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This article shows that restricting the domain of the Dirichlet–Neumann map to functions supported on a
certain part of the boundary, and measuring the output on, roughly speaking, the rest of the boundary,
uniquely determines a magnetic Schrödinger operator. If the domain is strongly convex, either the subset
on which the Dirichlet–Neumann map is measured or the subset on which the input functions have support
may be made arbitrarily small. The key element of the proof is the modification of a Carleman estimate
for the magnetic Schrödinger operator using operators similar to pseudodifferential operators.

1. Introduction

Let n ≥ 2, and let � be a simply connected bounded domain in Rn+1 with smooth boundary. Suppose W
is a C2 vector field on Rn+1 and q is an L∞ function on Rn+1. Then define the magnetic Schrödinger
operator LW,q with magnetic potential W and electric potential q by

LW,q = (D+W )2+ q,

where D =−i∇. I will assume that q and W are such that zero is not an eigenvalue of LW,q on �. Then
the Dirichlet problem

LW,qu = 0, u|∂� = g

has a unique solution u ∈ H 1(�) for each g ∈ H 1/2(∂�). Therefore for g ∈ H 1/2(∂�), we can define the
Dirichlet–Neumann map 3W,q by

3W,q g = (∂ν + iW · ν)u|∂�,

where ν is the outward unit normal and u is the unique solution to the Dirichlet problem with boundary
value g. This gives a well-defined map from H 1/2(∂�) to H−1/2(∂�).

The basic inverse problem associated to the magnetic Schrödinger operator LW,q is to recover the
electric potential q and the magnetic field dW from knowledge of 3W,q . (Here dW makes sense by
identifying W with the 1-form W1dx1+· · ·+Wn+1dxn+1.) We cannot hope to recover W itself, since the
Dirichlet–Neumann map is invariant under the gauge transformation W 7→W+∇9 whenever 9 ∈C1(�)

and 9|∂� = 0. However, identifying dW identifies W up to this gauge transformation.
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This can be thought of as a generalization of the Calderón problem [1980], which can be written in
this form with W ≡ 0 in the case of smooth enough conductivity (see [Sylvester and Uhlmann 1987]).

Sylvester and Uhlmann [1987] showed that in the Calderón problem, the Dirichlet–Neumann map
determines q. For the magnetic Schrödinger problem, Sun showed that the Dirichlet–Neumann map
determines dW and q when W is small enough, in a certain sense. Nakamura, Sun, and Uhlmann
[Nakamura et al. 1995] removed the smallness assumption and showed that the Dirichlet–Neumann
map determines dW and q for W in C2 and q in L∞. Tolmasky [1998] and Salo [2004] improved the
regularity conditions on W to C2/3+ε and Dini continuous, respectively. Salo [2006] also gave a proof for
W ∈ C1+ε involving a reconstruction method.

Given that 3W,q determines dW and q, a further question might be whether partial knowledge of
3W,q determines dW and q . In particular, one might ask whether restricting the domain of the Dirichlet–
Neumann map to functions supported on a particular subset of the boundary still gives enough information
to determine dW and q. Alternatively, one might ask whether measuring the output of the Dirichlet–
Neumann map on a particular subset of the boundary still gives enough information to determine dW
and q.

Kenig, Sjöstrand, and Uhlmann [Kenig et al. 2007] proved a result for the Calderón problem addressing
both of these questions. Roughly speaking, they proved that restricting the domain of the Dirichlet–
Neumann map to functions supported on particular subsets of the boundary and measuring the output on
the rest of the boundary determines q . Together with Dos Santos Ferreira, they proved a similar result for
the magnetic Schrödinger problem in [Dos Santos Ferreira et al. 2007], but without being able to restrict
the domain of 3W,q . The main results of this paper are to impose that restriction, and thus show that a
result analogous to the one in [Kenig et al. 2007] also holds for the magnetic Schrödinger problem.

In order to describe these results more fully, we need to describe the subsets of the boundary involved.
Assume that x0 is not in the closure of the convex hull of �, and define the front and back of ∂� (with
respect to x0) by

∂�− =
{

x ∈ ∂� | (x − x0) · ν(x)≤ 0
}
, ∂�+ =

{
x ∈ ∂� | (x − x0) · ν(x)≥ 0

}
,

where ν(x) is the outward unit normal at x .
The main results of this paper are the following two theorems.

Theorem 1.1. Let W1 and W2 be C2 vector fields on �, and let q1 and q2 be L∞ functions on �. Let
0− ⊂ ∂� be a neighborhood of ∂�−, and let 0+ ⊂ ∂� be a neighborhood of ∂�+. Suppose

3W1,q1 g|0− =3W2,q2 g|0−

for all g ∈ H 1/2(∂�) with support contained in 0+.
Then q1 = q2 and dW1 = dW2.

Theorem 1.2. Let W1 and W2 be C2 vector fields on �, and let q1 and q2 be L∞ functions on �. Let
0+ ⊂ ∂� be a neighborhood of ∂�+, and let 0− ⊂ ∂� be a neighborhood of ∂�−. Suppose

3W1,q1 g|0+ =3W2,q2 g|0+
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for all g ∈ H 1/2(∂�) with support contained in 0−.
Then q1 = q2 and dW1 = dW2.

The second theorem is essentially the first theorem after the conformal transformation on � given
by inversion in x0. Imposing the condition W1 ≡ W2 ≡ 0 in these theorems would give the results
from [Kenig et al. 2007], and removing the restriction on the support of g would give the results from [Dos
Santos Ferreira et al. 2007].

Roughly speaking, the first theorem says that if the Dirichlet–Neumann map is known on a neighborhood
of the front for functions supported on a neighborhood of the back, then potentials can be determined.
The second theorem says something similar, but with the roles of the front and back reversed.

If the domain � is nice enough, then the front can be made arbitrarily small. For example, if � is
strongly convex (convex, and the intersection of the boundary with any tangent hyperplane to the boundary
consists only of one point), then the front can be contained in an arbitrarily small open subset of the
boundary, for the right choice of x0. This gives us the following corollary.

Corollary 1.3. Suppose � is a smooth bounded strongly convex domain in Rn+1. Let W1 and W2 be C2

vector fields on �, and let q1 and q2 be L∞ functions on �. Then for any nonempty open subset 01 of the
boundary, there exists a neighborhood 02 of 0c

1 := ∂� \01 such that if

3W1,q1 g|01 =3W2,q2 g|01

for all g ∈ H 1/2(∂�) with support contained in 02, then q1 = q2 and dW1 = dW2.
Alternatively, for any nonempty open subset 02 of the boundary, there exists a neighborhood 01 of 0c

2
in � such that if

3W1,q1 g|01 =3W2,q2 g|01

for all g ∈ H 1/2(∂�) with support contained in 02, then q1 = q2 and dW1 = dW2.

The first part of the corollary says that in particular, the Dirichlet–Neumann map can be measured on
an arbitrarily small subset of the boundary. The second part of the corollary says that alternatively, the
input functions may be restricted to an arbitrarily small subset of the boundary.

Theorem 1.2 can either be proved from Theorem 1.1 by the change of variables mentioned above,
or proved in the same manner as Theorem 1.1, making the changes indicated at the end of Section 8.
Therefore most of this paper will be devoted to proving Theorem 1.1. From here on, unless otherwise
noted, I will assume 0+, 0− and � are as in Theorem 1.1.

The key to the proof of Theorem 1.1 is the construction of complex geometrical optics (CGO) solutions
to the system

LW,qu = 0 on �, u|0c
+
= 0, (1-1)

where 0c
+
:= ∂� \0+. This in turn requires a Carleman estimate for LW,q , which can be described as

follows.
Let ϕ be a limiting Carleman weight on �; that is, a real-valued smooth function that has nonvanishing

gradient on � and satisfies
〈ϕ′′∇ϕ,∇ϕ〉+ 〈ϕ′′ξ, ξ〉 = 0
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whenever |ξ | = |∇ϕ| and ∇ϕ · ξ = 0. Define

Lϕ,W,q = h2eϕ/hLW,qe−ϕ/h .

Here h is a semiclassical parameter; from here on, all Sobolev spaces and Fourier transforms in this
paper are semiclassical, unless otherwise specified, with h being the semiclassical parameter. Thus ‖u‖H1

means the norm defined by
‖u‖2H1 = ‖u‖2L2 +‖h∇u‖2L2,

and ‖u‖H−1 means the dual norm to this, and so forth.
Then we have the following Carleman estimate.

Theorem 1.4. Suppose�′ is a smooth domain with�⊂�′ and ∂�′∩∂�=0c
+

, where 0+ is as described
in Theorem 1.1. Then if w ∈ C∞0 (�),

h‖w‖L2(�) . ‖Lϕ,W,qw‖H−1(�′).

The proof of this theorem is the main new ingredient in this paper. It differs from the Carleman estimate
in [Dos Santos Ferreira et al. 2007] in that this one can be used in a Hahn–Banach argument to give
solutions that vanish on E . The rest of the proof of Theorem 1.1 follows the proofs in [Kenig et al. 2007;
Dos Santos Ferreira et al. 2007] fairly closely. Thus, the next seven sections will be devoted to the proof
of Theorem 1.4. In Section 9, I will use this estimate to construct CGO solutions to (1-1). Once these
are constructed, the proof of Theorem 1.1 follows by an argument more or less identical to that in [Dos
Santos Ferreira et al. 2007]. This argument is outlined in Section 10 for completeness.

2. Outline of the proof of Theorem 1.4

In order to outline the proof of Theorem 1.4, I will give a rough sketch of the proof for a special case.
Choose Cartesian coordinates (x, y) on Rn+1 such that x ∈ Rn, y ∈ R, and suppose that � lies in the set
Rn+1
+ = {y > 0}, with a subset of ∂� lying on the hyperplane {y = 0}. Label the subset ∂�∩ {y = 0}

by 0c
+

. Then I want to show that

h‖w‖L2(�) . ‖Lϕ,W,qw‖H−1(Rn+1
+ )

for w ∈ C∞0 (�) and ϕ(x, y)= y. The starting point is the following estimate. Define

Lϕ = h2eϕ/h
4e−ϕ/h

and

Lϕ,ε = eϕ
2/2εLϕe−ϕ

2/2ε.

Proposition 2.1 [Dos Santos Ferreira et al. 2007, Equation (2.12)]. If ϕ is a limiting Carleman weight,
and w ∈ C∞0 (�), then

h
√
ε
‖w‖H1(�) . ‖Lϕ,εw‖L2(�).
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A note on inequalities here: inequalities of the form F(w, h). G(w, h) mean that there exists h0 > 0
independent of w such that for h ≤ h0, the inequality F(w, h) ≤ CG(w, h) holds for some positive
constant C independent of w and h. In the case of this inequality, the constant implied in the . sign is
independent of ε as well.

Now set ϕ(x, y) = y and define a new domain �2 such that � ⊂ �2 ⊂ Rn+1
+ , with 0c

+
⊂ ∂�2.

Proposition 2.1 still holds on �2. Now the objective is to find an operator J with the following properties.

(1) J has a right inverse, denoted by J−1, and J−1 preserves smoothness.

(2) J and J−1 preserve support with respect to y in the positive direction: if the support of u is in the
set {y ≥ y0}, so are the supports of Ju and J−1u.

(3) The commutators of J with differential operators behave as though J were a semiclassical pseudo-
differential operator of order 1.

(4) J is bounded from H 1(Rn+1
+ ) to L2(Rn+1

+ ).

(5) ‖Ju‖H−1(Rn+1
+ ) ' ‖u‖L2(Rn+1

+ ).

If such an operator existed, the argument could go like this: Supposew∈C∞0 (�), and let χ ∈C∞(Rn+1
+ )

be a cutoff function that is identically one on � but supported within �2. Then χ J−1w ∈ C∞0 (�2), so it
can be plugged into Proposition 2.1 to give

h
√
ε

∥∥χ J−1w
∥∥

H1(�2)
.
∥∥Lϕ,εχ J−1w

∥∥
L2(�2)

.

Here we are using property (1) to get J−1 and property (2) to ensure that χ J−1w has the right support.
Now we can use property (4) on the left and (5) on the right to get

h
√
ε

∥∥Jχ J−1w
∥∥

L2(Rn+1
+ )
.
∥∥JLϕ,εχ J−1w

∥∥
H−1(Rn+1

+ )
.

The commutator properties tell us that this is

h
√
ε
‖w‖L2(Rn+1

+ ) . ‖Lϕ,εw‖H−1(Rn+1
+ ),

with error terms small enough to hide in the left side, for ε small enough. Then Lϕ,εw =Lϕ,ε,W,qw up to
a similarly permissible error, where

Lϕ,ε,W,q = eϕ
2/2εLϕ,W,qe−ϕ

2/2ε,

and noting that eϕ
2/2ε is smooth and bounded on � finishes the proof.

It still remains, of course, to find the magic operator J . Consider the operator J defined by

Ĵ u(ξ, y)= (h∂y + F(ξ))û(ξ, y),
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where the hat ˆ signifies the semiclassical Fourier transform in the x variables, and F is a smooth function
on Rn such that

∣∣F(ξ)− (1+ |ξ |)∣∣≤ δ for some small δ. This has a right inverse J−1 given by

Ĵ−1u(ξ, y)=
1
h

∫ y

0
û(ξ, t)eF(ξ)(t−y)/h dt,

which satisfies property (1). Now it is relatively straightforward to see that properties (2) and (4) are
satisfied, and with a little more work, we can obtain the kind of commutator properties needed for
property (3).

Unfortunately, property (5) fails to hold in general. Instead we have a new property (5′), that

‖Ju‖H−1(Rn+1
+ ) ' ‖u− gu‖L2(Rn+1

+ )

where

ĝu(ξ, y)=
2F(ξ)

h

∫
∞

0
û(ξ, t)e−F(ξ)(t+y)/h dt.

However, the proof only relies on property (5) applied to functions u of the form u = Lϕ,εv, where
v ∈ C∞0 (�2). For these functions,

ĝu(ξ, y)=
2F(ξ)

h

∫
∞

0
L̂ϕ,εv(ξ, t)e−F(ξ)(t+y)/h dt,

where
L̂ϕ,εv(ξ, t)=

(
h2∂2

t − 2h∂t + 1− |ξ |2
)
v̂(ξ, t)

plus some acceptably small error. The idea is now that by using integration by parts, together with a good
choice of F , we can get gu to be small enough that

‖Ju‖H−1(Rn+1
+ ) ' ‖u‖L2(Rn+1

+ ).

