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A NEKHOROSHEV-TYPE THEOREM FOR
THE NONLINEAR SCHRÖDINGER EQUATION ON THE TORUS

ERWAN FAOU AND BENOÎT GRÉBERT

We prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

iut D��uCV ?uC @ Nug.u; Nu/; x 2 Td ;

where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we
prove that if the initial datum is analytic in a strip of width � > 0 whose norm on this strip is equal to ",
then if " is small enough, the solution of the nonlinear Schrödinger equation above remains analytic
in a strip of width �=2, with norm bounded on this strip by C " over a very long time interval of order
"�� jln "j

ˇ
, where 0< ˇ < 1 is arbitrary and C > 0 and � > 0 are positive constants depending on ˇ and �.

1. Introduction and statements

We consider the nonlinear Schrödinger equation

iut D��uCV ?uC @ Nug.u; Nu/; x 2 Td ; t 2 R; (1-1)

where V is a smooth convolution potential and g is an analytic function on a neighborhood of the origin
in C2 which has a zero of order at least 3 at the origin and satisfies g.z; Nz/ 2 R. In more standard models,
the convolution term is replaced by a multiplicative potential. The use of a convolution potential makes
the analysis of the resonances easier.

For instance, when
g.u; Nu/D

a

pC 1
juj2pC2

with a2R and p2N, we recover the standard NLS equation iut D��uCV ?uCajuj2pu. Equation (1-1)
is a Hamiltonian system associated with the Hamiltonian function

H.u; Nu/D

Z
Td

�
jruj2C .V ?u/ NuCg.u; Nu/

�
dx

and the complex symplectic structure i du^ d Nu.
This equation has been considered with Hamiltonian tools in [Bambusi and Grébert 2003; Eliasson

and Kuksin 2010]. The first of these papers (see also [Bambusi and Grébert 2006; Bourgain 1996] for
related results) contains a Birkhoff normal form theorem adapted to this equation and discusses dynamical
consequences on the long time behavior of the solutions with small initial Cauchy data in Sobolev spaces.

MSC2010: 35B40, 35Q55, 37K55.
Keywords: Nekhoroshev theorem, nonlinear Schrödinger equation, normal forms.
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1244 ERWAN FAOU AND BENOÎT GRÉBERT

More precisely, it is proved that for s sufficiently large, if the Sobolev norm of index s of the initial datum
u0 is sufficiently small (of order "), then the Sobolev norm of index s of the solution is bounded by 2"

during a very long time (of order "�r with r arbitrary). In the second paper cited, Eliasson and Kuksin
obtain a KAM theorem adapted to this equation. In particular, they prove that in a neighborhood of
uD 0, many finite-dimensional invariant tori associated with the linear part of the equation are preserved
by small Hamiltonian perturbations. In other words, (1-1) has many quasiperiodic solutions. In both
cases, nonresonance conditions have to be imposed on the frequencies of the linear part, and thus on the
potential V (these are not exactly the same in the two different cases).

Both results are related to the stability of the zero solution, which is an elliptic equilibrium of the
linear equation. The first result establishes the stability for polynomials’ times with respect to the size of
the (small) initial datum, while the second proves the stability for all time of certain solutions. In the
present work, we extend the technique of normal forms, establishing the stability of the solutions for
times of order "�� jln "j

ˇ

for some constants � > 0 and ˇ < 1, with " being the size of the initial datum in
an analytic space.

We now state our result more precisely. We assume that for m> d=2, R> 0, V belongs to the space

Wm D

�
V .x/D

X
a2Zd

waeia�x
ˇ̌̌
va WD

wa.1Cjaj/
m

R
2
�
�

1
2
; 1

2

�
for any a 2 Zd

�
; (1-2)

which we endow with the product probability measure. Here, for a D .a1; : : : ; ad / 2 Zd , we set
jaj2 D a2

1
C � � �C a2

d
.

For � > 0, we denote by A� �A�.T
d IC/ the space of functions � that are analytic on the complex

neighborhood of a d-dimensional torus Td given by I� D fxC iy j x 2 Td ;y 2 Rd and jyj < �g and
continuous on the closure of this strip. We then denote by j � j� the usual norm on A�:

j�j� D sup
z2I�

j�.z/j:

We note that .A�; j � j�/ is a Banach space.
Our main result is a Nekhoroshev type theorem:

Theorem 1.1. There exists a subset V�Wm of full measure, such that for V 2 V, ˇ < 1 and � > 0, the
following holds: there exist C > 0 and "0 > 0 such that if

u0 2A2� and ju0j2� D "� "0;

then the solution of (1-1) with initial datum u0 exists in A�=2 for times jt j � "��� jln "j
ˇ

and satisfies

ju.t/j�=2 � C " for jt j � "��� jln "j
ˇ

; (1-3)

with �� Dmin
˚

1
10
; 1

2
�
	
. Furthermore, writing u.t/D

P
k2Zd

�k.t/e
ik�x , we have

X
k2Zd

e�jkj
ˇ̌
j�k.t/j � j�k.0/j

ˇ̌
� "3=2 for jt j � "��� jln "j

ˇ

: (1-4)
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Estimate (1-4) asserts that there is almost no variation of the actions1.
In finite dimension n, the standard Nekhoroshev result [1977] controls the dynamic over times of order

exp.�="1=.�C1// for some � > 0 and � > nC 1 (see, for instance, [Benettin et al. 1985; Giorgilli and
Galgani 1985; Pöschel 1993]), which is of course much better than "�� jln "j

ˇ

D e� jln "j
.1Cˇ/

. Nevertheless,
this standard result does not extend to the infinite-dimensional context. Actually, that the term "�1=.�C1/

in the exponential validity time can be replaced by jln "j.1Cˇ/ at the limit n!1 is good news!
To our knowledge, the only previous works in the direction of obtaining Nekhoroshev estimates for

PDEs were obtained by Bambusi [1999a; 1999b]. However, the result in [Bambusi 1999a], which develops
ideas expressed by Bourgain [1996], concerns a smaller set of functions made of entire analytic functions
only, and nevertheless yields a weaker control on a large but finite number of modes.

The five main differences with the previous works on normal forms are:

� In the finite-dimensional case and in Bambusi’s work, the central argument consists in optimizing
the order of the Birkhoff normal form with respect to the size of the initial datum. Here we introduce
a Fourier truncation and we optimize the order of the Birkhoff normal form and the order of the
truncation.

� We prove in the Appendix that, generically with respect to V , the spectrum of ��CV ? satisfies a
nonresonance condition much more efficient than the standard one (see Remark 2.7).

� We use `1-type norms to control the Fourier coefficients and the vector fields instead of the usual
`2-type norms. Of course this choice does not allow us to work in Hilbert spaces and induces a
slight loss of regularity each time the estimates are transposed from the Fourier space to the initial
space of analytic functions. But it turns out that this choice simplifies the estimates on the vector
fields (see Proposition 2.5 below and [Faou and Grébert 2011] for a similar framework in the context
of numerical analysis).

� We use the zero momentum condition: in the Fourier space, the nonlinear term contains only
monomials zj1

: : : zjk
with j1C� � �C jk D 0 (see Definition 2.4). This property allows us to control

the largest index by the others.

� We notice that the Hamiltonian vector field of a monomial zj1
: : : zjk

containing at least three Fourier
modes z` with large indices ` induces a flow whose dynamics is controlled during a very long time in
the sense that the dynamic almost excludes exchanges between high Fourier modes and low Fourier
modes (see Proposition 2.11). In [Bambusi 2003; Bambusi and Grébert 2006], such terms were
neglected since the vector field of a monomial containing at least three Fourier modes with large
indices is small in Sobolev norm (but not in analytic norm), and thus will almost keep all the modes
invariant. This more subtle analysis was also used in [Faou et al. 2010].

Our method could be generalized by considering not only zero momentum monomials but also
monomials with finite or exponentially decreasing momentum. This would certainly allow us to consider a
nonlinear Schrödinger equation with a multiplicative potential V and nonlinearities depending periodically

1Here the actions are the square of the modulus of the Fourier coefficients, Ik D j�k j
2.
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on x:
iut D��uCV uC @ Nug.x;u; Nu/; x 2 Td :

Nevertheless, this generalization would generate a lot of technicalities and we prefer to focus in the
present article on the simplicity of the arguments.

2. Setting and hypothesis

2A. Hamiltonian formalism. Equation (1-1) is a semilinear PDE locally well posed in the Sobolev
space H s.Td / with s > d=2 (see, for instance, [Cazenave 2003]). Let u be a (local) solution of (1-1) and
consider .�; �/D .�a; �a/a2Zd the Fourier coefficients of u, Nu

u.x/D
X

a2Zd

�aeia�x and Nu.x/D
X

a2Zd

�ae�ia�x : (2-1)

A standard calculation shows that u is a solution in H s.Td / of (1-1) if and only if .�; �/ is a solution in2

`2
s � `

2
s of the system 8̂<̂

:
P�a D�i!a�a� i

@P

@�a
; a 2 Zd ;

P�a D i!a�a� i
@P

@�a
; a 2 Zd ;

(2-2)

where the linear frequencies are given by !a D jaj
2C va. As in (1-2), the notation is V D

P
vaeia�x .

The nonlinear part is given by

P .�; �/D
1

.2�/d

Z
Td

g
�X

�aeia�x;
X

�ae�ia�x
�

dx: (2-3)

This system is Hamiltonian when endowing the set of pairs .�a; �a/ 2 CZd

�CZd

with the symplectic
structure

i
X

a2Zd

d�a ^ d�a: (2-4)

We define the set ZD Zd � f˙1g. For j D .a; ı/ 2 Z, we define jj j D jaj and we denote by Nj the index
.a;�ı/.

We identify a pair .�; �/ 2 CZd

�CZd

with .zj /j2Z 2 CZ via the formula

j D .a; ı/ 2 Z D)

�
zj D �a if ı D 1;

zj D �a if ı D�1:
(2-5)

By a slight abuse of notation, we often write z D .�; �/ to denote such an element.
For a given � > 0, we consider the Banach space L� made of elements z 2 CZ such that

kzk� WD
X
j2Z

e�jj jjzj j<1;

2As usual, `2
s D

˚
.�a/a2Zd j

P
.1Cjaj2s/j�aj

2 <C1
	
.
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using the symplectic form (2-4). We say that z 2 L� is real when z Nj D Nzj for any j 2 Z. In this case,
we write z D .�; N�/ for some � 2 CZd

. In this situation, we can associate with z the function u defined
by (2-1).

The next lemma shows the relation with the space A� defined above:

Lemma 2.1. Let u be a complex valued function analytic on a neighborhood of Td , and let .zj /j2Z be
the sequence of its Fourier coefficients defined by (2-1) and (2-5). Then for all � < �, we have

if u 2A�; then z 2 L� and kzk� � c�;�juj�; (2-6)

if z 2 L�; then u 2A� and juj� � c�;�kzk�; (2-7)

where c�;� is a constant depending on � and � and the dimension d .

Proof. Assume that u 2A�. Then by using the Cauchy formula, we get jzj j � juj�e
��jj j for all j 2 Z.

Hence, for � < � we have

kzk� � juj�
X
j2Z

e.���/jj j � juj�

�
2
X
n2Z

e
.���/p

d
jnj
�d

�

 
2

1� e
.���/
p

d

!d

juj�:

Conversely, assume that z 2L�. Then j�aj � kzk�e��jaj for all a 2 Zd , and thus by (2-1), for all x 2 Td

and y 2 Rd with jyj � �, we get

ju.xC iy/j �
X

a2Zd

j�aje
jayj
� kzk�

X
a2Zd

e�.���/jaj �

 
2

1� e
.���/p

d

!d

kzk�:

Hence, u is bounded on the strip I�. �

For a function F of C1.L�;C/, we define its Hamiltonian vector field by XF D JrF , where J is the
symplectic operator on L� induced by the symplectic form (2-4), rF.z/D .@F=@zj /j2Z, and where by
definition, for j D .a; ı/ 2 Zd � f˙1g we set

@F

@zj
D

8̂<̂
:
@F

@�a
if ı D 1;

@F

@�a
if ı D�1:

For two functions F and G, the Poisson bracket is (formally) defined as

fF;Gg D rFT JrG D i
X

a2Zd

@F

@�a

@G

@�a
�
@F

@�a

@G

@�a
: (2-8)

We say that a Hamiltonian function H is real if H.z/ is real for all real z.

Definition 2.2. For a given � > 0, we denote by H� the space of real Hamiltonians P satisfying

P 2 C1.L�;C/ and XP 2 C1.L�;L�/:
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For F and G in H�, the formula (2-8) is well defined. With a given Hamiltonian function H 2H�, we
associate the Hamiltonian system

Pz DXH .z/D JrH.z/;

which also reads
P�a D�i

@H

@�a
and P�a D i

@H

@�a
; a 2 Zd : (2-9)

We define the local flow ˆt
H
.z/ associated with the previous system (for an interval of times t � 0

depending a priori on the initial condition z). If z D .�; N�/ and if H is real, the flow .� t ; �t /Dˆt
H
.z/ is

also real; � t D N�t for all t . Choosing the Hamiltonian given by

H.�; �/D
X

a2Zd

!a�a�aCP .�; �/;

P being given by (2-3), we recover the system (2-2), that is, the expression of the NLS equation (1-1) in
Fourier modes.

Remark 2.3. The quadratic Hamiltonian H0 D
P

a2Zd !a�a�a corresponding to the linear part of (1-1)
does not belong to H�. Nevertheless, it generates a flow which maps L� into L� explicitly given for all
time t and for all indices a by �a.t/D e�i!at�k.0/, �a.t/D ei!at�k.0/. On the other hand, we will see
that, in our setting, the nonlinearity P belongs to H�.

2B. Space of polynomials. In this subsection we define a class of polynomials on CZ.
We first need more notations concerning multi-indices: letting `� 2 and j D .j1; : : : ; j`/ 2 Z` with

ji D .ai ; ıi/, we define

� the monomial associated with j

zj D zj1
: : : zj` I

� the momentum of j

M.j /D a1ı1C � � �C a`ı`; I (2-10)

� and the divisor associated with j

�.j /D ı1!a1
C � � �C ı`!a` ; (2-11)

where for a 2 Zd , !a D jaj
2C va are the frequencies of the linear part of (1-1).

We then define the set of indices with zero momentum by

I` D
˚
j D .j1; : : : ; j`/ 2 Z`

ˇ̌
M.j /D 0

	
: (2-12)

On the other hand, we say that j D .j1; : : : ; j`/ 2 Z` is resonant, and we write j 2 N`, if ` is even and
j D i [ Ni for some choice of i 2Z`=2. In particular, if j is resonant, then its associated divisor vanishes,
�.j /D 0, and its associated monomials depend only on the actions

zj D zj1
: : : zj` D �a1

�a1
: : : �a`=2

�a`=2
D Ia1

: : : Ia`=2
;
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where Ia.z/D �a�a denotes the action associated with the index a for all a 2 Zd .
Finally, if z is real, then Ia.z/D j�aj

2, and for odd r , the resonant set Nr is empty.

Definition 2.4. For k � 2, a (formal) polynomial P .z/D
P

aj zj belongs to Pk if P is real, of degree
k, has a zero of order at least 2 in z D 0, and satisfies the following conditions:

� P contains only monomials having zero momentum (i.e., such that M.j /D 0 when aj ¤ 0), and
thus P reads

P .z/D

kX
`D2

X
j2I`

aj zj (2-13)

with the relation aNj D aj .

� The coefficients aj are bounded: sup
j2I`

jaj j<C1 for all `D 2; : : : ; k.

We endow Pk with the norm

kPk D

kX
`D2

sup
j2I`

jaj j: (2-14)

The zero momentum assumption in Definition 2.4 is crucial to obtaining the following proposition:

Proposition 2.5. Let k � 2 and � > 0. We have Pk � H�, and for P a homogeneous polynomial of
degree k in Pk , we have the estimates

jP .z/j � kPkkzkk� (2-15)

and
kXP .z/k� � 2kkPkkzkk�1

� for all z 2 L�: (2-16)

Furthermore, for P 2 Pk and Q 2 P`, we have fP;Qg 2 PkC`�2 and the estimate

kfP;Qgk � 2k`kPkkQk: (2-17)

Proof. Let
P .z/D

X
j2Ik

aj zj I

we have

jP .z/j � kPk
X

j2Zk

jzj1
j : : : jzjk

j � kPkkzkk
`1 � kPkkzk

k
� ;

and the first inequality (2-15) is proved.
To prove the second estimate, let ` 2 Z; by using the zero momentum condition, we getˇ̌̌̌

@P

@z`

ˇ̌̌̌
� kkPk

X
j2Zk�1

M.j /D�M.`/

jzj1
: : : zjk�1

j:

Therefore
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kXP .z/k� D
X
`2Z

e�j`j
ˇ̌̌̌
@P

@z`

ˇ̌̌̌
� kkPk

X
`2Z

X
j2Zk�1

M.j /D�M.`/

e�j`jjzj1
: : : zjk�1

j:

But if M.j /D�M.`/, then

e�j`j � exp
�
�.jj1jC � � �C jjk�1j/

�
�

Y
nD1;:::;k�1

e�jjnj:

Hence, after summing in `, we get3

kXP .z/k� � 2kkPk
X

j2Zk�1

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j � 2kkPkkzkk�1
� ;

which yields (2-16).
Assume now that P and Q are homogeneous polynomials of degrees k and ` respectively and with

coefficients ak , k2Ik and b` , ` 2I`. It is clear that fP;Qg is a monomial of degree kC`�2 satisfying
the zero momentum condition. Furthermore, we can write

fP;Qg.z/D
X

j2IkC`�2

cj zj ;

where cj is expressed as a sum of coefficients akb` for which there exists an a 2 Zd and � 2 f˙1g such
that

.a; �/� k 2 Ik and .a;��/� ` 2 I`;

and such that if for instance .a; �/Dk1 and .a;��/D`1, we necessarily have .k2; : : : ; kk ; `2; : : : ; ``/Dj .
Hence, for a given j , the zero momentum condition on k and on ` determines the value of �a, which in
turn determines two possible values of .�; a/.

This proves (2-17) for monomials. The extension to polynomials follows from the definition of the
norm (2-14).

The last assertion and the fact that the Poisson bracket of two real Hamiltonian is real follow immediately
from the definitions. �

2C. Nonlinearity. We assume that the nonlinearity g is analytic in a neighborhood of the origin in C2:
There exist positive constants M and R0 such that the Taylor expansion

g.v1; v2/D
X

k1;k2�0

1

k1!k2!
@k1
@k2

g.0; 0/v
k1

1
v

k2

2

is uniformly convergent and bounded by M on the ball jv1jC jv2j � 2R0. Hence, formula (2-3) defines
an analytic function P on the ball kzk� �R0 in L�, and we have

P .z/D
X
k�0

Pk.z/;

3Note that M.a; ı/DM.�a;�ı/, whence we get the coefficient 2.
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where Pk for all k � 0 is a homogeneous polynomial given by

Pk D

X
k1Ck2Dk

X
.a;b/2.Zd /k1�.Zd /k2

pa;b�a1
: : : �ak1

�b1
: : : �bk2

;

with

pa;b D
1

k1!k2!
@k1
@k2

g.0; 0/

Z
Td

eiM.a;b/�x dx

and M.a;b/ D a1C � � � C ak1
� b1 � � � � � bk2

the moment of �a1
: : : �ak1

�b1
: : : �bk2

. Therefore, it is
clear that Pk satisfies the zero momentum condition, and thus Pk 2 Pk for all k � 0. Furthermore, we
have the estimate kPkk �MR�k

0
for all k � 0.

2D. Nonresonance condition. In order to control the divisors (2-11), we need to impose a nonresonance
condition on the linear frequencies !a, a 2 Zd .

For r � 3 and j D .j1; : : : ; jr /2Zr , we define �.j / as the third largest integer amongst jj1j; : : : ; jjr j.
We recall that the resonant set Nr is the set of multi-indices j 2Zr such that j D i [ Ni for some i 2Zr=2.

Hypothesis 2.6. There exist 
 > 0, � � 1 and c0 > 0 such that for all r � 3 and for all nonresonant
j 2 ZrnNr , we have

j�.j /j �

 cr

0

�.j /�r
: (2-18)

Remark 2.7. Classically, a nonresonance condition reads (see, for instance, [Bambusi and Grébert 2006]):
for all r � 3, there exist 
 .r/ > 0 and �.r/ > 0 such that for all nonresonant j 2 Zr , we have

j�.j /j �

 .r/

�.j /�.r/
:

In Hypothesis 2.6, we make precise the dependence of 
 and � with respect to r . In particular, we impose
that � be linear: �.r/D �r . This is crucial to optimizing the choice of r as a function of " in Section 3B.

Recall that for V D
P

a2Zd waeia�x in the space Wm defined in (1-2), the frequencies are

!a D jaj
2
Cwa D jaj

2
C

Rva

.1Cjaj/m
; a 2 Zd ;

with va 2
�
�

1
2
; 1

2

�
for all a. In the Appendix, we prove:

Proposition 2.8. Fix 
 > 0 small enough and m> d=2. There exist positive constants c0 and � depending
only on m, R and d , and a set F
 �Wm whose measure is larger than 1� 4
 1=7, such that if V 2 F
 ,
then (2-18) holds true for all nonresonant j 2 Zr and for all r � 3.

Thus Hypothesis 2.6 is satisfied for all V 2 V, where

VD
[

>0

F
 (2-19)

is a subset of full measure in Wm.
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2E. Normal forms. We fix an index N � 1. For a fixed integer k � 3, we set

Jk.N /D fj 2 Ik j �.j / >N g:

Definition 2.9. Let N be an integer. We say that a polynomial Z 2 Pk is in N -normal form if it can be
written

Z D

kX
`D3

X
j2N`[J`.N /

aj zj :

In other words, Z contains either monomials depending only on the actions or monomials whose indices
j satisfy �.j / >N , that is, monomials involving at least three modes with index greater than N .

We now motivate the introduction of this definition. First, we recall:

Lemma 2.10. Let f W R ! RC be a continuous function and y W R ! RC a differentiable function
satisfying the inequality

d
dt

y.t/� 2f .t/
p

y.t/ for all t 2 R:

Then we have the estimate p
y.t/�

p
y.0/C

Z t

0

f .s/ ds for all t 2 R:

Proof. Let � > 0 and define y� D yC �, a nonnegative function whose square root is differentiable. We
have

d
dt

p
y�.t/� 2f .t/

p
y.t/p
y�.t/

� 2f .t/;

and thus p
y".t/�

p
y�.0/C

Z t

0

f .s/ ds:

The claim is proved by taking �! 0. �

For a given number N and for z 2 L�, we define

RN
� .z/D

X
jj j>N

e�jj jjzj j:

Notice that if z 2 L�C�, then

RN
� .z/� e��N

kzk�C�: (2-20)

Proposition 2.11. Let N 2 N and k � 3. Suppose that Z is a homogeneous polynomial of degree k in
N -normal form. Let z.t/ be a real solution of the flow generated by the Hamiltonian H0CZ. Then we
have

RN
� .z.t//� RN

� .z.0//C 4k3
kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds (2-21)

and

kz.t/k� � kz.0/k�C 4k3
kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds: (2-22)
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Proof. Fix a2Zd and let Ia.t/D �a.t/�a.t/ be the actions associated with the solution of the Hamiltonian
system generated by H0 C Z. Let us recall that as z.t/ D .�.t/; �.t// is a real solution, we have
�a.t/D N�a.t/ for all times where the solution is defined. Using (2-17) and H0 DH0.I/, we have

je2�jaj PIaj D je
2�jaj
fIa;Zgj � 2kkZk

ˇ̌
e�jaj

p
Ia

ˇ̌� X
M.j /D˙a

2 indices>N

e�jajjzj1
: : : zjk�1

j

�
:

Then using Lemma 2.10, we get

e�jaj
p

Ia.t/� e�jaj
p

Ia.0/C 2kkZk

Z t

0

� X
M.j /D˙a

2 indices>N

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j

�
ds: (2-23)

Ordering the multi-indices such that jj1j and jj2j are the largest, and using the fact that z.t/ is real (and
thus jzj j D

p
Ia for j D .a;˙1/ 2 Z), we obtain, after summation in jaj>N ,

RN
� .z.t//� RN

� .z.0//C 4k3
kZk

Z t

0

� X
jj1j;jj2j�N

j3;:::;jk�12Z

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j

�
ds

� RN
� .z.0//C 4k3

kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds:

Inequality (2-22) is proved in the same way. �

Remark 2.12. These estimates will be central to the final bootstrap argument. Actually, as a consequence
of Proposition 2.11, we have: if z.t/ is the solution of a Hamiltonian system in N -normal form with
an initial datum z0 satisfying kz0k2� D ", then, as RN

� .z0/ D O."e��N /, Equations (2-21) and (2-22)
guarantee that RN

� .z.t// remains of order O."e��N / and the norm of z.t/ remains of order " over
exponentially long time t D O.e�N /.

The next result is an easy consequence of the nonresonance condition and of the definition of normal
forms:

Proposition 2.13. Assume that the nonresonance condition (2-18) is satisfied and let N be fixed. Let Q

be a homogenous polynomial of degree k. Then the homological equation

f�;H0g�Z DQ (2-24)

admits a polynomial solution .�;Z/ homogeneous of degree k, such that Z is in N -normal form, and
such that

kZk � kQk and k�k �
N �k


 ck
0

kQk: (2-25)

Proof. Assume that Q D
P

j2Ik
Qj zj and seek Z D

P
j2Ik

Zj zj and � D
P

j2Ik
�j zj such that

(2-24) is satisfied. Equation (2-24) can be written in terms of polynomial coefficients

i�.j /�j �Zj DQj ; j 2 Ik ;
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where �.j / is given in (2-11). We then define

Zj DQj ; �j D 0 if j 2 Nk or �.j / >N;

Zj D 0; �j D
Qj

i�.j /
if j 62 Nk and �.j /�N:

In view of (2-18), this leads to (2-25). �

3. Proof of the main theorem

3A. Recursive equation. We aim to construct a canonical transformation � such that in the new variables,
the Hamiltonian H0CP is in normal form modulo a small remainder term. Using Lie transforms to
generate � , the problem can be written thus: Find a polynomial � D

Pr
kD3 �k , a polynomial Z DPr

kD3 Zk in normal form, and a smooth Hamiltonian R satisfying @˛R.0/ D 0 for all ˛ 2 NZ with
j˛j � r , such that

.H0CP / ıˆ1
� DH0CZCR: (3-1)

Then the exponential estimate (1-3) will be obtained by optimizing the choice of r and N .
We recall that for � and K two Hamiltonian functions, for all k � 0 we have

dk

dtk
.K ıˆt

�/D
˚
�; f� � � f�;Kg � g

	
.ˆt
�/D .adk

�K/.ˆt
�/;

where ad�K D f�;Kg. Also, if K, L are homogeneous polynomials of degrees k and `, then fK;Lg is
a homogeneous polynomial of degree kC `� 2. Therefore, by using Taylor’s formula, we obtain

.H0CP / ıˆ1
� � .H0CP /D

r�3X
kD0

1

.kC 1/!
adk
�.f�;H0CPg/COr ; (3-2)

where Or stands for a smooth function R satisfying @˛R.0/D 0 for all ˛ 2 NZ with j˛j � r .
On the other hand, we know that for � 2 C, the following relation holds:�r�3X

kD0

Bk

k!
�k

��r�3X
kD0

1

.kC 1/!
�k

�
D 1CO.j�jr�2/;

where Bk are the Bernoulli numbers defined by the expansion of the generating function z

ez�1
. Therefore,

defining the two differential operators

Ar D

r�3X
kD0

1

.kC 1/!
adk
� and Br D

r�3X
kD0

Bk

k!
adk
�;

we get
Br Ar D IdCCr ;

where Cr is a differential operator satisfying

Cr O3 D Or :
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Applying Br to the two sides of (3-2), we obtain

f�;H0CPg D Br .Z �P /COr :

Plugging the decompositions in homogeneous polynomials of �, Z and P into this equation and equating
the terms of same degree, we obtain after a straightforward calculation the recursive equations

f�m;H0g�Zm DQm; mD 3; : : : ; r; (3-3)

where

Qm D�PmC

m�1X
kD3

fPmC2�k ; �kgC

m�3X
kD1

Bk

k!

X
`1C���C`kC1DmC2k

3�`i�m�k

ad�`1
: : : ad�`k

.Z`kC1
�P`kC1

/: (3-4)

In the last sum, `i �m� k as a consequence of 3� `i and `1C � � �C `kC1 DmC 2k.
Once these recursive equations are solved, we define the remainder term as RD .H0CP /ıˆ1

��H0�Z.
By construction, R is analytic on a neighborhood of the origin in L� and RD Or . As a consequence, by
Taylor’s formula,

RD
X

m�rC1

m�3X
kD1

1

k!

X
`1C���C`kDmC2k

3�`i�r

ad�`1
: : : ad�`k

H0

C

X
m�rC1

m�3X
kD0

1

k!

X
`1C���C`kC1DmC2k

3�`1C���C`k�r
3�`kC1

ad�`1
: : : ad�`k

P`kC1
: (3-5)

Lemma 3.1. Assume that the nonresonance condition (2-18) is fulfilled for some constants 
 , c0, �. Then
there exists C > 0 such that for all r and N , and for mD 3; : : : ; r , there exist homogeneous polynomials
�m and Zm of degree m, with Zm in N -normal forms, which are solutions of the recursive equation (3-3)
and satisfy

k�mkCkZmk � .C mN �/m
2

: (3-6)

Proof. We define �m and Zm by induction using Proposition 2.13. Note that (3-6) is clearly satisfied for
mD 3, provided C is big enough. Estimate (2-25) yields


 cm
0 N��m

k�mkCkZmk � kQmk: (3-7)

Using the definition (3-4) of the term Qm and the estimate on the Bernoulli numbers, jBk j � k!ck

for some c > 0, together with (2-17), which implies that for all ` � 3, kad�`Rk � 2m`kRk for any
polynomial R of degree less than m, we have, for all m� 3,

kQmk � kPmkC 2

m�1X
kD3

k.mC 2� k/kPmC2�kkk�kk

C 2

m�3X
kD1

.C m/k
X

`1C���C`kC1DmC2k
�`i�m�k

`1k�`1
k : : : `kk�`k

kkZ`kC1
�P`kC1

k: (3-8)
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for some constant C . Let us set ˇm Dm.k�mkCkZmk/. Equation (3-7) implies that

ˇm � .CN �/mmkQmk;

for some constant C independent of m.
Using that kPmk�MR�m

0
(see the end of Section 2D), we have that kPmk and mkPmk are uniformly

bounded with respect to m. Hence, the previous inequality implies that

ˇm � ˇ
.1/
m Cˇ

.2/
m ;

where

ˇ.1/m D .CN �/mm

�
1C

m�1X
kD3

ˇk

�
(3-9)

and

ˇ.2/m DN �m.C m/m�2
m�3X
kD1

X
`1C���C`kC1DmC2k

�`i�m�k

ˇ`1
: : : ˇ`k

.ˇ`kC1
C 1/; (3-10)

for some constant C depending on M , R0, 
 and c0. It remains to prove that ˇm � .C mN �/ım
2

by
induction, for some constant ı. Again, this is true for mD 3 by adapting C if necessary. Thus, assume
that ǰ � .CjN �/j

2

, j D 3; : : : ;m� 1. As soon as C > 1,

1� .C mN �/m
2

for all m� 3; (3-11)

so we get

ˇ.1/m � .CN �/mmmC2.C mN �/.m�1/2
�

1
2
.C mN �/m

2

as soon as m� 3 and provided C > 2.
Using (3-11) again and the induction hypothesis, we get

ˇ.2/m �N �m.C m/m�2
m�3X
kD1

X
`1C���C`kC1DmC2k

3�`i�m�k

�
CN �.m� k/

�`2
1
C���C`2

kC1 :

The maximum of `2
1
C � � �C `2

kC1
when `1C � � �C `kC1 DmC 2k and 3� `i �m� k is obtained for

`1 D � � � D `k D 3 and `kC1 Dm� k and its value is .m� k/2C 9k. Furthermore, the cardinality of
f`1C� � �C `kC1 DmC2k; 3� `i �m�kg is smaller than mkC1, and hence we obtain, for m� 4 and
after adapting C if necessary,

ˇ.2/m � max
kD1;:::;m�3

N �m.C m/m�2C mkC2
�
CN �.m� k/

�.m�k/2C9k
�

1
2
.C mN �/m

2

: �

3B. Normal form result. For any R0 > 0, we set B�.R0/D fz 2 L� j kzk� <R0g:
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Theorem 3.2. Assume that P is analytic on a ball B�.R0/ for some R0 > 0 and � > 0. Assume that the
nonresonance condition (2-18) is satisfied, and let ˇ < 1 and M > 1 be fixed. Then there exist constants
"0 > 0 and � > 0 such that for all " < "0, there exist a polynomial �, a polynomial Z in N D jln "j1Cˇ

normal form, and a Hamiltonian R analytic on B�.M "/, such that

.H0CP / ıˆ1
� DH0CZCR: (3-12)

Furthermore, for all z 2 B�.M "/,

kXZ .z/k�CkX�.z/k� � 2"3=2 and kXR.z/k� � "e
� 1

4
jln "j1Cˇ : (3-13)

Proof. Using Lemma 3.1, for all N and r , we can construct polynomial Hamiltonians

�.z/D

rX
kD3

�k.z/ and Z.z/D

rX
kD3

Zk.z/;

with Z in N -normal form, such that (3-12) holds with RD Or . Now for fixed " > 0, we choose

N �N."/D jln "j1Cˇ and r � r."/D jln "jˇ:

This choice is motivated by the necessity of a balance between Z and R in (3-12): The error induced by
Z is controlled as in Remark 2.12, while the error induced by R is controlled by Lemma 3.1. By (3-6),
we have

k�kk � .C kN �/k
2

� exp
�
k.�k.1Cˇ/ ln jln "jC k ln C k/

�
� exp

�
k.�r.1Cˇ/ ln jln "jC r ln C r/

�
� exp

�
k jln "j

�
� jln "jˇ�1.1Cˇ/ ln jln "jC jln "jˇ�1 ln C jln "jˇ

��
� "�k=8; (3-14)

as ˇ < 1, and for "� "0 sufficiently small. Therefore, using Proposition 2.5, for z 2 B�.M "/ we obtain

j�k.z/j � "
�k=8.M "/k �M k"7k=8;

and thus
j�.z/j �

X
k�3

M k"7k=8
� "3=2;

for " small enough. Similarly, for all k � r , we have

kX�k
.z/k� � 2k"�k=8.M "/k�1

� 2kM k�1"7k=8�1

and
kX�.z/k� �

X
k�3

2kM k�1"7k=8�1
� C "�1"21=8

� "3=2;

for " small enough. Similar bounds clearly hold for Z D
Pr

kD3 Zk , which shows the first estimate in
(3-13).

On the other hand, using ad�`k
H0 DZ`k

CQ`k
(see (3-3)) and then using Lemma 3.1 and the

definition of Qm (see (3-4)), we get kad�`k
H0k � .C kN �/`k

2

� "�`k=8, where the last inequality
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proceeds as in (3-14). Thus, using (3-5), (3-14) and kP`kC1
k �MR

�`kC1

0
, we obtain by Proposition 2.5

that for z 2 B�.M "/,

kXR.z/k� �
X

m�rC1

m�3X
kD0

m.C r/3m"�
mC2k

8 "m�1
�

X
m�rC1

m2.C r/3m"m=2
� .C r/3r"r=2:

Therefore, since r D jln "jˇ , we get kXR.z/k� � " e�
1
4
jln "j1Cˇ for z 2 B�.M "/ and " small enough. �

3C. Bootstrap argument. We are now in position to prove the main theorem of Section 1. It is a direct
consequence of Theorem 3.2.

Let u0 2A2� with ju0j2�D ", and denote by z.0/ the corresponding sequence of its Fourier coefficients
which belongs, by Lemma 2.1, to L.3=2/� with kz.0/k.3=2/� � .c�=4/" and

c� D
2dC2

.1� e��=2
p

d /d
:

Let z.t/ be the local solution in L� of the Hamiltonian system associated with H DH0CP .
Let �, Z and R be given by Theorem 3.2 with M D c� and let y.t/Dˆ1

�.z.t//. We recall that since
�.z/DO.kzk3/, the transformation ˆ1

� is close to the identity: ˆ1
�.z/D zCO.kzk2/, and thus, for "

small enough, we have ky.0/k.3=2/� � .c�=2/". In particular, as given in (2-20),

RN
� .y.0//�

c�

2
" e�.�=2/N �

c�

2
" e��N ;

where � D �� � �=2.
Let T" be the largest time T such that RN

� .y.t//� c�" e��N and ky.t/k� � c�" for all jt j � T . By
construction, we have

y.t/D y.0/C

Z t

0

XH0CZ .y.s// dsC

Z t

0

XR.y.s// ds:

So using (2-21) for the first vector field and (3-13) for the second one, we get, for jt j< T",

RN
� .y.t//�

1
2
c�"e

��N
C 4jt j

rX
kD3

kZkkk
3.c�"/

k�1e�2�N
Cjt j"e�

1
4
jln "j1Cˇ

�

�
1
2
C 4jt j

rX
kD3

kZkkk
3.c�"/

k�2e��N
Cjt j"e�

1
8
jln "j1Cˇ

�
c�"e

��N ; (3-15)

where in the last inequality we used � Dmin
˚

1
10
; 1

2
�
	

and N D jln "j1Cˇ.
Using Lemma 3.1, we then verify that

RN
� .y.t//�

�
1
2
CC jt j" e��N

�
c�"e

��N ;

and thus, for " small enough,

RN
� .y.t//� c�" e��N for all jt j �minfT"; e�N

g: (3-16)
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Similarly, we obtain
ky.t/k� � c�" for all jt j �minfT"; e�N

g: (3-17)

In view of the definition of T", inequalities (3-16) and (3-17) imply T"�e�N . In particular, kz.t/k��2c�"

for jt j � e�N D "�� jln "j
ˇ

, and using (2-7), we finally obtain (1-3) with

C D
22dC5

.1� e��=2
p

d /2d
:

Estimate (1-4) is another consequence of the normal form result and Proposition 2.11. Actually, we
use that the Fourier coefficients of u.t/ are given by z.t/, which is "2-close to y.t/, which in turn is
almost invariant: in view of (2-23) and as in (3-15), we haveX

j2Z

e�jj j
ˇ̌
jyj .t/j � jyj .0/j

ˇ̌
�

�
4jt j

rX
kD3

kZkkk
3.c�"/

k�1e�2�N
Cjt j"e�

1
4
jln "j1Cˇ

�
;

from which we deduce X
j2Z

e�jj j
ˇ̌
jyj .t/j � jyj .0/j

ˇ̌
� jt je��N ;

and then (1-4).

Appendix: Proof of the nonresonance hypothesis

Instead of proving Proposition 2.8, we prove a slightly more general result. For a multi-index j 2 Zr , we
define

N.j /D

rY
kD1

.1Cjjk j/:

Proposition A.1. Fix 
 > 0 small enough and m>d=2. There exist positive constants C and � depending
only on m, R and d , and a set F
 �Wm (see (1-2)) whose measure is larger than 1� 4
 , such that if
V 2 F
 , then for any r � 1, ˇ̌

�.j /C "1!`1
C "2!`2

ˇ̌
�

C r
 7

N.j /�
(A-1)

for any j 2 Zr , any indices `1; `2 2 Zd , and any "1; "2 2 f0; 1;�1g such that .j ; .`1; "1/; .`2; "2// is
nonresonant4.

In order to prove Proposition A.1, we first prove that �.j / cannot accumulate on Z. Precisely, we
have:

Lemma A.2. Fix 
 > 0 and m> d=2. There exist 0< C < 1 depending only on m, R and d , and a set
F 0
 �Wm whose measure is larger than 1� 4
 , such that if V 2 F 0
 , then for any r � 1,

j�.j /� bj �
C r


N.j /mCdC3
(A-2)

4The resonant set Nr , r � 2, is defined in Section 2D.
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for any nonresonant j 2 Zr and for any b 2 Z.

Proof. Let .˛1; : : : ; ˛r /¤ 0 in Zr , M > 0 and c 2 R. The set

E.�/D

�
x 2

�
�

1
2
; 1

2

�r ˇ̌̌ ˇ̌̌̌ rX
iD1

˛ixi C c

ˇ̌̌̌
< �

�
is a slice of thickness 2� of the hypercube Œ�M;M �r guided by the hyperplane

˚Pr
iD1 ˛ixi C c D 0

	
,

whose normal ˛ has a norm larger than 1. Since the largest diagonal in the hypercube
�
�

1
2
; 1

2

�r has a
length equal to

p
r , we get that the base of the slice E.�/ is included in a hyperdisc of dimension r � 1

and radius 1
2

p
r . Recall that the volume of a ball in Rm of radius � equals �m=2�m=�.m=2C1/. So we

deduce that the volume of E.�/ is smaller than5

2��.r�1/=2

�
1

2

p
r

�r�1

�

�
r�1

2
C 1

� � 2�

�
1

2

p
�r

�r�1

�
r�1

2

�
!

� C r�

for a constant C independent of r . Hence, given j D .ai ; ıi/
r
iD1
2 Zr and b 2 Z, the Lebesgue measure

of

X� WD

�
x 2

�
�

1
2
; 1

2

�r ˇ̌̌ ˇ̌̌̌ rX
iD1

ıi.jai j
2
Cxi/� b

ˇ̌̌̌
< �

�
is smaller than 2�r

r�1
2 . Now consider the set (using the notation (1-2))

˚
V 2Wm

ˇ̌
j�.j /� bj< �

	
D

�
V 2Wm

ˇ̌̌ ˇ̌̌̌ rX
iD1

ıi

�
jai j

2
C

vai
R

.1Cjai j/m

�
� b

ˇ̌̌̌
< �

�
: (A-3)

It is contained in the set of the V ’s such that .Rvai
=.1Cjai j/

m/r
iD1
2 X�. Hence the measure of (A-3)

is smaller than R�r N.j /mC r�. To conclude the proof, we have to sum over all the possible j ’s and all
the possible b’s. Now for a given j , if j�.j /� bj � � with �� 1, then jbj � 2N.j /2. So to guarantee
(A-2) for all possible choices of j , b and r , it suffices to remove from Wm a set of measure

4

X

j2Zr

C r

Rr N.j /mC3Cd
N.j /mC2

� 4


�
2C

R

X
`2Zd

1

.1Cj`j/dC1

�r

:

Choosing C �
1

2
R

�P
`2Zd

1

.1Cj`j/dC1

��1

proves the result. �

Proof of Proposition A.1. First of all, for "1 D "2 D 0, (A-1) is a direct consequence of Lemma A.2,
choosing � �mC d C 3, 
 � 1 and F
 D F 0
 (recall that r � 1).

When "1 D˙1 and "2 D 0, we will prove that for some constants C and �, we haveˇ̌
�.j /˙!`1

ˇ̌
�

C r


N.j /�
; (A-4)

5We use the formula of the gamma function valid for even integers, but the asymptotic is the same in the odd case.
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which implies inequality (A-1) for 
 � 1. Notice that j�.j /j �N.j /2 and thus, if j`1j � 2N.j /, (A-4)
is always true. When j`1j � 2N.j /, using that N.j ; `/D N.j /.1C j`1j/, applying Lemma A.2 with
b D 0 and V 2 F 0
 D F
 , we get

ˇ̌
�.j /C "1!`1

ˇ̌
D
ˇ̌
�.j ; .`1; "1//

ˇ̌
�

C rC1


N.j /mCdC3.3N.j //mCdC3
�

QC r


N.j /�
;

with � D 2.mC d C 3/ and QC D 2C 2=3mCdC3.
When "1"2 D 1, a similar argument yields an estimate of the formˇ̌

�.j /˙ .!`1
C!`2

/
ˇ̌
�

C r


N.j /�
;

for some constants C , �, and for V 2 F 0
 D F
 .
So it remains to establish an estimate of the formˇ̌

�.j /C!`1
�!`2

ˇ̌
�

QC r
 7

N.j /�
; (A-5)

for some constant QC and V 2 F
 to be defined. Assuming j`1j � j`2j, we have

ˇ̌
!`1
�!`2

� `2
1C `

2
2

ˇ̌
�

ˇ̌̌̌
Rjv`1

j

.1Cj`1j/m
�

Rjv`2
j

.1Cj`2j/m

ˇ̌̌̌
�

R

.1Cj`1j/m
;

for all v`1
and v`2

in
�
�

1
2
; 1

2

�
; see (1-2). Therefore, if .1Cj`1j/

m � .2R=C r
 /N.j /mCdC3, we obtain
(A-5) directly from Lemma A.2 applied with b D `2

1
� `2

2
and choosing � DmC d C 3, QC D C=2 and

F
 D F 0
 .
Finally, assume .1C j`1j/

m � .2R=C r
 /N.j /mCdC3. Then taking into account j�.j /j � N.j /2,
inequality (A-5) is satisfied when `2

2
� `2

1
� 2N.j /2. It remains to consider the case when

1Cj`1j � 1Cj`2j �

�
2

�
2R

C r

N.j /mCdC3

�2=m

C 4N.j /2
�1=2

� 2

�
3R

C r


�1=m

N.j /
mCdC3

m :

Again we use Lemma A.2 to conclude that

ˇ̌
�.j /C!`1

�!`2

ˇ̌
�

C rC2
�
N.j /.1Cj`1j/.1Cj`2j/

�mCdC3

�

C rC2


�
C r


3:2mR

�mCdC3
m

N.j /mCdC3N.j /2
.mCdC3/2

m

�

QC r
 4C3=m

N.j /�
;

as m>
d

2
, and with �DmCdC3C

.mC d C 3/2

m
and QC D

C
4mCdC3

m

3:2mR
. This last estimate implies (A-1).

�
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Lq BOUNDS ON RESTRICTIONS OF SPECTRAL CLUSTERS TO
SUBMANIFOLDS FOR LOW REGULARITY METRICS

MATTHEW D. BLAIR

We prove Lq bounds on the restriction of spectral clusters to submanifolds in Riemannian manifolds
equipped with metrics of C 1;˛ regularity for 0� ˛ � 1. Our results allow for Lipschitz regularity when
˛ D 0, meaning they give estimates on manifolds with boundary. When 0 < ˛ � 1, the scalar second
fundamental form for a codimension 1 submanifold can be defined, and we show improved estimates when
this form is negative definite. This extends results of Burq, Gérard, and Tzvetkov and Hu to manifolds
with low regularity metrics.

1. Introduction

Let M be a compact, smooth manifold of dimension n� 2 equipped with Riemannian metric g of at least
Lipschitz regularity. Let �g denote the associated (negative) Laplace–Beltrami operator whose action in
coordinates is given by the differential operator

�gf D
1p

det gkl

X
i;j

@i.gij
p

det gkl @jf /:

There exists an orthonormal basis f�j g
1
jD1

of L2.M / consisting of eigenfunctions of �g, which can be
seen by passing to quadratic forms; see, for example, [Smith 2006a, Section 1]. We write the corresponding
Helmholtz equation for �j as .�gC �

2
j /�j D 0 so that �j gives the frequency of vibration associated

to �j .
Given ��1, we let…� be the projection operator on L2.M / defined by…�f WD

P
�j2Œ�;�C1�hf; �j i�j;

where h � ; � i denotes the usual L2 inner product with respect to the Riemannian measure. We call functions
f which are in the range of some …� “spectral clusters”. They form approximate eigenfunctions or
quasimodes as k.�gC �

2/…�f kL2.M / � C�kf kL2.M /. Sogge [1988] proved that when g is a C1

metric, the following Lq bounds on the projections …�f are satisfied for q � 2:

k…�f kLq.M / � C�ıkf kL2.M /; (1-1)

where

ı D ı.q/Dmax
�

n�1

2

�
1

2
�

1

q

�
; n
�

1

2
�

1

q

�
�

1

2

�
:
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He also provided examples showing that the exponent ı.q/ is the best possible for these approximate
eigenfunctions. Since …� is a projection operator, any Lq bound it satisfies implies Lq bounds on
individual eigenfunctions. Determining when these bounds are sharp for subsequences of eigenfunctions
is an area of active interest, though we do not examine this issue here.

H. Smith [2006b] proved that the bounds (1-1) are satisfied for C 1;1 metrics. The assumption of C 1;1

regularity is the lowest degree of continuity needed to ensure the uniqueness of geodesics on M . Since
eigenfunctions naturally give rise to solutions to the wave equation, propagation of singularities suggests
that this is a relevant consideration for the validity of such bounds. Indeed, [Smith and Sogge 1994;
Smith and Tataru 2002] give examples of C 1;˛ metrics (Lipschitz when ˛D 0) which give rise to spectral
clusters …�f� D f� for each �� 1 such that

kf�kLq.M /

kf�kL2.M /

� c�
n�1

2
. 1

2
� 1

q
/.1C�/; � D

1�˛

3C˛
; (1-2)

showing that the bounds (1-1) cannot hold for 2 < q < 2.nC 2.1C ˛/�1/=.n� 1/. In each case, the
cluster f� is highly concentrated in a tube about a curve segment of length 1 and diameter ��2=.3C˛/

(cf. (1-10) below). This shows that the family ff�g��1 exhibits a greater degree of concentration than
Sogge’s examples which saturate the bounds (1-1) when 2< q � n�1

2

�
1
2
�

1
q

�
(they are concentrated in

tubes with diameter ��1=2). Smith [2006a] showed positive results for any C 1;˛ metric, proving that the
ratio on the left in (1-2) is always bounded above by C�

n�1
2
. 1

2
� 1

q
/.1C�/ when 2� q � 2.nC 1/=.n� 1/.

He also proved that the bound (1-1) holds when q D1. By interpolation, this shows (1-1) with a loss of
�=q derivatives when 2.nC 1/=.n� 1/ � q �1, though Koch, Smith, and Tataru [Koch et al. 2012]
improved upon this.

In a similar vein, when g 2 C1, results of Burq, Gérard, and Tzvetkov [Burq et al. 2007], Hu
[2009], and Reznikov [2004] show Lq bounds on the restriction of these spectral clusters to embedded
submanifolds P �M of the form

k…�f kLq.P/ � C�ıkf kL2.M /; q � 2; (1-3)

where k…�f kLq.P/ is taken to mean the Lq norm of the restriction …�f jP . In this case, ı D ı.k; q/
depends on the dimension of the submanifold k and on q. In particular, when k D n� 1,

ı Dmax
�

n�1

2
�

n�1

q
;
n�1

4
�

n�2

2q

�
;

that is,

ı.n� 1; q/D

8̂<̂
:

n�1

2
�

n�1

q
; if 2n

n�1
� q �1;

n�1

4
�

n�2

2q
; if 2� q �

2n

n�1
:

(1-4)

Otherwise, when 1� k � n� 2,

ı.k; q/D
n�1

2
�

k

q
(1-5)
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with the exception of .k; q/D .n� 2; 2/, where there is a logarithmic loss for � � 2, k…�f kL2.P/ �

C.log�/1=2�1=2kf kL2.M /. These bounds were proved in a semiclassical setting by Tacy [2010]. We
also remark that the bound (1-3) in the case k D n� 1, q D 2 was previously observed by Tataru [1998]
as a consequence of the estimates in [Greenleaf and Seeger 1994]. As will be discussed in Section 2,
these bounds provide an improvement over what would be obtained by trace theorems for Sobolev spaces.

One reason the bounds (1-1), (1-3) are of such great interest is that they illuminate the size and
concentration properties of eigenfunctions. In particular, Smith’s work on C 1;˛ metrics [2006a] is
significant in that it addresses concentration phenomena in situations where the roughness of the metric
means that geodesic curves may fail to be unique. It also led to the development of sharp bounds of the
form (1-1) for the Dirichlet and Neumann Laplacians on compact Riemannian manifolds with boundary;
see [Smith and Sogge 2007]. Indeed, one strategy for proving estimates in this context is to form the
double of the manifold, essentially gluing two copies of the manifold along the boundary. While this
eliminates the boundary, it gives rise to a metric of Lipschitz regularity; see, for example, [Blair et al.
2008, p. 420]. Hence any result on manifolds with Lipschitz metrics also applies to manifolds with
boundary. At the same time, the bounds (1-3) when nD 2, k D 1 (curves in 2 dimensional manifolds) for
g 2 C1 have garnered additional interest in recent works which relate improvements in these estimates
to improvements in the inequalities in (1-1); see [Bourgain 2009; Sogge 2011; Ariturk 2011].

On the other hand, one of the notable aspects of [Burq et al. 2007] is that the authors showed an
improvement on (1-3) when nD 2 and P is a curve with nonvanishing geodesic curvature. Specifically,
they proved that

k…�f kL2.P/ � C�1=6
kf kL2.M /: (1-6)

This was then generalized to all dimensions by Hu [2009], who obtained the same bound for any
codimension 1 submanifold with negative definite scalar second fundamental form (or positive definite,
depending on the choice of normal vector). As before, these bounds also follow from an observation
of Tataru [1998] based on known estimates of Hörmander [1985, 25.3]. The bound (1-6) can then be
interpolated with (1-3) when q D 2n

n�1
and ı D n�1

2n
to show that the ı in (1-4) can be improved to

ı D
n� 1

3
�

2n� 3

3q
when 2� q <

2n

n� 1
:

These bounds thus speak to the concentration properties of eigenfunctions. When P is in some sense
“far away” from containing geodesic segments, eigenfunctions have less tendency to concentrate near P .
Hassell and Tacy [2012] proved bounds of this type in a semiclassical setting.

In the present work, we consider the development of the bounds (1-3) for C 1;˛ metrics with 0� ˛ � 1,
allowing for Lipschitz regularity when ˛ D 0. As a corollary, we obtain bounds of this type (with a loss)
for the Dirichlet and Neumann Laplacians on compact manifolds with boundary. Bounds of the form
(1-3) when n D 2, k D 1 for manifolds with concave boundaries are due to Ariturk [2011], provided
Dirichlet conditions are imposed. However, the presence of gliding rays when the manifold possesses a
point of convexity within the boundary complicates matters considerably.
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Theorem 1.1. Suppose g 2 C 1;˛ with 0 � ˛ � 1, allowing for Lipschitz regularity when ˛ D 0. When
k D n� 1 and 2� q � 2n=.n� 1/, we have, for ı D .n� 1/=4� .n� 2/=.2q/,

k…�f kLq.P/ � C�ı.1C�/kf kL2.M /; � D
1�˛

3C˛
: (1-7)

Moreover, when k D n� 1, 2n=.n� 1/� q �1 or k � n� 2, we suppose that ı D .n� 1/=2�k=q and
ıC �=q < 1C˛ with � as above. In this case, the following bounds are satisfied:

k…�f kLq.P/ � C�ıC�=qkf kL2.M / (1-8)

with C replaced by C.log�/1=2 when .k; q/ D .n� 2; 2/. The admissibility condition on ı, q can be
relaxed to ıC �=q � 1C˛ when ˛ D 0 or ˛ D 1.

Furthermore, we will show improvements akin to (1-6) when 0<˛�1. For these metrics the Christoffel
symbols are well defined and continuous on M by the usual coordinate formula

�k
ij D

1
2

gkl.@igjl C @j gil � @lgij /

(with the summation convention in effect). Hence there is also a well defined Levi-Civita connection
associated to the metric g on M , mapping C 1 vector fields to continuous vector fields with the usual
properties. In particular, given a smooth, embedded, codimension 1 submanifold of P , the scalar second
fundamental form is well-defined and if it is negative definite throughout P for a suitable choice of normal
vector field, we shall call it “curved”. We will see that in this case, the power of � in (1-7) with q D 2 can
be improved to 1=6C �=2 (which can be seen as strictly less than .1=4/.1C �/ when � < 1

3
).

Theorem 1.2. Suppose g 2 C 1;˛ with 0< ˛ � 1, and that P is a “curved” codimension 1 submanifold
as defined above. Then the following bounds are satisfied:

k…�f kL2.P/ � C�
1
6
C�

2 kf kL2.M /; � D
1�˛

3C˛
: (1-9)

Moreover, interpolating this bound with the q D 2n=.n� 1/ case of (1-7) yields an improvement of that
estimate for 2� q < 2n=.n� 1/.

Following [Smith 2006a], we will show that, for each theorem, the 0� ˛ < 1 case follows from the
˛ D 1 case by rescaling methods. This involves dilating coordinates so that sets of diameter � ��� in
P have diameter � 1 in the new coordinates. Since the metric can be approximated by one with C 1;1

regularity here, the bounds from the ˛ D 1 case can then be applied. In the original coordinates, this
then implies that the estimates (1-7), (1-8), (1-9) hold with � D 0 over sets of diameter � ��� . By
incorporating the flux estimates from [Smith 2006a], it can then be seen that Theorems 1.1 and 1.2 follow
by taking a sum over all such sets.

The bounds (1-1) for C 1;1 metrics in [Smith 2006b] (and those for manifolds with boundary in [Smith
and Sogge 2007]) were proved by wave equation methods. Specifically, square function estimates are
developed for solutions to the wave equation on these manifolds, bounding the Lq.M / norm of the square
function

x 7!

�Z 1

0

ju.t;x/j2 dt

�1=2

; where .@2
t ��g/uD 0:
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As will be seen below, the spectral clusters above naturally give rise to solutions to the wave equation, and
these estimates imply bounds on the …�f . Square function estimates were first proved in [Mockenhaupt
et al. 1993] for smooth metrics, using that Fourier integral operators can be used to invert the equation.
However, when g 2 C 1;1, the roughness of the metric means that these methods are inapplicable, so
a crucial development [Smith 2006b] was the construction of a suitable parametrix using wave packet
methods. The resulting approximate solution operators can be thought of as generalized Fourier integral
operators where the associated canonical relation satisfies the curvature condition in [Mockenhaupt et al.
1993].

We follow the same strategy here, essentially proving bounds on the Lq.P / norm of the square
function above. Once again, the roughness of the metric means that we are led to use wave packet
methods to construct a parametrix. In this case, the canonical relations which arise naturally have folding
singularities. In Theorem 1.1, the relation has a one-sided fold and in Theorem 1.2 the relation essentially
has a two-sided fold. There is a significant body of work on L2 ! Lq bounds for Fourier integral
operators with folding singularities; see [Greenleaf and Seeger 1994; Hörmander 1985; Melrose and
Taylor 1985; Pan and Sogge 1990; Cuccagna 1997] (the first of which treats one-sided folds). A key
technical development in the present work is that the operators arising from the wave packet transform
satisfy the desired square function estimates in spite of the inapplicability of these results for Fourier
integral operators. Nonetheless, the approach taken here is in part inspired by these works.

Notation. We use C ˛ to denote the Hölder class of order ˛. Moreover, C 1;˛ will denote the class
of metrics or functions whose first derivative is in C ˛, taking the contrived convention that Lipschitz
regularity is allowable when ˛ D 0. In what follows, X . Y will denote that X � C Y for some implicit
constant C which is in some sense uniform, though when used in decay estimates, it may depend on
the order N . Similarly, X � Y will denote that X . Y and Y .X . We use d as the differential which
carries scalar functions to covector fields and vectors into matrices in the natural way. Given a metric g
under discussion, we let h � ; � ig, j � jg denote the inner product and length induced by the metric either in
the tangent or cotangent space. Lastly, given a vector x 2 Rn, x0 and x00 will typically denote a vector in
Rl , l < n, formed by taking a subcollection of the components of x. The nature of this subcollection may
vary depending on the section.

Remark on admissibility conditions. The admissibility condition ıC�=q< 1C˛ (with equality allowed
when ˛ D 0; 1) arises in Section 2, where elliptic regularity is used to show that when a cluster …�f is
considered in a coordinate system, the high frequency components (with respect to the Fourier transform)
satisfy better bounds than those near frequency �. However, it can be checked that the condition ı < 1

2
is

always satisfied when k D n� 1 and 2 � q � 2n=.n� 1/ and that ı < 5=6 holds for sufficiently small
q > 2 when k D 2, ensuring that, in many relevant cases, the admissibility condition is satisfied. On the
other hand, Smith [2006a, p. 969] showed that the bound k…�f kL1.M / . �.n�1/=2kf kL2.M / holds
whenever g is Lipschitz. The key observation here is that one can write …�f D exp.���2�g/…� Qf

with k…� Qf kL2.M / � k…�f kL2.M /. The L1.M / bounds then follow by combining Saloff-Coste’s
Gaussian upper bounds [1992] on the heat kernel with Smith’s L2.nC1/=.n�1/.M / bounds on …�f .
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However, the same argument gives the continuity of each …�f 2L2.M / since the fixed time heat kernel
is continuous on M �M (as observed in [Saloff-Coste 1992, Section 6]). Thus Smith’s L1 bounds
on spectral clusters imply L1 bounds on their restrictions and this can be interpolated with the Lq.P /

bounds for submanifolds of low codimension to see that, in many cases, the admissibility conditions can
be relaxed. This also ensures that the restrictions are well-defined.

Remark on the optimality of (1-7). As noted above in (1-2), the examples in [Smith and Sogge 1994;
Smith and Tataru 2002] show that the bounds from [Smith 2006a] establishing Lq.M / bounds are sharp
for small values of q > 2. We comment here that the same examples show that the bounds (1-7) in
Theorem 1.1 are sharp as well. Indeed, the examples in [Smith and Sogge 1994] produce metrics of C 1;˛

regularity and associated spectral clusters f� which are concentrated in a tube of length 1 and diameter
��2=.3C˛/, that is, a set of the form

jx1j. 1; j.x2; : : : ;xn/j. ��2=.3C˛/: (1-10)

Therefore if we take P to be defined by xn D 0, we see that the rapid decay outside of this set implies

kf�kLq.P/

kf�kL2.M /

� �
2

3C˛
.n�1

2
�n�2

q
/:

However, 1
2
.� C 1/D 2=.3C˛/, showing that the exponent simplifies to ı.1C �/ and hence the bound

(1-7) is optimal.

2. Microlocal reductions

In this section, we will reduce the main theorems to proving square function estimates for frequency
localized solutions to a hyperbolic pseudodifferential equation. We follow an approach due to Smith
[2006a]; see also [Blair et al. 2008]. The needed reductions are fairly common to both theorems, so
we begin by treating all cases at the same time. It is thus convenient to take the convention that ı.�/ is
defined by taking the power of � appearing in (1-7), (1-8), or (1-9), realizing that in all cases ı.0/ denotes
the power without loss of derivatives. Moreover, the admissibility conditions mean that if � > 0 and
0< ˛ < 1, ı.�/� 1< ˛ (respectively ı.�/� 1� ˛ when ˛ D 0; 1).

Throughout these preliminary reductions, we will make use of the fact that when k < n, we have the
following embedding for traces in Rk � f0g, f0g 2 Rn�k :

H n=2�k=q.Rn/ ,!Lq.Rk
� f0g/; (2-1)

which can be seen by first applying Sobolev embedding on Rk �f0g, and then using the trace theorem for
L2 based Sobolev spaces. The estimates in Theorems 1.1 and 1.2 thus exhibit a gain relative to Sobolev
embedding. The gain is largest when qD 2: a quarter or a third of a derivative when k D n�1, depending
on whether the submanifold is curved, and half a derivative (up to a possible logarithmic correction) when
k � n� 2.

It suffices to prove the main theorem for a spectral cluster f satisfying f D …�f . We begin by
observing that f satisfies the following bounds in Sobolev spaces defined by the spectral resolution of �g
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k.�gC�
2/f kH s.M /Ckdf kH s.M / . �sC1

kf kL2.M /:

It thus suffices to prove bounds on f of the form

kf kLq.P/ .
X

i

�ı.�/�1�si .�kf kH si .M /Ckdf kH si .M /Ck.�gC�
2/f kH si .M // (2-2)

where a sum is taken over a finite collection of 0� si � 1.
Multiplication by any smooth bump function  preserves H 1.M /, and, by interpolation, H s.M / for

any s 2 Œ0; 1�. Therefore, by taking a partition of unity on M , it suffices to prove (2-2) with f replaced
by  f , where  is supported in a suitable coordinate chart which intersects P . Specifically, we will take
slice coordinates so that P is identified with Rk �f0g. Furthermore, by taking a sufficiently fine partition
of unity and dilating coordinates, we may assume that for some c0 sufficiently small,

kgij
� ıijkC 1;˛.Rn/ � c0: (2-3)

By elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 8.10, Theorem 9.11])
and interpolation, we have, for any g supported in this coordinate chart, kgkH s.M / � kgkH s.Rn/ for
s 2 Œ0; 2�: Next we observe that in coordinates within supp. /, f satisfies an equation of the form

gd2f C�2f D w; gd2f D
X

1�i;j�n

gij@2
ijf (2-4)

where w is a sum consisting of .�g C �
2/f and products of the form a � @jf , with a 2 C ˛ (or L1,

C 0;1 when ˛ D 0; 1 respectively) in turn a product of functions of the form gij ,
p

det gij , or their first
derivatives. Hence multiplication by these functions preserves H s.Rn/ for s D 0 and s 2 Œ0; ˛/ when
˛ > 0 (respectively s 2 Œ0; 1� when ˛ D 1) meaning that that, for any such s,

kwkH s.Rn/ . kf kH s.M /Ckdf kH s.M /Ck.�gC�
2/f kH s.M /:

Furthermore, elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 9.11]) also
gives that

kd2f kL2.Rn/ . k�gf kL2.Rn/Ckdf kL2.Rn/Ckf kL2.Rn/: (2-5)

Moreover, when ı.�/ > 1 (which only occurs when ˛ > 0), we have

kŒgij ; hDiı.�/�1�@2
ijf kL2.Rn/CkŒ@igij ; hDiı.�/�1�@jf kL2.Rn/ . kdf kH ı.�/�1.Rn/; (2-6)

where hDi denotes the Fourier multiplier with symbol .1C j�j2/1=2. This means that we may replace
L2 by H ı.�/�1 in (2-5). Indeed, the bound on the first term in (2-6) follows as a consequence of
the Coifman–Meyer commutator theorem (see, for example, [Taylor 1991, Proposition 3.6B]) and the
second follows since the admissibility condition on ı.�/ implies that multiplication by @igij preserves
H ı.�/�1.Rn/.

With this in mind, we define the following norm when ı.�/� 1:

jjjf jjj WD kf kL2.Rn/C�
�1
kdf kL2.Rn/C�

�2
kd2f kL2.Rn/C�

�1
kwkL2.Rn/:
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When ı.�/ > 1, we define

jjjf jjj WD

2X
jD0

��j
kdjf kL2.Rn/C�

�1
kwkL2.Rn/C�

�.ı.�/�1/

� 2X
jD0

��j
kdjf kH ı.�/�1.Rn/C�

�1
kwkH ı.�/�1.Rn/

�
:

Given the observations above, it now suffices to show that

kf kLq.Rk�f0g/ . �ı.�/jjjf jjj: (2-7)

Without loss of generality, we may assume that f is supported in a cube of sidelength 1 centered at
the origin and that the metric is defined over a cube of sidelength 8 centered at the origin. Hence we may
smoothly extend the metric g so that it is defined over all of Rn and is equal to the flat metric for jxj
sufficiently large without altering the equation for f . Given r > 0, we let Sr D Sr .D/ denote a Fourier
multiplier which applies a smooth cutoff to frequencies j�j � r and define g� D Sc2�g where c > 0 will
be taken to be sufficiently small. Since

kg�� gkL1 . ��1; (2-8)

we may replace g by g� in (2-4) when ı.�/ � 1, as the error can be absorbed into the right-hand side
of (2-7). The same holds when 1 < ı.�/ is admissible, which can be seen by using the similar bound
kg�� gkC˛ . ��1 and the fact that multiplication by a C ˛ function preserves H ı.�/�1.Rn/.

We now write f as f D f<�Cf�Cf>� where f<� D Sc�f and f>� D f �Sc�1�f . Observe that,
when s D 0, 

ŒSc�; g��




H s!H s C



ŒSc�1�; g��




H s!H s . ��1; (2-9)

which follows from simple bounds on the kernel of the commutators. When 1 < ı.�/ is admissible,
the same holds with s D ı.�/� 1. Indeed, �Sc� (and similarly �Sc�1�) defines an operator in S1

1;0
,

hence the symbolic calculus gives Œ�Sc�; g�� 2 C ˛S0
1;0

(in the notation of [Taylor 1991]). The claim then
follows by [Taylor 1991, Proposition 2.1D] or by commuting with derivatives when ˛ D 1. Defining
w<� WD g�d2f<�C�

2f<�, w>� WD g�d2f>�C�
2f>�, we have

kw<�kH s.Rn/Ckw>�kH s.Rn/ . ��1
kd2f kH s.Rn/CkwkH s.Rn/ (2-10)

for s D 0 and for s D ı.�/� 1 when the latter quantity is positive.
To bound f<�, f>�, we use arguments from [Smith 2006a, Corollary 5]. Since kg�d2f<�kL2 .

.c�/2kf<�kL2 , (2-1) and the equation give the stronger estimate

kf<�kLq.Rk�f0g/ . �n=2�k=q
kf<�kL2.Rn/ . �n=2�k=q�2

kw<�kL2.Rn/ . �n=2�k=q�1
jjjf jjj:

For the high frequency term f>�, we use that, when s � 0,

�2
kf>�kH s.Rn/C�kdf>�kH s.Rn/ . ckd2f>�kH s.Rn/:

This bound with s D 0 can be combined with elliptic regularity to obtain

kd2f>�kL2.Rn/ . kw>�kL2.Rn/: (2-11)
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When n=2� k=q � 2, (2-1) yields a gain of at least 1/2 of a derivative in the estimate for f>�. The case
n=2�k=q > 2 only arises when ˛ > 0 and ı.�/D .n� 1/=2�k=qC �=q, and in this case we use (2-6)
(with g� replacing g) to bootstrap the elliptic regularity estimate, which yields a similar gain for f>�,
since

kf>�kH ı.�/C1.Rn/ . kw>�kH ı.�/�1.Rn/ . jjjf jjj:

We are now reduced to proving bounds on f�. Reasoning as in (2-9), we obtain jjjf�jjj . jjjf jjj. We
now impose a further microlocal decomposition of the function, writing f�D f�;T Cf�;N , where Of�;T is
localized to directions tangent to the submanifold and Of�;N is localized to normal directions. Specifically,
we write f�;N D

Pn
jDkC1 f�;j where f�;j is frequency localized to a set of the form

supp.bf�;j /�
˚
� W �� j�j; j�j j& "j.�1; : : : ; �j ; �jC1; : : : ; �n/j

	
;

with " suitably small. Using (2-9) again, we have

kg�d2f�;j C�
2f�;jkL2.Rn/ . jjjf�jjj: (2-12)

With this in mind, the flux estimates of [Smith 2006a, p. 974] give

kf�;jkL1xjL2
x0
. jjjf�jjj (2-13)

where x0 denotes the vector consisting of every component in Rn but xj . Combining this with the n� 1

dimensional version of (2-1) on the hyperplane xj D 0, we have

kf�;jkLq.Rk�f0g/ . �.n�1/=2�k=q
kf�;jkL2.xjD0/ . �ı.�/jjjf�jjj:

We now further decompose f�;T as f�;T D
P

j f�;!j where f!j g is a finite collection of unit vectors
and supp.1f�;!j / lies in a small conic set containing !j . Without loss of generality, it suffices to treat
the case !j D�e1 D .�1; 0; : : : ; 0/. Recalling (2-12) and simplifying notation, it now suffices to prove
kf�kLq.Rk�f0g/ . �ı.�/jjjf�jjj for f� satisfying

supp.bf�/� f� W j�=j�j � .�e1/j. "g: (2-14)

As a consequence of (2-13) with xj D x1 and Hölder’s inequality, if SR is a slab of the form
SR D fx W jx1� r j �Rg for some r ,

kf�kL2.SR/
.R1=2

jjjf�jjj: (2-15)

Set �D .n�1/=2�k=q so that ��ı.0/D ı.0/�1=q when k D n�1, 2� q � 2n=.n�1/, and �D ı.0/
in all other cases of Theorem 1.1. Given a cube QR of sidelength RD ��� which intersects Rk �f0g, we
let Q�

R
denote its double, and also set w� WD g�d2f�C�

2f�. We claim that Theorem 1.1 now follows
from the bound

kf�kLq..Rk�f0g/\QR/
. �.1��/ı.0/R��.R�1=2

kf�kL2.Q�
R
/CR1=2��1

kw�kL2.Q�
R
//: (2-16)

Moreover, Theorem 1.2 will follow from taking q D 2 and ı.0/D 1
6

here when P is curved (as �D 0 in
this case). Indeed, if these bounds hold, we may sum over the cubes QR contained in SR which intersect



1272 MATTHEW D. BLAIR

Rk � f0g to obtain

kf�kLq..Rk�f0g/\SR/
. �.1��/ı.0/C��.R�1=2

kf�kL2.S�
R
/CR1=2��1

kw�kL2.S�
R
//:

Recalling (2-15), the right-hand side is bounded by �.1��/ı.0/C��jjjf�jjj. Given the previous observa-
tions on �, the desired bound on f� then follows by taking a sum over the O.R�1/ slabs SR in jx1j � 3=4

and the rapid decay property

jf�.x/j. .�jxj/�N
kf�kL2.Rn/ for maxj jxj j �

3
4
: (2-17)

The latter is a consequence of our assumption that f is supported in a cube of sidelength 1 at the origin,
which implies that f� is concentrated in a ��1 neighborhood of this cube.

At this stage, we pause to remark on a useful feature of our metric when P is curved. Let N be a suitable
unit normal vector field such that hN; @ni> 0. Observe that given any n�1 vector .X 1; : : : ;X n�1/ such
that .X 1/2C � � �C .X n�1/2 D 1, we may assume that, over P , the quantity

�

X
1�i;j�n�1

hN;r@i
@j igX iX j (2-18)

is uniformly bounded from above and below. Indeed, since @1; : : : ; @n�1 span the tangent space to P ,
one just applies the assumption that P is curved to constant vector fields of the form X j@j (with the
summation convention in effect). Using that r@i

@j is the vector field �k
ij@k , we may use that hN; @kig� 0

on P for k ¤ n and that hN; @nig is bounded above to get that

�

X
1�i;j�n�1

�n
ij X iX j (2-19)

is uniformly bounded from above and below over P for all such .X 1; : : : ;X n�1/. Using that kg�g�kC 1 .
��˛, the bounds also hold when the Christoffel symbols are taken with respect to g�.

Returning to the proof of (2-16), we dilate variables x 7!Rx, set � WDR�, and make the slight abuse
of notation that f�.x/D f�.Rx/. We will see that this reduces the general bounds to those without a
loss of derivatives, and hence we will take ı D ı.0/ below. Indeed, rescaling the bound (2-16) gives

kf�kLq..Rk�f0g/\Q/ . �ı.kf�kL2.Q�/C�
�1
kg�d2f�C�

2f�kL2.Q�//: (2-20)

When P is curved, rescaling yields the same with q D 2 and ı D .1Cˇ/=6 where ˇ D �=.1� �/. Here
Q is now a cube of sidelength 1, which we may take to be centered at the origin, and g�.x/ WD g�.Rx/.
We now have that if g�1=2 WD Sc2�1=2g�, then (cf. (2-3))

kg�� g�1=2kL1 . c0�
�1; (2-21)

and we may replace g� by g�1=2 in (2-20), since the error can be absorbed into the right-hand side. The
metric g�1=2 has C 2 regularity, namely,

kgij

�1=2 � ıijkC 2 . c0 and k@˛gij

�1=2kC 2 � �1=2.j˛j�2/ for j˛j � 2: (2-22)
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We pause again to discuss the effect of this dilation and regularization on the upper and lower bounds
on (2-19) for curved metrics. For unit n� 1 vectors .X 1; : : : ;X n�1/, we now have

c1 � ��
ˇ

X
1�i;j�n�1

�n
ij .x/X

iX j . c0 (2-23)

for x 2P . Here the Christoffel symbols can be taken with respect to the metric g�1=2 , since we now have
(2-21) and kg� � g�1=2kC 1;˛ . ��1=2� ��ˇ. Moreover, by continuity, we may assume that if c0 is
chosen sufficiently small, then the inequality holds for all x 2Q at the expense of decreasing c1 slightly.

We will prove the bound (2-20) by wave equation methods. Let u�.t;x/D cos.t�/f�.x/. It suffices
to show that if F� D .@

2
t � g�1=2d2/u�,

ku�kLq..Rk�f0g/\QIL2.� 1
2
; 1

2
// . �

ı.ku�.0; � /kL2.Q�/C�
�1
kF�kL2..�1;1/�Q�//:

Now let  .t;x/ denote a smooth cutoff that is identically 1 on
�
�

1
2
; 1

2

�nC1 and supported in
�
�

3
4
; 3

4

�nC1.
Replacing u� by  u�, and similarly for F�, it suffices to show that

ku�kLq.Rk�f0gIL2.R// . �ı.ku�.0; � /kL2.Rn/C�
�1
kF�kL2.RnC1//; (2-24)

since energy estimates bound the error terms which arise when commuting .@2
t � g�1=2d2/ with  . Next

we let �˙� .�; �/ be smooth cutoffs to regions of the form

f.�; �/ W ˙� � j�j; j�j � �; j�=j�j � .�e1/j. "g (2-25)

and supported in a slightly larger set. Let u˙� D �
˙
� .Dt;x/u�. By [Smith 2006b, Lemma 2.3] and the

localization of f�, we see that elliptic regularity and (2-1) yield an estimate on u��uC� �u�� with a gain
of at least half a derivative relative to the right-hand side of (2-24). It thus suffices to prove (2-24) with
u� replaced by u˙� . The proof of the bound follows in the next two sections.

3. General submanifolds

In this section, we prove (3-4) and hence Theorem 1.1. Recall that coordinates are chosen so that P

is identified with .y; 0/ 2 Rn with y 2 Rk , 0 2 Rn�k . In this section, we take the following notational
conventions on coordinates in Rn. The letters w;y; z denote vectors in Rk , and given such a vector we let
Ny denote the vector in Rn determined by NyD .y; 0/. The letters x; �; v typically denote vectors in Rn, and
we often decompose such a vector as x D .x1;x

0;x00/ where x0 D .x2; : : : ;xk/, x00 D .xkC1; : : : ;xn/.
We begin by showing that u˙� solves an equation which is hyperbolic in x1. Given (2-22), we have

that, for .�; �/ in the regions (2-25), gij

�1=2�i�j ��
2 defines a quadratic in �1 with two real roots and hence

we may write
gij

�1=2.x/�i�j � �
2
D g11

�1=2.x/.�1C q�.x; �; � 0//.�1� qC.x; �; � 0// (3-1)

with q˙ > 0 and homogeneous of degree 1 for such .�; �/. We further regularize these symbols, taking
p˙. � ; �; � 0/D Sc2�1=2q˙. � ; �; � 0/. By the elliptic regularity argument in [Smith 2006b, Lemma 2.4],



1274 MATTHEW D. BLAIR

the function u� satisfies
.�i@x1

Cp˙.x;Dt;x0//u
˙
� DG˙� ; (3-2)

with kG˙� kL2.RnC1/ bounded by the terms in parentheses on the right-hand side of (2-24). Moreover,
akin to (2-17), we have the rapid decay property

ju˙� .t;x/j. .�j.t;x/j/�N
ku�kL2.RnC1/; for max.jt j; jx1j; : : : ; jxnj/� 1: (3-3)

Thus, by energy estimates, it can be seen that

ku˙� kL2.RnC1/ . ku�.0; � /kL2.Rn/C�
�1
k@tu�.0; � /kL2.Rn/C�

�1
kG�kL2.RnC1/;

since the right-hand side is compactly supported. By (3-3), it suffices to show that

ku˙� kLq..�1;1/�Rk�1�f0gIL2.R// . �ı.ku˙� kL2.RnC1/C�
�1
kG˙� kL2.RnC1//: (3-4)

It suffices to treat the term u��, as bounds on the uC� will follow from time reversal. Hence we suppress
the superscripts on u��, G�� , p� below and assume the minus sign is taken when referencing (2-25).

It is convenient to change the roles of t and x1 above, and correspondingly � and �1, treating (3-2) as
an equation which is hyperbolic in t , rather than in x1. As a consequence of (2-22), p is now a function
of .t;x; �/ (or more precisely .t;x0;x00; �/) satisfying the boundsˇ̌

@


x;t@

ˇ

�

�
p.t;x; �/�

p
�2

1 � j.�
0; � 00/j2

�ˇ̌
. c0; j
 j � 2; (3-5)

for j�j D 1 in a cone of the form

f� W ��1 & "�1
j.� 0; � 00/jg; (3-6)

and c0 can be replaced by c0�
�ˇ when j
 j D 1. Moreover, for � in the same set,

j@


x;tp.t;x; �/j. �

1
2
.j
 j�2/; j
 j � 2: (3-7)

By (3-3) and time translation, it suffices to prove that over the time interval .0; 1/,

ku�kLq

t;y0
L2

y1

. �ı.ku�kL1t L2
x
CkG�kL2

t;x
/

where we understand the left-hand side to be�Z 1

0

Z
Rk�1�f0g

�Z
R

ju�.t; Ny/j
2 dy1

�q=2

dy0 dt

�1=q

; y0 D .y2; : : : ;yk/;

and the L1t L2
x norm on the right-hand side as L1..0; 1/IL2.Rn//. Moreover, since

p.t;x;D/�p�.t;x;D/ 2Op.S0

1; 1
2

/;

we may differentiate ku�.t; � /k2
L2

y

in t to obtain

ku�kL1t L2
y
. ku�kL2.RnC1/CkG�kL2.RnC1/:
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Let the wave packet transform T� W S
0.Rn/! C1.R2n/ be defined by

T�f .x; �/D �
n=4

Z
e�ih�;v�xi�.�1=2.v�x//f .v/ dv

where � is a real-valued, radial Schwartz function such that supp. O� / is contained in the unit ball and
normalized so that k�kL2 D .2�/�n=2. The normalization ensures that T ��T� is the identity on L2.Rn/

and hence kT�f kL2.R2n
x;�
/ D kf kL2.Rn

z /
: Let g�.x/ WD u�.0;x/ and let ‚r;t .x; �/ denote the time-r

value of the integral curve determined by the Hamiltonian flow of p with ‚r;t .x; �/jrDt D .x; �/. Given
[Smith 2006b, Lemma 3.2, Lemma 3.3], we may write

.T�u�/.t;x; �/D T�g�.‚0;t .x; �//C

Z t

0

zG�.r; ‚r;t .x; �// dr (3-8)

where zG satisfies Z t

0

k zG�.r; � /kL2.R2n
x;�
/ dr . ku�kL1t L2

v
C

Z t

0

kG�.r; � /kL2.Rn
v/

dr; (3-9)

for t 2 .0; 1/. Indeed, these lemmas show that if Hp denotes the Hamiltonian vector field defined by
p, then T�p. � ;D/�HpT� defines an operator bounded on L2, and that (3-8) follows by solving the
corresponding transport equation. Furthermore, given the frequency localization of p. � ; �/ and the
compact support of �, we may assume that uniformly in r , x, we have

supp..T�g�/.x; � //; supp. zG.r;x; � //� f� W j�j � �;��1 & "�1
j.� 0; � 00/jg: (3-10)

Define the propagator

W Qf .t;y/D T �� .
Qf ı‚0;t /. Ny/;

and observe that, given (3-8), (3-9), it suffices to show that

kW Qf kLq

t;y0
L2

y1

. �ık Qf kL2
x;�

(3-11)

with a .log�/1=2 loss when .k; q/ D .n � 2; 2/. Let Wt denote the restricted operator Wt
Qf .y/ D

W Qf .r;y/jrDt . By duality, it suffices to see that, for functions F.s; z/,

kW W �FkLq

t;y0
L2

y1

. �2ı
kFk

L
q0

s;z0
L2

z1

: (3-12)

To prove this, we will show that

kWtW
�

s hkL1
y0

L2
y1

. �n�1.1C�jt � sj/�.n�1/=2
khkL1

y0
L2

y1

; (3-13)

kWtW
�

s hkL2
y
. �n�k.1C�jt � sj/�.n�k/=2

khkL2
y
: (3-14)

When k D n� 2 and q D 2, Young’s inequality and (3-14) give (3-12) with the logarithmic loss. In all
other cases with k � n� 2, we may interpolate (3-13) and (3-14) to obtain

kWtW
�

s hkLq

y0
L2

y1

. �2.n�1
2
�k�1

q
/.1C�jt � sj/�.

n�1
2
�k�1

q
/
khk

L
q0

y0
L2

y1

(3-15)
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and use that .1C jsj/�..n�1/=2�.k�1/=q/ 2 Lq=2.R/ to get (3-12). The same argument works when
k D n� 1 and 2n=.n� 1/ < q <1. To handle the remaining cases when k D n� 1, we use that

�2.n�1
2
�n�2

q
/.1C�jt � sj/�.

n�1
2
�n�2

q
/ . �

n�1
2
�n�2

q jt � sj�
n�1

2
Cn�2

q :

Hence (3-12) follows from the Hardy–Littlewood–Sobolev inequality when q D 2n=.n � 1/. When
2� q < 2n=.n� 1/, the right-hand side is in L

q=2
loc and Young’s inequality gives (3-12).

In what follows, we will denote the integral kernel of WtW
�

s as Kt;s.y; z/. The bound (3-13) follows
from the proofs of the bounds [Smith 2006b, (3.5); Smith and Sogge 2007, (5.4), (7.2)]. Those works
establish the uniform inequalityZ

jKt;s.y; z/j dy1C

Z
jKt;s.y; z/j dz1 . �n�1.1C�jt � sj/�.n�1/=2:

It thus suffices to prove (3-14). Using that .x; �/ 7!‚r1;r2
.x; �/ defines a diffeomorphism which preserves

dx^ d�, the kernel of WtW
�

s can be realized as (cf. [Smith and Sogge 2007, p. 127])

Kt;s.y; z/D �
n=2

Z
eih�;Nz�xi�ih�s;t ; Ny�xs;t i�.�1=2.Nz�x//�.�1=2. Ny �xs;t //�.�/ dx d� (3-16)

with .xs;t ; �s;t / abbreviating .xs;t .x; �/; �s;t .x; �//. Here � is a cutoff supported in a region of the form
appearing in (3-10), which may be inserted since we are only interested in functions Qf satisfying that
condition.

Before proceeding, we observe bounds on the bicharacteristic flow of p.

Theorem 3.1. Suppose .x; �/ 2 R2n with � in the set defined by (3-6). Let ‚t;s.x; �/ be as in (3-8), that
is, ‚t;s.x; �/jtDs D .x; �/ and

@sxt;s.x; �/D d�p.s; ‚t;s.x; �//; @s�t;s.x; �/D�dxp.s; ‚t;s.x; �//: (3-17)

Then, for t; s 2 Œ0; 1�, first partials of xt;s.x; �/, �t;s.x; �/ in x; � satisfy

jdxxt;s � I jC jdx�t;sj. c0jt � sj; (3-18)

jd�xt;s.x; �/�

Z s

t

d�d�p.‚r;t .x; �// dr jC jd��t;s.x; �/� I j. c0jt � sj2: (3-19)

Proof. Differentiating the equations (3-17) gives

@r

�
dxt;r

d�t;r

�
DM.r;xt;r ; �t;r /

�
dxt;r

d�t;r

�
; where M D

�
dxd�p d�d�p

�d�dxp dxdxp

�
:

By Gronwall’s inequality and the bounds (3-5), we have

jdxxt;r � I jC jdx�t;r j. 1; jd�xt;r jC jd��t;r � I j. 1;

and substituting these bounds back into the integral equation for dxt;r ; d�t;r implies the theorem. �

This type of argument can also be used to bound higher order derivatives of xt;s; �t;s , see, for example,
(4-10) below. Such bounds are used in the proof of the next theorem. It is due to [Smith and Sogge
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2007, Theorem 5.4], which obtains bounds on Kt;s under the assumption that � is a smooth cutoff to a
(possibly) smaller set.

Theorem 3.2. Suppose N� Dmin.1; ��1=2jt � sj�1=2/ and the smooth cutoff � in (3-16) is supported in a
set contained in (3-10) of the form

supp.�/� f� W j�=j�j � �j. N�g (3-20)

for some unit vector � 2 Sn�1. Let .xt;s; �t;s/D‚t;s.Nz; �/. Then Kt;s satisfies the pointwise bounds

jKt;s.y; z/j. �n N�n�1.1C� N� j Ny �xt;sjC�jh�t;s; Ny �xt;sij/
�N : (3-21)

Observing that �n�k.1C�jt � sj/�.n�k/=2�min.�n�k ; �.n�k/=2jt � sj�.n�k/=2/, we begin treating
the case jt � sj � ��1, that is, the case where the first quantity is smaller. In this case, we apply (3-21) in
Theorem 3.2 with N� D 1 and �D�e1 to obtain

jKt;s.y; z/j. �n.1C�j Ny �xt;s.z;�e1/j/
�N ;

which gives the first half of (3-22) below. Making the measure-preserving change of variables

.x; �/ 7! .xt;s.x; �/; �t;s.x; �//

in (3-16), we may reverse the roles of y and z in Theorem 3.2 to obtain an analogous bound which yieldsZ
jKt;s.y; z/j dyC

Z
jKt;s.y; z/j dz . �n�k (3-22)

(strictly speaking, the change of variables replaces �.�/ by �.�t;s.x; �//, but this does not change the
validity of the bounds in Theorem 3.2).

It now suffices to treat the more involved case where ��1 < jt � sj � 1, and for the remainder of this
section we assume t; s 2 Œ0; 1� are two fixed values satisfying this condition. Using the notation suggested
by Theorem 3.2, we set N� D ��1=2jt � sj�1=2 so that � N�2jt � sj D 1. Using a partition of unity, we take
a decomposition Kt;s D

P
j Kj where Kj is defined by replacing � in (3-16) by a smooth cutoff �j ,

with �j supported in a set of the form j�=j�j��j j. N� and f�j g is a collection of unit vectors in the cone
f��1 & "�1j.� 0; � 00/jg separated by a distance of at least � N��1. In particular, we may assume that, for
fixed j , X

l

.1C N��1
j�j
� �l
j/�.nC1/ . 1: (3-23)

Let Tj be the operator defined by .Tj h/.y/D
R

Kj .y; z/h.z/ dz and observe that, since j.�j /1j � 1,
(3-21) in Theorem 3.2 with �D �j givesZ

jKj .y; z/j dy . �n�k N�n�k :

By the same symmetry argument used in (3-22), we now have

kTj hkL2
y
. �n�k N�n�k

khkL2
y
D �.n�k/=2

jt � sj�.n�k/=2
khkL2

y

(though in what follows, it is convenient to express the bounds in terms of �, N� ).
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We claim that there exists a constant C such that if N��1j�j � �l j � C , then

kT �l TjkL2!L2 CkTlT
�

j kL2!L2 . �2.n�k/ N�2.n�k/.1C N��1
j�j
� �l
j/�N :

Since WtW
�

s D
P

j Tj , Cotlar’s lemma then implies (3-14). Furthermore, we focus on the bound for
T �

l
Tj , as a symmetric argument yields the bound on TlT

�
j . Set

Jj ;l.z; w/D

Z
Kl.y; z/Kj .y; w/ dy:

We will show that, for N��1j�j � �l j � C ,

jJj ;l.z; w/j. �2n�k N�2n�1�k.1C� N� jz�wjC�jh�l ; Nz� NwijC N��1
j�j
� �l
j/�N : (3-24)

The proof of (3-24) varies based on whether j.�j
1
� �l

1
; : : : ; �

j

k
� �l

k
/j � j.�j � �l/00j or the opposite

inequality holds. In the first case, we write

Jj ;l.z; w/D �
n=2

“ �Z
eih�; Ny�xi�ihQ�; Ny�Qxi�.�1=2. Ny �x//�.�1=2. Ny � Qx// dy

�
� .z; w;x; �; Qx; Q�/�j .�/�l. Q�/ dx d� d Qx d Q� (3-25)

where Qx; Q� denote the variables in the integral defining Kl and  is a function independent of y. The y

integral in parentheses is a constant multiple ofZ
ei Q O�.��1=2..�1; �

0; �00/� �// O�.��1=2..�1; �
0; Q�00/� Q�// d�1d�0d�00d Q�00 (3-26)

where Q is some real-valued phase function. Since supp. O�/ is contained in the unit ball and

2j.�
j
1
� �l

1; : : : ; �
j

k
� �l

k/j � j�
j
� �l
j;

this integral vanishes if N��1j�l � �j j � C , as this implies that j.�1� Q�1; : : : ; �k � Q�k/j& C� N� � C�1=2.
We now turn to the case where j.�j /00� .�l/00j � j.�

j
1
� �l

1
; : : : ; �

j

k
� �l

k
/j. In this case, we use (3-21)

in Theorem 3.2 to bound jKl j, jKj j individually. After some minor manipulations, this yields

jJj ;l.z; w/j

. �2n N�2.n�1/

Z �
1C� N� j Ny �xt;s. Nw; �

j /jC� N� j Ny �xt;s.Nz; �
l/jC�jh�t;s.Nz; �

l/; Ny �xt;s.Nz; �
l/ij

��6N

� .1C�jh�t;s. Nw; �
j /; Ny �xt;s. Nw; �

j /i � h�t;s.Nz; �
l/; Ny �xt;s.Nz; �

l/ij/�N dy (3-27)

We take 3N of the powers in the first factor of the integrand on the right and claim that up to implicit
constants, it is bounded above by

.1C� N� jz�wjC N��1
j�j
� �l
j/�3N : (3-28)

To see this, first observe that the 3N powers from the integrand are dominated by

.1C� N� jxt;s.Nz; �
l/�xt;s. Nw; �

j /jC 64� N� jx00t;s.Nz; �
l/�x00t;s. Nw; �

j /j/�3N :
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By the bounds (3-18), (3-19) in Theorem 3.1, we have

jxt;s.Nz; �
l/�xt;s. Nw; �

j /j � 3
4
jz�wj � 2jt � sjj�l

� �j
j (3-29)

provided c0 and " are taken sufficiently small. Next we use thatˇ̌
x00t;s. Nw; �

j /�x00t;s.Nz; �
l/
ˇ̌
�
ˇ̌
x00t;s. Nw; �

j /�x00t;s. Nw; �
l/
ˇ̌
�
ˇ̌
x00t;s. Nw; �

l/�x00t;s.Nz; �
l/
ˇ̌
:

To bound the second term on the right, we use that as a consequence of (3-18) the .n� k/� n matrix
dxx00t;s satisfies ˇ̌

dxx00t;s � Œ0 In�k �
ˇ̌
. c0jt � sj:

Recalling that Nw D .w; 0/, Nz D .z; 0/, this givesˇ̌
x00t;s. Nw; �

l/�x00t;s.Nz; �
l/
ˇ̌
. c0jt � sjjz�wj:

We now use (3-5), (3-19) to get that d�x
00
t;s.x; �/ is the .n� k/� n block matrix

.s� t/.�2
1 � j.�

0; � 00/j2/�3=2
�
�1�
00 �� 00.� 0/T �

�
.�2

1
� j.� 0; � 00/j2/In�k C �

00.� 00/T
��

plus an error term which is O.c0jt � sj/. Here � 00 is taken to be a column vector. Since j.�l � �j /00j �
1
2
j�l � �j j and j.� 0; � 00/j. "j�1j, we have

jx00t;s. Nw; �
j /�x00t;s. Nw; �

l/j � 1
8
jt � sj j�l

� �j
j:

In summary, for some uniform constant M ,

64jx00t;s. Nw; �
j /�x00t;s.Nz; �

l/j � 8jt � sjj�l
� �j
j �Mc0jt � sjjz�wj: (3-30)

By taking c0 sufficiently small, the negative term in (3-30) can be absorbed by the first term in (3-29) and
vice versa, which shows (3-28).

