Vol. 6, No. 5, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 5, 1083–1342
Issue 4, 813–1081
Issue 3, 555–812
Issue 2, 263–553
Issue 1, 1–261

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
A Lichnerowicz estimate for the first eigenvalue of convex domains in Kähler manifolds

Vincent Guedj, Boris Kolev and Nader Yeganefar

Vol. 6 (2013), No. 5, 1001–1012

In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies Ric k for some constant k > 0. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field.

We show that a ball of sufficiently large radius in complex projective space provides an example of a strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails.

Lichnerowicz estimate, first eigenvalue, convex domains in Kähler manifolds
Mathematical Subject Classification 2010
Primary: 35P15, 58C40
Received: 25 January 2012
Revised: 10 June 2012
Accepted: 27 September 2012
Published: 3 November 2013
Vincent Guedj
Institut Universitaire de France and Institut Mathematiques de Toulouse
Universite Paul Sabatier
118 route de Narbonne
F-31062 Toulouse Cedex 9
Boris Kolev
Laboratoire d’Analyse, Topologie, Probabilités
CNRS & Aix-Marseille University
39 rue F. Joliot-Curie
13453 Marseille Cedex 13
Nader Yeganefar
Laboratoire d’Analyse, Topologie, Probabilités
Aix-Marseille University
39 rue F. Joliot-Curie
13453 Marseille Cedex 13