To do this, we can split up v as v = v1+ v2, where v̂1(ξ, t) is supported only for |ξ | ≤ 1
2 , and v̂2(ξ, t) is

supported only for |ξ | > 1
3 , say. Then gu = γ1+ γ2, where γ j is the part that corresponds to v j . Then

for γ̂1, integration by parts gives

2F(ξ)
h

∫
∞

0

(
F(ξ)2− 2F(ξ)+ 1− |ξ |2

)
v̂1(ξ, t)e−F(ξ)(t+y)/h dt

plus an acceptably small error, and then using the fact that F is close to 1+ |ξ | gives

‖γ1‖L2(Rn+1
+ ) . δ‖v1‖H2(Rn+1

+ ).

Since v1 is only supported for small frequencies, the operator Lϕ,ε is invertible on the support of v1, so

‖γ1‖L2(Rn+1
+ ) . δ‖Lϕ,εv1‖L2(Rn+1

+ ).

Meanwhile, in the large frequency case, we can factor L̂ϕ,ε as(
h∂t − (1+ |ξ |)

)(
h∂t − (1− |ξ |)

)
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up to some acceptably small error, and do integration by parts only with the first factor. (The nonsmoothness
of |ξ | will cause trouble in the factoring at small frequencies, which is the reason for splitting up the
argument like this.) Then γ̂2 becomes

2F(ξ)
h

∫
∞

0

(
F(ξ)− (1+ |ξ |)

)(
h∂t − (1− |ξ)

)
v̂2(ξ, t)e−F(ξ)(t+y)/h dt

plus some good enough error, and so we get something like

‖γ2‖L2(Rn+1
+ ) . δ‖z‖H1(Rn+1

+ ),

where ẑ =
(
h∂t − (1− |ξ |)

)
v̂2. Since Lϕ,εv ∼

(
h∂t − (1+ |ξ |)

)
z, and the operator h∂t − (1+ |ξ |) is well

behaved, we can get
‖γ2‖L2(Rn+1

+ ) . δ‖Lϕ,εv2‖L2(Rn+1
+ ).

Adding these two parts together and using some commutator estimates on the right side gives

‖gu‖L2(Rn+1
+ ) . δ‖u‖L2(Rn+1

+ ),

so
‖Ju‖H−1(Rn+1

+ ) ' ‖u‖L2(Rn+1
+ )

for u of this form. This finishes the argument. Changes in Lϕ,ε of O(δ), roughly speaking, do not affect
the argument. Therefore the argument still works if 0c

+
coincides with a graph of the form y = f (x), as

long as ∇ f is small enough, by using a change of variables that flattens 0c
+

while making only O(δ)
changes to Lϕ,ε.

These ideas are the basis of the argument used to prove Theorem 1.4. There are three key changes
that make everything much more complicated, however. Firstly, in order to achieve results of the form of
Theorems 1.1 and 1.2, we will need to work with the logarithmic weight ϕ = log |x− x0|, and in spherical
coordinates centered at x0. Then we will work with 0c

+
’s that coincide with graphs of the form r = f (θ),

and work with small subsets on which the spherical coordinates look nearly Euclidean. Secondly, instead
of looking at cases where ∇ f is small, we will treat cases where ∇ f is almost constant. This argument
works nearly the same way as the argument outlined above, but requires us to use operators that depend
on that constant. In fact, we will need to split the small and large frequency cases much earlier in the
argument, and introduce separate operators Js and J` for the two cases. Thirdly, we will need to glue
together many such estimates at the end of the proof to get Theorem 1.4.

The proof will be presented over the next six sections. In Section 3, I will state the small subset
version of the Carleman estimate, and begin the proof by making the change of variables to “flatten”
0c
+

appropriately. In Section 4, I will split up the problem into separate propositions for the small and
large frequency cases, and show that the proofs of these propositions suffice. In Section 5, I will prove
analogues of properties (1) through (2) and (5′) for operators of a certain form. Section 6 then contains
the small frequency argument, and Section 7 contains the large frequency argument, thus finishing the
proof of the small subset version of the Carleman estimate. Finally, in Section 8, I will glue together the
small subset estimates in the appropriate way to prove Theorem 1.4.
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3. An initial Carleman estimate

For the rest of this paper, we will fix ϕ to be the logarithmic weight ϕ(x)= log |x − x0| unless otherwise
stated. Without loss of generality, we will also assume that x0 = 0.

To begin, we should fix coordinates on Rn+1. Since 0 is outside the convex hull of �, there must exist
r0 > 0 such that � lies outside the ball of radius r0 centered at the origin. Moreover, � must lie entirely on
one side of a hyperplane through the origin. If we choose Cartesian coordinates x1, . . . , xn+1 on Rn+1 such
that� lies entirely in the half-space {xn+1> 0}, then we can define a map σ : (Rn

\ Br0,0)∩ {xn+1 > 0}→
[r0,∞)× (0, π)× · · ·× (0, π) by

σ(x1, . . . , xn+1)= (r, θ1, . . . , θn),

where
x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

...

xn = r sin θ1 . . . sin θn−1 cos θn,

xn+1 = r sin θ1 . . . sin θn.

This fixes a set of spherical coordinates on (Rn
\ Br0,0)∩{xn+1 > 0}. On any compact subset of this space,

σ is a diffeomorphism with bounded derivatives; the singularities in σ occur in the other half-space.
Now we can begin by proving the following special version of Theorem 1.4.

Proposition 3.1. Suppose that f : Sn
→ (r0,∞) is a C∞ function such that � lies entirely in the region

AO = {(r, θ) | r ≥ f (θ)} ⊂ Rn+1, and 0c
+

is a subset of the graph r = f (θ). Suppose also that for all
(r, θ) ∈�,

| sin θ j − 1| ≤ µ for j = 1, . . . , n− 1 (3-1)

and

|∇Sn log f − K en|Sn ≤ µ, (3-2)

where en is the vector field on Sn given in coordinates by (0, . . . , 0, 1), and ∇Sn and | · |Sn indicate the
gradient and metric on the unit sphere. Then if w ∈ C∞0 (�), then

h
√
ε
‖w‖L2(�) . ‖Lϕ,εw‖H−1(AO ).

The inequality (3-1) is designed to force the metric on the unit sphere on the set

{θ ∈ Sn
| (r, θ) ∈� for some r}

to be nearly Euclidean, and the inequality (3-2) is designed to ensure that ∇Sn log f is nearly constant
on �.
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To prove this, we will need to do some work with a domain �2 that is slightly larger than �, but still
bounded. Take �2 ⊂ AO to be a smooth bounded domain that contains � such that 0c

+
⊂ ∂�2. We can

pick �2 to lie in (Rn
\ Br0,0)∩ {xn+1 > 0}, with

| sin θ j − 1| ≤ 2µ for j = 1, . . . , n− 1

and
|∇Sn log f − K en|Sn ≤ 2µ

for all (r, θ) ∈�2.
Recall that Proposition 2.1, proved in [Dos Santos Ferreira et al. 2007], says that if w ∈ C∞0 (�2), then

h
√
ε
‖w‖H1(�2) . ‖Lϕ,εw‖L2(�2).

We can make a change of variables using the map (r, θ) 7→ (r/ f (θ), θ). This is a diffeomorphism
from AO to Rn+1

\ B, where B is the open ball of radius 1 centered at the origin, with the inverse map
(r, θ) 7→ (r f (θ), θ). Let �̃ and �̃2 be the images of � and �2 under this map. This diffeomorphism
maps 0c

+
to a part of the unit sphere Sn , thus “flattening” it out appropriately. This change of variables

leaves the θ variables alone, so it is still the case that �̃2 lies in (Rn+1
\ B)∩ {xn+1 > 0}, with

| sin θ j − 1| ≤ 2µ for j = 1, . . . , n− 1

and
|∇Sn log f − K en|Sn ≤ 2µ

for all (r, θ) ∈ �̃2.

Lemma 3.2. For w ∈ C∞0 (�̃2),

h
√
ε
‖w‖H1(�̃2)

. ‖L̃ϕ,εw‖L2(�̃2)
, (3-3)

where

L̃ϕ,ε =
(
1+ |∇Sn log f (θ)|2Sn

)
h2∂2

r −
2
r

(
α+ (∇Sn log f (θ))·Sn h∇Sn

)
h∂r +

1
r2 (α

2
+ h2
4Sn )

and α = 1+ (h/ε) log(r f (θ)). Here ∇Sn is the gradient operator on the unit sphere; | · |Sn and ·Sn indicate
the use of the Riemannian metric on Sn , and 4Sn is the Laplace–Beltrami operator on the unit sphere Sn .

Proof. Let v ∈ C∞0 (�2), and let
ṽ(r, θ)= v(r f (θ), θ).

Then ṽ ∈ C∞0 (�̃2). By a change of variables,

‖ṽ‖L2(�̃2)
' ‖v‖L2(�2)

and
‖ṽ‖H1(�̃2)

' ‖v‖H1(�2).

The constants implied in the ' sign depend on f .
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Since Lϕ,εv ∈ C∞0 (�2), we have that L̃ϕ,εv ∈ L2(�̃2) and ‖Lϕ,εv‖L2(�2) ' ‖L̃ϕ,εv‖L2(�̃2)
. Therefore,

by Proposition 2.1,
h
√
ε
‖ṽ‖H1(�̃2)

. ‖L̃ϕ,εv‖L2(�̃2)
.

Now a calculation shows that

Lϕ,ε = h2∂2
r − r−1

(
2− hn+ 2

h
ε

log r
)

h∂r + r−2(1+ h2
4Sn )

+ r−2
(

h− hn+
h2

ε2

(
(log r)2− ε

)
+

h2

ε
log r + (2− hn)

h
ε

log r
)
,

and then that

L̃ϕ,εv = f −2(θ)L̃ϕ,εṽ− hE ṽ,

where L̃ϕ,ε is as in the statement of the lemma and E is a first-order semiclassical differential operator
with coefficients that have bounds independent of h and ε. Therefore

h
√
ε
‖ṽ‖H1(�̃2)

.
∥∥ f −2(θ)L̃ϕ,εṽ

∥∥
L2(�̃2)

+ h‖ṽ‖H1(�̃2)
.

For small enough ε, the last term on the right side can be absorbed into the left side. Moreover, | f −2
|

is bounded above, so
h
√
ε
‖ṽ‖H1(�̃2)

. ‖L̃ϕ,εṽ‖L2(�̃2)

for all v ∈ C∞0 (�2). Now any w ∈ C∞0 (�̃2) can be written as ṽ for some v ∈ C∞0 (�2) just by taking
v(r, θ)= w(r/ f (θ), θ). This finishes the proof. �

We can now make a second change of variables by thinking of the coordinate map σ as a map from
�̃2 to a subset of Rn+1

1+ = {(r, θ) ∈ R×Rn
| r ≥ 1}. This gives us that for w ∈ C∞0 (σ (�̃2)),

h
√
ε
‖w‖H1(σ (�̃2))

. ‖Lϕ,ε,σw‖L2(σ (�̃2))
, (3-4)

where

Lϕ,ε,σ = (1+ |γ f |
2)h2∂2

r −
2
r
(α+β f · h∇θ )h∂r +

1
r2 (α

2
+ h2L Sn ), (3-5)

β f is a vector field on Rn+1
1+ that equals the coordinate expression of ∇Sn log f (θ) on σ(�̃2), γ f is a

function on Rn+1
1+ that agrees with the coordinate expression of |∇Sn log f (θ)|Sn on σ(�̃2), and L Sn is a

second-order differential operator on Rn+1
1+ that agrees with the coordinate expression of the Laplacian on

the sphere on σ(�̃2).
To avoid the clumsy buildup of modifiers to � and �2, I will let U denote σ(�̃) and U2 denote σ(�̃2).
The hypotheses in Proposition 3.1 imply that on U2,

|β f − (0, . . . , 0, K )| ≤ Cµ (3-6)
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and
|γ f − K | ≤ Cµ (3-7)

and if
h2L Sn = a1h2∂2

θ1
+ · · ·+ anh2∂2

θn
+ b1h2∂θ1 + · · ·+ bnh2∂θn ,

then
|a j − 1| ≤ Cµ (3-8)

for some constant Cµ that goes to zero if µ goes to zero. Cµ may depend on K , but we are treating K as
fixed, so this will be fine. We may as well assume that β f , γ f , and the coefficients of L Sn are extended to
the rest of Rn+1

1+ in such a way that these conditions continue to hold. In particular, this means that L Sn is
“close” to the ordinary Laplacian on Euclidean space.

4. Small and large frequency cases

To continue the proof of Proposition 3.1, I want to divide w into small and large frequency parts and
prove an estimate for each part separately. Recall that Rn+1

1+ = {(r, θ) | θ ∈ Rn, r ≥ 1}. Let S(Rn+1
1+ ) be

the restrictions to Rn+1
1+ of Schwartz functions on Rn+1. Note that functions in C∞0 (U2) are in S(Rn+1

1+ ).
Let c1 and c2 be such that

|K |2

1+ |K |2
< c1 < c2 ≤

1
2
+

|K |2

2(1+ |K |2)
< 1,

and let δ1 and δ2 be such that δ2 > δ1 > 0. Let ρ ∈ C∞0 (R
n) be a cutoff function such that ρ(ξ) = 0 if

|ξ |2 > c2 or |ξn|> δ2, and ρ(ξ)= 1 if |ξ |2 ≤ c1 or |ξn| ≤ δ1.
Let the hat ˆ indicate the semiclassical Fourier transform in the θ variables only. (In general, Fourier

transforms here will be in the θ variables only unless otherwise indicated.) For w ∈ C∞0 (U ), define ws

and w` by ŵs = ρ(ξ)ŵ and ŵ` = (1− ρ(ξ))ŵ, so w = ws +w`.

Lemma 4.1. There exist µ0 > 0 and choices of c1, c2, δ1, and δ2 such that if (3-6)–(3-8) hold for some
µ≤ µ0, then

h
√
ε
‖ws‖L2(Rn+1

1+ )
. ‖Lϕ,ε,σws‖H−1(Rn+1

1+ )
+ h‖w‖L2(U )

for all w ∈ C∞0 (U ), where ws is defined as above.

Lemma 4.2. There exists µ0 > 0 such that if (3-6)–(3-8) hold for some µ≤ µ0, then

h
√
ε
‖w`‖L2(Rn+1

1+ )
. ‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
+ h‖w‖L2(U )

for all w ∈ C∞0 (U ), where w` is defined as above.

