::;0;1/;t1;0�
�.s0�1/t1 C c.0;:::;0;1/;0;1�

�1

�
;

which proves the statement.

Case II. Suppose kh D 0. Let s Dminfj j kj ¤ 0g so that
Ph�1

iDs iki D h. Note that

s.ks � 1/C .sC 1/ksC1C � � �C .h� 1/kh�1 D h� s:

If s D 1, the h-tuple .k1� 1; k2; : : : ; kh�1; 0/ can be thought of as an .h� 1/-tuple such that

k1� 1C 2k2C � � �C .h� 1/kh�1 D h� 1:

On the other hand, if s > 1, from s.ks � 1/C .sC 1/ksC1C � � �C .h� 1/kh�1 D h� s we immediately
deduce that kh�a D 0 for every a< s, so that the h-tuple�

0; : : : ; 0; ks � 1; : : : ; kh�1; 0
�
D
�
0; : : : ; 0; ks � 1; : : : ; kh�s; 0; : : : ; 0

�
can be identified to the .h� s/-tuple

.k1; : : : ; ks�1; ks � 1; : : : ; kh�s/;

where k1 D � � � D ks�1 D 0 and s.ks �1/C� � �C .h� s/kh�s D h� s. We are now in a position to apply
the inductive hypothesis. Assume, to make things definite, that s > 1 (the case s D 1 is analogous). Then

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

D

h�sY
pD1

�
ˆ
.p�1/
�

p!

�kp

D
ˆ
.s�1/
�

s!

h�sY
pDs

�
ˆ
.p�1/
�

p!

�kp�ıs;p

D
ˆ
.s�1/
�

s!
��.h�s�.k�1//

�

.k�1/M0X
t1D1�ıh�s;k�1

k�1X
t2D0

k�1�t1CM0t2�.k�1/M0

c.0;:::;0;ks�1;:::;kh�s/;t1;t2
��.s0�1/t1�t2 :

Recall now that
ˆ
.s�1/
�

s!
D ��.s�1/

�M0X
jD1

cs;j�
�.s0�1/j

C cs;�1�
�1

�
;

for certain numbers cs;j , cs;�1. Note that we can find a positive constant Cˆ such that j'j j � Cˆ for
every j D�1; 0; : : : ;M0, and that then

jcs;j j � Cˆ; j D�1; 1; : : : ;M0:
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Using the above expression for ˆ.s�1/
� =s!, we obtain

hY
pD1

�
ˆ
.p�1/
�

p!

�kp

D ��.h�k/

"
M0X
jD1

.k�1/M0X
t1D1�ıh�s;k�1

k�1X
t2D0

k�1�t1CM0t2�.k�1/M0

c.0;:::;0;ks�1;:::;kh�s/;t1;t2
cs;j�

�.s0�1/.t1Cj/�t2

C cs;�1

.k�1/M0X
t1D1�ıh�s;k�1

k�1X
t2D0

k�1�t1CM0t2�.k�1/M0

c.0;:::;0;ks�1;:::;kh�s/;t1;t2
��.s0�1/t1�t2

#
: (6-43)

Now in the first sum we note that, as far as the powers of � are concerned, kDk�1C1� t1CjCt2M0�

.k�1/M0CM0 D kM0, while in the second sum above we have k � k�1CM0 � t1C .t2C1/M0 �

.k � 1/M0 CM0 D kM0, where we assume we are in the nontrivial case M0 � 1. This proves the
first statement of the lemma. To finish the proof we have to prove estimate (6-42). We again argue by
induction and use the expression (6-43) above. Actually the coefficient of ��.s0�1/t1�t2 coming from the
first sum has the form X

tCjDt1

cs;j c.0;:::;0;ks�1;:::;kh�s/;t;t2
:

Its absolute value is estimated by

t1X
jD0

C k
ˆ

�
j C k � 1

k � 1

�
D C k

ˆ

�
t1C k

k

�
;

where we have used the fact that jcs;j j � Cˆ. This concludes the proof of the lemma. �

Using Lemma 6.1.5, we are going to make some preparations on the operator e�iˆPeiˆ in (6-40).
First of all, using (6-41), we write it in the rather lengthy form

e�iˆ.�/P .�; @�/e
iˆ.�/

D

1X
nD0

2lCnX
˛D0

X̨
hD0

hX
kD1

.n;˛;h;k/2A

ik
X

k1;:::;khP
i kiDkP
i ikiDh

kM0X
t1D1�ık;h

M0X
t2D0

k�k1�t1CM0t2�kM0

�
˛

h

�
h!

k1! : : : kh!

� c.k1;:::;kh/;t1;t2

QAn˛

�2lCn�˛
��.s0�1/.nCt1/�.t2Ch�k/@˛�h

�

C

1X
nD0

1X
jD0

nX
˛D0

X̨
hD0

hX
kD1

.n;j ;˛;h;k/2B

ik
X

k1;:::;khP
i kiDkP
i ikiDh

kM0X
t1D1�ık;h

M0X
t2D0

k�k1�t1CM0t2�kM0

�
˛

h

�
h!

k1! � � � kh!

� c.k1;:::;kh/;t1;t2

cjnBj˛n

�n�˛Cj=q
��.s0�1/.nCj=qCt1/�.t2Ch�k/@˛�h

� CO.��.1Cı//: (6-44)
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Here the last term, O.��.1Cı//, denotes a finite sum of terms of the form


k�
��k ;

where 
k is a constant and �k � 1C ı.
For every r 2 N[f0g, define the pair of differential operators

QA;r .�; @�/D
X

q.nCt1/Dr
t1�.2lCn/M0

2lCnX
˛Dt1

X̨
hDt1

hX
kDminf1;t1g

.n;˛;h;k/2A

ik
X

k1;:::;khP
i kiDkP
i ikiDh

M0X
t2D0

�
˛

h

�
h!

k1! � � � kh!
��.h�k/

� c.k1;:::;kh/;t1;t2

QAn˛

�2lCn�˛
��t2@˛�h

� (6-45)

and

QB;r .�; @�/D
X

q.nCt1/CjDr
t1�nM0

nX
˛Dt1

X̨
hDt1

hX
kDminf1;t1g

.n;˛;h;k/2B

ik
X

k1;:::;khP
i kiDkP
i ikiDh

M0X
t2D0

�
˛

h

�
h!

k1! � � � kh!
��.h�k/

� c.k1;:::;kh/;t1;t2

cj ;nBj˛n

�n�˛Cj=q
��t2@˛�h

� : (6-46)

Then the operator in (6-40) can be rewritten in the simpler form

e�iˆ.�/P .�; @�/e
iˆ.�/

D

1X
rD0

��.s0�1/r=qPr .�; @�/CO.��.1Cı//; (6-47)
where

Pr .�; @�/DQA;r .�; @�/CQB;r .�; @�/ (6-48)

is a differential operator of order 2l Cbr=qc.
Our next task is to provide growth estimates with respect to r of arbitrary derivatives of the coefficients

of the operator Pr in a region where � is large. These estimates are essential when one tries to construct
a true solution from the solution that we have not discussed yet.

Proposition 6.1.6. Denote by ˛r;p.�/ the coefficient of @p
� in Pr .�; @�/. Then we may find two positive

constants c1, C˛, such that if � � c1r� , with 0< � � 1, we haveˇ̌
@t
�˛r;p.�/

ˇ̌
� C rCtC1

˛ r !1��
t !

�t
: (6-49)

Proof. First we remark that the coefficient under exam is given by

˛r;p.�/D

�
˛r;p;1.�/C˛r;p;2.�/ if p � br=qc;

˛r;p;1.�/ if br=qc< p � br=qcC 2l;

where ˛r;p;1.�/ comes from QA;r .�; @�/ and correspondingly ˛r;p;2.�/ comes from QB;r .�; @�/. Thus

Pr .�; @�/D

2lCbr=qcX
pD0

˛r;p.�/@
p
� : (6-50)
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The expressions of ˛r;p;i.�/ are given by

˛r;p;1.�/D
X

q.nCt1/Dr
t1�.2lCn/M0

2lCnX
˛Dmaxft1;pg

˛�pX
kDminf1;t1g

.n;˛;˛�p;k/2A

ik
X

k1;:::;k˛�pP
i kiDkP

i ikiD˛�p

M0X
t2D0

�
˛

˛�p

�
.˛�p/!

k1! � � � k˛�p!
��.˛�p�k/

� c.k1;:::;k˛�p/;t1;t2

QAn˛

�2lCn�˛
��t2 (6-51)

and

˛r;p;2.�/D
X

q.nCt1/CjDr
t1�nM0

nX
˛Dmaxft1;pg

˛�pX
kDminf1;t1g

.n;˛;˛�p;k/2B

ik
X

k1;:::;k˛�pP
i kiDkP

i ikiD˛�p

M0X
t2D0

�
˛

˛�p

�
.˛�p/!

k1! � � � k˛�p!
��.˛�p�k/

� c.k1;:::;k˛�p/;t1;t2

cj ;nBj˛n

�n�˛Cj=q
��t2 : (6-52)

We start by estimating (6-51). Differentiating t times the function in (6-51) has the effect of producing in
the sum (6-51) the factor

.�1/t��t
t�1Y
jD0

�
t2C 2l C n�p� kC j

�
:

Hence, using (6-42), (6-31),

ˇ̌
@t
�˛r;p;1.�/

ˇ̌
�

X
q.nCt1/Dr

t1�.2lCn/M0

2lCnX
˛Dmaxft1;pg

˛�pX
kDminf1;t1g

.n;˛;˛�p;k/2A

X
k1;:::;k˛�pP

i kiDkP
i ikiD˛�p

M0X
t2D0

2˛
.˛�p/!

k1! � � � k˛�p!
��.˛�p�k/C nC1

QA

.2l C n/!

˛!
��.2lCn�˛/

�C k
ˆ

�
t1C t2C k

k

��
t2C 2l C n�p� kC t � 1

t

�
t !��t2�t :

Furthermore, we have

.˛�p/!

k1! � � � k˛�p!
D

.˛�p/!

k!.˛�p� k/!

k!

k1! � � � k˛�p!
.˛�p� k/!

� 2˛�p2˛�p.˛�p� k/!� 42lCr=q.˛�p� k/!: (6-53)

The number of multi-indices .k1; : : : ; k˛�p/ such that the sum of the components is k is given by�
kC˛�p� 1

˛�p� 1

�
� 42lCr=q:

If � � c1r� , with 0< � � 1, we may estimate, if ˇ � c2r ,

ˇ!

�ˇ
�

ˇ!

c
ˇ
3
ˇ�ˇ
� c

ˇ
4
ˇ!1�� ; c3 D c1=c

�
2 ; c4 D c�1

3 : (6-54)
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As a consequence, we obtain ˇ̌
@t
�˛r;p;1.�/

ˇ̌
� QC rCtC1

1
r !1��

t !

�t
;

where QC1 is a positive constant depending on the parameters of the problem and on � .
The function @t

�˛r;p;2.�/ is estimated in a completely analogous way, and this proves the assertion. �

Let us now take a closer look at P0.�; @�/. We may write

P0.�; @�/DQ0.@�/C

NX
mD1

1

�m
Qm.@�/; (6-55)

where the Qm.@�/ are differential operators with constant coefficients such that Q0.0/DQ1.0/D 0, all
the roots of the equation Q0.�/D 0 are such that Re�� 0, due to the choice of the phase function ˆ,
and N is a suitable positive integer.

Let
j � 2 N; j � D

j q

s0� 1

k
:

Consider the order-zero term in the differential polynomial

j�X
rD1

��..s0�1/=q/r Pr .�; @�/:

It is obviously a finite sum involving negative powers of � of the formX
j

fj�
��j ; �j > 1; fj 2 C:

Define � by
�C 1Dminf�j g:

Obviously � is positive because �j > 1. Lastly, set

�Dmin
�

1; �; ı;
s0� 1

q
�

1

j �C 1

�
; (6-56)

which is a positive rational number, since

s0� 1

q
�

1

j �C 1
> 0:

Also recall the definition of ı from Lemma 6.1.4. We are now in a position to define the final form for
the operator P . Set

QP0.@�/DQ0.@�/; (6-57)

QPr .�; @�/D �
.��.s0�1/=q/r Pr .�; @�/; r � j �C 1; (6-58)

QPr .�; @�/D �
.��.s0�1/=q/r

�
Pr .�; @�/�Pr .�; 0/

�
; 2� r � j �: (6-59)
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Finally, we define QP1, including in it both the errors coming from the construction of the phase function
and the zero-order terms which have been removed in (6-50) from the definition of QPr , 2� r � j �.

