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A PRIORI ESTIMATES FOR COMPLEX HESSIAN EQUATIONS

SŁAWOMIR DINEW AND SŁAWOMIR KOŁODZIEJ

We prove some L∞ a priori estimates as well as existence and stability theorems for the weak solutions of
the complex Hessian equations in domains of Cn and on compact Kähler manifolds. We also show optimal
L p integrability for m-subharmonic functions with compact singularities, thus partially confirming a
conjecture of Błocki. Finally we obtain a local regularity result for W 2,p solutions of the real and complex
Hessian equations under suitable regularity assumptions on the right-hand side. In the real case the method
of this proof improves a result of Urbas.

Introduction

Hessian equations. Let λ = (λ1, λ2, . . . , λn) be the set of eigenvalues of a Hermitian n× n matrix A.
By Sm(A) denote the m-th elementary symmetric function of λ:

Sm(A)=
∑

0< j1<···< jm≤n

λ j1 λ j2 . . . λ jm .

If A is the complex Hessian of a real valued C2 function u defined in �⊂ Cn then we have a pointwise
defined function

σm(uz j z̄k )(z)= Sm
(
(uz j z̄k (z))

)
.

In terms of differential forms, with d = ∂ + ∂̄ , dc
= i(∂̄ − ∂) and β = ddc

‖z‖2 this function satisfies

(ddcu)m∧βn−m
=

m!(n−m)!
n!

σm(uz j z̄k )β
n.

We call a C2 function u :�→ Cn m-subharmonic, or m-sh, if the forms

(ddcu)k ∧βn−k

are positive for k = 1, . . . ,m (in particular u is subharmonic). If u is subharmonic but not smooth, one
can define m-sh function via inequalities for currents (see definitions in Section 1).

As shown by Błocki [2005] m-sh functions are the right class of admissible solutions to the complex
Hessian equation

(ddcu)m∧βn−m
= fβn (0-1)

for a given nonnegative function f . Observe that for m = 1 this is the Poisson equation and for m = n
the complex Monge–Ampère equation.
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Analogously, one can define m-subharmonic functions with respect to a Kähler form ω (abbreviatied
m-ω-sh) and the corresponding Hessian equation just replacing β with ω in the preceding definitions.
This definition can also be extended to subharmonic functions. Then one can consider such functions on
Kähler manifolds.

Since on compact Kähler manifolds the sets of m-ω-sh functions are trivial we define in this case
ω-m-subharmonic (ω-m-sh) functions requiring that

(ddcu+ω)k ∧ωn−k
≥ 0, k = 1, . . . ,m.

and consider the Hessian equation on a compact Kähler manifold X , as in [Hou 2009; Hou et al. 2010;
Dinew and Kołodziej 2012]:

(ddcu+ω)m∧ωn−m
= f ωn,

∫
X

f ωn
=

∫
X
ωn. (0-2)

Solving the equation we look for ω-m-sh solutions u. The normalization of f is necessary because of
Stokes’ theorem and the Kähler condition dω = 0.

Background. The real Hessian equation has been studied in many papers, for example [Caffarelli et al.
1985; Ivochkina et al. 2004; Krylov 1995; Trudinger 1995; Trudinger and Wang 1999; Labutin 2002;
Chou and Wang 2001; Urbas 2001]. In particular the Dirichlet problem is solvable for smooth and
strictly positive right-hand side under natural convexity assumptions on the boundary of the considered
domain [Caffarelli et al. 1985]. This result is the starting point of study of degenerate Hessian equations
[Ivochkina et al. 2004] and regularity of weak solutions [Urbas 2001]. A nonlinear potential theory has
also been developed [Trudinger and Wang 1999; Labutin 2002]. We refer to [Wang 2009] for a survey of
the real Hessian equation theory. It is interesting that the real and complex theories are very different, and
attempts to apply “real” methods directly to the complex Hessian equation often fail. See [Błocki 2003;
2009] for a detailed study of those discrepancies.

The complex Hessian equation (0-1) in domains of Cn was first considered by S.-Y. Li [2004]. His main
result says that if � is smoothly bounded and (m−1)-pseudoconvex (that means that S j , j = 1, . . . ,m−1,
applied to the Levi form of ∂� are positive on the complex tangent to ∂�) then, for smooth boundary data
and for smooth, positive right-hand side there exists a unique smooth solution of the Dirichlet problem
for the Hessian equation. The proof is in the spirit of the one in [Caffarelli et al. 1985].

Błocki [2005] considered also weak solutions of the equation, for possibly degenerate right-hand side,
introducing some elements of potential theory for m-sh functions based on positivity of currents which
are used in the definition. He proved that a m-sh function u is maximal in this class if and only if

(ddcu)m∧βn−m
= 0.

Furthermore he described the maximal domain of definition of the Hessian operator.
As for the equation on compact Kähler manifolds (0-2), Hou [2009] has shown that the solutions, for

smooth positive f, exist under the assumption that the metric has nonnegative holomorphic bisectional
curvature. Similar results were independently obtained in [Kokarev 2010; Jbilou 2010]. Finally in [Dinew
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and Kołodziej 2012] the authors removed the curvature assumptions thus obtaining an analogue of the
Calabi–Yau theorem for the complex Hessian equations.

