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FOR THE MAGNETIC SCHRODINGER INVERSE PROBLEM
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This article shows that restricting the domain of the Dirichlet-Neumann map to functions supported on a
certain part of the boundary, and measuring the output on, roughly speaking, the rest of the boundary,
uniquely determines a magnetic Schrédinger operator. If the domain is strongly convex, either the subset
on which the Dirichlet-Neumann map is measured or the subset on which the input functions have support
may be made arbitrarily small. The key element of the proof is the modification of a Carleman estimate
for the magnetic Schrodinger operator using operators similar to pseudodifferential operators.

1. Introduction

Let n > 2, and let 2 be a simply connected bounded domain in R"*! with smooth boundary. Suppose W
is a C? vector field on R"*! and ¢ is an L™ function on R"*!. Then define the magnetic Schrodinger
operator £y , with magnetic potential W and electric potential g by

Pwy=(D+W)+gq,

where D = —iV. I will assume that ¢ and W are such that zero is not an eigenvalue of £y , on 2. Then
the Dirichlet problem
Lwau=0, ulho=g

has a unique solution u € H'(2) for each g € H'2(3Q). Therefore for g€ H'2(3Q), we can define the
Dirichlet-Neumann map Aw 4 by

Aw, g8 = (0, +iW - vulsq,

where v is the outward unit normal and u is the unique solution to the Dirichlet problem with boundary
value g. This gives a well-defined map from H'2(0Q) to H-V%(5Q).

The basic inverse problem associated to the magnetic Schrodinger operator £y , is to recover the
electric potential g and the magnetic field dW from knowledge of Ay ,. (Here dW makes sense by
identifying W with the 1-form Widx; +-- -+ W, 11dx,+1.) We cannot hope to recover W itself, since the
Dirichlet-Neumann map is invariant under the gauge transformation W — W 4+ VW whenever ¥ € C1(Q)
and V|3 = 0. However, identifying d W identifies W up to this gauge transformation.

MSC2010: primary 35R30; secondary 35S99.
Keywords: inverse problems, partial data, Dirichlet—-Neumann map, Carleman estimate, magnetic Schrédinger operator,

semiclassical analysis, pseudodifferential operators.

117


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2014.7-1
http://dx.doi.org/10.2140/apde.2014.7.117
http://msp.org

118 FRANCIS J. CHUNG

This can be thought of as a generalization of the Calderén problem [1980], which can be written in
this form with W = 0 in the case of smooth enough conductivity (see [Sylvester and Uhlmann 1987]).

Sylvester and Uhlmann [1987] showed that in the Calderén problem, the Dirichlet-Neumann map
determines g. For the magnetic Schrédinger problem, Sun showed that the Dirichlet—-Neumann map
determines dW and ¢ when W is small enough, in a certain sense. Nakamura, Sun, and Uhlmann
[Nakamura et al. 1995] removed the smallness assumption and showed that the Dirichlet—-Neumann
map determines d W and g for W in C 2 and g in L*°. Tolmasky [1998] and Salo [2004] improved the
regularity conditions on W to C?/3*¢ and Dini continuous, respectively. Salo [2006] also gave a proof for
W e C'*¢ involving a reconstruction method.

Given that Ay , determines d W and ¢, a further question might be whether partial knowledge of
Aw 4 determines dW and q. In particular, one might ask whether restricting the domain of the Dirichlet—
Neumann map to functions supported on a particular subset of the boundary still gives enough information
to determine dW and ¢g. Alternatively, one might ask whether measuring the output of the Dirichlet—
Neumann map on a particular subset of the boundary still gives enough information to determine d W
and q.

Kenig, Sjostrand, and Uhlmann [Kenig et al. 2007] proved a result for the Calder6én problem addressing
both of these questions. Roughly speaking, they proved that restricting the domain of the Dirichlet—
Neumann map to functions supported on particular subsets of the boundary and measuring the output on
the rest of the boundary determines g. Together with Dos Santos Ferreira, they proved a similar result for
the magnetic Schrodinger problem in [Dos Santos Ferreira et al. 2007], but without being able to restrict
the domain of Aw ,. The main results of this paper are to impose that restriction, and thus show that a
result analogous to the one in [Kenig et al. 2007] also holds for the magnetic Schrédinger problem.

In order to describe these results more fully, we need to describe the subsets of the boundary involved.
Assume that xq is not in the closure of the convex hull of €2, and define the front and back of 92 (with
respect to xg) by

Q- ={xe€dQ|(x—x0)-v(x) <0}, QL ={x €| (x —x0) - v(x) =0},

where v(x) is the outward unit normal at x.
The main results of this paper are the following two theorems.

Theorem 1.1. Let Wi and W, be C? vector fields on Q, and let q; and q> be L™ functions on Q. Let
['_ C Q2 be a neighborhood of 02—, and let ' C 02 be a neighborhood of 02. Suppose

AW],q|g|1"_ = AWz,q2g|F_

for all g € H'?(3R2) with support contained in T';..
Then g1 = g2 and AW = dW,.

Theorem 1.2. Let Wi and W, be C? vector fields on Q, and let q; and q> be L™ functions on Q. Let
'y C 02 be a neighborhood of 02, and let ' C 02 be a neighborhood of 0Q2_. Suppose

AW],q1g|F+ = AWZ,ng|l‘+
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for all g € HY*(3Q) with support contained in T _.
Then qy = g2 and AW = dW,.

The second theorem is essentially the first theorem after the conformal transformation on €2 given
by inversion in xg. Imposing the condition W; = W, = 0 in these theorems would give the results
from [Kenig et al. 2007], and removing the restriction on the support of g would give the results from [Dos
Santos Ferreira et al. 2007].

Roughly speaking, the first theorem says that if the Dirichlet—-Neumann map is known on a neighborhood
of the front for functions supported on a neighborhood of the back, then potentials can be determined.
The second theorem says something similar, but with the roles of the front and back reversed.

If the domain €2 is nice enough, then the front can be made arbitrarily small. For example, if €2 is
strongly convex (convex, and the intersection of the boundary with any tangent hyperplane to the boundary
consists only of one point), then the front can be contained in an arbitrarily small open subset of the
boundary, for the right choice of xq. This gives us the following corollary.

Corollary 1.3. Suppose Q2 is a smooth bounded strongly convex domain in R"*'. Let Wi and W be C?
vector fields on 2, and let g1 and g be L™ functions on Q. Then for any nonempty open subset ' of the
boundary, there exists a neighborhood 'y of I'{ := 0Q \ Ty such that if

AWl,tI|g|F1 = AWZJIzg|r|

for all g € HY*(32) with support contained in T2, then g = q> and dW; = dW.
Alternatively, for any nonempty open subset Iy of the boundary, there exists a neighborhood I'y of T'5
in  such that if
Aw,.q,:8Ir, = Aw,. 0,811,

for all g € H'?(3K2) with support contained in T2, then q1 = q and dW; = dW.

The first part of the corollary says that in particular, the Dirichlet-Neumann map can be measured on
an arbitrarily small subset of the boundary. The second part of the corollary says that alternatively, the
input functions may be restricted to an arbitrarily small subset of the boundary.

Theorem 1.2 can either be proved from Theorem 1.1 by the change of variables mentioned above,
or proved in the same manner as Theorem 1.1, making the changes indicated at the end of Section 8.
Therefore most of this paper will be devoted to proving Theorem 1.1. From here on, unless otherwise
noted, I will assume 'y, I'_ and €2 are as in Theorem 1.1.

The key to the proof of Theorem 1.1 is the construction of complex geometrical optics (CGO) solutions

to the system
FLwqu=00nQ, ulr; =0, (1-1)

where I'{ := 92\ I';.. This in turn requires a Carleman estimate for £y ,, which can be described as
follows.
Let ¢ be a limiting Carleman weight on €2; that is, a real-valued smooth function that has nonvanishing

gradient on €2 and satisfies
(@"Vo, Vo) +(9"E,£) =0
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whenever |£] = |V¢| and Vg - £ = 0. Define
igw,W,q = h2€¢/h$W,qeﬂp/h‘

Here h is a semiclassical parameter; from here on, all Sobolev spaces and Fourier transforms in this
paper are semiclassical, unless otherwise specified, with & being the semiclassical parameter. Thus |u]| g1
means the norm defined by

el = lulig2 + 1AVl 72,

and ||u|| z-1 means the dual norm to this, and so forth.
Then we have the following Carleman estimate.

Theorem 1.4. Suppose Q' is a smooth domain with Q@ C Q" and 9Q'N0Q2 =T, where ', is as described
in Theorem 1.1. Then if w € C;°(£2),

w2 S 1Le.w.qwll g1

The proof of this theorem is the main new ingredient in this paper. It differs from the Carleman estimate
in [Dos Santos Ferreira et al. 2007] in that this one can be used in a Hahn—Banach argument to give
solutions that vanish on E. The rest of the proof of Theorem 1.1 follows the proofs in [Kenig et al. 2007;
Dos Santos Ferreira et al. 2007] fairly closely. Thus, the next seven sections will be devoted to the proof
of Theorem 1.4. In Section 9, I will use this estimate to construct CGO solutions to (1-1). Once these
are constructed, the proof of Theorem 1.1 follows by an argument more or less identical to that in [Dos
Santos Ferreira et al. 2007]. This argument is outlined in Section 10 for completeness.

2. Outline of the proof of Theorem 1.4

In order to outline the proof of Theorem 1.4, I will give a rough sketch of the proof for a special case.
Choose Cartesian coordinates (x, y) on R"+1 such that x € R”, y € R, and suppose that €2 lies in the set
[R’j:rl = {y > 0}, with a subset of 92 lying on the hyperplane {y = 0}. Label the subset 02N {y = 0}
by I'Y.. Then I want to show that

hlwl 2@y S 1%, w.q w1 o,
for w € C;°(2) and ¢(x, y) = y. The starting point is the following estimate. Define
Ly = RPN
and
Ly = ewz/zeiﬁwe*“’z/ze.

Proposition 2.1 [Dos Santos Ferreira et al. 2007, Equation (2.12)]. If ¢ is a limiting Carleman weight,
and w € Cy°(2), then

h
ﬁﬂw“m(g) S ewllL2)-
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A note on inequalities here: inequalities of the form F(w, #) < G(w, h) mean that there exists 2o > 0
independent of w such that for 7 < hg, the inequality F(w, h) < CG(w, h) holds for some positive
constant C independent of w and /. In the case of this inequality, the constant implied in the < sign is
independent of ¢ as well.

Now set ¢(x, y) = y and define a new domain €2, such that 2 C Q, C [R{’jfl, with 'Y C 9.
Proposition 2.1 still holds on €2,. Now the objective is to find an operator J with the following properties.

(1) J has a right inverse, denoted by J~!, and J~! preserves smoothness.