Taken together, these two lemmas imply Proposition 3.1. To see why, first we need a lemma.
Let m, k ≥ 0 be integers. Suppose a(x, ξ, y) is a smooth function on Rn

×Rn
×R that satisfies the

bounds ∣∣∂βx ∂αξ ∂ j
y a(x, ξ, y)

∣∣≤ Cα,β(1+ |ξ |)m−α
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for all multi-indices α and β, and for 0 ≤ j ≤ k. In other words, each ∂ j
y a(x, ξ, y) is a symbol on Rn

of order m, with bounds uniform in y, for 0 ≤ j ≤ k. Then we can define an operator A on Schwartz
functions in Rn+1 by applying the pseudodifferential operator on Rn with symbol a(x, ξ, y) to f (x, y)
for each fixed y. More generally, we can also define operators A j on Schwartz functions in Rn+1 by
applying the pseudodifferential operator on Rn with symbol ∂ j

y a(x, ξ, y) to f (x, y) for each fixed y, for
0≤ j ≤ k.

Lemma 4.3. Let A be defined as above. Then A extends to a bounded operator from H k+m(Rn+1) to
H k(Rn+1).

Proof. Since k ∈ Z, k ≥ 0,

‖A f ‖2H k(Rn+1)
=

∑
0≤|α|+ j≤k

∥∥h|α|+ j∂αx ∂
j
y A f

∥∥2
L2(Rn+1)

.

Now ∂
j
y A( f ) is a sum of terms of the form

A j1∂
j2
y f,

where j1+ j2 = j ≤ k. Therefore ‖A f ‖2H k(Rn+1)
is bounded by a sum of terms of the form∥∥h|α|+ j1+ j2∂αx A j1∂

j2
y f

∥∥2
L2(Rn+1)

,

where |α| + j1+ j2 ≤ k. Then∥∥h|α|+ j1+ j2∂αx A j1∂
j2
y f

∥∥2
L2(Rn+1)

=

∫
R

∫
Rn

∣∣h|α|+ j1+ j2∂αx A j1∂
j2
y f

∣∣2 dx dy

≤

∫
R

∥∥h j1+ j2 A j1∂
j2
y f

∥∥2
H |α|(Rn)

dy.

Then by the boundedness of A j1 , this is bounded above by∫
R

∥∥h j2∂ j2
y f

∥∥2
H |α|+m(Rn)

dy,

which in turn is bounded above by∥∥h j2∂ j2
y f

∥∥2
H |α|+m(Rn+1)

≤ ‖ f ‖2H |α|+m+ j2 (Rn+1)
≤ ‖ f ‖2H k+m(Rn+1)

.

Therefore
‖A f ‖2H k(Rn+1)

. ‖ f ‖2H k+m(Rn+1)
.

Then a density argument finishes the proof. �

Proof of Proposition 3.1. Adding the estimates from Lemmas 4.1 and 4.2 gives

h
√
ε

(
‖ws‖L2(Rn+1

1+ )
+‖w`‖L2(Rn+1

1+ )

)
. ‖Lϕ,ε,σws‖H−1(Rn+1

1+ )
+‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
+ h‖w‖L2(U ).

Since ws +w` = w,

h
√
ε
‖w‖L2(U ) . ‖Lϕ,ε,σws‖H−1(Rn+1

1+ )
+‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
+ h‖w‖L2(U ).
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For small enough ε, we can absorb the last term into the left side to give

h
√
ε
‖w‖L2(U ) . ‖Lϕ,ε,σws‖H−1(Rn+1

1+ )
+‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
.

Since (1+ |γ f |
2) > 1+ K 2

−Cµ, for µ small enough, we have

h
√
ε
‖w‖L2(U ) .

∥∥(1+ |γ f |
2)−1Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
+
∥∥(1+ |γ f |

2)−1Lϕ,ε,σw`
∥∥

H−1(Rn+1
1+ )
.

Now ws = Pw, where P is the semiclassical pseudodifferential operator of order 0 on Rn with symbol
ρ(ξ). The operator P commutes with ∂r , and its commutators with differential operators in the θ variables
are, for each fixed r ∈ [1,∞), semiclassical pseudodifferential operators on Rn that satisfy the conditions
of Lemma 4.3. Therefore∥∥(1+ |γ f |

2)−1Lϕ,ε,σws
∥∥

H−1(Rn+1
1+ )
=
∥∥(1+ |γ f |

2)−1Lϕ,ε,σ Pw
∥∥

H−1(Rn+1
1+ )

.
∥∥P(1+ |γ f |

2)−1Lϕ,ε,σw
∥∥

H−1(Rn+1
1+ )
+ h‖E0h∂r + E1w‖H−1(Rn+1

1+ )
,

where E1 and E0, for each fixed r ∈ [1,∞), are semiclassical pseudodifferential operators on Rn

of order 1 and 0 and satisfy the conditions of Lemma 4.3. There is no hE−1h2∂2
r in the error term

because the coefficient of h2∂2
r in (1+ |γ f |

2)−1Lϕ,ε,σ is just 1. Now E∗1 and E∗0 are also semiclassical
pseudodifferential operators on Rn of order 1 and 0, for each fixed r ∈ [1,∞), and satisfy the conditions
of Lemma 4.3.

Therefore, by Lemma 4.3, E∗1 is bounded from H 1
0 (R

n+1
1+ ) to L2(Rn+1

1+ ), so by duality, E1 is bounded
from L2(Rn+1

1+ ) to H−1(Rn+1
1+ ).

Also, E∗0 is bounded from H 1(Rn+1
1+ ) to H 1(Rn+1

1+ ) and takes functions with trace 0 on the boundary
of Rn+1

1+ to other functions with trace 0 on the boundary of Rn+1
1+ , so by duality, E0 is bounded from

H−1(Rn+1
1+ ) to H−1(Rn+1

1+ ). Therefore∥∥(1+ |γ f |
2)−1Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
.
∥∥P(1+ |γ f |

2)−1Lϕ,ε,σw
∥∥

H−1(Rn+1
1+ )
+ h‖w‖L2(Rn+1

1+ )
.

Now by Lemma 4.3, P is bounded from H 1(Rn+1
1+ ) to H 1(Rn+1

1+ ). Also, if u has trace zero on the boundary
of Rn+1

1+ , then so does Pu, so P is bounded from H 1
0 (R

n+1
1+ ) to H 1

0 (R
n+1
1+ ). Since ρ is real-valued, P is

also self-adjoint, so by duality, P is bounded from H−1(Rn+1
1+ ) to H−1(Rn+1

1+ ). Therefore∥∥(1+ |γ f |
2)−1Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
.
∥∥(1+ |γ f |

2)−1Lϕ,ε,σw
∥∥

H−1(Rn+1
1+ )
+ h‖w‖L2(Rn+1

1+ )
,

and thus
‖Lϕ,ε,σws‖H−1(Rn+1

1+ )
. ‖Lϕ,ε,σw‖H−1(Rn+1

1+ )
+ h‖w‖L2(Rn+1

1+ )
.

Similarly,
‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
. ‖Lϕ,ε,σw‖H−1(Rn+1

1+ )
+ h‖w‖L2(Rn+1

1+ )
.

Therefore
h
√
ε
‖w‖L2(U ) . ‖Lϕ,ε,σw‖H−1(Rn+1

1+ )
+ h‖w‖L2(U ).
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Again the last term can be absorbed into the left side for small enough ε, so

h
√
ε
‖w‖L2(U ) . ‖Lϕ,ε,σw‖H−1(Rn+1

1+ )

for each w ∈ C∞0 (U ).
Now if the hypotheses of Proposition 3.1 hold, then so do (3-6)–(3-8), and therefore we can obtain this

conclusion. Changing variables back gives

h
√
ε
‖w‖L2(�) . ‖Lϕ,εw‖H−1(AO )

for w ∈ C∞0 (�). �

Therefore we need only to establish proofs of Lemmas 4.1 and 4.2. To do this, we will need to introduce
the analogues of the operator J described in Section 2.

5. The operators

Suppose F : Rn
→ C is a smooth function such that Re(F(ξ)), |F(ξ)| ' 1+ |ξ | for all ξ ∈ Rn , and F is

a symbol of order one on Rn , so that

|∂αξ F(ξ)| ≤ Cα(1+ |ξ |)1−|α| (5-1)

for all multi-indices α.
Then for u ∈ S(Rn+1

1+ ), define Ju by

Ĵ u(r, ξ)=
(

F(ξ)
r
+ h∂r

)
û(r, ξ).

This operator has adjoint J ∗ given by

Ĵ ∗u(r, ξ)=
(

F(ξ)
r
− h∂r

)
û(r, ξ).

These operators have right inverses defined by

Ĵ−1u(r, ξ)= h−1
∫ r

1
û(t, ξ)

(
t
r

)F(ξ)/h

dt

and

Ĵ ∗−1u(r, ξ)= h−1
∫
∞

r
û(t, ξ)

(
r
t

)F(ξ)/h

dt.

Each of these is well defined as an operator on S(Rn+1
1+ ). We will prove appropriate analogues of the

properties (1)–(4) and (5′) from Section 2 for J of this form. Note that J−1 is a right inverse, and both
J and J−1 preserve support in the positive r direction. Therefore it remains to establish analogues of
properties (3), (4), and (5′).
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To set up the analogue of property (3), define the weighted Sobolev space H 1
r (R

n+1
1+ ) by the norm

‖u‖2
H1

r (R
n+1
1+ )
=

∥∥∥∥u
r

∥∥∥∥2

L2(Rn+1
1+ )

+‖h∂r u‖2
L2(Rn+1

1+ )
+

∥∥∥∥h
r
∇θu

∥∥∥∥2

L2(Rn+1
1+ )

.

Since U2 lies in the set 1 ≤ r ≤ R0 for some R0 depending on U2, we know H 1 and H 1
r norms are

comparable for functions supported on U2, with constants of comparability depending only on R0. This
holds more generally for any functions supported in 1≤ r ≤ R0.

Now the operators above have the following boundedness properties.

Lemma 5.1. J , J ∗, J−1, and J ∗−1 extend as bounded maps

J, J ∗ : H 1
r (R

n+1
1+ )→ L2(Rn+1

1+ )

and
J−1, J ∗−1

: L2(Rn+1
1+ )→ H 1

r (R
n+1
1+ ).

Moreover, the extensions of J ∗ and J ∗−1 are isomorphisms.

Proof. Consider J first. If u ∈ S(Rn+1
1+ ), then

‖Ju‖2
L2(Rn+1

1+ )
= h−n

∥∥ Ĵ u
∥∥2

L2(Rn+1
1+ )
= h−n

∥∥∥∥F(ξ)
r

û+ h∂r û
∥∥∥∥2

L2(Rn+1
1+ )

. ‖u‖H1
r (R

n+1
1+ )
.

By a density argument, J extends to a bounded map J : H 1
r (R

n+1
1+ )→ L2(Rn+1

1+ ). The proof for J ∗ is
similar.

Now consider J−1. If u ∈ S(Rn+1
1+ ), then∫

∞

1

∣∣∣∣1r Ĵ−1u
∣∣∣∣2dr =

∫
∞

1

∣∣∣∣h−1
∫ r

1
û(t, ξ)

(
t
r

)F(ξ)/h

dt
∣∣∣∣2r−2 dr

≤

∫
∞

1

∣∣∣∣h−1
∫ r

0
û(t, ξ)

(
t
r

)F(ξ)/h

dt
∣∣∣∣2r−2 dr.

By a change of variables, we get∫
∞

1

∣∣∣∣1r Ĵ−1u
∣∣∣∣2dr =

∫
∞

1

∣∣∣∣h−1
∫ 1

0
û(r t, ξ)t F(ξ)/h dt

∣∣∣∣2dr.

Then using Minkowski’s inequality and changing variables again, we get∫
∞

1

∣∣∣∣1r Ĵ−1u
∣∣∣∣2dr ≤ h−2

(∫ 1

0

(∫
∞

1
|û(r, ξ)|2 dr

)1/2

tRe(F(ξ)/h)t−1/2dt
)2

= h−2
∫
∞

1
|û(r, ξ)|2 dr

(
h

Re F(ξ)+ h/2

)2

'

∫
∞

1

∣∣∣∣ û(r, ξ)1+ |ξ |

∣∣∣∣2dr.

Therefore ∥∥∥∥1
r

Ĵ−1u
∥∥∥∥2

L2(Rn+1
1+ )

.
∫

Rn

∫
∞

1

∣∣∣∣ û(r, ξ)1+ |ξ |

∣∣∣∣2dr dξ . ‖û‖2
L2(Rn+1

1+ )
.
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Similarly, ∫
∞

1

∣∣∣∣ξr Ĵ−1u
∣∣∣∣2dr .

∫
∞

1
|û(r, ξ)|2 dr,

so ∥∥∥∥h
r
∇θ J−1u

∥∥∥∥2

L2(Rn+1
1+ )

. ‖u‖2
L2(Rn+1

1+ )
.

Finally,

h∂r Ĵ−1u =−
(

F(ξ)
r

)
Ĵ−1u+ û,

so ∫
∞

1

∣∣∣∣h∂r Ĵ−1u
∣∣∣∣2dr .

∫
∞

1
|û(r, ξ)|2 dr

and ∥∥h∂r J−1u
∥∥2

L2(Rn+1
1+ )
. ‖u‖2

L2(Rn+1
1+ )
,

by the same logic.
Putting all of this together gives ∥∥J−1u

∥∥2
H1

r (R
n+1
1+ )
. ‖u‖2

L2(Rn+1
1+ )
,

for u ∈ S(Rn+1
1+ ). Then a density argument shows that J−1 extends to a bounded map

J−1
: L2(Rn+1

1+ )→ H 1
r (R

n+1
1+ ).

Again, the proof for J ∗−1 is similar.
It remains to show that the extensions of J ∗ and J ∗−1 are isomorphisms. If u ∈ S(Rn+1

1+ ), then

J ∗ J ∗−1u = u

and (using integration by parts)
J ∗−1 J ∗u = u.

Then the result follows from a density argument.
Note that J−1 Ju 6= u in general, because integration by parts will pick up a boundary term at r = 1.

Therefore the extensions of J and J−1 are not isomorphisms. �

Let H 1
r,0(R

n+1
1+ ) denote the subspace of H 1

r (R
n+1
1+ ) consisting of functions with trace zero on the

hyperplane r = 1, and let H−1
r (Rn+1

1+ ) denote the dual space to H 1
r,0(R

n+1
1+ ).

Now we need to prove some commutator properties for J .

Lemma 5.2. Suppose that w ∈ S(Rn+1
1+ ), χ ∈ S(Rn+1

1+ ) and that Q is a second-order semiclassical
differential operator with smooth bounded coefficients on Rn+1

1+ . Then∥∥Jχ J−1w
∥∥

L2(Rn+1
1+ )
& ‖χw‖L2(Rn+1

1+ )
− h‖rw‖L2(Rn+1

1+ )
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and ∥∥(J Q− Q J )w
∥∥

H−1
r (Rn+1

1+ )
. h‖rw‖H1(Rn+1

1+ )
.

