
ANALYSIS & PDE
Volume 7 No. 2 2014

msp



Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

László Lempert Purdue University, USA
lempert@math.purdue.edu

Richard B. Melrose Massachussets Institute of Technology, USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Yuval Peres University of California, Berkeley, USA
peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2014 is US $180/year for the electronic version, and $355/year (+$50, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:zworski@math.berkeley.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS AND PDE
Vol. 7, No. 2, 2014

dx.doi.org/10.2140/apde.2014.7.267 msp

TWO-PHASE PROBLEMS WITH DISTRIBUTED SOURCES:
REGULARITY OF THE FREE BOUNDARY

DANIELA DE SILVA, FAUSTO FERRARI AND SANDRO SALSA

We investigate the regularity of the free boundary for a general class of two-phase free boundary problems
with nonzero right-hand side. We prove that Lipschitz or flat free boundaries are C1,γ . In particular,
viscosity solutions are indeed classical.

1. Introduction and main results

In this paper we consider two phase free boundary problems governed by uniformly elliptic equations
with distributed sources. Our purpose is to investigate the regularity of the free boundary under additional
hypotheses such as flatness or Lipschitz continuity. A model problem we have in mind is:{

1u = f in �+(u)∪�−(u),
(u+ν )

2
− (u−ν )

2
= 1 on F(u) := ∂�+(u)∩�.

(1-1)

Here, as usual for any bounded domain �⊂ Rn ,

�+(u) := {x ∈� : u(x) > 0}, �−(u) := {x ∈� : u(x)≤ 0}◦,

and u+ν and u−ν denote the normal derivatives in the inward direction to �+(u) and �−(u).
Typical examples are the Prandtl–Batchelor model in fluid dynamics (see, e.g., [Batchelor 1956; Elcrat

and Miller 1995]), where f = 1�−(u), the characteristic function of the negative phase, or the eigenvalue
problem in magnetohydrodynamics (1,1) considered in [Friedman and Liu 1995], where f =−λu1�−(u).
Other examples come from limits of singular perturbation problems with forcing term as in [Lederman and
Wolanski 2006], where the authors analyze solutions to (1-1), arising in the study of flame propagation
with nonlocal effects.

The homogeneous case f ≡ 0 was settled in the classical works of Caffarelli [1987; 1989]. A key step
in these papers is the construction of a family of continuous sup-convolution deformations that act as
comparison subsolutions.

The results in [Caffarelli 1987; 1989] have been widely generalized to different classes of homogeneous
elliptic problems. See, for example, [Cerutti et al. 2004; Ferrari and Salsa 2007a; 2007b] for linear

De Silva and Ferrari are supported by the ERC starting grant project 2011 EPSILON (Elliptic PDEs and Symmetry of Interfaces
and Layers for Odd Nonlinearities). De Silva is supported by NSF grant DMS-1301535. Ferrari is supported by MIUR (Italy)
and by the University of Bologna. Salsa is supported by a MIUR grant, “Geometric properties of nonlinear diffusion problems”.
Ferrari wishes to thank the Department of Mathematics of Columbia University, New York, for the kind hospitality.
MSC2010: 35B65.
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268 DANIELA DE SILVA, FAUSTO FERRARI AND SANDRO SALSA

operators; [Argiolas and Ferrari 2009; Feldman 2001; 1997; Ferrari 2006; Wang 2000; 2002] for fully
nonlinear operators; and [Lewis and Nyström 2010] for the p-Laplacian. All these papers follow the
guidelines of [Caffarelli 1987; 1989].

De Silva [2011] introduced a new strategy to investigate inhomogeneous free boundary problems,
motivated by a classical one phase problem in hydrodynamic. This method has been successfully applied
in [De Silva and Roquejoffre 2012] to nonlocal one phase Bernoulli type problems, governed by the
fractional Laplacian. For another application of the techniques in [De Silva 2011] see also [Leitão and
Teixeira 2011].

Here we extend the method in [De Silva 2011] to two phase problems to prove that flat (see below) or
Lipschitz free boundaries of (1-1) are C1,γ .

In order to better emphasize the ideas involved, we first develop the regularity theory for free boundaries
of viscosity solutions to problem (1-1) (see Section 2 for the relevant definitions), and then we extend our
results to a more general class of free boundary problems. For simplicity, in order to avoid the machinery
of L p-viscosity solution, we assume that f is bounded in � and continuous in �+(u)∪�−(u). Our
results may be extended to the case when f is merely bounded measurable.

We remark that in view of Theorem 4.5 in [Caffarelli et al. 2002], a viscosity solution to (1-1) is locally
Lipschitz. In fact, as it can be easily checked, our viscosity solutions are also weak solutions in the sense
of Definition 4.4 in that paper and both 1u±− f are nonnegative Radon measures.

We now state our first main results. Here constants depending only on n, ‖ f ‖∞, and Lip(u) will be
called universal.

Theorem 1.1 (flatness implies C1,γ ). Let u be a (Lipschitz) viscosity solution to (1-1) in B1. Assume that
f ∈ L∞(B1) is continuous in B+1 (u)∪ B−1 (u). There exists a universal constant δ̄ > 0 such that, if

{xn ≤−δ} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ δ}, (1-2)

with 0≤ δ ≤ δ̄, then F(u) is C1,γ in B1/2.

Theorem 1.1 still holds when (1-2) is replaced by other common flatness conditions (see page 296).

Theorem 1.2 (Lipschitz implies C1,γ ). Let u be a (Lipschitz) viscosity solution to (1-1) in B1, with
0 ∈ F(u). Assume that f ∈ L∞(B1) is continuous in B+1 (u)∪ B−1 (u). If F(u) is a Lipschitz graph in a
neighborhood of 0, then F(u) is C1,γ in a (smaller) neighborhood of 0.

The proof of Theorem 1.1 is based on an improvement of flatness, obtained via a compactness argument
which linearizes the problem into a limiting one. The key tool is a geometric Harnack inequality that
localizes the free boundary well, and allows the rigorous passage to the limit.

The main difficulty in the analysis comes from the case when u− is degenerate, that is very close to
zero without being identically zero. In this case the flatness assumption does not guarantee closeness of u
to an “optimal” (two-plane) configuration. Thus one needs to work only with the positive phase u+ to
balance the situation in which u+ highly predominates over u− and the case in which u− is not too small
with respect to u+.

Theorem 1.2 follows from Theorem 1.1 and the main result in [Caffarelli 1987], via a blow-up argument.
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Sections 2–6 are devoted to the proof of the theorems above. In particular, in Section 2 we introduce
the relevant definitions and some preliminary lemmas. In Section 3 we describe the linearized problem
associated to (1-1). Section 4 is devoted to the proof of the Harnack inequality both in the nondegenerate
and in the degenerate setting. In Section 5, we present the proof of the improvement of flatness lemmas.
Section 6 contains the proof of the Theorem 1.1 and Theorem 1.2.

From Section 7 to Section 10 we deal with more general problems of the form{
Lu = f in �+(u)∪�−(u),
u+ν = G(u−ν , x) on F(u) := ∂�+(u)∩�,

(1-3)

with f bounded on � and continuous in �+(u)∪�−(u), and u Lipschitz continuous with Lip(u)≤ L .
Here

L=

n∑
i, j=1

ai j (x)Di j + b · ∇, ai j ∈ C0,γ̄ (�), b ∈ C(�)∩ L∞(�),

is uniformly elliptic; that is, there exist 0< λ≤3 such that, for every ξ ∈ Rn and every x ∈�,

λ|ξ |2 ≤

n∑
i, j=1

ai j (x)ξi ξ j ≤3|ξ |
2,

and

G(η, x) : [0,∞)×�→ (0,∞)

satisfies the following assumptions:

(H1) G(η, · ) ∈ C0,γ̄ (�) uniformly in η; G( · , x) ∈ C1,γ̄ ([0, L]) for every x ∈�.

(H2) G ′( · , x) > 0 with G(0, x)≥ γ0 > 0 uniformly in x .

(H3) There exists N > 0 such that η−N G(η, x) is strictly decreasing in η, uniformly in x .

In this framework we prove the following main results. Here, a constant depending (possibly) on n,
Lip(u), λ, 3, [ai j ]C0,γ̄ , ‖b‖L∞ , ‖ f ‖L∞ , [G(η, · )]C0,γ̄ , γ0 and N is called universal. The C1,γ̄ norm of
G( · , x) may depend on x , and enters our proofs in a qualitative way only.

Theorem 1.3 (flatness implies C1,γ ). Let u be a Lipschitz viscosity solution to (1-3) in B1, with Lip(u)≤ L.
Assume that f is continuous in B+1 (u)∪ B−1 (u), ‖ f ‖L∞(B1) ≤ L and G satisfies assumptions (H1)–(H3).
There exists a universal constant δ̄ > 0 such that, if

{xn ≤−δ} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ δ},

with 0≤ δ ≤ δ̄, then F(u) is C1,γ in B1/2.

Theorem 1.4 (Lipschitz implies C1,γ ). Let u be a Lipschitz viscosity solution to (1-3) in B1, with
0∈ F(u) and Lip(u)≤ L. Assume that f is continuous in B+1 (u)∪ B−1 (u), ‖ f ‖L∞(B1) ≤ L and G satisfies
assumptions (H1)–(H3). If F(u) is a Lipschitz graph in a neighborhood of 0, then F(u) is C1,γ in a
(smaller) neighborhood of 0.
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Further extensions can be achieved with small extra effort: there is no problem in extending our results
to the case when b and f are merely bounded measurable. However, as already said of the prototype
problem, we wish to avoid too many technicalities.

In Theorems 1.3 and 1.4 we need to assume the Lipschitz continuity of our solution unless the operator
can be put into divergence form. Indeed, in this case an almost monotonicity formula is available (see
[Matevosyan and Petrosyan 2011]) and under the assumption G(η, x)→∞, as η→∞ one can reproduce
the proof of Theorem 4.5 in [Caffarelli et al. 2002], to recover the Lipschitz continuity of a viscosity
solution. Observe that then f = f (x, u,∇u) is allowed, with f (x, · , · ) locally bounded.

2. Compactness and localization lemmas

In this section, we state basic definitions and we prove some elementary lemmas. First we need the
following standard notion.

Definition 2.1. Given u, ϕ ∈ C(�), we say that ϕ touches u from below at x0 ∈� if u(x0)= ϕ(x0) and

u(x)≥ ϕ(x) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that ϕ touches u strictly from below. Touching (strictly)
from above is defined similarly, replacing ≤ by ≥.

We retain the usual definition of C-viscosity sub/supersolutions and solutions of an elliptic PDE; see
[Caffarelli and Cabré 1995], for example. Here is the definition of a viscosity solution to the problem
(1-1):

Definition 2.2. Let u be a continuous function in �. We say that u is a viscosity solution to (1-1) in � if
the following conditions are satisfied:

(i) 1u = f in �+(u)∪�−(u) in the viscosity sense.

(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v))∩C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v touches u from
below (resp. above) at x0 ∈ F(v), then

(v+ν (x0))
2
− (v−ν (x0))

2
≤ 1 (resp. ≥ 1).

For our arguments, it is convenient to introduce also the notion of comparison sub/supersolutions.

Definition 2.3. We say that v ∈ C(�) is a strict (comparison) subsolution (resp. supersolution) to (1-1)
in � if v ∈ C2(�+(v))∩C2(�−(v)) and the following conditions are satisfied.

(i) 1v > f (resp. < f ) in �+(v)∪�−(v);

(ii) If x0 ∈ F(v), then

(v+ν )
2
− (v−ν )

2 > 1
(
resp. (v+ν )

2
− (v−ν )

2 < 1, v+ν (x0) 6= 0
)
.

Notice that by the implicit function theorem, according to our definition the free boundary of a
comparison sub/supersolution is C2.



FREE BOUNDARY REGULARITY IN TWO-PHASE PROBLEMS WITH DISTRIBUTED SOURCES 271

Remark 2.4. A strict comparison subsolution v cannot touch a viscosity solution u from below at any
point in F(u)∩ F(v). A strict comparison supersolution v cannot touch u from above at any point in
F(u)∩ F(v).

The next lemma shows that “δ-flat” viscosity solutions (in the sense of Theorem 1.1) enjoy non-
degeneracy of the positive part δ-away from the free boundary:

Lemma 2.5. Let u be a solution to (1-1) in B2 with Lip(u)≤ L and ‖ f ‖L∞ ≤ L. If

{xn ≤ g(x ′)− δ} ⊂ {u+ = 0} ⊂ {xn ≤ g(x ′)+ δ},

with g a Lipschitz function, Lip(g)≤ L , g(0)= 0, then

u(x)≥ c0(xn − g(x ′)), x ∈ {xn ≥ g(x ′)+ 2δ} ∩ Bρ0,

for some c0, ρ0 > 0 depending on n, L as long as δ ≤ c0.

Proof. All constants in this proof will depend on n, L .
It suffices to show that our statement holds for {xn ≥ g(x ′)+Cδ} for a possibly large constant C . Then

one can apply the Harnack inequality to obtain the full statement.
We prove the statement above at x = den (recall that g(0)= 0). Precisely, we want to show that

u(den)≥ c0d, d ≥ Cδ.

After rescaling, we reduce to proving that

u(en)≥ c0

as long as δ ≤ 1/C , and ‖ f ‖∞ is sufficiently small. Let γ > 0 and

w(x)= 1
2γ
(1− |x |−γ )

be defined on the closure of the annulus B2 \ B1 with ‖ f ‖∞ small enough that

1w <−‖ f ‖ on B2 \ B1.

Extend w = 0 in B1. Let
wt(x)= w(x + ten).

Notice that
((wt)

+

ν )
2
− ((wt)

−

ν )
2 < 1 on F(wt)= ∂B1(−ten). (2-1)

From our flatness assumption for t = C(L) sufficiently large (depending on the Lipschitz constant of
g), wt is above u. We decrease t continuously and let t̄ be the smallest t such that wt is above u. Notice
that t̄ > 0.

Then, there is a touching point z ∈ (B2 \ B1)− t̄ en . Since wt̄ is a strict supersolution to 1u = f in
(B2 \ B1)− t̄ en and (2-1) is satisfied, the touching point z can occur only on the η := 1

2γ (1− 2−γ ) level
set in the positive phase of u. From the bounds on t̄ it follows |z| ≤ C (C depending on L .)
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Since u is Lipschitz continuous, we have 0 < u(z) = η ≤ Ld(z, F(u)); that is, a full ball around z
of radius η/L is contained in the positive phase of u. Thus, for δ̄ small depending on η, L , we have
Bη/2L(z)⊂ {xn ≥ g(x ′)+ 2δ̄}. Since xn = g(x ′)+ 2δ̄ is Lipschitz we can connect en and z with a chain
of intersecting balls included in the positive side of u with radii comparable to η/2L . The number of
balls depends on L . Then we can apply the Harnack inequality and obtain

u(en)≥ cu(z)= c0,

as desired. �

Next, we state a compactness lemma. For its proof, we refer the reader to Section 7 where the analogue
of this result for a more general class of operators and free boundary conditions is stated and proved (see
Lemma 7.3).

Lemma 2.6. Let uk be a sequence of viscosity solutions to (1-1) with right-hand side fk satisfying
‖ fk‖L∞ ≤ L. Assume uk→ u∗ uniformly on compact sets, and {u+k = 0}→ {(u∗)+ = 0} in the Hausdorff
distance. Then

−L ≤1u∗ ≤ L in �+(u∗)∪�−(u∗)

in the viscosity sense and u∗ satisfies the free boundary condition

(u∗ν
+
)2− (u∗ν

−
)2 = 1 on F(u∗)

in the viscosity sense of Definition 2.2.

We are now ready to reformulate our main Theorem 1.1 using the two lemmas above. First, we denote
by Uβ the following one-dimensional function,

Uβ(t)= αt+−βt−, β ≥ 0, α =
√

1+β2,

where
t+ =max{t, 0}, t− =−min{t, 0}.

Then Uβ(x)=Uβ(xn) is the so-called two-plane solution to (1-1) when f ≡ 0.

Lemma 2.7. Let u be a solution to (1-1) in B1 with Lip(u) ≤ L and ‖ f ‖L∞ ≤ L. For any ε > 0 there
exist δ̄, r̄ > 0 depending on ε, n, and L such that if

{xn ≤−δ} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ δ},

with 0≤ δ ≤ δ̄, then
‖u−Uβ‖L∞(Br̄ ) ≤ εr̄ (2-2)

for some 0≤ β ≤ L.

Proof. Given ε > 0 and r̄ depending on ε to be specified later, assume by contradiction that there exist a
sequence δk→ 0 and a sequence of solutions uk to the problem (1-1) with right-hand side fk such that
Lip(uk), ‖ fk‖ ≤ L and

{xn ≤−δk} ⊂ B1 ∩ {u+k (x)= 0} ⊂ {xn ≤ δk}, (2-3)
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but the uk do not satisfy the conclusion (2-2).
Then, up to a subsequence, the uk converge uniformly on compacts to a function u∗. In view of

(2-3) and the nondegeneracy of u+k 2δk-away from the free boundary (Lemma 2.5), we can apply our
compactness lemma and conclude that

−L ≤1u∗ ≤ L in B1/2 ∩ {xn 6= 0}

in the viscosity sense and also

(u∗n
+
)2− (u∗n

−
)2 = 1 on F(u∗)= B1/2 ∩ {xn = 0}, (2-4)

with
u∗ > 0 in Bρ0 ∩ {xn > 0}.

Thus,
u∗ ∈ C1,γ (B1/2 ∩ {xn ≥ 0}

)
∩C1,γ (B1/2 ∩ {xn ≤ 0}

)
for all γ and in view of (2-4) we have that (for any r̄ small)

‖u∗− (αx+n −βx−n )‖L∞(Br̄ ) ≤ C(n, L)r̄1+γ ,

with α2
= 1+β2. If r̄ is chosen depending on ε so that

C(n, L)r̄1+γ
≤
ε

2
r̄ ,

since the uk converge uniformly to u∗ on B1/2 we obtain that for all k large

‖uk − (αx+n −βx−n )‖L∞(Br̄ ) ≤ εr̄ ,

a contradiction. �

In view of Lemma 2.7, and after rescaling, our first main theorem (Theorem 1.1) follows from our
second, which we now state:

Theorem 2.8. Let u be a solution to (1-1) in B1 with Lip(u)≤ L and ‖ f ‖L∞ ≤ L. There exists a universal
constant ε > 0 such that, if

‖u−Uβ‖L∞(B1) ≤ ε for some 0≤ β ≤ L , (2-5)

and

{xn ≤−ε} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ ε} and ‖ f ‖L∞(B1) ≤ ε,

then F(u) is C1,γ in B1/2.

The next lemma is elementary.

Lemma 2.9. Let u be a continuous function. If , for η > 0 small, we have

‖u−Uβ‖L∞(B2) ≤ η for 0≤ β ≤ L ,
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and
{xn ≤−η} ⊂ B2 ∩ {u+(x)= 0} ⊂ {xn ≤ η},

then

• if β ≥ η1/3, then Uβ(xn − η
1/3)≤ u(x)≤Uβ(xn + η

1/3) in B1;

• if β < η1/3, then U0(xn − η
1/3)≤ u+(x)≤U0(xn + η

1/3) in B1.

3. The linearized problem

This section is devoted to the study of the linearized problem associated with our free boundary problem
(1-1), that is, the following boundary value problem (α̃ 6= 0):{

1ũ = 0 in Bρ ∩ {xn 6= 0},
α̃2(ũn)

+
− β̃2(ũn)

−
= 0 on Bρ ∩ {xn = 0}.

(3-1)

Here (ũn)
+ (resp. (ũn)

−) denotes the derivative in the en direction of ũ restricted to {xn > 0} (resp.
{xn < 0}).

We remark that Theorem 2.8 will follow, see Section 6, via a compactness argument from the regularity
properties of viscosity solutions to (3-1).

Definition 3.1. A continuous function u is a viscosity solution to (3-1) if the following conditions are
satisfied:

(i) 1ũ = 0 in Bρ ∩ {xn 6= 0}, in the viscosity sense.

(ii) Let φ be a function of the form

φ(x)= A+ px+n − qx−n + B Q(x − y),

with
Q(x)= 1

2 [(n− 1)x2
n − |x

′
|
2
], y = (y′, 0), A ∈ R, B > 0

and
α̃2 p− β̃2q > 0.

Then φ cannot touch u strictly from below at a point x0 = (x ′0, 0) ∈ Bρ . Analogously, if

α̃2 p− β̃2q < 0,

then φ cannot touch u strictly from above at x0.

We wish to prove the following regularity result for viscosity solutions to the linearized problem.

Theorem 3.2. Let ũ be a viscosity solution to (3-1) in B1/2 such that ‖ũ‖∞ ≤ 1. There exists a universal
constant C such that ∣∣ũ(x)− ũ(0)− (∇x ′ ũ(0) · x ′+ p̃x+n − q̃x−n )

∣∣≤ Cr2 in Br , (3-2)

for all r ≤ 1
4 and with α̃2 p̃− β̃2q̃ = 0.
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Before proving this, we first show that the problem (3-1) admits a classical solution:

Theorem 3.3. Let h be a continuous function on ∂B1. There exists a (unique) classical solution ṽ to (3-1)
with ṽ = h on ∂B1, that is, ṽ ∈ C∞(B1 ∩ {xn ≥ 0})∩C∞(B1 ∩ {xn ≤ 0}). In particular, there exists a
universal constant C̃ such that∣∣ṽ(x)− ṽ(x̄)− (∇x ′ ṽ(x̄) · (x ′− x̄ ′)+ p̃(x̄)x+n − q̃(x̄)x−n

)∣∣≤ C̃‖ṽ‖L∞r2 in Br (x̄), (3-3)

for all r ≤ 1
4 , x̄ = (x̄ ′, 0) ∈ B1/2 and with α̃2 p̃(x̄)− β̃2q̃(x̄)= 0.

Proof. Let w be the harmonic function in B1 ∩ {xn > 0} such that

w = 0 on B1 ∩ {xn = 0},

w(x)= h(x ′, xn)− h(x ′,−xn) on ∂B1 ∩ {xn > 0}.

Then w ∈ C∞(B1 ∩ {xn ≥ 0}). Set

φ(x ′)= wn(x ′, 0), (x ′, 0) ∈ B1.

Let
ṽ1(x)= w(x)+ ṽ2(x ′,−xn) in B1 ∩ {xn ≥ 0},

where ṽ2 is the solution to the problem
1ṽ2 = 0 in B1 ∩ {xn < 0},
ṽ2 = h on ∂B1 ∩ {xn < 0},
(ṽ2)n = q̃φ on B1 ∩ {xn = 0},

with q̃ =
α̃2

β̃2+ α̃2
. Then it is easily verified that the function

ṽ =

{
ṽ1 in B1 ∩ {xn ≥ 0},
ṽ2 in B1 ∩ {xn ≤ 0}

is the unique classical solution to our problem and hence it satisfies the estimate (3-3) with

q̃(x̄)= q̃φ(x̄), p̃(x̄)= p̃φ(x̄), p̃ =
β̃2

β̃2+ α̃2
. �

Finally, to obtain our regularity result we only need to show the following fact.

Theorem 3.4. Let ũ be a viscosity solution to (3-1) in B1 such that ‖ũ‖∞ ≤ 1 and let ṽ be the classical
solution to (3-1) in B1/2 with boundary data ũ. Then ũ = ṽ.

Proof. We prove that ṽ ≤ ũ in B1/2. The opposite inequality is obtained in a similar way.
Let ε > 0, t ∈ R and set

ṽt,ε(x)= ṽ+ ε|xn| + εx2
n − ε− t, x ∈ B1/2.

Since ũ is bounded, for t > 0 large enough,

ṽt,ε ≤ ũ. (3-4)
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Let t̄ be the smallest t such that (3-4) holds and let x̄ be the first touching point. We want to show that
t̄ < 0. Assume t̄ ≥ 0. Since

ṽt̄,ε < ũ on ∂B1/2,

such touching point must belong to B1/2. However,

1ṽt̄,ε(x) > 0 in B1/2 ∩ {xn 6= 0},

1ũ = 0 in B1/2 ∩ {xn 6= 0}.

Thus x̄ ∈ B1/2 ∩ {xn = 0}. We claim that there exists a function φ of the form

φ(x)= A+ px+n − qx−n + B Q(x − y)

with
Q(x)= 1

2 [(n− 1)x2
n − |x

′
|
2
], y = (y′, 0), A ∈ R, B > 0

and
α̃2 p− β̃2q > 0,

such that φ touches ṽt̄,ε(x) strictly from below at x̄ . This would contradict the definition of viscosity
solutions, hence t̄ < 0. In particular,

ṽ+ ε|xn| + εx2
n − ε < ũ on B1/2,

and for ε going to 0 we obtain as desired

ṽ ≤ ũ on B1/2.

We are left with the proof of the claim. Define

ν ′ =∇x ′ ṽ(x̄),

and set

y′ = x̄ ′+
ν ′

B
, A = ṽ(x̄)− ε− t̄ − B Q(x̄ − y),

with B > 0 to be chosen later. In view of the estimate (3-3), to verify that in a small neighborhood of x̄

φ(x) < ṽt̄,ε(x), x 6= x̄,

we need to show that we can find B > 0, p, q such that for |x − x̄ | 6= 0 small enough (C̃ universal),

B
2
(n− 1)x2

n −
B
2
|x ′− x̄ ′|2+ px+n − qx−n < ( p̃+ ε)x

+

n − (q̃ − ε)x
−

n − C̃ |x − x̄ |2

and
α̃2 p− β̃2q > 0,

(for simplicity we dropped the dependence of p̃, q̃ on x̄).
It is then enough to choose

B = 4C̃, p = p̃+
ε

2
, q = q̃ −

ε

2
. �
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4. The Harnack inequality

In this section we prove our main tool, a Harnack-type inequality for solutions to our free boundary
problem. The results contained here will allow us to pass to the limit in the compactness argument for
our improvement of flatness lemmas in Section 5.

Throughout this section we consider a Lipschitz solution u to (1-1) with Lip(u)≤ L .
We need to distinguish two cases, which we call the nondegenerate and the degenerate case.

Nondegenerate case. In this case our solution u is trapped between two translations of a “true” two-plane
solution Uβ that is with β 6= 0.

Theorem 4.1 (Harnack inequality). There exists a universal constant ε such that, if u satisfies at some
point x0 ∈ B2

Uβ(xn + a0)≤ u(x)≤Uβ(xn + b0) in Br (x0)⊂ B2, (4-1)

with
‖ f ‖L∞ ≤ ε

2β, 0< β ≤ L ,

and
b0− a0 ≤ εr,

for some ε ≤ ε, then
Uβ(xn + a1)≤ u(x)≤Uβ(xn + b1) in Br/20(x0),

with
a0 ≤ a1 ≤ b1 ≤ b0, b1− a1 ≤ (1− c)εr,

and 0< c < 1 universal.

Before giving the proof we deduce an important consequence.
If u satisfies (4-1) with, say r = 1, then we can apply the Harnack inequality repeatedly and obtain

Uβ(xn + am)≤ u(x)≤Uβ(xn + bm) in B20−m (x0),

with
bm − am ≤ (1− c)mε,

for all m such that
(1− c)m20mε ≤ ε.

This implies that for all such m, the oscillation of the function

ũε(x)=


u(x)−αxn

αε
in B+2 (u)∪ F(u),

u(x)−βxn
βε

in B−2 (u),

in Br (x0), r = 20−m is less than (1− c)m = 20−γm
= rγ . Thus, the following corollary holds.
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Corollary 4.2. Let u be as in Theorem 4.1 satisfying (4-1) for r = 1. Then in B1(x0) ũε has a Hölder
modulus of continuity at x0 outside the ball of radius ε/ε; that is, for all x ∈ B1(x0), with |x − x0| ≥ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C |x − x0|
γ .

The proof of the Harnack inequality relies on the following lemma.

Lemma 4.3. There exists a universal constant ε > 0 such that if u satisfies

u(x)≥Uβ(x) in B1,

with
‖ f ‖L∞(B1) ≤ ε

2β, 0< β ≤ L , (4-2)

then if at x̄ = 1
5 en ,

u(x̄)≥Uβ(x̄n + ε), (4-3)

then
u(x)≥Uβ(xn + cε) in B1/2, (4-4)

for some universal c with 0< c < 1. Analogously, if u(x)≤Uβ(x) in B1 and u(x̄)≤Uβ(x̄n − ε), then

u(x)≤Uβ(xn − cε) in B1/2.

Proof. We prove the first statement. For notational simplicity we drop the subindex β from Uβ .
Let

w = c(|x − x̄ |−γ − (3/4)−γ ) (4-5)

be defined in the closure of the annulus

A := B3/4(x̄) \ B1/20(x̄).

The constant c is such that w satisfies the boundary conditions{
w = 0 on ∂B3/4(x̄),
w = 1 on ∂B1/20(x̄).

Then, for a fixed γ > n− 2,

1w ≥ k(γ, n)= k(n) > 0, 0≤ w ≤ 1 on A.

Extend w to be equal to 1 on B1/20(x̄).
Notice that since xn > 0 in B1/10(x̄) and u ≥U in B1, we get

B1/10(x̄)⊂ B+1 (u).

Thus u−U ≥ 0 and solves 1(u−U ) = f in B1/10(x̄) and we can apply the Harnack inequality to
obtain

u(x)−U (x)≥ c(u(x̄)−U (x̄))−C‖ f ‖L∞ in B1/20(x̄). (4-6)
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From the assumptions (4-2) and (4-3) we conclude that (for ε small enough)

u−U ≥ αcε−Cαε2
≥ αc0ε in B1/20(x̄). (4-7)

Now set ψ = 1−w and
v(x)=U (xn − εc0ψ(x)), x ∈ B3/4(x̄),

and for t ≥ 0,
vt(x)=U (xn − εc0ψ(x)+ tε), x ∈ B3/4(x̄).

Then,
v0(x)=U (xn − εc0ψ(x))≤U (x)≤ u(x), x ∈ B3/4(x̄).

Let t̄ be the largest t ≥ 0 such that

vt(x)≤ u(x) in B3/4(x̄).

We want to show that t̄ ≥ c0. Then we get the desired statement. Indeed,

u(x)≥ vt̄(x)=U (xn − εc0ψ + t̄ε)≥U (xn + cε) in B1/2 b B3/4(x̄),

with c universal. In the last inequality we used that ‖ψ‖L∞(B1/2) < 1.
Suppose t̄ < c0. Then at some x̃ ∈ B3/4(x̄) we have

vt̄(x̃)= u(x̃).

We show that such touching point can only occur on B1/20(x̄). Indeed, since w ≡ 0 on ∂B3/4(x̄) from the
definition of vt we get that for t̄ < c0,

vt̄(x)=U (xn − εc0ψ(x)+ t̄ε) <U (x)≤ u(x) on ∂B3/4(x̄).

We now show that x̃ cannot belong to the annulus A. Indeed,

1vt̄ ≥ βεc0k(n) > ε2β ≥ ‖ f ‖∞ in A+(vt̄)∪ A−(vt̄)

for ε small enough. Also,

(v+t̄ )
2
ν − (v

−

t̄ )
2
ν = 1+ ε2c2

0|∇ψ |
2
− 2εc0ψn on F(vt̄)∩ A.

Thus,
(v+t̄ )

2
ν − (v

−

t̄ )
2
ν > 1 on F(vt̄)∩ A,

as long as
ψn < 0 on F(vt̄)∩ A.

This can be easily verified from the formula for ψ (for ε small enough).
Thus, vt̄ is a strict subsolution to (1-1) in A which lies below u, hence by the definition of viscosity

solution, x̃ cannot belong to A.
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Therefore, x̃ ∈ B1/20(x̄) and

u(x̃)= vt̄(x̃)=U (x̃n + t̄ε)≤U (x̃)+αt̄ε <U (x̃)+αc0ε,

contradicting (4-7).
The proof of the second statement follows from a similar argument. �

Proof of Theorem 4.1. Assume without loss of generality that x0 = 0, r = 1. We distinguish three cases.

Case 1: a0 <−
1
5 . In this case it follows from (4-1) that B1/10 ⊂ {u < 0} and

0≤ v(x) :=
u(x)−β(xn + a0)

βε
≤ 1,

with
|1v| ≤ ε in B1/10.

The desired claim follows from the standard Harnack inequality applied to the function v.

Case 2: a0 >
1
5 . In this case it follows from (4-1) that B1/5 ⊂ {u > 0} and

0≤ v(x) :=
u(x)−α(xn + a0)

αε
≤ 1,

with
|1v| ≤ ε in B1/5.

Again, the desired claim follows from the standard Harnack inequality for v.

Case 3: |a0| ≤ 1/5. Assumption (4-1) gives that

Uβ(xn + a0)≤ u(x)≤Uβ(xn + a0+ ε) in B1.

Assume that (the other case is treated similarly)

u(x̄)≥Uβ

(
x̄n + a0+

1
2ε
)
, x̄ = 1

5 en. (4-8)

Set
v(x) := u(x − a0en), x ∈ B4/5.

Then the inequality above reads

Uβ(xn)≤ v(x)≤Uβ(xn + ε) in B4/5.

From (4-8), we have
v(x̄)≥Uβ

(
x̄n +

1
2ε
)
.

Then, by Lemma 4.3,
v(x)≥Uβ(xn + cε) in B2/5,

which gives the desired improvement

u(x)≥Uβ(x + a0+ cε) in B3/5. �
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Degenerate case. In this case, the negative part of u is negligible and the positive part is close to a
one-plane solution (i.e., β = 0).

Theorem 4.4 (Harnack inequality). There exists a universal constant ε̄, such that if u satisfies at some
point x0 ∈ B2

U0(xn + a0)≤ u+(x)≤U0(xn + b0) in Br (x0)⊂ B2, (4-9)

with
‖u−‖L∞ ≤ ε

2, ‖ f ‖L∞ ≤ ε
4,

and
b0− a0 ≤ εr,

for some ε ≤ ε, then
U0(xn + a1)≤ u+(x)≤U0(xn + b1) in Br/20(x0),

with
a0 ≤ a1 ≤ b1 ≤ b0, b1− a1 ≤ (1− c)εr,

and 0< c < 1 universal.

We can argue as in the nondegenerate case and get the following result.

Corollary 4.5. Let u be as in Theorem 4.1 satisfying (4-9) for r = 1. Then in B1(x0)

ũε :=
u+(x)− xn

ε

has a Hölder modulus of continuity at x0 outside the ball of radius ε/ε; that is, for all x ∈ B1(x0) with
|x − x0| ≥ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C |x − x0|
γ .

The proof of the Harnack inequality can be deduced from the following lemma, as in the one-phase
case [De Silva 2011].

Lemma 4.6. There exists a universal constant ε > 0 such that if u satisfies

u+(x)≥U0(x) in B1,

with
‖u−‖L∞ ≤ ε

2, ‖ f ‖L∞ ≤ ε
4, (4-10)

then if at x̄ = 1
5 en

u+(x̄)≥U0(x̄n + ε), (4-11)

then
u+(x)≥U0(xn + cε) in B1/2, (4-12)

for some universal c with 0< c < 1. Analogously, if u+(x)≤U0(x) in B1 and u+(x̄)≤U0(x̄n − ε), then

u+(x)≤U0(xn − cε) in B1/2.
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Proof. We prove the first statement. The proof follows the same line as in the nondegenerate case.
Since xn > 0 in B1/10(x̄) and u+ ≥U0 in B1 we get

B1/10(x̄)⊂ B+1 (u).

Thus u− xn ≥ 0 and solves 1(u− xn)= f in B1/10(x̄) and we can apply the Harnack inequality and
the assumptions (4-10) and (4-11) to obtain that (for ε small enough)

u− xn ≥ c0ε in B1/20(x̄). (4-13)

Let w be as in the proof of Lemma 4.3 and ψ = 1−w. Set

v(x)= (xn − εc0ψ(x))+− ε2C1(xn − εc0ψ(x))−, x ∈ B3/4(x̄),

and, for t ≥ 0,

vt(x)= (xn − εc0ψ + tε)+− ε2C1(xn − εc0ψ(x)+ tε)−, x ∈ B3/4(x̄).

Here C1 is a universal constant to be made precise later. We claim that

v0(x)= v(x)≤ u(x), x ∈ B3/4(x̄).

This is readily verified in the set where u is nonnegative using that u ≥ x+n . To prove our claim in the
set where u is negative we wish to use the following fact:

u− ≤ Cx−n ε
2 in B19/20, C universal. (4-14)

This estimate is easily obtained using that {u < 0} ⊂ {xn < 0}, ‖u−‖∞ < ε2 and the comparison principle
with the function w satisfying

1w =−ε4 in B1 ∩ {xn < 0}, w = u− on ∂(B1 ∩ {xn < 0}).

Thus our claim immediately follows from the fact that for xn < 0 and C1 ≥ C ,

ε2C1(xn − εc0ψ(x))≤ Cxnε
2.

Let t̄ be the largest t ≥ 0 such that

vt(x)≤ u(x) in B3/4(x̄).

We want to show that t̄ ≥ c0. Then we get the desired statement. Indeed, it is easy to check that if

u(x)≥ vt̄(x)= (xn − εc0ψ + t̄ε)+− ε2C1(xn − εc0ψ(x)+ t̄ε)− in B3/4(x̄),

then
u+(x)≥U0(xn + cε) in B1/2 b B3/4(x̄),

with c universal, c < c0 infB1/2w.
Suppose t̄ < c0. Then at some x̃ ∈ B3/4(x̄) we have

vt̄(x̃)= u(x̃).
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We show that such a touching point can only occur on B1/20(x̄). Indeed, since w ≡ 0 on ∂B3/4(x̄) from
the definition of vt we get that for t̄ < c0

vt̄(x)= (xn − εc0+ t̄ε)+− ε2C1(xn − εc0+ t̄ε)− < u(x) on ∂B3/4(x̄).

In the set where u ≥ 0, this can be seen using that u ≥ x+n , while in the set where u < 0 again we can
use the estimate (4-14).

We now show that x̃ cannot belong to the annulus A. Indeed,

1vt̄ ≥ ε
3c0k(n) > ε4

≥ ‖ f ‖∞ in A+(vt̄)∪ A−(vt̄),

for ε small enough.
Also,

(v+t̄ )
2
ν − (v

−

t̄ )
2
ν = (1− ε

4C2
1)
(
1+ ε2c2

0|∇ψ |
2
− 2εc0ψn

)
on F(vt̄)∩ A.

Thus,
(v+t̄ )

2
ν − (v

−

t̄ )
2
ν > 1 on F(vt̄)∩ A,

as long as ε is small enough (as in the nondegenerate case one can check that infF(vt̄ )∩A(−ψn) > c > 0,
with c universal.) Thus, vt̄ is a strict subsolution to (1-1) in A which lies below u, hence by definition x̃
cannot belong to A.

Therefore, x̃ ∈ B1/20(x̄) and

u(x̃)= vt̄(x̃)= (x̃n + t̄ε) < x̃n + c0ε,

contradicting (4-13). �

5. Improvement of flatness

In this section we prove our key lemmas improving flatness. As in Section 4, we distinguish two cases.

Nondegenerate case. In this case our solution u is trapped between two translations of a two-plane
solution Uβ with β 6= 0. We plan to show that when we restrict to smaller balls, u is trapped between
closer translations of another two-plane solution (in a different system of coordinates).

Lemma 5.1 (improvement of flatness). Let u satisfy

Uβ(xn − ε)≤ u(x)≤Uβ(xn + ε) in B1, 0 ∈ F(u), (5-1)

with 0< β ≤ L and
‖ f ‖L∞(B1) ≤ ε

2β.

If 0< r ≤ r0 for r0 universal, and 0< ε ≤ ε0 for some ε0 depending on r , then

Uβ ′

(
x · ν1− r ε

2

)
≤ u(x)≤Uβ ′

(
x · ν1+ r ε

2

)
in Br , (5-2)

with |ν1| = 1, |ν1− en| ≤ C̃ε, and |β −β ′| ≤ C̃βε for a universal constant C̃.
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Proof. We divide the proof of this lemma into three steps.

Step 1: compactness. Fix r ≤ r0 with r0 universal (the precise r0 will be given in Step 3). Assume by
contradiction that we can find a sequence εk → 0 and a sequence uk of solutions to (1-1) in B1 with
right-hand side fk with L∞ norm bounded by ε2

kβk , such that

Uβk (xn − εk)≤ uk(x)≤Uβk (xn + εk) for x ∈ B1, 0 ∈ F(uk), (5-3)

with L ≥ βk > 0, but uk does not satisfy the conclusion of the lemma, (5-2).
With α2

k = 1+β2
k , set

ũk(x)=


uk(x)−αk xn

αkεk
, x ∈ B+1 (uk)∪ F(uk),

uk(x)−βk xn

βkεk
, x ∈ B−1 (uk).

Then (5-3) gives

−1≤ ũk(x)≤ 1 for x ∈ B1. (5-4)

From Corollary 4.2, it follows that the function ũk satisfies

|ũk(x)− ũk(y)| ≤ C |x − y|γ , (5-5)

for C universal, and

|x − y| ≥ εk/ε̄, x, y ∈ B1/2.

From (5-3) it clearly follows that F(uk) converges to B1 ∩ {xn = 0} in the Hausdorff distance. This
fact and (5-5) together with Ascoli–Arzelà give that as εk → 0 the graphs of the ũk converge (up to a
subsequence) in the Hausdorff distance to the graph of a Hölder continuous function ũ over B1/2. Also,
up to a subsequence we have

βk→ β̃ ≥ 0,

and hence

αk→ α̃ =

√
1+ β̃2.

Step 2: limiting solution. We now show that ũ solves the following linearized problem (transmission
problem): {

1ũ = 0 in B1/2 ∩ {xn 6= 0},

α̃2(ũn)
+
− β̃2(ũn)

−
= 0 on B1/2 ∩ {xn = 0}.

(5-6)

Since

|1uk | ≤ ε
2
kβk in B+1 (uk)∪ B−1 (uk),

one easily deduces that ũ is harmonic in B1/2 ∩ {xn 6= 0}.
Next, we prove that ũ satisfies the boundary condition in (5-6) in the viscosity sense.
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Let φ̃ be a function of the form

φ̃(x)= A+ px+n − qx−n + B Q(x − y),

with
Q(x)= 1

2 [(n− 1)x2
n − |x

′
|
2
], y = (y′, 0), A ∈ R, B > 0

and
α̃2 p− β̃2q > 0.

Then we must show that φ̃ cannot touch u strictly from below at a point x0= (x ′0, 0)∈ B1/2 (the analogous
statement from above follows with a similar argument).

Suppose that such a φ̃ exists and let x0 be the touching point.
Let

0(x)=
1

n− 2

[
(|x ′|2+ |xn − 1|2)

2−n
2 − 1

]
and

0k(x)=
1

Bεk
0(Bεk(x − y)+ ABε2

k en). (5-7)

Now, set
φk(x)= ak0

+

k (x)− bk0
−

k (x)+αk(d+k (x))
2ε

3/2
k +βk(d−k (x))

2ε
3/2
k ,

where
ak = αk(1+ εk p), bk = βk(1+ εkq),

and dk(x) is the signed distance from x to ∂B1/(Bεk)

(
y+ en

( 1
Bεk
− Aεk

))
.

Finally, let

φ̃k(x)=


φk(x)−αk xn

αkεk
, x ∈ B+1 (φk)∪ F(φk),

φk(x)−βk xn

βkεk
, x ∈ B−1 (φk).

By Taylor’s theorem,
0(x)= xn + Q(x)+ O(|x |3), x ∈ B1;

thus it is easy to verify that

0k(x)= Aεk + xn + Bεk Q(x − y)+ O(ε2
k ), x ∈ B1,

with the constant in O(ε2
k ) depending on A, B, and |y| (later this constant will depend also on p, q).

It follows that in B+1 (φk)∪ F(φk) (Q y(x)= Q(x − y)),

φ̃k(x)= A+ B Q y
+ pxn + Aεk p+ Bpεk Q y

+ ε
1/2
k d2

k + O(εk),

and analogously in B−1 (φk),

φ̃k(x)= A+ B Q y
+ qxn + Aεk p+ Bqεk Q y

+ ε
1/2
k d2

k + O(εk).
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Hence, φ̃k converges uniformly to φ̃ on B1/2. Since ũk converges uniformly to ũ and φ̃ touches ũ
strictly from below at x0, we conclude that there exist a sequence of constants ck → 0 and of points
xk→ x0 such that the function

ψk(x)= φk(x + εkcken)

touches uk from below at xk . We thus get a contradiction if we prove that ψk is a strict subsolution to our
free boundary problem, that is,{

1ψk > ε
2
kβk ≥ ‖ fk‖∞ in B+1 (ψk)∪ B−1 (ψk),

(ψ+k )
2
ν − (ψ

−

k )
2
ν > 1, on F(ψk).

(5-8)

It is easily checked that, away from the free boundary,

1ψk ≥ βkε
3/2
k 1d2

k (x + εkcken),

and the first condition in (5-8) is satisfied for k large enough.
Finally, since on the zero level set |∇0k | = 1 and |∇d2

k | = 0, the free boundary condition reduces to
showing that

a2
k − b2

k > 1.

Using the definition of ak, bk we need to check that

(α2
k p2
−β2

k q2)εk + 2(α2
k p−β2

k q) > 0.

This inequality holds for k large in view of the fact that

α̃2 p− β̃2q > 0.

Thus ũ is a solution to the linearized problem.

Step 3: Contradiction. According to estimate (3-2), since ũ(0)= 0 we obtain that

|ũ− (x ′ · ν ′+ p̃x+n − q̃x−n )| ≤ Cr2, x ∈ Br ,

with

α̃2 p̃− β̃2q̃ = 0, |ν ′| = |∇x ′ ũ(0)| ≤ C.

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get that

|ũk − (x ′ · ν ′+ p̃x+n − q̃x−n )| ≤ Cr2, x ∈ Br . (5-9)

Now set

β ′k = βk(1+ εk q̃), νk =
1

√

1+ ε2
k |ν
′
|
2
(en + εk(ν

′, 0)).

Then,

α′k =
√

1+β ′k
2
= αk(1+ εk p̃)+ O(ε2

k ), νk = en + εk(ν
′, 0)+ ε2

kτ, |τ | ≤ C,
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where to obtain the first equality we used that α̃2 p̃− β̃2q̃ = 0 and hence

β2
k

α2
k

q̃ = p̃+ O(εk).

With these choices we can now show that (for k large and r ≤ r0)

Ũβ ′k

(
x · νk − εk

r
2

)
≤ ũk(x)≤ Ũβ ′k

(
x · νk + εk

r
2

)
in Br ,

where again we are using the notation

Ũβ ′k
(x)=


Ũβ ′k

(x)−αk xn

αkεk
, x ∈ B+1 (Ũβ ′k

)∪ F(Ũβ ′k
),

Ũβ ′k
(x)−βk xn

βkεk
, x ∈ B−1 (Ũβ ′k

).

This will clearly imply that

Uβ ′k

(
x · νk − εk

r
2

)
≤ uk(x)≤Uβ ′k

(
x · νk + εk

r
2

)
in Br

and hence will lead to a contradiction.
In view of (5-9), we need to show that in Br ,

Ũβ ′k

(
x · νk − εk

r
2

)
≤ (x ′ · ν ′+ p̃x+n − q̃x−n )−Cr2,

Ũβ ′k

(
x · νk + εk

r
2

)
≥ (x ′ · ν ′+ p̃x+n − q̃x−n )+Cr2.

We show the second inequality. In the set where

x · νk + εk
r
2
< 0 (5-10)

we have, by definition,

Ũβ ′k

(
x · νk + εk

r
2

)
=

1
βkεk

(
β ′k

(
x · νk + εk

r
2

)
−βk xn

)
,

which from the formula for β ′k, νk gives

Ũβ ′k

(
x · νk + εk

r
2

)
≥ x ′ · ν ′+ q̃xn +

r
2
−C0εk .

Using (5-10) we then obtain

Ũβ ′k

(
x · νk + εk

r
2

)
≥ x ′ · ν ′+ p̃x+n − q̃x−n +

r
2
−C1εk .

Thus to obtain the desired bound it suffices to fix r0 ≤ 1/(4C) and take k large enough.
The other case can be argued similarly. �
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Degenerate case. In this case, the negative part of u is negligible and the positive part is close to a
one-plane solution (β = 0). We prove below that in this setting only u+ enjoys an improvement of flatness.

Lemma 5.2 (improvement of flatness). Let u satisfy

U0(xn − ε)≤ u+(x)≤U0(xn + ε) in B1, 0 ∈ F(u), (5-11)

with
‖ f ‖L∞(B1) ≤ ε

4 and ‖u−‖L∞(B1) ≤ ε
2.

If 0< r ≤ r1 for r1 universal, and 0< ε ≤ ε1 for some ε1 depending on r , then

U0

(
x · ν1− r

ε

2

)
≤ u+(x)≤U0

(
x · ν1+ r

ε

2

)
in Br , (5-12)

with |ν1| = 1, |ν1− en| ≤ Cε for a universal constant C.

Proof. We argue similarly as in the nondegenerate case.

Step 1: compactness. Fix r ≤ r1 with r1 universal (made precise in Step 3). Assume for a contradiction
that we can find a sequence εk→ 0 and a sequence uk of solutions to (1-1) in B1 with right-hand side fk

with L∞ norm bounded by ε4
k , such that

U0(xn − εk)≤ u+k (x)≤U0(xn + εk) for x ∈ B1, 0 ∈ F(uk), (5-13)

with
‖u−k ‖∞ ≤ ε

2
k ,

but uk does not satisfy the conclusion (5-12) of the lemma. Set

ũk(x)=
uk(x)− xn

εk
, x ∈ B+1 (uk)∪ F(uk).

Then (5-13) gives
−1≤ ũk(x)≤ 1 for x ∈ B+1 (uk)∪ F(uk). (5-14)

As in the nondegenerate case, it follows from Corollary 4.5 that as εk→ 0 the graphs of the ũk converge
(up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous function ũ over
B1/2 ∩ {xn ≥ 0}.

Step 2: limiting solution. We now show that ũ solves the following Neumann problem:{
1ũ = 0 in B1/2 ∩ {xn > 0},

ũn = 0 on B1/2 ∩ {xn = 0}.
(5-15)

As before, the interior condition follows easily thus we focus on the boundary condition.
Let φ̃ be a function of the form

φ̃(x)= A+ pxn + B Q(x − y),

with
Q(x)= 1

2 [(n− 1)x2
n − |x

′
|
2
], y = (y′, 0), A ∈ R, B > 0
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and p > 0. We must show that φ̃ cannot touch u strictly from below at a point x0 = (x ′0, 0) ∈ B1/2.
Suppose that such a φ̃ exists and let x0 be the touching point.

Let 0k and dk be as in the proof of the nondegenerate case (see (5-7) and subsequent lines). Set

φk(x)= ak0
+

k (x)+ (d
+

k (x))
2ε2

k , ak = (1+ εk p).

Let

φ̃k(x)=
φk(x)− xn

εk
.

As in the previous case, it follows that in B+1 (φk)∪ F(φk) (Q y(x)= Q(x − y)),

φ̃k(x)= A+ B Q y
+ pxn + Aεk p+ Bpεk Q y

+ εkd2
k + O(εk).

Hence, φ̃k converges uniformly to φ̃ on B1/2∩{xn ≥ 0}. Since ũk converges uniformly to ũ and φ̃ touches
ũ strictly from below at x0, we conclude that there exist a sequence of constants ck→ 0 and of points
xk→ x0 such that the function

ψk(x)= φk(x + εkcken)

touches uk from below at xk ∈ B+1 (uk)∪ F(uk). We claim that xk cannot belong to B+1 (uk). Otherwise,
in a small neighborhood N of xk we would have

1ψk > ε
4
k ≥ ‖ fk‖∞ =1uk, ψk < uk in N \ {xk}, ψk(xk)= uk(xk),

a contradiction.
Thus xk ∈ F(uk)∩ ∂B1/(Bεk)

(
y+ en(

1
Bεk
− Aεk − εkck)

)
. For simplicity we set

B := B1/(Bεk)

(
y+ en

(
1

Bεk
− Aεk − εkck

))
.

Let Nρ be a small neighborhood of xk of size ρ. Since

‖u−k ‖∞ ≤ ε
2
k , u+k ≥ (xn − εk)

+,

as in the proof of the Harnack inequality and using the fact that xk ∈ F(uk)∩ ∂B, we can conclude by the
comparison principle that

u−k ≤ cε2
k (d(x, ∂B))− in N 3

4ρ
,

where d denotes again the signed distance from x to ∂B.
Let

9k(x)=
{
ψk in B,

cε2
k (3d(x, ∂B)+ d2(x, ∂B)) outside of B.

(5-16)

Then 9k touches uk strictly from below at xk ∈ F(uk)∩ F(9k).
We will reach a contradiction if we show that

(9+k )
2
ν − (9

−

k )
2
ν > 1 on F(9k).
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This is equivalent to showing that

a2
k − cε4

k > 1, or again (1+ εk p)2− cε4
k > 1.

This holds for k large enough, since p > 0. We finally reached a contradiction.

Step 3: contradiction. In this step we can argue as in the final step of the proof of Lemma 4.1 in [De Silva
2011]. �

6. Proof of the main theorems

In this section we exhibit the proofs of our main results, Theorems 1.1 and 1.2. As already pointed out,
Theorem 1.2 will follow via a blow-up analysis from the flatness result. Thus, first we present the proof
of Theorem 1.1 based on the improvement of flatness lemmas of the previous section.

Proof of Theorem 1.1. To complete the analysis of the degenerate case, we need to deal with the situation
when u is close to a one-plane solution and yet the size of u− is not negligible. More precisely:

Lemma 6.1. Let u solve (1-1) in B2 with

‖ f ‖L∞(B1) ≤ ε
4,

and let it satisfy

U0(xn − ε)≤ u+(x)≤U0(xn + ε) in B1, 0 ∈ F(u), (6-1)

and

‖u−‖L∞(B2) ≤ Cε2, ‖u−‖L∞(B1) > ε
2,

for a universal constant C. There is a universal ε2 > 0 such that, if ε ≤ ε2, the rescaling

uε(x)= ε−1/2u(ε1/2x)

satisfies in B1

Uβ ′(xn −C ′ε1/2)≤ uε(x)≤Uβ ′(xn +C ′ε1/2),

with β ′ ∼ ε2 and C ′ > 0 depending on C.

Proof. For notational simplicity we set

v =
u−

ε2 .

From our assumptions we can deduce that

F(v)⊂ {−ε ≤ xn ≤ ε},

v ≥ 0 in B2 ∩ {xn ≤−ε}, v ≡ 0 in B2 ∩ {xn > ε}. (6-2)

Also,
|1v| ≤ ε2 in B2 ∩ {xn <−ε},
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and

0≤ v ≤ C on ∂B2, (6-3)

v(x̄) > 1 at some point x̄ in B1. (6-4)

Thus, using comparison with the function w such that

1w =−ε2 in D := B2 ∩ {xn < ε},

w = v on ∂D,

we obtain that for some k > 0 universal

v ≤ k|xn − ε| in B1. (6-5)

This fact forces the point x̄ in (6-4) to belong to B1 ∩ {xn <−ε} at a fixed distance δ from xn =−ε.
Now, let w be the harmonic function in B1 ∩ {xn <−ε} such that

w = 0 on B1 ∩ {xn =−ε},

w = v on ∂B1 ∩ {xn ≤−ε}.

By the maximum principle we conclude that

w+ ε2(|x |2− 3)≤ v on B1 ∩ {xn <−ε}.

Also, for ε small, in view of (6-5) we obtain that

w− kε(|x |2− 3)≥ v on ∂(B1 ∩ {xn <−ε}),

and hence also in the interior. Thus we conclude that

|w− v| ≤ cε in B1 ∩ {xn <−ε}. (6-6)

In particular this is true at x̄ , which forces

w(x̄)≥ 1/2. (6-7)

By expanding w around (0,−ε) we then obtain, say, in B1/2 ∩ {xn ≤−ε},∣∣w− a|xn + ε|
∣∣≤ C |x |2+Cε.

This combined with (6-6) gives that∣∣v− a|xn + ε|
∣∣≤ Cε in Bε1/2 ∩ {xn ≤−ε}.

Moreover, in view of (6-7) and the fact that x̄ occurs at a fixed distance from {xn =−ε} we deduce from
the Hopf lemma that

a ≥ c > 0,
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with c universal. In conclusion (see (6-5)),∣∣u−− bε2
|xn + ε|

∣∣≤ Cε3 in Bε1/2 ∩ {xn ≤−ε},

u− ≤ bε2
|xn − ε| in B1,

with b comparable to a universal constant.
Combining the two inequalities above and the assumption (6-1) we conclude that in Bε1/2

(xn − ε)
+
− bε2(xn −Cε)− ≤ u(x)≤ (xn + ε)

+
− bε2(xn +Cε)−,

with C > 0 universal and b larger than a universal constant. Rescaling, we obtain that in B1

(xn − ε
1/2)+−β ′(xn −Cε1/2)− ≤ uε(x)≤ (xn + ε

1/2)+−β ′(xn +Cε1/2)−,

with β ′ ∼ ε2. We finally need to check that this implies the desired conclusion in B1

α′(xn −Cε1/2)+−β ′(xn −Cε1/2)− ≤ uε(x)≤ α′(xn +Cε1/2)+−β ′(xn +Cε1/2)−,

with α′2 = 1+ β ′2 ∼ 1+ ε4. This clearly holds in B1 for ε small, say by possibly enlarging C so that
C ≥ 2. �

We are finally ready to exhibit the proof of Theorem 2.8, which as already observed immediately gives
the result of Theorem 1.1.

Proof of Theorem 2.8. Let us fix a universal constant r̄ > 0 such that

r̄ ≤ r0, r1,
1

16 ,

where r0, r1 are the universal constants in the improvement of flatness Lemmas 5.1 and 5.2. Also, let us
fix a universal constant ε̃ > 0 such that

2ε̃ ≤ 2ε0(r̄), ε1(r̄), C̃−1, ε2,

where ε0, ε1, ε2, C̃ are the constants in Lemmas 5.1, 5.2 and 6.1. Now, let

ε = ε̃3.

We distinguish two cases. For notational simplicity we assume that u satisfies our assumptions in the ball
B2 and 0 ∈ F(u).

Case 1: β ≥ ε̃. In this case, in view of Lemma 2.9 and our choice of ε̃, we obtain that u satisfies the
assumptions of Lemma 5.1, namely

Uβ(xn − ε̃)≤ u(x)≤Uβ(xn + ε̃) in B1, 0 ∈ F(u), (6-8)

with 0< β ≤ L and
‖ f ‖L∞(B1) ≤ ε̃

3
≤ ε̃2β.

Thus we can conclude that (with β1 = β
′)
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Uβ1

(
x · ν1− r̄ ε̃

2

)
≤ u(x)≤Uβ1

(
x · ν1+ r̄ ε̃

2

)
in Br̄ ,

with |ν1| = 1, |ν1− en| ≤ C̃ ε̃, and |β −β1| ≤ C̃βε̃. In particular, by our choice of ε̃ we have

β1 ≥ ε̃/2.

We can therefore rescale and iterate the argument above. Precisely, for k = 0, 1, 2, . . . , set

ρk = r̄ k, εk = 2−k ε̃, uk(x)=
1
ρk

u(ρk x), fk(x)= ρk f (ρk x).

Also, let βk be the constants generated at each k-iteration, hence satisfying (with β0 = β)

|βk −βk+1| ≤ C̃βkεk .

Then we obtain by induction that each uk satisfies

Uβk (x · νk − εk)≤ uk(x)≤Uβk (x · νk + εk) in B1, (6-9)

with |νk | = 1, |νk − νk+1| ≤ C̃ ε̃k (ν0 = en).

Case 2: β < ε̃. In view of Lemma 2.9 we conclude that

U0(xn − ε̃)≤ u+(x)≤U0(xn + ε̃) in B1.

Moreover, from the assumption (2-5) and the fact that β < ε̃ we also obtain that

‖u−‖L∞(B1) < 2ε̃.

Let ε′ be given by ε′2 = 2ε̃. Then u satisfies the assumptions of Lemma 5.2 on improvement of flatness
in the degenerate case:

U0(xn − ε
′)≤ u+(x)≤U0(xn + ε

′) in B1,

with
‖ f ‖L∞(B1) ≤ (ε

′)4, ‖u−‖L∞(B1) < ε
′2.

We conclude that
U0

(
x · ν1− r̄ ε

′

2

)
≤ u+(x)≤U0

(
x · ν1+ r̄ ε

′

2

)
in Br̄ ,

with |ν1| = 1, |ν1− en| ≤ Cε′ for a universal constant C . We now rescale as in the previous case and set,
for k = 0, 1, 2, . . . ,

ρk = r̄ k, εk = 2−kε′, uk(x)=
1
ρk

u(ρk x), fk(x)= ρk f (ρk x).

We can iterate our argument and obtain that (with |νk | = 1, |νk − νk+1| ≤ Cεk)

U0(x · νk − εk)≤ u+k (x)≤U0(x · νk + εk) in B1, (6-10)

as long as we can verify that
‖u−k ‖L∞(B1) < ε

2
k .
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Let k̄ be the first integer k̄ > 1 for which this fails, that is,

‖u−
k̄
‖L∞(B1) ≥ ε

2
k̄ and ‖u−

k̄−1
‖L∞(B1) < ε

2
k̄−1.

Also,
U0(x · νk̄−1− εk̄−1)≤ u+

k̄−1
(x)≤U0(x · νk̄−1+ εk̄−1) in B1.

As argued several times (see for example (4-14)), we can then conclude from the comparison principle
that

u−
k̄−1
≤ M |xn − εk̄−1|ε

2
k̄−1 in B19/20,

for a universal constant M > 0. Thus, by rescaling we get that

‖u−
k̄
‖L∞(B2) < Cε2

k̄ ,

with C universal (depending on the fixed r̄ ). We obtain that u k̄ satisfies all the assumptions of Lemma 6.1
and hence the rescaling

v(x)= ε−1/2
k̄

u k̄(ε
1/2
k̄

x)

satisfies in B1

Uβ ′(xn −C ′ε1/2
k̄
)≤ v(x)≤Uβ ′(xn +C ′ε1/2

k̄
),

with β ′ ∼ ε2
k̄
. Set η = Cε1/2

k̄
. Then v satisfies our free boundary problem in B1 with right-hand side

g(x)= ε1/2
k̄

fk̄(ε
1/2
k̄

x)

and the flatness assumption
Uβ ′(xn − η)≤ v(x)≤Uβ ′(xn + η).

Since β ′ ∼ ε2
k̄

with a universal constant,

‖g‖L∞(B1) ≤ ε
1/2
k̄
ε4

k̄ ≤ η
2β ′,

as long as ε̃≤C ′′ depending on C . In conclusion, choosing ε̃≤ε0(r̄)4/(2C4), v falls under the assumptions
of Lemma 5.1 on improvement of flatness (nondegenerate) and we can use an iteration argument as in
Case 1. �

Proof of Theorem 1.2. Although not strictly necessary, we use the following Liouville-type result for
global viscosity solutions to a two-phase homogeneous free boundary problem, which could be of
independent interest.

Lemma 6.2. Let U be a global viscosity solution to{
1U = 0 in {U > 0} ∪ {U ≤ 0}0,

(U+ν )
2
− (U−ν )

2
= 1 on F(U ) := ∂{U > 0}.

(6-11)

Assume that F(U )= {xn = g(x ′), x ′ ∈ Rn−1
} with Lip(g)≤ M. Then g is linear and U (x)=Uβ(x) for

some β ≥ 0.
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Proof. Assume for simplicity that 0 ∈ F(U ). Also, balls (of radius ρ and centered at 0) in Rn−1 are
denoted by Bρ .

By the regularity theory in [Caffarelli 1987], since U is a solution in B2, the free boundary F(U ) is
C1,γ in B1 with a bound depending only on n and on M . Thus,

|g(x ′)− g(0)−∇g(0) · x ′| ≤ C |x ′|1+α, x ′ ∈B1,

with C depending only on n,M . Moreover, since U is a global solution, the rescaling

gR(x ′)=
1
R

g(Rx ′), x ′ ∈B2,

which preserves the same Lipschitz constant as g, satisfies the same inequality as above, that is,

|gR(x ′)− gR(0)−∇gR(0) · x ′| ≤ C |x ′|1+α, x ′ ∈B1.

This reads,
|g(Rx ′)− g(0)−∇g(0) · Rx ′| ≤ C R|x ′|1+α, x ′ ∈B1.

Thus,

|g(y′)− g(0)−∇g(0) · y′| ≤ C
1

Rα
|y′|1+α, y′ ∈BR.

Passing to the limit as R→∞ we obtain the claim. �

Proof of Theorem 1.2. Let ε be the universal constant in Theorem 2.8. Consider the blow-up sequence

uk(x)=
u(δk)

δk
,

with δk→ 0 as k→∞. Each uk solves (1-1) with right-hand side

fk(x)= δk f (δk x)

and we have
‖ fk(x)‖ ≤ δk‖ f ‖L∞ ≤ ε for k large enough.

Standard arguments (see for example [Alt et al. 1984]) using the uniform Lipschitz continuity of the uk

and the nondegeneracy of their positive part u+k (see Lemma 2.5) imply that (up to a subsequence)

uk→ ũ uniformly on compacts

and
{u+k = 0} → {ũ = 0} in the Hausdorff distance.

The blow-up limit ũ solves the global homogeneous two-phase free boundary problem{
1ũ = 0 in {ũ > 0} ∪ {ũ ≤ 0}0,

(ũ+ν )
2
− (ũ−ν )

2
= 1 on F(ũ) := ∂{ũ > 0}.

(6-12)

Since F(u) is a Lipschitz graph in a neighborhood of 0, it follows from Lemma 6.2 that ũ is a two-plane
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solution, ũ =Uβ for some β ≥ 0. Thus, for k large enough,

‖uk −Uβ‖L∞ ≤ ε and {xn ≤−ε} ⊂ B1 ∩ {u+k (x)= 0} ⊂ {xn ≤ ε}.

Therefore, we can apply our flatness theorem (Theorem 2.8) and conclude that F(uk), and hence F(u),
are smooth. �

Flatness and ε-monotonicity. The flatness results present in the literature (see [Caffarelli 1989], for
instance), are often stated in terms of “ε-monotonicity” along a large cone of directions 0(θ0, e) of axis e
and opening θ0. Precisely, a function u is said to be ε-monotone (ε > 0 small) along the direction τ in the
cone 0(θ0, e) if for every ε′ ≥ ε,

u(x + ε′τ)≤ u(x).

A variant of Theorem 1.1 states the following.

Theorem 6.3. Let u be a solution to (1-1) in B1, 0 ∈ F(u). Suppose that u+ is nondegenerate. Then there
exist θ0 <π/2 and ε0 > 0 such that if u+ is ε-monotone along every direction in 0(θ0, en) for some ε≤ ε0,
then u+ is fully monotone in B1/2 along any direction in 0(θ1, en) for some θ1 depending on θ0, ε0. In
particular F(u) is the graph of a Lipschitz function.

Geometrically, the ε-monotonicity of u+ can be interpreted as ε-closeness of F(u) to the graph of a
Lipschitz function. Our flatness assumption requires ε-closeness of F(u) to a hyperplane. While this
looks like a somewhat stronger assumption, it is indeed a natural one since it is satisfied for example by
rescaling of solutions around a “regular” point of the free boundary. Moreover, if ‖ f ‖∞ is small enough,
depending on ε, it is not hard to check that ε-flatness of F(u) implies cε-monotonicity of u+ along the
directions of a flat cone, for a c depending on its opening.

The proof of Theorem 6.3 follows immediately from the following elementary lemma:

Lemma 6.4. Let u be a solution to (1-1) in B1, with 0 ∈ F(u). Suppose that u+ is Lipschitz and
nondegenerate. Assume that u+ is ε-monotone along every direction in 0(θ0, en) for some ε ≤ ε0. Then
there exist a radius r0 > 0 and δ0 > 0 depending on ε0, θ0 such that u+ is δ0-flat in Br0 , that is,

{xn ≤−δ0} ⊂ Br0 ∩ {u
+(x)= 0} ⊂ {xn ≤ δ0}.

7. More general operators and free boundary conditions

The setup. In this section we analyze the free boundary problem (1-3), that is,{
Lu = f in �+(u)∪�−(u),

u+ν = G(u−ν , x) on F(u) := ∂�+(u)∩�,
(7-1)

where f is continuous in �+(u)∪�−(u) with ‖ f ‖L∞(�) ≤ L , and

L=

n∑
i, j=1

ai j (x)Di j + b · ∇, ai j ∈ C0,γ̄ (�), b ∈ C(�)∩ L∞(�),

is uniformly elliptic with constants 0< λ≤3.
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We recall that our assumptions on G are:

(H1) G(η, · ) ∈ C0,γ̄ (�) uniformly in η; G( · , x) ∈ C1,γ̄ ([0, L]) for every x ∈�.

