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L? AND SCHAUDER ESTIMATES FOR NONVARIATIONAL OPERATORS
STRUCTURED ON HORMANDER VECTOR FIELDS WITH DRIFT

MARCO BRAMANTI AND MAOCHUN ZHU

Let
q
L= a;()XiX;+ao(x)Xo,
i,j=1
where Xy, X1, ..., X, are real smooth vector fields satisfying Hormander’s condition in some bounded

domain 2 C R" (n > g + 1), and the coefficients a;; = a;;, ao are real valued, bounded measurable
functions defined in €2, satisfying the uniform positivity conditions

q
RIEP <Y a&E <V EP, pw<ax) <p
i,j=1

for a.e. x € Q, every £ € R?, and some constant i > 0.
We prove that if the coefficients a;;, ap belong to the Holder space C§ (£2) with respect to the distance
induced by the vector fields, local Schauder estimates of the following kind hold:
I1X: X jullce @) + 1 Xoullcy @y = c{llLullcg @) + llullLow)}

for any Q' € Q.
If the coefficients a;;, ag belong to the space VMO 1o (£2) with respect to the distance induced by the
vector fields, local L? estimates of the following kind hold, for every p € (1, 00):

1 X: X jullpr @y + 1 XoullLr )y < clllLullir) + llullLr @)}
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1794 MARCO BRAMANTI AND MAOCHUN ZHU

1. Introduction

Let us consider a family of real smooth vector fields

n
X; :Zbij(x)axj, i=0,1,2,...,q
j=1

(here g + 1 < n), defined in some bounded domain 2 of R"” and satisfying Hérmander’s condition: the Lie
algebra generated by the X; at any point of €2 spans R". Under these assumptions, Hormander’s operators

q
£=> "X} +Xo

i=1

have been studied since the late 1960s. Hormander [1967] proved that & is hypoelliptic, while Rothschild
and Stein [1976] proved that, for these operators, a priori estimates of L? type for second order derivatives
with respect to the vector fields hold, namely,

q q
D XX jull Loy + | Xoull Loy < c{ 1Lull Lo + lullLrey + Y ||X,~u||mm} (1-1)
i,j=1 i=1

for any p € (1, 00), Q' € Q.
Note that the “drift” vector field X has weight two, compared with the vector fields

X; fori=1,2,...,q.

Many more results have been proved in the literature for operators without the drift term (“sum of squares”
of Hormander type) than for complete Hormander’s operators. On the other hand, complete operators owe
their interest, for instance, to the class of Kolmogorov—Fokker—Planck operators, which arise naturally in
many fields of physics, natural sciences, and finance as the transport-diffusion equations satisfied by the
transition probability density of stochastic systems of ODEs which describe some real system governed by
a basically deterministic law perturbed by some kind of white noise. The study of Kolmogorov—Fokker—
Planck operators in the framework of Hérmander’s operators received a strong impulse from [Lanconelli
and Polidoro 1994], which started a lively line of research. We refer to [Lanconelli et al. 2002] for a good
survey of this field, with further motivations for the study of these equations and related references.

Let us also note that the study of Hormander’s operators is considerably easier when & is left invariant
with respect to a suitable Lie group of translations and homogeneous of degree two with respect to a
suitable family of dilations (which are group automorphisms of the corresponding group of translations).
In this case we say that & has an underlying structure of homogeneous group and, by a famous result due
to Folland [1975], & possesses a homogeneous left invariant global fundamental solution, which turns
out to be a precious tool in proving a priori estimates.
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In the last ten years, more general classes of nonvariational operators structured on Hormander’s vector
fields have been studied, namely,

q
£=Y" a;(x)X; X, (1-2)
i,j=1
q
L= a;(x.HX;X;— b, (1-3)
ij=1
q
L= a;(x)X;X; +ao(x)Xo, (1-4)
ij=1

where the matrix {a;; (- )}Z =1 is symmetric positive definite and the coefficients are bounded (ay is
bounded away from zero) and satisfy suitable mild regularity assumptions; for instance, they belong
to Holder or VMO spaces defined with respect to the distance induced by the vector fields. Since the
a;;’s are not C*°, these operators are no longer hypoelliptic. Nevertheless, a priori estimates on second
order derivatives with respect to the vector fields are a natural result which does not in principle require
smoothness of the coefficients. Namely, a priori estimates in L? (with coefficients a;; in VMOyx N L>°)
have been proved for operators (1-2) [Bramanti and Brandolini 2000a] and for operators (1-4) [Bramanti
and Brandolini 2000b] but in homogeneous groups; a priori estimates in C§ spaces (with coefficients
a;j in C%) have been proved for operators (1-3) [Bramanti and Brandolini 2007] and for operators (1-4)
[Gutiérrez and Lanconelli 2009] but in homogeneous groups. Here the Holder space C§ and the VMOy
space are defined with respect to the distance induced by the vector fields (see Section 3D for precise
definitions).
In the particular case of Kolmogorov—Fokker—Planck operators, which can be written as

q
L= ai;j(x)d}, +Xo

i,j=1

for a suitable drift Xy, L? estimates (when a;; are VMO) have been proved [Bramanti et al. 1996] in
homogeneous groups, while Schauder estimates (when a;; are Holder continuous) have been proved
[Di Francesco and Polidoro 2006] under more general assumptions (namely, assuming the existence of
translations but not necessarily dilations, adapted to the operator). We recall that the idea of proving
L? estimates for nonvariational operators with leading coefficients in VMO N L* (instead of assuming
their uniform continuity) appeared for the first time in [Chiarenza et al. 1991; Chiarenza et al. 1993] by
Chiarenza, Frasca, and Longo, in the uniformly elliptic case.

The aim of the present paper is to prove both L? and C* local estimates for general operators (1-4)
structured on Hormander’s vector fields “with drift”, without assuming the existence of any group structure,
under the appropriate assumptions on the coefficients a;;, ap. Namely, our basic estimates read as follows:

lull 2p gy = clliLullizr@ + llulliLe@)} 1-5)
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for p € (1, 00) and any Q' € Q if the coefficients are VMOy joc(£2), and
lull 2oy = clllEullcg @) + Nullize @)} (1-6)

fora € (0, 1) and Q" € Q if the coefficients are C§(£2). The related Sobolev and Holder spaces §2P ,
C }2(’0’ are those induced by the vector fields X;, and will be precisely defined in Section 3D. Clearly, these
estimates are more general than those contained in all the aforementioned papers.

At first sight, this kind of result could seem a straightforward generalization of existing theories.
However, several difficulties exist, some hidden in subtle details. We are going to describe some of them.
First of all, we have to remark that in [Rothschild and Stein 1976], although S}Z{,p estimates are stated
for both sum of squares and complete Hormander’s operators, proofs are given only in the first case.
While some adaptations are quite straightforward, this is not always the case. Therefore, some results
proved in the present paper can be seen also as a detailed proof of results stated in [Rothschild and Stein
1976], in the drift case. One of the new difficulties in the drift case is related to the proof of suitable
representation formulas for second order derivatives X; X ;u of a test function, in terms of u and Lu, via
singular integrals and commutators of singular integrals. In turn, the reason why these representation
formulas are harder to prove in the presence of a drift relies on the fact that a technical result which allows
us to exchange, in a suitable sense, the action of X;-derivatives with that of suitable integral operators
assumes a more involved form when the drift is present.

Once the suitable representation formulas are established, a real variable machinery similar to that used
in [Bramanti and Brandolini 2000a; 2007] can be applied, and this is the reason why we have chosen to
give in a single paper a unified treatment of L” and C§ estimates. More specifically, one considers a
bounded domain 2 endowed with the control distance induced by the vector fields X;, which has been
defined, in the drift case, by Nagel, Stein, and Wainger [Nagel et al. 1985], and the Lebesgue measure,
which is locally doubling with respect to these metric balls, as proved in [Nagel et al. 1985]. However,
a problem arises when trying to apply to this context known results about singular integrals in metric
doubling spaces (or “spaces of homogeneous type”, after [Coifman and Weiss 1971]). Namely, what we
should know to apply this theory on some domain Q" € € is a doubling property such as

w(B(x,2r)NQ) <cu(Bx,r)NQ) foranyx e Q' €, r>0 (1-7)
while what we actually know, in view of [Nagel et al. 1985], is
w(B(x,2r)) <cu(B(x,r)) foranyx e Q' €, 0 <r <ry. (1-8)

It has been known since [Franchi and Lanconelli 1983] that, when Q' is for instance a metric ball,
condition (1-7) follows from (1-8) as soon as the distance satisfies a kind of segment property which
reads as follows: for any couple of points x1, x; at distance r and for any number § < r and ¢ > 0, there
exists a point xg having distance < § from x; and <r — § 4+ ¢ from x, (this fact explicitly appears, for
instance, from the proof given in [Bramanti and Brandolini 2005, Lemma 4.2]). However, while when
the drift term is lacking, the distance induced by the X; is easily seen to satisfy this property, this is no
longer the case when the field Xy with weight two enters the definition of distance, and, as far as we
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know, a condition of kind (1-7) has never been proved in this context for a metric ball €, or for any other
special kind of bounded domain 2. Thus we are forced to apply a theory of singular integrals which
does not require the full strength of the global doubling condition (1-7). A first possibility is to consider
the context of nondoubling spaces, as studied by Tolsa, Nazarov, Treil, and Volberg, and other authors
(see, for instance, [Tolsa 2001; Nazarov et al. 2003] and the references therein). Results of L? and C*
continuity for singular integrals of this kind, applicable to our context, have been proved in [Bramanti
2010]. However, to prove our L? estimates (1-5), we also need some commutator estimates, of the kind
of the well-known result proved by [Coifman et al. 1976], which, as far as we know, are not presently
available in the framework of general nondoubling quasimetric (or metric) spaces. For this reason, we
have recently developed [Bramanti and Zhu 2012] a theory of locally homogeneous spaces which is quite
a natural framework where all the results we need about singular integrals and their commutators with
BMO functions can be proved. To give a unified treatment of both L” and C* estimates, here we have
decided to prove both by exploiting the results in [Bramanti and Zhu 2012]. We note that our Schauder
estimates could also be obtained by applying the results in [Bramanti 2010], while L? estimates could
not.

Once the basic estimates on second order derivatives are established, a natural, but nontrivial, extension
consists in proving similar estimates for derivatives of (weighted) order k + 2, in terms of k derivatives of
Su (assuming, of course, that the coefficients of the operator possess the corresponding further regularity).
In the presence of a drift, it is reasonable to restrict this study to the case of k even, as already appears
from the analog result proved in homogeneous groups [Bramanti and Brandolini 2000b]. Even in this
case, a proof of this extension seems to be a difficult task, and we have decided not to lengthen the paper
to address this problem.

2. Assumptions and main results
We now state precisely our assumptions and main results. All the function spaces involved in the statements
below will be precisely defined in Section 3D. Our basic assumption is as follows.
Assumption (H). Let
q
L= aij(0)X; X +ao(x)Xo,
ij=1

where the X, X1, ..., X, are real smooth vector fields satisfying Hormander’s condition (see Section 3A)
in some bounded domain 2 C R" and the coefficients a;; = aj;, ao are real valued, bounded measurable
functions defined in €2, satisfying the uniform positivity conditions

q
WEP <Y ay(0&E <p 5P p<an) <p
i,j=1

for a.e. x € Q, every £ € R?, and some constant u > 0.

Our main results are contained in the next two theorems.
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Theorem 2.1. In addition to (H), assume that the coefficients a;;, ay belong to C%(S2) for some a € (0, 1).
Then, for every domain Q' € 2, there exists a constant ¢ > 0 depending on Q', Q, X;, o, i, lla;j llce (@)
and ||aol|ce () such that, for every u € C)Q(’a(Q), one has

lull c2e g = ctliEullcg @ + lullLe)-

Theorem 2.2. In addition to (H), assume that the coefficients a;;, ap belong to the space VMOx 15 (£2).
Then, for every p € (1, 00), any Q' € Q, there exists a constant ¢ depending on X;, n, q, p, i, ', Q, and
the VMO moduli of a;; and ag such that, for every u € S)Z(’p(Q),

lullg2r gy = clliZulliLr + lullLr @)}

Remark 2.3. Under the assumptions of the previous theorems, it is not restrictive to assume ag(x) to be
equal to 1, for we can always rewrite (1-4) in the form

q
s
> iX,-X,-+XO=i
=1 % 0

and apply the a priori estimates to this equation, controlling C§ or VMO moduli of the new coefficients
a;j/aop in terms of the analogous moduli of a;;, ao, and the constant . Therefore, throughout the following
we will always take ag = 1.

3. Known results and preparatory results from real analysis and geometry of vector fields

3A. Hormander’s vector fields, lifting, and approximation. Let X, X1, ..., X, be a system of real
smooth vector fields

n
Xi=) bij()d;, i=0,12....4

j=1
(¢ + 1 < n) defined in some bounded, open and connected subset €2 of R”. Let us assign to each X; a
weight p;, saying that

po=2 and p;=1 fori=1,2,...,q.
For any multiindex
I=(y,i2,...,0k), 0=<i;=<gq,

we define the weight of I as
k
111=>p
j=1

and we set

X1 =X Xip - Xiy,

Xin =X, [Xiys - [ Xy Xi 1oL

where [X, Y] = XY — Y X for any couple of vector fields X, Y.
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We will say that X7 is a commutator of weight |I]. As usual, X|;) can be seen either as a differential
operator or as a vector field. We will write

Xinf

to denote the differential operator X[ acting on a function f, and

(X1«

to denote the vector field X7 evaluated at the point x € .

We shall say that X = {Xo, X1, ..., X} satisfies Hérmander’s condition of weight s if these vector
fields, together with their commutators of weight < s, span the tangent space at every point x € €.

Let € be the free Lie algebra of weight s on ¢ + 1 generators, that is, the quotient of the free Lie algebra
with g + 1 generators by the ideal generated by the commutators of weight at least s + 1. We say that the
vector fields Xy, ..., X, which satisfy Hormander’s condition of weight s at some point xo € R", are
free up to order s at x¢ if n = dim £, as a vector space (note that inequality < always holds). The famous
lifting theorem proved by Rothschild and Stein [1976, p. 272] reads as follows.

Theorem 3.1. Let X = (Xo, X1, ..., Xy) be C™ real vector fields on a domain Q@ C R" satisfying
Hormander’s condition of weight s in Q. Then, for any x € 2, in terms of new variables, h, 11, . .., hy,
there exist smooth functions Ajj(x,h) (0 <i <gq,n+1 <1 < N) defined in a neighborhood U of
£ = (%, 0) € RY such that the vector fields X; given by

X; = X+Zx,,(x h) i=0,....q,
[=n+1

satisfy Hormander’s condition of weight s and are free up to weight s at every point in U.

Let X = (fo, X Lo § ¢) be the lifted vector fields which are free up to weight s at some point
£ € RV and let £ be the free Lie algebra generated by X. For each j, 1 < j <s, we can select a family
{X] «}x of commutators of weight j, with X1 k= Xk, Xz 1= Xo, k=1,2,...,q, such that {XJ k)jk is a
basis of £, that is to say, there exists a set A of double-indices « such that {XO,}O[e 4 1s a basis of £. Note
that Card A = N, which allows us to identify ¢ with RV .

Now, in RY we can consider the group structure of N(g + 1, s), which is the simply connected Lie
group associated to £. We will write o for the Lie group operation (which we think of as a translation)
and assume that the group identity is the origin. It is also possible to assume that u~' = —u (the group
inverse is the Euclidean opposite). We can naturally define dilations in N (g + 1, s) by

D) ((te)aen) = Mug)gen (3-1)

with | j, k| = j. These are group automorphisms, hence N (g + 1, s) is a homogeneous group, in the sense
of Stein [1993, pp. 618-622]. We will call this group G, leaving the numbers ¢, s implicitly understood.
We can define in G a homogeneous norm || - || as follows. For any u € G, u # 0, set

||u||=r©)D(%>u‘:l,
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where | - | denotes the Euclidean norm.
The function
dg(u, v) =lv"" oul

is a quasidistance, that is
dg(u,v) >0 and dg(u,v)=0 ifandonlyifu=v,
do(u,v) =dg(v, u), (3-2)
dg(u, v) < c(dg(u, 2) +dg(z, v))

for every u, v, z € G and some positive constant ¢(G) > 1. We define the balls with respect to dg as
Bu,r):={veRY :dgu,v) <r}.

It can be proved [Stein 1993, p. 619] that the Lebesgue measure in RV is the Haar measure of G.
Therefore, by (3-1),
|Bu,r)| = |Bu, DIr?

for every u € G and r > 0, where Q =), _, la|. We will call Q the homogeneous dimension of G.
Let 7, be the left translation operator acting on functions: (t, f)(v) = f (uov). We say that a differential
operator P on G is left invariant if P(zt, f) = 1,(Pf) for every smooth function f.
We say that a differential operator P on G is homogeneous of degree 6 > 0 if

P(f(DMu)) =2 (Pf)(D(M)u)

for every test function f and every A > 0, u € G. We also say that a function f is homogeneous of degree
s eRif
FDMu) =2°f(u) forevery A >0, u €G.

Clearly, if P is a differential operator homogeneous of degree §; and f is a homogeneous function
of degree §,, then Pf is a homogeneous function of degree §, — §;, while f P is a differential operator,
homogeneous of degree §; — ;.

Let Y, be the left invariant vector field which agrees with d/(duy) atOand set Yy x =Yi, k=1,...,q,
Y>1 =Yp. The differential operator Y; ; is homogeneous of degree i, and {Y,}qeca is a basis of the free
Lie algebra ¢.

A differential operator on G is said to have local degree less than or equal to A if, after taking the
Taylor expansion at O of its coefficients, each term obtained is a differential operator homogeneous of
degree < A.

Also, a function on G is said to have local degree greater than or equal to X if, after taking the Taylor
expansion at O of its coefficients, each term obtained is a homogeneous function of degree > A. For
E.ne U, define the map

®n(€) = (Ua)aca
with & = exp( > ua)?a)n. We will also write ©(n, §) = ©,(§).

a€eA
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We can now state Rothschild and Stein’s approximation theorem [1976, p. 273].

Theorem 3.2. In the coordinates given by ©(n, - ) we can write X i=Yi+ Ri" on an open neighborhood

of 0, where R? is a vector field of local degree at most O fori =1, ...,q (and at most 1 for i = 0)
depending smoothly on 1. Explicitly, this means that, for every f € C°(G),
Xilf©@, NIE) = (Vi f + R (O, £)). (3-3)

More generally, for every double-index (i, k) € A, we can write

Xiklf @O, NIE) = YVisf + R, ) (©(@, £)), (3-4)
where RZ i Is a vector field of local degree < i — 1 depending smoothly on 1.

Some other important properties of the map ® are stated in the next theorem (see [Rothschild and
Stein 1976, pp. 284-287]).

Theorem 3.3. Let & € RY and U be a neighborhood of & such that for any 1 € U the map O(n, -) is well
defined in U. For & ne U, define
p(m, &) =100, &), (3-5)

where || - || is the homogeneous norm defined above. Then

@ O, &) =0E 0~ =—-0, 0 forevery g, neU;
(b) p is a quasidistance in U (that is satisfies the three properties (3-2));

(¢c) under the change of coordinates u = Og (1), the measure element becomes
dn=c() - (1+w&, u)du, (3-6)

where c(§) is a smooth function, bounded and bounded away from zero in U , w(&, u) is a smooth
function in both variables with

lw (&, u)| < cllull,
and an analogous statement is true for the change of coordinates u = ©,(§).

Remark 3.4. As we recalled in the introduction, in [Rothschild and Stein 1976] detailed proofs are given
only when the drift term X is lacking. A proof of the lifting and approximation results explicitly covering
the drift case can be found in [Bramanti et al. 2010], where the theory is also extended to the case of
nonsmooth Hormander’s vector fields. We refer to the introduction of [Bramanti et al. 2010] for further
bibliographic remarks about existing alternative proofs of the lifting and approximation theorems.

3B. Metric induced by vector fields. Let us start by recalling the definition of control distance given by
Nagel, Stein, Wainger [Nagel et al. 1985] for Hormander’s vector fields with drift.

Definition 3.5. For any § > 0, let C(8) be the class of absolutely continuous mappings ¢: [0, 1] —
which satisfy

¢' ()= MOX)ew forae.te(0,1) (3-7)

[I|<s
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with [A7(1)] < 8!1. We define
d(x,y) =inf{s : there exists ¢ € C(6) with ¢(0) = x, (1) = y}.

The finiteness of d immediately follows by Hérmander’s condition: since the vector fields {X|/1}7/<s
span R”, we can always join any two points x, y with a curve ¢ of the kind (3-7); moreover, d turns
out to be a distance. Analogously to what Nagel, Stein, and Wainger [Nagel et al. 1985] do when Xj is
lacking, in [Bramanti et al. 2013] the following notion is introduced.

Definition 3.6. For any § > 0, let C;(5) be the class of absolutely continuous mappings ¢ : [0, 1] —
which satisfy

q
¢'()=> 1i(t)(Xi)pw forae.te(0,1)
i=0

with |[Ao(¢)] < 8% and [Aj(@)] <dforj=1,...,q. We define
dx(x,y) =1inf{$ : there exists ¢ € C1(8) with ¢(0) =x, ¢(1) = y}.

Note that the finiteness of dx (x, y) for any two points x, y € €2 is not a trivial fact, but depends on a
connectivity result (“Chow’s theorem’); moreover, it can be proved that d and dx are locally equivalent,
and that dy is still a distance (see [Bramanti et al. 2013], where these results are proved in the more
general setting of nonsmooth vector fields). From now on we will always refer to dx as the control
distance induced by the system of Hormander’s vector fields X. It is well-known that this distance is
topologically equivalent to the Euclidean one. For any x € €2, we set

B(x,r)={yeQ:dx(x,y) <r}
The basic result about the measure of metric balls is the famous local doubling condition.
Theorem 3.7 [Nagel et al. 1985]. For every Q' € Q2 there exist positive constants c, ro such that, for any
xeQ,r <ro,
|B(x,2r)| < c|B(x, r)|.
As already pointed out in the introduction, the distance dy does not satisfy the segment property: given
two points at distance r, it is generally impossible to find a third point at distance r/2 from both. A

weaker property which this distance actually satisfies is contained in the next lemma, and will be useful
when dealing with the properties of Holder spaces C%.

Lemma 3.8. Forany x, y € 2, positive integer n, € > 0, we can join x to y with a curve y and find n + 1
points po =X, p1, P2, ..., Pn =Y on 'y, such that

1+¢ .
dx(pj, pj+1) < NG dx(x,y) forj=0,2,...,n—1.
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Proof. For any x,y € Q with dx(x, y) = R, any ¢ > 0, by Definition 3.6 we can join x and y with a
curve y (t) satisfying

q
yO) =x, y(H=y, Y®O=Y uO&Xyw,
i=0

with [4;(1)| < R(14¢),fori =1,...,q and |[Ao(1)] < (R(1 +¢))>.
Let y;(t) =y((t+j)/n) for j =0,1,2,...,n—1. Then y;(¢) satisfies

j i+ 1
y;i(0) = V(%) =:pj, yi()= V(JT) =pjti-

In particular, py = x and p, = y. Moreover,

) I, [t+)
i ==3 ki (T’)(X»y_,(,)

i=0

1. [(t+] R(1+¢)\?
(5= (5F7)

fori=1,...,49,j=0,2,...,n—1. Thus

with

n

I)L_ t+j ‘ R(1+¢)
n ( n ) RV

R(1+¢)
dx(pj, pj+1) < T

for j =0,2,...,n—1, so we are done. U

The free lifted vector fields X; induce, in the neighborhood where they are defined, a control distance
dy; we will denote by B (&, r) the corresponding metric balls. In this lifted setting we can also consider
the quasidistance p defined in (3-5). The two functions turn out to be equivalent.

Lemma 3.9. Let &, U be as in Theorem 3.3. There exists §(§, R) C U such that the distance dy is
equivalent to the quasidistance p in (3-5) in B(&, R), and both are greater than the Euclidean distance;
namely, there exist positive constants cy, ¢, c3 such that

cilg —=nl < c2p(n. §) <dg(n. &) <c3p(n. &) forevery&,ne BE, R).

This fact is proved in [Nagel et al. 1985]; see also [Bramanti et al. 2010, Proposition 22].

3C. Locally homogeneous spaces. We are now going to recall the notion of locally homogeneous space,
introduced in [Bramanti and Zhu 2012]. Roughly speaking, a locally homogeneous space is a set €2
endowed with a function d which is a quasidistance on any compact subset, and a measure u which
is locally doubling, in a sense which will be made precise below. In our concrete situation, our set is
endowed with a function d which is a distance in €2, and a locally doubling measure. We can therefore
give the following definition, which is simpler than that given in [Bramanti and Zhu 2012].
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Definition 3.10. Let (€2, d) be a metric space, and let & be a positive regular Borel measure in €.
Assume there exists an increasing sequence {£2,}°° ; of bounded measurable subsets of €2 such that

[e.¢]
Q, = (3-8)
n=1
and, foranyn=1,2,3, ...,
(i) the closure of €2, in €2 is compact,
(i1) there exists &, > 0 such that
{(xeQ:d(x,y) <2, forsomeyeQ,}C i, (3-9)

(iii) there exists C, > 1 such that, for any x € Q,, 0 <r <¢,, we have
0 < u(B(x,2r)) < Cyu(B(x,r)) < oo. (3-10)
(Note that for x € 2, and r < ¢, we also have B(x, 2r) C Q,+1.)

We say that (2, {€2,}°2,, d, u) is a (metric) locally homogeneous space if the above assumptions hold.

Any space satisfying the above definition a fortiori satisfies the definition of locally homogeneous
space given in [Bramanti and Zhu 2012].

Next, we discuss some facts about local singular kernels. For fixed €2, €2,,+1, and a fixed ball B(x, Ry),
with x € Q, and Ry < 2¢, (hence B(x, Ry) C ©2,+1), let K(x, y) be a measurable function defined for
x,y € B(x, Rg), x # y. We now list a series of possible assumptions on the kernel K which are involved
in the theorems that we will apply in the following.

(i) We say that K satisfies the standard estimates for some v € [0, 1) if the following hold:

Ad(x,y)’
K@= B, die ) S

for x, y € B(x, Ry) with x # y, and

(3-12)

v B
|K (x0, y) — K (x, )| + K (y, x0) — K(y, x)| < Bd(xo, y) (d(xo,x)>

w(B(xo, d(xo, ) \d(x0, y)
for any xg, x, y € B(x, Ry) with d(xg, y) > 2d(xg, x), and some 8 > 0.

(i) We say that K satisfies the cancellation property if the following holds: there exists C > 0 such that,
for a.e. x € B(x, Ro) and every &1, &2 such that 0 < &1 < & and B,(x, &2) C Q,41,

/ K(x,y)du(y)'-i- / K (z,x)du(z)
Qnr1,61<p(x.y)<e2 Qui1,e1<p(x,2)<&2

where p is any quasidistance (see (3-2)) equivalent to d in €2,41 and B, denotes p-balls.

<C, (3-13)
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(iii)) We say that K satisfies the convergence condition if the following holds: for a.e. x € B(x, Rp) such
that B,(x, R) C 2,1, there exists

hg(x) =lim K(x,y)du(y), (3-14)
e=0JQ, 1,e<p(x,y)<R

where p is any quasidistance equivalent to d in €2,,4.

Application of the abstract theory to our setting. Let’s now explain how this abstract setting will be
used to describe our concrete situation. The a priori estimates we will prove in Theorems 2.1 and 2.2
involve a fixed subdomain Q" € Q. Let us fix this Q" once and for all. For any X € ' we can perform in
a suitable neighborhood of x the lifting and approximation procedure as explained in Section 3A. Let
£ = (%¥,0) € RN and B(E, R) be as in Lemma 3.9. Then we can choose

N

~ o~ ~(- kR
Q=BE, R Q=B(& —— | fork=1,2,3,....
(&, R); S (S k+1) or

By the properties of dy that we have listed in Section 3B, and particularly Theorem 3.7, we see that
(@, Q) dy, d§)

is a metric locally homogeneous space. The function p(§,n) = ||®©(n, )| will play the role of the
quasidistance appearing in conditions (3-13) and (3-14), in view of Lemma 3.9. This is the basic setting
where we will apply several results about singular integrals in locally homogeneous spaces, which have
been proved in [Bramanti and Zhu 2012]. Here we do not repeat the statements of all those theorems.
Instead, we will give a precise reference to [Bramanti and Zhu 2012] for each one. We just note that,
since in our situation we are dealing with a metric locally homogeneous space, the constants which are
called B, in [Bramanti and Zhu 2012], here are equal to 1.

In the space of the original variables (€2, dx, dx), instead, we will not apply singular integral estimates,
but we will again use the local doubling condition when we establish some important properties of
function spaces C* and VMO (see Section 3D). Note that if €2 is an increasing sequence of domains
with Qr € Qi1 € 2, we can say that

(2, {4}k, dx, dx)
is a metric locally homogeneous space.

3D. Function spaces. The aim of this section is twofold. First, we want to define the basic function
spaces we will need and point out their main properties; second, we want to find a relation between
function spaces defined over a ball B(x,r) C Q2 C R" and those over the corresponding lifted ball
B (€, r) C RN. More precisely, we need to know that f(x) belongs to some function space on B if and
only if fx, h)=fx) belongs to the analogous function space on B. This last fact relies on the following
known result; see [Nagel et al. 1985, Lemmas 3.1 and 3.2, p. 139].
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Theorem 3.11. Let us denote by B and B the balls defined with respect to dx and dy, respectively. There
exist constants 8y € (0, 1), rg, c1, ¢ > 0 such that

1 vol(B, (x, h)) < vol(B,(x)) - vol{h’ € RN ™" : (z, ') € B,(x, h)} < c2 vol(B, (x, h)) (3-15)

forevery x € Q, z € Bs,(x), and r <ry. (Here “vol” stands for the Lebesgue measure in the appropriate
dimension, x denotes a point in R", and h a point in RN="). More precisely, the condition 7 € Bs,,(x) is
needed only for the validity of the first inequality in (3-15). Moreover,

dg((x, h), (x', b)) = dx (x, x"). (3-16)
Finally, the projection of the lifted ball Er (x, h) on R" is just the ball B(x, r), and this projection is onto.

A consequence of the above theorem is the following.

Corollary 3.12. For any positive function g defined in B.(x) C 2, r < ro, one has

1

2
g(y)dy < g(y)dydh' <

T T = g(y)dy, (3-17)
| Bsor (O J s, (x) |Br(x, )| JB, (x.h) |Br ()| J B, x)

where 8 is the constant in Theorem 3.11.

Proof. By (3-15) and the locally doubling condition, we have, for some fixed g < 1 as in Theorem 3.11,

1 1
I — g dydh = ~——— g(y) dy/ dhn’
|Br(x, )| JB, (x.1) |Br(x, h)| JB,(x) (' eRN=1:(y,h')eB, (x,h)}
c1 B, (x, h)| c
> ———g(dy> ——— gy dy,
|B(x, )| By, 0 |Br(¥)] | Bsor ()] J By, ()

where in the last inequality we exploited the doubling condition | B, (x)| < c¢|Bs,-(x)|, which holds because
B,(x) C 2 and r < ry. The proof of the second inequality in (3-17) is analogous but easier, since it
involves the second inequality in (3-15), which does not require the condition y € Bj,, (x). (I

3D.1. Hoélder spaces.
Definition 3.13. Forany O <o < 1,u: Q2 — R, let

lu(x) —u(y)|
—dx(x, B X, yEQ, X #y},

lullcs @) = lulce@) + lullLe(,
CSX((Q) = {I/t Q- R: ||u||ca(Q) < OO}

lulce @) = Sup{

Also, for any positive integer k, let
CRU () ={u:Q— R |Jullcregg) < 00},

with

k¢
lull ko = D D 1K) - Xjullea + lullcx,
1II=1 ji=0
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where I = (j1, j2, .-+, J1)-
We will set C‘)’( 0(§2) and ct X, O(Q) for the subspaces of C%(£2) and C’;“(Q) of functions which are

compactly supported in €2, and set C;(B), CX (B), C;"( O(B), and C)? 0(B) for the analogous function
spaces over B defined by the X;.

We will also write CI;O(SZ) to denote the space of functions with continuous X-derivatives up to
weight k.

Let us note that we will sometimes also need to use the classical spaces of (possibly compactly
supported) continuously differentiable functions, denoted as usual by C! (or C(l)).

The next proposition, adapted from [Bramanti and Brandolini 2007, Proposition 4.2], collects some
properties of C* functions which will be useful later. We will apply these properties mainly in the context
of lifted variables, that is, for the vector fields X ; on a ball B (£, R).

Proposition 3.14. Let B(x, 2R) be a fixed ball where the vector fields X; and the control distance d are
well defined.

(i) Forany § € (0, 1) and any f € C'(B(x, (1+8)R)), one has

q
|f<x>—f(y)|§§dx<x,y)(2 sup |X; f|+dx(x.y) sup |X0f|> (3-18)

=1 BG.(1+8)R) B(E,(1+8)R)

forany x,y € B(x, R).
If fe Cé (B(x, R)), one can simply write, for any x, y € B(x, R),

If () = fFD)] < edx (x, y)(Z sup |X; fl4dx(x,y) sup IXofI) (3-19)

B(x,R) B(x,R)

In particular, for f € CO1 (B(x, R)),

| flces.ry <R (Z sup |X;f|+ R sup |X0f|> (3-20)

i—1 B&.R) B(x,R)

The assumption f € C' (or G 1) can be replaced by f Cy 2 (or C? .0 Tespectively).
(ii) For any couple of functions f, g € C{(B(x, R)), one has

|f8glcesi.r)y < | flcemi ryllgllLese Ry + 18lce B rR) I fllL=BE R)

and

I fellce i ry) < 211 f lce s ryllgllce B R))- (3-21)

Moreover, if both f and g vanish at least at a point of B(x, R), then

| f8glce B R) < cR*|flce(nz R)I8lCY (B, R)- (3-22)
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(iii) Let B(x;,r) (i=1,2,...,k) be afinite family of balls of the same radius r such that Ule B(x;,2r)C
Q. Then, for any [ € CL(R2),

£ s, B < cZufnca(B(x, 2) (3-23)
i=1

with ¢ depending on the family of balls, but not on f.

(iv) There exists ro > 0 such that, for any f € C?%(B()E, R)) and 0 < r < rg, we have the interpolation
inequality

2
X0 f |z r)y < r**1Xoflce B Ry + ;”f”L"O(B()E,R))- (3-24)

Proof. The proof of (ii)—(iii) is similar to that in [Bramanti and Brandolini 2007, Proposition 4.2], hence
we will only prove (i) and (iv).

Throughout this proof we will write d for dx. (Actually, we will apply this proposition both to dx and
to dy).

(i) Fix 8 € (0, 1) and let R’ = (1 + 8)R. Let us distinguish two cases.
Case 1: d(x, y) < R’ —max(d(x, x),d(x, y)). Let £ > 0 be such that

d(x,y)+e& < R —max(d(x, x),d(x, y)), (3-25)

hence, by Definition 3.6, there exists a curve ¢(t) such that ¢(0) = x, ¢(1) = y, and

q
¢'(1) =Y (X

i=0
with [A; ()| < (d(x, y) + ), [Ao(?)| < (d(x,y) +e)* fori=1,...,q. By (3-25),
B(x,d(x,y)+¢) C B(x, R,

hence every point y (¢) for ¢ € (0, 1) belongs to B(x, R"). Then we can write

1 4
:‘/O Zki(t)(Xif)w(z)df

< (d(x, y>+e)2 sup |X; f1+ (d(x, ) +¢)* sup |Xofl,
i—1 B&.R) B(%,R')

la
lf )= fI= ‘/ d_f(fﬂ(l))dl
o ar

and since ¢ is arbitrary, this implies (3-19) and, in particular, (3-18). We note that the above argu-
ment relies on the differentiability of f along the curve ¢, which holds under either the assumption
feCY(BX,(1+8)R)) or f eC? ¥ (B(x, (1+48)R)) (since X( has weight two).

Case 2: d(x,y) > R’ —max(d(x, x), d(x, y)). Let us write

If) = fDI=1f) = fOI+1f&) = fI=A+B.



LP? AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HORMANDER VECTOR FIELDS 1809

Each of the terms A, B can be bounded by an argument similar to that in Case 1 (since both x and y can
be joined to x by curves contained in B(x, R)), giving

q
lf)—fnl = [d(x,i)er(y,i)]‘{Z sup |X; f|+[d(x,X)+d(y, X)] sup IXofI}-
i—1 BGR) B(x,R)
Now it is enough to show that

d(x, %) +d(y, %) < gd(x, ).

To show this, let r := max(d(x, x), d(x, y)). Then
2 2
d(x,x)+d(y,x) <2r < E(R’ —r) < gd(x, y),

where the second inequality holds since » < R and R’ = (1 +8) R, and the last inequality is the assumption
d(x,y) > R —max(d(x, x),d(x, y)). This completes the proof of (3-18), which immediately implies
(3-19) and (3-20).

(iv) Let f € C;Z{,O({)(B(f, R)). For any x € B(x, R), let y(t) be the curve such that
Y'(0) = X0y, vO) =x.

This y (¢) will be defined at least for ¢ € [0, rg] where r¢ > 0 is a number only depending on B(x, R) and
Xo. Then, for any r € (0, rg), we can write, for some 6 € (0, 1),

d
flyr)—fy©) = ra[f()/(t))]z:er =r(Xof)(y(©Or)),
hence

1
(Xof)(x) = Xo )y () = Xo /)y @r) + ~[f (y () = £y (O))]

and since, by definition of y and d, d(y(0), y (6r)) < (8r)'/%, we get
2
[(Xo /)| = [(Xof)(¥(0) = (Xof)(y(Or))|+ ;”f”LOO
/2 2
<O XoflceBi Ry + ;”f”LOO(B()E,R))

a/2 2
=r*IXoflcy i, r) + ;||f||L°°(B()z,R)),
so we are done. (Il

Next, we are going to study the relation between the spaces C§(Bg) and C ;’i{ (E R)-

Proposition 3.15. Let §(§, R) be a lifted ball (see the end of Section 3C), with £ = (%,0). If fisa
function defined in B(x, R) and f(x, h) = f(x) is regarded as a function defined on ER (é, R), the
following inequalities hold (whenever the right-hand side is finite):

|f|c;1((§(§,1e)) <|flcesi.R)>

C

| flee .5y < m|f|c§(§(§,t)) forO<s <t <R, (3-26)
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where c also depends on R. Moreover,
1 Xi Xiy - Xy flea e, ry = 1 X Xiy - Xi fleg . pys (3-27)

| Xiy Xiy - - Xikf|C%(§(§,[)) (3-28)

t

C
[Xi Xiy - - Xip fleas.s) < (t—9)?

forO<s<t<Randi;=0,1,2,...,q.

As already done in [Bramanti and Brandolini 2007, Proposition 8.3], to prove the above relation
between Holder spaces over B and B we have to exploit an equivalent integral characterization of
Holder continuous functions, analogous to the one established in the classical case by Campanato [1963].
However, to avoid integration over sets of the kind 2N B(x, r) (with the related problem of assuring a

suitable doubling condition), we need to apply the local version of this result which has been established
in [Bramanti and Zhu 2012].

Definition 3.16. For X € @/, B(x, R) C Q, f e L'(B(x, R)),a € (0,1),and 0 <5 <1 <1, let

Mo B,g. B, () = sup | f(y) —cldy.

inf ———
xeB(E.sR).r<(i—s)R CER r¥*|B.(X)| JB,(x)
If f e C§(B(x, R)), then
Mo Bk, Bx (f) < | flceBr(xo)-
Moreover, we get the following.

Lemma 3.17. Forx € Q', B(X,2R)) CQ2, R < Ry,a € (0,1),and0 <s <t <1,if f € LI(B()E, tR))
is a function such that My g, B,,(f) < 00, then there exists a function f*, a.e. equal to f, such that
f*eCY(B(x,sR)) and

| f*legBG.sR) < My By B,z (f)

(t —s)?
for some c independent of f, s, t.
Proof. We can apply [Bramanti and Zhu 2012, Theorem 9.2] choosing 2 = B(x, sR), Q2¢+1 = B(X, tR),

en = R(t —s). The locally doubling constant can be chosen independently of R, since B(x, 2Rg) C €2,
R < Ry. We conclude that there exists a function f*, a.e. equal to f, such that

|f*(0) = f* O] < ¢ Mo, By, B, (fdx (x, y)*

for any x, y € B(x, sR) with dx(x,y) < R(t —s)/2.
Now if x, y are any two points in Bsg(xg), and r = dx(x, y), by Lemma 3.8 we can find n + 1 points
X0 =X, X1, X2, ...,X;, =y in Byr(xp) such that
2r
dx(xi, xi—1) < —=.

Jr
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Let n be the least integer such that 2r//n < R(t — s)/2. Then

£ = FE O S D 1F* ) = R i) £ D cMa g, (Fdx (i, xi-1)"

i=1 i=1
S ncMOt,BSR,BrR (f)dX(xv y)a

Let us find an upper bound on n. We know that

ﬁ<ch(X,Y)< c
~ R(it—s) t—s

’

since dx (x, y) < 2R for x, y € B;r(x0). Hence n < ¢/(t — 5)? and the lemma is proved. U

Proof of Proposition 3.15. The first inequality immediately follows by (3-16). To prove the second one,
let0<s <t <1andx e B(x, dosR), where §g is the number in Theorem 3.11, r < R(t — ), f;: = (x,0).
Since the projection 7 : B ((x,s),8) = B(x, 8) is onto (see Theorem 3.11), there exists 4 € RV =" such
that & = (x, h) € B (€, 80sR). Then, by Corollary 3.12, we have

1 c

- | f(n) — kldn; (3-29)
re |B(30r(x)| Bsr (x)

C
[f(y) —kldy < ——=<——
r|B&,r)l JBeEn

choosing k = f(x) = f (&), the latter quantity is
c .~ -
< alfleeBern™ = clflceden:
Since r < R(t —s) and d (&, €) < Sos R, we have the inclusion
B(&,r) C B, 80sR+ R(t —5)) =: B¢, R)

so that (3-29) implies

Mo B(.50sR). BG00R) () = €l flee B rr)»
and, by Lemma 3.17, we conclude
* c r -
|/ lce (B 80sR)) = )2 |f|c%(3(g,R,)).
Note that R’ — §gs R = R(¢t — s), hence, changing our notation to
SosR=s', R =t
we get
* ¢ 3 ~
[f*lce sy < m|f|(:%(3(§,ﬂ))

for 0 < s’ <t < R, with ¢ also depending on R. This is (3-26).
Now inequalities (3-27) and (3-28) also follow, because X f f = X, f, hence the same reasoning can be
iterated to higher order derivatives. U
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3D.2. Sobolev spaces.

Definition 3.18. If X = (Xo, X1, ..., X;) is any system of smooth vector fields satisfying Hormander’s
condition in a domain Q2 C R", the Sobolev space Si’p (R2) (1 < p < 00) consists of L”-functions with 2
(weighted) derivatives with respect to the vector fields X;, in L?. Explicitly,

lullgr g, = ||u||Lp<Q>+Z||Du||Lp<Q>,
i=1
q q

where || D'ullr@) =D I Xl 1D ullLr) = [ Xoullr@ + Y 1XiX jull o).
i=1 i,j=1

Also, we can define the spaces of functions vanishing at the boundary saying that u So X(Q) if there
exists a sequence {uy} of C oo(Q) functions convergmg to u in S P (Q) Similarly, we can define the
Sobolev spaces S~p (B) S P (B) over a lifted ball B induced by the X.

The following has been proved [Bramanti and Brandolini 2000a, Proposition 3.5].

Proposition 3.19. Ifu € S)zf’p(Q) and ¢ € C°(R2), then ugp € Sg:ﬁ;(Q), and an analogous property holds
for the space Sg;(g).

Moreover, we have the following.

Theorem 3.20. Let f € L?(B(x,r), f(x, h) = f(x), and E(S, r) be the lifted ball of B(x,r), with
£=(x,0) e RN. Then

cill flleresory = W LeBe,ry < 2l fllLrBee,ry)s
C1 ||f”S)2(’p(B(x,80r)) S ||f“5)2?’17(§(§’r)) S C2||f||s)2(»l’(3(x’r))’
where 8y < 1 is the number appearing in Theorem 3.11.

Proof. The first inequality follows by Theorem 3.11; the second follows by the first, since

Xif =X f = X)) O
3D.3. Vanishing mean oscillation. Let us recall the following abstract definition.
Definition 3.21 [Bramanti and Zhu 2012, Definition 6.1]. Let (2, {€2,}72 ,,
homogeneous space (see Section 3C). For any function u € L (2,4+1) and r > 0 with r < g,,, set
1

m (r)=sup sup ———— lu(x) —up|du(x),
s S2n: s 1=r xoe9, W(B(0, 1) Jeon

d, i) be a metric locally

where ug = u(B(xg, 1)) ™! fB(xo,t) u. We say that u € BMOoc (2, 2,,41) if

[ llBMOL (21, 2041) = SUP Ty 0, ., () < 0©.

r<ée,
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We say that u € VMO0c (2, Q41) if u € BMOyoc (2,1, €2,,+1) and
M@ sy ) = 0 asr — 0.

The function n:,QanH will be called the VMO local modulus of u in (£2,,, 2,+1).

We need to specialize this definition to our concrete situation. First, let us endow our domain €2 with
the structure

(€2, {2}k, dx, dx)
of locally homogeneous space described at the end of Section 3C. Then:

Definition 3.22 (local VMO). We say that a € VMOx 10.(€2) if
a € VMOioc (R, Q2k41)  for every k.

More explicitly, this means that, for any fixed ' € €2, the function

M, q.(r) =sup sup [ (x) — up, (x| dx,

t<r xoe |Bi(x0)| JB,(xo)
is finite for r < ry and vanishes for r — 0, where r( is the number such that the local doubling condition
of Theorem 3.7 holds:
|B(x,2r)| <c|B(x,r)| foranyx €/, r <r.

As for Holder continuous and Sobolev functions, we need a comparison result for VMO functions in
the original variables and the lifted ones. By Corollary 3.12 we immediately have the following.

Proposition 3.23. Let a € VMOx 1oc(2). Then, for any Q' € @, xo € @', B(xo, R), and Q =
E(so, kR/(k + 1)) as before, we have that a(x, h) = a(x) belongs to the class VMOlOC(Qk, ﬁk) for
every k, with

* k
nd’f‘zk@kﬂ (r) < Cna,g/,g(r)-

In other words, the VMOj,. modulus of the original function a controls the VMO, modulus of its
lifted version.

4. Operators of type A and representation formulas

4A. Differential operators and fundamental solutions. We now define various differential operators
that we will handle in the following. Our main interest is to study the operator

q
¥ = Z aij(x)X,-Xj + X(),
i,j=1
under the assumption (H) in Section 2. Recall that, in view of Remark 2.3, we have set ap(x) = 1.
For any x € €2, we can apply the “lifting theorem” to the vector fields X; (see Section 3A for
the statement and notation), obtaining new vector fields X, which are free up to weight s and satisfy
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Hormander’s condition of weight s in a neighborhood of £=(x,0)eRN.For& = (x,1) € B (€, R), with
B(E, R) as in Lemma 3.9, set
aij(x,t) =a;;(x),
and let
~ q ~ o~ ~
$=>"a; X X;+Xo (4-1)
ij=1

be the lifted operator, defined in B (€, R). Next, we freeze & at some point &y € B (€, R), and consider
the frozen lifted operator

q
Fo=Y_ @)X X; + Xo. (4-2)
i,j=1

To study Py, in view of the “approximation theorem” (Theorem 3.2), we will consider the approximating
operator, defined on the homogeneous group G,

q
£ = Z a;j(§0)Y:Y; + Yo,
ij=I
and its transpose,
q
FoT = Z a;j(0)Y:Y; — Yo,
ij=1

where {Y;} are the left invariant vector fields on the group G defined in Section 3A.

We will apply to &£ and §£3T several results proved in [Bramanti and Brandolini 2000b], which in turn
are based on [Folland 1975, Theorem 2.1 and Corollary 2.8; Folland and Stein 1974, Proposition 8.5].
They are collected in the following theorem.

Theorem 4.1. Assume that the homogeneous dimension of G is Q > 3. For every & € B (€, R), the
operator £j has a unique fundamental solution " (§o; - ) such that

(@) T'(o; -) € CXRY\ {0});
(b) T'(&p; -) is homogeneous of degree (2 — Q);

(c) for every test function f and every v € RV,
F = [ T o0 ) du
moreover, for every i, j =1, ..., q, there exist constants o;;(§o) such that
YiY; f(v) =PV fR VYT ot 0 0) L f () du+ et Bo) - L f (0): 43)

(d) Y;Y;I'(§o; - ) is homogeneous of degree —Q;
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(e) forevery R >r >0,
[ vwr@wdi= [ v o =o.
r<|lull<R lull=1

In (4-3) the notation PV o - - - du stands for lim,_,¢ f”u - du.

“loy||>e "

Remark 4.2. By [Folland 1975, remark on p. 174], we know that the fundamental solution of the
transposed operator SNPgT is

I (€o; ) = T'(%0; u™") =T (§o; —u0).
(However, beware that Y;I'7 (&; u) # +Y;T(&0; —u).)

Throughout the following, we will set, fori, j =1,...,q,

I (6os u) =Y YT (605 -)1(u),
I os ) =YY (5o ) 1(u).

A second fundamental result we need contains a bound on the derivatives of I', uniform with respect
to &.

Theorem 4.3 [Bramanti and Brandolini 2000b, Theorem 12]. For every multi-index B, there exists a
constant ¢ = c¢(B, G, w) such that, foranyi, j=1,...,q,

9 B
<8_u> & u)

moreover, for the a;j appearing in (4-3), the uniform bound

sup

£€B(E,R)
lull=1

=¢

sup |a;j(§)] < c2
§€B(£.R)

holds for some constant ¢y = c2(G, w).

Remark 4.4. Theorems 4.1 and 4.3 still hold replacing I" by I'” and T; ; by FIC

4B. Operators of type A. As in [Rothschild and Stein 1976; Bramanti and Brandolini 2000a], we are
going to build a parametrix for 7 shaped on the homogeneous fundamental solution of £j. More generally,
we need to define a class of integral operators with different degrees of singularity. The next definition is
adapted from [Bramanti and Brandolini 2000a], the difference being the necessity, in the present case, to
consider integral kernels shaped on the fundamental solutions of both £ and §£3T.

Definition 4.5. For any & € B (€, R), we say that k(&o; &, n7) is a frozen kernel of type A (over the ball
B (€, R)) for some nonnegative integer A (we will use A =0, 1, 2) if, for every positive integer m, we can
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write, for &, n € E(é, R),
k(o €, m) =k (€03 &, ) + K" (€03 &, 1)

H,

= {Zai(é)bi(n)DiF(Eo; -) +ao(§)bo(n) Dol (§o; -)}(@)(n, £))
i=1

Hy,
+ {Za,f(é)b;(n)D;FT(so; ) +ag(&)by(m) DT (%o -)}(@(n, £),

i=1

where a;, b;, a;, b; € CgO(E (€,R)) (i=0,1,..., Hy,),and D; and D; are differential operators such that,
fori=1,..., H,, D; and le are homogeneous of degree <2 — A (so that D;I"(§p; - ), and D;FT(&); )
are homogeneous functions of degree > A — Q); Dy and D6 are differential operators such that DyI"(£p; )
and D{)FT(SO; -) have m (weighted) derivatives with respect to the vector fields ¥; (i =0, 1,...,¢q).
Moreover, the coefficients of the differential operators D;, le fori =0,1,..., H, possibly depend also

on the variables &, n, in such a way that the joint dependence on (&, 1, u) is smooth.

In order to simplify notation, we will not always express explicitly this dependence of the coefficients
of D; on &, n. Only if necessary will we write, for instance, a; (§)b; (n)Df’”F(SO; ®(n, &)) to recall this
dependence.

Remark 4.6. Note that if a smooth function c(&, n, u) is D(A)-homogeneous of some degree 8 with
respect to u, any & or n derivative of ¢ has the same homogeneity with respect to u, since

) . dc dc
c(&, 1, DWu) =1Pc(&,n,u) implies 8—S<s, n, D(Mu) = Aﬁa—s(s, n, u).

0 .. 9 e ..
<8§,~Di )F(go, ), (ame )F(&), )

has the same homogeneity as

Hence any derivative

DT (&; -).

Here and in the following, the symbol ((d/ ag,-)Df’”) f means that we have taken the &;-derivative of the
coefficients of the differential operator Df’", which acts on the u variables but contains &, n as parameters;
the resulting differential operator acts on the function f (u).

Definition 4.7. For any & € B (€, R), we say that T (&) is a frozen operator of type % > 1 (over the ball
E(é, R)) if k(&o; &, n) is a frozen kernel of type A and

T(So)f(é)=/§k(§o;§,n)f(n)dn

for f € C8°(§(§, R)). We say that T (&y) is a frozen operator of type 0 if k(&y; &, ) is a frozen kernel of
type 0 and

T(€) f(§) = PV fB K(Eo: £, 1) F () dn + (B, £) £ (&),
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where « is a bounded measurable function, smooth in &, and the principal value integral exists. Explicitly,
this principal value is defined by

PV /B k(Eo: €. 1) f (n). dy = lim k(Eo: €. 1) f (n) dn.

e=>0Jj0m.6)l>¢

Definition 4.8. If k(&y; &, n) is a frozen kernel of type A > 0, we say that k(&; &, n) is a variable kernel
of type X (over the ball B(E, R)), and

r7©) = [ Keseon faydn
B
is a variable operator of type A. If A = 0, the integral must be taken in principal value sense and a term
a (&, &) f (&) must be added.

In reference to Definition 4.5, we will call the k" and k” parts of k “the frozen kernels of type A modeled
on I'" and ', respectively. Analogously we will sometimes speak of frozen operators of type A modeled
on I or I'”, to denote that the kernel has this special form.

A common operation on frozen operators is transposition.

Definition 4.9. If T (&) is a frozen operator of type A > 0 over B (€, R), we will denote by T'(£))7 the
transposed operator, formally defined by

/Ef(%‘)T(So)Tg(%‘)dS=/Eg(S)T(%‘o)f(§)dS

for any f, g € Cgo(E(é, R)).

Clearly, if k(&o, &, ) is the kernel of T (£), then k(&o, 1, £) is the kernel of T (£y)” . It is useful to note
the following.

Proposition 4.10. If T (&) is a frozen operator of type A > 0 over B (€, R), modeled on T or T'T, then
T (&0)7 is a frozen operator of type A, modeled on T'T or T, respectively. In particular, the transpose of a
frozen operator of type X is still a frozen operator of type A.

Proof. Let D be any differential operator on the group G. For any f € C(‘)’O(E (€, R)), let f'(w) = f(—u).
Let D’ be the differential operator defined by the identity

D'f=(D(f").

Clearly, if D is homogeneous of some degree B, the same is true for D’; if DT'(£&y; -) or DT'T(&); -)
has m (weighted) derivatives with respect to the vector fields ¥; (i =0, 1, ..., g), the same is true for
D'T'(&y; -) or D'TT(&); -). Also, recalling that I'7 (£y; u) = I'(&y; —u), we have

(D'T)(u) = (DI'")(—u) and (D'TT)(u) = (DT)(—u).
Moreover, these identities can be iterated, for instance,

(D1 D2T)(—u) = (D1 (D21))(—u) = (D{(D2T) ) (u) = (D} DATT) (w).
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Therefore, if

Hm
K (o, & m) = {Z a;(§)bi (n) DT (§o; - ) + ao(§)bo(n) Dol (§o; - )}((9(77, £))

i=1

is a frozen kernel of type A modeled on I, then

Hy,
k' (€0, n,6) = {Zai(n)bi (&) DiT"(8o; -) +ao()bo(1) Dol (o; -)}(—(9(77, £))

i=1
Hpy

= {Zaim)bi@)D;rT(so; ) +aoE)bo() DT (& -)}(@(n, £)
i=1

is a frozen kernel of type A modeled on I'”. Analogously one can prove the converse. U

We now have to deal with the relations between operators of type A and the differential operators
represented by the vector fields X ;. This is a study which was carried out in [Rothschild and Stein 1976,
Section 14] and adapted to nonvariational operators in [Bramanti and Brandolini 2000a]. We are interested
in two main results. Roughly speaking, the first says that the composition, in any order, of an operator
of type A with the X, or X, derivative is an operator of type A — 1 or A — 2, respectively. The second
says that the X, derivative of an operator of type A can be rewritten as the sum of other operators of type
A, each acting on a different X j derivative, plus a suitable remainder. In [Rothschild and Stein 1976]
these results are proved only for a system of Hormander vector fields of weight one (that is, without the
drift), and several arguments are very condensed. Hence we need to extend and modify some arguments
in [Rothschild and Stein 1976, Section 14] to cover the present situation. Moreover, as in [Bramanti and
Brandolini 2000a], we need to keep under careful control the dependence of any quantity on the frozen
point &y appearing in I'(&, - ). For these and other technical reasons, we prefer to write complete proofs
of these properties. The first result is the following.

Theorem 4.11 [Rothschild and Stein 1976, Theorem 8]. Suppose T (&) is a frozen operator of type X > 1.
Then )N(kT(So) and T(Eo))?k (k=1,2,...,q) are operators of type . — 1. If A > 2, then yoT(éo) and
T(SQ))?O are operators of type A — 2.

To prove this, we begin by stating the following two lemmas.

Lemma 4.12. If k(£ &, 1) is a frozen kernel of type i > 1 over B(E, R), then (X jk)(&; -, n)(€) (j =
1,2,...,q) is a frozen kernel of type . — 1. If .. > 2, then (iok)(éo; -, (&) is a frozen kernel of type
A—=2.

Proof. This basically follows by the definition of kernel of type A and Theorem 3.2. When the X j
derivative acts on the & variable of a kernel DfF(SO, -), one also has to take into account Remark 4.6.

Here we just want to point out the following fact. The prototype of a frozen kernel of type 2 is the
function

a@)I'(Go: ©(n, £)b(n).
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Note that the computation

Xila(-)T (%o; ©(n, )bMIE) = a@LY; + RN (Eo; IO (1, £)b(n) + (X;a) (€T (Eo; ©(n, £)b(1)

in particular generates the term

a(E)(R/T)(&o; ) (O, £)b(n),

where the differential operator R? has coefficients depending on 7. In the proof of Theorem 4.11 we will
see another basic computation on frozen kernels which generates differential operators with coefficients
also depending on &. This is the reason why Definition 4.5 allows for this kind of dependence. O

Lemma 4.13. If T (&) is a frozen operator of type A > 1 over E(é, R), then )?iT(éo) i=12,....,9)is
a frozen operator of type . — 1. If A = 2, then )?()T(éo) is a frozen operator of type . — 2.

Proof. With reference to Definition 4.5, it is enough to consider the part k" of the kernel of T, the proof
for k” being completely analogous. So, let us consider the operator

XiT() (=1,2,....9),

where T (&) has kernel k.
If A > 1, the result immediately follows by the previous lemma. If A = 1, then

T(60) f () = /

B(&,R

)a(é‘)b(n)DlF(So; O(n, £) f () dn+T (o) f (6),

where T’ (&) is a frozen operator of type 2 and D; is a 1-homogeneous differential operator. We already
know that X; T’ (&o) is a frozen operator of type 1, so it remains to show that

ii/;_ a(§)b(m) DT (§o; (©(n, §))) f () dn
BE.R)

is a frozen operator of type 0. To do this, we have to apply a distributional argument, which will be used
several times in the following. Let us compute, for any w € C3° (E (£, R)),

/~_ ifw(é)ﬁ_ a(®)b(n) DT (o; (O (n, £))) f (n) diy d&
E.R) BE.R

B

=lim [ Xo®) [ a@bme.©0.£)DT : O £)f () dnds.
=V IBER) B(§,R)

where ¢, () = ¢(D(¢""u) and ¢ € C(‘)’O([R{N), o) =0 for |lu|| <1, ¢(u) =1 for ||u|| > 2. Here we
have written Dlé to recall that the coefficients of the differential operator D; also depend (smoothly) on &
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as a parameter. By Theorem 3.2,

/E@ o Xlw@®) | )a(é)b(n)sﬂs(@(n, £)) DT (E: (O (. £))) f () dn d§

B(,R

= fg(g R)b(n)f(n) (X 0)®)a©)e (001, £)) DT (: (O, £))) dt dn

B(&.R)

= /E(éR)b(n)f(n) 0@ &) ) (O, £)D{T (o (O, £))) dé dn

B(.R)

+/§(§ R)b(n)f(n) _ 0®a®)e00, £)(X; DT (E: (O, £))) d& dn

B(,R)

+/N_ b F) | o@a@IYi + R (@ DT (: - )NI(O (. &) dé dn
B(&,R) B(&,R)
= A + Be + Ce. (4-4)

(For the meaning of the symbol X i Df appearing in the term B,, see Remark 4.6.) Now, for ¢ — 0,

Ac— | bopfm) | 0@ Xia)E)DiT (o (O, §))) d& dn
BE.R) BE.R)

=/~_ f(n)Sl(Eo)w(n)dn=f~_ oS0’ f(mdn, (4-5)
BE.R) BE.R

where S1(&y) is a frozen operator of type 1, and S;(&)” is still a frozen operator of type 1, by
Proposition 4.10. Next,

Bo— | bf) | o@®a@X; DT E: (O, §)) dé dn
BéER BE.R)

= /~ _ fSiEo)w(n) dn = /~ ~ omSiE) fdn,  (4-6)
B(,R) B(5,R)
where, by Remark 4.6, S/ (&) is a frozen operator of type 1, and the same is still true for S| (£0)T. Finally,

. — /E e IO [ 0@a®lecdi DN IO (0. ) de d

B(.R)

+/~_ b(n)f(n)ﬁ_ @ (§)a (@)l R} D1T (503 )(O(n, §)) dé dn
Bé.m Bé.m

+/~ by f) [ 0®a@[(Yi + R)@DiT (§o0; -)1(O(n, §)) d& dn
BE.R) BE.R)
= Cl+Cr+C. (4-7)

Now

Ce — w(é){PV/ ) a(&)YiD1F(So;®(n,$))b(n)f(n)dn}d$=[§_ ()T (5o) f(§)dE, (4-8)

B(E,R) BG,R) G.R
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where T (&) is a frozen operator of type 0. Note that the principal value exists because the kernel
Y; D1I"(&p; u) has a vanishing integral over spherical shells {# € G : r; < ||u|| < r;} (see Theorem 4.1).

c:— | w(&){/N_ a(%‘)R,-"DlF(So;®(77,-§))b(n)f(n)dn}d5=/~_ w(§)S(&o) f(§)dE, (4-9)
BE.R BER) BE.R)

where S(&p) is a frozen operator of type 1. To handle C 2 , let us perform the change of variables u =®(n, §),
which, by Theorem 3.3, gives

C§=/§(§ R)(bf)(n) ol R(wa)(®(n,-)_1(u))[(Yi+R?)¢5D1F(So; @) - eI+ O(lull)) du dn.

On the other hand, Y;p. (1) = (1/8)Y;0(D(1/€&)u), while R?(pg (u) is uniformly bounded in €. Hence the
change of variables D(1/e)u = v gives

1
C; = /~ ~BHm) (wa)(O(n, -)‘1(D(8)v))[—Yi<ﬂ(v)+ 0(1)]
BE.R) lvll<R/e €

-c(m)e'"2DIT (&; v)(1 + O(ev]))e? dv dn

[ wenm [ @ay @, ) 0)Yip) DT E: v) dudn
B(¢,R) lv]|<2

=/~ (wabcf)(n) Y;¢(v) DT (§; v) dv dn
B(¢,R) lv]l<2

- f  (wabef)mato. 1) dn, (4-10)
B(¢,R)

which is the integral of w times the multiplicative part of a frozen operator of type 0. It is worthwhile
(although not logically necessary to prove the theorem) to realize that the quantity o (&g, ) appearing
in (4-10) actually does not depend on the function ¢. Namely, recalling that Y;@(v) is supported in the
spherical shell 1 < ||v|| <2 with ¢(#) =1 for ||u|| =2 and ¢(u) = 0 for ||u|| = 1, an integration by parts
gives

/ Yip () DT (&; v)dv=—/ ¢()Y; DT (éo; v) dv+/ DT (£0; v)n; do (v)
1=lvll=2 I=|vl<2 lvl=2

with n; = Z?’zl bij(u)v;, where ¥; = Z?’zl b;j(u)d,; and v is the outer normal on [lv|| = 2. The
vanishing property of the kernel YiDlsF(é‘o; -) implies that if ¢ is a radial function, the first integral
vanishes. Therefore,

a (&, n)=/| - D|T (§0; v)n; do (v),

which also shows that «(%p, 7) smoothly depends on 1 and is bounded in &y (by Theorem 4.3). By
(4-4)—(4-6) and (4-8)—(4-10) we have therefore proved that

X T (§) f (&) = S150)" f&) + S{€0) f(&)+T (&) f () + 0. §)(abef) (),
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which is a frozen operator of type 0. This completes the proof of the first statement. The proof of the fact
that if A > 2, then )~(0T(§o) is a frozen operator of type A — 2 is completely analogous. ]

The above two lemmas imply the assertion on X «T (&) and ioT(’;‘o) in Theorem 4.11. To prove the
assertions about T(’;‘o))? ¢ and T(So))?o we need a way to express &£-derivatives of the integral kernel
in terms of n-derivatives of the kernel, in order to integrate by parts. This will involve the use of right
invariant vector fields on the group G: throughout the following, we will denote by

Y
the right invariant vector field on G satisfying Yfk f(0) =Y, f(0).