The constants in the & and . signs will depend on the derivatives of F.

Proof. Consider the first statement. If T is the operator on Rn with symbol F(ξ), interpreted as acting on
functions on Rn+1

1+ by action on the θ variables only, then

∥∥Jχ J−1w
∥∥

L2(Rn+1
1+ )
=

∥∥∥∥(h∂r+
T
r

)
χ J−1w

∥∥∥∥
L2(Rn+1

1+ )

≥

∥∥∥∥χ(h∂r+
T
r

)
J−1w

∥∥∥∥
L2(Rn+1

1+ )

−
∥∥hE0 J−1w

∥∥
L2(Rn+1

1+ )
,

where for each fixed r , E0 is an order-zero pseudodifferential operator on Rn with bounds that are uniform
in r . Therefore, by Lemma 4.3, E0 is bounded from L2 to L2, so∥∥Jχ J−1w

∥∥
L2(Rn+1

1+ )
≥
∥∥χ J J−1w

∥∥
L2(Rn+1

1+ )
− h

∥∥J−1w
∥∥

L2(Rn+1
1+ )
≥ ‖χw‖L2(Rn+1

1+ )
− h‖rw‖L2(Rn+1

1+ )
.

The proof of the second statement is similar, but somewhat more involved. First, note that multiplication
by 1/r is a bounded operator from H 1

r,0(R
n+1
1+ ) to H 1

0 (R
n+1
1+ ). Therefore, by duality, it is a bounded operator

from H−1(Rn+1
1+ ) to H−1

r (Rn+1
1+ ), and so∥∥(Js Q− Q Js)w

∥∥
H−1

r (Rn+1
1+ )
.
∥∥r(Js Q− Q Js)w

∥∥
H−1(Rn+1

1+ )
.

Note that Js = h∂r + r−1T , where T is a semiclassical pseudodifferential operator on Rn of order 1.
Meanwhile, Q can be written as a combination of ∂r derivatives and differential operators on Rn:

Q = Ah2∂2
r + Bh∂r +C,

where A, B, and C are (perhaps r -dependent) differential operators of orders 0, 1, and 2 respectively on
Rn for each fixed r , with bounds uniform in r .

If w ∈ S(Rn+1
1+ ), then Qw ∈ S(Rn+1

1+ ). Then∥∥r(Js Q− Q Js)w
∥∥

H−1(Rn+1
1+ )
=
∥∥r
[
h∂r + r−1T, Ah2∂2

r + Bh∂r +C
]
w
∥∥

H−1(Rn+1
1+ )
.

Expanding this, and noting that T commutes with ∂r , we get∥∥r(Js Q− Q Js)w
∥∥

H−1(Rn+1
1+ )
≤
∥∥r [h∂r , Q]w

∥∥
H−1(Rn+1

1+ )
+
∥∥[T, A]h2∂2

r w
∥∥

H−1(Rn+1
1+ )

+
∥∥hr−1

[T, A]h∂rw
∥∥

H−1(Rn+1
1+ )
+
∥∥2h2r−2

[T, A]w
∥∥

H−1(Rn+1
1+ )

+
∥∥[T, B]h∂rw

∥∥
H−1(Rn+1

1+ )
+
∥∥r−1
[T, B]w

∥∥
H−1(Rn+1

1+ )
+
∥∥[T,C]w

∥∥
H−1(Rn+1

1+ )
.

By the product rule, r [h∂r , Q] = hr E ′2 = hE ′2r + h2 E ′1, where E ′2 and E ′1 are second- and first-order
semiclassical differential operators. Meanwhile, [T, A] = hE0, [T, B] = hE1, and [T,C] = hE2, where
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E0, E1, and E2 are semiclassical pseudodifferential operators on Rn of orders 0, 1, and 2. Therefore∥∥r(Js Q− Q Js)w
∥∥

H−1(Rn+1
1+ )
≤
∥∥hE ′2rw

∥∥
H−1(Rn+1

1+ )
+
∥∥h2 E ′1w

∥∥
H−1(Rn+1

1+ )
+
∥∥hE0h2∂2

r w
∥∥

H−1(Rn+1
1+ )

+
∥∥h2r−1 E0h∂rw

∥∥
H−1(Rn+1

1+ )
+
∥∥2h3r−2 E0w

∥∥
H−1(Rn+1

1+ )

+
∥∥hE1h∂rw

∥∥
H−1(Rn+1

1+ )
+
∥∥hr−1 E1w

∥∥
H−1(Rn+1

1+ )
+
∥∥hE2w

∥∥
H−1(Rn+1

1+ )
.

E ′2 is bounded from H 1(Rn+1
1+ ) to H−1(Rn+1

1+ ), and E ′1 is bounded from L2(Rn+1
1+ ) to H−1(Rn+1

1+ ). In
addition, by Lemma 4.3, E∗1 is bounded from H 1

0 (R
n+1
1+ ) to L2(Rn+1

1+ ), so by duality, E1 is bounded
from L2(Rn+1

1+ ) to H−1(Rn+1
1+ ). Meanwhile, E2 is bounded from H 1(Rn+1

1+ ) to H−1(Rn+1
1+ ). Finally, E∗0

is bounded from H 1(Rn+1
1+ ) to H 1(Rn+1

1+ ) and maps functions with trace 0 on the boundary of Rn+1
1+ to

other functions with trace 0 on that boundary, so it is bounded from H 1
0 (R

n+1
1+ ) to H 1

0 (R
n+1
1+ ). Therefore,

by duality, E0 is bounded from H−1(Rn+1
1+ ) to H−1(Rn+1

1+ ). Moreover, 1/r ≤ 1 on Rn+1
1+ . Applying all of

these facts together to the last inequality then finishes the proof. �

To finish this section, we need to prove a property analogous to (5′) from Section 2.

Lemma 5.3. Suppose u ∈ S(Rn+1
1+ ). If g is defined by

ĝ(r, ξ)=
2 Re F(ξ)− h

h

∫
∞

1
û(t, ξ)r−F(ξ)/h t−F(ξ)/h dt,

then

‖Ju‖H−1
r (Rn+1

1+ )
' ‖u− g‖L2(Rn+1

1+ )
.

Proof. Suppose u ∈ S(Rn+1
1+ ). Define g as above. A calculation shows that g ∈ L2(Rn+1

1+ ), and

‖g‖L2(Rn+1
1+ )
≤ ‖u‖L2(Rn+1

1+ )
.

Note that

Ĵ g =
(

F(ξ)
r
+ h∂r

)
ĝ = 0.

Therefore

‖Ju‖H−1
r (Rn+1

1+ )
= sup
w∈H1

0,r (R
n+1
1+ ),w 6=0

|(Ju, w)|
‖w‖H1

r (R
n+1
1+ )

= sup
w∈H1

0,r (R
n+1
1+ ),w 6=0

|(J (u− g), w)|
‖w‖H1

r (R
n+1
1+ )

= sup
w∈H1

0,r (R
n+1
1+ ),w 6=0

|(u− g, J ∗w)|
‖w‖H1

r (R
n+1
1+ )

.

Since J ∗ : H 1
r (R

n+1
1+ )→ L2(Rn+1

1+ ) is an isomorphism,

‖Ju‖H−1
r (Rn+1

1+ )
' sup
w∈H1

0,r (R
n+1
1+ ),J

∗w 6=0

|(u− g, J ∗w)|
‖J ∗w‖L2(Rn+1

1+ )

. (5-2)
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Now J ∗w ∈ L2(Rn+1
1+ ), so

‖Ju‖H−1
r (Rn+1

1+ )
. ‖u− g‖L2(Rn+1

1+ )
.

On the other hand, u − g = J ∗ J ∗−1(u − g). Also J ∗−1(u − g) ∈ H 1
r (R

n+1
1+ ), and by definition of g,

J ∗−1(u− g)(x, 0) = 0. Therefore J ∗−1(u− g) ∈ H 1
r,0(R

n+1
1+ ). Then if u− g = 0, the lemma is true by

(5-2). Otherwise, we can pick w = J ∗−1(u− g) in (5-2) to show that

‖Ju‖H−1
r (Rn+1

1+ )
& ‖u− g‖L2(Rn+1

1+ )
.

This finishes the proof. �

6. The small frequency case

To prove Lemma 4.1, we need to define an operator of the form given in Section 5.
Consider the function 8 : Rn

→ C given by

8(ξ)=
1

1+ |K |2

(
1+ i K ξn +

√
2i K ξn − (K ξn)2+ (1+ |K |2)|ξ |2− |K |2

)
,

where the square root is taken to mean the branch of the square root function with nonnegative imaginary
part. We would like to use this function in place of F in Section 5 to define J and the related operators
of that section. Unfortunately, 8 is not smooth. However, we can try to construct a function Fs that
approximates 8 on the support of ŵs and has the properties of F from Section 5. To do this, first
notice that if c2 and δ2 are chosen small enough, then this is nearly continuous on the support of ŵs , or
equivalently, on the support of ρ. To be more precise, 8 is smooth except where

τK (ξ)= 2i K ξn − (K ξn)
2
+ (1+ |K |2)|ξ |2− |K |2

lies on the nonnegative real axis, where this branch of the square root has its branch cut. This occurs
when ξn = 0 and |ξ |2 ≥ |K |2/(1+ |K |2), and gives a jump discontinuity of size 2

√
(1+ |K |2)|ξ |2− |K |2.

However, |ξ |2 ≤ c2 on the support of ρ, so for c2 close to |K |2/(1+|K |2), the maximum possible size of
the jump discontinuity is small.

Therefore, for any δ > 0 we can define Fs(ξ) on the support of ρ such that

|Fs(ξ)−8(ξ)| ≤ δ

on the support of ρ, by choosing c2 small enough. The derivatives of Fs inside the support of ρ may
depend on c1, c2, δ1, and δ2. Since the choice of these in turn depends on δ, the derivatives of Fs are
bounded by a quantity that depends on δ.

Now consider the necessary bounds on Fs . On the support of ρ, the imaginary part of τK must lie in
the interval [−2K δ2, 2K δ2]. The real part of τK is given by

−(K ξn)
2
− |K |2+ (1+ |K |2)|ξ |2.

We have that |ξ |2 ≤ c2 on the support of ρ. We can choose c2 so close to K 2

1+K 2 that

(1+ K 2)r2− K 2
≤ δ2.
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Then the real part of τK is bounded above by δ2 on the support of ρ. Therefore, on the support of ρ,
(Re(τK ), Im(τK )) ∈ (−∞, δ2]× [−2K δ2, 2K δ2], and so by taking δ2 small enough, we can ensure that
the real part of

√
τK has absolute value less than 1

3 on the support of ρ.
Therefore, if δ is small enough, Re(Fs), |Fs |> 1/(2+ 2K 2) on the support of ρ. We can now define

Fs smoothly outside the support of ρ so that Re(Fs), |Fs | ≥ 1/(2+2K 2) for all ξ , and Fs = (1+|ξ |2)1/2

for |ξ |> 2, say. Then Fs is smooth, Re(F(ξ)), |F(ξ)| ' 1+ |ξ | for all ξ ∈ Rn , and the conditions (5-1)
are satisfied automatically for |ξ |> 2, and hence for all ξ .

Therefore Fs satisfies all the conditions given in Section 5, and the operators defined by

Ĵsu(r, ξ)=
(

Fs(ξ)

r
+ h∂r

)
û(r, ξ),

Ĵ ∗s u(r, ξ)=
(

Fs(ξ)

r
− h∂r

)
û(r, ξ),

Ĵ−1
s u(r, ξ)= h−1

∫ r

1
û(t, ξ)

(
t
r

)Fs(ξ)/h

dt,

and

Ĵ ∗−1
s u(r, ξ)= h−1

∫
∞

r
û(t, ξ)

(
r
t

)Fs(ξ)/h

dt

satisfy all the properties from that section.
Now we are ready to begin the proof of the small frequency case. Suppose χ2(r, θ) ∈ C∞(Rn+1

1+ ) is a
cutoff function that is 1 on U and has support inside U2.

If w ∈ C∞0 (U ), then ws ∈ S(Rn+1
1+ ), supported away from r = 1. Therefore J−1

s ws ∈ S(Rn+1
1+ ) is

supported away from r = 1. Then χ2 J−1
s ws is in C∞0 (U2). Therefore, by (3-4),

h
√
ε

∥∥χ2 J−1
s ws

∥∥
H1(U2)

.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(U2)
.

Since χ2 J−1
s ws ∈ C∞0 (U2), the H 1 and H 1

r norms are comparable, so

h
√
ε

∥∥χ2 J−1
s ws

∥∥
H1

r (R
n+1
1+ )
.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(Rn+1
1+ )
.

Using the boundedness properties from Lemma 5.1,

h
√
ε

∥∥Jsχ2 J−1
s ws

∥∥
L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(Rn+1
1+ )
,

so applying the first part of Lemma 5.2,

h
√
ε
‖χ2ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(Rn+1
1+ )
+Cδ

h2

ε
‖rws‖L2(Rn+1

1+ )
.

The Cδ factor written in front of the last term is to indicate that the constant in the . sign depends on the
derivatives of Fs , and hence on δ. This is fine, because δ is chosen independently of h and ε, but this will
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help track the δ dependence. Now χ2ws = χ2 Pw. Since w is only supported on the region where χ2 is
identically one,

χ2ws = Pw+ O(h∞)Ew = ws + O(h∞)Ew,

where E is a pseudodifferential operator of order 0 (actually a smoothing operator) on Rn . Therefore

h
√
ε
‖χ2ws‖L2(Rn+1

1+ )
&

h
√
ε
‖ws‖L2(Rn+1

1+ )
− O(h∞)‖w‖L2(Rn+1

1+ )
,

and so

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(Rn+1
1+ )
+Cδ

h2

ε
‖rws‖L2(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

For small enough h, the second last term can be absorbed into the left side (r is bounded on the support
of ws) to give

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σχ2 J−1

s ws
∥∥

L2(U2))
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

By the product rule, Lϕ,ε,σχ2−Lϕ,ε,σχ2 is a first-order semiclassical differential operator, and thus it is
bounded from H 1(U2) to L2(U2). Therefore

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥χ2Lϕ,ε,σ J−1

s ws
∥∥

L2(U2)
+ h

∥∥J−1
s ws

∥∥
H1(U2)

+ O(h∞)‖w‖L2(Rn+1
1+ )
.