(H2) G ′( · , x) > 0 with G(0, x)≥ γ0 > 0 uniformly in x .

(H3) There exists N > 0 such that η−N G(η, x) is strictly decreasing in η, uniformly in x .

We assume that 0 ∈ F(u) and that ai j (0)= δi j . Also, for notational convenience we set

G0(β)= G(β, 0).

Let Uβ be the two-plane solution to (7-1) when L=1, f ≡ 0 and G = G0, that is,

Uβ(x)= αx+n −βx−n , β ≥ 0, α = G0(β).

The following definitions parallel those in Section 2.

Definition 7.1. Let u be a continuous function in �. We say that u is a viscosity solution to (1-3) in �,
if the following conditions are satisfied:

(i) Lu = f in �+(u)∪�−(u) in the viscosity sense.

(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v))∩C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v touches u from
below (resp. above) at x0 ∈ F(v), then

v+ν (x0)≤ G(v−ν (x0), x0) (resp. ≥).

Definition 7.2. We say that v ∈ C(�) is a C2 strict (comparison) subsolution (resp. supersolution) to
(7-1) in �, if v ∈ C2(�+(v))∩C2(�−(v)) and the following conditions are satisfied:

(i) Lv > f (resp. < f ) in �+(v)∪�−(v).

(ii) If x0 ∈ F(v), then

v+ν (x0) > G(v−ν (x0), x0)
(
resp. v+ν (x0) < G(v−ν (x0), x0), v

+

ν (x0) 6= 0
)
.

Observe that the free boundary of a strict comparison sub/supersolution is C2.
From here after, most of the statements and proofs parallel those in Sections 2–6. Thus, we only point

out the main differences as much as possible.

Compactness and localization. As for the problem (1-1), we prove some basic lemmas to reduce the
statement of the flatness theorem to a proper normalized situation. We start with the compactness
Lemma 2.6 which generalizes to operators of the form

Lk
∗
=

∑
ak

ij Di j ,

with ak
ij ∈ C0,γ̄ uniformly elliptic with constants λ,3 and free boundary conditions given by a Gk

satisfying hypotheses (H1)–(H3).
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Lemma 7.3. Let uk be a sequence of (Lipschitz) viscosity solutions to{
|Lk
∗
uk | ≤ M in �+(uk)∪�

−(uk),

(u+k )ν = Gk((u−k )ν, x) on F(uk).
(7-2)

Assume that

(i) ak
ij → ai j , uk→ u∗ uniformly on compact sets,

(ii) Gk(η, · )→ G(η, · ) on compact sets, uniformly on 0≤ η ≤ L = Lip(uk), and

(iii) {u+k = 0} → {(u∗)+ = 0} in the Hausdorff distance.

Then ∣∣∣∑ ai j Di j u∗
∣∣∣≤ M in �+(u∗)∪�−(u∗),

and u∗ satisfies the free boundary condition

(u∗)+ν = G((u∗)−ν , x) on F(u∗),

both in the viscosity sense.

Proof. Set
L∗ :=

∑
ai j Di j .

The proof that

|L∗u∗| ≤ M in �+(u∗)∪�−(u∗)

is standard. We show for example that

L∗u∗+M ≥ 0 in �+(u∗).

Let v ∈ C2(�+(u∗)) touch u∗ from above at x̄ ∈�+(u∗) and assume by contradiction that

L∗v(x̄)+M < 0.

Without loss of generality we can assume that v touches u∗ strictly from above; otherwise we replace v by

v+
η

2n3
|x − x̄ |2,

with η small. Then, since uk → u∗ uniformly in compact sets and {u+k = 0} → {(u∗)+ = 0} in the
Hausdorff distance, there exists xk→ x̄ and constants ck→ 0 such that v+ ck touches from above uk at
xk ∈�

+(uk), for k large. Then, since |Lk
∗
uk(xk)| ≤ M we must have

Lk
∗
v(xk)+M ≥ 0.

This implies, for k→∞,
L∗v(x̄)+M ≥ 0,

which is a contradiction.
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We now prove that the free boundary condition holds. Let x̄ ∈ F(u∗) and v ∈C2(B+(v))∩C2(B−(v))
with F(v) ∈ C2 touch u∗ from above at x̄ ∈ F(v).

Assume
v+ν (x̄) < G(v−ν (x̄), x̄), v+ν (x̄) 6= 0.

We distinguish two cases. For notational simplicity let ν(x̄)= en . If v−n (x̄) 6= 0, we can assume that
the free boundaries F(v) and F(u∗) touch strictly and that

L∗v+M < 0 in �+(v)∪�−(v) (7-3)

holds up to F(v). Otherwise, in a small neighborhood of x̄ we replace v with

v̄(x)= v(x + η|x ′− x̄ ′|2en)+ η |dist(x, F(v))| −C dist(x, F(v))2 (η small,C large).

Then, for a suitable ck→ 0, v(x+ cken) touches from above uk at xk with xk→ x̄ . Then, either for every
(large) k we have xk ∈�

+(uk)∪�
−(uk) or there exists a subsequence, which we still call {xk}, such that

xk ∈ F(uk) for every large k. Thus, either∑
ak

ij (xk)Di jv(xk + cken)+M ≥ 0

or
v̄+νk
(xk + cken)≥ Gk(v

−

νk
(xk + cken), xk),

and we easily reach a contradiction for k large.
If v−n (x̄)= 0, we replace v− with zero and argue as above for v+. �

Lemma 2.5 on the nondegeneracy of the positive part δ-away from the free boundary continues to hold
unaltered; only choose

w(x)=
G0(0)

2γ
(1− |x |−γ ).

The analogue of Lemma 2.7 is the following:

Lemma 7.4. Let u be a Lipschitz solution to (1-3) in B1, with Lip(u)≤ L , ‖b‖∞, ‖ f ‖∞ ≤ L. For any
ε > 0 there exist δ̄, r̄ > 0 such that if

{xn ≤−δ} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ δ},

with 0≤ δ ≤ δ̄, then
‖u−Uβ‖L∞(Br̄ ) ≤ εr̄ , (7-4)

for some 0≤ β ≤ L.

Proof. Given ε > 0 and r̄ depending on ε to be specified later, assume by contradiction that there exist
a sequence δk → 0 and a sequence of solutions uk to the problem (7-2) with M = L + L2, such that
Lip(uk)≤ L and

{xn ≤−δk} ⊂ B1 ∩ {u+k (x)= 0} ⊂ {xn ≤ δk}, (7-5)

but the uk do not satisfy the conclusion (7-4).
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Then, up to a subsequence, the uk converge uniformly on compact set to a function u∗. In view of
(7-5) and the nondegeneracy of u+k , δk-away from the free boundary (see remark above), we can apply
our compactness Lemma 7.3 and conclude that, for some L̃ :=

∑
ãi j Di j and G̃ in our class,

|L̃u∗| ≤ M in B1/2 ∩ {xn 6= 0}

and
(u∗)+n = G̃((u∗)−n , x) on F(u∗)= B1/2 ∩ {xn = 0}, (7-6)

in the viscosity sense, with
u∗ > 0 in Bρ0 ∩ {xn > 0}.

Thus, by L p Schauder estimates, we have

u∗ ∈ C1,γ̃ (B1/2 ∩ {xn ≥ 0}
)
∩C1,γ̃ (B1/2 ∩ {xn ≤ 0}

)
for all γ̃ < 1 and (for any r̄ small)∥∥u∗− (αx+n −βx−n )

∥∥
L∞(Br̄ )

≤ C(n, L)r̄1+γ̃ ,

with β = (u∗)−n (0) and α = (u∗)+n (0) > 0. Thus, from (7-6), we have α = G̃0(β).
Then we reach a contradiction as in Lemma 2.7. �

In view of the lemma above, after proper rescaling, Theorem 1.3 follows from the following result.

Theorem 7.5. Let u be a Lipschitz solution to (1-3) in B1, with Lip(u) ≤ L. There exists a universal
constant ε̄ > 0 such that, if

‖u−Uβ‖L∞(B1) ≤ ε̄, for some 0≤ β ≤ L , (7-7)

{xn ≤−ε̄} ⊂ B1 ∩ {u+(x)= 0} ⊂ {xn ≤ ε̄},

and

[ai j ]C0,γ̄ (B1) ≤ ε̄, ‖b‖L∞(B1) ≤ ε̄, ‖ f ‖L∞(B1) ≤ ε̄,

[G(η, · )]C0,γ̄ (B1) ≤ ε for all 0≤ η ≤ L ,

then F(u) is C1,γ in B1/2.

Linearized problem. The linearized problem becomes (α̃ > 0){
1ũ = 0 in Bρ ∩ {xn 6= 0},

α̃(ũ)+n − β̃G ′0(β̃)(ũ)
−
n = 0 on Bρ ∩ {xn = 0},

(7-8)

with α̃ = G0(β̃).
Setting ζ 2

= α̃ and ξ 2
= β̃G ′0(β̃) we can write the free boundary condition as

ζ 2ũ+n − ξ
2ũ−n = 0.

Consequently, all the definitions and conclusions in Section 3 hold, in particular Theorems 3.2–3.4.
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8. The nondegenerate case for general free boundary problems

In this section, we recover lemma on improvement of flatness in the nondegenerate case, that is, when the
solution is trapped between parallel two-plane solutions Uβ at ε distance, with β > 0. First we need the
Harnack inequality.

The Harnack inequality. As in Section 4, the Harnack inequality follows from the following basic
lemma.

Lemma 8.1. Let u be a viscosity solution to (7-1). There exists a universal constant ε̄ > 0 such that, if u
satisfies

u(x)≥Uβ(x) in B1,

with 0< β ≤ L , and if furthermore we have

‖ f ‖L∞(B1) ≤ ε
2 min{G0(β), β}, ‖b‖L∞(B1) ≤ ε

2, (8-1)

‖G(η, x)−G0(η)‖L∞(B1) ≤ ε
2 for all 0≤ η ≤ L , (8-2)

with 0≤ ε ≤ ε̄, then, if at x̄ = 1
5 en

u(x̄)≥Uβ(x̄n + ε), (8-3)

then
u(x)≥Uβ(xn + cε) in B1/2, (8-4)

for some universal 0< c < 1. Analogously, if u(x)≤Uβ(x) in B1 and u(x̄)≤Uβ(x̄n − ε), then

u(x)≤Uβ(xn − cε) in B1/2.

Proof. We argue as in the proof of Lemma 4.3 and we only point out the main differences.
By our assumptions, in B1/10(x̄)⊂ B+1 (u), u−Uβ ≥ 0 solves

L(u−Uβ)= f −αbn.

Recall that α = G0(β). By the Harnack inequality, we obtain in B1/20(x̄)

u(x)−Uβ(x)≥ c(u(x̄)−Uβ(x̄))−C‖ f −αbn‖L∞

≥ c(u(x̄)−Uβ(x̄))−C(‖ f ‖L∞ +α‖b‖L∞).

From (8-1), (8-3) and the inequality above we conclude that for ε small enough,

u−Uβ ≥ αcε−αCε2
≥ c0αε in B1/20(x̄). (8-5)

From (8-5) and the comparison principle it follows that for c1 small universal

u−αxn ≥ αc1εxn, x ∈ {xn > 0} ∩ B19/20. (8-6)

To prove this claim, let φ solve

Lφ = 0 in R := (B1 ∩ {xn > 0}) \ B1/20(x̄),
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with boundary data
φ = 0 on ∂(B1 ∩ {xn > 0}),

φ = 1 on ∂B1/20(x̄).

Then, by boundary Harnack,
φ ≥ cxn in R ∩ B19/20.

We now compare u − αxn with 1
2αc0φε − 8αε2xn + 4αε2x2

n in the domain R to obtain the desired
conclusion.

We now proceed similarly as in Lemma 4.3, with w the function defined in (4-5). We compute∑
ai j Di jw(x)= γ (γ + 2)|x − x̄ |−γ−4 Tr(A(x − x̄)⊗ (x − x̄))− γ |x − x̄ |−γ−2 Tr(A)

≥ γ (γ + 2)|x − x̄ |−γ−2nλ− γ |x − x̄ |−γ−2n3

= γ |x − x̄ |−γ−2n((γ + 2)λ−3).

Then
Lw ≥ γ |x − x̄ |−γ−2n((γ + 2)λ−3)− γ ‖b‖L∞ |x − x̄ |−γ−1

= γ |x − x̄ |−γ−2(n((γ + 2)λ−3)−‖b‖L∞ |x − x̄ |
)

≥ γ |x − x̄ |−γ−2(n((γ + 2)λ−3)−‖b‖L∞
)
≡ k0(γ, c0, n, λ,3) > 0,

as long as γ satisfies
n((γ + 2)λ−3)−‖b‖L∞ > 0.

Now set ψ = 1−w and for x ∈ B3/4(x̄) define

vt(x)= α(1+ c1ε)(xn − εc0δψ(x)+ tε)+−β(xn − εc0δψ(x)+ tε)−,

with δ > 0 small to be made precise later, and c1 the constant in (8-6).
Then, for t =−c1 one can easily verify that

v−c1 ≤Uβ ≤ u, x ∈ B3/4(x̄).

Let t̄ be the largest t ≥−c1 such that

vt(x)≤ u(x) in B3/4(x̄),

and let x̃ be the first touching point. To guarantee that x̃ cannot belong to ∂B3/4 when t̄ < c0δ we use
(8-6). Indeed if x ∈ ∂B3/4 and vt̄(x)≥ 0 then xn > 0 and in view of (8-6)

vt̄(x)= α(1+ c1ε)(xn − εc0δ+ t̄ε) < α(1+ c1ε)xn ≤ u(x).

If vt̄(x) < 0 we use that u ≥ Uβ to reach again the conclusion that vt̄(x) < u(x). To proceed as in
Lemma 4.3 we now need to show that for t̄ < c0δ, vt̄ is a strict subsolution in the annulus A.

Indeed, in A+(vt̄) in view of the assumption (8-1) and the computation above for Lw, we have

Lvt̄ ≥ α(εc0δk0+ bn)≥ ε
2 min{α, β} ≥ ‖ f ‖∞.
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A similar estimate holds in A−(vt̄). Thus

Lvt̄ ≥ f in A+(vt̄)∪ A−(vt̄),

for ε small enough.
Also, since ψn <−c on F(vt̄)∩ A, for ε small, we have

κ ≡ |en − εc0∇ψ | =
(
1− 2εc0δψn + ε

2c2
0δ

2
|∇ψ |2

)1/2
= 1+ k̃δε,

with k̃ between two universal constants.
Then, on F(vt̄)∩ A, using (8-2), we can write, as long as ε is sufficiently small,

(v+t̄ )ν −G((v−t̄ )ν, x)= α(1+ c1ε)κ −G(βκ, x)≥ α(1+ c1ε)κ −G0(βκ)− ε
2

> (1+ c1ε)G0(β)−G0(β)κ
N
− ε2

≥ εG0(β)
(c1

2
− Nk̃δ

)
> 0

if δ < c1/(2N κ̃). We used that G0(β) ≥ G0(0) > 0 and that G0(βκ) < G0(β)κ
N , since η−N G0(η) is

strictly decreasing.
Thus, vt̄ is a strict subsolution to (1-1) in A as desired. Hence t̄ ≥ c0δ and we conclude as in the

Laplacian case. �

With Lemma 8.1 at hand, the Harnack inequality and its corollary follow as in Section 4. We only
state the corollary, since it is indeed the tool used in the proof of the improvement of flatness lemma in
the next subsection.

Corollary 8.2. Let u satisfy at some point x0 ∈ B2

Uβ(xn + a0)≤ u(x)≤Uβ(xn + b0) in B1(x0)⊂ B2, (8-7)

for some 0< β ≤ L , with

b0− a0 ≤ ε,

and let (8-1)–(8-2) hold, for ε ≤ ε, ε universal. Then in B1(x0) (with α = G0(β)) we have

ũε(x)=


u(x)−αxn

αε
in B+2 (u)∪ F(u),

u(x)−βxn

βε
in B−2 (u),

has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε, that is, for all x ∈ B1(x0), with
|x − x0| ≥ ε/ε,

|ũε(x)− ũε(x0)| ≤ C |x − x0|
γ.
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Improvement of flatness. We now extend the basic induction step towards C1,γ regularity at 0. We argue
as in the proof of Lemma 5.1.

Lemma 8.3. Let u be solution of (1-3) and suppose that

Uβ(xn − ε)≤ u(x)≤Uβ(xn + ε) in B1, (8-8)

with 0< β ≤ L ,

‖ai j − δi j‖L∞(B1) ≤ ε, ‖ f ‖L∞(B1) ≤ ε
2 min{G0(β), β)}, ‖b‖L∞(B1) ≤ ε

2,

and
‖G(η, · )−G0(η)‖L∞(B1) ≤ ε

2 for all 0≤ η ≤ L .

If 0< r ≤ r0 for r0 universal, and 0< ε ≤ ε0 for some ε0 depending on r , then

Uβ ′

(
x · ν1− r

ε

2

)
≤ u(x)≤Uβ ′

(
x · ν1+ r

ε

2

)
in Br , (8-9)

with |ν1| = 1, |ν1− en| ≤ C̃ε, and |β −β ′| ≤ C̃βε for a universal constant C̃.

Proof. We divide the proof into three steps.

Step 1: compactness. We keep the same notation of Lemma 5.1. In this case, the sequence uk is a solution
of problem (1-3) for operators

Lk
=

∑
i j

ai j
k Di j + bk

· ∇,

where (with αk = Gk(βk, 0))

‖ak
ij − δi j‖L∞ ≤ εk, ‖ fk‖L∞ ≤ ε

2
k min{αk, βk}, ‖bk

‖L∞ ≤ ε
2
k ,

and
‖Gk(η, · )−Gk(η, 0)‖∞ ≤ ε2

k for all 0≤ η ≤ L . (8-10)

The normalized functions ũk are defined by the same formula. Up to a subsequence, Gk( · , 0)
converges, locally uniformly, to some C1-function G̃0, while βk→ β̃ so that αk→ α̃= G̃0(β̃). Moreover,
by Corollary 8.2 the graphs of ũk converge in the Hausdorff distance to a Hölder continuous ũ.

Step 2: limiting solution. We show that ũ solves{
1ũ = 0 in B1/2 ∩ {xn 6= 0},

α̃ũ+n − β̃G̃ ′0(β̃)ũ
−
n = 0 on B1/2 ∩ {xn = 0}.

(8-11)

We can write in �+(uk) (in �−(uk) replace αk with βk)∑
ak

ij Di j ũk =
1
αkεk

∑
ak

ij Di j uk =
1
αkεk

(−αk bk
· ∇uk + f k)≡ Fk,

where |Fk
| ≤ Cεk .
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Thus

1ũk =

n∑
i, j=1

(δi j − ak
ij )Di j ũk + Fk.

Hence recalling that ‖ak
ij − δi j‖∞ ≤ εk , and from interior L p Schauder estimates for second derivatives,

we conclude that, for instance, 1ũk→ 0 in L p on every compact set contained in �+(ũk) or in �−(ũk).
This shows that ũ is harmonic in B1/2 ∩ {xn 6= 0}.

Next, we prove that ũ satisfies the transmission condition in (8-11) in the viscosity sense.
Again we argue by contradiction. Let φ̃ be a function of the form

φ̃(x)= A+ px+n − qx−n + B Q(x − y),

with

Q(x)= 1
2 [(n− 1)x2

n − |x
′
|
2
], y = (y′, 0), A, B > 0, α̃ p− β̃G̃ ′0(β̃)q > 0,

and assume that φ̃ touches u strictly from below at a point x0 = (x ′0, 0) ∈ B1/2. As in Lemma 5.1, let

φk = ak0
+

k (x)− bk0
−

k (x)+αk(d+k (x))
2ε

3/2
k +βk(d−k (x))

2ε
3/2
k ,

where, we recall,

ak = αk(1+ εk p), bk = βk(1+ εkq),

and dk(x) is the signed distance from x to ∂B1/(Bεk)

(
y+ en

( 1
Bεk
− Aεk

))
. Moreover,

ψk(x)= φk(x + εkcken)

touches uk from below at xk , with ck→ 0, xk→ x0.
We get a contradiction if we prove that ψk is a strict subsolution to our free boundary problem, that is,{

Lkψk > fk in B+1 (ψk)∪ B−1 (ψk),

(ψ+k )ν −Gk((ψ
−

k )ν, x) > 0 on F(ψk).

We have

|∇0k | ≤ C, |Di j0k | ≤ Cεk, |ai j − δi j | ≤ εk .

For k large enough, we can write, say in the positive phase of ψk ,

Lkψk = (L
k
−1)ψk +1ψk ≥−Cαkε

2
k +αkε

3/2
k Lkd2

k (x + εcken)

≥ c min{αk, βk}ε
3/2
k ≥ ‖ fk‖L∞,

and the first condition is satisfied. An analogous estimate holds in the negative phase.
Finally, since on the zero level set |∇0k | = 1 and |∇d2

k | = 0, the free boundary condition reduces to
showing that

ak −Gk(bk, x) > 0.
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Using the definition of ak, bk we need to check that

αk(1+ εk p)−Gk(βk(1+ εkq), x) > 0.

From (8-10), it suffices to check that

αk(1+ εk p)−Gk(βk(1+ εkq), 0)− ε2
k > 0.

This inequality holds for k large in view of the fact that

α̃ p− β̃G̃ ′0(β̃)q > 0.

Thus ũ is a viscosity solution to the linearized problem.

Step 3: contradiction. According to estimate (3-2), since ũ(0)= 0 we obtain

|ũ− (x ′ · ν ′+ px+n − qx−n )| ≤ Cr2, x ∈ Br ,

with

α̃ p− β̃G̃ ′0(β̃)q = 0, |ν ′| = |∇x ′ ũ(0)| ≤ C.

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get

|ũk − (x ′ · ν ′+ px+n − qx−n )| ≤ Cr2, x ∈ Br .

Now set

β ′k = βk(1+ εkq), νk =
1

√

1+ ε2
k |ν
′
|
2
(en + εk(ν

′, 0)).

Then

α′k = Gk(βk(1+ εkq), 0)= Gk(βk, 0)+βk G ′k(βk, 0)εkq + O(ε2
k )

= αk

(
1+βk

G ′k(βk, 0)
αk

qεk

)
+ O(ε2

k )= αk(1+ εk p)+ O(ε2
k ),

since from the identity α̃ p− β̃G̃ ′0(β̃)q = 0 we derive that

βk
G ′k(βk, 0)

αk
q = p+ O(εk).

Moreover

νk = en + εk(ν
′, 0)+ ε2

kτ, |τ | ≤ C.

With these choices, it follows as in Lemma 5.1 that (for k large and r ≤ r0)

Ũβ ′k

(
x · νk − εk

r
2

)
≤ ũk(x)≤ Ũβ ′k

(
x · νk + εk

r
2

)
in Br ,

which leads to a contradiction. �
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9. The degenerate case for general free boundary problems

In this section, we recover the improvement of flatness lemma in the degenerate case, that is, when the
negative part of u is negligible and the positive part is close to a one-plane solution (β = 0, α = G0(0)).
First we need the Harnack inequality.

The Harnack inequality. As in Section 4, the Harnack inequality in the degenerate case is a consequence
of the following basic lemma.

Lemma 9.1. There exists a universal constant ε > 0 such that if u satisfies

u+(x)≥U0(x) in B1,

with

‖u−‖L∞ ≤ ε
2, ‖b‖L∞ ≤ ε

2, ‖ f ‖L∞ ≤ ε
4, (9-1)

‖G(η, · )−G0(η)‖ ≤ ε
2, 0≤ η ≤ Cε2, (9-2)

then if at x̄ = 1
5 en

u+(x̄)≥U0(x̄n + ε), (9-3)

then

u+(x)≥U0(xn + cε) in B1/2, (9-4)

for some universal c, with 0< c < 1. Analogously, if u+(x)≤U0(x) in B1 and u+(x̄)≤U0(x̄n− ε), then

u+(x)≤U0(xn − cε) in B1/2.

Proof. The proof is the same as for the model case in Lemma 4.6. To prove that

vt̄(x)= G0(0)(xn − εc0ψ + t̄ε)+− ε2C1(xn − εc0ψ(x)+ t̄ε)−, x ∈ B3/4(x̄)

is a subsolution in the annulus A, we use the following computation:

Lvt̄ ≥ c0C1ε
3Lw−C1ε

2
|bn| ≥ ε

3K (n, λ,3) > ε4
≥ ‖ f ‖∞ in A+(vt̄)∪ A−(vt̄),

for ε small enough. Here we have used as in Lemma 8.1 that Lw ≥ k0 > 0.
Moreover, on F(vt̄)∩ A we have

(v+t̄ )ν −G((v−t̄ )ν)= G0(0)|en − εc0∇ψ | −G(ε2C1|en − εc0∇ψ |, x)≥ Cε|ψn| + O(ε2) > 0,

as long as ε is small enough. �

We state here the corollary that can be deduced by the degenerate Harnack inequality.

Corollary 9.2. Let u satisfy at some point x0 ∈ B2

U0(xn + a0)≤ u(x)≤U0(xn + b0) in B1(x0)⊂ B2, (9-5)



308 DANIELA DE SILVA, FAUSTO FERRARI AND SANDRO SALSA

with
b0− a0 ≤ ε,

and let (9-1)–(9-2) hold with ε ≤ ε, where ε is universal. Then in B1(x0)

ũε :=
u+(x)−G0(0)xn

εG0(0)

has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε, that is, for all x ∈ B1(x0) with
|x − x0| ≥ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C |x − x0|
γ .

Improvement of flatness. We prove here the improvement of flatness in the degenerate setting. Recall
that in this case one improves the flatness of u+ only.

Lemma 9.3. Let u satisfy

U0(xn − ε)≤ u+(x)≤U0(xn + ε) in B1, 0 ∈ F(u), (9-6)

with

‖ai j − δi j‖ ≤ ε, ‖ f ‖L∞(B1) ≤ ε
4, ‖b‖L∞(B1) ≤ ε

2,

‖G(η, · )−G0(η)‖L∞ ≤ ε
2, 0≤ η ≤ Cε2,

and
‖u−‖L∞(B1) ≤ ε

2.

If 0< r ≤ r1 for r1 universal, and 0< ε ≤ ε1 for some ε1 depending on r , then

U0

(
x · ν1− r ε

2

)
≤ u+(x)≤U0

(
x · ν1+ r ε

2

)
in Br , (9-7)

with |ν1| = 1, |ν1− en| ≤ Cε for a universal constant C.

Proof. Step 1: Compactness. As in Lemma 5.2, it follows from Corollary 9.2 that as εk→ 0 the graphs
of the

ũk(x)=
uk(x)−Gk(0, 0)xn

Gk(0, 0)εk
, x ∈ B+1 (uk)∪ F(uk)

converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous function ũ
over B1/2 ∩ {xn ≥ 0}. Here the uk solve our free boundary problem (1-3) with coefficients ak

ij , bk , right-
hand side fk and free boundary condition Gk satisfying the assumptions of the lemma for a subsequence
of εk going to 0.

Step 2: limiting solution. One shows that ũ solves the following Neumann problem{
1ũ = 0 in B1/2 ∩ {xn > 0},

ũn = 0 on B1/2 ∩ {xn = 0}.
(9-8)

We can easily adapt the proof of Lemma 5.2, choosing

φk(x)= ak0
+

k (x)+ (d
+

k (x))
2ε

3/2
k , ak = Gk(0, 0)(1+ εk p).



FREE BOUNDARY REGULARITY IN TWO-PHASE PROBLEMS WITH DISTRIBUTED SOURCES 309

and

9k(x)=
{
φk(x + ckεken) in B,

cε2
k (3d(x, ∂B)+ d2(x, ∂B)) outside of B,

(9-9)

with

B := B1/(Bεk)

(
y+ en

(
1

Bεk
− Aεk − εkck

))
.

To check the subsolution condition at the free boundary for the function 9k(x), we need that

(9+k )ν > Gk((9
−

k )ν, x) on F(9k).

This is equivalent to showing that Gk(0, 0)(1+ εk p)− Gk(cε2
k , x) > 0 for k large. Since p > 0, this

follows immediately from the assumptions on Gk .

Step 3: contradiction. In this step we can argue as in the final step of the proof of Lemma 4.1 in [De Silva
2011]. �

10. Proofs of the main theorems for general free boundary problems

The proof of Theorem 1.3 and Theorem 1.4 follow the same scheme of the model case. In particular, for
Theorem 1.3, we take care of choosing r̄ γ̄ < 1

16 , say, while the other assumptions on r̄ remain the same.
Also, ε̃ may have to be smaller, depending on γ0. The dichotomy degenerate/nondegenerate is handled
through Lemma 6.1 which extends to the variable coefficients case, with minor changes in the proof.

In the proof of Theorem 1.4, the blow-up limit ũ solves the following global homogeneous two-phase
free boundary problem {

1ũ = 0, in {ũ > 0} ∪ {ũ ≤ 0}0,

ũ+ν = G0(ũ−ν ) on F(ũ) := ∂{ũ > 0}.
(10-1)

Now, Lemma 6.2 holds with identical proof for the free boundary condition U+ν = G0(U−ν ), so that
the proof of Theorem 1.4 does not present any further difficulty.
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MIURA MAPS AND INVERSE SCATTERING
FOR THE NOVIKOV–VESELOV EQUATION

PETER A. PERRY

We use the inverse scattering method to solve the zero-energy Novikov–Veselov (NV) equation for
initial data of conductivity type, solving a problem posed by Lassas, Mueller, Siltanen, and Stahel. We
exploit Bogdanov’s Miura-type map which transforms solutions of the modified Novikov–Veselov (mNV)
equation into solutions of the NV equation. We show that the Cauchy data of conductivity type considered
by Lassas, Mueller, Siltanen, and Stahel lie in the range of Bogdanov’s Miura-type map, so that it suffices
to study the mNV equation. We solve the mNV equation using the scattering transform associated to the
defocussing Davey–Stewartson II equation.
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1. Introduction

In this paper we will use inverse scattering methods to solve the Novikov–Veselov (NV) equation, a
completely integrable, dispersive nonlinear equation in two space and one time (2+ 1) dimensions, for
the class of conductivity type initial data that we define below. Our results solve a problem posed by
Lassas, Mueller, Siltanen and Stahel [Lassas et al. 2012] in their analytical study of the inverse scattering
method for the NV equation.

Denoting z = x1+ ix2, ∂ = (1/2)(∂x1 + i∂x2), ∂ = (1/2)(∂x1 − i∂x2), the Cauchy problem for the NV
equation is

qt + ∂
3q + ∂3q − 3

4∂(q∂
−1∂q)− 3

4 ∂̄(q∂
−1∂q)= 0, (1-1)

q|t=0 = q0.
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where q0 is a real-valued function that vanishes at infinity. The NV equation generalizes the celebrated
KdV equation

qt + qxxx + 6qqx = 0

in the sense that any solution of KdV (after rescaling) solves NV when regarded as a function of (x1, x2, t)
with no x2-dependence. As has recently been proved by Angelopoulos [2013], the Cauchy problem for
the NV equation is locally well-posed in the Sobolev space H s(R2) for any s > 1. The inverse scattering
method considered here yields solutions global in time, albeit for a more restrictive class of initial data.

The Novikov–Veselov equation is one of a hierarchy of dispersive nonlinear equations in 2 + 1
dimensions discovered by Novikov and Veselov [1984; 1986]. Up to trivial scalings, our equation is the
zero-energy (E = 0) case of the equation they studied, which reads

qt = 4 Re(4∂3q + ∂(qw)− E∂q), (1-2)

∂w = ∂q.

In the papers cited, Novikov and Veselov constructed explicit solutions from the spectral data associated
to a two-dimensional Schrödinger problem at a single energy. Novikov conjectured that the inverse
problem for the two-dimensional Schrödinger operator at a fixed energy should be completely solvable
(see the remarks in [Grinevich 2000]), and that inverse scattering for the Schrödinger equation at a fixed
energy E could be used to solve the NV equation at the same energy E by inverse scattering. Subsequent
studies [Grinevich 1986; Grinevich and Manakov 1986; Grinevich and Novikov 1985; 1986; 1988b;
1988a; 1995] further developed the inverse scattering method and constructed multisoliton solutions
(see also [Kazeykina 2012a; 2012b; Kazeykina and Novikov 2011a; 2011b; 2011c] for further results).
Independently, Boiti, Leon, Manna, and Pempinelli [Boiti et al. 1987] proposed an inverse scattering
method to solve the NV equation at zero energy with data vanishing at infinity. We refer the reader to the
recent survey [Croke et al. 2013] for further references and further information on the Novikov–Veselov
equation. Recently, Angelopoulos [2013] has proved local well-posedness for the Novikov–Veselov
equation in the space H s(R2) for s > 1

2 .
It has long been understood that the inverse Schrödinger scattering problem at zero energy poses

special challenges (see, for example, the discussion in Part I of supplement 1 in [Grinevich and Novikov
1988a], and the comments in [Grinevich 2000, Section 7.3]). In particular, the scattering transform for
the Schrödinger operator at zero energy is known to be well-behaved only for a special class of potentials,
the potentials of “conductivity type”, which may be thought of as follows.

Definition 1.1. A real-valued function u ∈ C∞0 (R2) is called a potential of conductivity type if the equation
(−1+q)ψ = 0 admits a unique, strictly positive solution normalized so that ψ(z)= 1 in a neighborhood
of infinity.

Remark 1.2. If q is a potential of conductivity type, it is not difficult to see that the corresponding
Schrödinger operator has no eigenvalues (including no eigenvalues at zero energy), and that q=ψ−1(1ψ)

for a unique strictly positive function ψ with ψ(z)= 1 near infinity. See [Music et al. 2013] for further
discussion.
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The class of conductivity type potentials can also be defined for less regular q (see [Nachman 1996,
Theorem 3]), but this definition will suffice for the present purpose. The terminology comes from
the connection of the Schrödinger inverse problem at zero energy with Calderón’s inverse conductivity
problem [Calderón 1980] (see [Nachman 1996] for a solution for conductivities σ ∈W 2,p via the scattering
transform, and see [Astala and Päivärinta 2006] for the solution to Calderón’s inverse problem for general
γ ∈ L∞, and for references to the literature). The problem is to reconstruct the conductivity γ of a
conducting body �⊂ R2 from the Dirichlet to Neumann map, defined as follows. Let f ∈ H 1/2(∂�) and
let u ∈ H 1(�) solve the problem

∇ · (γ∇u)= 0, u|∂� = f.

This problem has a unique solution for conductivities γ ∈ L∞(�) with γ (z) ≥ c > 0 for a.e. z. The
Dirichlet to Neumann map is the mapping

3σ : H 1/2(∂�)→ H−1/2(∂�), f 7→ γ
∂u
∂ν

∣∣∣
∂�
.

Nachman [1996] exploited the fact that v = γ 1/2u solves the Schrödinger equation at zero energy where

q = γ−1/21(γ 1/2). (1-3)

The Schrödinger problem also has a Dirichlet to Neumann map

3q : H 1/2(∂�)→ H−1/2(∂�), f 7→
∂v

∂ν

∣∣∣
∂�
,

defined by the unique solution of

(−1+ q)v = 0, v|∂� = f.

The operator 3q determines and is determined by the scattering data for q of the form (1-3) at zero energy,
and 3q determines 3γ . Note that q is of conductivity type if we take ψ = γ 1/2 and extend ψ to R2

\�

setting ψ(z)= 1. Nachman showed that the scattering transform at zero energy is well-defined only when
q is of conductivity type (we give a precise statement below) and used the inverse scattering transform to
reconstruct q from its scattering data.

The set of conductivity-type potentials is highly unstable, even under C∞0 (R2) perturbations of arbitrarily
small size. To explain this, we recall from [Murata 1986] (see also [Gesztesy and Zhao 1995] for more
recent work and further references) that a Schrödinger operator is called

(i) subcritical if −1+ q has a positive Green’s function,

(ii) critical if −1+ q does not have a positive Green’s function, but the quadratic form

q(ϕ)=

∫
R2

(
|(∇ϕ)(z)|2+ q(z)|v(z)|2

)
d A(z)

on C∞0 (R2)× C∞0 (R2) is nonnegative, or

(iii) supercritical if the quadratic form q is not nonnegative.
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It follows from Theorem 3.1(iii) of [Murata 1986] that a conductivity-type potential is critical. From
Theorem 2.4(i) of the same reference we may conclude that for any w ∈ C∞0 (R2) and any λ > 0, the
potential q0−λw is subcritical and not of conductivity type. We refer the reader to Appendix B of [Music
et al. 2013] for further details.

Thus, the set of conductivity-type potentials is nowhere dense in any reasonable function space! For
this reason one expects the direct and inverse scattering maps for the Schrödinger operator at zero energy
not to have good continuity properties as a function of the potential q .

Let us describe the direct scattering transform T and inverse scattering transform Q for the Schrödinger
operator at zero energy in more detail (see [Nachman 1996] and [Lassas et al. 2012] for details and
references). To define the direct scattering map T on potentials q ∈ C∞0 (R2), we seek complex geometric
optics (CGO) solutions ψ = ψ(z, k) of

(−1+ q)ψ = 0, (1-4)

which satisfy the asymptotic condition

lim
|z|→∞

e−ikzψ(z, k)= 1 (1-5)

for a fixed k ∈ C. Let m(z, k) = e−i zkψ(z, k). Assuming that the problem (1-4)–(1-5) has a unique
solution for all k, we define the scattering transform t= T q via the formula

t(k)=
∫

ei(k̄ z̄+kz)q(z)m(z, k) d A(z), (1-6)

where d A(z) is Lebesgue measure on R2. The surprising fact is that, if t is well-behaved, the solutions
ψ(z, k), and hence the potential q, may be recovered from t(k). This fact leads to an inverse scattering
transform q =Qt given by

q(z)=
i
π2 ∂ z

(∫
C

t(k)
k̄

e−i(kz+k̄ z̄)m(z, k) d A(k)
)
. (1-7)

Boiti, Leon, Manna and Pempinelli [Boiti et al. 1987], proposed an inverse scattering solution to the
Novikov–Veselov equation using these maps:

q(t)=Q
(
ei t ((�)3+(�̄)3)(T q0)(�)

)
, (1-8)

and gave formal arguments to justify it. The maps were further studied in [Tsai 1993]. Lassas, Mueller,
Siltanen, and Stahel [Lassas et al. 2012], building on [Lassas et al. 2007], showed that the scattering
transforms are well-defined for certain potentials of conductivity type. For conductivity-type potentials,
they proved that T and Q are inverses, and that (1-8) defines a continuous L p(R2)-valued function of t for
p ∈ (1, 2). They conjectured that q(t) is in fact a classical solution of (1-1) if q0 is a smooth, decreasing,
real-valued potential of conductivity type but were unable to prove that this was the case.

The fact, already mentioned, that conductivity-type potentials are a nowhere dense set in the space of
potentials, suggests that studying the NV equation using the maps T and Q is likely to be technically
challenging. The following result of Nachman makes the difficulty clearer. For given q, let Eq be the
set of all k for which the problem (1-4)–(1-5) does not have a unique solution. Let L p

ρ (R
2) denote the
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Banach space of real-valued measurable functions q with

‖q‖L p
ρ
:=

[∫
(1+ |z|)pρ

|q(z)|p d A(z)
]1/p

<∞.

Theorem 1.3 [Nachman 1996, Theorem 3]. Suppose that q ∈ L p
ρ (R

2) for some p ∈ (1, 2), and ρ > 1:
The following are equivalent:

(i) The set Eq is empty and |t(k)| ≤ C |k|ε for some fixed ε > 0 and all sufficiently small k.

(ii) There is a real-valued function γ ∈ L∞(R2) with γ (z) ≥ c > 0 for a.e. z and a fixed constant c so
that q = γ−1/21(γ 1/2).

One should think of γ as ψ2 where ψ is the unique normalized positive solution of (−1+ q)ψ = 0
for a potential of conductivity type. Nachman’s result suggests that non-conductivity type potentials will
have singular scattering transforms: Music, Perry and Siltanen [Music et al. 2013] construct an explicit
one-parameter deformation λ 7→ qλ of a conductivity type potentials (q0 is of conductivity type, but qλ
is not for λ 6= 0) for which the corresponding family λ 7→ tλ of scattering transforms has an essential
singularity at λ= 0.

We will show that, nonetheless, the formula (1-8) does yield classical solutions of the NV equation
for a much larger class of initial data than considered in [Lassas et al. 2012]. We achieve this result
by circumventing the scattering maps studied in [Lassas et al. 2012]. Instead, we exploit Bogdanov’s
observation [1987] (see also [Dubrovsky and Gramolin 2008; 2009]) that the Miura-type map

M(v)= 2∂v+ |v|2 (1-9)

takes solutions u of the modified Novikov–Veselov (mNV) equation

ut + (∂
3
+ ∂3)u− N L(u)= 0, (1-10)

where

N L(u)= 3
4(∂ ū) · (∂∂−1(|u|2))+ 3

4(∂u) · (∂∂−1(|u|2))+ 3
4 ū∂∂−1(ū∂u)+ 3

4 u∂−1(∂(ū∂u)),

to solutions q of the NV equation. This map is an analogue of the celebrated Miura map u 7→ ux + u2

which takes solutions of the modified Korteweg–de Vries equation to solutions of the Korteweg–de Vries
equation [Miura 1968; Kappeler et al. 2005]. We remark that local well-posedness for the mNV equation
in H s(R2) for any s > 1 was recently proved in [Angelopoulos 2013].

In (1-9), the domain of the Miura map is understood to be smooth functions v with ∂v= ∂v. As we will
show, the range of this Miura-type map consists exactly of initial data of conductivity type! In particular,
we show that the range of M contains the conductivity-type potentials studied by in [Lassas et al. 2012].

Thus, to solve the NV equation for initial data of conductivity type, it suffices to solve the mNV equation
and use the map M to obtain a solution of NV. The mNV equation is a member of the Davey–Stewartson II
hierarchy, so the well-known scattering maps for the DS II hierarchy (see [Fokas and Ablowitz 1983;
1984; Beals and Coifman 1984; 1985; 1989; 1990; Brown 2001; Perry 2011; Sung 1994a; 1994b; 1994c])
can be used to solve the Cauchy problem for mNV. We denote by R and I respectively the scattering
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transform and inverse scattering transform associated to the defocusing DS II equation (see Section 3 for
the definitions). We show in Appendix A that the function

u(t)= I
(
exp((�̄3

−�
3)t)(Ru0)(�)

)
(1-11)

is a classical solution of the mNV equation (1-10) for initial data u0 ∈ S(R2).
In order to obtain good mapping properties for the solution map u0 7→ u(t) defined by (1-11), we need

local Lipschitz continuity of the maps I and R on spaces that are preserved under the flow (compare
the treatment of the cubic NLS in one dimension in [Deift and Zhou 2003] and the Sobolev mapping
properties for the scattering maps for NLS proven in [Zhou 1998]). In [Perry 2011] it was shown that R
and I are mutually inverse mappings of H 1,1(R2) into itself where

H m,n(R2)=
{
u ∈ L2(R2) : (1−1)m/2u, (1+ | · |)nu( · ) ∈ L2(R2)

}
.

In order to use (1-11), we need the following refined mapping property of I and R.

Theorem 1.4. The scattering maps R and I restrict to locally Lipschitz continuous maps

R : H 2,1(R2)→ H 1,2(R2), I : H 1,2(R2)→ H 2,1(R2).

This immediately implies that the solution formula (1-11) defines a continuous map

H 2,1(R2)→ C
(
[0, T ]; H 2,1(R2)

)
, t 7→ u(t),

for any T > 0. We say that u is a weak solution of the mNV equation (see (5-1)) on [0, T ] if

(ϕt + ∂
3ϕ+ ∂3ϕ, u)+ (ϕ, N L(u))= 0, (1-12)

for all ϕ ∈ C∞0 (R2
×[0, T ]), where ( · , · ) denotes the inner product on L2(R2

×[0, T ]). We will show
that (1-11) defines a weak solution in this sense and that, also, the flow (1-11) leaves the domain of M
invariant. We will prove:

Theorem 1.5. For u0 ∈ S(R2), the solution formula (1-11) gives a classical solution of mNV. Moreover,
if u0 ∈ H 2,1(R2)∩ L1(R2), ∂u0 = ∂u0, and

∫
u0(z) d A(z)= 0, then u(t) is a weak solution of mNV and

the relations (∂u)( · , t)= (∂u)( · , t) and
∫

u(z, t) d A(z)= 0 hold for all t .

Now we can solve the NV equation using the solution map for mNV and the Miura map (1-9). We say
that q is a weak solution of the NV equation on [0, T ] if

(ϕt + ∂
3ϕ+ ∂3ϕ, q)+ 3

4(∂ϕ, q∂−1∂q)+ 3
4(∂ϕ, q∂−1∂q)= 0, (1-13)

for all ϕ ∈ C∞0 (R2
× (0, T )). Using Theorem 1.5, we will prove:

Theorem 1.6. Suppose that q0 = 2∂u0 + |u0|
2 where u0 ∈ H 2,1(R2) ∩ L1(R2), ∂u0 = ∂u0, and∫

u0(z) d A(z)= 0. Then
q(t)=M

(
I
(
e2i t ((�)2+(�̄)2)(Ru0)(�)

))
(1-14)

is a weak solution the NV equation with initial data q0. If u0 ∈ S(R2), then q(t) is a classical solution of
the NV equation.
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The class of initial data covered by Theorem 1.6 includes the conductivity-type potentials considered
in [Lassas et al. 2012]. The connection between that work and ours is given in the following theorem.

Theorem 1.7. Suppose that u0 ∈C∞0 (R2) with
∫

u0(z) d A(z)=0 and ∂u0= ∂u0, and let q0=2∂u0+|u0|
2.

Then, for any t ,
Q
(
ei t ((�)3+(�̄)3)(T q0)(�)

)
=MI

(
et ((�̄)3−(�)3)(Ru0)(�)

)
,

and their common value is a classical solution to the Novikov–Veselov equation.

It should be noted that the solution formula (1-14) provides a solution which exists globally in time. On
the other hand, Taimanov and Tsaryov [2007; 2008a; 2008b; 2010]] have used Moutard transformations
to construct explicit, nonsingular Cauchy data q0 with rapid decay at infinity and having the following
properties: (i) the Schrödinger operator −1+q0 has nonzero eigenvalues at zero energy (and so is not of
conductivity type) and (ii) the solution of (1-1) with Cauchy data q0 blows up in finite time.

To close this introduction, we comment on the seemingly restrictive hypothesis in Theorems 1.6 and
1.7. In both theorems, we assume that

∫
u0 = 0. To understand what this assumption means, we recall that

if φ0 = ∂
−1u0, then the unique, positive, normalized zero-energy solution of the Schrödinger equation

(1-4) is given by ψ0 = exp(φ0). For u0 ∈ S(R2) say, we have from the integral expression for ∂−1 that

φ0(z)=−
1
π

∫
u0(ζ ) dζ

z
+O(|z|−2),

so that, to leading order

ψ0− 1=−
1
π

∫
u0(ζ ) dζ

z
+O(|z|−2).

Recalling that γ 1/2(z)=ψ0(z) we see that the vanishing of
∫

u0(z) d A(z) implies that γ (z)−1=O(|z|−2)

as |z| →∞. In particular, for conductivities with γ = 1 outside a compact set,
∫

u0(z) d A(z)= 0.
Indeed, suppose that q = γ−1/21(γ 1/2) in distribution sense, where γ ∈ L∞(R2), γ (z)≥ c > 0, and

suppose further that 1(∇γ ) and γ − 1 belong to L2(R2). It follows that ϕ = log γ ∈ H 3,1(R2) and the
function

u = 2∂ϕ

belongs to H 2,1. We then compute that q = 2∂u+ |u|2. If we have stronger decay of γ (z) as |z| →∞,
this will imply additional decay of ϕ(z) that can be used to check

∫
u(z) d A(z)= 0 by Green’s formula∫

�
∂ϕ d A(z)= 1

2

∫
∂�
ϕ(νx1 + iνx2) dσ .

The structure of this paper is as follows. In Section 2 we review some important linear and multilinear
estimates which will be used to study the scattering maps R and I. In Section 3 we recall how the
scattering maps R and I for the Davey–Stewartson system are defined, while in Section 4 we prove that
R : H 2,1(R2)→ H 1,2(R2) and I : H 1,2(R2)→ H 2,1(R2) are locally Lipschitz continuous. In Section 5 we
solve the mNV equation using the inverse scattering method and prove that, for initial data u0 ∈ H 2,1(R2)

with ∂u0 = ∂u0 and
∫

R2 u0(z) d A(z)= 0, the condition ∂u = ∂u holds for all t > 0. In Section 6 we prove
Theorem 1.6. In Section 7 we show that our class of potentials extends the class of conductivity type
potentials considered in [Lassas et al. 2012], and that our solution coincides with theirs where the two
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constructions overlap. Appendix A sketches the solution of the mNV equation by scattering theory for
initial data in the Schwarz class.

2. Preliminaries

Notation. In what follows, ‖ · ‖p denotes the usual L p-norm and p′ = p/(p− 1) denotes the conjugate
exponent. If f is a function of (z, k), f (z,�) (resp. f ( · , k)) denotes f with a generic argument in the z
(resp. k) variable. We will write L p

z or L p
k for L p-spaces with respect to the z or k variable, and L p

z (L
q
k )

for the mixed spaces with norm

‖ f ‖L p
z (L

q
k )
=

(∫
‖ f (z, � )‖p

q d A(z)
)1/p

.

If f is a function of z and k, ‖ f ‖∞ denotes ‖ f ‖L∞(R2
z×R2

k)
.

In what follows, 〈 · , · 〉 denotes the pairing

〈 f, g〉 =
1
π

∫
f (z)g(z) d A(z).

We will call a mapping f from a Banach space X to a Banach space Y a locally Lipschitz continuous
map (LLCM) if, for any bounded subset B of X , there is a positive constant C = C(B) such that, for all
x1, x2 ∈ B,

‖ f (x1)− f (x2)‖Y ≤ C(B)‖x1− x2‖X .

For example, if M : Xm
→ Y is a continuous multilinear map, then

f 7→ M( f, f, . . . , f )

is an LLCM from X to Y .

Cauchy transforms. The integral operators

Pψ =
1
π

∫
1

z− ζ
f (ζ ) dm(ζ ), Pψ =

1
π

∫
1

z̄− ζ̄
f (ζ ) dm(ζ )

are formal inverses respectively of ∂ and ∂ . We denote by Pk and Pk the corresponding formal inverses
of ∂k and ∂k . The following estimates are standard (see, for example, [Astala et al. 2009, Section 4.3] or
[Vekua 1959]).

Lemma 2.1. (i) For any p ∈ (2,∞) and f ∈ L2p/(p+2), ‖Pf ‖p ≤ C p‖ f ‖2p/(p+2).

(ii) For any p, q with 1< q < 2< p <∞ and any f ∈ L p
∩ Lq , ‖Pf ‖∞ ≤ C p,q‖ f ‖L p∩Lq and Pf is

Hölder continuous of order (p− 2)/p with

|(Pf )(z)− (Pf )(w)| ≤ C p|z−w|(p−2)/p
‖ f ‖p.

(iii) For 2< p, q and u ∈ Ls for q−1
+ 1/2= p−1

+ s−1,

‖P(uψ)‖q ≤ C p,q‖u‖s‖ψ‖p.
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Remark 2.2. If p > 2 and u ∈ Ls for s ∈ (1,∞), then estimate (iii) holds true for any q > 2.

Beurling transform. The operator

(S f )(z)=− lim
ε↓0

1
π

∫
|z−w|>ε

1
(z−w)2

f (w) dw, (2-1)

defined as a Calderón–Zygmund type singular integral, has the property that for f ∈ C∞0 (R
2) we have

S(∂ f )= ∂ f . The operator S is a bounded operator on Lp for p ∈ (1,∞) (see, for example, [Astala et al.
2009, Section 4.5.2]). This fact allows us to obtain Lp-estimates on ∂-derivatives of functions of interest
from Lp-estimates on ∂-derivatives.

We will also need the following trivial estimate on the Beurling transform of a smooth, rapidly
decreasing function.

Lemma 2.3. Suppose that M > 2 and sup|α|≤2 |D
αg(z)| ≤ C(1+|z|)−M . For any β with 0≤ β < M−2

and β ≤ 2, the estimate |S(g)| ≤ C(1+ |z|)−β holds.

Proof. Compute∫
ε<|w|

1
(z−w)2

f (w) dw =
(∫

ε<|z−w|<1
+

∫
|z−w|≥1

)
1

(z−w)2
f (w) dw.

In the first term we may Taylor-expand f (w), note that
∫
ε<|w|<1(z−w)

−2 dw = 0, and conclude that the
first term is estimated by

C sup
|α|≤2
|z−w|≤1

|(Dα f (w)|,

which is O(|z|−M) by hypothesis. The second term is estimated by a constant times

(1+ |z|)−β
∫

1
(1+ |z−w|)2−β

1
(1+ |w|)M−β dw,

which gives the required decay. �

Brascamp–Lieb type estimates. A fundamental role is played by the following multilinear estimate due
to Russell Brown [2001], who initiated their use in the analysis of the DS II scattering maps. See [Christ
2011] for a proof of these estimates using the methods of Bennett, Carbery, Christ and Tao [Bennett et al.
2008; 2010], and see [Nie and Brown 2011] for a different proof. Define

3n(ρ, u0, u1, . . . , u2n)=

∫
C2n+1

|ρ(ζ )||u0(z0)| . . . |u(z2n)|∏2k
j=1 |z j−1− z j |

d A(z),

where d A(z) is product measure on C2n+1, and set

ζ =

2n∑
j=0

(−1) j z j . (2-2)

Proposition 2.4 [Brown 2001]. The estimate
∣∣3n(ρ, u0, u1, . . . , u2n)

∣∣≤ Cn‖ρ‖2
2n∏
j=0
‖u j‖2 holds.
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Remark 2.5. For u1, . . . , u2n ∈ S(R2), define operators W j by W jψ = Peku jψ . Proposition 2.4 implies
that

F(k)= 〈eku0,W1W2 . . .W2n1〉 (2-3)

is a multilinear L2
k(R

2)-valued function of (u0, . . . , u2n) with

‖F‖2 ≤ C
2n∏
j=0

‖u j‖2.

Pseudodifferential operators. In Section 5 we will use pseudodifferential operators to prove key estimates
on a third-order linear evolution equation. We recall that a function p ∈ C∞(Rn

×Rn) belongs to the
symbol class Sm(Rn) if for all multiindices α, β, the seminorms

ρα,β(p) := sup
(x,ξ)∈Rn×Rn

∣∣(1+ |ξ |)m−|α| p(x, ξ)∣∣. (2-4)

are finite. The corresponding pseudodifferential operator P(x, D) is given by the Weyl quantization

(P(x, D) f )(y)=
1

(2π)n

∫
Rn

p
(

x + y
2

, ξ

)
ei(x−y) · ξ f (y) dy,

for f ∈ S(Rn), and we say that P(x, D) ∈ OPSm(Rn). We also write σ(P) for p. For the Weyl
quantization, if p is a real-valued symbol, then p(x, D) is formally symmetric.

The celebrated Calderón–Vaillancourt theorem [1972] implies that if p ∈ S0(Rn), then p(x, D) extends
to a bounded operator on L2(Rn). If {p(x, ξ, t)}t∈[0,T ] is a smooth family of symbols in S0(Rn) with the
seminorms (2-4) bounded uniformly in t ∈ [0, T ] for each fixed α, β, then ‖p(x, D, t)‖L2 is bounded
independently of t ∈ [0, T ].

We will also use a simple version of the sharp Gårding inequality: if P ∈ OPS1(Rn) and p(x, ξ) is
real-valued and nonnegative for x ∈Rn and ξ outside a compact subset of Rn , there is a constant C such that

(ϕ, P(x, D)ϕ)≥−C‖ϕ‖2 (2-5)

for all ϕ ∈ C∞0 (Rn). If p(x, ξ, t) is a smooth family of symbols in S0(Rn) such that

(i) the seminorms (2-4) are bounded uniformly in t ∈ [0, T ] for each fixed α, β, and

(ii) p(x, ξ, t) is real-valued and nonnegative for x ∈ Rn and ξ outside a fixed compact subset of Rn ,
independent of t ∈ [0, T ].

Then the lower bound (2-5) holds for a C independent of t ∈ [0, T ].

3. Scattering maps and an oscillatory ∂-problem

First, we recall that the Davey–Stewartson scattering maps R and I are both defined by ∂-problems; see
[Perry 2011] for discussion. The inverse scattering method for the Davey–Stewartson II equation was
developed by Ablowitz and Fokas [1983; 1984] and Beals and Coifman [1984; 1985; 1989; 1990]. Sung
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[1994a; 1994b; 1994c] and Brown [2001] carried out detailed analytical studies of the direct and inverse
scattering maps.

For a complex parameter k and for z = x1+ ix2, let

ek = ek̄ z̄−kz.

Given u ∈ H 1,1(R2) and k ∈ C, there exists a unique bounded continuous solution of

∂µ1 =
1
2 ekuµ2, (3-1)

∂µ2 =
1
2 ekuµ1,

lim
|z|→∞

(µ1(z, k), µ2(z, k))= (1, 0).

We then define r =Ru by

r(k)= 1
π

∫
ek(z)u(z)µ1(zk) d A(z). (3-2)

On the other hand, it can be shown that

ν1 = µ1 and ν2 = ekµ2 (3-3)

solve a ∂-problem in the k variable:

∂kν1 =
1
2 ekrν2, (3-4)

∂kν2 =
1
2 ekrν1,

lim
|k|→∞

(ν1(z, k), ν2(z, k))= (1, 0),

and that this solution is unique within the space of bounded continuous functions. Given r ∈ H 1,1(R2),
we solve the ∂-system (3-4) and define u = Ir by

u(z)= 1
π

∫
e−k(z)r(k)ν1(z, k) d A(k). (3-5)

Theorem 3.1 [Perry 2011]. The maps R and I, initially defined on S(R2), extend to LLCM’s from
H 1,1(R2) to itself. Moreover R ◦ I = I ◦R= I , where I denotes the identity map on H 1,1(R2).

In what follows, we will study the restriction of the maps R and I respectively to H 2,1(R2) and
H 1,2(R2), and obtain refined continuity results. To do so, we first describe three basic tools used in [Perry
2011] to analyze the generic system

∂w1 =
1
2 ekuw2, (3-6)

∂w2 =
1
2 ekuw1,

lim
|z|→∞

(w1(z, k), w2(z, k))= (1, 0),

for unknown functions w1(z, k) and w2(z, k), where k is a complex parameter, and u ∈ H 1,1(R2). We
refer the reader to [Perry 2011] for the proofs. We don’t state the obvious analogues of the facts below
when the roles of k and z are reversed, but use them freely in what follows.
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1. Finite L p-expansions. In [Perry 2011] it is shown that the system (3-6) has a unique solution in L∞z .
This result, and further analysis of the solution, is a consequence of the following facts, which we recall
from Section 3 of the same reference. Let T be the antilinear operator

Tψ = 1
2 Pekuψ,

which is a bounded operator from L p to itself for p ∈ (2,∞] if u ∈ H 1,1 by Lemma 2.1(i). The system
(3-6) is equivalent to the integral equation

w1 = 1+ T 2w1

and the auxiliary formula w2 = Tw1. The operator I − T 2 has trivial kernel as a map from L p(R2) to
itself for any p ∈ (2,∞], and the estimate

‖T 2
‖L p→L p ≤ C p‖u‖2H1,1(1+ |k|)−1

holds for any p ∈ (2,∞). For any p ∈ (2,∞), the resolvent (I − T 2)−1 is bounded uniformly in k ∈ C

and u in bounded subsets of H 1,1 as an operator from L p to itself. Note that if u ∈ H 1,1, the expression
T 1= 1

2 Peku is a well-defined element of L p for all p ∈ (2,∞]. The unique solution of (3-6) is given by

w1− 1= (I − T 2)−1T 21, w2 = Tw1.

From these facts, one has (see [Perry 2011, Section 3]):

Lemma 3.2 (finite L p-expansions). For any positive integer N , the expansions

w1− 1=
N∑

j=1

T 2 j 1+ R1,N and w2 =

N∑
j=1

T 2 j−11+ R2,N

hold, where the maps

u 7→ (1+ | � |)N R1,N ( · ,� ), u 7→ (1+ | � |)N R2,N ( · ,� )

are LLCMs from H 1,1(R2) into L∞k (L
p
z ).

2. Multilinear estimates. Substituting the expansions into the representation formulas (3-5) and (3-2)
leads to expressions of the form

〈e∗w, F j 〉,

where e∗ denotes ek or e−k , w is a monomial in u and its derivatives, and F j denotes T 2 j 1 or T 2 j 1
for j ≥ 1. We assume that w is bounded in L2 norm by a power of ‖u‖H2,1 . The following fact is an
immediate consequence of Remark 2.5.

Lemma 3.3. The map u 7→ 〈e∗w, F j 〉 is an LLCM from H 2,1(R2) to L2
k(R

2).

3. Large-parameter expansions. Finally, the following large-z finite expansions for w1 and w2 will be
useful. We omit the straightforward computational proof.
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Lemma 3.4. For u ∈ H 1,1(R2),

w1(z, k)− 1=
1

2π z

∫
ek(z′)u(z′)w2(z′, k) dm(z′)+

1
2π z

∫
ek(z′)
z− z′

z′u(z′)w2(z′, k) dm(z′),

and similarly

w2(z, k)=
1

2π z

∫
ek(z′)u(z′)w1(z′, k) dm(z′)+

1
2π z

∫
ek(z′)
z− z′

z′u(z′)w1(z′, k) dm(z′).

Analogous expansions hold for the ∂-problem in the k variables.

4. Restrictions of scattering maps

In this section we prove Theorem 1.4. By virtue of Theorem 3.1, it suffices to show that the maps
H 2,1
3 u 7→ | � |2r(�) and H 1,2

3 r 7→1u ∈ L2 are LLCMs. First, we prove:

Lemma 4.1. The map u 7→ | � |2r(�) is an LLCM from H 2,1(R2) to L2(R2).

Proof. We carry out all computations on u ∈ C∞0 (R2) and extend by density to H 2,1(R2). Note that
‖u‖p ≤ C p‖u‖H2,1 for all p ∈ (1,∞) and ‖∂u‖p ≤ C p‖u‖H2,1 for p ∈ [2,∞). An integration by parts
using (3-2) and the identity ∂ek =−kek shows that (up to trivial factors)

|k|2r(k)=−k̄
∫

ek(∂u)− k̄
∫

ek(∂u)(µ1− 1)−
k̄
2

∫
|u|2µ2

= I1+ I2+ I3,

where in the last term we used

∂µ1 =
1
2 ekuµ2. (4-1)

I1: This term is the Fourier transform of ∂∂u and hence defines a linear map from H 2,1 to L2
k .

I2: An integration by parts using (3-2), the identity ∂(ek)=−kek , and (4-1) again shows that

I2 =
k̄
k

(∫
ek(∂

2u)(µ1− 1)+
1
2

∫
ū∂uµ2

)
= I21+ I22.

In I21 we insert 1 = χ + (1− χ), where χ ∈ C∞0 (R2) satisfies 0 ≤ χ(z) ≤ 1, χ(z) = 1 for |z| ≤ 1, and
χ(z) = 0 for |z| ≥ 2. Drop the unimodular factor k̄/k and write I21 = I in

21+ I out
21 corresponding to this

decomposition. Since χ∂2u ∈ L p′ for any p > 2, we may use Lemma 3.2 to get the expansion

I in
21 =

N∑
j=1

∫
ek(∂

2u)χ(T 2 j 1)+
∫

ek(∂
2u)χ(I − T 2)−1T 2 j+21.

By Lemmas 3.2 and 3.3 and the fact that χ∂2u ∈ L p′ , each right-hand term defines an LLCM from H 2,1

to L2
k , hence u 7→ I rm

21 is an LLCM. In I out
21 , we use Lemma 3.4 to write
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ek(1−χ)∂2u(µ1− 1)

=−
1

2π

(∫
ek(1−χ)(∂2u)z−1

)(∫
e−k ūµ2

)
+

1
2

〈
e−k(1−χ)(∂2u)z−1, Pe−ku1(Tµ1)

〉
. (4-2)

The first term on the second line of (4-2) is the product of the Fourier transform of the L2-function
(1−χ(z))(∂2u)(z)z−1 and the function

∫
e−k ūµ2. Since u ∈ L p′ for all p> 2 while u 7→µ2 is an LLCM

from H 1,1 to L∞k (L
p
z ), the map u 7→

∫
e−k ūµ2 is an LLCM from H 2,1 to L∞k , so the first right-hand

term in (4-2) defines an LLCM from H 2,1 to L2
k . The second right-hand term in (4-2) may be controlled

using Lemmas 3.2 and 3.3. This shows that u 7→ I out
21 , and hence u 7→ I21, defines an LLCM from H 2,1

to L2
k . Finally, to control I22, we note that ū∂u ∈ L p′ for p > 2. Hence, using Lemma 3.2 we obtain

I22 =

N∑
j=0

∫
ū∂u T 2 j+11+

∫
(ū∂u)(I − T 2)T 2 j+11. (4-3)

To control terms in the finite sum in (4-3), we write∫
ū∂u T 2 j+11=

〈
u∂ ū, P[eku(T 2 j 1)]

〉
=−

〈
e−k ū P(u∂ ū), T 2 j 1

〉
.

and apply Lemma 3.3 since ‖u P(u∂ ū)‖′2 ≤ C‖u‖H2,1 . The second right-hand term in (4-3) defines an
LLCM from H 2,1 to L2

k by Lemma 3.2. Hence, u 7→ I2 is a LLCM from H 2,1 to L2
k .

I3: Note that |u|2 ∈ L p′ for all p > 2 and use the expansion of µ2 to write I3 as

N∑
j=1

−
k̄
2

∫
|u|2T 2 j+11−

k̄
2

∫
|u|2(I − T 2)−1T 2N+31.

The remainder is an LLCM from H 2,1 to L2
k by Lemma 3.2. A given term in the finite sum is written (up

to constant factors)

k̄
〈
|u|2, P[eku(T 2 j 1)]

〉
= k̄

〈
e−k ū P(|u|2), T 2 j 1

〉
(4-4)

=−
〈
∂(e−k ū P(|u|2)), T 2 j 1

〉
+
〈
e−k∂(ū P(|u|2)), T 2 j 1

〉
,

where we integrated by parts to remove the factor of k̄. The first term on the second line of (4-4) is〈
e−k ū P(|u|2), ∂(T 2 j 1)

〉
=
〈
e−k ū P(|u|2), e−k ū P(ekuT 2 j−21)

〉
=
〈
e−k ū P(|u|2 P(|u|2)), T 2 j−21

〉
,

which defines an LLCM from H 2,1 to L2
k by Lemma 3.3 since ū P(|u|2 P(|u|2)) ∈ L2. The second

right-hand term is treated similarly. Hence u 7→ I3 is an LLCM from H 2,1 to L2
k .

Collecting these results, we conclude that u 7→ | � |2r(�) is an LLCM from H 2,1 to L2
k . �

Lemma 4.2. The map r 7→1u is an LLCM from H 2,1(R2) to L2(R2).



INVERSE SCATTERING FOR THE NOVIKOV–VESELOV EQUATION 325

Proof. Since r ∈ H 1,2 we have kr(k) ∈ L p for all p ∈ (1, 2], r ∈ L p for all p ∈ [1,∞) and ∂r ∈ L p for
all p ∈ [2,∞). A straightforward computation shows that

∂∂u =
∫
|k|2e−kr +

∫
|k|2e−kr(ν1− 1)−

∫
k̄e−kr∂ν1+

∫
ke−kr∂ν1+

∫
e−kr∂∂ν1

= I1+ I2+ I3+ I4+ I5,

where all derivatives are taken with respect to z. We now show that each of I1–I5 defines a locally
Lipschitz continuous map from H 2,1

3 r into L2
z .

I1: This term is the Fourier transform of ∂∂r and hence L2.

I2: Inserting 1= χ + (1−χ) in I2, where χ is as in the proof of Lemma 4.1 (except that, here, χ is a
function of k, not z), we have I2 = I21+ I22, where

I21 =

∫
e−k |k|2χr(ν1− 1), I22 =

∫
e−k |k|2r(1−χ)(ν1− 1).

We will show that I21 and I22 are both LLCMs from H 1,2 to L2
z . Since |k|2χr ∈ L p′ for any p > 2, we

can use Lemma 3.2 for ν1− 1 together with Lemma 3.3 to conclude that r 7→ I21 is an LLCM from H 1,2

to L2
z . For I22 we use the one-step large-k expansion of ν1− 1 (Lemma 3.4):

ν1(z, k)− 1=−
1

2πk

∫
ek′(z)r(k ′)ν2(z, k ′) dm(k ′)−

1
2πk

∫
ek′(z)
k− k ′

k ′r(k ′)ν2(z, k ′) dm(k ′).