Lemma 4.14. Forany f € C;°(G) and n, & in a neighborhood of &, we can write, forany i =1,2,...,s,
k=1,2,...,k; (recall s is the step of the Lie algebra),

Xl £OC.ENIm) = -5 HO0. £) + ((Rik)'f)((@(n, £)), (4-11)
where (Ri ) is a vector field of local degree < i — 1 smoothly depending on &.
Proof. We start with the following.
Claim. For any function f defined on G, let
fw) = f(-u

(recall that —u = u~"); then the following identities hold:

Yiu(f)=—8f). (4-12)
Proof. Let us define the vector fields i/\,-’k by
Yir(f) = —=Tinf). (4-13)

Then, for any a € G, denoting by L,, R, the corresponding operators of left and right translation,
respectively (acting on functions), we have

iR f) ==Yk (Raf))=—YiklLoa f)=—L_o¥irf' =L_o(~Yis f)=L_a(¥is ) = (Ra¥ir f)
hence ﬁk are right invariant vector fields. Also, note that, for any vector field ¥ =" a; (u)9y;, we have
Y(f)(0) = —(Y£)(0),

because

YY) =" a;@)dy, [ f(—w)] == a;)(d,, f)(—u) implies
Y(f)0) == a;j(0)(3u; £)0) = —(Y£)(0).

Hence, by (4-13), we know that f/\k f(0) =Y, f(0). Therefore f’\k is the right invariant vector field which
coincides with Y} at the origin, that is, f/\k =Y, kR. |
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By (3-4) and (4-12),

Xialf(©C- D1

= Xixlf (OE, DI = Tin f'+ RS f)OE, n)

= —(YR ) (©E M) + R, f(OE M) = —¥R O &) + (R /) ©0,8), (4-14)
where

(RS £)w) = (RS f)(—u)

is a differential operator of degree <i — 1. This proves (4-11). U

Proof of Theorem 4.11. As we noted after Lemma 4.13, we are left to prove the assertion about T(éo)f ;
and T(éo)go. We only give the proof for the case A > 1,i =1, ..., g. The proof for L > 2, i = 0 being
very similar. Like in the proof of Lemma 4.13, it is enough to consider the part k’ of the kernel of T, the
proof for k” being completely analogous (see Definition 4.5). Let us expand

Hy,
K'(§0s €. m) = {Z a;j(&)bj(m)D,;T (%o; - )+ ao(&)bo(n) DoT (&o; - )}(@(77, £)),
j=1
where DoI" (&p; - ) has bounded Y;-derivatives (i =1, 2, ..., g). We can consider each of the terms
T;(50)Xi f(§) = / a;(&)b; (M DT (&: ©(n. £)X; f () dn
(this time it is important to recall the n-dependence of the coefficients of D;) and distinguish 2 cases:

(1) D;I" is homogeneous of degree > 2 — Q or it is regular (that is, D;I" has bounded Y;-derivatives);

(i1) T;(%p) is a frozen operator of type 1 and D;I" is homogeneous of degree 1 — Q.
Case (1). We can integrate by parts, recalling that the transpose of X, is
X" g(n) = —Xig(m +ci(mgm)
with ¢; smooth functions:
Tj(E0) X f ()
= f ci(ma;j(E)b;(mDIT (Eo; O(n, &) f () dn — / aj (S)(f(ibj)(n)D?F(fo; O, ) f(mdn

- f a;(€)b; (X[ DIT ;O (-, )1(n) f (n) dn — / a; ()b, () (X] DT o: © 1. £)f ()
= A®)+BE) +CE) + D).

Now, A(§) 4+ B(&) is still an operator of type A, applied to f; in particular, it can be seen as operator of
type A — 1; the same is true for D (&), by Remark 4.6. To study C (&), we apply Lemma 4.14, which gives

Ki[DIT (0 O (-, DI = —(YRDIT) o, O (1. £)) + (RS DIT) (50, ©(1, §)).



1824 MARCO BRAMANTI AND MAOCHUN ZHU

Since YiR is homogeneous of degree 1, a;(§)b; (n)YiR D;’F(SO, ®(n, &)) is a kernel of type A — 1. Since

(Rf)’ is a differential operator of degree < 0, the kernel a; (S)bj(n)((Rf)’D;?F)(SO, O(n, &)) is of type A.

Note that, even when the coefficients of the differential operator D; (in the expression D;I"(&§y; ©(n, §)))
do not depend on & and 7, this procedure introduces, with the operator (Rf)’, a new &-dependence of the
coefficients. Compare this with our remark in the proof of Lemma 4.12.

Case (i1). In this case the kernel (Yl.R D;T) is singular, so that the computation must be handled with
more care. We can write

T (50) X f (§) = gi_r)r(l)/aj(é)bj(n)%((@(é, M) D;T (5o: ©(n, E)X: f () dy = lim 7. (¢)

with ¢, as in the proof of Lemma 4.13. Note that, choosing a radial ¢, we have ¢, (® (&, 1)) = (O (7, §)).
Then

T.(§) = /Ci(n)aj(é)bj(n)fpa(®($,n))DjF(éo;@)(n,S))f(n)dn
—/aj(S)()N(ibj)(n)%((@(é, m)D; T (§o; ©(n, §)) f(n)dn
—/aj(é)bj(n)ii[%(@O,S))Djf‘(é‘o;®(-,§))](77)f(77)d77
—/aj(é‘)bj(n)fﬂs(@(é, ﬂ))()?;]D;?)F(So; O, 8))f(mdn

=1 Ag(§) + Bo(§) + Ce(§) + D (8).

Now A, (&) + B:(£)+ D, (&) converge to an operator of type A, as A(£), B(§), D(&) are in Case (i), while,
by Theorem 3.2 and Lemma 4.14,

Ce(§) = —/aj(S)bj(rl)f(n)(Yi%)((@(n,S))Djl“(%‘o; O, §))dn
—/aj(S)bj(n)f(n)(Rf%)((@(n,S))DJF(So; ©(n,§))dn
+/aj($)bj(n)f(n)<pe(®(n,5))(YiRDjF)($o,®(n,$)) dn
—/aj(é)bj(n)f(n)%((@(n, £))((R)) D;T) (&, ©(n. £)) dy

Now H, (&) tends to an operator of type 1 and G, (&) tends to
PV/aj(S)bj(n)f(n)(ﬂRDjF)(So,®(n,$))dn,
which is an operator of type 0. As to E.(§), the same computation as in the proof of Lemma 4.13 gives

E¢(§) — a(bo, §)(abef)(§)
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with
a (€, £) = / Yip(v) DST (£0; v) dv,

which is the multiplicative part of an operator of type 0. A similar computation shows that F(§) — 0. J

Let us come to the second main result of this section. In [Rothschild and Stein 1976, corollary on
p. 296], the following fact is proved for a family of Hérmander’s vector fields without the drift Xo: for
any frozen operator T (§y) of type 1,i =1, 2, ..., g, there exist operators T;; (&), T; (o) of type 1 such
that

q
XiT(&) =Y TG0 X;+ Ti ().
j=1

This possibility of exchanging the order of integral and differential operators will be crucial in the proof
of representation formulas. However, such an identity cannot be proved in this form when the drift Xy is
present. Instead, we are going to prove the following, which will be enough for our purposes.

Theorem 4.15. If T (&) is a frozen operator of type . > 1,i =1,2,...,q, then
~ q . ~ q . ~ . . ~
XiT o) =) TiE)Xe+ Y anE)T" ()X, + Tj (o) + T' €0) Lo, (4-15)
k=1 h,j=1

where Tki (&0) (k=0,1,...,q) and T" (&) are frozen operators of type A, T' (&y) are frozen operators of
type A+ 1, and ayj(&y) are the frozen coefficients of £.
If T (&) is a frozen operator of type A > 2, then

q q
XoT (o) =Y TeGGo)Xx+ Y, anj(E)T" (&)X + To%) + T (G0) Lo, (4-16)
k=1 h,j=1

where Ty (&) (k=0,1,...,q) and T" (&o) are frozen operators of type » — 1, T (&y) is a frozen operator
of type A.

We start with the following lemma, similar to that proved in [Rothschild and Stein 1976, p. 296].

Lemma 4.16. For any vector field gjo,ko (Jo=1,2,...,5,ko=1,2,..., kj)), there exist smooth functions
jok
{aﬁ M =120
k=12,...h;

having local degree > max{j — jo, 0} and smoothly depending on 0, such that, for any f € C;°(G), one
can write

Kkl FOm NG = Y a@©0, )X (LF O ENIm) + (RS /(O €), (4-17)

Josko

where Rf.(;n is a vector field of local degree < jy — 1, smoothly depending on &, 1.
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Proof. By Theorem 3.2 we know that

K jotolf @, - DIE) = Vjpso f + R, O E)=(ZL , HOM.E),  (@18)

where Z'7 ko 1s @ vector field of local degree < jo, smoothly depending on 7. To rewrite (Z ko) ina
suitable form we start from the following identities:

ik
aulk —+ ) Zg (u)— (4-19)

i<l<sr=1

foranyi=1,2,...,sand k=1,2,..., k;;
Yie=Y_gifaYf, (4-20)

where glk (1) are homogeneous of degree [ —i; see [Rothschild and Stein 1976, p. 295]. Hence we can

Jo ko = Za k(u)

where a i has local degree > j — jo and smoothly depends on 5. By inverting (for any i, k) the triangular

write

system (4-19), we obtain

ajk —Y/k+ Z Zfl” (M)er,

j<i<s r=1

where each f/rk (u) is homogeneous of degree / — j. Also using (4-20), we have

(21 o D =D al @I Hw + Y W, H@I=D bR Haw, @21

j<I<s
where
bl"r has local degree > max{/ — jy, 0} (4-22)

and smoothly depends on 5. Then, by Lemma 4.14,
Z! W HOM.E) =" —b @M. ENXiLFOC . ENIm + Y BL(R ) (O, £),  (4-23)
Lr

Lr

where (R;’i ,) is a differential operator of local degree <! — 1, hence the differential operator on G

Ri)”ko = Z b;’,(Ri .) has local degree < jo — 1 (4-24)

and depends smoothly on &, n. Collecting (4-18), (4-22), (4-23), (4-24), the lemma is proved, with

Jokon n
ik bjk |

Thanks to this lemma, we can prove the following, which is similar to [Rothschild and Stein 1976,
Theorem 9].



LP? AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HORMANDER VECTOR FIELDS 1827

Theorem 4.17. (i) Suppose T (&) is a frozen operator of type A > 1. Given a vector field X i for
i=1,2,...,q,there exist frozen operators T' (&) of type X, and T;k (&o), frozen operators of type
A+ j — 1, such that

XiT@E) =Y ThE) X+ T &). (4-25)
ik

(ii) Suppose T (&) is a frozen operator of type A > 2. There exist T°(&) and T]Qk (&o), frozen operators of
type . — 1 and A +max{j — 2, 0}, respectively, such that

XoT (50) = Y Tk (€)X« + T°(%0). (4-26)
Jik
Proof. First of all, it is enough to consider the part k" of the kernel of T (&), the proof for k" being

completely analogous (see Definition 4.5).

(1) If T (&) is a frozen operator of type A > 1 with kernel k’, we can write it as

T(80) f(§) = / a(&)DT (§o; ©(n, §)b () f () dn + T'(§0) £ (©),

where DT (&, -) is homogeneous of degree A — Q and T’ (&) is a frozen operator of degree A + 1. Since
X iT'(&o) is a frozen operator of type A, it already has the form T (&) required by the theorem, hence it
is enough to prove that

??i/a(é)DF(So;®(n,§))b(n)f(n)d77

can be rewritten in the form

ST Xk fE) + T (o) £ €)
j.k

with T; «(60) and T’ (&o) frozen operators of type A+ j — 1 and A, respectively. Next, we have to distinguish
two cases.

Case 1: % > 2. In this case the X; derivative can be taken under the integral sign, writing

%, / a(&)DT (& © (. €)b(n) £ (1) dn

= / (X;a)(&) DT (&; ©(n, £)b(n) f () dn + f a(®)X:[DT (O, - NEDM) f (1) dn
=: A(§) + B(®).

Now A(§) is a frozen operator of type A, while applying Lemma 4.16 with jo =1 we get

B(§) = /G(S) Zaf,(@)(n, )X, [DT (§; O+, E)1(Mb(n) £ (n) dn

l,r

+/a(~§)(RfDF)(Eo; O, §)b(n) f(n)dn

=:C()+ D(é),
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where Rl.S are differential operators of local degree < 0, and the alir have local degree >/ — 1. Hence D is
a frozen operator of type A, while, since the transposed vector field of X; , is

~r -
Xi,=—Xir+c,

with ¢; » smooth functions,

CE=—a®)y, / X, laj, (O (-, )b()1(m DT (&; O (1, £)) f (n) d
Lr
+a®))y / al,(© (1, £)) DT (50; O (0, £))cr. (b (1) f () dn
Lr

—a® Y / a}, (©(n, £)) DT (&o: ©(n, )b X1, f (1) .
Lr

The first two terms in the last expression are still frozen operators of type A applied to f, while the third
is a sum of operators of type A +/ — 1 applied to X 1.rf, as required by the theorem.

Case 2: A =1. In this case we have to compute the derivative of the integral in a distributional sense, as
was already done in the proof of Lemma 4.13. With the same meaning of ¢., let us compute

lim X /a(é)%(@(n, £))DT (§0; © (1, §))b(n) f () dn.

Actually, this gives exactly the same result as in case 1:
% [ a©)6.©0.6) DT G0 ©00.£0b0 £ )

=/(??ia)(é)%@(n,S))DF(f;‘o;@(n,é))b(n)f(n)dn+/a($)55i[(<ﬂsDF)(®(n,'))](é)b(n)f(n)dn
= A:(§) + B:(§),

where A. () — [(X;a)(€)DT (§: ©(1, )b(n) f (1) dy and

B.(§) = /d(é‘) Za}}(@(n, )X, [pe(O(+, £))DT (£o: O+, ENI(b() £ () dn

Lr

+/a($)(Rf(§0eDF))($o; O, §)b(n) f(n)dn
= Ce(é) + DS(E),
where C, (&) converges to the expression called C(£) in the computation of case 1; as for D, (),
R¥(¢:DT) = (RS ,) DT + ¢, R° DT

Now, ¢, REDF — RfDF while (ngos)DF — 0, Rf being a vector field of local degree < 0. Hence
D, (&) also converges to the expression called D(§) in the computation of case 1, and we are done.
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(ii) Now let T'(&p) be a frozen operator of type A > 2 with kernel k’. As in (i), it is enough to prove that

Xo / a(§) DT (50; ©(n, £)b(n) f (n) dn,
where DI is homogeneous of degree A — Q can be rewritten in the form

Y ThE)Xjuf ) +T G0 f &)
J.k

with TJQk (&) and T°(&y) frozen operators of type A + j —2 and A — 1, respectively. Let us consider only
the case A > 3, the case A =2 being handled with the modification seen in (i), Case 2. By Lemma 4.16,

%y / a(§) DT (&0: © (1. )b(n) f (1) dn
_ f (Roa) (&) DT (&o: ©(n, £))b(n) £ (n) dn

+ / a(§)y_ap©(n, £)X,,[DT (Eo; O(-, ENIb() £ (1) dn

l,r

+ / a(&)(Rg D) (éo;: ©(n, £)b (1) f (n) dn
= A(§)+C(E) + D(8),

where Rg are now differential operators of local degree < 1, and the a?r have local degree > max{j —2, 0}.
Then A(£) is a frozen operator of type A, applied to f; D(£) is a frozen operator of type A — 1, applied
to f. Moreover,

CE¢) = —a(é“)Z/??z,r[alor(@(',5))19(')](77)DF(€0; O, §)) f(n)dn
Lr
+a®©)y / a.(© (1. £)) DT (&o: O (1. §)er, (b(n) f () dn
Lr

—a® Y / 4 (©(n, £)) DT (&o: O (n, )b X1, f (1) .
Lr

where the first two terms are still frozen operators of type A, applied to f, while the third is the sum of
frozen operators of type A + max{j — 2, 0} applied to X 1rf- O

Proof of Theorem 4.15. 1t suffices to prove (4-15), since the proof of (4-16) is similar. So, if X T (&) 1s
like in (4-15), let us apply Theorem 4.17 and rewrite X i T (&o) like in (4-25). Now, let us consider one of
the terms T;k (éo))? j,k appearing in (4-25).

If j =1, the term is already in the form required by the theorem we are proving.

If j =2, then )N(z, & can be written as a combination of commutators of the vector fields X 1 X 2y ~q,
plus (possibly) the field }?0. Then Tzik ($O)§ 2.k contains terms Tzik (So)i h X ;j and possibly a term Tzik (fo))?o-
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By Theorem 4.17, we know Tzik is a frozen operator of type A + 1. Now
T3 E) Xn X = (T3, G X)X = T{ €)X,
where, by Theorem 4.11, Tki (&o) is a frozen operator of type A; on the other hand, by (4-2),

q
T3, (§0) Xo = T4, (%0) (seo — Y ay @o))?h)?,-)

h,j=1

q q
= T3, G0 Fo— Y anGo) (T EDXnX; = T E)Fo— Y anjGo)Ti (€)X,
h,j=1 h,j=1

with Tzik (&y) and T}f’ «(60) frozen operators of type A + 1 and A, respectively, which is in the form allowed
by the thesis of the theorem we are proving.

Finally, if j > 2, it is enough to look at the final part of the differential operator X k- Itis always
possible to rewrite )?j,k either as )?j—l,k)?l,k or as )?J-_z,k)?z,k. In the first case, we have

ThGE) Xk = (T E)X 10X 14 = T (Go) X 1.1,

with TJ’}C (&o) frozen operator of type A, which is already in the proper form; in the second case, we have

TG X i = (Th(E) X200 Xo s = T} ()Xo
with TJ’Z (&o) frozen operator of type A + 1, and then we can proceed as in the case j = 2. U

4C. Parametrix and representation formulas. Throughout this subsection we will make extensive use
of computations on frozen operators of type A. To make our formulas more readable, we will use the
symbols

T (o), S). P(%)

(possibly with some indices) to denote frozen operators of type 0, 1, 2, respectively.

In order to prove representation formulas for second order derivatives, we start with the following
parametrix identities, analogous to [Rothschild and Stein 1976, Theorem 10; Bramanti and Brandolini
2000a, Theorem 3.1].

Theorem 4.18. Givena € C§° (E(E, R)), there exist S;; (&), So(é0), Sl.*j (&0), S;(&0). frozen operators of
type 1 and P(&y), P* (&), frozen operators of type 2 (over the ball E(é, R)) such that

q
al =% P* (&) + ) @ij(€0)S}; (%) + S (o), (4-27)
i,j=1
- q
al = PE)Fo+ Y Gij(50)Sj (o) + So(€o), (4-28)

i,j=1



LP? AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HORMANDER VECTOR FIELDS 1831

where I denotes the identity. Moreover, S;kj (é0), Si(&0), P*(§0) are modeled on I'", while Sij(60),
So(&o), P (&) are modeled on T'. Explicitly,
a(§)

P(éo)f(é‘)——@ T (& ©(n, £)b() f(n)dn,
a(mn)

P(&) f(8) = —b(£) / T @ O, €0) S ()

where c is the function appearing in Theorem 3.3(c).

Sketch of the proof. Let us define

P*(0) (&) = “g [ T7 (&0 © 1, £))bn) £ () .

where a, b € Cgo(ﬁ (€, R)) such that ab = a and ¢ (&) is the function appearing in the formula of change

of variables (3-6). Let us compute EE({ P*(&o) f for f e C° (E (E , R)). We can apply a distributional
argument like in the proof of Lemma 4.13. For w € C§° (E (€, R)), let us evaluate

/E:Cffow(é)l’*(éo)f(é)dé=;i_%/§§ow(E)P:(§o)f(§)dS,

where

Pl (o) f(§) =— g; _9e(O(, ENTT (50; O, )b(n) f () dn

with ¢, as in the proof of Lemma 4.13. Now, computing the integral

fg Fow(€) PF(£0) f () dE

and taking its limit for ¢ — 0, by the same techniques used in Section 4B, we can prove (4-27). Transposing
this identity, one finds (4-28). O

Now, starting from (4-28) and reasoning as in the proof of [Bramanti and Brandolini 2000a, Theo-
rem 3.2], applying Theorem 4.11 and Theorem 4.15, one can easily prove the next two theorems.

Theorem 4.19 (representation of )?m)?lu by frozen operators). Let a € C(‘)’O(E (€,R)), & € B (€, R).
Then, for any m,l = 1,2, ..., q, there exist frozen operators over the ball B (€, R) such that, for any
u € C(B(E, R)),

q

XX (au) = TimEo)Lott + Y Tim i (§0) X1 + T, (§0)u
k=1

+ Za,, @0){2%2 (&) X + Z anc(€0) Ty, (E0) Xiu + S, (E0) Lou + T,i,£<so)u}. (4-29)

i,j=1 k=1 k=1



1832 MARCO BRAMANTI AND MAOCHUN ZHU

(All the T...(&y) are frozen operators of type 0 and S;,Jn (&) are of type 1.) Also,

q q
X Xi(au) = Tim (€)%t + Tym (%0) ( > laij(Eo) — aij()IXi X ju) + ) Tim i (E0) Xu + T, (Go)u

i, j=1 k=1

! 1 i j oy ! 1j oy ij s
+ Yy a,-,-(so>{ D T i E)Xeu+ Y an(Eo) T, (E0) Xau + 7, (50) Fu

ij=1 k=1 k=1
q
+ Sz’i@o)(z [4; (£0) —@,-(»p“i,a?ju) T (go)u} (4-30)
i,j=1

Remark 4.20. The representation formulas of the above theorem have a cumbersome aspect, due to the
presence of the coefficients a;;(§0) which appear several times as multiplicative factors. Anyway, if we
agree to leave implicitly understood in the symbol of frozen operators the possible multiplication by the
coefficients a;;, our formulas assume the following more compact form

q
X X (au) = Tim (&) Lou + Y T (€0) Xeu + Ty, (Go)u

and k=l
Xn X1 (au) = Ty (0) %1t + Tim (£0) ( > " laij (Eo) — aij ()X, X,u) + ) T (E0) Xyu + T, (Go)u.
i, j=1 k=1

In the proof of a priori estimates, when we take C% or L? norms of both sides of these identities, the
multiplicative factors a;; will be simply bounded by taking, respectively, the C ‘3‘)2 or the L norms of the
apj; hence leaving these factors implicitly understood is harmless.

The above theorem is suited to the proof of C ‘)1( estimates for X; X ju. In order to prove L? estimate for
X: X ju we need the following variation.

Theorem 4.21 (representation of X m X ju by variable operators). Given a € C{° (§ (€, R)), for any
m,l=1,2,...,q,there exist variable operators over the ball E(é R) such that, for any u € Cgo (E(é, R)),

Xle(au)
= TimPu+ Y " aij Tl X Xju+ Y Tiom e Xett + T,
i,j=1 k=1

q
+ Z a,J{Z T Xu + Z anc Ty y X+ Sy Fu+ Y [ay, S;,fn]x,-xjquT,’,;u}. (4-31)
i,j=1 h,k=1 i,j=1

Here all the T... are variable operators of type 0, Sy is of type 1, [a, T denotes the commutator of the
multiplication for a with the operator T, and a;; are the coefficients of the operator & (which are no
longer frozen at &y).
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Remark 4.22. The above representation formula can be written in a shorter way as

q q
XnXi(aw) = TinPu+ Y (aij, Tn] XiXju+ Y Tona Xy + Ty
i,j=1 k=1

if we leave understood in the symbol of variable operators the possible multiplication by the coefficients
a;j; see the previous remark.

5. Singular integral estimates for operators of type zero

The proof of a priori estimates on the derivatives XX ju will follow, as will be explained in Section 6 and
Section 7, combining the representation formulas proved in Section 4C with suitable C* or L? estimates
for “operators of type zero”. To be more precise, the results we need are the C;"?(E (£, R)) continuity
of a frozen operator of type zero and the L? (B (£, R)) continuity of a variable operator of type zero,
together with the L? (E (5 , 1)) estimate for the commutator of a variable operator of type zero with the
multiplication with a VMO function, implying that the L? (E (€, 7)) norm of the commutator vanishes
as r — 0. All these results will be derived in the present section, as an application of abstract results
proved in [Bramanti and Zhu 2012] in the context of locally homogeneous spaces (see Section 3C). To
apply them, we need to check that our kernels of type zero satisfy suitable properties. Moreover, to study
variable operators of type zero, we also have to resort to the classical technique of expansion in series of
spherical harmonics, dating back to Calderén and Zygmund [1957], and already applied in the framework
of vector fields in [Bramanti and Brandolini 2000b; 2000a]. This study will be split into two subsections,
the first devoted to frozen operators on C* and the second to variable operators on L?.

5A. C % continuity of frozen operators of type 0. The goal of this section is the proof of the following.

Theorem 5.1. Let E(é R) be as before, &y € E(é R), and let T (&y) be a frozen operator of type .. > 0
over §(§, R). Then there exists ¢ > 0 depending on R, {)A(J,‘}, o, and ., such that, for any r < R and
ueCy (BE.r),

o (R(E < Q (R(E -
||T(§O)u||c}?(3(g,r)) = C||”||c§(3(g,r)), (5-1)

To prove this, we will apply theorems proved in [Bramanti and Zhu 2012] about the C* continuity of
singular and fractional integrals in spaces of locally homogeneous type, taking

~f - R
Q. =8 S,k— fork=1,2,3,.... (5-2)
k+1

Following notation and assumptions in Definition 4.5, our frozen kernel of type zero can be written as

k(&os &, m) = k' (503 €, ) + K" (503 €, ).
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We will prove Theorem 5.1 for the operator with kernel k', the proof for k” being completely analogous.
Let us split k" as
H,

k' (03, m) =a1(§)b1(n) D1T (60;© (n,6)) + {Zai (€)bi(m) Di I (503 ) +ao(§)bo(n) Dol (o; ~)}(®(n,§))

i=2
=:kS($’n)+kF(§’ 77),

where D I"(§p; u) is homogeneous of degree —Q while all the kernels D;I"(&y; u) are homogeneous of
some degree > 1 — Q and DoI"(&p; 1) is regular. Recall that all these kernels may also have an explicit
(smooth) dependence on &, 1; we will write Df’”F(SO; ®(n, &)) to point out this fact when it is important.
We want to apply [Bramanti and Zhu 2012, Theorem 5.4] (about singular integrals) to the kernel kg
and [Bramanti and Zhu 2012, Theorem 5.8] (about fractional integrals) to each term of the kernel k.
We start with the following result, very similar to [Bramanti and Brandolini 2000a, Proposition 2.17].

Proposition 5.2. Let W"(-) be a function defined on the homogeneous group G, smooth outside the
origin and homogeneous of degree £ — Q for some nonnegative integer £, smoothly depending on the
parameters £, 1 € B(E, R), and let

K& n=W"00,§)
be defined for &, n € B (€, R). Then K satisfies the following.

(1) The growth condition: there exists a constant ¢ such that

|K(E )] <c- sup (W& ()| - dg (&, ) 2.

(i1) The mean value inequality: there exists a constant ¢ > 0 such that, for every &y, &, n with d3 (§o, n) >
2d5 (60, 5),

dx (&0, &)

|K (50, m) — K&, mI+[K(®, &) — K, §)| = CW’

(5-3)

where the constant C has the form

¢ sup (VWS )|+ Ve WS )| + |V, W (u)]}.
flu=1
& neB(,R)

(iii) The cancellation property: if £ = 0 and W satisfies the vanishing property

/ W (1) du =0 f0reveryR>r>0and$,n€E(é,R), 5-4)
r<|lull<R

then, for any positive integer k, for every e, > &1 > 0 and & € Qi (see (5-2)) such that E(E, £2) C Qpt1,

K(g,n)dn‘-i— / K(n,§)dn| <C-(e2—¢1), (5-5)
Qrr1,.61<p(§,m)<e2

~/Qk+1,€1 <pé.n)<e
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where the constant C has the form

¢ sup (W@ VeWE @)+ |V, WET @)}
llul=1
§,n€B(§.R)
Proof. (i) is trivial, by the homogeneity of W, and the equivalence between d3 and p (see Lemma 3.9).
In order to prove (i), fix &, n and let r = %p(n, &p). Condition p(n, &) > 2p (&, &) means that £ is a
point ranging in B, (%0). Applying (3-18) to the function

fE=KEmn,
we can write
q
If(E)—f(So)Iicd;?(S,So)(Z Coswp X f©l4dg(E &) sup |iof<c)|).
i=1 t€B(&.3dxz(E.m) ceB (&, 3dz (o.m)

Noting that, for ¢ € B(&, 2d5 (&0, ).

XK (-, ()] = 1 X: (WSO (-, m))(E) + (X, WO, ) ()]
<|(Y;W + RIW)(©O @, O)| + [(X; W1 (@O, m)) ()]

and recalling that, by Remark 4.6, V. W (1) has the same u homogeneity as W (u), we get

~ ¢ c
IXiK(-, @< sup  |[VaWW)|————+ sup [V W w)|———
l lu]|=1 ! p (g, me@—tH! lul|=1 ¢ p(¢,me-¢
¢neBE,R) ¢,neB(E,R)
c
< sup {|IVuWOW)|+ |V WO W)} ——————
luj|=1 ! ¢ dx (&, n) Q¢!
¢neBE,R)
Analogously,
~ c
IXoK(-,m@) < sup  {IV.Wo)|+ |V WO W)} ————,
luf=1 ! ‘ d5 (&, m)P~t+2
¢,neBE,R)
hence
dz (&, &o)
|K(&,m) — K (5, )| < C— X2 —
dx (&, m) Q!
with

C=c sup {IV,W""w)|+|V, W ()]}
lui=1
{.neB(E,R)
To get the analogous bound for | K (1, §&n) — K (1, §)|, it is enough to apply the previous estimate to the
function

K&, n)=WS(O(@n, £)  with Wo(u) = W ™).

This completes the proof of (ii).
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To prove (iii), we first ignore the dependence on the parameters &, 1, and then we will show how to
modify our argument to take them into account. By the change of variables u = ®(n, &), Theorem 3.3(c)
gives

/ W(©,§))dn=c(§) Wu)(1+w(&,u)))du,
Qit1,61<pE,n)<e2 e1<llull<ez

which, by the vanishing property of W, equals

c() W w (&, u) du.
e1<|ull<ez
Then
f W(®(n,$))dn‘ Sc'f |W@)] l|ull du
Qpy1,61<p(§,n)<e2 er<|lull<ez
<c- sup |W|- lull'"Cdu<c- sup |W|-(e2—€1).
flull=1 er<|lull<ez flull=1

Analogously, one can prove the bound on W (® (&, n)). Now, to keep track of the possible dependence of
W on the parameters &, 7, let us write

/ WEN©(n, £)) dn
Qiyr1,e1<pE,n)<er

_ / WEE (O, &) dn + f [WE1(©1, £)) — WEE (@, £)) 1dn
Qr+1,61<p(&,n)<e2

Qit1,61<p(§,n)<e2
=:1+1I.

The term I can be bounded as above, while
WS () — WES )] < |& — 5]V, W5 ()]

for some point 1’ near £ and 5. Recalling again that the function V, W& () has the same homogeneity
as WS’”,(-), while

& —nl <cdz(&,n) <cp&,n),

we have
I <c sup |V, W5 (u) lull'=9 du
lluj=1 Qurr.e1<lull<e;
&neB(&,R)

and the same reasoning as above applies. This proves the bound on | [ K (¢, ) dn| in (5-5). The proof
of the bound on | [ K (1, §) dn| is analogous, since the vanishing property (5-4) also implies the same
bound for [ WET (=) du. O

<llull<R
Proposition 5.2 implies that DI"(&y; ®(n, &)) satisfies the standard estimates, cancellation property,

and convergence condition stated in Section 3C. Note that (5-5) implies both the cancellation property
and the convergence condition.
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In order to apply [Bramanti and Zhu 2012, Theorem 5.4] to the kernel kg(&, n), we still need to prove
that the singular integral T with kernel kg (&, n) satisfies a condition 7 (1) € C)Z(. This result is more
delicate than the previous conditions, and is contained in the following.

Proposition 5.3. Let

7(&) = lim / R ndn
e=>0JpEm>e
with
K&, n) = a1(€)b1 () DT (£0: ©(n, £)),

Df’nl"(&); -) homogeneous of degree —Q and satisfying the vanishing property
/ -k Df’"F(SO; u)du =0 forevery R>r >0, any§,ne€ g(é, R).
r<fluf|<

Then
heCL(BE R) foranyy € (0,1). (5-6)

Proof. Since a;, by are compactly supported in B (€, R), we can choose a radial cutoff function

o, n) = f(p&E, )
with
Slul) =1 for flull <R, f(lul)=0 for|u|=>2R,

so that K &,n) = K (&, n)@ (&, n). To begin with, let us prove the assertion without taking into considera-
tion the dependence of Df’”F(é‘o; u) on &, n. Then

h(E) = ai(€)by (£) lim @&, DT (Eo; O(n, £)) dn

eV JpE,m)>e

+a1(§) / (&, n) D1 (§o; O(n, §))[b1(n) —b1(§)]dn
= 1(§)+1E).
Now,

1(§) = a1(€)b1($)6(é)81i_%/ Slul) D1 Go; w)(1 +w (&, u)) du

lull>e
= a1(§)bi(§)c(§) / S Ulul) DiT (§o; W (§, u) du,

by the vanishing property, with @ smoothly depending on & and uniformly bounded by c|ju||. Hence I (£)
is Lipschitz continuous and, in particular, Holder continuous of any exponent y € (0, 1). Moreover,

11(’5)=611(§)/]§(é R)K(é,n)dn with k(§, 1) = ¢ (&, n) D1I"(§o; O, E)[b1(n) —b1(5)].

It is not difficult to check that the kernel « (§, 1) satisfies the standard estimates of fractional integrals (3-11)
and (3-12) for any v € (0, 1) (actually, for v = 1). Hence, by [Bramanti and Zhu 2012, Theorem 5.8],
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the operator with kernel « is continuous on C V(E (¢, R)); in particular, it maps the function 1 into
CY(B(E, R)), which proves that II(¢) is Holder continuous.

To conclude the proof, we have to show how to take into account the possible dependence of
Df’"F(éo; u) on &, n. Let us start with the n dependence.

B©) =a@bi© lim [ pEnDITE: 00 £) dn

pE.n)>¢

+ai(§) / ¢ (&, m DT (§o; O, §))[b1(n) — b1(€)1dn

= 1'(§) +1I'(§).
The term II' (§) can be handled as the term II(§) above. As to I'(§),
'© =a@n @ fim | QDI @i du

+ a1 (§)b1(€)c(€) f FAu) D E O & w)w (&, u) du.

The second term can be handled as above, while the first one requires some care. By the vanishing
property of DfF(So; u) for any fixed ¢, we can write

fim / FA DO ;) dc = lim / FUDIDO ™ O ;) — DET (Eo; )] .
[lu||>e e=>UJ)

e—0 ul|>e

On the other hand,
oIE -1
DY D (&: ) = DIT oz 1) + DT (Eo: u).

where Dg is a vector field of local weight < 0, smoothly depending on &. Hence

lim FuhDC O OD : w) du = / flul) DgT (€o; u) du,

=0 Jjju)>e

which can be handled as the term 7 (£) above.
Dependence on the variable £ can be taken into account as follows. If

h(E) = ai(€)by(€) lim @ (&, n)Df’"F(%‘o; O, &))dn
e=>0JpEm>e

Eelij%/Fa(S,é,n) with Fe(¢, €, m) = a1(§)b1(E) Xo(en=« (M &, MDY T (€o; O, §) dn,

then

h(ED —h(E) = gi_%/[Fg(Sl, €1, m) — Fe(62, 61, m1dn +£1i_1;%/[Fs(§2’ &1, m) — Fe(82, 62, m)1dn
=1 A(51,6) + BG1, &).

Now,

|AG1, &) < cp (&1, &2)



LP? AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HORMANDER VECTOR FIELDS 1839

by the smoothness of & Df’"F(Sg; u). As to B(&1, &), it is enough to apply the previous reasoning to
DT (&; ©(1, £)), for any fixed ¢, to conclude that

lim / (F (g, &1, m) — F(C, &2 )] dn| < cp(r, &)

for some constant uniformly bounded in ¢, and then apply this inequality taking ¢ = &;. U

Conclusion of the proof of Theorem 5.1. Recall that a frozen operator of type zero is written as

T (&) f(5) =PV ﬁ k(&o: &, m) f(n) dn+ (6o, 8) f(6),
B
where « is a bounded measurable function, smooth in &£. The multiplicative part

J (&) — a0, §) f(§)

o
X
on the vector fields and the ellipticity constant x, by Theorem 4.3.

clearly maps C% in C ‘;‘?, since (&, - ) is smooth, with operator norm bounded by some constant depending
Let us now consider the integral part. With the notation introduced at the beginning of this section, let
us consider first

ks(€,n) = a1(€)b1 () DT (£0: ©(n, £)),

where Df’”F(SO; u) is homogeneous of degree —(Q and satisfies the vanishing property (5-4). By
Proposition 5.2, ks (&, n) satisfies conditions (i), (ii), and (iii) in Section 3C, with constants bounded by

¢ ”slulpl{mzr(so, )| + DT (%o, wl}, (5-7)
ull=
where the symbols D?, D3 denote standard derivatives of orders 2, 3, respectively, with respect to u,
and the constant ¢ depends on the vector fields but not on the point &,. By Proposition 5.3, condition
(5-6) is also satisfied by ks (&, n), with the C;’? norm bounded by a quantity of the kind (5-7). Hence, by
[Bramanti and Zhu 2012, Theorem 5.4], the operator with kernel ks(§, n) satisfies the assertion of the
theorem we are proving, with a constant bounded by a quantity like (5-7). In turn, by Theorem 4.3, this
quantity can be bounded by a constant depending on the vector fields and the ellipticity constant p of the
martrix a;;(x).
Let us now come to the kernel

H
kr(5,m) = {Zaxswi(nwf’"r(so; ) +ao(&)bo(n) DT (&o; -)}(@(n, £)),
i=2

where each function Df ’"F(SO; u) (i =2,3,..., H) is homogeneous of some degree > 1 — Q, while
Dg’"F(SO; u) is bounded and smooth. By Proposition 5.2, each kernel

a;(§)b; () DT (&; O(1, £))
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satisfies the standard estimates (i) in Section 3C for some v > 0, hence we can apply [Bramanti and Zhu
2012, Theorem 5.8] to the integral operators defined by these kernels, and conclude as above. Finally, the
integral operator with regular kernel is clearly C¥ continuous. (I

5B. L? continuity of variable operators of type 0 and their commutators. In this subsection we are
going to prove the following.

Theorem 5.4. Let T be a variable operator of type 0 (see Section 4B) over the ball §(§ R), and
p € (1,00). Then

(1) there exists ¢ > 0, depending on p, R, {)~(,-}iq:0, and |1 such that

WTull p BE.ry < cltll Lo By
foreveryu € LP(E(g, r)) andr < R;
(ii) for every a € VMO 10c(2), any € > 0, there exists r < R such that, for every u € L”(E(é, r)),
T (au) —a- T”“LP(E(g,r)) =< 8”””L"(§(§,r))’ (5-8)

where a(x, h) = a(x). The number r depends on p, R, {X,-}iq:o, “w, 77:,9’,9’ and ¢ (see Section 3D.3
for the definition of VMO 10c(2) and 77;,9’,52)'

A basic difference between the context here and that of the previous section is that here we are
considering variable kernels and operators of type zero. To reduce the study of these operators to that
of constant operators of type zero we will make use of the classical technique of expansion in series of
spherical harmonics, as already done in [Bramanti and Brandolini 2000a].

Proof. This proof is similar to that of [Bramanti and Brandolini 2000a, Theorem 2.11]. Recall that a
variable operator of type zero is written as

Tf) = PV/Nk(é; Emfmdn+ai,§)fE),
B
where (&, £) is a bounded measurable function in &y, smooth in &. The multiplicative part

fE)—a. 8)fE)

clearly maps L? into L?, with operator norm bounded by some constant depending on the vector fields
and the ellipticity constant w, by Theorem 4.3. Moreover, this part does not affect the commutator of 7.
As to the integral part of T, let us split the variable kernel as

kEEm=kKEEnN+EE S 0.

Like in the previous section, it is enough to prove our result for the kernel k’. Let us expand it as

H
KEEm =) aEb D} "I (& © (11, £)) +ao(€)bo(n) Dy "T(6: ©(n, £))

i=1
= kU(ga E’ 77) +kB(§a E’ 77),
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where the kernels Df’nF(S; u) (for i = 1,2,3,..., H) are homogeneous of some degree > —Q,
Df’"F(é; u) satisfies the cancellation property, and Dg’"l"(é; u) is bounded in u and smooth in &, n.
The kernels ky and kp are “unbounded” and “bounded”, respectively.

The operator with kernel kg is obviously L? continuous. Moreover, it satisfies the commutator estimate
(5-8) by [Bramanti and Zhu 2012, Theorem 7.3], since

lkp(§: &, M| = cag(§)bo(n)

and the constant function 1 obviously satisfies the standard estimates (3-11), (3-12) with v = 1.
To handle the kernel ki, we expand each of its terms in series of spherical harmonics, exactly like in
[Bramanti and Brandolini 2000a, Section 2.4]:

o0 8m
DIT(Eu) =Y Y il (E)Kigom (),
m=0 k=1
where K i, (#) are homogeneous kernels which, on the sphere [|u|| = 1, coincide with the spherical

harmonics, and c?’,ﬁn( -) are the corresponding Fourier coefficients.
Let us first prove the assertion without taking into account the dependence of the coefficients cl:s’,gn &)
on 7. Then the operator with kernel kyy can be written as

o0 8Em

SFE) =YY ¢} in @ Sikm f ) (5-9)
m=0 k=1
with

Sikm f(§) = ai(§) /E bi(m Kikm(© (1, §)) f (n) dn.

The number g,, in (5-9) is the dimension of the space of spherical harmonics of degree m in RY; it is
known that

gmfc(N)-mN_2 foreverym=1,2,.... (5-10)

For every p € (1, co) we can write

o 8m
ISFNLoEErny < D D MmO oo o 1 Siskem £ 1o By
m=0 k=1
and
oo 8m
1S@F) =@ SFlor@EErm < D D N tm (Il Loo@Em 1Sism @ F) =@ Sikom | Lo B .-
m=0 k=1

Now each S; i, is a frozen operator of type A > 0, and the same arguments as in the previous section show
that the kernel of S; ,, satisfies the assumptions (i), (ii), and (iii) in Section 3C with constants bounded by

c- sup IV Kim (1],
[lull=1
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(with ¢ depending on the vector fields); in turn, by known properties of spherical harmonics, we have

sup |V, Kim )] < c(N)m"/2,

llul=1
so that, by [Bramanti and Zhu 2012, Theorems 5.3 and 5.7], we conclude as in [Bramanti and Brandolini
2000a, p. 807] that

ISiiom f o EEry <€ mN 2N flpBery fori=1,2,... H,

where we have also taken into account Remark 5.5 below.
Analogously, applying [Bramanti and Zhu 2012, Theorems 7.1 and 7.2], we have the commutator
estimate

1Sikm @ F) =@ Sisom f Lo By < m Ul oBery fori=1,2,... H,

for any ¢ > 0, provided r is small enough, depending on ¢ and n2,9k+2»9k+3 (see (5-2) and Definition 3.21
for the meaning of symbols). Then, by Proposition 3.23, the constant r depends on the function a only
through the local VMO modulus 7} ¢ ¢.

Next, again by known properties of spherical harmonics, we can say that, for any positive integer #,

there exists ¢;, such that

B
@l =erm™  sup (L) DT w)|
lull=1,1p1=2h" * OU
By the uniform estimates contained in Theorem 4.3, the last expression is bounded by Cm =", for some
constant C depending on #, the vector fields, and the ellipticity constant u. Also taking into account
(5-10) and choosing 4 large enough, we conclude

o
—2h _N/2
ISFlo@GErn < D Camm 2 m™ 21 fll oGy = N Fll oG @y

m=0

and
IS@f)—a-SflleBE.ry < celfllLrBéErm
for any ¢ > 0, provided r is small enough.

We are left to show how the previous argument needs to be modified to take into account the possible
dependence of Df "'T'(¢; u) (and then of s (§)) on n. Let us expand

ikm
' X 8m
0(-.0)”
Dy E ) =Y N o () Ko )
m=0 k=1
so that
X 8m

Di'T(E O ) =YD ¢ i@ Kim(© . ).

m=0 k=1
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The kernels K x,, are the same as above, hence the estimates on the operators S; i, and their commutators

remain unchanged. As to the coefficients ct (&), we now have to write, for any positive integer 4 and

i,km
some constant ¢y,

i@l =em™  sup (L) pEe O )|
lul=1,]8|=2n' \OU

Now, from the identity

0

) 9
5 (D700 RGNS <D”F<s 1)) fy—o(-.0)- 1(u>+Z—(D“F<s u))—(@( SO
J

it is easy to see that we can still get a uniform bound of the kind

@&l<C-m™

Ci km
with C depending on /, the vector fields, and the ellipticity constant w. O

Remark 5.5. In the statements of all the theorems about singular integrals proved in [Bramanti and
Zhu 2012], the constant depends on the kernel only through the constants involved in the assumptions.
Actually, we need some additional information about this dependence. A standard sublinearity argument
allows us to say that if, for example, our assumptions on the kernel are (3-11), (3-12), and (3-13), the
constant in our upper bound will have the form

c-(A+B+0),

where A, B, and C are the constants appearing in (3-11), (3-12), and (3-13), and ¢ does not depend on
the kernel. This fact has been used in the above proof and will be used again.

6. Schauder estimates

We are now in position to apply all the machinery presented in the previous sections to prove our main
results, that is, C§ and L’ estimates on X; X ju in terms of u and £u. We will prove C§ estimates
(Theorem 2.1) in this section, and L? estimates (Theorem 2.2) in Section 7.

Let us recall the setting described at the end of Section 3C. For a fixed subdomain Q' € Q C R”
and a fixed point x € €/, let us consider a lifted ball B (€, R) c RN (with & = (¥, 0)) where the lifted
vector fields X; are defined and satisfy Hormander’s condition and the map ® is defined and satisfies the
properties stated in Section 3A.

According to the procedure followed in [Bramanti and Brandolini 2007, Section 5], the proof of C§
a priori estimates for second order derivatives will proceed in three steps: first, in the space of lifted
variables, for test functions supported in a ball B (€, r) with r small enough; then for any function in
C%“(E (€, 7)) (not necessarily vanishing at the boundary); then for any function in C)z(’“(B()E, r)), that is
in the original space.

The first step in the proof of Schauder estimates is contained in the following.
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Theorem 6.1. Let B (€, R) be as before. Then there exist Ry < R and ¢ > 0 such that, for every
ue CE(BE, Ro),

el c2eB@ ryy = CUILullca @@, ryy + 1l L@@ ro

where ¢ and Ry depend on R, {)?i}, o, i, and [|Gijllce (5 gy

The proof is quite similar to that of [Bramanti and Brandolini 2007, Theorem 5.2] and will be omitted.
We just point out the facts which it relies upon:

« the representation formula proved in Theorem 4.19;
o Theorem 5.1 about singular integrals on C ‘3‘)2;
» several properties of C )2?’“ functions, collected in Proposition 3.14.

The second step in the proof of Schauder estimates consists in establishing a priori estimates for
functions not necessarily compactly supported.

Theorem 6.2. There exist ro < Ry and ¢, B > 0 (with Ry as in Theorem 6.1) such that, for every
ue C%Q(E(é, r0)), 0 <t <s <ro,

C ~
lullcze e = G pa IFules @@y + Iulied@s)s
where rg, ¢ depend on R, {%i}?zl, o, 4, and ||a;; lca (B, r)) and B depends on {5(}}?_0 and o.
¢(BE. =

As in [Bramanti and Brandolini 2007], this result relies on interpolation inequalities for C ;i(’“ norms
and the use of suitable cutoff function. The following result can be proved as [Bramanti and Brandolini
2007, Lemma 6.2] by the results in Proposition 3.14.

Lemma 6.3 (cutoff functions). Forany0 < p <r and & € B (£, R), there exists ¢ € Coy° (RN) with the
following properties.

() 0<@<1,9=10nB(, p),and spitg C B(E, r).
(i) Fori,j=1,2,...,q,

1 Xipl < —— | Xool, [XiXjol < —. (6-1)
r—p (r—p)
(iii) Forany f € C‘)"?(E(é, R)) and r — p small enough,
~ c
If Xiollce 3 ry S 73 1 lleeBE ry)
iWleg e rn S o yal llegBém) 62)

~ ~ ~ C
X o (R(E , XX QO (BE < — QO BE .
If 0(»0||C)~((B(§,R)) IfXi J(p||C)~((B(§,R)) S r—p) I/ ||c)~((3(g,1e))

We will write
B,(§) <9 < B (§)

to indicate that ¢ satisfies all the previous properties.
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Proposition 6.4 (interpolation inequality for test functions). Let
q ~ ~
H=>Y " X]+X
i=1

and let B (€, R) be as before. Then, for every a € (0, 1), there exist constants y > 1 and ¢ > 0, depending
ona, R and {fi}, such that, for every ¢ € (0, 1) and every f € Cgo(E(é, R/2)),

~ c
1X1 fllce B @ vy = eNHf llce 5@ rp2) T 87||f||Lw(§(§,R/2)) (6-3)
forl=1,2,...,q; moreover, we have
~ c
||Df||c§(§(§,R/2)) = 3||§£f||c§(§(§,R/2)) + 8_y||f”L°°(§(§sR/2))’ (6-4)

where D is any vector field of local degree < 1.
To prove Proposition 6.4, we need the following.

Lemma 6.5. Let P(&y) be a frozen operator of type A > 1 over B (£, R) and a € (0, 1). Then there exist
positive constants y > 1 and c, depending on o, |, and {ii}, such that, for every f € Cgo(g(é, R)) and
e€(0,1),

c
IPHfllce B ry) = el HS lce@e ry + 8_y||f“L°°(§(§,R))' (6-5)
Moreover, (6-5) still holds if H is replaced by any differential operator of weight two, like X i X jor 350-

The proof of this lemma is very similar to that of [Bramanti and Brandolini 2007, Lemma 7.2]. It
exploits the properties of cutoff functions (Lemma 6.3 ), inequality (3-19), and fractional integral estimates,
relying on [Bramanti and Zhu 2012, Theorem 5.7] and Remark 5.5.

Proof of Proposition 6.4. By Theorem 4.18, we can write

af = PHf &)+ Sf,

where P and § are frozen operators of type 2 and 1, respectively, over B (€, R). More precisely, they
should be called “constant kernels of type 2 and 17, since they satisfy the definition of frozen kernels
with the matrix {a;; (o)} replaced by the identity matrix.

If we assume a = 1 on E(é, R/2), then, for f € CSO(E(E, R/2)), we obtain

f=PHfE)+Sf, (6-6)

and therefore, by Theorem 4.11,
Xif=SiHf(€)+Tf. (6-7)

where S| and T are frozen operators of type 1 and 0, respectively. Substituting (6-6) in (6-7) yields

Xif=SHf(E) +TPHf +TSf,
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and therefore, by Theorem 5.1 and Lemma 6.5,

1X: flle < ISUHF llo+ cUIPHS la + 1Sf lla} < clel Hf lla + &7 [ flloo + Sflla}, (68

where all the norms are taken over B (€, R/2). We end the proof by showing that, for an operator S of
type 1,
1S lle = cll fllz=,

which by (6-8) will complete the proof of the first inequality in the proposition. Indeed, if

SF(E) = / k(E. ) f£(n) dn,

Br
we have

ISFED = SFE < Il / . @ — k(2] (6-9)

B,

Moreover,

/~ k(1 1) — k(Ea, )] dn = / , k(1 1) — k (&, 1)) dn
Br B(&,R),p(§1,m)>Mp(&1,62)

+ [ k(§1,m) —k(&2, | dn
BGE.R).pE1.m=Mp(E1.52)
=:1+II

IS/ c lﬂ(&,%‘z) i
pErm>Mp(.e) PEL M p(Er,n)

p (&1, M1 0(51,52)1_“0[
pEm=Moen PELME p,m—

o[ PED)
N R

where in the last inequality we have used the following standard computation (which will be useful again):

Then

= p(&1, 6&)°

dn < cp(&1,£)*R'™,

d ~ _
/ ! — L <erf forany & € BE, R). (6-10)
BER).pE.m<r PEL N

)O—B =
As to 11,

i< f Kz, )| dn + / k(&2 ) din.
p&1.n)<Mp(&1.52) p&1.mM)<Mp(£1,&)

Since there exists My > 0 such that if p(§1, n) < Mp(&1, &), then p(&2, n) < M1p(&1, &2),
1
ch{f —_dn—i-/ —_dn},
P =Mp (e &) PELME! P& m<Mip( & PE2 M2
which, again by (6-10), is
<cp(61, &) <cp(51, )R
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Hence, for every @ € (0, 1),

/N |k (€1, m) — k52, )| dn < cap (&1, )R,

Br
and, by (6-9),
ISfla < cll fllLee.
Moreover,

1S£®)] s/E k(. ) f ()] dy < ||f||Loo/ dn <RI\ f 1o,
R p

&m=cr P&, 2!
hence

I1Sflle = cllflle.

This completes the proof of (6-3). A similar argument gives (6-4). O

Theorem 6.6 (interpolation inequality). There exist positive constants c, y and ri < R such that, for any
ueCz*(BE.r).0<p<r.0<8<1/3,

q

~ ~ Cc

D o (B(E <4 D2 o (R(E B ——— co(R(E .

1Dullce B o = ; ID%ulce&rn + 57— 5y 1 hiedérn)

where
q q
~ - ~ o -
1Dull =) 1 Xiu| and D>l =Y |IXiXiul + | Xoul.

i=1 ij=1

The constants c, r1, y depend on o, {)?i}; y is as in Proposition 6.4.

Proof. The proof can be carried out exactly as in [Bramanti and Brandolini 2007, Proposition 7.4],
exploiting the properties of cutoff functions (Lemma 6.3), the interpolation inequality for test functions
(Proposition 6.4), and (3-20) in Proposition 3.14. [l

We are now ready to complete the second step in the proof of Schauder estimates.

Proof of Theorem 6.2. This proof can now be carried out exactly like in [Bramanti and Brandolini
2007, Theorem 5.3], exploiting Schauder estimates for functions with small support (Theorem 6.1), the
properties of Holder continuous functions contained in (3-20), (3-21), and (3-24), the properties of cutoff
functions (Lemma 6.3), and the interpolation inequalities contained in Theorem 6.6 and (6-4). O

Proof of Theorem 2.1. We finally come back to our original context, which we are going to recall. We
have a bounded domain €2 where our vector fields and coefficients are defined, and a fixed subdomain
Q' € Q. Fix x € Q" and R such that in B(x, R) C Q all the construction of the previous two subsections
(lifting to B (€, R) and so on) can be performed. Let rg be as in Theorem 6.2. To begin with, we want
to prove Schauder estimates for functions u € C%“(B()E, rp)). By Proposition 3.15 we know that the
function #(x, h) = u(x) belongs to C%“(B(é ,70)), S0 we can apply to & Schauder estimates contained in
Theorem 6.2. Combining this fact with the two estimates in Proposition 3.15 and choosing ¢, s such that

ro>t>s>0 and t—s=ry—t,
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we get, for some exponent @ > 2,

c ~
el c2e e,y = m”M'C?j"(E(E,I))
C ~ o ~
= o= e 1 Fleg oy + 1L B @)

C
< m(lliu e B.ro)) T 1]l Lo (B r0)) s (6-11)

since Fii = @M/) Next, let us choose a family of balls B(x;, rg) in 2 such that

k k
@ c| JB@i.ro/2) c| JB i ro) c Q.

i=1 i=1
Then, by Proposition 3.14(v) and (6-11), with s =ry/2,

k

< <
lll 2 gy = Nutll 2o py, 2y = CZ lotll 2 gy oy
i=1

k
<c ) {I1LullcsBe.ron + Il LB o)
i=1

< c{llfullce() + llullLe@)}
with ¢ also depending on ry. Finally, let us note that the constant ¢ depends on the coefficients a;; through
the norms
llai; ”C%(g(é,Ro))’

which in turn are bounded by the norms

llaijllce Bz, Ro))

(by Proposition 3.15), and hence by ||a;jlce(q) (or more precisely, by [|a;;lce () for some Q" such that
Qe e). O

7. LP? estimates

The logical structure of this section, as well as the general setting, is very similar to that of the previous
one, following as closely as possible the strategy of [Bramanti and Brandolini 2000a]. The basic difference
with the setting of Schauder estimates is the fact that here we start with representation formulas where
the “frozen” point has finally been unfrozen; therefore, singular integrals with variable kernels are now
involved, together with their commutators with VMO functions. This makes the singular integral part of
the theory more involved.

The first step is contained in the following.
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Theorem 7.1. Let B (£, R) be as in the previous section, and p € (1, 00). There exists Ry < R such that,
for every u € Cgo(g(é, Ry)),

||u”S§’”(§(§,RO)) = C{Hsgu”LP(E(é,RO)) + u ”L”(E@,RO))} (7-1)
for some constant ¢ depending on {)? i}?zo’ P, L, and R; the number Ry also depends on the local VMO
moduli n;"i.i’g,yg.

The proof can be carried out exactly like in [Bramanti and Brandolini 2000a, Theorem 3.2], exploiting
the representation formula proved in Theorem 4.21 and the results about singular integrals and commutators
contained in Theorem 5.4.

Next, we have to remove the restriction to compactly supported functions.

Theorem 7.2. Let B (€, R) be as before. There exists ryo < R and, for any r < ry, there exists ¢ > 0 such
that, for any u € S%p(B(E, r)), we have

||u||5)2?,p(§(§’r/2)) = C{IIEEulle(g(g,r)) + ||u||Lp(§(§,r))}-

The constants c, ro depend on {)? i}l.qzo, p, i, R, and n;"ij o o> € also depends on r.

Analogously to what we have seen in Theorem 6.2, the proof of the above theorem relies on interpolation
inequalities for Sobolev norms and the use of cutoff functions. Regarding cutoff functions, we need the
following statement.

Lemma 7.3 (radial cutoff functions). Forany o € (%, 1),y >0and & € B (€, ), there exists ¢ € Cgo([R{N )
with the following properties.

1) Eor &)<p=< EU/,@) with o' = (1 + o) /2 (this means that ¢ = 1 in Ear (&) and it is supported in
By ().

(i) Fori, j=1,...,q,we have

~ c ~ ~ o~
| Xip| < m, [ Xopl, |Xi X o]

The above lemma, very similar to [Bramanti and Brandolini 2000a, Lemma 3.3], is actually contained

S m . (7—2)

in Lemma 6.3, but we prefer to state it explicitly because it is formulated in a slightly different notation,
suitable to our application to L? estimates.

Theorem 7.4 (interpolation inequality for Sobolev norms). Let B (€, R) be as before. For every p € (1, 00),
there exists ¢ > 0 and ri < R such that, for every 0 < e <4rj,u € Cgo(E(é_‘, ry)),

~ c
||Xiu||L1’(§(§,r1)) = 8||HM||LP(§(§J1)) + g||M||Lp(§(g,rl)) (7-3)

foreveryi=1,...,q,where H := 2?21 )?12 —{—?0.

Proof. The proof of this proposition is adapted from [Bramanti and Brandolini 2000a, Theorem 3.6], but
also improves that result, which is stated with a generic constant c(¢) instead of c/e.
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Let 1 be a small number to be fixed later. Like in the proof of Proposition 6.4, we can write, for any
ue CP(B(E, r)) and € € BE ),

Xiu(E) = SHu(£) + Tu(®),

where S and T are constant operators of type 1 and 0O, respectively, over B (€,2r1), provided 2r; < R.
(See the proof of Proposition 6.4 for the explanation of the term “constant operators of type A”.) Since

ITullLr B Ery = clullLe@E -
the result will follow if we prove that
c
ISHullLo & ry = lH Ul LB Ery + L 1ulLrBE - (74
Let k(£€, n) be the kernel of S, and, for any fixed & B (€, 1), let ¢, be a cutoff function (as in Lemma 7.3)

with
ES/Z(S) < Qe < Eg(é)

Let us split SHu(§) as

SHu(S)=/~_ k&, mU — e ()] Hu(n) dn + k&, m)Hu(m)g:(n) dn
BGE.r).pEm>e/2

/g(é,rn),p(é,n)fe
= 1) +1E).
Then

1) = HT (k(&, 1 —%(-)])(n)u(n)dn‘

é(é,rl),p(é,n)>8/2
§/~ {|[1—¢€]HTk(§,-)|+cZ|§,-[l—cpg]-)?jk(s,-)|

B(&,r1),p(E,m)>e/2
+ |k, O HT[1 = @l m)u(n))| }dn

=:A)+B(¢)+C(é).
Recall that, fori, j =1,2,...,q,

c
k&, m)| < dGE o’
~ c
Xlk N = L <
| & . nl =< dE. )0
c
|HTk(S, D] < W’
ARSI

IHT (1 - ) ()] < .
&
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and the derivatives of (1 — ¢.) are supported in the annulus ¢/2 <d(§,n) <e. Since §,n € E(é, r1), we
have d(&, n) < 2r;. Hence, letting k¢ be the integer such that 2k=lg < 2r; < 2%g, we have

ko
C
A < E _— d
el =e k=0 /ZVk—'s<p(§J))§2kg d(&, n)Q+1 )

ko

1 1
<c - u(n)|d
g 2k=lg (£2k-1)0 /p@,msz%' ldn
C
< —-sup =——— lu(n)| dn. (7-3)
& rS4r1 |B(55 r)l E(S,r)

We now have to recall the definition of a local maximal function M in a (metric) locally homogeneous
space (€2, {2,,}, d, du), given in [Bramanti and Zhu 2012]. Fix 2, €2,,+1 (see Section 3C for the notation)
and, for any f € L'(,1), define

1
Moy g, f(x) = sup —— IFO)ldp(y) for x € Q.
2R SO0 = S0P ) Ly 1 OARO

where r, = %sn. Applying this definition to our situation where 4r| =r, = %sn, we get g, = 10r; and,

for £ € B(E, r1), we have B(&, ¢,) C B(E, 11ry). Therefore, by (7-5), we can write

Cc
AG] = - M5 . 5E11ru ),

and, by [Bramanti and Zhu 2012, Theorem 8.3], we have

C C
1AL B@.ryy = ZNellirBEniny = SHullLr @@ )

since u € Cgo(E(é, r1)), provided 11r; < R. Also,

1 1 c
IBE)| SC/ Ll iy < / ()] dn
s<pmze, € d(E, 2 et Joem=e

Cc
<-.
&

C
sup—=—— [ luldn < Mg 5ie )
1B Nl e o MBEr BE )

provided ¢ < 4r;. As before, we have

C
1Bllr @@y = Z1ulLr@E n-

Finally,
1

1 c
) SC/ L ummay < —/ ()| .
e/2<p(emy<e € d(&,1)271 et Joem<e

Therefore, as for the term B(§),

C
Ml @@ ny = Z1lr@érn:
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Let us bound II:
[Hu(n)|

()| < .
| ($)|_Cfp<s,n)<ep(é,n)9‘1 7

Then a computation similar to that of C(£) gives

()] < ceMBE ry 5E 114w E)  and (Il o FE ) < cElull Lo BE r)-
provided & < 4ry. O

Theorem 7.5. Forany u € Sf?’p(g(é, r)), p€ell, 00), 0 <r <ry (where ry is the number in Theorem 7.4),
define the following quantities:

Or= sup ((L—o)r*ID*ull ., fork=0,1,2.
1/2<o <1 "

Then, for any § > 0 (small enough),
P <8Py + gcbo-

Proof. This result follows exactly as in [Bramanti and Brandolini 2000b, Theorem 21], exploiting the
interpolation result for compactly supported functions (Theorem 7.4), cutoff functions (Lemma 7.3), and
Proposition 3.19. U

Proof of Theorem 7.2. This proof is similar to that of theorem [Bramanti and Brandolini 2000b, Theorem 3].
Due to the different context, we include a complete proof for the convenience of the reader.

Pick ro = min(Ry, r1) where Ry and r; are the numbers appearing in Theorems 7.1 and 7.4, respectively.
Forr <rg, letu € S%p(g(é, r)). Let ¢ be a cutoff function as in Lemma 7.3:

BE, or) <@ < B(E,o'r).
By Theorem 7.1, pu € S%%(E(é, r)); then, by density, we can apply Theorem 7.1 to gu:
||§0“||s2,p(§(§,r)) = C{HEB(SDM)”LP(EQJ)) + ”(PMHLP(E(EJ))}-
For 1 <i, j <gq, from the above inequality we get
~ ~ ~ 1 ~ 1
1Xi X jull Lo, < ctlifullrg, )+ m”DM”LP(EJ,r) + m||u||u(§a,r)}-
Multiplying both sides by (1 —)%r?, we get
=0’ | Xi X ju ll 1o 5, < A1 —=0) 2P| Full 1oz, + (A —0)r(1Dull o, )+ Il 1o, )} (7-6)
Next, we compute (1 — a)zrzllfoullu,(gw):

q
(=) Xoull Lo,y = (1= 0?1 Fu— Y @ X X jull 1oz,
i,j=1

<c(1= o) r*(1%ull o g, + 1 X X jull oz, )- (7-7)
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Combining (7-6) and (7-7), we have
(=) 2| D%ull 1oz, <l — )| Zull 5, + (A — o)l Dull oz, ) + el o5, )} (7-8)

Adding (1 — o)r||5u||L,,(§m) to both sides of (7-8),

(1= o)r|Dull oz, + (1 — )| D?ull oz,
<ol =0V’ Lull 5, + (L= o)r|Dull o,y + 1l oz, )} (7-9)

which, by Theorem 7.5, is
~ c
= ol = o1 Ful o g,y + P2+ 5 P0) + el o ) )-
Choosing § small enough, we have

D+ Dy < c{r?|1%ull o) + 1l o)

Then
PIDull o By + DU o 562y < PPN E0N o 56y + 1l Lo B 6y
hence
el 2 6.0 2 < NN Loy + Nl e
which is the desired result. ]

Proof of Theorem 2.2. This follows from Theorem 7.2 in a way which is analogous to that followed in
Section 6 to prove Schauder estimates. Namely, fix X € Q' € Q and R such that in B(x, R) C Q all the
construction of the previous two subsections (lifting to B (€, R) and so on) can be performed. Let rg < R
as in Theorem 7.2, and let u € S)Zf’p(B()E, ro)). By Theorem 3.20 we know that the function u(x, h) = u(x)
belongs to S)2~(’p (B(&, rg)), so we can apply to i the L estimates contained in Theorem 7.2. Combining
this fact with the two estimates in Theorem 3.20, we get

lull 2. g sr 29y = €l ||S§°‘(§(§,ro/2>)
< Uil Lo BEroyy + 18l Lo B E 1))
< c(l&ullLeB.re) + NullLrBG.r))>

since Fif = (%u). Next, let us choose a family of balls B(x;, rg) in 2 such that

k k

Q' c | JB(xi. doro/2) € | JB(xi. ro) C Q.
i=1 i=1
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Therefore, .
il g2y < 002G orosn = D2 1080522 (8, suros
' i=1
< ¢ ALl Loy + 1l Loaeon)
i=1
< c{llFullLr@) + llullLr @)}
with ¢ also depending on ry. Il
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STRICHARTZ ESTIMATES FOR SCHRODINGER EQUATIONS
WITH VARIABLE COEFFICIENTS AND UNBOUNDED POTENTIALS

HARUYA MIZUTANI

This paper is concerned with Schrédinger equations with variable coefficients and unbounded electro-
magnetic potentials, where the kinetic energy part is a long-range perturbation of the flat Laplacian and
the electric (respectively magnetic) potential can grow subquadratically (respectively sublinearly) at
spatial infinity. We prove sharp (local-in-time) Strichartz estimates, outside a large compact ball centered
at the origin, for any admissible pair including the endpoint. Under the nontrapping condition on the
Hamilton flow generated by the kinetic energy, global-in-space estimates are also studied. Finally, under
the nontrapping condition, we prove Strichartz estimates with an arbitrarily small derivative loss without
asymptotic flatness on the coefficients.

