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A NEKHOROSHEV-TYPE THEOREM FOR
THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS

ERWAN FAOU AND BENOIT GREBERT

We prove a Nekhoroshev type theorem for the nonlinear Schrédinger equation
iup=—Au+Vxu+0d;gu,u), x eT?,

where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we
prove that if the initial datum is analytic in a strip of width p > 0 whose norm on this strip is equal to ¢,
then if ¢ is small enough, the solution of the nonlinear Schrédinger equation above remains analytic
in a strip of width p/2, with norm bounded on this strip by Ce over a very long time interval of order
golne ‘B, where 0 < B < 1 is arbitrary and C > 0 and ¢ > 0 are positive constants depending on f and p.

1. Introduction and statements
We consider the nonlinear Schrodinger equation
iup=—Au+V xu+0d;gu,u), xer, t e R, (1-1)

where V' is a smooth convolution potential and g is an analytic function on a neighborhood of the origin
in C? which has a zero of order at least 3 at the origin and satisfies g(z, Z) € R. In more standard models,
the convolution term is replaced by a multiplicative potential. The use of a convolution potential makes
the analysis of the resonances easier.
For instance, when 4
=\ 2p+2
gu,u) = ——lu|
p+1

with @ € R and p € N, we recover the standard NLS equation iu; = —Au+V xu+a|u|*Pu. Equation (1-1)
is a Hamiltonian system associated with the Hamiltonian function

H(u,i) = /Td(Wu|2 + (V> u)i + g(u, a))dx

and the complex symplectic structure 7 du A du.

This equation has been considered with Hamiltonian tools in [Bambusi and Grébert 2003; Eliasson
and Kuksin 2010]. The first of these papers (see also [Bambusi and Grébert 2006; Bourgain 1996] for
related results) contains a Birkhoff normal form theorem adapted to this equation and discusses dynamical
consequences on the long time behavior of the solutions with small initial Cauchy data in Sobolev spaces.

MSC2010: 35B40, 35Q55, 37K55.
Keywords: Nekhoroshev theorem, nonlinear Schrodinger equation, normal forms.
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1244 ERWAN FAOU AND BENOIT GREBERT

More precisely, it is proved that for s sufficiently large, if the Sobolev norm of index s of the initial datum
ug is sufficiently small (of order ¢), then the Sobolev norm of index s of the solution is bounded by 2¢
during a very long time (of order e~ with r arbitrary). In the second paper cited, Eliasson and Kuksin
obtain a KAM theorem adapted to this equation. In particular, they prove that in a neighborhood of
u = 0, many finite-dimensional invariant tori associated with the linear part of the equation are preserved
by small Hamiltonian perturbations. In other words, (1-1) has many quasiperiodic solutions. In both
cases, nonresonance conditions have to be imposed on the frequencies of the linear part, and thus on the
potential V' (these are not exactly the same in the two different cases).

Both results are related to the stability of the zero solution, which is an elliptic equilibrium of the
linear equation. The first result establishes the stability for polynomials’ times with respect to the size of
the (small) initial datum, while the second proves the stability for all time of certain solutions. In the
present work, we extend the technique of normal forms, establishing the stability of the solutions for

. _ 8
times of order ¢~ el

for some constants 0 > 0 and < 1, with ¢ being the size of the initial datum in
an analytic space.

We now state our result more precisely. We assume that for m > d/2, R > 0, V belongs to the space

. 1 m
W = {V(x) = Z wee'* v, = w € [—%, %] for any a € Zd}, (1-2)
aczd
which we endow with the product probability measure. Here, for a = (ay,...,ayq) € 7%, we set

|a|? =a% +---—|—afi.

For p > 0, we denote by o, = o, (T4;C) the space of functions ¢ that are analytic on the complex
neighborhood of a d-dimensional torus T¢ given by I, = {x +iy | x € T?, y € R and |y| < p} and
continuous on the closure of this strip. We then denote by |- |, the usual norm on % ,:

#lp = sup [p(2)].

zel,

We note that (sdp, | - |,) is a Banach space.
Our main result is a Nekhoroshev type theorem:

Theorem 1.1. There exists a subset V' C Wy, of full measure, such that for V. eV, 8 <1 and p > 0, the
following holds: there exist C > 0 and g¢ > 0 such that if

ug € Arp and |ugly, =€ < gy,

then the solution of (1-1) with initial datum u exists in s,/ for times |t| < 7% nel® and satisfies
Olpj2 < Ce for |t <o Mnel”, (1-3)
with o, = min{ll—o, %p} Furthermore, writing u(t) = > & (Z)eik'x, we have
kezd
3 P lge ()]~ 15 O)]| < €32 for|r] < gmo0el”, (1-4)

kezd
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Estimate (1-4) asserts that there is almost no variation of the actions’.

In finite dimension #, the standard Nekhoroshev result [1977] controls the dynamic over times of order
exp(o/e!/ @+ D) for some o > 0 and T > n + 1 (see, for instance, [Benettin et al. 1985; Giorgilli and
Galgani 1985; Poschel 1993]), which is of course much better than g0 lnel? _ poling1HH Nevertheless,
this standard result does not extend to the infinite-dimensional context. Actually, that the term g~/ @+
in the exponential validity time can be replaced by |In 8|(1+'B) at the limit n — oo is good news!

To our knowledge, the only previous works in the direction of obtaining Nekhoroshev estimates for
PDEs were obtained by Bambusi [1999a; 1999b]. However, the result in [Bambusi 1999a], which develops
ideas expressed by Bourgain [1996], concerns a smaller set of functions made of entire analytic functions
only, and nevertheless yields a weaker control on a large but finite number of modes.

The five main differences with the previous works on normal forms are:

¢ In the finite-dimensional case and in Bambusi’s work, the central argument consists in optimizing
the order of the Birkhoff normal form with respect to the size of the initial datum. Here we introduce
a Fourier truncation and we optimize the order of the Birkhoff normal form and the order of the
truncation.

e We prove in the Appendix that, generically with respect to V', the spectrum of —A + V x satisfies a
nonresonance condition much more efficient than the standard one (see Remark 2.7).

e We use £!-type norms to control the Fourier coefficients and the vector fields instead of the usual
£-type norms. Of course this choice does not allow us to work in Hilbert spaces and induces a
slight loss of regularity each time the estimates are transposed from the Fourier space to the initial
space of analytic functions. But it turns out that this choice simplifies the estimates on the vector
fields (see Proposition 2.5 below and [Faou and Grébert 2011] for a similar framework in the context
of numerical analysis).

e We use the zero momentum condition: in the Fourier space, the nonlinear term contains only
monomials zj, ...zj, with j; +---+ jr = 0 (see Definition 2.4). This property allows us to control
the largest index by the others.

» We notice that the Hamiltonian vector field of a monomial zj, ... z;, containing at least three Fourier
modes z; with large indices £ induces a flow whose dynamics is controlled during a very long time in
the sense that the dynamic almost excludes exchanges between high Fourier modes and low Fourier
modes (see Proposition 2.11). In [Bambusi 2003; Bambusi and Grébert 2006], such terms were
neglected since the vector field of a monomial containing at least three Fourier modes with large
indices is small in Sobolev norm (but not in analytic norm), and thus will almost keep all the modes
invariant. This more subtle analysis was also used in [Faou et al. 2010].

Our method could be generalized by considering not only zero momentum monomials but also
monomials with finite or exponentially decreasing momentum. This would certainly allow us to consider a
nonlinear Schrodinger equation with a multiplicative potential V' and nonlinearities depending periodically

Here the actions are the square of the modulus of the Fourier coefficients, I, = |£|?.
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on x:
iup=—Au+Vu+dzg(x,u,ii), xeT

Nevertheless, this generalization would generate a lot of technicalities and we prefer to focus in the
present article on the simplicity of the arguments.

2. Setting and hypothesis

2A. Hamiltonian formalism. Equation (1-1) is a semilinear PDE locally well posed in the Sobolev
space H® (Td ) with s > d /2 (see, for instance, [Cazenave 2003]). Let u be a (local) solution of (1-1) and
consider (£, 1) = (£4.Ma)4eza the Fourier coefficients of u, i

u(x) =Y &€ and d(x)= ) nee . (2-1)

aez4 aez4

A standard calculation shows that u is a solution in H*(T¢) of (1-1) if and only if (£, ) is a solution in?

£2 x £2 of the system
: . . dP d
o =—lwgég—i——, aecZ,

g

(2-2)
g = [ WaNg — i op ae7
77a - ana aga ’ )

where the linear frequencies are given by w, = |a|? + vg4. As in (1-2), the notation is V = 3 vge!%*.

The nonlinear part is given by

P ) = ﬁ A ,,g(Z Eae' Y nae"’“'X) dx. (2-3)

This system is Hamiltonian when endowing the set of pairs (&4, n,) € €% x € with the symplectic
structure
i) dgg Adig. (2-4)
aczd

We define the set % = 79 x {£1}. For j = (a,8) € %, we define | j| = |a| and we denote by j the index
(a, —9).

We identify a pair (£, 1) € % x €% with (zj)jex € C* via the formula
zj =& iféd=1,

2-5
zj =1Ma ifé=-1 (23

j=(aé)e¥ = {

By a slight abuse of notation, we often write z = (£, ) to denote such an element.
For a given p > 0, we consider the Banach space £, made of elements z € C* such that

Izl = ePVl|zj] < o

JE%

2As usual, €2 = {(Ea)geza | S0 + [a]2)[Ea]? < +00}.
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using the symplectic form (2-4). We say that z € &, is real when z F=Zj for any j € %. In this case,

we write z = (£, &) for some & € C%’ . In this situation, we can associate with z the function u defined
by (2-1).
The next lemma shows the relation with the space s, defined above:

Lemma 2.1. Let u be a complex valued function analytic on a neighborhood of T4, and let (zj)jex be
the sequence of its Fourier coefficients defined by (2-1) and (2-5). Then for all ;1 < p, we have

ifued, thenze¥, and |z =<cpululp. (2-6)
ifze%,, thenuedy, and |uly=cpullzlp. (2-7)
where ¢, is a constant depending on p and . and the dimension d.

Proof. Assume that u € s1,. Then by using the Cauchy formula, we get |z;| < |u| pe_pU | for all j € %.
Hence, for u < p we have

d
w—p)lJ| )\ 2
”Z”M§|u|pze §|u|p 229 Vd =< G |M|p.

jex nez l—e vd

Conversely, assume that z € &£,. Then |&,| < ||z||pe_"’|‘7‘| for all a € Z%, and thus by (2-1), for all x € T¢
and y € R? with |y| < u, we get

d
) (o 2
u(x +iy)| < Y [gale!®! < |z]l, Y emlemmlal < (ﬁ) 12]-

acz4 acz4 l—e V4

Hence, u is bounded on the strip /. O

For a function F of 6! (£, C), we define its Hamiltonian vector field by Xg = JV F, where J is the
symplectic operator on £, induced by the symplectic form (2-4), VF(z) = (0F/0zj);je%, and where by
definition, for j = (a,8) € Z% x {+1} we set

aF .
I s =1,
or _ )&
0zj OF s — 1.
377a

For two functions F and G, the Poisson bracket is (formally) defined as

OF 0G  OF oG
F.G\=VFTJVvG =i —_— 2-8
e "2 s, 38 o e

We say that a Hamiltonian function H is real if H(z) is real for all real z.
Definition 2.2. For a given p > 0, we denote by ¥, the space of real Hamiltonians P satisfying

Pe%'(%,,C) and Xpee (£, %,).
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For F and G in %, the formula (2-8) is well defined. With a given Hamiltonian function H € J(,, we
associate the Hamiltonian system
z=Xg(z)=JVH(2),

which also reads
M =i 74 (2-9)
&a lana and 1, laéa’ a .
We define the local flow CD% (z) associated with the previous system (for an interval of times ¢ > 0
depending a priori on the initial condition z). If z = (£, ) and if H is real, the flow (§’, ") = ®%, (2) is
also real; &' = 7! for all . Choosing the Hamiltonian given by

H(¢.n) = Z wa€aa + P&, 1),
aczd
P being given by (2-3), we recover the system (2-2), that is, the expression of the NLS equation (1-1) in
Fourier modes.

Remark 2.3. The quadratic Hamiltonian Hy = ) _,c7a wa€ana corresponding to the linear part of (1-1)
does not belong to J¢,. Nevertheless, it generates a flow which maps ¥, into &£, explicitly given for all
time ¢ and for all indices a by &, () = e /94’ £,.(0), 14 (t) = '®' ;. (0). On the other hand, we will see
that, in our setting, the nonlinearity P belongs to .

2B. Space of polynomials. In this subsection we define a class of polynomials on C*.
We first need more notations concerning multi-indices: letting £ > 2 and j = (ji,..., j¢) € %t with
ji = (ai, 6i), we define

¢ the monomial associated with j

Zj = Zjy - Zjys
¢ the momentum of j
M(j)=aidy +---+agdy,; (2-10)
e and the divisor associated with j
Q(j)=061wq, + -+ 8¢wq,, (2-11)

where for a € 79, w, = |a|? + v, are the frequencies of the linear part of (1-1).
We then define the set of indices with zero momentum by
Se={j = (... jo) €2° [ M) =0} (2-12)

On the other hand, we say that j = (Ji,. .., j¢) € % is resonant, and we write j € Ny, if £ is even and
j =i Ui for some choice of i € %%/2. In particular, if j is resonant, then its associated divisor vanishes,
Q(j) =0, and its associated monomials depend only on the actions

Zj :Zjl ...ij :Salnal "'Eaé/2)7a[/2 = Id] "’IaZ/Z’
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where 1,(z) = £,74 denotes the action associated with the index a for all a € 7.
Finally, if z is real, then I,(z) = |£,|?, and for odd r, the resonant set N, is empty.

Definition 2.4. For k > 2, a (formal) polynomial P(z) =} ajzj belongs to Py if P is real, of degree
k, has a zero of order at least 2 in z = 0, and satisfies the following conditions:

* P contains only monomials having zero momentum (i.e., such that J((j) = 0 when a;j # 0), and
thus P reads

k
P =) Y az (2-13)
(=2 je9,
with the relation a5 =dj.
* The coefficients a; are bounded: sup |aj| < +oo forall £ =2,... k.
J€de
We endow %, with the norm .
1Pl =" sup |aj]. (2-14)
£=2 je&e

The zero momentum assumption in Definition 2.4 is crucial to obtaining the following proposition:

Proposition 2.5. Let k > 2 and p > 0. We have Py C ¥,, and for P a homogeneous polynomial of
degree k in P, we have the estimates

1P < P]lIz]% (2-15)

and

| Xp(2)|lp <2k| P ||Z||l;_1 forallze¥,. (2-16)

Furthermore, for P € Py and Q € Py, we have { P, Q} € Py, and the estimate

I{P, O} <2kL|| P||||Q]. (2-17)
Proof. Let
P(z)= Z aj zj;
NASED™
we have

k k
PPN 123l Lz | S IPI=IE < 1PIIE
]'Effk

and the first inequality (2-15) is proved.
To prove the second estimate, let £ € %; by using the zero momentum condition, we get

ap
| SEIPI 3z zie
Zt : k—1

JEZ

M )=—AE)

Therefore
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‘<k||P||Z DR T N

Le% ] eoph—1
MG )=—M()

1Xp()llo =) e

Le¥*

But if M(j) = —M(£), then

P <exp(p(lji] +-+ Lik—1D) = J] el

Hence, after summing in £, we get?

1Xp @)l <2kl P Y eIz )Ptz < 2k Pl 2]
j eopk—1
which yields (2-16).
Assume now that P and Q are homogeneous polynomials of degrees k and £ respectively and with
coefficients ay , k € $; and by, £ € $;. It is clear that { P, Q} is a monomial of degree k + £ — 2 satisfying
the zero momentum condition. Furthermore, we can write

P.OY)= ) ¢z,
JE€Skte—2
where ¢; is expressed as a sum of coefficients ag by for which there exists an a € 7% and € € {£1} such
that
(a,e)Cke ¥, and (a,—€)C{ e Yy,

and such that if for instance (a, €) =k and (a, —¢) = £, we necessarily have (ko, ..., ki, L2, ..., Ly)=].
Hence, for a given j, the zero momentum condition on &k and on £ determines the value of ea, which in
turn determines two possible values of (e, a).

This proves (2-17) for monomials. The extension to polynomials follows from the definition of the
norm (2-14).

The last assertion and the fact that the Poisson bracket of two real Hamiltonian is real follow immediately
from the definitions. U

2C. Nonlinearity. We assume that the nonlinearity g is analytic in a neighborhood of the origin in C?:
There exist positive constants M and R, such that the Taylor expansion

gvrv)= > = 'k ,3k13k2 (0,051 %2
ki1,kr>0

is uniformly convergent and bounded by M on the ball |v;| + |va| < 2R,. Hence, formula (2-3) defines
an analytic function P on the ball |z||, < Ro in &,, and we have

P(z)=)_ Pi(2),

k=0

3Note that M(a, §) = M(—a, —8), whence we get the coefficient 2.
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where Py for all k£ > 0 is a homogeneous polynomial given by

Py = Z Z Pa,b&a; ...Sakl Moy ++ - Ny,

ki+ka=k (a,b)e(z)*1 x(z4)F2
with
1 ; .
Pab = makl 0k, £(0,0) /TdezM(a,b)x dx

and M(a.b) = ay +---+ayx, —by — -+ — by, the moment of &, ... &a,, M, - Npy,- Therefore, it is
clear that Py, satisfies the zero momentum condition, and thus Pj € P, for all k > 0. Furthermore, we
have the estimate || Pi|| < M Ro_k for all k > 0.

2D. Nonresonance condition. In order to control the divisors (2-11), we need to impose a nonresonance
condition on the linear frequencies wq, a € Z¢.

Forr>3and j = (j1,..., jr) €%, we define () as the third largest integer amongst | jq|, ..., |jr|.
We recall that the resonant set ', is the set of multi-indices j € %" such that j =i Ui for some i € %//2.

Hypothesis 2.6. There exist y > 0, v > 1 and ¢y > 0 such that for all » > 3 and for all nonresonant
Jj € %" \N}, we have

Y <o
n(GHvr

Remark 2.7. Classically, a nonresonance condition reads (see, for instance, [Bambusi and Grébert 2006]):

1©20)] =

(2-18)

for all r > 3, there exist y(r) > 0 and v(r) > 0 such that for all nonresonant j € %", we have

Q) = L

p(jyre
In Hypothesis 2.6, we make precise the dependence of y and v with respect to r. In particular, we impose
that v be linear: v(r) = vr. This is crucial to optimizing the choice of r as a function of & in Section 3B.

Recall that for V =), 7a wee'@* in the space W, defined in (1-2), the frequencies are

Rv

a d
PR EZ ’
(+apm

wa = lal® + wg = |al? +

with vg € [—4, 1] for all a. In the Appendix, we prove:

Proposition 2.8. Fix y > 0 small enough and m > d /2. There exist positive constants co and v depending
onlyonm, R and d, and a set F\, C Wy, whose measure is larger than 1 — 4)/1/7, such that if V e F,,
then (2-18) holds true for all nonresonant j € ¥" and for all v > 3.

Thus Hypothesis 2.6 is satisfied for all V' € V", where

v=\JF (2-19)
y>0

is a subset of full measure in W,.
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2E. Normal forms. We fix an index N > 1. For a fixed integer k > 3, we set

Fk(N)=1{j €Ix [ n(j)> N}

Definition 2.9. Let N be an integer. We say that a polynomial Z € P is in N-normal form if it can be

k
Z:Z Z aj zj .

£=3 jeN,UF¢(N)

written

In other words, Z contains either monomials depending only on the actions or monomials whose indices
J satisfy p(j) > N, that is, monomials involving at least three modes with index greater than N.

‘We now motivate the introduction of this definition. First, we recall:

Lemma 2.10. Let f : R — R4 be a continuous function and y : R — R4 a differentiable function
satisfying the inequality

d
5y(t) <2f(t)/y(@) forallt eR.
Then we have the estimate

V() = y(0)+/olf(s)ds forallt € R.

Proof. Let € > 0 and define y. = y + €, a nonnegative function whose square root is differentiable. We

have
d V()
SV =270 V== <2/ (0),
! V Ye(t)
and thus ,
V30 = 3@+ [ )0
0
The claim is proved by taking € — 0. O

For a given number N and for z € £, we define

N .
Ry (2) = Z ep|]||2j|.
lj1>N
Notice that if z € £, then

Ry (2) < e *Nizll g (2-20)
Proposition 2.11. Let N € N and k > 3. Suppose that Z is a homogeneous polynomial of degree k in

N -normal form. Let z(t) be a real solution of the flow generated by the Hamiltonian Hy + Z. Then we
have

t
RY (z(1)) <RY (z(0)) + 4K°| Z|| /0 RY () [z()II5 73 ds (2-21)

and

t
12O, < 120, +45°]1Z] /0 RY (2(5))212(s) [ ds. (2-22)
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Proof. Fix a € Z% and let 1,(¢) = £,(t)n4(t) be the actions associated with the solution of the Hamiltonian
system generated by Hy + Z. Let us recall that as z(¢) = (£(¢), n(¢)) is a real solution, we have
£4(t) = 1q(2) for all times where the solution is defined. Using (2-17) and Hy = Hy (1), we have

|e2f’|“|1'a|=|e20|“|{1a,2}|52k||2||\ep|“|\/1a|( > eﬂ|“'|z,-1...z,-k_l|).

M(j)==a
2 indices>N

Then using Lemma 2.10, we get

t
P19/ I,(1) < el Ia(0)+2k||Z||/( > ep|“||2jl|...ep|/"—1||2jk_l|) ds.  (2-23)
0

M(j)==xa
2 indices>N

Ordering the multi-indices such that | j;| and | j,| are the largest, and using the fact that z(¢) is real (and
thus |zj| = 4/14 for j = (a, 1) € ), we obtain, after summation in |a| > N,

t
RY ) =RY o) +4°)12) [ ( S eplitl]zy | Pl |) ds
0 . -
litlljiz1=N
J3sesjk—1€%

t
<RYCO)+41Z] [ RY G2zl .

Inequality (2-22) is proved in the same way. O

Remark 2.12. These estimates will be central to the final bootstrap argument. Actually, as a consequence
of Proposition 2.11, we have: if z(¢) is the solution of a Hamiltonian system in N -normal form with
an initial datum zg satisfying ||zo||2, = €, then, as Rf)V (z0) = O(se™”N), Equations (2-21) and (2-22)
guarantee that Rfov (z(¢)) remains of order O(ce V) and the norm of z(¢) remains of order & over
exponentially long time ¢ = 0(e”N).

The next result is an easy consequence of the nonresonance condition and of the definition of normal
forms:

Proposition 2.13. Assume that the nonresonance condition (2-18) is satisfied and let N be fixed. Let Q
be a homogenous polynomial of degree k. Then the homological equation

{X.Ho}—Z =0 (2-24)

admits a polynomial solution (x, Z) homogeneous of degree k, such that Z is in N -normal form, and

such that
vk

N
IZI =1Qll and ixll = —
Y<

121. (2-25)

Proof. Assume that Q =} ;4 Qjzj and seek Z =} ;4 Zjzj and x = ) ; ey, XjZj such that
(2-24) is satisfied. Equation (2-24) can be written in terms of polynomial coefficients

iQJ)xj—Zj =Qj. Je€Ik,
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where Q(j) is given in (2-11). We then define

Z; =Qj, xj=0 if jeNgoru(j)>N,
o ... .
Zj =0, xj =+ ifjé&Ngandpu(j)=N.
! 7 iQy)
In view of (2-18), this leads to (2-25). O

3. Proof of the main theorem

3A. Recursive equation. We aim to construct a canonical transformation t such that in the new variables,
the Hamiltonian Hy + P is in normal form modulo a small remainder term. Using Lie transforms to
generate 7, the problem can be written thus: Find a polynomial x = Y _3 xx, a polynomial Z =
Y k=3 Zk in normal form, and a smooth Hamiltonian R satisfying d* R(0) = 0 for all & € N* with
|| < r, such that

(Ho+ P)o®, = Hy+Z + R. (3-1)

Then the exponential estimate (1-3) will be obtained by optimizing the choice of » and N.
We recall that for y and K two Hamiltonian functions, for all K > 0 we have
d* t t k t
dl_k(K ° q>x) = {X’ { o {Xv K} ' }}(q>x) = (adXK)(CIJX),
where ad, K = {x, K}. Also, if K, L are homogeneous polynomials of degrees k and £, then {K, L} is
a homogeneous polynomial of degree k + £ — 2. Therefore, by using Taylor’s formula, we obtain
r—3
(Ho+ P)o®), —(Ho+P)= Y _
k=0

1
o 1)!ad§({X,HO+P})+@,, (3-2)

where O, stands for a smooth function R satisfying 3% R(0) = 0 for all @ € N* with |a| <.
On the other hand, we know that for { € C, the following relation holds:

r—3 r—3

Bk .k U ok —2
Z—f)(z z)=1+0(|§|’ )
| |
= k! = (k+1)!
where By, are the Bernoulli numbers defined by the expansion of the generating function 5 ZZ_ T Therefore,

defining the two differential operators
r—3

A —rf : ad® and B, = ﬁadk
A i S T

we get
BrAr == Id+ Cr,

where C, is a differential operator satisfying

Cr@3 - @r.
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Applying B, to the two sides of (3-2), we obtain
{x.Ho+ P} = B, (Z—P)+0,.

Plugging the decompositions in homogeneous polynomials of x, Z and P into this equation and equating
the terms of same degree, we obtain after a straightforward calculation the recursive equations

{Xm7HO}_Zm:Qm» m:3v~--vr, (3_3)
where
m—1 m— B
Om=—Pn+ Y {Pmir—i: Xi}+ Z o > ady,, ...ady, (Zg ., = Pyy)- (3-4)
k=3 k=1 L1+ +Lyp1=m+2k
3<l;<m—k

In the last sum, £; < m —k as a consequence of 3 </{; and {; +--- + {j 41 =m + 2k.

Once these recursive equations are solved, we define the remainder term as R = (Hy+ P)o® )1( —Hy—Z~.
By construction, R is analytic on a neighborhood of the origin in &, and R = 0,. As a consequence, by
Taylor’s formula,

=y Z— ST ady,, ...ady, Ho

m>r+1k=1 Lj+-+L=m+2k
1
+ > Z—' > ady,, ...ady, Py, . (3-5)

3<l;<r
m>r+1 k=0 €1+~~+£k+1=m+2k
3<l) ot by <r
3=lik+1

Lemma 3.1. Assume that the nonresonance condition (2-18) is fulfilled for some constants v, cg, v. Then
there exists C > 0 such that for all r and N, and form = 3, ..., r, there exist homogeneous polynomials
Xm and Zy, of degree m, with Z, in N -normal forms, which are solutions of the recursive equation (3-3)
and satisfy

2
xmll + 1 Zmll < (CmN")™. (3-6)
Proof. We define x,, and Z,, by induction using Proposition 2.13. Note that (3-6) is clearly satisfied for
m = 3, provided C is big enough. Estimate (2-25) yields

veo N7 xmll + 1 Zmll = 1 Qmll- (3-7)

Using the definition (3-4) of the term Q,, and the estimate on the Bernoulli numbers, |By| < k!c¥
for some ¢ > 0, together with (2-17), which implies that for all £ > 3, ||ad,, R|| < 2m{|| R|| for any
polynomial R of degree less than m, we have, for all m > 3,

m—1

1Qmll < I1Pmll +2 ) km+2 =) P2l x|
k=3

m—
+2) (Cm) > Ellxe - Lrllxe M Ze oy = Py, - (3-8)

k=1 O 44l =m+2k
<{;i<m—k
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for some constant C. Let us set B, = m(|| xm| + || Zm|)- Equation (3-7) implies that

Bm = (CN*)"m| Qml,

for some constant C' independent of .
Using that || P, || < M R;™ (see the end of Section 2D), we have that || Py, || and m|| Py, || are uniformly
bounded with respect to m. Hence, the previous inequality implies that

Bm < BV + B2,

where
m—1
B = (CN")’"m(l +> ﬂk) (3-9)
k=3
and
m—3
BE = NY"(Cm)" 2y Y B BuBey + D) (3-10)
k=1 (1+"'+€k+1=m+2k
<{;i<m—k

for some constant C depending on M, Ry, y and c¢y. It remains to prove that 8, < (CmN ")5"’2 by
induction, for some constant §. Again, this is true for m = 3 by adapting C if necessary. Thus, assume
that B; < (CjN“)jz,j =3,....,m—1. Assoonas C > 1,

1 <(CmN")" forallm >3, G-11)
so we get

I < (N mm(CmNY) D < LemN Y

as soon as m > 3 and provided C > 2.
Using (3-11) again and the induction hypothesis, we get

m—3
24 g2
B <NV Cmyn Y Y (ONYm—ky) Tt e
k=1414++Lgy1=m+2k
3<ti<m—k

The maximum ofﬁ%—l—---—i—ﬁiJrl when £ + -4+ £€g 41 =m+ 2k and 3 <{; < m —k is obtained for

€y =---=4L; =3and €;; =m—k and its value is (m — k)? 4+ 9k. Furthermore, the cardinality of
i+ + Ly =m~+2k, 3=<4{; <m—k} is smaller than m¥*1 and hence we obtain, for m > 4 and

after adapting C if necessary,

AV
BD < max  NYHCmY"2CmFTH(CNY(m—k) "R < Lemnvy”. O

k=1,...m—3

3B. Normal form result. For any Ry > 0, we set Bo(Ro) ={z€ %, | ||z]lp < Ro}-
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Theorem 3.2. Assume that P is analytic on a ball B,(Ry) for some Ro > 0 and p > 0. Assume that the
nonresonance condition (2-18) is satisfied, and let B < 1 and M > 1 be fixed. Then there exist constants
g9 > 0 and 0 > 0 such that for all ¢ < gg, there exist a polynomial ¥, a polynomial Z in N = |In¢| 1+8
normal form, and a Hamiltonian R analytic on B,(M ¢), such that

(Ho+ P)o®, = Hy+ Z+ R. (3-12)

Furthermore, for all z € By(Me),

|1+B

_1
1XZz)l,+ 1 X2l <26%2 and | Xg(2)|, < e xIM¢ (3-13)

Proof. Using Lemma 3.1, for all N and r, we can construct polynomial Hamiltonians

X@ =) xk( and Z(z)=)_ Zi(2),
k=3

k=3
with Z in N -normal form, such that (3-12) holds with R = O,.. Now for fixed ¢ > 0, we choose

N =N(e) = |1H8|1+ﬂ and r=r(e) = |1ns|'3.

This choice is motivated by the necessity of a balance between Z and R in (3-12): The error induced by
Z is controlled as in Remark 2.12, while the error induced by R is controlled by Lemma 3.1. By (3-6),
we have

Ikl < (CKNY** < exp(k(vk(1 + B) In [Ine| + k In Cr))
< exp(k(vr(l 4+ B)In|lng|+rIn Cr))
<exp(k |1I18|(1) |ln8|’3_1(1 +B8)In|lng| + |ln8|ﬁ_1 InC |ln8|’9)) <gk/8, (3-14)
as B < 1, and for ¢ < ¢¢ sufficiently small. Therefore, using Proposition 2.5, for z € B,(M &) we obtain
k(@) < e7KE (M ek < M*eTHE,

and thus
|X(Z)| < Z Mk87k/8 < 83/2,
k>3

for ¢ small enough. Similarly, for all k <r, we have
1 Xy, ()l p < 2ke™ /8 (Me)k—1 < 2k MF=167k/81
and
”XX(Z)HP < Z ZkMk_187k/8_1 < C8_1821/8 < 83/2,
k>3

for & small enough. Similar bounds clearly hold for Z = Y} _; Zj, which shows the first estimate in
(3-13).

On the other hand, using adX,Z Hoy = Zy, + Qy, (see (3- 3)) and then using Lemma 3.1 and the
definition of Q,, (see (3-4)), we get ||adX€l Hy|| < (CkN")e’\ < et/ where the last inequality
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proceeds as in (3-14). Thus, using (3-5), (3-14) and || Py, , | = MRO_Z"H, we obtain by Proposition 2.5
that for z € By,(Me),

m—3
m+2k
[ XRr(2)]p < Z Z m(Cr)3me=" 8 M1 < Z m2(Cr)*me™? < (Cr)3 e/
m=r+1 k=0 m=r—+1

—% \lne\H'

Therefore, since r = |In¢|?, we get | X @)p=<ce ? for z € By(M¢) and ¢ small enough. [

3C. Bootstrap argument. We are now in position to prove the main theorem of Section 1. It is a direct
consequence of Theorem 3.2.

Let ug € sd», with |ug|,, = €, and denote by z(0) the corresponding sequence of its Fourier coefficients
which belongs, by Lemma 2.1, to £(3/2), with [|z(0)[|(3/2), < (cp/4)e and

2d+2
Cp=—""89H9H4H——
P (1— e—p/Z\/E)d
Let z(¢) be the local solution in £, of the Hamiltonian system associated with H = Hy + P.
Let x, Z and R be given by Theorem 3.2 with M = ¢, and let y(7) = dD)l((z (t)). We recall that since
x(2) = O(||z||?), the transformation <I>)1( is close to the identity: QD)I((Z) =z + O(||z||?), and thus, for ¢
small enough, we have || y(0)[|(3/2), < (¢p/2)e. In particular, as given in (2-20),

’

RY (y(0)) < %”e e~ (0/DN < o —oN

where 0 =0, < p/2.
Let T be the largest time 7" such that Rf,v(y(l)) <cpe e N and ||y(t)|, < cpe forall |t| < T. By
construction, we have

t t
Y1) = y(0) + /0 Xtz ((s)) ds + /0 Xr(y(s)) ds.

So using (2-21) for the first vector field and (3-13) for the second one, we get, for |¢| < T,

r
RY(9(0)) < Lepee™™ + 4101 3 1 Zillk? (cpe)* 172N 4 Jt]ge™ s el
k=3
. 11 el1+8
= (% HAUt] Y N1 Ze K3 (cpe)f 2N 4 Jt]ee™ el )c,,se_"N, (3-15)

k=3

where in the last inequality we used o = rnin{%, % ,0} and N = |In s|1+ﬂ.

Using Lemma 3.1, we then verify that
R,{)V(J/(f)) < (% +Clt|e e_"N)cpse_”N,
and thus, for & small enough,

Rf)v(y(t)) < cpe e "N forall || < min{T,, e®N}. (3-16)
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Similarly, we obtain
Iyl <cpe  forall |t] < min{Ty, e"N}. (3-17)

In view of the definition of T, inequalities (3-16) and (3-17) imply T, > ¢®™N . In particular, ||z(¢) || , < 2c,e
for |¢] < e°N = 8_0“118'6, and using (2-7), we finally obtain (1-3) with
22d+5

- (1 —e—p/2vd)2d

Estimate (1-4) is another consequence of the normal form result and Proposition 2.11. Actually, we
use that the Fourier coefficients of u(¢) are given by z(t), which is e2-close to y(¢), which in turn is
almost invariant: in view of (2-23) and as in (3-15), we have

r
>y 01 =1y 0] = (4|z| S IZRIK (cpe)t 120N 4 |z|ge—illnell+ﬁ),

jez k=3
from which we deduce
Y eIy =1y O] < ltle™V,
jez
and then (1-4).

Appendix: Proof of the nonresonance hypothesis

Instead of proving Proposition 2.8, we prove a slightly more general result. For a multi-index j € %", we
define ,
NG)Y=[Ta+1D.
k=1

Proposition A.1. Fix y > 0 small enough and m > d /2. There exist positive constants C and v depending
only onm, R and d, and a set F,, C Wy, (see (1-2)) whose measure is larger than 1 — 4y, such that if
V € F,, then for any r > 1,

Ccr )/7 A
QJ)+erog, te20p,| = (A-1)
‘ 1 2 | N(_] )v
for any j € %", any indices £1,€ € 7%, and any €, &5 € {0, 1, —1} such that (j, (£1.€1), (L2, €2)) is

nonresonant4 .

In order to prove Proposition A.1, we first prove that 2(j) cannot accumulate on Z. Precisely, we
have:

Lemma A.2. Fixy > 0and m > d /2. There exist 0 < C < 1 depending only on m, R and d, and a set
FJ', C W, whose measure is larger than 1 — 4y, such that if V € F.,, then for any r > 1,

r

C'y

12(j)—bl = NGy

(A-2)

4The resonant set N r, > 2, 1s defined in Section 2D.
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for any nonresonant j € 7" and for any b € 7.

Proof. Let (aq,...,a,) Z0in Z", M > 0 and ¢ € R. The set

Za,x, +c

i=1

amz{x [-4.41|

.

is a slice of thickness 27 of the hypercube [—M, M]" guided by the hyperplane {Z;zl aixi+c= O}
whose normal o has a norm larger than 1. Since the largest diagonal in the hypercube [ ; 2] has a

length equal to /7, we get that the base of the slice () is included in a hyperdisc of dimension r — 1
and radius %ﬁ . Recall that the volume of a ball in R™ of radius p equals 7”/2p™ / T'(m/2 +1). So we
deduce that the volume of (1) is smaller than’

1 r—1 1 r—1
2 (r—1)/2 2 2 r
nmw <2n <C'n
F(r—l ) (r—l)!
2 2

€ %" and b € Z, the Lebesgue measure

<@
is smaller than 217r 7 . Now consider the set (using the notation (1-2))

5 vg; R
’O”' u+wmm)

It is contained in the set of the V’s such that (Rvg, /(1 + |a;[)™);_, € %;. Hence the measure of (A-3)
is smaller than R™" N (j )™ C"n. To conclude the proof, we have to sum over all the possible j’s and all
the possible b’s. Now for a given j, if |Q(j) —b| > n with n < 1, then |b| < 2N(j)?. So to guarantee

(A-2) for all possible choices of j, b and r, it suffices to remove from W, a set of measure

for a constant C independent of r. Hence, given j = (a;, 6;);_,
of

Zﬁum|+m)b

i=1

%M:{xe[%%

{VeWw, ‘ |S2(j)—b|<n}={V€°Wm

< n}- (A-3)

r

Y oo ¥ ]
4y +34d Y =% d+1 | -
J ¥ REN(j)™ R Lezd (T+1€D

-1
Choosing C < %R(Zeezd W) proves the result. O

Proof of Proposition A.1. First of all, for e; = &, = 0, (A-1) is a direct consequence of Lemma A.2,
choosingv>m+d+3,y <land F), = F;, (recall that r > 1).
When &1 = %1 and ¢, = 0, we will prove that for some constants C and v, we have

r

C'y

‘Q(j)iwh‘ z NG

(A-4)

3We use the formula of the gamma function valid for even integers, but the asymptotic is the same in the odd case.
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which implies inequality (A-1) for y < 1. Notice that |Q2(j)| < N(j)? and thus, if |£;] > 2N (j), (A-4)
is always true. When |[£;| < 2N (j), using that N(j,£) = N(j)(1 + |£1]), applying Lemma A.2 with
b=0andV € F, = F), we get

Cr+1)/ éry
> 9
N(J )m+d+3(3N(j))m+d+3 - N(j)”

1Q3) +e100,| = Q3 E1,61))| =

with v =2(m +d +3) and C = 2C2/3m+d+3,
When ¢1e, = 1, a similar argument yields an estimate of the form

Cry
Q) £ (0, +0g,)| Z
| Hen) 2y ()’
for some constants C, v, and for V € F), = F),.
So it remains to establish an estimate of the form
Cry7
QJ) +wg, —wg,| = (A-5)
| 1 2 | N(_] )v

for some constant C and V € F, to be defined. Assuming |{;| < |{,], we have

R|vyg, | Rvg, | R
—wg, — 2 402 < Y Sy | = ’
e RN A (Rl B TRTA

for all vy, and vy, in [—%, %], see (1-2). Therefore, if (1 + |€;])™ = (2R/C"y)N(j)"t9+3, we obtain
(A-5) directly from Lemma A.2 applied with b = K% — K% and choosingv=m+d +3,C = C/2 and
Fy=F),

Finally, assume (1 + |€;])" < (2R/C”y)N(j)"™+t9+3_ Then taking into account |Q2(j)| < N(j)2,
inequality (A-5) is satisfied when E% — E% > 2N (j)?. It remains to consider the case when

2R
Cry

1+|61|51+|ez|s[2(

R \!/m m
) NG
Cry

2/m 1/2
N(J)m+d+3) +4N(])2:| S2(

Again we use Lemma A.2 to conclude that

‘ ‘ Cr+2)/
Q(j) +w€1 _a)ez =
. +d+3
NG+ 16 +16)]"
Cr m+4+d+3
2 Y "
cr+ )/(3'2mR) Cry4+3/m
> > = . ’
N(ymraNG R NG

d d 3 2 _ C4m-&;nd+3

asm > > and withv=m+d +3+ u and C = SomR This last estimate implies (A-1).

O
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L? BOUNDS ON RESTRICTIONS OF SPECTRAL CLUSTERS TO
SUBMANIFOLDS FOR LOW REGULARITY METRICS

MATTHEW D. BLAIR

We prove L4 bounds on the restriction of spectral clusters to submanifolds in Riemannian manifolds
equipped with metrics of C** regularity for 0 < & < 1. Our results allow for Lipschitz regularity when
o = 0, meaning they give estimates on manifolds with boundary. When 0 < « < 1, the scalar second
fundamental form for a codimension 1 submanifold can be defined, and we show improved estimates when
this form is negative definite. This extends results of Burq, Gérard, and Tzvetkov and Hu to manifolds
with low regularity metrics.

1. Introduction

Let M be a compact, smooth manifold of dimension # > 2 equipped with Riemannian metric g of at least
Lipschitz regularity. Let Ag denote the associated (negative) Laplace-Beltrami operator whose action in
coordinates is given by the differential operator

Agf =

M Z 0 (g" v/det gy 0 /).

There exists an orthonormal basis {¢; }72 | of L2 (M) consisting of eigenfunctions of A, which can be

ji=1
seen by passing to quadratic forms; see, for example, [Smith 2006a, Section 1]. We write the corresponding
Helmholtz equation for ¢; as (Ag + ka.)¢j = 0 so that A; gives the frequency of vibration associated
to ¢j.

Given A > 1, we let IT; be the projection operator on L2 (M) defined by IT f := ZA,- epat+11(/s 9i)bj,
where (-, -) denotes the usual L? inner product with respect to the Riemannian measure. We call functions
f which are in the range of some IT) “spectral clusters”. They form approximate eigenfunctions or
quasimodes as [[(Ag + kz)fo'||Lz(M) < CAllfllL2(ar)- Sogge [1988] proved that when g is a C*°
metric, the following L9 bounds on the projections ITj f are satisfied for ¢ > 2:

I T Sl Laar) < C)»8||f||L2(M)’ (1-1)

== (154 Hld-3) ),
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He also provided examples showing that the exponent §(¢) is the best possible for these approximate
eigenfunctions. Since IT, is a projection operator, any L? bound it satisfies implies L9 bounds on
individual eigenfunctions. Determining when these bounds are sharp for subsequences of eigenfunctions
is an area of active interest, though we do not examine this issue here.

H. Smith [2006b] proved that the bounds (1-1) are satisfied for C!*! metrics. The assumption of C!-!
regularity is the lowest degree of continuity needed to ensure the uniqueness of geodesics on M . Since
eigenfunctions naturally give rise to solutions to the wave equation, propagation of singularities suggests
that this is a relevant consideration for the validity of such bounds. Indeed, [Smith and Sogge 1994;
Smith and Tataru 2002] give examples of C 1'% metrics (Lipschitz when a = 0) which give rise to spectral
clusters ITy f; = f; for each A > 1 such that

|UHMHM)ZCA%1@—30+@ N el
[VAVEIYS 3ta

(1-2)

showing that the bounds (1-1) cannot hold for 2 < g < 2(n 4+ 2(1 + «)~1)/(n — 1). In each case, the
cluster fj is highly concentrated in a tube about a curve segment of length 1 and diameter A~2/G+a)
(cf. (1-10) below). This shows that the family { f} },>1 exhibits a greater degree of concentration than
Sogge’s examples which saturate the bounds (1-1) when 2 < g < % (% — é) (they are concentrated in
tubes with diameter A~1/2). Smith [2006a] showed positive results for any C ¢ metric, proving that the
ratio on the left in (1-2) is always bounded above by CX%(%_?(H”) when2 <¢g <2(n+1)/(n—1).
He also proved that the bound (1-1) holds when ¢ = oco. By interpolation, this shows (1-1) with a loss of
o0/q derivatives when 2(n +1)/(n — 1) < g < oo, though Koch, Smith, and Tataru [Koch et al. 2012]
improved upon this.

In a similar vein, when g € C®, results of Burq, Gérard, and Tzvetkov [Burq et al. 2007], Hu
[2009], and Reznikov [2004] show L9 bounds on the restriction of these spectral clusters to embedded
submanifolds P C M of the form

[T fllLacpy = C)\(SHf”LZ(M)’ q=2, (1-3)

where || I1, f||La(p) is taken to mean the L7 norm of the restriction ITy f'|p. In this case, § = §(k, q)
depends on the dimension of the submanifold k& and on ¢. In particular, when k = n — 1,

8—max(n_l—n_1 n—l_n—Z)
o 2 qg 4 2qg /)’

that is,
n—l_n—l’ i 2n <g<oo,
2 q n—1
dn—1,q9)= (1-4)
n—1 n-2 0 <g < 2n
4 2q ° =4=5"

Otherwise, when 1 <k <n-—2,

dhg) = "5 =% (1-5)
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with the exception of (k,q) = (n—2,2), where there is a logarithmic loss for A > 2, [Ty /|| 2(p) <
Clog M)Y2AY2 1] r2(m)- These bounds were proved in a semiclassical setting by Tacy [2010]. We
also remark that the bound (1-3) in the case k = n — 1, ¢ = 2 was previously observed by Tataru [1998]
as a consequence of the estimates in [Greenleaf and Seeger 1994]. As will be discussed in Section 2,
these bounds provide an improvement over what would be obtained by trace theorems for Sobolev spaces.

One reason the bounds (1-1), (1-3) are of such great interest is that they illuminate the size and
concentration properties of eigenfunctions. In particular, Smith’s work on C'*% metrics [2006a] is
significant in that it addresses concentration phenomena in situations where the roughness of the metric
means that geodesic curves may fail to be unique. It also led to the development of sharp bounds of the
form (1-1) for the Dirichlet and Neumann Laplacians on compact Riemannian manifolds with boundary;
see [Smith and Sogge 2007]. Indeed, one strategy for proving estimates in this context is to form the
double of the manifold, essentially gluing two copies of the manifold along the boundary. While this
eliminates the boundary, it gives rise to a metric of Lipschitz regularity; see, for example, [Blair et al.
2008, p. 420]. Hence any result on manifolds with Lipschitz metrics also applies to manifolds with
boundary. At the same time, the bounds (1-3) when n = 2, k = 1 (curves in 2 dimensional manifolds) for
g € C* have garnered additional interest in recent works which relate improvements in these estimates
to improvements in the inequalities in (1-1); see [Bourgain 2009; Sogge 2011; Ariturk 2011].

On the other hand, one of the notable aspects of [Burq et al. 2007] is that the authors showed an
improvement on (1-3) when n = 2 and P is a curve with nonvanishing geodesic curvature. Specifically,
they proved that

ITL S L2 ey < CAY O f Nl L2 qany- (1-6)

This was then generalized to all dimensions by Hu [2009], who obtained the same bound for any
codimension 1 submanifold with negative definite scalar second fundamental form (or positive definite,
depending on the choice of normal vector). As before, these bounds also follow from an observation
of Tataru [1998] based on known estimates of Hormander [1985, 25.3]. The bound (1-6) can then be
interpolated with (1-3) when g = nzT”l and § = % to show that the § in (1-4) can be improved to

8:n—1_2n—3
3 3q

when2§q<—n.
n—1

These bounds thus speak to the concentration properties of eigenfunctions. When P is in some sense
“far away” from containing geodesic segments, eigenfunctions have less tendency to concentrate near P.
Hassell and Tacy [2012] proved bounds of this type in a semiclassical setting.

In the present work, we consider the development of the bounds (1-3) for C1*% metrics with 0 <o <1,
allowing for Lipschitz regularity when o = 0. As a corollary, we obtain bounds of this type (with a loss)
for the Dirichlet and Neumann Laplacians on compact manifolds with boundary. Bounds of the form
(1-3) when n = 2, k = 1 for manifolds with concave boundaries are due to Ariturk [2011], provided
Dirichlet conditions are imposed. However, the presence of gliding rays when the manifold possesses a
point of convexity within the boundary complicates matters considerably.
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Theorem 1.1. Suppose g € C1% with 0 < o < 1, allowing for Lipschitz regularity when o = 0. When

k=n—1and2 <q <2n/(n—1),we have, for6 = (n—1)/4—(n—2)/(2q),
8(1+0) _1-«a

1T, fllLacpy < CAYFON flip2ary. 0= e’

Moreover,whenk =n—1,2n/(n—1) <q <ocoork <n-—2,we suppose that6 = (n—1)/2—k/q and
8+ 0/q <14 o with o as above. In this case, the following bounds are satisfied:

1T f llzacpy < CAST/9 £l 2 an) (1-8)

with C replaced by C(log \)'/? when (k,q) = (n — 2,2). The admissibility condition on 8, q can be
relaxedto 6 +o/q <1 +a whena =0ora = 1.

1-7)

Furthermore, we will show improvements akin to (1-6) when 0 < o < 1. For these metrics the Christoffel
symbols are well defined and continuous on M by the usual coordinate formula

k 1kl
I = 287 (0igjr + 9jgi — 918ij)
(with the summation convention in effect). Hence there is also a well defined Levi-Civita connection
associated to the metric g on M, mapping C! vector fields to continuous vector fields with the usual
properties. In particular, given a smooth, embedded, codimension 1 submanifold of P, the scalar second
fundamental form is well-defined and if it is negative definite throughout P for a suitable choice of normal

vector field, we shall call it “curved”. We will see that in this case, the power of A in (1-7) with ¢ = 2 can
be improved to 1/6 4+ ¢/2 (which can be seen as strictly less than (1/4)(1 4+ ¢) when o < %).

Theorem 1.2. Suppose g € C1* with 0 < o < 1, and that P is a “curved” codimension 1 submanifold
as defined above. Then the following bounds are satisfied:
l—«

1,0 _
I 2y < CAFE 1 . 0= 322

Moreover, interpolating this bound with the ¢ = 2n/(n — 1) case of (1-7) yields an improvement of that
estimate for2 < q <2n/(n—1).

(1-9)

Following [Smith 2006a], we will show that, for each theorem, the 0 < o < 1 case follows from the
a = 1 case by rescaling methods. This involves dilating coordinates so that sets of diameter ~ A7 in
P have diameter ~ 1 in the new coordinates. Since the metric can be approximated by one with C' 1!
regularity here, the bounds from the o = 1 case can then be applied. In the original coordinates, this
then implies that the estimates (1-7), (1-8), (1-9) hold with & = 0 over sets of diameter ~ A~?. By
incorporating the flux estimates from [Smith 2006a], it can then be seen that Theorems 1.1 and 1.2 follow
by taking a sum over all such sets.

The bounds (1-1) for C'! metrics in [Smith 2006b] (and those for manifolds with boundary in [Smith
and Sogge 2007]) were proved by wave equation methods. Specifically, square function estimates are
developed for solutions to the wave equation on these manifolds, bounding the L4 (M ) norm of the square
function

1 1/2
X (/ lu(t, x)|? dt) ., where (37 — Ag)u = 0.
0
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As will be seen below, the spectral clusters above naturally give rise to solutions to the wave equation, and
these estimates imply bounds on the IT) f. Square function estimates were first proved in [Mockenhaupt
et al. 1993] for smooth metrics, using that Fourier integral operators can be used to invert the equation.
However, when g € C!'!, the roughness of the metric means that these methods are inapplicable, so
a crucial development [Smith 2006b] was the construction of a suitable parametrix using wave packet
methods. The resulting approximate solution operators can be thought of as generalized Fourier integral
operators where the associated canonical relation satisfies the curvature condition in [Mockenhaupt et al.
1993].

We follow the same strategy here, essentially proving bounds on the L4(P) norm of the square
function above. Once again, the roughness of the metric means that we are led to use wave packet
methods to construct a parametrix. In this case, the canonical relations which arise naturally have folding
singularities. In Theorem 1.1, the relation has a one-sided fold and in Theorem 1.2 the relation essentially
has a two-sided fold. There is a significant body of work on L2 — L4 bounds for Fourier integral
operators with folding singularities; see [Greenleaf and Seeger 1994; Hormander 1985; Melrose and
Taylor 1985; Pan and Sogge 1990; Cuccagna 1997] (the first of which treats one-sided folds). A key
technical development in the present work is that the operators arising from the wave packet transform
satisfy the desired square function estimates in spite of the inapplicability of these results for Fourier
integral operators. Nonetheless, the approach taken here is in part inspired by these works.

Notation. We use C* to denote the Holder class of order . Moreover, C1*® will denote the class
of metrics or functions whose first derivative is in C%, taking the contrived convention that Lipschitz
regularity is allowable when o = 0. In what follows, X <Y will denote that X < C'Y for some implicit
constant C which is in some sense uniform, though when used in decay estimates, it may depend on
the order N. Similarly, X &~ Y will denote that X <Y and Y < X. We use d as the differential which
carries scalar functions to covector fields and vectors into matrices in the natural way. Given a metric g
under discussion, we let (-, ), | - |¢ denote the inner product and length induced by the metric either in
the tangent or cotangent space. Lastly, given a vector x € R”, x” and x”" will typically denote a vector in
R!, I <n, formed by taking a subcollection of the components of x. The nature of this subcollection may
vary depending on the section.

Remark on admissibility conditions. The admissibility condition § + /¢ < 1 +« (with equality allowed
when o = 0, 1) arises in Section 2, where elliptic regularity is used to show that when a cluster IT, f is
considered in a coordinate system, the high frequency components (with respect to the Fourier transform)
satisfy better bounds than those near frequency A. However, it can be checked that the condition § < % is
always satisfied when k =n—1and 2 < ¢ <2n/(n— 1) and that § < 5/6 holds for sufficiently small
¢ > 2 when k = 2, ensuring that, in many relevant cases, the admissibility condition is satisfied. On the
other hand, Smith [2006a, p. 969] showed that the bound ||TT; /|| Loe(ary S A®"D/2|| £]|z2(ar) holds
whenever g is Lipschitz. The key observation here is that one can write I1; f = exp(—k‘zAg)H A f
with ||H;\f||L2(M) ~ [Ty f | L2(ary- The L°(M) bounds then follow by combining Saloff-Coste’s
Gaussian upper bounds [1992] on the heat kernel with Smith’s L2(+1D/#=D(Ar) bounds on IT; f.
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However, the same argument gives the continuity of each I1y ' € L2(M) since the fixed time heat kernel
is continuous on M x M (as observed in [Saloff-Coste 1992, Section 6]). Thus Smith’s L% bounds
on spectral clusters imply L bounds on their restrictions and this can be interpolated with the L9(P)
bounds for submanifolds of low codimension to see that, in many cases, the admissibility conditions can
be relaxed. This also ensures that the restrictions are well-defined.

Remark on the optimality of (1-7). As noted above in (1-2), the examples in [Smith and Sogge 1994;
Smith and Tataru 2002] show that the bounds from [Smith 2006a] establishing L4 (M) bounds are sharp
for small values of ¢ > 2. We comment here that the same examples show that the bounds (1-7) in
Theorem 1.1 are sharp as well. Indeed, the examples in [Smith and Sogge 1994] produce metrics of C 1-*
regularity and associated spectral clusters f; which are concentrated in a tube of length 1 and diameter
A 72/G+®) that is, a set of the form

il S 1 |y .exn)| S AT/ GFD, (1-10)
Therefore if we take P to be defined by x,, = 0, we see that the rapid decay outside of this set implies

I AllLacp)
[ /22 ary

2 (n—l_n—Z)
~ A3l 2 q

However, %(0 + 1) =2/(3 4+ «), showing that the exponent simplifies to 6(1 + o) and hence the bound
(1-7) is optimal.

2. Microlocal reductions

In this section, we will reduce the main theorems to proving square function estimates for frequency
localized solutions to a hyperbolic pseudodifferential equation. We follow an approach due to Smith
[2006a]; see also [Blair et al. 2008]. The needed reductions are fairly common to both theorems, so
we begin by treating all cases at the same time. It is thus convenient to take the convention that §(o) is
defined by taking the power of A appearing in (1-7), (1-8), or (1-9), realizing that in all cases §(0) denotes
the power without loss of derivatives. Moreover, the admissibility conditions mean that if o > 0 and
0<a<l1,8(c)—1<a (respectively 6(0) —1 <« when o =0, 1).

Throughout these preliminary reductions, we will make use of the fact that when k& < n, we have the
following embedding for traces in R¥ x {0}, {0} € R"*~k:

H"27klamry — L1(RF x {0}), (2-1)

which can be seen by first applying Sobolev embedding on R* x {0}, and then using the trace theorem for
L? based Sobolev spaces. The estimates in Theorems 1.1 and 1.2 thus exhibit a gain relative to Sobolev
embedding. The gain is largest when ¢ = 2: a quarter or a third of a derivative when k = n— 1, depending
on whether the submanifold is curved, and half a derivative (up to a possible logarithmic correction) when
k<n-2.

It suffices to prove the main theorem for a spectral cluster f satisfying f = II, f. We begin by
observing that /" satisfies the following bounds in Sobolev spaces defined by the spectral resolution of A,
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1(Ag +22) [ zs oy + 1 f sy S AT L2y

It thus suffices to prove bounds on f* of the form
1A zacey YA OS5 l f s vy + 1 s vy + 1 Qg + A2 f L arsi ) (2-2)
i

where a sum is taken over a finite collection of 0 <s; < 1.

Multiplication by any smooth bump function ¥ preserves H!(M), and, by interpolation, H*(M) for
any s € [0, 1]. Therefore, by taking a partition of unity on M, it suffices to prove (2-2) with f replaced
by ¥ f, where ¥ is supported in a suitable coordinate chart which intersects P. Specifically, we will take
slice coordinates so that P is identified with R¥ x {0}. Furthermore, by taking a sufficiently fine partition
of unity and dilating coordinates, we may assume that for some c( sufficiently small,

lg" = 8ijll ¢ 1.y < co- (2-3)

By elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 8.10, Theorem 9.11])
and interpolation, we have, for any g supported in this coordinate chart, ||g||gsar) ~ gl 75 @n) for
s €0, 2]. Next we observe that in coordinates within supp(y/), f satisfies an equation of the form

gd*f+ 12 f=w, gd’f= Y VO f 2-4)
1<i,j<n
where w is a sum consisting of (A, 4+ A?) /" and products of the form a - d; f, with a € C* (or L*®,
C%! when o = 0, 1 respectively) in turn a product of functions of the form g'/, \/ngj , or their first
derivatives. Hence multiplication by these functions preserves H*(R") for s = 0 and s € [0, ) when
a > 0 (respectively s € [0, 1] when o = 1) meaning that that, for any such s,

lwll s @y S I sy + 1df s any + 1(Ag +A%) £l s )

Furthermore, elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 9.11]) also
gives that 5
ld“f |l L2@ny S NAefllLz@ny + 14 | L2@ny + 11/ | L2@ny- (2-5)

Moreover, when 6(¢) > 1 (which only occurs when o > 0), we have

g (DY O3 £l 2@y + 10:g7 (DY) £l 2eny S NS Nl grsor—1 n)- (2-6)

where (D) denotes the Fourier multiplier with symbol (1 + |£|2)!/2. This means that we may replace
L?by H 8(@)=1 in (2-5). Indeed, the bound on the first term in (2-6) follows as a consequence of
the Coifman—Meyer commutator theorem (see, for example, [Taylor 1991, Proposition 3.6B]) and the
second follows since the admissibility condition on §(c) implies that multiplication by d;g"/ preserves
H8)—1 (R™).

With this in mind, we define the following norm when §(o) < 1:

A= S L2y + 27 NS L2y + 27214, L2y + 27wl L2 -
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When é(c) > 1, we define

A==

2 2
D AT Nd fll L2y AT w2y A7 @D (Z AN [N grseor—1 gy +A7 w]| H,w_l(w)).
Jj=0 j=0

Given the observations above, it now suffices to show that

1l Lo @ xoyy S AL 2-7)

Without loss of generality, we may assume that f is supported in a cube of sidelength 1 centered at
the origin and that the metric is defined over a cube of sidelength 8 centered at the origin. Hence we may
smoothly extend the metric g so that it is defined over all of R” and is equal to the flat metric for |x|
sufficiently large without altering the equation for f. Given r > 0, we let S, = S, (D) denote a Fourier
multiplier which applies a smooth cutoff to frequencies |£| < r and define g, = S,2, g where ¢ > 0 will
be taken to be sufficiently small. Since

g —gllLe S A7 (2-8)
we may replace g by g, in (2-4) when §(o) < 1, as the error can be absorbed into the right-hand side
of (2-7). The same holds when 1 < §(¢) is admissible, which can be seen by using the similar bound
llgs — gllce < A~! and the fact that multiplication by a C? function preserves H%@)~—1(R™).

We now write f as f = f<) + fi + f>) where fo) =S¢\ f and fo) = f —S.—1; f. Observe that,
when s = 0,

” [Seas gl]”H*'—)HS + ” [Sc—l)u gk]“]{s_)Hs < At > (2-9)

which follows from simple bounds on the kernel of the commutators. When 1 < §(o) is admissible,

the same holds with s = §(0) — 1. Indeed, AS;) (and similarly A.S,.—1,;) defines an operator in Sl1 0

hence the symbolic calculus gives [AS¢y, gx] € C*S ? o (in the notation of [Taylor 1991]). The claim then
follows by [Taylor 1991, Proposition 2.1D] or by commuting with derivatives when o = 1. Defining

wap = @ud fop + A% fap, wey, 1= gad?fon + A% f5), we have
lw <l s @y + lwsallzs @y S AT NS s @y + wl s @ (2-10)

for s = 0 and for s = §(0) — 1 when the latter quantity is positive.
To bound f-j, f~;, we use arguments from [Smith 2006a, Corollary 5]. Since ||gyd?f<xllz2 <
(cA)?|| f<allL2, (2-1) and the equation give the stronger estimate

| /<l Laexqoy S A2 farllLony < A2 w2y S AR 1.
For the high frequency term f<j, we use that, when s > 0,
W forllms @y + Mdfonllms@n S eldfonll ms @
This bound with s = 0 can be combined with elliptic regularity to obtain

ld?forll 2@y S lwsallp2@m- (2-11)
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When n/2 —k/q <2, (2-1) yields a gain of at least 1/2 of a derivative in the estimate for f-,. The case
n/2—k/q > 2 only arises when « > 0 and 6(0) = (n—1)/2—k/q 4+ 0/¢, and in this case we use (2-6)
(with gy replacing g) to bootstrap the elliptic regularity estimate, which yields a similar gain for f<;,
since

| foall a1 @ny S lwsall gse@—1@ny S NI

We are now reduced to proving bounds on f;. Reasoning as in (2-9), we obtain || £, || < || £l We
now impose a further microlocal decomposition of the function, writing fy = f) 7+ f) N, where fj 7 is
localized to directions tangent to the submanifold and fj n is localized to normal directions. Specifically,
we write f) n = Z;'l=k 11 /a,j where fy ; is frequency localized to a set of the form

supp(fr.;) C (& - A~ [E], &1 Z el Groe o & B Bl

with ¢ suitably small. Using (2-9) again, we have

lgand®fi,j + 4% fi il S A (2-12)
With this in mind, the flux estimates of [Smith 2006a, p. 974] give
I7xillzge 2, S A (2-13)

where x’ denotes the vector consisting of every component in R” but x;. Combining this with the n — 1
dimensional version of (2-1) on the hyperplane x; = 0, we have

1A la@esgop S A"V2 R £ 2 —0) S AONAIL

We now furtl further decompose fj 1 as fo.r = Z J,; Where {w;} is a finite collection of unit vectors
and supp( fk ;) lies in a small conic set containing w;. Without loss of generality, it suffices to treat

the case wj = —e; = (—1,0,...,0). Recalling (2-12) and simplifying notation, it now suffices to prove
1/ o e oy < A ULA for o satisfying
supp(/fa) CHE - [§/[E] — (—er)| S €} (2-14)

As a consequence of (2-13) with x; = x; and Holder’s inequality, if Sg is a slab of the form
Sr ={x:|x; —r| < R} for some r,
1/illz2csy S RYIAL (2-15)

Setp=(n—1)/2—k/q sothat p—8(0) =8(0)—1/qg whenk =n—1,2<g <2n/(n—1), and p = 6(0)
in all other cases of Theorem 1.1. Given a cube Q g of sidelength R = A~? which intersects Rk x {0}, we
let Q% denote its double, and also set wy, := gy d 2fi + A2 f5.. We claim that Theorem 1.1 now follows
from the bound

1Al zaqexiopnor) S A TPORPRTY? fillpagry + RV P2 willp2gr)).  ©2-16)

Moreover, Theorem 1.2 will follow from taking ¢ = 2 and §(0) = % here when P is curved (as p = 0 in
this case). Indeed, if these bounds hold, we may sum over the cubes Q g contained in S which intersect
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R¥ x {0} to obtain
1Al o (@i xqopnsg) S ATTPOTPRTV2Y £l Lagsny + RYV2AT willL2¢s)-

Recalling (2-15), the right-hand side is bounded by A(1=9)8)+e0|| £ |1 Given the previous observa-
tions on p, the desired bound on f; then follows by taking a sum over the O(R™!) slabs Sg in |x;| < 3/4
and the rapid decay property

| /.1 S ClxD ™M fill 2y for max; [x;] = §. (2-17)

The latter is a consequence of our assumption that f is supported in a cube of sidelength 1 at the origin,
which implies that f; is concentrated in a A~! neighborhood of this cube.

At this stage, we pause to remark on a useful feature of our metric when P is curved. Let N be a suitable
unit normal vector field such that (N, 3,) > 0. Observe that given any n — 1 vector (X!,..., X"~ 1) such
that (X1)? 4+---4+ (X"~1)2 = 1, we may assume that, over P, the quantity

— ) (N.Vyd)e X' X7 (2-18)
1<i,j<n—1
is uniformly bounded from above and below. Indeed, since d1,..., d,—1 span the tangent space to P,

one just applies the assumption that P is curved to constant vector fields of the form X/ 9 ;i (with the
summation convention in effect). Using that Vj, d; is the vector field Flkj k., we may use that (N, dg ), =0
on P for k # n and that (N, d,), is bounded above to get that

- Y TIhX'Xx/ (2-19)
1<i,j<n—1
is uniformly bounded from above and below over P for all such (X!,..., X"~1). Using that |g—gy | o1 <

A%, the bounds also hold when the Christoffel symbols are taken with respect to gy .

Returning to the proof of (2-16), we dilate variables x — Rx, set it := RA, and make the slight abuse
of notation that f, (x) = f3 (Rx). We will see that this reduces the general bounds to those without a
loss of derivatives, and hence we will take 6 = §(0) below. Indeed, rescaling the bound (2-16) gives

I full La (@k xgopn@) < M8(||fu||L2(Q*) + 1 Ngud?fu + 1P fu I22¢0%))- (2-20)

When P is curved, rescaling yields the same with ¢ =2 and § = (1 4+ 8)/6 where 8 = o/(1 — o). Here
Q is now a cube of sidelength 1, which we may take to be centered at the origin, and g, (x) := gy (Rx).
We now have that if g;1/2 := S;2,,1/28y, then (cf. (2-3))

lgn —guirzllLee S cop™, (2-21)

and we may replace g, by g,1/2 in (2-20), since the error can be absorbed into the right-hand side. The
metric g,1/2 has C 2 regularity, namely,

lg) 2 —8ijllc2 Seo and 8%, allc2 = 2047 for || = 2. (2-22)
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We pause again to discuss the effect of this dilation and regularization on the upper and lower bounds

on (2-19) for curved metrics. For unit n — 1 vectors (X!,..., X"~1), we now have
c<—pf > TE®X X S (2-23)
1<i,j<n—1

for x € P. Here the Christoffel symbols can be taken with respect to the metric g,1/2, since we now have
(2-21) and ||gu — g1/2llcre < u~Y2 « u=P. Moreover, by continuity, we may assume that if ¢ is
chosen sufficiently small, then the inequality holds for all x € Q at the expense of decreasing ¢ slightly.

We will prove the bound (2-20) by wave equation methods. Let u, (¢, x) = cos(¢ut) fu(x). It suffices
to show that if F,, = (92 —gul/zdz)uu,

lell Larxgopngsr2-1.1y) = 1l (0. )l L2y + 1 Il L2¢=1,1yx0%)-

Now let (¢, x) denote a smooth cutoff that is identically 1 on (— 3, %)nﬂ and supported in (— 3, %)nﬂ.
Replacing u,, by Y u,, and similarly for F,, it suffices to show that
el Loy L2y S 10 N0 ) | L2y + 17 I Full 2@ 1y)- (2-24)

since energy estimates bound the error terms which arise when commuting (3% — gu1/2d 2) with y. Next
we let Fljf (1, &) be smooth cutoffs to regions of the form

{(@.8) e~ 5], [§[ ~ 1. [§/15] = (—e1)| S &} (2-25)
and supported in a slightly larger set. Let ui = I'lf (D¢,x)uy. By [Smith 2006b, Lemma 2.3] and the

localization of f;,, we see that elliptic regularity and (2-1) yield an estimate on u,, — u;; —uy, with a gain
of at least half a derivative relative to the right-hand side of (2-24). It thus suffices to prove (2-24) with

uy, replaced by uljf The proof of the bound follows in the next two sections.

3. General submanifolds

In this section, we prove (3-4) and hence Theorem 1.1. Recall that coordinates are chosen so that P
is identified with (y, 0) € R” with y € R, 0 € R"¥_ In this section, we take the following notational
conventions on coordinates in R”. The letters w, y, z denote vectors in [R{k, and given such a vector we let
y denote the vector in R” determined by y = (y, 0). The letters x, &, v typically denote vectors in R”, and
we often decompose such a vector as x = (xq, x’, x”) where x' = (x2,...,x%), X" = (Xg41,- -, Xn)-

We begin by showing that u/jf solves an equation which is hyperbolic in x;. Given (2-22), we have
that, for (z, £) in the regions (2-25), ng 1268 — 72 defines a quadratic in &, with two real roots and hence
we may write

e/, 2 ()& — T = gl (0 E 4 (T ENE — g (v E)) (3-1)

with ¢ > 0 and homogeneous of degree 1 for such (z, ). We further regularize these symbols, taking
pE(-. 1.8 = SCZMI/Zqi( -, 7,&’). By the elliptic regularity argument in [Smith 2006b, Lemma 2.4],
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the function u,, satisfies N N N
(—idx, + p~(x, Dt,x/))uu = GM, (3-2)

with || fo || L2(rn+1) bounded by the terms in parentheses on the right-hand side of (2-24). Moreover,
akin to (2-17), we have the rapid decay property

g (6, 0)] S (] @)D Nlugll p2gntry,  for max(fe], |xi,..., [xal) = 1. (3-3)
Thus, by energy estimates, it can be seen that
||u,jf 2@ty S N0, ) 2@y + 1 19700 ) | 2@y + 1 1 Gull L2n+1)
since the right-hand side is compactly supported. By (3-3), it suffices to show that
1uE N Laqr it xtopr2@y S W NUE 2@ty + 1 NGE ] L2@nt1y)- (3-4)

It suffices to treat the term 7, as bounds on the u;} will follow from time reversal. Hence we suppress

we 3
the superscripts on u,;, G/, p~ below and assume the minus sign is taken when referencing (2-25).

It is convenient to change the roles of ¢ and x; above, and correspondingly t and &, treating (3-2) as
an equation which is hyperbolic in ¢, rather than in x;. As a consequence of (2-22), p is now a function
of (¢, x, &) (or more precisely (¢, x", x”, §)) satisfying the bounds

07,0 (p(t.x.6) = VEL | .E"))| Sco. Iyl =2, (3-5)

for |£| = 1 in a cone of the form
&6z EEND, (3-6)
and ¢( can be replaced by couu# when |y| = 1. Moreover, for £ in the same set,
0% Pt 6 s 2Dy 22, (3-7)
By (3-3) and time translation, it suffices to prove that over the time interval (0, 1),
””M”Lq L2 sﬂs(uuu”LOOLZ + ||G/L||L2 )
t.y/ V1 t X t.x

where we understand the left-hand side to be

1 5 q/2 1/q
(// (/ . 5)| dyl) dy’dz) Y =0 ),
0 JREF1Ix{0} \JR

and the L L2 norm on the right-hand side as L>°((0, 1); L?(R")). Moreover, since

p(t.x,D)— p*(t,x,D) € Op(S;),%),
we may differentiate |[u, (7, )| ]2} in ¢ to obtain
3

ltwll oo 3 S Nl 2ty + 1 Grell 2t
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Let the wave packet transform T}, : #'(R") — C*®(R?") be defined by

Ty f(x.6) = u* / TEV) g (12 (0 — 1)) £ () dv

where ¢ is a real-valued, radial Schwartz function such that supp(¢?) is contained in the unit ball and
normalized so that ||¢||;2 = (27)~"/2. The normalization ensures that Tlf T, is the identity on L2(R™)
and hence ”TMfHLZ(Ri’jS) = |/l L2wny- Let gu(x) := uyu(0, x) and let ©;(x, &) denote the time-r
value of the integral curve determined by the Hamiltonian flow of p with ®,;(x,£&)|,=; = (x,&). Given
[Smith 2006b, Lemma 3.2, Lemma 3.3], we may write

t ~
(Tutt) (1. x.§) = Tugu (@0 (x.6)) + /0 Gu(r. Oy (x. ) dr (3-8)

where G satisfies

t t
J NG aquany dr 5 Nl + [ NGz (3-9)

for ¢ € (0, 1). Indeed, these lemmas show that if /), denotes the Hamiltonian vector field defined by
p,then Ty, p(-, D) — H, T, defines an operator bounded on L2, and that (3-8) follows by solving the
corresponding transport equation. Furthermore, given the frequency localization of p(-,&) and the
compact support of ¢, we may assume that uniformly in r, x, we have

supp((Tugu)(x,-)), supp(G(r, x,-)) CHE < [€| ~ p,—&1 2 7 '|(E, €]} (3-10)

Define the propagator
W f(t.y) =T, (f 0Oo)(¥),
and observe that, given (3-8), (3-9), it suffices to show that

W fllipe 12 Sullflle (3-11)
t,y' V1 x.&

with a (log )!/2 loss when (k,q) = (n —2,2). Let W; denote the restricted operator W, f (y) =
W f(r, y)|r=¢. By duality, it suffices to see that, for functions F(s, z),

IWW*Fliga iz SNl g (3-12)

To prove this, we will show that
”Wt Ws*hllL;?L%I 5 /Ln_l (1 + ,u/ll _S|)_(n_1)/2||h||LJl},L%1 N (3'13)
IWeWhl gz < w5 (1 ple = s ™02 )l . (3-14)

When k =n—2 and ¢ = 2, Young’s inequality and (3-14) give (3-12) with the logarithmic loss. In all
other cases with k <n — 2, we may interpolate (3-13) and (3-14) to obtain

W, W <2500 —s)~T 315
IWeWehllpa, 2 < (14 plt—s)) e (3-15)

a’ r2
LY L}
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and use that (1 + |s|)~(@=D/2=&=1/a) ¢ [4/2(R) to get (3-12). The same argument works when
k=n—1and2n/(n—1) < g < co. To handle the remaining cases when k = n — 1, we use that

WU A e —s)) T T < )T s T
Hence (3-12) follows from the Hardy—Littlewood—Sobolev inequality when ¢ = 2n/(n — 1). When
2 <q <2n/(n—1), the right-hand side is in LY? and Young’s inequality gives (3-12).

loc

In what follows, we will denote the integral kernel of W; W* as K; 4(», z). The bound (3-13) follows
from the proofs of the bounds [Smith 2006b, (3.5); Smith and Sogge 2007, (5.4), (7.2)]. Those works
establish the uniform inequality

/ |Kes (v, 2)| dyr + [ |Kes(p,2) dzy S "N (14 e —s))~ = D/2,

It thus suffices to prove (3-14). Using that (x, &) — ®;, ,, (x, &) defines a diffeomorphism which preserves
dx A d&, the kernel of W;W,* can be realized as (cf. [Smith and Sogge 2007, p. 127])

Kis(y.2) =" / MBI I m g (2 (Z = ) (2 (5 = xs))T @) dx dE - (3-16)

with (x;, &) abbreviating (xy,(x, £), & +(x,&)). Here I is a cutoff supported in a region of the form
appearing in (3-10), which may be inserted since we are only interested in functions f satisfying that
condition.

Before proceeding, we observe bounds on the bicharacteristic flow of p.

Theorem 3.1. Suppose (x, &) € R*" with £ in the set defined by (3-6). Let Oy s(x, £) be as in (3-8), that
is, O1,5(x, §)1=s = (x,§) and

8Sxt,s(-x7é):dsp(sve)t,s(x’é))’ aSét,S(xvé):_ xp(S,(’Dt’s(x,S)). (3'17)
Then, for t,s € [0, 1], first partials of x; 5(x,&), & ,s(x, &) in x, & satisfy

|dxxss — 1|+ |dx&ss| < colt —s), (3-18)
N

|dgxr,s(x, &) —f deds p(Ors(x,8)) dr| + |dgks s(x, &) — I| < colt — 5] (3-19)
t

Proof. Differentiating the equations (3-17) gives

dx;r| dx; | dxdep dgdep
d, [dét,ri| =M(r,xtr. &) |:d$t,ri|’ where M = [—dgdxp dud.p|’

By Gronwall’s inequality and the bounds (3-5), we have
|dxxe,r =1+ ldxber| S 1 Ndexer| + |dgée,r — I S 1,
and substituting these bounds back into the integral equation for dx; ,, d&; , implies the theorem. [J

This type of argument can also be used to bound higher order derivatives of x; s, & 5, see, for example,
(4-10) below. Such bounds are used in the proof of the next theorem. It is due to [Smith and Sogge
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2007, Theorem 5.4], which obtains bounds on K, ¢ under the assumption that I" is a smooth cutoff to a
(possibly) smaller set.

Theorem 3.2. Suppose 0 = min(1, u='/2|t —s|~'/2) and the smooth cutoff T in (3-16) is supported in a
set contained in (3-10) of the form

supp(I") C {€ : |&/1&] —nl < 0} (3-20)

for some unit vector n € S" 1 Let (x1,5,V1,5) = O 5(2,m). Then K; s satisfies the pointwise bounds

|Ke,s (1, 2)] S 10" 114 p| 5 — x5 + | (ves, 57— xe5) ). (3-21)

Observing that "% (1 4 |t — s[)~#0/2 ~ min(u*=*, p1=%)/2|r — 5| =n=%)/2) e begin treating
the case |t —s| < u™!, that is, the case where the first quantity is smaller. In this case, we apply (3-21) in
Theorem 3.2 with § = 1 and n = —e; to obtain

K5 (0, 2)| S 1"+ w7 = x5z =)D,

which gives the first half of (3-22) below. Making the measure-preserving change of variables

(X, S) = (xt,s(x’é)’ét,s(xv S))

in (3-16), we may reverse the roles of y and z in Theorem 3.2 to obtain an analogous bound which yields

[ Kry(r.2)] dy + / Kps(r.2)] dz < i+ 322)

(strictly speaking, the change of variables replaces I'(§) by I'(&;,5(x, £)), but this does not change the
validity of the bounds in Theorem 3.2).

It now suffices to treat the more involved case where ;1!

< |t —s| <1, and for the remainder of this
section we assume ¢, s € [0, 1] are two fixed values satisfying this condition. Using the notation suggested
by Theorem 3.2, we set @ = 1 ~/2|r —s|~1/2 so that 162 |t — 5| = 1. Using a partition of unity, we take
a decomposition K; s =) i K J where K/ is defined by replacing I in (3-16) by a smooth cutoff I';,
with T; supported in a set of the form |£/|€| —5/| < 0 and {n/} is a collection of unit vectors in the cone
(=& = e 1(&, £")|} separated by a distance of at least ~ 1. In particular, we may assume that, for

fixed j, _ .
D467y =Tt <1, (3-23)
/

Let 7} be the operator defined by (Tjh)(y) = [ K7 (y,2)h(z) dz and observe that, since |(v/);| ~ 1,
(3-21) in Theorem 3.2 with n = 1/ gives

[ 1K1 G lay < ki,
By the same symmetry argument used in (3-22), we now have
1Tkl 2 S w6 KNl o = w021 — s 7702 )

(though in what follows, it is convenient to express the bounds in terms of p, 0).
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We claim that there exists a constant C such that if 6! In/ — nl | > C, then
1T Tjll 2o 2 A 1T T L2y 2 S 2070620701 467/ = .

Since W, W =3 j Tj, Cotlar’s lemma then implies (3-14). Furthermore, we focus on the bound for
T;*Tj, as a symmetric argument yields the bound on 7; T]* Set

Jia(zow) = f K. 2K (v, w) dy.