We then have

I22 =

∫
e−k k̄r(1−χ)(F1+ F2),

where

F1(z)=−
1

2π

∫
ek′r(k ′)ν2(z, k ′) dm(k ′),

F2(z, k)=−
1

2π

∫
ek′(z)
k− k ′

k ′r(k ′)ν2(z, k ′) dm(k ′).

It is easy to see that ‖F1‖L∞z ≤ ‖r‖1‖ν2‖∞, so that r 7→ F1 is an LLCM from H 1,2 to L∞z . Moreover,∫
e−k k̄r(1−χ) is the inverse Fourier transform of the L2 function (�)r(�)(1−χ(�)). Hence, the map

r 7→
∫

e−k k̄r(1−χ)F1 is an LLCM from H 1,2 to L2
z . Next, we may use Lemma 3.2 in F2 to conclude

that

F2 =−
1
2

N∑
j=1

Pk(ek kr̄ T 2 j+11)−
1
2

Pk(ek kr̄ ((I − T 2)−1T 2N+31). (4-5)

The corresponding contributions to I22 from terms in the finite sum from (4-5) define LLCMs from H 1,2

to L2
z by Lemma 3.3, while by the remainder estimate in Lemma 3.2, the mapping

r 7→ Pek kr̄ (I − T 2)−1T 2N+31
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is an LLCM from H 1,2 to L2
z (L

p
k ) for p > 2. Using these estimates we may conclude that

r 7→
∫

e−k k̄r(1−χ)F2

is an LLCM from H 1,2 to L2
z .

I3: Since µ1 = ν1, we conclude from (4-1) and (3-3) that

∂ zν1 =
1
2 ekuµ2 =

1
2 uν2, (4-6)

so that

I3 =−

∫
k̄e−kr(∂∂−1)(∂ν1)=−

1
2

∫
k̄e−kr(∂∂̄−1)(uν2).

Proceeding as in the analysis of I22 in Lemma 4.1, we use the one-step large-k expansion (Lemma 3.4) to
obtain

ν2(z, k)=−
1

2πk

∫
ek′(z)r(k ′)ν2(z, k ′) dm(k ′)−

1
2πk

∫
ek′(z)
k− k ′

k ′r(k ′) ν2(z, k ′) dm(k ′)

= F1+ F2.

Hence, up to trivial factors,

I3 =

∫
e−kr(∂∂−1)[u(F1+ F2)].

By Minkowski’s inequality,

‖I3‖L2
z
≤

1
2

∫
|r |
∥∥∂∂−1(u(F1+ F2))

∥∥
L2

z
.

Observe that ‖∂∂−1(uF1)‖L2
z
≤ C‖uF1‖L2

z
, while

‖∂∂−1(uF2)‖L p
k (L

2
z )
≤ C p‖u‖2‖F2‖L p

k (L
∞
z )
≤ C p‖u‖2‖(�)r(�)‖2p/(p+2)‖ν2‖∞

(where ‖ν2‖∞ means ‖v2‖L∞(R2
z×R2

k)
), so that altogether

‖I3‖L2
z
≤ C‖u‖2‖r‖H1,2(1+‖ν2‖∞).

Thus I3 ∈ L2
z . The local Lipschitz continuity of I3 follows from that of r 7→ u and r 7→ ν2.

I4: Using (4-6) again, we compute ∫
ke−kr∂ν1 =

u
2

∫
e−kkrν2,

so it suffices to show that r 7→
∫

e−kkrν2 is an LLCM from H 1,2 to L∞z . Since kr ∈ L p′ for p > 2, and
r 7→ ν2 is an LLCM from H 1,1 to L∞, the result follows.

I5: Compute

I5 =

∫
e−kr∂(uν2)= ∂u

∫
e−krν2+ u

∫
e−kr(∂ν2). (4-7)
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The first right-hand term in (4-7) defines an LLCM from H 1,2 to L2
z since r 7→ ∂u has this property. Thus,

to control the first right-hand term, it suffices to show that r 7→
∫

e−krν2 defines an LLCM from H 1,2 to
L∞z . To see this, note that r ∈ L p′ for p > 2, and r 7→ ν2 is an LLCM from H 1,1 to L∞z (L

p
z ). To control

the second right-hand term in (4-7), recall that ν2 = ekµ2, so that the second term is written

−u
∫

krekν2+
|u|2

2

∫
e−krν1. (4-8)

Since u and |u|2 belong to L2 it is enough to show that the two integrals in (4-8) define LLCMs from
r ∈ H 2,1 to L∞z . Since kr ∈ L p′ for p > 2 and ν2 is an LLCM from H 1,2 to L∞z (L

p
k ), the first term in

(4-8) clearly has this property. Since r ∈ L1 and ν1 is an LLCM from r ∈ H 2,1 to L∞z (L
∞

k ), we conclude
that the second term also has this property. �

5. Solving the mNV equation

In this section we prove Theorem 1.5. Recall that the modified Novikov–Veselov (mNV) equation
[Bogdanov 1987] is

ut + (∂
3
+ ∂3)u− N L(u)= 0, (5-1)

where

N L(u)= 3
4(∂ ū) · (∂∂−1(|u|2))+ 3

4(∂u) · (∂∂−1(|u|2))+ 3
4 ū∂∂−1(ū∂u)+ 3

4 u∂−1(∂(ū∂u)).

By Theorem A, for u0 ∈ S(R2), the formula

u(z, t)= I
(
exp((�̄3

−�
3)t)Ru0(�)

)
(z) (5-2)

gives a classical solution of the mNV equation.

Proposition 5.1. Suppose that u0 ∈ H 2,1(R2). Then (5-2) defines a weak solution of the mNV equation in
the sense of (1-12) with limt→0 u(t)= u0 in L2(R2).

Proof. Let r0 =Ru0. By continuity of the maps R, r0 7→ exp((�̄3
−�

3)t)r0(�), and I, the formula (5-2)
extends to u0 ∈ H 2,1, and exhibits the solution as a continuous curve in H 2,1 that depends continuously
on the initial data. Since, for any u0 ∈ S(R2), the function u given by (5-2) is a classical solution, it
follows that u trivially satisfies (1-12). The same fact for u(t) with u0 ∈ H 2,1 follows from the density of
S(R2) in H 2,1, the continuity of the map (5-2) in u0, and an easy approximation argument. �

It remains to show:

Proposition 5.2. Suppose that u0 ∈ H 2,1(R2)∩ L1(R2) and that, also,∫
u0 dA(z)= 0, ∂u0 = ∂µ0. (5-3)

Define u(t) by (5-2). Then
∂u = ∂u, (5-4)

for all t .
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We will prove Proposition 5.2 by first showing that the relation (5-4) holds for initial data u0 ∈ S(R2)

with the stated properties. We will then use Lipschitz continuity of the map u0→ u(t) defined by (5-2)
to extend to all u0 ∈ H 2,1(R2)∩ L1(R2) so that the conditions (5-3) hold.

First, we consider u0 ∈ S(R2). It will be useful to consider the function

ϕ = ∂−1u,

which solves the Cauchy problem

ϕt =−∂
3ϕ− ∂3ϕ− 1

4(∂ϕ)
3
−

1
4(∂ϕ)

3
+

3
4∂ϕ · ∂

−1∂(|∂ϕ|2)+ 3
4∂ϕ · ∂

−1∂(|∂ϕ|2),

ϕ|t=0 = ϕ0.

(5-5)

The condition ∂u0 = ∂µ0 implies that ϕ0 is real. On the other hand, to show that ∂u = ∂u, it suffices to
show that ϕ is real for t > 0. To this end, we consider the function

w = ϕ− ϕ̄,

and derive a linear Cauchy problem satisfied by w. We will need to know that w is L2 in the space
variables.

Lemma 5.3. Suppose that u0 ∈ S(R2), that u(t) solves the mNV equation, and ϕ(z, t)= (∂̄−1u)(t). Then
for each t ,

ϕ(z, t)=
c0

z
+Ot(|z|−2),

where c0 =
∫

u(z, t) dm(z) is independent of t . If c0 = 0, then ϕ( · , t) ∈ L2(R2) for all t > 0.

Proof. To see that ϕ has the stated form if u0 ∈ S(R2), we note that u(t) ∈ S(R2) by the mapping
properties of the scattering transform (see [Sung 1994a; 1994b; 1994c]) and that

ϕ(z, t)=−
1
π z

∫
u(z, t) dt +Ot(|z|−2)

differentiably in z, t . Let c0(t)=
∫

u(z, t) dm(z). Substituting in (5-5) we easily conclude that c′0(t)= 0.
It now follows that ϕ(�, t) ∈ L2(R2) for each t as claimed. �

Next, we derive a linear Cauchy problem obeyed by w and show that, if w|t=0 = 0, then w(t) = 0
identically. If so, it follows that ϕ is real, and hence ∂u = ∂u for all t > 0.

Using (5-5) and its complex conjugate, we see that

wt = Lw, (5-6)

where
Lw = L0+ A∂w+ A∂w

with
L0w =−∂

3w− ∂3w

and
A = 1

4 [(∂ϕ)
2
+ (∂ϕ) · (∂ϕ̄)+ (∂ϕ̄)2] + 3

4∂
−1∂(|∂ϕ|2). (5-7)
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We will need the following property of A. We say that g(z) is integrable along lines if
∫
∞

−∞
|g(γ (t))| dt

is finite for any path γ (t)= z0+ z1t . We say that g is uniformly integrable along lines if

sup
z0∈C
|z1|=1

∫
|g(γ (t))| dt <∞.

Lemma 5.4. Suppose that ϕ = ∂−1u, where u ∈ C([0, T ];S(R2)) and∫
u(z, t) dm(z)= 0

for all t . Then, the function A(z, t) is uniformly integrable along lines in R2, with estimates uniform in
t ∈ [0, T ].

Proof. Recall that if f ∈ H s(R2) then the restriction of f to a line belongs to H s−1/2−ε(R2) for any ε > 0.
In particular, if f ∈ H 1(R2), then f is square-integrable along lines. Note that ∂ϕ = ∂∂−1u and ∂ϕ̄ = ū
belong to H s(R2) for all s > 0 and each fixed t ∈ [0, T ] since ∂∂−1 is a Fourier multiplier on H s and
u ∈ H s(R2) for all such s, uniformly in t ∈ [0, T ]. In particular, ∂ϕ and ∂ϕ̄ restrict to square-integrable
functions along lines in R2, so the first three terms in (5-7) are all integrable along lines with estimates
bounded seminorms of u.

To handle the last term in (5-7), we note that ∂φ = ∂∂−1u. Hence, by Lemma 2.3 and the fact that
differentiation commutes with the Beurling transform, we conclude that

sup
|α|≤2
|Dα(|∂φ|2)| ≤ C(1+ |z|)−4.

It now follows from Lemma 2.3 that again ∂−1∂(|∂φ|)2 is O(|z|2−ε) for any ε > 0, and hence is integrable
along lines with appropriate uniform estimates. �

We wish to prove an a priori estimate for the problem (5-6) that bounds ‖w(t)‖ in terms of ‖w(0)‖,
proving uniqueness of the initial value problem. A formal computation of d

dt ‖w(t)‖
2 leads to uncontrolled

derivatives since the principal part of L is skew-adjoint. Instead, following the multiplier method of
[Chihara 2004] (applied to third-order dispersive nonlinear equations; see [Doi 1994] for a similar
pseudodifferential multiplier method applied to Schrödinger-type equations), we find a family of invertible
pseudodifferential operators K (t) such that

(1) ‖K (t)w(t)‖ controls ‖w(t)‖, and

(2) d
dt
‖K (t)w(t)‖2 is bounded above.

A formal computation shows that

d
dt
‖K (t)w(t)‖2 =

(
K (t)w(t),C(t)K (t)w(t)

)
, (5-8)

where

C(t)= 2 Re
{

K ′(t)K (t)−1
+ K (t)L(t)K (t)−1} (5-9)

= 2 Re
{

K ′(t)K (t)−1
+ K (t)(A∂ + A∂)K (t)−1

+ [K (t), L0]K (t)−1}.
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We will choose K (t) so that C(t) is the sum of a negative definite operator and a bounded operator.
The following lemma obtains the desired estimate. Note that Lemma 5.4 implies the existence of a

function η(z, t) satisfying the hypotheses of Lemma 5.5 if A is given by (5-7).

Lemma 5.5. Suppose that A(z, t) is a bounded smooth function on R2
× [0, T ] and that η(z, t) is a

bounded smooth nonnegative function with |A(z, t)| ≤ η(z, t) for z ∈ C and t ∈ [0, T ]. Writing η(z, t)=
η(x1, x2, t), suppose that there is a constant c such that

∫
|η(y, x2, t)| dy ≤ c and

∫
|η(x1, y, t)| dy ≤ c

uniformly in (x1, x2)∈R2 and t ∈[0, T ]. Finally, letw be a smooth solution of (5-6) withw(�, t)∈ L2(R2)

for each t > 0. Then, there is a constant C such that

sup
t∈[0,T ]

‖w(t)‖ ≤ eCT
‖w(0)‖.

Proof. Let η be a function with

2|A(z, t)| ≤ η(z, t),

and set

p0(ξ)=
i
4
(ξ 3

1 − 3ξ1ξ
2
2 ),

the symbol of the operator −∂3
− ∂3. With z = x1+ ix2 and λ > 0 to be chosen, let

b(t, x, ξ)= i
(∫ x1

−∞

η(y, x2, t) dy
)
×
∂p0(ξ)

∂ξ1

|ξ |

|∇ p0(ξ)|2
χ

(
|ξ |

λ

)
+ i
(∫ x2

−∞

η(x1, y, t) dy
)
×
∂p0(ξ)

∂ξ2

|ξ |

|∇ p0(ξ)|2
χ

(
|ξ |

λ

)
, (5-10)

where χ ∈ C∞0 ([0,∞)) is a nonnegative function with χ(t)= 0 for 0≤ t < 1/2 and χ(t)= 1 for t ≥ 1.
By the usual quantization, the pseudodifferential operator b(t, x, D) belongs to the class OPS−1(Rn). It
is easy to see that, also, the symbols

k(t, x, ξ)= eb(t,x,ξ) and k̃(t, x, ξ)= e−b(t,x,ξ)

define pseudodifferential operators K (t) := K (t, x, D) and K̃ (t) := K̃ (t, x, D) in OPS0(Rn) with

K (t)K̃ (t)− I ∈ OPS−1(Rn) and lim
λ→∞

sup
t∈[0,T ]

‖K (t)K̃ (t)− I‖ = 0.

Thus, there is a λ0 > 0 such that K (t) is invertible for all |λ| ≥ λ0. We take |λ| ≥ λ0 from now on.
We claim that, if w(t) is a solution of the evolution equation (5-6) belonging to L2(R2), the inequality

‖K (t)w(t)‖ ≤ ‖K (0)w(0)‖eCT (5-11)

holds for t ∈ [0, T ] and a constant C . Since K (t) is invertible for λ sufficiently large and t ∈ [0, T ], this
implies that w(t)= 0 for all t if w(0)= 0.

To prove the inequality (5-11), we use (5-8). We will show that

2 Re
{

A∂ + A∂ + [K (t), L0]K (t)−1}
=−Q1(t)+ Q2(t), (5-12)
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where Q1(t) ∈ OPS1,0(R2) with q1(x, ξ) := σ(Q1(t)) nonnegative for |ξ | ≥ 2λ, and Q2(t) ∈ OPS0(R2).
If so, then by the Gårding inequality (2-5),

Re(v, Q1(t)v)≥−C1‖v‖
2, (5-13)

with C1 uniform in t ∈ [0, T ]. Hence

d
dt
‖K (t)w(t)‖2 ≤ C3‖K (t)w(t)‖2,

where C3 majorizes C1+ supt∈[0,T ]
(
‖Q2(t)‖+ ‖K ′(t)K−1(t)‖

)
. The desired result now follows from

Gronwall’s inequality.
Thus, to finish the proof of (5-11), we need only prove that (5-12) holds. From the computation

σ([K (t), L0])=−
1
i
∇x(eγ (t,x,ζ )) · (∇ξ p0)(ξ),

it follows that the left-side of (5-12) has leading symbol −q1(x1, x2, ξ, t) where

q1(x1, x2, ξ, t)=
1
i
∇ξ p0(ξ) · ∇xγ (t, x1, x2, ξ)+Re[A(x1, x2, t)(ξ1− iξ2)],

which is nonnegative for |ξ | ≥ 2λ since |A(x1, x2, t)| ≤ η(x1, x2, t). This completes the proof. �

Proof of Proposition 5.2. First, suppose that u0 ∈ S(R2), ∂u0 = ∂u0, and
∫

u0(z) dm(z) = 0. The
function ϕ0= ∂

−1u0 is real-valued and if u(t) solves the mNV equation with Cauchy data u0, the function
ϕ(t)= (∂−1u)(t) belongs to L2(R2) for all t . The same is true of w(t)= ϕ(t)−ϕ(t), and w(0)= 0. It
now follows from Lemma 5.5 that w(t)= 0 and ϕ(t) is real-valued for all t . This implies that ∂u = ∂u
for all t .

To conclude that the proposition holds for u0 ∈ H 2,1(R2) ∩ L1(R2), we first observe that there is
a sequence {vn,0} from S(R2) with vn,0 → u0 in H 2,1(R2) ∩ L1(R2). Let f be a nonnegative C∞0
function with

∫
f = 1, and let un,0 = vn,0− (

∫
un,0) f . It is easy to see that

∫
vn,0 = 0 and vn,0→ u0 in

H 2,1(R2)∩ L1(R2). Since
un(t) := I

(
exp((�̄3

−�
3)t)Ru0,n(�)

)
converges to

u(t)= I
(
exp((�̄3

−�
3)t)Ru0,n(�)

)
in C([0, T ], H 2,1), it now follows that ∂u = ∂u, as claimed. �

Proof of Theorem 1.5. An immediate consequence of Propositions 5.1 and 5.2. �

6. Solving the NV equation

In this section we prove Theorem 1.6. The key observation is due to Bogdanov [1987] and can be checked
by straightforward computation. Recall the Miura map M, defined in (1-9).

Lemma 6.1. Suppose that u(z, t) is a smooth classical solution of (5-1) with

(∂zu)(z, t)= (∂zu)(z, t),



332 PETER A. PERRY

and
∫

u(z, t) dm(z)= 0 for all t . Then, the function

q(z, t)=M(u( · , t))(z)

is a smooth classical solution of (1-1).

Remark 6.2. In [Bogdanov 1987], the mNV and NV are shown to be gauge-equivalent, and the Miura
map is computed from the gauge equivalence. Note that our conventions differ slightly from those of
Bogdanov in order to insure that the range of the Miura map consists of real-valued functions.

Proof of Theorem 1.6. Pick u0 ∈ H 2,1(R2)∩ L1(R2) so that ∂u0 = ∂u0 and
∫

u0(z) dm(z)= 0. Let {u0,n}

be a sequence from S(R2) with un,0→ u0 in H 2,1(R2)∩ L1(R2). By local Lipschitz continuity of the
scattering maps, for any T > 0, the sequence {un} from C([0, T ]; H 2,1(R2)) given by

un(z, t)= I
(
et ((�)3−(�̄)3)(Ru0,n)(�)

)
(z)

converges in C([0, T ]; H 2,1(R2)) to

u(z, t) := I
(
et ((�)3−(�̄)3)(Ru0)(�)

)
(z).

This convergence implies that qn(z, t) :=M(un(�, t))(z) converges in L2(R2).
Recall (1-13). Since qn→ q in C([0, T ]; L2(R2)) it follows from the L2-boundedness of S = ∂∂−1

that the two nonlinear terms converge in L1; i.e., qn ∂̄
−1∂qn → q∂−1∂q and qn∂

−1∂qn → q∂−1∂q in
C([0, T ], L1(R2)). We conclude that q is a weak solution of the NV equation. �

7. Conductivity-type potentials

In this section we show that our solution of NV coincides with that of [Lassas et al. 2012] in the cases
they consider, proving Theorem 1.7.

We briefly recall some of the notation and results of [Lassas et al. 2007]. Assume first that q ∈ C∞0 (R2)

and is of conductivity type. We denote by ψ(x, ζ ) the unique solution of the problem

(−1+ q)ψ = 0, (7-1)

lim
|z|→∞

(e−i(x ·ζ )ψ(x, ζ )− 1)= 0,

where x = (x1, x2) and ζ ∈ C2 satisfies ζ · ζ = 0. Here a · b denotes the Euclidean inner product without
complex conjugation. Henceforth, we set ζ = (k, ik) for k ∈ C, which amounts to choosing a branch
of the variety V = {ζ ∈ C2

: ζ · ζ = 0}. Since q is of conductivity type, it follows from Theorem 3 in
[Nachman 1996] that the problem (7-1) admits a unique solution for each k ∈ C. We set z = x1+ ix2 and
define

m(z, k)= e−ikzψ(x, ζ ), (7-2)

for ζ = (k, ik).
The direct scattering map

T : q→ t (7-3)
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is defined by

t(k)=
∫

ei(k̄ z̄+kz)q(z)m(z, k) dm(z). (7-4)

The inverse map
Q : t→ q (7-5)

is defined by

q(z)=
i
π2 ∂ z

(∫
C

t(k)
k̄

e−i(kz+k̄ z̄)m(z, k) dm(k)
)
, (7-6)

where m(z, k) is reconstructed from t via the ∂-problem

∂km(x, k)=
t(k)
4πk

e−i(kz+k̄ z̄)(z)m(x, k). (7-7)

Let
mn

t (k)= exp(−in(kn
+ k̄n)t),

for an odd positive integer n. Lassas, Mueller, Siltanen and Stahel proved:

Theorem 7.1 [Lassas et al. 2007, Theorem 1.1; 2012, Theorem 4.1]. For q0 ∈ C∞0 (R2) radial and of
conductivity type, QT (q0)= q0. Moreover, if

q(t) :=Q(mn
t T q0), (7-8)

then q(t) is a continuous, real-valued potential with q(t) ∈ L p(R2) for p ∈ (1, 2).

They conjecture that for n = 3, q(t) given by (7-8) solves the NV equation, provided that q0 obeys
the hypotheses of Theorem 7.1. We will prove that this is the case (for a larger class of q0) by proving
Theorem 1.7.

We will prove Theorem 1.7 in two steps. First, we show that for u0 ∈ S(R2) with ∂u0 = ∂u0 and∫
u0(z) dm(z)=0, the scattering data r=Ru is related to the scattering transform t=T q for q=2∂u+|u|2

by the identity
t(k)=−2π i k̄ r(ik).

Next, we show that for t of the above form with r =Ru, the identity

(Qt)(z)= 2(∂u)(z)+ |u(z)|2.

Theorem 1.7 is an easy consequence of these two identities.
The key to both computations is the following construction of complex geometric optics solutions for

the potential q = 2∂u+|u|2 from the solutions µ= (µ1, µ2)
T of (3-1). First, suppose that8= (81,82)

T

is a vector-valued solution of the linear system(
∂ 0
0 ∂

)
8=

1
2

(
0 u
u 0

)
8. (7-9)

A straightforward calculation shows that the function

ψ̃ =81+82
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solves the zero-energy Schrödinger equation

(−1+ q)ψ̃ = 0 (7-10)

for q = 2∂u+ |u|2.
Recall that matrix-valued solutions of (7-9) are related to the solutions µ of (3-1) by(

µ1
µ2

)
=

(
81

82

)
e−kz,

so that
81+82 = ekzµ1(z, k)+ ek̄ z̄µ2(z, k) (7-11)

solves (7-10). To compute its asymptotic behavior, using (µ1, µ2)→ (1, 0) as |z|→∞ we conclude that
e−kzψ̃(z, k)→ 1 as |z| →∞. Hence, denoting by ψ the solution of the problem (7-10) with ζ = (k, ik)
for k ∈ C, we have

ψ(z, k)= ψ̃(z, ik)= eikzµ1(z, ik)+ e−i k̄ z̄µ2(z, ik), (7-12)

so
m(z, k)= µ1(z, k)+ e−i(kz+k̄ z̄)µ2(z, ik).

Lemma 7.2. Let u ∈ C∞0 (R2) with ∂u = ∂u, suppose
∫

u(z) dm(z)= 0, and let q = 2∂u+ |u|2. Then

(T q)(k)=−2π i k̄ (Ru)(ik). (7-13)

Proof. We compute

(T q)(k)=
∫

q(z)ei k̄ z̄ψ(z, k) dm(z)

=

∫
2(∂u)(z)ei (̄kz̄+kz)µ1(z, ik) dm(z)

+

∫
2(∂u)(z)µ2(z, ik) dm(z)

+

∫
|u(z)|2

(
ei(k̄ z̄+kz)µ1(z, ik)+µ2(z, ik)

)
dm(z)

= I1+ I2+ I3,

where in the first right-hand term we used ∂u = ∂u. We can integrate by parts in each of the first two
right-hand terms and use (3-1) to obtain

I1 =−2i k̄
∫

u(z)ei(kz+k̄ z̄)µ1(z, ik) dm(z)−
∫
|u(z)|2µ2(z, ik) dm(z),

I2 =−

∫
|u(z)|2ei(kz+k̄ z̄)µ1(z, ik) dm(z).

Using the relation (3-2), we recover (7-13). �

Next, we analyze the inverse scattering transform Q defined by (1-7).
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Lemma 7.3. Let u ∈ S(R2) with ∂u = ∂u, and suppose that
∫

u(z) dm(z)= 0. Let r =Ru and suppose
that t is given by (7-13). Then

(Qt)(z)= 2(∂u)(z)+ |u(z)|2.

Proof. We compute from (1-7), (7-13), and (7-12) that

(Qt)(z)=
2
π
∂ z

(∫
r(ik)e−i(kz+k̄ z̄)µ1(z, ik) dm(k)

)
+

2
π
∂ z

(∫
r(ik)µ2(z, ik) dm(k)

)
= T1+ T2.

Changing variables to ζ = ik in T1 we recover

T1 =
2
π
∂ z

(∫
r(ζ )eζ̄ z̄−ζ zµ1(z, ζ ) dm(ζ )

)
= 2(∂u)(z)[5pt] = 2(∂u)(z),

where we have used (3-5). Using (3-1) in T2 we have

T2 =
1
π

∫
r(ik)u(z)e−i(kz+k̄ z̄)µ1(z, ik) dm(k)=

1
π

u(z)
∫

r(ζ )eζ̄ z̄−ζ zµ1(z, ζ ) dm(ζ )[2pt] = |u(z)|2.

Combining these computations gives the desired result. �

Proof of Theorem 1.7. For u0 satisfying the hypotheses and q = 2∂u0+|u0|
2, we have by Lemma 7.2 that

(T q0)(k)=−2π i k̄ r(ik),

where r =R(u0), and hence

e−i t (k3
+k̄3)(T q0)(k)=−2π i k̄

(
et ((�̄)3−(�)3)r(�)

)
(ik).

We can now apply Lemma 7.3 to conclude that

Q
(
e−i t ((�)3+(�̄)3)(T q0)(�)

)
=MI

(
et ((�̄)3−(�)3)r(�)

)
,

as claimed. �

Appendix: Schwarz class inverse scattering for the mNV equation

In this appendix we develop the Schwarz class inverse theory for the mNV equation, using freely the
results and notation of [Perry 2011]. Our main result is this:

Theorem A. Suppose that u0 ∈ S(R2), and let R and I be the scattering maps defined respectively by
(3-2) and (3-5). Finally, define

u(t)= I
(
et ((�)3−(�̄)3)(Ru0)(�)

)
.

Then u(t) is a classical solution of the modified Novikov–Veselov equation (5-1).

The proof follows the method of [Beals and Coifman 1985; 1989; 1990; Sung 1994a; 1994b; 1994c]
but necessitates some long computations.
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A.1. Scattering solutions and tangent maps. First we recall the solutions ν and ν̃ of the ∂ problem with
∂-data determined by the time-dependent coefficient r and the formulas from [Perry 2011] for the tangent
maps.

We recall that ν = (ν1, ν2)
T is the unique solution of the ∂ problem

∂kν1 =
1
2 ekrν2,

∂kν2 =
1
2 ekrν1,

lim
|k|→∞

ν(z, k)= (1, 0),

(A-1)

where r =R(u). Here
ek(z)= ek̄ z̄−kz.

The function ν#
= (ν#

1 , ν
#
2) solves the same problem but for u#( · )=−ū(− · ) and r#

=R(u#)=−r̄ (see
[Perry 2011, Lemma B.1]). Thus

∂kν
#
1 =−

1
2 ekr ν#

2 ,

∂kν
#
2 =−

1
2 ek r̄ ν#

1 ,

lim
|k|→∞

ν#(z, k)= (1, 0).

(A-2)

The tangent map formula gives an expression for u if u = R(r) where r is a C1-curve in S(R2).
Assuming the law of evolution

ṙ = (k̄3
− k3)r,

and following the calculations in Appendix B of [Perry 2011], we find that

u = 2i(I1+ I2), (A-3)

where

I1 =
1
π

∫
k3∂k[ν

#
2(−z, k)ν1(z, k)] dm(k), (A-4)

I2 =−
1
π

∫
k3∂k[ν

#
1(−z, k)ν2(z, k)] dm(k). (A-5)

As in [Perry 2011, Appendix B], we evaluate these integrals using the following fact: if g is a C∞

function with asymptotic expansion

g(k, k̄)∼ 1+
∑
`≥0

g`
k`+1 , (A-6)

as |k| →∞ then

lim
R→∞

(
−

1
π

∫
|k|≤R

kn(∂k g)(k) dm(k)
)
= gn. (A-7)

Using (A-7) we get (noting the − sign in (A-5))

I1 = 2[ν1(z,�)ν#
2(−z,�)]3 and I2 = 2[ν2(z,�)ν#

1(−z,�)]3,
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so that

u̇ = 2
{
[ν1(z,�)ν#

2(−z,�)]3+ [ν2(z,�)ν#
1(−z,�)3]

}
(A-8)

Here [ � ]n denotes the coefficient of k−n−1 in an asymptotic expansion of the form (A-6). The formulas

[ν1(z,�)ν#
2(−z,�)]n = (ν#

n)21+

n−1∑
j=0

(ν#
n− j−1)21(ν j )11,

[ν2(z,�)ν#
1(−z,�)]n = (νn)12+

n−1∑
j=0

(νn−1− j )12(ν
#
j )22

will be used in concert with the residue formulae below to obtain the equation of motion.

A.2. Expansion coefficients for ν. Following the method of Appendix C in [Perry 2011], we can compute
the additional coefficients in the asymptotic expansion

ν ∼ (1, 0)+
∑
`≥0

k−(`+1)ν(`) (A-9)

needed to compute u̇ from the formula (A-8). Let us set ν(`) = (ν1,`, ν2,`)
T . We recall from [Perry 2011]

the “initial data”

ν1,0 =
1
4∂
−1(|u|2), ν2,0 =

1
2 ū, (A-10)

and the recurrence relations

ν2,` =
1
2 ūν1,`−1− ∂ν2,`−1, ν1,` =

1
2 P(uν2,`).

The following formulas are a straightforward consequence.

`= 0:

ν1,0 =
1
4∂
−1(|u|2), (A-11)

ν2,0 =
1
2 ū. (A-12)

`= 1:

ν1,1 =
1

16 ∂̄
−1(|u|2∂̄−1(|u|2))− 1

4 ∂̄
−1(u∂ ū), (A-13)

ν2,1 =
1
8 ū∂̄−1(|u|2)− 1

2∂ ū. (A-14)

`= 2:

ν1,2 =
1

64 ∂̄
−1(
|u|2∂̄−1(|u|2∂̄−1(|u|2))

)
(A-15)

−
1

16

{
∂̄−1(u∂(ū∂̄−1(|u|2))

)
+ ∂̄−1(|u|2∂̄−1(u∂ ū))

}
+

1
4 ∂̄
−1(u∂2ū),

ν2,2 =
1

32 ū∂̄−1(|u|2∂̄−1(|u|2))− 1
8

{
∂(ū∂̄−1(|u|2))+ ū∂̄−1(u∂ ū)

}
+

1
2∂

2ū. (A-16)
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`= 3:

ν2,3 =
1

128 ū∂̄−1(
|u|2∂̄−1(|u|2∂̄−1(|u|2))

)
(A-17)

−
1
32

{
ū∂̄−1(u∂(ū∂̄−1(|u|2))

)
+ ū∂̄−1(|u|2∂̄−1(u∂ ū))+ ∂

(
ū∂̄−1(|u|2∂̄−1(|u|2))

)}
+

1
8

{
ū∂̄−1(u∂2ū)+ ∂2(ū∂̄−1(|u|2))+ ∂(ū∂̄−1(u∂ ū))

}
−

1
2 ∂

3ū.

A.3. Expansion coefficients for ν#. The solution ν# corresponds to the potential −u(−z). To compute
the corresponding residues for ν#(−z, k) we therefore make the following substitutions in the formulas
above:

∂̄−1
→−∂̄−1, ∂→−∂,

u→−λū, ū→−λu,

Thus the overall sign change is (−1)nu+n∂ where nu is the number of factors of u and ū, while n∂ is the
number of factors of ∂ and ∂̄−1. There is also an overall factor of (λ)nu , that is, λ if nu is odd, or 1 if nu

is even. Applying these rules we obtain:

`= 0:

ν#
1,0 =−

1
4 ∂̄
−1(|u|2), (A-18)

ν#
2,0 =−

1
2 u. (A-19)

`= 1:

ν#
1,1 =

1
16 ∂̄
−1(|u|2∂̄−1(|u|2))− 1

4 ∂̄
−1(ū∂u), (A-20)

ν#
2,1 =

1
8 u∂̄−1(|u|2)− 1

2∂u. (A-21)

`= 2:

ν#
1,2 =−

1
64 ∂̄
−1(
|u|2∂̄−1(|u|2∂̄−1(|u|2))

)
(A-22)

+
1

16

{
∂̄−1(ū∂(u∂̄−1(|u|2))

)
+ ∂̄−1(|u|2∂̄−1(ū∂u))

}
−

1
4 ∂̄
−1(ū∂2u),

ν#
2,2 =−

1
32 u∂̄−1(|u|2∂̄−1(|u|2))+ 1

8

{
∂(u∂̄−1(|u|2))+ u∂̄−1(ū∂u)

}
−

1
2∂

2u. (A-23)

`= 3:

ν#
2,3 =

1
128 u∂̄−1(

|u|2∂̄−1(|u|2∂̄−1(|u|2))
)

(A-24)

−
1

32

{
u∂̄−1(ū∂(u∂̄−1(|u|2))

)
+ u∂̄−1(|u|2∂̄−1(ū∂u))+ ∂

(
u∂̄−1(|u|2∂̄−1(|u|2))

)}
+

1
8

{
u∂̄−1(ū∂2u)+ ∂2(u∂̄−1(|u|2))+ ∂(u∂̄−1(ū∂u))

}
−

1
2∂

3u.
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A.4. Inverse scattering method for mNV. We now compute the motion of the putative solution

u = Ir

if the reflection coefficient evolves according to the law

ṙ =−(k3
− k

3
)r, r |t=0 =Ru0.

To use (A-8), we compute [ν1(z,�)ν#
2(−z,�)]3 and [ν2(z,�)ν#

1(−z,�)]3.
First, we have

[ν1(z,�)ν#
2(−z,�)]3 = ν#

2,3+ ν
#
2,2ν1,0+ ν

#
2,1ν1,1+ ν

#
2,0ν1,2. (A-25)

From the formulas above we have

ν#
2,2ν1,0 =−

1
128 u∂̄−1(|u|2∂̄−1(|u|2)) · (∂̄−1

|u|2) (A-26)

+
1
32

{
∂(u∂̄−1(|u|2)) · (∂̄−1(|u|2))+ u∂̄−1(ū∂u) · (∂̄−1(|u|2))

}
−

1
8∂

2u · ∂̄−1(|u|2),

ν#
2,1ν1,1 =

1
128 u∂̄−1(|u|2) · ∂̄−1(|u|2∂̄−1(|u|2)) (A-27)

−
1
32

{
u∂̄−1(|u|2) · ∂̄−1(u∂ ū)+ ∂u ·

(
∂̄−1(|u|2∂̄−1(|u|2))

)}
+

1
8∂u · ∂̄−1(u∂ ū),

ν#
2,0ν1,2 =−

1
128 u∂̄−1(

|u|2∂̄−1(|u|2∂̄−1(|u|2))
)

(A-28)

+
1
32

{
u∂̄−1(u∂(ū∂̄−1(|u|2))

)
+ u∂̄−1(|u|2∂̄−1(u∂ ū))

}
−

1
8 u∂̄−1(u∂2ū).

Using (A-24) and (A-26)–(A-28) in (A-25) we see that seventh-order terms cancel, while fifth-order terms
sum to zero, as may be shown using the identity

∂̄−1 f · ∂̄−1g = ∂̄−1( f ∂̄−1g+ g∂̄−1 f ), (A-29)

while third-order terms may be simplified using the same identity with f = g. The result is

[
ν11(z,�)ν̃21(−z,�)

]
3 =

3
8

[
(∂u) ·

(
∂̄−1(∂(|u|2))

)]
+

3
8

[
u∂̄−1(ū∂̄u)

]
−

1
2∂

3u. (A-30)

Next, we compute

[
ν2(z,�)ν#

1(−z,�)
]

3 = ν2,3+ ν2,2ν
#
1,0+ ν2,1ν

#
1,1+ ν2,0ν

#
1,2. (A-31)
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From the formulas above we have

ν2,2ν
#
1,0 =−

1
128λū∂̄−1(|u|2∂̄−1(|u|2)) · ∂̄−1(|u|2) (A-32)

+
1
32

{
∂(ū∂̄−1(|u|2)) · ∂̄−1(|u|2)+ ū∂̄−1(u∂ ū) · (∂̄−1(|u|2))

}
−

1
8λ∂

2ū · ∂̄−1(|u|2),

ν2,1ν
#
1,1 =

1
128 ū∂̄−1(|u|2) · ∂̄−1(|u|2∂̄−1(|u|2)) (A-33)

−
1
32

{
ū∂̄−1(|u|2) · ∂̄−1(ū∂u)+ ∂ ū · ∂̄−1(|u|2∂̄−1(|u|2))

}
+

1
8∂ ū · ∂̄−1(ū∂u),

ν2,0ν
#
1,2 =−

1
128 ū∂̄−1(

|u|2∂̄−1(|u|2∂̄−1(|u|2))
)

(A-34)

+
1
32

{
ū∂̄−1(ū∂(u∂̄−1(|u|2)))+ ū∂̄−1(|u|2∂̄−1(ū∂u))

}
−

1
8 ū∂̄−1(ū∂2u).

Using (A-17) and (A-32)–(A-34) in (A-31), noting the cancellation of fifth-order terms, we obtain

[ν2(z,�)ν#
1(−z,�)]3 = 3

8

[
ū∂̄−1(∂(u∂ ū))

]
+

3
8(∂ ū) · ∂∂̄−1(|u|2)− 1

2∂
3ū, (A-35)

or upon complex conjugation

[ν2(z,�)ν#
1(−z,�)3] = 3

8 u∂−1(∂(ū∂u))+ 3
8(∂u) · ∂−1(∂(|u|2))− 1

2∂
3u. (A-36)

Using these equations in (A-8), we obtain the mNV equation:

∂u
∂t
=−∂3u− ∂̄3u+ 3

4(∂ ū) · (∂̄∂−1(|u|2))+ 3
4(∂̄u) · (∂̄∂−1(|u|2))+ 3

4 ū∂̄∂−1(ū∂̄u)+ 3
4 u∂−1(∂̄(ū∂̄u)).
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CONVEXITY OF AVERAGE OPERATORS FOR SUBSOLUTIONS
TO SUBELLIPTIC EQUATIONS

ANDREA BONFIGLIOLI, ERMANNO LANCONELLI AND ANDREA TOMMASOLI

We study convexity properties of the average integral operators naturally associated with divergence-form
second-order subelliptic operators L with nonnegative characteristic form. When L is the classical
Laplace operator, these average operators are the usual average integrals over Euclidean spheres. In our
subelliptic setting, the average operators are (weighted) integrals over the level sets

∂�r (x)= {y : 0(x, y)= 1/r}

of the fundamental solution 0(x, y) of L. We shall obtain characterizations of the L-subharmonic
functions u (that is, the weak solutions to −Lu ≤ 0) in terms of the convexity (w.r.t. a power of r ) of the
average of u over ∂�r (x), as a function of the radius r . Solid average operators will be considered as well.
Our main tools are representation formulae of the (weak) derivatives of the average operators w.r.t. the
radius. As applications, we shall obtain Poisson–Jensen and Bôcher type results for L.

1. Introduction and main results

1A. Notation and definitions. Let u be a subharmonic function in an open set �⊆ RN , N ≥ 2. Then,
with fixed x ∈�, the map

mr (u)(x) : (0, R(x))−→ (−∞,∞),

r 7→ mr (u)(x) :=
1

H N−1(∂Br (x))

∫
∂Br (x)

u(y) dH N−1(y)
(1-1)

is convex with respect to log r if N = 2, and 1/r N−2 if N ≥ 3. In (1-1), Br (x) denotes the Euclidean ball of
radius r and center x ; R(x) stands for sup{r > 0 : Br (x)⊂�}; H N−1 is the Hausdorff (N−1)-dimensional
measure in RN . This quite well-known classical result has many important consequences and applications;
see [Armitage and Gardiner 2001, Section 3.5; Hayman and Kennedy 1976, Section 2.7; Hörmander
1994, Section 3.2]. Of these applications, we only mention the Hadamard three-circles theorem, the
Liouville-type theorem for bounded above subharmonic functions in R2, the applications to the theory
of Hardy spaces, and the Bôcher theorem for harmonic functions in punctured balls (see [Armitage and
Gardiner 2001, Chapter 3], for example).

The aim of the present paper is to study analogous properties for some weighted average operators
acting on subsolutions to

−Lu = 0 in �⊆ RN , N ≥ 3,

MSC2010: primary 26A51, 31B05, 35H10; secondary 31B10, 35J70.
Keywords: subharmonic functions, hypoelliptic operator, convex functions, average integral operator, divergence-form operator.
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where L is a linear second order PDO with nonnegative characteristic form. Precisely, the operators we
are dealing with are of the form

L :=

N∑
i, j=1

∂xi (ai, j (x)∂x j )= div(A(x)∇),

where ∇ = (∂x1, . . . , ∂xN )
T and A(x) = (ai, j (x))i, j is a symmetric matrix with smooth entries that is

nonnegative definite at any point x ∈ RN . In Section 2 we will precisely fix our hypotheses on L. Here
we only need to mention the crucial ones: L is not totally degenerate, hypoelliptic, and endowed with a
fundamental solution

0 : {(x, y) ∈ RN
×RN

: x 6= y} −→ (0,∞),

with pole at any point of the diagonal {x = y} and vanishing at infinity. For example, besides the classical
Laplace operator on RN (N ≥ 3), any sub-Laplacian operator on a stratified Lie group (with homogeneous
dimension ≥ 3) enjoys all these hypotheses; see, for example, [Bonfiglioli et al. 2007].

The main objects of our investigation are the average operators on the level sets of 0, that is, on the
sets

∂�r (x)= {y ∈ RN
: 0(x, y)= 1/r}, x ∈ RN , r > 0,

together with their solid counterparts, the average operators on the sets

�r (x)= {y ∈ RN
: 0(x, y) > 1/r}, x ∈ RN , r > 0.

We call ∂�r (x) and �r (x), respectively, the L-sphere and the L-ball with radius r and center x . Owing
to Sard’s theorem, since 0 is smooth (in view of the hypoellipticity of L), any L-sphere is an (N − 1)-
dimensional manifold of class C∞, for almost every radius. (For simplicity, we assume this to be true for
every positive radius.)

If �⊆ RN is open, given an upper semicontinuous (u.s.c.) function u :�→[−∞,∞), for any L-ball
�r (x) with closure contained in �r (x), we set1

mr (u)(x) :=
∫
∂�r (x)

u(y)k(x, y) dH N−1(y),

Mα
r (u)(x) :=

α+ 1
rα+1

∫
�r (x)

u(y)Kα(x, y) dy

for any α >−1. Set 0x := 0(x, · ). The weights k, Kα are defined on RN
\ {x} by

k(x, · ) :=
|∇L0x |

2

|∇0x |
, Kα(x, · ) :=

|∇L0x |
2

02+α
x

, (1-2)

where |∇L0x(y)|2 := 〈A(y)∇0x(y),∇0x(y)〉. The average operators mr and Mα
r can be used to charac-

terize the solutions to Lu = v. Indeed, for every u ∈ C2(�,R), the following representation formulae

1Obviously, in order to define mr (u)(x), we only need to require that � contains ∂�r (x).
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hold true [Bonfiglioli and Lanconelli 2013, Section 11]:

u(x)= mr (u)(x)−
∫
�r (x)

(
0(x, y)−

1
r

)
Lu(y) dy,

u(x)= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
Lu(y) dy

)
dρ

(1-3)

for every L-ball �r (x) with closure contained in �. Thus, given x ∈�, the above formula is satisfied for
any positive r such that r < R(x), where

R(x) := sup{r > 0 :�r (x)⊂�}. (1-4)

For u ≡ 1, these formulae give

1= mr (1)(x)= Mα
r (1)(x) for every x ∈ RN and r > 0.

Therefore, since the kernels k and Kα are nonnegative (recall that A(y)≥ 0), mr (u)(x) and Mα
r (u)(x) are

well-posed (possibly −∞) for every u.s.c. function u. (Actually, as was recently proved in [Abbondanza
and Bonfiglioli 2013], k(x, · ) and Kα(x, · ) are positive on an open dense subset of RN

\ {x} for every
x ∈ RN .)

It is also worth noticing that

Mα
r (u)(x)=

α+ 1
rα+1

∫ r

0
ραmρ(u)(x) dρ. (1-5)

This can be proved by using Federer’s co-area formula and suitable approximation arguments for u.s.c. func-
tions.

In what follows, given a u.s.c. function u on an open set �⊆ RN , we say that

(1) u is m-continuous in � if u(x)= limr→0+mr (u)(x) for every x ∈�;

(2) u is Mα-continuous in � if u(x)= limr→0+ Mα
r (u)(x) for every x ∈�.

A smooth function u will be called L-harmonic in � if Lu = 0 in �. We call a u.s.c. function u :�→
[−∞,∞) L-subharmonic in � if

(1) the set �(u) := {x ∈ � : u(x) > −∞} contains at least one point of every connected component
of �;

(2) for every bounded open set V ⊂ V ⊂� and for every L-harmonic function h in V , continuous up to
∂V , u ≤ h holds whenever u ≤ h on ∂V .

The family of the L-subharmonic functions in � is a cone denoted by S(�).
In [Bonfiglioli and Lanconelli 2013, Section 8] it is proved that u is L-subharmonic in � if and only if

u ∈ L1
loc(�), Lu ≥ 0 in the weak sense of distributions, and u is Mα-continuous in �. For this reason

the L-subharmonic functions are also said to be the subsolutions of −L. As a consequence of the cited
characterization, by the classical Riesz representation theorem, it follows that, given u ∈ S(�), there
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exists a nonnegative Radon measure µu on the Borel subsets of � (called the L-Riesz measure of u) such
that Lu = µu in �, in the weak sense of distributions.

Several other characterizations of the L-subharmonicity have been provided in [Bonfiglioli and Lan-
conelli 2013] in terms of the average operators mr and Mα

r . For our aim it is convenient to recall
[Bonfiglioli and Lanconelli 2013, Theorem 4.2]; see also the notation in (1-4). Let u :�→ [−∞,∞) be
a u.s.c. function such that �(u) contains at least one point of every connected component of �. Then
u ∈ S(�) if and only if one of the following conditions is satisfied:

(A.1) u(x)≤ mr (u)(x) for every x ∈� and every r ∈ (0, R(x));

(A.2) u is m-continuous in� and, for every x ∈�, r 7→mr (u)(x) is monotone nondecreasing on (0, R(x)).

One obtains further equivalent conditions by replacing, in (A.1) and (A.2), the surface average mr with
the solid average Mα

r , with α >−1.
The following result will be used frequently in what follows.

Remark 1.1. By [Bonfiglioli and Lanconelli 2013, Proposition 6.10], if u ∈S(�), the map r 7→mr (u)(x)
is finite-valued and continuous on (0, R(x)) for every x ∈�. This follows from [Bonfiglioli and Lanconelli
2013, Theorem 6.4] and

mr (0( · , z))(x)=min{0(x, z), 1/r} (1-6)

jointly with a Riesz representation argument decomposing u, locally, as an L-harmonic function plus the
convolution of 0 with the Riesz measure of u. As a consequence, whenever α> 0, the map r 7→Mα

r (u)(x)
is finite-valued and continuous on (0, R(x)) for every x ∈�. This follows at once from (1-5) and (1-6),
since ρα−1 is integrable on (0, r) for any positive α. The solid average Mα

r (u)(x) is finite-valued and
continuous also when −1< α ≤ 0, provided that x ∈�(u). To obtain this fact, it suffices to keep in mind
identity (1-5) and the inequalities −∞< u(x)≤ mr (u)(x), valid for x ∈�(u) and 0< r < R(x).

In order to list the main results of this paper, we need a few more definitions. Let I ⊆ R be an interval
and suppose that ϕ : I→R is a strictly monotone continuous function. Following [Armitage and Gardiner
2001, Section 3.5], we say that f : I → R is ϕ-convex if

f (r)≤
ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

f (r1)+
ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
f (r2) (1-7)

for every r1, r, r2 ∈ I such that r1 < r < r2. When ϕ(r)= r , (1-7) gives back the standard definition of a
convex function. Moreover, clearly f is ϕ-convex if and only if f ◦ϕ−1 is convex on the interval ϕ(I ),
in the usual sense.

Finally, given a function f : I → R, we say that

(1) f is locally absolutely continuous (locally a.c.) if f is absolutely continuous on every compact
subinterval of I ;

(2) f is essentially monotone if there exists a monotone function f ∗ : I → R such that f = f ∗ almost
everywhere in I .
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1B. Main theorems. Our crucial results concern the derivative with respect to r of the average operators
mr (u)(x) and Mα

r (u)(x), when u is L-subharmonic. These are given in the following theorem.

Theorem 1.2 (derivatives of mr (u) and Mα
r (u)). Let � ⊆ RN be an open set and let u be an L-

subharmonic function in � with L-Riesz measure µu .

(i) For every x ∈�, the map r 7→ mr (u)(x) is locally a.c. on (0, R(x)), and

d
dr

mr (u)(x)=
µu(�r (x))

r2 for almost every r in (0, R(x)). (1-8)

(ii) For every x ∈� and α > 0, the map r 7→ Mα
r (u)(x) is of class C1 on (0, R(x)), and

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y) (1-9)

for every r in (0, R(x)), where fα denotes an antiderivative of rα−1:

fα(r) :=
{

ln r, if α = 0,
rα/α, if α 6= 0.

(1-10)

This also holds for −1< α ≤ 0 if x ∈�(u).

A straightforward consequence of this theorem is the following corollary.

Corollary 1.3 (Poisson–Jensen type formula). Let u ∈S(�) and let µu be its L-Riesz measure. The maps
r 7→ mr (u)(x) and r 7→ Mα

r (u)(x) (for α >−1) can be prolonged with continuity up to r = 0 if and only
if x ∈�(u).

Furthermore, for every x ∈ � and r ∈ (0, R(x)), one has the following representation formulae (of
Poisson–Jensen type):

u(x)= mr (u)(x)−
∫ r

0

µu(�ρ(x))
ρ2 dρ = mr (u)(x)−

∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y), (1-11)

and, for α > 0,

u(x)= Mα
r (u)(x)−

∫ r

0

α+ 1
ρα+2

(∫
�ρ(x)

(
fα(ρ)− fα

(
1

0(x, y)

))
dµu(y)

)
dρ

= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ.

(1-12)

When x /∈�(u), all the sides of the previous formulae (1-11) and (1-12) are −∞, and this happens if and
only if µu({x}) > 0.

Formula (1-12) holds true also for −1< α ≤ 0, provided that x ∈�(u).

Theorem 1.2, together with the following real analysis lemma, easily implies convexity properties of
our average operators, and these will characterize the L-subharmonic functions.

Lemma 1.4. Let I = (0, a) be an interval in (0,∞), and let f : I → R.

(i) If f is bounded from above and r−β-convex for a real β > 0, then f is monotone nondecreasing.
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(ii) Let f be locally a.c., and let β 6= 0. Then f is r−β-convex if and only if r 7→ rβ+1 f ′(r) is essentially
monotone nondecreasing.

Here are our main results concerning convexity of the average operators.

Theorem 1.5 (subharmonicity and convexity of the average operators). Suppose that �⊆ RN is an open
set, and let u :�→ [−∞,∞) be an u.s.c. function such that �(u) intersects every connected component
of �.

Then the following statements are equivalent.

(1) u ∈ S(�).

(2) u is m-continuous and the map r 7→ mr (u)(x) is 1/r-convex on (0, R(x)) for every x ∈�.

(3) u is m-continuous and the map r 7→ mr (u)(x) is 1/r-convex on (0, R(x)) for every x ∈�(u).

(4) u is Mα-continuous and for every x ∈�, the map r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x)) for

some (or for every) α > 0.

(5) u is Mα-continuous and, for every x ∈�(u), the map r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x))

for some (or for every) α >−1.

We observe that, to the best of our knowledge, the implications (2), (3), (4), (5)⇒ (1) appear here for
the first time, even when L is the classical Laplace operator.

Moreover, we shall prove that (in statements (2), (3), (4), (5) above) we can replace r−1-convexity
or r−(α+1)-convexity with r−γ -convexity for infinitely many other values of γ > 0 (see Theorems 5.1
and 5.2 for the precise statements).

We observe that the convexity (w.r.t. suitable powers of r) of the maps r 7→ mr (u)(x),Mα
r (u)(x) in

Theorem 1.5 ensures that these functions have more regularity properties than those provided so far in
Theorem 1.2: by Alexandrov’s theorem, they are twice differentiable almost everywhere on (0, R(x)).

1C. Ring-shaped domains, applications, and further developments. Suitable versions of Theorems 1.2
and 1.5 hold true for L-subharmonic functions in ring-shaped domains. Given a, b such that 0≤a<b≤∞,
and given x0 ∈ RN , we define the 0-annulus of center x0 and radii a, b as follows:

Aa,b(x0) :=

{
x ∈ RN

: a <
1

0(x0, x)
< b

}
. (1-13)

The conventions 1/∞= 0 and 1/0=∞ apply.
The following results (Corollary 1.7 and Theorems 1.8 and 1.9) improve [Bonfiglioli and Lanconelli

2007, Theorems 1.5, 1.8, and 1.9], proved in the case of sub-Laplacians L on stratified groups.

Theorem 1.6. Let u ∈ S(Aa,b(x0)) and let µu be its L-Riesz measure. The map

(a, b) 3 r 7→ mr (u)(x0) ∈ R
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is locally a.c. and 1/r-convex. Moreover, for every fixed α, β such that a < α < β < b, there exists a
constant c ∈ R (depending on a, α, β, b, u, x0) such that

r2 d
dr

mr (u)(x0)= µu(Aα,r (x0))+ c (1-14)

for almost every r in (α, β).

From this theorem we obtain the following result.

Corollary 1.7. Suppose u is L-harmonic in the 0-annulus Aa,b(x0). Then

mr (u)(x0)=
c1

r
+ c2, r ∈ (a, b),

for some real constants c1, c2.

As an application of the previous results on L-subharmonic functions on ring-shaped domains, we
will show a symmetry result, from which a Bôcher-type theorem for L will follow. The latter improves a
result in [Bonfiglioli and Lanconelli 2007].

For our application we need (together with the structural assumptions (H1) and (H2) in Section 2) the
following extra assumption on L, a homogeneous Harnack inequality on 0-spheres.

(HH) For every fixed x0 ∈ RN and every 0< b <∞, there exist positive constants C = C(x0, b) > 1 and
θ = θ(x0, b) < 1 such that

sup
∂�r (x0)

h ≤ C inf
∂�r (x0)

h

for every r such that 0 < r < θb and every L-harmonic nonnegative function h in the 0-annulus
A0,b(x0).

By standard arguments (see, for example, [Bony 1969]), this hypothesis is satisfied for the sum of squares
of Hörmander vector fields L=

∑m
j=1 X2

j . Moreover, (HH) is fulfilled for x0= 0, when L is homogeneous
of positive degree (in the sense recalled in Remark 7.1) w.r.t. a group of dilations; see [Bonfiglioli et al.
2007, Theorem 5.16.5, page 327].

Theorem 1.8. Suppose L satisfies condition (HH) above.
Let w be nonnegative and L-harmonic in the 0-annulus A0,b(x0)=�b(x0) \ {x0} (where b <∞) and

suppose that w is also continuous up to ∂�b(x0) and w ≡ 0 on ∂�b(x0). Then w is affine w.r.t. 0, that is,

w(x)= c(0(x0, x)− 1/b), x ∈ A0,b(x0),

for some positive constant c.

We prove this theorem as a consequence of Corollary 1.7, by following an idea exploited by Axler,
Bourdon, and Ramey [Axler et al. 1992] in the classical case of the Laplace operator. From Theorem 1.8
one easily obtains the following Bôcher-type result.
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Theorem 1.9 (Bôcher’s theorem for L). Suppose L satisfies condition (HH).
Let �⊆ RN be open and x0 ∈�. Let u be nonnegative and L-harmonic in � \ {x0}. Then there exists

an L-harmonic function h on � and a constant c ≥ 0 such that

u(x)= c0(x0, x)+ h(x) for every x ∈� \ {x0}.

Further developments. We end the introduction by pointing out further applications of the results of this
paper: they can be used for the investigations of convex functions in Carnot groups (as introduced in
[Danielli et al. 2003; Lu et al. 2004]). Indeed (see [Juutinen et al. 2007] for the relevant results), since
the so-called v-convex functions on Carnot groups are characterized in terms of their L-subharmonicity
w.r.t. the family of the sub-Laplacians {L} (a class of operators comprised in our present paper), by
Theorem 1.5 it turns out that v-convexity can be characterized by the usual (Euclidean) convexity of the
family of the real-variable functions {r 7→ mr (u)(x)} (or of {r 7→ Mα

r (u)(x)}), as the average operators
vary with {L}. The characterization of v-convexity in [Bonfiglioli and Lanconelli 2012] can also be
exploited to further simplify the investigation.

Finally, since our results apply to any Hörmander sum of squares of vector fields, we can use our
characterization of v-convexity in order to obtain a new notion of convexity in more general frameworks
than the Carnot setting (for instance, in the framework of Hörmander vector fields), as was done by
Magnani and Scienza [2012]. We plan to develop this topic in a forthcoming study.

2. Main assumptions on L and recalls on r−β-convexity

2A. Assumptions on L. Throughout the paper, we let

L :=

N∑
i, j=1

∂xi (ai, j (x)∂x j ) (2-1)

be a linear second order PDO in RN , in divergence form, with C∞ coefficients, such that the matrix
A(x) := (ai, j (x))i, j≤N is symmetric and nonnegative definite at every point x ∈ RN . The operator L is
self-adjoint and it is (possibly) degenerate elliptic. However, we always assume without further comments
that L is not totally degenerate, that is, there exists i ∈ {1, . . . , N } such that ai,i (x) > 0 for every x ∈ RN .
As is well-known, this ensures that L satisfies the weak maximum principle on every bounded open
subset of RN .

Our main assumptions on L are as follows.

(H1) L is a C∞-hypoelliptic differential operator, that is, for every open set � ⊆ RN , and for every
f ∈ C∞(�,R), if u ∈ D′(�) is a solution of Lu = f in the weak sense of distributions, u can be
identified with a C∞ function on �.

(H2) We assume that L is equipped with a global fundamental solution

0 : D = {(x, y) ∈ RN
×RN

: x 6= y} −→ (0,∞)

with the following properties:
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(a) 0 ∈ L1
loc(R

N
×RN )∩C∞(D,R);

(b) for every fixed x ∈ RN , we have lim
y→x

0(x, y)=∞ and lim
y→∞

0(x, y)= 0;

(c) for every ϕ ∈ C∞0 (R
N ,R) and every x ∈ RN ,∫

RN
0(x, y)Lϕ(y) dy =−ϕ(x). (2-2)

If �⊆ RN is open, we say that u is L-harmonic on � if u ∈ C∞(�,R) and Lu = 0 in �. A bounded
open set V ⊂ RN is said to be L-regular if the following property is satisfied: for every f ∈ C(∂V,R),
there exists a (unique) L-harmonic function in V , denoted by H V

f , satisfying limy→x H V
f (y)= f (x) for

every x ∈ ∂V .
As described in [Bonfiglioli and Lanconelli 2013, Remark 2.2], L endows RN with the structure of

a S∗-harmonic space, in the sense of [Bonfiglioli et al. 2007, Definition 6.10.1]: this is a consequence
of hypothesis (H1). As a very particular byproduct, we can use Bouligand’s theorem to derive that the
0-balls �r (x) are L-regular open sets (we shall use this last fact in the proof of Bôcher’s Theorem 1.9).

2B. Background results on r−β-convexity. Next we prove some results on ϕ-convexity, as introduced
in Section 1. We begin by remarking that, obviously, given intervals I, J ⊆ R and given a function
ψ : J→ I which is monotone and continuous, a function u : I → R is ϕ-convex on I if and only if u ◦ψ
is (ϕ ◦ψ)-convex on ψ−1(I ). Another very simple lemma is in order.

Lemma 2.1. Suppose β 6= 0. Let I ⊆ (0,∞) be an interval and let u : I → R. The following assertions
are equivalent:

(1) u(r) is r−β-convex on I ;

(2) u(r−1/β) is convex on ϕ(I ), where ϕ(r)= r−β ;

(3) rβu(r) is rβ-convex on I .

Proof. The equivalence of (1) and (2) follows from the remark preceding the lemma. Taking ϕ(r)= 1/rβ ,
a simple computation shows that (1-7) is equivalent to

rβu(r)≤
rβ2 − rβ

rβ2 − rβ1
rβ1 u(r1)+

rβ − rβ1
rβ2 − rβ1

rβ2 u(r2),

which is equivalent to the rβ-convexity of rβu(r). �

The following result will be crucial later.

Lemma 2.2. Let a > 0. Suppose f : (0, a)→ R is bounded from above and r−β-convex on (0, a) for
some β > 0. Then f is monotone nondecreasing.

This lemma proves Lemma 1.4(i).

Proof. Let f be as in the assertion; by Lemma 2.1(2), g(r) := f (r−1/β) is convex on I := (a−β,∞).
Since f is bounded from above on (0, a), g is bounded from above on I . From elementary properties of
convex functions, since I is unbounded, we infer that g is monotone nonincreasing on I ; since β > 0,
this means that f is monotone nondecreasing on (0, a). �
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We prove a condition for r−β-convexity under a weak-differentiability assumption.

Lemma 2.3. Suppose β 6= 0 and let I ⊆ (0,∞) be an open interval. Suppose that u : I → R is a locally
absolutely continuous function. Then u is r−β-convex on I if and only if rβ+1u′(r) is essentially monotone
nondecreasing on I .

This lemma proves Lemma 1.4(ii).

Proof. By Lemma 2.1(2), u is r−β-convex if and only if F(r) := u(r−1/β) is convex in its domain in the
usual sense. On the other hand, since F is continuous, standard results (which we may omit) imply that
F is convex if and only if F ′ is essentially nondecreasing. Summing up,

u is r−β-convex if and only if F ′ is essentially nondecreasing. (2-3)

In turn, F ′ is essentially nondecreasing if and only if the map ρ 7→−βF ′(ρ−β) is essentially nondecreasing
on its domain. (Indeed, notice that if β > 0, then −β < 0 and ρ−β is decreasing; if β < 0, then −β > 0
and ρ−β is increasing.) Since

F ′(r)=−β−1r−(β+1)/βu′(r−1/β),

we get −βF ′(ρ−β)= ρβ+1u′(ρ). As a consequence, F ′ is essentially nondecreasing if and only this is
true of rβ+1u′(r), and this ends the proof, in view of (2-3). �

Convexity of a monotone C2 function with respect to a power of r brings along convexity with respect
to many other functions, as the following result shows.

Lemma 2.4. Let I ⊆ (0,∞) be an open interval and suppose that u : I → R is monotone nondecreasing
and locally a.c. If u is r−γ -convex on I , it is r−β-convex of I for every β ≥ γ .

Proof. Suppose u is monotone nondecreasing, locally a.c., and r−γ -convex on I . From Lemma 2.3, we
know that rγ+1u′(r) is essentially nondecreasing on I . Since u′(r)≥ 0 almost everywhere on I , if β ≥ γ ,
then rβ+1u′(r)= rβ−γ (rγ+1u′(r)) is essentially nondecreasing as well. Again by Lemma 2.3, we deduce
that u is r−β-convex on I . �

We now investigate convexity properties of an average integral function.

Corollary 2.5. Let a > 0 and f : (0, a] → R. Assume furthermore that α >−1 and rα f (r) is integrable
on (0, a). Let us consider the function

F(r)=
α+ 1
rα+1

∫ r

0
ρα f (ρ) dρ, r ∈ (0, a].

(a) If β 6= 0 and f is rβ-convex on (0, a], the same is true of F(r).

(b) Suppose that f is also continuous. Then F(r) is r−(α+1)-convex on (0, a] if and only if f (r) is
monotone nondecreasing.

As α >−1, note that the integrability of rα f (r) is ensured, for example, whenever f is bounded on
(0, a) (for example, when f extends continuously on [0, a]).
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Proof. We prove (a). Fix r ∈ (0, a]. The change of variable ρ = rs gives F(r)= (α+ 1)
∫ 1

0 sα f (rs) ds.
Setting r = t1/β , we have

F(t1/β)= (α+ 1)
∫ 1

0
sα f (t1/βs) ds.

For every fixed s ∈ [0, 1], the function t 7→ f (t1/βs) is convex, since f (t1/βs)= f ((tsβ)1/β), and since
r 7→ f (r1/β) is convex by the assumption of rβ-convexity of f . This immediately gives the convexity of
F(t1/β), that is, the rβ-convexity of F(r).

We finally prove (b). By Lemma 2.1(3) (with β=α+1), F(r) is r−(α+1)-convex if and only if rα+1 F(r)
is rα+1-convex. In turn, this last condition is equivalent to the fact that the function G(r) :=r−α(rα+1 F(r))′

is nondecreasing, this time by applying Lemma 2.3 to u(r) = rα+1 F(r) and β = −α − 1. Now, the
fundamental theorem of integral calculus ensures that G(r)= (α+1) f (r), and this function is monotone
nondecreasing if and only if the same is true of f (r). �

3. Derivatives of the average operators in the C2 case

In order to prove Theorem 1.2, we first need the derivatives of r 7→ mr (u)(x) and Mα
r (u)(x) for u of

class C2. An approximation argument will eventually yield the weak derivatives in the L-subharmonic
case (see Section 4).

Proposition 3.1. Let �⊆ RN be an open set and let u ∈ C2(�,R). For every fixed x ∈�, the functions

(0, R(x)) 3 r 7→ mr (u)(x),Mα
r (u)(x)

are differentiable and their derivatives are given by

d
dr

mr (u)(x)=
1
r2

∫
�r (x)

Lu(y) dy, (3-1)

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
Lu(y) dy, (3-2)

where fα is an antiderivative of rα−1 on (0,∞) (see (1-10)).

Proof. We fix the notation in the statement of the proposition. From the first mean-value formula for L in
(1-3), we get

d
dr

mr (u)(x)=
d
dr

(
u(x)+

∫
�r (x)

(
0x −

1
r

)
Lu
)

(by the co-area formula)

=
d
dr

∫ r

0

(∫
t=1/0x

(
0x −

1
r

)
Lu

dH N−1

|∇(1/0x)|

)
dt

=

∫
r=1/0x

(
0x −

1
r

)
Lu

d H N−1

|∇(1/0x)|
+

∫ r

0

(∫
t=1/0x

1
r2 Lu

dH N−1

|∇(1/0x)|

)
dt

=
1
r2

∫
�r (x)

Lu
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(the first integral is 0; we use the co-area formula again in the second one). We next prove (3-2). From
the second mean-value formula for L (1-3), we get

d
dr

Mα
r (u)(x)=−

(α+ 1)2

rα+2

∫ r

0
ρα
(∫

�ρ(x)

(
0x −

1
ρ

)
Lu
)

dρ+
α+ 1

r

∫
�r (x)

(
0x −

1
r

)
Lu =: −I+ II.

By applying Fubini’s theorem to the summand I we get

I=
(α+ 1)2

rα+2

∫
�r (x)

Lu(y)
(∫ r

1/0(x,y)

(
ρα0(x, y)− ρα−1

)
dρ
)

dy.