1. Introduction

We study sharp (local-in-time) Strichartz estimates for Schrodinger equations with variable coefficients
and unbounded electromagnetic potentials. More precisely, we consider the Schrodinger operator

d
H= % ;l(—iaj - Aj(x))gjk(x)(—iak —Ar(xX)+V(&x), xe€ RY,
]’ =

where d > 1 is the spatial dimension. Throughout the paper we assume that g/, V, and A j are smooth
real-valued functions on R and that (g/* (x)) j.k 1s symmetric and positive definite:

d
> drwEE =g xEeR,

k=1
with some ¢ > 0. Moreover, we suppose the following condition holds.
Assumption 1.1. There exists 4 > 0 such that for any o € 7%,
185 (7" (x) = 81| = Co(x) 714,
|07 Aj ()] < Co(x) ' 7171,
199V (x)| < Colx)> 71 x eRY.
Then it is well known that H admits a unique self-adjoint realization on L2(R?), which we denote by the
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same symbol H. By Stone’s theorem, H generates a unique unitary propagator e "' on L?(R%) such
that u(t) = e~"H ¢ is the solution to the Schrédinger equation

io;u(t)=Hu(t), teR,
uli—o = ¢ € L*(R?).

In order to explain the purpose of the paper, we recall some known results. Let us first recall well-known
properties of the free propagator e ~//0, where Hy = —A /2. The distribution kernel of e~/ is given
explicitly by (2mit)~/2e!¥=y 1/ 2D and e~""Hog thus satisfies the dispersive estimate

—itHy

le 0|l oo ey < CltI™ 2@l L1@ay, ¢ #0.

Moreover, e~"10 enjoys the (global-in-time) Strichartz estimates

—itH,
le™ @l Lo aey < Cll@ll 2mays

where (p, q) satisfies the admissible condition

2 1 1
p=>2, ;zd(z—g), (d, p.q) # (2,2, 00). (1-1)

Strichartz estimates imply that, for any ¢ € L%, e "oy ¢ Nyeo, L7 forae. t € R, where Q1 = [2, o0],
0>=12,00) and Q4 =[2,2d/(d — 2)] for d > 3. These estimates can therefore be regarded as L”-type
smoothing properties of Schrodinger equations, and have been widely used in the study of nonlinear
Schrodinger equations; see, for example, [Cazenave 2003]. Strichartz estimates for e~/'0 were first
proved in [Strichartz 1977] for a restricted pair of (p, g) with p = g = 2(d + 2)/d, and have been
generalized for (p, ¢g) satisfying (1-1) and p # 2 in [Ginibre and Velo 1985]. The endpoint estimate
(p,q) =2,2d/(d — 2)) for d > 3 was obtained in [Keel and Tao 1998].

For Schrodinger operators with electromagnetic potentials, that is, H = (1/2)(—idx — A)?> + V, (short-
time) dispersive and (local-in-time) Strichartz estimates have been extended with potentials decaying at
infinity [Yajima 1987] or growing at infinity [Fujiwara 1980; Yajima 1991]. In particular, it was shown in
the last two references that if gj k=g jk» V and A satisfy Assumption 1.1 with u > 0, and all derivatives

—itH

of the magnetic field B = dA of short-range type, then e @ satisfies (short-time) dispersive estimate

—itH —d/2
le™ " gll Loy < ClEI™ 2l 1oy
for sufficiently small ¢ # 0. Local-in-time Strichartz estimates, which have the form

_itH
le™ " ol ot 11 Le@ey < Crll@ll 2wy, T >0,

are immediate consequences of this estimate and the T T*-argument in [Ginibre and Velo 1985] (see [Keel
and Tao 1998] for the endpoint estimate). For the case with singular electric potentials or with supercritical
electromagnetic potentials, we refer to [Yajima 1987; 1998; Yajima and Zhang 2004; D’ Ancona and
Fanelli 2009]. We mention that global-in-time dispersive and Strichartz estimates for scattering states
have also been studied under suitable decaying conditions on potentials and assumptions for zero energy;
see [Journé et al. 1991; Yajima 2005; Schlag 2007; Erdogan et al. 2009; D’ Ancona et al. 2010]. We also
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mention that there is no result on sharp global-in-time dispersive estimates for magnetic Schrodinger
equations.

On the other hand, the influence of the geometry on the behavior of solutions to linear and nonlinear
partial differential equations has been extensively studied. From this geometric viewpoint, sharp local-
in-time Strichartz estimates for Schrddinger equations with variable coefficients (or, more generally, on
manifolds) have recently been investigated by many authors under several conditions on the geometry;
see, for example, [Staffilani and Tataru 2002; Burq et al. 2004; Robbiano and Zuily 2005; Hassell et al.
2006; Bouclet and Tzvetkov 2007; Bouclet 2011b; Burq et al. 2010; Mizutani 2012]. In [Staffilani and
Tataru 2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007], the authors studied the case on the
Euclidean space with nontrapping asymptotically flat metrics. The case on the nontrapping asymptotically
conic manifold was studied in [Hassell et al. 2006; Mizutani 2012]. Bouclet [2011b] considered the
case of a nontrapping asymptotically hyperbolic manifold. For the trapping case, it was shown in [Burq
et al. 2004] that Strichartz estimates with a loss of derivative 1/p hold on any compact manifold without
boundaries. They also proved that the loss 1/p is optimal in the case of M = S?. In [Bouclet and
Tzvetkov 2007; Bouclet 2011b; Mizutani 2012], the authors proved sharp Strichartz estimates, outside
a large compact set, without the nontrapping condition. It was shown in [Burq et al. 2010] that sharp
Strichartz estimates still hold for the case with hyperbolic trapped trajectories of sufficiently small fractal
dimension. We mention that there are also several works on global-in-time Strichartz estimates in the
case of long-range perturbations of the flat Laplacian on R¢ [Bouclet and Tzvetkov 2008; Tataru 2008;
Marzuola et al. 2008].

While (local-in-time) Strichartz estimates are well studied for these two cases (at least under the
nontrapping condition), the literature is sparser for the mixed case. In this paper we give a unified
approach to a combination of these two kinds of results. More precisely, under Assumption 1.1 with
u > 0, we prove

(1) sharp local-in-time Strichartz estimates, outside a large compact set centered at the origin, without
the nontrapping condition, and

(2) global-in-space estimates with the nontrapping condition.

Under the nontrapping condition and Assumption 1.1 with u > 0, we also show local-in-time Strichartz
estimates with an arbitrarily small derivative loss. We mention that all results include the endpoint
estimates (p, q) = (2,2d/(d —2)) for d > 3. This is a natural continuation of the author’s previous work
[Mizutani 2013], which was concerned with the nonendpoint estimates for the case with at most linearly
growing potentials.

In the sequel, F (x) denotes the characteristic function designated by (). We now state the main result.

Theorem 1.2 (Strichartz estimates near infinity). Suppose that H satisfies Assumption 1.1 with u > 0.
Then there exists Ry > 0 such that forany T >0, p>2,qg <00,2/p=d(1/2—1/q), and R > Ry, we
have

IF(1x] > Rye™ " @l o1 71, Loy < Crlloll 2oy (1-2)

where Ct > 0 may be taken uniformly with respect to R.
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To state the result on global-in-space estimates, we recall the nontrapping condition. We denote by

d
k(x, &) =5 Y g* gk,
jik=1

N —

the classical kinetic energy, and by (yo(t, x, &), no(t, x, £)) the Hamilton flow generated by k(x, £):

Yo(t) = 0k (yo(2), no(1)),  7o(1) = —dxk(yo(2), no(1)),  (¥o(0), no(0)) = (x, §).

The Hamiltonian vector field Hy = d¢k - 0y — 0yk - d¢ generated by k is complete on R4 since (gjk)
satisfies the uniform elliptic condition. Hence (yo(¢, x, &), no(¢, x, §)) exists for all r € R.

Definition 1.3. We say that k(x, £) satisfies the nontrapping condition if, for any (x, £) € R?? with & # 0,
lyo(t, x, )| = +o00 ast — Foo. (1-3)

To control the asymptotic behavior of the flow, we also impose the following condition, which is the
classical analogue of Mourre’s inequality.

Assumption 1.4 (convexity near infinity). There exists f € C*°(R?) satisfying f > 1 and f — 400 as
|x| = 400 such that 3% f € L®(R?) for any |«| > 2 and

Hi(Hy f)(x,8) > ck(x, &)

on {(x,&) e R¥ : f(x) = R} for some positive constants c, R > 0.

Note that if |8, g/* (x)| = o(|x|™") as |x| = 400, Assumption 1.4 holds with f(x) =14 |x|?. In partic-
ular, Assumption 1.1 with 4 > 0 implies Assumption 1.4. Moreover, if g/ k(x) = (14 a; sin(az logr))d i
for a; € R,a, > 0 with a%(l + a%) < 1 and for r = |x| > 1, then Assumption 1.4 holds with
f(r)= (for(l + ay sin(a; log 1))~ dr)?. For more examples, we refer to [Doi 2005, Section 2].

Theorem 1.5 (global-in-space Strichartz estimates). Suppose that H satisfies Assumption 1.1 with > 0.
LetT >0,p>2,qg <oo,and2/p =d(1/2—1/q). Then, for any r > 0, there exists Ct , > 0 such that

1E(x] < e pllLogr,ry0mey < CrrICH) P 0l 2 g0 (1-4)
If we assume in addition that k(x, £) satisfies the nontrapping condition (1-3) and Assumption 1.4,
IF(x] < re ol o177 0y < Crorl @l 2m0)- (1-5)
In particular, combining with Theorem 1.2, we have the (global-in-space) Strichartz estimates
le™ @l Lo—r.71 Lawey) < Crll@l 2wy,
under the nontrapping condition (1-3), provided that i > 0.

For the general case we have the following partial result.
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Theorem 1.6 (near sharp estimates without asymptotic flatness). Suppose H satisfies Assumption 1.1
with u > 0 and k(x, £) satisfies the nontrapping condition (1-3). Assume also Assumption 1.4. Let T > 0,
p>=2,q<oo,and?2/p=d(1/2—1/q). Then, for any ¢ > 0, there exists Ct ¢ > 0 such that

le™" @l Lo (—7.77: Laweyy < Cr.el{H) @l L2(Ra)-

Remark 1.7. (1) The estimates of forms (1-2), (1-4), and (1-5) have been proved [Staffilani and Tataru
2002; Bouclet and Tzvetkov 2007] when A =0 and V is of long-range type. Theorems 1.2 and 1.5 are
therefore regarded as generalizations of their results for the case with growing electromagnetic potential
perturbations.

(2) The only restriction for admissible pairs, in comparison to the flat case, is to exclude (p, g) = (4, 00)
for d = 1, which is due to the use of the Littlewood—Paley decomposition.

(3) The missing derivative loss (H)® in Theorem 1.6 is due to the use of the following local smoothing
effect, due to [Doi 2005]:

1)~ 275DV e g o p 1y 2y < Crell@l 2wy

It is well known that this estimate does not hold when ¢ = 0 even for H = Hy. We would expect that
Theorem 1.2 still holds true for the case with critical electromagnetic potentials in the following sense:

()% A ()] 4 (x) 2%V (x)| < Caplx) ™1,

(at least if g/* satisfies the bounds in Assumption 1.1 with & > 0). However, this is beyond our techniques
(see also Remark 4.2).

The rest of the paper is devoted to the proofs of Theorems 1.2, 1.5, and 1.6. Throughout the paper we
use the following notations. (x) stands for /1 + |x|2. We write L9 = L4 (R?) if there is no confusion. For
Banach spaces X and Y, we denote by || - || y_, y the operator norm from X to Y. We write Z, = NU {0}
and denote the set of multi-indices by Zi. We denote by K the kinetic energy part of H and by Hj the
free Schrodinger operator:

d d
% > 0;g/ (). Ho=—-3A= %Z
Jk=1 iz

We define the symbols p(x, &) and p(x, §) by

d

> g — Aj (@) E — Arx) + V (x),

Jk=1

p(x,§) =

N —

d " (1-6)
; d0A
P8 =—% by (—(x)(sk — A(x)) - f"(x)ﬁ(x)).

Jk=1 J



1862 HARUYA MIZUTANI

Assumption 1.1 implies
1099 p(x, £)] < Captx)™(&) P11 2 + <x>2—“)
189f p1(x, £)] < Cap(x) ™) 1P ((x) 1718 | + (x) ).

For h € (0, 1] we consider H" := h?>H as a semiclassical Schrodinger operator with /-dependent
electromagnetic potentials 42V and hA j- The corresponding symbols p, and p; j are also defined by

1-7)

d
pr(x, &) =5 > &/ )& —hA; () E — hAx) + RV (%),
Jk=1

d

Jk dA
pra(x. §) = Z (g—<x><sk — hA(x)) — hgfk<x>87’_‘(x>>.
J

N —

(1-8)

It is easy to see that H = Op(p) + Op(p1) and H" = Op,,(pn) + 1 Op;,(p1.1).

Before starting the details of the proofs, we describe the main ideas. First we note that, since our
Hamiltonian H is not bounded below, the Littlewood—Paley decomposition associated with H seems to
be false for p # 2 in general. To overcome this difficulty, we consider the following partition of unity on

the phase space R%¢:
Ve(x,8) + xe(x,6) =1,

where V. is supported in {(x, &) : (x) < ¢|&|} for some sufficiently small constant ¢ > 0. It is easy to see
that the symbol p(x, &) is elliptic on supp ¥,:

e < px, £) <CIE®,  (x,€) € supp e,

and we can therefore prove a Littlewood-Paley type decomposition of the form

1/2
I0p(Weull o < Cylluel 2 +Cq( 3 ||0ph(ah>f<h2H)u||iq) ,
hj:zz()_j
where 2 < g < oo, the sequence {f(h2 Nih=27, j = 0} is a 4-adic partition of unity on [1, 00), ay, is
an appropriate #-dependent symbol supported in {|x| < 1/h, |&| € I} for some open interval I € (0, c0),
and Op(¥¢), Op,,(ay) denote the corresponding pseudodifferential and semiclassical pseudodifferential
operators, respectively.

Then the idea of the proof of Theorem 1.2 is as follows. In view of the above Littlewood—Paley estimate,
the proof is reduced to proving Strichartz estimates for F(|x| > R) Op, (an)e """ and Op(x.)e '#. In
order to prove Strichartz estimates for F(|x| > R) Op,, (ap)e "M we use semiclassical approximations
of Isozaki—Kitada type. However, we note that, because of the unboundedness of potentials with respect
to x, it is difficult to directly construct such approximations. To overcome this difficulty, we introduce
a modified Hamiltonian H [Yajima and Zhang 2004] so that H = H for x| < L/h and H =K for
|x| >2L/h for some constant L > 1. Then H H" = h2H can be regarded as a “long-range perturbation” of

the semiclassical free Schrodinger operator H/* = h? Hy. We also introduce the corresponding modified
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symbol py(x, &) so that p(x, &) = pi(x, &) for |x| < L/h and pp(x, &) =k(x, &) for |[x| >2L/h. Let
aff be supported in outgoing and incoming regions {R < |x| < 1/h, |§| €I, +X E>1 /2}, respectively,
so that F(|x| > R)a, = a;[ +a, , where X = x/|x|. Rescaling ¢ — th, we first construct the semiclassical
approximations for e~/ "/ Op,, (aff)* of the forms

e Op, (@)t = J,(SE, biE)e 0 g (SE ) + O(Y),  0< <kt <1/h,

respectively, where Sff solves the eikonal equation associated to p; and Jh(Sff, bff) and Jh(Si, c,jf) are
the associated semiclassical Fourier integral operators (FIOs). The method of the construction is similar
to that of [Robert 1994]. On the other hand, we will see that if L > 1 is large enough, the Hamilton flow
generated by pj, with initial conditions in supp aff cannot escape from {|x| < L/h} for 0 < £t < 1/h,
respectively, that is,

nx(exptHI;h(suppaf))C{lxlSL/h}, O0<+r<1/h.
Since pj, = pj, for |x| < L/h, we have
exptHﬁh(suppa,ic)=expthh(suppaf), O<£t<1/h.

We can thus expect (at least formally) that the corresponding two quantum evolutions are approximately
equivalent modulo some smoothing operator. We will prove the following rigorous justification of this
formal consideration:

(e H"1h — =it /My Op, (@), < Cyh™, 0<%t <1/h, M >0,

where H" =h? H. By using such approximations for e =¥ "/h Op,, (af)*, we prove local-in-time dispersive
estimates for Op,, (aff)e_”H Op, (aff)*:

10p,, (@;e ™™ Op, (a5 Il,1_ ;o <CltI™2, 0<h <1, 0<t] <.

Strichartz estimates follow from these estimates and the abstract theorem due to Keel and Tao [1998].
Strichartz estimates for Op(x.)e~""* follow from the short-time dispersive estimate

10p(xe)e™ ™ Op(xe) Nl poe < Celt ™2, 0 <] <1 < 1.
To prove this, we first construct an approximation for e =" Op(x,)* of the form
e Op(xe)* = J (W, @) + Oy (1), 1] <te y > d/2,

where the phase function ¥ = W (z, x, £) is a solution to the time-dependent Hamilton—Jacobi equation
associated to p(x, &) and J (W, a) is the corresponding Fourier integral operator. In the construction, the
fact that

0997 p(x, £)] < Cup.  (x.8) € sUPP e, o+ B = 2,

plays an important role. We note that if (g/*) jk —1dg # 0 depends on x, these bounds do not hold without
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such a restriction of the support. Using these bounds, we construct the phase function W (¢, x, &) such that
10208 (W (1, x, &) —x - & + p(x, )| < Caplt[*(x)71*F7.

Then we can follow a classical argument [Kitada and Kumano-go 1981] and construct the FIO J (W, a).
By the composition formula, Op(x.)J (¥, a) is also an FIO and dispersive estimates for this operator
follow from the standard stationary phase method. Finally, using an Egorov-type lemma, we prove that
the remainder, Op(x;)(e """ Op(x.)* — J (¥, a)), has a smooth kernel for sufficiently small 7.

The proof of Theorem 1.5 is based on a standard idea [Staffilani and Tataru 2002]; see also [Burq et al.
2004; Bouclet and Tzvetkov 2007]. Strichartz estimates with loss of derivatives (H)!/??) follow from
semiclassical Strichartz estimates up to time scales of order /, which can be verified by the standard
argument. Moreover, under the nontrapping condition, we will prove that the missing 1/p derivative loss
can be recovered by using local smoothing effects [Doi 2005].

The proof of Theorem 1.6 is based on a slight modification of that of Theorem 1.5. By virtue of the
—itH

Strichartz estimates for Op(x.)e and the Littlewood—Paley decomposition, it suffices to show

10p, @n)e™ ol o1 7y.00) < Crh Cllgll2, O<h <K 1.

To prove this estimate, we first prove semiclassical Strichartz estimates for e ~*/# Op, (a;)* up to time
scales of order & R, where R = inf |7, (supp a;)|. The proof is based on a refinement of the standard WKB
approximation for the semiclassical propagator e~/ "/h Op,,(ap)*. Combining semiclassical Strichartz
estimates with a partition of unity argument with respect to x, we will obtain the following Strichartz
estimate with an inhomogeneous error term:

10, (an)e ™ @l Lo 1.7y 10y < Crll@ll 2 + Cllix) />R~ Opyan)e ™ M oIl 1217112

for any ¢ > 0, which, combined with local smoothing effects, implies Theorem 1.6.

The paper is organized as follows. In Section 2 We record some known results on the semiclassical
pseudodifferential calculus and prove the above Littlewood—Paley decomposition. Using dispersive
estimates, which will be studied in Sections 4 and 5, we prove Theorem 1.2 in Section 3. We construct
approximations of Isozaki—Kitada type and prove dispersive estimates for Op, (a,f)e*” " op, (a,:f)* in
Section 4. In Section 5 we discuss the dispersive estimates for Op( xe)e HH Op(x.)*. The proofs of
Theorems 1.5 and 1.6 are given in Sections 6 and 7, respectively.

2. Semiclassical functional calculus

Throughout this section we assume Assumption 1.1 with p > 0, that is,
105 g7 ()| + (x) MO A ()| 4 (x) 2105V ()] < Cap(x) 7. (2-1)

The goal of this section is to prove a Littlewood—Paley type decomposition under a suitable restriction on
the initial data. First we record (without proof) some known results on the pseudodifferential calculus
which will be used throughout the paper. We refer to [Robert 1987; Martinez 2002] for the details of the
proof.
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Pseudodifferential calculus. For the metric g = dx?/(x)? + d£%/(£)? and a weight function m(x, £) on
the phase space R>¢, we use Hormander’s symbol class notation S(m, g), that is, a € S(m, g) if and only
if a € C*(R*?) and

0990 ax, £)] < Capm(x, )() ), o, pezl.

To a symbol a € C*®(R*) and h € (0, 1], we associate the semiclassical pseudodifferential operator
(h-PDO for short) Op,,(a) defined by

1

Op; (@) () = G5

[ riag e rmayds. resw

When & = 1 we write Op(a) = Op,,(a) for simplicity. The Calderén—Vaillancourt theorem shows that for
any symbol a € C*®(R??) satisfying |B§j‘8§3 a(x, )| < Cyp, Opy,(a) is extended to a bounded operator on
L?(R?) uniformly with respect to i € (0, 1]. Moreover, for any symbol a satisfying

8990 a(x, §)| < Capl)™". v >d,
Op,, (a) is extended to a bounded operator from L4 (R?) to L™ (RY) with the bounds

1Op, (@)l g pr < Cgrh™@Ma7VD 1 1 < g < <00, (2-2)

where Cy- > 0 is independent of 4 € (0, 1]. These bounds follow from the Schur lemma and an
interpolation; see, for example, [Bouclet and Tzvetkov 2007, Proposition 2.4].

For two symbols a € S(my, g) and b € S(m;, g), the composition Op, (a) Op,,(b) is also an A-PDO
and is written in the form Op, (c¢) = Op,,(a) Op, (b) with a symbol ¢ € S(mm3, g) given by c(x, §) =

"Dz (x, n)b(z, &)|z=x,y=¢. Moreover, c(x, &) has the expansion

N-1
hlel . N e
c=Y Waga.a§b+thN with ry € S(x) ™M E) Vmima, g). (2-3)
la|=0 ’

ihD,D

The symbol of the adjoint Op,(a)* is given by a*(x, &) =e 2a(z, n)|;=x,y=¢ € S(my, g) which has

the expansion

N—1
hle! . SN e
a* = Z ilala!aga;‘aJrth;*‘v with 7} € S((x) ™V (&) "V my, g). (2-4)
lee|=0

Littlewood—-Paley decomposition. As we mentioned in the outline of the paper, H is not bounded below
in general and hence we cannot expect that the Littlewood—Paley decomposition associated with H, which
is of the form

00 . 5, \!/2

lull o < Cqllull2+Cq (Z ||f(22’H)u||Lq> ,

j=0
to hold if ¢ # 2. The standard Littlewood—Paley decomposition associated with Hy also does not work
well in our case, since the commutator of H with the Littlewood—Paley projection f(272/ Hy) can grow
at spatial infinity. To overcome this difficulty, let us introduce an additional localization as follows. Given
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a parameter ¢ > 0 and a cut-off function ¢ € C3°(R) such that ¢ =1 on [0, 1/2] and supp ¢ C [0, 1],
we define ¥, (x, &) by

vt 6) = (1),

It is easy to see that, for each ¢ > 0, ¥, € S(1, g) and is supported in {(x, §) € R : (x) < e|&|}. Moreover,
for sufficiently small ¢ > 0, p(x, &) is uniformly elliptic on the support of ¥, and thus Op(y;)H is
essentially bounded below.

In this subsection we prove a Littlewood-Paley type decomposition on the range of Op(v/.). We begin
with the following proposition which tells us that, for any f € Cg°(R) and & € (0, 1], Op(¢,) f (h*H) is
well approximated in terms of the #-PDO.

Proposition 2.1. There exists & > 0 such that, for any f € C5°(R) with supp f € (0, 00), we can construct
bounded families {ap, j}he©,1) C (pr=0 SUx) /(&)™ &), j > 0, such that:

(1) apo is given explicitly by ap o(x,§) = Ve (x,&/h) f(pr(x, &)). Moreover,
suppay, j C supp Ve (-~ /h) Nsupp f(pr) € {(x.§) €R* : (x) < 1/h, |E| € 1},
for some relatively compact open interval I € (0, 00). In particular, we have
10ps, (@n )l g < Clggh ™IV D 1 <¢' <g < o0,
uniformly in h € (0, 1].
(2) For any integer N > d + 2, we set ap, = Z?’;OI h-"ah,j. Then
I0p(We) f (W*H) = Opy(an)ll 2o, 14 < Cqnh®, 2 =g <00,
uniformly in h € (0, 1].
The following is an immediate consequence of this proposition.

Corollary 2.2. Forany2 <q <ooandh € (0, 1], Op(tﬁg)f(th) is bounded from L2®Y) 10 LI(RY)
and satisfies
10p(e) f (B*HD) | 2, g < Cqh™ /271,

where Cy > 0 is independent of h € (0, 1].
For the low energy part we have the following.

Lemma 2.3. For any fy € Ci°(R) and 2 < g < 0o, we have

10p(We) fo(H) 120 1o < Cy-

Remark 2.4. If V, A =0, then Proposition 2.1, Corollary 2.2, and Lemma 2.3 hold without the additional
term Op(¥.). Moreover, in this case we see that the remainder satisfies

1Lf (h2H) = Op, (an)ll o, 1o < Cqnh™=40/2714)
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We refer to [Burq et al. 2004] (for the case on compact manifolds without boundary) and to [Bouclet and
Tzvetkov 2007] (for the case with metric perturbations on R?). For more general cases with Laplace—
Beltrami operators on noncompact manifolds with ends, we refer to [Bouclet 2010; 2011a]. Because of
this result, we believe Proposition 2.1 is far from sharp. However, the bounds

IOp(We) f(h*H) — Op,(an)ll 2y 1o < Canh, 2<q < o0,

are sufficient to obtain our Littlewood—Paley type decomposition (Proposition 2.5). For more details, we
refer to Burq, Gérard, and Tvzetkov [2004, Corollary 2.3].

Proof of Proposition 2.1. We write
Op(¥e) = Op;,(Yeyn),  h e (0, 1],
where Ve, (x, §) = Ve (x, £/ h) satisfies supp We/s C {h(x) < ¢|€|} and
1029, We/n(x. £)] < Capeh ™) 791/ )TV < Cope (x) 7 (4181 1P (2-5)

By using the Helffer—Sjostrand formula [1989], we get

1 af _ _
Op;, (Yeyn)f (B H) = —5— | —=(2) Opy(Yre/n)(h*H = 2)~' dz A,
Tl C aZ
where f(z) is an almost analytic extension of f(1). Since f € Coo(R), £ (2) is also compactly supported
and satisfies

3:f(z) = 0(|IImz|™)

for any M > 0. We may assume |z| < C on supp f with some C > 0. In order to use this formula, we
shall construct a semiclassical approximation of Opj, (¥, p)(W*H — z)~!, in terms of the 2-PDO, for
z € C\ [0, co) with |z] < C. Although the method is based on the standard semiclassical parametrix
construction (see, for example, [Robert 1987; Burq et al. 2004]), we give the details of the proof, since
Y/ 18 not uniformly bounded in S(1, g) with respect to 2 € (0, 1].

We first study the symbol of the resolvent (h*H — )7, Let pr and p;; be as in (1-8) so that
h*H = Op,, (pn) +h Op;,(p1.s). Since

hAM)| SIEL RIV)] S 6P,
on supp ¥/, we obtain by (1-7) that
100 pn(x, £)] < Caplx) NP1 if B < 2, (2-6)
10292 prn(x, £)] < Cop(x) 1 7g WL if 8] < 1, @7

uniformly in (x, &) € supp ¥, and h € (0, 1]. Moreover, if ¢ > 0 is sufficiently small, the uniform
ellipticity of k implies that pj, is also uniformly elliptic on supp ¥/ p:

C21E17 < pa(x, ) < CHIEP if hix) < elé],



1868 HARUYA MIZUTANI

with some C; > 0, which particularly implies
L {umzrl if |¢] < 20,
Ipn(x, )=zl ~ (5)72 if1§]=2C,
for (x, &) € supp ¥¢/n, 2 ¢ R, and |z| < C, with some C, > 0.

Let us now consider a sequence of symbols q? = q? (z, x, &) (depending holomorphically on z ¢ R)
defined inductively by

(2-8)

Ye/n
g0 =—"",

Ph—Z
q{’:— — (Zl_lagck) 8aPh+Q0 plh)

Ph =1
1 1 n i_ .
q;':_p —z( > agq,i Wpnt D, ol as‘lk 3?P1,h>, j=2

h o +k=j o k=j—1
le|>1

We then learn by (2-5), (2-6), and (2-8) that

wab h ()T 4 £ TBIm z| Tl HAL i |E] < 20,
a a ’ ’ SC(X & .
199 do 2, %, )] = Cap {<x>—'“'<s>—'ﬂ'—2 if &) > 20,

< Cope ()71 (h + £ 7IP!Im |~ et (2-9)

for z ¢ R with |z] < C and h € (0, 1]. Similarly, by using (2-6), (2-7), and (2-9), we obtain that if
hl&| <2Cs,

107841 (2, %, )
< Cape ()7 + 1807 P1g itm 2774l ) =171 G 4 g ) Bl (1) m 27271
< Cape(h+[ED>(x) ™' 1 (h+ &)~ Im g 31 4A,

for z ¢ R with |z| < C and & € (0, 1]. Here note that, in this case, (h + |£])~! may have a singularity at
& =0 as h — +0. In order to prove the remainder estimate, we will remove this singularity by using a
rescaling & — h& (see the estimates (2-12)). For h|&| > 2C», q{‘ does not have such a singularity and
satisfies

1099 g (2. x. £)] < Cape (x) 7 7191(E) P14 ] < Cupe (x) 1) P13
uniformly in z ¢ R with |z] < C and & € (0, 1]. Since 1 < h+ |&] if k€| 2 1, summarizing these, we get
1099 g1 (2. x. £)] < Cape(x) I +1E) T PlImz| A 2 ¢ R, 2] <C. he (0,11,
The estimates (2-9) and a direct computation also show that q{’ is of the form
at =41 (P =) +aio(pr—2) 77,
where q{’k are supported in supp ¥, are independent of z, and satisfy

1899 g1 (x, )] < Cape ) I + 16D TP EYM D, he (0,11,
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with some positive integer Nj(k) > 0. For j > 2, an induction argument yields that
10202 ¢ (2. %, )| < Cape(x) 71+ |£)> 7P Im g 72 =1L >0, (2-10)
forz ¢ Rwith [zl <C and h € (0, 1]. It also follows from an induction on j that there exists a sequence
of z-independent symbols (q;’k),jcz0 supported in supp ./, and satisfying
1959 ¢ (x. §)] < Cape ()™ 415 D)) M0 (2-11)
with some N (k) > 0, such that q;? is of the form

J
¢ = dlpn— 2.
k=0

Rescaling & — h&, we learn by (2-9) and (2-10) that

gz x, he) € S(1, ). hiq!(z, x, he) € S(h*(x) 77 (€)*7, g),

with uniform bounds in / and polynomially bounds in [Imz|~!. Then, by the construction of q?’, the
standard symbolic calculus (not in the semiclassical regime), and the fact that

Op(h'q" (z, x, h&)) = h’ Op, (g},

we obtain
N—1

Op(ye) = Y h’/ Op,(¢})(hW*H —2) + h* Op(run.). N =1,
j=0

with some 7, v, € S((x) "V (£)27V, ¢) satisfying
1020 1 .2 (x, 8)] < Capen (x) "N 71 (£)2 N 71BN |1y 7| 72N =1 lert A, (2-12)

where Cpgeny > 0 may be taken uniformly in 2 € (0, 1], z€ C\R with [z] < C and x, § € R4,
We now use the Helffer—Sjostrand formula to obtain

N-1

Op(ye) f(W*H) =Y 1/ Op,(ay ;) + h*R(h, N),
j=0

ano(x,8) =Ye/n(x,8)(f opp)(x,§),

where

DM G+ .
an (6. §) = ) STt O o pp(x ), 1= j =N -1,
k=0

1

af ) 1 _
7 @a—Z(Z)OPh(rh,N,z)(h H—z)"dzndz.

R(h,N)=—

Since supp g jx C supp ¥e/n C {h{x) < €|&|} and pj, is uniformly elliptic (that is, p; ~ |€|%) on the latter
region, taking ¢ > 0 smaller if necessary, we have

an,; C supp Ye/n Nsupp f(p) C {(x, &) : x| < 1/h, Cy' <[] < Co}
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with some positive constant Cy > 0, which, combined with (2-11), implies that {ay, ;}xe (0,17 is bounded in

N S((x)7/ (&)™ g), since h +|&| > (£) on supp Ve n Nsupp f(pr). By virtue of (2-2), we also obtain
M>0

10p, @n Dl 1y o < Ciagrh™ M7 7VD, he (0,11, 1<q' <g <o0.
Finally, we prove the estimate on the remainder R(/, N). If we choose N > d + 2, then (2-12) and
(2-2) (with h = 1) imply
10PNl 2, 10 < Cqn [Imz] NP, 2 < g < o0,

with some positive integer n(N, g) > 2N + 1, where Cyn > 0 is independent of i. Using the bounds
I(h*H —2) iz 2 < [Imz| 7, 185 £ (2)| < Car[Im z|™ for any M > 0 and the fact that f is compactly
supported, we conclude that

IR(h, Nl 2210 < Cu / NIz |Opru N Dl 2 po I H —2) 7l 2y 12 dz AdZ
supp f

SCMNq/ Im M NVD=1 gz A gz
supp f

=< CM Ng>
provided that M is large enough. This completes the proof. ([

Proof of Lemma 2.3. By the same argument as above with & = 1, we can see that

N-1

Op(¥:) fo(H) = ) Op(a,) + R(N)

j=0
where a; € (/50 S((x)~/ ()™M g) are supported in
supp ¥, Nsupp fo(p) C {(x, &) e R* : (x) < elg], |£] S 1}

and R(N) satisfies
IR(h, N)|lp2s s < Cng, 2 =g <00,

if N > d + 2. The assertion then follows from (2-2). O

Consider a 4-adic partition of unity

o+ fPR =1, reR,
h

where fo, f € C°(R) with supp fo C [—1, 1], supp f C [1/4,4] and ), means that, in the sum, &
takes all negative powers of 2 as values, thatis, D, =) , - J,j=0- Let F € C3°(R) be such that
supp FF C [1/8,8] and F =1 on supp f. The spectral decomposition theorem implies

L= fo(H)+)_ f*H) = fo(H)+ )  F(*H) f(*H).
h h
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Letay, € S(1, g) be as in Proposition 2.1 with f = F. Using Proposition 2.1, we obtain a Littlewood—Paley
type estimates on a range of Op(y,).

Proposition 2.5. Forany?2 < g < o0,

1/2
IDMWMMM%iCNMmm@+%(XNmewﬂ#HMhmw>.
h

Proof. The proof is the same as that of [Burq et al. 2004, Corollary 2.3] and we omit the details. U
Corollary 2.6. Let ¢ > 0 and . be as above and x, =1 — .. Let p € C ®(R?) be such that

0% p(x)] < Co(x), aezq.

Then, for any T > 0 and any (p, q) satisfying p>2,q <ocoand?2/p=d(1/2—1/q), there exists Ct >0
such that

i i

loe™ ™l o111 Lo mey < Crllel2mey + ClIOP(xe ™ @l Lo 1.7 Lo ey

12
—i 2
e ( 210, (@e ”Hf(th)‘””LP([—T,TJ;Lq(Rdv) ’
h

where ay, is given by Proposition 2.1 with . replaced by p\.. In particular, an(x, &) is supported in

supp p ()Y (x, &/ M) F (pp(x, §)).

Proof. This proposition follows from the LZ-boundedness of e~/ Propositions 2.1 and 2.5 (with 1,
replaced by p.), and the Minkowski inequality. (I

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 under Assumption 1.1 with & > 0. We first state two key estimates
which we will prove in later sections. For R > 0, an open interval I € (0, c0) and o € (—1, 1), we define
the outgoing and incoming regions ' *(R, I, o) by

TR, 1,0) = {(x,g) eR¥:|x|>R, |E| €1, i% > —a},
X

respectively. We then have the following (local-in-time) dispersive estimates.

Proposition 3.1. Suppose that H satisfies Assumption 1.1 with u > 0. Let I € (0, 00) and o € (—1, 1).
Then, for sufficiently large R > 1, small hg > 0, and any symbols aff € S(1, g) supported in TX(R, I, 0)N
{x:|x] < 1/h}, we have

10py, (@;)e ™" Opy (@)l 1y e < ClEIT2, O < i <1,
uniformly with respect to h € (0, hg].

We prove this proposition in Section 4. In the region {|x| = ||}, we have the following (short-time)
dispersive estimates.
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Proposition 3.2. Suppose that H satisfies Assumption 1.1 with . > 0. Let us fix arbitrarily € > 0. Then
there exists t. > O such that, for any symbol x. € S(1, g) supported in {(x, &) : (x) > ¢|&|}, we have

10P(xe)e ™ Op(xe) 1 oo < Celt ™2 0 <] <o
We prove this proposition in Section 5.

Proof of Theorem 1.2. Taking p € C*®(R%) so that 0 < p(x) <1, p(x) =1 for |x| > 1 and p(x) = O for
|x] <1/2, we set pr(x) = p(x/R). In order to prove Theorem 1.2, it suffices to show

lore™ " @l o111 L@y < Crll@ll 2Ry,

for sufficiently large R > 1. We may also assume without loss of generality that 7 > 0 is sufficiently
small. Indeed, if the above estimate holds on [—Tj, Tp] with some Ty > 0, we obtain by the unitarity of
e~""H on L? that, for any T > Ty,

[T/Tol+1

tH P
§0||L1»([7T,T];Lq(u‘\yd)) S Z lore
k=—[T/To]

< (T/T)Ch 101 g

i 7itHefi(k+l)H

_ V4
lpre Pl e -1y, 700 L2 R

Let a;, be as in Proposition 2.1. Replacing v, with pgi. and taking ¢ > 0 smaller if necessary, we
may assume without loss of generality that suppa, C {(x,&) : R < |x| < 1/h,|&| € I} for some
open interval I € (0, 00). Choosing #* € C®([—1,1]) so that 6T +6~ =1, =1 on[1/2,1] and
0T =0o0n [—1,—1/2], we set a;" (x, &) = ay (x, £)0F (% - £), where & = x/|x|. It is clear that {a;"}4e(0.1)
is bounded in S(1, g) and suppa;- C T*(R, 1, 1/2) N {x : |x| < 1/h}, and that a, = a; +a;, . We now
apply Proposition 3.1 to aff and obtain the local-in-time dispersive estimate for Op,, (aff)e‘i " 0p, (aff)*
(uniformly in & € (0, hg]), which, combined with the L?-boundedness of Op,, (a;—L)e—i tH
theorem [Keel and Tao 1998], implies the following Strichartz estimates for Opy, (aj)e

and the abstract
—itH.

—itH

—itH +
10ps (@n)e™ ™ ol o113 Loayy < 2 10PR @) @l 1 1o ro ey
+

< Cllell 2@,
uniformly with respect to & € (0, hg]. Since Op,(ay) is bounded from L*(R%) to L4(RY) with the bound

of order O(h_d(l/z_l/q)), for hg < h <1, we have

_ 2
> 110psan)e™™ F QN o1 11e 10y < CRON 2 g,
ho<h<l
with some C(hg) > 0. Using these two bounds, we obtain

_ 2 2
Z ||Oph(ah)e ltHf(th)QO||L1)([_1’1];Lq(|]‘\ytl)) <C Z ”f(th)(p”Lz(le)) + C(h0)||§0||%2(Rd)
h O<h<hy

< Clll72 g
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On the other hand, Strichartz estimates for Op(x.)e "' are an immediate consequence of Proposition 3.2.

Together with Corollary 2.6, this completes the proof. (I

4. Semiclassical approximations for outgoing propagators
Throughout this section we assume Assumption 1.1 with i > 0. Here we study the behavior of
e—ilH Oph (ahi)*’

where a,f € S(1, g) are supported in T*(R, I, o) N {|x| < 1/h}, respectively. The main goal of this
section is to prove Proposition 3.1. For simplicity, we consider the outgoing propagator e~/'# Op, (a;r)*
for 0 <t <1 only, and the proof for the incoming case is analogous.

In order to prove dispersive estimates, we construct a semiclassical approximation for the outgoing
propagator e~'H Op, (a,j)* by using the method of Isozaki—Kitada. Namely, rescaling ¢ + th and
setting H" = h’H, Hél = —h?A /2, we consider an approximation for the semiclassical propagator
g=itH" [ Op;,(a;)* of the form

e Opy ()t = Ju(SL b e I (S oY), 0<t<h7,

where S;[ solves a suitable eikonal equation in the outgoing region and J(S;", w) is the corresponding
semiclassical Fourier integral operator (4-FIO for short):

Tn(S;H,w) f(x) = Qrh) ™ / oI Sn OO by (v £) f () dy d.

Such approximations (uniformly in time) have been studied for Schrédinger operators with long-range
potentials [Robert and Tamura 1987] and for the case of long-range metric perturbations [Robert 1987;
1994; Bouclet and Tzvetkov 2007]. We also refer to the original paper by Isozaki and Kitada [1985], in
which the existence and asymptotic completeness of modified wave operators (with time-independent
modifiers) were established for the case of Schrédinger operators with long-range potentials. We note
that, in these cases, we do not need the additional restriction of the initial data in {|x| < 1/Ak}. On the
other hand, in [Mizutani 2013], we constructed such approximations (locally in time) for the case with
long-range metric perturbations, combined with potentials growing subquadratically at infinity, under the
additional restriction on the initial data into {|x| < 1/A}.

As we mentioned in the outline of the paper, we first construct an approximation for the modified
propagator ¢~"H"/" where H" is defined as follows. Taking arbitrarily a cut-off function ¥ € C°(R?)
suchthat 0 <y <1,y =1 for |x| <1/2 and ¥ =0 for |x| > 1, we define truncated electric and magnetic
potentials, Vi, and A, = (Ay,;); by Vi(x) :=v(hx/L)V(x) and Ay j(x) = (hx/L)A;(x), respectively.
It is easy to see that

Vi=V, Apj=Ajon{lx| <L/Q2h)}, supp Ay, supp Vi C {|x| < L/h},
and that, for any o € Zi, there exists Cr, , > 0, independent of x, &, such that

R218% Vi ()| + 19 Ap(x)] < Cgp (x) #7120, 4-1)
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Let us define H" by

d
H" = % D (=ihd; — hAy j(x) g/ (x) (=ihd — hAp £ (x)) + h*Vy (x).
Jik=1
We consider H" as a “semiclassical” Schrodinger operator with #-dependent electromagnetic potentials
h?V,, and hA,. By virtue of the estimates on g/*, A, and Vj,, H" can be regarded as a long-range
perturbation of the semiclassical free Schrodinger operator H! = —h?A /2. Such a type modification
has been used to prove Strichartz estimates and local smoothing effects (with loss of derivatives) for
Schrodinger equations with superquadratic potentials; see [ Yajima and Zhang 2004, Section 4]. Let us

denote by pj, the corresponding modified symbol

pr(x, &) =

N —

d
3 g )& — h AR ) E — h AR (x) + V(). 4-2)
jk=1

The following proposition provides the existence of the phase function of /4-FIOs.

Proposition 4.1 [Robert 1994]. Fix an open interval I € (0,00), —1 <o < 1 and L > 0. Then there
exist Ry, ho > 0 and a family of smooth and real-valued functions

{SF:0<h <ho, R> Ry} C C¥[R* :R)
satisfying the eikonal equation associated to py:

Pr(x, 0.8 (x, €)= [§7/2,  (x,€) eTH(R, I,0), (4-3)

such that
1SF(x, &) —x - <Cx)'™, x,6eR% (4-4)

Moreover, for any |+ 8| > 1,
19592 (S (. §) —x-£)] < Capmin{R' ™+ 11, (x)! 71710 & e RY. 4-5)
Here C, Cop > 0 are independent of x, &, R, and h.

Proof. Since h*Vj, and h A, are of long-range type uniformly with respect to / € (0, 1] (the constant Cy
in (4-1) can be taken independently of /), the proof is the same as that of [Robert 1994, Proposition 4.1],
and we omit it. For the R dependence, we refer to [Bouclet and Tzvetkov 2007, Proposition 3.1]. (I

Remark 4.2. The crucial point to obtain the estimates (4-4) and (4-5) is the uniform bound (4-1), and we
do not have to use the support properties of A, and Vj,. Suppose that A and V satisfy (x)~! [0¢ A(x)| +
(x)_2|8§‘V(x)| < Cqug (x)~lland g’k satisfies Assumption 1.1 with u > 0. Then there exists L > 0,
independent of /, such that if 0 < L < Lg, we can still construct the solution S;f to (4-3) by using the
support properties of A, and Vj,. However, in this case, S;[ — x - & behaves like (x)'"#h~! as h — 0, and
we cannot obtain the uniform L?-boundedness of the corresponding /-FIO. This is one of the reasons
why we exclude the critical case u = 0.
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To the phase S,T and an amplitude a € S(1, g), we associate the 4-FIO defined by

IS £ = @iy [ SO e, ) (9) dy ds.
Using (4-5), for sufficiently large R > 0, we have
10 ® 9,5 (1, &) —1d| < C(R)™ < 5. 9280 S;f (x, £)| < Cup for o+ ] > 2,

uniformly in & € (0, hp]. Therefore, the standard L?-boundedness of FIOs implies that Jh(S;, a) is

uniformly bounded on L*(R?) with respect to i € (0, hg].

We now construct the outgoing approximation for e~/*H"/h.

Theorem 4.3. Let us fix arbitrarily open intervals | € lp €I, € I, € (0,00), —1 <0 <0op <o) <0op <1
and L > 0. Let Ry and hg be as in Proposition 4.1 with I, o replaced by I, o2, respectively. Then, for
every integer N > 0, the following hold uniformly with respect to R > Ry and h € (0, hg].

(1) There exists a symbol

N-1
by = Z Wbl withbf € S((x)™/(£)77, ), suppb; ; CTH(R', I, 01),
j=0

such that, for any a* € S(1, g) with suppa™ C T (R, I, o), we can find
N-1
cf =Y hicH, withc, e S(x)™(€)7. g). suppcy; c TH(RY, Iy, o9).
=0

such that, forall0 <t <h~!, e—itH" [ Opy,(a™)* can be brought to the form
e N Op, (@) = u(S;F, bi)e MM I (ST, 6D+ Okt N,

where J;,(S;lr , W), w= b;, c;, are h-FIOs associated to the phase S;lr defined in Proposition 4.1 with R,
I, and o replaced by R'*, I, and o, respectively. Moreover, for any integer s > 0 with 2s < N — 1, the
remainder Qf;((t, h, N) satisfies

I{D)* Qi (t, h, NY(D)* |l 5, ;2 < CyshV 571, (4-6)

uniformly with respect to h € (0, hol and 0 <t < h™.

(2) Let KS/+ (t, x, y) be the distribution kernel of Jj, (S;F, b;)e_i’Hg/th(S;, c,‘f)*. Then KS;r satisfies the
dispersive estimate
K+ (, %, )| < Clth| =2, (4-7)

uniformly with respect to h € (0, hol, x, y € RYand0<r<h~l.

Proof. This theorem is basically known; hence we omit the proof. For the construction of the amplitudes
b;[ and c;, we refer to [Robert 1994, Section 4]; see also [Bouclet and Tzvetkov 2007, Section 3]. The
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remainder estimate (4-6) can be proved by the same argument as that in [Bouclet and Tzvetkov 2007,
Proposition 3.3, Lemma 3.4] combined with the simple estimate

DY (H" +C)™Pll 22 < Ch ™, 5 20.
where C; > 0 is a large constant. Note that this estimate follow from the obvious bounds
(D) (hD) |22 < Csh™, 5 =0,

and the fact that (pj, +hpy, + C1) /% € S((§)°, g) since pj, + hp1., + Cy is uniformly elliptic for
sufficiently large C; > 0. The dispersive estimate (4-7) can be verified by the same argument as that in
[Bouclet and Tzvetkov 2007, Lemma 4.4]. U

The following lemma, which has been essentially proved in [Mizutani 2013], tells us that we can still

construct the semiclassical approximation for the original propagator e~/ "/ if we restrict the support

of initial data in the region I't(R, J, o) N{x : |x| < h™1}.

Lemma 4.4. Suppose that {a;}he(o,l] is a bounded set in S(1, g) with symbols supported in
It (R, I,o)N{x:|x| <h™'}.

There exists L > 1 such that, for any M,s >0, h € (0, hgl and 0 <t < h=!, we have

|71 — =it 1) Op, (a;)*( D) < Cu h",

A
|| 12512 =
where Cyy s > 0 is independent of h and t.
In order to prove this lemma, we need the following.

Lemma 4.5. Let f;, € C®(R?) be such that for any a € 74,
103 fr(X)] < Cao

uniformly with respect to h € (0, ho] and such that supp f, C {|x| > L/(2h)}. Let L > 1 be large enough.
Then, under the conditions in Lemma 4.4, we have

I £ (e)(D)Y e~ 1 Opy (@) (D) < Cipg WM,

S
||L2—>L2 =
forany s,y >0 and M > 0, uniformly with respect h € (0, hg] and 0 <t <1/ h.
Proof. We apply Theorem 4.3 to e/’ H /h Op,, (a;f)* and obtain
i qgh —i h
e M Op, (@) = Ju(ST, bDe I gy (S, o)+ O (8, hy ND.

By virtue of (4-6), the remainder f;(x)(D)" Q;%(t, h, N)(D)® is bounded on L*(R¢) with the norm
dominated by C NS,,hN —y—s—1 uniformly with respect i € (0, ho] and ¢ € [0, 1/h]. On the other hand, by
virtue of (4-5), the phase of K s+ (t, x, y), which is given by

O (1, x, ¥, §) = SF (x, §) = 5116 = S (3, 6),

satisfies 9 @} (¢, x, y, §) = (x — y)(Id + O (R™*/*)) — t&. Here we recall that
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suppc; C{(y, &) e R* 1 a;f (v, 3 S (v, §)) # O}

see [Mizutani 2013, Lemma 3.2] and its proof. In particular, c;[ (v, &) vanishes in the region {y : |y| > 1/ h}.
We now set L = 4./sup I, 4+ 2, where I, is given in Theorem 4.3. Since |x| > L/(2h), |y| < 1/h, and
|&£|* € I, on the support of the amplitude f,(x)b; (x, &)c; (v, &), we obtain

10 D (1, x, v, &) > c(1+ x|+ |y| + €|+t +h""), 0<t<h™!

for some universal constant ¢ > 0. The assertion now follows from an integration by parts and the
L?-boundedness of -FIOs. O

Proof of Lemma 4.4. The Duhamel formula yields
(e—nH’l/h _ e—izﬁh/h)

_ _;l; fte—i(t—s)H"/hW(ize—isﬁ”/h ds
0

. t ~ t N ~ ~
_ _%f e—i(t—s)Hh/he—isH"/hWéz ds_i_%/ e—i(t—s)H"/h/ e—i(s—t)Hh/h[ﬁh’ Wg]e—ith/h dr ds,
0 0 0

where Wél := H" — H" consists of two parts,

i h2 . :
S @87 (1 = hx /L) Ax + (L= (/L) A g 05)
J.k
and
2 .
% D A=y (hx /L)) g/*Aj A+ h* (1 =y (hx /L) V.
j.k

In particular, Wg is a first order differential operator of the form

R [l + R ) (),

lee|=1
where f(f, f(fl are supported in {|x| > L/(2h)} and satisfy
187 £ ()] < Cap ) TP (87 £ ()] < Cap ()7L (4-8)
Since {|x| = L/(2h)} ﬂnx(suppa;[) =g if L > 1, we have
”Wél Oph(a}—:— (DY'll,;2, 2 < CushM™, M=>0, seR.

Therefore, the first term of the right-hand side of the above Duhamel formula satisfies the desired estimates

ioprh il
—itH"/h and e*lIHl/h

since e are unitary on L.

We next study the second term. Again by the Duhamel formula, we have

[ﬁh’ Wél]e—irﬁh/h _ e—irﬁ”/h[ﬁh’ Wéz] + lﬁ /f e—i(t—u)ﬁh/h[ﬁh’ [ﬁh’ Wél]]e—iuﬁh/h du.
0
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Since the coefficients of the commutator [ﬁ h, Wéz] are supported in {|x| > L/(2h)}, the support property of
a;[ again implies that [H", Wél] Op,, (a;)*(D)s =02, ;2(hM=%) for any M > 0 and s € R. Furthermore,
by virtue of (4-1), (4-8), and the symbolic calculus, the coefficients of [H", [H", W11 are uniformly
bounded in x and supported in {|x| > L/(2h)}. We now apply Lemma 4.5 to

[ﬁh’ [ﬁh’ Wéz]]e—iuﬁh/h Oph(a,‘f)*
and obtain the assertion. |
Proof of Proposition 3.1. Rescaling t — th, it suffices to show
10p, @ )e ™ H' 1" Opy (@) 11, e < Celth ™2, 0 <t <h7",

where H" = h>H. Let A, (x, y) be the distribution kernel of Opy, (a;"):
Ay = @ty [ oD de.
Since a,f € S(1, g) is compactly supported in / with respect to £, we easily see that

sup/ |Ap(x, y)ldy+sup/ |[Ap(x, y)|dx <C, he(0,1].
X y

Moreover, since (.§)Sa,;r (€)Y € S(1, g) for any s, y, we have
1(D)* Opy,(a; (D) | 2,2 < Csh ™77, (4-9)
Combining these two estimates with Theorem 4.3 and Lemma 4.4, we can write
Opy(a;)e™ " ™"/" Op, (af)* = Ky (t, h, N) + Ka(t, h, N),

where

K\ (t, h, N) = Op,, (@) Jn(S;, bH)e "/ h g, (S, cihy*,

K(t. h, N) = Op,(a) Qf (t. h, N) + Opy (a; ) (e=H" 1 — ¢=itH" My Op. (a:+)*.
By (4-7), the distribution kernel of K (¢, h, N), which we denote by K (¢, x, y), satisfies

|K1<r,x,y>|s/|Ah<x,z>||KS;(t,z,y)|dzscmrhrdﬂ, O<t<h™,

uniformly in % € (0, hg]. On the other hand, (4-6), Lemma 4.4, and (4-9) imply
” <D>SK2(I’ h, N)(D)S ||L2—>L2 S CN,ShN_ZS_l .

If we choose N > d +2 and s > d/2, it follows from the Sobolev embedding that the distribution kernel
of K;(t, h, N) is uniformly bounded in R4 with respect to h € (0, hp] and 0 < t < h~!. Therefore,
Op,, (a;lr)e_"’Hh/ " Op, (a;[)* has the distribution kernel K (¢, x, y) satisfying dispersive estimates for
0<t<h

|K (¢, x,y)| < Cylth|"%?, x,yeR. (4-10)
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Finally, using the relation
Op, (i )e ™ H"/" Op,, (a})* = (Op, (a;)e™"/" Opy (af)*)*,
we learn that K (¢, x, y) = K(—t, y, x) and (4-10) also holds for 0 < —¢ < h~!. For the incoming case,

the proof is analogous and we omit it. U

5. Fourier integral operators with the time dependent phase

Throughout this section we assume Assumption 1.1 with & > 0. Consider a symbol x. € S(1, g) supported
in a region
Q(e) :={(x. &) e R* : (x) > e]§]/2},

where ¢ > 0 is an arbitrarily small fixed constant. In this section we prove the dispersive estimate
10p(xe)e™ ™ Op(xe) Nl 1o < Celt] ™2, 0 <] <te,

where 7, > 0 is a small constant depending on . This estimate, combined with the L?-boundedness of
Op(Xg) and e—itH —itH.

Let us give a short summary of the steps of the proof. Choose x; € S(1, g) so that supp x; = supp x.
and Op(x.)* = Op(x.) +Op(ry) with some ry € S((x)~N)y N, g) for sufficiently large N > d /2. We
first construct an approximation for e ="' Op(x) in terms of the FIO with a time dependent phase

, implies the Strichartz estimates for Op(x.)e

JOU, BN f(x) = / VRO ¢ ) F(y)dy dE,

(2m)4

where W is a generating function of the Hamilton flow associated to p(x, &) and (9¢W, &) > (x, 0, W) is
the corresponding canonical map, and the amplitude

b=by+by+---+by_;

solves the corresponding transport equations. Although such parametrix constructions are well known
as WKB approximations (at least if x; is compactly supported in & and the time scale depends on the
size of frequency), we give the details of the proof since, in the present case, supp x; is not compact
with respect to £ and 7, is independent of the size of frequency. The crucial point is that p(x, &) is of
quadratic type on 2(¢):

099 p(x, £)] < Cap.  (x,6) €Q(e), o+ Bl =2,

which allows us to follow a classical argument (see, for example, [Kitada and Kumano-go 1981]) and
construct the approximation for |f| < f, if #; > O is small enough. The composition Op(x.)J (¥, b) is
also an FIO with the same phase, and a standard stationary phase method can be used to prove dispersive
estimates for O < |¢| <t,. It remains to obtain the L' — L bounds of the remainders Op(xs)e " Op(ry)
and Op(x.)e "M (Op(x7) — J (¥, b™)). If e~"H maps from the Sobolev space H¥/2(R?) to itself, then
L' — L bounds are direct consequences of the Sobolev embedding and L2-boundedness of PDOs.
However, our Hamiltonian H is not bounded below (on {|x| 2 |£|}) and such a property does not hold in
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general. To overcome this difficulty, we use an Egorov-type lemma as follows. By the Sobolev embedding
and the Littlewood—Paley decomposition, the proof is reduced to that of the estimate

; _i 2

31277 8;(D) Op(xe)e ™M Op(r) (D) fll2 < CIL 2. (5-1)

j=0
where y > d /2 and §; is a dyadic partition of unity. Then we will prove that there exists n; (¢, -, - ) € S(1, g)
such that

2 <CA+x|+1E)  on suppr; (1),
and that
S;(D) Op(xe)e™ ™ = e Op(n; () + Op2. 227N, N1l <1, < 1.

Choosing § > 0 with y +8 < N/2, we learn that 2/ +9n;(1)ry(€)? € S(1, g), and hence (5-1) holds.
Op(xs)e "H( Op(x}) — J(W¥, b)) can be controlled similarly.

Short-time behavior of the Hamilton flow. We now discuss the classical mechanics generated by p(x, &).
We denote by (X(@),8@)=(X(x,8), E(t, x, &)) the solution to the Hamilton equations

P (x.®) = ngkoo( = Ar(X)),
BSJ

5= (x g
J 8xj( )

0 A%
— —5 %(X)(uk — AX)) (B — (X)) + Zg“oo LX) (& = A(X)) = 5= (X)
Xj Xj Xj

with the initial condition (X (0), E(0)) = (x, &), where f = 0, f. We first observe that the flow conserves
the energy:

p(x,§) = pX(@), E(1)),
which, combined with the uniform ellipticity of g/*, implies
|B() — AX0))* S p(X (@), B®)) — V(X(1))

=p(x, &) — V(X))
SIE= AP+ IV + VX)),

and hence |E(?)| < |€] + (x) + (X (¢)). By the Hamilton equation, we then have
X +1E@)] < CA+[E]+ x|+ X O]+ ED)]).
Applying Gronwall’s inequality to this estimate, we obtain an a priori bound:
X (1) —x|+|E@) — €| < Crlt|(1+ x|+ €D, 11| <T, x,§ eR".

Using this estimate, we obtain more precise behavior of the flow with initial conditions in 2 (¢).
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Lemma 5.1. Let & > 0. Then, for sufficiently small t, > 0 and all a, B € 7%,
10997 (X (1, x, &) — )| + |00 (B(1, x, ) — &] < Copelt] (x)'71*+7I,
uniformly with respect to (t, x, &) € (—tg, t) X Q2(¢).

Proof. We only consider the case with ¢ > 0, the proof for the opposite case is similar. Let (x, §) € Q(¢).
First we remark that, for sufficiently small 7, > 0,

Ix[/2<|X(@t, x, )| =2(x), [t]=t,. (5-2)

For |a 4+ | = 0, the assertion is obvious. We let |o 4+ 8| = 1 and differentiate the Hamilton equations
with respect to 9 85 :

[1]

d (a;fafx) _ (axag p(X,

2p(X, B 3*af x
a (o ) Zp(X.B) )(g | 53
dr\pedf &

—p(X. B) —0gdxp(X. 8))\ovof'E
Using (5-2), we learn that p(X (¢), E(¢)) is of quadratic type in Q2 (¢g):
1328 PY(X (1), E(0)] < Capex)* P (1,3, 8) € (—1o, 1) x Q(e).

Hence all entries of the above matrix are uniformly bounded in (¢, x, §) € (—t., t;) X Q(¢). Taking t, > 0
smaller if necessary, integrating (5-3) with respect to ¢, and applying Gronwall’s inequality, we have the
assertion with |a + 8| = 1. For |@ + B| > 2, we prove the estimate for 852] X (t) and 8521 E(t) only, where
& =(&,&,...,&1). Proofs for other cases are similar, and proofs for higher derivatives follow from an
induction on |« + 8|. By the Hamilton equation, we learn

%agxm = 0,0; p(X (1), B(1))07 X (1) + 9z p(X (1), E(1))3Z E(1) + Q(X (1), E(1)),

where Q(X (t), E (1)) satisfies

QX0 E@<Ce Y 109 p)(X (1), B0))]105 X (1)]*!95, E ()P
la+B1=3,18=1

< Celx)™".

We similarly obtain

d _
S5 B ==07p(X (1), M) X (1) = %:3: p(X (1), EM)35 E(1) + O((x) ™).
Applying Gronwall’s inequality, we have the desired estimates. ]

Lemma 5.2. (1) Let t, > 0 be small enough. Then, for any |t| < t., the map

g): (x,8) > (X(t,x,8),8)
is a diffeomorphism from Q2 (¢ /2) onto its range, and satisfies

Q&) C g(t, 2(e/2)) forall|t] <t,.
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(2) Let Q&) > (x,&) — (Y(t,x,£),&) € Q(e/2) be the inverse map of g(t). Then Y(t,x, &) and
E(t, Y(t,x, &), &) satisfy the same estimates as those for X (¢, x, &) and E(t, x, &) of Lemma 5.1, respec-
tively:

19900 (Y (1, x, &) — )| + 1899 (B (¢, Y (¢, x, £), &) — &| < Capelt](x) 11,

uniformly with respect to (t, x, &) € (—t., t;) X Q(¢).

Proof. Choosing a cutoff function p € S(1, g) such that 0 < p <1, suppp C 2(¢/3), and p =1 on
Q(e/2), we modify g(¢) as follows:

8ot x,8) = (Xp(t,x,6),8), X,(t,x,§)=1—-px,8))x+px,§X(1, x,8).
It is easy to see that, for (¢, x,§) € (1, 1) X 2(£/2), go(t, x, §) is smooth and Lemma 5.1 implies

18997 g, (1, x. &)| < Cape, I+ > 1,
|J(gp)(t,X,$)_Id| < Cete,

where J(g,) is the Jacobi matrix with respect to (x, &) and the constant C,; > 0 is independent of ¢, x,
and &. Choosing 7, > 0 so small that C.#, < 1/2, and applying the Hadamard global inverse mapping
theorem, we see that, for any fixed [t| < t,, g,(¢) is a diffeomorphism from R?¢ onto itself. By definition,
g(1) is diffeomorphic from €2(¢/2) onto its range. Since g, () is bijective, it remains to check that

Q) D gp(t, Q(e/2)), 1] <.

Suppose that (x, &) € Q(g/2)°. If (x, &) € Q(g/3)¢, the assertion is obvious since g,(t) = Id outside
Q(e/3). If (x,&) € Q(e/3) \ Q2(g/2), then, by Lemma 5.1 and the support property of p, we have

1Xp @, x, &) < x|+ p(x, (X (1, x, §) —x)| = (¢/24 Cot,) (§)

for some Cy > 0 independent of x, &, and ¢.. Choosing . < ¢/(2Cp), we obtain the assertion.
We next prove the estimates on Y (¢). Since (Y (¢, x, £), &) € Q(e/2), we learn

Y (t,x,8) —x|=|X(0,Y(,x,8),8) - X, Y, x,8),8)

< sup |X(t,x,§)—x]
(x.6)e(e/2)

< Celt|(x).