New results. The m-subharmonic functions for m < n are much more difficult to handle than the
plurisubharmonic ones (m = n). They lack a nice geometric description by the mean value property
along planes, there is no invariance of the family under holomorphic mappings, and so forth. The
cones of m-ω-sh functions are even worse — they are not invariant under translations. Despite that, the
pluripotential theory methods developed in [Bedford and Taylor 1982; Kołodziej 1996; 1998; 2003] for the
Monge–Ampère equation can be adapted to the Hessian equations. The crucial estimate between volume
and capacity in Proposition 2.1 allowed us to prove a sharp integrability statement (conjectured in a
stronger form in [Błocki 2005]): m-subharmonic functions, m < n, belong to Lq for any q <mn/(n−m),
if their level sets are relatively compact in the domain where they are defined. For a plurisubharmonic
function u much stronger statement is true: exp(−au) is locally integrable for some a > 0. This accounts
for the difference in statements of L∞ estimates for the Hessian equations and the Monge–Ampère
equation. We show a priori L∞ bounds for the solutions of

(ddcu)m∧βn−m
= f ωn (0-3)

(with continuous boundary data) and those of (0-2) with f belonging to Lq , q > n/m. We also get
strong stability theorems for those solutions. As a consequence one obtains that the families of solutions
corresponding to data uniformly bounded in Lq norms are equicontinuous.

The a priori estimates lead to the (continuous) solution of the Dirichlet problem in (m−1)-pseudoconvex
domains for nonnegative right-hand side in the same Lq spaces as above (Theorem 2.10). The correspond-
ing existence result is also true on compact Kähler manifolds (Theorem 3.3). Those are the extensions of
theorems in [Li 2004] and [Hou 2009]. Finally we prove the local regularity statement in Theorem 4.1
which in the case of the Monge–Ampère equation is due to Błocki and Dinew [2011]. It is worth noting
that our methods applied to the real Hessian equations yield improvement of the regularity exponent
obtained by Urbas [2001].

1. Preliminaries

We briefly recall the notions that we shall need later on. We start with a linear algebra toolkit.

Linear algebra preliminaries. Consider the set Mn of all Hermitian symmetric n × n matrices. For a
given matrix M ∈Mn let λ(M) = (λ1, λ2, . . . , λn) be its eigenvalues arranged in the decreasing order
and let

Sk(M)= Sk(λ(M))=
∑

0< j1<···< jm≤n

λ j1 λ j2 . . . λ jm

be the k-th elementary symmetric polynomial applied to the vector λ(M).
Then one can define the positive cones 0m as

0m = {λ ∈ Rn
| S1(λ) > 0, . . . , Sm(λ) > 0}. (1-1)
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The definition of 0m is nonlinear if m > 1; hence a priori it is unclear whether these sets are indeed
convex cones. But the vectors in 0m , and hence the set of matrices with corresponding eigenvalues enjoy
several convexity properties resembling the properties of positive definite matrices, and in particular the
convexity of 0m .

Now let V be a fixed positive definite Hermitian matrix and λi (V ) be the eigenvalues of a Hermitian
matrix M with respect to V . The we can analogously define the sets 0k(V ).

We list the properties of these cones that will be used later on:

(1) Maclaurin’s inequality: If λ ∈ 0m then
(
S j/

(n
j

))1/j
≥
(
Si/
(n

i

))1/ i for 1≤ j ≤ i ≤ m.

(2) Gårding’s inequality [1959]: 0m is a convex cone for any m and the function S1/m
m is concave when

restricted to 0m .

(3) [Wang 2009]: Let Sk;i (λ) := Sk(λ)λi=0 =
∂Sk+1
∂ λi

(λ). For any λ,µ ∈ 0m ,
n∑

i=1

µi Sm−1;i (λ)≥ mSm(µ)
1/m Sm(λ)

(m−1)/m . (1-2)

We refer to [Błocki 2005] or [Wang 2009] for further properties of these cones.

Potential theoretic aspects of m-subharmonic functions. Let us fix a relatively compact domain �∈Cn .
Let also d = ∂+ ∂̄ and dc

:= i(∂̄− ∂) be the standard exterior differentiation operators. By β := ddc
‖z‖2

we denote the Euclidean Kähler form in Cn .
Given a C2(�) function u we call it m−β-subharmonic if for any z ∈ � the Hessian matrix

(∂2u/∂zi∂ z̄ j )(z) has eigenvalues forming a vector in the closure of the cone 0m . Analogously if ω
is any other Kähler form in �, u is m-ω-subharmonic if the Hessian matrix has eigenvalues at z forming
a vector in 0m(ω(z)) (the latter set will depend on z in general).

Since the ω = β is the most natural case in the flat domains we shall call m−β-subharmonic functions
just m-subharmonic or m-sh for short.

Observe that in the language of differential forms u is m-ω-subharmonic if and only if the following
inequalities hold:

(ddcu)k ∧ωn−k
≥ 0, k = 1, . . . ,m.

It was observed by Błocki [2005] that, following the ideas of Bedford and Taylor [1976; 1982], one can
relax the smoothness requirement on u and develop a nonlinear version of potential theory for Hessian
operators.

