Vol. 6, No. 6, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus

Erwan Faou and Benoît Grébert

Vol. 6 (2013), No. 6, 1243–1262
Abstract

We prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

iut = Δu + V u + ūg(u,ū),x Td,

where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we prove that if the initial datum is analytic in a strip of width ρ > 0 whose norm on this strip is equal to ε, then if ε is small enough, the solution of the nonlinear Schrödinger equation above remains analytic in a strip of width ρ2, with norm bounded on this strip by Cε over a very long time interval of order εσ| ln ε|β , where 0 < β < 1 is arbitrary and C > 0 and σ > 0 are positive constants depending on β and ρ.

Keywords
Nekhoroshev theorem, nonlinear Schrödinger equation, normal forms
Mathematical Subject Classification 2010
Primary: 35B40, 35Q55, 37K55
Milestones
Received: 16 February 2011
Revised: 23 January 2013
Accepted: 28 February 2013
Published: 18 November 2013
Authors
Erwan Faou
INRIA and ENS Cachan Bretagne
Avenue Robert Schumann
F-35170 Bruz
France
Benoît Grébert
Laboratoire de Mathématiques Jean Leray
Université de Nantes
2 Rue de la Houssiniere
F-44322 Nantes Cedex 3
France