For a, B € Zi with |o + 8| = 1, apply 8?85 to the equality x = X (¢, Y (¢, x, £), £). We then have the
equality
A(t’ Z(ta X, g))agag(y(ta X, 5) - -x) = 8585()’ - X(t’ y’ n))l(y,n):Z(t,x,s),

where Z(¢t,x,&) = (Y(,x,£),&) and A(t, Z) = (0, X)(¢, Z) is a d xd matrix. By Lemma 5.1 and
a similar argument to that in the proof of Lemma 5.2(1), we learn that A(¢, Z(z, x, §)) is invertible
if t. > 0 is small enough, and that A(z, Z(¢, x, &)) and A(z, Z(¢, x, £))~! are bounded uniformly in
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(t,x,&) € (—t,, t,) x Q(g/2). Therefore,

0090 (Y (1, x. &) —x)| < Cap  sup  [8%0F (x — X (1, x, 8))]
(x,8)€2(e/2)

< Cyplt|(x) 7P,

Proofs for higher derivatives are obtained by induction in |« + 8| and proofs for Z(z, Y (¢, x, §), §) are
similar. [l

The parametrix for Op( xa)e“"” Op(xe)*. Before starting the construction of parametrix, we prepare
two lemmas. The following Egorov-type theorem will be used to control the remainder term. We write

exprHp(x, §) = (X(t,x,8), E(1, x, §)).

Lemma 5.3. For h € (0, 1], consider a h-dependent symbol n;, € S(1, g) such that suppn;, C Q(g) N
{1/(2h) < |&| < 2/ h}. Then, for sufficiently small t, > 0, independent of h, and any integer N > 0, there
exists a bounded family of symbols

Ve, -, )it <te, 0<h<1}C S(1,g)
such that
supp np (¢, -, -) C exp(—) H,(supp ny)
and
le"™ Op(nw)e ™™ — Op(ny )l 2, 12 < Cneh™,
uniformly with respect to 0 < h < 1 and |t| < t..

Proof. Let 772([, x,&)=mnu(exptHy(x,§)) =np(X (2, x,8), E(t, x,§)). Itis easy to see that

supp 772 C exp(—1)Hp,(supp np).

Moreover, Lemma 5.1 implies that {772 :|t] <ts,0 < h <1} is a bounded subset of S(1, g). By a direct
computation, 772 solves
oy ={p.m} M=o =,

where { -, - } is the Poisson bracket. Then, by standard pseudodifferential calculus, there exists a bounded
set {rg(t, +,):0<t<t,0<h<1}CS(,g) with suppr,? C exp(—1) Hy('supp 1) such that

d ,
- Op(y) = i[H, Op(nj)] +h Op(ry).

We next set

t
n;l(t’xvé):f r]z(l)(svx(t_syx7§)9 E(l—s,x,é))ds.
0
Again, we learn that {n}l(t, )t <t.,0 < h <1} C S(1, g) is also bounded and that

supp 77, C exp(—1) H,,(supp 11;,)
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for all |t| < t, and 0 < h < 1. Moreover, ’7;1; solves

dmy =1{p.mpy+ri Mpli=0 =0,

which implies

d :
7 001y + hny) = i H, Op(nj, + hn)1 + h* Op(ry)

with some {r,} :0<t<t,0<h<1}C8(,g) and supprﬁ C exp(—t)H,(suppny). Iterating this
procedure and putting 77/[1\/ = Z;VZ_OI hi ’7;],’ we obtain the assertion. O

Using this lemma, we have the following.

Lemma 5.4. Let ¢ > 0. Then, for any symbol x. € S(1, g) with supp x. C 2(¢) and any integer N > 1,
there exists x} € S(1, g) with supp x} C S2(¢) such that for any y < N/2,

sup |Op(xe)e ™™ Op(xe)* — Op(xede ™ OPGX N v @ty v @ty < Chye-

<t
Proof. By the expansion formula (2-4), there exists ) € S(1, g) with supp x; C €2(¢) such that
Op(xe)* = Op(x.) + Op(ro(N))
with some ro(N) € S((x) "N (£)™N, g). For § > 0 with 2y +8 < N, we split
(D) Op(xe)e ™" Op(ro(N)) (D) =(D)” Op(xe)e "M (D)™~ (x) 77 *-(x)"*+*(D)" ** Op(ro(N))(D)" .

Since (x)7 (€)Y FOrg(N)(E) € S(1, g), (x)Y (D) Op(ro(N))(D)” is bounded on L. In order to
prove the L%-boundedness of the first term of the right hand side, we use the standard Littlewood—Paley
decomposition and Lemma 5.3 as follows. Consider a dyadic partition of unity with respect to the
frequency:

> Sip)=1,
=0

where S;(§) = S(Q277¢), Jj =1, with some S € CgO(Rd) supported in {1/2 < |&| <2} and S € Cgo([Rd)
supported in {|§| < 1}. Then

00 1/2
—i —y— —y— i —i i ey 2
(D) Op(xe)e (D)2 (x) 7" fl| 2 SC(Z 1277 8;(D) Op(xe)e (D)7~ (x) 7 “fnu) :
Jj=0
By the expansion formula (2-3), there exists a sequence of symbols n; € S(1, g) supported in
QE)N{2/7 < g <2/t
such that

S;(D)Op(xe) =O0p(;) + Q1(j, ), 1Q1(js NIl 22 = 0Q277Y).
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We then learn from Lemma 5.3 with 7 = 27/ that there exists {nﬁ.v () :|t] <t} € S, g) such that

Op(nj)e™" =e " Op(nY (1)) + Q2(t. j. N),  sup [ Qa(t, j. N)ll 122 = 027/).

t]<te

Since N > y + 8, the remainder satisfies

sup 11277 (Q1(j, N)e ™ + Qa(t, j, N)D) " (x) 7 £l 72 < C27200 £ |12,

7] <te
Suppose that (x, £) € supp nﬁ.v (t). Since supp nﬁ-v (t) Cexp(—t)H,(suppn;), we have
1X(t,x,6)| > e(B(t,x,8)), 277" < |8, x,8)] <2/t
Using Lemma 5.1 with the initial data (X (¢, x, £), E(z, x, £)), we learn
x =X, x, )|+ 1§ — B, x,8)| = Cte(X (1, x,8)), |t] <le.
Combining these two estimates, we see that
2 <COU+ x|+ 6D, (x.€) esuppn’ (), || <te.

where the constant C > 0 is independent of x, &, and #, provided that 7, > 0 is small enough. Therefore,
2/ (VJ”S)nj.V (t)(& YV x) T8 e S(l, g) and the corresponding PDO is bounded on L. Finally, we obtain

S 1277 Opn e (DY T () Fl
=0

<Y (127277 0pm¥ ) (DY 7P x) T FI1L, + 2720 £112,)
j=0

o0
<CY 27 £,
—

<Clfl3., 0

We now consider a parametrix construction of Op(x,)e~""# Op( x2). Let us first make the following
ansatz:

0t,0) = g [ VOO 1,6 (5 dy

where bV = Z;y:_ol b;. In order to approximately solve the Schrodinger equation
idv(t) = Hu(t), vli=o =Op(x,)¢,
the phase function W and the amplitude b" should satisfy respectively the Hamilton—Jacobi equation

atq‘]—i_p(x’ax\p):o’ lI‘J|l‘=0:x'§- (5_4)
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and the transport equations

{3tb0+9€'3xbo+%0=0, boli=0 = xe, (5-5)

b +%-0cb;+Yb;+iKb; 1 =0, bjli—o=0, 1<j<N-—1,

where K is the kinetic part of H, and the vector field ¥ and function % are defined by

Xj(t,x,8) = (0, p)(x, W, x,8), j=1,....d,
Y, x,8) = [k(x, )W + pi(x, W)@, x, §).

Here p, p; are given by (1-6). We first construct the phase function W.

Proposition 5.5. Let us fix ¢ > 0 arbitrarily. Then, for sufficiently small t, > 0, we can construct a smooth
and real-valued function ¥ € C®((—t,, t;) x R*; R) which solves the Hamilton—Jacobi equation (5-4)
for (x,&) € Q(e) and |t| <t.. Moreover, forall a, B € 74, x, &€ R and [t] <t

|020L (W(t, x, ) —x - £ +1p(x, £)] < Capelt|*(x)? 41, (5-6)
where Coge > 0 is independent of x,§ and t.

Proof. We consider the case when ¢ > 0, and the proof for r < 0 is similar. We first define the action
integral l’Ij(t, x,&)on [0, 1) x Q(e/2) by

N t
\D(t,x,§):=x-§+/0 L(X(s,Y(t,x,8),8),B(s,Y(t,x,8),&))ds,

where L(x,&) =& - 0gp(x, &) — p(x, &) is the Lagrangian associated to p(x, £), and X, E, and Y are
given by Lemma 5.2(2) with ¢ replaced by ¢/2. The smoothness of (1, x, &) follows from corresponding
properties of X (¢), E(¢), and Y (¢). It is well known that \AI;(t, x, &) solves the Hamilton—Jacobi equation

Ut x,§)+plx, 0 (1, x,6) =0, Wlo=x-&,
for (x, &) € Q(g/2), and satisfies
RV, x, E) =B, Y(1,x,6),8), %V, x,&=Y(,xE).
Lemma 5.2(2) shows that p(Y (¢, x, £), &) is of quadratic type:
1020L p(Y (2, x,£), £)] < Cape (x)> TP (1,x,£) €10, 1) x Q(e/2),
which, combined with the energy conservation

px, 8,9 (t, x,6)) = p(Y (1, x, £), &),
implies

10208 (U (t, x, &) —x - )] < Capelt|(x)> TP (1, x, £) €[0, 1) x Q(e/2).
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We similarly obtain, for (¢, x, &) € [0, t.) x Q2(g/2),

p(x, .9 (t, %, ) — p(x, )| = (axﬁi(r,x,@—s>-/01<agp><x,eaxﬁia,x,g)+(1_e>g>de
< Celr](x)?,
and, more generally,
1820f (p(x, 3,0 (1, %, §)) — p(x, £))| < Capelt|(x)> 71+,
Therefore, integrating the Hamilton—Jacobi equation with respect to ¢, we have
19597 (W (1, x,6) —x - & +1p(x, )] < Capelt(x)77 .

Finally, choosing a cutoff function p € S(1, g) sothat 0 < p <1, p=1on Q(¢g), and supp p C Q(g/2),
we define

\Ij(t’x’ %') =X 5 _tp(x7 5) +,0(X, g)({fl(t5 X, 5) —X E +tp(x’ E))
W (t, x, &) clearly satisfies the statement of Proposition 5.5. ([l
Using the phase function constructed in Proposition 5.5, we can define the FIO J (¥, a) : ¥ — ¥’ by

1

J(W,a) f(x)= Gyl

[ va s pyay e, feg@,
where a € S(1, g). Moreover, we have the following.

Lemma 5.6. Let t, > 0 be small enough. Then, for any bounded family of symbols
{a@) 1| <t} C S(1, ),
J (U, a) is bounded on L*(RY) uniformly with respect to |t| < t,:

sup [[J (W, a)llp2 2 < Ce.

|t]=te

Proof. For sufficiently small 7, > 0, the estimates (5-6) imply
|3 ® 8 W) (1, x,6) —1d| < Cot, < L, 1899/ W(r, x, )| < Cupe  for [+ ] = 2,

uniformly with respect to (¢, x, ) € (—t, t;) X R2¢. Therefore, the assertion is a consequence of the
standard L2-boundedness of FIOs, or, equivalently, Kuranishi’s trick and the L?-boundedness of PDOs;
see, for example, [Robert 1987; Mizutani 2013, Lemma 4.2]. O

We next construct the amplitude.

Proposition 5.7. Let W (¢, x, &) be as in Proposition 5.5 with € replaced by /3. Then, for any integer
N > 0, there exist families of symbols {b;(t, -, ) :|t] <t} C S((x)~ (), g),j=0,1,2,...,N—1,
such that supp b (t, -, -) C Q(&/2) and bj solve the transport equations (5-5).
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Proof. We consider the case r > 0 only. Symbols b; can be constructed by a standard method of
characteristics along the flow generated by & (z, x, &) as follows. First note that Assumption 1.1 and (5-6)
imply that
029292, x, £)| < Cope ) 1HP, (5-7)
0997U (1, x, £)] < Cape (x) 71+, (5-8)

uniformly with respect to 0 <t <t, and (x, ) € Q(¢/3). Forall 0 <s, t <., we consider the solution
to the ODE

0:z(t,s,x,&E)=%(t,z(t,s,x,8),&), z(s,s)=nx.

We learn from (5-7) and an argument as in the proof of Lemma 5.1 that z(¢, s) is well defined for
0<s,t<t.and (x, &) € Q(e/3), and that

10292 (2(2. 5. X, &) = X)| < Capete () 7M1 (x,8) € Q(e/3). (5-9)

Then b (t) are defined inductively by
t
bo(t,x,é)=X:(Z(0,hx,$),§)exp(f Oy(S,Z(S,t,x,é),é)dS>,
0

t t
bj(t,x,é)z—/ (iKbj_1)(s, z(s, t,x,é),é)exp(/ @(u,z(u,t,x,é),é)du) ds.
0 u

Since supp x; C £2(¢e), by (5-9) and an argument as in the proof of Lemma 5.2(1), we see that b; (¢, x, &)
is smooth with respect to (x, &) and that 8)‘3‘85 bj(t, x,&) are supported in Q(¢/2) for all 0 <1 < 1,.
Thus, if we extend b; on R2? so that b j(t,x,&) =0 outside Q2(g/2), then b; is still smooth in (x, ).
Furthermore, we learn by (5-8) and (5-9) that {b;(z,-,-):t €[0,1], 0 < j <N — 1} is a bounded set
in S((x)~/ (&), g). Finally, a standard Hamilton—Jacobi theory shows that b;(7) solve the transport
equations (5-5). [

‘We now state the main result in this section.

Theorem 5.8. Fix ¢ > 0 arbitrarily. Then, for any sufficiently small t, > 0, any nonnegative integer
N > 0 and any symbol x. € S(1, g) supported in Q2(e), we can find a bounded family of symbols
{aV(t,-,-) |t <t} C S, g) such that Op(xs)e """ Op(x.)* can be brought to the form

Op(xe)e "™ Op(xe)* = J (W, a™) + Q(t, N),

where J (W, aV) is the FIO with the phase W(t, x, &) constructed in Proposition 5.5 with ¢ replaced by
e/3. The distribution kernel of J(¥, a"), which we denote by Ky v (t, x,y), satisfies the dispersive
estimate

|Kyav (£, X, 9)| < Cnelt| ™%, 0<|t] <t x,& eR™

Moreover, for any y > 0 with N > 2y, the remainder Q(t, N) satisfies

I{D)” Q(t, NY{D) Il 2 p2 < Cwyeltl, 1] <te. (5-10)
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In particular, if we choose N > d + 1, the distribution kernel of Q(t, N) is uniformly bounded in R*? with
respect to |t| < t.. Hence

10p(xe)e ™ Op(xe)*Il i oo < Celt| ™42, 0 < |t] <t,.

Proof. We consider the case when ¢ > 0 and the proof for the opposite case is similar. By virtue of
Lemma 5.4, we may replace Op(x.)* by Op(x;) for some x; € S(1, g) supported in 2 (¢), without loss
of generality. Let bV = Z;VZ_OI b with b; constructed in Proposition 5.7. Since J (W, bN)|,—0 = Op(x}),
we have the Duhamel formula

t
Op(xe)e "™ Op(x}) = Op(xe)J (¥, bY) —i /0 Op(xe)e """ (D, + H)J (¥, b™)|,—; ds.

Estimates on the remainder. It suffices to show that

sup [(D)Y Op(xe)e "™ (D; + H)J (¥, bY) (D) [l 12, 12 < Ciye.

[t]<te

Since W, b; solve the Hamilton—Jacobi equation (5-4) and transport equations (5-5), respectively, a direct
computation yields

e—ill/(t,x,é)(Dz + H) (ei\IJ(t,x,E) Nzlbj(t, X, g)) =rn(t, x, ),
j=0
with some {ry(t,-,-):0<t <t} C S((x) M)~V g). In particular,
(D; + H)J (W, bN) = J (¥, ry).
A standard L2-boundedness of FIOs then implies

sup [[{(x)? (DY T (W, rn) (D) |12 12 < Chyss
t]<te

for any y, § > 0 with 2y +§ < N. Since, in the proof of Lemma 5.4, we already proved that

sup [[(D)” Op(xe)e (D)7 (x) 7Y || ;2 12 < Cys,

[t]<te
we obtain the desired estimate.

Dispersive estimates. By the composition formula of PDOs and FIOs (cf. [Robert 1987]),
Op(x:)J (¥, bY)

is also an FIO with the same phase W and the amplitude

1
@2m)?

Vit x,8) = /e”""xa(x,77+E(t,x,y,é))bN(t,ery,S)dydn,

where E(t, x, y,£) = [} (3:¥)(1, y + A(x — y), §) di. By virtue of (5-6), Z satisfies

10992 9L (Bt x, . &) — &) < Cowplt], le+o + > 1.
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Combining this with the relations x., b" € S(1, g), supp x. C Q(¢), and suppb™ (¢, -, -) C Q(e/2), we
see that {a" : 0 <t < t,} is bounded in S(1, g). The distribution kernel of J (¥, aV) is given by

Ko av(t, %, ) = / VTGN ¢ ¢ ) .

(2m)4

By virtue of Proposition 5.5, we have

sup [0507 0/ (W (1, x,€) —y-£)| < Capy, la+B+y]=2,

|t]=<te

W, x,6) =—1( () +00),  |t|—0.

As a consequence, since g/*(x) is uniformly elliptic, the phase function W(z, x, £) — y - £ has a unique
nondegenerate critical point for all |¢| < 7, and we can apply the stationary phase method to Ky .~ (2, x, y),
provided that ¢, > 0 is small enough. Therefore,

|Kgon(t,x, )| < Clt| ™2, 0<|t| <t x,& R’ O

6. Proof of Theorem 1.5

We now give the proof of Theorem 1.5. Suppose that H satisfies Assumption 1.1 with u > 0. In view of
Corollary 2.6, (1-4) is a consequence of the following proposition.

Proposition 6.1. For any symbol a € Cgo(IRZd) and T > 0,

”Oph(a)e_itH‘/’”Lp([_T,T];Lq(Rd)) = CTh_l/p”(O”L?(Rd)’
uniformly with respect to h € (0, 1], provided that (p, q) satisfies (1-1).

Proof. This proposition follows from the standard WKB approximation for e ="/ Op, (a) up to time
scales of order 1/h. The proof is essentially the same as that in the case for the Laplace—Beltrami operator
on compact manifolds without boundaries [Burq et al. 2004, Section 2]. We omit the details. O

Using this proposition, we have the semiclassical Strichartz estimates with inhomogeneous error terms.

Proposition 6.2. Leta € C° (R??). Then, for any T > 0 and any (p, q) satisfying the admissible condition
(1-1),
10p @e™ ol o171 10 @)
< Cr110p;, @@l 2 gy + Crhll@ll 2mey + Ch™ 210, @e ™ ol 2171 2@y
+Ch'2||[Op;, (@), Hle "™ |l 2.1y L2ty
uniformly with respect to h € (0, 1].

This proposition has been proved by [Bouclet and Tzvetkov 2007] for the case with V, A = 0. We
give a refinement of this proposition with its proof in Section 7.



STRICHARTZ ESTIMATES FOR SCHRODINGER EQUATIONS WITH VARIABLE COEFFICIENTS 1891

Next, we shall prove that if k(x, &) satisfies the nontrapping condition (1-3), the missing 1/ p derivative
can be recovered. We first recall the local smoothing effects for Schrédinger operators proved by Doi
[2005]. For any s € R, we set B* := { f € L2(R%) : (x)* f, (D)* f € L*(R%)}. Define a symbol e, (x, £) by

es(x, ) 1= (k(x, &) + x> + L(s)*/* € S((1 + x| + &), 8),

where L(s) > 1 is a large constant depending on s. We denote by E; its Weyl quantization,

B () =0p"e) f (1) = 31y [ e (V52 ) 0 dy .

Then, for any s € R, there exists L(s) > 0 such that E is a homeomorphism from %" ** to %" for all
r € R, and (E;)~! is still a Weyl quantization of a symbol in S((1 + |x| + |£])7*, g); see, [Doi 2005,
Lemma 4.1].

Proposition 6.3 (the local smoothing effects [Doi 2005]). Suppose that k(x, &) satisfies the nontrapping
condition (1-3) and Assumption 1.4. Then, for any T > 0 and o > 0, there exists Ct,, > 0 such that

|| (x>_1/2_aEl/Ze_itH(p“LZ([_T’T];LZ(RJ)) = CT,U ||(P||L2(Rd)~ (6'1)
Remark 6.4. (6-1) implies a standard local smoothing effect,
1) 2 (DY e || 121 1y 12wty < Croo 0] 200y (6-2)
Indeed, we compute

<x>—1/2—0'<D>1/2 — (D>1/2<x>—1/2—0 + [<D>1/2’ <x>—1/2—0‘]
= (D)'2(E1p) " E1p(x) "0 + (D)2, (x)THE)
= (DYV2(E 1) (x) VOB p + [Evjp, (X)) + (D)2, (x) 7O

It is easy to see that (D)'/2(E12)~", [E1)2, (x)7'/?>77], and [(D)'/?, (x)~"/277] are bounded on L*(R?)
since their symbols belong to S(1, g). Therefore, (6-1) implies (6-2).

Proof of (1-5) of Theorem 1.5. 1t is clear that (1-5) follows from Proposition 6.2, (6-2), and Corollary 2.6,
since a is compactly supported with respect to x and {a, p} € S((§), g), where p = p(x, &). O
7. Near sharp Strichartz estimates without asymptotic flatness

This section is devoted to proving Theorem 1.6. We may assume p = 0 without loss of generality.

Proposition 7.1. Let I € (0, 00) be a relatively compact open interval and Cy > 1. Then there exist
80, ho > 0 such that for any 0 < 8§ <69, 0 < h < hg, 1 <R <1/h, and any symbol a;, € S(1, g) supported
in{(x,&): R < |x| < Co/h, |&| € I}, we have

0py, (an)e ™ Opy, (@n)*ll,1 o < Cslt|™/%, 0 <|t| < ShR, (7-1)

where Cs > 0 may be taken uniformly with respect to h and R.
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Remark 7.2. When || > 0 in (7-1) is small and independent of R, (7-1) is well known and the proof
is given by the standard method of the short-time WKB approximation for e =¥ "/h Opy,(an)*; see, for
example, [Burq et al. 2004].

For h € (0, 1], R > 1, an open interval / € (0, c0), and Cy > 1, we set
LR A1) = {(x,§) eR*: R <|x| < Co/h, §| €1}.
Equation (7-1) is a consequence of the same argument as in the proof of Proposition 3.1 and the following
proposition.

Proposition 7.3. Let I € I} € (0, 00) and Cy > 1. Then there exist &y, ho > O such that the following
hold for any 0 < § <89, 0<h <hg,and1 <R < Cy/h.

(1) There exists Oy (t, x, £) € C®°((=8R, SR) x R*?) such that ®, solves the Hamilton—Jacobi equation

{atth(t’x’é):_ph(x’aquh(t’x’s))’ |t| <8Rv (X,S)EF(R/2,]’£/2, 11), (7_2)
CDh(O,x,S)ZX'%‘, (x?S)GF(R/Z’h/Z’ Il)
Furthermore, we have

1009 (Dt x, &) —x & +1py(x, £) < CopRTR)?, o, pe 28, (7-3)

uniformly with respect to x, & € R4 he(0,hg], 0<R< Co/h,and |t| < SR.
(2) Foranyap € S(1, g) withsuppa, CI'(R, h, I) and any integer N >0, we canﬁndb,lzv(t, -,-)eS, g)
such that

e 'R Opy (ap)* = Jy(®, bY) + Owks (¢, h, N),

where J,(®Dy, b,liv) is the h-FIO with phase function ®; and amplitude bN ., and its distribution kernel
satisfies
|Kwks(t, b, x, y)| < Clth| ™2, h e (0,hol, 0 <|t| <SR, x,£ € R (7-4)

Moreover the remainder Qwxg(t, h, N) satisfies
(D) Qwks (t, h, N)(D)* || 2,12 < Cy sh™"|t],  h € (0, hol, |t| <3R.

Sketch of proof. The proof is similar to that of Theorem 5.8; in particular, the proof of the second claim is
completely the same. Thus, we just outline the construction of ®;,. We may assume Co = 1 without loss
of generality. Denote by (X, E;) the Hamilton flow generated by pj. To construct the phase function,
the most important step is to study the inverse map of (x, &) — (X (¢, x, &), £). Choose an open interval
L sothat [, €I} € (0, 00). The following bound was proved in [Mizutani 2013]:

10297 (X (2, %, £) — )| + (x)|92 0L (B (t, x, &) — £)] < Cap(x)™|1]
for (x,&) e I'(R/3, h/3, fl) and |¢| < §R. For sufficiently small § > 0 and for any fixed |7| < §R, this

implies
10X (1) —1d| < CR7 't < C§ < 1.
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By the same argument as that in the proof of Lemma 5.2, the map (x, §) — (X, (¢, x, §), &) is a diffeo-
morphism from I'(R/3, h/3, I}) onto its range and the corresponding inverse (x, &) — (Y;,(¢, x, ), £) is
well-defined for || <8R and (x, &) e ['(R/2, h/2, I}). Moreover, Y, (¢) satisfies an estimate like the one
for X, (¢):

10908 (Vi (2, %, &) —x)| < Cap(x)I|t], Jt] <8R, (x.&) € T(R/2,h/2, ).
We now define & by
Dy (1, x, §) ::x-s+/0 Li(Xn(s, Y (1, %,6), 6), E(s, y(1, x, ), §)) ds,

where Lj =& - 9¢ pp, — pp. By the standard Hamilton—Jacobi theory, ®;, solves (7-2). Moreover, using
the energy conservation pj(x, 0, P, (¢)) = pr(Yr(¢), §) and the above estimates on X, Ep, and Yj, we

see that
|pn(x, 3 (1)) — pr(x, E) = | pr (Y (1), &) — pp(x, &)
A
< 1Ya () — x| /0 @) MY (6) = (1 = D)x, &)
< Cly(t) — x|(h +h*(x)?)
< Chlt|
and that

18297 (pn(x, 8:®p) — pi(x, )] < Cap(x) " hlr].
Using these estimates, we can check that @, satisfies (7-3). Finally, we extend @, to the whole space so
that @, (¢, x, £) = x - £ — tpy(x, &) outside ['(R/3, h/3, I)). O
Using Proposition 7.1, we obtain a refinement of Proposition 6.2.

Proposition 7.4. Let 0 < R <1/h and let a, € S(1, g) be supported in {(x, &) : R < |x| < 1/h, |&| € 1}.
Then, for any T > 0 and (p, q) satisfying the admissible condition (1-1),

10ps (an)e™ @1l 7.7 4y
< CrlOp, (@n)@|l 12 gay + Crhll@ll 12@ay + Cr(hR) ™2 [1Opy (an)e ™ @l o1 71 2@y

+Cr(hR)2H, Op@)le™ ™ ol 121 71,12y

1/2 i

uniformly with respect to h € (0, hg].

Proof. The proof is similar to that of [Bouclet and Tzvetkov 2007, Proposition 5.4]. By time reversal
invariance we can restrict our considerations to the interval [0, T]. We may assume T > h R without
loss of generality and split [0, T'] as follows: [0, T] = JoU J; U---UJy, where J; =[jhR, (j + 1)hR],
0<j<N-—1,and Jy =[T —5hR, T]. For j =0, we have the Duhamel formula

t
Opy, (ap)e " = =" Op, (a;) — i/ e ' IH[Op, (ay), Hle " ds, te .
0

Here we choose b;, € S(1, g) so that b, = 1 on suppa and bj, is supported in a sufficiently small
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neighborhood of supp a;. By Proposition 7.1, Op,, (bp)e ="~ Op, (b,)* satisfies dispersive estimates
(7-1) for 0 < |t — 5| < 8h R with some § > 0 small enough. Using the Keel-Tao theorem [1998] and the
unitarity of e " e then learn that for any interval Jg of size |Jg| < 2hR, the following homogeneous
and inhomogeneous Strichartz estimates hold uniformly with respect to & € (0, hp]:

10D, (b)e ™ @1l o s Larayy < Cl@l 2oy, (7-5)

= Cliglp sg:2may)» (7-6)
LP(Jr; L9 (RD))

/Ot F(s € Jg) Op,, (bp)e " "=9H Op, (by)*g(s) ds
where F'(s € Jg) is the characteristic function of Jg and (p, q) satisfies the admissible condition (1-1).
On the other hand, using the expansions (2-3) and (2-4), we see that for any M > 0,
Opy (an) = Op;, (b) Opy, (an) +h™ Op;, (ri.1)
= Op;,(bn) " Opy, (ar) + ™ Opy, (r2,1),
[Opy,(an). H] = Opy, (by)*[Opy, (an), H]1+ k™ Op,(r3 1),

with some {r; n}ne,17, [ = 1,2, 3, which are bounded in S((x)"MEgy=M, g). Therefore, we can write

Oph (ah)e—il‘H

t
= Opy, (by)e """ Opy,(ap) —i /O Opy, (bn)e™ "= Opy, (by)*[Opy, (an), Hle " ds + Q(t, h, M),
where the remainder Q(¢, h, M) satisfies
1Q @, b, M) 12y < CyhM~170027VD 9 < g < o0,
uniformly in £ € (0, 1]. Combining this estimate with (7-5) and (7-6), we obtain
10, @n)e™ @l 1o sy 10y < CIOPL(an)@ll 2 + Chllgll 2 4+ C IOy (an), Hle™ ol 1. 12
< C||Op, (@)@l 2 + Chllgll 2 + C(hR)/?(|[Op,(an), Hle @l 2 .12)-
We similarly obtain the same bound for j = N:
10p, (@n)e ™ @l Lo gy:10) < CIOPL(@n)@ll 2 + Chllgll 2 + C(R) ' |[[Opy (an), Hle ™ ol 12, .12)-

For j=1,2,..., N —1, taking 6 € C3°(R) so that =1 on [—1/2,1/2] and supp 6 C [—1, 1], we set

0j(t)=6(t/(hR)— j—1/2)). Itis easy to see that 6, =1 on J; and supp6; C j; =J;+[-hR/2,hR/2].
We consider v; =6;(t) Op,, (ap)e™ """ ¢, which solves
i9,v; = Hv; + 0} Opy(an)e™"" ¢ +6,[Op, (an), Hle "o, vjl;—0=0.

An argument as above and the Duhamel formula then imply that, for any ¢ € J~J and M > 0, v; satisfies
t

vj=—i / Opy, (bp)e ™"~ Opy, (b)*(6(5) Opy, (an) + 0;()[Opy,(an). Hl)e o ds + O(1, h, M),
0

where the remainder é (t, h, M) satisfies

||é(tah’M)||L2—>L‘1 SCMhM_l_d(l/z_l/q), 2§C] <00,
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uniformly in 4 € (0, 1] and 7 € J;. Taking M > 0 large enough, we learn

”Uj”Lp(J_/.;Lq)
< Ch?|lpll 2 + ChR) " 10p, an)e ™l 117 12) + C 0Py an), Hle "ol 117,12
< Ch?|lpll 2+ ChR)Y ™ 210py (an)e™ ol 127 12y + C R 21Oy (an), Hle™ ™ oll 127,12

Since N < T/h and p > 2, summing over j =0, 1,..., N, we have the assertion by Minkowski’s
inequality. (]

Proof of Theorem 1.6. In view of Corollary 2.6, Theorem 1.5, and Proposition 3.2, it suffices to show that,
for any a;, € S(1, g) with
suppa, € {(x,§):2<|x| <1/h, |§| €I}

and any € > 0,

—i 2
> 0pyan)e™ ™ F RPN 71310 < Crel(H) @175
h

Let us consider a dyadic partition of unity:

Y x@ixy=1, 2<x|<1/h,

1<j<jn
where x € C5°(R?) with
supp x C {1/2 < |x| <2}

and j, <[log(1/h)]+ 1. We set
Xj(x) = x2/x).

Proposition 7.4 then implies
1 Op, (ah)e_ith)”LP([—T,T];L‘l)
< Crllx; Opyan@ll 2+ Crhlipl 2 + Cr(h2) ™21 x; Opy(an)e ™ ¢ll 2.1y, 1)
+Cr(h2))'|1[x; Opyan), Hle ™™ol 21 11,12

Since 2/7! < |x| <2/*! and |x| < 1/h on supp xjas, we have, for any & > 0,
(h2))"2 11 x; Opyanye™ ™ oll o g 7yer2y < Cllxjx) 275071272 Opylan)e ™ M oll o .1y 12)-
Since {xan, p} € S((x)~ 1), g), we similarly obtain
(h27)! 211 x;1Opy(an), H1e ™ @l 121 1112,
<% (x) =27 n 2 Opy (e ™ ol g g2y + Crhll @l 2,

where X;(x) = X (27/x) for some ¥ € CS°(R?) satisfying ¥ = 1 on [1/2,2] and supp ¥ C [1/4, 4],
and b, € S(1, g) is supported in a neighborhood of supp a;, so that b, = 1 on supp a;. Summing over
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1 < j < jj, and using the local smoothing effect (6-2), since p, g > 2, we obtain

. 2
0Py (an)e™ " ol Lo —7.71:19)
. 2
< Z Il x; Opy,(an)e ”H‘/’”LP([—T,TI;M)
1<j<jn
<Cr Y (% Opyplan)eli + hlell7.)
1<j=<jn

~ — —_ —_ —_ —i 2
+C Z ||Xj<X> 172 th 12 soph(ah+bh)e ”HgD“LZ([—T,T];Lz)

1<j<jn
_ P _ . 2
< Crllel;.+ Cllix)~" 2= h="27¢ Opy,(an + b)e ™ " ol 2 1. 11:12)

-2 2
<Crch 8”(/’||sz

which implies

_ 2 _ 2 2
> l0pyan)e™™ F R E)ll g1y 000 < Crie 3B NPl 12 < Cr el {H) 0] 2.
h h

This completes the proof. O
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UNIFORMITY OF HARMONIC MAP HEAT FLOW AT INFINITE TIME

LoNGzHI LIN

We show an energy convexity along any harmonic map heat flow with small initial energy and fixed
boundary data on the unit 2-disk. In particular, this gives an affirmative answer to a question raised by
W. Minicozzi asking whether such harmonic map heat flow converges uniformly in time strongly in the
W2_topology, as time goes to infinity, to the unique limiting harmonic map.

1. Introduction

Given a compact Riemannian manifold /M and a closed (that is, compact and without boundary) Riemannian
manifold N which is an isometrically embedded submanifold of R", we can define the Dirichlet energy
of a map u € W2, N):

Energy(u) = E(u) = %f Vul dvy, (1-1)
M
where W2(L, N) is the class of maps
{u € L (M, R : f |Vu|? dvy < 400, u(x) €N forae. x € /l/t}.
M

The tension field 7(u) € I'(u*(TN)) is the vector field along u representing the negative L>-gradient of
E(u). A weakly harmonic map u from L to N is a critical point of the energy functional E(«) in the
distribution sense, that is, the tension field t(#) vanishes, and it solves the Euler—Lagrange equation

—Ayu =I(w)(Vu, Vu), (1-2)

where u = (u', ..., u™) and I1(u) denotes the second fundamental form of N' < R" at the point u. We
refer to this system of elliptic equations as the harmonic map equation.

A natural way to control the tension field for an energy minimizing sequence of maps and to get the
existence of harmonic maps from Jl to N is to consider the initial (-boundary) value problem:

u; — Ayu =I(w)(Vu, Vu) on M x (0, T),
u(x,0) =uop(x) for x € JM, (1-3)
ulx, 1) = x(x) = uolau forallt >0, x € M if M # &,

MSC2010: 53C44, 58E20.
Keywords: harmonic map heat flow, energy convexity, uniform convergence.
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where u = (u', ..., u") and T > 0. We refer to this system of parabolic equations as the harmonic map
heat flow, to the map u as the initial data, and to the map x as the boundary data. Given ug € W2(AL, N)
and x = uglau € W'22@M, N), we define u € WH2(M x [0, T, N) to be the weak solution of (1-3) if

/ / Ug, &)+ (Vu, VE) — (II(u)(Vu, Vu), £) dx dt =0 (1-4)

forany & € C2°(M x (0, T), R").

In the fundamental paper where the harmonic map heat flow was first introduced, Eells and Sampson
[1964] proved that the harmonic map heat flow exists for all time in the case where the source domain
J (of arbitrary dimensions) is without boundary and the target manifold N has nonpositive sectional
curvature. They also proved that there exists some sequence of times #; ' 400 such that

Uoo = lim u(-, 1)
1—>00

is a harmonic map from Jl to N. The case in which the source domain i has boundary was dealt
with in [Hamilton 1975] under the same curvature assumption on N. The question of uniformity of the
convergence in time of the flow considered by Eells and Sampson was left open at that stage, but it was
settled later by Hartman. We shall state their results in the following theorem.

Theorem 1.1 [Eells and Sampson 1964; Hartman 1967]. Suppose that M and N are two closed Rie-
mannian manifolds and that N has nonpositive sectional curvature. Then, given any ug € C' (M, N), the
harmonic map heat flow has a unique solution u € Cl(M x [0, 00), N)NC®(M x (0, 00), N). Moreover,

Uoco ztlirgou(- . 1) (1-5)

exists uniformly in C*-topology for all k > 0 and us is a harmonic map homotopic to uy.

Other similar uniformity results were obtainable under various assumptions on the target manifold N,
such as being real analytic [Simon 1983] or admitting a strictly convex function; see also the interesting
paper [Topping 1997] for harmonic map heat flow in a special case in which both the source and target
manifolds are 2-spheres S2.

When the dimension of the source domain .t is two, things are particularly interesting because the energy
functional E'(u#) and the harmonic map equation (1-2) are conformally invariant in this critical dimension.
Regarding the harmonic map heat flow (1-3) from surfaces to a general closed target manifold N, the
first fundamental work was [Struwe 1985], dealing with the case d.l = &, where “bubbles” may occur
and have been analyzed in detail. This result was then extended to the case d.il # @ with Dirichlet
boundary condition in [Chang 1989]. If the initial energy E (u) is sufficiently small, it is well known
by now that the weak solution of (1-3) is smooth (in the interior) by the results of [Freire 1995; 1996]
using the so-called moving frame technique introduced by Hélein (see, for example, [Hélein 2002]).
We will state their e-regularity theorem required in this paper, and include an alternative proof of it for
self-containedness; it uses the main tool of our current work, which we call Riviere’s gauge decomposition
(Theorem 3.7).
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Theorem 1.2 ([Freire 1995; 1996]; cf. [Struwe 1985; Chang 1989; Wang 2012]). Let M be a simply
connected compact Riemannian surface and N a closed Riemannian manifold. There exists €9 > 0
depending only on M and N such that the following is true. For each initial data uy € W2 (M, N) with
E(ug) < €y and the boundary data y = uglyy in the case where oM #= &, there exists a unique global
weak solution u € WH2(M x [0, 00), N) for which E(u( -, 1)) is nonincreasing in t. Also, u is smooth in
M x [1, 00) and, for any t, > t; > 1, we have

4]
%//WWF=/|VMuHNLi/|VMwQW- (1-6)
n JAM B B

Moreover, there exists some sequence of times t; /' +00 such that

oo = lim u(-, ;) (1-7)

1—>00
exists in the C¥-topology for any k > 0 and u. is a harmonic map from M to N.

Remark 1.3. In particular, in order to avoid the “bubble” (singularity) along the harmonic map heat flow,
a priori we may choose g9 < K; + K, where

Ky =inf{E(v) | ve W', N) and v]py = x}
and
Kr=inf{E(v) | v: S? — N is nonconstant and harmonic} > 0.

Remark 1.4. Freire’s regularity results for harmonic map heat flow represent a parabolic version of
the regularity theorem of Hélein stating that weakly harmonic maps from surfaces are regular; see, for
example, [Hélein 2002].

A tempting question to ask is whether, for a general closed target manifold N (without additional
geometric assumptions), one could establish uniformity results for the harmonic map heat flow similar to
Theorem 1.1. In particular, is the convergence (1-7) in Theorem 1.2 uniform for all time in the natural
W!2_topology, say? In view of the conformal invariance of the energy functional E (x) in dimension
two, the condition of small energy seems to be a natural candidate to work with in order to get such
uniformity of the convergence in time for the flow. We will show in the following that this is indeed the
case. In what follows we will concentrate on the case where the source domain Jl is a simply connected
compact Riemannian surface with boundary. More precisely, we focus on domains which are conformally
equivalent to the unit 2-disk B; C R?. From now on we will only work on Bj:

u; — Au =IT(u)(Vu,Vu) on B; x (0, T),
u(x,0) =up(x) for x € By, (1-8)
u(x,t) = x(x) =uolsa, for all t > 0 and x € 0By,

where A is the usual Laplacian A = Zle 8%/ 8xl.2 in R2. All the arguments could be easily modified to
apply to the general case.

Notation 1.5. In what follows, V = (9,, d,) is the gradient operator in R2? and V+ = (—0y, dy) denotes
the orthogonal gradient (that is, V! is the V-operator rotated by 7 /2).
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Now we state the main theorem of this paper.

Theorem 1.6. Let N be a closed Riemannian manifold. There exist gy, Ty > 0 depending only on N such
that if u € WL2(B; x [0, 00), N) is a global weak solution to the harmonic map heat flow (1-8) with
E(uo) < €o, E(u(-, 1)) is nonincreasing in t, and u( -, t)|yp, = x for allt > 0, then, for all t > t; > T,
we have the energy convexity

1

1 |Vu(-,r1)—Vu(-,z2)|25/|Vu(-,n>|2— IVu(-, ). (1-9)
B B

B
Remark 1.7. We do not know if the energy convexity (1-9) holds for all #, > #; > 0. In the following
arguments we agree to let gy be sufficiently small and Ty be sufficiently large, as needed.

Our approach to the proof of Theorem 1.6 is based on the technique we call Riviere’s gauge decom-
position, introduced in [Riviere 2007]; see Section 3. Immediate applications of Theorem 1.6 are:

Corollary 1.8. Let N be a closed Riemannian manifold. There exists ey > 0 depending only on N such
that if u € WH2(B) x [0, 00), N) is a global weak solution to the harmonic map heat flow (1-8) with
E(uo) < €0, E(u(-, 1)) is nonincreasing int, and u( -, t)|ap, = x forallt > 0, then

u(-,t) > U uniformly ast — +oo strongly in W1’2(B1, R™), (1-10)

where uo, is the unique harmonic map with E(u~) < &9 and boundary data .

Corollary 1.9. Let M be a two dimensional domain that is conformally equivalent to By and has smooth
boundary, and let N be a closed Riemannian manifold. Suppose the initial energy E (ug) < &g. Then the
harmonic map heat flow (1-3) with initial data ug € Cz""(Jl_A, N) and boundary data x € C>*(dM, N),
considered by Chang [1989], converges uniformly in time strongly in W2 (M, N) to the unique harmonic
map Uso € C)z(’“(M, N).

Remark 1.10. We do not know if a harmonic map heat flow can be nonuniform without the small energy
assumption. In view of the nonuniqueness results of Brezis and Coron [1983] and Jost [1984] for harmonic
maps (with large energy) sharing the same boundary data on 9 B, it is quite possible that the small energy
assumption is necessary for the energy convexity and uniform convergence of the flow in Theorem 1.6
and Corollary 1.8 to hold.

Remark 1.11. Colding and Minicozzi [2008a] showed an energy convexity for weakly harmonic maps
with small energy on Bj: there exists g > 0 such thatif u, v € WL2(By, N) with ulyp, =vlap,, E(u) <eo,
and u is weakly harmonic, then we have the energy convexity

1 IVo—vVul>< | |Vu>= [ |Vul* (1-11)
2/, Bi Bi
See [Lamm and Lin 2013] for an alternative proof of this energy convexity using the same techniques

used in the present paper. A direct consequence of (1-11) is that u ., in Corollary 1.8 is unique in the class
{ve WH(B,R") : E(v) < g9 and |, = x};

see [Colding and Minicozzi 2008a, Corollary 3.3].
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The paper is organized as follows. In Section 2 we present some heuristic arguments and elaborate
on the idea of the proof of the main theorem, Theorem 1.6. In Section 3 we review the main tool of
our proof, namely, Riviére’s gauge decomposition technique adapted to the case of harmonic map heat
flow. In Section 4 we show improved estimates for Riviere’s matrices B and P, which are the two key
ingredients of our proof. We finish the proof of our main theorem in Section 5.

2. Heuristic arguments and the idea of the proof

In this section we will present some heuristic arguments and sketch the basic idea of the proof of
Theorem 1.6. We will abbreviate u( -, t) to u(¢). In order to prove the energy convexity (1-9) along the
harmonic map heat flow, that is, there exists some 7y > 0 such that, for all #, > #; > T, we have

1
1 [ VuC. ) =vVuC )P < | [VuC )P = | [Vu(-. )P, @1
B B By

it suffices to show

v > —( Vu(t) - |Vu<z2>|2) — 3 | IV = Vu) P, (2-2)
By

B By

where (using that u (-, #)[3p, = x for all # > 0 and the flow equation (1-8))
wim [P - [ 1VueP - [ vua) - uep
B B B
=2 [ (Vutey) - Vute). Vu(e)
B
= —2/ (u(t) —u(t2), us (1) — ) (Vu, Vu)(12)). (2-3)
B

Now note that for any p, g € N, there exists some constant C > 0 depending only on N such that
|(p —q)*| < C|p — q|*, where the superscript L denotes the normal component of a vector; see, for

example, [Colding and Minicozzi 2008b, Lemma A.1]. Therefore, using the fact that IT(x)(Vu, Vu) L T,N
and the Cauchy—Schwarz inequality, (2-3) yields

1/2 1/2
Wz—z( |u<r1)—u<r2)|2) ( |uz(t2>|2) —C | () —u@) | Vu)?
B B B,

t 12 1/2
z—w—rz—n(// W) ( |ut<zz)|2) —c [ ) — )P Vuw)P,
N B B B

where we also used the smoothness and compactness of the target manifold N. Here and throughout the
rest of the paper, C > 0 will denote a universal constant depending only on N unless otherwise stated.

Since we have (1-6) and g can always be chosen sufficiently small, we know that (2-2) will be achieved
if we can show the following two key propositions.
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Proposition 2.1. Let u(x, t) be as in Theorem 1.6. Then there exists Ty > 0 such that, for all t; > t| > Ty,
we have

2
lu: (12)|” <

1 n )
f s 2. (2-4)
Bi h—10 Jy Jp

Remark 2.2. The key point of Proposition 2.1 is that (2-4) is valid for all #, > #; > Ty. We will see that,
in fact, f B, lus (£)]? is nonincreasing along the flow after Ty, which yields (2-4); cf. Lemma 2.5 and (5-16)
below. A similar but weaker estimate was shown when the source domain of the heat flow is boundaryless
[Struwe 1985, Equation (3.5)], which turned out to be the key estimate needed in Struwe’s proof.

Proposition 2.3. Let u(x, t) be as in Theorem 1.6. Then there exists Ty > 0 such that, for all t; > t| > Ty,
we have

lu(t)) — u(t2)|* |Vu()|> < Ceo | |Vu(ty) — Vu(t)|*. (2-5)
B B

If one were able to get
IVu(t2) |l L= (8,) < C/e0, (2-6)

(2-5) would have been automatically true by Poincaré’s inequality. However, without imposing any
regularity information on the boundary data y, it will be hopeless to get such a strong global pointwise
gradient estimate. In fact, even if we look at the stationary case, that is, W' -weakly harmonic maps on
By, it is easy to convince oneself that it is unreasonable to expect regularity with global estimates on the
whole B better than W22 in general.

Nevertheless, not all hope is lost to show estimates (2-4) and (2-5). Indeed, the following lemma is
true, which validates Proposition 2.3 under some extra assumptions.

Lemma 2.4. Let u(x, t) be as in Theorem 1.6 and suppose that, for all t; > t| > To > 1, we can solve the
following Dirichlet problem for r € WO1 2N L*°(By):

AY =|Vu(r)|®> in By,
V¥ = |Vu()l in B 27
Y =0 on 0B,
with the estimate
1Y L) + IV IlL208,) < Céo. (2-8)

Then Proposition 2.3 holds.

Proof. The proof is essentially taken from [Colding and Minicozzi 2008a]. Substituting (2-7) into the
left-hand side of (2-5) yields (using also that u(#;) = u(t;) = x on dBy)

lu(ty) —u®)* |Vut)|* = ’ |u<z1>—u(rz>|2Aws/B |VIu@t) —u@)*| IV

172 12
52(/3 IVu(t1)—VM(f2)|2) </B |u(l‘1)—u(t2)|2|V1p|2) . (29)

where we have applied Stokes’ theorem to div(Ju(#;) — u(t)|>Vy) and used the Cauchy-Schwarz
inequality. Now, applying Stokes’ theorem to div(|u(¢;) — u(t) > V) and using that Ay > 0 and (2-9),

B
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we have

/Blu(t1)—u(12)|2|V1/f|2§/B|1/f|(|u(t1)—u(t2)|2Al/f+|V|M(11)—M(tz)|2||V1l’|)

1/2 1/2
§4||w||m( |Vu(t1)—VM(lz)|2) ( |u<n)—u<tz)|2|w|2) ., (2-10)
B

B
so that

1/2 1/2
(B|u<z1)—u<tz)|2|w|2> s4||w||m( |w<r1)—w<z2)|2) : (2-11)

By

Finally, substituting (2-11) back into (2-9) and combining with (2-8) (and choosing &¢ sufficiently small),

yields
lu(t)) — u(t2)|* |Vu) > < C|¥llLe | |Vu(t) — Vu(t)* < Ceo | |Vu(t) — Vu(t)|?,
B B B
which is just (2-5). ]

Similarly, we can show the following lemma, which states, under some extra conditions, that f B, lu; (1) |2
is nonincreasing along the harmonic map heat flow after some 7y > 0 and Proposition 2.1 can be validated
in this case.

Lemma 2.5. Let u(x, t) be as in Theorem 1.6. For any t, > t; > Ty > 1, suppose that for any to € [t1, t2]
we can solve the following Dirichlet problem for {r € WOI’2 N L (By):

AV = |Vu(ty)|* in B
¥ =|Vulo)P in B, 01
Y =0 on 9By,
with the estimate
1Y L) + IV¥ L2, < Céo. (2-13)
Then we have
/ lu, (02) | < / Jur (1) (2-14)
B B

In particular, Proposition 2.1 holds if (2-12) and (2-13) are valid for any ty € [t1, t;] and any t; > t; >
To > 1.

Proof. Differentiating the flow equation (1-8) with respect to ¢, multiplying with u,, and integrating over
B x [t1, t2], we have

1 153 1% %)
5/[ at|u,|2+/ |Vut|2scf lur|? [Vul* + |ug| |Vul |V, |
N B I3 B 141 B

15 15}
51// |Vut|2+0// WP IVaP. (215
2 51 B 1 B;

Since (2-12) and (2-13) are valid for any fy € [#1, t2], we can use the same arguments as in the proof of
Lemma 2.4 to get an estimate for f B, lu;1? |Vu|? at the time 1y slice. Indeed, similarly to (2-5) (that is,
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replacing u(t;) — u(t2) by u,(ty)), for any ty € [#1, 2], we have

s> [VulP(to) < ClIY Nl | [Vur(o)> < Ceo | |Vus(to) . (2-16)
Bi By By

Inserting (2-16) back into (2-15) (for any #y € [#1, £2]), we see that the right-hand side of (2-15) can be
absorbed into the left-hand side if we choose ¢y sufficiently small. This implies that we have (2-14)
for any such #, > #; > Tp. In the above calculations, we should treat u, as a difference quotient:
u;(-,t) =limy_ o+ (u(-,t+h) —u(-,t))/h, which is zero on dB; for all + > 1; moreover, we have
denoted Vu,(-,t) =lim,_o+(V(u(-,t+h)—u(-,t)))/h and all the calculations are valid for any fixed

h > 0. We then we take 7 — 0T to conclude (2-14).
If (2-12) and (2-13) are valid for any #y € [#(, 2] and any #, > #; > Tp > 1, then, in view of (2-14),
estimating by the mean value of |u, |2 over B; x [t1, t2] gives Proposition 2.1. |

Therefore, everything boils down to validating the assumptions in Lemmas 2.4 and 2.5, that is, the
existence of such functions ¥ satisfying (2-7), (2-8) and (2-12), (2-13), respectively, for any ty > T for
some Ty > 1. We point out that, a priori we only know that the energy density |Vu(¢)|* lies in L' (B))
with global estimate H |Vu(t)|2| Lis) = €0 for any fixed ¢. But L is the borderline case in which the
standard L”-theory for the Dirichlet problem (2-7) with estimate (2-8) fails!

However, the following regularity theorem for boundary value problems in the local Hardy space

h'(B;) sheds new light on the problem of validating the assumptions in Lemmas 2.4 and 2.5. Here the
local Hardy space h'(By) is a strict subspace of L'(B;) and we will recall its definition in Definition 2.8
below.

Theorem 2.6 (cf. [Semmes 1994, Theorem 1.100; Chang et al. 1993, Theorem 5.11). Let f € h'(B;)
such that f >0 a.e. in By. Then there exists a function ¥ € L*°N WOI’Z(Bl) solving the Dirichlet problem

Ay = in B
Vv =f inBy, 2-17)
Y =0 on 0B;.
Moreover, there exists a constant C > 0 such that
Iy + IV IL28) < ClLF llnisy)- (2-18)
Proof. For self-containedness, we include an elementary proof of this theorem in Appendix A. O

Remark 2.7. This theorem can be thought of as a generalization of a result from [Miiller 1990]; cf. Wente’s
lemma (Lemma 3.6). For a more general version of this theorem, we refer to Chang, Krantz, and Stein’s
work [Chang et al. 1993].

Definition 2.8 [Miyachi 1990]. Choose a Schwartz function ¢ € C;°(Bj) such that f B, ¢dx =1 and let
¢:(x) = t72¢(x/1). For a measurable function f defined in B, we say that f lies in the local Hardy
space h'(B) if the radial maximal function of f

1 _
/B<>z_2 <—xty>f<y)dy

f*(x)=sup

O<t<l1—|x]|

(x)=sup ¢ fl(x) (2-19)

O<t<l1—|x]|




UNIFORMITY OF HARMONIC MAP HEAT FLOW AT INFINITE TIME 1907

belongs to L'(B;) and we define

||f||h1(Bl) = ”f*(x)”Ll(Bl)- (2-20)

It follows immediately that 4'(B;) is a strict subspace of L!(B;) and

I leresy < W lwrsyy-
It is also clear that if f € L?(By) for some p > 1, then || fl515,) < Cll fllLr ().

We remark that the local Hardy spaces 4! (or the global version ') act as replacements for L' in
Calderon—Zygmund estimates. Therefore, by Theorem 2.6, if we can somehow manage to obtain a
“slightly” improved global estimate for |Vu|? from L'(B;) to h'(By) for all ty > Ty, it will be sufficient
to validate the assumptions in Lemmas 2.4 and 2.5. As mentioned above, the subtlety is that, without
imposing any regularity information on the boundary data y, global estimates are very difficult to obtain.

The rest of the paper is devoted to validating the assumptions in Lemmas 2.4 and 2.5. Namely, in view
of Theorem 2.6, it suffices to show there exists 7y > 0 such that

[1Vuo) P[5, < Ceo  forany 1o = To. (2-21)

The point here is that no pointwise estimate on Vu such as (2-6) is needed, and instead, a (weaker)
improved global integral estimate (2-21) will be sufficient and turns out to be the key to the proof of
Theorem 1.6.

3. Analysis of harmonic map heat flow using Riviere’s gauge

Regarding the regularity of weakly harmonic maps from surfaces, Hélein (see, for example, [Hélein 2002])
proved the interior regularity with the help of the so-called Coulomb or moving frame, and Qing [1995]
showed the continuity up to the boundary in the case of continuous boundary data based on Hélein’s
technique. Riviere [2007] succeeded in writing the 2-dimensional conformally invariant nonlinear system
of elliptic PDE’s (which includes the weakly harmonic map equation (1-2)) in the form

—Au' =Q, -V, i=1,2,...,n, or —Au=Q-Vu (3-1)

with @ = (2))1i,j<n € L*(B1. 50(n) ® \'R?) and Q' = —Q/ (antisymmetry). Here and throughout the
paper, the Einstein summation convention is used. We refer to the system of equations (3-1) as Riviere’s
equation. This special form of the nonlinearity enabled Riviere to obtain a conservation law for this
system of PDE’s (see (3-8) below), which is accomplished via a technique that we call Riviere’s gauge
decomposition. More precisely, following the strategy of [Uhlenbeck 1982], Riviere [2007] used an
algebraic feature of 2 — its antisymmetry — to construct £ € WOI’Z(B] ,s0(n)) and a gauge transformation
matrix P € WH2N L>®(B;, SO(n)) (which pointwise almost everywhere is an orthogonal matrix in R"*")
satisfying some good properties.
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Theorem 3.1 [Riviere 2007, Lemma A.3]. There exist ¢ > 0 and C > 0 such that, for every Q2 in
L2(By, s0(n) ® \'R?) satisfying

1QP° <&,
B,

there exist & € Wol’z(Bl, so(n)) and P € WH2(By, SO(n)) such that
Vie=PI'VP+PTQPinB, withE =00ndB,, (3-2)
and
V&l L28) IV P2,y < ClISLIL28))- (3-3)
Here the superscript T denotes the transpose of a matrix.

Remark 3.2. Multiplying both sides of (3-2) by P from the left gives (with indices and 1 <m, z <n)

VP =P VtEr —QLPS, 1<i,j<n. G-4)

z7

Remark 3.3. Besides Uhlenbeck’s method there is another way to construct the gauge transformation
matrix P, namely, one can minimize the energy functional

E(R) =/ IRTVR + RTQR|? (3-5)
B

among all R € WL2(By, SO(n)); see, for example, [Choné 1995; Schikorra 2010].

Another key result from Riviere’s work is the following theorem, which was proved based on
Theorem 3.1.

Theorem 3.4 [Riviere 2007, Theorem 1.4]. There exist ¢ > 0 and C > 0 such that, for every Q2 in
L2(By, s0(n) ® \'R?) satisfying

Q7 <e,
B

there exist
AeWw'2nC%By, GL(R), A= (A+I)PT e L°NW'A(By, GL,(R)), B e W,>(Bi, M,(R))
such that
VA—-AQ=V'B (3-6)
and

Al w1208, + 1Al + I Bllwiasy < IR L2s,)- (3-7)

Remark 3.5. Combining (3-6) with (3-1), one obtains the conservation law (in the distribution sense) for
Riviere’s equation, (3-1):
div(AVu + BV+u) =0. (3-8)
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Equation (3-1), first considered in such generality in [Riviere 2007], generalizes a number of interesting
equations appearing naturally in geometry, including the harmonic map equation (1-2), the H -surface
equation, and, more generally, the Euler-Lagrange equation of any conformally invariant elliptic La-
grangian which is quadratic in the gradient. We remark that the harmonic map equation (1-2) can be
written in the form of (3-1) if we set

Q:=(Q)1<ijen. where Q' :=[TT'(u);; — TV (u); ]Vl (3-9)

A central issue is the regularity of the weak solution « to this system of equations (3-1). Based on the
conservation law (3-8), Riviere proved the (interior) continuity of any W12 weak solution u to (3-1). This
also resolved two conjectures by Heinz and Hildebrandt, respectively; see [Riviere 2007]. We point out
that the harmonic map heat flow (1-8) on B can be written in the form

u; — Au=-Vu on By x (0,T), (3-10)

where 2 is as in (3-9).
The deep reason for Riviere’s argument to work is that once the conservation law (3-8) is established,
(3-1) can be rewritten in the form
div(AVu) = V1B -Vu.

The right-hand side of this new equation lies in the Hardy space ! by a result of Coifman, Lions, Meyer,
and Semmes [Coifman et al. 1993]. Moreover, using a Hodge decomposition argument, one can show
that u lies locally in W2 !, which embeds into C° in two dimensions; cf. the proof of Theorem 3.7 below.
The key to this fact is a special “compensation phenomena” for Jacobian determinants, first observed in
[Wente 1969]. We will refer to the following lemma of Wente, for which an elementary proof can be
found in [Brezis and Coron 1983; Hélein 2002, Theorem 3.1.2], and which will be the key ingredient of
our proof.

Lemma 3.6 [Wente 1969]. Ifa, b € W"2(B;, R) and w is the solution of

Aw=2000b_0a0b _ G, g1y, p,
dy dx  0dx dy
5 (3-11)
w=0 or ¥ =0 on 0By,
ov
then w € CONW12(By, R) and the estimate
lwlLes) + IVwlizzp) < CliVall 2y IVOIlL2a,) (3-12)

holds, where we choose f B W= 0 for the Neumann boundary data.

Now let u(x, 1) € W-2(B; x [0, 00), N) be a global weak solution to the harmonic map heat flow (1-8)
with E(ug) < €0, E(u( -, t)) nonincreasing in ¢, and u( -, t)|yp, = x for all # > 0 as in Theorem 1.6. First
note that, for a.e. 7y € (0, 00), we have u; (o) € L*>(B;). Then, for any fixed #y such that u,(tg) € L*(B)),
as in (3-9), we have

Q(10) = (R (t0))1<i.j<n»  Where Q' (f9) = [TT' (u (1)) j.1 — TI (u(t0))i. 1Vt (10).
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We will express this by writing €2 (f9) = I1(u(#y)) Vu(tg). Moreover,
1Q(10)* < CE (u(ty)) < Céo. (3-13)
B

Therefore Riviere’s theorems on the existence of gauge (Theorems 3.1 and 3.4) apply to this time #g slice,
and we find the existence of matrices P (ty) € W!2(By, SO(n)),

A(to) = (A(10) +1d) PT (19) € L® N W'(By, G, (R)),
and
B(t9) € Wy (B, M, (R))
such that
V A(to) — A(tg)2(t) = V' B(to) (3-14)

with the corresponding estimates (3-3) and (3-7).
Combining (3-14) with the harmonic map heat flow equation (3-10) yields (omitting the index #y)
div(AVu + BV*u) =VA -Vu+ AAu+ VB -V+tu
=VA-Vu+A(—Q-Vu+u,)+ VB -V+tu
=VA-Vu+ (V*B—VA)-Vu+ Au, + VB -V+tu
= Au,. (3-15)
We refer to (3-15) as an almost conservation law. By the results of [Coifman et al. 1993] and the standard

L? theory, (3-15) readily implies that u(ty) € C°(B;, R"). In fact, we have the following e-regularity
theorem.

Theorem 3.7. There exist &y > 0 depending only on N such that if u € WH2(B; x [0, 00), N) is a global
weak solution to the harmonic map heat flow (1-8) with E(ugy) < &9, E(u(-,t)) nonincreasing in t, and
u(-,t)|pp, = x forallt >0, then u € C*°(B; x [1, 00), N).

Proof. For any fixed #y such that u,(#p) € L*(By), by Hodge decomposition (see, for example, [Iwaniec
and Martin 2001, Corollary 10.5.1]), there exist D(ty), E(t) € WL2(B;, R") such that (omitting the
index #j)

AVu=VD+V=E. (3-16)

Note that (3-15) implies

div(AVu) = —VB -V+tu + Auy, (3-17)
curl(AVu) = V+A -Vu.
Combining (3-16) and (3-17), we have
AD =—VB -Vtu+ Au,,
A Ut Ay (3-18)
AE =V+1A.-Vu.

Then, by the results of [Coifman et al. 1993] and via an extension argument, using the fact that
Au,(ty) € L*(By), we get AVu(ty) € WIL’CI(BI). Therefore u(ty) € Wli’cl(Bl), which embeds into C°(By).
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Indeed, AVu(ty) € Wlf)’cl(Bl) implies immediately that
Q1) = M(u(t0)) Vulto) € Wy, (B1). (3-19)

Then, by [Riviere 2012, Theorem IV.4], the flow equation (3-10), (3-19), and the fact that u,(#) € L?*(B))
yield that Vu(zy) € L{;C(Bl) for some p > 2. Note that this is valid for a.e. 7y € (0, o). Then, via a
standard bootstrapping argument, we have Vu € LfOC(Bl x [1,T]) forallg > 1 and any T > 1 (see, for

example, [Lieberman 1996]) and all higher order interior regularity follows. O

Again, we see that the “compensation phenomenon” enjoyed by the special Jacobian structure (see
Lemma 3.6) has played an important role here, and these Wente-type estimates have many interesting
applications, as in [Wente 1969; Brezis and Coron 1983; 1984; Tartar 1985; Coifman et al. 1993; Hélein
2002; Riviere 2007; 2008; 2011; Lamm and Lin 2013].

4. Improved estimates on the matrices B and P

Our main observation in this section is the existence of hidden Jacobian structures for AB and A P, valid
only when €2 is of some special form: in our case, 2 = I1(x) Vu. This will allow us to gain an improved
global estimate for the matrix B and an improved local estimate for P. We start with the improved
estimate for B.