The relevant definitions are as follows:

Definition 1.1. Let u be a subharmonic function on a domain � ∈ Cn . Then u is called m-subharmonic
(m-sh for short) if for any collection of C2-smooth m-sh functions v1, . . . , vm−1 the inequality

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvm−1 ∧β
n−m
≥ 0

holds in the weak sense of currents. For a general Kähler form ω the notion of m-ω-subharmonic function
is defined by formally stronger condition: locally, in a neighborhood of any given point, there exists a
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decreasing to u sequence of C2-smooth m-ω-sh functions uj such that for any set of C2-smooth m-ω-sh
functions v1, . . . , vm−1 the inequality

ddcuj ∧ ddcv1 ∧ · · · ∧ ddcvm−1 ∧ω
n−m
≥ 0

is satisfied. (For ω = β this condition is satisfied due to Proposition 1.3(4).)
The set of all m-ω-sh functions is denoted by SHm(ω,�).

Remark 1.2. It is enough to test m-subharmonicity of u against a collection of m-sh quadratic polynomials
(see [Błocki 2005]).

Using the approximating sequence uj from the definition one can follow the Bedford and Taylor
construction [1982] of the wedge products of currents given by locally bounded m-ω-sh functions. They
are defined inductively by

u1 ddcu2 ∧ · · · ∧ ddcu p ∧ω
n−m
:= ddc(u1 ∧ · · · ∧ ddcu p ∧ω

n−m).

It can be shown (see [Błocki 2005]) that analogously to the pluripotential setting these currents are
continuous under monotone or uniform convergence of their potentials.

Here we list some basic facts about m-subharmonicity (assuming C2 smoothness).

Proposition 1.3. Let �⊂ Cn be a domain. Then:

(1) SH1(ω,�)⊂ SH2(ω,�)⊂ · · · ⊂ SHn(ω,�).

(2) SHm(ω,�) is a convex cone.

(3) If u ∈SHm(ω,�) and γ :R→R is a C2-smooth convex, increasing function then γ ◦u ∈SHm(ω,�).

(4) the standard regularizations u ∗ ρε of a m-sh function is again m-sh.

Proof. The first claim is trivial. Second claim is proved in [Błocki 2005], with the use of Gårding’s
inequality [Gårding 1959]. Last two claims are more or less standard and their proofs are analogous to
corresponding results for psh (plurisubharmonic) functions. Observe that the last property does fail for a
general Kähler form ω. �

The following two theorems, known as comparison principles in pluripotential theory, follow essentially
from the same arguments as in the case m = n:

Theorem 1.4. Let u, v be continuous m-ω-sh functions in a domain � ∈ Cn . Suppose that

lim inf
z→∂�

(u− v)(z)≥ 0.

Then ∫
{u<v}

(ddcv)m∧ωn−m
≤

∫
{u<v}

(ddcu)m∧ωn−m .

Theorem 1.5. Let u, v be continuous m-ω-sh functions in a domain � ∈ Cn . Suppose that

lim inf
z→∂�

(u− v)(z)≥ 0 and (ddcv)m∧ωn−m
≥ (ddcu)m∧ωn−m .

Then v ≤ u in �.
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The last result yields, in particular, uniqueness of bounded weak solutions of the Dirichlet problem.
As for the existence we have the following fundamental theorem:

Theorem 1.6 [Li 2004]. Let � be a smoothly bounded relatively compact domain in Cn . Suppose that
∂� is (m−1)-pseudoconvex (that means that Levi form at any point p ∈ ∂� has its eigenvalues in the
cone 0m−1). Let ϕ be a smooth function on ∂� and f a strictly positive and smooth function in �. Then
the Dirichlet problem 

u ∈ SHm(�, β)∩C(�̄),

(ddcu)m∧βn−m
= f,

u|∂� = ϕ,
has a smooth solution u.

The convexity properties of the cones 0m yield the following mixed Hessian inequalities:

Proposition 1.7. Let u1, . . . , um be m-sh C2 functions in a domain�∈Cn . Suppose (ddcuj )
m
∧βn−m

= f j

for some continuous nonnegative functions f j . Then

ddcu1 ∧ · · · ∧ ddcum∧β
n−m
≥ ( f1 · · · fm)

1/mβn.

Proof. Pointwise this reduces to the Gårding inequality; see also (1-2) for the case u2= u3= · · · = um . �

Later on in Theorem 2.12 we shall see that the smoothness assumptions here can be considerably relaxed.

Kähler setting. Given a compact Kähler manifold (X, ω) we can define the cones SHm(X, ω) consisting
of those functions u for which, in a local chart � where ω has a potential ρ, the function u+ ρ belongs
to SHm(�, ω). The definition is independent of the choice of the chart and the potential. This essentially
allows us to carry over all local results to this setting. We refer to [Kołodziej 2005] for the plurisubharmonic
(m = n) case.