We will show that, for 0~1|n/ —n!| > C,
T 1z, w)| < R0 A )bz —w| + (2= w) |+ 6l =), (3-24)

The proof of (3-24) varies based on whether |(n{ — nll, cees n]{ - ni)| > |(n —n")”| or the opposite
inequality holds. In the first case, we write

ateowy = 2 [ ([ €560 ) a2 50 dy
XY (z,w,x, £ 5 T ()T () dx dE di dE  (3-25)

where fcg denote the variables in the integral defining K; and v is a function independent of y. The y
integral in parentheses is a constant multiple of

[ U6 8 =N (TG, 8. 8 = E) dbdE d g d " (3-26)
where 15 is some real-valued phase function. Since supp(qAS) is contained in the unit ball and
20n] =l =0l = 1 =),

this integral vanishes if 6~ |n! —n/| > C, as this implies that |(&; —él, o & —§k)| > Cub > Cul/?.
We now turn to the case where |(n/)” — ()| > |(n{ — nll, e r],]€ — nfc)|. In this case, we use (3-21)
in Theorem 3.2 to bound |K;|, | K;| individually. After some minor manipulations, this yields

|J;.1(z, w)|
< ) 2np2m=0 [ (14,95 — Dol o1y — z A N AN 2\
Su (14 p101y —x1,5(0, 07 )| + 105 — x1,5Z, )| + | (ve,s(Z.0'), § —x1,5(Z,0'))])

X (14 (e s(@,77), 5= x50, 1)) = (s Gon'), 7= x0s WD)V dy  (3-27)

We take 3N of the powers in the first factor of the integrand on the right and claim that up to implicit
constants, it is bounded above by

(1+ )z —w| +6~" I/ ='W, (3-28)
To see this, first observe that the 3N powers from the integrand are dominated by

(14 p10|x05(Zon') = xe5(@.07)| + 64p0|x7 (2, 1) — x] (0, p))) 72N,
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By the bounds (3-18), (3-19) in Theorem 3.1, we have
25 Zo) = x0,s (@ 0?)| = §1z = wl = 2]t =510’ =] (3-29)
provided co and ¢ are taken sufficiently small. Next we use that
5o @. ) = x{ )| =[x 07) = x] (@) | = [x] (@0 = x] G-

To bound the second term on the right, we use that as a consequence of (3-18) the (n — k) x n matrix

dxxy; satisfies ,
‘dxxt’s —[0 In_k]} < colt —s).

Recalling that w = (w, 0), z = (z, 0), this gives
[t (@) = x7 o (Z. )] < colt =511z —wl.
We now use (3-5), (3-19) to get that dgx; ((x, &) is the (n — k) x n block matrix
(s—0E —EEND T (68 —"ET —(EF—IEENP) i +E"ET)]
plus an error term which is O(co|t — s|). Here £” is taken to be a column vector. Since |(n! — /)| >
3’ =n/| and |(§',€")| < &l |, we have
57 @ n?) = (@) = gt = sl I’ = .
In summary, for some uniform constant M ,
6417 (. n7) = x G0 = 8]t =50’ =0’ | = Meolt =51z —w]. (3-30)
By taking cg sufficiently small, the negative term in (3-30) can be absorbed by the first term in (3-29) and
vice versa, which shows (3-28).
We now turn to the second factor in the integrand of (3-27). The triangle inequality gives
1| (ves(B.07). 5 —x15 (0. 1)) = (w5 G0 F—x05EnD)| 2 ul(n 2 =) | — E
with
E=p|vrsGonh)=ves@. n)||5=x0s G|+ | (ves @, 07). x0.5G. 0 =x25 (0. 0)))— (! . =) .
We claim that
E < (n0)*17 = x0sG )P+ 0720 =P+ (uf)*|z = w]* + 1. (3-3D)

The error induced by E can thus be absorbed by 2N of the powers in (3-28) and 2N of the powers in the
first factor in (3-27). This concludes the proof of (3-24), as the remaining N powers of the first factor in
(3-27) can be used to integrate in y.

To bound the first term in E, we use the geometric-arithmetic mean inequality and observe that the
bounds on dx&; s, dg&; s in Theorem 3.1 give

07 vrs Gy —ves(@.0))| SO z—w|+ 67/ — ).
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Since 67! < ,ué when |t —s| < 1, this is seen to be bounded by the right-hand side of (3-31). Using that
wh?s —t| =1and u < (uh)?, the rest of (3-31) follows from

[(ve,s (D, x5 o'y = x5 (0, 7)) — (07 .2 —0)| < |z —w|* + 625 — 1],

which can be seen by differentiating the expression on the left in s; see [Smith and Sogge 2007, p. 133].

4. Curved submanifolds

In this section, we prove the bound (2-24) with ¢ = 2, § = %(1 + B) which implies Theorem 1.2.
In contrast to the previous section, it will be more convenient to work with an equation which is
hyperbolic in ¢ rather than in x;. To this end, we simply set ¢*(x, &) = :I:( Zi,j gl/ (x)Eiéj)l/z and
pE(-.8) = Sezyt ,2qF (-, E). As a consequence, we vary the notational conventions slightly so that if
x € R"”, we denote x’ = (x1,...,x,_1) € R"! so that x = (x’, x). All other conventions will carry
over as before.

Following reductions similar to the previous section, it suffices to show that

(1/6)(1+ﬂ)(||u

||”f||L2((0,1)an*1x{o}) SHK ,jf||L2(Rn+l) +u! ||Gljf||L2(Rn+l))

where G ljf = (—id,+ p*(x, D))ui. As before, it suffices to treat the u,,, s0 we suppress the superscripts.
The wave packet transform from above can also be used here, and after following the initial reductions
in Section 3, it suffices to show that the propagator

W f(t.y) =T (f 0O (F) = pu"'* / e oG8 y=xeo g (112 (5 — x; o(x, £))) f(x, &) dx dE

satisfies

r 3 g
W Flz, suOUFPNfe o B=120 <5 (4-1)

where f is supported in a region of the form {& : |&| ~ u, |£1/|€] — (—e1)| < €}. In this section, the map
©y,s is determined by the new value of p and hence O; s = ©;_; ¢. Given (3-3), we may assume (Z, y)
are restricted to (0, 1) x (=1, 1)"~1, that is, we bound the L2((0, 1) x (=1, 1)"~!) norm of W f. We now
exploit the property (2-23).

Lemma 4.1. Let (x(¢), v(¢)) be a solution to the geodesic equation in tangent space

dxy k dv¥ i j k
A, LA rk 4-2
Sk — k0, O == O () 42
relative to the Christoffel symbols defined by g,,1/2 (with the summation convention in effect). Suppose
further that (x(t), v(t)) is defined for t €[—1, 1] and that the geodesic has unit speed in that |v(t) |gu1/2 =1.
If v(t) further satisfies V" (t)| < €, where ¢ is sufficiently small, then there exists a uniform constant ¢
such that the n-th component of the velocity satisfies

e Ple] <™ (0) = v"(0) < conPlt]. (4-3)
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Furthermore, the difference between x,(t) and its linearization about O satisfies
% (1) = xn(0) =" (01| < copt™ e 2. (4-4)

Proof. If ¢ is sufficiently small relative to the ¢; appearing in (2-23), then —v’ (f)v/ (t)Fi”j (x(1)) is
uniformly bounded from above and below. Adjusting the constant ¢y, the bound (4-3) is thus a consequence
of the integral equations arising from (4-2). The integral equation for x,,(¢) similarly gives Equation (4-4).

d

Recall that solutions to (4-2) are naturally associated to curves (x(¢), £(¢)) in the cotangent bundle by
the identification v¥ () = gﬁll /2 (x ())& (2). The curves in phase space are solutions to the Hamiltonian
equations

dx d§ i
E :dé-H, E:_dXH’ H(X,é): %gijuzgiéj-

With this in mind, we define a(x,§) = g""(x)&, = dg, H, where, again, the summation convention
is used. If (x;5(x,&), & 5(x,&)) were integral curves of the Hamiltonian vector field determined by

q = /g &i&j, we would have a(x; s, & 5) = |E|gu1/2 vy (s — ), where vy, (r) is the n-th component of the
velocity vector in (4-2) at time » with initial data satisfying

x(0) = xg, VH(0) = (&2 (DEN/IElg 100 10(O)g,y 0 = 1.

However, in the solution operator W under consideration, the (x;s,&; ) are integral curves of the
Hamiltonian vector field determined by p(-,§) = S¢2,1/2¢4(+,§). Given the bounds

0 (p - OISt 10K (p— ). O] S con'?,

valid for || & u, we can use Gronwall’s inequality to approximate the integral curves of dg p-dx —dx p-dg
by those of dgq - dx — dxq - dg and deduce that, for |§] ~ u,

A (0. ). £ (3. 6)) = [Els, 2 V(0 — 5) + 01?2 = 51) (4-5)

where v, (f — s) is as before. By the same tack, (4-4) gives that for (x;,5)n = (Xt.5, €n),
Cors)n (6, 6) = — [E15 ] L, )¢ —5)| S cop™Ple—sP 4+ Ple—sl. (@6)

Let Ny, ny be integers such that N, ~ log, (u/3DA+P), ny ~log, (uP) and take a smooth partition
of unity {I'; (r)};vﬁnu on R satisfying
supp(I'n, ) C{r eR:|r| > p2 2y
supp(I) C {r € R:[r| € (W22, 27+, < j < Ny,
supp(l'y, ) C{r e R: [r| < ;L2_N“+2}.

For each ny, < j < Ny, we define

Wi f(t.y) = p'* / e €07 =x00d gy (1125 — x, )T (@(x1,0, £1,0)) [ (X, §) dx dE
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and, as before, we let Wtj F(y) =W f(r, y)|r=. It suffices to show that
W7 Fllz, <2720 N2 (4-7)

When B = 0, the decomposition above is consistent with earlier treatments of FIOs whose canonical
relations possess a two-sided fold; see, for example, [Cuccagna 1997]. Indeed, for an FIO determined
by the classical Lax parametrix, the singularities of the right projection of the canonical relation are
determined by a(x;,0. §;,0) = 0 and it is effective to take dyadic decomposition in a(x;,9.&;,0)/u in scales
1>277 > pu~13 For B > 0, scaling considerations relating to the dilation of variables x — A~%x in
Section 2 then suggest that the dyadic scales should not be finer than ,u_(l/ 3)(1+B) In our circumstance,
we can view the splitting of |a(x;,,&:,0)|//t into scales less than and greater than M_%(Hﬂ) as a
decomposition into tangential and nontangential momenta, respectively. It can be seen that this threshold
gives the largest scale at which our estimate for tangential momenta (4-18) is effective. At the same time,
restricting nontangential momenta to scales at least this size allows us to achieve an appreciable gain
in the bounds for W/ by using the linear approximation of phase space transport in (4-23) below. The
selection of n,, is more technical; its choice is based on the fact that, for |a(x,&)|/n > w B, the (&1,0)n
component of the Hamiltonian flow can be linearized over a unit time scale.

Let w, be the unit vector pointing in the direction of (g"'(Z), ..., g""(Z)) and B denote the projection
matrix onto the subspace orthogonal to w,. Given the decomposition above, we will need to consider the
following class of integrals more general than those in Theorem 3.2:

Kig(y.2) = pl? / / TR i T 00) g (12 (2~ ) (2 (= x1))
x T(E)Tj(a(x, £ (a(xs 5, Er5)) dx dE  (4-8)

where I'; is defined as above with n, < j < N, and

supp(T) C {& 1 |&] ~ . [&1/1€] — (—e1)| S e | BE/|BE| —n| < 0}, (4-9)

for some unit vector 1 orthogonal to w;. In particular, if 6=1, W/ (W4 )* takes this form. Our first task
is to observe a generalization of Theorem 3.2.

Theorem 4.2. Suppose 0 =min(1, u= /2|t —s|~1/2)>2"7 and K s(p, z) is defined by (4-8), (4-9). Let {
denote a fixed vector in the &-support of T' (- )I'j(a(Z,)) and ws s = X1 5(Z,0), v, =&1,5(Z,8) /|&1,5(Z, 0)|.
Then K; (v, z) satisfies the bounds
- . - _ _ _N
K5 (0. 2)] S 0772277 (14 0| B+ (5 = wrs)| + e (ve,s, 7 = x1.5)])
Proof. The proof is only a slight modification of the argument in [Smith and Sogge 2007, p. 152] and

hence we only outline the significant differences. Indeed, the only alteration is that, in our case, a(x, &)
replaces &, and the factor I'j (a(x; s, &1,5)) is also present. Let @y, ..., w, be an orthonormal basis on R”
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containing w,. We then define the following vector fields, which preserve the phase in (4-8):

C1=i((&, 2 —x) — (s, v — Xes)(E, dt)

T [EE—x) = (s T — xas) P

_ 1—i(10)* {0k, 7 — x —dgkrs - (7 — X1.5)) (0, de)
1 +/L29_2|(a)k,2—x —dgs s (7= x1,5))?

’

, 1<k<n-—1.

We define L, analogously to L above with w, replacing wy and 27/ replacing 6. The idea is to integrate
by parts in (4-8) using these vector fields. We display the following bounds on the derivatives of @ s(x, &)
in x, & [Smith and Sogge 2007, (5.6), (5.7), (5.11), (5.12)]:

|d3xe s S (2] =), |d 36| S /2
| dxdgxes| Sl —sl (! Ple—=sl),  lddgbrs] S (7] —s)),
|df x5+ |dEEns) S e — sl Ple—s)E1 k=2, (4-10)

& -de)! (nBdg)* 1/ ?0dgxs| S 1, |(5-dp) (nbde)* ub{dekss, 7 —x05)] S (/215 —x050),

where the last one is valid for j 4 || > 1. these bounds were used [Smith and Sogge 2007] to prove
Theorem 3.2 above and the aforementioned estimates.

Here the first crucial matter is to observe that the result of applylng powers of the differential operators
(€,dg) and b (wy, de)fork=1,...,n—1to F(l)(a(x ), F (a(xt s, €1,5)) is dominated by the other
factors in the integrand. Powers of (S dg) are easily handled by homogeneity. Differentiating F( ) yields

a gain of 12/, while derivatives of 627 a(x, £) in the direction of wy are
027 (wr, dg)a(x, ) = 627 (w, & (x) — "™ (2)).

Since 627 < u%(“’f’) « p!/2, this is dominated by pu!/2|x —Z|.
For F}l)(a(x,,s, &:,5)), first consider a single power of 027 (wy, de) on a(xys,61,5)

0_2] (wk7 d‘g‘)a(xt,s(xv S)v gt,s(x7 E))
= ézj (wk’ dé)(gnm(xt,s)(gt,s)m)
=62/ (dxg"" (x1,5) - (k. d{-'xt,s)(ét,s)m + " (x1,5) @k » dg(ri:t,s)m»- (4-11)

The first term on the right is bounded as |dgx; s(x, &) [|5,s| < [t —s| and 627 |t —s| < 1. For the second,
we rewrite the sum in m as

(" (x1,9) =" Ok, dgEr,s)m) + & E) @k, dg r,5)m — em).
The second term is O(|¢ — s|) and can be dominated as before. For the first term we use that

|xt,s(xa§)_2| = |xt,s(xs$)_x| + |X—E|



1284 MATTHEW D. BLAIR

The first term here is O(|z —s|) and the second can be treated as above. For higher derivatives of (4-11), we
simply use homczggneity and (4-10) to see that the result of applying / additional powers of 827 (wy, de)
is bounded by (627)/+1|s —s|u~ /2 « 1.
Integration by parts using Lo, ..., L, gives that |K; s(y, z)| is dominated by
2 [ P = 2 =) N BB G x e (=0
+ l/v2j|<0)n,5 —X _dégt,s =xe N+ 1. 2—x) = s, ¥ _Xt,s)|)_N dédx (4-12)

and we may assume that the values of & are restricted to £ € supp(f( O (a(x,-))).
Now observe that if £ is such a vector and &, ¢ are vectors in the direction of &, { normalized so that
|BE| = |B¢| =1, then

1BE-DI<0, |I-B)E-D|I<|Z—x]+277. (4-13)

The first of the two inequalities is evident from the support condition on I and the second follows by
observing that | B€|, | B¢| &~ n and

g (Dem — " (D) m = (€ (Z) — "™ (X))em + " (X)em — £ (2)m

Given (4-13), the proof of [Smith and Sogge 2007, (5.13)] goes through with only minor adjustments.
Hence (4-12) is further dominated by

" / (1 + 10| B -dskr s+ (5 — wrs)| + 1277 |(0n, debrs - (7 — Wi s))]
(s, 7= we ) )N A+ @22 — x| 4+ 25— xe) N dEdx (4-14)

where £ values are restricted as before. Observe that since u'/2 <« u2=/ < 16 and de&;s s is invertible,
the middle two terms in the first factor dominate u'/2|j — w t.sl-

We next see that we may replace &; 5 by & 4(Z, §) in the expression (&; 5, y — w;,s). Without loss of
generality, we may assume that | BE| = | B¢|. We note that

[(6rs(x.O) = &1,5(2.0). Y —wis)| S plx = Z[|y — x15]-
It now remains to bound |(&; s(x,&) —&;5(x,8), ¥ —w;s)|. We thus write
Ers(6.6) = E1s(x. §) = (€= ) debrs + O(1& = £ 2™ 2]t = 5.
For the first term here, note that
(=08 -debis =(E =8 B-debr s+ (§—-0) - (I = B) - dgkys.
Since B is an orthogonal projection and
B-E=0ISub, |(I-B)-(E=ISp2™ +plx—2],

the error induced by the first term here is dominated by the other terms in the integrand in (4-14). We
then use u6?|¢t —s| < 1 to bound the error term similarly.
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Also, replacing dg&; s by the identity matrix in (4-14) yields an acceptable error, as it is bounded by

10t —s||7 = x5l S U215 = x15.

Finally, for each x, the region of integration in £ can be restricted to a set of volume ~ u" 6n—22-J,
which is enough to conclude the proof. O

Note that, by (2-22), we may assume that the difference between B and projection onto the first n — 1
coordinates yields an error which is no more than O(cg). Moreover, since |v; s —e1| < €+ ¢, we have,
as a consequence of this theorem, that

/ |Kis(v.2)dy S p27. (4-15)
We now begin the proof of (4-7) when j = Ny, claiming there exists ¢; such that
Ny Nuvs _ ~ ,,B>—N,
W, (W ™)* =0 whenever |t —s| > ¢c;u”27 4. (4-16)

To see this, recall that the kernel of W,N“ (WSN“)* is given by an integral of the form (4-8) with 6 = 1.
Since =B > u=1/2, by (4-3) and (4-5), there exists a constant ¢, inversely proportional to ¢y above,
such that |a(x,s(x, &), & 5(x,£))] > u2~Nut2 whenever w Pt —s|>¢27Neand £ € supp(I'n,, ).
Turning to the case |t —s| < ¢; /,Lﬂ 27N take a collection of unit vectors 7’ orthogonal to w, and
mutually separated by a distance ~ 6 so that (3-23) holds. Now write K t,s = > ; Ki(y, z) where each
K; is defined as in (4-8) with 7 replaced by 7. Next observe that |n/ — n’| < |(n/ —n')’|, which can
be seen by noting that the linear map which projects the subspace orthogonal to w, onto its first n — 1
components is invertible and depends continuously on z. An adjustment of the almost orthogonality
argument in (3-26) thus shows that the operators 7;* T}, T; Tj* vanish if 67! |n* —n/| > C for some large
C. Observe that
[ 1K dy+ [ 1K ldz < p2 e @-17)

But the first half of this is a consequence of (4-15) and the second half follows by symmetry and
the same bound. Indeed the theorem applies here, as our assumption on |t — s| means that 0 >
u_(l/z)(1+’3)2(1/2)NM ~ 2~ G/DNuAA/DNu — 2=Nu  The bound (4-7) now follows by duality, since
Young’s inequality in ¢, s gives

||WN[L (WNM)*llL%.Z—)LZ , < Mz—Nu . [L'B2_N“ ~ 2N (4-18)

t,

For n, < j < N, we take a partition of unity over RS ; X(» —1) = 1 such that the sum is taken
over [ € 7"~ and supp(x) C [—1, 1]*~!. Use this to define

i) = x(w P27y —1) and W f(t,p) = i (W! f(t,y)

and we consider only those / such that supp();) intersects (—1, 1)". By the support properties of x, we
may take C sufficiently large so that (W7-")*W /-l vanishes whenever |/ —m| > C. We next claim that
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we can take C so that
||Wj’l(Wj’m)*||Lz_,Lz <u™™ whenever || —m| > C. (4-19)

Since there is at most O(u®~1/3) of the W/, the estimate (4-7) on W/ will follow by Cotlar’s lemma
and Young’s inequality provided we can show

.,l . ) 5 _
W VD bl 2 S 2™ (14 p27 [t = s 72 hl 2. (4-20)

In order to show (4-19), we can write the kernel of the operator, denoted by K i;n (y, ), as the product
of x;7()xm(z) with an integral of the form (4-8) with = 1. Given the compact support of K i;" in y
and z it suffices to show that this integral is dominated by 4~ for any N. Similar to the j = N, u case,
if £ € supp(I'j) and |t —s| > &1 uP277 for some ¢, depending only on ¢y, then Tj(a(xss.615)) =0,
meaning the kernel vanishes for such 7, s. When | —s| < & uf277, we use that

|xt,5(2,6) = X1,5(x,§)| S |2 — x|

to dominate the integral in (4-8) simply by
w'? f (L4 u! 22 —x |+ 1215 = s G HODTNTOT (a(x. §) dx dE.
Using the elementary estimate |x;5(Z, &) — Z| < 2|t —s|, we see that if |/ —m| > 2%¢,
|7 =05 GO = |y =z =2l =5 = pP2 T2 —m| =26, pP27) = P2l = 1

and hence p'/2|z — x; 4(7,&)| = u'/®. This implies the desired bound on Kﬁ:;"(y, 2).

We now turn to (4-20). It suffices to restrict attention to |t —s| < ¢; ub2=i, though this does not play
a crucial role in the argument. First consider the case where ¢, s satisfy |t —s| < £ =122/, We begin by
observing that a slight adjustment of the almost orthogonality argument in (3-26) and preceding (4-18)
allows us to assume that the kernel Kfé (y,z) of Wtj’l(Wsj’l)* is the product of x;()x;(z) and an
integral of the form (4-8) with & = min(1, £~ !/2|¢r —s|~1/2). Indeed, reasoning as in (3-25), we are lead
to consider the integral

/ HET=XTET=R) g (12 (5 — ) (2 (5~ )G () .

While this integral does not vanish when ul/ 2k pﬁ_ <|&E- § |, we may bound its absolute value by
Cyp~N for any N, which is just as effective. Indeed, we may take the Fourier transform similarly to
(3-26) and, since the Fourier transform of X]z is concentrated (though not localized) in a ball of radius
M_ﬂ2j < /Ll/3 < M1/2’ the rapid decay in u follows. We now conclude (4-20) for |t —s| < =122/ by
applying (4-15) and reasoning analogously to (4-17).

To show (4-20) when |t —s| > =122/, we take the decomposition used in Section 3, writing the
kernel Kﬁ:ﬁ =Y ; K; with K; defined by replacing the I" in (3-16) by a smooth cutoff fj,j to a region of
the form

{6 esupp(T(ITj(a(x, ) =& ~ . [/161 =0 | S0}, 6=p =572
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where 1; € S"~!. As before, we assume that 1’ are separated so that (3-23) holds. The estimates (3-21)
in Theorem 3.2 give
—-N

|Ki (i )| S 0" (14 pb |7 — x5 |+ (vl . 7 —xi 6)) (4-21)
with xf,s = x1,5(Z,1"). We will show that
|7 —xigl 227/ |t—sl. (4-22)

Together with our assumption on 7, s, this gives u'/2277/ [t —s|'/2 < u6 |)7—x;"s |, and hence this additional
decay and the almost orthogonality arguments above can be integrated into the proof of (3-24) to obtain

WS W o 2 S B+ p27 2 [ =) < p277 (14 2] — s 72

To show (4-22), first consider ¢, s satisfying =122/ < |t —s| < uB277%3 (note that this is nontrivial
when 2/ < Z/L%(H_'B) ~ 2Nu | a relevant consequence of the j < Ny, threshold discussed above). We
may assume cq in (2-22) is sufficiently small and use a linear approximation of the »n-th component of
x¢,5(Z,1") in (4-6) to obtain , ,

|(Xe,)n(Z )| 2 277 [ =], (4-23)
since the n-th component of z vanishes. Indeed, over this time scale, the error term is smaller than the
linearization.

Now assume that |t —s| > pub2—i+3, Taking ¢, cq sufficiently small, we obtain

t
Cers)t G — 21| = / B¢, p(r ©rsG.rf)) dr| = L]t —s|
S

Since v,z € supp(x;) we obtain |y —z| <27/ +1,B < %lt — s| and hence we have the stronger bound

|(xe)1Gon') =il = St —sl—|z1 — 1] = 1t —s].
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FROM THE LAPLACIAN WITH VARIABLE MAGNETIC FIELD
TO THE ELECTRIC LAPLACIAN IN THE SEMICLASSICAL LIMIT

NICOLAS RAYMOND

We consider a twisted magnetic Laplacian with Neumann condition on a smooth and bounded domain of
R? in the semiclassical limit # — 0. Under generic assumptions, we prove that the eigenvalues admit a
complete asymptotic expansion in powers of i'/4.

1. Introduction and main results

Let Q be an open bounded and simply connected subset of R? with smooth boundary. Let us consider a
smooth vector potential A such that 8=V x A >0 on  and a a smooth and positive function on 2. We
are interested in estimating the eigenvalues A, (1) of the operator P, 4 = (ihV + A)a(ihV + A) whose
domain is given by

Dom(Py 4) = { € LA(Q) : (—ihV + A)a(=ihV + A)¢ € L*(R) and (—ihV + A)¥ -v =0 on 3R2}.

The corresponding quadratic form, denoted by Q, 4, is defined on H'(Q) by

Ona(y) = /Qa(x)l(—ihv + Ay dx.

By gauge invariance, it is standard that the spectrum of P;, 4 depends on the magnetic field 8 =V x A,
but not on the potential A itself.

Motivation and presentation of the problem.

Motivation and context. Before stating our main result, we should briefly describe the context and the
motivations of this paper. As much in 2D as in 3D, the magnetic Laplacian, corresponding to the case
when a = 1, appears in the theory of superconductivity when studying the third critical field Hc, that
appears after the linearization of the Ginzburg—Landau functional (see, for instance, [Lu and Pan 1999;
2000; Fournais and Helffer 2010]). It turns out that H¢, can be related to the lowest eigenvalue of the
magnetic Laplacian in the regime & — 0.

In fact, the case which is mainly investigated in the literature is the case when the magnetic field is
constant. In 2D, the two-terms asymptotics is done in the case of the disk by Bauman, Phillips and Tang
in [Bauman et al. 1998] (see also [Bernoff and Sternberg 1998; del Pino et al. 2000]) and is generalized by
Helffer and Morame [2001] to smooth and bounded domains. The asymptotic expansion at any order of

MSC2010: 35310, 35P15.
Keywords: semiclassical analysis, magnetic field, normal form.
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all the lowest eigenvalues is proved by Fournais and Helffer [2006]. In 3D, one can mention the celebrated
paper [Helffer and Morame 2004], which gives the two-terms asymptotics of the first eigenvalue.

When the magnetic field is variable (and a = 1), fewer results are known. In 2D, [Lu and Pan 1999]
provides a one-term asymptotics of the lowest eigenvalue, and [Raymond 2009] gives the two-term
asymptotics under generic assumptions (we can also mention [Helffer and Kordyukov 2011], which deals
with the case without boundary and provides a full asymptotic expansion of the eigenvalues). In 3D, for
the one-term asymptotics, one can mention [Lu and Pan 2000], and for a three-terms asymptotics upper
bound, [Raymond 2010] (see also [Raymond 2012], where a complete asymptotics is proved for a toy
model).

Here we consider a twist factor a > 0. As we will see, the presence of a (which is maybe not the
main point of this paper) will not complicate the philosophy of the analysis, even if it will lead us to use
generalizations of the Feynman—Hellmann theorems (such generalizations were introduced by physicists
to analyze the anisotropic Ginzburg—Landau functional; see [Doria and de Andrade 1996]). In fact, this
additional term obliges us to have a more synthetic sight of the structure of the magnetic Laplacian.
The motivation to add this term comes from [Chapman et al. 1995], where the authors deal with the
anisotropic Ginzburg—Landau functional (which is an effective mass model). We can also refer to [Alama
et al. 2010], where closely related problems appear. Moreover, we will see that the quantity to minimize
to get the lowest energy is the function @, so that this situation recalls what happens in 3D in [Lu and
Pan 2000; Raymond 2010] and where the three-terms asymptotics is still not established.

Under generic assumptions, we will prove in this paper that the eigenvalues A, (#) admit complete

asymptotic expansions in powers of 1'/4,

Heuristics. Let us discuss the heuristics a little bit, to understand the problem. Let us fix a point x € Q.
If xo € Q2 and if we approximate the vector potential A by its linear part, we can locally write the magnetic

Laplacian as
a(xg) (thf +(hDy — ﬂ(xo)x)z) + lower-order terms.

The lowest eigenvalue can be computed after a Fourier transform with respect to y and a translation
with respect to x (which reduces to a 1D harmonic oscillator); it provides an eigenvalue a(x)B(xo)h.
If xp € 9€2, and considering the standard boundary coordinates (s, t) (r > O being the distance to the
boundary and s the curvilinear coordinate), we get the approximation

h?D? + (hDy — B(x0)t)* + lower-order terms.
The shape of this formal approximation invites us to recall basic properties of the de Gennes operator.

The de Gennes operator. For & € R, we consider the Neumann realization H in L?(R,) associated with

the operator )

d
—a - £)’, Dom(Hg) = {u € B*(Ry) : u'(0) =0}. (1-1)

One knows (see [Dauge and Helffer 1993]) that it has compact resolvent and that its lowest eigenvalue is
denoted by w(§); the associated L?-normalized and positive eigenstate is denoted by ug = u (-, &) and is
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in the Schwartz class. The function & +— @ (£) admits a unique minimum, say at §& = &y, and we let

2 (0)
0 = u(&o). cl=”§°3 . (1-2)

Let us also recall identities established in [Bernoff and Sternberg 1998]. For k € N, we let

Mk:f (t — &0) |ug, (1)|* dt,
>0

and we have
My=1, Mi=0, M>=300, Ms=;Ci, zu"(E)=3CiyOp. (1-3)
Main result. Let us introduce the general assumptions under which we will work throughout this paper.

As already mentioned, the natural invariant associated with the operator is the function af. We will
assume that

O rggizna(x)ﬁ(x) < Irgna(X)ﬂ(X) (1-4)
and that
x € 02— a(x)B(x) admits a unique and nondegenerate minimum at x. (1-5)

Remark 1.1. Assumption (1-4) is automatically satisfied when the magnetic field is constant (and is
sometimes called the surface superconductivity condition), and Assumption (1-5) excludes the case of
constant magnetic field. Therefore, our generic assumption deals with a complementary situation analyzed
in [Fournais and Helffer 2006], that is, the situation with a generically variable magnetic field.

Let us state our first rough estimate of the n-th eigenvalue A, (k) of Pj 4 that we will prove in this
paper:
Proposition 1.2. Under Assumptions (1-4) and (1-5), for all n > 1, we have
hn () = Ooha(x0) B (x0) + O (h*%). (1-6)

From this proposition, we see that the asymptotics of A, (%) is related to local properties of Py, 4 near
the point of the boundary x¢. That is why we are led to introduce the standard system of local coordinates
(s, t) near xo, where t is the distance to the boundary and s the curvilinear coordinate on the boundary
(see (2-1)). We denote by @ : (s, t) — x the corresponding local diffeomorphism. We write the Taylor
expansions

as, 1) =a(®(s, 1)) = 1 +ais +ast +ay s* + appst +ant* + O(|s)> + 1) (1-7)

and
B(s, 1) = B(D(s, 1)) = 14 b1s + bt + b115° + biast + byt> + O (s> + |t ), (1-8)

where we have assumed the normalization
a(xo) = B(xo) = 1. (1-9)
Let us translate the generic assumptions (1-4) and (1-5). The critical point condition becomes

ay = —by, (1-10)
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and the nondegeneracy property can be reformulated as
b11—|—a1b1+a11:a11+b11—a%:a>0. (1-11)
We can now state the main result of this paper:

Theorem 1.3. We assume (1-4) and (1-5) and the normalization condition (1-9). For all n > 1, there exist
a sequence (yy, ;) j>0 and hg > 0 such that for all h € (0, ho), we have

~ i
In(h) ~ Yy h!.
j=0
Moreover, we have, for alln > 1,

0!®0M"(So)>1/2
2 9

Yno0=00, VYu1=0, ¥n2=C(ko,az, b))+ (2n— 1)(

with

3C C
C(kg, ar, bp) = —Ciko + Tlaz + (71 + So@o)bz.

Comments about the main theorem. Let us first notice that Theorem 1.3 completes the one of Fournais
and Helffer [2006, Theorem 1.1] dealing with a constant magnetic field (see also [Fournais and Helffer
2006, Remark 1.2], where the variable magnetic field case is left as an open problem).

It turns out that Theorem 1.3 generalizes [Raymond 2009, Theorem 1.7]. Moreover, as a consequence
of the asymptotics of the eigenvalues (which are simple for # small enough), we also get the corresponding
asymptotics for the eigenfunctions. These eigenfunctions are approximated (in the L? sense) by the power
series, which we will use as quasimodes (see (2-10)). In particular, the eigenfunctions are approximated

by functions in the form
ug, (h™"20)g(h™"s),

where g is a renormalized Hermite function.

As we will see in the proof, the construction of appropriate trial functions can give a hint of the natural
scales of the problem (h'/? with respect to t and h'/* with respect to s). Nevertheless, as far as we
know, there are no structural explanations in the literature of the double scales phenomena related to the
magnetic Laplacian.

In this paper, we will explain how, thanks to conjugations of the magnetic Laplacian (by explicit
unitary transforms in the spirit of Egorov’s theorem; see [Egorov 1971; Robert 1987; Martinez 2002]),
we can reduce the study to an electric Laplacian which is in the Born—Oppenheimer form (see [Combes
et al. 1981; Martinez 1989]). The main point of the Born—Oppenheimer approximation is that it naturally
involves two different scales (related to the so-called slow and fast variables).

As we recalled at the beginning of the introduction, many papers deal with the two or three first terms of
A1(h) and do not analyze A, (h) (for n > 2); see, for instance, [Helffer and Morame 2004; Raymond 2009].
One could think that it is just a technical extension. But, as can be seen in [Fournais and Helffer 2006]
(see also [Dombrowski and Raymond 2013]), the difficulty of the extension relies on the microlocalization
properties of the operator: The authors have to combine a very fine analysis using pseudodifferential
calculus (to catch the a priori behavior of the eigenfunctions with respect to a phase variable) and the
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GruSin reduction machinery [1972]. Let us emphasize that these microlocalization properties are one of
the deepest features of the magnetic Laplacian and are often found at the core of proofs (see, for instance,
[Helffer and Morame 2004, Sections 11.2 and 13.2; Fournais and Helffer 2006, Sections 5 and 6]). We
will see how we can avoid the introduction of the pseudodifferential (or abstract functional) calculus.
In fact, we will also avoid the GruSin formalism by keeping only the main idea behind it: We can use
the true eigenfunctions as quasimodes for the first-order approximation of P;, 4 and deduce a tensorial
structure for the eigenfunctions.

In our investigation, we will introduce successive changes of variables and unitary transforms, such as
changes of gauge and weighted Fourier transforms (which are all associated with canonical transformations
of the symbol). By doing this, we will reduce the symbol of the operator (or, equivalently, reduce the
quadratic form), thanks to the a priori localization estimates. By gathering all these transforms, one
would obtain a Fourier integral operator which transforms (modulo lower-order terms) the magnetic
Laplacian into an electric Laplacian in the Born—Oppenheimer form. For this normal form, we can prove
Agmon estimates with respect to a phase variable. These estimates involve, for the normal form, strong
microlocalization estimates, and spare us, for instance, the multiple commutator estimates needed in
[Fournais and Helffer 2006, Section 5].

Scheme of the proof. Letus now describe the scheme of the proof. In Section 2, we perform a construction
of quasimodes and quasieigenvalues thanks to a formal expansion in power series of the operator. This
analysis relies on generalizations of the Feynman—Hellmann formula and of the virial theorem, which
were already introduced in [Raymond 2010], and which are an alternative to the Grusin approach used in
[Fournais and Helffer 2006]. Then we use the spectral theorem to infer the existence of a spectrum near
each constructed power series. In Section 3, we prove a rough lower bound for the lowest eigenvalues
and deduce Agmon estimates with respect to the variable ¢, which provide a localization of the lowest
eigenfunctions in a neighborhood of the boundary of size 4!/2. In Section 4 , we improve the lower

bound of Section 3 and deduce a localization of size h'/4

with respect to the tangential coordinate s. In
Section 5, we prove a lower bound for O} 4 thanks to the definition of “magnetic coordinates,” and we
reduce the study to a model operator (in the Born—-Oppenheimer form) for which we are able to estimate

the spectral gap between the lowest eigenvalues.

2. Accurate construction of quasimodes

This section is devoted to the proof of the following theorem:

Theorem 2.1. For all n > 1, there exists a sequence (yy, ;) j>0 such that, for all J > 0, there exist hy > 0,
C > 0 such that

J
d(h}jnmhﬂﬁoaﬁﬁi)SCh““Vf
j=0

Moreover, we have, for alln > 1:

wu+bu—ab@mﬂ@w>”2

Y0 =00, ¥u1=0, ¥u2=C(ko,az, b))+ (2n— 1)< >
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The proof of Theorem 2.1 is based on a construction of quasimodes for P, 4 localized near xg.

Local coordinates (s, t). We use the local coordinates (s, ¢) near xo = (0, 0), where f(x) =d(x, 92) and
s(x) is the tangential coordinate of x. We choose a parametrization of the boundary:

y :R/(10Q|2) — 3Q.

Let v(s) be the unit vector normal to the boundary, pointing inward at the point y (s). We choose the
orientation of the parametrization y to be counterclockwise, so that

det(y'(s), v(s)) = 1.
The curvature k(s) at the point y (s) is given in this parametrization by
y"(s) = k(s)v(s).
The map & defined by
D :R/(10R2|2) x 10, to[ — 2,  (s,8) > y(s) +1tv(s) (2-1)
is clearly a diffeomorphism, when ¢y is sufficiently small, with image
D (R/(10R12) x 10, 1o]) = {x € Q| d(x, 9Q) < fp} = Q.
We let
As. )= (L= tk(DA@(, D) - V'), A(s,1) = A(R(s. 1)) -v(s),  Bls. 1) = B(D(s, 1)),

and we get _ _ ~
O5Az — 0 Ar = (1 — 1k($))B(s, 1).

The quadratic form becomes
Onaly) = /aa — tk(s))|(—ihd, + Ay | +a(l — tk(s)""|(—ihd, + Ay | dsdr.

In a (simply connected) neighborhood of (0, 0), we can choose a gauge such that
t
Aq(s, 1) = —/ (1—t'k(s)B(s, t)dt', Ay =0. (2-2)
41

The operator in the coordinates (s, t). Near xo and using a suitable gauge (see (2-2)), we are led to
construct quasimodes for the operator
L(s, —ihds; t, —ihd) =

—h* (1 —tk(s) "9, (1 — tk(s))ad; + (1 — tk(s)) " (=ihds + A)(1 — tk(s)) " 'a(—ihd; + A),
where (see (1-8))

- 2
A(s, 1) = (t — &h'?) 4+ bys(t — Eh'/?) + (by —k@% + by152(t — Eoh'/?) + O (|t + |s1?)).

Let us now perform the scaling
s=h% and r=hn"’1.
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The operator becomes
L(h) = L(h o, =ik 495 h' 2T, —in'1?d,).

We can formally write £(h) as a power series:

L(h)~h Y LihI,

j>0
where
Fo=—82+ (t — &%, (2-3)
L1 =—a1097 —2idy(t — &) + a1 (r — &)’ +2b10T(r — &)
= ay0 Hg, — 23, (t — &) +2b10 (1 — &)?, (2-4)

Ly = —aytd; — azd; +kod: + 2koT (v — £0)* + a2 (1 — &)*
+ (by — ko) T (T — &) —iai (T — &)
+ 0 (ai Hs, — ai (t — &)* +2b11 (t — &)?)
— 82 —2iay(t —&)0d, +iai(t — &)dyo0. (2-5)

The aim is now to define good quasimodes for £(h). Before starting the construction, we shall recall in
the next subsection a few formulas coming from perturbation theory.

Feynman—Hellmann and virial formulas. For p > 0 and & € R, let us introduce the Neumann realization
on R of

Hye=—p 0} +(p'?r — &)
By scaling, we observe that H, ¢ is unitarily equivalent to He and that H; ¢ = H (the corresponding
eigenfunction is uy ¢ = ug). The form domain of H,, ¢ is B'(R.) and is independent from p and £ so
that the family (H, ¢)»~0,ccr 1s @ holomorphic family of type (B) (see [Kato 1966, p. 395]). The lowest
eigenvalue of H), ¢ is £(§) and we will denote by u, ¢ the corresponding normalized eigenfunction:
up (1) =pug(p'?1).

Since u; satisfies the Neumann condition, we observe that 997 u , ¢ also satisfies it. In order to lighten
the notation, when it is not ambiguous we will write H for H, ¢, u for u, ¢, and pu for u(§).
The main idea is now to take derivatives of

Hu = uu (2'6)
with respect to p and &. Taking the derivative with respect to p and &, we get the following proposition:

Proposition 2.2. We have
(H — w)ogu =2(p"*t — &)u+ ' (§)u 2-7)
and
(H—pw)opu=—p 207 —Ep~ ' (p'Pr—&) = p~ e (p'Pr = ). (2-8)
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Moreover, we get
(H — w)(Su) = Xu,

where .
X==JW@&+p 07+ (02— &)
and
S= —iag — p0,.
2 1Y

Proof. Taking the derivatives with respect to & and p of (2-6), we get
(H — 0)deu = 1/ ()u — d Hu

and
(H—p)dou=—0,H.

We have 0: H = —2(p'?t — &) and 0,H = ,0*235 +p 2t (p'?r —§).
Taking p = 1 and & = & in (2-7), we deduce, with the Fredholm alternative:

Corollary 2.3. We have
(Hg, — 1 (0)vg, = 2(t — &o)ug,

with
Vg, = (g ug) |g=g)-

Moreover, we have

/ (t —&o)uz, dt =0.
>0

Corollary 2.4. We have, for all p > 0,

/t>0(p1/2T B SO)M%’,EodT =0

and
&o

f (T - %_0)(apu)p:1,§:§0btdt = _Z
>0

Corollary 2.5. We have
(HS() — 1 (§0))Sou = (83 +(r — So)z)u&),

where ‘
0
Sou = —(Bptp.£)1p=1.= — 5 Vso-

Moreover, we have

Cl)
18, ug, 1> = | (T — &o)ug, |* = -

The next three propositions deal with the second derivatives of (2-6) with respect to & and p.

(2-9)
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Proposition 2.6. We have

(Hg — (&) wg, = 4(t — o) vg, + (1" (o) — 2)ug,,

with
2
wg, = (95 Ug) 5=,
Moreover, we have

2 —
/ (T — Eo)vgyugy dT = w.
>0

Proof. Taking the derivative of (2-7) with respect to £ (with p = 1), we get

(Hg — 1(€))03us = 204/ () ug +4(t — &) dgug + (1 (€) — 2)ue.

It remains to take & = &j and to write the Fredholm alternative.

Proposition 2.7. We have

(H — ) (93u) p=1 =gy = —2(97 + (T — £0)*) (Bp10) p=1 6=, — 260(T — 0) (Dp1) p=1 £ =2y + (283 —

and o
((83 =+ (T - 50)2)(8/0”)/):],5:50, Ms()) = —70

SO_T u
2 )

Proof. We just have to take the derivative of (2-8) with respect to p and p =1, &£ = &. To get the second

identity, we use the Fredholm alternative, Corollaries 2.4 and 2.5.
Taking the derivative of (2-9) with respect to p, we find:

Lemma 2.8. We have

O

(H — W) (@0, Su) p1 s=g, = (=32 + 7(r — £0))utgy, — (8o H) p=1,=5, (Sot) + (32 + (T — £0)>) (ptt) p=1.6 =,

and
Oo
<(apH)p=l,$:§o(SO”‘)’ ”‘> — 5

Lemma 2.9. We have £
0
((r —&0)Sou, ug,) = gﬂ”(éo)-
Proof. We have
wer=-2[ (- e
>0

and
st =2 [ oo —guddr—a [ (@S
>0 >0

Combining Lemmas 2.8 and 2.9, we deduce:

Proposition 2.10. We have

@  ©
(=07 = (= —0)") Sour, gy ) = =7 + 711" (o).
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Proposition 2.11. We have
(07 + (r — &) vgy, ugy) = 50“;&.
Proof. We take the derivative of (2-7) with respect to p (after having fixed & = &):
(H — 1) (0gu)e=s, = 2(p"*T — §0)ut -
We deduce
(H — 1) (0p05u) p=1,6=5) = —(0p H) p=1,6=, Vg, + Ty + 2(T — §0) (D) p=1,£=t-

The Fredholm alternative provides

§o
((33 + T(T - 50))1)50, ug;'o) = 50 + 2((7: - 50)(8/)”);):1,5:50» M§0> = Ev
where we have used Corollary 2.4.

We have now the elements to perform an accurate construction of quasimodes.

Construction. We look for quasimodes expressed as power series,

v~ Z Wy,
ji=0
and eigenvalues, .
r~h Y ahil,
Jj=0
so that, in the sense of formal series,
L)y ~ 2y
Term in h. We consider the equation
(£o—2r0)Po =0.

We are led to take Lo = ©¢ and Y (o, ) = fo(o)ug ().
Term in h>/*. We want to solve the equation
(Fo — ©0) Y1 = Mo — L1vo.
We have, using that by = —a; and by Proposition 2.2,
(%o — o) (V1 — ify(0)vg, — aro fo(o)Sou) = Aug,.
This implies that A; = 0, and we take
Y10, T) = ify(0)vg, +a10 fo(o)Sou + f1(0)ug, (1),

fo and f} being to determine.
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Term in h3/>. We consider the equation
(o — ©0) Y2 = Ao — L1y — Eavho.
Let us rewrite this equation by using the expression of ¥/:
(%o — O0) Y2 = Ao — L1 (ify(0) v, + aro fo(o)Sou) — L1 (fi(o)ug) — Lavpo.
With Proposition 2.2, we deduce
(%o — ©g) (V2 —if{(0)vg, — aro fi(0)Sou) = havo — &1 (i fo(0)ve, + a10 fo(o) Sou) — La1)o.

We take the partial scalar product (with respect to 7) of the right-hand side with ug,, and we get the

equation
(L1(if5(0)vg, +aio fo(o)Sou) + Lav0, ug,) = Az fo.

This equation can be written in the form
(ADZ + Bio Dy + ByDyo + Co? + D) fo = A2 fo.

Terms in D2. Let us first analyze (Poug,, ug,). It is easy to see that this term is 1. Let us then analyze
(11, ug,). With Proposition 2.6, we deduce that this term is —2((t — &y)vg,ug,) = (1" (£0)/2) — 1. We
get A= pu"(50)/2 > 0.

Terms in o%. Let us collect the terms of (Poug,, ug,). We get
Ooar1 +2b11((7 —€0) ug,. ugy) — at (T — £0)ugy. ug,)-
With Corollary 2.5, this term is equal to
Ooai1 + Opbi — 7(11.

Let us analyze the terms coming from (£1v1, ug,). We obtain the term

CN) w” (o)
ai((=07 — (r = &0)") Sou, ugy) = ——~aj + Oo——af,

where we have used Proposition 2.10. Thus, we have

Oo
8
Terms in 0 D,. This term only comes from (£, ug,). It is equal to

C = Opay| + Ob11 — Opa; + — 1 (Eo)aj > 0.

ou” (§o)
{07 + (7 = §0))vgy, g ) = a1 =,
where we have used Proposition 2.11.

Terms in Dyo. This term is .,
alfou (éo)

2a;1((t — &) Sou, ug,) = 4

where we have applied Lemma 2.9.
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Value of D. We have:
D =((—a210; — azd; + kodr + 2koT(r — &0)* + a2t (v — £0)*)ug,, us,)
+(((b2 —ko) T (z — 0) — ia1 (z — §0))ug,  g,)-
Using the relations (1-3) and the definition of C; given in (1-2), we get
D = C(kg, az, b>).
Let us introduce the quadratic form, which is fundamental in the analysis. We let

Eor” (o) Eon” (&o)
a————no +a;———

94 ’
(o, m) 2 )

+

1 i
:%&))nz 0n+®0(a11+b11—a12+a12'u SO))Oz.

Lemma 2.12. 9 is definite and positive.

Proof. We notice that i (&y) > 0 and aj; + b1 — a% + a%(,u”(éo)/S) > 0. The determinant is given by

w” (o) M"(SO)) _ 2 Oou” (§0)?  Oop” (§0)
2 1w T2

®o (an—i-bn—a%—l-a% (6111+b11—a%)>0. 4

We immediately deduce that 9(o, —id,) is unitarily equivalent to a harmonic oscillator and that the
increasing sequence of its eigenvalues is given by

( Oou” (&0)
2

1/2
{<2n+ 1) (a1 + b1 —a%)) } :
neN

The compatibility equation becomes
(o, Ds) fo = (A2 — D) fo.

Thus, we choose A; such that A, — D is in the spectrum of 2(o, D) and we take for fp the corresponding
normalized eigenfunction (which is in the Schwartz class). For that choice of fj, we can consider the
unique solution 11/5L (which is in the Schwartz class) of

(20— O3 = Aoty — L1 (i fg(@)vg, +a10 fo(0) Sou) — Latho
satisfying (z//j, ug,) = 0. It follows that v, is in the form
V2 =3 (0, 1) +if(0)vg +ai0 fi(0)Sou + f2(0)ug,
where f| and f, are still to be determined.

Higher-order terms. Let N > 2. Let us assume that, for 0 < j < N — 2, the functions v; are determined
and belong to the Schwartz class. Moreover, let us also assume that, for j = N — 1, N, we can write

Yi(0, 1) =i (0, ) +if]_(0)ve, +a10fj-1(0)Sou + fi(0)ug,

where the (WJ-L) j=N—1,~ and fy_, are determined functions in the Schwartz class and the (f;) j—y—1,n
are not determined. Finally, we also assume that the (A;)o<;j<y are determined. We notice that this
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recursion assumption is satisfied for N = 2. Let us write the equation of order N + 1:
N-2
(%0 — O)¥n41 = An1%0 — L1vy + o — L) Yn—1 — Envpi¥o+ D Gvgioj— Eng1-)¥j.
j=1
This equation takes the form

(Lo —O)YN+1 =AN+1V0 —L1Yn + (Ao — L) Yn—1 + Fy(o, 1),

where Fy is a determined function in the Schwartz class by the recursion assumption. By Proposition 2.2,
we can rewrite

(%o — O0) (Y41 — ify(0)vg, — aro fn (o) Sou)
=AN+1¥0— 331(%%(0, T) +ify_1(0)vg +a10fy—1(0)Sou) + (A2 — L) Yn—1 + Fn (0, T)
= An+1%0 — L1 (ify_1 (0)vg, +ar0 fy—1(0)Sou) + (A2 — £2)(fv—1ug) + Gy (o, T),

where Gy is a determined function of the Schwartz class. We now write the Fredholm condition. The
same computation as previously leads to an equation in the form

o, —idy) fy—1 = (A2 — Claz, bz, ko)) fy—1 + Ans1 fo+ gn (o),

with gy = (G, ug,).. This can be rewritten as

(2(0, —id5) — (A2 — Claz, b2, ko)) fn—1 = gn (0) + An+1 fo.

The Fredholm condition applied to this equation provides Ay = —(gn, fo)o and a unique solution fy_1
in the Schwartz class such that { fxy—_1, fo)s = 0. For this choice of fy_; and Ay, we can consider the
unique solution Wﬁ 41 (in the Schwartz class) such that

(%0~ O ¥y
= An+1W0 — L1 (Vi (0, T) +ifj_1(0)vg, +aio fn—1(0)Sou) + (Ao — L2)¥n—1 + Fy (0, 7).
This leads us to take
UN+1 = Vi +ify(©@)vg +a10 iy (0) Sou + fiv+iutg.

This ends the proof of the recursion. Thus, we have constructed two sequences (A ;); and (¥;); which
depend on n (through the choice of fy). Let us write A, ; for A; and v, ; for ¥; to emphasize this
dependence.

Conclusion: proof of Theorem 2.1. Let us consider a smooth cutoff function g near xo. For n > 1 and
J >0, we let

J
U0 = 0000 Y s (0 s (0, T e o) n (2-10)
j=0
and

J
[n.J1 _ /4
=" I,
j=0
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Using the fact that the v; are in the Schwartz class, we get
J J J
| (Paa =2 < €, R Ay,

Thanks to the spectral theorem, we deduce Theorem 2.1.

3. Rough lower bound and consequence

This section is devoted to establishing a rough lower bound for A, (4). In particular, we give the first term
of the asymptotics and deduce the so-called normal Agmon estimates, which are rather standard (see, for
instance, [Helffer and Morame 2001; Fournais and Helffer 2006; Raymond 2009]).

A first lower bound. We now aim at proving a lower bound:

Proposition 3.1. We have
hn(h) = @gha(x0)B(x0) — Ch>/*.

Proof. We use a partition of unity with balls D; of size r = h”, satisfying

doxi=1 and Y Vx> <Cr?=Ch?. (3-1)
J J
The so-called IMS formula (see [Cycon et al. 1987]) provides

OQna() = Onalxj¥) — Z/Qa|wx,-||2|w2dx,
J J
and thus

Ona() =Y Onalxj¥) — Ch* 2|y,
J

In each ball, we approximate a by a constant:
On.a(Xj¥) = (a(x;) — ChP)[(=ihV + A) (x;¥) 1.
If D; does not intersect the boundary, then

||(—ihV+A)(ij)||2thgﬁ(x)l)(ﬂﬂlzdx-

We deduce
Ona(xj¥) = (a(x))B(xj)h — Ch'P) [ x; v

If D; intersects the boundary, we can assume that its center is on the boundary, and we write in the local
coordinates (up to a change of gauge):

Ona(xj¥) > (1— Chp>f&(h2|a,(x,,-w)|2+ [(=ihds + A1) (x;¥)|?) ds dt.
We deduce

Onalx;v) Z(1—Ch")(a(Xj)—Chp)/hzlaz(leﬁ)IZJrI(—ihas+f§1)()<ﬂ/f)|2dsdt-
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We approximate A by its linear approximation A", and we have
/h2|at(x,-w)|2+|(—ihax+fi1)<x,-«/f)|2dsdt

> (1—¢) / B9, ()1 + [(—ihds + AT () 1 dsdt — Ce™! / Ix — x4 x; w1 *dx
> (1= &)@B(x;)h — Ce™'n*) | x; v II*.

To optimize the remainder, we choose ¢ = h%=1/2 Then we take p= %, and the conclusion follows. [

Normal Agmon estimates: localization in t. We now prove the following (weighted) localization esti-
mates:

Proposition 3.2. Let us consider a smooth cutoff function x supported in a fixed neighborhood of the
boundary. Let (1, (h), V) be an eigenpair of Py 4. For all § > 0, there exist gy, C > 0 and hq such that,
for h € (0, hy),

”esoz(x)h‘l/2+8x(x)ls(x)lh‘”“wh ||2 < C”eéx(x)ls(x)lh‘l/“

nll®.
Qh’A(e€ol(x)h71/2+5x(X)IS(X)Ihfl/“l//h) < Ch||65x(x)|s(x)|h71/4wh”2‘

Proof. The proof is based on a technique of Agmon (see, for instance, [Agmon 1982; 1985; Helffer
1988]). Let us recall the IMS formula; we have, for an eigenpair (A, (h), ¥p),

On.a@®Yn) = Ay (W) le® Yy |* + B2 ||a' 2V De® |12
We take
@ =gt ()2 +8x (x)|s(x) |~ V4, (3-2)

where yx is a smooth cutoff function supported near the boundary and where s : 02— (—[0€2|/2, |02|/2)
is the curvilinear coordinate such that s(xo) = 0. We use a partition of unity x; as in (3-1), but with balls
of radius Rh'/? with R large enough (the x ;j denote the centers), and we get

D (Qnalie® ) = kaMllxje®ynll* = CR*h = 12| xja' PV ey %) < 0.

J

We now distinguish between the balls intersecting the boundary (bnd) and the others (int). For the interior
balls, we have the lower bound, for > 0 and 4 small enough,

Ona(xje®yn) > (a(x))Bx)h — Ch*)|lx eyl

For the boundary balls, we have

Ona(xje®yn) = (@oa(x))B(x)h — Ch¥?) | x ;e Pyl

Let us now split the sum:

> f (a(x)B(xj)h — Bpalxo)B(xo)h — ChY* — CR™*h — Ch*|V®|) | x ey |* dx
jint
<Ch Y llxje® vl

jbnd
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With (3-2), we can notice that
IVO|? < C(sgh™ +82h71/3).

Taking R large enough and gy and ~ small enough and using (1-5), we get the existence of ¢ > 0 such that
a(x;)B(x;)h — Opa(x)B(xo)h — Ch** — CR™*h — Ch*|V®|* > ch.

We deduce
e xie®vnl> < C D Ixie vl

Jjint Jj bnd
Due to support considerations, we can write
D12 < b B4 2
C Y llxje®ynll> < C Y | xje OB Ty |17,
jbnd jbnd

Thus, we infer

le® 1% < €| Py, 12
‘We deduce that
3" Qnalxje®yn) < Ch| X OIs@I iy, 12
J
and thus
Q. a(e®Y) < Ch|Sx@I@ITy, 12 0

Corollary 3.3. Letn € (O, %] Let (A, (h), W) be an eigenpair of Py . For all § > 0, there exist g9, C >0
and hg such that, for h € (0, hy),

soz(x)h*1/2+ax(x)\s(x)|h*1/4wh H2 < CH X neﬁx(x)ls(x)lh’l/“

Y H2
A

where xp n(x) = X (t ()h=V2Y and with ¥ a smooth cutoff function being 1 near 0.

” Xh.n€

On A(Xh nesot(x)h’1/2+6x(x)ls(x)lh*”“wh) <Ch ” Y neﬁx(x)|x(x)|h*

Proof. With Proposition 3.2, we have

” Xh’nesot(x)h’1/2+5x(x)|s(x)|h’1/4 i H2 <C ”65)((x)|s(x)|h71/4 Vn ”2

‘We can write

[ DX DIy 12 — |5 P XSy 12| Ty X @Iy 12,
Using Proposition 3.2, we have the estimate
|/ T= gy OBy 12 || JT= e Oh 2 et A2 x ls )1y 12
= O (h) || Px DBy 12,

The IMS formula provides
Ona@®y) = OnaOthne® Vi) + Ona (V1= xnye®¥n) + O 2N 1Py |1 O
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Corollary 3.4. Letn € (O, %] Let (A, (h), Y,) be an eigenpair of Py 4. For all § > 0, there exist g9, C >0
and hg such that, for h € (0, hy),

HXh,negot(X)]1_1/2+§X(X)|S(X)|h_l/4(—ihas n Al)‘ﬁh Hz <Ch ” Xh,ne‘SX(x)ls(x)lh_

1/4

(4 H2

—1/2 4, ~ 2 —1/4 2
HXh,neSOt(x)h +8x ()]s (x)|h (—ihd, + Ay, ” < ChH Xh,nea)((x)ls(x)‘h U H )
4. Order of the second term: localization in s

It is well-known that the order of the second term in the asymptotics of 1, (h) is closely related to
localization properties of the corresponding eigenfunctions. The aim of this section is to establish such
properties. Let us mention that similar estimates were proved in [Raymond 2009] through a technical
analysis. Here we give a less technical proof using a very rough functional calculus.

Proposition 4.1. Under the generic assumptions, there exist C > 0 and ho > 0 such that for h € (0, hyp),
Jn(h) = ©oa(x0) (xo)h — Ch™2.

Moreover, for all 5 > 0, there exist C > 0 and hg > 0 such that for h € (0, hy),
/ NIy 2 ds dr < Clly

Proof. Let us recall the so-called IMS formula (see, for instance, [Cycon et al. 1987]); we have, for an
eigenpair (A, (h), ¥),
O 4@®Y) = ha(W®y|I* = h*[la' 2V ey ||? = 0.
We take
@ =8y (x)|s(x)|h~ 4, withs > 0. (4-1)

The idea is now to prove a suitable lower bound for QO 4. We use a partition of unity (x;) (see (3-1))
with balls of radius #'/# and centers (s j»tj). We get the lower bound

Onae® ) =Y Onay)) — Ch ey |,
where !
Vi =xje®y,
and we deduce

Y 0na@) = CR Y517 = kW IY; 117 <0, (4-2)
J

since we have, thanks to (4-1), |[V®|> < Ch~1/2.
Interior balls. Considering the balls not intersecting the boundary, we get (see the proof of Proposition 3.1):
D 0naW) =) (abepBacjyh—Ch) |1y
jint jint
Using Assumption (1-4), we deduce
> 0na@)) =Y (Ooalxo)Bxo)h — Ch¥*)|lys; | (4-3)

jint jint
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Boundary balls. Let us consider the j such that D; intersects the boundary (we can assume that its center
is (s, 0)). Using first the normal Agmon estimates, we have the lower bound

> Onawp =) fa(|(—iha, + Ay P+ |ihds + Ay 17) ds dt — CRY ey |17,
jbnd jbnd
where we have used the IMS formula to get
Z/t&(|(—ihat+fi2)wj|2+|(ihas+/i1)1/fj|2)dsdt
jbnd

§C/ ta(|(—ihd, + A2)e®y|* + |(ihds + ADe®y|?) ds dt + Ch** | e®y |2
0

<t<Ily

Using again the normal estimates (see Corollaries 3.3 and 3.4) and also the size of the balls, we get
D Onap =) / ay(|(=ihd, + Ay P + (ihds + Ay 1*) ds di — CRP(|e®y|1*,  (4-4)
jbnd jbnd

where
ay" =a;+ (s — 5;)d5a(x;).

Let us fix So > 0 to distinguish between the balls whose centers are close to xo = (0, 0) and the others.

Case |sj| > So. Let us consider the boundary balls such that |s;| > Sp. Using the size of the balls, we get
the lower bound

/&}i“(u—iha, + AP+ 1(ihdy + Ay P) ds dt = (Opa(x;)B(xj)h — C/*) |1y 1?
> Oo(1 4 &)a(xo) x|, (4-5)
where ¢ > 0 only depends on Sy, 8, a and 2.

Case |s;j| < So. Let us consider the boundary balls such that [s;| < Sp. In each ball, we can use a new
gauge so that

2 /5?“(|(—ihat+fiz>w,-|2+|<ihas+fil>¢j|2)dsdt
jbnd
Isj1=So

= > /a}i“(ma,wz + [(ihdy + ATy %) ds dt,
jbnd
Isj1=<So
where A?ew (we omit the dependence on j) satisfies

A ali 2 2
|AT™ — 18" < C(tls — ;1" +17),

with B ) )
B =B+ 0B (xj)(s —s)).
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We obtain, thanks to the (weighted) estimates of Agmon,

S [ @t P+ o, AP ds s
jbnd
[sj1<So

>(1—h'" )" /a}i“(h%aﬂ/fﬂz + 1oy + B 1P) ds dt — CR* ey |*.  (4-6)
jbnd
Is;j1<So
In each ball, we use the change of variables (which is a scaling with respect to t depending on o)
o=s and 1= {ﬁ}i“}l/zt.
We can write
3 ={Bi")'?9, and 95 =0, +0,({B)"}/*)0:

and »
dsdt = {8} do dr.

‘We obtain
fa}in(h2|a,x//j|2+ iRy + 1B Y;1%) ds di
> (1—h'? / aj" Bl (h2 19y 1P + 1(ih{ B2 06 + 1) 1P)(BI") P do dt
—Ch3/2/|raT¢j|2dodr, (4-7)

where v/ ; denotes ¥/; in the coordinates (o, ). With the normal Agmon estimates (see Corollaries 3.3
and 3.4), we have

> [ redsPaodr < clety®
jbnd
Isj1<So

We must now obtain an appropriate lower bound for
f ay" By (W10 1> + (i B)™) 20, + 1) P)AI™ 1 do dr.
This is the end of the following lemma.

Lemma 4.2. We have
~lin plin N -7 pliny— 12\ Bliny —
/a}- ,3}- (h2|8t¢j|2+|(zh{,3} Y28, + 1)y ){,B} }y 12 do dr
> h®y / (a0)Bxo) + G2 )i B2 do dr — Ch |1 1.

Proof. We can notice that the Dirichlet realization on (—S, Sp) of DU{E}“‘}*I/ 2 is self-adjoint on
LZ({B}i“}_l/ ’do). Thus, we shall commute D, and {B}i“}_l/ 2 and control the remainder due to the
commutator.
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Notation 4.3. Henceforth, d, (/) will denote the derivative of the function f, whereas d, f will denote
the composition of the differentiation d, with the multiplication by f.

We can write
~lin 3li ~ .1 Aling— A 12\ Aling—
[ @B (110,00, + o)) B drde
=/&}inﬁ}inhzlatlzfj|2{/§}in}_1/2da dT
in Zlin| [ ~liny— . ~liny— A2 Slin —
+ [ dlin g ihaa ()2 = i, (B ) 1B o
We can estimate the double product:
th(/ a}inﬁ}in(ihaa{’g}in}—l/z_i_T)lﬁjiaa({B}in}—l/z)l&j{ﬁ}in}—l/z do d'L')
— —2h2§)t</ a}inlg}inao_ ({Ig;in}—l/2)8o_ ({Ig}in}—l/2&j){B‘}in}—l/zl}_jdo_ dT)
e ~1 _ ~1 _ A 2
=—n? [ @ Bia, (1B 2)a, (B2 %) dor dr = 0Dl
where we have used an integration by parts for the last estimate. We deduce
~lin Ali ~ . Aling— A 12\ Aling—
f am B (W10, 2 + | (h By 20, + 7)) B 2 do
~lin Ali A . liny— ~ 12\ Aling—
> / a}-mﬁ}m(h2|a,w,-|2+|(zhag{ﬁ}m} V2 4+ 1) 9] ){ﬂ}-‘“} Y2 do dt—CR|ly,l°.  (4-8)

For Sy small enough, we have, using the nondegeneracy, for s such that |s| < So (with S slightly bigger
than Sp),
@ (s)B}"(s) = a(xo)Bxo) + F1sI’.

Let us analyze the integral:
/|a(ihaa{/§}i“}—1/2+r)¢j\2{,§}i“}—1/2 do dt
= f|(ihag{,§}i“}l/2 +1)oi; — ih{B}iﬂ}*l/Z&j|2{3}i“}*1/2 do dr.
We must estimate the double product:
20 / ((indo (BImY 2 + 7)o i (B 24 ) (B~ do
_ _2h2m/(80({B}in}—l/Zo_vA’j){E}in}—lﬂ&_j){lg}in}—l/z do dt

=—h? / 0 [(BIm) 129 P(BIM 12 do de + O (WD) 15112 = O WD) 195112
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We infer:
/dljjng}in(hzwﬂl;ﬂz_i_ |(l-h80{/§}in}—l/2+T)]/’}j|2){l[§}in}—l/2 do dt

> a(x0)B(x0) / (K100 2+ (ih0, (BIY 2 4+ <) ) Bim) 2 do e

o

8 [ (1100 (00, B2+ 2)ords ) B0 drde - R P

We recall that, for all £ € R,
[ (1808 + |2 = bt = sob' ) ) de = o+ 2101 = GuhloIP.
We infer with the functional calculus:
/5;in/§}in(h2|3z@j|2+ ‘(ihag{lg}in}—l/z_i_r _$0h1/2)¢j|2){3}m}—1/2 do dt
= 160 [ () + §o?) 15 PIEI) 2 do dr — Y P (49

4
This concludes the proof. U

Lower bound for A, (h). If we take § = 0, we deduce, with (4-2)—(4-7) and Lemma 4.2,

dnMYI1P =)~ Oha(xo) B (xo) / W17 dx — Ch2 ||y ||,
J

Tangential Agmon estimate. Gathering the estimates (4-3), (4-5), (4-7) and Lemma 4.2, we deduce the
existence of ¢ > 0 such that

> (@uh [ (atorpixn) + ) v dsdr = @uhls I = €l 1)

jbnd
[sj1<So 2 2
+ D chllyi P+ ehlly I <0
jbnd jint
sj1=So
and

> (00 [ SswsP dsar— ch s ) < CHP Ll < Ol
jbnd
2Coh! 4 <|s;1<s0

Taking Cy large enough, we infer

2 2
E ¥ 01- < Clyll”,
jbnd
2Coh" 74 <]s;1<s0

so that
DSTliP=clyl® and sl =lle® vl < Clv ™ m
j

jbnd
Isjl<so
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Let us write an immediate corollary (see Corollaries 3.3 and 3.4).
Corollary 4.4. Let (11, 12) € (0, 3] x (0, 3] Let (\x(h), vy be an eigenpair of Py a. For all (k,1) € N,
there exist C > 0 and hg > 0 such that, for h € (0, hy),
[sthmines e v | = CH2R 2,
[ a8 (=i + Ay |* < CRIM R 12,
| o8 0 (=0 + A |* < CRA*2H 1 2,

where xp yy.n, (X) = X (t ()R~ V21 3 (s (x)h=V4 ). Moreover, we have

(1= st )s* e | = OB 1y,
| (U= Xt m)s e (—ihds + Ay | = OBy I,
(1= st )s* 2 (=ihd, + Ay || > = O (™) [y

Remark 4.5. In the following, each reference to the “estimates of Agmon” will be a reference to this last
corollary. Moreover, at some point, the localization ideas behind Section 3 and 4, which are summarized
in the last corollary, follow from the general philosophy developed in the last decade (an improvement of
the approximation of the eigenvalues provides an improvement of localization and conversely). In the
next section, we will strongly use these a priori estimates.

5. Unitary transforms and the Born—-Oppenheimer approximation

We use a cutoff function x;, near xg with support or order A /41 with n > 0. For all N > 1, let us consider
L?-normalized eigenpairs (A, (h), ¥y.n)1<n<n such that (Y, p, ¥u.n) =0 when n # m. We consider the
N dimensional space defined by

Ey(h) = span Y, p, Where Yy h = X1V -

1<n<N
Remark 5.1. The estimates of Agmon of Corollary 4.4 are satisfied by all the elements of &€y (h).

We can notice that, with the estimates of Agmon, for all 1} € Eyx(h),

Ona®) < AN+ O ™) |1, (5-1)
In the following subsection, we provide a lower bound for QO 4 on Ey(h).

Remark 5.2. Let us underline the main spirit of this section. We are going to use successive canonical
transformations of the symbol of our operator (change of variable, change of gauge, weighted Fourier
transform) or, equivalently, of the associated quadratic form. In the spirit of Egorov’s theorem, all these
transformations will give rise to different remainders which can be treated thanks to the a priori localization
estimates. Then, after conjugations by these successive unitary transforms, we will reduce the analysis to
one of an electric Laplacian in the Born—-Oppenheimer form.
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Choice of gauge and new coordinates: a first lower bound. On the support of y;, we use a gauge such

that Ag =0and 3 _
|A; — ATP| < C( + |s|t* + |s[*1),

where

A A

AP =1 (14 bys +biis*) — Eob(s)/?h'/? + %ﬂ =th(s) — &b(s)"*h'/? + %zz,
where 132 = by — ky. We also let
AP (s, 1) = 14+ ays +ai s>+ axt = a(s) + ast.
Moreover, in this neighborhood of (0, 0), we introduce new coordinates:
t=t(bis)'?, o=s. (5-2)

In particular, we get A ) )
0 = (b(o)'?8;, 8y =05+ 5b"'0bTo,

and .
dsdt =b"'"?do dr.

1/2

To simplify the notation, we let p = b='/2. We will also use the change of variable

N A S
0_/0 p(u)du_f(o)

so that L?(pdo) becomes L2(p2>d&).
This subsection is devoted to the proof of the following lower bound of Qp 4 on €y (h).

Proposition 5.3. There exist hg > 0 and C > 0 such that for h € (0, hy) and all xﬁ e En(h),

Ona() = Onapp(l) — CH¥ 14|12, (5-3)

where

On.app (V) = f (1 +ap7) (1 — tho) |hd W/ |>p* d& dt

b b .12
+/(1 +ar7)(1 —rko)—lj(ihﬁ—la&ﬁﬂ—goh1/2+7212—h5‘mf)g/f prdsdr

+ha®o/&2|¢|2ﬁ2 dé dr,

where 1} denotes r in the coordinates (&, ).
In order to prove Proposition 5.3, we will need this lemma:

Lemma 5.4. There exist hg > 0 and C > 0 such that for h € (0, hy) and all 1& € En(h),

Ona(W) = Qpapp(lr) — CH3ZH4 12,
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where

Qh,app(lzl)

2 A
b2 do dt,

N on b b .
:fmz(a, t)|h8fl/f|2b1/2dad‘r+/m1(a, z)‘(hs+r—s0h1/2+?2r2—h71z1)r)w

with
E=id,b""?, mi(o,7)=U4ac)(1+at)(1—tk)™", ma(o,v)=1+ac>)(1+at)(1—rtko),
and where 1& denotes Y in the coordinates (o, 7).

Proof. We have
Ona() = /&(1 — k()| (=ihd, + AP " +a(1l — k()| ihds + A | dsdr.
Thanks to the normal and tangential Agmon estimates, we get
Qna(¥) > f a(l — tko)h? |3, F 17 +a(l — tko) " |(ihd, + AP |’ ds dr — CR¥>F V4|2,
The Agmon estimates imply
Qna(¥) = f P (1 — tho)h? (3,2 +a"P (1 — tko) ™| (ihds + A{P)|* ds di — CH3PH 14|12,
We get
Ona(¥) > / a(l +a2t)((1 — tho)h?|9, 9 1> + (1 — tho) | (ihd; + A?"p)mz) dsdt — Ch3/2 141412
With the coordinates (o, T), we obtain
/ a(1+axt) (1 —tko)h?| 3 F 1+ (1 +axt) (1 —tko) Y| ihdy+ ATV > ds dr = 0 () — CHPF 14|12,
where

04 (i) = / (o, ) hd 9126 do dr

. by n 3y b .
+/r7t1(a, r)‘(hbfl/zia(,+r—goh1/2+?2r2b*1/2—h#m,)w

where
iy (o, 1) = ab(1 +at)(1 — tho) ™", ia (o, T) = ab(1 +at)(1 — ko).
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With the estimates of Agmon, we can simplify the quadratic form modulo lower-order terms:

0n(i) = / fin(o, D262 do d

~ b b NN
—i—/rhl(a, r)‘(hb_l/ziag—i—r—thl/z—l—?zrz—h?]rD,)t// b= do dr

_ Ch3/2+1/4”1/7”2.
We recall that ab = 1 + ao? + O(|o]?), so that with the estimates of Agmon we infer

0n(i) = / ma(o, Do) 262 do dr

2.

. b b .
+/m1(0, r)‘(hb_l/ziag—l—t—éohl/z—l—ftz—h?er,)l// b= do dr

— CRYPHVA 12,

We now want to replace bh='%ip, by i0,6=1/2, which is self-adjoint on L2(b~"dodr). Writing a
commutator, we get

. b b 12
/ml(o, r)‘(hb_l/ziag g —goh‘/2+52r2—h31zb,)a// b dodr

2.

. ) b b .
:fml(o, r)((hiagb—l/z—ih(agb—l/z)ﬂ—soh1/2+32r2—h31r0f)¢/ b~ do dr.

Let us consider the double product

~ l; b ~ ~ A
2h§)’t</ mi (o, r)(hia,b—l/2 +1—&h'?+ Ezrz — h%IDI)Wi(aob_l/z)wb_mdo dt)
~ b ~ ~ A
_ 2hm(/ mi (o, r)(hia(,b*ﬂ - h%rD,)xﬂi(@ab’l/z)wb’l/z do dr)
= —21°n / (0, 0) (36 6~ @595 do dr) + 0D I,

where we have used the normal Agmon estimates. We deduce that

~ [; b o ~ <A
2%(/ mi (o, r)(hiagb_]/z Fr—gh!? Ezrz - hEITD,)t//i(BJb_l/Z)x//b_]/z do dr)

= —h? / my (0, T) (3,58, 167 * P > do dt + O (h?) |9 ||*

= 0|1V )%
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This implies

. b b A2
/ml(a, r)‘(hb_l/ziaa ¥ —$0h1/2+?212—h?11Df>w| b= do dr

~ E b A 2/\ A
> fml(o, r)‘(hiagb_l/z fr—gh' 2y 32# - h;ert)w‘ b dodr —CR|Y2. O
Proof of Proposition 5.3. We use Lemma 5.4. In the coordinates (&, 7), we have

O app () = f my (£ 1), D)o ¥ |2 p2 do dt

5 et b b S12,
+/m1<f—1<o>,r>|(zhp 95— goh o+ 22 2o, )y [ s ar,

h
Where (1), 1) = (1 +af 1 @) (1 +ar) (1 — o),

ma(f71(6), 1) = (1+af 71 (6)?) (1 +ar)(1 — tko).

We notice that f (&) =& + 0(|5 %), so we can use the estimates of Agmon to get
Onape(0) = [ ma(e, )1k P d

2 ~
1‘52 db’_ dt — Ch3/2+1/4||1ﬁ”2.

. el b b y
+fm1<a,r>\(zhp 955+~ &b+ 20 —h D))

This inequality can be rewritten as

Qh,app(v}) = Qh,app,l (\Z’) + Qh,app,Z(I/;) - Ch3/2+1/4”1/~/”25

where
Oapp.1 (V) = / (1+ayt)(1 — tho)|hd- Y/ |* p* d& dt
+/(1 Farr)(l — rko)_l‘(ihﬁ_185ﬁ+t —gh ¢ %72 —hb—zer,)zpjzﬁz & dt
and
Onapnah) = [ (1 + @)1 = cho) .G )P d d
n /(1 Fart)(1 — ko)~ ‘6<ihﬁ_1agﬁ+ T —&h'? 4+ %rz — h%rD,)tZ)zﬁz d5 d.
Reduction of Qh,app,z(xp). By the estimates of Agmon, we have

O aon2 () = / Ih3 (59?3 d& d

b b ik 7
b2 h_lfp,)w‘ prds dv — CRPHAg 2,

+/‘6(z’hﬁ_18&ﬁ+r—§0hl/2+ : .
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Moreover, we get

(i x—1q ¥ 1/2 b AL
|0<lhp 0 p+7— ok + 2o —hE‘EDI)Iﬁ Pdsdr

vy v— v Y12 D v ~
Z/|U(lhp 135 p+1 —Eoh'?) | pPdsdT — CHHVA |y |12,
Let us analyze/|5*(ih]5_18g,ﬁ+r—thl/z)lplzﬁzd&dr.We have
/|6(ihﬁ18g13+t—§0h1/2)1}|2152d6 dt :/\(ihﬁla&ﬁﬂ—gohl/z)&u} —iny | p?ds dr.

The double product is

v

290 (/ (ihp~" 05 p + 1 — Eoh'2) iy 2 d dr) — —21’% (/(ﬁ—laéﬁ)&l/“/@ﬁz d& dr).

But we have

2§}t</ 35 (& py) pyr d& dr) = 29{(/ ﬁ&ﬁ&d&dr) + / 505 py|* do dt
and
/68&|1§1}|2d6 dt = —/ |pUr|? ds d.
Gathering the estimates, we obtain the lower bound:
Onapp(¥) = Onapp () — CHY T4 14|12,

A weighted Fourier transform: toward a model operator. We now define the unitary transform which
diagonalizes the self-adjoint operator p~' D p (for completeness, one should extend p by 1 away from a
neighborhood of 0). As we will see, with the coordinate &, this transform admits a nice expression.

Weighted Fourier transform. Let us now introduce the weighted Fourier transform % ;:

@) = [ @) d5 =)
We observe that F; L*(R, p*d&) — L*(R, d}) is unitary. Standard computations provide
Fs((p~ ' Ds )W) =2F () and F3G9) = —DyF ().
Proposition 5.5. There exist hg > 0 and C > 0 such that for h € (0, ho) and all 1} € Ey(h),
Oh.app () = / (1+ax0)(1 — tho)|hDe | d1dt

l; . 2
+/(1+a2‘17)(1—1:k0)_1 (—hk+r—§0h1/2+3212>¢ drdt

+ha®o/ |D;¢|* drdt — CRYZV4 1912,
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where q? — e—ibl/2h(—hkr2/2+r3/3—th]/2r2/2+(b2/8)r4)gﬁ(1}).

Proof. We have
O aop (V1) = / (1 +arr)(1 — tko)lhd: g dh. de

2
didt

b b
(—hk LT —Eh 2+ 72# - h?%l)f>¢

+/(1 +aye)(1— tho)!
+ha®0/ |D;¢|> dhrdr,

where ¢ = F ,;(g/v/). With the normal estimates, we can write

2

b b
(—hk LT —Eh' 24 52‘[2 - hjltD,)(Z) dxrdt

/(1 +axt)(1 — tho) ™!

E 2
(—hk L —Ehr+ 32#)(;) drdrt

> /(1 +at)(1 — ko) ™!

A

: -1 1/2 by 2\ vy -
— DN (1+axt)(1 —tkp) —hi+1—§&)h +7r othD 9 d\dT

5 2
(—hk LT —Eh 32#)(/3 dxrdt

> /(1 +at)(1 — ko) ™!

b - 5
— bl.%(/ (—h/\ +1—&h'?+ ?2‘52)(/3‘[/’11)7(;) di dr) — CR¥ZHV4 1912

Completing a square and using the normal Agmon estimates to control the additional terms, we get
b b
(hDr - 71‘17 (—hk L —Eht §r2)>¢

b
(—hx+r—goh1/2+§rz>¢

2
drdr

Onap (V) = / (1 +ay0)(1 — tho)

2
di dt+ha®0/ |D; ¢ dhdr—Ch3> V4192

+/(1+a2t)(1—tko)l
We now change the gauge by letting

¢ = eib1/2h(—hkr2/2+r3/3—.§0h1/2r2/2+(b2/8)r4)¢v)'
We deduce
Onapo) = [ (1 @r)(1 = ek D: G divd

2
dldt

b .
+ /(1 +apt)(1 — ko) ™ (—hx +1—&h'?+ Ezﬁ)qb

—{-ha@o/

2
Dy (7MY didr — CHPHA |,
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Finally we write

2
f|DA(eiAb"2/4g5)|2dkdr =/‘qu§— %rzqé didt

> f D¢ drdr — ClT23II Dy
> / |D3§* drdt — Cl|T ||| Drbl.
In addition, we notice that
1Dl < C(I5¥ I + 20 1) < ChY || O

In order to get a good model operator, we shall add a cutoff function with respect to 7. Let n € (0, ﬁ).
Let x be a cutoff function such that

x(@®)=1 for|t] <1, 0<x=1, supp x C [-2,2].