Proposition 4.1. Let u(x, t) be as in Theorem 1.6. For any ty € [1, 00), we have
I B(to) |~ < C | [Vu(to)]* < Cey. 4-1)
B

Proof. We recall that Q is given by IT(x#)Vu as in (3-9) and therefore ||Q(t0)||iz(31) < Cgp forall tp > 1.
Now let gg be so small that Theorems 3.1 and 3.4 apply. Taking the curl on both sides of (3-14) yields

AB(19) = — curl(A(10) T (u(10)) Vu(to)) = —Vu(to) -V (A(to) T ((to))). (4-2)

Combining the Jacobian structure of the right-hand side of (4-2) with the zero boundary condition of B
and estimates (3-3) and (3-7), Lemma 3.6 gives (4-1). Here we have also used E(u(¢)) < g forall t >0
and the smoothness and compactness of the target manifold N U

Next, as a step toward the improved local estimate on the matrix P, we show that AP also has a
special Jacobian structure.
Lemma 4.2. Let u(x, t) be as in Theorem 1.6. For any ty € [1, 00) such that u,( -, ty) € L*>(B}), there
exist

§(tg) € Wy (Bi, so(n)),  m(io) € W (B, RY), ¢ (i) € Wy > (B1, R
and
O (t0), Ri(ty) € W2 N L>®(B1, GL,(R)), k=1,...,n

with

IVE@) 228, + 1V 28, + IVE @) I 28, + Z(l|va(t0)||L2(Bl) + IV R (t0) Il 12(8,)) < C/E0
k



1912 LONGZHI LIN
and
1 (to) Il w228,y < Cllue (o)l 228, (4-3)
such that
AP(to) = VP(t0) -V E(to) + V Qi (t0) - V¥ (t0) + VR (t0) -V uk (1) + div( Qi (1) VEF (1)) (4-4)

Proof. We omit the index fg in the proof. Hodge decomposition and the estimates for the L°°-norms of A
and B imply the existence of n € W12(B;, R") and ¢ € W(}’Z(Bl, R™) such that

Vin+Ve=AVu+ BVtu (4-5)
with
V02 +1VE 28, < ClIVull 28,y < Cy/40. (4-6)
Moreover, by the almost conservation law (3-15), we have
At =Au, € L*(B1) and |y =0,

which gives (4-3) by the standard L”-theory. Multiplying both sides of (4-5) by A~! from the left gives
(with indices)

Vul = (AHEVEk — (AT B VEuk (ahiver, 1=1,2,... 0. (4-7)
Taking the divergence on both sides of (3-4) yields
AP} =VP, V& — div(Q;P;), 1<i,j<n. (4-8)
Since Q’Z = [l'["(u)z’l —II* (u),-’l]Vul, combining (4-7) and (4-8) gives
AP;
= VP, V& — div[(TT ()2 — T ()i ) (A Vit = (A7 BY Vb 4+ (A7, V! P31
= VP, -V = VI(IT () — T (u)i1) PF (A~ )] -Vt
+ VAT ) — T )i ) PFAT BT -Vt — div((TT (), — T () ) PFAT D) VER]. (4-9)

Defining
(Q0) = — (' (w);y — T )i ) PFAT),
and
(R)'; = (T (u).p — TI*(u)i ) PF (A7 B,
where 1 <k, i, j < n, completes the proof. (I

Next we prove a local estimate on the oscillation of the matrix P based on Lemma 4.2. A key
observation here is that whether a function is in the local Hardy space ' (B;) essentially depends on its
local behavior (see Definition 2.8). This local oscillation estimate on P provides important information
that we need to control the local behavior of |Vu|?. This point will become apparent in Section 5. As we
shall see, the Jacobian structure of A P enters in a crucial way.
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Lemma 4.3. Let u(x, t) be as in Theorem 1.6. For any ty € [1, 00) such that u,( -, to) € L>(By), any
x € By, any r > 0 such that By, (x) C By, and any y € B,(x), we have

|P(y, 1) — P(x,t0)| < C(eo+ llui(to)l .28,))- (4-10)
Proof. We will omit the index fy in the proof. Let Pe WL2(B,, M, (R)) be the weak solution of

AP =VP Ve +VQ, -Vink + VR, -V4Euk +div(QiVEF)  in By,
P=0 on 0By,

where Oy, Ry, nk, and g“k are from Lemma 4.2.
Then, by Wente’s lemma (Lemma 3.6) and the standard L”-theory (and W22(B)) — CY%(B))), we
have P € C°(By, M, (R)) and
1Pl oo + IV Pllp2sy < Cleo+ s (t0)ll2p,))- (4-11)
Since

A(P—P)=0 in B,

we know that V. = P — P ¢ C*°(By, M,(R)) is harmonic. Now, for any x € By, any r > 0 such that
By, (x) C By, and any y € B, (x), we have

V() = V@) < CrlIVVizes,ay < Cr IVVILis, w)
< ClIVVIr2By«)y = CUV P2, ) T IV P28, 1))
< C(Jeo+ llus (00)ll L2(8,))- (4-12)

where we have used the mean value property of V and (4-11), (3-3). Combining (4-11) and (4-12) yields
that, for any x € By, any r > 0 such that By, (x) C By, and any y € B,(x), we have

|P(y, to) = P(x, t0)] < C(eo+ llui(t0)  12(8,)) (4-13)

which gives the desired estimate (4-10). O

5. Validation of (2-21) and completion of the proof of Theorem 1.6

With the results so far at our disposal, we are now in a position to validate (2-21). As mention above, the
local estimate on the oscillation of the transformation matrix P in Lemma 4.3 will be the key ingredient.

Lemma S.1. Let u(x, t) be as in Theorem 1.6. For any ty € [1, 00) such that ||u;(to) || .2(p,) < +/€0, We

have
|Vu(to)|* € h' (By) (5-1)

with the estimate
[1Vut0) ] 15, < Ceo- (5-2)
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Remark 5.2. Lemma 5.1 continues to hold for the flow (3-10) with a more general 2 in the form
sz;. =>7, ;.',Vu’ + g;'.lvlul (which includes = Qg = [T (u);; — T/ (u); ;]Vu! for the harmonic
map heat flow as a special case); see [Lamm and Lin 2013]. Moreover, the condition [[u; (1) .2(p,) < €0
can be replaced by the fact that ||u,;(#)||L»(B,) 1s sufficiently small for some p > 1.

Proof of Lemma 5.1. By the assumption |[u,(f0)[l .2,y < +/€0 and Lemma 4.3, for any x € By, any r > 0
such that B,,(x) C By, and any y € B,(x), we have

|P(y, to) — P(x, to)] < C/e0. (5-3)

We will omit the index #y from now on. By Proposition 4.1 and Theorems 3.1 and 3.4, for any x € By,
any r > 0 such that By, (x) C By, and any y € B,(x), we have (choosing ¢g sufficiently small)

0 < 5IVul(y) < (AVu+ BV-u) - (PTVu)(y)
= (AVu+ BV*tu) - [(PT(x) + (PT — PT(x))Vul(y), (5-4)
and therefore, by (4-5) and (5-3),
(VEn+VE) - (PT(x)Vu)(y)
= (AVu+ BV+tu)- (PT(x)Vu)(y)
> LVul?(y) = (AVu+ BV*tu) - [(PT — PT(x)Vul(y) = $IVul*(y). (5-5)

Now we choose a function

¢ € Cgo(Bl) with ¢ >0, spt(¢) C Bl/z, ¢ =2on B3/g, and ¢dx =1. (5-6)
B

Moreover, we additionally assume that ||V | 1~ ,) < 100. Using (4-3) and (5-5), one verifies directly
that (by Definition 2.8)

Hqu|2th(Bl)=/B sup ¢y |Vu|? dx

1 O<t<1—|x]|

54/ sup ¢y x (V0 + V) - (PT (x)Vu)) dx
B

1 O<t<1—|x]|

=4 / sup ¢y x [(PT(x))ij (V' -Vu! + V' -Vul)]dx
B

1 O<t<1—|x|
n
<C Z AVER -Vul sy + 1V w2 VU [ 12(8,)
i,j=1
< IVl 2 IVull 28, + Cv/Eolludll 25, < Ceo,
where we have used the relations
(1) Vin' -Vul € h'(By) and V0" -Vu! |1 p,y < CIIVOll 28 IVull 2(p, forall i, j=1,2,....n;

(2) IV -Vl Loy < CIVE lwrap VUl |l 12p,) for any 1 < p < 2 and || fllpiep,) < CIlfllLe)
for any p > 1.
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To see (1), we first extend
. 1 . . 1 .
n"———( n and w' ——— [ u’
|B1l Jp, |Bil Jp,
from B; to R?, which yields the existence of 7', it/ € WCI’Z(RZ) such that
[viit=c [ wiP wa [ waksc [ vaip (57
R2 B R? By
and

Vi =Vn' and Vii/ =Vu/ ae.in By. (5-8)

Then, by the results of [Coifman et al. 1993], we know that

1 — ; ;
froa () (7 8 ot

< CIVi'l ey IV ll 22y < CHUVTl 280 1 VUl 208, (5-9)

dx

||VLﬁ" -Vﬁj||%1(Rz) : :/ sup sup

R2 peT t>0

where 7 = {¢ € C®(R?) : spt(¢) C By and ||V | L~ < 100}. By (5-8), (5-9), and Definition 2.8, it is
clear that . _ . .
IVEn - Vud gy = IV -V [ s,

< IV Vil g g2y < CIV 28, I Vil 28 - (5-10)
This completes the proof of the lemma. O

Now, since u(x, 1) € W2NC®(B; x [1, 00), N) and the energy E(u(-,t)) is nonincreasing along
the flow as shown in (1-6), there exists 7o > 1 such that

lur (To) Ml 28,y < Veéo. (5-11)
Then by Lemma 5.1 we know that |Vu(T,)|? € h' (B;) with estimate
[IVu(To) P15, < Ceo- (5-12)
Therefore, in view of Lemma 5.1, in order to validate the global estimate (2-21) we are left to show

lur o)l 22¢8,) < Jeo forall tg > Tp. (5-13)
We will next show this is indeed the case.

Lemma 5.3. Let u(x, t) be as in Theorem 1.6. Then there exists Ty > 0 such that

llus (t0) 128,y < /€0 forall tg = Tp. (5-14)

Proof. Let Ty > 1 be as in (5-11), s0 [|u;(To) [l 25,y < +/€0. Since u(x, ) € W2 NC®(B; x [1, 00), N),
and by the continuity of fBl lu,(¢)|? in ¢, there exists 8 = §(Tp, &9) > 0 such that, for any ty € [Ty, Ty + 4],
we have

llus (t0) | 28,y < 2+/%0- (5-15)
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Therefore, by our previous arguments (especially Theorem 2.6, Lemma 5.1 and (5-12) with T replaced
by fy), Lemma 2.5 applies to any subinterval of [Ty, Ty + ] and yields

/ lu (1) > < f lus(11)|>  for any 11, 1, such that Ty < t; < 1 < To+ 8. (5-16)
B B

This shows, instead of (5-15), for any g € [Ty, Ty + 6], we have

lu: (to)l 128,y < Nlur (Tl L2(8,) < +/€0- (5-17)

We can then continue and iterate this process beyond Ty 4+ 6 and we see that f B, lu;(¢)|? is indeed
nonincreasing along the flow after 7p. ]

This completes the validation of (2-21) and therefore the assumptions in Lemmas 2.4 and 2.5 in view
of Theorem 2.6, finishing the proof of our main Theorem 1.6 as shown in Section 2.

Appendix: A proof of Theorem 2.6

Proof. The idea of the proof follows [Semmes 1994, Proposition 1.68]. Since the Green’s function of A
on By is given by (1/(27)) In |x| for x € By, we can write

1
w(x>=2—/ f(y><1n|x—y|—1n<i—|x|y‘>)dy. (A-1)
7 JB, x|

Let 6 € C;°(B) be a smooth bump function such that 0 <6 < 1,0 =1 in By/16 and spt(6) C Bys.
For x € By, we define

L(y):=) 0@/ —|x])""(x—y) foryeB. (A-2)
j=0

We claim that, for any x, y € By,

—201n2 <In|x — y| —ln< % - |x|y‘> +1,(y)In2 <201n2. (A-3)

To see this, it is clear that, for x, y € By such that
2 < —yl <27 ke, (A-4)

we have

—kIn2<In|x —y|<(=k+1)In2. (A-5)
Now note that

IL=lx[=lx =yl =T—=Ix|+|x[=Iy|=1—=Iy| =1 = |x[+|x =y,

and therefore, for x € By_,-i-1 \ Bj_,-i, thatis, 1 — |x| € [277!,27], i € Ny (with By = @), and any
y € By satisfying (A-4), we have

(27171 2=kt =i 4 o=kt ik > 44,

1— € ;
o {[O, 271 4 27k+ ifk <i+3.
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‘We also have

0<(I—IxDU—Iyh < =IxPA—1]yP

2
- %—|x|y —lx—yF <221 = xDA = yD),
and thus
N O [ e R IV ET
] S 0, 27242 4 g ik ifk=<i+3.

Combining this with (A-4), we get

X

|x|

x| 2 . {[2—2i—2 itk g =2k p=2i2 4 p-ik+3 4 p=2A2] f k> 44,
X1y

[272k 02142 4 p—i—k+3 4 n—2k+2] ifk <i+3.

Now, using the facts that for k > i + 4 we have
2721'72 _ 271'7/{ 4 272]{ > 2721.74 and 2*2i+2 4 27i*k+3 4 272/{4’2 < 2721'4“4

and for k <i + 3 we have
272i+2 +27i7k+3 +272k+2 < 272k+10’

we arrive at
X

|x|

Dy 26 {[2—2f—4, 2724 ifk>i+4,

[2—2k’ 2—2k+10] ifk<i+3,

and hence

—In

¥ [(—=2)In2, (i+2)In2] ifk>i+4,
lx|y| €

Jx [(k—5)In2, kIn2] ifk<i+3.
Combining (A-5) and (A-7), we get

R B [ R L VTR
xS =502, 102 (in fact, [=51n2,0]) ifk <i+3

for any x € Bj_»-i-1 \ Bj_»-i, i >0, and any y € Bj satisfying (A-4) for some k > 0.

In|x —y|—1In

1917

(A-6)

(A-7)

(A-8)

Now, for any x € By_,-i-1 \ Bj_»-i, 1 > 0, and any y € B satisfying (A-4), since 0 <0 <1,6 =1 in

Bi/16, and spt(0) C By/g, we get that, for any j > 0,
00/ (1—xD'x—y) =0 forlx—y|=27773(1 —|x])e[27/ 774 277177
and
0/ (1—xD'x—y) =1 forlx—y| <2741 —|x]) e 277773, 2777174,
Combining with (A-4), we obtain
02’0 —|x)'x—y)=0 forj>k—i—3

and
9(2j(1—|x|)_1(x—y))=1 ifk—1>j+i+5 (thatisj<k—i—06).

(A-9)

(A-10)
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Hence, for any x € By_,-i-1 \ Bj_p-i,i >0 and any y € B; such that 27% < |x — y| < 27%*! for some
k=0,1,2,...,(A-2), (A-9), and (A-10) imply

{k—z—lOflx(y)fk—l—l-lO ifk>i+4, (A-11)

L(y)=0 ifk<i+3.

Combining (A-8) and (A-11) gives (A-3).

Therefore, in order to obtain the L°°-bound of ¥ on By as in (2-18), it suffices to bound f B, Fi(y)dy,
since we have (A-1), (A-3), and || fll .15,y < 1f ln1(s))-

In order to bound fB] S ML (y) dy, we next claim that, for any x € By, j >0, and z € By-j-4(j_ |y, (%),
we have

FON2H 21— x)72027 (1 — |x]) ' (x — y))dy < /

B:(2)

1 _
5 (Z y)f(y)dy, (A-12)

B, 4

where

r=27"11—x))

and ¢ is a nonnegative Schwartz function as in (5-6). To see (A-12), we first note that since spt(6) C By s,
we have, for any x € By and j > 0,

FO2¥ 20— 1x) 2027 (1 — |x) "' (x — y)) dy

B
= f FO2PA = xDT20QI (1 — xD 7 (x —y)) dy. (A-13)
By j=301-xp™®)
Now since
TP A S
and

2727 = 207 <]
for any j > 0, we see that, for any z € By-j-4(j_ |y (%),
By-j-3—pxp(X) € B31/8(2) C Bi(2) = By-j-1(1—x)(2) € By (A-14)
Using the relations f >0, 0 <60 <1, ¢ >0, and the fact that ¢ =2 on Bj3,3, we conclude
f FO2T2A =20 (1~ xD 7 (x = y) dy
By-i=3 -4y ™)

< / FO25P2(1 = 1x)2dy < / FOI22P2(1 = 122 dy
By j=3(1—pxp @)

B3/8(2)

< f(y)22f'+2<1—|x|)—2¢(ﬂ)dy= / %(Z_y>f(y>dy.
B, (2) 4 B/(2) ! 4
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Combining this with (A-13) gives (A-12). Therefore, by (A-12) and the definition (2-19) of the radial
maximal function f*, for any x € By and j > 0, we have

FMOQI(1—|xD~ (x —y))dy‘ <2771 — |x])? inf *@).

B T&€By—j—4q_xp ¥

Therefore, by (A-2), for any x € By, we have

‘fB f(y)lx(y)dy‘SZ/Bf(y)9(2j(1—IXI)_I(x—y))dy

<Y 2770 -1xD?_if @

2€By—ja(_py) (¥

28 &
*
= @) dz
T j:O By—j=4 14y ONBy=j=5 11y (%)
28

=3, f (x)dz < —||f||hl(31) (A-15)

Combining (A-6), (A-3), and (A-15) yields (using vy < Nl

X
— —|xly| ) dy = Cll flln(s,)-
x|

This gives the desired L>-bound of ¥ on B;. The L?-estimate for Vi simply follows from an integration
by parts argument. ([l

1
Vo] = —2—/ f(y)<1n x—yl—In
T B,
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A ROTATIONAL APPROACH TO TRIPLE POINT OBSTRUCTIONS

NOAH SNYDER

Subfactors where the initial branching point of the principal graph is 3-valent are subject to strong
constraints called triple point obstructions. Since more complicated initial branches increase the index
of the subfactor, triple point obstructions play a key role in the classification of small index subfactors.
There are two strong triple point obstructions, called the triple-single obstruction and the quadratic tangles
obstruction. Although these obstructions are very closely related, neither is strictly stronger. In this paper
we give a more general triple point obstruction which subsumes both. The techniques are a mix of planar
algebraic and connection-theoretic techniques with the key role played by the rotation operator.

1. Introduction

The principal graph of a subfactor begins with a type A string and then hits an initial branch point (unless
the graph is Ay or Ay). It is natural to stratify subfactors based on how complex this initial branch
point is. Furthermore, complex initial branches increase the norm of the graph and thus the index of the
subfactor. This means that small index subfactors can only have simple initial branches. The simplest
possibility is an initial triple point (in this case the dual graph also begins with a triple point). Subfactors
beginning with an initial triple point are subject to strong constraints known as triple point obstructions.
For example, a triple point obstruction due to Ocneanu shows that as long as the index is greater than 4
the initial triple point must be at odd depth. These triple point obstructions play a crucial role in the
classification of small index subfactors [Haagerup 1994; Morrison and Snyder 2012; Morrison et al. 2012;
Izumi et al. 2012; Penneys and Tener 2012].

The current state of the art of triple point obstructions is given in our joint paper with S. Morrison,
D. Penneys, and E. Peters [Morrison et al. 2012], but the status is somewhat unsatisfactory as there are
two main results, neither of which is strictly stronger than the other. One result applies more generally
and proves a certain inequality, while the other (due to V. F. R. Jones [2012]) has stricter assumptions
but replaces the inequality with a finite list of values. The former is proved using connections and the
latter using planar algebras. The main result of this paper is a mutual generalization of these two triple
point obstructions, which proves the stronger conclusion using only the weaker assumptions. As one
might expect, this paper uses a mix of connections and planar algebras following our earlier paper with
M. Izumi, Jones, and Morrison [Izumi et al. 2012]. Furthermore, one can think of this argument as giving
an alternate proof of the triple point obstruction from [Jones 2012].

MSC2010: 46L37.
Keywords: subfactors, planar algebras, connections.
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Before stating the three relevant results, we fix some notation which we will use throughout the paper.
Suppose that N C M is an n—1 supertransitive finite index subfactor of index greater than 4 whose
principal graphs begin with triple points, and let I and I'" denote the principal and dual principal graphs.
Let [k] denote the quantum number vk — v_k)/ (v —v~!), where v is a number such that the index is
[2]. Let B and B’ denote the initial triple points at depth n — 1 (which is necessarily odd by Ocneanu’s
obstruction), let «; and y; be the vertices at depth n — 2, let o, and o3 be the two vertices at depth n on I,
and let y, and y3 be the two vertices at depth n on I'". We will conflate vertices with the corresponding
simple bimodules and the corresponding simple projections in the planar algebra. Assume without loss of
generality that dim oy > dim 3 and dim y, > dim y3.

Theorem 1 (triple-single obstruction [Morrison et al. 2012, Theorem 3.5]). If y3 is 1-valent, then
dim(ay) — dim(az) < 1.

Theorem 2 (quadratic tangles obstruction [Jones 2012]). Suppose that y3 is 1-valent and that y» is

3-valent; then
I a+at42

r [nlln+2]

’

where A is the scalar by which rotation acts on the 1-dimensional perpendicular complement of Temperley—
Lieb at depth n and r = dim(op) /dim(o3).

Since X is a root of unity, we know that —2 < A +A~! < 2. Hence the quadratic tangles obstruction
gives an inequality, and (as observed by Zhengwei Liu) this inequality turns out to be precisely the one in
the triple-single obstruction [Morrison et al. 2012, Lemma 3.3]. Thus the quadratic tangles obstruction
is stronger (replacing an interval of possibilities with a finite list) when both apply, but the triple-single
obstruction has a weaker assumption. The main result of this paper is the following mutual generalization
of Theorems 1 and 2.

Theorem 3. Suppose that ys is 1-valent; then

+1 A+A*+2+
r+-=——— .
r - [n]ln+2]

2. Background

We quickly summarize the key idea of [Izumi et al. 2012, §5.2], which is that the action of rotation on the
planar algebra can be read off from the connection. Since rotational eigenvalues must be roots of unity,
this gives highly nontrivial constraints on candidate connections. We assume that the reader is familiar
with both planar algebras and connections; see [Izumi et al. 2012] for more detail.

Given a subfactor N C M we get a certain collection of matrices called a connection. This connection
depends on a choice of certain intertwiners, and thus is only well-defined up to gauge automorphisms. Let
the branch matrix U denote the 3-by-3 matrix coming from the connection at the initial branch vertex of I".
The key idea of Izumi et al. is that there is a canonical gauge choice for U, called the diagrammatic branch
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matrix, coming from the planar algebra. This choice is both easy to recognize and has nice properties, as
captured by the following two results.

Lemma 4 [Izumi et al. 2012, Lemma 5.6]. When n is odd the diagrammatic branch matrix is characterized
within its gauge class by the property that all the entries in the first row and column are positive real
numbers.

Proposition 5. Let U be the diagrammatic branch matrix for a subfactor with an initial triple point. Let

x be an n-box in the perpendicular complement of Temperley—Lieb, and write x = ar(op/+/dimay) +

as (013/«/dim 053). Let (C] ,C2, 03) = U(O, ar, a3). Then c] = 0 and Cz()/z/«/din’l )/2) + 03(y3/«/dim )/3) is
1/2

P (x).

Proof. This is a restatement of [Izumi et al. 2012, Corollary 5.3] in our special case. See [Izumi et al.
2012, pp. 18-19] for a worked example. ]

In order to apply the previous proposition, we will want an explicit formula for vectors in the perpen-
dicular complement to Temperley—Lieb in the n-box space and the action of rotation there. Recall that

the rotation p preserves shading and thus is an endomorphism of each box space, while p!/?

changes
rotation and thus is a map from one box space to a different box space. We will use A to denote the scalar
by which p acts on the 1-dimensional perpendicular complement to Temperley—Lieb in the n-box space.

Note that this is an n-th root of unity.

Lemma 6. Let r = dimay/dimas and ¥ = dimy,/dimys. Then T = (1//r)as — /rosz and T =
1/ V) V) — Vi y3 are each in the perpendicular complement of Temperley—Lieb.

Furthermore p'/>(T) = VAT, where /X is some square root of the rotational eigenvalue for the action
of rotation on the perpendicular compliment of Temperley—Lieb.

Proof. These calculations (with slightly different conventions) were done in an early version of [Jones
2012]. Seeing that T and T are perpendicular to Temperley—Lieb is straightforward (you only need to work
out their inner product with two specific Jones—Wenzl projections). Since half-click rotation preserves
Temperley—Lieb and is an isometry, it also preserves the perpendicular complement of Temperley—Lieb.
Thus p'/2(T) is some scalar multiple of T. To work out which scalar multiple this is you compute their
norms. This tells you that the square of this scalar is A. (I

Remark 7. There are many square roots in this paper. Other than +/A, all square roots are positive square
roots of positive numbers. Moreover /A will always be chosen such that the previous lemma works. In
the final statement of the main theorem no +/A appears, so this subtlety is not very important.

Combining the previous two results we have the following concrete statement, which will supply the
main ingredient of our proof of Theorem 3.

Corollary 8. The diagrammatic branch matrix U sends

(0, V/dim(a3), —y/dim(a2)) = VA(0, y/dim(y3), —/dim(y2)).
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3. Proof of Theorem 3

The idea of this argument is that having a 1-valent vertex allows us to solve for the branch matrix, and thus
we can read off the rotational eigenvalue (since the diagrammatic branch matrix acts on the appropriate
vectors by rotation). This gives an identity between the dimensions of objects and the rotational eigenvalue.

We begin with a quick calculation of the branch matrix following the proof of the triple-single
obstruction [Morrison et al. 2012, Theorem 3.1]. Since &1, y;, B8, and B’ are in the initial string their
dimensions are [n—1], [n—1], [n], and [n], respectively. Since y3 is 1-valent, we have dim y» =[n+2]/[2]
and dim y3 = [n]/[2]. Using the 1-valence of y3 the normalization condition on connections determines
the magnitude of several of the entries in the branch matrix. Furthermore, unitarity of U allows us to
work out several more of the entries. In particular, the branch matrix is gauge equivalent to the matrix
below, where p = dim(a,) and ¢ = dim(a3), where o and t are unknown phases, and where ? denotes
unknown entries which will play no role in the calculation.

i J[n—I]p ViIn—1lq
[n]
| D
[2 [n [2][n] [2][n]
\/m \
[2][n]? ! '

The first row and column of this matrix are clearly positive, so by Lemma 4 we see that U is the
diagrammatic branch matrix.

Remark 9. This matrix is the transpose of the matrix found in [Morrison et al. 2012] because the
calculation there is done for I'” instead of I'. As shown in [Izumi et al. 2012], the diagrammatic branch
matrices of I" and I'" are always transposes.

We would like to solve for o and t. Orthogonality of the first two rows of U tells us that
1+op+1tq9=0.

Although 1+ op + tq = 0 is one equation in two unknowns, it actually determines o and t since they
are phases:

1+1tg
o =— ,
p
_ 1+tql+tqg 1+(T+79)g+4¢>
l=00 = = 5 s
p p p
2 2
—q?—1
q

This determines the real part of 7, and thus t itself. Similarly, 0 + 6 = (¢%> — p*> — 1)/p.
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Now that we have a very explicit understanding of U we apply it to a rotational eigenvector. Corollary 8

tells us that U sends
[n+2] [n]
Oa T )" 05 s T o
O.va ﬁm[( V2 \/[2]>

Looking at the middle coordinate of that identity, we see that

o—v=vi |l
pPq

Comparing the real parts of both sides yields

(ﬁ+ %) In+2lin] J;z][”] =(+6)—(T+7)

=1 =g -1 _ G-pr+e’-1
o g pq
_(g=p)(n+1P=1)  (g—p)(nlln+2])
B pq B pq '
Squaring both sides and rearranging proves the theorem.

Remark 10. You might guess that ¢ — t = v/A/[n + 2][1n]/(pq) would give a second condition coming
from the imaginary parts. In fact there’s no new information there, because the two sides automatically

have the same norm.
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ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION
IN R® WITH RADIAL DATA

RUIPENG SHEN

In this paper, we consider the wave equation in 3-dimensional space with an energy-subcritical nonlinearity,
either in the focusing or defocusing case. We show that any radial solution of the equation which is
bounded in the critical Sobolev space is globally defined in time and scatters. The proof depends on
the compactness/rigidity argument, decay estimates for radial, “compact” solutions, gain of regularity
arguments and the “channel of energy” method.

1. Introduction

In this paper we will consider the energy subcritical, nonlinear wave equation in R? with radial initial

data
2u — Au = £[u|P~u, (x,1) e R? xR,

u|j—o = ug € H»(R3), (1)
dsu|i—o = u1 € H»1(R3).

Here 3 < p <5 and
3 2
Sp = 3~ ﬁ
The positive sign in the nonlinear term gives us the focusing case, while the negative sign indicates the
defocusing case. The quantity

E(f)zl/ (|3t74(x7f)|2+|V”(X,l)|2)dx:F;/ u(x, )P+ dx (2)
2 R3 p+1 R3

is called the energy of the solution. The energy is a constant in the whole lifespan of the solution, as long
as it is well-defined. Note that the energy can be a negative number in the focusing case.

Previous results in the energy-critical case. In the energy-critical case, namely p = 5, the initial data is
in the energy space H'x L2 This automatically guarantees the existence of the energy by the Sobolev
embedding H' <> L. This kind of wave equations has been extensively studied. In the defocusing case,
M. Grillakis [1990; 1992] proved the global existence and scattering of the solution with any H! x L?
initial data. In the focusing case, however, the behavior of solutions is much more complicated. The
solutions may scatter, blow up in finite time or even be independent of time. (See [Duyckaerts et al.
2013; Kenig and Merle 2008] for more details.) In particular, a solution independent of time is usually

MSC2010: 35L15,35L71.
Keywords: wave equation, scattering, nonlinear, energy subcritical.
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called a ground state or a soliton. This kind of solutions is actually the solutions of the elliptic equation
—AW(x) = |[W(x)|P~'W(x). We can write down all the nontrivial radial solitons explicitly as

1 X2\ "2

Here A is an arbitrary positive parameter.

Energy subcritical case. We will consider the case 3 < p <5 in this paper; thus 1/2 <5, < 1. In this
case the problem is critical in the space H» (R3) x HS»~1(R3), because if u(x, ¢) is a solution of (1)
with initial data (u¢, #1), then for any A > 0, the function

13/;_50 “ (%’ %)

is another solution of the (1) with the initial data

(50 (3) 53mm ()

which shares the same H*» x H*»~! norm as the original initial data (¢, u1). These scalings play an
important role in our discussion of this problem.

Theorem 1.1 (main theorem). Letf u be a solution of the nonlinear wave equation (1) with radial initial
data (ug,u1) € H*» x H»~Y(R3) and a maximal lifespan I so that

SUII3 (@), dru ()l gsp x frsp—1 < 0. 4)
te

Then u is global in time (I = R) and scatters; that is,
lu(x,t)|lsw) < oo, orequivalently |u(x, t)”Ysp(R) < Q.

This is actually equivalent to saying that there exist two pairs (ug' , uf—) and (uy,uy) in the space
H*? x H~ such that

tli‘foou (u(t) = SE) g uy), deut) — 3 SO Wi uD)) | grom o grsp—1 = 0.

Here S(Z)(ugc, uli) is the solution of the linear wave equation with the initial data (u(?, ufc)

Please refer to Definition 2.4 for the S and Yy norms. There are a couple of remarks on the main
theorem.

e The defocusing case. As in the energy-critical case, we expect that the solutions always scatter
as long as the initial data are in the critical Sobolev space. Besides the radial condition, the main
theorem depends on the assumption (4), which is expected to be true for all solutions. Unfortunately,
as far as the author knows, no one actually knows how to prove it without additional assumptions.
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e The focusing case. In the focusing case, the solutions may blow up in finite time. (See Theorem 6.3,
for instance.) Thus the assumption (4) is a meaningful and essential condition rather than a technical
one. The main theorem gives us the following rough classification of radial solutions.

Proposition 1.2. Let u(t) be a solution of (1) in the focusing case with a maximal lifespan I and radial
initial data (ug,u1) € H x H»~Y(R3). Then one of the following holds for u(x, ).

() (blow-up) The H*» x H*»~ norm of (u(t), dsu(t)) blows up, namely

sup [ (u(#), 0:u ()| grsp  grsp—1 = +00.
tel
(ID) (scattering) If the upper bound of the H*» x H*~Y norm above is finite instead, namely, the
assumption (4) holds, then u(t) is a global solution (i.e, I = R) and scatters.

Main idea in this paper. The main idea to establish Theorem 1.1 is to use the compactness/rigidity
argument, namely to show:

(I If the main theorem failed, it would break down at a minimal blow-up solution, which is almost
periodic modulo scalings.

(IT) The minimal blow-up solution is in the energy space.

(III) The minimal blow-up solution described above does not exist.

Step (I). The method of profile decomposition used here has been a standard way to deal with both the
wave equation and the Schrodinger equation. Thus we will only give important statements instead of
showing all the details. The other steps, however, depend on the specific problems. One could refer to
[Bahouri and Gérard 1999] in order to understand what the profile decomposition is, and to [Kenig and
Merle 2008; 2010; Killip and Visan 2010] in order to see why the profile decomposition leads to the
existence of a minimal blow-up solution.

Step (II). We will combine the method used in my old paper [Shen 2011] and a method used in [Kenig
and Merle 2011] on the supercritical case of the nonlinear wave equation in R3. The idea is to use the
following fact. Given a radial solution u(x, t) of the equation

Fu(x,t)— Au(x,t) = F(x,1)

defined in the time interval 7, if we define two functions w, : R* x I — R, such that w(|x|,t) =
|x|u(x,t) and h(|x|,t) = |x|F(x,1), then w(r,¢) is a solution of the one-dimensional wave equation
02w (r,t) — 0?w(r,t) = h(r,t). This makes it convenient to consider the integral

4ro=tt
/ |0;w(r, to+1) Fd,w(r.to+1)>dr.
roxt

as the parameter ¢ changes.

Step (III). Given an energy estimate, all minimal blow-up solutions are not difficult to kill except for the
soliton-like solutions in the focusing case. As I mentioned earlier, this kind of solutions actually exists in
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the energy-critical case. The ground states given in (3) are perfect examples. In the energy-subcritical case,
however, the soliton does not exist at all. More precisely, none of the solutions of the corresponding elliptic
equation is in the right space H°7. This fact enables us to gain a contradiction by showing a soliton-like
minimal blow-up solution must be a real soliton, which does not exist, using a new method introduced
by T. Duyckaerts, C. E. Kenig and F. Merle. They classified all radial solutions of the energy-critical,
focusing wave equation in their recent paper [Duyckaerts et al. 2013] using this “channel of energy”
method.

Remark on the supercritical case. Simultaneously to this work, T. Duyckaerts et al. [2012] proved that
results similar to ours also hold in the supercritical case p > 5 of the focusing wave equation, using the
compactness/rigidity argument, a point-wise estimate on “compact” solutions obtained in [Kenig and
Merle 2011] and the channel of energy method mentioned above.

2. Preliminary results

Notation. The following notation will be used throughout this paper.

¢ (<) The inequality A < B means that there exists a constant ¢ such that A < cB. A subscript on <
implies that the constant ¢ depends on the parameter(s) indicated but nothing else.

¢ (the smooth frequency cutoff) We use P-4 and P- 4 for the standard smooth frequency cutoff
operators. In particular, we use the following notation on u for convenience:

Ueg = Poqu, usyg4= P u.

* (notation for radial functions) If u(x, ¢) is radial in the space, then u(r, t) represents the value u(x, t)
when |x| =r.

o (linear wave evolution) Let (1o, u1) € HS x HS~1(R?) be a pair of initial data. Suppose u(x, ) is
the solution of the linear wave equation

8%u—Au=0, (x,t)€R3x[F£,
U|r=0 = Ug,

Btu|t:0 =Ui.

We will use the following notation to represent this solution u:

Ug u(to) )
S(to)(ug,u1) =u(ty), S(¢ = .
(to)(uo,u1) = u(to) (t0) (ul) (Btu(to)
e (method of center cutoff) Let (vg, v1) € H' x L2(R3\ B(0, r)) be a pair of radial functions. We
define (with R > r)
vo(x) if |x| > R,
\\] =
(rro)) {UO(R) if [x] < R.
vi(x) if |x|> R,

(VroD() = {o if [x] < R.
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Local theory with Hs» x HS »=1(R3) initial data. In this section, we will review the theory for the
Cauchy problem of the nonlinear wave equation (1) with initial data in the critical Sobolev space
H*» x H»~1(R3?). The same local theory works in both the focusing and defocusing cases. It can be
also applied to the nonradial case.

Definition 2.1 (space-time norm). Let / be an interval of time. If 1 < ¢, r < 0o, the space-time norm is

defined by
a/r \1/4
lote.Ollzeasan = ([ [ ool ar) )

1/r
[v(x, )l LooLr (1 xr3) :inf{M >0: (/ [v(x,t)|" dx) <M,ae. tel;.
R3
This is used in the following Strichartz estimates.

Proposition 2.2 (generalized Strichartz inequalities; see Proposition 3.1 of [Ginibre and Velo 1995] —
here we use the Sobolev version in R3). Ler2 < qi1,42 < 00,2 <r1,rp <ooand p1, p2,s € Rwith

V/gi+1/ri <1/2 fori =1,2,

1/g1+3/r=3/2—s+p1,

1/qg2+3/r2=1/245+ p>.
Let u be the solution of the linear wave equation

2u — Au = F(x,1), (x,1) e R3x R,
ulr=0 =uo € HS(R?), )
dsuli—o = uy € HS 1 (R3).

Then we have
(T, 0w (T gse rs—1 + I1DF ullLar Lr1 o, 71xm3)

=< C(”(”Ov MI)HHSXHS—I + ”D;sz(xvt)||L‘72L72([0,T]xR3))'
The constant C does not depend on T

Definition 2.3 (admissible pair). If (¢1, 71,5, p1) = (¢, r, m, 0) satisfies the conditions in Proposition 2.2,
we say (¢, r) is an m-admissible pair.

Definition 2.4. Fix 3 < p <5. We define the following norms with s, <s < 1:
lo(x,Dllsay = ”v(x’t)”L2<P—1)L2(P—1)(I><[Ri3)’

lo(x, Ollwry = lv(x, D)l Lapsr xr3)

’t = ,t <z ?
oG Ollzony =M00ON 20 20 e

v(x,t = ||v(x,1t .
Ol = WDl e
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Remark 2.5. By the Strichartz estimates, we have if u(x, ¢) is the solution of
2u — Au = F(x,1), (x,1) e R3 xR,
uli=0 = uo € H*(R?),
dsuli—o = uy € HS 1 (R3).
then
(T, 0eu (T grs s grs—1 + Il s o, 77) = CUIo )| sy grs—1 + I1F (x, Oll z o, 77))-

Definition 2.6 (solutions). We say u(z)(t € ') is a solution of (1), if (u(z), d;u(z)) e C({; Hs» x H5»—1),
with finite norms |lu| sy and | DY -1/ 2u||W( 7) for any bounded closed interval J C I so that the

integral equation
Usin((t —1)v/—A)
VEAY

holds for all time ¢ € I. Here S(¢)(up, u1) is the solution of the linear wave equation with initial data

u(t) = S(t) (o uy) + /0 Fu(n) dr

(1o, u1) and
F(u) = £|u|? tu.

Remark 2.7. We can take another way to define the solutions by substituting S(/) and W (/) norms by
a single Y, (/) norm. Using the Strichartz estimates, these two definitions are equivalent to each other.

By the Strichartz estimate and a fixed-point argument, we have the following theorems. (Our argument
is similar to those in a lot of earlier papers. See, for instance, [Lindblad and Sogge 1995; Kenig and
Merle 2008] for more details.)
Theorem 2.8 (local solution). For any initial data (ug,u1) € H? x H»~Y, there is a maximal interval
(—=T—(ug,u1), T+(ug,u1)) in which the equation has a solution.
Theorem 2.9 (scattering with small data). There exists § = §(p) > 0 such that if the norm of the initial
data ||(wo,u1) |l gsp gsp—1 < 8, then the Cauchy problem (1) has a global-in-time solution u with
”““S(—oo,—l—oo) < Q.
Lemma 2.10 (standard finite blow-up criterion). If T+ < 0o, then |u||so,7.)) = 0°.
Theorem 2.11 (long-time perturbation theory; see [Colliander et al. 2008; Kenig and Merle 2008; 2006;
2011]). Fix3 < p <5. Let M, A, A’ be positive constants. There exists eg = e9(M, A, A’) > 0and >0
such that if € < &g, then for any approximation solution ii defined on R3 x I (0 € I) and any initial data
(uo,u1) € HS x H»~1 satisfying

(32— A) (@) — F(@ii) = e(x,1), (x,1)eR>x1,

sup; ey 1@ (1), 0t ()l grsp  grsv—1 < A,
lllscry < M,

||D)Scp_1/2ﬁ||W(J) <oo foreachJ €I, (©)

(o — i (0), 1 — 37O || gysp s frsp—1 < A,

_1 5 N
D3 2ellpaspams +I1S@) o —u(0), ur —9:u(0)sr) <e.
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there exists a solution of (1) defined in the interval I with the initial data (ug, u1) and satisfying
lullsry < C(M, A, A'),
sup [| (), 9 (t)) = (1), BT | sp y frsp—1 < C(M, A, A')(A' + &+ &P).

tel
Theorem 2.12 (perturbation theory with Y5, norm). Fix 3 < p <5. Let M be a positive constant. There
exists a constant g9 = go(M) > 0 such that if € < g, then for any approximation solution i defined on
R3 x I (0 € I) and any initial data (ug,uy) € H? x H*»™ satisfying
(8% —A)@) - F@ii) = e(x,t), (x,t)eR>x1,
llly,, ) <M, [0, 9:i O gspx frsp—1 < 00,
le(x. D)l z,, 1y + 1S @) o —(0) 1wy — @O Iy, (1) < e.

there exists a solution u(x,t) of (1) defined in the interval I with the initial data (ug, u1) and satisfying

[ (x, ) —u(x, t)||ysp(1) <C(M)e.
u(t) () uo —1(0)
(atum) - (ataa)) —50 (ul _ ata(O)) ‘

Remark 2.13. If K is a compact subset of the space H*» x H»~! then there exists T = T'(K) > 0
such that 74 (ug,u1) > T(K) for any (ug,u1) € K. This is a direct result from perturbation theory.

sup
tel

<C(M)e.
HspxHSp—1

Local theory with more regular initial data. Let s € (sp, 1]. By a similar fixed-point argument we can
obtain the following results.

Theorem 2.14 (local solution with HS x H*~! initial data). If (ug,u;) € HS x H5~!, then there is a
maximal interval (—T—(ug,u1), T+ (ug, u1)) in which the equation has a solution u(x,t). In addition,

we have
T_(uo,u1), T(uo. u1) > T1 = Cs,p (| (os 1) | sy gro—1) /75,

u(x, Oy, (-1, 717 < Co,pll (o, w) | s grs—1-

Theorem 2.15 (weak long-time perturbation theory). Let i be a solution of the equation (1) in the time
interval [0, T] with initial data (tig, U1), so that

o, E) sy grs—1 <00, Nllly,qo,r < M.
There exist two constants eo(T, M), C(T, M) > 0 such that if (uo, u1) is another pair of initial data with
(o —tto. ur — i) | sy grs—1 < &o(T, M),
then there exists a solution u of the equation (1) in the time interval [0, T| with initial data (ug, u1) so that

lu —ttlly,qo,77) < C(T, M)|[(uo —tio, ur —U1) || grsx frs—1-

sup |[[(u(@) — (), dpu(t) — ()| sy gs—1 < C(T, M)|[(uo —tio, ur —U1) | g frs—1-
t€[0,T]
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Technical results.

Lemma 2.16 (gluing of H* functions). Let —1 < s < 1. Suppose f(x) is a tempered distribution defined

on R3 such that (R > 0)
_ [ Ailx) forx e B(0,2R),

S = fo(x) forx eR3\ B(0, R),

with fi, f» € H(R3). Then f is in the space H®(R3) with

1/ sy < €O sy + 121 oy

Proof. By a dilation we can always assume R = 1. Let ¢(x) be a smooth, radial, nonnegative function

such that
1 for x € B(0,1),

P0)=10 forx e B3\ B(0.2).

Let us define a linear operator: P(f) = ¢(x)f. We know this operator is bounded from H!(R?) to
H'(R3), and from L2(R?) to L2(R3). Thus by an interpolation, this is a bounded operator from H* to
itself if 0 < s < 1. By duality P is also bounded from HS toitself if =1 <5 <0. In summary, P is a
bounded operator from H* to itself for each —1 < s < 1. Now we have

f=PAi+ fa—Pfr

as a tempered distribution. Thus

1Al s < WP Sill s + L2l s + 1P f2ll g < AP Ns + DA LS s + 1520 grs)- O

Lemma 2.17. Let u(x,t) be a solution of the nonlinear wave equation (1) with the condition (4). Then
foranyty,tr € I andt € R, we have

2 sin((t —t)v/—A)
/;1 Ny Fu(r))dr . o

— /tz COS((T —l‘)\/ —A)F(u(f)) dt
t

1 HspxHsp—1

Proof. Tt follows directly from the identity
/tz sin((t —t)v/—A)
I8 v —A
2
— / cos((t —t)V—A)F(u(r))dr
t

1

Fu(r))dr

_ u(ty) u(tz)
=S(t—1) (8,14(:1)) —S(t—1) (a,u(zz)) . O

Lemma 2.18 (see Lemma 3.2 of [Kenig and Merle 2011]). Let 1/2 < s <3/2. Ifu(y) is a radial H® (R?)
function, then

lu(y)| <s

i [l g7 - (8)

ME
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Remark 2.19. This actually means that a radial H* function is uniformly continuous in R3\ B(0, R) if
R>0.

Lemma 2.20. Let ry,rp > 0and tg, t1 € R so that r1 + ry < t; —ty. Suppose (ug, u1) is a weak limit in
the space HS? x H5»~1:

T sin((t —t9)vV/—A)

= i F(t)dt,
o= lm g = (1)
. ©)
u; =— lim cos((t —t9)vV—A)F(t) dt.
T—+o0 Jy

Here F(x,t) is a function defined in [t1, 00) x R with a finite Zs,([t1, T]) norm for each T > t1. In
addition, we have (1/2 < s1 <1, y(x,t) is the characteristic function of the region indicated)

S = _a1(x,t)F(x,t < +00. 10
I x> ra =) G DF DN 6 ({100 (10)
Then there exists a pair (tig, u1) with || (o, 1) || g, WS- (@3) = Cs, S and

(uo,u1) = (g, u1) in the ball B(0,ry).
Proof. Let us define

T o; / T
Uo. T :/t S —10)V=4) £y 4y, ul,T:—/ cos((t — to)/—A)F(1) dt,
t

1 V_A 1
T wioi(r — T
fio.r = /t sin(( J% 8 (Faydi. g =— / cos((t — 10)V=R)((F (1)) dt.

By the Strichartz estimates and the assumption (10), we know the pair (1o, 7, #1,7) converges strongly in
HS' x HS' 1toa pair (tig, 1) as T — 400 so that

||(ﬁ07a1)||H5]xH51_1(R3) E CSIS'
t

= t—t
cutoff area x| =r2 | 1l

2

r

Figure 1. Illustration of proof.
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In addition, we know the pair (¥%¢,7,%1,7) is the same as (uo,7,u1,7) in the ball B(0, r1) by the strong
Huygens principle. Figure 1 shows the region where the value of F(x,?) may affect the value of the
integrals in the ball B(0, r1). This region is disjoint with the cutoff area if r; + r, <#; —to. As a result,
the pair (to,r,%1,7) converges to (4o, u1) weakly in the ball B(0,r;) as the pair (4o,7,u1,7) does.
Considering both strong and weak convergence, we conclude that

(uo,u1) = (tig,u1) in the ball B(0, ry). O

3. Compactness process

As we stated in the first section, the standard technique here is to show that if the main theorem failed,
there would be a special minimal blow-up solution. In addition, this solution is almost periodic modulo
symmetries.

Definition 3.1. A solution u(x,t) of (1) is almost periodic modulo symmetries if there exists a positive
function A(¢) defined on its maximal lifespan / such that the set

1 X 1 3 X ) 7
{ (x<z>3/2—sﬂ”(w>”)’ ()52 ’”(A(r)’t)) e %

is precompact in the space H? x H*»~1(R3). The function A(¢) is called the frequency scale function,

because the solution u(¢) at time ¢ concentrates around the frequency A(¢) by the compactness.

Remark 3.2. Here we use the radial condition, thus the only available symmetries are scalings. If we
did not assume the radial condition, similar results would still hold but the symmetries would include
translations besides scalings.

Existence of minimal blow-up solution.

Theorem 3.3 (minimal blow-up solution). Assume that the main theorem failed. Then there would exist a
solution u(x, t) with a maximal lifespan I such that

SuII) ||(U(t), atu(t))”HsP x HSp—1 < 00;
te

u blows up in the positive direction at time T < 400 with

vl s(0,71)) = oo

In addition, u is almost periodic modulo scalings with a frequency scale function A(t). It is minimal in the
following sense: if v is another solution with a maximal lifespan J and

sup [|(v(2), A v grsp o rsp—1 < SUp | (1), 0O grsp  rsp—1-
teJ tel
then v is a global solution in time and scatters.
The main tool to obtain this result is the profile decomposition. One can follow the general argument
in [Kenig and Merle 2010], which deals with the cubic defocusing NLS under similar assumptions.
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Three enemies. Since the frequency scale function A(¢) plays an important role in the further discussion,
it is helpful if we could make additional assumptions on this function. It turns out that we can reduce the
whole problem into the following three special cases. This method of three enemies was introduced in
R. Killip, T. Tao and M. Visan’s paper [Killip et al. 2009].

Theorem 3.4 (three enemies). Suppose our main theorem failed. Then there would exist a minimal
blow-up solution u satisfying all the conditions we mentioned in the previous theorem, so that one of the
following three assumptions on its lifespan I and frequency scale function A(t) holds:

(D) (soliton-like case) I = Rand A(t) = 1.
(II) (high-to-low frequency cascade) I =R, A(¢) <1 and

liminf A () = 0.

t—>+to00
(IIT) (self-similar case) I = R and A(t) = 1/1.

The minimal blow-up solution u here could be different from the one we found in the previous theorem.
But we can always manufacture a minimal blow-up solution in one of these three cases from the original
one. One can follow the method used in [Killip et al. 2009] to verify this theorem.

Further compactness results. Fix a radial cutoff function ¢(x) € C*°(R3) with the properties

=0 for [x| <1/2,
p(x)q€[0,1] forl/2<|x| <1,
=1 for [x| > 1.

Given a minimal blow-up solution ¥ mentioned above and its frequency scale function A(¢), we have the
following propositions by a compactness argument.

Proposition 3.5. Let u be a minimal blow-up solution with a maximal lifespan I as above. There exist
constants d,C’ > 0 and Cy > 1 independent of t such that:

(I) The interval [t —dA~Y(t),t +dA"Y(t)] C I forall t € I. In addition, we have
1
C—A(f)fk(f/)icll(l) (11)
1

foreacht' €[t —dA= (), t +dA7 ()]
(I) The following estimate holds for each sp-admissible pair (q,r) and each t € I:

Il Lo rr q—aa—1 (o) e+dr—1 @o)xr3y < C'.

Proposition 3.6. Given ¢ > 0, there exists R1 = R1(g) > 0 such that the inequality

X x
‘ ((p(Rk_l(t))u([)’ (p(R/\_l(t))atu(t)) HHSPxI-'ISp—l(R% =¢
holds for eacht € I and R > R (¢).
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Proposition 3.7. There exists two constants Ry, no > 0, such that the inequality

t+dA71(@) p+1
/ / OO g e 2 2020
y Ix|<RoA—1(r) | x|

holds for each t € I. (The constant d is the same constant we used in Proposition 3.5.)

Proof. By a compactness argument we obtain that there exist Rp, 7o > 0, so that for all € 1,

,x(t)2/<p T AT O)x, AT 1(l)r+t)|)
// dxdt > no.
|x|<Ro

x|

This implies

/d/ uA1(Ox, AN )t + )P dxdr .
x|<Ro l_l(t)|x| )L(Z)Z(;—H)—H = No.

1 /d/ (A~ 1<z>x AN+ 0)|PH dx de
2O P Jo Ji<ry 10| 0

t+dA7L() p+1
/ / MO v de > 2001y (12)
y lx|<RoA—1(r) | x|

= A(1)*7** .
This completes the proof. O

The Duhamel formula. The following formula will be frequently used in later sections.

Proposition 3.8 (Duhamel formula). Let u be a minimal blow-up solution described above with a maximal
lifespan I = (T—, 00). Then we have

T ..
T
dru(t) =_Thr£ cos((t —t)V—A)F(u(zr)) dr;
=iy [ Q%M) Flu(r)) d,

dru(t) = Tl_i)rr%ﬂ_ /T cos((t —t)V—A)F(u(r))dr.

Given a time t € I, these limits are weak limits in the space H* x H*»71_ If J is a closed interval
compactly supported in 1, then one can also understand the formula for u(t) as a strong limit in the space
LIL"(J xR3), as long as (q,r) is an sp-admissible pair with q # oco.
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Remark 3.9. Actually we have

/T sin((t —1)v/—A)

Fu(r))dr
VA _ (B”LEt()t)) _S(-T) (B“LE(T;)) . (13)
—/ cos((t—t)V—A)F(u(r))dr ! !

t

Thus we only need to show the corresponding limit of the last term is zero in order to verify this formula.
See Lemma A.2 in the appendix for details.
4. Energy estimate near infinity

In this section, we will prove the following theorem for a minimal blow-up solution u(x, ¢). The method
was previously used in the supercritical case of the equation. (See [Kenig and Merle 2011] for more
details.) In the supercritical case, by the Sobolev embedding, the energy automatically exists at least
locally in the space, for any given time ¢ € . In the subcritical case, however, we need to use the
approximation techniques.

Theorem 4.1 (energy estimate near infinity). Let u(x,t) be a minimal blow-up solution as we found in
the previous section. Then (u(x,t), d;u(x,1)) € H! x L2(R3\ B(0, r)) for each r > 0, t € I. Actually
we have

/ (Vu(x, )|> + |0;u(x,)|?) dx < Cr=20-5), (14)
r<lx|<dr
The constant C depends on p and sup, ey ||(u(t), 0:u(t))| gsp  ysp—1 but nothing else.
Preliminary results.
Introduction to w(r,t). Let u(x,t) be a radial solution of the wave equation

B%M —Au = F(x,t).
If we define w(r, ), h(r,t) : RT x I — R so that

w(r,t) =ru(x,t), h(rt)=rF(x,t),

then we have w(r, t) is the solution of the one-dimensional wave equation

Fw — 02w = h(r,1).

Lemma 4.2. Let (u(x, ty), d;u(x, to)) be radial and in the energy space H' x L? locally. Then for any
0 <a < b < o0, we have that the identity

1

4 Ja<|x|<b

b
(|Vu)? +|9;u|?) dx = (/ [(3,w)? + (9;w)?] dr) + (au?(a) — bu?(b))

holds (if we take the value of the functions at time ty).
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Proof. By direct computation

b b
[ 102+ @uiar= [ o w2+ Gonar

b b
=/ [”2(3r74)2+uz+r2(8,u)2]dr+/ 2rudyudr
a a

b b
2/ [r2(8ru)2+r2(8,u)2+u2]dr+/ rdu?)

b
- / P16 + @)l dr + [
1

=— (|Vul? + |0;u|?) dx + bu?(b) — au?(a). O
4r a<|x|<b

Lemma 4.3. Let w(r,t) be a solution to the equation
FPw — 02w = h(r,1)

for (r,t) e RT x I, so that (w, d;w) € C(I; H' x L2(Ry <r < Ry)) forany 0 < Ry < R < 0o. Let us
define

z1(r,t) = drw(r, t) — drw(r,t),
Zo(r,t) = 0sw(r,t) + d,w(r, t).

Then we have (with M > 0)

4ro 3 arg+M 3
'(/ |21(r,t0)|2dr) —(/ |21(r,t0+M)|2dr)
ro ro+M

4rg M 2 %
5(/ (/ h(r+t,t0+t)dt) dr) (15)
ro 0
ifto,to+M €1, and

4ro 3 4ro+M 3
‘(/ |zZ(r,zo)|2dr) —(/ |22(r,ro—M)|2dr)
ro ro+M
4ro M 2 %
5(/ (/ h(r—l—t,to—t)dt) dr) (16)
ro 0

Proof. We will assume w has sufficient regularity, otherwise we only need to use the standard techniques

ifto,to—M € 1.

of smooth approximation. Let us define

z(r,8) = (0; — 0 )w(r + 5,19 + 5).
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‘We have
05z (r,s) = (0; + 0;)(0; — 0 )w(r +s,t0+5) =h(r+s,t0+5).

Thus o
Z(V,M)=Z(I’,O)+/ h(r +t,to+1)dt.
0

Applying the triangle inequality, we obtain the first inequality. The second inequality can be proved in a
similar way. O

Smooth approximation.

Introduction. Let u(x,t) be a minimal blow-up solution. Choose a smooth, nonnegative, radial function
@(x, t) supported in the four-dimensional ball B(0, 1) C R* such that

/ o(x,t)ydxdt =1.
R3xR

Let d be the number given in Proposition 3.5. If ¢ < d, we define (both the functions u and F(u) are
locally integrable)

pele.) = plx/e 1)), ue=uwge, Fo= F)xge
This makes u.(x, t) be a smooth solution of the linear wave equation
Fug(x, 1) — Aug(x, 1) = Fe(x,1),
with the convergence (using the continuity of (u(¢), d;u(t)) in the space H*» x HS»~1)
(ug(to), dsus(to)) — (u(to), dru(ty)) in the space H? x HS?~! for each g € I

and the estimate

[l (s (t0), Osus (O grsp x frsv—1 = sup (@), 00| gspw frsp—1 < 1-
In addition, if a — & € I, we have

[ Fe(x, 1)l z,, ([a,b]) < 00

Remark 4.4. We have to apply the smooth kernel on the whole nonlinear term, because if we just made
the initial data smooth, we would not resume the compactness conditions of the minimal blow-up solution.

The Duhamel formula.

Lemma 4.5 (almost periodic property). The set

1 X 1 .
{ (,\(;)3/2—s,, ug()t(t)’l)’ A(1)5/2=5» 3t“8(m,1)) teld+1, oo)}

is precompact in the space H*» x H*»~Y(R3) for each fixed ¢ < d. The number d here is the constant we

obtained in Proposition 3.5.
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Proof. Given a sequence {t,} we could assume without loss of generality that

A(ty) = Ao €0, 1],

1 x 1 ] x
()t(tn)3/2_sp ! ()L(tn)’ln) " A(tn)5/2=5p tu ()L(tn)’t")) — (1o, u1),

by extracting a subsequence if necessary. Let u(x, ¢) be the solution of the equation (1) with initial data

(1o, u1). By the long-time perturbation theory we know

1 t .

Atn)3/2=5p ”(A();n) In A_(tn)) o u@
sup 1 a x t + t atﬂ(t)

tel=ddl | \ a5 O\ T I T T HSr s rsp

— 0.

This implies

1 1 . .
A(ty)3/2—sp ”8<A()§n) ’ [”) A(t,)3/2=sp “(A(tn) +In + A(m))

= | Perty) * . .
1 1
Altn)>/2=Sp Orue A();n)’t”) A(t)3/2—5p dru PR R Y () =0
u
= * - +o0 1
|:‘/)e/1(tn) (3tu)],=0 (1)
u .
Der *( ~)i| +0(1) if Ag > 0;
_ |: 0 Btu =0
Cm)+oa) if 1 = 0;
Z31
The error o(1) tends to zero as n — oo in the sense of the H%? x H*»~1 norm. O

Lemma 4.6. The Duhamel formula
(t0) /+°° sin((t —tg)v/—A)
Ug(lp) =
£ "0 N X

drug(ty) = _/+00 cos((t —to)V—A)Fe(x,1)dr.
t

0

Fo(x,7)dT,

still holds for ug in the sense of weak limit if ¢ < d and ty — ¢ € 1. In the soliton-like or high-to-low
Jfrequency cascade case, we can also establish the Duhamel formula in the negative time direction.

Proof. This lemma can be proved in exactly the same way as the original Duhamel formula (see
Lemma A.2). The key ingredient is the almost periodic property we have just obtained above. O

Decay of ug and Fg at infinity.
Lemma 4.7. If |x| > 10¢g, we have
lue(x,0)| < PG |Fe(x, )| = /D

The constant C depends only on p and the upper bound sup,cy ||(u(2), dru(O)) || gsp  frsp—1-

Proof. This comes from the estimate (8) and an easy computation. O
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Uniform estimate on u.. In this subsection, we will prove the following lemma. It implies Theorem 4.1
immediately by a limit process. The functions w¢(r, t) and z; ¢(r, t) below are defined as described earlier
using ug(x,1).

Lemma 4.8. Let tg € I and rog > 0. Then for sufficiently small &, we have
2 2 —2(1-sp)
/ (IVue(x,t0)|” 4+ |0:us(x,20)|")dx < Cr, . 17)
ro<|x|<4ro
The constant C can be chosen in a way that it depends only on p and the upper bound

sup [[(u(t), deu ()l grsp x grsp—1-
tel

Conversion to wg(r, t). First choose & < min{rg/10, d}. If the minimal blow-up solution is a self-similar
one, we also require ¢ < to/2. Let us apply Lemmas 4.2 and 4.7. It is sufficient to show

4ro —2(1—s,)
/ (8rws(r. 10) 2 + e (r. t0)P) dr < Crg 2079,
ro

In other words,

4ro
/ (Iz1.6(r.10) % + 22,6 (r. t0)[2) dr < Crg 20757, (18)
;

0

Expansion of z1 . Let us break (ug(t), 0;us(t)) into two pieces:

to+100rp ;
My — 0 0 sin((t —t)v/—A)
o= N

to+100rg
Blugl)(t) = —/ cos((t —t)V—A)Fe(t)dr,
t

F.(r)dr,

and
@ — sin((t —t)v/—A)
U (1) /t0+100r0 v—=A
3, uP (1) = —/ cos((t —t)vV—A)Fs(1) d.

to+100ro

Fe(t)dr,

These are smooth functions, and we have

(us(x, 10). drus(x. 1)) = " (x, 10). Bl (x,10)) + P (x. 10). 3u (x. 9)).
Defining wg(j ), Z%J 8) accordingly for j = 1,2, we have

71,6(x,10) = ng)(x, fo) + ng(X, 1)-
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(1)

Short-time contribution. We have u, ~ satisfies the wave equation

22u’ — Aud = Fo(x.1),  (x.1) € R? x (15, +00).
u81)|t=t0+100r0 =0¢e H* (R?),
atu£1)|t=to+100r0 =0e H» 1 (R3).

Thus wél) is a smooth solution of

B%wél) — 8%w£1) =rFy(r,t), (r,t)eRTx (ty , +00),
wsl)|t=t0+100r0 =0,
atw§1)|t=to+100r0 =0.

Applying Lemmas 4.3 and 4.7, we obtain

1007 2 1

(/ |Z(1)(I‘, to)|? dr) (/ (/ (t+r)F(t+rt+1) dt) dr)
100r0 1 2 1

/ ( (t + r)—(t eI dt) dr)

100r0 1 2 1
( | (1 )20 dt) dr)

%
r4/(P 1) dr )

A

47'()

A

<
(I,
(

Long-time contribution. Let us define a cutoff function y(x,t) to be the characteristic function of the
region {(x,?) : |x| >t —t9g — 50rp}. By Lemma 4.7, we know

o )
I XFellLt 2 ([t0+ 100r0,00) xR3) :/ (/ |F£|2dx) dt
to+100rg |x|>t—t9—50r¢
oo . L
s /to-HOOro ([x>t—to—50r0 |x|4p/(p—1) dx) at

o 1 2
S f ( ) dt
to+100r0 \ |t — 1o — 50rg|1+4/(P=1)

o 1
5/ - dt
10410070 |t —fg _50r0|§+2/(p—1)
1

1—=sp°
"o

A
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Applying Lemma 2.20, we obtain
/ (IVu® (x.10)? + 9P (x. 10)P) dx < rg "7V,
ro<|x|<4ro

Applying Lemma 4.2 and using the fact (plus (8))

ug(to + 100r
1@ (t0), 3:uP o) gsp » frsp—1 = HS(—IOOro) ( e(fo 0) )‘

drug(to + 100r9)

Hspx Hsp—1
= [[(ue(to + 100r0), drue (o + 10070)) || gysp  frsp—1

< 50p 0 90 g sy 1 5 1

we obtain

4ro
[ 0@ ) + 0@ )Py dr < 77,
ro

o, 2(sp—1)
/ 22 (o t0) 2 dr < gV
:

0

1)

1.2+ We have

Combining with the estimate for z

4o > 2(s,-1)
/ |z1,e(r t)|“dr Sry™” .
ro

Estimate of z2 . We also need to consider z .. In the soliton-like case or the high-to-low frequency
cascade case, this can be done in exactly the same way as z1 .. Now let us consider the self-similar case.

Lemma 4.9. Let u be a self-similar minimal blow-up solution. If tg < 0.3r¢, then (u(tp), 0:u(ty)) is in
H'x L%(|x| > 0.9r¢) with

/ (Vae(x, 10)]? + [ (x, 10)|?) dx < rg¢7 ™.
[x]>0.97¢

Proof. We have (the Duhamel formula)

u(to) = /O 10 Sm((“’\;%V =) £y dr,
d:u(ty) = /{:: cos((to — )V —A)F(t) dt,

and

<
S

_ /’0 sin((%o —I)M)X(m >0.5r0) F (1) dt,
0

+ V=A
to
U = /(; cos((to — )~V —=A) x(|x| > 0.5r9) F(¢) dt.

+
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A straightforward computation shows || x F [| 1 120+ £0)xR3) < rg” ~!. This means (to, 1) is in the space
H'! x L2(R3) with a norm < rg” -1 By the strong Huygens principle we can repeat the argument we
used in Lemma 2.20 and obtain

(u(to), d;u(to)) = (ilg, 711) in the region R>\ B(0, 0.9r¢). O

Lemma 4.10. Let u be a self-similar solution. If ty < 0.2rg and & < to/2, then we have
2 2 2(sp—1)
/ (IVue(x,t0)|” + |0sus(x, t0)|7) dx Sy .
ro<|x|<4ro
Proof. We have Vug = ¢, % Vu, thus |Vu,| < ¢, * |Vu|. Thus (we have ¢ < 0.1r¢)

/ |Vug(X,to)|2 dx < sup / |Vu(x,t)|2 dx < rg(sp—l)
ro<|x|<4ro telto—e.to-+e] J0.970<|x|<4.1r0

by our previous lemma. The other term can be estimated using the same method. O

Remark 4.11. By Lemmas 4.2 and 4.7, this lemma implies (if ¢y < 0.2r¢ and ¢ < ty/2)

4ro
/ (10, we(r. 10) |2 + [0, we (r. 10)[2) dr < rg PV, (19)
j

0

In the self-similar case, let us recall that we always choose ¢ < min{r¢/10,79/2,d}. By Lemma 4.10
and Remark 4.11, we only need to consider the case 7o > 0.2r¢ in order to estimate z ;. Applying
Lemma 4.3, we have

4ro %
( / 22.0(r, 10) 2 dr)
ro

t0+3.8r0 3 4rg ; pto—0.2r¢ 2 1
< (/ |22.6(r, 0.2r)|? dr) + (/ ([ (t+r)Fe(t+r,20—1) dt) dr) .
to+0.8rg ro 0

. . -1 .
The first term is dominated by rg” because of (19). We can gain the same upper bound for the second
term by a basic computation similar to the one we used for z1 ¢.