QP1.�; @�/

D ���.s0�1/=qP1.�; @�/C �
��1

NX
mD1

1

�m�1
Qm.@�/C �

��ı
X
a�0


a
1

�1CQ�a

C

X
j

fj�
���j ; (6-60)

where the next to last sum is a finite sum denoting what in (6-47) is O.��.1Cı//, 
a are constants, and Q�a

are nonnegative rational numbers.
The operator P in (6-47) is then written as

Pˆ.�; @�/� e�iˆ.�/P .�; @�/e
iˆ.�/

D

1X
rD0

���r QPr .�; @�/: (6-61)

We explicitly point out that Proposition 6.1.6 holds also for the coefficients of QPr . Moreover, the zero-order
terms of QPr , 2� r � j �, are zero.

From now on, to keep the notation simple, we forget about the tildes in (6-61).
Finally, we turn to the construction of a formal solution to PˆuD 0. Let us look for u in the form

u.�/D

1X
pD0

up.�/; (6-62)

where the up’s are the solutions of the differential equations

P0.@�/u0.�/D 0; (6-63)

P0.@�/uh.�/D�

hX
rD1

���r Pr .�; @�/uh�r .�/; (6-64)

for t 2 N.
Equation (6-63) is immediately solved by u0.�/� 1, because P0.0/D 0.

Lemma 6.1.7. Let Q.@�/ be an ordinary differential operator with constant coefficients such that

Q.@�/D

mY
jD1

.@� ��j /
mj ; (6-65)

where mj denotes the multiplicity of the complex characteristic root �j and Re�j � 0. Then the ordinary
differential equation Q.@�/uD f has a solution of the form

u.�/D .E �f /.�/D

mX
jD1

mjX
tD1

dj ;t

Z C1
�

e�j .��w/.��w/t�1f .w/ dw; (6-66)

where the dj ;t are suitable complex constants. In particular, @t
�uDE � @t

�f .

The proof is essentially the classical construction of the fundamental solution E for Q; we omit the
details.
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Corollary 6.1.8. In the situation of Lemma 6.1.7, define

� Dmaxfmj j Re�j D 0g;

with the understanding that if no characteristic root has zero real part, then � D 0. Assume further that
f D O.��k/ for �!C1, k � � > 1. Then

u.�/D O.��.k��//:

Proof. Denote by j� one of the indices j where the maximum in the definition of � is attained. All we
have to do is to estimate the integral with j D j� in (6-66):

mj�X
tD1

jdj� ;t j

ˇ̌̌̌Z C1
�

ei Im�j� .��w/.��w/t�1f .w/ dw

ˇ̌̌̌
:

Each summand above gives a contribution of the form

jdj� ;t j

t�1X
˛D0

Cf

�
t � 1

˛

�
�˛
Z C1
�

wt�1�˛�k dw;

for a suitable positive constant Cf . Note that by assumption, the integral is convergent and can be
explicitly evaluated, yielding

mj�X
tD1

jdj� ;t j

t�1X
˛D0

C 0f

�
t � 1

˛

�
�t�k ;

for a larger constant C 0
f

. This concludes the proof of Corollary 6.1.8. �

Lemma 6.1.7 provides a solution of (6-64) iteratively; that is, once we have suitable estimates for uh�r ,
r D 0; : : : ; h� 1, we can get estimates for uh.

Proposition 6.1.9. There exists a sequence of functions uh, h� 0, solving (6-64), and positive constants

 , Cu such that if � � 
h, then ˇ̌

@t
�uh.�/

ˇ̌
� C hCtC1

u
t !

�tC�h
: (6-67)

Proof. We are going to prove a slightly better estimate of the formˇ̌
@t
�uj .�/

ˇ̌
� QC jCtC1

u

�
�j C t � 1

t

�
t !

�tC�j
; � � 
h; (6-68)

where QCu > 0 is a constant and � denotes a suitable integer independent of j , t . The important quantity
� was defined in (6-56).

We argue by induction, remarking that there is nothing to prove when h D 0. Assume that h � 1

and that (6-68) holds for j < h. Since, by Lemma 6.1.7, @t
�uDE � @t

�f , we have to estimate the t-th
derivative of the right-hand side of (6-64). To this end, it is enough to consider just a summand in the
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right-hand side of (6-64) in the region � � 
h:

@t
�

�
���r Pr .�; @�/uh�r .�/

�
D

2lCbr=qcX
pD0

@t
�

�
���r˛r;p.�/@

p
�uh�r .�/

�

D

2lCbr=qcX
pD0

tX
ˇD0

�
t

ˇ

�
@ˇ�
�
���r˛r;p.�/

�
@pCt�ˇ
� uh�r .�/:

Before proceeding further, we must distinguish the contributions from terms where p D 0 from the other
terms.

Let us first consider the terms with p D 0. To deal with these, we make a further distinction when
r � j �C 1 or r � j �. We start with r � j �C 1. Because of formula (6-58), we have to estimate

tX
ˇD0

�
t

ˇ

�
@ˇ�
�
��.s0�1/r=q˛r;0.�/

�
@t�ˇ
� uh�r .�/

D

tX
ˇD0

ˇX
�D0

�
t

ˇ

��
ˇ

�

�
@��
�
��.s0�1/r=q

�
@ˇ��� ˛r;0.�/@

t�ˇ
� uh�r .�/: (6-69)

By (6-21), Proposition 6.1.6, and the inductive hypothesis, this quantity is estimated as follows (see (6-20)
for the notation):

tX
ˇD0

ˇX
�D0

�
t

ˇ

��
ˇ

�

� ˇ̌̌̌�
�

s0� 1

q
r

�
�

ˇ̌̌̌
��.s0�1/r=q��C rCˇ��C1

˛

.ˇ� �/!

�ˇ��

� QC h�rCt�ˇC1
u

�
�.h� r/C t �ˇ� 1

t �ˇ

�
.t �ˇ/!

�t�ˇC�.h�r/
:

The latter quantity can be estimated as

QC h�rCtC1
u C rC1

˛
t !

�tC�.h�r/C.s0�1/r=q

tX
ˇD0

QC�ˇu C ˇ
˛

�
�.h�r/C t�ˇ�1

t�ˇ

� ˇX
�D0

�
.s0�1/r=qC��1

�

�
;

since without loss of generality we may always choose C˛ > 1. The inner sum is computed exactly:

ˇX
�D0

�
.s0� 1/r=qC � � 1

�

�
D

�
.s0� 1/r=qCˇ

ˇ

�
:

Let us examine the exponent of �; it is equal to tC�hC
�

s0�1

q
��

�
r . On the other hand, if r � j �C1,

we have �
s0� 1

q
��

�
r D

�
s0� 1

q
�

1

j �C 1
��

�
r C

r

j �C 1
> 1;

by the definition of �. The whole argument here is performed in the case where .s0 � 1/=q is not a
positive integer. If it is an integer, the argument is analogous, but much simpler and more direct. The
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above quantity is estimated by

QC hCtC1
u

C rC1
˛

QC r
u

t !

�tC�hC..s0�1/=q��/r

tX
ˇD0

�
�.h� r/C t �ˇ� 1

t �ˇ

��
..s0� 1/=q/r Cˇ

ˇ

�

� QC hCtC1
u

C rC1
˛

QC r
u

t !

�tC�hC1

�
�h� r.� � .s0� 1/=q/C t

t

�

� QC hCtC1
u

C rC1
˛

QC r
u

t !

�tC�hC1

�
�h� 1C t

t

�
:

For the first inequality we chose QCu > C˛ and used the identity

nX
kD0

�
xC k

k

��
yC n� k

n� k

�
D

�
xCyC nC 1

n

�
; (6-70)

for x, y 2 R. In the second inequality, we chose � � s0�1

q
C 1.

As for the terms with p D 0 and 1 � r � j �, there is only the zero-order term of P1 (see formulas
(6-59), (6-60)), for which we have the estimateˇ̌

@��˛1;0.�/
ˇ̌
� C �C2

˛
�!

�1C�
:

We conclude that the following inequality holds:

d

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

�
t

ˇ

�Z C1
�

@ˇw
�
w��r˛r;p.w/

�
@pCt�ˇ
w uh�r .w/ dw: (6-71)

We use Corollary 6.1.8. Noting that pC t � ˇ � 1, we may integrate by parts, decreasing by one the
number of derivatives landing on uh�r and increasing by one the number of derivatives landing on the
coefficients. The above quantity then becomes

�d

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

�
t

ˇ

�
@ˇ�
�
���r˛r;p.�/

�
@pCt�ˇ�1
� uh�r .�/

� d

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

�
t

ˇ

�
�

Z C1
�

@ˇC1
w

�
w��r˛r;p.w/

�
@pCt�ˇ�1
w uh�r .w/ dw:

The above quantities sport the same behavior with respect to the variable �, since even though the order of
the derivative on the coefficients of the second term is larger by one, the integration, as we shall see, levels
that difference. On the other hand, estimating the coefficients is quite analogous, so that we consider only
the second term and leave the necessary simple adjustments for the first to the reader.
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Now using (6-21) and (6-49) with � D 1, we get, if � � 
h, 
 � c1,

ˇ̌
@ˇC1
� .���r˛r;p.�//

ˇ̌
�

ˇC1X
iD0

�
ˇC 1

i

�
.�1/i.��r/i�

��r�i
�C 1CrCˇC1�i
˛

.ˇC 1� i/!

�ˇC1�i

� C 1CrCˇC1
˛

.ˇC 1/!

��rCˇC1

ˇC1X
iD0

�
�r C i � 1

i

�
D C 1CrCˇC1

˛

�
�r CˇC 1

ˇC 1

�
.ˇC 1/!

��rCˇC1
:

Hence, by the inductive hypothesis, the second term above is estimated by

jd j

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

C 1CrCˇC1
˛

QC h�rCpCt�ˇ
u

�
t

ˇ

��
�r CˇC 1

ˇC 1

�

�

�
�.h� r/CpC t �ˇ� 2

pC t �ˇ� 1

�Z C1
�

.ˇC 1/!

w�rCˇC1

.pC t �ˇ� 1/!

w�.h�r/CpCt�ˇ�1
dw:

Now the integral is easily computed, yielding .�hC t Cp� 1/�1=��hCtCp�1. Note that since p � 1

and h� 1, there is no problem about its convergence. We thus obtain the bound

QC hCtC1
u

t !

��hCt
jd j

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

C
2CrCˇ
˛

QC
p�1
u

QC
rCˇ
u

�
�hC t Cp� 1

��1

�
.�r CˇC 1/ : : : .�r C 1/

ˇ!.t �ˇ/!

�
�.h� r/CpC t �ˇ� 2

�
!

.�.h� r/� 1/!

1

�p�1
:

Since �� 
h and 1� p � 2lCbh=qc, we have �.h� r/Cp�2� �hC2lC .1=q/h� 
1h, where 
1 is
a positive constant, 
1 � � C .1=q/C 2l . We obtain that ��1 � 
�1h�1 � 
�1
1.�.h� r/Cp� 2/�1.
We point out explicitly that 
�1
1 can be chosen very small if 
 is chosen large enough. Let us denote
this constant by ı, where it is understood that ı is small provided the constant 
 is chosen large enough.
The above expression is then bounded by

QC hCtC1
u

t !

��hCt
jd j

hX
rD1

2lCbr=qcX
pD1

tX
ˇD0

C
2CrCˇ
˛

QC
p�1
u

QC
rCˇ
u

�r CˇC 1

�hC t Cp� 1

� ıp�1

�
�r Cˇ

ˇ

��
�.h� r/C t �ˇCp� 2

t �ˇ

�
:

Now ˇ � t and p� 1� 0 imply that the fraction at the end of the top line above is bounded by 2, so that
the whole quantity is estimated by

QC hCtC1
u

t !

��hCt
2 jd j

hX
rD1

2lCbr=qcX
pD1

C 2Cr
˛
QC

p�1
u

QC r
u

ıp�1
�

tX
ˇD0

C
ˇ
˛

QC
ˇ
u

�
�r Cˇ

ˇ

��
�.h� r/C t �ˇCp� 2

t �ˇ

�
:
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Since we already chose QCu � 4C 2
˛ , the ratio in the third sum above is less than 1

4
, and the sum over ˇ

involving only binomial coefficients is computed by (6-70), yielding

QC hCtC1
u

t !