The Dirichlet problem for smooth nondegenerate data was recently solved:

Proposition 1.8 [Dinew and Kołodziej 2012]. Let (X, ω) be a compact Kähler manifold and 1< m < n
be an integer number. Given a strictly positive smooth function f satisfying the condition

∫
X f ωn

=
∫

X ω
n

there is an unique function u ∈ SHm(X, ω)∩C∞(X) solving the Dirichlet problem

(ddcu+ω)m∧ωn−m
= f ωn, supX u = 0.

The comparison principle on compact manifolds reads as follows:

Proposition 1.9. Let (X, ω) be a compact Kähler manifold and u, v continuous functions in SHm(X, ω).
Then ∫

{u<v}
(ω+ ddcv)m∧ωn−m

≤

∫
{u<v}

(ω+ ddcu)m∧ωn−m .

Proof. One can repeat the proof for psh functions from [Kołodziej 2003] or [Kołodziej 2005]. �

Observe that the cones 0k(ω) are not fixed but according to an observation of Hou [2009] these are
invariant under the parallel transport defined by the Levi-Civita connection associated to ω.
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2. L∞ estimates and existence of weak solutions in domains

In this section we state the results for 0< m < n. Let us denote by B(a, r) the ball in Cn with center a
and radius r . Let also ω be a Kähler form defined in a neighborhood of the closure of a set � considered
below and V = ωn be the volume form associated to ω.

Let SHm(ω,�) denote the class of m-ω-sh functions which are continuous in �.

Proposition 2.1. For p < n/(n−m) and an open set � ⊂ B(0, 1) = B there exists C(p) such that for
any K b�,

V (K )≤ C(p) capp
m(K , �),

where

capm(K , �)= sup
{∫

K
(ddcu)m∧ωn−m, u ∈ SHm(ω,�), 0≤ u ≤ 1

}
.

Proof. If V (K ) = 0 then the inequality trivially holds. Assume from now on that V (K ) > 0. Fix any
ε ∈ (0, 1/2) and set f = [V (K )]2ε−1χK , where χK denotes the characteristic function of the set K . Solve
the complex Monge–Ampère equation in B to find v ∈ PSHω(B)∩C(�) with v = 0 on ∂B and

(ddcv)n = f ωn.

By the inequality between mixed Monge–Ampère measures (see [Kołodziej 2005; Dinew 2009])

(ddcv)m∧ωn−m
≥ [V (K )](2ε−1)m/nχKω

n. (2-1)

For q = 1+ ε ∫
B

f qdV = [V (K )](2ε−1)(1+ε)+1
= [V (K )]ε+2ε2

≤ V (B).

So, by [Kołodziej 1996], there exists c > 0, independent of K (though dependent on ε), such that
‖v‖ ≤ 1/c. Take u = cv. Then, using (2-1)

capm(K , �)≥
∫

K
(ddcu)m∧ωn−m

≥ cm
[V (K )](2ε−1)(m/n)+1.

Therefore
V (K )≤ C capn/(n−m+2mε)

m (K , �),

which proves the claim. �

Proposition 2.2. Let � and p be as above and consider u ∈ SHm(ω,�) with u = 0 on ∂� and∫
�

(ddcu)m∧ωn−m
≤ 1.

Then for U (s)= {u <−s} we have

capm(U (s),�)≤ s−m and V2n(U (s))≤ C(p)s−pm .

In particular u ∈ Lq(�) for any q < mn/(n−m), and this remains true whenever u is bounded in some
neighborhood of the boundary of �.
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Proof. Fix ε > 0, t > 1 and K ⊂U (s) and find v ∈ SHm(ω,�) with −1≤ v ≤ 0 and∫
K
(ddcv)m∧ωn−m

≥ capm(K , �)− ε.

Then, using the comparison principle [Bedford and Taylor 1976; Błocki 2005], we obtain

capm(K , �)− ε ≤
∫

K
(ddcv)m∧ωn−m

≤

∫
{−

t
s u<v}

(ddcv)m∧ωn−m
≤

( t
s

)m
∫
�

(ddcu)m∧ωn−m
≤

( t
s

)m
.

To finish the proof of the first estimate recall that capm(U (s),�) is the supremum of capm(K , �)
over compact K ⊂ U (s) and let ε → 0 and t → 1. Then the estimate of the volume follows from
Proposition 2.1. �

Remark 2.3. The bound for q above is optimal as the function

G(z)=−|z|2−2n/m

is m-sh and belongs to Lq
loc if and only if q < mn/(n−m).

Błocki [2005] conjectured that any m-sh function belongs to Lq
loc(�) for any q < mn/(n−m). He

proved this for q < n/(n−m). The above proposition confirms partially the conjecture — under the extra
assumption of boundedness near the boundary. Still the question about the local integrability remains
open.

We now proceed to proving the L∞ a priori estimates for the Hessian equation with the right-hand
side controlled in terms of the capacity.

Lemma 2.4. For p ∈ (1, n/(n−m)) and an open set �⊂ B consider u, v ∈ SHm(ω,�) satisfying∫
K
(ddcu)m∧ωn−m

≤ A capp
m(K , �)

for some A > 0 and any compact K ⊂ �. If the sets U (s) = {u − s < v} are nonempty and relatively
compact in � for s ∈ (s0, s0+ t0) then there exists a constant C(p, A) such that

t0 ≤ C(p, A) capp/n
m (U (s0+ t0),�).