(2) J and J~! preserve support with respect to y in the positive direction: if the support of u is in the
set {y > yp}, so are the supports of Ju and J~'u.

(3) The commutators of J with differential operators behave as though J were a semiclassical pseudo-
differential operator of order 1.

(4) J is bounded from H'(R") to L2(R%™).

() Il ey == lull g

If such an operator existed, the argument could go like this: Suppose w € C;°(£2), and let x € C* ([R{T])
be a cutoff function that is identically one on €2 but supported within €. Then xJ 'w € Cyo(R22), so it
can be plugged into Proposition 2.1 to give

h _ _
ﬁ”XJ lw”Hl(Qz)S”SNP‘P»SX‘] 1w||L2(S22)'

Here we are using property (1) to get J~! and property (2) to ensure that x J ~!w has the right support.
Now we can use property (4) on the left and (5) on the right to get

h -1 -1
ﬁ”JX] wHLZ(RT']) SN Lpexd wHH*I(IR”f')'
The commutator properties tell us that this is

%”wnLZ(Riﬂ) 5 ”SNP(,D,sw”H—l([R'jjl)a

with error terms small enough to hide in the left side, for ¢ small enough. Then £, ;w =¥, . w 4w up to
a similarly permissible error, where

2)2¢ —?/2¢
g(p,a,W,q = e(ﬂ / i(pyque ¢/ s

and noting that ¢¥"/2¢ is smooth and bounded on €2 finishes the proof.
It still remains, of course, to find the magic operator J. Consider the operator J defined by

Ju(g, y) = (hd, + F(E)a(E, y),
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where the hat ~ signifies the semiclassical Fourier transform in the x variables, and F is a smooth function
on R" such that |F & -0+ |§|)| < & for some small 8. This has a right inverse J~! given by

Flu.y = [ it ner @,

0

which satisfies property (1). Now it is relatively straightforward to see that properties (2) and (4) are
satisfied, and with a little more work, we can obtain the kind of commutator properties needed for

property (3).
Unfortunately, property (5) fails to hold in general. Instead we have a new property (5'), that

||Ju”H—1(R:_+') >~ ||u — gu ”LZ(RT])

where

2F 00
gu(s, y) = T(%‘)/ 12(5, t)e—F(é)(H-y)/h dr.
0

However, the proof only relies on property (5) applied to functions u of the form u = ¥, ;v, where
v € C§°(§22). For these functions,

u(g 2F(€)f sv(g t)e F(s)(1+})/hdt

where
Lyev(E, 1) = (B*0F —2hd, + 1 — [E[)D(&, 1)

plus some acceptably small error. The idea is now that by using integration by parts, together with a good
choice of F, we can get g, to be small enough that

”‘]u”H*I(RT'I) = ”u”LZ(RT'l)'

To do this, we can split up v as v = vy + vy, where 01 (€, t) is supported only for |&| < 2, and 0,(&,1) is

supported only for |§| > 5, say. Then g, = y| + y2, where y; is the part that corresponds to v;. Then
for 1, integration by parts gives

2F o© ,
8 [ (r @ -2k @) + 1- )0 e Oy
0
plus an acceptably small error, and then using the fact that F is close to 1+ |£]| gives
||)/1 ”LZ(RZjl) 5 ) ” U1 ||H2([R1+1)'
Since vy is only supported for small frequencies, the operator £, . is invertible on the support of vy, so
||)/1 ”LZ(R:'_*') S 8||~><£<p,svl ”Lz(R'_ﬁ_H)’

Meanwhile, in the large frequency case, we can factor éf(:g as

(78, — (1L +1ED) (rd, — (1 — |5]))
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up to some acceptably small error, and do integration by parts only with the first factor. (The nonsmoothness
of |&| will cause trouble in the factoring at small frequencies, which is the reason for splitting up the
argument like this.) Then p, becomes

2F@) [ . -
8@ - D) (0 - (1 - ©)ia(e e O
0
plus some good enough error, and so we get something like

||V2||L2(R1+1) ,S (SHZ”HI(RT'I)’

where Z = (hat -1 - |$|))f)2. Since £, ;v ~ (ha, —(1+ |§|))z, and the operator 79, — (1 4 |§]) is well
behaved, we can get
HVZHLZ(RT") 5 6||«§£¢’5U2||L2(R1+1).

Adding these two parts together and using some commutator estimates on the right side gives

”gu”LZ(R’fl) S 8”M”L2(R’fl)’
SO

|| Ju”H*l(RT']) = ”M”L2(RT")

for u of this form. This finishes the argument. Changes in &, ; of O(§), roughly speaking, do not affect
the argument. Therefore the argument still works if I'{. coincides with a graph of the form y = f(x), as
long as V f is small enough, by using a change of variables that flattens I'{. while making only O (5)
changes to £, ;.

These ideas are the basis of the argument used to prove Theorem 1.4. There are three key changes
that make everything much more complicated, however. Firstly, in order to achieve results of the form of
Theorems 1.1 and 1.2, we will need to work with the logarithmic weight ¢ = log |x — x|, and in spherical
coordinates centered at xo. Then we will work with I'{ ’s that coincide with graphs of the form r = f(0),
and work with small subsets on which the spherical coordinates look nearly Euclidean. Secondly, instead
of looking at cases where V f is small, we will treat cases where V f is almost constant. This argument
works nearly the same way as the argument outlined above, but requires us to use operators that depend
on that constant. In fact, we will need to split the small and large frequency cases much earlier in the
argument, and introduce separate operators Jy and J, for the two cases. Thirdly, we will need to glue
together many such estimates at the end of the proof to get Theorem 1.4.

The proof will be presented over the next six sections. In Section 3, I will state the small subset
version of the Carleman estimate, and begin the proof by making the change of variables to “flatten”
IS appropriately. In Section 4, T will split up the problem into separate propositions for the small and
large frequency cases, and show that the proofs of these propositions suffice. In Section 5, I will prove
analogues of properties (1) through (2) and (5") for operators of a certain form. Section 6 then contains
the small frequency argument, and Section 7 contains the large frequency argument, thus finishing the
proof of the small subset version of the Carleman estimate. Finally, in Section 8, I will glue together the
small subset estimates in the appropriate way to prove Theorem 1.4.
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3. An initial Carleman estimate

For the rest of this paper, we will fix ¢ to be the logarithmic weight ¢ (x) = log |[x — x¢| unless otherwise
stated. Without loss of generality, we will also assume that xo = 0.

To begin, we should fix coordinates on R"*!. Since 0 is outside the convex hull of €, there must exist
ro > 0 such that Q2 lies outside the ball of radius ry centered at the origin. Moreover, 2 must lie entirely on
one side of a hyperplane through the origin. If we choose Cartesian coordinates x1, . . ., x,41 on R"*! such
that €2 lies entirely in the half-space {x,11 > 0}, then we can define a map o : (R" \ By, 0) N {x4+1 > 0} —
[ro, 00) x (0, ) x -+ x (0, w) by

a(xlv"'axn+1):(r5917"'90n)7

where
X; =rcosby,

Xp =r sin6; cos B,

X, =rsin6;...sin6,_jcosb,,

Xp41 =rsinfy ...sin0G,.

This fixes a set of spherical coordinates on (R" \ By, 0) N {x,+1 > 0}. On any compact subset of this space,
o is a diffeomorphism with bounded derivatives; the singularities in o occur in the other half-space.
Now we can begin by proving the following special version of Theorem 1.4.

Proposition 3.1. Suppose that f : S" — (rg, 00) is a C* function such that 2 lies entirely in the region
Ao ={(r6)|r> f(©O) Cc R and [ is a subset of the graph r = f(0). Suppose also that for all
(r,0) €,

|sinf; —1|<pu forj=1,...,n—1 (3-1)

and
[Vsnlog | — Ken|sn < 1, (3-2)
where e, is the vector field on S" given in coordinates by (0, ...,0, 1), and V. and | - |s» indicate the

gradient and metric on the unit sphere. Then if w € C{°(S2), then

h
ﬁ”w”LZ(Q) 5 Higgo,sw”H*l(Ao)'
The inequality (3-1) is designed to force the metric on the unit sphere on the set
{6 € S"|(r,0) € Q for some r}

to be nearly Euclidean, and the inequality (3-2) is designed to ensure that Vg» log f is nearly constant
on 2.
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To prove this, we will need to do some work with a domain €2, that is slightly larger than €2, but still
bounded. Take €2; C Ap to be a smooth bounded domain that contains €2 such that I'. C 92,. We can
pick €25 to lie in (R" \ By,,0) N {x,4+1 > 0}, with

|sinf; — 1| <2u forj=1,...,n—1

and
|Vgnlog f — Keylsn <21

for all (r, 0) € Q5.
Recall that Proposition 2.1, proved in [Dos Santos Ferreira et al. 2007], says that if w € Cj°(22), then

h
NG lwll g1, S 1Lg.ewllL2(0,)-

We can make a change of variables using the map (r, 8) — (r/ f(6), ). This is a diffeomorphism
from Ao to R"*!'\ B, where B is the open ball of radius 1 centered at the origin, with the inverse map
(r,0)— (rf(0),0). Let Q and €2, be the images of Q and €2, under this map. This diffeomorphism
maps I'{ to a part of the unit sphere S”, thus “flattening” it out appropriately. This change of variables
leaves the 6 variables alone, so it is still the case that 2 lies in (R 1! \ B) N {x,+1 > 0}, with

|sinf; — 1| <2un forj=1,...,n—1

and
|Venlog f — Key|sn <21

for all (r, 0) € Q.

Lemma 3.2. Forw e C{° (),

h ~
ﬁ”wnHl(Qz) S ||$(p,€w||L2(Q2)a (3-3)

where
7 2 2492 2 1 2 2
Lo = (14|Venlog f(O)|5:)h°0; — ;(oz—l— (Vsn log £(6))-snhVsn)ho, + 5@ +17Ag)

ando =14 (h/e)log(rf(0)). Here Vs is the gradient operator on the unit sphere; | - |s» and -sn indicate
the use of the Riemannian metric on S", and Agn is the Laplace—Beltrami operator on the unit sphere S™.

Proof. Let v € C3°(£22), and let
v(r,0) =v(rf(9),0).