��hCt

jd j

2

hX
rD1

2lCbr=qcX
pD1

C 2Cr
˛
QC

p�1
u

QC r
u

ıp�1
�

�
�r C �.h� r/C t Cp� 1

t

�
:

Observe now that there is a positive constant Qc such that p � Qcr . Therefore �r C�.h� r/C t Cp� 1�

�hC t C r.�� � C Qc/� 1 � �hC t � 1, provided � is chosen large in such a way that � > �C Qc.
This is always possible and is actually the only constraint on � . By a well known property of binomial
coefficients (with positive real numerators), we then obtain the bound

QC hCtC1
u

�
�hC t � 1

t

�
t !

��hCt

jd j

2

hX
rD1

2lCbr=qcX
pD1

C 2Cr
˛
QC

p�1
u

QC r
u

ıp�1

D QC hCtC1
u

�
�hC t � 1

t

�
t !

��hCt

jd j

2

hX
rD1

C 2Cr
˛

QC r
u

2lCbr=qcX
pD1

ıp�1 QC p�1
u :

The inner sum is easily evaluated provided, for example, ı� QC�1
u =2. This is always possible and amounts

to choosing 
 large. The contribution from that sum is thus � 2. As for the outer sum, if we choose QCu

in such a way that
QCu � C 3

˛ .1C 3jd j/;

which depends only on the problem data, we obtain the final bound

1
3
QC hCtC1
u

�
�hC t � 1

t

�
t !

��hCt
:

The same bound is obtained for the term without the integral.
This finishes the proof of inequality (6-68). Inequality (6-67) is an easy consequence. �

Proposition 6.1.9 guarantees that we can construct a formal solution to the equation P .�; @�/u.�/D 0

in (6-18) and thus a formal solution A.u/ for

ƒ.t;Dt /A.u/.t/D 0: (6-72)

In the next subsection we plan to construct from A.u/ a true solution; this will only yield a solution of
(6-72) with a nonzero right-hand side which will be negligible in an important sense.

6.2. True solution and the end of the proof. To establish the notation, we state the result of the previous
subsection:

Theorem 6.2.1. There is a formal solution A.u/.t/ of (6-72) of the form

A.u/.t/D

Z C1
0

eit�s0
eiˆ.�/u.�/ d�; (6-73)

satisfying the following conditions:
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(1) The phase function ˆ is of the form

ˆ.�/D

M0X
jD0

'j�
1�..s0�1/=q/j

C'�1 log �; M0 D

j
1

s0�1

k
; (6-74)

with 'j 2 C, j D�1; 0; : : : ;M0, Im'0 > 0.

(2) The function u has the form u.�/D
P1

hD0 uh.�/, where u0.�/� 1 and (compare (6-61))

P0.@�/uh.�/C

hX
rD1

���r Pr .�; @�/uh�r .�/D 0; hD 1; 2; : : : : (6-75)

Moreover, uh satisfies the estimate (6-67); that is, if � � 
h, for 
 large enough,ˇ̌
@t
�uh.�/

ˇ̌
� C hCtC1

u
t !

�tC�h
: (6-76)

As a consequence of the construction, A.u/ formally satisfies

ƒ.t;Dt /A.u/.t/D

Z C1
0

eit�s0
P .�; @�/

�
eiˆ.�/u.�/

�
d�

D

Z C1
0

eit�s0
eiˆ.�/

�
e�iˆ.�/P .�; @�/e

iˆ.�/
�
u.�/ d�

D

Z C1
0

eit�s0
eiˆ.�/

1X
rD0

���r Pr .�; @�/u.�/ d�

D

Z C1
0

eit�s0
eiˆ.�/

1X
hD0

hX
rD0

���r Pr .�; @�/uh�r .�/ d�D 0: (6-77)

Let !j 2 Gs.R/, j D 0; 1; 2; : : : , with 1 < s < s0 to be specified later, be the cutoffs introduced in
Lemma 5.4, defined in R. We assume from the beginning that the constant 2R in Lemma 5.4 is larger
than 
 , the latter being the constant in the second item of the theorem above. Define

v.�/D

1X
hD0

!h.�/uh.�/: (6-78)

Trivially, v 2Gs.R/. Moreover:

Lemma 6.2.2. The function v in (6-78) satisfies the estimate(ˇ̌
@˛�v.�/

ˇ̌
� C ˛C1

v
˛!s

�˛
for every � � 2R;

v � 0 if � � 2R:
(6-79)

Proof. Let us start by estimating @ˇ�!h@
˛�ˇ
� uh. For the first factor we haveˇ̌

@ˇ�!h.�/
ˇ̌
� .RC!/

ˇC1ˇ!s

�ˇ
for every ˇ:
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For the second factor, by (6-76) we have, provided � � 
h, which is implied by � 2 supp!h,ˇ̌
@˛�ˇ� uh.�/

ˇ̌
� C hC˛�ˇC1

u

.˛�ˇ/!

�˛�ˇC�h
� C hC˛�ˇC1

u

.˛�ˇ/!

�˛�ˇ

�

 .hC 1/

���h
:

Putting together the estimates, we obtainˇ̌
@˛�v.�/

ˇ̌
� QC ˛C1

v
˛!s

�˛

1X
hD0

�

 .hC 1/

���h
:

This implies the assertion. �
Definition 6.2.3. Let � be an open subset of R. We define the class Bs.�/ (of Beurling type functions
on �) as the set of all smooth functions u.x/ defined in � and such that for every " > 0 and for every
K b� compact, there exists a positive constant C D C.";K/ such that

j@˛xu.x/j � C "˛˛!s; (6-80)

for every x 2K and every ˛.

We want to show that ƒ.t;Dt /A.v/D g, where g ¤ 0 and g 2Bs0.R/. First we show that far from
the origin, A.v/ has a better regularity than Gs0.R/. The following lemma is straightforward:

Lemma 6.2.4. We have G� .�/�Bt .�/ for every t > � .

Lemma 6.2.5. Let s be the Gevrey regularity of the cutoff functions !j in (6-78). Let ı > 0. Then
A.v/ 2B� .fx j jxj> ıg/, with s � � � s0.

Proof. We actually prove that A.v/ 2Gs.fx j jxj> ıg/. We have

D˛
t A.v/.t/D

Z C1
0

eit�s0
�s0˛eiˆ.�/v.�/ d�:

We observe that .s0t�s0�1/�1D�e
i�s0 t D ei�s0 t . Therefore,

D˛
t A.v/.t/D

�
1

t

�j Z C1
0

eit�s0
�
�D�

1

s0�s0�1

�j �
�s0˛eiˆ.�/v.�/

�
d�

D

�
1

t

�j Z C1
0

eit�s0

jX
hD0


jh
1

�s0j�h
@h
�

�
�s0˛eiˆ.�/v.�/

�
d�;

by Lemma 6.1.1. This quantity is rewritten as�
1

t

�j Z C1
0

eit�s0

jX
hD0

hX
pCqD0

h!

p!q! .h�p� q/!

jh

1

�s0j�h
� @p
� .�

s0˛/@q
�.v.�//@

h�p�q
� .eiˆ.�// d�:

By the Faà di Bruno formula,

@n
�e

iˆ
D eiˆ

nX
kD1

ik
X

k1;:::;knP
i kiDkP
i ikiDn

n!

k1! � � � kn!

nY
pD1

�ˆ.p�1/
�

p!

�kp

;
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using Lemma 6.1.5 and the estimate (6-42) we obtain for � � 2R, with � > 0,

j@n
�e

iˆ
j � jeiˆ

j

nX
kD1

X
k1;:::;knP

i kiDkP
i ikiDn

n!

k1! � � � kn!
C 0kˆ �

�.n�k/
� C ne���

nX
kD1

.n� k/!��.n�k/; (6-81)

where we argued as in (6-53), (6-34) and (6-39). Thus we have if jt j � ı,

ˇ̌
D˛

t A.v/.t/
ˇ̌
� ı�j

Z C1
0

e���
jX

hD0

hX
pCqD0

h�p�qX
kD1

h!

p! q! .h�p�q/!

�C jCh

 .j � h/!

1

�s0j�h
.s0˛/p�

s0˛�pC 1Cq
v

q!s

�q
�C h�p�q.h�p� q� k/! ��.h�p�q�k/ d�;

by (6-17), (6-21). Choosing j D ˛, we then obtainˇ̌
D˛

t A.v/.t/
ˇ̌

�Cv

�C C 2

 Cv

ı

�̨ X̨
hD0

hX
pCqD0

h�p�qX
kD1

h!

.h�p�q/!
�.˛�h/!

�
s0˛

p

�
q!s�1.h�p�q�k/!

Z C1
0

e����k d�:

The integral above is equal to ��.kC1/k!, and there is a positive constant C1 such that
�
s0˛
p

�
� C ˛

1
.

Eventually we get

ˇ̌
D˛

t A.v/.t/
ˇ̌
�

Cv

�

�maxf1; ��1gC C1C 2

 Cv

ı

�̨
˛!
X̨
hD0

hX
pCqD0

�
˛

h

��1

q!s�1

h�p�qX
kD1

�
h�p� q

k

��1

:

We may therefore find a positive constant QC such that QC ˛ � ˛4 and deduce that

ˇ̌
D˛

t A.v/.t/
ˇ̌
�

Cv

�

�maxf1; ��1g QC C C1C 2

 Cv

ı

�̨
˛!s:

This proves the statement. �

Next we prove a key result of this section: the regularity of ƒ.t;Dt /A.v/. First of all, we remark that
we need to sum the asymptotic expansion (3-33) modulo some reasonably regularizing term. Note also
that the symbols in the asymptotic expansion of ƒ are real analytic symbols:

ƒ.t; �/�

j0X
jD0

ƒ�jq.t; �/C
X
s�0

�
ƒ�2k�sq.t; �/Cƒ�.j0C1/q�sq.t; �/

�
: (6-82)

We recall that ƒm in the above expression is (positively) homogeneous with respect to � of degree
2=qCm=q. To sum (6-82), we use the cutoff functions constructed in Lemma 5.3; we agree that they are
in Gt .R/ with t < s0 to be specified later. It is then evident that the error appearing when summing “à la
Borel” the asymptotic expansion of ƒ will be Gt -regularizing and hence in Bs0.R/.
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By (6-2), we may ignore an elliptic factor and rewrite ƒ, with a slight difference in the meaning of the
coefficients, as

ƒ.t; �/��2=qC2k=q
�

1X
hD0

ah.t/�
2k=q�h

C

1X
hD0

bh.t/�
�h; (6-83)

where without loss of generality � > 0.
We also recall at this time that the first sum above gives rise to the QA;r in (6-45), while the second

contributes to the QB;r in (6-46). At this point we are not interested in the particular properties of the
coefficients, such as, for example, the vanishing of order 2l of a0 and the nonvanishing of b0 at the origin.
These properties have already played their role in the constructions above.

Abusing our notation a bit, we call the operator in (6-83) again ƒ.

Proposition 6.2.6. Let v be the function defined in (6-78) using cutoff functions in Gt 0 and let ƒ be the
operator defined by the asymptotic expansion in (6-83) using cutoff functions in Gt 00 (see Lemmas 5.3 and
5.4). Then, for a suitable choice of t 0 and t 00, we have

ƒ.t;Dt /A.v/.t/ 2Bs0.R/: (6-84)

Proof. It is evident that it will be enough if we argue on just one of the asymptotic expansions in (6-83).
At a certain point of the proof though, we have to partially reassemble the operator Pˆ in (6-61), and
there we use the argument also for the other expansion. For the sake of simplicity, we argue on the second
sum in (6-83).

Due to Lemma 6.2.5, it suffices to show that for every " > 0, there is a neighborhood of the origin, U",
such that j@˛t .ƒA.v//.t/j � C""

˛˛!s0 for t 2 U".
Actually we need to estimate a derivative of ƒ.t;Dt /A.v/.t/, say

D˛
t ƒ.t;Dt /A.v/.t/:

The latter can be written as

D˛
t

1X
jD0

bj .t/A
�
!j .�

s0/��js0v.�/
�
;

keeping in mind the form of A.v/, with v given by (6-78),

A.v/.t/D

Z C1
0

ei�s0 teiˆ.�/v.�/ d�: (6-85)

Let now N be a natural number and consider

D˛
t

1X
jDN

bj .t/A
�
!j .�

s0/��js0v.�/
�
D

1X
jDN

X̨
pD0

�
˛

p

�
D

p
t bj .t/A

�
!j .�

s0/��js0Cs0.˛�p/v.�/
�
: (6-86)
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Applying the definition (6-4) of an analytic symbol as well as the estimates (5-6) for the cutoff functions
defining ƒ, we have that the latter quantity is estimated by

1X
jDN

X̨
pD0

�
˛

p

�
C pCjC1p! j ! .2R/�jC˛�p

� .j C 1/t
00.�jC˛�p/

ˇ̌
A.!j .�

s0/v.�//
ˇ̌

� C1

1X
jDN

X̨
pD0

�
˛

p

�
C pCjC1p! .2R/�jC˛�p.j C 1/jCt 00.�jC˛�p/;

provided �j C˛ � 0, which is obviously implied by choosing N � ˛. In order to handle the power of j

above, we make a stronger demand on N , namely,

N D �N˛ �
j
˛

t 00

t 00�1

k
C 1; (6-87)

where �N is a suitable constant on which we may impose further constraints in the following, independent
of ˛.