Proof. Using the notation

a(s)= capm(U (s),�), b(s)=
∫

U (s)
(ddcu)m∧ωn−m

we claim that
tma(s)≤ b(s+ t), t ∈ (0, s0+ t0− s). (2-2)

Indeed, for fixed compact K ⊂U (s), take w1 ∈ SHm(ω,�), −1≤ w1 ≤ 0, such that∫
K
(ddcw1)

m
∧ωn−m

≥ capm(K , �)− ε.

Then for w2 = (u− s − t)/t one readily verifies that K ⊂ V ⊂ U (s + t), where V = {w2 < w1+ v/t}.
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So, by the comparison principle,

capm(K , �)− ε ≤
∫

K

(
ddc

(
w1+

1
t
v
))m
∧ωn−m

≤

∫
V

(
ddc

(
w1+

1
t
v
))m
∧ωn−m

≤

∫
V
(ddcw2)

m
∧ωn−m

≤ t−mb(s+ t).

Having (2-2) one proceeds as in the proof of Lemma 4.3 in [Kołodziej 2002] (with h(x)= xm(p−1)) to
reach the conclusion. �

Coupling this with the volume estimate in Proposition 2.1 we obtain a priori estimates for the solutions
of Hessian equations with the right-hand side in some Lq spaces.

Theorem 2.5. Take q> n/m. Then the conjugate q ′ of q satisfies q ′< n/(n−m). Fix p′ ∈ (q ′, n/(n−m))
and p = p′/q ′ > 1. Consider u, v ∈ SHm(ω,�) such that u ≥ v on ∂�, {u < v} 6=∅ and

(ddcu)m∧ωn−m
= f ωn,

for some f ∈ Lq(�, dV ). Then

sup(v− u)≤ c
(

p′, q, ‖ f ‖Lq (�)

)∥∥(v− u)+
∥∥p/(n+p(m+1))

Lq′ (�)
, (v− u)+ :=max(v− u, 0).

Proof. By the Hölder inequality and Proposition 2.1, for a compact set K ⊂� we have∫
K

f ωn
≤ ‖ f ‖q V (K )1/q

′

≤ C(p)‖ f ‖Lq (�) capp
m(K , �).

Therefore, by Lemma 2.4, we get for t = 1
2 sup(v− u) and E(t)= {u+ t < v},

t ≤ c(p′, q, ‖ f ‖Lq (�)) capp/n
m (E(t),�). (2-3)

To shorten notation set a(t)= capm(E(2t),�). Take w ∈ SHm(ω,�), −1≤ w ≤ 0 such that∫
E(2t)

(ddcw)m∧ωn−m
≥

1
2

a(t).

Observe that for V = {u < tw+ v− t} we have E(2t)⊂ V ⊂ E(t). Applying the comparison principle
we thus get

1
2

a(t)tm
≤

∫
E(2t)
[ddc(tw+ v)]mωn−m

≤

∫
V
(ddcu)m∧ωn−m

≤

∫
E(t)

f dV .

Hence from the Hölder inequality one infers

a(t)tm+1
≤ 2

∫
�

(v− u)+ f dV ≤ ‖ f ‖Lq (�)‖(v− u)+‖q ′ .

Inserting this estimate into (2-3) we arrive at

t ≤ c1(p′, q, ‖ f ‖Lq (�))
[
‖ f ‖q ‖(v− u)+‖Lq′ (�)t

−m−1]p/n
,

and consequently
t ≤ c2(p′, q, ‖ f ‖Lq (�))

∥∥(v− u)+
∥∥p/(n+p(m+1))

Lq′ (�)
. �
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Corollary 2.6. The last theorem gives a priori L∞ estimate for the solutions of the Hessian equation
(0-3) with the right-hand side in Lq and a fixed boundary condition.

Indeed, we apply the theorem for the solution u of

(ddcu)m∧ωn−m
= f ωn,

with given continuous boundary data ϕ and for v, which is the maximal function in SHm(ω,�) matching
the boundary condition (it exists by [Błocki 2005]). Then u is bounded by a constant depending on
�, ‖ϕ‖ = ‖v‖, and ‖ f ‖q since ‖(v− u)+‖Lq′ (�) is bounded (Proposition 2.2).

Corollary 2.7. The solutions of the Hessian equation with the right-hand sides uniformly bounded in Lq

q > n/m and given continuous boundary data form an equicontinuous family.

Proof. As in [Kołodziej 2005, p. 35], which deals with the Monge–Ampère case. �

Below we state yet another stability theorem which we shall need later. Given the estimates we have
already proven its proof follows the arguments from [Kołodziej 1996].

Theorem 2.8. Let q > n/m. Consider u, v ∈ SHm(ω,�) such that {u < v} 6=∅ and

(ddcu)m∧ωn−m
= f ωn, (ddcv)m∧ωn−m

= gωn

for some f, g ∈ Lq(�, dV ). Then

sup�(v− u)≤ sup∂�(v− u)+ c(q,m, n, diam(�))‖ f − g‖1/m
Lq (�).

Remark 2.9. The analogous stability theorem for the real m-Hessian equation (m < n/2) can be found
in [Wang 2009, Theorem 5.5] (see also [Chou and Wang 2001]). There the optimal exponent q is equal
to n/2m.