Then v € Cgo(sz). By a change of variables,

100l L2y = IVl 22(020)
and

150 4115,y == 10111 -

The constants implied in the 2~ sign depend on f.
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—~—

Since £, cv € C°(R22), we have that £, cv € L%(,) and 1Lg.cvl L2y = ||$‘p,gv||L2(§22). Therefore,
by Proposition 2.1,

%”f)”[{l(g}z) N ||$¢,£U||L2(Qz)-
Now a calculation shows that
h
Fype=h?d—r! <2 —hn+2- 1ogr)ha, +r2(1+h*Agn)

72 h? ) h? h
+r h—hn+—2((logr) —8)+—logr+(2—hn)—logr ,
& I3 I3

and then that

—~—

LoV = f20)2y.c0 — hET,
where El’q,, ¢ 1s as in the statement of the lemma and E is a first-order semiclassical differential operator
with coefficients that have bounds independent of 4 and ¢. Therefore

h . _ = -
ﬁ”vnm(fh) S ”f 2(9)‘5£<0,€’)HL2({22) +h”””H1(§22)‘

For small enough ¢, the last term on the right side can be absorbed into the left side. Moreover, | f 2|
is bounded above, so
% ”ﬁ”Hl(Qz) § ”58(/),8{) ||L2(f22)
for all v € C§°(22). Now any w € CgO(s’zz) can be written as v for some v € C;°(£2) just by taking

v(r,0) =w(r/ f(0),0). This finishes the proof. O

We can now make a second change of variables by thinking of the coordinate map ¢ as a map from
2, to a subset of R]T! = {(r,0) € R x R" | r > 1}. This gives us that for w € C$°(c (),

1+
h
ﬁ”w”[—]l(g(éz)) 5 ||§£<p,e,aw||L2(a(§22)), (3-4)
where
2 1
Fpeo =1+ |ypPHh*d? — ~(@+ By hVo)hd, + 72(“2 +h2Lgn), (3-5)

By is a vector field on R'fil that equals the coordinate expression of V. log £(6) on o (), yrisa
function on [R?’l‘j:l that agrees with the coordinate expression of |V log f(6)|s» on 0(522), and Lg» is a
second-order differential operator on R'{il that agrees with the coordinate expression of the Laplacian on
the sphere on o (£2»).
To avoid the clumsy buildup of modifiers to €2 and €2, [ will let U denote G(Q) and U, denote 0(@2).
The hypotheses in Proposition 3.1 imply that on Uy,

1B —(0.....0,K)| <C, (3-6)
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and
lyr — K| =Cy (3-7)
and if
h*Lgn = ath®d5 + -+ - +anh*d; +bih*dg, + - -+ byh>0y,,
then

ja;— 1] < C, (3-8)

for some constant C,, that goes to zero if  goes to zero. C,, may depend on K, but we are treating K as
fixed, so this will be fine. We may as well assume that B, yr, and the coefficients of Lg are extended to
the rest of [R{’fil in such a way that these conditions continue to hold. In particular, this means that Lg» is
“close” to the ordinary Laplacian on Euclidean space.

4. Small and large frequency cases

To continue the proof of Proposition 3.1, I want to divide w into small and large frequency parts and
prove an estimate for each part separately. Recall that [R{‘il ={r0)]0 eR", r>1}. Let ff([R{’fil) be
the restrictions to [R?il of Schwartz functions on R"*!. Note that functions in Cy°(Us) are in Ef’(R'{f).

Let ¢; and ¢, be such that
ﬂ <cr <o < l + L <
T+IKE T T2 =2 2+ K P
and let 8; and & be such that §, > §; > 0. Let p € C3°(R") be a cutoff function such that p(§) = 0 if
17 > c2 or |£4| > 82, and p(§) = Lif & < c1 or 6] <41
Let the hat ~ indicate the semiclassical Fourier transform in the 0 variables only. (In general, Fourier

1,

transforms here will be in the 6 variables only unless otherwise indicated.) For w € C;°(U), define wy
and w; by Wy, = p(&)w and Wy = (1 — p(§))w, s0 w = wy + wy.
Lemma 4.1. There exist iy > 0 and choices of c1, ¢y, 81, and 8, such that if (3-6)—(3-8) hold for some
M =< o, then

ﬁ ”ws ||L2([R'1’11) S ||$(p,s,ows ” H*I(R’]'il) +h ”w ||L2(U)

forall w € Ci°(U), where wy is defined as above.

Lemma 4.2. There exists g > 0 such that if (3-6)—(3-8) hold for some i < g, then

h
%”wﬁnLZ(R';il) S_, ”‘pr(p,s,owE”H—l(R'lfIl) +h”w”L2(U)

forall w € C3°(U), where wy is defined as above.

Taken together, these two lemmas imply Proposition 3.1. To see why, first we need a lemma.
Let m, k > 0 be integers. Suppose a(x, &, y) is a smooth function on R" x R" x R that satisfies the

bounds .
|070g8)a(x, &, y)| < Cap(1+ED"
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for all multi-indices « and S, and for 0 < j < k. In other words, each 8{: a(x, &, y) is a symbol on R"
of order m, with bounds uniform in y, for 0 < j < k. Then we can define an operator A on Schwartz
functions in R"*! by applying the pseudodifferential operator on R" with symbol a(x, £, y) to f(x, y)
for each fixed y. More generally, we can also define operators A; on Schwartz functions in R*+! by
applying the pseudodifferential operator on R"* with symbol aja(x, &, y)to f(x,y) for each fixed y, for
0<j=<k
Lemma 4.3. Let A be defined as above. Then A extends to a bounded operator from H*™(R"*1) to
Hk (Rn-i-l)'
Proof. Sincek e Z, k > 0,
2 _ +igagi 2
Af oy = D W20 A || ey
O<l|a|+j=k
Now 8; A(f) is a sum of terms of the form

.92
A,]ay ,

where j; + jo» = j < k. Therefore ”Af”%qk(wﬂ) is bounded by a sum of terms of the form

o : 2
”h|a|+]1+]28)?Ajl 8;2][ HLZ(RVHH)’
where |a| + ji + j» < k. Then

oy h o112 i+ h (2
tha\-i-Jl-i-JzagAjl affHLZ(RnH) — /R N ‘h|a|+J'+]23gAjl a;zf‘ dxdy
< [ 1740 P -
Then by the boundedness of A, this is bounded above by
[0 £ yron oy 4
R y HlocH»m(Rn) y’

which in turn is bounded above by

[5208 £ [ aram ety < 1 itomsrs ety < 1 Wpiom -
Therefore
HAS Wk sy S IS Wi sy
Then a density argument finishes the proof. O

Proof of Proposition 3.1. Adding the estimates from Lemmas 4.1 and 4.2 gives

h
ﬁ(”ws ”LZ(R';II) + [Jwe ”LZ(R’]’I])) S ||$<p,a,aws ”H’l(R']’f) + ”$<p,s,a we”H*‘(IR{'{I]) + h||w”L2(U)~

Since w; + wy = w,

%”LUHLZ(U) g ||~§£<p,a,aws“H—l(R'llil) + ||$(pv870w£||H_l(R7j;l) +h||w||L2(U)-
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For small enough ¢, we can absorb the last term into the left side to give
h
%”w”LZ(U) g ”ie(p,s,aws”H—l(R’llil) + ||§~P<p,s,awZ||H—l(R’llil)-
Since (1 + |)/f|2) >14+K?2— C,, for  small enough, we have

h
Zalvla SN+ Ly eows | g + 1A+ 7D ™ Lpeowel oy

Now wy; = Pw, where P is the semiclassical pseudodifferential operator of order 0 on R"” with symbol
p(&). The operator P commutes with d,, and its commutators with differential operators in the 6 variables
are, for each fixed r € [1, 00), semiclassical pseudodifferential operators on R" that satisfy the conditions
of Lemma 4.3. Therefore

|| (1 —+ |yf|2)_1££¢,£’gw3 ” H,I(Rylyil) = ||(1 + |yf|2)_1$(p,e,onH H*I(R'fil)
SIPA+1yr ™ Ep eowl] s s, + I Eohdy + Evwll g gy

where E| and Ej, for each fixed r € [1, 00), are semiclassical pseudodifferential operators on R"
of order 1 and 0 and satisfy the conditions of Lemma 4.3. There is no hE_;h?3? in the error term
because the coefficient of hZaE in (1+ nylz)_léﬁ%g,(, is just 1. Now E} and Ej are also semiclassical
pseudodifferential operators on R" of order 1 and 0, for each fixed r € [1, co), and satisfy the conditions
of Lemma 4.3.

Therefore, by Lemma 4.3, E} is bounded from H,, ([R”“) to LZ([R{”“) so by duality, E; is bounded
from L2(R/T") to H~'(R{™).

Also, Ej is bounded from H ([RR"H) to H ([R{”H) and takes functions with trace 0 on the boundary
of [RE"Jrl to other functions with trace O on the boundary of R’l‘f, so by duality, Eg is bounded from

1(u;la"“) to H~!(RYT"). Therefore

[+ 1y ™ Ep o | o ety S TPA+ 1y ™ L eow]] o gy +hlIwI 2 -

Now by Lemma 4.3, P is bounded from H' ([R'l’il) to H' ([R’fjtl). Also, if u has trace zero on the boundary
of [F\R'fi], then so does Pu, so P is bounded from HI(R”H) to HI(R”+1) Since p is real-valued, P is
also self-adjoint, so by duality, P is bounded from H~ 1([R{”“) to H™ 1([Ri”“) Therefore

[+ 1y L 0w | o oy SN+ 17D 7 L] s sy + Rl 2

and thus

”&fpw,s,o Wy ”H*l(R'l“il) S ||‘$(p,€,(7w ”H*l(R'l“il) +hlw ”LZ(RTII)'
Similarly,

”iq),a,a Wy ”H"(R’{f) 5 ||§Ego,a,aw ”H—' (R'l'j:l) + Al w”LZ(R;‘f)'
Therefore

h
ﬁ”wan(U) S HSNP(/J,S,JU)”H—I(RHI) + h||w||L2(U)'
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Again the last term can be absorbed into the left side for small enough ¢, so

h
NG lwlizzwy S 1L .e.0wll -1 ®h

for each w € C3°(U).
Now if the hypotheses of Proposition 3.1 hold, then so do (3-6)—(3-8), and therefore we can obtain this
conclusion. Changing variables back gives

h
ﬁ“wan(Q) S g ewllg-1(40)
for w € C§°(2). O

Therefore we need only to establish proofs of Lemmas 4.1 and 4.2. To do this, we will need to introduce
the analogues of the operator J described in Section 2.

5. The operators

Suppose F : R* — C is a smooth function such that Re(F'(£)), |F(§)| ~ 1+ |&| for all £ € R", and F is
a symbol of order one on R", so that

|0g F(£)] < Co(1 4 1€ (5-1)

for all multi-indices «.

Then for u € $(R}T"), define Ju by

Tu(r.6) = (@M&)ﬁ(ns).

This operator has adjoint J* given by

Tutr, &)= (2 =i, )i ).

