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THE J-FLOW ON KÄHLER SURFACES: A BOUNDARY CASE

HAO FANG, MIJIA LAI, JIAN SONG AND BEN WEINKOVE

We study the J -flow on Kähler surfaces when the Kähler class lies on the boundary of the open cone for
which global smooth convergence holds and satisfies a nonnegativity condition. We obtain a C0 estimate
and show that the J -flow converges smoothly to a singular Kähler metric away from a finite number
of curves of negative self-intersection on the surface. We discuss an application to the Mabuchi energy
functional on Kähler surfaces with ample canonical bundle.

1. Introduction

The J -flow is a parabolic flow on Kähler manifolds with two Kähler classes. It was defined by Donald-
son [1999] in the setting of moment maps and by Chen [2000] as the gradient flow of the J-functional
appearing in his formula for the Mabuchi energy [1986].

The J -flow is defined as follows. Let X be a compact Kähler manifold with two Kähler metrics
ω and χ in different Kähler classes [ω] and [χ ]. Let Pχ be the space of smooth χ-plurisubharmonic
functions on X :

Pχ = {ϕ | χϕ := χ + ddcϕ > 0}.

Then the J -flow is a flow defined in Pχ by

∂

∂t
ϕ = c−

nχn−1
ϕ ∧ω

χn
ϕ

, ϕ(0)= ϕ0 ∈ Pχ , (1-1)

where c is the topological constant given by

c =
n[χ ]n−1

· [ω]

[χ ]n
.

A stationary point of (1-1) gives a critical Kähler metric χ̃ ∈ [χ ] satisfying

cχ̃n
= nχ̃n−1

∧ω. (1-2)

Donaldson [1999] noted that a smooth critical metric exists only if the cohomological condition
[cχ − ω] > 0 holds. In complex dimension 2, Chen [2000] showed that this necessary condition is
sufficient for the existence of a smooth critical metric by observing that in this case, (1-2) is equivalent
to the complex Monge–Ampère equation solved by Yau [1978] (see (2-2) below). Chen [2004] also

Research supported in part by NSF grants DMS-1008249, DMS-08047524 and DMS-1105373. This work was carried out while
Weinkove was a member of the Mathematics Department at the University of California at San Diego.
MSC2010: 53C44, 53C55.
Keywords: Kähler, J -flow, complex Monge–Ampère.

215

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2014.7-1
http://msp.org


216 HAO FANG, MIJIA LAI, JIAN SONG AND BEN WEINKOVE

established the long time existence for the J -flow (1-1) with any initial data. Weinkove [2004; 2006]
showed that the J -flow converges to a critical metric if the cohomological condition [cχ − (n− 1)ω]> 0
holds. In particular, if X is a Kähler surface, a necessary and sufficient condition for convergence of the
flow to a smooth critical metric is Donaldson’s cohomological condition [cχ −ω]> 0.

Song and Weinkove [2008] found a necessary and sufficient condition for the convergence of the
J -flow in higher dimensions, which we now explain. Define

Cω :=
{
[χ ]> 0 | there exists χ ′ ∈ [χ ] such that cχ ′n−1

− (n− 1)χ ′n−2
∧ω > 0

}
. (1-3)

Then the J -flow (1-1) converges smoothly to the critical metric solving (1-2) if and only if [χ ] ∈ Cω.
In [Fang et al. 2011; Fang and Lai 2012b], the J -flow was generalized to the general inverse σk flow.

An analogous necessary and sufficient condition is found to ensure the smooth convergence of the flow.
The behavior of the J -flow in the case when the condition [χ ] ∈ Cω does not hold is still largely open.

However, recent progress was made by Fang and Lai [2012a] in the case of a family of Kähler manifolds
satisfying the Calabi symmetry condition. It was shown (in the more general case of the inverse σk flow)
that if the initial metric satisfies the Calabi symmetry, the flow converges to a Kähler current which is the
sum of a Kähler metric with a conic singularity and a current of integration along a divisor.