Conclusion. Now we combine the estimates for z; ¢ and z5 ¢, thus concluding our Lemma 4.8.

Local energy estimate and its corollary. As mentioned earlier, we are able to establish Theorem 4.1
immediately by letting & converge to zero. (See Lemma A.6 for details of this argument.) Furthermore,
we can obtain the following proposition by applying Lemma 4.2 on u.

Proposition 4.12. Let u(x,t) be a minimal blow-up solution as above; we have

4ro 2(sp—1)
[ (|3rw(r,lo)|2+|3tw(r’l0)|2)drSVO 7
.

0

4ro 2(sy—1)
/ (210 1) + 220 10) 2) dr < 267D,
i

0
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5. Recurrence process

In the previous section we found that the minimal blow-up solution is locally in the energy space. However,
our goal is to gain a global energy estimate. This section features a recurrence process which helps us
march toward higher regularity. We will prove the following lemma. Throughout the whole section we
assume u satisfies all the conditions mentioned in the lemma.

Lemma 5.1. Let u(x,t) be a minimal blow-up solution of (1) as obtained in Section 3 (compactness
process) with a frequency scale function A(t). In addition, the set K is precompact in the space
H* x HS"Y(R?) for some number s € [sp, 1):

k= : - P el
= {(A(t)yz_sl)u(/\(l‘)’t)’A(t)s/z_sﬂ tu(k(t),l)) ‘te }

Then at least one of the following holds.

o The solution u satisfies the energy estimate
1 (1) D) 1 g2y < A7

o The set K is also precompact in the space H$T0:9802(P) x fys—1+0.9802(P)  Here the number

02(p) > 0 depends on nothing but p.

Remark 5.2. The compactness of K immediately gives the estimate
(@), 0 s ys—1 S A@))* 7, tel.

Setup and technical lemmas.

Definition 5.3. Let us define

S(A) = sup(A@))*? " usr@yally, (r.e+d2-1@)])-

tel

N(A) = Sug()t(l))s”_s I P>rcyaF D z,(1e.t+dr—10))-
te

Proposition 5.4. The functions S(A) and N(A) are universally bounded for all A > 0 with the limit
lim S(A)=0.
A——+o00

Proof. By our assumptions on compactness and Proposition 3.5 part (I), we obtain that the set

1 - - S ] ")) ireodlrer
%(A(I)yz_sl’u(k(l)’t_*— /\(l‘))’ A(I)S/Z—sp tu(k(t)’t + A([))) ctel0,d]te

is precompact in the space H® x H*~1. Applying either Proposition 3.5 part (II) (if s = sp) or Theorem 2.14

(if s > s5p), we also have a bound independent of ¢:

1 X ; T
”A(zﬁ/z-sﬂ“(x(z)’ - x(r))

<. (20)
Y, ([0.d])
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Combining these facts with perturbation theory (Theorem 2.12 if s = s, or Theorem 2.15 if s > s55), we
have

1 x T 0.d1: 7
o (o 1 ) e

is precompact in the space Y ([0, d]). This immediately gives the uniform convergence for ¢ € 1,

=0, asd— oo. (21)
Ys([0,d])

p 1 X ; T
H >Ax(r)3/2-sl»”(k(r)’ U(z))

If we rescale the inequality (20) back, we obtain

A" ully,qre4+ar—10p S 1= QO *NF@ z,qre+dar—1o0p S L

which implies that S(A) and N(A) are uniformly bounded. In a similar way we can show S(A4) converges
to zero as A — o0, using the uniform convergence (21) above. O

Definition 5.5. Let us set
X(6,p)=s+1=02p—=2)(s —5p)
for convenience. Thus the Y, () norm can also be written as L27/Z(:P) [ 2P/(1=5) (] x ®3) norm.

Lemma 5.6 (bilinear estimate). Suppose u; satisfies the linear wave equation on the time interval
I1=[0,T],i=1,2,
8%14,' —Au; = F,-(x,t),

with the initial data (u; |;=0, 0:u;|r=0) = (Wo,i,u1,;). Then

S = ||[(P>gru1)(P<rus)||

P ya
LZ(.p) L2—s (I xR3)
r g
< (ﬁ) (1o, 1. w1, Dl s grs—1 + I Fill zory) * (10,2, w1,2) | s grs—1 + 12l zy )

Here the number o is an arbitrary positive constant satisfying

1 X(s,p) 2—s 2—s
co<3|lz-—F————], o0<3x . (22)
2 2p 2p 2p

Remark 5.7. We can actually choose
3 mi —
min{p — 3,1} S 0.
2p

This constant ¢ (p) depends on nothing but p. This fact plays an important role in our discussion.

o =0(p)=

Proof. By the Strichartz estimate

IP>r)urll 2o 12esig) S I(D5? P> guo,1, D Psrut, )l sy gs—1 + 1D5% P>rF1ll z,1)-

[P<riall 2o 1y, < I(DS Perttoz. DI Pyt )l oot + 1D Per Fall 2,1
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Our choice of 0 makes sure that the pairs above are admissible. Thus we have

|(P>gru1)(P<;us)||
< ||(P>R)u1||
)L

< (||(Dx0P>Ru0,1, D.° P>Ru1,1)||HsXHs—1 + ||D;“P>RF1 I z,n))
X (I(DF P<yuo,2, DI P<rutr 2)|l sy grs—1 + 1D P<r F2ll z (1))

1 o
< (ﬁ) (II(P>Rru0,1. P>RuU1,)l s prs—1 + | P>RF1ll z,(1))

xr? (I[(P<rt0,2, P<rtt1,2) | s grs—1 + |1 P<r F2llz, 1)
< the right-hand side. O

R p
L2@s.p) [, 2—s

Ll/(z st g )||(P<r)u2||

1/(5E=%)

Lemma 5.8. Let u(x,t) be a function defined on 1 x R3, such that 1i is supported in the ball B(0, r) for
eacht € I. Then

<(= 212
L755 (Ixm?) ™ (E) llly, ry-
Proof. We have

IP>RF(u(x, 1))

2 2
L=G.p) L2—5 (I XR3)

1
S gz 1P>rAxFu(x. 1))l

2 2
L=G.p) L2—5 (I xXR3)

1
_2||AxF(u(xvf))”LﬁLz%(nW)

p—1 - P=3y
||p(Axu)|u| + p(p—1)|Vyx u| |ul ”LE(s 5 L2255

ﬁ(nAxunysmnuuY by IVl o lel5 5
2
r
p
5 ﬁ”uuyx([)-

Lemma 5.9. Let v(t) be a long-time contribution in the Duhamel formula

Tz _ /_
v(to)=/ S =10 V=2) 1 y0) dr.

Ti v =A

Then for any to < Ty < Tp, we have

o)l Loo w3y < (T1 — [O)—2/(P—1)'
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Proof. Using the explicit expression of the wave kernel in dimension 3, we obtain

———Fu(y.1)dS(y)dt

‘ ( /Tz sin((t — tg)v—A)

" Ny F(u(l))dt)(X)

ly—x|=t—to 47T(t_t)

pg d
/ /y —x|=t—19 47t(t )|M(y,t)| S(y)dt

1
——dS(y)d
/ /y —x|=t—1o (I — f0)|y| (y)dt.

In the last step, we use the estimate (8) for radial H*» functions. If |x| < %(Tl —to), then on the sphere

for the integral we have

Iy = |t —tol = |x| = 5(t —10).
Thus for these small x, we obtain

(==

Fu()) dl)(X)

1 1
dS(y)dt
1
dS(y)dt
/ /y —x|=t—ty (t —1g)3+2/(P=1) )
1> PRY)
5/ (t —1o) s
T (t— tO)3+2/(p—1)

T2 1
< dt
I

S (Ty —19) /P70,

On the other hand, if x > %(Tl — 1), by the estimate on radial H? functions (8) and Lemma 2.17, we

have
T2 sin((t —to)«/—A)F mde ool < 1 T2 sin((t —tg)«/—A)F LNy di
w@®)dt |()| = —75=1 (u(1))
7 J=A [x[2/=D) V=A R
< 1
~(Ty — )2/ (=D
Combining these two cases, we finish our proof. O

Lemma 5.10. There exists a constant k =k (p) € (0, 1) that depends only on p, so that for each s € [sp, 1),
there exists an s-admissible pair (q,r), with q # 0o and
(s, p) 2—s 3—-2s

1
k-0+(1—k)- = +(1—k)-.
2p ( K) 2p o 6 ( K)r
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Proof. We will choose k = 1—3/p € (0,0.4). Basic computation shows

1 )y 1—-C2p—-2)(s—

L 26 _sH1=@p=Dlsp) o1
q 2p(1—«) 6

1 2—s K 3—-2s 2-—3% K 3—-2s
- = — X = — X

r 2p(l—«x) 1—« 6 6 1—« 6

2—s 2 3-2s 2-—y%
€ — X —,
( 6 3 6 6 )

s 2—s
- P
_(18 6 )

C (1/36,1/4).

Thus we can solve two positive real numbers ¢, r so that the two identities hold. In addition, we have
q € (3,00) and r € (4, 36). Furthermore, by adding the identities together, we obtain

3—2p—2)(s—sp)  3—2s B l l
2 =K S +(1 K)(q-l-r).

This implies
1 n 1 - 3—Q2p—2)(s—sp)  3—2p—2)(s—sp)
q r 2p(1—k) N 6
Using the same method, one can show 1/g + 3/r = 3/2 —s. In summary, (g, r) is an s-admissible
pair. O

<1/2.

Lemma 5.11. Given any s-admissible pair (q, r) with g < oo and three times to < t1 < tp in the maximal
lifespan I of u, we have
/T sin((t —1)v/—A)
15} v —A

The constant C does not depend on ty, t1 or t3.

lim
T—o0

Fu(r))dz

< C(A(t))**».
LaL"([to,t1]1xR3)

Proof. By Lemma A.5 and the identity

/T sin((t —1)v—A)
1] m

we have

Fu(r))dt =St —12)(u(t2), d:u(t2)) — S = T)(u(T), d,u(T)),

i T sin((t —t)v/—A)
T—o0 Jt, V—-A
in the space LYL" ([tg,t1] x R?). Thus
T sin((t —t)v/—A)
J. A

Fu(r))dt = S(t —12)(u(t2), 9ru(t2))

(u(r))de = ||S(r — t2)(u(t2), 0ru(t2))ll La Lr ([t.£1]1xR?)

LaL" ([to,11])
SN (2), deu(@2))| s frs—1
< (A1), O

lim
T —o0
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Lemma 5.12. Suppose S(A) is a nonnegative function defined in R™ satisfying S(A) — 0as A — oo. In
addition, there exist 0 <a < f < 1 and [, w > 0 with

la+B8>1,
such that the inequality
S(A) < S(AP)ST(A%) + 47© (23)
is true for each sufficiently large A. Then
S(A) <A™

for each sufficiently large A.

Proof. Let us first choose two constants /~ and @™, which are slightly smaller than / and w respectively,
such that the inequality /o + 8 > 1 still holds. By the conditions given, we can find a constant Ag > 1,
such that the following inequalities hold:

S(4) < Ls(AP)S!T (4% + 1477 if A > Ay, (24)
S(4) < 3 if A> A%,

Using the second inequality above, we know the inequality
S(A) <A™ (25)

holds for all A € [AY, Ao] if w; is sufficiently small. Fix such a small constant w; < w™. We will show
that the inequality (25) above holds for each A > AJ by an induction. We already know this is true for
A € [A%, Ag). Tf A € [Ag, AY/P], the inequality (24) implies

S(4) < 1s(4P)s!m (a4 + Lame”
< %(Aﬂ)—a)l ((Aa)—a)l)l_ + %A_w_
< %(A—wl)ﬂ-i-l_a + %A_wl
< ATO

Here we use the fact that A%, AP € [AG, Ao] if A satisfies our assumption. Conducting an induction, we

can show the inequality holds for each 4 € [A(()l/ “ )n, Agl/ Ay

] if n is a nonnegative integer. In summary,
the inequality (25) is true for each A > Af. Plugging this back in the original recurrence formula (23),

we obtain for sufficiently large A,

S(A) S A—wl(ﬂ+la)+A—w 5A—min{wl(,B-i-lot),w}7

which indicates faster decay than A~®!. Iterating the argument if necessary, we gain the decay S(4) <A™
and finish the proof. O
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Recurrence formula. Under our setting in this section, given 0 <o < 8 < 1 and a small positive constant
€1, we have the recurrence formula

N(A4) < S(AB)SP_I(A“) + A= B-a(p) 4 4—20-5) (26)
S(4) S N(A!™e) + 470 @27)

for sufficiently large A. The constants o (p), 01(p) depend on p but nothing else.

Proof of (26). In the following argument, all the space-time norms are taken in [, +dA~1(1)] x R3:

1PosyaF )|z, S M)~ P~ DE=sp) ||P>A(t)AF(u)”L -

<A@)" PPy aF gzl 2

2
LXEG.p) [ 2—s

+ A" @TVETD Py iy a(F ) — Fucgp30)l

— )L(Z)_(p_l)(s_sl’)(ll + I).

2 2
LXG.p) [ 2—s

By Lemma 5.8, we have

AP\2 —5,) 4—2(1—
15 (57) T, S Qup?e=» 4720-P),

In order to estimate /,, we have (all unmarked norms are L SGom [ 75s ([t.t + dA~1(t)] x R?) norms)

P4 |:u>AﬁA(t)/0 ‘

1
“>A5)L(t)/0 F'(Uo gy + TS 482 (1) dT
SN2l + 112,2])-

1
I <

F'(uoppp(y + T 48(r)) df]

<

~

Here

1
I = u>ABA(t)/(; F'(uogppq) + T a85(r) AT

1
_u>A3A(t)/(; F'(Ugap(ry<-<abaq) T TUs482() AT,
1
I =Us 480 /0 F'(Ugapy<-<aba) + TU>a810) dT.

We have

1,1
L= Us ABL()U<AXA(2) X/O /(; F//(%“gAO‘A(t) +Uger)<-<ABA@) T Tu>AﬂA(t)) dtdr.
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Applying the bilinear estimate (Lemma 5.6) on the term . 45 ;) U <A A(r), We Obtain

12,111 < U5 a2y U<acro »

P
LX2(@s.p) [, 2—s

X 2p 2p

L (»p—2)2(s.p) [, (p—2)(2—s)

1,1
/0/0 F"(Tu<gope) + Ugen)< <abir) + TU>a83()) dTdT

o 0’( )
< [(jlgig;) P ()&(t))Z(s—sp)i|()L([))(p—z)(s_sp)

< (A(t))l’(s_sp)A_(ﬂ_a)U(P).

On the other hand, we know that, for sufficiently large 4,

1
/0 F'(Ugo 1)< <aBa@) F TUS482(r) AT

1220l S s asainll 20 20

LX2(s.p) [[2—s 4 i

L»—DXZG.p) [ (p—1)(2—s)

S Q@) SAD)[A) PR ST (4%)]
S Q)PCTIS(AP) P AY).

Collecting all terms above, we have
| Poa0a(F@)z, < A@0)* 7 [S(AP)SP7H(A%) 4 A7F700P) 4 472070,
Multiplying both sides by (A(¢))*?~* and taking sup for all ¢ € I, we obtain the first inequality.

Definition 5.13. Given ¢y € I, define ¢; recursively for i > 1 by
ti =ti—1 +dA " (tim). (28)
By the choice of d, all the #; are in the maximal lifespan /. (See Proposition 3.5.)

Proof of (27). By the Strichartz estimate and the Duhamel formula (see Lemma A.5), we have

®sin((t —1)v/—A)
U = P Fu(t))dz
lu> o) all vy (lt0,011) ”/t Ny S a(to)A F (u(7))
- ‘ /tz sin((t —1)v/—A) P
e vV =A Y ([t0,11])

T .
o sin((t —t)v/—A)
+11m1nf/ PojoyaF(u(r))dr
12 vV —A ~ Ao Ys([to,t1])

SN Psao)aF D z, (120,62 xR3)

T sin((r —1)v/—=A)
PojpyaF(u(r))de
/I:z m Z o) Ys([to,11])

Ys([to,t1])

A F(u(r)) dt

T—o0

+ lim inf

T—o0

=11+ 1.
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The first term can be dominated by
It SN PoaoyaF D 2, (110,001xw3) T 1 Poao)a F D 2, (111 ,121xm%)

A
?““WV”NM%HMmV“N(ﬁgA)

< (A(10))" P N (A1)

for any small positive number ¢; and sufficiently large A > Ag(u, 1), because A(fp) and A(z1) are
comparable to each other by the local compactness result (11). Now let us consider the term /5. First of
all, by Lemma 2.17, we have

‘ /T sin((t —1)v/—A) »
5} Y% —A

Sato)aF(u(t))dt

Lo L2 ([to,t11xR3)

- 1 /T sin((z — 1) v/—A)
T (At0) A7 (| )iy V-A

Fu(r))drt

LE’Z‘(’)'H]H’P ®3)

<t
= (Ato)A)*»

Using Lemma 5.9, we are also able to obtain
‘ /T sin((t —1)v—A)
123 A/ —A

Poj@pyaF(u(r))de

Lo Lo ([to,t1]1xR3)
/T sin((t —1)v/—A)
123 v —A

S (-~

<

~

Fu(r))dt

LooLoo([to,t1]xR3)

S (1)) 77V,

By an interpolation between L2 and L, we have

T .
sin((t —t)v/—A)
Pesa [ Fu(o)) dt
‘ ZAo tr v —=A LOOL%([to,t]]x[F@)
2s/3 (3—2s5)/3
=< ” - ||L°°L°°([to,t1]XR3)” : ”L°°L2([t0,t1]xR3)

< [ (t0) ¥ PV (A (19) A) ~50] C29/3

—sp(3—2s)

= (A1) ™7 A=

Next, we will use the interpolation again to gain an estimate of the Y5 norm. Let (g, r) be the admissible
pair given by Lemma 5.10. Applying Lemma 5.11, we have
/T sin((t —1)v/—A)
123 vV _A

F(u(r))dt S (AM(12))"77 < (A10))" 7.

Lqu([t07t1]XR3)

lim
T—o0
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Using this fact and the construction of (g, r), we obtain

T .
—1)V—A
I = limiinf / sin((z 1) )P>)L(to)AF (u(v))dt
T—oo | J1, v =A Y ([20,21])
T . k(p)
. sin((z —1)v/—A)
511Tn_1)1;1°f<‘/ ay PojoyaF(u(r))de 6 (e 1E)
[ - Lo 325 1011
T . 1—«(p)
sin((r —t)v—A)
x PoaoyaF(u(r))dr
‘/;2 V=A ~H0) LaL"([to,t1]1xR3)
G-=29) (») T —1)V—-A 1=x(p)
[()L(to))s sp 42T ]“’ x_lim ‘ / SINE=DV=B) b)) dr
T—oo|Js, V=A LaL”

<[y a” } B 1 1o)==+ o)

K(p)(3—25)
S () a5

< (AM19)) ™7 AP,
Here o1(p) = k(p)/6. It depends only on p. Combining our estimates on /; and /5, we finish the proof
of the second inequality.
Decay of S(A) and N(A) with applications.
Decay of S(A) and N(A). Plugging the first recurrence formula into the second one, we obtain

S(A) < S(A(l—sl)ﬂ)Sp—l(A(l—é‘l)ol) + A~ (p)(A—e1)(B—a) + A~20=e)(1=4) + A—o1(p)

Choose @, 8 and &1 so that

(1—e)B=2/3, (I1—ena=1/3, & =1/10000. (29)

Then we have
S(A) < S(A%3)sP~1(A/3) 4 472

for sufficiently large A. Here the positive number o> (p), defined as

02 =min{o(p)/3,01(p),0.6}.

depends on p only. Applying Lemma 5.12, we have S(A4) < A~°2(P) for sufficiently large A. Plugging
this in the first recurrence formula, we have N(A4) < A~%2(P) for large A. Observing that both S(A4) and
N(A) is uniformly bounded, we know these two decay estimates are actually valid for each A > 0. Now
let us choose

s§1 = mln{l s+ 19%02(]9)}

and make the following definition.
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Definition 5.14 (local contribution of the Duhamel formula). Assume ¢’ € . Let us introduce the notation

’ dl(/)_l . . —
ver(t) = /tt+ s OVED) poyeyy ae;

’ V=A
t'4+dA@)!
drvp(t) = —/ cos((t—t)v—A)F(u(r))dr.
t

Estimate on local contribution. Given any ¢ <t’ and integer k > 0, we know
[ Paceryor <-<aqeryak+1 (Ve (@), 0ever ()| grsy o gsi—1
S N2 S Paoryar <<aeryaient Wer (0, 000 (O) | oo
< A2 TN P 0y 0 (). 000 (O s s
< (l(f')2k)sl_s||P>x(ﬂ)2k F) |z, ./ +dae)-17)
S A2 (@) T N (2F)
< (@ @),

Summing for all £ > 0, we have

[ Pspery (e (@), 0ever (O sy s frsi—1 < (A(z"))"175r.

Combining this with the estimate

I P<pqeryer(2), 30 O sy s grs1—1 S AN 2N Pperyer (), 0200 (O | grsp o grso—1
S (A0,

we obtain
e (), 300 O sy e grsn—1 S M) 77, (30)

Higher regularity. In this subsection we will show that (u(x, 1), d;u(x, 1)) € H' x H'~1(R3) for each
t € I. The idea is to deal with the “center” part and the “tail” part individually and then glue them together
using Lemma 2.16.

Center estimate. Let us break the Duhamel formula into two pieces:

w0 = [ "DV p o) ar,
t

ey
u® () = [°° sin((t —t)A«/—A)

Fu(v))dr.
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Let y be the characteristic function of the region {(x,?) : |x| > dA ™1 (t0)/2 + |t —t1]}. We have

5—2s1

o0 6 6
Fu@)l o -/ ( [ (F(u)) =5 dx) ar
||X ||L1L572‘Y1 ([l‘],OO)X[R3) f |x|>“fl(to)+|t—tl| (

5—2s1
6

6
o0 1 5—2s1
5/ / w1t 55 dx dt
1 |o|> SE=0 [ —t4 | |x|p—1

5—2s
_2p _6 1
p—1 525, +3) 6

[ee) dk_l
5/ (’—(IO) +t—1H dt
P 2

1

% rdA (¢ Spsi—l
5/ (T(O)—i-t—tl) dt
t

1
< Alto)* .

By Lemma 2.20, there exists a pair (Zig, #1) such that
”(7/70» ﬁl)”H-"l x HS1—1(R3) N /\(ZO)SI_Spv

dr~1(t
W@ (to), 3,u@(t0)) = (ilo. #1) in B(O’ %)
This implies

dl_l(to))

(u(to), d;u(to)) = (o + uM(t0), i1y + d,uM(t9)) in B(o, >

By (30), we have
1Y (10). 80 V1)) | o1 -1 S A(0)"1 77
Combining this with the H! x H5'~! bound of (g, ii1), we have
Gio +uVt0). i1 + 9™ o)l sy i1 < AMt0)* =7
Tail estimate. Let (ug,u}) = W g3-1(,)/4u(t0), :u(to)), and

1 1+1—s1
q 2 3

By Theorem 4.1, if r > d 171 (t9) /4, we have

1/q 3 11
( / (Vupl? + |u&|4>dx) < ( / (VU + 1,2 dx) ()i
r<|x|<4r r<|x|<4r

S r_(l—sp)(r3)(l—sl)/3

S r_(sl_sp)‘

€1V

(32)
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Letting r = 4¥d 1 1(t9) /4 and summing for all k > 0, we obtain that the pair (ug,u) is in the space
W4 x L4(R3) with

1o, W) 1yt w o ey S (@A) /AT ) < (A10))™ 7.
By the Sobolev embedding, we have
1oy uD N sy frsi—1 @3y S A (20))° 7. (33)
Combining the center estimate (32) and tail estimate (33) by Lemma 2.16, we have
10 (20). B (toD) | on s -1 gy < A10))* 7. (34)
Conclusion. Now we can finish our proof of Lemma 5.1.

e Case 1 (s; = 1) The inequality (34) is exactly the energy estimate we are looking for.

e Case 2 (s1 < 1) This means s; = s + 0.9902(p). As a result, the set

1 X 1 X
k= { (A<t>3/2-~v " (A(r)’t) O (A(z)’t)) e ’}

is precompact in the space H*» x H*»~1 and bounded in the space H510-9992(P) y fys—1+0.9902(p)
thus it is also precompact in the space H$10-9802(p)  fys=1+0.9802(P) by ap interpolation.

6. Global energy estimate and its corollary

Repeat the recurrence process we described in the previous section starting from the space H? x HS»~ 1.
Each time we either obtain the global energy estimate below or gain additional regularity by 0.980,(p).
However, this number depends on p only. As a result, the process has to stop at H' x L2 after finite
steps.

Proposition 6.1 (global energy estimate). Let u(x,t) be a minimal blow-up solution. Then (u(t), d;u(t))
is in the energy space for each t € I with

1 (0). DD | o2y S A0 (35)
By the local theory, we actually obtain
(u(t), d,u(t)) € C(I; H (R?) x LA(R?)).
Remark 6.2. By Lemma 4.2, we have, for any 0 < a < b < o0,

0,w(t), d;w(t)) € C(I; L* x L?([a, b)])).
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Self-similar and high-to-low frequency cascade cases. In both two cases, we can choose #; — oo such
that A(¢;) — 0. This implies

/3(|Vu(x, t)1? + |0:u(x, 1)|?) dx — 0.
R

By the Sobolev embedding, we have

Pl eay < 5]

||u ||Lp+1 (R%) =

< [lull (36)

2
3(1, 1)( 3 ||u||L6([R3) HSP(R3)|| ”Hl(RQ’)

This implies ||u(z;)]| i;:l ®) 0. Using the definition of energy we have E(#;) — 0. On the other hand,
we know the energy is a constant. Therefore the energy must be zero.

¢ Defocusing case. It is nothing to say, because in this case an energy zero means that the solution is
identically zero.

e Focusing case. We can still solve the problem using the following theorem. By the fact that the
energy is zero, the theorem claims that  blows up in finite time in both time directions. But this is a
contradiction with our assumption 7 = oo.

Theorem 6.3 (see Theorem 3.1 in [Killip et al. 2014], nonpositive energy implies blowup). Let (ug,u1) €
(H' x L?) N (H*? x H~Y) be initial data. Assume that (g, u1) is not identically zero and satisfies
E(ug,u1) <0. Then the maximal life-span solution to the nonlinear wave equation blows up both forward
and backward in finite time.

Soliton-like solutions in the defocusing case. Now let us consider the soliton-like solutions in the
defocusing case. First we have a useful global integral estimate in the defocusing case.

Lemma 6.4 (see [Perthame and Vega 1999]; we use the 3-dimensional case). Let u be a solution of (1)
defined in a time interval [0, T'| with a finite energy

1 1 1
E=| (5IVaul>+ 2 [9:uf? PHU) dx.
[ (15t S+ o) ax

For any R > 0, we have

1 (T 1 (T
—// (|Vu|2+|8tu|2)dxdt+—2// lu|? dog dt
x|<R |x|=R

1 2p—4 ptl 2
P~ // Pl dxdr + 2= // ul dxdt+—2/ ()| dx
IR p+1 x|<R p+1 xR |x] R= Jixi<

<2FE.

Observing that each term on the left-hand side is nonnegative, we can obtain a uniform upper bound
for the middle term in the second line above:

// M g <22+ D g
|x|>R |x| - p—1
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Letting R approach zero and T approach T, we have

Ty p+1 2 1
/ / Ml e ar <22 (37)
o Jr3 |x] p—1

The energy E here is finite by our estimate (36). On the other hand, recalling our local compactness
result Proposition 3.7, we obtain (7 = 00)

00 u p+1
/ / [l dx dt = oo.
o Jrs ||

This finishes our discussion in this case.

7. Further estimates in the soliton-like case

Let u be a soliton-like minimal blow-up solution. We will find additional decay of u(x,t) as x tends to
infinity. The method used here is similar to the one used in [Kenig and Merle 2011] for the supercritical
case. Throughout this section w(r,t), h(r,t), z1(r,t) and z,(r,t) are defined as usual using u(x, ).
The argument in this section works in both the defocusing and focusing cases. But we are particularly
interested in the focusing case, because the soliton-like solutions in the focusing case are the only solutions
that still survive at this time.

Setup. Let ¢(x) be a smooth cutoff function in R3:

=0 if |x| < 1,
p(x)1€l0,1] ifd<|x| <1,
=1 if x| > 1.

Then by Proposition 3.6 (compactness of u), [[¢(x/R)u(x, )| s, converges to zero uniformly in 7 as
R — oo. Thus we have a positive function g(r) so that g(r) decreases to zero as r increases to infinity
with

oG/ Ry, 1)l g < 8(R).

This means for each |x| > R, we have

leC-/RuC.Ollgs, _ Cg(R)
|x|2/(P=1) ~ |x|2/(p=D°

lu(x.1)] = lp(x/Ru(x,1)| < C

Definition 7.1. fg(r) = sup |x|’3|u(x, 1)|

teR,|x|>r

fore2/(p—1),1)and r > 0.
This is a nonincreasing function of r defined from R™ to [0, 00) U {oco}. Consider the set
U={Be2/(p—1).1): fg(r) = 0asr — oo}.
This is not empty, since 2/(p — 1) is in U. Due to the estimate

2
X2 e, 0)] < Colx P~ 77T u -, ) s
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we know if 8 € U, then fg(r) is a bounded function. By the definition of fg, we have

lu(x, 1) < J8() (38)
|x|8

for any time ¢ € R and |x| > r. This is a meaningful inequality as long as 8 € U.

Lemma 7.2. Suppose u is a soliton-like minimal blow-up solution and B € U. Then we have the local
energy estimate on w =ru

4ro 5 5 2 fg (ro)
([ el + broearar) <6520 (9)
ro 6’

forany ro > 0 and to € R. The constant Cy, depends on p only.

Proof. Applying Lemma 4.3 to w, we have

4ro 3 dro+M 1 4rg 2 1
([ |zl(r,t0)|2dr) 5(/ |zl(r,to+M)|2dr) —I—(/ (/ h(r+t, to+t)dt) r) .
ro ro+M

Let M — oo. Using Proposition 4.12 we have

1

4ro % 4ro 2 5
(/ |z1(r, 1) dr) flimsup(/ (/ r+)Fu(@r+t, t0+t))dt) r)
ro M—o0
4rg %
<tman( [ ([ o0 () ar) o)
. 4ro fﬁp(”o) 2 2
soiman( [ (S ) )
4rg 1 %
Efﬁp(ro)(/ mdi‘)

<o 1700555

To

1
D
0

Similarly we have

1
4ro 2 fF(ro)
B
|22(r,t0)|2dr) <r___
(/ro ré’ﬂ_s/z

Combining these two estimates we obtain the inequality (39). O
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Recurrence formula.

Lemma 7.3. The function fg defined above satisfies the recurrence formula

I3\ =8, (1\'"P . (1 ro\,2—(p—
0 =5[G) T+ (G) T I(3) s () )
Proof. We know w = ru is a solution to the one-dimensional wave equation
FPw— 02w = rlul?u.

Using the explicit formula to solve this equation, we obtain

1
rou(ro,to) = 5[(”0 + %O)M(I’o + %O,to— %) + (ro—%)u(ro—%o,lo—%o)]

| [rot? r 1 (7 ot r
+§/ 8,w(r,t0—?0) dr+§/ / r|u|p_1u(r,zo—50+t) drdt
T —%0 0 %O—f-t

=1+ 1+ 1s.

By Cauchy—Schwartz and Lemma 7.2, we have

o NPT
1= _V_o‘ 2
|12|§2(fr20 ‘8tw(r,t0 2) dr) (/O 1dr)

o/ ),

< L
=7 pB-5/270
0

= Cpfﬂp(%o)rg_pﬂ.

Next we estimate /3 using the estimate (38)

ro 3o o p
LR R 00/ ¢ 1)/ N
|13|§§/(; /”20_}_,: r(r—ﬂ) drdthp/(; }"Oer[ECpr (E)ro .

0
At the same time, we know

LBk v R (A S RONTC )t

B

Combining these three terms and dividing both sides of the inequality by ré_
by r)

, we obtain (replace rg

o= @) 5(5) () l5) e G

Observing that the right-hand side is a nonincreasing function of r, we apply sup,.>,, on both sides and

obtain
o= 3 8(5)+ () w3 @i o

This completes the proof because we know fg(3ro/2) < fg(ro/2). O
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Decay of u(x, t).
Definition 7.4. Let us define 2/(p—1)<p < 1)

gB) =3[P+ D] <1
Lemma 7.5. If 8 € U, then we have

Pﬂ+b&1+;m)gU

Proof. Because fg(r) — 0 and 2—(p —1)B <0, we know that there exists a large constant R, such that

if ro > R, we have
ro\ 2—(p—1 1— r
Cpf,sp(jo)ro (r=DB _ g(ﬂ)fﬂ(?o).
Thus the inequality (40) gives, for rg > R,

fo(ro) < SO gy (70),

This implies

for sufficiently large r > R’. As a result, for each 8; < 8 — logz(%) € (B, 1), we have

B (. 0)] < f5(x|x[PrB < C|x|PrBHloe ()

as |x| — oo. This proves the lemma by our definition of fg, and U. O
Lemma 7.6. Let U be defined as above. Then we have sup U = 1.

Proof. Tf this were false, we could assume sup U = B¢ < 1. Then we have for each 8 € U,
. 2
g(B) =Go = max{g(ﬂo),g(ﬁ)} <l

using the convexity of the function g. Thus log, %2(,3) > log, ﬁ > 0. By Lemma 7.5, we know

[ﬁ”“logz 1+2G0) cv

This gives us a contradiction as § — sup U. O

The following proposition is the main result of this section.

Proposition 7.7 (decay of u). Let u be a soliton-like minimal blow-up solution. Then

Cq
ulx, )| < — 42
G I = 3 (42)
and
/ (IVu(x.0)* + [8,u(x. 1)]?) dx < Cor ™. (43)
r<|x|<4r

The constants Cy and Cy are independent of t, x or r.
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Proof. Let B be a number slightly smaller than 1. Lemma 7.6 guarantees § € U. As a result, we can
obtain the following estimate using the conclusion of Lemma 7.2:

o 4ro Sopto NS Gpff(ro) c
B 1/2 p,B
|0rw(r.to)| dr = (/ o w(r,to)lzdr) (/ ldr) <—F —rt <22
/ro ’ ro ' ro ré)ﬂ_s/z 0 ré’ﬂ_3

We can choose 8 € U so that pf —3 > 0 by the fact p > 3. Thus we have

o0
/1 |0rw(r,to)|dr < Cpg. (44)

In addition, for r <1,

1——2_
lw(r, 10)| = rlu(r.to)| < Cplluto)ll gsp ™ 7=7 = Cplluto)ll gsp -

Combining these two estimates above, we know that |w(r, ¢)| is bounded by a universal constant C; for
each pair (r, t). This gives us the first inequality in the conclusion by the definition w = ru. Plugging
this in the definition of fg(r), we have

fotro)= sup |xPPluenl= sup  CilxlPTt=cuf

teR,|x|>rg teR,|x|>rg

Plugging this in (39), we obtain

4ro ) ) 3 1
(/ |0;w(r, to)|= + [0, w(r, to)| dr) < 572" (45)

0

By Lemma 4.2, the combination of this estimate, Proposition 4.12 and the universal decay of u (42)
indicates that the second inequality in the lemma is also true. O

8. Death of soliton-like solution

Solitons in the focusing case. In order to kill the soliton-like minimal blow-up solutions, we need to
consider the solitons of the wave equation. It turns out that there does not exist any soliton for our
equation. The elliptic equation

—AW(x) = [W(x)[P' W (x) (46)

does admit a lot of nontrivial radial solutions. However, none of these solutions is in the space H*”.
Among these solutions we are particularly interested in the following solution Wy which satisfies the
condition Wy(x) ~ 1/]x|.

Proposition 8.1. The elliptic equation (46) has a solution Wy(x) such that:

o Wy(x) is a radial and smooth solution in R3 \ {0}.
e The point 0 is a singularity of Wy(x).

o The solution Wy(x) is not in the space H*? (R?).
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e [ts behavior near infinity is given by (|x| > Ry)

1
|x|

C C
< x[P=2 IVWo(x)| = 75 (47)

WO('X)_ |x|2

The next section has a complete discussion of this solution.

ldea to deal with the soliton-like solutions. We will show there does not exist a soliton-like minimal
blow-up solution in the focusing case. This conclusion is natural because there is actually no soliton.
However, to prove this result is not an easy task. We will use a method developed by T. Duyckaerts et al.
as I mentioned at the beginning of this paper. In [Duyckaerts et al. 2013] they use this method to prove
the soliton resolution conjecture for radial solutions of the focusing, energy-critical wave equation. The
idea is to show that our soliton-like solution has to be so close to the solitons 4=Wy(x) or their rescaled
versions that they must be exactly the same. But the soliton we mentioned above is not in the right
Sobolev space. This is a contradiction. In order to achieve this goal, we have to be able to understand the
behavior of a minimal blow-up solution if it is close to our soliton Wy (x).

Preliminary results. We first recall a lemma proved in [Duyckaerts et al. 2011].

Lemma 8.2 (energy channel). Let (vg, v1) € H' x L2 be a pair of radial initial data. Suppose v(x,1t)
is the solution of the linear wave equation with the given initial data (v, v1). Let w(r,t) = rv(r,t) as
usual. Then for any R > 0, either the inequality

(o,]
/ (|Vu(x,1)|? + [9;v(x,1)|?) dx 2271/ (19, w(r, 0)|*> + |3, w(r, 0)|*) dr
|x|>R+t R

holds for all t > 0, or the inequality
o0
/ (Vo(x, 0)* +10,v(x, 1)]*) dx > 2 / (19, w(r, 0)] + [, w(r, 0)[*) dr
|x|>R—t R

holds for all t < 0.
Definition 8.3. Let us define (R > 0)

’ Wo(lx]) if |x| > R+ |z.

Lemma 8.4. The following space-time norms of Vg(x,t) are both finite for R > 0:
||VR||YS1,(R) < 090; ||VR||L2p/(pf3)L2p(RXR3) < 0.
Furthermore, if R is sufficiently large, we have the estimate
IVally,, @ < R277: 1 VllL2ro-» 120 @) < R 2. (49)

Proof. By the estimate (47) in Proposition 8.1, we have

c
ol = 50 if vl = R.
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Thus, if 3/r+1/q <1,

q/r 1/q
Walzonr e = ([ ([, 1Vateorax) ar
R \JR3
q/r 1/q
< (/ ((R+|t|)3|Wo(R+|t|)|’+/ |Wo(x)|’dx) dt)
R |x[>R+t]
q/r 1/q
,SCR(/ ((R+|t|)3_’+/ lx|~" dx) dt)
R [x|>R+]t|
q/r 1/q
<r CR([ ((R+|t|)3_’) dt)
R

<rq CRr (RG—a/r+1y1/q
Srq CRR7FTaTL.
This shows the norms in question are always finite. Furthermore, if R is sufficiently large, we can always
choose Cr = 2. This finishes our proof by the computation above. O
Approximation theory.
Theorem 8.5. Fix 3 < p < 5. There exists a constant 5o > 0, such that if § < 8o and we have
(1) a function V(x,t) with |V (x, t)”Ys,,(I) < & (here 1 is a time interval containing 0), and

(ii) a pair of initial data (ho, h1) with

1o h)l gz <8 1o h)l grom s romr gy < 5.

then the equation
Zh—Ah=FWV +h)—F(Y), (x,t)eR3xI,
hlt=0 = ho,
dth|t=0 = M

has a unique solution h(x,t) on I x R so that

Il () < Cpé,
sup [|(h, 3¢h) — (hp. 0ch) | gy p2 < Co8P HICho i)l g1 2

tel

Here (hy,, 0:hyp) is the solution of the linear wave equation with initial data (hg, h1).

Proof. In this proof, C, represents a constant that depends on p only. In different places C, may represent
different constants. We will also write Y instead of Yy, () for convenience. By the Strichartz estimates,
we have

IF(V +h) = F(V)lz,, < Cplihlly (I0IE "+ 1VIZ™H.
IF(V +hD) = F(V +h@)|z,, < CpllhD =@y (IhD 157 + 102157 + v 157,
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In addition, if we choose a 1-admissible pair (;_—pp, %

), we also have
-1 -1
[F(V+h)—F(V)llpig2 < Cpllhlng%L% AR5 +1VIE ),

—1 —1 —
IFY +0D) = FV +h®)lIpi2 < Gl =h @ s (WPIFT + 112 IT +1VIFT.

By a fixed point argument, if § is sufficiently small, we have a unique solution A (x, ) defined on I x R3,
so that

I2lly =< Cpé, ap, = Cplltho. hD)l g2

1721l ap
LS-PL
This immediately gives

sup [[(h, 9¢h) = (hr. 0chi)l gryp2 < CollF(V +h) = F(V)lL1 2

tel
-1 -1
%(Ilhllﬁ +IVIE)

< Cp8P 7 [ (ho. h) | g1 2 O

= Cp”hHL

4p_
9—pr [,

Match with Wy(x). Using the estimate (45), we have

4ro 4ro % 1
/ 10, w(r, 1) dr < (/ 19, w(r, z)|2dr) re? < —.
T 1A rop

0 0

This means

o0 1

/ [0, w(r t)|dr S —. (50)

p—3
ro rO

Thus we know the limit lim, o w(r, t) exists for each ¢. In particular, the limit exists at = 0. There
are two cases.

(D If limy 00 w(r, 0) = 0. Then in the rest of this section, set W(x) = 0. By (50) we have

<
A
Thus
o (x) = W) = — [w(]x], 0)] £ —
ug(x) —Wx)| = — |lw(lx],0)| < ——.
0 x| |x[P=2

(ID) TIf lim, 00 w(r, 0) £ 0. Without loss, let us assume the limit is equal to 1. Otherwise we only need
to apply some space-time dilation and/or multiplication by —1 on u. In the rest of this section, set
W(x) = Wy(x). By (50), we have

oo

|w(ro,0)—1|5/ 9, w(r,0)| dr <

ro rop_

3"
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Dividing this inequality by rg, we have
1
| x|

1
< :
|x[ P2

up(x) —

Combining this with our estimate for Wy(x), we have for large x

() = W)| £ 1y

Identity near infinity.

Theorem 8.6. Let W(x) = Wy(x) or W(x) = 0. Suppose u(x,t) is a global radial solution of the
equation (1) with initial data (ug, u1) € H? x HS»~Y(R3) satisfying the following conditions.

(D) The following inequality holds for each t € R and r > 0:
/ (Vu(x,)|> +|0;u(x,1)]?)dx < Cyr~ L. (51)
r<|x|<4r
(II) We have uo(x) and W(x) are very close to each other as | x| is large:

uo(x) —W(x)| < (52)

x| P=2

Then there exists Rop = Ro(Cq, p) € (0, +00) such that the pair (ug(x) — W(x),u1(x)) is essentially
supported in the ball B(0, Ry).

Remark 8.7. There are actually two separate theorems, and both can be proved in the same way. If
W(x) = Wp(x) (the primary case), then define Vg, as usual in the proof below. Otherwise, if W(x) =0,
just make Vg, = 0.

Proof. Consider the functions
go=VYRrwo—W), g1=Ygui, G(r)=uo(r)—W(r),

for R > Ry, where the constant Ry is to be determined later. Choose a small constant § = §(p), so that it
is smaller than the constant 8y in Theorem 8.5 and guarantees the number C,87~! in the conclusion of
that theorem is smaller than &(p), which is a small number determined later in the argument below. By
the condition (51) and the properties of W(x), we know (R > 1)

/R3(|Vgo|2 +g1)dx Scip R
/ (|Vg0|3(p—1)/(p+1) +gf(p—1)/(p+l)) dx Sc,.p R3—3)/(p+1)
R3 '

As aresult, if Ry = Ro(C1, p) is sufficiently large, the following inequalities hold as long as R > Ry
(we use the Sobolev embedding in order to obtain the second inequality):

1(g0- 8D griscr2 =8, (g0, 8D gspgsn—1 =8, IVRoll¥,, @) =86
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Let g be the solution of
078 — Ag = F(VR, +8) = F(VR,)

with the initial data (go, g1) and g be the solution of the linear wave equation with the same initial data.
On the other hand, we know u(x, ) — W(x) is the solution of the equation

i — Aii = F(W +ii) — F(W) (53)
in the domain R x (R3\ {0}) with the initial data (uo — W, u1). Let K be the domain
K ={(x,t):|x| > |t| + R}.
Considering the fact W(x) = Vg, (x, ) in the region K and the construction of (go, g1), we have
ulx,t)—Wix)=g(x,t), dru(x,t)=209:g(x,t)

in the domain K by the finite speed of propagation. Using our assumption (51) and the decay of W(x) at
infinity and considering the identity above, we have

lim (|IVg(x, ) +0:g(x,1)[*)dx — 0. (54)
t—=>+00 J|x|>|¢[+R

Using Lemma 8.2, without loss of generality, let us assume for all # > 0
o0
/ (VE(x, 01 +18:8(x, 0)*) dx = 2n/ (18- (rgo(r, O))[> + r*|g1(r, 0)*) dr.
|x|>R+t R
That is
~ - 1
[ avatnp gz ([ (Ve +addx) -2nredn)
|x|>R+t 2\J|x|>R

Combining this with (54), we have
liminf|[(g(x,1),9:g(x. 1)) — (8. 9:8)| 1 - (1 (IVgo|® + g2) dx —2nRg3(R) :
D oo 108X, 1), 08X, 8018 gixL2(x|>R+1) = \ x|>R gol" T &1 80 .

On the other hand, we know that the inequality

[ (g, 1), 8e8(x.1)) = (&, 0:D) | 12 < Cp8P 7 1I(€0: 8D w2 < £(P)(€05 € 12

holds for each ¢ € R, by Theorem 8.5. Considering both inequalities above, we have
1
3| (Ve +ghax-2ar (R <2) [ (Ve + gD
|x[>R |x|>R
Thus

/|| R(|Vg0|2+g%)dx5 Rgi(R). (55)
X|>

s
1—-2£2(p)
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‘We have

mR
Ig0(mR) — go(R)| < /R 19, o] dr

mR % mR 1 :
([ sl ar) ([T ar
R R r

1
1 2
< (55 [ aveo+ehrax) (
T J|x|>R

RGZ(R) 2 1\
5(1—282(17)) (1) "

1

- 1—1/m \2
_(ng(m) 20(R)].

Since p —2 > 1, we can choose k = k(p) € Z+ such that (k + 1)/k < p —2. Let m = 2% Since

1
(=1/m)? <1——,
2m
we can choose &(p) > 0 so small that

1
1—-1 2 1 1
1—262(p) 2m 2k+1

Plugging this into our estimate above, we obtain

2024 R~ g0l = (1= 357 ) (R

Thus
1
1202“ R)| = 120 (R
By the definition of gg, this is the same as
1
GO*R)| = S5 IGR).

1973

This inequality holds for all R > Ry. Now let us consider the value of G(Ryp). If G(Rg) = 0, let us
choose R = Ry. Plugging go(R) back in (55), we have (go, g1) = (0, 0). This means that (ug — W, uy)

is supported in B (0, Rg) and finishes the proof. If |G(Rp)| > 0, then we have

1
kn
|G(2*" Ro)| = W'G(RON >0

for each positive integer #n. This contradicts the condition (52) because (kK + 1)/k < p — 2 by our choice

of k.

O
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Remark 8.8. If one feels uncomfortable about the singularity at zero in the equation (53), we could use
the following center-cutoff version instead. Let ¢ be a smooth, radial, nonnegative function satisfying

1 if |x| > 1,
o(x)=1{e[0,1] if|x|e(1/2,1),
0 if x| < 1/2.

Then u(x,t) — ¢(|x|/Ro)Wo(x) is a solution to the equation
371 — Al = F(p(|x|/Ro)Wo + 1) + A(p(|x]/Ro) Wo(x)), (x,1) € R* xR,
it|r=0 = uo — ¢(|x|/Ro)Wo € H*»(R?),
atﬁ|t=0 =Uj € HSP_I(R3).

For any T' > 0, we know

le(x]/Ro)Wo(X)ly,, (-1,r7) <00, [[Ale(|x]/Ro)Wo (X)) z,, ((-T,77) < 0©.

In addition, the function A(¢(|x|/Ro) Wo(x)) = —F(Wy(x)) in the region K. We can do the argument as
usual in the proof above but avoid the singularity at zero with this new cutoff version of the equation (53).
This method also works in the proof of Theorem 8.9, which will be introduced in the next subsection.

Application of the theorem. Now apply Theorem 8.6 to our soliton-like minimal blow-up solution. All
the conditions are satisfied by our earlier argument. Thus (u#¢(x) — W(x),u1(x)) is supported in the
closed ball of radius R centered at the origin. In particular, because Ry depends only on the constant C;
and p, the same Ry also works for other time ¢ as long as the condition (52) is true at that time. But by
the finite speed of propagation, we know (u(x,t) — W(x), d;u(x, t)) is actually compactly supported in
B(0, Ry + |t|) at each time . This means the condition (52) is always true at any given time. Thus the
pair (u(x,t) — W(x), d;u(x, 1)) is essentially supported in the cylinder B(0, Rg) x R.

Local radius analysis. Let us define the essential radius of the support of (u(x, ) — W(x), d;u(x,1)) at
time ¢ as

R(t) = min{R > 0: (u(x,t) — W(x), d;u(x,t)) = (0,0) holds for |x| > R}.
This is well-defined for our minimal blow-up solution. Actually R(¢) < R holds for any ¢ € R.

Theorem 8.9 (behavior of “compactly supported” solutions). Let W(x) = Wy(x) or W(x) = 0. Let
u(x,t) be a radial solution of the equation (1) in a time interval I containing 0, so that

M@ (u(x,1),d;u(x, 1)) € C(I; HY(R?) x L2(R3)).

(II) The pair (u(x,0) — W(x), d;u(x,0)) is compactly supported with an essential radius of support
R(0) > R; > 0.

Then there exists a constant T = 1(Ry, p), such that
R(t) = R(0) + |¢]

holds either for each t € [0, t)N I orforeacht € [—-7,0]N 1.
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Remark 8.10. If W(x) = Wp(x) (the primary case), then define Vg, as usual in the proof. Otherwise
if W(x) =0, just make Vg, = 0. In this case we can choose 7 = oco. In the proof we use the notation
(1o, u1) for the initial data (u(x, 0), d;u(x,0)).

Proof. By Lemma 8.4, we have || Vg, ||ysp ®) < 0o. Thus we can choose T = 7(Ry, p) > 0 such that
VR, Yy, (—ot]) < 8. Here § is a small constant so that we can apply Theorem 8.5 and make the number
Cp8P~1 less than 1/100 in that theorem. If & < R(0) — Ry, let us consider a pair of initial data (go, g1)
for each R € (R(0) — ¢, R(0)),

go=VYRruo—W), g1 =Wguj.

This pair (go(x), g1(x)) is nonzero by the definition of R(0). By our assumptions on (u¢, #1), we know
the inequalities
1(€0- gl 12 < 8. 11(80- 8V grsp spysp—1 <8

hold for each R € (R(0) — ¢, R(0)) as long as ¢ is sufficiently small. (In order to obtain the second
inequality we use the Sobolev embedding.) Furthermore, we have

R(0) R(0)
80(R) = |go(RO) ~ [ " dr0(r) dr | < /R 19,g0(r)| dr
R(0) 5/ (RO 4 3
5( / r2|argo(r>|2dr) ( | —zdr)
R R r
R() 2 (R(0)— R\?
215 24 R A—
s(/R 1219, g0 (r)| r) ( e )
. RO , o\
(zor ). roreordr)
Thus
Rg3(R) < — /R(O) 219, g0(r)? dr < — (IVgo(x)*> +1g1(x)» d
_— r r r X X X.
808 =R Jr r8o = 47R©0) Jrepri<rioy " &1

If ¢ is sufficiently small, we can apply Lemma 4.2 to obtain

R(O) 2 2 2 099 2 2
[ (10, (rgo ()P + g1 (] dr = 22 (Vg0 ()P + g1 (0 dox.
R 4 JR<|x|<R(0)

Let g(x, t) be the solution to the linear wave equation with the initial data (gg, g1). By Lemma 8.2,
o0
/ (IVE@x, 1> +10:8(x, 0)|?) dx > 271/ [10-(rgo(r)|> + r*|g1(r)1?] dr
|x|>R+|t| R
R(0)
=2r [ (00 + 2l (] dr

> 0.49 [ (1V20)? + g1 (x)) dx
R<|x|<R(0)
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holds either for each # > 0 or for each ¢t < 0. Without loss of generality, let us choose ¢ > 0; then we have

[(g(x,1),0:&(x, Z))||H1XL2(|x|>R+t) > 0.7 (go» g1)||H1xL2(R3)' (56)
Let g be the solution of the equation

afg—Ag =F(Vr, +8)—F(Vg,), (x.t)€ R3 x [—, 7],
gli=0 = go,
0:8lr=0 = g1.

By Theorem 8.5, we have
”(g(x’t)’ 8tg(x9t)) - (g(x’t)’ 8l§(xat))||HlXL2 = OOIH(gO’ g1)||Hle2(R3)

for each t € [—t, r]. Combining this with (56), for ¢ € [0, 7] we obtain

[(g(x,1), 0:g(x, t))llHle2(|x|>R+t) > 0.69]|(go, gl)”Hlez(Rs)- (57)
In addition, we know u(x,¢) — W(x) is the solution of equation

021 — Al = F(W(x) + 1) — F(W(x)),
Ulg=0 =ug—W,
3t71|t=0 =ui

in (R?\ {0}) x I. The initial data of these two equations mentioned above is the same in the region
{x :|x| = R} and the nonlinear part is the same function in the region

K={(x,t):|x|>R+t,tel0,r]N1}.

Thus by the finite speed of propagation, we have g(x,t) = u(x,t) — W(x) and d;g(x,t) = d:u(x,1)
in K. Plugging this in (57), we obtain

[ (u(x,2) — W(x), du(x, l))”H1><L2(|x|>R+t) > 0.69]|(go, gl)l|Hle2(R3)

for each t € I N[0, 7]. Since R < R(0), we know the right-hand side of the inequality above is positive
by the definition of essential radius of support. Thus we have

R(1) = R+ [t] (58)
forall¢ € [0, t]N 1. Letting R — R(0)~, we obtain R(¢) > R(0) + |¢|. By the finite speed of propagation,
we have R(t) = R(0) + |t]. O

Remark 8.11. For each R € (R(0) —¢, R(0)), we know that the inequality (58) above holds either in the
positive or negative time direction. It may work in different directions as we choose different values of R.
However, we can always choose a sequence R; — R(0)™ such that the inequality works in the same time
direction for all the R;. This is sufficient for us to conclude the theorem.
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End of soliton-like solution. Now let us show R(0) = 0. If it were not zero, let Ry = R(0)/2, and then
apply Theorem 8.9. We have (without loss of generality) R(t) = R(0) 4t for each ¢ € [0, t]. Applying
Theorem 8.9 again at t = 7, we obtain

Rt)=RO)+t+(t—1)=R(0)+1¢
for ¢ € [7, 27], because

(i) The same constant T works by the inequality R(t) > R(0) > R;.

(ii) The theorem may only work in the positive time direction, since we know the radius of support R(¢)
decreases in the other direction.

Repeating this process, we have for each ¢ > 0,
R(t) = R(0) +1.

But it is impossible since R() is uniformly bounded by Rg. Therefore we must have R(0) = 0. But this
means either ug = Wo(x) ¢ H? (R3) or (uo,u1) = (0,0). This is a contradiction.

9. The solution of the elliptic equation
In this section we will consider the elliptic equation

—AW(x) = [W()|PT W (), (59)
and prove Proposition 8.1. It has infinitely many solutions. For example,
Wi(x) = C|x| /07D

is a solution if we choose an appropriate constant C. Since we are interested in radial solutions of this
elliptic equation, we can assume W(x) = y(|x|). Here the function y(r) satisfies the following equation
in (0, 00):

2 _
y'(r) + ;y/(r) +y1P () =o. (60)
Let us first show that the solution Wy(x) we mentioned earlier in this paper exists.

Existence of Wy(x).

The idea. We are seeking a solution with the property Wy (x) >~ 1/|x| as x is large. That is equivalent to
y(r) >~ 1/r. Let us define p(r) = ry(r); then p(r) satisfies

F(p) -
Pl == Flo)=1pl""p.

r
We expect p(r) >~ 1 for large r, thus let us assume p(r) = ¢ (r) + 1. The corresponding equation for ¢ (r)
is given as

F+1)
" —__ N
¢ (I") - rP_l .

We will show the following facts:
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(I) This equation has a solution in the interval [R, co) with boundary conditions at infinity ¢ (400) =
¢’ (+00) = 0, by a fixed-point argument.

(IT) We can expand the domain of this solution to R™.

The fixed-point argument. Let us consider the metric space
K ={¢:¢eC(R,00);[-11]), lim ¢(r)=0}
r—>—+o0o

with the distance d(¢1, ¢2) = sup,. |¢1(r) — ¢2(r)|. One can check K is complete. Let us define a map

L:K— Kby
o= [ ([T (-FEE) ar)as

o= [C([ amar)as <t

1) % (1. d(o1,
Lo~ L@l <G, [ ([T dr)as <, MO,

We have

Thus if R > R(p) is a sufficiently large number, then L is a contraction map from K to itself. As a result,
there exists a unique fixed point ¢o(r). This gives us a classic smooth solution of the ODE in [R, 00).
We have ¢o(r) < 372 and its derivative ¢o(r) satisfies

[ Eo 41 dt‘< G

tp—1 — pp2°

|$o(r)] =

Expansion of the solution. Now let us solve the ODE backward from » = R. We need to show it will
never break down before we approach r = 0. Actually we have
d (Id)o + 1P+ n r”_1|¢6|2) p—1

— p—2 /2>0.
dr p+1 2 2 ’ Ibol” =

Thus we have that the inequality

[po(r) + 1|71 r”_1|¢6(r)|2<|¢0(R)+1|”+1 RP7 1o (R)[?
p+1 2 = p+1 2

holds for all 0 < r < R as long as the solution still exists at ». But this implies the solution will never
break down at a positive 7.

Properties of the solution. Now we can define

_dolxD+1

Wo (x)
x|
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This is a C?2, radial solution of our elliptic equation (59) for |x| > 0. Furthermore, we have for large x

_ 1do(xDI _ Gy reo(r) —do(r) —1 Cp
'Wo(x)——’— |x| = |X|p_2’ 2 <

IVWo(x)| =

1
x|
Now the remaining task is to show Wy(x) is not in the space H*». This implies Wy (x) must have a

singularity at 0. It turns out that it is not trivial. For instance, if we repeat the argument as above in the
case p = 5, then the solution we obtain will be a smooth function in the whole space, as

J3

W= T

Radial HS? solution does not exist. The following theorem shows that any nontrivial radial solution
of our elliptic equation is not in the space H*» (R?). In particular, Wy (x) is not in the space H*» (R3).
Actually we have limsup, _, o+ |x|?|Wo(x)| > 0 by the argument below. This gives us a singularity at
zero.

Theorem 9.1. If 3 < p < 5, then a radial H*» (R3) solution to the elliptic equation
—AW(x) = [W(x) P W)
must be the zero solution.

Remark 9.2. We always assume the function y(r) has two continuous derivatives at any r > 0 in the
proof below. Actually we can show any radial H*» solution of the elliptic equation must be in the space
C2(R3\ {0}). First of all, a radial H* function must be continuous except for x = 0. Using this fact
and the regularity theory on the elliptic equation, we have the solution is C? except for x = 0.

Proof. The proof consists of three steps.

(1) (introduction to ry(r)) We assume W(x) = y(|x|). The function y(r) defined in R is a C2
solution of

2
¥ )+ 1Y)+ P () =0,

Let us define another C?(R™) function

2
o) =rly(r). 0=—".
p—1
If W(x) = y(]x|) is in the space H”, we then have lim, _, o+ v(r) = limy 400 v(r) = 0 by
Lemma A.7. Plugging y(r) = r~?v(r) in the equation for y(r), we obtain an equation for v(r),

2(p—3)

2(p—3
rzv”(r)—l——(p )rv/(r)——zv(r)—i— |v|1’_1v(r) =0.
p—1 (r—1
Multiplying both sides by v/(r), we obtain
d "(n)? -3 ptl 5—
e r2|v (r)| _ p U2(r)+ |U(r)| — pr|U/(r)|220. (61)
dr 2 (p—1)2 p+1 p—1
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(II) (the lower limit) If v(r) is not the zero function, then the inequality
liminf 720’ (r)|*> > 0 (62)
r—>+00

holds. If it failed, by considering the integral of (61) in the interval (¢, M) and letting ¢ — 0" and

M — 400, we would have

5_ o
=P r|v’(r)|2dr50.
p—1Jo

This means v’(r) = 0 everywhere, so v(r) = 0. But we assume it is not the zero function.

(III) (conclusion) If W(x) were not identically zero, then v(r) would be a nonzero function. By the
limit (62), there exist C > 0 and r; > 0, such that if 7 € (1, 00), the inequality 72|v’(r)|?> > C holds.
In other words, we have |v’(r)| > +/Cr~!. This means v’(r) does not change its sign in the interval

(r1, 00) since it is a continuous function. Combining this fact with the lower bound of |v’(r)|, we
know the limit of v(r) does not exist at oo. This gives us a contradiction. O

Further properties of the function Wy(x). In this subsection, we will discover some additional properties
of the soliton Wy (x). Assume that y(r) and v(r) are defined in the same manner as the previous subsection.

o Wy (x) is a positive solution. If this were not true, we could assume that v(rg) = 0 for some r¢ > 0,
because we know v(r) > 0 for sufficiently large r. Then by (61), we obtain

ﬂhﬂﬂP_ p—3
2 (p—1

for each r > rp. However, the decay of Wy(x) implies (if r is large) that

)P )2

0 63
r+1 S0 7 63)

Sv3(r) +

PO S W =100 )+ 0y ()] £ 07

This gives us a contradiction if we consider the limit of the left hand in the inequality (63) using
these estimates.

o Wy(x) is smooth in R\ {0}. Due to the fact that the function F is smooth in R, a direct corollary
follows that the function Wy(x) is smooth everywhere except for x = 0.

Appendix
The Duhamel formula.

Lemma A.1. Let % < s < 1. If K is a compact subset of H* x H5~! with an s-admissible pair (q,r) so
that q # o0, then for each & > 0, there exist two constants M, § > 0 such that

[S(®) (o, u)llLarr(rxmz)y + 1S@ o, ui) a1 (m,00)xm3) + 1S @) (o, u1) e Lr (oo, mIxr3) < €

holds for any (uo,u1) € K and any time interval J with a length |J| < 6.
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Proof. Given (ug,u1) € HS x H1, it is clear that we are able to find M, § > 0 so that the inequality
holds for this particular pair of initial data and any interval J with a length |J| < § by the fact ¢ < oo
and the Strichartz estimate

[S@) (o, u1)llLarr mxr3) < 00

If K is a finite set, then we can find M and § so that they work for each pair in K by taking a
maximum over all M and a minimum over all §. In the general case, we can just choose a finite
subset {(ug,;,U1,i)}i=1,2,...n of K such that for each (u¢,u1) € K, there exists a positive integer i with
1 <i<nand |S#)(uo—uo,i,u1 —u1,i)|lparrmxrz) < Cll(uo —vo,isu1 —ur,i)ll sy gs—1 < 0.01e;
and then use our result for a finite subset. O

Lemma A.2 (the Duhamel formula). Let u(x,t) be almost periodic modulo scaling in the interval
1 = (T-, 00), namely the set

K= : =t : 0 = t)):irer
‘{(Aawz—%”(xo)’ )’me/z—sﬂ ”"(A(r)’ )) © }

is precompact in the space H*» x H*»~! (R3). Then for any time ty € R, any bounded closed interval

la, b] and any sp-admissible pair (q,r) with g < 0o, we have

pHm S@=T)@(T). 0u(T) | Larr (a,p1xr) = 0.

. u(T) \ _
weak TEToo S(to—T) (8,u(T)) =0.

Proof. We have
ISt =T)(T), 0:u(T) || La L7 (a,pxr3) = ISE@(T), 0:u(T)|La Lr (a—T,p—TIxR3)

Ty (T
= ||S(l)(u(() ’,uﬁ ))”L‘IL’([A(T)(a—T),)L(T)(b—T)]xIR{3);

T (1) _ ! : ! '
(”0 s Uy )= (A(T)3/2—s,,u(,\(T)’T)’,\(T)S/Z—Spatu(/\(TfT))'

Given ¢ > 0, let M, § be the constants as in Lemma A.1. It is clear that if 7 is sufficiently large, we have
either (A(T') is small)

here

MT)YD—T)—=MT)a—T) = (b—a)A(T) <8,

or (A(T) is large)
MTYDb—-T)<—M.
In either case, by Lemma A.1 we have ||S(t —T)(u(T'), 9:u(T))||La L7 ((a.p]xr?) < &- This completes the

proof of the first limit. In order to obtain the second limit, we only need to choose #; € (9, +o0), set
[a, b] = [to, t1] and apply Lemma A.4 below using the first limit and the identity

St —10) [S(to _7) (87:1,5(TT)))] —S(—T) (a?LE(TT))) . O
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Remark A.3. We can obtain the similar result in the negative time direction using exactly the same
argument. This implies the corresponding Duhamel formula in the negative time direction.

¢ Soliton-like case or high-to-low frequency cascade case

lim [|SC—T)@(T),d:u(T))Larr (a,p1xw3) = O
T——00

weak _lim S(io~T) (aitb(tf;)) —0.

o Self-similar case (let a, tg > 0)

Aim IS =T)(T), 0:u(T)) | La L (a.p)xr3) = O

. u(T) \ _
weak Tll)rr(}Jr S(to—T) (8tu(T)) =0.