We define
1(x) =xx(h"x).

Applying the normal Agmon estimates, we have:
Proposition 5.6. There exist hg > 0 and C > 0 such that for h € (0, hy) and all IZ e En(h),
Onapp (V) = /(1 +ah' 212 0)) (1= k' 21 2)ko) |k D §? d de

_ b .12
+/(1+a2h1/21(h_1/2r))(1—hl/zl(h_l/zr)ko) '|(<hn =02+ D 0)?) g drar

+ hoz@of |D;$|1> drdt — Ch3> V414,
M g _ 2 3 _ 1/2.2 4 v
where ¢ = e ib1/2h(—hat? /24717 [3—Eoh' 212 /24+(by/8)T )9?15(11/)

Remark 5.7. In particular, we have reduced the analysis to an electric Laplacian (with curvature terms),
which has essentially the Born—Oppenheimer form (see our recent work [Bonnaillie-Noél et al. 2012],
where a similar and simpler model appears). To see this more precisely, let us adopt a heuristical point of
view. If we forget the different terms due to curvature, the operator which appears is in the form

ha®gD; + h*D? + (=hi+1 — &gh'/)?.
After the rescaling A = h~'/4%, T = h'/2x, we get

h(h'?a®oD; + D} 4 (—h'/*A — x — &)?).
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Therefore we are led to analyze a problem which is semiclassical with respect to just one variable. At
some point (that we will justify at the end of this section), we can reduce the study to

h(h'?a©0D; + € +h'*h)),

and then (Taylor expansion)
h (h1/2a®0D2 Lo+ &) (‘50) ‘/2,\2)

Finally we recognize the harmonic oscillator, whose spectrum is well-known.

A simpler model in the Born—-Oppenheimer spirit. We introduce the rescaled quadratic form:

0yn(p) = f(l +arh' 1)) (1 = 1(x)koh'/?) |8, 0|* dA dx
N 2

B b
+/(1+azl(x)h1/2)(1—l(x)kohl/z) ! (x—$o+h1/2)»+?2l(x)2hl/2)(p didx

+a®0/ |Dyo|*dxdx.

‘We recall that l;z = by — ko. We will denote by H, ; its corresponding Friedrichs extension. We will
denote by v,(Q, 1) the sequence of its Rayleigh quotients. For each A, we will need to consider the
quadratic form

Do (@) = / (14 a2k 2100) (1 = 1koh2) 19 dx

+/(1+a21(x)h1/2)(1 —1(x)koh'/?) ™!

2

b
(x —& + 1'%+ Ezl(x)zhl/z)w dx,

whose domain is B!(R*). We denote by v i(qx,n,n) the increasing sequence of the eigenvalues of the
associated operator. The main proposition of this subsection is the following:

Proposition 5.8. For all n > 1, there exist hy > 0 and C > 0 such that, for h € (0, hg):

1 @
Vn(Qy) = O+ (C(ko, az, by) + (2n— 1),/ @)h”z _ CR\/HS,

With Propositions 5.6 and 5.3, inequality (5-1), and the min-max principle, we first deduce the size of
the spectral gap between the lowest eigenvalues of Pj, 4. Then, with Theorem 2.1, we deduce Theorem 1.3.

Elementary properties of the spectrum. This subsection is devoted to basic properties of the spectrum of
Oy.1- The following proposition provides a lower bound for vi(gy ;,1).

Proposition 5.9. There exist positive constants C, co, M and hy such that if h € (0, hy), then:

(1) If x| = Mh='Y470 then
V1(ga.n) > g +comin(1, A*h).



LAPLACIAN WITH VARIABLE MAGNETIC FIELD TO ELECTRIC LAPLACIAN IN SEMICLASSICAL LIMIT 1319

(2) If|IA| < Mh= V4" then

1
V1 (@nn) = Og + Cko, az, ba)h'/? + @Azh — Ch¥/473n,

where C (kg, ay, by) is given in Theorem 1.3.
Proof. The proof is left to the reader as an adaptation of [Fournais and Helffer 2010, Proposition 5.2.1]. [J
Let us now prove a lower bound for the essential spectrum of H,, ;.

Proposition 5.10. There exist hy > 0 and ¢y > 0 such that, if h € (0, hy), then
infaess(Qn,h) > O + Co.

Proof. Let ¢ € Dom(Q, ) such that supp(¢) C [F\Ri \ [—1%, Ié]z. Let us use a partition of unity
X127 Rt Xzz’ r = 1 such that x; g(x) = x1(R™'x) and where ¥ is a smooth cutoff function being 1 near O.
We have

0yn(@) > Qun(x1.r®) + Qyn(x2.r}) — CR™[I 9%

For R > 2h™", we have (the metrics becomes flat and we can compare with a problem in R?)

0y n(x2.r®) > llx2. RO
‘We have
0101 = [ V1@ 10,00 + a0l Di1.59) P dx i

R

Taking h € (0, hg) (where hg is given by Proposition 5.9) and R > h~ 12, we infer

Onn(X1,rO) > /2(®o+co)|X1,R¢|2dx di.
R+

This implies that
Q.4 (¢) > (min(1, Og +co) — Ch*")[1$]%.

The conclusion follows from a Persson’s lemma-like argument (see [Persson 1960; Fournais and Helffer
2010, Appendix B.3]). (I

The following proposition provides an upper bound for the lowest eigenvalues of H, j.

Proposition 5.11. For all M > 1, there exist hy > 0, C > 0 such that forall 1 <n < M:
Vi (Qn) < h ™'y () + O (h™).

Proof. This is a consequence of (5-1) together with the lower bounds of Propositions 5.3 and 5.6 and the
min-max principle (see for instance [Reed and Simon 1978]). ]

Remark 5.12. For & small enough, we deduce that there are at least M eigenvalues below ®¢ + ¢y. Let
us consider the first M eigenvalues v,(Q,.») below ©¢ + ¢o. With Theorem 2.1, we deduce that, for all
M > 1, there exist hg > 0 and C(M) > O such that, for 1 <n < M,

0 < v,(Qni) — O < C(M)h'/?.
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For 1 <n < M, let us consider a normalized eigenfunction f, , » associated to v,(Q,, ) so that f, , »
and f,, , » are orthogonal if n # m. Let us introduce:

Sm(h) = Span1§j§M(fj,n,h)-
Agmon estimates. First, let us state Agmon estimates with respect to x.

Proposition 5.13. There exist hg > 0, g9 > 0, C > 0 such that, for all f € §y(h),

f | FPdx di < CII I
2

R+
Proof. Let us use a partition of unity, X12,R + X22’R =1, with R > h™". We take ® = gox (x/r)|x|. This
IMS formula implies (with f = f,, » 1)

0y (x1.re®f)+ 0y n(xa.re® f) — Cellle® fII* = va(Quu)le® f1I* < 0.

We recall that
0y n(x2are® f) > llxa.re® fII?

and that
0 Grre® f) = f 01 (@m0 k€® 12 dx di.

On the one hand, we have
Oni(x2.re® ) — Ceglixa.re® f1I7 = (©o+ Ch' )| xa.re® f1I* > (1 — Ceg — ©g — Ch'?) [ x2.re® f 1%
On the other hand, we get
Onn(x1.re® ) — Cegllxi.re® f1IP = (@ + Ch')x1.re® f1?
> / (v1 (@) — Ce3 — @ — ChV?) 1. ge® fI2 dx d.

When |A| > Mh~1/47" we have

V1(qnin) —Ceg— O — Ch'/? > —Cef — Ch'/2.
When |A| < Mh~1/*, we have

v1(gnan) —Cel — Oy — Ch'/* > —Cef — Ch'/>.
If i and g are small enough, we deduce that

(1—Ce5—©g— Ch'?)|x2.re® fI* < Clix1.re® f17,

so that ~ A
Ix2.re® fIF < ClfI* and [e®fI2 < CIfI?,

where C and C are independent from r. It remains to make r — 400 and apply the Fatou lemma. Finally,
it is easy to extend the inequality to f € §p(h). ]
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Then, we will need Agmon estimates with respect to A:

Proposition 5.14. There exist hg > 0, C > 0 such that, for all f € §p(h),

/ A R axd < Ol I (5-4)
RZ

+

and

/ 2 1 Dy 2 dxdn < Ch'V2| )2 (5-5)

R3

Remark 5.15. Heuristically, these estimates with respect to A correspond to the phase space localization
of [Fournais and Helffer 2006, Section 5].

Proof. We take f = f; , » and use the IMS formula (with ® = W4 r =Y A |A]) to get
Qi€ ) < vj(Qyi)lle® I+ CIIVPe® fII* < (8 + C(M)L'2 + Ch'2) e® £1%.

We recall that

0, 1) = [ 11(aple® P +a@lDue® P dx iz [ niguanle® fPdx dr.

R% R}

We have, for all D > 0,

[ e sPaxai= [ e Pdxdit [ e s Pdxdi.
RZ [A|<Dh=1/4 |A|>Dh~1/4

Moreover, we get

/ Vi@ m)le® fI7dx dr > / (®0 + comin(1, ha?))[e® fI* dx da
A= Mh=1/4=1 |AI=Mh=1/4=

and

) 2
f o1 (@ m)le® FI2 dx di
Dh’l/4§\)\|§Mh*1/4*’]

i
> f O + C ko, az, by)h'/* + H80) 50, _ cpta=sn le® f1? dx d.
Dh=1/4< |3 <Mh=1/4=n 2
This leads to
/ (c1 min(1, hA%) — Ch'/? = Ca®h'/?)|e® f|* dx d)\géhlﬂf |fI*dhrdx.
|A|>Dh~1/4 [A<Dh=1/4

It remains to take D large enough, and we get (5-4). Then we have

[ (1@ = ©0)1e® 7P+ a@0I D€ ) dx ar = P 1P,
R

+



1322 NICOLAS RAYMOND

But we notice that

| (1@ = @01 fPdx
R

.
> / (C(ko, ar, b +
Dh=14<|A|<Mh=1/4=n

"
+/ (C(ko, ay. by 4 P80 52y, Ch3/4_3”) 1e® £ d2dx.
[»<Dh=/4 2

W (EO)A 2h — Cch34- 3")|e FI2dx dx

Taking D larger, we get

(M (EO)AZh Cchl/? _ h3/4_3'7>|e‘1’f|2dx di > 0.

~/;)h1/4§|k|§Mhl/4"

Moreover, we have

< Ch'2| £ O

/ 1/4<C(k0,a2,b2)h1/2 M(SO)AZh Ch3/*~ 3")|e‘1’f|2dmx
IA<Dh

Approximations of eigenvectors by tensor products. Let us define the quadratic form gy with domain
B'(R;) ® L*(R):

q0(¢) = Qo(p) — Oolle|* = " 8.9 1* + | (x — £0)I* — Bolg|* dx d.
+

The Friedrichs extension of g is the operator Hg, ®1d; 2. We also define the Feshbach—Grusin projection
on the kernel of Hg, ® Id;2 -

Mop = (@, ugy) xug, (x).

The next proposition states an approximation result for the elements of §,(#) (which behave as tensor
products):

Proposition 5.16. For all M > 1, there exist hg > 0 and C > 0 such that we have, for all f € §p (h),

I f = Tofllg2 + 18 (f — o)l 2 + x(f = Mo f)ll 2 < Ch'B| £1, (5-6)
I(Af = ToAf Il 2 + 19x (Af — TIoAf) I 2 + Ix(Af — oA f)ll 2 < CRY3| £, (5-7)
(3 f — o £ 1l 2 + 1185 (B3 f — Todx )l 2 + Ix (@ f — Todsa f)ll 2 < CHE| £ (5-8)

In particular, Ty is an isomorphism from §y (h) onto its range.

Proof. We take f = f; , . By definition, we have

Hynf=vi(Qun)f. (5-9)
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Approximation of f. We deduce

Qni(f) =vi (@l fI? < (@9 +Ch)| fI1%.

‘We have
2

b
(x — & +h'?A +h1/2721(x)2)f dx da.

0 (f) = (1 — Ch”“)/ o £+
%

Moreover, we get (using the estimates of Agmon), for all € € (0, 1):

[ o+
R+

Taking ¢ = h'/#, we deduce

2
dx dx > (1 —g)Qo(f) — Ce 'n1?| £11%.

b
(x — & +h'Ph+ hl/zfl(x)z)f

qo(f) < Ch'*| £12.
We deduce (5-6).

Approximation of L.f. We multiply (5-9) by A and take the scalar product with Af:

Qni(hf) < (©g + CRYAIAL I+ [([Hyns A1f, AF)].

Thus, it follows that

QM) < (O + ChYH) |IAf 12 +a®o|(D; £, Af)| < OollAf 1>+ ClI £

We get
Qi (L f) = (1= CR'ZN)((1 — &) Qo(f) — Ce | f1).
We take ¢ = h!/* to deduce
qo(hf) < Ch= V4| £112.
We infer (5-7).

Approximation of D, _f. We take the derivative of (5-9) with respect to A and take the scalar product with

3Afi
0y (3. 1) < O+ Ch'A) 3, £ 1> + [([Hyn, 31, 3.1)|.

The estimates of Agmon give
[{[Hyns 311, 00| < CHILFIP
We have
Qnn(@.f) = (1= Ch' 27 ((1 — ) Qo(3r.f) — Ce~ ' hIl f11?).
We take ¢ = 1'/# and deduce
003 f) < CHIf11%.

We infer (5-8). [l
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Conclusion: proof of Proposition 5.8. For all f € §(h), we have the lower bound

0011 = [ (@unnlfP+aulD, f dxdi

+

> / (w(qx,n,h)—(®O+C(ko,a2,bz)h1/2 # (SO)A%))dedA
2
1/2 M (SO) 2
+ | (@ +Clko, ar, b + 22525320 )| 12 dix d + «®¢| Dy £ 2 dix d.
2

‘We now estimate

1/2 IL//(SO) 2 2
/2 v1(qann) — | ®0 + Clko, az, by)h! +TA h) ) f1>dxdx

R+
1
- / (m(qx,n,h) - (@0 + Clko az, b)Y + @xzh»uwx dx
A|=MA=1/4-1 2

+/ (VI(C]A,n,h)—(®O+C(k0,a2,b2)hl/2 ad (SO)k2h)>|f|2dxdk.
|A|<Mh=1/4=n

Moreover, we get

Y
/ <v1<qx,n,h) — <®o+c<ko, az, by)h'/* + @Azh))vﬁdx dx
|A|=Mh=1/4=n 2

MN(SO) 52
2

> / —<®o+C<ko, az, by)h'/* + h)|f|2dx dr= 0™ fI?
|A|>Mh—1/4=n

where the last estimate is a consequence of the estimates of Agmon. Then we get

w (%‘ ) _
/ y (w(cu,n,h)— (®o+c<ko,az,bz>h“2 0 /\Zh))lflzdx dr = —Ch3/473) 1112,
A <Mh—1/4=n
We deduce

Qun(f) > / <c<ko,az,bz>h1/2 a (SO>)»2h>|f|2dXd)»+a®o|DAf|2dXd)»
R2

+ @l fI* = CRY*731 7112,

We now use Proposition 5.16 to get

Qun(f) > / (C(ko, az, by)h'/* + [Ty f1*dx d\ +a®g|D; Ty f|* dx di
2

+

M”(Eo)/\zh)
2

+ @l fII* = CA2H1E| T, £11%.
But we notice that for all f € §y(h),

Qun(f) <vm (@)l £11%,
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and thus:

Vi
/ (C(ko, az, by)h'/? + %&))Azh)moflzdx dr+a®| Dy f|? dx d
&

< (v (Qy) = )l FII* + ChYZ13 | T £ 12
< (vm(Qy.n) — ©) o f 11> + CAYZH1E 1, 12,

The conclusion follows from the min-max principle.
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STABILITY AND INSTABILITY FOR SUBSONIC TRAVELING WAVES
OF THE NONLINEAR SCHRODINGER EQUATION IN DIMENSION ONE

DAvVID CHIRON

We study the stability/instability of the subsonic traveling waves of the nonlinear Schrédinger equation
in dimension one. Our aim is to propose several methods for showing instability (use of the Grillakis—
Shatah—Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For
the latter, we show how to construct in a systematic way a Liapounov functional for which the traveling
wave is a local minimizer. These approaches allow us to give a complete stability/instability analysis in
the energy space including the critical case of the kink solution. We also treat the case of a cusp in the
energy-momentum diagram.

1. Introduction

This paper is a continuation of our previous work [Chiron 2012], where we consider the one-dimensional
nonlinear Schrodinger equation

i%—lf+8)2€\ll+\lff(|\11|2):0. (NLS)

This equation appears as a relevant model in condensed matter physics: Bose—Einstein condensation
and superfluidity (see [Roberts and Berloff 2001; Ginzburg and Pitaevskii 1958; Gross 1963; Abid
et al. 2003]); nonlinear optics (see, for instance, the survey [Kivshar and Luther-Davies 1998]). Several
nonlinearities may be encountered in physical situations: f (o) = %o gives rise to the focusing/defocusing
cubic NLS; f(0) = 1 — o to the so-called Gross—Pitaevskii equation; f(0) = —o? (see [Kolomeisky
et al. 2000] for Bose—Einstein condensates); more generally a pure power; the “cubic-quintic” NLS (see
[Barashenkov and Panova 1993]), where

f(0) = —a1 +az0 — as0?

and o1, a3 and a5 are positive constants such that f has two positive roots; and in nonlinear optics, we
may take (see [Kivshar and Luther-Davies 1998])

(o) =—ag" B f(g)=—@( Lo ! ) f(g)=—ag(1+ytanh02_95) )
’ 2\(1+1)" (1+2)") o2 )

MSC2010: 35B35, 35J20, 35Q40, 35Q55, 35C07.
Keywords: traveling wave, nonlinear Schrodinger equation, Gross—Pitaevskii equation, stability, Evans function, Liapounov
functional.
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where o, B, y, v, 0 > 0 are given constants (the second one, for instance, takes into account saturation
effects), etc. As a consequence, as in [Chiron 2012], we shall consider a rather general nonlinearity f,
with f of class €2. In the context of Bose-Einstein condensation or nonlinear optics, the natural condition
at infinity appears to be

w2 — rg as |x| - +oo,
where rg > 0 is such that f(rg) =0.

For solutions W of (NLS) which do not vanish, we may use the Madelung transform
W = Aexp(ip)

and rewrite (NLS) as an hydrodynamical system with an additional quantum pressure

9; A +20xpdx A+ Ad2¢ =0, dep + 20x(pu) =0, ,
934 92(,/p) )
99+ (090~ F(47) - 50 = Do+ 2uder — (£ (0) ax( g ) o,

with (p,u) = (42, dx¢). When neglecting the quantum pressure and linearizing this Euler system around
the particular trivial solution ¥ = rq (or (A4, u) = (rg, 0)), we obtain the free wave equation

81‘1‘I+ roaxU == 0,
9,U —2r0f/(rg)8x/1 =0,
with associated speed of sound

s = ,/—2rgf/(r§) > 0,

provided f satisfies the defocusing assumption f”(rg) < 0 (that is, the Euler system is hyperbolic in the
region p =~ rg), which we will assume throughout the paper. Concerning the rigorous justification of the
free wave regime for the Gross—Pitaevskii equation (in arbitrary dimension), see [Béthuel et al. 2010].
The speed of sound ¢ enters in a crucial way in the question of existence of traveling waves for (NLS)
with modulus tending to rg at infinity (see, e.g., [Chiron 2012]).

The nonlinear Schrédinger equation formally preserves the energy

E(w)EA|axw|2+F(|w|2)dx,

where F(p) = f;gf Since

C? 20 G 2
F(o) ~ —H5(e—rg)" ~—(Je—ro)
8ry 2
when o — rg, it follows that the natural energy space turns out to be the space
% ={y € L°R), dxy € L2R), |[¢| —ro € L2(R)} C 6,(R,C),
endowed with the distance

da (9, ) = 1859 = 35Vl L2y + V] = 1| I L2y + [¥(0) = (O)].
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The Cauchy problem was shown to be locally well posed in the Zhidkov space {yr € L®(R), 0, € L2(R)}
by P. Zhidkov [2001] (see also the work by C. Gallo [2004]). For global well-posedness results, see
[Gallo 2008; Gérard 2008]. More precisely, the local well-posedness we shall use is the following.

Theorem 1 [Zhidkov 2001; Gallo 2004]. Let W'™ € %. Then, there exists Ty > 0 and a unique solution ¥
to (NLS) such that W);—o = = U gnd W — WM € €([0, Tx), H'(R)). Moreover, E(¥(t)) does not depend
ont.

The other quantity formally conserved by the Schrédinger flow, due to the invariance by translation, is
the momentum. The momentum is not easy to define in dimension one for maps that vanish somewhere
(see [Béthuel et al. 2008a; 2008b]). However, if 1 does not vanish, we have a lifting ¢ = Ael? and then
the correct definition of the momentum is given by [Kivshar and Yang 1994]

2

P<w)sz<iw|axw>(1—W) dx—/(Az—r())axqsdx

where (-|-) denotes the real scalar product in C. We define
Fny = {v € %, infg [v] > 0},

which is the open subset of % in which we have lifting and where the hydrodynamical formulation (2) of
(NLS) is possible through the Madelung transform. It turns out that, if the initial datum belongs to %4y,
the solution of (NLS) provided by Theorem 1 remains in &,y for small times, and that the momentum is
indeed conserved on this time interval (see [Gallo 2004]).

1A. The traveling waves and energy-momentum diagrams. The traveling waves with speed of propa-
gation ¢ are special solutions of (NLS) of the form

W(t,x)=U(x —ct).
The profile U has then to solve the ODE
U+ US(U) =icdyU (TW,)

together with the condition |U(x)| — ro as x — Fo00. These particular solutions play an important role
in the long-time dynamics of (NLS) with nonzero condition at infinity. Possibly conjugating (TW.), we
see that we may assume that ¢ > 0 without loss of generality. Moreover, we shall restrict ourselves to
traveling waves which belong to the energy space % (so that |U| — rg at 200 by the Sobolev embedding
H'(R) = €((R,C) = {h € 6(R,C), limts & = 0}). For traveling waves U, € % that do not vanish
in R, hence that may be lifted to U, = A€ the ODE (TW¢) can be transformed (see, e.g., [Chiron
2012]) into the system

Do = = - —1L

: o 2020 + V() =0,  with e = A2 —r2,
5 7lc+’"g e+ (M¢) with 71)¢ ¢ 1o

and where the function ;. is related to f by the formula

Ve(§) = P62 —4(rg +E)F(r§ +§).
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To a nontrivial traveling wave U, is associated (see [ibid.]) some &, > —rg such that V¢ (&) =0 # V7 (&)
and V. is negative between &, and —rg, and 7, varies between 0 and &; that is, {infg |U.|, supg |Uc|} =
{ro, v rg + &.}. Moreover, the only traveling wave solution (if it exists) that vanishes somewhere is for
¢ = 0 and is called the kink: it is an odd solution (up to a space translation) and then &y = 0.

We have also seen in [ibid.] that any traveling wave in &% with speed ¢ > ¢, is constant, and also that any
nonconstant traveling wave in % of speed c« € (0, ¢5) belongs to a unique (up to the natural invariances:
phase factor and translation) local branch ¢ +— U, defined for ¢ close to cx.

In [ibid.], we have investigated the qualitative behaviors of the traveling waves for (NLS) with nonzero
condition at infinity for a general nonlinearity f. A particular attention has been payed in [ibid.] to
the transonic limit, where we have an asymptotic behavior governed by the Korteweg—de Vries or the
generalized Korteweg—de Vries equation. In order to illustrate the very different situations we may
encounter when we allow a general nonlinearity f, we give now some energy-momentum diagrams we
have obtained (one is taken from the appendix in [Chiron and Scheid 2012], where we have performed
numerical simulations in dimension two for the model cases we have studied in [Chiron 2012]):

The Gross—Pitaevskii nonlinearity: f(0) = 1 — o (see Figure 1).

A cubic-quintic-septic nonlinearity: f(0) = —(0—1) +3(0—1)2— 3 (0 — 1) (see Figure 2).

A cubic-quintic-septic nonlinearity: f(0) =—4(0—1)—36(0—1)3 or f(0) =—4(0—1)—60(0—1)3.
For these two nonlinearities, the graph of E and P vs. speed c is given in Figure 3, but the (£, P)
diagrams are, respectively, those in Figure 4.

A cubic-quintic-septic nonlinearity: f (o) = —%(Q -1+ %(Q —1)2 —2(0— 1)3 (see Figure 5).
A degenerate case: f(0) = —2(0o—1)+3(0—1)2—4(0—1)>+5(0—1)*—6(0—1)° (see Figure 6).

A perturbation of the previous degenerate case: (o) = —2(0—1)+(3—-10"3)(o—1)2—4(0—1)3> +
5(0—1)* —6(0 — 1) (see Figure 7).

A saturated NLS: f(0) = exp((1 —0)/00) — 1 with g9 = 0.4 (see Figure 8).

Another saturated NLS: f(0) = 300(1/(1 +0/00)*—1/(1 + 1/00)?), with go = 0.08 (see Figure 9).

The cubic-quintic nonlinearity: f(0) = —(0 — 1) — 3(0 — 1)? (see Figure 10).

Through the study (in [Chiron 2012]) of these model cases, we have shown that, if the energy-momentum
diagram is well-known for the Gross—Pitaevskii equation, the qualitative properties of the traveling wave
solutions can not be easily deduced from the global shape of the nonlinearity f. In particular, even if
we restrict ourselves to smooth and decreasing nonlinearities (as is the Gross—Pitaevskii one), we see
that we may have a great variety of behaviors: multiplicity of solutions, branches with diverging energy
and momentum, nonexistence of traveling waves for some cq € (0, ¢5), branches of solutions that cross,
existence of sonic traveling waves, transonic limit governed by the mKdV or more generally by the gKdV
solitary wave equation instead of the usual KdV one, existence of cusps, etc.
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Cc—>Cg P

E=E it C(SP*PI)

Figure 3. Energy (dashed curve) and momentum (full curve) vs. speed.
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Figure 4. The two (E, P) diagrams.

E

Figure 6. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E, P) diagram.



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRODINGER EQUATION 1333

E

c=0

P

Figure 7. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) qualitative
(E, P) diagram.

c—>0

/c—>c5

Figure 8. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E, P) diagram.

We investigate now the behavior at infinity of the nontrivial traveling waves, which depends on whether
¢ = ¢s or not. We denote by N the set of nonnegative integers and N* the set of positive integers. We
consider for m € N the following assumption:

(Am) f is of class ©™+3 near rg. Moreover, for 1 < j <m + 2, we have

() (2 . . 2 (m+2) (.2 2
SY(rg) 2]:(_1)j+1c_s but f (”O)rz(m+2)7é(_1)m+3c_s

G+ 4 m13ay 0 A

(note that, for j = 1, equality always holds by definition of the speed of sound ¢y = ,/—ng 1’ (rg)).

Proposition 2. Let U, € % be a nonconstant traveling wave of speed 0 < ¢ < ¢s.
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E
c=0

1 c A=>cq P

0 Ccusp Cg 0

Figure 9. (a) Energy (dashed curve) and momentum (full curve), (b) (E, P) diagram.
E
c—>0

“t - > p

cusp s 0
Figure 10. (a) Energy (dashed curve) and momentum (full curve), (b) (E, P) diagram.

() If ¢ =0, then there exists ¢g € R such that € 20Uy is a real-valued function and there exist two real

constants My # 0 (depending only on f and &y) and x¢ such that, as x — F00,

&% U (x)Fro~ Mo exp(—cs|x—xol) if €o=—7§, &' ?Up(x)—ro~ Mo exp(—cs|x—xo|) if &o 7~

(1) If 0 < ¢ < ¢, then U, does not vanish, and hence can be lifted: U, = A.e'®c. Furthermore, there
exist four real constants M., ®. (depending only on f, c and &), xo and ¢o such that, as x — +o0,

2r2
|Ue(x)]? —rg = e (x) ~ T"axmx) ~ M, exp(—,/c? —c2|x —x0|),

cM, /

2 2

X —14/C —CT|X — X .
2 2 _c2 P( s | 0|)

$(x) —¢o F Oc ~ —sgn(x)
2ry/es—c¢

and
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(iii) If ¢ = ¢y then U, does not vanish, and hence can be lifted: U., = A, e!Ps. We assume that there
exists m € N such that () is satisfied and define

4 rg(m+2) (m+2)(,.2 426
A, = m —ymres 0.
" rg(m+1)[(m+3)!f 0D+ 1] 2
Then, we have, as x — +00,
) ) 2rg 4 mFI
|Ue, () |7 =1 = ey (x) ~ C_ax¢(x) ~ sgn(&,) (m + 1)2|Ap|x2
Ay m
and
B(x) ~ ¢s sgn(éc,) ( 4 )ml+1 Syin_f_xl) In|x| . ifm=1,
2rg (m 4 1)2|Am| — sgn(x)|x|m+1  ifm>2,

and, if m = 0, there exist O, € R and ¢o € R such that

2¢s

X)—¢o F O, ~sgn —_-—
P(x) —po F O, ~sg (E‘S)réll\olx
In particular, since we impose U, € %, we must have m € {0, 1, 2}.

For the Gross—Pitaevskii nonlinearity ( f(0) = 1 — o), we may compute explicitly the traveling waves
forO<c <¢ = V2 (see [Tsuzuki 1971; Béthuel et al. 2008a]):

—c2 2—c2 ¢
tanth—l

Uec(x) =

up to the invariances of the problem: translations and multiplications by a phase factor. On this explicit
formula, the decay of the phase and modulus can be checked. In particular, as x — 400, we have

Remark 3. In the above statements, the constants ¢¢ and x¢ reflect the gauge and translation invariance.
In the spirit of the model cases proposed in [Chiron 2012], for

fl@=-200-1)+30—-1)>—4(—1)>+50—-1)*—12(c - 1)°,

we obtain a smooth decreasing nonlinearity tending to —oo at oo (thus qualitatively similar to the
Gross—Pitaevskii nonlinearity) for which we have ro = 1, ¢; = 2, and V', (§) = —4£* — 8£>. For
this nonlinearity f, there exists a nontrivial sonic traveling wave of infinite energy (corresponding to
&, =—1/2), since m = 3.

The aim of this paper is to investigate the stability of the traveling waves for the one-dimensional NLS.
We recall the definition of orbital stability in a metric space (¥, dy) for which we have a local in time
existence result.
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Definition 4. Let 0 < ¢ < ¢; and U, € % be a nontrivial traveling wave of speed c. We say that U, is
orbitally stable in (¥, dy), where & C %, if, for any € > 0, there exists § > 0 such that, for any initial
datum WM € ¥ such that dy (W™, U,) < §, any solution ¥ to (NLS) with initial datum W™ is global in
% and

sup inf dgg(‘P(t),eieUc(' —y)) <e

In the sequel, U, will always stand for a nontrivial traveling wave, and we freeze the translation
invariance by imposing that |U,| is even. Moreover, the solutions of (NLS) we consider will always be
those given by Theorem 1.

1B. Stability and instability in the case 0 < ¢ < c;.

1B1. Stability for the hydrodynamical and the energy distances. The first stability result for the traveling
waves for (NLS) with nonzero condition at infinity is due to Z. Lin [2002]. The analysis relies on the
hydrodynamical form of (NLS), which is valid for solutions that never vanish. The advantage is to work
with a fixed functional space since (1, u) = (A2 —rZ, 0x$) € H' (R) x L?(R), whereas the traveling waves
have a limit roe® ©¢ (up to a phase factor) at +00 depending on the speed c. Lin’s result establishes
rigorously the stability criterion found in [Bogdan et al. 1989; Barashenkov 1996].

Theorem 5 [Lin 2002]. Assume that 0 < c« < ¢z is such that there exists a nontrivial traveling wave U,.,.
Then, there exists some small o > 0 such that U, belongs to a locally unique continuous branch of
nontrivial traveling waves U, defined for cx —0 < ¢ < c« + 0.
(1) Assume

dPU,)

< 0.
dc lc=cx

Then, U., = Axe'®* is orbitally stable in the sense that, for any € > 0, there exists 8§ > 0 such that, if
Win = Ainei®" ¢ % satisfies

IA™ = Axll g1 gy + 10x0™ — Oxpall L2y < 6.

then the solution W to (NLS) such that ¥|;—¢ = WM never vanishes, can be lifted to W = Ae'®, and we
have

sup inf {|A(1) — Ax(- = W)l + 19x¢ (1) = 0x¢+ (- — W)@} <€
t>0Y€ER

(i1) Assume

dP(Uc)

> 0.
dC |C:C*

Then, Uy, = Ae'®* is orbitally unstable in the sense that there exists € > 0 such that, for any § > 0,
there exists W™ = A"e!®" € % verifying

1A™ — Al gy + 109" — xall L2y < 6
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but such that, if W denotes the solution to (NLS) with W|;—¢ = Wi then there exists t > 0 such that ¥
does not vanish on the time interval [0, t] but

06 {1A@) = A = )l ey + 1060 (0) = D = )12} = €.

By the one-dimensional Sobolev embedding H ! (R) < % (R), it is clear that, since U,, does not

vanish in R, by imposing || |¥"| — |Ue, | || g1 ® = | A™ — Al g1 ®) small, Uit does not vanish in R and
thus can be lifted.
Remark 6. We point out that [Gallo 2004] fills two gaps in the proof from [Lin 2002]: the first one
concerns the local in time existence for the hydrodynamical system (see (15) in Section 3C) and the
second one is about the conservation of the energy and the momentum. Furthermore, we make two
additional remarks on the proof from [Lin 2002] in Section 3C.

Theorem 5 is stability or instability in the open set %}y, C % for the hydrodynamical distance

arg (w)
v )

which is not the energy distance. Here, arg : C* — (—m, +7] is the principal argument. For the stability,

dny (. V) = A~ All g1 @y + 1059 — 9l 2wy + L Y =4? Y= Ae?,

it suffices to consider the phase 6 € R such that arg(\If(t) J(0U., (- — y))) is zero at x = 0, where y is
the translation parameter. For the instability, the phase 6 € R does not matter. The result of [Lin 2002] is
based on the application of the Grillakis—Shatah—Strauss theory [Grillakis et al. 1987] (see also [Bona
et al. 1987; Souganidis and Strauss 1990]) to the hydrodynamical formulation of (NLS) (see Section 3C).
One difficulty is to overcome the fact that the Hamiltonian operator dy is not onto.

On the energy-momentum diagrams, the stability can be checked either on the graphs of E and P with
respect to ¢, or on the concavity of the curve P — E. Indeed, we have seen in [Chiron 2012] that the
so-called Hamilton group relation

dE dEU.) dPU,)
c=——, or =c ,
dpP dc dc
holds, where the derivative is computed on the local branch. Therefore,
d?E _ d dE _ dc

dP?> ~ dPdP _ dP’
This means that we have stability when P — E is concave, that is, d>E/dP? < 0, and instability if
P+ E is convex, i.e., d?E/dP? > 0.
Actually, the proof of [Grillakis et al. 1987; Lin 2002] provides an explicit control, as shown in the
following lemma.

Lemma 7. Under the assumptions of Theorem 5 and in the case (i) of stability, we have, provided
dhy(\IJi“, U,,) is small enough,

f‘i%yifelquﬂM(f) — A« =V @y + 1020 (1) = 9xdu (- — )l L2y }

< K \JIEQW) — EUe,)| + | P(¥) — P(Ue)|. (3)
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as well as the control

sup inf diy(W(2), e Ue, (- — ) < Kdny (W™, Ue,). )

Remark 8. The second estimate (4) is not a simple consequence of the control (3), but relies on a
comparison to U, for some ¢ close to ¢, instead of a comparison to U, (this idea has also been used in
[Weinstein 1986]). It follows that, in the definition of stability for U, , one can take § = O(¢).

Let us stress that Z. Lin’s result (Theorem 5) is given in terms of the hydrodynamical distance dy,

which is not the energy distance dy. As a matter of fact, the Madelung transform

U(0)
|U(0)]

M:(thy,dg)BUl—)(n,u, )eHl(R,R)xLZ(R,R)XSI,

where U = Ae'®, n= A% — rg and u = dx¢, is not so well behaved.
Lemma9. (i) The mapping M : (¥ny, dx) — H'(R,R) x L%(R, R) x S! is an homeomorphism.
(ii) There exists ¢px € 62 (R, R) such that dx ¢+« € L*(R) and a sequence (¢pn)n>1 of functions in H' (R, R)
such that, when n — +00,
dg (ei¢* , ei¢* eid’")
dhy (ei¢* , el O ei¢n)

0< dhy(ei¢*, P elP)y 50 but — +o00.

Therefore, (™! is not locally Lipschitz continuous in general. However, for the stability issues, we
compare the d and the dyy distances to some fixed traveling wave Uy, which enjoys some nice decay
properties at infinity. Let us now stress the link between the two distances dyy and dz in this case.

Lemma 10. Let 0 < ¢« < ¢ and assume that Uy € % is a nonconstant traveling wave with speed cx that
does not vanish. If cx = cs, we further assume that assumption (o) is satisfied. Then, there exists some
constants K and § > 0, depending only on Uy, such that, for any ¥ € % verifying du (¥, Ux) <6, we have

oty (1, Us) = ds (9, Us) < Kalny (9, Us).

An immediate corollary of Lemma 10 is that Theorem 5 is also a stability/instability result in the
energy distance. If one wishes for only a stability/instability result, it is sufficient to invoke the fact that
the mapping JI is an homeomorphism. However, the use of Lemma 10 provides a stronger explicit control
similar to the one obtained in Lemma 7 (see (3)). In particular, in the definition of stability for U,, in
(%, d), one can take § = O(e).

Corollary 11. Assume that 0 < c4« < ¢ is such that there exists a nontrivial traveling wave U, . Then,
there exists some small o > 0 such that U., belongs to a locally unique continuous branch of nontrivial
traveling waves U, defined for cx —0 < ¢ < cx« + 0.

(1) If (dP(U.)/dc)c=¢, <O, then U, = Ax€%* is orbitally stable in (%, ds). Furthermore, if W(t) is
the (global) solution to (NLS) with initial datum W™, then we have, for some constant K depending
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only on U, and provided dx (W™, U, ) is sufficiently small,

sup inf d(W(1), € Ue. (- —y)) < K\J| E(¥) — E(Ue,)| + | P(¥") ~ P(Ue.)|.
=03

as well as the control

sup inf dy(W(1),e"0Ue, (- —y)) < Kdy (W™, U,,).

(i) If (dP(Uc)/dc)|c=c, > 0, then U, = Axe'®* is orbitally unstable in (%, dz).

For the Gross—Pitaevskii nonlinearity ( (o) = 1 — o), the stability (for the energy distance ds) of the
traveling waves with speed 0 < ¢ < ¢y was proved by F. Béthuel, P. Gravejat and J.-C. Saut [Béthuel et al.
2008a] through the variational characterization that these solutions are minimizers of the energy under
the constraint of fixed momentum. However, in view of the energy momentum diagrams in Section 1A,
this constraint minimization approach can not be used in the general setting we consider here. Indeed,
this method provides only stability, but there may exist unstable traveling waves. Moreover, it follows
from the proof of Theorem 5 that stable waves are local minimizers of the energy at fixed momentum but
not necessarily global minimizers. Finally, we emphasize that the spectral methods allow us to derive an
explicit (Lipschitz) control in case of stability.

1B2. Stability via a Liapounov functional. Another way to prove the orbital stability is to find a Liapounov
functional. By Liapounov functional, we mean a functional which is conserved by the (NLS) flow and for
which the traveling wave U, is a local minimum (for instance, a critical point with second derivative > § Id
for some § > 0). Such a Liapounov functional always exists in the Grillakis—Shatah—Strauss theory when
(dP(Uc)/dc)|c=c, <0, as shown by Theorem 26 in Appendix A. Its direct application to our problem
leads us to define the functional in %}y

L) = EW) —ca PP + 5 (P() — P(Ue,),

where M is some positive parameter. It turns out that & is such a Liapounov functional when M is
sufficiently large. Since the proof relies on the Grillakis—Shatah—Strauss framework, we have to work in
the hydrodynamical variables. However, by Lemma 10, we recover the case of the energy distance.

Theorem 12. Assume that, for some c« € (0, ¢s) and o > 0 small, (0, ¢5) D [cx—0,cx+0]dct—> U €%
is a continuous branch of nontrivial traveling waves with (dP(U,)/dc)|c=c, <O0. If

1
M>—pay >

dc |c=cx

there exist € > 0 and K, depending only on U, such that, for any v € % with

inf  diy(,e%Uc, (- — ) <e,
yER, O€R
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we have

inf iy (V.7 Ue. (- = ) = K@) = (V).
OeRr

and analogously with dyy replaced by dy. Consequently, U, = Axe'®* is orbitally stable in (Zhy, dny)
and in (%, dx). Furthermore, if W(t) is the (global) solution to (NLS) with initial datum W™, then we have

sup inf dy (W(0), &0V, (- = ) < K /W) — £(U,) = Koy (W7, Ue,),
=05

provided dhy(‘lfi“, Ue,) is sufficiently small, and analogously with dyy replaced by ds.

For the traveling waves for (NLS) in dimension one, this type of Liapounov functional appears for the
first time in the paper by I. Barashenkov [1996]. However, there, the problem is treated directly on the
wave function W, whereas the correct proof holds on the hydrodynamical variables, in particular because
of the gauge invariance (8, ¥) > &' 9@ For instance, that work suggests that we have stability for H'!
perturbations, whereas it holds only for perturbations in the energy space. Finally, we fill some gaps in
the proof of [Barashenkov 1996].

1B3. Instability via the existence of an unstable eigenvalue. In the Grillakis—Shatah—Strauss theory
[Grillakis et al. 1987], the instability is not shown by proving the existence of a unstable eigenvalue for
the linearized (NLS) and then a nonlinear instability result (see however [Grillakis et al. 1990] when the
Hamiltonian skew-adjoint operator is onto). There exist, however, some general results that prove the
existence of unstable eigenvalues. For the instability of bound states for (NLS) (and also for the nonlinear
Klein—Gordon equation), that is, solutions of the form ey, (x), M. Grillakis [1988] shows that the
condition d/dw( [pa |Uw|2)|w=w*
However, the proof relies on the fact that the bound states are real-valued functions (up to a phase factor)

> 0 is sufficient for the existence of such an unstable eigenvalue.

and it is not clear whether it extends to the case of traveling waves we are studying. Indeed, since we have
to work in hydrodynamical variables in order to have a fixed functional space, the linearized operator does
not have (for ¢ # 0) the structure required for the application of [Grillakis 1988]. Another general result
is due to O. Lopes [2002] but it assumes that the linearized equation can be solved using a semigroup.
This is not the case for our problem once it is written in hydrodynamical variables (see below). Finally,
Z. Lin [2008] proposes an alternative approach for the existence of unstable eigenvalues. The method has
the advantage of allowing pseudodifferential equations (like the Benjamin—Ono equation). However, the
results are given for three model equations involving a scalar unknown, and it is not clear whether the
proof can be extended to the case of systems.
The linearization of (NLS) near the traveling wave U,, in the frame moving with speed c is

0
2 a4 029 + Uf (Ve ) + 201U} £ (Ue, U, =0, )

and, thus, searching for exponentially growing modes ¥/ (7, x) = e** w(x) leads to the eigenvalue problem

iAw —ickdxw + 02w 4+ wf(|Ue, |?) + 2(w|Ue,) f'(|Uc, 1)U, =0, (6)
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with Re(1) > 0 and w # 0. For one-dimensional problems, the linear instability is commonly shown
through the use of Evans functions (see the classical paper [Pego and Weinstein 1992] and also the review
article [Sandstede 2002]). For our problem, we look for an unstable eigenvalue for the equation written
in hydrodynamical variables; namely we look for exponentially growing solutions (7, 1) of the linear
problem (written in the moving frame) -

3¢ — Cx0xn) + 205 ((r§ + ns)u + nus) =0,
001t — it + 20 (uar) = Dx (f' (5 + 1)) @
—ax{ ! 32( 1 )_zai(w(%ﬂ*)}:o
Wi T\NVREa/ 2054002 )

where (74, u«) is the reference solution. The advantage is here again to work with a fixed functional

space in variables (7, u). Due to the term

1 2 Ui
ax§2x/rg +n*ax(«/r3 + 77*)%
this equation can not be solved using a semigroup, except in the trivial case where 71 is constant; hence
the result of [Lopes 2002] does not apply. However, system (7) is a particular case of the Euler—Korteweg
system for capillary fluids (see [Benzoni-Gavage 2010a] for a survey on this model). We may then use a
linear instability result already shown for the Euler—Korteweg system with the Evans function method, as
in work by K. Zumbrun [2008] for a simplified system, and more recently by S. Benzoni-Gavage [2010b]
for the complete Euler—Korteweg system.

Theorem 13. Assume that, for some cx € (0, ¢5) and o > 0 small,
(0,¢5) Dcxs—0,cx+0]dc— U, €%

is a continuous branch of nontrivial traveling waves with

dP(Uc)

> 0.
dc  Je=cx

Then, there exists exactly one unstable eigenvalue yy € {Re > 0} for (6) and yo € (0, +00); that is, (NLS)
is (spectrally) linearly unstable.

Once we have shown the existence of an unstable eigenvalue for the linearized NLS equation (5), we
can prove a nonlinear instability result as in [Henry et al. 1982; de Bouard 1995]. Note that, here, we no
longer work in the hydrodynamical variables, where the high-order derivatives involve nonlinear terms,
but on the semilinear NLS equation.

Corollary 14. Under the assumptions of Theorem 13, U, is unstable in U., + H' (R, C) (endowed with
the natural H' distance): there exists € such that, for any § > 0, there exists W™ € U,, + H'(R) such
that ||W™ — Ue, || g1y < 8, but, if W € U, +6([0, T*), H' (R)) denotes the maximal solution of (NLS),
then there exists 0 <t < T* such that |V (t) — Ue, || g1 () = €.
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Since the proof is very similar to the one in [Henry et al. 1982; de Bouard 1995], we omit it. We may
actually prove a stronger instability result, since the above one is not proved by tracking the exponentially
growing mode. In [Di Menza and Gallo 2007], a spectral mapping theorem is shown and used to show
the nonlinear instability by tracking this exponentially growing mode, which is a natural mechanism
of instability. In Appendix B, we show that this spectral mapping theorem holds for a wide class of
Hamiltonian equations. The direct application of Corollary B.6 in Appendix B gives the following
nonlinear instability result.

Corollary 15. We make the assumptions of Theorem 13, so that there exists an unstable eigenmode
(yo.w) € (0,+00) x HY(R), |w| g1 = 1. There exists M > 0 such that, for any solution V¥ €
©(Ry, HY(R, C)) of the linearized equation (5), we have the growth estimate of the semigroup

1V Ol @y < M 1Y (Ol g1y forall t = 0.

Moreover, U, has also the following instability property: there exist K > 0, § > 0 and g > 0, such that,
for any 0 < 8 < 8, the solution W(t) to (NLS) with initial datum '™ = U,., + 8w € U, + H'(R) exists
at least on [0, yg YIn(2¢e9/8)] and satisfies

W (1) — Ue, — 8" w| g1y < K8*€*°".
In particular, fort = yo_l In(2e¢/8) and € = g9/ K, we have
il [WO = 1Ue | =Dz z € and  inf |80~ Ve, (- =)o = €.

which implies
. |6
Inf W) —eUe, (- = Mlgrw =€
feR

as well as

inf duy (¥(2),eUc, (- —y)) > € and  inf dy(¥(1),e%U,, (- —y)) > e.
YER YER
feR OeR

With the above result, we then show the nonlinear instability also in the energy space, and thus recover
the instability result of Z. Lin but this time by tracking the unstable growing mode.

1B4. Instability at a cusp. In this section, we investigate the question of stability in the degenerate case
dP/dc = 0. In [Grillakis et al. 1987] (see also [Grillakis et al. 1990]), a stability result for the wave of
speed cx is shown when the action ¢ — S(c) = E(U;) — cP(U,) (on the local branch) is such that, for
instance, d2S/dc? = —dP /dc is positive for ¢ # c4 but vanishes for ¢ = c4. In the energy-momentum
diagrams of Section 1A, the situation is different since d P /dc changes sign at the cusps, or, equivalently,
the action ¢ + S(c) = E(U;)—c P (U,) (on the local branch) changes its concavity at the cusp. A. Comech
and D. Pelinovsky [2003] show that, for the nonlinear Schrodinger equation, a bound state associated with
a cusp in the energy-charge diagram is unstable. The proof relies on a careful analysis of the linearized
equation, which is spectrally stable, but linearly unstable (with polynomial growth for the linear problem).
A similar technique was used by A. Comech, S. Cuccagna and D. Pelinovsky [2007] for the generalized
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Korteweg—de Vries equation. Then, M. Ohta [2011] also proved the nonlinear instability of these “bound
states” using a Liapounov functional as in [Grillakis et al. 1987]. However, in [Ohta 2011], it is assumed
that J = 7'(0) and that J is onto, which are both not true here (and there are further restrictions due to the
introduction of an intermediate Hilbert space). M. Maeda [2012] has extended the above instability result,
removing some assumptions in [Ohta 2011]. We show the instability of traveling waves associated with
a cusp in the energy-momentum diagram in the generic case where d2 P /dc? # 0. Our approach follows
the lines of [Maeda 2012], but with some modifications since our problem does not fit exactly the general
framework of this paper. In particular, we can not find naturally a space “Y ”’, and some functions appearing
in the proof do not lie in the range of the skew-adjoint operator d involved in the Hamiltonian formalism.
We overcome this difficulty using an approximation argument (similar to the one used in [Lin 2002]).

Theorem 16. Assume that, for some cx € (0, ¢5) and o > 0 small, (0,¢5) D[cx—0,cx+0]|dc—> U, €%
is a continuous branch of nontrivial traveling waves with

dP(U,) _ 0 d?P(U,)

9
dc  |e=cx dc? |le=cx

and assume in addition that f is of class €>. Then, U, is orbitally unstable in (%, dz).

1C. Stability in the case ¢ = 0.

1C1. Instability for the bubbles. When ¢ = 0, we have two types of stationary waves: the bubbles, when
Eo > —rg, are even functions (up to a translation) that do not vanish, and the kinks, when &y = —rg, are
odd functions (up to a translation). The instability of stationary bubbles has been shown by A. de Bouard
[1995] (and is true even in higher dimension). The proof there relies on the proof of the existence of
an unstable eigenvalue for the linearized NLS, and then the proof of a nonlinear instability result. An
alternative proof of the linear instability of the bubbles is given in [Pelinovsky and Kevrekidis 2008,
Theorem 3.11(ii)].

Theorem 17 [de Bouard 1995]. Assume that there exists a bubble, that is, a nontrivial stationary (¢ = 0)
wave Uq which does not vanish. Then, Uy is (linearly and nonlinearly) unstable in Uy + H ' (R) (endowed
with the natural H' metric); that is, there exists € such that, for any § > 0, there exists W™ € Uy + H ' (R)
such that | W™ — Uollgiwy < 8, but, if ¥ € Up +6([0,T7), HY(R)) denotes the maximal solution
of (NLS), then there exists 0 <t < T* such that |V(t) — Uo |l g1 (r) = €.

Actually, in the same way that Corollary 15 is a better instability result than Corollary 14, we have the
following stronger instability result, which is a direct consequence of Corollary B.6 in Appendix B.

Proposition 18. Assume that there exists a bubble, that is, a nontrivial stationary (¢ = 0) wave Uy which
does not vanish. Then, Uy is (nonlinearly) unstable in Uy + H'(R), (%, dz) and (Zhy. dny) in the same
sense as in Corollary 15.

Finally, we would like to emphasize that we may recover the instability result for bubbles from the
proof of Theorem 5, relying on the hydrodynamical form of (NLS), which holds true here since bubbles
do not vanish. Our result holds in the energy space and for the hydrodynamical distance.
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Theorem 19. Assume that there exists a bubble, that is, a nontrivial stationary (¢ = 0) wave Uy which
does not vanish. Then, there exists some small o > 0 such that Uy belongs to a locally unique continuous
branch of nontrivial traveling waves U, defined for 0 < ¢ < o. Then, ¢ — P(U.) has a derivative at

c =0,
dP(Uc)

dc lc=0

>0

and Uy = Axe'®* is orbitally unstable for the distances dzx and dhy.

Proof. We give a proof based on the argument of [Lin 2002], which is possible since Uy is a bubble, hence
does not vanish, and the spectral decomposition used there still holds when ¢ = 0. Moreover, it is clear that
the mapping ¢ — (1¢, uc) € H'! x L? is smooth up to ¢ = 0, using the uniform exponential decay at infinity
near ¢ = 0 and arguing as in [Chiron 2012]. Therefore, it suffices to show that (dP(U.)/dc)|c=¢ > 0.
From the expression of the momentum given in [ibid., Subsection 1.2], we have, for 0 < ¢ < g,

~ EC 52 dé _ EO %‘2 dé
P =csento) | r§+$\/Tc($)_c[0 RG]

since & > —rg. Indeed, we are allowed to pass to the limit in the integral once it is written with the

change of variables £ = t&,:

/& £ dg _/1 312 di
0 r§+$—°‘/c(§)_ 0 r§+t5c \/—OVC(ch),

since &y > —rg. Therefore,

dP(Ue) /50 £ _df |,
de le=0 |Jo rg+E V()
since £y # 0 (Up is not trivial). The conclusion follows then from the proof of Theorem 5. O

When we know that (dP(U¢)/dc)|c=o > 0, we may also use the Evans function as in Theorem 13 to
show the existence of an unstable eigenmode. However, due to the fact that the kink Uy is real-valued,
we can use the arguments in [de Bouard 1995; Pelinovsky and Kevrekidis 2008].

1C2. Stability analysis for the kinks. We now turn to the case of the kinks (§y = —rg and Uy is odd up to
a translation). Since Uy vanishes at the origin, the hydrodynamical form of (NLS) can not be used. The
stability of the kink has attracted several recent works. L. Di Menza and C. Gallo [2007] have investigated
the linear stability through the Vakhitov—Kolokolov function VK, defined by

VK1) = /R (=92 — F(UR) — A" (9:Up)) (3 Uo) dx.

where Uy is the kink, for A € (A, 0) for some A, < 0. They show that the Vakhitov—Kolokolov function VK
has a limit VKo when A — 0. If VK¢ > 0, then the linearization of (NLS) around the kink has an
unstable real positive eigenvalue. When VKy < 0, the linearization of (NLS) around the kink has a
spectrum included in i R (spectral stability). Note that the approach of [Lin 2002] (extending [Grillakis
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et al. 1987]) does not give directly unstable eigenvalues in the case d P /dc > 0. Recently, the link between

the quantity d P /dc and the sign of VK has been given by D. Pelinovsky and P. Kevrekidis [2008] (proof

of Lemma 3.10 there, the factor +/2 coming from the coefficients of the NLS equation in [Pelinovsky and

Kevrekidis 2008]):

dpP(Ue)
de

and they also prove, in a different way from [Di Menza and Gallo 2007], that we have spectral stability

272 VKy = lim )
c—0

when lim._, g dP/dc < 0 and existence of an unstable eigenvalue (in Ri) if limg—o dP/dc > 0. It is
shown in [Pelinovsky and Kevrekidis 2008] that the limit lim.—. d P(U.)/dc does exist. Actually, it is
proved there that the function [0, ¢g) 2 ¢ — P(U,) is of class @1 and that the derivative at ¢ = 0 is also
given by (see (8))

lim ap (2]6) =2+v2VKo =22 lim (=92 = f(UF) — A1 (0xUo)) (9xUp) dx
c—> —07 JR
zzﬁf Im(aUC )aon dx. )
R ac |e=0

Our next lemma gives an explicit formula of the expression (9), involving only the nonlinearity f.

Lemma 20. Assume that Uy is a kink. Then, there exists co € (0, ¢s) such that Uy belongs to the (locally)
unique branch [0, cy) > ¢ — U, € %. Moreover, P(U,) — rgn as ¢ — 0 and the continuous extension
[0,co) o ¢ — P(U,) has a derivative at ¢ = 0 given by

dPWU)  8r3 1/’3(9—"3)2( L1 )d
de je=0  3JF0) 2Jo 0* \JFl@ F©) ¢

The advantage of the formula given in Lemma 20 compared to (9) is that it allows a direct computation of

(dP(Uc)/dc)|c=o when f is known, which does not require computing numerically Up and (U, /9¢)|c=o-
For instance, it is quite well adapted to the stability analysis as in [Fakau and Karval’u 2009]. Let us observe
that it may happen that a kink is unstable (see [Kivshar and Krolikowski 1995; Di Menza and Gallo 2007]).

In the case of linear instability, [Di Menza and Gallo 2007] shows that, then, nonlinear instability holds.
Actually, a stronger result is proved there, showing that the L norm (and not only the H! norm) does
not remain small.

Theorem 21 [Di Menza and Gallo 2007]. Assume that there exists a kink, that is, a nontrivial stationary
(c = 0) wave Ug vanishing somewhere, and satisfying (dP(U.)/dc)|c=o > 0. Then, Uy is (linearly and
nonlinearly) unstable in the sense that there exists € such that, for any § > 0, there exists W™ € Uy+ H ' (R)
such that |9 —Up || g1 &) <6, but, if W€ Up+6([0, T™), H(R)) denotes the maximal solution of (NLS),
then there exists 0 <t < T™ such that |W(t) — Up|| oo (r) > €.

The proof in [Di Menza and Gallo 2007] relies on the tracking of the exponentially growing eigenmode.
One may actually improve slightly the result as this was done in Corollary 15. As a matter of fact, this
was the result in Theorem 21 that has motivated us for Corollary 15.
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We focus now on the nonlinear stability issue when there is linear (spectral) stability, that is, when
(dP(U;)/dc)|c=o < 0. Concerning the Gross—Pitaevskii nonlinearity ( f(¢) = 1 — o), for which we have
(dP(Uc)/dc)c=o < 0, we quote two papers on this question. The first one is the work of P. Gérard
and Z. Zhang [2009] where the stability is shown by inverse scattering, hence in a space of functions
sufficiently decaying at infinity. The analysis then relies on the integrability of the one-dimensional GP
equation. The other work is by F. Béthuel, P. Gravejat, J.-C. Saut and D. Smets [Béthuel et al. 2008b].
They prove the orbital stability of the kink of the Gross—Pitaevskii equation by showing that the kink is a
global minimizer of the energy under the constraint that a variant of the momentum is fixed (recall that
the definition of the momentum has to be clarified for an arbitrary function in the energy space), and that
the corresponding minimizing sequences are compact (up to space translations and phase factors). In this
approach, it is crucial (see [Béthuel et al. 2008a; 2008b]) that Exinkx < ¢s Pkink = Cs rgn in order to prevent
the dichotomy case for the minimizing sequences. However, since the energy of the kink is equal to

N AU R P F<r0+5) /F(Q
Exink = 4 _rg\/%dg_zf_rg d§_2/

whereas its momentum is always equal to rgn, it is clear that the condition Eyjnk < ¢5 Pkink = Cs rgn does
not hold in general, as shown in the following example.

Example. For k > 0, consider
fl@=1-0+«(1-0)°

which is smooth and decreases to —oo as the Gross—Pitaevskii nonlinearity. We have ro = 1, ¢5 = +/2,
F(o) = (1-0)*/2+k(1—0)*/4and

Ekmk—[ /(g / \/Z(I_Q)ZZK(I_Q) do> curin = 23

for « large (the left-hand side tends to +00), and numerical computations show that it is the case for

k > 14. Furthermore, Lemma 20 gives

dP(U,) -1 ( [FO
O =3 ] e (g ) e o

Since F(0)/F(0) = (2+«)/(2(0 —1)? + k(0 — 1)*), it can be easily checked that the right-hand side
of (10) is a decreasing function of « tending to

(e—1)? 1
e () e

when k — +o0 (by monotone convergence). In particular, for any « > 0, we have (dP(U.)/dc)|c=¢ <0;

that is, the kink is always (linearly) stable. The energy-momentum diagram for this type of nonlinearity
with « large is as in the right part of Figure 4 (the left part correspond to « smaller).
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In comparison with the constraint minimization approach as in [Béthuel et al. 2008a; 2008b], which
allows us to establish a global minimization result, the spectral methods as in [Grillakis et al. 1987; Lin
2002] allow us to put forward locally minimizing properties, which turn out to be useful for the stability
analysis in dimension one.

In the stability analysis of the kink, one issue is the definition of the momentum P, which was up
to now given only for maps in %y, that is, for maps that never vanish, but the kink vanishes at the
origin. In [Béthuel et al. 2008b], the notion of momentum was extended to the whole energy space %,
hence including maps vanishing somewhere, as a quantity defined mod 2, and was called “untwisted
momentum”. This notion will be useful for our stability result.

Lemma 22 [Béthuel et al. 2008b]. If Y € ¥, the limit

+R

0= tim | [ 10wy dx - rare( (4 R) —are( (- R)
R—>+oo| J_R

exists in R/(angZ). The mapping 3 : % — R/(angZ) is continuous and, if ¥ € % satisfies infg || >0

(i.e., ¥ € %yy), then P(Y) = P(¥) mod 27rr§. Finally, if ¥ € €([0, T),%) is a solution to (NLS), then

PB(Y(t)) does not depend on t.

Proof. For the sake of completeness, we recall the proof of [Béthuel et al. 2008b]. Let ¢ € % and let us
verify the Cauchy criterion. Since || — ro > 0 at £00, we have a lifting ¥ = A4e'?+ in (—oo, —Ry)
and in (+ Ry, +00) for some Ry sufficiently large. For R’ > R > Ry, we thus have in R/(angl)

+R
[ [ i) dx = areu (R ) - argw(—R’)))]

R/

+R
- [ [ 9109 dx = ey (+R) —argwf(—R)))]

R’ —R
:/ (iw|axw)dx+/ (iy|oxy)dx
R

—R’/

— 3 (arg( (R")) — arg(¥ (R))) + 12 (arg(y (—R')) — arg(¥ (~R)))
R’ —R
= /R A% dx¢s dx + /_ ) AZ0b dx =5 (4 (R) = 64 (R)) 4§ (4~ (-R) — 4 (=R))

R’ —-R
= / (A% —r2)dx g4 dx + / (A2 —rd)dxp— dx.
R -R

The absolute value of each term is < K [ ., pl0x¥[* + (|¥| — ro)? dx and thus tends to zero if
R — +o00. Thus, P(¥) is well-defined. The p;oof of the continuity follows the same lines, and allows
us to show that % is actually locally Lipschitz continuous. Let ¢ € %. If ¥ € % and dx (/, ¥) is small
enough, we have || |/| — || || oo as small as we want. In particular, if Ry > 0 is large enough so that
|| > 3rg/4 for |x| > R, we have || > ro/2 for | x| > Ro. As a consequence, writing { = Ae/?+ and
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V= /fieiai in (—o0o, —Ry) and in (+ Ry, +00), we have, in R/(angl) and for R > Ry,

+R
[ [ i) dx—ré(arg(w<+R>)—arg(z/f(—R)))]

R

+R B B B
—[/_ (i 9 [0x9) dx—rg (arg(W(-er))—arg(W(—R)))}

R
R

+Ro B B B ~ B B
=/ (i(w—lﬂ)laxlﬂH(inax(W—W)dx+/ AL 0xpy— AL 05y dx—r§ (4 (+R)—h4 (+R))

—Ro Ro

—Ro - - -
+ /_ . A2 0y ¢p_—A%20xp— dx+r§(¢p—(—R)—¢—(—R))

+Ro ) ) ) ) i
= / (i (=) [0x V) +(i V¥ [0x (W —V)) dx+1§ (¢4 (+Ro)—¢+(+Ro)) +75 (¢—(—Ro)—p—(—Ro))

—Ro

R 5 5 —Ro B 5
2 (Bmrdndy dis [ A2~ -rsd d
Ro

We now estimate all the terms. For the last line, we use the Cauchy—Schwarz inequality to get

R ¥ ..
o (A% = 1)0xbs dx| < KW Ax = roll 2| A+ x4 2wy < K(¥)da(y. ). and similarly for
the other terms. Moreover, using that (¥ — ) (x) = (¥ —¢¥)(0) + f(;c dx (¥ — ), we get, by the Cauchy—
Schwarz inequality, || = [l¢o(—Rg,+ Rol) = (¥ =¥)(O) [+ Rol| 95V = 9x V| L2m) < K(Ro)dx (¥, ).
Thus, the terms of the second line can be estimated by K (v, Ro)dx (¥, ¥), and those of the first line can
also be bounded by K (v, Ro)d= (v, V). Passing to the limit as R — +oo then gives

B —BW) mod 27r§| < K(, Ro)dx (. V).

This completes the proof for the definition of 3. To show that 3 is constant under the (NLS) flow, we
use that W € W(0) + ([0, T), H') and the approximation by smoother solutions (see Proposition 1 in
[Béthuel et al. 2008b]). O

For the stability of the kink, we can no longer use the Grillakis—Shatah—Strauss theory applied to the
hydrodynamical formulation of (NLS), since the kink vanishes at the origin. Therefore, it is natural to
consider the Liapounov functional & introduced in Section 1B2, which becomes, in the stationary case
c=0,

Hy) = EW)+ 5 (P9~ PUg).

Since the momentum P is not well-defined in %, we have to replace it by the untwisted momentum ‘33,
which is defined modulo 27 rg. Consequently, it is natural to define the functional in &

2%(1”)_7(%”
2z

H(W) = E(Y)+2Mrg sin

which is well-defined and continuous in % since sin?

(NLS) flow as E and 3.

is -periodic. In addition, X is conserved by the
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Theorem 23. Assume that there exists a kink, that is, a nontrivial stationary (¢ = 0) wave Uy which is

odd. Assume also that
dpP(U.)

dc lc=0

< 0.

Then, there exists some small s > 0 such that Uy is a local minimizer of J. More precisely, defining
Vi =Y €%, infp|y| < pa,
we have, for any ¥ € V', \ (Ug(- —y),0 cR, y € R},
H(Y) > H(Uo) = E (Vo).

The crucial point in this result is to prove that the functional ¥ () controls the infimum infg|y|.
As we shall see in the proof (Section 6B), the key idea is to study the infimum of the functional ¥ at
fixed infr|vy| (small), and then to prove (see Proposition 6.2) that, for ¥ € V', , there holds, for some
constant K depending only on f,

H) =HWUop) + M.

This will be achieved by a fine analysis of some minimizing sequences. From this locally minimizing
property of the kink when (dP(U¢)/dc)|.=o < 0, we infer its orbital stability, provided we can prove
some compactness on the minimizing sequences. A main step here is the control on infg|y|. Our method
allows to infer a control on the distance of the solution to (NLS) to the orbit of the kink, but it is much
weaker than those obtained by spectral methods in Lemma 7 or Corollary 11 for instance.

Theorem 24. Assume that there exists a kink, that is, an odd nontrivial stationary (¢ = 0) wave Uy, and
that (dP(U¢)/dc)|c=o < 0. Then, Uy is orbitally stable in (¥, dy). Moreover, if V(t) is the (global)
solution to (NLS) with initial datum W™, we have the control

sup inf dy(¥(1), e Up(- — y)) = K {f3H(¥) — E(Up) < K y/ds(¥, Uy)

t>0Y€
feR

provided that the right-hand side is sufficiently small.

This result settles the nonlinear stability under the condition (dP(U.)/dc)|c=¢ < O for a general
nonlinearity f. In particular, it may be applied to the nonlinearity f given in the example above. It shows
that the stability of the kink holds with § = O(*). We do not claim that the exponent 1/8 is optimal.

For a complete study of the stability of the traveling waves, it would remain to investigate the case
of the sonic (¢ = ¢y) traveling waves (when they exist). The methods we have developed do not apply
directly, and we give in Section 7 some of the difficulties associated with this critical situation.

2. Decay at infinity (proof of Proposition 2)

For simplicity, we shall define

V(E) =V, () = 262 —4(r§ +E)F(rg + ).
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We freeze the invariance by translation by imposing |U,| (hence also dx¢) even, so that we can use the
formulas in [Chiron 2012]. In particular, it suffices to show the asymptotics for x — +o00: the case
x — —oo follows by symmetry. We start with the proof of case (iii). Under assumption (sd,,) and since
F’ = — f, we infer the Taylor expansion

FrE e

1
T

_ 2&2 2 l Mr2Ve2 ooy
V(E) =it +4(r0+$)(2!f(ro)é + +(m+2),

f(m+2) (rg)%-m-i-f; + @($m+4))

4
(m+2)!

_ 43
(m + 3)!
B 4 [rg(m+2)
20150 | (m +3)!

SRR + JeEEHETT L oEm T

2
f(m+2)(rg)+(_1)m+2%s‘i|gm+3 +@(€_-m+4) — Am§m+3+©(sm+4)’

since, when (sd,,,) holds, all the terms O(£”%2) cancel out. The coefficient A, is not zero by assumption.
Note that the existence of a nontrivial sonic wave, which depends on the global behavior of V", imposes
that A,,£™3 < 0 when £ is small and has the sign of & . Therefore, from the formula (following from
the Hamiltonian equation 28)26 ne + V' (ne) = 0; see [Chiron 2012] for example)

UCS(X) d
x = —Sgn(fcs)/g \/%(5)

and since we have, as n — 0 (with the sign of &,),

L — V() — Ang™t i
o V=V o V—AmE™T3 Je o =V (E) V- AmE [V (E) + V- AmE T3]
5 1 ! 0(1) ifm=0,
_ sgn(&,) ( _ ) +0(|In|n|]) ifm=1,
m+1 NN \/_Amgc,?ﬂ

O~ "7") ifm=>2
(here, we use that the last integrand is O(§~1+1/2) a5 £ — 0), it follows that, as x — +00,

0(1/x%) if m=0,

PN
() = sen6o) (o) O/ =
O(1 /x5y ifm > 2.

m—+1

This shows the asymptotics for the modulus, or 7, . The asymptotic expansion for dx¢., is easily deduced
from the equation on the phase 20x¢., = ¢s7c,/ (rg + 1¢,), and the phase ¢, is then computed by
integration, which completes the proof of case (iii).

The proof of (ii) is easier. Indeed, in this case, the function V" has the expansion

V(E) =6 —4(r§ + E)F(r§ + £) = 0(&);
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hence
Ve(€) =V () — (2 —cPE> = —(c; — HE> + O(E).

As a consequence, the result follows from the expansion, for n — 0,

VE)
/ —w / : \/<c2—c2>52 A <V TOVE- DRI+ VD] *
an(e) MO/ (E) 4640

Ve s—c2 s V=VeE) V(G —cD)E[=Ve(§) + V(3 —c?)E?]

since the integrand for the last integral is continuous at £ = 0. This yields the desired expansion for the
modulus:

2 V) B > 2
) =g / VO V- Vc(f)-lr\/(cz—cz)éz]ds)_'_@[exp eyl
= M exp(—x/c2—c?)+0[exp(—2x/2—c?)],

with
0 UG )
I ~ d 0,
“"p( /s e el e+ va-oe] )7

and hence for the phase by similar computations to those above. The proof of case (i) is similar, separating
the case &y = —rg of the kink (even solution) from the case &y # —rg of the bubble (odd solution), and is
omitted. O

3. Stability results deduced from the hydrodynamical formulation of (NLS)

3A. Proofof Lemma 9. (i) The mapping il is an homeomorphism. Let y = Ae'?, (y,, = A,e!%7), e %
such that ¥, — ¥ for dyy. Then, A, — A — 0 in H', 0x¢pp — 0x¢ in L? and we may assume (possibly
adding some multiple of 27 to ¢,), that ¢, (0) — ¢ (0). We write, using the embedding H ! (R) < L*®(R)
for the second-to-last line,

doy (Yn, V)

= [10x¥n — 9x¥ L2 + | 1¥al = [¥] 1|2 + [¥a (0) — ¥ (0)]

= |’ 0y Ap + iA€' 0 pn — !0, A—i AP |12 + | An — All 12 + |An (0)e!?© — 4(0)e’¢©@)|

<|I(e"? —?)ox Allp2 + |9 (0x An — 0x |2 + |(An — A)e' " 0xpn | 12 + | A’ —€'?) 0] 12
+ | A’ (959 — Dxpn) |12 + | An — All 2 + [(An (0) — A(0)e O] + ] 4(0) (/7@ — /9

<P —e?)ax Al 2 + K| An — Al g1 + (A = D g1 10x@nllz2 + [ All oo [| (€97 =)o 12
+ | AllLoo0x¢ — 0xpnll2 + | Al| Lo e’ @ — &I #()] (11)

= (" —e'®)dx Al 12 + [ AllLoo [l (€% —€'?) 3512 + 0nst00(1).
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from the convergences we have. Now observe that
30) = 8O+ [ 0stn0)d1 > 4O + [ 290 dr = 900)

pointwise; hence, by the dominated convergence theorem, ||(e/?" —e/?)d, A||;> — 0, and similarly for
the other term. Therefore, dx (Y5, ) — 0 as wished.

Let now ¥ = Ae'?, (Y, = A,e'?"), € % such that ¥, — ¥ for dx. Then, A, — A = || —|¥| = 0
in L2, 0,y — 0¥ in L? and ¥, (0) — ¥ (0). Since |-|is 1-Lipschitz continuous, we infer for the
modulus

||8xAn _axA”LZ = ”8x|1/fn| _axl‘/fl ||L2 = ||8an _axW“LZ-

Moreover, ¥, (0) — ¥ (0) and this implies arg(y,(0)/v¥(0)) — 0. Therefore, it suffices to show that
Oxn — 0x¢ in L2. We use the formula A%20,¢ = (i y|0xy), which yields

9y — 0p = (Vnlx¥m) _ (i¥10x¥)

A,% A2
. 1 ({Yn|dx (Y —VYn)) (¥ —Yn)l0xy)
= (i 1/fnlax‘/fn)(A_% - E) + 12 — 12 ;
hence
”ax¢n - 8x¢”L2
[VnllLoe | AllLoe [Vl Loo
= inte o infy 12y~ Al L Ny — bl + s Y=y ley e (12)

The first two terms tend to zero as n — +oo. For the last term, we use here again the dominated
convergence theorem since Yy, (x) = ¥, (0) + [y dx ¥ (t) dt — ¥(0) + [y dx ¥ (t) dt = ¥ (0) pointwise.
This concludes the proof of (i).

Proof of (ii). Let us define ¢« : R — R by ¢« (x) = %(ln x)?1x>1. Then, straightforward computations
give 0y« (x) = ((Inx)/x)1x>1 € L2(R) and, for X > e, by monotonicity of dx¢x,
2X 2 2
ln 2X In X
[ anporan=x T2 - BIS
(2X ) 4X
We now consider ¢, : R — R defined by ¢, (x) =0if x <0or x > 3nx, ¢pp(x) =x/nif 0 <x <nm,
On(x)=mif nm <x <2nm and ¢, (x) =37 —x/n if 2nw < x < 3nn. Then, we easily obtain

(13)

. . ) TN
dy (', P10 = |95 pu |2 = /2% 2=
Moreover,
diy (', &P H1Pny = |9 pue’ P — (s + 0 )& P TP || 12 = [|0xpu (€' — D)2 — 0xn 2

and, by our choice of ¢, and using (13),

2nmw 2 5
||ax¢*(ei¢n — 1)”1%2 2/ 4(8x¢*)2d >’ (ln X) - (11’1]’1) '

. X |X=n=m nmw
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Since (Inn)//nm > /2x/n = dhy(ei¢*, !¢+ +idn) it follows that, as wished,

(s iPxt+idy lnn 27[ [ Px IO« t+idy
df{(equ ’ezqﬁ +ig ) > ﬁ(l +o(1)) > /7 :dhy(el¢ ,e’¢ +ig ).

We do not know whether the mapping J is locally Lipschitz, but it is probably not.

3B. Proof of Lemma 10. Note first that, since Ux does not vanish, if § is sufficiently small and
dy (Y, Uy) <8, then ||| — |Uxl||Lee < (1/2) infg |Ux|; hence || = (1/2) infg |Ux| > 0 in R; thus v
does not vanish, may be lifted to ¥ = A exp(i¢), and we may further assume ¢ (0) — ¢« (0) € (—m, +7].
In (11), we can easily check that the terms leading to the “o(1)” are indeed controlled by K (¥ )dny (Vn, V).
In other words, we have

dx (¥, Us) < (' =)o Axll 2 + | AxlLoc (677 — ') dxull L2 + K(Us)dny (v, Uy,

provided dhy (¥, Us) is small enough. In order to bound the two remaining terms, we write, for x € R,

B0 =9u) = 9O~ 0) + [ 0:90) — e 1)y
which implies, using that R > 6 — et? is 1-Lipschitz and the Cauchy—Schwarz inequality,
1=/ @70 < 16(0) = pu(0)] + V/]x] u =] 2. (14)
Consequently,

1'% — & ®)d Aul 2 < 6(0) = a0 10 Aull 2 + 1w = ttall 2 [V [0x Au | .2
and

1('? — %) pullz> < [§(0) — Pu(O)| [0xsll 2 + lu — usllp2 | V/]x[0x s | -

Both terms are < K(Ux)dny (¥, Ux). Indeed, Ux € ¥ is a traveling wave; hence Ay, 0xAx, 0xPx are
bounded functions which decay at infinity exponentially if 0 < ¢ < ¢, (cf. part (i) or (ii) of Proposition 2). If
¢ = cg, since assumption () is satisfied, we invoke Proposition 2(iii), which ensures that dx ¢« and dx A«
decay at the rate O(|x|™2) (0x A« decays faster actually). Therefore, \/m 0xps € L?. Gathering these
estimates provides

dy (Y, Ux) < K(Us)dny (¥, Ux).

On the other hand, from (12) and the estimate |4 — A« || g1 < dx (¥, Ux) (see the proof of (i)), we infer

diy(¥. Us) < K(Us)dz (Y, Ux) + Y — Ux|0x Usl| L2

inf[Rg A2
Using here again the estimate |/ (x) — Ux(x)| < |9 (0) — ¢« (0)| + +/|x]|||0x¥ — U«||; 2, we deduce
diy (V. Ux) = K(Ux)dax (Y, Ux).

The proof is complete. O
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3C. Two remarks on the proof of Theorem 5. We would like to point out two minor points concerning
the proof of Theorem 5 by Z. Lin. We recall that the proof of [Lin 2002] relies on the Grillakis—Shatah—
Strauss theory [Grillakis et al. 1987] once we have written (NLS) under the hydrodynamical form (2),
defining ¢ = A4e'?, (p,u) = (|¥|> = A2, 0x9):

drp+20x(pu) =0,

2
o1t + 2y — 35 (f(0)) — O (ax%ﬁ)) o,

or, more precisely, with n = p—rg = |¢/|? —rg and denoting by §E /81, SE /Su the variational derivatives,

SE

d (n e 0 0
_ = n = x
5 (u) J sE | J (ax O) . (15)

Su

=]

We first remark that the scalar product in the Hilbert space X = H ' x L2 cannotbe ((, u), (7, #)) 1572 =
Jrnii+uit dx as used in [Lin 2002], but the natural one is ((17, ), (71, 1)) g1x 12 = [pi+0xn0x +uil dx.
This requires us to make some minor changes in the proof, especially not to identify (H!)* with H!.
For instance, a linear mapping B is associated with the momentum through the formula

. 01

Ppy(n,u) = /R nudx = %(B(r],u), (n,u))g1xr2 Wwith B = (1 O)
for the (nonhilbertian) scalar product ((n, u), (7, %)) g1xz2 = [pni + uii dx. The correct definition is
actually

1 . (0
Poy(nu) = [ mudx = 3(B(n,u), (. w)x+x with B=|{ "),
R

where ¢ : H! < L? is the canonical injection. As already mentioned in Section 1B, the two points in the
proof of [Lin 2002] that have been completed in [Gallo 2004] are that: Lin uses a local in time existence
for the hydrodynamical system (15) in A1 x L2, and not only in {p € L>®, dyp € L?} x L?; and that the
energy and the momentum are indeed conserved for the local solution if the initial datum does not vanish.

The second point is that, in the proof of stability (Theorem 3.5 in [Grillakis et al. 1987]), it is used that,
if U € X and (Un)nen € X is a sequence such that £(WU,) — E(U) and Phy(WU,) — Pry(W), then there
exists a sequence (Up)nen € X such that W, — AU, — 0in X, E(Uy,) — E(U) and Phy(oﬂn) = Phy ().
In the context of bound states, the existence of such a sequence (Up)nen € X follows by simple scaling
in space, since then the momentum or charge is simply fu;ed Ou% dx. However, for the one-dimensional
traveling waves for (NLS), the momentum P is scaling invariant. We do not know if the existence of
such a sequence holds in a general framework, but, for the problem we are studying, we can rely on
the following lemma, which is an adaptation of Lemma 6 in [Béthuel et al. 2008a] (see also lemma in
[Béthuel et al. 2008b]).
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Lemma 3.1. There exist pg > 0 and K > 0, depending only on f, such that, for any p € (—po, +po) and
w € Rwith || < |p|, there exists w = ae'® € H([0,1/(2|p|)), C) verifying

1 1/(2lpl)
w(O):w(m), lw(0)| =ro + u, / (@®>—rd)dxpdx =p,
0

1/2lp) ) )
/ By wl® + F(w) dx < Klpl.
0

Proof. If p = 0, we simply take w = ro. We then assume 0 < p < pg, since the case —pg < p < 0 will
follow by complex conjugation. We then define, for some small § to be determined later,

w(x) = /7 =5+ 2001~ [8px — 1)+ expli(1 — 4px — 1[)4] = ae’.
It is clear that w € H'([0, 1/(2p)], C) and that w(0) = w(1/(2p)) = Vrg —§; thus |w(0)| = ro + p pro-
vided we choose § = —u? —2rou = O(|j1]). Moreover, since the phase ¢ has compact support [0, 1/(2p)],

1/(2p) 1/(2p)
/ @9-43Wx¢dx=i/ {=8+2p(1 — [8px — 1) 4 }0x (1 — [4px — 1|)+ dx
0 0

1/(2p)
_ 2p/ (1= [8px — 1) 43 (1 — [4px — 1])4 dx
0

1/(2p)
- 2p/ (1= [8px — 1) 435 (1 — [4px — 1])4 dx.
0

For the last integral, the first factor is equal to O if x > 1/(4p) and the second factor is equal to 4p when
x < 1/(4p). Hence, direct computation gives

1/(2p) 1/(4p)
/0 (az—rg)axqodx:2p/0 (1—8px — 1)+ x4pdx =p.
For the energy part, notice first that
ja® = rg] = =8 +2p(1 = [8px — 1])| < |8] +2po
is as small as we want if || and pg are chosen sufficiently small. Therefore,
F(w|?) < K(a* = r3)*.