By recalling (1-10), since the inner integral in ρ is equal to

fα

(
1

0(x, y)

)
− fα(r)+

rα+1

α+ 1

(
0(x, y)−

1
rα+10α(x, y)

)
,

we derive for −I+ II the expression

(α+ 1)2

rα+2

∫
�r (x)

Lu
(

fα(r)− fα

(
1
0x

))
−
α+ 1

r

∫
�r (x)

Lu
(
0x−

1
rα+10αx

)
+
α+ 1

r

∫
�r (x)

(
0x−

1
r

)
Lu

=
(α+ 1)2

rα+2

∫
�r (x)

Lu
(

fα(r)− fα

(
1
0x

))
+
α+ 1

r

∫
�r (x)

Lu
(

1
rα+10αx

−
1
r

)
=
α+ 1
rα+2

∫
�r (x)

Lu
(
(α+ 1) fα(r)− (α+ 1) fα

(
1
0x

)
+

1
0αx
− rα

)
.

Now, the inner term in parentheses is equal to fα(r)− fα
( 1
0x

)
, if α = 0,

(α+ 1) fα(r)− (α+ 1) fα
( 1
0x

)
+α fα

( 1
0x

)
−α fα(r), if α 6= 0,

and, in turn, this equals fα(r) − fα(1/0x) after a cancelation in the formula for α 6= 0. Because
(d/dr)Mα

r (u)(x)=−I+ II, the proof is complete. �

Proposition 3.1 allows us to prove the needed characterization of the L-subharmonicity in the C2 case.

Proposition 3.2. Let �⊆ RN be an open set, and let u ∈ C2(�,R). Then the following conditions are
equivalent (here α >−1).

(1) u is L-subharmonic on �.

(2) Lu ≥ 0 on �.

(3) For every x ∈�, the function r 7→ mr (u)(x) is 1/r-convex on (0, R(x)).

(4) For every x ∈�, the function r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x)).

The interval (0, R(x)) in (3) and (4) above can be replaced with (0, ε(x)) (for some ε(x) > 0), that is,
two other characterizations hold true:

(5) for every x ∈�, there exists 0< ε(x)≤ R(x) such that the function r 7→ mr (u)(x) is 1/r-convex on
(0, ε(x));
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(6) for every x ∈�, there exists 0< ε(x)≤ R(x) such that the function r 7→ Mα
r (u)(x) is 1/rα+1-convex

on (0, ε(x)).

Proof. Owing to the submean characterizations of the L-subharmonicity recalled in Section 1, u ∈ S(�)

if and only if u(x) ≤ mr (u)(x) for every x ∈ � and every r ∈ (0, R(x)). When u is C2, due to the
representation formula (1-3), this is clearly equivalent to Lu≥ 0 on� (recall that 0(x, y)−1/r is positive
on �r (x)). This proves the equivalence of conditions (1) and (2) above.

We now prove the equivalence of conditions (2) and (3). Since mr (u)(x) is differentiable w.r.t. r (see
Proposition 3.1), by Lemma 2.3 we obtain that condition (3) holds true if and only if the function

F(r) := r2 d
dr

mr (u)(x)

is monotone nondecreasing on (0, R(x)). By (3-1), we have F(r) =
∫
�r (x)

Lu, and this function is
nondecreasing if and only if Lu ≥ 0 (indeed, recall that �r (x) shrinks to {x} as r→ 0). This shows the
equivalence of (2) and (3).

The equivalence of (2) and (4) can be proved analogously, by showing that

Fα(r) := rα+2 d
dr

Mα
r (u)(x)

is monotone nondecreasing on (0, R(x)), this time by using (3-2) (and the fact that fα is strictly increasing
for every α; see (1-10)).

Obviously, condition (3) implies condition (5), and (4) implies (6).
Finally, we prove that conditions (5) and (6) imply condition (2). Suppose by contradiction that

Lu(x) < 0 at some point x ∈�, and hence on some neighborhood U ⊂� of x . Due to our hypothesis
(H2)(b) on the fundamental solution 0, we can choose r2 > 0 so small that r2 < ε(x) and such that
�r2(x)⊂U . If r1 is any positive number less than r2, we derive that F(r2) < F(r1) and Fα(r2) < Fα(r1),
with the notations above for F and Fα . This shows that conditions (5) and (6) cannot be true, since they
are equivalent to the nondecreasing monotonicity on (0, ε(x)) of F and Fα , respectively (by Lemma 2.3).
This ends the proof. �

Remark 3.3. We observe that the equivalence “(2)⇔ (4)” may also be proved as follows, without the
aid of formula (3-2). By (3-1), condition (2) holds true if and only if mr (u)(x) is nondecreasing w.r.t. r
on (0, R(x)); now we can apply Corollary 2.5(b), which ensures that this last condition is satisfied if and
only if

r 7→
α+ 1
rα+1

∫ r

0
ραmρ(u)(x) dρ is

1
rα+1 -convex on (0, R(x)).

Owing to (1-5), this last assertion is nothing but condition (4).

4. Weak derivatives of the average operators of u ∈ S(�)

Our next task is to prove analogues of (3-1) and (3-2) (in the sense of weak derivatives) for arbitrary
L-subharmonic functions. To this end, we need to recall that the L-Riesz measure µu of u is characterized
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by the identity ∫
�

u(x)Lϕ(x) dx =
∫
�

ϕ(x) dµu(x) for every ϕ ∈ C∞0 (�,R). (4-1)

We notice that, fixing a positive r , the average operators mr (u)(x) and Mα
r (u)(x) are well posed, as

functions of the center x , for any x ∈�r , where

�r
:= {x ∈� :�r (x)⊂�}, (4-2)

if this set is nonempty. By our hypothesis (H2)(b) on the fundamental solution 0, it is easy to see that
�ε ↑� as ε ↓ 0. Moreover, it is not difficult to prove that

for every compact set K ⊂�, there exists ε > 0 such that K ⊂�ε. (4-3)

We are ready to give the following keystone result, whose proof is quite delicate.

Theorem 4.1 (derivatives of mr (u) and Mα
r (u)). Let � ⊆ RN be an open set and let u ∈ S(�) with

L-Riesz measure µu on �. Finally let x ∈� be fixed.

(i) The function r 7→mr (u)(x) is locally absolutely continuous, hence it is almost everywhere differentiable
and its weak derivative (coinciding with its derivative at the points where the latter exists) is given by

d
dr

mr (u)(x)=
µu(�r (x))

r2 . (4-4)

Moreover, mr (u)(x) can be prolonged with continuity at r = 0 if and only if x ∈�(u), and in this case
one has, for every r ∈ [0, R(x)),

mr (u)(x)= u(x)+
∫ r

0

µu(�ρ(x))
ρ2 dρ

= u(x)+
∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y). (4-5)

(ii) Let α > 0. The function r 7→ Mα
r (u)(x) is of class C1 on (0, R(x)); its derivative is

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y), (4-6)

where fα is as in (1-10). Moreover, Mα
r (u)(x) can be prolonged with continuity at r = 0 if and only if

x ∈�(u), and in this case one has, for r ∈ [0, R(x)),

Mα
r (u)(x)= u(x)+

∫ r

0

α+ 1
ρα+2

(∫
�ρ(x)

(
fα(ρ)− fα

(
1

0(x, y)

))
dµu(y)

)
dρ

= u(x)+
α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ. (4-7)

(iii) The same result as in (ii) holds true also for −1< α ≤ 0, provided that x ∈�(u) (in which case (4-7)
is also satisfied).

We observe that Theorem 4.1 proves Theorem 1.2.
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Remark 4.2. We remark that, for α > 0 and x ∈� (and for −1< α ≤ 0, provided that x ∈�(u)), (4-5)
and (4-7) produce the representation formulae

u(x)= mr (u)(x)−
∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y),

u(x)= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ.

This demonstrates Corollary 1.3. The above formulae are the analogues, of Poisson–Jensen type, of the
representation formulae (1-3).

Proof of Theorem 4.1. Let us fix ε > 0. Given u ∈ S(�), by the smoothing result in [Bonfiglioli and
Lanconelli 2013, Theorem 7.1] (requiring the C∞-hypoellipticity of L), there exists a nonincreasing
sequence un of smooth L-subharmonic functions on the set �ε (see (4-2)) converging point-wise to u on
�ε. Given x ∈�ε, if we set

Rε(x) := sup{r > 0 :�r (x)⊆�ε},

then limε→0+ Rε(x)= R(x) holds. This is a direct consequence of (4-3).
Hence, the theorem is proved if we show that, for any given x ∈�ε, the functions of r ∈ [0, Rε(x))

given by mr (u)(x) and Mα
r (u)(x) are locally a.c. on (0, Rε(x)), and that their weak derivatives are given

by (4-4) and (4-6).
Since un ∈ C∞(�ε,R), from (3-1) we have

d
dr

mr (un)(x)=
1
r2

∫
�r (x)

Lun

for every x ∈ �ε and every r ∈ (0, Rε(x)). Let ψ(r) be a smooth function compactly supported
in (0, Rε(x)); we multiply both sides of the above equality by ψ(r), we integrate with respect to
r ∈ (0, Rε(x)), and we use integration by parts in the left-hand side, thus getting∫

ψ ′(r)mr (un)(x) dr =
∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr. (4-8)

We aim to let n→∞ in this identity. To begin with, we claim that

lim
n→∞

∫
ψ ′(r)mr (un)(x) dr =

∫
ψ ′(r)mr (u)(x) dr. (4-9)

To prove this claim, we observe that, by arguing as in the proof of (5-2), we have

lim
n→∞

mr (un)(x)= mr (u)(x) for all x ∈�ε, r ∈ (0, Rε(x)). (4-10)

As a consequence of (4-10), (4-9) holds true if we prove that, in the left-hand side of (4-9), it is possible to
apply the dominated convergence theorem. This is indeed possible as a direct consequence of the bounds

u ≤ un ≤ u1 H⇒−∞< mr (u)(x)≤ mr (un)(x)≤ mr (u1)(x) <∞.
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We next investigate the right-hand side of (4-8). If we denote by [a, b] the support of ψ (recall that
0< a < b < Rε(x)), by Fubini’s theorem we have∫

ψ(r)
(

1
r2

∫
�r (x)

Lun

)
dr =

∫
ψ(r)

(
1
r2

∫
0(x,y)>1/r

Lun(y) dy
)

dr

=

∫
�b(x)

Lun(y)
(∫ b

max{1/0(x,y),a}
ψ(r)

dr
r2

)
dy =:

∫
�b(x)

Lun(y)9(y) dy.

Now the function 9 is supported in �b(x), it is identically equal to the constant function
∫ b

a ψ(r) dr/r2

on �a(x), and it is smooth because 0(x, · ) is smooth outside x . Hence we can integrate by parts two
times to derive ∫

ψ(r)
(

1
r2

∫
�r (x)

Lun

)
dr =

∫
un(y)L9(y) dy.

From u ≤ un ≤ u1 we get |un| ≤ max{|u|, |u1|}; hence, by recalling that L-subharmonic functions are
locally integrable [Negrini and Scornazzani 1987], and by observing that L9 ∈ C∞0 (�

ε), a dominated
convergence argument finally proves that

lim
n→∞

∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr =

∫
u(y)L9(y) dy

(4-1)
=

∫
9(y) dµu(y).

On the other hand, again by Fubini’s theorem, we infer that∫
9(y) dµu(y)=

∫
�b(x)

(∫ b

max{1/0(x,y),a}
ψ(r)

dr
r2

)
dµu(y)

=

∫
ψ(r)

(
1
r2

∫
�r (x)

dµu(y)
)

dr =
∫
ψ(r)

µu(�r (x))
r2 dr.

Summing up, we have proved that

lim
n→∞

∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr =

∫
ψ(r)

µu(�r (x))
r2 dr. (4-11)

Gathering together (4-9) and (4-11), from (4-8) we derive∫
ψ ′(r)mr (u)(x) dr =

∫
ψ(r)

µu(�r (x))
r2 dr.

From the arbitrariness of ψ ∈ C∞0 ((0, Rε(x)),R), this shows that mr (u)(x) possesses a weak derivative
on (0, Rε(x)), and this is equal to µu(�r (x))/r2. From the arbitrariness of ε > 0, we infer that mr (u)(x)
is weakly differentiable on (α, β) for every α, β such that 0< α < β < R(x), and its weak derivative is
µu(�r (x))/r2. Note that this function is integrable on (α, β), since∫ β

α

µu(�r (x))
r2 dr ≤

µu(�β(x))
α2 (β −α) <∞,

the last inequality following from the finiteness of µu on the compact subsets of �.
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This proves that mr (u)(x) is equal almost everywhere to a continuous function on (0, R(x)), say m(r),
and m(r) is locally a.c. on (0, R(x)), with weak derivative given by µu(�r (x))/r2; since absolutely
continuous functions are almost everywhere differentiable, we also get m′(r)= µu(�r (x))/r2 for almost
every r ∈ (0, R(x)). Moreover, since absolutely continuous functions satisfy the fundamental theorem of
calculus, we also have

m(r)= m(r1)+

∫ r2

r

1
ρ2µu(�ρ(x)) dρ,

whenever 0< r1 < r < R(x).
As mr (u)(x) is monotone (see (A.2) in Section 1), it can be equal almost everywhere to m(r) (which

is a continuous function) only if mr (u)(x)=m(r) for every r ∈ (0, R(x)). Thus mr (u)(x) inherits all the
above properties of m(r). In particular, whenever 0< r1 < r < R(x), we get

mr (u)(x)−mr1(u)(x)=
∫ r

r1

1
ρ2µu(�ρ(x)) dρ.

Letting r1→ 0+, by Beppo Levi’s theorem and by exploiting the m-continuity of L-subharmonic functions
(see property (A.2)), we obtain

mr (u)(x)− u(x)=
∫ r

0

1
ρ2µu(�ρ(x)) dρ,

where both sides are +∞ if and only if u(x)=−∞ (recall that mr (u)(x) is always finite). Otherwise,
when x ∈�(u) both sides are finite, and we get the first formula in (4-5). In this latter case, we derive that
µu(�ρ(x))/ρ2 is integrable on every compact subinterval of [0, R(x)), so that the function r 7→mr (u)(x)
(defined as u(x) when r = 0) is locally a.c. on [0, R(x)). The second formula in (4-5) can be obtained by
Tonelli’s theorem, since∫ r

0

1
ρ2µu(�ρ(x)) dρ =

∫ r

0

1
ρ2

(∫
1/0(x,y)<ρ

dµu(y)
)

dρ

=

∫
1/0(x,y)<r

(∫ r

1/0(x,y)

1
ρ2 dρ

)
dµu(y)=

∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y).

This completes the proof of the theorem where surface average operators are concerned. The case of
solid average operators can be proved analogously, this time starting from (3-2), and by recalling that
Mα

r (u)(x) is always finite if α > 0, and it is finite for −1< α ≤ 0 if x ∈�(u).
Note that the fact that Mα

r (u)(x) is of class C1 is a consequence of identity (1-5), together with the
continuity of mr (u)(x) up to r = 0 (when x ∈�(u)). The fact that the two formulae in (4-7) are equivalent
to one another can be proved by direct computations, by taking into account that∫ r

0

(∫
�ρ(x)

g(ρ, y) dµu(y)
)

dρ =
∫
�r (x)

(∫ r

1/0(x,y)
g(ρ, y) dρ

)
dµu(y)

for every integrable function g(ρ, y). �
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5. Subharmonicity and convexity of the average operators

We are ready to give the proof of Theorem 1.5. We highlight the fact that, over the course of this section,
we shall provide finer versions of Theorem 1.5, namely, Theorems 5.1 and 5.2 below.

Proof of Theorem 1.5. We split the proof into six short parts.

(1)⇒ (2). If u ∈ S(�) and x ∈�, by Theorem 4.1, r 7→ m(r) := mr (u)(x) is locally a.c. on (0, R(x))
and, due to identity (4-4), one has (for almost every r ∈ (0, R(x)))

r2m′(r)= µu(�r (x)),

the latter being a nondecreasing function of r . This shows that r2m′(r) is essentially monotone nondecreas-
ing on (0, R(x)). By Lemma 2.3 (for β = 1) we see that m(r) is r−1-convex. Finally, the m-continuity of
u is contained in (A.2). This proves statement (2) of the theorem.

(2)⇒ (3). This is obvious.

(3)⇒ (1). Let x ∈ �(u). By the assumption (3), the map r 7→ m(r) := mr (u)(x) is r−1-convex on
(0, R(x)). On the other hand, for 0< r ≤ a < R(x), one has

m(r)≤ sup{u(y) : y ∈�a(x)}<∞,

due to mr (1)(x)= 1, the upper semicontinuity of u, and the compactness of�a(x). Thus m(r) is bounded
from above on (0, a) for every positive a < R(x). An application of Lemma 2.2 (for β = 1) shows that
m(r) is monotone nondecreasing on (0, R(x)). Since u is m-continuous by assumption (3), this gives

u(x)= lim
r→0+

mr (u)(x)≤ mr (u)(x) for all x ∈�(u), r ∈ (0, R(x)).

On the other hand, the inequality u(x) ≤ mr (u)(x) is trivially satisfied when x /∈ �(u) (because this
means that u(x)=−∞). Therefore, one has u(x)≤ mr (u)(x) for every r ∈ (0, R(x)) and every x ∈�.
By the characterization (A.1) of the L-subharmonicity, we deduce that u ∈ S(�).

(1)⇒ (4). Let α > 0. If u ∈ S(�) and x ∈�, by Theorem 4.1, the function r 7→ M(r) := Mα
r (u)(x) is

C1 on (0, R(x)) and, due to identity (4-6), one has

rα+2 M ′(r)= (α+ 1)
∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y),

where fα is as in (1-10). Note that the function in the right-hand side is nondecreasing w.r.t. r , because
this is true of fα (and r > 1/0(x, y) on �r (x)). This shows that rα+2 M ′(r) is monotone nondecreasing
on (0, R(x)). An application of Lemma 2.3 (for β = α+ 1) proves that M(r) is r−(α+1)-convex. Finally,
the Mα-continuity of u is contained in (A.2) (with mr replaced with Mα

r ). This proves statement (4) of
the theorem.

(4)⇒ (1). Suppose there exists α > 0 such that r 7→ Mα
r (u)(x) is r−(α+1)-convex on (0, R(x)) for every

x ∈�. By arguing as in the above proof of “(3)⇒ (1)”, an application of Lemma 2.2 (for β = α+ 1)
shows that Mα

r (u)(x) is monotone nondecreasing on (0, R(x)). Since u is Mα-continuous by assumption
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(4), we get (see the above argument) u(x) ≤ Mα
r (u)(x) for every x ∈ � and r ∈ (0, R(x)). By the

characterization (A.1) of the L-subharmonicity (with mr replaced with Mα
r ), we deduce that u ∈ S(�).

(1)⇔ (5). This can be proved by using similar arguments as above (this time invoking identity (4-6) for
α ∈ (−1, 0] and x ∈�(u); note that fα is increasing also for nonpositive values of α; see (1-10)). �

We next turn to proving a more refined versions of the implications (1)⇒ (2), (3), (4), (5) of Theorem 1.5.

Theorem 5.1 (subharmonicity implies convexity of the average operators). Suppose that �⊆ RN is an
open set, and let u ∈ S(�). Then we have the following.

(1) For every x ∈ � the average operator mr (u)(x) is 1/r-convex on (0, R(x)); furthermore, it is
1/rβ-convex also for β ≥ 1.

(2) When α > 0, for every x ∈ �, the average operator Mα
r (u)(x) is 1/rα+1-convex on (0, R(x));

furthermore, it is 1/rβ-convex also for β ≥ 1.

(3) When −1 < α ≤ 0, for every x ∈ �(u), the average operator Mα
r (u)(x) is 1/rα+1-convex on

(0, R(x)); furthermore, it is 1/rβ-convex also for β ≥ α+ 1.

Proof. Let us fix ε > 0. Given u ∈ S(�), by the smoothing result in [Bonfiglioli and Lanconelli 2013,
Theorem 7.1] (recall that we assumed L to be C∞-hypoelliptic), there exists a nonincreasing sequence un

of smooth L-subharmonic functions on the set �ε (see (4-2)) converging point-wise to u on �ε. Given
x ∈�ε, if we set

Rε(x) := sup{r > 0 :�r (x)⊆�ε},

then limε→0+ Rε(x)= R(x) holds. (This is a direct consequence of (4-3).)
Hence, the theorem is proved if we show that, for any given x ∈�ε, the functions of r ∈ (0, Rε(x))

given by mr (u)(x) and Mα
r (u)(x) are r−β-convex, respectively, for β ≥ 1 and for β ≥min{1, α+ 1}.

To this end, let us observe that, since un ∈ S(�ε)∩C∞(�ε,R), from Proposition 3.2 we know the
following.

• mr (un)(x) is r−1-convex on (0, Rε(x)); since this function is smooth w.r.t. r and monotone nonde-
creasing (see (3-1) and recall that Lun ≥ 0), by Lemma 2.4 we infer that it is also r−β-convex for
every β ≥ 1.

• Mα
r (un)(x) is r−(α+1)-convex on (0, Rε(x)); from the r−1-convexity of the surface mean mr (un)(x)

we derive that Mα
r (un)(x) is also r−1-convex, owing to Corollary 2.5(a); since Mα

r (un)(x) is smooth
w.r.t. r and monotone nondecreasing (see (3-2)), by Lemma 2.4 we infer that it is also r−β-convex
for every β ≥min{1, α+ 1}.

We now show that the above properties are inherited by mr (u)(x) and Mα
r (u)(x), by passing to the limit

as n→∞. We prove it for solid average operators, the argument for surface average operators being
completely analogous. Let β ≥min{1, α+ 1}. We know that (setting ϕ(r)= r−β)

Mα
r (un)(x)≤

ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

Mα
r1
(un)(x)+

ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
Mα

r2
(un)(x) (5-1)
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for every r1, r, r2 ∈ (0, Rε(x)) such that r1 < r < r2. We claim that

lim
n→∞

Mα
r (un)(x)= Mα

r (u)(x) for all x ∈�ε, r ∈ (0, Rε(x)). (5-2)

Once this claim is proved, letting n→∞ in (5-1), we get

Mα
r (u)(x)≤

ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

Mα
r1
(u)(x)+

ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
Mα

r2
(u)(x)

for every r1, r, r2 ∈ (0, Rε(x)) such that r1 < r < r2. This is precisely what we aim to prove, that is,
Mα

r (u)(x) is an r−β-convex function of r on (0, Rε(x)).
We finally turn to prove the claimed (5-2). We fix any x ∈�ε and any r ∈ (0, Rε(x)). Let us consider

the sequence vn defined by

vn(x) := u1(x)− un(x), x ∈�ε.

Since {un}n is monotone nonincreasing, we infer that {vn}n is monotone nondecreasing and nonnegative.
Moreover, by construction of un , we have vn→ u1− u, as n→∞, point-wise on �ε. As Kα ≥ 0 (see
(1-2)), we are therefore entitled to apply the monotone convergence theorem to derive that

lim
n→∞

α+ 1
rα+1

∫
�r (x)

vn(y)Kα(x, y) dy =
α+ 1
rα+1

∫
�r (x)

(u1(y)− u(y))Kα(x, y) dy.

Recalling that Mα
r (u)(x) is finite valued (see Remark 1.1) for any α > 0, and also for−1<α≤ 0 provided

that x ∈�(u), we obtain the following identity from the above one (whenever Mα
r (u)(x) >−∞):

lim
n→∞

(Mα
r (u1)(x)−Mα

r (un)(x))= Mα
r (u1)(x)−Mα

r (u)(x).

By canceling out Mα
r (u1)(x) (when it is finite), we get (5-2) and the proof of statements (2) and (3) of

the theorem is complete. The proof of (1) is analogous, taking into account that mr (u)(x) is always finite
(see Remark 1.1). �

The next result provides the reverse implication of Theorem 5.1. Also, it proves refined versions of the
implications (2), (3), (4), (5)⇒ (1) of Theorem 1.5.

Theorem 5.2 (convexity of the average operators implies subharmonicity). Suppose that � ⊆ RN is
an open set and α > −1. Let u : �→ [−∞,∞) be an u.s.c. function such that �(u) intersects every
connected component of �.

Then, any of the following conditions implies that u is L-subharmonic in �:

(1) u is m-continuous in � and, for every fixed x ∈�(u), the average operator mr (u)(x) is 1/rγ -convex
on (0, R(x)) for some γ > 0.

(2) u is Mα-continuous in � and, for every fixed x ∈ �(u), the average operator Mα
r (u)(x) is 1/rγ -

convex on (0, R(x)) for some γ > 0.

We explicitly point out that this result holds true for every sub-Laplacian L on any Carnot group
of homogeneous dimension Q > 2, since L satisfies all the properties in Section 2 (see, for example,
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[Bonfiglioli et al. 2007]); hence, as a very special case, Theorem 5.2 holds true for the classical Laplace
operator 1 on RN , with N ≥ 3. This result seems to be new in the literature.

Proof. Since u is u.s.c., u is locally bounded from above. This ensures that, for every fixed x ∈ �,
mr (u)(x) and Mα

r (u)(x) are bounded from above on (0, a] for every positive a < R(x). If condition (1)
of Theorem 5.2 holds true (respectively condition (2)), we can apply Lemma 2.2 to derive that, for every
x ∈�(u), the average operator mr (u)(x) (respectively Mα

r (u)(x)) is monotone nondecreasing on (0, a]
for every a < R(x). Hence it is nondecreasing on the whole of (0, R(x)). Since u is supposed to be
m-continuous (respectively Mα-continuous), we infer that, for every x ∈�(u), one has

u(x)= lim
r→0+

mr (u)(x)≤ mr (u)(x) (respectively u(x)= lim
r→0+

Mα
r (u)(x)≤ Mα

r (u)(x))

for every r ∈ (0, R(x)). On the other hand, the inequality u(x)≤mr (u)(x) (respectively u(x)≤Mα
r (u)(x))

is trivially satisfied when x /∈�(u) (since this means that u(x)=−∞). Therefore, one has u(x)≤mr (u)(x)
(respectively u(x)≤ Mα

r (u)(x)) for every r ∈ (0, R(x)) and every x ∈�. By the characterization (A.1)
of the L-subharmonicity (respectively the analogue of (A.1) with mr replaced with Mα

r ), we deduce that
u is L-subharmonic in �. �

6. The case of 0-annuli

In this section we use the following notation: given a, b such that 0≤ a < b ≤∞, and given x0 ∈ RN ,
we set

Aa,b(x0) :=

{
x ∈ RN

:
1
b
< 0(x0, x) <

1
a

}
(6-1)

(with the convention that 1/∞= 0 and 1/0=∞), and we say that Aa,b(x0) is the 0-annulus of center x0

and radii a, b. The notation Aa,b will apply instead of Aa,b(x0) whenever x0 is understood. Our main
task is to prove the following result, from which applications will be derived in Section 7.

Theorem 6.1. Let 0≤ a < b ≤∞ and x0 ∈ RN be fixed. Suppose u is L-subharmonic on Aa,b(x0). Then
the function

(a, b) 3 r 7→ mr (u)(x0)

is r−1-convex and locally absolutely continuous on (a, b). For every α, β such that a < α < β < b, there
exists c (depending on a, α, β, b, u, x0) such that the (weak) derivative of mr (u)(x0) on (α, β) is given by

d
dr

mr (u)(x0)=
1
r2 (µu(Aα,r (x0))+ c) (6-2)

for almost every r ∈ (α, β). As usual, µu is the L-Riesz measure of u on Aa,b(x0).

This proves Theorem 1.6.

Remark 6.2. We cannot expect that analogues of Theorems 5.1 and 5.2 will hold true in the case of
0-annuli, since, in the case of a 0-annulus

• L-subharmonicity does not necessarily imply r−β-convexity, when β > 1;
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• solid α-means are not well-posed;

• mr (u)(x0) is not necessarily monotone nondecreasing.

See Remark 6.5 at the end of the section for related results (and a converse of Theorem 6.1 for C2

functions which are “radial” with respect to 0).

In order to prove Theorem 6.1, we need a substitute for identity (3-1). This is given in the next result.

Lemma 6.3. Let x0 ∈RN and 0≤ R1 < R2≤∞ be fixed, and suppose that u ∈C2(AR1,R2(x0),R). Given
any R ∈ (R1, R2), one has

d
dr

∣∣∣
r=R

mr (u)(x0)=
1
R2

(∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
+

∫
Aρ,R(x0)

Lu
)

(6-3)

for every ρ ∈ (R1, R). In particular, we have

r2
2

d
dr

∣∣∣
r=r2

mr (u)(x0)− r2
1

d
dr

∣∣∣
r=r1

mr (u)(x0)=

∫
Ar1,r2 (x0)

Lu (6-4)

for every r1, r2 such that R1 < r1 < r2 < R2.

Proof. Let �⊂ RN be any bounded open set whose boundary is regular enough to support the divergence
theorem. The divergence form (2-1) of L= div(A∇) gives∫

�

(uLv− vLu)=
∫
∂�

(u〈A∇v, νest〉− v〈A∇u, νest〉) dH N−1 (6-5)

for every u, v∈C2(�,R). Here νest denotes the exterior normal unit vector on ∂�. Let u∈C2(AR1,R2(x0))

and let us take any ρ, r such that R1 < ρ < r < R2. Choosing �= Aρ,r (x0) and v =−0x0 , and since

νest(x)=
{
−ν(x) := +∇0x0(x)/|∇0x0(x)|, if x ∈ ∂�ρ(x0),

+ν(x) := −∇0x0(x)/|∇0x0(x)|, if x ∈ ∂�r (x0),
(6-6)

from (6-5) we derive (recalling that 0x0 is L-harmonic on RN
\ {x0})∫

Aρ,r (x0)

0x0Lu = mr (u)(x0)−mρ(u)(x0)+
1
r

Jr (u)(x0)−
1
ρ

Jρ(u)(x0), (6-7)

where mr is the usual surface average operator, while

JR(u)(x0) :=

∫
∂�R(x0)

〈A∇u, ν〉 dH N−1 for R = r and R = ρ, (6-8)

and ν is as in (6-6) (note that ν is the normal unit vector on ∂�R(x0) which is exterior to the set �R(x0)).
If in (6-5) we take v ≡−1 and �= Aρ,r (x0), we get∫

Aρ,r (x0)

Lu = Jr (u)(x0)− Jρ(u)(x0). (6-9)

We set f (r) := mr (u)(x0) for brevity and we differentiate both sides of (6-7) w.r.t. r :

d
dr

∫
Aρ,r (x0)

0x0Lu = f ′(r)−
1
r2 Jr (u)(x0)+

1
r

d
dr

Jr (u)(x0). (6-10)
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On the one hand, owing to the co-area formula, we have

d
dr

∫
Aρ,r (x0)

0x0Lu

=
d
dr

∫
Aρ,r (x0)

(
1
r
+0x0 −

1
r

)
Lu

=−
1
r2

∫
Aρ,r (x0)

Lu+
1
r

d
dr

∫
Aρ,r (x0)

Lu+
d
dr

∫ r

ρ

(∫
1/0x0=t

(
0x0 −

1
r

)
Lu

d H N−1

|∇(1/0x0)|

)
dt

=−
1
r2

∫
Aρ,r (x0)

Lu+
1
r

d
dr

∫
Aρ,r (x0)

Lu

+

∫
1/0x0=r

(
0x0 −

1
r

)
Lu

dH N−1

|∇(1/0x0)|
+

∫ r

ρ

(∫
1/0x0=t

1
r2 Lu

d H N−1

|∇(1/0x0)|

)
dt.

The third summand is 0, while the fourth is the opposite of the first one. Thus

d
dr

∫
Aρ,r (x0)

0x0Lu =
1
r

d
dr

∫
Aρ,r (x0)

Lu
(6-9)
=

1
r

d
dr

Jr (u)(x0).

This shows that the left-hand side of (6-10) and the last summand of its right-hand side are equal. Thus
(6-10) is equivalent to

f ′(r)=
1
r2 Jr (u)(x0).

Taking into consideration (6-9) again, we get

f ′(r)=
1
r2

(
Jρ(u)(x0)+

∫
Aρ,r (x0)

Lu
)
, R1 < ρ < r < R2. (6-11)

This proves (6-3). Equivalently, we also obtain that

r2 f ′(r)= Jρ(u)(x0)+

∫
Aρ,r (x0)

Lu, R1 < ρ < r < R2. (6-12)

If r1, r2 are such that R1 < r1 < r2 < R2, we can choose any ρ satisfying R1 < ρ < r1. Taking r = r2 in
(6-12) and subtracting side by side what we get by taking r = r1 in (6-12), we finally obtain

r2
2 f ′(r2)− r2

1 f ′(r1)=

∫
Aρ,r2 (x0)

Lu−
∫

Aρ,r1 (x0)

Lu =
∫

Ar1,r2 (x0)

Lu,

which is (6-4). �

We remark that, if u ∈ C2(�R2(x0),R), letting ρ→ 0+ in (6-3), one gets back formula (3-1). Indeed,

lim
ρ→0+

∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
= 0,

as it follows from the identity
∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
=
∫
∂�ρ(x0)

Lu (a consequence of (6-5) taking
v ≡−1 and �=�ρ(x0)).
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Proof of Theorem 6.1. First we observe that Theorem 6.1 holds true if, together with the other assumptions,
u is of class C2. Indeed, if u is C2 and L-subharmonic, we have Lu ≥ 0 on Aa,b; thus (6-4) proves
that r2(d/dr)(mr (u)(x0)) is monotone nondecreasing on (a, b). Lemma 2.1(3) ensures that mr (u)(x0) is
r−1-convex on (a, b) and that formula (6-4) holds true.

The general case of u ∈ S(Aa,b) can be proved by the very same approximation technique as in the
proofs of Theorems 4.1 and 5.1. �

Remark 6.4. Another example of a convex function naturally associated to an L-subharmonic function is

B(r) := sup
∂�r (x0)

u.

Indeed, let us prove that, if u ∈ S(Aa,b(x0)), then B(r) is an r−1-convex function of r ∈ (a, b). Fix any
r1, r2 such that a < r1 < r2 < b. We need to prove that B(r)≤ I (r) for every r ∈ (r1, r2), where

I (r)=
1/r2− 1/r
1/r2− 1/r1

B(r1)+
1/r − 1/r1

1/r2− 1/r1
B(r2).

We remark that I (ri )= B(ri ) for i = 1, 2 and

I (r)=
1
r

a+ b, where a =
B(r2)− B(r1)

1/r2− 1/r1
, b =

B(r1)/r2− B(r2)/r1

1/r2− 1/r1
.

With these same notations, we set v(x) := I (1/0(x0, x))= a0(x0, x)+ b. Clearly v is L-harmonic in
RN
\ {x0}; moreover, for every x ∈ ∂�ri (x0), one has

v(x)= I (ri )= B(ri )= sup
∂�ri (x0)

u ≥ u(x).

By the weak maximum principle for the L-subharmonic function u−v on the bounded open set Ar1,r2(x0),
we infer that u(x) ≤ v(x) for every x ∈ Ar1,r2(x0). In particular, if we take x ∈ ∂�r (x0), we get
u(x)≤ v(x)= I (r); taking the supremum over ∂�r (x0), we get exactly the needed inequality B(r)≤ I (r).

Remark 6.5. (a) Surface average operators of L-subharmonic functions on a 0-annulus need not be
monotone nondecreasing. Indeed, if for example L = 1 is the classical Laplace operator on R3, the
function

u(x)= (‖x‖− 2)2, where ‖x‖ =
√

x2
1 + x2

2 + x2
3 ,

is subharmonic on the annulus {4/3< ‖x‖< 3}, but mr (u)(0)= (r − 2)2 is not monotone on (4/3, 3).

(b) A converse of Theorem 6.1 holds true for C2 functions which are “radial” with respect to 0. More
precisely, suppose u has the form

u(x)= f (0(x0, x)), x ∈ Aa,b(x0),

for some f ∈ C2((1/b, 1/a),R). A direct computation based on (2-1) and on the L-harmonicity of
0(x0, · ) on RN

\ {x0}, proves that

Lu = f ′(0x0)L0x0 + f ′′(0x0)
∑
i, j

ai, j∂i0x0∂ j0x0 = f ′′(0x0)〈A∇0x0,∇0x0〉.
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Thus u is L-subharmonic on Aa,b(x0) (that is, Lu ≥ 0) if and only if (recall that A is positive semidefinite)
f ′′ ≥ 0 on (1/b, 1/a). On the other hand, if r ∈ (a, b),

mr (u)(x0)=

∫
0(x0,x)=1/r

f (0(x0, x))k(x0, x) dH N−1(x)= f (1/r).

Thus, mr (u)(x0) is r−1-convex on (a, b) if and only if f (r) is convex on (1/b, 1/a). This proves that u
is L-subharmonic on Aa,b(x0) if and only if mr (u)(x0) is an r−1-convex function on (a, b).

(c) If u is as in part (b), then mr (u)(x0) is r−β-convex on (a, b) if and only if (see Lemma 2.1) f (r1/β)

is convex on (b−β, a−β); this last condition holds if and only if

f ′′(ρ)− (β − 1)
f ′(ρ)
ρ
≥ 0 for all ρ ∈ (b−1, a−1).

Now, when β > 1, it is very simple to produce a function f satisfying this last condition on some open
interval (b−1, a−1), but violating f ′′ ≥ 0 on the same interval (recall that this last condition is equivalent
to u being L-subharmonic on Aa,b): for instance, f (ρ)=−ρβ does the job. With this choice of f , the
associated function u(x)=−(0(x0, x))β is not L-subharmonic on any annulus Aa,b(x0), but mr (u)(x0)

is r−β-convex on every subinterval (b−1, a−1) of (0,∞).

7. Applications

We are ready to give the following proofs.

Proof of Corollary 1.7. From (6-4) we derive that r2(d/dr)mr (u)(x0) is constant on (a, b), that is, there
exists c1 ∈ R such that

d
dr
(mr (u)(x0))=−

c1

r2 =
d
dr

(
c1

r

)
for every r in the interval (a, b). �

We now prove the 0-symmetry result in Theorem 1.8. Hypothesis (HH) in Section 1 is assumed.

Remark 7.1. Thanks to our hypoellipticity assumption (H1), by the strong maximum principle for L

(proved in [Abbondanza and Bonfiglioli 2013, Theorem 3.4]) we infer that the harmonic sheaf associated
with L is elliptic (in the sense of [Constantinescu and Cornea 1972]). By standard techniques, hypothesis
(HH) is then fulfilled, for example, in the following cases:

(1) if L can be put in the form L =
∑m

j=1 X2
j , where X1, . . . , Xm are smooth vector fields satisfying

Hörmander’s rank condition on RN ;

(2) for x0 = 0, if L is homogeneous w.r.t. some group of dilations on RN (this is true, for example, if L

is a sub-Laplacian on a Carnot group).

Here we agree to say that a family of maps {δλ}λ>0 is a group of dilations if

δλ : R
N
→ RN , δλ(x1, . . . , xN )= (λ

σ1 x1, . . . , λ
σN xN ),
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where the exponents σ j are strictly positive real numbers. Moreover, we say that L is δλ-homogeneous of
positive degree if there exists σ > 0 such that L(u ◦ δλ)= λσ (Lu) ◦ δλ for every u ∈ C2(RN ,R).

Proof of Theorem 1.8. We follow an idea [Axler et al. 1992] exploited in the classical case of the Laplace
operator. The proof is split into three steps.

(I) We set A := A0,b(x0). Given u ∈ C(A,R), we introduce the operator

S(u)(x) := m1/0(x0,x)(u)(x0), x ∈ A.

Clearly, one has S(1)≡ 1 and, moreover, 0x0 is another fixed function for S, since

S(0x0)(x)= m1/0(x0,x)(0x0)(x0)=

∫
0(x0,y)=0(x0,x)

0(x0, y)k(x0, y) dH N−1(y)

= 0(x0, x)S(1)(x)= 0x0(x).

We observe that if u is L-harmonic in A, then (by Corollary 1.7)

S(u)(x)= c0(x0, x)+ c2, x ∈ A, (7-1)

for some constants c, c2. In particular, if u is L-harmonic in A, then S(u) is L-harmonic in A (actually
S(u) extends to an L-harmonic function in RN

\ {x0}). Furthermore, by the above results ensuring that 1
and 0x0 are fixed functions for S, we infer that

if u is L-harmonic in A, then S(S(u))= S(u). (7-2)

Next we see how S behaves on a function w enjoying the hypotheses of the theorem. First notice that,
since w vanishes on ∂�b(x0) with continuity, the same is true of S(w). Moreover S(w) is L-harmonic in
A (since this is true of w) and

S(w)(x)= c(0(x0, x)− 1/b). (7-3)

Here we used (7-1), observing that c2 =−c/b is the only choice for c2 which ensures the vanishing of
S(w) on ∂�b(x0).

Comparing (7-3) with the thesis of the theorem, we recognize that the theorem is proved if we are able
to show that w is fixed by S, that is, S(w)= w on A.

(II) We let c := C−1, where C is the constant in hypothesis (HH). Note that 0< c< 1. We claim that the
following property holds true:

If h is L-harmonic in A and continuous up to ∂�b(x0)

with h ≡ 0 on ∂�b(x0) and h ≥ 0 on A, then h ≥ cS(h) on A. (7-4)

With this result in hand, the proof of Theorem 1.8 follows. Indeed, suppose w enjoys the hypothesis of
the theorem; let us prove by induction that, setting

cn := 1− (1− c)n, n ∈ N∪ {0}, (7-5)

we have
w ≥ cn S(w) on A for any n ∈ N∪ {0}. (7-6)
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The case n = 0 follows from the nonnegativity of w on A and c0 = 0.
Suppose (7-6) holds true, and let us prove it for n + 1 replacing n. The function h := w− cn S(w)

satisfies the hypothesis of statement (7-4): indeed, from the last remarks of part I above, it follows that h
is L-harmonic in A, continuous up to ∂�b(x0) and vanishing there. Finally h ≥ 0 on A is the inductive
assumption.

Consequently, from the claimed result in (7-4), we have on A

0≤ h− cS(h)= w− cn S(w)− cS(w− cn S(w))

= w− cn S(w)− cS(w)+ ccn S(w)

= w− cn+1S(w).

Here we used (7-2) together with cn + c− ccn = cn+1 (see the very definition (7-5) of cn). Thus (7-6) is
proved by induction.

Letting n→∞ in it, we inferw≥ S(w) on A, since cn→ 1, as 0< 1−c< 1. Recalling what we proved
in part I, we are done if we can also prove the reverse inequality w≤ S(w). Suppose by contradiction that
w(x) > S(w)(x) for some x ∈ A; by (7-2), this gives S(w)(x) > S

(
S(w)

)
(x)= S(w)(x), a contradiction.

Note that the above inequality is a consequence of S(1) = 1 and of the fact that S is a nondecreasing
operator (that is, if u ≤ v on A, then S(u)≤ S(v) on A).

(III) We are thus left with the proof of the claimed (7-4). Notice that (HH) can be restated as follows:

ch(z)≤ h(x), whenever (θb)−1 < 0(x0, z)= 0(x0, x) <∞ and h ≥ 0 is L-harmonic in A. (7-7)

Let h be as in (7-4). Arguing as in part I of the proof, we infer that H := h − cS(h) is L-harmonic
in A, continuous up to ∂�b(x0), and H = 0 on ∂�b(x0). Let us fix any arbitrary r ∈ (0, θb). We take
x, z ∈ ∂�r (x0); recall that this means

0(x0, x)= 0(x0, z)= 1/r.

Let us consider the inequality in the left-hand side of (7-7), which is fulfilled since (θb)−1 < 1/r <∞;
by multiplication by k(x0, z) (see the notation in (1-2)), and by integration w.r.t. z ∈ ∂�r (x0), we get
cmr (h)(x0)≤ h(x). Recalling that r = 1/0(x0, x), we infer

cm1/0(x0,x)(h)(x0)≤ h(x), that is, cS(h)(x)≤ h(x).

The arbitrariness of x ∈ ∂�r (x0) implies that H(x) ≥ 0 on ∂�r (x0). By the weak minimum principle
applied to the L-harmonic function H and to the bounded open set Ar,b(x0), we derive H ≥ 0 on
Ar,b(x0). Since r ∈ (0, θb) is arbitrary, this yields H ≥ 0 on A0,b(x0)= A, that is, h ≥ cS(h) on A. This
proves (7-4). �

We end the paper by giving the following proof.

Proof of Theorem 1.9. Let ε > 0 be so small that �ε(x0)⊂�. Since V :=�ε(x0) is an L-regular open
set, setting f := u|∂�ε(x0), we can consider H V

f , the unique L-harmonic function in V , continuous up to
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∂V , coinciding with u on ∂V . Let

w(x) := u(x)− H V
f (x)+0(x0, x)− 1/ε, x ∈ O :=�ε(x0) \ {x0}.

The function w is L-harmonic in O and continuous up to ∂�ε(x0), where it vanishes; moreover,
lim infx→x0 w(x)≥−H V

f (x0)−1/ε+limx→x0 0(x0, x)=∞, the inequality following from the hypothesis
u ≥ 0. The weak minimum principle for w and for the bounded open set O proves that w ≥ 0 on O .
Note that O is the 0-annulus A0,ε(x0). We are therefore entitled to apply Theorem 1.8 and derive that
w = c1(0x0 − 1/ε) on O , for some constant c1. As a consequence, we get u = c0x0 + H on O , where
c = c1− 1 and H = H V

f − c/ε. From u = c0x0 + H , the finiteness of H(x0) and the hypothesis u ≥ 0,
we get c ≥ 0. This proves that the function h defined on � \ {x0} by h(x) := u(x)− c0(x0, x) is not only
L-harmonic, but (as it coincides with H on O) it extends L-harmonically through x0. �
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GLOBAL UNIQUENESS FOR AN IBVP
FOR THE TIME-HARMONIC MAXWELL EQUATIONS

PEDRO CARO AND TING ZHOU

In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynam-
ics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the
electric permittivity, and the conductivity, are described by continuously differentiable functions.
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1. Introduction

Let � be a bounded nonempty open subset of R3 with boundary denoted by ∂�. Consider functions
µ, ε, σ ∈ L∞(�), representing magnetic permeability, electric permittivity, and conductivity, respectively,
such that µ(x) ≥ µ0, ε(x) ≥ ε0, and σ(x) ≥ 0 almost everywhere in � for positive constants µ0 and
ε0. At frequency ω > 0, for each medium characterized by (µ, ε, σ ), we have access to all available
data of the boundary tangential components of electric and magnetic fields. More specifically, we
have access to the Cauchy data set C(µ, ε, σ ;ω) consisting of all boundary graded forms f 1

+ f 2
∈

TH δ
(
∂�;31R3

)
⊕ TH d

(
∂�;32R3

)
(see the Appendix for the definitions of these spaces and results

related to l-forms) such that there exists u1
+ u2
∈ H d

(
�;31R3

)
⊕ H δ(�;32R3) satisfying

δu2
+ iωεu1

− du1
+ iωµu2

= σu1 (1-1)

almost everywhere in � and

δ tr u2
+ d tr u1

= f 1
+ f 2 (1-2)

The first author is supported by ERC-2010 Advanced Grant, 267700 INVPROB and belongs to MTM 2011-02568. The second
author is partly supported by NSF grant DMS1161129.
MSC2010: 35R30, 35Q61.
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in the sense of TH δ
(
∂�;31R3

)
⊕ TH d

(
∂�;32R3

)
. Here u1 is the 1-form representation of the electric

field and u2 is the 2-form representation of the magnetic field. It is worth pointing out that the graded
equations (1-1) and (1-2) are equivalent to the following systems of time-harmonic Maxwell equations:{

δu2
+ iωεu1

= σu1,

du1
− iωµu2

= 0

almost everywhere in � and {
δ tr u2

= f 1,

d tr u1
= f 2

in the sense of the space TH δ
(
∂�;31R3

)
for the 1-form equation and in the sense of TH d

(
∂�;32R3

)
for the 2-form equation. Throughout this paper, for convenience, we follow the graded form notation
rather than the l-form system.

We are interested in the inverse boundary value problem (IBVP) of recovering µ, ε, σ ∈ L∞(�) from
the knowledge of C(µ, ε, σ ;ω). This problem is just a reformulation in differential forms of the usual
IBVP for the time-harmonic Maxwell equations proposed in [Somersalo et al. 1992], where ∂� was
smooth enough, the electromagnetic fields (E,H) satisfied{

∇ ×E− iωµH= 0,
∇ ×H+ iω(ε+ iσ/ω)E= 0

almost everywhere in �, and the Cauchy set C(µ, ε, σ ;ω) consisted of pairs

(ν×E|∂�, ν×H|∂�) ∈ TH 1/2
Div (∂�)× TH 1/2

Div (∂�)

(see [Somersalo et al. 1992] for precise definitions) with ν denoting the unit outer normal vector to ∂�.
The uniqueness question associated to this problem is as follows. Given a frequency ω > 0 and two sets
of parameters {µ j , ε j , σ j } ⊂ L∞(�) with j ∈ {1, 2} such that µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0
almost everywhere in �, does C(µ1, ε1, σ1;ω)=C(µ2, ε2, σ2;ω) imply µ1 =µ2, ε1 = ε2, and σ1 = σ2?

In this paper we provide the answer to this question in the case where � is locally described by the
graph of a Lipschitz function and µ, ε, and σ are continuously differentiable in �. This is stated in our
main theorem as follows.

Theorem 1.1. Let � be a bounded nonempty open subset of R3. Assume that ∂� is locally described by
the graph of a Lipschitz function. Let µ j , ε j , and σ j with j ∈ {1, 2} belong to C1(�). At frequency ω > 0,
suppose ∂αµ1(x) = ∂αµ2(x), ∂αε1(x) = ∂αε2(x), and ∂ασ1(x) = ∂ασ2(x) for α ∈ N3 with |α| ≤ 1 and
all x ∈ ∂�. Then

C(µ1, ε1, σ1, ω)= C(µ2, ε2, σ2, ω)H⇒ µ1 = µ2, ε1 = ε2 and σ1 = σ2.

A precise definition of the space denoted by C1(�) is given at the beginning of Section 3. Our result
assumes the coefficients to be equal up to order one on the boundary. This is required to extend them
identically outside the domain. As far as we know, the only available results about uniqueness on the
boundary in this context are due to Joshi and McDowall [McDowall 1997; Joshi and McDowall 2000],
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where ∂� is assumed to be locally described by a smooth function and the Cauchy data sets are given by
the graph of a bounded map.

The IBVP considered in this paper was first proposed by Somersalo, Isaacson, and Cheney [Somersalo
et al. 1992]. Lassas [1997] found a relation between this IBVP and the inverse conductivity problem
proposed by Calderón [2006]. In general terms, the latter problem can be seen as the low-frequency limit
of the former. Calderón’s problem in electrical impedance tomography consists of reconstructing the
conductivity of a domain by measuring electric voltages and currents on the boundary. The uniqueness
question arising in this problem is whether the conductivity σ (σ ∈ L∞(�) and σ(x)≥ σ0 > 0 for almost
every x ∈ �), in a divergence type equation ∇ · (σ∇u) = 0 in �, can be determined uniquely by the
boundary Dirichlet-to-Neumann map 3σ : H 1(�)/H 1

0 (�)−→ (H 1(�)/H 1
0 (�))

∗ defined as

〈3σ f | g〉 =
∫
�

σ∇u · ∇v dx

for any f, g ∈ H 1(�)/H 1
0 (�), where u ∈ H 1(�) is the weak solution of the conductivity equation

∇ · (σ∇u)= 0 in � with u|∂� = f and v ∈ H 1(�) with v|∂� = g. A significant number of works have
been devoted to answering not only the question of uniqueness but also the questions of reconstruction and
stability. The most successful approach to treat this problem was introduced by Sylvester and Uhlmann
[1987] and it is based on the construction of complex geometrical optics (CGO) solutions. In dimension 2,
the problem is rather well understood and some important results can be found in [Astala and Päivärinta
2006; Clop et al. 2010; Nachman 1996]. In dimension greater than 2, there are still many open questions
about the sharp smoothness to ensure uniqueness, stability, and reconstruction. Some important results
can be found in [Haberman and Tataru 2013; Sylvester and Uhlmann 1987; Nachman 1988; Alessandrini
1988]. Some recent results are [Caro et al. 2013; García and Zhang 2012]. For a more complete list of
papers on this problem, we refer to the survey papers [Uhlmann 2009; 2008].

The literature for the IBVP in electrodynamics under consideration is not as extensive as for Calderón’s
problem. [Somersalo et al. 1992] contains the first partial results for the linearization of the problem at
constant electromagnetic parameters, and Sun and Uhlmann [1992] provided a local uniqueness theorem.
The first global uniqueness result is due to Ola, Päivärinta, and Somersalo [Ola et al. 1993], where the
authors assume that the electromagnetic coefficients are C3-functions and ∂� is of class C1,1. They also
provided a reconstruction algorithm to recover the coefficients. The arguments in [Ola et al. 1993] are
rather complicated, since the method developed by Sylvester and Uhlmann [1987] does not immediately
apply. The lack of ellipticity of Maxwell’s equations makes the problem more complicated than Calderón’s.
Ola and Somersalo [1996] simplified the proof in [Ola et al. 1993] by establishing a relation between
Maxwell’s equations and a matrix Helmholtz equation with a potential. This relation helps to deal with
the lack of ellipticity, allowing them to produce exponentially growing solutions for Maxwell’s equations
from the CGOs for the matrix Helmholtz equation. This idea has been extensively used in proving many
other results and it will be used in this paper as well. There are other results related to the IBVP under
consideration in the literature. Kenig, Salo, and Uhlmann [Kenig et al. 2011] proved uniqueness for the
corresponding IBVP in some noneuclidean geometries. With certain types of partial boundary data, the
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uniqueness was addressed by Caro, Ola, and Salo [Caro et al. 2009]; see also [Caro 2011]. The question
of stability has been studied in [Caro 2010] assuming full data and in [Caro 2011] assuming partial data.
Zhou [2010] used the enclosure method to reconstruct electromagnetic obstacles.

In our paper, Theorem 1.1 lowers significantly the regularity of the coefficients and the smoothness of
the boundary of � assumed in previous results (despite the fact that domains with Lipschitz boundaries
were already considered in [Caro 2010]) and it matches the regularity assumptions made in [Haberman
and Tataru 2013] for Calderón’s problem.

The general line of our paper follows the argument in [Ola and Somersalo 1996], relating (1-1) with
an equation given by a compactly supported zeroth order perturbation of the graded Hodge–Helmholtz
operator, namely

(δd + dδ−ω2µ0ε0)w j + Q jw j = 0, (1-3)

where Q j = Q(ε j + iσ j/ω,µ j , ω) with j ∈ {1, 2} has to be thought of as a weak potential containing
second partial derivatives of µ j , ε j , and σ j . Using this relation, we are able to prove the integral formula

〈(Q2− Q1)w1 | v2〉 = 0, (1-4)

where w1 is a solution to (1-3) that produces a solution to (1-1) and v2 is a solution to a first order elliptic
equation (see Section 3 for more details). This integral formula, with CGOs w1 and v2 as inputs, will be
the starting point of our proof.

To lower the regularity of the electromagnetic parameters, we adopt a recent improvement of Sylvester
and Uhlmann’s method that Haberman and Tataru developed [2013] to prove uniqueness of the Calderón
problem with continuously differentiable conductivities. For such regularity, solving a conductivity
equation can be reduced to solving a Schrödinger equation, −1v +mqv = 0, where mq denotes the
multiplication operator by the compactly supported weak potential q=1

√
σ/
√
σ . Note that this reduction

was first used by Sylvester and Uhlmann [1987] for smooth conductivities and later by Brown [1996]
for less regular conductivities, all followed by the construction of CGOs in proper function spaces.
Haberman and Tataru [2013] proved the existence of CGO solutions v(x)= ex ·ζ (1+ψζ (x)) with ζ ∈ Cn

and ζ · ζ = 0 to the Schrödinger equation. Roughly speaking, the construction is based on solving the
equation −(1+ 2ζ · ∇)ψζ +mqψζ = 0 in a Bourgain-type space Ẋb

ζ whose norm includes the potential
|pζ (ξ)|2b

= ||ξ |2 − 2iζ · ξ |2b as a weight. In this way, the ζ -dependence is transferred into the space
norms and it is shown [Haberman and Tataru 2013] that

‖(1+ 2ζ · ∇)−1
‖Ẋ−1/2

ζ →Ẋ1/2
ζ

= 1, ‖mq‖Ẋ1/2
ζ →Ẋ−1/2

ζ

< 1,

which guarantee the convergence of the Neumann series for ψζ . Furthermore, Haberman and Tataru
obtained an average decaying property for ‖ψζ‖Ẋ1/2

ζ

, from which they deduced the existence of a sequence
{ζm
} such that {ψζm } vanishes as m grows.

In this paper, we adopt the idea and several of the estimates in [Haberman and Tataru 2013] to construct
the CGOs w1 and v2 with desired properties. Nevertheless, we avoid the argument of extracting the
sequence of {ζm

}, and directly use the decay in average. This has been previously done by Caro, García,
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and Reyes [Caro et al. 2013] to prove stability of the Calderón problem for C1,ε-conductivities. When
plugging in the CGOs w1 and v2, the output of (1-4) will be certain nonlinear relations of ε1+ iσ1/ω, µ1,
ε2+ iσ2/ω, and µ2 involving second weak partial derivatives of the coefficients. Thus, to conclude the
proof of our theorem we will need a unique continuation property for a system of the form

−1 f + V f + a f + bg = 0,

−1g+Wg+ cg+ d f = 0,

where a, b, c, and d are compactly supported and belong to L∞(R3), while V and W are again weak
potentials. We will again apply the argument with Bourgain-type spaces to prove the required unique
continuation property, which seems not to be available in the literature.

The paper is organized as follows. In Section 2 we show the relation between (1-1) and (1-3). The
proof of the integral formula (1-4) is given in Section 3. The CGO solutions are constructed in Section 4,
where we will directly refer several times to the estimates proven in [Haberman and Tataru 2013] rather
than listing them in the paper. In Section 5, we complete our proof by plugging the CGOs into (1-4) and
using the unique continuation principle that we will derive. An appendix is provided at the end of the
paper, gathering basic facts and notations in the framework of differential forms, as well as including
some technical computations for the electromagnetic IBVP.

2. An auxiliary graded equation

In this section we establish a relation between

δu2
+ iωεu1

− du1
+ iωµu2

= σu1

and an auxiliary graded Hodge–Helmholtz equation with zeroth order perturbation (following the idea
in [Ola and Somersalo 1996]), which allows the construction of CGOs. For our purposes, it would be
enough to have solutions in �, but for convenience we will conduct our analysis in the whole R3. This
gives us certain freedoms in extending the coefficients outside �. Thus, set B = {x ∈ R3

: |x |< R} with
R > 0 such that �⊂ B. Let ω, µ0, and ε0 be three positive constants. At this point, we consider µ, ε,
and σ in W 1,∞(R3), the space of measurable functions modulo those vanishing almost everywhere such
that they and their first weak partial derivatives are essentially bounded in R3. Furthermore, we assume
that µ, ε, and σ are real-valued,

supp(µ−µ0)⊂ B, supp(ε− ε0)⊂ B, supp(σ )⊂ B,

and µ(x)≥ µ0, ε(x)≥ ε0, and σ(x)≥ 0 for almost every x in R3. For simplicity, write γ = ε+ iσ/ω. It
is sufficient for us to produce weak solutions to

δu2
+ iωγ u1

− du1
+ iωµu2

= 0 (2-1)

in R3, namely, forms u1
+ u2 with ul

∈ L2
loc

(
R3
;3lR3

)
satisfying

〈δu2
+ iωγ u1

− du1
+ iωµu2

| ϕ1
+ϕ2
〉 = 0
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for all ϕ1
+ϕ2 with ϕl

∈ C∞0
(
R3
;3lR3

)
. Here 〈 · | · 〉 denotes the duality bracket for distributions.

In order to derive the auxiliary equation, we augment (2-1) by adding

−γ−1δ(γ u1)+µ−1d(µu2)= 0,

which is derived directly from (2-1).
Next, we consider an equation of the graded form

∑3
l=0 ul where ul

∈ L2
loc

(
R3
;3lR3

)
:

−γ−1δ(γ u1)+iωµu0
+µ−1d(µu0)+δu2

+iωγ u1
−γ−1δ(γ u3)−du1

+iωµu2
+µ−1d(µu2)+iωγ u3

=0.

Multiplying 0, 2-forms by γ 1/2 and 1, 3-forms by µ1/2, we obtain

−γ−1/2δ(γ u1)+ iωγ 1/2µu0
+µ−1/2d(µu0)+µ1/2δu2

+ iωγµ1/2u1

− γ−1/2δ(γ u3)− γ 1/2du1
+ iωγ 1/2µu2

+µ−1/2d(µu2)+ iωγµ1/2u3
= 0.

Throughout this paper ( · )1/2 will denote the principal branch of the square root, and the same convention
will apply to log. If we now set

v =

3∑
l=0

vl
= µ1/2u0

+ γ 1/2u1
+µ1/2u2

+ γ 1/2u3,

we end up with the equation

P(d + δ; γ, µ, ω)v = 0, (2-2)

where

P(d + δ; γ, µ, ω)v

= (d + δ)
3∑

l=0

(−1)lvl
+ da ∧ v1

+ da ∨ (v1
+ v3)+ db∧ (v0

+ v2)− db∨ v2
+ iωγ 1/2µ1/2v,

a = 1
2 log γ and b = 1

2 logµ. The key point of this derivation to take note of is that v =
∑3

0 v
l with

vl
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-2) in R3 (that is, for every ϕ=

∑3
0 ϕ

l with ϕl
∈C∞0

(
R3
;3lR3

)
,

〈P(d+ δ; γ, µ, ω)v | ϕ〉 = 0 with 〈 · | · 〉 denoting the duality bracket for distributions) and v0
+ v3
= 0 if

and only if u1
+u2
= γ−1/2v1

+µ−1/2v2 with ul
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-1) in R3. For

convenience, let us define an operator

P(d + δ; γ, µ, ω)tw

:= (d+δ)
3∑

l=0

(−1)l+1wl
+db∧w1

+db∨(w1
+w3)+da∧(w0

+w2)−da∨w2
+ iωγ 1/2µ1/2w (2-3)

for w =
∑3

0w
l with wl

∈ H δ
loc

(
R3
;3lR3

)
∩ H d

loc

(
R3
;3lR3

)
. Note that P(d + δ; γ, µ, ω)t is the formal

transpose of P(d + δ; γ, µ, ω).
Due to the rescaling by γ 1/2 and µ1/2 that we chose, it can be verified that P(d + δ; γ, µ, ω) ◦ P(d +

δ; γ, µ, ω)t is a zeroth order perturbation of the graded Hodge–Helmholtz operator. For any graded forms
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w =
3∑
0
wl and ϕ =

3∑
0
ϕl with wl, ϕl

∈ H 1
loc

(
R3
;3lR3

)
, set

〈Q(γ, µ, ω)w | ϕ〉 = −
∫

R3
ω2(γµ− ε0µ0)〈w, ϕ〉 dx

+

∫
R3
〈i2ωd(γ 1/2µ1/2)∨ (w1

+w3)+ i2ωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

+

∫
R3
〈da, da〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈db, db〉〈w1

+w3, ϕ1
+ϕ3
〉 dx

+

∫
R3
〈da, d〈−w0

+w2, ϕ0
+ϕ2
〉〉+ 〈db, d〈w1

−w3, ϕ1
+ϕ3
〉〉 dx

+

∫
R3
〈db, D∗(w1

�ϕ1)〉 dx +
∫

R3
〈da, D∗(∗w2

�∗ϕ2)〉 dx . (2-4)

Proposition 2.1. Let w =
3∑
0
wl be a graded form with wl

∈ H 1
loc

(
R3
;3lR3

)
and assume that∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q(γ, µ, ω)w | ϕ〉 = 0 (2-5)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Then v =

3∑
0
vl defined by

v = P(d + δ; γ, µ, ω)tw (2-6)

is a weak solution to (2-2) in R3 and vl
∈ H 1

loc

(
R3
;3lR3

)
.

Proof. We first prove that v is a weak solution to (2-2). Since vl
∈ L2

loc

(
R3
;3lR3

)
, it is enough to show

that∫
R3
〈P(d + δ; γ, µ, ω)tw, P(d + δ; γ, µ, ω)tϕ〉 dx

=

∫
R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q(γ, µ, ω)w | ϕ〉. (2-7)

To check this, by direct computation, the first four terms on the left-hand side are∫
R3

〈
(d + δ)

3∑
l=0

(−1)l+1wl, (d + δ)
3∑

l=0

(−1)l+1ϕl
〉

dx =
∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉 dx, (2-8)∫

R3
〈iωγ 1/2µ1/2w, iωγ 1/2µ1/2ϕ〉 dx =−

∫
R3
ω2γµ〈w, ϕ〉 dx, (2-9)∫

R3

〈
(d + δ)

3∑
l=0

(−1)l+1wl, iωγ 1/2µ1/2ϕ

〉
dx +

∫
R3

〈
iωγ 1/2µ1/2w, (d + δ)

3∑
l=0

(−1)l+1ϕl
〉

dx

=

∫
R3
〈iωd(γ 1/2µ1/2)∨ (w1

+w3)+ iωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

+

∫
R3
〈iωd(γ 1/2µ1/2)∨w2

− iωd(γ 1/2µ1/2)∧w1, ϕ〉 dx, (2-10)
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and∫
R3
〈db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)− da ∨w2, iωγ 1/2µ1/2ϕ〉

+ 〈iωγ 1/2µ1/2w, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉 dx

=

∫
R3
〈iωd(γ 1/2µ1/2)∨ (w1

+w3)+ iωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

−

∫
R3
〈iωd(γ 1/2µ1/2)∨w2

− iωd(γ 1/2µ1/2)∧w1, ϕ〉 dx . (2-11)

By Corollary A.2, the fifth term gives∫
R3
〈db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)

−da ∨w2, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉 dx

=

∫
R3
〈da, da〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈db, db〉〈w1

+w3, ϕ1
+ϕ3
〉 dx . (2-12)

By Proposition A.6, the last term yields

∫
R3

〈
db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)− da ∨w2, (d + δ)
3∑

l=0

(−1)l+1ϕl
〉

+

〈
(d + δ)

3∑
l=0

(−1)l+1wl, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉
dx

=

∫
R3
〈da, d〈−w0

+w2, ϕ0
+ϕ2
〉〉+ 〈db, d〈w1

−w3, ϕ1
+ϕ3
〉〉 dx+

∫
R3
〈db, D∗(w1

�ϕ1)〉 dx

+

∫
R3
〈da, D∗(∗w2

�∗ϕ2)〉 dx = 0. (2-13)

Summing up identities (2-8) through (2-13) gives identity (2-7).
It remains to prove that vl

∈ H 1
loc

(
R3
;3lR3

)
. Since vl

∈ L2
loc

(
R3
;3lR3

)
, we have

(d + δ)
3∑
0

(−1)lvl
∈

3⊕
0

L2
loc
(
R3
;3lR3)

by (2-2). Therefore, Lemma A.7 allows us to conclude the proof. �

Remark 2.2. Identity (2-7) holds even for ϕ =
3∑
0
ϕl with ϕl

∈ H 1
loc

(
R3
;3lR3

)
.

Similar calculations verify that the same property holds for P(d + δ; γ, µ, ω)t ◦ P(d + δ; γ, µ, ω) as
stated in Proposition 2.3. Define
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〈Q̃(γ, µ, ω)w | ϕ〉 = −
∫

R3
ω2(γµ− ε0µ0)〈w, ϕ〉 dx

+

∫
R3
〈−i2ωd(γ 1/2µ1/2)∨w2

+ i2ωd(γ 1/2µ1/2)∧w1, ϕ〉 dx

+

∫
R3
〈db, db〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈da, da〉〈w1

+w3, ϕ1
+ϕ3
〉 dx

+

∫
R3
〈db, d〈w0

−w2, ϕ0
+ϕ2
〉〉+ 〈da, d〈−w1

+w3, ϕ1
+ϕ3
〉〉 dx

−

∫
R3
〈da, D∗(w1

�ϕ1)〉 dx −
∫

R3
〈db, D∗(∗w2

�∗ϕ2)〉 dx (2-14)

for w =
3∑
0
wl and ϕ =

3∑
0
ϕl with wl, ϕl

∈ H 1
loc

(
R3
;3lR3

)
.

Proposition 2.3. Let w =
3∑
0
wl be a graded form with wl

∈ H 1
loc

(
R3
;3lR3

)
and assume that∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q̃(γ, µ, ω)w | ϕ〉 = 0 (2-15)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Then v =

3∑
0
vl defined by

v = P(d + δ; γ, µ, ω)w

is a weak solution of

P(d + δ; γ, µ, ω)tv = 0

in R3 and vl
∈ H 1

loc

(
R3
;3lR3

)
.