We consider the case when X is a Kähler surface. As discussed above, a necessary and sufficient
condition for convergence of the flow to a smooth critical metric is

[cχ −ω]> 0. (1-4)

Donaldson [1999] remarked that if this condition fails, then one might expect the J -flow to blow up over
some curves of negative self-intersection. It was observed in [Song and Weinkove 2008, Proposition 4.5]
that, applying the results of Buchdahl [1999] and Lamari [1999], there exist a finite number N ≥ 0, say, of
irreducible curves Ci with C2

i < 0 on X and positive real numbers ai such that [cχ −ω]−
∑N

i=1 ai [Ci ] is
Kähler. It was shown in [Song and Weinkove 2008] that at least for some sequence of points approaching
some Ci , the quantity |ϕ| + |1ωϕ| blows up.

In this paper we describe the behavior of the J -flow for certain classes [χ ] on the boundary of Cω.
First we introduce some notation: given a closed (1, 1)-form α, write [α] ≥ 0 if there exists a smooth
closed nonnegative (1, 1)-form cohomologous to α. We consider any Kähler class [χ ] satisfying

[cχ −ω] ≥ 0. (1-5)

All such classes [χ ] lie in the closure of Cω. The boundary of Cω consists of Kähler classes [χ ] such
that [cχ −ω] is nef, which means that for every ε > 0 there exists a representative of [cχ −ω] which is
bounded below by −εω. Further, since

[cχ −ω]2 = [ω]2 > 0,

the class [cχ −ω] is nef and big. Nevertheless, to our knowledge, this does not imply that it satisfies
(1-5) — see Question 4.1 below. However, at least in many cases the condition (1-5) is equivalent to [χ ]
belonging to the closure of Cω in the Kähler cone. This holds for all Hirzebruch surfaces, for example,
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since explicit nonnegative (1, 1)-forms can be found representing all classes on the boundary of the Kähler
cone (see the discussion in [Calabi 1982]).

Our main result is this:

Theorem 1.1. Let X be a compact Kähler surface with Kähler metrics ω and χ such that

[cχ −ω] ≥ 0, where c =
2[χ ] · [ω]
[χ ]2

.

Then there exist a finite number of curves Ci on X of negative self-intersection such that the solution
ϕ(t) of the J -flow (1-1) converges in C∞loc

(
X \

⋃
Ci
)

to a continuous function ϕ∞, smooth on X \
⋃

Ci ,
satisfying

cχ2
ϕ∞
= 2χϕ∞∧ω, for χϕ∞= χ + ddcϕ∞ ≥ 0. (1-6)

Moreover, ϕ∞ is the unique continuous solution of (1-6) up to the addition of a constant.

Our result makes use of some recent works in the study of complex Monge–Ampère equations that
appeared after the breakthrough of Kołodziej [1998]. Indeed, the existence of a unique weak solution to
the critical equation (1-6) is a direct consequence of a result of Eyssidieux, Guedj, and Zeriahi [Eyssidieux
et al. 2009] and Zhang [2006], who generalized Kołodziej’s theorem to the degenerate complex Monge–
Ampère equation. By comparing with this solution, we obtain our key uniform estimate for ϕ(t) along
the J -flow (Proposition 2.2 below). In addition, we use the viscosity methods introduced in [Eyssidieux
et al. 2011] to give a second proof of our key estimate. The results of [Eyssidieux et al. 2011] allow
us to conclude that the solution of (1-6) is continuous, and that (1-6) can be understood in both the
pluripotential and the viscosity senses.

We have an application of our result to the Mabuchi energy [1986], a functional which is closely
connected to the problem of algebraic stability and existence of constant scalar curvature Kähler (cscK)
metrics [Yau 1993; Tian 1997; Donaldson 2002]. Given a Kähler surface (X, χ), the Mabuchi energy is
the functional Mab : Pχ → R given by

Mab(ϕ)=−
∫ 1

0

∫
X

∂ϕt

∂t
(Rχϕt
−µ)χn

ϕt
dt,

where {ϕt }0≤t≤1 is a path in Pχ between 0 and ϕ, Rχϕt
is the scalar curvature of the metric χϕt , and µ is

the average of the scalar curvature of χ . The value Mab(ϕ) is independent of the choice of path.
It was conjectured by Tian [1997], assuming X has no nontrivial holomorphic vector fields, that the

existence of a cscK metric is equivalent to the properness of the Mabuchi energy, meaning that there
exists an increasing function f : [0,∞)→ R with limx→∞ f (x)=∞ such that

Mab(ϕ)≥ f (E(ϕ)), where E(ϕ)=
∫

X

√
−1 ∂ϕ ∧ ∂ϕ ∧ (χ0+χϕ).