By simple computations, we have
1/(2p)

/ 10xw]? + F(lw|*) dx

0

1/(2p)
< K/ 2105 (1 — [8px — 1)) % + 9% (1 — [4px — 1)) |* + (=8 +2p(1 — [8px — 1])4)* dx
0 2 pz

<Kp’+Kp+K <Kp

since § = O(|u|) = O(p), which concludes the proof. O
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We then consider a sequence U, = (Ny, up) € X = H 1w L? and show the existence of the desired
sequence U, = (., %in) € X. We recall that U, (respectively, W) is associated with a mapping ¥, € %
(respectively, Uy) that does not vanish. We have Pyy(U,) = P(Y,) — P(Usx); thus, for n large enough,
|P(Yrn) — P(Uyx)| < po. For n fixed, we now pick R, > 0 large enough so that

+o00
/R 95Vl + (V] — r0)? dx < [P(Y) — PU].

In particular, by the Sobolev embedding,

+oo
|1l (Rn)—ro| < |[¥nl=roll Loo((Rp400)) < \//R 0% Va1 + ([¥n] —r0)* dx <[P (Yn) — P(Ux)|.

We are now in position to apply (for n large) Lemma 3.1 with (p, ) = (P (Ux) — P(¥n), |¥n|(Rn) — o).
This provides the mapping w, € H'([0,1/(2|p])),C). Since |y, |(Ry) — ro — 0, for n large enough,
there exists 6, € R such that ¥, (R,) = €% [y,|(Rp) = €% (ro + ) = €% w, (0). We then consider
the mapping ¥, € % defined by

. 1
~ 19,4 _ 3
T () = e mwy(x — Ry) lfRnSXSR"+2|P(1#,,)—P(U*)|’
1 1
x— if x> R, .
v (x 2|P<wn)—P<U*>|) = R P () — P(UW)]

From the construction of w,, and the phase factor 6, &n is well-defined and continuous. It is clear that

B 1/(2p) s
P(n) = P(n) + /O (@2 — )35 n dx = P(Yn) +p = P(Us)

for every (large) n, and that

. 1/(2p) ) )
E(wn)=E(wn)+/O Dywl® + F(w]) dx

= E(Ux) +0(1) +0(|p|) = E(Ux) +0(1) + O(|P(Ux) — P(Yn)])

converges to P(Ux) as n — 4+00. Denoting by A, € X the hydrodynamical expression of ¥/, it remains
to show that A, —Oﬁn —0in X = H! x L2, We thus compute, with the definition of 1},,,

U= 2 =/R 19 Y| =0 [T |- (|| B )2+ ot —iin)? i

+o00 B -
52/R 135 [Winl P19 [Fin] P4 (Winl —r0)? + (1 | —r0) 2 +i22 dix

+o00 5 5 1/(2|P(U*)_P(Wn)|) 5 5 22
54K/R 195Ul (1nl—ro) dx+2/ 95w+ (wn2—r2)? dx
n 0

<4K[P(Yn)—P(Ux)*+K|P(Yn)—P(Ux)| — 0.
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For the second-to-last inequality, we have used that, for |x| > R;, ¥, has modulus uniformly close to ro;
hence |0x|¥n||? +u2 < K|dx¥n|?. Note that the construction still holds for the energy distance, the
computations being similar.

3D. Proof of Lemma 7. Proof of estimate (3). Instead of concluding the stability proof as in [Grillakis
et al. 1987], we can notice that we have actually the bound

1 ,
Eny(U) — Epy(Ue,) > E)}Ielﬂg U —Ue, (- =)l (16)

as soon as P(Uc,) = Phy(Uc,) = Ppy(U) and U € O = {V € X, infyer |V —Ue, (- —y)|x < &} for
some small e. If U'" does not have momentum equal to Ppy(Ue, ), we use Lemma 3.1 to infer that
there exists W(¢), with momentum equal to Ppy(Uc,) = P(Uc,), and such that E(¥(1)— E()) =
O(|P(¥(t))—P(Uec,)|) and dny (¥(1), U(t)) < 0(y/|P(¥(1)) — P(Ue,)|). Therefore, for > 0, denoting
by Wy (7) € X and \iJhy (1) € X the hydrodynamical variables for U and U(¢),

inf [y () =, (- =) = inf 191y (1) =AU, (- =)l + ¥y (1) = By ()]

< VEV E(U() — EWUe.) +6(yTPE0) — P(Uc)])

= K[VIE@W@) = EUe) |+ [P = PUe)| 4+ IPWN = P(U)] ]
which yields (3).

The above estimate is optimal when P(¥i") = P(U,,) since U,, is a critical point of the action
E — ¢4 P. This bound shows that, in the definition of stability, one has to take § = O(¢?) in general. The
estimate (3) shows that one can actually take § = O(g).

Proof of estimate (4). The point is to compare W(¢) to U, with ¢ =~ c4 such that P(U,) = P(¥™™) instead
of comparing to U, . In other words, we replace W(r) by U,. Note first that, since (dP/ dc)ic=c, <0,
there exists, by the implicit function theorem, such a ¢ >~ c,. We then proceed as follows. Let Wi" € %
be close to Ue,. Then, there exists ¢ = c(¥™) ~ c4 such that P(U;) = P(¥'"). Moreover, since
(dP/dc)ic=c, # 0, it follows
[Ue =Ue, || < Kle —cx| < K|P(Ue) — P(Ue,)| = K|P(¥™) = P(U,,)|

< K[Wp = U, || < Kdpy (9™, U,). (17)

From (16), we have

1
Eny (W) = Eny(Ule) = 5 inf [ U=Ue(- = )]

as soon as Phy (W) = Phy(Uc). The fact that the constant K can be taken to be uniform with respect to ¢
for ¢ close to cx comes directly from the proof in [Grillakis et al. 1987]. Therefore, for ¢ > 0,

inf [|Why (1) = Ue, (- = y)[| < inf [[[Wny (1) = Ue (- =)+ [|Ue(- =) = Ue, (- = )]
YeR yER

< VKVEW(t)) — E(Uc) +0(P(¥™) — P(U,))).
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Using that P(W(7)) = Phy(Why(?)) = Ppy(U¢) and that AU, is a critical point of the action Eny — ¢ Py,
we infer E(W(1)) — E(U¢) = [Eny — cPhy](\yg; — [Eny — ¢ Poy](Ue) = @(||\1/g; — ¢ ||?). Consequently,

inf Wy (1) = e, (- =) < K (W — e | + (%30 —Ue, )
< Kdypy (¥, Up,) + K| Ue — Ve, || < Ky (Y™, U,,),
by (17). This gives (4).

4. Instability result for cusps: Proof of Theorem 16

In this section, we set %, = Eyy — ¢ Ppy and we assume

2aq; 2 3q;
LT _dPUD L L PPUD el

dc? le=cx dc le=cx dc? |le=cx - dc3 |c=c*.
The approach is reminiscent of the proof of [Maeda 2012]. Several modifications are necessary since, for
the skew-adjoint operator J = dy, we can not find the required Hilbert space Y. More degenerate cases
can probably be considered as in [Maeda 2012].
We shall denote by 1 : X — X* and I : H' — (H')* the Riesz isomorphisms and define U =
(mu) e X = H'Y(R,R) x L*(R,R) and H = L?(R, R) x L?(R, R), endowed with its canonical scalar
product. They are the corresponding Hilbert spaces needed in [ibid.]. We consider the symmetric matrix

01
B= (1 0) ’
which is such that B? = Id, and 2 Py (W) = (BU, W) 5.
Our assumption (dP(U¢)/dc)|c=¢, =0# (d 2PU.)/ dc2)|c=c* will simplify a little the computations
in [Maeda 2012]. The functions 1; and 1, used there become now
d%.(U,) 3.
M) =Ferty e, ty) = Fe, (o) —p 5 ~ =L B,
dc =t 6

and 5
Y

2

d
)= = =P Uery) + PWe) ~ =

In order to clarify the dualities used by Maeda, we provide some elements of the proof adapted to our

P..

context.

Lemma 4.1. There exists yg > 0 small and o : (—yg, +yo) — R with o (y) ~ —VZIS*/(ZHOU*H%I) and
such that, for any y € (—yo, +Y0),

Phy(cuc*—ky + U(V)Bouc*+y) = Phy(cu*)-
Proof. We have

Phy(ouc*+y +0BUc, +y) = %(Boucﬁ-y +0WUe,+y, Uepty +0BU, +y)H
= Ph}’(%c*+)/) + U||61LC*+V||%I + O—ZPhy(oU“C*‘F)/)'
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Since ||Usx ”129 # 0, the conclusion follows from an easy implicit function argument near 0 =y = 0. In
[Maeda 2012], the linear mapping B is seen from X to X *, but, here, there is no confusion in defining
Ve, 4y +0BUc, 4+ € H=L*x L2 O

We define, for y € (—yo, +v0),

W(y) =Ueyty +0 () BUC, 4y,
which then satisfies Phy(W(y)) = Phy(Ux) by construction.
Lemma 4.2. As y — 0, we have Fe, (W (y)) — Fe, (Ue,) ~ —(y3/6) Ps.

Proof. Using that &, (U, +y) = 0, Puy(W(y)) = Poy(Ue,) = —(dF(Ue)/d)jec, and o (y) =

0(y?), we have by the Taylor expansion

Fe. WY)) = Fe,(Ue,) = Feoty Uy +y +0 () BUC, +y) — Fe, (Ue,) + VPhy(OW(V))
dFc.(Uc)

dc le=cx«

3
= FertyUeyty) = Fe,(Ue,) —y +0(y*) N—%P*,

as wished. O
We recall that we have defined the tubular neighborhood Op = {7 € X, infyep ||V —Ux (- —y)||x <e&}.

Lemma 4.3. For & > 0 small enough, there exist four €' mappings v, a, y : 0y — Rand ¥ : 0y — X,
satisfying, for AU € O,

WUC- =y (W) =Wy W) + 3 W + «(WBU, 45 @)
and the orthogonality relations

(W), 0xVUe, +7@)H = (W), [0cUe]jc=c.+7@)H = (F (W), BU, 45 @) H = 0.
Finally, /="'y’ € H> x H' and 1.}, 87 /dn € H*.
Proof. We consider the mapping G : X x R x (—yo, +0) x R — R3 defined by

U =) =W(y) —aBUc, +y, 0xWUc,+y)H
GW y,y.a) = (U —y)=W(y)—aBUc, 4y, [0Uc]|c=c.+y)H
U —y)=W(y)— otBoch*_H,, Bouvc*—l—y)H

Then G(Uy,0,0,0) = 0 since W(0) = Uy. In order to show that G is of class ¢!, we have to pay
attention to the translation term U(- — y), since differentiation in y requires U € H'! x H! whereas we
only have U € X = H'! x L?. It thus suffices to write

(W, 0xWUey 4y (- +Y)H —(W(Y) +aBUC, +y, 0xUc,+y)H
G, y, v, @) = (U, [0Uec]jc=c,+y (- + YDH — (W (Y) + aBUc, 4y, [0cWUc]jc=c,+y)H
(W, BUc, 4y (- +¥))H — (W(Y) + aBUc, +y, Bouc*ﬁ-y)H
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to see that G is indeed of class ¢! on X x R x (—yo, +y0) X R since ¢ > A, is smooth. Moreover, using
that 9, W, —o = [0cWUc]|c=c,, We infer

G (ou*’ 8,250u*)H _([8couc]|c=c*aaxou*)H _(Bou*, axou*)H
m(m*,0,0,0) = _(ou*’aX[aCOuChC:C*)H _||[8COI'LC]|C=C* “%—] _(Bm*’[aC%C]|C=C*)H .
s —(Ue. B W) —([0cUc]je=c., Bl — B3

At this stage, the argument in [Maeda 2012] is to use that
([acouc’]lc=c*v axou*)H = —(0x [acouc]|c=c*» WUx)g =0,

which is assumption 2(iii) there. This equality holds true for us since we have chosen U, even for any
¢ (close to ¢x). Furthermore, (Ux, 02U+ ) g = —||8x6u*||%1 by integration by parts, (BU«, 0xWUx) g =
(U, BOxUx) g = 0 since Bdyx = J is skew-adjoint, and (BUWx, [0cUc]jc=c,)H = 0c[Phy(Ue)]jc=c, =0
by hypothesis. Therefore,

—19xUe, 13 0 0
G )
—3( O() (OIL*,O,O,O) = 0 _”[acouc]lczc* ”H 0
»r 0 0 —lIBou |,

is invertible; thus the implicit function theorem provides three real-valued functions y, y and ¢, defined
near Uy (in X) and with y(Us) = y(Us) = a(Usx) = 0, such that G(U, y(W), y(U), 2(U)) = O.
These functions are extended to O, (f_or & small enough) by the formulas y @) = ;(OIL(- —-y)+y,
y(U) =y @U(- —y)) and «(U) = ¢ (WU(- — y)) for any y € R such that U(- — y) lies in the neighborhood
of AUy where ¥, y and o are defined. Consequently, the mapping

P =UC- =y (W) —W(y (W) — a(WBUc, 45

is orthogonal in H t0 0xWU¢, 45 u)s [0cUeljc=c,+7 @) and BUc, 45 (), as desired. Since f is assumed of
class €2, we have AU, € H* and the regularities [7'7’ € H?> x H! and I]I__Il1 dy/dn € H* follow easily. [

Remark 4.4. We would like to point out that, in [ibid., Lemma 3], it is claimed that “w(u)” is orthogonal
t0 “0uPw+A@)” (We refer to the notations there). However, since “T'(0(u)) — W(A(u))” is already
orthogonal to “0, @A)~ by construction, this is equivalent to “(Beg, 4 Aw) 0wPw+A@)) = 07, or
“0o/ [0 (¢pw)] = 0" at “w’ = w + A(u)”. We have not understood why this should happen since, in general,
for the function @’ + Q(¢), the point w is the only local critical point. For this reason, we have added
a component to the original mapping G in [ibid.]. Let us observe that, then, Lemma 3 in [ibid.] uses the
assumption “d”(w) = 0”. On the other hand, the derivative of G in [ibid.] assumes “u € D(T’(0))”, for
otherwise the expression “Gy 1 (u, 6, A) = (T'(0)T(0)u, T'(0)py+)”, for instance, is meaningless. We
have therefore given some details showing clearly the smoothness of G.

We now prove a lemma which shows that the quadratic functional associated with ¥/ gives a good

control on ¥ (U) thanks to the orthogonality conditions on this function. This result is in the spirit of
Lemma 7 in [Ohta 2011].
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Lemma 4.5. There exist 0 < y; <y and Ko > 0 such that, if y € (—y1,+y1) and if 9 € X satisfies
(@, 0xWUe,+y)H = (3, [0cUc]jc=cy+y)H = (O, BUC, +y)H =0,
then (%, e, ). 9)x=x = Koll 3.
Proof. As a first step, we prove that, if ¢ € X satisfies ¢ # 0,
(0, 0xUx) g = (D, [0cUc]je=c, )H = (0, BUL) g =0,

then (F(Ux)D, )x+ x > 0. Indeed, assume that (F,(Us)P, ¥)x+ x < 0. Let y € X be a negative
eigenvector of F,. We claim that we can not have (9, ) g, ([0cUc¢]|c=c,. X) i) = (0,0). Otherwise,
(9, )i =0 implies that ¢ is L2-orthogonal to y, which is the eigenvector associated with the only negative
eigenvalue —uo of ¥, seen as an unbounded operator on L?; thus (F7 (W), ¥)x+ x > 0, and, since we
assume equality, this means that ¥ belongs to the kernel of %/ (Ux), which is spanned by U, = 05U,
but the condition (%, xWU) g = O then implies # = 0, a contradiction. Therefore, there exists (a, b) € R?
such that (a, b) # (0,0) and (a[0:Uc]|c=c, + bV, x)g = 0. The nonzero vector p = a[d:Uc]jc=c, + b1
then satisfies (p, x)g = 0 and (p, JU)g = a([0cUc]jc=c,» JUx)g + b(D, JU)g = 0, so that
(FL(Us)p, p)x+,x > 0. Here, we have used once again that ([0cWUc]|c=c,.JUsx)g = O since the
left vector is an even function and the right vector an odd function. However, in view of the equality
(FLOU[0c U] jc=c,» P)x*,x = (BU, $) 7, valid for any ¢ € X (which follows from differentiation of
E(ly(ouc) = cPéy(Ouc) = c(BWU¢, - )y at ¢ = cx), we have

(@l(m*)[ac%chc:c*, ﬁ)X*,X = (B[acouchc:c*s 29)H =0.
As a consequence,

0 < (F(Ux)p, phx+x = a*(Fp(W)[0cUec] ey [0cMUe]je=e, )x*,x + D (FL(UL)D, F)x+ x
= a?(BUx, [0cUec]jc=c, ) B + DX F (W) D, F)x+ x = DX Fp(Us)D, F)x+ x,

since (BWx«, [0cUc]jc=c,)H = Oc[Phy(Uc)]jc=c, = 0 in our situation. We reach a contradiction since the
right-hand side is supposed < 0.

We now prove the lemma by contradiction, and then assume that there exist sequences (%, ),>1 € X
and (Yn)n>1 € (0, yo) such that y, — 0, ||z9n||)2( =1 and

(ﬂn’ axouc*+yn)H = (ﬁn’ [8couvc]|c=c*+yn)H = (ﬁn’ Bouc*+yn)H =0, (18)

but (92’*_,_),” (Ue,+y,)0n, Un)x+,x — 0. Possibly passing to a subsequence, we may assume the existence
of some ¥ = (£,v) € X such that ¥, = (£, v,) — @ in X = H! x L?. We then show the lower
semicontinuity of (¥ (WUx)?, ¥)x= x. This is roughly a verification of part of assumption (A3) in [Ohta

2011], used in Lemma 7 there. By the compact Sobolev embedding, we may assume {, — ¢ in L (R).
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A straightforward computation gives

Tty CUenty) 0 D)y x = / 0x0)*  _ Bxllxtlewty | EOxllecty)”
* Cx ’ ) -
cxty y 8202+ eaty) 2+ Teaty)? 402+ euty)’

+ 2008 + Newty)V? +2QuUc, 4y — (Cx + Y)VE — (18 + Nen+9)E2 dx.

Since g + N¢,+y, remains bounded away from zero uniformly and 7, 4y, — ¢, in WH(R)N H(R)
as n — 400, the weak convergence ¢, — ¢ in H'! implies

(axé')z 0xC0x e, §2(3xnc*)2
2 ) 2 2 3 dx
Rz(ro +7e¢,) (”0 + e, 4(”0 + e,
< lim (axé‘n)2 _ axé‘naxnc*—i—yn é‘%(axrlc*—i-yn)z
N n—joo R 2(rg + 776*+J/n) (r(% + r’C*+yn)2 4(”3 + nC*+yn)3

dx. (19)

For the remaining terms, we write, for some R > 0 to be determined later,

/R2(r§ + 770*+yn)U3 +2Qucy+y, — (Cx + Yn))Unn — f/(”g + nc*-i-yn);;% dx

(Que +y, —(cx +Yn))in 2
= | 2| (F + nerty,) Pup 4 —2T 0 d
/R |: 0 T Nex+y n 2(rg+77c*+yn)l/2

1 (2M «+¥Yn (C + Y ))2
et z(‘ T S A eay) )6
Ixl<R  Jix|>R ro + Newtyn

For the first integral, we may use that ({n, Uy) — (¢, v) in L? x L? and the fact that (1)c, 1y, » Uey+y,)
converges to (7«, Ux) uniformly to deduce

uc, 4y, = (cx +vn))n 2 1/2 usx — cx)C 2
(r2—|—n*+n)1/2v + i =g +n%) v+ ———2="- in L=; (20)
0 T ety " 2(rg + Newtya)V/? o 2(rg +nx) /2
hence,
(2ux —cx)C 2
2| (r2 + Vay 4 =2 2 | dx
/R [(0 M%) 2(”5"‘7]*)1/2
. Quey4y, — (cx +¥n))n 2
< lim 2| (r2 + ne, + n)l/zv + i dx. (21)
n—+o0 JR |: 0 T " 2(V§+ﬂc*+yn)1/2

Since § — ¢ in L°([—R, +R]) and (Ue¢, 4y, Nex+yn) = (Ux, nx) uniformly, it follows that

/| 1(—M 22+ n*))z2 dx

A<k 2 re + s
i 1 ( (2“c*+yn —(cx + Vn))2
= lim = - 3
n—>+00 J|x|<R 2 To + Newtyn

Y nc*m)) 2 dx.

For the last integral, we have to use the decay at infinity of ¢, 4, and u¢, 4+, uniformly for |y| small.
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This gives
(21/[ «+¥n _(C +)/ ))2 C2—02
— c 2]/ * n —2f/(7‘g+77c*+yn)—> S 5 %
Ty + Newtyn ro

as |x| = 400, uniformly in n. Since 0 < ¢4 < ¢y, there exist some small § > 0 and some R > 0 large
such that, for any n and any x with |x| > R,

_ (2uc*+yn —(cx + Vn))z

—2f"(r§ + Newtya) = 6.
rg‘i‘nc*—i-yn 0 e

In particular, since &, — ¢ in L2,

(e, +y,—(cx+Yn))? 12 (Qus—cx)? 12
1|x|>R (_ - 2y LLRL _zf/(r3+nc*+yn) Cn — 1|x|zR _%_Zf/(rg'i‘r)*) ¢
o tew+yn o+«

in L?; thus

1 Qus—c)? 10,2 2

- 208 4+ ) )2
/lezR 2( rg + s o

2 _ 2
< llm ;( ( MC*+2)’n (c* + )/I’l)) _ 2f/(r§ + nc*+yn))é—’21 dx. (22)
n—>—+oo J|x|>R ry + New+yn

Combining these three lim inequalities, we deduce

(Fe@Ua)D, 0)x*x < lim (F ., (Ue,ty,)0n. On)x*x =0. (23)

C +¥n
n—-+oo

Turning back to our sequence (¥, ¥n), We may pass to the limit in (18):
(@, 0xU)H = (0, [0cUcje=c. ) H = (0, BU«)H = 0.

Comparing with (23), we deduce from our first claim that = 0. This means that we must have equality in
all the above lim inequalities. In particular, the weak convergence (22) is actually strong; thus ¢, — ¢ =0
in L2(R) (the strong convergence in {|x| < R} being already known since ¢, — ¢ in L (R)). Going back
to the equality in (19) thus provides 0, — 0x¢ = 0 in L?(R), since rg + Ney+y, remains uniformly

bounded away from zero, and by weak convergence,
2 9 2
¢ (2 xTey) ; dx = lim 0x8n0 xnc*—i-ynz dx.
R 4(”0 +7e,) n—>+oo Jg (”0 + 770*+yn)
Finally, the equality in (21) means that (20) is actually a strong convergence; that is, v, — v = 0 in L?
since ¢, — ¢ in L?. The contradiction then follows: 1 =||%,[|% = l|¢x ||]2ﬂ +1|0xCn IIi2 + |lun ||i2 —0. 0

Remark 4.6. This result is also Lemma 7 in [Maeda 2012], and is said to be Lemma 7 in [Ohta 2011].
However, the hypotheses of Lemma 7 in [Ohta 2011] are not satisfied, and in particular assumption (B3)
there. It is natural to believe that this assumption is satisfied is most physical situations, but it is not clear
whether it always holds true in the general framework of [Maeda 2012] without further hypothesis.

The next lemma provides a control for o (U).
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Lemma 4.7. Assume ¢ > 0 small enough. Then, there exists K > 0 such that, for any U € O satisfying
Pry(W) = Phy(WUs), we have

(W] = K (7@ 9@ 1x + [9(W]%)-

Proof. It is the same as in [Maeda 2012, Lemma 8], but we give it for completeness. We expand and use
that B2 = Id, and the definition W (y) = Ue, +y +0(y)BUc, + for the second line:

Phy(Us) = Py (W) = Pry(U(- — F(W))) = Py (W (F W) + (W) + ¢(WBU, +5))
= Poy(W(7(W))) + Puy (9 (W) + &* (W) Poy (B, 15 (y) + (W) (B (), BU, 4 ) 7
+ (BUc, +7uy. P (W) H + (W (BU, + 7). BUc, +7u)) H
+ 0 (Y (W) U, 47y, P (W) H + 0 (7 (W)t (W) (Ue, 45 @) BUc,+7 @) H -
Since Py (W(y(U))) = Ppy(U«), we infer

—a (W[ U7 + 0(1)] = 0 (7(W) Ve, 15y ¥ (W) + Py (I (W)
and the conclusion follows since o'(y) = 0(y?) by Lemma 4.1. O
Now, we give a lemma useful to estimate ¥ (W).
Lemma 4.8. Assume ¢ > 0 small enough. Then, there exists K > 0 such that, for any U € O, satisfying
Pry(W) = Phy(Ux) and F«(U) — F4(Ux) < 0, we have
¢l < Kl7 @)
In particular, |a(W)| < K|7(W)|3.
Proof. 1t is the same as in [Maeda 2012, Lemma 9]. Note first that the last assertion is a direct consequence
of the first one and Lemma 4.7. Next, we argue by contradiction and assume that there exists a sequence
WUp — WUy in X such that Fx(Up) — Fx(Us) < 0 and |3 (Up)[|3 > |7(WU,)|>. For simplicity, we define
Vn =7 Un), On = *(Uy), oy = ¢ (Uy). Then, by Lemma 4.7, we have |an| < K (72| 9nllx + | On ||)2() =<
K(||9n ||7/3 + | 9n ||)2() = 0(||%, ||)2(). Therefore, by the Taylor expansion and Lemma 4.3, we have
Fx(Un) = F(Ux) = Fx(Un (- — Yn)) = FUx) = Fo(W(Yn) + On + nBUc, 47,) — F(Us)
= Fu (W (Fn)) = F (W) + (F, (W (Fn)), On + ctnBUc, 47, )x*,x
+ 3 {FLWFn) I, In)x,x + 019 Un)IIZ). (24)
However, by Lemma 4.2, F., (W(y))—%Fe, (Ue,) =0(|y|?), and, since F, (W (y)) = F, (W (0))+o(1) =

F,(Us) + 0o(1) = o(1), we have (F,(W(7n)), anBUc, +5,)x*x = 0(|9a]%). Furthermore, using

F, = @’c* 7. T 7nB, the third orthogonality condition in Lemma 4.3 and that o (y) = 0(y?), we deduce

(Fo(W(n)), On)xr x = (F c*+yn(°W(Vn)) Un)x*x + Vn(BWVn), 9n)u
= ( Cx+7n (Ouvc*+yn) + U(Vn)Bouc*+yn’ U )X*,X + Vna();n)(ouc*-f-?n ) H
=07 19nllx) + 07 P19 lx) = o (|94 ||;7(/3) =o([9a3)-
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For the last line, we have used another Taylor expansion with %/c 7 (Ue¢, +7,) = 0. Finally, Lemma 4.5
yields (O”Z s Uy +7,)0, On)x=,x = Kol ||)2(. Reporting these expansions in (24) yields

Ko Ko
Fu(Un) = F(Un) = = [Dnllk +0(12n1F) =~ 191
for n sufficiently large, which contradicts our assumption. O

We now need to find an extension of the functionals “A” and “P” used in [Maeda 2012] (and also in
[Ohta 2011]). In these works, these functionals are built on what should be here “J 19,9, = Ba;l U,
but, unfortunately, d.¢. does not have vanishing integral over R (for instance, d. 1. has constant sign).
We rely instead on a construction of a suitable approximation of “J ~19.9U.”. A similar construction is
used in [Lin 2002].

Lemma 4.9. For any 0 < k < 1, there exists a ‘6> mapping Yy : (=y1, +y1) = X such that, for any
Y € (=y1, +71), Y (y) € H? x H' is an odd function verifying

|/ Y (y) — [acouc]|c=c*+y lx <«.

Proof. We fix an even function ® € €2°(R) such that [, ©9dx = 1. For T > 0 to be fixed later, but
independent of y and k, we set #, = T//k? > 0 and

X
) =8 [ 0etleme.ty )= -00(2) [ Betcdemer sy 12 ay
It is clear that Y, (y) € €' (R) and that, since J = 9B and B? = Id,,
1 .
J Y (y) — [acouc‘]Iczc*+y = _60(_) /[acouChczc*—l—y(Z) dz.
e Ik R
In particular,
2 1 2 1 2 g 2
1Yo () = de[Uelje=c.v lIx = | ~[1O0llz2 + 5 10xOoll7 R[ac%]|c=c*+y(2) dz ) =«
K K

if we choose T = T (c«, Ux, ®p) > 0 sufficiently large and y; smaller if necessary. Moreover, Y, () is
odd since AU, and ®¢ are even. In addition, the even function

y = [0 ]|c c*—i-y(y)__@O( )/[3 a ]Ic c*—i-y(z)dz

decays exponentially at infinity (since ®¢ has compact support and 0., decays exponentially), and has
zero integral (since ®¢ has integral equal to one); hence

+o0o
Te(y)(x) = —B / [[a Uelom c*+y<y>——®o( ) / [PeUe]jom c*+y(2)d2]
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and decays exponentially at infinity. It follows easily from these two equalities that y — Y, (y) € L? x L?
is well-defined and continuous; hence also y — Y (y) € H? x H'. By the same type of arguments,

Yy * 1
2010 =8 [ty )= 1 00( L) [ 020l cme 21|y

is well-defined and is a continuous function of y with values in H? x H!, and similarly for the second
derivative. O

We now define, in the tubular neighborhood O, of AU, the functional (corresponding to “A” in [Maeda
20127])

Qe (W) = (UC =y (W), Ve (W) = (U, T (W) (- + (W) H
depending on k € (0, 1), which will be determined later. The first properties of €, are given below.

Lemma 4.10. Forany 0 < k < 1, Q¢ : Og — R is of class €'. In addition, there exists some bounded
mapping Ny : Og — X such that, if Wy € ©1([0, T), X) is a solution to (15) that remains in O, then

%QK(\Dhy(t)) = B (Uny (1)),

where E : 0, — R is defined by
Ee (W) = ~(F,, 45 W: I V@A) + 7)) + (U, 3y Te (7 U (- + F ) aN7 (W} )ye x-

Proof. The fact that Q is of class ¢! follows directly from the second expression and the fact that y and j
are 6! (in [Maeda 2012, formula (3.11)], the same remark as for the smoothness of G after Lemma 4.3
holds, since it requires “u € D(T(0))”). If Wy = (n,u) € ©1([0, T), X) is a solution to (15) that remains
in O;, we therefore have, defining y (1) = y(Why(¢)) and y (1) = y(Why (1)),

d
—= Qe (Wny (1)) = (3 Why (1), Tie (Y (O)(- + Y (O)))H

dt
+ (Why (1), Ox T (F () (- + F () a (7 (Wny (1)), 0r Wy (1)) x+,x
+ (Why (1), Oy T () (- + FONH (P (Phy (1)), 0 Wny(D))x+,x. (25)

We now observe that the invariance of 2, by translation provides by differentiation the equality, for
a € O,

d
0= 2, S =y=o = (U %L (FANC- + Tz

= (BU, J e (7 W) (- + 7 W) = (Pry(W). J T (7 (W)(- + 3 (U)))x+,x- (26)
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In particular, the second term in (25) vanishes. In addition, since Wy = (n,u) € €1([0,T),X) is a
solution to (15) that remains in O, we have, denoting by 6 Epy/8W the variational derivative,

(3 Wy (1), Te (GO (- +57()))
SEny _ -
= (sz (Why (), Te (Y () (- + y(t)))
hy

H
SE
—(—hy(why(r», JTe GO +y'(r)>) — (Bl Uy (1), T TGO+ 5O
SKIJhy H ’
ST Wy (), T TGO ATONx o x—(ent PO P Wy ), I e GO ATy
T (g (). TTeGO) - + 5o x.

by (26). In addition, since 8Py /8Why = BWpy and JB = 0y,

(7' (Pny (1)), s Why (1)) x+, x

SE
<"(why(z>) g Sy (why(t>>>

X*,X

< ((Way (1)), J%ﬂm)(w y<z>)> - (ex PO Py (1)). 05 Wiy ()x
X*X

The second term vanishes since y is invariant by translation (by definition; see the proof of Lemma 4.3).
As a consequence,

(7' (Fiy (1)), 9y () x
- (J‘ggipﬂ(w (1)), u‘lf’(why(t») = —(M(why(r)), Ju‘lf’(whya)))
X X

§Why
_(5fc*+y<t)

1o 8F co+7 _1 0y
S (@)1 (%(r)))H— (axﬂ(why(r)),ax./u,;la—f}(why(z)))y

dn

The first term is simply —(% C*+y(ou)(‘llhy(t)) JIt 7' (Wny(1)))x* x. We then define Nj : 0, — X by
Nyp(u) = JI7y @) — (82J|] L(87/8n)(U),0) € X = H! x L? (see the regularity shown for 7’ in
Lemma 4.3), so that integration by parts yields

(Pl(qjhy(l‘)), 8t\Ijhy(l‘»X*,X = _<@é*+37(6u) (\IJhy(t))’ N? (lphy(t)))X*,X-
Inserting these relations into (25) then gives

d
EQK(\IJhy(Z))

= _(glc*.f_y(t)(“phy(t))a {JTK(P(I))( + ﬁ(l‘)) + (lphy(t)v ayTK(J;(t))( + J_}(t)))HNi(thy(t))})X*’X»

which is the desired equality.
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If Wy € %©°([0, T), X) is just a continuous in time solution to (15) that remains in O, then the integrated
relation

t
Qe (U (1)) = Qe (WD) + / E (U (1)) d T

holds, as can be seen by using the continuity of the flow and the approximation of such a solution by
smoother ones (see [Gallo 2004]). O

We now compute the asymptotics of E,(W(y)) for y — 0 and small «.
Lemma 4.11. We have
-

- Yy P
Be(W(y) =-— = 4 0(0—(0,00 (1)

Proof. The proof follows the one of Lemma 5 in [Maeda 2012]. As a first step, notice that y (W (y)) =y,
y(W(y)) = 0, as can be seen from the equality G(W(y),0,0,0) = 0 and the local uniqueness of the
solution to G = 0. Therefore, since ¥, , ,(Uc,+y) = 0and o (y) ~ —y2 P/ 2|12,

@/0*4_,7(014/(3,)) (W(y)) = @2*4-)/(%0*—%}/ + U(V)Bouc*ﬂ/) = U(V)%Z*—i-y(%c*-i-y)[B%c*-i-y] + 0y—>0(V2)
v P _,
———— % (W) [BU] + 0
2”6u*”H F o (Us) [BU] y—>O(V ).

In addition, since A, is even and Y, (y) is odd, we deduce

(W +IFWEN. 0y Y1) g = Uesty +0@)BU, 1y, 0y Vi (V) g =

Consequently,

y2 Py
Ex(W(y)) = M(@N(W*)[B%*] T Te())x*x + 0y—0(y?),

where “0,—0(y?)” does not depend on k. Moreover, by Lemma 4.9, ||J Y, (y) — [0cUc]jc=cotyllx <k

independently of y € (—y1, +y1); hence

VZIS*

2[| 13

y2 P,

2%

Ex(W(y)) = (ﬁl(%*)[B%*]» [acouc]lc=c*+y)X*,X + 0(y,6)—(0,0) (Vz)

(FLOU)[BU], [0cUe]jcmc, )X *,X + Oy i)—(0,0) (V)

Finally, using once again the equality (for ¢ € X) (%, (Ux)[0:Uc]jc=c, . P)x*,x = (BU«, ¢)z and that
F/ is self-adjoint, we infer

(F2 U [BUL, DU je=ca )3, x = (Fr(Ua) ([0 Ue]je=c) BU)x+,x = [BUN T = U177,
and reporting this into the previous expression gives the result. O

We now compute the asymptotics of E, for more general functions.
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Lemma 4.12. Let & >0 be small enough. If U € O¢ satisfies Pry(W) = Ppy(WUx) and Fx (W) —F« (Ux) <0,
then, we have
72 () Py

Er(U) =— )

+o (7> (W)

uniformly for 0 < k < |y(W)|3.

Proof. First, we may apply Lemma 4.8 and infer that || (W) ||)2( +la @) =0(|73(W)|). We write B, (U) =
Ere(U(- = F(U) = Ec(W(F W) + I W + o (WBU, 7)) = Ee(W(F W) + (W) +0(7 (W)
and, recalling the expression

Ee (W) = ~(F,, 45 W I V@A) + FOW) + (U, 3y Te(F U+ F AN EN7F (W} ye x-
we wish to make a Taylor expansion. First, note that
%70 = T,y (WO +F,_ 0y WF)P W] +0(7W))
=T, 5y WETO) +FL 5@y Ue,+7a) [0 W] +0(7 (W)

hence, since @;*H;(Ouc*ﬂ;) =0 and (Lemma 4.1) 6 (y) = 0(y?), we have W (y) = WUe, +7 + 0(y?); thus

B () = B (WG W) = 007 OP) = (T4 5y e, 17 [V
(LGOI + FO) + AL 3, LGOI + FANHNF DY) | .

Now, in the bracket term, we may replace U by W (y(W)) + O(||F(U)| x) (since || (°U) ||§( =0(|y(w)|3)).
By the computations of Lemma 4.11 and the equalities y (W(y)) =y, y(W(y)) = 0, this gives

(W) — Ex(W(FA)) = 07 QWP —(F7_4 5 @ U, +7@) [ O] T T (7 W)y x
= 0(I7 W) = (F7, 15y Veut7 @) [F W] AJUe He=c, 7))y .y +O)
= 0(7 WP —{F,, 1 5 Ve, +7@) HeUe He=c, +7@n] T OW)yu y +00)

using Lemma 4.9 and the self-adjointness of OJ/C/* @) Choosing 0 < k < |7(W)|? and from the equality

(for ¢ € X) (FL(U)[0cUc], p)x+ x = (BUc, ¢)pr, we infer
Ee (W) — Ec(W(FEW)) = 0(7 W) — BUe, 45 F W) = O(7 (W),

by the orthogonality condition in Lemma 4.5. Inserting the expansion of &, (W(y)) given in Lemma 4.11
yields the conclusion. O

Proof of Theorem 16. We have to show that there exists ¢ > 0 such that, for any § > 0, we can choose
an initial datum at distance < § from AU, but that escapes from O,. Since W (y) — U4 in X, we shall
take the initial datum to be W (y) for some small y, and denote by Wy () the corresponding solution. In
view of Lemma 4.2, we have F (W (y)) — Fx(Ux) ~ —)/316*/6; hence we can choose y with the sign of
Py # 0 so that

Fo(W(y)) — Fu(Us) ~ =y | P4] /6 < 0.
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We now assume that Wy (7) is globally defined and remains in O, where ¢ is as in Lemma 4.8. By conser-
vation of energy and momentum and the construction of W(y), we deduce Pyy(Why (7)) = Ppy(W(y)) =
Pry(Ux), and Fy(Why (1)) — Fs(Us) = F£(W(y)) — F«(Us) < 0. The first step is to have a control
on 7() = 7(Wny (1)). We define a(r) = a(¥iy (1)), F(¢) = F(Wry (1)) and 9(¢) = 9 (Y (1)). Applying
Lemma 4.8, we obtain ||z9(t)||§( + |a(t)] = 0(]p3(¢)|). In addition, Lemma 4.2 and a Taylor expansion
give
Fx(Pny (1)) — F (Us)
=F(W(y @) +0(0) +a(O)BUc, +5r)) — F« (Ux)
Fore (W (7 (1)) = Fore W) + (FL (W (G (1)), 3 () x, x + 5 (FLW G @)D (@), 9(0))x*,x +0(7>)])
33
Y7 (1) Py

H(FLW G ), (O)xxx + 3(FLWF@NI@), 9 (1))x=x +0(7° (1)),

where we have used that &, (W' (7 (¢)) = o(1) (for the terms involving «(¢)) and Lemma 4.2. Furthermore,
by the orthogonality relations in Lemma 4.3 and using that o (y) = 0(y?) and F.(U.) = 0, we have

(F (WG O)x=x = (Fh, 450 WFONIO)xs x + FOBWFG)). 9O
= (T, 0 Ve t7(0) + O FONBU, 476, 9O)x+.x = 01772 0))).

In addition, by Lemma 4.5, the second-to-last term is > Ko |9 (¢) | )2( /2. As a consequence, by conservation
of F«(Why(1)), we infer, for small y,

0> =[P P4l /3> Fu(W(y)) = Frc(Us) = T (Py (1)) = Fuc(Us) = — +o(I7>))),

373(Z)P*
6

In particular, this forces 7() to always be of the sign of Py and to satisfy |7(¢)| > |y|/2 (provided &
and y are small enough).
Since, now, we have a good upper bound for |7(¢)|, we can choose k = k(y) = y3/8, which is such
that, for any # > 0, k < |7(¢)|. In particular, we can apply Lemma 4.12 and get
(1) Py
2
With this choice ¥ = x(y), we deduce from Lemma 4.10 that

d 7(1)2 Py
EQ"(V)(%Y“)) = Ei(Wny (1)) = . )2

Since |7(7)] = |y|/2, it follows that, when P, < 0 (the case Py > 0 is analogous),

+o(7(1)?).

EK(Why(t)) =

+o(7(1)%).

VZIS*
8

d
EQK()’) (\Ijhy(t)) z— > 0;

hence Q(;)(Why(?)) is unbounded as ¢ goes to +oo. However, by definition of 2,, we have by the
Cauchy—Schwarz inequality [Q2,)(W)| < U5 | Tz < C(y) for U € O,. We have reached a
contradiction. The proof of Theorem 16 is complete. O
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5. The linear instability (0 < ¢4 < ¢g)

5A. Proof of Theorem 13. Existence of at least one unstable eigenvalue. The proof of the existence
of at least one unstable eigenvalue relies on the Evans function technique, as in [Zumbrun 2008; Benzoni-
Gavage 2010b]. We shall actually use Theorem 1 in [Benzoni-Gavage 2010b] when observing (see, e.g.,
[Benzoni-Gavage 2010a]) that the Euler—Korteweg system

{%p +20dx(pu) =0,
dru + 2udxu —x(f(p)) — dx (K(p)02p + 5 K'(p)(3xp)?) =0,

where K : (0, +00) — (0, +00) is the (smooth enough) capillarity, reduces to (2) (where, we recall,
U = Ael?, p= A% and u = 0,¢); namely,

(EK)

drp+20x(pu) =0,

2
Beu +2uaxu—ax(f(p))—ax(BX%ﬁ)) o,

for the capillarity K(¢) = 1/(20), as can be shown by straightforward computations. The associated

eigenvalue problem in the moving frame is

A —cx0xC +28x((rg + mx)v + fux) =0,
)&U—C*axv+28x(u*v)—ax(f/(r§+n*)§)
(6 ) SRR

2VrE e T\NrE s 2(rg +nx)3?

(27)

The link with the original eigenvalue problem (6) is done through the formula

sz*(%—i-i/_;U), (28)

p
U=U,, +v=U, +e)‘tw(x) = (Ac, +e“§(x)) exp(iqﬁc* +ie“/ U).
—00

since this corresponds to

Notice indeed that the second equation in (27) gives fR vdx = 0. It then follows from Theorem 1 in
[Benzoni-Gavage 2010b] that, under the assumption (dP(U.)/dc)|c=c, > 0, there exists at least one
unstable eigenvalue yq € (0, +00).

Existence of at most one unstable eigenvalue. The fact that there exists at most one unstable eigenvalue
follows from arguments as in [Benzoni-Gavage et al. 2005, Appendix B] and is a direct consequence of
Theorem 3.1 in [Pego and Weinstein 1992], that we recall now.

Theorem 25 [Pego and Weinstein 1992]. Let $ and & be two operators on a real Hilbert space X , with &
self-adjoint and $ skew-symmetric. Then, the number of eigenvalues, counting algebraic multiplicities, of
[$&]c in the right half-plane {Re > 0} is less than or equal to the number of negative eigenvalues of £,
counting multiplicities.



1372 DAVID CHIRON

In order to apply this result to our problem, let us write the eigenvalue problem (27) under the form

T\ _ 01 ¢
A (U =~0x 10 = v/’
where Jl is the self-adjoint Sturm—Liouville operator
M= —f'(F + ) 2( ) (/1o )
= * -
0 2VrE+ e T \NrE 4 2(rg +1x)3/2

(which is bounded from below) on # = L? x L? and with

¢ = M 2Uy — Cx
T 2us—cx 208 +140))
We are in the setting of Theorem 25 with $ = —Bx((l) (1)) skew-symmetric and & self-adjoint. We thus

show that & has at most one negative eigenvalue. Since rg + 14 remains bounded away from zero, it is
clear that, for 0 < 0 and (¢, v) given, £(¢, v)! = o(¢, v)" if and only if

(Cx —2u4)? o (cx —2u4)?
2(”3""7*) 2(”3""7*)—0 2("34'77*)’

since we may express v in terms of ¢ with the second equation. We observe that the translation

Mte t=0f, with M =4— (29)

invariance shows that dy (1«,u«)" belongs to the kernel of &; that is, using once again the relation
2ue = 20x¢c = cne /(e + roz), Mt dx N« = 0. Furthermore, MY has the same continuous spectrum as its
constant coefficient limit as x — 00, namely

_LaZ + C? —Ci.
X
2;’3 2r§

El

that is, Oess (M) = [c2 — 2, +00) C (0, 4+00), since 0 < ¢« < ¢s. Since dxnx has exactly one zero (at
x = 0), it follows from standard Sturm—Liouville theory that .iT has precisely one negative eigenvalue
u < 0 and that the second eigenvalue is 0. Taking the scalar product with (29) yields

o (cx —2uy)20?
2(rg + )20 + 1x) — 0]
Now, for s < 0, we consider the self-adjoint operator
(Cx —2ux)? s

200 +1nx) 205 +10) =5

dx = 0o|¢|I7-.

TE, )2 — /R

M= uf —
Clearly, MI:() = T, O’ess(./l/LI) C [¢2 —c2,+00) C (0, +00), and R_ > 5 > JI/LI is decreasing. Let us
assume now that the self-adjoint operator & has at least two negative eigenvalues. Then, we denote
by 01 < 02 < 0 the two smallest eigenvalues of & (necessarily simple), and {1, > two associated
eigenvectors. Since & is self-adjoint, ({1, {2);2 = 0. Furthermore, (M;r:(,l t1,81)12 =01 ||§'2||i2 < 0;
hence, by monotonicity, (JI/L;r {2,82)12 < 0 for any 01 < s < 0. Therefore, JI/LI has at least one negative
eigenvalue for o7 <s <0. We denote by Ay (s) the smallest eigenvalue of A/L;r. Then, Ayin(s =0)=pu <0
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and A decreases in [0, 0]. Moreover, we may choose a positive eigenvector g for the eigenvalue A1 (s),
with {1 = {s,. Since o(MT) NR4 = {u, 0}, it follows from the monotonicity that, for any o1 < s <0,
we have U(JI/LI) NR- = {Amin(s)}. When s = 03 € (01, 0), we then have 0, € O’(./‘/L;r=02) N R_, and thus
02 = Amin(02), which implies that we may choose ¢ > 0 without loss of generality. Similarly, if s = o5,
we see that we may choose ¢, > 0. We obtain a contradiction since then ({;, {2)72 > 0 and thus {; and {»
cannot be orthogonal in L2. We have thus shown that & has at most one negative eigenvalue, and then
Theorem 25 shows that $& has at most one eigenvalue in {Re > 0}, as wished.

5B. Resolvent and semigroup estimates (proof of Corollary 15). In this section, we drop the “x” for
the traveling wave we are considering. When linearizing the NLS equation in the moving frame with
speed ¢, we obtain

0y

5 ey + 030+ U (UP) + 200 0) S (U PYU =0, (30)

or
9 (%) _ ( cdx =2f'(UPYU1U> ~ —0% —f(IUIZ)—Zf/(IUIZ)Uzz) (%)
ar \Y2 R+ fAUPY+2f/(UPHUE  cdx +2f"(IUPYULU, V2
_ ( 0 1) (—3)% —fQUP)=2f"(IUPYUE  —cdx=2f"(IUP)U1U> ) (wl)
-10 cdx =2f"(JUPU1 Uz =03 = fUP) =2 (UPU3) \y2)
We wish to show that this linear equation can be solved using a continuous semigroup. In order to

handle later the nonlinear terms, we work in H ! (R, C?) instead of L2(R, C?). Therefore, we consider
the unbounded operator o : D(sA) = H3(R,C?) ¢ H'(R,C?) — H!(R,C?) on H'(R, C?) defined by

&ﬁ=( cdx =2f"(UP)U1Uz —3§—f(|U|2)—2f’(|U|2)U22)
SR+ SAUPY+21'(UPHUE cdx+2f'(UPUL1U, '

It follows easily that, for = (§!) € H'(R, C?),

Re((AV V) g1 (r,c2))
=Re((—2/"([UPYU1U2¥1. Y1) g1y + (—2/ (U UL U2 Y2 ¥2) g1 o
+ (WU + 2/ (U PR ) m ooy — (AU P) + 2/ (U PYUR 2. ¥1) 1 )
=< K||W||§11(R’@2)-

Moreover, the spectrum of & is included in the half-space {Re < 09 }; hence s generates a continuous
semigroup e’ on H!(R, C?).

In order to estimate the growth of the semigroup e/ on H!(R, C?), we could try to use the same
approach as [Di Menza and Gallo 2007], which relies on the proof of the spectral mapping theorem in
[Gesztesy et al. 2000]. However, our situation is slightly different since, in these studies, the reference
solution is real-valued (it is a bound state in [Gesztesy et al. 2000] and the kink in [Di Menza and Gallo
2007]). Therefore, U, = 0 and o has no diagonal term, and the system is much more decoupled than in
our situation. As a matter of fact, it is not very clear whether the arguments of [Gesztesy et al. 2000]
carry over to our problem. We thus have chosen to use the general approach given in Appendix B. We
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thus verify the assumptions of Theorem B.5 (see also Corollary B.6) there, which are easy: #{ generates
a semigroup in H!(R, C?) and the spectrum of s is of the form iR U {—yg, +Yo}, where iR is the
essential spectrum and ) two simple eigenvalues. Moreover, the eigenvector associated with yg
belongs to H>(R, C?) = D(J). Therefore, Theorem B.5 in Appendix B applies and the growth estimate
for the linearized problem follows. For the nonlinear instability result, we argue as for Corollary B.6 in
Appendix B, since the manifold 91 = {|U«|(- — ¥), y € R} is transverse to the curve 0 > |Ux + ow)|
in ro + H!(R). Indeed, it follows from (28) that |Ux + ow| = Ax + ¢ + Op1(0?). Assume that
¢ = a0x|Ux|, with @ € R. Then, integration of the first equation of (27) provides

A(Us| = 10) = cadx|Us| +2((r§ + 112)0 +1128) = 0;
hence, using that |Uy| = «/rg + 1% and the equality 2uy = cn*/(rg + 71x), we infer

|Ux| —ro c*rg
2 2 3/28)677*
ro + Nx 4(ro+77*)

vtoali

Since fR v = 0 and |Ux| — r¢ has constant sign in R, integrating over R then implies « = 0, which
in turn yields { = v = 0 and ws« = 0, a contradiction. Consequently, { & Rdx|U«| and the manifold
M = {|U«|(- — y), y € R} is indeed transverse to the curve o — |Ux + ow| in ro + H(R).

6. Stability analysis for the kink (¢ = 0)

6A. Proof of Lemma 20. Let us recall that the momentum P (U,), for ¢ > 0, has the expression

0 g 43
P(Uc) - C/ )
& 1o +E VTV
since sgn(&;) = —1. Therefore, we decompose P(U,) with two integrals:

0 52 dg 0 éz ( 1 1 )
)= - dt.
Ple) c[sc r§+s¢—°lf;(sc)<s—sc)”/sc 2\ e Jee—i ) O

Using the change of variables & = t&,, the second integral in (31) is equal to

0 2
3 t 1 B 1 )d
’3“/1 r3+zsc(¢—vc(zsc> JEviEa-n)"

=(—r§)3/0 2l2 2( 1 a : )dﬂroc_)()(l)
1 Iy —1rg \/—Vo(—”’g) \/—4"(%1:(0)@_1)

=/0 252 ( - ! )dé—l—oc—»o(l)-
5 TENVT®  faro)E+13)

The passage to the limit ¢ — 0 being justified by the dominated convergence theorem since the absolute
value of the integrand is < Kt for 0 <t < 1/2 for small ¢ and for 1/2 < ¢ < 1, since & > —rg,
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rg +téc =1 2 (1 —1) and hence is equal to

. 12 ) ch(té:c)_EcCVQ(gc)(t_ 1)

ro Htke Ve(tEe) y=ETV,(E)t — D[ Y=V (tEe) + =ETV E)—1)]
<K (-0 _ K vy,
T =)V 1=t/1=tJ1=t  J1—t

Furthermore, letting £ = &, + (rg +£)t2, t > 0, the first integral in (31) is equal to

/ “E/OTHED) (6 4 (G + £ 24
VR TN
2 7 r2+§c _Ec
R Vg(sc_)%rg[i_am“ L ]‘”503%) 7k

3
2 2 _gc 1 _SC
+ (rg +6c) [\/V§+Sc+§\/r§+$c i|}»

by direct computation. Since & =~ —rZ is a simple zero of V¢ (§) = ¢2£2 —4(rg + &) F(rg + £), we have
2.4 2.4
2, ST Ty f(O) 4 2., o
& ro + 4F(0) + 4F(O)( F(0) + 0c—o0(c”) 0t — =< 4F(0) + c—>0(C ):
thus 5 5
—V,(§) =4F(0) + Oco(c®) and = —— +0c—0(c).

Vig v b/ T o
As a consequence, the first integral in (31) is equal to

3 2r3 rg § +Ou(c) = rg_n B 87‘3
c 3/ F(0)

”g_”_i_{_ o 0
¢ JFO) \/F(O F(0)

Gathering these two relations, we obtain

+0c—0(c).

8r3 1 1
ra=rinscl i [ Jo] oot
(Ue) =rom +c 3,/F(0) /_ro rg +E\V/=V0(8) ¢4F(0)(g+rg) £ Foe0(c)

as wished.

6B. Proof of Theorem 23. Since we have a kink solution Uy for ¢ = 0, this implies that Vo (§) =
—4(;’3 +&F (rg + &) is negative in (—rg, 0) and that —rg is a simple zero of Vg; that is, F'(0) > 0. Then,
F >0in [0, rg) and

F(o) ~ (¢Z/(4r})) (0 —13)*

for o — rg, and it follows that there exists Ko > 0 such that

F(o) = Kiow 2R,
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We consider for i > 0 the quantity
Homin (1) = inf{H (), u € %, infr [u| = pu}.
The study of Hnin(0) is easy.

Proposition 6.1. We have
57{min(o) = E(UO)

More precisely, forany U € %,

EU)>4 " VF(s?)ds and E(U0)=4/r0 VF (s?)ds.
0

infg |U|

Finally, if U € %, infg|U| = 0 and H(U) = E(Uy), then there exist y € R and 6 € R such that
U=eUp(- —y).

Proof. Taking Uy as a comparison map, we see that i, (0) < E(Up). Moreover, if U € % and
infg |U| = u > 0, we may assume, up to a translation, that & = |U|(0). Then, defining

G(r)= 2/’ VF(s?)ds,

we have the inequalities

+o0 +o00 +o0
/ |axU|2+F<|U|2>dxz/ |ax|U||2+F<|U|2>dxzzf | VEUP)ax|U| dx
0 0 0

+o00 +oo
:/ 10.[G(U ]| dx = / Ix[G(|U )] dx
0 0

= |G(U|(+00)) — G(U|(0)] = |G(ro) — G(w)| =2 [ " JFG2) ds.
W

Arguing similarly in (—o0, 0), we get
ro
EU) 34/ VF(s?)ds.
"

For the kink Uy, which is real-valued, we have the first integral |0, Up|> = F (UOZ); hence, using the
change of variables s = Up(x),

E(Uy) =4 fo F(Ud)dx =4 [0 " VF(s2)ds.

If u =0, we have then E(U) > E(Up); hence H(U) > E(U) > E(Up) as wished.

Assume finally that U € % satisfies infg |U| = 0 and H(U) = E(Up). Then u = 0 and all the above in-
equalities are equalities. In particular, we must have |0, U | = |0x|U || and equality in |0 |U | |>*+ F(|U |?) >
2|/F(IU|?)dx|U||, which means that |x|U|| = +/F(JU|?). Combining this ODE with the condi-
tion |U](0) = 0, we see that |U| = |Up|, since |Up| solves dxUp = \/F(UOZ). Finally, the fact that

+o00
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|0xU| = |0x|U|| implies that the phase is constant in (—oo, 0) and in (0, +00): there exist two constants
04 € R satisfying U(x) = /% |Up| (x) for +x > 0. Therefore, P(U) = rg (6+—6—) mod 2nr§, and then

29+—9_—7T

E(Up) = #(u) = E(Up) 4+ 2Mrg sin 5

implies 6+ — 60— = 7w mod 27 ; that is, U = elf+ Uy in R, which is the desired result. O

We recall the expansion P(Us) = rgn + 5Py + o(s) as s — 0, where Py = (dP(Uy)/ds)|s=0-
From the Hamilton group relation dE(Us)/ds = sdP(Us)/ds, we also infer by integration E(Us) =
EUy) + %szf’o +0(s?). As a first step, we define the small parameter 1, > 0. The key point is to prove
the following result.

Proposition 6.2. There exist some constant K > 0 and a small 1« > 0 such that, for any 0 < it < [Lx,

2

Homin(2) = InfI(U), U €%, infi Ju] = 1} = E(Uo) + L.

Proof. Notice first that, for ¢ > 0 small, there exists U, traveling wave of speed c, and that infg |U,| =
v rg + &, with &, a smooth function in ¢ such that &, = —rg + czr(‘)1 /(4F(0)) +0(c*); hence infg |U, | =
crg /(2+/F(0)) + 0(c?) and is smooth. Therefore, there exists, for 0 < ;t < 14 small, a unique Oy, With
oy =21/ F(0)/ rg + 0(p?), such that u = inf |Us,,|. In particular, taking Uy, as a comparison map
in Hmin(), we have

P(Us,)—rén
Sﬂ:min(//l/) = 3{((]‘7#) = E(Uou) + 2M7’3 Sin2 (q‘z‘%
Ty

2

o2 . P
= E(Uo) + Py +0(0})) + 2M g sin” uPo + 0o

2r§
O'2 . .
= E(Uo) + 7’*(% +MP§) +0(c}).

In particular, it follows that, for some positive constant K and for s small enough,

Hmin(1) < E(Uo) + Ki* < 15 E (Vo). (32)

Consider now ¢ small, a bounded open interval (x_, x4 ) and 7 a solution to the Newton equation
2030+ V() =0

in (x—, x4), with dxn(x4) <0 < dxn(x-), n(x4) < —rg +u2 and n(x_) < —rg +u2. Asc—0,v,
converges to Vo in €! ([—rg, 0]). Moreover, Vg is negative in (—rg, 0) and has a simple zero at —rg.
Therefore, if ¢ and s > 0 are sufficiently small, we must have [ F(rg + n)dx > 1 [, F(U?) dx.
Consequently, if v = Ae’? solves (TW,) on a bounded interval (x—, x4 ), satisfies 20y = cn/ (rg + 1)

(n= A? —rg) and if |v|is < u« at x4 and at x—, with dx|v|(x4) <0 < dx|v|(x=), then

X4
/ 19502 + F(v?) dx = LE(Up). (33)
X—
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Here, we use that the Newton equation on the modulus | V| actually holds true in (x—, x4). Since F > 0 in
[0,73) and F (o) =~ r3(o—r)* when o — rg, there exist K > 0 and k > 0 such that F(0) > (0—r3)?/K
for0<p < rg(l + k)2. Hence, if infg |v| > p > 0, then

K
|P(v)| = —E(v). (34)
i
Moreover, arguing as in the proof of Proposition 6.1, we show that there exists » > 0 such that, if U € ¥
and |U | takes values < u4 and > ro(1 + k), then
EU) = EUo)(1 + ).

In particular, since Hmin(1t) < E(Up) + O0(u?), we may choose p« sufficiently small so that, if U € %
and X (U) < Hmin() + px, then |[U| < ro(1 + «). This means that, for the mappings we are considering,
F(o) > (e—1§)*/K.

Step 1: Construction of a suitable minimizing sequence. There exists a sequence (V,),>0 in % such
that infg |Vi| = 0 = [Vu[(0), Vi = Ane'®, P(Vy) €10, 712,

27— PV,
2420 fp = cn(A2 —13),  cn = Mr2sin 0”—2(”) >0 and  lim H(V) = Honin (10)-
g n—+o0o

Since 4 > 0, the maps V' we consider may be lifted to V = Ae’®. Therefore (with u = 0,¢),

5 Jo(A? —rdudx —rgm
2
2ry

’

Homin () = inf{ / (0xA)? + F(A?) dx + inf{ / A%u? dx +2Mr§ sin
R R

ue L*(R, R)}, Aerg+ H'(R,R), infg A = u}- (35)

The infimum in ¥ may be written

2
inf inf{ / A2 dx + oM rgsin? L0 e 2R, R) st / (A2 —rdudx = p}.
PER R 27'0 R

For each p € R, we minimize in u a quadratic functional on an affine hyperplane, with minimizer given

by
A2 _ r2)2 -1 42_,2
R A2 A2

As a consequence, the infimum in u in (35) is

—r2r A%2—r2)2 -1 —r2
inf / A%u? dx+2Mrgv sin? PIOT N ing P> / A=) dx) +2Mrg sin® P~ 7T |,
per| Jp  F 2rg PER R A2 2r2

It is clear that this last infimum is achieved only for p inside [—nrg, +7nr2]. Indeed, the second
term is 27 rg—periodic, and, if p > nrg, then p —2x rg is a better competitor. Moreover, the function

p>sin?((p— 77.'7'3) / (2r02)) is continuous and even; hence we may consider some p € [0, nroz] (depending
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on A), which is a minimizer for this last infimum. The corresponding u, is then a minimizer for the
infimum in ¥ in (35). Writing that

d| , (Az_r(% > - 4 2P—7”3
— ——d 2M —_—
dp|:p (/R 1 X + Fo SIn 2,2

0
(4% = 12)? )—1 ). PoTTE
=2 ————dx + 2Mr§ sin =0,
p(/R A2 0o T2

we deduce the relations 5

. —7r

24% = c(A2—r2). c=MrZsinZ p
0

We conclude by considering a minimizing sequence (A;) in (35), and translating in space so that

Since F > 0 in Ry, we have
[ 10sal? dx <3V < B EW

for n large. Therefore, by the compact Sobolev embedding H ([~ R, 4+ R]) < L*®([-R, +R]), we may
assume, up to a possible subsequence, that there exists V' € Hl(l)c([R?) such that, forany R >0, V;, = V in
H'([-R,+R]) and V,, — V uniformly on [—R, + R]. Moreover, by lower semicontinuity and Fatou’s
lemma, E(V) <lim,_, . E(Vy). Since [V,| > u > 0 in R, we have |[V| > u > 0 in R and thus a
lifting V = Ae'®. Furthermore, infg A, = p = |V},|(0); hence infg A = u = |V|(0). We also know that
P(Vy) €10, rgn] for all n; hence we may assume, up to another subsequence, that P(V},) converges to
some P € [0, rgjr]. We also set

. . Poo_T”'2
c= lim cn=Mrgs1n 3 0
n——+o0o ro

In view of Step 1, and the convergence 4,, — A uniformly on any compact interval [— R, + R], it follows
that
24%0xp = c(A* —13) and Ox¢y — 0x¢ in LO(R). (36)

Note that .
[ VP4 (VP =1 dx < B0 < oo
R
hence |V| — rg at +00. In particular, there exist —oco < R_ <0 < R4 < +o00 such that |V| > u in
(—oo, R_) and in (R4, +00) and |V |(R+) = LK.
Step 2. There exist —o0 < z_ <0 < z4 < 400 such that
Ax)=Ac(x—Ry+z4) forx>Ry and A(x)=Ac.(x—R_+z-) for x <R_.

We work for x > R, the other case being similar. We consider y € ¢.((R+, +00),C), ¢ € R small such
that V! = v, + ty satisfies |V,}| > p in (R4, 400). This is possible since infgypp(y) |Va| > p. Then,
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|V!| > win R and |V,!|(0) = p; hence V! is then a comparison map for Hmin (1), and, in view of the
equality P(V) = P(Vy) 421 [ °(idx Valx) dx + 0(t?), it follows that
Hmin(1t) < H(V;)

= Himin(1) + 0n—>400(1) + 21 /
Ry

+0o0 +00

<axvn,axx>dx+r2/ 192212 dx
R+

+00 P(V,) — 2 +o00
—2:/ F(ValP) Vs 1) dx + Mt sinwf (105 Vi, 1) dX + Oys0(12).

2
R "o R

Letting n — +o00 and using the weak and strong convergences for V;,, we infer

400 +o0
0< 2:/ OxVixr)dx—20 [ FQVINV. 1) dx
Ry Ry

2 —P 400
— Mt sinron—zoo/ (i0xV., x)dx 4+ 0,50(t?).
2ry Ry

Dividing by ¢ # 0 and letting t — 0" and then r — 0™, we deduce that V solves (TW,) in (R4, 4+00)
and V has finite energy. Moreover, |V |(R4+) = w is small; thus V = e+ U.(- —Ry +2z4)in (R4, +00)
for some constants z4 and 64, and the speed ¢ is such that infg A, = v/ rg + & <p;hencec <o(u)<Kpu.
Since | V| has finite energy in R and solves (TW,.) in (R4, +00), V is ¢! in [R, +00). Moreover, |V|
reaches a minimum at x = R ; thus we must have 37 |V|(R+) > 0, which imposes z4 > 0. Note that, A,
being even, it is possible to translate V' so that R = R4y = —R_ and z = z; = —z_. Observe that
U= Ac(z) > Ag(2); hence z < K. This yields

[ ovPaFQvax= [ Ul PP dy = EQ0 - Kp. 6D
|x|=R lx|>z
In particular, we deduce from (32)
2RFG) < [ 10V P+ FQVP)dx < K
|x|<R
hence R < Kpu for i small (F(0) > 0).
Step 3. We prove that A = p in (R—, R4+) = (—R, +R).

Indeed, if it is not the case, there exists a bounded interval (x—, x1) such that A = |V| > w in (x—, x4+)
and |V|(x+) = u, with 95|V |(x4+) <0 < dx|V|(x-). Therefore, we can make perturbations of the
amplitude A, localized in (x—, x4+ ). Hence, arguing as in Step 2, we see that, then, V' solves (TW,) in
(x—, x4), with 2420, ¢ = c(A? — rg) and |V|(xx) = u, 0x|V](x4) <0 < x|V |(x=). We then are in
position to apply (33), yielding

X4
/ 9,V P + F(V?) dx = LE(Uy),
X—
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but the combination with (37) provides

X+
1—OE(U0)>3fmm(M)>f I3xV|2+F(|V|2)dX+/ 0:V 12+ F(IV[?) dx

|x|>R

> 3 E(Uo) + E(Uo) — Kptxe = 3 E(Up) — K pr.
which is not possible if 4 is sufficiently small.
Step 4. We have R =0 or (z =0 and ¢ = oy).

Indeed, assume R > 0, and consider ¢ € €L((0, +00),R), £ > 0,7 > 0 and V! = (A, +1{)e?", so
that |[V!| = A, +1¢ > p in R. Since R > 0, we actually have infg |V,/| =  and V! is a comparison map
for Hmin(). Arguing as before, we thus have

+o0 +o0
57{min(/'L) = 67{(Vnt) = (j{min(ﬂ) + 0n—>+oo(1) +2¢ / axAnaxé‘ dx + t2 / (axé‘)2 dx
0 0

+o0 +0o0 “+o0
vy /0 Ant (D) dx +12 /0 Cospn?dr=21 [ f(aD A dx

P(V.,)— 2 R
+ Mr2t sinM[ 248D dX + Orso(12).
0

’
0
By (36), we may pass to the limit as # — 400 in all the terms and deduce

400 +o00 +o00 +o00
0<2t / A AL dx+21 / AL(3cp)? dx—2t F(A?)AC dx—2ct / ALdxp dx+0,0(t?).
0 0 0 0

At this stage, we see the relevance of taking a minimizing sequence as chosen in Step 1, since it allows us
to pass to the limit in the nonlinear terms involving dx¢,. As a consequence, using (36),

2 .2)2
c? (A A3r0) >0
in the distributional sense in (0, +0c). The term —Af(AZ) + 1c2(A% —r2)?/ A3 is continuous in R.
However, since A(x) = u for 0 < x < R and A(x) = Ac(x — R + z) for x > R, we infer —324 =
—dxAc(2)8x=R plus a piecewise continuous function in the distributional sense in (0, +00). Since
dxAc(z) = 0 (recall that z > 0), this forces dxA.(z) = 0; that is, z = 0. Consequently, u = |V|(R) =
A(R) = A¢(z) = Ac(0) and then ¢ = oy,.

—02A— Af(A?) +7

In the next step, we take into account the loss in the weak convergence V;, — V.

Step 5. There exists K > 0 such that

P
Ey>-F where Ey= lim E(V,)—E(V)=0, Py= lim P(Vy)—P(V)=Po—P(V).
K n—-+oo

n—+00
Let € > 0 be fixed but small, and pick some X > 0 large so that

'E(V)— 10V 2+ F(IV|*) dx

[x|<X

<e, ‘P(V)— (A —ro)udx
lx|<X
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We claim that there exists some small & > 0, independent of €, such that |V, | > i for |[x| > X and n
large. Indeed, otherwise, we may argue as in Step 3 and show, as in the beginning of the proof there, that
Sixizx 10xVal® + F(IVal?) dx > 5 E(Up). This is not possible since

BEU = lm B0z LU0+ [ 10V + F(VP) = JEWU) + E0V) -
n—+oo |x|<X

and E(V) is close to E(Up) as u — 0. Therefore, as for (34),

/| |>X(A,zz —rd)uy dx
x[>

K
57/ 105 V|2 + F(|Vn|?) dx.
|x|=X

L

Consequently,

E(V)— E(V)

2/ |axvn|2+F(|Vn|2)dx—/ |axV|2+F(|V|2>dx+[ 19x Va2 + F(IVl?) dx —e
|x|<X [x|<X |x[>X

— €.

3/ |8an|2+F(|Vn|2)dx—/ |0, V|?>+ F(|V|? )dx—l——‘/ (A2 —rd)u, dx
lx|<X lx|<X |

x|>X

Passing to the liminf and using the weak convergence in [—X, + X], we infer

lim E(V,) - E(V)= % lim ‘P(Vn)— (A2 = rd)un dx| —c.

n—>+o0o n—>+oo |x|<X

However, (36) implies

/ (A2 —rd)up dx — (A2 —rdudx,
Ix|<X Ix|<X
so that
Ey > P P
K lesX

7 i g
—>—P—PV—1 —le=—=|Py|— |1+ = e.
€= %] (+K)e LIPy (+K)e
Letting € — 0, the conclusion follows.

Step 6. There exists K > 0 such that, if R > 0, then

12

Homin(1) 2 £(Uo) + -

We recall the expansion P(Us) = rgn + 5Py + o(s) as s — 0, where Py = (dP(Uy)/ds)|s=o-

From the Hamilton group relation dE(Us)/ds = sdP(Us)/ds, we also infer by integration E(Us) =
EUp) + %SZP() + 0(s?). On the other hand, by definition of ¢,

P(Vy)—r? P(Vy)—r?
2Mr§sin2 —( nz)zroﬂ :Mrg[l—cos—( n)2 ron]

U Ty

P(Vp)—r2 2
:Mrg[l—\/l—sinz—( =) VO”]:Mrg[l— 1—;4”2}
"o
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for n large. Here, we have used that Mc, = sin((rgm — P(Vy))/rg) — Mc € [0, K pu«] (cf. Step 2); thus
cos((rgn —P(Wn)/ rg) > (0, for, otherwise, we would have, by Proposition 6.1,

1% c2
3{(Vn)=E(Vn)+2Mrg sin % > EWo)—Kp+ Mr, [1+ 1— ”2:|
2ry M

> E(Uo) — K s +2Mrg +0(u3),

but this contradicts (32) if p« is sufficiently small.
We assume R > 0, so that, by Step 4, z = 0 and ¢ = 0,,. We recall 0, = 2/F(0)/rg +0(u?) ~
2u+/F(0)/r2. By definition of Ey, one has

2 P(Vy)—rg
Eﬁ+E(V)+Mr5‘[1—,/1—C—2]§ lim E(V,)+ lim 2Mrgsin2L2r0”
M n—+00 —>+oo 2ry

= lim H(Vy) = Hmin(w)

n—-+oo
since (V) is minimizing for Hmin (). Moreover, from the expression of V', we have (for R > 0)
22 2 ,2)2
r f—
E(V)=EUy,)+ 2R|:M(O—) + F(uz)] and P(V)=PUy,)+ RO'MM
4u? m 2
Furthermore, we have Py = Poo — P(V) and ¢ = Mrg sin((rgn — Poo)/rg) with Py € [0, rgyr] and
cos((rgn — Poo)/rg) > (; thus

2 2 ¢ (rg_ﬂz)z
Py = Poo— P(V)=rogm—ry arcsin(M 2) —PWUs,) — Royy——5—.
"o

Combining this with the expansions of E(Uy) and P(Uy) gives

% > E(U EG’%P 2y pml1 10‘3 2R Z(OM)FZ
min(14) 2 E(Uo)+Eg+—Poto(op)+ M| 1=y [1=-75 |+ T+ (1?)

> E(U0)+@+ﬁ[150+i] +0(u*)+4RF(0)
K 2 M
opl. 1
|:PO+Mi|

+0(u?)+4RF(0)

(0 M)

1 .
> E(UO)+E rg arcsin(au/(Mrg))—i-aM Py+Ro +o(ou) |+

1oy . (rg—,uz)2
> E(U0)+E M+UMP0+RGMM—+0(UM)

1 ( 2_/~L2)2
> E(U P RO~ ~
( 0)+ o+t 2

02 5 1
0+M

:|+0(u2)+4RF(O)

2

+ 28| ot |+ 4RF(©0)+o(u)
2| o

The right-hand side is a continuous piecewise affine function of R (the “0” does not depend on R).
Since 0, (r§ — u?)?/(Kp?) >~ 1/pn > 4F(0) and Po+1/M <0 (since M > Po ! by hypothesis), it
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follows that the right-hand side is a function of R which is decreasing in [0, Ro(it)] and increasing in
[Ro(p), +00), with

112

Ro(p) = (P+1 i (P+1) >0
(V2 0 (”0 12)? 0T s r(‘)‘ .
Therefore, using once again that ai ~4u?F(0)/ r0 ,

ol . 1 )

o) = E(Un) + 2| o 31 | +4Ro0 F(0) + 0047
1 12u?F(0) . 1 142 F(0)

M}M—4—[P0+M]M—+ (1)

= E(Uy) + |:P0 +
"o
2F(0)

ro

= EUp) —

[Po + ] +o(u?).
rg
In view of our hypothesis Py+1 /M < 0, we infer that

112

Hmin(1) = E(Up) + b

for jux sufficiently small and some positive constant K, as wished. If the assumption Py + 1/M < 0 is
not satisfied, but, if Po + 1/M > 0 for instance, then the function of R above is increasing in [0, +00),
with minimum value achieved at R = 0 and equal to

1> F(0)

0

2

EU oul p
0)+7 o+ "

Po
i KR

i} +o(u?) = E(Uo) + > 1}+0(M2) > EWo) + 5.

We then would have concluded a stronger estimate, which is actually in contradiction with (32); hence
we are necessarily in the case R > 0. The assumption Py + 1/M <0 is however crucial for the last step.

Step 7. We assume Py + 1/M < 0. Then, for u4 sufficiently small, the case R = 0 does not occur.
We argue in a similar way, but, since R = 0, the expressions for £(V) and P(V') are given by
7o (rg — A2)?

< dx.
2 a2z

E(V)= E(UC)—4/OZ F(Uc)*)dx and P(V)= P(Uc)—Z/O

Here, we have used that |0, U |?> = F(|U,|?) since U, solves (TW,). Combining this here again with the
expansions of E(U,) and P(U,) gives, using that 0 < ¢ < Ku,

2 . c2 z
?Kmin(u)zE(Uo)—i—Eﬁ—i-?Po—l-o(cz)—i-M[l— l—m]—4/ F(|U.|?) dx
0

> EUy)+—— | ﬁl [Pg+$]—4zF(O)+o(,u2)

z 2 2 2
arcsin(c/M)+c Po—c / (rOAf)dx—l—o(c) ¢ |:P0—|—A1/Ii|—|—0(,u2)—4zF(O).
0 c

1
EE(U())-i-E
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Following the lines of the proof of Lemma 20, we have

F (13— A2)? 2 2
c ————— dx = 2arctan +0(u”). (38)
/(; A% r(% +&c

Indeed, noticing that A, = O(w) in [0, z] with z < K u, we write, expanding the square,

(r0 A2)2 ng 5 ng
/ x:/O A_§_2+Acdx:/0 A—%dx+@(u).

Then, using the change of variable & = n.(x),

(ro A2)2 S rg d
= +0
/ x / GrT oW

[ M—"
e (R HEVTLENE—E)

+/M—ro 2r4 ( 1 B 1 )d$+@(u)
c (’"o +£) \/_QVC(S) \/—OV/C(EC)(E—EC)

2 arct o (39)
— — arctan — y
c rg + & H

by computations similar to those for the proof of Lemma 20. This proves (38). Therefore,

mein (/‘L)
2

R 1
+ % [Po + H] Fo(u?)—4zF(0). (40)

[P 42 ] 2 arct o)

¢| Po+—|—2arctan ,| —— — 1 +o(c
M rg + &

By (32), the left-hand side is < E(Up) + K 2. Since Py + 1/M <0,c <Ku,z<Kpand F(0) >0,

this implies

1
ZE(UO)'F?

c|:Po+ 2arctan1/ +o(c) < Ku;
thus
arctan —1<Kpu,
and, finally, for w4 small enough,
0< 2“2 —1<Kp?,
rg +&e

Combining this with the equality rg +& = czrg /(4F(0)) + 0(c*) seen during the proof of Lemma 20,

we infer

2F(0
c= rz()u+@(uz)-

0
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In particular, going back to (39) and since, for 0 < x < z,

rg +&=A20) < A2(x) < A2(2) = p?,

this implies

4 z .4 2
zrg / ro 2 7 Ku
— = — < —arctan —140(u)<—+Ku<Kk,
n* ~Jo A2 c rd+é& ¢

c

which provides (since ¢ &~ 1)

z < Ku?.

Inserting this into (40) and keeping in mind that the left-hand side is < E(Up) 4+ K 1?2, we deduce

. 1 u?
C[Po + M] —2arctan , [ — —1=o0(u).

rO +Ec

However, since arctan \/ u?/ (rg +&.)—1 >0, this gives

: ]"'—zu rf(o) |:P0+L:|,

O(M)SC[P0+— m

M 0

yielding a contradiction for small u since we have Py + 1/M < 0 by assumption. Therefore, the case
R = 0 does not occur for sufficiently small p,. If we had Po+1 /M > 0, we would not have been able
to show that K, () gives a control on w.

The proof of Proposition 6.2 is complete. O

Proof of Theorem 23. Let U € V. If p = infg|U| > 0, then Proposition 6.2 gives JH(U) >
EUy) + u?/K > E(Uy) = H(Up). If infg |U| = 0, we deduce from Proposition 6.1 that H(U) >
EUy) + 2Mr6‘ sin? ((P(U) — nrg)rg). Hence H(U) > E(Uyp) except if H(U) = E(Up). From the study
of the equality case in Proposition 6.1, it follows that U € {!?Up(- —y),y € R, 6 € R}, as claimed. [J

6C. Proof of Theorem 24. As a first step, we shall need a quantified version of Proposition 6.1.
Proposition 6.3. There exist €g > 0 and K > 0, depending only on [, such that, for any U € % verifying
HU)—EWUy) <e€p and iﬁf|U| < €o,

we have

. 1/4
inf dy (U, e Up(- — y)) < K(SY{(U) — E(Up) +inf|U|) .
YER R
feR

Proof. First, we translate the problem in space so that u = infg |[U| = |U|(0) and shall choose the phase
factor later. We follow the lines of the proof of Proposition 6.1 and actually get (writing U = Ae'? locally
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in {|U] > 0})

400
/ 0,UP + F(UP) dx
0

- / 1120 A%(359)> dx + / 9. 1U1|? + F(UI?) dx
0 0

400 +o0 2 +oo
:/0 1|U|>0A2(8x¢)2dx+/0 [\/F(|U|2)—|8x|U|\] dx+2/0 ’\/F(|U|2)8x|U|‘dx
> [T hoortar s [ [VEWR - oo ax+2 [ G as

0 0 "

Arguing similarly in (—o0, 0), we get

2 Iz
EU) = EU + [ Vo1-042(0s0)? dx+ [ [VFQUP) - 10,1U11] dx—4 [ VFGds. @n
R R 0
The gradient of the phase is controlled using (41). We shall now estimate the modulus part. Let us define

A=|U|and
h=0d,A—F(A?),
for which we have, by (41),

"w
14152 < EQ)~E@0) +4 [ VFG7) ds < EQ) - EU) + K. @)

Recall that Uy satisfies (3xUp)? = F(Uoz) in R; hence 0, Uy = \/F(Uoz) in Rt. Setting ® = A4 — |Up|,
we infer

0x0 = VF(A%) — VF(UZ)+h in R;.