We now turn to the second factor in the integrand of (3-27). The triangle inequality gives

�
ˇ̌
h�t;s. Nw; �

j /; Ny �xt;s. Nw; �
j /i � h�t;s.Nz; �

l/; Ny �xt;s.Nz; �
l/i
ˇ̌
� �jh�j ; Nz� Nwij �E

with

ED�
ˇ̌
�t;s.Nz; �

l/��t;s. Nw; �
j /
ˇ̌ ˇ̌
Ny�xt;s.Nz; �

l/
ˇ̌
C�

ˇ̌
h�t;s. Nw; �

j /;xt;s.Nz; �
l/�xt;s. Nw; �

j /i�h�j ; Nz� Nwi
ˇ̌
:

We claim that

E . .� N�/2j Ny �xt;s.Nz; �
l/j2C N��2

j�j
� �l
j
2
C .� N�/2jz�wj2C 1: (3-31)

The error induced by E can thus be absorbed by 2N of the powers in (3-28) and 2N of the powers in the
first factor in (3-27). This concludes the proof of (3-24), as the remaining N powers of the first factor in
(3-27) can be used to integrate in y.

To bound the first term in E, we use the geometric-arithmetic mean inequality and observe that the
bounds on dx�t;s , d��t;s in Theorem 3.1 give

N��1
ˇ̌
�t;s.Nz; �

l/� �t;s. Nw; �
j /
ˇ̌
. N��1

jz�wjC N��1
j�j
� �l
j:
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Since N��1 � � N� when jt � sj � 1, this is seen to be bounded by the right-hand side of (3-31). Using that
� N�2js� t j D 1 and �� .� N�/2, the rest of (3-31) follows fromˇ̌

h�t;s. Nw; �
j /;xt;s.Nz; �

l/�xt;s. Nw; �
j /i � h�j ; Nz� Nwi

ˇ̌
. jz�wj2C N�2

js� t j;

which can be seen by differentiating the expression on the left in s; see [Smith and Sogge 2007, p. 133].

4. Curved submanifolds

In this section, we prove the bound (2-24) with q D 2, ı D 1
6
.1C ˇ/ which implies Theorem 1.2.

In contrast to the previous section, it will be more convenient to work with an equation which is
hyperbolic in t rather than in x1. To this end, we simply set q˙.x; �/ D ˙

�P
i;j gij .x/�i�j

�1=2 and
p˙. � ; �/D Sc2�1=2q˙. � ; �/. As a consequence, we vary the notational conventions slightly so that if
x 2 Rn, we denote x0 D .x1; : : : ;xn�1/ 2 Rn�1 so that x D .x0;xn/. All other conventions will carry
over as before.

Following reductions similar to the previous section, it suffices to show that

ku˙� kL2..0;1/�Rn�1�f0g/ . �.1=6/.1Cˇ/.ku˙� kL2.RnC1/C�
�1
kG˙� kL2.RnC1//

where G˙� D .�i@tCp˙.x;D//u˙� . As before, it suffices to treat the u��, so we suppress the superscripts.
The wave packet transform from above can also be used here, and after following the initial reductions

in Section 3, it suffices to show that the propagator

W Qf .t;y/D T �� .
Qf ı‚0;t /. Ny/D �

n=4

Z
eih�t;0.x;�/; Ny�xt;0.x;�/i�.�1=2. Ny �xt;0.x; �/// Qf .x; �/ dx d�

satisfies

kW Qf kL2
t;y
. �.1=6/.1Cˇ/k Qf kL2

x;�
; ˇ D

�

1��
< 1

2
: (4-1)

where Qf is supported in a region of the form f� W j�j � �; j�1=j�j � .�e1/j. "g. In this section, the map
‚t;s is determined by the new value of p and hence ‚t;s D‚t�s;0. Given (3-3), we may assume .t;y/
are restricted to .0; 1/� .�1; 1/n�1, that is, we bound the L2..0; 1/� .�1; 1/n�1/ norm of W Qf . We now
exploit the property (2-23).

Lemma 4.1. Let .x.t/; v.t// be a solution to the geodesic equation in tangent space

dxk

dt
D vk.t/;

dvk

dt
D�vi.t/vj .t/�k

ij .x.t// (4-2)

relative to the Christoffel symbols defined by g�1=2 (with the summation convention in effect). Suppose
further that .x.t/; v.t// is defined for t 2 Œ�1; 1� and that the geodesic has unit speed in that jv.t/jg

�1=2
�1.

If v.t/ further satisfies jvn.t/j . ", where " is sufficiently small, then there exists a uniform constant c1

such that the n-th component of the velocity satisfies

c1�
�ˇ
jt j � vn.t/� vn.0/. c0�

�ˇ
jt j: (4-3)



Lq BOUNDS ON RESTRICTED SPECTRAL CLUSTERS 1281

Furthermore, the difference between xn.t/ and its linearization about 0 satisfies

jxn.t/�xn.0/� v
n.0/t j. c0�

�ˇ
jt j2: (4-4)

Proof. If " is sufficiently small relative to the c1 appearing in (2-23), then �vi.t/vj .t/�n
ij .x.t// is

uniformly bounded from above and below. Adjusting the constant c1, the bound (4-3) is thus a consequence
of the integral equations arising from (4-2). The integral equation for xn.t/ similarly gives Equation (4-4).

�

Recall that solutions to (4-2) are naturally associated to curves .x.t/; �.t// in the cotangent bundle by
the identification vk.t/D gkl

�1=2.x.t//�l.t/. The curves in phase space are solutions to the Hamiltonian
equations

dx

dt
D d�H;

d�

dt
D�dxH; H.x; �/D 1

2
gij

�1=2�i�j :

With this in mind, we define a.x; �/ D gnm.x/�m D @�n
H , where, again, the summation convention

is used. If .xt;s.x; �/; �t;s.x; �// were integral curves of the Hamiltonian vector field determined by
q D

p
gij�i�j , we would have a.xt;s; �t;s/D j�jg

�1=2
vn.s� t/, where vn.r/ is the n-th component of the

velocity vector in (4-2) at time r with initial data satisfying

xk.0/D xk ; vk.0/D .gkl
�1=2.x/�l/=j�jg�1=2

; jv.0/jg
�1=2
D 1:

However, in the solution operator W under consideration, the .xt;s; �t;s/ are integral curves of the
Hamiltonian vector field determined by p. � ; �/D Sc2�1=2q. � ; �/. Given the bounds

j@



�
.p� q/.x; �/j. ��1; j@
x.p� q/.x; �/j. c0�

1=2;

valid for j�j��, we can use Gronwall’s inequality to approximate the integral curves of d�p �dx�dxp �d�

by those of d�q � dx � dxq � d� and deduce that, for j�j � �,

a.xt;s.x; �/; �t;s.x; �//D j�jg
�1=2

vn.t � s/CO.�1=2
jt � sj/ (4-5)

where vn.t � s/ is as before. By the same tack, (4-4) gives that for .xt;s/n D hxt;s; eni,

j.xt;s/n.x; �/�xn� j�j
�1
g
�1=2

a.x; �/.t � s/j. c0�
�ˇ
jt � sj2C��1=2

jt � sj: (4-6)

Let N�, n� be integers such that N�� log2.�
.1=3/.1Cˇ//, n�� log2.�

ˇ/ and take a smooth partition
of unity f�j .r/g

N�
jDn�

on R satisfying

supp.�n�/� fr 2 R W jr j � �2�n��2
g;

supp.�j /� fr 2 R W jr j 2 Œ�2�j�2; �2�jC2�g; n� < j <N�;

supp.�N�/� fr 2 R W jr j � �2�N�C2
g:

For each n� � j �N�, we define

W j Qf .t;y/D �n=4

Z
eih�t;0; Ny�xt;0i�.�1=2. Ny �xt;0//�j .a.xt;0; �t;0// Qf .x; �/ dx d�
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and, as before, we let W
j
t
Qf .y/DW j Qf .r;y/jrDt . It suffices to show that

kW j Qf kL2
t;y
. 2j=2

k Qf kL2
x;�
: (4-7)

When ˇ D 0, the decomposition above is consistent with earlier treatments of FIOs whose canonical
relations possess a two-sided fold; see, for example, [Cuccagna 1997]. Indeed, for an FIO determined
by the classical Lax parametrix, the singularities of the right projection of the canonical relation are
determined by a.xt;0; �t;0/D 0 and it is effective to take dyadic decomposition in a.xt;0; �t;0/=� in scales
1 � 2�j � ��1=3. For ˇ > 0, scaling considerations relating to the dilation of variables x 7! ���x in
Section 2 then suggest that the dyadic scales should not be finer than ��.1=3/.1Cˇ/. In our circumstance,
we can view the splitting of ja.xt;0; �t;0/j=� into scales less than and greater than ��

1
3
.1Cˇ/ as a

decomposition into tangential and nontangential momenta, respectively. It can be seen that this threshold
gives the largest scale at which our estimate for tangential momenta (4-18) is effective. At the same time,
restricting nontangential momenta to scales at least this size allows us to achieve an appreciable gain
in the bounds for W j by using the linear approximation of phase space transport in (4-23) below. The
selection of n� is more technical; its choice is based on the fact that, for ja.x; �/j=�� ��ˇ , the .�t;0/n

component of the Hamiltonian flow can be linearized over a unit time scale.
Let !n be the unit vector pointing in the direction of .gn1.Nz/; : : : ; gnn.Nz// and B denote the projection

matrix onto the subspace orthogonal to !n. Given the decomposition above, we will need to consider the
following class of integrals more general than those in Theorem 3.2:

Kt;s.y; z/D �
n=2

“
eih�;Nz�xi�ih�t;s ; Ny�xt;si�.�1=2.Nz�x//�.�1=2. Ny �xt;s//

� z�.�/�j .a.x; �//�j .a.xt;s; �t;s// dx d� (4-8)

where �j is defined as above with n� � j �N� and

supp.z�/� f� W j�j � �; j�1=j�j � .�e1/j. "; jB�=jB�j � �j. N�g; (4-9)

for some unit vector � orthogonal to !n. In particular, if N� D 1, W
j
t .W

j
s /
� takes this form. Our first task

is to observe a generalization of Theorem 3.2.

Theorem 4.2. Suppose N�Dmin.1; ��1=2jt�sj�1=2/�2�j and Kt;s.y; z/ is defined by (4-8), (4-9). Let �
denote a fixed vector in the �-support of z�. � /�j .a.Nz; � // andwt;sDxt;s.Nz; �/, �t;sD�t;s.Nz; �/=j�t;s.Nz; �/j.
Then Kt;s.y; z/ satisfies the bounds

jKt;s.y; z/j. �n N�n�22�j
�
1C� N� jB � . Ny �wt;s/jC�jh�t;s; Ny �xt;sij

��N
:

Proof. The proof is only a slight modification of the argument in [Smith and Sogge 2007, p. 152] and
hence we only outline the significant differences. Indeed, the only alteration is that, in our case, a.x; �/

replaces �n and the factor �j .a.xt;s; �t;s// is also present. Let !1; : : : ; !n be an orthonormal basis on Rn
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containing !n. We then define the following vector fields, which preserve the phase in (4-8):

L0 D
1� i.h�; Nz�xi � h�t;s; Ny �xt;si/h�; d�i

1Cjh�; Nz�xi � h�t;s; Ny �xt;sij
2

;

Lk D
1� i.� N�/2h!k ; Nz�x� d��t;s � . Ny �xt;s/ih!k ; d�i

1C�2 N�2jh!k ; Nz�x� d��t;s � . Ny �xt;s/ij2
; 1� k � n� 1:

We define Ln analogously to Lk above with !n replacing !k and 2�j replacing N� . The idea is to integrate
by parts in (4-8) using these vector fields. We display the following bounds on the derivatives of‚t;s.x; �/

in x; � [Smith and Sogge 2007, (5.6), (5.7), (5.11), (5.12)]:

jd2
xxt;sj. h�1=2

jt � sji; jd2
x�t;sj. �1=2;

jdxd�xt;sj. jt � sjh�1=2
jt � sji; jdxd��t;sj. h�1=2

jt � sji;

jdk
� xt;sjC jd

k
� �t;sj. jt � sjh�1=2

jt � sjik�1; k � 2; (4-10)

j.� � d�/
j .� N�d�/

˛�3=2 N�d�xt;sj. 1; j.� � d�/
j .� N�d�/

˛� N�hd��t;s; Ny �xt;sij. h�1=2
j Ny �xt;sji;

where the last one is valid for j C j˛j � 1. these bounds were used [Smith and Sogge 2007] to prove
Theorem 3.2 above and the aforementioned estimates.

Here the first crucial matter is to observe that the result of applying powers of the differential operators
h�; d�i and � N�h!k ; d�i for k D 1; : : : ; n�1 to �.i/j .a.x; �//, �.i/j .a.xt;s; �t;s// is dominated by the other
factors in the integrand. Powers of h�; d�i are easily handled by homogeneity. Differentiating �.i/j yields
a gain of ��12j , while derivatives of N�2j a.x; �/ in the direction of !k are

N�2j
h!k ; d�ia.x; �/D N�2j

h!k ; g
nm.x/� gnm.Nz/i:

Since N�2j . � 1
3
.1Cˇ/

� �1=2, this is dominated by �1=2jx� Nzj.
For �.i/j .a.xt;s; �t;s//, first consider a single power of N�2j h!k ; d�i on a.xt;s; �t;s/

N�2j
h!k ; d�ia.xt;s.x; �/; �t;s.x; �//

D N�2j
h!k ; d�i.g

nm.xt;s/.�t;s/m/

D N�2j .dxgnm.xt;s/ � h!k ; d�xt;si.�t;s/mC gnm.xt;s/h!k ; d�.�t;s/mi/: (4-11)

The first term on the right is bounded as jd�xt;s.x; �/jj�t;sj. jt � sj and N�2j jt � sj � 1. For the second,
we rewrite the sum in m as

.gnm.xt;s/� gnm.Nz//h!k ; d�.�t;s/miC gnm.Nz/h!k ; d�.�t;s/m� emi:

The second term is O.jt � sj/ and can be dominated as before. For the first term we use that

jxt;s.x; �/� Nzj � jxt;s.x; �/�xjC jx� Nzj:
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The first term here is O.jt�sj/ and the second can be treated as above. For higher derivatives of (4-11), we
simply use homogeneity and (4-10) to see that the result of applying l additional powers of N�2j h!k ; d�i

is bounded by . N�2j /lC1jt � sj��l=2� 1.
Integration by parts using L0; : : : ;Ln gives that jKt;s.y; z/j is dominated by

�n=2

“
.1C�1=2

jNz�xjC�1=2
j Ny �xt;sj/

�N .1C� N� jB � .Nz�x� d��t;s � . Ny �xt;s//j

C�2j
jh!n; Nz�x� d��t;s � . Ny �xt;s/ijC jh�; Nz�xi � h�t;s; Ny �xt;sij/

�N d�dx (4-12)

and we may assume that the values of � are restricted to � 2 supp.z�. � /�j .a.x; � ///.
Now observe that if � is such a vector and Q�, Q� are vectors in the direction of �, � normalized so that

jB Q�j D jB Q�j D 1, then

jB. Q� � Q�/j. N�; j.I �B/. Q� � Q�/j. jNz�xjC 2�j : (4-13)

The first of the two inequalities is evident from the support condition on z� and the second follows by
observing that jB�j; jB�j � � and

gnm.Nz/ Q�m� gnm.Nz/ Q�m D .gnm.Nz/� gnm.x// Q�mC gnm.x/ Q�m� gnm.Nz/ Q�m

Given (4-13), the proof of [Smith and Sogge 2007, (5.13)] goes through with only minor adjustments.
Hence (4-12) is further dominated by

�n=2

“
.1C� N� jB � d��t;s � . Ny �wt;s/jC�2�j

jh!n; d��t;s � . Ny �wt;s/ij

C jh�t;s; Ny �wt;sij/
�N .1C�1=2

jNz�xjC�1=2
j Ny �xt;sj/

�N d�dx (4-14)

where � values are restricted as before. Observe that since �1=2� �2�j � � N� and d��t;s is invertible,
the middle two terms in the first factor dominate �1=2j Ny �wt;sj.

We next see that we may replace �t;s by �t;s.Nz; �/ in the expression h�t;s; Ny �wt;si. Without loss of
generality, we may assume that jB�j D jB�j. We note that

jh�t;s.x; �/� �t;s.Nz; �/; Ny �wt;sij. �jx� Nzjj Ny �xt;sj:

It now remains to bound jh�t;s.x; �/� �t;s.x; �/; Ny �wt;sij. We thus write

�t;s.x; �/� �t;s.x; �/D .� � �/ � d��t;sCO.j� � �j2��1=2
jt � sj/:

For the first term here, note that

.� � �/ � d��t;s D .� � �/ �B � d��t;sC .� � �/ � .I �B/ � d��t;s:

Since B is an orthogonal projection and

jB � .� � �/j. � N�; j.I �B/ � .� � �/j. �2�j
C�jx� Nzj;

the error induced by the first term here is dominated by the other terms in the integrand in (4-14). We
then use � N�2jt � sj � 1 to bound the error term similarly.
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Also, replacing d��t;s by the identity matrix in (4-14) yields an acceptable error, as it is bounded by

� N� jt � sjj Ny �xt;sj. �1=2
j Ny �xt;sj:

Finally, for each x, the region of integration in � can be restricted to a set of volume � �n N�n�22�j ,
which is enough to conclude the proof. �

Note that, by (2-22), we may assume that the difference between B and projection onto the first n� 1

coordinates yields an error which is no more than O.c0/. Moreover, since j�t;s � e1j. "C c0, we have,
as a consequence of this theorem, thatZ

jKt;s.y; z/j dy . �2�j : (4-15)

We now begin the proof of (4-7) when j DN�, claiming there exists Qc1 such that

W
N�
t .W

N�
s /� D 0 whenever jt � sj � Qc1�

ˇ2�N� : (4-16)

To see this, recall that the kernel of W
N�
t .W

N�
s /� is given by an integral of the form (4-8) with N� D 1.

Since ��ˇ� ��1=2, by (4-3) and (4-5), there exists a constant Qc1, inversely proportional to c1 above,
such that ja.xt;s.x; �/; �t;s.x; �//j � �2�N�C2 whenever ��ˇjt � sj � Qc12�N� and � 2 supp.�N�/.

Turning to the case jt � sj � Qc1�
ˇ2�N� , take a collection of unit vectors �i orthogonal to !n and

mutually separated by a distance � N� so that (3-23) holds. Now write Kt;s D
P

i Ki.y; z/ where each
Ki is defined as in (4-8) with � replaced by �i . Next observe that j�j � �l j . j.�j � �l/0j, which can
be seen by noting that the linear map which projects the subspace orthogonal to !n onto its first n� 1

components is invertible and depends continuously on z. An adjustment of the almost orthogonality
argument in (3-26) thus shows that the operators T �

l
Tj , TlT

�
j vanish if N��1j�i � �j j � C for some large

C . Observe that Z
jKi.y; z/j dyC

Z
jKi.y; z/j dz . �2�N� : (4-17)

But the first half of this is a consequence of (4-15) and the second half follows by symmetry and
the same bound. Indeed the theorem applies here, as our assumption on jt � sj means that N� &
��.1=2/.1Cˇ/2.1=2/N� � 2�.3=2/N�C.1=2/N� D 2�N� . The bound (4-7) now follows by duality, since
Young’s inequality in t; s gives

kW N�.W N�/�kL2
s;z!L2

t;y
. �2�N� ��ˇ2�N� � 2N� : (4-18)

For n� � j <N�, we take a partition of unity over Rn�1,
P

l �.y � l/� 1 such that the sum is taken
over l 2 Zn�1 and supp.�/� Œ�1; 1�n�1. Use this to define

�l.y/ WD �.�
�ˇ2j y � l/ and W j ;l Qf .t;y/ WD �l.y/W

j Qf .t;y/

and we consider only those l such that supp.�l/ intersects .�1; 1/n. By the support properties of �, we
may take C sufficiently large so that .W j ;m/�W j ;l vanishes whenever jl �mj � C . We next claim that
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we can take C so that

kW j ;l.W j ;m/�kL2!L2 . ��N whenever jl �mj � C: (4-19)

Since there is at most O.�.n�1/=3/ of the W j ;l , the estimate (4-7) on W j will follow by Cotlar’s lemma
and Young’s inequality provided we can show

kW
j ;l
t .W j ;l

s /�hkL2
y
. �2�j .1C�2�2j

jt � sj/�2
khkL2

y
: (4-20)

In order to show (4-19), we can write the kernel of the operator, denoted by K
l;m
t;s .y; z/, as the product

of �l.y/�m.z/ with an integral of the form (4-8) with N� D 1. Given the compact support of K
l;m
t;s in y

and z it suffices to show that this integral is dominated by ��N for any N . Similar to the j DN� case,
if � 2 supp.�j / and jt � sj � Qc1�

ˇ2�j for some Qc1 depending only on c1, then �j .a.xt;s; �t;s// D 0,
meaning the kernel vanishes for such t; s. When jt � sj � Qc1�

ˇ2�j , we use that

jxt;s.Nz; �/�xt;s.x; �/j. jNz�xj

to dominate the integral in (4-8) simply by

�n=2

“
.1C�1=2

jNz�xjC�1=2
j Ny �xt;s.Nz; �/j/

�2N z�.�/�j .a.x; �// dx d�:

Using the elementary estimate jxt;s.Nz; �/� Nzj � 2jt � sj, we see that if jl �mj � 24 Qc1,

j Ny �xt;s.Nz; �/j � jy � zj � 2jt � sj � �ˇ2�j�2
jl �mj � 2 Qc1�

ˇ2�j
� �ˇ2�j

� ��1=3

and hence �1=2jNz�xt;s. Ny; �/j& �1=6. This implies the desired bound on K
l;m
t;s .y; z/.

We now turn to (4-20). It suffices to restrict attention to jt � sj � Qc1�
ˇ2�j , though this does not play

a crucial role in the argument. First consider the case where t; s satisfy jt � sj � ��122j . We begin by
observing that a slight adjustment of the almost orthogonality argument in (3-26) and preceding (4-18)
allows us to assume that the kernel K

l;l
t;s.y; z/ of W

j ;l
t .W

j ;l
s /� is the product of �l.y/�l.z/ and an

integral of the form (4-8) with N� Dmin.1; ��1=2jt � sj�1=2/. Indeed, reasoning as in (3-25), we are lead
to consider the integralZ

eih�; Ny�xi�ihQ�; Ny�Qxi�.�1=2. Ny �x//�.�1=2. Ny � Qx//�2
l .y/ dy:

While this integral does not vanish when �1=2 � � N� � j� � Q�j, we may bound its absolute value by
CN�

�N for any N , which is just as effective. Indeed, we may take the Fourier transform similarly to
(3-26) and, since the Fourier transform of �2

l
is concentrated (though not localized) in a ball of radius

��ˇ2j � �1=3� �1=2, the rapid decay in � follows. We now conclude (4-20) for jt � sj � ��122j by
applying (4-15) and reasoning analogously to (4-17).

To show (4-20) when jt � sj > ��122j , we take the decomposition used in Section 3, writing the
kernel K

l;l
t;s D

P
i Ki with Ki defined by replacing the � in (3-16) by a smooth cutoff z�j ;i to a region of

the form ˚
� 2 supp.z�. � /�j .a.x; � // W ��1 � �; j�=j�j � �

i
j. N�

	
; N� D ��1=2

jt � sj�1=2
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where �i 2 Sn�1. As before, we assume that �i are separated so that (3-23) holds. The estimates (3-21)
in Theorem 3.2 give

jKi.yI z/j. �n N�n�1
�
1C� N� j Ny �xi

t;sjC�jh�
i
t;s; Ny �xi

t;sij
��N (4-21)

with xi
t;s D xt;s.Nz; �

i/. We will show that

j Ny �xi
t;sj& 2�j

jt � sj: (4-22)

Together with our assumption on t; s, this gives �1=22�j jt�sj1=2.� N� j Ny�xi
t;sj, and hence this additional

decay and the almost orthogonality arguments above can be integrated into the proof of (3-24) to obtain

kW
j ;l
t .W j ;l

s /�kL2!L2 . � N�.1C�2�2j
jt � sj/�2

� �2�j .1C�2�2j
jt � sj/�2:

To show (4-22), first consider t; s satisfying ��122j < jt � sj � �ˇ2�jC3 (note that this is nontrivial
when 2j < 2�

1
3
.1Cˇ/

� 2N� , a relevant consequence of the j < N� threshold discussed above). We
may assume c0 in (2-22) is sufficiently small and use a linear approximation of the n-th component of
xt;s.Nz; �

i/ in (4-6) to obtain
j.xt;s/n.Nz; �

i/j& 2�j
jt � sj; (4-23)

since the n-th component of Nz vanishes. Indeed, over this time scale, the error term is smaller than the
linearization.

Now assume that jt � sj � �ˇ2�jC3. Taking ", c0 sufficiently small, we obtain

j.xt;s/1.Nz; �
i/� z1j D

ˇ̌̌̌Z t

s

@�1
p.r; ‚r;s.Nz; �

i// dr

ˇ̌̌̌
�

1
2
jt � sj

Since y; z 2 supp.�l/ we obtain jy � zj � 2�jC1�ˇ � 1
4
jt � sj and hence we have the stronger bound

j.xt;s/1.Nz; �
i/�y1j �

1
2
jt � sj � jz1�y1j �

1
4
jt � sj:
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FROM THE LAPLACIAN WITH VARIABLE MAGNETIC FIELD
TO THE ELECTRIC LAPLACIAN IN THE SEMICLASSICAL LIMIT

NICOLAS RAYMOND

We consider a twisted magnetic Laplacian with Neumann condition on a smooth and bounded domain of
R2 in the semiclassical limit h→ 0. Under generic assumptions, we prove that the eigenvalues admit a
complete asymptotic expansion in powers of h1/4.

1. Introduction and main results

Let � be an open bounded and simply connected subset of R2 with smooth boundary. Let us consider a
smooth vector potential A such that β =∇× A> 0 on � and a a smooth and positive function on �. We
are interested in estimating the eigenvalues λn(h) of the operator Ph,A = (ih∇ + A)a(ih∇ + A) whose
domain is given by

Dom(Ph,A)=
{
ψ ∈ L2(�) : (−ih∇ + A)a(−ih∇ + A)ψ ∈ L2(�) and (−ih∇ + A)ψ · ν = 0 on ∂�

}
.

The corresponding quadratic form, denoted by Qh,A, is defined on H 1(�) by

Qh,A(ψ)=

∫
�

a(x)|(−ih∇ + A)ψ |2 dx .

By gauge invariance, it is standard that the spectrum of Ph,A depends on the magnetic field β =∇ × A,
but not on the potential A itself.

Motivation and presentation of the problem.

Motivation and context. Before stating our main result, we should briefly describe the context and the
motivations of this paper. As much in 2D as in 3D, the magnetic Laplacian, corresponding to the case
when a = 1, appears in the theory of superconductivity when studying the third critical field HC3 that
appears after the linearization of the Ginzburg–Landau functional (see, for instance, [Lu and Pan 1999;
2000; Fournais and Helffer 2010]). It turns out that HC3 can be related to the lowest eigenvalue of the
magnetic Laplacian in the regime h→ 0.

In fact, the case which is mainly investigated in the literature is the case when the magnetic field is
constant. In 2D, the two-terms asymptotics is done in the case of the disk by Bauman, Phillips and Tang
in [Bauman et al. 1998] (see also [Bernoff and Sternberg 1998; del Pino et al. 2000]) and is generalized by
Helffer and Morame [2001] to smooth and bounded domains. The asymptotic expansion at any order of

MSC2010: 35J10, 35P15.
Keywords: semiclassical analysis, magnetic field, normal form.
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all the lowest eigenvalues is proved by Fournais and Helffer [2006]. In 3D, one can mention the celebrated
paper [Helffer and Morame 2004], which gives the two-terms asymptotics of the first eigenvalue.

When the magnetic field is variable (and a = 1), fewer results are known. In 2D, [Lu and Pan 1999]
provides a one-term asymptotics of the lowest eigenvalue, and [Raymond 2009] gives the two-term
asymptotics under generic assumptions (we can also mention [Helffer and Kordyukov 2011], which deals
with the case without boundary and provides a full asymptotic expansion of the eigenvalues). In 3D, for
the one-term asymptotics, one can mention [Lu and Pan 2000], and for a three-terms asymptotics upper
bound, [Raymond 2010] (see also [Raymond 2012], where a complete asymptotics is proved for a toy
model).

Here we consider a twist factor a > 0. As we will see, the presence of a (which is maybe not the
main point of this paper) will not complicate the philosophy of the analysis, even if it will lead us to use
generalizations of the Feynman–Hellmann theorems (such generalizations were introduced by physicists
to analyze the anisotropic Ginzburg–Landau functional; see [Doria and de Andrade 1996]). In fact, this
additional term obliges us to have a more synthetic sight of the structure of the magnetic Laplacian.
The motivation to add this term comes from [Chapman et al. 1995], where the authors deal with the
anisotropic Ginzburg–Landau functional (which is an effective mass model). We can also refer to [Alama
et al. 2010], where closely related problems appear. Moreover, we will see that the quantity to minimize
to get the lowest energy is the function aβ, so that this situation recalls what happens in 3D in [Lu and
Pan 2000; Raymond 2010] and where the three-terms asymptotics is still not established.

Under generic assumptions, we will prove in this paper that the eigenvalues λn(h) admit complete
asymptotic expansions in powers of h1/4.

Heuristics. Let us discuss the heuristics a little bit, to understand the problem. Let us fix a point x0 ∈�.
If x0 ∈� and if we approximate the vector potential A by its linear part, we can locally write the magnetic
Laplacian as

a(x0)(h2 D2
x + (h Dy −β(x0)x)2)+ lower-order terms.

The lowest eigenvalue can be computed after a Fourier transform with respect to y and a translation
with respect to x (which reduces to a 1D harmonic oscillator); it provides an eigenvalue a(x0)β(x0)h.
If x0 ∈ ∂�, and considering the standard boundary coordinates (s, t) (t > 0 being the distance to the
boundary and s the curvilinear coordinate), we get the approximation

h2 D2
t + (h Ds −β(x0)t)2+ lower-order terms.

The shape of this formal approximation invites us to recall basic properties of the de Gennes operator.

The de Gennes operator. For ξ ∈ R, we consider the Neumann realization Hξ in L2(R+) associated with
the operator

−
d2

dt2 + (t − ξ)
2, Dom(Hξ )= {u ∈ B2(R+) : u′(0)= 0}. (1-1)

One knows (see [Dauge and Helffer 1993]) that it has compact resolvent and that its lowest eigenvalue is
denoted by µ(ξ); the associated L2-normalized and positive eigenstate is denoted by uξ = u( · , ξ) and is
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in the Schwartz class. The function ξ 7→ µ(ξ) admits a unique minimum, say at ξ = ξ0, and we let

20 = µ(ξ0), C1 =
u2
ξ0
(0)

3
. (1-2)

Let us also recall identities established in [Bernoff and Sternberg 1998]. For k ∈ N, we let

Mk =

∫
t>0
(t − ξ0)

k
|uξ0(t)|

2 dt,

and we have

M0 = 1, M1 = 0, M2 =
1
220, M3 =

1
2C1,

1
2µ
′′(ξ0)= 3C1

√
20. (1-3)

Main result. Let us introduce the general assumptions under which we will work throughout this paper.
As already mentioned, the natural invariant associated with the operator is the function aβ. We will
assume that

20 min
∂�

a(x)β(x) <min
�

a(x)β(x) (1-4)

and that
x ∈ ∂� 7→ a(x)β(x) admits a unique and nondegenerate minimum at x0. (1-5)

Remark 1.1. Assumption (1-4) is automatically satisfied when the magnetic field is constant (and is
sometimes called the surface superconductivity condition), and Assumption (1-5) excludes the case of
constant magnetic field. Therefore, our generic assumption deals with a complementary situation analyzed
in [Fournais and Helffer 2006], that is, the situation with a generically variable magnetic field.

Let us state our first rough estimate of the n-th eigenvalue λn(h) of Ph,A that we will prove in this
paper:

Proposition 1.2. Under Assumptions (1-4) and (1-5), for all n ≥ 1, we have

λn(h)=20ha(x0)β(x0)+ O(h5/4). (1-6)

From this proposition, we see that the asymptotics of λn(h) is related to local properties of Ph,A near
the point of the boundary x0. That is why we are led to introduce the standard system of local coordinates
(s, t) near x0, where t is the distance to the boundary and s the curvilinear coordinate on the boundary
(see (2-1)). We denote by 8 : (s, t) 7→ x the corresponding local diffeomorphism. We write the Taylor
expansions

ã(s, t)= a(8(s, t))= 1+ a1s+ a2t + a11s2
+ a12st + a22t2

+ O(|s|3+ |t |3) (1-7)

and
β̃(s, t)= β(8(s, t))= 1+ b1s+ b2t + b11s2

+ b12st + b2t2
+ O(|s|3+ |t |3), (1-8)

where we have assumed the normalization

a(x0)= β(x0)= 1. (1-9)

Let us translate the generic assumptions (1-4) and (1-5). The critical point condition becomes

a1 =−b1, (1-10)
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and the nondegeneracy property can be reformulated as

b11+ a1b1+ a11 = a11+ b11− a2
1 = α > 0. (1-11)

We can now state the main result of this paper:

Theorem 1.3. We assume (1-4) and (1-5) and the normalization condition (1-9). For all n ≥ 1, there exist
a sequence (γn, j ) j≥0 and h0 > 0 such that for all h ∈ (0, h0), we have

λn(h) ∼
h→0

h
∑
j≥0

γn, j h j/4.

Moreover, we have, for all n ≥ 1,

γn,0 =20, γn,1 = 0, γn,2 = C(k0, a2, b2)+ (2n− 1)
(
α20µ

′′(ξ0)

2

)1/2

,

with
C(k0, a2, b2)=−C1k0+

3C1

2
a2+

(
C1

2
+ ξ020

)
b2.

Comments about the main theorem. Let us first notice that Theorem 1.3 completes the one of Fournais
and Helffer [2006, Theorem 1.1] dealing with a constant magnetic field (see also [Fournais and Helffer
2006, Remark 1.2], where the variable magnetic field case is left as an open problem).

It turns out that Theorem 1.3 generalizes [Raymond 2009, Theorem 1.7]. Moreover, as a consequence
of the asymptotics of the eigenvalues (which are simple for h small enough), we also get the corresponding
asymptotics for the eigenfunctions. These eigenfunctions are approximated (in the L2 sense) by the power
series, which we will use as quasimodes (see (2-10)). In particular, the eigenfunctions are approximated
by functions in the form

uξ0(h
−1/2t)g(h−1/4s),

where g is a renormalized Hermite function.
As we will see in the proof, the construction of appropriate trial functions can give a hint of the natural

scales of the problem (h1/2 with respect to t and h1/4 with respect to s). Nevertheless, as far as we
know, there are no structural explanations in the literature of the double scales phenomena related to the
magnetic Laplacian.

In this paper, we will explain how, thanks to conjugations of the magnetic Laplacian (by explicit
unitary transforms in the spirit of Egorov’s theorem; see [Egorov 1971; Robert 1987; Martinez 2002]),
we can reduce the study to an electric Laplacian which is in the Born–Oppenheimer form (see [Combes
et al. 1981; Martinez 1989]). The main point of the Born–Oppenheimer approximation is that it naturally
involves two different scales (related to the so-called slow and fast variables).

As we recalled at the beginning of the introduction, many papers deal with the two or three first terms of
λ1(h) and do not analyze λn(h) (for n≥ 2); see, for instance, [Helffer and Morame 2004; Raymond 2009].
One could think that it is just a technical extension. But, as can be seen in [Fournais and Helffer 2006]
(see also [Dombrowski and Raymond 2013]), the difficulty of the extension relies on the microlocalization
properties of the operator: The authors have to combine a very fine analysis using pseudodifferential
calculus (to catch the a priori behavior of the eigenfunctions with respect to a phase variable) and the
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Grušin reduction machinery [1972]. Let us emphasize that these microlocalization properties are one of
the deepest features of the magnetic Laplacian and are often found at the core of proofs (see, for instance,
[Helffer and Morame 2004, Sections 11.2 and 13.2; Fournais and Helffer 2006, Sections 5 and 6]). We
will see how we can avoid the introduction of the pseudodifferential (or abstract functional) calculus.
In fact, we will also avoid the Grušin formalism by keeping only the main idea behind it: We can use
the true eigenfunctions as quasimodes for the first-order approximation of Ph,A and deduce a tensorial
structure for the eigenfunctions.

In our investigation, we will introduce successive changes of variables and unitary transforms, such as
changes of gauge and weighted Fourier transforms (which are all associated with canonical transformations
of the symbol). By doing this, we will reduce the symbol of the operator (or, equivalently, reduce the
quadratic form), thanks to the a priori localization estimates. By gathering all these transforms, one
would obtain a Fourier integral operator which transforms (modulo lower-order terms) the magnetic
Laplacian into an electric Laplacian in the Born–Oppenheimer form. For this normal form, we can prove
Agmon estimates with respect to a phase variable. These estimates involve, for the normal form, strong
microlocalization estimates, and spare us, for instance, the multiple commutator estimates needed in
[Fournais and Helffer 2006, Section 5].

Scheme of the proof. Let us now describe the scheme of the proof. In Section 2, we perform a construction
of quasimodes and quasieigenvalues thanks to a formal expansion in power series of the operator. This
analysis relies on generalizations of the Feynman–Hellmann formula and of the virial theorem, which
were already introduced in [Raymond 2010], and which are an alternative to the Grušin approach used in
[Fournais and Helffer 2006]. Then we use the spectral theorem to infer the existence of a spectrum near
each constructed power series. In Section 3, we prove a rough lower bound for the lowest eigenvalues
and deduce Agmon estimates with respect to the variable t , which provide a localization of the lowest
eigenfunctions in a neighborhood of the boundary of size h1/2. In Section 4 , we improve the lower
bound of Section 3 and deduce a localization of size h1/4 with respect to the tangential coordinate s. In
Section 5, we prove a lower bound for Qh,A thanks to the definition of “magnetic coordinates,” and we
reduce the study to a model operator (in the Born–Oppenheimer form) for which we are able to estimate
the spectral gap between the lowest eigenvalues.

2. Accurate construction of quasimodes

This section is devoted to the proof of the following theorem:

Theorem 2.1. For all n ≥ 1, there exists a sequence (γn, j ) j≥0 such that, for all J ≥ 0, there exist h0 > 0,
C > 0 such that

d
(

h
J∑

j=0

γn, j h j/4, σ (Ph,A)

)
≤ Ch(J+1)/4.

Moreover, we have, for all n ≥ 1:

γn,0 =20, γn,1 = 0, γn,2 = C(k0, a2, b2)+ (2n− 1)
(
(a11+ b11− a2

1)20µ
′′(ξ0)

2

)1/2

.
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The proof of Theorem 2.1 is based on a construction of quasimodes for Ph,A localized near x0.

Local coordinates (s, t). We use the local coordinates (s, t) near x0 = (0, 0), where t (x)= d(x, ∂�) and
s(x) is the tangential coordinate of x . We choose a parametrization of the boundary:

γ : R/(|∂�|Z)→ ∂�.

Let ν(s) be the unit vector normal to the boundary, pointing inward at the point γ (s). We choose the
orientation of the parametrization γ to be counterclockwise, so that

det(γ ′(s), ν(s))= 1.

The curvature k(s) at the point γ (s) is given in this parametrization by

γ ′′(s)= k(s)ν(s).

The map 8 defined by

8 : R/(|∂�|Z)×]0, t0[ →�, (s, t) 7→ γ (s)+ tν(s) (2-1)

is clearly a diffeomorphism, when t0 is sufficiently small, with image

8
(
R/(|∂�|Z)×]0, t0[

)
= {x ∈� | d(x, ∂�) < t0} =�t0 .

We let

Ã1(s, t)= (1− tk(s))A(8(s, t)) · γ ′(s), Ã2(s, t)= A(8(s, t)) · ν(s), β̃(s, t)= β(8(s, t)),

and we get
∂s Ã2− ∂t Ã1 = (1− tk(s))β̃(s, t).

The quadratic form becomes

Qh,A(ψ)=

∫
ã(1− tk(s))

∣∣(−ih∂t + Ã2)ψ
∣∣2+ ã(1− tk(s))−1∣∣(−ih∂s + Ã1)ψ

∣∣2 ds dt.

In a (simply connected) neighborhood of (0, 0), we can choose a gauge such that

Ã1(s, t)=−
∫ t

t1
(1− t ′k(s))β̃(s, t ′) dt ′, Ã2 = 0. (2-2)

The operator in the coordinates (s, t). Near x0 and using a suitable gauge (see (2-2)), we are led to
construct quasimodes for the operator

L(s,−ih∂s; t,−ih∂t)=

−h2(1− tk(s))−1∂t(1− tk(s))ã∂t + (1− tk(s))−1(−ih∂s + Ã)(1− tk(s))−1ã(−ih∂s + Ã),

where (see (1-8))

Ã(s, t)= (t − ξ0h1/2)+ b1s(t − ξ0h1/2)+ (b2− k0)
t2

2
+ b11s2(t − ξ0h1/2)+ O(|t |3+ |st2

|).

Let us now perform the scaling
s = h1/4σ and t = h1/2τ.
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The operator becomes
L(h)= L

(
h1/4σ,−ih3/4∂σ ; h1/2τ,−ih1/2∂τ

)
.

We can formally write L(h) as a power series:

L(h)∼ h
∑
j≥0

L j h j/4,

where

L0 =−∂
2
τ + (τ − ξ0)

2, (2-3)

L1 =−a1σ∂
2
τ − 2i∂σ (τ − ξ0)+ a1(τ − ξ0)

2σ + 2b1στ(τ − ξ0)

= a1σHξ0 − 2i∂σ (τ − ξ0)+ 2b1σ(τ − ξ0)
2, (2-4)

L2 =−a2τ∂
2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)

2
+ a2τ(τ − ξ0)

2

+ (b2− k0)τ
2(τ − ξ0)− ia1(τ − ξ0)

+ σ 2(a11 Hξ0 − a2
1(τ − ξ0)

2
+ 2b11(τ − ξ0)

2)
− ∂2

σ − 2ia1(τ − ξ0)σ∂σ + ia1(τ − ξ0)∂σσ. (2-5)

The aim is now to define good quasimodes for L(h). Before starting the construction, we shall recall in
the next subsection a few formulas coming from perturbation theory.

Feynman–Hellmann and virial formulas. For ρ > 0 and ξ ∈R, let us introduce the Neumann realization
on R+ of

Hρ,ξ =−ρ−1∂2
τ + (ρ

1/2τ − ξ)2.

By scaling, we observe that Hρ,ξ is unitarily equivalent to Hξ and that H1,ξ = Hξ (the corresponding
eigenfunction is u1,ξ = uξ ). The form domain of Hρ,ξ is B1(R+) and is independent from ρ and ξ so
that the family (Hρ,ξ )ρ>0,ξ∈R is a holomorphic family of type (B) (see [Kato 1966, p. 395]). The lowest
eigenvalue of Hρ,ξ is µ(ξ) and we will denote by uρ,ξ the corresponding normalized eigenfunction:

uρ,ξ (τ )= ρ1/4uξ (ρ1/2τ).

Since uξ satisfies the Neumann condition, we observe that ∂m
ρ ∂

n
ξ uρ,ξ also satisfies it. In order to lighten

the notation, when it is not ambiguous we will write H for Hρ,ξ , u for uρ,ξ , and µ for µ(ξ).
The main idea is now to take derivatives of

Hu = µu (2-6)

with respect to ρ and ξ . Taking the derivative with respect to ρ and ξ , we get the following proposition:

Proposition 2.2. We have
(H −µ)∂ξu = 2(ρ1/2τ − ξ)u+µ′(ξ)u (2-7)

and
(H −µ)∂ρu =−ρ−2∂2

τ − ξρ
−1(ρ1/2τ − ξ)− ρ−1τ(ρ1/2τ − ξ)2. (2-8)
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Moreover, we get

(H −µ)(Su)= Xu, (2-9)

where
X =−

ξ

2
µ′(ξ)+ ρ−1∂2

τ + (ρ
1/2τ − ξ)2

and
S =−

ξ

2
∂ξ − ρ∂ρ .

Proof. Taking the derivatives with respect to ξ and ρ of (2-6), we get

(H −µ)∂ξu = µ′(ξ)u− ∂ξ Hu

and
(H −µ)∂ρu =−∂ρH.

We have ∂ξ H =−2(ρ1/2τ − ξ) and ∂ρH = ρ−2∂2
ρ + ρ

−1/2τ(ρ1/2τ − ξ). �

Taking ρ = 1 and ξ = ξ0 in (2-7), we deduce, with the Fredholm alternative:

Corollary 2.3. We have
(Hξ0 −µ(ξ0))vξ0 = 2(t − ξ0)uξ0,

with
vξ0 = (∂ξuξ )|ξ=ξ0 .

Moreover, we have ∫
τ>0
(τ − ξ0)u2

ξ0
dτ = 0.

Corollary 2.4. We have, for all ρ > 0,∫
τ>0
(ρ1/2τ − ξ0)u2

ρ,ξ0
dτ = 0

and ∫
τ>0
(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0u dτ =−

ξ0

4
.

Corollary 2.5. We have
(Hξ0 −µ(ξ0))S0u = (∂2

τ + (τ − ξ0)
2)uξ0,

where
S0u =−(∂ρuρ,ξ )|ρ=1,ξ=ξ0 −

ξ0

2
vξ0 .

Moreover, we have
‖∂τuξ0‖

2
= ‖(τ − ξ0)uξ0‖

2
=
20

2
.

The next three propositions deal with the second derivatives of (2-6) with respect to ξ and ρ.
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Proposition 2.6. We have

(Hξ −µ(ξ))wξ0 = 4(τ − ξ0)vξ0 + (µ
′′(ξ0)− 2)uξ0,

with
wξ0 = (∂

2
ξ uξ )|ξ=ξ0 .

Moreover, we have ∫
τ>0
(τ − ξ0)vξ0uξ0 dτ =

2−µ′′(ξ0)

4
.

Proof. Taking the derivative of (2-7) with respect to ξ (with ρ = 1), we get

(Hξ −µ(ξ))∂2
ξ uξ = 2µ′(ξ)∂ξuξ + 4(τ − ξ)∂ξuξ + (µ′′(ξ)− 2)uξ .

It remains to take ξ = ξ0 and to write the Fredholm alternative. �

Proposition 2.7. We have

(H−µ)(∂2
ρu)ρ=1,ξ=ξ0 =−2(∂2

τ +(τ−ξ0)
2)(∂ρu)ρ=1,ξ=ξ0−2ξ0(τ−ξ0)(∂ρu)ρ=1,ξ=ξ0+

(
2∂2
τ −

ξ0τ

2

)
uξ0

and 〈
(∂2
τ + (τ − ξ0)

2)(∂ρu)ρ=1,ξ=ξ0, uξ0

〉
=−

20

2
.

Proof. We just have to take the derivative of (2-8) with respect to ρ and ρ = 1, ξ = ξ0. To get the second
identity, we use the Fredholm alternative, Corollaries 2.4 and 2.5. �

Taking the derivative of (2-9) with respect to ρ, we find:

Lemma 2.8. We have

(H −µ)(∂ρSu)ρ=1,ξ=ξ0 = (−∂
2
τ + τ(τ − ξ0))uξ0 − (∂ρH)ρ=1,ξ=ξ0(S0u)+ (∂2

τ + (τ − ξ0)
2)(∂ρu)ρ=1,ξ=ξ0

and 〈
(∂ρH)ρ=1,ξ=ξ0(S0u), u

〉
=
20

2
.

Lemma 2.9. We have
〈(τ − ξ0)S0u, uξ0〉 =

ξ0

8
µ′′(ξ0).

Proof. We have
µ′(ξ)=−2

∫
τ>0
(ρ1/2τ − ξ)u2

ρ,ξ dτ

and
S0µ
′
=−2

∫
τ>0

S0(ρ
1/2τ − ξ)u2

ξ0
dτ − 4

∫
τ>0
(τ − ξ0)S0u uξ0 dτ. �

Combining Lemmas 2.8 and 2.9, we deduce:

Proposition 2.10. We have〈
(−∂2

τ − (τ − ξ0)
2)S0u, uξ0

〉
=−

20

2
+
20

8
µ′′(ξ0).
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Proposition 2.11. We have 〈
(∂2
τ + (τ − ξ0)

2)vξ0, uξ0

〉
=
ξ0µ
′′(ξ0)

4
.

Proof. We take the derivative of (2-7) with respect to ρ (after having fixed ξ = ξ0):

(H −µ)(∂ξu)ξ=ξ0 = 2(ρ1/2τ − ξ0)uρ,ξ0 .

We deduce

(H −µ)(∂ρ∂ξu)ρ=1,ξ=ξ0 =−(∂ρH)ρ=1,ξ=ξ0vξ0 + τuξ0 + 2(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0 .

The Fredholm alternative provides〈
(∂2
τ + τ(τ − ξ0))vξ0, uξ0

〉
= ξ0+ 2

〈
(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0, uξ0

〉
=
ξ0

2
,

where we have used Corollary 2.4. �

We have now the elements to perform an accurate construction of quasimodes.

Construction. We look for quasimodes expressed as power series,

ψ ∼
∑
j≥0

ψ j h j/4,

and eigenvalues,
λ∼ h

∑
j≥0

λ j h j/4,

so that, in the sense of formal series,

L(h)ψ ∼ λψ.

Term in h. We consider the equation
(L0− λ0)ψ0 = 0.

We are led to take λ0 =20 and ψ0(σ, τ )= f0(σ )uξ0(τ ).

Term in h5/4. We want to solve the equation

(L0−20)ψ1 = λ1ψ0−L1ψ0.

We have, using that b1 =−a1 and by Proposition 2.2,

(L0−20)
(
ψ1− i f ′0(σ )vξ0 − a1σ f0(σ )S0u

)
= λ1uξ0 .

This implies that λ1 = 0, and we take

ψ1(σ, τ )= i f ′0(σ )vξ0 + a1σ f0(σ )S0u+ f1(σ )uξ0(τ ),

f0 and f1 being to determine.
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Term in h3/2. We consider the equation

(L0−20)ψ2 = λ2ψ0−L1ψ1−L2ψ0.

Let us rewrite this equation by using the expression of ψ1:

(L0−20)ψ2 = λ2ψ0−L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L1( f1(σ )uξ0)−L2ψ0.

With Proposition 2.2, we deduce

(L0−20)
(
ψ2− i f ′1(σ )vξ0 − a1σ f1(σ )S0u

)
= λ2ψ0−L1

(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L2ψ0.

We take the partial scalar product (with respect to τ ) of the right-hand side with uξ0 , and we get the
equation 〈

L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
+L2ψ0, uξ0

〉
τ
= λ2 f0.

This equation can be written in the form(
AD2

σ + B1σDσ + B2 Dσσ +Cσ 2
+ D

)
f0 = λ2 f0.

Terms in D2
σ . Let us first analyze 〈L2uξ0, uξ0〉. It is easy to see that this term is 1. Let us then analyze

〈L1ψ1, uξ0〉. With Proposition 2.6, we deduce that this term is −2〈(τ − ξ0)vξ0uξ0〉 = (µ
′′(ξ0)/2)− 1. We

get A = µ′′(ξ0)/2> 0.

Terms in σ 2. Let us collect the terms of 〈L2uξ0, uξ0〉. We get

20a11+ 2b11〈(τ − ξ0)
2uξ0, uξ0〉− a2

1〈(τ − ξ0)
2uξ0, uξ0〉.

With Corollary 2.5, this term is equal to

20a11+20b11−
20

2
a2

1 .

Let us analyze the terms coming from 〈L1ψ1, uξ0〉. We obtain the term

a2
1
〈
(−∂2

τ − (τ − ξ0)
2)S0u, uξ0

〉
=−

20

2
a2

1 +20
µ′′(ξ0)

8
a2

1,

where we have used Proposition 2.10. Thus, we have

C =20a11+20b11−20a2
1 +

20

8
µ′′(ξ0)a2

1 > 0.

Terms in σDσ . This term only comes from 〈L1ψ1, uξ0〉. It is equal to

a1
〈
(∂2
τ + (τ − ξ0)

2)vξ0, uξ0

〉
= a1

ξ0µ
′′(ξ0)

4
,

where we have used Proposition 2.11.

Terms in Dσσ . This term is
2a1〈(τ − ξ0)S0u, uξ0〉 = a1

ξ0µ
′′(ξ0)

4
,

where we have applied Lemma 2.9.
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Value of D. We have:

D =
〈(
−a2τ∂

2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)

2
+ a2τ(τ − ξ0)

2)uξ0, uξ0

〉
+
〈(
(b2− k0)τ

2(τ − ξ0)− ia1(τ − ξ0)
)
uξ0, uξ0

〉
.

Using the relations (1-3) and the definition of C1 given in (1-2), we get

D = C(k0, a2, b2).

Let us introduce the quadratic form, which is fundamental in the analysis. We let

Q(σ, η)=
µ′′(ξ0)

2
η2
+ a1

ξ0µ
′′(ξ0)

4
ησ + a1

ξ0µ
′′(ξ0)

4
ση+20

(
a11+ b11− a2

1 + a2
1
µ′′(ξ0)

8

)
σ 2.

Lemma 2.12. Q is definite and positive.

Proof. We notice that µ′′(ξ0) > 0 and a11+ b11− a2
1 + a2

1(µ
′′(ξ0)/8) > 0. The determinant is given by

20
µ′′(ξ0)

2

(
a11+ b11− a2

1 + a2
1
µ′′(ξ0)

8

)
− a2

1
20µ

′′(ξ0)
2

16
=
20µ

′′(ξ0)

2
(a11+ b11− a2

1) > 0. �

We immediately deduce that Q(σ,−i∂σ ) is unitarily equivalent to a harmonic oscillator and that the
increasing sequence of its eigenvalues is given by{

(2n+ 1)
(
20µ

′′(ξ0)

2
(a11+ b11− a2

1)

)1/2}
n∈N

.

The compatibility equation becomes

Q(σ, Dσ ) f0 = (λ2− D) f0.

Thus, we choose λ2 such that λ2−D is in the spectrum of Q(σ, Dσ ) and we take for f0 the corresponding
normalized eigenfunction (which is in the Schwartz class). For that choice of f0, we can consider the
unique solution ψ⊥2 (which is in the Schwartz class) of

(L0−20)ψ
⊥

2 = λ2ψ0−L1
(
i f ′0(σ )vξ0 + a1σ f0(σ )S0u

)
−L2ψ0

satisfying 〈ψ⊥2 , uξ0〉 = 0. It follows that ψ2 is in the form

ψ2 = ψ
⊥

2 (σ, τ )+ i f ′1(σ )vξ0 + a1σ f1(σ )S0u+ f2(σ )uξ0,

where f1 and f2 are still to be determined.

Higher-order terms. Let N ≥ 2. Let us assume that, for 0≤ j ≤ N − 2, the functions ψ j are determined
and belong to the Schwartz class. Moreover, let us also assume that, for j = N − 1, N , we can write

ψ j (σ, τ )= ψ
⊥

j (σ, τ )+ i f ′j−1(σ )vξ0 + a1σ f j−1(σ )S0u+ f j (σ )uξ0,

where the (ψ⊥j ) j=N−1,N and fN−2 are determined functions in the Schwartz class and the ( f j ) j=N−1,N

are not determined. Finally, we also assume that the (λ j )0≤ j≤N are determined. We notice that this
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recursion assumption is satisfied for N = 2. Let us write the equation of order N + 1:

(L0−20)ψN+1 = λN+1ψ0−L1ψN + (λ2−L2)ψN−1−LN+1ψ0+

N−2∑
j=1

(λN+1− j −LN+1− j )ψ j .

This equation takes the form

(L0−20)ψN+1 = λN+1ψ0−L1ψN + (λ2−L2) ψN−1+ FN (σ, τ ),

where FN is a determined function in the Schwartz class by the recursion assumption. By Proposition 2.2,
we can rewrite

(L0−20)
(
ψN+1− i f ′N (σ )vξ0 − a1σ fN (σ )S0u

)
= λN+1ψ0−L1

(
ψ⊥N (σ, τ )+ i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)ψN−1+ FN (σ, τ )

= λN+1ψ0−L1
(
i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)( fN−1uξ0)+G N (σ, τ ),

where G N is a determined function of the Schwartz class. We now write the Fredholm condition. The
same computation as previously leads to an equation in the form

Q(σ,−i∂σ ) fN−1 =
(
λ2−C(a2, b2, k0)

)
fN−1+ λN+1 f0+ gN (σ ),

with gN = 〈G N , uξ0〉τ . This can be rewritten as(
Q(σ,−i∂σ )− (λ2−C(a2, b2, k0))

)
fN−1 = gN (σ )+ λN+1 f0.

The Fredholm condition applied to this equation provides λN+1=−〈gN , f0〉σ and a unique solution fN−1

in the Schwartz class such that 〈 fN−1, f0〉σ = 0. For this choice of fN−1 and λN+1, we can consider the
unique solution ψ⊥N+1 (in the Schwartz class) such that

(L0−20)ψ
⊥

N+1

= λN+1ψ0−L1
(
ψ⊥N (σ, τ )+ i f ′N−1(σ )vξ0 + a1σ fN−1(σ )S0u

)
+ (λ2−L2)ψN−1+ FN (σ, τ ).

This leads us to take

ψN+1 = ψ
⊥

N+1+ i f ′N (σ )vξ0 + a1σ fN (σ )S0u+ fN+1uξ0 .

This ends the proof of the recursion. Thus, we have constructed two sequences (λ j ) j and (ψ j ) j which
depend on n (through the choice of f0). Let us write λn, j for λ j and ψn, j for ψ j to emphasize this
dependence.

Conclusion: proof of Theorem 2.1. Let us consider a smooth cutoff function χ0 near x0. For n ≥ 1 and
J ≥ 0, we let

ψ
[n,J ]
h (x)= χ0(x)

J∑
j=0

ψn, j
(
h−1/4s(x), h−1/2t (x)

)
h j/4 (2-10)

and

λ
[n,J ]
h =

J∑
j=0

λn, j h j/4.
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Using the fact that the ψ j are in the Schwartz class, we get∥∥(Ph,A− λ
[n,J ]
h

)
ψ
[n,J ]
h

∥∥≤ C(n, J )h(J+1)/4
‖ψ
[n,J ]
h ‖.

Thanks to the spectral theorem, we deduce Theorem 2.1.

3. Rough lower bound and consequence

This section is devoted to establishing a rough lower bound for λn(h). In particular, we give the first term
of the asymptotics and deduce the so-called normal Agmon estimates, which are rather standard (see, for
instance, [Helffer and Morame 2001; Fournais and Helffer 2006; Raymond 2009]).

A first lower bound. We now aim at proving a lower bound:

Proposition 3.1. We have
λn(h)≥20ha(x0)β(x0)−Ch5/4.

Proof. We use a partition of unity with balls D j of size r = hρ , satisfying∑
j

χ2
j = 1 and

∑
j

‖∇χ j‖
2
≤ Cr−2

= Ch−2ρ . (3-1)

The so-called IMS formula (see [Cycon et al. 1987]) provides

Qh,A(ψ)=
∑

j

Qh,A(χ jψ)− h2
∑

j

∫
�

a‖∇χ j‖
2
|ψ |2 dx,

and thus
Qh,A(ψ)≥

∑
j

Qh,A(χ jψ)−Ch2−2ρ
‖ψ‖2.

In each ball, we approximate a by a constant:

Qh,A(χ jψ)≥ (a(x j )−Chρ)‖(−ih∇ + A)(χ jψ)‖
2.

If D j does not intersect the boundary, then

‖(−ih∇ + A)(χ jψ)‖
2
≥ h

∫
�

β(x)|χ jψ |
2 dx .

We deduce
Qh,A(χ jψ)≥

(
a(x j )β(x j )h−Ch1+ρ)

‖χ jψ‖
2.

If D j intersects the boundary, we can assume that its center is on the boundary, and we write in the local
coordinates (up to a change of gauge):

Qh,A(χ jψ)≥ (1−Chρ)
∫

ã
(
h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2) ds dt.

We deduce

Qh,A(χ jψ)≥ (1−Chρ)(a(x j )−Chρ)
∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2 ds dt.
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We approximate A1 by its linear approximation Alin
1 , and we have∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ã1)(χ jψ)|

2 ds dt

≥ (1− ε)
∫

h2
|∂t(χ jψ)|

2
+ |(−ih∂s + Ãlin

1 )(χ jψ)|
2 ds dt −Cε−1

∫
|x − x j |

4
|χ jψ |

2 dx

≥
(
(1− ε)20β(x j )h−Cε−1h4ρ)

‖χ jψ‖
2.

To optimize the remainder, we choose ε = h2ρ−1/2. Then we take ρ = 3
8 , and the conclusion follows. �

Normal Agmon estimates: localization in t. We now prove the following (weighted) localization esti-
mates:

Proposition 3.2. Let us consider a smooth cutoff function χ supported in a fixed neighborhood of the
boundary. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ ≥ 0, there exist ε0,C ≥ 0 and h0 such that,
for h ∈ (0, h0),

‖eε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh‖
2
≤ C‖eδχ(x)|s(x)|h

−1/4
ψh‖

2,

Qh,A
(
eε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
ψh
)
≤ Ch‖eδχ(x)|s(x)|h

−1/4
ψh‖

2.

Proof. The proof is based on a technique of Agmon (see, for instance, [Agmon 1982; 1985; Helffer
1988]). Let us recall the IMS formula; we have, for an eigenpair (λn(h), ψh),

Qh,A(e8ψh)= λn(h)‖e8ψh‖
2
+ h2
‖a1/2
∇8e8ψh‖

2.

We take
8= ε0t (x)h−1/2

+ δχ(x)|s(x)|h−1/4, (3-2)

where χ is a smooth cutoff function supported near the boundary and where s : ∂� 7→ (−|∂�|/2, |∂�|/2)
is the curvilinear coordinate such that s(x0)= 0. We use a partition of unity χ j as in (3-1), but with balls
of radius Rh1/2 with R large enough (the x j denote the centers), and we get∑

j

(
Qh,A(χ j e8ψh)− λn(h)‖χ j e8ψh‖

2
−CR−2h− h2

‖χ j a1/2
∇8e8ψh‖

2)
≤ 0.

We now distinguish between the balls intersecting the boundary (bnd) and the others (int). For the interior
balls, we have the lower bound, for η > 0 and h small enough,

Qh,A(χ j e8ψh)≥
(
a(x j )β(x j )h−Ch3/2)

‖χ j e8ψh‖
2.

For the boundary balls, we have

Qh,A(χ j e8ψh)≥
(
20a(x j )β(x j )h−Ch3/2)

‖χ j e8ψh‖
2.

Let us now split the sum:∑
j int

∫ (
a(x j )β(x j )h−20a(x0)β(x0)h−Ch3/2

−CR−2h−Ch2
‖∇8‖2

)
|χ j e8ψh|

2 dx

≤ Ch
∑
j bnd

‖χ j e8ψh‖
2.
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With (3-2), we can notice that
‖∇8‖2 ≤ C(ε2

0h−1
+ δ2h−1/2).

Taking R large enough and ε0 and h small enough and using (1-5), we get the existence of c> 0 such that

a(x j )β(x j )h−20a(x0)β(x0)h−Ch3/2
−CR−2h−Ch2

‖∇8‖2 ≥ ch.

We deduce
c
∑
j int

‖χ j e8ψh‖
2
≤ C

∑
j bnd

‖χ j e8ψh‖
2.

Due to support considerations, we can write

C
∑
j bnd

‖χ j e8ψh‖
2
≤ C̃

∑
j bnd

∥∥χ j eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

Thus, we infer
‖e8ψh‖

2
≤ C̃

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

We deduce that ∑
j

Qh,A(χ j e8ψh)≤ Ch
∥∥eδχ(x)|s(x)|h

−1/4
ψh
∥∥2
,

and thus
Qh,A(e8ψh)≤ Ch

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
. �

Corollary 3.3. Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ≥ 0, there exist ε0,C ≥ 0

and h0 such that, for h ∈ (0, h0),∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2
≤ C

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,

Qh,A
(
χh,ηeε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
ψh
)
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,

where χh,η(x)= χ̂(t (x)h−1/2+η), and with χ̂ a smooth cutoff function being 1 near 0.

Proof. With Proposition 3.2, we have∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2
≤ C

∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

We can write∥∥eδχ(x)|s(x)|h
−1/4
ψh
∥∥2
=
∥∥χh,ηeδχ(x)|s(x)|h

−1/4
ψh
∥∥2
+
∥∥√1−χh,ηeδχ(x)|s(x)|h

−1/4
ψh
∥∥2
.

Using Proposition 3.2, we have the estimate∥∥√1−χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
=
∥∥√1−χh,ηe−ε0t (x)h−1/2

eχ(x)ε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

ψh
∥∥2

= O(h∞)
∥∥eδχ(x)|s(x)|h

−1/4
ψh
∥∥2
.

The IMS formula provides

Qh,A(e8ψh)= Qh,A(χh,ηe8ψh)+ Qh,A
(√

1−χh,ηe8ψh
)
+ O(h1+2η)‖e8ψh‖

2. �
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Corollary 3.4. Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ≥ 0, there exist ε0,C ≥ 0

and h0 such that, for h ∈ (0, h0),∥∥χh,ηeε0t (x)h−1/2
+δχ(x)|s(x)|h−1/4

(−ih∂s + Ã1)ψh
∥∥2
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
,∥∥χh,ηeε0t (x)h−1/2

+δχ(x)|s(x)|h−1/4
(−ih∂t + Ã2)ψh

∥∥2
≤ Ch

∥∥χh,ηeδχ(x)|s(x)|h
−1/4
ψh
∥∥2
.

4. Order of the second term: localization in s

It is well-known that the order of the second term in the asymptotics of λn(h) is closely related to
localization properties of the corresponding eigenfunctions. The aim of this section is to establish such
properties. Let us mention that similar estimates were proved in [Raymond 2009] through a technical
analysis. Here we give a less technical proof using a very rough functional calculus.

Proposition 4.1. Under the generic assumptions, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0),

λn(h)≥20a(x0)β(x0)h−Ch3/2.

Moreover, for all δ ≥ 0, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0),∫
e2δχ(x)|s|h−1/4

|ψ |2 ds dt ≤ C‖ψ‖2.

Proof. Let us recall the so-called IMS formula (see, for instance, [Cycon et al. 1987]); we have, for an
eigenpair (λn(h), ψ),

Qh,A(e8ψ)− λn(h)‖e8ψ‖2− h2
‖a1/2
∇8e8ψ‖2 = 0.

We take
8= δχ(x)|s(x)|h−1/4, with δ ≥ 0. (4-1)

The idea is now to prove a suitable lower bound for Qh,A. We use a partition of unity (χ j ) (see (3-1))
with balls of radius h1/4 and centers (s j , t j ). We get the lower bound

Qh,A(e8ψ)≥
∑

j

Qh,A(ψ j )−Ch3/2
‖e8ψ‖2,

where
ψ j = χ j e8ψ,

and we deduce ∑
j

Qh,A(ψ j )−Ch3/2
‖ψ j‖

2
− λn(h)‖ψ j‖

2
≤ 0, (4-2)

since we have, thanks to (4-1), ‖∇8‖2 ≤ Ch−1/2.

Interior balls. Considering the balls not intersecting the boundary, we get (see the proof of Proposition 3.1):∑
j int

Qh,A(ψ j )≥
∑
j int

(
a(x j )β(x j )h−Ch5/4)

‖ψ j‖
2.

Using Assumption (1-4), we deduce∑
j int

Qh,A(ψ j )≥
∑
j int

(
20a(x0)β(x0)h−Ch5/4)

‖ψ j‖
2. (4-3)
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Boundary balls. Let us consider the j such that D j intersects the boundary (we can assume that its center
is (s j , 0)). Using first the normal Agmon estimates, we have the lower bound∑

j bnd

Qh,A(ψ j )≥
∑
j bnd

∫
ã
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt −Ch3/2
‖e8ψ‖2,

where we have used the IMS formula to get∑
j bnd

∫
t ã
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt

≤ C
∫

0<t<t0
t ã
(
|(−ih∂t + Ã2)e8ψ |2+ |(ih∂s + Ã1)e8ψ |2

)
ds dt +Ch3/2

‖e8ψ‖2.

Using again the normal estimates (see Corollaries 3.3 and 3.4) and also the size of the balls, we get∑
j bnd

Qh,A(ψ j )≥
∑
j bnd

∫
ãlin

j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt −Ch3/2
‖e8ψ‖2, (4-4)

where
ãlin

j = a j + (s− s j )∂s ã(x j ).

Let us fix S0 > 0 to distinguish between the balls whose centers are close to x0 = (0, 0) and the others.

Case |s j | ≥ S0. Let us consider the boundary balls such that |s j | ≥ S0. Using the size of the balls, we get
the lower bound∫

ãlin
j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt ≥
(
20a(x j )β(x j )h−Ch5/4)

‖ψ j‖
2

≥20(1+ ε)a(x0)β(x0)h‖ψ j‖
2, (4-5)

where ε > 0 only depends on S0, β, a and �.

Case |s j | ≤ S0. Let us consider the boundary balls such that |s j | ≤ S0. In each ball, we can use a new
gauge so that∑

j bnd
|s j |≤S0

∫
ãlin

j
(
|(−ih∂t + Ã2)ψ j |

2
+ |(ih∂s + Ã1)ψ j |

2) ds dt

=

∑
j bnd
|s j |≤S0

∫
ãlin

j
(
|h∂tψ j |

2
+ |(ih∂s + Ãnew

1 )ψ j |
2) ds dt,

where Ãnew
1 (we omit the dependence on j) satisfies

| Ãnew
1 − t β̃ lin

j | ≤ C(t |s− s j |
2
+ t2),

with
β̃ lin

j = β̃ j + ∂s β̃(x j )(s− s j ).
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We obtain, thanks to the (weighted) estimates of Agmon,∑
j bnd
|s j |≤S0

∫
ãlin

j
(
|h∂tψ j |

2
+ |(ih∂s + Ãnew

1 )ψ j |
2) ds dt

≥ (1− h1/2)
∑
j bnd
|s j |≤S0

∫
ãlin

j
(
h2
|∂tψ j |

2
+ |(ih∂s + t β̃ lin

j )ψ j |
2) ds dt −Ch3/2

‖e8ψ‖2. (4-6)

In each ball, we use the change of variables (which is a scaling with respect to τ depending on σ )

σ = s and τ = {β̃ lin
j }

1/2t.

We can write
∂t = {β̃

lin
j }

1/2∂τ and ∂s = ∂σ + ∂s({β̃
lin
j }

1/2)∂τ

and
ds dt = {β̃ lin

j }
−1/2 dσ dτ.

We obtain∫
ãlin

j
(
h2
|∂tψ j |

2
+ |(ih∂s + t β̃ lin

j )ψ j |
2) ds dt

≥ (1− h1/2)

∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+ |
(
ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j |

2)
{β̃ lin

j }
−1/2 dσ dτ

−Ch3/2
∫
|τ∂τ ψ̂ j |

2 dσ dτ, (4-7)

where ψ̂ j denotes ψ j in the coordinates (σ, τ ). With the normal Agmon estimates (see Corollaries 3.3
and 3.4), we have ∑

j bnd
|s j |≤S0

∫
|τ∂τ ψ̂ j |

2 dσ dτ ≤ C‖e8ψ‖2.

We must now obtain an appropriate lower bound for∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+ |
(
ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j |

2)
{β̃ lin

j }
−1/2 dσ dτ.

This is the end of the following lemma.

Lemma 4.2. We have∫
ãlin

j β̃
lin
j
(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥ h20

∫ (
a(x0)β(x0)+

α

4
σ 2
)
|ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2.

Proof. We can notice that the Dirichlet realization on (−S̃0, S̃0) of Dσ {β̃
lin
j }
−1/2 is self-adjoint on

L2({β̃ lin
j }
−1/2dσ). Thus, we shall commute Dσ and {β̃ lin

j }
−1/2 and control the remainder due to the

commutator.
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Notation 4.3. Henceforth, ∂σ ( f ) will denote the derivative of the function f , whereas ∂σ f will denote
the composition of the differentiation ∂σ with the multiplication by f .

We can write∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

=

∫
ãlin

j β̃
lin
j h2
|∂t ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ

+

∫
alin

j β̃
lin
j

∣∣(ih∂σ {β̃ lin
j }
−1/2
− ih∂σ ({β̃ lin

j }
−1/2)+ τ

)
ψ̂ j
∣∣2{β̃ lin

j }
−1/2 dσ dτ.

We can estimate the double product:

2h<
(∫

alin
j β̃

lin
j
(
ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j i∂σ

(
{β̃ lin

j }
−1/2)ψ̂ j {β̃

lin
j }
−1/2 dσ dτ

)
=−2h2

<

(∫
alin

j β̃
lin
j ∂σ

(
{β̃ lin

j }
−1/2)∂σ ({β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2ψ̂ j dσ dτ

)
=−h2

∫
alin

j β̃
lin
j ∂σ

(
{β̃ lin

j }
−1/2)∂σ(∣∣{β̃ lin

j }
−1/2ψ̂ j

∣∣2) dσ dτ = O(h2)‖ψ j‖
2,

where we have used an integration by parts for the last estimate. We deduce∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih{β̃ lin

j }
−1/2∂σ + τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥

∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ j‖
2. (4-8)

For S0 small enough, we have, using the nondegeneracy, for s such that |s| ≤ S̃0 (with S̃0 slightly bigger
than S0),

ãlin
j (s)β̃

lin
j (s)≥ a(x0)β(x0)+

α

4
|s|2.

Let us analyze the integral:∫ ∣∣σ (ih∂σ {β̃ lin
j }
−1/2
+ τ

)
ψ̂ j
∣∣2{β̃ lin

j }
−1/2 dσ dτ

=

∫ ∣∣(ih∂σ {β̃ lin
j }
−1/2
+ τ

)
σψ̂ j − ih{β̃ lin

j }
−1/2ψ̂ j

∣∣2{β̃ lin
j }
−1/2 dσ dτ.

We must estimate the double product:

2<
∫ ((

ih∂σ {β̃ lin
j }
−1/2
+ τ

)
σψ̂ j ih{β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2 dσ dτ

=−2h2
<

∫ (
∂σ
(
{β̃ lin

j }
−1/2σψ̂ j

)
{β̃ lin

j }
−1/2ψ̂ j

)
{β̃ lin

j }
−1/2 dσ dτ

=−h2
∫
∂σ
∣∣{β̃ lin

j }
−1/2ψ̂ j

∣∣2{β̃ lin
j }
−1/2 dσ dτ + O(h2)‖ψ̂ j‖

2
= O(h2)‖ψ̂ j‖

2.
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We infer:∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

≥ a(x0)β(x0)

∫ (
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
ψ̂ j
∣∣2){β̃ lin

j }
−1/2 dσ dτ

+
α

4

∫ (
h2
|∂t(σ ψ̂ j )|

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ

)
σψ̂ j

∣∣2){β̃ lin
j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2.

We recall that, for all ξ ∈ R,∫ (
h2
|∂tφ|

2
+
∣∣(τ − hξ − ξ0h1/2)φ

∣∣2) dτ ≥ hµ(ξ0+ h1/2ξ)‖φ‖2 ≥20h‖φ‖2.

We infer with the functional calculus:∫
ãlin

j β̃
lin
j

(
h2
|∂t ψ̂ j |

2
+
∣∣(ih∂σ {β̃ lin

j }
−1/2
+ τ − ξ0h1/2)ψ̂ j

∣∣2){β̂ lin
j }
−1/2 dσ dτ

≥ h20

∫ (
a(x0)β(x0)+

α

4
σ 2
)
|ψ̂ j |

2
{β̃ lin

j }
−1/2 dσ dτ −Ch2

‖ψ̂ j‖
2. (4-9)

This concludes the proof. �

Lower bound for λn(h). If we take δ = 0, we deduce, with (4-2)–(4-7) and Lemma 4.2,

λn(h)‖ψ‖2 ≥
∑

j

20ha(x0)β(x0)

∫
|ψ j |

2 dx −Ch3/2
‖ψ‖2.

Tangential Agmon estimate. Gathering the estimates (4-3), (4-5), (4-7) and Lemma 4.2, we deduce the
existence of c > 0 such that∑

j bnd
|s j |≤S0

(
20h

∫ (
a(x0)β(x0)+

α

4
s2
)
|ψ j |

2 ds dt −20h‖ψ j‖
2
−Ch3/2

‖ψ j‖
2
)

+

∑
j bnd
|s j |≥S0

ch‖ψ j‖
2
+

∑
j int

ch‖ψ j‖
2
≤ 0

and ∑
j bnd

2C0h1/4
≤|s j |≤s0

(
20h

∫
α

4
s2
|ψ j |

2 ds dt −Ch3/2
‖ψ j‖

2
)
≤ Ch3/2

‖ψ0‖
2
≤ Ch3/2

‖ψ‖2.

Taking C0 large enough, we infer ∑
j bnd

2C0h1/4
≤|s j |≤s0

‖ψ j‖
2
≤ C‖ψ‖2,

so that ∑
j bnd
|s j |≤s0

‖ψ j‖
2
≤ C‖ψ‖2 and

∑
j

‖ψ j‖
2
= ‖e8ψ‖2 ≤ C‖ψ‖2. �
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Let us write an immediate corollary (see Corollaries 3.3 and 3.4).

Corollary 4.4. Let (η1, η2) ∈
(
0, 1

2

]
×
(
0, 1

4

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all (k, l) ∈N,

there exist C ≥ 0 and h0 > 0 such that, for h ∈ (0, h0),∥∥χh,η1,η2sk t lψh
∥∥2
≤ Chk/2hl

‖ψh‖
2,∥∥χh,η1,η2sk t l(−ih∂s + Ã1)ψh

∥∥2
≤ Chhk/2hl

‖ψh‖
2,∥∥χh,η1,η2sk t l(−ih∂t + Ã2)ψh

∥∥2
≤ Chhk/2hl

‖ψh‖
2,

where χh,η1,η2(x)= χ̂(t (x)h
−1/2+η1)χ̂(s(x)h−1/4+η2). Moreover, we have∥∥(1−χh,η1,η2)s

k t lψh
∥∥2
= O(h∞)‖ψh‖

2,∥∥(1−χh,η1,η2)s
k t l(−ih∂s + Ã1)ψh

∥∥2
= O(h∞)‖ψh‖

2,∥∥(1−χh,η1,η2)s
k t l(−ih∂t + Ã2)ψh

∥∥2
= O(h∞)‖ψh‖

2.

Remark 4.5. In the following, each reference to the “estimates of Agmon” will be a reference to this last
corollary. Moreover, at some point, the localization ideas behind Section 3 and 4, which are summarized
in the last corollary, follow from the general philosophy developed in the last decade (an improvement of
the approximation of the eigenvalues provides an improvement of localization and conversely). In the
next section, we will strongly use these a priori estimates.

5. Unitary transforms and the Born–Oppenheimer approximation

We use a cutoff function χh near x0 with support or order h1/4−η̃ with η̃ > 0. For all N ≥ 1, let us consider
L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that 〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the
N dimensional space defined by

EN (h)= span
1≤n≤N

ψ̃n,h, where ψ̃n,h = χhψn,h .

Remark 5.1. The estimates of Agmon of Corollary 4.4 are satisfied by all the elements of EN (h).

We can notice that, with the estimates of Agmon, for all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≤ λN (h)‖ψ̃‖2+ O(h∞)‖ψ̃‖2. (5-1)

In the following subsection, we provide a lower bound for Qh,A on EN (h).

Remark 5.2. Let us underline the main spirit of this section. We are going to use successive canonical
transformations of the symbol of our operator (change of variable, change of gauge, weighted Fourier
transform) or, equivalently, of the associated quadratic form. In the spirit of Egorov’s theorem, all these
transformations will give rise to different remainders which can be treated thanks to the a priori localization
estimates. Then, after conjugations by these successive unitary transforms, we will reduce the analysis to
one of an electric Laplacian in the Born–Oppenheimer form.
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Choice of gauge and new coordinates: a first lower bound. On the support of χh , we use a gauge such
that Ã2 = 0 and

| Ã1− Ãapp
1 | ≤ C(t3

+ |s|t2
+ |s|2t),

where

Ãapp
1 = t (1+ b1s+ b11s2)− ξ0b̂(s)1/2h1/2

+
b̂2

2
t2
= t b̂(s)− ξ0b̂(s)1/2h1/2

+
b̂2

2
t2,

where b̂2 = b2− k0. We also let

ãapp(s, t)= 1+ a1s+ a11s2
+ a2t = â(s)+ a2t.

Moreover, in this neighborhood of (0, 0), we introduce new coordinates:

τ = t (b̂(s))1/2, σ = s. (5-2)

In particular, we get
∂t = (b̂(σ ))1/2∂τ , ∂s = ∂σ +

1
2 b̂−1∂s b̂τ∂τ

and
ds dt = b̂−1/2 dσ dτ.

To simplify the notation, we let p = b̂−1/2. We will also use the change of variable

σ̌ =

∫ σ

0

1
p(u)

du = f (σ )

so that L2(pdσ) becomes L2( p̌2 dσ̌ ).
This subsection is devoted to the proof of the following lower bound of Qh,A on EN (h).

Proposition 5.3. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≥ Q̌h,app(ψ̌)−Ch3/2+1/4
‖ψ̃‖2, (5-3)

where

Q̌h,app(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ

+ hα20

∫
σ̌ 2
|ψ̌ |2 p̌2 dσ̌ dτ,

where ψ̌ denotes ψ̃ in the coordinates (σ̌ , τ ).

In order to prove Proposition 5.3, we will need this lemma:

Lemma 5.4. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Qh,A(ψ̃)≥ Q̂h,app(ψ̂)−Ch3/2+1/4
‖ψ̃‖2,
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where

Q̂h,app(ψ̂)

=

∫
m2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ+

∫
m1(σ, τ )

∣∣∣(h4+τ−ξ0h1/2
+

b̂2

2
τ 2
−h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ,

with

4= i∂σ b̂−1/2, m1(σ, τ )= (1+ασ 2)(1+a2τ)(1−τk0)
−1, m2(σ, τ )= (1+ασ 2)(1+a2τ)(1−τk0),

and where ψ̂ denotes ψ̃ in the coordinates (σ, τ ).

Proof. We have

Qh,A(ψ̃)=

∫
ã
(
1− tk(s)

)∣∣(−ih∂t + Ã2)ψ̃
∣∣2+ ã

(
1− tk(s)

)−1∣∣(ih∂s + Ã1)ψ̃
∣∣2 ds dt.

Thanks to the normal and tangential Agmon estimates, we get

Qh,A(ψ̃)≥

∫
ã(1− tk0)h2

|∂t ψ̃ |
2
+ ã(1− tk0)

−1∣∣(ih∂s + Ã1)ψ̃
∣∣2 ds dt −Ch3/2+1/4

‖ψ̃‖2.

The Agmon estimates imply

Qh,A(ψ̃)≥

∫
ãapp(1− tk0)h2

|∂t ψ̃ |
2
+ ãapp(1− tk0)

−1∣∣(ih∂s + Ãapp
1 )ψ̃

∣∣2 ds dt −Ch3/2+1/4
‖ψ̃‖2.

We get

Qh,A(ψ̃)≥

∫
â(1+ a2t)

(
(1− tk0)h2

|∂t ψ̃ |
2
+ (1− tk0)

−1∣∣(ih∂s + Ãapp
1

)
ψ̃
∣∣2) ds dt −Ch3/2+1/4

‖ψ̃‖2.

With the coordinates (σ, τ ), we obtain∫
â(1+a2t)(1−tk0)h2

|∂t ψ̃ |
2
+(1+a2t)(1−tk0)

−1∣∣(ih∂s+ Ãapp
1 )ψ̃

∣∣2 ds dt ≥ Q̂h(ψ̂)−Ch3/2+1/4
‖ψ̃‖2,

where

Q̂h(ψ̂)=

∫
m̃2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m̃1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2b̂−1/2

− h
∂σ b̂

2b̂3/2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ,

where

m̃1(σ, τ )= âb̂(1+ a2τ)(1− τk0)
−1, m̃2(σ, τ )= âb̂(1+ a2τ)(1− τk0).



LAPLACIAN WITH VARIABLE MAGNETIC FIELD TO ELECTRIC LAPLACIAN IN SEMICLASSICAL LIMIT 1313

With the estimates of Agmon, we can simplify the quadratic form modulo lower-order terms:

Q̂h(ψ̂)≥

∫
m̃2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m̃1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

−Ch3/2+1/4
‖ψ̃‖2.

We recall that âb̂ = 1+ασ 2
+ O(|σ |3), so that with the estimates of Agmon we infer

Q̂h(ψ̂)≥

∫
m2(σ, τ )|h∂τ ψ̂ |2b̂−1/2 dσ dτ

+

∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

−Ch3/2+1/4
‖ψ̃‖2.

We now want to replace b̂−1/2i∂σ by i∂σ b̂−1/2, which is self-adjoint on L2(b̂−1/2dσdτ). Writing a
commutator, we get

∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2dσdτ

=

∫
m1(σ, τ )

∣∣∣(hi∂σ b̂−1/2
− ih(∂σ b̂−1/2)+ τ − ξ0h1/2

+
b2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ.

Let us consider the double product

2h<
(∫

m1(σ, τ )
(

hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
= 2h<

(∫
m1(σ, τ )

(
hi∂σ b̂−1/2

− h
b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
=−2h2

<

∫
m1(σ, τ )

(
∂σ (b̂−1/2ψ̂)(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
+ O(h2)‖ψ̂‖2,

where we have used the normal Agmon estimates. We deduce that

2<
(∫

m1(σ, τ )
(

hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂i(∂σ b̂−1/2)ψ̂ b̂−1/2 dσ dτ

)
=−h2

∫
m1(σ, τ )(∂σ b̂−1/2)∂σ |b̂−1/2ψ̂ |2 dσ dτ + O(h2)‖ψ̂‖2

= O(h2)‖ψ̂‖2.
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This implies∫
m1(σ, τ )

∣∣∣(hb̂−1/2i∂σ + τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ

≥

∫
m1(σ, τ )

∣∣∣(hi∂σ b̂−1/2
+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̂

∣∣∣2b̂−1/2 dσ dτ −Ch2
‖ψ̂‖2. �

Proof of Proposition 5.3. We use Lemma 5.4. In the coordinates (σ̌ , τ ), we have

Q̂h,app(ψ̂)=

∫
m2( f −1(σ̌ ), τ )|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
m1( f −1(σ̌ ), τ )

∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ,

where
m1( f −1(σ̌ ), τ )=

(
1+α f −1(σ̌ )2

)
(1+ a2τ)(1− τk0)

−1,

m2( f −1(σ̌ ), τ )=
(
1+α f −1(σ̌ )2

)
(1+ a2τ)(1− τk0).

We notice that f −1(σ̌ )= σ̌ + O(|σ̌ |2), so we can use the estimates of Agmon to get

Q̂h,app(ψ̂)≥

∫
m2(σ̌ , τ )|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
m1(σ̌ , τ )

∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ −Ch3/2+1/4
‖ψ̃‖2.

This inequality can be rewritten as

Q̂h,app(ψ̂)≥ Q̌h,app,1(ψ̌)+ Q̌h,app,2(ψ̌)−Ch3/2+1/4
‖ψ̃‖2,

where

Q̌h,app,1(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ψ̌ |2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ

and

Q̌h,app,2(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ (σ̌ ψ̌)|2 p̌2 dσ̌ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ.

Reduction of Q̌h,app,2(ψ̌). By the estimates of Agmon, we have

Q̌h,app,2(ψ̌)≥

∫
|h∂τ (σ̌ ψ̌)|2 p̌2 dσ̌ dτ

+

∫ ∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2 dσ̌ dτ −Ch3/2+1/4
‖ψ̃‖2.
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Moreover, we get∫ ∣∣∣σ̌(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2
+

b̂2

2
τ 2
− h

b1

2
τDτ

)
ψ̌

∣∣∣2 p̌2dσ̌dτ

≥

∫ ∣∣σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌∣∣2 p̌2dσ̌dτ −Ch3/2+1/4
‖ψ̃‖2.

Let us analyze
∫
|σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌ |2 p̌2 dσ̌ dτ . We have∫ ∣∣σ̌ (ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)ψ̌∣∣2 p̌2 dσ̌ dτ =

∫ ∣∣(ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)σ̌ ψ̌ − ihψ̌
∣∣2 p̌2 dσ̌ dτ.

The double product is

2<
(∫ (

ih p̌−1∂σ̌ p̌+ τ − ξ0h1/2)σ̌ ψ̌ihψ̌ p̌2 dσ̌ dτ
)
=−2h2

<

(∫
( p̌−1∂σ̌ p̌)σ̌ ψ̌ψ̌ p̌2 dσ̌ dτ

)
.

But we have

2<
(∫

∂σ̌ (σ̌ p̌ψ̌) p̌ψ̌ dσ̌ dτ
)
= 2<

(∫
p̌ψ̌ p̌ψ̌dσ̌dτ

)
+

∫
σ̌ ∂σ̌ | p̌ψ̌ |2 dσ̌ dτ

and ∫
σ̌ ∂σ̌ | p̌ψ̌ |2 dσ̌ dτ =−

∫
| p̌ψ̌ |2 dσ̌ dτ.

Gathering the estimates, we obtain the lower bound:

Q̂h,app(ψ̂)≥ Q̌h,app(ψ̌)−Ch3/2+1/4
‖ψ̃‖2.

A weighted Fourier transform: toward a model operator. We now define the unitary transform which
diagonalizes the self-adjoint operator p̌−1 Dσ̌ p̌ (for completeness, one should extend p̌ by 1 away from a
neighborhood of 0). As we will see, with the coordinate σ̌ , this transform admits a nice expression.

Weighted Fourier transform. Let us now introduce the weighted Fourier transform F p̌:

(F p̌ψ)(λ)=

∫
R

e−iλσ̌ψ(σ̌ ) p̌(σ̌ ) dσ̌ = F( p̌ψ).

We observe that F p̌ : L2(R, p̌2dσ̌ )→ L2(R, dλ) is unitary. Standard computations provide

F p̌(( p̌−1 Dσ̌ p̌)ψ)= λF p̌(ψ) and F p̌(σ̌ψ)=−DλF p̌(ψ).

Proposition 5.5. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)|h Dτ φ̌|

2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
φ̌

∣∣∣∣2 dλ dτ

+ hα20

∫
|Dλφ̌|

2 dλ dτ −Ch3/2+1/4
‖ψ̃‖2,
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where φ̌ = e−ib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)F p̌(ψ̌).

Proof. We have

Q̌h,app(ψ̌)=

∫
(1+ a2τ)(1− τk0)|h∂τ ϕ̌|2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ϕ̌

∣∣∣∣2 dλ dτ

+ hα20

∫
|Dλϕ̌|

2 dλ dτ,

where ϕ̌ = F p̌(ψ̌). With the normal estimates, we can write∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
− h

b1

2
τDτ

)
ϕ̌

∣∣∣∣2 dλ dτ

≥

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ

− b1<

(∫
(1+ a2τ)(1− τk0)

−1
(
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌τh Dτ ϕ̌ dλ dτ

)

≥

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ

− b1<

(∫ (
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌τh Dτ ϕ̌ dλ dτ

)
−Ch3/2+1/4

‖ψ̃‖2.

Completing a square and using the normal Agmon estimates to control the additional terms, we get

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)

∣∣∣∣(h Dτ −
b1

2
τ

(
−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
))
ϕ̌

∣∣∣∣2 dλ dτ

+

∫
(1+a2τ)(1−τk0)

−1
∣∣∣∣(−hλ+τ−ξ0h1/2

+
b̂2

2
τ 2
)
ϕ̌

∣∣∣∣2 dλ dτ+hα20

∫
|Dλϕ̌|

2 dλ dτ−Ch3/2+1/4
‖ψ̃‖2.

We now change the gauge by letting

ϕ̌ = eib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)φ̌.

We deduce

Q̌h,app(ψ̌)≥

∫
(1+ a2τ)(1− τk0)|h Dτ φ̌|

2 dλ dτ

+

∫
(1+ a2τ)(1− τk0)

−1
∣∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
τ 2
)
φ̌

∣∣∣∣2 dλ dτ

+ hα20

∫ ∣∣∣∣Dλ

(
e−iλb1τ

2/4φ̌
)∣∣∣∣2 dλ dτ −Ch3/2+1/4

‖ψ̃‖2.
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Finally we write ∫ ∣∣Dλ

(
e−iλb1τ

2/4φ̌
)∣∣2 dλ dτ =

∫ ∣∣∣∣Dλφ̌−
b1

4
τ 2φ̌

∣∣∣∣2 dλ dτ

≥

∫
|Dλφ̌|

2 dλ dτ −C‖τ 2φ̌‖‖Dλφ̌‖

≥

∫
|Dλφ̌|

2 dλ dτ −C‖τ 2ψ̌‖‖Dλφ̌‖.