Next we obtain a theorem on the existence of weak, continuous solutions when ω=β and the right-hand
side is in Lq , q > n/m.

Theorem 2.10. Let � be smoothly bounded (m-1)-pseudoconvex domain (as in Theorem 1.6). Then for
q > n/m, f ∈ Lq(�, dV ) and continuous ϕ on ∂� there exists u ∈ SHm(ω,�) satisfying

(ddcu)m∧βn−m
= fβn

and u = ϕ on ∂�.

Proof. For smooth, positive f this is the result of Li [2004] (Theorem 1.6). With our assumptions we
approximate f in Lq(�, dV ) by smooth positive f j and approximate uniformly ϕ by smooth ϕ j . The
solutions uj corresponding to f j , ϕ j are equicontinuous and uniformly bounded (Corollaries 2.6, 2.7).
Thus we can pick up a subsequence converging uniformly to some u ∈ SHm(ω,�). By the convergence
theorem u solves the equation. �

Remark 2.11. For ω = β, the plurisubharmonic function u(z)= log ‖z‖ has a m-Hessian density in L p

for any p < n/m which shows that the exponent n/m is optimal.
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Equipped with the existence and stability of weak solutions we can also prove the weak Gårding
inequality announced in Section 1:

Theorem 2.12. Let u1, . . . , um be locally bounded m-sh functions in some domain � ∈ Cn . Suppose
(ddcuj )

m
∧βn−m

= f jβ
n for some nonnegative functions f j ∈ Lq(�), q > n/m. Then

ddcu1 ∧∧ · · · ∧ ddcum∧β
n−m
≥ ( f1 · · · fm)

1/mβn.

Proof. We can essentially follow the lines of the proof of the analogous result for psh functions from
[Kołodziej 2003] (see also [Kołodziej 2005]). First observe that the inequality is purely local hence it
suffices to prove it under the additional assumptions that � is a ball and all the functions ui are defined in
a slightly bigger ball. Hence one can use convolutions with smoothing kernel to produce a decreasing to
ui sequence of m-sh functions {ui, j }

∞

j=1 (compare Proposition 1.3). Then given any collection of smooth
positive functions fi,k ∈ Lq(�), q > n/m, by [Li 2004] we can solve the Dirichlet problems

vi, j,k ∈ SHm(�)∩C∞(�),

(ddcvi, j,k)
m
∧βn−m

= fi,kβ
n,

vi, j,k |∂� = ui, j .

For those smooth functions we can apply pointwise the Gårding inequality to conclude that

ddcv1, j,k ∧ · · · ∧ ddcvm, j,k ∧β
n−m
≥ ( f1,k · · · fm,k)

1/mβn

for any j, k≥1. Then given any nonnegative fi ∈ Lq(�), q>n/m, we can find an approximating sequence
of smooth positive { fi,k}

∞

k=1 which converge in Lq to fi . By the stability theorem the corresponding
solutions vi, j,k (recall they the same boundary values ui, j ) converge uniformly as k→∞ to the m-sh
functions vi, j (solving the limiting weak equation), and hence the inequality follows from the continuity of
Hessian currents under uniform convergence of their potentials. Now if we let j→∞ the boundary values
decrease towards ui and hence so do the functions vi, j by the comparison principle. The convergence
is not uniform but monotonicity is still sufficient to guarantee the continuity and hence in the limit we
obtain the claimed inequality. �

Remark 2.13. The weak Gårding inequality can be further generalized similarly to the m = n case as in
[Dinew 2009].

3. L∞ estimates and existence of weak solutions on compact Kähler manifolds

The a priori estimates from the previous section can be carried over to the case of compact Kähler
manifolds as it was done in [Kołodziej 2003] or [2005] for the Monge–Ampère equation. Let us consider
a compact n-dimensional Kähler manifold X equipped with the fundamental form ω and recall that a
continuous function u is ω-m-subharmonic (ω-m-sh) on X if

(ω+ ddcu)k ∧ωn−k
≥ 0, k = 1, 2, . . . ,m.



238 SŁAWOMIR DINEW AND SŁAWOMIR KOŁODZIEJ

The set of such functions is denoted by SHm(X, ω). We study the complex m-Hessian equation

(ω+ ddcu)m∧ωn−m
= f ωn (3-1)

with given nonnegative function f ∈ L1(M), which is normalized by the condition∫
X

f ωn
=

∫
X
ωn.

The solution is required to be ω-m-sh. By Proposition 1.8 the solutions of the equation exist, at least for
smooth positive f . Our a priori estimates will also give the existence of weak solutions for f ≥ 0 in Lq ,
q > n/m.

We define for a compact set K ⊂ X its capacity

capm(K )= sup
{∫

K
(ω+ ddcu)m∧ωn−m

: u ∈ SHm(X, ω), 0≤ u ≤ 1
}
.