Recall that v =
∑3

0 v
l with vl

∈ L2
loc

(
R3
;3lR3

)
is a weak solution to (2-2) and satisfies v0

+ v3
= 0

in R3 if and only if u1
+ u2
= γ−1/2v1

+µ−1/2v2 with ul
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-1)

in R3. We finish this section by singling out the equation of v0
+ v3 from (2-15), which is used later to

show that the CGOs we will construct in Section 4 satisfy v0
+ v3
= 0.

Proposition 2.4. Let v =
3∑
0
vl with vl

∈ H 1
loc

(
R3
;3lR3

)
satisfy

P(d + δ; γ, µ, ω)v = 0

in any bounded open subset of R3. For any ϕ = ϕ0
+ϕ3 with ϕl belonging to C∞0

(
R3
;3lR3

)
, we have∫

R3
〈δ(v0

+v3), δϕ〉+〈d(v0
+v3), dϕ〉−ω2ε0µ0〈v

0
+v3, ϕ〉 dx+〈q̃(γ, µ, ω)(v0

+v3) | ϕ〉 = 0, (2-16)

where

〈q̃(γ, µ, ω)(v0
+v3) |ϕ〉=−

∫
R3
ω2(γµ−ε0µ0)〈v

0
+v3, ϕ〉 dx+

∫
R3
〈db, db〉〈v0, ϕ0

〉+〈da, da〉〈v3, ϕ3
〉

+ 〈db, d〈v0, ϕ0
〉〉+ 〈da, d〈v3, ϕ3

〉〉 dx .

Proof. This is immediate from the proof of Proposition 2.3 and the fact that Q̃(γ, µ, ω) decouples for
v0
+ v3. �
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3. An integral formula

In this section we provide an integral formula that serves as the starting point to prove uniqueness of
the IBVP. To do this, we exploit the computations which allow us to produce solutions for (2-1) from
solutions of (2-5) (see Proposition 2.1).

Let � be a bounded nonempty open subset in R3 whose boundary ∂� can be locally described by the
graph of a Lipschitz function. Throughout the rest of the paper, we assume that µ j , ε j , and σ j belong
to C1(�) with j ∈ {1, 2} such that µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0 everywhere in �. Here we
say that f is in C1(�) if f :�−→ C is continuously differentiable in �, its partial derivatives ∂α f are
uniformly continuous in � for α ∈ N3 and |α| = 1, and

|∂α f (x)| ≤ C for all x ∈�, |α| ≤ 1, (3-1)

for a certain positive constant C . The norm on C1(�), defined as the smallest constant C for which (3-1)
holds, makes C1(�) a Banach space. Since ∂� is of Lipschitz class, f defined as above is uniformly
continuous and, consequently, ∂α f possesses a unique bounded continuous extension to � for any |α| ≤ 1.
This extension will still be denoted by f .

Consider C j = C(µ j , ε j , σ j ;ω), the Cauchy data set associated to µ j , ε j , and σ j at frequency ω > 0.
Write γ j = ε j+iσ j/ω and assume ∂αγ1(x)= ∂αγ2(x) and ∂αµ1(x)= ∂αµ2(x) for all x ∈ ∂� and |α| ≤ 1.
We can extend1 γ j and µ j to continuously differentiable functions in R3, still denoted by γ j and µ j , such
that |∂αγ j (x)| + |∂αµ j (x)| ≤ C , µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0 for all x ∈ R3, |α| ≤ 1 and a
certain constant C > 0,

supp(µ j −µ0)⊂ B, supp(γ j − ε0)⊂ B,

where B = {x ∈ R3
: |x | < R} ⊃ �, and γ1(x) = γ2(x) and µ1(x) = µ2(x) for all x ∈ R3

\�. For
convenience, we write a j =

1
2 log γ j and b j =

1
2 logµ j .

Proposition 3.1. Let w1 =
3∑
0
wl

1 be a graded form with wl
1 ∈ H 1

loc

(
R3
;3lR3

)
satisfying∫

R3
〈δw1, δϕ〉+ 〈dw1, dϕ〉−ω2ε0µ0〈w1, ϕ〉 dx +〈Q(γ1, µ1, ω)w1 | ϕ〉 = 0 (3-2)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Assume that v1 =

3∑
0
vl

1, defined by

v1 = P(d + δ; γ1, µ1, ω)
tw1, (3-3)

satisfies v0
1 + v

3
1 = 0. Let v2 =

3∑
0
vl

2 with vl
2 ∈ H 1

loc

(
R3
;3lR3

)
satisfy

P(d + δ; γ2, µ2, ω)
tv2 = 0 (3-4)

1The extensions we want to perform here are of Whitney type. These kinds of extensions hold for functions defined on any
closed subset of Rn whenever the functions can be approximated by certain polynomials. In order to ensure the existence of such
polynomials, we use that ∂� is of Lipschitz class. The argument to prove the existence of such polynomials is similar to the
one carried out in Section 2 of [Caro et al. 2013] for C1,ε(�) functions with the only difference being that, where the authors
referred to Chapter VI, Section 2 of [Stein 1970], we refer to Chapter VI, Section 4.7 of [Stein 1970].
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in any bounded open subset of R3. Then C1 = C2 implies

〈(Q(γ2, µ2, ω)− Q(γ1, µ1, ω))w1 | v2〉 = 0.

Proof. By Remark 2.2 and because γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ R3
\�, we know that

〈(Q(γ2, µ2, ω)−Q(γ1, µ1, ω))w1 | v2〉 =

∫
�

〈P(d+ δ; γ2, µ2, ω)
tw1, P(d+ δ; γ2, µ2, ω)

tv2〉 dx

−

∫
�

〈P(d+ δ; γ1, µ1, ω)
tw1, P(d+ δ; γ1, µ1, ω)

tv2〉 dx

=−

∫
�

〈v1, P(d+ δ; γ1, µ1, ω)
tv2〉 dx .

The last equality follows from (3-4) and (3-3).
Since v0

1 + v
3
1 = 0, we have that u1

1+ u2
1 = γ

−1/2
1 v1

1 +µ
−1/2
1 v2

1 satisfies

δu2
1+ iωγ1u1

1− du1
1+ iωµ1u2

1 = 0 (3-5)

almost everywhere in � (see Section 2). The definitions of boundary traces δ tr and d tr (see Section A3)
give

−

∫
�

〈v1, P(d + δ; γ1, µ1, ω)
tv2〉 dx

= 〈δ tr(γ1u1
1) | γ

−1/2
1 v0

2〉+ 〈δ tr u2
1 | µ

1/2
1 v1

2〉− 〈d tr u1
1 | γ

1/2
1 v2

2〉+ 〈d tr(µ1u2
1) | µ

−1/2
1 v3

2〉. (3-6)

Suppose f = f 1
+ f 2 with f l

∈ L2
loc

(
R3
;3lR3

)
is a weak solution to

δ f 2
+ iωγ2 f 1

− d f 1
+ iωµ2 f 2

= 0 (3-7)

in R3. Note that then f 1
∈ H d

(
�;31R3

)
, f 2
∈ H δ

(
�;32R3

)
. Set g = g1

+ g2
= γ

1/2
2 f 1

+µ
1/2
2 f 2. By

(3-4), we obviously have ∫
�

〈g, P(d + δ; γ2, µ2, ω)
tv2〉 dx = 0.

Once more by the definitions of δ tr and d tr, we have

0=
∫
�

〈g, P(d + δ; γ2, µ2, ω)
tv2〉 dx

=−〈δ tr(γ2 f 1) | γ
−1/2
2 v0

2〉− 〈δ tr f 2
| µ

1/2
2 v1

2〉+ 〈d tr f 1
| γ

1/2
2 v2

2〉− 〈d tr(µ2 f 2) | µ
−1/2
2 v3

2〉. (3-8)

Since δ tr u2
1+ d tr u1

1 ∈ C1 = C2 by assumption, there exists u2 = u1
2+ u2

2 with u1
2 ∈ H d

(
�;31R3

)
and u2

2 ∈ H δ
(
�;32R3

)
a solution to (3-7) in � such that

δ tr u2
1+ d tr u1

1 = δ tr u2
2+ d tr u1

2.
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Define2 f (x)= u2(x) for almost every x ∈� and f (x)= u1(x) for almost every x ∈R3
\�. Using (3-6)

and (3-8) and noting that γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ ∂�, we can conclude

〈(Q(γ2, µ2, ω)− Q(γ1, µ1, ω))w1 | v2〉

=−
1

iω
〈δ tr(δu2

1) |γ
−1/2
2 v0

2〉+
1

iω
〈d tr(du1

1) |µ
−1/2
2 v3

2〉+
1

iω
〈δ tr(δu2

2) |γ
−1/2
2 v0

2〉−
1

iω
〈d tr(du1

2) |µ
−1/2
2 v3

2〉.

The result follows by Lemma A.5. �

4. The construction of CGO solutions

In this section we construct the CGO solutions that will be plugged into the integral formula in
Proposition 3.1. To deal with less regular electromagnetic coefficients than those in [Ola and Somersalo
1996], we adopt Bourgain-type spaces introduced by Haberman and Tataru [2013].

Let ζ =
∑3

1 ζ j dx j be a constant 1-differential form in R3 and let pζ denote the polynomial

pζ (ξ)= |ξ |2− 2i〈ζ, ξ〉.

For any b ∈ R, let Ẋb
ζ denote the space of graded forms w =

∑3
0w

l such that wl
∈ S′

(
R3
;3lR3

)
and its

Fourier transform
ŵl ∈ L2(R3, |pζ |2bdξ ;3lR3).

The functional

w ∈ Ẋb
ζ 7−→ ‖w‖Ẋb

ζ

=

( 3∑
l=0

‖|pζ |bŵl‖2L2(R3
;3l R3)

)1/2

makes Ẋb
ζ a normed space. Moreover, if b < 1, then Ẋb

ζ is a Hilbert space. As in [Haberman and Tataru

2013], we will only use the cases where b ∈ {1/2,−1/2}. Note that Ẋ−1/2
ζ can be identified as the dual

space of Ẋ1/2
ζ . The simplest feature of these spaces is that the operator (1ζ +〈ζ, ζ 〉)−1 (defined by the

symbol (pζ )−1) is a bounded linear operator from Ẋ−1/2
ζ to Ẋ1/2

ζ with norm

‖(1ζ +〈ζ, ζ 〉)
−1
‖

Ẋ−1/2
ζ →Ẋ1/2

ζ

= 1. (4-1)

Let 1ζ denote the conjugate operator 1ζ = e−ζ (dδ+ δd) ◦ eζ where eζ (x)= eζ ·x and ζ · x =
∑3

1 ζ j x j .

Remark 4.1. Given f ∈ Ẋ−1/2
ζ , it is an obvious consequence of the definition of Ẋ1/2

ζ that there exists a

unique u ∈ Ẋ1/2
ζ satisfying

1ζu+〈ζ, ζ 〉u = f.

Remark 4.2. If u ∈ Ẋ1/2
ζ with u =

∑3
0 ul , then ul

∈ H 1
loc

(
R3
;3lR3

)
. This is a simple consequence of (5)

and (6) in Lemma 2.2 of [Haberman and Tataru 2013] and the finite band property (sometimes called
Bernstein’s inequality).

2This definition satisfies the appropriate conditions, since γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ R3
\�.
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4A. The construction of w1. Let ζ1 be a complex-valued constant 1-form in R3 satisfying 〈ζ1, ζ1〉=−k2

where k = ω1/2µ0ε0. We are looking for w1 =
∑3

0w
l
1 with wl

1 ∈ H 1
loc

(
R3
;3lR3

)
, the solution to (3-2) of

the form

w1 = eζ1(Aζ1 + Rζ1) (4-2)

with Aζ1 a constant graded differential form in R3 and Rζ1 ∈ Ẋ1/2
ζ1

. Moreover, we want Rζ1 to bear a
certain sense of smallness. Note that this is equivalent to finding Rζ1 , which solves

(1ζ1 − k2)Rζ1 + Q(γ1, µ1, ω)Rζ1 =−Q(γ1, µ1, ω)Aζ1 (4-3)

in Ẋ1/2
ζ1

. Note that Q(γ1, µ1, ω)Aζ1 ∈ Ẋ−1/2
ζ1

. In the scalar case, this was done in [Haberman and Tataru
2013] for such Bourgain-type spaces. In the original case of smooth coefficients, such equations were
solved in weighted L2 spaces in [Sylvester and Uhlmann 1987] for the scalar case and in [Ola and
Somersalo 1996] for systems.

Lemma 4.3. Let ζ1 and Aζ1 be as above. For |ζ1| large enough, there exists a solution Rζ1 ∈ Ẋ1/2
ζ1

to (4-3)
such that

‖Rζ1‖Ẋ1/2
ζ1

. ‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

, (4-4)

where the implicit constant (incorporated in the symbol .) is independent of ζ1.

Proof. By using a Neumann series argument (see [Sylvester and Uhlmann 1987]), we can show the
existence of Rζ1 ∈ Ẋ1/2

ζ1
satisfying

‖Rζ1‖Ẋ1/2
ζ1

≤ ‖(I + (1ζ1 − k2)−1 Q(γ1, µ1, ω))
−1
‖

Ẋ1/2
ζ1
→Ẋ1/2

ζ1

‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

for |ζ1| large enough, as a simple consequence of (4-1) and

‖Q(γ1, µ1, ω)‖Ẋ1/2
ζ1
→Ẋ−1/2

ζ1

= o(1(|ζ1|)). (4-5)

Here 1(t)= 1 for any t ∈ R.
To prove (4-5), let u and v belong to Ẋ1/2

ζ1
. By a slight modification of Corollary 2.1 in [Haberman

and Tataru 2013], we have that

|〈Q(γ1, µ1, ω)u | v〉|. |ζ1|
−1
‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+

∣∣∣∣∫
R3
〈αh, d〈−u0

+ u2, v0
+ v2
〉〉+ 〈βh, d〈u1

− u3, ϕ1
+ v3
〉〉 dx

∣∣∣∣
+

∣∣∣∣∫
R3
〈βh, D∗(u1

� v1)〉 dx
∣∣∣∣+ ∣∣∣∣∫

R3
〈αh, D∗(∗u2

�∗v2)〉 dx
∣∣∣∣

+

∣∣∣∣∫
R3
〈da1−αh, d〈−u0

+ u2, v0
+ v2
〉〉+ 〈db1−βh, d〈u1

− u3, ϕ1
+ v3
〉〉 dx

∣∣∣∣
+

∣∣∣∣∫
R3
〈db1−βh, D∗(u1

� v1)〉 dx
∣∣∣∣+ ∣∣∣∣∫

R3
〈da1−αh, D∗(∗u2

�∗v2)〉 dx
∣∣∣∣
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where αh and βh are 1-forms in R3 defined by

αh = ϕh∗da1, βh = ϕh∗db1

(here ∗ denotes convolution) with 0 < h ≤ 1, ϕh(x) = h−3ϕ(x/h), ϕ ∈ C∞0 (R
3), 0 ≤ ϕ(x) ≤ 1 for all

x ∈ R3 and
∫

R3 ϕ dx = 1. Note that the implicit constant depends on ε0, µ0, �, and the C1-norms of γ1

and µ1. A further modification of Lemma 2.3 in [Haberman and Tataru 2013] gives

|〈Q(γ1, µ1, ω)u | v〉|. |ζ1|
−1
‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+ |ζ1|
−1(‖δαh‖L∞(R3)

+‖δβh‖L∞(R3)
)‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+ (‖da1−αh‖L∞(R3)
+‖db1−βh‖L∞(R3)

)‖u‖
Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

. (|ζ1|
−1h−1

+ o(1(h)))‖u‖
Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

as h vanishes. Choosing h = |ζ1|
−1/2, this implies (4-1) and the lemma is proven. �

Up to this point, nothing has been said about the smallness of Rζ1 . We will see in the next lemma that
estimate (4-4) yields such smallness in an average sense. This idea is one of the key points in [Haberman
and Tataru 2013].

Lemma 4.4. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, choose η1 and η2 also
real-valued constant 1-forms such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for j ∈ {1, 2}. Set

ζ1 =−

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
−

√
s2+ k2 η2

)
,

and assume |Aζ1 | is bounded as a function of s, η1. Then the Rζ1 obtained in Lemma 4.3 satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Rζ1‖
2
Ẋ1/2
ζ1

ds dη1 = o(1(λ)) (4-6)

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2.

Proof. By the definition of Q(γ1, µ1, ω), the identity (2-13), the fact that Aζ1 is constant, and the fact
that Q(γ1, µ1, ω) is compactly supported, we have

|〈Q(γ1, µ1, ω)Aζ1 | v〉|.
3∑

l=0

‖χvl
‖L2(R3

;3l R3)
+‖χ(d + δ) fζ1‖Ẋ−1/2

ζ1

‖v‖
Ẋ1/2
ζ1

,

where v =
∑3

0 v
l , χ ∈ C∞0 (R

3) such that χ(x)= 1 for all x ∈ supp dγ1 ∪ supp dµ1 and

fζ1 = db1 ∧ A1
ζ1
+ db1 ∨ (A1

ζ1
+ A3

ζ1
)+ da1 ∧ (A0

ζ1
+ A2

ζ1
)− da1 ∨ A2

ζ1

with Aζ1 =
∑3

0 Al
ζ1

. By (5) in Lemma 2.2 of [Haberman and Tataru 2013], this gives

‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

. s−1/2
+‖χ(d + δ) fζ1‖Ẋ−1/2

ζ1

.
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Now an immediate modification of Lemma 3.1 in [Haberman and Tataru 2013] allows us to check that

1
λ

∫
S1

∫ 2λ

λ

‖χ(d + δ) fζ1‖
2
Ẋ−1/2
ζ1

ds dη1 = o(1(λ)),

which implies
1
λ

∫
S1

∫ 2λ

λ

‖Q(γ1, µ1, ω)Aζ1‖
2
Ẋ−1/2
ζ1

ds dη1 = o(1(λ)) (4-7)

as λ becomes large. By (4-4), we obtain (4-6). �

From the construction of Rζ1 ∈ Ẋ1/2
ζ1

solving (4-3), the existence of w1 of the form (4-2) that solves
(3-2) is immediate. However, it turns out that for such a w1 to satisfy the condition in Proposition 3.1, the
constant 1-form Aζ1 has to be chosen carefully.

Lemma 4.5. Let w1 =
∑3

l=0w
l
1 as in (4-2) with ζ1, Aζ1 , and Rζ1 as in Lemma 4.3. Then

wl
1 ∈ H 1

loc
(
R3
;3lR3)

and w1 is a solution of (3-2). Moreover, if Aζ1 satisfies the relation

−ζ1 ∨ A1
ζ1
+ ik A0

ζ1
− ζ1 ∧ A2

ζ1
+ ik A3

ζ1
= 0, (4-8)

then v1 =
∑3

0 v
l
1 defined as in (3-3) satisfies v0

1 + v
3
1 = 0 for |ζ1| large enough.

Proof. We can ensure wl
1 is in H 1

loc

(
R3
;3lR3

)
since Rζ1 ∈ Ẋ1/2

ζ1
(See Remark 4.2). Additionally, w1 is a

solution of (3-2) since Rζ1 ∈ Ẋ1/2
ζ1

solves3 (4-3).
In order to prove the second part of this lemma, note that vl

1 ∈ H 1
loc

(
R3
;3lR3

)
and

P(d + δ; γ1, µ1, ω)v1 = 0

in any bounded open subset of R3 by Proposition 2.1. Then by Proposition 2.4 we know that v0
1 + v

3
1 is a

weak solution to
(δd + dδ− k2)(v0

1 + v
3
1)+ q̃(γ1, µ1, ω)(v

0
1 + v

3
1)= 0

in R3. By (3-3), we can write vl
1 = eζ1(B

l
ζ1
+ Sl

ζ1
) with l ∈ {0, 3}, where

B0
ζ1
=−ζ1 ∨ A1

ζ1
+ ik A0

ζ1
,

S0
ζ1
=−ζ1 ∨ R1

ζ1
+ δR1

ζ1
+ db∨ (A1

ζ1
+ R1

ζ1
)+ iωγ 1/2

1 µ
1/2
1 R0

ζ1
+ i(ωγ 1/2

1 µ
1/2
1 − k)A0

ζ1
, (4-9)

B3
ζ1
=−ζ1 ∧ A2

ζ1
+ ik A3

ζ1
,

S3
ζ1
=−ζ1 ∧ R2

ζ1
− d R2

ζ1
+ da ∧ (A2

ζ1
+ R2

ζ1
)+ iωγ 1/2

1 µ
1/2
1 R3

ζ1
+ i(ωγ 1/2

1 µ
1/2
1 − k)A3

ζ1
. (4-10)

Then relation (4-8) implies B0
ζ1
+ B3

ζ1
= 0, and hence that v0

1 + v
3
1 = eζ1(S

0
ζ1
+ S3

ζ1
) is a weak solution of

(1ζ1 − k2)(S0
ζ1
+ S3

ζ1
)+ q̃(γ1, µ1, ω)(S0

ζ1
+ S3

ζ1
)= 0 (4-11)

in R3.
3See also (A-20).
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To complete the proof, it is sufficient to show that (4-11) is uniquely solvable in Ẋ1/2
ζ1

for |ζ1| large

enough and S0
ζ1
+ S3

ζ1
belongs to Ẋ1/2

ζ1
.

Using the same argument as in proving (4-5), we see that q̃(γ1, µ1, ω) is a bounded linear operator
from Ẋ1/2

ζ1
to Ẋ−1/2

ζ1
and its operator norm is o(1(|ζ1|)). Then, by Remark 4.1, identity (4-1), and the

Banach fixed-point theorem, (4-11) is uniquely solvable in Ẋ1/2
ζ1

for |ζ1| large enough.
Since eζ1 Sl

ζ1
= vl

1 ∈ H 1
loc

(
R3
;3lR3

)
for l ∈ {0, 3}, we know that χ(S0

ζ1
+ S3

ζ1
) ∈ Ẋ1/2

ζ1
for χ ∈ C∞0 (R

3)

such that χ(x)= 1 for all x ∈ (supp dγ1 ∪ supp dµ1). Therefore, the right-hand side of

(1ζ1 − k2)(S0
ζ1
+ S3

ζ1
)=−q̃(γ1, µ1, ω)χ(S0

ζ1
+ S3

ζ1
)

is in Ẋ−1/2
ζ1

. Further, it is not hard to see from (4-9) and (4-10) that Ŝl
ζ1

belongs to L2
loc

(
R3
;3lR3

)
with

l ∈ {0, 3}. The last two facts imply that S0
ζ1
+ S3

ζ1
∈ Ẋ1/2

ζ1
. �

Remark 4.6. The condition given by (4-8) is necessary in our proof since B0
ζ1
+ B3

ζ1
does not belong to

Ẋ1/2
ζ1

.

As a conclusion of these lemmas, we can state the constructions of w1 in the following theorem.

Theorem 4.7. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, choose η1 and η2

also real-valued constant 1-forms in R3 such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for j ∈ {1, 2}. Set

ζ1 =−

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
−

√
s2+ k2 η2

)
and

Aζ1 =

√
2
|ζ1|

(ζ1 ∨α+ ikα+ ikβ + ζ1 ∧β),

where either α = η1 and β = 0 or α = 0 and β = |ρ|−1η2 ∧ ρ. Then, for |ζ1| large enough, there exists
w1 =

∑3
0w

l
1 with wl

1 ∈ H 1
loc

(
R3
;3lR3

)
of the form

w1 = eζ1(Aζ1 + Rζ1),

which is a weak solution to

(dδ+ δd − k2)w1+ Q(γ1, µ1, ω)w1 = 0

in R3. Moreover, we have Rζ1 ∈ Ẋ1/2
ζ1

satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Rζ1‖
2
Ẋ1/2
ζ1

ds dη1 = o(1(λ))

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2. Furthermore, v1 =

∑3
0 v

l
1 defined by

v1 = P(d + δ; γ1, µ1, ω)
tw1

satisfies v0
1 + v

3
1 = 0 for |ζ1| large enough.
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4B. The construction of v2. Let ζ2 be a complex-valued constant 1-form in R3 satisfying 〈ζ2, ζ2〉 =−k2.
We are looking for the solution v2 =

∑3
0 v

l
2 with vl

2 ∈ H 1
loc

(
R3
;3lR3

)
to (3-4) in any bounded subset of

R3 of the form
v2 = eζ2(Bζ2 + Sζ2), (4-12)

where Bζ2 is a constant graded differential form in R3 and Sζ2 ∈ Ẋ1/2
ζ2

. In addition, we want Sζ2 to be
small in the sense of (4-6). To construct such a v2, by Proposition 2.3, we start with the construction of a
solution w2 to∫

R3
〈δw2, δϕ〉+ 〈dw2, dϕ〉−ω2ε0µ0〈w2, ϕ〉 dx +〈Q̃(γ2, µ2, ω)w2 | ϕ〉 = 0 (4-13)

for all ϕ =
∑3

0 ϕ
l , with ϕl

∈ C∞0
(
R3
;3lR3

)
.

Lemma 4.8. Let Aζ2 = A1
ζ2
+ A2

ζ2
be a constant graded differential form in R3. For |ζ2| large enough,

there exists Rζ2 = R1
ζ2
+ R2

ζ2
∈ Ẋ1/2

ζ2
such that w2 = w

1
2 +w

2
2 with

wl
2 = eζ2(A

l
ζ2
+ Rl

ζ2
)

and wl
2 ∈ H 1

loc

(
R3
;3lR3

)
, is a solution of (4-13) in R3.

Proof. Analogous to the proof of Lemma 4.3, the existence of a general Rζ2 =
∑3

0 Rl
ζ2

for a given constant
Aζ2 =

∑3
0 Al

ζ2
is immediate by

‖Q̃(γ2, µ2, ω)‖Ẋ1/2
ζ2
→Ẋ−1/2

ζ2

= o(1(|ζ2|))

as |ζ2| becomes large. Since Q̃(γ2, µ2, ω) decouples for 1 and 2 forms, we can ensure that Rζ2 = R1
ζ2
+R2

ζ2

for Aζ2 = A1
ζ2
+ A2

ζ2
. �

Now Proposition 2.3 states that v2 = P(d + δ; γ2, µ2, ω)w2 is a solution to (3-4). Moreover, we can
write v2 as in (4-12). However, we still need to show the smallness of Sζ2 .

Theorem 4.9. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, we choose η1 and
η2 two other real-valued constant 1-forms in R3 such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for
j ∈ {1, 2}. Set

ζ2 =

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
+

√
s2+ k2 η2

)
and let α and β be as in Theorem 4.7. If |ζ2| is large enough, there exists v2 =

∑3
0 v

l
2 with

vl
2 ∈ H 1

loc
(
R3
;3lR3)

of the form
v2 = eζ2(Bζ2 + Sζ2),

where

Bζ2 =−

√
2
|ζ2|

(ζ2 ∨ (α+β)+ ζ2 ∧ (−α+β)+ ik(α+β)) (4-14)
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and Sζ2 ∈ Ẋ1/2
ζ2

, which solves
P(d + δ; γ2, µ2, ω)

tv2 = 0

in any bounded open subset of R3 and satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Sζ2‖
2
Ẋ1/2
ζ2

ds dη1 = o(1(λ)) (4-15)

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2.

Proof. Let w2 be as in Lemma 4.8 with Aζ2 = A1
ζ2
+ A2

ζ2
=−
√

2(α+β). By Proposition 2.3, we know
that v2 =

∑3
0 v

l
2 defined by

v2 = P(d + δ; γ2, µ2, ω)w2

satisfies that vl
2 ∈ H 1

loc

(
R3
;3lR3

)
and solves

P(d + δ; γ2, µ2, ω)
tv2 = 0 (4-16)

in any bounded open subset of R3. One can easily write

v2 = eζ2(Bζ2 + Sζ2)

and check that Bζ2 is given by (4-14) and

Sζ2 =
1
|ζ2|

(ζ2 ∨ (R1
ζ2
+ R2

ζ2
)+ ζ2 ∧ (−R1

ζ2
+ R2

ζ2
)+ (d + δ)(−R1

ζ2
+ R2

ζ2
)

+ da2 ∧ (A1
ζ2
+ R1

ζ2
)+ da2 ∨ (A1

ζ2
+ R1

ζ2
)+ db2 ∧ (A2

ζ2
+ R2

ζ2
)− db2 ∨ (A2

ζ2
+ R2

ζ2
)

+ iωγ 1/2
2 µ

1/2
2 (R1

ζ2
+ R2

ζ2
)+ i(ωγ 1/2

2 µ
1/2
2 − k)(A1

ζ2
+ A2

ζ2
)).

Moreover, by (4-16) and (2-7), we know that Sζ2 satisfies the familiar equation

(1ζ2 − k2)Sζ2 + Q(γ2, µ2, ω)Sζ2 =−Q(γ2, µ2, ω)Bζ2 . (4-17)

Since Q(γ2, µ2, ω)Bζ2 ∈ Ẋ−1/2
ζ2

, (4-17) is uniquely solvable in Ẋ1/2
ζ2

. Therefore, since Sζ2 ∈ Ẋ1/2
ζ2

and
|Bζ2 | = O (1(|ζ2|)), Sζ2 satisfies (4-15). �

5. Proof of uniqueness

To complete the proof of Theorem 1.1, the final step is to plug into the integral formula given in
Proposition 3.1 the w1 and v2 obtained in Theorem 4.7 and Theorem 4.9 and to let λ go to∞. The output
turns out to be certain nonlinear relations of γ1, µ1, γ2, µ2, and their weak partial derivatives up to the
second order. Then a unique continuation principle argument can be used to conclude the uniqueness.

Throughout this section we let Q j denote Q(γ j , µ j , ω) with j ∈ {1, 2}. If

A1 =−(η1+ iη2)∨α− (η1+ iη2)∧β,

B2 =−(η1+ iη2)∨ (α+β)− (η1+ iη2)∧ (−α+β)
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with α and β as in Theorem 4.7, we see that, for any ρ, |Aζ1 − A1| + |Bζ2 − B2| = O(s−1) for s large
enough and all η1, η2 ∈ S1. The implicit constant (incorporated in the symbol O) here depends on ρ. On
the other hand, plugging w1 and v2 into Proposition 3.1, as in Theorem 4.7 and Theorem 4.9, we get

〈(Q2−Q1)eiρ A1 | B2〉=〈(Q1−Q2)(Aζ1+Rζ1) |eiρ(Bζ2−B2+Sζ2)〉+〈(Q1−Q2)B2 |eiρ(Aζ1−A1+Rζ1)〉.

We know that, for each ρ, Q j is bounded from Ẋ1/2
ζ j

to Ẋ−1/2
ζ j

and its norm is o(1(s)) for s large enough
and all η1 (see (4-5) and the same applies to Q2). The same is true for Q1− Q2 from Ẋ1/2

ζ1
to Ẋ−1/2

ζ2
as

an immediate consequence of the proof of Lemma 2.3 in [Haberman and Tataru 2013]. Thus, for each ρ,
we have

|〈(Q2− Q1)eiρ A1 | B2〉|. ‖(Q1− Q2)B2‖Ẋ−1/2
ζ1

[‖χ(Aζ1 − A1)‖Ẋ1/2
ζ1

+‖Rζ1‖Ẋ1/2
ζ1

]

+ [‖(Q1− Q2)Aζ1‖Ẋ−1/2
ζ2

+‖Rζ1‖Ẋ1/2
ζ1

][‖χ(Bζ2 − B2)‖Ẋ1/2
ζ2

+‖Sζ2‖Ẋ1/2
ζ2

], (5-1)

where χ ∈ C∞0 (R
3) such that χ(x)= 1 for all x ∈ supp dγ2 ∪ supp dµ2. Here the implicit constant might

depend on ρ.
If α = η1 and β = 0, then A1 =−1, B2 =−1+ iη2 ∧ η1, and the left-hand side of (5-1) gives

〈(Q2− Q1)eiρ A1 | B2〉

=

∫
R3
〈d(a1− a2), deiρ〉 dx +

∫
R3
〈d(a1+ a2), d(a2− a1)〉eiρ dx +

∫
R3
ω2(γ1µ1− γ2µ2)eiρ dx . (5-2)

If α = 0 and β = |ρ|−1η2 ∧ ρ, then

A1 =−|ρ|
−1η1 ∧ η2 ∧ ρ, B2 =−|ρ|

−1(η1+ iη2)∨ (η2 ∧ ρ)− |ρ|
−1η1 ∧ η2 ∧ ρ,

and we have

〈(Q2− Q1)eiρ A1 | B2〉

=

∫
R3
〈d(b1− b2), deiρ〉 dx +

∫
R3
〈d(b1+ b2), d(b2− b1)〉eiρ dx +

∫
R3
ω2(γ1µ1− γ2µ2)eiρ dx . (5-3)

Meanwhile, by the choice of A1 and B2 above, we have(
1
λ

∫
S1

∫ 2λ

λ

‖χ(Aζ1 − A1)‖
2
Ẋ1/2
ζ1

ds dη1

)1/2

= O(1(λ)),(
1
λ

∫
S1

∫ 2λ

λ

‖χ(Bζ2 − B2)‖
2
Ẋ1/2
ζ2

ds dη1

)1/2

= O(1(λ)).

Then, after averaging (5-1) on (s, η1) ∈ [λ, 2λ]× S1 and using the Cauchy–Schwartz inequality, we get

|〈(Q2− Q1)eiρ A1 | B2〉|. [O(1(λ))+ o(1(λ))]
(

1
λ

∫
S1

∫ 2λ

λ

‖(Q1− Q2)B2‖
2
Ẋ−1/2
ζ1

ds dη1

)1/2

+ [O(1(λ))+ o(1(λ))]
[(

1
λ

∫
S1

∫ 2λ

λ

‖(Q1− Q2)Aζ1‖
2
Ẋ−1/2
ζ2

ds dη1

)1/2

+ o(1(λ))
]
,
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where Theorems 4.7 and 4.9 are used. It is not hard to see this converges to zero as λ goes to∞ by the
same argument we used in proving (4-7) and by noticing that the left-hand side is independent of λ. Thus,
by (5-2) and (5-3), we arrive at∫

R3
〈d(a2− a1), deiρ〉 dx −

∫
R3
〈d(a1+ a2), d(a2− a1)〉eiρ dx +

∫
R3
ω2(γ2µ2− γ1µ1)eiρ dx = 0 (5-4)

and∫
R3
〈d(b2− b1), deiρ〉 dx −

∫
R3
〈d(b1+ b2), d(b2− b1)〉eiρ dx +

∫
R3
ω2(γ2µ2− γ1µ1)eiρ dx = 0 (5-5)

for any ρ. So far, this shows that{
δd(a2− a1)−〈d(a1+ a2), d(a2− a1)〉+ω

2(γ2µ2− γ1µ1)= 0,
δd(b2− b1)−〈d(b1+ b2), d(b2− b1)〉+ω

2(γ2µ2− γ1µ1)= 0,

a system that has to be understood in the weak sense. Finally, some simple computations yield a system
of second order equations of the form{

−1(γ
1/2
2 − γ

1/2
1 )+ V (γ 1/2

2 − γ
1/2
1 )+ a(γ 1/2

2 − γ
1/2
1 )+ b(µ1/2

2 −µ
1/2
1 )= 0,

−1(µ
1/2
2 −µ

1/2
1 )+W (µ

1/2
2 −µ

1/2
1 )+ c(µ1/2

2 −µ
1/2
1 )+ d(γ 1/2

2 − γ
1/2
1 )= 0,

again in the weak sense with

V =−
δd(γ 1/2

1 + γ
1/2
2 )

γ
1/2
1 + γ

1/2
2

, W =−
δd(µ1/2

1 +µ
1/2
2 )

µ
1/2
1 +µ

1/2
2

and

a = 1�ω2γ
1/2
1 γ

1/2
2 (µ1+µ2), b =−1�ω2γ

1/2
1 γ

1/2
2 (γ1+ γ2)

µ
1/2
1 +µ

1/2
2

γ
1/2
1 + γ

1/2
2

,

c = 1�ω2µ
1/2
1 µ

1/2
2 (γ1+ γ2), d =−1�ω2µ

1/2
1 µ

1/2
2 (µ1+µ2)

γ
1/2
1 + γ

1/2
2

µ
1/2
1 +µ

1/2
2

,

where 1� is the characteristic function of �. Note that γ 1/2
2 −γ

1/2
1 and µ1/2

2 −µ
1/2
1 belong to H 1(R3) and

they are compactly supported. Thus the next unique continuation result implies that γ2 = γ1 and µ2 = µ1.

Lemma 5.1. Let f and g belong to H 1(R3) and assume that they are compactly supported. Then f and
g vanish if and only if they satisfy {

−1 f + V f + a f + bg = 0,
−1g+Wg+ cg+ d f = 0.

(5-6)

Proof. Let ζ ∈ Cn satisfies ζ · ζ = 0. Set u(x)= eζ ·x f (x) and v(x)= eζ ·x g(x). Since f and g belong to
H 1(R3) and they are compactly supported, u and v also belong to H 1(R3) and, consequently, to Ẋ1/2

ζ .
Moreover, u and v solve {

−(1+ 2ζ · ∇)u+ V u+ au+ bv = 0,
−(1+ 2ζ · ∇)v+Wv+ cv+ du = 0.

(5-7)
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Let w = w0
+w3 be the graded form given by w0

= u and w3
= ∗v and define

〈Qw | ϕ〉 = −
∫

R3

〈
d(γ 1/2

1 + γ
1/2
2 ), d

〈w0, ϕ0
〉

γ
1/2
1 + γ

1/2
2

〉
dx +

∫
R3
〈aw0

+ bw3, ϕ0
〉 dx

−

∫
R3

〈
d(µ1/2

1 +µ
1/2
2 ), d

〈w3, ϕ3
〉

µ
1/2
1 +µ

1/2
2

〉
dx +

∫
R3
〈dw0

+ cw3, ϕ3
〉 dx

for any ϕ = ϕ0
+ϕ3 with ϕl

∈ H 1
(
R3
;3lR3

)
. Then w ∈ Ẋ1/2

ζ and (5-7) reads

1ζw+ Qw = 0. (5-8)

Here we have identified ζ with a 1-form also denoted by ζ . Following the same argument as in Lemma 4.3,
we can prove

‖Q‖
Ẋ1/2
ζ →Ẋ−1/2

ζ

= o(1(|ζ |)) (5-9)

as |ζ | becomes large. Then Remark 4.1, identity (4-1), (5-9), and the Banach fixed-point theorem imply
that (5-8) has a unique solution belonging to Ẋ1/2

ζ . Therefore, w= 0, which in turn implies f = g= 0. �

Appendix: The framework of differential forms

Since the tools used in this paper are scattered throughout the literature, to make the paper more self-
contained, we summarized them in this appendix. We start with collecting several basics required in the
framework of differential forms (see [Taylor 1996] and [Federer 1969] for some details of differential
forms and Grassman graded algebra), and the basic functional spaces and properties for the current
discussion of PDEs. Then we show a useful identity used in the paper, and end our discussion with
recalling basic facts about the Fourier transform of graded forms.

A1. Tools of multivariable calculus. For x ∈ Rn and n ∈ N\{0}, let Tx Rn denote the complex vector
space of distributions X of order one in Rn satisfying supp X = {x} and 〈X | c〉 = 0 for any constant
function c (See Theorem 2.3.4 in [Hörmander 1983] for the justification of this definition). Such X can
be uniquely extended to a linear form on C1(Rn), the space of continuously differentiable functions in
Rn . Let ∂x j |x denote the distribution given by

〈∂x j |x | φ〉 = ∂x jφ(x)

for any φ ∈ C1(Rn). The set {∂x1 |x , . . . , ∂xn |x} is a base of Tx Rn . Let T ∗x Rn denote the dual vector space
of Tx Rn with {dx1

|x , . . . , dxn
|x} being the dual base. We define on T ∗x Rn the inner product 〈 · , · 〉 given

by the bilinear extension of 〈dx j
|x , dxk

|x 〉 = δ jk (Kronecker delta). Note that it is not a Hermitian product.

A1.1. Differential forms. Let 3lRn with l ∈ {0, 1, . . . , n} and n ≥ 2 denote the smooth complex vector
bundle over Rn whose fiber at x ∈ Rn consists of 3l T ∗x Rn , the l-fold exterior product of T ∗x Rn . By
convention, a 0-fold is just a complex number and a 1-fold is an element of T ∗x Rn . Let E be a nonempty
subset of Rn; an l-form on E is a section u of 3lRn over E , so u(x)= u|x ∈3l T ∗x Rn for any x ∈ E . Any
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l-form on E with l ∈ {1, . . . , n} can be written as

u =
∑
α∈Sl

uα dxα1 ∧ · · · ∧ dxαl

with Sl
= {(α1, . . . , αl) ∈ {1, . . . , n}l : α1 < · · ·< αl} and uα : E −→ C. It is convenient to call uα with

α ∈ Sl the component functions of u.
The exterior product of an l-form u and an m-form v, both on E , is denoted by (u ∧ v)(x)= u|x ∧ v|x

for any x ∈ E . Recall that the exterior product is bilinear, associative and anticommutative:

u ∧ v = (−1)lmv∧ u. (A-1)

Since a 0-form v on E is nothing but a map from E to C, it holds that u ∧ v = v∧ u = vu for any l-form
u on E .

The inner product of two l-forms on E with l ∈ {2, . . . , n} can be defined at each point x ∈ E as the
bilinear extension of

〈(dxα1 ∧ · · · ∧ dxαl )|x , (dxβ1 ∧ · · · ∧ dxβl )|x 〉 = det〈dxα j |x , dxβk |x 〉,

where the right-hand side stands for the determinant of the matrix

(〈dxα j |x , dxβk |x 〉) jk .

The inner product of two 0-forms is just the usual product of functions. The inner product on l-forms can
be immediately extended to graded forms u(x)=

∑n
0 ul(x) and v(x)=

∑n
0 v

l(x) on E , with ul and vl

l-forms on E , as follows:

〈u, v〉(x)=
n∑

l=0

〈ul
|x , v

l
|x 〉.

Associated to this inner product, we consider the norm satisfying |u|2 = 〈u, ū〉.
Now let T ∗x Rn be endowed with an orientation. The Hodge star operator of an l-form on E with

l ∈ {1, . . . , n− 1} is defined at each point x ∈ E as the linear extension of

∗(dxα1 ∧ · · · ∧ dxαl )|x = (dxβ1 ∧ · · · ∧ dxβn−l )|x ,

where (β1, . . . , βn−l) ∈ {1, . . . , n}n−l is chosen such that

{dxα1, . . . dxαl , dxβ1, . . . , dxβn−l }

is a positive base of T ∗x Rn . The case of 0-forms and n-forms follows from

∗1|x = (dx1
∧ · · · ∧ dxn)|x , ∗(dx1

∧ · · · ∧ dxn)|x = 1|x ,
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where 1 denotes the constant function taking the value 1 at any point. Now, if u and v are l-forms on E ,

∗∗u(x)= (−1)l(n−l)u(x), (A-2)

〈u, v〉(x)= ∗(u|x ∧∗v|x)= ∗(v|x ∧∗u|x), (A-3)

〈u, v〉 = 〈∗u, ∗v〉. (A-4)

Let u be an l-form on E and let v be an m-form on E . The vee product of v and u at each point x ∈ E is
defined as

(v∨ u)(x)= (−1)(n+m−l)(l−m)
∗(v|x ∧∗u|x). (A-5)

Note that whenever m > l, (v ∨ u)(x) = 0 for all x ∈ E . The vee product is bilinear, but it is neither
associative nor commutative. The product satisfies

〈w∧ v, u〉 = 〈w, v∨ u〉 (A-6)

for any k-form w on E .

Proposition A.1. If u and v are 1-forms and w is an l-form with l ∈ {0, . . . , n}, then

u ∨ (v∧w)− v∧ (u ∨w)= (−1)l〈u, v〉w. (A-7)

Corollary A.2. If u1 and v1 are 1-forms and ul and vl are l-forms with l ∈ {0, . . . , n}, then

〈u1
∨ ul, v1

∨ vl
〉+ 〈v1

∧ ul, u1
∧ vl
〉 = 〈u1, v1

〉〈ul, vl
〉.

Proof. Since

〈u1
∨ ul, v1

∨ vl
〉+ 〈v1

∧ ul, u1
∧ vl
〉 = (−1)l〈u1

∨ (v1
∧ ul)− v1

∧ (u1
∨ ul), vl

〉,

the identity follows from (A-7). �

Let G be a nonempty open subset of Rn and k a positive integer. An l-form u on G with l ∈ {1, . . . , n}
is said to be k-times continuously differentiable if its component functions are k-times continuously
differentiable in G. We write u ∈ Ck

(
G;3lRn

)
. If u ∈ Ck

(
G;3lRn

)
for any positive integer k, we

say that u is smooth and we write u ∈ C∞
(
G;3lRn

)
. Furthermore, u ∈ Ck

(
G;3lRn

)
(respectively

u ∈C∞
(
G;3lRn

)
) is said to be compactly supported if its component functions are compactly supported

in G, in which case we write u ∈ C∞0
(
G;3lRn

)
(respectively u ∈ C∞0

(
G;3lRn

)
). These definitions are

naturally generalized to 0-forms, where the conventional function space notations are also used.
The exterior derivative of u ∈ C1

(
G;30Rn

)
is a 1-form defined by

du|x(X)= 〈X | χx u〉

for each x ∈ G and X ∈ Tx Rn . Here χx ∈ C∞0 (G) with χx(x) = 1 on G, and χx u is understood as the
extension of u by zero outside G. The exterior derivative of u ∈ C1

(
G;3lRn

)
with l ∈ {1, . . . , n} is

defined by
du =

∑
α∈Sl

duα ∧ dxα1 ∧ · · · ∧ dxαl .
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Recall that d(du)= 0 for any u ∈ C2
(
G;3lR3

)
and

d(u ∧ v)= du ∧ v+ (−1)lu ∧ dv, (A-8)

for any u ∈ C1
(
G;3lR3

)
and v ∈ C1

(
G;3mR3

)
.

A1.2. Symmetric tensors. Let 6lRn with l ∈ N and n ≥ 2 denote the smooth complex vector bundle
over Rn whose fiber at x ∈ Rn consists of 6l T ∗x Rn , the l-fold symmetric tensor product of T ∗x Rn . By
convention, a 0-fold is just a complex number and a 1-fold is an element of T ∗x Rn . Let E be a nonempty
subset of Rn; an l-symmetric tensor on E is a section u of 6lRn over E , so u(x) = u|x ∈ 6l T ∗x Rn for
any x ∈ E . Any l-symmetric tensor on E with l ∈ {1, . . . , n} can be written as

u =
∑
α∈T l

uα dxα1 � · · ·� dxαl

with T l
= {(α1, . . . , αl) ∈ {1, . . . , n}l : α1 ≤ · · · ≤ αl} and uα : E −→ C. It is convenient to call uα with

α ∈ T l the component functions of u and to point out that 6l T ∗x Rn
= 3l T ∗x Rn for l ∈ {0, 1}, which in

turn implies 6lRn
=3lRn for l ∈ {0, 1}.

The symmetric tensor product of an l-symmetric tensor u and an m-symmetric tensor v, both on E , is
denoted by (u� v)(x)= u|x � v|x for any x ∈ E . Recall that the symmetric tensor product is bilinear,
associative, and commutative. Moreover, if u and v are 1-symmetric tensors,

u� v = 1
2(u⊗ v+ v⊗ u).

The inner product of two l-symmetric tensors on E with l ∈ N \ {0, 1} can be defined at each point
x ∈ E as the bilinear extension of

〈(dxα1 � · · ·� dxαl )|x , (dxβ1 � · · ·� dxβl )|x 〉 = | det〈dxα j |x , dxβk |x 〉|.

Let G be a nonempty open subset of Rn . An l-symmetric tensor u on G with l ∈ N is said to be
k-times continuously differentiable if its component functions are k-times continuously differentiable in
G, and we write u ∈ Ck(G;6lRn). Furthermore, u ∈ Ck(G;6lRn) with l ∈ N is said to be compactly
supported if its component functions are compactly supported in G, and we write u ∈ Ck

0(G;6
lRn).

These definitions extend naturally to 0-symmetric tensors on G.
The symmetric derivative of a smooth l-symmetric tensor u on G with l ∈ N \ {0} is defined by

i Du =
∑
α∈T l

duα � dxα1 � · · ·� dxαl .

A2. Functional spaces. Let L1
loc

(
E;3lRn

)
denote the space of locally integrable l-forms (whose com-

ponent functions are in L1
loc(E)) modulo those which vanish almost everywhere (a.e.) in E . The space

L p
(
E;3lRn

)
, with p ∈ [1,+∞), consists of all u ∈ L1

loc

(
E;3lRn

)
such that∫

E
〈u, ū〉p/2 dx <+∞.
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Endowed with the norm

‖u‖L p(E;3l Rn) =

(∫
E
〈u, ū〉p/2 dx

)1/p

,

L p
(
E;3lRn

)
is a Banach space. Moreover, L2

(
E;3lRn

)
is a Hilbert space.

Let u ∈ L1
loc

(
G;3lRn

)
with l ∈ {1, . . . , n}. We say that v ∈ L1

loc

(
G;3l−1Rn

)
is the formal adjoint

derivative of u, denoted by v = δu, if∫
G
〈v,w〉 dx =

∫
G
〈u, dw〉 dx

for any w ∈ C1
0

(
G;3l−1Rn

)
. If u ∈ L1

loc

(
G;30Rn

)
, we define δu = 0. For all u ∈ L1

loc

(
G;3lRn

)
with

l ∈ {0, . . . , n} such that δu ∈ L1
loc

(
G;3l−1Rn

)
, one has δ(δu)= 0. Moreover, if u ∈ C1

(
G;3lRn

)
, then

δu = (−1)n(l+1)+1
∗d∗u. (A-9)

Proposition A.3. Consider u ∈ L1
loc

(
G;3lRn

)
and v ∈ C1

(
G;3mRn

)
. If δu ∈ L1

loc

(
G;3l−1Rn

)
, then

δ(v∨ u) ∈ L1
loc

(
G;3l−m−1Rn

)
and

δ(v∨ u)= (−1)l−mdv∨ u+ v∨ δu. (A-10)

Let u ∈ L1
loc

(
G;3lRn

)
with l ∈ {0, . . . , (n − 1)}. We say that v ∈ L1

loc

(
G;3l+1Rn

)
is the (weak)

exterior derivative of u, denoted by v = du, if∫
G
〈v,w〉 dx =

∫
G
〈u, δw〉 dx

for any w ∈ C1
0

(
G;3l+1Rn

)
. If u ∈ L1

loc

(
G;3nRn

)
, we define du = 0. For all u ∈ L1

loc

(
G;3lRn

)
with

l ∈ {0, . . . , n} such that du ∈ L1
loc

(
G;3l+1Rn

)
, one has d(du)= 0.

Proposition A.4. Let u ∈ L1
loc

(
G;3lRn

)
such that δu ∈ L1

loc

(
G;3l−1Rn

)
. Then ∗d∗u ∈ L1

loc

(
G;3l−1Rn

)
and

δu = (−1)n(l+1)+1
∗d∗u. (A-11)

We now present certain Sobolev spaces of forms, in which our PDEs are discussed. Let H d
(
G;3lRn

)
(respectively H δ

(
G;3lRn

)
) denote the space of u ∈ L2

(
G;3lRn

)
such that du ∈ L2

(
G;3l+1Rn

)
(re-

spectively δu ∈ L2
(
G;3l−1Rn

)
), endowed with the norm

‖u‖Hd (G;3l Rn)
= (‖u‖2L2(G;3l Rn)

+‖du‖2L2(G;3l+1Rn)
)1/2(

respectively ‖u‖H δ(G;3l Rn)
= (‖u‖2L2(G;3l Rn)

+‖δu‖2L2(G;3l−1Rn)
)1/2

)
.

It is observed that H d
(
G;3lRn

)
and H δ

(
G;3lRn

)
are Hilbert spaces and C1

0

(
Rn
;3lRn

)
is dense in

them. Let H d
loc

(
Rn
;3lRn

)
and H δ

loc

(
Rn
;3lRn

)
denote the spaces of u ∈ L1

loc

(
Rn
;3lRn

)
such that

u|U ∈ H d
(
U ;3lRn

)
and u|U ∈ H δ

(
U ;3lRn

)
, respectively, for any bounded nonempty open subset U in

Rn .
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Finally, by a density argument, we have∫
Rn
〈du, v〉 dx =

∫
Rn
〈u, δv〉 dx (A-12)

for all u ∈ H d
(
Rn
;3l−1Rn

)
and v ∈ H δ

(
Rn
;3lRn

)
with l ∈ {1, . . . , n}.

A3. Traces.4

Let U be a nonempty bounded open subset of Rn , and let H 1
(
U ;3lRn

)
denote the space of all

u ∈ L2
(
U ;3lRn

)
whose component functions uα satisfy duα ∈ L2

(
U ;31Rn

)
for all α ∈ Sl , endowed

with the norm

‖u‖H1(U ;3l Rn)
=

(
‖u‖2L2(U ;3l Rn)

+

∑
α∈Sl

‖duα‖2L2(U ;31Rn)

)1/2

. (A-13)

Given G, a nonempty open subset of Rn , by H 1
loc

(
G;3lRn

)
we denote the space of u ∈ L1

loc

(
G;3lRn

)
such that u|U ∈ H 1

(
U ;3lRn

)
for any bounded nonempty open subset U of G.

It is a consequence of (A-11) that, for any u ∈ H 1
(
U ;3lRn

)
, one has

‖u‖H δ(U ;3l Rn)
≤ ‖u‖H1(U ;3l Rn)

. (A-14)

Let H 1
0

(
U ;3lRn

)
denote the closure in H 1

(
U ;3lRn

)
of C∞0

(
U ;3lRn

)
modulo those vanishing a.e. in

U . We then define the space

TH 1(∂U ;3lRn)
= H 1(U ;3lRn)/H 1

0
(
U ;3lRn).

If f ∈ TH 1
(
∂U ;3lRn

)
, let u f ∈ H 1

(
U ;3lRn

)
denote a representative of f . This space can be endowed

with the norm
‖ f ‖TH1(∂U ;3l Rn)

= inf{‖u‖H1(U ;3l Rn)
: u− u f ∈ H 1

0
(
U ;3lRn)

}.

Let TH 1
(
∂U ;3lRn

)
∗ denote the dual space of TH 1

(
∂U ;3lRn

)
with the functional ‖ · ‖TH1(∂U ;3l Rn)∗

standing for the dual norm.
The latter spaces will be used as auxiliary spaces to define certain traces on H d

(
U ;3lRn

)
and

H δ
(
U ;3lRn

)
. Firstly, define the d-trace of v ∈ H d

(
U ;3lRn

)
with l ∈ {0, . . . , n− 1} as

〈d tr v | f 〉 =
∫

U
〈dv, u〉 dx −

∫
U
〈v, δu〉 dx

for any f ∈ TH 1
(
∂U ;3l+1Rn

)
where u ∈ H 1

(
U ;3l+1Rn

)
such that u− u f ∈ H 1

0

(
U ;3l+1Rn

)
. Since

(A-14) holds, we have
〈d tr v | f 〉 ≤ ‖v‖Hd (U ;3l Rn)

‖u‖H1(U ;3l+1Rn)

for all u ∈ H 1
(
U ;3l+1Rn

)
such that u− u f ∈ H 1

0

(
U ;3l+1Rn

)
. Hence d tr v ∈ TH 1

(
∂U ;3l+1Rn

)
∗ and

‖d tr v‖TH1(∂U ;3l+1Rn)∗
≤ ‖v‖Hd (U ;3l Rn)

.

4For more details on traces see [Mitrea 2004; Schwarz 1995].
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This motivates the definition of TH d
(
∂U ;3l+1Rn

)
to be the space of all g ∈ TH 1

(
∂U ;3l+1Rn

)
∗ such

that d tr v = g for some v ∈ H d
(
U ;3lRn

)
. The endowed norm is then given by

‖g‖THd (∂U ;3l+1Rn)
= inf{‖v‖Hd (U ;3l Rn)

: d tr v = g}.

Finally, we define the δ-trace of v ∈ H δ
(
U ;3lRn

)
with l ∈ {1, . . . , n} as

〈δ tr v | f 〉 = (−1)l
∫

U
〈δv, u〉 dx − (−1)l

∫
U
〈v, du〉 dx

for any f ∈ TH 1
(
∂U ;3l−1Rn

)
where u ∈ H 1

(
U ;3l−1Rn

)
such that u−u f ∈ H 1

0

(
U ;3l−1Rn

)
. Similarly

we would have δ tr v ∈ TH 1
(
∂U ;3l−1Rn

)
∗ and

‖δ tr v‖TH1(∂U ;3l−1Rn)∗
≤ ‖v‖H δ(U ;3l Rn)

.

Moreover, we define TH δ
(
∂U ;3l−1Rn

)
, the space consisting of all g belonging to TH 1

(
∂U ;3l−1Rn

)
∗,

such that there exists v ∈ H δ
(
U ;3lRn

)
with δ tr v = g with norm

‖g‖TH δ(∂U ;3l−1Rn)
= inf{‖v‖H δ(U ;3l Rn)

: δ tr v = g}.

Then we will need the following lemma about these spaces.

Lemma A.5. Given the definitions above,

(a) if u ∈ H d
(
U ;3lRn

)
with l ∈ {0, . . . , n− 2} and d tr u = 0, then d tr(du)= 0;

(b) if u ∈ H δ
(
U ;3lRn

)
with l ∈ {2, . . . , n} and δ tr u = 0, then δ tr(δu)= 0.

Proof. In order to prove (a), let us consider the bounded linear operator

(ν ∨ · ) : TH d(∂U ;3lRn)
−→ TH δ

(
∂U ;3l−1Rn)∗

given by

〈ν ∨ f | g〉 =
∫

U
〈du, v〉 dx −

∫
U
〈u, δv〉 dx,

where u ∈ H d
(
U ;3l−1Rn

)
, v ∈ H δ

(
U ;3lRn

)
, d tr u = f , and δ tr v = g. Here TH δ

(
∂U ;3l−1Rn

)
∗

denotes the dual of TH δ
(
∂U ;3l−1Rn

)
. Let u be as in (a) and g ∈ TH 1

(
U ;3l+2Rn

)
. Then

〈d tr(du) | g〉 = −〈ν ∨ d tr u | δ tr(δvg)〉,

where vg ∈ H 1
(
U ;3l+2Rn

)
denotes a representative of g. Therefore (a) holds.

A similar proof applies to (b) by considering the operator

(ν ∨ · ) : TH δ
(
∂U ;3lRn)

−→ TH d(∂U ;3l+1Rn)∗
defined by

〈ν ∧ f | g〉 = (−1)l+1
∫

U
〈δu, v〉 dx − (−1)l+1

∫
U
〈u, dv〉 dx,

where u ∈ H δ
(
U ;3l+1Rn

)
, v ∈ H d

(
U ;3lRn

)
, δ tr u = f , and d tr v = g. We leave the proof to the

readers. �
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A4. A useful identity. Given G, a nonempty open subset of Rn , let L1
loc(G;6

lRn) denote the space of
locally integrable l-symmetric tensors (whose component functions are in L1

loc(E)) modulo those which
vanish a.e. in E .

For u ∈ L1
loc(G;6

lRn) with l ∈ N \ {1, 2}, we say that v ∈ L1
loc(G;6

l−1Rn) is the formal adjoint
(symmetric) derivative of u, denoted by v = D∗u, if∫

G
〈v,w〉 dx =

∫
G
〈u, Dw〉 dx

for any w ∈ C1
0(G;6

l−1Rn).
Note that if

u =
n∑

j=1

u j dx j and v =

n∑
j=1

v j dx j

are such that u� v ∈ L1
loc(G;6

2Rn) and D∗(u� v) ∈ L1
loc(G;6

1Rn), then

D∗(u� v)=−
n∑

k=1

( n∑
j=1

∂x j (u jvk + ukv j )

)
dxk . (A-15)

Proposition A.6. Given u and v in H 1
loc

(
G;31Rn

)
, we have that d〈u, v〉 and D∗(u � v) belong to

L1
loc

(
G;31Rn

)
and the following identity holds:

u ∨ dv+ v∨ du+ δu ∨ v+ δv∨ u = d〈u, v〉+ D∗(u� v).

A5. Local regularity. Here we prove a local regularity lemma for the operator (d + δ)
∑n

0(−1)l .

Lemma A.7. Let v =
∑n

0 v
l be such that vl

∈ L2
loc

(
Rn
;3lRn

)
and

(d + δ)
n∑

l=0

(−1)lvl
∈

n⊕
l=0

L2
loc
(
Rn
;3lRn).

Then vl
∈ H 1

loc

(
Rn
;3lRn

)
for l ∈ {0, . . . , n}.

Proof. By using Corollary A.2 and the identity

〈ξ ∧ φ̂l−1(ξ), ξ ∨ φ̂l+1(ξ)〉 = 0,

we can check that

‖φ‖2L2 = ‖φ‖
2
H−1 +

∥∥∥∥(d + δ) n∑
l=0

(−1)lφl
∥∥∥∥2

H−1
(A-16)

for all φ=
∑n

0 φ
l such that φl

∈ L2
(
Rn
;3lRn

)
. Here we are using the notation ‖ϕ‖2Y =

∑n
0 ‖ϕ

l
‖

2
Y (Rn

;3l Rn)

for ϕ=
∑n

0 ϕ
l with ϕl

∈ Y
(
Rn
;3lRn

)
, where Y denotes either L2 or H−1. Recall that ‖ϕl

‖
2
H−1(Rn

;3l Rn)
=∫

Rn (1+ |ξ |2)−1
|ϕ̂l(ξ)|2 dξ .
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Let ψ be a compactly supported smooth function in Rn and let 1 j
hφ be defined as

1
j
hφ(x)=

1
h
(φ(x + he j )−φ(x))

with φ as in (A-16), h a positive parameter, and e j the j-th element of the orthonormal basis of Rn . By
(A-16) and the commutativity between 1 j

h and (d + δ)
∑n

0(−1)l , we have

‖1
j
h(ψv)‖

2
L2 = ‖1

j
h(ψv)‖

2
H−1 +‖1

j
h(d + δ)

n∑
l=0

(−1)l(ψvl)‖2H−1 . (A-17)

Since

(d + δ)
n∑

l=0

(−1)l(ψvl)= ψ(d + δ)
n∑

l=0

(−1)lvl
+

n∑
l=0

(−1)ldψ ∧ vl
+ dψ ∨ vl

and v and (d+δ)
∑n

0(−1)lvl belong to
⊕n

0 L2
loc

(
Rn
;3lRn

)
, the statement of the result follows by making

the parameter h go to zero in the identity (A-17)5. �

A6. Fourier transform of forms and operator 1ζ . An l-form u with l ∈ {0, . . . , n} is said to belong to
the Schwartz space S

(
Rn
;3lRn

)
if its component functions uα (α ∈ Sl) are in the Schwartz space S(Rn).

We can define the space S′
(
Rn
;3lRn

)
of l-form-valued tempered distributions similarly. The Fourier

Transform of u ∈ S
(
Rn
;3lRn

)
is then defined by

û =
∑
α∈Sl

ûαdξα1 ∧ · · · ∧ dξαl ∈ S
(
Rn
;3lRn).

The Fourier Transform û for u ∈ S′
(
Rn
;3lRn

)
can be defined by duality. One can easily verify the

following identities for u ∈ S
(
Rn
;3lRn

)
;

d̂u(ξ)= iξ ∧ û(ξ), δ̂u(ξ)= i(−1)lξ ∨ û(ξ), (A-18)

where ξ ∈ R3
\{0} can be viewed as a 1-form. For u, v ∈ L2

(
Rn
;3lRn

)
, we have∫

Rn
〈u, v̄〉 dx =

∫
Rn
〈û, ¯̂v〉 dx, (A-19)

making the Fourier transform a unitary map on L2
(
Rn
;3lRn

)
.

Given ζ =
∑n

1 ζ j dx j , a constant 1-differential form in Rn , consider the conjugated Hodge–Laplacian
operator 1ζ = e−ζ (dδ+ δd) ◦ eζ , where eζ (x) = eζ ·x and ζ · x =

∑n
1 ζ j x j . When acting on an l-form

u ∈ H d
(
Rn
;3lRn

)
∩ H δ

(
Rn
;3lRn

)
, it reads

1ζu = (dδ+ δd)u+ (−1)ld(ζ ∨ u)+ ζ ∧ δu+ δ(ζ ∧ u)+ (−1)l+1ζ ∨ du−〈ζ, ζ 〉u, (A-20)

(understood in the weak sense). Moreover, it is easy to verify that the symbol of1ζ is |ξ |2−2i〈ζ, ξ〉−〈ζ, ζ 〉
by (A-18).

5See Theorem (6.19) of [Folland 1995] for more details.



404 PEDRO CARO AND TING ZHOU

Acknowledgments

This work was initiated while the authors were visiting Gunther Uhlmann at UCI. The authors would
like to thank him for his generosity, hospitality, and many useful discussions. The visit was partially
supported by the Department of Mathematics of UCI and by the organizing committee of “a conference
on inverse problems in honor of Gunther Uhlmann” (Irvine, June 2012). The first author thanks Petri Ola
and Mikko Salo for useful discussions.