In addition, we notice that

‖Dλφ̌‖ ≤ C
(
‖σ̌ ψ̌‖+‖τ 2ψ̌‖

)
≤ Ch1/4

‖ψ̃‖. �

In order to get a good model operator, we shall add a cutoff function with respect to τ . Let η ∈
(
0, 1

100

)
.

Let χ be a cutoff function such that

χ(t)= 1 for |t | ≤ 1, 0≤ χ ≤ 1, suppχ ⊂ [−2, 2].

We define

l(x)= xχ(hηx).

Applying the normal Agmon estimates, we have:

Proposition 5.6. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̃ ∈ EN (h),

Q̌h,app(ψ̌)≥

∫ (
1+ a2h1/2l(h−1/2τ)

)(
1− h1/2l(h−1/2τ)k0

)
|h Dτ φ̌|

2 dλ dτ

+

∫ (
1+ a2h1/2l(h−1/2τ)

)(
1− h1/2l(h−1/2τ)k0

)−1
∣∣∣(−hλ+ τ − ξ0h1/2

+
b̂2

2
hl(h−1/2τ)2

)
φ̌

∣∣∣2 dλ dτ

+ hα20

∫
|Dλφ̌|

2 dλ dτ −Ch3/2+1/4
‖ψ̃‖2,

where φ̌ = e−ib1/2h(−hλτ 2/2+τ 3/3−ξ0h1/2τ 2/2+(b2/8)τ 4)F p̌(ψ̌).

Remark 5.7. In particular, we have reduced the analysis to an electric Laplacian (with curvature terms),
which has essentially the Born–Oppenheimer form (see our recent work [Bonnaillie-Noël et al. 2012],
where a similar and simpler model appears). To see this more precisely, let us adopt a heuristical point of
view. If we forget the different terms due to curvature, the operator which appears is in the form

hα20 D2
λ+ h2 D2

τ + (−hλ+ τ − ξ0h1/2)2.

After the rescaling λ= h−1/4λ̃, τ = h1/2x , we get

h
(
h1/2α20 D2

λ̃
+ D2

x + (−h1/4λ̃− x − ξ0)
2).
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Therefore we are led to analyze a problem which is semiclassical with respect to just one variable. At
some point (that we will justify at the end of this section), we can reduce the study to

h
(
h1/2α20 D2

λ̃
+µ(ξ0+ h1/4λ̃)

)
,

and then (Taylor expansion)

h
(

h1/2α20 D2
λ̃
+20+

µ′′(ξ0)

2
h1/2λ̃2

)
.

Finally we recognize the harmonic oscillator, whose spectrum is well-known.

A simpler model in the Born–Oppenheimer spirit. We introduce the rescaled quadratic form:

Qη,h(ϕ)=

∫ (
1+ a2h1/2l(x)

)(
1− l(x)k0h1/2)

|∂xϕ|
2 dλ dx

+

∫ (
1+ a2l(x)h1/2)(1− l(x)k0h1/2)−1

∣∣∣∣(x − ξ0+ h1/2λ+
b̂2

2
l(x)2h1/2

)
ϕ

∣∣∣∣2 dλ dx

+α20

∫
|Dλϕ|

2 dλ dx .

We recall that b̂2 = b2 − k0. We will denote by Hη,h its corresponding Friedrichs extension. We will
denote by νn(Qη,h) the sequence of its Rayleigh quotients. For each λ, we will need to consider the
quadratic form

qλ,η,h(ϕ)=
∫ (

1+ a2h1/2l(x)
)(

1− l(x)k0h1/2)
|∂xϕ|

2 dx

+

∫ (
1+ a2l(x)h1/2)(1− l(x)k0h1/2)−1

∣∣∣∣(x − ξ0+ h1/2λ+
b̂2

2
l(x)2h1/2

)
ϕ

∣∣∣∣2 dx,

whose domain is B1(R+). We denote by ν j (qλ,η,h) the increasing sequence of the eigenvalues of the
associated operator. The main proposition of this subsection is the following:

Proposition 5.8. For all n ≥ 1, there exist h0 > 0 and C > 0 such that, for h ∈ (0, h0):

νn(Qη,h)≥20+

(
C(k0, a2, b2)+ (2n− 1)

√
αµ′′(ξ0)20

2

)
h1/2
−Ch1/2+1/8.

With Propositions 5.6 and 5.3, inequality (5-1), and the min-max principle, we first deduce the size of
the spectral gap between the lowest eigenvalues of Ph,A. Then, with Theorem 2.1, we deduce Theorem 1.3.

Elementary properties of the spectrum. This subsection is devoted to basic properties of the spectrum of
Qη,h . The following proposition provides a lower bound for ν1(qλ,η,h).

Proposition 5.9. There exist positive constants C, c0,M and h0 such that if h ∈ (0, h0), then:

(1) If |λ| ≥ Mh−1/4−η, then
ν1(qλ,η,h)≥20+ c0 min(1, λ2h).
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(2) If |λ| ≤ Mh−1/4−η, then

ν1(qλ,η,h)≥20+C(k0, a2, b2)h1/2
+
µ′′(ξ0)

2
λ2h−Ch3/4−3η,

where C(k0, a2, b2) is given in Theorem 1.3.

Proof. The proof is left to the reader as an adaptation of [Fournais and Helffer 2010, Proposition 5.2.1]. �

Let us now prove a lower bound for the essential spectrum of Hη,h .

Proposition 5.10. There exist h0 > 0 and c̃0 > 0 such that, if h ∈ (0, h0), then

inf σess(Qη,h)≥20+ c̃0.

Proof. Let φ ∈ Dom(Qη,h) such that supp(φ) ⊂ R2
+
\ [−R̃, R̃]2. Let us use a partition of unity

χ2
1,R +χ

2
2,R = 1 such that χ1,R(x)= χ1(R−1x) and where χ1 is a smooth cutoff function being 1 near 0.

We have
Qη,h(φ)≥ Qη,h(χ1,Rφ)+ Qη,h(χ2,Rφ)−CR−2

‖φ‖2.

For R ≥ 2h−η, we have (the metrics becomes flat and we can compare with a problem in R2)

Qη,h(χ2,Rφ)≥ ‖χ2,Rφ‖
2.

We have
Qη,h(χ1,Rφ)≥

∫
R2
+

ν1(qλ,η,h)|χ1,Rφ|
2
+α20|Dλ(χ1,Rφ)|

2 dx dλ.

Taking h ∈ (0, h0) (where h0 is given by Proposition 5.9) and R̃ ≥ h−1/2, we infer

Qη,h(χ1,Rφ)≥

∫
R2
+

(20+ c0)|χ1,Rφ|
2 dx dλ.

This implies that
Qη,h(φ)≥

(
min(1,20+ c0)−Ch2η)

‖φ‖2.

The conclusion follows from a Persson’s lemma-like argument (see [Persson 1960; Fournais and Helffer
2010, Appendix B.3]). �

The following proposition provides an upper bound for the lowest eigenvalues of Hη,h .

Proposition 5.11. For all M ≥ 1, there exist h0 > 0, C > 0 such that for all 1≤ n ≤ M :

νn(Qη,h)≤ h−1λn(h)+ O(h∞).

Proof. This is a consequence of (5-1) together with the lower bounds of Propositions 5.3 and 5.6 and the
min-max principle (see for instance [Reed and Simon 1978]). �

Remark 5.12. For h small enough, we deduce that there are at least M eigenvalues below 20+ c̃0. Let
us consider the first M eigenvalues νn(Qη,h) below 20+ c̃0. With Theorem 2.1, we deduce that, for all
M ≥ 1, there exist h0 > 0 and C(M) > 0 such that, for 1≤ n ≤ M ,

0≤ νn(Qη,h)−20 ≤ C(M)h1/2.



1320 NICOLAS RAYMOND

For 1≤ n ≤ M , let us consider a normalized eigenfunction fn,η,h associated to νn(Qη,h) so that fn,η,h

and fm,η,h are orthogonal if n 6= m. Let us introduce:

FM(h)= span1≤ j≤M( f j,η,h).

Agmon estimates. First, let us state Agmon estimates with respect to x .

Proposition 5.13. There exist h0 > 0, ε0 > 0, C > 0 such that, for all f ∈ FM(h),∫
R2
+

eε0x
| f |2 dx dλ≤ C‖ f ‖2.

Proof. Let us use a partition of unity, χ2
1,R +χ

2
2,R = 1, with R ≥ h−η. We take 8= ε0χ(x/r)|x |. This

IMS formula implies (with f = fn,η,h)

Qη,h(χ1,Re8 f )+ Qη,h(χ2,Re8 f )−Cε2
0‖e

8 f ‖2− νn(Qη,h)‖e8 f ‖2 ≤ 0.

We recall that
Qη,h(χ2,Re8 f )≥ ‖χ2,Re8 f ‖2

and that
Qη,h(χ1,Re8 f )≥

∫
ν1(qλ,η,h)|χ1,Re8 f |2 dx dλ.

On the one hand, we have

Qη,h(χ2,Re8 f )−Cε2
0‖χ2,Re8 f ‖2− (20+Ch1/2)‖χ2,Re8 f ‖2 ≥ (1−Cε2

0−20−Ch1/2)‖χ2,Re8 f ‖2.

On the other hand, we get

Qη,h(χ1,Re8 f )−Cε2
0‖χ1,Re8 f ‖2− (20+Ch1/2)‖χ1,Re8 f ‖2

≥

∫ (
ν1(qη,λ,h)−Cε2

0 −20−Ch1/2)
|χ1,Re8 f |2 dx dλ.

When |λ| ≥ Mh−1/4−η, we have

ν1(qη,λ,h)−Cε2
0 −20−Ch1/2

≥−Cε2
0 −Ch1/2.

When |λ| ≤ Mh−1/4, we have

ν1(qη,λ,h)−Cε2
0 −20−Ch1/2

≥−Cε2
0 − C̃h1/2.

If h and ε0 are small enough, we deduce that

(1−Cε2
0 −20−Ch1/2)‖χ2,Re8 f ‖2 ≤ C‖χ1,Re8 f ‖2,

so that
‖χ2,Re8 f ‖2 ≤ C̃‖ f ‖2 and ‖e8 f ‖2 ≤ Ĉ‖ f ‖2,

where C̃ and Ĉ are independent from r . It remains to make r→+∞ and apply the Fatou lemma. Finally,
it is easy to extend the inequality to f ∈ FM(h). �
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Then, we will need Agmon estimates with respect to λ:

Proposition 5.14. There exist h0 > 0, C > 0 such that, for all f ∈ FM(h),∫
R2
+

e2h1/4
|λ|
| f |2 dx dλ≤ C‖ f ‖2 (5-4)

and ∫
R2
+

e2h1/4
|λ|
|Dλ f |2 dx dλ≤ Ch1/2

‖ f ‖2. (5-5)

Remark 5.15. Heuristically, these estimates with respect to λ correspond to the phase space localization
of [Fournais and Helffer 2006, Section 5].

Proof. We take f = f j,η,h and use the IMS formula (with 8= h1/4χ(r−1
|λ|)|λ|) to get

Qη,h(e8 f )≤ ν j (Qη,h)‖e8 f ‖2+C‖∇8e8 f ‖2 ≤
(
20+C(M)h1/2

+Ch1/2)
‖e8 f ‖2.

We recall that

Qη,h(e8 f )≥
∫

R2
+

ν1(qλ,η,h)|e8 f |2+α20|Dλ(e8 f )|2 dx dλ≥
∫

R2
+

ν1(qλ,η,h)|e8 f |2 dx dλ.

We have, for all D > 0,∫
R2
+

ν1(qλ,η,h)|e8 f |2 dx dλ=
∫
|λ|≤Dh−1/4

ν1(qλ,η,h)|e8 f |2 dx dλ+
∫
|λ|≥Dh−1/4

ν1(qλ,η,h)|e8 f |2 dx dλ.

Moreover, we get∫
|λ|≥Mh−1/4−η

ν1(qλ,η,h)|e8 f |2 dx dλ≥
∫
|λ|≥Mh−1/4−η

(
20+ c0 min(1, hλ2)

)
|e8 f |2 dx dλ

and∫
Dh−1/4≤|λ|≤Mh−1/4−η

ν1(qλ,η,h)|e8 f |2 dx dλ

≥

∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dx dλ.

This leads to∫
|λ|≥Dh−1/4

(
c1 min(1, hλ2)− C̃h1/2

−Cα2h1/2)
|e8 f |2 dx dλ≤ C̃h1/2

∫
|λ≤Dh−1/4

| f |2 dλ dx .

It remains to take D large enough, and we get (5-4). Then we have∫
R2
+

(
ν1(qλ,η,h)−20

)
|e8 f |2+α20|Dλ(e8 f )|2 dx dλ≤ Ch1/2

‖ f ‖2.
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But we notice that∫
R2
+

(
ν1(qλ,η,h)−20

)
|e8 f |2 dx dλ

≥

∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dx dλ

+

∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dλ dx .

Taking D larger, we get∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
µ′′(ξ0)

2
λ2h−Ch1/2

−Ch3/4−3η
)
|e8 f |2 dx dλ≥ 0.

Moreover, we have∣∣∣∣∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h−Ch3/4−3η

)
|e8 f |2 dλ dx

∣∣∣∣≤ Ch1/2
‖ f ‖2. �

Approximations of eigenvectors by tensor products. Let us define the quadratic form q0 with domain
B1(R+)⊗ L2(R):

q0(ϕ)= Q0(ϕ)−20‖ϕ‖
2
=

∫
R2
+

|∂xϕ|
2
+ |(x − ξ0)ϕ|

2
−20|ϕ|

2 dx dλ.

The Friedrichs extension of q0 is the operator Hξ0⊗IdL2(R). We also define the Feshbach–Grušin projection
on the kernel of Hξ0 ⊗ IdL2(R):

50ϕ = 〈ϕ, uξ0〉x uξ0(x).

The next proposition states an approximation result for the elements of FM(h) (which behave as tensor
products):

Proposition 5.16. For all M ≥ 1, there exist h0 > 0 and C > 0 such that we have, for all f ∈ FM(h),

‖ f −50 f ‖L2 +‖∂x( f −50 f )‖L2 +‖x( f −50 f )‖L2 ≤ Ch1/8
‖ f ‖, (5-6)

‖(λ f −50λ f ‖L2 +‖∂x(λ f −50λ f )‖L2 +‖x(λ f −50λ f )‖L2 ≤ Ch−1/8
‖ f ‖, (5-7)

‖(∂λ f −50∂λ f ‖L2 +‖∂x(∂λ f −50∂λ f )‖L2 +‖x(∂λ f −50∂λ f )‖L2 ≤ Ch3/8
‖ f ‖. (5-8)

In particular, 50 is an isomorphism from FM(h) onto its range.

Proof. We take f = f j,η,h . By definition, we have

Hη,h f = ν j (Qη,h) f. (5-9)
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Approximation of f . We deduce

Qη,h( f )= ν j (Qη,h)‖ f ‖2 ≤ (20+Ch1/2)‖ f ‖2.

We have

Qη,h( f )≥ (1−Ch1/2−η)

∫
R2
+

|∂x f |2+
∣∣∣∣(x − ξ0+ h1/2λ+ h1/2 b̂2

2
l(x)2

)
f
∣∣∣∣2 dx dλ.

Moreover, we get (using the estimates of Agmon), for all ε ∈ (0, 1):∫
R2
+

|∂x f |2+
∣∣∣∣(x − ξ0+ h1/2λ+ h1/2 b2

2
l(x)2

)
f
∣∣∣∣2 dx dλ≥ (1− ε)Q0( f )−Cε−1h1/2

‖ f ‖2.

Taking ε = h1/4, we deduce
q0( f )≤ Ch1/4

‖ f ‖2.

We deduce (5-6).

Approximation of λ f . We multiply (5-9) by λ and take the scalar product with λ f :

Qη,h(λ f )≤ (20+Ch1/2)‖λ f ‖2+
∣∣〈[Hη,h, λ] f, λ f 〉

∣∣.
Thus, it follows that

Qη,h(λ f )≤ (20+Ch1/2)‖λ f ‖2+α20|〈Dλ f, λ f 〉| ≤20‖λ f ‖2+C‖ f ‖2.

We get
Qη,h(λ f )≥ (1−Ch1/2−η)

(
(1− ε)Q0(λ f )−Cε−1

‖ f ‖2
)
.

We take ε = h1/4 to deduce
q0(λ f )≤ Ch−1/4

‖ f ‖2.

We infer (5-7).

Approximation of Dλ f . We take the derivative of (5-9) with respect to λ and take the scalar product with
∂λ f :

Qη,h(∂λ f )≤ (20+Ch1/2)‖∂λ f ‖2+
∣∣〈[Hη,h, ∂λ] f, ∂λ f 〉

∣∣.
The estimates of Agmon give ∣∣〈[Hη,h, ∂λ] f, ∂λ f 〉

∣∣≤ Ch3/4
‖ f ‖2.

We have

Qη,h(∂λ f )≥ (1−Ch1/2−η)
(
(1− ε)Q0(∂λ f )−Cε−1h‖ f ‖2

)
.

We take ε = h1/4 and deduce
q0(∂λ f )≤ Ch3/4

‖ f ‖2.

We infer (5-8). �
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Conclusion: proof of Proposition 5.8. For all f ∈ FM(h), we have the lower bound

Qη,h( f )≥
∫

R2
+

ν1(qλ,η,h)| f |2+α20|Dλ f |2 dx dλ

≥

∫
R2
+

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

+

∫
R2
+

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ+α20|Dλ f |2 dx dλ.

We now estimate∫
R2
+

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

=

∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

+

∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ.

Moreover, we get∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ

≥

∫
|λ|≥Mh−1/4−η

−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ= O(h∞)‖ f ‖2,

where the last estimate is a consequence of the estimates of Agmon. Then we get∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
20+C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

))
| f |2 dx dλ≥−Ch3/4−3η

‖ f ‖2.

We deduce

Qη,h( f )≥
∫

R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
| f |2 dx dλ+α20|Dλ f |2 dx dλ

+20‖ f ‖2−Ch3/4−3η
‖ f ‖2.

We now use Proposition 5.16 to get

Qη,h( f )≥
∫

R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
|50 f |2 dx dλ+α20|Dλ50 f |2 dx dλ

+20‖ f ‖2−Ch1/2+1/8
‖50 f ‖2.

But we notice that for all f ∈ FM(h),

Qη,h( f )≤ νM(Qη,h)‖ f ‖2,
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and thus:∫
R2
+

(
C(k0, a2, b2)h1/2

+
µ′′(ξ0)

2
λ2h

)
|50 f |2 dx dλ+α20|Dλ50 f |2 dx dλ

≤
(
νM(Qη,h)−20

)
‖ f ‖2+Ch1/2+1/8

‖50 f ‖2

≤
(
νM(Qη,h)−20

)
‖50 f ‖2+ C̃h1/2+1/8

‖50 f ‖2.

The conclusion follows from the min-max principle.
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STABILITY AND INSTABILITY FOR SUBSONIC TRAVELING WAVES
OF THE NONLINEAR SCHRÖDINGER EQUATION IN DIMENSION ONE

DAVID CHIRON

We study the stability/instability of the subsonic traveling waves of the nonlinear Schrödinger equation
in dimension one. Our aim is to propose several methods for showing instability (use of the Grillakis–
Shatah–Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For
the latter, we show how to construct in a systematic way a Liapounov functional for which the traveling
wave is a local minimizer. These approaches allow us to give a complete stability/instability analysis in
the energy space including the critical case of the kink solution. We also treat the case of a cusp in the
energy-momentum diagram.

1. Introduction

This paper is a continuation of our previous work [Chiron 2012], where we consider the one-dimensional
nonlinear Schrödinger equation

i
@‰

@t
C @2x‰C‰f .j‰j

2/D 0: (NLS)

This equation appears as a relevant model in condensed matter physics: Bose–Einstein condensation
and superfluidity (see [Roberts and Berloff 2001; Ginzburg and Pitaevskiı̆ 1958; Gross 1963; Abid
et al. 2003]); nonlinear optics (see, for instance, the survey [Kivshar and Luther-Davies 1998]). Several
nonlinearities may be encountered in physical situations: f .%/D˙% gives rise to the focusing/defocusing
cubic NLS; f .%/ D 1� % to the so-called Gross–Pitaevskii equation; f .%/ D �%2 (see [Kolomeisky
et al. 2000] for Bose–Einstein condensates); more generally a pure power; the “cubic-quintic” NLS (see
[Barashenkov and Panova 1993]), where

f .%/D�˛1C˛3%�˛5%
2

and ˛1, ˛3 and ˛5 are positive constants such that f has two positive roots; and in nonlinear optics, we
may take (see [Kivshar and Luther-Davies 1998])

f .%/D�˛%��ˇ%2� ; f .%/D�
%0

2

�
1�

1C 1
%0

��� 1�
1C %

%0

���; f .%/D�˛%

�
1C
 tanh

%2�%20
�2

�
; (1)

MSC2010: 35B35, 35J20, 35Q40, 35Q55, 35C07.
Keywords: traveling wave, nonlinear Schrödinger equation, Gross–Pitaevskii equation, stability, Evans function, Liapounov

functional.
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where ˛, ˇ, 
 , �, � > 0 are given constants (the second one, for instance, takes into account saturation
effects), etc. As a consequence, as in [Chiron 2012], we shall consider a rather general nonlinearity f ,
with f of class C2. In the context of Bose–Einstein condensation or nonlinear optics, the natural condition
at infinity appears to be

j‰j2! r20 as jxj !C1;

where r0 > 0 is such that f .r20 /D 0.

For solutions ‰ of (NLS) which do not vanish, we may use the Madelung transform

‰ D A exp.i�/

and rewrite (NLS) as an hydrodynamical system with an additional quantum pressure(
@tAC 2@x�@xACA@

2
x� D 0;

@t�C .@x�/
2�f .A2/�

@2xA

A
D 0

or

(
@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

(2)

with .�; u/� .A2; @x�/. When neglecting the quantum pressure and linearizing this Euler system around
the particular trivial solution ‰ D r0 (or .A; u/D .r0; 0/), we obtain the free wave equation�

@t NAC r0@x NU D 0;

@t NU � 2r0f
0.r20 /@x

NAD 0;

with associated speed of sound

cs �
q
�2r20f

0.r20 / > 0;

provided f satisfies the defocusing assumption f 0.r20 / < 0 (that is, the Euler system is hyperbolic in the
region �' r20 ), which we will assume throughout the paper. Concerning the rigorous justification of the
free wave regime for the Gross–Pitaevskii equation (in arbitrary dimension), see [Béthuel et al. 2010].
The speed of sound cs enters in a crucial way in the question of existence of traveling waves for (NLS)
with modulus tending to r0 at infinity (see, e.g., [Chiron 2012]).

The nonlinear Schrödinger equation formally preserves the energy

E. /�

Z
R

j@x j
2
CF.j j2/ dx;

where F.%/�
R r20
% f . Since

F.%/�
c2s
8r20

.%� r20 /
2
�

c2s
2
.
p
%� r0/

2

when %! r20 , it follows that the natural energy space turns out to be the space

Z�
˚
 2 L1.R/; @x 2 L

2.R/; j j � r0 2 L
2.R/

	
� Cb.R;C/;

endowed with the distance

dZ. ; Q /� k@x � @x Q kL2.R/Ckj j � j Q jkL2.R/Cj .0/� Q .0/j:
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The Cauchy problem was shown to be locally well posed in the Zhidkov space f 2L1.R/; @x 2L2.R/g
by P. Zhidkov [2001] (see also the work by C. Gallo [2004]). For global well-posedness results, see
[Gallo 2008; Gérard 2008]. More precisely, the local well-posedness we shall use is the following.

Theorem 1 [Zhidkov 2001; Gallo 2004]. Let ‰in 2 Z. Then, there exists T� > 0 and a unique solution ‰
to (NLS) such that ‰jtD0 D‰in and ‰�‰in 2 C.Œ0; T�/;H

1.R//. Moreover, E.‰.t// does not depend
on t .

The other quantity formally conserved by the Schrödinger flow, due to the invariance by translation, is
the momentum. The momentum is not easy to define in dimension one for maps that vanish somewhere
(see [Béthuel et al. 2008a; 2008b]). However, if  does not vanish, we have a lifting  DAei� , and then
the correct definition of the momentum is given by [Kivshar and Yang 1994]

P. /�

Z
R

hi j@x i

�
1�

r20
j j2

�
dx D

Z
R

.A2� r20 /@x� dx;

where h � j � i denotes the real scalar product in C. We define

Zhy � fv 2 Z; infR jvj> 0g;

which is the open subset of Z in which we have lifting and where the hydrodynamical formulation (2) of
(NLS) is possible through the Madelung transform. It turns out that, if the initial datum belongs to Zhy,
the solution of (NLS) provided by Theorem 1 remains in Zhy for small times, and that the momentum is
indeed conserved on this time interval (see [Gallo 2004]).

1A. The traveling waves and energy-momentum diagrams. The traveling waves with speed of propa-
gation c are special solutions of (NLS) of the form

‰.t; x/D U.x� ct/:

The profile U has then to solve the ODE

@2xU CUf .jU j
2/D ic@xU (TWc)

together with the condition jU.x/j ! r0 as x!˙1. These particular solutions play an important role
in the long-time dynamics of (NLS) with nonzero condition at infinity. Possibly conjugating (TWc), we
see that we may assume that c � 0 without loss of generality. Moreover, we shall restrict ourselves to
traveling waves which belong to the energy space Z (so that jU j ! r0 at ˙1 by the Sobolev embedding
H 1.R/ ,! C0.R;C/ � fh 2 C.R;C/; lim˙1 h D 0g). For traveling waves Uc 2 Z that do not vanish
in R, hence that may be lifted to Uc D Acei�c , the ODE (TWc) can be transformed (see, e.g., [Chiron
2012]) into the system

@x�c D
c

2
�

�c

�c C r
2
0

; 2@2x�c CV0c.�c/D 0; with �c � A2c � r
2
0 ;

and where the function Vc is related to f by the formula

Vc.�/� c
2�2� 4.r20 C �/F.r

2
0 C �/:
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To a nontrivial traveling wave Uc is associated (see [ibid.]) some �c ��r20 such that Vc.�c/D 0 6DV0c.�c/

and Vc is negative between �c and �r20 , and �c varies between 0 and �c ; that is, finfR jUcj; supR jUcjg D

fr0;
p
r20 C �cg. Moreover, the only traveling wave solution (if it exists) that vanishes somewhere is for

c D 0 and is called the kink: it is an odd solution (up to a space translation) and then �0 D 0.
We have also seen in [ibid.] that any traveling wave in Z with speed c > cs is constant, and also that any

nonconstant traveling wave in Z of speed c� 2 .0; cs/ belongs to a unique (up to the natural invariances:
phase factor and translation) local branch c 7! Uc defined for c close to c�.

In [ibid.], we have investigated the qualitative behaviors of the traveling waves for (NLS) with nonzero
condition at infinity for a general nonlinearity f . A particular attention has been payed in [ibid.] to
the transonic limit, where we have an asymptotic behavior governed by the Korteweg–de Vries or the
generalized Korteweg–de Vries equation. In order to illustrate the very different situations we may
encounter when we allow a general nonlinearity f , we give now some energy-momentum diagrams we
have obtained (one is taken from the appendix in [Chiron and Scheid 2012], where we have performed
numerical simulations in dimension two for the model cases we have studied in [Chiron 2012]):

� The Gross–Pitaevskii nonlinearity: f .%/D 1� % (see Figure 1).

� A cubic-quintic-septic nonlinearity: f .%/D�.%� 1/C 3
2
.%� 1/2� 3

2
.%� 1/3 (see Figure 2).

� A cubic-quintic-septic nonlinearity: f .%/��4.%�1/�36.%�1/3 or f .%/��4.%�1/�60.%�1/3.
For these two nonlinearities, the graph of E and P vs. speed c is given in Figure 3, but the .E; P /
diagrams are, respectively, those in Figure 4.

� A cubic-quintic-septic nonlinearity: f .%/��1
2
.%� 1/C 3

4
.%� 1/2� 2.%� 1/3 (see Figure 5).

� A degenerate case: f .%/��2.%�1/C3.%�1/2�4.%�1/3C5.%�1/4�6.%�1/5 (see Figure 6).

� A perturbation of the previous degenerate case: f .%/��2.%�1/C.3�10�3/.%�1/2�4.%�1/3C
5.%� 1/4� 6.%� 1/5 (see Figure 7).

� A saturated NLS: f .%/� exp..1� %/=%0/� 1 with %0 D 0:4 (see Figure 8).

� Another saturated NLS: f .%/� 1
2
%0
�
1=.1C %=%0/

2�1=.1C 1=%0/
2
�
, with %0D0:08 (see Figure 9).

� The cubic-quintic nonlinearity: f .%/��.%� 1/� 3.%� 1/2 (see Figure 10).

Through the study (in [Chiron 2012]) of these model cases, we have shown that, if the energy-momentum
diagram is well-known for the Gross–Pitaevskii equation, the qualitative properties of the traveling wave
solutions can not be easily deduced from the global shape of the nonlinearity f . In particular, even if
we restrict ourselves to smooth and decreasing nonlinearities (as is the Gross–Pitaevskii one), we see
that we may have a great variety of behaviors: multiplicity of solutions, branches with diverging energy
and momentum, nonexistence of traveling waves for some c0 2 .0; cs/, branches of solutions that cross,
existence of sonic traveling waves, transonic limit governed by the mKdV or more generally by the gKdV
solitary wave equation instead of the usual KdV one, existence of cusps, etc.
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Figure 1. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 2. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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0
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E= c P + E
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0

E
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+

0

0

0
E= c P + E

0

c−> c
−−

c−> 0

Figure 4. The two .E; P / diagrams.
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Figure 5. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 6. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 7. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) qualitative
.E; P / diagram.
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Figure 8. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.

We investigate now the behavior at infinity of the nontrivial traveling waves, which depends on whether
c D cs or not. We denote by N the set of nonnegative integers and N� the set of positive integers. We
consider for m 2 N the following assumption:

(Am) f is of class CmC3 near r20 . Moreover, for 1� j < mC 2, we have

f .j /.r20 /

.j C 1/Š
r
2j
0 D .�1/

jC1 c
2
s

4
but

f .mC2/.r20 /

.mC 3/Š
r
2.mC2/
0 6D .�1/mC3

c2s
4

(note that, for j D 1, equality always holds by definition of the speed of sound cs D
q
�2r20f

0.r20 /).

Proposition 2. Let Uc 2 Z be a nonconstant traveling wave of speed 0� c � cs .
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c
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Figure 9. (a) Energy (dashed curve) and momentum (full curve), (b) .E; P / diagram.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������������������������������������������c
c

c0 scusp

E

P

0

c−> 0

sc−> c

Figure 10. (a) Energy (dashed curve) and momentum (full curve), (b) .E; P / diagram.

(i) If c D 0, then there exists �0 2 R such that ei�0U0 is a real-valued function and there exist two real
constants M0 6D 0 (depending only on f and �0) and x0 such that, as x!˙1,

ei�0U0.x/�r0�M0 exp.�csjx�x0j/ if �0D�r20 ; ei�0U0.x/�r0�M0 exp.�csjx�x0j/ if �0 6D�r20 :

(ii) If 0 < c < cs , then Uc does not vanish, and hence can be lifted: Uc D Acei�c . Furthermore, there
exist four real constants Mc , ‚c (depending only on f , c and �c), x0 and �0 such that, as x!˙1,

jUc.x/j
2
� r20 D �c.x/�

2r20
c
@x�.x/�Mc exp

�
�

q
c2s � c

2jx� x0j
�
;

and

�.x/��0�‚c ��sgn.x/
cMc

2r20

p
c2s � c

2
exp

�
�

q
c2s � c

2jx� x0j
�
:
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(iii) If c D cs then Ucs does not vanish, and hence can be lifted: Ucs D Acse
i�cs . We assume that there

exists m 2 N such that (Am) is satisfied and define

ƒm �
4

r
2.mC1/
0

�
r
2.mC2/
0

.mC 3/Š
f .mC2/.r20 /C .�1/

mC2 c
2
s

4

�
6D 0:

Then, we have, as x!˙1,

jUcs .x/j
2
� r20 D �cs .x/�

2r20
cs
@x�.x/� sgn.�cs /

�
4

.mC 1/2jƒmjx2

� 1
mC1

and

�.x/�
cs sgn.�cs /
2r20

�
4

.mC 1/2jƒmj

� 1
mC1

8<:sgn.x/ lnjxj if mD 1;
mC 1

m� 1
sgn.x/jxj

m�1
mC1 if m� 2;

and, if mD 0, there exist ‚cs 2 R and �0 2 R such that

�.x/��0�‚cs � sgn.�cs /
2cs

r20 jƒ0jx
:

In particular, since we impose Ucs 2 Z, we must have m 2 f0; 1; 2g.

For the Gross–Pitaevskii nonlinearity (f .%/D 1� %), we may compute explicitly the traveling waves
for 0 < c < cs D

p
2 (see [Tsuzuki 1971; Béthuel et al. 2008a]):

Uc.x/D

s
2� c2

2
tanh x

p
2� c2

2
� i

c
p
2
;

up to the invariances of the problem: translations and multiplications by a phase factor. On this explicit
formula, the decay of the phase and modulus can be checked. In particular, as x!˙1, we have

Uc.x/!˙

s
1�

c2

cs
� i

c

cs
:

Remark 3. In the above statements, the constants �0 and x0 reflect the gauge and translation invariance.
In the spirit of the model cases proposed in [Chiron 2012], for

f .%/��2.%� 1/C 3.%� 1/2� 4.%� 1/3C 5.%� 1/4� 12.%� 1/5;

we obtain a smooth decreasing nonlinearity tending to �1 at C1 (thus qualitatively similar to the
Gross–Pitaevskii nonlinearity) for which we have r0 D 1, cs D 2, and Vcs .�/ D �4�

4 � 8�5. For
this nonlinearity f , there exists a nontrivial sonic traveling wave of infinite energy (corresponding to
�cs D�1=2), since mD 3.

The aim of this paper is to investigate the stability of the traveling waves for the one-dimensional NLS.
We recall the definition of orbital stability in a metric space .X; dX/ for which we have a local in time
existence result.
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Definition 4. Let 0 � c � cs and Uc 2 Z be a nontrivial traveling wave of speed c. We say that Uc is
orbitally stable in .X; dX/, where X � Z, if, for any � > 0, there exists ı > 0 such that, for any initial
datum ‰in 2 X such that dX.‰

in; Uc/ � ı, any solution ‰ to (NLS) with initial datum ‰in is global in
X and

sup
t�0

inf
y2R
�2R

dX.‰.t/; e
i�Uc. � �y//� �:

In the sequel, Uc will always stand for a nontrivial traveling wave, and we freeze the translation
invariance by imposing that jUcj is even. Moreover, the solutions of (NLS) we consider will always be
those given by Theorem 1.

1B. Stability and instability in the case 0 < c < cs.

1B1. Stability for the hydrodynamical and the energy distances. The first stability result for the traveling
waves for (NLS) with nonzero condition at infinity is due to Z. Lin [2002]. The analysis relies on the
hydrodynamical form of (NLS), which is valid for solutions that never vanish. The advantage is to work
with a fixed functional space since .�; u/D .A2�r20 ; @x�/2H

1.R/�L2.R/, whereas the traveling waves
have a limit r0e˙i‚c (up to a phase factor) at ˙1 depending on the speed c. Lin’s result establishes
rigorously the stability criterion found in [Bogdan et al. 1989; Barashenkov 1996].

Theorem 5 [Lin 2002]. Assume that 0 < c� < cs is such that there exists a nontrivial traveling wave Uc� .
Then, there exists some small � > 0 such that Uc� belongs to a locally unique continuous branch of
nontrivial traveling waves Uc defined for c�� � � c � c�C � .

(i) Assume
dP.Uc/

dc jcDc�
< 0:

Then, Uc� D A�e
i�� is orbitally stable in the sense that, for any � > 0, there exists ı > 0 such that, if

‰in D Ainei�
in
2 Z satisfies

kAin
�A�kH1.R/Ck@x�

in
� @x��kL2.R/ � ı;

then the solution ‰ to (NLS) such that ‰jtD0 D‰in never vanishes, can be lifted to ‰ D Aei� , and we
have

sup
t�0

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
� �:

(ii) Assume
dP.Uc/

dc jcDc�
> 0:

Then, Uc� D A�e
i�� is orbitally unstable in the sense that there exists � > 0 such that, for any ı > 0,

there exists ‰in D Ainei�
in
2 Z verifying

kAin
�A�kH1.R/Ck@x�

in
� @x��kL2.R/ � ı;
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but such that, if ‰ denotes the solution to (NLS) with ‰jtD0 D‰in, then there exists t > 0 such that ‰
does not vanish on the time interval Œ0; t � but

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
� �:

By the one-dimensional Sobolev embedding H 1.R/ ,! C0.R/, it is clear that, since Uc� does not
vanish in R, by imposing kj‰inj � jUc� jkH1.R/ D kA

in�A�kH1.R/ small, ‰in does not vanish in R and
thus can be lifted.

Remark 6. We point out that [Gallo 2004] fills two gaps in the proof from [Lin 2002]: the first one
concerns the local in time existence for the hydrodynamical system (see (15) in Section 3C) and the
second one is about the conservation of the energy and the momentum. Furthermore, we make two
additional remarks on the proof from [Lin 2002] in Section 3C.

Theorem 5 is stability or instability in the open set Zhy � Z for the hydrodynamical distance

dhy. ; Q /� kA� QAkH1.R/Ck@x� � @x Q�kL2.R/C

ˇ̌̌̌
arg
�
 .0/

Q .0/

�ˇ̌̌̌
;  D Aei� ; Q D QAei

Q� ;

which is not the energy distance. Here, arg W C�! .��;C�� is the principal argument. For the stability,
it suffices to consider the phase � 2 R such that arg

�
‰.t/=.ei�Uc�. � �y//

�
is zero at x D 0, where y is

the translation parameter. For the instability, the phase � 2 R does not matter. The result of [Lin 2002] is
based on the application of the Grillakis–Shatah–Strauss theory [Grillakis et al. 1987] (see also [Bona
et al. 1987; Souganidis and Strauss 1990]) to the hydrodynamical formulation of (NLS) (see Section 3C).
One difficulty is to overcome the fact that the Hamiltonian operator @x is not onto.

On the energy-momentum diagrams, the stability can be checked either on the graphs of E and P with
respect to c, or on the concavity of the curve P 7! E. Indeed, we have seen in [Chiron 2012] that the
so-called Hamilton group relation

c D
dE

dP
; or

dE.Uc/

dc
D c

dP.Uc/

dc
;

holds, where the derivative is computed on the local branch. Therefore,

d2E

dP 2
D

d

dP

dE

dP
D
dc

dP
:

This means that we have stability when P 7! E is concave, that is, d2E=dP 2 < 0, and instability if
P 7!E is convex, i.e., d2E=dP 2 > 0.

Actually, the proof of [Grillakis et al. 1987; Lin 2002] provides an explicit control, as shown in the
following lemma.

Lemma 7. Under the assumptions of Theorem 5 and in the case (i) of stability, we have, provided
dhy.‰

in; Uc�/ is small enough,

sup
t�0

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
�K

q
jE.‰in/�E.Uc�/jC jP.‰

in/�P.Uc�/j; (3)
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as well as the control

sup
t�0

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//�Kdhy.‰

in; Uc�/: (4)

Remark 8. The second estimate (4) is not a simple consequence of the control (3), but relies on a
comparison to Uc for some c close to c� instead of a comparison to Uc� (this idea has also been used in
[Weinstein 1986]). It follows that, in the definition of stability for Uc� , one can take ı D O."/.

Let us stress that Z. Lin’s result (Theorem 5) is given in terms of the hydrodynamical distance dhy,
which is not the energy distance dZ. As a matter of fact, the Madelung transform

M W .Zhy; dZ/ 3 U 7!

�
�; u;

U.0/

jU.0/j

�
2H 1.R;R/�L2.R;R/�S1;

where U D Aei� , �D A2� r20 and uD @x�, is not so well behaved.

Lemma 9. (i) The mapping M W .Zhy; dZ/!H 1.R;R/�L2.R;R/�S1 is an homeomorphism.

(ii) There exists ��2C2.R;R/ such that @x��2L2.R/ and a sequence .�n/n�1 of functions inH 1.R;R/

such that, when n!C1,

0 < dhy.e
i�� ; ei��ei�n/! 0 but

dZ.e
i�� ; ei��ei�n/

dhy.ei�� ; ei��ei�n/
!C1:

Therefore, M�1 is not locally Lipschitz continuous in general. However, for the stability issues, we
compare the dZ and the dhy distances to some fixed traveling wave U�, which enjoys some nice decay
properties at infinity. Let us now stress the link between the two distances dhy and dZ in this case.

Lemma 10. Let 0� c� � cs and assume that U� 2 Z is a nonconstant traveling wave with speed c� that
does not vanish. If c� D cs , we further assume that assumption (A0) is satisfied. Then, there exists some
constantsK and ı > 0, depending only on U�, such that, for any  2Z verifying dZ. ; U�/� ı, we have

1

K
dhy. ; U�/� dZ. ; U�/�Kdhy. ; U�/:

An immediate corollary of Lemma 10 is that Theorem 5 is also a stability/instability result in the
energy distance. If one wishes for only a stability/instability result, it is sufficient to invoke the fact that
the mapping M is an homeomorphism. However, the use of Lemma 10 provides a stronger explicit control
similar to the one obtained in Lemma 7 (see (3)). In particular, in the definition of stability for Uc� in
.Z; dZ/, one can take ı D O."/.

Corollary 11. Assume that 0 < c� < cs is such that there exists a nontrivial traveling wave Uc� . Then,
there exists some small � > 0 such that Uc� belongs to a locally unique continuous branch of nontrivial
traveling waves Uc defined for c�� � � c � c�C � .

(i) If .dP.Uc/=dc/jcDc� < 0, then Uc� D A�e
i�� is orbitally stable in .Z; dZ/. Furthermore, if ‰.t/ is

the (global) solution to (NLS) with initial datum ‰in, then we have, for some constant K depending
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only on Uc� and provided dZ.‰
in; Uc�/ is sufficiently small,

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//�K

q
jE.‰in/�E.Uc�/jC jP.‰

in/�P.Uc�/j;

as well as the control

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//�KdZ.‰

in; Uc�/:

(ii) If .dP.Uc/=dc/jcDc� > 0, then Uc� D A�e
i�� is orbitally unstable in .Z; dZ/.

For the Gross–Pitaevskii nonlinearity (f .%/D 1� %), the stability (for the energy distance dZ) of the
traveling waves with speed 0 < c < cs was proved by F. Béthuel, P. Gravejat and J.-C. Saut [Béthuel et al.
2008a] through the variational characterization that these solutions are minimizers of the energy under
the constraint of fixed momentum. However, in view of the energy momentum diagrams in Section 1A,
this constraint minimization approach can not be used in the general setting we consider here. Indeed,
this method provides only stability, but there may exist unstable traveling waves. Moreover, it follows
from the proof of Theorem 5 that stable waves are local minimizers of the energy at fixed momentum but
not necessarily global minimizers. Finally, we emphasize that the spectral methods allow us to derive an
explicit (Lipschitz) control in case of stability.

1B2. Stability via a Liapounov functional. Another way to prove the orbital stability is to find a Liapounov
functional. By Liapounov functional, we mean a functional which is conserved by the (NLS) flow and for
which the traveling wave Uc is a local minimum (for instance, a critical point with second derivative � ı Id
for some ı > 0). Such a Liapounov functional always exists in the Grillakis–Shatah–Strauss theory when
.dP.Uc/=dc/jcDc� < 0, as shown by Theorem 26 in Appendix A. Its direct application to our problem
leads us to define the functional in Zhy

L. /�E. /� c�P. /C
M

2
.P. /�P.Uc�//

2;

where M is some positive parameter. It turns out that L is such a Liapounov functional when M is
sufficiently large. Since the proof relies on the Grillakis–Shatah–Strauss framework, we have to work in
the hydrodynamical variables. However, by Lemma 10, we recover the case of the energy distance.

Theorem 12. Assume that, for some c� 2 .0; cs/ and � > 0 small, .0; cs/� Œc���; c�C��3 c 7!Uc 2Z

is a continuous branch of nontrivial traveling waves with .dP.Uc/=dc/jcDc� < 0. If

M >
1

�
dP.Uc/
dc jcDc�

> 0;

there exist � > 0 and K, depending only on Uc� , such that, for any  2 Z with

inf
y2R; �2R

dhy. ; e
i�Uc�. � �y//� �;
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we have
inf
y2R
�2R

d2hy. ; e
i�Uc�. � �y//�K.L. /�L.Uc�//;

and analogously with dhy replaced by dZ. Consequently, Uc� D A�e
i�� is orbitally stable in .Zhy; dhy/

and in .Z; dZ/. Furthermore, if ‰.t/ is the (global) solution to (NLS) with initial datum‰in, then we have

sup
t�0

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//�K

q
L.‰in/�L.Uc�/�Kdhy.‰

in; Uc�/;

provided dhy.‰
in; Uc�/ is sufficiently small, and analogously with dhy replaced by dZ.

For the traveling waves for (NLS) in dimension one, this type of Liapounov functional appears for the
first time in the paper by I. Barashenkov [1996]. However, there, the problem is treated directly on the
wave function ‰, whereas the correct proof holds on the hydrodynamical variables, in particular because
of the gauge invariance .�;‰/ 7! ei�‰. For instance, that work suggests that we have stability for H 1

perturbations, whereas it holds only for perturbations in the energy space. Finally, we fill some gaps in
the proof of [Barashenkov 1996].

1B3. Instability via the existence of an unstable eigenvalue. In the Grillakis–Shatah–Strauss theory
[Grillakis et al. 1987], the instability is not shown by proving the existence of a unstable eigenvalue for
the linearized (NLS) and then a nonlinear instability result (see however [Grillakis et al. 1990] when the
Hamiltonian skew-adjoint operator is onto). There exist, however, some general results that prove the
existence of unstable eigenvalues. For the instability of bound states for (NLS) (and also for the nonlinear
Klein–Gordon equation), that is, solutions of the form ei!tU!.x/, M. Grillakis [1988] shows that the
condition d=d!

�R
Rd
jU! j

2
�
j!D!�

> 0 is sufficient for the existence of such an unstable eigenvalue.
However, the proof relies on the fact that the bound states are real-valued functions (up to a phase factor)
and it is not clear whether it extends to the case of traveling waves we are studying. Indeed, since we have
to work in hydrodynamical variables in order to have a fixed functional space, the linearized operator does
not have (for c 6D 0) the structure required for the application of [Grillakis 1988]. Another general result
is due to O. Lopes [2002] but it assumes that the linearized equation can be solved using a semigroup.
This is not the case for our problem once it is written in hydrodynamical variables (see below). Finally,
Z. Lin [2008] proposes an alternative approach for the existence of unstable eigenvalues. The method has
the advantage of allowing pseudodifferential equations (like the Benjamin–Ono equation). However, the
results are given for three model equations involving a scalar unknown, and it is not clear whether the
proof can be extended to the case of systems.

The linearization of (NLS) near the traveling wave Uc� in the frame moving with speed c� is

i
@ 

@t
� ic�@x C @

2
x C f .jUc� j

2/C 2h jUc�if
0.jUc� j

2/Uc� D 0; (5)

and, thus, searching for exponentially growing modes  .t; x/D e�tw.x/ leads to the eigenvalue problem

i�w� ic�@xwC @
2
xwCwf .jUc� j

2/C 2hwjUc�if
0.jUc� j

2/Uc� D 0; (6)
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with Re.�/ > 0 and w 6D 0. For one-dimensional problems, the linear instability is commonly shown
through the use of Evans functions (see the classical paper [Pego and Weinstein 1992] and also the review
article [Sandstede 2002]). For our problem, we look for an unstable eigenvalue for the equation written
in hydrodynamical variables; namely we look for exponentially growing solutions .�; u/ of the linear
problem (written in the moving frame)8̂̂̂̂

<̂
ˆ̂̂:
@t�� c�@x�C 2@x..r

2
0 C ��/uC �u�/D 0;

@tu� c�@xuC 2@x.u�u/� @x.f
0.r20 C ��/�/

� @x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
�
�@2x

�p
r20 C ��

�
2.r20 C ��/

3=2

�
D 0;

(7)

where .��; u�/ is the reference solution. The advantage is here again to work with a fixed functional
space in variables .�; u/. Due to the term

@x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

��
;

this equation can not be solved using a semigroup, except in the trivial case where �� is constant; hence
the result of [Lopes 2002] does not apply. However, system (7) is a particular case of the Euler–Korteweg
system for capillary fluids (see [Benzoni-Gavage 2010a] for a survey on this model). We may then use a
linear instability result already shown for the Euler–Korteweg system with the Evans function method, as
in work by K. Zumbrun [2008] for a simplified system, and more recently by S. Benzoni-Gavage [2010b]
for the complete Euler–Korteweg system.

Theorem 13. Assume that, for some c� 2 .0; cs/ and � > 0 small,

.0; cs/� Œc�� �; c�C �� 3 c 7! Uc 2 Z

is a continuous branch of nontrivial traveling waves with

dP.Uc/

dc jcDc�
> 0:

Then, there exists exactly one unstable eigenvalue 
0 2 fRe> 0g for (6) and 
0 2 .0;C1/; that is, (NLS)
is (spectrally) linearly unstable.

Once we have shown the existence of an unstable eigenvalue for the linearized NLS equation (5), we
can prove a nonlinear instability result as in [Henry et al. 1982; de Bouard 1995]. Note that, here, we no
longer work in the hydrodynamical variables, where the high-order derivatives involve nonlinear terms,
but on the semilinear NLS equation.

Corollary 14. Under the assumptions of Theorem 13, Uc� is unstable in Uc� CH
1.R;C/ (endowed with

the natural H 1 distance): there exists � such that, for any ı > 0, there exists ‰in 2 Uc� CH
1.R/ such

that k‰in�Uc�kH1.R/ � ı, but, if ‰ 2 Uc�CC.Œ0; T �/;H 1.R// denotes the maximal solution of (NLS),
then there exists 0 < t < T � such that k‰.t/�Uc�kH1.R/ � �.
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Since the proof is very similar to the one in [Henry et al. 1982; de Bouard 1995], we omit it. We may
actually prove a stronger instability result, since the above one is not proved by tracking the exponentially
growing mode. In [Di Menza and Gallo 2007], a spectral mapping theorem is shown and used to show
the nonlinear instability by tracking this exponentially growing mode, which is a natural mechanism
of instability. In Appendix B, we show that this spectral mapping theorem holds for a wide class of
Hamiltonian equations. The direct application of Corollary B.6 in Appendix B gives the following
nonlinear instability result.

Corollary 15. We make the assumptions of Theorem 13, so that there exists an unstable eigenmode
.
0; w/ 2 .0;C1/ � H

1.R/, kwkH1 D 1. There exists M > 0 such that, for any solution  2
C.RC;H

1.R;C// of the linearized equation (5), we have the growth estimate of the semigroup

k .t/kH1.R/ �M e
0tk .0/kH1.R/ for all t � 0:

Moreover, Uc� has also the following instability property: there exist K > 0, ı > 0 and "0 > 0, such that,
for any 0 < ı < ı0, the solution ‰.t/ to (NLS) with initial datum ‰in D Uc� C ıw 2 Uc� CH

1.R/ exists
at least on Œ0; 
�10 ln.2"0=ı/� and satisfies

k‰.t/�Uc� � ıe

0twkH1.R/ �Kı

2e2
0t :

In particular, for t D 
�10 ln.2"0=ı/ and � � "0=K, we have

inf
y2R
kj‰.t/j � jUc� j. � �y/kL2.R/ � � and inf

y2R
kj‰.t/j � jUc� j. � �y/kL1.R/ � �;

which implies
inf
y2R
�2R

k‰.t/� ei�Uc�. � �y/kH1.R/ � �

as well as

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//� � and inf

y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//� �:

With the above result, we then show the nonlinear instability also in the energy space, and thus recover
the instability result of Z. Lin but this time by tracking the unstable growing mode.

1B4. Instability at a cusp. In this section, we investigate the question of stability in the degenerate case
dP=dc D 0. In [Grillakis et al. 1987] (see also [Grillakis et al. 1990]), a stability result for the wave of
speed c� is shown when the action c 7! S.c/DE.Uc/� cP.Uc/ (on the local branch) is such that, for
instance, d2S=dc2 D�dP=dc is positive for c 6D c� but vanishes for c D c�. In the energy-momentum
diagrams of Section 1A, the situation is different since dP=dc changes sign at the cusps, or, equivalently,
the action c 7!S.c/DE.Uc/�cP.Uc/ (on the local branch) changes its concavity at the cusp. A. Comech
and D. Pelinovsky [2003] show that, for the nonlinear Schrödinger equation, a bound state associated with
a cusp in the energy-charge diagram is unstable. The proof relies on a careful analysis of the linearized
equation, which is spectrally stable, but linearly unstable (with polynomial growth for the linear problem).
A similar technique was used by A. Comech, S. Cuccagna and D. Pelinovsky [2007] for the generalized
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Korteweg–de Vries equation. Then, M. Ohta [2011] also proved the nonlinear instability of these “bound
states” using a Liapounov functional as in [Grillakis et al. 1987]. However, in [Ohta 2011], it is assumed
that J D T 0.0/ and that J is onto, which are both not true here (and there are further restrictions due to the
introduction of an intermediate Hilbert space). M. Maeda [2012] has extended the above instability result,
removing some assumptions in [Ohta 2011]. We show the instability of traveling waves associated with
a cusp in the energy-momentum diagram in the generic case where d2P=dc2 6D 0. Our approach follows
the lines of [Maeda 2012], but with some modifications since our problem does not fit exactly the general
framework of this paper. In particular, we can not find naturally a space “Y ”, and some functions appearing
in the proof do not lie in the range of the skew-adjoint operator @x involved in the Hamiltonian formalism.
We overcome this difficulty using an approximation argument (similar to the one used in [Lin 2002]).

Theorem 16. Assume that, for some c� 2 .0; cs/ and � > 0 small, .0; cs/� Œc���; c�C��3 c 7!Uc 2Z

is a continuous branch of nontrivial traveling waves with

dP.Uc/

dc jcDc�
D 0 6D

d2P.Uc/

dc2 jcDc�
;

and assume in addition that f is of class C2. Then, Uc� is orbitally unstable in .Z; dZ/.

1C. Stability in the case c D 0.

1C1. Instability for the bubbles. When c D 0, we have two types of stationary waves: the bubbles, when
�0 > �r

2
0 , are even functions (up to a translation) that do not vanish, and the kinks, when �0 D�r20 , are

odd functions (up to a translation). The instability of stationary bubbles has been shown by A. de Bouard
[1995] (and is true even in higher dimension). The proof there relies on the proof of the existence of
an unstable eigenvalue for the linearized NLS, and then the proof of a nonlinear instability result. An
alternative proof of the linear instability of the bubbles is given in [Pelinovsky and Kevrekidis 2008,
Theorem 3.11(ii)].

Theorem 17 [de Bouard 1995]. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0)
wave U0 which does not vanish. Then, U0 is (linearly and nonlinearly) unstable in U0CH 1.R/ (endowed
with the naturalH 1 metric); that is, there exists � such that, for any ı > 0, there exists ‰in 2U0CH

1.R/

such that k‰in � U0kH1.R/ � ı, but, if ‰ 2 U0 C C.Œ0; T �/;H 1.R// denotes the maximal solution
of (NLS), then there exists 0 < t < T � such that k‰.t/�U0kH1.R/ � �.

Actually, in the same way that Corollary 15 is a better instability result than Corollary 14, we have the
following stronger instability result, which is a direct consequence of Corollary B.6 in Appendix B.

Proposition 18. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0) wave U0 which
does not vanish. Then, U0 is (nonlinearly) unstable in U0CH 1.R/, .Z; dZ/ and .Zhy; dhy/ in the same
sense as in Corollary 15.

Finally, we would like to emphasize that we may recover the instability result for bubbles from the
proof of Theorem 5, relying on the hydrodynamical form of (NLS), which holds true here since bubbles
do not vanish. Our result holds in the energy space and for the hydrodynamical distance.
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Theorem 19. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0) wave U0 which
does not vanish. Then, there exists some small � > 0 such that U0 belongs to a locally unique continuous
branch of nontrivial traveling waves Uc defined for 0 � c � � . Then, c 7! P.Uc/ has a derivative at
c D 0,

dP.Uc/

dc jcD0
> 0

and U0 D A�ei�� is orbitally unstable for the distances dZ and dhy.

Proof. We give a proof based on the argument of [Lin 2002], which is possible since U0 is a bubble, hence
does not vanish, and the spectral decomposition used there still holds when cD 0. Moreover, it is clear that
the mapping c 7! .�c ; uc/2H

1�L2 is smooth up to cD 0, using the uniform exponential decay at infinity
near c D 0 and arguing as in [Chiron 2012]. Therefore, it suffices to show that .dP.Uc/=dc/jcD0 > 0.
From the expression of the momentum given in [ibid., Subsection 1.2], we have, for 0� c � � ,

P.Uc/D c sgn.�c/
Z �c

0

�2

r20 C �

d�p
�Vc.�/

D c

ˇ̌̌̌Z �0

0

�2

r20 C �

d�p
�V0.�/

ˇ̌̌̌
C o.c/

since �0 > �r20 . Indeed, we are allowed to pass to the limit in the integral once it is written with the
change of variables � D t�c :Z �c

0

�2

r20 C �

d�

�Vc.�/
D

Z 1

0

�3c t
2

r20 C t�c

dtp
�Vc.t�c/

;

since �0 > �r20 . Therefore,

dP.Uc/

dc jcD0
D

ˇ̌̌̌Z �0

0

�2

r20 C �

d�p
�V0.�/

ˇ̌̌̌
> 0

since �0 6D 0 (U0 is not trivial). The conclusion follows then from the proof of Theorem 5. �

When we know that .dP.Uc/=dc/jcD0 > 0, we may also use the Evans function as in Theorem 13 to
show the existence of an unstable eigenmode. However, due to the fact that the kink U0 is real-valued,
we can use the arguments in [de Bouard 1995; Pelinovsky and Kevrekidis 2008].

1C2. Stability analysis for the kinks. We now turn to the case of the kinks (�0D�r20 and U0 is odd up to
a translation). Since U0 vanishes at the origin, the hydrodynamical form of (NLS) can not be used. The
stability of the kink has attracted several recent works. L. Di Menza and C. Gallo [2007] have investigated
the linear stability through the Vakhitov–Kolokolov function VK, defined by

VK.�/�
Z

R

�
Œ�@2x �f .U

2
0 /���

�1.@xU0/
�
.@xU0/ dx;

whereU0 is the kink, for �2 .��; 0/ for some ��<0. They show that the Vakhitov–Kolokolov function VK
has a limit VK0 when �! 0�. If VK0 > 0, then the linearization of (NLS) around the kink has an
unstable real positive eigenvalue. When VK0 < 0, the linearization of (NLS) around the kink has a
spectrum included in iR (spectral stability). Note that the approach of [Lin 2002] (extending [Grillakis
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et al. 1987]) does not give directly unstable eigenvalues in the case dP=dc > 0. Recently, the link between
the quantity dP=dc and the sign of VK0 has been given by D. Pelinovsky and P. Kevrekidis [2008] (proof
of Lemma 3.10 there, the factor

p
2 coming from the coefficients of the NLS equation in [Pelinovsky and

Kevrekidis 2008]):

2
p
2VK0 D lim

c!0

dP.Uc/

dc
; (8)

and they also prove, in a different way from [Di Menza and Gallo 2007], that we have spectral stability
when limc!0 dP=dc < 0 and existence of an unstable eigenvalue (in R�

C
) if limc!0 dP=dc > 0. It is

shown in [Pelinovsky and Kevrekidis 2008] that the limit limc!0 dP.Uc/=dc does exist. Actually, it is
proved there that the function Œ0; c0/ 3 c 7! P.Uc/ is of class C1 and that the derivative at c D 0 is also
given by (see (8))

lim
c!0

dP.Uc/

dc
D 2
p
2VK0 D 2

p
2 lim
�!0�

Z
R

�
Œ�@2x �f .U

2
0 /���

�1.@xU0/
�
.@xU0/ dx

D 2
p
2

Z
R

Im
�
@Uc

@c jcD0

�
@xU0 dx: (9)

Our next lemma gives an explicit formula of the expression (9), involving only the nonlinearity f .

Lemma 20. Assume that U0 is a kink. Then, there exists c0 2 .0; cs/ such that U0 belongs to the (locally)
unique branch Œ0; c0/ 3 c 7! Uc 2 Z. Moreover, P.Uc/! r20� as c! 0 and the continuous extension
Œ0; c0/ 3 c 7! P.Uc/ has a derivative at c D 0 given by

dP.Uc/

dc jcD0
D�

8r30

3
p
F.0/

C
1

2

Z r20

0

.%� r20 /
2

%3=2

�
1p
F.%/

�
1p
F.0/

�
d%:

The advantage of the formula given in Lemma 20 compared to (9) is that it allows a direct computation of
.dP.Uc/=dc/jcD0 when f is known, which does not require computing numericallyU0 and .@Uc=@c/jcD0.
For instance, it is quite well adapted to the stability analysis as in [Fakau and Karval’u 2009]. Let us observe
that it may happen that a kink is unstable (see [Kivshar and Krolikowski 1995; Di Menza and Gallo 2007]).

In the case of linear instability, [Di Menza and Gallo 2007] shows that, then, nonlinear instability holds.
Actually, a stronger result is proved there, showing that the L1 norm (and not only the H 1 norm) does
not remain small.

Theorem 21 [Di Menza and Gallo 2007]. Assume that there exists a kink, that is, a nontrivial stationary
(c D 0) wave U0 vanishing somewhere, and satisfying .dP.Uc/=dc/jcD0 > 0. Then, U0 is (linearly and
nonlinearly) unstable in the sense that there exists � such that, for any ı >0, there exists‰in2U0CH

1.R/

such that k‰in�U0kH1.R/� ı, but, if‰2U0CC.Œ0; T �/;H 1.R// denotes the maximal solution of (NLS),
then there exists 0 < t < T � such that k‰.t/�U0kL1.R/ � �.

The proof in [Di Menza and Gallo 2007] relies on the tracking of the exponentially growing eigenmode.
One may actually improve slightly the result as this was done in Corollary 15. As a matter of fact, this
was the result in Theorem 21 that has motivated us for Corollary 15.
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We focus now on the nonlinear stability issue when there is linear (spectral) stability, that is, when
.dP.Uc/=dc/jcD0 < 0. Concerning the Gross–Pitaevskii nonlinearity (f .%/D 1�%), for which we have
.dP.Uc/=dc/jcD0 < 0, we quote two papers on this question. The first one is the work of P. Gérard
and Z. Zhang [2009] where the stability is shown by inverse scattering, hence in a space of functions
sufficiently decaying at infinity. The analysis then relies on the integrability of the one-dimensional GP
equation. The other work is by F. Béthuel, P. Gravejat, J.-C. Saut and D. Smets [Béthuel et al. 2008b].
They prove the orbital stability of the kink of the Gross–Pitaevskii equation by showing that the kink is a
global minimizer of the energy under the constraint that a variant of the momentum is fixed (recall that
the definition of the momentum has to be clarified for an arbitrary function in the energy space), and that
the corresponding minimizing sequences are compact (up to space translations and phase factors). In this
approach, it is crucial (see [Béthuel et al. 2008a; 2008b]) that Ekink < csPkinkD csr

2
0� in order to prevent

the dichotomy case for the minimizing sequences. However, since the energy of the kink is equal to

Ekink D 4

Z 0

�r20

F.r20 C �/p
�V0.�/

d� D 2

Z 0

�r20

s
F.r20 C �/

r20 C �
d� D 2

Z r20

0

s
F.%/

%
d%;

whereas its momentum is always equal to r20� , it is clear that the condition Ekink < csPkinkD csr
2
0� does

not hold in general, as shown in the following example.

Example. For � � 0, consider

f .%/� 1� %C �.1� %/3;

which is smooth and decreases to �1 as the Gross–Pitaevskii nonlinearity. We have r0 D 1, cs D
p
2,

F.%/D .1� %/2=2C �.1� %/4=4 and

Ekink D 2

Z r20

0

s
F.%/

%
d%D 2

Z r20

0

s
2.1� %/2C �.1� %/4

4%
d% > csr

2
0� D �

p
2

for � large (the left-hand side tends to C1), and numerical computations show that it is the case for
� � 14. Furthermore, Lemma 20 gives

p
F.0/

dP.Uc/

dc jcD0
D�

8

3
C
1

2

Z 1

0

.%� 1/2

%3=2

�s
F.0/

F.%/
� 1

�
d%: (10)

Since F.0/=F.%/D .2C �/=.2.%� 1/2C �.%� 1/4/, it can be easily checked that the right-hand side
of (10) is a decreasing function of � tending to

�
8

3
C
1

2

Z 1

0

.%� 1/2

%3=2

�
1

.%� 1/2
� 1

�
d%D�1

when �!C1 (by monotone convergence). In particular, for any � � 0, we have .dP.Uc/=dc/jcD0 < 0;
that is, the kink is always (linearly) stable. The energy-momentum diagram for this type of nonlinearity
with � large is as in the right part of Figure 4 (the left part correspond to � smaller).
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In comparison with the constraint minimization approach as in [Béthuel et al. 2008a; 2008b], which
allows us to establish a global minimization result, the spectral methods as in [Grillakis et al. 1987; Lin
2002] allow us to put forward locally minimizing properties, which turn out to be useful for the stability
analysis in dimension one.

In the stability analysis of the kink, one issue is the definition of the momentum P , which was up
to now given only for maps in Zhy, that is, for maps that never vanish, but the kink vanishes at the
origin. In [Béthuel et al. 2008b], the notion of momentum was extended to the whole energy space Z,
hence including maps vanishing somewhere, as a quantity defined mod 2� , and was called “untwisted
momentum”. This notion will be useful for our stability result.

Lemma 22 [Béthuel et al. 2008b]. If  2 Z, the limit

P. /� lim
R!C1

�Z CR
�R

hi j@x i dx� r
2
0

�
arg. .CR//� arg. .�R//

��
exists in R=.2�r20Z/. The mapping P WZ!R=.2�r20Z/ is continuous and, if  2Z satisfies infR j j>0

(i.e.,  2 Zhy), then P. /D P. / mod 2�r20 . Finally, if ‰ 2 C.Œ0; T /;Z/ is a solution to (NLS), then
P.‰.t// does not depend on t .

Proof. For the sake of completeness, we recall the proof of [Béthuel et al. 2008b]. Let  2 Z and let us
verify the Cauchy criterion. Since j j ! r0 > 0 at ˙1, we have a lifting  D A˙ei�˙ in .�1;�R0/
and in .CR0;C1/ for some R0 sufficiently large. For R0 >R >R0, we thus have in R=.2�r20Z/�Z CR0
�R0
hi j@x i dx� r

2
0

�
arg. .CR0//� arg. .�R0//

��
�

�Z CR
�R

hi j@x i dx� r
2
0

�
arg. .CR//� arg. .�R//

��
D

Z R0

R

hi j@x i dxC

Z �R
�R0
hi j@x i dx

� r20
�
arg. .R0//� arg. .R//

�
C r20

�
arg. .�R0//� arg. .�R//

�
D

Z R0

R

A2C@x�C dxC

Z �R
�R0

A2�@x�� dx� r
2
0

�
�C.R

0/��C.R/
�
C r20

�
��.�R

0/���.�R/
�

D

Z R0

R

.A2C� r
2
0 /@x�C dxC

Z �R
�R0

.A2�� r
2
0 /@x�� dx:

The absolute value of each term is � K
R
˙x�˙Rj@x j

2 C .j j � r0/
2 dx and thus tends to zero if

R!C1. Thus, P. / is well-defined. The proof of the continuity follows the same lines, and allows
us to show that P is actually locally Lipschitz continuous. Let  2 Z. If Q 2 Z and dZ. Q ; / is small
enough, we have kj Q j � j jkL1 as small as we want. In particular, if R0 > 0 is large enough so that
j j � 3r0=4 for jxj �R, we have j Q j � r0=2 for jxj �R0. As a consequence, writing  DA˙ei�˙ and
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Q D QA˙e
i Q�˙ in .�1;�R0/ and in .CR0;C1/, we have, in R=.2�r20Z/ and for R >R0,�Z CR

�R

hi j@x i dx�r
2
0

�
arg. .CR//�arg. .�R//

��
�

�Z CR
�R

hi Q j@x Q i dx�r
2
0

�
arg. Q .CR//�arg. Q .�R//

��
D

Z CR0
�R0

hi. � Q /j@x iChi Q j@x. � Q /i dxC

Z R

R0

A2C@x�C�
QA2C@x

Q�C dx�r
2
0

�
�C.CR/� Q�C.CR/

�
C

Z �R0
�R

A2�@x���
QA2�@x

Q�� dxCr
2
0

�
��.�R/� Q��.�R/

�
D

Z CR0
�R0

hi. � Q /j@x iChi Q j@x. � Q /i dxCr
2
0

�
�C.CR0/� Q�C.CR0/

�
Cr20

�
��.�R0/� Q��.�R0/

�
C

Z R

R0

.A2C�r
2
0 /@x�C�.

QA2C�r
2
0 /@x

Q�C dxC

Z �R0
�R

.A2��r
2
0 /@x���.

QA2��r
2
0 /@x

Q�� dx:

We now estimate all the terms. For the last line, we use the Cauchy–Schwarz inequality to get
j
R R
R0
.A2
C
� r20 /@x�C dxj �K. /kAC � r0kL2.R/kAC@x�CkL2.R/ �K. /dZ. ; Q /, and similarly for

the other terms. Moreover, using that . � Q /.x/D . � Q /.0/C
R x
0 @x. �

Q /, we get, by the Cauchy–
Schwarz inequality, k � Q kC0.Œ�R0;CR0�/� j. �

Q /.0/jC
p
R0k@x �@x Q kL2.R/�K.R0/dZ. ; Q /.

Thus, the terms of the second line can be estimated by K. ;R0/dZ. ; Q /, and those of the first line can
also be bounded by K. ;R0/dZ. ; Q /. Passing to the limit as R!C1 then gives

jP. /�P. Q / mod 2�r20 j �K. ;R0/dZ. ; Q /:

This completes the proof for the definition of P. To show that P is constant under the (NLS) flow, we
use that ‰ 2‰.0/CC.Œ0; T /;H 1/ and the approximation by smoother solutions (see Proposition 1 in
[Béthuel et al. 2008b]). �

For the stability of the kink, we can no longer use the Grillakis–Shatah–Strauss theory applied to the
hydrodynamical formulation of (NLS), since the kink vanishes at the origin. Therefore, it is natural to
consider the Liapounov functional L introduced in Section 1B2, which becomes, in the stationary case
c D 0,

L. /DE. /C
M

2
.P. /�P.U0//

2:

Since the momentum P is not well-defined in Z, we have to replace it by the untwisted momentum P,
which is defined modulo 2�r20 . Consequently, it is natural to define the functional in Z

K. /�E. /C 2Mr40 sin2
P. /� r20�

2r20
;

which is well-defined and continuous in Z since sin2 is �-periodic. In addition, K is conserved by the
(NLS) flow as E and P.
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Theorem 23. Assume that there exists a kink, that is, a nontrivial stationary (c D 0) wave U0 which is
odd. Assume also that

dP.Uc/

dc jcD0
< 0:

Then, there exists some small �� > 0 such that U0 is a local minimizer of K. More precisely, defining

V�� � f 2 Z; infRj j< ��g;

we have, for any  2 V��n fe
i�U0. � �y/; � 2 R; y 2 Rg,

K. / > K.U0/DE.U0/:

The crucial point in this result is to prove that the functional K. / controls the infimum infRj j.
As we shall see in the proof (Section 6B), the key idea is to study the infimum of the functional K at
fixed infRj j (small), and then to prove (see Proposition 6.2) that, for  2 V�� , there holds, for some
constant K depending only on f ,

K. /� K.U0/C
.infRj j/

2

K
:

This will be achieved by a fine analysis of some minimizing sequences. From this locally minimizing
property of the kink when .dP.Uc/=dc/jcD0 < 0, we infer its orbital stability, provided we can prove
some compactness on the minimizing sequences. A main step here is the control on infRj j. Our method
allows to infer a control on the distance of the solution to (NLS) to the orbit of the kink, but it is much
weaker than those obtained by spectral methods in Lemma 7 or Corollary 11 for instance.

Theorem 24. Assume that there exists a kink, that is, an odd nontrivial stationary (c D 0) wave U0, and
that .dP.Uc/=dc/jcD0 < 0. Then, U0 is orbitally stable in .Z; dZ/. Moreover, if ‰.t/ is the (global)
solution to (NLS) with initial datum ‰in, we have the control

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�U0. � �y//�K

8

q
K.‰in/�E.U0/�K

4

q
dZ.‰in; U0/

provided that the right-hand side is sufficiently small.

This result settles the nonlinear stability under the condition .dP.Uc/=dc/jcD0 < 0 for a general
nonlinearity f . In particular, it may be applied to the nonlinearity f given in the example above. It shows
that the stability of the kink holds with ı D O."4/. We do not claim that the exponent 1=8 is optimal.

For a complete study of the stability of the traveling waves, it would remain to investigate the case
of the sonic (c D cs) traveling waves (when they exist). The methods we have developed do not apply
directly, and we give in Section 7 some of the difficulties associated with this critical situation.

2. Decay at infinity (proof of Proposition 2)

For simplicity, we shall define

V.�/� Vcs .�/D c2s �
2
� 4.r20 C �/F.r

2
0 C �/:
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We freeze the invariance by translation by imposing jUcj (hence also @x�) even, so that we can use the
formulas in [Chiron 2012]. In particular, it suffices to show the asymptotics for x ! C1: the case
x!�1 follows by symmetry. We start with the proof of case (iii). Under assumption (Am) and since
F 0 D�f , we infer the Taylor expansion

V.�/D c2s �
2
C 4.r20 C �/

�
1

2Š
f 0.r20 /�

2
C � � �C

1

.mC 2/Š
f .mC1/.r20 /�

mC2

C
1

.mC 3/Š
f .mC2/.r20 /�

mC3
CO.�mC4/

�
D

4r20
.mC 3/Š

f .mC2/.r20 /�
mC3
C

4

.mC 2/Š
f .mC1/.r20 /�

mC3
CO.�mC4/

D
4

r
2.mC1/
0

�
r
2.mC2/
0

.mC 3/Š
f .mC2/.r20 /C .�1/

mC2 c
2
s

4

�
�mC3CO.�mC4/Dƒm�

mC3
CO.�mC4/;

since, when (Am) holds, all the terms O.�mC2/ cancel out. The coefficient ƒm is not zero by assumption.
Note that the existence of a nontrivial sonic wave, which depends on the global behavior of V, imposes
that ƒm�mC3 < 0 when � is small and has the sign of �cs . Therefore, from the formula (following from
the Hamiltonian equation 2@2x�c CV0.�c/D 0; see [Chiron 2012] for example)

x D�sgn.�cs /
Z �cs .x/

�cs

d�p
�V.�/

and since we have, as �! 0 (with the sign of �cs ),Z �

�cs

d�p
�V.�/

D

Z �

�cs

d�p
�ƒm�mC3

C

Z �

�cs

V.�/�ƒm�
mC3p

�V.�/
p
�ƒm�mC3

�p
�V.�/C

p
�ƒm�mC3

� d�
D�

2 sgn.�cs /
mC 1

�
1p

�ƒm�mC1
�

1q
�ƒm�

mC1
cs

�
C

8<:
O.1/ if mD 0;
O.jlnj�jj/ if mD 1;
O.��

m�1
2 / if m� 2

(here, we use that the last integrand is O.��.mC1/=2/ as �! 0), it follows that, as x!C1,

�cs .x/D sgn.�cs /
�

4

.mC 1/2jƒmj

� 1
mC1 1

x
2

mC1

C

8̂̂<̂
:̂

O.1=x3/ if mD 0;

O.ln.x/=x2/ if mD 1;

O.1=x
4

mC1 / if m� 2:

This shows the asymptotics for the modulus, or �cs . The asymptotic expansion for @x�cs is easily deduced
from the equation on the phase 2@x�cs D cs�cs=.r

2
0 C �cs /, and the phase �cs is then computed by

integration, which completes the proof of case (iii).
The proof of (ii) is easier. Indeed, in this case, the function V has the expansion

V.�/D c2s �
2
� 4.r20 C �/F.r

2
0 C �/D O.�3/I
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hence

Vc.�/D V.�/� .c2s � c
2/�2 D�.c2s � c

2/�2CO.�3/:

As a consequence, the result follows from the expansion, for �! 0,Z �

�c

d�p
�V.�/

D

Z �

�c

d�p
.c2s �c

2/�2
C

Z �

�c

V.�/p
�Vc.�/

p
.c2s �c

2/�2
�p
�Vc.�/C

p
.c2s �c

2/�2
� d�

D sgn.�c/
ln.�=�c/p
c2s �c

2
C

Z 0

�c

V.�/p
�Vc.�/

p
.c2s �c

2/�2
�p
�Vc.�/C

p
.c2s �c

2/�2
� d�CO.�/

since the integrand for the last integral is continuous at � D 0. This yields the desired expansion for the
modulus:

�c.x/D �c exp
�
�x

q
c2s�c

2�

Z 0

�c

V.�/p
��2Vc.�/

�p
�Vc.�/C

p
.c2s�c

2/�2
� d��CO

�
exp

�
�2x

q
c2s�c

2
��

DMc exp
�
�x

q
c2s�c

2
�
CO

�
exp

�
�2x

q
c2s�c

2
��
;

with

Mc � �c exp
�
�

Z 0

�c

V.�/p
��2Vc.�/

�p
�Vc.�/C

p
.c2s � c

2/�2
� d�� 6D 0;

and hence for the phase by similar computations to those above. The proof of case (i) is similar, separating
the case �0D�r20 of the kink (even solution) from the case �0 6D �r20 of the bubble (odd solution), and is
omitted. �

3. Stability results deduced from the hydrodynamical formulation of (NLS)

3A. Proof of Lemma 9. (i) The mapping M is an homeomorphism. Let DAei� , . nDAnei�n/n2 Z

such that  n!  for dhy. Then, An�A! 0 in H 1, @x�n! @x� in L2 and we may assume (possibly
adding some multiple of 2� to �n), that �n.0/!�.0/. We write, using the embeddingH 1.R/ ,!L1.R/

for the second-to-last line,

dZ. n;  /

D k@x n�@x kL2Ckj nj� j jkL2Cj n.0/� .0/j

D kei�n@xAnC iAne
i�n@x�n� ei�@xA� iAe

i�@x�kL2CkAn�AkL2CjAn.0/e
i�n.0/�A.0/ei�.0/j

� k.ei�n � ei�/@xAkL2Cke
i�.@xAn�@xA/kL2Ck.An�A/e

i�n@x�nkL2CkA.e
i�n � ei�/@x�kL2

CkAei�n.@x��@x�n/kL2CkAn�AkL2Cj.An.0/�A.0//e
i�n.0/jC jA.0/.ei�n.0/� ei�.0//j

� k.ei�n � ei�/@xAkL2CKkAn�AkH1Ck.An�A/kH1k@x�nkL2CkAkL1k.e
i�n � ei�/@x�kL2

CkAkL1k@x��@x�nkL2CkAkL1 je
i�n.0/� ei�.0/j (11)

D k.ei�n � ei�/@xAkL2CkAkL1k.e
i�n � ei�/@x�kL2Con!C1.1/;
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from the convergences we have. Now observe that

�n.x/D �n.0/C

Z x

0

@x�n.t/ dt ! �.0/C

Z x

0

@x�.t/ dt D �.0/

pointwise; hence, by the dominated convergence theorem, k.ei�n � ei�/@xAkL2 ! 0, and similarly for
the other term. Therefore, dZ. n;  /! 0 as wished.

Let now  D Aei� , . n D Anei�n/n 2 Z such that  n!  for dZ. Then, An�AD j nj � j j ! 0

in L2, @x n ! @x in L2 and  n.0/!  .0/. Since j � j is 1-Lipschitz continuous, we infer for the
modulus

k@xAn� @xAkL2 D k@xj nj � @xj jkL2 � k@x n� @x kL2 :

Moreover,  n.0/!  .0/ and this implies arg. n.0/= .0//! 0. Therefore, it suffices to show that
@x�n! @x� in L2. We use the formula A2@x� D hi j@x i, which yields

@x�n� @x� D
hi nj@x ni

A2n
�
hi j@x i

A2

D hi nj@x ni

�
1

A2n
�
1

A2

�
C
hi nj@x. � n/i

A2
�
hi. � n/j@x i

A2
I

hence
k@x�n� @x�kL2

�
k nkL1kAkL1

.infRA2/.infRA2n/
kAn�AkL2 C

k nkL1

infRA2
k@x � @x nkL2 C

1

infRA2
kj n� j@x kL2 : (12)

The first two terms tend to zero as n ! C1. For the last term, we use here again the dominated
convergence theorem since  n.x/D  n.0/C

R x
0 @x n.t/ dt !  .0/C

R x
0 @x .t/ dt D  .0/ pointwise.

This concludes the proof of (i).

Proof of (ii). Let us define �� W R! R by ��.x/� 1
2
.ln x/21x�1. Then, straightforward computations

give @x��.x/D ..ln x/=x/1x�1 2 L2.R/ and, for X � e, by monotonicity of @x��,Z 2X

X

.@x��/
2 dx �X

ln2.2X/
.2X/2

�
.lnX/2

4X
: (13)

We now consider �n W R! R defined by �n.x/D 0 if x � 0 or x � 3n� , �n.x/D x=n if 0 � x � n� ,
�n.x/D � if n� � x � 2n� and �n.x/D 3� � x=n if 2n� � x � 3n� . Then, we easily obtain

dhy.e
i�� ; ei��Ci�n/D k@x�nkL2 D

r
2�

�n

n2
D

r
2�

n
! 0:

Moreover,

dZ.e
i�� ; ei��Ci�n/D k@x��e

i�� � .@x��C @x�n/e
i��Ci�nkL2 � k@x��.e

i�n � 1/kL2 �k@x�nkL2 ;

and, by our choice of �n and using (13),

k@x��.e
i�n � 1/k2

L2
�

Z 2n�

n�

4.@x��/
2 dx �

.lnX/2

X jXDn�
�
.lnn/2

n�
:
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Since .lnn/=
p
n��

p
2�=nD dhy.e

i�� ; ei��Ci�n/, it follows that, as wished,

dZ.e
i�� ; ei��Ci�n/�

lnn
p
n�
.1C o.1//�

r
2�

n
D dhy.e

i�� ; ei��Ci�n/:

We do not know whether the mapping M is locally Lipschitz, but it is probably not.

3B. Proof of Lemma 10. Note first that, since U� does not vanish, if ı is sufficiently small and
dZ. ; U�/ � ı, then kj j � jU�jkL1 � .1=2/ infR jU�j; hence j j � .1=2/ infR jU�j > 0 in R; thus  
does not vanish, may be lifted to  D A exp.i�/, and we may further assume �.0/���.0/ 2 .��;C��.
In (11), we can easily check that the terms leading to the “o.1/” are indeed controlled byK. /dhy. n;  /.
In other words, we have

dZ. ; U�/� k.e
i�
� ei��/@xA�kL2 CkA�kL1k.e

i�
� ei��/@x��kL2 CK.U�/dhy. ; U�/;

provided dhy. ; U�/ is small enough. In order to bound the two remaining terms, we write, for x 2 R,

�.x/���.x/D �.0/���.0/C

Z x

0

@x�.y/� @x��.y/ dy;

which implies, using that R 3 � 7! ei� is 1-Lipschitz and the Cauchy–Schwarz inequality,

j1� ei.��.x/��.x//j � j�.0/���.0/jC
p
jxjku�u�kL2 : (14)

Consequently,

k.ei� � ei��/@xA�kL2 � j�.0/���.0/jk@xA�kL2 Cku�u�kL2


pjxj@xA�

L2

and
k.ei� � ei��/@x��kL2 � j�.0/���.0/jk@x��kL2 Cku�u�kL2



pjxj@x��

L2 :
Both terms are � K.U�/dhy. ; U�/. Indeed, U� 2 Z is a traveling wave; hence A�, @xA�, @x�� are
bounded functions which decay at infinity exponentially if 0� c < cs (cf. part (i) or (ii) of Proposition 2). If
cD cs , since assumption (A0) is satisfied, we invoke Proposition 2(iii), which ensures that @x�� and @xA�
decay at the rate O.jxj�2/ (@xA� decays faster actually). Therefore,

p
jxj@x�� 2 L

2. Gathering these
estimates provides

dZ. ; U�/�K.U�/dhy. ; U�/:

On the other hand, from (12) and the estimate kA�A�kH1 � dZ. ; U�/ (see the proof of (i)), we infer

dhy. ; U�/�K.U�/dZ. ; U�/C
1

infRA2
kj �U�j@xU�kL2 :

Using here again the estimate j .x/�U�.x/j � j�.0/���.0/jC
p
jxjk@x �U�kL2 , we deduce

dhy. ; U�/�K.U�/dZ. ; U�/:

The proof is complete. �
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3C. Two remarks on the proof of Theorem 5. We would like to point out two minor points concerning
the proof of Theorem 5 by Z. Lin. We recall that the proof of [Lin 2002] relies on the Grillakis–Shatah–
Strauss theory [Grillakis et al. 1987] once we have written (NLS) under the hydrodynamical form (2),
defining  D Aei� , .�; u/� .j j2 D A2; @x�/:8<:@t�C 2@x.�u/D 0;@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

or, more precisely, with �� ��r20 D j j
2�r20 and denoting by ıE=ı�, ıE=ıu the variational derivatives,

@

@t

�
�

u

�
D J

0B@
ıE

ı�
ıE

ıu

1CA ; J �

�
0 @x
@x 0

�
: (15)

We first remark that the scalar product in the Hilbert spaceXDH 1�L2 can not be ..�; u/; . Q�; Qu//H1�L2DR
R
� Q�Cu Qudx as used in [Lin 2002], but the natural one is ..�; u/; . Q�; Qu//H1�L2D

R
R
� Q�C@x�@x Q�Cu Qudx.

This requires us to make some minor changes in the proof, especially not to identify .H 1/� with H 1.
For instance, a linear mapping B is associated with the momentum through the formula

Phy.�; u/�

Z
R

�u dx D 1
2
.B.�; u/; .�; u//H1�L2 with B �

�
0 1

1 0

�
for the (nonhilbertian) scalar product ..�; u/; . Q�; Qu//H1�L2 D

R
R
� Q�C u Qudx. The correct definition is

actually

Phy.�; u/D

Z
R

�u dx D 1
2
hB.�; u/; .�; u/iX�;X with B �

�
0 ��

� 0

�
;

where � WH 1 ,! L2 is the canonical injection. As already mentioned in Section 1B, the two points in the
proof of [Lin 2002] that have been completed in [Gallo 2004] are that: Lin uses a local in time existence
for the hydrodynamical system (15) in H 1�L2, and not only in f� 2L1; @x� 2L2g�L2; and that the
energy and the momentum are indeed conserved for the local solution if the initial datum does not vanish.

The second point is that, in the proof of stability (Theorem 3.5 in [Grillakis et al. 1987]), it is used that,
if U 2X and .Un/n2N 2X is a sequence such that E.Un/!E.U/ and Phy.Un/! Phy.U/, then there
exists a sequence . QUn/n2N 2X such that Un�

QUn! 0 in X , E. QUn/!E.U/ and Phy. QUn/D Phy.U/.
In the context of bound states, the existence of such a sequence . QUn/n2N 2X follows by simple scaling
in space, since then the momentum or charge is simply

R
Rd

U2
n dx. However, for the one-dimensional

traveling waves for (NLS), the momentum P is scaling invariant. We do not know if the existence of
such a sequence holds in a general framework, but, for the problem we are studying, we can rely on
the following lemma, which is an adaptation of Lemma 6 in [Béthuel et al. 2008a] (see also lemma in
[Béthuel et al. 2008b]).
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Lemma 3.1. There exist p0 > 0 and K > 0, depending only on f , such that, for any p 2 .�p0;Cp0/ and
� 2 R with j�j � jpj, there exists w D aei' 2H 1.Œ0; 1=.2jpj//;C/ verifying

w.0/D w

�
1

2jpj

�
; jw.0/j D r0C�;

Z 1=.2jpj/

0

.a2� r20 /@x' dx D p;Z 1=.2jpj/

0

j@xwj
2
CF.jwj2/ dx �Kjpj:

Proof. If pD 0, we simply take w D r0. We then assume 0 < p < p0, since the case �p0 < p < 0 will
follow by complex conjugation. We then define, for some small ı to be determined later,

w.x/�

q
r20 � ıC 2p.1� j8px� 1j/C expŒi.1� j4px� 1j/C�D aei' :

It is clear that w 2H 1.Œ0; 1=.2p/�;C/ and that w.0/Dw.1=.2p//D
p
r20 � ı; thus jw.0/j D r0C� pro-

vided we choose ıD��2�2r0�D O.j�j/. Moreover, since the phase ' has compact support Œ0; 1=.2p/�,Z 1=.2p/

0

.a2� r20 /@x' dx D

Z 1=.2p/

0

f�ıC 2p.1� j8px� 1j/Cg@x.1� j4px� 1j/C dx

D 2p

Z 1=.2p/

0

.1� j8px� 1j/C@x.1� j4px� 1j/C dx

D 2p

Z 1=.2p/

0

.1� j8px� 1j/C@x.1� j4px� 1j/C dx:

For the last integral, the first factor is equal to 0 if x � 1=.4p/ and the second factor is equal to 4p when
x � 1=.4p/. Hence, direct computation givesZ 1=.2p/

0

.a2� r20 /@x' dx D 2p

Z 1=.4p/

0

.1� j8px� 1j/C � 4p dx D p:

For the energy part, notice first that

ja2� r20 j D j� ıC 2p.1� j8px� 1j/Cj � jıjC 2p0

is as small as we want if jıj and p0 are chosen sufficiently small. Therefore,

F.jwj2/�K.a2� r20 /
2:

By simple computations, we haveZ 1=.2p/

0

j@xwj
2
CF.jwj2/ dx

�K

Z 1=.2p/

0

p2j@x.1� j8px� 1j/Cj
2
Cj@x.1� j4px� 1j/Cj

2
C .�ıC 2p.1� j8px� 1j/C/

2 dx

�Kp3CKpCK
ı2C p2

p
�Kp

since ı D O.j�j/D O.p/, which concludes the proof. �
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We then consider a sequence Un D .�n; un/ 2 X DH
1 �L2 and show the existence of the desired

sequence QUn D . Q�n; Qun/ 2X . We recall that Un (respectively, U) is associated with a mapping  n 2 Z

(respectively, U�) that does not vanish. We have Phy.Un/D P. n/! P.U�/; thus, for n large enough,
jP. n/�P.U�/j � p0. For n fixed, we now pick Rn > 0 large enough so thatZ C1

Rn

j@x nj
2
C .j nj � r0/

2 dx � ŒP. n/�P.U�/�
2:

In particular, by the Sobolev embedding,

ˇ̌
j nj.Rn/�r0

ˇ̌
�kj nj�r0kL1.ŒRn;C1//�

sZ C1
Rn

j@xj njj2C .j nj � r0/2 dx� jP. n/�P.U�/j:

We are now in position to apply (for n large) Lemma 3.1 with .p; �/D .P.U�/�P. n/; j nj.Rn/� r0/.
This provides the mapping wn 2 H 1.Œ0; 1=.2jpj//;C/. Since j nj.Rn/� r0 ! 0, for n large enough,
there exists �n 2 R such that  n.Rn/D ei�n j nj.Rn/D ei�n.r0C�/D ei�nwn.0/. We then consider
the mapping Q n 2 Z defined by

Q n.x/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:
 n.x/ if x �Rn;

ei�nwn.x�Rn/ if Rn � x �RnC
1

2jP. n/�P.U�/j
;

 n

�
x�

1

2jP. n/�P.U�/j

�
if x �RnC

1

2jP. n/�P.U�/j
:

From the construction of wn and the phase factor �n, Q n is well-defined and continuous. It is clear that

P. Q n/D P. n/C

Z 1=.2p/

0

.a2n� r
2
0 /@x'n dx D P. n/C pD P.U�/

for every (large) n, and that

E. Q n/DE. n/C

Z 1=.2p/

0

j@xwj
2
CF.jwj2/ dx

DE.U�/C o.1/CO.jpj/DE.U�/C o.1/CO.jP.U�/�P. n/j/

converges to P.U�/ as n!C1. Denoting by QUn 2X the hydrodynamical expression of Q n, it remains
to show that Un�

QUn! 0 in X DH 1 �L2. We thus compute, with the definition of Q n,

kUn�
QUnk

2
X D

Z C1
Rn

ˇ̌
@xj nj�@xj Q nj

ˇ̌2
C.j nj�j Q nj/

2
C.un� Qun/

2 dx

� 2

Z C1
Rn

j@xj njj
2
Cj@xj Q njj

2
C.j nj�r0/

2
C.j Q nj�r0/

2
Cu2nC Qu

2
n dx

� 4K

Z C1
Rn

j@x nj
2
C.j nj�r0/

2 dxC2

Z 1=.2jP.U�/�P. n/j/

0

j@xwnj
2
C.jwnj

2
�r20 /

2 dx

� 4KŒP. n/�P.U�/�
2
CKjP. n/�P.U�/j ! 0:
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For the second-to-last inequality, we have used that, for jxj �Rn,  n has modulus uniformly close to r0;
hence j@xj njj2C u2n � Kj@x nj

2. Note that the construction still holds for the energy distance, the
computations being similar.

3D. Proof of Lemma 7. Proof of estimate (3). Instead of concluding the stability proof as in [Grillakis
et al. 1987], we can notice that we have actually the bound

Ehy.U/�Ehy.Uc�/�
1

K
inf
y2R
kU�Uc�. � �y/k

2 (16)

as soon as P.Uc�/D Phy.Uc�/D Phy.U/ and U 2 O" � fV 2 X; infy2R kV�Uc�. � � y/kX < "g for
some small ". If ‰in does not have momentum equal to Phy.Uc�/, we use Lemma 3.1 to infer that
there exists Q‰.t/, with momentum equal to Phy.Uc�/D P.Uc�/, and such that E. Q‰.t//�E.‰.t//D
O.jP.‰.t//�P.Uc�/j/ and dhy.‰.t/; Q‰.t//� O.

p
jP.‰.t//�P.Uc�/j/. Therefore, for t � 0, denoting

by ‰hy.t/ 2X and Q‰hy.t/ 2X the hydrodynamical variables for ‰ and Q‰.t/,

inf
y2R
k‰hy.t/�Uc�. � �y/k � inf

y2R

�
k Q‰hy.t/�Uc�. � �y/kCk‰hy.t/� Q‰hy.t/k

�
�
p
K

q
E. Q‰.t//�E.Uc�/CO

�p
jP.‰.t//�P.Uc�/j

�
�K

hq
jE.‰.t//�E.Uc�/jCjP.‰

in/�P.Uc�/jC

q
jP.‰in/�P.Uc�/j

i
;

which yields (3).