These operators have right inverses defined by

/\ r A\F©/h
J—lu(r,s):hlf ﬁ(t,é)(—) dt
1 r
and

— B o] r ﬁf)/h
J=lu(r, &) =h 1f ﬁ(z,g)<;) drt.

r

Each of these is well defined as an operator on Ef’([R’l‘j:l). We will prove appropriate analogues of the
properties (1)—(4) and (5') from Section 2 for J of this form. Note that J~! is a right inverse, and both
J and J~! preserve support in the positive r direction. Therefore it remains to establish analogues of
properties (3), (4), and (5').
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To set up the analogue of property (3), define the weighted Sobolev space H, (R"+1) by the norm

2 2

h
—Vyu
’

+ [lhd,ull? +

a2

HI(R"+1) = Lz(RnJrl)

r Lz(erlJrl LQ(erzjrrl)

Since U, lies in the set 1 < r < R for some Ry depending on U,, we know H' and H! norms are
comparable for functions supported on U;, with constants of comparability depending only on Ry. This
holds more generally for any functions supported in 1 <r < Ry.

Now the operators above have the following boundedness properties.
Lemma 5.1. J, J*, J~', and J*~' extend as bounded maps
J,J* H RTH —> LAREE
and
I (Rn—i-l) S H (Rn-i-l)‘
Moreover, the extensions of J* and J*~' are isomorphisms.

Proof. Consider J first. If u € Ef’(R’fil), then

2

(S)A

1Tul? i+ ho,i

Tl _
. Ju ary, =" S lu ntly .
LZ(R +l) || ||L2(|Rli ) LZ(R'{-H) || ”Hrl(lRlJr )

By a density argument, J extends to a bounded map J : H! ([R{”+1) — LZ([R{"H) The proof for J* is
similar.
Now consider J~'. If u € #(R]T"), then

o] 2 00 r p F&)/h
/ - dr=f ’h_lf a(r,s)(-> dt
1 0r 1 1 r

00 r AN\F@®/h
< ()

1 0 r

2 0 1
dr :/ ‘h—l / l’/i(l"l‘, S)Z‘F@)/h dt
1 0

Then using Minkowski’s inequality and changing variables again, we get

2
r2dr

—

Jlu

2
r2dr.

By a change of variables, we get

I
1

r

2
dr.

—

J 1y

—

o 2 1 00 1/2 2
/ Jlu drshz(/ (/ |ﬁ(r,§)|2dr) zRe(F@/h)tl/zdz)
1 0 1

-
5 0 5 h 2 00
=l /1 . &)l dr(ReF(S)Jrh/Z) ‘/1

i, €) [

u(r,
1+

Therefore

1
-J

r LZ(RHI) n J1

<
dr dg Sl g,
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Similarly,
oo — 2 oo
/ § T drgf jaGr, ) dr,
1 |r 1
SO
Hhv <
- u u n
P gy T RER
Finally,
— F —
h8r1_1u2—<—(§))J_1u+ﬁ,
r
SO
o0 — 2 S
/ )ha,wu drgf (. ) dr
1 1
and
-1 2
HhBrJ u ||L2(erl+1 ”u”Lz Rn+l)

by the same logic.
Putting all of this together gives
—1,.? 2
||J u”Hrl(R?Il) 5 ||M||L2(R'l'il)’
forued ([RR”+1) Then a density argument shows that J~! extends to a bounded map
JTH AR - BN (R,

Again, the proof for J*~! is similar.
It remains to show that the extensions of J* and J*~! are isomorphisms. If u € EP([RR"H) then
T u=u
and (using integration by parts)
J N u=u.
Then the result follows from a density argument.

Note that J~'Ju # u in general, because integration by parts will pick up a boundary term at » = 1.
Therefore the extensions of J and J~! are not isomorphisms. O

Let H 10([R§"+1) denote the subspace of H, ([R{”H) consisting of functions with trace zero on the
hyperplane r = 1, and let H~'(R}*") denote the dual space to rl,o(R’fil)-
Now we need to prove some commutator properties for J.

Lemma 5.2. Suppose that w € Ef’([R{"H) X € Ef’([R"H) and that Q is a second-order semiclassical

differential operator with smooth bounded coefficients on RYI’I]. Then

1
[ 707w ey 2wl 2@y = BlFwll g,
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and

7o —-0onw| B @R S hllrwl g ges)-
The constants in the 2 and < signs will depend on the derivatives of F.

Proof. Consider the first statement. If 7" is the operator on R" with symbol F (), interpreted as acting on

n+1

functions on R) H

by action on the 8 variables only, then

T —1
>\x|ho+—)J  w
L2R}TH r

where for each fixed r, Ey is an order-zero pseudodifferential operator on R"” with bounds that are uniform
in r. Therefore, by Lemma 4.3, E is bounded from L?to L2, so

— |7 Eos " w]

T
-1 _ -1
|77~ w] o iy = H <h8,+—r )XJ w - ®IH1);
1+

HJX‘I_IWHU(RHI) z HXJJ_I’””LZ(R’;f) - h”‘]_leLZ(R’l’f) 2 Ixwll oty = llrwll 2y

The proof of the second statement is similar, but somewhat more involved. First, note that multiplication
by 1/r is a bounded operator from HrIO(IR'ff) to HO1 ([R{’fil ). Therefore, by duality, it is a bounded operator

from H_I(R’l’f) to Hr_l([R{ﬁl), and so

|10 = Qw1 oy < Ir (4@ = QW] s i,

Note that J; = hd, +r 1T, where T is a semiclassical pseudodifferential operator on R” of order 1.
Meanwhile, Q can be written as a combination of 9, derivatives and differential operators on R":

Q = Ah?*3> + Bhd, + C,

where A, B, and C are (perhaps r-dependent) differential operators of orders 0, 1, and 2 respectively on
R" for each fixed r, with bounds uniform in r.

If w e R]T), then Qw € F(RT"). Then

|7 (1@ = QIyw] s rsry = [0 + r~'T, AW*3} + Bhd, + Cw| )

Expanding this, and noting that 7 commutes with 9,, we get

”’"(JsQ - st)w”H—l(R';j') = ||r[h8r, Q]w”H—l(R’ff) + ||[T, A]hzarzw”H—l(R'ff)
+ || T, AT w | s gy + |2n*r (T, ATw | s ey

+]IT, B]harw”H—l(Rﬁl) + B]wHH—l(R’;f) +|IT, C]w”H—'(R’;f)'

By the product rule, r[hd,, Q] = hrE}, = hE)r + thi, where E), and E| are second- and first-order
semiclassical differential operators. Meanwhile, [T, A] = hEy, [T, Bl = hE1, and [T, C] = hE;, where
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Ey, E1, and E, are semiclassical pseudodifferential operators on R" of orders 0, 1, and 2. Therefore

||r(JSQ - QJS)w”H’I(R’llil)
+ ||?r~ Eghd,w | - ey + ||2h3r—250w||H_1(R7f)

= ”hEérw”H*l(R'fi') + R Ejw| awh T |nEon*d7w]| -

+ HhElharw”Hfl(R';j;‘) + ”hr—lEIwHH*I(R’I’_‘t') + ”hEZwHH*I([R’I’iI)'

E} is bounded from H'(R}T") to H~'(R}T"), and E| is bounded from L>R{*") to H~'®]T"). In
addition, by Lemma 4.3, E is bounded from H ([RR”H) to L2(IR{"+1) so by duality, E; is bounded
from L2R]T") to H~'(R}T"). Meanwhile, E; is bounded from H (R"“) to H~'(R{™"). Finally, E}
is bounded from H (R"+1) to H (R”+1) and maps functions with trace 0 on the boundary of [R{"H to
other functions with trace 0 on that boundary, so it is bounded from H,, ([RR"H) to H, ([RE”H). Therefore,
by duality, E is bounded from H~'(R{™") to H~'(R{*"). Moreover, 1/r < 1 on [Ri"Jrl Applying all of

these facts together to the last inequality then finishes the proof.

To finish this section, we need to prove a property analogous to (5") from Section 2.

Lemma 5.3. Suppose u € H’(R’fil). If g is defined by

then

Proof. Suppose u € 9’(R”+1) Define g as above. A calculation shows that g € LZ(R”H) and

Note that

Therefore

Since J*: H}

2Re F(§)—h [ -
8(r,§) = i/ h(t, &)r F&/M=F&/h gg
1

h

”‘]u”H,’l(R’l’il) >~ |lu— g”Lz(RHl)-

”g”LZ(Rr{il) =< ”M”LZ(R';f)‘

Jg = (F(E) +h8r>§:0.

r

[(Ju, w)|
” JM “Hr_] (R';II) — Sup Vu, w)l
werd, @+ w0 1 g
|(J(u —g),
= up 1w —g),w)|
weH1 Rn+1)w7é0 ”wHHrl(R’]'il)
|(u—g, J*w)|
= sup m=s s Wl
wenl, @ wzo 1We @

(eril) — LZ([R'fil) is an isomorphism,

I J“”Hﬂ(mf) ~ sup

weH], (RIH)), T w#0 [ w”LZ(R”“)

|(u— g, J"w)|

O

(5-2)
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Now J*w € LZ(IR'I’il), SO

1T ull 1ty S e = gl
On the other hand, u — g = J*J* '(u — g). Also J* '(u—g) e H)([R?'fil), and by definition of g,
J* Y (u — g)(x,0) = 0. Therefore J* ' (u—g) € Hr{o([Rz’;j‘). Then if u — g = 0, the lemma is true by
(5-2). Otherwise, we can pick w = J =y — g) in (5-2) to show that

1 ull gt gty 2 = 8l g
This finishes the proof. U
6. The small frequency case

To prove Lemma 4.1, we need to define an operator of the form given in Section 5.
Consider the function @ : R* — C given by

1 ; ; 2 2y|1£12 2
D@ = oy (1 + K& +V2iKe, — (K& + (1 + [KP)EP — [KP),
1+ |K|
where the square root is taken to mean the branch of the square root function with nonnegative imaginary
part. We would like to use this function in place of F in Section 5 to define J and the related operators
of that section. Unfortunately, ® is not smooth. However, we can try to construct a function Fy that
approximates ® on the support of W and has the properties of F from Section 5. To do this, first
notice that if ¢; and 8, are chosen small enough, then this is nearly continuous on the support of w;, or

equivalently, on the support of p. To be more precise, ® is smooth except where
Tk (§) =2i K& — (K&)* + (1 + K )5 — K|

lies on the nonnegative real axis, where this branch of the square root has its branch cut. This occurs
when &, =0 and |£]* > |K|?/(1 + |K|?), and gives a jump discontinuity of size 2,/(1 + |K |2)|£|?> — |K|2.
However, |£]|*> < ¢, on the support of p, so for ¢, close to | K |2/(1 4 |K|?), the maximum possible size of

the jump discontinuity is small.
Therefore, for any § > 0 we can define F(&) on the support of p such that

|Fs(§) — () =4

on the support of p, by choosing c; small enough. The derivatives of Fy inside the support of p may
depend on cy, c3, &1, and §,. Since the choice of these in turn depends on §, the derivatives of Fy are
bounded by a quantity that depends on §.