References

[Alessandrini 1988] G. Alessandrini, “Stable determination of conductivity by boundary measurements”, Appl. Anal. 27:1-3
(1988), 153–172. MR 89f:35195 Zbl 0616.35082

[Astala and Päivärinta 2006] K. Astala and L. Päivärinta, “Calderón’s inverse conductivity problem in the plane”, Ann. of Math.
(2) 163:1 (2006), 265–299. MR 2007b:30019 Zbl 1111.35004

[Brown 1996] R. M. Brown, “Global uniqueness in the impedance-imaging problem for less regular conductivities”, SIAM J.
Math. Anal. 27:4 (1996), 1049–1056. MR 97e:35195 Zbl 0867.35111

[Calderón 2006] A. P. Calderón, “On an inverse boundary value problem”, Comput. Appl. Math. 25:2-3 (2006), 133–138.
MR 2008a:35288 Zbl 1182.35230

[Caro 2010] P. Caro, “Stable determination of the electromagnetic coefficients by boundary measurements”, Inverse Problems
26:10 (2010), 105014. MR 2011d:65329 Zbl 1205.78001

[Caro 2011] P. Caro, “On an inverse problem in electromagnetism with local data: Stability and uniqueness”, Inverse Probl.
Imaging 5:2 (2011), 297–322. MR 2012k:35595 Zbl 1219.35353

[Caro et al. 2009] P. Caro, P. Ola, and M. Salo, “Inverse boundary value problem for Maxwell equations with local data”, Comm.
Partial Differential Equations 34:10-12 (2009), 1425–1464. MR 2010m:35558 Zbl 1185.35321

[Caro et al. 2013] P. Caro, A. García, and J. M. Reyes, “Stability of the Calderón problem for less regular conductivities”, J.
Differential Equations 254:2 (2013), 469–492. MR 2990039 Zbl 06117512

[Clop et al. 2010] A. Clop, D. Faraco, and A. Ruiz, “Stability of Calderón’s inverse conductivity problem in the plane for
discontinuous conductivities”, Inverse Probl. Imaging 4:1 (2010), 49–91. MR 2011c:35612 Zbl 1202.35346

[Federer 1969] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer,
New York, 1969. MR 41 #1976 Zbl 0176.00801

[Folland 1995] G. B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, 1995.
MR 96h:35001 Zbl 0841.35001

[García and Zhang 2012] A. García and G. Zhang, “Reconstruction from boundary measurements for less regular conductivities”,
preprint, 2012. arXiv 1212.0727

[Haberman and Tataru 2013] B. Haberman and D. Tataru, “Uniqueness in Calderon’s problem with Lipschitz conductivities”,
Duke Math. J. 162:3 (2013), 497–516. Zbl 1260.35251

[Hörmander 1983] L. Hörmander, The analysis of linear partial differential operators, I: Distribution theory and Fourier
analysis, Grundlehren der Mathematischen Wissenschaften 256, Springer, Berlin, 1983. MR 85g:35002a Zbl 0521.35001

[Joshi and McDowall 2000] M. S. Joshi and S. R. McDowall, “Total determination of material parameters from electromagnetic
boundary information”, Pacific J. Math. 193:1 (2000), 107–129. MR 2001c:78017 Zbl 1012.78012

[Kenig et al. 2011] C. E. Kenig, M. Salo, and G. Uhlmann, “Inverse problems for the anisotropic Maxwell equations”, Duke
Math. J. 157:2 (2011), 369–419. MR 2012d:35408 Zbl 1226.35086

[Lassas 1997] M. Lassas, “The impedance imaging problem as a low-frequency limit”, Inverse Problems 13:6 (1997), 1503–1518.
MR 99d:35161 Zbl 0903.35090

[McDowall 1997] S. R. McDowall, “Boundary determination of material parameters from electromagnetic boundary informa-
tion”, Inverse Problems 13:1 (1997), 153–163. MR 98c:78010 Zbl 0869.35113

http://dx.doi.org/10.1080/00036818808839730
http://msp.org/idx/mr/89f:35195
http://msp.org/idx/zbl/0616.35082
http://dx.doi.org/10.4007/annals.2006.163.265
http://msp.org/idx/mr/2007b:30019
http://msp.org/idx/zbl/1111.35004
http://dx.doi.org/10.1137/S0036141094271132
http://msp.org/idx/mr/97e:35195
http://msp.org/idx/zbl/0867.35111
http://dx.doi.org/10.1590/S0101-82052006000200002
http://msp.org/idx/mr/2008a:35288
http://msp.org/idx/zbl/1182.35230
http://dx.doi.org/10.1088/0266-5611/26/10/105014
http://msp.org/idx/mr/2011d:65329
http://msp.org/idx/zbl/1205.78001
http://dx.doi.org/10.3934/ipi.2011.5.297
http://msp.org/idx/mr/2012k:35595
http://msp.org/idx/zbl/1219.35353
http://dx.doi.org/10.1080/03605300903296272
http://msp.org/idx/mr/2010m:35558
http://msp.org/idx/zbl/1185.35321
http://dx.doi.org/10.1016/j.jde.2012.08.018
http://msp.org/idx/mr/2990039
http://msp.org/idx/zbl/06117512
http://dx.doi.org/10.3934/ipi.2010.4.49
http://dx.doi.org/10.3934/ipi.2010.4.49
http://msp.org/idx/mr/2011c:35612
http://msp.org/idx/zbl/1202.35346
http://msp.org/idx/mr/41:1976
http://msp.org/idx/zbl/0176.00801
http://msp.org/idx/mr/96h:35001
http://msp.org/idx/zbl/0841.35001
http://msp.org/idx/arx/1212.0727
http://dx.doi.org/10.1215/00127094-2019591
http://msp.org/idx/zbl/1260.35251
http://dx.doi.org/10.1007/978-3-642-96750-4
http://dx.doi.org/10.1007/978-3-642-96750-4
http://msp.org/idx/mr/85g:35002a
http://msp.org/idx/zbl/0521.35001
http://dx.doi.org/10.2140/pjm.2000.193.107
http://dx.doi.org/10.2140/pjm.2000.193.107
http://msp.org/idx/mr/2001c:78017
http://msp.org/idx/zbl/1012.78012
http://dx.doi.org/10.1215/00127094-1272903
http://msp.org/idx/mr/2012d:35408
http://msp.org/idx/zbl/1226.35086
http://dx.doi.org/10.1088/0266-5611/13/6/007
http://msp.org/idx/mr/99d:35161
http://msp.org/idx/zbl/0903.35090
http://dx.doi.org/10.1088/0266-5611/13/1/012
http://dx.doi.org/10.1088/0266-5611/13/1/012
http://msp.org/idx/mr/98c:78010
http://msp.org/idx/zbl/0869.35113


GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS 405

[Mitrea 2004] M. Mitrea, “Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth,
three-dimensional Riemannian manifolds”, Duke Math. J. 125:3 (2004), 467–547. MR 2007g:35246 Zbl 1073.31006

[Nachman 1988] A. I. Nachman, “Reconstructions from boundary measurements”, Ann. of Math. (2) 128:3 (1988), 531–576.
MR 90i:35283 Zbl 0675.35084

[Nachman 1996] A. I. Nachman, “Global uniqueness for a two-dimensional inverse boundary value problem”, Ann. of Math. (2)
143:1 (1996), 71–96. MR 96k:35189 Zbl 0857.35135

[Ola and Somersalo 1996] P. Ola and E. Somersalo, “Electromagnetic inverse problems and generalized Sommerfeld potentials”,
SIAM J. Appl. Math. 56:4 (1996), 1129–1145. MR 97b:35194 Zbl 0858.35138

[Ola et al. 1993] P. Ola, L. Päivärinta, and E. Somersalo, “An inverse boundary value problem in electrodynamics”, Duke Math.
J. 70:3 (1993), 617–653. MR 94i:35196 Zbl 0804.35152

[Schwarz 1995] G. Schwarz, Hodge decomposition—a method for solving boundary value problems, Lecture Notes in Mathe-
matics 1607, Springer, Berlin, 1995. MR 96k:58222 Zbl 0828.58002

[Somersalo et al. 1992] E. Somersalo, D. Isaacson, and M. Cheney, “A linearized inverse boundary value problem for Maxwell’s
equations”, J. Comput. Appl. Math. 42:1 (1992), 123–136. MR 93f:35242 Zbl 0757.65128

[Stein 1970] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30,
Princeton University Press, 1970. MR 44 #7280 Zbl 0207.13501

[Sun and Uhlmann 1992] Z. Q. Sun and G. Uhlmann, “An inverse boundary value problem for Maxwell’s equations”, Arch.
Rational Mech. Anal. 119:1 (1992), 71–93. MR 93f:35243 Zbl 0757.35091

[Sylvester and Uhlmann 1987] J. Sylvester and G. Uhlmann, “A global uniqueness theorem for an inverse boundary value
problem”, Ann. of Math. (2) 125:1 (1987), 153–169. MR 88b:35205 Zbl 0625.35078

[Taylor 1996] M. E. Taylor, Partial differential equations, I: Basic theory, Texts in Applied Mathematics 23, Springer, New
York, 1996. MR 98b:35002a Zbl 0869.35002

[Uhlmann 2008] G. Uhlmann, “Commentary on Calderón’s paper (29), on an inverse boundary value problem”, pp. 623–636 in
Selected papers of Alberto P. Calderón, edited by A. Bellow et al., Amer. Math. Soc., Providence, RI, 2008. MR 2435340

[Uhlmann 2009] G. Uhlmann, “Electrical impedance tomography and Calderón’s problem”, Inverse Problems 25:12 (2009),
123011. Zbl 1181.35339

[Zhou 2010] T. Zhou, “Reconstructing electromagnetic obstacles by the enclosure method”, Inverse Probl. Imaging 4:3 (2010),
547–569. MR 2011f:35366 Zbl 1206.35262

Received 13 Dec 2012. Revised 7 Mar 2013. Accepted 13 Apr 2013.

PEDRO CARO: pedro.caro@helsinki.fi
Department of Mathematics and Statistics, University of Helsinki, FI-00500 Helsinki, Finland

TING ZHOU: tzhou@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

mathematical sciences publishers msp

http://dx.doi.org/10.1215/S0012-7094-04-12322-1
http://dx.doi.org/10.1215/S0012-7094-04-12322-1
http://msp.org/idx/mr/2007g:35246
http://msp.org/idx/zbl/1073.31006
http://dx.doi.org/10.2307/1971435
http://msp.org/idx/mr/90i:35283
http://msp.org/idx/zbl/0675.35084
http://dx.doi.org/10.2307/2118653
http://msp.org/idx/mr/96k:35189
http://msp.org/idx/zbl/0857.35135
http://dx.doi.org/10.1137/S0036139995283948
http://msp.org/idx/mr/97b:35194
http://msp.org/idx/zbl/0858.35138
http://dx.doi.org/10.1215/S0012-7094-93-07014-7
http://msp.org/idx/mr/94i:35196
http://msp.org/idx/zbl/0804.35152
http://dx.doi.org/10.1007/BFb0095978
http://msp.org/idx/mr/96k:58222
http://msp.org/idx/zbl/0828.58002
http://dx.doi.org/10.1016/0377-0427(92)90167-V
http://dx.doi.org/10.1016/0377-0427(92)90167-V
http://msp.org/idx/mr/93f:35242
http://msp.org/idx/zbl/0757.65128
http://msp.org/idx/mr/44:7280
http://msp.org/idx/zbl/0207.13501
http://dx.doi.org/10.1007/BF00376011
http://msp.org/idx/mr/93f:35243
http://msp.org/idx/zbl/0757.35091
http://dx.doi.org/10.2307/1971291
http://dx.doi.org/10.2307/1971291
http://msp.org/idx/mr/88b:35205
http://msp.org/idx/zbl/0625.35078
http://dx.doi.org/10.1007/978-1-4684-9320-7
http://msp.org/idx/mr/98b:35002a
http://msp.org/idx/zbl/0869.35002
http://www.math.washington.edu/~gunther/publications/Papers/calderoncommentsfinald.pdf
http://msp.org/idx/mr/2435340
http://dx.doi.org/10.1088/0266-5611/25/12/123011
http://msp.org/idx/zbl/1181.35339
http://dx.doi.org/10.3934/ipi.2010.4.547
http://msp.org/idx/mr/2011f:35366
http://msp.org/idx/zbl/1206.35262
mailto:pedro.caro@helsinki.fi
mailto:tzhou@math.mit.edu
http://msp.org




ANALYSIS AND PDE
Vol. 7, No. 2, 2014

dx.doi.org/10.2140/apde.2014.7.407 msp

CONVEXITY ESTIMATES FOR HYPERSURFACES MOVING
BY CONVEX CURVATURE FUNCTIONS

BEN ANDREWS, MAT LANGFORD AND JAMES MCCOY

We consider the evolution of compact hypersurfaces by fully nonlinear, parabolic curvature flows for
which the normal speed is given by a smooth, convex, degree-one homogeneous function of the principal
curvatures. We prove that solution hypersurfaces on which the speed is initially positive become weakly
convex at a singularity of the flow. The result extends the convexity estimate of Huisken and Sinestrari
[Acta Math. 183:1 (1999), 45–70] for the mean curvature flow to a large class of speeds, and leads to
an analogous description of “type-II” singularities. We remark that many of the speeds considered are
positive on larger cones than the positive mean half-space, so that the result in those cases also applies to
non-mean-convex initial data.

1. Introduction

Given a smooth, compact immersion X0 : Mn
→ Rn+1, n > 1, we consider smooth families X :

M ×[0, T )→ Rn+1 of smooth immersions X ( · , t) solving the curvature flow

∂X
∂t
(x, t)=−s(x, t)ν(x, t), X ( · , 0)= X0, (1-1)

where ν is the outer unit normal field of the solution, and the speed s is determined by a function of the
principal curvatures κi (with respect to ν). That is,

s(x, t)= f (κ1(x, t), . . . , κn(x, t)). (1-2)

We require that the speed function f satisfies the following conditions:

Conditions.

(i) f ∈ C∞(0) for some connected, open, symmetric cone 0 ⊂ Rn .

(ii) f is monotone increasing in each argument.

(iii) f is homogeneous of degree one.

(iv) f > 0.

(v) 0 is preserved by the flow (1-1).

Research partly supported by ARC Discovery Projects grants DP0556211, DP120100097. Langford acknowledges the support
and hospitality of the Mathematical Sciences Center at Tsinghua University, and the Institute for Mathematics and its Applications
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Condition (v) is intended as follows: Let X be a solution of (1-1)–(1-2) such that the initial hyper-
surface satisfies (κ1(x, 0), . . . , κn(x, 0)) ∈ 0 for all x ∈ M . Then there is a connected, open, symmetric
subcone 00 of 0 satisfying 00 \ {0} ⊂ 0 such that the principal curvatures of the solution satisfy
(κ1(x, t), . . . , κn(x, t)) ∈ 00 for all (x, t) ∈ M ×[0, T ). We refer to 00 as a preserved cone of the flow.
This is discussed further below.

Observe that, since the normal points outwards and f is homogeneous, we lose no generality in
assuming further that (1, . . . , 1) ∈ 0, and that f is normalised such that f (1, . . . , 1)= 1. Furthermore,
since f is symmetric, we may at each point reorder the principal curvatures such that κn ≥ · · · ≥ κ1.

For most of the paper, we will also require that f satisfies the following two conditions, which are
somewhat distinct from conditions (i)–(v):

Conditions.
(vi) f is locally convex.

(vii) (∂ f/∂z p − ∂ f/∂zq)
∣∣
z ≥ 0 whenever z ∈ 0 is such that z p ≥ zq .

We will say that s is an admissible speed for the flow (1-1) if s is given by (1-2) such that f satisfies
conditions (i)–(vii).

Some discussion of conditions (i)–(vii) is in order: The symmetry of f is a geometric condition — it
allows us to write s as a smooth function of the Weingarten map of the solution, which ensures geometric
invariance of the flow. The monotonicity of f then ensures that the flow is parabolic, which guarantees
short time existence of a solution if the principal curvatures of the initial immersion lie in 0. Condition (v)
is then a requirement that the principal curvatures do not “move out of” 0 during the flow. In general,
some such condition is necessary (see [Andrews et al. 2013b, Theorem 3]), although, in particular, it
automatically holds in each of the following situations (Lemma 2.4):

Ancillary conditions.
(viii) Conditions (i)–(iv) and (vi) hold, and 0 is convex.

(ix) Conditions (i)–(iv) and (vi) hold, and f
∣∣
∂0
= 0.

(x) Conditions (i)–(iv) hold, and n = 2.

For the purposes of Theorem 1.1, however, we need only assume that the weaker condition (v) holds.
We remark that ancillary condition (ix) makes sense because any function satisfying conditions (i)–(iv)
has a continuous extension to ∂0. This is proved for 0 = 0+ in [Andrews et al. 2013b], but the proof is
easily modified for the present situation.

In the presence of condition (i), conditions (vi)–(vii) are equivalent to requiring that the speed is a
smooth, convex function of the Weingarten map (Lemma 2.1). We note that condition (vii) is automatically
true in each of the following situations:

Ancillary conditions.
(xi) Conditions (i)–(iii) and (vi) hold, and 0 is convex.

(xii) Conditions (i)–(iii) and (vi) hold, and f extends as a convex function to Rn (for example, if f
∣∣
∂0
= 0).

(xiii) Conditions (i)–(iv) and (vi) hold, and n = 2.
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The above assertions are discussed in greater detail in Section 2.
We now list some examples of admissible speeds.

Examples 1.1. The following functions define admissible speeds for the flow (1-1):

(1) The arithmetic mean: f (z1, . . . , zn)= z1+· · ·+ zn on the half-space 0= {z ∈Rn
: z1+· · ·+ zn > 0}.

The corresponding flow is the (mean convex) mean curvature flow.

(2) The power means: f p(z1, . . . , zn) = (z
p
1 + · · · + z p

n )
1/p, for p ≥ 1, on the positive cone 0n

+
=

{z ∈ Rn
: zi > 0 for all i}. The case p = 2 corresponds to the flow by the norm of the Weingarten

map.

(3) Positive linear combinations: If f1, . . . , fk are admissible on 0, then, for all (s1, . . . , sk) ∈ 0
k
+

, the
function f = s1 f1+ · · ·+ sk fk is admissible on 0. For example, the function

f (z1, . . . , zn)= z1+ · · ·+ zn +
√

z2
1+ · · ·+ z2

n

on the cone 0+ defines an admissible speed. In fact, the functions

fα(z1, . . . , zn)= z1+ · · ·+ zn +α
√

z2
1+ · · ·+ z2

n

for α ∈ [0, 1] on the larger cones 0α={z ∈Rn
: z1+· · ·+zn+α

√

z2
1+ · · ·+ z2

n > 0} define admissible
speeds. We remark that the cones 0α contain the half-space {z ∈ Rn

: z1+· · ·+ zn > 0} when α > 0.

(4) Concave functions: If g ∈ C∞(0) is symmetric, homogeneous degree one and concave, then an
admissible speed is defined by the function f = H − εg on the subcone of 0 for which H > εg
and ġi < 1/ε for all i . The class of concave functions discussed in [Andrews 2007] then provide an
interesting class of admissible speeds.

(5) Convex homogeneous combinations: Let φ satisfy conditions (i)–(iv) and (vi)–(vii) on a cone 0̃⊂Rk ,
and suppose that the functions f1, . . . , fk define admissible speeds on a cone 0k ⊂ Rn . Then the
function

f (z1, . . . , zn) := φ
(

f1(z1, . . . , zn), . . . , fk(z1, . . . , zn)
)

on the cone {z ∈ 0 : ( f1(z), . . . , fk(z)) ∈ 0̃} defines an admissible speed. For example, the function
fε(z1, . . . , zn) = Hp(z1 + εH, . . . , zn + εH) on the cone 0ε := {z ∈ Rn

: zi + εH > 0 for all i}
defines an admissible speed.

Curvature problems of the form (1-1)–(1-2) have been studied extensively, although mostly under the
assumption that the initial hypersurface is locally convex, that is, having Weingarten map everywhere
positive definite. The most well-known result in this case is Huisken’s theorem [1984], which states that,
when the speed is given by the mean curvature, uniformly locally convex initial hypersurfaces remain
uniformly locally convex and shrink to round points, “round” meaning that the solution approaches total
umbilicity at the final point. Chow showed that this behaviour is true also for the flows by the n-th root
of the Gauss curvature [1985], and, if an initial curvature pinching condition is assumed, the square
root of the scalar curvature [1987]. Each of these flows satisfy conditions (i)–(iv) on the positive cone
0 = 0+ := {x ∈ Rn

: xi > 0, i = 1, . . . , n}. More general degree-one homogeneous speeds were treated
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in [Andrews 1994a; 2007; 2010], where it was shown that uniformly convex hypersurfaces will contract to
round points under the flow (1-1)–(1-2), so long as the speed satisfies conditions (i)–(iv) and, in addition,
either

(1) n = 2, or

(2) f is convex, or

(3) f is concave, and inverse concave, that is, the function

f∗(z1, . . . , zn)= f (z−1
1 , . . . , z−1

n )−1

is concave.

These conditions were weakened in [Andrews et al. 2013b], and their necessity demonstrated by the
construction, in dimensions n > 2, of concave speed functions satisfying conditions (i)–(iv) for which
convex initial hypersurfaces do not remain convex under the corresponding flow [ibid., Theorem 3].

In the case of nonconvex initial hypersurfaces, much less is known about the behaviour of solutions of
(1-1), although in many cases the analogy with the mean curvature flow continues. For example, a simple
calculation shows that spheres shrink to points in finite time under flows (1-1)–(1-2) satisfying conditions
(i)–(iv). The avoidance principle (see1 [Andrews et al. 2013a, Theorem 5]) then implies that any compact
solution of (1-1) must become singular in finite time. If, in addition, the flow admits second derivative
Hölder estimates (for example, if the speed function is a concave or convex function of the principal
curvatures [Evans 1982; Krylov 1982], or if n= 2 [Andrews 2004]), one can deduce, by standard methods,
that a singularity is characterised by a curvature blow-up [Andrews et al. 2012].

For the mean curvature flow, a crucial part of the current understanding of singularities is the asymp-
totic convexity estimate of Huisken and Sinestrari [1999a], which states that any mean convex initial
hypersurface flowing by mean curvature becomes weakly convex at a singularity. This, together with
the monotonicity formula of Huisken [1990] and the Harnack inequality of Hamilton [1995b] allows a
rather complete description of singularities in the positive mean curvature case. We note that asymptotic
convexity is necessary for the application of the Harnack inequality to deduce that “fast-forming” or
“type-II” singularities are asymptotic to convex translation solutions of the flow.

For other flows, the understanding of singularities is far less developed, except in some specific settings
such as axial symmetry (see [McCoy et al. 2014], for example). There are several reasons for this: First,
there is no analogue available for the monotonicity formula, which is used to show that “slowly forming”
or “type-I” singularities of the mean curvature flow are asymptotically self-similar. Second, there is in
general no Harnack inequality available sufficient to classify type-II singularities, although the latter is
known for quite a wide subclass of flows [Andrews 1994b]. And finally, there is so far no analogue of the
Huisken–Sinestrari asymptotic convexity estimate for most other flows, with the notable exception of the
recent result of Alessandroni and Sinestrari, which applies to a class of flows by functions of the mean

1We remark that the avoidance principle proved in [Andrews et al. 2013a, Theorem 5] is not in general true when the cone of
definition of the speed is nonconvex. However, a slight modification reveals that it is still possible to compare compact solutions
with spheres.
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curvature having a certain asymptotic behaviour [Alessandroni and Sinestrari 2010]. In a companion
paper [Andrews et al. 2012], we were able to exploit the simplified structure of the evolution equation for
the second fundamental form in two dimensions (see also [Schulze 2006; Andrews 2007; McCoy 2011])
to prove that an asymptotic convexity estimate holds in surprising generality for flows of surfaces, namely
for any surface flow (1-1)–(1-2) satisfying conditions (i)–(iv). On the other hand, one would expect this
result should fail in higher dimensions in such generality, due to the aforementioned examples of “nice”
speeds which fail to preserve local convexity of initial data. In this paper, we show that an asymptotic
convexity estimate is possible in higher dimensions in the presence of the additional convexity conditions
(vi)-(vii).

Theorem 1.1. Let X : M×[0, T )→Rn+1 be a solution of (1-1) with s an admissible speed. Then for all
ε > 0 there is a constant Cε > 0 such that

−κ1(x, t)≤ εs(x, t)+Cε

for all (x, t) ∈ M ×[0, T ).

The proof of Theorem 1.1 utilises a Stampacchia–De Giorgi iteration procedure analogous to those
of [Huisken 1984; Huisken and Sinestrari 1999b; 1999a; Chow 1985; 1987] (see also [Andrews et al.
2012]), in contrast to the result of [Alessandroni and Sinestrari 2010] (see also [Schulze 2006]), which is
proved using the maximum principle. We remark that, by carefully constructing our curvature pinching
function, we are able to avoid the rather technical induction on the elementary symmetric functions of
curvature that is necessary in [Huisken and Sinestrari 1999a].

Combining Theorem 1.1 with the Harnack estimate of [Andrews 1994b] (see also [Hamilton 1995b])
as in [Huisken and Sinestrari 1999b; 1999a], we are led to the following classification of type-II blow-up
limits about type-II singularities.

Corollary 1.2. If s is an admissible speed, then any type-II blow-up limit of a solution of the corresponding
flow (1-1) about a type-II singularity decomposes as a product X : 6k

× Rn−k
→ Rn+1, such that

X
∣∣
6k :6

k
×R→ Rk+1

⊂ Rn+1 is a strictly convex (k-dimensional) translation solution of the flow (1-1).

Corollary 1.2 is proved in Section 6.

2. Notation and preliminary results

We now describe some important background results necessary for the subsequent sections. We begin
with flow-independent results to do with symmetric functions, and prove, in Lemma 2.2, that each of
the ancillary conditions (xi)–(xiii) implies condition (vii). We then discuss flow-dependent results, and
prove, in Lemma 2.4, that each of the ancillary conditions (viii)–(x) implies condition (v). We follow the
conventions of [Andrews et al. 2013b; Andrews 2007; 2010; McCoy 2005], where proofs or references
for much of this section may be found. Many of the results can also be found in the book [Gerhardt 2006].

The curvature function f is a smooth, symmetric function defined on an open, convex, symmetric
cone 0. Denote by S0 the cone of symmetric n×n matrices with n-tuple of eigenvalues, λ := (λ1, . . . , λn),
lying in 0. A result of Glaeser [1963] implies that there is a smooth, GL(n)-invariant function F :S0→R
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such that f (λ(A))= F(A). The invariance of F under similarity transformations implies that the speed
s(x, t)= f (κ1(x, t), . . . , κn(x, t)) is a well-defined, smooth function of the Weingarten map W, that is,
s(x, t)= F(W(x, t)) := F(W (x, t)), where W (x, t) is the component matrix of W(x, t) with respect to
some basis for T ∗x M ⊗ Tx M . If we restrict attention to orthonormal bases, then Wi

j
= hi j , where the hi j

are the components of the second fundamental form.
We shall use dots to indicate derivatives of f and F as follows:

ḟ i (λ)vi :=
d
ds

∣∣∣∣
s=0

f (λ+ sv), f̈ i j (λ)viv j :=
d2

ds2

∣∣∣∣
s=0

f (λ+ sv),

Ḟ i j (A)Bi j :=
d
ds

∣∣∣∣
s=0

F(A+ s B), F̈ pq,rs(A)Bpq Brs :=
d2

ds2

∣∣∣∣
s=0

F(A+ s B).

(2-1)

The derivatives of f and F are related in the following way:

Lemma 2.1 [Gerhardt 1990; Andrews 1994a; 2007]. Suppose that the function f satisfies condition (i).
Define the function F : S0 :→ R by F(A) := f (λ(A)) as above. Then for any diagonal A ∈ S0 we have

Ḟkl(A)= ḟ k(λ(A))δkl, (2-2)

and for any diagonal A ∈ S0 and symmetric B ∈ GL(n), we have

F̈ pq,rs(A)Bpq Brs = f̈ pq(λ(A))Bpp Bqq + 2
∑
p>q

ḟ p(λ(A))− ḟ q(λ(A))
λp(A)− λq(A)

(Bpq)
2. (2-3)

Note that (2-3) holds (as a limit) even if A has eigenvalues of multiplicity greater than one.

In particular, in an orthonormal frame of eigenvectors of W, we have

Ḟkl(W)= ḟ k(κ)δkl

F̈ pq,rs(W)Bpq Brs = f̈ pq(κ)Bpp Bqq + 2
∑
p>q

ḟ p(κ)− ḟ q(κ)

κp − κq
(Bpq)

2.

Observe that, by (2-2), conditions (i)–(ii) imply that (1-1)–(1-2) is parabolic. The methods of [Gerhardt
2006, Section 2.5] (see also [Giga and Goto 1992] and [Baker 2010]) then imply short time existence of
solutions, so long as the principal curvatures of the initial immersion lie in 0.

It follows from (2-3) that the function F is convex if and only if the function f is convex and satisfies
( ḟ p
− ḟ q)(z p − zq)≥ 0. We now show that in most cases of interest the second condition is automatic.

Lemma 2.2. Suppose that f satisfies one of the ancillary conditions (xi), (xii) or (xiii). Then f satisfies
condition (vii).

Proof. Suppose first that condition (xi) is satisfied, so that 0 is convex. If 0=0+ then the claim is proved
in [Andrews 1994a, Lemma 2.2] (see also [Ecker and Huisken 1989]). However, the proof applies to any
convex cone: Consider an arbitrary point z ∈ 0. Since f is smooth and convex, for any v ∈ Rn and any
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s ∈ R such that z+ sv ∈ 0 we have

0≤
d2

ds2 f (z+ sv)=
d
ds

ḟ i (z+ sv)vi .

Therefore, if s > 0,
ḟ i (z+ sv)vi ≥ ḟ i (z)vi .

Setting v =−(ep − eq), where ei is the basis vector in the direction of zi , we obtain

( ḟ p
− ḟ q)

∣∣
z ≥ ( ḟ p

− ḟ q)
∣∣
z−s(ep−eq )

.

If z p ≥ zq then there is some s0 > 0 such that (z− s0(ep − eq))p = (z− s0(ep − eq))q . By the symmetry
and convexity of 0, this point is in 0. Since f is symmetric, ḟ p

= ḟ q at this point and the claim follows.
Now suppose that (xii) is satisfied, so that f extends to a convex, symmetric function on Rn . If the

extension is smooth, then the claim follows as above. If not, then we need to be more careful; we make
use of the fact that the difference quotient

(
f (γ (s))− f (γ (t))

)
/(s− t) is nondecreasing in both s and t

along all lines γ (s)= z+ sv.
Consider a point z ∈ 0 and a direction v ∈ Rn . Then, for any s ∈ R and any s0 > 0, we have

f (z+ sv)− f (z+ s0v)

s− s0
≥

f (z+ sv)− f (z)
s

≥ lim
s↘0

f (z+ sv)− f (z)
s

= ḟ i
∣∣
zvi .

Setting v =−(ep − eq), it follows that

−( ḟ p
− ḟ q)

∣∣
z = ḟ i

∣∣
zvi ≤

f (z+ sv)− f (z+ s0v)

s− s0
≤ lim

s↗s0

f (z+ sv)− f (z+ s0v)

s− s0
= ψ ′

−
(0),

where we have defined ψ(σ) := f (z+ (σ + s0)v). We note that the left derivative ψ ′
−
(0) exists, and is

no greater than the right derivative ψ ′
+

, by convexity of ψ . Supposing without loss of generality that
z p ≥ zq , we may choose s0 such that z p− s0 = zq + s0. With this choice, it is easily checked that ψ is an
even function. Since ψ is convex, we have

ψ ′
−
(0)≤ ψ ′

+
(0)= lim

s↘0

ψ(s)−ψ(0)
s

= − lim
s↗0

ψ(−s)−ψ(0)
s

=− lim
s↗0

ψ(s)−ψ(0)
s

=−ψ ′
−
(0).

It follows that ψ ′
−
(0)≤ 0 and we obtain ( ḟ p

− ḟ q)
∣∣
z ≥ 0 as required.

Finally, suppose that (xiii) is satisfied, so that 0 ⊂ R2. Consider some point z ∈ 0 and suppose p 6= q
are such that z p ≥ zq . Since f is homogeneous of degree one, we have f = ḟ 1z1+ ḟ 2z2. Then, since f ,
ḟ 1 and ḟ 2 are positive on 0, we must have z p > 0. Now,

2 f = 2( ḟ pz p + ḟ q zq)= ( ḟ p
− ḟ q)(z p − zq)+ ( ḟ p

+ ḟ q)(z p + zq),

so that
( ḟ p
− ḟ q)(z p − zq)= 2 f − ( ḟ p

+ ḟ q)(z p + zq).
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If z p+zq ≤ 0, then we are done (since f , ḟ 1 and ḟ 2 are positive). Otherwise, z lies in the open, symmetric,
convex cone {z ∈ R2

: z1+ z2 > 0}. But we have just proved that the claim already holds in this case.
This completes the proof. �

In the following, we are interested in the behaviour of solutions of the flow equation (1-1)–(1-2). We
consider speeds s = f (κ) such that f satisfies condition (i), and denote the corresponding function of
W by F . We will use the following convention in order to simplify notation: If g satisfies condition (i),
and G(A) = g(λ(A)) is the corresponding function on S0, then we write g(x, t) ≡ g(κ(x, t)) and
G(x, t) ≡ G(W(x, t)). Similarly, Ġ(x, t) ≡ Ġ(W(x, t)) and G̈(x, t) ≡ G̈(W(x, t)). This convention
makes the notation s for the speed unnecessary, and from here on the speed will be denoted by F .

We recall the following evolution equations:

Lemma 2.3 [Andrews 1994a; 2007; Andrews et al. 2013b; Gerhardt 2006; McCoy 2005]. Let

X : M ×[0, T )→ Rn+1

be a solution of the flow (1-1)–(1-2) such that f satisfies conditions (i)–(iii). Then the following evolution
equations hold along X :

(1) (∂t −L)hi
j
= (∇i d F) j

+ Fhi
khk

j
= F̈ pq,rs

∇i h pq∇
j hrs + Ḟklh2

klhi
j .

(2) (∂t −L)F = F Ḟklh2
kl .

(3) ∂t dµ=−H F dµ.

(4) (∂t −L)G = (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs + Ġ pqh pq Ḟklh2

kl .

Here L is the elliptic operator Ḟ i j
∇i∇ j , h2

i j = hi
khk j , µ(t) is the measure induced on M by the immersion

X ( · , t), and G is any function given by G(x, t) := g(κ1(x, t), . . . , κn(x, t)) for some smooth, symmetric
g : 0→ R.

Applying the maximum principle to Lemma 2.3(2), we see that F remains positive for all t ∈ [0, T )
whenever it is initially positive. It then follows from Euler’s theorem and the monotonicity of f that the
largest principal curvature also remains positive.

In the case that g is homogeneous of degree one, Euler’s theorem simplifies Lemma 2.3(4) to

(∂t −L)G = (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs + Ḟklh2

kl G. (2-4)

It follows that

(∂t −L)
(G

F

)
=

1
F
(Ġkl F̈ pq,rs

− Ḟkl G̈ pq,rs)∇kh pq∇lhrs −
2
F

Ḟkl
∇k F ∇l

(G
F

)
. (2-5)

Therefore maxM×{t}(G/F) will be nonincreasing in t whenever G satisfies the condition

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs ≤ 0. (2-6)

These observations help us to find preserved cones for the flow: Suppose that f satisfies conditions
(i)–(iii). If there is a smooth, nonnegative, symmetric, homogeneous degree-one function g : 0→ R such
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that

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)Tkpq Tlrs ≤ 0

for any totally symmetric T ∈ Rn
⊗Rn

⊗Rn , where G is the corresponding function on S0, then any
solution of the corresponding flow admits a preserved cone. Namely, the cone

00 :=

{
z ∈ Rn

: g(z) < max
M×{0}

(G
F

)
f (z)

}
is preserved.

In general, finding such a function g will be highly specific to the choice of flow speed f , however, in
many cases we can be sure preserved cones exists:

Lemma 2.4. Suppose f satisfies one of the ancillary conditions (viii), (ix), or (x). Then f satisfies
condition (v).

Proof. Suppose that condition (viii) holds, so that the cone 0 is convex. It follows from Lemma 2.2
that condition (vii) holds, so that F̈ ≥ 0 by Lemma 2.1. Let X be a solution of (1-1)–(1-2). Then the
Weingarten map of X satisfies

(∂t −L)hi
j
≥ Ḟklh2

klhi
j . (2-7)

Let 00 be the interior of the symmetrised convex conic hull in Rn of the principal curvatures of X0. Then
00 \ {0} ⊂ 0. The preservation of 00 by the flow follows by applying a slight modification of Hamilton’s
tensor maximum principle [1986, Section 3] to (2-7) (for details, see [Andrews 2007, Theorem 3.2] and
[Andrews and Hopper 2011, Chapter 6]).

Now suppose that (ix) is satisfied, so that f vanishes on ∂0. If X : M ×[0, T )→ Rn+1 is a solution
of the corresponding flow, then F is initially positive, and the maximum principle implies that it remains
so. Then we may consider the function G1(x, t) := g1(κ1(x, t), . . . , κn(x, t)), where g1 is the function
defined by (3-1) of the following section. Observe that f extends to a convex function on Rn by setting
f = 0 outside 0, so that, by Lemma 2.2, condition (vii) holds. Then we may proceed as in Lemma 3.2 to
obtain

Z := (Ġkl
1 F̈ pq,rs

− Ḟkl G̈ pq,rs
1 )∇kh pq∇lhrs ≤ 0, (2-8)

and it follows that G1/F ≤ c0 :=maxM×{0} G1/F . So consider 00 := {z ∈ Rn
: g1(z) < c0 f (z)}. Since

g1(z)= 0 if and only if z ∈0+∩0 and, by convexity of the extension of f , {z ∈Rn
: z1+· · ·+zn > 0}⊂0,

we have (∂0 ∩ ∂00) \ {0} =∅. It follows that 00 is a preserved cone.
Finally, consider the case that condition (x) holds, so that 0 ⊂ R2. Observe that, in this case, it is

sufficient to obtain an estimate on the pinching ratio of the solution (which in this case follows from
an estimate on G1/F), since any open, connected, symmetric cone 0 in R2 that contains the positive
ray is of the form {z ∈ R2

: zmin > εzmax}. However, we can no longer use any convexity properties of
f to control G1/F , and the above proof that Z ≤ 0 no longer applies. On the other hand, by carefully
analysing each of the terms in the expression for Z , it is possible to write the terms involving second
derivatives of the speed as gradient terms, and the remaining terms turn out to be automatically favourable
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for obtaining the desired estimate on Z . We refer the reader to the papers [Andrews 2007; Andrews et al.
2012] for the proof of this assertion. �

The existence of a preserved cone ensures that the flow is uniformly parabolic:

Lemma 2.5. Let X : M ×[0, T )→ Rn+1 be a solution of (1-1), with an admissible speed F. Then there
is a constant c1 > 0 such that for all (x, t) ∈ M ×[0, T ) it holds that

1
c1
|v|2 ≤ Ḟkl(x, t)vkvl ≤ c1|v|

2

for all v ∈ Tx M , where | · | is the norm induced on T M by the immersion X ( · , t).

Proof. In an orthonormal frame of eigenvectors of the Weingarten map, we have, by (2-2), that Ḟkl
= ḟ kδkl .

Let 00 be a preserved cone for the flow. Since 00 \ {0} ⊂ 0, and ḟ k > 0 on 0 for all k, we see that the
derivatives ḟ k are bounded by positive constants on the compact set K := {z ∈ 0c0

: |z| = 1}. Since
the derivatives ḟ k are homogeneous of degree zero, these bounds extend to the cone 0c0

\{0}, which
completes the proof. �

The following long time existence result then follows using standard methods.

Proposition 2.6 [Andrews et al. 2012]. Let X : M ×[0, T )→ Rn+1 be a maximally extended solution of
(1-1), with an admissible speed. Then T <∞, and maxM×{t} |W| →∞ as t→ T .

We now focus on the proof of Theorem 1.1 and Corollary 1.2, so for the rest of the paper we will
assume that f defines an admissible speed, and X : M×[0, T )→Rn+1 is a maximally extended solution
of the corresponding flow (1-1).

3. The pinching function

In this section, we carefully construct an appropriate curvature pinching function to be used in the proof
of Theorem 1.1. That is, we construct a smooth, symmetric, homogeneous (degree-one, say) function
G(x, t) = g(κ1(x, t), . . . , κn(x, t)) of the principal curvatures that vanishes only if the hypersurface
is weakly convex. Our goal is to show that the ratio G/F vanishes asymptotically along the flow. In
particular, this ratio should be nonincreasing. In view of (2-5) we would therefore like G to satisfy

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs ≤ 0.

In fact, as we shall see, the following two estimates will be essential.

Properties. (1) For all ε > 0, there is a constant cε > 0 such that

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs ≤−cε

|∇W|2

F
whenever G > εF.

(2) For all ε > 0, there is a constant γε > 0 such that

(FĠkl
−G Ḟkl)h2

kl ≤−γεF |W|2
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whenever G > εF.

These estimates are needed to show that the positive part of the function Gε,σ := (G/F − ε)Fσ is
bounded in L p(M×[0, T )) for any ε > 0, so long as σ is sufficiently small. This is done in Section 4. The
proof of Theorem 1.1 then follows from standard arguments, which we recall in Section 5. But first, we
construct our pinching function. We first try a smoothed out version of the natural choice, max{−κ1, 0}.
The function we obtain possesses the second of the above properties, but the first property only weakly
(that is, with cε = 0). By making this function slightly more convex (namely, strictly convex in nonradial
directions) we are able to obtain a function satisfying both estimates uniformly (without harming the
other properties).

We begin with a smooth function φ :R→R which is strictly convex and positive, except on R+, where
it vanishes identically. Such a function is easily constructed; for example, we could use

φ(r)=
{

r4e−1/r2
if r < 0,

0 if r ≥ 0.

Now consider the following function, defined on 0:

g1(z) := f (z)
n∑

i=1

φ

(
zi

f (z)

)
. (3-1)

Observe that g1 is nonnegative and vanishes on (and only on) 0+ ∩0. Furthermore, g1 is clearly smooth,
symmetric, and homogeneous of degree one. We now calculate

ġk
1 = ḟ k

n∑
i=1

φ

(
zi

f

)
+

n∑
i=1

φ̇

(
zi

f

)(
δk

i −
zi

f
ḟ k
)

= φ̇

(
zk

f

)
+ ḟ k

n∑
i=1

[
φ

(
zi

f

)
−

zi

f
φ̇

(
zi

f

)]
.

It follows easily from the convexity of φ that φ(r)−r φ̇(r)≤ φ(0)= 0. Since φ is positive and φ̇ vanishes
on R+, we must also have φ̇(r)≤ 0 for all r ∈ R. Moreover, equality holds in the above inequalities only
if r ≥ 0. Therefore ġk

1(z)≤ 0 for each k, with equality if and only if z ∈ 0+ ∩0.
Now compute

g̈ pq
1 = f̈ pq

n∑
i=1

[
φ

(
zi

f

)
−

zi

f
φ̇

(
zi

f

)]
+

1
f

n∑
i=1

φ̈

(
zi

f

)(
δi

p
−

zi

f
ḟ p
)(
δi

q
−

zi

f
ḟ q
)
.

and

ġk
1 f̈ pq

− ḟ k g̈ pq
1 = φ̇

(
zk

f

)
f̈ pq
−

ḟ k

f

n∑
i=1

φ̈

(
zi

f

)(
δi

p
−

zi

f
ḟ p
)(
δi

q
−

zi

f
ḟ q
)
. (3-2)

This forms a nonpositive definite matrix for each k. Finally, consider

ġk
1

ḟ p
− ḟ q

z p − zq
− ḟ k ġ p

1 − ġq
1

z p − zq
= φ̇

(
zk

f

)
ḟ p
− ḟ q

z p − zq
− ḟ k φ̇(z p/ f )− φ̇(zq/ f )

z p − zq
. (3-3)
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This is also nonpositive for each k, since convexity of φ implies φ̇(r)−φ̇(s)
r−s

≥ 0. Putting (3-2) and (3-3)
together using Lemma 2.1, we see that

(Ġkl
1 F̈ pq,rs

− Ḟkl G̈ pq,rs
1 )∇kh pq∇lhrs ≤ 0.

To obtain the uniform estimate, we modify the function g1 to introduce a slightly stronger convexity
property. We use the good convexity properties of the Euclidean norm: Consider the function g defined by

g := K (g1, g2) :=
g2

1
g2
, (3-4)

where g2 is a positive, monotone, degree-one homogeneous function of the principal curvatures which is
strictly convex in nonradial directions. The function defined by

g2(z) := R f (z)+
n∑

i=1

zi − |z|

has the properties we require, so long as the constant R > 0 may be chosen such that g2 > 0 (at least
along the flow). Let’s first show that such a choice is possible.

Lemma 3.1. There exists a constant R > 0 such that

RF(x, t)+ H(x, t)− |W(x, t)|> 0

for all (x, t) ∈ M ×[0, T ).

Proof. Define G2(x, t) := g2(κ1(x, t), . . . , κn(x, t)). Since F( · , 0) > 0 and M is compact, we may
choose R > 0 such that G2( · , 0) > 0. By (2-4), it suffices to show that

(Ġkl
2 F̈ pq,rs

− Ḟkl G̈ pq,rs
2 )∇kh pq∇lhrs ≥ 0.

First calculate
ġk

2 = R ḟ k
+ 1−

zk

|z|

and
g̈ pq

2 = R f̈ pq
−

1
|z|3

(|z|2δpq − z pzq).

It follows that

ġk
2 f̈ pq

− ḟ k g̈ pq
2 =

(
1−

zk

|z|

)
f̈ pq
+

ḟ k

|z|3
(|z|2δpq − z pzq), (3-5)

which, by the Cauchy–Schwarz inequality, is nonnegative definite for each k.
Finally,

ġk
2

ḟ p
− ḟ q

z p − zq
− ḟ k ġ p

2 − ġq
2

z p − zq
=

(
1−

zk

|z|

)
ḟ p
− ḟ q

z p − zq
+

1
|z|

ḟ k,

which is also nonnegative definite for each k. It now follows from (2-2) and (2-3) that

(Ġkl
2 F̈ pq,rs

− Ḟkl G̈ pq,rs
2 )∇kh pq∇lhrs ≥ 0

as required. �
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So the function G is well defined. We show that it also satisfies property (1) (page 416) weakly:

Lemma 3.2. There is a constant c0 > 0 such that

G(x, t)≤ c0 F(x, t)

for all (x, t) ∈ M ×[0, T ).

Proof. By a straightforward calculation, we find

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)= K̇ 1(Ġkl

1 F̈ pq,rs
− Ḟkl G̈ pq,rs

2 )+ K̇ 2(Ġkl
2 F̈ pq,rs

− Ḟkl G̈ pq,rs
2 )− Ḟkl K̈ αβ ġ p

α ġq
β

at any diagonal matrix. Noting that K̇ 1(x, y) > 0, K̇ 2(x, y) < 0 and K̈ (x, y)≥ 0 whenever x and y are
positive, we see that

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs ≤ 0. (3-6)

In view of (2-5), the claim now follows from the maximum principle. �

We now show that G satisfies the required properties (1) and (2) (page 416) uniformly:

Lemma 3.3. For all ε > 0 there exist constants c2 > 0 and γ > 0 such that

−c2
|∇W|2

F
≤ (Ġkl F̈ pq,rs

− Ḟkl G̈ pq,rs)∇kh pq∇lhrs ≤−
1
c2

|∇W|2

F
(3-7)

and

(FĠkl
−G Ḟkl)h2

kl ≤−γ F |W|2 (3-8)

whenever G > εF.

Proof. Let A ∈ GL(n) be a diagonal matrix and T ∈ Rn
⊗Rn

⊗Rn be a totally symmetric tensor. Define

Q(A, T ) := −(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
ATkpq Tlrs ≥ 0. (3-9)

Recalling the application of the Cauchy–Schwarz inequality to (3-5) reveals that equality occurs in (3-9)
only if T is radial, that is, if for each k we have Tkpq = µk Apq for some constant µk .

Define the set 0ε := {x ∈ 0 : ε f (z)≤ g(z)≤ c0 f (z)}. Then, to prove (3-7), we need to demonstrate
uniform positive bounds for F Q(A, T ) whenever A has eigenvalues in 0ε and |T | 6= 0. Since Q is
homogeneous of degree two with respect to T , we may assume without loss of generality that |T | = 1.
Moreover, since Q is homogeneous of degree −1 with respect to A, it suffices to obtain the required
bounds on the compact slice K := {A ∈ S0 : εF(A)≤ G(A)≤ c0 F(A), |A| = 1}. The upper bound now
follows immediately from the continuity of Q.

To prove the lower bound, it suffices to show that Q(A, T )= 0 for A ∈ K only if |T | = 0. We have
seen that Q(A, T ) can only vanish if T is radial. Then, since A is diagonal, it follows that T is also
diagonal: Tklm 6= 0 only if k = l = m. Since A 6= 0, there is some p for which λp(A) 6= 0. But, since
Tklm = µk Alm = µkλl(A)δlm , we have for any k

Tkkk =
λk(A)
λp(A)

Tkpp.
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But Tkpp vanishes unless k = p. Thus T has at most one nonzero component: Tppp. It follows that A
has at most one nonzero eigenvalue: If instead we had λq > 0 for some q 6= p, then we could obtain
the contradiction Tppp = (λp/λq)Tqpp = 0. Since A ∈ S0ε ⊂ S0, we must have λp(A) > 0. But this
implies that G(A)= 0, so that A /∈ K , a contradiction. Therefore Q can only vanish if T vanishes. This
completes the proof of (3-7).

For the second estimate, we observe that, in an orthonormal basis of eigenvectors of W,

(FĠkl
−G Ḟkl)≤ FĠkl

= Fġkδkl
≤ 2F g1

g2
ġkl

1 δ
kl .

Now g1/g2 is positive on 0ε and therefore has a strictly positive lower bound on the compact slice
0ε∩{|z| = 1}. Similarly, ġk

1 < 0 on 0ε, and therefore has a strictly negative upper bound on 0ε∩{|z| = 1}.
Since both terms are homogeneous of degree zero, these bounds extend unharmed to 0ε, and the claim
follows. �

Now consider, for some positive constants ε and σ , the function

Gε,σ :=

(
G
F
− ε

)
Fσ .

Observe that the upper bound G/F < c0 implies

Gε,σ < c0 Fσ . (3-10)

Lemma 3.4. The function Gε,σ satisfies the evolution equation

(∂t −L)Gε,σ = Fσ−1(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs

+
2(1− σ)

F
〈∇Gε,σ ,∇F〉F −

σ(1− σ)
F2 |∇F |2F + σGε,σ |W|

2
F , (3-11)

where we have introduced the notation 〈u, v〉F := Ḟklukul and |W|2F := Ḟklh2
kl .

Proof. We first compute

∇Gε,σ = Fσ−1
(
∇G−

G
F
∇F

)
+
σ

F
Gε,σ∇F.

It follows that

LGε,σ = Fσ−1
(

LG−
G
F

LF
)
+
σ

F
Gε,σLF − 2

σ − 1
F
〈∇Gε,σ ,∇F〉F −

σ(1− σ)
F2 Gε,σ |∇F |2F . (3-12)

Therefore,

(∂t −L)Gε,σ = Fσ−1
(
(∂t −L)G−

G
F
(∂t −L)F

)
+
σ

F
Gε,σ (∂t −L)F

+ 2
1− σ

F
〈∇Gε,σ ,∇F〉F −

σ(1− σ)
F2 Gε,σ |∇F |2F

= Fσ−1(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs + σGε,σ |h|2F

+ 2
1− σ

F
〈∇Gε,σ ,∇F〉F +

σ(1− σ)
F2 Gε,σ |∇F |2F

as required. �
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Just as for the mean curvature flow, it is the final two terms of the evolution equation (3-11) that
obstruct the application of the maximum principle. We will proceed by the Stampacchia–De Giorgi
iteration method as applied in [Huisken 1984; Huisken and Sinestrari 1999b]. The first step is to show
that the spatial L p norms of the positive part, (Gε,σ )+ :=max{Gε,σ , 0}, of Gε,σ are nonincreasing in t ,
so long as σ is sufficiently small. As in [Huisken 1984; Huisken and Sinestrari 1999b; 1999a], this leads
to a uniform upper bound on Gε,σ for small, nonzero σ .

4. The integral estimates

Proposition 4.1. For all ε > 0 there exist constants `, L > 0 such that for all p > L and 0< σ < `p−
1
2 ,

the L p(M, µ(t)) norm of (Gε,σ )+ is nonincreasing in t.

To simplify notation somewhat, we fix ε > 0 and denote E := (Gε,σ )+. Then E p is C1 in t for p > 1,
with ∂t E p

= pE p−1∂t Gε,σ . The evolution equation (3-11) for Gε,σ then implies

d
dt

∫
E p dµ= p

∫
E p−1LGε,σ dµ− p

∫
E p−1 Fσ−1 Q dµ

+ 2(1− σ)p
∫

E p−1 〈∇Gε,σ ,∇F〉F
F

dµ− σ(1− σ)p
∫

E p |∇F |2F
F2 dµ

+ σ p
∫

E p
|W|2F dµ−

∫
E p HF dµ, (4-1)

where we have defined Q = (Ḟkl G̈ pq,rs
− Ġkl F̈ pq,rs)∇kh pq∇lhrs . It will be useful to estimate |∇F |F in

terms of |∇W|:

Lemma 4.2. There is a constant c3 > 0 for which |∇F |2F ≤ c3|∇W|2.

Proof. Since ∇k F = ḟ p
∇kh pp in an orthonormal basis of eigenvectors of W, the claim follows from the

uniform positive bounds on ḟ i along the flow. �

For p > 2, we can integrate the first term of (4-1) by parts:∫
E p−1LGε,σ dµ=−(p− 1)

∫
E p−2
|∇Gε,σ |

2
F dµ−

∫
E p−1 F̈kl,rs

∇khrs∇l Gε,σ dµ.

The first term on the right will be useful. We estimate the second term (when Gε,σ > 0) using Young’s
inequality as follows:

−F̈kl,rs
∇khrs∇l Gε,σ ≤

2c4

F

∑
k,l,r,s

|∇khrs∇l Gε,σ |

≤ c4 E
∑

k,l,r,s

(
(∇khrs)

2

p
1
2 F2

+
p

1
2 (∇l Gε,σ )

2

E2

)

= c4 E
(

p−
1
2
|∇W|2

F2 + p
1
2
|∇Gε,σ |

2

E2

)
, (4-2)

where we have estimated each of the homogeneous terms F̈kl,rs above by 2c4/F .
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A useful term is obtained from the second term of (4-1) using the first estimate of Lemma 3.3. We
estimate the third term using Young’s inequality as follows:∫

E p
〈
∇Gε,σ

E
,
∇F
F

〉
F

dµ≤
p

1
2

2

∫
E p−2
|∇Gε,σ |

2
F dµ+

p−
1
2

2

∫
E p |∇F |2F

F
dµ. (4-3)

Putting this back together, we obtain:

Lemma 4.3. For all σ ∈ (0, 1) it holds that

d
dt

∫
E p dµ≤

(
(c1+ c4)p

3
2 − c−1

1 p(p− 1)
) ∫

E p−2
|∇Gε,σ |

2 dµ

+

(
(c3+ c4)p

1
2 −

1
c0c2

p
)∫

E p |∇W|2

F2 dµ+ c5(σ p+ 1)
∫

E p
|W|2 dµ. (4-4)

Proof. Since −HF/|W|2 is homogeneous of degree zero in the principal curvatures, it may be estimated
above by some constant, which allows us to estimate the final term in (4-1). Now apply the estimates of
Lemmata 2.5, 4.2 and 3.3, and the inequalities (3-10), (4-2) and (4-3) to the remaining terms. �

Notice that, for any fixed large p, the first two terms of (4-4) become nonpositive for sufficiently small
σ (of order p−

1
2 ). We now estimate the final term in a similar fashion.

Proposition 4.4. There are positive constants A1, A2, A3, B1, B2, independent of p and σ , such that∫
E p
|W|2 ≤ (A1 p

3
2 + A2 p

1
2 + A3)

∫
E p−2
|∇Gε,σ |

2 dµ+ (B1 p
1
2 + B2)

∫
E p |∇W|2

F2 dµ. (4-5)

Proof. We begin with the commutation formula (see [Andrews and Baker 2010, Proposition 5])

∇k∇lh pq =∇p∇qhkl + hklh2
pq − h pqh2

kl + hkqh2
pl − h plh2

kq ,

which holds on a general hypersurface of Rn+1. This contracts to the Simons-type identity

Lh pq = Ḟkl
∇p∇qhkl + Fh2

pq − Ḟklh pqh2
kl + Ḟklhkqh2

pl − Ḟklh plh2
kq .

Contracting further with Ġ yields

Ġ pqLh pq = Ġ pq Ḟkl
∇p∇qhkl + (FĠkl

−G Ḟkl)h2
kl .

On the other hand, we have

Ḟkl
∇p∇qhkl =∇p∇q F − F̈kl,rs

∇phrs∇qhkl,

so that

Ġ pqLh pq = Ġ pq
∇p∇q F − Ġ pq F̈kl,rs

∇phrs∇qhkl + (FĠkl
−G Ḟkl)h2

kl . (4-6)
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We now recall (3-12):

LGε,σ = Fσ−1
(

LG−
G
F

LF
)
+
σ

F
Gε,σLF − 2

1− σ
F
〈∇Gε,σ ,∇F〉F +

σ(1− σ)
F2 Gε,σ |∇F |2F

= Fσ−1
(

Ḟkl Ġ pq
∇k∇lh pq + Ḟkl G̈ pq,rs

∇kh pq∇lhrs −
G
F

LF
)

+
σ

F
Gε,σLF − 2

1− σ
F
〈∇Gε,σ ,∇F〉F +

σ(1− σ)
F2 Gε,σ |∇F |2F . (4-7)

Putting (4-6) and (4-7) together, we obtain

LGε,σ = Fσ−1(Ḟkl G̈ pq,rs
− Ġkl F̈ pq,rs)

∇kh pq∇lhrs

+ Fσ−2(FĠkl
−G Ḟkl)∇k∇l F + Fσ−1(FĠkl

−G Ḟkl)h2
kl

+
σ

F
Gε,σLF − 2

(1− σ)
F
〈∇F,∇Gε,σ 〉F +

σ(1− σ)
F2 Gε,σ |∇F |2F . (4-8)

The first and third terms on the right may be estimated from below using Lemma 3.3.
Applying Young’s inequality to the term involving the inner product, we obtain

−2
(1− σ)

F
〈∇F,∇Gε,σ 〉F ≤ (1− σ)E

(
|∇F |2F

F2 +
|∇Gε,σ |

2
F

E2

)
wherever Gε,σ > 0. Recalling the estimates of Lemmata 2.5, 3.3 and 4.2, and Equation (3-10), we obtain

LGε,σ ≤ (c0c1+ c2+ c0c3)F
σ |∇W|2

F2 + Fσ−2(FĠkl
−G Ḟkl)∇k∇l F

− γ Fσ |W|2+
σ

F
Gε,σLF + c0c1 Fσ

|∇Gε,σ |
2

E2 .

Now put the γ Fσ |W|2 term on the left, multiply the equation by E p F−σ , and integrate over M to obtain

γ

∫
E p
|W|2 dµ≤−

∫
E p F−σLGε,σ dµ+ (c0c1+ c2+ c0c3)

∫
E p |∇W|2

F2 dµ

+

∫
E p F−2(FĠkl

−G Ḟkl)∇k∇l F dµ

+ σ

∫
E p+1 F−1−σLF dµ+ c0c1

∫
E p−2
|∇Gε,σ |

2 dµ. (4-9)

Integrating the first term on the right by parts, we obtain the following estimate:

Lemma 4.5. If σ ∈ (0, 1) and p > 2, there are constants C1,C2, D1 > 0, independent of σ and p, such
that

−

∫
E p F−σLGε,σ dµ≤ (C1 p+C2)

∫
E p−2
|∇Gε,σ |

2 dµ+ D1

∫
E p |∇W|2

F2 dµ.

Proof. Integrating by parts, we find

−

∫
E p F−σLGε,σ dµ

= p
∫

E p−1 F−σ |∇Gε,σ |
2
F dµ−σ

∫
E p F−σ−1

〈∇Gε,σ ,∇F〉F dµ+
∫

E p F−σ F̈kl,rs
∇khrs∇l Gε,σ dµ.
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Estimating each of the coefficients of F̈ above by 2c4/F and applying Young’s inequality to the second
and third terms, we obtain

−

∫
E p F−σLGε,σ dµ≤ c0 p

∫
E p−2
|∇Gε,σ |

2
F dµ+

c0σ

2

∫
E p
(
|∇Gε,σ |

2
F

E2 +
|∇F |2F

F2

)
dµ

+
c0c4

2

∫
E p
(
|∇W|2

F2 +
|∇Gε,σ |

2

E2

)
dµ.

Therefore,

−

∫
E p F−σLGε,σ dµ

≤

(
c0c1 p+

c0c1σ

2
+

c0c4

2

)∫
E p−2
|∇Gε,σ |

2 dµ+
(

c0c1c2σ

2
+

c0c4

2

)∫
E p |∇W|2

F2 dµ. �

In the same way, we obtain the following estimate on the third term of (4-9):

Lemma 4.6. There are constants C3,C4, D3, D4 > 0, independent of p > 2 and σ ∈ (0, 1), such that∫
E p F−2(FĠkl

−G Ḟkl)∇k∇l F dµ

≤ (C3 p
3
2 +C4)

∫
E p−2
|∇Gε,σ |

2 dµ+ (D3 p
1
2 + D4)

∫
E p |∇W|2

F2 dµ.

And the fourth term:

Lemma 4.7. There are constants C5,C6, D5, D6 > 0, independent of p and σ , such that∫
E p+1 F−1−σLF dµ≤ (C5 p

3
2 +C6)

∫
E p−2
|∇Gε,σ |

2 dµ+ (D5 p
1
2 + D6)

∫
E p |∇W|2

F2 dµ.

This completes the proof of Proposition 4.4.

Combining Proposition 4.4 with Lemma 4.3, we obtain

d
dt

∫
E p dµ≤−(c1 p2

−α1σ p
5
2 −α2σ p2

−α3 p
3
2 −α4 p)

∫
E p−2
|Gε,σ |

2 dµ

− (β1 p−β2σ p−β3 p
1
2 −β4)

∫
E p |∇W|2

F2 dµ.

for some constants αi , βi > 0, which are independent of σ and p. Proposition 4.1 follows easily.

5. Proof of Theorem 1.1

We are now able to proceed just as in [Huisken 1984, Section 5] and [Huisken and Sinestrari 1999b,
Section 3], using Proposition 4.1 and the following lemma to derive the desired bound on Gε,σ .

Lemma 5.1 [Stampacchia 1966]. Let ϕ : [k0,∞)→R be a nonnegative, nonincreasing function satisfying

ϕ(h)≤ C
(h−k)α

ϕ(k)β, h > k > k0, (5-1)
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for some constants C > 0, α > 0 and β > 1. Then

ϕ(k0+ d)= 0,

where dα = Cϕ(k0)
β−12αβ/(β−1).

Now, given any k ≥ k0, where k0 := supσ∈(0,1) supM Gε,σ ( · , 0), set

vk(x, t) :=
(
Gε,σ (x, t)− k

)p/2
+

and Ak(t) := {x ∈ M : vk(x, t) > 0}.

We will show that ϕ(k)= |Ak | :=
∫ T

0

∫
Ak(t)

dµ( · , t) dt satisfies the conditions of Stampacchia’s lemma
for some k1 ≥ k0. This provides us with a constant d for which |Ak1+d | vanishes. Theorem 1.1 then
follows. Observe that |Ak | is nonnegative and nonincreasing with respect to k. Then we only need to
demonstrate that an inequality of the form (5-1) holds.

Lemma 5.2. There are constants L1 ≥ L and c6 > 0 such that for all p > L1 we have

d
dt

∫
v2

k dµ+ c−1
1

∫
|∇vk |

2 dµ≤ c6(σ p+ 1)
∫

Ak

F2G p
ε,σ dµ. (5-2)

Proof. Observe that

d
dt

∫
v2

k dµ=
∫

Ak

p(Gε,σ − k)p−1
+ ∂t Gε,σ dµ−

∫
v2

k H F dµ.

The result is then obtained by proceeding as in Lemma 4.3, applying

|∇vk |
2
=

p2

4
(Gε,σ − k)p−2

+ |∇Gε,σ |
2,

and estimating |W|2 ≤ C F2 using the degree-zero homogeneity of |W|2/F2. �

Now set σ ′ = σ + n/p. Then∫
Ak

Fn dµ≤
∫

Ak

Fn (Gε,σ )
p
+

k p dµ= k−p
∫

Ak

(Gε,σ ′)
p
+ dµ≤ k−p

∫
(Gε,σ ′)

p
+ dµ. (5-3)

If p ≥max{L1, 4n2/`2
} and σ ≤ (`/2)p−

1
2 , then p ≥ L1 and σ ′ ≤ `p−

1
2 , so that, by Proposition 4.1,∫

Ak

Fn dµ≤ k−p
∫ (

Gε,σ ′( · , 0)
)p
+

dµ0 ≤ µ0(M)
(

k0

k

)p

. (5-4)

Choosing k sufficiently large, the right hand side of this inequality can be made arbitrarily small. We
will use this fact in conjunction with the following Sobolev inequality to exploit the good gradient term
in (5-2).

Lemma 5.3 [Huisken 1984]. There is a constant cS (independent of σ, p, and ε) such that(∫
v

2q
k dµ

)1
q
≤ cS

(∫
|∇vk |

2 dµ+
(∫

Ak

Fn dµ
)2

n
(∫

v
2q
k dµ

)1
q
)

, (5-5)

where q is equal to n/(n− 2) if n > 2, or any positive number if n = 2.
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Proof. Since we have the estimate H 2 < C F2 (by degree-zero homogeneity of the quantity H 2/F2) this
follows from the Michael–Simon–Sobolev inequality [1973] just as in [Huisken 1984]. �

It follows from (5-4) and (5-5) that there is some k1 > k0 such that for all k > k1 we have(∫
v

2q
k dµ

)1
q
≤ 2cS

∫
|∇vk |

2 dµ.

Therefore, from (5-2), we have for all k > k1

d
dt

∫
v2

k dµ+
1

2c1cS

(∫
v2q dµ

)1
q
≤ c6(σ p+ 1)

∫
Ak

F2G p
ε,σ dµ.

Integrating this over time, and noting that Ak(0)=∅, we find (since we may assume 2c1cS ≥ 1) that

sup
[0,T )

(∫
Ak

v2
k dµ

)
+

∫ T

0

(∫
v2q dµ

)1
q

dt ≤ 4c1cSc6(σ p+ 1)
∫ T

0

∫
Ak

F2G p
ε,σ dµ dt. (5-6)

We now exploit the interpolation inequality for L p spaces:

| f |q0 ≤ | f |
1−θ
r | f |

θ
q , (5-7)

where θ ∈ (0, 1) and 1/q0 = θ/q + (1− θ)/r . Setting r = 1 and θ = 1/q0, we may assume 1< q0 < q.
Then applying (5-7) we find ∫

Ak

v
2q0
k dµ≤

(∫
Ak

v2
k dµ

)q0−1(∫
Ak

v2q dµ
)1

q
.

Now, applying the Hölder inequality, we find(∫ T

0

∫
Ak

v
2q0
k dµ dt

) 1
q0
≤

(
sup
[0,T )

∫
Ak

v2
k dµ

)q0−1
q0
(∫ T

0

(∫
Ak

v2q dµ
)1

q
dt
) 1

q0
.

Using Young’s inequality, ab ≤ (1− 1/q0)aq0/(q0−1)
+ (1/q0)bq0 , on the right hand side, we obtain(∫ T

0

∫
Ak

v
2q0
k dµ dt

) 1
q0
≤

(
1−

1
q0

)
sup
[0,T )

∫
Ak

v2
k dµ+

1
q0

∫ T

0

(∫
Ak

v2q dµ
)1

q
dt

≤ sup
[0,T )

∫
Ak

v2
k dµ+

∫ T

0

(∫
Ak

v2q dµ
)1

q
dt.

Recalling (5-6), we arrive at(∫ T

0

∫
Ak

v
2q0
k dµ dt

) 1
q0
≤ 4c1cSc6(σ p+ 1)

∫ T

0

∫
Ak

F2G p
ε,σ dµ dt. (5-8)

Application of the Hölder inequality yields the inequalities∫ T

0

∫
Ak

F2G p
ε,σ dµ dt ≤ |Ak |

1−1
r

(∫ T

0

∫
Ak

F2r G pr
ε,σ dµ dt

)1
r
≤ c7 |Ak |

1−1
r (5-9)
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and ∫ T

0

∫
Ak

v2
k dµ dt ≤ |Ak |

1− 1
q0

(∫ T

0

∫
Ak

v
2q0
k dµ dt

) 1
q0
, (5-10)

where the integral on the right hand side of (5-9) was estimated in a similar manner to (5-4), with
c7 := k2

0(Tµ0(M))1/r (so long as σ ≤ (l/4)p−1/2, and 2r > L2 :=max{L1, 4n2/l2, 64/l2
}, say). Finally,

for h > k ≥ k1 we may estimate

|Ah| :=

∫ T

0

∫
Ah

dµ dt =
∫ T

0

∫
Ah

(Gε,σ − k)p
+

(Gε,σ − k)p
+

dµ dt ≤
∫ T

0

∫
Ah

(Gε,σ − k)p
+

(h− k)p dµ dt.

Since Ah(t)⊂ Ak(t) for all t ∈ [0.T ), and v2
k := (Gε,σ − k)p

+, we obtain

(h− k)p
|Ah| ≤

∫ T

0

∫
Ak

v2
k dµ dt. (5-11)

Putting together estimates (5-8), (5-9), (5-10) and (5-11), we arrive at

|Ah| ≤
4c1cSc6c7(σ p+ 1)

(h− k)p |Ak |
γ

for all h > k ≥ k1, where γ := 2− 1/q0− 1/r . Now fix p := 2L2 and choose σ < (`/4)p−
1
2 sufficiently

small that σ p< 1. Then, choosing r >max{q0/(q0−1), L2}, so that γ > 1, we may apply Stampacchia’s
lemma. We conclude that |Ak | = 0 for all k > k1+d , where d p

= c1cSc6c723+γ p/(γ−1)
|Ak1 |

γ−1. We note
that d is finite, since T is finite and∫

Ak1

dµ≤
∫

Ak1

(Gε,σ )
p
+

k p
1

dµ≤ k−p
1

∫
(Gε,σ )

p
+ dµ≤ k−p

1

∫
(Gε,σ ( · , 0))p

+ dµ0,

where the final estimate follows from Proposition 4.1.
It follows that

G ≤ εF + (k1+ d)F1−σ
≤ 2εF +Cε

for some suitably large constant Cε > 0. Theorem 1.1 follows.

6. Rescaling about type-II singularities

We now analyse the structure of fast forming singularities. Let X : M × [0, T )→ Rn+1 be a smooth,
compact solution of (1-1) satisfying the following ansatz: For all C > 0 there is a time tC ∈ [0, T ) such
that

max
x∈M
|W(x, t)|2 ≥

C
T − t

(6-1)

for all t ∈ [tC , T ). We say that the flow undergoes a type-II singularity. To analyse the shape of type-II
singularities, we consider, following Hamilton [1995a] and Huisken and Sinestrari [1999b], the following
sequence of parabolic rescalings: For each k ∈N, choose a sequence (tk) of times tk ∈ [0, T −1/k] and a
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sequence (xk) of points xk ∈ M such that

|W(xk, tk)|2
(

T − 1
k
− tk

)
= max
(x,t)∈M×[0,T−1/k]

|W(x, t)|2
(

T − 1
k
− t
)
.

Now set
Lk := |W(xk, tk)|2, αk := −Lk tk, σk := Lk

(
T − 1

k
− tk

)
.

Lemma 6.1. As k→∞, we have

tk→ T, Lk→∞, αk→−∞, σk→∞.

Proof. By the ansatz (6-1), for all R > 0 there exists tR ∈ [0, T ) and xR ∈ M such that

|W(xR, tR)|
2(T − tR) > 2R.