To use the local results we need also a capacity defined as follows. Let us consider two finite coverings
by strictly pseudoconvex sets {Bs}, {B ′s}, s = 1, 2, . . . , N , of X such that B ′s ⊂ Bs and in each Bs there
exists vs ∈ PSH(Bs) with ddcvs =ω and vs = 0 on ∂Bs . Given a compact set K ⊂ X define Ks = K ∩ B ′s .
Set

cap′m(K )=
∑

s

capm(Ks, Bs),

where capm(K , B) denotes the relative capacity from the previous section. As in [Kołodziej 2003] one
can show that capm(K ) is comparable with cap′m(K ): There exists C > 0 such that

1
C

capm(K )≤ cap′m(K )≤ C capm(K ).

Hence, by Proposition 2.1 we have

V (K )≤ C(p, X) capp
m(K ),

for p < n/(n−m) and V the volume measured by ωn .
With this estimate at our disposal we can obtain the same a priori estimates as in domains in Cn . The

proofs are almost identical. In the compact setting one has to make sure that instead of just a sum of m-sh
functions one considers a convex combination of ω-m-sh functions (see [Kołodziej 2005]). In particular
the following theorems hold.

Theorem 3.1. Consider q > n/m, its conjugate q ′ and p′ ∈ (q ′, n/(n − m)). Write p = p′/q ′ > 1.
Consider u, v ∈ SHm(X, ω) such that {u < v} 6=∅ and

(ω+ ddcu)m∧ωn−m
= f ωn,

for some f ∈ Lq(dV ). Then

sup(v− u)≤ c(p′, q, ‖ f ‖Lq (X))
∥∥(v− u)+

∥∥ p
n+p(m+1)
q ′ , where (v− u)+ :=max(v− u, 0).
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Corollary 3.2. The family of solutions of the Hessian equation (3-1) with right-hand sides uniformly
bounded in Lq , q > n/m, is equicontinuous.

Applying Proposition 1.8 and the statements above one immediately gets this existence theorem:

Theorem 3.3. Let X be a compact Kähler manifold. For q > n/m and f ∈ Lq(dV ) there exists a unique
function u ∈ SHm(X, ω) satisfying

(ω+ ddcu)m∧ωn−m
= f ωn and max u = 0.

4. Local regularity

In this section we prove a counterpart of the main result in [Błocki and Dinew 2011], where the case of
the Monge–Ampère equation was studied. We shall treat only the ω= β case and use PDE notation (with
σm defined in the Introduction).

Theorem 4.1. Assume that n ≥ 2 and p > n(m−1). Let u ∈W 2,p(�), where � is a domain in Cn , be a
m-subharmonic solution of

σm(uz j z̄k )= ψ > 0. (4-1)

Assume that ψ ∈ C1,1(�). Then for �′ b�

sup�′ 1u ≤ C,

where C is a constant depending only on n, m, p, dist(�′, ∂�), inf� ψ , sup� ψ , ‖ψ‖C1,1(�) and
‖1u‖L p(�).

Proof. By C1,C2, . . . we will denote possibly different constants depending only on the required quantities.
Without loss of generality we may assume that �= B is the unit ball in Cn and that u is defined in some
neighborhood of B. We will use the notation uj = uz j , uj = u z̄ j with the notable exception of u(ε) which
is defined below.

Following [Bedford and Taylor 1976], we define the Laplacian approximating operator

T = Tε(u)=
n+ 1
ε2 (u(ε)− u),

where

u(ε)(z)=
1

V (B(z, ε))

∫
B(z,ε)

u dV .

Since Tεu→1u weakly as ε→ 0, it is enough to show a uniform upper bound for T independent of ε.
Observe that since u is subharmonic we have Tε(u)≥ 0.

Before we continue let us state two lemmas. The first one is classical.

Lemma 4.2. Let u ∈W 2,p(�) ( � is a domain in Cn) be a subharmonic function. Given any �′ b� the
operator Tε(z) is well defined on �′ for any sufficiently small ε > 0. Furthermore,

‖Tε‖L p(�′)→‖1u‖L p(�′);

in particular, ‖Tε‖L p(�′) is uniformly bounded for all 0< ε < ε0.
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Lemma 4.3. The function Tε(u)(z) for any ε > 0 satisfies the subharmonicity condition

∂σm(uj k̄)

∂ui j
Tε,i j ≥−C1,

where (∂σm(uj k̄))/∂ui j is the (i, j)-th (m−1)-cominor of the matrix ui j (z) and C1 is a constant dependent
only on n, m, inf� ψ , sup� ψ , and ‖ψ‖C1,1(�).

Proof. Observe that u(ε) is a convex combination of m-subharmonic functions, hence it is m-subharmonic.
Therefore one has the inequality

(ddcu(ε))m∧ωn−m
≥ 0.

In fact following the lines of the same argument in [Bedford and Taylor 1976] (where it was applied to
the Monge–Ampère operator) one can prove the stronger inequality

(ddcu(ε))m∧ωn−m
≥ ((ψ1/m)(ε))

m . (4-2)

Indeed, for smooth u this is just a consequence of the concavity of σ 1/m
m . For nonsmooth solutions one

can repeat the Goffman–Serrin formalism, again following Bedford and Taylor.
Thus using the weak Gårding inequality (Theorem 2.12) one has

(ddcu)m−1
∧ ddcu(ε) ∧ωn−m

≥ ψ (m−1)/m(ψ1/m)(ε)dV .