This conjecture holds whenever [χ ] = −c1(X) > 0 or if [χ ] = c1(X) > 0 and X has no nontrivial
holomorphic vector fields [Tian 1997; 2000; Tian and Zhu 2000]. It also holds on all manifolds with
c1(X)= 0, even in the presence of holomorphic vector fields [Tian 2000]. In fact in each case, the function
f can be taken to be linear [Tian 2000; Phong et al. 2008]. Chen [2000] showed that on manifolds with
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c1(X) < 0, or equivalently, with ample canonical bundle K X , the Mabuchi energy can be written as a
sum of two terms: the first is the J-functional with reference metric ω in [K X ], and the second is a term
which is bounded below. In fact, the second term is proper [Tian 2000] (see the discussion in [Song and
Weinkove 2008]), and under the cohomological condition [cχ −ω] ≥ 0, the J-functional has a lower
bound, as shown in Corollary 3.3 below. Hence we obtain:

Corollary 1.2. Suppose that X is a compact Kähler surface with ample canonical bundle K X . Then the
Mabuchi energy is proper on the classes [χ ] satisfying(

2[χ ] · [K X ]

[χ ]2

)
[χ ] − [K X ] ≥ 0. (1-7)

Moreover, the function f in the definition of properness can be taken to be linear.

Thus, since the condition of K X being ample implies that X has no nontrivial holomorphic vector fields,
conjecturally, classes [χ ] in the cone given by (1-7) should admit cscK metrics. The class [K X ] is inside
this cone and admits a cscK metric [Aubin 1978; Yau 1978]. The same is true for classes sufficiently
close to [K X ] (see [LeBrun and Simanca 1994]). On the other hand, Ross [2006] found Kähler classes on
surfaces with K X ample that do not admit cscK metrics. Corollary 1.2, together with the arguments of
[LeBrun and Simanca 1994], suggests that the set of classes that admit cscK metrics is strictly larger than
those lying in the cone (1-7).

An outline of the paper is as follows. In Section 2, we prove the key C0 estimate. We provide two
proofs: the first uses smooth maximum principle arguments and the second uses the notion of viscosity
solutions from [Eyssidieux et al. 2011]. We complete the proof of the main theorem in Section 3, and in
the last section we finish with some questions for further study.

2. The C0 estimate

For convenience of notation, we assume from now on that c= 1. We may do this by considering (1/c)[χ ]
instead of [χ ]. In addition, we may assume, by modifying the initial data if necessary, that χ −ω ≥ 0.

The key estimate we need is a uniform C0 estimate for the solution ϕ(t) of the J -flow. We need the
following theorem on the degenerate complex Monge–Ampère equation (the C0 estimate was proved
independently in [Zhang 2006] under slightly less general hypotheses).

Theorem 2.1 [Eyssidieux et al. 2009; 2011]. Let (M, ω) be a compact Kähler manifold of complex
dimension n and let α be a semipositive (1, 1)-form with

∫
M α

n > 0. For any nonnegative f ∈ L p(M, ωn),
for p > 1, with

∫
M f ωn

=
∫

M α
n , there exists a unique continuous function ϕ on M with α+ ddcϕ ≥ 0

and
(α+ ddcϕ)n = f ωn, supM ϕ = 0. (2-1)

Moreover, ‖ϕ‖C0(M) is uniformly bounded by a constant depending only on p,M, ω, α and ‖ f ‖L p(M).

Given this, we immediately obtain a solution ϕ∞ to (1-6), using the observation of Chen [2000] that
the critical equation can be rewritten as a complex Monge–Ampère equation:

χ2
ϕ = 2χϕ ∧ω ⇐⇒ (χϕ −ω)

2
= ω2. (2-2)
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Writing α := χ −ω ≥ 0 on the Kähler surface X , we can apply Theorem 2.1 to see that there exists a
continuous function ϕ∞ solving (1-6). Moverover, ϕ∞ is unique up to the addition of a constant.