Now consider the necessary bounds on F;. On the support of p, the imaginary part of Tx must lie in
the interval [—-2K 65, 2K 6;]. The real part of T is given by

—(K&)* — K+ (1 +|KDIE
2

We have that |£|> < ¢, on the support of p. We can choose ¢, so close to % that

(1+KHr,—K?<6,.
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Then the real part of 7k is bounded above by §, on the support of p. Therefore, on the support of p,
(Re(tg), Im(tkx)) € (—00, 82] X [-2K 8, 2K 8], and so by taking §, small enough, we can ensure that
the real part of ,/Tx has absolute value less than % on the support of p.

Therefore, if § is small enough, Re(F), |Fy| > 1/(2+ 2K?) on the support of p. We can now define
F, smoothly outside the support of p so that Re(Fy), |Fy| > 1/(242K?) for all £, and F; = (1 + |£|*)!/?
for |£| > 2, say. Then F; is smooth, Re(F (§)), |F(§)| >~ 1+ |&]| for all £ € R", and the conditions (5-1)
are satisfied automatically for |§| > 2, and hence for all .

Therefore Fj satisfies all the conditions given in Section 5, and the operators defined by

Jou(r, &) = (Fsr@) +har)zz<r, £),
Tru(r, &) = (st) —har)ﬁ(r, £),

— r t Fs(&)/h
J;lu(r,s>=h1f ﬁ(né‘)(—) dr,
1 r
and

— o A\F©)/h
Js*_lu(r,é)=h1/ ft(hé)(;) dt

satisfy all the properties from that section.
Now we are ready to begin the proof of the small frequency case. Suppose x2(r, 8) € C Oo(lR’fj:l) isa
cutoff function that is 1 on U and has support inside Us.
n+1

If w e CP(U), then wy € SJ(R'I’]:I), supported away from r = 1. Therefore Js_lws € SR is

supported away from r = 1. Then ijs_lws is in C;°(U,). Therefore, by (3-4),

h _ _
%” x2Jy s ||H1(U2) S | %p.e0 x27s fw, ||L2(U2)'

Since Xng_lws € C3°(Uy), the H'! and Hr1 norms are comparable, so
e d ey [ x|
VAL ICHORS] Rl PRI
Using the boundedness properties from Lemma 5.1,
e g, S [Fered
% sX2Jg  Ws LZ(RVJI)N p,e,0 X2Jg Wy LZ(RHI)’

so applying the first part of Lemma 5.2,

h < _ h2
ﬁ ”szs ”LZ(R’IIiI) ~ Hg(p’g,o‘ X2Js Wy ||L2(R’llj:l) + CB? ||rU)s “LZ(RVILiI)'

The Cj; factor written in front of the last term is to indicate that the constant in the < sign depends on the
derivatives of Fj, and hence on §. This is fine, because § is chosen independently of /2 and &, but this will
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help track the § dependence. Now yow; = o Pw. Since w is only supported on the region where y» is

identically one,
xows = Pw+ O(h®)Ew = ws + O(h*)Ew,

where E is a pseudodifferential operator of order O (actually a smoothing operator) on R". Therefore

h _ 1
ﬁ”XZws ”LZ(R’HI) = ﬁ|lw3||L2(Rillil) - O( )”w”LZ(R’]'II)’

and so

" | K4 I w | C " O (h*
%”ws”LZ(RﬁI)N p.e,0 X2Jg  Ws LZ(R’ff)-i_ S?HrwS”Lz(Rﬁl)—i_ ( )”w”LZ(RﬁI)'

For small enough #, the second last term can be absorbed into the left side (r is bounded on the support
of wy) to give

h -1
N S Loeo 2l we] 12y, + OB W g

By the product rule, £, ¢ 5 x2 — £y ¢, X2 18 a first-order semiclassical differential operator, and thus it is
bounded from H'(U,) to L?(U,). Therefore

h -1 -1
% ||ws ”LZ(R’fjrrl) S.; || XZSNPgD,S,O'Js Wy ||L2(U2) +h H Js Wy || HY(Uy) + O(hoo) ||w ”LZ(RTil)'
On U,, the H! and H,1 norms are comparable, so

h
—=llwsll 2y S| Lpeo s ”L%Rﬁ‘) +h| 7 ws | IR T O(hoo)”wHLz(Rﬁl)'

NG

Using the boundedness properties again,

h -1
sl 2y S | Foeo i wsl gy + RIwsll e + OB Wl 2 -

NG

The second last term can be absorbed into the left side to give

h -1
el S [ Epeodws] gy + OGNl 2. (6-1)
I want to combine this last inequality with Lemma 5.3 to get

h -1
_||ws||L2(Rr1¢1) < ” Sy e0dy Wy H H R + O(hoo)”w”Lz(erzer).

NG

To do this, I need to show thatif u =¥, ; » Js‘lws, then the function g defined in Lemma 5.3 satisfies a
bound like

1
”g”LZ(R'llil) = 2 ||Lt ”LZ(REI)’

by using an integration by parts argument like the one described in Section 2.



138 FRANCIS J. CHUNG

Let v = J. 'w;. Then

o0 J—
§="—7— / P eov(t, E)r /b= Elh gy,
1

Writing out £, ¢ » as in (3-5), we can consider the integral for each term of &, . , separately. For this
equation the hat notation for the Fourier transform will become a little impractical, so let %(v) = 0. Then

2Re F, —h o) B
gzeTS/ @(<1+|Vf|2)h28t2v)r_Fs/ht—Fx/h dt
1
_CTS/ ;%((aﬂaf.hv(,)hatv)r—m/ht_mhdt
1

2ReF,—h [ 1 T,
= f SF((@ R Lsv)r By,
1

We can use the assumptions on B¢, yr, and Lg» in equations (3-6), (3-7), and (3-8), together with the
fact that |1 — | < he™!, to write this as

2Re Fy,—h

oo —
g="—"—0u | F(A+ KPR v)r~ =y
h | !

2Re Fy—h [*2 =
ke hs f ;%((1 + K - hVg)hdv)r~ /= EIh gy
1

2ReFy—h [* 1 von
+—h3 / t—zg?((l+h2A9)v)r_FS/ht_FS/hdt

2ReFy—h [ =
+CueTS/ F(Equyr BB qr . (6-2)
1

where E is a second-order semiclassical differential operator with bounds uniform in x. Now we can
integrate by parts to remove the hd,’s.

In the first term, this gives us

2Re Fy—h [ T
— f R e
1

2ReF,—h [®F, =
_cRehs TR hs / 75(1+K2)ha,ar*Fx/hst/’1dt
1

2ReFy—h [®(F\ yox
:—ehs / (7‘) (L+ K or—fs/hy=Elh gy
1

2ReF,—h [ F, -
+eT/ ht—;(1+1<2)ﬁr—Fs/hz—Ff/hdt.

There are no boundary terms from the integration by parts because w is supported away from r = 1, and
hence w, and v are as well. The last term can be absorbed into the last term of (6-2). In the second term,
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we get

2ReFy—h

oo 2 —
p / @ +iK&)hd,orH/ M gy
1

yor—Fs/hy=Fs/h gy

_ 2Rer—h/ 2F,
= - ]
2Re Fy,—h

2h , [
p /] t—z(l—f-lKSn)vr Fs/hy=Fs/h gy

Again the last term can be absorbed into the last term of (6-2). Therefore, returning to (6-2), we have

2ReFy—h [*(F) r
§=GTS/ <7> (14 K> or=F/he=Flh gt
1

2Re F, — h 2F
_—5/ _{_IK%'n)vr_Fs/h _F‘/hdt

h

2Re F;,—h [ 1 . T
Ts/] t_2(1_|§|2)vr Fs/ht Fs/hdl‘
2Rer—h ©___ —F,/h 7F/h
+ O | Er B,
1

Now F; (&) is designed so that Fy(£) is very nearly a solution to (14+K?) X2 —2(1+iK&)X+1—|£]>=0
when w; # 0, and hence when 0 # 0. More precisely,

1+ KDFGE) — 20 +iKa)F@) + 1 - 167 S S(F @)+ [&]) < 8IF 6)).
That means that we can write g as

. 2Re F,—h ™ . = 2ReFy,—h [ —
g = y——M f R(S)vr_Fs/ht_Fs/h dr + CH« hé Ezvr—Fs/h
1

=B/ ay,
h I

where |R(&)| S |Fs(8)] < 1+ &]. Now it follows, as in the proof of Lemma 5.3, that
18172 gery S S NREDT g, + CRIE I g
Therefore

18152ty S G+ Cllol o ageny- (6-3)

This gives an estimate for g in terms of v. However, we want the estimate to be in terms of u. We have
u==%y¢s0, 0

2 _ 2
”u”l‘z(RHl) = ||(5£¢,£,0U||L2(Rr{il)

and

2
2
—Calvl?

||££¢wanz([R{,m)NH((HK)hza2 ~(1+ Khg,)hd, + — <1+h2A9))
LZ(R’IPH)

HZ(R"+1)
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Rewriting in terms of v, we get

& vl
|| ©,8,0 ”Lz(eril)

2

> N 2 2
Nh CM||U||H2(|R'IZII)'

((1 + KH)h29? — %(1 +iKE)hd, + }2(1 ~ |$|2>>ﬁ(r, £)

L2RTY
Now 0(r, §) = @(J;l Pw)(r, &) is only nonzero for £ such that

K|?

LS N
21+ K

21
§17 =5+
The operator
2,242 2 . 1 2
A+ K)h"9; — ;(l +iKE&,)ho, + r_2(1 — &9
coincides, for r > 1, with a differential operator in r of the form
(1+ K*h*9? = 20(1 + i KE)hd, +o* (1 — &),

where w is a smooth function that coincides with 1/r for » > 1. This is second-order elliptic for each |£|
such that 9(r, &) is nonzero, and its symbol (in ) is bounded below; therefore

—n 2,202 2 . 1 23\~ ? 2
h I+ K )h"0; — —(1+iK&)hd, + = (1 —[§]7) Jo(r, §) = ||U||H2(Rn+l)-
r r LZ(RHI) 1+
Therefore
2 2 2 2
1L0.2.000 e, 2 W01, = Gl g
and so

2 2

_ 2 > 12 ) > 11112
||u||L2(|er'j:l) - ”g(p,é‘,O’U”LZ(RTiI) ~ ||U||H2(|Rllljr>l) CMHUHHZ(RIlljrrl) ~ ”U”HZ(R}E:I)

for ;v small enough.
Substituting this into (6-3) gives

”g”Lz(R’ff) S (6 + Cu)”u”LZ(Rﬁl)-
Taking p© and § small enough means
”g”LZ(R’]'iI) = % ”M ”LZ(R’HI)‘

Combining this with (6-1) now gives

h -1 00
_€”wS”L2(R’1‘f) < ” Js&ye0dy Wy H HL R + O )”w”LZ(RﬁI)'

NG
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Then using the second part of Lemma 5.2, we get
i|| I S| Lo I I s + Csh|rd; twy + O™ ||w]|
Wy L2RIY S l[Fe.e.0 sy Wy H7 @ ) s Ws H @ w 2RI