We set, for x > 0,

Uo(x) f(Ug (x))0 ‘

VF(Ug (x))

Since Uy satisfies 02Up + Up(x) f(UZ(x)) = 0 and 9xUp = v/F(U(x)) in Ry, it follows that

G(x,0) = VF((Uo(x) + 0)%) — VF(UZ(x)) +

3)26 Uo(x)
dxUo(x) ‘

G(x,0) = VF((Up(x) + 0)?) — VF(UZ(x)) —

Moreover, by the Taylor expansion, we infer the existence of K > 0 and 6y > 0 such that, for |6| < 6,
X € R+,
|G(x,0)| < K62.

The estimate is clearly uniform in view of the exponential decay of d, Uy at infinity. Therefore,

_ 92Uo(x)

9,0 =
. dxUp(x)

® + G(x, ©) + h(x). (43)
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We view this ODE as a linear ODE with source term G(x, ®(x)) + h(x). Since 0, Uy solves the
homogeneous equation, we infer, from Duhamel’s formula and the fact that ®(0) = A(0) — Up(0) =
|U(0)| = u, that, for x > 0,

G(z,0(2))+ h(z)
0xUo(z)

O(x) = p+ dxUp(x) /x dz. (44)
0

We shall prove that this equation implies that, if 44 and [|2| 2@, ) are sufficiently small, then

1OlL2@®, ) = K2 L2y ) + 1) (45)

We assume < 6y/2. Note that, since Uy is a kink, we have the decays given in Proposition 2. Hence,
there exist two positive constants K7 and K5 such that

e—CSX

< 0xUp(x) < Kpe™™* forall x € R4.

1

In particular, if |®(x)| < 6o in the interval [0, R], then (44) implies, for x € [0, R],

X
|O(x)] < u+ K1 Kpe™ =¥ /0 e“?[K Ol Lo (0,8 O (2)| + |h](2)] dz

KK K> Ki1K>
sut— 1O117 0 f0,x7) + Ve 17l 2wy
) S

by the Cauchy—Schwarz inequality. We thus choose ||A]|z2(g, ) + w sufficiently small so that
K1K> = : Cs }
4{ u+ h <6 =minify, —— .
(M e | ”Lz(R)) < 6o { 0 KK K

Then, we consider the set & of all R > 0 such that |©(x)| < 6o in the interval [0, R]. Since ® € H(R, C)
is continuous by the Sobolev embedding and |®(0)| = u < 6y, R # I and is closed in R’ . Moreover,
the above estimate shows that, for R € R,

KK K> ) KiK>
Ol g <u-+ O7 oo + —|h s
©1lLoo(r0,R]) = 1 . 1O 700 (10, R]) mll 2Ry
which gives
KKle KIKZ

Ol g0 1— Ol <p+ h :
16lz2qo.10 10lzo0.0) = e+ 2 Wiz

S
and then
Ki1K>

A 2¢
Consequently, % is open in R . By connexity, % = Bi, proving (45). In what follows, we assume
71l 2@,y + w is sufficiently small so that [[©[[zec < 6p; thus |G (x, ©)] < K©Z2. In particular,

b
1o <2+ =1 2 hliage | < 2 <o 6)

X
O] = p+ Kle/O e S CTIK||O| Lo 1o,k O ()] + 1] (2)] dz.
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For R > 0 to be determined later, we then deduce from classical convolution estimates that
181122 (t0,)) < #VR + K3l oo ) 1O 120, &7 + K3l 2@, )-
Imposing that ||h]|z2g, ) + w be smaller if necessary, we may assume that
K3]|®|l ooy < KaK(lhll 2@y ) + 1) < 3.

so that we get

1©1220.r)) < Ka(tvR + 121l L2 y)-
Reporting this into (43) provides
1050125 0.7 < KsW2R+ [h125,)-
Arguing similarly in [~ R, 0] and using (42), we obtain an H ! estimate for ® in [~ R, R]:

We now turn to the estimate in {|x| > R}. For that purpose, we write

[ elU0 QU P de EQ)-E @+ | oulo?+F U d

x|>=R |x|>=R

- /| Ox|U| D2+ F(U ) dx+ / (U0 F U dx. @)

x|<R

Since Uy decays exponentially (see Proposition 2), it follows that
/ 10xUo|?> + F(UZ) dx < Ke R,
|x|=R
Furthermore, by integration by parts,

—[ (ax|U|>2+F(|U|2>dx+/
|x|<R

|x|<

(0xUo)*+F(Ug) dx
R

=— / 20, Updx©®—2U, f(UZ)O dx— /
|x|<R

[x]<

(0x®)?+ F([Ug+B*)—F(UZ)—2Uo F'(UZ)O dx
R
S/II R2®[3§U0+U0f(U02)] dx—=20(+R)dxUo(+R)+20(=R)dxUo(—R)+ KO 31 (_ g 4 r)
xX|=<
< Ke Ry K(E(U)—E(Uo)+1? R+1).

For the second-to-last line, we have used that 6 — F([Up + 0]%) — F(UZ) —2Uo F'(U$)0 is 0(62) as
0 — 0 and, for the last line, that Uy solves 8% Uo+Up f (U02) = 0, the exponential decay of d Uy and
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the uniform bound on ®. Reporting these estimates into (48) provides

II@II%11<{|x|>R})=/I (0x1U1=0elUpl)? + (U1 = |Uo))? dx
rp= )

= 2/| | (axlUl)z + (ax|UO|)2 + (|U| —l’())2 + (|Uo| —7‘0)2 dx
X|>R
< K[E(U)— EUp) +e R+ >R+ p].
Combining this with (47), we deduce that, for any R > 0, we have
||®||§,1(R) < K[E(U)— E(Up) +e R+ 1R + p].

We then choose R = ! if 4 > 0 or R — +o0 if u = 0, and get

1Ol g1 @) < KVEU) — E(Uo) + .

Notice that, if f’ < 0 everywhere, then we may give a quick proof of the above estimate, since, using
here again integration by parts and that 92U + Up f (U, 5) = 0, we may deduce that

+o0

E(U) = EW) = =40 Uo) + [ 0,07 dx+ [ F(Wo-+©)) = FU) ~2UeOF (1) dx.

and, since [/ <0, F((Uo + 0)?) — F(U$) —2Uo0F"(U$) > 6/ K by the Taylor expansion, providing
the desired H! bound on ©.
Observe now that

() — E(Up) > E(U) — E(Up) > / 1010l Adx)? dx:
hence §
10xU — 9xUoll 2y = 19x(|Uol + ©)e'?11y|50 + i Ly =0 Adxpe’® — 0 Uoll L2
< 1€ 11y1>00x|Uol — 0xUoll L2y + 11 ju1>040x @ L2y + Ol L2 gy
< €11y |00x|Uo| — 0xUoll L2y + K[H(U) — E(Uo) + u]'/2. (49)

We distinguish now the cases © = 0 and i > 0, and begin with the assumption @ > 0. Then, we have a
global lifting U = Ae'? and

dx (U, Up) = [0xU = 3x Ul 2@y + 11U = [Uol | L2(gy + 1U(0) — Up (0)]
= [0xU — 0xUoll2@m) + 1Ol 2@y + 1
< [le®dx|Uo| — 3xUoll L2y + K[H(U) — E(Uo) + u]'/2.

Now, we notice that

€"?9x|Uo| — axUOHI%Z(R) - 2/[(3xUO)2 —0xUodx|Uo| cos ¢] dx
R

+00 0
=2 / (0,Up)*(1 —cos ¢p) dx + 2 [ (0xUp)>(1 +cosp) dx  (50)
0 —00
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and that
2 BW) - ’"(%

o (P(U)—royr mod 27 73)>%. (51)
Ty

H(U) — E(Uy) > 2Mrg sin

We define § = (H(U) — E(Ug) + 11)1/*. By the Cauchy—Schwarz inequality, we have

K 1/2 1/2
‘/ (Az—rg)fixqﬁ dx| < —(/ (Az—rg 2dx) (/ (Ad,0)? dx)
|x|>8 infly>5 A\ Jix|>5 |x|>6

(E(U)— E(Up) + p)'/%.

- inf|x|zg A

Inserting this into (51) gives

‘ / (A2=r2)0 ¢ dx—r2m mod 27r2| < K|:(3{(U)—E(Ug))1/2+ (E(U)—E(Uo)—i—u)l/ 2]
|x|<é

1 2
_m(%(U) E(Uo)-l-u) i
xX|=

In addition, by the Cauchy—Schwarz inequality,

] /| _y A0 x| = V2B(supiay A (KU) - EUo)+ ).

Consequently,
13| (+8) — ¢(—8) — mod 2|

< ‘/ (A% — rg)axqﬁ dx — rgzr mod 271rg + «/ﬁ(sup|x|<5 A)(??f(U) — E(Up) + /,L)l/z
|x]<é -

- [W BB s 4|00~ B +) (52

From our choice § = (H(U) — E(Up) + 1)'/* <« 1 and since 1Ol Loe@w) < K(K(U)— E(Up) + w2 =
0(8?%), we infer infjx;>5 A > infx>5 |Uo| — |®|lLo®) > /K. Similarly, we have supj,j<5 A <
sup|x|<s |Uo| + |®] Lo w) < K. Reporting this into (52) yields

|¢(+8) — ¢(—8) — x mod 27| < K.

We now freeze the gauge invariance by imposing ¢(+3) = 0. Note that then ¢(—§) = 7 + 0(J).
Furthermore, since ¢(+8) = 0,

K K
(0x¢)?dx < ———— A% (c9)? dx < —=8* = K82,
/lez x (lnf|x|>8 A)? Jix>s (0x¢ §2

which implies, for x > §,

|1 —cosg(x)| <|1—cosp(0)] + '/: 3x¢sin¢‘ < K§x
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and, similarly, since cos ¢(—8) = cos(r + 0(8)) = —1 + 0(8?), for x < -8,

11+ cosp(x)| < K8+/|x|.

We turn back to (50) and infer

—§

. Foo
||el¢8x|U0|—8on||I%2(R) §K8+2/ (0,Uo)*(1 —cos ¢p) dx + 2 (0,Uo)*(1 + cos ¢) dx
8 00

<K§+ Ké’f(aon)Z\/lxl dx = K§.
R
Inserting these estimates in (49), it follows that
dgg(U, Uo) < K§.

We now turn to the case u = 0. Without loss of generality, we may assume that |U| > 0 in (—o0, 0)
(since |U| — rog > 0 at +00), and let £ > 0 be such that |U|(£) =0 and |[U| > 0 in (£, +00). We first
estimate £ by writing that

Uol(®) = [U](0) + ©(0) = O() < Ol ooy < K (H(U) — EUo) + ) '/* = K62

thus £ < K§2. Moreover, we have two local liftings U = Ae'®+ in [{, +00) and U = Ae!?- in (—o00, 0).
Going back to (49), we then deduce
dx (U, Up)
< [|e'®=9x|Uo| = 8xUo l L2(~o0,0) + lIe"*+ x| Vol = 8x Vol L2 (¢, 4o0) + K8 + K[H(WU) — E(Uo)]"/>.
Arguing as for the case u > 0, we obtain [U| = A > §/K in [£ 4§, +00) and in (—o0, —§). By definition
of 13, we have
£+8 +o00 -8
BO)= [ GO [ Wi ditrd 0+ | A ringodi—ripe D)
- + —00
in R/(27w r&Z); hence the same arguments as in the case p > 0 provide
|+ (£ +8) — P4 (=) — mod 27| < K6,
since the integral ff;g (iU]d,U) is bounded by K+/8 by the Cauchy—Schwarz inequality. Imposing
¢4 (£ +8) for the gauge invariance, we infer 1 —cos(¢4 (£ +8)) = 0 and ¢4 (—8) = 7 +0(+/8) mod 27;
hence 1 + cos(¢—(—38)) = 0(§). Therefore, we conclude as before that

dx(U,Up) < K3,
which finishes the proof of the proposition. O

In order to prove Theorem 24, we use Proposition 6.2, which provides

H(U) = EUs) + (infi [U]F:
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thus
u= iﬁf|U| < KHU)— E(Uy).

Inserting this bound in Proposition 6.3 then gives

dx(U. Up) < K[IH(U) — E(Uo) + K VH(U) — E(Up)|'"* < K Y (U) — EWy).

and the proof is complete.

7. About the stability analysis for the sonic waves (¢ = cy)

We have left aside in our study the case of the sonic waves (¢ = ¢y), but would like to say a few words on
the difficulties associated with this critical case.

We note that, if there exists a sonic nontrivial traveling wave, it does not vanish; hence we may use
the hydrodynamical formulation (15) of (NLS) as in [Lin 2002]. The point is that the Sturm-Liouville
operator (see [Lin 2002, Section 4])

L0 19
==l ae) 0

with
(dxm)* 9 x7) 1 c’ry
(O va s bt yacsusncy It FAIG Sl babvacsupmes
4(r0—7]) X 4(r0—r]) 4(r0—r])
has, by Weyl’s theorem, essential spectrum oeg(L) = [0, +00) when ¢ = ¢5. Indeed, we know

from Proposition 2 that 7., and its derivatives tend to zero at infinity; hence, as x — %00, g(x) —
—Lf'(r2) —c?/(4r2) = 0 since ¢2 = 2 = —2r2 f'(r2). Therefore, there does not exist § > 0 such that
(Hp, p) = 8| p||? for any p orthogonal to the subspace spanned by the negative and the zero eigenvalue,
and thus the Grillakis—Shatah—Strauss theory does not apply.

In the case (dP/dc)|.=., <0, where it is natural to expect stability, a natural thing would be to try to
work with the functional

M
W) = EW) —es P(Y) + = (P(¥) = P(Uy,)*

and to follow the lines of the proof of Theorem 23. Indeed, the spectral analysis shall not give positive
definiteness of the Hessian due to presence of essential spectrum down to 0. Therefore, we may study &£
at fixed u = infg || close to infg U, |. When 0 < ¢« < ¢5 and (dP/dc)|c=¢, # 0, the infimum of |U,|
contains a neighborhood of infg |Ue, | for ¢ close to c«. For cx = c4, this is no longer the case: we
have only a one-sided neighborhood of infg |U.,|. It is plausible that the study for u in this one-sided
neighborhood of infR |U,, | can be done as in the proof of Theorem 23, but, for the remaining values of u,
we have to find a sharp ansatz, which is not very easy to find.

Furthermore, for the linear instability which is expected if (dP/dc)|c=., > 0, let us mention the
following point. For the eigenvalue problem studied in [Benzoni-Gavage 2010b], the characteristic
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equation for the constant coefficient limit at infinity, namely
rt— (c? — c,%)r2 —2csAr + 12 =0,

becomes, when cx = ¢y,

r* —2cAr + A% =0. (53)

The behavior of the roots for small A is then different from the case 0 < ¢4« < ¢5. Indeed, there exists a
root ~ A/(2¢s) for A — 0, and, for the three other roots, we use the variable r = YAz, which transforms
r4 —2cAr + A2 =0 into z* —2¢,z + A2/3 = 0. This last equation has, for A — 0, three roots ~ jk 32¢s,
where j = e2™/3 and k = 0, 1, 2. In particular, (53) has three roots ~ j* ¥2¢X, k = 0, 1, 2. The
value A = 0 is then a branching point, and we shall have a smooth problem not in A but in ¥/A. Since
analyticity is not necessary for our purpose, we may define an Evans function D in R4, smooth, and
such that, for A > 0, D(¥/A) = 0 if and only if A is an unstable eigenvalue for (27). Another difficulty
comes from the fact that it will be difficult to find an analytic extension of the Evans function D near 0
since, by Proposition 2, for ¢, = ¢g, U4 and 1, decay only at an algebraic rate and not an exponential
rate. Consequently, we can not use the gap lemma of [Gardner and Zumbrun 1998] and [Kapitula and
Sandstede 1998]. Finally, as a straightforward computation shows, the stable and unstable subspaces for
the eigenvalue problem are transverse for A > 0 but their continuous extensions at A = 0 have a nontrivial
intersection. Therefore, both stability and instability require some further analysis, and the situation is
then much more delicate than the one studied in Section SA.

Appendix A. Construction of a Liapounov functional in the stable case in the
Grillakis—Shatah-Strauss framework

We work with the notations of [Grillakis et al. 1987], and recall them briefly. We consider a Hamiltonian
equation in a real Hilbert space &, with scalar product (-, - )¢, under the form

du ,

where J : &* — & is a closed linear operator with dense domain and skew-symmetric. Assume that
T is a 6o-group of unitary operators in ¥ generated by 7/(0), which is skew-adjoint and with dense
domain, and that E£ is invariant by T'; that is, E(7 (s)u) = E(u) for any s € R, u € ¥. Assume moreover
that T'(s)J = JT(—s)* for any s € R and that there exists B : ¥ — &*, linear and bounded, such that
B* = B and JB is an extension of 7’(0). We then set

O(u) = 5 (Bu,u)y+x.
The basic assumptions of [Grillakis et al. 1987] are the following ones.

Assumption 1 (existence of solutions). For any r > 0 there exists ¢, > 0, depending only on r, such that,
for any u™™ € %, there exists a u € G((—t, tx), X) with u(0) = u'™ solution of (%) in the sense that, for
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any ¢ € D(J) C &%,

d
27 @) @l e = —(E' (), Jp)a= e in D' ((—tx, 1x)),

and verifying E(u(¢)) = E™) and Q(u(t)) = Q(u™) for t € (—tx, t+).

Assumption 2 (existence of “bound states™). There exists an interval 2 C R, not reduced to a singleton,
and a mapping Q 3 w — ¢, € ¥ of class €! such that, for any w € Q,

E'(¢0) =00 (¢0). o€ D(T'(0))NDIIT (0)*), T'(0)po #O.

Assumption 3 (spectral decomposition). For each w € 2, the operator Hy, = E” (¢)—0 Q" (¢p) : X — X*
has its kernel spanned by 7”(0)¢,,, has one negative simple eigenvalue and the rest of its spectrum is
positive and bounded away from zero.

Under Assumption 2, we consider some wy € €2 and the associated bound state ¢, , and then define,
for M > 0, the functional

M
Fo. () = EW) —0x Q) + —-(Qw) - 0 (¢w.))’.
It is clear that ¢, is a critical point of £, : ¥ (¢w,) = E'(dw,) — ©x 0’ (¢pw,) = 0. We denote by

A =2, ($o.) = Ho, + M(Q'($0.). )+ 2 Q" ($w.)
its second derivative, which is a self-adjoint operator. The main result of this appendix is the following.

Theorem 26. We make Assumptions 2 and 3 and suppose that the operator (Q'(¢w. ), Yo+ % Q' (Pw, ) is
a compact perturbation of Hy,,. If (dQ(¢0)/dw)|p=w, <0 and
1

M>"a06.

do |o=wx

there exists § > 0 such that
(Av,v) = 8|v||*> forallve X st (v,T(0)pw,)x =0.

In particular, for any u € X with infseg |[u — T (5)Pw, |> < €, we have

2
inf u = T(5)bo, 1% < 5 (L) = L(90.)).

Therefore, when Assumption 1 is moreover satisfied, the (global) solution u(t) to (%) with initial datum u™

satisfies

2 : .
sup inf () = T (). |2 < 5 (L0 = £(g0.)) < K|u" = o |

teRS

provided the right-hand side is sufficiently small.
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We point out that the condition that the operator (Q'(¢w, ), - o+ Q' (dw,) is a compact perturbation
of H,, is not very restrictive, since, in many cases coming from PDE:s, it involves less derivatives
than H,, and Q’(¢, ) tends to zero at spatial infinity.

This type of Liapounov functional has been used in [Barashenkov 1996] to prove that the traveling
waves of (NLS) in dimension one are stable when dP/dc < 0. The proof follows basically the one in
[Barashenkov 1996], but some points have to be clarified. The interest of this type of Liapounov
functional is that the saddle point ¢, is now a nondegenerate local minimum for £, . This is
a great advantage for numerical simulation of the “bound states”, since a gradient flow method on
%o, can be used. This approach has been used, with a very similar functional, by N. Papanicolaou
and P. Spathis [1999] for the numerical simulation of the traveling waves for a planar ferromagnets
model. In the same spirit, in [Chiron and Scheid 2012], we also use a gradient flow method on
this type of functional for the numerical simulation of the traveling waves for (NLS) in two dimen-

sions.

Proof of Theorem 26. Recall that the spectrum of H,, is, by Assumption 3, such that —A2 € 6(H,,),
0co(Hy,)and o(Hy,)\{—A2,0} C[8, +00) for some § > 0. Since we assume that (Q’ (¢, ). ) Q' (dw, )
is a compact perturbation of Hy,_, the essential spectrum of A is the same as the one of Hy,,, and hence
is included in [§, 4+00). Furthermore, 0 € o(H,,) and ker(Hy,) = RT’(0)¢y, by Assumption 3.
Since Q'(¢w,) = Bdw, and JB is an extension of T7(0), we have that (Q'(¢w,), T'(0)Pw, o o =
(Bow.» IBdw, )axx = 0; hence A(T'(0)¢,) = 0. Noticing that (Q'(¢w,), " )a*x Q' (¢w.) is a non-
negative operator, we infer that ker(A) = ker(Hy,) = RT’(0)¢y, is one-dimensional. Therefore, it
suffices to show that A has no eigenvalues in (—oo, 0). As we have seen that (Q'(¢w, ), )x*.x O (Pw,)
is a nonnegative operator, we deduce that o(A) C [-A2, +00). Let us first show that —12 ¢ o(A)
by contradiction. If —A2 is an eigenvalue of A, then there exists v € X, v # 0, such that 0 =
(A + A2 = (H + 22)v + M{Q'(dw,), V)a* % Q' ($w,). Taking the duality product with v yields
0= ((Hp, +12)v, v)g* gx + M (Q'(Pw,), v)gg* - Since the two terms in the sum are nonnegative, this im-
plies (Q'(Pw,. ), V)a+ & = 0 and ((Hy, +A2)v, v)g* o =0, which in turn implies v € ker(H,,, +12) =Ry
(here, y is a negative eigenvector of H,,, for the eigenvalue —A2 < 0). As a consequence, we must have
(Q'(dws), x)a* 2 = 0. On the other hand, differentiating the equality E'(¢e) — 0 Q' (¢e) =0 at ® = wx
yields Q' (¢pw,) = Hwp,¢', where ¢’ = (d¢p/dw)|y=w,. Thus we must have 0 = (Hy, @', Y)o* o =
(Hp, x, ¢ Yax 2 = —A2(x,¢'). Therefore, ¢’ is orthogonal to y and this gives (Hy, ¢, ¢")o* o > 0.
However, this is not possible if (dQ (¢w)/d®)|p=w, <0, since (d0(¢pw)/dw)|w=n, =—(Hw, ¢’ ¢")o* .
As a consequence, if A is a negative element of the spectrum of A, then —A2 < A <0 and A is an eigenvalue:
there exists v € X such that v # 0 and

Av=Av=Hy, v+ MO (dn,), Va* 20 (¢o,)-

Since —A2 < A < 0, we then infer

v=—-M{(Q ($w,), V)ar2(Hp, —2) 0 (¢0.)- (A-1)
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Since v # 0, we can not have (Q'(dw, ), V)% = 0. Then, taking the scalar product of (A-1) with
171 Q' (¢pw, ) (here, | : & — %* is the usual Riesz isomorphism) gives

g() =0, where g(t) =1+ M((Ho. —1) "' 0'($0.).17' Q' ($0.))y.  —A2 <1 <0.
It is clear that g is smooth in (—A2,0) and that
g0 =M((Ho. ~1)720'($0.).17' Q' (90.))y = MI|(Ho. — )71 Q' (@0, |17 > 0.

We now study the limit of g at 0~. Let us recall that H,, ¢’ = Q’(¢,,) and that we have already seen
that (Q'(¢w,), T'(0) e, o+ o = 0; i.e., 171 Q' (¢, ) is orthogonal to ker(H,, ). Therefore, as 1 — 07,

d0(¢e
(Ho =0)7' Q' ($0.). 171 Q' (¢0.)) = (@17 Q' (¢0.)) = (Q'($u0.). ¢ )aex iz = %(f )|w:w

and thus
dQ(¢o)

dw |o=w«

Since (dQ(¢w)/dw)|w=p, <0 by hypothesis, it follows that, if M > —1/(dQ(¢w)/d®)|p=e, > 0, the
function g increases in (—A2, 0) and tends to some negative limit at 0. In particular, g is negative; hence

gt)y—>14+M as t —> 0.

we can not have g(1) = 0 with A € (—A2,0). We have therefore shown that the spectrum of A consists
in a simple eigenvalue 0 with eigenspace spanned by 7”(0)¢,, and the rest of the spectrum is positive
and bounded away from 0. This concludes the proof. O

We would like to point out the fact that, in the proof of [Barashenkov 1996], —A2 ¢ o(A) was not
shown, the kernel of A was not studied and the essential spectrum was not considered. Moreover, the
functional spaces are not given; hence we do not know for which perturbations stability holds.

Appendix B. From linear to nonlinear instability

We still consider in this appendix an abstract Hamiltonian equation in the framework of [Grillakis et al.

1987]
du
— =JE'(u %
o = JE'W) 30
on the real Hilbert space %, with scalar product (-, - ). Here E : ¥ — Ris of class 6% and J : ¥* — X isa
closed linear operator with dense domain and skew-symmetric in the sense that (u, Jw)g = —(w, Ju)g*
forue®, we%*.

We assume that there exists a @o-group T of unitary operators in ¥ generated by 7’(0), which is
skew-adjoint and with dense domain, and that E is invariant by T'; that is, E(T (w)u) = E(u) for any
w € R, u € X. Assume moreover that T(w)J = JT(—w)™ for any @ € R and that there exists B : ¥ — X*,
linear and bounded, such that B* = B and JB is an extension of 77(0). We then set

Q(u) = 5 (Bu, u)y~ g,
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which is invariant by the flow () (see [Grillakis et al. 1987]). By “bound state”, we mean a particular
solution U of (#) of the form U(¢) = T (wt)¢ for some w € R and where ¢ € &, ¢ # 0. In other words,
E'(¢) = 0Q'(9).

There exist an open interval 2 C R, not reduced to a singleton, and a mapping 2 > w — ¢, € X of
class ¢! such that, for any o € €2,

E'($0) = 00" (¢), ¢ € DT'(0))NDUIT'(0)?), T'(0)pw #0.

The solution U(t) = T (wt)¢ is said to be stable in ¥ if, for any & > 0, there exists § > 0 such that
any solution to (%) with initial datum u™™ € By (¢, §) is global in time and remains in By (¢, &) for ¢ > 0.
Otherwise, it is said to be unstable. This supposes some knowledge of the Cauchy problem for (7€) (at
least existence of solutions). If we are given some Banach space ¥ D & with continuous imbedding
& — %Y, we may also say that the solution U(¢) = T (wt )¢ is said to be stable from & to Y if, for any ¢ > 0,
there exists § > 0 such that any solution to (%) with initial datum u™™ € By (¢, §) remains in By(¢, &) for
t > 0. Clearly, a solution stable in & is precisely a solution stable from ¥ to &, and is also stable from &
to %Y; hence instability from ¥ to % is a stronger statement that instability in .

In our framework, the notion of orbital stability is more relevant. Let us consider G a group and
T:RxG— 9L (¥) a unitary representation of R x G on &, extending 7 : R — & and leaving £ and Q
invariant. Then, U(¢) = T (wt)¢ is said to be orbitally stable in ¥ (for the group G) if, for any & > 0,
there exists § > 0 such that any solution to () with initial datum u™ € B(¢, §) is global in time and
remains in |_J (.g)erxG B(T (@, )¢, ¢) fort > 0. We may also define orbital instability from & to Y D &
in a natural way.

In [Grillakis et al. 1987; 1990], a general framework for the stability analysis for the “bound state” has
been given. In particular, the nonlinear orbital instability is proved in [Grillakis et al. 1987] through the
construction of a Liapounov-type functional. However, this method does not give a clear understanding
neither of how we get farther from the “bound state”, nor on which timescale it occurs.

The need for allowing an additional group of invariances G can be seen in the case of bound state
solutions, that is U(t) = ¢/ ®? ¢, to the nonlinear Schrodinger equation

i3,V + AV 4+ Uf(|W]?) =0, (NLS)
or the nonlinear Klein—Gordon equation in R4
W= AV 4+ Uf(|V]?), (NLKG)

since, then, the invariance by translation in space must be taken into account in the definition of orbital
stability, and we are in a case where G = R? acts naturally by translation. The translations are taken into
account in [Cazenave and Lions 1982]. In [Grillakis et al. 1987; 1990], the notion of orbital stability
is for G trivial. It is clear from the definition that orbital stability for G = {0} implies orbital stability
for arbitrary G. For the instability in the nonlinear Schrodinger equation or the nonlinear Klein—Gordon
equation, [Grillakis et al. 1987] and [Shatah and Strauss 1985] work with radial H ! functions. The fact
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that this also implies the orbital instability with the action of G = R? by translations follows immediately
from the fact that for any 6 € [0, 27] the manifold Mty = {'?¢ (- —y), y € R?} is orthogonal to Hrgd([Rd).

For the stability analysis of a “bound state” U(¢) = T (w«t) (¢, ), it is natural to consider the lineariza-
tion of (#() near ¢p. More precisely, we linearize according to the ansatz u(t) = T (w«t)(Pw, + v(¢)), so
that the “bound state” becomes stationary. The linearized problem then becomes

0
2 = J(E"(¢) - 00" ($))v = §%v, (i)

a
where, [ : ¥ — &* denoting the Riesz isomorphism, $ = JI: ¥ — ¥ is skew-adjoint.

The purpose of this appendix is to give a general result, for Hamiltonian equations, showing that linear
instability implies nonlinear (orbital) instability. By linear instability, we mean that the complexification
of [$£]c has at least one eigenvalue in the right half-space {Re > 0}. The argument follows ideas from
the works of F. Rousset and N. Tzvetkov [2008; 2009].

Showing the existence of an unstable eigenvalue can be done through various techniques: see [Grillakis
et al. 1990] (in the framework of [Grillakis et al. 1987] when J is onto), [Grillakis 1988] (assuming
a special structure of the Hamiltonian equation); for uses of the Vakhitov—Kolokolov function, see
[de Bouard 1995], [Di Menza and Gallo 2007] or [Pelinovsky and Kevrekidis 2008]. When J is not onto,
we quote [Lopes 2002]. For one-dimensional partial differential equations, one may also use the Evans
function (see the survey [Sandstede 2002]) as in [Pego and Weinstein 1992; Gardner and Zumbrun 1998;
Kapitula and Sandstede 1998; Zumbrun 2008]. The paper [Lin 2008] proposes another approach which
allows treating pseudodifferential equations, such as the BBM equation, the Benjamin—Ono equation,
regularized Boussinesq equations, the intermediate long wave equation, etc.

In order to pass from linear to nonlinear instability, the following result is standard. We refer to the
paper by D. Henry, J. Perez and W. Wreszinski [Henry et al. 1982]. It can also be found in [Grillakis
1988; Shatah and Strauss 2000].

Theorem B.1 [Henry et al. 1982; Grillakis 1988; Shatah and Strauss 2000]. We assume that s generates
a continuous semigroup on X and that o () meets the right half-space {Re > 0}. We assume moreover
that F : X — X is locally Lipschitz continuous and satisfies, for some o > 0, | F(v)||x = @(||v||;(+°‘) as

v — 0. Then, the solution ¢ = 0 is unstable for the equation 0;v = Av + F(v).

In [Shatah and Strauss 2000], it is claimed that an orbital instability result can also be established.
Theorem B.1 shows nonlinear instability without assuming that the equation is Hamiltonian. However,
if (#i) can be solved using a semigroup, it does not give the growth of its norm. Moreover, it does not
say that, if the initial datum is in a most unstable direction, that is, an eigendirection of s corresponding
to an eigenvalue of maximal positive real part (plus the complex conjugate if necessary), then one can
track the exponential growth of the solution. In particular, it does not explain the mechanism of instability
and does not give any information on the timescale on which one see the instability. For instance, some
strong instability results are shown by proving blow-up in finite time (see [Berestycki and Cazenave
1981]), but the instability due to an exponentially growing mode holds on a much smaller timescale.
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We wish to provide here some results clarifying the instability mechanism by tracking the exponentially
growing mode.

A spectral mapping theorem for linearized Hamiltonian equations. When we want to prove a nonlinear
instability result from a linear instability one, we need some information on the growth of the semigroup
$%, when such a semigroup e’#¥ exists, which we shall assume in this appendix. The growth estimate on
e’¥ relies classically on the following spectral mapping result due to J. Priiss [1984], which generalizes
the work of L. Gearhart [1978].

Theorem B.2 [Priiss 1984]. Let X be a complex Hilbert space and i an unbounded operator on X which

generates a continuous semigroup €' on X. Fort € (0, +00), we have
2ik\ !
(&a a2 )

Corollary B.3. Let X be a complex Hilbert space and s an unbounded operator on X which generates a

N
o(eh)\ {0} = {e“, cither (A + %z) No(st) # 2. or sup
kez

= +oo}.
Ze(X)

The following result is an immediate corollary.

continuous semigroup e'** on X. Assume that, for any y € R*, we have

limsup [|(d —y —it) " |9, x) < +00,

|T|—>+o00
and that there exists U € [0, 400) such that Oess(A) = {i 0, ¥ €R, |¥| > Vo}. Then, foranyt € (0, +00),
the spectral mapping holds: o (e'*) \ {0} = &' (),

Proof. Since Oegs(A) = {i9, ¥ € R, |9| > 9}, we have S! C /7D c g(e!*). If A € C does not have
modulus one, then note that, when (A + (2i/t)Z) No (A) = @, the supremum for k € Z in Theorem B.2
can be +oo only when |k| — +o00, and we conclude with our hypothesis. O

The fact that we exclude O in the spectral mapping theorem just comes from the fact that we consider a
semigroup and not a group. However, in most Hamiltonian PDEs, we have time reversibility and we have
actually a continuous group and not only a semigroup. In most cases, we work with A : D(A) CY — Y
where Y is a real Hilbert space, thus for applying Theorem B.2 or Corollary B.3 we have to consider,
as usual, the complexified operator A¢ : D(Ac) = D(A) ®iD(A) CYc =Y &iY — Y¢ defined by
Ac(u +iv) = Au +iAv.

It seems that the first time Theorem B.2 is used to prove a growth estimate on a semigroup was by
T. Kapitula and B. Sandstede [1998]. Later, F. Gesztesy et al. [2000] also used this result for bound states
for (NLS). The bounds on the resolvent in [Kapitula and Sandstede 1998] were proved using the particular
structure of the linearized operator. In [Gesztesy et al. 2000], the computations are more involved and
rely on suitable kernel estimates of some Hilbert—Schmidt operators. The same type of estimates have
also been used in [Di Menza and Gallo 2007].

The main objective of this appendix is to provide a generalization of these results to a wide class of
Hamiltonian equations. Indeed, the approaches in [Kapitula and Sandstede 1998; Gesztesy et al. 2000]
seem specific to the problem. In addition, it is not clear whether the computations in [Gesztesy et al.
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2000; Di Menza and Gallo 2007] can be extended to other types of equations. In particular, in [Chiron
2012] and in the present paper, we have a situation similar to the one studied in [Di Menza and Gallo
2007], namely traveling wave solutions to a nonlinear Schrédinger equation with nonzero condition at
infinity, but, for nonzero propagation speeds, the traveling wave is not real-valued (as it is in [Di Menza
and Gallo 2007] for stationary waves or for bound state solutions), and the block diagonal structure of the
linearized Hamiltonian disappears. An additional difficulty is that, in [Chiron 2012] and the present work,
the limits of the traveling waves at +oc0 and —oo differ.

The proof we give is based on ideas from [Rousset and Tzvetkov 2008; 2009] and makes very few
spectral assumptions on &.

Assumption A. The spectrum of & consists in a finite number (possibly zero) of nonpositive eigenvalues
—[1, ..., —Hg in (=00, 0], each one with finite multiplicity, and the rest of the spectrum is positive
and bounded away from 0. Furthermore, for any 1 < k < ¢, we have ker(¥£ + ur) C D($) and
Jlker(£ + ug)] C D(¥). Finally, there exists tg € [0, +00) such that oes($£) = {i 0, ¥ € R, || > To}.

The first hypothesis on the location of the spectrum of & is quite weak, since it is satisfied when & is
bounded from below and has essential spectrum positive and bounded away from zero. Indeed, if § > 0 is
such that ges5(£) C [28, +00), then the eigenvalues of & in (—oo, §] are isolated, of finite multiplicity,
and are bounded from below by assumption. The second hypothesis ker(£ + ) C D(£$) is a regularity
assumption on the eigenvectors.

Let us recall that Theorem 25 ensures that the number of eigenvalues (with algebraic multiplicities) of
$ in the right half-space {Re > 0} is less than or equal to the number of negative eigenvalues of £, and
hence is finite under Assumption A. Let us now state our main result, the proof of which is given starting
on page 1413.

Theorem B.4. We make Assumption A and suppose that $& generates a continuous semigroup. Then,
for any t € (0, +00), the spectral mapping holds: o (e'¥¥c)\ {0} = ') Furthermore, defining

Yo = sup{Re(/\), Aeoa([$&]c) N{Re > O}} € [0, +00),
for any B > 0, there exists M(B) > 0 such that, for anyt > 0, we have
I Nl ey < M(B)TOTPY.
Assume in addition yo > 0 and define
m= max{algebraic multiplicity of A, A € 6 ([$¥]c) s.t. ReA = )/0} e N*,
Then, there exists Mo > 0 such that, for any t > 0, we have
||et}$||$c(%) < Mo(1 + 1) Le¥ot,

In particular, Theorem B.4 provides a very simple proof of the spectral mapping theorem used in
[Gesztesy et al. 2000; Di Menza and Gallo 2007]. Indeed, the self-adjoint operator & involved in these
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ET
2= (% 5,):

and both ¥, &, have at most two nonnegative eigenvalues. More generally, if £; and &, are closed

papers is block diagonal:

self-adjoint operators on X verifying Assumption A and if N': X — X is a linear bounded operator which
is compact with respect to &£1 and ¥,, then the self-adjoint operator

£ N
7= 2)
also satisfies Assumption A. Indeed, & is bounded from below (since N is bounded) and its essential
spectrum is Oess(£L1) U 0ess(£2) C [§, +00) for some positive §, since N is compact with respect to £
and ¥5. In [Kapitula and Sandstede 1998, Section 7.1; Georgiev and Ohta 2012, Proposition 10], a
spectral mapping theorem is used for such an operator. In [Kapitula and Sandstede 1998], the specific

algebra of the problem was used, and for [Georgiev and Ohta 2012], the proof relies on the arguments in
[Gesztesy et al. 2000], but here again, in both cases, we may use Theorem B.4 to show the same result.

Passing from linear to nonlinear instability.
Semilinear type models. We start with a classical result for “semilinear” equations, proved on page 1416.

Theorem B.5. Let X be a real Hilbert space, and consider an evolution equation of the form

d
d_lt) =dv + P(v),

where ® : X — X is a locally Lipschitz mapping satisfying ®(v) = @(||v||)2() asv —> 0and A is a
linear operator which generates a semigroup. We assume that Ac : D(Ac) C X¢c — Xc¢ has an unstable
eigenvalue in the right half-plane {Re > 0} and a finite number of eigenvalues in {Re > 0}. We define

Yo = sup{Re(n), p € o ([$%]c) N {Re > 0}} € (0, +00)

and fix A € o (sd¢) with Re(L) = yo and an associated eigenvector we € D(Ac) such that ||Re(we)|x = 1.
Assume furthermore that there exist 0 < B < yg and My > 0 such that

e ey < Moo +PY.

Then, 0 is an unstable solution. More precisely, there exist K > 0, g9 > 0 and ¢ > 0 such that, for any
0 < 8§ < 8, the solution v with initial datum v'™ = § Re(wc) € D(sA) exists at least on [0,1n(2e0/8)/yo]
and satisfies, for 0 <t <1In(2e9/8)/ o0,

[v(t) — 8§ Re(e*we)|lx < K822 and ||v(1)||x > 8e'70 — K§2e?70.

In particular, for 0 < ¢ < g9, we see the instability for t = (1/y0)In(2e/68). If Y is a Banach space
containing X and with continuous imbedding X — Y , the trivial solution 0 is also unstable from X to Y.
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Let us observe that it is always possible to choose the (complex) eigenvector w so that Re(wg) # 0
since, for any 0 € R, e'%w is also an eigenvector. The following corollary deals with the orbital instability.
We recall that, under Assumption A, [$¥]¢ has a finite number of eigenvalues in {Re > 0}.

Corollary B.6. We make Assumption A and suppose that $& generates a continuous semigroup. Let Y
be a Banach space containing ¥ and with continuous imbedding ¥ — Y. Assume moreover that [$F]c
has at least one eigenvalue in {Re > 0} and choose A € C with

Re(A) = yo = max{Re(u), u € o([$<£]c) N{Re > 0}} € (0, +00)

and we € D(dg) an associated eigenvector such that |Re(we)||e = 1. We assume moreover that
M ={T(v, g)Pw,. ® €R, g € G} is a ' submanifold of X. We finally suppose that the equation (%) is
semilinear in the sense that there exists ® : X — X locally Lipschitz continuous such that ®(v) = O(||v ||92€)
as v — 0 and

J(E' =0+ Q") (o, +v) = J(E" — 0+ 0") ($0,)[v] + P(v).

Then, there exist K > 0, g9 > 0 and 8o > 0, depending only on Re(wg) and M, with the following
properties. For any 0 < 8 < 8, the solution u to (%) with initial datum u™ = ¢,,, + § Re(wc) € D(s4)
exists at least on [0,1n(2e9/8)/ o] and satisfies, for 0 <t <In(2g9/8)/yo,

8
distey (u(2), 9) > Ee‘m — K§%e2170,
In particular, the “bound state” solution T (w«t)}y, is nonlinearly orbitally unstable from & to Y and,
for0 <& <egg/K, we see the instability for t = (1/y0) In(2Ke/$).

In [Henry et al. 1982], a similar assertion is made for the orbital instability in the remark after Theorem 2
there, but with Y = %. For applications to PDEs, the space & may be a Sobolev space H®, and Y a
space like L2 or L for instance. The framework of [Grillakis et al. 1987] is the single energy space
(for instance H '), but an instability result established by tracking exponentially growing modes allows
proving instability from the regular space ¥ (H!) to the nonregular space ¥ (L? or L™°). Here, we may
obtain instability in L2,

Remark B.7. In the framework of [ibid.], where a Liapounov-type functional is used, it follows that the
instability is seen for a time at most equal to Ke/82, where K is some positive constant. This timescale
is much larger than the natural one (1/y9) In(2K¢/$).

Some applications. We may apply our result to the nonlinear Schrédinger equation
i0; W+ AW 4+ Uf(|U]?) =0, (NLS)
or the nonlinear Klein—Gordon equation
W =AW+ Uf(|¥]?) (NLKG)

in R4. We shall consider a nonlinearity f at least !, so that we are in the framework of [ibid.].
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* A bound state solution for these two equations is a particular solution of the form U(z) = e/’ ¢,,. The
instability is in general linked to the fact that

4 |pw|?> dx <0 for (NLS), resp. 4 (a) / || dx) <0 for (NLKG).

dw Jga dw R

The existence of at least one unstable eigenvalue has been shown under this assumption by [Grillakis
1988] for radial bound states with an arbitrary number of nodes and in [Grillakis et al. 1990] for radial
ground states. Corollary B.6 may be applied with ¥ = H*(R?), where s € N, s > d /2 and assuming that
the nonlinearity satisfies f € €512, and ¥ = L2(R%) or L (R%). The result in [Mizumachi 2006] shows
the instability of linearly unstable bound states for (NLS) (in dimension d = 2) with f (o) = o?~1/2
by showing the exponential growth of an unstable eigenmode. Our result gives a simple proof of this
result, but restricted to the sufficiently smooth cases, namely p an odd integer or p > 5+2s > 5+ d. For
nonsmooth nonlinearities, the situation is more delicate (see [Mizumachi 2006]). An alternative approach
is to combine Strichartz estimates with the growth estimate on the semigroup e’#%
as in [Georgiev and Ohta 2012].

given in Theorem B.4,

¢ Corollary B.6 also applies to the discrete nonlinear Schrodinger equation
10Uy +e(Wyp1 —2W, + W, )+, f(|¥,]>) =0 forallneZ, (DNLS)

as studied in [Melvin et al. 2008] with the saturated nonlinearity f(0) = B/(1 + o), B > 0 (existence of
traveling wave solution) and in [Fitrakis et al. 2007] (defocusing cubic DNLS, i.e., f(0) = —Bo for some
B > 0). The numerical analysis in [Fitrakis et al. 2007] shows the existence of linearly unstable bound
state solutions. The traveling wave solutions numerically obtained in [Melvin et al. 2008] are linearly
stable, but it may happen that, for other nonlinearities f, some are linearly unstable.

Quasilinear PDEs. For quasilinear problems, we shall not make restrictions on the smoothness of the
nonlinearity. The result relies on the strategy of E. Grenier [2000] and [Rousset and Tzvetkov 2008;
2009]. We consider the evolution equation

Z—l: = J(Lou + VF(u)) (E)

for u : R? — RY, where F € € (R, R), with the following hypotheses. The operator J is a Fourier
multiplier, skew-symmetric on L2, into and with domain containing H . There exists o > 0 such that the
operator Lg is a Fourier multiplier with domain containing H 2%, symmetric and having a self-adjoint
realization on Lz([R{d, RY). Moreover, for some C > 0, the operator L satisfies

1
Ellullﬁo < (Lou,u)r> = Cllull3o.

The framework proposed in [Rousset and Tzvetkov 2008] was for Lo coercive in H 1. that is, 0 = 1.
For the examples below, we shall have ¢ = 1/2 or o = 2, which requires very few modifications to the
proof of [ibid.]. We still assume that, for some group G, there exists a unitary representation of G on &,
T:G— 4% (%), leaving the equation (E) invariant.
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We consider a stationary solution of the evolution equation (E), that is, some Q € H*°(R?,R") such
that Lo Q + V F(Q) = 0. We are interested in the stability of this solution. We assume that the commutator
[J,V2F(Q)] is bounded in L2, which is the case when J is bounded in L2 or when d = 1 and J = 0.
We suppose that, for the problem

ou

5= J(Lou +VFu® +u)—VFu® +G),
where u? is smooth, bounded as well as its derivatives and G € €(R, H®) for every s, we have local
well-posedness for s large enough: there exists a time 7" > 0 and a unique solution in €([0, '], H*). We
moreover assume that, for some continuous nondecreasing function « : R4 — Ry with (0) = 0, the

tame estimate
2 2
|05V F(w + v) [}, 07v) 2] < k(lwllws+i.00 + [0llz) 011
with || <s, holds true. In order to control high-order derivatives, we finally require that, for s large
enough, there exist a self-adjoint operator My and Cy such that
2 2

|(Msu. v) 2| < Csllullaslvllms. Msu,w)p2 = [Jullgs — Csllullgs—mineo1)

and
Re(JLu,Msu) 2 < Cs|lu||gs||u|| gs—minto.1)

(for a criterion which ensures the existence of such a multiplier, see Lemma 5.1 in [ibid.]).

Adapting the strategy of [Rousset and Tzvetkov 2008; 2009], we may deduce the following result.
Since the proof is very similar, we omit it.

Theorem B.8. We make the above assumptions and assume moreover that Lo + V2 F(Q) satisfies
Assumption A in L?. We assume furthermore that [J (Lo + V2 F(Q))]c has an unstable eigenvalue in the
right half-plane {Re > 0}, define

Yo = sup{Re(/\), reo([J(Lo+ V2F(Q))lc) N{Re > O}} € (0, +00)

and fix A € o([J(Lo + V2F(Q))]c) satisfying Re(A) = yo and an associated eigenvector we €
D([J(Lo + V2F(Q))]c) such that |Re(wc)||ggs = 1. There exists so € N such that, if s > sg, Q
is nonlinearly unstable from H® to L? and to L™ there exist K > 0, g9 > 0 and 8¢ > 0 such that, for
any 0 < 8 < 8o, the H® solution u to (E) with initial datum u™ = Q + § Re(wc) € H* exists at least on
[0,1n(2e0/68)/yo] and satisfies, for 0 <t <1In(2eo/8)/y0,

|lu(r)—Q -6 Re(eme)HHs < [(526%3/0;

hence
lu(t)— Ol 2 = 8e'70 — K822 and |u(t) — Qoo > 8e'V0 — K270,

If, in addition, Mt = {T(g) 0, g € G} is a €' submanifold of H®, then we also have
disty 2 (u(t), M) > Ke'7° — K§2e27°  and  distzoo (u(t), M) > K8e'V0 — K270,
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In particular, for 0 <& < gg/ K, we see the nonlinear orbital instability for t = (1/y9) In(2K¢e/$).

Some applications to nonlinear dispersive wave equations. Some model quasilinear equations are given
by wave equations (in one space dimension) such as the generalized Korteweg—de Vries equation

A+ 3x(f () +d3u =0, (gKdV)

the generalized regularized Korteweg—de Vries equation, also called Benjamin—Bona—Mahony equation
or Peregrine equation when f(u) = u2/2,

dput + Oxu + 05 (f () — 9,0%u = 0, (gBBM)
the generalized regularized Boussinesq equation
07w — 3w — 0%(f (w)) — 070%u =0. (grBsq)

Each of these equations admits a nontrivial solitary wave solution u(¢, x) = U.(x —ct) for ¢ in (0, +00),
(1, 4+00) and (—oo0, —1) U (1, +00), respectively. For these solitary wave solutions, the momentum is,
respectively,

P(UC):/ U2 dx = ||Uc|3,. P(UC)Z/U3+(axUC)2dx, P(UC):c[UCZ—i-(axUC)zdx.
R R R

The existence of exactly one unstable eigenvalue has been shown with the use of an Evans function by
R. Pego and M. Weinstein [1992] for these three equations under the condition dP(U,)/dc < 0. Lopes
[2002] also gives a linear instability result. Equations (gBBM) and (grBsq) turn out to be semilinear due
to the regularization effect. Indeed, they may be written

dou+(1—02)1xu+(1-02)"10,(f(w) =0, 2u—(1-02)"10%u—(1-02)"192(f(u)) =0.

Therefore, Corollary B.6 applies to these two models and this shows the nonlinear instability when linear
instability holds.

In [Lin 2008], some generalizations of the equations (gKdV), (gBBM) and (grBsq) have been proposed
that take into account pseudodifferential operators. These are, respectively,

0ru 4 0 (f(u)) — dxMu =0, @
deu + xu + 0x (f (w)) + dpMu =0 D)

and
P u—02u — 2(f(u)) + 9% Mu = 0. (IIT)

Here, /M is a Fourier multiplier of symbol A Mw = b (here, * denotes the Fourier transform). We
assume Jl > 0 (otherwise, see [ibid.]). When Jl = —8)26, these equations reduce to (gKdV), (gBBM) and
(grBsq), respectively. The Benjamin—Ono equation (ML = |€]), the Smith equation (M= /1+E2—1)and
the intermediate long wave (or Whitham) equation (M = ¢/ tanh(§H)—1/H, for some constant H > 0)
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are common models of dispersive wave equations that are of type (I). We refer to [ibid.] for references on
these models and the existence of solitary waves. The associated momentum is

P(U;) = / UZ2dx = ||Uc|?5,  Pu(Ue) = |(1+ ) 2Uc|?5,  Pm(Ue) = || (1 + ) /2Uc |2,
R

For these models, Evans function type arguments do not work since we no longer have a differential
equation (it is nonlocal). The paper [ibid.] proposes a different approach than the Evans function technique
for establishing the existence of unstable eigenvalues. However, it is not completely clear whether this
method extends easily to the case of systems such as the Euler—Korteweg system (EK) (given at the
beginning of Section 5A).

Theorem B.9 [Lin 2008]. We consider one of the equations (1), (I1) or (II1) with f of class ¢! satisfying
()= f'(0)=0and | f(u)| > |u| for |u| - +o0. We assume moreover that M is even, nonnegative, and
satisfies, for somem > 1,0 <lim , A?L(é)/%‘m <limy oo .AA/L(S)/E'” < 00. Assume that c — ¢ = U, (x—ct)
is a €' branch of traveling wave solution to (1), () or (IIl) with U, € H m/ 2(R) defined near c« and
suppose that the linearized operator & has exactly one negative eigenvalue, that ker & is spanned by
0xUe, and that (dP(U;)/dc)|c=c, <O0. Then, U, is linearly unstable.

It is not easy to determine whether the hypotheses of Theorem B.9 hold true when Jit is not a (differential)
Sturm-Liouville operator. See however [Albert 1992] on this question. It is clear that, if the assumptions
of Theorem B.9 are satisfied, then Assumption A is also satisfied. As for the (gBBM) and the (grBsq)
equations, the equations (II) and (III) turn out to be semilinear; thus we may prove nonlinear orbital
instability by applying Corollary B.6.

The Kawahara equation (or fifth-order KdV equation)
A+ 0x (f(u)) +adu + Bd3u =0, (K)

with o, B # 0 two real constants, is another relevant dispersive model. For this equation, it may happen
that the linearized equation around the solitary wave has more than one negative eigenvalue, in which
case [Grillakis et al. 1987; 1990; Lopes 2002; Lin 2008] do not give a clear necessary and sufficient
condition for stability. T. Bridges and G. Derks [2002] give a sufficient condition for linear instability for
solitary wave solutions, but also for other types of traveling solutions. This condition is probably not
necessary since it may happen that there exist at least two unstable eigenvalues, or two complex conjugate
eigenvalues.

Instead of stating a general result for nonlinear orbital instability, we shall consider several model cases
on which we will verify the hypotheses of Theorem B.8, in particular the question of the existence of the
multiplier M.

Proposition B.10. We consider the equation (1), namely

deu + 0x (f (1)) — dxMu =0,
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with f of class €1 satisfying £(0) = f'(0) = 0 and | f(u)| > |u| for |u| — +o0c. We assume that A is
one of the following functions:

—£2 (KdV); E*+af? (Kawahara); |&| (Benjamin—Ono);

1
m —H (intermediate long wave); /1 +&2—1 (Smith).

There exists so > 0 such that, if there exists ¢ € R such that (1) has a nontrivial solitary wave U, € L?
which is linearly unstable, then, for any s > sg, it is also nonlinearly unstable from H® to HS, to L? and
to L™°.

By application of Theorem B.8, we are thus able to show the nonlinear instability from H* to L?
or L*° by tracking the exponentially growing mode (this question was left open in [Lin 2008] and also in
[Lopes 2002]). In particular, we obtain the L2 nonlinear instability of the linearly unstable solitary waves
for these models.

Proof. All the assumptions for Theorem B.8 for these types of models are satisfied in Section 8.1 in
[Rousset and Tzvetkov 2008], except the existence of the multiplier M.
For the KdV equation, where 0 = 1, we shall take (for s > 2 an integer)

SRy 0w

as the computations from [ibid., Section 8.1] show. For the Kawahara equation, with o = 2, we take (for

My = (—1)50%5 +

s > 4 an integer)
142s —{as— —
My = (—1)33" + = (=000 )
and, since the computations are very similar, we omit them. For the Benjamin—Ono equation, we have
JIA/L(S) = |&] and o0 = 1/2, and we will then have to deal with pseudodifferential operators which are
Fourier multipliers with homogeneous symbol. For this type of operator, we shall need some commutator

estimates. We denote by %(w) or w the Fourier transform of w, and % the Fourier multiplier with symbol
—i sgn(§) (this is the Hilbert transform).

Lemma B.11. (i) Ler h € L®(R) with F(M'/2h) € LY(R) (for instance, h € H® (R) for some o > 1).
Then, there exists C > 0 such that, for any v € H'Y?(R),

1 1
[ M2 (hv) = hM2v]| 2y < Cllv]|L2@w).-

(ii) Let h € L (R) with F(M3/2h) € LY(R) (for instance, h € H° (R) for some o > 2). Then, there
exists C > 0 such that, for any v € H3?(R),

3 3 1
|2 {hv} — hit2 v — 2[3h] A2 Hy HLz(R) < CllvlL2m-

(i) Let h € L®(R) with F(dxM /%) € LY (R) (for instance, h € H° (R) for some ¢ > 2). Then, there
exists C > 0 such that, for any v € H3?(R),

|05 M2 (v} — hd M2y = 3[dhl 2] 2 < ClV )22
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Proof. We have
F( M2 (hv) — hMZv) () = / IE12h(E—0)D(0) dE— / C12h(E—0)D() de.
R R
Using the inequality ‘|§|1/2 — |§|1/2‘ < C|e—¢|"/2, we thus obtain
|F(MZ (hv) — hAlZ ) (§)] scA|§—¢|5|ﬁ<s—c)|~|ﬁ(z)|dc=C{|%vt5h)|*|ﬁ|}(s)

and we conclude with the classical convolution estimate L' * L2 C L?. This argument does not provide
the sharpest bound in /, since it involves | F(M'/2h)|| 1, whereas the use of paradifferential calculus
will use only |//||1/2. However, we shall to use this refinement here.

The starting point for the second inequality is

1812 = 1212 = 21212 sen(©) ¢ = )| < Cle—£12.
Using the homogeneity £ = ¢, this is a direct consequence of the easy inequality
‘|9|% —1—2(0—1)‘ <Clo—1]3.
Therefore,
|F (A3 {hv}y — B3 v — 3[0,h] M3 90) () |
= | [lettice ~opier s [ ek - oo dc - [ 311t sener6 - 0he - 00 ¢
<C /R &~ ¢I2 1A~ )1 [3(D)| dE
= CIFUR)| %]
and we conclude as before. For the third inequality, we argue in a similar way with the estimate
iglelz —iglg12 —i31e12 ¢ -] = ClE -l
The proof is complete. O

For the Benjamin—Ono equation, Jf/t(é) =|€|, 0 = 1/2 and the index s will be half an integer: s € N/2.
Therefore, we set s = [s] + {s}, with [s] integer and {s} € {0; 1/2}. Let us define, for s e N/2, s > 1,
_ D00 295 f(Q)95 )i (s} =0,
O R S V()L B U

N

for some real constant y, to be determined later. It is clear that M is self-adjoint on L? and that there
exists Cy > 0 such that

sU,V)r2| = Ly HS HS s, )r2 — Hs —Ls _1-
|(Msu, v) 2| < Csllullas vl and  (Msu.u)z2 > |Jullzs —C IIMIIZS !
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To verify the assumptions for the multiplier My, it remains to study Re(J (Lo + VZF(Q))u, Msu);2.
When {s} =0, i.e., s € N, this quantity is
Re(@x(M+c + f'(Q))u,Msu) 2
= Re(@xMut, (—1)*9%5u) 2 + ys Re(@yMut, M2 35 £/(0)0S M2 u}),
+Re(@x[f'(Q)ul, (—1)*9%u) > + 5 Re(dx [/ (Qul, M2 957 { (Q)05 M2 u}) 2
+ cRe(0xu, Mgu); 2. (B-1)

By skew-adjointness, the first and last scalar products are zero. By integration by parts and the Leibniz
formula, we deduce, since Q € H®,

Re(dx[ /' (Q)u], (—=1)°03°u) 2
=Re(@3"'[f"(Q)u], 05u) 12
<Re(f"(Q)05T u, 95u) 12 + (s + D) Re(dx [ /(D051 05u) 2 + Csllullars ] grs—1
< (s + ) Re@x[f"(Q)15u. 8%u) 2 + Cllull s [[u grs—1.-

Similarly, using the easy estimates ||M'/2v]|;2 < K|[v| z1/2 and [|hv| g1/2 < C(h)||v] g1/2 for h € L™
with F(M'/2h) € L (this is an immediate consequence of Lemma B.11),

ys Re(@x[f/(Q)ul, M2 3571 £/(0)35  MBub) -
— ys(—=1)* ' Re(U2 3L £/ (Q)ul, £1(Q)5 M2 u)
<y (=D Re(UE [ (@)l f/(Q)8 M) + Clul? .

Using Lemma B.11, we deduce [|MY2[f(Q)d5u] — f/(Q)MY235ul| 2 < C(Q)|ullgs; thus

ys Re(@x [ f/(Q)ul, M3 357 {£/(Q)5 ™ M u}) 2
< 75 (=1 Re(/ (@B M 2w, £1(Q)0 B u) 2 + Clull s ul
= 2 (1) Re(Ox £ /(O b, /(@00 iy + C sl oy

2
<Cllul”
H

\)

_y FClullaslull yo—y = Cllullaslul -y

We now turn to the term
s Re(@vlut, 2357/ (Q)05 MZu) 12 = ys (=)™ Re(@u, M3 {£/(Q)35 M2 ) .
Using Lemma B.11, we write
A3 £ F/(0)35 ™ M3y — £7(Q)35 ™ lPu — 30, [f/(Q)MZHL3S M3} ||, < C(Q) 85 M3 u]
= C(O)lull,,

_%’
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which implies

ys Re(@yllat, M2 051 £/(0) 35 M2 u}) 2
< s (=) Re(@, £/(0)35 MUY 2 + 35 (—1) T Re(@, d [f/(Q)MZ (05 M2 u}) 2
+Cllullsllull

1
Noticing that M2 = —32 and /29351412 = 3571 UK = —05 (since M has symbol equal to —i £),
we infer
ys Re(@x M, M2 3571 /()35 M2 u}) 2
< ys(=1)*Re(@u, f' (@) u) 2 + 375(—1)° Re(@u. 3x[ £/ (Q)N8%u) 12 + Cllu| s ]
= ys(=1)* Re(@yu, dx [/ (D3 2 + Cllullars ull sy

1
HS™ 2

by integration by parts.
Reporting these estimates into (B-1), we infer

Re(dx (M + ¢+ f'(Q))u, Msu);2
< (s + 3) Re@x[/"(@)]83u, 9%u) 2 + ys(=1)° Re(@%u, 0x[ /" (Q)]35u) 2 + Clul|ars el -y
Therefore, the choice
ys = (1" s+ 3)
provides the desired control
Re(dx (M + ¢ + /1 (@)u,Msu)p2 < Cllullmsllull sy -
When {s} = 1/2, the computations are similar: (B-1) becomes now
Re(dx (M +c + f(Q))u. Mgu) >
= Re(dyMu, (—1)#125)a); 2 + yg Re(@x e, 381 £/ (0)08Nu}) 2
+Re(@x[f"(Qul. (1)) 12 + ys Re(@x[(Q)u). O f' (@) ) 2
+ ¢ Re(dxu, Msu); 2, (B-2)

and the first and last scalar products still vanish. Moreover, by integration by parts and the Leibniz
formula, we deduce, since Q € H®,

ys Re(dx[ £ (Q)ul, a8 £(0)08Nu}) 12 = ys (DT Re@EIT £ (Q)ul. £/(Q)d )
< ys(=DFIRe(f/(Q)8 u, £7(0)0k ) 12+ C )12,
< ys(=DFI Re @ [£/(@)105 N, £(0)0u) 2+ Cllul| 2,
= Clul = Clul? _y.
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Furthermore,
Re(dx[f'(Q)u]. ()02 ) 1 -
= Re(2 a1+ [ £(Q)u]. a3 -
< Re(dx M2 {f/(0)08u}, 3 M3 u) 2
+ [s] Re(@x 2 {0x[ £/ (@1 ud, 013wy L2 + C gy Wull g
For the second scalar product, we write, by Lemma B.11,
Re(dx M2 (D [f/(0)]08) u}, 8l M2 u) 12
= Re (2 {02 [ /" (Q)135Y uy. Ot 200) 12 + Re(M2 {3 [ £ (0)108Nu}, 8 3 u) 12
= Cllull oy Il ey +Re(@x /(@08 08210 2 + C a3

1 1
< Re(@x[f" (@020, 0RL M2 w) 12 + C ]y s

His1-%

For the first scalar product, we use Lemma B.11 once again:
Re(dx M2 { £(Q)0%Nu}. 8Lt =) 2
< Re( /(@) 9, 383 ) 2 + 3 Re(Ox /(@O M, 9L w) 2+ Cllu oy s
< Re(Dx [ (O 52 u) 2+ C lul oy Il s
As a consequence, since [s] =5 — %
Re(d:[£/(Q)u], (~DM0% ) 2 < (s+ ) Re(@x £/ (10w, M 0) 2 4+ C ull oy e .
We turn finally to the term
ys Re(@tie, 351 £/(0)08Nu}) 2 = ys(~ DI Re(@LLit=u, = { ()0} 12,
and infer, by Lemma B.11,
ysRe(@xllar, 351 £/(0)3Nu}) 12 <y (~DFIRe@E 2, £/(0) 3t 8 Nu) >
+375s(~DMIRe@EMC u, . (Q)2 85y 2+l y s
= ys(=DFIRe@La2u, 0. [ £/ (@M 08y 2 +Clull s
Therefore,
Re(@x(M+c + f'(Q))u,Msu) 2
< (s+ 3+ 5= DI Re@Mou, o[ /(O 0h) 2+ C ]y s

hence choosing ys = (=)= (s 4+ %) gives the result.



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRODINGER EQUATION 1413

It remains to study the cases of the intermediate long wave equation and the Smith equation, for

& 1 /
m—ﬁ, 1+52—1

We denote by Jlg the operator with symbol |£| (the one of the Benjamin—Ono equation), and define M
as for the Benjamin—Ono case (hence with “/A”= Jlp). We observe that, in both cases, M= M— Mg is
bounded on L?. Indeed, its symbol is continuous in R and, for § — o0,

§ 1 § 1

i = o = - = _i —2|&|H
ME) = tanh(EH) H  sgn(f) +0(e2EH)  H — €] 7 + 0([§le )

which L is, respectively,

and
ME) = 1+82—1=[g[\/1+52 =1 =g -1+ 00§,
respectively. In the quantity Re(dx (M + ¢ + f'(Q))u, Mzu);2, we then have to bound from above
the extra term Re (0 (Mu), Msu); 2; that is (using the skew-adjointness for the higher-order derivatives
in M),
Re(y (il y 3 957 /(0095 g ) 2
= o1 Re(@tg (). /(@083 Mg if ds} = 0:
Re(@x (i), ys38 (/' (Q)aTu}) 12 = v (= DFI Re(@TH! (). ()38 u) 2 if {s} = 5.

We then note that, in both cases, one may actually split M= M— My = M¢ + My, where A is the
multiplication by —1/H (respectively, —1) and Jit;, has a symbol which is continuous in R and 0(|&|~1)
at infinity, so that Jl;, is bounded from H° to H° 1 if o > 0. Therefore, when {s} = 0, we easily get

~ 1 1
Re(Dy (M), ys M3 05 f/(Q)05 " MEu}) 2
1 1 1 1
Ys(=1)* T Re(@%llg (leu), /(@)Y Mg u) 2 +ys(=1)" " Re(85Mg (Mpu), /()95 Mgu) L2

1 ~ 1
= 1) Re@ G Jeda /(@05 MG 2 +-Clul? ) < Clul?,

and similarly when {s} = 1/2. Therefore, the estimate
Re(dx (M +c+ f1(@Q)u,Msu)2 < Cllull 1 llullms

remains true for the intermediate long wave equation and the Smith equation. The proof of Proposition B.10
is thus completed by applying Theorem B.9. d

We now turn to the deferred proofs of Theorem B.4, Theorem B.5, and Corollary B.6.

Proof of Theorem B.4. We shall prove the resolvent estimate required in Corollary B.3. Let us consider
A =y +it e C with y # 0 and the resolvent equation ($£ —A)v = X, or

(y +it)v = $L(v) — X. (B-3)
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By hypothesis, the essential spectrum of $& is of the form i [R \ (=¥, +10)]. Moreover, we have seen
that $& has a finite number of eigenvalues in the half-space {Re > 0}; hence, for |t| > 7 sufficiently
large, we know that there exists a unique solution v to (B-3). By taking the scalar product with £(v), we
deduce the conservation law

Y. £())x = —Re(X, £(v))z. (B-4)

By our assumption, there exist a finite (possibly empty) number of eigenvalues in (—00,0], (—u1,...,—tg),
each one of finite multiplicity. For any 1 < k < ¢, we fix an orthonormal basis (xx ¢)1<¢<n, Of the
eigenspace ker(¥f + j1x ). By Assumption A, any eigenvector y ¢ is smooth in the sense that yx ¢ € D(¥)
and $yr ¢ € D(¥).

We then make a spectral orthogonal decomposition

where L(x.¢) = i Xk,¢ and (V4, L(v4))x > 8]v4 ||92€ for some positive §. In the double sum, we have

Ot Xkl T V4,

I MS

a finite number (independent of v) of terms. Inserting this into (B-4) yields

Y I8lv4+ 17 < 17184, Lv4))x < 5[|Re(2, L)l + 2 Mk|ak,€|2:| <K[Zxllvle+K Yl el
kt kL

Using the inequality ab < sa? + b?/(4¢) with a = ||v|jx, b = K||Z||# and & = |y|§/2, the equality

||v||92€ = |lv+ ||92€ + Zk,e |ozk,e|2 and incorporating the term |y|5||v+ ||§3/2 in the left-hand side, we infer

|V|

ol lE < K'Y law e + K1) (B-5)

k.l
On the other hand, since yx ¢ € D($) and $xx ¢ € D(¥) by Assumption A, taking the scalar product
of (B-1) with yg ¢ provides
(v +iv)ak,e = =, LI xic,0)x — (X, xk,0)z-
Consequently,
(vl +ltDlek,el = Kiellvlle + KX ]2

thus

(yI+1TD* ) lewel> < KollvlF + KIZ(3 = Ko Y lewel> + K v+ 5 + K23
k.t k.t

which implies, if || > 1 + /Ko —|y],

Z' ||v+||§g+||2||§g
(I)/|+|f|)2
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Reporting this into (B-5) gives
2 2
v +||Z
sl < s J B+ IR
(Iyl+1zD)?* =Ko
If [z| = 14 /Ko +4KK'/|y|6 —|y|, we deduce

)
Bl < (57+

lvis

5 +K"[IZ]3-

K'K
(Iyl+1z)? =K

0)||z||§51<1||2||§e,

and it follows that
2 2 2 2
lIF = v I3 + Y lewel” < K213
k.l

where K5 does not depend on |z| (large enough), as wished.

The proof of the first semigroup estimate then follows easily; see, for instance, Proposition 2 in [Priiss
1984].

Proof of the semigroup estimate when yy > 0. Here, we assume y¢ > 0. As a consequence, the spectrum
of [$<]c is of the form o3 U 0y, where oess([$Z]c) C 05 C {Re <0} and @ # 0, C {Re > 0} consists in a
finite number of eigenvalues of finite algebraic multiplicities. Therefore, we may define (see, e.g., [Kato
1976; Hislop and Sigal 1996]) the spectral Riesz projection
=57 e az,

where I' is any simple (positively oriented) closed curve enclosing g,. As a consequence, [P is bounded,
commutes with [$&]c on D([$¥]c) and satisfies o ([$L]cP) = oy, 0 ([$¥]c(Id —P)) = 0. Moreover,
[$£]cP is bounded, and hence generates a continuous semigroup, et [F]cP given by the exponential

series N
gsicr _ 3 (AP
— n! '

In addition, [$&£]c(Id —P) = [$L]c — [$£]cP also generates a continuous semigroup and we have
ot F%le — ot FEP I[FF]c(d—P)

The semigroup generated by the bounded operator [$£]cP is easily analyzed. We shall now apply the
spectral mapping theorem of J. Priiss (Theorem B.2) to [$&]c(Id —P) in order to control the growth of
its norm. By Corollary B.3, it suffices to estimate its resolvent [[$%£]c(Id —P) — (y +it)]~! for large |7|
(note that 0 ([$L]c(Id—P)) = a5 C {Re < 0}). If ¥ € ¥¢ and |7] is large, it is clear that the solution
ue€¥c to[[$L]c(Id—P) — (y +it)]u = X is given by

w=[9%c —(y +i0]  (d-P)S - —_ps;
y+it

thus, for |t]| large,

[19Ld—B) -+ D1 |y, ey < NILle~ DT g, g TPl 0 + 1Pl e

ly +it|
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is bounded. Consequently, by Theorem B.2 and since o C {Re < 0}, o (e [#¥1c(d—=P)) — oto([§£]c(d—F)) —
el% C D(O, 1). It follows that, for any € > 0, there exists K > 0 such that

IR o ) < KeeS! forall > 0.

Since e!l#41cP i given by the exponential series, we also have the optimal estimate
IR o 0y < Ko(1+1)" 1" forallt >0
” i’3( (%C)
by definition of m. We conclude by taking € = y,/2 for instance.
y y g VY

Proof of Theorem B.5. Since s generates a continuous semigroup, v is a solution to d;v = Hv + O(v)
if and only if it is a mild solution:

t
v(t) = ety 4 / P (v(1)) d.
0

There exists ro > 0 such that |®(v)||lx < M|v[|} if |lv]lx < ro. We choose v'" = §Rew, where
IRewl|x = 1 and w is an eigenvector for the eigenvalue A, and write the solution under the form
v =e*yi" + § = Re(e' w) 4 7. If A € R, we can choose w € D(sd) C D(s¢). Then,

5(r) = /0 t U D4P(§Re(eMw) + 3(1)) d .

Let us define r{ = min(ro, (Yo — ,3)/(2MM0)) and let T > 0 be the maximal time such that T <
In(r/(28))/yo and ||ti(7)|lx < r1/2in [0, T), where 0 < r < r; will be determined later. We shall work
for 0 <t < T, so that |§ Re(e"*w) + §()||x < 8€’Y° 4+ r1/2 <ry <ro. Then,

t
15()] < [0 1|, x)M |18 Re(e™ w) + B(v)|* dt

t
<2MoM / e TAI=D) (5262710 1 |15(1) ) d <

2M0M
)/0—,3

=20 52 2wo+r1MoM/ G+ 5(0)|x d,

since B < yo. Applying now the Gronwall inequality to e~"0+B)||5(1)||x then gives, since MoMr; <

Yo — B,
2MoM 2riMEM?

”7’70)”)(E |:VO_18 (yo—ﬁ)(Vo—,B_rlMOM)

We now choose 7 = /r; /K, so that the right-hand side is < Kr2/4 < ry/2, and this implies that u exists
at least on [0, In(r/(28))/yo]. In addition, for0 <t < T,

]8262”/0 — K82e2ty0'

@) 1x = 870 — [li(0)[x = 8e'° — K527,

as desired. We conclude choosing g9 > 0 so small that 29 — K 8% > gp.
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Proof of Corollary B.6. We pick some 0 < 8 < yo (for instance 8 = yo/2) in order to have the semigroup
estimate required in Theorem B.5. The solution u(¢) = T (wx«!)(¢w, + v(t)) satisfies, for 0 < ¢ <
vo ' In(2¢0/9),

o)l = I T (~wx0)u (1) = (Po, +SRe(e w)) |l < K577
Hence, T (—wxt)u(t) remains at distance < Keg from ¢, € 1 and therefore
disty (u(z), M) > disty (5§ Re(e*w), M — ¢) — K§2270.

Assume A € R. Then, we observe that the straight line R > 6 — 6w is transverse to the tangent space
Ty of the manifold 91, since w is an eigenvector of $<£ for A # 0, and hence does not belong to the
kernel of &. Therefore, disty(Ow, M — ¢) > |6]/ K for small |6|. Thus,

1
disty (u(1), M) > K—Sem — K8%e?170,
1
If A e C\R, the equation [$<]c(w) = Aw splits as $£(Re w) =Re(A) Re w—Im(L) Imw and $L(Im w) =
Im(A) Re w + Re(A) Im w. Therefore, Re w and Im w do not belong to ker(&¥). Consequently, the surface
C > 0 +— Re(Bw) is transverse to the tangent space Ty of the manifold 91, and we conclude as before
that

1
disty (u(2), M) > ?&ﬂo — K§2e2170,
1
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SEMICLASSICAL MEASURES FOR INHOMOGENEOUS
SCHRODINGER EQUATIONS ON TORI

NICOLAS BURQ

The purpose of this note is to investigate the high-frequency behavior of solutions to linear Schrodinger
equations. More precisely, Bourgain (1997) and Anantharaman and Macia (2011) proved that any weak-
limit of the square density of solutions to the time-dependent homogeneous Schrodinger equation is
absolutely continuous with respect to the Lebesgue measure on R x T¢. The contribution of this article is
that the same result automatically holds for nonhomogeneous Schrodinger equations, which allows for
abstract potential type perturbations of the Laplace operator.

1. Introduction

In this note we are interested in understanding the high-frequency behavior of solutions of linear
Schrédinger equations on tori, T¢ = R?/Z¢. Consider a sequence of initial data (i), bounded in
L*(T%) and denote by (u,) the sequence of solutions to the Schrédinger equation and by (v,) their
concentration measures given by

U, = e”Auo,n, v, = |un|2(t, x)dtdx.

The sequence v, on R, x T4 is bounded (in mass) on any time interval (0, T') by T'sup, |luo., ||i2 (Td)" The
following result was proved in [Bourgain 1997, Remark, page 108] and later, using a completely different
approach that follows a more geometric path, in [Anantharaman and Macia 2011, Theorem 1]. (See also

[Jakobson 1997; Macia 2011; Burq and Zworski 2004; 2005;Aissiou et al. 2011] for related works.)

Theorem 1. Any weak-* limit of the sequence (vy,) is absolutely continuous with respect to the Lebesgue
measure dt dx on R, x Tq.

Remark 1.1. Actually, in [Anantharaman and Macia 2011] a more precise description of the possible
limits is given and the result is proved in the case of Schrédinger operators A+ V (¢, x), if V € L°°(R; x )
is also continuous except possibly on a set of (spacetime) Lebesgue measure 0.

The purpose of this note is to show that the result in Theorem 1 extends to the case of solutions to the
nonhomogeneous Schrodinger equation, and, consequently, to the case of Schrodinger operators A + V
where V € LllOC
equation). Let us emphasize that our approach uses no particular property of the Laplace operator on tori

(R;; L(L%2(T?))) (we also give as an illustration an application to a simple nonlinear

The author was partially supported by the Agence Nationale de la Recherche, project NOSEVOL, 2011 BS01019 01.
MSC2010: 35LXX.
Keywords: defect-measures, Schrodinger equations.
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other than selfadjointness (to get L? bounds for the time evolution) and the fact that Theorem 1 holds,
which is used as a black box, and establishes an abstract link between the study of weak-* limits of
solutions of the homogeneous and inhomogeneous Schrodinger equations.

2. Inhomogeneous Schriodinger equations

Definition 2.1. Let 7 > 0. For any sequence (u,) bounded in L2((0,T) x T, we say that the sequence
(uy,) satisfies property (AC7) if any weak-* limit v of (v,) is absolutely continuous with respect to the
Lebesgue measure on (0, T) x T¢.

Theorem 2. Let (u, ) and (f,) be two sequences bounded in L2(T4) and L} (R,; L%(T%)), respectively.

loc
Let u,, be the solution of

. : 1" s
W0+ Dun = fr,  tnlizo =ttno, un=e"ttp 0+ / e TV f(s) ds.
0

Then, for any T > 0, the sequence (u,), which is clearly bounded in L>((0, T) x T?) by

1/2
T SUP(||un,0||L2(1Td) + ||fn||L1((o,T);L2(1rd))),
n

satisfies property (ACT).

Corollary 2.2. Let V € LIIOC(IR,; L(L*(T?))) (for example, V can be a potential in LIIOC(RI; L>®(T?))

acting by pointwise multiplication). For any sequence (U, 0)neN bounded in L*(T?), let (uy,) be the
sequence of the unique solutions in C O(R; L2(T?)) of

@0 +A+V()u, =0, unlt:0=un,0-
Then the sequence (u,) satisfies the property (ACt) forany T > 0.

Indeed, since
d ) . . ~
o |1y ”%2(?/) =2R0u, u)p2(ray = 2R Au+iVu, u)2ray = =23(Vu, u) 1214y,
by Gronwall’s inequality, we obtain

2 2 0% d
||un(t)”L2(—|Td) S ”u”’O”LZ(W)efo Il (S)”g(LZ(-[rd> S’

and, consequently, the sequence (f;,,) = (—V (¢)u,) is clearly bounded in Ll (R;; L>*(T%)) and we can

loc

apply Theorem 2.

Remark 2.3. Any time independent V € £(L?(T¢)) satisfies the assumptions above, and, consequently,
if (u,) is a sequence of L? normalized eigenfunctions of A + V, it follows from Corollary 2.2 that any
weak-s limit of |u,|*(x) dx is absolutely continuous with respect to the Lebesgue measure on T¢. The
proof we present below seems to be intrinsically time-dependent. However, it would be interesting to
obtain a proof of this result avoiding the detour via the study of the time-dependent Schrédinger equation.
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Proof of Theorem 2. If (u,,) satisfies property (ACr), then the sequence (u, + v,) satisfies property (ACr)
if and only if the sequence (v,) satisfies property (ACr). This is because if lun|? dt dx and |v,|? dt dx
converge weakly to v and u, respectively, then, according to the Cauchy—Schwarz inequality, any weak-
limit of |u, + v,|* dt dx is absolutely continuous with respect to v + 1. The following result shows that
the set of sequences satisfying property (AC7) is closed in some weak-strong topology.