The above estimate is optimal when P.‰in/ D P.Uc�/ since Uc� is a critical point of the action
E � c�P . This bound shows that, in the definition of stability, one has to take ı D O."2/ in general. The
estimate (3) shows that one can actually take ı D O."/.

Proof of estimate (4). The point is to compare ‰.t/ to Uc with c' c� such that P.Uc/DP.‰in/ instead
of comparing to Uc� . In other words, we replace Q‰.t/ by Uc . Note first that, since .dP=dc/jcDc� < 0,
there exists, by the implicit function theorem, such a c ' c�. We then proceed as follows. Let ‰in 2 Z

be close to Uc� . Then, there exists c D c.‰in/ ' c� such that P.Uc/ D P.‰in/. Moreover, since
.dP=dc/jcDc� 6D 0, it follows

kUc �Uc�k �Kjc � c�j �KjP.Uc/�P.Uc�/j DKjP.‰
in/�P.Uc�/j

�Kk‰in
hy�Uc�k �Kdhy.‰

in; Uc�/: (17)

From (16), we have

Ehy.U/�Ehy.Uc/�
1

K
inf
y2R
kU�Uc. � �y/k

2

as soon as Phy.U/D Phy.Uc/. The fact that the constant K can be taken to be uniform with respect to c
for c close to c� comes directly from the proof in [Grillakis et al. 1987]. Therefore, for t � 0,

inf
y2R
k‰hy.t/�Uc�. � �y/k � inf

y2R

�
k‰hy.t/�Uc. � �y/kCkUc. � �y/�Uc�. � �y/k

�
�
p
K
p
E.‰.t//�E.Uc/CO.jP.‰in/�P.Uc�/j/:
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Using that P.‰.t//D Phy.‰hy.t//D Phy.Uc/ and that Uc is a critical point of the action Ehy � cPhy,
we infer E.‰.t//�E.Uc/D ŒEhy� cPhy�.‰

in
hy/� ŒEhy� cPhy�.Uc/D O.k‰in

hy�Uck
2/. Consequently,

inf
y2R
k‰hy.t/�Uc�. � �y/k �K

�
k‰in

hy�UckCk‰
in
hy�Uc�k

�
�Kdhy.‰

in; Uc�/CKkUc �Uc�k �Kdhy.‰
in; Uc�/;

by (17). This gives (4).

4. Instability result for cusps: Proof of Theorem 16

In this section, we set Fc �Ehy� cPhy and we assume

�
d2Fc.Uc/

dc2 jcDc�
D
dP.Uc/

dc jcDc�
D 0 and 0 6D RP� �

d2P.Uc/

dc2 jcDc�
D�

d3Fc.Uc/

dc3 jcDc�
:

The approach is reminiscent of the proof of [Maeda 2012]. Several modifications are necessary since, for
the skew-adjoint operator J D @x , we can not find the required Hilbert space Y . More degenerate cases
can probably be considered as in [Maeda 2012].

We shall denote by I W X ! X� and IH1 W H 1 ! .H 1/� the Riesz isomorphisms and define U D

.�; u/t 2X DH 1.R;R/�L2.R;R/ and H � L2.R;R/�L2.R;R/, endowed with its canonical scalar
product. They are the corresponding Hilbert spaces needed in [ibid.]. We consider the symmetric matrix

B�

�
0 1

1 0

�
;

which is such that B2 D Id2 and 2Phy.U/D .BU;U/H .
Our assumption .dP.Uc/=dc/jcDc�D 0 6D .d

2P.Uc/=dc
2/jcDc� will simplify a little the computations

in [Maeda 2012]. The functions �1 and �2 used there become now

�1.
/D Fc�C
 .Uc�C
 /�Fc�.Uc�/� 

dFc.Uc/

dc jcDc�
��


3

6
RP�

and

�2.
/D
d�1

d

D�P.Uc�C
 /CP.Uc�/��


2

2
RP�:

In order to clarify the dualities used by Maeda, we provide some elements of the proof adapted to our
context.

Lemma 4.1. There exists 
0 > 0 small and � W .�
0;C
0/! R with �.
/ � �
2 RP�=.2kU�k2H / and
such that, for any 
 2 .�
0;C
0/,

Phy.Uc�C
 C �.
/BUc�C
 /D Phy.U�/:

Proof. We have

Phy.Uc�C
 C �BUc�C
 /D
1
2
.BUc�C
 C �Uc�C
 ;Uc�C
 C �BUc�C
 /H

D Phy.Uc�C
 /C �kUc�C
k
2
H C �

2Phy.Uc�C
 /:
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Since kU�k2H 6D 0, the conclusion follows from an easy implicit function argument near � D 
 D 0. In
[Maeda 2012], the linear mapping B is seen from X to X�, but, here, there is no confusion in defining
Uc�C
 C �BUc�C
 2H D L

2 �L2. �

We define, for 
 2 .�
0;C
0/,

W.
/�Uc�C
 C �.
/BUc�C
 ;

which then satisfies Phy.W.
//D Phy.U�/ by construction.

Lemma 4.2. As 
 ! 0, we have Fc�.W.
//�Fc�.Uc�/��.

3=6/ RP�.

Proof. Using that F0c�C
 .Uc�C
 / D 0, Phy.W.
// D Phy.Uc�/ D �.dFc.Uc/=dc/jcDc� and �.
/ D
O.
2/, we have by the Taylor expansion

Fc�.W.
//�Fc�.Uc�/D Fc�C
 .Uc�C
 C �.
/BUc�C
 /�Fc�.Uc�/C 
Phy.W.
//

D Fc�C
 .Uc�C
 /�Fc�.Uc�/� 

dFc.Uc/

dc jcDc�
CO.
4/��


3

6
RP�;

as wished. �

We recall that we have defined the tubular neighborhood O"D fV 2X; infy2R kV�U�. � �y/kX < "g.

Lemma 4.3. For " > 0 small enough, there exist four C1 mappings N
 , ˛, Ny W O"! R and # W O"! X ,
satisfying, for U 2 O",

U. � � Ny.U//DW. N
.U//C#.U/C˛.U/BUc�CN
.U/

and the orthogonality relations

.#.U/; @xUc�CN
.U//H D .#.U/; Œ@cUc�jcDc�C N
.U//H D .#.U/;BUc�C N
.U//H D 0:

Finally, I�1 N
 0 2H 2 �H 1 and I�1
H1@ N
=@� 2H

4.

Proof. We consider the mapping G WX �R� .�
0;C
0/�R! R3 defined by

G.U; y; 
; ˛/�

0@ .U. � �y/�W.
/�˛BUc�C
 ; @xUc�C
 /H
.U. � �y/�W.
/�˛BUc�C
 ; Œ@cUc�jcDc�C
 /H
.U. � �y/�W.
/�˛BUc�C
 ;BUc�C
 /H

1A :
Then G.U�; 0; 0; 0/ D 0 since W.0/ D U�. In order to show that G is of class C1, we have to pay
attention to the translation term U. � �y/, since differentiation in y requires U 2H 1 �H 1 whereas we
only have U 2X DH 1 �L2. It thus suffices to write

G.U; y; 
; ˛/D

0@ .U; @xUc�C
 . � Cy//H � .W.
/C˛BUc�C
 ; @xUc�C
 /H
.U; Œ@cUc�jcDc�C
 . � Cy//H � .W.
/C˛BUc�C
 ; Œ@cUc�jcDc�C
 /H

.U;BUc�C
 . � Cy//H � .W.
/C˛BUc�C
 ;BUc�C
 /H

1A
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to see that G is indeed of class C1 on X �R� .�
0;C
0/�R since c 7!Uc is smooth. Moreover, using
that @
Wj
D0 D Œ@cUc�jcDc� , we infer

@G

@.y;
;˛/
.U�;0;0;0/D

0@ .U�;@
2
xU�/H �.Œ@cUc�jcDc� ;@xU�/H �.BU�;@xU�/H

�.U�;@xŒ@cUc�jcDc�/H �kŒ@cUc�jcDc�k
2
H �.BU�; Œ@cUc�jcDc�/H

�.U�;B@xU�/H �.Œ@cUc�jcDc� ;BU�/H �kBU�k
2
H

1A:
At this stage, the argument in [Maeda 2012] is to use that

.Œ@cUc�jcDc� ; @xU�/H D�.@xŒ@cUc�jcDc� ;U�/H D 0;

which is assumption 2(iii) there. This equality holds true for us since we have chosen Uc even for any
c (close to c�). Furthermore, .U�; @2xU�/H D �k@xU�k

2
H by integration by parts, .BU�; @xU�/H D

.U�;B@xU�/H D 0 since B@x D J is skew-adjoint, and .BU�; Œ@cUc�jcDc�/H D @cŒPhy.Uc/�jcDc� D 0

by hypothesis. Therefore,

@G

@.y; 
; ˛/
.U�; 0; 0; 0/D

0@�k@xUc�k
2
H 0 0

0 �kŒ@cUc�jcDc�k
2
H 0

0 0 �kBU�k
2
H

1A
is invertible; thus the implicit function theorem provides three real-valued functions y, 
 and ˛, defined
near U� (in X) and with y.U�/ D 
.U�/ D ˛.U�/ D 0, such that G.U; y.U/; 
.U/; ˛.U// D 0.
These functions are extended to O" (for " small enough) by the formulas Ny.U/ � y.U. � � y//C y,
N
.U/� 
.U. � �y// and ˛.U/� ˛.U. � �y// for any y 2R such that U. � �y/ lies in the neighborhood
of U� where y, 
 and ˛ are defined. Consequently, the mapping

#.U/�U. � � Ny.U//�W. N
.U//� N̨ .U/BUc�CN
.U/

is orthogonal in H to @xUc�C N
.U/, Œ@cUc�jcDc�CN
.U/ and BUc�CN
.U/, as desired. Since f is assumed of
class C2, we have Uc 2H

4 and the regularities I�1 N
 0 2H 2�H 1 and I�1
H1@ N
=@� 2H

4 follow easily. �

Remark 4.4. We would like to point out that, in [ibid., Lemma 3], it is claimed that “w.u/” is orthogonal
to “@!�!Cƒ.u/” (we refer to the notations there). However, since “T .�.u// � ‰.ƒ.u//” is already
orthogonal to “@!�!Cƒ.u/” by construction, this is equivalent to “hB�!Cƒ.u/; @!�!Cƒ.u/i D 0”, or
“@!0 ŒQ.�!0/�D 0” at “!0D!Cƒ.u/”. We have not understood why this should happen since, in general,
for the function !0 7!Q.�!0/, the point ! is the only local critical point. For this reason, we have added
a component to the original mapping G in [ibid.]. Let us observe that, then, Lemma 3 in [ibid.] uses the
assumption “d 00.!/D 0”. On the other hand, the derivative of G in [ibid.] assumes “u 2D.T 0.0//”, for
otherwise the expression “G1;1.u; �;ƒ/D hT 0.0/T .�/u; T 0.0/�!Cƒi”, for instance, is meaningless. We
have therefore given some details showing clearly the smoothness of G.

We now prove a lemma which shows that the quadratic functional associated with F00� gives a good
control on #.U/ thanks to the orthogonality conditions on this function. This result is in the spirit of
Lemma 7 in [Ohta 2011].



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1361

Lemma 4.5. There exist 0 < 
1 � 
0 and K0 > 0 such that, if 
 2 .�
1;C
1/ and if # 2X satisfies

.#; @xUc�C
 /H D .#; Œ@cUc�jcDc�C
 /H D .#;BUc�C
 /H D 0;

then hF00c�C
 .Uc�C
 /#; #iX�;X �K0k#k
2
X .

Proof. As a first step, we prove that, if # 2X satisfies # 6D 0,

.#; @xU�/H D .#; Œ@cUc�jcDc�/H D .#;BU�/H D 0;

then hF00�.U�/#; #iX�;X > 0. Indeed, assume that hF00�.U�/#; #iX�;X � 0. Let � 2 X be a negative
eigenvector of F00�. We claim that we can not have ..#; �/H ; .Œ@cUc�jcDc� ; �/H / D .0; 0/. Otherwise,
.#; �/H D0 implies that # isL2-orthogonal to �, which is the eigenvector associated with the only negative
eigenvalue ��0 of F00� seen as an unbounded operator on L2; thus hF00�.U�/#; #iX�;X � 0, and, since we
assume equality, this means that # belongs to the kernel of F00�.U�/, which is spanned by U� D @xU�,
but the condition .#; @xU�/H D 0 then implies # D 0, a contradiction. Therefore, there exists .a; b/ 2R2

such that .a; b/ 6D .0; 0/ and .aŒ@cUc�jcDc�Cb#; �/H D 0. The nonzero vector p� aŒ@cUc�jcDc�Cb#

then satisfies .p; �/H D 0 and .p; JU�/H D a.Œ@cUc�jcDc� ; JU�/H C b.#; JU�/H D 0, so that
hF00�.U�/p; piX�;X > 0. Here, we have used once again that .Œ@cUc�jcDc� ; JU�/H D 0 since the
left vector is an even function and the right vector an odd function. However, in view of the equality
hF00�.U�/Œ@cUc�jcDc� ; �iX�;X D .BU�; �/H , valid for any � 2X (which follows from differentiation of
E 0hy.Uc/D cP

0
hy.Uc/D c.BUc ; � /H at c D c�), we have

hF00�.U�/Œ@cUc�jcDc� ; #iX�;X D .BŒ@cUc�jcDc� ; #/H D 0:

As a consequence,

0 < hF00�.U�/p; piX�;X D a
2
hF00�.U�/Œ@cUc�jcDc� ; Œ@cUc�jcDc�iX�;X C b

2
hF00�.U�/#; #iX�;X

D a2.BU�; Œ@cUc�jcDc�/H C b
2
hF00�.U�/#; #iX�;X D b

2
hF00�.U�/#; #iX�;X ;

since .BU�; Œ@cUc�jcDc�/H D @cŒPhy.Uc/�jcDc� D 0 in our situation. We reach a contradiction since the
right-hand side is supposed � 0.

We now prove the lemma by contradiction, and then assume that there exist sequences .#n/n�1 2X
and .
n/n�1 2 .0; 
0/ such that 
n! 0, k#nk2X D 1 and

.#n; @xUc�C
n/H D .#n; Œ@cUc�jcDc�C
n/H D .#n;BUc�C
n/H D 0; (18)

but hF00c�C
n.Uc�C
n/#n; #niX�;X! 0. Possibly passing to a subsequence, we may assume the existence
of some # D .�; �/ 2 X such that #n � .�n; �n/ * # in X D H 1 � L2. We then show the lower
semicontinuity of hF00�.U�/#; #iX�;X . This is roughly a verification of part of assumption (A3) in [Ohta
2011], used in Lemma 7 there. By the compact Sobolev embedding, we may assume �n! � in L1loc.R/.
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A straightforward computation gives

hF00c�C
 .Uc�C
 /#; #iX�;X D

Z
R

.@x�/
2

2.r20 C �c�C
 /
�
@x�@x�c�C


.r20 C �c�C
 /
2
C

�2.@x�c�C
 /
2

4.r20 C �c�C
 /
3

C 2.r20 C �c�C
 /�
2
C 2.2uc�C
 � .c�C 
//�� �f

0.r20 C �c�C
 /�
2 dx:

Since r20 C�c�C
n remains bounded away from zero uniformly and �c�C
n! �c� in W 1;1.R/\H 1.R/

as n!C1, the weak convergence �n* � in H 1 impliesZ
R

.@x�/
2

2.r20 C �c�/
�
@x�@x�c�

.r20 C �c�/
2
C

�2.@x�c�/
2

4.r20 C �c�/
3
dx

� lim
n!C1

Z
R

.@x�n/
2

2.r20 C �c�C
n/
�
@x�n@x�c�C
n

.r20 C �c�C
n/
2
C

�2n.@x�c�C
n/
2

4.r20 C �c�C
n/
3
dx: (19)

For the remaining terms, we write, for some R > 0 to be determined later,Z
R

2.r20 C �c�C
n/�
2
n C 2.2uc�C
n � .c�C 
n//�n�n�f

0.r20 C �c�C
n/�
2
n dx

D

Z
R

2

�
.r20 C �c�C
n/

1=2�nC
.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

�2
dx

C

Z
jxj�R

C

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx:

For the first integral, we may use that .�n; �n/ * .�; �/ in L2 �L2 and the fact that .�c�C
n ; uc�C
n/
converges to .��; u�/ uniformly to deduce

.r20 C �c�C
n/
1=2�nC

.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

* .r20 C ��/
1=2�C

.2u�� c�/�

2.r20 C ��/
1=2

in L2I (20)

hence,Z
R

2

�
.r20 C ��/

1=2�C
.2u�� c�/�

2.r20 C ��/
1=2

�2
dx

� lim
n!C1

Z
R

2

�
.r20 C �c�C
n/

1=2�nC
.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

�2
dx: (21)

Since �n! � in L1.Œ�R;CR�/ and .uc�C
n ; �c�C
n/! .u�; ��/ uniformly, it follows thatZ
jxj�R

1

2

�
�
.2u�� c�/

2

r20 C ��
� 2f 0.r20 C ��/

�
�2 dx

D lim
n!C1

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx:

For the last integral, we have to use the decay at infinity of �c�C
 and uc�C
 uniformly for j
 j small.
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This gives

�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/!

c2s � c
2
�

r20

as jxj ! C1, uniformly in n. Since 0 < c� < cs , there exist some small ı > 0 and some R > 0 large
such that, for any n and any x with jxj �R,

�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/� ı:

In particular, since �n* � in L2,

1jxj�R

�
�
.2uc�C
n�.c�C
n//

2

r20C�c�C
n
�2f 0.r20C�c�C
n/

�1=2
�n* 1jxj�R

�
�
.2u��c�/

2

r20C��
�2f 0.r20C��/

�1=2
�

in L2; thusZ
jxj�R

1

2

�
�
.2u�� c�/

2

r20 C ��
� 2f 0.r20 C ��/

�
�2 dx

� lim
n!C1

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx: (22)

Combining these three lim inequalities, we deduce

hF00�.U�/#; #iX�;X � lim
n!C1

hF00c�C
n.Uc�C
n/#n; #niX�;X D 0: (23)

Turning back to our sequence .#n; 
n/, we may pass to the limit in (18):

.#; @xU�/H D .#; Œ@cUc�jcDc�/H D .#;BU�/H D 0:

Comparing with (23), we deduce from our first claim that # D 0. This means that we must have equality in
all the above lim inequalities. In particular, the weak convergence (22) is actually strong; thus �n! � D 0

in L2.R/ (the strong convergence in fjxj �Rg being already known since �n! � in L1loc.R/). Going back
to the equality in (19) thus provides @x�n! @x� D 0 in L2.R/, since r20 C �c�C
n remains uniformly
bounded away from zero, and by weak convergence,

0D

Z
R

�2.@x�c�/
2

4.r20 C �c�/
3
dx D lim

n!C1

Z
R

@x�n@x�c�C
n

.r20 C �c�C
n/
2
dx:

Finally, the equality in (21) means that (20) is actually a strong convergence; that is, �n! � D 0 in L2

since �n! � in L2. The contradiction then follows: 1Dk#nk2X Dk�nk
2
L2
Ck@x�nk

2
L2
Ck�nk

2
L2
! 0. �

Remark 4.6. This result is also Lemma 7 in [Maeda 2012], and is said to be Lemma 7 in [Ohta 2011].
However, the hypotheses of Lemma 7 in [Ohta 2011] are not satisfied, and in particular assumption (B3)
there. It is natural to believe that this assumption is satisfied is most physical situations, but it is not clear
whether it always holds true in the general framework of [Maeda 2012] without further hypothesis.

The next lemma provides a control for ˛.U/.
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Lemma 4.7. Assume " > 0 small enough. Then, there exists K > 0 such that, for any U 2 O" satisfying
Phy.U/D Phy.U�/, we have

j˛.U/j �K
�
N
2.U/k#.U/kX Ck#.U/k

2
X

�
:

Proof. It is the same as in [Maeda 2012, Lemma 8], but we give it for completeness. We expand and use
that B2 D Id2 and the definition W.
/�Uc�C
 C �.
/BUc�C
 for the second line:

Phy.U�/D Phy.U/D Phy.U. � � Ny.U///D Phy
�
W. N
.U//C#.U/C˛.U/BUc�C N
.U/

�
D Phy.W. N
.U///CPhy.#.U//C˛

2.U/Phy.BUc�CN
.U//C˛.U/.B#.U/;BUc�CN
.U//H

C .BUc�C N
.U/; #.U//H C˛.U/.BUc�CN
.U/;BUc�CN
.U//H

C �. N
.U//.Uc�C N
.U/; #.U//H C �. N
.U//˛.U/.Uc�C N
.U/;BUc�C N
.U//H :

Since Phy.W. N
.U///D Phy.U�/, we infer

�˛.U/ŒkU�k
2
H C o.1/�D �. N
.U//.Uc�C N
.U/; #.U//H CPhy.#.U//

and the conclusion follows since �.
/D O.
2/ by Lemma 4.1. �

Now, we give a lemma useful to estimate #.U/.

Lemma 4.8. Assume " > 0 small enough. Then, there exists K > 0 such that, for any U 2 O" satisfying
Phy.U/D Phy.U�/ and F�.U/�F�.U�/ < 0, we have

k#.U/k2X �Kj N
.U/j
3:

In particular, j˛.U/j �Kj N
.U/j3.

Proof. It is the same as in [Maeda 2012, Lemma 9]. Note first that the last assertion is a direct consequence
of the first one and Lemma 4.7. Next, we argue by contradiction and assume that there exists a sequence
Un!U� in X such that F�.Un/�F�.U�/ < 0 and k#.Un/k

2
X � j N
.Un/j

3. For simplicity, we define
N
nD N
.Un/, #nD #.Un/, ˛nD ˛.Un/. Then, by Lemma 4.7, we have j˛nj �K. N
2nk#nkXCk#nk

2
X /�

K.k#nk
7=3
X Ck#nk

2
X /D O.k#nk

2
X /. Therefore, by the Taylor expansion and Lemma 4.3, we have

F�.Un/�F.U�/D F�.Un. � � Nyn//�F.U�/D F�.W. N
n/C#nC˛nBUc�CN
n/�F.U�/

D F�.W. N
n//�F.U�/ChF
0
�.W. N
n//; #nC˛nBUc�CN
niX�;X

C
1
2
hF00�.W. N
n//#n; #niX�;X C o.k#.Un/k

2
X /: (24)

However, by Lemma 4.2, Fc�.W.
//�Fc�.Uc�/DO.j
 j3/, and, since F0�.W.
//DF0�.W.0//Co.1/D

F0�.U�/ C o.1/ D o.1/, we have hF0�.W. N
n//; ˛nBUc�C N
niX�;X D o.k#nk
2
X /. Furthermore, using

F0� DF0c�C N
nC N
nB, the third orthogonality condition in Lemma 4.3 and that �.
/D O.
2/, we deduce

hF0�.W. N
n//; #niX�;X D hF
0
c�CN
n

.W. N
n//; #niX�;X C N
n.BW. N
n/; #n/H

D hF0c�CN
n.Uc�CN
n/C �. N
n/BUc�CN
n ; #niX�;X C N
n�. N
n/.Uc�CN
n ; #n/H

D O. N
2nk#nkX /CO.j N
nj
3
k#nkX /D o.k#nk

7=3
X /D o.k#nk

2
X /:
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For the last line, we have used another Taylor expansion with F0c�C N
n.Uc�C N
n/D 0. Finally, Lemma 4.5
yields hF00c�CN
n.Uc�CN
n/#n; #niX�;X �K0k#nk

2
X . Reporting these expansions in (24) yields

F�.Un/�F.U�/�
K0

4
k#nk

2
X C o.k#nk

2
X /�

K0

8
k#nk

2
X

for n sufficiently large, which contradicts our assumption. �

We now need to find an extension of the functionals “A” and “P ” used in [Maeda 2012] (and also in
[Ohta 2011]). In these works, these functionals are built on what should be here “J�1@cUcDB@�1x @cUc”,
but, unfortunately, @c�c does not have vanishing integral over R (for instance, @c�c has constant sign).
We rely instead on a construction of a suitable approximation of “J�1@cUc”. A similar construction is
used in [Lin 2002].

Lemma 4.9. For any 0 < � < 1, there exists a C2 mapping ‡� W .�
1;C
1/! X such that, for any

 2 .�
1;C
1/, ‡�.
/ 2H 2 �H 1 is an odd function verifying

kJ‡�.
/� Œ@cUc�jcDc�C
kX � �:

Proof. We fix an even function ‚0 2 C1c .R/ such that
R

R
‚0 dx D 1. For T > 0 to be fixed later, but

independent of 
 and �, we set t� � T=�2 > 0 and

‡�.
/.x/� B

Z x

0

�
Œ@cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

�
dy:

It is clear that ‡�.
/ 2 C1.R/ and that, since J D @xB and B2 D Id2,

J‡�.
/� Œ@cUc�jcDc�C
 D
1

t�
‚0

�
�

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz:

In particular,

kJ‡�.
/� @cŒUc�jcDc�C
k
2
X D

�
1

t�
k‚0k

2
L2
C
1

t3�
k@x‚0k

2
L2

��Z
R

Œ@cUc�jcDc�C
 .z/ dz

�2
� �2

if we choose T D T .c�;U�; ‚0/ > 0 sufficiently large and 
1 smaller if necessary. Moreover, ‡�.
/ is
odd since Uc and ‚0 are even. In addition, the even function

y 7! Œ@cUc�jcDc�C
 .y/�
1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

decays exponentially at infinity (since ‚0 has compact support and @cUc decays exponentially), and has
zero integral (since ‚0 has integral equal to one); hence

‡�.
/.x/D�B

Z C1
x

�
Œ@cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

�
dy
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and decays exponentially at infinity. It follows easily from these two equalities that 
 7!‡�.
/2L
2�L2

is well-defined and continuous; hence also 
 7! ‡�.
/ 2H
2 �H 1. By the same type of arguments,

@‡�

@

.
/.x/D B

Z x

0

�
Œ@2cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@2cUc�jcDc�C
 .z/ dz

�
dy

is well-defined and is a continuous function of 
 with values in H 2 �H 1, and similarly for the second
derivative. �

We now define, in the tubular neighborhood O" of U�, the functional (corresponding to “A” in [Maeda
2012])

��.U/� .U. � � Ny.U//; ‡�. N
.U///H D .U; ‡�. N
.U//. � C Ny.U///H

depending on � 2 .0; 1/, which will be determined later. The first properties of �� are given below.

Lemma 4.10. For any 0 < � < 1, �� W O"! R is of class C1. In addition, there exists some bounded
mapping N N
 W O"!X such that, if ‰hy 2 C1.Œ0; T /; X/ is a solution to (15) that remains in O", then

d

dt
��.‰hy.t//D„�.‰hy.t//;

where „� W O"! R is defined by

„�.U/��
˝
F0c�CN
.U/.U/;

˚
J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/

	˛
X�;X

:

Proof. The fact that�� is of class C1 follows directly from the second expression and the fact that Ny and N

are C1 (in [Maeda 2012, formula (3.11)], the same remark as for the smoothness of G after Lemma 4.3
holds, since it requires “u2D.T 0.0//”). If ‰hyD .�; u/2C1.Œ0; T /; X/ is a solution to (15) that remains
in O", we therefore have, defining N
.t/D N
.‰hy.t// and Ny.t/D Ny.‰hy.t//,

d

dt
��.‰hy.t//D .@t‰hy.t/; ‡�. N
.t//. � C Ny.t///H

C .‰hy.t/; @x‡�. N
.t//. � C Ny.t///H h Ny
0.‰hy.t//; @t‰hy.t/iX�;X

C .‰hy.t/; @
‡�. N
.t//. � C Ny.t///H h N

0.‰hy.t//; @t‰hy.t/iX�;X : (25)

We now observe that the invariance of �� by translation provides by differentiation the equality, for
U 2 O",

0D
d

dy
��.U. � �y//jyD0 D .U; @x‡�. N
.U//. � C Ny.U///H

D .BU; J‡�. N
.U//. � C Ny.U///H D hP
0
hy.U/; J‡�. N
.U//. � C Ny.U//iX�;X : (26)
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In particular, the second term in (25) vanishes. In addition, since ‰hy D .�; u/ 2 C1.Œ0; T /; X/ is a
solution to (15) that remains in O", we have, denoting by ıEhy=ı‰ the variational derivative,�
@t‰hy.t/; ‡�. N
.t//. � C Ny.t//

�
H

D

�
J
ıEhy

ı‰hy
.‰hy.t//; ‡�. N
.t//. � C Ny.t//

�
H

D�

�
ıEhy

ı‰hy
.‰hy.t//; J‡�. N
.t//. � C Ny.t//

�
H

D�
˝
E 0hy.‰hy.t//; J‡�. N
.t//. � C Ny.t//

˛
X�;X

D�hF0
c�CN
.t/

.‰hy.t//; J‡�. N
.t//. �C Ny.t//iX�;X�.c�CN
.t//
˝
P 0hy.‰hy.t//; J‡�. N
.t//. �C Ny.t//

˛
X�;X

D�hF0c�C N
.t/.‰hy.t//; J‡�. N
.t//. � C Ny.t//iX�;X ;

by (26). In addition, since ıPhy=ı‰hy D B‰hy and JBD @x ,

h N
 0.‰hy.t//; @t‰hy.t/iX�;X

D

�
N
 0.‰hy.t//; J

ıEhy

ı‰hy
.‰hy.t//

�
X�;X

D

�
N
 0.‰hy.t//; J

ıFc�CN
.U/

ı‰hy
.‰hy.t//

�
X�;X

C .c�C N
.U//h N

0.‰hy.t//; @x‰hy.t/iX�;X :

The second term vanishes since N
 is invariant by translation (by definition; see the proof of Lemma 4.3).
As a consequence,

h N
 0.‰hy.t//; @t‰hy.t/iX�;X

D

�
J
ıFc�CN
.t/

ı‰hy
.‰hy.t//; I

�1
N
 0.‰hy.t//

�
X

D�

�
ıFc�CN
.t/

ı‰hy
.‰hy.t//; J I�1 N
 0.‰hy.t//

�
X

D�

�
ıFc�CN
.t/

ı‰hy
.‰hy.t//; J I�1 N
 0.‰hy.t//

�
H

�

�
@x
ıFc�CN
.t/

ı�
.‰hy.t//; @xJ I�1

H1

@ N


@�
.‰hy.t//

�
L2
:

The first term is simply �hF0
c�CN
.U/

.‰hy.t//; J I�1 N
 0.‰hy.t//iX�;X . We then define N N
 W O"! X by
N N
 .U/ � J I�1 N
 0.U/� .@2xJ I�1

H1.ı N
=ı�/.U/; 0/ 2 X D H
1 �L2 (see the regularity shown for N
 0 in

Lemma 4.3), so that integration by parts yields

h N
 0.‰hy.t//; @t‰hy.t/iX�;X D�hF
0
c�C N
.U/

.‰hy.t//;N N
 .‰hy.t//iX�;X :

Inserting these relations into (25) then gives

d

dt
��.‰hy.t//

D�
˝
F0c�C N
.t/.‰hy.t//;

˚
J‡�. N
.t//. � C Ny.t//C .‰hy.t/; @
‡�. N
.t//. � C Ny.t///HN N
 .‰hy.t//

	˛
X�;X

;

which is the desired equality.
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If‰hy 2C0.Œ0; T /; X/ is just a continuous in time solution to (15) that remains in O", then the integrated
relation

��.‰hy.t//D��.‰
in
hy/C

Z t

0

„�.‰hy.�// d�

holds, as can be seen by using the continuity of the flow and the approximation of such a solution by
smoother ones (see [Gallo 2004]). �

We now compute the asymptotics of „�.W.
// for 
 ! 0 and small �.

Lemma 4.11. We have

„�.W.
//D�

2 RP�

2
C o.
;�/!.0;0/.


2/:

Proof. The proof follows the one of Lemma 5 in [Maeda 2012]. As a first step, notice that N
.W.
//D 
 ,
Ny.W.
// D 0, as can be seen from the equality G.W.
/; 0; 0; 0/ D 0 and the local uniqueness of the
solution to G D 0. Therefore, since F0c�C
 .Uc�C
 /D 0 and �.
/��
2 RP�=.2kU�k2H /,

F0c�C N
.W.
//.W.
//D F0c�C
 .Uc�C
 C �.
/BUc�C
 /D �.
/F
00
c�C


.Uc�C
 /ŒBUc�C
 �C o
!0.

2/

D�

2 RP�

2kU�k
2
H

F00�.U�/ŒBU��C o
!0.

2/:

In addition, since Uc is even and ‡�.
/ is odd, we deduce�
W.
/. � C Ny.W.
///; @
‡�.
/

�
H
D
�
Uc�C
 C �.
/BUc�C
 ; @
‡�.
/

�
H
D 0:

Consequently,

„�.W.
//D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; J‡�.
/iX�;X C o
!0.

2/;

where “o
!0.
2/” does not depend on �. Moreover, by Lemma 4.9, kJ‡�.
/� Œ@cUc�jcDc�C
kX � �

independently of 
 2 .�
1;C
1/; hence

„�.W.
//D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; Œ@cUc�jcDc�C
 iX�;X C o.
;�/!.0;0/.

2/

D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; Œ@cUc�jcDc�iX�;X C o.
;�/!.0;0/.

2/:

Finally, using once again the equality (for � 2X ) hF00�.U�/Œ@cUc�jcDc� ; �iX�;X D .BU�; �/H and that
F00� is self-adjoint, we infer

hF00�.U�/ŒBU��; Œ@cUc�jcDc�iX�;X D hF
00
�.U�/.Œ@cUc�jcDc�/;BU�iX�;X D kBU�k

2
H D kU�k

2
H ;

and reporting this into the previous expression gives the result. �

We now compute the asymptotics of „� for more general functions.



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1369

Lemma 4.12. Let ">0 be small enough. If U2O" satisfies Phy.U/DPhy.U�/ and F�.U/�F�.U�/<0,
then, we have

„�.U/D�
N
2.U/ RP�

2
C o. N
2.U//

uniformly for 0 < � � j N
.U/j3.

Proof. First, we may apply Lemma 4.8 and infer that k#.U/k2XCj˛.U/jDO.j N
3.U/j/. We write„�.U/D
„�.U. � � Ny.U///D„�.W. N
.U//C#.U/C˛.U/BUc�CN
.U//D„�.W. N
.U//C#.U//CO.j N
.U/j3/

and, recalling the expression

„�.U/D�
˝
F0c�CN
.U/.U/;

˚
J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/

	˛
X�;X

;

we wish to make a Taylor expansion. First, note that

F0c�C N
.U/.U/D F0c�C N
.U/.W. N
.U///CF00c�CN
.U/.W. N
.U///Œ#.U/�CO.j N
.U/j3/

D F0c�C N
.U/.W. N
.U///CF00c�CN
.U/.Uc�C N
.U//Œ#.U/�CO.j N
.U/j3/I

hence, since F0c�CN
 .Uc�C N
 /D 0 and (Lemma 4.1) �.
/D O.
2/, we have W. N
/DUc�C N
CO.
2/; thus

„�.U/�„�.W. N
.U///D O.j N
.U/j3/�
D
F00c�CN
.U/.Uc�CN
.U//Œ#.U/�;˚

J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/
	E
X�;X

:

Now, in the bracket term, we may replace U by W. N
.U//CO.k#.U/kX / (since k#.U/k2X D O.j N
.U/j3/).
By the computations of Lemma 4.11 and the equalities N
.W.
//D 
 , Ny.W.
//D 0, this gives

„�.U/�„�.W. N
.U///D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�C N
.U//Œ#.U/�; J‡�. N
.U//

˛
X�;X

D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�CN
.U//Œ#.U/�; f@cUcgjcDc�C N
.U/

˛
X�;X

CO.�/

D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�CN
.U//Œf@cUcgjcDc�CN
.U/�; #.U/

˛
X�;X

CO.�/

using Lemma 4.9 and the self-adjointness of F00
c�CN
.U/

. Choosing 0 < � � j N
.U/j3 and from the equality
(for � 2X ) hF00c.Uc/Œ@cUc�; �iX�;X D .BUc ; �/H , we infer

„�.U/�„�.W. N
.U///D O.j N
.U/j3/� .BUc�C N
.U/; #.U//H D O.j N
.U/j3/;

by the orthogonality condition in Lemma 4.5. Inserting the expansion of „�.W.
// given in Lemma 4.11
yields the conclusion. �

Proof of Theorem 16. We have to show that there exists " > 0 such that, for any ı > 0, we can choose
an initial datum at distance � ı from U� but that escapes from O". Since W.
/! U� in X , we shall
take the initial datum to be W.
/ for some small 
 , and denote by ‰hy.t/ the corresponding solution. In
view of Lemma 4.2, we have F�.W.
//�F�.U�/��


3 RP�=6; hence we can choose 
 with the sign of
RP� 6D 0 so that

F�.W.
//�F�.U�/��j
 j
3
j RP�j=6 < 0:
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We now assume that ‰hy.t/ is globally defined and remains in O", where " is as in Lemma 4.8. By conser-
vation of energy and momentum and the construction of W.
/, we deduce Phy.‰hy.t//D Phy.W.
//D

Phy.U�/, and F�.‰hy.t//�F�.U�/ D F�.W.
//�F�.U�/ < 0. The first step is to have a control
on N
.t/� N
.‰hy.t//. We define ˛.t/D ˛.‰hy.t//, Ny.t/D Ny.‰hy.t// and #.t/D #.‰hy.t//. Applying
Lemma 4.8, we obtain k#.t/k2X Cj˛.t/j D O.j N
3.t/j/. In addition, Lemma 4.2 and a Taylor expansion
give

F�.‰hy.t//�F�.U�/

D F�.W. N
.t//C#.t/C˛.t/BUc�CN
.t//�F�.U�/

D F�.W. N
.t///�F�.U�/ChF
0
�.W. N
.t///; #.t/iX�;XC

1
2
hF00�.W. N
.t///#.t/; #.t/iX�;XCo.j N


3.t/j/

D�
N
3.t/ RP�

6
ChF0�.W. N
.t///; #.t/iX�;XC

1
2
hF00�.W. N
.t///#.t/; #.t/iX�;XCo.j N


3.t/j/;

where we have used that F0�.W. N
.t//D o.1/ (for the terms involving ˛.t/) and Lemma 4.2. Furthermore,
by the orthogonality relations in Lemma 4.3 and using that �.
/D O.
2/ and F0c.Uc/D 0, we have

hF0�.W. N
.t///; #.t/iX�;X D hF
0
c�CN
.t/

.W. N
.t///; #.t/iX�;X C N
.t/.BW. N
.t///; #.t//H

D hF0c�CN
.t/.Uc�C N
.t/C �. N
.t///BUc�C N
.t/; #.t/iX�;X D O.j N
7=2.t/j/:

In addition, by Lemma 4.5, the second-to-last term is�K0k#.t/k2X=2. As a consequence, by conservation
of F�.‰hy.t//, we infer, for small 
 ,

0 > �j
 j3j RP�j=3 > F�.W.
//�F�.U�/D F�.‰hy.t//�F�.U�/� �
N
3.t/ RP�

6
C o.j N
3.t/j/;

In particular, this forces N
.t/ to always be of the sign of RP� and to satisfy j N
.t/j � j
 j=2 (provided "
and 
 are small enough).

Since, now, we have a good upper bound for j N
.t/j, we can choose � D �.
/� 
3=8, which is such
that, for any t � 0, � � j N
.t/j3. In particular, we can apply Lemma 4.12 and get

„�.‰hy.t//D�
N
.t/2 RP�

2
C o. N
.t/2/:

With this choice � D �.
/, we deduce from Lemma 4.10 that

d

dt
��.
/.‰hy.t//D„�.‰hy.t//D�

N
.t/2 RP�

2
C o. N
.t/2/:

Since j N
.t/j � j
 j=2, it follows that, when RP� < 0 (the case RP� > 0 is analogous),

d

dt
��.
/.‰hy.t//� �


2 RP�

8
> 0I

hence ��.
/.‰hy.t// is unbounded as t goes to C1. However, by definition of �� , we have by the
Cauchy–Schwarz inequality j��.
/.U/j � kUkHk‡�.
/kH � C.
/ for U 2 O". We have reached a
contradiction. The proof of Theorem 16 is complete. �
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5. The linear instability (0 < c� < cs)

5A. Proof of Theorem 13. Existence of at least one unstable eigenvalue. The proof of the existence
of at least one unstable eigenvalue relies on the Evans function technique, as in [Zumbrun 2008; Benzoni-
Gavage 2010b]. We shall actually use Theorem 1 in [Benzoni-Gavage 2010b] when observing (see, e.g.,
[Benzoni-Gavage 2010a]) that the Euler–Korteweg system�

@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x
�
K.�/@2x�C

1
2
K 0.�/.@x�/

2
�
D 0;

(EK)

where K W .0;C1/! .0;C1/ is the (smooth enough) capillarity, reduces to (2) (where, we recall,
‰ D Aei� , �D A2 and uD @x�); namely,(

@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

for the capillarity K.%/ D 1=.2%/, as can be shown by straightforward computations. The associated
eigenvalue problem in the moving frame is8̂̂̂̂

<̂
ˆ̂̂:
�� � c�@x�C 2@x..r

2
0 C ��/�C �u�/D 0;

�� � c�@x�C 2@x.u��/� @x.f
0.r20 C ��/�/

� @x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
�
�@2x

�p
r20 C ��

�
2.r20 C ��/

3=2

�
D 0:

(27)

The link with the original eigenvalue problem (6) is done through the formula

w D U�

�
�

2
C i

Z x

�1

�

�
; (28)

since this corresponds to

‰ D Uc� C D Uc� C e�tw.x/D .Ac� C e�t�.x// exp
�
i�c� C ie

�t

Z x

�1

�

�
:

Notice indeed that the second equation in (27) gives
R

R
� dx D 0. It then follows from Theorem 1 in

[Benzoni-Gavage 2010b] that, under the assumption .dP.Uc/=dc/jcDc� > 0, there exists at least one
unstable eigenvalue 
0 2 .0;C1/.

Existence of at most one unstable eigenvalue. The fact that there exists at most one unstable eigenvalue
follows from arguments as in [Benzoni-Gavage et al. 2005, Appendix B] and is a direct consequence of
Theorem 3.1 in [Pego and Weinstein 1992], that we recall now.

Theorem 25 [Pego and Weinstein 1992]. Let J and L be two operators on a real Hilbert space X , with L

self-adjoint and J skew-symmetric. Then, the number of eigenvalues, counting algebraic multiplicities, of
ŒJL�C in the right half-plane fRe> 0g is less than or equal to the number of negative eigenvalues of L,
counting multiplicities.
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In order to apply this result to our problem, let us write the eigenvalue problem (27) under the form

�

�
�

�

�
D�@x

�
0 1

1 0

�
L

�
�

�

�
;

where M is the self-adjoint Sturm–Liouville operator

M��f 0.r20 C ��/�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
C
@2x
�p
r20 C ��

�
2.r20 C ��/

3=2

(which is bounded from below) on H� L2 �L2 and with

L�

�
M 2u�� c�

2u�� c� 2.r
2
0 C ��/

�
:

We are in the setting of Theorem 25 with JD�@x
�
0
1
1
0

�
skew-symmetric and L self-adjoint. We thus

show that L has at most one negative eigenvalue. Since r20 C �� remains bounded away from zero, it is
clear that, for � < 0 and .�; �/ given, L.�; �/t D �.�; �/t if and only if

M�� �
.c�� 2u�/

2

2.r20 C ��/
�

�

2.r20 C ��/� �
� D ��; with M�

�M�
.c�� 2u�/

2

2.r20 C ��/
; (29)

since we may express � in terms of � with the second equation. We observe that the translation
invariance shows that @x.��; u�/t belongs to the kernel of L; that is, using once again the relation
2uc D 2@x�c D c�c=.�c C r

2
0 /, M�@x�� D 0. Furthermore, M� has the same continuous spectrum as its

constant coefficient limit as x!˙1, namely

�
1

2r20
@2xC

c2s � c
2
�

2r20
I

that is, �ess.M
�/D Œc2s � c

2
�;C1/ � .0;C1/, since 0 < c� < cs . Since @x�� has exactly one zero (at

x D 0), it follows from standard Sturm–Liouville theory that M� has precisely one negative eigenvalue
� < 0 and that the second eigenvalue is 0. Taking the scalar product with (29) yields

hM��; �iL2 �

Z
R

�.c�� 2u�/
2�2

2.r20 C ��/Œ2.r
2
0 C ��/� ��

dx D �k�k2
L2
:

Now, for s � 0, we consider the self-adjoint operator

M�
s �M�

�
.c�� 2u�/

2

2.r20 C ��/
�

s

2.r20 C ��/� s
:

Clearly, M
�
sD0 D M�, �ess.M

�
s / � Œc

2
s � c

2
�;C1/ � .0;C1/, and R� 3 s 7! M

�
s is decreasing. Let us

assume now that the self-adjoint operator L has at least two negative eigenvalues. Then, we denote
by �1 < �2 < 0 the two smallest eigenvalues of L (necessarily simple), and �1, �2 two associated
eigenvectors. Since L is self-adjoint, h�1; �2iL2 D 0. Furthermore, hM�

sD�1�1; �1iL2 D �1k�2k
2
L2
< 0;

hence, by monotonicity, hM�
s�2; �2iL2 < 0 for any �1 � s � 0. Therefore, M

�
s has at least one negative

eigenvalue for �1� s�0. We denote by �min.s/ the smallest eigenvalue of M
�
s . Then, �min.sD0/D�<0



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1373

and �min decreases in Œ�1; 0�. Moreover, we may choose a positive eigenvector �s for the eigenvalue �1.s/,
with �1 D ��1 . Since �.M�/\RC D f�; 0g, it follows from the monotonicity that, for any �1 � s < 0,
we have �.M�

s /\R� D f�min.s/g. When s D �2 2 .�1; 0/, we then have �2 2 �.M
�
sD�2/\R�, and thus

�2 D �min.�2/, which implies that we may choose �2 > 0 without loss of generality. Similarly, if s D �2,
we see that we may choose �2 > 0. We obtain a contradiction since then h�1; �2iL2 > 0 and thus �1 and �2
cannot be orthogonal in L2. We have thus shown that L has at most one negative eigenvalue, and then
Theorem 25 shows that JL has at most one eigenvalue in fRe> 0g, as wished.

5B. Resolvent and semigroup estimates (proof of Corollary 15). In this section, we drop the “�” for
the traveling wave we are considering. When linearizing the NLS equation in the moving frame with
speed c, we obtain

i
@ 

@t
� ic@x C @

2
x C f .jU j

2/C 2h ;U if 0.jU j2/U D 0; (30)

or

@

@t

�
 1
 2

�
D

�
c@x � 2f

0.jU j2/U1U2 �@2x �f .jU j
2/� 2f 0.jU j2/U 22

@2xCf .jU j
2/C 2f 0.jU j2/U 21 c@xC 2f

0.jU j2/U1U2

��
 1
 2

�
D

�
0 1

�1 0

��
�@2x �f .jU j

2/� 2f 0.jU j2/U 21 �c@x � 2f
0.jU j2/U1U2

c@x � 2f
0.jU j2/U1U2 �@2x �f .jU j

2/� 2f 0.jU j2/U 22

��
 1
 2

�
:

We wish to show that this linear equation can be solved using a continuous semigroup. In order to
handle later the nonlinear terms, we work in H 1.R;C2/ instead of L2.R;C2/. Therefore, we consider
the unbounded operator A WD.A/DH 3.R;C2/�H 1.R;C2/!H 1.R;C2/ on H 1.R;C2/ defined by

A�

�
c@x � 2f

0.jU j2/U1U2 �@2x �f .jU j
2/� 2f 0.jU j2/U 22

@2xCf .jU j
2/C 2f 0.jU j2/U 21 c@xC 2f

0.jU j2/U1U2

�
:

It follows easily that, for  D
�
 1
 2

�
2H 1.R;C2/,

Re.hA j iH1.R;C2//

D Re
�
h�2f 0.jU j2/U1U2 1;  1iH1.R;C/Ch�2f

0.jU j2/U1U2 2;  2iH1.R;C/

ChŒf .jU j2/C 2f 0.jU j2/U 21 � 1;  2iH1.R;C/� hŒf .jU j
2/C 2f 0.jU j2/U 21 � 2;  1iH1.R;C/

�
�Kk k2

H1.R;C2/
:

Moreover, the spectrum of A is included in the half-space fRe� �0g; hence A generates a continuous
semigroup etA on H 1.R;C2/.

In order to estimate the growth of the semigroup etA on H 1.R;C2/, we could try to use the same
approach as [Di Menza and Gallo 2007], which relies on the proof of the spectral mapping theorem in
[Gesztesy et al. 2000]. However, our situation is slightly different since, in these studies, the reference
solution is real-valued (it is a bound state in [Gesztesy et al. 2000] and the kink in [Di Menza and Gallo
2007]). Therefore, U2 D 0 and A has no diagonal term, and the system is much more decoupled than in
our situation. As a matter of fact, it is not very clear whether the arguments of [Gesztesy et al. 2000]
carry over to our problem. We thus have chosen to use the general approach given in Appendix B. We
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thus verify the assumptions of Theorem B.5 (see also Corollary B.6) there, which are easy: A generates
a semigroup in H 1.R;C2/ and the spectrum of A is of the form iR [ f�
0;C
0g, where iR is the
essential spectrum and ˙
0 two simple eigenvalues. Moreover, the eigenvector associated with 
0
belongs to H 3.R;C2/DD.J /. Therefore, Theorem B.5 in Appendix B applies and the growth estimate
for the linearized problem follows. For the nonlinear instability result, we argue as for Corollary B.6 in
Appendix B, since the manifold MD fjU�j. � � y/; y 2 Rg is transverse to the curve � 7! jU�C �wj
in r0 CH 1.R/. Indeed, it follows from (28) that jU� C �wj D A� C �� C OH1.�2/. Assume that
� D ˛@xjU�j, with ˛ 2 R. Then, integration of the first equation of (27) provides

�.jU�j � r0/� c�@xjU�jC 2..r
2
0 C ��/�Cu��/D 0I

hence, using that jU�j D
p
r20 C �� and the equality 2u� D c��=.r20 C ��/, we infer

�C˛

�
�
jU�j � r0

r20 C ��
C

c�r
2
0

4.r20 C ��/
3=2
@x��

�
D 0:

Since
R

R
� D 0 and jU�j � r0 has constant sign in R, integrating over R then implies ˛ D 0, which

in turn yields � D � D 0 and w� D 0, a contradiction. Consequently, � 62 R@xjU�j and the manifold
MD fjU�j. � �y/; y 2 Rg is indeed transverse to the curve � 7! jU�C �wj in r0CH 1.R/.

6. Stability analysis for the kink .c D 0/

6A. Proof of Lemma 20. Let us recall that the momentum P.Uc/, for c > 0, has the expression

P.Uc/D c

Z 0

�c

�2

r20 C �

d�p
�Vc.�/

;

since sgn.�c/D�1. Therefore, we decompose P.Uc/ with two integrals:

P.Uc/D c

Z 0

�c

�2

r20 C �

d�p
�V0c.�c/.� � �c/

Cc

Z 0

�c

�2

r20 C �

�
1p
�Vc.�/

�
1p

�V0c.�c/.� � �c/

�
d�: (31)

Using the change of variables � D t�c , the second integral in (31) is equal to

�3c

Z 0

1

t2

r20 C t�c

�
1p

�Vc.t�c/
�

1p
��cV0c.�c/.t � 1/

�
dt

D .�r20 /
3

Z 0

1

t2

r20 � t r
2
0

�
1q

�V0.�t r
2
0 /

�
1q

�4r20F.0/.t � 1/

�
dt C oc!0.1/

D

Z 0

�r20

�2

r20 C �

�
1p
�V0.�/

�
1q

4F.0/.�C r20 /

�
d�C oc!0.1/:

The passage to the limit c! 0 being justified by the dominated convergence theorem since the absolute
value of the integrand is � Kt for 0 � t � 1=2 for small c and for 1=2 � t � 1, since �c > �r20 ,
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r20 C t�c � r
2
0 .1� t / and hence is equal to

D

ˇ̌̌̌
ˇ t2

r20 C t�c
�

Vc.t�c/� �cV0c.�c/.t � 1/p
�Vc.t�c/

p
��cV0c.�c/.t � 1/

�p
�Vc.t�c/C

p
��cV0c.�c/.t � 1/

� ˇ̌̌̌ˇ
�K

.1� t /2

.1� t /
p
1� t
p
1� t
p
1� t

D
K
p
1� t

2 L1..1=2; 1//:

Furthermore, letting � D �c C .r20 C �c/t
2, t � 0, the first integral in (31) is equal to

1
p
r20 C �c

Z q
��c=.r

2
0C�c/

0

.�c C .r
2
0 C �c/t

2/2

1C t2
�

2 dtp
�V0c.�c/

D
2

p
r20 C �c

p
�V0c.�c/

�
r40

�
�

2
� arctan

s
r20 C �c

��c

�
� 2r20 .r

2
0 C �c/

s
��c

r20 C �c

C .r20 C �c/
2

�s
��c

r20 C �c
C
1

3

s
��c

r20 C �c

3��
;

by direct computation. Since �c '�r20 is a simple zero of Vc.�/D c
2�2�4.r20 C �/F.r

2
0 C �/, we have

�c D�r
2
0 C

c2r40
4F.0/

C
c4r60
4F.0/

�
r20f .0/

F.0/
� 2

�
C oc!0.c

4/D�r20 C
c2r40
4F.0/

COc!0.c
4/I

thus

�V0c.�c/D 4F.0/COc!0.c
2/ and

2
p
r20 C �c

p
�V0c.�c/

D
2

r20 c
COc!0.c/:

As a consequence, the first integral in (31) is equal to

r20�

c
C

�
�

r30p
F.0/

�
2r30p
F.0/

C
r30

3
p
F.0/

�
COc!0.c/D

r20�

c
�

8r30

3
p
F.0/

COc!0.c/:

Gathering these two relations, we obtain

P.Uc/D r
2
0� C c

�
�

8r30

3
p
F.0/

C

Z 0

�r20

�2

r20 C �

�
1p
�V0.�/

�
1

p
4F.0/.�C r20 /

�
d�

�
C oc!0.c/;

as wished.

6B. Proof of Theorem 23. Since we have a kink solution U0 for c D 0, this implies that V0.�/ D

�4.r20 C�/F.r
2
0 C�/ is negative in .�r20 ; 0/ and that �r20 is a simple zero of V0; that is, F.0/ > 0. Then,

F > 0 in Œ0; r20 / and
F.%/' .c2s=.4r

2
0 //.%� r

2
0 /
2

for %! r20 , and it follows that there exists K0 > 0 such that

F.%/�
1

K0
.%� r20 /

2:
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We consider for �� 0 the quantity

Kmin.�/� inf
˚
K.u/; u 2 Z; infR juj D �

	
:

The study of Kmin.0/ is easy.

Proposition 6.1. We have
Kmin.0/DE.U0/:

More precisely, for any U 2 Z,

E.U /� 4

Z r0

infR jU j

p
F.s2/ ds and E.U0/D 4

Z r0

0

p
F.s2/ ds:

Finally, if U 2 Z, infR jU j D 0 and K.U / D E.U0/, then there exist y 2 R and � 2 R such that
U D ei�U0. � �y/.

Proof. Taking U0 as a comparison map, we see that Kmin.0/ � E.U0/. Moreover, if U 2 Z and
infR jU j D �� 0, we may assume, up to a translation, that �D jU j.0/. Then, defining

G.r/� 2

Z r

r0

p
F.s2/ ds;

we have the inequalitiesZ C1
0

j@xU j
2
CF.jU j2/ dx �

Z C1
0

j@xjU jj
2
CF.jU j2/ dx � 2

Z C1
0

ˇ̌p
F.jU j2/@xjU j

ˇ̌
dx

D

Z C1
0

j@xŒG.jU j/�j dx �

ˇ̌̌̌Z C1
0

@xŒG.jU j/� dx

ˇ̌̌̌
D
ˇ̌
G.jU j.C1//�G.jU j.0//

ˇ̌
D jG.r0/�G.�/j D 2

Z r0

�

p
F.s2/ ds:

Arguing similarly in .�1; 0/, we get

E.U /� 4

Z r0

�

p
F.s2/ ds:

For the kink U0, which is real-valued, we have the first integral j@xU0j2 D F.U 20 /; hence, using the
change of variables s D U0.x/,

E.U0/D 4

Z C1
0

F.U 20 / dx D 4

Z r0

0

p
F.s2/ ds:

If �D 0, we have then E.U /�E.U0/; hence K.U /�E.U /�E.U0/ as wished.
Assume finally that U 2Z satisfies infR jU j D 0 and K.U /DE.U0/. Then �D 0 and all the above in-

equalities are equalities. In particular, we must have j@xU jDj@xjU jj and equality in j@xjU jj2CF.jU j2/�
2j
p
F.jU j2/@xjU jj, which means that j@xjU jj D

p
F.jU j2/. Combining this ODE with the condi-

tion jU j.0/ D 0, we see that jU j D jU0j, since jU0j solves @xU0 D
p
F.U 20 /. Finally, the fact that
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j@xU j D j@xjU jj implies that the phase is constant in .�1; 0/ and in .0;C1/: there exist two constants
�˙ 2R satisfying U.x/D ei�˙ jU0j.x/ for˙x� 0. Therefore, P.U /D r20 .�C���/ mod 2�r20 , and then

E.U0/D K.u/DE.U0/C 2Mr40 sin2
�C� ����

2

implies �C� �� D � mod 2� ; that is, U D ei�CU0 in R, which is the desired result. �

We recall the expansion P.Us/ D r20� C s
PP0 C o.s/ as s ! 0, where PP0 � .dP.Us/=ds/jsD0.

From the Hamilton group relation dE.Us/=ds D sdP.Us/=ds, we also infer by integration E.Us/ D
E.U0/C

1
2
s2 PP0Co.s

2/. As a first step, we define the small parameter �� > 0. The key point is to prove
the following result.

Proposition 6.2. There exist some constant K > 0 and a small �� > 0 such that, for any 0 < �� ��,

Kmin.�/D inf
˚
K.U /; U 2 Z; infR juj D �

	
�E.U0/C

�2

K
:

Proof. Notice first that, for c > 0 small, there exists Uc traveling wave of speed c, and that infR jUcj Dp
r20 C �c with �c a smooth function in c such that �c D�r20Cc

2r40=.4F.0//CO.c4/; hence infR jUcj D

cr20=.2
p
F.0//CO.c2/ and is smooth. Therefore, there exists, for 0� �� �� small, a unique ��, with

�� D 2�
p
F.0/=r20 CO.�2/, such that �D infR jU�� j. In particular, taking U�� as a comparison map

in Kmin.�/, we have

Kmin.�/� K.U��/DE.U��/C 2Mr40 sin2
P.U��/� r

2
0�

2r20

DE.U0/C
�2�

2
PP0C o.�

2
�/C 2Mr40 sin2

�� PP0C o.��/

2r20

DE.U0/C
�2�

2
. PP0CM PP

2
0 /C o.�

2
�/:

In particular, it follows that, for some positive constant K and for �� small enough,

Kmin.�/�E.U0/CK�
2
�
11
10
E.U0/: (32)

Consider now c small, a bounded open interval .x�; xC/ and � a solution to the Newton equation

2@2x�CV0c.�/D 0

in .x�; xC/, with @x�.xC/� 0� @x�.x�/, �.xC/� �r20 C�
2
� and �.x�/� �r20 C�

2
�. As c! 0, Vc

converges to V0 in C1.Œ�r20 ; 0�/. Moreover, V0 is negative in .�r20 ; 0/ and has a simple zero at �r20 .
Therefore, if c and �� > 0 are sufficiently small, we must have

R xC
x�
F.r20 C �/ dx �

1
2

R
R
F.U 20 / dx.

Consequently, if v D Aei' solves (TWc) on a bounded interval .x�; xC/, satisfies 2@x' D c�=.r20 C �/
(�� A2� r20 ) and if jvj is � �� at xC and at x�, with @xjvj.xC/� 0� @xjvj.x�/, thenZ xC

x�

j@xvj
2
CF.jvj2/ dx � 1

2
E.U0/: (33)
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Here, we use that the Newton equation on the modulus jV j actually holds true in .x�; xC/. Since F >0 in
Œ0; r20 / and F.%/' r20 .%�r

2
0 /
2 when %! r20 , there exist K >0 and � > 0 such that F.%/� .%�r20 /

2=K

for 0� %� r20 .1C �/
2. Hence, if infR jvj � � > 0, then

jP.v/j �
K

�
E.v/: (34)

Moreover, arguing as in the proof of Proposition 6.1, we show that there exists ~ > 0 such that, if U 2 Z

and jU j takes values � �� and � r0.1C �/, then

E.U /�E.U0/.1C ~/:

In particular, since Kmin.�/ � E.U0/CO.�2/, we may choose �� sufficiently small so that, if U 2 Z

and K.U /�Kmin.�/C��, then jU j � r0.1C �/. This means that, for the mappings we are considering,
F.%/� .%� r20 /

2=K.

Step 1: Construction of a suitable minimizing sequence. There exists a sequence .Vn/n�0 in Z such
that infR jVnj D �D jVnj.0/, Vn D Anei�n , P.Vn/ 2 Œ0; �r20 �,

2A2n@x�n D cn.A
2
n� r

2
0 /; cn �Mr20 sin

r20� �P.Vn/

2r20
� 0 and lim

n!C1
K.Vn/D Kmin.�/:

Since � > 0, the maps V we consider may be lifted to V D Aei� . Therefore (with uD @x�),

Kmin.�/D inf
�Z

R

.@xA/
2
CF.A2/ dxC inf

�Z
R

A2u2 dxC 2Mr40 sin2
R

R
.A2� r20 /u dx� r

2
0�

2r20
;

u 2 L2.R;R/

�
; A 2 r0CH

1.R;R/; infRAD �

�
: (35)

The infimum in u may be written

inf
p2R

inf
�Z

R

A2u2 dxC 2Mr40 sin2
p� r20�

2r20
; u 2 L2.R;R/ s.t.

Z
R

.A2� r20 /u dx D p

�
:

For each p 2 R, we minimize in u a quadratic functional on an affine hyperplane, with minimizer given
by

up D p

�Z
R

.A2� r20 /
2

A2
dx

��1A2� r20
A2

:

As a consequence, the infimum in u in (35) is

inf
p2R

�Z
R

A2u2p dxC2Mr40v sin2
p�r20�

2r20

�
D inf
p2R

�
p2
�Z

R

.A2�r20 /
2

A2
dx

��1
C2Mr40 sin2

p��r20

2r20

�
:

It is clear that this last infimum is achieved only for p inside Œ��r20 ;C�r
2
0 �. Indeed, the second

term is 2�r20 -periodic, and, if p > �r20 , then p � 2�r20 is a better competitor. Moreover, the function
p 7! sin2..p��r20 /=.2r

2
0 // is continuous and even; hence we may consider some p 2 Œ0; �r20 � (depending
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on A), which is a minimizer for this last infimum. The corresponding up is then a minimizer for the
infimum in u in (35). Writing that

d

dp

�
p2
�Z

R

.A2� r20 /
2

A2
dx

��1
C 2Mr40 sin2

p��r20

2r20

�
D 2p

�Z
R

.A2� r20 /
2

A2
dx

��1
C 2Mr20 sin

p��r20

2r20
D 0;

we deduce the relations

2A2uD c.A2� r20 /; c �Mr20 sin
p��r20

2r20
:

We conclude by considering a minimizing sequence .An/ in (35), and translating in space so that
infRAn D �D jAnj.0/.

Since F � 0 in RC, we have Z
R

j@xVnj
2 dx � K.Vn/�

12
10
E.U0/

for n large. Therefore, by the compact Sobolev embedding H 1.Œ�R;CR�/ ,! L1.Œ�R;CR�/, we may
assume, up to a possible subsequence, that there exists V 2H 1

loc.R/ such that, for any R > 0, Vn*V in
H 1.Œ�R;CR�/ and Vn! V uniformly on Œ�R;CR�. Moreover, by lower semicontinuity and Fatou’s
lemma, E.V / � limn!C1E.Vn/. Since jVnj � � > 0 in R, we have jV j � � > 0 in R and thus a
lifting V D Aei� . Furthermore, infRAn D �D jVnj.0/; hence infRAD �D jV j.0/. We also know that
P.Vn/ 2 Œ0; r

2
0�� for all n; hence we may assume, up to another subsequence, that P.Vn/ converges to

some P1 2 Œ0; r20��. We also set

c � lim
n!C1

cn DMr20 sin
P1��r

2
0

2r20
:

In view of Step 1, and the convergence An!A uniformly on any compact interval Œ�R;CR�, it follows
that

2A2@x� D c.A
2
� r20 / and @x�n! @x� in L1loc.R/: (36)

Note that Z
R

j@xV j
2
C
1

K
.jV j2� r20 /

2 dx �E.V / <C1I

hence jV j ! r0 at ˙1. In particular, there exist �1 < R� � 0 � RC < C1 such that jV j > � in
.�1; R�/ and in .RC;C1/ and jV j.R˙/D �.

Step 2. There exist �1< z� � 0� zC <C1 such that

A.x/D Ac.x�RCC zC/ for x �RC and A.x/D Ac.x�R�C z�/ for x �R�:

We work for x �RC, the other case being similar. We consider � 2 C1c..RC;C1/;C/, t 2 R small such
that V tn � vnC t� satisfies jV tn j > � in .RC;C1/. This is possible since infSupp.�/ jVnj > �. Then,
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jV tn j � � in R and jV tn j.0/D �; hence V tn is then a comparison map for Kmin.�/, and, in view of the
equality P.V tn /D P.Vn/C 2t

RC1
RC
hi@xVnj�i dxCO.t2/, it follows that

Kmin.�/� K.V tn /

D Kmin.�/C on!C1.1/C 2t

Z C1
RC

h@xVn; @x�i dxC t
2

Z C1
RC

j@x�j
2 dx

� 2t

Z C1
RC

f .jVnj
2/hVn; �i dxCMt sin

P.Vn/��r
2
0

r20

Z C1
RC

hi@xVn; �i dxCOt!0.t
2/:

Letting n!C1 and using the weak and strong convergences for Vn, we infer

0� 2t

Z C1
RC

h@xV; @x�i dx� 2t

Z C1
RC

f .jV j2/hV; �i dx

�Mt sin
r20� �P1

2r20

Z C1
RC

hi@xV; �i dxCOt!0.t
2/:

Dividing by t 6D 0 and letting t ! 0C and then t ! 0�, we deduce that V solves (TWc) in .RC;C1/
and V has finite energy. Moreover, jV j.RC/D� is small; thus V D ei�CUc. � �RCCzC/ in .RC;C1/
for some constants zC and �C, and the speed c is such that infRAcD

p
r20 C �c��; hence c��.�/�K�.

Since jV j has finite energy in R and solves (TWc) in .RC;C1/, V is C1 in ŒRC;C1/. Moreover, jV j
reaches a minimum at xDRC; thus we must have @Cx jV j.RC/� 0, which imposes zC� 0. Note that, Ac
being even, it is possible to translate V so that R � RC D �R� and z � zC D �z�. Observe that
�D Ac.z/� A0.z/; hence z �K�. This yieldsZ

jxj�R

j@xV j
2
CF.jV j2/ dx D

Z
jxj�z

j@xUcj
2
CF.jUcj

2/ dx �E.U0/�K�: (37)

In particular, we deduce from (32)

2RF.�2/�

Z
jxj�R

j@xV j
2
CF.jV j2/ dx �K�I

hence R �K� for � small (F.0/ > 0).

Step 3. We prove that AD � in .R�; RC/D .�R;CR/.

Indeed, if it is not the case, there exists a bounded interval .x�; xC/ such that AD jV j>� in .x�; xC/
and jV j.x˙/ D �, with @xjV j.xC/ � 0 � @xjV j.x�/. Therefore, we can make perturbations of the
amplitude An localized in .x�; xC/. Hence, arguing as in Step 2, we see that, then, V solves (TWc) in
.x�; xC/, with 2A2@x� D c.A2 � r20 / and jV j.x˙/D �, @xjV j.xC/ � 0 � @xjV j.x�/. We then are in
position to apply (33), yielding Z xC

x�

j@xV j
2
CF.jV j2/ dx � 1

2
E.U0/;
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but the combination with (37) provides

11
10
E.U0/� Kmin.�/�

Z xC

x�

j@xV j
2
CF.jV j2/ dxC

Z
jxj�R

j@xV j
2
CF.jV j2/ dx

�
1
2
E.U0/CE.U0/�K�� D

3
2
E.U0/�K��;

which is not possible if �� is sufficiently small.

Step 4. We have RD 0 or (z D 0 and c D ��).

Indeed, assume R > 0, and consider � 2 C1c..0;C1/;R/, � � 0, t � 0 and V tn � .AnC t�/e
i�n , so

that jV tn j DAnC t� � � in R. Since R > 0, we actually have infR jV
t
n j D � and V tn is a comparison map

for Kmin.�/. Arguing as before, we thus have

Kmin.�/� K.V tn /D Kmin.�/C on!C1.1/C 2t

Z C1
0

@xAn@x� dxC t
2

Z C1
0

.@x�/
2 dx

C 2t

Z C1
0

An�.@x�n/
2 dxC t2

Z C1
0

�2.@x�n/
2 dx� 2t

Z C1
0

f .A2n/An� dx

CMr20 t sin
P.Vn/� r

2
0�

r20

Z R

0

2An�@x�n dxCOt!0.t
2/:

By (36), we may pass to the limit as n!C1 in all the terms and deduce

0�2t

Z C1
0

@xA@x� dxC2t

Z C1
0

A�.@x�/
2 dx�2t

Z C1
0

f .A2/A� dx�2ct

Z C1
0

A�@x� dxCOt!0.t
2/:

At this stage, we see the relevance of taking a minimizing sequence as chosen in Step 1, since it allows us
to pass to the limit in the nonlinear terms involving @x�n. As a consequence, using (36),

�@2xA�Af .A
2/C

c2

4

.A2� r20 /
2

A3
� 0

in the distributional sense in .0;C1/. The term �Af .A2/C 1
4
c2.A2 � r20 /

2=A3 is continuous in R.
However, since A.x/ D � for 0 � x � R and A.x/ D Ac.x �RC z/ for x � R, we infer �@2xA D
�@xAc.z/ıxDR plus a piecewise continuous function in the distributional sense in .0;C1/. Since
@xAc.z/ � 0 (recall that z � 0), this forces @xAc.z/D 0; that is, z D 0. Consequently, �D jV j.R/D
A.R/D Ac.z/D Ac.0/ and then c D ��.

In the next step, we take into account the loss in the weak convergence Vn*V .

Step 5. There exists K > 0 such that

E] �
P]

K
; where E] � lim

n!C1

E.Vn/�E.V /� 0; P] � lim
n!C1

P.Vn/�P.V /D P1�P.V /:

Let � > 0 be fixed but small, and pick some X > 0 large so thatˇ̌̌̌
E.V /�

Z
jxj�X

j@xV j
2
CF.jV j2/ dx

ˇ̌̌̌
� �;

ˇ̌̌̌
P.V /�

Z
jxj�X

.A2� r20 /u dx

ˇ̌̌̌
� �:
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We claim that there exists some small N� > 0, independent of �, such that jVnj � N� for jxj � X and n
large. Indeed, otherwise, we may argue as in Step 3 and show, as in the beginning of the proof there, thatR
jxj�X j@xVnj

2CF.jVnj
2/ dx � 1

2
E.U0/. This is not possible since

12
10
E.U0/� lim

n!C1

E.Vn/�
1
2
E.U0/C

Z
jxj�X

j@xV j
2
CF.jV j2/ dx � 1

2
E.U0/CE.V /� �;

and E.V / is close to E.U0/ as �! 0. Therefore, as for (34),ˇ̌̌̌Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
�
K

N�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx:

Consequently,

E.Vn/�E.V /

�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx�

Z
jxj�X

j@xV j
2
CF.jV j2/ dxC

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx� �

�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx�

Z
jxj�X

j@xV j
2
CF.jV j2/ dxC

N�

K

ˇ̌̌̌Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
� �:

Passing to the liminf and using the weak convergence in Œ�X;CX�, we infer

lim
n!C1

E.Vn/�E.V /�
N�

K
lim

n!C1

ˇ̌̌̌
P.Vn/�

Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
� �:

However, (36) implies Z
jxj�X

.A2n� r
2
0 /un dx!

Z
jxj�X

.A2� r20 /u dx;

so that

E] �
N�

K

ˇ̌̌̌
P1�

Z
jxj�X

.A2� r20 /u dx

ˇ̌̌̌
� � �

N�

K
jP1�P.V /j �

�
1C
N�

K

�
� D

N�

K
jP]j �

�
1C
N�

K

�
�:

Letting �! 0, the conclusion follows.

Step 6. There exists K > 0 such that, if R > 0, then

Kmin.�/�E.U0/C
�2

K
:

We recall the expansion P.Us/ D r20� C s
PP0 C o.s/ as s ! 0, where PP0 � .dP.Us/=ds/jsD0.

From the Hamilton group relation dE.Us/=ds D sdP.Us/=ds, we also infer by integration E.Us/ D
E.U0/C

1
2
s2 PP0C o.s

2/. On the other hand, by definition of cn,

2Mr40 sin2
P.Vn/� r

2
0�

2r20
DMr40

�
1� cos

P.Vn/� r
2
0�

r20

�

DMr40

�
1�

s
1� sin2

P.Vn/� r
2
0�

r20

�
DMr40

�
1�

s
1�

c2n
M 2

�
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for n large. Here, we have used that Mcn D sin..r20� �P.Vn//=r
2
0 /!Mc 2 Œ0;K��� (cf. Step 2); thus

cos..r20� �P.Vn//=r
2
0 /� 0, for, otherwise, we would have, by Proposition 6.1,

K.Vn/DE.Vn/C 2Mr40 sin2
P.Vn/� r

2
0�

2r20
�E.U0/�K�CMr40

�
1C

s
1�

c2n
M 2

�
�E.U0/�K��C 2Mr40 CO.�2�/;

but this contradicts (32) if �� is sufficiently small.
We assume R > 0, so that, by Step 4, z D 0 and c D ��. We recall �� D 2�

p
F.0/=r20 C O.�2/ �

2�
p
F.0/=r20 . By definition of E], one has

E]CE.V /CMr40

�
1�

s
1�

c2

M 2

�
� lim
n!C1

E.Vn/C lim
n!C1

2Mr40 sin2
P.Vn/� r

2
0�

2r20

D lim
n!C1

K.Vn/D Kmin.�/

since .Vn/ is minimizing for Kmin.�/. Moreover, from the expression of V , we have (for R > 0)

E.V /DE.U��/C 2R

�
�2�.r

2
0 ��

2/2

4�2
CF.�2/

�
and P.V /D P.U��/CR��

.r20 ��
2/2

�2
:

Furthermore, we have P] D P1 �P.V / and c DMr20 sin..r20� �P1/=r
2
0 / with P1 2 Œ0; r20�� and

cos..r20� �P1/=r
2
0 /� 0; thus

P] D P1�P.V /D r
2
0� � r

2
0 arcsin

�
c

Mr20

�
�P.U��/�R��

.r20 ��
2/2

�2
:

Combining this with the expansions of E.U� / and P.U� / gives

Kmin.�/�E.U0/CE]C
�2�

2
PP0Co.�

2
�/CM

�
1�

s
1�

�2�

M 2

�
C2R

�
�2�.r

2
0��

2/2

4�2
CF.�2/

�
�E.U0/C

jP]j

K
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
1

K

ˇ̌̌̌
r20 arcsin.��=.Mr20 //C��

PP0CR�
.r20��

2/2

�2
Co.��/

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
1

K

ˇ̌̌̌
��

M
C�� PP0CR��

.r20��
2/2

�2
Co.��/

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
��

K

ˇ̌̌̌
PP0C

1

M
CR

.r20��
2/2

�2

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
C4RF.0/Co.�2/:

The right-hand side is a continuous piecewise affine function of R (the “o” does not depend on R).
Since ��.r20 ��

2/2=.K�2/' 1=�� 4F.0/ and PP0C 1=M < 0 (since M > � PP�10 by hypothesis), it
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follows that the right-hand side is a function of R which is decreasing in Œ0; R0.�/� and increasing in
ŒR0.�/;C1/, with

R0.�/��

�
PP0C

1

M

�
�2

.r20 ��
2/2
��

�
PP0C

1

M

�
�2

r40
> 0:

Therefore, using once again that �2� � 4�
2F.0/=r40 ,

Kmin.�/�E.U0/C
�2�

2

�
PP0C

1

M

�
C 4R0.�/F.0/C o.�

2/

DE.U0/C

�
PP0C

1

M

�
2�2F.0/

r40
�

�
PP0C

1

M

�
4�2F.0/

r40
C o.�2/

DE.U0/��
2 2F.0/

r40

�
PP0C

1

M

�
C o.�2/:

In view of our hypothesis PP0C 1=M < 0, we infer that

Kmin.�/�E.U0/C
�2

K

for �� sufficiently small and some positive constant K, as wished. If the assumption PP0C 1=M < 0 is
not satisfied, but, if PP0C 1=M > 0 for instance, then the function of R above is increasing in Œ0;C1/,
with minimum value achieved at RD 0 and equal to

E.U0/C
�2�

2

�
PP0C

1

M

�
C o.�2/DE.U0/C

2�2F.0/

r40

�
PP0C

1

M

�
C o.�2/�E.U0/C

�

K
:

We then would have concluded a stronger estimate, which is actually in contradiction with (32); hence
we are necessarily in the case R > 0. The assumption PP0C 1=M < 0 is however crucial for the last step.

Step 7. We assume PP0C 1=M < 0. Then, for �� sufficiently small, the case RD 0 does not occur.

We argue in a similar way, but, since RD 0, the expressions for E.V / and P.V / are given by

E.V /DE.Uc/� 4

Z z

0

F.jUcj
2/ dx and P.V /D P.Uc/� 2

Z z

0

c

2

.r20 �A
2
c/
2

A2c
dx:

Here, we have used that j@xUcj2 D F.jUcj2/ since Uc solves (TWc). Combining this here again with the
expansions of E.Uc/ and P.Uc/ gives, using that 0� c �K�,

Kmin.�/�E.U0/CE]C
c2

2
PP0Co.c

2/CM

�
1�

s
1�

c2

M 2

�
�4

Z z

0

F.jUcj
2/ dx

�E.U0/C
jP]j

K
C
c2

2

�
PP0C

1

M

�
�4zF.0/Co.�2/

�E.U0/C
1

K

ˇ̌̌̌
arcsin.c=M/Cc PP0�c

Z z

0

.r20�A
2
c/
2

A2c
dxCo.c/

ˇ̌̌̌
C
c2

2

�
PP0C

1

M

�
Co.�2/�4zF.0/:
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Following the lines of the proof of Lemma 20, we have

c

Z z

0

.r20 �A
2
c/
2

A2c
dx D 2 arctan

s
�2

r20 C �c
CO.�2/: (38)

Indeed, noticing that Ac D O.�/ in Œ0; z� with z �K�, we write, expanding the square,Z z

0

.r20 �A
2
c/
2

A2c
dx D

Z z

0

r40
A2c
� 2CA2c dx D

Z z

0

r40
A2c

dxCO.�/:

Then, using the change of variable � D �c.x/,Z z

0

.r20 �A
2
c/
2

A2c
dx D

Z �2�r20

�c

r40

.r20 C �/
p
�Vc.�/

d�CO.�/

D

Z �2�r20

�c

r40

.r20 C �/
p
�V0c.�c/.� � �c/

d�

C

Z �2�r20

�c

r40

.r20 C �/

�
1p
�Vc.�/

�
1p

�V0c.�c/.� � �c/

�
d�CO.�/

D
2

c
arctan

s
�2

r20 C �c
� 1CO.�/; (39)

by computations similar to those for the proof of Lemma 20. This proves (38). Therefore,

Kmin.�/

�E.U0/C
1

K

ˇ̌̌̌
c

�
PP0C

1

M

�
�2 arctan

s
�2

r20 C �c
� 1Co.c/

ˇ̌̌̌
C
c2

2

�
PP0C

1

M

�
Co.�2/�4zF.0/: (40)

By (32), the left-hand side is �E.U0/CK�2. Since PP0C 1=M < 0, c �K�, z �K� and F.0/ > 0,
this implies ˇ̌̌̌

c

�
PP0C

1

M

�
� 2 arctan

s
�2

r20 C �c
C o.c/

ˇ̌̌̌
�K�I

thus

arctan

s
�2

r20 C �c
� 1�K�;

and, finally, for �� small enough,

0�
�2

r20 C �c
� 1�K�2:

Combining this with the equality r20 C �c D c
2r40=.4F.0//CO.c4/ seen during the proof of Lemma 20,

we infer

c D
2
p
F.0/

r20
�CO.�2/:
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In particular, going back to (39) and since, for 0� x � z,

r20 C �c D A
2
c.0/� A

2
c.x/� A

2
c.z/D �

2;

this implies

zr40
�2
�

Z z

0

r40
A2c
�
2

c
arctan

s
�2

r20 C �c
� 1CO.�/�

K�

c
CK��K;

which provides (since c � �)

z �K�2:

Inserting this into (40) and keeping in mind that the left-hand side is �E.U0/CK�2, we deduce

c

�
PP0C

1

M

�
� 2 arctan

s
�2

r20 C �c
� 1D o.�/:

However, since arctan
q
�2=.r20 C �c/� 1� 0, this gives

o.�/� c

�
PP0C

1

M

�
�
2�
p
F.0/

r20

�
PP0C

1

M

�
;

yielding a contradiction for small � since we have PP0C 1=M < 0 by assumption. Therefore, the case
RD 0 does not occur for sufficiently small ��. If we had PP0C 1=M > 0, we would not have been able
to show that Kmin.�/ gives a control on �.

The proof of Proposition 6.2 is complete. �

Proof of Theorem 23. Let U 2 V�� . If � � infR jU j > 0, then Proposition 6.2 gives K.U / �

E.U0/C �
2=K > E.U0/ D K.U0/. If infR jU j D 0, we deduce from Proposition 6.1 that K.U / �

E.U0/C2Mr40 sin2..P.U /��r20 /r
2
0 /. Hence K.U />E.U0/ except if K.U /DE.U0/. From the study

of the equality case in Proposition 6.1, it follows that U 2 fei�U0. � �y/; y 2 R; � 2 Rg, as claimed. �

6C. Proof of Theorem 24. As a first step, we shall need a quantified version of Proposition 6.1.

Proposition 6.3. There exist �0 > 0 and K > 0, depending only on f , such that, for any U 2 Z verifying

K.U /�E.U0/� �0 and inf
R
jU j � �0;

we have

inf
y2R
�2R

dZ.U; e
i�U0. � �y//�K

�
K.U /�E.U0/C inf

R
jU j

�1=4
:

Proof. First, we translate the problem in space so that �� infR jU j D jU j.0/ and shall choose the phase
factor later. We follow the lines of the proof of Proposition 6.1 and actually get (writing U DAei� locally
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in fjU j> 0g)Z C1
0

j@xU j
2
CF.jU j2/ dx

D

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

ˇ̌
@xjU j

ˇ̌2
CF.jU j2/ dx

D

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

hp
F.jU j2/�

ˇ̌
@xjU j

ˇ̌i2
dxC 2

Z C1
0

ˇ̌̌p
F.jU j2/@xjU j

ˇ̌̌
dx

�

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

hp
F.jU j2/�

ˇ̌
@xjU j

ˇ̌i2
dxC 2

Z r0

�

p
F.s2/ ds:

Arguing similarly in .�1; 0/, we get

E.U /�E.U0/C

Z
R

1jU j>0A
2.@x�/

2 dxC

Z
R

hp
F.jU j2/� j@xjU jj

i2
dx� 4

Z �

0

p
F.s2/ ds: (41)

The gradient of the phase is controlled using (41). We shall now estimate the modulus part. Let us define
A� jU j and

h� @xA�
p
F.A2/;

for which we have, by (41),

khk2
L2.R/

�E.U /�E.U0/C 4

Z �

0

p
F.s2/ ds �E.U /�E.U0/CK�: (42)

Recall that U0 satisfies .@xU0/2 D F.U 20 / in R; hence @xU0 D
p
F.U 20 / in RC. Setting ‚� A� jU0j,

we infer
@x‚D

p
F.A2/�

p
F.U 20 /C h in RC:

We set, for x � 0,

G.x; �/�
p
F..U0.x/C �/

2/�
p
F.U 20 .x//C

U0.x/f .U
2
0 .x//�p

F.U 20 .x//
:

Since U0 satisfies @2xU0CU0.x/f .U
2
0 .x//D 0 and @xU0 D

p
F.U 20 .x// in RC, it follows that

G.x; �/D
p
F..U0.x/C �/

2/�
p
F.U 20 .x//�

@2xU0.x/

@xU0.x/
�:

Moreover, by the Taylor expansion, we infer the existence of K > 0 and �0 > 0 such that, for j� j � �0,
x 2 RC,

jG.x; �/j �K�2:

The estimate is clearly uniform in view of the exponential decay of @xU0 at infinity. Therefore,

@x‚D
@2xU0.x/

@xU0.x/
‚CG.x;‚/C h.x/: (43)
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We view this ODE as a linear ODE with source term G.x;‚.x// C h.x/. Since @xU0 solves the
homogeneous equation, we infer, from Duhamel’s formula and the fact that ‚.0/ D A.0/�U0.0/ D
jU.0/j D �, that, for x � 0,

‚.x/D �C @xU0.x/

Z x

0

G.z;‚.z//C h.z/

@xU0.z/
dz: (44)

We shall prove that this equation implies that, if � and khkL2.RC/ are sufficiently small, then

k‚kL2.RC/ �K.khkL2.RC/C�/: (45)

We assume � < �0=2. Note that, since U0 is a kink, we have the decays given in Proposition 2. Hence,
there exist two positive constants K1 and K2 such that

e�csx

K1
� @xU0.x/�K2e

�csx for all x 2 RC:

In particular, if j‚.x/j � �0 in the interval Œ0; R�, then (44) implies, for x 2 Œ0; R�,

j‚.x/j � �CK1K2e
�csx

Z x

0

ecsz
�
Kk‚kL1.Œ0;R�/j‚.z/jC jhj.z/

�
dz

� �C
KK1K2

cs
k‚k2L1.Œ0;R�/C

K1K2
p
2cs
khkL2.RC/

by the Cauchy–Schwarz inequality. We thus choose khkL2.RC/C� sufficiently small so that

4

�
�C

K1K2
p
2cs
khkL2.R/

�
� Q�0 �min

�
�0;

cs

2KK1K2

�
:

Then, we consider the set R of all R>0 such that j‚.x/j � Q�0 in the interval Œ0; R�. Since ‚2H 1.R;C/

is continuous by the Sobolev embedding and j‚.0/j D � < Q�0, R 6D∅ and is closed in R�
C

. Moreover,
the above estimate shows that, for R 2R,

k‚kL1.Œ0;R�/ � �C
KK1K2

cs
k‚k2L1.Œ0;R�/C

K1K2
p
2cs
khkL2.RC/;

which gives

k‚kL1.Œ0;R�/

�
1�

KK1K2

cs
k‚kL1.Œ0;R�/

�
� �C

K1K2
p
2cs
khkL2.RC/;

and then

k‚kL1.Œ0;R�/ � 2

�
�C

K1K2
p
2cs
khkL2.R/

�
�

Q�0

2
< Q�0: (46)

Consequently, R is open in R�
C

. By connexity, R D R�
C

, proving (45). In what follows, we assume
khkL2.RC/C� is sufficiently small so that k‚kL1 � Q�0; thus jG.x;‚/j �K‚2. In particular,

j‚.x/j � �CK1K2

Z x

0

e�cs.x�z/
�
Kk‚kL1.Œ0;R�/j‚.z/jC jhj.z/

�
dz:
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For R > 0 to be determined later, we then deduce from classical convolution estimates that

k‚kL2.Œ0;R�/ � �
p
RCK3k‚kL1.RC/k‚kL2.Œ0;R�/CK3khkL2.RC/:

Imposing that khkL2.RC/C� be smaller if necessary, we may assume that

K3k‚kL1.RC/ �K3K.khkL2.RC/C�/�
1
2
;

so that we get

k‚kL2.Œ0;R�/ �K4
�
�
p
RCkhkL2.RC/

�
:

Reporting this into (43) provides

k@x‚k
2
L2.Œ0;R�/

�K5.�
2RCkhk2

L2.RC/
/:

Arguing similarly in Œ�R; 0� and using (42), we obtain an H 1 estimate for ‚ in Œ�R;R�:

k‚k2
H1.Œ�R;R�/

�K6
�
E.U /�E.U0/C�

2RC�
�
: (47)

We now turn to the estimate in fjxj �Rg. For that purpose, we writeZ
jxj�R

.@xjU j/
2
C
1

K
.jU j2�r20 /

2 dx�E.U /�E.U0/C

Z
jxj�R

.@xU0/
2
CF.U 20 / dx

�

Z
jxj�R

.@xjU jj/
2
CF.jU j2/ dxC

Z
jxj�R

.@xU0/
2
CF.U 20 / dx: (48)

Since U0 decays exponentially (see Proposition 2), it follows thatZ
jxj�R

j@xU0j
2
CF.U 20 / dx �Ke�csR:

Furthermore, by integration by parts,

�

Z
jxj�R

.@xjU j/
2
CF.jU j2/ dxC

Z
jxj�R

.@xU0/
2
CF.U 20 / dx

D�

Z
jxj�R

2@xU0@x‚�2U0f .U
2
0 /‚dx�

Z
jxj�R

.@x‚/
2
CF.ŒU0C‚�

2/�F.U 20 /�2U0F
0.U 20 /‚dx

�

Z
jxj�R

2‚Œ@2xU0CU0f .U
2
0 /� dx�2‚.CR/@xU0.CR/C2‚.�R/@xU0.�R/CKk‚k

2
H1.Œ�R;CR�/

�Ke�csRCK
�
E.U /�E.U0/C�

2RC�
�
:

For the second-to-last line, we have used that � 7! F.ŒU0C ��
2/�F.U 20 /� 2U0F

0.U 20 /� is O.�2/ as
� ! 0 and, for the last line, that U0 solves @2xU0CU0f .U

2
0 /D 0, the exponential decay of @xU0 and
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the uniform bound on ‚. Reporting these estimates into (48) provides

k‚k2
H1.fjxj�Rg/

D

Z
jxj�R

.@xjU j � @xjU0j/
2
C .jU j � jU0j/

2 dx

� 2

Z
jxj�R

.@xjU j/
2
C .@xjU0j/

2
C .jU j � r0/

2
C .jU0j � r0/

2 dx

�KŒE.U /�E.U0/C e�csRC�2RC��:

Combining this with (47), we deduce that, for any R > 0, we have

k‚k2
H1.R/

�KŒE.U /�E.U0/C e�csRC�2RC��:

We then choose RD ��1 if � > 0 or R!C1 if �D 0, and get

k‚kH1.R/ �K
p
E.U /�E.U0/C�:

Notice that, if f 0 < 0 everywhere, then we may give a quick proof of the above estimate, since, using
here again integration by parts and that @2xU0CUOf .U

2
O/D 0, we may deduce that

E.U /�E.U0/� �4�@xU0.0/C

Z C1
0

.@x‚/
2 dxC

Z
R

F..U0C‚/
2/�F.U 20 /� 2U0‚F

0.U 20 / dx;

and, since f 0 < 0, F..U0C �/2/�F.U 20 /� 2U0�F
0.U 20 /� �

2=K by the Taylor expansion, providing
the desired H 1 bound on ‚.