Next we use the uniform C0 bound from Theorem 2.1 to obtain:

Proposition 2.2. We assume that χ −ω ≥ 0 as discussed above. Let ϕ(t) be the solution of J -flow (1-1)
on the compact Kähler surface X. Then there exists C depending only on the initial data such that for all
t ≥ 0,

‖ϕ(t)‖C0(X) ≤ C. (2-3)

Proof. From the introduction, we know

[χ −ω] −

N∑
i=1

ai [Ci ]> 0, (2-4)

for positive real numbers ai and irreducible curves Ci of negative self-intersection. Since we are assuming
[χ −ω] ≥ 0, we may take the constants ai to be arbitrarily small. However, we will not need to make use
of this last fact.

It follows that there exist Hermitian metrics hi on the line bundles [Ci ] associated to Ci such that

χ −ω−

N∑
i=1

ai Rhi > 0, (2-5)

where Rhi =−ddc log hi is the curvature of hi . Let si be a holomorphic section of [Ci ] vanishing along
Ci to order 1. Recall that we denote χ −ω by α.

Next, we apply Theorem 2.1 and write ψ for the solution to the degenerate complex Monge–Ampère
equation

(α+ ddcψ)2 = ω2, α+ ddcψ ≥ 0, (2-6)

subject to the condition supX ψ = 0. We have ‖ψ‖C0(X) ≤ C .
It follows from a trick of Tsuji [1988], as used in [Eyssidieux et al. 2009], that ψ is smooth away from

the curves Ci . Although the proof is the same, the precise statement we need does not seem to be quite
contained in [Eyssidieux et al. 2009], so we briefly outline the idea here for the convenience of the reader.
For δ > 0, let ψδ be Yau’s solution of the complex Monge–Ampère equation

(α+ δω+ ddcψδ)
2
= cδω2, αδ := α+ δω+ ddcψδ > 0, (2-7)

for a constant cδ chosen so that the integrals of both sides are equal. From Theorem 2.1, ψδ is uniformly
bounded in C0. To obtain a second-order estimate for ψδ , uniform in δ, we consider, for a constant A> 0,

Qδ = log trω αδ − A
(
ψδ −

∑
i

ai log |si |
2
hi

)
, (2-8)

which is well-defined on X \
⋃

Ci and tends to −∞ on
⋃

Ci . Compute, at a point in X \
⋃

Ci ,

1αδ Qδ ≥−C trαδ ω− 2A+ A trαδ

(
α−

∑
i

ai Rhi

)
.
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Then using (2-5), we may choose a uniform A sufficiently large that

A
(
α−

∑
i

ai Rhi

)
≥ (C + 1)ω.

The quantity Qδ achieves a maximum at some point x ∈ X \
⋃

Ci , and at this point we have 1αδ Qδ ≤ 0.
Hence, at x ,

0≥ trαδ ω− 2A,

so trαδ ω is uniformly bounded from above. But by (2-7) we have at x

trω αδ =
(
α2
δ

ω2

)
trαδ ω = cδ trαδ ω ≤ C ′,

for some uniform C ′. Since ψδ is uniformly bounded in C0, we see that Qδ is uniformly bounded from
above at x , and hence everywhere.

This establishes a uniform upper bound for trω αδ (and again by (2-7), also for trαδ ω) on any compact
subset of X \

⋃
Ci . It follows that on such a fixed compact set, ω and αδ are uniformly equivalent.

Hence we have estimates, uniform in δ, for ddcψδ on compact subsets of X \
⋃

Ci . The C∞loc

(
X \

⋃
Ci
)

estimates for ψδ then follow from the usual Evans–Krylov local theory for the complex Monge–Ampère
equation [Evans 1982; Krylov 1982]. Taking a limit as δ→ 0 shows that ψ is smooth away from the Ci .

Fix ε ∈ (0, 1). We will apply the maximum principle to the quantity

θε = ϕ− (1+ ε)ψ + ε
N∑

i=1

ai log |si |
2
hi
− Aεt,

where A is a constant to be determined. Observe that θε is smooth on X \
⋃

Ci and tends to negative
infinity along

⋃
Ci , and hence θε achieves a maximum in the interior of X \

⋃
Ci for each time t .