Lemma 2.4. Consider (u,) bounded in L*((0, T) x T?). Assume that there exists for any k e N a sequence
(u,(lk))neN such that

(1) for any k, the sequence (u,(qk) )neN Satisfies property (ACrT);

(2) the sequences (u,&")),,eN are approximating the sequence (u,) in the sense that

lim limsup [lu, —u® || 12¢0.7)x12) = O. 2-1)
k—+00 p— 400

Then the sequence (u,)neN satisfies property (ACr).

Proof. Indeed, for any € > 0, let kg be such that, for any k > ko,

lim sup ||Z/tn — Un,k ||L2((O,T)XT2) < €.
n

Then, if v and v© are weak-* limits of the sequences (u,),eN and (u,(lk))neN, respectively, associated to
the same subsequence n, — +00, we have, for any f € C%((0, T) x T?) and large n,

/ 2 |y, | x dx dt 5/ 2(jun, —ulOP + |ul?) dx di
0,7)xT 0,T)xT
< 262+2/ 22|u§,’<p>|2)x dx dt. (2-2)
0,T)xT:
Passing to the limit p — 400, we obtain

(v, x) <2e* 420%™, %),

On the other hand, according to the Riesz theorem (see, for example, [Rudin 1987, Theorem 2.14]), the
measures v, v®) which are defined on the Borelian o-algebra, JM, are regular, and, consequently,

VEeM, v(E)y= sup v(U)= inf v(U),
Fclosed, FCE Uopen, ECU 03
VEed, vO(EY= sup wOWw)= inf wH).
Fclosed, FCE Uopen, ECU

For any E € A, taking F, C E and E C O, such that

. . k k
lim v(F,) =v(E), pEIEOO v®(0,) =vP(E)

p—>+o0
and y, € Co((0, 1) x T4: [0, 1]) is equal to 1 on F), and supported in O, we obtain, according to (2-2),

V(E) <2e? + 200 (E).
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Now consider E a subset of (0, T) x T¢-Lebesgue measure 0. Since by assumption v® is absolutely
continuous with respect to the Lebesgue measure, we have v®)(E) = 0, and hence v(E) < 2¢2. Con-
sequently, since € > 0 can be taken arbitrarily small, we have v(E) = 0, which proves that v is also
absolutely continuous with respect to the Lebesgue measure. O

We come back to the proof of Theorem 2 and fix T > 0. According to Duhamel’s formula,

t
up = e ug, + ll / e TIA £ () ds.
0

According to the remark above, since we know that the sequence (e'’ Auoyn) satisfies property (ACy), it is
enough to prove that the sequence (v,) = ( fot e'1=9) £, (s) ds) satisfies property (AC7). The key point of

the analysis is that if instead of v,, we had

T T
o :/ ez(tfs)Avun(S) ds = eltAgn, o :/ e~isA Vels(A+V)Mn,0(S) ds,
0 0

we could conclude using Theorem 1, because v, is a solution to the homogeneous Schrodinger equation
with initial data the bounded sequence (g,). To pass from v, to v,, we adapt an idea borrowed from
harmonic analysis (the Christ—Kiselev Lemma [2001]) in the simple form written in [Burq and Planchon
2006] (see also [Burq 2011]). Here the idea is to show that the sequence (v,) can be approximated by
other sequences (v,(,k)) in the sense of (2-1) (actually, we get a stronger convergence, as we can replace the
lim sup in (2-1) by a sup), where each (v,(,k)) is a finite sum of solutions of the homogeneous Schrodinger
equation, properly truncated in time, and hence satisfy property (AC7). Let

Il fullLro,1y:221m2)) = €n < C.

We decompose the interval (0, 7') into dyadic pieces on which the L'((0, T); L*>(T¢))-norm of f, is
equal to 27%¢,. For this, we recursively construct (on the index g € N) certain sequences (, 4,,)ge
such that p=L...,

e 0= tO,q,n < tl,q,n < e < l‘zq’q,n =T,

o || fn ”Ll(([p,q.nJp+1.q,n);L2(-|]—2)) =2"9¢c,,

* bpgn=1Ipg—1nforany p=0,..., 20— 1,

Notice that if the function

Gu:t €0, TI=> | fullLio.0): 214y € [0, cal

is strictly increasing, the points ¢, , , are uniquely determined by the relation G, (7, 4.,) = p2~%c,, and
the last condition above is automatic. In the general case, the function G,, (which is clearly nondecreasing)
can have some flat parts, and, consequently, the points 7, , , may not be unique anymore. The last
condition above ensures that the choice made at step g + 1 is consistent with the choice made at step q.
For j =0,...,279 —1, let

Ij,q,n = [t2j,q,n, t2j+1,q,n[v Jj,q,n = [t2j+1,q,n, t2j+2,q,n[s Qj,q,n = Jj,q,n X Ij,q,n-
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T

T

Figure 1. Decomposition of a triangle as a union of disjoint squares.

Notice that

+0029—-1 +00 29—1
(e THs<ty=| || ] Qign=Lz=D_> 1g,,.¢9.
g=0 j=0 q=0 j=0

Now (if we are able to prove that the series in g converges) we have

t T
U, :/ el(l—S)Afn(s) ds = / 1s§l€l(t_S)Afn(S) ds
0 0

40029—1 400 29-1
t—s)A itA
=33 1161“,,1/ T e Fa () ds =Y Liey,, €08 g0 ds,
g=0 j=0 g=0 j=0
with
T A BDjtl.qn A
gj,q,n(x):/ e_“ 1S€1j,q.)lfn(s)dS:/ e_“ fn(s)dsv
0 th,q,n
”gj,q,n”Lz(W) = ”f”“Ll((lzj,q,n,Izj_,_]_q,,,T);Lz(Td)) = Z*qcn.
Let
k 29-1
(k) _ itA
v, = Z Z lics; n€" " 8jg.nds.
q=0 j=0
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(2-4)

(2-5)

Noticing that if a sequence (w),) satisfies property(ACr), then, for any sequences 0 <t , <ty , <7, the
sequence (l;e(, .1, W) satisfies property(ACr), we see that for any k € N, the sequence (v,(,k)) satisfies

property (ACT). On the other hand, since for j # j', 1;c;.

g and 1tEJj/’q_n
according to (2-5),

201
itA itA
Z lies; g€ " 8jqun = sup ey, "8jqnllLe(o.1):02(T0)
j=0 L®((0,T);L2(T4))  0<j=2¢-1
< sup |lgjgnllr2aay <27 ¢y,

0<j<29-1

have disjoint supports, we get,

(2-6)
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As a consequence, we get that the series (2-4) is convergent and
1vn = vl 20,7y 0y < VT e 2™* < €275,

which, according to Lemma 2.4, concludes the proof of Theorem 2. O

3. Anillustration
We consider here the nonlinear Schrodinger equation
(0, +A)u+V@w,Du=0 onT? ul_g=0 (3-1)

where the function z € C +— V(z,t)z € C is globally Lipschitz with respect to the z variable, with a

time-integrable Lipschitz constant; that is, there exists C € L} _(R) such that C(t) > 0 for all ¢ and

loc

[V(z,)z—=V (I, )| <C(t)|z—7Z| forall z,7 €C.
Notice, for example, that the choice V (u, t) = lu|? /(1+e€ |u|?) satisfies these assumptions for any € > 0.

Proposition 3.1. For any ug € L>(T?), there exists a unique solution u € C(R; L*(T%)) to (3-1). Further-
more, there exists a continuous increasing function, F(t), such that, for any ug € L*(T%), the solution u
satisfies

Nl z2cray(2) < F(@)lluollp2(ray- (3-2)

Corollary 3.2. For any sequence of initial data (uo ,) bounded in L3(T9), the sequence (u,) of solutions
to (3-1) satisfies

IV (s Ounll 2y < CONttnll Lo 0.0 L2¢vay) < C @) f @) ltonll 2214y € Lige (Ry),
and, consequently, the sequence (u,) satisfies property (ACt) for any T > 0.

Proof of Proposition 3.1. Let

K :ueL®(0,T); L*(T%) > "®uy + ll/ IV (u(s), s)u(s)) ds.
0

‘We have

T
”K(u)_e”AMO”Lw((O,T);LZ('I]'d)) Sf C(s) dS||M||Loo((o,T);L2(1rd)),
° (3-3)

T
K@)~ KO)qonazan = | C6)dshu=vllimoryiaaey:
0
We obtain that the map K has a unique fixed point on the ball centered on e/’ uq with radius [ugl| 2 (T)
in L®((0, T); L2(T4)), as soon as fo C(s)ds < 5 . This proves the local existence claim. To obtain
existence on any time interval [0, T] we write [0, T] U = 1[tj,tj+1], where we choose t; recursively
such that fé’“ C(s)ds < % Taking ftj_’“ C(s)ds = i for all j < N — 1 gives the bound

T
N < 1+2/ C(s)ds. (3-4)
0
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Then applying the first step recursively gives a solution on [0, T] that, according to (3-4), satisfies

< 2142 f; Cls)ds

T N
el p2cray (T) < 27 [|uoll 2(ra) luoll L2(ra)-

The uniqueness claim in Proposition 3.1 follows now from standard methods. U
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DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION IN
HORIZONTALLY INFINITE DOMAINS

YAN GUO AND IAN TICE

We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded
below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by
the gravity-driven incompressible Navier—Stokes equations, and the effect of surface tension is neglected
on the free surface. The long-time behavior of solutions near equilibrium has been an intriguing question
since the work of Beale (1981).

This is the second in a series of three papers by the authors that answers the question. Here we
consider the case in which the free interface is horizontally infinite; we prove that the problem is globally
well-posed and that solutions decay to equilibrium at an algebraic rate. In particular, the free interface
decays to a flat surface.

Our framework utilizes several techniques, which include

(1) apriori estimates that utilize a “geometric” reformulation of the equations;

(2) atwo-tier energy method that couples the boundedness of high-order energy to the decay of low-order
energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free
interface;

(3) control of both negative and positive Sobolev norms, which enhances interpolation estimates and
allows for the decay of infinite surface waves.

Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

1. Introduction

Formulation of the equations in Eulerian coordinates. We consider a viscous, incompressible fluid
evolving in a moving domain

Q) ={yeZxR|—-b<y3s<n(y,y,D} (1I-D

Here we assume that ¥ = R?. The lower boundary of 2(¢) is assumed to be rigid and given, but the upper
boundary is a free surface that is the graph of the unknown function 7 : £ x R — R. We assume that
b > 0 is a fixed constant, so that the lower boundary is flat. For each ¢, the fluid is described by its velocity

Y. Guo was supported in part by NSF grant 0603815 and Chinese NSF grant 10828103. 1. Tice was supported by an NSF
Postdoctoral Research Fellowship. Both authors were partially supported by the Beijing International Mathematical Research
Center.

MSC2010: primary 35Q30, 35R35, 76D03; secondary 35B40, 76E17.
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and pressure functions (u, p) : Q(t) — R?> x R. We require that (u, p, n) satisfy the gravity-driven
incompressible Navier—Stokes equations in €2 (¢) for ¢ > 0:

ou+u-Vu+Vp=puAu in Q(z),

divu =0 in Q(1),

0/m =u3—udyn—udy,n on{y;=n(yy y2 1)}, (1-2)
(pl — pD(u))v = gnv on {y3 =n(y1, y2, 1)},

u=~0 on {y3; = —b}

for v the outward-pointing unit normal on {y3 = n}, I the 3 x 3 identity matrix, (Du);; = d;u; + 0;u; the
symmetric gradient of u, g > 0 the strength of gravity, and p > 0 the viscosity. The tensor (pI — uD(u))
is known as the viscous stress tensor. The third equation in (1-2) implies that the free surface is advected
with the fluid. Note that in (1-2) we have shifted the gravitational forcing to the boundary and eliminated
the constant atmospheric pressure, pam, in the usual way, by adjusting the actual pressure p according to
p=Dp+gY3— Pam-

The problem is augmented with initial data (uq, no) satisfying certain compatibility conditions, which
for brevity we will not write now. We will assume that ng > —b on X.

Without loss of generality, we may assume that u© = g = 1. Indeed, a standard scaling argument allows
us to scale so that © = g = 1, at the price of multiplying b by a positive constant. This means that, up to
renaming b, we arrive at the above problem with u =g = 1.

The problem (1-2) possesses a natural physical energy. For sufficiently regular solutions, we have an
energy evolution equation that expresses how the change in physical energy is related to the dissipation:

1 1 1 1 1
[owore s [nor+d [ peopas=3 [ woped e a)
Q@) P 0 JQ(s) Q(0) )

The first two integrals constitute the kinetic and potential energies, while the third constitutes the dissipation.
The structure of this energy evolution equation is the basis of the energy method we will use to analyze
(1-2).

Geometric form of the equations. In order to work in a fixed domain, we want to flatten the free surface
via a coordinate transformation. We will not use a Lagrangian coordinate transformation, but rather a
flattening transformation introduced by Beale [1984]. To this end, we consider the fixed domain

Q={xeXxR|—-b<x3 <0}, (1-4)
for which we will write the coordinates as x € 2. We think of ¥ as the upper boundary of €2, and write
¥p, := {x3 = —b} for the lower boundary. We continue to view 7 as a function on £ x R*. We define

n := Pn = harmonic extension of  into the lower half space, (1-5)

where %7 is defined by (A-17). The harmonic extension 7 allows us to flatten the coordinate domain via
the mapping

Q3x > (x1, x2, x3+10(x, )(1 +x3/b)) = P(x, 1) = (y1, y2, y3) € (7). (1-6)
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Note that ®(Z, 1) = {y3 =n(y1, y2, 1)} and ®(-, t)|5, = Idyx,, that is,  maps X to the free surface and
keeps the lower surface fixed. We have

100 1 0 —AK
vo=[01 0 and A:=vVe HT'=|01 —BK (1-7)
A B J 0 K
for
A = d,7jb, B = &b,
J=1+i/b+dnb, K=J", (1-8)
b= (1+x3/b).

Here J = det V® is the Jacobian of the coordinate transformation.

If n is sufficiently small (in an appropriate Sobolev space), the mapping P is a diffeomorphism. This
allows us to transform the problem to one on the fixed spatial domain €2 for # > 0. In the new coordinates,
the PDE (1-2) becomes

du— dbKdsu+u-Vyu —Aqu+Vyp=0 inQ,

divgu=20 in £,

S (p, )N =nN on X, (1-9)
on=u-N on X,

u=>0 on X,

u(x, 0) = up(x), n(x’, 0) = no(x").

Here we have written the differential operators Vg, divy, and A4 with their actions given by (Vg f); 1=
A;ijdj f, divg X 1= o4;;0;X;, and Ay f = divy Vy f for appropriate f and X; for u - Vyu we mean
(u - Vgu); :=u;joru;. We have also written N' := —01ne; — dnep + e3 for the nonunit normal to
{y3=n(y1, y2, 1)}, and we write Sq(p, u) = (pI —Dyu) for the stress tensor, where [ is the 3 x 3 identity
matrix and (Dyu);; = A 0xuj + A jidxu; is the symmetric si-gradient. Note that if we extend divy to
act on symmetric tensors in the natural way, divy Sy (p, u) = Vyp — Aqu for vector fields satisfying
diV&q u=0.

Recall that o is determined by 5 through the relation (1-7). This means that all of the differential
operators in (1-9) are connected to 1, and hence to the geometry of the free surface. This geometric
structure is essential to our analysis, as it allows us to control high-order derivatives that would otherwise
be out of reach.

Beale’s nondecay theorem. Many authors have considered problems similar to (1-2), both with and
without viscosity and surface tension [Bae 2011; Beale 1981; 1984; Beale and Nishida 1985; Germain
et al. 2009; Hataya 2009; Lannes 2005; Nishida et al. 2004; Solonnikov 1977; Sylvester 1990; Tani and
Tanaka 1995; Wu 1997; 1999; 2009; 2011]. We refer the reader to the introduction of [Guo and Tice
2013b] for a more thorough discussion of how these results relate to ours.
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Beale [1981] developed a local existence theory for the problem (1-2) in Lagrangian coordinates, where
the unknowns are replaced with v =u o ¢, g = p o ¢ for ¢ the Lagrangian flow map, which satisfies
9;¢ = v. The result showed that (roughly speaking), given vg € H~! for r € (3, 7/2), there exists a unique
solution v on a time interval (0, T'), with T depending on v, such that v € L>H" N H'/?L?*. A second
local existence theorem was then proved for small data near equilibrium. It showed that for any fixed
0 < T < o0, there exists a collection of data small enough that a unique solution exists on (0, 7).

The second result suggests that solutions should exist globally in time for small data. If global solutions
do exist, it is natural to expect the free surface to decay to 0 as t — oo. However, the third result
[Beale 1981] was a nondecay theorem that showed that a “reasonable” extension to small-data global
well-posedness with decay of the free surface fails. Among other things, the theorem’s hypotheses
require that

vV E Ll([O, 00); H'()) forr e (3,7/2),
&)y € L*([0, 00); LA()),

v(x,0)=0, ¢(x,0)=x+e0O(x), (1-10)

lim &3]z =0,
t—00

where 2 is given by (1-4), ¢ (x, 0) is the flow map that gives the geometry of the initial fluid domain, ®
is a specially chosen function satisfying certain conditions, and ¢ > 0 is a small parameter. Note that the
third line in (1-10) implies that the system is initially close to equilibrium, and the fourth line implies that
the free surface decays to 0 as t — oo.

The proof of the nondecay theorem, which is a reductio ad absurdum, hinges on the special conditions
imposed on the map © and the fact that v € L' H". In the discussion of this result, Beale pointed out that
it does not imply the nonexistence of global-in-time solutions, but rather that establishing global-in-time
results requires stronger or different hypotheses than those imposed in the nondecay theorem.

The nondecay theorem raises two intriguing questions. First, is viscosity alone capable of producing
global well-posedness? Second, if global solutions exist, do they decay as ¢t — co0? Our main result
answers both questions in the affirmative. In order to avoid the applicability of the nondecay theorem, we
must show why its hypotheses are not satisfied. We would like to highlight three crucial ways in which
we do this. The first and most obvious is that we work in a different coordinate system and within a
different functional framework. In particular this requires higher regularity of the initial data and imposes
more compatibility conditions than are satisfied by the data in the nondecay theorem.

Second, we will find (see (1-21)) that u decays according to ||u(t)||% <C/(14+1)** for A € (0, 1). This
is not sufficiently rapid to guarantee that u belongs to the space L([0, 00); H?()), which is in violation
of the first line of (1-10), a key assumption in the nondecay result. Technically, our u is in Eulerian
coordinates, but if we formally identify u# with v, we see the difficulty clearly: we cannot integrate the
equation d,¢ = v to obtain ¢ as t — 0o, which means that we cannot make sense of the fourth equation in
(1-10). One of the advantages of the Eulerian and geometric formulations is that the free surface function
n may be analyzed without regard to what is happening to the entire flow map ¢ in €.
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Third, we find that 1 decays in time according to ||n(t)||% < C/(141t)* for A € (0, 1). This is not fast
enough to guarantee that 5 is in L2([0, 00); L2(X)). If we identify n with 3|y, we see that we cannot
guarantee that the second condition in (1-10) holds.

The above decay rates should be compared to those in the problem with surface tension (see the
discussion on page 1442), which in general allows for faster decay to equilibrium. In this context, [Beale
and Nishida 1985] showed that the decay estimates [[u(¢)[|3 < C/(1+1)* and ||n(t))||3 < C/(1 +1) are
sharp. As such, we should not expect u € L' H? or n € L>L? in our problem.

Local well-posedness. The a priori estimates we develop in this paper are done in different coordinates
and in a different functional framework from those used in [Beale 1981]. As such, we need a local
well-posedness theory for (1-9) in our framework. We proved this in Theorem 1.1 of our companion
paper [Guo and Tice 2013b]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We take
H*(Q) and H*(X) for k > 0 to be the usual Sobolev spaces. When we write norms we suppress the H
and Q or ¥. When we write ||8,j u|lx and ||8[j Pl we always mean that the space is H*(2), and when we
write ||81j n|lx we always mean that the space is H k().

In the following we write o H'(Q) := {u € H'(Q) | u|s, = 0} and

%r = {u € L*([0, T1; o H' () | divey u(t) = 0 for ae. 1}. (1-11)

The compatibility conditions for the initial data are the natural ones that would be satisfied for solutions
in our functional framework. They are cumbersome to write, so we do not record them here. We refer the
reader to [Guo and Tice 2013b] for their precise definition.

Theorem 1.1. Let N > 3 be an integer. Assume that uy and ng satisfy the bound ||ug IIﬁN—i— I 770||42”\,+1/2 <00

as well as the appropriate compatibility conditions. There exist &g, Ty € (0, 1) such that if

O<T§T0min{1,+}, (1-12)
||770||4N+1/2

and ||u0||ﬁN + ||r]0||iN < 8¢, there exists a unique solution (u, p, n) to (1-9) on the interval [0, T'] that
achieves the initial data. The solution obeys the estimates

2N 2N 2N—-1
ijpmMmN%+§jprmmN%+§:swn@mwz,l
00<t<T <t<T X 0<t<T
2N ) 2N—-1 ]
—kjf (j{jna!uniN_2f+l+-j{j|M¥zﬂﬁN_2j)-+nafN+‘unéﬁy
0 \j=o j=0
T AN+
+f QmﬁNHﬂ+uam&WNf+§:uwnﬁwﬂﬁyg
0

j=2

< C(lluollzy + Inollzy + Tlinolzys12)  (1-13)



1434 YAN GUO AND IAN TICE

and

Sup InlZn 412 < Clluolizy + A+ T) ol 3y 11,2) (1-14)
<t<T

for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
for which the sum of the first three sums in (1-13) is finite. Moreover, 1 is such that the mapping ® (-, t),
defined by (1-6), is a C*N=2 diffeomorphism for each t € [0, T].

Remark 1.2. All of the computations involved in the a priori estimates that we develop in this paper
are justified by Theorem 1.1 and a specialization of it, Theorem 10.7, that we prove later. In this sense,
Theorem 1.1 is a necessary ingredient in the global analysis of (1-9).

Main result. Sylvester [1990] and Tani and Tanaka [1995] studied the existence of small-data global-in-
time solutions via the parabolic regularity method pioneered by Beale [1981] and Solonnikov [1977].
The papers make no claims about the decay of the solutions. It has been pointed out in the literature that
the proofs in [Sylvester 1990; Tani and Tanaka 1995] are incomplete, so, to our knowledge, the existence
of global solutions is still an open question. An interesting feature of our analysis, as described in detail
later, is that our construction of global-in-time solutions is predicated on the decay of the solutions, that
is, the decay is a necessary ingredient in global existence.

To state our global well-posedness result, we must first define various energies and dissipations. The
exact form of some of the energies is too complicated to write out here, so we will neglect doing so,
referring to the proper definitions later in the paper (pages 1450-1452). We assume that A € (0, 1) is a fixed
constant and we define %, u according to (A-7) and %, n according to (A-8). The high-order energy is

10 9 10
€ro:= 19ullg+ > 18] w30 o, + > 18] plifoo; + 192015+ Y 18/ 01302, (1-15)
j=0 j=0 =0

and the high-order dissipation rate is

10 9
Do = 192ullf + Y 18/ ull3y_o; + IV PIITe + D 18 pll3e_o;
/=0 =1 11
H1DN30_30 + 18013010+ Y 19 0l30_2j15/0- (1-16)
=2
We write the high-order spatial derivatives of 1 as !
F0 = ||77||%o+1/2- (1-17)

We define the low-order energies €7, and €7 > according to (2-52) and (2-53) with n = 7. Here the index
m in €75, is a “minimal derivative” count that is included in order to improve decay rates in our estimates.
Finally, we define the total energy

t 2 o
F
Gio(t) = sup %10(7’)—1-/ Dio(r) dr + Z sup (14 7r)""*€; ,,(r) 4+ sup ()
0

0<r<t ey 0=r<t 0<r<t (I+r)

(1-18)

Notice that the low-order terms €7 ,, are weighted, so bounds on % yield decay estimates for €7 ,,.
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Theorem 1.3. Suppose the initial data (uo, no) satisfy the compatibility conditions of Theorem 1.1. There
exists a k > 0 such that if €10(0) + F19(0) < k, there exists a unique solution (u, p, n) to (1-9) on the
interval [0, 00) that achieves the initial data. The solution obeys the estimate

G10(00) < C1(€10(0) +F19(0)) < Cik, (1-19)
where C| > 0 is a universal constant. For any 0 < p < A, we have

sug[a + DX u®)Z2gy] < C(0)(E10(0) + F10(0) < C(p)k, (1-20)

for C(p) > 0 a constant depending on p. Also,

1
sup [(1 + 0" w13+ A+ 0" O~ + Y (1 +0 D7 n(r)Mé} < C(€10(0) + F10(0))

t>0 j=0

< Ck (1-21)
for a universal constant C > 0.

Remark 1.4. In our companion paper [Guo and Tice 2013a], where we analyze (1-9) in horizontally
periodic domains, we require ng to satisfy the “zero average condition”

f o= 0. (1-22)
D)

For the horizontally periodic problem, this condition propagates in time (see Lemma 2.7, a variant of
which holds in the periodic case), from which one sees that (1-22) is a necessary condition for decay in
L? or L®. Tt also serves as an obstacle to applying Beale’s nondecay theorem since the conditions that
the map ©® in (1-10) must satisfy are incompatible with (1-22). For a complete discussion, we refer to
[Guo and Tice 2013a].

In the present case, the bound €4(0) < « requires, in particular, that the initial data satisfy ||$5 1o ||% < 0.
This condition can be viewed as a sort of weak version of the zero average condition in the infinite case.
To see this, note that if 7 is sufficiently nice, say L! (X), then

0=/ no <= 10(0) =0, (1-23)
)

for © the Fourier transform. This means that the zero average condition is equivalent to requiring that
flo vanishes at the origin. We enforce a weak version of this by requiring that 9,9 € L>(X) = H(%),
which requires that |£]|72*|7jo(£)|? is integrable near £ = 0. Since A < 1, this does not require 7 (0) = 0,
but it does prevent |fjo| from being “too big” at the origin. Note that the condition $;19 € L? is more
general than (1-22).

Remark 1.5. The decay estimates (1-20) and (1-21) do not follow directly from the decay of €7 1(¢) and
‘€7.2(t) implied by (1-19). Rather, they are deduced via auxiliary arguments, employing (1-19).

Remark 1.6. The decay of |u(z) ||% given in (1-21) is not fast enough to guarantee that u belongs to
L'([0, 00); H*(R)). Even if we could take A = 1, we would still get logarithmic blow-up of the L'H?
norm.
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Remark 1.7. The function 7 is sufficiently small to guarantee that the mapping ®( -, ¢), defined in (1-6),
is a diffeomorphism for each r > 0. As such, we may change coordinates to y € Q(¢) to produce a
global-in-time, decaying solution to (1-2).

Remark 1.8. Later in the paper, we let N > 3 be an integer and perform our analysis in terms of estimates
at the 2N and N + 2 levels; we take N =5 in the present case to get the 10 and 7 appearing above. This is
not optimal. With somewhat more work, we can improve our results to N = 4 with the restriction that A €
(3/5, 1). Itis likely that this can be further improved by adjusting the scheme from 2N and N +2 to some-
thing slightly different. We have sacrificed optimality in order to simplify the presentation and make our
“two-tier energy method” clearer. The first tier is at the level 2N and the second at the level N +2, which is
meant to be roughly half of the first tier. The extra +2 is added to aid in applying some Sobolev embeddings.

Remark 1.9. It was established in [Castro et al. 2011; 2012] that solutions to inviscid free boundary
problems, starting from smooth initial data, can develop finite-time splash singularities. Given this, it is
reasonable to expect that a generic large-data version of Theorem 1.3 does not hold.

The proof of Theorem 1.3 is completed in Section 11. We now present a summary of the principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

Principal difficulties. In the study of the unforced incompressible Navier—Stokes equations in a fixed
bounded domain with no-slip boundary conditions, it is natural to use the energy method to prove that
solutions decay in time. Indeed, for sufficiently smooth solutions one may prove an analogue of (1-3)
that relates the natural energy and dissipation:

2
a%+9m=a/'””'+1/mmmﬁ=o (1-24)

Korn’s inequality allows us to control Cé€(¢) <% (¢) for a constant C > 0 independent of time, which shows
that the dissipation is stronger than the energy. From this and Gronwall’s lemma we may immediately
deduce that the energy € decays exponentially in time and that we have the estimate € () <€ (0) exp(—C?).
If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1-2), one
encounters a fundamental obstacle that may already be observed in the differential form of (1-3)

(o) / In(t)|2> 1/ .
5, + + 1 [ e =o. 125
(fw g R ) ey [ o) (1-25)

The difficulty is that the dissipation provides no direct control of the n-term in the energy. As such, we

must resort to using the equations (1-2) to try to control ||5(¢)||p in terms of ||[Du(t)]|g. From (1-2) we see
that there are only two available routes: solving for 1 in the fourth equation, or using the third equation,
which is the kinetic transport equation. If we pursue the first route, we must be able to control

1P 305 + DUV vl S IDU@ 130000y (1-26)

which is not possible. If instead we pursue the second route, we must estimate 7 as a solution to the
kinematic transport equation. Such an estimate (see Lemma A.9) only allows us to estimate ||5(¢)|lo in
terms of fot IDu(s)l|lo ds. That is, transport estimates do not provide control of the n-part of the energy in
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terms of the “instantaneous” dissipation, but rather in terms of the “cumulative” integrated dissipation.
From this we see that in our problem the dissipation is actually weaker than the energy, so we cannot
argue as above to deduce exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy method,
but we will always encounter the same type of problem as above. Regardless of the level of regularity in
the energy, the instantaneous dissipation is always weaker than the instantaneous energy, which prevents
us from deducing exponential decay of the energy. Instead we pursue a strategy similar to one employed
in [Strain and Guo 2006] for another problem where the dissipation is weaker than the energy. We first
show that high-order energies are bounded by using an integrated version of (1-25) for derivatives of the
solution. Then we consider a low-order energy and show that an equation of the form (1-25) holds, that
is, 3:€jow + CD1ow < 0. Now, instead of trying to estimate (1-26) for low-order derivatives, we instead

interpolate between low-order derivatives and high-order derivatives, which are bounded. Instead of an

%14-9

estimate C€ow < PDiow, We must prove one of the form Cé,
1+6

use this to derive the differential inequality 9;€ow + C€,.; < 0, which can be integrated to see that
Clow (1) < €ow(0)/(1+ 1)1/ We would then find that the low-order energy decays algebraically in time
rather than exponentially.

< Yjow for some 0 > 0. We can then

To complete this program, we must overcome a pair of intertwined difficulties. First, to close the
high-order energy estimates with, say ||u ||ﬁ n41 for aninteger N > 0 in the dissipation, we have to control
n in H*N*1/2_ The only option for this is to again appeal to estimates for solutions to the transport
equation, which say (roughly speaking) that

T

T
suannniNH/QSCexp(C /O ||Du(t)||Hz<z>dt>[||no||£N+1/z+T /0 ||u<r>||3w+1dz]. (1-27)

O<r<

Without knowing a priori that u# decays, the right side of this estimate has the potential to grow at the
rate of (1 + T)ecﬁ . Even if u decays rapidly, the right side can still grow like (1 4+ 7"). This growth
is potentially disastrous in closing the high-order, global-in-time estimates. To manage the growth, we
must identify a special decaying term that always appears in products with the highest derivatives of n.
If the special term decays quickly enough, we can hope to balance the growth and close the high-order
estimates. Due to the growth in (1-27), we believe that it is not possible to construct global-in-time
solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is dictated
by the decay rate of the low-order energy, so we must make sure that the low-order energy decays
sufficiently quickly. This amounts to making the constant 8 > 0 appearing in the interpolation estimates
above sufficiently small. We must then carefully choose the terms that will appear in the low-order and
high-order energies in order to keep 6 small enough. It turns out that this requires us to enforce a minimal
derivative count in the low-order energy, that is, only terms with m derivatives or more are allowed. It
also requires us to extend the high-order energy to include estimates of negative horizontal derivatives up
to order A € (0, 1). Then & = 6(m, 1), and only by taking m =2, A > 0 can we make 6 small enough to
achieve the desired decay rate.
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The resolution of these intertwined difficulties requires a delicate and involved analysis. We now sketch
some of the techniques we will employ.

Horizontal energy evolution estimates. In order to use the natural energy structure of the problem
(given in Eulerian coordinates by (1-3)) to study high-order derivatives, we can only apply derivatives
that do not break the structure of the boundary condition # = 0 on X;. Since X is flat, any differential

operator 9% = 3,9}

1957 is allowed. We apply these operators for various choices of o and sum the
resulting energy evolution equations. After estimating the nonlinear terms that appear from differentiating
(1-9), we are eventually led to evolution equations for these “horizontal” energies and dissipations, €,
P10, %7,,", and @7,,,, form =1, 2 (see (2-45) and (2-47)—(2-49) for precise definitions). Here we write

bars to indicate “horizontal” derivatives. Roughly speaking, at high-order we have the estimate

%10(1‘)4-/ B10(r) dr§%10(0)+/ (€10(r) D 1o(r) dr+/ VB10OHE) Fro(r)dr,  (1-28)
0 0 0

where J{ is of the form

W= Vulg + | Dull3, (1-29)

(%)’

and 6 > 0; and at low-order we have
3 E7m+ D7 S E D7 (1-30)

where %7, is the low-order dissipation. Notice that the product 5% in (1-28) multiplies low-order
norms of u against the highest-order norm of 5. Technically, the estimate (1-28) also involves %, u and
$,n in addition to horizontal derivatives. For the moment let us ignore these terms and continue with the
discussion of our energy method. We will discuss $; in detail below.

The actual derivation of bounds like (1-28)—(1-30) is delicate and depends crucially on the geometric
structure of the equations given in (1-9). Indeed, if we attempted to rewrite (1-9) as a perturbation of the
usual constant-coefficient Navier—Stokes equations, we would fail to achieve the estimate (1-28) because
we would be unable to control the interaction between 9 p and div 3!°u, the latter of which does not
vanish in the geometric form of the equations.

Comparison estimates. The next step in the analysis is to replace the horizontal energies and dissipations
with the full energies and dissipations. We prove that there is a universal 0 < § < 1 such that if €9 <,
then

€105 %0, D10 S Do+ HF 0, Gm SEme Drm S Dy (1-31)

This estimate is extremely delicate and can only be obtained by carefully using the structure of the
equations (1-9). We make use of every bit of information from the boundary conditions and the vorticity
equations to establish it. There are two structural components of the estimates that are of such importance
that we mention them now. First, the equation divyg u = 0 allows us to write d3u3 = —(d1u| + drur) + G?
for some quadratic nonlinearity G2. This allows us to “trade” a vertical derivative of u3 for horizontal
derivatives of u; and u», an indispensable trick in our analysis. Second, the interaction between the
parabolic scaling of u (d;u ~ Au) and the transport scaling of 1 (3;n ~ u3|x) allows us to gain regularity
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for the temporal derivatives of 7 in the dissipation, and it also gives us control of a) ', which is one more
time derivative than appears in the energy.

Two-tier energy method. Suppose we know that

)

for some 0 < 8 < 1 and y > 0. Since 7 satisfies a transport equation, we may use Lemma A.9 to derive
an estimate of the form

t t
sup F1o(r) gexp<C/ \/ﬁ{(r)dr) [@10(0)—14/ D1o(r) dr:|. (1-33)
0<r<t 0 0
Although the right side of this equation could potentially blow up exponentially in time, the decay of K
in (1-32) implies that
t
sup Fio(r) S F10(0) + Zf Dio(r) dr. (1-34)
O<r<t 0
Note that y > 0 in (1-32) is essential; we would not be able to tame the exponential term in (1-33) without
it, and then (1-34) would not hold. This estimate allows for &o(¢) to grow linearly in time, but in the
product J(r)%Fo(r) that appears in (1-28), we can use the decay of ¥ to balance this growth. Then if
SUpg<, <, €10(r) < & with § small enough, we can combine (1-28), (1-31), (1-32), and (1-34) to get the
estimate

t
sup €10(r) +/ Dio(r) dr < €10(0) + F10(0). (1-35)
O<r<t 0

This highlights the first step of our two-tier energy method: the decay of low-order terms (that is, ) can
balance the growth of %, yielding boundedness of the high-order terms. In order to close this argument,
we must use a second step: the boundedness of the high-order terms implies the decay of low-order terms,
and in particular the decay of X.

To obtain this decay, we combine (1-30) and (1-31) to see that

3Em+1D7m <0 (1-36)

if €19 < 6 for 6 small enough. If we could show that %7,,,, < D7, this estimate would yield exponential
decay of %7,,,1 and €7,,,. An inspection of %7,," and 97, (see (2-45) and (2-51)) shows that %7, can
control every term in %7,,,, except || nll% (and || a,nll(z) when m = 2). In a sense, this means that exponential
decay fails precisely because the dissipation fails to control 7 at the lowest order. In lieu of €7, < %7 .

we interpolate between €;o (which can control all the lowest-order terms of 1) and 97 ,,:

%7,m ,S %}(/)(m-‘r)\-i-l)gbgr?m-‘rk)/(m-i-)»-‘rl)' (1_37)

Combining (1-36) with (1-37) and the boundedness of € in terms of the data, (1-35), then allows us to

deduce that
C

2., I+1/(m+2) ]
" (€10(0)+F10(0))1/0n+2) (€7.m) <0. (138)

81%7,m
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Integrating this differential inequality and employing some auxiliary estimates then leads us to the bound

€10(0) + F10(0)
(1 pym+»

We thus use the boundedness of high-order terms to deduce the decay of low-order terms, completing the

Erm(t) SEmt) S (1-39)

second step of the two-tier energy estimates.

Negative Sobolev estimates via $,. Notice that the decay rate in (1-39) is enhanced by A € (0, 1). As
we will see below, the parameter y > 0 in the decay of ¥, given in (1-32), is determined by the rate m + A.
If we were to set A =0, we would not get y > 0 and we would be unable to balance the growth of Fy.
Estimates (1-34) and (1-35) would fail, and we would be unable to close our estimates. We thus see the
necessity of introducing the “negative Sobolev” estimates via the horizontal Riesz potential $;.

The difficulty then is that we must apply the nonlocal operator #, to a nonlinear PDE and then study
the evolution of $,u and $, 7. The flatness of the lower boundary X, is essential here, since it allows us
to have $,u = 0 on X;. This means that the operator $, does not break the boundary conditions, and
we can use the natural energy structure to include || $;u ||(2) and ||.$ m||(2) in the energy and || $,u ||% in the
dissipation. To close the estimates for these terms, we must be able to estimate $; acting on various
nonlinearities in terms of %61)0@10 for some 6 > 0. These estimates turn out to be rather delicate, and we
must again employ almost all of the structure of the equations and boundary conditions in order to derive
them. They are also responsible for the constraint A < 1. For A > 1, the nonlinear estimates would not
work as we need them to. In general, for quadratic nonlinearities in dimension n, we expect to restrict
A <n/2.

We should point out that, a priori, we do not know that $,u(¢) or $,n(t) even make sense for ¢t > 0,
since this is not provided by Theorem 1.1. To show that these terms are well-defined, which then justifies
applying %, to the equations, we must actually prove a specialization of the local well-posedness theorem
that includes the boundedness of %, u, $, p, and $,n. We do this in Theorem 10.7.

Interpolation estimates and minimal derivative counts. The negative Sobolev estimates alone do not
close the overall estimates in our two-tier energy method. To do that, we must verify that K decays as in
(1-32) for some y > 0. An inspection of €7, shows that we cannot directly control 3 < €7, for either
m =1 or m =2, so we must resort to an interpolation argument. We show that through interpolation it is
actually possible to control % < €7 1, but the €71 only decays like (1 +¢)~'~*, which is not fast enough
for (1-32). The energy €7, decays at a faster rate, but we cannot show that 3 < €7 ,. Instead, we show
that if €7, (¢) < e(1+1)~27*, then

% < %;é’%;r2/\)/(8+4k) < g (B20)/+4) 0 _H;2+/\/2’ (1-40)
so that, after renaming § = Ce®+2%/G+4) and y = 1 /2 > 0, we find that (1-32) does hold.

The parameters m and A interact in an important way. The decay rate increases with m and with A. As
mentioned above, we are technically constrained to A < 1, so we must increase m to 2 in order to hit
the target decay rate in (1-32). It is tempting, then, to consider abandoning the $; operators and simply
use a third energy with m > 3, which should decay like (1 4-¢)™". However, if one were to do this for
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0 (m)
T.m °

where 6 (m) decreases with m in such a way that m6(m) < 2, so that (1-32) would fail. We thus see that

any m > 3, one would find that there is a corresponding decrease in the interpolation power: 3 < €

the negative estimates are not just a convenience, but rather a necessity.

The derivation of (1-40) is delicate, requiring a two-step bootstrap process to iteratively improve
the interpolation powers. We again crucially make use of the structure of the equations and boundary
conditions. We extensively interpolate between our negative Sobolev estimates and our positive Sobolev
estimates. The utility of the negative estimates is quite clear here: the interpolation powers improve when
we interpolate with negative derivatives (as opposed to say, no derivatives).

To complete the proof of (1-40), we crucially use an estimate for $;9,7n. This corresponds to A =1,
so we are not able to apply $;9; to the equations to obtain the estimate. Rather, the estimate comes for
free from the transport equation for 5, which allows us to write 3,7 = —3,U; — d,U, for U; € H'. In
our analysis of the horizontally periodic problem [Guo and Tice 2013a], where we can take ¥ = T2, this
identity and (1-22) give rise to a Poincaré inequality ||n(¢) ||% < |IDn(t) ||S for ¢t > 0, which is crucial in our
analysis there. From this we see that the estimate for $ 9,7 is of analytic importance for the problem (1-2).

The interpolation of negative and positive Sobolev estimates provides a completely new tool in the
study of time decay in dissipative PDE problems in the whole (or semi-infinite) space. For the viscous
surface wave problem, a particular advantage of the negative-positive method is that, unlike the usual
L? — L9 machinery, our norms are preserved along the time evolution. We anticipate that this method
will prove useful in the analysis of other dissipative equations.

Remark 1.10. After the completion of this paper we became aware of [Hataya and Kawashima 2009],
which is an announcement of a decay result for the viscous surface wave problem in horizontally infinite
domains. The paper provides a terse sketch of their proposed proof that employs a modification of the
Beale—Solonnikov parabolic framework, which is a framework completely different from ours. Full
details of the proof are promised in forthcoming work, but to our knowledge no such work has appeared
in the literature to date. From the information provided in the sketch, it is unclear to us how the decay
rates involved, none of which are faster than 1/(1 + £)? for any norm-squared of the velocity field, are
sufficiently rapid to balance the growth of the highest derivatives of 5. In particular, it is not clear to us
how their method can provide control of J{ as in (1-32), which we need to close the transport estimate
(1-33) and to control the growth of &g in (1-28) and (1-31).

Comparison to the periodic problem. We proved in [Guo and Tice 2013a] the analogue of Theorem 1.3
for horizontally periodic domains. In this context we take N > 3 to be an integer and consider energies
and dissipations €é,x, Doy, Fan, and Gy ; these are modifications of what we use here (with N = 5) that
include temporal derivatives up to order 2. See that paper for the precise definitions. By increasing N,
we can achieve arbitrarily fast algebraic rates for the solutions, which we identify as “almost exponential
decay.”

In order to compare with Theorem 1.3, we record a version of the periodic result now.

Theorem 1.11. Suppose the initial data (ug, no) satisfy the compatibility conditions of Theorem 1.1 and
no satisfies the zero average condition (1-22). Let N > 3 be an integer. There exists a 0 < k = k(N) such
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that if €35 (0) + Fon (0) < &, there exists a unique solution (u, p, n) to (1-9) on the interval [0, co) that
achieves the initial data. The solution obeys the estimates

Gan (00) < C1(€an (0) + Fan (0)) < Cik, (1-41)
sup(1 + "™ 3 u®) 3y 1q + 11O 314l < C1(Ean(0) + Fan (0)) < Cik, (1-42)

t>0
where C1 > 0 is a universal constant.

Remark 1.12. A key difference between the periodic result, Theorem 1.11, and the nonperiodic result,
Theorem 1.3, is that in the periodic case, increasing N also increases the decay rate. No such gain is
possible in the nonperiodic case, which is why we specialize to the case N =5 there. In the periodic
case, we do not use the same type of interpolation arguments that we use in the infinite case. This allows
us to relax to N > 3.

Remark 1.13. Hataya [2009] studied the periodic problem with a flat bottom. Using the Beale—Solonnikov
parabolic theory [Beale 1981; 1984; Solonnikov 1977], it was shown that

o0
f (02w 2, di +sup(L + D202 < 00 (1-43)
0 t>0

for r € (5, 11/2). Our result on the periodic problem is an improvement of this in two important ways.
First, we establish faster decay rates by working in a higher regularity context. Second, we allow for a
more general non-flat bottom geometry (see [Guo and Tice 2013a] for details).

Comparison to the case with surface tension. If the effect of surface tension is included at the air-fluid
free interface, the formulation of the PDE must be changed. Surface tension is modeled by modifying the
fourth equation in (1-2) to be

(pl — uDum))v =gnv—ocHv, (1-44)

where H = 9;(9;n/+/1+ |Dn|?) is the mean curvature of the surface {y; = n(¢)} and o > 0 is the surface
tension.

Beale [1984] proved small-data global well-posedness for the problem with surface tension in horizon-
tally infinite domains. The flattened coordinate system we employ was introduced in [Beale 1984] and
used in place of Lagrangian coordinates. However, Beale employed a change of unknown velocities that
is more complicated than just a coordinate change. Well-posedness was demonstrated with u € L>H" and
ne L>H" /2 given that ug € H ~'/2, ng € H" are sufficiently small for r € (3, 7/2). In this context it
is understood that surface tension leads to the decay of certain modes, thereby aiding global existence.

Beale and Nishida [1985] studied the asymptotic properties of the solutions constructed in [Beale

1984]. They showed that if ng € L (%), then
2

sup(1 +0)*[|u() |5 +sup Y (140" [ DIn()|§ < oo, (1-45)
t>0 t>0 j=1
and that this decay rate is optimal. Taking A ~ 1 in our Theorem 1.3, the estimates (1-21) yield almost

the same decay rates.
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Nishida, Teramoto, and Yoshihara [Nishida et al. 2004] showed that in horizontally periodic domains
with surface tension and a flat bottom, if no has zero average, there exists a y > 0 such that

sup e?'[[lu()[13 + 1131 < co. (1-46)
t>0
In this case, (1-44) gives a third way of estimating 7 in terms of the dissipation; using this, it is possible to
show that the dissipation is stronger than the energy. Thus, if surface tension is added in the periodic case,
fully exponential decay is possible, whereas without surface tension we only recover algebraic decay of
arbitrary order in Theorem 1.11.

The comparison of these two results with ours establishes a nice contrast between the surface tension
and non-surface tension cases. Without surface tension we can recover “almost” the same decay rate as in
the case with surface tension. This shows that viscosity is the basic decay mechanism and that the effect
of surface tension serves to enhance the decay rate.

Definitions and terminology. We now mention some of the definitions, bits of notation, and conventions
that we will use throughout the paper.

Einstein summation and constants. We employ the Einstein convention of summing over repeated
indices for vector and tensor operations. Throughout the paper C > 0 will denote a generic constant that
can depend on the parameters of the problem, N, and €2, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next. When a
constant depends on a quantity z we write C = C(z) to indicate this. We employ the notation a < b to
mean that a < Cb for a universal constant C > 0.

Norms. We write H¥(Q) with k > 0 and H*(X) with s € R for the usual Sobolev spaces. We typically
write HY = L?; the exception to this is when we use L>([0, T]; H k) notation to indicate the space of
square-integrable functions with values in H*.

To avoid notational clutter, we avoid writing H*(2) or H*(X) in our norms and typically write only
Il - [lx. Since we do this for functions defined on both 2 and X, this presents some ambiguity. We avoid
this by adopting two conventions. First, we assume that functions have natural spaces on which they
“live.” For example, the functions u, p, and 7 live on €2, while 7 itself lives on X. As we proceed in our
analysis, we will introduce various auxiliary functions; the spaces they live on will always be clear from
the context. Second, whenever the norm of a function is computed on a space different from the one in
which it lives, we will explicitly write the space. This typically arises when computing norms of traces
onto X of functions that live on 2.

Derivatives. We write N = {0, 1, 2, ...} for the collection of nonnegative integers. When using space-
time differential multi-indices, we write N'*” = {o = (ag, a1, . .., )} to emphasize that the 0-index
term is related to temporal derivatives. For just spatial derivatives we write N”*. For a € N!*" we
write 9% = 9;°9]" - - - 9. We define the parabolic counting of such multi-indices by writing |a| =
2004 a1+ - - + &,y We write Df for the horizontal gradient of f, thatis, Df = 9 fe; 4 92 fes, while
V f denotes the usual full gradient.
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For a given norm || - || and integers k, m > 0, we introduce the following notation for sums of spatial
derivatives:
k 2. 2 k 2. 2
1D £ = Y 10°fI* and |VEFIZ:= Y 0 fI* (1-47)
aeN? aeN?
m<la|<k m<|a|<k

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives, while V
refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

1Dy f17 = D *fI* and (V5 f17:= D 1% fI% (1-48)
aeN!+2 N3
m<lo| <k m<|o|<k

When k =m > 0, we write
IDFIIZ = IDEFIZ IVEFIP=IVELIR, DY FIP = IDEFIS IVEFIP = IVEFI2. (1-49)

We allow for composition of derivatives in this counting scheme in a natural way; for example, we write

IDDfIP =D DfI>= Y 10°DfI>P= Y 10°fIP=IDy, £I% (1-50)
aeN? aeN?
m<|a|<k m+1<|a|<k+1

Plan of paper. Throughout the paper we assume that N > 5 and X € (0, 1) are both fixed. Notice that
Theorem 1.3 is phrased with the choice N = 5.

In Section 2 we prove some preliminary lemmas and we define the energies and dissipations. In
Section 3 we perform our bootstrap interpolation argument to control various quantities in terms of
En+2.m and Dy 42 . In Section 4 we present estimates of the nonlinear forcing terms G’ (as defined in
(2-24)—(2-31)) and some other nonlinearities. In Section 5 we use the geometric form of the equations
to estimate the evolution of the highest-order temporal derivatives. We also analyze the natural (no
derivatives) energy in this context. Section 6 concerns similar energy evolution estimates for the other
horizontal derivatives. For these we employ the linear perturbed framework with the G’ forcing terms. In
Section 7 we assemble the estimates of Sections 5 and 6 into unified estimates. Section 8 concerns the
comparison estimates, where we show how to estimate the full energies and dissipations in terms of their
horizontal counterparts. Section 9 combines all of the analysis of Sections 3-8 into our a priori estimates
for solutions to (1-9). Section 10 concerns a specialized version of the local well-posedness theorem that
includes the boundedness of $, terms. Finally, in Section 11 we record our global well-posedness and
decay result, proving Theorem 1.3.

Below, in (2-58), we will define the total energy %,y that we use in the global well-posedness analysis.
For the purposes of deriving our a priori estimates, we assume throughout Sections 3-9 that solutions
to (1-9) are given on the interval [0, T'] and that G,y (T) < § for 0 < § < 1 as small as in Lemma 2.6,
so that its conclusions hold. This also means that €,y () < 1 for ¢t € [0, T]. We should remark that
Theorem 1.1 does not produce solutions that necessarily satisfy 9,5 (T) < oco. All of the terms in
%,n(T) are controlled by Theorem 1.1 except those involving the Riesz operator: ||$,u ||(2), %51 ||%, and
fOT | $nu(t) ||% dt. To guarantee that these terms are well-defined, we must prove a specialized version
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of the local well-posedness result, Theorem 10.7. In principle, we should record this before the a priori
estimates, but the technique we use to control the $, terms is based on one we develop for the a priori
estimates, so we present the theorem in Section 10 after the a priori estimates. Note that the bounds
of Theorem 10.7 control more than just 9, (7") (in particular, 8,2N +lu, 8,2N p, and 9, p), and the extra
control it provides guarantees that all of the calculations used in the a priori estimates are justified.

2. Preliminaries for the a priori estimates

In this section we present some preliminary results that we use in our a priori estimates. We first record
some useful properties of the matrix &f. Then we present two forms of equations similar to (1-9) and
describe the corresponding energy evolution structure. Afterward we record some useful lemmas.

Properties of . The following lemma records some of the properties of the matrix s{ that will be used
throughout the paper.

Lemma 2.1. Let A be defined by (1-7).
(1) Foreach j =1,2,3 we have 0 (J s i) =0.
(2) dij =6;j +38j3Z; for 8;;, the Kronecker delta, and Z = —AKe; — BKey + (K — 1)es.
(3) On X we have Jsdes = N, while on Xj, we have that J des = e3.

Proof. The first and second items may be verified by a simple computation. The first part of the third
item holds since b = 1 on Y., which means that Jsles = —Ae; — Bey + e3 = —0djne; — opney + e3 =
—0d1ne; —drney+e3 =N on X. The second part of the third item follows similarly, since b=0on Y. O

Geometric form. We now give a linear formulation of the PDE (1-9) in its geometric form. Suppose that
n, u are known and that 4, N, J, etc. are given in terms of n as usual ((1-7), etc). We then consider the
linear equation for (v, g, {) given by

dv — 8, 1bK 930 +u - Vv +divy Su(g, v) = F'  in Q,

divy v = F? in €,

Sa(q, VN =N+ F3 on X, (2-1)
8¢ —N-v=F* on X,

v=0 on Xp.

Now we record the natural energy evolution equation associated to solutions (v, g, ¢) of the geometric
form equations (2-1).

Lemma 2.2. Suppose that u and n are solutions to (1-9). Suppose (v, q, ¢) solve (2-1). Then

at<1/ J|u|2+1/|§|2>+1/ JI[D&qvlzzf J(v-F1+qF2)+/ —v-FP4eFt (22
2 Q 2 5 2 Q Q z

Proof. We multiply the i-th component of the first equation of (2-1) by Jv;, sum over i, and integrate

over €2 to find that
[+1I=1II (2-3)
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for
I=f atviJv,-—8,ﬁl;83viv,-+uj&djk8kviJv,-, 2-4)
Q
II:/ sl 85: (g, v) Jvi, III:/ F' v, 2-5)
Q Q

In order to integrate by parts in I, II we will utilize the geometric identity dx(J ;) = 0 for each i, which
is proved in Lemma 2.1.
Then

2 v128. J . 2 2
1=a,/ '”'—J+/ —"—’—amb%ﬁﬂjak(mjkﬂ) =1, +1. 2-6)
0 2 )T 2 2

Since b = 1+ x3/b, an integration by parts and an application of the boundary condition v = 0 on X,
reveals that

23, - 2
12:/—“)' b U (J&qjkﬂ)
o 2 2

2

v|29,J 279 2
:/_HTt+|1)2| < ;77 +batagn> /aku,J&djk|2| +2/ 81n|v| +u; J&ﬁ jkes: eklvl 2-7)
Q

It is straightforward to verify that 9, J = d,1/b +l;8, 031 in €2 and that Js{ jre3-ex = Nj on X. Then since
u, n satisfy oru jsd jp =0 and 9,n = u - N, we have I, = 0. Hence

2
1=a,/ s (2-8)
o2

A similar integration by parts shows that

II:/ —sﬁij,-j(q,v)Jakvi+/ Jsdj38ij(q, v)v;
Q z

2 (2'9)
|Dsgv]
= [ —qdAiohviJ +J + | Sij(q,v)N;v;,
Q =
so that (2-1) implies
2
II:f qJF2+J Dav | f;N v+ F. (2-10)
Q
But (2-1) also implies that
s |c|2 s
/CN'UZ/C(&{—F)Z& / —CF7, (2-11)
by by
which means
2 ||D&!l |2 |§‘|2 4 3
= | —qgJF +J > + o, —CF +v-F. (2-12)
Q b

Now (2-2) follows from (2-3), (2-8), and (2-12). [l
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Remark 2.3. In our analysis we will apply Lemma 2.2 with v = d%u, ¢ = d%p, and ¢ = 9% for 9% = 9,
with ap < 2N. In the case ap = 2N we do not know that 8,2N p is well-defined. However, as is verified in
Theorem 4.3 of [Guo and Tice 2013b], the result of Lemma 2.2 holds in this case when integrated in
time, with the understanding that the ¢ = 3>" p term is integrated by parts in time.

In order to utilize (2-1), we apply the differential operator 3% = 9, to (1-9). The resulting equations
are (2-1) for v = 0%, g = 3% p, and ¢ = 90%n, where

Fl :Fl,l+F1,2+F1,3+F1,4+F1,5+F1,6 (2_13)
for
FM''= 3" CopdP@ibK)0* Posui+ Y Capd*P0,70" (bK)d3u;, (2-14)
0<B<a 0<B<a
1,2 _ Bey.od . )39 B3] 4. Bo., 9% B
Fl? == 3 Cop(9 o 00° P i + 0P sty 3Py p), (2-15)
0<B<a
F'P = 3" CopdP st jed Py (shimdynttj + 5l jus i) (2-16)
0<B<«a
Fl.l’4: Z Ca,ﬁ&djkak(aﬂd,-gaa_ﬁazuj+8ﬁ&ij48a_ﬂ3eui), (2-17)
0<B<a
1,5 on =7 1,6 o o
F'° =0%0,7bKdsu;, and  F"® = sl ;04 (0%sdig 0o j + 0% jdpuy). (2-18)

In these equations, the terms Cy g are constants that depend on « and B. The term F? = F>! + F%2 for

F‘z’l = — Z Ca’ﬁaﬁ&&ijaafﬁaju,- and F2’2=—aaﬁijajui- (2'19)
0<B<a

We write F3 = F3! + F32 for

F3l— _ Z Ca,,saﬂDn(aa_ﬂﬂ _ 3a_ﬂp), (2-20)
0<B<«x
FP2= 3" Cap@P N shin )0 Pttt + 0P (N sl )0 P ). (2-21)
0<B<«a
Finally,
F4=_ Z CopdP D3 Pu. (2-22)
0<B<a

Perturbed linear form. Writing the equations in the form (1-9) is more faithful to the geometry of the
free boundary problem, but it is inconvenient for many of our a priori estimates. This stems from the
fact that if we want to think of the coefficients of the equations for u, p as being frozen for a fixed free
boundary given by 1, the underlying linear operator has nonconstant coefficients. This makes it unsuitable
for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of the
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equations lies in the fact that the linear operators have constant coefficients. The equations in this form

are
Qu+Vp—Au=G! in Q,
divu = G? in Q,
(pl —=Du —nle3 =G> on X, (2-23)
an—u3=G* on %,
u=~0 on Xp.

Here we have written
G =G 1G22y Gl3LGglAygls

for

Gl = 6y — Aip)o;p, (229
G? = u ol j dpus, (2-25)
G;” = [K*(1+ A%+ B?) — d33u; — 2AK d13u; — 2BK dsu;, (2-26)
G =[—K3(1 4+ A%+ B?)d3J + AK*(31J + 93A) + BK*(32J + 93B) — K (91 A + 32 B)103u;, (2-27)
Gl = 3,7i(1 +x3/b) K 8315 (2-28)

G? is the function
G? = AKdu; + BKdsus + (1 — K)dsus, (2-29)
and G? is the vector
p—n—201u; —AKdzuy)

G = o | —ou; —o1ur + BKozuy + AKdzun
—01u3 — Kosu; + AKozus

—0hu; —01ur + BKOosu; + AKozus (K —1)03u; — AK03u3
+ 3277 p—n— 2(82142 — BK33M2) + (K - 1)331/!2 - BK83M3 . (2—30)
—0u3 — Kosur + BK d3us 2(K — 1)03u3
Finally,
G*=—Dn-u. (2-31)

Remark 2.4. The appearance of the term (p — n) in the first two rows of the first two vectors in the
definition of G? can cause some technical problems later when we attempt to estimate G>. Notice though,
that according to (2-23), we may write
(p—n) =203u3+ G - e3
= 01n(—01u3 — Kosu; + AKdzu3) + don(—dausz — Kadsur + BK d3u3) + 2K d3u3 (2-32)

on X. We may then replace the appearances of (p — 1) in (2-30) with the right side of (2-32).

At several points in our analysis we will need to localize (2-23) by multiplying by a cutoff function.
This leads us to consider the energy evolution for a minor modification of (2-23).
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Lemma 2.5. Suppose (v, q, ) solve

dv+Vg—Av=o! in Q,

divv = ®? in Q,

(gl —Dv)es =ates+ P> on %, (2-33)
8¢ — vy = o* on %,

v=>0 on Xp,

where eithera =0 ora = 1. Then

8,(1/|v|2+l/ a|;|2>+1/|uj>u|2=/ u-(q>1—vq>2)+qq>2+/ —v- O34 acd*. (2-34)
2 Q 2 z 2 Q Q z

Proof. We may rewrite the first equation in (2-33) as d;,v +div(g! — Dv) = ®! — V2. We then take the
inner-product of this equation with v and integrate over 2 to find

2
a,/ ﬁ—/(ql—mv) : w+/ (qI—IDv)eg-v:/ v (P! — V). (2-35)
Q 2 Q b Q
We then use the second equation in (2-33) to compute
2 2
/ —(ql—le):Vv:/ —qdivv—i—M:/ —q@z—l—M. (2-36)
Q Q 2 Q 2
The boundary conditions in (2-33) provide the equality
2
/ (gl —Dv)es - v =/ atvy+v-® = at/ aﬁ+/ —ard*+v- @3 (2-37)
b by z 2 by
Combining (2-35)—(2-37) then yields (2-34). O

Some initial lemmas. The following result is useful for removing the appearance of J factors.

Lemma 2.6. There exists a universal 0 < § < 1 such that if ||n||§ n = 3, then

1T =120 + A2« + IBl3 <2 and K|+ llstl S 1. (2-38)

~

Proof. According to the definitions of A, B, J given in (1-8) and Lemma A.5, we may bound
1 = 17 + 1 AllZ= + 1Bl 7w S 11713 S 10l132- (2-39)

Then if § is sufficiently small, we find that the first inequality in (2-38) holds. As a consequence,
K170 + 4]« < 1, which is the second inequality in (2-38). O

We now compute 9,7 in terms of a pair of auxiliary functions, U; and U,, defined on X. In our analysis
later in the paper u and n will always be sufficiently smooth to justify the calculations in the next lemma,
and U; € H'(X) always holds.

Lemma 2.7. Fori =1, 2, define U; : ¥ — R by

0
Ui(x") = / J(x', x3)ui (x', x3) dxs. (2-40)
—b

Then d;n = —0,U; — 0,U; on X for solutions to (1-9).
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Proof. Let ¢ € ¥(X), the Schwartz class. On ¥ we know from Lemma 2.1 that u - N = u - (JAe3) =
JATu -e3 = JsA u - v, where v = e3 is the unit normal to ¥. We may use the equation for 3,1 in (1-9)
and the divergence theorem to compute

/3m(,0=/(—Mlaln_M282U+M3)¢:/ <Pf&qijuivj=f 0j(pJAjju;)
x > b Q
=/ aj(pJ&ﬁijui+g03j(J&1ij)ui+<pJ&ﬁij3jui=f djpd Ajjui, (2-41)
Q Q

where the last equality follows from the geometric identity 9;(Js;;) = 0 (see Lemma 2.1) and the
equation s;;0;u; = 0, which is the second equation in (1-9). According to Lemma 2.1, we may write
Aij = 8;j +38;3Z; for §;;, the Kronecker delta, and Z = —AKe; — BKes + (K — 1)e3. Then

fajfpfﬂijui:f 3j<PJui(5ij+5j3Zi)=/ 3i<PJMi+/ 33<PJMiZi=/ dipJu;, (2-42)
Q Q Q Q Q

since d3¢ = 0, a consequence of the fact that ¢ = ¢ (x1, x) is independent of x3. Again because ¢ depends
only on (x1, x) = x" € 3, we may write

0
/ dipJu; = / dip(x") / J (', x3)ui (x, x3) dxzdx’ = / dip(x"U;(x") dx'. (2-43)
Q z —b =
Now we chain together (2-41), (2-42), and (2-43) and integrate by parts to deduce that
f Ay = / —d;U;. (2-44)
b z
Since this holds for any ¢ € ¥(X), we then have that d,n = —0,U;. U

Energies and dissipations. Below we define the energies and dissipations we will use in our analysis.
We state them in general in terms of two integers n, m € N with n > m. In our actual analysis we will
take n =2N and n = N 4+ 2 for N > 5 and m = 1, 2. Recall that we employ the derivative conventions
described on page 1443. We define the horizontal instantaneous energy with minimal derivative count m
(or just horizontal energy, for short) by

Cum = 1D |2+ DD w3+ 1V T8 ul3 + I DX 3. (2-45)

m

Here the first three terms are split in this manner for the technical convenience of adding the +/J term to
only the highest temporal derivative.

Remark 2.8. In light of Lemma 2.6, we see that %mm satisfies
FUD G+ 1Dy lIE) < Enm < 3U D ullG + 1D 11lR)- (2-46)
We define the horizontal dissipation rate with minimal derivative count m (horizontal dissipation) by

Dy := | D" Du||3. (2-47)
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Let ¥, be defined by (A-7)—(A-8). The horizontal energy without a minimal derivative restriction is
€y = 119§+ DF"ull§ + 1950115 + 1 DG 0115, (2-48)
and the horizontal dissipation without a minimal derivative restriction is
By := |DF5ullg + | DY Dullj. (2-49)

In addition to the horizontal energy and dissipation, we must also define full energies and dissipations,
which involve full derivatives. We write the full energy as

n n—1 n
G o= 19ullg+ Y 107 ull3,; + Y187 pllu_nj—i + 19205+ D 18/ 0113, 1), (2-50)
=0 Jj=0 j=0
and we define the full dissipation rate by
n ) n—1 )
Dy = N auall + D10/ wllFy o H IV P15,y + Y 18] Pl5aa; +1D015, 30+ 1913, 2
j=0 j=1 ntl
+ D 10/ 0l5,0j150-  2-51)
j=2

Remark 2.9. The energy €, controls ||n||§n = || n||(2) + || Dn ||%n_1, while the dissipation %, controls only
I Dn ||%n_3 /2 The failure of %, to control ||17||% and this half derivative deficit in D7 are key difficulties
that we must overcome in our analysis. However, %,, controls more temporal derivatives of n than €,
does. A similar discrepancy exists in the fact that €,, controls || p||%n_l while %, controls only ||V p||%n_1.

We define a similar energy with a minimal derivative count of one by

n n—1
G o=t VU3, o+ ) 10/ ul3, o, +IVPI3, o+ Y19 pl3, o1 + D013,
Jj=1 j=1 n
+ ) 19/ nl5,0;0  (252)
j=1
and with a minimal derivative count of two by
n ) n—1 )
Cuoi=Cua+ 1V2ull5, 5+ Y 1/ ull5, o +1V2pl3,s+ Y _ 13! P13, o)1 + 10?0113,
j=1 j=1

+ ) 137 nl3,0).  (2-53)
j=1

Similarly, the dissipation with a minimal derivative count of one is
n—1

n
D1 = D1+ VU3, 0+ D10/ ul3, 001 + IV P13, 0+ Y19 plI3, o+ 100113, 52

j=1 j=l n+1

F10m 3,10+ Y N8/ 0130 0jss00  (2-54)
j=2
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while the dissipation with a minimal derivative count of two is

n
Dug =Dz + V3, 5+ Y 107/ ull3, )01 IV P15, 5+ 18,V P35, 5

j=1
n+1

+ D 18 pl3ya; + 1D 013, 10 + 1DONN3, 30+ Y N1/ 03, 2j150-  (2-55)
, =
Note that, by definition, €, ,, > %n,m and D, , > Q_D,,,m. In all of these definitions, the index n counts
the highest number of time derivatives used. Notice that €, , and 9, ,, are subject to the same sorts of
discrepancies described in Remark 2.9.
Certain norms of 1 and u will play a special role in our analysis; we write

Fon 1= ”77”4N+1/2’ (2-56)

W= |Vl + 1 V2ull 7 + Z 1D |32 - (2-57)
i=1

Note that the regularity of u will always be sufficiently high for the L° norms in ¥ to be considered as
C%() norms, where € is the closure of Q. Finally, we define the total energy we will use in our analysis:

Gon(t) := sup Gan(r) —I—f Don(r) dr + Z sup (14+7r)"En12.m(r) + sup Fan () (2-58)
O<r<t S o<r<t o<r<t (147)"
Some initial estimates. We have the following lemma that constrains N.
Lemma 2.10. If N > 4, then, form = 1,2, we have En1r.m < €on and Dyio.m S €on.
Proof. The proof follows by simply comparing the definitions of these terms. U

Now we present an estimate of $19,7.
Lemma 2.11. We have the estimate ||918,n||0 < ||u||0 < én.
Proof. According to Lemma 2.7, we have 0,7 = —0;U;, where U;, i = 1, 2, is defined in the lemma. It is
easy to see that U; € H (D). Taking the Fourier transform and writing U = (U}, U,), we find that

||§1a,n||é=/z|s|2|8777<§>|2d55/2|s|2|s-ﬁ<s>|2ds,§fz|l7(s>|2dé=||U||%,o(2). (2-59)

However, Holder’s inequality and Lemma 2.6 imply that |U || gos) S I/ [z llullo S llullo, so the desired
estimate follows. [l

3. Interpolation estimates at the N + 2 level

Initial interpolation estimates for y, 1, u and V p. The fact that €y5,, and Dy12,,, m = 1, 2, have
a minimal count of derivatives creates numerous problems when we try to estimate terms with fewer
derivatives in terms of €y42,, and Dy42,,. Our way around this is to interpolate between €y2 n
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(or Dy42.m) and €,n. In the next few pages (through page 1467) we will prove various interpolation
inequalities of the form

IX1? < @Engam)’ @)™ and  [|X)2 < @niom)’ @), (3-1)

where 6 € (0, 1], X is some quantity, and || - || is some norm (usually either H O or L®).

In the interest of brevity, we record these estimates in tables that only list the value of 6 in the estimate.
Before each table we will tell which norms are being considered and give a rough summary of the terms
X that appear in the table. For example, we might write “the following table encodes the power in the
H'(X) and H%(Q) interpolation estimates for 1 and 77 and their derivatives,” before the following table.

X ENt21 DN421 ~Eny22 DNt
n,n 01 0> 03
Dn, Vi 04 05 B

We understand this to mean that

113 < @nsa D G0 113 < @ni2)®2 @)%, 013 < @vi)? @)% (3-2)
and
17115 S @n+220% @)%, IVilllF0q) S Ens2,0)™ )%,

IViTll30) S @ni2)® (@)%, (3-3)

etc. When we write @ y42 1 ~ €n42,2 in a table, it means that 6 is the same when interpolating between
Dn42,1 and € and between €422 and €. When we write multiple entries for X, we mean that the
same interpolation estimates hold for each item listed. Often, we will have a 6 appearing in a table of the
form 6 = 1/(1 4+ r). When we write this, we mean that the desired interpolation inequality holds with
this 0 for any fixed r € (0, 1), and the constant in the inequality then depends on r.

We must record estimates for too many choices of X to allow us to write the full details of each
estimate. However, most of the estimates are straightforward, so in our proofs we will frequently present
only a sketch of how to obtain them, providing details only for the most delicate estimates. The terms we
estimate are often linear combinations of several terms, each of which would get a different interpolation
power. When this occurs, we will record the lowest power achieved by a term in the sum. According to
Lemma 2.10, this is justified by the estimate

1—0c0f 1—Kkcok __wl—0c0 1—kcox—0 0
En Ensam Ty Enom =Con Entom TN EniamENtom

=000 Ik cok O 100
SEn Eniam TEN EN Eniom S Eon Entam (3-4)

for 0 <0 <k < 1. A similar estimate holds with €y ,, replaced by @42 ,,. It may happen that in
estimating a product of two or more terms, we end up with estimates of the form

IX 12 < Engom)? @) (Enram)™(@an)' (3-5)
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with 8; + 6, > 1. In this case, Lemma 2.10 again allows us to bound

IX1% < Engam) @nsam) T2 €)% <€y m@on < Eniam, (3-6)

where we have used the bound €,y < 1. It might also happen that (3-5) occurs with #; < 1 and
6, =1/(1+r), in which case we always understand that r is chosen so that 6, +6, = 1.
Now that our notation is explained, we turn to the estimates themselves We begin with estimates of .

Lemma 3.1. The following table encodes the power in the L>°(X) and L*°(K2) interpolation estimates
for n and 1 and their derivatives.

X EN+2.1 D421~ Eng22 DN+2,2

n, 1 A+D/A+14r) A+ /(A+2) A+1)/(A+3)
Dn, Vi 1 A+2)/(A4247)  (A+2)/(A+3)
D?*n, V?j 1 1 A+3)/(A+347)
D3n, V3j 1 1 1

1, ;1 1 1 2/(2+r)
D, Vi 1 1 1

The following table encodes the power in the H*(X) and H°(Q2) interpolation estimates for n and 7
and their derivatives.

X Envi21 Dyi21 ~Enyan DN+2,2
n,1n AJ(A+T1) A/ (A+2) A/ (A+3)
Dn, Vij 1 A+D/+2)  +1D/(A+3)
D?*n, V?j 1 1 (A+2)/(A+3)
D3n, V3j 1 1 1

3, ;1 1 1 1/2
Dd,n, Vi 1 1 1

Proof. The estimates follow directly from the Sobolev embeddings and Lemmas A.6 and A.7, using the
bounds ||9,m||(2) < é,n and ||§18,n||(2) < €an, the latter of which is a consequence of Lemma 2.11. [

Now we record some estimates involving u.

Lemma 3.2. Table 3.1(a) encodes the power in the L*°(2) and L*°(X) interpolation estimates for u and
its derivatives.

Table 3.1(b) encodes the power in the H(R2) interpolation estimates for u and its derivatives.

Table 3.1(c) encodes the power in some improved L°° (X)) interpolation estimates for u and its tangential
derivatives on X.. Here we restricttor € (0, 1/2).

Proof. The estimates of the first two tables follow directly from Sobolev embeddings and Lemmas A.8
and A.13. For the L°°(X) estimates of the last table, we use r € [0, 1/2) in (A-34) of Lemma A.7 along
with trace estimates and Lemma A.13 to bound
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X EN+2.1  DN421~Eny22 DNi22
u 1/(1+r) 1/2 1/3
Du 1 2/(2+r) 2/3
Vu 1/(1+r) 1/2 1/3
() D*u 1 1 1/(14r)
DVu 1 2/(2+7) 2/3
VZu 1 1/(14r) 1/2
Viu 1 1 1/(147r)
Viu 1 1 1
du 1 1 1
X Ent21 D2 ENt22 DNy2,2
u AJO+D A/A+D) A/(A+2) A/ (+2)
b) Du 1 1 G+1D/A+2) (A +1D/(A+2)
D%u 1 1 1 1
VDu 1 1 1 1
du 1 1 1 1
X EN+21 D21 Eng22 D22
© u | 11+ 1/A4r)  1)2 1/2
Du 1 2/Q24r) 2/Q2+r) 2/Q2+r)

2 2 -1
letl1 e 5y S el o5 O =P/ (1 D?

Table 3.2. Tables for Lemma 3.2.

ullgr(s))

1/(s+r) ,S (”M”%)(H»rfl)/(sqtr)(”Dsu”%)l/(ﬁ»r)

1455

SlullhHSH =D DV |5V (3-7)

For €y42.1 and @421 we choose s =1 and r € (0, 1/2), while for €x422 and D42, we choose s =2

and r = 0. In both cases, |lu||? < €,y and ||DSVu||(2) < éN+2.m- A similar argument works for the Du

estimates in L°(X).

Now we estimate Vp in L™.

O

Lemma 3.3. The following table encodes the power in the L°°(R2) interpolation estimates for derivatives

of p.
X Envi21 D21 ~Ent22 DNy2o
Vp 1 1/(1+7r) 1/2
VZp 1 1 1/(1+4r)
orp 1 1 1/(14r)
V3p 1 1 1
»Vp 1 1 1
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Proof. The estimates follow directly from the Sobolev embeddings and Lemma A.8. ]

Interpolation estimates for G*, i =1, 2,3, 4. Now that we have some preliminary estimates for u, 1, 7,
and V p (plus some of their derivatives), we can estimate the G’ forcing terms defined in (2-24)—(2-31).

Lemma 3.4. The following table encodes the power in the L>°(R2) interpolation estimates for G/,

i=1,...,5and G and their spatial derivatives.

X Eni21 D421~ Ent22 DN+2,2

G 1 1 (3A45)/(21+6)

vGh! 1 1 1

G'? 1 1 2/3

DG'? 1 1 1

vG!? 1 1 2/3

G'3 1 1 (BA+5)/(214+6)

vG'3 1 1 1

G4 1 1 1

vGh4 1 1 1

G'» 1 1 1

VGl 1 1

G' 1 1 2/3

DG' 1 1 1

vG! 1 1 2/3

The following table encodes the power in the H O(Q) interpolation estimates for GVii=1,...,5and
G and their spatial derivatives.

X Ent2,1 DN+2,1 Ent2,2 DN+2,2
G!! 1 1 1 (BA+3)/(21+6)
vGhl! 1 1 1 BA+5)/(21+6)
G'? 1 Gr+1)/2r+2) (BA+2)/2A+4) (4r42)/(31+6)
DG'? 1 1 1 (51+4)/(31+6)
G'3 1 1 1 (BA+3)/(2146)
vGh3 1 1 1 BA+5)/(21+6)
G4 1 1 1 (4r+6)/(31+9)
DG4 1 1 1 1
G'» 1 1 1 5/6
vVG!» 1 1 1 1
G! 1 GA+1)/2242) (GA+2)/2r+4) (4r+2)/(3r+6)
DG! 1 1 1 (51+4)/(31+6)

Proof. The definitions of G!¥ show that these terms are linear combinations of products of two or more
terms that can be estimated in either L> or H° by using Sobolev embeddings and Lemmas 3.1, 3.2,
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and 3.3. For the L table we estimate products using the usual algebra of L*°: | XY |z < || X|z=|Y ] L.
For the H table, we estimate products with both

IXYIIZ<IXIZNY 7~ and [[XY[3 < IV I3IX]I7w, (3-8)

and then take the larger value of 6 produced by these two bounds.

The interpolation powers recorded in the above tables have been determined using the full structure of
the G/, i =1,...,5, as defined in (2-24)—(2-31). However, for each G/, i =1, ..., 5, it is possible to
identify a “principal term” that has the same essential structure as the term in G'+/ that determines the
interpolation powers appearing in the tables. For the sake of clarity we record these principal terms now:

G ~q7Vp, GY~u-Vu, G2 ~qjdiu, G~ &iosu, G~ bdidsu. O
Now we estimate G2.

Lemma 3.5. The following table encodes the power in the L>°(2) and L*°(X) interpolation estimates
for G? and its spatial derivatives.

X ENt21 DNi2,1 ~Eng22 DN+2,2

G? 1 1 (41+6)/(3149)
DG? 1 1 1

VG? 1 1 (3145)/(21+6)
V2G? 1 1 1

The following table encodes the power in the H*(Q2) interpolation estimates for G* and its spatial

derivatives.
X Eni21 Dn+21 ~Ent22 DN+2.2
G? 1 (BA+2)/2r+4)  (4r+3)/(31+9)
DG? 1 1 (41+6)/(3149)
VG? 1 1 (3143)/(21+6)
V2G? 1 1 (3145)/(21+6)

Proof. The estimates may be derived as in Lemma 3.4, so we only record the principal term in G2. For
these estimates, G2 ~ no3us. U

Now we record G estimates.

Lemma 3.6. The following table encodes the power in the L (X) interpolation estimates for G* and its
spatial derivatives.

X Ent21 Dni21 ~ Enyo2 DN+2,2

G3 1 1 (4r+6)/(3149)
DG3 1 1 1

D2G3 1 1 1
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The following table encodes the power in the H°(X) interpolation estimates for G and its spatial

derivatives.
X Ent21 Dni21 ~ Enyo2 DN+2,2
G? 1 BA4+2)/2r+4)  (4r+3)/(3A+9)
DG? 1 1 (41+6)/(31+9)
D*G3 1 1 1

Proof. Recall that by Remark 2.4, we may remove the appearance of (p — 1) in G>. This allows us to
perform the estimates of G terms as in Lemmas 3.4 and 3.5. The principal term may be identified as

G3 ~ ndsu.

Now we record G* estimates.

O

Lemma 3.7. The following table encodes the power in the L (X) interpolation estimates for G* and its

spatial derivatives.

X ENt2.1 DNt21~ENt22 D422
G* 1 1
DG* 1 1
D*G* 1 1 1

The following table encodes the power in the H°(X) interpolation estimates for G* and its spatial

derivatives.
X Ent21 DNi2,1 ~Eni22 DN12,2
G* 1 1 (BA45)/(214+6)
DG* 1 1 1
D*G* 1 1 1

Proof. The estimates again work as in Lemmas 3.4-3.6. In this case there is no need to identify the

principal term, since G* = —Dn - u is already in a simple form. (I

Improved estimates for u, Vp. Now we will use the structure of the equations (2-23) to improve our

estimates for u, V p, etc. Our first estimate is for Dp. It constitutes an improvement of our existing L >

estimate, Lemma 3.3, as well as a first HY estimate.

Lemma 3.8. The following table encodes the power in an L*°(R2) interpolation estimate.

Enia1

D21~ Eng22

DN+2,2

Dp

1

1/(1+r)

A+2)/(A+3)

The following table encodes the power in an H°(S2) interpolation estimate.