Lemma A.4. Suppose that {(uo n,U1,n)}nez is a bounded sequence in HS x H51 (R3) so that

nlggo 1S(#)(uo,n, ul,n)||L<1L"([O,M]xR3) =0.

Here (q.r) is an s-admissible pair and | is a positive constant. Then we have the weak limit in
HS x HS"1(R?)
(uo,n,u1,n) = 0.

Proof. Let us suppose the conclusion were false. This means that there exists a subsequence (for which
we use the same notation as the original sequence) that converges weakly to a nonzero limit (zig, t1). We
know the operator P : H® x HS~! — LIL" ([0, ] x R?) defined by

P(uo,uy) = S(r)(uo.u1)
is bounded by the Strichartz estimate. This implies that we have the weak limit in L9 L" ([0, u] x R3)
P(“O,n’ Ul,n) — P(lig,u1).

On the other hand, we know P (ug ,,u1,,) converges to zero strongly. Thus P (¥, t1) = 0. This means
(tig, t1) = 0, which is a contradiction. O

Lemma A.5. Assume s € [sp, 1]. Let u(x,t) be defined on I = (T—, 0o) and almost periodic modulo
scalings in H® x HS~Y(R3), namely the set

1 X 1 ¥
k= { ()L(t)3/2—Spu()L(t)’t)’ A(t)5/2s» atu(k(t),t)) e I}

is precompact in the space H* x HS~Y(R3). In addition, A(t) < 1 when t is large. Then, for any closed

interval [a, b] and any s-admissible pair (q, r) with g < co, we have

Im (S(= D)D), (Tl Lr o ppws) = O
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Proof. One could use the similar method as used in Lemma A.2 by observing
IS =T)@(T), 0:u(T)) | La L7 ([a,5]xR3)
= 1S@)@(T), deu(T) | La L (a—T,p—T]xR?)

_ T T
= WD) 1S @D u ) Lo Lr a @y @y AT o3

(1) (D) _ 1 ; 1 ;
(o1 )‘(A(T)W—SP”(A(T)’T)’A(T)S/Z—sﬁa’”(MT)’T))' -

Perturbation theory. In this subsection we will finish the proof of Theorem 2.12 and Theorem 2.15.

Here

Proof of Theorem 2.12. Let us first prove the perturbation theory when M is sufficiently small. Let /7 be
the maximal lifespan of the solution u(x, ¢) to the equation (1) with the given initial data (1o, 1) and
assume [0, T] € I N I;. By the Strichartz estimate, we have

e —ully,, qo,r7) = I1S(2)(uo —1(0), u1 —u(0))lly,, (o, 1) + Cplle + F (@) — F(u)l z,, (0,7])
<e+Gpllellz,, qo,rn) + Cpll F (i) — F ()l z,, fo,71)
<&+ Cpe+ Cpllit —ully,, o) (117, 1077y + 17—l go.77)
< Cpe + Cpllit —ully,,, qo.rp(MP ™" + T —uly o.17)-

By a continuity argument in 7', there exist My = My(p) and g9 = g9(p) > 0 such that if M < M{ and
& < g9, we have

e —ully,, qo,17) < Cpe.

Observing that this estimate does not depend on the time 7', we are actually able to conclude I C I; by
the standard blow-up criterion and obtain

i —ully,,u) < Cpe.

In addition, by the Strichartz estimate

u(t) ii(r) wo — ii(0)
(azu@) B (M(r)) 50 ( - atam)) H P

< CpllF(u) — F(i) —ellz,, )
< Cp(lelz,, @) + I1F@) = F@)llz,, )

~ ~1p—1 ~p—1
< Cple+ lu—illy,, o (1715 oy + I =15 )]

sup
tel

< Cpe.

This finishes the proof as M is sufficiently small. To deal with the general case, we can separate the
time interval / into a finite number of subintervals {/;}, so that ||u ||ysp( 1;) < Mo, and then iterate our
argument above. O
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Proof of Theorem 2.15. Let us first prove the perturbation theory when M and T are sufficiently small.
Let I; be the maximal lifespan of the solution u(x,¢) to the equation (1) with the given initial data
(1o, u1) and assume [0, 1] C [0, T] N I;. By the Strichartz estimate, we have

i —ully,qo,ri1) = I1S(1) (w0 —ito. ur —un)llys o, 111y + Cs,p 1 F @) — F )l zs0,117)
< Cs,pll(uo —tio, uyr — 1)l gsy grs—1 + Cs,pll F () — F(W)| z,(0,117)
< Cs,pll(wo —tig, u1 _ﬁ1)||HSXHS—‘

(»—1)(s—sp) N
+CspTy 172 F(u)lleL%([O,Tl]XU@)

E Cs,p”(uo _ﬁ()a ui _ﬁ1)||HSxHS_1
—1)(s— - ~ —1 ~np—1
+ Cop TV i —ully, qo.ry (17 =1 1Z fo 7y + 1E1E o 70p)
= Cs,p”(uo —Ug, U] _ﬁl)”HSxHS—l

—D(s— ~ ~ -1 _
+Cs,pT1(p )(s S")||”_”“Ys([O,TlD(”u_””I;s([o,T]])+Mp 1).

By a continuity argument in 77, there exist Mo = My (s, p) and g9 = o (s, p) > 0 such that if M < M,
T <1and

[ (uo —tio, u1 — 1) || s frs—1 =< o,

we have

e —ully,qo,11) = Cs,pll (o —tio, ur =) || sy grs—1-

Observing that this estimate does not depend on the time 77 as long as 77 < T < 1, we are actually able
to conclude [0, T] C 11 by Theorem 2.14 and obtain

i —ully,o,71) < Cs,pll(o —tio, ur — 1) || sy gys—1-

In addition, by the Strichartz estimate

(sr) (o)
atu(t) 8lﬁ(t) HSxHs—1

s (107 20)

= CS,P”(MO _7’709 ui _ﬁl)”HSXHS—l

sup
t€[0,T]

=

+ Cs,p| F(u) — F(1) | z, (0,17

‘HSXHS_I

_ — ~ ~ -1 ~p—1
T Cop TP —ully, g0, (15— Dl 7y + 1712 1)
= Cs,p”(uo —Ug, Uy — ﬁl)“stHs—l .

This finishes the proof as M and T are sufficiently small. To deal with the general case, we can separate
the time interval [0, 7] into a finite number of subintervals {/;}, so that ||i|y, ;) < Mo and |[;| <1,
then iterate our argument above. O
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Technical lemmas.

Lemma A.6. Suppose that (ug ¢(x),u1 ¢(x)) are radial, smooth pairs defined in R and converge to
(uo(x), u1(x)) strongly in HS? x H»~Y(R3). In addition, we have

/ (IVato,s(x. 10)? + 1 o (x. 10)?) dx < C
ro<|x|<4rg
for each & < gq. Then (uo(x), u1(x)) is in the space H' x L2(r < |x| < 4r) and satisfies
/ (1Vu6(OI + Ju1 (¥) ) dx = C.
ro<|x|<4rg

Proof. By the uniform bound of the integral, we can extract a sequence &; — 0 so that d,u¢_¢; () converges
to i (r) weakly in L?(ro,4r¢), and uy ¢, converges to iy weakly in L?(rg < |x| < 4rg). Define

r

fio(r) = wo(ro) + / i (v) d.

ro

We have
/ (Vito ()2 + ity ()P dx < C.
ro<|x|<4rg

By the strong and weak convergence, we have immediately ©#1 = 1 in the region ro < |x| < 4rgp. In
order to conclude, we only need to show ug(r) = tig(r). Observing /rro1 f(r)dt is a bounded linear
functional in L% (rg, 4ro) for each ry € (rg, 4rg), we have

ri

fio(r1) = wo(ro) + / iih(v) d

= lim ugg, (ro) + lim Oruge (t)dt
i—o00 i—00 Jrq

r
= _lim (Mo,gi (r()) + / ar“O,si (T) d‘L’)
1 —>00 ro

= lim ug,, (r1)
1 —>00

=uo(r1).
This completes the proof. O
Lemma A.7. Assume % <s< % Given any radial H*(R?) function f,we have

lim [x|275 f(x) = lim |x|2~ f(x) =0.
|x|—0t |x]—o00

Proof. Let s1 € (s, %) Applying frequency cutoff techniques and using (8), we have

3_
X127 [(Pop )] = Csl| Poa fll s
3_ -
X127 | (P<pr )] = Coy X P<pa Sl s »



1986 RUIPENG SHEN

for any fixed M > 0. Combining the higher and lower frequency parts, we obtain

. 3_
limsup [x |27 f ()] < Csl| P>pr f || gs-
|x|—0+t

This proves the first limit if we let M — +00. We can prove the second limit in a similar way. O
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GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER
EQUATION WITH DERIVATIVE IN ENERGY SPACE

YIFEI WU

In this paper, we prove that there exists some small ¢, > 0 such that the derivative nonlinear Schrédinger
equation (DNLS) is globally well-posed in the energy space, provided that the initial data uy € H'(R)
satisfies |lug|l 2 < /27 + ¢,. This result shows us that there are no blow-up solutions whose masses
slightly exceed 2, even if their energies are negative. This phenomenon is much different from the
behavior of the nonlinear Schrodinger equation with critical nonlinearity. The technique used is a
variational argument together with the momentum conservation law. Further, for the DNLS on the
half-line R*, we show the blow-up for the solution with negative energy.

1. Introduction

We study the following Cauchy problem of the nonlinear Schrodinger equation with derivative (DNLS):
idu+32u =ird,(lul’u), teR, xeR,
u(0, x) = ug(x) € H'(R),

where A € R. It arises from studying the propagation of circularly polarized Alfvén waves in magnetized

1-1)

plasma with a constant magnetic field; see [Mio et al. 1976; Mjolhus 1976; Sulem and Sulem 1999] and
the references therein.

This equation is L?-critical in the sense that both the equation and the L?-norm are invariant under the
scaling transform

1/Zu(otzt, ax), o>0.

Ug(t,x) =«
It has the same scaling invariance as the quintic nonlinear Schrddinger equation,
idu+*u+plulu=0, reR, xeR,
and the quintic generalized Korteweg—de Vries equation,

du+d u+und,@’)=0, teR, xeR.

One may always take A =1 in (1-1), since the general case can be reduced to this case by the following
two transforms. First, we apply the transform

u(t,x)— u(—t, x),

The author was partially supported by the NSF of China (number 11101042), the Chinese Postdoctoral Science Foundation
(numbers 20110490018 and 2012T50068), and the Fundamental Research Funds for the Central Universities of China.
MSC2010: primary 35Q55; secondary 35A01, 35B44.

Keywords: nonlinear Schrodinger equation with derivative, global well-posedness, blow-up, half-line.
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then reduce the equation to the case of A > 0. Then we take the rescaling transform

1
u(t,x)— —u(t, x)
Vi
and reduce it to the case of A = 1. So in this sense, (1-1) can always be regarded as the focusing equation.
From now on, we always assume that A = 1 in (1-1).
The H!-solution of (1-1) obeys three conservation laws. The first is the conservation of the mass

M(u(1)) I=/R|u(t)|2dX=M(uo); (1-2)

the second is the conservation of energy

Ep(u(t)) := /R(mx(r)F + 3 Im u () Pu(®ux (0) + Lu(@)|®) dx = Ep(uo); (1-3)

and the third is the conservation of momentum (see (3-4) below),

Ppu(t)) ::Im/ﬂ@ﬁ(r)ux(t)d —%/Rm(t)ﬁdx:PD(uo). (1-4)

Local well-posedness for the Cauchy problem (1-1) is well understood. It was proved for the energy
space H I(R) in [Hayashi 1993; Hayashi and Ozawa 1992; 1994]; see also [Guo and Tan 1991] for an
earlier result in smooth spaces. For rough data below the energy space, Takaoka [1999] proved local
well-posedness in H*(R) for s > % This result was shown to be sharp in the sense that the flow map fails
to be uniformly C for s < %; see [Biagioni and Linares 2001; Takaoka 2001].

The global well-posedness for (1-1) has also been widely studied. By using mass and energy con-
servation laws, and by developing the gauge transformations, Hayashi and Ozawa [Hayashi and Ozawa
1994; Ozawa 1996] proved that the problem (1-1) is globally well-posed in energy space H'(R) under
the condition

luollz2 < v/ 2m. (1-5)

Further, for initial data of regularity below the energy space, Colliander et al. [2001; 2002] proved the
global well-posedness for (1-1) in H*(R) for s > %, under the condition (1-5). Recently, Miao, Wu, and
Xu [Miao et al. 2011] proved that (1-1) is globally well-posed in the critical space H'!/?(R), also under
the condition (1-5). For other work on the DNLS in the periodic case, see for example [Griinrock and
Herr 2008; Herr 2006; Nahmod et al. 2012; Win 2010].

As mentioned above, all the results on global existence for initial data were obtained under the
assumption (1-5). Since /27 is just the mass of the ground state of the corresponding elliptic problem,
the condition (1-5) was naturally used to keep the energy positive; see [Colliander et al. 2001; Miao et al.
2011] for examples. Now one may wonder what happens to the well-posedness for the solution when
(1-5) is not fulfilled. Our first main result in this paper is to improve the assumption (1-5) and obtain the
global well-posedness as follows.
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Theorem 1.1. There exists a small &, > 0 such that, for any ug € H'(R) with
/R|u0(x)|2dx < 27 + &y, (1-6)
the Cauchy problem (1-1) (A = 1) is globally well-posed in H'(R) and the solution u satisfies

il ooy < Cews ol ).

The technique used to prove Theorem 1.1 is a variational argument together with the momentum and
energy conservation laws. The key ingredient is the momentum conservation law, rather than the energy
conservation law, upon which many (subcritical) problems rely when studying the global existence. We
argue by contradiction. Suppose that the solution of (1-1) blows up at finite/infinite time 7" and 7, is a
time sequence tending to 7 such that u(z,) tends to infinity in H'(R) norm. Then, thanks to the energy
conservation law and a variational lemma from Merle [2001], u(z,) is close to the ground state Q (see
below for its definition) up to a spatial transformation, a phase rotation, and a scaling transformation. On
the one hand, since u(#,) blows up at T', the scaling parameter A, decays to zero; on the other hand, the
conservation of momentum prevents A, from tending to zero. This leads to a contradiction.

As mentioned above, Theorem 1.1 improves the smallness of the L?-norm of the initial data of the
previous works on global existence [Hayashi and Ozawa 1994; Ozawa 1996]. More importantly, it reveals
some special features of the derivative nonlinear Schrodinger equation. As discussed before, the smallness
condition (1-5) in the previous works is imposed to guarantee the positivity of the energy Ep(u(?)).
Indeed, by using a variant gauge transformation

v(t, x) 1= e OO LRy ) (1-7)
the energy is deduced to be

Epu(n) = [0l = 1500176 := E@@)), (1-8)
and then the positivity of E(v) is followed by the sharp Gagliardo—Nirenberg inequality (see [Weinstein
1982/83])

6 _ 4 4 2
£l = = AN fellg (1-9)

Once the mass is greater than 27, the positive energy can not be maintained. To see this, we first make
use of the gauge transformation (1-7), and rewrite (1-1) as

2

i i
iatv+a§v=§|v|2vx—5v Oy — = |v|*v. (1-10)

Then there exists a standing wave e'’ Q of (1-10), where Q is the unique (up to some symmetries) positive
solution of the elliptic equation
—Qxx+0— %QS =0.

This leads to the standing wave solution corresponding to (1-1),

R(t, x) := £/ TOMI [ O dy g ().
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So on the one hand, as a byproduct, our result implies the stability of the standing wave solution, which
has been proved by Colin and Ohta [2006]. On the other hand,

102 =27, E(Q)=0,

and the Fréchet derivation of the functional E(v) at Q satisfies E(Q) - Q = —2m < 0. These relations
imply that there exists a uq such that uy obeys (1-6) and Ep(ug) < 0. Therefore, there indeed exist global
solutions with negative energy, as stated in Theorem 1.1. Obviously this is much different from the
focusing, quintic nonlinear Schrddinger equation (3-1) and focusing, quintic generalized Korteweg—de
Vries equation (3-2). For (3-1), Ogawa and Tsutsumi [1991] proved that the solutions with the initial
data belonging to H'!(R) and negative energy must blow up in finite time; for (3-2), Martel and Merle
[Martel and Merle 2002; Merle 2001] proved that the solutions with the initial data belonging to H'(R),
negative energy, and obeying some further decay conditions blow up in finite time. In Section 3 below
we will discuss some differences among these three equations, in particular from the viewpoint of the
virial arguments.

Moreover, the situation of the Cauchy problem and the initial boundary value problem of (1-1) are
much different. We consider the following Cauchy—Dirichlet problem of the nonlinear Schrodinger
equation with derivative on the half-line R*:

idu—+02u=id(Julu), teR, xe(0,+00),
u(0, x) = up(x), (1-11)
u(t,0)=0.

We show that under some assumptions, the solution must blow up in finite time if its energy is negative.

Theorem 1.2. Let ug € H*(RY) and xug € L*>(RT), and let u be the corresponding solution of (1-11)
which exists on the (right) maximal lifetime [0, T,). If Ep(ug) < 0, then T, < 0o. Moreover, there exists a
constant C = C(ug) > 0 such that

—o0 ast /T".

O =

For related results on the blow-up solution to the DNLS equation on bounded domain with the Dirichlet
condition, see [Tan 2004].

Lastly, we remark that it remains open for the DNLS equation (1-1) whether there exists an H'(R)
initial data of much larger L?-norm such that the corresponding solution blows up in finite time. Moreover,
it may be interesting to study the existence of global rough solutions when the condition (1-5) on initial
data is relaxed.

This paper is organized as follows. In Section 2, we present the gauge transformation and prove the
virial identities of DNLS. In Section 3, we discuss the differences among the DNLS, the quintic NLS,
and the quintic gKdV equations. In Section 4, we study the initial boundary value problem of the DNLS
on the half-line and give the proof of Theorem 1.2. In Section 5, we prove Theorem 1.1.
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2. Gauge transformations, virial identities

Gauge transformations. The gauge transformation is an important and very nice tool to study the
nonlinear Schrédinger equation with derivative [Hayashi 1993; Hayashi and Ozawa 1992; 1994]. It gives
some improvement of the nonlinearity. In this subsection, we present the various gauge transformations
and their properties. See [Colliander et al. 2001; Ozawa 1996] for more details. We define

Guu(t, x) = e o NP dyy p oy,
Then %9,%_, = Id, the identity transform. For any function f,
0. f =t VI D a2 f 4 f,), 2-1)
Further, we have the following.
Lemma 2.1. If u is the solution of (1-1) (where A = 1), v =G, u is the solution of the equation
idv+ 37 —i2(a + D|v|*vx —i(2a + Do, + 2aa + Dv]*v = 0.
Moreover,

ED(u)=||ax<gau||§+(2a+§)1m/ |(Qau|2(gau.8x%dx+(a2+%a—i—%)/ |Gqu|® dx.
R R

The proof of this lemma follows from a direct computation and is omitted.
To understand how the gauge transform improves the nonlinearity in the present form (1-1), we
introduce the following two transforms used in [Hayashi and Ozawa 1994; Ozawa 1996]. Let

d=%_1u, Y =%,20,9_1)u.

Then (¢, V) solves the following system of nonlinear Schrédinger equations:

{m@+%¢=—w%u
iy + 07y = Y.

Compared with the original equation (1-1), the system above has no loss of derivatives. Thus it is much

(2-2)

more convenient to get the local solvability of (1-1) for suitable smooth data by considering the system
(2-2) instead.

As mentioned above, it is convenient to consider v =9_3/4u. Then, by Lemma 2.1, the equation (1-1)
of u reduces to (1-10), that is,

id,v+ 97v = Lijv[v, — $20%0, — ||t

Moreover, the energy Ep () in (1-3) is changed into E(v) in (1-8). In the sequel we shall consider (1-10)
and the energy (1-8) of v instead.
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Virial identities. In this subsection, we discuss some virial identities for the nonlinear Schrodinger
equation with derivative. Formally, one may find that the virial quantity of v is similar to that of the
mass-critical nonlinear Schrédinger equation. However, it is in fact the difference that gives the different
conclusions of these two equations. Let ¥ = 1/ (x) be a smooth real function. Define

I(1) = /R Yo ()] dx, (2-3)
J(t) =2Im/wa)(t)vx(t)dx+%/¢|v(t)|4dx. (2-4)
Lemma 2.2. Let v be the solution of (1-10) with v(0) = vy € H'(R), and let y € C3. Then
I'(t) :ZIm/Rx//ﬁ(t)vx(t)dx, (2-5)
50 =4 [ o oF = o [ 97wl ar. 2:6)

Proof. Employing the gauge transform
w(t, x) :=%_1pu(t, x) =% 40, x),
by Lemma 2.1, w obeys the equation
iw; + Wy = i|w]wy.
Moreover, since v(t, x) = 9_14w(t, x), by (2-1),
au(, x) = e /M s |w(r,y>|2dy(_%,-|w|2w +w,).

Thus we have

I(t):/Rwlw(t)|2dx and J(t):ZIm/Rwu')(t)wx(t)dx.
Now, by a direct computation, we get
I/(t):2Re/%1ﬁti)(t,x)8,w(t,x) dx :2Re/l;{wzb(iwxx+|w|2wx)dx
=21m/Rw/1Dwxdx—%/Rw/|w|4dx. 2-7)

Applying (2-1) again,
Bew(t, x) = eV Lo WEDEy (L1312 4y . (2-8)

This together with (2-7) gives (2-5). Now we turn to (2-6). For this, we get
J'(t) = ZIm/ Yw, (t, x)w, (f, x) dx —|—2Im/ Yw(t, x)wy (t, x)dx
R R

:—4Im/ Yw;wy dx—2Im/ Y ww; dx
R R
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:—4Im/ wwx(iwxx+|w|2wx)dx—21mf V' wey + |wPwy) dx
R R
=—4Re/ YWy Wy dx—2Re/ Ip’u'waxdx—ZIm/ V' lw|*Dw, dx
R R R
:4/ w/lwx|2dx+2Re/ w”ﬁ)wxdx—ZIm/ v lwrww, dx
R R R

:4/1//|wx|2dx—/ 1///”|w|2dx—21m/1//|w|2122wxdx. (2-9)
R R R

Now, using (2-8), we have
wl* = Jvel* + § Im(v]*Dvy) + 7¢]v[°
and

2 2 2 - 2= 1 6
lw|”=|v|",  Im(jlw|"ww,) =Im(jv|["vvy) + 7|V[".

These insert into (2-9) and we obtain (2-6). ([l

3. A comparison between DNLS, NLS-5, and gKdV-5

In this section, we discuss the nonlinear Schrodinger equation with derivative (1-10), the focusing, quintic
nonlinear Schrédinger equation (NLS-5), which reads

i9pu + 0gu + 15 lul*u =0, (3-1)
and the focusing, quintic generalized Korteweg—de Vries equation (gKdV-5),
du+ 0 u+ 0, (’) =0. (3-2)

The first two equations have the same standing wave solutions as ¢’ Q, and the last one has a traveling
wave solution Q(x —t). These three equations have the same energies in the form of (1-8). So by the
sharp Gagliardo—Nirenberg inequality, all of them are globally well-posed in H'(R) when the initial data
luollz2 < 1@l 2 = V2.

Now we continue to discuss the difference between the first equation (DNLS) and the last two (NLS-5,
gKdV-9).

First of all, we give some products from Lemma 2.2. We always assume that v is smooth enough.
Taking ¥ = x and ¥ = x2, by (2-5), we have

i/x|u(r)|2dx=21m/ 5(1) vy (t) dx
dr Jg R

and 4
—fx2|v(z)|2dx:4Im/xa(t)vx(t)dx, (3-3)
dr Jr R

respectively. Note that these two identities resemble the corresponding identity of the mass-critical
nonlinear Schrodinger equation (3-1).
Now we take i = 1 in (2-6), which gives the momentum conservation law,
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P ()) = Im/ v(t)ve(t) dx + 411 / lo(t)|* dx = P (vp). (3-4)
R R
Then, taking ¥ = x, we have
1(2Im/ x0(t)v,(t) dx + l/x|v(t)|4dx> =4E(vp). (3-5)
dt R 2 R

This equality is different from the situation of the mass-critical nonlinear Schrodinger equation (3-1).
More precisely, for the solution u of (3-1) with the initial data u(, we have

d
— (2 Im/ xu(t)uy(t) dx) = 4E (ugp). (3-6)
dt R

Compared with the identity (3-6), there is an additional term % f x|v(@)|* dx in (3-5). Indeed, for the
solution of (3-1), combining with the same identity as in (3-3), one has

d? 2 2
pre Rx lu(t)|” dx = 8E (ug). (3-7)
But this does not hold for the solution of (1-10). The “surplus” term %fxlv(t)|4 dx in (3-5) breaks
the convexity of the variance. It is precisely this difference that leads to the distinct phenomena of the
solutions of these two equations, at least at the technical level.

Using the virial identity (3-7), Glassey [1977] proved that the solution u of the mass-critical nonlinear
Schrodinger equation

du+Au+u*Mu=0, ¢ x)eRxR",

blows up in finite time when ug € H'(RVY), xug € L2(R"), and E(ug) < 0. Further, in the 1D case,
Ogawa and Tsutsumi [1991] proved that the solutions of (3-1) blow up in finite time when ug € H'(R)
and E(ug) < 0. See also [Du et al. 2013; Holmer and Roudenko 2010; Glangetas and Merle 1995; Nawa
1999], where all the solutions of the nonlinear Schrodinger equations with power nonlinearity blow up in
finite time or infinite time if their energies are negative. However, Theorem 1.1 depicts a different scene,
where there exist global and uniformly bounded solutions even if E (vg) < O.

The situation is also different from the mass-critical generalized KdV equation (3-2). The latter also

d
—/(x+t)|u(t)|2dx=/u2dx—3/ |ux|2dx—l/ u|® dx.
dt Jp R R 3 /R

The blow-up of the solutions to (3-2) also occurs when the initial data uq satisfies E (ug) < 0, (1-6), and
some decay conditions; see [Martel and Merle 2002; Merle 2001].

has virial identity

4. Blow-up for the DNLS on the half line

In this section, we use the virial identities obtained in Lemma 2.2 to study the blow-up solutions for the
nonlinear Schrédinger equation with derivative on the half line. Consider the problem (1-11), and set
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v(t, x) =exp<—§i/0x lu(t, y)|2dy>u(t,x),

Using the gauge transformation, we see that v is the solution of

idv+ v = Lilv[Pvy — $iv*o, — Slv*v, teR, x € (0, +00),
v(0, x) = vo(x), 4-1)
v(t,0)=0.

Note that after replacing the integral domain R by R™, the energy conservation law and all of the virial
identities obtained in Section 2 also hold true for v.
Now using the virial identities and Glassey’s argument [1977], we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let v be the solution to (4-1). Define

(1) = foox2|u(z,x)|2dx.
0

Then, by the identity analogous to (3-3), we have

I'(t) =4Im/ooxﬁ(t)vx(t) dx =2<2Im/oox17(t)vx(t) dx+%/oox|v(;)|4dx) —fmxlv(;)|4dx.
0 0 0 0

Now, by the identity analogous to (3-5), we get

i<2Imfooxa(t)ux(t) dx+1/00x|v(z)|4dx) — 4E (vp).
dt 0 2 J,

Therefore, using these two identities, we obtain

I"(t) = 8E (vg) — % /Ooox|v(t)|4dx.

Integrating in time twice, we have

t K
1(:):1(0)+1/(0)t+// I"(t)dr ds
0 JO

:I(O)+I/(O)t+/t/3<8E(v0)—i/oox|v(t)|4dx) dr ds
0 Jo dr Jo

o0 t o0
:4E(v0)z2+<1’(0)+f x|v0|4dx)t+l(0)—/f x|v(s)|* dx ds
0 0 JO

o0
<A4E(vo)t* + (1/(0) +/ x|v0|4dx)t +1(0). (4-2)
0
Since E(vg) = Ep(ug) < 0, there exists a finite time 7, > O such that /(T,) =0,

It)>0 forO0<t<T,,

and
It)=0(T,—1t) ast S T.
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Note that
o0 [e.¢] o0
/ lvo(x)|? dx =/ lv(t, x)|* dx = —2Re/ xv(t, x)0y (1, x) dx
0 0 0

<2llxv(, )l 2w lve (t, D 2@y =2V T O lox (5 ) I L2w+)-
Then there is a constant C = C(vg) > 0 such that
157 o (x)|* dx __C
2JI)  — T —1t

and the right-hand side goes to co as t /' T*. Therefore, v(¢) blows up at time T, < 400. Since

e (@ Dl 2wy = (4-3)

X
vx=exp(—%i[ |u<z,y)|2dy)<—i%|u|2u+ux),
0
by the Gagliardo—Nirenberg inequality and the mass conservation law, there exists C = C(u¢) such that
et 2@y < et 2 + 310l DB < Cllia (s )l 2.
Thus, by (4-3), this gives the analogous estimate on u. U

One may note from the proof that the key ingredient to obtain the blow-up result of the initial boundary
value problem on the half-line case is the positivity of the “surplus” term fooox|v(t)|4 dx. This is not true
for the Cauchy problem.

5. Proof of Theorem 1.1

Proof. Let (—T_(up), T+(up)) be the maximal lifespan of the solution u# of (1-1). To prove Theorem 1.1,
it is sufficient to obtain the (indeed uniformly) a priori estimate of the solutions on H !-norm, that is,

sup lvx @) 2 < +00.
1€(=T-(u0). T+ (uo))

Now we argue by contradiction and suppose that there exists a sequence {z,} with

th > —T_(ug) or Ty(ug)

such that
lvx (@)l 2 = +o0, asn— oo. (5-1)
Let
An = 11Qxll2/llve (@) |l 2 (5-2)
and
wn () = A 20(t,, k). (5-3)
Then, by (5-1),
loxwpllz2 =1Oxllz2 and A, — 0, as n — oo.

First we have the following lemma.
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Lemma 5.1. For any ¢ > 0, there exists a small &, = €,(¢) > 0 such that if the function f € H'(R)
satisfies

/ |f)Pdx <2m 46, o fll2=10:0ll12,  E(f) <&,
R
then there exist yy, xo € R such that

If—e Q- —xo)l g <e.

We put the proof of Lemma 5.1 at the end of this section and apply it to prove Theorem 1.1. Let g9 > 0
be a fixed small constant which will be chosen later, and let &, = ¢.(gy) > 0 be the number defined in
Lemma 5.1. By (1-6), (5-3), and a simple computation,

/Iwn(x)lzdx:/ lvo(x)|? dx < 27 + &4,
R R

and
[:wall2 = 1Qxll2,  E(wy) =A2E(vy) — 0.

Then, by Lemma 5.1, we may inductively construct the sequences {y,}, {x,} which satisfy
lwn — e~ Q(- —x)lly1 <o for any n = no, (5-4)
where ng = ng(gg) is a positive large number. Let
e(ty, x) = € w, (x + x,) — Q.

Then
wp(x) = e Q(x — x,) + e e (ty, X — Xy). (5-5)

Therefore, by (5-3), (5-5), and (5-4), we have
V(ty, x) = e V02 (e 4+ O)(tn, Ak — x0), lle(t) g < eo. (5-6)

By the momentum and (5-6), one has
- 1
Po@) =1 [ S0+ ] [
R R

=i, Im/(é + Q) (tny Ay x = x) - (8 + Q) (ty Ay ' x — x,) dx
R

+ ikﬁf (e 4+ Q) (tn, A7 ' x — x,)|* dix
R
=, Im/(é(m + Q) (ex(ty) + Q) dx + a0 / le(t,) + 0| dx
R R
=71 (%n o, +Imf(Qxe(zn> F 6. () + By () dx + | /us(rn) + 01 - 0% dx)
R R

=1, (1011 + OUlet) N g)) = 2, (311Qll74 — Ceo). (5-7)
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Thus, by choosing ¢ small enough such that Cegg < %ll Q||AL'4, one has P(v(t,)) > A;l . %H Q||‘z4. By the

momentum conservation law, this proves that P (vg)A, > %H Q||‘£4. That is, by (5-2),

lox (t) 22 < 8P W) Q2 /1017 - (5-8)
This violates (5-1). Therefore, we prove that there exists Co = Cy(&x, ||vo| 51), such that

sup [[vx ()2 < Co.
teR

Now, for the solution u of (1-1) (with A = 1), we have u = 93 ,4v. Thus, by (2-1), we have

iy = el G/ [l dy (i3[v)v+v,).

Therefore, by (1-9) and the mass conservation law, for any ¢ € R,
< 3 3~ 3 2 < Col1 3 2 ]
ez @22 = Tox @22 + FIvONLe < eIz + 5 VO v @lz2 = Co{ T+ 5 lluoll;2 )-

Proof of Lemma 5.1. The proof follows from the standard variational argument; see [Merle 2001; Weinstein
1986] for examples; see also [Banica 2004; Hmidi and Keraani 2005] for its applications. Here we prove
it by using the profile decomposition (see [Gérard 1998] for example) for the sake of the completeness.
Let { f,} C H'(R) be any sequence satisfying

I fallz = M1QN2s N0 fulle =1Qxll2s E(fa) = 0.

Then, by the profile decomposition, there exist {V/}, {x,{ } such that, up to a subsequence,

L
fo=Y_ VIC—x)+RE,
j=1

where, for j # k, we have |x;) —x§| — 00 as n — o0, and

lim lim |RE|| 6 =0. (5-9)
L—oon—0o0
Moreover,
L
I fallzes =D IV + I RE I3 +0a (1) fors =0, 1,
J=1 (5-10)
L
E(f))=Y_ E(V)+E(RE) +o0,(1).
j=1

Since || full2 = | Q|| 2, one has, by (5-10),
IV/l2 <11Qll2 forany j > 1. (5-11)

This implies, by the sharp Gagliardo—Nirenberg inequality (1-9), that E(V/) > 0 for any j > 1. Further,
by (5-9), one has
lim lim E(RE)>0.

L—o0on—00
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Since E(f,) — 0, we have E(V/) =0 for any j > 1. Combining with (5-11) and (1-9), this again yields
IV l2=1Qllz2 or VI=0.
Since || fu 1.2 = || Q| 2, there exists exactly one j, say j = 1, such that
IV =10l V/ =0 forany j=>2.

Moreover, by (5-10) and (1-9), when n — oo, we have RX — 0 in L2(R), and then further in H'(R).
Therefore,
18V 2 =11Qxll 2, E(V!H =0,

and f, — V'!in H'(R) as n — oco. Now we note that V! attains the sharp Gagliardo-Nirenberg inequality
(1-9). Thus, by the uniqueness of the minimizer of the Gagliardo—Nirenberg inequality [Weinstein
1982/83], we have V! = ¢~ Q(- — x¢) for some yy € R and xq € R. This proves the lemma. O
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THE CALDERON PROBLEM WITH PARTIAL DATA ON MANIFOLDS
AND APPLICATIONS

CARLOS KENIG AND MIKKO SALO

We consider Calderén’s inverse problem with partial data in dimensions n > 3. If the inaccessible part
of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem
reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the
flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local
uniqueness in the Calderén problem with partial data in admissible geometries, and global uniqueness
under an additional concavity assumption. This work unifies two earlier approaches to this problem —
one by Kenig, Sjostrand, and Uhlmann, the other by Isakov— and extends both. The proofs are based
on improved Carleman estimates with boundary terms, complex geometrical optics solutions involving
reflected Gaussian beam quasimodes, and invertibility of (broken) geodesic ray transforms. This last topic
raises questions of independent interest in integral geometry.
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4. Carleman estimate 2015
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6. Local uniqueness on simple manifolds 2025
7. Quasimodes concentrating near broken rays 2030
8. Recovering the broken ray transform 2043
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1. Introduction

This article is concerned with inverse problems where measurements are made only on part of the boundary.
A typical example is the inverse problem of Calderén, where the objective is to determine the electrical
conductivity of a medium from voltage and current measurements on its boundary. The mathematical
formulation of this problem is as follows. Let 2 C R", n > 2, be a bounded domain with smooth boundary.
Given a positive function y € L>®(L2) (the electrical conductivity of the medium) and two open subsets
I'p, 'y of 92, consider the partial Cauchy data set

C,>"™ = {(ulr,, ydyulry) : div(yVu) =0in Q, u € H'(Q). supp(ulse) C Tp).

MSC2010: primary 35R30; secondary 35J10, 58J32.
Keywords: Calderén problem, partial data, inverse problem.
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The Calder6n problem with partial data is to determine the conductivity y from the knowledge of C )1; LR
for possibly very small sets I'p, I'y. Here 0, is the normal derivative, and the conormal derivative
ydyit|sq is interpreted in the weak sense as an element of H~'/2(3Q).

A closely related problem is to determine a potential g € L°°(2) from partial boundary measurements
for the Schrodinger equation, given by the partial Cauchy data set

Cy>™ = {(ulry, dutlry) : (~A+¢q) =0in Q, u € Ha(R), supp(ulye) C T'p}.

Here we use the space
HA(Q) ={u e L*(Q): Au € L*(Q)},

and the trace u|yq and normal derivative d,u|yq are in H~'/2(3Q2) and H3/2(3Q); see [Bukhgeim
and Uhlmann 2002]. Above, one thinks of u|3q as Dirichlet data prescribed only on I'p, and one
measures the Neumann data of the corresponding solution on I'y. If A, : H 12(Q) - H~12(3Q) is the
Dirichlet-to-Neumann map (DN map) given by

A,y tulsq > ydoulse, where u € H'(2) solves div(y Vu) =0 in £,
then the partial Cauchy data set is a restriction of the graph of A,

Cy2™ = {(flrp, Ay flry) s f € HY2(09), supp(f) C Tp).

A similar interpretation is valid for C qr o:Iw provided that O is not a Dirichlet eigenvalue of —A 4 g in Q.

The problems above are well studied questions in the theory of inverse problems. The case of full
data (I'p = I'y = 02) has received the most attention. Major results include [Sylvester and Uhlmann
1987; Haberman and Tataru 2013] in dimensions n» > 3 and [Nachman 1996; Astala and Piivirinta 2006;
Bukhgeim 2008] in the case n = 2. In particular, it is known that the set C gQ"m determines uniquely a
conductivity y € C!(Q) if n > 3 and a conductivity y € L®(Q) if n = 2. These results are based on the
method of complex geometrical optics solutions developed in [Sylvester and Uhlmann 1987] for n > 3
and in [Nachman 1996; Bukhgeim 2008] in the case n = 2.

The partial data question where the sets I'p or I'y may not be the whole boundary has also attracted
considerable attention. We mention here four approaches, each of which gives a slightly different partial
data result. Formulated in terms of the Schrodinger problem, it is known that qu >IN determines q in Q
in the following cases:

(1) n > 3, the set I'p is possibly very small, and T'y is slightly larger than dQ \ T p; proved by Kenig,
Sjostrand, and Uhlmann [Kenig et al. 2007].

2) n=3and I'p =T'y =T, and dQ \ I is either part of a hyperplane or part of a sphere; proved in
[Isakov 2007].

(3) n=2and I'p =Ty =T, where I" can be an arbitrary open subset of d$2; proved by Imanuvilov,
Uhlmann, and Yamamoto [Imanuvilov et al. 2010].

(4) n > 2, linearized partial data problem, I'p =I'y =I", where I can be an arbitrary open subset of
d%2; proved by dos Santos Ferreira, Kenig, Sjostrand, and Uhlmann [Ferreira 2009b].
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Approaches (1)—(3) also give a partial data result of determining y from C; p-I'v with the same
assumptions on the dimension and the sets I'p, ['y. In (4), the linearized partial data problem is to show
injectivity of the Fréchet derivative of A, at ¢ = 0 instead of injectivity of the full map g — A,, when
restricted to the sets I'p and I'y.

It is interesting that, although each of the four approaches is based on a version of complex geometrical
optics solutions, the approaches are distinct in the sense that none of the above results is contained in any
of the others. The result in [Kenig et al. 2007] uses Carleman estimates with boundary terms, given for
special limiting weights, that allow one to control the solutions on parts of the boundary, whereas [Isakov
2007] is based on the full data arguments of [Sylvester and Uhlmann 1987] and a reflection argument.
The result in [Imanuvilov et al. 2010] is a strong one that only requires Dirichlet and Neumann data on
any small set, but the method involves complex analysis and Carleman weights with critical points and
does not obviously extend to higher dimensions. Finally, [Ferreira 2009b] is based on analytic microlocal
analysis but is so far restricted to the linearized problem.

Nevertheless, given that there exist several approaches to the same problem, one expects that a
combination of ideas from different approaches might lead to improved partial data results. In this paper
we unify the Carleman estimate approach of [Kenig et al. 2007] and the reflection approach of [Isakov
2007], and, in fact, we obtain the main results of both these papers as special cases.

The method also allows us to improve both approaches. Concerning [Isakov 2007], we are able to
relax the hypothesis on the inaccessible part I'; = €2 \ I' of the boundary: instead of requiring I';
to be completely flat (or spherical), we can deal with I'; that satisfy a flatness condition only in one
direction. Compared with [Kenig et al. 2007], we remove the need for measurements on certain parts of
the boundary that are flat in one direction; and, in certain cases where 92 may not have any symmetries,
we eliminate the overlap of I'p and I'y needed in [Kenig et al. 2007]. The method eventually boils down
to inverting geodesic ray transforms (possibly for broken geodesics). In some cases the invertibility of the
ray transform is known, but in other cases it is not, and in these cases we obtain a reduction from the
Calder6n problem with partial data to integral geometry problems of independent interest.

The survey [Kenig and Salo 2013] describes earlier results on the Calderén problem with partial data
and also the results in the present paper. However, we also list here some further references for partial
data results, first for the case n > 3. The Carleman estimate approach was initiated in [Bukhgeim and
Uhlmann 2002; Kenig et al. 2007]. Based on this approach, there are low regularity results [Knudsen
2006; Zhang 2012], results for other scalar equations [Ferreira 2007; Knudsen and Salo 2007; Chung
2012] and systems [Salo and Tzou 2010; Chung et al. 2013], stability results [Heck and Wang 2006], and
reconstruction results [Nachman and Street 2010]. The reflection approach was introduced in [Isakov
2007], and has been employed for the Maxwell system [Caro et al. 2009]. Partial data results for slab
geometries are given in [Li and Uhlmann 2010; Krupchyk et al. 2012]. Also, at the same time as this
preprint was first submitted, a preprint of Imanuvilov and Yamamoto [2013a] appeared that independently
proves a result similar to that in Section 3A in this paper.

In two dimensions, the main partial data result is that of [Imanuvilov et al. 2010], which has been
extended in [Imanuvilov et al. 2011a; 2011b; Imanuvilov and Yamamoto 2012a; 2012b] to, respectively,
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more general equations, combinations of measurements on disjoint sets, less regular coefficients, and
certain systems. An earlier result is [Astala et al. 2005]. In the case of Riemann surfaces with boundary,
corresponding partial data results are given in [Guillarmou and Tzou 2011a; 2011b; Albin et al. 2013].
See also the surveys [Guillarmou and Tzou 2013; Imanuvilov and Yamamoto 2013b].

In the case when the conductivity is known near the boundary, the partial data problem can be reduced
to the full data problem [Ammari and Uhlmann 2004; Alessandrini and Kim 2012; Hyvonen et al. 2012].
Also, we remark that in the corresponding problem for the wave equation, it has been known for a long
time (see [Katchalov et al. 2001]) that measuring the Dirichlet and Neumann data of waves on an arbitrary
open subset of the boundary is sufficient to determine the coefficients uniquely up to natural gauge
transforms. Partial results for the case where Dirichlet and Neumann data are measured on disjoint sets
are in [Lassas and Oksanen 2010; 2012].

The structure of this paper is as follows. Section 2 states our main partial data results in the setting
of Riemannian manifolds, and Section 3 considers some consequences of the Calderén problem with
partial data in Euclidean space. Section 4 gives a Carleman estimate that is used to control solutions on
parts of the boundary, and Section 5 discusses a reflection approach that can be used as an alternative
to Carleman estimates in some cases. In Section 6 we give the proofs of the local uniqueness results
for simple transversal manifolds, based on complex geometrical optics solutions involving WKB type
quasimodes. In Section 7 we discuss a more sophisticated quasimode construction based on reflected
Gaussian beams, and in Section 8 we show how complex geometrical optics solutions involving reflected
Gaussian beam quasimodes can be used to recover the broken ray transform of a potential from partial
Cauchy data.

2. Statement of results

Our method is based on ideas developed for the anisotropic Calderén problem in [Ferreira 2009a], and
even though much of the motivation comes from the Calderén problem with partial data in Euclidean
domains, it is convenient to formulate our main results in the setting of manifolds. The Riemannian
geometry notation we use is mostly that of [Ferreira 2009a].

Definition. Let (M, g) be a compact oriented Riemannian manifold with C* boundary, and let n =
dim(M) > 3.

1. We say that (M, g) is conformally transversally anisotropic (or CTA) if
(M, g) € (Rx Mo, g), g=cled g,

where (Mo, go) is some compact (n — 1)-dimensional manifold with boundary, e is the Euclidean
metric on the real line, and ¢ is a smooth positive function in the cylinder R x M.

2. We say that (M, g) is admissible if it is CTA and additionally the transversal manifold (1\7[0, go) is
simple, meaning that the boundary 81% is strictly convex (the second fundamental form is positive
definite) and for each p € Mo, the exponentlal map exp,, is a diffeomorphism from its maximal
domain of definition in T Mo onto Mo
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The uniqueness results in [Ferreira 2009a] were given for admissible manifolds. In this paper we will
give results both for admissible and CTA manifolds. In the main results, we will also assume that there is
a compact (n — 1)-dimensional manifold (Mg, go) with smooth boundary such that

(M. g) C (Rx My, g) € (Rx Mo, g), g=cledgo), 2-1
and the following intersection is nonempty:
oM N (R x M) # 2.

Under some conditions, it will be possible to ignore boundary measurements in the set dM N (R x 9 Mp).
In the results below, we will implicitly assume that the various manifolds satisfy (2-1), and if (M, g) is
admissible, it is also assumed that (1\70, go) is simple (but (My, go) need not be simple, since its boundary
may not be strictly convex).

Write x = (x1, x") for points in R x My, where x| is the Euclidean coordinate. The approaches of [Kenig
et al. 2007; Ferreira 2009a] are based on complex geometrical optics solutions of the form u = e*¥ (m +r),
where ¢ is a special limiting Carleman weight. We refer to the latter paper for the definition and properties
of limiting Carleman weights on manifolds. For present purposes, we only mention that the functions
@ (x) = %x; are natural limiting Carleman weights in the cylinder (R x Mo, g).

The weight ¢ (x) = x; allows us to decompose the boundary 0 M as the disjoint union

oM =0M, UIM_ UMy,
where
oML ={xe€dM:+0,0(x) >0} and OMy,={x €M :0d,p(x)=0}.

Here the normal derivative is understood with respect to the metric g. Note that d,¢ =0 on R x d M
whenever (Mg, go) € (1\7[0, go). We think of d My,, as being flat in one direction (the direction of the
gradient of ¢). For the sake of definiteness, the sets d My = d M4 (¢) will refer to the weight ¢ (x) = x; in
this section, but all results remain true when d M and 0 M_ are interchanged (this amounts to replacing
the weight x; by —x1).

Next we give the local results for the Calder6én problem with partial data on manifolds. In these results
we say that a unit speed geodesic y : [0, L] — My is nontangential if its endpoints are on d My, the
vectors y (0), y (L) are nontangential, and y () € M(i)nt for 0 <t < L. We also define the partial Cauchy
data set as

Co2™ ={(ulr,, duttlry) : (=Ag +q) =01in M, u € Hp (M), supp(ulsm) C Tp},

where Hx, (M) = {u € L* (M) : Agu € L*(M)} and ulyy € H™'/2(0M), dyulyy € H>/*(3M) by the
same arguments as in [Bukhgeim and Uhlmann 2002].
To explain the results, it is convenient to think in terms of the following special case.

Example. Let M = Mere U Miyig U Miigne be a compact manifold with boundary consisting of three parts:
Mpiq = [a, b] x My for some compact manifold (My, go) with boundary, M. C {x; < a} x My, and



2008 CARLOS KENIG AND MIKKO SALO

Miighe C {x1 > b} x M. We also assume that IM_ = M. NOM and O M = Mijgne N O M. In this case
OMn = la, b] x M.

The methods developed in this paper suggest that it should suffice to measure Neumann data on
dM for Dirichlet data supported in d M_, with no measurements required on d M,,. However, in the
results below we need a part ', C d My, that is accessible to measurements, and I'; = 0 M, \ Iy is the
inaccessible part. Suppose for simplicity that

I'y=1la,blxE, T;=la,b]x(@Mp\E)

for some nonempty open subset E of d M.
In this setting, Theorem 2.1 implies that from Neumann data measured near 0 M U I', with Dirichlet
data input near dM_ U T, one can determine certain integrals of the potential ¢ in the set

Rx | Jy(o, LD,
Y

where the union is over all nontangential geodesics in My with endpoints on E. Moreover, if the local
ray transform is injective in this set in a suitable sense, one can determine the potential in this set by
Theorem 2.2. Theorem 2.4 shows that one can go beyond this set and extract information about integrals
of g over all nontangential broken rays with endpoints on E, and Theorem 2.3 gives a global uniqueness
result in the case where 0 M., has zero measure.

Theorem 2.1. Let (M, g) be an admissible manifold as in (2-1), and let g1, g2 € C(M). Let I'; be a
closed subset of 0 My, and suppose that, for some nonempty open subset E of d My, one has
I CRx (0Mp \ E).

Let Ty = 0Mn \T';, and assume that

Lp,'n _ ~Tp,In
Cga‘]l - Cquz ’

where I'p and Uy are any open sets in M such that U'p D 0M_UT, and 'y D oM, UL,
Given any nontangential geodesic y : [0, L] — My with endpoints on E, and given any real number A,
one has

L
/ e M (c(q1 — q2))" 2h, y (1)) di =0.
0

Here q| — q3 is extended by zero outside M, and (-)" denotes the Fourier transform in the x| variable.

The previous theorem allows us to conclude uniqueness of potentials in sets where the local ray
transform is injective in the following sense.

Definition. Let (M, go) be a compact oriented manifold with smooth boundary, and let O be an open
subset of M. We say that the local ray transform is injective on O if any function f € C(My) with

/ fdt =0 for all nontangential geodesics y contained in O
¥

must satisfy f|p =0.
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Theorem 2.2. Assume the conditions in Theorem 2.1. Then q; = g in M N (R x O) for any open subset
O of My such that the local ray transform is injective on O and O NdMy C E.

The local ray transform is known to be injective in the next three cases (the second case will be used
in Section 3):

1. (My, go) = (R, €), where Qo C R"~! is a bounded domain with C* boundary, e is the Euclidean
metric, E is an open subset of 329, and O is the intersection of £ with the union of all hyperplanes
in R"~! that have 32\ E on one side. The complement of this union is the intersection of half-spaces
and is thus convex. If the integral of f € C (), extended by zero to R"~!, vanishes over all line
segments in O, the integral over all hyperplanes that do not meet d<2p \ E also vanishes, and it
follows from the Helgason support theorem [1999] that the local ray transform is injective on O.

2. (My, go) € (Mo, go) are simple manifolds with real-analytic metric, and F is an open set of nontan-
gential geodesics in (Mo, go) such that any curve in F can be deformed to a point on My through
curves in %. In such a case, by a result of Krishnan [2009] the local ray transform is injective on the
set O of all points in My that lie on some geodesic in F.

3. If dim(Mp) > 3 and if 9 M) is strictly convex at a point p € d My, then p has a neighborhood O in
My on which the local ray transform is injective. This is a result from [Uhlmann and Vasy 2012].

In Theorem 2.2, if the nontangential geodesics with endpoints on E cover a dense subset O of My and
if the local ray transform is injective in O, we obtain a global uniqueness result stating that g; = ¢, in M.
An example of such a result under a concavity assumption is given in Section 3F.

The method for proving Theorems 2.1 and 2.2 also allows us to reduce the overlap for I'p and I'y
needed in [Kenig et al. 2007]. An example of such a result is the following (a similar result was also
proved in [Imanuvilov and Yamamoto 2013b]).

Theorem 2.3. Let (M, g) be an admissible manifold and assume that q,, g, € C(M). If d My has zero

measure in M, then

CBM,,BMJr — CBM,,BM+

8.41 8.4 = q1=q2.

Next we wish to gather information on the potentials beyond the set that can be reached by transversal
geodesics with endpoints on E. To do this, we will use broken geodesics in the transversal manifold that
go inside M), reflect finitely many times, and eventually return to E.

Definition. Let (M, go) be a compact manifold with boundary.

(a) We call a continuous curve y : [a, b] — My a broken ray if y is obtained by following unit speed
geodesics that are reflected according to geometrical optics (angle of incidence equals angle of
reflection) whenever they hit a point of d M.

(b) A broken ray y : [0, L] — M, is called nontangential if y (¢) is nontangential whenever y (t) € d My,
and additionally all points of reflection are distinct.
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The next theorem is a generalization of Theorem 2.1 in the sense that it allows arbitrary transversal
manifolds and recovers integrals over all nontangential broken rays (instead of just nontangential geodesics)
with endpoints on E. However, it is stated with a weaker partial data condition.

Theorem 2.4. Let (M, g) be a CTA manifold as in (2-1), and let q1, g» € C(M). Let I'; be a closed subset
of 0 Myan, and suppose that, for some nonempty open subset E of d My, one has

I' CRx (0My~\ E).

Let Ty = 0Mn \T';, and assume that

Ip, 'y _ ~Tp,In
ng‘h - Cg"IZ ’

where I'p = 'y =T for some neighborhood I" of the set IM UdM_UT, in OM.
Given any nontangential broken ray y : [0, L] — Mg with endpoints on E, and given any real number A,

one has

L
/ e M (c(q1 — q2))" 2x, y (1)) di =0.
0

Here q1 — q» is extended by zero outside M, and (-)" denotes the Fourier transform in the x| variable.

It is natural to ask whether a function in My is determined by its integrals over broken rays with
endpoints in some subset E of d M (that is, whether the broken ray transform is injective). Combined
with Theorem 2.4 and with the proof of Theorem 2.2, such a result would imply unique recovery of the
potential in the whole manifold M. However, it seems that there are very few results in this direction,
except for the case where E is the whole boundary and the question reduces to the injectivity of the usual
ray transform; see [Sharafutdinov 1994].

Eskin [2004] has proved injectivity in the case of Euclidean broken rays reflecting off several convex
obstacles, with E being the boundary of a smooth domain enclosing all the obstacles, if the obstacles
satisfy additional restrictions (in particular, the obstacles must have corner points and they cannot be
smooth). Hubenthal [2013a; 2013b] and Ilmavirta [2013a; 2013b; 2013c] have given partial results for
the broken ray transform in special geometries. See also [Florescu et al. 2011; Lozev 2013] for related
results. However, the following question seems to be open even in convex Euclidean domains except
when E = dM,.

Question. Ler (My, go) be a simple manifold, let E be a nonempty open subset of d My, and assume that
f € C(My) satisfies

L
/ fy@)dr=0
0
for all nontangential broken rays y : [0, L] — My with endpoints on E. Does this imply that f =07

3. The Euclidean case

In this section, we indicate some consequences of the previous results to the Calderén problem with
partial data in Euclidean space. We assume that @ C R? is a bounded domain with smooth boundary
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equipped with the Euclidean metric g = e, and ¢1, g2 € C(S2). We also assume that

where " is some strict open subset of d<2. Write
[ =0Q\T

for the inaccessible part of the boundary. The results in this section show that in cases where I'; satisfies
certain geometric restrictions, it is possible to conclude that

g1=¢q2 inQN[RxO0),
where the sets O C R? will be described below.

Remark. We also obtain results for the conductivity equation by making a standard reduction to the
Schrodinger equation. More precisely, if y1, y» € C?(Q) are positive functions such that C )1:1 T'=cC ;z,r’
the corresponding DN maps satisfy

Ay flr=A,, flr for f € H'*(3Q) with supp(f) CT.
Boundary determination [Kohn and Vogelius 1984; Sylvester and Uhlmann 1988] implies that

vilr =»Ir,  dyilr =dr2lr.

Writing g; = ijl/z/yjl/z, the relation

—1/2 ~1/2 -
Aoy f =77 P8y 7P P+ 3y Govi) Flag
and the above conditions imply that the DN maps A, for the Schrodinger equations satisfy
Ag flr=Ag fIr for f € H'*(3Q) with supp(f) C T.

Thus qul L C(gz’r, and we obtain that

gi=¢q» inQ2N[RxO0).

Write ¢ = g1 = ¢ in QN (R x O). Then yll/z and yzl/z are both solutions of (—A4¢)u=0in QN(Rx 0)
having identical Cauchy data on I'. Tt follows that y; = y» in any connected component of QN (R x O)
whose intersection with I" contains a nonempty open subset of 9€2.

In the following we will use some general facts on limiting Carleman weights from [Ferreira 2009a],
where it was proved that any limiting Carleman weight in R> has, up to translation, rotation and scaling,
one of the following six forms:

2
x1, loglx|, arg(x;+ixy), x—12, log M, arg(eie (x + iel)z).
|x] |x — e
Here 0 € [0, 27), and the argument function is defined by

Im(z)

arg(z) = 2arctan ——,
g 2l + Re(2)

z€eC\{treR:t<0}.
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It was also proved in Section 2 of [Ferreira 2009a] that if ¢ is a limiting Carleman weight near (2, e),
then Vg is a unit parallel vector field near (2, g) where

g= cle, ¢c= |Veg0|e_2.

Furthermore, by the proof of Lemma A.5 of the same reference, if (y;, y’) are coordinates so that
V3@ = 0,, and if the coordinates y" parametrize a 2-dimensional manifold S such that V¢ is orthogonal
to S with respect to the ¢ metric, then the metric has the form

3 ( N ( 1 0 )
=0 20 )0
where g is the metric on § induced by g.

3A. Cylindrical sets. This case corresponds to the limiting Carleman weight ¢ (x) = x;. Suppose that
Q C R x Qq, where Q is a bounded domain with smooth boundary in R?. Let E be an open subset of
0829, and assume that

[ CRx (0Q\ E).
If 20 has strictly convex boundary, Theorem 2.2 and the result of [Krishnan 2009] imply that
g1=q ImQN[RxO0),

where O is the intersection of € with the union of all lines in R? that have 9o \ E on one side.

The above conclusion holds true also when €2y does not have strictly convex boundary. To see this, let
Qo € B € B, where B and B are balls. The extensions of the line segments in O to B form a class &
such that any curve in F can be deformed to a point through curves in F. It is then enough to extend
g1 — q2 by zero to R x B, and to use the proof of Theorem 2.2 with M replaced by B, together with
[Krishnan 2009].

3B. Conical sets. Consider the limiting Carleman weight ¢(x) = log|x|. Suppose that  C {x3 > 0}, let
(82, o) be the sphere with its standard metric, let Si ={we §?: w3 > 0}, and let (Mo, go) be a compact
submanifold of (S2, go) with smooth boundary. Let £ be an open subset of d My, and assume that

Iic{ro:r>0,wedMy\ E}.
We have ¢ = |Vo|™? = |x|? and § = |x| e, Vi@ = x. Choose coordinates so that
yi=log|x|, Y =x/|xl.

The coordinates y’ parametrize the manifold S? and the metric gy on S? induced by g is just the standard
metric go. The discussion in the beginning of this section shows that

. W (1 0
g(yl,y)—(o go(y’))'
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Now (My, go) is contained in some simple submanifold (MO, go) of the hemisphere (S2, g0) (just remove
a neighborhood of the equator). Since geodesics in SJZr are restrictions of great circles, Theorem 2.2 and
the local injectivity result [Krishnan 2009] imply, as in Section 3A, that

q1=q2 inQN{ro:r>0we 0},

where O is the union of all great circle segments in Ser such that 9 My \ E is on one side of the hyperplane
containing the great circle segment.

3C. Surfaces of revolution. Let Q@ C R\ {x : x; <0}, and consider the limiting Carleman weight

@(x) = arg(xy +ixp).

v _( —X2 X O)
= x12+x%’x12+x22’
1

x12+x§

Then

and

c=xi4x3, g= e, Vp=(—x2,x1,0).

We make the change of coordinates valid near €,

y1 = arg(x; +ixy), yzzvxlz+x§, V3 = X3.

The coordinates y’ parametrize the manifold S = {(x1, 0, x3) : x; > 0} and V;¢ is orthogonal to S.
Furthermore, we may also think of S as the set {(0, y2, y3) : y2 > 0}, and the metric on § induced by g is
the hyperbolic metric go = (1/ y%)e. The discussion in the beginning of this section shows that

~ ~n_ (1 0 >
g(}’l’}’)—(o go(y/) *
Let (My, go) be a compact submanifold of S with smooth boundary, let E be an open subset of d M.
We think of M as lying in {(x1, 0, x3) : x; > 0}. Now, assume that

I'i C{Rg(OMp\ E) : 0 € (—m, )},

where Rygx = (ﬁg (x1, x2)", x3)" and ﬁg rotates vectors in R? by angle 6 counterclockwise. That is, we
assume that the inaccessible part I'; is contained in a surface of revolution obtained by rotating the
boundary curve d My \ E.

Now, the geodesics in S (and, after restriction, also in My) have either the form

(y2(2), y3(¢)) = (Rsint, Rcost + ),

where r € (0, 1), R > 0, and o € R, or the form (y»(¢), y3(t)) = (¢, «), where t > 0 and o € R (these are
not unit speed parametrizations). In the x coordinates, these are either the half circles in the {x, = 0}
plane given by

(x1(), x2(2), x3(t)) = (Rsint,0, Rcost +a), te(0,m),
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or the lines
(x1(2), x2(0), x3(2)) = (1,0, ), 1>0.

Enclosing M in some ball B in S, the manifold (B, go) is simple and Theorem 2.2 and [Krishnan 2009]
imply, as in Section 3A, that

g1=q2 InQN{R4(0):0 € (—m,m)},
where O is the union of all geodesics in S that have d My \ E on one side.

3D. Other limiting Carleman weights. So far we have considered three of the six possible forms of
limiting Carleman weights in R3. The fourth one, ¢(x) = x;/|x|?, is the Kelvin transform of the linear
weight, and corresponds to inaccessible parts of the boundary that are Kelvin transforms of cylindrical
domains. In particular, if part of the cylindrical domain is on the hyperplane {x3 = 1}, its Kelvin transform
lies on the sphere centered at (0, 0, 1/2) with radius 1/2, and we recover the result of Isakov [2007] for
domains where the inaccessible part is part of a sphere. The corresponding results for the remaining two
limiting Carleman weights do not seem so easy to state and we omit them.

3E. Extension of Kenig, Sjostrand, and Uhlmann’s result. Now let Q@ C R? be a bounded domain with
smooth boundary, assume that 0 is not in the convex hull of Q, and let p(x) = log |x|. Define

QL = {x €9Q: £dp(x) > 0}, Q= {x € IQ: dug(x) = 0}.

It was proved in [Kenig et al. 2007] that whenever I'p is a neighborhood of 92_ U 0Q, and I'y is a
neighborhood of 924 U 024y, we have

p.I'v _ ~'p.I'n _
Cq] —qu == q1 =q>.

In particular, I'p and I'y always need to overlap. This result is a consequence of the reduction given
above for the logarithmic weight, Theorem 2.1 (the special case where E = 02, so that I'; = &), and
injectivity of the ray transform. If 02, has zero measure in 92, then Theorem 2.3 allows us to improve
this result: we have
99,0924 _ ~0Q-,09 —
Co 7T =C 7 = a=ax

In this case, the sets where Dirichlet and Neumann data are measured are disjoint, but their union covers
all of <2 except for a set of measure zero. The result remains true if the roles of 924 and 0<2_ are
changed.

3F. Extension of Isakov’s result. According to [Isakov 2007], the condition Cy " = C,>"" implies g1 = g2
in Qif QC{x3>0}and I'; C {x3 =0}, or if Q C B for some ball B and I'; C 9 B. We have already
recovered these results in Sections 3A and 3D, since in these cases the local injectivity set O is so large
that the result g; = ¢ holds in all of Q. Of course, the results above also extend [Isakov 2007], since we
can conclude at least local uniqueness for potentials when the inaccessible part of the boundary satisfies a
(conformal) flatness condition in only one direction, such as being part of a cylindrical set, a conical set,
or a surface of revolution.
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We also get global uniqueness if the local injectivity set O is sufficiently large. For instance, if
QCRxQy, TI'iCRx(0RQ\E),

where €2 is a bounded domain with smooth boundary and E is a nonempty open subset of €2, and if
the lines in R? that have 9 \ E on one side cover a dense subset of L2, then g; = ¢, in 2. One example
of this situation is if

QCRx{(x2,x3):x3>n(x2)}, Ti CRX{(x2,x3):x3=n(x2)},

where 1 : R — R is a smooth concave function.

4. Carleman estimate

Let (M, g) be a CTA manifold, so (M, g) is compact with boundary and
(M, g) € (Rx My, g), g=cle®go)-

Here (M, go) is any compact (n — 1)-dimensional manifold with boundary. We wish to prove a Carleman
estimate with boundary terms for the conjugated operator e#/"(—A g)e_“’/ "in M, where ¢ is the limiting
Carleman weight ¢(x) = x; or ¢(x) = —x1, and & > 0 is small. Following [Kenig et al. 2007], it is useful
to consider a slightly modified weight

Ye =@+ hfe

where f; is a smooth real-valued function in M depending on a small parameter ¢, with ¢ independent
of h. The convexity of f, will lead to improved lower bounds in terms of the L?(M) norms of u and
hVu. On the other hand, the sign of 9, ¢, in the boundary term of the Carleman estimate will allow us to
control functions on different parts of the boundary. Of special interest is the set d My, where 9,90 =0,
and in this set we have

av@s |8Mm, = havf8~

We would like to have 9, f; < 0 on d My,,. It is not easy to find a global convex function f, satisfying the
last condition for a general set d M,,. However, splitting f. into a convex part whose normal derivative
vanishes on d M, and another part which ensures the correct sign on d My, will give the required
result. We will use semiclassical conventions in the next proof; see [Ferreira 2009a, Section 4; Zworski
2012] for more details. We also write (v, w) = (v, W) 20, V[l = V]l 12(pr), and for T C I M we write

(v, w)r = (v, W) 2.