Then j C t 00.˛� j /� 0, and the above sum can be bounded by

C1.2R/˛˛!

1X
jDN

C jC1.2R/�j
X̨
pD0

�
C

2R

�p
� QC ˛C1˛! ; (6-88)

for a suitable positive constant QC , provided 2R > C . Thus this part of ƒ.t;Dt /A.v/.t/ exhibits an
analytic behavior and therefore belongs to any Bs , with s > 1.

Next we must estimate the finite sum

D˛
t

N�1X
jD0

bj .t/A
�
!j .�

s0/��js0v.�/
�
.t/;

with N defined by (6-87). To do this we write the coefficients bj as a sum of a polynomial in the variable
t and a real analytic function vanishing of high order at t D 0 and estimate both contributions. Let us
start with the remainder terms in the expansion of bj .

Thus we have to estimate the sum

D˛
t

N�1X
jD0

tM
1X

iD0

bj ;iCM t iA
�
!j .�

s0/��js0v.�/
�
.t/; (6-89)

where M is a large integer to be fixed later. The significant part of the estimate is that where the
t-derivatives land on A, since otherwise the derivatives landing on the powers of t give analytic type
estimates and hence better estimates:

N�1X
jD0

tM
1X

iD0

bj ;iCM t iD˛
t A
�
!j .�

s0/��js0v.�/
�
.t/:
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By (6-4), we have jbj ;iCM j � C iCMCjC1j !, so that if jt j � ı, the absolute value of the above quantity
is bounded by

N�1X
jD0

ıM C MCjC1j !

1X
iD0

.Cı/i
ˇ̌
A.!j .�

s0/��js0Cs0˛v.�//.t/
ˇ̌
;

since on the support of !j , by Lemma 5.4, �s0 �R.j C 1/t
0

, we obtain that ��s0j �R�j .j C 1/�t 0j .
Furthermore,ˇ̌

A
�
!j .�

s0/�s0˛v.�/
�
.t/
ˇ̌
�

Z C1
0

jeiˆ.�/
jjv.�/j�s0˛d�

� CA

Z C1
0

e����s0˛ d�D CA�
�.s0˛C1/�.s0˛C 1/� C 0˛C1

A
˛!s0 :

Hence (6-89) is bounded by

C 0˛C1
A

˛!s0C MC1ıM
N�1X
jD0

�
C

R

�j 1X
iD0

.Cı/i.j C 1/.1�t 0/j :

Choose
M D �M˛; �M � 1: (6-90)

We may impose further conditions on �M provided they depend only on the problem data, that is, �M

does not depend on ˛. Moreover, let R> C and C 0
A

C �M ı�M < ", and we have the estimate

C 0AC "˛˛!s0

1X
jD0

�
C

R

�j 1X
iD0

.Cı/i � QCA"
˛˛!s0 : (6-91)

This concludes the proof for the term (6-89).
The next step is to estimate the term

D˛
t

N�1X
jD0

M�1X
iD0

bj ;i t
iA
�
!j .�

s0/��js0v.�/
�
.t/: (6-92)

The latter can be written as

D˛
t

N�1X
jD0

M�1X
rD0

bj ;r �

Z C1
0

eit�s0
�
�@

1

is0�s0�1

�r �
eiˆ.�/!j .�

s0/��js0v.�/
�
d�:

By Lemma 6.1.1, we rewrite the above expression as

N�1X
jD0

M�1X
rD0

bj ;r �

Z C1
0

eit�s0
�s0˛

rX
hD0


rh
1

�s0r�h
@h
�

�
eiˆ.�/!j .�

s0/��js0v.�/
�

d�: (6-93)

Let us compute @h
�

�
eiˆ.�/!j .�

s0/��js0v.�/
�
. This is equal toX

P
ˇiDh

h!

ˇ1!ˇ2!ˇ3!ˇ4!
@ˇ1
� eiˆ@ˇ2

� !j .�
s0/@ˇ3

� �
�js0@ˇ4

� v.�/:
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By (6-81), (6-79) we have

ˇ̌
@ˇ1
� eiˆ.�/

ˇ̌
� C ˇ1

e e���
ˇ1X

mD1

.ˇ1�m/! ��.ˇ1�m/;
ˇ̌
@ˇ4
� v.�/

ˇ̌
� C ˇ4C1

v

ˇ4!t 0

�ˇ4
;

and finally, using the Faà di Bruno formula,

@ˇ2
� !j .�

s0/D

ˇ2X
kD1

!
.k/
j .�s0/

X
P

kiDkP
ikiDˇ2

ˇ2!

k1! � � � kˇ2
!

ˇ2Y
lD1

��
s0

l

�
�s0�l

�kl

:

By (5-6), arguing as we did to prove (6-53), the absolute value of the above quantity is estimated by

ˇ̌
@ˇ2
� !j .�

s0/
ˇ̌
� C

ˇ2C1
2

ˇ2!t 00

�ˇ2
;

where C2 is a suitable positive constant. Let us now consider (6-93). It is natural to consider (6-93) in the
two regions � � 4RN t 00 and � � 4RN t 00 . We want to estimate (6-93) in the first region. We remark that
on the support of !j in this region, we have 2R.j C 1/t

00

� �s0 � 4RN t 00 . Thus the absolute value of
(6-93) in the latter region is bounded by

N�1X
jD0

M�1X
rD0

rX
hD0

X
P
ˇiDh

C ˇ1
e

ˇ1X
mD1

.ˇ1�m/! C rCh

 C

ˇ2C1
2

C ˇ4C1
v

� .r � h/!
h!

ˇ1!ˇ2!ˇ3!ˇ4!
ˇ2!t 00

�
s0j Cˇ3� 1

ˇ3

�
ˇ3!ˇ4!t 0

jbj ;r j

�

Z
2R.jC1/t

00
��s0�4RN t00

e����s0˛ 1

�ˇ2

1

�s0r�h

1

�ˇ1�m

1

�s0jCˇ3

1

�ˇ4
d�;

which in turn is bounded by

N�1X
jD0

M�1X
rD0

rX
hD0

X
P
ˇiDh

C ˇ1
e

ˇ1X
mD1

.ˇ1�m/! C rCh

 C

ˇ2C1
2

C ˇ4C1
v C

s0jCˇ3

3
4h

� .r � h/!ˇ2!t 00ˇ3!ˇ4!t 0C
jCrC1

b
j ! .4R/.˛�r/CN t 00.˛�r/C.2R/�j .j C 1/�t 00j

�

Z
2R.jC1/t

00
��s0�4RN t00

e����m d�:
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The integral above is bounded by ��.mC1/m!, so that it is clear that there exist positive constants C , C�

such that the above quantity is bounded by

N�1X
jD0

M�1X
rD0

rX
hD0

X
P
ˇiDh

.2Ce/
ˇ1ˇ1! C rCh


 C
ˇ2C1
2

C ˇ4C1
v C

s0jCˇ3

3
4hC

ˇ1
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C

jCrC1

b

� .4R/.˛�r/C.r � h/!ˇ2!t 00ˇ3!ˇ4!t 0N t 00.˛�r/C.2R/�j

�

N�1X
jD0

�C
s0

3
Cb

2R

�j M�1X
rD0

C r

 C rC1

b
.4R/.˛�r/CN t 00.˛�r/C

rX
hD0

LhC1
1

h!t 00.r � h/!

� .4R/˛
N�1X
jD0

�C
s0

3
Cb

2R

�j M�1X
rD0

C r

 C rC1

b
N t 00.˛�r/CLrC1

2
r !t 00

�L˛C1
3

˛!t 00 :

Here we used the fact that �s0 � 4RN t 00 , as well as (6-87). Moreover,

N t 00.˛�r/r !t 00
� .�N˛/

t 00.˛�r/r t 00r
� .�N˛/

t 00.˛�r/.�M˛/t
00r
�maxf�N ; �M g

t 00˛˛t 00˛:

It is also clear in the above deduction that all the constants involved except R depend on the data and are
hence fixed; moreover, R can be taken large enough so that C

s0

3
Cb=R< 1. We would like to emphasize

at this stage that in performing the above estimate, we assumed that t 00 > t 0. This is no restriction since
the only constraint on t 0 and t 00 is that they are positive numbers larger than one.

If
1< t 0 < t 00 < s0; (6-94)

we therefore obtain that the term (6-92) in the region �s0 � 4RN t 00 gives rise to a function of class Bs0 .
We must now discuss the term (6-93) in the complementary region: �s0 � 4RN t 00 .

N�1X
jD0

M�1X
rD0

bj ;r

Z
�s0�4RN t00

eit�s0
�s0˛ �

rX
hD0


rh
1

�s0r�h
@h
�

�
eiˆ.�/��js0v.�/

�
d�

D

N�1X
jD0

M�1X
rD0

bj ;r

Z
�s0�4RN t00

eit�s0
�s0˛eiˆ.�/

�

�
e�iˆ.�/

rX
hD0


rh
1

�s0r�h
@h
�

�
eiˆ.�/��js0v.�/

��
d�:

The factor in square brackets and its counterpart coming from the first sum in (6-83) yield a differential
operator of the form

P #.�; @�/D

LX̨
�D0

����P #
� .�; @�/: (6-95)

This is obtained by repeating the argument of Section 6.1 that led to (6-61). It is also evident that
L˛ D O.˛/ for ˛ large because of (6-87) and (6-90).
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Some of the operators P #
� coincide with the P� of (6-61), while the others miss some of the terms due

to the fact that we are taking finite sums. Thus we have to estimateZ
�s0�4RN t00

eit�s0
�s0˛eiˆ.�/P #.�; @�/v.�/ d�:

Now an inspection of (6-51) and (6-52) immediately suggests that P #
� DP� if �=q�M �1 and ��N �1.

It is actually useful to have the above relations be satisfied when � � .s0=�/˛. To do that, it suffices
to choose �N , �M � s0=� (see (6-87) and (6-90)).

We thus wind up with the following quantity to be estimated:Z
�s0�4RN t00

eit�s0
�s0˛eiˆ.�/

.s0=�/˛X
�D0

����P�.�; @�/v.�/d�

C

Z
�s0�4RN t00

eit�s0
�s0˛eiˆ.�/

LX̨
�>.s0=�/˛

����P #
� .�; @�/v.�/ d�D J1CJ2: (6-96)

First we want to bound J2. We have

jJ2j �

Z
�s0�4RN t00

�s0˛jeiˆ.�/
j

LX̨
�>.s0=�/˛

����
ˇ̌
P #
� .�; @�/v.�/

ˇ̌
d�;

where

P #
� .�; @�/D

m�X
rD0

˛#
�;r .�/@

r
�;

and we explicitly point out that its coefficients satisfy an estimate of the form (6-49)ˇ̌
@t
�˛

#
�;r .�/

ˇ̌
� C �CtC1

# �!1��
t !

�t
;

where 0 � � < 1 and � � c1�
� . Consequently, since � � L˛ � c˛ � c=�N N , we obtain that � �

4RN t 00=s0 � c0�t 00=s0 , and hence ˇ̌
˛#
�;r .�/

ˇ̌
� C �C1

# �!1�t 00=s0 :

Thus, by (6-79),

�s0˛���
ˇ̌
P #
� .�; @�/v.�/

ˇ̌
�

m�X
rD0

C �C1
# �!1�t 00=s0C rC1

v
r !t 0

�r
;

since �s0˛��� � 1. As before, we obtain that � � c00r t 00=s0 , c00 > 0 and suitable, because m� D O.�/, so
that r !t 0��r � C rC1r !t 0�t 00=s0 . The integral has no convergence problem because jeiˆ.�/j � e���, for a
suitable positive constant �, and eventually we obtain the bound

jJ2j � C ˛C1
J2

˛!k1.1�t 00=s0/Ck2.t
0�t 00=s0/; (6-97)
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where k1, k2 denote positive constants depending only on the problem data. In the following we denote
in this way any constant of this kind, and we shall understand that their meaning may vary depending on
the context.