NG

S %g.cows| H,"(R’{I‘)+C5h“r‘[v_lw5 HHI(R’IT) + O(hoo)”w”Lz(R’l’I‘)‘

Again the Cs factor is written to track the § dependence, but again this is fine. &, . ;w; is supported in
the r direction only for those r that can come from $2,, since w; is. Therefore the Hr_1 and H~! norms
are comparable, and so

h _
;Euwnu%mf>5H&;@Uwﬁnrumf)+hcﬂvfsHmnHumf)+cNh“nmeamfy (6-4)

— 1 [r ¢ Fs(&)/h
Js ws(r»S)ZE/ ws(hé)(“) dt,
1 r

and 1 (7, £) is supported only for 1 <t < C for some C depending on o ($2,). Therefore, for r > 4C,

Meanwhile,

— 1 c ¢ Fs/h 1 Re(Fs/h) 4C Re(F/h)
Js_ ws(r, g)) = E/; ws(hé)(i) dt i T )
SO
_— 2 c Re(2F,/h)
.AMMn9(§/|wm9Pm§
1
Therefore

—1 —1 00
I s gy S Irde sl 2 < cacy + OBl 2.
Similar calculations for derivatives of J. 'w give

Hr‘]sile”Hl(R’l’j:l) S ||rJS71wS||H1(1<r<4C) + O(hoo)”wS”LZ(RH‘)’

SO

—1 —1
|77 ws ||H1(RHI) ) PARTA ety OB sl .
Returning to (6-4), we get
h -1 00
ﬁ“ws“Lz(R’fil) < |%p.e0ws ||H*1([R’l’j:1) +hCs| I ws | m@sy T OGN 2.
Applying the boundedness result for J~! gives
h
% ”ws ”LZ(RHI) S ||$¢,8,0‘ Wy ||H—](R’fil) +hCs ”wv ”LZ(RHI) + O(hoo)”w”LZ(R'llil)-

For small enough ¢, the second last term can be absorbed into the left side to give

h o
;§wmmmﬁgﬁwa@ammﬁmﬁg+0m Mwll 2g)-

This finishes the proof of Lemma 4.1.
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7. The large frequency case

Now we turn to the large frequency case. We will need to define a new operator J,.
Consider again the function @ : R* — C given by

— 1
O®) = [z (1 HiKE +V2KE — (K&)> + (1 + KDIEE — KP).

but this time take the branch of the square root that has nonnegative real part. Now @ is smooth except

where
) () =2iK&, — (K&)?+ (1 +|KDEPP — |K|?

lies on the nonpositive real axis. This happens when &, = 0 and

2 K|?
2 < —— .
1+|K]

Therefore, on the support of 1 — p(§), ® is smooth. Since the real part of the square root is nonnegative,
both |®| and the real part of ® are bounded below by 1/(1 + K?). Therefore we can pick a smooth

function F; such that F;(§) = ®(&) on the support of 1 — p(£) and

1
Re Fy(§), | Fe(§)] = 11K

2
In fact, if % < cp < cy and 0 < &g < &1, we can still pick F; to be equal to @ on the set

{EeR"||E]> = co or &, = &),

with F; smooth and Re Fy(£), |F;(§)| = (1 4+ K?)~!. Now for large |£],

Re ®(§), |Pe(8)| = (I+18D,

1+ K?
so Fy then satisfies these inequalities for all £&. Finally, for large |£|, ® is smooth and satisfies the
inequalities (5-1), so it follows that F, satisfies those inequalities for all £. Thus F; satisfies all of the
conditions at the beginning of Section 5, and therefore the operators defined by

Fe(&)

r

Fy(§)
r

Jou(r, &) = ( +har)ﬁ(r, £),

Trur, s>=( —har)ft(r,s),

—_— r t F/(S)/h
J; tur, §)=h_1/ ft(t,é)(—) dt,
1 r
and

— [ee) r W&)/h
Jg‘—lu(r,s):h—lf a(z,s)(;> dt

satisfy all of the properties from that section.
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Consider the Carleman estimate (3-4). By a similar argument as in the small frequency case, we get

h —1
% ”w€ ”Lz(R’ff) S ||££<p,a,0 Jg Wy ||L2(R7f) + O(hoo)”w”LZ(R'fil)- (7'1)
Again, I want to combine this last inequality with Lemma 5.3 to get

h —1
—”u)g”Lz(ertil) S H J@ggw,g’gjz wy HHF—I(RTII) + O(hoo)”w”LZ(Rr]lil).

NG

To do this, I need to show that if u is of the form u = 55%8,(,][1w4, then the function g defined in
Lemma 5.3 satisfies a bound like

1
”g”Lz(R'ff) = E”I’t”LZ(RTf) + Oh)||lw, ||L2(R’llil)’

by an appropriate integration by parts argument. The approach used in the small frequency case does not
work here, because &£, , , is not at all elliptic on the support of w,. However, now £, . , can be factored
into a composition of two operators, one of which has the desired properties.

Let £ (£) be a smooth cutoff function that is identically one on the set where |& |> > ¢ or |&,| > 81, and
vanishes if |£]% < ¢ or |&,| < 8. Let

Gy ==& Fe(8),

and consider the symbols

a+iByr-E+(a@+ifs 2 — 1+ (> (a?—Ls(0,€))
1+ |ysl?

G+ =1¢(8) +G(8),

where Lg: (0, &) represents the symbol of the differential operator Lg.. The square root represents
the branch of the square root with nonnegative real part. The argument of the square root lies on the
nonpositive real axis only when B¢ -& =0 and

a?|ysl?

Ls:(0,8) < ———.
L+ |ysl?

Now
Lon(0,8) = ai(0)&f + - - - + an(0)h*E, + hb1(0)&1 + - - - + hb, (0)h&y,

where by the hypotheses in Proposition 3.1,
la; — 1| < Cy
for C, that goes to zero as p goes to zero. Therefore
Lsi(8,8) = (1= ClEP* = hClg] = (1 = Cp = WIEP,

where C bounds the b;(6). On the support of ¢,

2

2> -
EP 20>
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so for small enough p and £,
2

L (O, .
$10.6) > T3

Then | — 1| < he™!, and by (3-7),

lyr — K| =Cy,
so for small enough w and £, it follows that

o?|yyl?

Lsi(0,8) > — 21—
L+ yyl?

on the support of ¢. Therefore the square root is actually smooth on the support of ¢, and hence G 1 are
smooth and really are symbols of order 1 on R”.
Now if T, is the operator associated to the symbol a,

1 1
(har — ;TG+> (1+1ys1%) <har — ;TG>
2 1
= (1+lys1?)h*9? — ;(a +Br-hVg)hd, Ty + r—z(a2 +h?Ls) T,
2 1
= (L 1y ) T6, + 5 (1+ v ) (To T, + T T, + T6,Tg,) + hEr,

where E| is an operator built of first-order semiclassical pseudodifferential operators in R" and 9,

derivatives that is bounded from H I(R’ff) to LZ(R’fil).

Now let v = J[lu)g. Then

1 5 1
ha,—;TG+ (L+1ysl) har—;ch v
2 1
= (1+lys1?)h*07v — ;(oz+,3f-hV9)h8,T;v+ r—z(az +h*Lgn)T,2v

2 1
(L+1ys ) To, v+ 5 (1+1ys ) (To, +To_ + Ta,) Ta,v + hErv.

r

Note that W, (r, &) is only supported for & on the support of 1 — p, and therefore v = J[lwg is supported
only for £ on the support of 1 — p. Therefore

Trv=v,
since ¢ = 1 on the support of 1 — p. Similarly, 7,2v = v. In addition,

TG UIO,

s
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since Gy is 0 on the support of 1 — p. Therefore

1 ) 1
h8r—;TG+ (1+|)/f|) har—;T(}7 v

2 1
= (L+ 1y *)h*d}v — ~(e+ By hVs)hdev + r—z(az +h*Lg:)v+hEv
= QZ@E,UU +hE v,

where E; is bounded from H ([R"“) to LZ(R'I’:[l).
Therefore

Lo sV = (ha, - %TG+>Z +hEv
for some function z, given by
e=(+ |yf|2)(ha, - %TG)U-
Then

P eov(t, E)r =Tl gt

_2ReF—h [ -
cRen T / <(hat——TG+) )(t,g)r—”/hz—”/hdt
1

2Rng—h/°°
+
1

. 2ReF h [ ——
br ey = 2Refezh /
1

hEw(t, £)rt/h=Felh gy,

Integrating by parts gives

2ReFp—h (™1 7

T“/ ;@((Tﬁ— Tg,)z)(t, &)~ /= Flh gt
| :

2ReFp—h [ — -
+eTK/ hEv(t, &)r~Fe/hy=Flh gy
1

§(r.§) =

There are no boundary terms because z is supported away from r = 1. Therefore, using the bounds on g,

2
+ | Eqv|?
LZ(RIIHI

1
2 i
”g”Lz(errjrrl) < H ;(TF(—G+)Z Lz(R’Hl)
2

We need an estimate for . Examine the symbol F; — G ..

LA

a+ifr-E+(a+ifr-€)2— 141y (e + Len (0, s)))
L+ |ysl?

1
;(TE—G+)Z

~ Gy = C(Fz(s)

On the support of ¢,

Fu(®) = 75 (1+1K& +V2iKg, — (K&, + (1 + K2)EP — [KP).
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Therefore

FoG. ¢ 1 +iK&  a+ify &
R W T R IR VAT

(\/Zinn — (K&)*—(1+K?)[E1>2—|K|? \/(a+i,3f'5)2—(1+()/f)2)(012+Ls"(9,5)))
+¢ I 5 — 5 .
+ K I+ |yl

Consider the first term.

1+iK&  a+ifr-&  (y/P—KH(U+iKE)  (I+K)(A—a)+i(By—Ken)-§)

I+K2  I+ly 2 A+KHA+ 1y L+ KL+ 1ys»

The first-order operators with symbols

(Iys1> = K (1 +iK&)
(I+ KA+ e

and
I+ KH((1—a)+i(Br — Key) -£)
A+ KA+ yr1»

have bounds < C,,, because they involve multiplication by a function of 6 that is bounded by Cx C,.
Similarly, consider the first-order operator with symbol

gh(\/ZiKén — (K& — (A +K)EP—IKI* Va+iBs-€)2— 1+ (yp)H)(@>+ L (0, 5)))
1+K? 1+ |ysl? ’

To fit everything horizontally on the page, write

1k =2iK& — (K&)* — (1 + K> — |K|?

and
T = (a+iBr &) — (14 () (@ + L (6, £)).
Then
VK NiZi % — Ty

=(1+4+K?