Observe now that

K.U /�E.U0/�E.U /�E.U0/�

Z
R

1jU j>0ŒA@x��
2 dxI

hence

k@xU � @xU0kL2.R/ D k@x.jU0jC‚/e
i�1jU j>0C i1jU j>0A@x�e

i�
� @xU0kL2.R/

� kei�1jU j>0@xjU0j � @xU0kL2.R/Ck1jU j>0A@x�kL2.R/Ck‚kL2.R/

� kei�1jU j>0@xjU0j � @xU0kL2.R/CKŒK.U /�E.U0/C��
1=2: (49)

We distinguish now the cases �D 0 and � > 0, and begin with the assumption � > 0. Then, we have a
global lifting U D Aei� and

dZ.U; U0/D k@xU � @xU0kL2.R/CkjU j � jU0jkL2.R/CjU.0/�U0.0/j

D k@xU � @xU0kL2.R/Ck‚kL2.R/C�

� kei�@xjU0j � @xU0kL2.R/CKŒK.U /�E.U0/C��
1=2:

Now, we notice that

kei�@xjU0j � @xU0k
2
L2.R/

D 2

Z
R

�
.@xU0/

2
� @xU0@xjU0j cos�

�
dx

D 2

Z C1
0

.@xU0/
2.1� cos�/ dxC 2

Z 0

�1

.@xU0/
2.1C cos�/ dx (50)
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and that

K.U /�E.U0/� 2Mr40 sin2
P.U /� r20�

2r20
�
1

K
.P.U /� r20� mod 2�r20 /

2: (51)

We define ı D .K.U /�E.U0/C�/1=4. By the Cauchy–Schwarz inequality, we haveˇ̌̌̌Z
jxj�ı

.A2� r20 /@x� dx

ˇ̌̌̌
�

K

infjxj�ı A

�Z
jxj�ı

.A2� r20 /
2 dx

�1=2�Z
jxj�ı

.A@x�/
2 dx

�1=2
�

K

infjxj�ı A

�
E.U /�E.U0/C�

�1=2
:

Inserting this into (51) givesˇ̌̌̌Z
jxj�ı

.A2�r20 /@x� dx�r
2
0� mod 2�r20

ˇ̌̌̌
�K

�
.K.U /�E.U0//

1=2
C

1

infjxj�ı A

�
E.U /�E.U0/C�

�1=2�
�

K

infjxj�ı A

�
K.U /�E.U0/C�

�1=2
:

In addition, by the Cauchy–Schwarz inequality,ˇ̌̌̌Z
jxj�ı

A2@x� dx

ˇ̌̌̌
�
p
2ı.supjxj�ı A/

�
K.U /�E.U0/C�

�1=2
:

Consequently,

r20
ˇ̌
�.Cı/��.�ı/�� mod 2�

ˇ̌
�

ˇ̌̌̌Z
jxj�ı

.A2� r20 /@x� dx� r
2
0� mod 2�r20

ˇ̌̌̌
C
p
2ı.supjxj�ı A/

�
K.U /�E.U0/C�

�1=2
�

�
K

infjxj�ı A
C
p
2ı.supjxj�ı A/

��
K.U /�E.U0/C�

�1=2
: (52)

From our choice ıD .K.U /�E.U0/C�/1=4� 1 and since k‚kL1.R/ �K.K.U /�E.U0/C�/1=2D
O.ı2/, we infer infjxj�ı A � infjxj�ı jU0j � k‚kL1.R/ � ı=K. Similarly, we have supjxj�ı A �
supjxj�ı jU0jC k‚kL1.R/ �Kı. Reporting this into (52) yieldsˇ̌

�.Cı/��.�ı/�� mod 2�
ˇ̌
�Kı:

We now freeze the gauge invariance by imposing �.Cı/ D 0. Note that then �.�ı/ D � C O.ı/.
Furthermore, since �.Cı/D 0,Z

jxj�ı

.@x�/
2 dx �

K

.infjxj�ı A/2

Z
jxj�ı

A2.@x�/
2 dx �

K

ı2
ı4 DKı2;

which implies, for x � ı,

j1� cos�.x/j � j1� cos�.0/jC
ˇ̌̌̌Z x

ı

@x� sin�
ˇ̌̌̌
�Kı

p
x
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and, similarly, since cos�.�ı/D cos.� CO.ı//D�1CO.ı2/, for x � �ı,

j1C cos�.x/j �Kı
p
jxj:

We turn back to (50) and infer

kei�@xjU0j � @xU0k
2
L2.R/

�KıC 2

Z C1
ı

.@xU0/
2.1� cos�/ dxC 2

Z �ı
�1

.@xU0/
2.1C cos�/ dx

�KıCKı

Z
R

.@xU0/
2
p
jxj dx DKı:

Inserting these estimates in (49), it follows that

dZ.U; U0/�Kı:

We now turn to the case �D 0. Without loss of generality, we may assume that jU j> 0 in .�1; 0/
(since jU j ! r0 > 0 at ˙1), and let ` � 0 be such that jU j.`/D 0 and jU j > 0 in .`;C1/. We first
estimate ` by writing that

jU0j.`/D jU j.`/C‚.`/D‚.`/� k‚kL1.R/ �K
�
K.U /�E.U0/C�

�1=2
DKı2I

thus `�Kı2. Moreover, we have two local liftings U D Aei�C in Œ`;C1/ and U D Aei�� in .�1; 0/.
Going back to (49), we then deduce

dZ.U; U0/

� kei��@xjU0j � @xU0kL2.�1;0/Cke
i�C@xjU0j � @xU0kL2.`;C1/CKıCKŒK.U /�E.U0/�

1=2:

Arguing as for the case �> 0, we obtain jU j DA� ı=K in Œ`Cı;C1/ and in .�1;�ı/. By definition
of P, we have

P.U /D

Z `Cı

�ı

hiU j@xU iC

Z C1
`Cı

.A2�r20 /@x�C dxCr
2
0�C.`Cı/C

Z �ı
�1

.A2�r20 /@x�� dx�r
2
0�C.�ı/

in R=.2�r20Z/; hence the same arguments as in the case � > 0 provideˇ̌
�C.`C ı/��C.�ı/�� mod 2�

ˇ̌
�Kı;

since the integral
R `Cı
�ı hiU j@xU i is bounded by K

p
ı by the Cauchy–Schwarz inequality. Imposing

�C.`Cı/ for the gauge invariance, we infer 1�cos.�C.`Cı//D 0 and �C.�ı/D �CO.
p
ı/ mod 2� ;

hence 1C cos.��.�ı//D O.ı/. Therefore, we conclude as before that

dZ.U; U0/�Kı;

which finishes the proof of the proposition. �

In order to prove Theorem 24, we use Proposition 6.2, which provides

K.U /�E.U0/C
1

K
.infR jU j/

2I
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thus

�D inf
R
jU j �K

p
K.U /�E.U0/:

Inserting this bound in Proposition 6.3 then gives

dZ.U; U0/�K
�
K.U /�E.U0/CK

p
K.U /�E.U0/

�1=4
�K 8

p
K.U /�E.U0/;

and the proof is complete.

7. About the stability analysis for the sonic waves .c D cs/

We have left aside in our study the case of the sonic waves (c D cs), but would like to say a few words on
the difficulties associated with this critical case.

We note that, if there exists a sonic nontrivial traveling wave, it does not vanish; hence we may use
the hydrodynamical formulation (15) of (NLS) as in [Lin 2002]. The point is that the Sturm–Liouville
operator (see [Lin 2002, Section 4])

L��
@

@x

�
1

4.r20 � �/

@

@x

�
C q.x/;

with

q.x/�
.@x�/

2

4.r20 � �/
3
�
@

@x

�
@x�

4.r20 � �/
2

�
�
1

2
f 0.r20 � �/�

c2r40

4.r20 � �/
3
;

has, by Weyl’s theorem, essential spectrum �ess.L/ D Œ0;C1/ when c D cs . Indeed, we know
from Proposition 2 that �cs and its derivatives tend to zero at infinity; hence, as x ! ˙1, q.x/!
�
1
2
f 0.r20 /� c

2=.4r20 /D 0 since c2 D c2s D�2r
2
0f
0.r20 /. Therefore, there does not exist ı > 0 such that

hHp;pi � ıkpk2 for any p orthogonal to the subspace spanned by the negative and the zero eigenvalue,
and thus the Grillakis–Shatah–Strauss theory does not apply.

In the case .dP=dc/jcDcs < 0, where it is natural to expect stability, a natural thing would be to try to
work with the functional

L. /�E. /� csP. /C
M

2
.P. /�P.Ucs //

2

and to follow the lines of the proof of Theorem 23. Indeed, the spectral analysis shall not give positive
definiteness of the Hessian due to presence of essential spectrum down to 0. Therefore, we may study L

at fixed �D infR j j close to infR jUcs j. When 0 < c� < cs and .dP=dc/jcDc� 6D 0, the infimum of jUcj
contains a neighborhood of infR jUc� j for c close to c�. For c� D cs , this is no longer the case: we
have only a one-sided neighborhood of infR jUcs j. It is plausible that the study for � in this one-sided
neighborhood of infR jUcs j can be done as in the proof of Theorem 23, but, for the remaining values of �,
we have to find a sharp ansatz, which is not very easy to find.

Furthermore, for the linear instability which is expected if .dP=dc/jcDcs > 0, let us mention the
following point. For the eigenvalue problem studied in [Benzoni-Gavage 2010b], the characteristic
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equation for the constant coefficient limit at infinity, namely

r4� .c2s � c
2
�/r

2
� 2c��r C�

2
D 0;

becomes, when c� D cs ,

r4� 2cs�r C�
2
D 0: (53)

The behavior of the roots for small � is then different from the case 0 < c� < cs . Indeed, there exists a
root � �=.2cs/ for �! 0, and, for the three other roots, we use the variable r D 3

p
�z, which transforms

r4�2cs�rC�
2D 0 into z4�2cszC�2=3D 0. This last equation has, for �! 0, three roots � j k 3

p
2cs ,

where j D e2i�=3 and k D 0, 1, 2. In particular, (53) has three roots � j k 3
p
2cs�, k D 0, 1, 2. The

value �D 0 is then a branching point, and we shall have a smooth problem not in � but in 3
p
�. Since

analyticity is not necessary for our purpose, we may define an Evans function QD in RC, smooth, and
such that, for � > 0, QD. 3

p
�/D 0 if and only if � is an unstable eigenvalue for (27). Another difficulty

comes from the fact that it will be difficult to find an analytic extension of the Evans function QD near 0
since, by Proposition 2, for c� D cs , u� and �� decay only at an algebraic rate and not an exponential
rate. Consequently, we can not use the gap lemma of [Gardner and Zumbrun 1998] and [Kapitula and
Sandstede 1998]. Finally, as a straightforward computation shows, the stable and unstable subspaces for
the eigenvalue problem are transverse for � > 0 but their continuous extensions at �D 0 have a nontrivial
intersection. Therefore, both stability and instability require some further analysis, and the situation is
then much more delicate than the one studied in Section 5A.

Appendix A. Construction of a Liapounov functional in the stable case in the
Grillakis–Shatah–Strauss framework

We work with the notations of [Grillakis et al. 1987], and recall them briefly. We consider a Hamiltonian
equation in a real Hilbert space X, with scalar product . � ; � /X, under the form

@u

@t
D JE 0.u/; (H)

where J W X� ! X is a closed linear operator with dense domain and skew-symmetric. Assume that
T is a C0-group of unitary operators in X generated by T 0.0/, which is skew-adjoint and with dense
domain, and that E is invariant by T ; that is, E.T .s/u/DE.u/ for any s 2 R, u 2 X. Assume moreover
that T .s/J D JT .�s/� for any s 2 R and that there exists B W X! X�, linear and bounded, such that
B� D B and JB is an extension of T 0.0/. We then set

Q.u/� 1
2
hBu; uiX�;X:

The basic assumptions of [Grillakis et al. 1987] are the following ones.

Assumption 1 (existence of solutions). For any r > 0 there exists t� > 0, depending only on r , such that,
for any uin 2 X, there exists a u 2 C..�t�; t�/;X/ with u.0/D uin solution of (H) in the sense that, for
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any ' 2D.J /� X�,

d

dt
hu.t/; 'iX�;X D�hE

0.u.t//; J'iX�;X in D0..�t�; t�//;

and verifying E.u.t//DE.uin/ and Q.u.t//DQ.uin/ for t 2 .�t�; t�/.

Assumption 2 (existence of “bound states”). There exists an interval �� R, not reduced to a singleton,
and a mapping � 3 ! 7! �! 2 X of class C1 such that, for any ! 2�,

E 0.�!/D !Q
0.�!/; �! 2D.T

0.0/3/\D.JIT 0.0/2/; T 0.0/�! 6D 0:

Assumption 3 (spectral decomposition). For each!2�, the operatorH!�E 00.�!/�!Q00.�!/ WX!X�

has its kernel spanned by T 0.0/�! , has one negative simple eigenvalue and the rest of its spectrum is
positive and bounded away from zero.

Under Assumption 2, we consider some !� 2� and the associated bound state �!� , and then define,
for M > 0, the functional

L!�.u/�E.u/�!�Q.u/C
M

2
.Q.u/�Q.�!�//

2:

It is clear that �!� is a critical point of L!� : L0.�!�/DE
0.�!�/�!�Q

0.�!�/D 0. We denote by

ƒ� L00!�.�!�/DH!� CM hQ
0.�!�/; � iX�;XQ

0.�!�/

its second derivative, which is a self-adjoint operator. The main result of this appendix is the following.

Theorem 26. We make Assumptions 2 and 3 and suppose that the operator hQ0.�!�/; � iX�;XQ
0.�!�/ is

a compact perturbation of H!� . If .dQ.�!/=d!/j!D!� < 0 and

M >
1

�
dQ.�!/

d! j!D!�

;

there exists ı > 0 such that

hƒv; vi � ıkvk2 for all v 2X s.t. .v; T 0.0/�!�/X D 0:

In particular, for any u 2X with infs2R ku�T .s/�!�k
2 � �, we have

inf
s2R
ku�T .s/�!�k

2
�
2

ı
.L.u/�L.�!�//:

Therefore, when Assumption 1 is moreover satisfied, the (global) solution u.t/ to (H) with initial datum uin

satisfies

sup
t2R

inf
s2R
ku.t/�T .s/�!�k

2
�
2

ı
.L.uin/�L.�!�//�Kku

in
��!�k

2;

provided the right-hand side is sufficiently small.
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We point out that the condition that the operator hQ0.�!�/; � iX�;XQ
0.�!�/ is a compact perturbation

of H!� is not very restrictive, since, in many cases coming from PDEs, it involves less derivatives
than H!� and Q0.�!�/ tends to zero at spatial infinity.

This type of Liapounov functional has been used in [Barashenkov 1996] to prove that the traveling
waves of (NLS) in dimension one are stable when dP=dc < 0. The proof follows basically the one in
[Barashenkov 1996], but some points have to be clarified. The interest of this type of Liapounov
functional is that the saddle point �!� is now a nondegenerate local minimum for L!� . This is
a great advantage for numerical simulation of the “bound states”, since a gradient flow method on
L!� can be used. This approach has been used, with a very similar functional, by N. Papanicolaou
and P. Spathis [1999] for the numerical simulation of the traveling waves for a planar ferromagnets
model. In the same spirit, in [Chiron and Scheid 2012], we also use a gradient flow method on
this type of functional for the numerical simulation of the traveling waves for (NLS) in two dimen-
sions.

Proof of Theorem 26. Recall that the spectrum of H!� is, by Assumption 3, such that ��2� 2 �.H!�/,
02�.H!�/ and �.H!�/nf��

2
�; 0g� Œı;C1/ for some ı>0. Since we assume that hQ0.�!�/; � iQ

0.�!�/

is a compact perturbation of H!� , the essential spectrum of ƒ is the same as the one of H!� , and hence
is included in Œı;C1/. Furthermore, 0 2 �.H!�/ and ker.H!�/ D RT 0.0/�!� by Assumption 3.
Since Q0.�!�/ D B�!� and JB is an extension of T 0.0/, we have that hQ0.�!�/; T

0.0/�!�iX�;X D

hB�!� ; JB�!�iX�;X D 0; hence ƒ.T 0.0/�!�/ D 0. Noticing that hQ0.�!�/; � iX�;XQ
0.�!�/ is a non-

negative operator, we infer that ker.ƒ/ D ker.H!�/ D RT 0.0/�!� is one-dimensional. Therefore, it
suffices to show that ƒ has no eigenvalues in .�1; 0/. As we have seen that hQ0.�!�/; � iX�;XQ

0.�!�/

is a nonnegative operator, we deduce that �.ƒ/ � Œ��2�;C1/. Let us first show that ��2� 62 �.ƒ/
by contradiction. If ��2� is an eigenvalue of ƒ, then there exists v 2 X , v 6D 0, such that 0 D
.ƒC �2�/v D .H C �2�/v CM hQ

0.�!�/; viX�;XQ
0.�!�/. Taking the duality product with v yields

0Dh.H!�C�
2
�/v; viX�;BXCM hQ

0.�!�/; vi
2
X�;X. Since the two terms in the sum are nonnegative, this im-

plies hQ0.�!�/; viX�;XD0 and h.H!�C�
2
�/v; viX�;XD0, which in turn implies v2ker.H!�C�

2
�/DR�

(here, � is a negative eigenvector of H!� for the eigenvalue ��2� < 0). As a consequence, we must have
hQ0.�!�/; �iX�;X D 0. On the other hand, differentiating the equality E 0.�!/�!Q0.�!/D 0 at ! D !�
yields Q0.�!�/ D H!��

0, where �0 � .d�=d!/j!D!� . Thus we must have 0 D hH!��
0; �iX�;X D

hH!��; �
0iX�;X D ��

2
�.�; �

0/. Therefore, �0 is orthogonal to � and this gives hH!��
0; �0iX�;X � 0.

However, this is not possible if .dQ.�!/=d!/j!D!�<0, since .dQ.�!/=d!/j!D!�D�hH!��
0; �0iX�;X.

As a consequence, if � is a negative element of the spectrum ofƒ, then��2�<�<0 and � is an eigenvalue:
there exists v 2X such that v 6D 0 and

�v Dƒv DH!�vCM hQ
0.�!�/; viX�;XQ

0.�!�/:

Since ��2� < � < 0, we then infer

v D�M hQ0.�!�/; viX�;X.H!� ��/
�1Q0.�!�/: (A-1)
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Since v 6D 0, we can not have hQ0.�!�/; viX�;X D 0. Then, taking the scalar product of (A-1) with
I�1Q0.�!�/ (here, I W X! X� is the usual Riesz isomorphism) gives

g.�/D 0; where g.t/� 1CM
�
.H!� � t /

�1Q0.�!�/; I
�1Q0.�!�/

�
X
; ��2� < t < 0:

It is clear that g is smooth in .��2�; 0/ and that

g0.t/DM
�
.H!� � t /

�2Q0.�!�/; I
�1Q0.�!�/

�
X
DMk.H!� � t /

�1Q0.�!�/k
2
X > 0:

We now study the limit of g at 0�. Let us recall that H!��
0 DQ0.�!�/ and that we have already seen

that hQ0.�!�/; T
0.0/�!�iX�;X D 0; i.e., I�1Q0.�!�/ is orthogonal to ker.H!�/. Therefore, as t ! 0�,�

.H!� � t /
�1Q0.�!�/; I

�1Q0.�!�/
�
! .�0; I�1Q0.�!�//D hQ

0.�!�/; �
0
iX�;X D

dQ.�!/

d! j!D!�

and thus

g.t/! 1CM
dQ.�!/

d! j!D!�
as t ! 0�:

Since .dQ.�!/=d!/j!D!� < 0 by hypothesis, it follows that, if M > �1=.dQ.�!/=d!/j!D!� > 0, the
function g increases in .��2�; 0/ and tends to some negative limit at 0�. In particular, g is negative; hence
we can not have g.�/D 0 with � 2 .��2�; 0/. We have therefore shown that the spectrum of ƒ consists
in a simple eigenvalue 0 with eigenspace spanned by T 0.0/�!� and the rest of the spectrum is positive
and bounded away from 0. This concludes the proof. �

We would like to point out the fact that, in the proof of [Barashenkov 1996], ��2� 62 �.ƒ/ was not
shown, the kernel of ƒ was not studied and the essential spectrum was not considered. Moreover, the
functional spaces are not given; hence we do not know for which perturbations stability holds.

Appendix B. From linear to nonlinear instability

We still consider in this appendix an abstract Hamiltonian equation in the framework of [Grillakis et al.
1987]

@u

@t
D JE 0.u/ (H)

on the real Hilbert space X, with scalar product . � ; � /X. Here E WX!R is of class C2 and J WX�!X is a
closed linear operator with dense domain and skew-symmetric in the sense that .u; Jw/XD�hw; JuiX�;X
for u 2 X, w 2 X�.

We assume that there exists a C0-group T of unitary operators in X generated by T 0.0/, which is
skew-adjoint and with dense domain, and that E is invariant by T ; that is, E.T .!/u/D E.u/ for any
! 2R, u2X. Assume moreover that T .!/J D JT .�!/� for any ! 2R and that there exists B WX!X�,
linear and bounded, such that B� D B and JB is an extension of T 0.0/. We then set

Q.u/� 1
2
hBu; uiX�;X;
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which is invariant by the flow (H) (see [Grillakis et al. 1987]). By “bound state”, we mean a particular
solution U of (H) of the form U.t/D T .!t/� for some ! 2 R and where � 2 X, � 6D 0. In other words,
E 0.�/D !Q0.�/.

There exist an open interval �� R, not reduced to a singleton, and a mapping � 3 ! 7! �! 2X of
class C1 such that, for any ! 2�,

E 0.�!/D !Q
0.�!/; �! 2D.T

0.0/3/\D.JIT 0.0/2/; T 0.0/�! 6D 0:

The solution U.t/D T .!t/� is said to be stable in X if, for any " > 0, there exists ı > 0 such that
any solution to (H) with initial datum uin 2 BX.�; ı/ is global in time and remains in BX.�; "/ for t � 0.
Otherwise, it is said to be unstable. This supposes some knowledge of the Cauchy problem for (H) (at
least existence of solutions). If we are given some Banach space Y � X with continuous imbedding
X ,!Y, we may also say that the solution U.t/DT .!t/� is said to be stable from X to Y if, for any ">0,
there exists ı > 0 such that any solution to (H) with initial datum uin 2 BX.�; ı/ remains in BY.�; "/ for
t � 0. Clearly, a solution stable in X is precisely a solution stable from X to X, and is also stable from X

to Y; hence instability from X to Y is a stronger statement that instability in X.
In our framework, the notion of orbital stability is more relevant. Let us consider G a group and

T W R�G! GLc.X/ a unitary representation of R�G on X, extending T W R! X and leaving E and Q
invariant. Then, U.t/ D T .!t/� is said to be orbitally stable in X (for the group G) if, for any " > 0,
there exists ı > 0 such that any solution to (H) with initial datum uin 2 B.�; ı/ is global in time and
remains in

S
.!;g/2R�GB.T.!; g/�; "/ for t � 0. We may also define orbital instability from X to Y�X

in a natural way.
In [Grillakis et al. 1987; 1990], a general framework for the stability analysis for the “bound state” has

been given. In particular, the nonlinear orbital instability is proved in [Grillakis et al. 1987] through the
construction of a Liapounov-type functional. However, this method does not give a clear understanding
neither of how we get farther from the “bound state”, nor on which timescale it occurs.

The need for allowing an additional group of invariances G can be seen in the case of bound state
solutions, that is U.t/D ei!t�! , to the nonlinear Schrödinger equation

i@t‰C�‰C‰f .j‰j
2/D 0; (NLS)

or the nonlinear Klein–Gordon equation in Rd

@2t‰ D�‰C‰f .j‰j
2/; (NLKG)

since, then, the invariance by translation in space must be taken into account in the definition of orbital
stability, and we are in a case where GD Rd acts naturally by translation. The translations are taken into
account in [Cazenave and Lions 1982]. In [Grillakis et al. 1987; 1990], the notion of orbital stability
is for G trivial. It is clear from the definition that orbital stability for GD f0g implies orbital stability
for arbitrary G. For the instability in the nonlinear Schrödinger equation or the nonlinear Klein–Gordon
equation, [Grillakis et al. 1987] and [Shatah and Strauss 1985] work with radial H 1 functions. The fact
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that this also implies the orbital instability with the action of GD Rd by translations follows immediately
from the fact that for any � 2 Œ0; 2�� the manifold M� �fe

i��. � �y/; y 2Rd g is orthogonal toH 1
rad.R

d /.
For the stability analysis of a “bound state” U.t/D T .!�t /.�!�/, it is natural to consider the lineariza-

tion of (H) near �. More precisely, we linearize according to the ansatz u.t/D T .!�t /.�!� C v.t//, so
that the “bound state” becomes stationary. The linearized problem then becomes

@v

@t
D J.E 00.�/�!Q00.�//v D JLv; (Hlin)

where, I W X! X� denoting the Riesz isomorphism, J� J I W X! X is skew-adjoint.
The purpose of this appendix is to give a general result, for Hamiltonian equations, showing that linear

instability implies nonlinear (orbital) instability. By linear instability, we mean that the complexification
of [JL]C has at least one eigenvalue in the right half-space fRe> 0g. The argument follows ideas from
the works of F. Rousset and N. Tzvetkov [2008; 2009].

Showing the existence of an unstable eigenvalue can be done through various techniques: see [Grillakis
et al. 1990] (in the framework of [Grillakis et al. 1987] when J is onto), [Grillakis 1988] (assuming
a special structure of the Hamiltonian equation); for uses of the Vakhitov–Kolokolov function, see
[de Bouard 1995], [Di Menza and Gallo 2007] or [Pelinovsky and Kevrekidis 2008]. When J is not onto,
we quote [Lopes 2002]. For one-dimensional partial differential equations, one may also use the Evans
function (see the survey [Sandstede 2002]) as in [Pego and Weinstein 1992; Gardner and Zumbrun 1998;
Kapitula and Sandstede 1998; Zumbrun 2008]. The paper [Lin 2008] proposes another approach which
allows treating pseudodifferential equations, such as the BBM equation, the Benjamin–Ono equation,
regularized Boussinesq equations, the intermediate long wave equation, etc.

In order to pass from linear to nonlinear instability, the following result is standard. We refer to the
paper by D. Henry, J. Perez and W. Wreszinski [Henry et al. 1982]. It can also be found in [Grillakis
1988; Shatah and Strauss 2000].

Theorem B.1 [Henry et al. 1982; Grillakis 1988; Shatah and Strauss 2000]. We assume that A generates
a continuous semigroup on X and that �.A/ meets the right half-space fRe> 0g. We assume moreover
that F WX !X is locally Lipschitz continuous and satisfies, for some ˛ > 0, kF.v/kX D O.kvk1C˛X / as
v! 0. Then, the solution � D 0 is unstable for the equation @tv DAvCF.v/.

In [Shatah and Strauss 2000], it is claimed that an orbital instability result can also be established.
Theorem B.1 shows nonlinear instability without assuming that the equation is Hamiltonian. However,
if (Hlin) can be solved using a semigroup, it does not give the growth of its norm. Moreover, it does not
say that, if the initial datum is in a most unstable direction, that is, an eigendirection of A corresponding
to an eigenvalue of maximal positive real part (plus the complex conjugate if necessary), then one can
track the exponential growth of the solution. In particular, it does not explain the mechanism of instability
and does not give any information on the timescale on which one see the instability. For instance, some
strong instability results are shown by proving blow-up in finite time (see [Berestycki and Cazenave
1981]), but the instability due to an exponentially growing mode holds on a much smaller timescale.
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We wish to provide here some results clarifying the instability mechanism by tracking the exponentially
growing mode.

A spectral mapping theorem for linearized Hamiltonian equations. When we want to prove a nonlinear
instability result from a linear instability one, we need some information on the growth of the semigroup
JL, when such a semigroup etJL exists, which we shall assume in this appendix. The growth estimate on
etJL relies classically on the following spectral mapping result due to J. Prüss [1984], which generalizes
the work of L. Gearhart [1978].

Theorem B.2 [Prüss 1984]. Let X be a complex Hilbert space and A an unbounded operator on X which
generates a continuous semigroup etA on X . For t 2 .0;C1/, we have

�.etA/ n f0g D

�
e�t ; either

�
�C

2i�

t
Z

�
\ �.A/ 6D∅; or sup

k2Z





�A���
2i�k

t

��1




Lc.X/

DC1

�
:

The following result is an immediate corollary.

Corollary B.3. Let X be a complex Hilbert space and A an unbounded operator on X which generates a
continuous semigroup etA on X . Assume that, for any 
 2 R�, we have

lim sup
j� j!C1

k.A� 
 � i�/�1kLc.X/ <C1;

and that there exists #0 2 Œ0;C1/ such that �ess.A/Dfi#; # 2R; j#j �#0g. Then, for any t 2 .0;C1/,
the spectral mapping holds: �.etA/ n f0g D et�.A/.

Proof. Since �ess.A/D fi#; # 2 R; j#j � #0g, we have S1 � et�.A/ � �.etA/. If � 2 C does not have
modulus one, then note that, when .�C .2i�=t/Z/\�.A/D∅, the supremum for k 2 Z in Theorem B.2
can be C1 only when jkj !C1, and we conclude with our hypothesis. �

The fact that we exclude 0 in the spectral mapping theorem just comes from the fact that we consider a
semigroup and not a group. However, in most Hamiltonian PDEs, we have time reversibility and we have
actually a continuous group and not only a semigroup. In most cases, we work with A WD.A/� Y ! Y

where Y is a real Hilbert space, thus for applying Theorem B.2 or Corollary B.3 we have to consider,
as usual, the complexified operator AC W D.AC/ � D.A/˚ iD.A/ � YC � Y ˚ iY ! YC defined by
AC.uC iv/D AuC iAv.

It seems that the first time Theorem B.2 is used to prove a growth estimate on a semigroup was by
T. Kapitula and B. Sandstede [1998]. Later, F. Gesztesy et al. [2000] also used this result for bound states
for (NLS). The bounds on the resolvent in [Kapitula and Sandstede 1998] were proved using the particular
structure of the linearized operator. In [Gesztesy et al. 2000], the computations are more involved and
rely on suitable kernel estimates of some Hilbert–Schmidt operators. The same type of estimates have
also been used in [Di Menza and Gallo 2007].

The main objective of this appendix is to provide a generalization of these results to a wide class of
Hamiltonian equations. Indeed, the approaches in [Kapitula and Sandstede 1998; Gesztesy et al. 2000]
seem specific to the problem. In addition, it is not clear whether the computations in [Gesztesy et al.



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1401

2000; Di Menza and Gallo 2007] can be extended to other types of equations. In particular, in [Chiron
2012] and in the present paper, we have a situation similar to the one studied in [Di Menza and Gallo
2007], namely traveling wave solutions to a nonlinear Schrödinger equation with nonzero condition at
infinity, but, for nonzero propagation speeds, the traveling wave is not real-valued (as it is in [Di Menza
and Gallo 2007] for stationary waves or for bound state solutions), and the block diagonal structure of the
linearized Hamiltonian disappears. An additional difficulty is that, in [Chiron 2012] and the present work,
the limits of the traveling waves at C1 and �1 differ.

The proof we give is based on ideas from [Rousset and Tzvetkov 2008; 2009] and makes very few
spectral assumptions on L.

Assumption A. The spectrum of L consists in a finite number (possibly zero) of nonpositive eigenvalues
��1, . . . , ��q in .�1; 0�, each one with finite multiplicity, and the rest of the spectrum is positive
and bounded away from 0. Furthermore, for any 1 � k � q, we have ker.L C �k/ � D.J/ and
JŒker.LC�k/��D.L/. Finally, there exists #0 2 Œ0;C1/ such that �ess.JL/D fi#; # 2R; j#j � #0g.

The first hypothesis on the location of the spectrum of L is quite weak, since it is satisfied when L is
bounded from below and has essential spectrum positive and bounded away from zero. Indeed, if ı > 0 is
such that �ess.L/� Œ2ı;C1/, then the eigenvalues of L in .�1; ı� are isolated, of finite multiplicity,
and are bounded from below by assumption. The second hypothesis ker.LC�k/�D.LJ/ is a regularity
assumption on the eigenvectors.

Let us recall that Theorem 25 ensures that the number of eigenvalues (with algebraic multiplicities) of
JL in the right half-space fRe> 0g is less than or equal to the number of negative eigenvalues of L, and
hence is finite under Assumption A. Let us now state our main result, the proof of which is given starting
on page 1413.

Theorem B.4. We make Assumption A and suppose that JL generates a continuous semigroup. Then,
for any t 2 .0;C1/, the spectral mapping holds: �.etŒJL�C/ n f0g D et�.ŒJL�C/. Furthermore, defining


0 � sup
˚
Re.�/; � 2 �.ŒJL�C/\fRe� 0g

	
2 Œ0;C1/;

for any ˇ > 0, there exists M.ˇ/ > 0 such that, for any t � 0, we have

ketJL
kLc.X/ �M.ˇ/e

.
0Cˇ/t :

Assume in addition 
0 > 0 and define

m�max
˚
algebraic multiplicity of �; � 2 �.ŒJL�C/ s.t. Re�D 
0

	
2 N�:

Then, there exists M0 > 0 such that, for any t � 0, we have

ketJL
kLc.X/ �M0.1C t /

m�1e
0t :

In particular, Theorem B.4 provides a very simple proof of the spectral mapping theorem used in
[Gesztesy et al. 2000; Di Menza and Gallo 2007]. Indeed, the self-adjoint operator L involved in these
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papers is block diagonal:

LD

�
L1 0

0 L2

�
;

and both L1, L2 have at most two nonnegative eigenvalues. More generally, if L1 and L2 are closed
self-adjoint operators on X verifying Assumption A and if N WX!X is a linear bounded operator which
is compact with respect to L1 and L2, then the self-adjoint operator

LD

�
L1 N

N� L2

�
also satisfies Assumption A. Indeed, L is bounded from below (since N is bounded) and its essential
spectrum is �ess.L1/[ �ess.L2/� Œı;C1/ for some positive ı, since N is compact with respect to L1
and L2. In [Kapitula and Sandstede 1998, Section 7.1; Georgiev and Ohta 2012, Proposition 10], a
spectral mapping theorem is used for such an operator. In [Kapitula and Sandstede 1998], the specific
algebra of the problem was used, and for [Georgiev and Ohta 2012], the proof relies on the arguments in
[Gesztesy et al. 2000], but here again, in both cases, we may use Theorem B.4 to show the same result.

Passing from linear to nonlinear instability.

Semilinear type models. We start with a classical result for “semilinear” equations, proved on page 1416.

Theorem B.5. Let X be a real Hilbert space, and consider an evolution equation of the form

dv

dt
DAvCˆ.v/;

where ˆ W X ! X is a locally Lipschitz mapping satisfying ˆ.v/ D O.kvk2X / as v ! 0 and A is a
linear operator which generates a semigroup. We assume that AC WD.AC/�XC!XC has an unstable
eigenvalue in the right half-plane fRe> 0g and a finite number of eigenvalues in fRe> 0g. We define


0 � sup
˚
Re.�/; � 2 �.ŒJL�C/\fRe> 0g

	
2 .0;C1/

and fix �2 �.AC/ with Re.�/D 
0 and an associated eigenvectorwC 2D.AC/ such that kRe.wC/kX D 1.
Assume furthermore that there exist 0� ˇ < 
0 and M0 > 0 such that

ketAkLc.X/ �M0e
.
0Cˇ/t :

Then, 0 is an unstable solution. More precisely, there exist K > 0, "0 > 0 and ı0 > 0 such that, for any
0 < ı < ı0, the solution v with initial datum vin D ı Re.wC/ 2D.A/ exists at least on Œ0; ln.2"0=ı/=
0�
and satisfies, for 0� t � ln.2"0=ı/=
0,

kv.t/� ı Re.et�wC/kX �Kı
2e2t
0 and kv.t/kX � ıe

t
0 �Kı2e2t
0 :

In particular, for 0 < " < "0, we see the instability for t D .1=
0/ ln.2"=ı/. If Y is a Banach space
containing X and with continuous imbedding X ,! Y , the trivial solution 0 is also unstable from X to Y .
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Let us observe that it is always possible to choose the (complex) eigenvector w so that Re.wC/ 6D 0

since, for any � 2R, ei�w is also an eigenvector. The following corollary deals with the orbital instability.
We recall that, under Assumption A, ŒJL�C has a finite number of eigenvalues in fRe> 0g.

Corollary B.6. We make Assumption A and suppose that JL generates a continuous semigroup. Let Y

be a Banach space containing X and with continuous imbedding X ,! Y. Assume moreover that ŒJL�C
has at least one eigenvalue in fRe> 0g and choose � 2 C with

Re.�/D 
0 �max
˚
Re.�/; � 2 �.ŒJL�C/\fRe> 0g

	
2 .0;C1/

and wC 2 D.AC/ an associated eigenvector such that kRe.wC/kX D 1. We assume moreover that
M� fT.!; g/�!� ; ! 2 R; g 2Gg is a C1 submanifold of X. We finally suppose that the equation (H) is
semilinear in the sense that there exists ˆ WX!X locally Lipschitz continuous such that ˆ.v/D O.kvk2X/

as v! 0 and

J.E 0�!�Q
0/.�!� C v/D J.E

00
�!�Q

00/.�!�/Œv�Cˆ.v/:

Then, there exist K > 0, "0 > 0 and ı0 > 0, depending only on Re.wC/ and M, with the following
properties. For any 0 < ı < ı0, the solution u to (H) with initial datum uin D �!� C ı Re.wC/ 2D.A/

exists at least on Œ0; ln.2"0=ı/=
0� and satisfies, for 0� t � ln.2"0=ı/=
0,

distY.u.t/;M/�
ı

K
et
0 �Kı2e2t
0 :

In particular, the “bound state” solution T .!�t /�!� is nonlinearly orbitally unstable from X to Y and,
for 0 < " < "0=K, we see the instability for t D .1=
0/ ln.2K"=ı/.

In [Henry et al. 1982], a similar assertion is made for the orbital instability in the remark after Theorem 2
there, but with Y D X. For applications to PDEs, the space X may be a Sobolev space H s , and Y a
space like L2 or L1 for instance. The framework of [Grillakis et al. 1987] is the single energy space
(for instance H 1), but an instability result established by tracking exponentially growing modes allows
proving instability from the regular space X (H 1) to the nonregular space Y (L2 or L1). Here, we may
obtain instability in L2.

Remark B.7. In the framework of [ibid.], where a Liapounov-type functional is used, it follows that the
instability is seen for a time at most equal to K"=ı2, where K is some positive constant. This timescale
is much larger than the natural one .1=
0/ ln.2K"=ı/.

Some applications. We may apply our result to the nonlinear Schrödinger equation

i@t‰C�‰C‰f .j‰j
2/D 0; (NLS)

or the nonlinear Klein–Gordon equation

@2t‰ D�‰C‰f .j‰j
2/ (NLKG)

in Rd . We shall consider a nonlinearity f at least C1, so that we are in the framework of [ibid.].
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� A bound state solution for these two equations is a particular solution of the form U.t/D ei!t�! . The
instability is in general linked to the fact that

d

d!

Z
Rd
j�! j

2 dx < 0 for (NLS), resp.
d

d!

�
!

Z
Rd
j�! j

2 dx

�
< 0 for (NLKG).

The existence of at least one unstable eigenvalue has been shown under this assumption by [Grillakis
1988] for radial bound states with an arbitrary number of nodes and in [Grillakis et al. 1990] for radial
ground states. Corollary B.6 may be applied with XDH s.Rd /, where s 2N, s > d=2 and assuming that
the nonlinearity satisfies f 2CsC2, and YDL2.Rd / or L1.Rd /. The result in [Mizumachi 2006] shows
the instability of linearly unstable bound states for (NLS) (in dimension d D 2) with f .%/D %.p�1/=2

by showing the exponential growth of an unstable eigenmode. Our result gives a simple proof of this
result, but restricted to the sufficiently smooth cases, namely p an odd integer or p > 5C2s > 5Cd . For
nonsmooth nonlinearities, the situation is more delicate (see [Mizumachi 2006]). An alternative approach
is to combine Strichartz estimates with the growth estimate on the semigroup etJL given in Theorem B.4,
as in [Georgiev and Ohta 2012].

� Corollary B.6 also applies to the discrete nonlinear Schrödinger equation

i@t‰nC ".‰nC1� 2‰nC‰n�1/C‰nf .j‰nj
2/D 0 for all n 2 Z; (DNLS)

as studied in [Melvin et al. 2008] with the saturated nonlinearity f .%/D ˇ=.1C %/, ˇ > 0 (existence of
traveling wave solution) and in [Fitrakis et al. 2007] (defocusing cubic DNLS, i.e., f .%/D�ˇ% for some
ˇ > 0). The numerical analysis in [Fitrakis et al. 2007] shows the existence of linearly unstable bound
state solutions. The traveling wave solutions numerically obtained in [Melvin et al. 2008] are linearly
stable, but it may happen that, for other nonlinearities f , some are linearly unstable.

Quasilinear PDEs. For quasilinear problems, we shall not make restrictions on the smoothness of the
nonlinearity. The result relies on the strategy of E. Grenier [2000] and [Rousset and Tzvetkov 2008;
2009]. We consider the evolution equation

du

dt
D J.L0uCrF.u// (E)

for u W Rd ! R� , where F 2 C1.R� ;R/, with the following hypotheses. The operator J is a Fourier
multiplier, skew-symmetric on L2, into and with domain containing H 1. There exists � > 0 such that the
operator L0 is a Fourier multiplier with domain containing H 2� , symmetric and having a self-adjoint
realization on L2.Rd ;R�/. Moreover, for some C > 0, the operator L0 satisfies

1

C
kuk2H� � .L0u; u/L2 � Ckuk

2
H� :

The framework proposed in [Rousset and Tzvetkov 2008] was for L0 coercive in H 1; that is, � D 1.
For the examples below, we shall have � D 1=2 or � D 2, which requires very few modifications to the
proof of [ibid.]. We still assume that, for some group G, there exists a unitary representation of G on X,
T W G! GLc.X/, leaving the equation (E) invariant.
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We consider a stationary solution of the evolution equation (E), that is, some Q 2H1.Rd ;R�/ such
thatL0QCrF.Q/D 0. We are interested in the stability of this solution. We assume that the commutator
ŒJ;r2F.Q/� is bounded in L2, which is the case when J is bounded in L2 or when d D 1 and J D @x .
We suppose that, for the problem

@u

@t
D J.L0uCrF.u

a
Cu/�rF.ua/CG/;

where ua is smooth, bounded as well as its derivatives and G 2 C.R;H s/ for every s, we have local
well-posedness for s large enough: there exists a time T > 0 and a unique solution in C.Œ0; T �;H s/. We
moreover assume that, for some continuous nondecreasing function � W RC! RC with �.0/D 0, the
tame estimate

j.@˛xJ fr
2F.wC v/Œv�g; @˛xv/L2 j � �.kwkW sC1;1 CkvkH s /kvk2H s ;

with j˛j � s, holds true. In order to control high-order derivatives, we finally require that, for s large
enough, there exist a self-adjoint operator Ms and Cs such that

j.Msu; v/L2 j � CskukH skvkH s ; .Msu; u/L2 � kuk
2
H s �Cskuk

2
H s�min.�;1/

and
Re.JLu;Msu/L2 � CskukH skukH s�min.�;1/

(for a criterion which ensures the existence of such a multiplier, see Lemma 5.1 in [ibid.]).

Adapting the strategy of [Rousset and Tzvetkov 2008; 2009], we may deduce the following result.
Since the proof is very similar, we omit it.

Theorem B.8. We make the above assumptions and assume moreover that L0 C r2F.Q/ satisfies
Assumption A in L2. We assume furthermore that ŒJ.L0Cr2F.Q//�C has an unstable eigenvalue in the
right half-plane fRe> 0g, define


0 � sup
˚
Re.�/; � 2 �.ŒJ.L0Cr2F.Q//�C/\fRe> 0g

	
2 .0;C1/

and fix � 2 �.ŒJ.L0 C r2F.Q//�C/ satisfying Re.�/ D 
0 and an associated eigenvector wC 2

D.ŒJ.L0 C r
2F.Q//�C/ such that kRe.wC/kH s D 1. There exists s0 2 N such that, if s � s0, Q

is nonlinearly unstable from H s to L2 and to L1: there exist K > 0, "0 > 0 and ı0 > 0 such that, for
any 0 < ı < ı0, the H s solution u to (E) with initial datum uin DQC ı Re.wC/ 2H

s exists at least on
Œ0; ln.2"0=ı/=
0� and satisfies, for 0� t � ln.2"0=ı/=
0,

ku.t/�Q� ı Re.et�wC/kH s �Kı2e2t
0 I

hence
ku.t/�QkL2 � ıe

t
0 �Kı2e2t
0 and ku.t/�QkL1 � ıe
t
0 �Kı2e2t
0 :

If , in addition, M� fT.g/Q; g 2 Gg is a C1 submanifold of H s , then we also have

distL2.u.t/;M/�Kıet
0 �Kı2e2t
0 and distL1.u.t/;M/�Kıet
0 �Kı2e2t
0 :
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In particular, for 0 < " < "0=K, we see the nonlinear orbital instability for t D .1=
0/ ln.2K"=ı/.

Some applications to nonlinear dispersive wave equations. Some model quasilinear equations are given
by wave equations (in one space dimension) such as the generalized Korteweg–de Vries equation

@tuC @x.f .u//C @
3
xuD 0; (gKdV)

the generalized regularized Korteweg–de Vries equation, also called Benjamin–Bona–Mahony equation
or Peregrine equation when f .u/D u2=2,

@tuC @xuC @x.f .u//� @t@
2
xuD 0; (gBBM)

the generalized regularized Boussinesq equation

@2t u� @
2
xu� @

2
x.f .u//� @

2
t @
2
xuD 0: (grBsq)

Each of these equations admits a nontrivial solitary wave solution u.t; x/D Uc.x� ct/ for c in .0;C1/,
.1;C1/ and .�1;�1/[ .1;C1/, respectively. For these solitary wave solutions, the momentum is,
respectively,

P.Uc/D

Z
R

U 2c dx D kUck
2
L2
; P.Uc/D

Z
R

U 2c C .@xUc/
2 dx; P.Uc/D c

Z
R

U 2c C .@xUc/
2 dx:

The existence of exactly one unstable eigenvalue has been shown with the use of an Evans function by
R. Pego and M. Weinstein [1992] for these three equations under the condition dP.Uc/=dc < 0. Lopes
[2002] also gives a linear instability result. Equations (gBBM) and (grBsq) turn out to be semilinear due
to the regularization effect. Indeed, they may be written

@tuC .1� @
2
x/
�1@xuC .1� @

2
x/
�1@x.f .u//D 0; @2t u� .1� @

2
x/
�1@2xu� .1� @

2
x/
�1@2x.f .u//D 0:

Therefore, Corollary B.6 applies to these two models and this shows the nonlinear instability when linear
instability holds.

In [Lin 2008], some generalizations of the equations (gKdV), (gBBM) and (grBsq) have been proposed
that take into account pseudodifferential operators. These are, respectively,

@tuC @x.f .u//� @xMuD 0; (I)

@tuC @xuC @x.f .u//C @tMuD 0 (II)

and

@2t u� @
2
xu� @

2
x.f .u//C @

2
tMuD 0: (III)

Here, M is a Fourier multiplier of symbol OM: bMw D OM Ow (here, O� denotes the Fourier transform). We
assume OM� 0 (otherwise, see [ibid.]). When MD�@2x , these equations reduce to (gKdV), (gBBM) and
(grBsq), respectively. The Benjamin–Ono equation ( OMD j�j), the Smith equation ( OMD

p
1C �2�1) and

the intermediate long wave (or Whitham) equation ( OMD �= tanh.�H/� 1=H , for some constant H > 0)
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are common models of dispersive wave equations that are of type (I). We refer to [ibid.] for references on
these models and the existence of solitary waves. The associated momentum is

PI.Uc/D

Z
R

U 2c dx D kUck
2
L2
; PII.Uc/D k.1CM/1=2Uck

2
L2
; PIII.Uc/D ck.1CM/1=2Uck

2
L2
:

For these models, Evans function type arguments do not work since we no longer have a differential
equation (it is nonlocal). The paper [ibid.] proposes a different approach than the Evans function technique
for establishing the existence of unstable eigenvalues. However, it is not completely clear whether this
method extends easily to the case of systems such as the Euler–Korteweg system (EK) (given at the
beginning of Section 5A).

Theorem B.9 [Lin 2008]. We consider one of the equations (I), (II) or (III) with f of class C1 satisfying
f .0/Df 0.0/D0 and jf .u/j� juj for juj!C1. We assume moreover that OM is even, nonnegative, and
satisfies, for somem�1, 0< limC1 OM.�/=�

m� limC1 OM.�/=�m<1. Assume that c 7!�cDUc.x�ct/

is a C1 branch of traveling wave solution to (I), (II) or (III) with Uc 2 Hm=2.R/ defined near c� and
suppose that the linearized operator L has exactly one negative eigenvalue, that ker L is spanned by
@xUc� and that .dP.Uc/=dc/jcDc� < 0. Then, Uc� is linearly unstable.

It is not easy to determine whether the hypotheses of Theorem B.9 hold true when M is not a (differential)
Sturm–Liouville operator. See however [Albert 1992] on this question. It is clear that, if the assumptions
of Theorem B.9 are satisfied, then Assumption A is also satisfied. As for the (gBBM) and the (grBsq)
equations, the equations (II) and (III) turn out to be semilinear; thus we may prove nonlinear orbital
instability by applying Corollary B.6.

The Kawahara equation (or fifth-order KdV equation)

@tuC @x.f .u//C˛@
3
xuCˇ@

5
xuD 0; (K)

with ˛, ˇ 6D 0 two real constants, is another relevant dispersive model. For this equation, it may happen
that the linearized equation around the solitary wave has more than one negative eigenvalue, in which
case [Grillakis et al. 1987; 1990; Lopes 2002; Lin 2008] do not give a clear necessary and sufficient
condition for stability. T. Bridges and G. Derks [2002] give a sufficient condition for linear instability for
solitary wave solutions, but also for other types of traveling solutions. This condition is probably not
necessary since it may happen that there exist at least two unstable eigenvalues, or two complex conjugate
eigenvalues.

Instead of stating a general result for nonlinear orbital instability, we shall consider several model cases
on which we will verify the hypotheses of Theorem B.8, in particular the question of the existence of the
multiplier Ms .

Proposition B.10. We consider the equation (I), namely

@tuC @x.f .u//� @xMuD 0;
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with f of class C1 satisfying f .0/D f 0.0/D 0 and jf .u/j � juj for juj !C1. We assume that OM is
one of the following functions:

��2 (KdV)I �4C˛�2 (Kawahara)I j�j (Benjamin–Ono)I
�

tanh.�H/
�
1

H
(intermediate long wave)I

q
1C �2� 1 (Smith):

There exists s0 > 0 such that, if there exists c 2 R such that (I) has a nontrivial solitary wave Uc 2 L2

which is linearly unstable, then, for any s � s0, it is also nonlinearly unstable from H s to H s , to L2 and
to L1.

By application of Theorem B.8, we are thus able to show the nonlinear instability from H s to L2

or L1 by tracking the exponentially growing mode (this question was left open in [Lin 2008] and also in
[Lopes 2002]). In particular, we obtain the L2 nonlinear instability of the linearly unstable solitary waves
for these models.

Proof. All the assumptions for Theorem B.8 for these types of models are satisfied in Section 8.1 in
[Rousset and Tzvetkov 2008], except the existence of the multiplier Ms .

For the KdV equation, where � D 1, we shall take (for s � 2 an integer)

Ms � .�1/
s@2sx C

1C 2s

3
.�1/s�1@s�1x ff

0.Q/@s�1x � g;

as the computations from [ibid., Section 8.1] show. For the Kawahara equation, with � D 2, we take (for
s � 4 an integer)

Ms � .�1/
s@2sx C

1C 2s

5
.�1/s�1@s�2x ff

0.Q/@s�2x � g

and, since the computations are very similar, we omit them. For the Benjamin–Ono equation, we have
OM.�/ D j�j and � D 1=2, and we will then have to deal with pseudodifferential operators which are

Fourier multipliers with homogeneous symbol. For this type of operator, we shall need some commutator
estimates. We denote by F.w/ or Ow the Fourier transform of w, and H the Fourier multiplier with symbol
�i sgn.�/ (this is the Hilbert transform).

Lemma B.11. (i) Let h 2 L1.R/ with F.M1=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 1).
Then, there exists C > 0 such that, for any v 2H 1=2.R/,

kM
1
2 .hv/� hM

1
2 vkL2.R/ � CkvkL2.R/:

(ii) Let h 2 L1.R/ with F.M3=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 2). Then, there
exists C > 0 such that, for any v 2H 3=2.R/,

M

3
2 fhvg�hM

3
2 v� 3

2
Œ@xh�M

1
2Hv




L2.R/

� CkvkL2.R/:

(iii) Let h 2 L1.R/ with F.@xM1=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 2). Then, there
exists C > 0 such that, for any v 2H 3=2.R/,

@xM

1
2 fhvg�h@xM

1
2 v� 3

2
Œ@xh�M

1
2 v



L2.R/

� CkvkL2.R/:
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Proof. We have

F.M
1
2 .hv/� hM

1
2 v/.�/D

Z
R

j�j
1
2 Oh.� � �/ Ov.�/ d� �

Z
R

j�j
1
2 Oh.� � �/ Ov.�/ d�:

Using the inequality
ˇ̌
j�j1=2� j�j1=2

ˇ̌
� C j� � �j1=2, we thus obtainˇ̌

F.M
1
2 .hv/� hM

1
2 v/.�/

ˇ̌
� C

Z
R

j� � �j
1
2 j Oh.� � �/j � j Ov.�/j d� D C fjF.M

1
2h/j � j Ovjg.�/

and we conclude with the classical convolution estimate L1 �L2 � L2. This argument does not provide
the sharpest bound in h, since it involves kF.M1=2h/kL1 , whereas the use of paradifferential calculus
will use only khkC1=2 . However, we shall to use this refinement here.

The starting point for the second inequality isˇ̌
j�j

3
2 � j�j

3
2 �

3
2
j�j

1
2 sgn.�/.� � �/

ˇ̌
� C j� � �j

3
2 :

Using the homogeneity � D ��, this is a direct consequence of the easy inequalityˇ̌̌
j� j

3
2 � 1�

3

2
.� � 1/

ˇ̌̌
� C j� � 1j

3
2 :

Therefore,ˇ̌
F
�
M
3
2 fhvg�hM

3
2 v� 3

2
Œ@xh�M

1
2Hv

�
.�/
ˇ̌

D

ˇ̌̌̌Z
R

j�j
3
2 Oh.� � �/ Ov.�/ d� �

Z
R

j�j
3
2 Oh.� � �/ Ov.�/ d� �

Z
R

3
2
j�j

1
2 sgn.�/.� � �/ Oh.� � �/ Ov.�/ d�

ˇ̌̌̌
� C

Z
R

j� � �j
3
2 j Oh.� � �/j � j Ov.�/j d�

D C jF.M
3
2h/j � j Ovj;

and we conclude as before. For the third inequality, we argue in a similar way with the estimateˇ̌
i�j�j

1
2 � i�j�j

1
2 � i 3

2
j�j

1
2 .� � �/

ˇ̌
� C j� � �j

3
2 :

The proof is complete. �

For the Benjamin–Ono equation, OM.�/D j�j, � D 1=2 and the index s will be half an integer: s 2N=2.
Therefore, we set s D Œs�Cfsg, with Œs� integer and fsg 2 f0I 1=2g. Let us define, for s 2 N=2, s � 1,

Ms �

�
.�1/s@2sx C 
sM

1
2 @s�1x ff

0.Q/@s�1x M
1
2 � g if fsg D 0;

.�1/Œs�@
2Œs�
x MC 
s@

Œs�
x ff

0.Q/@
Œs�
x � g if fsg D 1

2
;

for some real constant 
s to be determined later. It is clear that Ms is self-adjoint on L2 and that there
exists Cs > 0 such that

j.Msu; v/L2 j � CskukH skvkH s and .Msu; u/L2 � kuk
2
H s �Cskuk

2

H
s� 1
2

:
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To verify the assumptions for the multiplier Ms , it remains to study Re.J.L0Cr2F.Q//u;Msu/L2 .
When fsg D 0, i.e., s 2 N, this quantity is

Re.@x.MC cCf 0.Q//u;Msu/L2

D Re.@xMu; .�1/s@2sx u/L2 C 
s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

CRe.@xŒf 0.Q/u�; .�1/s@2sx u/L2 C 
s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

C c Re.@xu;Msu/L2 : (B-1)

By skew-adjointness, the first and last scalar products are zero. By integration by parts and the Leibniz
formula, we deduce, since Q 2H1,

Re.@xŒf 0.Q/u�; .�1/s@2sx u/L2

D Re.@sC1x Œf 0.Q/u�; @sxu/L2

� Re.f 0.Q/@sC1x u; @sxu/L2 C .sC 1/Re.@xŒf 0.Q/�@sxu; @
s
xu/L2 CCskukH skukH s�1

�
�
sC 1

2

�
Re.@xŒf 0.Q/�@sxu; @

s
xu/L2 CCskukH skukH s�1 :

Similarly, using the easy estimates kM1=2vkL2 �KkvkH1=2 and khvkH1=2 � C.h/kvkH1=2 for h 2L1

with F.M1=2h/ 2 L1 (this is an immediate consequence of Lemma B.11),


s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

D 
s.�1/
s�1 Re.M

1
2 @sxŒf

0.Q/u�; f 0.Q/@s�1x M
1
2u/L2

� 
s.�1/
s�1 Re.M

1
2 Œf 0.Q/@sxu�; f

0.Q/@s�1x M
1
2u/L2 CCkuk

2

H
s� 1
2

:

Using Lemma B.11, we deduce kM1=2Œf 0.Q/@sxu��f
0.Q/M1=2@sxukL2 � C.Q/kukH s ; thus


s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s�1 Re.f 0.Q/@sxM

1
2u; f 0.Q/@s�1x M

1
2u/L2 CCkukH skuk

H
s� 1
2

D

s

2
.�1/s Re.@xŒf 0.Q/�@s�1x M

1
2u; f 0.Q/@s�1x M

1
2u/L2 CCkukH skuk

H
s� 1
2

� Ckuk2

H
s� 1
2

CCkukH skuk
H
s� 1
2
� CkukH skuk

H
s� 1
2
:

We now turn to the term


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2 D 
s.�1/

s�1 Re.@sxu;M
3
2 ff 0.Q/@s�1x M

1
2ug/L2 :

Using Lemma B.11, we write

M
3
2 ff 0.Q/@s�1x M

1
2ug�f 0.Q/@s�1x M2u� 3

2
@xŒf

0.Q/�M
1
2Hf@s�1x M

1
2ug




L2
� C.Q/k@s�1x M

1
2ukL2

� C.Q/kuk
H
s� 1
2
;
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which implies


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s�1 Re.@sxu; f

0.Q/@s�1x M2u/L2 C
3
2

s.�1/

s�1 Re.@sxu; @xŒf
0.Q/�M

1
2Hf@s�1x M

1
2ug/L2

CCkukH skuk
H
s� 1
2
:

Noticing that M2 D�@2x and M1=2H@s�1x M1=2 D @s�1x MHD�@sx (since MH has symbol equal to �i�),
we infer


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s Re.@sxu; f

0.Q/@sC1x u/L2 C
3
2

s.�1/

s Re.@sxu; @xŒf
0.Q/�@sxu/L2 CCkukH skuk

H
s� 1
2

D 
s.�1/
s Re.@sxu; @xŒf

0.Q/�@sxu/L2 CCkukH skuk
H
s� 1
2

by integration by parts.
Reporting these estimates into (B-1), we infer

Re.@x.MC cCf 0.Q//u;Msu/L2

�
�
sC 1

2

�
Re.@xŒf 0.Q/�@sxu; @

s
xu/L2 C 
s.�1/

s Re.@sxu; @xŒf
0.Q/�@sxu/L2 CCkukH skuk

H
s� 1
2
:

Therefore, the choice


s � .�1/
s�1

�
sC 1

2

�
provides the desired control

Re.@x.MC cCf 0.Q//u;Msu/L2 � CkukH skuk
H
s� 1
2
:

When fsg D 1=2, the computations are similar: (B-1) becomes now

Re.@x.MC cCf 0.Q//u;Msu/L2

D Re.@xMu; .�1/Œs�@2Œs�x Mu/L2 C 
s Re.@xMu; @Œs�x ff
0.Q/@Œs�x ug/L2

CRe.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2 C 
s Re.@xŒf 0.Q/u�; @Œs�x ff
0.Q/@Œs�x ug/L2

C c Re.@xu;Msu/L2 ; (B-2)

and the first and last scalar products still vanish. Moreover, by integration by parts and the Leibniz
formula, we deduce, since Q 2H1,


s Re.@xŒf 0.Q/u�; @Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�C1x Œf 0.Q/u�; f 0.Q/@Œs�x u/L2

� 
s.�1/
Œs� Re.f 0.Q/@Œs�C1x u; f 0.Q/@Œs�x u/L2CCkuk

2
H Œs�

� 
s.�1/
Œs��1 Re.@xŒf 0.Q/�@Œs�x u; f

0.Q/@Œs�x u/L2CCkuk
2
H Œs�

� Ckuk2
H Œs� D Ckuk

2

H
s� 1
2

:
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Furthermore,

Re.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2

D Re.M
1
2 @Œs�C1x Œf 0.Q/u�; @Œs�x M

1
2u/L2

� Re.@xM
1
2 ff 0.Q/@Œs�x ug; @

Œs�
x M

1
2u/L2

C Œs�Re.@xM
1
2 f@xŒf

0.Q/�@
Œs��1
x ug; @

Œs�
x M

1
2u/L2 CCkuk

H
Œs�� 1

2
kuk

H
Œs�C 1

2
:

For the second scalar product, we write, by Lemma B.11,

Re.@xM
1
2 f@xŒf

0.Q/�@Œs��1x ug; @Œs�x M
1
2u/L2

D Re.M
1
2 f@2xŒf

0.Q/�@Œs��1x ug; @Œs�x M
1
2u/L2 CRe.M

1
2 f@xŒf

0.Q/�@Œs�x ug; @
Œs�
x M

1
2u/L2

� Ckuk
H
Œs�� 1

2
kuk

H
Œs�C 1

2
CRe.@xŒf 0.Q/�@Œs�x M

1
2u; @Œs�x M

1
2u/L2 CCkukH Œs�kuk

H
Œs�C 1

2

� Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s :

For the first scalar product, we use Lemma B.11 once again:

Re.@xM
1
2 ff 0.Q/@Œs�x ug; @

Œs�
x M

1
2u/L2

� Re.f 0.Q/@xM
1
2 @Œs�x u; @

Œs�
x M

1
2u/L2 C

3
2

Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s

� Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s :

As a consequence, since Œs�D s� 1
2

,

Re.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2 �
�
sC 1

2

�
Re.@xŒf 0.Q/�@Œs�x M

1
2u; @Œs�x M

1
2u/L2CCkuk

H
s� 1
2
kukH s :

We turn finally to the term


s Re.@xMu; @Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�x M
1
2u; @xM

1
2 ff 0.Q/@Œs�x ug/L2 ;

and infer, by Lemma B.11,


sRe.@xMu;@Œs�x ff
0.Q/@Œs�x ug/L2�
s.�1/

Œs�Re.@Œs�x M
1
2u;f 0.Q/@xM

1
2 @Œs�x u/L2

C
3
2

s.�1/

Œs�Re.@Œs�x M
1
2u;@xŒf

0.Q/�M
1
2 @Œs�x u/L2CCkukH s� 1

2
kukH s

D
s.�1/
Œs�Re.@Œs�x M

1
2u;@xŒf

0.Q/�M
1
2 @Œs�x u/L2CCkukH s� 1

2
kukH s :

Therefore,

Re.@x.MC cCf 0.Q//u;Msu/L2

�
�
sC 1

2
C 
s.�1/

Œs�
�

Re.@Œs�x M
1
2u; @xŒf

0.Q/�M
1
2 @Œs�x u/L2 CCkukH s� 1

2
kukH s I

hence choosing 
s � .�1/Œs��1.sC 1
2
/ gives the result.
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It remains to study the cases of the intermediate long wave equation and the Smith equation, for
which OM is, respectively,

�

tanh.�H/
�
1

H
;

q
1C �2� 1:

We denote by M0 the operator with symbol j�j (the one of the Benjamin–Ono equation), and define Ms

as for the Benjamin–Ono case (hence with “M”DM0). We observe that, in both cases, QM�M�M0 is
bounded on L2. Indeed, its symbol is continuous in R and, for �!˙1,

OM.�/D
�

tanh.�H/
�
1

H
D

�

sgn.�/CO.e�2j�jH /
�
1

H
D j�j �

1

H
CO.j�je�2j�jH /

and
OM.�/D

q
1C �2� 1D j�j

q
1C ��2� 1D j�j � 1CO.j�j�1/;

respectively. In the quantity Re.@x.MC c C f 0.Q//u;Msu/L2 , we then have to bound from above
the extra term Re.@x. QMu/;Msu/L2 ; that is (using the skew-adjointness for the higher-order derivatives
in Ms),

Re.@x. QMu/; 
sM
1
2

0 @
s�1
x ff

0.Q/@s�1x M
1
2

0 ug/L2

D 
s.�1/
s�1 Re.@sxM

1
2

0 .
QMu/; f 0.Q/@s�1x M

1
2

0 u/L2 if fsg D 0I

Re.@x. QMu/; 
s@Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�C1x . QMu/; f 0.Q/@Œs�x u/L2 if fsg D 1
2
:

We then note that, in both cases, one may actually split QM D M�M0 D
QMc C

QMh, where QMc is the
multiplication by �1=H (respectively, �1) and QMh has a symbol which is continuous in R and O.j�j�1/

at infinity, so that QMh is bounded from H� to H�C1 if � � 0. Therefore, when fsg D 0, we easily get

Re.@x. QMu/; 
sM
1
2

0 @
s�1
x ff

0.Q/@s�1x M
1
2

0 ug/L2

D 
s.�1/
s�1 Re.@sxM

1
2

0 .
QMcu/; f

0.Q/@s�1x M
1
2

0 u/L2C
s.�1/
s�1 Re.@sxM

1
2

0 .
QMhu/; f

0.Q/@s�1x M
1
2

0 u/L2

�
1
2

s.�1/

s Re.@s�1x M
1
2

0 u;
QMc@xŒf

0.Q/�@s�1x M
1
2

0 u/L2CCkuk
2

H
s� 1
2

� Ckuk2

H
s� 1
2

and similarly when fsg D 1=2. Therefore, the estimate

Re.@x.MC cCf 0.Q//u;Msu/L2 � Ckuk
H
s� 1
2
kukH s

remains true for the intermediate long wave equation and the Smith equation. The proof of Proposition B.10
is thus completed by applying Theorem B.9. �

We now turn to the deferred proofs of Theorem B.4, Theorem B.5, and Corollary B.6.

Proof of Theorem B.4. We shall prove the resolvent estimate required in Corollary B.3. Let us consider
�D 
 C i� 2 C with 
 6D 0 and the resolvent equation .JL��/v D†, or

.
 C i�/v D JL.v/�†: (B-3)
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By hypothesis, the essential spectrum of JL is of the form i ŒR n .�#0;C#0/�. Moreover, we have seen
that JL has a finite number of eigenvalues in the half-space fRe > 0g; hence, for j� j � �0 sufficiently
large, we know that there exists a unique solution v to (B-3). By taking the scalar product with L.v/, we
deduce the conservation law


.v;L.v//X D�Re.†;L.v//X: (B-4)

By our assumption, there exist a finite (possibly empty) number of eigenvalues in .�1;0�, .��1; : : : ;��q/,
each one of finite multiplicity. For any 1 � k � q, we fix an orthonormal basis .�k;`/1�`�nk of the
eigenspace ker.LC�k/. By Assumption A, any eigenvector �k;` is smooth in the sense that �k;` 2D.J/
and J�k;` 2D.L/.

We then make a spectral orthogonal decomposition

v D

qX
kD1

nkX
`D1

˛k;`�k;`C vC;

where L.�k;`/D �k�k;` and .vC;L.vC//X � ıkvCk2X for some positive ı. In the double sum, we have
a finite number (independent of v) of terms. Inserting this into (B-4) yields

j
 jıkvCk
2
X � j
 jı.vC;L.vC//X � ı

�
jRe.†;L.v//XjC

P
k;`

�kj˛k;`j
2

�
�Kk†kXkvkXCK

X
k;`

j˛k;`j
2:

Using the inequality ab � "a2 C b2=.4"/ with a D kvkX, b D Kk†kX and " D j
 jı=2, the equality
kvk2X D kvCk

2
XC

P
k;` j˛k;`j

2 and incorporating the term j
 jıkvCk2X=2 in the left-hand side, we infer

j
 jı

2
kvCk

2
X �K

0
X
k;`

j˛k;`j
2
CK 00k†k2X: (B-5)

On the other hand, since �k;` 2D.J/ and J�k;` 2D.L/ by Assumption A, taking the scalar product
of (B-1) with �k;` provides

.
 C i�/˛k;` D�.v;LJ�k;`/X� .†; �k;`/X:

Consequently,

.j
 jC j� j/j˛k;`j �Kk;`kvkXCKk†kXI

thus

.j
 jC j� j/2
X
k;`

j˛k;`j
2
�K0kvk

2
XCKk†k

2
X DK0

X
k;`

j˛k;`j
2
CKkvCk

2
XCKk†k

2
X;

which implies, if j� j � 1C
p
K0� j
 j,X

k;`

j˛k;`j
2
�K

kvCk
2
XCk†k

2
X

.j
 jC j� j/2�K0
:
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Reporting this into (B-5) gives

j
 jı

2
kvCk

2
X �K

0K
kvCk

2
XCk†k

2
X

.j
 jC j� j/2�K0
CK 00k†k2X:

If j� j � 1C
p
K0C 4KK 0=j
 jı� j
 j, we deduce

j
 jı

4
kvCk

2
X �

�
K 00C

K 0K

.j
 jC j� j/2�K0

�
k†k2X �K1k†k

2
X;

and it follows that
kvk2X D kvCk

2
XC

X
k;`

j˛k;`j
2
�K2k†k

2
X;

where K2 does not depend on j� j (large enough), as wished.

The proof of the first semigroup estimate then follows easily; see, for instance, Proposition 2 in [Prüss
1984].

Proof of the semigroup estimate when 
0>0. Here, we assume 
0>0. As a consequence, the spectrum
of ŒJL�C is of the form �s[�u, where �ess.ŒJL�C/� �s � fRe� 0g and ∅ 6D �u � fRe> 0g consists in a
finite number of eigenvalues of finite algebraic multiplicities. Therefore, we may define (see, e.g., [Kato
1976; Hislop and Sigal 1996]) the spectral Riesz projection

P�
1

2i�

Z
�

.ŒJL�C� z/
�1 dz;

where � is any simple (positively oriented) closed curve enclosing �u. As a consequence, P is bounded,
commutes with ŒJL�C on D.ŒJL�C/ and satisfies �.ŒJL�CP/D �u, �.ŒJL�C.Id�P//D �s. Moreover,
ŒJL�CP is bounded, and hence generates a continuous semigroup, etŒJL�CP, given by the exponential
series

etŒJL�CP
D

C1X
nD0

tn.ŒJL�CP/n

nŠ
:

In addition, ŒJL�C.Id�P/ D ŒJL�C � ŒJL�CP also generates a continuous semigroup and we have
etŒJL�C D etJLPetŒJL�C.Id�P/.

The semigroup generated by the bounded operator ŒJL�CP is easily analyzed. We shall now apply the
spectral mapping theorem of J. Prüss (Theorem B.2) to ŒJL�C.Id�P/ in order to control the growth of
its norm. By Corollary B.3, it suffices to estimate its resolvent ŒŒJL�C.Id�P/� .
 C i�/��1 for large j� j
(note that �.ŒJL�C.Id�P// D �s � fRe � 0g). If † 2 XC and j� j is large, it is clear that the solution
u 2 XC to ŒŒJL�C.Id�P/� .
 C i�/�uD† is given by

uD ŒŒJL�C� .
 C i�/�
�1.Id�P/†�

1


 C i�
P†I

thus, for j� j large,

ŒŒJL�C.Id�P/�.
Ci�/��1




Lc.XC/
�


ŒŒJL�C�.
Ci�/�

�1




Lc.XC/
kId�PkLc.X/C

1

j
 C i� j
kPkLc.XC/
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is bounded. Consequently, by Theorem B.2 and since �s�fRe�0g, �.etŒJL�C.Id�P//D et�.ŒJL�C.Id�P//D

et�s � ND.0; 1/. It follows that, for any � > 0, there exists K� > 0 such that

ketŒJL�C.Id�P/
kLc.XC/ �K�e

�t for all t � 0:

Since etŒJL�CP is given by the exponential series, we also have the optimal estimate

ketŒJL�CP
kLc.XC/ �K0.1C t /

m�1e
0t for all t � 0

by definition of m. We conclude by taking � D 
0=2 for instance.

Proof of Theorem B.5. Since A generates a continuous semigroup, v is a solution to @tv DAvCˆ.v/

if and only if it is a mild solution:

v.t/D etAvin
C

Z t

0

e.t��/Aˆ.v.�// d�:

There exists r0 > 0 such that kˆ.v/kX � Mkvk2X if kvkX � r0. We choose vin D ı Rew, where
kRewkX D 1 and w is an eigenvector for the eigenvalue �, and write the solution under the form
v D etAvinC Qv D Re.et�w/C Qv. If � 2 R, we can choose w 2D.A/�D.AC/. Then,

Qv.t/D

Z t

0

e.t��/Aˆ.ı Re.et�w/C Qv.�// d�:

Let us define r1 � min
�
r0; .
0 � ˇ/=.2MM0/

�
and let T > 0 be the maximal time such that T <

ln.r=.2ı//=
0 and k Qu.�/kX < r1=2 in Œ0; T /, where 0 < r < r1 will be determined later. We shall work
for 0� t < T , so that kı Re.et�w/C Qv.�/kX < ıet
0 C r1=2� r1 � r0. Then,

k Qv.t/k �

Z t

0

ke.t��/AkLc.X/Mkı Re.e��w/C Qv.�/k2 d�

� 2M0M

Z t

0

e.
0Cˇ/.t��/
�
ı2e2�
0 CkQv.�/k2

�
d�

�
2M0M


0�ˇ
ı2e2t
0 C r1M0M

Z t

0

e.
0Cˇ/.t��/k Qv.�/kX d�;

since ˇ < 
0. Applying now the Gronwall inequality to e�.
0Cˇ/tk Qv.t/kX then gives, since M0Mr1 <


0�ˇ,

k Qu.t/kX �

�
2M0M


0�ˇ
C

2r1M
2
0M

2

.
0�ˇ/.
0�ˇ� r1M0M/

�
ı2e2t
0 DKı2e2t
0 :

We now choose r �
p
r1=K, so that the right-hand side is �Kr2=4 < r1=2, and this implies that u exists

at least on Œ0; ln.r=.2ı//=
0�. In addition, for 0� t < T ,

ku.t/kX � ıe
t
0 �k Qu.t/kX � ıe

t
0 �Kı2e2t
0 ;

as desired. We conclude choosing "0 > 0 so small that 2"0�K"20 � "0.
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Proof of Corollary B.6. We pick some 0<ˇ <
0 (for instance ˇD 
0=2) in order to have the semigroup
estimate required in Theorem B.5. The solution u.t/ D T .!�t /.�!� C v.t// satisfies, for 0 � t �

�10 ln.2"0=ı/,

kv.t/kX D kT .�!�t /u.t/� .�!� C ı Re.et�w//kX �Kı
2e2t
0 :

Hence, T .�!�t /u.t/ remains at distance �K"0 from �!� 2M and therefore

distX.u.t/;M/� distX.ı Re.et�w/;M��/�Kı2e2t
0 :

Assume � 2 R. Then, we observe that the straight line R 3 � 7! �w is transverse to the tangent space
T�M of the manifold M, since w is an eigenvector of JL for � 6D 0, and hence does not belong to the
kernel of L. Therefore, distX.�w;M��/� j� j=K1 for small j� j. Thus,

distX.u.t/;M/�
1

K1
ıet��Kı2e2t
0 :

If �2CnR, the equation ŒJL�C.w/D�w splits as JL.Rew/DRe.�/Rew�Im.�/ Imw and JL.Imw/D

Im.�/RewCRe.�/ Imw. Therefore, Rew and Imw do not belong to ker.L/. Consequently, the surface
C 3 � 7! Re.�w/ is transverse to the tangent space T�M of the manifold M, and we conclude as before
that

distX.u.t/;M/�
1

K1
ıet
0 �Kı2e2t
0 :
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SEMICLASSICAL MEASURES FOR INHOMOGENEOUS
SCHRÖDINGER EQUATIONS ON TORI

NICOLAS BURQ

The purpose of this note is to investigate the high-frequency behavior of solutions to linear Schrödinger
equations. More precisely, Bourgain (1997) and Anantharaman and Macià (2011) proved that any weak-∗
limit of the square density of solutions to the time-dependent homogeneous Schrödinger equation is
absolutely continuous with respect to the Lebesgue measure on R×Td . The contribution of this article is
that the same result automatically holds for nonhomogeneous Schrödinger equations, which allows for
abstract potential type perturbations of the Laplace operator.

1. Introduction

In this note we are interested in understanding the high-frequency behavior of solutions of linear
Schrödinger equations on tori, Td

= Rd/Zd . Consider a sequence of initial data (u0,n), bounded in
L2(Td) and denote by (un) the sequence of solutions to the Schrödinger equation and by (νn) their
concentration measures given by

un = ei t1u0,n, νn = |un|
2(t, x) dt dx .

The sequence νn on Rt ×Td is bounded (in mass) on any time interval (0, T ) by T supn‖u0,n‖
2
L2(Td )

. The
following result was proved in [Bourgain 1997, Remark, page 108] and later, using a completely different
approach that follows a more geometric path, in [Anantharaman and Macià 2011, Theorem 1]. (See also
[Jakobson 1997; Macià 2011; Burq and Zworski 2004; 2005;Aïssiou et al. 2011] for related works.)

Theorem 1. Any weak-∗ limit of the sequence (νn) is absolutely continuous with respect to the Lebesgue
measure dt dx on Rt ×Td .

Remark 1.1. Actually, in [Anantharaman and Macià 2011] a more precise description of the possible
limits is given and the result is proved in the case of Schrödinger operators1+V (t, x), if V ∈ L∞(Rt×T2)

is also continuous except possibly on a set of (spacetime) Lebesgue measure 0.

The purpose of this note is to show that the result in Theorem 1 extends to the case of solutions to the
nonhomogeneous Schrödinger equation, and, consequently, to the case of Schrödinger operators 1+ V
where V ∈ L1

loc(Rt ;L(L2(Td))) (we also give as an illustration an application to a simple nonlinear
equation). Let us emphasize that our approach uses no particular property of the Laplace operator on tori

The author was partially supported by the Agence Nationale de la Recherche, project NOSEVOL, 2011 BS01019 01.
MSC2010: 35LXX.
Keywords: defect-measures, Schrödinger equations.
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other than selfadjointness (to get L2 bounds for the time evolution) and the fact that Theorem 1 holds,
which is used as a black box, and establishes an abstract link between the study of weak-∗ limits of
solutions of the homogeneous and inhomogeneous Schrödinger equations.

2. Inhomogeneous Schrödinger equations

Definition 2.1. Let T > 0. For any sequence (un) bounded in L2((0, T )×Td), we say that the sequence
(un) satisfies property (ACT ) if any weak-∗ limit ν of (νn) is absolutely continuous with respect to the
Lebesgue measure on (0, T )×Td .

Theorem 2. Let (un,0) and ( fn) be two sequences bounded in L2(Td) and L1
loc(Rt ; L2(Td)), respectively.

Let un be the solution of

(i∂t +1)un = fn, un|t=0 = un,0, un = ei t1un,0+
1
i

∫ t

0
ei(t−s)1 fn(s) ds.

Then, for any T > 0, the sequence (un), which is clearly bounded in L2((0, T )×T2) by

T 1/2 sup
n
(‖un,0‖L2(Td )+‖ fn‖L1((0,T );L2(Td ))),

satisfies property (ACT ).

Corollary 2.2. Let V ∈ L1
loc(Rt ;L(L2(T2))) (for example, V can be a potential in L1

loc(Rt ; L∞(T2))

acting by pointwise multiplication). For any sequence (un,0)n∈N bounded in L2(T2), let (un) be the
sequence of the unique solutions in C0(R; L2(T2)) of

(i∂t +1+ V (t))un = 0, un|t=0 = un,0.

Then the sequence (un) satisfies the property (ACT ) for any T > 0.

Indeed, since

d
dt
‖un‖

2
L2(Td )

= 2<(∂t u, u)L2(Td ) = 2<(i1u+ iV u, u)L2(Td ) =−2=(V u, u)L2(Td ),

by Gronwall’s inequality, we obtain

‖un(t)‖2L2(Td )
≤ ‖un,0‖

2
L2(Td )

e
∫ t

0 ‖V (s)‖L(L2(Td ) ds
,

and, consequently, the sequence ( fn)= (−V (t)un) is clearly bounded in L1
loc(Rt ; L2(Td)) and we can

apply Theorem 2.

Remark 2.3. Any time independent V ∈ L(L2(Td)) satisfies the assumptions above, and, consequently,
if (un) is a sequence of L2 normalized eigenfunctions of 1+ V , it follows from Corollary 2.2 that any
weak-∗ limit of |un|

2(x) dx is absolutely continuous with respect to the Lebesgue measure on Td . The
proof we present below seems to be intrinsically time-dependent. However, it would be interesting to
obtain a proof of this result avoiding the detour via the study of the time-dependent Schrödinger equation.
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Proof of Theorem 2. If (un) satisfies property (ACT ), then the sequence (un+vn) satisfies property (ACT )
if and only if the sequence (vn) satisfies property (ACT ). This is because if |un|

2 dt dx and |vn|
2 dt dx

converge weakly to ν and µ, respectively, then, according to the Cauchy–Schwarz inequality, any weak-∗
limit of |un + vn|

2 dt dx is absolutely continuous with respect to ν+µ. The following result shows that
the set of sequences satisfying property (ACT ) is closed in some weak-strong topology.

Lemma 2.4. Consider (un) bounded in L2((0, T )×T2). Assume that there exists for any k ∈N a sequence
(u(k)n )n∈N such that

(1) for any k, the sequence (u(k)n )n∈N satisfies property (ACT );

(2) the sequences (u(k)n )n∈N are approximating the sequence (un) in the sense that

lim
k→+∞

lim sup
n→+∞

‖un − u(k)n ‖L2((0,T )×T2) = 0. (2-1)

Then the sequence (un)n∈N satisfies property (ACT ).

Proof. Indeed, for any ε > 0, let k0 be such that, for any k ≥ k0,

lim sup
n
‖un − un,k‖L2((0,T )×T2) < ε.

Then, if ν and ν(k) are weak-∗ limits of the sequences (un)n∈N and (u(k)n )n∈N, respectively, associated to
the same subsequence n p→+∞, we have, for any f ∈ C0((0, T )×T2) and large n,∫

(0,T )×T2
|un p |

2χ dx dt ≤
∫
(0,T )×T2

2(|un p − u(k)n p
|
2
+ |u(k)n p

|
2) dx dt

≤ 2ε2
+ 2

∫
(0,T )×T2

2|u(k)n p
|
2)χ dx dt. (2-2)

Passing to the limit p→+∞, we obtain

〈ν, χ〉 ≤ 2ε2
+ 2〈ν(k), χ〉.

On the other hand, according to the Riesz theorem (see, for example, [Rudin 1987, Theorem 2.14]), the
measures ν, ν(k) which are defined on the Borelian σ -algebra, M, are regular, and, consequently,

∀E ∈M, ν(E)= sup
Fclosed, F⊂E

ν(U )= inf
Uopen, E⊂U

ν(U ),

∀E ∈M, ν(k)(E)= sup
Fclosed, F⊂E

ν(k)(U )= inf
Uopen, E⊂U

ν(k)(U ).
(2-3)

For any E ∈M, taking Fp ⊂ E and E ⊂ Op such that

lim
p→+∞

ν(Fp)= ν(E), lim
p→+∞

ν(k)(Op)= ν
(k)(E)

and χp ∈ C0((0, 1)×Td
; [0, 1]) is equal to 1 on Fp and supported in Op, we obtain, according to (2-2),

ν(E)≤ 2ε2
+ 2ν(k)(E).
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Now consider E a subset of (0, T )×Td-Lebesgue measure 0. Since by assumption ν(k) is absolutely
continuous with respect to the Lebesgue measure, we have ν(k)(E) = 0, and hence ν(E) ≤ 2ε2. Con-
sequently, since ε > 0 can be taken arbitrarily small, we have ν(E) = 0, which proves that ν is also
absolutely continuous with respect to the Lebesgue measure. �

We come back to the proof of Theorem 2 and fix T > 0. According to Duhamel’s formula,

un = ei t1u0,n +
1
i

∫ t

0
ei(t−s)1 fn(s) ds.

According to the remark above, since we know that the sequence (ei t1u0,n) satisfies property (ACT ), it is
enough to prove that the sequence (vn)= (

∫ t
0 ei(t−s) fn(s) ds) satisfies property (ACT ). The key point of

the analysis is that if instead of vn we had

ṽn =

∫ T

0
ei(t−s)1V un(s) ds = ei t1gn, gn =

∫ T

0
e−is1V eis(1+V )un,0(s) ds,

we could conclude using Theorem 1, because ṽn is a solution to the homogeneous Schrödinger equation
with initial data the bounded sequence (gn). To pass from ṽn to vn , we adapt an idea borrowed from
harmonic analysis (the Christ–Kiselev Lemma [2001]) in the simple form written in [Burq and Planchon
2006] (see also [Burq 2011]). Here the idea is to show that the sequence (vn) can be approximated by
other sequences (v(k)n ) in the sense of (2-1) (actually, we get a stronger convergence, as we can replace the
lim sup in (2-1) by a sup), where each (v(k)n ) is a finite sum of solutions of the homogeneous Schrödinger
equation, properly truncated in time, and hence satisfy property (ACT ). Let

‖ fn‖L1((0,T );L2(T2)) = cn ≤ C.

We decompose the interval (0, T ) into dyadic pieces on which the L1((0, T ); L2(Td))-norm of fn is
equal to 2−qcn . For this, we recursively construct (on the index q ∈ N) certain sequences (tp,q,n)q∈N

p=1,...,2q
such that

• 0= t0,q,n < t1,q,n < · · ·< t2q ,q,n = T ,

• ‖ fn‖L1((tp,q,n,tp+1,q,n);L2(T2)) = 2−qcn ,

• t2p,q,n = tp,q−1,n for any p = 0, . . . , 2q−1.

Notice that if the function

Gn : t ∈ [0, T ] 7→ ‖ fn‖L1((0,t);L2(Td )) ∈ [0, cn]

is strictly increasing, the points tp,q,n are uniquely determined by the relation Gn(tp,q,n)= p2−qcn , and
the last condition above is automatic. In the general case, the function Gn (which is clearly nondecreasing)
can have some flat parts, and, consequently, the points tp,q,n may not be unique anymore. The last
condition above ensures that the choice made at step q + 1 is consistent with the choice made at step q.
For j = 0, . . . , 2q

− 1, let

I j,q,n = [t2 j,q,n, t2 j+1,q,n[, J j,q,n = [t2 j+1,q,n, t2 j+2,q,n[, Q j,q,n = J j,q,n × I j,q,n.
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T

T

Q0,0Q0,0

Q0,1

Q1,1

Q0,2

Q1,2

Q2,2

Q3,2

Figure 1. Decomposition of a triangle as a union of disjoint squares.

Notice that

{((t, s) ∈ [0, T [2; s ≤ t} =
+∞⊔
q=0

2q
−1⊔

j=0

Q j,q,n⇒ 1s≤t =

+∞∑
q=0

2q
−1∑

j=0

1Q j,q,n (t, s).

Now (if we are able to prove that the series in q converges) we have

vn =

∫ t

0
ei(t−s)1 fn(s) ds =

∫ T

0
1s≤t ei(t−s)1 fn(s) ds

=

+∞∑
q=0

2q
−1∑

j=0

1t∈J j,q,n

∫ T

0
ei(t−s)11s∈I j,q,n fn(s) ds =

+∞∑
q=0

2q
−1∑

j=0

1t∈J j,q,n ei t1g j,q,n ds, (2-4)

with

g j,q,n(x)=
∫ T

0
e−is11s∈I j,q,n fn(s) ds =

∫ t2 j+1,q,n

t2 j,q,n

e−is1 fn(s) ds,

‖g j,q,n‖L2(Td ) ≤ ‖ fn‖L1((t2 j,q,n,t2 j+1,q,n T );L2(Td )) = 2−qcn.

(2-5)

Let

v(k)n =

k∑
q=0

2q
−1∑

j=0

1t∈J j,q,n ei t1g j,q,n ds.

Noticing that if a sequence (wn) satisfies property(ACT ), then, for any sequences 0≤ t1,n < t2,n ≤ T , the
sequence (1t∈(t1,n,t2,n)wn) satisfies property(ACT ), we see that for any k ∈N, the sequence (v(k)n ) satisfies
property (ACT ). On the other hand, since for j 6= j ′, 1t∈J j,q,n and 1t∈J j ′,q,n

have disjoint supports, we get,
according to (2-5),∥∥∥∥2q

−1∑
j=0

1t∈J j,q,n ei t1g j,q,n

∥∥∥∥
L∞((0,T );L2(Td ))

≤ sup
0≤ j≤2q−1

‖1t∈J j,q,n ei t1g j,q,n‖L∞((0,T );L2(Td ))

≤ sup
0≤ j≤2q−1

‖g j,q,n‖L2(Td )) ≤ 2−qcn. (2-6)
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As a consequence, we get that the series (2-4) is convergent and

‖vn − v
(k)
n ‖L2((0,T )×Td ) ≤

√
T cn2−k

≤ C2−k,

which, according to Lemma 2.4, concludes the proof of Theorem 2. �

3. An illustration

We consider here the nonlinear Schrödinger equation

(i∂t +1)u+ V (u, t)u = 0 on Td , u|t=0 = 0 (3-1)

where the function z ∈ C 7→ V (z, t)z ∈ C is globally Lipschitz with respect to the z variable, with a
time-integrable Lipschitz constant; that is, there exists C ∈ L1

loc(R) such that C(t) > 0 for all t and

|V (z, t)z− V (z′, t)z′| ≤ C(t)|z− z′| for all z, z′ ∈ C.

Notice, for example, that the choice V (u, t)= |u|2/(1+ ε|u|2) satisfies these assumptions for any ε > 0.

Proposition 3.1. For any u0 ∈ L2(Td), there exists a unique solution u ∈C(R; L2(Td)) to (3-1). Further-
more, there exists a continuous increasing function, F(t), such that, for any u0 ∈ L2(Td), the solution u
satisfies

‖u‖L2(Td )(t)≤ F(t)‖u0‖L2(Td ). (3-2)

Corollary 3.2. For any sequence of initial data (u0,n) bounded in L2(Td), the sequence (un) of solutions
to (3-1) satisfies

‖V (un, t)un‖L2(Td ) ≤ C(t)‖un‖L∞((0,t);L2(Td )) ≤ C(t) f (t)‖u0,n‖L2(Td ) ∈ L1
loc(Rt),

and, consequently, the sequence (un) satisfies property (ACT ) for any T > 0.

Proof of Proposition 3.1. Let

K : u ∈ L∞((0, T ); L2(Td)) 7→ ei t1u0+
1
i

∫ t

0
ei(t−s)(V (u(s), s)u(s)) ds.

We have

‖K (u)− ei t1u0‖L∞((0,T );L2(Td )) ≤

∫ T

0
C(s) ds‖u‖L∞((0,T );L2(Td )),

‖K (u)− K (v)‖L∞((0,T );L2(Td )) ≤

∫ T

0
C(s) ds‖u− v‖L∞((0,T );L2(Td )).

(3-3)

We obtain that the map K has a unique fixed point on the ball centered on ei t1u0 with radius ‖u0‖L2(Td )

in L∞((0, T ); L2(Td)), as soon as
∫ T

0 C(s) ds ≤ 1
2 . This proves the local existence claim. To obtain

existence on any time interval [0, T̃ ], we write [0, T̃ ] =
⋃N

j=1[t j , t j+1], where we choose t j recursively
such that

∫ t j+1
t j

C(s) ds ≤ 1
2 . Taking

∫ t j+1
t j

C(s) ds = 1
2 for all j < N − 1 gives the bound

N ≤ 1+ 2
∫ T̃

0
C(s) ds. (3-4)



SEMICLASSICAL MEASURES FOR INHOMOGENEOUS SCHRÖDINGER EQUATIONS ON TORI 1427

Then applying the first step recursively gives a solution on [0, T̃ ] that, according to (3-4), satisfies

‖u‖L2(Td )(T̃ )≤ 2N
‖u0‖L2(Td ) ≤ 21+2

∫ t
0 C(s) ds

‖u0‖L2(Td ).

The uniqueness claim in Proposition 3.1 follows now from standard methods. �
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DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION IN
HORIZONTALLY INFINITE DOMAINS

YAN GUO AND IAN TICE

We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded
below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by
the gravity-driven incompressible Navier–Stokes equations, and the effect of surface tension is neglected
on the free surface. The long-time behavior of solutions near equilibrium has been an intriguing question
since the work of Beale (1981).

This is the second in a series of three papers by the authors that answers the question. Here we
consider the case in which the free interface is horizontally infinite; we prove that the problem is globally
well-posed and that solutions decay to equilibrium at an algebraic rate. In particular, the free interface
decays to a flat surface.

Our framework utilizes several techniques, which include

(1) a priori estimates that utilize a “geometric” reformulation of the equations;
(2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order

energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free
interface;

(3) control of both negative and positive Sobolev norms, which enhances interpolation estimates and
allows for the decay of infinite surface waves.

Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

1. Introduction

Formulation of the equations in Eulerian coordinates. We consider a viscous, incompressible fluid
evolving in a moving domain

�(t)= {y ∈6×R | −b < y3 < η(y1, y2, t)}. (1-1)

Here we assume that 6 =R2. The lower boundary of �(t) is assumed to be rigid and given, but the upper
boundary is a free surface that is the graph of the unknown function η :6×R+→ R. We assume that
b> 0 is a fixed constant, so that the lower boundary is flat. For each t , the fluid is described by its velocity

Y. Guo was supported in part by NSF grant 0603815 and Chinese NSF grant 10828103. I. Tice was supported by an NSF
Postdoctoral Research Fellowship. Both authors were partially supported by the Beijing International Mathematical Research
Center.
MSC2010: primary 35Q30, 35R35, 76D03; secondary 35B40, 76E17.
Keywords: Navier–Stokes equations, free boundary problems, global existence.

1429

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-6
http://dx.doi.org/10.2140/apde.2013.6.1429
http://msp.org


1430 YAN GUO AND IAN TICE

and pressure functions (u, p) : �(t)→ R3
× R. We require that (u, p, η) satisfy the gravity-driven

incompressible Navier–Stokes equations in �(t) for t > 0:

∂t u+ u · ∇u+∇ p = µ1u in �(t),
div u = 0 in �(t),
∂tη = u3− u1∂y1η− u2∂y2η on {y3 = η(y1, y2, t)},
(pI −µD(u))ν = gην on {y3 = η(y1, y2, t)},
u = 0 on {y3 =−b}

(1-2)

for ν the outward-pointing unit normal on {y3 = η}, I the 3× 3 identity matrix, (Du)i j = ∂i u j + ∂ j ui the
symmetric gradient of u, g > 0 the strength of gravity, and µ> 0 the viscosity. The tensor (pI −µD(u))
is known as the viscous stress tensor. The third equation in (1-2) implies that the free surface is advected
with the fluid. Note that in (1-2) we have shifted the gravitational forcing to the boundary and eliminated
the constant atmospheric pressure, patm, in the usual way, by adjusting the actual pressure p̄ according to
p = p̄+ gy3− patm.

The problem is augmented with initial data (u0, η0) satisfying certain compatibility conditions, which
for brevity we will not write now. We will assume that η0 >−b on 6.