Choosing t 0 near 1 and t 00 near s0, satisfying (6-94), we see that J2 gives rise to a function in Bs0 .
We are thus left with the term J1. To estimate it, we have to recall the definition of v in (6-78), where

cutoff functions in Gt 00 from Lemma 5.4 have been employed. We have

v.�/D

1X
lD0

!l.�/ul.�/;

and without loss of generality we may assume that !l � 1 for � � 4R.l C 1/ and !l.�/ � 0 for
�� 2R.lC1/, with the same constant R we used previously. Of course we are free to choose a larger R,
if need be. Thus

�s0˛

.s0=�/˛X
�D0

����P�.�; @�/v.�/D

1X
kD0

X
�ClDk

��.s0=�/˛

����Cs0˛P�.�; @�/
�
!l.�/ul.�/

�
:

We split this into two parts, according to whether in the above sum the complete expression (6-64) for the
transport equation appears or we find only a part of it:

�s0˛

b.s0=�/˛cX
�D0

����P�.�; @�/v.�/D

b.s0=�/˛cX
kD0

X
�ClDk
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X
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X
�ClDk

��b.s0=�/˛c

����Cs0˛P�.�; @�/
�
!l.�/ul.�/

�
D JC1CJC2: (6-98)

We start by bounding JC2, which is pretty similar to J2, studied above. By Proposition 6.1.6, we have

P�.�; @�/D

m�X
pD0

˛�;p.�/@
p
� ; (6-99)

where m� � c� and the coefficients satisfy the estimate

ˇ̌
@t
�˛�;p.�/

ˇ̌
� C �CtC1

˛ �!1��
t !

�t
; (6-100)
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provided � � c1�
� , 0< � � 1. Now

jJC2j �
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k>b.s0=�/˛c

X
�ClDk
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m�X
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� .RC!/
ˇC1C p�ˇClC1

u

p!t 0

�p
;

where (5-6), (6-49), (6-76) have been used. In particular, (6-49) can be used since �s0 � 4RN t 00 D

4R� t 00

N
˛t 00 � 4R� t 00

N
.�=s0/

t 00�t 00 , yielding � D t 00=s0 for R sufficiently large depending on the problem
data.

We have ��p � QC pp!�t 00=s0 , since p �m� � Qc�. Thus we get

jJC2j �

X
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X
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� .RC!/
pC1C pClC1

u .2 QC /pp!t 0�t 00=s0 :

We point out that ��.b.s0=�/˛cC 1/C s0˛ < 0. Moreover, since m� � Qc�, we may estimate the sum
with respect to p, getting

jJC2j �

X
Qk�0

���
Qk

X
�ClDQkCb.s0=�/˛cC1

��.s0=�/˛

C �C1
˛ RQc�C1C l

uC �
T �!1�t 00=s0CQc.t

0�t 00=s0/:

Finally, we want to bound the inner sum, noting that contrary to the sum over Qk, it is a finite sum
involving a number of terms proportional to ˛. Because of the estimate

�!1�t 00=s0CQc.t
0�t 00=s0/ �

��
s0

�

�
˛
�
!1�t 00=s0CQc.t

0�t 00=s0/ � C ˛C1˛!.s0=�/.1�t 00=s0/C.s0=�/Qc.t
0�t 00=s0/;

we obtain

jJC2j � C ˛C1˛!.s0=�/.1�t 00=s0/C.s0=�/Qc.t
0�t 00=s0/

X
Qk�0

���
QkC
Qk

u :

Since � > 2R on the support of v, the above series converges, provided R is large enough. Arguing as
for J2, we conclude that JC2 2Bs0 .
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Consider JC1 in (6-98). Again we split it into two parts:
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�
D

.s0=�/˛X
kD0

.I1;k C I2;k/: (6-101)

Let us consider I1;k . Remark that if � � 4R.kC 1/, then !l.�/� 1 for any l D 0; : : : ; k. Therefore, in
this region I1;k D 0, due to (6-75). We have only to consider I1;k for .4R� t 00

N
/1=s0˛t 00=s0 � �� 4R.kC1/.

In this region — assuming it is not trivially empty — we have
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;

where we applied (6-100) and (6-76), arguing as we did before. As above, p! ��p � C �C1�!Qc.1�t 00=s0/.
Therefore
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for some positive Q�, choosing t 00 close to s0 as we did before.
Consider now, recalling (6-96),ˇ̌̌̌Z
�s0�4RN t00

eit�s0
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0
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0

e��
0� log��s0˛ d�:

The proof is complete once we show:
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Lemma 6.2.7. Let � > 0. For any " > 0, there is a constant C" > 0 such thatZ C1
0

e��� log��s0˛ d� � C""
˛˛!s0 : (6-102)

Proof. Pick a positive M to be chosen later and writeZ C1
0

e��� log��s0˛ d�D

Z M

0

e��� log��s0˛ d�C

Z C1
M

e��� log��s0˛ d�D I1C I2:

Consider I2. Because e��� log� � e�� log M�, we get
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Z C1
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e��� log M�s0˛d�D

�
1

� log M

�s0˛C1

˛!s0 :

Choosing ��s0.log M /�s0 � ", we prove the assertion for I2.
Consider I1.
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M s0˛C1
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� e�=eM
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"

�̨
˛!s0

"˛˛!s0 ;

and this implies the assertion also for I1. �

Let us now consider I2;k . Remark that if � � 4R.kC 1/, then I2;k D 0 due to Lemma 5.4. We have
only to consider I2;k for .4R� t 00

N
/1=s0˛t 00=s0 � �� 4R.kC1/. Assuming this region is not trivially empty,

we have

jI2;k j �

X
�ClDk

����Cs0˛
m�X

pD0

pX
ˇD1

�
p

ˇ

�ˇ̌
˛�;p.�/

ˇ̌ˇ̌
@ˇ�!l.�/

ˇ̌ˇ̌
@p�ˇ
� ul.�/

ˇ̌
� ���kCs0˛

X
�ClDk

C �C1
˛ �!1�t 00=s0

m�X
pD0

pX
ˇD1

�
p

ˇ

��
RC!

�ˇC1ˇ!t 0

�ˇ
C p�ˇClC1

u

.p�ˇ/!

�p�ˇ

� ���kCs0˛
X
�ClDk

C �C1
˛ �!1�t 00=s0

m�X
pD0

C 0pClC1
u

p!t 0

�p
:

As above, p!t 0��p � C �C1�!Qc.t
0�t 00=s0/, and the argument proceeds as that for I1;k .

This completes the proof of Proposition 6.2.6. �

Next we are going to show that if ƒ.t;Dt / as given by the left-hand side of (6-2) is Gs-hypoelliptic
for s < s0, from (6-84), it follows that A.v/.t/ 2Bs0.R/.

To this end, we recall the following result. For its proof we refer to Appendix B.

Theorem 6.2.8 [Métivier 1980, Theorem 3.1]. Let � be an open set of R containing the origin. Assume
that there is an open subset U b�, a compact subset K of�, and a bounded operator RWL2.U /!L2.K/

such that .PRu/jU D ujU .
The operator ƒ is Gevrey s-hypoelliptic at the origin if and only if :
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(i) For any neighborhood ! of the origin, there exists a neighborhood !00 b ! such that

.ƒu/j! 2H k.!/ implies uj!00 2H k.!00/:

(ii) For any neighborhoods of the origin !iv b !000 b !00, there are positive constants C , L such that

kukk;!iv � CLk
�
ŒŒƒ.'u/��s;k;!000 C k!skuk0;!00

�
; (6-103)

where kukk;! denotes the usual Sobolev norm of order k on the open set ! and

ŒŒu��s;k;! D

kX
˛D0

ks.k�˛/
kD˛uk0;! : (6-104)

Moreover, ' 2 C1
0
.!00/, ' � 1 in a neighborhood of !000 and C , L are independent of k and u.

By Theorem 4.3 and (6-2), we obtain that the operator ƒ has a parametrix whose symbol belongs to
S0

1;k=lq
(recall that k= lq < 1, by assumption). See also Theorem 3.4 of [Kumano-go 1982]. Moreover,

by Remark B.111., we have .P .'u//j!000 2Bs0.!000/ if and only if .Pu/j!000 has the same regularity.
Therefore, Theorem 6.2.8 can be applied to ƒ, provided we are on a small enough neighborhood of the

origin. To keep the notation simple, we denote by !0 the neighborhood of the origin where the solution
has regularity Bs0 .

Lemma 6.2.9. If A.v/ 2Bs0.!0/, then for every " > 0 there exists C";!0 > 0 such thatˇ̌
F.A.v//.�/

ˇ̌
� C";!0e

�.1=.2"/1=s0 /j� j1=s0
: (6-105)

Here F .A.v// denotes the Fourier transform of A.v/.

Proof. First we point out that A.v/2S.R/, due to the fact that the phase factor eiˆ.�/ is rapidly decreasing
for �!C1.

There exists a ı > 0, Œ�ı; ı�� !0 such that for every " > 0 there is C1;" > 0 for which, for every ˛,

jD˛
t A.v/.t/j � C1;""

˛˛!s0 ; jt j � ı: (6-106)

An argument quite similar to that of the proof of Lemma 6.2.5 gives that, for jt j � ı,ˇ̌
D˛

t A.v/.t/
ˇ̌
�

1

jt j˛
C ˛C1˛!t 0

�
1

jt j˛
C2;""

˛˛!s0 : (6-107)
For the Fourier transform of A.v/, we obtain

F.A.v//.�/D
1

�˛

Z
e�it�D˛

t A.v/ dt:

We split the latter integral into two parts, I1, I2, for the regions jt j � ı and jt j � ı respectively.
By (6-106),

jI1j � 2ı
1

j� j˛
C1;""

˛˛!s0 :

By (6-107), for ˛ � 2,

jI2j �
1

j� j˛
C2;""

˛˛!s0

Z
jt j�ı

jt j�˛ dt D
1

j� j˛
C3;""

˛˛!s0 :
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Therefore, overall, we get ˇ̌
F.A.v//.�/

ˇ̌
�

1

j� j˛
C4;""

˛˛!s0 ;

for any ˛ and � large. Hence

ˇ̌
F.A.v//.�/

ˇ̌1=s0

��
j� j

2"

�1=s0
�̨

˛!
� C

1=s0

4;"

�
1

21=s0

�̨
:

Summing in ˛ from 0 to1, we prove the assertion. �

We state the following proposition, leaving the proof to the reader:

Proposition 6.2.10. Let !0, ! be as in Theorem 6.2.8. If ƒu 2Bs0.!/, then u 2Bs0.!00/.

Corollary 6.2.11. Let A.v/ be given by (6-85). Then Proposition 6.2.6 implies that A.v/ 2Bs0.!0/.

Proof of the corollary. Let ' 2 C1
0
.R/ \Gs.R/, ' � 1 near the origin. Arguing as in the proof of

Lemma 6.2.9, we may show that ˇ̌5.1�'/A.v/.�/ˇ̌� Ce�j�j
1=s=C ;

for a certain positive constant C , whence ƒ..1� '/A.v// 2 Gs . Therefore, Proposition 6.2.6 implies
that ƒ.'A.v// 2Bs0 . From Proposition 6.2.10, it follows that 'A.v/ 2Bs0 , whence the statement. �

Let us now prove that Corollary 6.2.11 implies a contradiction, which in turn yields that ƒ is Gevrey
s0-hypoelliptic and not better.

The construction of A.v/ shows that the conclusion of Lemma 6.2.9 is violated:

Lemma 6.2.12. There exist positive constants �, C� such that for � positive and large,ˇ̌
F.A.v//.�/

ˇ̌
� C�e���

1=s0
: (6-108)

Proof. Since v in A.v/ (see (6-79)) has support in Œ2R;C1Œ, we have

A.v/.t/D
1

s0

Z
R

eit�eiˆ.�1=s0 /v.�1=s0/� .1=s0/�1�.�/ d�;

where �.�/� 1 if � � .2R/s0 and �.�/� 0 if � �Rs0 . From the Fourier transform inversion formula,
we obtain that

F.A.v//.�/D
2�

s0
eiˆ.�1=s0 /v.�1=s0/� .1=s0/�1;

for � � 2R. Since, due to the construction performed in Section 6.1, we have for � large

ˆ.�1=s0/D '�1=s0.1C o.1//

with Im' > 0, and
v.�1=s0/D 1C o.1/;

we conclude, for a suitable � > 0, thatˇ̌
F.A.v//.�/

ˇ̌
� C�e���

1=s0
: �
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Thus the inequalities

C�e���
1=s0
�
ˇ̌
F.A.v//.�/

ˇ̌
� C";!0 e

� 1
.2"/1=s0

�1=s0

give a contradiction, provided " is small and � is large enough.
This proves assertion (iii) of Theorem 1.1.