En+2,1

DNy2,1 ™~ Eng22

DN+2,2

Dp

1 (+1)/(A+2)

A+1)/(A+3)
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Proof. In order to record the proof of both the H® and L estimates at the same time, we will generically
write | - || to refer to either the H°(2) or L>(2) norm. Similarly, we will write | - ||z to refer to the
H%(X) or L*(X) norm. The starting point is an application of Lemma A.10 to bound

IDpI* S I1Dpl5 + 118 Dpl1. (3-9)

We will estimate both terms on the right-hand side in order to prove the lemma.
In order to estimate Dp on X we utilize the boundary conditions in (2-23) to write

dip = 3in+28dus3 + 8;(G> - e3) (3-10)
for i =1, 2. From this we easily see that
IDplI3: S IIDnl% + DG I3 + | Ddsus % (3-11)

The first two terms may be estimated with Lemmas 3.1 and 3.6, but we must further exploit the structure
of the equations in order to control the last term. For the H° estimate we use trace theory and the second
equation in (2-23),

dsus = G2 — dyuy — douy, (3-12)
to see that
ID3u3 )05y S 1 DO3usll} S IDG(F + | D?ull3. (3-13)

Since D*u =0 on X, we may use Lemma A.13 to bound
ID?ullt < 1V D%ull5, (3-14)
so that, upon replacing in the previous inequality, we find
1Ddsu3130.5) S DG+ I DVG[§ + | D> V5. (3-15)
For the corresponding L*>° estimate we again use (3-12) to bound
1D83u3 117 () S IDG 17 e(z) + I1Dul 7 3. (3-16)

By Lemma A.13 we know that ||D2u||%oo(2) < ||v1)2u||%w(m. On the other hand, DG? € C°(Q) (this
2

may be verified using the Sobolev embeddings and Theorem 4.2), so that || DG?> 7o0csy = |l DG2||%OO(Q).
We may then replace these to arrive at the bound

1D5u317(x) S IDG () + IV Dl - (3-17)
Then, from (3-15) and (3-17), we know that

IDdusll% SIIDG?|? + | DVG?|? + || D*Vu ). (3-18)
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Combining (3-11) with (3-18) yields
IDpl% S IDnl% + I1DG? 1% + IDG?|> + | DVG?||* + || D*Vu . (3-19)

We may then employ Lemmas 3.1, 3.2, 3.3, 3.5, and 3.6 to derive the interpolation power for || Dp||%; we
record this power in the following table. Both the L™ and H® powers are determined by Dn, but the L™
estimate only improves the result of Lemma 3.3 for 9y 5.

Ent2,1 DN42,1 ~ Ent22 DN+2,2
IDpl7 o) 1 1/(14r) (A+2)/(A+3)
1DP1 305, 1 A+D/G42)  OA+D/(+3)

Now we will estimate the term ||33 Dp||. For this we use (2-23) to write
3;03p = ;[ (87 + 87 — 3 )us + d3uz + G - e3] (3-20)
for i =1, 2. Again using (3-12), we may write
3;03us = 8;05(G* — du; — dyuz). (3-21)
Combining these two equations then shows that
D33 pII* S ID°ull? + 1 D*Vul> + | D,ul* + | DG |* + | DVG?||2. (3-22)

We may then employ Lemmas 3.2, 3.3, 3.4, and 3.5 to derive the interpolation power for || Dd;p||%; we
record this power in the following table. The H” powers are determined by DG!, but note that the L™
estimate does not improve the result of Lemma 3.3.

Enia1 Dni21 ~Eni22 DN12,2
D33 pl|3 1 1 1/(1+r)
||D83p||(2) 1 1 Or+4)/(BA+6)

Now we return to (3-9) and employ our estimates of ||Dp||§: and || Do3 p||2 to deduce the desired
interpolation powers for ||Dp||2. Notice that we may also combine (3-9) with (3-19) and (3-22) for the
estimate

I Dp|?
SIDnl% + 1D ul + | D*ul|* + | D*Vull* + | DG'|* + || DG*||* + | DVG?|* + |DG?||%.  (3-23)

This concludes the proof. U
With this lemma in hand, we can now derive improved estimates for u.

Proposition 3.9. The following table encodes the improved power in the L°°(Q2) interpolation estimate

for u and its derivatives.



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1461

Envi21 Dni21~Eni22 Dni22
u 1 1/(1+7) 2/3
dui,i=1,2 1 1/(147) 2/3
313 1 2/(24r) 2/3
Vu 1 1/(147) 2/3
VZu 1 1/(1+r) 2/3

The following table encodes the power in the H°(2) interpolation estimate for u and its derivatives.

ENt2.1 DN42,1 ENt2.2 DN+2.2
u 1 G+1D/A42)  GED/O42) Ot/ (0+3)
ozuj, i =1,2 1 A+1)/(A+2) A+1/(A4+2) A+1)/(A+3)
i3 1 GA+2)/2A44) GA+2)/2A+4) (4A+3)/(BA+9)
Du 1 1 QA+3)/ (2044 (h+2)/(+3)
Vu | G+1)/042) G+D/O+2) Ot/ +3)
DVu 1 1 (20+3)/Qr+4)  (+2)/(+3)
Ddsus 1 1 1 (41 +6)/(3A+9)
Vasus 1 | (21+3)/(2r+4)  (31+3)/(2A+6)
V2u 1 A+1)/042)  O+D/42) A1)/ 43)

The following table encodes the improved power in the L°°(R2) interpolation estimate for V p.

ENt2.1

DN+2,1~ Ent22 DNi22

Vp

1

2/24+r) 2/3

The following table encodes the power in the H°(2) interpolation estimate for derivatives of p.

En+2,1 DN+2,1 En+2,2 DN+2,2
ap 1 Gr+1)/2A+2) (Br+2)/2A+4) (4r+2)/(BA+6)
Vp 1 A+D/(A+2) A+1)/(A+2) A+D/(A+3)
Proof. As in Lemma 3.8 we will write | - || and || - |5 to refer to both the H° and L norms on 2 and

2, respectively. We divide the proof into several steps, beginning with estimates of Vu. With these
established, we can extend to estimates of u, DVu, Du, Ddsus, and Vdszus by employing Poincaré’s
inequality and interpolation. This in turn leads to estimates for 83 p and V2u.

Step 1: Estimates of Vu. To begin the Vu estimates, we split the components of Vu into those involving

X1, X derivatives and those involving x3 derivatives. Indeed, we have

2

IVa > S 1 Dul® + 1833 1* + > [0 |1 (3-24)

i=1
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Lemma 3.2 provides an estimate of Du, but not of d3u, so we must use the structure of the equations
(2-23) to estimate the latter two terms.
To estimate dsus we use the second equation in (2-23) to bound

183u3 1> S G2 )1? + || Dull?. (3-25)

Then Lemmas 3.2 and 3.5 provide interpolation estimates of G> and Du and hence the estimates of d3u3
listed in the tables. The Du term determines the power for L, while the power is determined by G? for
H°.

To estimate dsu; for i =1, 2, we first apply Lemma A.10 to get

1930 1> S 1830113 + 11930 1. (3-26)
For the first term on the right, we use the third equation in (2-23) to bound
I95ui113 < 1 Dusliy + 1G5 (3-27)
Since Du = 0 on Xj, we can use trace theory, Lemma A.13, and the equation divu = G? for
1Dus3 S 11V Dusl® < 1 D%ul® + I DG, (3-28)
For the second term on the right side of (3-26), we use (2-23) to bound
193u; 1> < 19:ull® + I D?ull* + | Dp|* + G117 (3-29)
We may then combine estimates (3-26)—(3-29) to deduce that
l83ui 1 < 18,2)” + 1D%ull® + | DpII* + G I° + 1 DG + G5 (3-30)

Now we use Lemmas 3.2, 3.4-3.6, and 3.8 to find the interpolation powers for d3u;, i = 1, 2, listed in the
tables. For L the power is determined by Dp for €x12.1, €n+2,2, and Dy 7 | and by G! for DN4+2.2,
while for H? the power is determined by Dp.

With estimates for Du, d3u3, and d3u; for i = 1, 2 in hand, we return to (3-24) to derive the estimates
for Vu listed in the tables. For both the L™ and H estimates the power is determined by d3u;, i = 1, 2.

Step 2: Extensions to estimates of u, DVu, Ddsu3, and Vzuz. Now we apply Lemma A.13 to control u
in terms of Vu:

lul? < I Vull*. (3-31)

Our estimates for Vu then provide the estimates for u listed in the tables.

We now turn to DVu. Clearly ||DVu ||% is controlled by both €y 1 and D y4> 1, which yields the
powers of 1 in the tables. An application of (A-38) from the Appendix with A =0,¢ =1, and s =1
shows that

IDVuld < (IVullg)/*(I1D*Vu )2 (3-32)
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We employ this in conjunction with our estimate for Vu and the estimate of D?Vu from Lemma 3.2 to
get the interpolation powers for DVu listed in the tables for €12, and @y . The estimates for Du
listed in the tables follow immediately from the estimates for DVu via Poincaré:

1Dul* S 1 DVul. (3-33)
In order to estimate Dd3u3 and Vdsu3 in H? we use that divu = G2 for

IVasus I3 < IVGAIZ+ | DVul3, (3-34)
I Dd3us Iy S IIDG?3 + | D*ull3. (3-35)

Then our estimate for DVu and Lemmas 3.2 and 3.5 yield the estimates listed in the tables. For Vosus
the power is determined by DVu for €n42,1, Dn+2.1, €n+2,2 and by VG? for Dn42.2. For Ddzusz the
power is determined by DG?.

Step 3: Estimates of d3p and V p. Lemma 3.8 provides estimates for Dp, so to complete an estimate for
V p we only need to consider 93 p. For this we again use (2-23) to bound

183p1% < 193usll* + 1 D*ull® + [13,ull* + |G |1 (3-36)
This and (3-34) then imply that
135 p01* S IIDVull> + | D*ull® + l|3,ull* + |G 1> + I VG?|1%, (3-37)

and we may use Lemmas 3.2, 3.4, and 3.5 along with our new DVu estimate to determine the powers in
the tables for 93 p. In the L™ estimate the power is determined by DVu, and in the H® estimate the power
is determined by G'. Then the estimates for V p follow by comparing the Dp estimates of Lemma 3.8 to
the 93 p estimates.

Step 4: Estimates of V*u. Finally we consider V2u, which we decompose according to xi, x2, and x3

derivatives: )

IV2ul> SUD*ull” + |1 DVul® + [85us >+ D 195>, (3-38)
i=1

According to our bounds (3-29) and (3-34), we may replace this with
IV2ull® S 1dull® + | D*ull* + | DVull* + | DplI* + 1G> + I VG2 (3-39)

Then Lemmas 3.2, 3.4, 3.5, and 3.8 with our new estimate of DVu provide the estimates in the table
for V2u. For L™ the power is determined by Dp for €421, €n+2.2, and D421 and by G! for DN+2.25
while for HY it is determined by Dp. O

Bootstrapping: first iteration. We now use the improved estimates of Lemma 3.8 and Proposition 3.9
to improve the estimates of G',i=1,...,4, recorded in Lemmas 3.4-3.7. We will only record the
improvements for the H 0(Q) estimates.
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Lemma 3.10. The following table encodes the power in the H*(Q) interpolation estimates for G/,

i=1,...,5, and G" and their spatial derivatives.

X Envial DNy Enyan DN+2,2
G!! 1 1 1 (51+6)/(31+9)
vGh! 1 1 1 1

G2 1 1 1 1

VG2 1 1 1 1

G'3 1 1 1 (5046)/(3149)
vG'3 1 1 1 1

G4 1 1 1 1

vGl4 1 1 1 1

G’ 1 1 1 1

vG!» 1 1 1 1

G! 1 1 1 (51+6)/(3149)
VG! 1 1 1 1

Proof. We perform the estimates as in Lemma 3.4, except that now we use the improved interpolation
estimates of Lemma 3.8 and Proposition 3.9. (Il

We now record the G2 estimates.

Lemma 3.11. The following table encodes the power in the H°(2) interpolation estimates for G* and its
spatial derivatives.

X ENt21 DNi21 Eny22 DN+2,2

G? 1 1 1 (TA+6)/(31+9)
DG? 1 1 1 1

VG? 1 1 1 (51+5)/(21+6)
V2G? 1 1 1 1

Proof. We perform the estimates as in Lemma 3.5, except that now we use the improved interpolation
estimates of Proposition 3.9, in particular the distinct estimates for dsus and dszu;, i = 1, 2. These are
crucial since in G? the term d3u; is multiplied by a derivative of 7 but d3u3 is multiplied by 7 itself.
This means that for the present interpolation estimates we may identify the principal term in G? as
G? ~ 7103u3 + 31 1d3u1 + 927031u5. O

We now record the G estimates. We omit the proof since it follows that of Lemma 3.6, using the
improved estimates of Lemma 3.8 and Proposition 3.9.

Lemma 3.12. The following table encodes the power in the H’(X) interpolation estimates for G* and its
spatial derivatives.



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1465

X Eni21 D21 Ent22 DN+2,2

G? 1 1 1 (5146)/(3A+9)
DG? 1 1 1 (5.46)/(3A+9)
DG 1 1 1 1

We now record the G* estimates. We again omit the proof.

Lemma 3.13. The following table encodes the power in the H*(X) interpolation estimates for G* and its

spatial derivatives.

X ENt21 DNi21 Eny22 Dyy2o
G* 1 1 1 1
DG* 1 1 1 1
D*G* 1 1 1 1
The improved estimates for G,i=1,...,4,allow us to improve the H 0 estimates of Proposition 3.9.

Theorem 3.14. The following table encodes the power in the H°(S2) interpolation estimate for u and its

derivatives.
Ena1 DN 42,1 Eniao DN12,2
u 1 +D/O42)  A+D/G+2)  +1D/(+3)
Bt 1 1 QA43)/(2A+4) (1+2)/(A+3)
Du | 1 QA43)/(2A+4) (L +2)/(A+3)
Vu 1 G+D/G+2)  G+D/O+2) +1D/(A+3)
DVu 1 1 QA+3)/ (2044 (ot2)/(A+3)
Vo33 | | QA43)/(2h+4) (1+2)/(A+3)
V2 1 +D/0+2)  G+D/O+2)  A+1D/0+3)

The following table encodes the power in the H°(Q2) interpolation estimate for derivatives of p.

Enia,1 DN+2,1 Ent2.2 DN+2.2
33 p 1 1 QA43)/QA+4) (L+2)/(L+3)
Vp 1 A+1)/(A+2) A+1D/(A+2) (A+1)/(A4+3)

Proof. The powers are the same as those listed in Proposition 3.9 except for dsus, Vosusz, and 93 p.

To arrive at the 03 p estimates, we again employ the estimate (3-37) of Proposition 3.9, except that now

we use Lemmas 3.10 and 3.11 for estimates of G! and VG? and Proposition 3.9 for the estimate of DVu.

The terms d,u and D?u are still estimated with Lemma 3.2. The power in the 93 p estimate is determined

by DVu.

For the d3u3 terms, we employ the equation divu = G? to bound

133u3)1* < IIG*|* + || Dull*  and

IVasusll* S IVGHI* + | DVul®. (3-40)
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The estimates of d3u3 and Vosu3 in the table follow from these bounds and Lemmas 3.9 and 3.11, with
the power of the former determined by Du and that of the latter determined by DVu. (I

Bootstrapping: second iteration. We now use the improved estimates of Theorem 3.14 to improve the
estimates of G', i = 1, 2, recorded in Lemmas 3.10-3.11. We once again omit the proof.

Theorem 3.15. The following table encodes the power in the H*(Q) interpolation estimates for G/,

i=1,...,5, and G and their spatial derivatives.

X Envi21 D21 Eni22 DN42,2
G! 1 1 1 Q2r+2)/(A+3)
vGh! v2Ggh! 1 1 1 1

G2, vG'2?, v2G!? 1 1 1 1

G'3 1 1 1 QA+2)/(A+3)
VG3, viG3 1 1 1 1

G4, vGh4, vighe 1 1 1 1

G, vGh3, vighs 1 1 1 1

G! 1 1 1 2A+2)/(A+3)
VG!, V2G! 1 1 1 1

The following table encodes the power in the H*(Q) interpolation estimates for G* and its spatial

derivatives.

X EN+21 D421 En+22 D422
G2, VG?, V?G? 1 1 1 1

Now we make final improvements to our estimates.

Proposition 3.16. The following table encodes the power in the H°(S2) interpolation estimates for Dd3u;
fori=1,2.

X Eni21 Dni21 Eny22 DN+2,2
Ddsu;,i=1,2 1 1 1 (042)/0.43)

The following table encodes the power in an H*>(X) estimates for Du; fori =1, 2.

X Envia1 DNy Enyan DN12,2
Du;,i=1,2 1 1 1 (A+2)/(A+3)

The following table encodes the power in the improved H(X) interpolation estimates for 9.

X Envt21 D21 Ent22 DN+2,2
31 1 1 1 0+2)/0+3)
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Proof. We may argue as in the derivation of (3-23) of Lemma 3.8 to bound

ID?p?
SID P+ D*du )|+ D*ull*+ || D> Vul|*+ || D*G'||*+ || D*G*||*+ | D*°VG?* |*+|| D*G?||%.  (3-41)

We may also argue as in the derivation of (3-30) of Proposition 3.9 to bound
IDdsui 1> S 1 D3ull® + 1D ull® + 1D p|I* + I DG'|? + IDG*IP + IDG|l3. (3-42)

for i =1, 2. Combining (3-41) and (3-42) and employing Theorems 3.14 and 3.15 and Lemmas 3.12 and
3.13, we then find the H°(Q2) estimates for Ddsu;, i = 1, 2, listed in the table. The power is determined
by D?n.

We now turn to the || Duy; estimate for i = 1, 2. We employ trace theory and the Poincaré

2
” H2(2)
inequality to bound

IDuill3005) S 1Dsui[I5 - and 1D uilly0., S 11D 0305, (3-43)

and then we utilize our new estimate for Ddsu; to deduce the H>(X) estimates listed in the table. The
power is determined by Ddsu; since D33;u; has four derivatives and hence has a power of 1.
Finally, for the 9,71 estimate we use (2-23), trace theory, and Lemma A.13 to bound

19:7 1 05y S 313005y + 1G 105y S IV 116+ 1GH 305 (3-44)

Then Theorem 3.14 and Lemma 3.13 provide the 9,1 estimate for @y, » listed in the table, with the
power determined by Vus; the estimates for €x42.1, €n42.2, Dn+2,1 come from Lemma 3.1. O

Now we record an interpolation estimate for ¥, as defined by (2-57).

Lemma 3.17. We have ¥ < %gi%)/ (8+42).

Proof. By definition, # = | Vu[?e + [|V2u)3e + Yo, ||Du,-||§12(2). We may now use the H*(X)
interpolation estimate of Proposition 3.16 and the L*° interpolation estimate of Proposition 3.9 with
r=2A/(4+x) tobound ¥ < %fv/ffzr) The choice of r implies that 2/(2+r) = (8 +2X1)/(8 +4)), and

the result follows. O

Estimates at the high end. Our analysis so far in Section 3 has dealt with the problems associated with
estimating terms involving fewer derivatives than appear in €x42.m, Dn+2.m- We now turn to the problem
of estimating terms involving more derivatives than are controlled by @y5 ,,. We accomplish such
an estimate by interpolating between @ y2 ,, and €2y, which controls more derivatives since N > 5.

D2N+4

Fortunately, the only term we must concern ourselves with is n, and to simplify things we will

only estimate it in terms of @y, ». This suffices since Dy 22 S Dy42.1-

Lemma 3.18. We have the estimate

||[)2N—i-4n”%/2 + ||V2N+5ﬁ||(2) 5 (%ZN)Z/(4N—7) (@N+2,2)(4N_9)/(4N_7)- (3_45)
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Proof. According to Lemma A.5, with g = 2N 45, we may bound

IV 705 S Il anion s, S 1D 01T, (3-46)

so it suffices to prove (3-45) with only the D*¥ 43 term on the left side. To prove this, we will use a
standard Sobolev interpolation inequality:

LAl S AN I (3-47)

fors,g > 0and 0 <r <s. Applying this to f = D3>y with s =2N +3/2,r =1, and g =2N —9/2, we
find that

4N—9)/(4N~T 2/(4N—17
1D 12 < 1D nllan 32 S 1D gy s 1Dl ", (3-48)
The desired inequality then follows by squaring and using the definitions of €,y and Dy 2. O

Our next result utilizes Lemma 3.18 to estimate products such as u D*N 4.

Lemma 3.19. Let P = P(K, n, Dn) be a polynomial in K, n, Dn. Then there exists a 0 > 0 such that

DM mull g + 1D ) PVl 05 S EnDN2,2- (3-49)

Let Q = Q(K, l;, n, Vi) be a polynomial in K, 5, n, V1. Then there exists a 6 > 0 such that
(VAT QVul§ < EnDrs2.2. (3-50)

Proof. According to the bound (A-2) of Lemma A.1, we may bound

”(D2N+4 D2N+4

M PVull s,
SUID 1 1l gy + 1D 40105 | PV U G gy (B-51)

mull e, + I

Trace theory and Lemma A.13 (both u and D*u vanish on ;) imply that
2z + 1Vl g2y S Mullfyorsy + 1D ull o, + 1Vl o5y + 1 D*Vatll o s,
SIVulg+ 1D Vulg+ IV2ullg+ V> Dull3, (3-52)
but then an application of Theorem 3.14 to all the terms on the right side shows that

el 3o )+ 1VUl G ) S @2, 2)THH/EHY, (3-53)

It is easy to see, based on the terms controlled by €,y and the Sobolev embeddings, that || P||2 P (2) <

14+%¢,5 < 1. We may then combine this with (3-53) and the easy bound ||fg||H2(2) < ||f|| HA(E) ||g||C2(E)
to deduce that

sy + 1PVl sy S Nellypags) + 1Vl gy S @Dng20) /O (3-54)
Then this bound, (3-51), and Lemma 3.18 imply that

DM mullFpn gy + 1D N PVUl05) S ENDy 420 (3-55)
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for some 6 > 0 and for

C4AN-9 A+l _4N-9 1 16N—34 ]
K=aN—T T3 ZaNT T3 N2 2" (3-56)

since N > 4. Since Dy 122 < €on < 1, we may bound D122 < D422 in (3-55), which then yields
(3-49).
To derive (3-50), we first bound

IV VUl < IV RIG1 Vil zo QN7 - (3-57)
The first term on the right is controlled with Lemma 3.18. The second term satisfies
IVl < @n422)"° (3-58)

by virtue of the L*° estimates of Proposition 3.9. The third term satisfies || Q||iOO S1+4+%py <1by

Sobolev embeddings and the definition of €,5. The estimate (3-50) follows by combining these bounds
as above. O

4. Nonlinear estimates

Estimates of G at the N + 2 level. We now provide estimates of G', defined by (2-24)—(2-31), in terms
of €nta.m and Dy 42 . Recall that, for sums of space-time derivatives, we use the notation 5; and V‘m,
as described on page 1443.

Theorem 4.1. Let m € {1, 2}. Then there exists a 0 > 0 such that
VAN D 2GH G+ IV, PGP + 1D P PG o + 1D TGy S €y Eneam (4D
and
||§’%1(N+2)—1G1 ”(2) + ”§S(N+2)—1G2”% + ”551(N+2)—1G3”%/2
+ 1Dy PTIGHR, + ID* N2, GHE , S €y Dvram. (4-2)

Proof. The estimates of these nonlinearities are fairly routine to derive: we note that all terms are quadratic
or of higher order; then we apply the differential operator and expand using the Leibniz rule; each term in
the resulting sum is also at least quadratic, and we estimate one term in H* (k =0, 1/2, or 1 depending
on G') and the other term in L> or H™ for m depending on k, using Sobolev embeddings, trace theory,
and Lemmas A.1 and A.5-A.8. The derivative count in the differential operators is chosen in order to
allow estimation by €42, in (4-1) and by @n42 , in (4-2). There is only one difficulty that arises.
Because €42, and 9 y42 ,, involve minimal derivative counts, there may be terms in the sum 9*G' that
cannot be directly estimated. To handle these terms, we invoke the interpolation results of Theorems 3.14
and 3.16 and Proposition 3.9, as well as the specialized interpolation results of Lemma 3.19. A detailed
proof of the estimates is quite lengthy, so for the sake of brevity we present only a sketch.

Let o € N3 with m < |o| < 2(N +2) — 2 and consider 3*G'. Since G! involves Vp and 8%u, 3#7
with |B] < 2, we find that 3*G' involves at most (with parabolic counting) 2(N + 2) — 1 derivatives
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of p, and at most 2(N + 2) derivatives of u and 7. We have that G! is a linear combination of at least
quadratic terms, and as such, so is 3*G'. Let us consider a generic term in the sum 3°G', which we
write as XY with X of the form 8fu or 3#7 with || < 2(N +2) or else 3# p with |8] < 2(N +2) —1,
and Y a polynomial in lower-order derivatives. If | 8] is sufficiently large with respect to m, the minimal
derivative count is exceeded and we may estimate || X ||% < €n+a.m- It is easy to verify, using Sobolev
embeddings and Lemmas A.1 and A.5-A.8, that we always have || Y ||%oo < %‘;  for some 6 > 0. Then

IXY 5 < IXIBNY 100 S EniamEy- (4-3)

On the other hand, if |8] is not large, we must resort to interpolation, using Theorems 3.14 and 3.16
and Proposition 3.9. In this case, it can be verified that we always get estimates of the form || X ||(2) <
()7 (Engom)? and |Y |12 S (€an)®2(En42,m)? with 6) € (0, 1], 65,63 > 0, and 6 + 63 > 1, so

that
IXYNI5 < IXISNY 1700 < EniomEoy (4-4)

for some @ > 0. This analysis works for every XY appearing in 3*G, so

for some 6 > 0. It can then be verified, through a straightforward but lengthy analysis like that used
above, that all of the estimates in (4-1) hold. We note, though, that in order to estimate the G? terms, we
must use Remark 2.4 to remove the appearance of (p — 7) in G>.

Now we sketch the proof of the estimates in (4-2). We may argue as above to estimate all terms
that arise in 3*G’ with two exceptions: terms involving V2¥+35 on € or D*¥*4; on X. These always
have the form of the terms estimated in Lemma 3.19, so we may use that lemma for estimates in terms
of %g ~Dn+2,2, which suffice for (4-2) since Dy422 S Dy42,1. Then (4-2) follows by combining the
estimates of the exceptional terms with the estimates of the terms as above. ([

Estimates of G' at the 2N level. Now we derive estimates for the nonlinear G’ terms, defined by (2-24)-
(2-31), at the 2N level. Recall that, for sums of space-time derivatives, we use the notation ijz and ﬁﬁq,
as described on page 1443.

Theorem 4.2. Let m € {1, 2}. Then there exists a 6 > 0 such that
IV GG+ IV G IT + 1D 2GRl o + 1D 2GHIT , S €37, (4-6)
IV 2G5+ IV G2 IT + 1D G I o + 1D 2GHIT 0 + IV 0,615
+IVH0,G 1T+ 1D 0, GO , + 1D 20,613 )y S €y Dan. (4-T)
and
IV IV TGP IT + DN TGP  + 1DV T GHIT fp S Doy + H Ty, (4-8)

Proof. As explained in the proof of Theorem 4.1, the estimates are routine and lengthy, so we present only
a sketch. The estimates in (4-6) are straightforward since €,y has no minimal derivative restrictions. They
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may be derived using Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and the L™ estimates of
Lemma A.6.

The only terms with minimal derivatives in %,y are Dn and V p. The latter presents no problem, since,
owing to Remark 2.4, p itself never appears in any of the G’ terms. The former may be dealt with by
using Lemmas A.6 and A.7 to produce interpolation estimates of 7 and 7 in terms of Dn. Whenever
interpolation is needed to estimate these terms, there are always other terms multiplying them that allow
for the recovery of a power of 1 on %,y. Using these estimates with Sobolev embeddings, trace theory,
and Lemmas A.1, A.5, and A.6 then yields (4-7).

We now turn to the derivation of (4-8). Consider 3*G' with |o| = 4N — 1 and o = 0, that is, purely
spatial derivatives, and expand 3% G’ using the Leibniz rule. With two exceptions, we may argue as in
the derivation of (4-7) to estimate the desired norms of all of the resulting terms by %g NDay for 6 > 0.
The exceptional terms are ones involving either V4V*17 in @ or D*Vy on X. We will now show how
to estimate the exceptional terms with H{Z,y, as defined by (2-57) and (2-56). Identifying the product
structure X%, is one of the key difficulties in our analysis.

In VAN~1G! there are terms of the form 97 Q9” u, with

O0=0(A,B,J,K,VA, VB, V), 4-9)

a polynomial, and 8, y € N® with || =4N +1 and |y| = 1. To estimate such a term, we use Lemma A.5
to bound
IV < 1D 201 < Fon (4-10)

<14¢%, <1 for some 6 > 0, so

Sobolev embeddings imply that || Q|7 « < I S

1827087 ully S IV R IVUZ | QlF w0 S IDN 20131 Vi) < Fon. (4-11)

This estimate then yields the G! estimate in (4-8).
In V#*¥~1G? there are terms of the form 3708 u with Q = Q(A, B, K), a polynomial, and 8, y € N3
with |8| =4N, |y| = 1. Again, Sobolev embeddings imply that || QHZCI(Q) <1 +‘6§N <1,s0
197700 ully S I1QIIg1 g 197707 ull} S 10P707 ullg + 1077V 97 ull§ + 11VoP 70" ullg
SIVVAIGIVullgs g + IV A5 Va
S Inliy—1 2 Vulls +%Foy S €onGon +HFow, (4-12)

where again we have used Lemma A.5 and Sobolev embeddings. This estimate yields the G estimate in
(4-8).
In D*N=1G? there are terms of the form 8#17 Q97 u, where g € N? with |8| =4N, y € N? with |y| =1,

and Q is a term for which we can estimate ||Q ||2Cl ) <1+ %g v S 1. Then Lemma A.2 implies that

1971087 ull3 05y SUIP0IIT 21 Q7 ullg S MMz 12l QUE Vel ) S FanH, (4-13)

where in the last inequality we have used ||Vu ||é] ) < I, which follows since Vu and V2u are continuous

on the closure of 2. This estimate yields the G? estimate in (4-8).
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In D*N=1G* the exceptional terms are of the form 3P nu;, where B € N? with || =4N and i = 1, 2.
Then Lemma A.1 implies that

198 nmui gy S N8P 0IT olluti 130 5y S Fon'. (4-14)
This estimate yields the G* estimate in (4-8). O

Estimates of other nonlinearities. The next result provides estimates for $; G’ and its derivatives.

Proposition 4.3. We have

19:G I3 + 11928, G 15 + 195G 115 + 11958, G* 1} < €on min{Eay, Don}, (4-15)
19,G? (17 + 19, G*1IT < €an min{€ay, Dan}, (4-16)
19.G* 15 < D3y (4-17)

Proof. For eachi = 1,2 and for « € N'+3 such that || <2, we can write 9*Gl = Pé fx, where PO’; is
polynomial in the terms 8’35, PK, aﬁﬁ, and 98 u for B e N3 with |B] <4, and Qg is linear in the terms
38Vu, 3#V2u, and 3V p for | 8| < 2. Then we may employ the bound (A-9) of Lemma A.3 to see that

189, G115 S 1 Pallg Ul Qe ID* (ID Q5 1D (4-18)
It is then easily verified, using the Sobolev embedding, Lemmas A.1 and A.5-A.6, and the fact that

€ony <1, that
IPIIE <%y and  [|QL 113 < min{€an, Doy, (4-19)

which, together with (4-18), implies (4-15).

For i =3, 4 and @ € N? such that |o| < 1, we may similarly decompose 3*G' = P.Q!,. When i =3
we must also employ Remark 2.4 to replace the p — n term. We then argue as above, employing the
bound (A-10) of Lemma A.3 as well as trace estimates, to deduce (4-16). The bound (4-17) also follows
from Lemma A.3 and trace estimates, since

195,615 S Nt G0, DRI UID* D)™ < Dan By Gyt = B3 m
Now we provide some further estimates of product terms that will be useful later when we analyze the
energy evolution for $,u and $,7.

Lemma 4.4. Let A, B, K be as defined in (1-8). We have

2
19, [(AK) 311 + (BK)d3ua]llg + Y _ 19, [ud: K115 < D3 (4-20)
i=1
and

19301 = K)ulllg < (Gan) /T (@) HHH/AHH (4-21)
Also, if G? is as defined in (2-29), then

19101 — K)G?113 < €anD3y - (4-22)
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Proof. We apply Lemma A.3, treating the AK, BK, 9; K terms as f and the u, Vu terms as g, to bound

2
19, [(AK)d3u1 + (BK)d3ua]llg + D 19:[ud:i K115 S (IAK G+ | BKIIG+ I DK [§)[lul3.  (4-23)
i=1

From Lemma 2.6, the fact that 3; K = — K29, J, and Lemma A.5, we know that
IAKI§+ IBKIG+ IDKIG S IVl S 1Dnll; < Daw- (4-24)

Then, since ||u ||§ < %Dy, we know that (4-20) holds.
Now, since 1 — K = K(J — 1), we can again use Lemmas A.3 and 2.6 to see that

19101 = K)ulllg S NK A= DIFNul3 < il llal3. (4-25)
To control  we use Lemmas A.5 and A.7 to bound

1712 < Inllg + 100113 < QS Y IR QD3 T+ 4 (1D 3) VD ()| Dy 3y 4+
< (&) VIR (@) A, (4-26)

Then (4-21) follows from these two estimates and the fact that ||u ||% < Dyn.
For the estimate of the (1 — K)G? term, we once more use Lemma A.3 to see that

19,11 — K)GN S IG5 = K |15 (4-27)

By differentiating the equation J K = 1, we may compute the derivatives of K in terms of the derivatives
of J; this allows us to bound, by virtue of Lemmas 2.6 and A.5,

11— K15 S 175 S Inls e S Inllg+ 1Dl (4-28)
Then we may argue as in (4-26) to estimate the right side of this inequality, and we deduce that
1= K3 S (Em) P @) D, (4-29)
On the other hand, from the definition of G? in (2-29), we see that
IG5 S IVullg(I7l7~ + 1 VillZ)- (4-30)

We estimate the L™ norms by using (A-25) of Lemma A.6 first with ¢ =0, s = 1, r = A% + A and then
withg =1, s = 1, r = A% 4 2 to see that

17170 + IVill7 e S (S0 1D TV ADIH YD + (19015 ATV (| D))/ A
< (Ean)M D (@) VD, (4-31)

Then, since ||Vu||% < %>y, we have
IG5 S (Ean) A (@) I/ OHD, (4-32)

which yields (4-22) when combined with (4-27) and (4-29). [l
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Now we provide an estimate of 8,‘/ A when j =2N + 1 and when j = N + 3.
Lemma 4.5. Let A be given by (1-7). We have

192V s 13 < Doy, (4-33)

while form =1, 2,
1N A2 < Dygam. (4-34)

Proof. We will only prove (4-33); the bound (4-34) follows from similar analysis. Since ||82N )2 2=
%, and temporal derivatives commute with the Poisson integral, we may employ Lemma A.5 to bound

182+ 30T = 17M 711G + IV arN T alg S 17V nllT, < Daw. (4-35)
From this we easily deduce that
107105+ 107V K115 S Do (4-36)

This, the previous bound, and the Sobolev embeddings then imply (4-33) since the components of «{ are
either unity, K, —0; ﬁI;K, or —azﬁl;K. O

5. Energy evolution using the geometric form

Estimates of the perturbations when 9% = 3, is applied to (1-9). We now present estimates of the
perturbations F’, defined by (2-13)—(2-22) when 8% = 92V.

Theorem 5.1. Let 3% = 3>V and let F', F?, F3, F* be defined by (2-13)~(2-22). Then
IFUE+ 18 (JEHIG+IF 15+ I FA 5 < €anDan. (5-1)

Proof. We first consider the F! estimate. Each term in the sums that define F! is at least quadratic. It
is straightforward to see that each such term can be written in the form XY, where X involves fewer
temporal derivatives than Y, and we may use the usual Sobolev embeddings and Lemmas A.1 and A.5
along with the definitions of €,y and %,y (given in (2-50) and (2-51), respectively) to estimate

IX|I2 S€n and  [|Y]|3 < Doy (5-2)

Then ||XY||(2) < ||X|| . ||Y||(2) < € NDay, and the F! estimate in (5-1) follows by summing. A similar
argument, also employing trace estimates, yields the F3 and F* estimates in (5-1). Note though, that to
estimate the 8 = « term in F>! we use Remark 2.4 to replace (p — 7).

The same analysis also works for 3;,(JF>') and shows that ||9,(J F> 1)||(2) < €onDoy. To handle
9;(J F>?) we must also be able to estimate ||82N+1&ﬂ||% < %, y, but this is possible due to Lemma 4.5.
Then a similar splitting into L> and H estimates shows that |9, (J F> 2)||0 < €anvDan, and then the
9,(J F?) estimate in (5-1) follows since F? = F>! 4+ F%2, O

We now present estimates for these perturbations when 9 = 9,¥ +2,
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Theorem 5.2. Let 3% = 312 and let F', F2, F3, F* be defined by (2-13)—(2-22). Then, form =1, 2,
we have

IFUG+ 19, (JFAIG+IF 15+ 1 FHIG < €anDnram. (5-3)
Also, if N > 3, there exists a 0 > 0 such that
IF?15 S €5nEnsam (5-4)
form=1,2.

Proof. The proof of (5-3) is essentially the same as that of Theorem 5.1. For the F!, F3, and F* estimates
we note that each term in their definition is of the form XY where X involves fewer temporal derivatives
than Y, which involves at least two temporal derivatives. We estimate || X ||%w <S¢y and ||Y ||(2) SDNt2.m
and then sum to get (5-3). Note that since Y involves at least two temporal derivatives, there is no problem
estimating it in terms of D42 ;. The 0;(J F 2) estimate works similarly, except we must also use the
bound (4-34) from Lemma 4.5. Note also that in estimating the 8 = « term in F!, we must employ
Remark 2.4 to remove (p — n).

We now turn to the proof of (5-4). Recall that F 2= F>! 4 F%2 as defined in (2-19). Since the sum
in F2! runs over 1 < B < N + 1, we may bound

2,12 2 N+2— 2 N+2— 2
IFZR S Y0 0l sl Pui < Y @nlld) P uld i aiviap)
1<B<N+1 1<B<N+l1

S ENEnt2.m- (5-5)
For F22, a calculation reveals that
F22=—aN* 2500 u; = —0N T2 sl305u; =N T2 (817D K ) 3u1 +0N T2 (92716 K ) 0312 — 3N T2 K d3u3. (5-6)

We may use the L interpolation estimate of Proposition 3.9 to bound | d3u; ||%OO SEnqom fori=1,2
and m = 1, 2, which then implies that

10N 20175 K )d3uy + 3N T (0anb K)3uz 1y < €annam (5-7)

if we estimate d3u; in L® and the B,N *1 terms in H. On the other hand, the relation JK = 1 (recall the
definition in (1-8)), the Leibniz rule, and Lemma A.5 imply that

INPKIGS D 1S D I als D 19 mli,

I<y<N+2 I<y<N+2 I<y<N+2
Y 2 N+2_ 12 N+2_ 2
= > 100+ 13Y 2003, S Envam H 13N P0lT o (5-8)
I<y<N+l

To handle the last term we must use the standard Sobolev interpolation (3-47) with s =r = 1/2 and
qg=2N—9/2:

1920117 2 S AN 20l A8 2 nl3y )" ™ S (Engam)* (Ean)' ™ (5-9)
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fork = (4N —9)/(4N — 8). Then
10N 2K d3u3 115 < 10N 2K 1311833117 00 S Enaamlld3u3l 7o + (Engam)  (Ean) " Nd3u3)7. (5-10)

For the first term on the right we bound || 93u3 ||%Oo < ¢y, and for the second we use the L> interpolation

bound of Proposition 3.9 with r = 1/2, so that 2/(2+r) =4/5> 1 —« and | 8313]|3 o €3/ e SENTo -

Then these estimates and (5-10) imply that
18,2 K d3u35 S Enam(Ean)' (5-11)
We then combine (5-6), (5-7), and (5-11) to see that
12215 S Envzam (E2n)' 7% (5-12)
Then the estimate (5-4) follows from (5-5) and (5-12). O

Energy evolution with the highest and lowest count of temporal derivatives. We now show the time-
integrated evolution estimate for 2N temporal derivatives.

Proposition 5.3. There exists a 6 > 0 such that
t t
187N u@ 15+ 197N n ()15 + f 1DV u 3 < €on(0) + (G (1) + / €5\ Da. (5-13)
0 0

Proof. We apply 9% = BEN to (1-9). Then v = 8,2Nu, q= 8t2Np, and ¢ = 8,2Nn solve (2-1) with F',
i=1,2,3,4, given by (2-13)—(2-22). Applying Lemma 2.2 (and Remark 2.3) to these functions and then
integrating in time from O to ¢ gives

1 1 1
5/J|83Nu<r)|2+§/|83Nn(r)|2+5/ leDwafNulz
Q b 0 JQ
t t
=1/J|33Nu(0)|2+1f|83Nn(0)|2+/ /J(afNu.F1+a,2NpF2)+f /—a,ZNu.F3+a,2NnF4. (5-14)
2 Q 2 D) 0 JQ 0J%

Here, because of Remark 2.3, we understand that this formula actually holds with

t t
//aSNpJFZ :=—/ / afN—lpa,(JFz)Jr/(afN—lpJF2)(t)—/(afN—lpJFz)(O). (5-15)
0JQ 0JQ Q Q

We will estimate all of the terms involving F' on the right side of this equation.
We begin with the F! term. According to Theorem 5.1 and Lemma 2.6, we may bound

t t t t
/ / JoPNu-F' < / 102N ulloll I Nl e 1 F o S f VDonvEnDay = / VénToy.  (5-16)
0JQ 0 0 0

Similarly, we use Theorem 5.1 and trace theory to handle the F* and F* terms:

t t
/ f —Nu- FP 4o} gF* < / 132V ull grogsy | F> 1o + 1182V nlloll F41lo
0JX 0

t t
< / U8 ully + 113N nllo)v/€anDan < f VénTan.  (5-17)
0 0
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According to Theorem 5.1 we may estimate

t t t t
- / / 92N i (JFY) < / 1925 pllolla (T F) o < / B Eon G = / STy (5-18)
0JQ 0 0 0

On the other hand, it is easy to verify using the Sobolev embeddings that

f @2V pI P (1) — f G2V T F2)(0) < Ean (0) + (Ean ()2, (5-19)
Q Q
Hence
/ f N pJ F2 < €an(0) + (€an (1))*/* + f VeénDan. (5-20)
0JQ 0

Now we combine (5-16), (5-17), and (5-20) to deduce that

1 1 1 [’
5/ J|afNu(t)|2+§f|83Nn(r)|2+§/ / J Dy ul?
Q ) 0JQ t
< Ean(0) + (Ban (1) + f JEnDoy. (521)
0

We now seek to replace J|Dyd*Vu|? with [Da*Nu|? and J]8>Nu(t)|> with |02V u(t)|? in (5-21). To
this end, we write

JIDud*Nul*> = DN u)? + (J — 1)|D*N u|* + J (DN u + D3N u) : (Dyd*Nu — D8N u)  (5-22)
and estimate the last three terms on the right side. For the last term we note that
(Dsd?Nu £D8 N u);; = (six 800 N uj + (s jx £, u;, (5-23)
so that Sobolev embeddings and Lemma A.5 provide the bounds
D02 N u — D0V u| < Véon |V ul and Dy u+D0Nu| < (1+En) Vo Nul.  (5-24)

We then get
t
/ f 1J (D8N u 4+ DN u) : (D40>Nu — D3N u)|
0JQ

t t
< / (Von + o) / VPN U < f JEonTan.  (5-25)
0 Q 0

Similarly,
t t
/ f 1 — D02V uf? < / sy and / T 112N < Ean @) (5:26)
0JQ 0 Q
We may then use (5-22) and (5-25)—(5-26) to replace in (5-21) and derive the bound (5-13). [l

atN-i-Z

Now we prove a similar result for when is applied. This time, however, we do not want an

inequality that is integrated in time, so we are forced to introduce an error term involving 3,¥ tp.
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Proposition 5.4. Let F2 be given by (2-19) with 3% = 8N 2. Then
3 <||ﬁa,N+2uné + 13} 2§ — 2 / Ja,N“sz) + DN F2ull§ < VEnDa12,m- (5-27)
Q

Proof. We apply 8% = 82 to (1-9). Then v = 8N "2u, g = 9N 2 p, and ¢ = 92y solve (2-1) with F',
i=1,2,3,4, given by (2-13)—(2-22). Applying Lemma 2.2 to these functions gives

o (5 [[ e+ 3 [1aveene )+ [ gy
Q ) Q

:/ J(afV+2u-F1+a,N+2pF2)+/ —N T2y PP 9N T2 Ft. (5-28)
Q z

We will estimate all of the terms involving F' on the right side of this equation as in Proposition 5.3.
We begin with the F! term. According to Theorem 5.2 and Lemma 2.6, we may bound

/ TN 2u-FU < 197 ullol =1 F o S VON-+2mv/ €N DN12m = VEN D42 (5-29)
Q
Similarly, we use Theorem 5.2 and trace theory to handle the F3 and F* terms:

/ —N 2 3 N2 Y < 10N 2u) ooy 3 o + 10N P nlloll 4o
)

SN 2ully + 18N 0ll0)vVEnDNr2m S VENDN12m  (5-30)

For the term BIN +2 pF?, there is one more time derivative on p than can be controlled by @y 2.,,. We
are then forced to pull out a time derivative:

/8,N+szF2=3z/ azN“PJFz_/ 0, pd,(J F?). (5-31)
Q Q Q

Then, according to Theorem 5.2, we may estimate

- / N pa (JF? < 10N pliolld: (J F) o S VIN12.mVENDN12.m =V ENDN42.m.  (5-32)
Q

Hence
t
//33NPJF253t/ NPT F2 + /€N Dyso.m. (5-33)
0JQ Q

Now we combine (5-28)—(5-30) and (5-33) to deduce that

1 1 1
ol 5 | SN 2ulP+5 [ 19820 = | 8 pI P )45 | JIDad) Pul? S VeanDyiam. (5-34)
2 Ja 2 Js Q 2 Ja
We may argue as in (5-22)—(5-26) of Proposition 5.3 to show that

1 1
3 [ 103 S 5 [ D8Nl Tz (5-35)

Then (5-27) follows from (5-34) and (5-35). [l
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Finally, we record the basic energy estimate when no derivatives are applied.

atG/ J|u|2+%/|n|2)+%/ JIDgu)? = 0. (5-36)
Q ) Q

t t
nmn%+umm%+£|mm%5%wmyﬁ£v%m@m. (5-37)

Proposition 5.5. We have

In particular,

Proof. Setting v=u,q=p, ¢ =n,and F' =0 fori=1,2,3,4in Lemma 2.2 yields (5-36). We may
argue as in (5-22)—(5-26) of Proposition 5.3 to estimate

1 / Dul* < l/ JIDgul? +/E€n Do - (5-38)
2 Jg 2 Jg
Similarly, Lemma 2.6 allows us to estimate
1 2 _ 1 2
e sd [ (539)
IS
Now we may integrate (5-36) in time from O to ¢ and use these two estimates to derive (5-37). O

6. Energy evolution in the perturbed linear form

Energy evolution for horizontal derivatives. We now estimate how the evolution of the horizontal energy
is coupled to the horizontal dissipation and the full energy and dissipation. Recall that %,y is as defined
in (2-56) and ¥ is as defined in (2-57).

Lemma 6.1. Let o € N? be such that || = 4N, that is, let 0 be 4N spatial derivatives in the x|, x»
directions. Let G* be as defined by (2-31). Then

/ 303" G*| < vV EnDan + v DonHF o . (6-1)
>

Proof. Throughout the proof B will always denote an element of N2, and we will write

Df-9Pu=20,foPu,+ 8, f0%u,
for a function f defined on X. Then by the Leibniz rule, we have

—0°G* =0"(Dn-u) =D n-u+ Y CapDd* Pn-0fu+t > CupDd* Fn-8Pu  (6-2)
0<B<«a 0<B<a
[Bl=1 |B1=2

for constants C,, g depending on o and B. We will analyze each of the three terms on the right separately.
For the first term, we integrate by parts to see that

/aanDaan-uzlf D|8“n|2-u=—lf 9“n0“n(01u1 + duz). (6-3)
b 2 )5 2 s
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This then allows us to use (A-3) of Lemma A.1 to bound

/30[7703“77% S 100121090 (@1ur + d2u2) | g-1/2(x)
>

S nllanvs1210%nll <1 2110101 + dauall g2y
S nllanvs121lDnllan 32110141 + d2usz || 25y < v FonDonK. (6-4)

Similarly, for the second term we estimate

/a“n > CupDd* Py 0Pu
z 0<B<a

1Bl=1

2
SID™nlh2 D nll 12 Y N Duill s,
i=1

2
Slnllans121Dnllan—32 Y I1Duill pagsy < v/ FanDon¥.  (6-5)

i=1

For the third term we first note that |0°n||—1/2 S | Dnllan—3/2 < +/PD2n, Which allows us to bound

< 18%nl—121D3* Py 3P ull yr2esy S VBan 1D Py - 3P ullie(zy.  (6-6)

/ 3*nDI* Py -0fu
D)

We estimate the last term on the right using Lemma A.1 and trace theory, but in different ways depending

on |B|:

1D8* Pl 2l8Full o) for 2 < |BI < 2N,

Daa—ﬂ . aﬁu <
1D -0 ullpes) S {”Daaﬁnnznaﬁuummz) for 2N +1< |81 <4N

< {||D77||4N3/2||M||2N+3 for2 <|B| <2N, 67)
“UIDnlansillullaytr - for 2N +1 <|B| < 4N,
so that || D3* P - 9Pu| g5y S VEnDay forall 0 < B < a with |8] > 2. Hence
/ 0%n Y CapDd* Py 0Pu| S VBony/EnDon =V EnDon. (6-8)
z 0<B<a
1B1=2
The estimate (6-1) then follows from (6-4), (6-5), and (6-8). U
Now we prove an estimate for horizontal derivatives up to order 2N, excluding 0% = 8,2N and no

derivatives. Recall that we use the conventions for sums of derivatives described on page 1443.

Proposition 6.2. Suppose that o € N2 is such that ag < 2N — 1 and 1 < |a| < 4N. Then there exists a
0 > 0 such that

af@ /|aau|z+% / |a“n|2>+% / D3%uP < €y Doy + VDo HFon. (6-9)
Q h) Q
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and, in particular,
~N4N-—1 2 n4N—1 2 n4N-1 2 n4AN—1 2
1D u@®lg+ IIDD u@®llg+ 1107 n®Illg+ I1DD no

t t
+/ ||D‘1‘N—‘Du||3+||DD4N—1DM||35%2N(O)+/ €N Doy + VDN HFay.  (6-10)
0 0

Proof. Let o € N'*2 satisfy g <2N — 1 and 1 < |a| <4N. Note that the constraint on &g implies that we
do not exceed the number of temporal derivatives of p that we can control. An application of Lemma 2.5
tov=0%, g =0%p, ¢ = 3% with ®' =3*G!, > =3*G?, > =09°G?, d* =9*G*, and a = | reveals
that

l a2 l a2 l a,, 2
a,(2/9|a ul +2f2|a 0l )+2f9|u3>a ul
:f Bo‘u-(a"‘Gl—V8“G2)+8°’p8°‘G2+/ —0% - 3%G> +9%na*G*.  (6-11)
Q X

Assume initially that 1 <|w| <4N — 1. Then according to the estimates (4-7) and (4-8) of Theorem 4.2
and the definition of %,y, we have

<19%ulloC13* G llo+ 113G 1) +113% pllolla* Gl

/8“u-(8“G1—V8“G2)+8“p8“G2
Q

<DV E Doy +H Ty Sy Doy ++/DonH Ty,  (6-12)

where in the last equality we have written k = 0/2 for 6 > 0 the number provided by Theorem 4.2.
Similarly, we may use Theorem 4.2 along with the trace estimate [|3%u/| go(s) S 10%ulli < ~/Dan to get

< 18%ull gocsy 19 G llo + 197 llo 19 G* 1o

< VDNV E Doy + HFoy < Ey Doy + /Do H Ty

Now assume that o] = 4N. Since ag < 2N — 1, we may write « = 8 + (o — ) for some B € N? with

f —0% - 3%G> + 9%no* G*
D)

(6-13)

|B] = 1, that is, % involves at least one spatial derivative. Since |« — 8| = 4N — 1, we can then integrate
by parts and use (4-7) and (4-8) of Theorem 4.2 to see that

/ 0%u - (3G — Va*G?)
Q

/ 0By . (3 PG —va*PGH

Q

< 13* Pullo(13* PG o + 19* 2 G2111) < 19%ulli (IV*N LG o + IV G2 h)

< VDNVE Ty + HTFoy < EyDay + Doy HToy.  (6-14)

For the pressure term we do not need to integrate by parts; Theorem 4.2 provides the estimate

/ 9% pa* G*
Q

<[18%pllolla* P8P G?[lo < 13* plloI V¥ ' G2y

VDoV E Doy +HFon < EsyDan + v DanHFay. (6-15)
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Next, we integrate by parts, employ Theorem 4.2, and use the trace estimate H'!(Q2) — H'/?(Z) to get

/ %u - 9°G3
>

<18 Pull 11200y 18P G112

/ 80(4—}3“ X aa—ﬂG3
>
S10%ull ey IDN LGP 1o S 18%ul 1D 'GPl o

< VDNV E N Doy + HFoy S Ey Doy + VDo H Ty

For the term 0%nd* G* we must split into two cases: ap > 1 and og = 0. In the former case, there is at

(6-16)

least one temporal derivative in 9%, so [[09n||1/2 < +/%2y, and hence Theorem 4.2 allows us to bound

f 3%na*G*
)

<113 nll12110° PG 2 S 18Nl 2l DN LGl 2

/ aa-i-ﬂnaot—ﬂ G4
z

< VDVE Doy + HFon < EENDon + VIonH Ty, (6-17)

In the latter case, ag = 0, so that 9% involves only spatial derivatives; in this case we use Lemma 6.1 to

bound
/8“778"‘G4 SVnDon ++DonHFon. (6-18)
p))

Now, in light of (6-11)-(6-18), we know that (6-9) holds. The bound (6-10) follows by applying (6-9)
toall 1 < || <4N with ¢g <2N — 1, summing, and integrating in time from 0 to ¢. O

Our next result provides some preliminary interpolation estimates for G> and G* in terms of Dy 2 1,
as defined in (2-54) and (2-55), but with a power greater than 1.

Lemma 6.3. Let G* be as defined in (2-31). We have the estimate
ID*NGHE ) S @) AN, (6-19)
Also, there exists a 6 > 0 such that
IDGH5 S €op @42 TV and | D*GH§ S €y (D) /O (6-20)
Finally,
IDG*17, S €y @ni2.) D and | D*G?||7, S €y (Dysa2) O, (6-21)

Proof. Let a € N? be such that |a| = 2(N +2) — 1. The Leibniz rule, Lemma A.1, and trace theory imply

10°G* 2 S Y. IDPnlallo* Pullgesy + D> 1D nl210* Pull s,
B=a B=<a
IBI<N+2 N+3<|B|<2N+3

SUDNl 44l DR ully + 1D nllav+2)-s/2 lull vz sy (6-22)
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Trace theory, Poincaré’s inequality, the H%(S2) interpolation result for Vu of Theorem 3.14, and the
fact that | DV 2u||? < min{®;n, D25} imply that
Ml vea gy S lellzpocg) + 1DV 2ull 3o gy S IVUIG+ 1DV 2ull}

A1) /(A+3 A+ /(A+3
SDYENT 4 (@)Y 0D @) VO < g (DI (623)

Let us now choose ¢ so that
A+1 q 2

3 g1 tav—7 (6-24)
Since N > 5 and X € (0, 1), we may find such a ¢ = g(1) with dg(1)/dAx <0 for A € (0, 1):
8N 42-8 [8N—6 8N—8] - _
1= AN(14+1)—91—13 8N —22" 4N —13 C[1,2N —9/2]. (6-25)

Using this ¢, r = 1, and s = 2(N 4+ 2) — 5/2 in the standard Sobolev interpolation inequality (3-47), we

find that

3,112 3,112 1+ 3112 1/(1+
D ’7||2(N+2)—5/2§ (1D 77||2(N+2)_7/2)Q/( q)(”D 7I||2(N+2)_5/2+q) /(+a)

(6-26)
Now (6-23), (6-26), and the choice of ¢ imply that
ID* 050w 12)—sp el i gy S @nga ) F2/END (6-27)

The fact that || D3n ||%\,Jr2 <min{éy, Dn+2.2} and the HO(D) interpolation result for D7 of Lemma 3.1
imply that

1D0 %14 S 1DIG+ 1D 011542
A+1)/(A+3
5 @( )/( ) + (||D3n||12v+2)2/()»+3)(”D3n||%]+2)()»+1)/()»+3)

N+2,2
A+1)/(A+3 A+1)/(A+3
< @§V+2?2/( ) + (%ZN)Z/(K—H’a) (@N+2,2)(A+1)/(A+3) 5 @5\]+2?2/( ) (6_28)

On the other hand, using the same ¢ as above, we have

2N-+3 2 2N-+3 2 1 2N+3 251 1
1D ullf = (DY ulH?/ @D (| DY u /et

S @Dy 42,2) D () IHD < (D 402)/HD, (6-29)
Then (6-28) and (6-29) imply that

2 3 _
1D 34 a I DX ull} S D) TN, (6-30)

We then combine (6-22), (6-27), and (6-30) to deduce (6-19).

We now turn to the proof of the bounds (6-20) and (6-21). The bounds (6-20) may be deduced by
applying an operator 3% with o € N'*2 satisfying either || = 1 or |a| =2 to G*, and then estimating the
resulting products with one norm taken in H° and the others in L>°, employing the H° and L™ interpolation
estimates for n, # and their derivatives recorded in Lemma 3.1, Proposition 3.9, and Theorem 3.14. The
bounds (6-21) may be deduced similarly except that at least two terms in the resulting products must
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be estimated in H” to deduce the resulting L' bounds. This presents no problem since G2 is a linear
combination of products of two or more terms. (I

With this lemma in place, we may record the estimates for the evolution of the energy at the N + 2
level.

Proposition 6.4. Suppose thatm € {1, 2} and o € N'*2 is such that ey < N + 1 and m < || < 2(N +2).
Then there exists a 0 > 0 such that

B (18%ully + 130113 + 1D u 13 < €5y DN+2.m- (6-31)
In particular,

DN u |3+ DD N Bu| 2+ D2V 13+ DD*N Py |3+ D2 Du |3+ D DN P Du |3
<ENINrom. (6-32)

Proof. For m € {1,2} and « € N'*2 such that g < N + 1 and m < |a| < 2(N +2), we argue as in
Proposition 6.2 to deduce that (6-11) holds. Let X, denote the right side of (6-11) for our range of «. To
bound X,, we break to three cases.

fm+1<|o|<2(N+2)—1or|a|=2(N+2)with1 <oy <N + 1, we know from trace theory and
the definitions of %y 42, that

19%ullg + 110% plIg + 1%l 312y + 10017 /2 S DN+ 2.m- (6-33)
This allows us to argue as in Proposition 6.2, employing Theorem 4.1 in place of Theorem 4.2, to bound
| Xal S €nDN+2.m (6-34)

for some 6 > 0.

Now consider || = 2(N +2) with oy = 0. In this case we know from the definitions (2-54) and (2-55)
that there is a deficit of half a derivative that prevents us from bounding |0%n ||% 2 S D 42.m, but we may
still estimate

19%u )+ 119 pUIG + 10%ul 51 5y S DN-42,m- (6-35)
We may then argue as in Proposition 6.2, integrating by parts and using these bounds as well as those
from Theorem 4.1 to show that the first, second, and third integrals in the definition of X, are bounded

by %gNQZj N+2.m- For the fourth integral, we control ||8"‘17||% 2 through the interpolation estimate of
Lemma 3.18:

1817, < ID*N 0113 5 S (€)™ N (@ ygp0) N IEVT), (6-36)

Then we may integrate by parts with « = 84 (o — B), || = 1 and employ this estimate along with (6-19)
of Lemma 6.3 to see that
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< [18%nll_12110° PG 112 S 18112l DN 3G 2

/ 8a+ﬂn3a—,3 G4
=

/ 0% G*
D)

< Ean) 2D @y ) AN AN=T) [y )1 +2/4N=T)
= (€0 "N DBy < (@) N DDy . (6-37)
Hence, when || = 2(N + 2) with ag = 0, there is a 6 > 0 such that
| Xal S EnDN+2.m- (6-38)
Finally, we consider the case of |o| = m for m = 1, 2. In this case we only know that
19%u T+ 19%u 137125y S DN-+2,m5 (6-39)

so only the first and third integrals of X, may be handled directly as above to be bounded by %g NDN2,m-
For the fourth term in X, we first use the H°(X) interpolation results of Lemma 3.1 and Proposition 3.16
to bound

IDN)3 < @42 )PV AFDand  |ID*nlI + 190115 S (Do) PHD/OH), (6-40)

Then by (6-20) of Lemma 6.3, we know that

‘/ 3*nd*G*| < 13%nllolld*G*[lo
)
- {J(@M,1)<A+1>/<*+2>~/%§N<@N+z,1>1+1/<*+2> form =1,
Y WV @n122)F P EIVE (Dya20) TV form =2
<& Byiom. (6-41)

For the second term in X, we first use the L™ interpolation estimates of Lemma 3.3 with r = 1 /2 when
m =1 and with r = A/3 when m = 2 to bound

IDPl3 e S @ni2)¥?T? and  |ID*pllic + 18Pl S (Dng2,2)Y ). (6-42)

Then, by (6-21) of Lemma 6.3, we know that

/a‘uva‘w2 < 10%pllz< 8% G 1
Q
< {J(@NH,])2/<*+2>~/%§N<@N+z,1)1“/@*2) form =1,
~ WV (@n2,)CFIVE (D 42,) O form =2
= %§§@N+2,m~ (6-43)

Hence, when || = m for m = 1, 2, we also have

1 Xo| SENDN+2,m- (6-44)
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Now, by (6-34), (6-38), and (6-44), we know that (6-31) holds. The bound (6-32) follows by summing
(6-31) over the specified range of «. (I

Energy evolution for $,u and $,7. Before we can analyze the energy evolution for $,u and %, 7, we
must first prove a lemma that provides control of .%; p.

Lemma 6.5. We have
192115 < 6o (6-45)
192 Dpllg S (Ean)™ T (@op) /. (6-46)
Proof. Let o € N? be such that |«| € {0, 1}. We may apply Lemma A.10 to see that
19992 p 115 S 10% F2 Pl 30,5, + 1950 92 P15 (6-47)

In order to estimate each term on the right, we will use the structure of (2-23). Indeed, using the boundary
condition, we find that

1995 P30z S 109 Fanllg + 11092 03u3 ] 05y + 10 92.G 5. (6-48)
Trace theory and the divergence equation in (2-23) allow us to bound
199993031 305y S 199 93.03u3 117 S 11999, G2 (1T + 19° 95 Dully S 192 Dull3 + 19,G?15,  (6-49)

regardless of whether |o| = 0 or 1. To estimate this $, Du term we apply Lemmas A.4 and A.13 to get

2
19, Dul3 $ Y19 DVFulg < D AV ADVF )™ < full3- (6-50)

2
k=1 k=1

By chaining together the bounds (6-48)—(6-50) and employing the G’ estimates of Proposition 4.3, we

deduce that 5 ) ) '
10% 2Pl 5005y S 10%FanllG + llull3 + €2y min{éay, Doy} (6-51)

Now we estimate 930%%, p by using the first equation in (2-23) to bound
1% 95,93 p11§ S 110 95031l + 19 F5. D2ull§ + 109505 usll§ + 10 9,.G ' [15. (6-52)
When || =1, we can use Lemma A.4 to see that
10 950,31 S 19, D3uslig S (19,usll)* (1Dus )~ < 19:ull7. (6-53)

When |«| = 0, we cannot use Lemma A.4 directly, so we first use Lemma A.11 and the divergence
equation in (2-23), and then use Lemma A .4:

19283115 S 11939593115 = 1192003315 S 11920, G115 + 195, Doull§ S 11928, G [1§ + 19;ullT. (6-54)
Then (6-53) and (6-54) imply that, regardless of whether |o| = 0 or 1, we may bound

195 8,u3l1g < 1928, G215 + Nl ,ull7. (6-55)
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The term 9% %, D?u may be estimated as in (6-50):
1092 D?ullg < llull3- (6-56)

To estimate the term 0% $; 832u3, we again use the divergence equation to bound

9% 9,.05usll3 < 110°91,93G2||3 + 109,83 Du||f < 118 95,05 G 115 + llull3, (6-57)

where in the second inequality we have again argued as in (6-50). Then (6-52) and (6-55)—(6-57), together
with Proposition 4.3, imply that

189,33 plIg S Nluell3 + 18, l|T + € min{€an, Doy} (6-58)
The estimates (6-51) and (6-58) may be combined with (6-47) to show that
1895 plIg < 118%F5nlIg + llull3 + 18:ull] +€2n min{€an, Doy}. (6-59)

When |a| = 0 we bound the first three terms on the right side of (6-59) by €,y and use the fact that
%%N <%éy <1 to deduce (6-45). When |«| = 1, we first use Lemma A.7 withg =1—X and s = A to

bound
18°%3n113 < 1Dnld SNID 0113 < ASn ) V(| Dy )3y /A

< (Gan)M IR (@) VA (6-60)

where, in the second inequality, D'~* denotes the usual fractional derivative of order 1 — A. Then we use
the fact that €, < 1 to bound

€y min{&oy, Doy} < (min{&an, Doy ™ T (min{Eon, Doy '/
< () (@) VI, (6-61)
Similarly, since [|u]l3 + [|9;u[|? < min{€,y, Doy}, we have
laall3 + 19ullT < (o)™ TP (@) /. (6-62)
We then combine (6-59) with (6-60)—(6-62) to deduce (6-46). U

Our next lemma provides a bound for the integral of the product $; p.$; G>. The estimate is essential
to analyzing the energy evolution of $,u and $, 7.

Lemma 6.6. Let G? be given by (2-29). We have

/ 95 pﬁAGZ‘ <VenDay. (6-63)
Q
Proof. We begin by writing
f $,p9:G* =T+1I (6-64)
Q

for
I:=/ I pIr[(AK)O3u; + (BK)dsup] and 11 :=/ I pIil(1 — K)3us). (6-65)
Q Q
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The term I is straightforward to estimate because of the bounds (4-20) of Lemma 4.4 and (6-45) of

Lemma 6.5:
Il < 1922 lollF:.[(AK)O3u1 + (BK)d3uzlllo S v éan Don. (6-66)

To estimate the term II, we must first use the divergence equation in (2-23) to rewrite
(1= K)dsus = (1 — K)[G* — d1u1 — dhur], (6-67)
so that
M= /Q $,p9 (1 — K)G*] — /Q Fap 3 [(1 = K)(01uy + douz)] =: 1Ij + 1. (6-68)
For the term II; we use the estimates (6-45) of Lemma 6.5 and (4-22) of Lemma 4.4 to bound
L | < 19 plloll92[(1 = K)Gllo S VEanv CanDry =EanDan. (6-69)

In order to control the term II, we first integrate by parts:
I; = / 3201 pIu[(1 — K)ur ]+ 9,0 p9:.[(1 — K)uz] — F5 pP3[u101 K +u20:K]. (6-70)
Q

Then we use Lemmas 6.5 and 4.4 to estimate

2

L S 119, Dpllol 9300 — K)ulllo+ 19 pllo > 19:[ud; K113
i=1

SV (@ )M 00 (@) A+ /(& p ) VA0 (@5 ) 1H20/ A0 /€y D3

SV énDoy. (6-71)
Since €é,5 < 1, we can combine (6-69) and (6-71) to find that |II| < /€2yD2n, which yields (6-63) when
combined with (6-66). U

With these two lemmas in hand, we can now estimate how the energies of $,u and $,7n evolve.

Proposition 6.7. We have

1 1 1
(5 1o+ 5 [1902) 45 [ 10908 < VEwany. (©72)
Q x Q

In particular,

1 1 1 '
3 [1swwr+] [1smor+) [ [l st [ Vanow.  ©73)
Q z 0JQ 0

Proof. We apply $, to the equations (2-23) and then use Lemma 2.5 to see that

1 241 2) 1 2
(3 L1+ g [1902) +3 [ D9

:f%u-mGl—WAG2)+9Ap9kG2+/ —$u-9,G>+9,n9,G*. (6-74)
Q )]
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We will estimate each term on the right side of the equation. First we use trace theory and (4-15) and
(4-16) of Proposition 4.3 to bound the first and third terms:

[ ﬁku . 5’1G3
z

S 19ullo(192.G o + 119G 1) + 19261 19.G3 o S VDanv/EonDan = vVénDan.  (6-75)

_.l_

/ $u-(9,G'—V9$,G?
Q

For the third term we use Lemma 6.6 for

‘ / 9, pﬁ,\Gz‘ < VEnDay. (6-76)
Q

Finally, for the fourth term we use (4-17) of Proposition 4.3:

/ I1n9:.G* < 19:ml0l192Glo S VEan D3y = VDo . (6-77)
z

The bound (6-72) follows by combining (6-74)—(6-77), and then (6-73) follows from (6-72) by integrating
in time from O to ¢. O

7. Energy evolution estimates

We now assemble the estimates of the previous two sections into an estimate for the evolution of €,y and
@2N .
Theorem 7.1. There exists a 6 > 0 such that
-_— [ -_—
Ean (1) + / Do (r) dr
0

< Ean(0) + (Ean (1))*/* + /0 (€an () Don (r) dr + /0 VB (@) Fon (r)dr.  (7-1)

Proof. The result follows by summing the estimates of Propositions 5.3, 5.5, 6.2, and 6.7 and recalling
the definitions of €,y and Doy given by (2-48) and (2-49), respectively. O

We can also assemble the estimates of the previous two sections into a similar estimate for the evolution
of %N+2,m and ng—}-Z,m-

Theorem 7.2. Let F? be given by (2-19) with % = BtN *2 There exists a 0 > 0 such that
o <%N+z,m -2 / JatN“sz) +Bns2m S ENDN+2.m- (7-2)
Q

Proof. The result follows by summing the estimates of Propositions 5.4 and 6.4 and recalling the definitions
of € N+2.m and ) N+2.m given by (2-45) and (2-47), respectively. O

8. Comparison results

We now prove a pair of estimates that compare the full dissipation and energy to the horizontal dissipation
and energy. We show that, up to some error terms, the instantaneous energy é,y, (2-50), is comparable
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to the horizontal energy €,y, (2-48), and that the dissipation rate %y, (2-51), is comparable to the
horizontal dissipation rate BN, (2-49). We also prove similar results for ¢ N+2.m and ) N+2.m defined by
(2-45) and (2-47), respectively. To prove results for both 2N and N + 2, we first prove general estimates
involving %,, and ¢,,, and then we specialize to the cases n = N 42 and n = 2N. The dissipation estimates
are more involved, so we begin with them.

Dissipation. We first consider the dissipation rate.

Theorem 8.1. Let m € {1, 2} and

Yo = IV GGV 'GP+ 1D ' G I o + 1D G o + I1DF 20, GHIT fp (8-1)

Ifm =1, then
n—1
1V3ull3, 2+Z||a’u||2,, 21 HIVPI3, 0+ D19, pl3, s,
j=1 j=1
n+1
1D 01305y + 18131 2+ D N8 00302452 S Dom + Yom- (8-2)
j=2
If m =2, then
n—1
1V *ull3, - 3+Z||a’u||2,, 21 F IV P13, s+ 18,V pl3, 5+ Y 18] pli3, o
j=1 j=2
n+1 )
1D 013,70+ 1D, 30+ D10 113021572 S Do + Y- (8-3)
j=2

Proof. In this proof we must use a separate counting for spatial and temporal derivatives, so unlike
elsewhere in the paper, we now only use « € N? to refer to spatial derivatives. In order to compactly write
our estimates, throughout the proof we write

% =Dy + Y. (8-4)

The proof is divided into several steps.
Step 1: application of Korn’s inequality. Since any horizontal or temporal derivative of u# vanishes on the
lower boundary ¥, we may apply Lemma A.12 to derive the bound

ID2u||3 S I D2'Dullg = Dy - (8-5)

This H'(£2) bound will be more useful in what follows than an H°(2) estimate of the symmetric gradient.

Step 2: initial estimates of the pressure and improvement of u estimates. Let 0 < j <n—1 and « € N? be
such that

m<2j+|o| <2n-—1. (8-6)
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Note that if 2j + |«| =2n — 1, the condition j <n — 1 implies that || > 1. This means that we are free
to use (8-5) to bound
10°0] " ull§ < I D2l S 2. (8-7)

To extract further information, we apply the operator B,j d“ to the first two equations in (2-23) to find that
9°9) " u — A0} u+ Vo] p =099/ G', (8-8)
div %9/ u = 9%9] G*. (8-9)

Because of the constraints on j, @ given by (8-6), we may control
10%9] GM I+ 1109/ G*IIF < 1Dy~ G 15+ 1Dy~ G2 I < 2. (8-10)

We utilize the structure of (8-8)—(8-9) in conjunction with (8-7) and (8-10) to improve our estimates.
We will begin by utilizing (8-9) to control one of the terms in the third component of (8-8). We have

8997 (B3u3) = 98] (—d1u) — dpuz + G2, 8-11)
so that (8-5) and (8-10) imply
1030% 8/ usl|2 < | D)3 + 1D G213 < 2. (8-12)

A further application of (8-5) to control (812 + 822)8“8tj u3 then provides the estimate
1A% 8] us||Z < 2. (8-13)

Applying the bounds (8-7), (8-10), and (8-13) to the third component of (8-8), we arrive at a partial bound
for the pressure:
19509/ plig < %. (8-14)

It remains to control the terms 9; 9% B,j p and 8328“8tj u; for i =1, 2. To accomplish this, we employ an
elliptic estimate of curl u =: w. Taking the curl of (8-8) eliminates the pressure gradient and yields

399/ w = AD*9] w + curl (%3] G). (8-15)

We only need the first two components w; = du3 — d3uo, wp = dzu; — d1u3, for which we use the X
boundary condition in (2-23)

O3+ d3u; = Dues-e; = —G>-¢; fori=1,2 (8-16)

to derive the boundary conditions

{a)1 =20u3+G> - ey on %, 8-17)

W) = —281143 — G3 -1 on 2.
No similar boundary condition is available on X, so we must resort to a localization using a cutoff
function x = x(x3) given by x € C°(R) with x (x3) =1 for x3 € Q; :=[-2b/3, 0] and x (x3) =0 for
x3 ¢ (=3b/4,1/2).
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The functions yw;, i =1, 2, satisfy
NGO (xor) = % (9°0] T i) +2(83 %) (830%9] wi) + (93) (978} ) — x curl(3*/ G')  (8-18)
in 2 as well as the boundary conditions

990} (xw1) =20,0%9] us +0°9/G*>-e;,  on %,
999] (xw2) = 20,998} us — 39/ G- ey on X, (8-19)
09/ (xw1) = 98/ (xw2) =0 on %,

In order to employ an elliptic estimate of 3"‘8,j (xwi), we must first prove two auxiliary estimates.
First we derive an estimate of the H ™' (Q) = (HOl (2))* norm of each term on the right side of (8-18).
Letop € H(} (2). When o # 0, we may write « = 8+ (o — 8) with || =1 and integrate by parts to bound

/sﬂxa"‘atj“wi‘ =
Q

since2(j+ 1)+ |l —Bl=2j+|a|+1e[m+1,2n]. We may use (8-5) for

f 3P ox0* o] w;| < ol llx D w;llo. (8-20)
Q

lx D2 w; 13 S IDXull? < %. (8-21)

Chaining these inequalities together when o # 0 and taking the supremum over all ¢ such that [|¢]; <1,
we get

~

1999 w12, S %. (8-22)

A similar argument without an integration by parts shows that (8-22) is also true when o = 0, since, in
this case, the condition j <n — 1 implies that m +2 <2(j 4+ 1) < 2n. Similarly, integrating by parts with
03 in the dual-pairing, we may estimate the second term on the right side of (8-18):

12G0350@30%9] @) 13+ S (s x I + 13 x W7D wi g S 1 Drullf S%. - (823)
The third term may be estimated without integration by parts in the dual-pairing:
13308 )+ S 15 x 1= 1D @il S 1D ulf < . (8-24)
The fourth term is estimated by integrating by parts with the curl operator and using (8-10):
lx curl@*/ GHII%,1 S (lx Iz + 10sx 7)1 D3~ G I S 2. (8-25)
Combining these four estimates of the right side of (8-18) yields
||A8“8,j(xw,-)||?1_, <% fori=1,2. (8-26)

Next, to complete the elliptic estimate of a“atf (xw;), we also need H'/?(%) estimates for the boundary
terms on the right side of the first two equations in (8-19). We may estimate the d;u3, i =1, 2, terms with
the embedding HY(Q) — H2(%):

10%07 01131 371/2 5 + 11097 Dauzl3pra sy S I Dprullf S %. (8-27)
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On the other hand, estimates of G are already built into %:
1998/ G*I13 , < IDZ ' G113 )5 < Y < %. (8-28)
Since yw; =0 on Xj, fori =1, 2, we then deduce that
100 (x0i) 13125y S & fori =1,2. (8-29)

Now, according to (8-26), (8-29), standard elliptic estimates, and the fact that x =1 on Q2; =[—2b/3, 0],
we have

10%0] wil31 gy S 10%07 () |IF S% fori =1,2. (8-30)
We may then rewrite
02099] uy = 030%9] (wy + dyus) and 92099 uy = 0309 (Bous — wy) (8-31)

and deduce from (8-30) and (8-5) that, for i =1, 2, we have

2
19500; wi 30,0, S I DrusllT + Y 10%0] okl qo,) S %. (8-32)
k=1

We then apply this estimate along with (8-5) and (8-10) to the first two components of (8-8) to find that
||8,-8“8fp||%10(91) <% fori=1,2. (8-33)

Now we sum the estimates (8-5), (8-12), (8-14), (8-32), and (8-33) overall j <n—1and a € N? with
m <2j+|a| <2n—1 to deduce that

m

1D~ ullF ) + 1D~ Vol ,) S%- (8-34)

Step 3: bootstrapping, n estimates, and improved pressure estimates. Now we make use of Lemma 8.2 to
bootstrap from (8-5) and (8-34) to

n
2+4m, 12 m. 12 § J.on2 14+m 2
”v ””Hzn—m—l(gl) + ”D ””HZn—m-H(Ql) + ”at u ||H2n—2_/+l(Ql) + ”v p”HZn—m—l(Ql)

j=1
n—1

+ Y 0 VPl gy S%- (8-39)
j=1

With this estimate in hand, we may derive some estimates for n on X by employing the boundary
conditions of (2-23):
n=p—_2dus—Gj, (8-36)
an =uz+ G*. (8-37)
Then (8-35) allows us to differentiate (8-36) to find that
1D " 01332 S UIDH pllGpanmso gy + 1D 050330035y + 1D G115, s

S IV Pl gy + IVl 1 )+ 1D Gl 2 S 2 (8-38)
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Similarly, for j =2, ...,n+ 1, we may apply Btj_l to (8-37) and estimate

1 2 1 ~4,2
”at 77||2n —2j+45/2 ~ N ||8] u3||H2n72j+5/2(2) + ”atj G ||2n—2j+5/2
j—1 12 i—1 ~42
S ”at] M||H2n—2(j—l)+l(91) + ”at] G ||2n—2(j—1)+1/2 SJ EZ (8-39)

It remains only to consider 9;7; in this case we must consider m = 1 and m = 2 separately. For m =1,
we again use (8-37) to see that

||at77||2n 12 ||M3||H2n 12cpy T ||G4||2n 12 5 ||M%||H2n 12(x) +%, (8-40)
but now we use Lemma A.11, trace theory, and the second equation in (2-23) for the estimate

2 2 2 2 2
||u3||H2n—l/2(E) f, ||Lt3 ”HO(E) + “Du3”H2n—3/2(2) SJ ”83143”1_10(9) + ||DM3 ”Hz”*l(Ql)
2,2 2 2
SNG4+ I Dul+ 1Dl s 0, S % (8-41)

by (8-10) and (8-35). Chaining (8-40)—(8-41) together implies that
||8,n||2n 12 S <% whenm=1. (8-42)
For m = 2, we differentiate (8-37) for the bound
1D 113,372 S IDuslypn 35, + 1DGHE, 30 S I1Duslfpons 5y + %, (8-43)
but then the analogue of (8-41) is

<%, (8-44)

2 202 2. 112 2 12
||Du3||H2n—3/2(2) 5 ”DG ||()+ ”D M”O + ||D M||H2n—2(Ql) ~

Hence

||D3,77||2n 320 5% whenm =2. (8-45)

Summing estimates (8-38), (8-39), (8-42), and (8-45) over j =0, ...,n+ 1 yields

n+1

1D 0113, s/ + 1811301/ + Y N 0I5, 2152 S% form =1, (8-46)
j=2

n+1

1D 0113, 72 + 1D 0I5, 50+ D N 0l3, 2150 S% form=2. (8-47)
j=2

The n estimates (8-46)—(8-47) now allow us to improve our estimates of va{ p to estimates for 8,j p
for certain values of j. Indeed, for j =m, ..., n — 1 we may use Lemma A.10 and (8-36) to bound

13 P10,y S 107 UG+ 19507 sl s, + 18/ GPIG+110] V pliFjoi) S 197 U3l +% S%. (8-48)
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This, (8-35), and (8-46)—(8-47) allow us to improve (8-35); when m = 1, we find that

n
3112 2 § : 2 212
”V u”HZn—Z(Ql) + ||Du||H2”(§21) + ||at]u”H2n—2j+l(Ql) + ”V p”HZn—Z(Ql)

n—1 ) J=1 n+1 )
+ D 10 Pl gy + 1D 013052 + 105,10+ D 1070113, 0j 152 SF. (8-49)
j=1 j=2

and when m = 2, we get the estimate

n
4. 12 212 § : P2 312 2
”V u||H2n—3(Ql)+ ”D u”HZ”’l(Ql)_{— ”8t]u||H2n—2j+l(Ql)+ ||V p||H2n—3(Ql)+ ”8tvp”H2n—3(Ql)

j=1
n— n+1

+ 18] Pl + 1D 015,70 + 1D 13, 30+ Y 107 1113, 2j 452 SE. (8-50)
. j=2

Step 4: estimates in 2. We now extend our estimates to the lower part of the domain, that is, €2, :=
[—b, —b/3], by applying Lemma 8.3 to deduce that (8-97) holds when m = 1 and (8-98) holds when
m = 2. We will now show that &, ,,,, defined by (8-96), can be controlled by %. The key to this is
that, by construction, supp(V x2) C 21, which implies that the H' and H? defined in the lemma satisfy
supp(Hl) U supp(Hz) C 7. This allows us to use the estimates (8-49) in the case m = 1 and (8-50) in
the case m = 2 to bound

2n—1

> ID*H' 3, 4+ IDFHP3, S (8-51)

k=m+1

In order to estimate 8, H' - ¢; for i = 1, 2, we note that it does not involve the pressure:
O H' - e; = —(33x2)930,u; — (33 x2) . (8-52)

Then we may again use (8-49)—(8-50) to see that

Z 19, H" - €113, 5 S, (8-53)

so that &, ,, < %. Replacing in (8-97) and (8-98), we then find that

n—1
V20132 z(m+z 18] 220210y + 1V P22y + D MO PIGarryo,) S (8-54)
j=1 j=1

for m = 1, while, for m = 2,

n
4 12 2 : 2 2
”v u ||H2n—3(92) + ”atlu ||H2n—2j+l(92) + ||V3P||H2»173(Qz)
Jj=1 n—1

10,V Pl gy + DN Plaiq,) S%- (8-59)
j=2
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Step 5: synthesis and conclusion. To conclude, we note that 2 = ] U ,, which allows us to add the
localized estimates (8-49) and (8-54) to deduce (8-2), and to add (8-50) to (8-55) to deduce (8-3). [
We now present the key bootstrap estimate used in the proof of Theorem 8.1.