Without loss of generality, we may assume that µ= g = 1. Indeed, a standard scaling argument allows
us to scale so that µ= g = 1, at the price of multiplying b by a positive constant. This means that, up to
renaming b, we arrive at the above problem with µ= g = 1.

The problem (1-2) possesses a natural physical energy. For sufficiently regular solutions, we have an
energy evolution equation that expresses how the change in physical energy is related to the dissipation:

1
2

∫
�(t)
|u(t)|2+ 1

2

∫
6

|η(t)|2+ 1
2

∫ t

0

∫
�(s)
|Du(s)|2 ds = 1

2

∫
�(0)
|u0|

2
+

1
2

∫
6

|η0|
2. (1-3)

The first two integrals constitute the kinetic and potential energies, while the third constitutes the dissipation.
The structure of this energy evolution equation is the basis of the energy method we will use to analyze
(1-2).

Geometric form of the equations. In order to work in a fixed domain, we want to flatten the free surface
via a coordinate transformation. We will not use a Lagrangian coordinate transformation, but rather a
flattening transformation introduced by Beale [1984]. To this end, we consider the fixed domain

� := {x ∈6×R | −b < x3 < 0}, (1-4)

for which we will write the coordinates as x ∈�. We think of 6 as the upper boundary of �, and write
6b := {x3 =−b} for the lower boundary. We continue to view η as a function on 6×R+. We define

η̄ := Pη = harmonic extension of η into the lower half space, (1-5)

where Pη is defined by (A-17). The harmonic extension η̄ allows us to flatten the coordinate domain via
the mapping

� 3 x 7→ (x1, x2, x3+ η̄(x, t)(1+ x3/b))=:8(x, t)= (y1, y2, y3) ∈�(t). (1-6)
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Note that 8(6, t)= {y3 = η(y1, y2, t)} and 8( · , t)|6b = I d6b , that is, 8 maps 6 to the free surface and
keeps the lower surface fixed. We have

∇8=

1 0 0
0 1 0
A B J

 and A := (∇8−1)T =

1 0 −AK
0 1 −BK
0 0 K

 (1-7)

for

A = ∂1η̄b̃, B = ∂2η̄b̃,

J = 1+ η̄/b+ ∂3η̄b̃, K = J−1, (1-8)

b̃ = (1+ x3/b).

Here J = det∇8 is the Jacobian of the coordinate transformation.
If η is sufficiently small (in an appropriate Sobolev space), the mapping 8 is a diffeomorphism. This

allows us to transform the problem to one on the fixed spatial domain � for t ≥ 0. In the new coordinates,
the PDE (1-2) becomes

∂t u− ∂t η̄b̃K∂3u+ u · ∇Au−1Au+∇A p = 0 in �,
divA u = 0 in �,
SA(p, u)N= ηN on 6,
∂tη = u ·N on 6,
u = 0 on 6b,

u(x, 0)= u0(x), η(x ′, 0)= η0(x ′).

(1-9)

Here we have written the differential operators ∇A, divA, and 1A with their actions given by (∇A f )i :=
Ai j∂ j f , divA X := Ai j∂ j X i , and 1A f = divA ∇A f for appropriate f and X ; for u · ∇Au we mean
(u · ∇Au)i := u j A jk∂kui . We have also written N := −∂1ηe1 − ∂2ηe2 + e3 for the nonunit normal to
{y3= η(y1, y2, t)}, and we write SA(p, u)= (pI−DAu) for the stress tensor, where I is the 3×3 identity
matrix and (DAu)i j =Aik∂ku j +A jk∂kui is the symmetric A-gradient. Note that if we extend divA to
act on symmetric tensors in the natural way, divA SA(p, u) = ∇A p−1Au for vector fields satisfying
divA u = 0.

Recall that A is determined by η through the relation (1-7). This means that all of the differential
operators in (1-9) are connected to η, and hence to the geometry of the free surface. This geometric
structure is essential to our analysis, as it allows us to control high-order derivatives that would otherwise
be out of reach.

Beale’s nondecay theorem. Many authors have considered problems similar to (1-2), both with and
without viscosity and surface tension [Bae 2011; Beale 1981; 1984; Beale and Nishida 1985; Germain
et al. 2009; Hataya 2009; Lannes 2005; Nishida et al. 2004; Solonnikov 1977; Sylvester 1990; Tani and
Tanaka 1995; Wu 1997; 1999; 2009; 2011]. We refer the reader to the introduction of [Guo and Tice
2013b] for a more thorough discussion of how these results relate to ours.



1432 YAN GUO AND IAN TICE

Beale [1981] developed a local existence theory for the problem (1-2) in Lagrangian coordinates, where
the unknowns are replaced with v = u ◦ ζ , q = p ◦ ζ for ζ the Lagrangian flow map, which satisfies
∂tζ = v. The result showed that (roughly speaking), given v0 ∈ H r−1 for r ∈ (3, 7/2), there exists a unique
solution v on a time interval (0, T ), with T depending on v0, such that v ∈ L2 H r

∩ H r/2L2. A second
local existence theorem was then proved for small data near equilibrium. It showed that for any fixed
0< T <∞, there exists a collection of data small enough that a unique solution exists on (0, T ).

The second result suggests that solutions should exist globally in time for small data. If global solutions
do exist, it is natural to expect the free surface to decay to 0 as t → ∞. However, the third result
[Beale 1981] was a nondecay theorem that showed that a “reasonable” extension to small-data global
well-posedness with decay of the free surface fails. Among other things, the theorem’s hypotheses
require that

v ∈ L1([0,∞); H r (�)) for r ∈ (3, 7/2),

ζ3|6 ∈ L2([0,∞); L2(6)),

v(x, 0)= 0, ζ(x, 0)= x + ε2(x),

lim
t→∞

ζ3|6 = 0,

(1-10)

where � is given by (1-4), ζ(x, 0) is the flow map that gives the geometry of the initial fluid domain, 2
is a specially chosen function satisfying certain conditions, and ε > 0 is a small parameter. Note that the
third line in (1-10) implies that the system is initially close to equilibrium, and the fourth line implies that
the free surface decays to 0 as t→∞.

The proof of the nondecay theorem, which is a reductio ad absurdum, hinges on the special conditions
imposed on the map 2 and the fact that v ∈ L1 H r . In the discussion of this result, Beale pointed out that
it does not imply the nonexistence of global-in-time solutions, but rather that establishing global-in-time
results requires stronger or different hypotheses than those imposed in the nondecay theorem.

The nondecay theorem raises two intriguing questions. First, is viscosity alone capable of producing
global well-posedness? Second, if global solutions exist, do they decay as t →∞? Our main result
answers both questions in the affirmative. In order to avoid the applicability of the nondecay theorem, we
must show why its hypotheses are not satisfied. We would like to highlight three crucial ways in which
we do this. The first and most obvious is that we work in a different coordinate system and within a
different functional framework. In particular this requires higher regularity of the initial data and imposes
more compatibility conditions than are satisfied by the data in the nondecay theorem.

Second, we will find (see (1-21)) that u decays according to ‖u(t)‖22≤C/(1+ t)1+λ for λ∈ (0, 1). This
is not sufficiently rapid to guarantee that u belongs to the space L1([0,∞); H 2(�)), which is in violation
of the first line of (1-10), a key assumption in the nondecay result. Technically, our u is in Eulerian
coordinates, but if we formally identify u with v, we see the difficulty clearly: we cannot integrate the
equation ∂tζ = v to obtain ζ as t→∞, which means that we cannot make sense of the fourth equation in
(1-10). One of the advantages of the Eulerian and geometric formulations is that the free surface function
η may be analyzed without regard to what is happening to the entire flow map ζ in �.
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Third, we find that η decays in time according to ‖η(t)‖20 ≤ C/(1+ t)λ for λ ∈ (0, 1). This is not fast
enough to guarantee that η is in L2([0,∞); L2(6)). If we identify η with ζ3|6 , we see that we cannot
guarantee that the second condition in (1-10) holds.

The above decay rates should be compared to those in the problem with surface tension (see the
discussion on page 1442), which in general allows for faster decay to equilibrium. In this context, [Beale
and Nishida 1985] showed that the decay estimates ‖u(t)‖22 ≤ C/(1+ t)2 and ‖η(t))‖20 ≤ C/(1+ t) are
sharp. As such, we should not expect u ∈ L1 H 2 or η ∈ L2L2 in our problem.

Local well-posedness. The a priori estimates we develop in this paper are done in different coordinates
and in a different functional framework from those used in [Beale 1981]. As such, we need a local
well-posedness theory for (1-9) in our framework. We proved this in Theorem 1.1 of our companion
paper [Guo and Tice 2013b]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We take
H k(�) and H k(6) for k ≥ 0 to be the usual Sobolev spaces. When we write norms we suppress the H
and � or 6. When we write ‖∂ j

t u‖k and ‖∂ j
t p‖k we always mean that the space is H k(�), and when we

write ‖∂ j
t η‖k we always mean that the space is H k(6).

In the following we write 0 H 1(�) := {u ∈ H 1(�) | u|6b = 0} and

XT = {u ∈ L2([0, T ]; 0 H 1(�)) | divA(t) u(t)= 0 for a.e. t}. (1-11)

The compatibility conditions for the initial data are the natural ones that would be satisfied for solutions
in our functional framework. They are cumbersome to write, so we do not record them here. We refer the
reader to [Guo and Tice 2013b] for their precise definition.

Theorem 1.1. Let N ≥3 be an integer. Assume that u0 and η0 satisfy the bound ‖u0‖
2
4N+‖η0‖

2
4N+1/2<∞

as well as the appropriate compatibility conditions. There exist δ0, T0 ∈ (0, 1) such that if

0< T ≤ T0 min
{

1, 1
‖η0‖

2
4N+1/2

}
, (1-12)

and ‖u0‖
2
4N + ‖η0‖

2
4N ≤ δ0, there exists a unique solution (u, p, η) to (1-9) on the interval [0, T ] that

achieves the initial data. The solution obeys the estimates

2N∑
j=0

sup
0≤t≤T

‖∂
j

t u‖24N−2 j +

2N∑
j=0

sup
0≤t≤T

‖∂
j

t η‖
2
4N−2 j +

2N−1∑
j=0

sup
0≤t≤T

‖∂
j

t p‖24N−2 j−1

+

∫ T

0

( 2N∑
j=0

‖∂
j

t u‖24N−2 j+1+

2N−1∑
j=0

‖∂
j

t p‖24N−2 j

)
+‖∂2N+1

t u‖2(XT )∗

+

∫ T

0

(
‖η‖24N+1/2+‖∂tη‖

2
4N−1/2+

2N+1∑
j=2

‖∂
j

t η‖
2
4N−2 j+5/2

)
≤ C(‖u0‖

2
4N +‖η0‖

2
4N + T ‖η0‖

2
4N+1/2) (1-13)
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and
sup

0≤t≤T
‖η‖24N+1/2 ≤ C(‖u0‖

2
4N + (1+ T )‖η0‖

2
4N+1/2) (1-14)

for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
for which the sum of the first three sums in (1-13) is finite. Moreover, η is such that the mapping 8( · , t),
defined by (1-6), is a C4N−2 diffeomorphism for each t ∈ [0, T ].

Remark 1.2. All of the computations involved in the a priori estimates that we develop in this paper
are justified by Theorem 1.1 and a specialization of it, Theorem 10.7, that we prove later. In this sense,
Theorem 1.1 is a necessary ingredient in the global analysis of (1-9).

Main result. Sylvester [1990] and Tani and Tanaka [1995] studied the existence of small-data global-in-
time solutions via the parabolic regularity method pioneered by Beale [1981] and Solonnikov [1977].
The papers make no claims about the decay of the solutions. It has been pointed out in the literature that
the proofs in [Sylvester 1990; Tani and Tanaka 1995] are incomplete, so, to our knowledge, the existence
of global solutions is still an open question. An interesting feature of our analysis, as described in detail
later, is that our construction of global-in-time solutions is predicated on the decay of the solutions, that
is, the decay is a necessary ingredient in global existence.

To state our global well-posedness result, we must first define various energies and dissipations. The
exact form of some of the energies is too complicated to write out here, so we will neglect doing so,
referring to the proper definitions later in the paper (pages 1450–1452). We assume that λ∈ (0, 1) is a fixed
constant and we define Iλu according to (A-7) and Iλη according to (A-8). The high-order energy is

E10 := ‖Iλu‖20+
10∑
j=0

‖∂
j

t u‖220−2 j +

9∑
j=0

‖∂
j

t p‖219−2 j +‖Iλη‖
2
0+

10∑
j=0

‖∂
j

t η‖
2
20−2 j , (1-15)

and the high-order dissipation rate is

D10 := ‖Iλu‖21+
10∑
j=0

‖∂
j

t u‖221−2 j +‖∇ p‖219+

9∑
j=1

‖∂
j

t p‖220−2 j

+‖Dη‖220−3/2+‖∂tη‖
2
20−1/2+

11∑
j=2

‖∂
j

t η‖
2
20−2 j+5/2. (1-16)

We write the high-order spatial derivatives of η as

F10 := ‖η‖
2
20+1/2. (1-17)

We define the low-order energies E7,1 and E7,2 according to (2-52) and (2-53) with n = 7. Here the index
m in E7,m is a “minimal derivative” count that is included in order to improve decay rates in our estimates.
Finally, we define the total energy

G10(t)= sup
0≤r≤t

E10(r)+
∫ t

0
D10(r) dr +

2∑
m=1

sup
0≤r≤t

(1+ r)m+λE7,m(r)+ sup
0≤r≤t

F10(r)
(1+ r)

. (1-18)

Notice that the low-order terms E7,m are weighted, so bounds on G10 yield decay estimates for E7,m .
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Theorem 1.3. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1. There
exists a κ > 0 such that if E10(0)+F10(0) < κ , there exists a unique solution (u, p, η) to (1-9) on the
interval [0,∞) that achieves the initial data. The solution obeys the estimate

G10(∞)≤ C1(E10(0)+F10(0)) < C1κ, (1-19)

where C1 > 0 is a universal constant. For any 0≤ ρ < λ, we have

sup
t≥0

[
(1+ t)2+ρ‖u(t)‖2C2(�)

]
≤ C(ρ)(E10(0)+F10(0)) < C(ρ)κ, (1-20)

for C(ρ) > 0 a constant depending on ρ. Also,

sup
t≥0

[
(1+ t)1+λ‖u(t)‖22+ (1+ t)1+λ‖η(t)‖2L∞ +

1∑
j=0

(1+ t) j+λ
‖D jη(t)‖20

]
≤ C(E10(0)+F10(0))

< Cκ (1-21)

for a universal constant C > 0.

Remark 1.4. In our companion paper [Guo and Tice 2013a], where we analyze (1-9) in horizontally
periodic domains, we require η0 to satisfy the “zero average condition”∫

6

η0 = 0. (1-22)

For the horizontally periodic problem, this condition propagates in time (see Lemma 2.7, a variant of
which holds in the periodic case), from which one sees that (1-22) is a necessary condition for decay in
L2 or L∞. It also serves as an obstacle to applying Beale’s nondecay theorem since the conditions that
the map 2 in (1-10) must satisfy are incompatible with (1-22). For a complete discussion, we refer to
[Guo and Tice 2013a].

In the present case, the bound E10(0)<κ requires, in particular, that the initial data satisfy ‖Iλη0‖
2
0<∞.

This condition can be viewed as a sort of weak version of the zero average condition in the infinite case.
To see this, note that if η0 is sufficiently nice, say L1(6), then

0=
∫
6

η0 ⇐⇒ η̂0(0)= 0, (1-23)

for ·̂ the Fourier transform. This means that the zero average condition is equivalent to requiring that
η̂0 vanishes at the origin. We enforce a weak version of this by requiring that Iλη0 ∈ L2(6)= H 0(6),
which requires that |ξ |−2λ

|η̂0(ξ)|
2 is integrable near ξ = 0. Since λ < 1, this does not require η̂0(0)= 0,

but it does prevent |η̂0| from being “too big” at the origin. Note that the condition Iλη0 ∈ L2 is more
general than (1-22).

Remark 1.5. The decay estimates (1-20) and (1-21) do not follow directly from the decay of E7,1(t) and
E7,2(t) implied by (1-19). Rather, they are deduced via auxiliary arguments, employing (1-19).

Remark 1.6. The decay of ‖u(t)‖22 given in (1-21) is not fast enough to guarantee that u belongs to
L1([0,∞); H 2(�)). Even if we could take λ= 1, we would still get logarithmic blow-up of the L1 H 2

norm.
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Remark 1.7. The function η is sufficiently small to guarantee that the mapping 8( · , t), defined in (1-6),
is a diffeomorphism for each t ≥ 0. As such, we may change coordinates to y ∈ �(t) to produce a
global-in-time, decaying solution to (1-2).

Remark 1.8. Later in the paper, we let N ≥ 3 be an integer and perform our analysis in terms of estimates
at the 2N and N+2 levels; we take N = 5 in the present case to get the 10 and 7 appearing above. This is
not optimal. With somewhat more work, we can improve our results to N = 4 with the restriction that λ ∈
(3/5, 1). It is likely that this can be further improved by adjusting the scheme from 2N and N+2 to some-
thing slightly different. We have sacrificed optimality in order to simplify the presentation and make our
“two-tier energy method” clearer. The first tier is at the level 2N and the second at the level N+2, which is
meant to be roughly half of the first tier. The extra+2 is added to aid in applying some Sobolev embeddings.

Remark 1.9. It was established in [Castro et al. 2011; 2012] that solutions to inviscid free boundary
problems, starting from smooth initial data, can develop finite-time splash singularities. Given this, it is
reasonable to expect that a generic large-data version of Theorem 1.3 does not hold.

The proof of Theorem 1.3 is completed in Section 11. We now present a summary of the principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

Principal difficulties. In the study of the unforced incompressible Navier–Stokes equations in a fixed
bounded domain with no-slip boundary conditions, it is natural to use the energy method to prove that
solutions decay in time. Indeed, for sufficiently smooth solutions one may prove an analogue of (1-3)
that relates the natural energy and dissipation:

∂t E+D := ∂t

∫
�

|u(t)|2

2
+

1
2

∫
�

|Du(t)|2 = 0. (1-24)

Korn’s inequality allows us to control CE(t)≤D(t) for a constant C>0 independent of time, which shows
that the dissipation is stronger than the energy. From this and Gronwall’s lemma we may immediately
deduce that the energy E decays exponentially in time and that we have the estimate E(t)≤E(0) exp(−Ct).

If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1-2), one
encounters a fundamental obstacle that may already be observed in the differential form of (1-3)

∂t

(∫
�(t)

|u(t)|2

2
+

∫
6

|η(t)|2

2

)
+

1
2

∫
�(t)
|Du(t)|2 = 0. (1-25)

The difficulty is that the dissipation provides no direct control of the η-term in the energy. As such, we
must resort to using the equations (1-2) to try to control ‖η(t)‖0 in terms of ‖Du(t)‖0. From (1-2) we see
that there are only two available routes: solving for η in the fourth equation, or using the third equation,
which is the kinetic transport equation. If we pursue the first route, we must be able to control

‖p(t)‖2H0(6)
+‖Du(t)ν · ν‖2H0(6)

. ‖Du(t)‖2H0(�(t)), (1-26)

which is not possible. If instead we pursue the second route, we must estimate η as a solution to the
kinematic transport equation. Such an estimate (see Lemma A.9) only allows us to estimate ‖η(t)‖0 in
terms of

∫ t
0 ‖Du(s)‖0 ds. That is, transport estimates do not provide control of the η-part of the energy in
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terms of the “instantaneous” dissipation, but rather in terms of the “cumulative” integrated dissipation.
From this we see that in our problem the dissipation is actually weaker than the energy, so we cannot
argue as above to deduce exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy method,
but we will always encounter the same type of problem as above. Regardless of the level of regularity in
the energy, the instantaneous dissipation is always weaker than the instantaneous energy, which prevents
us from deducing exponential decay of the energy. Instead we pursue a strategy similar to one employed
in [Strain and Guo 2006] for another problem where the dissipation is weaker than the energy. We first
show that high-order energies are bounded by using an integrated version of (1-25) for derivatives of the
solution. Then we consider a low-order energy and show that an equation of the form (1-25) holds, that
is, ∂t Elow+CDlow ≤ 0. Now, instead of trying to estimate (1-26) for low-order derivatives, we instead
interpolate between low-order derivatives and high-order derivatives, which are bounded. Instead of an
estimate CElow ≤ Dlow, we must prove one of the form CE1+θ

low ≤ Dlow for some θ > 0. We can then
use this to derive the differential inequality ∂t Elow + CE1+θ

low ≤ 0, which can be integrated to see that
Elow(t). Elow(0)/(1+ t)1/θ . We would then find that the low-order energy decays algebraically in time
rather than exponentially.

To complete this program, we must overcome a pair of intertwined difficulties. First, to close the
high-order energy estimates with, say ‖u‖24N+1 for an integer N ≥ 0 in the dissipation, we have to control
η in H 4N+1/2. The only option for this is to again appeal to estimates for solutions to the transport
equation, which say (roughly speaking) that

sup
0≤t≤T

‖η‖24N+1/2 ≤ C exp
(

C
∫ T

0
‖Du(t)‖H2(6) dt

)[
‖η0‖

2
4N+1/2+ T

∫ T

0
‖u(t)‖24N+1 dt

]
. (1-27)

Without knowing a priori that u decays, the right side of this estimate has the potential to grow at the
rate of (1+ T )eC

√
T . Even if u decays rapidly, the right side can still grow like (1+ T ). This growth

is potentially disastrous in closing the high-order, global-in-time estimates. To manage the growth, we
must identify a special decaying term that always appears in products with the highest derivatives of η.
If the special term decays quickly enough, we can hope to balance the growth and close the high-order
estimates. Due to the growth in (1-27), we believe that it is not possible to construct global-in-time
solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is dictated
by the decay rate of the low-order energy, so we must make sure that the low-order energy decays
sufficiently quickly. This amounts to making the constant θ > 0 appearing in the interpolation estimates
above sufficiently small. We must then carefully choose the terms that will appear in the low-order and
high-order energies in order to keep θ small enough. It turns out that this requires us to enforce a minimal
derivative count in the low-order energy, that is, only terms with m derivatives or more are allowed. It
also requires us to extend the high-order energy to include estimates of negative horizontal derivatives up
to order λ ∈ (0, 1). Then θ = θ(m, λ), and only by taking m = 2, λ > 0 can we make θ small enough to
achieve the desired decay rate.
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The resolution of these intertwined difficulties requires a delicate and involved analysis. We now sketch
some of the techniques we will employ.

Horizontal energy evolution estimates. In order to use the natural energy structure of the problem
(given in Eulerian coordinates by (1-3)) to study high-order derivatives, we can only apply derivatives
that do not break the structure of the boundary condition u = 0 on 6b. Since 6b is flat, any differential
operator ∂α = ∂α0

t ∂
α1
1 ∂

α2
2 is allowed. We apply these operators for various choices of α and sum the

resulting energy evolution equations. After estimating the nonlinear terms that appear from differentiating
(1-9), we are eventually led to evolution equations for these “horizontal” energies and dissipations, E10,
D10, E7,m , and D7,m for m = 1, 2 (see (2-45) and (2-47)–(2-49) for precise definitions). Here we write
bars to indicate “horizontal” derivatives. Roughly speaking, at high-order we have the estimate

E10(t)+
∫ t

0
D10(r) dr . E10(0)+

∫ t

0
(E10(r))θD10(r) dr +

∫ t

0

√
D10(r)K(r)F10(r) dr, (1-28)

where K is of the form
K= ‖∇u‖2C1 +‖Du‖2H2(6)

, (1-29)

and θ > 0; and at low-order we have

∂t E7,m +D7,m . Eθ10D7,m, (1-30)

where D7,m is the low-order dissipation. Notice that the product KF10 in (1-28) multiplies low-order
norms of u against the highest-order norm of η. Technically, the estimate (1-28) also involves Iλu and
Iλη in addition to horizontal derivatives. For the moment let us ignore these terms and continue with the
discussion of our energy method. We will discuss Iλ in detail below.

The actual derivation of bounds like (1-28)–(1-30) is delicate and depends crucially on the geometric
structure of the equations given in (1-9). Indeed, if we attempted to rewrite (1-9) as a perturbation of the
usual constant-coefficient Navier–Stokes equations, we would fail to achieve the estimate (1-28) because
we would be unable to control the interaction between ∂10

t p and div ∂10
t u, the latter of which does not

vanish in the geometric form of the equations.

Comparison estimates. The next step in the analysis is to replace the horizontal energies and dissipations
with the full energies and dissipations. We prove that there is a universal 0< δ < 1 such that if E10 ≤ δ,
then

E10 . E10, D10 . D10+KF10, E7,m . E7,m, D7,m . D7,m . (1-31)

This estimate is extremely delicate and can only be obtained by carefully using the structure of the
equations (1-9). We make use of every bit of information from the boundary conditions and the vorticity
equations to establish it. There are two structural components of the estimates that are of such importance
that we mention them now. First, the equation divA u = 0 allows us to write ∂3u3 =−(∂1u1+∂2u2)+G2

for some quadratic nonlinearity G2. This allows us to “trade” a vertical derivative of u3 for horizontal
derivatives of u1 and u2, an indispensable trick in our analysis. Second, the interaction between the
parabolic scaling of u (∂t u ∼1u) and the transport scaling of η (∂tη ∼ u3|6) allows us to gain regularity
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for the temporal derivatives of η in the dissipation, and it also gives us control of ∂11
t η, which is one more

time derivative than appears in the energy.

Two-tier energy method. Suppose we know that

K(r)≤ δ

(1+r)2+γ
(1-32)

for some 0< δ < 1 and γ > 0. Since η satisfies a transport equation, we may use Lemma A.9 to derive
an estimate of the form

sup
0≤r≤t

F10(r). exp
(

C
∫ t

0

√
K(r) dr

)[
F10(0)+ t

∫ t

0
D10(r) dr

]
. (1-33)

Although the right side of this equation could potentially blow up exponentially in time, the decay of K

in (1-32) implies that

sup
0≤r≤t

F10(r). F10(0)+ t
∫ t

0
D10(r) dr. (1-34)

Note that γ > 0 in (1-32) is essential; we would not be able to tame the exponential term in (1-33) without
it, and then (1-34) would not hold. This estimate allows for F10(t) to grow linearly in time, but in the
product K(r)F10(r) that appears in (1-28), we can use the decay of K to balance this growth. Then if
sup0≤r≤t E10(r)≤ δ with δ small enough, we can combine (1-28), (1-31), (1-32), and (1-34) to get the
estimate

sup
0≤r≤t

E10(r)+
∫ t

0
D10(r) dr . E10(0)+F10(0). (1-35)

This highlights the first step of our two-tier energy method: the decay of low-order terms (that is, K) can
balance the growth of F10, yielding boundedness of the high-order terms. In order to close this argument,
we must use a second step: the boundedness of the high-order terms implies the decay of low-order terms,
and in particular the decay of K.

To obtain this decay, we combine (1-30) and (1-31) to see that

∂t E7,m +
1
2 D7,m ≤ 0 (1-36)

if E10 ≤ δ for δ small enough. If we could show that E7,m . D7,m , this estimate would yield exponential
decay of E7,m and E7,m . An inspection of E7,m and D7,m (see (2-45) and (2-51)) shows that D7,m can
control every term in E7,m except ‖η‖20 (and ‖∂tη‖

2
0 when m = 2). In a sense, this means that exponential

decay fails precisely because the dissipation fails to control η at the lowest order. In lieu of E7,m . D7,m ,
we interpolate between E10 (which can control all the lowest-order terms of η) and D7,m :

E7,m . E
1/(m+λ+1)
10 D

(m+λ)/(m+λ+1)
7,m . (1-37)

Combining (1-36) with (1-37) and the boundedness of E10 in terms of the data, (1-35), then allows us to
deduce that

∂t E7,m +
C

(E10(0)+F10(0))1/(m+λ)
(E7,m)

1+1/(m+λ)
≤ 0. (1-38)
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Integrating this differential inequality and employing some auxiliary estimates then leads us to the bound

E7,m(t). E7,m(t).
E10(0)+F10(0)
(1+ t)m+λ

. (1-39)

We thus use the boundedness of high-order terms to deduce the decay of low-order terms, completing the
second step of the two-tier energy estimates.

Negative Sobolev estimates via Iλ. Notice that the decay rate in (1-39) is enhanced by λ ∈ (0, 1). As
we will see below, the parameter γ > 0 in the decay of K, given in (1-32), is determined by the rate m+λ.
If we were to set λ= 0, we would not get γ > 0 and we would be unable to balance the growth of F10.
Estimates (1-34) and (1-35) would fail, and we would be unable to close our estimates. We thus see the
necessity of introducing the “negative Sobolev” estimates via the horizontal Riesz potential Iλ.

The difficulty then is that we must apply the nonlocal operator Iλ to a nonlinear PDE and then study
the evolution of Iλu and Iλη. The flatness of the lower boundary 6b is essential here, since it allows us
to have Iλu = 0 on 6b. This means that the operator Iλ does not break the boundary conditions, and
we can use the natural energy structure to include ‖Iλu‖20 and ‖Iλη‖20 in the energy and ‖Iλu‖21 in the
dissipation. To close the estimates for these terms, we must be able to estimate Iλ acting on various
nonlinearities in terms of Eθ10D10 for some θ > 0. These estimates turn out to be rather delicate, and we
must again employ almost all of the structure of the equations and boundary conditions in order to derive
them. They are also responsible for the constraint λ < 1. For λ≥ 1, the nonlinear estimates would not
work as we need them to. In general, for quadratic nonlinearities in dimension n, we expect to restrict
λ < n/2.

We should point out that, a priori, we do not know that Iλu(t) or Iλη(t) even make sense for t > 0,
since this is not provided by Theorem 1.1. To show that these terms are well-defined, which then justifies
applying Iλ to the equations, we must actually prove a specialization of the local well-posedness theorem
that includes the boundedness of Iλu, Iλ p, and Iλη. We do this in Theorem 10.7.

Interpolation estimates and minimal derivative counts. The negative Sobolev estimates alone do not
close the overall estimates in our two-tier energy method. To do that, we must verify that K decays as in
(1-32) for some γ > 0. An inspection of E7,m shows that we cannot directly control K. E7,m for either
m = 1 or m = 2, so we must resort to an interpolation argument. We show that through interpolation it is
actually possible to control K. E7,1, but the E7,1 only decays like (1+ t)−1−λ, which is not fast enough
for (1-32). The energy E7,2 decays at a faster rate, but we cannot show that K. E7,2. Instead, we show
that if E7,2(t)≤ ε(1+ t)−2−λ, then

K. E
(8+2λ)/(8+4λ)
7,2 . ε(8+2λ)/(8+4λ) 1

(1+t)2+λ/2
, (1-40)

so that, after renaming δ = Cε(8+2λ)/(8+4λ) and γ = λ/2> 0, we find that (1-32) does hold.
The parameters m and λ interact in an important way. The decay rate increases with m and with λ. As

mentioned above, we are technically constrained to λ < 1, so we must increase m to 2 in order to hit
the target decay rate in (1-32). It is tempting, then, to consider abandoning the Iλ operators and simply
use a third energy with m ≥ 3, which should decay like (1+ t)−m . However, if one were to do this for



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1441

any m ≥ 3, one would find that there is a corresponding decrease in the interpolation power: K. Eθ(m)7,m ,
where θ(m) decreases with m in such a way that mθ(m)≤ 2, so that (1-32) would fail. We thus see that
the negative estimates are not just a convenience, but rather a necessity.

The derivation of (1-40) is delicate, requiring a two-step bootstrap process to iteratively improve
the interpolation powers. We again crucially make use of the structure of the equations and boundary
conditions. We extensively interpolate between our negative Sobolev estimates and our positive Sobolev
estimates. The utility of the negative estimates is quite clear here: the interpolation powers improve when
we interpolate with negative derivatives (as opposed to say, no derivatives).

To complete the proof of (1-40), we crucially use an estimate for I1∂tη. This corresponds to λ= 1,
so we are not able to apply I1∂t to the equations to obtain the estimate. Rather, the estimate comes for
free from the transport equation for η, which allows us to write ∂tη = −∂1U1− ∂2U2 for Ui ∈ H 1. In
our analysis of the horizontally periodic problem [Guo and Tice 2013a], where we can take 6 = T2, this
identity and (1-22) give rise to a Poincaré inequality ‖η(t)‖20. ‖Dη(t)‖

2
0 for t ≥ 0, which is crucial in our

analysis there. From this we see that the estimate for I1∂tη is of analytic importance for the problem (1-2).
The interpolation of negative and positive Sobolev estimates provides a completely new tool in the

study of time decay in dissipative PDE problems in the whole (or semi-infinite) space. For the viscous
surface wave problem, a particular advantage of the negative-positive method is that, unlike the usual
L p
− Lq machinery, our norms are preserved along the time evolution. We anticipate that this method

will prove useful in the analysis of other dissipative equations.

Remark 1.10. After the completion of this paper we became aware of [Hataya and Kawashima 2009],
which is an announcement of a decay result for the viscous surface wave problem in horizontally infinite
domains. The paper provides a terse sketch of their proposed proof that employs a modification of the
Beale–Solonnikov parabolic framework, which is a framework completely different from ours. Full
details of the proof are promised in forthcoming work, but to our knowledge no such work has appeared
in the literature to date. From the information provided in the sketch, it is unclear to us how the decay
rates involved, none of which are faster than 1/(1+ t)2 for any norm-squared of the velocity field, are
sufficiently rapid to balance the growth of the highest derivatives of η. In particular, it is not clear to us
how their method can provide control of K as in (1-32), which we need to close the transport estimate
(1-33) and to control the growth of F10 in (1-28) and (1-31).

Comparison to the periodic problem. We proved in [Guo and Tice 2013a] the analogue of Theorem 1.3
for horizontally periodic domains. In this context we take N ≥ 3 to be an integer and consider energies
and dissipations E2N , D2N , F2N , and G2N ; these are modifications of what we use here (with N = 5) that
include temporal derivatives up to order 2N . See that paper for the precise definitions. By increasing N ,
we can achieve arbitrarily fast algebraic rates for the solutions, which we identify as “almost exponential
decay.”

In order to compare with Theorem 1.3, we record a version of the periodic result now.

Theorem 1.11. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1 and
η0 satisfies the zero average condition (1-22). Let N ≥ 3 be an integer. There exists a 0< κ = κ(N ) such
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that if E2N (0)+F2N (0) < κ , there exists a unique solution (u, p, η) to (1-9) on the interval [0,∞) that
achieves the initial data. The solution obeys the estimates

G2N (∞)≤ C1(E2N (0)+F2N (0)) < C1κ, (1-41)

sup
t≥0
(1+ t)4N−8

[‖u(t)‖22N+4+‖η(t)‖
2
2N+4] ≤ C1(E2N (0)+F2N (0)) < C1κ, (1-42)

where C1 > 0 is a universal constant.

Remark 1.12. A key difference between the periodic result, Theorem 1.11, and the nonperiodic result,
Theorem 1.3, is that in the periodic case, increasing N also increases the decay rate. No such gain is
possible in the nonperiodic case, which is why we specialize to the case N = 5 there. In the periodic
case, we do not use the same type of interpolation arguments that we use in the infinite case. This allows
us to relax to N ≥ 3.

Remark 1.13. Hataya [2009] studied the periodic problem with a flat bottom. Using the Beale–Solonnikov
parabolic theory [Beale 1981; 1984; Solonnikov 1977], it was shown that∫

∞

0
(1+ t)2‖u(t)‖2r−1 dt + sup

t≥0
(1+ t)2‖η(t)‖2r−2 <∞ (1-43)

for r ∈ (5, 11/2). Our result on the periodic problem is an improvement of this in two important ways.
First, we establish faster decay rates by working in a higher regularity context. Second, we allow for a
more general non-flat bottom geometry (see [Guo and Tice 2013a] for details).

Comparison to the case with surface tension. If the effect of surface tension is included at the air-fluid
free interface, the formulation of the PDE must be changed. Surface tension is modeled by modifying the
fourth equation in (1-2) to be

(pI −µD(u))ν = gην− σHν, (1-44)

where H = ∂i (∂iη/
√

1+ |Dη|2) is the mean curvature of the surface {y3 = η(t)} and σ > 0 is the surface
tension.

Beale [1984] proved small-data global well-posedness for the problem with surface tension in horizon-
tally infinite domains. The flattened coordinate system we employ was introduced in [Beale 1984] and
used in place of Lagrangian coordinates. However, Beale employed a change of unknown velocities that
is more complicated than just a coordinate change. Well-posedness was demonstrated with u ∈ L2 H r and
η ∈ L2 H r+1/2, given that u0 ∈ H r−1/2, η0 ∈ H r are sufficiently small for r ∈ (3, 7/2). In this context it
is understood that surface tension leads to the decay of certain modes, thereby aiding global existence.

Beale and Nishida [1985] studied the asymptotic properties of the solutions constructed in [Beale
1984]. They showed that if η0 ∈ L1(6), then

sup
t≥0
(1+ t)2‖u(t)‖22+ sup

t≥0

2∑
j=1

(1+ t)1+ j
‖D jη(t)‖20 <∞, (1-45)

and that this decay rate is optimal. Taking λ≈ 1 in our Theorem 1.3, the estimates (1-21) yield almost
the same decay rates.
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Nishida, Teramoto, and Yoshihara [Nishida et al. 2004] showed that in horizontally periodic domains
with surface tension and a flat bottom, if η0 has zero average, there exists a γ > 0 such that

sup
t≥0

eγ t
[‖u(t)‖22+‖η(t)‖

2
3]<∞. (1-46)

In this case, (1-44) gives a third way of estimating η in terms of the dissipation; using this, it is possible to
show that the dissipation is stronger than the energy. Thus, if surface tension is added in the periodic case,
fully exponential decay is possible, whereas without surface tension we only recover algebraic decay of
arbitrary order in Theorem 1.11.

The comparison of these two results with ours establishes a nice contrast between the surface tension
and non-surface tension cases. Without surface tension we can recover “almost” the same decay rate as in
the case with surface tension. This shows that viscosity is the basic decay mechanism and that the effect
of surface tension serves to enhance the decay rate.

Definitions and terminology. We now mention some of the definitions, bits of notation, and conventions
that we will use throughout the paper.

Einstein summation and constants. We employ the Einstein convention of summing over repeated
indices for vector and tensor operations. Throughout the paper C > 0 will denote a generic constant that
can depend on the parameters of the problem, N , and �, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next. When a
constant depends on a quantity z we write C = C(z) to indicate this. We employ the notation a . b to
mean that a ≤ Cb for a universal constant C > 0.

Norms. We write H k(�) with k ≥ 0 and H s(6) with s ∈ R for the usual Sobolev spaces. We typically
write H 0

= L2; the exception to this is when we use L2([0, T ]; H k) notation to indicate the space of
square-integrable functions with values in H k .

To avoid notational clutter, we avoid writing H k(�) or H k(6) in our norms and typically write only
‖ · ‖k . Since we do this for functions defined on both � and 6, this presents some ambiguity. We avoid
this by adopting two conventions. First, we assume that functions have natural spaces on which they
“live.” For example, the functions u, p, and η̄ live on �, while η itself lives on 6. As we proceed in our
analysis, we will introduce various auxiliary functions; the spaces they live on will always be clear from
the context. Second, whenever the norm of a function is computed on a space different from the one in
which it lives, we will explicitly write the space. This typically arises when computing norms of traces
onto 6 of functions that live on �.

Derivatives. We write N= {0, 1, 2, . . . } for the collection of nonnegative integers. When using space-
time differential multi-indices, we write N1+m

= {α = (α0, α1, . . . , αm)} to emphasize that the 0-index
term is related to temporal derivatives. For just spatial derivatives we write Nm . For α ∈ N1+m we
write ∂α = ∂α0

t ∂
α1
1 · · · ∂

αm
m . We define the parabolic counting of such multi-indices by writing |α| =

2α0+α1+ · · ·+αm . We write D f for the horizontal gradient of f , that is, D f = ∂1 f e1+ ∂2 f e2, while
∇ f denotes the usual full gradient.
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For a given norm ‖ · ‖ and integers k,m ≥ 0, we introduce the following notation for sums of spatial
derivatives:

‖Dk
m f ‖2 :=

∑
α∈N2

m≤|α|≤k

‖∂α f ‖2 and ‖∇
k
m f ‖2 :=

∑
α∈N3

m≤|α|≤k

‖∂α f ‖2. (1-47)

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives, while ∇
refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

‖Dk
m f ‖2 :=

∑
α∈N1+2

m≤|α|≤k

‖∂α f ‖2 and ‖∇
k
m f ‖2 :=

∑
α∈N1+3

m≤|α|≤k

‖∂α f ‖2. (1-48)

When k = m ≥ 0, we write

‖Dk f ‖2 = ‖Dk
k f ‖2, ‖∇k f ‖2 = ‖∇k

k f ‖2, ‖Dk f ‖2 = ‖Dk
k f ‖2, ‖∇k f ‖2 = ‖∇k

k f ‖2. (1-49)

We allow for composition of derivatives in this counting scheme in a natural way; for example, we write

‖DDk
m f ‖2 = ‖Dk

m D f ‖2 =
∑
α∈N2

m≤|α|≤k

‖∂αD f ‖2 =
∑
α∈N2

m+1≤|α|≤k+1

‖∂α f ‖2 = ‖Dk+1
m+1 f ‖2. (1-50)

Plan of paper. Throughout the paper we assume that N ≥ 5 and λ ∈ (0, 1) are both fixed. Notice that
Theorem 1.3 is phrased with the choice N = 5.

In Section 2 we prove some preliminary lemmas and we define the energies and dissipations. In
Section 3 we perform our bootstrap interpolation argument to control various quantities in terms of
EN+2,m and DN+2,m . In Section 4 we present estimates of the nonlinear forcing terms Gi (as defined in
(2-24)–(2-31)) and some other nonlinearities. In Section 5 we use the geometric form of the equations
to estimate the evolution of the highest-order temporal derivatives. We also analyze the natural (no
derivatives) energy in this context. Section 6 concerns similar energy evolution estimates for the other
horizontal derivatives. For these we employ the linear perturbed framework with the Gi forcing terms. In
Section 7 we assemble the estimates of Sections 5 and 6 into unified estimates. Section 8 concerns the
comparison estimates, where we show how to estimate the full energies and dissipations in terms of their
horizontal counterparts. Section 9 combines all of the analysis of Sections 3–8 into our a priori estimates
for solutions to (1-9). Section 10 concerns a specialized version of the local well-posedness theorem that
includes the boundedness of Iλ terms. Finally, in Section 11 we record our global well-posedness and
decay result, proving Theorem 1.3.

Below, in (2-58), we will define the total energy G2N that we use in the global well-posedness analysis.
For the purposes of deriving our a priori estimates, we assume throughout Sections 3–9 that solutions
to (1-9) are given on the interval [0, T ] and that G2N (T ) ≤ δ for 0 < δ < 1 as small as in Lemma 2.6,
so that its conclusions hold. This also means that E2N (t) ≤ 1 for t ∈ [0, T ]. We should remark that
Theorem 1.1 does not produce solutions that necessarily satisfy G2N (T ) < ∞. All of the terms in
G2N (T ) are controlled by Theorem 1.1 except those involving the Riesz operator: ‖Iλu‖20, ‖Iλη‖20, and∫ T

0 ‖Iλu(t)‖21 dt . To guarantee that these terms are well-defined, we must prove a specialized version
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of the local well-posedness result, Theorem 10.7. In principle, we should record this before the a priori
estimates, but the technique we use to control the Iλ terms is based on one we develop for the a priori
estimates, so we present the theorem in Section 10 after the a priori estimates. Note that the bounds
of Theorem 10.7 control more than just G2N (T ) (in particular, ∂2N+1

t u, ∂2N
t p, and Iλ p), and the extra

control it provides guarantees that all of the calculations used in the a priori estimates are justified.

2. Preliminaries for the a priori estimates

In this section we present some preliminary results that we use in our a priori estimates. We first record
some useful properties of the matrix A. Then we present two forms of equations similar to (1-9) and
describe the corresponding energy evolution structure. Afterward we record some useful lemmas.

Properties of A. The following lemma records some of the properties of the matrix A that will be used
throughout the paper.

Lemma 2.1. Let A be defined by (1-7).

(1) For each j = 1, 2, 3 we have ∂k(JA jk)= 0.

(2) Ai j = δi j + δ j3 Zi for δi j , the Kronecker delta, and Z =−AK e1− BK e2+ (K − 1)e3.

(3) On 6 we have JAe3 = N, while on 6b we have that JAe3 = e3.

Proof. The first and second items may be verified by a simple computation. The first part of the third
item holds since b̃ = 1 on 6, which means that JAe3 = −Ae1 − Be2 + e3 = −∂1η̄e1 − ∂2η̄e2 + e3 =

−∂1ηe1−∂2ηe2+e3=N on 6. The second part of the third item follows similarly, since b̃= 0 on 6b. �

Geometric form. We now give a linear formulation of the PDE (1-9) in its geometric form. Suppose that
η, u are known and that A,N, J , etc. are given in terms of η as usual ((1-7), etc). We then consider the
linear equation for (v, q, ζ ) given by

∂tv− ∂t η̄b̃K∂3v+ u · ∇Av+ divA SA(q, v)= F1 in �,
divA v = F2 in �,
SA(q, v)N= ζN+ F3 on 6,
∂tζ −N · v = F4 on 6,
v = 0 on 6b.

(2-1)

Now we record the natural energy evolution equation associated to solutions (v, q, ζ ) of the geometric
form equations (2-1).

Lemma 2.2. Suppose that u and η are solutions to (1-9). Suppose (v, q, ζ ) solve (2-1). Then

∂t

(
1
2

∫
�

J |v|2+ 1
2

∫
6

|ζ |2
)
+

1
2

∫
�

J |DAv|
2
=

∫
�

J (v · F1
+ q F2)+

∫
6

−v · F3
+ ζ F4. (2-2)

Proof. We multiply the i-th component of the first equation of (2-1) by Jvi , sum over i , and integrate
over � to find that

I+ II= III (2-3)
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for

I=
∫
�

∂tvi Jvi − ∂t η̄b̃∂3vivi + u j A jk∂kvi Jvi , (2-4)

II=
∫
�

A jk∂k Si j (q, v)Jvi , III=
∫
�

F1
· v J. (2-5)

In order to integrate by parts in I, II we will utilize the geometric identity ∂k(JAik)= 0 for each i , which
is proved in Lemma 2.1.

Then

I= ∂t

∫
�

|v|2 J
2
+

∫
�

−
|v|2∂t J

2
− ∂t η̄b̃∂3

|v|2

2
+ u j∂k

(
JA jk

|v|2

2

)
=: I1+ I2. (2-6)

Since b̃ = 1+ x3/b, an integration by parts and an application of the boundary condition v = 0 on 6b

reveals that

I2=

∫
�

−
|v|2∂t J

2
−∂t η̄b̃∂3

|v|2

2
+u j∂k

(
JA jk

|v|2

2

)
=

∫
�

−
|v|2∂t J

2
+
|v|2

2

(
∂t η̄

b
+ b̃∂t∂3η̄

)
−

∫
�

∂ku j JA jk
|v|2

2
+

1
2

∫
6

−∂tη|v|
2
+u j JA jke3 ·ek |v|

2. (2-7)

It is straightforward to verify that ∂t J = ∂t η̄/b+ b̃∂t∂3η̄ in � and that JA jke3 ·ek =N j on 6. Then since
u, η satisfy ∂ku j A jk = 0 and ∂tη = u ·N, we have I2 = 0. Hence

I= ∂t

∫
�

|v|2 J
2

. (2-8)

A similar integration by parts shows that

II=
∫
�

−A jk Si j (q, v)J∂kvi +

∫
6

JA j3Si j (q, v)vi

=

∫
�

−qAik∂kvi J + J
|DAv|

2

2
+

∫
6

Si j (q, v)N jvi ,

(2-9)

so that (2-1) implies

II=
∫
�

−q J F2
+ J
|DAv|

2

2
+

∫
6

ζN · v+ v · F3. (2-10)

But (2-1) also implies that∫
6

ζN · v =

∫
6

ζ(∂tζ − F4)= ∂t

∫
6

|ζ |2

2
+

∫
6

−ζ F4, (2-11)

which means

II=
∫
�

−q J F2
+ J
|DAv|

2

2
+ ∂t

∫
6

|ζ |2

2
+

∫
6

−ζ F4
+ v · F3. (2-12)

Now (2-2) follows from (2-3), (2-8), and (2-12). �
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Remark 2.3. In our analysis we will apply Lemma 2.2 with v= ∂αu, q = ∂α p, and ζ = ∂αη for ∂α = ∂α0
t

with α0 ≤ 2N . In the case α0 = 2N we do not know that ∂2N
t p is well-defined. However, as is verified in

Theorem 4.3 of [Guo and Tice 2013b], the result of Lemma 2.2 holds in this case when integrated in
time, with the understanding that the q = ∂2N

t p term is integrated by parts in time.

In order to utilize (2-1), we apply the differential operator ∂α = ∂α0
t to (1-9). The resulting equations

are (2-1) for v = ∂αu, q = ∂α p, and ζ = ∂αη, where

F1
= F1,1

+ F1,2
+ F1,3

+ F1,4
+ F1,5

+ F1,6 (2-13)

for

F1,1
i =

∑
0<β<α

Cα,β∂β(∂t η̄b̃K )∂α−β∂3ui +
∑

0<β≤α

Cα,β∂α−β∂t η̄∂
β(b̃K )∂3ui , (2-14)

F1,2
i =−

∑
0<β≤α

Cα,β(∂β(u j A jk)∂
α−β∂kui + ∂

βAik∂
α−β∂k p), (2-15)

F1,3
i =

∑
0<β≤α

Cα,β∂βA j`∂
α−β∂`(Aim∂mu j +A jm∂mui ), (2-16)

F1,4
i =

∑
0<β<α

Cα,βA jk∂k(∂
βAi`∂

α−β∂`u j + ∂
βA j`∂

α−β∂`ui ), (2-17)

F1,5
i = ∂

α∂t η̄b̃K∂3ui , and F1,6
i =A jk∂k(∂

αAi`∂`u j + ∂
αA j`∂`ui ). (2-18)

In these equations, the terms Cα,β are constants that depend on α and β. The term F2
= F2,1

+ F2,2 for

F2,1
=−

∑
0<β<α

Cα,β∂βAi j∂
α−β∂ j ui and F2,2

=−∂αAi j∂ j ui . (2-19)

We write F3
= F3,1

+ F3,2 for

F3,1
=−

∑
0<β≤α

Cα,β∂βDη(∂α−βη− ∂α−β p), (2-20)

F3,2
i =

∑
0<β≤α

Cα,β(∂β(N j Aim)∂
α−β∂mu j + ∂

β(N j A jm)∂
α−β∂mui ). (2-21)

Finally,
F4
=−

∑
0<β≤α

Cα,β∂βDη · ∂α−βu. (2-22)

Perturbed linear form. Writing the equations in the form (1-9) is more faithful to the geometry of the
free boundary problem, but it is inconvenient for many of our a priori estimates. This stems from the
fact that if we want to think of the coefficients of the equations for u, p as being frozen for a fixed free
boundary given by η, the underlying linear operator has nonconstant coefficients. This makes it unsuitable
for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of the
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equations lies in the fact that the linear operators have constant coefficients. The equations in this form
are 

∂t u+∇ p−1u = G1 in �,
div u = G2 in �,
(pI −Du− ηI )e3 = G3 on 6,
∂tη− u3 = G4 on 6,
u = 0 on 6b.

(2-23)

Here we have written
G1
= G1,1

+G1,2
+G1,3

+G1,4
+G1,5

for

G1,1
i = (δi j −Ai j )∂ j p, (2-24)

G1,2
i = u j A jk∂kui , (2-25)

G1,3
i = [K

2(1+ A2
+ B2)− 1]∂33ui − 2AK∂13ui − 2BK∂23ui , (2-26)

G1,4
i = [−K 3(1+ A2

+ B2)∂3 J + AK 2(∂1 J + ∂3 A)+ BK 2(∂2 J + ∂3 B)− K (∂1 A+ ∂2 B)]∂3ui , (2-27)

G1,5
i = ∂t η̄(1+ x3/b)K∂3ui ; (2-28)

G2 is the function
G2
= AK∂3u1+ BK∂3u2+ (1− K )∂3u3, (2-29)

and G3 is the vector

G3
:= ∂1η

 p− η− 2(∂1u1− AK∂3u1)

−∂2u1− ∂1u2+ BK∂3u1+ AK∂3u2

−∂1u3− K∂3u1+ AK∂3u3


+ ∂2η

−∂2u1− ∂1u2+ BK∂3u1+ AK∂3u2

p− η− 2(∂2u2− BK∂3u2)

−∂2u3− K∂3u2+ BK∂3u3

+
(K − 1)∂3u1− AK∂3u3

(K − 1)∂3u2− BK∂3u3

2(K − 1)∂3u3

 . (2-30)

Finally,
G4
=−Dη · u. (2-31)

Remark 2.4. The appearance of the term (p− η) in the first two rows of the first two vectors in the
definition of G3 can cause some technical problems later when we attempt to estimate G3. Notice though,
that according to (2-23), we may write

(p− η)= 2∂3u3+G3
· e3

= ∂1η(−∂1u3− K∂3u1+ AK∂3u3)+ ∂2η(−∂2u3− K∂3u2+ BK∂3u3)+ 2K∂3u3 (2-32)

on 6. We may then replace the appearances of (p− η) in (2-30) with the right side of (2-32).

At several points in our analysis we will need to localize (2-23) by multiplying by a cutoff function.
This leads us to consider the energy evolution for a minor modification of (2-23).
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Lemma 2.5. Suppose (v, q, ζ ) solve

∂tv+∇q −1v =81 in �,
div v =82 in �,
(q I −Dv)e3 = aζe3+8

3 on 6,
∂tζ − v3 =8

4 on 6,
v = 0 on 6b,

(2-33)

where either a = 0 or a = 1. Then

∂t

(
1
2

∫
�

|v|2+
1
2

∫
6

a|ζ |2
)
+

1
2

∫
�

|Dv|2 =

∫
�

v · (81
−∇82)+ q82

+

∫
6

−v ·83
+ aζ84. (2-34)

Proof. We may rewrite the first equation in (2-33) as ∂tv+ div(q I −Dv)=81
−∇82. We then take the

inner-product of this equation with v and integrate over � to find

∂t

∫
�

|v|2

2
−

∫
�

(q I −Dv) : ∇v+

∫
6

(q I −Dv)e3 · v =

∫
�

v · (81
−∇82). (2-35)

We then use the second equation in (2-33) to compute∫
�

−(q I −Dv) : ∇v =

∫
�

−q div v+ |Dv|
2

2
=

∫
�

−q82
+
|Dv|2

2
. (2-36)

The boundary conditions in (2-33) provide the equality∫
6

(q I −Dv)e3 · v =

∫
6

aζv3+ v ·8
3
= ∂t

∫
6

a
|ζ |2

2
+

∫
6

−aζ84
+ v ·83. (2-37)

Combining (2-35)–(2-37) then yields (2-34). �

Some initial lemmas. The following result is useful for removing the appearance of J factors.

Lemma 2.6. There exists a universal 0< δ < 1 such that if ‖η‖25/2 ≤ δ, then

‖J − 1‖2L∞ +‖A‖2L∞ +‖B‖
2
L∞ ≤

1
2 and ‖K‖2L∞ +‖A‖

2
L∞ . 1. (2-38)

Proof. According to the definitions of A, B, J given in (1-8) and Lemma A.5, we may bound

‖J − 1‖2L∞ +‖A‖2L∞ +‖B‖
2
L∞ . ‖η̄‖

2
3 . ‖η‖

2
5/2. (2-39)

Then if δ is sufficiently small, we find that the first inequality in (2-38) holds. As a consequence,
‖K‖2L∞ +‖A‖

2
L∞ . 1, which is the second inequality in (2-38). �

We now compute ∂tη in terms of a pair of auxiliary functions, U1 and U2, defined on 6. In our analysis
later in the paper u and η will always be sufficiently smooth to justify the calculations in the next lemma,
and Ui ∈ H 1(6) always holds.

Lemma 2.7. For i = 1, 2, define Ui :6→ R by

Ui (x ′)=
∫ 0

−b
J (x ′, x3)ui (x ′, x3) dx3. (2-40)

Then ∂tη =−∂1U1− ∂2U2 on 6 for solutions to (1-9).
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Proof. Let ϕ ∈ S(6), the Schwartz class. On 6 we know from Lemma 2.1 that u ·N = u · (JAe3) =

JAT u · e3 = JAT u · ν, where ν = e3 is the unit normal to 6. We may use the equation for ∂tη in (1-9)
and the divergence theorem to compute∫

6

∂tηϕ =

∫
6

(−u1∂1η− u2∂2η+ u3)ϕ =

∫
6

ϕ JAi j uiν j =

∫
�

∂ j (ϕ JAi j ui )

=

∫
�

∂ jϕ JAi j ui +ϕ∂ j (JAi j )ui +ϕ JAi j∂ j ui =

∫
�

∂ jϕ JAi j ui , (2-41)

where the last equality follows from the geometric identity ∂ j (JAi j ) = 0 (see Lemma 2.1) and the
equation Ai j∂ j ui = 0, which is the second equation in (1-9). According to Lemma 2.1, we may write
Ai j = δi j + δ j3 Zi for δi j , the Kronecker delta, and Z =−AK e1− BK e2+ (K − 1)e3. Then∫

�

∂ jϕ JAi j ui =

∫
�

∂ jϕ Jui (δi j + δ j3 Zi )=

∫
�

∂iϕ Jui +

∫
�

∂3ϕ Jui Zi =

∫
�

∂iϕ Jui , (2-42)

since ∂3ϕ= 0, a consequence of the fact that ϕ=ϕ(x1, x2) is independent of x3. Again because ϕ depends
only on (x1, x2)= x ′ ∈6, we may write∫

�

∂iϕ Jui =

∫
6

∂iϕ(x ′)
∫ 0

−b
J (x ′, x3)ui (x ′, x3) dx3dx ′ =

∫
6

∂iϕ(x ′)Ui (x ′) dx ′. (2-43)

Now we chain together (2-41), (2-42), and (2-43) and integrate by parts to deduce that∫
6

∂tηϕ =

∫
6

−ϕ∂iUi . (2-44)

Since this holds for any ϕ ∈ S(6), we then have that ∂tη =−∂iUi . �

Energies and dissipations. Below we define the energies and dissipations we will use in our analysis.
We state them in general in terms of two integers n,m ∈ N with n ≥ m. In our actual analysis we will
take n = 2N and n = N + 2 for N ≥ 5 and m = 1, 2. Recall that we employ the derivative conventions
described on page 1443. We define the horizontal instantaneous energy with minimal derivative count m
(or just horizontal energy, for short) by

En,m := ‖D2n−1
m u‖20+‖DD2n−1u‖20+‖

√
J∂n

t u‖20+‖D
2n
m η‖

2
0. (2-45)

Here the first three terms are split in this manner for the technical convenience of adding the
√

J term to
only the highest temporal derivative.

Remark 2.8. In light of Lemma 2.6, we see that En,m satisfies

1
2(‖D

2n
m u‖20+‖D

2n
m η‖

2
0)≤ En,m ≤

3
2(‖D

2n
m u‖20+‖D

2n
m η‖

2
0). (2-46)

We define the horizontal dissipation rate with minimal derivative count m (horizontal dissipation) by

Dn,m := ‖D2n
m Du‖20. (2-47)
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Let Iλ be defined by (A-7)–(A-8). The horizontal energy without a minimal derivative restriction is

En := ‖Iλu‖20+‖D
2n
0 u‖20+‖Iλη‖

2
0+‖D

2n
0 η‖

2
0, (2-48)

and the horizontal dissipation without a minimal derivative restriction is

Dn := ‖DIλu‖20+‖D
2n
0 Du‖20. (2-49)

In addition to the horizontal energy and dissipation, we must also define full energies and dissipations,
which involve full derivatives. We write the full energy as

En := ‖Iλu‖20+
n∑

j=0

‖∂
j

t u‖22n−2 j +

n−1∑
j=0

‖∂
j

t p‖22n−2 j−1+‖Iλη‖
2
0+

n∑
j=0

‖∂
j

t η‖
2
2n−2 j , (2-50)

and we define the full dissipation rate by

Dn := ‖Iλu‖21+
n∑

j=0

‖∂
j

t u‖22n−2 j+1+‖∇ p‖22n−1+

n−1∑
j=1

‖∂
j

t p‖22n−2 j +‖Dη‖
2
2n−3/2+‖∂tη‖

2
2n−1/2

+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2. (2-51)

Remark 2.9. The energy En controls ‖η‖22n � ‖η‖
2
0+‖Dη‖

2
2n−1, while the dissipation Dn controls only

‖Dη‖22n−3/2. The failure of Dn to control ‖η‖20 and this half derivative deficit in Dη are key difficulties
that we must overcome in our analysis. However, Dn controls more temporal derivatives of η than En

does. A similar discrepancy exists in the fact that En controls ‖p‖22n−1 while Dn controls only ‖∇ p‖22n−1.

We define a similar energy with a minimal derivative count of one by

En,1 := En,1+‖∇
2u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇ p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖Dη‖
2
2n−1

+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j , (2-52)

and with a minimal derivative count of two by

En,2 := En,2+‖∇
3u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇
2 p‖22n−3+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖D
2η‖22n−2

+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j . (2-53)

Similarly, the dissipation with a minimal derivative count of one is

Dn,1 :=Dn,1+‖∇
3u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
2 p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j +‖D
2η‖22n−5/2

+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2, (2-54)
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while the dissipation with a minimal derivative count of two is

Dn,2 := Dn,2+‖∇
4u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
3 p‖22n−3+‖∂t∇ p‖22n−3

+

n−1∑
j=2

‖∂
j

t p‖22n−2 j +‖D
3η‖22n−7/2+‖D∂tη‖

2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2. (2-55)

Note that, by definition, En,m ≥ En,m and Dn,m ≥ Dn,m . In all of these definitions, the index n counts
the highest number of time derivatives used. Notice that En,m and Dn,m are subject to the same sorts of
discrepancies described in Remark 2.9.

Certain norms of η and u will play a special role in our analysis; we write

F2N := ‖η‖
2
4N+1/2, (2-56)

K := ‖∇u‖2L∞ +‖∇
2u‖2L∞ +

2∑
i=1

‖Dui‖
2
H2(6)

. (2-57)

Note that the regularity of u will always be sufficiently high for the L∞ norms in K to be considered as
C0(�) norms, where � is the closure of �. Finally, we define the total energy we will use in our analysis:

G2N (t) := sup
0≤r≤t

E2N (r)+
∫ t

0
D2N (r) dr +

2∑
m=1

sup
0≤r≤t

(1+ r)m+λEN+2,m(r)+ sup
0≤r≤t

F2N (r)
(1+ r)

. (2-58)

Some initial estimates. We have the following lemma that constrains N .

Lemma 2.10. If N ≥ 4, then, for m = 1, 2, we have EN+2,m . E2N and DN+2,m . E2N .

Proof. The proof follows by simply comparing the definitions of these terms. �

Now we present an estimate of I1∂tη.

Lemma 2.11. We have the estimate ‖I1∂tη‖
2
0 . ‖u‖

2
0 ≤ E2N .

Proof. According to Lemma 2.7, we have ∂tη =−∂iUi , where Ui , i = 1, 2, is defined in the lemma. It is
easy to see that Ui ∈ H 1(6). Taking the Fourier transform and writing U = (U1,U2), we find that

‖I1∂tη‖
2
0 =

∫
6

|ξ |−2
|∂̂tη(ξ)|

2dξ .
∫
6

|ξ |−2
|ξ · Û (ξ)|2dξ .

∫
6

|Û (ξ)|2dξ = ‖U‖2H0(6)
. (2-59)

However, Hölder’s inequality and Lemma 2.6 imply that ‖U‖H0(6) . ‖J‖L∞‖u‖0 . ‖u‖0, so the desired
estimate follows. �

3. Interpolation estimates at the N + 2 level

Initial interpolation estimates for η, η̄, u and ∇ p. The fact that EN+2,m and DN+2,m , m = 1, 2, have
a minimal count of derivatives creates numerous problems when we try to estimate terms with fewer
derivatives in terms of EN+2,m and DN+2,m . Our way around this is to interpolate between EN+2,m
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(or DN+2,m) and E2N . In the next few pages (through page 1467) we will prove various interpolation
inequalities of the form

‖X‖2 . (EN+2,m)
θ (E2N )

1−θ and ‖X‖2 . (DN+2,m)
θ (E2N )

1−θ , (3-1)

where θ ∈ (0, 1], X is some quantity, and ‖ · ‖ is some norm (usually either H 0 or L∞).
In the interest of brevity, we record these estimates in tables that only list the value of θ in the estimate.

Before each table we will tell which norms are being considered and give a rough summary of the terms
X that appear in the table. For example, we might write “the following table encodes the power in the
H 0(6) and H 0(�) interpolation estimates for η and η̄ and their derivatives,” before the following table.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ θ1 θ2 θ3

Dη,∇η̄ θ4 θ5 θ6

We understand this to mean that

‖η‖20 . (EN+2,1)
θ1(E2N )

1−θ1, ‖η‖20 . (DN+2,1)
θ2(E2N )

1−θ2, ‖η‖20 . (EN+2,2)
θ2(E2N )

1−θ2 (3-2)

and

‖η‖20 . (DN+2,2)
θ3(E2N )

1−θ3, ‖∇η̄‖2H0(�)
. (EN+2,1)

θ4(E2N )
1−θ4,

‖∇η̄‖2H0(�)
. (DN+2,1)

θ5(E2N )
1−θ5, (3-3)

etc. When we write DN+2,1 ∼ EN+2,2 in a table, it means that θ is the same when interpolating between
DN+2,1 and E2N and between EN+2,2 and E2N . When we write multiple entries for X , we mean that the
same interpolation estimates hold for each item listed. Often, we will have a θ appearing in a table of the
form θ = 1/(1+ r). When we write this, we mean that the desired interpolation inequality holds with
this θ for any fixed r ∈ (0, 1), and the constant in the inequality then depends on r .

We must record estimates for too many choices of X to allow us to write the full details of each
estimate. However, most of the estimates are straightforward, so in our proofs we will frequently present
only a sketch of how to obtain them, providing details only for the most delicate estimates. The terms we
estimate are often linear combinations of several terms, each of which would get a different interpolation
power. When this occurs, we will record the lowest power achieved by a term in the sum. According to
Lemma 2.10, this is justified by the estimate

E1−θ
2N EθN+2,m +E1−κ

2N EκN+2,m = E1−θ
2N EθN+2,m +E1−κ

2N Eκ−θN+2,mEθN+2,m

. E1−θ
2N EθN+2,m +E1−κ

2N Eκ−θ2N EθN+2,m . E1−θ
2N EθN+2,m (3-4)

for 0 ≤ θ ≤ κ ≤ 1. A similar estimate holds with EN+2,m replaced by DN+2,m . It may happen that in
estimating a product of two or more terms, we end up with estimates of the form

‖X‖2 . (EN+2,m)
θ1(E2N )

1−θ1(EN+2,m)
θ2(E2N )

1−θ2 (3-5)



1454 YAN GUO AND IAN TICE

with θ1+ θ2 > 1. In this case, Lemma 2.10 again allows us to bound

‖X‖2 . (EN+2,m)
1(EN+2,m)

θ1+θ2−1(E2N )
2−θ1−θ2 . EN+2,mE2N ≤ EN+2,m, (3-6)

where we have used the bound E2N ≤ 1. It might also happen that (3-5) occurs with θ1 < 1 and
θ2 = 1/(1+ r), in which case we always understand that r is chosen so that θ1+ θ2 = 1.

Now that our notation is explained, we turn to the estimates themselves We begin with estimates of η.

Lemma 3.1. The following table encodes the power in the L∞(6) and L∞(�) interpolation estimates
for η and η̄ and their derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ (λ+1)/(λ+1+r) (λ+1)/(λ+2) (λ+1)/(λ+3)
Dη,∇η̄ 1 (λ+2)/(λ+2+r) (λ+2)/(λ+3)
D2η,∇2η̄ 1 1 (λ+3)/(λ+3+r)
D3η,∇3η̄ 1 1 1
∂tη, ∂t η̄ 1 1 2/(2+r)
D∂tη,∇∂t η̄ 1 1 1

The following table encodes the power in the H 0(6) and H 0(�) interpolation estimates for η and η̄
and their derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ λ/(λ+1) λ/(λ+2) λ/(λ+3)
Dη,∇η̄ 1 (λ+1)/(λ+2) (λ+1)/(λ+3)
D2η,∇2η̄ 1 1 (λ+2)/(λ+3)
D3η,∇3η̄ 1 1 1
∂tη, ∂t η̄ 1 1 1/2
D∂tη,∇∂t η̄ 1 1 1

Proof. The estimates follow directly from the Sobolev embeddings and Lemmas A.6 and A.7, using the
bounds ‖Iλη‖20 ≤ E2N and ‖I1∂tη‖

2
0 . E2N , the latter of which is a consequence of Lemma 2.11. �

Now we record some estimates involving u.

Lemma 3.2. Table 3.1(a) encodes the power in the L∞(�) and L∞(6) interpolation estimates for u and
its derivatives.

Table 3.1(b) encodes the power in the H 0(�) interpolation estimates for u and its derivatives.
Table 3.1(c) encodes the power in some improved L∞(6) interpolation estimates for u and its tangential

derivatives on 6. Here we restrict to r ∈ (0, 1/2).

Proof. The estimates of the first two tables follow directly from Sobolev embeddings and Lemmas A.8
and A.13. For the L∞(6) estimates of the last table, we use r ∈ [0, 1/2) in (A-34) of Lemma A.7 along
with trace estimates and Lemma A.13 to bound
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(a)

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

u 1/(1+r) 1/2 1/3
Du 1 2/(2+r) 2/3
∇u 1/(1+r) 1/2 1/3
D2u 1 1 1/(1+r)
D∇u 1 2/(2+r) 2/3
∇

2u 1 1/(1+r) 1/2
∇

3u 1 1 1/(1+r)
∇

4u 1 1 1
∂t u 1 1 1

(b)

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

u λ/(λ+1) λ/(λ+1) λ/(λ+2) λ/(λ+2)
Du 1 1 (λ+1)/(λ+2) (λ+1)/(λ+2)
D2u 1 1 1 1
∇D2u 1 1 1 1
∂t u 1 1 1 1

(c)
X EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1/(1+r) 1/(1+r) 1/2 1/2
Du 1 2/(2+r) 2/(2+r) 2/(2+r)

Table 3.2. Tables for Lemma 3.2.

‖u‖2L∞(6).(‖u‖
2
H0(6)

)(s+r−1)/(s+r)(‖Dsu‖H r (6))
1/(s+r).(‖u‖21)

(s+r−1)/(s+r)(‖Dsu‖21)
1/(s+r)

.(‖u‖21)
(s+r−1)/(s+r)(‖Ds

∇u‖20)
1/(s+r). (3-7)

For EN+2,1 and DN+2,1 we choose s = 1 and r ∈ (0, 1/2), while for EN+2,2 and DN+2,m we choose s = 2
and r = 0. In both cases, ‖u‖21 ≤ E2N and ‖Ds

∇u‖20 ≤ EN+2,m . A similar argument works for the Du
estimates in L∞(6). �

Now we estimate ∇ p in L∞.

Lemma 3.3. The following table encodes the power in the L∞(�) interpolation estimates for derivatives
of p.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

∇ p 1 1/(1+r) 1/2
∇

2 p 1 1 1/(1+r)
∂t p 1 1 1/(1+r)
∇

3 p 1 1 1
∂t∇ p 1 1 1
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Proof. The estimates follow directly from the Sobolev embeddings and Lemma A.8. �

Interpolation estimates for G i , i = 1, 2, 3, 4. Now that we have some preliminary estimates for u, η, η̄,
and ∇ p (plus some of their derivatives), we can estimate the Gi forcing terms defined in (2-24)–(2-31).

Lemma 3.4. The following table encodes the power in the L∞(�) interpolation estimates for G1,i ,
i = 1, . . . , 5 and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G1,1 1 1 (3λ+5)/(2λ+6)
∇G1,1 1 1 1
G1,2 1 1 2/3
DG1,2 1 1 1
∇G1,2 1 1 2/3
G1,3 1 1 (3λ+5)/(2λ+6)
∇G1,3 1 1 1
G1,4 1 1 1
∇G1,4 1 1 1
G1,5 1 1 1
∇G1,5 1 1 1
G1 1 1 2/3
DG1 1 1 1
∇G1 1 1 2/3

The following table encodes the power in the H 0(�) interpolation estimates for G1,i , i = 1, . . . , 5 and
G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (3λ+3)/(2λ+6)
∇G1,1 1 1 1 (3λ+5)/(2λ+6)
G1,2 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
DG1,2 1 1 1 (5λ+4)/(3λ+6)
G1,3 1 1 1 (3λ+3)/(2λ+6)
∇G1,3 1 1 1 (3λ+5)/(2λ+6)
G1,4 1 1 1 (4λ+6)/(3λ+9)
DG1,4 1 1 1 1
G1,5 1 1 1 5/6
∇G1,5 1 1 1 1
G1 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
DG1 1 1 1 (5λ+4)/(3λ+6)

Proof. The definitions of G1,i show that these terms are linear combinations of products of two or more
terms that can be estimated in either L∞ or H 0 by using Sobolev embeddings and Lemmas 3.1, 3.2,
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and 3.3. For the L∞ table we estimate products using the usual algebra of L∞: ‖XY‖L∞ ≤‖X‖L∞‖Y‖L∞ .
For the H 0 table, we estimate products with both

‖XY‖20 ≤ ‖X‖
2
0‖Y‖

2
L∞ and ‖XY‖20 ≤ ‖Y‖

2
0‖X‖

2
L∞, (3-8)

and then take the larger value of θ produced by these two bounds.
The interpolation powers recorded in the above tables have been determined using the full structure of

the G1,i , i = 1, . . . , 5, as defined in (2-24)–(2-31). However, for each G1,i , i = 1, . . . , 5, it is possible to
identify a “principal term” that has the same essential structure as the term in G1,i that determines the
interpolation powers appearing in the tables. For the sake of clarity we record these principal terms now:

G1,1
∼ η̄∇ p, G1,2

∼ u · ∇u, G1,3
∼ η̄∂2

3 u, G1,4
∼ ∂3η̄∂3u, G1,5

∼ b̃∂t η̄∂3u. �

Now we estimate G2.

Lemma 3.5. The following table encodes the power in the L∞(�) and L∞(6) interpolation estimates
for G2 and its spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G2 1 1 (4λ+6)/(3λ+9)
DG2 1 1 1
∇G2 1 1 (3λ+5)/(2λ+6)
∇

2G2 1 1 1

The following table encodes the power in the H 0(�) interpolation estimates for G2 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G2 1 (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
DG2 1 1 (4λ+6)/(3λ+9)
∇G2 1 1 (3λ+3)/(2λ+6)
∇

2G2 1 1 (3λ+5)/(2λ+6)

Proof. The estimates may be derived as in Lemma 3.4, so we only record the principal term in G2. For
these estimates, G2

∼ η̄∂3u3. �

Now we record G3 estimates.

Lemma 3.6. The following table encodes the power in the L∞(6) interpolation estimates for G3 and its
spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G3 1 1 (4λ+6)/(3λ+9)
DG3 1 1 1
D2G3 1 1 1
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The following table encodes the power in the H 0(6) interpolation estimates for G3 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G3 1 (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
DG3 1 1 (4λ+6)/(3λ+9)
D2G3 1 1 1

Proof. Recall that by Remark 2.4, we may remove the appearance of (p− η) in G3. This allows us to
perform the estimates of G3 terms as in Lemmas 3.4 and 3.5. The principal term may be identified as
G3
∼ η∂3u. �

Now we record G4 estimates.

Lemma 3.7. The following table encodes the power in the L∞(6) interpolation estimates for G4 and its
spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G4 1 1 1
DG4 1 1 1
D2G4 1 1 1

The following table encodes the power in the H 0(6) interpolation estimates for G4 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G4 1 1 (3λ+5)/(2λ+6)
DG4 1 1 1
D2G4 1 1 1

Proof. The estimates again work as in Lemmas 3.4–3.6. In this case there is no need to identify the
principal term, since G4

=−Dη · u is already in a simple form. �

Improved estimates for u,∇ p. Now we will use the structure of the equations (2-23) to improve our
estimates for u,∇ p, etc. Our first estimate is for Dp. It constitutes an improvement of our existing L∞

estimate, Lemma 3.3, as well as a first H 0 estimate.

Lemma 3.8. The following table encodes the power in an L∞(�) interpolation estimate.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

Dp 1 1/(1+r) (λ+2)/(λ+3)

The following table encodes the power in an H 0(�) interpolation estimate.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

Dp 1 (λ+1)/(λ+2) (λ+1)/(λ+3)
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Proof. In order to record the proof of both the H 0 and L∞ estimates at the same time, we will generically
write ‖ · ‖ to refer to either the H 0(�) or L∞(�) norm. Similarly, we will write ‖ · ‖6 to refer to the
H 0(6) or L∞(6) norm. The starting point is an application of Lemma A.10 to bound

‖Dp‖2 . ‖Dp‖26 +‖∂3 Dp‖2. (3-9)

We will estimate both terms on the right-hand side in order to prove the lemma.
In order to estimate Dp on 6 we utilize the boundary conditions in (2-23) to write

∂i p = ∂iη+ 2∂i∂3u3+ ∂i (G3
· e3) (3-10)

for i = 1, 2. From this we easily see that

‖Dp‖26 . ‖Dη‖
2
6 +‖DG3

‖
2
6 +‖D∂3u3‖

2
6. (3-11)

The first two terms may be estimated with Lemmas 3.1 and 3.6, but we must further exploit the structure
of the equations in order to control the last term. For the H 0 estimate we use trace theory and the second
equation in (2-23),

∂3u3 = G2
− ∂1u1− ∂2u2, (3-12)

to see that

‖D∂3u3‖
2
H0(6)

. ‖D∂3u3‖
2
1 . ‖DG2

‖
2
1+‖D

2u‖21. (3-13)

Since D2u = 0 on 6b, we may use Lemma A.13 to bound

‖D2u‖21 . ‖∇D2u‖20, (3-14)

so that, upon replacing in the previous inequality, we find

‖D∂3u3‖
2
H0(6)

. ‖DG2
‖

2
0+‖D∇G2

‖
2
0+‖D

2
∇u‖20. (3-15)

For the corresponding L∞ estimate we again use (3-12) to bound

‖D∂3u3‖
2
L∞(6) . ‖DG2

‖
2
L∞(6)+‖D

2u‖2L∞(6). (3-16)

By Lemma A.13 we know that ‖D2u‖2L∞(6) . ‖∇D2u‖2L∞(�). On the other hand, DG2
∈ C0(�) (this

may be verified using the Sobolev embeddings and Theorem 4.2), so that ‖DG2
‖

2
L∞(6) ≤ ‖DG2

‖
2
L∞(�).

We may then replace these to arrive at the bound

‖D∂3u3‖
2
L∞(6) . ‖DG2

‖
2
L∞(�)+‖∇D2u‖2L∞(�). (3-17)

Then, from (3-15) and (3-17), we know that

‖D∂3u3‖
2
6 . ‖DG2

‖
2
+‖D∇G2

‖
2
+‖D2

∇u‖2. (3-18)
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Combining (3-11) with (3-18) yields

‖Dp‖26 . ‖Dη‖
2
6 +‖DG3

‖
2
6 +‖DG2

‖
2
+‖D∇G2

‖
2
+‖D2

∇u‖2. (3-19)

We may then employ Lemmas 3.1, 3.2, 3.3, 3.5, and 3.6 to derive the interpolation power for ‖Dp‖26 ; we
record this power in the following table. Both the L∞ and H 0 powers are determined by Dη, but the L∞

estimate only improves the result of Lemma 3.3 for DN+2,2.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

‖Dp‖2L∞(6) 1 1/(1+r) (λ+2)/(λ+3)
‖Dp‖2H0(6)

1 (λ+1)/(λ+2) (λ+1)/(λ+3)

Now we will estimate the term ‖∂3 Dp‖2. For this we use (2-23) to write

∂i∂3 p = ∂i [(∂
2
1 + ∂

2
2 − ∂t)u3+ ∂

2
3 u3+G1

· e3] (3-20)

for i = 1, 2. Again using (3-12), we may write

∂i∂
2
3 u3 = ∂i∂3(G2

− ∂1u1− ∂2u2). (3-21)

Combining these two equations then shows that

‖D∂3 p‖2 . ‖D3u‖2+‖D2
∇u‖2+‖D∂t u‖2+‖DG1

‖
2
+‖D∇G2

‖
2. (3-22)

We may then employ Lemmas 3.2, 3.3, 3.4, and 3.5 to derive the interpolation power for ‖D∂3 p‖2; we
record this power in the following table. The H 0 powers are determined by DG1, but note that the L∞

estimate does not improve the result of Lemma 3.3.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

‖D∂3 p‖2L∞ 1 1 1/(1+r)
‖D∂3 p‖20 1 1 (5λ+4)/(3λ+6)

Now we return to (3-9) and employ our estimates of ‖Dp‖26 and ‖D∂3 p‖2 to deduce the desired
interpolation powers for ‖Dp‖2. Notice that we may also combine (3-9) with (3-19) and (3-22) for the
estimate

‖Dp‖2

. ‖Dη‖26 +‖D∂t u‖2+‖D3u‖2+‖D2
∇u‖2+‖DG1

‖
2
+‖DG2

‖
2
+‖D∇G2

‖
2
+‖DG3

‖
2
6. (3-23)

This concludes the proof. �

With this lemma in hand, we can now derive improved estimates for u.

Proposition 3.9. The following table encodes the improved power in the L∞(�) interpolation estimate
for u and its derivatives.
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EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

u 1 1/(1+r) 2/3
∂3ui , i = 1, 2 1 1/(1+r) 2/3
∂3u3 1 2/(2+r) 2/3
∇u 1 1/(1+r) 2/3
∇

2u 1 1/(1+r) 2/3

The following table encodes the power in the H 0(�) interpolation estimate for u and its derivatives.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3ui , i = 1, 2 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3u3 1 (3λ+2)/(2λ+4) (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
Du 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
D∇u 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
D∂3u3 1 1 1 (4λ+6)/(3λ+9)
∇∂3u3 1 1 (2λ+3)/(2λ+4) (3λ+3)/(2λ+6)
∇

2u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

The following table encodes the improved power in the L∞(�) interpolation estimate for ∇ p.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

∇ p 1 2/(2+r) 2/3

The following table encodes the power in the H 0(�) interpolation estimate for derivatives of p.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂3 p 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
∇ p 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

Proof. As in Lemma 3.8 we will write ‖ · ‖ and ‖ · ‖6 to refer to both the H 0 and L∞ norms on � and
6, respectively. We divide the proof into several steps, beginning with estimates of ∇u. With these
established, we can extend to estimates of u, D∇u, Du, D∂3u3, and ∇∂3u3 by employing Poincaré’s
inequality and interpolation. This in turn leads to estimates for ∂3 p and ∇2u.

Step 1: Estimates of ∇u. To begin the ∇u estimates, we split the components of ∇u into those involving
x1, x2 derivatives and those involving x3 derivatives. Indeed, we have

‖∇u‖2 . ‖Du‖2+‖∂3u3‖
2
+

2∑
i=1

‖∂3ui‖
2. (3-24)
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Lemma 3.2 provides an estimate of Du, but not of ∂3u, so we must use the structure of the equations
(2-23) to estimate the latter two terms.

To estimate ∂3u3 we use the second equation in (2-23) to bound

‖∂3u3‖
2 . ‖G2

‖
2
+‖Du‖2. (3-25)

Then Lemmas 3.2 and 3.5 provide interpolation estimates of G2 and Du and hence the estimates of ∂3u3

listed in the tables. The Du term determines the power for L∞, while the power is determined by G2 for
H 0.

To estimate ∂3ui for i = 1, 2, we first apply Lemma A.10 to get

‖∂3ui‖
2 . ‖∂3ui‖

2
6 +‖∂

2
3 ui‖

2. (3-26)

For the first term on the right, we use the third equation in (2-23) to bound

‖∂3ui‖
2
6 . ‖Du3‖

2
6 +‖G

3
‖

2
6. (3-27)

Since Du = 0 on 6b, we can use trace theory, Lemma A.13, and the equation div u = G2 for

‖Du3‖
2
6 . ‖∇Du3‖

2 . ‖D2u‖2+‖DG2
‖

2. (3-28)

For the second term on the right side of (3-26), we use (2-23) to bound

‖∂2
3 ui‖

2 . ‖∂t u‖2+‖D2u‖2+‖Dp‖2+‖G1
‖

2. (3-29)

We may then combine estimates (3-26)–(3-29) to deduce that

‖∂3ui‖
2 . ‖∂t u‖2+‖D2u‖2+‖Dp‖2+‖G1

‖
2
+‖DG2

‖
2
+‖G3

‖
2
6. (3-30)

Now we use Lemmas 3.2, 3.4–3.6, and 3.8 to find the interpolation powers for ∂3ui , i = 1, 2, listed in the
tables. For L∞ the power is determined by Dp for EN+2,1, EN+2,2, and DN+2,1 and by G1 for DN+2,2,
while for H 0 the power is determined by Dp.

With estimates for Du, ∂3u3, and ∂3ui for i = 1, 2 in hand, we return to (3-24) to derive the estimates
for ∇u listed in the tables. For both the L∞ and H 0 estimates the power is determined by ∂3ui , i = 1, 2.

Step 2: Extensions to estimates of u, D∇u, D∂3u3, and ∇∂3u3. Now we apply Lemma A.13 to control u
in terms of ∇u:

‖u‖2 . ‖∇u‖2. (3-31)

Our estimates for ∇u then provide the estimates for u listed in the tables.
We now turn to D∇u. Clearly ‖D∇u‖20 is controlled by both EN+2,1 and DN+2,1, which yields the

powers of 1 in the tables. An application of (A-38) from the Appendix with λ = 0, q = 1, and s = 1
shows that

‖D∇u‖20 . (‖∇u‖20)
1/2(‖D2

∇u‖20)
1/2. (3-32)
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We employ this in conjunction with our estimate for ∇u and the estimate of D2
∇u from Lemma 3.2 to

get the interpolation powers for D∇u listed in the tables for EN+2,2 and DN+2,2. The estimates for Du
listed in the tables follow immediately from the estimates for D∇u via Poincaré:

‖Du‖2 . ‖D∇u‖2. (3-33)

In order to estimate D∂3u3 and ∇∂3u3 in H 0 we use that div u = G2 for

‖∇∂3u3‖
2
0 . ‖∇G2

‖
2
0+‖D∇u‖20, (3-34)

‖D∂3u3‖
2
0 . ‖DG2

‖
2
0+‖D

2u‖20. (3-35)

Then our estimate for D∇u and Lemmas 3.2 and 3.5 yield the estimates listed in the tables. For ∇∂3u3

the power is determined by D∇u for EN+2,1,DN+2,1,EN+2,2 and by ∇G2 for DN+2,2. For D∂3u3 the
power is determined by DG2.

Step 3: Estimates of ∂3 p and ∇ p. Lemma 3.8 provides estimates for Dp, so to complete an estimate for
∇ p we only need to consider ∂3 p. For this we again use (2-23) to bound

‖∂3 p‖2 . ‖∂2
3 u3‖

2
+‖D2u‖2+‖∂t u‖2+‖G1

‖
2. (3-36)

This and (3-34) then imply that

‖∂3 p‖2 . ‖D∇u‖2+‖D2u‖2+‖∂t u‖2+‖G1
‖

2
+‖∇G2

‖
2, (3-37)

and we may use Lemmas 3.2, 3.4, and 3.5 along with our new D∇u estimate to determine the powers in
the tables for ∂3 p. In the L∞ estimate the power is determined by D∇u, and in the H 0 estimate the power
is determined by G1. Then the estimates for ∇ p follow by comparing the Dp estimates of Lemma 3.8 to
the ∂3 p estimates.

Step 4: Estimates of ∇2u. Finally we consider ∇2u, which we decompose according to x1, x2, and x3

derivatives:

‖∇
2u‖2 . ‖D2u‖2+‖D∇u‖2+‖∂2

3 u3‖
2
+

2∑
i=1

‖∂2
3 ui‖

2. (3-38)

According to our bounds (3-29) and (3-34), we may replace this with

‖∇
2u‖2 . ‖∂t u‖2+‖D2u‖2+‖D∇u‖2+‖Dp‖2+‖G1

‖
2
+‖∇G2

‖
2. (3-39)

Then Lemmas 3.2, 3.4, 3.5, and 3.8 with our new estimate of D∇u provide the estimates in the table
for ∇2u. For L∞ the power is determined by Dp for EN+2,1, EN+2,2, and DN+2,1 and by G1 for DN+2,2,
while for H 0 it is determined by Dp. �

Bootstrapping: first iteration. We now use the improved estimates of Lemma 3.8 and Proposition 3.9
to improve the estimates of Gi , i = 1, . . . , 4, recorded in Lemmas 3.4–3.7. We will only record the
improvements for the H 0(�) estimates.
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Lemma 3.10. The following table encodes the power in the H 0(�) interpolation estimates for G1,i ,
i = 1, . . . , 5, and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (5λ+6)/(3λ+9)
∇G1,1 1 1 1 1
G1,2 1 1 1 1
∇G1,2 1 1 1 1
G1,3 1 1 1 (5λ+6)/(3λ+9)
∇G1,3 1 1 1 1
G1,4 1 1 1 1
∇G1,4 1 1 1 1
G1,5 1 1 1 1
∇G1,5 1 1 1 1
G1 1 1 1 (5λ+6)/(3λ+9)
∇G1 1 1 1 1

Proof. We perform the estimates as in Lemma 3.4, except that now we use the improved interpolation
estimates of Lemma 3.8 and Proposition 3.9. �

We now record the G2 estimates.

Lemma 3.11. The following table encodes the power in the H 0(�) interpolation estimates for G2 and its
spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G2 1 1 1 (7λ+6)/(3λ+9)
DG2 1 1 1 1
∇G2 1 1 1 (5λ+5)/(2λ+6)
∇

2G2 1 1 1 1

Proof. We perform the estimates as in Lemma 3.5, except that now we use the improved interpolation
estimates of Proposition 3.9, in particular the distinct estimates for ∂3u3 and ∂3ui , i = 1, 2. These are
crucial since in G2 the term ∂3ui is multiplied by a derivative of η̄ but ∂3u3 is multiplied by η̄ itself.
This means that for the present interpolation estimates we may identify the principal term in G2 as
G2
∼ η̄∂3u3+ ∂1η̄∂3u1+ ∂2η̄∂3u2. �

We now record the G3 estimates. We omit the proof since it follows that of Lemma 3.6, using the
improved estimates of Lemma 3.8 and Proposition 3.9.

Lemma 3.12. The following table encodes the power in the H 0(6) interpolation estimates for G3 and its
spatial derivatives.
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X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G3 1 1 1 (5λ+6)/(3λ+9)
DG3 1 1 1 (5λ+6)/(3λ+9)
D2G3 1 1 1 1

We now record the G4 estimates. We again omit the proof.

Lemma 3.13. The following table encodes the power in the H 0(6) interpolation estimates for G4 and its
spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G4 1 1 1 1
DG4 1 1 1 1
D2G4 1 1 1 1

The improved estimates for Gi , i = 1, . . . , 4, allow us to improve the H 0 estimates of Proposition 3.9.

Theorem 3.14. The following table encodes the power in the H 0(�) interpolation estimate for u and its
derivatives.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3u3 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
Du 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
D∇u 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇∂3u3 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇

2u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

The following table encodes the power in the H 0(�) interpolation estimate for derivatives of p.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂3 p 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇ p 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

Proof. The powers are the same as those listed in Proposition 3.9 except for ∂3u3, ∇∂3u3, and ∂3 p.
To arrive at the ∂3 p estimates, we again employ the estimate (3-37) of Proposition 3.9, except that now

we use Lemmas 3.10 and 3.11 for estimates of G1 and ∇G2 and Proposition 3.9 for the estimate of D∇u.
The terms ∂t u and D2u are still estimated with Lemma 3.2. The power in the ∂3 p estimate is determined
by D∇u.

For the ∂3u3 terms, we employ the equation div u = G2 to bound

‖∂3u3‖
2 . ‖G2

‖
2
+‖Du‖2 and ‖∇∂3u3‖

2 . ‖∇G2
‖

2
+‖D∇u‖2. (3-40)
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The estimates of ∂3u3 and ∇∂3u3 in the table follow from these bounds and Lemmas 3.9 and 3.11, with
the power of the former determined by Du and that of the latter determined by D∇u. �

Bootstrapping: second iteration. We now use the improved estimates of Theorem 3.14 to improve the
estimates of Gi , i = 1, 2, recorded in Lemmas 3.10–3.11. We once again omit the proof.

Theorem 3.15. The following table encodes the power in the H 0(�) interpolation estimates for G1,i ,
i = 1, . . . , 5, and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (2λ+2)/(λ+3)
∇G1,1,∇2G1,1 1 1 1 1
G1,2,∇G1,2,∇2G1,2 1 1 1 1
G1,3 1 1 1 (2λ+2)/(λ+3)
∇G1,3,∇2G3 1 1 1 1
G1,4,∇G1,4,∇2G1,4 1 1 1 1
G1,5,∇G1,5,∇2G1,5 1 1 1 1
G1 1 1 1 (2λ+2)/(λ+3)
∇G1,∇2G1 1 1 1 1

The following table encodes the power in the H 0(�) interpolation estimates for G2 and its spatial
derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G2,∇G2,∇2G2 1 1 1 1

Now we make final improvements to our estimates.