7. Non-C 1-hypoellipticity

The purpose of this section is to prove assertion (iv) of Theorem 1.1. Because of Proposition 4.2, we
have to show that ƒ in (3-33) is not C1-hypoelliptic if l � k=q.

The method of proof is analogous to that used in the previous section, but much simpler. Multiplying
ƒ in (3-33) by an elliptic operator, we have to consider the symbol

�2k=q�2=qƒ.t; �/�

1X
jD0

aj .t/�
2k=q�j

C

1X
sD0

bs.t/�
�s; (7-1)

where � > 0, aj , bs are real analytic and defined in a neighborhood of the origin and

aj .t/D t2l�j
Qaj .t/ for j D 0; : : : ; 2l � 1; with each Qaj 2 C! : (7-2)

We rename ƒ the operator whose symbol is given by the left-hand side of (7-1).
First we look for a formal solution of the form

A.u/.t/D

Z 1
0

eit�u.�/ d� (7-3)

of the equation ƒ.t;Dt /A.u/D 0. In order to do so, we replace the coefficients aj , bs by their power
series

ƒ.t;Dt /D

1X
jD0

1X
nD0

aj ;ntnC.2l�j/CD
2k=q�j
t C

1X
jD0

1X
nD0

bj ;ntnD
�j
t ;

where .m/C Dmaxfm; 0g. Taking both t and Dt into the integral sign, we formally obtain

1X
jD0

1X
nD0

Z C1
0

eit��2k=q

"
nC.2l�j/CX

˛D0

Cn;j ;˛�
�j�n�.2l�j/CC˛@˛uC

nX
˛D0

C 0n;j ;˛�
�j�n�2k=qC˛@˛u

#
d�;

where Cn;j ;˛ , C 0n;j ;˛ are constants. We organize the expression in brackets according to its homogeneity:
making the dilation � 7! �� a generic monomial, �˛@ˇ has homogeneity ˛�ˇ. The principal part then
has homogeneity �2l , forgetting about the factor �2k=q in front, and is obtained from the first sum above
when n D 0 and j D 0; : : : ; 2l . We are assuming here that 2l < 2k=q, which is the generic case. If
2l D 2k=q, the second sum above contributes the term .j ; n; ˛/D .0; 0; 0/ to the principal part.

Denote by P�2l.�; @�/ the principal part so obtained. It has the form

P�2l.�; @�/D

2lX
˛D0


˛�
˛�2l@˛� : (7-4)
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As for the terms of lower homogeneity, we note that they are homogeneous of degree either �2l � r or
�2k=q� r . We may gather the terms of equal homogeneity into differential polynomials. To keep the
notation simple, we write the quantity in brackets as

1X
rD0

P�2l�r=q.�; @�/u;

where P�2l�r=q.�; @�/ is a finite linear combination of homogeneous monomials of degree �2l � r=q.
We look for a u of the form

u.�/D

1X
sD0

us.�/ (7-5)

such that
kX

rD0

P�2l�r=quk�r D 0; k D 0; 1; : : : : (7-6)

Let us start with u0; it solves the equation

P�2l.�; @�/u0.�/D 0;

where P�2l is given by (7-4). The latter is a Fuchs type equation and we choose

u0.�/D �
�; (7-7)

where � denotes the solution of the indicial equation associated to (7-4), that is,

2lX
˛D0


˛�.�� 1/ : : : .��˛C 1/D 0; (7-8)

such that
Re�DminfRe� j � is a solution of (7-8)g: (7-9)

Let us next consider the second transport equation in (7-6), corresponding to k D 1.

P�2l.�; @�/u1.�/D�P�2l�1=q.�; @�/u0.�/:

Since the differential operators P�2l�j=q.�; @�/ have homogeneity �2l � j=q, when applied to the
function �� they give a function proportional to ���2l�j=q . Therefore the above equation has the form

P�2l.�; @�/u1.�/D const ���2l�1=q:

Our purpose is to obtain a function u1 having a better growth rate compared to u0 when � ! C1,
that is, such that u1.�/ D O.��/, with Re� < Re�. If Re� has the minimality property (7-9), we
see at once that the exponent in the right-hand side of the above differential equation cannot be a root
of the indicial equation (7-8); thus we can rule out logarithmic factors. Again, keeping in mind the
homogeneity-preserving property of the operators P�2l�j=q , we conclude that

u1.�/D c1�
��1=q:
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We iterate this argument and solve the triangular system (7-6), thus obtaining:

Proposition 7.1. There is a � 2 C, satisfying both (7-8) and (7-9), such that for every s D 0; 1; : : : , the
system (7-6) has a solution us of the form

us.�/D cs�
��s=q: (7-10)

Turning the formal solution (7-5) into a function is easy in the present case: let � 2 C1.R/, �� 0 for
� �R, R> 0, and �� 1 if � � 2R. Define

v.�/D

1X
sD0

�."s�/us.�/; (7-11)

where ."s/s2N denotes a sequence of positive numbers such that "s! 0C in a convenient way.
We need to make sense of A.v/ defined as in (7-3). First of all, we note that there is no problem near

�D 0, since 0 62 supp.v/ (we may always suppose that "s � 1.) If Re� < �1, � defined by (7-8), (7-9),
A.v/ is in C.R/. If Re� � �1, then the integral A.v/ in (7-3) has to be interpreted as an oscillating
integral, and then it always defines a distribution of finite order to which a pseudodifferential operator
can be applied.

We want to show that ƒ.t;Dt /A.v/.t/ 2 C1.R/.

Proposition 7.2. Let A.v/ be defined as in (7-3), with v given by (7-11). Then

ƒ.t;Dt /A.v/.t/ 2 C1.R/: (7-12)

Proof. Actually, all we have to show is that ƒA.v/ is smooth in a neighborhood of the origin, since away
from the origin, A.v/ is smooth.

We start arguing on just one of the two asymptotic expansions that build ƒ, for example, the second
sum in (7-1). The argument for the other is completely analogous and we have to use both sums only
when (7-6) is needed. This is exactly what was done in the proof of Proposition 6.2.6.

Modulo a smoothing operator, we may assume that the symbol of the operator ƒ has the form

ƒ.t; �/�

1X
jD0

bj .t/�."j�/�
�j :

Then

ƒ.t;Dt /A.v/.t/D

1X
jD0

bj .t/

Z C1
0

eit��."j�/�
�jv.�/d�:

Let us consider D˛
t ƒA.v/ and show that this is a continuous function for every ˛. Denote by N 2N a

number to be selected later; then we consider

D˛
t ƒ.t;Dt /A.v/.t/DD˛

t

��N�1X
jD0

C

1X
jDN

�
bj .t/

Z C1
0

eit��."j�/�
�jv.�/ d�

�
D I1C I2: (7-13)
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Consider I2 and let N > Re� C ˛ C 1. Then j�."j�/��jC˛v.�/j D O.�Re��NC˛/, and therefore
I2 2 C.R/. Let us now turn to I1. Let M 2 N and write

I1DD˛
t

N�1X
jD0

�M�1X
nD0

bj ;ntn

Z C1
0

eit��."j�/�
�jv.�/ d�C tM

1X
nD0

bj ;MCntn

Z C1
0

eit��."j�/�
�jv.�/ d�

�
D I11CI12:

Consider first I12. We have

I12 D

N�1X
jD0

1X
nD0

X̨
ˇD0

bj ;MCn

�
˛

ˇ

��
D
˛�ˇ
t tn

� Z C1
0

eit��ˇ.�D�/
M
�
�."j�/�

�jv.�/
�

d�

�

N�1X
jD0

X̨
ˇD0

� 1X
nD0

bj ;MCn

�
˛

ˇ

��
D
˛�ˇ
t tn

�� Z C1
0

eit��ˇ�."j�/.�D�/
M
�
��jv.�/

�
d�;

where the last equality is modulo smooth terms because when the derivative with respect to � lands on
the cutoff function �, it produces a compact support function of �. Moreover, the sum over n on the last
line (in big parentheses) is a real analytic function. The integrand function above is O.�Re��j�MCˇ/, so
that if Re�C˛�M < �1, we obtain that I12 is a continuous function. Note that both N and M so far
satisfy the same condition.

Consider I11.

I11 DD˛
t

N�1X
jD0

�M�1X
nD0

bj ;ntn

Z C1
0

eit��."j�/�
�jv.�/ d�

�

DD˛
t

N�1X
jD0

M�1X
nD0

bj ;n

Z C1
0

eit�.�D�/
n
�
�."j�/�

�jv.�/
�

d�

DD˛
t

N�1X
jD0

M�1X
nD0

bj ;n

�Z 2R=."N�1/

0

C

Z C1
2R=."N�1/

�
eit�.�D�/

n
�
�."j�/�

�jv.�/
�

d�

�D˛
t

N�1X
jD0

M�1X
nD0

bj ;n

Z C1
2R=."N�1/

eit�.�D�/
n
�
��jv.�/

�
d�;

modulo smooth functions. By (7-11), we may write

v D

�N�1X
sD0

C

1X
sDN

�
�."s�/us

and note that the second sum contributes a O.�Re��N=q�j�nC˛/ to the integral. Therefore, if

Re�� N

q
C˛ < �1;
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we have a continuous function. As for the first sum, on the domain of integration, the cutoff is identically
equal to one; thus

I11 �D˛
t

N�1X
sD0

N�1X
jD0

M�1X
nD0

bj ;n

Z C1
2R=."N�1/

eit�.�D�/
n
�
��j us.�/

�
d�:

The same analysis can be applied to the first sum in (7-1), so that eventually we get

D˛
t

N�1X
sD0

N�1X
jD0

M�1X
nD0

Z C1
2R
"

N�1

eit��
2k
q

"
nC.2l�j/CX

˛D0

Cn;j ;˛�
˛�j�n�.2l�j/C@˛uC

nX
˛D0

C 0n;j ;˛�
˛�j�n�2k

q @˛u

#
d�

DD˛
t

N�1X
sD0

Qr.N /X
rD0

Z C1
2R
"

N�1

eit��
2k
q QP�2l�r=q.�; @�/us.�/ d�;

where we have set M D N and Qr.N / � N is a suitable increasing integer function of N , and where
the QP�2l�r=q are differential polynomials homogeneous of degree �2l � r=q. We see that there exists a
number r.N / 2 N such that r.N / < Qr.N /, r.N /!1 for N !1, and (see (7-6))

QP�2l�r=q.�; @�/D P�2l�r=q.�; @�/;

if r < r.N /. Then the above expression can be written as

D˛
t

N�1X
sD0

Qr.N /X
rD0

rCs<r.N /

Z C1
2R
"

N�1

eit��
2k
q P�2l� r

q
.�; @�/us.�/ d�CD˛

t

N�1X
sD0

Qr.N /X
rD0

r.N /�rCs

Z C1
2R
"

N�1

eit��
2k
q QP�2l� r

q
.�; @�/us.�/ d�

DD˛
t

N�1X
sD0

Qr.N /X
rD0

r.N /�rCs

Z C1
2R
"

N�1

eit��
2k
q QP�2l� r

q
.�; @�/us.�/ d�;

because of (7-6). Taking the t -derivative under the integral sign, we see immediately that the integrand is
O.�.2k=q/CRe�C˛�2l�r.N /=q/. If N is large enough, the assertion is then proved. �

Proposition 7.3. A.v/ is not smooth near the origin.

Proof. By Proposition 7.1, v D O.�Re�/, so that v is a microlocally elliptic symbol of order Re�. Hence,
A.v/ cannot be smooth. �

Propositions 7.2 and 7.3 prove statement (iv) of Theorem 1.1.

Appendix A: The adjoint of a product

We prove here a well-known formula for the adjoint of a product of two pseudodifferential operators
using just symbolic calculus. Let a, b be symbols in S0

1;0
.Rt /. We want to show that

.a # b/� D b� # a�; (A-1)
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where # denotes the usual symbolic composition law (a higher-dimensional extension involves just a more
cumbersome notation.)