Proposition 4.1. Let (M, g) be as above, let ¢(x) = £x1, and let k be a smooth real-valued function in
M so that 0,k = —1 on OM. Also let g € L°°(M). There are constants ¢, Co, hg > 0 with hg <e/2 <1

such that, for the weight

h 2
pe=g+ =2+,
e 2
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where O < h < hy, one has

3 h2
— (|8 @e | Butt, Butt)ars(gp) + — (lull* + hVul|?)
CO CO
< [[e?"(=h*Ag +h*q) (e " w)|I* + 1 (|19, 0e [Bvtt, duit)ont, (p,)
Sfor any u € C°(M) with u|yy = 0.

Proof. Since ¢(x) = %x; is a limiting Carleman weight in a manifold strictly containing M, the
computations in the proof of [Ferreira 2009a, Theorem 4.1] apply and we can follow that proof. First of
all, note that

DA+ qu = (—Ap1g+ ge) ("D 4y,

where g. = cq 4+ c"t2D/4A ¢ (c~"=2/%) Thus, by replacing g with another potential, we may assume that
¢ =1so that g = e ® go and ¢ is a distance function in the g metric, that is, |[V,¢|, = 1.

Let Py = —thg and Py, = e?/" Pye=%:/" Then Py.y. = A+iB, where A and B are the formally
self-adjoint operators

A=Ay —|Ve|?, B=-2i(Vee,hV-) —ihAgp..
Assume u € C®°(M) and u|yy = 0. We have
”PO,&pgu”z ={(A+iB)u, (A+iB)u)
= |Au|)® + | Bul|® +i(Bu, Au) — i (Au, Bu)
= |Au||® + | Bu|* + (i[A, Blu, u) — ih®*(Bu, d,u)ym
= || Au|®* + || Bu|* + G[A, Blu, u) — 21> ((3,0¢)dptt, dyu)ap-
Define
h goz

Pe(x) =@+ T

Thus ¢, = ¢, + hk. Let
A=—h*A—|V@.)?, B=-2i(V@.,hV-)—ihAG,.
Since Agp, = A@, + hAk and Vo, = V@, + hVk, we have
A=A+A,, A,=—h*Vk|*>=2h(V@,, Vk),
B=B+B,, B,=-2ih(Vk,hV-)—ih*A«.
Consequently,
i[A, Bl=i[A, Bl +i[A, B,] +i[A., Bl +i[A., B.).

Recall from [Ferreira 2009a, p. 143] that

e ARE( R NP
i[A,B]=—(1+-¢| +hBBB+1’R,
& &
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where B = (h/e)(1+(h/e)@) "% and R is a first order semiclassical differential operator whose coefficients
are uniformly bounded with respect to 4 and ¢ if we assume that 4 /e < 1/2. Consider now

i[A, Bl =i[—h2A — |V, |2, —2ih(Vk, hV -) —ih*Ak].

It is clear that this equals #>Q, where Q is a second order semiclassical differential operator whose
coefficients are uniformly bounded in 4 and ¢. The terms i[A,, §] and i[A., B,] are better. We thus have

_ At h \T o~ o~
i[A, Bl=—(1+-¢) +hBBB+h’Q

for some Q as described above. It follows that

4h? ~ ~
G[A, Blu, u) = %H(l +he/e)ul® +h(BBBu, u) + h*(Qu, u).

We will choose hg so small that |hg/e| < 1/2 in M for h < hg. Since u|yp = 0O, integration by parts
gives
~ ~ hr o~
\h(BBBu, u)| < C,—||Bull*,
3
Similarly,

|2 (Qu, u)| < Coh*(||ull* + [|hVul?).

Putting this information together, we get
R h* = o 2 2 2
(i[A,B]u,u)Z?Ilull —C1?||Bu|| — Coh*([[ull” + 1A Vull®).

Next we revisit the term ||Au||%>. Let K be a positive constant whose value will be specified later. Since
ulspm = 0, integration by parts and Young’s inequality give that

R |hVull* = h*(=h*Au, u) = h*(Au, u) + h*(\V . [*u, u)

1 K h*
< ﬁuAuu% 7||u||2+cgh2||u||2,
or

|Aul|® > 2K h?||hVu|* — K*h*|u)|® — 2K C3h?*||ul|*.

Also recall that B — B = B, = —2ih(Vk, hV -) — ih® Ax. Thus,
I(B — B)u||> < Cah®(|lu]*> + ||hVu|?).
Hence
| Bull? < 2|| Bu|> + 2C4h> (|u]*> 4 1A Vu|?)

and
IBull> = LI Bull® — Cah®(ull® + |AVu|?).
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Putting our estimates together, we obtain
| Po.g,ull® = 2K h*|hVul|* — K*h*|lu|l* = 2K C3h?||ul® + L[| Bull* — Cah*(Jull* + AV u|?)
+ h;nun2 - Clh;nﬁunz — ol ([lull® + RV ull*) — 20> (3o e ) dyut, dyu)aps-
At this point, we choose /¢ so small that
Cihj/e < 1.
We also make the choice

K=—,
(02

where « is to be determined. Then, for & < hy,
h2
| Po.g,ull* > —<||u|| += ||hVu|| ) —(Ca+ C)R*(|ul* + A Vul*)
h22C;, ~
— ———lull* = —==ull* + § | Bull* = 2h*((@vpe) dyu, dtt)gp1-
& & E O
Choose first « = 4C3. It follows that

, _h? 2h? , h%(2 s a3
| Po,p, ull Zg 1—28(C2+C4)—% fluel| +? 5—8(C2+C4) 1hVull“—2h7((0y¢e)0vu, dyu)gm.

Next choose ¢ so that

1 1
& = min , .
{ 4(Cr+Cs) a(Cr+Cy) }

Finally, choose h¢ so it satisfies the restrictions made earlier, i.e., hg < =, hg max|<p| < , and h2 =1c.

2 C ’
and additionally
2h

2

‘om

™
e

=

]

With these choices, we have
W W 2 3
1 Po,g.ull” = o—llull” + —IAVull” — 21 (v dvut, duit) g
8¢ ae
Adding a potential gives
1Po.g,ull® < 201 (Pog, +h>qull® + 2k G 11 o (ap) 1.

Choosing an even smaller value of /o depending on ||g ||z~ ) if necessary, we obtain for 0 < & < h that

h2

|CPog. +P2q)ull® = = (lull® + 1 Vul®) = 257 (@vge)dutt, Bt)aus-
0
Finally, we replace u by ¢¥"/26%y, where u € C>(Q) and u|yq = 0, and use the fact that
1/C <e?’/?t <, |V(e? /%) < C on M.

The required estimate follows. U
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We now pass from ¢, to ¢ in the boundary terms of the previous result, making use of the special
properties of ¢, on d M. Note that the factor h* in the boundary term on {x € 0M : —§ < d,¢(x) < h/3}
below is weaker than the factor 4 in the other boundary terms. This follows from the fact that d,¢, =
ho,k = —h in the set where d,,¢ vanishes, so one only has the weak lower bound.

Proposition 4.2. Let (M, g) be as above, let g € L (M), and let ¢(x) = £x1. There exist constants
Co, hg > 0 such that, whenever 0 < h < hg and § > 0, one has

3 4 2
—[|3yul3, + h—uauunzz + h—(||u||2+ IR Vul®)
Co L2((op==3) ", L2(=s<dp<h/3) T

< le?’ " (=h*Ag +h2q) e MW + R 1872 o o3

for any u € C*®°(M) with u|zy = 0.

Proof. Note that

0y e = (1 + ]gq))auq) +hok = (1 + g<p) dvp — h.

We choose h( so small that whenever i < hg, one has, for x € M,
h
;200 <3
On the set where 0,¢(x) < —§, we have
[0ype| > 6/2.

If —6 < d,¢ < h/3, we use the estimate
|0vpel = h/2.

Moreover, |0,¢.| < Coon dM. Since {d,¢ < h/3} C {d,¢. <0} and {3, = 0} C {0, > h/3}, the result

follows from Proposition 4.1 after replacing Cy by some larger constant. (I

We can now obtain a solvability result from the previous Carleman estimate in a standard way by
duality; see [Bukhgeim and Uhlmann 2002; Kenig et al. 2007; Nachman and Street 2010]. There is a
slight technical complication, since the solution will be in L? but not in H'!. To remedy this, we will
work with the space

Ha, (M) ={u e L*(M): Agu € L*(M)}

with norm ||u|| g, = |lull 2 + | Aul|;2. As in [Bukhgeim and Uhlmann 2002], we see that Ha (M) is a
Hilbert space having C*°(M) as a dense subset, and there is a well defined bounded trace operator from
HA(M) to H™'/2(3M) and a normal derivative operator from Hx (M) to H732(dM). We also recall
that if u € Hxy(M) and u|yy € H>?(dM), then u € H*(M).

Proposition 4.3. Let (M, g) be as above, let g € L (M), and let ¢(x) = tx|. There exist constants
Co, o > 0 such that when © > 19 and 6 > 0, for any f € L*(M) and f- € L?(S_ U Sy) there exists
u € L>(M) satisfying e™u € Hp, (M) and ePulym € L?(dM) such that

e (= Ag+q)eu)y=finM, ePulsus,=e"[f-,
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and

lull 2y < Coe ™ I F 2y + GO 2 F-ls z2es) + 1= lsoll 22sy))-
Here S1 and Sy are the subsets of M defined by
S_={dp <8}, So={-8<de<1/G)}, Sp=1{dhe=>1/CG0)}

Proof. Write Lv =e™(—A,+q)(e”*%v) and T =1/ h, 79 = 1/ hog. We rewrite the Carleman estimate of
Proposition 4.2 as

G 210,025y + 180Vl L2¢sy) + TlVI A+ IVVI < Coll L] + Cot 21, 25, -

This is valid for any § > 0, provided that T > 19 and v € C*° (M) with v|yy = 0.
Consider the following subspace of L*(M) x LZ(S+):

X ={(Lv, dyvls,) :v € C(M), vlgm = 0}.

Any element of X is uniquely represented as (Lv, d,v|s, ), where v[3y = 0 by the Carleman estimate.
Define a linear functional [ : X — C by

I(Lv, dyvls,) = (v, 2oy — Ouv, f2)r2es_usy)-
By the Carleman estimate, we have

[L(Lv, dyvls )l < 0llILF I+ 10vvll 2es )l f= N z2es )y + 10vvllL2¢s0) | = 250
< Cot ' fI+ GO 2N follzzsy + = llzzsyy) x (Ll + T 218,12, )-

The Hahn-Banach theorem implies that / extends to a continuous linear functional

[:L*M) xt7'2L%(8,) > C
such that
171 < oz LA+ G2 Fllz2esy + 1= Nlz2gs)-

By the Riesz representation theorem, there exist functions u € L>(M) and u, € L*(S,) satisfying
Hw, wy) = (w, u) 2y + (W4, )25, ). Moreover,

el 2oy + 7Pl Nl 2gsy < Co@ LA+ GO 2l + 1= 2csy)-
If ve C®(M) and v|yy =0, we have
(Lv, u) 20y + (0uv, u) 125,y = (U, Frzany — Ouv, fo)r2(s_usy)-
Choosing v compactly supported in M™, it follows that L*u = f, or
e (A +q)efu)y=f inM.

Furthermore, e™?u € Hx(M).
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If w, v € C®°(M) with v|z3 = 0, an integration by parts gives
(Lv, w) =—(e""d,v, e"w) 1255 + (v, L*w).

Given our solution u, we choose u; € C*°(M) so that e*“u; — e*“u in Hx(M). Applying the above
formula with w = u; and taking the limit, we see that

(Lv, u) =—(e""d,v, e u) 2pm) + (v, L*u)
for v € C*°(M) with v|yy = 0. Combining this with (4-1), using that L*u = f gives

(8UU, f—)LZ(S_USO) + (8UU, M+)L2(S+) = (efwavv, ewu)Lz(aM).

Since 0, v can be chosen arbitrarily, it follows that e*?u|s_us, = e*? f— and e*?u|s, = e*“u,. We also
see that e*®u|yp € L>(0M). O

5. Reflection approach

In the previous section, we employed Carleman estimates and duality to obtain a solvability result
(Proposition 4.3) that will be used to produce correction terms in complex geometrical optics solutions
with prescribed behavior on parts of the boundary. In this section we give an alternative approach to the
construction of correction terms vanishing on parts of the boundary. The method is based on a reflection
argument. We extend the method of [Isakov 2007], which dealt with inaccessible parts that are part of a
hyperplane, to the case of inaccessible parts that are part of the graph of a function independent of one of
the variables. The results are less general than the ones in Section 4, and, for simplicity, will only be
stated for domains in R* with Euclidean metric, but on the other hand, the method is constructive and is
based on direct Fourier arguments in the spirit of [Kenig et al. 2011a; Kenig et al. 2011b].
Let  C R? be a bounded domain with smooth boundary, and assume that

Q CRx {(x2, x3) 1 x3 > n(x2)},
where 1 : R — R is a smooth function. Also assume that ['g is a closed subset of d<2 such that
o CR x {(x2, x3) 1 x3 = n(x2)}.

We will show that if one has access to suitable amplitudes of complex geometrical optics solutions that
vanish on I, it is possible to produce correction terms that also vanish on I'y.

Proposition 5.1. Let Q and [y be as above, and let g € L*°(R2). There are Cy, t9 > 0 such that, for any
T with |t| > 19 and for any m € H*(Q) with m|r, =0, the equation (—A 4+ q)u = 0in Q has a solution
u € H*(Q) of the form

u=e “'(m+r)

such that r|r, = 0 and
Co

Il 2@ < | e (=A+q)(e ™ m)| L2q)-

T|
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The proof involves a reflection argument that reduces the construction of the correction term to the
problem of solving a conjugated equation with anisotropic metric,

e (=Ag+ @™ = f inRx Qo

where ﬁo C R? is a bounded open set and g is a metric of the form

A / 1 0

g y) = (o 20(y") )
and where g is smooth for y3 # 0 but only Lipschitz continuous across {y; = 0}. In three and higher
dimensions, it is not known how to handle equations of this type with general Lipschitz coefficients in the
second order part (the case of C! coefficients, and also Lipschitz coefficients with a smallness condition,
is considered in [Haberman and Tataru 2013]). However, in our case, the singularity of ¢ only appears in
the lower right block g¢, and this turns out not to be a problem.

The following is an analogue of [Kenig et al. 2011a, Proposition 4.1], the main difference being that the
transversal metric is only Lipschitz. (With correct definitions, one could easily deal with L* transversal
metrics as well, but then the solution would only be in H 1 s(T).) Here we write (x1, x) for coordinates
in T =R x My, and for § € R we consider the spaces

||f||L§(T) = ||<x1>6f||L2(T)’ ||f||H51(T) = ||f||L§(T) + ||df||L§(T)

with (t) = (1 +t*'/2, and similarly for HZ(T). We also write Spec(—A,,) for the set of Dirichlet
eigenvalues of the Laplace—Beltrami operator —A,, in (Mo, go).

Proposition 5.2. Let T = R x My with metric g = e ® go, where (My, go) is a compact oriented manifold

with smooth boundary and g is a Lipschitz continuous Riemannian metric on M. Givenany q € L7, .(T)

and any § > 1/2, there are constants Cy, 19 > 0 such that whenever

|t| > 19 and 72 ¢ Spec(—Ay),
the equation
e (=Ag+q)e ™ r)=f inT
has a unique solution r € Hia(T) withr|agr =0 for any f € L%(T). Moreover, r € HEB(T), and one has
the bounds
0
”r”L{S(T) =< m”f”Lg(T)’ ”r”Hl,;(T) =< CO”f”Lg(T)-

Proof. The proof is almost exactly the same as the proof of [Kenig et al. 2011a, Proposition 4.1], and we
only give the main idea. Since Ay = 8)%1 + Ag,, the equation that we need to solve is

(=92 +2t8,, —Agy— T2 +q)r=f inT.

It is enough to consider g = 0. The standard argument based on weak solutions shows that even when go
has very little regularity, there is an orthonormal basis of L?(M,) consisting of Dirichlet eigenfunctions
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of —Ag,,

—~Agor = Mgy in Mo, ¢ € Hy (My),

where 0 < A1 <Ay < A3 <---— oo are the Dirichlet eigenvalues of —Ag in M.
Considering the partial Fourier expansions

o0

@, x) =) F, Do), o, x) =) fa, Den(x),

=1 =1
it is enough to solve

(—8?1 + 270y, +a—1)F(-, )= f(-,) inRforalll.

The condition 72 ¢ Spec(—A ) allows us to solve these ordinary differential equations by the Fourier
transform as in [Kenig et al. 2011a, Section 4], and the estimates given there imply that one obtains a
unique solution r € H! s(T) with |37 = 0 satisfying the required bounds. Elliptic H 2 regularity also
works with Lipschitz go, and the argument in [Kenig et al. 2011a, Section 4] gives that r € H? s(T). O

Proof of Proposition 5.1. We begin by flattening 'y via the map
DR > R, (x1, 20, x03) > (31, X2, X3 — n(x2)).
Let Q = ®(2), write y for coordinates in SNZ, and let R be the reflection

R(y1, y2, y3) = (y1, y2, —y3)-

Note that  C {y3 > 0}. Consider the reflected domain Q* = R(ﬁ), s0 Q* C {y3 < 0}, and let U the
double domain QU & ()it U &*.

Let W =& ! et g = W*e be the metric in Q that is the pullback of the Euclidean metric in €2, let
q = V*q, and let m = W*m. In the double domain U, we use even reflection to define the quantities

. (& ifys=0. . [§ ifys>0,
S R s ifys<0,  TT\RYG ify <o,

and odd reflection to define the amplitude

na={_

Since the flattening map @ leaves x| intact, we have

.. (1 0
g()’l»)’)—<0 go(y/))’

where gg is a Lipschitz continuous metric only depending on y, and y3. (In fact, g and g, are well defined

m if y3 >0,
R*'m if y3 <O.

ST ST

in {y3 > 0} by the flattening map ® and the Euclidean metric in {x3 > n(x2)}.) Also, g € L*°(U), and
i € H*(U) by the boundary condition m|r, = 0 and by the properties of odd reflection.
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We wish to find 7 € H'(U) satisfying
e (=D + e = £
where f = —e™1(=Ag +§) (e~ ™). Now
1 2wy = 1 f 2@ + 17 2@

=™ (A +g) e m) ) + IRTWH (™ (A +g) (e m)l 2
=Clle™(=A+g)(e ™' m)l2g).

Choose a bounded open set Qo C R? such that
U € R x Q,

and let gy be the metric in ﬁo that is the even extension of gy from {y3 > 0} to ﬁo. Then g is smooth for
y3 # 0 and Llpschltz continuous across {y3 = 0}. Extending g to R x §0 using the block structure and
extending ¢ and f by zero to R x Qo, it is enough to find a solution 7 € H (R x Qo) of the equation

N (—=Ag+G) e ™) =f inRx Q. (5-1)

Such a solution may be found by Proposition 5.2, and denoting by 7 its restriction to U, we have

||f||L 2(U)-

171l 2wy < B
Now define

=e M(m+r) inU

<

and
=u—R*u in Q.

<t

Then (=A; + @)t =0in U, and (—A; + g)it =0 in Q by the definition of ¢ and ¢ and using that
i e H*(U). We also have

i=e ™(@h— R +7—R%) in Q.

But here m — R*1i|g = m by the definition of 1. Consequently, if we define u = ®*#, then (—A+¢q)u=0
in © and
u=e "™(m+r) in,

where r = ®*(F — R*r) satisfies

=T |||f”L ) = ﬁ”em( A+q)(e ™ m) | 2@ U

Note how the odd reflection of the amplitude m in the proof ensured that the solution obtained by

Irll 2 < ClIFll L2y <

reflection is not the zero solution. We also remark that under certain conditions, the arguments in Sections 6
and 7 allow to construct amplitudes m vanishing on a part Iy as above.
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6. Local uniqueness on simple manifolds

In this section we prove Theorems 2.1-2.3. In these results the transversal manifold is assumed to be
simple and we only use nonreflected geodesics. This case already illustrates the main features of the
approach, and we can use a quasimode construction that is much easier than the Gaussian beam one used
for nonsimple transversal manifolds and reflected geodesics.

The first observation is the usual integral identity.

Proposition 6.1. IfT'p, 'y C dM are open and ifC;Z;FN = C;Z;FN, then

f (g1 — q)u1udVy =0

M

forany uj € Ha,(M) satisfying (—Ag+qj)u; =0in M and
supp(uilopm) C I'p,  supp(uzlam) C y.

Proof. Let u; be as stated. Since C;Z;FN = C;Z;FN, there is a function iy € Ha (M) with (—A+¢g)ur =0
in M, supp(ii2]sm) C I'p, and

(ilry, dutlry) = (U2lry, dvit2|ry).

Using that u1, u;, and i, are solutions, we have
/ (g1 —quiur dV = / [(Aur)uz —ui(Auz)]dV
M M
= / [((A(uy — u2))uz — (uy — it2)(Auz)]dVv.
M

Now uj —uz|an =0, soin fact uy — it € H*(M) by the properties of the space Ha (M). Recall also that
C>®(M) is dense in Hx(M) and that us |y € H~Y?(dM) and 8,u2|5p € H3/>(M). These facts make
it possible to integrate by parts, and we obtain that

f (g1 — q)uur dV = / [0y (u1 — t2))us — (uy —it2)(dyu2)]1dS
M oM

in the weak sense. The last expression vanishes since 9, (#1 — it2)|r, = 0 and supp(uz|yn) C I'y. O

The next result will be used to pass from the metric g = c(e @ go) to the slightly simpler metric
§=ed go.

Lemma 6.2. Let ¢ be a smooth positive function in M. Then u € Hx, (M) satisfies (—Ag +q)u =0 in
M if and only if i € Ha;(M) satisfies (—Az +q)iu =0 in M, where

g=clg. a=c"Pu G=cg- "N I,
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Proof. This follows from the identity for v € C*°(M),
A+ @) ("I = (= Aig +o(q — TN (T ),

upon approximating u or # by smooth functions. ([

Proof of Theorem 2.1. Let g =e® go and g; = c(q; — c(”_z)/“Ag(c_(”_z)/“)). Let X be a fixed real
number, and consider the complex frequency

S =TH+IA,
where T > 0 will be large. We look for solutions
i =e " (v (x') + 1),
ity = "™ (v5(x") +12)

of the equations (—Az + g =0, (—=Az + c_]z)ﬂz =0 in M. Here vy will be a quasimode for the
Laplacian in (M, go) that concentrates near the given geodesic y. Next we will construct a suitable
solution #, and the case of i1, will be analogous.

Since Az = 37 + Ay,, the function i is a solution if and only if

e (—Ag+GD (e ) = —(—Agy +G1 —sHu(x))  in M. (6-1)
We want to choose v, € C*° (M) to satisfy

sl 20ty = OD), I1(=Agy = D)5l 2 a10) = O (1) (6-2)
as T — oo. Looking for vy in the form
v, =e"Va,
where ¥, a € C*°(My), a direct computation shows that
(—Ag — vy ="V (s’[|dV |5, — Na —is[2(d Y. d - gy + Mg ¥rla — Aga).

Since (Mo, go) is simple, it is easy to find ¥ and a so that the expressions in brackets will vanish and
that the resulting quasimode v, will concentrate near the geodesic y. To do this, let (ﬂo, go) be a simple
manifold that is slightly larger than (My, go), extend y as a geodesic in My, and choose & > 0 such that
V| (=26,00U(L, L+2¢) Stays in 1\//}0 \ My (this is possible since y is nontangential). Let w = y(—¢) € Mo \ My,
and let (r, 8) be polar normal coordinates in (Mp, go) with center w. Then y corresponds to the curve
r — (r, 0y) for some fixed 6y € $"~2. We will choose

Y, 0)=r,
a(r, 0) = go(r, 0)|~*b(0),

where |go| is the determinant of go, and b is a fixed function in C°(S$"~?) that is supported so close to 6y
such that vg[ym,\ £ = 0. With these choices, we have, as in [Ferreira 2009a],

(—Agy — 5D, = —e"V Aga.
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Thus vy satisfies the estimates (6-2), and also the estimate

Vsl Loe(mg) = O(1).
We now go back to (6-1) and look for a solution in the form r; = et r{ where ri satisfies

eN(=Ag+qe ™) =f inM (6-3)
with

f==eT MU= Ay + 1 = sHus ().
We also want to arrange that supp(i1|yp) C I'p, where I'p D dM_ UT,. For this purpose, let § > 0
be a small number to be fixed later, let S5 and Sy be the sets in Proposition 4.3 with Carleman weight

¢(x) = —xy, define
V3 ={xeS_USy:distyp(x, ;) <8 orxedMy},

TG =(5-US0)\ Vs,
and impose the boundary condition
e rils.us, =™ f-, (6-4)

where _
f= —e My (x') on V9,
T 0 on I,

Note that d M U 0 M, (these sets refer to the weight x1) is in the interior of S_ U Sp in 0 M.
We have seen that || f[| .2y = O(1) as T — co. We also have

f-loma =0,

since f-|rsngu,, = 0 by definition and f_|jum,,nv; = 0 for sufficiently small § > 0 by the construction of
v and using that I'; C R x (dMo \ E). Since || f_||zos_usy) S 1, we have

I f-llr2s ) S o({dvx1 = 8})
and

If=Nlz2s) S 0({=1/(B7) < dvxy < 0}U{0 < dyxy <8},

where o is the surface measure on dM. It follows from Proposition 4.3 that (6-3) has a solution r[
satisfying the boundary condition (6-4), and having the estimate

Il 2o ST+ 60 2o (x> 8 +0({—1/31) < duxy <0}) +0({0 < dyx1 < 8}).

The implied constants in the previous inequality are independent of 7 and §. By the basic properties of
measures, for some constant Cy > 0, we have

1711 2oy < Colt ™ + (8T) ™2 + 002 00(1) + 0550 (D]
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Given ¢ > 0, we first choose § so that Cpos—.0(1) < /2. After this, we choose t > 0 so large that
Co(t™ '+ (87) "2 + 0., 5o(1)) < &/2. This shows that

lim |7 (-5 Ol 200y = 0.
T—>00

Choosing r as described above and choosing r; = et 'r}, we have produced a solution it € Ha,(M)
of the equation (—=Aj; +g1)u; =0 in M, having the form

iy =e (v (x") +r1)

and satisfying
supp(uilym) C I'p

and ||r1|lz2(ar) = o(1) as T — o0o. Repeating this construction for the Carleman weight ¢(x) = x;, we
obtain a solution 1, € H, A (M) of the equation (—Ajz + gz)ﬁz =0 1in M, having the form

ity = €™ (vs(x") +12)

and satisfying
supp(u2lym) C 'y

and ||r2[z2¢pr) = o(1) as T — oo.
Writing u; = ¢~"~?/4ji;, Lemma 6.2 shows that u; € Hx,(M) are solutions of (—Ag +g1)u; =0
and (—Ag +¢g2)ur =0 in M. Then Proposition 6.1 implies that

/ (g1 —q2)urur dVy =0.
M

We extend g; — g» by zero to R x My. Inserting the expressions for u;, and using that dV, =
¢"/? dxy dVy,(x"), we obtain

o0
/ f (g1 — q2)ce M1 (Jug (x> 4 vy72 + Vgry 4 1172) dxy dVgy (x)) = 0.
My J —oo
Since |71l z2(ar) = 0(1) as T — oo and since dVy, = |go|'/? dr d6 in the (r, §) coordinates, it follows that
o0
/ / (g — q2))" 20 . )b dr df = .
sn=2.Jo
Varying b in C*(S"~2) so that the support of b is very close to 6, this implies that

o0
/ e (c(q1 — q2))" A, 1, 6p) dr = 0.
0

Since y was the curve r — (7, 8), this shows the result. [l
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Proof of Theorem 2.2. Suppose that the local ray transform is injective on O and O NdM C E. By
Theorem 2.1, we know that

L
f e M (clg1 — q2))" 2x, y (1)) dt =0 (6-5)
0

for any nontangential geodesic y in O. Setting A = 0 and using local injectivity of the ray transform, we
obtain that

(c(qg1 —¢2))(0,-)=0 in O.

Going back to (6-5) and differentiating this identity with respect to A, and then setting A = 0 and using
the vanishing of (c(g; —¢2))"(0, -) on O, it follows that

L
0 .
/ 87[(0(6]1 —g2) 10, y (1)) dt =0in O
0

for any nontangential geodesic in O. Local uniqueness for the ray transform again implies that

a N
77 1elq1 = 42) 10,-) =0 in O.

Iterating this argument by taking higher order derivatives of (6-5) shows that

3\ R .
-7 ) [c(@1—¢2)) 1(0,-)=0 in O
oA
for any k. Since c(g1 — q2) is compactly supported in xy, its Fourier transform is analytic and we have
(c(q1—¢2))"(A,-)=0 1in O forall A € R.

Inverting the Fourier transform and using that c is positive, we obtain that gy =g in M N (R x 0). U

Proof of Theorem 2.3. Since (M, g) is admissible, we may assume that

M, g) C(Rx My, g), g=cle®go),

where (M, go) is simple. The argument is very similar to the proof of Theorem 2.1, and we only
indicate the required changes. Up to the formula (6-3), the only change is that there is no restriction on
b € C*®(8"2) (we do not require vy to vanish on any part of the boundary). The function r| is obtained
as a solution of (6-3), but this time we want supp(it1|3a) C dM_. Fix § > 0. The boundary condition for
uy is (6-4), where f_ is chosen to be

fo=—e "™y, (x’) onS_US.
We use Proposition 4.3 to solve for r;. We have || fl;2(s) = O(1), and the bound || f_ ||z~ < 1 implies

I f-llr2s )y S o ({dvx1 > 6})
and

I f=N2(s) S o({=1/(B7) < dyx1 < 0}) 4+ 0 (0Mian) + 0 ({0 < dpxy < 8}).
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Now we use that
0 (0M¢n) = 0.

This shows that we obtain the same estimate for | as before:
Iz < Colz™" + (B7) ™% 40100 (1) +050(1D)].

We can now continue as in the proof of Theorem 2.1 to conclude that

L
/ e M (clg1 —q2))" @x, y (1)) dt =0
0

for any A € R and for any nontangential geodesic in (Mo, go). The geodesic ray transform (with zero
attenuation) is injective in (Mo, go) [Sharafutdinov 1994]. Following the proof of Theorem 2.2, but now
using all the nontangential geodesics in (M, go), shows that g; = ¢, in M. (I

7. Quasimodes concentrating near broken rays

In this section, to simplify notation, we write (M, g) instead of (M, go) and we assume that (M, g) is a
compact oriented Riemannian manifold having smooth boundary and dim(M) = m > 2. Suppose that
E is a nonempty open subset of dM, and let R = 0M \ E. We think of E as the observation set where
geodesics can enter and exit, and R is the reflecting set. In the Calderén problem with partial data, we
are led to consider attenuated broken ray transforms, where one integrates a function on M over broken
geodesic rays that enter M at some point of E, reflect nontangentially at points of R, and then exit M at
some point of E. The reflections will obey the law of geometric optics, so that a geodesic hitting the
boundary in direction v will be continued by the geodesic in the reflected direction 0 = v — 2{v, v)v.

Given a slightly complex frequency s = 7 4 iA, we will construct corresponding quasimodes, or
approximate eigenfunctions, that concentrate near a fixed nontangential broken ray.

Proposition 7.1. Let y : [0, L] = M be a nontangential broken ray with endpoints on E, and let A be
a fixed real number. For any K > 0, there is a family {vy : s = T +iA, T > 1} in C®°(M) such that, as
T — 00,

I(=Ag = D5l 2an = O 5), sl = O(D),
the boundary values of vs satisfy
sl 2y = O (XY, lvsll2m = O(1),

and, for any ¥ € C(M),

L
/‘|v,+,~k|21/fdvg—>/ e My (y () dt ast — oo.
M 0

Let us begin by proving this result in the special case £ = d M, so that R = & and one does not need
to worry about reflected rays. The next three preparatory lemmas describe a modified Fermi coordinate
system that is very useful in this construction.
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Lemma 7.2. Let (]\//? , 8) be a compact manifold without boundary, and let y : (a, b) — M be a unit speed
geodesic segment that has no loops. There are only finitely many times t € (a, b) such that y intersects
itself at y ().

Proof. Since y has no loops, (v (¢), y(¢)) = (y(¢), y(¢')) implies ¢t = ¢’. The first observation is that
y can only self-intersect transversally, since (y(¢), y (¢)) = (y(¢'), —y (")) also implies t = ¢’ (if this
would happen for ¢ < ¢/, then, by uniqueness of geodesics, y ((t +t')/2) = —y((t +t')/2), which is
impossible). Next note that if r is smaller than the injectivity radius of (1\//] , &), any two geodesic segments
of length < r can intersect transversally in at most one point (locally geodesics are close to straight lines).
Partitioning (a, b) in disjoint intervals {Jk},f:1 of length < r, we have an injective map

{t,t) e (a,b)’Lt <t and y(t) =y ()}~ {(k,]) €{1,...,K}*:t € Jp, ' € J}}.
Consequently, y can only self-intersect finitely many times. U

Lemma 7.3. Let F be a C' map from a neighborhood of (a, b) x {0} in R" into a smooth manifold such
that F|a,b)x{o} is injective and DF (t, 0) is invertible for t € (a, b). If [ao, bo] is a closed subinterval of
(a,b), then F isa C! diffeomorphism in some neighborhood of [ag, bg] x {0} in R".

Proof. For any t € [ag, bo], the inverse function theorem implies that there is ¢; > 0 such that
Fl(=36,,143¢,) x Bs., (0) isaC! diffeomorphism. Since [ag, bg] is covered by the intervals (t — &, t + &),
by compactness we have [ag, bg] C U?’:] (tj —¢j,tj +¢€;), where F|(t_/_3€_/.,tj+3g_i)xg3gj ) 1s bijective.
We can further assume (upon throwing away or shrinking some intervals if necessary) that the intervals
I = (1 —&j tj :i—ej) satisfy I_j N Iy = @ unless |j — k| < 1. Since y(¢t) = F (¢, 0) is injective, we also
have y (I;) Ny (Ix) = & unless |j — k| < 1.

Fix a Riemannian metric in the target manifold, and define

8 =inf {dist(y (I;), y(Ix)) : |j —k| > 2} > 0.

Let Uj =1; x B(0), where ¢ <min{ey, ..., ey} is chosen so small that F'(U;) C {g : dist(q, y(I_j)) <8/2}.
Then F(U;) N F(Uy) = @ unless |j — k| < 1. Define

N
U= U U;.
j=1

To show that F|y is a C! diffeomorphism, it is enough to check injectivity. If F (¢, y) = F(t', y’) for
(t,¥), (t',y") € U, then, necessarily, (¢, y) € Uj, (t', y') € U, where |j — k| < 1. We may assume that
gj > &. Since Fl(,j_ggj,tj%ej)xgkj () is bijective, we obtain (¢, y) = (¢, y'). O

Lemma 7.4. Let (1\//? , 8) be a compact manifold without boundary, and assume that y : (a, b) — M
is a unit speed geodesic segment with no loops. Given a closed subinterval [ay, bg] of (a, b) such that
¥ llag,bo) Self-intersects only at times t; withag < t; < --- <ty < bg (set to = ag and ty41 = by), there is
an open cover {(U;, ¢ j)}?:%] of v (lao, bol) consisting of coordinate neighborhoods having the following

properties.
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(1) ¢;j(Uj) =1; x B, where I are open intervals and B = B(0, §) is an open ball in R"~! where § can
be taken arbitrarily small.

(2) @j(y(t)) =(t,0) fort €.
(3) tj only belongs to I; and I_j NIy =D unless | j —k| < 1.
@) ¢j =gcong; (1N 1) x B).

Further, if S is a hypersurface through y (ap) that is transversal to y (ap), one can arrange for the map
V> goo_l(ao, y) to parametrize S near y (agp).

Proof. We will use modified Fermi coordinates, constructed as follows. Let {vy,...,v,—1} be an
orthonormal set of vectors in Ty(ao)]\? such that {y(ag), vy, ..., v,—1} is a basis. (The case where
{y(ap), v1, ..., v,—1} is an orthonormal basis corresponds to the usual Fermi coordinates.) Let E, ()
be the parallel transport of v, along the geodesic y. Since y(¢) is also parallel along y, the set
{y@), E1(t), ..., E,—_1(¢)} is a basis of Ty(,)l\? for t € (a, b).

Define the function

F:(a,b)xR"™" > M, F(t,y) =exp,,(*Ea()).

Here exp is the exponential map in (ﬂ ,g) and «, B run from 1 to n — 1. Then F(z, 0) = y (¢) and (with
eq the a-th coordinate vector)

0 0
—F(,sey)| =E, @), —F(@,0=vy(@).
Pt se)| g =Ea(D), - F(,0)=7()

Thus F is a C* map near (a, b) x {0} such that DF (¢, 0) is invertible for ¢ € (a, b).

In the case where y does not self-intersect, F |, p)x {0} 18 injective and Lemma 7.3 implies the existence
of a single coordinate neighborhood of y ([ag, bp]) so that (1) and (2) are satisfied (then (3) and (4) are
void). In the general case, by Lemma 7.2 the geodesic segment ¥ |[4,.5,] Only self-intersects at finitely
many times ¢; with ap < t; < --- <ty < bg. For some sufficiently small §, y is injective on the intervals
(a,t; —96), (t) —28,to — 8), ..., (ty — 28, b) and each interval intersects at most two of the others.
Restricting the map F above to suitable neighborhoods corresponding to these intervals (or slightly
smaller ones) and using Lemma 7.3, we obtain the required coordinate charts with ¢; = F -1 lu;-

Let S be a hypersurface transversal to y (ag), and choose some parametrization y — g(y) of S near
y (ap) satisfying (0/9s)q(sey) = vy. We will form a new chart (Ug, ¢@o) by moditying (Uy, ¢p) so that
Yy @y Yao, y) parametrizes S near y (agp).

We may assume that ag = 0, and write Fy = <pal, ﬁo = gZ(;l. It is enough to choose ﬁo = Fyo ®, where
® is a diffeomorphism near Iy x B such that

O(t,0) = (2, 0),

@0, y) = Fy (),
®(t,y) =(t,y) fort > c with suitable ¢ > 0.
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Write the components of g = F;~ Y5 ¢ as Taylor series
i’ () =4O +Vq' ) -y+H )y,

where H/ are smooth matrices, and j =0, ..., n — 1 (¢ is the O-th variable). The properties of g imply
that

G’ (0)=0, 33G°0)=0, 035G (0)=8}.
We look for @ in the form
O/ (1, )= fI D) +al () y+ R/, )y -y
for some smooth functions f/, vectors a/, and matrices R/. The conditions for ® motivate the choices
o=t fY0=0 agt)=0, af() =25

We choose R/(t, y) to be a smooth matrix with R/(0, y) = H/(y) and R/(¢, y) =0 for t > c. Then
D®(z,0)=1Id, and Lemma 7.3 ensures that ® is a diffeomorphism near Iy x B, possibly after decreasing B.
O

The next result gives the construction of (nonreflected) Gaussian beam quasimodes associated with
a finite length geodesic segment that enters and exits the domain nontangentially. To prepare for the
reflected case, we also consider the possibility of prescribing the boundary values of the quasimode at
least up to high order at a point. Recall that if f is a smooth function having a critical point at p, the
Hessian of f at p is the quadratic form

Hess, (f)(17(0), 71(0)) = (f o )" (0),
where 7 is any smooth curve with 1(0) = p.

Proposition 7.5. Let y : [0, L] — M be any unit speed geodesic in (M, g) such that y(0), y(L) € 0M,
v(0) and y (L) are nontangential, and y (t) € M™ for 0 < t < L. Also let A be a fixed real number. For
any K > 0 there is a family {vs : s =t + i)\, T > 1} in C®°(M) such that, as T — 00,

I(=Ag = sH sl 2 = O 5), vsllizan = O, vsllz2m = O(1),

and, for any ¥ € C(M),

L
f|vr+,~k|21/fdvg—>/ e My (y () dt ast — oo. (7-1)
M 0

Given any neighborhood of v ([0, L)), one can arrange for each vy to be supported in this neighborhood,

and away from the points where y self-intersects one has vy = ¢'*®a where ® and a are smooth complex

Sfunctions with
dO(y() =y )", aly@®) #0 fort large.
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If y does not self-intersect at y (0), the K -th order jets of ©|yp and alypy can be prescribed freely at y (0)
except for the following restrictions: d®(y(0)) = y(0)°, the Hessian of Im(®|3y) at y (0) is positive
definite, and a(y (0)) # 0.

Proof. We embed (M, g) in a compact manifold (1\7 , &) without boundary and extend y as a unit
speed geodesic in M. Choose & > 0 so that y(¢) lies in M ~. M and has no self-intersections in the
interval ¢t € [—2¢,0) U (L, L +2¢]. We will construct a Gaussian beam quasimode in a neighborhood of
y([—e, L +e)).

Fix a point pg = v (#p) on y([—e, L + €]) and let (¢, y) be any local coordinates near py, defined in
U={(t,y):tel,|y| <8} for some open interval / containing g, such that py corresponds to (g, 0) and
the geodesic near pg is given by I' = {(¢, 0) : r € ['}. Write x = (¢, y), where x; = and (x2, ..., x) = .
We seek to find a quasimode v concentrated near I', having the form

vy = 6”661,

where s =t 4+ iA, and ® and a are smooth complex functions near I" with a supported in {|y| < §/2}.
We compute

(—A—sPv = f,
where
f=e"9(s*[({d®, d®) — )a] —is[2(d®, da) + (A®)a] — Aa).

We first choose ® so that
(d®,dO®)=1 to N-thorderonI. (7-2)

In fact, we look for ® of the form ® = Z?’:O ©; where
O, (t
O, y)= ) %()yy-
wi=i ¥

We also write g/* = vaz() gljk + gjj\',kH, where

ik 81.5(1) ik
gty =3 Ly gl = 0ayY .
=

Set g/ =0 forl> N +2.
With the understanding that j, k run from 1 to m and «, 8 run from 2 to m, the main part of the
argument will consist of finding suitable ®¢, ®1, and ®; in the following form:

Q(t) real-valued, ©O;(r) = &,(¢)y® with &,(t) real-valued, ©,(t) = %Haﬂ (1) y*yP,

where H (1) = (Hyp(1)) is a complex symmetric matrix, Hyg = Hpgg, such that Im(H (¢)) is positive
definite for all . We also write

§1(2) = 0,00(2).
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Since 9;0¢ = &, and 0,0 = §,, we compute
g7%9;08,0 — 1
=g 3,00+ 8,0, +-- )30 +8,0;+---)+28'(3,00 +8,0; +-- ) (3,0 + 3,0, 4--+)
+ 8 (8,01 + 3,02 + - ) (3O + 85Oy +---) — 1
= g% 8 + 28" E1(3,01 + ) +28"E1 (3,02 + -+ -)
+28"6,(3,01 + ) +28"P £, (3502 + ) + 8" (3,01 + ) (3,01 4+ +)
+28" 001+ )(0O2+ )+ 8% (0.O2+- - ) (0O +--+) — 1
= g/5 + 26" 5301+ ) + 28" 5 (002 - ) + ¢ @O+ ) (@01 + )
+28" (3,01 + - )(O2+ )+ g (3,02 + - )(pO2+---) — L.
Writing g/* = gék + g{ “4+... and grouping like powers of y, we obtain
g7%9;08,0 — 1
= [0 66— 11+ 18] 68 +280 Exépy® +285 6k HupyP 1+ (83 ++ - & 1+ 280 60(8, 02+ - )
+2(81° + - E@OI + ) + 288 6 (0 O3 + ) +2(87* + - )E(3O2+ )
+8"M @01+ @01+ ) +28" @01+ )(0O2+--+)
+ 8P (0,024 )(@pO2+--+). (7-3)

We can make the two expressions in brackets vanish by choosing £(¢) to be part of the solution
(x(2), &(¢)) of the cogeodesic flow with Hamiltonian 4 (x, §) = %gjk ()& ¢k,

X (1) = g, h (x (), £(1)),
Ej(1) = —0y,h(x(1), E(1)).

There is a unique solution with x (o) = po and £(#9) = y (f9)” (here we raise and lower indices with
respect to the metric g). It follows that x(¢) is the unit speed geodesic > (¢, 0), and &/ (t) = %/ (¢). Then
g{)k’g‘ ;& =1, and with our choice of coordinates & I'=1 and £% = 0 so that also

gle=1, gf&a=0.
We further have
£y = —30,,87 (1, 008,80 = —Jal"E 8.
Noting that d; has unit length, we have

£ =gu(t, 06" =1.
Since &, = gak (t, 0)EF = g41 (¢, 0), we can therefore choose

Oo(1) =t,

©1(t) = ga1(2, 0)y*.
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Using these choices and the facts above, in (7-3), the expressions in brackets will indeed vanish, and one
obtains

g7%9;08,0 — 1
= (83" +++ EE + 2302+ ) +2(g K+ BB O + ) +2(g8 4+ E (@2 + )
+8"1 001+ ) 301 +--) +28' 0,01+ )BOr+-- ) + g7 (0.0 +-- )9O + - )
= (20°€;5 + 28,02 + 28 6.0, 02 + 280,010, 02 + 837 0,02050 + 2 1% 68,01 + g4 (3,01)?)

N
+)° (g;;kg 16 +20,0, + 2875 60,0, +2809,0,0,0, + 2427 3,0,940,,
p=3

p—1 p—1 p—2

+23 g g00+2 ) g% aao+ Y gt Y 96,90,
=1 =2 =0 rts=p—I

o b2 1<r,s<p
+3 5 > 80,8.0,+) gf Y aa®raﬁ®s)+0<|y|N+‘>.
1=0 rs=p—Ii+1 1=0 rts=p—i+2
I<r<p 2<r,s<p

2<s<p

We want to choose ®, so that the first term in brackets vanishes. Recalling that we are looking for ®;
in the form ©,(¢, y) = % wp ()Y yﬁ , where H (¢) is a smooth complex symmetric matrix; it follows that
H should satisfy the matrix equation

. k 1 b
Hopy*y? +2¢0 & HypyP + 28, 9,01 Hypy? + g8 Hyo Hspy® yP = Fupy®yP,

where F'(¢) is a real-valued smooth symmetric matrix. This can be further written as the matrix Riccati
equation
H+BH+HB' +HCH=F,

where B(¢) and C(¢) are real smooth matrices and C is symmetric. More precisely, since g{ -
3.87% (¢, 0)y*, we have

BY = 8" (1. 0)& + 8y bur  C0 =g, (7-4)
Choosing H (ty) = Hop, where Hy is a complex symmetric matrix with Im(Hp) positive definite, it follows
that the Riccati equation has a unique smooth complex symmetric solution H (¢) with Im(H (¢)) positive
definite; see [Katchalov et al. 2001]. This completes the construction of ®,. From the lower order terms
we can find ®3, ..., Oy successively by solving linear first order ODEs on I' with prescribed initial
conditions at #y. In this way, we obtain a smooth ® satisfying (7-2).

The next step is to find a such that

s[2(d®, da) 4+ (A®)al]—iAa =0 to N-thorderonI.
We look for a in the form

a=t""Y%ag+sa_i+ - +sNa_y)x(y/8),
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where x is a smooth function with x =1 for |y| < 1/4 and x =0 for |y| > 1/2. Writing n = A®, it is
sufficient to determine a; so that

2(d®, dag) +nap =0 to N-th order on I',
2{(d®,da_1)+na_1 —iAay=0 to N-thorderon I,

2(dO,da_n)+na_y —iAa_n—1)=0 to N-thorderonT.

Consider ap = agp + -+ - + aon, where ag;(z, y) is a polynomial of order j in y, and similarly let
n=no+---+ny. We compute
2(d®, dag) + nag
=2(gy' +-- )30+ ) Braog +- ) +2(g" ++ - )(3Op+-- ) (dattor +---)
+2(g0" + ) BaO1 ) Brao++ ) 208+ ) (001 + ) (Butor ++ )
+ (mo+n1+---)(ao +ao +- ).

Recalling that 9,09 =&, =1 and 0,0, = &,, where g(l)jéj =1 and ggJSj =0, we obtain

2(d®,dag) + nag
=2[gs'61+80' @ O1+)+ (81" ++ ) @O0+ )+ 80 Ea+ 80" 0Oz + ) +(g{*+++) (0 O1 ++--)]
X (3;app + --+)
+2[g0% (@01 + ) + (g1 + )3, B0 + ) + 857 (9pO2 + ) + (& + ) (@501 + )]
X (0gao1 + -++) + (mo +n1 +---)(apo +aor +--+)

N
= [20:a00 + Moacol + Y _[20:a0p + 45 y* duatop + moao, + Fp1+ O(Iy N,
p=1

where qgﬂ (¢) are smooth functions only depending on g and ©, and F, (¢, y) is a polynomial of degree p
in y that only depends on g, ®, n, and aqo, ..., ap,p—1.
We want to choose agg so that the first term in brackets vanishes, that is,

drapo + l%noaoo =0.

This has the solution
=(1/2) [ no(s) ds

apo(r) = coe . aoo(to) = co.
We obtain agy, . . ., agy successively by solving linear first order ODEs with prescribed initial conditions
at tp. The functions ay, ..., ay may be determined in a similar way so that the required equations are

satisfied to N-th order on I'. This completes the construction of a.
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®

To review what has been achieved so far, we have constructed a function vy = ¢'*“a in U, where

O, y) =1 +E (1)Y* + L Hyg (1) y*yP + O,

at,y)=t" V%ag+sa +--+sNa_mx /8,

1
ap(t,0) = Coei(l/z) f’o UO(S)ds‘

Here © = O(|y|3) and © and each a; are independent of 7. Also, f = (—A — s2)v, has the form
f=e"0Tm (gt shy+ - 45~V Vv —s TV Aa_w) x (3/8) + €OV b (v/8),

where, for each j, one has h; = 0 to N-th order on I', b vanishes near I", and X is a smooth function
with ¥ = 0 for |y| > 1/2. We also note that d®(y (1)) = y(t)° and Hess,, 1) (Im(O|(;=4,))) = Im(H (79)).

To prove the norm estimates for v in U, note that
|eis(~)| e ReO,—TIm O _ =1 ,—(1/DTIm(H(1)y-y ,~20(y]) ,~TO(yI*)

Here Im(H (t))y - y > c|y|? for (¢, y) € U, where ¢ > 0 depends on Hy, g, and I. By decreasing &’ if
necessary, this shows the following bound when ¢ in a fixed compact set:

g8, I S TV e VDT (3787,
Integrating the square of this over U, we get, as T — 00,
Isll2wy S TP Ae WD) L gy = 0(1).
Similarly, we have

I(=A = s vl 2y S T DA WD P (2 N+ =Ny
= 0O/,

The norm estimates for v in U follow upon replacing N by 2K 4 3.

For the L?(d M) estimate, if U contains a boundary point xo = (¥p, 0) € 9 M, by assumption (9/91)|, is
transversal to dM. If p is a boundary defining function for M, so M is given as the zero set p(t, y) =0
near xo and Vp = —v on dM, then (dp/9dt)(xp) # 0 and, by the implicit function theorem, there is a
smooth function y — #(y) near O such that 0 M is given by {(t(y), y) : |y| < ro} near xo. The bound for
v, given above implies that, for 8" small,

_ _ 2
sl om0y = / o5t (), MIAS(Y) S / t DR R gy = 0(1).
lyl<ro ly

|<ro
At this point we can construct the quasimode vg in M from the corresponding quasimodes defined
on small pieces. Let y([—e, L + €]) be covered by open sets U@, ..., UN*D as in Lemma 7.4, and
note that each U/ corresponds to / ; x B(0, §) in the (¢, y) coordinates. Suppose first that y does not
self-intersect at time t = 0. We find a quasimode v(©® = ¢/ 0”40 jh y©® by the above procedure, with
some fixed initial conditions at = 0 for the ODEs determining ®® and a®. Choose some t; with

is@W

y(ty) eU O AU, and construct a quasimode v = e a™ in UM by choosing the initial conditions

for the ODEs for ®" and a" at 1, to be the corresponding values of O© and a© at t;- Continuing
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in this way, we obtain v@® WD Tf y self-intersects at t = 0, we start the construction from v
fixing initial conditions for the ODEs at ¢ = 0, and find v(®) by going backward.
Let {x;(¢)} be a partition of unity near [—¢, L +¢] corresponding to the cover {/;}, let x;(z, y) = X;(¢)

on UY), and define
N+1

vy = Z va(j).
j=0

Then vy is smooth in M and it is supported in a small neighborhood of y ([—¢, L 4 €]). The important
point is that since the ODEs for the phase functions and amplitudes have the same initial data in U/) and
in UUHD and since the local coordinates ¢; and ¢, coincide on goj_l((l jN1j41) x B), one actually
has v = U+ in <pj_1((lj N1jy1) x B). Letting py, ..., pg be the points where y intersects itself, we
choose an open cover of supp(vs) N1 M,

R

N+1
supp(vs) "M C (U Vr) U < U (WjoU Wj,1)>’
j=0

r=1
where V, are small neighborhoods of the points p, and W, o, W; 1 C U, such that
vslV,. = Z U(j) and vS|Wj,1 = v(j"‘l).
y(tj))=pr

Since vy is a finite sum of the v in each case, the L?(M) bounds for v; and (—A — s%)v, and the
L?(d M) bounds for v, follow from corresponding bounds for the v}, The form of v, near points where
y does not self-intersect and the possibility to prescribe the K-th order jets of ®|;3 and a|yys at ¥ (0)
follow from the construction and Lemma 7.4.

To conclude the proof, using a partition of unity, it is enough to verify the limit (7-1) for any ¥
supported in one of the sets V, N M or W;; N\ M. Further, we can choose the sets V, to be so small that
the real part of d®Y) —d®® is nonvanishing near V; if y (t;) = y (t;) = p, but j # k. This follows since

Re(d®Y) —d@W)(p,) =y (t;))" — y (1) #0.

Here we may need to decrease & so that we still have an open cover.

Consider first the case where ¥ € C.(W;; N M). Here the support of ¥ may reach d M, and we extend
¥ by zero outside of W;; N M. Suppose that v, = ¢'*®a, where © =1 +&y* + 3H(®)y -y + O(|y]*)
and a = 1" D/ *(ao+ O0(x7 1)) x(v/8'), and let p = |g|'/%. Then

/ |vesin Py dVe
M (o.¢]
— — .y 3 ) — —
= / / 1 e M =T IM(H0)y-y ,TOyI") O] L (m 1)/2(|a0|2 +0(t 1)))(()’/5/)21#,0 dt dy
—0 Rm—

o.¢]
_ _ . —1/2 Nk —-1/2 ) —
:/ . 2At/ o~ IMHO)Yy 47RO ;= 20U (10 (1. =112y 2
— Rm—1

o0
+ 0@ X/ e, T ) p, T2y dr dy.
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Since Im(H (¢)) is positive definite and &’ is sufficiently small, the term e~ ImH®)yy dominates the other
exponentials and one obtains

L
lim / [Veqin P dV, = / e_ZM< / e—lm<H“”>"ydy)|ao(t,O)I2w(t,0)p(t,0)dt.
T—>00 M 0 Rmfl

Evaluating the integral over y gives

lim / lveyin*¥ dV, =C /L o2 lao(t, 0)|?p(t, 0)

We will prove below that

v (t,0)dt.

a0t 0P p(1.0) _
vdetIm(H (1))

The limit (7-1) will follow upon dividing the family {v,} by a suitable constant.
If v € C.(V, N M) (again supp(y) may extend up to d M), we have

b= Y 00,

y(t))=pr

|vg)? = Z DRAEEE Z v y®,

y(tj)=pr y(t))=y (t)=pr
J#k

onst. (7-5)

so that on V,

We arranged earlier for Re(d®Y) —dO®) to be nonvanishing near V, if y(¢;) = y (%) = p, but j #k.
Thus the cross terms give rise to terms of the form
/ vy @V = / 9w By 4y,

v,n\M V,n\M
where ¢ = Re(@) — ®®) has nonvanishing gradient in V,, and w® = ¢is m©") p=ARe(®™) 4 (D) " We wish
to prove that

lim W DOy dv =0, j £k, (7-6)

T—00 V.A\M

showing that the cross terms vanish in the limit and the previous computation for [v®|> shows the limit

(7-1) also when v is supported in some V, N M. To show (7-6), let ¢ > 0 and decompose ¥ = | + V7,
where ¥y € C2°(V, N M) and || Y2l L v,nm) < €. Then

/ e w Dy, dV‘ S Hw P 2 w® [ 2l Se,
V.N\M

since [[w ;2 < [v®| ;2 < 1. For the smooth part ¥, we employ a nonstationary phase argument and
integrate by parts using that

‘ 1.
¢ = — L), Lw=(de| 2dg, dw).
1T
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This gives
ito, (N ® WY (Hi® 1 ito (D
e wwky dV = —— v vy dS + — e L' (wYw®y) dV.
V.M am iT|dg] it Jv,nm

Since [Jv?|| r2om) = O(1), the boundary term can be made arbitrarily small as T — oo. As for the last
term, the worst behavior is when the transpose L' acts on e’ Im(@(”), and these terms have bounds of the
form

[la (@Y ) W L@l L2 191 .

Here |d(Im(®\/)))| < |y|if (¢, y) are coordinates along the geodesic segment corresponding to v/), and
the computation above for ||[v'/)||;> shows that

[1d(AIm@ D) | 1Pl 2yl S 7712

This finishes the proof of (7-6) and also of (7-1).
It remains to show (7-5). We have
—["R d
lao(t, 0)P (1, 0) = eo e fo RO o1 0112,
Note that ng(¢) is given by
no(?)
= AB(,0)
= (¢ 9x0 + 8,8 %O + 1217129, (12| g 8 ©) (¢, 0)
=¢"197O0+28"“01aO1 + g 0p©2 40,871 9,:O0 + 0, 87 0,01 + 50, (log|g) (g7 9, B0 + ¢/“ 0 O1)
=2¢""Eq + 8" Hup + (3,871 + 50, (loglg D g’ &.
The conditions gjkék = 8{ and gl"‘éa = g”‘ék = —(a,g”‘)ék at (¢, 0), together with the general fact that
9, (log|g|) = —g;xdg’*, imply that
n0(t) = g€y + g°" Hop + (30.8°")&k + 30: (log| ).
Recalling the definition of the B and C matrices in (7-4), this says precisely that
no(t) = BS + C* Hyy + 33, (log|gl)
= te(B(t) + C(1)H (1)) + 59; (loglgl).
Consequently, |ag(t, 0)|*p(t, 0) = che Jig WBOHEORH N s o ihe other hand, by [Katchalov et al.
2001, Lemma 2.58], solutions of the matrix Riccati equation have the property that

detIm(H (1)) = det Im(H (t))e >0 "EOHCORH N ds

This proves the result. U

The proof of Proposition 7.1 now follows quickly from the way we have set up the previous result.
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Proof of Proposition 7.1. Let y : [0, L] — M be a nontangential broken ray with endpoints on E, and

(0)

let 0 <t <--- <ty < L be the times of reflection. Let vy~ be a Gaussian beam quasimode as in

Proposition 7.5 associated with the geodesic y |j0.;,7- We will construct another Gaussian beam quasimode

( ) o _ vsl)|aM will be small near y (#1).

0 _ lSG)(J)

associated with y |4 1] such that v
In fact, by Proposition 7.5 we have vy a'/) near y (t;), and we can choose the K -th order jet

of ©W |, at y(#;) to be equal to that of ®(0) |ap with the following exception: we always have

dOM) oy =y (t1—)",
dOM)yey =y @i+

It follows that
O ox)ly 1) = 7 (1 —)ans

OV oa) ) = ¥ (14 ) o

where we have taken the projections to the cotangent space of 0 M at y (¢;). But by the rule that the angle
of incidence equals angle of reflection, y (; —)I;ln equals y (#; +)fan. Thus the K-th order jets of @@ |3y,
and ®V|;,, actually coincide at y (#1), and by Proposition 7.5 we can also arrange for the K -th order jets
of a5y and aV |54 to coincide at y (7).

Write f; = v — M lam, and let (¢, y) be coordinates near y (¢;) such that 9 M is parametrized by
y > (t1, ¥) and y (#1) corresponds to (¢1, 0). Recall that v(] ) are supported in small tubular neighborhoods
of the corresponding geodesic segments. By the above considerations and the construction of @) and
a’), and dropping the variable 7, from the notations, the restrictions of ©/) and a/) to dM satisfy

OV =0 +EV (), aP(y) =alk)+bY (),

where © is a polynomial of order K, a = t™~D/4Gx (y/8"), where a is a polynomial of order K, and
IED(y)] < Clyl* ™ and [bY)(y)| < CT=D/4)y|KHy(y/8") on supp(x (- /8), where x is a cutoff
function and &’ is a constant independent of t that can be chosen as small as we want (these initially
depend on j, but since there are finitely many reflections, we can choose them independently of j). Here
© and EY) are independent of 7, and a and b"/) are mildly T-dependent and satisfy uniform bounds with
respect to 7. Then

o = O ((¢i"E 2O ‘SE“))a 4 oIE ) _ e,-sgmb(l))‘

We have
eSEY _oisBY — g @ _ ~(1>)/ isrEO+(1-nED) 4.

and, consequently, near y =0,

ol o) K+1
|elSu _ B K+leCr|y| ]

| < Ctly|

Thus, near y =0,
_ _ A S K+1
| fs ()] < Crm= D/ Im@) g |y KA CTITT 5 (3 /8.
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Using that the Hessian of Im(®) at 0 is positive definite and choosing 8’ sufficiently small, we have
£ ()] < Cem Dby K5y (y/8)).
Integrating the square of | f;| over R”~! and changing y to /%y, we obtain

I fsll L2cryy = O (x K —D/2),

where R; is a small neighborhood of y (¢;) on d M containing the set of interest.
Repeating this construction for the other points of reflection, we end up with a quasimode

N
ve=) (=D
j=0

that is supported in a small neighborhood of the broken ray y. Since all points of reflection are distinct,
we can arrange that the quasimode satisfies

lvslgllL2cr) = O(x~ KD/,

It also satisfies
I(=A = s vsllzan = 0@, Ivsllzan = 0.

Replacing K by 2K + 1, we have proved all the other statements in the proposition except for the
expression of the limit measure. To do this, we consider the finitely many points where the full broken
ray y self-intersects or reflects, and decompose the terms v.ﬁj ) as in the proof of Proposition 7.5 to parts
living in small neighborhoods of the self-intersection and reflection points and parts away from these
points. Now all self-intersection points are in the interior or on E and all self-intersections must be
transversal, and also all reflections are transversal. Consequently, when forming |vs|?, the cross terms
arising from different parts living near the same self-intersection or reflection point contribute an o(1)
term by nonstationary phase as in the proof of Proposition 7.5. Thus the limit measure of |vg|? d Vg is

indeed the measure e~/ d,, where 8, is the delta function of the broken ray y. U

8. Recovering the broken ray transform

In this section we give the proof of Theorem 2.4 concerning the recovery of integrals over broken rays.

Proof of Theorem 2.4. The proof is very similar to the proof of Theorem 2.1, except that we use reflected
Gaussian beam quasimodes instead of WKB type quasimodes. Let y : [0, L] — M, be a nontangential
broken ray with endpoints on E, and let A > 0. Alsolet g=e®goand g; =c(q; — c(”_z)/“Ag(c_(”_z)/“)).
Consider the complex frequency
S=T+IA,
where 7 > 0 will be large. We look for solutions
i =e (s (x") + 1),

ity = e (vg(x") +1r7)
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of the equations (—Agz + §1)ii1 = 0, (—Az + §2)iix = 0 in M. Here v; € C® (M) is the quasimode
constructed in Proposition 7.1 that concentrates near the given broken ray y and is small on My \ E.
Since Az = 37 + Ay, the function ii; is a solution if and only if

N (—Ag+G1)(e ) = —(—Agy +G1 — sHvs(x') in M.
We look for a solution in the form r; = ¢/**'r| where r; satisfies
e (=N +q)e ™ rp=f inM
with
== (=D 441 — 55 (x).

To arrange that it [, = 0, fix some small § > 0, let S+ and Sy be the sets in Proposition 4.3 with Carleman
weight ¢(x) = —x, and consider the boundary condition

e™rils us, =€ f-,

where

f_:

—e My (x’) onTy,
0 on (S_USy \T;.

For any fixed K > 0, by Proposition 7.1 and by the condition that I'; C R x (0 My \ E), we may assume
that the following bounds are valid:

1A 2any = O, If=llz2sy =0, /=l = O ™5).
It follows from Proposition 4.3 that there is a solution r| satisfying the above boundary condition and
having the estimate
Il = O™,
Choosing r| as described above and choosing r; = el r{, we have produced a solution it; € H A (M)
of the equation (—Ajz +g1)u; =0 in M, having the form
it =e " (vs(x") +7r1)

and satisfying

supp(ity|apy) COMLUOM_UT,

and [[ry |l L2py = O(r~ 1) as T — oco. Repeating this construction for the Carleman weight ¢(x) = x;, we
obtain a solution i, € H, A; (M) of the equation (—A; + 52)&2 =0 in M, having the form

ity = €™ (vs(x") +12)

satisfying the same support condition and bound for [|r2 |12 (ps)-
Writing u; = c_(”_z)/“ﬁj, Lemma 6.2 shows that u; € Ha (M) are solutions of (—A, +¢1)u; =0
and (—Ag +¢g2)uz =0 in M. Then Proposition 6.1 implies that

/ (g1 — q2)uyur dVy = 0.
M
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We extend g — g2 by zero to R x M. Inserting the expressions for u; and using the equality dV, =
"2 dx, dVyg, (x), we obtain

o0
f / (@1 — q2)ce” M1 (Jug (X)) |2 + vsia + Vsry +r172) dxy dVe, (x) = 0.
Mo —o0

Since ||l 2y = O(t " ast— oo, Proposition 7.1 implies that

L
/ e M (c(q1 — q2))" 2x, y (1)) di =0.
0

This concludes the proof. O
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