Proposition 3.16. The following table encodes the power in the H 0(�) interpolation estimates for D∂3ui

for i = 1, 2.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

D∂3ui , i = 1, 2 1 1 1 (λ+2)/(λ+3)

The following table encodes the power in an H 2(6) estimates for Dui for i = 1, 2.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

Dui , i = 1, 2 1 1 1 (λ+2)/(λ+3)

The following table encodes the power in the improved H 0(6) interpolation estimates for ∂tη.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂tη 1 1 1 (λ+2)/(λ+3)
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Proof. We may argue as in the derivation of (3-23) of Lemma 3.8 to bound

‖D2 p‖2

.‖D2η‖2+‖D2∂t u‖2+‖D4u‖2+‖D3
∇u‖2+‖D2G1

‖
2
+‖D2G2

‖
2
+‖D2

∇G2
‖

2
+‖D2G3

‖
2
6. (3-41)

We may also argue as in the derivation of (3-30) of Proposition 3.9 to bound

‖D∂3ui‖
2 . ‖D∂t u‖2+‖D3u‖2+‖D2 p‖2+‖DG1

‖
2
+‖DG2

‖
2
+‖DG3

‖
2
6 (3-42)

for i = 1, 2. Combining (3-41) and (3-42) and employing Theorems 3.14 and 3.15 and Lemmas 3.12 and
3.13, we then find the H 0(�) estimates for D∂3ui , i = 1, 2, listed in the table. The power is determined
by D2η.

We now turn to the ‖Dui‖
2
H2(6)

estimate for i = 1, 2. We employ trace theory and the Poincaré
inequality to bound

‖Dui‖
2
H0(6)

. ‖D∂3ui‖
2
0 and ‖D3ui‖

2
H0(6)

. ‖D3∂3ui‖
2
0, (3-43)

and then we utilize our new estimate for D∂3ui to deduce the H 2(6) estimates listed in the table. The
power is determined by D∂3ui since D3∂3ui has four derivatives and hence has a power of 1.

Finally, for the ∂tη estimate we use (2-23), trace theory, and Lemma A.13 to bound

‖∂tη‖
2
H0(6)

. ‖u3‖
2
H0(6)

+‖G4
‖

2
H0(6)

. ‖∇u3‖
2
0+‖G

4
‖

2
H0(6)

. (3-44)

Then Theorem 3.14 and Lemma 3.13 provide the ∂tη estimate for DN+2,2 listed in the table, with the
power determined by ∇u3; the estimates for EN+2,1,EN+2,2,DN+2,1 come from Lemma 3.1. �

Now we record an interpolation estimate for K, as defined by (2-57).

Lemma 3.17. We have K. E
(8+2λ)/(8+4λ)
N+2,2 .

Proof. By definition, K = ‖∇u‖2L∞ + ‖∇
2u‖2L∞ +

∑2
i=1 ‖Dui‖

2
H2(6)

. We may now use the H 2(6)

interpolation estimate of Proposition 3.16 and the L∞ interpolation estimate of Proposition 3.9 with
r = 2λ/(4+ λ) to bound K. E

2/(2+r)
N+2,2 . The choice of r implies that 2/(2+ r)= (8+ 2λ)/(8+ 4λ), and

the result follows. �

Estimates at the high end. Our analysis so far in Section 3 has dealt with the problems associated with
estimating terms involving fewer derivatives than appear in EN+2,m,DN+2,m . We now turn to the problem
of estimating terms involving more derivatives than are controlled by DN+2,m . We accomplish such
an estimate by interpolating between DN+2,m and E2N , which controls more derivatives since N ≥ 5.
Fortunately, the only term we must concern ourselves with is D2N+4η, and to simplify things we will
only estimate it in terms of DN+2,2. This suffices since DN+2,2 . DN+2,1.

Lemma 3.18. We have the estimate

‖D2N+4η‖21/2+‖∇
2N+5η̄‖20 . (E2N )

2/(4N−7)(DN+2,2)
(4N−9)/(4N−7). (3-45)
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Proof. According to Lemma A.5, with q = 2N + 5, we may bound

‖∇
2N+5η̄‖20 . ‖η‖

2
Ḣ2N+9/2(6)

. ‖D2N+4η‖21/2, (3-46)

so it suffices to prove (3-45) with only the D2N+4η term on the left side. To prove this, we will use a
standard Sobolev interpolation inequality:

‖ f ‖s . ‖ f ‖q/(r+q)
s−r ‖ f ‖r/(r+q)

s+q (3-47)

for s, q > 0 and 0≤ r ≤ s. Applying this to f = D3η with s = 2N + 3/2, r = 1, and q = 2N − 9/2, we
find that

‖D2N+4η‖1/2 ≤ ‖D3η‖2N+3/2 . ‖D3η‖
(4N−9)/(4N−7)
2N+1/2 ‖D3η‖

2/(4N−7)
4N−3 . (3-48)

The desired inequality then follows by squaring and using the definitions of E2N and DN+2,2. �

Our next result utilizes Lemma 3.18 to estimate products such as u D2N+4η.

Lemma 3.19. Let P = P(K , η, Dη) be a polynomial in K , η, Dη. Then there exists a θ > 0 such that

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. Eθ2N DN+2,2. (3-49)

Let Q = Q(K , b̃, η̄,∇η̄) be a polynomial in K , b̃, η̄, ∇η̄. Then there exists a θ > 0 such that

‖(∇2N+5η̄)Q∇u‖20 . Eθ2N DN+2,2. (3-50)

Proof. According to the bound (A-2) of Lemma A.1, we may bound

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. ‖D2N+4η‖2H1/2(6)
‖u‖2H2(6)

+‖D2N+4η‖2H1/2(6)
‖P∇u‖2H2(6)

. (3-51)

Trace theory and Lemma A.13 (both u and D2u vanish on 6b) imply that

‖u‖2H2(6)
+‖∇u‖2H2(6)

. ‖u‖2H0(6)
+‖D2u‖2H0(6)

+‖∇u‖2H0(6)
+‖D2

∇u‖2H0(6)

. ‖∇u‖20+‖D
2
∇u‖20+‖∇

2u‖20+‖∇
2 D2u‖20, (3-52)

but then an application of Theorem 3.14 to all the terms on the right side shows that

‖u‖2H2(6)
+‖∇u‖2H2(6)

. (DN+2,2)
(1+λ)/(3+λ). (3-53)

It is easy to see, based on the terms controlled by E2N and the Sobolev embeddings, that ‖P‖2C2(6)
.

1+E2N . 1. We may then combine this with (3-53) and the easy bound ‖ f g‖2H2(6)
. ‖ f ‖2H2(6)

‖g‖2C2(6)

to deduce that

‖u‖2H2(6)
+‖P∇u‖2H2(6)

. ‖u‖2H2(6)
+‖∇u‖2H2(6)

. (DN+2,2)
(1+λ)/(3+λ). (3-54)

Then this bound, (3-51), and Lemma 3.18 imply that

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. Eθ2N Dκ
N+2,2 (3-55)



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1469

for some θ > 0 and for

κ =
4N−9
4N−7

+
λ+1
λ+3

≥
4N−9
4N−7

+
1
3
=

16N−34
12N−21

≥ 1, (3-56)

since N ≥ 4. Since DN+2,2 . E2N ≤ 1, we may bound Dκ
N+2,2 . DN+2,2 in (3-55), which then yields

(3-49).
To derive (3-50), we first bound

‖(∇2N+5η̄)Q∇u‖20 ≤ ‖∇
2N+5η̄‖20‖∇u‖2L∞‖Q‖

2
L∞ . (3-57)

The first term on the right is controlled with Lemma 3.18. The second term satisfies

‖∇u‖2L∞ . (DN+2,2)
2/3 (3-58)

by virtue of the L∞ estimates of Proposition 3.9. The third term satisfies ‖Q‖2L∞ . 1+ E2N . 1 by
Sobolev embeddings and the definition of E2N . The estimate (3-50) follows by combining these bounds
as above. �

4. Nonlinear estimates

Estimates of G i at the N + 2 level. We now provide estimates of Gi , defined by (2-24)–(2-31), in terms
of EN+2,m and DN+2,m . Recall that, for sums of space-time derivatives, we use the notation Dk

m and ∇k
m ,

as described on page 1443.

Theorem 4.1. Let m ∈ {1, 2}. Then there exists a θ > 0 such that

‖∇
2(N+2)−2
m G1

‖
2
0+‖∇

2(N+2)−2
0 G2

‖
2
1+‖D

2(N+2)−2
m G3

‖
2
1/2+‖D

2(N+2)−2
0 G4

‖
2
1/2 . Eθ2N EN+2,m (4-1)

and

‖∇
2(N+2)−1
m G1

‖
2
0+‖∇

2(N+2)−1
0 G2

‖
2
1+‖D

2(N+2)−1
m G3

‖
2
1/2

+‖D2(N+2)−1
0 G4

‖
2
1/2+‖D

2(N+2)−2∂t G4
‖

2
1/2 . Eθ2N DN+2,m . (4-2)

Proof. The estimates of these nonlinearities are fairly routine to derive: we note that all terms are quadratic
or of higher order; then we apply the differential operator and expand using the Leibniz rule; each term in
the resulting sum is also at least quadratic, and we estimate one term in H k (k = 0, 1/2, or 1 depending
on Gi ) and the other term in L∞ or H m for m depending on k, using Sobolev embeddings, trace theory,
and Lemmas A.1 and A.5–A.8. The derivative count in the differential operators is chosen in order to
allow estimation by EN+2,m in (4-1) and by DN+2,m in (4-2). There is only one difficulty that arises.
Because EN+2,m and DN+2,m involve minimal derivative counts, there may be terms in the sum ∂αGi that
cannot be directly estimated. To handle these terms, we invoke the interpolation results of Theorems 3.14
and 3.16 and Proposition 3.9, as well as the specialized interpolation results of Lemma 3.19. A detailed
proof of the estimates is quite lengthy, so for the sake of brevity we present only a sketch.

Let α ∈ N1+3 with m ≤ |α| ≤ 2(N + 2)− 2 and consider ∂αG1. Since G1 involves ∇ p and ∂βu, ∂β η̄
with |β| ≤ 2, we find that ∂αG1 involves at most (with parabolic counting) 2(N + 2)− 1 derivatives
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of p, and at most 2(N + 2) derivatives of u and η̄. We have that G1 is a linear combination of at least
quadratic terms, and as such, so is ∂αG1. Let us consider a generic term in the sum ∂αG1, which we
write as XY with X of the form ∂βu or ∂β η̄ with |β| ≤ 2(N + 2) or else ∂β p with |β| ≤ 2(N + 2)− 1,
and Y a polynomial in lower-order derivatives. If |β| is sufficiently large with respect to m, the minimal
derivative count is exceeded and we may estimate ‖X‖20 . EN+2,m . It is easy to verify, using Sobolev
embeddings and Lemmas A.1 and A.5–A.8, that we always have ‖Y‖2L∞ . Eθ2N for some θ > 0. Then

‖XY‖20 ≤ ‖X‖
2
0‖Y‖

2
L∞ . EN+2,mEθ2N . (4-3)

On the other hand, if |β| is not large, we must resort to interpolation, using Theorems 3.14 and 3.16
and Proposition 3.9. In this case, it can be verified that we always get estimates of the form ‖X‖20 .
(E2N )

1−θ1(EN+2,m)
θ1 and ‖Y‖2L∞ . (E2N )

θ2(EN+2,m)
θ3 with θ1 ∈ (0, 1], θ2, θ3 ≥ 0, and θ1+ θ3 ≥ 1, so

that
‖XY‖20 ≤ ‖X‖

2
0‖Y‖

2
L∞ . EN+2,mEθ2N (4-4)

for some θ > 0. This analysis works for every XY appearing in ∂αG1, so

‖∇
2(N+2)−2
m G1

‖
2
0 . EN+2,mEθ2N (4-5)

for some θ > 0. It can then be verified, through a straightforward but lengthy analysis like that used
above, that all of the estimates in (4-1) hold. We note, though, that in order to estimate the G3 terms, we
must use Remark 2.4 to remove the appearance of (p− η) in G3.

Now we sketch the proof of the estimates in (4-2). We may argue as above to estimate all terms
that arise in ∂αGi with two exceptions: terms involving ∇2N+5η̄ on � or D2N+4η on 6. These always
have the form of the terms estimated in Lemma 3.19, so we may use that lemma for estimates in terms
of Eθ2N DN+2,2, which suffice for (4-2) since DN+2,2 . DN+2,1. Then (4-2) follows by combining the
estimates of the exceptional terms with the estimates of the terms as above. �

Estimates of G i at the 2N level. Now we derive estimates for the nonlinear Gi terms, defined by (2-24)–
(2-31), at the 2N level. Recall that, for sums of space-time derivatives, we use the notation Dk

m and ∇k
m ,

as described on page 1443.

Theorem 4.2. Let m ∈ {1, 2}. Then there exists a θ > 0 such that

‖∇
4N−2
0 G1

‖
2
0+‖∇

4N−2
0 G2

‖
2
1+‖D

4N−2
0 G3

‖
2
1/2+‖D

4N−2
0 G4

‖
2
1/2 . E1+θ

2N , (4-6)

‖∇
4N−2
0 G1

‖
2
0+‖∇

4N−2
0 G2

‖
2
1+‖D

4N−2
0 G3

‖
2
1/2+‖D

4N−2
0 G4

‖
2
1/2+‖∇

4N−3∂t G1
‖

2
0

+‖∇
4N−3∂t G2

‖
2
1+‖D

4N−3∂t G3
‖

2
1/2+‖D

4N−2∂t G4
‖

2
1/2 . Eθ2N D2N , (4-7)

and

‖∇
4N−1G1

‖
2
0+‖∇

4N−1G2
‖

2
1+‖D

4N−1G3
‖

2
1/2+‖D

4N−1G4
‖

2
1/2 . Eθ2N D2N +KF2N . (4-8)

Proof. As explained in the proof of Theorem 4.1, the estimates are routine and lengthy, so we present only
a sketch. The estimates in (4-6) are straightforward since E2N has no minimal derivative restrictions. They
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may be derived using Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and the L∞ estimates of
Lemma A.6.

The only terms with minimal derivatives in D2N are Dη and ∇ p. The latter presents no problem, since,
owing to Remark 2.4, p itself never appears in any of the Gi terms. The former may be dealt with by
using Lemmas A.6 and A.7 to produce interpolation estimates of η̄ and η in terms of Dη. Whenever
interpolation is needed to estimate these terms, there are always other terms multiplying them that allow
for the recovery of a power of 1 on D2N . Using these estimates with Sobolev embeddings, trace theory,
and Lemmas A.1, A.5, and A.6 then yields (4-7).

We now turn to the derivation of (4-8). Consider ∂αGi with |α| = 4N − 1 and α0 = 0, that is, purely
spatial derivatives, and expand ∂αGi using the Leibniz rule. With two exceptions, we may argue as in
the derivation of (4-7) to estimate the desired norms of all of the resulting terms by Eθ2N D2N for θ > 0.
The exceptional terms are ones involving either ∇4N+1η̄ in � or D4Nη on 6. We will now show how
to estimate the exceptional terms with KF2N , as defined by (2-57) and (2-56). Identifying the product
structure KF2N is one of the key difficulties in our analysis.

In ∇4N−1G1 there are terms of the form ∂β η̄Q∂γ u, with

Q = Q(A, B, J, K ,∇A,∇B,∇ J ), (4-9)

a polynomial, and β, γ ∈N3 with |β| = 4N +1 and |γ | = 1. To estimate such a term, we use Lemma A.5
to bound

‖∇
4N+1η̄‖20 . ‖D

4N+1/2η‖20 . F2N . (4-10)

Sobolev embeddings imply that ‖Q‖2L∞ . 1+Eθ2N . 1 for some θ > 0, so

‖∂β η̄Q∂γ u‖20 . ‖∇
4N+1η̄‖20‖∇u‖2L∞‖Q‖

2
L∞ . ‖D

4N+1/2η‖20‖∇u‖2L∞ . F2N K. (4-11)

This estimate then yields the G1 estimate in (4-8).
In ∇4N−1G2 there are terms of the form ∂β η̄Q∂γ u with Q= Q(A, B, K ), a polynomial, and β, γ ∈N3

with |β| = 4N , |γ | = 1. Again, Sobolev embeddings imply that ‖Q‖2C1(�)
. 1+Eθ2N . 1, so

‖∂β η̄Q∂γ u‖21 . ‖Q‖
2
C1(�)
‖∂β η̄∂γ u‖21 . ‖∂

β η̄∂γ u‖20+‖∂
β η̄∇∂γ u‖20+‖∇∂

β η̄∂γ u‖20

. ‖∇4N η̄‖20‖∇u‖2C1(�)
+‖∇

4N+1η̄‖20‖∇u‖2L∞

. ‖η‖24N−1/2‖∇u‖23+KF2N . E2N D2N +KF2N , (4-12)

where again we have used Lemma A.5 and Sobolev embeddings. This estimate yields the G2 estimate in
(4-8).

In D4N−1G3 there are terms of the form ∂βηQ∂γ u, where β ∈N2 with |β| = 4N , γ ∈N3 with |γ | = 1,
and Q is a term for which we can estimate ‖Q‖2C1(6)

. 1+Eθ2N . 1. Then Lemma A.2 implies that

‖∂βηQ∂γ u‖2H1/2(6)
. ‖∂βη‖21/2‖Q∂

γ u‖2C1 . ‖η‖
2
4N+1/2‖Q‖

2
C1‖∇u‖2C1(6)

. F2N K, (4-13)

where in the last inequality we have used ‖∇u‖2C1(6)
.K, which follows since ∇u and ∇2u are continuous

on the closure of �. This estimate yields the G3 estimate in (4-8).
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In D4N−1G4 the exceptional terms are of the form ∂βηui , where β ∈ N2 with |β| = 4N and i = 1, 2.
Then Lemma A.1 implies that

‖∂βηu1‖
2
H1/2(6)

. ‖∂βη‖21/2‖ui‖
2
H2(6)

. F2N K. (4-14)

This estimate yields the G4 estimate in (4-8). �

Estimates of other nonlinearities. The next result provides estimates for IλGi and its derivatives.

Proposition 4.3. We have

‖IλG1
‖

2
2+‖Iλ∂t G1

‖
2
0+‖IλG2

‖
2
2+‖Iλ∂t G2

‖
2
0 . E2N min{E2N ,D2N }, (4-15)

‖IλG3
‖

2
1+‖IλG4

‖
2
1 . E2N min{E2N ,D2N }, (4-16)

‖IλG4
‖

2
0 . D2

2N . (4-17)

Proof. For each i = 1, 2 and for α ∈ N1+3 such that |α| ≤ 2, we can write ∂αGi
= P i

αQi
α, where P i

α is
polynomial in the terms ∂β b̃, ∂βK , ∂β η̄, and ∂βu for β ∈N1+3 with |β| ≤ 4, and Qi

α is linear in the terms
∂β∇u, ∂β∇2u, and ∂β∇ p for |β| ≤ 2. Then we may employ the bound (A-9) of Lemma A.3 to see that

‖∂αIλGi
‖

2
0 . ‖P

i
α‖

2
0(‖Q

i
α‖

2
1)
λ(‖DQi

α‖
2
1)

1−λ. (4-18)

It is then easily verified, using the Sobolev embedding, Lemmas A.1 and A.5–A.6, and the fact that
E2N ≤ 1, that

‖P i
α‖

2
0 . E2N and ‖Qi

α‖
2
2 .min{E2N ,D2N }, (4-19)

which, together with (4-18), implies (4-15).
For i = 3, 4 and α ∈ N2 such that |α| ≤ 1, we may similarly decompose ∂αGi

= P i
αQi

α. When i = 3
we must also employ Remark 2.4 to replace the p− η term. We then argue as above, employing the
bound (A-10) of Lemma A.3 as well as trace estimates, to deduce (4-16). The bound (4-17) also follows
from Lemma A.3 and trace estimates, since

‖IλG4
‖

2
0 . ‖u‖

2
H0(6)

(‖Dη‖20)
λ(‖D2η‖20)

1−λ . D2N Dλ
2N D1−λ

2N = D2
2N . �

Now we provide some further estimates of product terms that will be useful later when we analyze the
energy evolution for Iλu and Iλη.

Lemma 4.4. Let A, B, K be as defined in (1-8). We have

‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖
2
0+

2∑
i=1

‖Iλ[u∂i K ]‖20 . D2
2N (4-20)

and

‖Iλ[(1− K )u]‖20 . (E2N )
1/(1+λ) (D2N )

(1+2λ)/(1+λ) . (4-21)

Also, if G2 is as defined in (2-29), then

‖Iλ[(1− K )G2
]‖

2
0 . E2N D2

2N . (4-22)
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Proof. We apply Lemma A.3, treating the AK , BK , ∂i K terms as f and the u,∇u terms as g, to bound

‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖
2
0+

2∑
i=1

‖Iλ[u∂i K ]‖20 . (‖AK‖20+‖BK‖20+‖DK‖20)‖u‖
2
3. (4-23)

From Lemma 2.6, the fact that ∂i K =−K 2∂i J , and Lemma A.5, we know that

‖AK‖20+‖BK‖20+‖DK‖20 . ‖∇η̄‖
2
1 . ‖Dη‖

2
1 ≤ D2N . (4-24)

Then, since ‖u‖23 ≤ D2N , we know that (4-20) holds.
Now, since 1− K = K (J − 1), we can again use Lemmas A.3 and 2.6 to see that

‖Iλ[(1− K )u]‖20 . ‖K (1− J )‖20‖u‖
2
2 . ‖η̄‖

2
1‖u‖

2
2. (4-25)

To control η̄ we use Lemmas A.5 and A.7 to bound

‖η̄‖21 . ‖η‖
2
0+‖Dη‖

2
0 . (‖Iλη‖

2
0)

1/(1+λ)(‖Dη‖20)
λ/(1+λ)

+ (‖Dη‖20)
1/(1+λ)(‖Dη‖20)

λ/(1+λ)

. (E2N )
1/(1+λ)(D2N )

λ/(1+λ). (4-26)

Then (4-21) follows from these two estimates and the fact that ‖u‖22 ≤ D2N .
For the estimate of the (1− K )G2 term, we once more use Lemma A.3 to see that

‖Iλ[(1− K )G2
]‖

2
0 . ‖G

2
‖

2
0‖1− K‖22. (4-27)

By differentiating the equation J K = 1, we may compute the derivatives of K in terms of the derivatives
of J ; this allows us to bound, by virtue of Lemmas 2.6 and A.5,

‖1− K‖22 . ‖η̄‖
2
3 . ‖η‖

2
5/2 . ‖η‖

2
0+‖Dη‖

2
3/2. (4-28)

Then we may argue as in (4-26) to estimate the right side of this inequality, and we deduce that

‖1− K‖22 . (E2N )
1/(1+λ)(D2N )

λ/(1+λ). (4-29)

On the other hand, from the definition of G2 in (2-29), we see that

‖G2
‖

2
0 . ‖∇u‖20(‖η̄‖

2
L∞ +‖∇η̄‖

2
L∞). (4-30)

We estimate the L∞ norms by using (A-25) of Lemma A.6 first with q = 0, s = 1, r = λ2
+ λ and then

with q = 1, s = 1, r = λ2
+ 2λ to see that

‖η̄‖2L∞ +‖∇η̄‖
2
L∞ . (‖Iλη‖

2
0)
λ/(λ+1)(‖Dη‖20)

1/(λ+1)
+ (‖Iλη‖

2
0)
λ/(λ+1)(‖D2η‖20)

1/(λ+1)

≤ (E2N )
λ/(λ+1)(D2N )

1/(λ+1). (4-31)

Then, since ‖∇u‖20 ≤ D2N , we have

‖G2
‖

2
0 . (E2N )

λ/(λ+1)(D2N )
1+1/(λ+1), (4-32)

which yields (4-22) when combined with (4-27) and (4-29). �
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Now we provide an estimate of ∂ j
t A when j = 2N + 1 and when j = N + 3.

Lemma 4.5. Let A be given by (1-7). We have

‖∂2N+1
t A‖20 . D2N , (4-33)

while for m = 1, 2,

‖∂N+3
t A‖20 . DN+2,m . (4-34)

Proof. We will only prove (4-33); the bound (4-34) follows from similar analysis. Since ‖∂2N+1
t η‖21/2 ≤

D2N and temporal derivatives commute with the Poisson integral, we may employ Lemma A.5 to bound

‖∂2N+1
t η̄‖21 = ‖∂

2N+1
t η̄‖20+‖∇∂

2N+1
t η̄‖20 . ‖∂

2N+1
t η‖21/2 ≤ D2N . (4-35)

From this we easily deduce that

‖∂2N+1
t J‖20+‖∂

2N+1
t K‖20 . D2N . (4-36)

This, the previous bound, and the Sobolev embeddings then imply (4-33) since the components of A are
either unity, K , −∂1η̄b̃K , or −∂2η̄b̃K . �

5. Energy evolution using the geometric form

Estimates of the perturbations when ∂α = ∂
α0
t is applied to (1-9). We now present estimates of the

perturbations F i , defined by (2-13)–(2-22) when ∂α = ∂2N
t .

Theorem 5.1. Let ∂α = ∂2N
t and let F1, F2, F3, F4 be defined by (2-13)–(2-22). Then

‖F1
‖

2
0+‖∂t(J F2)‖20+‖F

3
‖

2
0+‖F

4
‖

2
0 . E2N D2N . (5-1)

Proof. We first consider the F1 estimate. Each term in the sums that define F1 is at least quadratic. It
is straightforward to see that each such term can be written in the form XY , where X involves fewer
temporal derivatives than Y , and we may use the usual Sobolev embeddings and Lemmas A.1 and A.5
along with the definitions of E2N and D2N (given in (2-50) and (2-51), respectively) to estimate

‖X‖2L∞ . E2N and ‖Y‖20 . D2N . (5-2)

Then ‖XY‖20 ≤ ‖X‖
2
L∞‖Y‖

2
0 . E2N D2N , and the F1 estimate in (5-1) follows by summing. A similar

argument, also employing trace estimates, yields the F3 and F4 estimates in (5-1). Note though, that to
estimate the β = α term in F3,1 we use Remark 2.4 to replace (p− η).

The same analysis also works for ∂t(J F2,1) and shows that ‖∂t(J F2,1)‖20 . E2N D2N . To handle
∂t(J F2,2) we must also be able to estimate ‖∂2N+1

t A‖20 . D2N , but this is possible due to Lemma 4.5.
Then a similar splitting into L∞ and H 0 estimates shows that ‖∂t(J F2,2)‖20 . E2N D2N , and then the
∂t(J F2) estimate in (5-1) follows since F2

= F2,1
+ F2,2. �

We now present estimates for these perturbations when ∂α = ∂N+2
t .
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Theorem 5.2. Let ∂α = ∂N+2
t and let F1, F2, F3, F4 be defined by (2-13)–(2-22). Then, for m = 1, 2,

we have

‖F1
‖

2
0+‖∂t(J F2)‖20+‖F

3
‖

2
0+‖F

4
‖

2
0 . E2N DN+2,m . (5-3)

Also, if N ≥ 3, there exists a θ > 0 such that

‖F2
‖

2
0 . Eθ2N EN+2,m (5-4)

for m = 1, 2.

Proof. The proof of (5-3) is essentially the same as that of Theorem 5.1. For the F1, F3, and F4 estimates
we note that each term in their definition is of the form XY where X involves fewer temporal derivatives
than Y , which involves at least two temporal derivatives. We estimate ‖X‖2L∞ . E2N and ‖Y‖20 .DN+2,m

and then sum to get (5-3). Note that since Y involves at least two temporal derivatives, there is no problem
estimating it in terms of DN+2,m . The ∂t(J F2) estimate works similarly, except we must also use the
bound (4-34) from Lemma 4.5. Note also that in estimating the β = α term in F3,1, we must employ
Remark 2.4 to remove (p− η).

We now turn to the proof of (5-4). Recall that F2
= F2,1

+ F2,2, as defined in (2-19). Since the sum
in F2,1 runs over 1≤ β ≤ N + 1, we may bound

‖F2,1
‖

2
0 .

∑
1≤β≤N+1

‖∂
β
t A‖2L∞‖∂

N+2−β
t u‖21 .

∑
1≤β≤N+1

E2N‖∂
N+2−β
t u‖22(N+2)−2(N+2−β)

. E2N EN+2,m . (5-5)

For F2,2, a calculation reveals that

F2,2
=−∂N+2

t Ai j∂ j ui=−∂
N+2
t Ai3∂3ui=∂

N+2
t (∂1η̄b̃K )∂3u1+∂

N+2
t (∂2η̄b̃K )∂3u2−∂

N+2
t K∂3u3. (5-6)

We may use the L∞ interpolation estimate of Proposition 3.9 to bound ‖∂3ui‖
2
L∞ . EN+2,m for i = 1, 2

and m = 1, 2, which then implies that

‖∂N+2
t (∂1η̄b̃K )∂3u1+ ∂

N+2
t (∂2η̄b̃K )∂3u2‖

2
0 . E2N EN+2,m (5-7)

if we estimate ∂3ui in L∞ and the ∂N+1
t terms in H 0. On the other hand, the relation J K = 1 (recall the

definition in (1-8)), the Leibniz rule, and Lemma A.5 imply that

‖∂N+2
t K‖20 .

∑
1≤γ≤N+2

‖∂
γ
t J‖20 .

∑
1≤γ≤N+2

‖∂
γ
t η̄‖

2
1 .

∑
1≤γ≤N+2

‖∂
γ
t η‖

2
1/2

=

∑
1≤γ≤N+1

‖∂
γ
t η‖

2
1/2+‖∂

N+2
t η‖21/2 . EN+2,m +‖∂

N+2
t η‖21/2. (5-8)

To handle the last term we must use the standard Sobolev interpolation (3-47) with s = r = 1/2 and
q = 2N − 9/2:

‖∂N+2
t η‖21/2 . (‖∂

N+2
t η‖20)

κ(‖∂N+2
t η‖22N−4)

1−κ . (EN+2,m)
κ(E2N )

1−κ (5-9)
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for κ = (4N − 9)/(4N − 8). Then

‖∂N+2
t K∂3u3‖

2
0 ≤ ‖∂

N+2
t K‖20‖∂3u3‖

2
L∞ . EN+2,m‖∂3u3‖

2
L∞ + (EN+2,m)

κ(E2N )
1−κ
‖∂3u3‖

2
L∞ . (5-10)

For the first term on the right we bound ‖∂3u3‖
2
L∞ . E2N , and for the second we use the L∞ interpolation

bound of Proposition 3.9 with r = 1/2, so that 2/(2+r)= 4/5≥ 1−κ and ‖∂3u3‖
2
L∞ .E

2/(2+r)
N+2,m .E1−κ

N+2,m .
Then these estimates and (5-10) imply that

‖∂N+2
t K∂3u3‖

2
0 . EN+2,m(E2N )

1−κ . (5-11)

We then combine (5-6), (5-7), and (5-11) to see that

‖F2,2
‖

2
0 . EN+2,m(E2N )

1−κ . (5-12)

Then the estimate (5-4) follows from (5-5) and (5-12). �

Energy evolution with the highest and lowest count of temporal derivatives. We now show the time-
integrated evolution estimate for 2N temporal derivatives.

Proposition 5.3. There exists a θ > 0 such that

‖∂2N
t u(t)‖20+‖∂

2N
t η(t)‖20+

∫ t

0
‖D∂2N

t u‖20 . E2N (0)+ (E2N (t))3/2+
∫ t

0
Eθ2N D2N . (5-13)

Proof. We apply ∂α = ∂2N
t to (1-9). Then v = ∂2N

t u, q = ∂2N
t p, and ζ = ∂2N

t η solve (2-1) with F i ,
i = 1, 2, 3, 4, given by (2-13)–(2-22). Applying Lemma 2.2 (and Remark 2.3) to these functions and then
integrating in time from 0 to t gives

1
2

∫
�

J |∂2N
t u(t)|2+ 1

2

∫
6

|∂2N
t η(t)|2+ 1

2

∫ t

0

∫
�

J |DA∂
2N
t u|2

=
1
2

∫
�

J |∂2N
t u(0)|2+1

2

∫
6

|∂2N
t η(0)|2+

∫ t

0

∫
�

J (∂2N
t u·F1

+∂2N
t pF2)+

∫ t

0

∫
6

−∂2N
t u·F3

+∂2N
t ηF4. (5-14)

Here, because of Remark 2.3, we understand that this formula actually holds with∫ t

0

∫
�

∂2N
t pJ F2

:= −

∫ t

0

∫
�

∂2N−1
t p∂t(J F2)+

∫
�

(∂2N−1
t pJ F2)(t)−

∫
�

(∂2N−1
t pJ F2)(0). (5-15)

We will estimate all of the terms involving F i on the right side of this equation.
We begin with the F1 term. According to Theorem 5.1 and Lemma 2.6, we may bound∫ t

0

∫
�

J∂2N
t u · F1

≤

∫ t

0
‖∂2N

t u‖0‖J‖L∞‖F1
‖0 .

∫ t

0

√
D2N

√
E2N D2N =

∫ t

0

√
E2N D2N . (5-16)

Similarly, we use Theorem 5.1 and trace theory to handle the F3 and F4 terms:∫ t

0

∫
6

−∂2N
t u · F3

+ ∂2N
t ηF4

≤

∫ t

0
‖∂2N

t u‖H0(6)‖F
3
‖0+‖∂

2N
t η‖0‖F4

‖0

.
∫ t

0
(‖∂2N

t u‖1+‖∂2N
t η‖0)

√
E2N D2N .

∫ t

0

√
E2N D2N . (5-17)
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According to Theorem 5.1 we may estimate

−

∫ t

0

∫
�

∂2N−1
t p∂t(J F2).

∫ t

0
‖∂2N−1

t p‖0‖∂t(J F2)‖0.
∫ t

0

√
D2N

√
E2N D2N =

∫ t

0

√
E2N D2N . (5-18)

On the other hand, it is easy to verify using the Sobolev embeddings that∫
�

(∂2N−1
t pJ F2)(t)−

∫
�

(∂2N−1
t pJ F2)(0). E2N (0)+ (E2N (t))3/2. (5-19)

Hence ∫ t

0

∫
�

∂2N
t pJ F2 . E2N (0)+ (E2N (t))3/2+

∫ t

0

√
E2N D2N . (5-20)

Now we combine (5-16), (5-17), and (5-20) to deduce that

1
2

∫
�

J |∂2N
t u(t)|2+ 1

2

∫
6

|∂2N
t η(t)|2+ 1

2

∫ t

0

∫
�

J |DA∂
2N
t u|2

. E2N (0)+ (E2N (t))3/2+
∫ t

0

√
E2N D2N . (5-21)

We now seek to replace J |DA∂
2N
t u|2 with |D∂2N

t u|2 and J |∂2N
t u(t)|2 with |∂2N

t u(t)|2 in (5-21). To
this end, we write

J |DA∂
2N
t u|2 = |D∂2N

t u|2+ (J − 1)|D∂2N
t u|2+ J (DA∂

2N
t u+D∂2N

t u) : (DA∂
2N
t u−D∂2N

t u) (5-22)

and estimate the last three terms on the right side. For the last term we note that

(DA∂
2N
t u±D∂2N

t u)i j = (Aik ± δik)∂k∂
2N
t u j + (A jk ± δ jk)∂k∂

2N
t ui , (5-23)

so that Sobolev embeddings and Lemma A.5 provide the bounds

|DA∂
2N
t u−D∂2N

t u|.
√

E2N |∇∂
2N
t u| and |DA∂

2N
t u+D∂2N

t u|. (1+
√

E2N )|∇∂
2N
t u|. (5-24)

We then get∫ t

0

∫
�

|J (DA∂
2N
t u+D∂2N

t u) : (DA∂
2N
t u−D∂2N

t u)|

.
∫ t

0
(
√

E2N +E2N )

∫
�

|∇∂2N
t u|2 .

∫ t

0

√
E2N D2N . (5-25)

Similarly,∫ t

0

∫
�

|J − 1||D∂2N
t u|2 .

∫ t

0

√
E2N D2N and

∫
�

|J − 1||∂2N
t u(t)|2 . (E2N (t))3/2. (5-26)

We may then use (5-22) and (5-25)–(5-26) to replace in (5-21) and derive the bound (5-13). �

Now we prove a similar result for when ∂N+2
t is applied. This time, however, we do not want an

inequality that is integrated in time, so we are forced to introduce an error term involving ∂N+1
t p.
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Proposition 5.4. Let F2 be given by (2-19) with ∂α = ∂N+2
t . Then

∂t

(
‖
√

J∂N+2
t u‖20+‖∂

N+2
t η‖20− 2

∫
�

J∂N+1
t pF2

)
+‖D∂N+2

t u‖20 .
√

E2N DN+2,m . (5-27)

Proof. We apply ∂α = ∂N+2
t to (1-9). Then v = ∂N+2

t u, q = ∂N+2
t p, and ζ = ∂N+2

t η solve (2-1) with F i ,
i = 1, 2, 3, 4, given by (2-13)–(2-22). Applying Lemma 2.2 to these functions gives

∂t

(
1
2

∫
�

J |∂N+2
t u|2+ 1

2

∫
6

|∂N+2
t η|2

)
+

1
2

∫
�

J |DA∂
N+2
t u|2

=

∫
�

J (∂N+2
t u · F1

+ ∂N+2
t pF2)+

∫
6

−∂N+2
t u · F3

+ ∂N+2
t ηF4. (5-28)

We will estimate all of the terms involving F i on the right side of this equation as in Proposition 5.3.
We begin with the F1 term. According to Theorem 5.2 and Lemma 2.6, we may bound∫

�

J∂N+2
t u · F1

≤ ‖∂N+2
t u‖0‖J‖L∞‖F1

‖0 .
√

DN+2,m
√

E2N DN+2,m =
√

E2N DN+2,m . (5-29)

Similarly, we use Theorem 5.2 and trace theory to handle the F3 and F4 terms:∫
6

−∂N+2
t u · F3

+ ∂N+2
t ηF4

≤ ‖∂N+2
t u‖H0(6)‖F

3
‖0+‖∂

N+2
t η‖0‖F4

‖0

. (‖∂N+2
t u‖1+‖∂N+2

t η‖0)
√

E2N DN+2,m .
√

E2N DN+2,m . (5-30)

For the term ∂N+2
t pF2, there is one more time derivative on p than can be controlled by DN+2,m . We

are then forced to pull out a time derivative:∫
�

∂N+2
t pJ F2

= ∂t

∫
�

∂N+1
t pJ F2

−

∫
�

∂N+1
t p∂t(J F2). (5-31)

Then, according to Theorem 5.2, we may estimate

−

∫
�

∂N+1
t p∂t(J F2)≤ ‖∂N+1

t p‖0‖∂t(J F2)‖0 .
√

DN+2,m
√

E2N DN+2,m =
√

E2N DN+2,m . (5-32)

Hence ∫ t

0

∫
�

∂2N
t pJ F2 . ∂t

∫
�

∂N+1
t pJ F2

+

√
E2N DN+2,m . (5-33)

Now we combine (5-28)–(5-30) and (5-33) to deduce that

∂t

(
1
2

∫
�

J |∂N+2
t u|2+ 1

2

∫
6

|∂N+2
t η|2−

∫
�

∂N+1
t pJ F2

)
+

1
2

∫
�

J |DA∂
N+2
t u|2.

√
E2N DN+2,m . (5-34)

We may argue as in (5-22)–(5-26) of Proposition 5.3 to show that

1
2

∫
�

|D∂N+2
t u|2 . 1

2

∫
�

J |DA∂
N+2
t u|2+

√
E2N DN+2,m . (5-35)

Then (5-27) follows from (5-34) and (5-35). �
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Finally, we record the basic energy estimate when no derivatives are applied.

Proposition 5.5. We have

∂t

(
1
2

∫
�

J |u|2+ 1
2

∫
6

|η|2
)
+

1
2

∫
�

J |DAu|2 = 0. (5-36)

In particular,

‖u(t)‖20+‖η(t)‖
2
0+

∫ t

0
‖Du‖20 . E2N (0)+

∫ t

0

√
E2N D2N . (5-37)

Proof. Setting v = u, q = p, ζ = η, and F i
= 0 for i = 1, 2, 3, 4 in Lemma 2.2 yields (5-36). We may

argue as in (5-22)–(5-26) of Proposition 5.3 to estimate

1
2

∫
�

|Du|2 . 1
2

∫
�

J |DAu|2+
√

E2N D2N . (5-38)

Similarly, Lemma 2.6 allows us to estimate

1
4

∫
�

|u|2 ≤ 1
2

∫
�

J |u|2. (5-39)

Now we may integrate (5-36) in time from 0 to t and use these two estimates to derive (5-37). �

6. Energy evolution in the perturbed linear form

Energy evolution for horizontal derivatives. We now estimate how the evolution of the horizontal energy
is coupled to the horizontal dissipation and the full energy and dissipation. Recall that F2N is as defined
in (2-56) and K is as defined in (2-57).

Lemma 6.1. Let α ∈ N2 be such that |α| = 4N , that is, let ∂α be 4N spatial derivatives in the x1, x2

directions. Let G4 be as defined by (2-31). Then∣∣∣∣∫
6

∂αη∂αG4
∣∣∣∣.√E2N D2N +

√
D2N KF2N . (6-1)

Proof. Throughout the proof β will always denote an element of N2, and we will write

D f · ∂βu = ∂1 f ∂βu1+ ∂2 f ∂βu2

for a function f defined on 6. Then by the Leibniz rule, we have

−∂αG4
= ∂α(Dη · u)= D∂αη · u+

∑
0<β≤α
|β|=1

Cα,βD∂α−βη · ∂βu+
∑

0<β≤α
|β|≥2

Cα,βD∂α−βη · ∂βu (6-2)

for constants Cα,β depending on α and β. We will analyze each of the three terms on the right separately.
For the first term, we integrate by parts to see that∫

6

∂αηD∂αη · u = 1
2

∫
6

D|∂αη|2 · u =−1
2

∫
6

∂αη∂αη(∂1u1+ ∂2u2). (6-3)



1480 YAN GUO AND IAN TICE

This then allows us to use (A-3) of Lemma A.1 to bound∣∣∣∣∫
6

∂αηD∂αη · u
∣∣∣∣. ‖∂αη‖1/2‖∂αη(∂1u1+ ∂2u2)‖H−1/2(6)

. ‖η‖4N+1/2‖∂
αη‖−1/2‖∂1u1+ ∂2u2‖H2(6)

. ‖η‖4N+1/2‖Dη‖4N−3/2‖∂1u1+ ∂2u2‖H2(6) ≤

√
F2N D2N K. (6-4)

Similarly, for the second term we estimate∣∣∣∣∫
6

∂αη
∑

0<β≤α
|β|=1

Cα,βD∂α−βη · ∂βu
∣∣∣∣. ‖D4Nη‖1/2‖D4Nη‖−1/2

2∑
i=1

‖Dui‖H2(6)

. ‖η‖4N+1/2‖Dη‖4N−3/2

2∑
i=1

‖Dui‖H2(6) ≤

√
F2N D2N K. (6-5)

For the third term we first note that ‖∂αη‖−1/2 . ‖Dη‖4N−3/2 ≤
√

D2N , which allows us to bound∣∣∣∣∫
6

∂αηD∂α−βη · ∂βu
∣∣∣∣≤ ‖∂αη‖−1/2‖D∂α−βη · ∂βu‖H1/2(6) .

√
D2N‖D∂α−βη · ∂βu‖H1/2(6). (6-6)

We estimate the last term on the right using Lemma A.1 and trace theory, but in different ways depending
on |β|:

‖D∂α−βη · ∂βu‖H1/2(6) .

{
‖D∂α−βη‖1/2‖∂βu‖H2(6) for 2≤ |β| ≤ 2N ,
‖D∂α−βη‖2‖∂βu‖H1/2(6) for 2N + 1≤ |β| ≤ 4N

.

{
‖Dη‖4N−3/2‖u‖2N+3 for 2≤ |β| ≤ 2N ,
‖Dη‖2N+1‖u‖4N+1 for 2N + 1≤ |β| ≤ 4N ,

(6-7)

so that ‖D∂α−βη · ∂βu‖H1/2(6) .
√

E2N D2N for all 0< β ≤ α with |β| ≥ 2. Hence∣∣∣∣∫
6

∂αη
∑

0<β≤α
|β|≥2

Cα,βD∂α−βη · ∂βu
∣∣∣∣.√D2N

√
E2N D2N =

√
E2N D2N . (6-8)

The estimate (6-1) then follows from (6-4), (6-5), and (6-8). �

Now we prove an estimate for horizontal derivatives up to order 2N , excluding ∂α = ∂2N
t and no

derivatives. Recall that we use the conventions for sums of derivatives described on page 1443.

Proposition 6.2. Suppose that α ∈ N1+2 is such that α0 ≤ 2N − 1 and 1≤ |α| ≤ 4N. Then there exists a
θ > 0 such that

∂t

(
1
2

∫
�

|∂αu|2+ 1
2

∫
6

|∂αη|2
)
+

1
2

∫
�

|D∂αu|2 . Eθ2N D2N +
√

D2N KF2N , (6-9)
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and, in particular,

‖D4N−1
1 u(t)‖20+‖DD4N−1u(t)‖20+‖D

4N−1
1 η(t)‖20+‖DD4N−1η(t)‖20

+

∫ t

0
‖D4N−1

1 Du‖20+‖DD4N−1Du‖20 . E2N (0)+
∫ t

0
Eθ2N D2N +

√
D2N KF2N . (6-10)

Proof. Let α ∈N1+2 satisfy α0 ≤ 2N −1 and 1≤ |α| ≤ 4N . Note that the constraint on α0 implies that we
do not exceed the number of temporal derivatives of p that we can control. An application of Lemma 2.5
to v = ∂αu, q = ∂α p, ζ = ∂αη with 81

= ∂αG1, 82
= ∂αG2, 83

= ∂αG3, 84
= ∂αG4, and a = 1 reveals

that

∂t

(
1
2

∫
�

|∂αu|2+ 1
2

∫
6

|∂αη|2
)
+

1
2

∫
�

|D∂αu|2

=

∫
�

∂αu · (∂αG1
−∇∂αG2)+ ∂α p∂αG2

+

∫
6

−∂αu · ∂αG3
+ ∂αη∂αG4. (6-11)

Assume initially that 1≤ |α| ≤ 4N−1. Then according to the estimates (4-7) and (4-8) of Theorem 4.2
and the definition of D2N , we have∣∣∣∣∫
�

∂αu ·(∂αG1
−∇∂αG2)+∂α p∂αG2

∣∣∣∣≤‖∂αu‖0(‖∂αG1
‖0+‖∂

αG2
‖1)+‖∂

α p‖0‖∂αG2
‖0

.
√

D2N

√
Eθ2N D2N+KF2N .Eκ2N D2N+

√
D2N KF2N , (6-12)

where in the last equality we have written κ = θ/2 for θ > 0 the number provided by Theorem 4.2.
Similarly, we may use Theorem 4.2 along with the trace estimate ‖∂αu‖H0(6) . ‖∂

αu‖1 ≤
√

D2N to get∣∣∣∣∫
6

−∂αu · ∂αG3
+ ∂αη∂αG4

∣∣∣∣≤ ‖∂αu‖H0(6)‖∂
αG3
‖0+‖∂

αη‖0‖∂
αG4
‖0

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N .

(6-13)

Now assume that |α| = 4N . Since α0 ≤ 2N − 1, we may write α = β+ (α−β) for some β ∈N2 with
|β| = 1, that is, ∂α involves at least one spatial derivative. Since |α−β| = 4N − 1, we can then integrate
by parts and use (4-7) and (4-8) of Theorem 4.2 to see that∣∣∣∣∫
�

∂αu · (∂αG1
−∇∂αG2)

∣∣∣∣= ∣∣∣∣∫
�

∂α+βu · (∂α−βG1
−∇∂α−βG2)

∣∣∣∣
≤ ‖∂α+βu‖0

(
‖∂α−βG1

‖0+‖∂
α−βG2

‖1
)
≤ ‖∂αu‖1

(
‖∇

4N−1G1
‖0+‖∇

4N−1G2
‖1
)

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-14)

For the pressure term we do not need to integrate by parts; Theorem 4.2 provides the estimate∣∣∣∣∫
�

∂α p∂αG2
∣∣∣∣≤ ‖∂α p‖0‖∂α−β∂βG2

‖0 ≤ ‖∂
α p‖0‖∇4N−1G2

‖1

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-15)
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Next, we integrate by parts, employ Theorem 4.2, and use the trace estimate H 1(�) ↪→ H 1/2(6) to get∣∣∣∣∫
6

∂αu · ∂αG3
∣∣∣∣= ∣∣∣∣∫

6

∂α+βu · ∂α−βG3
∣∣∣∣≤ ‖∂α+βu‖H−1/2(6)‖∂

α−βG3
‖1/2

. ‖∂αu‖H1/2(6)‖D
4N−1G3

‖1/2 . ‖∂
αu‖1‖D4N−1G3

‖1/2

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N .

(6-16)

For the term ∂αη∂αG4 we must split into two cases: α0 ≥ 1 and α0 = 0. In the former case, there is at
least one temporal derivative in ∂α, so ‖∂αη‖1/2 ≤

√
D2N , and hence Theorem 4.2 allows us to bound∣∣∣∣∫

6

∂αη∂αG4
∣∣∣∣= ∣∣∣∣∫

6

∂α+βη∂α−βG4
∣∣∣∣≤ ‖∂α+βη‖−1/2‖∂

α−βG4
‖1/2 . ‖∂

αη‖1/2‖D4N−1G4
‖1/2

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-17)

In the latter case, α0 = 0, so that ∂α involves only spatial derivatives; in this case we use Lemma 6.1 to
bound ∣∣∣∣∫

6

∂αη∂αG4
∣∣∣∣.√E2N D2N +

√
D2N KF2N . (6-18)

Now, in light of (6-11)–(6-18), we know that (6-9) holds. The bound (6-10) follows by applying (6-9)
to all 1≤ |α| ≤ 4N with α0 ≤ 2N − 1, summing, and integrating in time from 0 to t . �

Our next result provides some preliminary interpolation estimates for G2 and G4 in terms of DN+2,m ,
as defined in (2-54) and (2-55), but with a power greater than 1.

Lemma 6.3. Let G4 be as defined in (2-31). We have the estimate

‖D2N+3G4
‖

2
1/2 . (DN+2,2)

1+2/(4N−7). (6-19)

Also, there exists a θ > 0 such that

‖DG4
‖

2
0 . Eθ2N (DN+2,1)

1+1/(λ+2) and ‖D2G4
‖

2
0 . Eθ2N (DN+2,2)

1+1/(λ+3). (6-20)

Finally,

‖DG2
‖

2
L1 . Eθ2N (DN+2,1)

1+λ/(λ+2) and ‖D2G2
‖

2
L1 . Eθ2N (DN+2,2)

1+λ/(λ+3). (6-21)

Proof. Let α ∈N2 be such that |α| = 2(N +2)−1. The Leibniz rule, Lemma A.1, and trace theory imply

‖∂αG4
‖1/2 .

∑
β≤α
|β|≤N+2

‖D∂βη‖2‖∂α−βu‖H1/2(6)+

∑
β≤α

N+3≤|β|≤2N+3

‖D∂βη‖1/2‖∂α−βu‖H2(6)

. ‖Dη‖N+4‖D2N+3
N+1 u‖1+‖D3η‖2(N+2)−5/2‖u‖H N+2(6). (6-22)
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Trace theory, Poincaré’s inequality, the H 0(�) interpolation result for ∇u of Theorem 3.14, and the
fact that ‖DN+2u‖21 ≤min{E2N ,DN+2,2} imply that

‖u‖2H N+2(6)
. ‖u‖2H0(6)

+‖DN+2u‖2H0(6)
. ‖∇u‖20+‖D

N+2u‖21

. D
(λ+1)/(λ+3)
N+2,2 + (E2N )

2/(λ+3)(DN+2,2)
(λ+1)/(λ+3) . D

(λ+1)/(λ+3)
N+2,2 . (6-23)

Let us now choose q so that
λ+1
λ+3

+
q

q + 1
= 1+ 2

4N−7
. (6-24)

Since N ≥ 5 and λ ∈ (0, 1), we may find such a q = q(λ) with dq(λ)/dλ≤ 0 for λ ∈ (0, 1):

q = 8N+2λ−8
4N (1+λ)−9λ−13

∈

[ 8N−6
8N−22

,
8N−8
4N−13

]
⊂ [1, 2N − 9/2]. (6-25)

Using this q , r = 1, and s = 2(N + 2)− 5/2 in the standard Sobolev interpolation inequality (3-47), we
find that

‖D3η‖22(N+2)−5/2 . (‖D
3η‖22(N+2)−7/2)

q/(1+q)(‖D3η‖22(N+2)−5/2+q)
1/(1+q)

. (DN+2,2)
q/(1+q)(E2N )

1/(1+q) . (DN+2,2)
q/(1+q).

(6-26)

Now (6-23), (6-26), and the choice of q imply that

‖D3η‖22(N+2)−5/2‖u‖
2
H N+2(6)

. (DN+2,2)
1+2/(4N−7). (6-27)

The fact that ‖D3η‖2N+2≤min{E2N ,DN+2,2} and the H 0(6) interpolation result for Dη of Lemma 3.1
imply that

‖Dη‖2N+4 . ‖Dη‖
2
0+‖D

3η‖2N+2

. D
(λ+1)/(λ+3)
N+2,2 + (‖D3η‖2N+2)

2/(λ+3)(‖D3η‖2N+2)
(λ+1)/(λ+3)

≤ D
(λ+1)/(λ+3)
N+2,2 + (E2N )

2/(λ+3)(DN+2,2)
(λ+1)/(λ+3) . D

(λ+1)/(λ+3)
N+2,2 . (6-28)

On the other hand, using the same q as above, we have

‖D2N+3
N+1 u‖21 = (‖D

2N+3
N+1 u‖21)

q/(q+1)(‖D2N+3
N+1 u‖21)

1/(q+1)

. (DN+2,2)
q/(1+q)(E2N )

1/(1+q)
≤ (DN+2,2)

q/(1+q). (6-29)

Then (6-28) and (6-29) imply that

‖Dη‖2N+4‖D
2N+3
N+1 u‖21 . (DN+2,2)

1+2/(4N−7). (6-30)

We then combine (6-22), (6-27), and (6-30) to deduce (6-19).
We now turn to the proof of the bounds (6-20) and (6-21). The bounds (6-20) may be deduced by

applying an operator ∂α with α ∈N1+2 satisfying either |α| = 1 or |α| = 2 to G4, and then estimating the
resulting products with one norm taken in H 0 and the others in L∞, employing the H 0 and L∞ interpolation
estimates for η, u and their derivatives recorded in Lemma 3.1, Proposition 3.9, and Theorem 3.14. The
bounds (6-21) may be deduced similarly except that at least two terms in the resulting products must
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be estimated in H 0 to deduce the resulting L1 bounds. This presents no problem since G2 is a linear
combination of products of two or more terms. �

With this lemma in place, we may record the estimates for the evolution of the energy at the N + 2
level.

Proposition 6.4. Suppose that m ∈ {1, 2} and α ∈N1+2 is such that α0 ≤ N + 1 and m ≤ |α| ≤ 2(N + 2).
Then there exists a θ > 0 such that

∂t(‖∂
αu‖20+‖∂

αη‖20)+‖D∂
αu‖20 . Eθ2N DN+2,m . (6-31)

In particular,

∂t(‖D2N+3
m u‖20+‖DD2N+3u‖20+‖D

2N+3
m η‖20+‖DD2N+3η‖20)+‖D

2N+3
m Du‖20+‖DD2N+3Du‖20

. Eθ2N DN+2,m . (6-32)

Proof. For m ∈ {1, 2} and α ∈ N1+2 such that α0 ≤ N + 1 and m ≤ |α| ≤ 2(N + 2), we argue as in
Proposition 6.2 to deduce that (6-11) holds. Let Xα denote the right side of (6-11) for our range of α. To
bound Xα, we break to three cases.

If m+1≤ |α| ≤ 2(N +2)−1 or |α| = 2(N +2) with 1≤ α0 ≤ N +1, we know from trace theory and
the definitions of DN+2,m that

‖∂αu‖20+‖∂
α p‖20+‖∂

αu‖2H1/2(6)
+‖∂αη‖21/2 . DN+2,m . (6-33)

This allows us to argue as in Proposition 6.2, employing Theorem 4.1 in place of Theorem 4.2, to bound

|Xα|. Eθ2N DN+2,m (6-34)

for some θ > 0.
Now consider |α| = 2(N +2) with α0 = 0. In this case we know from the definitions (2-54) and (2-55)

that there is a deficit of half a derivative that prevents us from bounding ‖∂αη‖21/2 .DN+2,m , but we may
still estimate

‖∂αu‖21+‖∂
α p‖20+‖∂

αu‖2H1/2(6)
. DN+2,m . (6-35)

We may then argue as in Proposition 6.2, integrating by parts and using these bounds as well as those
from Theorem 4.1 to show that the first, second, and third integrals in the definition of Xα are bounded
by Eθ2N DN+2,m . For the fourth integral, we control ‖∂αη‖21/2 through the interpolation estimate of
Lemma 3.18:

‖∂αη‖21/2 ≤ ‖D
2N+4η‖21/2 . (E2N )

2/(4N−7)(DN+2,2)
(4N−9)/(4N−7). (6-36)

Then we may integrate by parts with α = β+ (α−β), |β| = 1 and employ this estimate along with (6-19)
of Lemma 6.3 to see that
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6

∂αη∂αG4
∣∣∣∣= ∣∣∣∣∫

6

∂α+βη∂α−βG4
∣∣∣∣≤ ‖∂α+βη‖−1/2‖∂

α−βG4
‖1/2 . ‖∂

αη‖1/2‖D2N+3G4
‖1/2

.
√
(E2N )2/(4N−7)(DN+2,2)(4N−9)/(4N−7)

√
(DN+2,2)1+2/(4N−7)

= (E2N )
1/(4N−7)DN+2,2 ≤ (E2N )

1/(4N−7)DN+2,m . (6-37)

Hence, when |α| = 2(N + 2) with α0 = 0, there is a θ > 0 such that

|Xα|. Eθ2N DN+2,m . (6-38)

Finally, we consider the case of |α| = m for m = 1, 2. In this case we only know that

‖∂αu‖21+‖∂
αu‖2H1/2(6)

. DN+2,m, (6-39)

so only the first and third integrals of Xα may be handled directly as above to be bounded by Eθ2N DN+2,m .
For the fourth term in Xα we first use the H 0(6) interpolation results of Lemma 3.1 and Proposition 3.16
to bound

‖Dη‖20 . (DN+2,1)
(λ+1)/(λ+2) and ‖D2η‖20+‖∂tη‖

2
0 . (DN+2,2)

(λ+2)/(λ+3). (6-40)

Then by (6-20) of Lemma 6.3, we know that∣∣∣∣∫
6

∂αη∂αG4
∣∣∣∣≤ ‖∂αη‖0‖∂αG4

‖0

.

{√
(DN+2,1)(λ+1)/(λ+2)

√

Eθ2N (DN+2,1)
1+1/(λ+2) for m = 1,√

(DN+2,2)(λ+2)/(λ+3)
√

Eθ2N (DN+2,2)
1+1/(λ+3) for m = 2

≤ E
θ/2
2N DN+2,m . (6-41)

For the second term in Xα we first use the L∞ interpolation estimates of Lemma 3.3 with r = λ/2 when
m = 1 and with r = λ/3 when m = 2 to bound

‖Dp‖2L∞ . (DN+2,1)
2/(λ+2) and ‖D2 p‖2L∞ +‖∂t p‖2L∞ . (DN+2,2)

3/(λ+3). (6-42)

Then, by (6-21) of Lemma 6.3, we know that∣∣∣∣∫
�

∂α p∂αG2
∣∣∣∣≤ ‖∂α p‖L∞‖∂

αG2
‖L1

.

{√
(DN+2,1)2/(λ+2)

√

Eθ2N (DN+2,1)
1+λ/(λ+2) for m = 1,√

(DN+2,2)3/(λ+3)
√

Eθ2N (DN+2,2)
1+λ/(λ+3) for m = 2

≤ E
θ/2
2N DN+2,m . (6-43)

Hence, when |α| = m for m = 1, 2, we also have

|Xα|. Eθ2N DN+2,m . (6-44)
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Now, by (6-34), (6-38), and (6-44), we know that (6-31) holds. The bound (6-32) follows by summing
(6-31) over the specified range of α. �

Energy evolution for Iλu and Iλη. Before we can analyze the energy evolution for Iλu and Iλη, we
must first prove a lemma that provides control of Iλ p.

Lemma 6.5. We have

‖Iλ p‖20 . E2N , (6-45)

‖IλDp‖20 . (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-46)

Proof. Let α ∈ N2 be such that |α| ∈ {0, 1}. We may apply Lemma A.10 to see that

‖∂αIλ p‖20 . ‖∂
αIλ p‖2H0(6)

+‖∂3∂
αIλ p‖20. (6-47)

In order to estimate each term on the right, we will use the structure of (2-23). Indeed, using the boundary
condition, we find that

‖∂αIλ p‖2H0(6)
. ‖∂αIλη‖

2
0+‖∂

αIλ∂3u3‖
2
H0(6)

+‖∂αIλG3
‖

2
0. (6-48)

Trace theory and the divergence equation in (2-23) allow us to bound

‖∂αIλ∂3u3‖
2
H0(6)

. ‖∂αIλ∂3u3‖
2
1 . ‖∂

αIλG2
‖

2
1+‖∂

αIλDu‖21 . ‖IλDu‖22+‖IλG2
‖

2
2, (6-49)

regardless of whether |α| = 0 or 1. To estimate this IλDu term we apply Lemmas A.4 and A.13 to get

‖IλDu‖22 .
2∑

k=1

‖IλD∇ku‖20 .
2∑

k=1

(‖∇ku‖20)
λ(‖D∇ku‖20)

1−λ . ‖u‖23. (6-50)

By chaining together the bounds (6-48)–(6-50) and employing the Gi estimates of Proposition 4.3, we
deduce that

‖∂αIλ p‖2H0(6)
. ‖∂αIλη‖

2
0+‖u‖

2
3+E2N min{E2N ,D2N }. (6-51)

Now we estimate ∂3∂
αIλ p by using the first equation in (2-23) to bound

‖∂αIλ∂3 p‖20 . ‖∂
αIλ∂t u3‖

2
0+‖∂

αIλD2u‖20+‖∂
αIλ∂

2
3 u3‖

2
0+‖∂

αIλG1
‖

2
0. (6-52)

When |α| = 1, we can use Lemma A.4 to see that

‖∂αIλ∂t u3‖
2
0 . ‖IλD∂t u3‖

2
0 . (‖∂t u3‖

2
0)
λ(‖D∂t u3‖

2
0)

1−λ
≤ ‖∂t u‖21. (6-53)

When |α| = 0, we cannot use Lemma A.4 directly, so we first use Lemma A.11 and the divergence
equation in (2-23), and then use Lemma A.4:

‖Iλ∂t u3‖
2
0 . ‖∂3Iλ∂t u3‖

2
0 = ‖Iλ∂t∂3u3‖

2
0 . ‖Iλ∂t G2

‖
2
0+‖IλD∂t u‖20 . ‖Iλ∂t G2

‖
2
0+‖∂t u‖21. (6-54)

Then (6-53) and (6-54) imply that, regardless of whether |α| = 0 or 1, we may bound

‖∂αIλ∂t u3‖
2
0 . ‖Iλ∂t G2

‖
2
0+‖∂t u‖21. (6-55)
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The term ∂αIλD2u may be estimated as in (6-50):

‖∂αIλD2u‖20 . ‖u‖
2
3. (6-56)

To estimate the term ∂αIλ∂
2
3 u3, we again use the divergence equation to bound

‖∂αIλ∂
2
3 u3‖

2
0 . ‖∂

αIλ∂3G2
‖

2
0+‖∂

αIλ∂3 Du‖20 . ‖∂
αIλ∂3G2

‖
2
0+‖u‖

2
3, (6-57)

where in the second inequality we have again argued as in (6-50). Then (6-52) and (6-55)–(6-57), together
with Proposition 4.3, imply that

‖∂αIλ∂3 p‖20 . ‖u‖
2
3+‖∂t u‖21+E2N min{E2N ,D2N }. (6-58)

The estimates (6-51) and (6-58) may be combined with (6-47) to show that

‖∂αIλ p‖20 . ‖∂
αIλη‖

2
0+‖u‖

2
3+‖∂t u‖21+E2N min{E2N ,D2N }. (6-59)

When |α| = 0 we bound the first three terms on the right side of (6-59) by E2N and use the fact that
E2

2N ≤ E2N ≤ 1 to deduce (6-45). When |α| = 1, we first use Lemma A.7 with q = 1− λ and s = λ to
bound

‖∂αIλη‖
2
0 ≤ ‖DIλη‖

2
0 . ‖D

1−λη‖20 . (‖Iλη‖
2
0)
λ/(1+λ)(‖Dη‖20)

1/(1+λ)

. (E2N )
λ/(1+λ)(D2N )

1/(1+λ), (6-60)

where, in the second inequality, D1−λ denotes the usual fractional derivative of order 1− λ. Then we use
the fact that E2N ≤ 1 to bound

E2N min{E2N ,D2N } ≤ (min{E2N ,D2N })
λ/(1+λ)(min{E2N ,D2N })

1/(1+λ)

≤ (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-61)

Similarly, since ‖u‖23+‖∂t u‖21 ≤min{E2N ,D2N }, we have

‖u‖23+‖∂t u‖21 ≤ (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-62)

We then combine (6-59) with (6-60)–(6-62) to deduce (6-46). �

Our next lemma provides a bound for the integral of the product Iλ pIλG2. The estimate is essential
to analyzing the energy evolution of Iλu and Iλη.

Lemma 6.6. Let G2 be given by (2-29). We have∣∣∣∣∫
�

Iλ pIλG2
∣∣∣∣.√E2N D2N . (6-63)

Proof. We begin by writing ∫
�

Iλ pIλG2
= I+ II (6-64)

for

I :=
∫
�

Iλ pIλ[(AK )∂3u1+ (BK )∂3u2] and II :=
∫
�

Iλ pIλ[(1− K )∂3u3]. (6-65)
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The term I is straightforward to estimate because of the bounds (4-20) of Lemma 4.4 and (6-45) of
Lemma 6.5:

|I| ≤ ‖Iλ p‖0‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖0 .
√

E2N D2N . (6-66)

To estimate the term II, we must first use the divergence equation in (2-23) to rewrite

(1− K )∂3u3 = (1− K )[G2
− ∂1u1− ∂2u2], (6-67)

so that

II=
∫
�

Iλ pIλ[(1− K )G2
] −

∫
�

Iλ pIλ[(1− K )(∂1u1+ ∂2u2)] =: II1+ II2. (6-68)

For the term II1 we use the estimates (6-45) of Lemma 6.5 and (4-22) of Lemma 4.4 to bound

|II1| ≤ ‖Iλ p‖0‖Iλ[(1− K )G2
]‖0 .

√
E2N

√
E2N D2

2N = E2N D2N . (6-69)

In order to control the term II2 we first integrate by parts:

II2 =

∫
�

Iλ∂1 pIλ[(1− K )u1] +Iλ∂2 pIλ[(1− K )u2] −Iλ pIλ[u1∂1K + u2∂2K ]. (6-70)

Then we use Lemmas 6.5 and 4.4 to estimate

|II2|. ‖IλDp‖0‖Iλ[(1− K )u]‖0+‖Iλ p‖0
2∑

i=1

‖Iλ[u∂i K ]‖20

.
√
(E2N )λ/(1+λ)(D2N )1/(1+λ)

√
(E2N )1/(1+λ)(D2N )(1+2λ)/(1+λ)+

√
E2N

√
D2

2N

.
√

E2N D2N . (6-71)

Since E2N ≤ 1, we can combine (6-69) and (6-71) to find that |II|.
√

E2N D2N , which yields (6-63) when
combined with (6-66). �

With these two lemmas in hand, we can now estimate how the energies of Iλu and Iλη evolve.

Proposition 6.7. We have

∂t

(
1
2

∫
�

|Iλu|2+ 1
2

∫
6

|Iλη|
2
)
+

1
2

∫
�

|DIλu|2 .
√

E2N D2N . (6-72)

In particular,

1
2

∫
�

|Iλu(t)|2+ 1
2

∫
6

|Iλη(t)|2+
1
2

∫ t

0

∫
�

|DIλu|2 . E2N (0)+
∫ t

0

√
E2N D2N . (6-73)

Proof. We apply Iλ to the equations (2-23) and then use Lemma 2.5 to see that

∂t

(
1
2

∫
�

|Iλu|2+ 1
2

∫
6

|Iλη|
2
)
+

1
2

∫
�

|DIλu|2

=

∫
�

Iλu · (IλG1
−∇IλG2)+Iλ pIλG2

+

∫
6

−Iλu ·IλG3
+IληIλG4. (6-74)
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We will estimate each term on the right side of the equation. First we use trace theory and (4-15) and
(4-16) of Proposition 4.3 to bound the first and third terms:∣∣∣∣∫
�

Iλu · (IλG1
−∇IλG2)

∣∣∣∣+ ∣∣∣∣∫
6

Iλu ·IλG3
∣∣∣∣

. ‖Iλu‖0(‖IλG1
‖0+‖IλG2

‖1)+‖Iλu‖1‖IλG3
‖0 .

√
D2N

√
E2N D2N =

√
E2N D2N . (6-75)

For the third term we use Lemma 6.6 for∣∣∣∣∫
�

Iλ pIλG2
∣∣∣∣.√E2N D2N . (6-76)

Finally, for the fourth term we use (4-17) of Proposition 4.3:∫
6

IληIλG4
≤ ‖Iλη‖0‖IλG4

‖0 .
√

E2N

√
D2

2N =
√

E2N D2N . (6-77)

The bound (6-72) follows by combining (6-74)–(6-77), and then (6-73) follows from (6-72) by integrating
in time from 0 to t . �

7. Energy evolution estimates

We now assemble the estimates of the previous two sections into an estimate for the evolution of E2N and
D2N .

Theorem 7.1. There exists a θ > 0 such that

E2N (t)+
∫ t

0
D2N (r) dr

. E2N (0)+ (E2N (t))3/2+
∫ t

0
(E2N (r))θD2N (r) dr +

∫ t

0

√
D2N (r)K(r)F2N (r) dr. (7-1)

Proof. The result follows by summing the estimates of Propositions 5.3, 5.5, 6.2, and 6.7 and recalling
the definitions of E2N and D2N given by (2-48) and (2-49), respectively. �

We can also assemble the estimates of the previous two sections into a similar estimate for the evolution
of EN+2,m and DN+2,m .

Theorem 7.2. Let F2 be given by (2-19) with ∂α = ∂N+2
t . There exists a θ > 0 such that

∂t

(
EN+2,m − 2

∫
�

J∂N+1
t pF2

)
+DN+2,m . Eθ2N DN+2,m . (7-2)

Proof. The result follows by summing the estimates of Propositions 5.4 and 6.4 and recalling the definitions
of EN+2,m and DN+2,m given by (2-45) and (2-47), respectively. �

8. Comparison results

We now prove a pair of estimates that compare the full dissipation and energy to the horizontal dissipation
and energy. We show that, up to some error terms, the instantaneous energy E2N , (2-50), is comparable
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to the horizontal energy E2N , (2-48), and that the dissipation rate D2N , (2-51), is comparable to the
horizontal dissipation rate D2N , (2-49). We also prove similar results for EN+2,m and DN+2,m defined by
(2-45) and (2-47), respectively. To prove results for both 2N and N + 2, we first prove general estimates
involving Dn and En , and then we specialize to the cases n= N+2 and n= 2N . The dissipation estimates
are more involved, so we begin with them.

Dissipation. We first consider the dissipation rate.

Theorem 8.1. Let m ∈ {1, 2} and

Yn,m := ‖∇
2n−1
m G1

‖
2
0+‖∇

2n−1
0 G2

‖
2
1+‖D

2n−1
m G3

‖
2
1/2+‖D

2n−1
0 G4

‖
2
1/2+‖D

2n−2
0 ∂t G4

‖
2
1/2. (8-1)

If m = 1, then

‖∇
3u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
2 p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j

+‖D2η‖22n−5/2+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Dn,m +Yn,m . (8-2)

If m = 2, then

‖∇
4u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
3 p‖22n−3+‖∂t∇ p‖22n−3+

n−1∑
j=2

‖∂
j

t p‖22n−2 j

+‖D3η‖22n−7/2+‖D∂tη‖
2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Dn,m +Yn,m . (8-3)

Proof. In this proof we must use a separate counting for spatial and temporal derivatives, so unlike
elsewhere in the paper, we now only use α ∈N2 to refer to spatial derivatives. In order to compactly write
our estimates, throughout the proof we write

Z := Dn,m +Yn,m . (8-4)

The proof is divided into several steps.

Step 1: application of Korn’s inequality. Since any horizontal or temporal derivative of u vanishes on the
lower boundary 6b, we may apply Lemma A.12 to derive the bound

‖D2n
m u‖21 . ‖D

2n
m Du‖20 = Dn,m . (8-5)

This H 1(�) bound will be more useful in what follows than an H 0(�) estimate of the symmetric gradient.

Step 2: initial estimates of the pressure and improvement of u estimates. Let 0≤ j ≤ n−1 and α ∈N2 be
such that

m ≤ 2 j + |α| ≤ 2n− 1. (8-6)
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Note that if 2 j + |α| = 2n− 1, the condition j ≤ n− 1 implies that |α| ≥ 1. This means that we are free
to use (8-5) to bound

‖∂α∂
j+1

t u‖20 ≤ ‖D
2n
m u‖21 . Z. (8-7)

To extract further information, we apply the operator ∂ j
t ∂

α to the first two equations in (2-23) to find that

∂α∂
j+1

t u−1∂α∂ j
t u+∇∂α∂ j

t p = ∂α∂ j
t G1, (8-8)

div ∂α∂ j
t u = ∂α∂ j

t G2. (8-9)

Because of the constraints on j, α given by (8-6), we may control

‖∂α∂
j

t G1
‖

2
0+‖∂

α∂
j

t G2
‖

2
1 ≤ ‖D

2n−1
m G1

‖
2
0+‖D

2n−1
m G2

‖
2
1 ≤ Z. (8-10)

We utilize the structure of (8-8)–(8-9) in conjunction with (8-7) and (8-10) to improve our estimates.
We will begin by utilizing (8-9) to control one of the terms in the third component of (8-8). We have

∂α∂
j

t (∂3u3)= ∂
α∂

j
t (−∂1u1− ∂2u2+G2), (8-11)

so that (8-5) and (8-10) imply

‖∂2
3∂

α∂
j

t u3‖
2
0 . ‖D

2n
m u‖21+‖D

2n−1
m G2

‖
2
1 . Z. (8-12)

A further application of (8-5) to control (∂2
1 + ∂

2
2 )∂

α∂
j

t u3 then provides the estimate

‖1∂α∂
j

t u3‖
2
0 . Z. (8-13)

Applying the bounds (8-7), (8-10), and (8-13) to the third component of (8-8), we arrive at a partial bound
for the pressure:

‖∂3∂
α∂

j
t p‖20 . Z. (8-14)

It remains to control the terms ∂i∂
α∂

j
t p and ∂2

3∂
α∂

j
t ui for i = 1, 2. To accomplish this, we employ an

elliptic estimate of curl u =: ω. Taking the curl of (8-8) eliminates the pressure gradient and yields

∂α∂
j+1

t ω =1∂α∂
j

t ω+ curl(∂α∂ j
t G1). (8-15)

We only need the first two components ω1 = ∂2u3− ∂3u2, ω2 = ∂3u1− ∂1u3, for which we use the 6
boundary condition in (2-23)

∂i u3+ ∂3ui = Due3 · ei =−G3
· ei for i = 1, 2 (8-16)

to derive the boundary conditions {
ω1 = 2∂2u3+G3

· e2 on 6,
ω2 =−2∂1u3−G3

· e1 on 6.
(8-17)

No similar boundary condition is available on 6b, so we must resort to a localization using a cutoff
function χ = χ(x3) given by χ ∈ C∞c (R) with χ(x3)= 1 for x3 ∈�1 := [−2b/3, 0] and χ(x3)= 0 for
x3 /∈ (−3b/4, 1/2).
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The functions χωi , i = 1, 2, satisfy

1∂α∂
j

t (χωi )= χ(∂
α∂

j+1
t ωi )+ 2(∂3χ)(∂3∂

α∂
j

t ωi )+ (∂
2
3χ)(∂

α∂
j

t ωi )−χ curl(∂α∂ j
t G1) (8-18)

in � as well as the boundary conditions
∂α∂

j
t (χω1)= 2∂2∂

α∂
j

t u3+ ∂
α∂

j
t G3
· e2 on 6,

∂α∂
j

t (χω2)=−2∂1∂
α∂

j
t u3− ∂

α∂
j

t G3
· e1 on 6,

∂α∂
j

t (χω1)= ∂
α∂

j
t (χω2)= 0 on 6b.

(8-19)

In order to employ an elliptic estimate of ∂α∂ j
t (χωi ), we must first prove two auxiliary estimates.

First we derive an estimate of the H−1(�)= (H 1
0 (�))

∗ norm of each term on the right side of (8-18).
Let ϕ ∈ H 1

0 (�). When α 6= 0, we may write α= β+ (α−β) with |β| = 1 and integrate by parts to bound∣∣∣∣∫
�

ϕχ∂α∂
j+1

t ωi

∣∣∣∣= ∣∣∣∣∫
�

∂βϕχ∂α−β∂
j+1

t ωi

∣∣∣∣≤ ‖ϕ‖1‖χD2n
m ωi‖0, (8-20)

since 2( j + 1)+ |α−β| = 2 j + |α| + 1 ∈ [m+ 1, 2n]. We may use (8-5) for

‖χD2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-21)

Chaining these inequalities together when α 6= 0 and taking the supremum over all ϕ such that ‖ϕ‖1 ≤ 1,
we get

‖∂α∂
j+1

t ωi‖
2
H−1 . Z. (8-22)

A similar argument without an integration by parts shows that (8-22) is also true when α = 0, since, in
this case, the condition j ≤ n−1 implies that m+2≤ 2( j +1)≤ 2n. Similarly, integrating by parts with
∂3 in the dual-pairing, we may estimate the second term on the right side of (8-18):

‖2(∂3χ)(∂3∂
α∂

j
t ωi )‖

2
H−1 . (‖∂3χ‖

2
L∞ +‖∂

2
3χ‖

2
L∞)‖D

2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-23)

The third term may be estimated without integration by parts in the dual-pairing:

‖(∂2
3χ)(∂

α∂
j

t ωi )‖
2
H−1 . ‖∂

2
3χ‖

2
L∞‖D

2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-24)

The fourth term is estimated by integrating by parts with the curl operator and using (8-10):

‖χ curl(∂α∂ j
t G1)‖2H−1 . (‖χ‖

2
L∞ +‖∂3χ‖

2
L∞)‖D

2n−1
m G1

‖
2
0 . Z. (8-25)

Combining these four estimates of the right side of (8-18) yields

‖1∂α∂
j

t (χωi )‖
2
H−1 . Z for i = 1, 2. (8-26)

Next, to complete the elliptic estimate of ∂α∂ j
t (χωi ), we also need H 1/2(6) estimates for the boundary

terms on the right side of the first two equations in (8-19). We may estimate the ∂i u3, i = 1, 2, terms with
the embedding H 1(�) ↪→ H 1/2(6):

‖∂α∂
j

t ∂1u3‖
2
H1/2(6)

+‖∂α∂
j

t ∂2u3‖
2
H1/2(6)

. ‖D2n
m u‖21 . Z. (8-27)
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On the other hand, estimates of G3 are already built into Z:

‖∂α∂
j

t G3
‖

2
1/2 ≤ ‖D

2n−1
m G3

‖
2
1/2 ≤ Yn,m ≤ Z. (8-28)

Since χωi = 0 on 6b for i = 1, 2, we then deduce that

‖∂α∂
j

t (χωi )‖
2
H1/2(∂�)

. Z for i = 1, 2. (8-29)

Now, according to (8-26), (8-29), standard elliptic estimates, and the fact that χ =1 on�1=[−2b/3, 0],
we have

‖∂α∂
j

t ωi‖
2
H1(�1)

. ‖∂α∂ j
t (χωi )‖

2
1 . Z for i = 1, 2. (8-30)

We may then rewrite

∂2
3∂

α∂
j

t u1 = ∂3∂
α∂

j
t (ω2+ ∂1u3) and ∂2

3∂
α∂

j
t u2 = ∂3∂

α∂
j

t (∂2u3−ω1) (8-31)

and deduce from (8-30) and (8-5) that, for i = 1, 2, we have

‖∂2
3∂

α∂
j

t ui‖
2
H0(�1)

. ‖D2n
m u3‖

2
1+

2∑
k=1

‖∂α∂
j

t ωk‖
2
H1(�1)

. Z. (8-32)

We then apply this estimate along with (8-5) and (8-10) to the first two components of (8-8) to find that

‖∂i∂
α∂

j
t p‖2H0(�1)

. Z for i = 1, 2. (8-33)

Now we sum the estimates (8-5), (8-12), (8-14), (8-32), and (8-33) over all j ≤ n− 1 and α ∈ N2 with
m ≤ 2 j + |α| ≤ 2n− 1 to deduce that

‖D2n−1
m u‖2H2(�1)

+‖D2n−1
m ∇ p‖2H0(�1)

. Z. (8-34)

Step 3: bootstrapping, η estimates, and improved pressure estimates. Now we make use of Lemma 8.2 to
bootstrap from (8-5) and (8-34) to

‖∇
2+mu‖2H2n−m−1(�1)

+‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

1+m p‖2H2n−m−1(�1)

+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z. (8-35)

With this estimate in hand, we may derive some estimates for η on 6 by employing the boundary
conditions of (2-23):

η = p− 2∂3u3−G3
3, (8-36)

∂tη = u3+G4. (8-37)

Then (8-35) allows us to differentiate (8-36) to find that

‖D1+mη‖22n−m−3/2 . ‖D
1+m p‖2H2n−m−3/2(6)

+‖D1+m∂3u3‖
2
H2n−m−3/2(6)

+‖D1+mG3
‖

2
2n−m−3/2

. ‖∇1+m p‖2H2n−m−1(�1)
+‖∇

2+mu‖2H2n−m−1(�1)
+‖D2n−1

m+1 G3
‖

2
1/2 . Z. (8-38)



1494 YAN GUO AND IAN TICE

Similarly, for j = 2, . . . , n+ 1, we may apply ∂ j−1
t to (8-37) and estimate

‖∂
j

t η‖
2
2n−2 j+5/2 . ‖∂

j−1
t u3‖

2
H2n−2 j+5/2(6)

+‖∂
j−1

t G4
‖

2
2n−2 j+5/2

. ‖∂ j−1
t u‖2H2n−2( j−1)+1(�1)

+‖∂
j−1

t G4
‖

2
2n−2( j−1)+1/2 . Z. (8-39)

It remains only to consider ∂tη; in this case we must consider m = 1 and m = 2 separately. For m = 1,
we again use (8-37) to see that

‖∂tη‖
2
2n−1/2 . ‖u3‖

2
H2n−1/2(6)

+‖G4
‖

2
2n−1/2 . ‖u3‖

2
H2n−1/2(6)

+Z, (8-40)

but now we use Lemma A.11, trace theory, and the second equation in (2-23) for the estimate

‖u3‖
2
H2n−1/2(6)

. ‖u3‖
2
H0(6)

+‖Du3‖
2
H2n−3/2(6)

. ‖∂3u3‖
2
H0(�)

+‖Du3‖
2
H2n−1(�1)

. ‖G2
‖

2
0+‖Du‖20+‖Du‖2H2n−1(�1)

. Z (8-41)

by (8-10) and (8-35). Chaining (8-40)–(8-41) together implies that

‖∂tη‖
2
2n−1/2 . Z when m = 1. (8-42)

For m = 2, we differentiate (8-37) for the bound

‖D∂tη‖
2
2n−3/2 . ‖Du3‖

2
H2n−3/2(6)

+‖DG4
‖

2
2n−3/2 . ‖Du3‖

2
H2n−3/2(6)

+Z, (8-43)

but then the analogue of (8-41) is

‖Du3‖
2
H2n−3/2(6)

. ‖DG2
‖

2
0+‖D

2u‖20+‖D
2u‖2H2n−2(�1)

. Z. (8-44)

Hence

‖D∂tη‖
2
2n−3/2 . Z when m = 2. (8-45)

Summing estimates (8-38), (8-39), (8-42), and (8-45) over j = 0, . . . , n+ 1 yields

‖D2η‖22n−5/2+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z for m = 1, (8-46)

‖D3η‖22n−7/2+‖D∂tη‖
2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z for m = 2. (8-47)

The η estimates (8-46)–(8-47) now allow us to improve our estimates of ∇∂ j
t p to estimates for ∂ j

t p
for certain values of j . Indeed, for j = m, . . . , n− 1 we may use Lemma A.10 and (8-36) to bound

‖∂
j

t p‖2H0(�1)
. ‖∂ j

t η‖
2
0+‖∂3∂

j
t u3‖

2
H0(6)

+‖∂
j

t G3
‖

2
0+‖∂

j
t ∇ p‖2H0(�1)

. ‖∂ j
t u3‖

2
H2(�1)

+Z.Z. (8-48)
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This, (8-35), and (8-46)–(8-47) allow us to improve (8-35); when m = 1, we find that

‖∇
3u‖2H2n−2(�1)

+‖Du‖2H2n(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

2 p‖2H2n−2(�1)

+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�1)
+‖D2η‖22n−5/2+‖∂tη‖

2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z, (8-49)

and when m = 2, we get the estimate

‖∇
4u‖2H2n−3(�1)

+‖D2u‖2H2n−1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

3 p‖2H2n−3(�1)
+‖∂t∇ p‖2H2n−3(�1)

+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�1)
+‖D3η‖22n−7/2+‖D∂tη‖

2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z. (8-50)

Step 4: estimates in �2. We now extend our estimates to the lower part of the domain, that is, �2 :=

[−b,−b/3], by applying Lemma 8.3 to deduce that (8-97) holds when m = 1 and (8-98) holds when
m = 2. We will now show that Xn,m , defined by (8-96), can be controlled by Z. The key to this is
that, by construction, supp(∇χ2)⊂�1, which implies that the H 1 and H 2 defined in the lemma satisfy
supp(H 1)∪ supp(H 2)⊂�1. This allows us to use the estimates (8-49) in the case m = 1 and (8-50) in
the case m = 2 to bound

2n−1∑
k=m+1

‖Dk H 1
‖

2
2n−k−1+‖D

k H 2
‖

2
2n−k . Z. (8-51)

In order to estimate ∂t H 1
· ei for i = 1, 2, we note that it does not involve the pressure:

∂t H 1
· ei =−(∂3χ2)∂3∂t ui − (∂

2
3χ2)∂t ui . (8-52)

Then we may again use (8-49)–(8-50) to see that

2∑
i=1

‖∂t H 1
· ei‖

2
2n−3 . Z, (8-53)

so that Xn,m . Z. Replacing in (8-97) and (8-98), we then find that

‖∇
3u‖2H2n−2(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

2 p‖2H2n−2(�2)
+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�2)
. Z (8-54)

for m = 1, while, for m = 2,

‖∇
4u‖2H2n−3(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

3 p‖2H2n−3(�2)

+‖∂t∇ p‖2H2n−3(�2)
+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�2)
. Z. (8-55)
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Step 5: synthesis and conclusion. To conclude, we note that �=�1 ∪�2, which allows us to add the
localized estimates (8-49) and (8-54) to deduce (8-2), and to add (8-50) to (8-55) to deduce (8-3). �

We now present the key bootstrap estimate used in the proof of Theorem 8.1.

Lemma 8.2. Let Yn,m be defined by (8-1) and �1 = [−2b/3, 0]. Suppose that

‖D2n−2r+2
m u‖2H2r−1(�1)

+‖D2n−2r+1
m u‖2H2r (�1)

+‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

. Dn,m +Yn,m (8-56)

for an integer r ∈ [1, . . . , n− (m+ 1)/2]. Then

‖D2n−2r
m u‖2H2r+1(�1)

+‖D2n−2r
m ∇ p‖2H2r−1(�1)

+‖D2n−2(r+1)+1
m u‖2H2r+2(�1)

+‖D2n−2(r+1)+1
m ∇ p‖2H2r (�1)

. Dn,m +Yn,m . (8-57)

Moreover, if (8-56) holds with r = 1, then, for m = 1, 2, we have

‖∇
2+mu‖2H2n−m−1(�1)

+‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)

+‖∇
1+m p‖2H2n−m−1(�1)

+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Dn,m +Yn,m . (8-58)

Proof. Throughout the proof we write Z := Dn,m +Yn,m . We divide the proof into steps.

Step 1: Proof of (8-57). Let ` ∈ {1, 2} and take 0≤ j ≤ n− r and α ∈ N2 such that

m ≤ 2 j + |α| ≤ 2n− 2r + 1− `. (8-59)

We apply the differential operator ∂2r−2+`
3 ∂α∂

j
t to the first equation in (2-23) and split into separate

equations for its third and first two components; after some rearrangement, these read

∂2r−1+`
3 ∂α∂

j
t p =−∂2r−2+`

3 ∂α∂
j+1

t u3+1∂
2r−2+`
3 ∂α∂

j
t u3+ ∂

2r−2+`
3 ∂α∂

j
t G1

3, (8-60)

1∂2r−2+`
3 ∂α∂

j
t ui = ∂

2r−2+`
3 ∂α∂

j+1
t ui + ∂i∂

2r−2+`
3 ∂α∂

j
t p− ∂2r−2+`

3 ∂α∂
j

t G1
i (8-61)

for i = 1, 2. Notice that the constraints on r, j, |α| imply that m ≤ |α| + (2r − 2+ `)+ 2 j ≤ 2n− 1, so
we may use the definition of Yn,m in (8-1) to estimate

‖∂2r−2+`
3 ∂α∂

j
t G1
‖

2
0+‖∂

2r−2+`
3 ∂α∂

j
t G2
‖

2
1 ≤ Yn,m ≤ Z. (8-62)

Since 2r − 2+ `≥ 0, we know that

‖∂2r−2+`
3 ∂α∂

j+1
t u‖2H0(�1)

≤ ‖∂α∂
j+1

t u‖2H2r−2+`(�1)
. (8-63)

If `= 2 then m ≤ |α| + 2( j + 1)≤ 2n− 2r + 1, so that

‖∂α∂
j+1

t u‖2H2r−2+`(�1)
= ‖∂α∂

j+1
t u‖2H2r (�1)

≤ ‖D2n−2r+1
m u‖2H2r (�1)

. Z. (8-64)

On the other hand, if `= 1, then m ≤ |α| + 2( j + 1)≤ 2n− 2r + 2, and hence

‖∂α∂
j+1

t u‖2H2r−2+`(�1)
= ‖∂α∂

j+1
t u‖2H2r−1(�1)

≤ ‖D2n−2r+2
m u‖2H2r−1(�1)

. Z. (8-65)
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Then, in either case,

‖∂2r−2+`
3 ∂α∂

j+1
t u‖2H0(�1)

. Z. (8-66)

We have written the equations (8-60)–(8-61) in this form so as to be able to employ the estimates
(8-56), (8-62), and (8-66) to derive (8-57). We must consider the cases of ` = 1 and ` = 2 separately,
starting with `= 1.

Let `= 1. According to the equation div u = G2 (the second of (2-23)), the constraint (8-59), and the
bounds (8-56) and (8-62), we may estimate

‖∂2r+1
3 ∂α∂

j
t u3‖

2
H0(�1)

= ‖∂2r
3 ∂

α∂
j

t (G
2
− ∂1u1− ∂2u2)‖

2
H0(�1)

. ‖∂2r−1
3 ∂α∂

j
t G2
‖

2
1+‖∂

α∂
j

t (∂1u1+ ∂2u2)‖
2
H2r (�1)

. Z, (8-67)

and hence (again using the constraint (8-59))

‖1(∂2r−1
3 ∂α∂

j
t u3)‖

2
H0(�1)

. ‖∂2r+1
3 ∂α∂

j
t u3‖

2
H0(�1)

+‖∂2r−1
3 (∂2

1 + ∂
2
2 )∂

α∂
j

t u3‖
2
H0(�1)

. Z. (8-68)

We may then use (8-62), (8-66), and (8-68) in (8-60) for the pressure estimate

‖∂2r
3 ∂

α∂
j

t p‖2H0(�1)
. Z. (8-69)

Turning now to the i = 1, 2 components, we note that, by (8-56) and the constraint (8-59),

‖∂i∂
2r−1
3 ∂α∂

j
t p‖2H0(�1)

+‖(∂2
1 + ∂

2
2 )∂

2r−1
3 ∂α∂

j
t ui‖

2
H0(�1)

. ‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

+‖D2n−2r+1
m u‖2H2r (�1)

. Z (8-70)

for i = 1, 2. Plugging this, (8-62), and (8-66) into (8-61) then shows that

‖∂2r+1
3 ∂α∂

j
t ui‖

2
H0(�1)

. Z for i = 1, 2. (8-71)

Upon summing (8-67), (8-69), and (8-71) over 0≤ j ≤ n− r and α satisfying m ≤ 2 j + |α| ≤ 2n− 2r ,
we deduce that

‖∂2r+1
3 D2n−2r

m u‖2H0(�1)
+‖∂2r

3 D2n−2r
m p‖2H0(�1)

. Z. (8-72)

Then, in light of (8-56) and (8-72), we have

‖D2n−2r
m u‖2H2r+1(�1)

+‖D2n−2r
m ∇ p‖2H2r−1(�1)

. ‖D2n−2r+1
m u‖2H2r (�1)

+‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

+‖∂2r+1
3 D2n−2r

m u‖2H0(�1)
+‖∂2r

3 D2n−2r
m p‖2H0(�1)

. Z. (8-73)

In the case ` = 2 we may argue as in the case ` = 1, utilizing both (8-56) and (8-73) to derive the
bound

‖D2n−2r−1
m u‖2H2r+2(�1)

+‖D2n−2r−1
m ∇ p‖2H2r (�1)

. Z. (8-74)

Then we may add (8-73) to (8-74) to deduce (8-57).
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Step 2: The proof of (8-58), part 1. Now we turn to the proof of (8-58), assuming that (8-56) holds with
r = 1. By (8-57) we may iterate with r = 2, r = 3, etc., until

r =
{

n− 1 if m = 1,
n− 2 if m = 2,

so that 2n− 2(r + 2)+ 1=
{

1 if m = 1,
3 if m = 2.