We may write

.a # b/� D
X

l;˛�0

.�1/˛

˛! l !
@l
�D

l
t

�
@˛� NaD˛

t
Nb
�
D

X
l;˛�0

X
r;s�l

.�1/˛

˛!l !

�
l

r

��
l

s

�
@˛Cr
� Dl�s

t Na@l�r
� D˛Cs

t
Nb:

Let us change the summation indices according to the following prescription: j D ˛C r , ˇC j D l � s,
i D ˛C s, so that l � r D i Cˇ, and we may rewrite the last equality in the above formula as

.a # b/� D
X

i;j ;ˇ�0

X
s�i

.�1/i�s

.i � s/!.ˇC j C s/!

�
ˇC j C s

j � i C s

��
ˇC j C s

s

�
@iCˇ
� Di

t
Nb@j
�D

ˇCj
t Na:

Let us examine the s-summation; we claim that

iX
sD0

.�1/i�s

.i � s/!

1

.ˇC i/!.j � i C s/!

�
ˇC j D s

s

�
D

1

ˇ!i !j !
:

This is actually equivalent to
iX

sD0

.�1/i�s

�
i

s

��
ˇC j C s

ˇC i

�
D

�
ˇC j

j

�
:

Setting i � s D � 2 f0; 1; : : : ; ig, the above relation is written as

iX
�D0

.�1/�
�

i

�

��
ˇC i C j � �

ˇC i

�
D

�
ˇC j

j

�
;

and this is precisely identity (12.15) in [Feller 1957, Chapter II].
Thus we may conclude that

.a # b/� D
X
i;j ;ˇ

1

ˇ!i ! j !
@iCˇ
� Di

t
Nb@j
�D

jCˇ
t NaD

X
ˇ�0

1

ˇ!
@ˇ�

�X
i�0

1

i!
@i
�D

i
t
Nb

�
D
ˇ
t

�X
j�0

1

j !
@j
�D

j
t Na

�
D b� # a�:

This proves (A-1).
As a byproduct of the above argument, we get the identityX

i;j ;ˇ

1

ˇ!i ! j !
@iCˇ
� Di

t
Nb@j
�D

jCˇ
t NaD

X
l;˛�0

.�1/˛

˛! l !
@l
�D

l
t

�
@˛� NaD˛

t
Nb
�
; (A-2)

which is the purpose of this appendix.
We would like to point out that the relation .a�/� D a rests on the identityX

l�0

1

l!
@l
�D

l
t

�X
˛�0

1

˛!
@˛�D˛

t Na

�
D

X
s�0

1

s!

� X
lC˛Ds

s!

l !˛!
.�1/˛

�
@s
�D

s
t aD

X
s�0

1

s!
.1�1/s@s

�D
s
t aD a: (A-3)
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Appendix B: Proof of Theorem 6.2.8

We include in this section the proof of Theorem 6.2.8 for pseudodifferential operators in the Gevrey case,
which is the case needed in our argument. Métivier [1980] gives the proof of the same theorem in the
analytic category for differential operators, and states that its extension to the pseudodifferential case has
no major difficulties. We argue along the same lines.

Since pseudodifferential operators are involved in an essential way, we first recall the definition of
hypoellipticity; even though the material is well known, it is useful to state it here for future reference.

When we use a pseudodifferential operator, or its symbol, we mean either a pseudodifferential operator
in the C1 or in the Gevrey category. In the latter case, although the symbols involved may be analytic
functions, the cut off functions will of course be in Gevrey classes (see also Lemmas 5.3 and 5.4 for the
construction of some cutoff functions.)

Definition B.1. Let P .x;Dx/ denote a properly supported pseudodifferential operator acting on the
distributions. We say that P is hypoelliptic at the point x0 if and only if there exists an open set �,
x0 2�, such that for every open set V b� and for every u 2 D0.�/, we have

.Pu/jV 2 C1) ujV 2 C1

or
.Pu/jV 2Gs

) ujV 2Gs;

for s > 1.

It is well known that (not properly supported) pseudodifferential operators can be extended as operators
from E0.�/! D0.�/. Thus we may also give the following definition:

Definition B.2. Let P .x;Dx/ denote a pseudodifferential operator, which we suppose defined in Rn and
not properly supported, acting on distributions. We say that P is hypoelliptic at the point x0 2 Rn if and
only if there exists an open set � containing x0 and such that for every open set V b� and for every
u 2 E0.�/, we have

.Pu/jV 2 C1) ujV 2 C1

or
.Pu/jV 2Gs

) ujV 2Gs;

for s > 1.

Proposition B.3. Let P denote a properly supported pseudodifferential operator. Then Definition B.2 is
equivalent to Definition B.1.

Proof. Let us show first that B.2 implies B.1. Let � be the open set from Definition B.2 and let u2D0.�/.
We want to show that for every V b�, if, for example, .Pu/jV 2 C1, then ujV 2 C1. The assertion in
the Gevrey category will have a completely analogous proof.

Let Nx 2 V and ' 2 C1
0
.V / such that ' � 1 on V1 b V , Nx 2 V1. Since .Pu/jV 2 C1, we have

PuD P .'u/CP ..1�'/u/ 2 C1:
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Since P is properly supported, we have P D P1CRP , where RP WD
0.�/! C1.�/ is a regularizing

operator and P1 enlarges support by a fixed quantity, that is, supp.Pf /� .suppf /ı for a certain positive ı,
where if A� Rn, Aı D fx 2 Rn j dist.x;A/� ıg.

Now

C13 .Pu/jV1
D .P .'u//jV1

C
�
P ..1�'/u/

�
jV1

D .P .'u//jV1
C
�
P1..1�'/u/

�
jV1

C
�
RP ..1�'/u/

�
jV1

:

The third term is obviously smooth and the second term vanishes if dist.V1; {V / > ı.
Therefore .P .'u//jV1

2 C1 implies, by Definition B.2, that 'u 2 C1.V1/ or, since ' � 1 on V1,
that u 2 C1.V1/. Since the choice of the point Nx is arbitrary, we obtain that u 2 C1.V /, and hence the
conclusion in Definition B.1.

The converse implication is easier. Assume that Pu 2 C1.V /, with u 2 E0.�/. Again .Pu/jV D

.P1u/jV C .RP u/jV , where RP WE
0.�/! C1.�/. Thus .Pu/jV 2 C1 implies that .P1u/jV 2 C1, so

that, by Definition B.1, ujV 2 C1. This proves the proposition. �

The next proposition shows that, in order to prove that a pseudodifferential operator is hypoelliptic,
it is enough to show that the corresponding properly supported operator is hypoelliptic according to
Definition B.2.

Proposition B.4. Let P denote a pseudodifferential operator. Then P is hypoelliptic (Gs-hypoelliptic,
s > 1) at the point x0 if and only if P1 is hypoelliptic (resp. Gs-hypoelliptic, s > 1) at x0 according
to Definition B.2. Here we denote by P1 a properly supported operator such that P D P1CRP , with
RP WE

0.�/! C1.�/.

Proof. Assume that P is hypoelliptic at x0 and let � be the open neighborhood of x0 from Definition B.1.
We assume that for every V b�, x0 2 V , .P1u/jV 2 C1 with u 2 E0.�/. As we did above, we point
out that .Pu/jV D .P1u/jV C .RP u/jV 2 C1, and this implies that ujV 2 C1.

The converse statement has a completely analogous proof.
Again we remark that the proof in the Gevrey category is exactly the same. �

We now turn to proving Theorem 6.2.8. We start by recalling without proof a couple of facts about
cutoff functions. This is also useful to establish the notation.

Lemma B.5. There is a positive constant 
0, depending only on n, the dimension of the ambient space,
such that for every pair of open subsets !0 b ! b Rn, there is a sequence of functions .�k/k2N in D.!/,
�k j!0

� 1, and such that for every k 2 N, for every multi-index ˛ 2 Nn with j˛j � k, we have

kD˛�kk1 �

�
0k

r

�j˛j
; (B-1)

where r D dist.!0; {!/ > 0.

Lemma B.6. Let !0, !, �k be as in the previous lemma and satisfying (B-1). Then there is a positive
constant 
 such that for every k 2 N and for every u 2H k.!/, we have

kj�kukjk;Rn � 
 k
kjukjk;! ; (B-2)
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where the three bar norm, defined right after Theorem 6.2.8, has the meaning

kjukjk;! D

kX
˛D0

kk�˛
kD˛uk0;! : (B-3)

Lemma B.7. Let � denote a neighborhood of x0 2 Rn and let B be a Banach space continuously
injecting into L2.�/. Assume that x0 62 sing supps u for every u 2 B, where sing supps u denotes the
Gevrey s-singular support of u, and s > 1. Then there are neighborhoods !0 b ! b� of x0, functions �k

satisfying (B-1), and positive constants 
 and C such that for every k 2 N and every u 2 B,

j�jk b�ku 2L2.Rn/;

or, in different terms,
kj�jk b�kuk0;Rn � C.
ks/kkukB:

Proof. For ! b Rn and L> 0, let us denote by gs
L
. N!/ the Banach space of all Gevrey s-functions on N!

such that
kukgs

L
. N!/ D sup

˛

kD˛uk0;!

˛!sLj˛j
<C1: (B-4)

Then the space of all functions being Gevrey s at the point x0 can be written as

ind limN!1 gs
N .B.x0;N�1//:

Using Theorem 1 on p. 147 of [Grothendieck 1973], we can see that there exist a neighborhood ! of the
point x0 and a constant L> 0 such that the map u 7! uj! is continuous from B to gs

L
. N!/. Denote by C

its norm.
Let !0 b ! and let �k be functions as in Lemma B.5. We therefore have

D˛.�ku/




0;Rn �

X
ˇ�˛

�
˛

ˇ

��

0k

r

�jˇj
.˛�ˇ/!sLj˛�ˇjkuj!kgs

L
. N!/:

For j˛j � k we may estimate .˛�ˇ/!s � ksj˛�ˇj, so that

D˛.�ku/




0;Rn � C

�
LC


0

r

�j˛j
ksj˛j
kukB

and 

j�jk b�ku




0;Rn � nk=2C
�
LC


0

r

�k
ksk
kukB;

which is the statement of the lemma. �

Next we remark that there is a constant 
1 � 1 such that for every k 2 N and every u 2H k.Rn/, we
have


 k
1 kjukj

2
k;Rn �

Z
Rn

.kCj�j/2k
j Ou.�/j2 d� � 
 k

1 kjukj
2
k;Rn : (B-5)

Now define, for s > 1,
G.s/ D

˚
u 2L2.Rn/

ˇ̌
ej�j

1=s

Ou.�/ 2L2.Rn/
	
: (B-6)
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Once we equip G.s/ with the norm kukG.s/Dke
j�j1=s

Ouk0;Rn , we see that G.s/ is a Hilbert space of Gs.Rn/

functions.

Lemma B.8. Let k be an integer � 1 and for j D 0; 1; 2; : : : , let Nj D k2j . Then every function
u 2H k.Rn/ can be written as the series

uD

1X
jD0

uj ;

where uj 2G.s/, and such that

1X
jD0

N 2ks
j

�
kujk

2
0;Rn C e�2Nj kujk

2
G.s/

�
� 2.2
1/

k
kjukj2k;Rn : (B-7)

Proof. For j D 0; 1; : : : (and setting N�1 D 0), we have

uj .x/D .2�/
�n

Z
Nj�1�j�j1=s<Nj

eihx;�i
Ou.�/ d�:

If j�j �N s
j , then ej�j

1=s

� eNj , so that kujkG.s/ � eNj kujk0;Rn . Furthermore, when j�j �N s
j�1

, we have
N s

j � 2s.j�jC k/ and

1X
jD0

N 2ks
j kujk

2
0;Rn �

Z
Rn

�
2s.j�jC k/

�2k
j Ou.�/j2 d�;

which allows us to conclude. �

Next we prove an inverse of the preceding lemma, but on a neighborhood of the point x0.
As above, let � be a neighborhood of x0 and let B be a Banach space of functions of class Gs at x0

such that the injection from B to L2.�/ is continuous.