On the other hand, there is some sufficiently large kR ∈ N such that

tR < T −
1
k
, |W(xR, tR)|

2
(

T − 1
k
− tR

)
> R

for all k > kR . Therefore, by definition,

σk ≥ |W(xR, tR)|
2
(

T − 1
k
− tR

)
> R

for all k > kR . Since R was arbitrary, we find σk→∞ as k→∞.
Since (T−1/k−tk) is bounded, it follows from the definition of σk that Lk→∞ as k→∞. Therefore,

since |W| remains bounded whilst t < T , we must have tk→ T . It follows that αk→−∞. �

Now consider the rescalings

Xk(x, t)=
√

Lk

(
X
(

x, t
Lk
+ tk

)
− X (xk, tk)

)
for t ∈ [αk, σk].

It is straightforward to compute

∂Xk

∂t
(x, t)=−L

−
1
2

k F
(

x, t
Lk
+ tk

)
ν
(

x, t
Lk
+ tk

)
;

∂Xk

∂x i (x, t)=
√

Lk
∂X
∂x i

(
x, t

Lk
+ tk

)
⇒ (gk)i j (x, t)= Lk gi j

(
x, t

Lk
+ tk

)
⇒ (gk)

i j (x, t)= 1
Lk

gi j
(

x, t
Lk
+ tk

)
;

and

νk(x, t)= ν
(

x, t
Lk
+ tk

)
⇒

kDiνk(x, t)= kDiν
(

x, t
Lk
+ tk

)
⇒ Wk(x, t)= L

−
1
2

k W
(

x, t
Lk
+ tk

)
⇒ Fk(x, t)= L

−
1
2

k F
(

x, t
Lk
+ tk

)
,

where we used the script k to distinguish quantities related to the rescaling Xk (in particular, kD is the
pullback of the Euclidean connection along Xk). We refer to the sequence (Xk) as a blow-up sequence.
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Observe that the rescalings satisfy the flow equation (1-1). We also note the following properties (compare
[Huisken and Sinestrari 1999b, Lemma 4.4]):

Lemma 6.2. (1) For each k ∈ N, Xk(xk, 0)= 0 and |W(xk, 0)| = 1.

(2) For any ε > 0 and 6 > 0 there exists k0 ∈ N such that σk >6 and

max
M×[αk0 ,6]

|Wk |
2
≤ 1+ ε (6-2)

for all k ≥ k0.

(3) For any ε > 0 there exists Cε such that

−κ
(k)
1 (x, t)≤ εFk(x, t)+

Cε
√

Lk
(6-3)

for all (x, t) ∈ M ×[αk, σk], where κ(k)1 is the smallest principal curvature of Xk .

Proof. Part (1) is immediate from the definitions and our calculation of Wk .
To prove part (2), first note that

|Wk(x, t)|2 = L−1
k |W(x, L−1

k t + tk)|2.

By the definition of Lk and the choice of (xk, tk) we also have

|W(x, L−1
k t + tk)|2

(
T − 1

k
− (L−1

k t + tk)
)
≤ Lk

(
T − 1

k
− tk

)
.

Therefore

|Wk(x, t)|2 ≤
T − 1

k − tk
T − 1

k − tk − L−1
k t
=

σk

σk − t
= 1+

t
σk − t

.

Since σk→∞, the claim follows.
For part (3), we have

κk
1 (x, t)=

1
√

Lk
κ1(x, L−1

k t + tk).

Therefore, by Theorem 1.1, for all ε > 0 there exists Cε such that

−κk
1 (x, t)≤

1
√

Lk

(
εF(x, L−1

k t + tk)+Cε
)
= εFk(x, t)+

Cε
√

Lk

for all (x, t) ∈ M ×[−αk, σk]. �

Proof of Corollary 1.2. Since the flow speed is a convex function of the Weingarten map, the flow admits
second derivative Hölder estimates, and we may proceed as in [Baker 2011, Section 3], using Lemma 6.2,
to obtain a sublimit X∞ : M∞ × I∞→ Rn+1 of the blow-up sequence. Since for each k the rescaled
immersion Xk is a solution of the flow on the time interval [αk, σk], we deduce from Lemma 6.1 that
X∞ is an eternal solution of the flow (1-1) (that is, I∞ = R). Part (3) of Lemma 6.2 implies that X∞
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is weakly convex. Applying the strong tensor maximum principle [Hamilton 1982] (see also [Andrews
2007, Theorem 3.1]) to the evolution equation for the Weingarten map

∂t hi
j
= Lhi

j
+ F̈ pq,rs

∇i h pq∇
j hrs + Ḟklh2

klhi
j ,

we deduce, just as in [Huisken and Sinestrari 1999a, Theorem 4.1], that the rank of W is constant and
its null-space is invariant under parallel transport. The same use of Frobenius’ theorem as in [Huisken
1993, Theorem 5.1] (compare [Hamilton 1986]) then implies that M∞ splits isometrically as a product
Rn−k

×6k
∞

for some 1≤ k ≤ n, where 6k
∞

is strictly convex. Moreover, X∞
∣∣
6k
∞

solves the flow (1-1) in
Rk+1.

Now observe that, by Lemma 6.2(i) and (ii), the maximum value of |W∞| is 1, and occurs at (x∞, 0);
it follows that the maximum value of F is also attained here. We complete the proof by applying the
differential Harnack inequality of [Andrews 1994b] to deduce that X∞

∣∣
6k
∞

(6k
∞
) moves by translation

(compare [Hamilton 1995b]).

Proposition 6.3. Let X :6k
×R→ Rk+1 be a strictly convex, eternal solution of (1-1) with admissible

speed F such that sup6×R F is attained. Then X moves by translation.

Proof. Consider the function 8(A)=−F(A−1), where F : S+→ R gives the flow speed as a function
of the Weingarten map (here, S+ is the cone of symmetric, positive definite matrices). For any A ∈ S+,
B ∈ GL(n), we have

8̇
∣∣

A(B)=
d
ds

∣∣∣∣
s=0
8(A+ s B)=−

d
ds

∣∣∣∣
s=0

F([A+ s B]−1)= Ḟ
∣∣

A(A
−1 B A−1)

and

8̈
∣∣

A(B, B)=
d2

ds2

∣∣∣∣
s=0
8(A+ s B)=−F̈

∣∣
A(A

−1 B A−1, A−1 B A−1)− 2Ḟ
∣∣

A(A
−1 B A−1 B A−1).

Since F̈ ≥ 0, Ḟ > 0, and F > 0, it follows that

8̈+
1−α
α

8̇⊗ 8̇

8
≤ 0

for all α ∈ (0, 1). That is, 8 is α-concave for all α ∈ (0, 1). Thus Corollary 5.11 of [Andrews 1994b]
may be applied. We deduce that any strictly convex solution of (1-1) satisfies

∂t F − g(W−1(grad F), grad F)+
(α− 1)F
α(t − t0)

≥ 0 (6-4)

for all t > t0, where t0 is the initial time, and grad is the gradient operator on M . It follows that any
strictly convex, eternal solution of (1-1) satisfies

P := ∂t F − g(W−1(grad F), grad F)≥ 0.

Moreover, (6-4) is deduced from the maximum principle applied to the time evolution of P , such that
equality is attained at a space-time point only if equality holds identically. Since by assumption sup6×R F
is attained, P vanishes identically.
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We now recall from [Andrews 1994b, Equation 5.2] that, in the Gauss map parametrisation, the Harnack
quantity P satisfies:

(∂t −L)P = 8̇(Id)P + 8̈(Q, Q),

where Q is the time derivative of the inverse of the Weingarten map in the Gauss map parametrisation,
and L is the contraction of the covariant Hessian on Sn by 8̇. Since P is identically zero, this simply
says 8̈(Q, Q) = 0. Recalling the equation for 8̈, positive definiteness of Ḟ and strict convexity of 6
imply that Q must vanish. Returning to the standard parametrisation (for example, using [Andrews 1994b,
Lemma 3.10]), we find 0= Q =−W−1

◦ (∂t W+∇V W) ◦W−1, where we have defined the vector field
V := −W−1(grad F). Substituting ∂t W=∇ grad F + FW2, we have, for all u ∈ T6,

0=∇u grad F + FW2(u)+∇uW(V )

=∇u(grad F +W(V ))+W(FW(u)−∇u V ).

It follows that ∇V − FW= 0.
Now define the vector field T := X∗V − Fν. Then, for any u ∈ T6,

XDuT = (∇u V − FW(u))− g(W(V )+ grad F, u)ν = 0.

Furthermore,
XDt T = XDt X∗V − ∂t Fν− Fgrad F,

where X D is the pullback of the Euclidean connection D by X . Since P ≡ 0, this becomes

XDt T = XDt X∗V − g(W−1(grad F), grad F)ν− Fgrad F = XDt X∗V + g(V, grad F)ν− Fgrad F.

Since V is tangential, we have〈 XDt X∗V, ν
〉
=−

〈
X∗V, XDtν

〉
=−g(V, gradF).

Thus the normal component of XDt T is zero. The tangential part of XDt X∗V is (XDt X∗V )>=−FW(V )=
F grad F ; so the tangential component of XDt T also vanishes. We have proved that T is parallel. Now set
X̃(x, t) := X (φ(x, t), t), where φ is the solution of dφi/dt = V i with initial condition φ(x, 0)= x . Then

∂ X̃
∂t
=
∂X
∂x i

dφi

dt
+
∂X
∂t
= T . �

This completes the proof of Corollary 1.2. �
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SPECTRAL ESTIMATES ON THE SPHERE

JEAN DOLBEAULT, MARIA J. ESTEBAN AND ARI LAPTEV

In this article we establish optimal estimates for the first eigenvalue of Schrödinger operators on the
d-dimensional unit sphere. These estimates depend on Lp norms of the potential, or of its inverse, and are
equivalent to interpolation inequalities on the sphere. We also characterize a semiclassical asymptotic
regime and discuss how our estimates on the sphere differ from those on the Euclidean space.

1. Introduction

Let1 be the Laplace–Beltrami operator on the unit d-dimensional sphere Sd . Our first result is concerned
with the sharp estimate of the first negative eigenvalue λ1 = λ1(−1− V ) of the Schrödinger operator
−1− V on Sd (with potential −V ) in terms of Lp-norms of V .

The literature on spectral estimates for the negative eigenvalues of Schrödinger operators on manifolds
is limited. P. Federbusch [1969] and O. S. Rothaus [1981] established a link between logarithmic
Sobolev inequalities and the ground state energy of Schrödinger operators. The Rozenbljum–Lieb–Cwikel
inequality (case γ = 0 with standard notations: see below) on manifolds has been studied in [Levin and
Solomyak 1997, Section 5]; we may also refer to [Lieb 1976] for the semiclassical regime, and to [Levin
2006; Ouhabaz and Poupaud 2010] for more recent results in this direction. A. Ilyin, in two articles
[1993; 2012] on Lieb–Thirring type inequalities (see also [Levin 2006; Ouhabaz and Poupaud 2010] for
other results on manifolds), considers Schrödinger operators on unit spheres restricted to the space of
functions orthogonal to constants and uses the original method of E. Lieb and W. Thirring [1976]. The
exclusion of the zero mode of the Laplace–Beltrami operator results in semiclassical estimates similar to
those for negative eigenvalues of Schrödinger operators in Euclidean spaces.

The results in this paper are somewhat complementary. We show that if the Lp-norm of V is smaller
than an explicit value, the first eigenvalue λ1(−1− V ) cannot satisfy the semiclassical inequality and
thus it is impossible to obtain standard Lieb–Thirring type inequalities for the whole negative spectrum.
However, we show that if the Lp-norm of the potential is large, the first eigenvalue behaves semiclassically
and the best constant in the inequality asymptotically coincides with the best constants L1

γ,d of the
corresponding inequality in the Euclidean space of the same dimension (see below). In this regime the
first eigenfunction is concentrated around some point on Sd and can be identified with an eigenfunction
of the Schrödinger operator on the tangent space, up to a small error. In Appendix A, we illustrate the

MSC2010: primary 35P15, 58J50, 81Q10, 81Q35; secondary 47A75, 26D10, 46E35, 58E35, 81Q20.
Keywords: spectral problems, partial differential operators on manifolds, quantum theory, estimation of eigenvalues, Sobolev

inequality, interpolation, Gagliardo–Nirenberg–Sobolev inequalities, logarithmic Sobolev inequality, Schrödinger operator,
ground state, one bound state Keller–Lieb–Thirring inequality.
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transition between the small Lp-norm regime and the asymptotic, semiclassical regime by numerically
computing the optimal estimates for the eigenvalue λ1(−1− V ) in terms of the norms ‖V ‖Lp(Sd ).

In order to formulate our first theorem, let us introduce the measure dω induced by the Lebesgue
measure on Sd

⊂Rd+1 and the uniform probability measure dσ = dω/|Sd
| with |Sd

| = ω(Sd). We shall
denote by ‖ · ‖Lq (Sd ) the quantity ‖u‖Lq (Sd )= (

∫
Sd |u|q dσ)1/q for any q > 0 (including the case q ∈ (0, 1),

for which ‖ · ‖Lq (Sd ) is no longer a norm, but is only a quasinorm). Because of the normalization of dσ ,
when making comparisons with corresponding results in the Euclidean space, we will need the constant

κq,d := |S
d
|
1−2/q .

The well-known optimal constant L1
γ,d in the one bound state Keller–Lieb–Thirring inequality is defined

as follows: for any function φ on Rd , if λ1(−1− φ) denotes the lowest negative eigenvalue of the
Schrödinger operator −1−φ (with potential −φ) when it exists, and 0 otherwise, we have

|λ1(−1−φ)|
γ
≤ L1

γ,d

∫
Rd
φ
γ+d/2
+ dx, (1)

provided γ ≥ 0 if d ≥ 3, γ > 0 if d = 2, and γ ≥ 1/2 if d = 1. Notice that only the positive part φ+ of φ
is involved in the right-hand side of the above inequality. Assuming that γ > 1− d/2 if d = 1 or 2, we
shall consider the exponents

q = 2
2γ + d

2γ + d − 2
and p =

q
q − 2

= γ +
d
2
,

which are therefore such that

2< q =
2p

p− 1
≤ 2∗

with 2∗ := 2d/(d − 2) if d ≥ 3, and q = 2p/(p− 1) ∈ (2,+∞) if d = 1 or 2. To simplify notation, we
adopt the convention 2∗ :=∞ if d = 1 or 2. It is also convenient to introduce the notation

α∗ :=
1
4

d(d − 2).

In Section 2 we shall prove the following result.

Theorem 1. Let d ≥ 1 and p ∈ (max{1, d/2},+∞). Then there exists a convex increasing function
α :R+→R+ with α(µ)=µ for any µ∈ [0, (d/2)(p−1)] and α(µ)>µ for any µ∈ ((d/2)(p−1),+∞),
such that

|λ1(−1− V )| ≤ α(‖V ‖Lp(Sd )) (2)

for any nonnegative V ∈ Lp(Sd). Moreover, for large values of µ, we have

α(µ)p−d/2
= L1

p−d/2,d(κq,dµ)
p(1+ o(1)).

The estimate (2) is optimal in the sense that there exists a nonnegative function V such that µ=‖V ‖Lp(Sd )

and |λ1(−1− V )| = α(µ) for any µ ∈ ((d/2)(p − 1),+∞). If µ ≤ (d/2)(p − 1), equality in (2) is
achieved by constant potentials.
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If p = d/2 and d ≥ 3, then (2) is satisfied with α(µ)= µ only for µ ∈ [0, α∗]. If d = p = 1, then (2) is
also satisfied for some nonnegative, convex function α on R+ such that µ ≤ α(µ) ≤ µ+π2µ2 for any
µ ∈ (0,+∞), equality in (2) is achieved and α(µ)= π2µ2(1+ o(1)) as µ→+∞.

Since λ1(−1− V ) is nonpositive for any nonnegative, nontrivial V , inequality (2) is a lower estimate.
We have indeed found that

0≥ λ1(−1− V )≥−α(‖V ‖Lp(Sd )).

If V changes sign, the above inequality still holds if V is replaced by the positive part V+ of V , provided
the lowest eigenvalue is negative. We can then write

|λ1(−1− V )| ≤ α(‖V+‖Lp(Sd )) for all V ∈ Lp(Sd). (3)

The expression of L1
γ,d is not explicit (except in the case d = 1: see [Lieb and Thirring 1976, page 290]),

but can be given in terms of an optimal constant in some Gagliardo–Nirenberg–Sobolev inequality
(see [Lieb and Thirring 1976] and (9)–(10) in Section 2.1). In case d = p = 1, notice that L1

1/2,1 =
1
2 (see

Section B.2 in Appendix B) and κ∞,1 = 2π so that our formula in the asymptotic regime µ→+∞ is
consistent with the other cases.

The reader is invited to check that Theorem 1 can be reformulated in a more standard language of
spectral theory as follows. We recall that γ = p− d/2 and that dω is the standard measure induced on
the unit sphere Sd by the Lebesgue measure on Rd+1.

Corollary 2. Let d ≥ 1 and consider a nonnegative function V . For µ= ‖V ‖Lγ+d/2(Sd ) large, we have

|λ1(−1− V )|γ . L1
γ,d

∫
Sd

V γ+d/2 dω (4)

if either γ >max{0, 1− d/2} or γ = 1/2 and d = 1. However, if µ= ‖V ‖Lγ+d/2(Sd ) ≤
1
4 d(2γ + d − 2),

we have

|λ1(−1− V )|γ+d/2
≤

∫
Sd

V γ+d/2 dω (5)

for any γ ≥max{0, 1− d/2} and this estimate is optimal.

Here the notation f . g as µ→+∞ means that f ≤ c(µ)g with limµ→∞ c(µ)= 1. The limit case
γ =max{0, 1− d/2} in (5) is covered by approximations. We may also notice that optimality in (5) is
achieved by constant potentials. Let us give some details.

If we consider a sequence of constant functions (Vn)n∈N uniformly converging towards 0, for instance
Vn = 1/n, we get that

lim
n→∞

|λ1(−1− Vn)|
γ∫

Sd V γ+d/2
n dω

=+∞,

which clearly forbids the possibility of an inequality of the same type as (4) for small values of∫
Sd V γ+d/2 dω. This is however compatible with the results of Ilyin in dimension d = 2. In [Ilyin

2012, Theorem 2.1], the author states that if P is the orthogonal projection defined by Pu := u−
∫

S2 u dω,
the negative eigenvalues λk(P(−1− V )P) satisfy the semiclassical inequality
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∑
k

|λk(P(−1− V )P)| ≤ 3
8

∫
S2

V 2 dω.

Another way of seeing that inequalities like (4) are incompatible with small potentials is based on the
following observation. Inequality (5) shows that

|λ1(−1− V )| ≤
(∫

S2
V 2 dω

)1/2

if the L2-norm of V is smaller than 1. Since such an inequality is sharp, the semiclassical Lieb–Thirring
inequalities for the Schrödinger operator on the sphere S2 are therefore impossible for small potentials
and can be achieved only in a semiclassical asymptotic regime, that is, when the norm ‖V ‖L2(S2) is large.

Our second main result is concerned with the estimates from below for the first eigenvalue of Schrödinger
operators with positive potentials. In this case, by analogy with (1), it is convenient to introduce the
constant L1

−γ,d with γ > d/2, which is the optimal constant in the inequality

λ1(−1+φ)
−γ
≤ L1
−γ,d

∫
Rd
φd/2−γ dx, (6)

where φ is any positive potential on Rd and λ1(−1+φ) denotes the lowest positive eigenvalue if it exists,
or +∞ otherwise. Inequality (6) is less standard than (1); we refer to [Dolbeault et al. 2006, Theorem 12]
for a statement and a proof. As in Theorem 1, we shall also introduce exponents p and q such that

q = 2
2γ − d

2γ − d + 2
and p =

q
2− q

= γ −
d
2
,

so that p (respectively q = 2p/p+ 1) takes arbitrary values in (0,+∞) (respectively (0, 2)). With these
notations, we have the counterpart of Theorem 1 in the case of positive potentials.

Theorem 3. Let d ≥ 1, p ∈ (0,+∞). There exists a concave increasing function ν : R+→ R+ with
ν(β) = β for any β ∈ [0, (d/2)(p + 1)] if p > 1, ν(β) ≤ β for any β > 0 and ν(β) < β for any
β ∈ ((d/2)(p+ 1),+∞), such that

λ1(−1+W )≥ ν(β) with β = ‖W−1
‖
−1
Lp(Sd )

, (7)

for any positive potential W such that W−1
∈ Lp(Sd). Moreover, for large values of β, we have

ν(β)−(p+d/2) . L1
−(p+d/2),d(κq,dβ)

−p.

The estimate (7) is optimal in the sense that there exists a nonnegative potential W such that β−1
=

‖W−1
‖Lp(Sd ) and λ1(−1+W )= ν(β) for any positive β and p. If β ≤ (d/2)(p+1) and p> 1, equality

in (7) is achieved by constant potentials.

Again the expression of L1
−γ,d is not explicit when d ≥ 2 but can be given in terms of an optimal

constant in some Gagliardo–Nirenberg–Sobolev inequality; see [Dolbeault et al. 2006] and (17)–(18) in
Section 4.

We can rewrite Theorem 3 in terms of γ = p+ d/2 and explicit integrals involving W .
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Corollary 4. Let d ≥ 1 and γ > d/2. For β = ‖W−1
‖
−1
Lγ−d/2(Sd )

large, we have

(λ1(−1+W ))−γ . L1
−γ,d

∫
Sd

W d/2−γ dω.

However, if γ ≥ d/2+ 1 and if β = ‖W−1
‖
−1
Lγ−d/2(Sd )

≤
1
4 d(2γ − d + 2), we have

(λ1(−1+W ))d/2−γ ≤

∫
Sd

W d/2−γ dω,

and this estimate is optimal.

This paper is organized as follows. Section 2 contains various results on interpolation inequalities; the
most important one for our purpose is stated in Lemma 5. Theorem 1, Corollary 2 and, various spectral
estimates for Schrödinger operators with negative potentials are established in Section 3. Section 4 deals
with the case of positive potentials and contains the proofs of Theorem 3 and Corollary 4. Section 5 is
devoted to the threshold case (q = 2, that is, p, γ →+∞) of exponential estimates for eigenvalues, or, in
terms of interpolation inequalities, to logarithmic Sobolev inequalities. Finally, numerical and technical
results have been collected in two appendices.

2. Interpolation inequalities and consequences for negative potentials

2.1. Inequalities in the Euclidean space. Let us start with some considerations on inequalities in the
Euclidean space, which play a crucial role in the semiclassical regime.

We recall that we denote by 2∗ the Sobolev critical exponent 2d/(d−2) if d ≥ 3 and consider Sobolev’s
inequality on Rd , d ≥ 3,

‖v‖2L2∗ (Rd )
≤ Sd‖∇v‖

2
L2(Rd )

for all v ∈ D1,2(Rd) (8)

where Sd is the optimal constant and D1,2(Rd) is the Beppo Levi space obtained by completion of smooth
compactly supported functions with respect to the norm v 7→ ‖∇v‖L2(Rd ). See Section B.4 for details and
comments on the expression of Sd .

Assume now that d ≥ 1 and recall that 2∗=+∞ if d = 1 or 2. In the subcritical case, that is, q ∈ (2, 2∗),
let

Kq,d := inf
v∈H1(Rd )\{0}

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

be the optimal constant in the Gagliardo–Nirenberg–Sobolev inequality

Kq,d‖v‖
2
Lq (Rd )

≤ ‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

for all v ∈ H1(Rd). (9)

The optimal constant L1
γ,d in the one bound state Keller–Lieb–Thirring inequality is such that

L1
γ,d := (Kq,d)

−p with p = γ +
d
2
, q = 2

2γ + d
2γ + d − 2

. (10)
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See Section B.5 for a proof and references and [Lieb and Thirring 1976] for a detailed discussion. Also
see [Barnes 1976] for numerical values of Kq,d .

We shall also define the exponent

ϑ := d
q − 2

2q

which plays an important role in the scale invariant form of the Gagliardo–Nirenberg–Sobolev interpolation
inequalities associated to Kq,d : see Section B.1 for details.

2.2. Interpolation inequalities on the sphere. Using the inverse stereographic projection (see Section B.3),
it is possible to relate interpolation inequalities on Rd with interpolation inequalities on Sd . In this section
we consider the case of the sphere. Notice that α∗ = d/(q − 2) when q = 2∗ = 2d/(d − 2), d ≥ 3.

Lemma 5. Let q ∈ (2, 2∗). There exists a concave increasing function µ : R+→ R+ with the properties

µ(α)= α for all α ∈
[
0, d

q−2

]
,

µ(α) < α for all α ∈
( d

q−2
,+∞

)
,

µ(α)=
Kq,d

κq,d
α1−ϑ(1+ o(1)) as α→+∞,

and such that

‖∇u‖2L2(Sd )
+α‖u‖2L2(Sd )

≥ µ(α)‖u‖2Lq (Sd )
for all u ∈ H1(Sd). (11)

If d ≥ 3 and q = 2∗, the inequality also holds for any α > 0 with µ(α)=min {α, α∗}.

The remainder of this section is mostly devoted to the proof of Lemma 5. A fundamental tool is a
rigidity result proved by M.-F. Bidaut-Véron and L. Véron [1991, Theorem 6.1] for q > 2, which goes as
follows. Any positive solution of

−1 f +α f = f q−1 (12)

has a unique solution f ≡ α1/(q−2) for any 0 < α ≤ d/(q − 2). A straightforward consequence of this
rigidity result is the following interpolation inequality [Bidaut-Véron and Véron 1991, Corollary 6.2]:∫

Sd
|∇u|2 dσ ≥

d
q − 2

[(∫
Sd
|u|q dσ

)2/q

−

∫
Sd
|u|2 dσ

]
for all u ∈ H1(Sd , dσ). (13)

Inequality (13) holds for any q ∈ [1, 2)∪ (2, 2∗] if d ≥ 3 and for any q ∈ [1, 2)∪ (2,∞) if d = 1 or 2.
An alternative proof of (13) has been established in [Beckner 1993] for q > 2 using previous results by
Lieb [1983] and the Funk–Hecke formula [Funk 1915; Hecke 1917]. The whole range p ∈ [1, 2)∪ (2, 2∗)
was covered in the case of the ultraspherical operator [Bentaleb and Fahlaoui 2009; 2010]. Also see
[Bakry and Ledoux 1996; Ledoux 2000] for the carré du champ method, and [Dolbeault et al. 2013] for
an elementary proof. Inequality (13) is tight as defined by D. Bakry [2006, Section 2], in the sense that
equality is achieved only by constants.
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Remark 6. Inequality (13) is equivalent to

inf
u∈H1(Sd )\{0}

(q − 2)‖∇u‖2L2(Sd )

‖u‖2Lq (Sd )
−‖u‖2L2(Sd )

= d.

Although we will not make use of them in this paper, we may notice that the following properties hold
true:

(i) If q < 2∗, the above infimum is not achieved in H1(Sd) \ {0}, but

lim
ε→0+

(q − 2)‖∇uε‖2L2(Sd )

‖uε‖2Lq (Sd )
−‖uε‖2L2(Sd )

= d

if uε := 1+εϕ, where ϕ is a nontrivial eigenfunction of the Laplace–Beltrami operator corresponding
to the first nonzero eigenvalue (see Section 2.3).

(ii) If q = 2∗, d ≥ 3, there are nontrivial optimal functions for (13), due to the conformal invariance.
Alternatively, these solutions can be constructed from the family of Aubin–Talenti optimal functions
for Sobolev’s inequality, using the inverse stereographic projection.

(iii) If α > α∗ and q = 2∗, d ≥ 3, there are no optimal functions for (11), since otherwise α 7→ µ(α)

would not be constant on (α∗, α): see Proposition 7 below.

2.3. Properties of the function α 7→ µ(α) in the subcritical case. Assume that q ∈ (2, 2∗). For any
α > 0, consider

Qα[u] :=
‖∇u‖2L2(Sd )

+α‖u‖2L2(Sd )

‖u‖2Lq (Sd )

for all u ∈ H1(Sd , dσ).

It is a standard result of the calculus of variations that

inf
u∈H1(Sd ,dσ)∫

Sd |u|q dσ=1

Qα[u] := µ(α)

is achieved by a minimizer u ∈ H1(Sd , dσ) which solves the Euler–Lagrange equations

−1u+αu−µ(α)uq−1
= 0. (14)

Indeed, we know that there is a Lagrange multiplier associated to the constraint
∫

Sd |u|q dσ = 1, and
multiplying (14) by u and integrating on Sd , we can identify it with µ(α). As a corollary, we have shown
that (11) holds. The fact that the Lagrange multiplier can be identified so easily is a consequence of the
fact that all terms in (11) are two-homogeneous.

We can now list some basic properties of the function α 7→ µ(α).

(1) For any α > 0, µ(α) is positive, since the infimum is achieved by a nonnegative function u and
u = 0 is incompatible with the constraint

∫
Sd |u|q dσ = 1. By taking a constant test function, we see

that µ(α) ≤ α for all α > 0. The function α 7→ µ(α) is monotone nondecreasing since for a given
u ∈ H1(Sd , dσ) \ {0}, the function α 7→ Qα[u] is monotone increasing. It is actually strictly monotone.
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Indeed, if µ(α1)= µ(α2) with α1 < α2, one can notice that Qα1[u2]< µ(α1) if u2 is a minimizer of Qα2

satisfying the constraint
∫

Sd |u2|
q dσ = 1, which provides an obvious contradiction.

(2) We have

µ(α)= α for all α ∈
(

0, d
q−2

]
.

Indeed, if u is a solution of (14), f = µ(α)1/(q−2)u solves (12) and is therefore a constant function if
α ≤ d/(q − 2) according to [Bidaut-Véron and Véron 1991, Theorem 6.1], and so is u as well. Because
of the normalization constraint ‖u‖Lq (Sd ) = 1, we get that u = 1, which proves the statement.

On the contrary, we have

µ(α) < α for all α >
d

q − 2
.

Let us prove this. Let ϕ be a nontrivial eigenfunction of the Laplace–Beltrami operator corresponding to
the first nonzero eigenvalue:

−1ϕ = dϕ.

If x = (x1, x2, . . . , xd , z) are cartesian coordinates of x ∈ Rd+1 so that Sd
⊂ Rd+1 is characterized by the

condition
∑d

i=1 x2
i + z2

= 1, a simple choice of such a function ϕ is ϕ(x) = z. By orthogonality with
respect to the constants, we know that

∫
Sd ϕ dσ = 0. We may now Taylor expand Qα around u = 1 by

considering u = 1+ εϕ as ε→ 0 and obtain that

µ(α)≤ Qα[1+ εϕ] =
(d +α)ε2

∫
Sd |ϕ|

2 dσ +α
(
∫

Sd |1+ εϕ|q dσ)2/q
= α+ [d +α(2− q)]ε2

∫
Sd
|ϕ|2 dσ + o(ε2).

By taking ε small enough, we get µ(α) < α for all α > d/(q− 2). Optimizing on the value of ε > 0 (not
necessarily small) provides an interesting test function: see Section A.1.

(3) The function α 7→ µ(α) is concave, because it is the minimum of a family of affine functions.

2.4. More estimates on the function α 7→ µ(α). We first consider the critical case q = 2∗, d ≥ 3. As in
the subcritical case q < 2∗, we have µ(α)= α for α ≤ α∗. For α > α∗, the function α 7→µ(α) is constant.

Proposition 7. With the notations of Lemma 5, if d ≥ 3 and q = 2∗, then

µ(α)= α∗ for all α > α∗ =
d

q − 2
=

1
4 d(d − 2).

Proof. Consider the Aubin–Talenti optimal functions for Sobolev’s inequality and, more specifically, let
us choose the functions

vε(x) :=
(

ε

ε2+ |x |2

)d−2
2

for all x ∈ Rd and all ε > 0,

which are such that ‖vε‖L2∗ (Rd )=‖v1‖L2∗ (Rd ) is independent of ε. With standard notations (see Section B.3),
let N ∈ Sd be the north pole. Using the stereographic projection 6, that is, for the functions defined for
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any y ∈ Sd
\ {N} by

uε(y)=
(
|x |2+ 1

2

)d−2
2
vε(x) with x =6(y),

we find that ‖uε‖L2∗ (Sd ) = ‖v1‖L2∗ (Rd ) for any ε > 0, so that

µ(α)≤Qα[uε]=
‖∇vε‖

2
L2(Rd )

+(α−α∗)
∫

Rd |vε|
2(2/(1+|x |2))2 dx

κ2∗,d‖vε‖
2
L2∗ (Rd )

=α∗+4|Sd
|
1−2/d(α−α∗)

δ(d,ε)
‖v1‖

2
L2∗ (Rd )

,

where we have used the fact that κ2∗,dSd = 1/α∗ (see Section B.4) and

δ(d, ε) :=
∫
∞

0

(
ε

ε2+ r2

)d−2 rd−1

(1+ r2)2
dr = ε2

∫
∞

0

(
1

1+ s2

)d−2 sd−1

(1+ ε2s2)2
ds.

One can check that limε→0+ δ(d, ε)= 0 since

δ(d, ε)≤ ε2
∫
∞

0

sd−1

(1+ s2)d−2 ds if d ≥ 5 and δ(d, ε)≤ εcd

∫
+∞

0

ds
(1+ s2)2

if d = 3 or 4,

with c3 = 1 and c4 = 3
√

3/16. �

The next step is devoted to a lower estimate for the function α 7→ µ(α) in the subcritical case, which
shows that limα→+∞ µ(α)=+∞ in contrast with the critical case.

Proposition 8. With the notations of Lemma 5, if d ≥ 3 and q ∈ (2, 2∗), then, for any α > α∗, we have

α > µ(α)≥ αϑ
∗
α1−ϑ

with ϑ = d(q−2)/2q. For every s ∈ (2, 2∗), if d ≥ 3, or every s ∈ (2,+∞) if d = 1 or 2, such that s > q ,
we also have that

α > µ(α)≥

(
d

s− 2

)θ
α1−θ

for any α > d/(s− 2) and θ = θ(s, q, d) := s(q − 2)/(q(s− 2)).

Proof. The first case can be seen as a limit case of the second one as s→ 2∗ and ϑ = θ(2∗, q, d). Using
Hölder’s inequality, we can estimate ‖u‖Lq (Sd ) by

‖u‖Lq (Sd ) ≤ ‖u‖
θ
Ls(Sd )
‖u‖1−θL2(Sd )

and get the result using

Qα[u] ≥
(
‖∇u‖2L2(Sd )

+α‖u‖2L2(Sd )

‖u‖2Ls(Sd )

)θ(‖∇u‖2L2(Sd )
+α‖u‖2L2(Sd )

‖u‖2L2(Sd )

)1−θ

≥

(
d

s− 2

)θ
α1−θ . �

Proposition 9. With the notations of Lemma 5, for every q ∈ (2, 2∗), we have

lim sup
α→+∞

αϑ−1µ(α)≤
Kq,d

κq,d
.
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Proof. Let v be an optimal function for Kq,d and define for any x ∈ Rd the function

vα(x) := v
(
2
√
α−α∗ x

)
with α∗ = 1

4 d(d − 2) and α > α∗, so that∫
Rd
|∇vα|

2 dx = 22−d(α−α∗)
1−d/2

∫
Rd
|∇v|2 dx,∫

Rd
|vα|

q
(

2
1+ |x |2

)d−(d−2)q/1

dx = 2−(d−2)q/2(α−α∗)
−d/2

∫
Rd
|v|q

(
1+

|x |2

4(α−α∗)

)−d+(d−2)q/2

dx .

Now we observe that the function uα(y) := ((|x |2+ 1)/2)(d−2)/2vα(x), where y =6−1(x) and 6 is the
stereographic projection (see Section B.3), is such that

Qα[uα] =
1
κq,d

∫
Rd |∇vα|

2 dx + (α−α∗)
∫

Rd |vα|
2(2/(1+ |x |2))2 dx

[
∫

Rd |vα|q(2/(1+ |x |2))d−(d−2)q/2 dx]2/q
.

Passing to the limit as α→+∞, we get

lim
α→+∞

∫
Rd
|v|q

(
1+

|x |2

4(α−α∗)

)−d+(d−2)q/2

dx =
∫

Rd
|v|q dx

by Lebesgue’s theorem of dominated convergence. The limit also holds with q replaced by 2. This proves
that

Qα[uα] = (α−α∗)1−d/2+d/q
(
Kq,d

κq,d
+ o(1)

)
as α→+∞,

which concludes the proof because ϑ = d(q − 2)/(2q). �

2.5. The semiclassical regime: behavior of the function α 7→ µ(α) as α → +∞. Assume q ∈ (2, 2∗).
If we combine the results of Propositions 8 and 9, we know that µ(α) ∼ α1−ϑ as α→+∞ if d ≥ 3.
If d = 1 or 2, we know that limα→+∞ µ(α) = +∞ with a growth at least equivalent to α2/q−ε with
ε > 0, arbitrarily small, according to Proposition 8, and at most equivalent to α1−ϑ by Proposition 9. To
complete the proof of Lemma 5, it remains to determine the precise behavior of µ(α) as α→+∞.

Proposition 10. With the notations of Lemma 5, for every q ∈ (2, 2∗), with ϑ = d(q − 2)/(2q) we have

µ(α)=
Kq,d

κq,d
α1−ϑ(1+ o(1)) as α→+∞.

Proof. Suppose by contradiction that there is a positive constant η and a sequence (αn)n∈N such that
limn→+∞ αn =+∞ and

lim
n→+∞

αϑ−1
n µ(αn)≤

Kq,d

κq,d
− η. (15)

Consider a sequence (un)n∈N of functions in H1(Sd) such that Qαn [un] = µ(αn) and ‖un‖Lq (Sd ) = 1 for
any n ∈ N. From (15), we know that

αn‖un‖
2
L2(Sd )

≤ Qαn [un] = µ(αn)≤ α
1−ϑ
n

(
Kq,d

κq,d
− η

)
(1+ o(1)) as n→+∞,
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that is,

lim sup
n→+∞

αϑn ‖un‖
2
L2(Sd )

≤
Kq,d

κq,d
− η.

The normalization ‖un‖Lq (Sd ) = 1 for any n ∈ N and the limit limn→+∞ ‖un‖L2(Sd ) = 0 mean that the
sequence (un)n∈N concentrates: there exists a sequence (yi )i∈N of points in Sd (eventually finite) and
two sequences of positive numbers (ζi )i∈N and (ri,n)i,n∈N such that limn→+∞ ri,n = 0,

∑
i∈N ζi = 1, and∫

Sd∩B(yi ,ri,n)
|ui,n|

q dσ = ζi + o(1), where ui,n ∈ H1(Sd), ui,n = un on Sd
∩ B(yi , ri,n), and

supp ui,n ⊂ Sd
∩ B(yi , 2ri,n).

Here o(1) means that uniformly with respect to i , the remainder term converges towards 0 as n→+∞.
Using a computation similar to those of the proof of Proposition 9, we can blow up each function ui,n

and prove

(αn −α∗)
ϑ−1

∫
Sd
(|∇ui,n|

2
+αn|ui,n|

2) dσ ≥
Kq,d

κq,d
ζ

2/q
i + o(1) for all i.

Let us choose an integer N such that
(∑N

i=1 ζi
)2/q

> 1− κq,dη/(2Kq,d). Then we find that

(αn −α∗)
ϑ−1

∫
Sd
(|∇un|

2
+αn|un|

2) dσ ≥
Kq,d

κq,d

N∑
1

ζ
2/q
i + o(1)≥

Kq,d

κq,d

( N∑
1

ζi

)2/q

+ o(1)

≥
Kq,d

κq,d
−
η

2
+ o(1),

a contradiction with (15). �

For details on the behavior of Kq,d as q varies, see Proposition 15. Collecting all results of this section
completes the proof of Lemma 5.

3. Spectral estimates for the Schrödinger operator on the sphere

This section is devoted to the proof of Theorem 1. As a consequence of the results of Lemma 5, the
function α 7→ µ(α) is invertible, of inverse µ 7→ α(µ), if d = 1, 2 or d ≥ 3 and q < 2∗, and we have the
inequality∫

Sd
|∇u|2 dσ −µ

(∫
Sd
|u|q dσ

)2
q
≥−α(µ)

∫
Sd
|u|2 dσ for all u ∈ H1(Sd , dσ) and all µ > 0. (16)

Moreover, the function µ 7→ α(µ) is monotone increasing, convex, and satisfies α(µ) = µ for any
µ ∈ (0, d/(q − 2)] and α(µ) > µ for any µ > d/(q − 2).

Consider the Schrödinger operator −1− V for some function V ∈ Lp(Sd) and the corresponding
energy functional

E[u] :=
∫

Sd
|∇u|2 dσ −

∫
Sd

V |u|2 dσ.

Let
λ1(−1− V ) := inf

u∈H1(Sd ,dσ)∫
Sd |u|2 dσ=1

E[u].
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By Hölder’s inequality, we have

E[u] ≥
∫

Sd
|∇u|2 dσ −‖V+‖Lp(Sd )‖u‖

2
Lq (Sd )

with 1/p+ 2/q = 1. From Section 2, with µ= ‖V+‖Lp(Sd ), we deduce

E[u] ≥ −α(µ)‖u‖2L2(Sd )
for all u ∈ H1(Sd , dσ) and all V ∈ Lp(Sd),

which amounts to a Keller–Lieb–Thirring inequality on the sphere (3), or equivalently,∫
Sd
|∇u|2 dσ−

∫
Sd

V |u|2 dσ+α(‖V+‖Lp(Sd ))

∫
Sd
|u|2 dσ ≥0 for all u∈H1(Sd ,dσ) and all V ∈Lp(Sd).

Notice that this inequality simultaneously contains (3) and (16), by optimizing either on u or on V .
Optimality in (3) still needs to be proved. This can be done by taking an arbitrary µ ∈ (0,∞) and

considering an optimal function for (16), for which we have∫
Sd
|∇u|2 dσ −µ

(∫
Sd
|u|q dσ

)2
q
= α(µ)

∫
Sd
|u|2 dσ.

Because the above expression is homogeneous of degree two, there is no restriction to assume that∫
Sd |u|q dσ = 1, and since the solution is optimal, it solves the Euler–Lagrange equation

−1u− V u = α(µ)u

with V = µuq−2, such that

‖V+‖Lp(Sd ) = µ‖u‖
q/p
Lq (Sd )

= µ.

Hence such a function V realizes the equality in (3).
Taking into account Lemma 5 and (10), this completes the proof of Theorem 1 in the general case.

The case d = 1 and γ = 1/2 has to be treated specifically. Using u ≡ 1 as a test function, we know that
|λ1(−1− V )| ≤ µ=

∫
S1 V dx . On the other hand, consider u ∈ H1(S1) such that ‖u‖L2(S1) = 1. Since

H1(S1) is embedded into C0,1/2(S1), there exists x0 ∈ S1
≈ [0, 2π) such that u(x0)= 1 and

|u(x)|2− 1= 2
∫ x

x0

u(y)u′(y) dy = 2
∫ x

x0+2π
u(y)u′(y) dy

can be estimated by∣∣|u(x)|2− 1
∣∣≤ 2

∫ x

x0

|u(y)||u′(y)| dy = 2
∫ x

x0+2π
|u(y)||u′(y)| dy

≤

∫ 2π

0
|u(y)||u′(y)| dy ≤

(∫ 2π

0
|u(y)|2 dy

∫ 2π

0
|u′(y)|2 dy

)1/2

using the Cauchy–Schwarz inequality, that is,

||u(x)|2− 1| ≤ 2π‖u′‖L2(S1),
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since ‖u′‖2L2(S1)
= (1/(2π))

∫ 2π
0 |u

′(y)|2 dy and ‖u‖2L2(S1)
= (1/(2π))

∫ 2π
0 |u(y)|

2 dy = 1 (recall that dσ
is a probability measure). Thus we get

|u(x)|2 ≤ 1+ 2π‖u′‖L2(S1),

from which it follows that

λ1(−1− V )≥ ‖u′‖2L2(S1)
−µ(1+ 2π‖u′‖L2(S1))≥−µ−π

2µ2.

This shows that µ≤ α(µ)≤ µ+π2µ2. By the Arzelà–Ascoli theorem, the embedding of H1(S1) into
C0,1/2(S1) is compact. When d = 1 and γ = 1/2, the proof of the asymptotic behavior of α(µ) as
µ→+∞ can then be completed as in the other cases.

4. Spectral inequalities in the case of positive potentials

In this section we address the case of Schrödinger operators −1+W where W is a positive potential on
Sd and we derive estimates from below for the first eigenvalue of such operators. In order to do so, we
first study interpolation inequalities in the Euclidean space Rd , like those studied in Section 2 (for q > 2).

For this purpose, let us define for q ∈ (0, 2) the constant

K∗q,d := inf
v∈H1(Rd )\{0}

‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

‖v‖2L2(Rd )

,

that is, the optimal constant in the Gagliardo–Nirenberg–Sobolev inequality

K∗q,d‖v‖
2
L2(Rd )

≤ ‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

for all v ∈ H1(Rd) (17)

(with the convention that the right-hand side is infinite if |v|q is not integrable).
The optimal constant L1

−γ,d in (6) is such that

L1
−γ,d := (K

∗

q,d)
−γ with q = 2

2γ − d
2γ − d + 2

. (18)

See Section B.6 for a proof. Let us define the exponent

δ :=
2q

2d − q(d − 2)
.

Lemma 11. Let q ∈ (0, 2) and d ≥ 1. Then there exists a concave increasing function ν : R+→ R+ with
the properties

ν(β)≤ β for all β > 0 and ν(β) < β for all β ∈
(

d
2− q

,+∞

)
,

ν(β)= β for all β ∈
[

0,
d

2− q

]
if q ∈ [1, 2) and lim

β→0+

ν(β)

β
= 1 if q ∈ (0, 1),

ν(β)= K∗q,d(κq,dβ)
δ(1+ o(1)) as β→+∞,
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such that
‖∇u‖2L2(Sd )

+β‖u‖2Lq (Sd )
≥ ν(β)‖u‖2L2(Sd )

for all u ∈ H1(Sd). (19)

Proof. Inequality (19) is obtained by minimizing the left-hand side the constraint ‖u‖L2(Sd ) = 1: there is
a minimizer which satisfies

−1u+βuq−1
− ν(β)u = 0.

Case q ∈ (1, 2). The proof is very similar to that of Lemma 5, so we leave it to the reader. Written for
the optimal value of ν(β), inequality (19) is optimal in the following sense:

(i) If 0 < β ≤ d/(2− q), equality is achieved by constants. See [Dolbeault et al. 2013] for rigidity
results on Sd .

(ii) If β = d/(2− q), the sequence (un)n∈N with un := 1+ (1/n)ϕ, where ϕ is an eigenfunction of the
Laplace–Beltrami operator, is a minimizing sequence of the quotient to the left-hand side of (19)
divided by the right-hand side which converges to the optimal value of ν(β)= β = d/(2−q), that is,

lim
n→∞

‖∇un‖
2
L2(Sd )

‖un‖
2
L2(Sd )

−‖un‖
2
Lq (Sd )

=
d

2− q
.

(iii) If β > d/(2− q), there exists a nonconstant positive function u ∈ H1(Sd) \ {0} such that equality
holds in (19).

Case q ∈ (0, 1]. In this case, since Sd is compact, the case q ≤ 1 does not differ from the case q ∈ (1, 2)
as far as the existence of ν(β) is concerned. The only difference is that there is no known rigidity result
for q < 1. However, we can prove that

lim
β→0+

ν(β)

β
= 1.

Indeed, let us notice that ν(β)≤ β (use constants as test functions). On the other hand, let uβ = cβ + vβ
be a minimizer for ν(β) such that cβ =

∫
Sd uβ dσ and, as a consequence,

∫
Sd vβ dσ = 0. Without loss of

generality we can set
∫

Sd |cβ + vβ |2 dσ = c2
β +

∫
Sd |vβ |

2 dσ = 1. Using the Poincaré inequality, we know
that ‖∇vβ‖2L2(Sd )

≥ d‖vβ‖2L2(Sd )
, and hence

d‖vβ‖2L2(Sd )
+β‖cβ + vβ‖2Lq (Sd )

≤ ‖∇vβ‖
2
L2(Sd )

+β‖cβ + vβ‖2Lq (Sd )
= ν(β)≤ β,

which shows that limβ→0+ ‖vβ‖L2(Sd ) = 0 and limβ→0+ cβ = 1. As a consequence, ‖cβ + vβ‖2Lq (Sd )
=

c2
β(1+ o(1)) as β→ 0+ and we obtain that

β(1+ o(1))= βc2
β(1+ o(1))≤ ν(β),

which concludes the proof.

Asymptotic behavior of ν(β). Finally, the asymptotic behavior of ν(β) when β is large can be investigated
using concentration-compactness methods similar to those used in the proofs of Propositions 8, 9, and 10.
Details are left to the reader. �
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Proof of Theorem 3. By Hölder’s inequality we have

‖u‖2Lq (Sd )
=

(∫
Sd

W−q/2(W |u|2)q/2 dσ
)2/q

≤ ‖W−1
‖Lq/(2−q)(Sd )

∫
Sd

W |u|2 dσ.

Using (19), we get∫
Sd
|∇u|2 dσ +

∫
Sd

W |u|2 dσ ≥
∫

Sd
|∇u|2 dσ +‖W−1

‖
−1
Lp(Sd )

‖u‖2Lq (Sd )
≥ ν(‖W−1

‖
−1
Lp(Sd )

)

∫
Sd
|u|2 dσ

with p = q/(2− q), which proves (7). Then Theorem 3 is an easy consequence of Lemma 11. �

5. The threshold case: q = 2

The limiting case q = 2 in the interpolation inequality (13) corresponds to the logarithmic Sobolev
inequality ∫

Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ ≤
2
d

∫
Sd
|∇u|2 dσ for all u ∈ H1(Sd , dσ),

which has been studied, for example, in [Beckner 1993; Brouttelande 2003b; 2003a]. For earlier results
on the sphere, see [Federbush 1969; Rothaus 1981; Mueller and Weissler 1982] and the references therein
(in particular for the circle). Now, if we consider inequality (11), in the limiting case q = 2 we obtain the
following interpolation inequality.

Lemma 12. For any p >max{1, d/2}, there exists a concave nondecreasing function ξ : (0,+∞)→ R

with the properties

ξ(α)= α for all α ∈ (0, α0) and ξ(α) < α for all α > α0

for some α0 ∈ [(d/2)(p− 1), (d/2)p], and

ξ(α)∼ α1−d/(2p) as α→+∞

such that∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log
ξ(α)

α
‖u‖2L2(Sd )

≤ p‖u‖2L2(Sd )
log
(

1+
‖∇u‖2L2(Sd )

α‖u‖2L2(Sd )

)
for all u ∈ H1(Sd). (20)

Proof. Consider Hölder’s inequality: ‖u‖Lr (Sd ) ≤ ‖u‖θL2(Sd )
‖u‖1−θLq (Sd )

, with 2≤ r < q and θ = 2
r

q−r
q−2 . To

emphasize the dependence of θ in r , we shall write θ = θ(r). By taking the logarithm of both sides of the
inequality, we find that

1
r

log
∫

Sd
|u|r dσ ≤

θ(r)
2

log
∫

Sd
|u|2 dσ +

1− θ(r)
q

log
∫

Sd
|u|q dσ.
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The inequality becomes an equality when r = 2, so that we may differentiate at r = 2 and get, with
q = 2p/(p− 1) < 2∗, that is, p = q/(q − 2), the logarithmic Hölder inequality∫

Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ ≤ p‖u‖2L2(Sd )
log
‖u‖2Lq (Sd )

‖u‖2L2(Sd )

for all u ∈ H1(Sd).

We may now use inequality (11) to estimate

‖u‖2Lq (Sd )

‖u‖2L2(Sd )

≤
α

µ(α)

(
1+

1
α

‖∇u‖2L2(Sd )

‖u‖2L2(Sd )

)
,

where µ= µ(α) is the constant which appears in Lemma 5. Thus we get∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log
µ(α)

α
‖u‖2L2(Sd )

≤ p‖u‖2L2(Sd )
log
(

1+
‖∇u‖2L2(Sd )

α‖u‖2L2(Sd )

)
,

which proves that the inequality∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log ξ(α)‖u‖2L2(Sd )
≤ p‖u‖2L2(Sd )

log
(
α+
‖∇u‖2L2(Sd )

‖u‖2L2(Sd )

)
holds for some optimal constant ξ(α)≥µ(α), which is therefore concave, and such that limα→+∞ ξ(α)=

+∞. This establishes (20). The fact that equality is achieved for every α > 0 follows from the method of
[Dolbeault and Esteban 2012, Proposition 3.3].

Testing (20) with constant functions, we find that ξ(α) ≤ α for any α > 0. On the other hand,
ξ(α) ≥ µ(α) = α for any α ≤ d/(q − 2) = (d/2)(p− 1). Testing (20) with u = 1+ εϕ, we find that
ξ(α) < α if α > (d/2)p.

By Proposition 10, we know that ξ(α)≥µ(α)∼ α1−ϑ with ϑ = d(q−2)/(2q)= d/(2p) as α→+∞.
As in the proof of Propositions 9 and 10, let us consider an optimal function uα for (20). Then we have

p log
ξ(α)

α

= p log
(

1+
1
α
‖∇uα‖2L2(Sd )

)
−

∫
Sd
|uα|2 log |uα|2 dσ ∼

p
α
‖∇uα‖2L2(Sd )

−

∫
Sd
|uα|2 log |uα|2 dσ

as α→+∞ and uα concentrates at a single point like in the case q > 2 so that, after a stereographic
projection which transforms uα into vα, the function vα is, up to higher order terms, optimal for the
Euclidean logarithmic Sobolev inequality∫

Rd
|v|2 log

|v|2

‖v‖2L2(Rd )

dx +
d
2

log(πεe2)‖v‖2L2(Rd )
≤ ε‖∇v‖2L2(Rd )

,

which holds for any ε > 0 and any v ∈ H1(Rd). Here we have of course ε = p/α and we find that

p log
ξ(α)

α
=

d
2

log
(
π

p
α

e2
)
(1+ o(1)) as α→+∞. �
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Corollary 13. With the notations of Lemma 12, for any α > 0, we have

α

p

∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ +α log
ξ(α)

α
‖u‖2L2(Sd )

≤ ‖∇u‖2L2(Sd )
for all u ∈ H1(Sd).

Proof. This is a straightforward consequence of Lemma 12 using the fact that log(1+ x) ≤ x for any
x > 0. �

As in the case q 6= 2, Corollary 13 provides some spectral estimates. Let u ∈ H1(Sd) be such that
‖u‖L2(Sd ) = 1. A straightforward optimization with respect to an arbitrary function W shows that

inf
W

[∫
Sd

W |u|2 dσ +µ log
∫

Sd
e−W/µ dσ

]
=−µ

∫
Sd
|u|2 log |u|2 dσ,

with the optimality case achieved by W such that

|u|2 =
e−W/µ∫

Sd e−W/µ dσ
.

Notice that, up to the addition of a constant, we can always assume that
∫

Sd e−W/µ dσ = 1, which uniquely
determines the optimal W . Now, by Corollary 13 applied with µ= α/p, we find that∫

Sd
|∇u|2 dσ +

∫
Sd

W |u|2 dσ ≥ α log
ξ(α)

α
−
α

p
log

∫
Sd

e−pW/α dσ.

This leads us to the following statement.

Corollary 14. Let d ≥ 1. With the notations of Lemma 12, we have the estimate

e−λ1(−1−W )/α
≤

α

ξ(α)

(∫
Sd

e−pW/α dσ
)1/p

for any function W such that e−pW/α is integrable. This estimate is optimal in the sense that there exists a
nonnegative function W for which the inequality becomes an equality.

Appendix A. Further estimates and numerical results

A.1. A refined upper estimate. Let q ∈ (2, 2∗). For α > d/(q − 2), we can give an upper estimate of
the optimal constant µ(α) in inequality (11) of Lemma 5. Consider functions which depend only on z,
with the notations of Section 2.3. Then (11) is equivalent to an inequality that can be written as

Fα[ f ] :=

∫ 1
−1 | f

′
|
2ν dνd +α

∫ 1
−1 | f |

2 dνd(∫ 1
−1 | f |

q dνd
)2/q ≥ µ(α),

where dνd is the probability measure defined by

νd(z) dz = dνd(z) := Z−1
d νd/2−1 dz with ν(z) := 1− z2, Zd :=

√
π

0(d/2)
0((d + 1)/2)

.
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Figure 1. In the case q > 2, the optimal constant is given by µ= α for α ≤ d/(q − 2)
and the curve µ = µ(α) for α > d/(q − 2). An upper estimate is given by the curve
µ = µ+(α) obtained by optimizing the function hα(ε) in terms of ε ∈ (0, 1), while a
lower estimate, namely µ = µ−(α) = αϑ∗ α

1−ϑ , has been established in Proposition 8.
The asymptotic regime is governed by µ(α)∼ µasymp(α)= Kq,dκ

−1
q,dα

1−ϑ as α→+∞
according to Lemma 5. The above plot shows the various curves in the special case d = 3
and q = 3.

See [Dolbeault et al. 2013] for details. To get an estimate, it is enough to take a well chosen test function.
Consider fε(z) := 1+ εϕ(z) and as in Section 2.3 we can choose ϕ(z) = z. Then one can optimize
hα(ε)= Fα[ fε] with respect to ε ∈ (0, 1), and observe that

∫ 1
−1 | f

′
ε|

2ν dνd = dε2
∫ 1
−1 z2 dνd , so that hα(ε)

can be written as

hα(ε)=
α+ (d +α)ε2

∫ 1
−1 z2 dνd(∫ 1

−1 |1+ εz|q dνd
)2/q ≥ µ(α).

When ε→ 0+, we recover that hα(ε)−α∼ [d−α(q−2)]ε2
∫ 1
−1 z2 dνd < 0 if α > d/(q−2), but a better

estimate can be achieved simply by considering µ+(α) := infε∈(0,1) hα(ε) so that µ(α) ≤ µ+(α) < α.
The function α 7→ µ+(α) can be computed explicitly (using hypergeometric functions) and is shown in
Figure 1.

A.2. Numerical results. In this section, we illustrate the various estimates obtained in this paper by
numerical computations done in the special case d = 3 and q = 3. See Figure 1 for the computation of
the curve α 7→ µ(α) and how it behaves compared to the theoretical estimates obtained in this paper.
We emphasize that our upper and lower estimates α 7→ µ±(α) bifurcate from the line µ= α precisely
at α = d/(q − 2) if q ∈ (2, 2∗) (and at α = d/(2− q) if q ∈ (1, 2)). The curve corresponding to the
asymptotic regime is also plotted, but gives relevant information only as α→∞.

The convergence towards the asymptotic regime is illustrated in Figure 2 which shows the convergence
of µ(α)/µasymp(α) towards 1 as α→+∞ in the special case d = 3 and q = 3. In terms of spectral
properties, for large potentials, eigenvalues of the Schrödinger operator can be estimated according to
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α �→ µ(α) asymp(α)µ

Figure 2. The asymptotic regime corresponding to α→+∞ has the interesting feature
that, up to a dependence in α1−ϑ and a normalization factor proportional to κq,d , the
optimal constant µ(α) behaves like the optimal constant in the Euclidean space, as has
been established in Proposition 10.

Theorem 1 by the Euclidean Keller–Lieb–Thirring constant that has been numerically computed for
instance in [Barnes 1976].

Appendix B. Constants on the Euclidean space

B.1. Scaling of the Gagliardo–Nirenberg–Sobolev inequality. Let q > 2 and denote by KGN(q) the
optimal constant in the Gagliardo–Nirenberg–Sobolev inequality, given by

KGN(q) := inf
u∈H1(Rd )\{0}

‖∇u‖2ϑL2(Rd )
‖u‖2(1−ϑ)L2(Rd )

‖u‖2Lq (Rd )

with ϑ = ϑ(q, d)= d
q − 2

2q
.

An optimization of the quotient in the definition of Kq,d , which has been defined in Section 2, allows us
to relate this constant with KGN(q). Indeed, if we optimize N[u] :=

∫
Rd |∇u|2 dx +

∫
Rd |u|2 dx under the

scaling λ 7→ uλ(x) := λd/qu(λx), we find that

N[uλ] = λ2(1−ϑ)
∫

Rd
|∇u|2 dx + λ−2ϑ

∫
Rd
|u|2 dx

achieves its minimum at

λ? =

√
ϑ

1−ϑ
‖u‖L2(Rd )

‖∇u‖L2(Rd )

,

so that
N[uλ?] = ϑ

−ϑ(1−ϑ)−(1−ϑ)‖∇u‖2ϑL2(Rd )
‖u‖2(1−ϑ)L2(Rd )

,

thus proving that Kq,d can be computed in terms of KGN(q) as

Kq,d = ϑ
−ϑ(1−ϑ)−(1−ϑ)KGN(q).
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B.2. Asymptotic regimes in Gagliardo–Nirenberg–Sobolev inequalities. Let q > 2 and consider the
constant Kq,d as above. To handle the case of dimension d = 1, we may observe that, for any smooth
compactly supported function u on R, we can write either

|u(x)|2 = 2
∣∣∣∣∫ x

−∞

u(y)u′(y) dy
∣∣∣∣≤ ‖u‖2L2(−∞,x)+‖u

′
‖

2
L2(−∞,x) for all x ∈ R

or

|u(x)|2 = 2
∣∣∣∣∫ +∞

x
u(y)u′(y) dy

∣∣∣∣≤ ‖u‖2L2(x,+∞)+‖u
′
‖

2
L2(x,+∞) for all x ∈ R,

thus proving that
|u(x)|2 ≤ 1

2(‖u‖
2
L2(R)
+‖u′‖2L2(R)

) for all x ∈ R,

that is, the Agmon inequality
‖u‖2L2(R)

+‖u′‖2L2(R)

‖u‖2L∞(R)
≥ 2,

and hence K∞,1 ≥ 2. Equality is achieved by the function u(x)= e−|x |, x ∈ R, and we have shown that

K∞,1 = 2.

Proposition 15. Assume that q > 2. For all d ≥ 1,

lim
q→2+

Kq,d = 1

and, for all d ≥ 3,
lim

q→2∗
Kq,d = Sd ,

where Sd is the best constant in inequality (8). If d = 1, then limq→+∞ Kq,1 = K∞,1.

Proof. For any v ∈ H1(Rd) and d ≥ 3, we have

lim
q→2∗

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

≥ lim
q→2∗

‖∇v‖2L2(Rd )

‖v‖2Lq (Rd )

=

‖∇v‖2L2(Rd )

‖v‖2
L2∗ (Rd )

≥ Sd ,

thus proving that limq→2∗ Kq,d ≥ Sd . On the other hand, we may use the Aubin–Talenti function

ū(x)= (1+ |x |2)−(d−2)/2 for all x ∈ Rd (21)

as a test function for Kq,d if d ≥ 5, that is,

Kq,d ≤ ϑ
−ϑ(1−ϑ)−(1−ϑ)

‖∇ū‖2ϑL2(Rd )
‖ū‖2(1−ϑ)L2(Rd )

‖ū‖2Lq (Rd )

and observe that the right-hand side converges to Sd , since limq→2∗ ϑ(q, d)= 1. If d = 3 or 4, standard
additional truncations are needed. The case corresponding to q→∞, d = 1 is dealt with as above.

Now we investigate the limit as q→ 2+. For any v ∈ H1(Rd), we have
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lim
q→2+

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

≥ lim
q→2+

‖v‖2L2(Rd )

‖v‖2Lq (Rd )

= 1,

thus proving that limq→2+ Kq,d ≥ 1, and for any v ∈ H1(Rd), the right-hand side in

Kq,d ≤ ϑ
−ϑ(1−ϑ)−(1−ϑ)

‖∇v‖2ϑL2(Rd )
‖v‖

2(1−ϑ)
L2(Rd )

‖v‖2Lq (Rd )

converges to 1 as q→ 2+. This completes the proof. �

B.3. Stereographic projection. On Sd
⊂ Rd+1, we can introduce the coordinates y = (ρφ, z) ∈ Rd

×R

such that ρ2
+ z2
= 1, z ∈ [−1, 1], ρ ≥ 0, and φ ∈ Sd−1, and consider the stereographic projection

6 : Sd
\ {N} → Rd

defined by 6(y) = x , where, using the above notations, x = rφ with r =
√
(1+ z)/(1− z) for any

z ∈ [−1, 1). In this setting, the north pole N corresponds to z = 1 (and is formally sent at infinity) while
the equator (corresponding to z = 0) is sent onto the unit sphere Sd−1

⊂ Rd . Hence x ∈ Rd is such that
r = |x |, φ = x/|x |, and we have the useful formulae

z =
r2
− 1

r2+ 1
= 1−

2
r2+ 1

, ρ =
2r

r2+ 1
.

With these notations in hand, we can transform any function u on Sd into a function v on Rd using

u(y)=
(

r
ρ

)d−2
2
v(x)=

(
r2
+ 1
2

)d−2
2
v(x)= (1− z)−(d−2)/2v(x),

and a painful but straightforward computation shows that, with α∗ = 1
4 d(d − 2),∫

Sd
|∇u|2 dω+α∗

∫
Sd
|u|2 dω =

∫
Rd
|∇v|2 dx and

∫
Sd
|u|q dω =

∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx .

As a consequence, Inequalities (11) and (19) are transformed, respectively, into∫
Rd
|∇v|2 dx + 4(α−α∗)

∫
Rd
|v|2

dx
(1+ |x |2)2

≥ µ(α)κq,d

[∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx
]2/q

for all v ∈ D1,2(Rd)

if q ∈ (2, 2∗) and α ≥ α∗, and∫
Rd
|∇v|2 dx +βκq,d

[∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx
]2/q

≥ 4(ν(β)+α∗)
∫

Rd
|v|2

dx
(1+ |x |2)2

for all v ∈ D1,2(Rd)

if q ∈ (1, 2) and β > 0.
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B.4. Sobolev’s inequality: expression of the constant and references. The proof that Sobolev’s inequal-
ity (8) becomes an equality if and only if u = ū given by (21) up to a multiplication by a constant, a
translation, and a scaling is due to T. Aubin [1976] and G. Talenti [1976]. However, G. Rosen [1971]
showed (by linearization) that the function given by (21) is a local minimum when d = 3 and computed
the critical value.

Much earlier, G. Bliss [1930] (also see [Hardy and Littlewood 1930]) established that, among radial
functions, the inequality(∫

Rd
| f |p|x |r+1−d−p dx

)2
p
≤ CBliss

∫
Rd
|∇ f |2|x |1−d dx

holds when r = p/2− 1. With the change of variables f (x) = v(|x |−1/(d−2)x/|x |), the inequality is
changed into (∫

Rd
|v|2d/(d−2) dx

)d−2
d
≤

CBliss

(d − 2)2(d−1)/d

∫
Rd
|∇v|2 dx

if p = 2∗, and it is a straightforward consequence of [Bliss 1930] that the equality is achieved with v = ū.
According to the duplication formula (see, for instance, [Abramowitz and Stegun 1964]) for the 0

function, we know that

0(x)0(x + 1
2)= 21−2x√π0(2x).

As a consequence, the best constant in Sobolev’s inequality (8) can be written either as

Sd =
4

d(d − 2)|Sd |2/d
,

where the surface of the d-dimensional unit sphere is given by |Sd
|= 2π (d+1)/2/0

( d+1
2

)
(see, for instance,

[Beckner 1993]), or as

Sd =
1

πd(d − 2)

(
0(d)
0(d/2)

)2
d

according to [Aubin 1976; Bliss 1930; Rosen 1971; Talenti 1976]. This last expression can easily be
recovered using the fact that optimality in (8) is achieved by ū defined in (21), while the first one, namely
1/Sd =

1
4 d(d − 2)κ2∗,d , is an easy consequence of the stereographic projection and the computations of

Section B.3 with α = α∗ and q = 2∗.