1+K2 14y A+ 1y (A + 1y yTx + 1+ K2) J77)
(A+1yr»H? = A+ Ktk

A+ KA+ 1y (A + 1y Tk + A+ K2) /T7)

Expanding,

tx — 1y =2i(Key—afy) &+ ((Br &7 — (Ken-£)?) + (lys|> — K*L(O, i)
+(yrP = 1K)+ A+ KH (>~ L, &)).

Therefore the second term has operator bounds S C,,, because each term involves multiplication by a
function of 6 that is bounded by CxC,,.
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Therefore
1 2
—(Tr )z <8zl
F,—G 1 n+1
VU F=Gy L@ HU(Rh
for ;v small enough. Then
1 2
2 < | Z(7— 2 < 2 2
132ty S Hr(TF«—GJZ e T VET0I 2 oy S 822l g, + 2000 -
1+
Since
1
LoeaV = (har — ;TG+>Z+hE1v,
we have
1 2
1%y eovll? > | ho, —-Tc. )z — | Ev|?
©,8,0 LZ(RTI])_ r , Gy - 1 Lz(Rn+l
LARY)
2
> -Tx —h?
175 207 gy = “r K . [
2 2
2 2l gy = 8105 g, = 20 s
2
2 W2l sty = 101 e,

for 6 small enough. Therefore

147

-1
||g||iz(erl+l) 582”S~P¢£UU”H1(R»1+1 hznv”Hl(R”“) N(S ||~5£¢86U||H1(Rn+1 h2||Jg 1- P)wHH'(R"“ .
+

Using similar reasoning as for the small frequency case,

W27 = Py ey S B2 (1= Py,

(R;lzil) (RnJrl
Therefore
2 2 2 2 2 2 2
”g”LZ(R’ff) N L ||£¢SUU”H|(RH+I +h ||J (I— P)w”Hl([RVlJrl) K £, E,UU”Hl(ertil)+h ”wZHLz([R’ff)'

Then for § small enough,
gl 2y S H1Lp.eovll ety + Allwell e
Now using (7-1) and Lemma 5.3,
h
7
Absorbing the second last term into the left side gives

h -1
ﬁ ”wZ”LZ(R’l‘f) S || J[‘%(p,s,UXZJK Wy ||H;1(ervil) + O(hoo)”w”LZ(R’l'il)-

-1
”wZ”L2(Rﬁl) 5 || ingqn,s,aXZJg Wy ” Hfl(R’l‘f) +h“wf”L2(R’llf) + O(hoo)“w”Lz(R'llf)-
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We can finish the argument as in the small frequency case to get
h
ﬁ ”wZ”LZ(R’]’II) S ||££qo,e,a Wy ||H—1(R'llil) + O(h)”w”LZ(R']'II)-

This finishes the proof of Lemma 4.2, and thus of Proposition 3.1.

8. Proof of Theorem 1.4

We will begin by gluing together estimates of the form in Proposition 3.1 to prove the following interme-
diate proposition.

Proposition 8.1. Suppose that f : S" — (0, 00) is a C* function such that 2 lies entirely in the region
Ao ={(r,0)|r=> f(O)} Cc R, and 'S is a subset of the graph r = f(0). If w € C;°(S2), then

% I w||L2(Q) 5 ||§£go,s,w,qw ||H*1(A0)'

Proof. Now let €2 be as in Proposition 8.1. We can take an open cover Uy, ..., U, of 2 such that on
each QN U, there exists K; such that under some choice of coordinates, |V log f — Kje,| < K; and
|sin(0x) — 1| < uk;, where pg, is the value of o from Proposition 3.1 that works for K = K ;. (Since
|Vsn log f| must be bounded above, g ; must be bounded below, and therefore this is possible with only
finitely many U;.)

Let{y, ..., &, be a smooth partition of unity subordinate to the cover Uy, . .., Uy,. Now for w € C;°(£2),

W=qw+t- -+ lpw =wi+ -+ W,
where each w; € C°(2NU;). Applying Proposition 3.1 to the domain QN U},

G lwill2 v, S 1€ ewill-10a0)

foreach j =1, ..., m. Then

h
—”u)j”LZ(Q) S ”SNP(/J,Swj”H*l(AO)’
J J

SO
h
—lwlrzg S 1Lpcw)ll-1a0)-
€
NG -
Now by the product rule,
L. cWill-1a0) = 1Lp.eCiWlH-140) S NEiEpcWllH-104,) + Chllwll 1204,
S NEpewllg-10a0) + Chllwlliz2ca,)-
Therefore

h
ﬁﬂw”m(g) S cwllg-1a,) (8-1)

for & small enough, for every w € CJ°(£2).
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To treat the case where W and ¢ are nonzero, note that

log? r

2¢e

Loewg=Lpe+h(W-hD+hD-W)~+2ihW - v(logr +h ) +h*(q + W?).

Therefore

h
NG w2 S NLp.ew.qWllm-140) T ACIWI L2044

and the last term can be absorbed into the left side to give

h
%”w”LZ(Q) SILgew.qwllm-1040)-
This completes the proof. 0

Finally, I can prove Theorem 1.4 by gluing together estimates of the form in Proposition 8.1. If '} is
a neighborhood of 92, then let ' be a smooth domain containing €2, with QN 3dQ" =T¢.

Then let Uy, ..., Uy be an open cover of €2 such that each dU; NT"Y. coincides with a graph of the
form r = f;(0). For each U;, Proposition 3.1 gives us

NG lwli2w,) S 1Lg.e.w.qwllm-1(4,)

for w e C°(U;).

Each A is defined by the graph of a function r = f;(6), and since 92" is smooth and coincides with 3Q
onI'¢, and 9,9 <0onT'¢, 3" must be locally a graph in a neighborhood of I' . Therefore we can assume
that A ; coincides with Q' in a neighborhood of each U ;, in the sense that their characteristic functions are
equal in that neighborhood. Then there is a smooth cutoff function x; defined on A; NQ’ that is identically
one on U; but vanishes outside on the complements of A ; and Q’. Multiplication by this function provides
a bounded map from HO1 (Aj) to HOI(SZ’) and vice versa, and therefore ||wl|g-1q) = lwllg-1(a,) for
w € Cy°(U;). Therefore we have

h
7 lwlizew;) S 1Lgewqwllg-1@)

for w € C;°(U)).
Gluing together these estimates in the manner used above gives

h
ﬁllwllm(g) SIp.e.wqwll g1
for w € C3°(£2).

Finally, note that if w € C{°(S2), then e1°2"*/¢y € C°(Q), so

(logr)?/e < ”e(logr)z/fg(p,w’qw I .

w H LA(Q) ~ QN

h
el

On , there exists some Cq such that 1 < e(10g"?/e < oCa/e o

hllwl 2 S 1Le.w.qwllm-19)s
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as desired. This establishes Theorem 1.4.

Remark. If we want to prove Theorem 1.2 instead of Theorem 1.1, then we could begin by supposing that
f:8" = (0, 00) is a C* function such that €2 lies entirely in the region A; = {(r,0) | r < f(0)} C R+,
and I"¢ is a subset of the graph r = f(6). Then by the change of variables (r, 8) — (1/r, 8), 2 maps to
a region €2 of the form described in Proposition 8.1. Therefore, by (8-1),

h”w“LZ(Q) S ”g(p,&w”[.lfl(fio)
for w e cg°§z, where ¢ = logr. Changing variables back gives the Carleman estimate

hllwll 2@y S 1€ 10greWllg-1ca,

for w € C§°Q2. Therefore, by the same kind of argument as above, we get

hllwll 2 S 1L, w.qwllm-1(c)s

where ¢ = —logr and @’ is a domain containing 2, with ' C 92’ N 92 whenever I'_ is of the form
described in Theorem 1.2. Using this Carleman estimate in the place of Theorem 1.4 in the remainder of
the argument proves Theorem 1.2 instead of Theorem 1.1.

9. Complex geometric optics solutions

Theorem 1.4 can be used to construct solutions to equations of the system (1-1). The key is the following
proposition.

Proposition 9.1. For every v € L*(R2), there exists u € H'(Q) such that

g*

oWt =vons, ulpc =0

and

Nl g1y S E“U”LZ(Q)~

Proof. The proof is based on a Hahn—Banach argument. Suppose v € L?(2). Then for all w € Cyo(2),

1
|(w|v)sz| < ZHUHLZ(Q)h”w”LZ(Q)-

Therefore, by Theorem 1.4,

1
|(wve| S vl Lew.qwla-@) ©-1)
Now consider the subspace

(Lo wqw|weCPEQ)}CH Q).

By the estimate from Theorem 1.4, the map £, w ,w +— (w|v)g is well defined on this subspace. Itis a
linear functional, and by (9-1), it is bounded by (C/h)||v]|12(gq)-
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Therefore, by Hahn—Banach, there exists an extension of this functional to the whole space H (@)
with the same bound. This can be represented by an element of the dual space HO1 (£2'), so there exists
u € Hy (') such that

1
el g1y < Z”v”Lz(Q)

and
(wlv)g = (Ly,wowl)o = (Lywqw|u)g
for all w € C3°(£2). Note that u € H(} (2") implies that ulps = 0. Then
Wlv)e = WIL; y 0)e
since w € C3°(2), and thus
(w|v — ‘EE:;’W’qu)Q =0

for all v € C3°(2). Therefore v = §E;’W’qu on €2, and

1
Nl g1 oy S E”U”Lz(ﬂ)’
as desired. O
Now I can construct the complex geometrical optics solutions.

Proposition 9.2. There exists a solution of the problem
SNPW’qM:OOI’l Q, l/t|[‘i=0

of the form u = eV/P@HV) (g 41y — et "b where p(x, y) =logr, ¥ is a solution to the eikonal equation
Vo -V =0, |Vo|=|VY¥|,aand b are C? functions on 2, and

Rel(x,y) =, y) —k(x,y),

where k(x) >~ dist(x, ') in a neighborhood of T'. and b has its support in that neighborhood. Finally,
r e HY(Q), with r|rs =0, ||rll 1) = O(h), and ||r|l 240, = O(h'/?).

The proof is a combination of the proofs of the equivalent theorems in [Dos Santos Ferreira et al. 2007;
Kenig et al. 2007].

Proof. Let ¢(r,0) = logr, and take ¥ (r, 0) = ds» (6, w) for some fixed point w € S". If w # 6 for all
(r, 0) € 2, then ¥ solves the eikonal equation V¢ - Vi =0, |Vg| = |V¢/|. Then

hzﬁEW,qe(l/h)(‘”“”) — oI/ M(e+iv) (h(D + W) - (VY —iVe)+h(Vy —iVe)-(D+ W)+ hzggw’q).
Therefore, if a is a C? solution to
1
(VY —iVe)-Da+ (VY —iVe)-Wa + T(Aw —iA@)a =0,
i

then
2Ly VM@ g = QUM+ 2 4 = O (h2)e 1/ M@+
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P

We can look for an exponential solution @ = €™, in which case the relevant equation becomes

(Vo +iVy) - VO +i(Vo+iVy) - W+ 1A(p+iy) =0.