Lemma B.9. There is a neighborhood !0 b� of x0 and a positive constant C such that for every k � 1

and every sequence uj , j D 0; 1; 2; : : : , uj 2 B, satisfying

1X
jD0

N 2ks
j

�
kujk

2
0;�C e�2Nj kujk

2
B

�
Dˆ2

k.uj / <C1;

the series

uD

1X
jD0

uj (B-8)

converges in L2.�/ and uj!0 2H k.!0/, with the inequality

kuj!0kk;!0 � C kC1ˆk.uj /:

Proof. The convergence of the series (B-8) in L2.�/ is a direct consequence of the assumption that
ˆk.uj / <C1.
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Applying Lemma B.7, we obtain neighborhoods !0 b ! b� of the point x0, positive constants 
 , C0,
and a sequence of cutoff functions �N 2 D.!/, �N � 1 on !0, such that for every N and every function
u 2 B we have the estimate 



� j�j
N s

�N b�N u






0;Rn

� C0kukB: (B-9)

Define the functions

�.j ; �/D e�Nj
�
j�j


N s
j

�Nj
(B-10)

and
gj .�/D

�
1C �.j ; �/

�3�Nj uj .�/: (B-11)

Both (B-9) and (B-11) yield

kgjk0;Rn � kujk0;�CC0e�Nj kujkB;

so that
1X

jD0

N 2ks
j kgjk

2
0;Rn � 2.1CC 2

0 /ˆ
2
k.uj / <C1: (B-12)

Let us now define

v D

1X
jD0

�Nj uj :

Of course v 2L2.�/ and, by definition, v coincides with u on !0. Therefore it is enough to show that
v 2H k.Rn/ and that the estimate

kvkk;Rn � C kC1ˆk.uj /

holds. Actually one already has the estimate

kvk0;Rn �

1X
jD0

kujk0;Rn � 2ˆk.uj /:

We only have to show then that j�jk Ov 2L2.Rn/ and that the estimate

j�jk Ov


0;Rn � C kC1ˆk.uj / (B-13)

holds, where the constant C is independent of k.
To this end, using (B-11), we write

j�jk Ov.�/D

1X
jD0

�
1C �.j ; �/

��1
gj .�/j�j

k :

We have

j�j2k
j Ov.�/j2 �

� 1X
jD0

jgj .�/j
2N 2ks

j

�
�.�/;
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where

�.�/D

1X
jD0

�
j�j

N s
j

�2k�
1C �.j ; �/

��2
D

1X
jD0

‰j .�/:

Because of (B-12), it suffices to prove that

k�.�/k1 � C kC1: (B-14)

We argue in two different cases. The first region is 
 e2N s
j � j�j. Then

‰j .�/� 

2k

�
j�j


N s
j

�2k�2Nj

e2Nj � .
 e2/2ke�2Nj :

As a consequence, X

e2N s

j
�j�j

‰j .�/� C1.
 e2/2k :

If now 
 e2N s
j � j�j, let j0 Dminfj j 
 e2N s

j � j�jg for a fixed � . We have

‰j .�/� 

2k

�
j�j


N s
j

�2k

D 
 2k

�
j�j


N s
j0

�2k�
Nj0

Nj

�2ks

� .
 e2/2k

�
1

2j�j0

�2ks

:

Therefore X

e2N s

j
�j�j

‰j .�/� .
 e2/2k

� 1X
jD0

2�j

�2ks

D .
 e22s/2k :

This proves the lemma. �

We now want to prove the following theorem in a Gevrey pseudodifferential setting. Define

ŒŒu��s;k;! D

kX
˛D0

ks.k�˛/
kD˛uk0;! : (B-15)

Note that ŒŒu��1;k;! D kjukjk;! .

Theorem B.10 [Métivier 1980, Theorem 3.1]. Let P .x;D/ be a real analytic pseudodifferential operator.
Let x0 2 Rn and let � denote a neighborhood of x0. Let x0 2 U b� be an open set.

Assume that there is a bounded operator RWL2.U /!L2.K/, where K is a suitable compact subset
of �, such that .PRu/jU D ujU . Here L2.K/ denotes the set of all functions in L2.�/ whose support is
contained in K.

The operator P is Gevrey s-hypoelliptic at x0 if and only if :

(i) For any neighborhood ! of x0, there exists a neighborhood !00b! such that Puj! 2H k.!/ implies
uj!00 2H k.!00/.

(ii) For any neighborhoods of x0 !
iv b !000 b !00, there are positive constants C , L such that

kukk;!iv � CLk
�
ŒŒP .'u/��s;k;!000 C k!skuk0;!00

�
(B-16)
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for any u 2 E0.�/ where ' 2 C1
0
.!00/, ' � 1 on a neighborhood of !000, and C , L are independent

of k and u. Here kukk;! denotes the usual Sobolev norm of order k on the open set !.

Remark B.11.

1. Since P has an analytic symbol,

sing supp!
�
.P .'u//j

!000
� .Pu/j

!000

�
D∅:

2. It is not difficult to show that the operator ƒ of Section 6 has a local right inverse as in the statement
by using Theorem 3.4 of [Kumano-go 1982] and Theorem 4.3.

3. For the limited purpose of this paper, a weaker result would have been enough. We are allowed to
have the constants C , L depending on u but not on k. This is much easier to prove and we do not
need for this Lemma B.12.

Proof. If (i) and (ii) hold, then clearly P is Gevrey s-hypoelliptic at x0.
Conversely, assume that P is Gs-hypoelliptic at the point x0. First we prove (i).
Let ! �� be an open neighborhood of x0. We choose an open subset !1 b !, x0 2 !1, and cutoff

functions �k 2 C1
0
.!/, k 2 N, as in Lemma B.5 such that (B-1) is satisfied and �k � 1 on !1.

Let u 2 E0.�/ and assume that .Pu/j! 2H k.!/, k 2 N.
Set

f D �kPu:

Clearly f is defined on the whole of Rn, and more precisely f 2H k.Rn/. Applying Lemma B.6 to the
function f , we obtain that

kjf kjk;Rn � 
 k
kjPukjk;! ; (B-17)

for a suitable positive constant 
 independent of k.
Furthermore, applying Lemma B.8 to the same function f , we write

f D

1X
jD0

fj ;

with fj 2G.s/ (see (B-6) for a definition of G.s/), and the following inequality holds:
1X

jD0

N 2ks
j

�
kfjk

2
0;Rn C e�2Nj kfjk

2
G.s/

�
� 2.2
1/

k
kjf kj2k;Rn : (B-18)

Denote by QG.s/ the space of all restrictions to U of the functions in G.s/ compactly supported in U , and
let B.s/DR QG.s/ equipped with the norm defined by kR.gjU /kB.s/ DkgkG.s/ . Fix an open neighborhood
U 0bU of x0 and choose a Gevrey cutoff function  2C1

0
.U /, 0� � 1, of Gevrey order s0, 1< s0< s,

such that  jU 0 � 1. Set

vj DR. fj jU
/: (B-19)
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Clearly vj 2B.s/ and vj is a function of class Gs near the point x0. In fact .Pvj /jU D .PR. fj jU
//jU D

. fj /jU . The latter is a Gevrey function of order s and, since P is Gs-hypoelliptic, we conclude. We
have the inequality

1X
jD0

N 2ks
j

�
kvjk

2
0;�C e�2Nj kvjk

2
B.s/

�
� 2.C CkRk

2/.2
1/
k
kjf kj2k;Rn : (B-20)

Here C is a positive constant only depending on  and kRk denotes the norm of the operator R as an
operator from L2.U / into L2.K/.

Using (B-20) and Lemma B.9, we obtain that the series
P1

jD0 vj converges in L2.K/. Denote by v
its sum. From the same lemma, we also get that there is an open set !0 b ! such that

vj!0 2H k.!0/

and
kvkk;!0 � C kC1

kjf kjk;Rn ; (B-21)

for a suitable positive constant C . Observe that we may, possibly shrinking !0 as necessary, suppose
that !0 � !1. Consider now the function .P .u� v//j!0 . Due to that choice of !0, we evidently have
.Pu/j!0 D fj!0 . Then remark that, since

v D

1X
jD0

R. fj jU
/DR

� 1X
jD0

 fj jU

�
DR. fjU /;

we have that P can be applied to v and .Pv/jU 0 DfjU 0 . Possibly shrinking the open set !0 so that !0�U 0,
we have in particular that �

P .u� v/
�
j!0
D 0: (B-22)

Note that because of the hypoellipticity assumption for P , we deduce that u� v 2Gs.!0/. Furthermore,
taking !00 b !0, we obtain that u� v 2Gs.!00/. This proves assertion (i).

Next we prove (ii). In order to do that, we need to further shrink the neighborhoods of x0 involved, in
such a way that we already know that in that neighborhood u belongs to H k and is compactly supported.
Actually we proved that uj!00 2H k.!00/. Let !000 b !00 and choose cutoff functions Q�k 2 C1

0
.!000/,

such that Q�k � 1 in !000
1
b !000. Let Qf D Q�kPu. Let also ' 2 C1

0
.!00/, ' � 1 on Q!000 c !000. Note that

'u 2H k.Rn/ and its support is contained in !00. Due to the pseudolocality property of P , we have

sing supp!
�
.P .'u//j Q!000 � .Pu/j Q!000

�
D∅;

and in particular we have .P .'u//j!000 2H k.!000/. This implies in turn that Q�kP .'u/ 2H k.Rn/.
Arguing as above, and possibly enlarging the compact set K ��, we obtain that .P .'u� Qv//j!000 D 0

and 'u� Qv 2L2.K/\Gs.!000/. Recall that here L2.K/ denotes the set of all functions in L2.�/ whose
support is contained in K.
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Lemma B.12. Let X denote the space of all the functions u 2Gs.!000/\L2.K/ such that .Pu/j!000 D 0.
Equipped with the L2.�/ norm, X becomes a Banach space. Then for every !iv b !000, there exists a
constant C2 > 0, such that for any multi-index ˛,

sup
!iv

j@˛u.x/j � C
j˛j
2
˛!skuk0;K ; (B-23)

for every u 2X .

Applying the lemma, we immediately get that for any !iv b !000 and for any k 2 N, we have

k'u� Qvkk;!iv � C kC1
2

k!sk'u� Qvk0;K : (B-24)

On the other hand, we also have

k Qvk0;!iv � kRkk Qf k0;Rn � kRkkP .'u/k0;!000

and
k!skP .'u/k0;!000 � ŒŒP .'u/��s;k;!000 ;

as well as
kjukjk;!000 � ŒŒu��s;k;!000 ; s � 1:

Thus

k'ukk;!iv � k'u� Qvkk;!iv CkQvkk;!iv

� C kC1
2

k!sk'u� Qvk0;K CC kC1
kj Qf kjk;Rn

� C kC1
 k
kjP .'u/kjk;!000 CC kC1

2
k!s
�
k Qvk0;K Ck'uk0;K

�
� C kC1
 k

kjP .'u/kjk;!000 CC kC1
2

k!skRkkP .'u/k0;!000 CC kC1
2

k!sk'uk0;K

� C kC1
 k
kjP .'u/kjk;!000 CC kC1

2
kRkŒŒP .'u/��s;k;!000 CC kC1

2
k!skuk0;!00

� C3Lk
�
ŒŒP .'u/��s;k;!000 C k!skuk0;!00

�
:

This proves the theorem. �

Proof of Lemma B.12. It is an application of the Baire category theorem. For j 2 N and for a certain
!iv b !000, define

Xj D
˚
u 2X

ˇ̌
j@˛u.x/j � j j˛jC1˛!s; for all ˛ and all x 2 !iv

	
:

Trivially,

X D

1[
jD1

Xj :

Next we show that the sets Xj are closed with respect to the L2.�/ topology of X . Let .un/n2N be a
sequence in Xj converging to u0 2X . As a consequence, the derivatives @˛un are uniformly bounded
in !iv so that the functions @ˇun are equicontinuous if jˇj< j˛j. Applying the Arzelà–Ascoli theorem,
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we obtain that for any l 2 N, there exists a subsequence unr ;l converging in C .l/.!iv/ to an element
u.l/ 2 C .l/.!iv/. Hence u0 D u.l/ in !iv and

j@˛u0.x/j � j j˛jC1˛!s; for all j˛j � l and all x 2 !iv:

This implies u0 2 Xj . By the Baire category theorem, there are an index j0, a number " > 0, and a
function Qu 2Xj0

such that
B D

˚
u 2X

ˇ̌
ku� Quk0;K � "

	
�Xj0

; (B-25)

where we wrote k k0;K since the support of u, Qu is contained in K. Now for every u 2X , let

v D ı
u

kuk0;K
C Qu 2 B; if jıj< ":

Thus

uD
kuk0;K

ı
.v� Qu/

and ˇ̌
@˛u.x/

ˇ̌
�
kuk0;K

ı

�
j@˛vjC j@˛ Quj

�
�Rj˛jC1˛!skuk0;K :

This proves the lemma. �
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