On U2, the H 1 and H 1
r norms are comparable, so

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σ J−1

s ws
∥∥

L2(Rn+1
1+ )
+ h

∥∥J−1
s ws

∥∥
H1

r (R
n+1
1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

Using the boundedness properties again,

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σ J−1

s ws
∥∥

L2(Rn+1
1+ )
+ h‖ws‖L2(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

The second last term can be absorbed into the left side to give

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σ J−1

s ws
∥∥

L2(Rn+1
1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
. (6-1)

I want to combine this last inequality with Lemma 5.3 to get

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥JsLϕ,ε,σ J−1

s ws
∥∥

H−1
r (Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

To do this, I need to show that if u = Lϕ,ε,σ J−1
s ws , then the function g defined in Lemma 5.3 satisfies a

bound like
‖g‖L2(Rn+1

1+ )
≤

1
2‖u‖L2(Rn+1

1+ )
,

by using an integration by parts argument like the one described in Section 2.
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Let v = J−1
s ws . Then

ĝ =
2 Re Fs − h

h

∫
∞

1
L̂ϕ,ε,σv(t, ξ)r−Fs/h t−Fs/h dt.

Writing out Lϕ,ε,σ as in (3-5), we can consider the integral for each term of Lϕ,ε,σ separately. For this
equation the hat notation for the Fourier transform will become a little impractical, so let F(v)= v̂. Then

ĝ =
2 Re Fs − h

h

∫
∞

1
F
(
(1+ |γ f |

2)h2∂2
t v
)
r−Fs/h t−Fs/h dt

−
2 Re Fs − h

h

∫
∞

1

2
t

F
(
(α+β f · h∇θ )h∂tv

)
r−Fs/h t−Fs/h dt

+
2 Re Fs − h

h

∫
∞

1

1
t2 F

(
(α2
+ h2L Sn )v

)
r−Fs/h t−Fs/h dt.

We can use the assumptions on β f , γ f , and L Sn in equations (3-6), (3-7), and (3-8), together with the
fact that |1−α|. hε−1, to write this as

ĝ =
2 Re Fs − h

h

∫
∞

1
F
(
(1+ |K |2)h2∂2

t v
)
r−Fs/h t−Fs/h dt

−
2 Re Fs − h

h

∫
∞

1

2
t

F
(
(1+ K · h∇θ )h∂tv

)
r−Fs/h t−Fs/h dt

+
2 Re Fs − h

h

∫
∞

1

1
t2 F

(
(1+ h2

4θ )v
)
r−Fs/h t−Fs/h dt

+Cµ
2 Re Fs − h

h

∫
∞

1
F(E2v)r−Fs/h t−Fs/h dt, (6-2)

where E2 is a second-order semiclassical differential operator with bounds uniform in µ. Now we can
integrate by parts to remove the h∂t ’s.

In the first term, this gives us

2 Re Fs − h
h

∫
∞

1
(1+ |K |2)h2∂2

t v̂r−Fs/h t−Fs/h dt

=
2 Re Fs − h

h

∫
∞

1

Fs

t
(1+ K 2)h∂t v̂r−Fs/h t−Fs/h dt

=
2 Re Fs − h

h

∫
∞

1

(
Fs

t

)2

(1+ K 2)v̂r−Fs/h t−Fs/h dt

+
2 Re Fs − h

h

∫
∞

1
h

Fs

t2 (1+ K 2)v̂r−Fs/h t−Fs/h dt.

There are no boundary terms from the integration by parts because w is supported away from r = 1, and
hence ws and v are as well. The last term can be absorbed into the last term of (6-2). In the second term,
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we get

2 Re Fs − h
h

∫
∞

1

2
t
(1+ i K ξn)h∂t v̂r−Fs/h t−Fs/h dt

=
2 Re Fs − h

h

∫
∞

1

2Fs

t2 (1+ i K ξn)v̂r−Fs/h t−Fs/h dt

+
2 Re Fs − h

h

∫
∞

1

2h
t2 (1+ i K ξn)v̂r−Fs/h t−Fs/h dt.

Again the last term can be absorbed into the last term of (6-2). Therefore, returning to (6-2), we have

ĝ =
2 Re Fs − h

h

∫
∞

1

(
Fs

t

)2

(1+ K 2)v̂r−Fs/h t−Fs/h dt

−
2 Re Fs − h

h

∫
∞

1

2Fs

t2 (1+ i K ξn)v̂r−Fs/h t−Fs/h dt

+
2 Re Fs − h

h

∫
∞

1

1
t2 (1− |ξ |

2)v̂r−Fs/h t−Fs/h dt

+Cµ
2 Re Fs − h

h

∫
∞

1
Ê2vr−Fs/h t−Fs/h dt.

Now Fs(ξ) is designed so that Fs(ξ) is very nearly a solution to (1+K 2)X2
−2(1+i K ξn)X+1−|ξ |2= 0

when ŵs 6= 0, and hence when v̂ 6= 0. More precisely,∣∣(1+ K 2)Fs(ξ)
2
− 2(1+ i K ξn)Fs(ξ)+ 1− |ξ |2

∣∣. δ(|Fs(ξ)| + |ξn|
)
. δ|Fs(ξ)|.

That means that we can write ĝ as

ĝ = δ
2 Re Fs − h

h

∫
∞

1
R(ξ)v̂r−Fs/h t−Fs/h dt +Cµ

2 Re Fs − h
h

∫
∞

1
Ê2vr−Fs/h t−Fs/h dt,

where |R(ξ)|. |Fs(ξ)|. 1+ |ξ |. Now it follows, as in the proof of Lemma 5.3, that

‖ĝ‖2
L2(Rn+1

1+ )
. δ2
‖R(ξ)v̂‖2

L2(Rn+1
1+ )
+C2

µ‖Ê2v‖
2
L2(Rn+1

1+ )
.

Therefore

‖g‖2
L2(Rn+1

1+ )
. (δ+Cµ)‖v‖H2(Rn+1

1+ )
. (6-3)

This gives an estimate for g in terms of v. However, we want the estimate to be in terms of u. We have
u = Lϕ,ε,σv, so

‖u‖2
L2(Rn+1

1+ )
= ‖Lϕ,ε,σv‖

2
L2(Rn+1

1+ )

and

‖Lϕ,ε,σv‖
2
L2(Rn+1

1+ )
&

∥∥∥∥((1+ K 2)h2∂2
r −

2
r
(1+ K h∂θn )h∂r +

1
r2 (1+ h2

4θ )

)
v

∥∥∥∥2

L2(Rn+1
1+ )

−C2
µ‖v‖

2
H2(Rn+1

1+ )
.
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Rewriting in terms of v̂, we get

‖Lϕ,ε,σv‖
2
L2(Rn+1

1+ )

& h−n
∥∥∥∥((1+ K 2)h2∂2

r −
2
r
(1+ i K ξn)h∂r +

1
r2 (1− |ξ |

2)

)
v̂(r, ξ)

∥∥∥∥2

L2(Rn+1
1+ )

−C2
µ‖v‖

2
H2(Rn+1

1+ )
.

Now v̂(r, ξ)= F(J−1
s Pw)(r, ξ) is only nonzero for ξ such that

|ξ |2 ≤
1
2
+

1
2
|K |2

1+ |K |2
< 1.

The operator

(1+ K 2)h2∂2
r −

2
r
(1+ i K ξn)h∂r +

1
r2 (1− |ξ |

2)

coincides, for r > 1, with a differential operator in r of the form

(1+ K 2)h2∂2
r − 2ω(1+ i K ξn)h∂r +ω

2(1− |ξ |2),

where ω is a smooth function that coincides with 1/r for r > 1. This is second-order elliptic for each |ξ |
such that v̂(r, ξ) is nonzero, and its symbol (in r ) is bounded below; therefore

h−n
∥∥∥∥((1+ K 2)h2∂2

r −
2
r
(1+ i K ξn)h∂r +

1
r2 (1− |ξ |

2)

)
v̂(r, ξ)

∥∥∥∥2

L2(Rn+1
1+ )

' ‖v‖2
H2(Rn+1

1+ )
.

Therefore

‖Lϕ,ε,σv‖
2
L2(Rn+1

1+ )
& ‖v‖2

H2(Rn+1
1+ )
−C2

µ‖v‖
2
H2(Rn+1

1+ )
,

and so

‖u‖2
L2(Rn+1

1+ )
= ‖Lϕ,ε,σv‖

2
L2(Rn+1

1+ )
& ‖v‖2

H2(Rn+1
1+ )
−C2

µ‖v‖
2
H2(Rn+1

1+ )
& ‖v‖2

H2(Rn+1
1+ )

for µ small enough.
Substituting this into (6-3) gives

‖g‖L2(Rn+1
1+ )
. (δ+Cµ)‖u‖L2(Rn+1

1+ )
.

Taking µ and δ small enough means

‖g‖L2(Rn+1
1+ )
≤

1
2‖u‖L2(Rn+1

1+ )
.

Combining this with (6-1) now gives

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥JsLϕ,ε,σ J−1

s ws
∥∥

H−1
r (Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.
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Then using the second part of Lemma 5.2, we get

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σ Js J−1

s ws
∥∥

H−1
r (Rn+1

1+ )
+Cδh

∥∥r J−1
s ws

∥∥
H1(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )

.
∥∥Lϕ,ε,σws

∥∥
H−1

r (Rn+1
1+ )
+Cδh

∥∥r J−1
s ws

∥∥
H1(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

Again the Cδ factor is written to track the δ dependence, but again this is fine. Lϕ,ε,σws is supported in
the r direction only for those r that can come from �̃2, since ws is. Therefore the H−1

r and H−1 norms
are comparable, and so

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
+ hCδ

∥∥r J−1
s ws

∥∥
H1(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
. (6-4)

Meanwhile,

Ĵ−1
s ws(r, ξ)=

1
h

∫ r

1
ŵs(t, ξ)

(
t
r

)Fs(ξ)/h

dt,

and ŵs(t, ξ) is supported only for 1≤ t ≤ C for some C depending on σ(�̃2). Therefore, for r > 4C ,∣∣∣ Ĵ−1
s ws(r, ξ)

∣∣∣≤ ∣∣∣∣1h
∫ C

1
ŵs(t, ξ)

(
t

2C

)Fs/h

dt
∣∣∣∣∣∣∣∣12

∣∣∣∣Re(Fs/h)∣∣∣∣4C
r

∣∣∣∣Re(Fs/h)

,

so ∣∣∣ Ĵ−1
s ws(r, ξ)

∣∣∣2 . ∫ C

1
|ŵ(t, ξ)|2 dt

∣∣∣∣12
∣∣∣∣Re(2Fs/h)

.

Therefore ∥∥r J−1
s ws

∥∥
L2(Rn+1

1+ )
.
∥∥r J−1

s ws
∥∥

L2(1<r<4C)+ O(h∞)‖ws‖L2(Rn+1
1+ )
.

Similar calculations for derivatives of J−1
s w give∥∥r J−1

s ws
∥∥

H1(Rn+1
1+ )
.
∥∥r J−1

s ws
∥∥

H1(1<r<4C)+ O(h∞)‖ws‖L2(Rn+1
1+ )
,

so ∥∥r J−1
s ws

∥∥
H1(Rn+1

1+ )
.
∥∥J−1

s ws
∥∥

H1
r (R

n+1
1+ )
+ O(h∞)‖ws‖L2(Rn+1

1+ )
.

Returning to (6-4), we get

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
+ hCδ

∥∥J−1
s ws

∥∥
H1

r (R
n+1
1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

Applying the boundedness result for J−1 gives

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
+ hCδ‖ws‖L2(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

For small enough ε, the second last term can be absorbed into the left side to give

h
√
ε
‖ws‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σws

∥∥
H−1(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

This finishes the proof of Lemma 4.1.
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7. The large frequency case

Now we turn to the large frequency case. We will need to define a new operator J`.
Consider again the function 8 : Rn

→ C given by

8(ξ)=
1

1+ K 2

(
1+ i K ξn +

√
2i K ξn − (K ξn)2+ (1+ K 2)|ξ |2− |K |2

)
,

but this time take the branch of the square root that has nonnegative real part. Now 8 is smooth except
where

τK (ξ)= 2i K ξn − (K ξn)
2
+ (1+ |K |2)|ξ |2− |K |2

lies on the nonpositive real axis. This happens when ξn = 0 and

|ξ |2 ≤
|K |2

1+ |K |2
.

Therefore, on the support of 1− ρ(ξ), 8 is smooth. Since the real part of the square root is nonnegative,
both |8| and the real part of 8 are bounded below by 1/(1+ K 2). Therefore we can pick a smooth
function F` such that F`(ξ)=8(ξ) on the support of 1− ρ(ξ) and

Re F`(ξ), |F`(ξ)| ≥
1

1+ K 2 .

In fact, if K 2

1+K 2 < c0 < c1 and 0< δ0 < δ1, we can still pick F` to be equal to 8 on the set

{ξ ∈ Rn
| |ξ |2 ≥ c0 or ξn ≥ δ0},

with F` smooth and Re F`(ξ), |F`(ξ)| ≥ (1+ K 2)−1. Now for large |ξ |,

Re8(ξ), |8`(ξ)| ≥
1

1+ K 2 (1+ |ξ |),

so F` then satisfies these inequalities for all ξ . Finally, for large |ξ |, 8 is smooth and satisfies the
inequalities (5-1), so it follows that F` satisfies those inequalities for all ξ . Thus F` satisfies all of the
conditions at the beginning of Section 5, and therefore the operators defined by

Ĵ`u(r, ξ)=
(

F`(ξ)
r
+ h∂r

)
û(r, ξ),

Ĵ ∗` u(r, ξ)=
(

F`(ξ)
r
− h∂r

)
û(r, ξ),

Ĵ−1
` u(r, ξ)= h−1

∫ r

1
û(t, ξ)

(
t
r

)F`(ξ)/h

dt,

and

Ĵ ∗−1
` u(r, ξ)= h−1

∫
∞

r
û(t, ξ)

(
r
t

)F`(ξ)/h

dt

satisfy all of the properties from that section.
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Consider the Carleman estimate (3-4). By a similar argument as in the small frequency case, we get

h
√
ε
‖w`‖L2(Rn+1

1+ )
.
∥∥Lϕ,ε,σ J−1

` w`
∥∥

L2(Rn+1
1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
. (7-1)

Again, I want to combine this last inequality with Lemma 5.3 to get

h
√
ε
‖w`‖L2(Rn+1

1+ )
.
∥∥J`Lϕ,ε,σ J−1

` w`
∥∥

H−1
r (Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

To do this, I need to show that if u is of the form u = Lϕ,ε,σ J−1
` w`, then the function g defined in

Lemma 5.3 satisfies a bound like

‖g‖L2(Rn+1
1+ )
≤

1
2‖u‖L2(Rn+1

1+ )
+ O(h)‖w`‖L2(Rn+1

1+ )
,

by an appropriate integration by parts argument. The approach used in the small frequency case does not
work here, because Lϕ,ε,σ is not at all elliptic on the support of ŵ`. However, now Lϕ,ε,σ can be factored
into a composition of two operators, one of which has the desired properties.