We rewrite (1-1) as

∂ϕ

∂t
= 1−

2χϕ ∧ω
χ2
ϕ

=
χ2
ϕ − 2χϕ ∧ω

χ2
ϕ

=
(χϕ −ω)

2
−ω2

χ2
ϕ

=
ω2

χ2
ϕ

(
(χϕ −ω)

2

ω2 −1
)
=
ω2

χ2
ϕ

(
α2
ϕ

α2
ψ

−1
)
. (2-9)

Compute on X \
⋃

Ci , using (2-9),

∂

∂t
θε =

ω2

χ2
ϕ

(
(α+ ddcϕ)2

(α+ ddcψ)2
− 1

)
− Aε

=
ω2

χ2
ϕ

((
(1+ ε)α+ (1+ ε)ddcψ − ε(α−

∑
ai Rhi )+ ddcθε

)2

(α+ ddcψ)2
− 1

)
− Aε.

But α−
∑

ai Rhi ≥ 0, and at the maximum of θε, we have ddcθε ≤ 0. Hence at the maximum of θε,

∂

∂t
θε ≤

ω2

χ2
ϕ

(
(1+ ε)2

(α+ ddcψ)2

(α+ ddcψ)2
− 1

)
− Aε < 0, (2-10)
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if we choose

A = sup
X×[0,∞)

3ω2

χ2
ϕ

,

which is a uniform constant since χϕ is always uniformly bounded from below away from zero along the
J -flow. Indeed, this follows immediately from taking a time derivative of the J -flow equation and applying
the maximum principle (see Lemma 4.1 in [Chen 2004]). Then (2-10) implies that θε must achieve its
maximum at time zero, and hence θε is uniformly bounded from above by a constant independent of ε.
Letting ε→ 0, we obtain the upper bound for ϕ.

The lower bound of ϕ is similar: just replace ε by −ε and consider the minimum instead of the
maximum. �

We provide a second proof. The proof is based on the equivalence of two notions of weak solution of
(2-2): the pluripotential sense and the viscosity sense.

Second proof of Proposition 2.2. As in the first proof, write ψ for the solution to (2-6) with supX ψ = 0.
The function ψ is continuous on X and is smooth away from the curves Ci . We now apply Theorem 3.6
of [Eyssidieux et al. 2011], which states that ψ satisfies (2-6) in the viscosity sense as defined in that
paper.

We refer to [Eyssidieux et al. 2011] for the precise definition of a viscosity solution to (2-6) and state
two consequences of this definition which are sufficient for our purposes:

(i) If x0 is any point on X and q is any smooth function defined in a neighborhood of x0 such that

ψ − q has a local maximum at x0,

then (α+ ddcq)2 ≥ ω2 at x0.

(ii) If x0 is any point on X and q is any smooth function defined in a neighborhood of x0 such that

ψ − q has a local minimum at x0,

then (α+ ddcq)2 ≤ ω2 at x0.

Indeed, (i) follows from the definition of a viscosity subsolution, and (ii) from the definition of a viscosity
supersolution (see Section 2 in [Eyssidieux et al. 2011]).

We first find an upper bound for ϕ. Let ε > 0 and define Hε = ϕ−ψ − εt . We wish to show that Hε
attains its maximum value at t = 0. Note that Hε satisfies the equation

∂Hε
∂t
= 1−

2χϕ ∧ω
χ2
ϕ

− ε.

Suppose that Hε attains a maximum at a point (x0, t0) on X × [0, T ] for some finite T > 0, and
assume for a contradiction that t0 > 0. Then ∂Hε/∂t (x0, t0) ≥ 0. Define a smooth function q on X by
q(x)= ϕ(x, t0)− Hε(x0, t0)− εt0. The function

x 7→ (ψ − q)(x)=−Hε(x, t0)+ Hε(x0, t0)
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achieves its minimum at x0. Then we can apply (ii) to see that (α+ ddcq)2 ≤ ω2 at x0, or in other words

(χ −ω+ ddcϕ)2 ≤ ω2, at (x0, t0),

which is equivalent to
χ2
ϕ ≤ 2χϕ ∧ω at (x0, t0).

It follows that
∂Hε
∂t

(x0, t0)= 1−
2χϕ ∧ω
χ2
ϕ

− ε < 0,

contradicting the fact that ∂Hε/∂t (x0, t0) ≥ 0. Hence Hε attains its maximum value at t = 0 and is
uniformly bounded from above independent of ε. Letting ε→ 0 gives the desired upper bound for ϕ.