Next, identifying (n, n) forms and their densities one gets, up to a multiplicative numerical constant cn,m ,
the following string of inequalities

∂σm(uj k̄)

∂ui j
Tε,i j = cn,m1/ε2ddc(u(ε)− u)∧ (ddcu)m−1

∧ωn−m

≥ cn,m1/ε2ψ (m−1)/m((ψ1/m)(ε)−ψ
1/m)= cn,mψ

(m−1)/m Tε(ψ1/m).

But ψ is a strictly positive C1,1 function hence Tε(ψ1/m)≥−C1(‖ψ‖, ‖ψ
1/m
‖C1,1). Combining all those

inequalities we obtain the claimed estimate. �

From now on we drop the index ε in what follows. We will use the same calculations as in [Błocki
and Dinew 2011], which in turn relied on [Trudinger 1980]. For some α, β ≥ 2 to be determined later set

w := η(T )α, where η(z) := (1− |z|2)β .

Then

wi = ηi (T )α +αη(T )α−1(T )i

and

∂σm(uj k̄)

∂ui j
wi j = αη(T )

α−1 ∂σm(uj k̄)

∂ui j
(T )i j +α(α− 1)η(T )α−2 ∂σm(uj k̄)

∂ui j
(T )i (T ) j

+2α(T )α−1Re
(
∂σm(uj k̄)

∂ui j
ηi (T ) j

)
+ (T )α

∂σm(uj k̄)

∂ui j
ηi j .
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By Lemma 4.3 and the Schwarz inequality for t > 0,

∂σm(uj k̄)

∂ui j
wi j ≥−C1αη(T )α−1

+α(α− 1)η(T )α−2 ∂σm(uj k̄)

∂ui j
(T )i (T ) j

−tα(T )α−1 ∂σm(uj k̄)

∂ui j
(T )i (T ) j −

1
t
α(T )α−1 ∂σm(uj k̄)

∂ui j
ηiη j + (T )

α
∂σm(uj k̄)

∂ui j
ηi j .

Therefore with t = (α− 1)η/T we get

∂σm(uj k̄)

∂ui j
wi j ≥−C1αη(T )α−1

+ (T )α
∂σm(uj k̄)

∂ui j

(
ηi j −

α

α− 1

ηiη j̄

η

)
.

We now have

ηi =−βziη
1−1/β,

ηi j =−βδi jη
1−1/β

+β(β − 1)z̄i z jη
1−2/β,

and thus

|ηi j |,

∣∣∣∣ηiη j

η

∣∣∣∣≤ C(β) η1−2/β .

Coupling the above inequalities we get

∂σm(uj k̄)

∂ui j
wi j ≥−C2(T )α−1

−C3w
1−2/β(T )2α/β

∑
i, j

∣∣∣∣∂σm(uj k̄)

∂ui j

∣∣∣∣.
Fix q with n/m < q < p/m(m−1) (by our assumption on p such a choice is possible). By Lemma 4.2
‖T ‖p and ‖1u‖p are under control. By Calderón–Zygmund inequalities we control ‖ui j‖p too. Observe
that ∂σm(uj k̄)/∂ui j is a sum of products of m−1 factors of the type ui j , and therefore its p/(m−1)-norm
is also under control. It follows that for

α = 1+
p

qm
, β = 2

(
qm+ p

p− qm(m−1)

)
,

we have ∥∥∥∥(∂σm(uj k̄)

∂ui j
wi j

)
−

∥∥∥∥
qm
≤ C3(1+ (supB w)

1−2/β),

where f− := −min( f, 0). By Theorem 2.10 we can find continuous m-subharmonic v vanishing on ∂B
and such that

σm(vi j )= ((u
i jwi j )−)

m .
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Then the weak Gårding inequality yields

∂σm(uj k̄)

∂ui j
vi j = cn,m(ddcu)m−1

∧ ddcv∧ωn−m

≥ cn,m
(
σm(ui j )

(m−1)/m(σm(vi j ))
1/m)
≥

1
C4

(
∂σm(uj k̄)

∂ui j
wi j

)
−

≥−
1

C4

∂σm(uj k̄)

∂ui j
wi j .

By maximum principle we obtain that w ≤ −C4v, since this inequality holds on ∂B. Applying the
stability theorem (Theorem 2.8), with u = 0, we get

supB w ≤ C4‖v‖ ≤ C5(‖σm(vi j )‖
1/m
q )= C5

∥∥∥∥(∂σm(uz j z̄k )

∂ui j
wi j

)
−

∥∥∥∥
qn

≤ C6(1+ (supB w)
1−2/β).

Therefore w ≤ C7 and thus
T α
≤ C7/η,

which is the desired bound. �

Remark 4.4. An analogous reasoning can be applied to the real m-Hessian equation (using Wang stability
theorem and existence of weak solutions). It turns out that for m < n/2 the corresponding exponent in the
W 2,p Sobolev space is equal to n(m−1)/2. Observe that this improves the m(n−1)/2 exponent obtained
by different methods by Urbas [2001]. Whether this exponent is optimal is however still unclear and
would require construction of suitable Pogorelov type Hessian examples.
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