Let ζ(ξ) be a smooth cutoff function that is identically one on the set where |ξ |2 ≥ c1 or |ξn| ≥ δ1, and
vanishes if |ξ |2 ≤ c0 or |ξn| ≤ δ0. Let

Gs = (1− ζ(ξ))F`(ξ),

and consider the symbols

G± = ζ(ξ)
α+ iβ f · ξ ±

√
(α+ iβ f · ξ)2− (1+ (γ f )2)(α2− L Sn (θ, ξ))

1+ |γ f |
2 +Gs(ξ),

where L Sn (θ, ξ) represents the symbol of the differential operator L Sn . The square root represents
the branch of the square root with nonnegative real part. The argument of the square root lies on the
nonpositive real axis only when β f · ξ = 0 and

L Sn (θ, ξ)≤
α2
|γ f |

2

1+ |γ f |
2 .

Now
L Sn (θ, ξ)= a1(θ)ξ

2
1 + · · ·+ an(θ)h2ξn + hb1(θ)ξ1+ · · ·+ hbn(θ)hξn,

where by the hypotheses in Proposition 3.1,

|a j − 1| ≤ Cµ

for Cµ that goes to zero as µ goes to zero. Therefore

L Sn (θ, ξ)≥ (1−Cµ)|ξ |2− hC |ξ | ≥ (1−Cµ− h)|ξ |2,

where C bounds the bi (θ). On the support of ζ ,

|ξ |2 ≥ c0 >
K 2

1+ K 2 ,
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so for small enough µ and h,

L Sn (θ, ξ) >
K 2

1+ K 2 .

Then |α− 1|. hε−1, and by (3-7),

|γ f − K | ≤ Cµ,

so for small enough µ and h, it follows that

L Sn (θ, ξ) >
α2
|γ f |

2

1+ |γ f |
2

on the support of ζ . Therefore the square root is actually smooth on the support of ζ , and hence G± are
smooth and really are symbols of order 1 on Rn .

Now if Ta is the operator associated to the symbol a,(
h∂r −

1
r

TG+

)(
1+ |γ f |

2)(h∂r −
1
r

TG−

)
=
(
1+ |γ f |

2)h2∂2
r −

2
r

(
α+β f · h∇θ

)
h∂r Tζ +

1
r2

(
α2
+ h2L Sn

)
Tζ 2

−
2
r

(
1+ |γ f |

2)TGs +
1
r2

(
1+ |γ f |

2)(TG+TGs + TG−TGs + TGs TGs

)
+ hE1,

where E1 is an operator built of first-order semiclassical pseudodifferential operators in Rn and ∂r

derivatives that is bounded from H 1(Rn+1
1+ ) to L2(Rn+1

1+ ).
Now let v = J−1

` w`. Then(
h∂r −

1
r

TG+

)(
1+ |γ f |

2)(h∂r −
1
r

TG−

)
v

=
(
1+ |γ f |

2)h2∂2
r v−

2
r

(
α+β f · h∇θ

)
h∂r Tζv+

1
r2

(
α2
+ h2L Sn

)
Tζ 2v

−
2
r

(
1+ |γ f |

2)TGsv+
1
r2

(
1+ |γ f |

2)(TG+ + TG− + TGs

)
TGsv+ hE1v.

Note that ŵ`(r, ξ) is only supported for ξ on the support of 1− ρ, and therefore v = J−1
` w` is supported

only for ξ on the support of 1− ρ. Therefore

Tζv = v,

since ζ ≡ 1 on the support of 1− ρ. Similarly, Tζ 2v = v. In addition,

TGsv = 0,
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since Gs is 0 on the support of 1− ρ. Therefore(
h∂r −

1
r

TG+

)(
1+ |γ f |

2)(h∂r −
1
r

TG−

)
v

=
(
1+ |γ f |

2)h2∂2
r v−

2
r

(
α+β f · h∇θ

)
h∂rv+

1
r2

(
α2
+ h2L Sn

)
v+ hE1v

= Lϕ,ε,σv+ hE1v,

where E1 is bounded from H 1(Rn+1
1+ ) to L2(Rn+1

1+ ).
Therefore

Lϕ,ε,σv =

(
h∂r −

1
r

TG+

)
z+ hE1v

for some function z, given by

z = (1+ |γ f |
2)

(
h∂r −

1
r

TG−

)
v.

Then

ĝ(r, ξ)=
2 Re F`− h

h

∫
∞

1
L̂ϕ,ε,σv(t, ξ)r−F`/h t−F`/h dt

=
2 Re F`− h

h

∫
∞

1
F

((
h∂t −

1
t

TG+

)
z
)
(t, ξ)r−F`/h t−F`/h dt

+
2 Re F`− h

h

∫
∞

1
h Ê1v(t, ξ)r−F`/h t−F`/h dt.

Integrating by parts gives

ĝ(r, ξ)=
2 Re F`− h

h

∫
∞

1

1
t

F
(
(TF` − TG+)z

)
(t, ξ)r−F`/h t−F`/h dt

+
2 Re F`− h

h

∫
∞

1
h Ê1v(t, ξ)r−F`/h t−F`/h dt.

There are no boundary terms because z is supported away from r = 1. Therefore, using the bounds on g,

‖g‖2
L2(Rn+1

1+ )
≤

∥∥∥∥1
r

(
TF`−G+

)
z
∥∥∥∥2

L2(Rn+1
1+ )

+ h2
‖E1v‖

2
L2(Rn+1

1+ )
.

We need an estimate for
∥∥∥∥1

r
(
TF`−G+

)
z
∥∥∥∥2

L2(Rn+1
1+ )

. Examine the symbol F`−G+.

F`−G+ = ζ
(

F`(ξ)−
α+ iβ f · ξ +

√
(α+ iβ f · ξ)2− (1+ |γ f |

2)(α2+ L Sn (θ, ξ))

1+ |γ f |
2

)
.

On the support of ζ ,

F`(ξ)=
1

1+ K 2

(
1+ i K ξn +

√
2i K ξn − (K ξn)2+ (1+ K 2)|ξ |2− |K |2

)
.
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Therefore

F`−G+ = ζ
(

1+ i K ξn

1+ K 2 −
α+ iβ f · ξ

1+ |γ f |
2

)
+ ζ

(√
2i K ξn − (K ξn)2− (1+ K 2)|ξ |2− |K |2

1+ K 2 −

√
(α+ iβ f · ξ)2− (1+ (γ f )2)(α2+ L Sn (θ, ξ))

1+ |γ f |
2

)
.

Consider the first term.

1+ i K ξn

1+ K 2 −
α+ iβ f · ξ

1+ |γ f |
2 =

(|γ f |
2
− K 2)(1+ i K ξn)

(1+ K 2)(1+ |γ f |
2)
+
(1+ K 2)

(
(1−α)+ i(β f − K en) · ξ

)
(1+ K 2)(1+ |γ f |

2)
.

The first-order operators with symbols

(|γ f |
2
− K 2)(1+ i K ξn)

(1+ K 2)(1+ |γ f |
2)

and
(1+ K 2)

(
(1−α)+ i(β f − K en) · ξ

)
(1+ K 2)(1+ |γ f |

2)

have bounds . Cµ, because they involve multiplication by a function of θ that is bounded by CK Cµ.
Similarly, consider the first-order operator with symbol

ζ

(√
2i K ξn − (K ξn)2− (1+ K 2)|ξ |2− |K |2

1+ K 2 −

√
(α+ iβ f · ξ)2− (1+ (γ f )2)(α2+ L Sn (θ, ξ))

1+ |γ f |
2

)
.

To fit everything horizontally on the page, write

τK := 2i K ξn − (K ξn)
2
− (1+ K 2)|ξ |2− |K |2

and

τ f := (α+ iβ f · ξ)
2
− (1+ (γ f )

2)(α2
+ L Sn (θ, ξ)).

Then
√
τK

1+ K 2 −

√
τ f

1+ |γ f |
2 = (1+ K 2)

τK − τ f

(1+ |γ f |
2)
(
(1+ |γ f |

2)
√
τK + (1+ K 2)

√
τ f
)

+

(
(1+ |γ f |

2)2− (1+ K 2)2
)
τK

(1+ K 2)(1+ |γ f |
2)
(
(1+ |γ f |

2)
√
τK + (1+ K 2)

√
τ f
) .

Expanding,

τK − τ f = 2i(K en −αβ f ) · ξ +
(
(β f · ξ)

2
− (K en · ξ)

2)
+ (|γ f |

2
− K 2)L(θ, iξ)

+ (|γ f |
2
− |K |2)+ (1+ K 2)(|ξ |2− L(θ, ξ)).

Therefore the second term has operator bounds . Cµ, because each term involves multiplication by a
function of θ that is bounded by CK Cµ.
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Therefore ∥∥∥∥1
r

(
TF`−G+

)
z
∥∥∥∥2

L2(Rn+1
1+ )

≤ δ2
‖z‖2

H1(Rn+1
1+ )

for µ small enough. Then

‖g‖2
L2(Rn+1

1+ )
.

∥∥∥∥1
r

(
TF`−G+

)
z
∥∥∥∥2

L2(Rn+1
1+ )

+ h2
‖E1v‖

2
L2(Rn+1

1+ )
. δ2
‖z‖2

H1(Rn+1
1+ )
+ h2
‖v‖2

H1(Rn+1
1+ )
.

Since

Lϕ,ε,σv =

(
h∂r −

1
r

TG+

)
z+ hE1v,

we have

‖Lϕ,ε,σv‖
2
L2(Rn+1

1+ )
≥

∥∥∥∥(h∂r −
1
r

TG+

)
z
∥∥∥∥2

L2(Rn+1
1+ )

− h2
‖E1v‖

2
L2(Rn+1

1+ )

≥ ‖J ∗` z‖2
L2(Rn+1

1+ )
−

∥∥∥∥1
r

TF`−G+z
∥∥∥∥2

L2(Rn+1
1+ )

− h2
‖v‖2

H1(Rn+1
1+ )

& ‖z‖2
H1(Rn+1

1+ )
− δ2
‖z‖2

H1(Rn+1
1+ )
− h2
‖v‖2

H1(Rn+1
1+ )

& ‖z‖2
H1(Rn+1

1+ )
− h2
‖v‖2

H1(Rn+1
1+ )

for δ small enough. Therefore

‖g‖2
L2(Rn+1

1+ )
. δ2
‖Lϕ,ε,σv‖

2
H1(Rn+1

1+ )
+h2
‖v‖2

H1(Rn+1
1+ )
. δ2
‖Lϕ,ε,σv‖

2
H1(Rn+1

1+ )
+h2∥∥J−1

` (1− P)w
∥∥2

H1(Rn+1
1+ )
.

Using similar reasoning as for the small frequency case,

h2∥∥J−1
s (1− P)w

∥∥2
H1(Rn+1

1+ )
. h2∥∥J−1

` (1− P)w
∥∥2

H1
r (R

n+1
1+ )
.

Therefore

‖g‖2
L2(Rn+1

1+ )
. δ2
‖Lϕ,ε,σv‖

2
H1(Rn+1

1+ )
+h2∥∥J−1

` (1−P)w
∥∥2

H1
r (R

n+1
1+ )
. δ2
‖Lϕ,ε,σv‖

2
H1(Rn+1

1+ )
+h2
‖w`‖

2
L2(Rn+1

1+ )
.

Then for δ small enough,

‖g‖L2(Rn+1
1+ )
. 1

2‖Lϕ,ε,σv‖L2(Rn+1
1+ )
+ h‖w`‖L2(Rn+1

1+ )
.

Now using (7-1) and Lemma 5.3,

h
√
ε
‖w`‖L2(Rn+1

1+ )
.
∥∥J`Lϕ,ε,σχ2 J−1

` w`
∥∥

H−1
r (Rn+1

1+ )
+ h‖w`‖L2(Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.

Absorbing the second last term into the left side gives

h
√
ε
‖w`‖L2(Rn+1

1+ )
.
∥∥J`Lϕ,ε,σχ2 J−1

` w`
∥∥

H−1
r (Rn+1

1+ )
+ O(h∞)‖w‖L2(Rn+1

1+ )
.
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We can finish the argument as in the small frequency case to get

h
√
ε
‖w`‖L2(Rn+1

1+ )
. ‖Lϕ,ε,σw`‖H−1(Rn+1

1+ )
+ O(h)‖w‖L2(Rn+1

1+ )
.

This finishes the proof of Lemma 4.2, and thus of Proposition 3.1.

8. Proof of Theorem 1.4

We will begin by gluing together estimates of the form in Proposition 3.1 to prove the following interme-
diate proposition.

Proposition 8.1. Suppose that f : Sn
→ (0,∞) is a C∞ function such that � lies entirely in the region

AO = {(r, θ) | r ≥ f (θ)} ⊂ Rn+1, and 0c
+

is a subset of the graph r = f (θ). If w ∈ C∞0 (�), then

h
√
ε
‖w‖L2(�) . ‖Lϕ,ε,W,qw‖H−1(AO ).

Proof. Now let � be as in Proposition 8.1. We can take an open cover U1, . . . ,Um of � such that on
each �∩U j , there exists K j such that under some choice of coordinates, |∇Sn log f − K j en| ≤ µK j and
| sin(θk)− 1| ≤ µK j , where µK j is the value of µ from Proposition 3.1 that works for K = K j . (Since
|∇Sn log f | must be bounded above, µK j must be bounded below, and therefore this is possible with only
finitely many U j .)

Let ζ1, . . . , ζm be a smooth partition of unity subordinate to the cover U1, . . . ,Um . Now forw∈C∞0 (�),

w = ζ1w+ · · ·+ ζmw =: w1+ · · ·+wm,

where each w j ∈ C∞0 (�∩U j ). Applying Proposition 3.1 to the domain �∩U j ,

h
√
ε
‖w j‖L2(�∩U j ) . ‖Lϕ,εw j‖H−1(AO )

for each j = 1, . . . ,m. Then ∑
j

h
√
ε
‖w j‖L2(�) .