Now suppose x € R+ and write x = (xu, x"), where x,, is the component of x in the w direction, and
x' are the remaining components. Then by considering z = x,, + i|x’| as a complex variable, we get
¢ = Relogz and ¥ = Imlog z. Now our equation is an inhomogeneous Cauchy—Riemann equation in
the 7z variable, and can be solved by the Cauchy formula. Then a is C?, since W is. The solution is only
unique up to addition of terms g, with

Vo+iVy)-Vg,=0. (9-2)
Now I want to construct a (complex-valued) function £ to be an approximate solution to the equation
VE-VE=0, {Lrc=¢+iy.
In order to avoid duplicating the solution ¢ + iy, we can ask for
dvllre = —dw(@+iy)|re.

To construct an approximate solution, pick coordinates (7, s) near I'S. such that 7 are the coordinates along
'S and s is perpendicular to I'{ . Suppose ¢ takes the form of a power series

L(t,s)= Zaj (t)sj.

j=0

o0 oo
Ve =(Vil, d,0) = (Z Via;j()s?, Y " a (t)js-’_1>.
j=0 j=0

Expanding the equation V£ - V¢ = 0 and considering each power of s separately gives a sequence of

Then

equations
> ViajViae+ Y jkajar=0 (9-3)
Jj+k=m JjH+k=m+2
foreachm =0, 1, 2, .... The boundary conditions determine ag and a;, so we can solve this recursively.

If m > 1 and all a; are known for j < m, the only part of (9-3) that contains an unknown looks like
2(m + 1)a1a,,+1. Note that
ar=—d(p+iy).

Since I'{. coincides with a graph r = f () for some smooth function f, and ¢ = logr, there exists some
&o > 0 such that |a;| > g9 on ', so we can divide by a; to solve for a,, ;.

This gives a formal power series that may or may not converge outside s = 0. However, we can
construct a C* function £ in €2 whose Taylor series in s coincides with this formal power series at s =0,

such that
V- Ve = 0(dist(x, ['$)™).
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Moreover,
dyRel|r¢ = —0vplre < —€o
and
Rel|r¢ = ¢lre,

so in a neighborhood of I'¢,
Re b(x,y) = ¢(x,y) —k(x,y), (9-4)

where k(x) >~ dist(x, I'{ ) in a neighborhood of T .
By a similar method, we can construct an approximate solution b for the problem

Ve-Db+VE-Wb=0, b|rc =alre,

SO
Ve-Db+VeE- Wb = O(dist(x, T)™),  blre =alr:.

Multiplying b by a smooth cutoff function does not change these properties, so we may as well assume
that b is only supported close to I'{ for (9-4) to hold. Then

—h2 Ly 4 (") = " (O (dist(x, T)™) + O (h?)),
SO
|2 8w 4 (e "b)| = e/ e/ (0 (dist(x, T$)™®) + O (h?)).

If dist(x, ['¢) < h'/2, for h small, this is e*/" O (h?), because of the O (dist(x, I'})*) term. On the other
hand, if dist(x, ') > h'/2, this is still e?/" O (h?), because of e /.
Now e1/M@+iv) g _ ot/hp — () on I'¢, and

e—w/hhlgw’q (e(l/h)(<p+i¢)a + elf/hb) =,
where [|v|12q) = o (h?). By Proposition 9.1, the problem
Low.g" = e‘w/hhziw,qe‘”/hrl =-vonQ, rilr;=0

has an H'! solution r; with

Il g @) S %HUHL%Q) = O(h).
Set r = e V/ty and u = VMW@V (g 4 ) — e*/"b. Then
711 (@) = O(h),
0 [Irll 20 = O(h'/?) by the trace theorem, and

§Ew,qu=00n Q, u|1"gr=0.
This finishes the proof. O

If the boundary condition is not needed, then the result is as follows:
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Proposition 9.3. There exists a solution of the problem
Lw,qu=0o0n Q2

of the form u = VM@V (a4 r), where ¢(x, y) is any limiting Carleman weight, \r is any solution to the
eikonal equation, a is a Czﬁmction on Q, andr € H (Q), with 71l 1) = Oh) and ||r || 20y = O (h'/?).

This is essentially Lemma 3.4 from [Dos Santos Ferreira et al. 2007]. We can always replace a by ya,
where y is a solution to
(Vo+iVi)-Vy =0o0n Q.

10. Proof of Theorem 1.1

For convenience, || - | will denote the L? norm in this section, unless otherwise indicated. The tilde as
used in this section has nothing to do with the notation from Section 3.

Using Proposition 9.2, we can construct iy = eV W@+ (g5 +ry) — e "b =: uy + u, to be a solution
to

$W2,q2ﬁ2=00n Q, ﬁzh-*s_ =0.

Then —¢ is also a Carleman weight, and if ¢ and v satisfy the eikonal equation, then so do —¢ and .
Therefore, using Proposition 9.3, we can construct u; = e/W=9+iv) (g, 4 r)) to be a solution to

$W1 ,qflul =0.
Let w be the unique solution to
Lwiqw =0, wlag = i2lsg.

(Here we are using the assumption that £y, 4, does not have a zero eigenvalue.) In particular, w|re =
Uz|r¢ =0, so by the hypothesis on the Dirichlet-Neumann map,

dy(w —uz)|r_ =0.

Now
Ewyg(w =) = =Ly, g2
= (Ewygo — Lwy q) 2
= (W — W) Diiy + D - (Wa — Witz + (W3 — W2 + g2 — q1)iia. (10-1)

On the other hand, Green’s formula from [Dos Santos Ferreira et al. 2007] gives us

/sewl,,,l (w — i)y dV = f 3y (i — )T dS = / 3y (i — w)uT dS. (10-2)
Q Q2 re

Combining (10-1) with (10-2) gives

/ 8u(ﬁ2—w)u_1d5=/(W2—W1)'(Db72u—1+ﬁ2DM1)dV+/(W22—W12+612—6]1)L72M_1dV-
re Q Q
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Expanding i, as ity = uy + u, on the right side gives

/ au(ﬁz—w)u—]dszf(Wz—Wl)-(Duzu—]JruzDul)dVJr/(Wf—W12+q2—q1)u2u—1dv
re Q Q

—i—/(Wg—Wl)-(Du,u_l—l—urDul)dV—i—/(W22—W12+q2—q1)uru_1dv. (10-3)
Q Q

To show that d W = d W,, we can apply the reasoning from [Dos Santos Ferreira et al. 2007] verbatim
if we can establish that

hlimoh/(Wz—Wl)-(Duzu_1+u2Du1)dV=0. (10-4)
- Q

Similarly, to show that g; = ¢», we can apply the reasoning from [Dos Santos Ferreira et al. 2007]
verbatim if we can establish that

1im/(q2—q1)u2u—1dvzo. (10-5)
h—0 Jo

To establish (10-4), label the terms as follows: 7| = T, + T3 + T4 + T5. Consider the terms on the right
side first. T, is bounded above by

| (W2 = We™? " Dus ||, a1 + rille + | (W = WDe?/ " Duy |, llaz + 72l .
Since W, — W, is bounded on €2, ||a; || and ||az||q are O(1), and ||r1]|q and ||r2||q are O (h),
T2l S ™" Duz |, + | € Duy | .
T; is bounded above by
T3 < (W5 — Wi+q —q1)(@+r)|gllar +rille = 0().
Similarly,

ITal S e Du, || + |/ " Dur | | e 2| o S |le™ " Duy|| o + k][ e? " Dui |
and
\T5| < | (W3 — W2+ g2 — q1)e 2P| llay +rillg = O (h).

Now examine the term 77:

‘/ oy (i —w)ur dS
re

< ||8u(iip — wye™*/"

| e llar +rifle .

The factor ||a; + 71| is O(1). Furthermore, 9, > &, on ', so

1 1
/Fcav(ftz — w)u_ldS' < ﬁ||,/av¢e—¢/hav(ﬁ2 —w)||pe S E||,/('9v<p(e—%0/”z)v(ft2 —w] . -

By the Carleman estimate given in Equation (2.13) of [Dos Santos Ferreira et al. 2007],

|V 0upe™"0, (it —w) | ry S \/Z”e_whin,ql (it —w) |+ v — e, (it — w) o -
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Therefore

C - — ~
T (VA" = )+ |y e i = )] ).

The last term on the right side is zero, because 9, (i1 —w) =0 on I'_ and 02_ C I'_. Therefore the
upper bound becomes

Tl =)

Expanding L, 4, (i1 — w) and writing 1> = us + u,, we obtain that 77 is bounded above by

CVh
Je

(!Ie“”/”Duz\\Q+\!e s g+ e Dy g+ e s )

_Cvh
CI
<=

where the constant C mutates as necessary to preserve the bound. Therefore, in order to bound the terms
Ty, T», and T4, we need to calculate He‘ﬂ/hDul HQ, He_‘/’/hDMQHQ, and He_‘/’/hDu, HQ We have

(”e " Dus |, + llaz + ralle + e/ Du, | o+ | 2P| )

<He_“’/hDu2||Q + 0+ [/ Duy | o+ Oh) ),

1 . .
[e#/" Dur] g = /" - D(—g +i9)e VT @y + 1) + V1 Deay + 1)

Q
1
SIpe+ivi@ o]+ D@ +rfg =00,
since |71l g1(g) is O (h). Similarly,
le=?" Dus ||, = O ™).

Finally,

1

oo/ D = e "8De] g+ e Db = O,

e ¢/h %D@e(z/hb +e ¥/t Dp H <
Q

= |

Putting all of this together gives Ty = O(h~'/2), T, = O(h™"), T, = O(1), Ty = O(1), and Ts = O (h).
Therefore, multiplying (10-3) through by % and taking the limit as & goes to zero gives

llmh/(Wz—Wl) (Du2u1+u2Du1)dV 0,

h—

which establishes (10-4), and thus by the reasoning in [Dos Santos Ferreira et al. 2007], that AW, =d W,
in  and W; = W, up to a gauge transformation that leaves the Dirichlet—-Neumann maps invariant.
It remains only to prove (10-5). Going back to (10-3), we now have

/ 0y (Ul —w)ur1dS = / (q2 —q1)uruy dx +/ (@2 —quyurdv. (10-6)
re< Q Q
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The first and second terms on the right side are O (1) and O (h) as before. The left side is now bounded

by
h
Tg<|}e—w/h(41 —612)M2HQ + He—w/h(ql _‘D)”rHQ) = \/Z(O(l) + O(h)) — 0"/,

so taking the limit of (10-6) as & goes to zero gives

lim / (g2 — g)usiT dV = 0.
Q

h—0

This establishes (10-5), and thus that g; = g» on 2. This finishes the proof.
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