Applying a similar argument, using (i) instead of (ii), gives a uniform lower bound for ϕ. �

We can now apply Theorem 1.3 of [Song and Weinkove 2008] together with the standard local theory
for (1-1) to obtain higher-order estimates.

Proposition 2.3. As above, assume that χ −ω ≥ 0 on the compact Kähler surface X and let ϕ(t) be the
solution of the J -flow (1-1). For any compact subset K ⊂ X \

⋃
Ci and any k ≥ 0, there exists a constant

Ck,K such that for all t ,
‖ϕ(t)‖Ck(K ) ≤ Ck,K .

Here, the Ci are the irreducible curves of negative self-intersection chosen to satisfy (2-4).

3. Proof of the main theorem

Again we assume in this section that [χ ] is scaled so that c = 1. Before proving the main theorem we
first discuss the J and I-functionals. Define Jω,χ and Iω,χ by

Jω,χ (ϕ) :=

∫ 1

0

∫
X
ϕ̇t
(
2χϕt ∧ω−χ

2
ϕt

)
dt,

Iω,χ (ϕ) :=

∫ 1

0

∫
X
ϕ̇tχ

2
ϕt

dt,

where ϕt is a smooth path in Pχ connecting 0 and ϕ. For simplicity, we will omit the subscripts.
If ϕ(t) is the solution of the J -flow, then

d
dt

J(ϕ(t))=−
∫

X
ϕ̇(t)2χ2

ϕ(t),
d
dt

I(ϕ(t))= 0. (3-1)

In particular, the J -flow is the gradient flow of J.
One can write explicit formulae for J, I as follows:

J(ϕ)=

∫
X
ϕ
(
χϕ ∧ω+χ ∧ω

)
−

1
3

∫
X
ϕ
(
χ2
ϕ +χϕ ∧χ +χ

2), (3-2)

I(ϕ)=
1
3

∫
X
ϕ
(
χ2
ϕ +χϕ ∧χ +χ

2). (3-3)

Thus an immediate corollary of Proposition 2.2 is:
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Proposition 3.1. There exists a uniform constant C such that, for ϕ(t) the solution of the J -flow, we have

J(ϕ(t))≥−C

for all t ≥ 0.

In what follows, we will need to make use of a simple continuity-type result for the I and J functionals.

Lemma 3.2. Let ϕ j ∈ Pχ and let ϕ be a continuous function on X satisfying χ + ddcϕ ≥ 0. Let Y be a
proper subvariety of X. Suppose that

(a) there exists C such that ‖ϕ j‖C0(X) ≤ C ;

(b) ϕ j → ϕ in C∞loc(X \ Y ) as j→∞.

Then
J(ϕ j )→ J(ϕ) and I(ϕ j )→ I(ϕ) as j→∞.

Proof. The proof is a simple exercise in pluripotential theory (we refer the reader to [Kołodziej 2005]
for an introduction to this theory). For the convenience of the reader, we sketch the proof here. For ϕ
continuous with χ + ddcϕ ≥ 0, the quantities χ2

ϕ , χ ∧ χϕ and χϕ ∧ω define finite measures on X and
hence by (3-2) and (3-3), the functionals I(ϕ) and J(ϕ) are well-defined.

We may choose a sequence of open tubular neighborhoods Yk of Y such that Yk ↓ Y as k→∞. Since
Y is pluripolar, the capacity Capχ (Y ) of Y with respect to χ (in the sense of [Kołodziej 1998]) is zero.
By the properties of this capacity (see [Guedj and Zeriahi 2005], for example) we have

lim
k→∞

Capχ (Yk)= Capχ (Y )= 0.