∑
j

‖Lϕ,εw j‖H−1(AO ),

so
h
√
ε
‖w‖L2(�) .

∑
j

‖Lϕ,εw j‖H−1(AO ).

Now by the product rule,

‖Lϕ,εw j‖H−1(AO ) = ‖Lϕ,εζ jw‖H−1(AO ) ≤ ‖ζ j Lϕ,εw‖H−1(AO )+Ch‖w‖L2(AO )

≤ ‖Lϕ,εw‖H−1(AO )+Ch‖w‖L2(AO ).

Therefore
h
√
ε
‖w‖L2(�) . ‖Lϕ,εw‖H−1(AO ) (8-1)

for ε small enough, for every w ∈ C∞0 (�).
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To treat the case where W and q are nonzero, note that

Lϕ,ε,W,q = Lϕ,ε + h
(
W · h D+ h D ·W

)
+ 2ihW · ∇

(
log r + h

log2 r
2ε

)
+ h2(q +W 2).

Therefore h
√
ε
‖w‖L2(�) . ‖Lϕ,ε,W,qw‖H−1(AO )+ hC‖w‖L2(AO ),

and the last term can be absorbed into the left side to give

h
√
ε
‖w‖L2(�) . ‖Lϕ,ε,W,qw‖H−1(AO ).

This completes the proof. �

Finally, I can prove Theorem 1.4 by gluing together estimates of the form in Proposition 8.1. If 0+ is
a neighborhood of ∂�+, then let �′ be a smooth domain containing �, with ∂�∩ ∂�′ = 0c

+
.

Then let U1, . . . ,Um be an open cover of � such that each ∂U j ∩0
c
+

coincides with a graph of the
form r = f j (θ). For each U j , Proposition 3.1 gives us

h
√
ε
‖w‖L2(U j ) . ‖Lϕ,ε,W,qw‖H−1(A j )

for w ∈ C∞0 (U j ).
Each A j is defined by the graph of a function r = f j (θ), and since ∂�′ is smooth and coincides with ∂�

on 0c
+

, and ∂νϕ<0 on 0c
+

, ∂�′ must be locally a graph in a neighborhood of 0c
+

. Therefore we can assume
that A j coincides with �′ in a neighborhood of each U j , in the sense that their characteristic functions are
equal in that neighborhood. Then there is a smooth cutoff function χ j defined on A j∩�

′ that is identically
one on U j but vanishes outside on the complements of A j and�′. Multiplication by this function provides
a bounded map from H 1

0 (A j ) to H 1
0 (�

′) and vice versa, and therefore ‖w‖H−1(�′) ' ‖w‖H−1(A j ) for
w ∈ C∞0 (U j ). Therefore we have

h
√
ε
‖w‖L2(U j ) . ‖Lϕ,ε,W,qw‖H−1(�′)

for w ∈ C∞0 (U j ).
Gluing together these estimates in the manner used above gives

h
√
ε
‖w‖L2(�) . ‖Lϕ,ε,W,qw‖H−1(�′)

for w ∈ C∞0 (�).
Finally, note that if w ∈ C∞0 (�), then e(log r)2/εw ∈ C∞0 (�), so

h
√
ε

∥∥e(log r)2/εw
∥∥

L2(�)
.
∥∥e(log r)2/εLϕ,W,qw

∥∥
H−1(�′)

.

On �, there exists some C� such that 1≤ e(log r)2/ε
≤ eC�/ε, so

h‖w‖L2(�) . ‖Lϕ,W,qw‖H−1(�′),
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as desired. This establishes Theorem 1.4.

Remark. If we want to prove Theorem 1.2 instead of Theorem 1.1, then we could begin by supposing that
f : Sn

→ (0,∞) is a C∞ function such that � lies entirely in the region AI = {(r, θ) | r ≤ f (θ)} ⊂Rn+1,
and 0c

−
is a subset of the graph r = f (θ). Then by the change of variables (r, θ) 7→ (1/r, θ), � maps to

a region �̂ of the form described in Proposition 8.1. Therefore, by (8-1),

h‖w‖L2(�̂) . ‖Lϕ,εw‖H−1( ÂO )

for w ∈ C∞0 �̂, where ϕ = log r . Changing variables back gives the Carleman estimate

h‖w‖L2(�) . ‖L− log r,εw‖H−1(AI )

for w ∈ C∞0 �. Therefore, by the same kind of argument as above, we get

h‖w‖L2(�) . ‖Lϕ,W,qw‖H−1(�′),

where ϕ =− log r and �′ is a domain containing �, with 0c
−
⊂ ∂�′ ∩ ∂� whenever 0− is of the form

described in Theorem 1.2. Using this Carleman estimate in the place of Theorem 1.4 in the remainder of
the argument proves Theorem 1.2 instead of Theorem 1.1.

9. Complex geometric optics solutions

Theorem 1.4 can be used to construct solutions to equations of the system (1-1). The key is the following
proposition.

Proposition 9.1. For every v ∈ L2(�), there exists u ∈ H 1(�) such that

L∗ϕ,W,qu = v on �, u|0c
+
= 0

and

‖u‖H1(�) .
1
h
‖v‖L2(�).

Proof. The proof is based on a Hahn–Banach argument. Suppose v ∈ L2(�). Then for all w ∈ C∞0 (�),∣∣(w|v)�∣∣. 1
h
‖v‖L2(�)h‖w‖L2(�).

Therefore, by Theorem 1.4, ∣∣(w|v)�∣∣. 1
h
‖v‖L2(�)‖Lϕ,W,qw‖H−1(�′). (9-1)

Now consider the subspace

{Lϕ,W,qw | w ∈ C∞0 (�)} ⊂ H−1(�′).

By the estimate from Theorem 1.4, the map Lϕ,W,qw 7→ (w|v)� is well defined on this subspace. It is a
linear functional, and by (9-1), it is bounded by (C/h)‖v‖L2(�).
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Therefore, by Hahn–Banach, there exists an extension of this functional to the whole space H−1(�′)

with the same bound. This can be represented by an element of the dual space H 1
0 (�

′), so there exists
u ∈ H 1

0 (�
′) such that

‖u‖H1(�′) .
1
h
‖v‖L2(�)

and
(w|v)� = (Lϕ,W,qw|u)�′ = (Lϕ,W,qw|u)�

for all w ∈ C∞0 (�). Note that u ∈ H 1
0 (�

′) implies that u|0c
+
= 0. Then

(w|v)� = (w|L
∗

ϕ,W,qu)�

since w ∈ C∞0 (�), and thus
(w|v−L∗ϕ,W,qu)� = 0

for all v ∈ C∞0 (�). Therefore v = L∗ϕ,W,qu on �, and

‖u‖H1(Rn+1) .
1
h
‖v‖L2(�),

as desired. �

Now I can construct the complex geometrical optics solutions.

Proposition 9.2. There exists a solution of the problem

LW,qu = 0 on �, u|0c
+
= 0

of the form u = e(1/h)(ϕ+iψ)(a+r)− e`/hb, where ϕ(x, y)= log r , ψ is a solution to the eikonal equation
∇ϕ · ∇ψ = 0, |∇ϕ| = |∇ψ |, a and b are C2 functions on �, and

Re `(x, y)= ϕ(x, y)− k(x, y),

where k(x)' dist(x, 0c
+
) in a neighborhood of 0c

+
and b has its support in that neighborhood. Finally,

r ∈ H 1(�), with r |0c
+
= 0, ‖r‖H1(�) = O(h), and ‖r‖L2(∂�) = O(h1/2).

The proof is a combination of the proofs of the equivalent theorems in [Dos Santos Ferreira et al. 2007;
Kenig et al. 2007].

Proof. Let ϕ(r, θ) = log r , and take ψ(r, θ) = dSn (θ, ω) for some fixed point ω ∈ Sn . If ω 6= θ for all
(r, θ) ∈�, then ψ solves the eikonal equation ∇ϕ · ∇ψ = 0, |∇ϕ| = |∇ψ |. Then

h2LW,qe(1/h)(ϕ+iψ)
= e(1/h)(ϕ+iψ)(h(D+W ) · (∇ψ − i∇ϕ)+ h(∇ψ − i∇ϕ) · (D+W )+ h2LW,q

)
.

Therefore, if a is a C2 solution to

(∇ψ − i∇ϕ) · Da+ (∇ψ − i∇ϕ) ·Wa+
1
2i
(4ψ − i4ϕ)a = 0,

then
h2LW,qe(1/h)(ϕ+iψ)a = e(1/h)(ϕ+iψ)h2LW,qa = O(h2)e(1/h)(ϕ+iψ).
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We can look for an exponential solution a = e8, in which case the relevant equation becomes

(∇ϕ+ i∇ψ) · ∇8+ i(∇ϕ+ i∇ψ) ·W + 1
24(ϕ+ iψ)= 0.

Now suppose x ∈ Rn+1, and write x = (xω, x ′), where xω is the component of x in the ω direction, and
x ′ are the remaining components. Then by considering z = xω + i |x ′| as a complex variable, we get
ϕ = Re log z and ψ = Im log z. Now our equation is an inhomogeneous Cauchy–Riemann equation in
the z variable, and can be solved by the Cauchy formula. Then a is C2, since W is. The solution is only
unique up to addition of terms ga with

(∇ϕ+ i∇ψ) · ∇ga = 0. (9-2)

Now I want to construct a (complex-valued) function ` to be an approximate solution to the equation

∇` · ∇`= 0, `|0c
+
= ϕ+ iψ.

In order to avoid duplicating the solution ϕ+ iψ , we can ask for

∂ν`|0c
+
=−∂ν(ϕ+ iψ)|0c

+
.

To construct an approximate solution, pick coordinates (t, s) near 0c
+

such that t are the coordinates along
0c
+

and s is perpendicular to 0c
+

. Suppose ` takes the form of a power series

`(t, s)=
∞∑
j=0

a j (t)s j .

Then

∇`= (∇t`, ∂s`)=

( ∞∑
j=0

∇t a j (t)s j ,

∞∑
j=0

a j (t) js j−1
)
.

Expanding the equation ∇` · ∇` = 0 and considering each power of s separately gives a sequence of
equations ∑

j+k=m

∇t a j∇t ak +
∑

j+k=m+2

jka j ak = 0 (9-3)

for each m = 0, 1, 2, . . . . The boundary conditions determine a0 and a1, so we can solve this recursively.
If m ≥ 1 and all a j are known for j ≤ m, the only part of (9-3) that contains an unknown looks like
2(m+ 1)a1am+1. Note that

a1 =−∂ν(ϕ+ iψ).

Since 0c
+

coincides with a graph r = f (θ) for some smooth function f , and ϕ = log r , there exists some
ε0 > 0 such that |a1|> ε0 on 0c

+
, so we can divide by a1 to solve for am+1.

This gives a formal power series that may or may not converge outside s = 0. However, we can
construct a C∞ function ` in � whose Taylor series in s coincides with this formal power series at s = 0,
such that

∇` · ∇`= O
(
dist(x, 0c

+
)∞
)
.
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Moreover,
∂ν Re `|0c

+
=−∂νϕ|0c

+
<−ε0

and
Re `|0c

+
= ϕ|0c

+
,

so in a neighborhood of 0c
+

,
Re `(x, y)= ϕ(x, y)− k(x, y), (9-4)

where k(x)' dist(x, 0c
+
) in a neighborhood of 0c

+
.

By a similar method, we can construct an approximate solution b for the problem

∇` · Db+∇` ·W b = 0, b|0c
+
= a|0c

+
,

so
∇` · Db+∇` ·W b = O

(
dist(x, 0c

+
)∞
)
, b|0c

+
= a|0c

+
.

Multiplying b by a smooth cutoff function does not change these properties, so we may as well assume
that b is only supported close to 0c

+
for (9-4) to hold. Then

−h2LW,q(e`/hb)= e`/h(O(dist(x, 0c
+
)∞
)
+ O(h2)

)
,

so ∣∣h2LW,q(e`/hb)
∣∣= eϕ/he−k/h(O(dist(x, 0c

+
)∞
)
+ O(h2)

)
.

If dist(x, 0c
+
)≤ h1/2, for h small, this is eϕ/h O(h2), because of the O

(
dist(x, 0c

+
)∞
)

term. On the other
hand, if dist(x, 0c

+
)≥ h1/2, this is still eϕ/h O(h2), because of e−k/h .

Now e(1/h)(ϕ+iψ)a− e`/hb = 0 on 0c
+

, and

e−ϕ/hh2LW,q
(
e(1/h)(ϕ+iψ)a+ e`/hb

)
= v,

where ‖v‖L2(�) = O(h2). By Proposition 9.1, the problem

L∗ϕ,W,qr1 = e−ϕ/hh2LW,qeϕ/hr1 =−v on �, r1|0c
+
= 0

has an H 1 solution r1 with
‖r1‖H1(�) .

1
h
‖v‖L2(�) = O(h).

Set r = e−iψ/hr1 and u = e(1/h)(ϕ+iψ)(a+ r)− e`/hb. Then

‖r‖H1(�) = O(h),

so ‖r‖L2(∂�) = O(h1/2) by the trace theorem, and

LW,qu = 0 on �, u|0c
+
= 0.

This finishes the proof. �

If the boundary condition is not needed, then the result is as follows:
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Proposition 9.3. There exists a solution of the problem

LW,qu = 0 on �

of the form u= e(1/h)(ϕ+iψ)(a+r), where ϕ(x, y) is any limiting Carleman weight, ψ is any solution to the
eikonal equation, a is a C2 function on�, and r ∈H 1(�), with ‖r‖H1(�)=O(h) and ‖r‖L2(∂�)=O(h1/2).

This is essentially Lemma 3.4 from [Dos Santos Ferreira et al. 2007]. We can always replace a by γ a,
where γ is a solution to

(∇ϕ+ i∇ψ) · ∇γ = 0 on �.

10. Proof of Theorem 1.1

For convenience, ‖ · ‖ will denote the L2 norm in this section, unless otherwise indicated. The tilde as
used in this section has nothing to do with the notation from Section 3.

Using Proposition 9.2, we can construct ũ2 = e(1/h)(ϕ+iψ)(a2+ r2)− e`/hb =: u2+ ur to be a solution
to

LW2,q2 ũ2 = 0 on �, ũ2|0c
+
= 0.

Then −ϕ is also a Carleman weight, and if ϕ and ψ satisfy the eikonal equation, then so do −ϕ and ψ .
Therefore, using Proposition 9.3, we can construct u1 = e(1/h)(−ϕ+iψ)(a1+ r1) to be a solution to

LW1,q1u1 = 0.

Let w be the unique solution to

LW1,q1w = 0, w|∂� = ũ2|∂�.