(8-75)

Summing the resulting bounds and adding (8-5) (to pick up the ∂n
t u term) yields the estimates

‖D1u‖2H2n(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖D1

∇ p‖2H2n−2(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-76)

in the case m = 1, and

‖D3
2u‖2H2n−2(�1)

+‖D1
0∂t u‖2H2n−2(�1)

+

n∑
j=2

‖∂
j

t u‖2H2n−2 j+1(�1)

+‖D3
2∇ p‖2H2n−4(�1)

+‖D1
0∂t∇ p‖2H2n−4(�1)

+

n−1∑
j=2

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-77)

in the case m = 2.
Next, we improve the estimate (8-77). Let 0≤ j and α ∈ N2 be such that 2 j + |α| = 2, and apply the

operator ∂2n−3
3 ∂α∂

j
t to the first equation of (2-23) and split into components as above to get

∂2n−2
3 ∂α∂

j
t p =−∂2n−3

3 ∂α∂
j+1

t u3+1∂
2n−3
3 ∂α∂

j
t u3+ ∂

2n−3
3 ∂α∂

j
t G1

3, (8-78)

1∂2n−3
3 ∂α∂

j
t ui = ∂

2n−3
3 ∂α∂

j+1
t ui + ∂i∂

2n−3
3 ∂α∂

j
t p− ∂2n−3

3 ∂α∂
j

t G1
i (8-79)

for i = 1, 2. We may then argue as above, utilizing (8-77), to deduce the bounds

‖∂2n−1
3 ∂α∂

j
t u3‖

2
H0(�1)

+‖∂2n−3
3 ∂α∂

j+1
t u‖2H0(�1)

+‖D2∂2n−3
3 ∂α∂

j
t u‖2H0(�1)

. Z, (8-80)

which, when combined with (8-78) and (8-79), imply that

‖∂2n−2
3 ∂α∂

j
t p‖2H0(�1)

+‖∂2n−1
3 ∂α∂

j
t ui‖

2
H0(�1)

. Z (8-81)

for i = 1, 2. We may then use (8-80) and (8-81) with (8-77) to deduce that

‖D2u‖2H2n−1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖D2

∇ p‖2H2n−3(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-82)

in the case m = 2.

Step 3: The proof of (8-58), part 2. Now we claim that if for m = 1, 2 we have the inequality

‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖Dm

∇ p‖2H2n−m−1(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
.Z, (8-83)

the inequality
‖∇

2+mu‖2H2n−m−1(�1)
+‖∇

1+m p‖2H2n−m−1(�1)
. Z (8-84)
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also holds, which establishes the desired bound, (8-58), because of our inequalities (8-76) in the case
m = 1 and (8-82) in the case m = 2. We begin the proof of the claim by noting that, since 2≥m, we may
use (8-83) to bound

‖∂m
3 D2u‖2H2n−m−1(�1)

+‖∂m−1
3 DD2

2u‖2H2n−m−1(�1)
+‖∂m−1

3 D2 p‖2H2n−m−1(�1)
. Z. (8-85)

Now we let |α| = 1 and apply ∂m
3 ∂

α to the second equation of (2-23) to find that

‖∂m+1
3 ∂αu3‖

2
H2n−m−1(�1)

. ‖∂m
3 DG2

‖
2
H2n−m−1(�1)

+‖∂m
3 D2u‖2H2n−m−1(�1)

. Z. (8-86)

Then we apply ∂m−1
3 ∂α to the first equation of (2-23) to bound

‖∂m
3 ∂

α p‖2H2n−m−1(�1)

. ‖∂m+1
3 ∂αu3‖

2
H2n−m−1(�1)

+‖∂m−1
3 ∂αD2

2u3‖
2
H2n−m−1(�1)

+‖∂m−1
3 ∂αG1

‖
2
H2n−m−1(�1)

. Z (8-87)

and

‖∂m+1
3 ∂αui‖

2
H2n−m−1(�1)

. ‖∂m−1
3 ∂αD2

2u‖2H2n−m−1(�1)
+‖∂m−1

3 ∂αDp‖2H2n−m−1(�1)
+‖∂m−1

3 ∂αG1
‖

2
H2n−m−1(�1)

. Z (8-88)

for i = 1, 2. Summing (8-86)–(8-88) over all |α| = 1 then yields the inequality

‖∂m+1
3 Du‖2H2n−m−1(�1)

+‖∂m
3 Dp‖2H2n−m−1(�1)

. Z. (8-89)

Now we use (8-89) to improve to one more ∂3 and one fewer horizontal derivative. We apply ∂m+1
3 to

the second equation of (2-23) to find that

‖∂m+2
3 u3‖

2
H2n−m−1(�1)

. ‖∂m+1
3 G2

‖
2
H2n−m−1(�1)

+‖∂m+1
3 Du‖2H2n−m−1(�1)

. Z. (8-90)

Then we apply ∂m
3 to the first equation of (2-23) to bound

‖∂m+1
3 p‖2H2n−m−1(�1)

. ‖∂m+2
3 u3‖

2
H2n−m−1(�1)

+‖∂m
3 D2

2u3‖
2
H2n−m−1(�1)

+‖∂m
3 G1
‖

2
H2n−m−1(�1)

. Z, (8-91)

‖∂m+2
3 ui‖

2
H2n−m−1(�1)

. ‖∂m
3 D2

2u‖2H2n−m−1(�1)
+‖∂m

3 Dp‖2H2n−m−1(�1)
+‖∂m

3 G1
‖

2
H2n−m−1(�1)

. Z (8-92)

for i = 1, 2. Summing (8-90)–(8-92) then yields the inequality

‖∂m+2
3 u‖2H2n−m−1(�1)

+‖∂m+1
3 p‖2H2n−m−1(�1)

. Z. (8-93)

Finally, to complete the proof of the claim, we note that

‖∇
2+mu‖2H2n−m−1(�1)

+‖∇
1+m p‖2H2n−m−1(�1)

. ‖Dmu‖2H2n−m+1(�1)
+‖Dm

∇ p‖2H2n−m−1(�1)

+

m−1∑
l=0

‖∂m+2−`
3 D`u‖2H2n−m−1(�1)

+‖∂m+1−`
3 D` p‖2H2n−m−1(�1)

. (8-94)

This and the bounds (8-83), (8-89), and (8-93) prove the claim. �

The following result allows for control of the dissipation rate in the lower domain.
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Lemma 8.3. Let χ2 ∈ C∞c (R) be such that χ2(x3) = 1 for x3 ∈ �2 := [−b,−b/3] and χ2(x3) = 0 for
x3 /∈ (−2b,−b/6). Let

H 1
= ∂3χ2(pe3− 2∂3u)− (∂2

3χ2)u and H 2
= ∂3χ2u3. (8-95)

Define

Xn,m =

2n−1∑
k=m+1

‖Dk H 1
‖

2
2n−k−1+‖D

k H 2
‖

2
2n−k +

2∑
i=1

‖∂t H 1
· ei‖

2
2n−3, (8-96)

and let Yn,m be as defined in (8-1). If m = 1, then

‖∇
3u‖2H2n−2(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

2 p‖2H2n−2(�2)
+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�2)

. Dn,m +Yn,m +Xn,m . (8-97)

If m = 2, then

‖∇
4u‖2H2n−3(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

3 p‖2H2n−3(�2)
+‖∂t∇ p‖2H2n−3(�2)

+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�2)

. Dn,m+Yn,m+Xn,m . (8-98)

Proof. When we localize with χ2, we find that χ2u and χ2 p solve
−1(χ2u)+∇(χ2 p)=−∂t(χ2u)+χ2G1

+ H 1 in �,
div(χ2u)= χ2G2

+ H 2 in �,
((χ2 p)I−D(χ2u))e3 = 0 on 6,
χ2u = 0 on 6b.

(8-99)

Let 0≤ j ≤ n− 1 and α ∈ N2 be such that

m+ 1≤ |α| + 2 j ≤ 2n− 1. (8-100)

Then we may apply Lemma A.14 and use the definition of Yn,m given in (8-1) to see that

‖∂α∂
j

t (χ2u)‖22n−|α|−2 j+1+‖∂
α∂

j
t (χ2 p)‖22n−|α|−2 j

. ‖∂α∂ j+1
t (χ2u)‖22n−|α|−2( j+1)+1+‖∂

α∂
j

t (χ2G1
+ H 1)‖22n−|α|−2 j−1

+‖∂α∂
j

t (χ2G2
+ H 2)‖22n−|α|−2 j

. ‖∂α∂ j+1
t (χ2u)‖22n−|α|−2( j+1)+1+Yn,m +Xn,m . (8-101)

We first use estimate (8-101) and a finite induction to arrive at initial estimates for χ2u and χ2 p; we then
use the structure of the equations (2-23) to improve these estimates.

Our finite induction will be performed on ` ∈ [1, 2n−m− 1] with |α|+ 2 j = 2n− `, starting with the
first two initial values, `= 1 and `= 2. We use the definition of Dn,m given in (2-47) and Lemma A.12
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in conjunction with the bounds on j, |α| given in (8-100) to see that

‖∂α∂
j+1

t (χ2u)‖20 . ‖∂
α∂

j+1
t u‖20 . Dn,m . (8-102)

Then (8-101) with |α| + 2 j = 2n− 1= 2n− ` implies that

‖∂α∂
j

t (χ2u)‖22+‖∂
α∂

j
t (χ2 p)‖21 . ‖∂

α∂
j+1

t (χ2u)‖20+Yn,m +Xn,m . Dn,m +Yn,m +Xn,m . (8-103)

Applying this bound for all α and j satisfying |α| + 2 j = 2n− 1 and summing, we find

‖D2n−1(χ2u)‖22+‖D
2n−1(χ2 p)‖21 . Dn,m +Yn,m +Xn,m . (8-104)

When `= 2 and |α| + 2 j = 2n− `= 2n− 2, a similar application of Lemma A.12 implies

‖∂α∂
j+1

t (χ2u)‖21 . Dn,m (8-105)

so that

‖∂α∂
j

t (χ2u)‖23+‖∂
α∂

j
t (χ2 p)‖22 . ‖∂

α∂
j+1

t (χ2u)‖21+Yn,m +Xn,m . Dn,m +Yn,m +Xn,m . (8-106)

This may be summed over 2 j + |α| = 2n− 2 for the estimate

‖D2n−2(χ2u)‖23+‖D
2n−2(χ2 p)‖22 . Dn,m +Yn,m +Xn,m . (8-107)

Then (8-104) and (8-107) imply that

‖D2n−1(χ2u)‖22+‖D
2n−2(χ2u)‖23+‖D

2n−1(χ2 p)‖21+‖D
2n−2(χ2 p)‖22.Dn,m+Yn,m+Xn,m . (8-108)

Now suppose that the inequality

`0∑
`=1

‖D2n−`(χ2u)‖2`+1+‖D
2n−`(χ2 p)‖2` . Dn,m +Yn,m +Xn,m (8-109)

holds for 2 ≤ `0 < 2n − m − 1. We claim that (8-109) holds with `0 replaced by `0 + 1. Suppose
|α| + 2 j = 2n− (`0+ 1) and apply (8-101) to see that

‖∂α∂
j

t (χ2u)‖2`0+2+‖∂
α∂

j
t (χ2 p)‖2`0+1.‖∂

α∂
j+1

t (χ2u)‖2`0
+Yn,m+Xn,m.Dn,m+Yn,m+Xn,m, (8-110)

where in the last inequality we have invoked (8-109) with

|α| + 2( j + 1)= 2n− (`0+ 1)+ 2= 2n− (`0− 1).

This proves the claim, so, by finite induction, the bound (8-109) holds for all `0 = 2, . . . , 2n−m − 1.
Choosing `0 = 2n−m− 1 yields the estimate

2n−m−1∑
`=1

‖D2n−`(χ2u)‖2`+1+‖D
2n−`(χ2 p)‖2` . Dn,m +Yn,m +Xn,m, (8-111)
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which implies, by virtue of the fact that χ2 = 1 on �2, that
2n−1∑

k=m+1

‖Dku‖2H2n−k+1(�2)
+‖Dk p‖2H2n−k(�2)

=

2n−m−1∑
`=1

‖D2n−`u‖2H `+1(�2)
+‖D2n−` p‖2H `(�2)

. Dn,m +Yn,m +Xn,m . (8-112)

Now we will improve the estimate (8-112) by using the equations (2-23), considering the cases m= 1, 2
separately. Let m = 1. Since m + 1 = 2, the bound (8-112) already covers all temporal derivatives of
order 1 to n− 1. Since ‖∂n

t u‖21 is already controlled in Dn,m , we must only improve spatial derivatives.
First note that (8-112) implies that

‖∂3 D2u‖2H2n−2(�2)
+‖D2 p‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-113)

Then we may apply the operator ∂3 D to the divergence equation in (2-23) to bound

‖∂2
3 Du3‖

2
H2n−2(�2)

. ‖∂3 DG2
‖

2
H2n−2(�2)

+‖∂3 D2u‖2H2n−2(�2)
. Dn,m +Yn,m +Xn,m . (8-114)

Then applying the operator D to the first equation in (2-23) implies that

‖∂3 Dp‖2H2n−2(�2)
+‖∂2

3 Dui‖
2
H2n−2(�2)

. ‖DG1
‖

2
H2n−2(�2)

+‖D2 p‖2H2n−2(�2)
+‖DD2

2u‖2H2n−2(�2)
+‖∂2

3 Du3‖
2
H2n−2(�2)

. Dn,m +Yn,m +Xn,m (8-115)

for i = 1, 2. We can then iterate this process, applying ∂2
3 to the divergence equation, then ∂3 to the first

equation in (2-23), and using all of the bounds derived from the previous step, to deduce that

‖∂2
3 p‖2H2n−2(�2)

+‖∂3
3 u‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-116)

Combining (8-113)–(8-116) yields the estimate

‖∇
3u‖2H2n−2(�2)

+‖∇
2 p‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m, (8-117)

which together with (8-112) and the bound ‖∂n
t u‖2H1(�2)

≤ ‖∂n
t u‖21 . Dn,m implies (8-97).

In the case m = 2, we can argue as in the case m = 1 to control the spatial derivatives. That is, we first
control ∂3 D3u, D3 p, then iteratively apply operators with an increasing number of ∂3 powers to arrive at
the bound

‖∇
4u‖2H2n−3(�2)

+‖∇
3 p‖2H2n−3(�2)

. Dn,m +Yn,m +Xn,m . (8-118)

Since m + 1 = 3 it remains to control ∂t u and ∂t∇ p. For the latter we apply ∂3∂t to the divergence
equation and use (8-1) and (8-112) to bound

‖∂2
3∂t u3‖

2
H2n−3(�2)

. ‖∂3∂t G2
‖

2
H2n−3(�2)

+‖∂3∂t Du‖2H2n−3(�2)
. Dn,m +Yn,m +Xn,m . (8-119)
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Then applying ∂t to the third component of the first equation in (2-23) shows that

‖∂3∂t p‖2H2n−3(�2)
. ‖∂t G1

‖
2
H2n−3(�2)

+‖∂t D2u‖2H2n−3(�2)
+‖∂2

3∂t u3‖
2
H2n−3(�2)

. Dn,m +Yn,m +Xn,m, (8-120)

which in turn implies that

‖∇∂t p‖2H2n−3(�2)
. ‖∂3∂t p‖2H2n−3(�2)

+‖D∂t p‖2H2n−3(�2)
. Dn,m +Yn,m +Xn,m . (8-121)

We may control ∂t u3 by applying ∂t to the divergence equation in (2-23) to find that

‖∂3∂t u3‖
2
H2n−2(�2)

. ‖∂t G2
‖

2
H2n−2(�2)

+‖D3u‖2H2n−2(�2)
. Dn,m +Yn,m +Xn,m, (8-122)

but then, since ∂t u3 = 0 on 6, we can use Poincaré’s inequality (Lemma A.13) to bound

‖∂t u3‖
2
H2n−1(�2)

. ‖∂t u3‖
2
H0(�2)

+‖∇∂t u3‖
2
H2n−2(�2)

. ‖∇∂t u3‖
2
H2n−2(�2)

. ‖∂3∂t u3‖
2
H2n−2(�2)

+‖D3u3‖
2
H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-123)

Control of the terms ∂t ui , i = 1, 2, is slightly more delicate; for it we appeal to the first of the localized
equations (8-99) rather than (2-23). The reason for this is that using (8-99) will allow us to control
∂2

3∂t(χ2ui ) in all of �, giving us control of ∂t(χ2ui ) in all of � via Poincaré and hence control of ∂t ui in
�2. If instead we used (2-23), control of ∂2

3∂t ui in �2 would not yield the desired control of ∂t ui in �2

because we could not apply Poincaré’s inequality. We apply ∂t to the i = 1, 2 components of the first
localized equation in (8-99) and use (8-111) to see that

‖∂2
3∂t(χ2ui )‖

2
H2n−3(�)

. ‖∂t H 1
· ei‖

2
H2n−3(�)

+‖χ2∂t G1
‖

2
H2n−3(�)

+‖∂t D(χ2 p)‖2H2n−3(�)
+‖∂t D2(χ2u)‖2H2n−3(�)

. Dn,m +Yn,m +Xn,m . (8-124)

Now, since ∂t(χ2ui ) and ∂3∂t(χ2ui ) both vanish in an open set near6, we may apply Poincaré’s inequality
twice and use (8-124) to find that

‖∂t ui‖
2
H2n−1(�2)

. ‖∂t(χ2ui )‖
2
H2n−1(�)

. ‖∂2
3∂t(χ2ui )‖

2
H2n−3(�)

. Dn,m +Yn,m +Xn,m . (8-125)

To conclude the analysis for m = 2, we sum (8-112), (8-118), (8-121), (8-123), (8-125), and the bound
‖∂n

t u‖2H1(�2)
≤ ‖∂n

t u‖21 . Dn,m to derive (8-98). �

Instantaneous energy. Now we estimate the instantaneous energy. The proof is based on an argument
very similar to the one used in the proof of Lemma 8.3. Recall that En,m is defined by (2-45).

Theorem 8.4. Define

Wn,m = ‖∇
2n−2
m G1

‖
2
0+‖∇

2n−2
0 G2

‖
2
1+‖D

2n−2
m G3

‖
2
1/2+‖D

2n−2
0 G4

‖
2
1/2. (8-126)
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If m = 1, then

‖∇
2u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇ p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖Dη‖
2
2n−1+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j

. En,m +Wn,m . (8-127)

If m = 2, then

‖∇
3u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+‖∇
2 p‖22n−3+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖D
2η‖22n−2+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j

. En,m +Wn,m . (8-128)

Proof. The proof is quite similar to that of Lemma 8.3, so we do not fill in all of the details. Throughout
the proof we employ the notation Z := En,m +Wn,m .

Let 0≤ j ≤ n− 1 and α ∈N2 satisfy m ≤ |α|+ 2 j ≤ 2n− 2. To begin, we utilize the equations (2-23)
with the elliptic estimate Lemma A.14 to bound

‖∂α∂
j

t u‖22n−|α|−2 j +‖∂
α∂

j
t p‖22n−|α|−2 j−1 . ‖∂

α∂
j+1

t u‖22n−|α|−2 j−2+‖∂
α∂

j
t G1
‖

2
2n−|α|−2 j−2

+‖∂α∂
j

t G2
‖

2
2n−|α|−2 j−1+‖∂

α∂
j

t η‖
2
2n−|α|−2 j−3/2+‖∂

α∂
j

t G3
‖

2
2n−|α|−2 j−3/2. (8-129)

The constraints on j, α allow us to bound

‖∂α∂
j

t G1
‖

2
2n−|α|−2 j−2+‖∂

α∂
j

t G2
‖

2
2n−|α|−2 j−1+‖∂

α∂
j

t G3
‖

2
2n−|α|−2 j−3/2 .Wn,m, (8-130)

and similarly

‖∂α∂
j

t η‖
2
2n−|α|−2 j−3/2 . En,m, (8-131)

so that (8-129)–(8-131) imply that

‖∂α∂
j

t u‖22n−|α|−2 j +‖∂
α∂

j
t p‖22n−|α|−2 j−1 . Z+‖∂α∂

j+1
t u‖22n−|α|−2 j−2. (8-132)

As in Lemma 8.3, we argue with a finite induction on ` ∈ [2, 2n−m], beginning with `= 2, 3. When
`= 2 and |α| + 2 j = 2n− 2= 2n− `, the definition of En,m implies that

‖∂α∂
j+1

t u‖20 . En,m, (8-133)

which may be inserted into (8-132) for

‖∂α∂
j

t u‖22+‖∂
α∂

j
t p‖21 . Z. (8-134)

Summing over all α and j satisfying |α| + 2 j = 2n− 2 shows that

‖D2n−2u‖22+‖D
2n−2 p‖21 . Z. (8-135)
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For `= 3 we note that |α| + 2 j = 2n− 3 implies that j ≤ n− 2, so that |α| ≥ 1. This allows us to write
α = (α−β)+β for |β| = 1 and to use (8-135) to see that

‖∂α∂
j+1

t u‖21 ≤ ‖∂
α−β∂

j+1
t u‖22 ≤ ‖D

2n−2u‖22 . Z. (8-136)

Then we can plug this into (8-132) for each |α| + 2 j = 2n− 3 and sum to arrive at the bound

‖D2n−3u‖23+‖D
2n−3 p‖22 . Z. (8-137)

Now we may use finite induction as in (8-109)–(8-112) of Lemma 8.3 to ultimately deduce the estimate

2n−2∑
k=m

‖Dku‖22n−k +‖D
k p‖22n−k−1 =

2n−m∑
`=2

‖D2n−`u‖2` +‖D
2n−` p‖2`−1 . Z. (8-138)

Now we improve the estimate (8-138) by utilizing the structure of the equations (2-23), again arguing
as in Lemma 8.3. The energy bound (8-138) in the case m = 2 is structurally similar to the bound
(8-112) for the dissipation in the case m = 1, so we may argue as in (8-113)–(8-116), differentiating the
equations (2-23) (with obvious modifications to the Sobolev indices and number of derivatives applied)
and bootstrapping until we arrive at the bound

‖∇
3u‖22n−3+‖∇

2 p‖22n−3 . Z. (8-139)

Then (8-138), (8-139), and the bound ‖∂n
t u‖20 ≤ En,m imply the bound (8-128).

In the case m = 1 we apply ∂3 to the divergence equation in (2-23) to see that

‖∂2
3 u3‖

2
2n−2 . ‖∂3G2

‖
2
2n−2+‖∂3 Du‖22n−2 . Z. (8-140)

We then use the first equation in (2-23) to bound

‖∂3 p‖22n−2+

2∑
i=1

‖∂2
3 ui‖

2
2n−2 . ‖G

1
‖

2
2n−2+‖D

2u‖22n−2+‖∂
2
3 u3‖

2
2n−2+‖Dp‖22n−2 . Z. (8-141)

Then (8-138), (8-140), and (8-141) imply that

‖∇
2u‖22n−2+‖∇ p‖22n−2 . Z, (8-142)

which, when added to (8-138) and the bound ‖∂n
t u‖20 ≤ En,m , yields (8-127). �

Specialization: estimates at the 2N and N + 2 levels. We now specialize the general results contained
in Theorems 8.1 and 8.4 to the specific case of n = 2N with no minimal derivative restriction, and to the
case n = N + 2 with minimal derivative count m = 1, 2.

Theorem 8.5. There exists a θ > 0 such that

D2N . D2N +Eθ2N D2N +KF2N . (8-143)
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Proof. We apply Theorem 8.1 with n = 2N and m = 1 to see that (8-2) holds. Theorem 4.2 provides an
estimate of Y2N ,1, as defined in (8-1):

Y2N ,1 . Eθ2N D2N +KF2N (8-144)

for some θ > 0. We may then use this in (8-2) to find that

‖∇
3u‖24N−2+

2N∑
j=1

‖∂
j

t u‖24N−2 j+1+‖∇
2 p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j

+‖D2η‖24N−5/2+‖∂tη‖
2
4N−1/2+

2N+1∑
j=2

‖∂
j

t η‖
2
4N−2 j+5/2 . D2N +Eθ2N D2N +KF2N . (8-145)

We can improve the estimate for u in (8-145) by using the fact that D2N does not have a minimal
derivative count. Indeed, by the definition (2-49) and Lemma A.12, we know that

‖Iλu‖21+‖u‖
2
1 . D2N . (8-146)

Now, since � satisfies the uniform cone property, we can apply Corollary 4.16 of [Adams 1975] to bound

‖u‖24N+1 . ‖u‖
2
0+‖∇

4N+1u‖20 . ‖u‖
2
1+‖∇

3u‖24N−2. (8-147)

Then (8-145)–(8-147) imply that

‖Iλu‖21+‖u‖
2
4N+1 . D2N +Eθ2N D2N +KF2N . (8-148)

We can use this improved estimate of u to improve the estimate of p by employing the first equation
of (2-23) to bound

‖∇ p‖24N−1 . ‖∂t u‖24N−1+‖1u‖24N−1+‖G
1
‖

2
4N−1. (8-149)

The bounds (8-145) and (8-148) imply that

‖∂t u‖24N−1+‖1u‖24N−1 . D2N +Eθ2N D2N +KF2N , (8-150)

while (4-7)–(4-8) of Theorem 4.2 imply that

‖G1
‖

2
4N−1 . Eθ2N D2N +KF2N . (8-151)

Hence (8-148)–(8-151) combine to show that

‖∇ p‖24N−1 . D2N +Eθ2N D2N +KF2N . (8-152)

Finally, we improve the estimate for η. We use the boundary condition on 6 of (2-23) to bound

‖Dη‖24N−3/2 . ‖Dp‖2H4N−3/2(6)
+‖D∂3u3‖

2
H4N−3/2(6)

+‖DG3
‖

2
4N−3/2

. ‖Dp‖24N−1+‖D∂3u3‖
2
4N−1+‖DG3

‖
2
4N−3/2 . D2N +Eθ2N D2N +KF2N .

(8-153)

In the last inequality we have used (8-148), (8-152), and Theorem 4.2. Now (8-143) follows from (8-145),
(8-148), (8-152), and (8-153). �
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Now we perform a similar analysis for the energy at the 2N level.

Theorem 8.6. There exists a θ > 0 such that

E2N . E2N +E1+θ
2N . (8-154)

Proof. We apply Theorem 8.4 with n = 2N and m = 1 to see that (8-127) holds. Theorem 4.2 provides
an estimate of W2N ,1, as defined by (8-126):

W2N ,1 . E1+θ
2N (8-155)

for some θ > 0. Replacing in (8-127) shows that

‖∇
2u‖24N−2+

2N∑
j=1

‖∂
j

t u‖24N−2 j+‖∇ p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j−1+‖Dη‖
2
4N−1+

2N∑
j=1

‖∂
j

t η‖
2
4N−2 j

. E2N +E1+θ
2N . (8-156)

The definition of E2N implies that

‖Iλu‖20+‖u‖
2
0+‖Iλη‖

2
0+‖η‖

2
0 ≤ E2N . (8-157)

We may then sum the previous two bounds and employ Corollary 4.16 of [Adams 1975] as in the proof
of Theorem 8.5 to find that

‖Iλu‖20+
2N∑
j=0

‖∂
j

t u‖24N−2 j +‖∇ p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j−1+‖Iλη‖
2
0+

2N∑
j=0

‖∂
j

t η‖
2
4N−2 j

. E2N +E1+θ
2N . (8-158)

It remains only to estimate ‖p‖24N−1; since Lemma A.10 implies that

‖p‖24N−1 . ‖p‖20+‖∇ p‖24N−2 . ‖p‖2H0(6)
+‖∇ p‖24N−2, (8-159)

it suffices to estimate ‖p‖2H0(6)
. We do this by using the boundary condition in (2-23), trace theory, and

estimate (4-6) of Theorem 4.2:

‖p‖2H0(6)
. ‖η‖20+‖G

3
‖

2
0+‖∂3u3‖

2
H0(6)

. ‖η‖20+‖u‖
2
4N +E1+θ

2N . (8-160)

Then the estimate (8-154) easily follows from (8-158)–(8-160). �

We now consider the dissipation at the N + 2 level.

Theorem 8.7. For m = 1, 2 there exists a θ > 0 such that

DN+2,m . DN+2,m +Eθ2N DN+2,m . (8-161)

Proof. We apply Theorem 8.1 with n = N +2 to see that (8-2) holds for m = 1 and (8-3) holds for m = 2.
Theorem 4.1 provides an estimate for YN+2,m , as defined by (8-1):

YN+2,m . Eθ2N DN+2,m (8-162)
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for some θ > 0. The bound (8-161) follows from using this in (8-2)–(8-3). �

We now consider the energy at the N + 2 level.

Theorem 8.8. For m = 1, 2 there exists a θ > 0 such that

EN+2,m . EN+2,m +Eθ2N EN+2,m . (8-163)

Proof. We apply Theorem 8.4 with n = N + 2 to see that (8-127) holds when m = 1 and (8-128) holds
when m = 2. Theorem 4.1 provides an estimate for WN+2,m , as defined by (8-126):

WN+2,m . Eθ2N EN+2,m (8-164)

for some θ > 0. The bound (8-163) follows from using this in (8-127)–(8-128). �

9. A priori estimates

In this section we will combine the energy evolution estimates and the comparison estimates to derive a
priori estimates for the total energy, G2N , defined by (2-58).

Estimates involving F2N and K. Recall that F2N is defined by (2-56) and K is defined by (2-57). We
begin with an estimate for F2N .

Lemma 9.1. There exists a universal C > 0 such that

sup
0≤r≤t

F2N (r)

. exp
(

C
∫ t

0

√
K(r) dr

)[
F2N (0)+ t

∫ t

0
(1+E2N (r))D2N (r) dr +

(∫ t

0

√
K(r)F2N (r) dr

)2 ]
. (9-1)

Proof. Throughout this proof we write u = ũ+ u3e3, that is, we write ũ for the part of u parallel to 6.
Then η solves the transport equation ∂tη+ ũ · Dη= u3 on 6. We may then use Lemma A.9 with s = 1/2
to estimate

sup
0≤r≤t

‖η(r)‖1/2 ≤ exp
(

C
∫ t

0
‖Dũ(r)‖H3/2(6) dr

)[
‖η0‖1/2+

∫ t

0
‖u3(r)‖H1/2(6) dr

]
. (9-2)

By the definition of K, (2-57), we may bound ‖Dũ(r)‖H3/2(6) ≤
√

K(r), but we may also use trace
theory to bound ‖u3(r)‖2H1/2(6)

. D2N (r). This allows us to square both sides of (9-2) and utilize
Cauchy–Schwarz to deduce that

sup
0≤r≤t

‖η(r)‖21/2 . exp
(

2C
∫ t

0

√
K (r) dr

)[
‖η0‖

2
1/2+ t

∫ t

0
D2N (r) dr

]
. (9-3)

To go to higher regularity, we let α ∈N2 with |α| = 4N . Then we apply the operator ∂α to the equation
∂tη+ ũ · Dη = u3 to see that ∂αη solves the transport equation

∂t(∂
αη)+ ũ · D(∂αη)= ∂αu3−

∑
0<β≤α

Cα,β∂β ũ · D∂α−βη =: Gα (9-4)
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with the initial condition ∂αη0. We may then apply Lemma A.9 with s = 1/2 to find that

sup
0≤r≤t

‖∂αη(r)‖1/2 ≤ exp
(

C
∫ t

0
‖Dũ(r)‖H3/2(6) dr

)[
‖∂αη0‖1/2+

∫ t

0
‖Gα(r)‖1/2 dr

]
. (9-5)

We will now estimate ‖Gα
‖1/2.

For β ∈ N2 satisfying 2N + 1≤ |β| ≤ 4N we may apply (A-2) of Lemma A.1 with s1 = r = 1/2 and
s2 = 2 to bound

‖∂β ũ D∂α−βη‖1/2 . ‖∂β ũ‖H1/2(6)‖D∂
α−βη‖2. (9-6)

This and trace theory then imply that∑
0<β≤α

2N+1≤|β|≤4N

‖Cα,β∂β ũ · D∂α−βη‖1/2 . ‖D4N
2N+1u‖1‖D2N

1 η‖2 .
√

D2N E2N . (9-7)

On the other hand, if β satisfies 1≤ |β| ≤ 2N , we again use Lemma A.1 to bound

‖∂β ũ D∂α−βη‖1/2 . ‖∂β ũ‖H2(6)‖D∂
α−βη‖1/2, (9-8)

so that ∑
0<β≤α

1≤|β|≤2N

‖Cα,β∂β ũ · D∂α−βη‖1/2 . ‖D2N
1 u‖3‖D4N−1

2N+1η‖1/2+‖Dũ‖H2(6)‖D
4Nη‖1/2

.
√

E2N D2N +
√

KF2N . (9-9)

The only remaining term in Gα is ∂αu3, which we estimate with trace theory:

‖∂αu3‖H1/2(6) . ‖D
4N u3‖1 .

√
D2N . (9-10)

We may then combine (9-7), (9-9), and (9-10) for

‖Gα
‖1/2 . (1+

√
E2N )

√
D2N +

√
KF2N . (9-11)

Returning now to (9-5), we square both sides and employ (9-11) and our previous estimate of the term
in the exponential to find that

sup
0≤r≤t

‖∂αη(r)‖21/2

≤ exp
(

2C
∫ t

0

√
K(r) dr

)[
‖∂αη0‖

2
1/2+ t

∫ t

0
(1+E2N (r))D2N (r) dr+

(∫ t

0

√
K(r)F2N (r) dr

)2 ]
. (9-12)

Then the estimate (9-1) follows by summing (9-12) over all |α| = 4N , adding the resulting inequality to
(9-3), and using the fact that ‖η‖24N+1/2 . ‖η‖

2
1/2+‖D

4Nη‖21/2. �

Now we use this result and the K estimate of Lemma 3.17 to derive a stronger result.

Proposition 9.2. Let G2N be defined by (2-58). There exists a universal constant 0< δ < 1 such that if
G2N (T )≤ δ, then for all 0≤ t ≤ T ,

sup
0≤r≤t

F2N (r). F2N (0)+ t
∫ t

0
D2N . (9-13)
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Proof. Suppose G2N (T )≤ δ ≤ 1, for δ to be chosen later. Fix 0≤ t ≤ T . Then, according to Lemma 3.17,
we have K. E

(8+2λ)/(8+4λ)
N+2,2 , which means that∫ t

0

√
K(r) dr .

∫ t

0
(EN+2,2(r))(8+2λ)/(16+8λ) dr ≤ δ(8+2λ)/(16+8λ)

∫ t

0

1
(1+r)1+λ/4

dr

≤ δ(8+2λ)/(16+8λ)
∫
∞

0

1
(1+r)1+λ/4

dr = 4
λ
δ(8+2λ)/(16+8λ). (9-14)

Since δ ≤ 1, this implies that for any constant C > 0,

exp
(

C
∫ t

0

√
K(r) dr

)
. 1. (9-15)

Similarly, (∫ t

0

√
K(r)F2N (r) dr

)2

.

(
sup

0≤r≤t
F2N (r)

)(∫ t

0

√
K(r) dr

)2

.

(
sup

0≤r≤t
F2N (r)

)
δ(8+2λ)/(8+4λ). (9-16)

Then (9-14)–(9-16) and Lemma 9.1 imply that

sup
0≤r≤t

F2N (r)≤ C
(

F2N (0)+ t
∫ t

0
D2N

)
+Cδ(8+2λ)/(8+4λ)( sup

0≤r≤t
F2N (r)), (9-17)

for some universal C > 0. Then if δ is small enough that Cδ(8+2λ)/(8+4λ)
≤ 1/2, we may absorb the

right-hand F2N term onto the left and deduce (9-13). �

This bound on F2N allows us to estimate the integral of KF2N and
√

D2N KF2N .

Corollary 9.3. There exists a universal constant 0< δ < 1 such that if G2N (T )≤ δ, then∫ t

0
K(r)F2N (r) dr . δ(8+2λ)/(8+4λ)F2N (0)+ δ(8+2λ)/(8+4λ)

∫ t

0
D2N (r) dr (9-18)

and ∫ t

0

√
D2N (r)K(r)F2N (r) dr . F2N (0)+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr (9-19)

for 0≤ t ≤ T .

Proof. Let G2N (T )≤ δ with δ as small as in Proposition 9.2, so that estimate (9-13) holds. Lemma 3.17
implies that

K(r). (EN+2,2(r))(8+2λ)/(8+4λ) . δ(8+2λ)/(8+4λ) 1
(1+r)2+λ/2

. (9-20)
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This and (9-13) then imply that

1
δ(8+2λ)/(8+4λ)

∫ t

0
K(r)F2N (r) dr . F2N (0)

∫ t

0

dr
(1+r)2+λ/2

+

∫ t

0

r
(1+r)2+λ/2

(∫ r

0
D2N (s) ds

)
dr

. F2N (0)
∫
∞

0

dr
(1+r)2+λ/2

+

(∫ t

0
D2N (r) dr

)(∫
∞

0

dr
(1+r)1+λ/2

)
. F2N (0)+

∫ t

0
D2N (r) dr, (9-21)

which is estimate (9-18). The estimate (9-19) follows from (9-18), Cauchy–Schwarz, and the fact that
δ ≤ 1:∫ t

0

√
D2N (r)K(r)F2N (r) dr

≤

(∫ t

0
D2N (r) dr

)1/2(∫ t

0
K(r)F2N (r) dr

)1/2

.

(∫ t

0
D2N (r) dr

)1/2(
δ(8+2λ)/(8+4λ)F2N (0)

)1/2
+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr

. F2N (0)+
(
δ(8+2λ)/(16+8λ)

+ δ(8+2λ)/(8+4λ)) ∫ t

0
D2N (r) dr

. F2N (0)+ δ(8+2λ)/(16+8λ)
∫ t

0
D2N (r) dr. �

Boundedness at the 2N level. We now show bounds at the 2N level in terms of the initial data.

Theorem 9.4. Let G2N be defined by (2-58). There exists a universal constant 0 < δ < 1 such that if
G2N (T )≤ δ, then

sup
0≤r≤t

E2N (r)+
∫ t

0
D2N + sup

0≤r≤t

F2N (r)
(1+ r)

. E2N (0)+F2N (0) (9-22)

for all 0≤ t ≤ T .

Proof. Combining the energy evolution estimate of Theorem 7.1 with the comparison estimates of
Theorems 8.5 and 8.6, we find that

E2N (t)+
∫ t

0
D2N (r) dr . E2N (0)+ (E2N (t))1+θ +

∫ t

0
(E2N (r))θD2N (r) dr

+

∫ t

0

√
D2N (r)K(r)F2N (r) dr +

∫ t

0
K(r)F2N (r) dr (9-23)

for some θ > 0. Let us assume initially that δ ≤ 1 is as small as in Lemma 2.6, Proposition 9.2, and
Corollary 9.3, so that their conclusions hold. We may estimate the last two integrals in (9-23) with
Corollary 9.3, using the fact that δ ≤ 1:∫ t

0

√
D2N (r)K(r)F2N (r) dr +

∫ t

0
K(r)F2N (r) dr . F2N (0)+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr. (9-24)



1512 YAN GUO AND IAN TICE

On the other hand, sup0≤r≤t E2N (r)≤ G2N (T )≤ δ, so

(E2N (t))1+θ +
∫ t

0
(E2N (r))θD2N (r) dr ≤ δθE2N (t)+ δθ

∫ t

0
D2N (r) dr. (9-25)

We may then combine (9-23)–(9-25) and write

ψ =min{θ, (8+ 2λ)/(16+ 8λ)}> 0 (9-26)

to deduce the bound

E2N (t)+
∫ t

0
D2N (r) dr ≤ C (E2N (0)+F2N (0))+CδθE2N (t)+Cδψ

∫ t

0
D2N (r) dr (9-27)

for a universal constant C > 0. Then if δ is sufficiently small so that Cδθ ≤ 1/2 and Cδψ ≤ 1/2, we may
absorb the last two terms on the right side of (9-27) into the left, which then yields the estimate

sup
0≤r≤t

E2N (r)+
∫ t

0
D2N (r) dr . E2N (0)+F2N (0). (9-28)

We then use this and Proposition 9.2 to estimate

sup
0≤r≤t

F2N (r)
(1+ r)

. sup
0≤r≤t

F2N (0)
(1+ r)

+ sup
0≤r≤t

r
(1+r)

∫ r

0
D2N (s) ds

. F2N (0)+
∫ t

0
D2N (r)dr . E2N (0)+F2N (0). (9-29)

Then (9-22) follows by summing (9-28) and (9-29). �

Decay at the N + 2 level. Before showing the decay estimates, we first need an interpolation result.

Proposition 9.5. There exists a universal 0< δ < 1 such that if G2N (T )≤ δ, then

DN+2,m(t). DN+2,m(t), EN+2,m(t). EN+2,m(t) (9-30)

and
EN+2,m(t). (E2N (t))1/(m+λ+1)(DN+2,m(t))(m+λ)/(m+λ+1) (9-31)

for m = 1, 2 and 0≤ t ≤ T .

Proof. The bound G2N (T )≤ δ and Theorems 8.7 and 8.8 imply that

DN+2,m ≤ CDN+2,m +CEθ2N DN+2,m ≤ CDN+2,m +CδθDN+2,m (9-32)

and
EN+2,m ≤ CEN+2,m +CEθ2N EN+2,m ≤ CEN+2,m +CδθEN+2,m (9-33)

for constants C > 0 and θ > 0. Then if δ is small enough so that Cδθ ≤ 1/2, we may absorb the second
term on the right side of (9-32) and (9-33) into the left to deduce the bounds in (9-30).

We now turn to the proof of (9-31). According to Remark 2.8, we have

EN+2,m . ‖D2N+4
m u‖20+‖D

2N+4
m η‖20, (9-34)
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and by Lemma A.12, we also know that

‖D2N+4
m u‖20 . ‖D

2N+4
m Du‖20 = DN+2,m . (9-35)

On the other hand, the definition of DN+2,m , given by (2-54) when m= 1 and (2-55) when m= 2, together
with (9-30) implies that

‖D2N+4
m+1 η‖

2
0 ≤ DN+2,m +‖D2N+4η‖20 . DN+2,m +‖D2N+4η‖20. (9-36)

We may then combine (9-34)–(9-36) to see that

EN+2,m . DN+2,m +‖Dmη‖20+‖D
2N+4η‖20. (9-37)

We first estimate the last term in (9-37). The standard Sobolev interpolation inequality (3-47) with
s = 2N + 3−m, r = 1/2, and q = 2N − 4 allows us to estimate

‖D2N+4η‖20 ≤ ‖D
m+1η‖22N+3−m

. (‖Dm+1η‖22N+5/2−m)
(4N−8)/(4N−7)(‖Dm+1η‖24N−m−1)

1/(4N−7)

. (DN+2,m)
(4N−8)/(4N−7)(E2N )

1/(4N−7). (9-38)

Since N ≥ 3, m ∈ {1, 2}, and λ ∈ (0, 1), we have (4N − 8)/(4N − 7) > (m+ λ)/(m+ λ+ 1). Then this
bound, the estimate (9-38), and the bound DN+2,m . E2N from Lemma 2.10 imply that

‖D2N+4η‖20 . (DN+2,m)
(m+λ)/(m+λ+1)(E2N )

1/(m+λ+1). (9-39)

Now we turn to the Dmη term in (9-37). In the case m = 1 we use the H 0 interpolation estimates of
Lemma 3.1 to bound

‖Dmη‖20 = ‖Dη‖
2
0 . (E2N )

1/(2+λ)(DN+2,1)
(1+λ)/(2+λ). (9-40)

In the case m = 2 we use the H 0 interpolation estimates of D2η from Lemma 3.1 and the H 0 estimate of
∂tη from Proposition 3.16 to bound

‖Dmη‖20 = ‖D
2η‖20+‖∂tη‖

2
0 . (E2N )

1/(3+λ)(DN+2,2)
(2+λ)/(3+λ). (9-41)

Together, (9-40) and (9-41) may be written as

‖Dmη‖20 . (E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1). (9-42)

Now, according to Lemma 2.10, we can bound

DN+2,m ≤ DN+2,m . (E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1). (9-43)

Then we use the estimates (9-39), (9-42), and (9-43) to bound the right side of (9-37); the bound (9-31)
follows from the resulting inequality and (9-30). �

Now we show that the extra integral term appearing in Theorem 7.2 can essentially be absorbed into
EN+2,m .
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Lemma 9.6. Let F2 be defined by (2-19) with ∂α = ∂N+2
t . There exists a universal 0< δ < 1 such that if

G2N (T )≤ δ, then

2
3 EN+2,m(t)≤ EN+2,m(t)− 2

∫
�

J (t)∂N+1
t p(t)F2(t)≤ 4

3 EN+2,m(t) (9-44)

for all 0≤ t ≤ T .

Proof. Suppose that δ is as small as in Proposition 9.5. Then we combine estimate (5-4) of Theorem 5.2,
Lemma 2.6, and estimate (9-30) of Proposition 9.5 to see that

‖J‖L∞‖∂
N+1
t p‖0‖F2

‖0 .
√

EN+2,m

√
Eθ2N EN+2,m = E

θ/2
2N EN+2,m . E

θ/2
2N EN+2,m . δ

θ/2EN+2,m (9-45)

for some θ > 0. This estimate and Cauchy–Schwarz then imply that∣∣∣∣2 ∫
�

J∂N+1
t pF2

∣∣∣∣≤ 2‖J‖L∞‖∂
N+1
t p‖0‖F2

‖0 ≤ Cδθ/2EN+2,m ≤
1
3 EN+2,m (9-46)

if δ is small enough. The bound (9-44) then follows easily from (9-46). �

Now we prove decay at the N + 2 level.

Theorem 9.7. Let G2N be defined by (2-58). There exists a universal constant 0 < δ < 1 such that if
G2N (T )≤ δ, then

sup
0≤r≤t

(1+ r)m+λEN+2,m(r). E2N (0)+F2N (0) (9-47)

for all 0≤ t ≤ T and for m ∈ {1, 2}.

Proof. Let δ be as small as in Lemma 2.6, Theorem 9.4, Proposition 9.5, and Lemma 9.6. Theorem 7.2
and the estimate (9-30) of Proposition 9.5 imply that

∂t

(
EN+2,m − 2

∫
�

J∂N+1
t pF2

)
+DN+2,m ≤ CEθ2N DN+2,m ≤ CδθDN+2,m ≤

1
2 DN+2,m (9-48)

if δ is small enough (here θ > 0). On the other hand, Theorem 9.4, (9-31) of Proposition 9.5, and (9-44)
of Lemma 9.6 imply that

0≤ 2
3 EN+2,m ≤ EN+2,m − 2

∫
�

J∂N+1
t pF2

≤
4
3 EN+2,m

≤ C(E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1)
≤ C0Z

1/(m+λ+1)
0 (DN+2,m)

(m+λ)/(m+λ+1) (9-49)

for all 0≤ t ≤ T , where we have written Z0 := E2N (0)+F2N (0), and C0 is a universal constant which
we may assume satisfies C0 ≥ 1. Let us write

h(t)= EN+2,m(t)− 2
∫
�

J (t)∂N+1
t p(t)F2(t)≥ 0, (9-50)

as well as

s =
1

m+ λ
and C1 =

1

2C1+s
0 Zs

0

. (9-51)
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In these three terms we should distinguish between the cases m = 1 and m = 2, but to avoid notational
clutter we will abuse notation and only write h(t), s, and C1. We may then combine (9-48) with (9-49)
and use our new notation to derive the differential inequality

∂t h(t)+C1(h(t))1+s
≤ 0 (9-52)

for 0≤ t ≤ T .
Since h(t)≥ 0, we may integrate (9-52) to find that, for any 0≤ r ≤ T ,

h(r)≤ h(0)
[1+sC1(h(0))sr ]1/s

. (9-53)

Notice that Remark 2.8 implies that EN+2,m ≤
3
2 E2N . Then (9-49) implies that h(0) ≤ 4

3 EN+2,m(0) ≤
2E2N (0)≤ 2Z0, which in turn implies that

sC1(h(0))s =
s

2C1+s
0

(h(0)
Z0

)s
≤

s
2C1+s

0

2s
=

s
C1+s

0

2s−1
≤ 1 (9-54)

since 0< s < 1 and C0 ≥ 1. A simple computation shows that

sup
r≥0

(1+r)1/s

(1+Mr)1/s
=

1
M1/s (9-55)

when 0≤ M ≤ 1 and s > 0. This, (9-53), and (9-54) then imply that

(1+ r)1/sh(r)≤ h(0) (1+r)1/s

[1+sC1(h(0))sr ]1/s
≤ h(0)

(
2C1+s

0

s

)1/s Z0

h(0)
=

(
2C1+s

0

s

)1/s

Z0. (9-56)

Now we use (9-30) of Proposition 9.5 together with (9-49) to bound

EN+2,m(r). EN+2,m(r). h(r) for 0≤ r ≤ T . (9-57)

The estimate (9-47) then follows from (9-56), (9-57), and the fact that

s = 1/(m+ λ) and Z0 = E2N (0)+F2N (0). �

A priori estimates for G2N . We now collect the results of Theorems 9.4 and 9.7 into a single bound on
G2N , as defined by (2-58). The estimate recorded specifically names the constant in the inequality with
C1 > 0 so that it can be referenced later.

Theorem 9.8. There exists a universal 0< δ < 1 such that if G2N (T )≤ δ, then

G2N (t)≤ C1(E2N (0)+F2N (0)) (9-58)

for all 0≤ t ≤ T , where C1 > 0 is a universal constant.

Proof. Let δ be as small as in Theorems 9.4 and 9.7. Then the conclusions of the theorems hold, and we
may sum them to deduce (9-58). �
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10. Specialized local well-posedness

Propagation of Iλ bounds. To prove Theorem 1.3, we will combine our a priori estimates, Theorem 9.8,
with a local well-posedness result. Theorem 1.1 is not quite enough since it does not address the
boundedness of ‖Iλu(t)‖20, ‖Iλη(t)‖20, and ‖Iλ p(t)‖20 for t > 0. In order to prove these bounds, we first
study the cutoff operators Im

λ , which we define now. Let m ≥ 1 be an integer. For a function f defined
on �, we define the cutoff Riesz potential Im

λ f by

Im
λ f (x ′, x3)=

∫
{|ξ |≥1/m}

f̂ (ξ, x3)|ξ |
−λe2π i x ′·ξdξ, (10-1)

where ˆ̇denotes the Fourier transform in the (x1, x2) variables. Similarly, for f defined on 6, we set

Im
λ f (x ′)=

∫
{|ξ |≥1/m}

f̂ (ξ)|ξ |−λe2π i x ′·ξdξ. (10-2)

The operator Im
λ is clearly bounded on H 0(�) and H 0(6), which allows us to apply it to our solutions

and then study the evolution of Im
λ u and Im

λ η.
Before doing so, we record some estimates for terms involving Im

λ that are analogous to the Iλ estimates
in Propositions Proposition 4.3 and 6.7 and in Lemmas 4.4, 4.5, 6.5, 6.6, A.3 and A.4. We begin with the
analogues of the last two lemmas, which were the starting point for our Iλ estimates.

Lemma 10.1. If Iλh ∈ H 0(�), then ‖Im
λ h‖20 ≤ ‖Iλh‖20. A similar estimate holds if Iλh ∈ H 0(6). As a

consequence, the results of Lemmas A.3 and A.4 hold with Iλ replaced by Im
λ and with the constants in

the inequalities independent of m.

Proof. Suppose that Iλh ∈ H 0(�) for some h. Then, writing ˆ̇ for the horizontal Fourier transform, we
easily see that

‖Im
λ h‖20 =

∫ 0

−b

∫
{|ξ |≥1/m}

|ĥ(ξ, x3)|
2
|ξ |−2λdξdx3 ≤ ‖Iλh‖20. (10-3)

The corresponding estimate in case Iλh ∈ H 0(6) follows similarly. Then the estimates of Lemmas A.3
and A.4 may be combined with these inequalities to replace Iλ with Im

λ . �

We do not want our estimates for Im
λ to be given in terms of E2N since this energy contains Iλ terms.

Instead, we desire estimates in terms of a modified energy, which we write as

E2N := E2N −‖Iλu‖20−‖Iλη‖
2
0. (10-4)

Lemma 10.1 allows us prove the following modification of Proposition 4.3. The proof is a simple
adaptation of the one for Proposition 4.3, and is thus omitted.

Proposition 10.2. Assume that E2N ≤ 1. We have

‖Im
λ G1
‖

2
1+‖I

m
λ G2
‖

2
2+‖I

m
λ ∂t G2

‖
2
0+‖I

m
λ G3
‖

2
1+‖I

m
λ G4
‖

2
1 . E2

2N . (10-5)

Here the constant in the inequality does not depend on m.
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We may similarly modify the proof of Lemma 4.4, removing the interpolation arguments and simply
estimating with E2N instead. This provides us with the following lemma, whose proof we omit.

Lemma 10.3. Assume that E2N ≤ 1. We have

‖Im
λ [(AK )∂3u1+ (BK )∂3u2]‖

2
0+

2∑
i=1

‖Im
λ [u∂i K ]‖20 . E2

2N , (10-6)

‖Im
λ [(1− K )u]‖20+‖I

m
λ [(1− K )G2

]‖
2
0 . E2

2N . (10-7)

Here the constants in the inequalities do not depend on m.

Lemma 10.3 leads to a modification of Lemma 6.5.

Lemma 10.4. Assume that E2N ≤ 1. We have

‖Im
λ p‖20 . ‖I

m
λ η‖

2
0+E2N and ‖Im

λ Dp‖20 . E2N . (10-8)

Here the constants in the inequalities do not depend on m.

Proof. We may argue as in Lemma 6.5, employing Lemma 10.1 in place of Lemmas A.3 and A.4 as
well as Proposition 10.2 and Lemma 10.3 in place of Proposition 4.3 and Lemma 4.4, to deduce the
estimate ‖∂αIm

λ p‖20 . ‖∂
αIm

λ η‖
2
0+‖u‖

2
3+‖∂t u‖21+E2

2N for α ∈ N2 with |α| ∈ {0, 1}. We may bound
‖u‖23+‖∂t u‖21≤E2N . When |α| = 1 we use Lemma 10.1 to estimate ‖∂αIm

λ η‖
2
0. (‖η‖

2
0)
λ(‖Dη‖20)

1−λ
≤

E2N . The desired estimates then follow from these estimates and the fact that E2N ≤ 1. �

In turn, Lemma 10.4 gives a variant of Lemma 6.6. The proof is an easy modification of that of
Lemma 6.6, using the above Im

λ results in place of Iλ results, and is thus omitted.

Lemma 10.5. Assume that E2N ≤ 1. We have∣∣∣∣∫
�

Im
λ pIm

λ G2
∣∣∣∣. E2N‖I

m
λ η‖0+E2N . (10-9)

Here the constant in the inequality does not depend on m.

These results now allow us to study the boundedness of Iλu, etc. We first apply the operator Im
λ to

the equations (2-23), which is possible since Im
λ is bounded on H 0(�) and H 0(6). Then the energy

evolution for Im
λ u and Im

λ η allows us to derive bounds for these quantities, which yield bounds for Iλu
and Iλη after passing to the limit m→∞.

Proposition 10.6. Suppose that (u, p, η) are solutions on the time interval [0, T ] and that ‖Iλu0‖
2
0 +

‖Iλη0‖
2
0 <∞ and sup0≤t≤T E2N (t)≤ 1. Then

sup
0≤t≤T

(‖Iλu(t)‖20+‖Iλ p(t)‖20+‖Iλη(t)‖
2
0)+

∫ T

0
‖Iλu(t)‖21 dt

. eT (‖Iλu0‖
2
0+‖Iλη0‖

2
0)+ eT sup

0≤t≤T
E2N (t). (10-10)
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Proof. Since Im
λ is a bounded operator on H 0(�) and H 0(6), we are free to apply it to the equations

(2-23). After doing so, we use Lemma 2.5 to see that

∂t

(
1
2

∫
�

|Im
λ u|2+ 1

2

∫
6

|Im
λ η|

2
)
+

1
2

∫
�

|DIm
λ u|2

=

∫
�

Im
λ u · (Im

λ G1
−∇Im

λ G2)+Im
λ pIm

λ G2
+

∫
6

−Im
λ u ·Im

λ G3
+Im

λ ηIm
λ G4. (10-11)

We will estimate each term on the right side of this equation. First, we use Cauchy–Schwarz and
Proposition 10.2 to estimate the first and fourth terms:∣∣∣∣∫
�

Im
λ u · (Im

λ G1
−∇Im

λ G2)

∣∣∣∣+ ∣∣∣∣∫
6

Im
λ ηIm

λ G4
∣∣∣∣

≤ ‖Im
λ u‖0(‖Im

λ G1
‖0+‖I

m
λ G2
‖1)+‖I

m
λ η‖0‖I

m
λ G4
‖0

≤
1
2‖I

m
λ u‖20+

1
4‖I

m
λ η‖

2
0+

1
2(‖I

m
λ G1
‖0+‖I

m
λ G2
‖1)

2
+‖Im

λ G4
‖

2
0

≤
1
2‖I

m
λ u‖20+

1
4‖I

m
λ η‖

2
0+CE2

2N (10-12)

for C > 0 independent of m. For the second term we use Lemma 10.5 and Cauchy’s inequality for∣∣∣∣∫
�

Im
λ pIm

λ G2
∣∣∣∣≤ C‖Im

λ η‖0E2N +CE2N ≤
1
4‖I

m
λ η‖

2
0+C(E2N +E2

2N ), (10-13)

where again C > 0 is independent of m. Finally, for the third term we use trace theory, Proposition 10.2,
and Lemma A.12 to bound∣∣∣∣∫

6

Im
λ u ·Im

λ G3
∣∣∣∣≤ ‖Im

λ u‖H0(6)‖I
m
λ G3
‖0 ≤ C‖Im

λ u‖1‖Im
λ G3
‖0

≤ C‖DIm
λ u‖0E2N ≤

1
4‖DIm

λ u‖20+CE2
2N , (10-14)

with C > 0 independent of m. Now we use (10-12)–(10-14) to estimate the right side of (10-11); after
rearranging the resulting bound, we find that

∂t(‖I
m
λ u‖20+‖I

m
λ η‖

2
0)+

1
2‖DIm

λ u‖20 ≤ ‖I
m
λ u‖20+‖I

m
λ η‖

2
0+C(E2N +E2

2N ) (10-15)

for a constant C > 0 that does not depend on m.
The inequality (10-15) may be viewed as the differential inequality

∂t Eλ,m +
1
2 Dλ,m ≤ Eλ,m +C(E2N +E2

2N ), (10-16)

where we have written Eλ,m = ‖I
m
λ u‖20+‖I

m
λ η‖

2
0 and Dλ,m = ‖DIm

λ u‖20. Applying Gronwall’s lemma to
(10-16) and using the fact that E2N (t)≤ 1 then shows that

Eλ,m(t)+
1
2

∫ t

0
Dλ,m(s) ds ≤ Eλ,m(0)et

+C
∫ t

0
et−sE2N (s) ds

≤ Eλ,m(0)et
+C(et

− 1) sup
0≤s≤t

E2N (s), (10-17)
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where again C > 0 is independent of m. It is a simple matter to verify, using the definitions of Im
λ and Iλ,

Parseval’s theorem for the Fourier transform in (x1, x2), and the monotone convergence theorem, that, as
m→∞,

Eλ,m(s)= ‖Im
λ u(s)‖20+‖I

m
λ η(s)‖

2
0→‖Iλu(s)‖20+‖Iλη(s)‖

2
0 (10-18)

for both s = 0 and s = t , and ∫ t

0
Dλ,m(s) ds→

∫ t

0
‖DIλu(s)‖20 ds. (10-19)

Now, according to these two convergence results, we may pass to the limit m →∞ in (10-17); the
resulting estimate and Lemma A.12 then imply that

sup
0≤t≤T

(‖Iλu(t)‖20+‖Iλη(t)‖
2
0)+

∫ T

0
‖Iλu(t)‖21 dt

. (‖Iλu0‖
2
0+‖Iλη0‖

2
0)e

T
+ (eT

− 1) sup
0≤t≤T

E2N (t). (10-20)

On the other hand, from Lemma 10.4, we know that

‖Im
λ p(t)‖20 . ‖I

m
λ η(t)‖

2
0+E2N (t). (10-21)

We may then argue as above, employing the monotone convergence theorem, to pass to the limit m→∞
in this estimate. We then find that

sup
0≤t≤T

‖Iλ p(t)‖20 . sup
0≤t≤T

‖Iλη(t)‖20+ sup
0≤t≤T

E2N (t). (10-22)

The estimate (10-10) then follows by combining (10-20) and (10-22). �

Local well-posedness. We now record the specialized version of the local well-posedness theorem. We
include estimates for Iλu, Iλη, and Iλ p. We also separate estimates for E2N and D2N from estimates
for F2N and E2N , the latter of which is defined by (10-4).

Theorem 10.7. Suppose that initial data are given satisfying the compatibility conditions of Theorem 1.1
and ‖u(0)‖24N +‖η(0)‖

2
4N+1/2+‖Iλu(0)‖20+‖Iλη(0)‖

2
0 <∞. Let ε > 0. There exists a δ0 = δ0(ε) > 0

and a

T0 = C(ε)min
{

1, 1
‖η(0)‖24N+1/2

}
> 0, (10-23)

where C(ε) > 0 is a constant depending on ε, such that if 0 < T ≤ T0 and ‖u(0)‖24N +‖η(0)‖
2
4N ≤ δ0,

there exists a unique solution (u, p, η) to (1-9) on the interval [0, T ] that achieves the initial data. The
solution obeys the estimates

sup
0≤t≤T

E2N (t)+ sup
0≤t≤T

‖Iλ p(t)‖20+
∫ T

0
D2N (t) dt +‖∂2N+1

t u‖2(XT )∗

≤ C2(ε+‖Iλu(0)‖20+‖Iλη(0)‖
2
0), (10-24)
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and

sup
0≤t≤T

E2N (t)≤ ε and sup
0≤t≤T

F2N (t)≤ C2F2N (0)+ ε (10-25)

for C2 > 0 a universal constant. Here E2N is as defined by (10-4) and XT is defined in (1-11).

Proof. The result follows directly from Proposition 10.6 and Theorem 1.1. �

Remark 10.8. The finiteness of the terms in (10-24) and (10-25) justifies all of the computations leading
to Theorem 9.8. In particular, it shows that ∂2N+1

t u and ∂2N
t p are well-defined.

Remark 10.9. We could have recorded a version of Theorem 10.7 in which ε is replaced by various terms
depending on the initial data in (10-24)–(10-25). We have chosen to introduce the ε term for convenience
in our proof of Theorem 11.2.

11. Global well-posedness and decay: proof of Theorem 1.3

In order to combine the local existence result, Theorem 10.7, with the a priori estimates of Theorem 9.8,
we must be able to estimate G2N , defined by (2-58), in terms of the estimates given in (10-24) and (10-25).
We record this estimate now.

Proposition 11.1. Let E2N be as defined by (10-4). There exists a universal constant C3 > 0 with the
following properties.

(1) If 0≤ T , we have the estimate

G2N (T )≤ sup
0≤t≤T

E2N (t)+
∫ T

0
D2N (t) dt + sup

0≤t≤T
F2N (t)+C3(1+ T )2+λ sup

0≤t≤T
E2N (t). (11-1)

(2) If 0< T1 ≤ T2 and sup
T1≤t≤T2

‖η(t)‖25/2 ≤ δ, where δ > 0 is as in Lemma 2.6, we have the estimate

G2N (T2)≤ C3G2N (T1)+ sup
T1≤t≤T2

E2N (t)+
∫ T2

T1

D2N (t) dt + 1
(1+T1)

sup
T1≤t≤T2

F2N (t)

+C3(T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-2)

Proof. We begin with the proof of the estimate (11-2). The definition of G2N (T2) in (2-58) allows us to
estimate

G2N (T2)

≤G2N (T1)+ sup
T1≤t≤T2

E2N (t)+
∫ T2

T1

D2N (t) dt+ sup
T1≤t≤T2

F2N (t)
(1+ t)

+

2∑
m=1

sup
T1≤t≤T2

((1+t)m+λEN+2,m(t)). (11-3)

Since N ≥ 3, it is easy to verify that

N+2∑
j=0

‖∂
j+1

t u‖22(N+2)−2 j +‖∂
j

t u‖22(N+2)−2 j +‖∂
j+1

t η‖22(N+2)−2 j +‖∂
j

t η‖
2
2(N+2)−2 j . E2N (11-4)
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and N+1∑
j=0

‖∂
j+1

t p‖22(N+2)−2 j−1+‖∂
j

t p‖22(N+2)−2 j−1 . E2N . (11-5)

We will use (11-4), (11-5), and an integration argument to estimate the last term in (11-3).
For j = 1, . . . , N + 2 and m = 1, 2 we may integrate ∂t [(1+ t)(m+λ)/2∂ j

t u(t)] in time from T1 to
t ∈ [T1, T2] and use the estimates in (11-4) to deduce the bound

‖(1+ t)(m+λ)/2∂ j
t u(t)‖2N+4−2 j ≤ ‖(1+ T1)

(m+λ)/2∂
j

t u(T1)‖2N+4−2 j

+

∫ T2

T1

(
(1+ s)(m+λ)/2‖∂ j+1

t u(s)‖2N+4−2 j +
(m+λ)

2
(1+ s)(m+λ−2)/2

‖∂
j

t u(s)‖2N+4−2 j

)
ds

.
√

G2N (T1)+ (T2− T1)(1+ T2)
1+λ/2

√
sup

T1≤t≤T2

E2N (t). (11-6)

Squaring both sides of this, summing over j = 1, . . . , N + 2, taking the supremum, and then summing
over m = 1, 2 then yields the bound

2∑
m=1

sup
T1≤t≤T2

(
(1+t)m+λ

N+2∑
j=1

‖∂
j

t u(t)‖22(N+2)−2 j

)
.G2N (T1)+(T2−T1)

2(1+T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-7)

We may also integrate ∂t [(1+ t)(m+λ)/2∂αu(t)] for α ∈ N3 with |α| = m+ 1 and argue as above, again
employing the estimate (11-4), to deduce the bound (after summing over all such α)

2∑
m=1

sup
T1≤t≤T2

((1+t)m+λ‖∇m+1u(t)‖22(N+2)−m−1).G2N (T1)+(T2−T1)
2(1+T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-8)

Similarly, we may integrate ∂t [(1+ t)(m+λ)/2∂αu(t)] for α ∈ N1+2 with m ≤ |α| ≤ 2N + 4, argue as
above with (11-4), and then employ the bound ‖D2N+4

m u‖20 . EN+2,m from Remark 2.8 (which holds for
t ∈ [T1, T2] because of our assumption on the size of ‖η‖25/2), to deduce the bound (again after summing
over all such α)

2∑
m=1

sup
T1≤t≤T2

((1+ t)m+λ‖D2N+4
m u(t)‖20). G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-9)

Together, the estimates (11-7)–(11-9) account for all of the u terms appearing in EN+2,m , as defined in
(2-52) for m = 1 and (2-53) for m = 2.

Now we turn to the terms in EN+2,m involving η and p. We may use the η estimates in (11-4) and the
p estimates in (11-5) in a trio of integration arguments like those used above in (11-7)–(11-9). These
yield the estimates

2∑
m=1

sup
T1≤t≤T2

(
(1+ t)m+λ

[N+1∑
j=1

‖∂
j

t p(t)‖22(N+2)−2 j−1+

N+2∑
j=1

‖∂
j

t η(t)‖
2
2(N+2)−2 j

])
. G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t), (11-10)
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2∑
m=1

sup
T1≤t≤T2

((1+ t)m+λ[‖∇m p(t)‖22(N+2)−m−1+‖D
mη(t)‖22(N+2)−m])

. G2N (T1)+ (T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t), (11-11)

and
2∑

m=1

sup
T1≤t≤T2

((1+ t)m+λ‖D2N+4
m η(t)‖20). G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-12)

Now we sum (11-7)–(11-12) and use the bound EN+2,m . ‖D2N+4
m u‖20+‖D

2N+4
m η‖20 from Remark 2.8

to find that
2∑

m=1

sup
T1≤t≤T2

((1+ t)m+λEN+2,m(t)). G2N (T1)+ (T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-13)

Then (11-2) follows from (11-3), (11-13), and the trivial bound

sup
T1≤t≤T2

F2N (t)
(1+ t)

≤
1

(1+T1)
sup

T1≤t≤T2

F2N (t). (11-14)

Now we turn to the proof of (11-1). It is easy to see that EN+2,m(t). E2N (t), which leads us to the
simple bound

2∑
m=1

sup
0≤t≤T

((1+ t)m+λEN+2,m(t)). (1+ T )2+λ sup
0≤t≤T

E2N (t). (11-15)

Then this, (11-14) with T1 replaced by 0 and T2 replaced by T , and the definition of G2N in (2-58) imply
(11-1). �

We now turn to our main result.

Theorem 11.2. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1. Let
E2N , F2N , and G2N be defined by (2-50), (2-56), and (2-58), respectively. There exists a κ > 0 such that if
E2N (0)+F2N (0) < κ , there exists a unique solution (u, p, η) to (1-9) on the interval [0,∞) that achieves
the initial data. The solution obeys the estimate

G2N (∞)≤ C1(E2N (0)+F2N (0)) < C1κ, (11-16)

where C1 > 0 is given by Theorem 9.8.

Proof. Let 0<δ<1 and C1>0 be the constants from Theorem 9.8, C2>0 the constant from Theorem 10.7,
and C3 > 0 the constant from Proposition 11.1. According to (11-1) of Proposition 11.1, if a solution
exists on the interval [0, T ] with T < 1 and obeys the estimates (10-24) and (10-25), then

G2N (T )≤ C2κ + ε[C2+ 1+C322+λ
]. (11-17)

If ε is chosen so that the latter term in (11-17) equals δ/2, we may choose κ sufficiently small that
C2κ < δ/2 and κ < δ0(ε) (with δ0(ε) given by Theorem 10.7); then Theorem 10.7 provides a unique
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solution on [0, T ] obeying the estimates (10-24) and (10-25), and hence G2N (T ) ≤ δ. According to
Remark 10.8, all of the computations leading to Theorem 9.8 are justified by the estimates (10-24) and
(10-25).

Let us now define

T∗(κ)= sup{T > 0 | for every choice of initial data satisfying the compatibility

conditions and E2N (0)+F2N (0) < κ, there exists a unique solution

on [0, T ] that achieves the data and satisfies G2N (T )≤ δ}. (11-18)

By the above analysis, T∗(κ) is well-defined and satisfies T∗(κ) > 0 if κ is small enough, that is, there is
a κ1 > 0 such that T∗ : (0, κ1] → (0,∞]. It is easily verified that T∗ is nonincreasing on (0, κ1]. Let us
now set

ε =
δ

3
min

{ 1
1+C2

,
1

C3

}
(11-19)

and then define κ0 ∈ (0, κ1] by

κ0 =min
{

δ

3C1(C3+2C2)
,
δ0(ε)

C1
, κ1

}
, (11-20)

where δ0(ε) is given by Theorem 10.7 with ε given by (11-19). We claim that T∗(κ0) =∞. Once the
claim is established, the proof of the theorem is complete, since then T∗(κ)=∞ for all 0< κ ≤ κ0.

Suppose, by way of contradiction, that T∗(κ0) <∞. We will show that solutions can actually be
extended past T∗(κ0) and that these solutions satisfy G2N (T2) ≤ δ for T2 > T∗(κ0), contradicting the
definition of T∗(κ0). We begin by extending the solutions. By the definition of T∗(κ0), we know that,
for every 0< T1 < T∗(κ0) and any choice of data satisfying the compatibility conditions and the bound
E2N (0)+F2N (0) < κ0, there exists a unique solution on [0, T1] that achieves the initial data and satisfies
G2N (T1)≤ δ. Then, by Theorem 9.8, we know that, actually,

G2N (T1)≤ C1(E2N (0)+F2N (0)) < C1κ0. (11-21)

In particular, this and (11-20) imply that

E2N (T1)+
F2N (T1)

(1+ T1)
< C1κ0 ≤ δ0(ε) for all 0< T1 < T∗(κ0), (11-22)

where ε is given by (11-19). We view (u(T1), p(T1), η(T1)) as initial data for a new problem; since
(u, p, η) are already solutions, they satisfy the compatibility conditions needed to use them as data. Then,
since E2N (T1) < δ0(ε), we can use Theorem 10.7 with ε given by (11-19) to extend solutions to [T1, T2]

for any T2 satisfying

0< T2− T1 ≤ T0 = C(ε)min{1,F2N (T1)
−1
}. (11-23)

In light of (11-22), we may bound

T := C(ε)min
{

1, 1
δ0(ε)(1+T∗(κ0))

}
≤ T0. (11-24)
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Notice that T depends on ε (given by (11-19)) and T∗(κ0), but is independent of T1. Let

γ =min
{

T , T∗(κ0),
1

(1+2T∗(κ0))1+λ/2

}
, (11-25)

and then let us choose T1 = T∗(κ0)− γ /2 and T2 = T∗(κ0)+ γ /2. The choice of γ implies that

0< T1 < T∗(κ0) < T2 < 2T∗(κ0) and 0< γ = T2− T1 ≤ T ≤ T0. (11-26)

Then Theorem 10.7 allows us to extend solutions to the interval [0, T2], and it provides estimates on the
extended interval [T1, T2]:

sup
T1≤t≤T2

E2N (t)+ sup
T1≤t≤T2

‖Iλ p(t)‖20+
∫ T2

T1

D2N (t) dt +‖∂2N+1
t u‖2(X(T1,T2))

∗

≤ C2(ε+‖Iλu(T1)‖
2
0+‖Iλη(T1)‖

2
0), (11-27)

and

sup
T1≤t≤T2

E2N (t)≤ ε and sup
T1≤t≤T2

F2N (t)≤ C2F2N (T1)+ ε. (11-28)

Here, in (11-27), we understand that X(T1,T2) is defined as in (1-11) except on the temporal interval
(T1, T2) rather than (0, T ).

Having extended the existence interval, we will now show that G2N (T2)≤ δ. Note that the constant δ,
which comes from Theorem 9.8, is already smaller than the δ appearing in Lemma 2.6. Then the first
estimate in (11-28) and the bound ε ≤ δ (a consequence of (11-19)) imply that supT1≤t≤T2

‖η(t)‖25/2 is
smaller than the δ in Lemma 2.6, which means we may use the second estimate in Proposition 11.1. We
then combine the estimates (11-27)–(11-28) with (11-21)–(11-22) and the bound (11-2) of Proposition 11.1
to see that

G2N (T2) < C1C3κ0+C2(ε+C1κ0)+
C1C2κ0(1+ T1)+ ε

(1+ T1)
+ εC3(T2− T1)

2(1+ T2)
2+λ

≤ κ0C1(C3+ 2C2)+ ε(1+C2)+ εC3γ
2(1+ 2T∗(κ0))

2+λ
≤
δ

3
+
δ

3
+
δ

3
= δ, (11-29)

where the second inequality follows from (11-26) and the third follows from the choice of ε, κ0, and γ
given in (11-19), (11-20), and (11-25), respectively. Hence G2N (T2)≤ δ, contradicting the definition of
T∗(κ0). We then deduce that T∗(κ0)=∞, which completes the proof of the claim and the theorem. �

With this result in hand, it is a simple matter to prove Theorem 1.3.

Proof of Theorem 1.3. We set N = 5 in Theorem 11.2 to deduce all of the conclusions of Theorem 1.3
except the estimates (1-20)–(1-21). Proposition 3.9 implies that

‖u‖2C2(�)
≤ C(r)(E10)

r/(2+r)(E7,2)
2/(2+r) (11-30)

for any r ∈ (0, 1), where C(r) > 0 is a constant depending on r . Let 0≤ ρ < λ and then choose r ∈ (0, 1)
such that

0< r ≤ 2 2+λ
2+ρ

− 2, or equivalently (2+ ρ)≤ (2+ λ) 2
2+r

. (11-31)



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1525

Then C(r)= C(ρ) and the bound G10(∞)≤ C1(E10(0)+F10(0)) implies that

sup
t≥0
(1+ t)2+ρ‖u(t)‖2C2(�)

≤ C(ρ)C1(E10(0)+F10(0)) sup
t≥0
(1+ t)2+ρ

( 1
(1+t)2+λ

)2/(2+r)

≤ C(ρ)C1(E10(0)+F10(0)), (11-32)

which is (1-20). The estimate (1-21) follows similarly by using the interpolation estimates of Lemma 3.1
for the η terms and the interpolation estimates of Theorem 3.14 for ‖u‖22. In this case, though, no use of
r ∈ (0, 1) is necessary because it does not appear in the interpolations. �

Appendix: Analytic tools

Products in Sobolev spaces. We will need some estimates of the product of functions in Sobolev spaces.

Lemma A.1. Let U denote either 6 or �.

(1) Let 0≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-1)

(2) Let 0≤ r ≤ s1 ≤ s2 be such that s2 > r +n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-2)

(3) Let 0≤ r ≤ s1≤ s2 be such that s2> r+n/2. Let f ∈ H−r (6), g ∈ H s2(6). Then f g ∈ H−s1(6) and

‖ f g‖−s1 . ‖ f ‖−r‖g‖s2 . (A-3)

Proof. The proofs of (A-1) and (A-2) are standard; the bounds are first proved in Rn with the Fourier
transform, and then the bounds in sufficiently nice subsets of Rn are deduced by use of an extension
operator. To prove (A-3) we argue by duality. For ϕ ∈ H s1(6) we use (A-2) to bound∫

6

ϕ f g . ‖ϕg‖r‖ f ‖−r . ‖ϕ‖s1‖g‖s2‖ f ‖−r , (A-4)

so that upon taking the supremum over ϕ with ‖ϕ‖s1 ≤ 1 we get (A-3). �

We will also need the following variant.

Lemma A.2. Suppose that f ∈ C1(6) and g ∈ H 1/2(6). Then

‖ f g‖1/2 . ‖ f ‖C1‖g‖1/2. (A-5)

Proof. Consider the operator F : H k
→ H k given by F(g)= f g for k = 0, 1. It is a bounded operator for

k = 0, 1 since
‖ f g‖0 ≤ ‖ f ‖C1‖g‖0 and ‖ f g‖1 . ‖ f ‖C1‖g‖1. (A-6)

Then the theory of interpolation of operators implies that F is bounded from H 1/2 to itself, with operator
norm less than a constant times

√
‖ f ‖C1

√
‖ f ‖C1 = ‖ f ‖C1 , which is the desired result. �
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Estimates of the Riesz potential Iλ. Consider �= R2
× (−b, 0) for b> 0. For a function f , defined on

�, we define the Riesz potential Iλ f by

Iλ f (x ′, x3)=

∫
R2

f̂ (ξ, x3)|ξ |
−λe2π i x ′·ξ dξ, (A-7)

where ˆ̇denotes the Fourier transform in (x1, x2). Similarly, for f defined on 6, we set

Iλ f (x ′)=
∫

R2
f̂ (ξ)|ξ |−λe2π i x ′·ξ dξ. (A-8)

We have a product estimate that is a fractional analogue of the Leibniz rule.

Lemma A.3. Let λ ∈ (0, 1). If f ∈ H 0(�) and g, Dg ∈ H 1(�), then

‖Iλ( f g)‖0 . ‖ f ‖0‖g‖λ1‖Dg‖1−λ1 . (A-9)

If f ∈ H 0(6) and g ∈ H 1(6), then

‖Iλ( f g)‖H0(6) . ‖ f ‖H0(6)‖g‖
λ
H0(6)
‖Dg‖1−λH0(6)

. (A-10)

Proof. The Hardy–Littlewood–Sobolev inequality (see, for example, Theorem 4.3 of [Lieb and Loss
2001]) implies that Iλ : L2/(1+λ)(R2)→ L2(R2) is a bounded linear operator for λ ∈ (0, 1). We may then
employ Fubini’s theorem and apply this result to each slice {x3 = z} for z ∈ (−b, 0) to estimate∫

�

|Iλ( f g)|2 =
∫ 0

−b

∫
R2
|Iλ( f g)|2 dx ′dx3 .

∫ 0

−b

(∫
R2
| f g|2/(1+λ) dx ′

)1+λ

dx3

≤

∫ 0

−b

(∫
R2
| f |2 dx ′

)(∫
R2
|g|2/λdx ′

)λ
dx3 ≤ sup

−b≤x3≤0
‖g( · , x3)‖

2
L2/λ(R2)

∫
�

| f |2, (A-11)

where, in the second inequality, we have applied Hölder’s inequality. By the Gagliardo–Nirenberg
interpolation inequality on R2 we may bound

‖g( · , x3)‖L2/λ(R2) . ‖g( · , x3)‖
λ
L2(R2)

‖Dg( · , x3)‖
1−λ
L2(R2)

, (A-12)

but, by trace theory, we also have

‖g( · , x3)‖L2(R2) . ‖g‖1 and ‖Dg( · , x3)‖L2(R2) . ‖Dg‖1, (A-13)

so that
sup

−b≤x3≤0
‖g( · , x3)‖

2
L2/λ(R2)

. ‖g‖λ1‖Dg‖1−λ1 . (A-14)

Chaining together (A-11) and (A-14) then yields the estimate (A-9). A similar argument, not employing
Fubini’s theorem or trace theory, provides the estimate (A-10). �

Our next result shows how Iλ interacts with horizontal derivatives in �.

Lemma A.4. Let λ ∈ (0, 1). If f ∈ H k(�) for k ≥ 1 an integer, then

‖IλDk f ‖0 . ‖Dk−1 f ‖λ0‖D
k f ‖1−λ0 . (A-15)
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Proof. On a fixed horizontal slice {x3 = z} for z ∈ (−b, 0), Parseval’s theorem implies that∫
R2
|IλDk f (x ′, x3)|

2 dx ′ .
∫

R2
|ξ |2(k−λ)| f̂ (ξ, x3)|

2 dξ

=

∫
R2
(|ξ |2(k−1)

| f̂ (ξ, x3)|
2)λ(|ξ |2k

| f̂ (ξ, x3)|
2)1−λ dξ

.

(∫
R2
|Dk−1 f (x ′, x3)|

2 dx ′
)λ(∫

R2
|Dk f (x ′, x3)|

2 dx ′
)1−λ

. (A-16)

Here, in the second inequality, we have used Hölder and Parseval. Integrating both sides of this inequality
with respect to x3 ∈ (−b, 0) and again applying Hölder’s inequality yields the estimate (A-15). �

Poisson integral. For a function f defined on 6 = R2, the Poisson integral in R2
× (−∞, 0) is defined

by

P f (x ′, x3)=

∫
R2

f̂ (ξ)e2π |ξ |x3e2π i x ′·ξ dξ. (A-17)

Although P f is defined in all of R2
× (−∞, 0), we will only need bounds on its norm in the restricted

domain �= R2
× (−b, 0). This yields a couple improvements of the usual estimates of P f on the set

R2
× (−∞, 0). Recall that we use the conventions for sums of derivatives described on page 1443, which

in particular means that ∇q involves x3 derivatives.

Lemma A.5. Let P f be the Poisson integral of a function f that is either in Ḣq(6) or Ḣq−1/2(6) for
q ∈ N (here Ḣ s is the usual homogeneous Sobolev space of order s). Then

‖∇
qP f ‖20 .

∫
R2
|ξ |2q
| f̂ (ξ)|2

(1−e−4πb|ξ |

|ξ |

)
dξ, (A-18)

and in particular

‖∇
qP f ‖20 . ‖ f ‖2Ḣq−1/2(6)

and ‖∇
qP f ‖20 . ‖ f ‖2Ḣq (6)

. (A-19)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

‖∇
qP f ‖20 .

∫
R2

∫ 0

−b
|ξ |2q
| f̂ (ξ)|2e4π |ξ |x3 dx3dξ ≤

∫
R2
|ξ |2q
| f̂ (ξ)|2

(∫ 0

−b
e4π |ξ |x3 dx3

)
dξ

.
∫

R2
|ξ |2q
| f̂ (ξ)|2

(1−e−4πb|ξ |

|ξ |

)
dξ. (A-20)

This is (A-18). To deduce (A-19) from (A-18), we simply note that

1−e−4πb|ξ |

|ξ |
≤min

{
4πb, 1

|ξ |

}
, (A-21)

which means we are free to bound the right side of (A-20) by either ‖ f ‖2
Ḣq−1/2(6)

or ‖ f ‖2
Ḣq (6)

. �
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Interpolation estimates. Assume that 6 = R2 and � = 6 × (−b, 0). We begin with an interpolation
result for Poisson integrals, as defined by (A-17).

Lemma A.6. Let P f be the Poisson integral of f , defined on 6. Let λ≥ 0, q ∈ N, s ≥ 0, and r ≥ 0.

(1) Let

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-22)

Then
‖∇

qP f ‖20 . (‖Iλ f ‖20)
θ (‖Dq+s f ‖20)

1−θ . (A-23)

(2) Let r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-24)

Then
‖∇

qP f ‖2L∞ . (‖Iλ f ‖20)
θ (‖Dq+s f ‖2r )

1−θ . (A-25)

(3) Let s > 1. Then
‖∇

qP f ‖2L∞ . ‖D
q f ‖2s . (A-26)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

‖∇
qP f ‖20.

∫
R2

∫ 0

−b
|ξ |2q
| f̂ (ξ)|2e4π |ξ |x3 dx3 dξ .

∫
R2
|ξ |2q
| f̂ (ξ)|2 dξ.

=

∫
R2
(|ξ |2(q+s)

| f̂ (ξ)|2)1−θ (|ξ |−2λ
| f̂ (ξ)|2)θ dξ (A-27)

for θ and 1− θ defined by (A-22). An application of Hölder’s inequality and a second application of
Parseval’s theorem then provides the estimate (A-23).

For the L∞ estimate (A-25), we use the definition of P f in conjunction with the trivial estimate
exp(2π |ξ |x3)≤ 1 in � to bound

‖∇
qP f ‖L∞ .

∫
R2
|ξ |q | f̂ (ξ)| dξ. (A-28)

We write BR for the open ball of radius R, Bc
R for its complement, and 〈ξ〉 =

√
1+ |ξ |2. For R > 0 we

split into high and low frequencies to see that∫
R2
|ξ |q | f̂ (ξ)| dξ =

∫
BR

|ξ |q+λ|ξ |−λ| f̂ (ξ)| dξ +
∫

Bc
R

|ξ |q+s
〈ξ〉r 〈ξ〉−r

|ξ |−s
| f̂ (ξ)| dξ

.

(∫
BR

|ξ |2(q+λ) dξ
)1/2

‖Iλ f ‖0+
(∫

Bc
R

|ξ |−2s
〈ξ〉−2r dξ

)1/2

‖Dq+s f ‖r

. Rq+λ+1
‖Iλ f ‖0+ R−(r+s−1)

‖Dq+s f ‖r . (A-29)

The condition r + s > 1 guarantees that the integral over Bc
R is finite. Minimizing the right side with

respect to R ∈ (0,∞) then yields (A-25).



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1529

The estimate (A-26) follows from the easy bound∫
R2
|ξ |q | f̂ (ξ)| dξ . ‖Dq f ‖s

(∫
R2
〈ξ〉−2s dξ

)1/2

. ‖Dq f ‖s, (A-30)

which holds when s > 1. �

The next result is a similar interpolation result for functions defined only on 6.

Lemma A.7. Let f be defined on 6. Let λ≥ 0.

(1) Let q, s ∈ [0,∞) and

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-31)

Then
‖Dq f ‖20 . (‖Iλ f ‖20)

θ (‖Dq+s f ‖20)
1−θ . (A-32)

(2) Let q, s ∈ N, r ≥ 0, r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-33)

Then
‖Dq f ‖2L∞ . (‖Iλ f ‖20)

θ (‖Dq+s f ‖2r )
1−θ . (A-34)

Proof. For the H 0 estimate we use

‖Dq f ‖20 .
∫

R2
|ξ |2q
| f̂ (ξ)|2 dξ (A-35)

and argue as in Lemma A.6. For the L∞ estimate we bound

‖Dq f ‖L∞ .
∫

R2
|ξ |q | f̂ (ξ)| dξ (A-36)

and again argue as in Lemma A.6. �

Now we record a similar result for functions defined on � that are not Poisson integrals. The result
follows from estimates on fixed horizontal slices.

Lemma A.8. Let f be a function on �. Let λ≥ 0, q, s ∈ N, and r ≥ 0.

(1) Let

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-37)

Then
‖Dq f ‖20 . (‖Iλ f ‖20)

θ (‖Dq+s f ‖20)
1−θ . (A-38)

(2) Let r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-39)
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Then

‖Dq f ‖2L∞ . (‖Iλ f ‖21)
θ
(
‖Dq+s f ‖2r+1

)1−θ
(A-40)

and

‖Dq f ‖2L∞(6) . (‖Iλ f ‖21)
θ (‖Dq+s f ‖2r+1)

1−θ . (A-41)

Proof. We employ the horizontal Fourier transform and Parseval in conjunction with Fubini to bound

‖Dq f ‖20 .
∫ 0

−b

∫
R2
|ξ |2q
| f̂ (ξ, x3)|

2 dξdx3. (A-42)

For a fixed x3 we may argue as in Lemma A.6 to show that∫
R2
|ξ |2q
| f̂ (ξ, x3)|

2 dξ ≤ (‖Iλ f ( · , x3)‖
2
0)
θ (‖Dq+s f ( · , x3)‖

2
0)

1−θ (A-43)

for θ and 1− θ given by (A-37). Combining these two inequalities with Hölder’s inequality then shows
that

‖Dq f ‖20 .
∫ 0

−b
(‖Iλ f ( · , x3)‖

2
0)
θ (‖Dq+s f ( · , x3)‖

2
0)

1−θ dx3 ≤ (‖Iλ f ‖20)
θ (‖Dq+s f ‖20)

1−θ , (A-44)

which is (A-38).
Now, for the L∞ estimate, we first work on a horizontal slice {x3 = z} for some z ∈ [−b, 0]. Indeed,

using the horizontal Fourier transform on the slice, we have

‖Dq f ( · , x3)‖L∞ .
∫

R2
|ξ |q | f̂ (ξ, x3)| dξ. (A-45)

We may then argue as in Lemma A.6 to show that∫
R2
|ξ |q | f̂ (ξ, x3)| dξ . (‖Iλ f ( · , x3)‖0)

θ (‖Dq+s f ( · , x3)‖r )
1−θ (A-46)

for θ and 1− θ given by (A-39). By the usual trace theory

‖Iλ f ( · , x3)‖0 . ‖Iλ f ‖1 and ‖Dq+s f ( · , x3)‖r . ‖Dq+s f ‖r+1. (A-47)

Combining (A-45)–(A-47) and taking the supremum over x3 ∈ [−b, 0] then gives (A-40). A similar
argument yields (A-41). �

Transport estimate. Consider the equation{
∂tη+ u · Dη = g in 6× (0, T ),
η(t = 0)= η0

(A-48)

with T ∈ (0,∞] and 6 = R2. We have the following estimate of the transport of regularity for solutions
to (A-48), which is a particular case of a more general result proved in [Danchin 2005].
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Lemma A.9 [Danchin 2005, Proposition 2.1]. Let η be a solution to (A-48). Then there is a universal
constant C > 0 such that, for any 0≤ s < 2,

sup
0≤r≤t

‖η(r)‖H s ≤ exp
(

C
∫ t

0
‖Du(r)‖H3/2 dr

)(
‖η0‖H s +

∫ t

0
‖g(r)‖H s dr

)
. (A-49)

Proof. Use p= p2 = 2, N = 2, and σ = s in Proposition 2.1 of [Danchin 2005] along with the embedding
H 3/2 ↪→ B1

2,∞ ∩ L∞. �

Poincaré-type inequalities. Let 6 and � be as before.

Lemma A.10. We have
‖ f ‖2L2(�)

. ‖ f ‖2L2(6)
+‖∂3 f ‖2L2(�)

(A-50)

for all f ∈ H 1(�). Also, if f ∈W 1,∞(�), then

‖ f ‖2L∞(�) . ‖ f ‖2L∞(6)+‖∂3 f ‖2L∞(�) . (A-51)

Proof. By density we may assume that f is smooth. Writing x = (x ′, x3) for x ′ ∈ 6 and x3 ∈ (−b, 0),
we have

| f (x ′,x3)|
2
=| f (x ′,0)|2−2

∫ 0

x3

f (x ′,z)∂3 f (x ′,z)dz≤| f (x ′,0)|2+2
∫ 0

−b
| f (x ′,z)||∂3 f (x ′,z)|dz. (A-52)

We may integrate this with respect to x3 ∈ (−b, 0) to get∫ 0

−b
| f (x ′, x3)|

2 dx3 . | f (x ′, 0)|2+ 2
∫ 0

−b
| f (x ′, z)||∂3 f (x ′, z)| dz. (A-53)

Now we integrate over x ′ ∈6 to find∫
�

| f (x)|2 dx≤C ‖ f ‖2L2(6)
+2C

∫
�

| f (x)||∂3 f (x)|dx≤C ‖ f ‖2L2(6)
+ε‖ f ‖2L2(�)

+
C
ε
‖∂3 f ‖2L2(�)

(A-54)

for any ε > 0. Choosing ε > 0 sufficiently small then yields (A-50). The estimate (A-51) follows similarly,
taking suprema rather than integrating. �

A simple modification of the proof of Lemma A.10 yields the following estimates.

Lemma A.11. We have ‖ f ‖H0(6) . ‖∂3 f ‖H0(�) for f ∈ H 1(�) such that f = 0 on 6b. Moreover,
‖ f ‖L∞(6) . ‖∂3 f ‖L∞(�) for f ∈W 1,∞(�) such that f = 0 on 6b.

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 of [Beale
1981].

Lemma A.12. We have ‖u‖1 . ‖Du‖0 for all u ∈ H 1(�;R3) such that u = 0 on 6b.

We also record the standard Poincaré inequality, which applies for functions taking either vector or
scalar values.

Lemma A.13. We have ‖ f ‖0 . ‖ f ‖1 . ‖∇ f ‖0 for all f ∈ H 1(�) such that f = 0 on 6b. Also,
‖ f ‖L∞(�) . ‖ f ‖W 1,∞(�) . ‖∇ f ‖L∞(�) for all f ∈W 1,∞(�) such that f = 0 on 6b.
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An elliptic estimate. The proof of the following estimate may be found in [Beale 1981].

Lemma A.14. Suppose (u, p) solve
−1u+∇ p = φ ∈ H r−2(�),

div u = ψ ∈ H r−1(�),

(pI −D(u))e3 = α ∈ H r−3/2(6),

u|6b = 0.

(A-55)

Then, for r ≥ 2,
‖u‖2H r +‖p‖2H r−1 . ‖φ‖

2
H r−2 +‖ψ‖

2
H r−1 +‖α‖

2
H r−3/2 . (A-56)
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