Since the ϕ j are uniformly bounded, it follows that
∫

Yk
ϕ jβ ∧ γ → 0 as k→∞, uniformly in j , where

β, γ are each one of ω, χ or χϕ j . The same holds if we replace ϕ j by ϕ. The result then follows from the
expressions (3-2) and (3-3) together with condition (b). �

Proof of Theorem 1.1. Since J is decreasing and bounded from below, there exists a constant C such that∫
∞

0

∫
X
ϕ̇(t)2χ2

ϕ(t) dt < C. (3-4)

We claim that for each fixed point p ∈ X \
⋃

Ci , we have ϕ̇(p, t)→ 0 as t→∞. Suppose not. Then there
exists ε > 0 and a sequence of times ti →∞ such that |ϕ̇(ti )|> ε for all i . But since we have bounds
for ϕ̇ and all its time and space derivatives in a fixed neighborhood U , say, of p with U ⊂ X \

⋃
Ci , it

follows that |ϕ̇(t)|> ε/2 for t ∈ [ti , ti + δ] for a uniform δ > 0. This contradicts (3-4) and establishes the
claim.

Since we have C∞loc

(
X \

⋃
Ci
)

bounds for ϕ̇, the uniqueness of limits implies that ϕ̇ converges to zero
in C∞loc

(
X \

⋃
Ci
)
.

We have uniform C∞ bounds for ϕ(t) on compact subsets of X \
⋃

Ci , and hence we can apply the
Arzelà–Ascoli theorem to see that for a sequence of times ti →∞, we have ϕ(ti )→ ϕ∞ for a smooth
(bounded) function ϕ∞ on X \

⋃
Ci . Since ϕ̇→ 0, ϕ∞ satisfies the equation χ2

ϕ∞
= 2χϕ∞∧ω as in the

statement of the theorem.
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We also have I(ϕ∞) = limt→∞ I(ϕ(t)) = I(ϕ0), using Lemma 3.2 and the fact that I is constant
along the flow. Applying Theorem 2.1, we know that (1-6) has a unique solution up to the addition of a
constant. Thus ϕ∞ is the unique solution of (1-6) subject to the condition I(ϕ∞)= I(ϕ0).

Finally we claim that ϕ(t) converges in C∞loc

(
X \

⋃
Ci
)

to ϕ∞. Suppose not. Then there exist ε > 0 and
a sequence of times ti →∞ such that ‖ϕ(ti )−ϕ∞‖Ck(K ) > ε for all i , for some integer k and compact
K ⊂ X \

⋃
Ci . Since we have uniform C∞ bounds for ϕ(t) on K , we can pass to a subsequence and

assume that ϕ(ti ) converges to a function ϕ′
∞
6=ϕ∞. But ϕ′

∞
will also satisfy the equations χ2

ϕ′∞
=2χϕ′∞∧ω

and I(ϕ′
∞
)= I(ϕ0), contradicting the uniqueness. �

As a consequence:

Corollary 3.3. The J-functional is bounded from below on Pχ .

Proof. Take any ϕ0 ∈ Pχ . Then running the J -flow from ϕ0 , which by Theorem 1.1 converges to ϕ∞, we
obtain (applying Lemma 3.2)

J(ϕ0)≥ lim
t→∞

J(ϕ(t))= J(ϕ∞),

since J is decreasing along the flow. �

Proof of Corollary 1.2. Combine Corollary 3.3 and Lemma 4.1 of [Song and Weinkove 2008]. �

4. Further questions

Question 4.1. In general, it does not appear to be known whether a nef and big class on a Kähler
surface can always be represented by a smooth nonnegative (1, 1)-form (for a counterexample in higher
dimensions, see Example 5.4 in [Boucksom et al. 2010]). However, an example of Zariski shows that
a nef and big class is not necessarily semiample (see Section 2.3A of [Lazarsfeld 2004]). Also, the
nef condition alone is not sufficient for the existence of a nonnegative representative (see Example 1.7
of [Demailly et al. 1994]). What can be proved if we assume only that [χ −ω] is nef and big? In this
case, by [Boucksom et al. 2010], we know that we can produce a solution ψ of (2-2) with very mild
singularities along Ci (less than any log pole). Can it be translated into an estimate for the solution ϕ(t)
of the J -flow? Does it imply that the J -functional is bounded from below?

Question 4.2. The results of [Fang and Lai 2012a] indicate a possible picture when [χ ] is outside of Cω.
But they assume both ω and χ are of Calabi ansatz. Can one prove a general result on Kähler surfaces?
In this case, presumably the J-functional is not bounded from below.

Question 4.3. For general n, it would be interesting to investigate the weak solution of the critical
equation (1-2) when [χ ] does not lie in Cω.
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