(Here we are using the assumption that LW1,q1 does not have a zero eigenvalue.) In particular, w|0c
+
=

ũ2|0c
+
= 0, so by the hypothesis on the Dirichlet–Neumann map,

∂ν(w− ũ2)|0− = 0.

Now

LW1,q1(w− ũ2)=−LW1,q1 ũ2

= (LW2,q2 −LW1,q1)ũ2

= (W2−W1) · Dũ2+ D · (W2−W1)ũ2+
(
W 2

2 −W 2
1 + q2− q1

)
ũ2. (10-1)

On the other hand, Green’s formula from [Dos Santos Ferreira et al. 2007] gives us∫
�

LW1,q1(w− ũ2)u1 dV =
∫
∂�

∂ν(ũ2−w)u1 d S =
∫
0c
−

∂ν(ũ2−w)u1 d S. (10-2)

Combining (10-1) with (10-2) gives∫
0c
−

∂ν(ũ2−w)u1 d S =
∫
�

(W2−W1) ·
(
Dũ2u1+ ũ2 Du1

)
dV +

∫
�

(
W 2

2 −W 2
1 + q2− q1

)
ũ2u1 dV .
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Expanding ũ2 as ũ2 = u2+ ur on the right side gives∫
0c
−

∂ν(ũ2−w)u1 d S=
∫
�

(W2−W1) ·
(
Du2u1+u2 Du1

)
dV +

∫
�

(
W 2

2 −W 2
1 +q2−q1

)
u2u1 dV

+

∫
�

(W2−W1) ·
(
Dur u1+ ur Du1

)
dV +

∫
�

(
W 2

2 −W 2
1 + q2− q1

)
ur u1 dV . (10-3)

To show that dW1 = dW2, we can apply the reasoning from [Dos Santos Ferreira et al. 2007] verbatim
if we can establish that

lim
h→0

h
∫
�

(W2−W1) ·
(
Du2u1+ u2 Du1

)
dV = 0. (10-4)

Similarly, to show that q1 = q2, we can apply the reasoning from [Dos Santos Ferreira et al. 2007]
verbatim if we can establish that

lim
h→0

∫
�

(q2− q1)u2u1 dV = 0. (10-5)

To establish (10-4), label the terms as follows: T1 = T2+T3+T4+T5. Consider the terms on the right
side first. T2 is bounded above by∥∥(W2−W1)e−ϕ/h Du2

∥∥
�
‖a1+ r1‖�+

∥∥(W2−W1)eϕ/h Du1
∥∥
�
‖a2+ r2‖�.

Since W2−W1 is bounded on �, ‖a1‖� and ‖a2‖� are O(1), and ‖r1‖� and ‖r2‖� are O(h),

|T2|.
∥∥e−ϕ/h Du2

∥∥
�
+
∥∥eϕ/h Du1

∥∥
�
.

T3 is bounded above by

|T3| ≤
∥∥(W 2

2 −W 2
1 + q2− q1

)
(a2+ r2)

∥∥
�
‖a1+ r1‖� = O(1).

Similarly,

|T4|.
∥∥e−ϕ/h Dur

∥∥
�
+
∥∥eϕ/h Du1

∥∥
�

∥∥e−2βy/h
∥∥
�
.
∥∥e−ϕ/h Dur

∥∥
�
+ h

∥∥eϕ/h Du1
∥∥
�

and
|T5| ≤

∥∥(W 2
2 −W 2

1 + q2− q1
)
e−2βy/hb

∥∥
�
‖a1+ r1‖� = O(h).

Now examine the term T1:∣∣∣∣∫
0c
−

∂ν(ũ2−w)u1 d S
∣∣∣∣≤ ∥∥∂ν(ũ2−w)e−ϕ/h

∥∥
0c
−

‖a1+ r1‖0c
−
.

The factor ‖a1+ r1‖0c
−

is O(1). Furthermore, ∂νϕ ≥ ε1 on 0c
−

, so∣∣∣∣∫
0c
−

∂ν(ũ2−w)u1 d S
∣∣∣∣. 1
√
ε1

∥∥√∂νϕe−ϕ/h∂ν(ũ2−w)
∥∥
0c
−

.
1
√
ε1

∥∥√∂νϕe−ϕ/h∂ν(ũ2−w)
∥∥
0+
.

By the Carleman estimate given in Equation (2.13) of [Dos Santos Ferreira et al. 2007],∥∥√∂νϕe−ϕ/h∂ν(ũ2−w)
∥∥
0+
.
√

h
∥∥e−ϕ/hLW1,q1(ũ2−w)

∥∥
�
+
∥∥√−∂νϕe−ϕ/h∂ν(ũ2−w)

∥∥
∂�−

.
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Therefore
C
√
ε1

(√
h
∥∥e−ϕ/hLW1,q1(ũ2−w)

∥∥
�
+
∥∥√−∂νϕe−ϕ/h∂ν(ũ2−w)

∥∥
∂�−

)
.

The last term on the right side is zero, because ∂ν(ũ2 −w) = 0 on 0− and ∂�− ⊂ 0−. Therefore the
upper bound becomes

C
√
ε1

√
h
∥∥e−ϕ/hLW1,q1(ũ2−w)

∥∥
�
.

Expanding LW1,q1(ũ2−w) and writing ũ2 = u2+ ur , we obtain that T1 is bounded above by

C
√

h
√
ε1

(∥∥e−ϕ/h Du2
∥∥
�
+
∥∥e−ϕ/hu2

∥∥
�
+
∥∥e−ϕ/h Dur

∥∥
�
+
∥∥e−ϕ/hur

∥∥
�

)
≤

C
√

h
√
ε1

(∥∥e−ϕ/h Du2
∥∥
�
+‖a2+ r2‖�+

∥∥e−ϕ/h Dur
∥∥
�
+
∥∥e−2βy/hb

∥∥
�

)
≤

C
√

h
√
ε1

(∥∥e−ϕ/h Du2
∥∥
�
+ O(1)+

∥∥e−ϕ/h Dur
∥∥
�
+ O(h)

)
,

where the constant C mutates as necessary to preserve the bound. Therefore, in order to bound the terms
T1, T2, and T4, we need to calculate

∥∥eϕ/h Du1
∥∥
�

,
∥∥e−ϕ/h Du2

∥∥
�

, and
∥∥e−ϕ/h Dur

∥∥
�

. We have

∥∥eϕ/h Du1
∥∥
�
=

∥∥∥∥eϕ/h 1
h

D(−ϕ+ iψ)e(1/h)(−ϕ+iψ)(a1+ r1)+ eiψ/h D(a1+ r1)

∥∥∥∥
�

.
1
h

∥∥D(−ϕ+ iψ)(a1+ r1)
∥∥
�
+
∥∥D(a1+ r1)

∥∥
�
= O(h−1),

since ‖r1‖H1(�) is O(h). Similarly, ∥∥e−ϕ/h Du2
∥∥
�
= O(h−1).

Finally,∥∥e−ϕ/h Dur
∥∥
�
=

∥∥∥∥e−ϕ/h 1
h

D`e`/hb+ e−ϕ/he`/h Db
∥∥∥∥
�

.
1
h

∥∥e−k/hbD`
∥∥
�
+
∥∥e−k/h Db

∥∥
�
= O(1).

Putting all of this together gives T1 = O(h−1/2), T2 = O(h−1), T3 = O(1), T4 = O(1), and T5 = O(h).
Therefore, multiplying (10-3) through by h and taking the limit as h goes to zero gives

lim
h→0

h
∫
�

(W2−W1) ·
(
Du2u1+ u2 Du1

)
dV = 0,

which establishes (10-4), and thus by the reasoning in [Dos Santos Ferreira et al. 2007], that dW1 = dW2

in � and W1 =W2 up to a gauge transformation that leaves the Dirichlet–Neumann maps invariant.
It remains only to prove (10-5). Going back to (10-3), we now have∫

0c
−

∂ν(ũ2−w)u1 d S =
∫
�

(q2− q1)u2u1 dx +
∫
�

(q2− q1)ur u1 dV . (10-6)



A PARTIAL DATA RESULT FOR THE MAGNETIC SCHRÖDINGER INVERSE PROBLEM 157

The first and second terms on the right side are O(1) and O(h) as before. The left side is now bounded
by √

h
√
ε1

(∥∥e−ϕ/h(q1− q2)u2
∥∥
�
+
∥∥e−ϕ/h(q1− q2)ur

∥∥
�

)
=
√

h
(
O(1)+ O(h)

)
= O(h1/2),

so taking the limit of (10-6) as h goes to zero gives

lim
h→0

∫
�

(q2− q1)u2u1 dV = 0.

This establishes (10-5), and thus that q1 = q2 on �. This finishes the proof.

Acknowledgements

This research was partially supported by a Doctoral Postgraduate Scholarship from the Natural Science
and Engineering Research Council of Canada. The referee for this paper made several helpful suggestions,
which were appreciated by the author. Finally, the author would also like to thank Carlos Kenig for his
guidance, support, and patience throughout this work.

References

[Calderón 1980] A.-P. Calderón, “On an inverse boundary value problem”, pp. 65–73 in Seminar on Numerical Analysis and
its Applications to Continuum Physics (Rio de Janeiro, 1980), Coleção Atas 12, Soc. Brasil. Mat., Rio de Janeiro, 1980.
MR 81k:35160 Zbl 1182.35230

[Dos Santos Ferreira et al. 2007] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, and G. Uhlmann, “Determining a magnetic
Schrödinger operator from partial Cauchy data”, Comm. Math. Phys. 271:2 (2007), 467–488. MR 2008a:35044 Zbl 1148.35096

[Kenig et al. 2007] C. E. Kenig, J. Sjöstrand, and G. Uhlmann, “The Calderón problem with partial data”, Ann. of Math. (2)
165:2 (2007), 567–591. MR 2008k:35498 Zbl 1127.35079

[Nakamura et al. 1995] G. Nakamura, Z. Q. Sun, and G. Uhlmann, “Global identifiability for an inverse problem for the
Schrödinger equation in a magnetic field”, Math. Ann. 303:3 (1995), 377–388. MR 96m:35336 Zbl 0843.35134

[Salo 2004] M. Salo, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ph.D. thesis, University of
Helsinki, Helsinki, 2004, Available at http://www.rni.helsinki.fi/~msa/pub/thesis.pdf. MR 2005k:35432 Zbl 1059.35175

[Salo 2006] M. Salo, “Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field”, Comm. Partial
Differential Equations 31:10-12 (2006), 1639–1666. MR 2007j:35236 Zbl 1119.35119

[Sylvester and Uhlmann 1987] J. Sylvester and G. Uhlmann, “A global uniqueness theorem for an inverse boundary value
problem”, Ann. of Math. (2) 125:1 (1987), 153–169. MR 88b:35205 Zbl 0625.35078

[Tolmasky 1998] C. F. Tolmasky, “Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian”,
SIAM J. Math. Anal. 29:1 (1998), 116–133. MR 99d:35031 Zbl 0908.35028

Received 22 May 2012. Revised 20 Jun 2013. Accepted 22 Aug 2013.

FRANCIS J. CHUNG: fjchung@math.uchicago.edu
Department of Mathematics, University of Chicago, Chicago, IL 60637, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1590/S0101-82052006000200002
http://msp.org/idx/mr/81k:35160
http://msp.org/idx/zbl/1182.35230
http://dx.doi.org/10.1007/s00220-006-0151-9
http://dx.doi.org/10.1007/s00220-006-0151-9
http://msp.org/idx/mr/2008a:35044
http://msp.org/idx/zbl/1148.35096
http://dx.doi.org/10.4007/annals.2007.165.567
http://msp.org/idx/mr/2008k:35498
http://msp.org/idx/zbl/1127.35079
http://dx.doi.org/10.1007/BF01460996
http://dx.doi.org/10.1007/BF01460996
http://msp.org/idx/mr/96m:35336
http://msp.org/idx/zbl/0843.35134
http://www.rni.helsinki.fi/~msa/pub/thesis.pdf
http://msp.org/idx/mr/2005k:35432
http://msp.org/idx/zbl/1059.35175
http://dx.doi.org/10.1080/03605300500530420
http://msp.org/idx/mr/2007j:35236
http://msp.org/idx/zbl/1119.35119
http://dx.doi.org/10.2307/1971291
http://dx.doi.org/10.2307/1971291
http://msp.org/idx/mr/88b:35205
http://msp.org/idx/zbl/0625.35078
http://dx.doi.org/10.1137/S0036141096301038
http://msp.org/idx/mr/99d:35031
http://msp.org/idx/zbl/0908.35028
mailto:fjchung@math.uchicago.edu
http://msp.org




Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

László Lempert Purdue University, USA
lempert@math.purdue.edu

Richard B. Melrose Massachussets Institute of Technology, USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Yuval Peres University of California, Berkeley, USA
peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2014 is US $180/year for the electronic version, and $355/year (+$50, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:zworski@math.berkeley.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 7 No. 1 2014

1
PAUL LAURAIN and TRISTAN RIVIÈRE

43Global well-posedness of slightly supercritical active scalar equations
MICHAEL DABKOWSKI, ALEXANDER KISELEV, LUIS SILVESTRE and VLAD VICOL

73The nonlinear Schrödinger equation ground states on product spaces
SUSANNA TERRACINI, NIKOLAY TZVETKOV and NICOLA VISCIGLIA

97Orthonormal systems in linear spans
ALLISON LEWKO and MARK LEWKO

117A partial data result for the magnetic Schrödinger inverse problem
FRANCIS J. CHUNG

159Sharp polynomial decay rates for the damped wave equation on the torus
NALINI ANANTHARAMAN and MATTHIEU LÉAUTAUD

215The J -flow on Kähler surfaces: a boundary case
HAO FANG, MIJIA LAI, JIAN SONG and BEN WEINKOVE

227A priori estimates for complex Hessian equations
SŁAWOMIR DINEW and SŁAWOMIR KOŁODZIEJ

245The Aharonov–Bohm effect in spectral asymptotics of the magnetic Schrödinger operator
GREGORY ESKIN and JAMES RALSTON

2157-5045(2014)7:1;1-F

A
N

A
LY

SIS
&

PD
E

Vol.7,
N

o.1
2014


	1. Introduction
	2. Outline of the proof of 0=thm.61=Theorem 1.4
	3. An initial Carleman estimate
	4. Small and large frequency cases
	5. The operators
	6. The small frequency case
	7. The large frequency case
	8. Proof of 0=thm.61=Theorem 1.4
	9. Complex geometric optics solutions
	10. Proof of 0=thm.21=1.1
	Acknowledgements
	References
	
	