Lemma 8.2. Let ¥, ,, be defined by (8-1) and Q2 = [—2b/3, 0]. Suppose that

1D Ul gy + 1D 2 ull Gy + 100V Pl 2y S D+ Y (8-56)
for anintegerr € [1,...,n— (m+1)/2]. Then
”l_)gnn—ZrM”%Ier(Ql) + ”D;n—yvp“%]zr,l(ﬁl) + ||5%;1—2(r+1)+1u||§_12,+2(Ql)

+HIDZ 2V D2 60 S D + Y. (8-57)

Moreover, if (8-56) holds with r = 1, then, for m =1, 2, we have

n
2 2 2 § : o2
”V +mu ”Hlnfmfl(Q]) + ” Dmu ” Hz”*”’*l(Q]) + ”atju ||H2n—2j+l(Ql)

1
/ n—1

IV Pl panrgyy + D8 Va1 S Dam + Ynm. (8-58)
j=1

Proof. Throughout the proof we write & := @n, m + Yy.m. We divide the proof into steps.
Step 1: Proof of (8-57). Let £ € {1,2} and take 0 < j <n —r and « € N? such that

m<2j+lal <2n—2r+1—¢. (8-59)

We apply the differential operator 832r_2+€ 8"‘8} to the first equation in (2-23) and split into separate
equations for its third and first two components; after some rearrangement, these read

g p o - s 4 A s G (860
A832r—2+faotatjui — 832}’—24-[80[8[].4_11,“ + ai a%r—z-‘r(a(xatjp - 332r_2+£8a3,jGi1 (8'61)

for i =1, 2. Notice that the constraints on r, j, |o| imply that m < ||+ 2r —2+¢€)+2j <2n—1, so
we may use the definition of %, ,, in (8-1) to estimate

Since 2r —2 + £ > 0, we know that
— i+1 41
1832 0% 10 0, < 10°0) T Ul aii g, - (8-63)

If¢=2thenm < |a|+2(j+1) <2n—2r+1, so that

j+1 j+1 — o
19%07 "t 3parave gy = 10%0] 3o,y < Dm0 >t 3 ) S % (8-64)
On the other hand, if £ =1, then m < ||+ 2(j + 1) < 2n — 2r + 2, and hence
j+1 i+1 =n—
19907 ullGyorave gy = 180 T o s ) < 1D 2 Pull s ) S % (8-65)
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Then, in either case,

<%, (8-66)

2r—2+44¢ J+L o2
||83r aaat u”HO(Q]) ~

We have written the equations (8-60)—(8-61) in this form so as to be able to employ the estimates
(8-56), (8-62), and (8-66) to derive (8-57). We must consider the cases of £ = 1 and £ = 2 separately,
starting with £ = 1.

Let £ = 1. According to the equation divu = G? (the second of (2-23)), the constraint (8-59), and the
bounds (8-56) and (8-62), we may estimate

1857198/ u3 130, = 185798/ (G* = Brur — d2u) 0 g,
S 195771999 G I} + 10%8] (drur + run) 3 o, S %, (8-67)
and hence (again using the constraint (8-59))
IA@F 970 us) 10,y S 103700, sl 0.,y + 103 @F + 9900 usl g, S (8-68)
We may then use (8-62), (8-66), and (8-68) in (8-60) for the pressure estimate
10370%9; pli3y0q,, S%- (8-69)

Turning now to the i = 1, 2 components, we note that, by (8-56) and the constraint (8-59),

19:05" 1097 pll3j0.q,, + 107 + 031037 990 will 0.,
SIDL 2Pl a,, + 1002l g, S% - (8-70)
for i = 1, 2. Plugging this, (8-62), and (8-66) into (8-61) then shows that
1037190/ ui 130,y SE  fori=1,2. (8-71)

Upon summing (8-67), (8-69), and (8-71) over 0 < j <n —r and « satisfying m <2j + |a| <2n —2r,
we deduce that

193 Do = ull 30y 193 Dot = P,y S %- (8-72)

Then, in light of (8-56) and (8-72), we have

n2n—2 2 n2n—2 2 n2n—=2r+1, 2
”Dmn ru”Hz’“(QO + ||Dm” rvang,l(Q]) N ||Dm” a u”Hzr(Q])
n2n—2r+1 2 2r+1 n2n—2 2 2r n2n—2 2
+ ”Dmn ™ VPHHZr—Z(Ql) + ||83r+ Dmn ru”HO(Ql) + ||83rDmn rP”Ho(Ql) S Z. (8'73)

In the case £ = 2 we may argue as in the case £ = 1, utilizing both (8-56) and (8-73) to derive the
bound

1D~ ultpsa gy + 105 ™ VDl g,y S % (8-74)

Then we may add (8-73) to (8-74) to deduce (8-57).
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Step 2: The proof of (8-58), part 1. Now we turn to the proof of (8-58), assuming that (8-56) holds with
r = 1. By (8-57) we may iterate with » = 2, r = 3, etc., until

_fn— 1 ifm=1,
Cn—-2 ifm=2,

1 ifm=1
sothat 2n—2(r+2)+1=4 “"M=5H (8-75)
3 ifm=2.

Summing the resulting bounds and adding (8-5) (to pick up the 9;'u term) yields the estimates

n n—1
1D Ul gy + YN0 20200y + 1DV P22y + D N0 VDI, S% - (8-76)
j=1 j=1
in the case m =1, and
n
. |
(2 o 1 o N 17271 g
j=2
n—1 )
+1D3V Pl + 1060V Pl sy + DN VDI pcair gy S (8-77)
j=2

in the case m = 2.
Next, we improve the estimate (8-77). Let 0 < j and & € N? be such that 2j + |«| = 2, and apply the
operator 832” _33“8t] to the first equation of (2-23) and split into components as above to get
07" 299 p = —07" 2008/ T uz + A8 999] uz + 83" 3979/ G, (8-78)
A3 0] u; = 82300 T up + 8,02 30%0] p — 923920/ G (8-79)
for i =1, 2. We may then argue as above, utilizing (8-77), to deduce the bounds
. . - - B .
103"~ 0%0] u3l 0., + 193" 20%0] G0, + 1D203" 00 ulfpo g, S %, (8-80)
which, when combined with (8-78) and (8-79), imply that

195" 720%9; plljocq,, + 195" 0% 8 uill 30 .q,) S % (8-81)

for i =1, 2. We may then use (8-80) and (8-81) with (8-77) to deduce that

n n—1
1Dl 201 gy + 2O iz ) F 1DV Pllpncsigyy + D MO VPl a1 gy SE - (8-82)
j=I1 Jj=1

in the case m = 2.

Step 3: The proof of (8-58), part 2. Now we claim that if for m = 1, 2 we have the inequality

n n—1
1D 3 gy + D MO 1z @y H D"V P U ponncr oy + 2 07V Pl i ) S%. (8-83)
j=1 j=1

the inequality
IVl 31,y + IV U1 gy S F (8-84)
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also holds, which establishes the desired bound, (8-58), because of our inequalities (8-76) in the case
m =1 and (8-82) in the case m = 2. We begin the proof of the claim by noting that, since 2 > m, we may
use (8-83) to bound

195" D2t 3yn-1 gy + 195~ D D3N p2ur gy + 105 D Pl ) SF- (8-85)
Now we let |a| = 1 and apply 95'9* to the second equation of (2-23) to find that
195+ 9% 31320 gy S 105 DG paumar gy + 105 D2l gy S %- (8-86)

Then we apply 95" ~19% to the first equation of (2-23) to bound
1959 P o0 -n-1 (g,

S 05 0% us 201 gy + 105 0 D3usl w1 gy + 105 8YG G20 1) SE - (8-87)
and
195" 0% ui 1 201 g,

S 1959 D3ul s g,y + 195 94 Dpllpanni(qp, + 195 104G o) S% - (8-88)
for i =1, 2. Summing (8-86)—(8-88) over all || = 1 then yields the inequality

195"+ Dulypaunr g,y + 195 PPl ) S % (8-89)

Now we use (8-89) to improve to one more d3 and one fewer horizontal derivative. We apply 8;”“ to
the second equation of (2-23) to find that

195 2us 201,y S N05 T G2 o1 gy + 105 Dutllpan 1 gy S % (8-90)
Then we apply 95" to the first equation of (2-23) to bound
185 P21y S 183 2313201y + 105 D3U3 I 20mnor )+ 105 G a1 ) S %o (8-91)
19521132010y S N85 D3t on 12y + 105 PPN Gp2n 1) 105 G 1@ S% - (8-92)
for i =1, 2. Summing (8-90)—(8-92) then yields the inequality
[ Y L . 2 (8-93)
Finally, to complete the proof of the claim, we note that

2 2 1 2 2 2
”V +mu||H2n7m71(Q]) + ”V +mp||HZn7m71(Q]) 5 ”DmM”HannH»l(Ql) + ”Dmvp”HZrlfmfl(Q])
m—1

+ > 102D U s ) + 105 D Pl g, (8-94)
=0

This and the bounds (8-83), (8-89), and (8-93) prove the claim. O

The following result allows for control of the dissipation rate in the lower domain.
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Lemma 8.3. Let x> € C°(R) be such that x>(x3) =1 for x3 € Q, :=[—b, —b/3] and x>(x3) = 0 for
x3 & (—2b, —b/6). Let

H'=03x2(pes —203u) — (93 x2)u  and H* = 03 xou3. (8-95)
Define
2n—1 2
Lom= > IDH"3, oy +ID H*13, o+ D 10 H" - e;ll3, . (8-96)
k=m+1 i=1

and let %, ., be as defined in (8-1). If m = 1, then

n n—1
312 2 2 12 j 2

IVl aa g,y + N0 w202 0y + 1V P U2y + D0 P22y

j=1 j=1 _

,S gbn,m + oyn,m + %n,m- (8'97)

Ifm =2, then

n ) n—1 )
V42203 T2 N8 20201 0, I V2 P ) HIO Y P2+ N8 P12 g

j=1 j=2

S g_bn,m +o'yn,m +%n,m- (8'98)
Proof. When we localize with x,, we find that y,u and x;p solve

—A(xou) + V(x2p) = =0 (xou) + x2G' + H'  in Q,

div(xou) = x2G* + H? in , (8-99)
(Oep)I—D(x2u))e3 =0 on X,
xou =20 on Xp.
Let0< j<n—1anda € N? be such that
m+1<|a|+2j<2n-—1. (8-100)
Then we may apply Lemma A.14 and use the definition of ¥,, ,, given in (8-1) to see that
19997 () 30— —2j41 + 1098] 2P 13— o2
1 .
S10%0 ™ Gaw) 13, w2001 + 1090 GG + HYIE, _j01-2j1
| + 109/ G2G* + HH 3 a2,
<188/ O 13 120411 + Y + L. (8-101)

We first use estimate (8-101) and a finite induction to arrive at initial estimates for y,u and x, p; we then
use the structure of the equations (2-23) to improve these estimates.

Our finite induction will be performed on £ € [1, 2n —m — 1] with |«| 4+ 2j = 2n — ¢, starting with the
first two initial values, £ = 1 and £ = 2. We use the definition of Q_Dn,m given in (2-47) and Lemma A.12
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in conjunction with the bounds on j, || given in (8-100) to see that
aqjtl 2 aqj+l 12 =
10907 " O llg S 110%9; " ullg < Doy

Then (8-101) with |o| +2j =2n — 1 = 2n — £ implies that

100 ) 13 + 1100 G p) I3 < 10% 07 Gat) 12+ Y + %nm < Dom + Y + L

Applying this bound for all @ and j satisfying |«| +2j = 2n — 1 and summing, we find
1D~ G I3+ 10>~ G2 P S D + Y + L
When ¢ =2 and || +2j =2n — £ = 2n — 2, a similar application of Lemma A.12 implies
10“0/ " G 1T < Do

so that

100 ) 13 + 1190 G )13 < 10% 07 Gat) 17+ Y + Lnm < Dom + Y + L

This may be summed over 2j + |a| = 2n — 2 for the estimate
ID*" 2 (aw) 13+ 1D* 2 Gz < Dom ~+ Y + %

Then (8-104) and (8-107) imply that

ID* " w3+ 11 D* 2 G I3+ 1ID*  Gep) IF + 11D 2 Gep) 15 < Dam +Ynm + %

Now suppose that the inequality

Lo

D ID  Gaw)llzyy + 1D Cap) 7 S Dnam + Yo + Lnm
=1

1501

(8-102)

(8-103)

(8-104)

(8-105)

(8-106)

(8-107)

(8-108)

(8-109)

holds for 2 < £y < 2n —m — 1. We claim that (8-109) holds with £¢¢ replaced by £o 4+ 1. Suppose

| +2j =2n— (£o+ 1) and apply (8-101) to see that

19997 G112, o+ 1897 Gap) 12,11 S18%8) ™ O 12, + Yo m 4% < D+ Yo+ %y (8-110)

where in the last inequality we have invoked (8-109) with

ol +2(+ 1) =2n— Lo+ 1) +2=2n— (Lo — 1).

This proves the claim, so, by finite induction, the bound (8-109) holds for all ¢y =2,...,2n —m — 1.

Choosing £g = 2n —m — 1 yields the estimate

2n—m—1

> D" G li + 1D Cap)E S Dam +Yum + Lnm,
=1

(8-111)
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which implies, by virtue of the fact that x, = 1 on €2, that

2n—1
k. 112 ko112
> 1D i g, + 1D Pk
k=m 2n—m—1
— Z ”DanZu”%{HI(QZ) + ”Dznizp”%{Z(Qz) S @n’m + Oyn,m =+ %n’m. (8‘1 12)
=1

Now we will improve the estimate (8-112) by using the equations (2-23), considering the cases m =1, 2
separately. Let m = 1. Since m + 1 = 2, the bound (8-112) already covers all temporal derivatives of
order 1 to n — 1. Since ||0;'u ||% is already controlled in Q_Dn,m, we must only improve spatial derivatives.
First note that (8-112) implies that

195 D211 3202 g0y + I D2 Pl pn20ry) S D+ Y + %o (8-113)
Then we may apply the operator d3 D to the divergence equation in (2-23) to bound
195 Dusll 2,y S N93DG3 3 2q,) + 185D ulGpon s i) S Dom + Yo + Lo (8-114)
Then applying the operator D to the first equation in (2-23) implies that

195 DP 13202y, + 105 Dt 302
SIDG G2, + 1Dl sy + 1D D3ul G s ) + 185 Dusli s g,
S D +Ym + Lm (8-115)

for i =1, 2. We can then iterate this process, applying 832 to the divergence equation, then 93 to the first
equation in (2-23), and using all of the bounds derived from the previous step, to deduce that

193 P11y + 10300 52020,y S Do+ Ynm + L (8-116)
Combining (8-113)—(8-116) yields the estimate
IVl 2,y + 1V P2,y S Do+ Ynm + Lo, (8-117)

which together with (8-112) and the bound [|0]"ul|3,, (= 137u 12 < By, implies (8-97).
In the case m = 2, we can argue as in the case m = 1 to control the spatial derivatives. That is, we first
control 33 D3u, D3 p, then iteratively apply operators with an increasing number of 33 powers to arrive at

the bound
V4l 303 0, + IV Pl ) S D+ Y + L (8-118)

Since m + 1 = 3 it remains to control d;u and 9,V p. For the latter we apply d39; to the divergence
equation and use (8-1) and (8-112) to bound

195814313 203 0y S 18390 G2 11303, + 1330 Dt sy S Dn + Y + X (8-119)
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Then applying 9, to the third component of the first equation in (2-23) shows that

1939: Pl 7030,y S 18:G 13203, + 18 Dutll 25 ) + 193814311 203
S Dnm + Ynom + Enms (8-120)

which in turn implies that

IV Pl G5 g,y S 18300 P33, + 1D P30y S D + Y + %o (8-121)
We may control d;u3 by applying 9, to the divergence equation in (2-23) to find that

1938,43 11 32020, S N8 G220 20, 1D ul G202 0 S Do + Y + Lo (8-122)
but then, since d,u#3 = 0 on X, we can use Poincaré’s inequality (Lemma A.13) to bound

2 2 2 2
” 8tu3 ” H>»=1(Q,) 5 ”atu3 ” HO(Q») + Hvatu3 ||H2n72(92) ,S ”Vatu3 ” H>=2(Q,)

S 10300313202, + 1D 31202 g0 S D + Y + Lo (8-123)

Control of the terms 0,u;, i = 1, 2, is slightly more delicate; for it we appeal to the first of the localized
equations (8-99) rather than (2-23). The reason for this is that using (8-99) will allow us to control
8328,( x2u;) in all of €2, giving us control of d;(x»u;) in all of € via Poincaré and hence control of d;u; in
Q,. If instead we used (2-23), control of 8323,u i in 27 would not yield the desired control of d;u; in 2,
because we could not apply Poincaré’s inequality. We apply o, to the i = 1, 2 components of the first
localized equation in (8-99) and use (8-111) to see that

1930, Oauti) 13203
S H" - €l s + 1628 G 5213y + 18: D(x2P) 1303y + 18: D> (21) 305

< Bpm +Ypm + Lo (8-124)

Now, since 9; (xou;) and 039, ()x2u;) both vanish in an open set near X, we may apply Poincaré’s inequality
twice and use (8-124) to find that

19: 2 12010y S 1180 28 13201y S N850 r2ti) 3 ns ) S D + Yoo + L (8-125)
To conclude the analysis for m = 2, we sum (8-112), (8-118), (8-121), (8-123), (8-125), and the bound
197wl 31 g,y < 197 ull} S By m to derive (8-98). O

Instantaneous energy. Now we estimate the instantaneous energy. The proof is based on an argument
very similar to the one used in the proof of Lemma 8.3. Recall that €, ,, is defined by (2-45).

Theorem 8.4. Define

Wam = IV 2G5+ Ve Gl + 1Dy G113 o + 1D G .- (8-126)



1504 YAN GUO AND IAN TICE

Ifm =1, then
n—1
IV2ull3, - 2+Z||a’u||2n 2 HIVPI3, 2+ Y 19, pl3, oy 1 + 10013, l+Z||a N30,
j=1 j=1 j=1
SEnm+Wom. (8-127)
Ifm =2, then
n—1
IV3ull3, - 3+Z||afu||2,, o HIV2PI3, 5+ Y 18] pl3, ;1 +ID* 0113, 2+Z||a N30,
j=1 j=1 Jj=

< %n W (8-128)

Proof. The proof is quite similar to that of Lemma 8.3, so we do not fill in all of the details. Throughout
the proof we employ the notation & := %n,m +Wam.
Let0<j <n—1and o € N? satisfy m < |a|+2;j < 2n — 2. To begin, we utilize the equations (2-23)
with the elliptic estimate Lemma A.14 to bound
j 1
”8aatju”%n—|a|—2j + 1189/ pl3,_ o =2j—1 > <1987 ull3, la|—2j—2 T+ 1999/ G"13,,— la| =2 —

+110%9; G130 jaj—2j-1 + I|aaalgn”2n7\a|72j73/2 +110%9] G3”2n7|a|72j73/2' (8-129)

The constraints on j, o allow us to bound

19997 G113, _j—2j—2 + 18%8] G312t + 139 G* 130 _ia1=2j—3/2 S Wnm, (8-130)
and similarly
||8aazj77||2n loe|=2j—3/2 ~ % (8-131)
so that (8-129)—(8-131) imply that
198/ 113, _ja1—2j + 18%87 PI3_joy—2j—1 S E+ 1070/ l13,_10—2jo- (8-132)

As in Lemma 8.3, we argue with a finite induction on £ € [2, 2n — m], beginning with £ =2, 3. When
¢=2and || +2j =2n —2 =2n — ¢, the definition of ¢, ,, implies that

18%8] " g S Bms (8-133)
which may be inserted into (8-132) for
0“0/ w3 + 16%0] pI} < 2. (8-134)
Summing over all « and j satisfying |«| +2j = 2n — 2 shows that

|ID*"~2u|5+ ID*"?p|7 < Z. (8-135)
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For ¢ = 3 we note that |¢| +2j = 2n — 3 implies that j <n — 2, so that |«| > 1. This allows us to write
o= (¢ —B)+ B for |B] =1 and to use (8-135) to see that

1997} < 100/ w3 < 1D Pull} S % (8-136)
Then we can plug this into (8-132) for each || +2j =2n — 3 and sum to arrive at the bound
ID*Sul3+ 1D* 3 pl5 S %. (8-137)

Now we may use finite induction as in (8-109)—(8-112) of Lemma 8.3 to ultimately deduce the estimate

2n—2 2n—m
S o D*ul3, 1D pl3, s = Y D™ ullf+ID*plf_, S (8-138)
k=m =2

Now we improve the estimate (8-138) by utilizing the structure of the equations (2-23), again arguing
as in Lemma 8.3. The energy bound (8-138) in the case m = 2 is structurally similar to the bound
(8-112) for the dissipation in the case m = 1, so we may argue as in (8-113)—(8-116), differentiating the
equations (2-23) (with obvious modifications to the Sobolev indices and number of derivatives applied)
and bootstrapping until we arrive at the bound

IV3ull3, 5+ 1V2pl5,_5 S . (8-139)

Then (8-138), (8-139), and the bound ||8t”u||% < %n,m imply the bound (8-128).
In the case m = 1 we apply 03 to the divergence equation in (2-23) to see that

183u3115,_» S 183G2113,_ + 185 Du 13, _» S %. (8-140)

We then use the first equation in (2-23) to bound

||8°>p||2n 2+Z||83” ||2n 2~ ||G ||2n 2+||D2M||2n 2+||83”3||2n 2+||DP||2n 2<££ (8-141)
i=1

Then (8-138), (8-140), and (8-141) imply that
IVl + IV PIIZ,— S, (8-142)
which, when added to (8-138) and the bound ||8t”u||% < %n,m, yields (8-127). Il

Specialization: estimates at the 2N and N + 2 levels. We now specialize the general results contained
in Theorems 8.1 and 8.4 to the specific case of n = 2N with no minimal derivative restriction, and to the
case n = N + 2 with minimal derivative count m =1, 2.

Theorem 8.5. There exists a 6 > 0 such that

Doy < Doy + €5y Doy +HFan. (8-143)
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Proof. We apply Theorem 8.1 with n =2N and m =1 to see that (8-2) holds. Theorem 4.2 provides an
estimate of Y,y 1, as defined in (8-1):

Yoy 1 S €N Tan + HFoy (8-144)

for some 6 > 0. We may then use this in (8-2) to find that

2N 2N—1
IV3uly o+ D 10/ ulliy a0 + IV PIEN 2+ Y 18] Plliy s
J=l 2N+1 j_zl
+ ||D277||421N—5/2+ ||3t77||42w—1/2+ Z ||8tj77||42LN—2j+5/2 S Doy +E5y Doy +HFoy.  (8-145)
j=2

We can improve the estimate for u in (8-145) by using the fact that 9,y does not have a minimal
derivative count. Indeed, by the definition (2-49) and Lemma A.12, we know that

19501} + Nl S Don- (8-146)
Now, since 2 satisfies the uniform cone property, we can apply Corollary 4.16 of [Adams 1975] to bound
leelayr S g + UV ulg < ull + 1Vl Gy s (8-147)

Then (8-145)—(8-147) imply that
1922017 + el 11 S Don + EqnDan +HFay. (8-148)

We can use this improved estimate of u to improve the estimate of p by employing the first equation
of (2-23) to bound
IVPlin_1 S 18uliy_y + 1 Auliy_y +1G I3y (8-149)

The bounds (8-145) and (8-148) imply that
l8culldy—1 + 1 Aulldy_y S Don + €y Daw +HFow, (8-150)
while (4-7)—(4-8) of Theorem 4.2 imply that
IG I3y-1 S €y Dan +HFoy. (8-151)
Hence (8-148)—(8-151) combine to show that
IVPlin-1 S Bon + €y Dan +HFoy. (8-152)
Finally, we improve the estimate for n. We use the boundary condition on X of (2-23) to bound

||D77”421N_3/2 = ||Dp”§.141v73/2(2) + ||D33u3”?_141v73/2(2) + ||DG3||421N—3/2 (8-153)
SIDpllay_1 + 1D33usllzy_ + 1DG 3y 3/ S Don + €5y Doy + HFay .

In the last inequality we have used (8-148), (8-152), and Theorem 4.2. Now (8-143) follows from (8-145),
(8-148), (8-152), and (8-153). U
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Now we perform a similar analysis for the energy at the 2N level.
Theorem 8.6. There exists a 0 > 0 such that
Gn SGn +6). (8-154)

Proof. We apply Theorem 8.4 with n =2N and m =1 to see that (8-127) holds. Theorem 4.2 provides
an estimate of Wy 1, as defined by (8-126):

Waon1 S€ (8-155)

for some 6 > 0. Replacing in (8-127) shows that

2N 2N-—1 2N
IVl y oty 10 ulliy o HIV Py ot Y 18] Py —aj i HI DGy 1/ nllZy_a;
j=1 j=1 j=1

S+t (8-156)
The definition of €,y implies that
19 52e1§+ lullg + 120115 + 115 < Ean. (8-157)

We may then sum the previous two bounds and employ Corollary 4.16 of [Adams 1975] as in the proof
of Theorem 8.5 to find that

2N 2N—1 2N
192G+ D 107 ulliy_oj + IV PIGN—2+ D, 187 pllin_aj—1 + 192015+ D 197 nlliy_s;
j=0 j=1 Jj=0

Sy +ert. (8-158)
It remains only to estimate || p||§ ~_1> since Lemma A.10 implies that

I3y -1 S1PIG+ VPN S 1P 150, + 1V Pliy -2 (8-159)

it suffices to estimate || p||§10 ()

estimate (4-6) of Theorem 4.2:

We do this by using the boundary condition in (2-23), trace theory, and

1213005 S 105+ G215 + 1831311305y S W0 lG+ ey + €557 (8-160)
Then the estimate (8-154) easily follows from (8-158)—(8-160). U
We now consider the dissipation at the N + 2 level.

Theorem 8.7. For m = 1, 2 there exists a 0 > O such that
Dns2m S DNram + €5y DN+2.m- (8-161)

Proof. We apply Theorem 8.1 with n = N + 2 to see that (8-2) holds for m = 1 and (8-3) holds for m = 2.
Theorem 4.1 provides an estimate for ¥y 42 ,,,, as defined by (8-1):

Ynsom S ENDN12.m (8-162)
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for some 6 > 0. The bound (8-161) follows from using this in (8-2)—(8-3). [l
We now consider the energy at the N + 2 level.
Theorem 8.8. For m =1, 2 there exists a 0 > 0 such that
Eniam S Eniom +ENEN12.m- (8-163)

Proof. We apply Theorem 8.4 with n = N + 2 to see that (8-127) holds when m = 1 and (8-128) holds
when m = 2. Theorem 4.1 provides an estimate for W4 ,,, as defined by (8-126):

W s2m S ENENt2m (8-164)
for some 6 > 0. The bound (8-163) follows from using this in (8-127)—(8-128). [l

9. A priori estimates

In this section we will combine the energy evolution estimates and the comparison estimates to derive a
priori estimates for the total energy, %y, defined by (2-58).

Estimates involving ¥,y and ¥. Recall that %,y is defined by (2-56) and ¥ is defined by (2-57). We
begin with an estimate for F,y.

Lemma 9.1. There exists a universal C > O such that

sup Fon (1)
0<r<t

t t t 2
< exp(C[ VH@T) dr) [9721\/ O) +1¢ / (1 +SonE)Don(r) dr + (/ NHE)Fon(r) dr) i| -1
0 0 0

Proof. Throughout this proof we write u = it + uzes, that is, we write u for the part of u parallel to X.
Then 7 solves the transport equation 9,1 + & - D1 = u3 on ¥. We may then use Lemma A.9 with s =1/2
to estimate

t t
sup [[n(r)l12 < eXP<C/ IDu(r)ll 32y dr) |:||770||1/2 +/ Iz ()1 172 s dr]- 9-2)
0 0

O<r<t

By the definition of ¥, (2-57), we may bound || Du(r)| g32x) < +/H(r), but we may also use trace
theory to bound ||ug(r)||§11 205) < on(r). This allows us to square both sides of (9-2) and utilize
Cauchy—Schwarz to deduce that

sup ||n<r>||%/25exp(2c /0 ¢K<r>dr)[||no||%/2+r /O @zw)dr]. (9-3)

o<r<t

To go to higher regularity, we let & € N? with |o| = 4N. Then we apply the operator 3% to the equation
0:n~+u - Dn = uj to see that 3%n solves the transport equation

3 (3%n) + i - D(3%n) = 3%usz — Z Co pdPii- D3 Py =: G* (9-4)

0<B<«x
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with the initial condition 9%79. We may then apply Lemma A.9 with s = 1/2 to find that
t t
sup [0%n(r)lli2 < exp(Cf | Du(r)ll g3 s d”) [||3“770||1/2+/ ||Ga(”)||1/2dr]- (9-5)
O<r=<t 0 0
We will now estimate |G ||y 2.
For 8 € N? satisfying 2N 4+ 1 < || < 4N we may apply (A-2) of Lemma A.1 with s; =r =1/2 and
s> = 2 to bound
197aDa* Pl 2 S 18Pl 12 1DB Pl (9-6)

This and trace theory then imply that

> NCapdfi- DI Pl SIDIN L ulli 1 DTV 0l S VBanEon. (9-7)

0<B<a
2N+1<|B|<4N

On the other hand, if g satisfies 1 < |B| < 2N, we again use Lemma A.1 to bound

182D Pnllij2 S 107l gags) 1 DA Pl 2, (9-8)
so that
> CupdPia- DO Pl SIDVullsI DIV Inlly2 + 1Dl sy 1DV il
0<B<a
1=Ipl=2N SVnDon + VAT . (9-9)

The only remaining term in G* is 9“u3, which we estimate with trace theory:
19%usll sy S 1D uslly S VDo (9-10)
We may then combine (9-7), (9-9), and (9-10) for
1G¥ 112 S L+ E€n)VDan +HFoy. (0-11)

Returning now to (9-5), we square both sides and employ (9-11) and our previous estimate of the term

in the exponential to find that

sup 19 (I3

o<r<
== t t t 2
< exp<2C /\/57{(r) dr) |:||8°‘n0||%/2 +1 /(1 +Ean () Doy (r) dr + (f\/%(r)@m(r) dr) :| (9-12)
0 0 0
Then the estimate (9-1) follows by summing (9-12) over all |o| = 4N, adding the resulting inequality to
(9-3), and using the fact that 9113y, , < 1017, + ID* 713 . O
Now we use this result and the J{ estimate of Lemma 3.17 to derive a stronger result.

Proposition 9.2. Let G, be defined by (2-58). There exists a universal constant 0 < & < 1 such that if
Gn(T) <$,thenforall0 <t <T,

t
sup 9’72N(}”)§9’72N(0)+l‘/ Don. (9-13)
0

O<r<t
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Proof. Suppose 4y (T) <8 <1, for § to be chosen later. Fix 0 <t < T. Then, according to Lemma 3.17,
we have 3 < %ﬁﬁkz)/ #+4%) " Which means that

t t t
(84+22)/(16+8%) (84+22)/(16+8%) 1
/0 VH(r)dr 5/0 (En+2,2(r)) dr <3 /0 )7 dr

o0
1 4
< 8(8+2)\)/(16+8)x) — _8(84-2)»)/(16-5—8)\). -14
: o T T o1

Since § < 1, this implies that for any constant C > 0,

exp(C/ VIH(r) dr) <. (9-15)
0

Similarly,
t 2 t 2
</ VHEE) Fan(r) dr) < ( sup @ZN(F)> </ VHT) dr)
0 0<r=<t 0
< ( sup %N(r)>3<8+2”/<8+“>. (9-16)
o<r<t

Then (9-14)—(9-16) and Lemma 9.1 imply that
t
sup Fon (r) < C(%N (0) +1 / @ZN) + CsBTN/EH (sup Fyy (1)), (9-17)
O<r<t 0 O<r<t

for some universal C > 0. Then if § is small enough that C§®+22)/B+41) < 1/2 we may absorb the
right-hand %,y term onto the left and deduce (9-13). [l

This bound on ¥, allows us to estimate the integral of 5%,y and /Doy HFopn.

Corollary 9.3. There exists a universal constant 0 < § < 1 such that if G5 (T) < &, then
t t
/ H(r)Fan (r) dr < SEFV/BF G () 4- §ET21/B+40) f Do (r) dr (9-18)
0 0

and

t t
/ VDon (NH () Fon (r) dr S Fon (0) 4 § BT/ 16181 / Don (r) dr (9-19)
0 0

forO0<t<T.

Proof. Let G5 (T) < § with § as small as in Proposition 9.2, so that estimate (9-13) holds. Lemma 3.17
implies that
1

(8421)/(8-+42) (8421)/(8-+41)
H(r) S (Enta2(r)) Sé (Lr)2+i2

(9-20)
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This and (9-13) then imply that

1 t o t dr t r /r
- - < 9% = - -
RGEme=m /0 H(r)Fan(r) dr < Fon(0) L )2+A/2 +/0 a2\, Doy (s)ds ) dr

o t o0 d
SJ*’zN(O)/ —(H— VA (/0 Doy (r) dr> (/0 —(H_r)rlﬂ/z)

< Ty (0) + / Gy () dr, ©-21)
0

which is estimate (9-18). The estimate (9-19) follows from (9-18), Cauchy—Schwarz, and the fact that
s<1:

t
/ B VH ) T () dr
0

t 1/2 t 1/2
< (f QDQN(I”) d}’) (f 3((1’)9’}1\/(?‘) dl’)
0 0

t 1/2 t
< <[ Gy () dr) (8(8+2x)/(8+4/x)9;21v(0))1/2+8(8+2A)/(16+8A)/ Doy (r) dr
0 0
t
S g'TZN(O)_i_ (8(8+2)»)/(16+8)») +6(8+2K)/(8+4A))f QDZN(”) dr
0

t
S Fan(0) +55 2104 [0 O
0

Boundedness at the 2N level. We now show bounds at the 2N level in terms of the initial data.

Theorem 9.4. Let G be defined by (2-58). There exists a universal constant 0 < 6 < 1 such that if
GNn(T) <6, then

! Fon(r)
sup éon(r) + 9521\/ + sup < €an (0) + Fan (0) (9-22)
O§r§t O<r<t (1 + )

forall0 <t <T.

Proof. Combining the energy evolution estimate of Theorem 7.1 with the comparison estimates of
Theorems 8.5 and 8.6, we find that

Eon (1) + /0 Doy (r) dr S Eon(0) + (Ban ()0 + i (Gan (M) Doy (r) dr
t

t
—i—/ \/QZBZN(r)fK(r)Q?ZN(r) dr+/ H@)Fan(r)dr (9-23)
0 0

for some 6 > 0. Let us assume initially that § < 1 is as small as in Lemma 2.6, Proposition 9.2, and
Corollary 9.3, so that their conclusions hold. We may estimate the last two integrals in (9-23) with
Corollary 9.3, using the fact that § < 1:

t t t
/ By VRO Ty () dr + f TV Fa (r) dr S Fay (0) + 5E+2D/16+8) / Do () dr.  (9-24)
0 0 0
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On the other hand, supy., -, €2y (r) < %N (T) <4, so

(Ean (1)1 + /0 t(%zN(r»%bm(r) dr < 8%y (1) +68° /0 t Don (r)dr. (9-25)
We may then combine (9-23)—(9-25) and write
Y =min{f, (8§ +21)/(16+81)} >0 (9-26)
to deduce the bound
() + /0 t Do (r)dr < C (€n(0) + Fon (0) + C8%Eon (1) + €8V /0 t Don (r) dr (9-27)

for a universal constant C > 0. Then if § is sufficiently small so that C8? < 1/2 and C8¥ < 1/2, we may
absorb the last two terms on the right side of (9-27) into the left, which then yields the estimate

t
sup €y (r) + / Doy (r)dr S Ean(0) + Fon (0). (9-28)
0

0<r<t

We then use this and Proposition 9.2 to estimate

F Fon (0 r
su v (r) < sup v () + sup r f Doy (s)ds
o<r<t (L+7) Tozrzy (L4T1) o<z (14+7) Jy
t
S Fon(0) + / Doy (r)dr S €an(0) + Fan (0). (9-29)
0
Then (9-22) follows by summing (9-28) and (9-29). ([l

Decay at the N + 2 level. Before showing the decay estimates, we first need an interpolation result.
Proposition 9.5. There exists a universal 0 < § < 1 such that if G5 (T) <6, then
gbN-‘,-Z,m(t) S; ng-‘rZ,m(t)» %N—O—Z,m(t) S%N-‘rl,m(t) (9'30)

and
Entam@®) S (En@) D@y o (1)) TR D (9-31)

form=1,2and0 <t <T.
Proof. The bound %5 (T) < § and Theorems 8.7 and 8.8 imply that
DNtam < CDNs2m+ CENDN+2.m < CDNy2.m + C8 Dy 12m (9-32)

and
%N—&-Z,m =< C%N+2,m + C%gN%N—}-Z,m =< C%N+2,m + C59%N+2,m (9'33)

for constants C > 0 and # > 0. Then if § is small enough so that C8° < 1/2, we may absorb the second
term on the right side of (9-32) and (9-33) into the left to deduce the bounds in (9-30).
We now turn to the proof of (9-31). According to Remark 2.8, we have

Ensam SIDNTu|s + | D2V )13, (9-34)
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and by Lemma A.12, we also know that
1D ully S 1D Dullg =Dy 2m- (9-35)

On the other hand, the definition of Dy 42 ,,, given by (2-54) when m =1 and (2-55) when m =2, together
with (9-30) implies that

IDZN*01G < Drtzm + 1DV 15 S Dysom + 1D N |3 (9-36)

We may then combine (9-34)—(9-36) to see that
Entam S Dvizm + 1D ll5 + 1DV 0. (9-37)

We first estimate the last term in (9-37). The standard Sobolev interpolation inequality (3-47) with
s=2N+3—m,r=1/2,and ¢ =2N —4 allows us to estimate
1D 40§ < 1D 03y 13-
g (” Dm+1 n ||%N+5/2_m)(4N—8)/(4N—7) ( ” Dm+1 n ||42|.N_m_1)1/(4N_7>

S Dy g, m) NN (g, ) I/EN=D) (9-38)

Since N >3, m e {1,2},and A € (0, 1), we have (4N —8)/(4N —7) > (m+A)/(m + 1+ 1). Then this

bound, the estimate (9-38), and the bound Dy 47 », S €2y from Lemma 2.10 imply that

~

DM 45 S (@ s, m) "R D () D, (9-39)

Now we turn to the D™ 5 term in (9-37). In the case m = 1 we use the H° interpolation estimates of
Lemma 3.1 to bound

D™ 13 = 1Dl < (€an) VO (@ g )T/ CH), (9-40)

In the case m =2 we use the H" interpolation estimates of D7 from Lemma 3.1 and the H estimate of
d;n from Proposition 3.16 to bound

ID" nllg = 1 D*nlig + 18,1l < (62n) /O Dy 12,2) FFH/ L. (9-41)
Together, (9-40) and (9-41) may be written as
ID"nllg S (Ean) /" HED @ g ) MDD, (9-42)
Now, according to Lemma 2.10, we can bound
DN+2,m < DNam S (@)D @y g ) D/ OTEAED, (9-43)

Then we use the estimates (9-39), (9-42), and (9-43) to bound the right side of (9-37); the bound (9-31)
follows from the resulting inequality and (9-30). (I

Now we show that the extra integral term appearing in Theorem 7.2 can essentially be absorbed into

%N+2,m .
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Lemma 9.6. Let F? be defined by (2-19) with 3% = 8,N *2. There exists a universal 0 < § < 1 such that if
Gn(T) <4, then

2En42.m(t) < Engom(t) —2 /Q TN pFA (1) < 3En12.m(t) (9-44)

forall0<t<T.

Proof. Suppose that § is as small as in Proposition 9.5. Then we combine estimate (5-4) of Theorem 5.2,
Lemma 2.6, and estimate (9-30) of Proposition 9.5 to see that

6/2 0/2:5 -
11218 plloll F2 o S VENnt2my EonEnram = EonEniom S Eneniom S8 Eniam (9-45)

for some 6 > 0. This estimate and Cauchy—Schwarz then imply that
Q

if § is small enough. The bound (9-44) then follows easily from (9-46). U

<20l 13N pllol F2llo < C8*Eniam < 2En12m (9-46)

Now we prove decay at the N + 2 level.

Theorem 9.7. Let Gy be defined by (2-58). There exists a universal constant 0 < § < 1 such that if
Gn(T) <4, then
sup (1+1)" €y 12m(r) S €on(0) +Fon (0) (9-47)

0<r<t
forall0 <t <T and form € {1, 2}.

Proof. Let § be as small as in Lemma 2.6, Theorem 9.4, Proposition 9.5, and Lemma 9.6. Theorem 7.2
and the estimate (9-30) of Proposition 9.5 imply that

3 (%N+z,m ~2 / Ja!V+1pF2) +Dntom < CENDNiom < C8'Dyiom < 3Byyom  (9-48)
Q

if § is small enough (here 6 > 0). On the other hand, Theorem 9.4, (9-31) of Proposition 9.5, and (9-44)
of Lemma 9.6 imply that

05%%MMmS%Nﬂm_z/:mprF%S%mHm
Q

= 1 A1) 5
< C(%ZN)I/(m-i-)»—Fl)(@N+2’m)(m+)\_)/(m+)»+l) < COQZO/(m+ + )(@N+2,m)(m+)»)/(m+)»+l) (9_49)

for all 0 <t < T, where we have written % := é,5(0) + F,5(0), and Cy is a universal constant which
we may assume satisfies Co > 1. Let us write

h(t) =Ensam(t) —2 f J)3N T p(t)F2(1) > 0, (9-50)
Q

as well as

1 1
s=—— and C;=

— 9-51
m+ A 20, % O-=>D
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In these three terms we should distinguish between the cases m = 1 and m = 2, but to avoid notational
clutter we will abuse notation and only write A(¢), s, and C;. We may then combine (9-48) with (9-49)
and use our new notation to derive the differential inequality

dh(t) + C1(h(1)'** <0 (9-52)
forO<r<T.
Since Ah(t) > 0, we may integrate (9-52) to find that, forany 0 <r < T,
h(0)

MO = e oy s ©-53)

Notice that Remark 2.8 implies that ¢ N+2.m < %%QN. Then (9-49) implies that 2(0) < %% N+2.m(0) <
2¢€,n(0) < 2%, which in turn implies that

s _ N h(0)\* N s_ S s—1 _
sC1(h(0)) _205“( o ) < 2c5+s2 = 001“2 <1 (9-54)

since 0 < s < 1 and Cy > 1. A simple computation shows that

1/s
sup (17 1

r~o (1M~ Ms ©-55)

when 0 < M <1 and s > 0. This, (9-53), and (9-54) then imply that

s (1—{-1’)1/S <2Cé+S)l/s ZZO B (2C5+S)1/S ]
(I +r)""h(r) Sh<0)[1+sC1(h(0))Sr]1/s <h(0) S no = %o. (9-56)

Now we use (9-30) of Proposition 9.5 together with (9-49) to bound
Enrom() SEniom) Sh(r) for 0<r <T. (9-57)
The estimate (9-47) then follows from (9-56), (9-57), and the fact that
s=1/(m+2) and Zo="E5(0)+ F2n(0). U

A priori estimates for 9. We now collect the results of Theorems 9.4 and 9.7 into a single bound on
%, as defined by (2-58). The estimate recorded specifically names the constant in the inequality with
C; > 0 so that it can be referenced later.

Theorem 9.8. There exists a universal 0 < § < 1 such that if 6,5 (T) < 6, then
Gon (1) < C1(€2n(0) +F2n(0)) (9-58)
forall0 <t <T,where C| > 0 is a universal constant.

Proof. Let § be as small as in Theorems 9.4 and 9.7. Then the conclusions of the theorems hold, and we
may sum them to deduce (9-58). ]
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10. Specialized local well-posedness

Propagation of $; bounds. To prove Theorem 1.3, we will combine our a priori estimates, Theorem 9.8,
with a local well-posedness result. Theorem 1.1 is not quite enough since it does not address the
boundedness of ||§Au(t)||g, ||§,\n(t)||%, and ||9,\p(t)||g for ¢ > 0. In order to prove these bounds, we first
study the cutoff operators $7", which we define now. Let m > 1 be an integer. For a function f defined
on 2, we define the cutoff Riesz potential $7" f by

I f (', x3) = f fE x3)lg| e 4, (10-1)
{IE1=1/m}
where * denotes the Fourier transform in the (x1, xp) variables. Similarly, for f defined on X, we set
srran=[  felrten e (10-2)
{lE1=1/m}

The operator $7" is clearly bounded on H 9(Q) and H°(X), which allows us to apply it to our solutions
and then study the evolution of $}'u and $7'n.

Before doing so, we record some estimates for terms involving $7" that are analogous to the $; estimates
in Propositions Proposition 4.3 and 6.7 and in Lemmas 4.4, 4.5, 6.5, 6.6, A.3 and A.4. We begin with the
analogues of the last two lemmas, which were the starting point for our $, estimates.

Lemma 10.1. If $;h € H(Q), then ||$7'h||5 < ||9:hll3. A similar estimate holds if $;h € H'(Z). As a
consequence, the results of Lemmas A.3 and A.4 hold with ) replaced by 9" and with the constants in
the inequalities independent of m.

Proof. Suppose that $,h € H°(2) for some h. Then, Writingcfor the horizontal Fourier transform, we
easily see that

0
195 Rl = f f (&, x3) P &7 d&dxs < || $5hl]5. (10-3)
—b J{|§1=1/m}
The corresponding estimate in case $3h € H°(X) follows similarly. Then the estimates of Lemmas A.3
and A.4 may be combined with these inequalities to replace $, with $7". (I

We do not want our estimates for $7" to be given in terms of €,y since this energy contains §; terms.
Instead, we desire estimates in terms of a modified energy, which we write as

Eon =S — [ Faulld — 15205 (10-4)

Lemma 10.1 allows us prove the following modification of Proposition 4.3. The proof is a simple
adaptation of the one for Proposition 4.3, and is thus omitted.

Proposition 10.2. Assume that ,y < 1. We have
I2G2 + 190 G5+ 1978, G+ 197G |13 + 197 GHIF < &y (10-5)

Here the constant in the inequality does not depend on m.
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We may similarly modify the proof of Lemma 4.4, removing the interpolation arguments and simply
estimating with &,y instead. This provides us with the following lemma, whose proof we omit.

Lemma 10.3. Assume that 5 < 1. We have
2
19 IAK)33u1 + (BK)dsu IR+ > 119 1ud: K113 < €. (10-6)
i=1
19510 = K)ulllg+ 119511 = K)G?1§ S €3 (10-7)
Here the constants in the inequalities do not depend on m.

Lemma 10.3 leads to a modification of Lemma 6.5.

Lemma 10.4. Assume that 5 < 1. We have
193 pIIG S 195015+ €an  and 1195 Dpll§ S €. (10-8)
Here the constants in the inequalities do not depend on m.

Proof. We may argue as in Lemma 6.5, employing Lemma 10.1 in place of Lemmas A.3 and A.4 as
well as Proposition 10.2 and Lemma 10.3 in place of Proposition 4.3 and Lemma 4.4, to deduce the
estimate [|0% 97 pI3 < 109 nllZ + |lull3 + 10,ull} + €3, for & € N? with || € {0, 1}. We may bound
lull3+119,ull? < En. When |o| =1 we use Lemma 10.1 to estimate [|[3*$5 715 < (InllH*(1Dnlld) ™ <
¢,n. The desired estimates then follow from these estimates and the fact that &,y < 1. Ol

In turn, Lemma 10.4 gives a variant of Lemma 6.6. The proof is an easy modification of that of
Lemma 6.6, using the above $7" results in place of ¥, results, and is thus omitted.

Lemma 10.5. Assume that 5 < 1. We have

/9’11199%2 S EnlIFnllo + Ean. (10-9)
Q

Here the constant in the inequality does not depend on m.

These results now allow us to study the boundedness of $,u, etc. We first apply the operator $7" to
the equations (2-23), which is possible since $}" is bounded on H 9(Q) and H°(X). Then the energy
evolution for $7'u and $7'n allows us to derive bounds for these quantities, which yield bounds for $,u
and $,n after passing to the limit m — oo.

Proposition 10.6. Suppose that (u, p, n) are solutions on the time interval [0, T| and that ||§Au0||% +
||§m0||(2) < 00 and supy<, <1 E2n (1) < 1. Then

T
sup (|%:u® 3+ 152 pOIF+ 150 0)1IF) + / 1$5u(2) |13 dr
0

0<t<T
Sel (19uollf + 1Fam0ll3) +e” sup En(r). (10-10)

0<t<T
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Proof. Since 7' is a bounded operator on H 9(Q) and H°(Z), we are free to apply it to the equations
(2-23). After doing so, we use Lemma 2.5 to see that

1
( fmm Pyl /|§An|)+§f|mﬁz’u|2
Q
:/56%-(93%;1 VITG?) + 90 pIT G + / —ITu - INGP I ING. (10-11)
Q x

We will estimate each term on the right side of this equation. First, we use Cauchy—Schwarz and
Proposition 10.2 to estimate the first and fourth terms:

+ V $mngnGH
z

< 195 ullo(195° G o + 197G 1) + 195 n1lo 97 G o

I - (NG - VITG?)
Q

< 197 ullg+ 215+ AT G o + 197G + 197 GG
< Higruld+ e+ cedy (10-12)

for C > 0 independent of m. For the second term we use Lemma 10.5 and Cauchy’s inequality for
‘ / 9" p I G*

where again C > 0 is independent of m. Finally, for the third term we use trace theory, Proposition 10.2,
and Lemma A.12 to bound

/ - 9" G
z

with C > 0 independent of m. Now we use (10-12)—(10-14) to estimate the right side of (10-11); after
rearranging the resulting bound, we find that

< ClI9'nllo€an + CEn < 31195015+ C(€ay + E3), (10-13)

< 195 ull gosy 195G llo < CILITull 195G lo
< CIDSTullo€y < LIDITull+CE3y,  (10-14)

3 (195 ullg+ 195 0I5 + SIDITullg < 195 ull§ + 195 nllg + C (Ean + ) (10-15)

for a constant C > 0 that does not depend on m.
The inequality (10-15) may be viewed as the differential inequality

0 €nm+3Drm < €rm+C(Eay + Ey), (10-16)

where we have written €;_,, = ||.9} u ||% + ||§Tn||% and 9, ,, = [|DI} u ||g. Applying Gronwall’s lemma to
(10-16) and using the fact that €, (¢) < 1 then shows that

t t
Em (1) + % / Dy.m(s)ds < €m(0)e' + C/ e &N (s)ds
0 0

< %A,m(O)e’ +Ce' —1) sup En(s), (10-17)

O<s<t
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where again C > 0 is independent of m. It is a simple matter to verify, using the definitions of $%' and .$;,
Parseval’s theorem for the Fourier transform in (x1, x7), and the monotone convergence theorem, that, as
m — 00,

Crm(s) = 197 u()I5+ 197015 = 1924115+ 192015 (10-18)
for both s =0 and s = ¢, and
t t
/ Di,m(s)ds — / IDSu(s)||3 ds. (10-19)
0 0

Now, according to these two convergence results, we may pass to the limit m — oo in (10-17); the
resulting estimate and Lemma A.12 then imply that

T
sup ([$2uOIIF+ 1$:00)15) + fo |1 $u ()|} dt

0§t§T
< (19au0ll3 + 1192m0l13)e” + (T —1) sup En(r). (10-20)
0<t<T
On the other hand, from Lemma 10.4, we know that
197 OIS IFT0ONG + Ean (). (10-21)

We may then argue as above, employing the monotone convergence theorem, to pass to the limit m — oo
in this estimate. We then find that

sup [, p0I3 S sup 5003+ sup (). (10-22)
0<t<T 0<t<T 0<t<T
The estimate (10-10) then follows by combining (10-20) and (10-22). Il

Local well-posedness. We now record the specialized version of the local well-posedness theorem. We
include estimates for $,u, $,7n, and $, p. We also separate estimates for €,y and %,y from estimates
for F,n and &,y, the latter of which is defined by (10-4).

Theorem 10.7. Suppose that initial data are given satisfying the compatibility conditions of Theorem 1.1
and |lu(O) I3y + 17O I3y ;2 + 19240) 15+ 19:1(0)[I§ < 00. Let & > 0. There exists a 8o = o(e) > 0
and a

Ty=Ceyminf1, ———1l >0, (10-23)

||77(0)”4N+1/2

where C(¢) > 0 is a constant depending on ¢, such that if 0 < T < Ty and IIM(O)IIiN + ||TI(0)||42;N < 6o,
there exists a unique solution (u, p, n) to (1-9) on the interval [0, T] that achieves the initial data. The
solution obeys the estimates

T
sup Gy (1) + sup |5, p0)|2+ f Don (@) dt + 197V ul|Fy,
0<t<T 0<r<T 0 2 )
< Ca(e+ [ 9uO)[I5+ [19:0(0)[I5),  (10-24)
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and

sup En()<e and sup Fon () < CoFon(0) + ¢ (10-25)
O<t=T 0<t<T

for Cy > 0 a universal constant. Here &,y is as defined by (10-4) and Xt is defined in (1-11).

Proof. The result follows directly from Proposition 10.6 and Theorem 1.1. O
Remark 10.8. The finiteness of the terms in (10-24) and (10-25) justifies all of the computations leading
to Theorem 9.8. In particular, it shows that BIZN *1y and 8,2N p are well-defined.

Remark 10.9. We could have recorded a version of Theorem 10.7 in which ¢ is replaced by various terms
depending on the initial data in (10-24)—(10-25). We have chosen to introduce the ¢ term for convenience
in our proof of Theorem 11.2.

11. Global well-posedness and decay: proof of Theorem 1.3

In order to combine the local existence result, Theorem 10.7, with the a priori estimates of Theorem 9.8,
we must be able to estimate 9, y, defined by (2-58), in terms of the estimates given in (10-24) and (10-25).
‘We record this estimate now.

Proposition 11.1. Let &,y be as defined by (10-4). There exists a universal constant C3 > 0 with the
Jfollowing properties.

(1) If 0 < T, we have the estimate

T
GN(T) < sup € (t)+ f Doy (t)dt + sup Fon(t) +C3(1+T)** sup En(r).  (11-1)
0

0<t<T 0<t<T 0<t<T

) If0< T, <T,and sup ||17(t)||§/2 <6, where § > 0 is as in Lemma 2.6, we have the estimate
Th=<t<T,

T
1
Gon(T2) < C3%GN(T1) + sup %2N(l)+f Don(t)dt + ———=~ sup Fan(1)
T\<t<T, T (1+11) Ti=t=T,

+C3 (T —T)*(1+ )™ sup En(n). (11-2)

T <t<T,

Proof. We begin with the proof of the estimate (11-2). The definition of 9,y (7>) in (2-58) allows us to
estimate
N (T2)

L Fon(t) <
<G (T1)+ sup Eon(D)+ / Gon@di+ sup S2DLS Sup (40 a0, (1153)
Ih=t<T T h=t=T (I+1) m=1 N1=t=D

Since N > 3, it is easy to verify that

N+2

i+l 2 ) i+l 02 112
Z ”atJ u||2(1v+2)_2j + ||8tju||2(1v+2)_2j + ||3z] ’7||2(N+2)—2j + ||81177||2(N+2)—2j S G (11-4)
j=0
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and N+1

ol .
Z 18/ P”%(N_;.z)_zj_] + ||8zJP||§(N+2)_2j_1 S G (11-5)
j=0

We will use (11-4), (11-5), and an integration argument to estimate the last term in (11-3).
For j=1,...,N+2and m = 1, 2 we may integrate o,[(1 + t)(’"“)/zat]u(t)] in time from 77 to
t € [Ty, T] and use the estimates in (11-4) to deduce the bound

I+ 028w llan a2y < 1A+ T 28] u(Ty) oy 142,

T . .
+f ((1 )20/ () o saaj + LR (1 45y 202 ) u(s)||2N+4—2j) ds
T

SVGn(T) + (T =T+ T2)' ™2 | sup En(r). (11-6)

Nh=<i<D
Squaring both sides of this, summing over j =1, ..., N + 2, taking the supremum, and then summing
over m = 1, 2 then yields the bound

2 N+2
> sup ((Hz)’"“Z ||a!u<r>||%(N+2)_2j>5%N<T1)+<T2—T1)2<1+T2>2“ sup &y (). (11-7)

T <t<T Th<t<T,

m=1 j=1

We may also integrate 9;[(1 + 1) M/259(1)] for o € N? with |o| = m + 1 and argue as above, again
employing the estimate (11-4), to deduce the bound (after summing over all such )

2
sup (140" IV U3y 12 -m—1) SGn (T + (T —T)* (14 T2)* sup En(1). (11-8)

m=1 N=t=h Ti<t<D

Similarly, we may integrate 3,[(1 + )" +"/29%y(1)] for « € N'*2 with m < |a| < 2N + 4, argue as
above with (11-4), and then employ the bound ||5,2nN iy ||(2) < € N+2.m from Remark 2.8 (which holds for
t € [Ty, T»] because of our assumption on the size of ||n ||§ /2), to deduce the bound (again after summing
over all such «)

2
sup ((1+ )" D2V T4u)13) < Gon (1) +(Ta — T*(1+ 1) sup En(r).  (11-9)

m=1 N=t=h Ti<t<h

Together, the estimates (11-7)—(11-9) account for all of the u terms appearing in € y.2 ,, as defined in
(2-52) for m =1 and (2-53) for m = 2.

Now we turn to the terms in € y42 , involving n and p. We may use the n estimates in (11-4) and the
p estimates in (11-5) in a trio of integration arguments like those used above in (11-7)—(11-9). These
yield the estimates

2 N+1 . N+2 .
Y sup (<1+z)m“[z ||a,’p(r>||§<N+2)2j1+Z||a£n<r>||%w+2)2,~D
m=1 NN=I=T2 j=1 j=1

SGn(T) + (T —T)*(L+T)* sup En(), (11-10)

T1<t<T,
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sup ((L+ 0" UV D3 42)-m—1 + 1D 0O 13 n12)—m D

m=1 T <t<T»

SGn(T) + (T —T)*(L+ ) sup En(), (11-11)
T <t<T»
and

2
sup (140" D2V 40 0)12) < Gon (T1) + (T — T)>(1+T)*™ sup En(r).  (11-12)

m=1 N=t=h T=t<D

Now we sum (11-7)~(11-12) and use the bound €42 < IID2¥H4u |2 4 | D2V 9|2 from Remark 2.8
to find that

2
sup (1 +0"Ensam®) SGn(T) + (Ta— T’ A+ T2 sup (). (11-13)

m=1 [1=<t=D h=t<T

Then (11-2) follows from (11-3), (11-13), and the trivial bound

Fan (1) 1
su < o Fon (1), .
TIEI‘ETz (1+1) — (14T TISIETz an (1) ( )

Now we turn to the proof of (11-1). It is easy to see that €y, (t) S Exn(7), which leads us to the

simple bound
2

sup ((1+ )" Ens0m(®) S (L+T)* sup Epn (). (11-15)

m=1 0<t<T 0<t<T

Then this, (11-14) with T; replaced by 0 and T, replaced by T, and the definition of %, in (2-58) imply
(11-1). O

We now turn to our main result.

Theorem 11.2. Suppose the initial data (ug, ng) satisfy the compatibility conditions of Theorem 1.1. Let
Gan, Fon, and G be defined by (2-50), (2-56), and (2-58), respectively. There exists a k > 0 such that if
Ean(0) + Fon (0) < k, there exists a unique solution (u, p, n) to (1-9) on the interval [0, 00) that achieves
the initial data. The solution obeys the estimate

Gan(00) = C1(€2n(0) + Fon (0) < Cix, (11-16)

where C| > 0 is given by Theorem 9.8.

Proof. Let 0 <8 < 1 and Cy > 0 be the constants from Theorem 9.8, C, > 0 the constant from Theorem 10.7,
and C3 > 0 the constant from Proposition 11.1. According to (11-1) of Proposition 11.1, if a solution
exists on the interval [0, T'] with T < 1 and obeys the estimates (10-24) and (10-25), then

Gn(T) < Cak + e[Ca + 1 + C327H. (11-17)

If ¢ is chosen so that the latter term in (11-17) equals §/2, we may choose « sufficiently small that
Cok < /2 and k < §p(e) (with §p(e) given by Theorem 10.7); then Theorem 10.7 provides a unique
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solution on [0, T'] obeying the estimates (10-24) and (10-25), and hence 9,5 (T) < §. According to
Remark 10.8, all of the computations leading to Theorem 9.8 are justified by the estimates (10-24) and
(10-25).

Let us now define
T, (k) = sup{T > 0| for every choice of initial data satisfying the compatibility

conditions and €,y (0) + Fon(0) < «, there exists a unique solution

on [0, T'] that achieves the data and satisfies %N (T) < 6}. (11-18)

By the above analysis, Ty («) is well-defined and satisfies T, (k) > 0 if « is small enough, that is, there is
a k1 > 0 such that T, : (0, 1] = (0, oo]. It is easily verified that T, is nonincreasing on (0, x1]. Let us

now set
5 . 1 1
e=3minf e o (11-19)
and then define «g € (0, k1] by
. b So(e)
= 11-2
Ko mm{3C1(C3+2C2)’ C ,Kl}, ( 0)

where dg(¢) is given by Theorem 10.7 with ¢ given by (11-19). We claim that T, (kg) = co. Once the
claim is established, the proof of the theorem is complete, since then T (k) = oo for all 0 < k < .

Suppose, by way of contradiction, that T, (ko) < co. We will show that solutions can actually be
extended past T, (ko) and that these solutions satisfy G,y (T>) < é for T, > T,(kp), contradicting the
definition of T, (xp). We begin by extending the solutions. By the definition of T, (x(), we know that,
for every 0 < T < Ty (ko) and any choice of data satisfying the compatibility conditions and the bound
Eon (0) + Fon (0) < ko, there exists a unique solution on [0, T7] that achieves the initial data and satisfies
%,n(Ty) < 6. Then, by Theorem 9.8, we know that, actually,

Gon (T1) = C1(é2n(0) + F2n (0) < Ciko. (11-21)

In particular, this and (11-20) imply that

Fan (Th)
%ZN(TI) + m < C]K() < 50(8) forall 0 < T] < T*(Ko), (11-22)
1

where ¢ is given by (11-19). We view (u(Ty), p(T1), n(T1)) as initial data for a new problem; since
(u, p, n) are already solutions, they satisfy the compatibility conditions needed to use them as data. Then,
since €on (T1) < 8p(e), we can use Theorem 10.7 with e given by (11-19) to extend solutions to [T}, 73]
for any 7, satisfying

0<Tr—T; <Ty=C(e)min{l, Fon(T1)"'}. (11-23)

In light of (11-22), we may bound

T .= C(s)mm{l, PN TCER arrens } <T. (11-24)
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Notice that T depends on ¢ (given by (11-19)) and T, (xp), but is independent of 7. Let

- I
y =min{ T, 7, (xo), (1+2T*(K0))1+)‘/2}’ (11-25)

and then let us choose 71 = Ty (xg) — ¥ /2 and T> = Ty (ko) + y /2. The choice of y implies that
0<Ti <Tu(ko) <Tr <2Ty(kg) and O<y=T—T, <T <T,. (11-26)

Then Theorem 10.7 allows us to extend solutions to the interval [0, 7>], and it provides estimates on the
extended interval [T}, T»]:

.Tz))*

< Ca(e + 19u(T) 15+ 1920 (T 1), (11-27)

T
sup Gon () + sup [ p0)]3 + / Doy (1) di + 197 el
T

T <t<T h=<t<T, 1

and
sup En(t) <e and sup Fon(t) < CaFan (1) + €. (11-28)
Ti<t<D Ti<t<D
Here, in (11-27), we understand that ¥z, 1,) is defined as in (1-11) except on the temporal interval
(Ty, T») rather than (0, T).

Having extended the existence interval, we will now show that G, (7>) < §. Note that the constant §,
which comes from Theorem 9.8, is already smaller than the § appearing in Lemma 2.6. Then the first
estimate in (11-28) and the bound ¢ < § (a consequence of (11-19)) imply that supy, -, -, [In(?) ||§ 2 is
smaller than the § in Lemma 2.6, which means we may use the second estimate in Proposition 11.1. We
then combine the estimates (11-27)—(11-28) with (11-21)—(11-22) and the bound (11-2) of Proposition 11.1
to see that

CiCako(1+Ty) + ¢
Gon (T2) < C1Cako + Ca(e + Ciko) + — 1+ T )1 +eC3(Tr — T)*(1 + Tr)*™
1
< KkoC1(C34+2C2) 4+ (1 + C2) +eC3y>(1 + 2T (k) < % + % + % =, (11-29)

where the second inequality follows from (11-26) and the third follows from the choice of ¢, kg, and y
given in (11-19), (11-20), and (11-25), respectively. Hence %,y (T>) < §, contradicting the definition of
T (ko). We then deduce that T, (ko) = 0o, which completes the proof of the claim and the theorem. [J

With this result in hand, it is a simple matter to prove Theorem 1.3.

Proof of Theorem 1.3. We set N =5 in Theorem 11.2 to deduce all of the conclusions of Theorem 1.3
except the estimates (1-20)—(1-21). Proposition 3.9 implies that

lellgaq) < Cr)(€10)7 % (&72)% ) (11-30)

for any r € (0, 1), where C(r) > 0 is a constant depending on r. Let 0 < p < A and then choose r € (0, 1)

such that

2+A . 2
<2-—=-2 lentl 2 <2 —. 11-31
O<r< 4 , orequivalently (24 p) < ( —|—k)2+r (11-31)
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Then C(r) = C(p) and the bound 9;g(c0) < C1(€10(0) + F10(0)) implies that

2+p 2 o 24p 1 2/(2+r)
sup(1 -+ 07 (1)1 22,0, = C(PIC1 (E19(0) + F10(0)) sup(l + 0> ()
=0 >0 (1+1)

= C(p)C1(€10(0) + F10(0)), (11-32)

which is (1-20). The estimate (1-21) follows similarly by using the interpolation estimates of Lemma 3.1
for the n terms and the interpolation estimates of Theorem 3.14 for ||u ||%. In this case, though, no use of
r € (0, 1) is necessary because it does not appear in the interpolations. O

Appendix: Analytic tools
Products in Sobolev spaces. We will need some estimates of the product of functions in Sobolev spaces.
Lemma A.1. Let U denote either ¥ or Q2.

(1) Let O <r <s1 <sp be such that s1 > n/2. Let f € H"(U), g € H2(U). Then fg € H"(U) and

I fglar SN s gl (A-1)
(2) Let O <r <51 <53 be such that s >r+n/2. Let f € H**(U), g € H>(U). Then fg € H" (U) and
I fglar SN s gl (A-2)
(3) LetO<r <sy<sybesuchthatsy; >r+n/2. Let f € H"(X), g € H2(X). Then fge H™*(X) and
1/8ll=s; S IS N=NIglls,- (A-3)

Proof. The proofs of (A-1) and (A-2) are standard; the bounds are first proved in R"” with the Fourier
transform, and then the bounds in sufficiently nice subsets of R” are deduced by use of an extension
operator. To prove (A-3) we argue by duality. For ¢ € H*'(X) we use (A-2) to bound

f ofg SNeglell fll-r S llels lighs I 1l-r, (A-4)
z

so that upon taking the supremum over ¢ with [|¢|;, <1 we get (A-3). U
We will also need the following variant.

Lemma A.2. Suppose that f € C'(X) and g € H'/*(X). Then

18l SN flleiliglhye (A-5)

Proof. Consider the operator F : H* — H* given by F(g) = fg for k =0, 1. It is a bounded operator for
k=0, 1 since

Ifgllo = flictligllo and [ fglli S HFlcrllglh. (A-6)

Then the theory of interpolation of operators implies that F is bounded from H'/? to itself, with operator
norm less than a constant times /|| fllci+/l| fllct = |l fllci» which is the desired result. U



1526 YAN GUO AND IAN TICE

Estimates of the Riesz potential §;. Consider Q = R? x (—b, 0) for b > 0. For a function f, defined on
2, we define the Riesz potential $, f by

9 f (' x3) = / fE x| g, (A-7)
R
where * denotes the Fourier transform in (x1, x2). Similarly, for f defined on X, we set

960 = [ Fee e e (A8)
We have a product estimate that is a fractional analogue of the Leibniz rule.
Lemma A.3. Let A € (0,1). If f € H(Q) and g, Dg € H' (), then
19:.(f )0 S 11 flollg NI Dg ™ (A-9)
If f e H(X) and g € H (), then
||9A(fg)||H0(2) S ||f||H0(2)||g||;10(2)||Dg||11q_o%2)- (A-10)

Proof. The Hardy-Littlewood—Sobolev inequality (see, for example, Theorem 4.3 of [Lieb and Loss
2001]) implies that ; : L% 1+%)(R?) — L?(R?) is a bounded linear operator for A € (0, 1). We may then
employ Fubini’s theorem and apply this result to each slice {x3 = z} for z € (—b, 0) to estimate

0 0 1+A
/ 9, (fo)P = / / 19, (Fo)P dx'dxs < / </ |fg|2/“+“dx’) dxs
Q —b JR2 —b R2
0 A
< | (f |f|2dx/>(f |g|2/kdxf> dus s fgColg [IFF (A1)
—b \JR2 R2 —b<x3<0 Q

where, in the second inequality, we have applied Holder’s inequality. By the Gagliardo—Nirenberg
interpolation inequality on R? we may bound

g xa)lon ey S 18, x3) gy 1DE (- X3) 1 20ke, (A-12)

but, by trace theory, we also have

lgC-,x3)ll2mey Sllglh and  [[Dg(-, x3) | 2@y S 1Dgll1s (A-13)
so that
sup 118 43122 e, S gl IDgII (A-14)
—b=<x3<0

Chaining together (A-11) and (A-14) then yields the estimate (A-9). A similar argument, not employing
Fubini’s theorem or trace theory, provides the estimate (A-10). O

Our next result shows how $, interacts with horizontal derivatives in €.

Lemma A4. Let » € (0, 1). If f € HX(Q) for k > 1 an integer, then

19 D% Fllo S ID* £IGIDE Fllg™ (A-15)
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Proof. On a fixed horizontal slice {x3 = z} for z € (—b, 0), Parseval’s theorem implies that
oDt P < [ PSP fe P ds
R2 R2

= [ 0PI xR de

A 1—A
5( / ID"“f(xst)lzdx/> ( / ID"f(x/,x3)|2dx’) : (A-16)
RZ R2

Here, in the second inequality, we have used Holder and Parseval. Integrating both sides of this inequality
with respect to x3 € (—b, 0) and again applying Holder’s inequality yields the estimate (A-15). O

Poisson integral. For a function f defined on ¥ = R?, the Poisson integral in R?> x (—o0, 0) is defined
by

91w = [ @ g (A-17)

R2
Although % f is defined in all of R? x (—o0, 0), we will only need bounds on its norm in the restricted
domain = R? x (—b, 0). This yields a couple improvements of the usual estimates of % f on the set

R? x (—o0, 0). Recall that we use the conventions for sums of derivatives described on page 1443, which
in particular means that V¥ involves x3 derivatives.

Lemma A.5. Let P f be the Poisson integral of a function f that is either in H1(X) or H1~Y2(%) for

q € N (here H* is the usual homogeneous Sobolev space of order s). Then

A — p—4mbl§]
v s [ ep e () de (A-18)
R 151

and in particular

IVIP LIS SN Vo) and  IVIP LIS S 1 1z (A-19)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

0 0
IVIPLIG < /R 2 / JEPS @) P ER dusds < / |5|24|f(s>|2( / eHTIEls dx3) dé
e~ 4bls|
< [ Jernier(t=g) a0
This is (A-18). To deduce (A-19) from (A-18), we simply note that
1 —e—4mbls|
—|~§| < m1n{47'rb ] } (A-21)

which means we are free to bound the right side of (A-20) by either | f || (I

1/2(2) or ”fHH‘I(E)



1528 YAN GUO AND IAN TICE
Interpolation estimates. Assume that ¥ = R? and Q = ¥ x (—b, 0). We begin with an interpolation
result for Poisson integrals, as defined by (A-17).
Lemma A.6. Let P f be the Poisson integral of f, defined on . Let A >0,q € N, s >0, and r > 0.
(1) Let

A
= —5  and 1—p=-1T% (A-22)
q+s+Ai q+s+Ai
Then
IVIP LIS < S5 FIDAIDIT £115)' . (A-23)
(2) Letr+s > 1,
_ A+1
_ rts=l = 4FTATL (A-24)
qts+r+a qg+s+r+i
Then
IVIP f1I7 0 S U1 £I3) QDT £ 0. (A-25)
(3) Lets > 1. Then
IVIPfl7 S IIDYFIZ. (A-26)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound
0
||V‘I@>f||%5/2/ |s|2q|f<s>|2e4”'€'“dxzds5/2|S|2q|f(s>|2df.
R J—b R

= /R EPTF P T AEIHF @) dE (A2T)

for 0 and 1 — @ defined by (A-22). An application of Holder’s inequality and a second application of
Parseval’s theorem then provides the estimate (A-23).

For the L estimate (A-25), we use the definition of % f in conjunction with the trivial estimate
exp(2m|€]x3) < 1in 2 to bound

IVIP fliL S fwlélqlf(é)ldé. (A-28)

We write By for the open ball of radius R, B for its complement, and (§) = /14 |§|2. For R > 0 we
split into high and low frequencies to see that

f|s|q|f(s>|ds= |s|q+*|sr*|f<s)|ds+/ |E17F5 (&) (8) "1 751 £ (£)| dE
R? Bg B%

1/2

1/2
5( |§|2<‘f+“ds> |mf||o+< / |5|—2S<s>—2’ds) I DIFS £,
Bg By
S RIS, fllo+ R™CH=DDIT £, (A-29)

The condition r +s > 1 guarantees that the integral over By is finite. Minimizing the right side with
respect to R € (0, co) then yields (A-25).
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The estimate (A-26) follows from the easy bound

A 12
[ emi@iae siorp( [ @2 ag) <100

which holds when s > 1.
The next result is a similar interpolation result for functions defined only on X.
Lemma A.7. Let f be defined on . Let A > 0.
(1) Let g, s €10, co) and

A
— S5  and I_QZL.
q+s+a q+s+A

Then
IDYF1I5 < A FIHEADIT £

(2) Letg,s eN,r >0,r+s > 1,

r4s—1 g+i+1
=— adl—-0=—————,
q+s+r+i qg+s+r+a

Then
ID? 117 S (15 £I5)P QDT £11H0.

Proof. For the H? estimate we use

IIquII%SfRZISIZqIf(S)IZdE

and argue as in Lemma A.6. For the L* estimate we bound

ID? flle S /Rzlélqlf(é)ldé

and again argue as in Lemma A.6.

1529

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)

O

Now we record a similar result for functions defined on €2 that are not Poisson integrals. The result

follows from estimates on fixed horizontal slices.
Lemma A.8. Let f be a function on Q2. Let . >0, q,s € N, and r > 0.

(1) Let

A
0=—5  and 1_9:L‘
EXE) g+s+h

Then
1D £1I3 < 155 £ 1D DTS £115)' .
2) Letr+s > 1,

r+s—1 g+r+l
=" and 1-0=—"—"———,
qg+s+r+i g+s+r+xr

(A-37)

(A-38)

(A-39)
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Then
1-6
ID 11200 S S FID? (DI £112,)) (A-40)

and
ID? fl ooz S UEFIDCADIT FlI7 D' (A-41)

Proof. We employ the horizontal Fourier transform and Parseval in conjunction with Fubini to bound
O ~A
10713 [ [ PG P ded (A42)
—b JR

For a fixed x3 we may argue as in Lemma A.6 to show that

/R 2|s|2‘f|f<§, )NPdE < (19 f G AP £, x3) 115 (A-43)

for 6 and 1 — @ given by (A-37). Combining these two inequalities with Holder’s inequality then shows
that

0
ID? £ < / b(MAf(-,x3>||%>9<||D4“f(-,xz)u%)l*’ dxs < (19 FIDCADTT £ 0, (A-44)

which is (A-38).
Now, for the L estimate, we first work on a horizontal slice {x3 = z} for some z € [—b, 0]. Indeed,
using the horizontal Fourier transform on the slice, we have

IIqu(‘,X3)||LooSAQISIqIf(E,X3)IdS- (A-45)

We may then argue as in Lemma A.6 to show that

/ JEIIF @ x3)1dE < (192 f (o xn)llo) DT f (- x3) ) '™ (A-46)
R
for 6 and 1 — @ given by (A-39). By the usual trace theory

195 fCox3)llo SN flle and [IDTF° £ (- x3)llr SUDT fllrn (A-47)

Combining (A-45)—-(A-47) and taking the supremum over x3 € [—b, 0] then gives (A-40). A similar
argument yields (A-41). (Il

Transport estimate. Consider the equation

(A-48)

{8,n+u-Dn=g inX x(0,7),
nt=0)=mno

with T € (0, oo] and ¥ = R2. We have the following estimate of the transport of regularity for solutions
to (A-48), which is a particular case of a more general result proved in [Danchin 2005].
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Lemma A.9 [Danchin 2005, Proposition 2.1]. Let n be a solution to (A-48). Then there is a universal
constant C > 0 such that, for any 0 < s < 2,

t t
sup [[n(r)llas < eXP(C/ [ Du(r)l 32 dr)(llnollm +/ g () Il as dr)- (A-49)
O<r<t 0 0

Proof. Use p=p, =2, N =2, and o = s in Proposition 2.1 of [Danchin 2005] along with the embedding
H*— B) NL>. O
Poincaré-type inequalities. Let ¥ and 2 be as before.

Lemma A.10. We have

117200 S Iy + 193 F117 2 (A-50)
forall f e H'(Q). Also, if f € WH°(Q), then
1/ Wiy S N We () + 105 g - (A-51)

Proof. By density we may assume that f is smooth. Writing x = (x’, x3) for x" € X and x3 € (—b, 0),
we have

0 0
|f (X x) P = f(x',0)[*=2 / f D8 f(x,dz<|f(x,0)]*+2 / Jf(x’,z)llaaf(x’,z)ldz. (A-52)

We may integrate this with respect to x3 € (—b, 0) to get

0 0
/ 1O xa) P dxs S 1, 0) +2/ |fG DI f(x, 2] dz. (A-53)
—b —b
Now we integrate over x’ € X to find

2 2 2 2 C 2
fQ [f P dy <C Il 1225, +2C /Q £ F @ dx < CIF T2y te 1 o)+ T 105 f 1 2q)  (A-54)
for any ¢ > 0. Choosing ¢ > 0 sufficiently small then yields (A-50). The estimate (A-51) follows similarly,
taking suprema rather than integrating. U
A simple modification of the proof of Lemma A.10 yields the following estimates.

Lemma A.11. We have || f || gocs) S 1103 f | gog) for f € H'(Q) such that f = 0 on Xp,. Moreover,
Il ooy SN03F Nl ooy for f€ WE(Q) such that f =0 on .

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 of [Beale
1981].

Lemma A.12. We have |lu||y < ||Du|lo for all u € HY(Q; R?) such that u =0 on X,

We also record the standard Poincaré inequality, which applies for functions taking either vector or

scalar values.
Lemma A.13. We have || fllo < 1 fIh S IV fllo for all f € HY(Q) such that f = 0 on Xp. Also,

IF ey S W lwresy S IV Fll e for all f € WH(Q) such that f =0 on Z,
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An elliptic estimate. The proof of the following estimate may be found in [Beale 1981].
Lemma A.14. Suppose (u, p) solve

—Au+Vp=¢ec H2Q),
divu =y € H1(Q),

A-55
(pl —D))es = a € H=3/2(3), (A-53)
M|2b =0.
Then, forr > 2,
a2 + 113 S U2+ 12+ el s (A-56)
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