B.5. A proof of (10). Assume that q > 2 and let us relate the optimal constant L1
γ,d in the one bound state

Keller–Lieb–Thirring inequality (1) with the optimal constant Kq,d in the Gagliardo–Nirenberg–Sobolev
inequality (9). In this case, recall that p = q/(q − 2)= γ + d/2. For any nonnegative function φ defined
on Rd such that ‖φ‖Lp(Rd ) = Kq,d , using Hölder’s inequality, we can write that∫

Rd
(|∇v|2−φ|v|2) dx ≥ ‖∇v‖2L2(Rd )

−‖φ‖Lp(Rd )‖v‖
2
Lq (Rd )
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for any v ∈ H1(Rd). Using (9), namely

‖∇v‖2L2(Rd )
−Kq,d‖v‖

2
Lq (Rd )

≥−‖v‖2L2(Rd )
,

this proves that

|λ1(−1−φ)| ≤ 1 for all φ ∈ Lp(Rd) such that ‖φ‖Lp(Rd ) = Kq,d . (22)

Next one can observe that inequality (1) can be rephrased as

L1
γ,d = sup

φ∈Lp(Sd )

sup
v∈H1(Rd )\{0}

(R[v, φ])γ with R[v, φ] :=

∫
Rd (φ|v|

2
− |∇v|2) dx

‖v‖2L2(Rd )
‖φ‖

2p/(2p−d)
Lp(Rd )

,

where p = γ + d/2 so that the exponent 2p/(2p− d) is precisely the one for which we get the scaling
invariance of R. Indeed, with vλ(x) := v(λx) and φλ(x) := φ(λx), we get that R[vλ, λ

2φλ] = R[v, φ]

for any λ > 0. Hence we find that

sup
v∈H1(Rd )\{0}

R[v, φ] =
|λ1(−1−φ)|

‖φ‖
2p/(2p−d)
Lp(Rd )

= sup
v∈H1(Rd )\{0}

R[vλ, λ
2φλ] =

|λ1(−1− λ
2φλ)|

‖λ2φλ‖
2p/(2p−d)
Lp(Rd )

,

and if we choose λ such that

λ(2p−d)/p
‖φ‖Lp(Rd ) = ‖λ

2φλ‖Lp(Rd ) = Kq,d ,

we obtain
|λ1(−1−φ)|

‖φ‖
2p/(2p−d)
Lp(Rd )

≤
1

K
2p/(2p−d)
q,d

using (22), which proves that L1
γ,d ≤ (Kq,d)

−p with p = γ + d/2. Since optimality can be preserved
at each step, this actually proves (10). See [Keller 1961; Lieb and Thirring 1976; Veling 2002; 2003;
Benguria and Loss 2004; Dolbeault et al. 2006] for further details.

In the Euclidean case, notice that the equivalence can be extended to the case of systems on the one
hand and to Lieb–Thirring inequalities on the other hand: see [Lieb and Thirring 1976; Lieb 1984;
Dolbeault et al. 2006].

B.6. A proof of (18). As in [Dolbeault et al. 2006], we can also relate L1
−γ,d and K∗q,d when q =

2(2γ − d)/(2γ − d + 2) takes values in (0, 2). The method is similar to that of Section B.5. For any
function v ∈ H1(Rd) such that vq is integrable and any positive potential φ such that φ−1 is in Lp(Rd)

with p = q/(2− q), we can use Hölder’s inequality as in the proof of Theorem 3 and get∫
Rd
(|∇v|2+φ|v|2) dx ≥ ‖∇v‖2L2(Rd )

+

‖v‖2Lq (Rd )

‖φ−1‖Lp(Rd )

.

Using (17), namely ‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

≥ K∗q,d‖v‖
2
L2(Rd )

, this proves that

λ1(−1+φ)≥ K∗q,d for all φ ∈ Lp(Rd) such that ‖φ−1
‖Lp(Rd ) = 1.
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Inequality (6) can be rephrased as

L1
−γ,d = sup

φ∈Lp(Sd )

sup
v∈H1(Rd )\{0}

(R[v, φ])−γ with R[v, φ] :=

∫
Rd (|∇v|

2
+φ|v|2) dx

‖v‖2L2(Rd )

‖φ−1
‖

p/γ
Lp(Rd )

with γ = p+ d/2. The same scaling as in Section B.5 applies: with vλ(x) := v(λx) and φλ(x) := φ(λx),
we get that R[vλ, λ

2φλ] =R[v, φ] for any λ > 0, and hence

L1
−γ,d = (K

∗

q,d)
−γ ,

which completes the proof of (18).
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NONDISPERSIVE DECAY FOR THE CUBIC WAVE EQUATION

ROLAND DONNINGER AND ANIL ZENGINOĞLU

We consider the hyperboloidal initial value problem for the cubic focusing wave equation

(−∂2
t +1x )v(t, x)+ v(t, x)3 = 0, x ∈ R3.

Without symmetry assumptions, we prove the existence of a codimension-4 Lipschitz manifold of initial
data that lead to global solutions in forward time which do not scatter to free waves. More precisely, for
any δ ∈ (0, 1), we construct solutions with the asymptotic behavior

‖v− v0‖L4(t,2t)L4(B(1−δ)t ) . t−
1
2+

as t→∞, where v0(t, x)=
√

2/t and B(1−δ)t := {x ∈ R3
: |x |< (1− δ)t}.

1. Introduction

We consider the cubic focusing wave equation

(−∂2
t +1x)v(t, x)+ v(t, x)3 = 0 (1-1)

in three spatial dimensions. Equation (1-1) admits the conserved energy

E(v(t, · ), vt(t, · ))= 1
2‖(v(t, · ), vt(t, · ))‖2Ḣ1×L2(R3)

−
1
4‖v(t, · )‖

4
L4(R3)

,

and it is well-known that solutions with small Ḣ 1
×L2(R3)-norm exist globally and scatter to zero [Strauss

1981; Mochizuki and Motai 1985; 1987; Pecher 1988], whereas solutions with negative energy blow up in
finite time [Glassey 1973; Levine 1974]. There exists an explicit blowup solution ṽT (t, x)=

√
2/(T − t),

which describes a stable blowup regime [Donninger and Schörkhuber 2012b] and the blowup speed (but
not the profile) of any blowup solution [Merle and Zaag 2005]; see also [Bizoń et al. 2004] for numerical
work. By the time translation and reflection symmetries of (1-1) we obtain from ṽT the explicit solution
v0(t, x)=

√
2/t , which is now global for t ≥ 1 and decays in a nondispersive manner. However, in the

context of the standard Cauchy problem, where one prescribes data at t = t0 for some t0 and considers
the evolution for t ≥ t0, the role of v0 for the study of global solutions is unclear because v0 has infinite
energy. In the present paper we argue that this is not a defect of the solution v0 but rather a problem of
the usual viewpoint concerning the Cauchy problem. Consequently, we study a different type of initial

The authors would like to thank the Erwin Schrödinger Institute for Mathematical Physics (ESI) in Vienna for hospitality during
the workshop “Dynamics of general relativity: black holes and asymptotics” where this work was initiated. Zenginoğlu is
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value problem for (1-1) where we prescribe data on a spacelike hyperboloid. In this formulation there
exists a different “energy” which is finite for v0.

Hyperboloidal initial value formulations have many advantages over the standard Cauchy problem
and are well-known in numerical and mathematical relativity [Eardley and Smarr 1979; Friedrich 1983;
Frauendiener 2004; Zenginoğlu 2008]. However, in the mathematical literature on wave equations in flat
spacetime, hyperboloidal initial value formulations are less common (with notable exceptions such as
[Christodoulou 1986]). We provide a thorough discussion of hyperboloidal methods in Section 2, where
we argue that the hyperboloidal initial value problem is natural for hyperbolic equations in view of the
underlying Minkowski geometry.

To state our main result, we consider a foliation of the future of the forward null cone emanating from
the origin by spacelike hyperboloids

6T :=

{
(t, x) ∈ R×R3

: t =− 1
2T
+

√
1

4T 2 + |x |
2

}
,

where T ∈ (−∞, 0). Each 6T is parametrized by

8T : B|T | ⊂ R3
→ R4, 8T (X)=

(
−

T
T 2−|X |2

,
X

T 2−|X |2

)
,

where BR := {X ∈R3
: |X |< R} for R > 0. The ball B|T | shrinks in time as T → 0−, but its image under

8T is an unbounded spacelike hypersurface in Minkowski space. The transformation (T, X) 7→8T (X)
has also been used by Christodoulou [1986] to study semilinear wave equations and is known as the Kelvin
inversion [Tao 2008]. Note that in four-dimensional notation it can be written as Xµ

7→ −Xµ/(XνXν)
(up to a sign in the zero component). To illustrate the resulting initial value problem, we plot the spacelike
hyperboloids 6T for various values of T ∈ (−∞, 0) in a spacetime diagram (left panel) and in a Penrose
diagram (right panel) in Figure 1 along with a null surface emanating from the origin. In our formulation of
the initial value problem we prescribe data on the hypersurface 6−1 and consider the future development.
We refer the reader to Section 2 for a discussion on hyperboloidal foliations and their relation to wave
equations.

We define a differential operator ∇n by

(∇nv) ◦8T (X)
T 2− |X |2

= ∂T
(v ◦8T )(X)

T 2− |X |2
,

which one should think of as the normal derivative to the surface 6T (although this is not quite correct
due to the additional factor 1/(T 2

− |X |2)). Explicitly, we have

∇nv(t, x)= (t2
+ |x |2) ∂tv(t, x)+ 2t x j ∂ jv(t, x)+ 2tv(t, x).

On each leaf 6T we define the norms

‖v‖2L2(6T )
:=

∫
B|T |

∣∣∣∣v ◦8T (X)
T 2− |X |2

∣∣∣∣2d X, ‖v‖2Ḣ1(6T )
:=

∫
B|T |

∣∣∣∣∇X
v ◦8T (X)
T 2− |X |2

∣∣∣∣2d X, (1-2)
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Figure 1. The spacelike hyperboloids 6T in a spacetime diagram (left panel) and a
Penrose diagram (right panel) together with the null surface emanating from the origin
(thick line with 45 degrees to the horizontal). Compare Figure 2.

and we write ‖ · ‖2H1(6T )
= ‖ · ‖

2
Ḣ1(6T )

+ |T |−2
‖ · ‖

2
L2(6T )

. We emphasize that

v0 ◦8T (X)=
√

2 T 2
−|X |2

(−T )
,

and thus, ‖v0‖H1(6T )+‖∇nv0‖L2(6T )' |T |
−

1
2 . Finally, for any subset A⊂R4 we denote its future domain

of dependence by D+(A). With this notation at hand, we state our main result.

Theorem 1.1. There exists a codimension-4 Lipschitz manifold M of functions in H 1(6−1)× L2(6−1)

with (0, 0) ∈M such that the following holds. For data ( f, g) ∈M the hyperboloidal initial value problem
(− ∂2

t +1x)v(t, x)+ v(t, x)3 = 0,

v
∣∣
6−1
= v0

∣∣
6−1
+ f,

∇nv
∣∣
6−1
=∇nv0

∣∣
6−1
+ g

has a unique solution v defined on D+(6−1) such that

|T |
1
2
(
‖v− v0‖H1(6T )+‖∇nv−∇nv0‖L2(6T )

)
. |T |

1
2−

for all T ∈ [−1, 0). As a consequence, for any δ ∈ (0, 1), we have

‖v− v0‖L4(t,2t)L4(B(1−δ)t ) . t−
1
2+

as t→∞, i.e., v converges to v0 in a localized Strichartz sense.

Some remarks are in order.

• As usual, by a “solution” we mean a function which solves the equation in an appropriate weak
sense, not necessarily in the sense of classical derivatives.
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• The manifold M can be represented as a graph of a Lipschitz function. More precisely, let
H := H 1(6−1) × L2(6−1) and denote by BR(0) the open ball of radius R > 0 around 0 in
H. We prove that there exists a decomposition H = H1 ⊕H2 with dim H2 = 4 and a function
F :H1∩Bδ(0)→H2 such that M={Eu+F(Eu) : Eu ∈H1∩Bδ(0)} provided δ > 0 is chosen sufficiently
small. Furthermore, F satisfies

‖F(Eu)− F(Ev)‖H . δ
1
2 ‖Eu− Ev‖H

for all Eu, Ev ∈H1 ∩Bδ(0) and F(E0)= E0.

• The reason for the codimension-4 instability of the attractor v0 is the invariance of (1-1) under time
translations and Lorentz transforms (combined with the Kelvin inversion). The Lorentz boosts do
not destroy the nondispersive character of the solution v0 whereas the time translation does — see
the beginning of Section 4 below for a more detailed discussion. In this sense, one may say that
there exists a codimension-one manifold of data that lead to nondispersive solutions. However, if
one fixes v0, as we have done in our formulation, there are 4 unstable directions.

There was tremendous recent progress in the understanding of universal properties of global solutions
to nonlinear wave equations, in particular in the energy critical case; see, for example, [Duyckaerts et al.
2012; 2013; Cote et al. 2012; Kenig et al. 2013]. A guiding principle for all these studies is the soliton
resolution conjecture, that is, the idea that global solutions to nonlinear dispersive equations decouple into
solitons plus radiation as time tends to infinity. It is known that, in such a strict sense, soliton resolution
does not hold in most cases. One possible obstacle is the existence of global solutions which do not scatter.
Recently, the first author and Krieger constructed nonscattering solutions for the energy critical focusing
wave equation [Donninger and Krieger 2013]; see also [Ortoleva and Perelman 2013] for similar results in
the context of the nonlinear Schrödinger equation. These solutions are obtained by considering a rescaled
ground state soliton, the existence of which is typical for critical dispersive equations. The cubic wave
equation under consideration is energy subcritical and does not admit solitons. Consequently, our result
is of a completely different nature. Instead of considering moving solitons, we obtain the nonscattering
solutions by perturbing the self-similar solution v0(t, x)=

√
2/t . This can only be done in the framework

of a hyperboloidal initial value formulation because the standard energy for the self-similar solution v0 is
infinite.

Another novel feature of our result is a precise description of the data which lead to solutions that
converge to v0: They lie on a Lipschitz manifold of codimension 4. In this respect we believe that our
result is also interesting from the perspective of infinite-dimensional dynamical systems theory for wave
equations, which is currently a very active field; see, for example, [Krieger et al. 2013a; 2013b; 2012].

Finally, we mention that the present work is motivated by numerical investigations undertaken by
Bizoń and the second author [Bizoń and Zenginoğlu 2009]. In particular, the conformal symmetry for
the cubic wave equation has been used in [Bizoń and Zenginoğlu 2009] to translate the (linear) stability
analysis for blowup to asymptotic results for decay. We exploit this idea in a similar way: If v solves
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(1-1) then u, defined by

u(T, X)=
1

T 2− |X |2
v

(
−

T
T 2− |X |2

,
X

T 2− |X |2

)
=
v ◦8T (X)
T 2− |X |2

,

solves (−∂2
T+1X )u(T, X)+u(T, X)3=0. The point is that the coordinate transformation (t, x) 7→ (T, X)

with
T =− t

t2−|x |2
, X = x

t2−|x |2

maps the forward light cone {(t, x) : |x |< t, t > 0} to the backward light cone {(T, X) : |X |<−T, T < 0}
and t→∞ translates into T → 0− (see Figure 1). Moreover,

1
T 2−|X |2

v0

(
−

T
T 2−|X |2

,
X

T 2−|X |2

)
=

√
2

(−T )
=: u0(T, X)

and thus, we are led to the study of the stability of the self-similar blowup solution u0 in the backward
light cone of the origin. In the context of radial symmetry, this problem was recently addressed by
Donninger and Schörkhuber [2012b]; see also [Donninger 2011; 2012; Donninger and Schörkhuber
2012a] for similar results in the context of wave maps, Yang–Mills equations, and supercritical wave
equations. However, in the present paper we do not assume any symmetry of the data and hence, we
develop a stability theory similar to [Donninger and Schörkhuber 2012b] but beyond the radial context.
Furthermore, the instabilities of u0 have a different interpretation in the current setting and lead to the
codimension-4 condition in Theorem 1.1 whereas the blowup studied in [Donninger and Schörkhuber
2012b] is stable. The conformal symmetry, although convenient, does not seem crucial for our argument.
It appears that one can employ similar techniques to study nondispersive solutions for semilinear wave
equations (−∂2

t +1x)v(t, x)+ v(t, x)|v(t, x)|p−1
= 0 with more general p > 3.

Notation. The arguments for functions defined on Minkowski space are numbered by 0, 1, 2, 3 and we
write ∂µ, µ ∈ {0, 1, 2, 3}, for the respective derivatives. Our sign convention for the Minkowski metric
η is (−,+,+,+). We use the notation ∂y for the derivative with respect to the variable y. We employ
Einstein’s summation convention throughout with Latin indices running from 1 to 3 and Greek indices
running from 0 to 3, unless otherwise stated. We denote by R+0 the set of positive real numbers including 0.

The letter C (possibly with indices to indicate dependencies) denotes a generic positive constant which
may have a different value at each occurrence. The symbol a . b means a ≤ Cb and we abbreviate
a . b . a by a ' b. We write f (x)∼ g(x) for x→ a if limx→a f (x)/g(x)= 1.

For a closed linear operator L on a Banach space we denote its domain by D(L), its spectrum by σ(L),
and its point spectrum by σp(L). We write RL(z) := (z− L)−1 for z ∈ ρ(L)= C\σ(L). The space of
bounded operators on a Banach space X is denoted by B(X).

2. Wave equations and geometry

In this section, we present the motivation for using hyperboloidal coordinates in our analysis and provide
some background. We discuss the main arguments and tools in a pedagogical manner to emphasize
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the relation between spacetime geometry and wave equations for readers not familiar with relativistic
terminology.

Geometric preliminaries. A spacetime (M, g) is a four-dimensional paracompact Hausdorff manifold
M with a time-oriented Lorentzian metric g. The cubic wave equation (1-1) is posed on the Minkowski
spacetime (R4, η). In standard time t and Cartesian coordinates (x, y, z) the Minkowski metric reads

η =−dt2
+ dx2

+ dy2
+ dz2, (t, x, y, z) ∈ R4.

Minkowski spacetime is spherically symmetric, i.e., the group SO(3) acts nontrivially by isometry
on (R4, η). We introduce the quotient space Q= R4/SO(3) and the area radius r : Q→ R such that the
group orbits of points p ∈ Q have area 4πr2(p). The area radius can be written as r =

√
x2+ y2+ z2

with respect to Cartesian coordinates. The flat metric can then be written as η = q + r2 dσ 2, where q is a
rank-2 Lorentzian metric and dσ 2 is the standard metric on S2. Choosing the usual angular variables for
dσ 2, we obtain the familiar form of the flat spacetime metric in spherical coordinates

η =−dt2
+ dr2

+ r2(dθ2
+ sin2 θ dφ2), (t, r, θ, φ) ∈ R×R+×[0, π]× [0, 2π).

A codimension-one submanifold is called a hypersurface and a foliation is a one-parameter family of
nonintersecting spacelike hypersurfaces. A foliation can also be defined by a time function from M to the
real line R, whose level sets are the hypersurfaces of the foliation.

We can restrict our discussion of the interaction between hyperbolic equations and spacetime geometry
to spherical symmetry without loss of generality because the radial direction is sufficient for exploiting
the Lorentzian structure. Working in the two-dimensional quotient spacetime (Q, q) also allows us to
illustrate the geometric definitions in two-dimensional plots.

Compactification and Penrose diagrams. It is useful to introduce Penrose diagrams to depict global
features of time foliations in spherically symmetric spacetimes. Penrose presented the construction of
the diagrams in his study of the asymptotic behavior of gravitational fields in 1963 [Penrose 2011]. A
beautiful exposition of Penrose diagrams has been given in [Dafermos and Rodnianski 2005]. As we are
working in Minkowski spacetime only, the main features of Penrose diagrams of interest to us are the
compactification and the preservation of the causal structure. See, for example, [Christodoulou 1986; Keel
and Tao 1998] for the application of Penrose compactification to study wave equations in flat spacetime.

The image of the Penrose diagram is a two-dimensional Minkowski spacetime with a bounded global
null coordinate system. Causal concepts extend through the boundary of the map. Consider the rank-2
Minkowski metric q on the quotient manifold Q

q =−dt2
+ dr2, (t, r) ∈ R×R+0 . (2-1)

To map this metric to a global, bounded, null coordinate system, define u = t − r and v = t + r for v ≥ u,
and compactify by U = arctan u and V = arctan v. The quotient metric becomes

q =−
1

cos2 V cos2 U
dV dU (−π/2<U ≤ V < π/2).



NONDISPERSIVE DECAY FOR THE CUBIC WAVE EQUATION 467

0 2 4 6 8 10
r

2

4

6

8

10

t

i
-

i
+

i
0

J
+

J
-

Figure 2. The level sets of the standard time t depicted in a spacetime diagram (left
panel) and a Penrose diagram (right panel) together with a characteristic line from the
origin. The boundary of the Penrose diagram includes the spatial origin and various
notions of infinity. Past and future timelike infinity are depicted by points i− and i+. The
vertical line connecting i− and i+ is the spatial origin r = 0. Spatial infinity is denoted
by the point i0. Null curves reach past and future null infinity, denoted by I − and I +,
for infinite values of their affine parameter.

Points at infinity with respect to the original coordinates have finite values with respect to the compactifying
coordinates. The singular behavior of the metric in compactifying coordinates at the boundary can be
compensated by a conformal rescaling with the conformal factor �= cos V cos U , so that the rescaled
metric

q̄ =�2q =−dU dV

is well defined on the domain (−π/2≤U ≤ V ≤ π/2) including points that are at infinity with respect
to q . We say that q can be conformally extended beyond infinity.

The Penrose diagram is then drawn using time and space coordinates T = (V+U )/2 and R= (V−U )/2
(see Figure 2). The resulting metric q̄ =−dT 2

+ d R2 is flat. The combined Penrose map is given by

t 7→ 1
2

(
tan T+R

2
+ tan T−R

2

)
, r 7→ 1

2

(
tan T+R

2
− tan T−R

2

)
.

The boundary ∂Q̄= {T =±(π − R), R ∈ [0, π]} corresponds to points at infinity with respect to the
original Minkowski metric. Asymptotic behavior of fields on Q can be studied using local differential
geometry near this boundary where the conformal factor � = cos T + cos R vanishes. The part of the
boundary without the points at R = 0, π is denoted by I = {T =±(π − R), R ∈ (0, π)}. This part is
referred to as null infinity because null geodesics reach it for an infinite value of their affine parameter.
The differential of the conformal factor is nonvanishing at I , d�|I 6= 0, and I consists of two parts
I − and I + referred to as past and future null infinity.
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Hyperboloidal coordinates and wave equations. Equipped with the tools above we now turn to the
interplay between wave equations and spacetime geometry. Consider the free wave equation

ut t −1u =−ηµν ∂µ∂νu = 0. (2-2)

Radial solutions for the rescaled field v := ru obey the two-dimensional free wave equation

vt t − vrr = 0, (2-3)

on (t, r)∈R+0 ×R+0 with vanishing boundary condition at the origin. Initial data are specified on the t = 0
hypersurface. The general solution to this system is such that the data propagate to infinity and leave
nothing behind due to the validity of Huygens’ principle. Intuitively, this behavior seems to contradict
two well-known properties of the free wave equation: conservation of energy and time reversibility.

The conserved energy for the free wave equation (2-3) reads

E(v)=
∫
∞

0

1
2

(
vt(t, r)2+ vr (t, r)2

)
dr.

The conservation of energy is counterintuitive because the waves propagate to infinity leaving nothing
behind. One would expect a natural energy norm to decrease rapidly to zero with a nonpositive energy
flux at infinity. The conservation of energy, however, implies that at very late times the solution is in
some sense similar to the initial state [Tao 2008].

Another counterintuitive property of the free wave equation is its time reversibility, meaning that if
u(t, r) solves the equation, so does u(−t, r). Data on a Cauchy hypersurface determine the solution at
all future and past times in contrast to parabolic (dissipative) equations which are solvable only forward
in time due to loss of energy to the future.

Both of these counterintuitive properties depend on our description of the problem. We can choose
coordinates in which energy conservation and time reversibility are violated. Of course, it is always
possible to find coordinates which break symmetries or hide features of an equation. We argue below that
the hyperboloidal coordinates we employ emphasize the intuitive properties of the equation rather than
blur them.

The reason behind the conservation of energy integrated along level sets of t can be seen in the Penrose
diagram Figure 2. The outgoing characteristic line along which the wave propagates to infinity intersects
all leaves of the t-foliation. When the energy expression is integrated globally, the energy of the initial
wave will therefore still contribute to the result. The hyperboloidal T -foliation depicted in Figure 1,
however, allows for outgoing null rays to leave the leaves of the foliation. Therefore one would expect that
the energy flux through infinity is negative when integrated along the leaves of the hyperboloidal foliation.

The wave equation (2-3) has the same form in hyperboloidal coordinates:

wT T −wR R = 0,

where

w(T, R)= v
(
−

T
T 2− R2 ,

R
T 2− R2

)
.
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Figure 3. Comparison of the future (light gray) and past (dark gray) domains of depen-
dence for the Cauchy surface t = 0 (left) and the hyperboloidal surface T =−1 (right).

Energy conservation and time reversibility seem valid for this equation as well, but here we have the
shrinking, bounded spatial domain R ∈ [0,−T ) where T → 0−. The energy integrated along the leaves
of this domain

E(w)=
∫
−T

0

1
2

(
wT (T, R)2+wR(T, R)2

)
d R

decays in time. The energy flux reads

∂E
∂T
=−

1
2

(
wT (T,−T )−wR(T,−T )

)2
≤ 0.

The energy flux through infinity vanishes only if the solution is constant or is propagating along future
null infinity. When the solution has an outgoing component through future null infinity, the energy decays
in time. This behavior is in accordance with physical intuition.

Consider the time reversibility. The equation in the new coordinates is time-reversible, but the
hyperboloidal initial value problem is not. Formally, this is again a consequence of the time dependence
of the spatial domain given by R <−T . Geometrically, we see in Figure 3 that the union of the past and
future domain of dependence of the hyperboloidal surface T =−1 covers only a portion of Minkowski
spacetime whereas for the Cauchy surface t = 0 such a union gives the global spacetime.

In summary, the hyperboloidal foliation given by the Kelvin inversion captures quantitatively the
propagation of energy to infinity and leads to a time-irreversible wave propagation problem. Further, the
transformation translates asymptotic analysis for t→∞ to local analysis for T → 0−.

3. Derivation of the equations and preliminaries

First-order formulation and similarity coordinates. We start from (−∂2
T +1X )u(T, X)+u(T, X)3 = 0

in the hyperboloidal coordinates T =−t/(t2
− |x |2), X = x/(t2

− |x |2) for the rescaled unknown
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u(T, X)=
1

T 2− |X |2
v

(
−

T
T 2− |X |2

,
X

T 2− |X |2

)
.

As discussed in the introduction, the domain we are interested in is T ∈ [−1, 0) and |X | < |T |. Our
intention is to study the stability of the self-similar solution u0(T ) =

√
2/(−T ). Thus, it is natural to

introduce the similarity coordinates

τ =− log(−T ), ξ =
X
−T

(3-1)

with domain τ ≥ 0 and |ξ |< 1. The derivatives transform according to

∂T = eτ (∂τ + ξ j∂ξ j ), ∂X j = eτ∂ξ j .

This implies
∂2

T = e2τ (∂2
τ + ∂τ + 2ξ j∂ξ j ∂τ + ξ

jξ k∂ξ j ∂ξ k + 2ξ j∂ξ j )

and ∂X j ∂X j = e2τ∂ξ j ∂ξ j . Consequently, for the function

U (τ, ξ) := u(−e−τ , e−τ ξ)

we obtain from (−∂2
T + ∂X j ∂X j )u(T, X)+ u(T, X)3 = 0 the equation

[∂2
τ + ∂τ + 2ξ j∂ξ j ∂τ − (δ

jk
− ξ jξ k)∂ξ j ∂ξ k + 2ξ j∂ξ j ]U (τ, ξ)= e−2τU (τ, ξ)3.

To get rid of the time-dependent prefactor on the right-hand side, we rescale and set U (τ, ξ)= eτψ(τ, ξ),
which yields

[∂2
τ + 3∂τ + 2ξ j∂ξ j ∂τ − (δ

jk
− ξ jξ k)∂ξ j ∂ξ k + 4ξ j∂ξ j + 2]ψ(τ, ξ)= ψ(τ, ξ)3. (3-2)

The fundamental self-similar solution is given by

ψ0(τ, ξ) := e−τu0(−e−τ , e−τ ξ)=
√

2.

Writing ψ =
√

2+φ we find the equation

[∂2
τ + 3∂τ + 2ξ j∂ξ j ∂τ − (δ

jk
− ξ jξ k)∂ξ j ∂ξ k + 4ξ j∂ξ j + 2]φ(τ, ξ)

= 6φ(τ, ξ)+ 3
√

2φ(τ, ξ)2+φ(τ, ξ)3. (3-3)

In summary, we have applied the coordinate transformation

τ =− log
t

t2− |x |2
, ξ =

x
t

with inverse

t =
eτ

1− |ξ |2
, x =

eτ ξ
1− |ξ |2

and φ(τ, ξ) solves (3-3) for τ > 0 and |ξ |< 1 if and only if

v(t, x)=

√
2

t
+

1
t
φ

(
− log

t
t2− |x |2

,
x
t

)
(3-4)
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solves (−∂2
t +1x)v(t, x)+ v(t, x)3 = 0 for (t, x) ∈ D+(6−1).

We have ∂T u(T, X)= e2τ (∂τ + ξ
j∂ξ j + 1)ψ(τ, ξ) and thus, it is natural to use the variables φ1 = φ,

φ2 = ∂0φ+ ξ
j∂ jφ+φ in a first-order formulation. We obtain

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2+ 6φ1+ 3
√

2φ2
1 +φ

3
1 .

(3-5)

For later reference we also note that (3-4) implies

t2∂tv(t, x)=−
√

2−
2t2

t2− |x |2

(
x j

t
∂ jφ1+φ1

)
+

t2
+ |x |2

t2− |x |2
φ2, (3-6)

where it is understood, of course, that φ1(τ, ξ) and φ2(τ, ξ) are evaluated at τ = − log t
t2−|x |2

and
ξ = x/t .

Norms. Since our approach is perturbative in nature, the function space in which we study (3-5) should
be determined by the free version of (3-5), i.e.,

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2.

The natural choice for a norm is derived from the standard energy Ḣ 1
× L2 of the free wave equation. In

the present formulation this translates into

‖φ1(τ, · )‖Ḣ1(B)+‖φ2(τ, · )‖L2(B),

where B = {ξ ∈ R3
: |ξ |< 1}. However, there is a slight technical problem since this is only a seminorm

(the point is that we are working on the bounded domain B). In order to go around this difficulty, let us
for the moment return to the radial context and consider the free wave equation in R1+3

ut t − urr −
2
r

ur = 0,

in the standard coordinates t and r = |x |. Now we make the following observation. The conserved energy
is given by

E(u)= 1
2

∫
∞

0
[u2

t + u2
r ]r

2 dr.

On the other hand, by setting v = ru, we obtain

vt t − vrr = 0

with conserved energy 1
2

∫
∞

0 [v
2
t + v

2
r ] dr , or, in terms of u,

E ′(u)= 1
2

∫
∞

0
[r2u2

t + (rur + u)2] dr.

The obvious question now is: how are E and E ′ related? An integration by parts shows that E and E ′

are equivalent, up to a boundary term limr→∞ ru(r)2 which may be ignored by assuming some decay at
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spatial infinity. However, if we consider the local energy contained in a ball of radius R, the boundary
term can no longer be ignored and one has the identity

E ′R(u) :=
1
2

∫ R

0
[r2u2

t + (rur + u)2] dr = 1
2

Ru(R)2+ 1
2

∫ R

0
[u2

t + u2
r ]r

2 dr.

The expression on the right-hand side is the standard energy with the term 1
2 Ru(R)2 added. This small

modification has important consequences because unlike the standard energy, this now defines a norm.
Furthermore, E ′R(u) is bounded along the wave flow since it is the local version of a positive definite
conserved quantity.

In the nonradial context the above discussion suggests to take

‖φ1(τ, · )‖Ḣ1(B)+‖φ1(τ, · )‖L2(∂B)+‖φ2(τ, · )‖L2(B).

This norm is not very handy, but fortunately we have equivalence to H 1
× L2(B) as the following result

shows.

Lemma 3.1. We have1

‖ f ‖H1(B) ' ‖ f ‖Ḣ1(B)+‖ f ‖L2(∂B).

Proof. For x ∈ R3 we write r = |x | and ω = x/|x |. With this notation we have f (x)= f (rω) and

‖ f ‖2L2(B) =

∫ 1

0

∫
∂B
| f (rω)|2 dσ(ω)r2 dr,

where dσ denotes the surface measure on the sphere. First, we prove ‖ f ‖L2(B) . ‖ f ‖Ḣ1(B)+‖ f ‖L2(∂B).
By density it suffices to consider f ∈C∞(B). The fundamental theorem of calculus and Cauchy–Schwarz
imply

r f (rω)=
∫ r

0
∂s[s f (sω)] ds ≤

(∫ 1

0
|∂r [r f (rω)]|2 dr

)1/2

.

Expanding the square and integrating by parts yields∫ 1

0
|∂r [r f (rω)]|2 dr =

∫ 1

0
|∂r f (rω)|2r2 dr +

∫ 1

0
r ∂r | f (rω)|2 dr +

∫ 1

0
| f (rω)|2 dr

= | f (ω)|2+
∫ 1

0
|∂r f (rω)|2r2 dr

and thus,

r2
| f (rω)|2 ≤ | f (ω)|2+

∫ 1

0
|ω j∂ j f (rω)|2r2 dr.

Integrating this inequality over the ball B yields the desired estimate. In order to finish the proof, it
suffices to show that ‖ f ‖L2(∂B) . ‖ f ‖H1(B), but this is just the trace theorem (see, e.g., [Evans 1998,
p. 258, Theorem 1]). �

1As usual, ‖ f ‖L2(∂B) has to be understood in the trace sense.
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4. Linear perturbation theory

The goal of this section is to develop a functional analytic framework for studying the Cauchy problem
for the linearized equation

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2+ 6φ1. (4-1)

The main difficulty lies with the fact that the differential operators involved are not self-adjoint. It is thus
natural to apply semigroup theory for studying (4-1). Before doing so, however, we commence with a
heuristic discussion on instabilities. The equation (−∂2

T +1X )u(T, X)+ u(T, X)3 = 0 is invariant under
time translations T 7→ T − a and the three Lorentz boosts for each direction X j

T 7→ T cosh a− X j sinh a,
X j
7→ −T sinh a+ X j cosh a,

X k
7→ X k (k 6= j),

where a ∈R is a parameter (the rapidity in case of the Lorentz boost). In general, if ua is a one-parameter
family of solutions to a nonlinear equation F(ua)= 0, one obtains (at least formally)

0= ∂a F(ua)= DF(ua)∂aua

and thus, ∂aua is a solution of the linearization of F(u)= 0 at u = ua . In our case we linearize around
the solution u0(T, X) =

√
2/(−T ). The time translation symmetry yields the one-parameter family

ua(T, X) :=
√

2/(a − T ) and we have ∂aua(T, X)|a=0 = −
√

2/T 2. Taking into account the above
transformations that led from u to φ1, φ2, we obtain (after a suitable normalization) the functions

φ1(τ, ξ)= eτ , φ2(τ, ξ)= 2eτ , (4-2)

and a simple calculation shows that (4-2) indeed solve (4-1). Thus, there exists a growing solution of
(4-1). Similarly, for the Lorentz boosts we consider

ua, j (T, X)=

√
2

X j sinh a− T cosh a

and thus, ∂aua, j (T, X)|a=0 =−(
√

2/T 2)X j . By recalling that X j/(−T )= ξ j , this yields the functions

φ1(τ, ξ)= ξ
j , φ2(τ, ξ)= 2ξ j , (4-3)

and it is straightforward to check that (4-3) indeed solve (4-1). This time the solution (4-3) is not growing
in τ but it is not decaying either. It is important to emphasize that in our context, the time translation
symmetry leads to a real instability. The reason is that ua(T, X)=

√
2/(a− T ) yields the solution

va(t, x)=
1

t2− |x |2

√
2

a+ t
t2−|x |2

=

√
2

t + a(t2− |x |2)
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of the original problem. This solution is part of a two-parameter family conjectured to describe generic
radial solutions of the focusing cubic wave equation [Bizoń and Zenginoğlu 2009]. If a 6= 0, va(t, x)
decays like t−2 as t →∞ for each fixed x ∈ R3. This is the generic (dispersive) decay. On the other
hand, the Lorentz transforms lead to apparent instabilities since the function ua, j yields the solution
va, j (t, x)=

√
2/(t cosh a+x j sinh a) of the original problem which still displays the nondispersive decay.

Consequently, we expect a codimension-one manifold of initial data that lead to nondispersive decay, as
mentioned in the introduction. Since we are working with a fixed u0, however, there is a four-dimensional
unstable subspace of the linearized operator (to be defined below). This observation eventually leads
to the codimension-4 statement in our Theorem 1.1. Note that other symmetries of the equation such
as scaling, space translations, and space rotations do not play a role in this context as the solution u0 is
invariant under these.

A semigroup formulation for the free evolution. We start the rigorous treatment by considering the free
wave equation in similarity coordinates given by the system

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2. (4-4)

From (4-4) we read off the generator

L̃0u(ξ)=
(
−ξ j∂ j u1(ξ)− u1(ξ)+ u2(ξ)

∂ j∂
j u1(ξ)− ξ

j∂ j u2(ξ)− 2u2(ξ)

)
,

acting on functions in D(L̃0) := H 2(B)∩C2(B\{0})×H 1(B)∩C1(B\{0}). With this notation we rewrite
(4-4) as an ODE

d
dτ
8(τ)= L̃08(τ).

The appropriate framework for studying such a problem is provided by semigroup theory, i.e., our goal is
to find a suitable Hilbert space H such that there exists a map S0 : [0,∞)→B(H) satisfying

• S0(0)= idH,

• S0(τ )S0(σ )= S0(τ + σ) for all τ, σ ≥ 0,

• limτ→0+ S0(τ )u = u for all u ∈H,

• limτ→0+(1/τ)[S0(τ )u− u] = L0u for all u ∈ D(L0), where L0 is the closure of L̃0.

Given such an S0, the function 8(τ)= S0(τ )8(0) solves d8(τ)/dτ = L08(τ).
Motivated by the above discussion we define a sesquilinear form on H̃:=H 1(B)∩C1(B)×L2(B)∩C(B)

by

(u | v) :=
∫

B
∂ j u1(ξ)∂ jv1(ξ) dξ +

∫
∂B

u1(ω)v1(ω) dσ(ω)+
∫

B
u2(ξ)v2(ξ) dξ.

Lemma 3.1 implies that ( · | · ) is an inner product on H̃, and as usual we denote the induced norm by ‖ · ‖.
Furthermore, we write H for the completion of H̃ with respect to ‖ · ‖. We remark that H is equivalent to
H 1(B)× L2(B) as a Banach space by Lemma 3.1.
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Proposition 4.1. The operator L̃0 :D(L̃0)⊂H→H is closable and its closure, denoted by L0, generates
a strongly continuous semigroup S0 : [0,∞) → B(H) satisfying ‖S0(τ )‖ ≤ e−

1
2 τ for all τ ≥ 0. In

particular, we have σ(L0)⊂ {z ∈ C : Re z ≤− 1
2}.

The proof of Proposition 4.1 requires the following technical lemma.

Lemma 4.2. Let f ∈ L2(B) and ε > 0 be arbitrary. Then there exists a function u ∈ H 2(B)∩C2(B\{0})
such that g ∈ L2(B)∩C(B\{0}), defined by

g(ξ) := −(δ jk
− ξ jξ k)∂ j∂ku(ξ)+ 5ξ j∂ j u(ξ)+ 15

4 u(ξ), (4-5)

satisfies ‖ f − g‖L2(B) < ε.

Proof. Since C∞(B) ⊂ L2(B) is dense, we can find a g̃ ∈ C∞(B) such that ‖ f − g̃‖L2(B) < ε/2. We
consider the equation

−(δ jk
− ξ jξ k)∂ j∂ku(ξ)+ 5ξ j∂ j u(ξ)+ 15

4 u(ξ)= g̃(ξ). (4-6)

In order to solve (4-6) we define ρ(ξ)= |ξ |, ω(ξ)= ξ/|ξ | and note that

∂ jρ(ξ)= ω j (ξ), ∂ jω
k(ξ)=

δ j
k
−ω j (ξ)ω

k(ξ)

ρ(ξ)
.

Thus, interpreting ρ and ω as new coordinates, we obtain

ξ j∂ j u(ξ)= ρ∂ρu(ρω),

ξ jξ k∂ j∂ku(ξ)= ξ j∂ξ j [ξ k∂ξ k u(ξ)] − ξ j∂ j u(ξ)= ρ2∂2
ρu(ρω)

as well as

∂ j∂ j u(ρω)=
[
∂2
ρ +

d − 1
ρ

∂ρ +
δ jk
−ω jωk

ρ2 ∂ω j ∂ωk −
d − 1
ρ2 ω j∂ω j

]
u(ρω),

where d = 3 is the spatial dimension. Consequently, (4-6) can be written as[
−(1− ρ2)∂2

ρ −
2
ρ
∂ρ + 5ρ∂ρ +

15
4
−

1
ρ21S2

]
u(ρω)= g̃(ρω), (4-7)

where −1S2 is the Laplace–Beltrami operator on S2. The operator −1S2 is self-adjoint on L2(S2)

and we have σ(−1S2) = σp(−1S2) = {`(`+ 1) : ` ∈ N0}. The eigenspace to the eigenvalue `(`+ 1)
is (2`+ 1)-dimensional and spanned by the spherical harmonics {Y`,m : m ∈ Z,−` ≤ m ≤ `} which
are obtained by restricting harmonic homogeneous polynomials in R3 to the two-sphere S2; see, for
example, [Atkinson and Han 2012] for an up-to-date account of this classical subject. We may expand g̃
according to

g̃(ρω)=
∞∑
`,m

g`,m(ρ)Y`,m(ω),
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where
∑
∞

`,m is shorthand for
∑
∞

`=0
∑`

m=−` and for any fixed ρ ∈ [0, 1], the sum converges in L2(S2);
see [Atkinson and Han 2012, p. 66, Theorem 2.34]. The expansion coefficient g`,m(ρ) is given by

g`,m(ρ)= (g̃(ρ · ) | Y`,m)L2(S2) :=

∫
S2

g̃(ρω)Y`,m(ω) dσ(ω)

and by dominated convergence it follows that g`,m ∈ C∞[0, 1]. Furthermore, by using the identity
Y`,m = [`(`+ 1)]−1(−1S2)Y`,m and the self-adjointness of −1S2 on L2(S2), we obtain

g`,m(ρ)=
1

`(`+1)
(
g̃(ρ · )

∣∣ (−1S2)Y`,m
)

L2(S2)

=
1

`(`+1)
(
(−1S2)g̃(ρ · )

∣∣ Y`,m
)

L2(S2)
.

Consequently, by iterating this argument we see that the smoothness of g̃ implies the pointwise decay
‖g`,m‖L∞(0,1) ≤ CM`

−M for any M ∈ N and all ` ∈ N. Now we set

gN (ξ) :=

N∑
`,m

g`,m(|ξ |)Y`,m
(
ξ

|ξ |

)
and note that ‖gN (ρ · )− g̃(ρ · )‖L2(S2)→ 0 as N →∞. Furthermore, by ‖g`,m‖L∞(0,1) . `−2 for all
` ∈ N we infer

sup
ρ∈(0,1)

‖gN (ρ · )− g̃(ρ · )‖L2(S2) . 1

for all N ∈ N and dominated convergence yields

‖gN − g̃‖2L2(B) =

∫ 1

0
‖gN (ρ · )− g̃(ρ · )‖2L2(S2)

ρ2 dρ→ 0

as N →∞. Thus, we may choose N so large that ‖gN − g̃‖L2(B) < ε/2.
By making the ansatz u(ρω)=

∑N
`,m u`,m(ρ)Y`,m(ω) we derive from (4-7) the (decoupled) system[

−(1− ρ2)∂2
ρ −

2
ρ
∂ρ + 5ρ∂ρ +

15
4
+
`(`+1)
ρ2

]
u`,m(ρ)= g`,m(ρ) (4-8)

for ` ∈ N0, `≤ N , and −`≤ m ≤ `. Equation (4-8) has regular singular points at ρ = 0 and ρ = 1 with
Frobenius indices {`,−`− 1} and {0,− 1

2}, respectively. In fact, solutions to (4-8) can be given in terms
of hypergeometric functions. In order to see this, define a new variable v`,m by u`,m(ρ) = ρ`v`,m(ρ2).
Then, (4-8) with g`,m = 0 is equivalent to

z(1− z)v′′`,m(z)+ [c− (a+ b+ 1)z]v′`,m(z)− abv`,m(z)= 0 (4-9)

with a = 1
2

( 3
2 + `

)
, b = a+ 1

2 , c = 3
2 + `, and z = ρ2. We immediately obtain the two solutions

φ0,`(z)= 2 F1

(
3+2`

4
,

5+2`
4

,
3+2`

2
; z
)
, φ1,`(z)= 2 F1

(
3+2`

4
,

5+2`
4

,
3
2
; 1− z

)
,

where 2 F1 is the standard hypergeometric function; see [Olver et al. 2010; Kristensson 2010]. For later
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reference we also state a third solution, φ̃1,`, given by

φ̃1,`(z)= (1− z)−
1
2 2 F1

(
3+2`

4
,

1+2`
4

,
1
2
; 1− z

)
. (4-10)

Note that φ0,` is analytic around z = 0 whereas φ1,` is analytic around z = 1. As a matter of fact, φ1,`

can be represented in terms of elementary functions and we have

φ1,`(z)=
1

(2`+1)
√

1−z

[
(1−
√

1− z)−`−
1
2 − (1+

√
1− z)−`−

1
2
]
; (4-11)

see [Olver et al. 2010]. This immediately shows that |φ1,`(z)| →∞ as z→ 0+ which implies that φ0,`

and φ1,` are linearly independent. Transforming back, we obtain the two solutions ψ j,`(ρ)= ρ
`φ j,`(ρ

2),
j = 0, 1, of (4-8) with g`,m = 0. By differentiating the Wronskian W (ψ0,`, ψ1,`)= ψ0,`ψ

′

1,`−ψ
′

0,`ψ1,`

and inserting the equation, we infer

W (ψ0,`, ψ1,`)
′(ρ)=

(
3ρ

1− ρ2 −
2
ρ

)
W (ψ0,`, ψ1,`)(ρ),

which implies

W (ψ0,`, ψ1,`)(ρ)=
c`

ρ2(1− ρ2)
3
2

(4-12)

for some constant c`. In order to determine the precise value of c`, we first note that

ψ ′j,`(ρ)= 2ρ`+1φ′j,`(ρ
2)+ `ρ`−1φ j,`(ρ

2).

For the following we recall the differentiation formula [Olver et al. 2010]

d
dz 2 F1(a, b, c; z)= ab

c 2 F1(a+ 1, b+ 1, c+ 1; z), (4-13)

which is a direct consequence of the series representation of the hypergeometric function. Furthermore,
by the formula [Olver et al. 2010]

lim
z→1−
[(1− z)a+b−c

2 F1(a, b, c; z)] =
0(c)0(a+ b− c)

0(a)0(b)
, (4-14)

valid for Re (a+ b− c) > 0, we obtain

lim
z→1−
[(1− z)

1
2φ0,`(z)] =

0
( 3+2`

2

)
0
( 1

2

)
0
( 3+2`

4

)
0
( 5+2`

4

) = 2`+
1
2 (4-15)

as well as

lim
z→1−
[(1− z)

3
2φ′0,`(z)] =

0
( 3+2`

2

)
0
( 3

2

)
0
( 3+2`

4

)
0
( 5+2`

4

) = 2`−
1
2 ,



478 ROLAND DONNINGER AND ANIL ZENGINOĞLU

where we used the identity 0(x)0(x + 1
2)= π

1
2 21−2x0(2x). This yields

c` = ρ2(1− ρ2)
3
2 W (ψ0,`, ψ1,`)(ρ)

= ρ2(1− ρ2)
3
2ρ`φ0,`(ρ

2)[2ρ`+1φ′1,`(ρ
2)+ `ρ`−1φ1,`(ρ

2)]

− ρ2(1− ρ2)
3
2ρ`φ1,`(ρ

2)[2ρ`+1φ′0,`(ρ
2)+ `ρ`−1φ0,`(ρ

2)]

= −2 lim
ρ→1−

(1− ρ2)
3
2φ′0,`(ρ

2)

=−2`+
1
2 .

By the variation of constants formula, a solution to (4-8) is given by

u`,m(ρ)=−ψ0,`(ρ)

∫ 1

ρ

ψ1,`(s)
W (ψ0,`, ψ1,`)(s)

g`,m(s)
1− s2 ds−ψ1,`(ρ)

∫ ρ

0

ψ0,`(s)
W (ψ0,`, ψ1,`)(s)

g`,m(s)
1− s2 ds. (4-16)

We claim that u`,m ∈ C2(0, 1]. By formally differentiating (4-16) we find

u′′`,m(ρ)=−
g`,m(ρ)
1− ρ2 −ψ

′′

0,`(ρ)I1,`(ρ)−ψ
′′

1,`(ρ)I0,`(ρ),

where I j,`, j = 0, 1, denote the respective integrals in (4-16). This implies u`,m ∈ C2(0, 1) but
u′′`,m(ρ) has an apparent singularity at ρ = 1. We have the asymptotics ψ ′′0,`(ρ)I1,`(ρ) ' (1 − ρ)−1

and ψ ′′1,`(ρ)I0,`(ρ)' 1 as ρ→ 1−. Thus, a necessary condition for limρ→1− u′′`,m(ρ) to exist is

a`,m := lim
ρ→1−
[(1− ρ2)ψ ′′0,`(ρ)I1,`(ρ)] = −g`,m(1).

This limit can be computed by l’Hôpital’s rule, i.e., we write

a`,m = lim
ρ→1−

I1,`(ρ)

[(1− ρ2)ψ ′′0,`(ρ)]
−1

= lim
ρ→1−

I ′1,`(ρ)

−[(1− ρ2)ψ ′′0,`(ρ)]
−2[(1− ρ2)ψ

(3)
0,`(ρ)− 2ρψ ′′0,`(ρ)]

.

We have

lim
ρ→1−
[(1− ρ2)−

1
2 I ′1,`(ρ)] = −

1
c`

lim
ρ→1−
[ρ2ψ1,`(ρ)g`,m(ρ)] = −

g`,m(1)
c`

,

and thus it suffices to show that

−
1
c`
= lim
ρ→1−

(1− ρ2)ψ
(3)
0,`(ρ)− 2ρψ ′′0,`(ρ)

(1− ρ2)
1
2 [(1− ρ2)ψ ′′0,`(ρ)]

2
= lim
ρ→1−

(1− ρ2)
7
2ψ

(3)
0,`(ρ)− 2ρ(1− ρ2)

5
2ψ ′′0,`(ρ)

[(1− ρ2)
5
2ψ ′′0,`(ρ)]

2
. (4-17)

Note that
ψ ′′0,`(ρ)= 4ρ`+2φ′′0,`(ρ

2)+ lower order derivatives,

ψ
(3)
0,`(ρ)= 8ρ`+3φ

(3)
0,`(ρ

2)+ lower order derivatives.
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Consequently, from the definition of φ0,` and equations (4-13) and (4-14), we infer

lim
ρ→1−
[(1− ρ2)

5
2ψ ′′0,`(ρ)] = 4 lim

z→1−
[(1− z)

5
2φ′′0,`(z)] = −3c`,

lim
ρ→1−
[(1− ρ2)

7
2ψ

(3)
0,`(ρ)] = 8 lim

z→1−
[(1− z)

7
2φ

(3)
0,`(z)] = −15c`,

which proves (4-17). We have g`,m ∈ C∞[0, 1] and thus, in order to prove the claim u`,m ∈ C2(0, 1], it
suffices to show that ρ 7→ (1− ρ2)ψ ′′0,`(ρ)I1,`(ρ) belongs to C1(0, 1]. We write the integrand in I1,` as

ψ1,`(s)
W (ψ0,`, ψ1,`)(s)

g`,m(s)
1− s2 = (1− s)

1
2 O(1),

where in the following, O(1) stands for a suitable function in C∞(0, 1]. Consequently, we infer
I1,`(ρ)= (1− ρ)

3
2 O(1). We have ψ0,` = a`ψ1,`+ ã`ψ̃1,` where ψ̃1,`(ρ) := ρ

`φ̃1,`(ρ
2)— see (4-10) —

and a`, ã` ∈ C are suitable constants. This yields

ψ ′′0,`(ρ)= (1− ρ)
−

5
2 O(1)+ O(1)

and thus, (1− ρ2)ψ ′′0,`(ρ)I1,`(ρ) = O(1)+ (1− ρ)
5
2 O(1). Consequently, ρ 7→ (1− ρ2)ψ ′′0,`(ρ)I1,`(ρ)

belongs to C1(0, 1] and by l’Hôpital’s rule we infer u`,m ∈ C2(0, 1] as claimed.
Next, we turn to the endpoint ρ = 0. The integrand of I1,` is bounded by C`ρ−`+1 and thus, we obtain

|I1,`(ρ)|. 1 for ` ∈ {0, 1},

|I1,2(ρ)|. |log ρ|,

|I1,`(ρ)|. ρ
−`+2 for ` ∈ N, 3≤ `≤ N ,

for all ρ ∈ (0, 1]. The integrand of I0,` is bounded by C`ρ`+2 and this implies |I0,`(ρ)| . ρ`+3 for all
ρ ∈ [0, 1] and ` ∈ N0, `≤ N . Thus, we obtain for all ρ ∈ (0, 1] and k ∈ {0, 1, 2} the estimates

|u(k)0,m(ρ)|. 1,

|u(k)1,m(ρ)|. ρ
max{1−k,0},

|u(k)2,m(ρ)|. ρ
2−k
| log ρ| + ρ2−k,

|u(k)`,m(ρ)|. ρ
2−k for ` ∈ N, 3≤ `≤ N .

(4-18)

Now we define the function u : B\{0} → C by

u(ξ) :=
N∑
`,m

u`,m(|ξ |)Y`,m

(
ξ

|ξ |

)
. (4-19)

From the bounds (4-18) we obtain2
|∂ j∂ku(ξ)| . |ξ |−1 which implies u ∈ H 2(B)∩C2(B\{0}) and by

construction, u satisfies

−(δ jk
− ξ jξ k)∂ j∂ku(ξ)+ 5ξ j∂ j u(ξ)+ 15

4 u(ξ)= gN (ξ),

2 Note that Y0,0(ω)= 1/
√

4π .
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where ‖ f − gN‖L2(B) ≤ ‖ f − g̃‖L2(B)+‖g̃− gN‖L2(B) < ε. �

Proof of Proposition 4.1. First note that L̃0 is densely defined. Furthermore, we claim that

Re (L̃0u | u)≤− 1
2‖u‖

2 (4-20)

for all u ∈ D(L̃0). We write [L̃0u]A for the A-th component of L̃0u, where A ∈ {1, 2}. Then we have

∂k[L̃0u]1(ξ)=−ξ j∂ j∂ku1(ξ)− 2∂ku1(ξ)+ ∂ku2(ξ).

By noting that

Re [∂ j∂ku1∂ku1] =
1
2∂ j [∂ku1∂ku1],

ξ j∂ j f (ξ)= ∂ξ j [ξ j f (ξ)] − 3 f (ξ),

we infer
Re [ξ j∂ j∂ku1(ξ)∂ku1(ξ)] =

1
2∂ξ j [ξ j∂ku1(ξ)∂ku1(ξ)] −

3
2∂ku1(ξ)∂ku1(ξ),

and the divergence theorem implies

Re
∫

B
∂k[L̃0u]1(ξ) ∂ku1(ξ) dξ

=−
1
2

∫
∂B
∂ku1(ω) ∂ku1(ω) dσ(ω)− 1

2

∫
B
∂ku1(ξ) ∂ku1(ξ) dξ +Re

∫
B
∂ku2(ξ) ∂ku1(ξ) dξ.

Furthermore, we have∫
B
∂ j∂

j u1(ξ)u2(ξ) dξ =
∫
∂B
ω j∂ j u1(ω)u2(ω) dσ(ω)−

∫
B
∂ j u1(ξ)∂ j u2(ξ) dξ

and

Re
∫

B
ξ j∂ j u2(ξ)u2(ξ) dξ = 1

2

∫
∂B
|u2(ω)|

2 dσ(ω)− 3
2

∫
B
|u2(ξ)|

2 dξ,

which yields

Re
∫

B
[L̃0u]2(ξ)u2(ξ) dξ

= Re
∫
∂B
ω j∂ j u1(ω)u2(ω) dσ(ω)− 1

2‖u2‖
2
L2(∂B)−Re

∫
B
∂ j u1(ξ)∂ j u2(ξ) dξ − 1

2‖u2‖
2
L2(B).

In summary, we infer

Re (L̃0u | u)=− 1
2‖u1‖

2
Ḣ1(B)−

1
2‖u2‖

2
L2(B)+

∫
∂B

A(ω) dσ(ω)

with

A(ω)=− 1
2 |u1(ω)|

2
−

1
2 |u1(ω)|

2
−

1
2 |∇u1(ω)|

2
−

1
2 |u2(ω)|

2

−Re [ω j∂ j u1(ω)u1(ω)] +Re [ω j∂ j u1(ω)u2(ω)] +Re [u2(ω)u1(ω)]

≤ −
1
2 |u1(ω)|

2,
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where we have used the inequality

Re (āb)+Re (āc)−Re (b̄c)≤ 1
2(|a|

2
+ |b|2+ |c|2), a, b, c ∈ C

which follows from 0≤ |a− b− c|2. This proves (4-20).
The estimate (4-20) implies∥∥[λ− (L̃0+

1
2)]u

∥∥2
= λ2
‖u‖2− 2λRe

(
(L̃0+

1
2)u

∣∣ u
)
+
∥∥(L̃0+

1
2)u

∥∥2

≥ λ2
‖u‖2

for all λ > 0 and u ∈ D(L̃0). Thus, in view of the Lumer–Phillips theorem [Engel and Nagel 2000,
p. 83, Theorem 3.15] it suffices to prove density of the range of λ− L̃0 for some λ > −1

2 . Let f ∈ H

and ε > 0 be arbitrary. We consider the equation (λ− L̃0)u = f . From the first component we infer
u2 = ξ

j∂ j u1+ (λ+ 1)u1− f1 and inserting this in the second component we arrive at the degenerate
elliptic problem

−(δ jk
− ξ jξ k)∂ j∂ku(ξ)+ 2(λ+ 2)ξ j∂ j u(ξ)+ (λ+ 1)(λ+ 2)u(ξ)= f (ξ) (4-21)

for u = u1 and f (ξ) := ξ j∂ j f1(ξ)+ (λ+ 2) f1(ξ)+ f2(ξ). Note that by assumption we have f ∈ L2(B).
Setting λ= 1

2 we infer from Lemma 4.2 the existence of functions u ∈ H 2(B)∩C2(B\{0}) and g ∈ L2(B)
such that

−(δ jk
− ξ jξ k)∂ j∂ku(ξ)+ 5ξ j∂ j u(ξ)+ 15

4 u(ξ)= g(ξ)

and ‖ f − g‖L2(B) < ε. We set u1 := u, u2(ξ) := ξ j∂ j u(ξ) + 3
2 u − f1, g1 := f1, and g2(ξ) :=

g(ξ)− ξ j∂ j f1(ξ)−
5
2 f1(ξ). Then we have u ∈ D(L̃0), g ∈H,

‖ f − g‖ = ‖ f2− g2‖L2(B) = ‖ f − g‖L2(B) < ε

and by construction,
( 1

2 − L̃0
)
u = g. Since f ∈H and ε > 0 were arbitrary, this shows that rg

( 1
2 − L̃0

)
is dense in H, which finishes the proof. �

Well-posedness for the linearized problem. Next, we include the potential term and consider the system

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2+ 6φ1.
(4-22)

We define an operator L′, acting on H, by

L′u(ξ) :=
(

0
6u1

)
.

Then we may rewrite (4-22) as an ODE

d
dτ
8(τ)= (L0+ L′)8(τ)

for a function 8 : [0,∞)→H.
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Lemma 4.3. The operator L := L0+L′ :D(L0)⊂H→H generates a strongly continuous one-parameter
semigroup S : [0,∞)→ B(H) satisfying ‖S(τ )‖ ≤ e(−

1
2+‖L

′
‖)τ . Furthermore, for the spectrum of the

generator we have σ(L)\σ(L0)= σp(L).

Proof. The first assertion is an immediate consequence of the bounded perturbation theorem of semigroup
theory; see [Engel and Nagel 2000, p. 158, Theorem 1.3]. In order to prove the claim about the
spectrum, we note that the operator L′ : H→ H is compact by the compactness of the embedding
H 1(B) ↪→ L2(B) (Rellich–Kondrachov) and Lemma 3.1. Assume that λ∈ σ(L) and λ /∈ σ(L0). Then we
may write λ−L= [1−L′RL0(λ)](λ−L0). Observe that the operator L′RL0(λ) is compact. Furthermore,
1 ∈ σ(L′RL0(λ)) since otherwise we would have λ ∈ ρ(L), a contradiction to our assumption. By the
spectral theorem for compact operators we infer 1 ∈ σp(L′RL0(λ)) which shows that there exists a
nontrivial f ∈H such that [1− L′RL0(λ)] f = 0. Thus, by setting u := RL0(λ) f , we infer u ∈ D(L0),
u 6= 0, and (λ− L)u = 0 which implies λ ∈ σp(L). �

Spectral analysis of the generator. In order to improve the rough growth bound for S given in Lemma 4.3,
we need more information on the spectrum of L. Thanks to Lemma 4.3 we are only concerned with point
spectrum. To begin with, we need the following result concerning D(L0).

Lemma 4.4. Let δ ∈ (0, 1) and u ∈ D(L0). Then

u|B1−δ ∈ H 2(B1−δ)× H 1(B1−δ),

where B1−δ := {ξ ∈ R3
: |ξ |< 1− δ}.

Proof. Let u∈D(L0). By definition of the closure there exists a sequence (un)⊂D(L̃0) such that un→ u
and L̃0un→ L0u in H as n→∞. We set fn := L̃0un and note that fn ∈ H 1(B)∩C1(B)×L2(B)∩C(B)
for all n ∈ N by the definition of D(L̃0). We obtain u2n(ξ)= ξ

j∂ j u1n(ξ)+ u1n(ξ)+ f1n(ξ) and

−(δ jk
− ξ jξ k)∂ j∂ku1n(ξ)+ 4ξ j∂ j u1n(ξ)+ 2u1n(ξ)= fn(ξ), (4-23)

where fn(ξ) := −ξ
j∂ j f1n(ξ)− 2 f1n(ξ)− f2n(ξ); compare (4-21). By assumption we have fn→ f in

L2(B) for some f ∈ L2(B). Since

(δ jk
− ξ jξ k)η jηk ≥ |η|

2
− |ξ |2|η|2 ≥

δ

2
|η|2

for all ξ ∈ B1−δ/2 and all η ∈ R3, we see that the differential operator in (4-23) is uniformly elliptic on
B1−δ/2. Thus, by standard elliptic regularity theory (see [Evans 1998, p. 309, Theorem 1]) we obtain the
estimate

‖u1n‖H2(B1−δ) ≤ Cδ(‖u1n‖L2(B1−δ/2)+‖ fn‖L2(B1−δ/2)) (4-24)

and since un → u in H implies u1n → u1 in L2(B), we infer u1|B1−δ ∈ H 2(B1−δ). Finally, from
u2n(ξ)= ξ

j∂ j u1n(ξ)+ u1n(ξ)+ f1n(ξ) we conclude u2|B1−δ ∈ H 1(B1−δ). �
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The next result allows us to obtain information on the spectrum of L by studying an ODE. For the
following we define the space H 1

rad(a, b) by

‖ f ‖2H1
rad(a,b)

:=

∫ b

a
| f ′(ρ)|2ρ2 dρ+

∫ b

a
| f (ρ)|2ρ2 dρ.

Lemma 4.5. Let λ∈ σp(L). Then there exists an `∈N0 and a nonzero function u ∈C∞(0, 1)∩H 1
rad(0, 1)

such that

−(1− ρ2)u′′(ρ)− 2
ρ

u′(ρ)+ 2(λ+ 2)ρu′(ρ)+ [(λ+ 1)(λ+ 2)− 6]u(ρ)+ `(`+1)
ρ2 u(ρ)= 0 (4-25)

for all ρ ∈ (0, 1).

Proof. Let u ∈ D(L) = D(L0) be an eigenvector associated to the eigenvalue λ ∈ σp(L). The spectral
equation (λ− L)u = 0 implies u2(ξ)= ξ

j∂ j u1(ξ)+ (λ+ 1)u1(ξ) and

−(δ jk
− ξ jξ k)∂ j∂ku1(ξ)+ 2(λ+ 2)ξ j∂ j u1(ξ)+ [(λ+ 1)(λ+ 2)− 6]u1(ξ)= 0 (4-26)

(compare (4-21)), but this time the derivatives have to be interpreted in the weak sense since a priori we
merely have u1 ∈ H 2(B1−δ)∩H 1(B) and u2 ∈ H 1(B1−δ)∩ L2(B) by Lemma 4.4. However, by invoking
elliptic regularity theory [Evans 1998, p. 316, Theorem 3] we see that in fact u1 ∈ C∞(B)∩ H 1(B). As
always, we write ρ = |ξ | and ω = ξ/|ξ |. We expand u1 in spherical harmonics, i.e.,

u1(ρω)=

∞∑
`,m

u`,m(ρ)Y`,m(ω) (4-27)

with u`,m(ρ) = (u1(ρ · )|Y`,m)L2(S2) and for each fixed ρ ∈ (0, 1), the sum converges in L2(S2). By
dominated convergence and u1 ∈ C∞(B) it follows that u`,m ∈ C∞(0, 1). Similarly, we may expand
∂ρu1(ρω) in spherical harmonics. The corresponding expansion coefficients are given by

(∂ρu1(ρ · ) | Y`,m)L2(S2) = ∂ρ(u1(ρ · ) | Y`,m)L2(S2) = ∂ρu`,m(ρ)

where we used dominated convergence and the smoothness of u1 to pull out the derivative ∂ρ of the inner
product. In other words, we may interchange the operator ∂ρ with the sum in (4-27). Analogously, we
may expand 1S2u1(ρ · ) and the corresponding expansion coefficients are

(1S2u1(ρ · ) | Y`,m)L2(S2) = (u1(ρ · ) |1S2Y`,m)L2(S2) =−`(`+ 1)u`,m(ρ).

Thus, the operator 1S2 commutes with the sum in (4-27). All differential operators that appear in (4-26)
are composed of ∂ρ and 1S2 and it is therefore a consequence of (4-26) that each u`,m satisfies (4-25)
for all ρ ∈ (0, 1). Since at least one u`,m is nonzero, we obtain the desired function u ∈ C∞(0, 1). To
complete the proof, it remains to show that u`,m ∈ H 1

rad(0, 1). We have

|u`,m(ρ)| =
∣∣(u1(ρ · ) | Y`,m)L2(S2)

∣∣≤ ‖u1(ρ · )‖L2(S2)
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and thus, ∫ 1

0
|u`,m(ρ)|2ρ2 dρ ≤

∫ 1

0
‖u1(ρ · )‖

2
L2(S2)

ρ2 dρ = ‖u1‖
2
L2(B).

Similarly, by dominated convergence,

|∂ρu`,m(ρ)| =
∣∣(∂ρu1(ρ · ) | Y`,m)L2(S2)

∣∣. ‖∇u1(ρ · )‖L2(S2)

and thus, ∫ 1

0
|u′`,m(ρ)|

2ρ2 dρ . ‖∇u1‖
2
L2(B).

Consequently, u1 ∈ H 1(B) implies u`,m ∈ H 1
rad(0, 1). �

Proposition 4.6. For the spectrum of L we have

σ(L)⊂ {z ∈ C : Re z ≤− 1
2} ∪ {0, 1}.

Furthermore, {0, 1} ⊂ σp(L) and the (geometric) eigenspace of the eigenvalue 1 is one-dimensional and
spanned by

u(ξ ; 1)=
(

1
2

)
whereas the (geometric) eigenspace of the eigenvalue 0 is three-dimensional and spanned by

u j (ξ ; 0)=
(
ξ j

2ξ j

)
, j ∈ {1, 2, 3}.

Proof. First of all, it is a simple exercise to check that Lu(ξ ; 1)= u(ξ ; 1) and Lu j (ξ ; 0)=0 for j = 1, 2, 3.
Since obviously u( · ; 1), u j ( · ; 0) ∈ D(L̃0), this implies {0, 1} ⊂ σp(L).

In order to prove the first assertion, let λ ∈ σ(L) and assume Re λ > − 1
2 . By Proposition 4.1 we

have λ /∈ σ(L0) and thus, Lemma 4.3 implies λ ∈ σp(L). From Lemma 4.5 we infer the existence of a
nonzero u ∈ C∞(0, 1)∩ H 1

rad(0, 1) satisfying (4-25) for ρ ∈ (0, 1). As before, we reduce (4-25) to the
hypergeometric differential equation by setting u(ρ)= ρ`v(ρ2). This yields

z(1− z)v′′(z)+ [c− (a+ b+ 1)z]v′(z)− abv(z)= 0, (4-28)

with a = 1
2(−1+ `+ λ), b = 1

2(4+ `+ λ), c = 3
2 + `, and z = ρ2. A fundamental system of (4-28) is

given by3

φ1,`(z; λ)= 2 F1(a, b, a+ b+ 1− c; 1− z),

φ̃1,`(z; λ)= (1− z)c−a−b
2 F1(c− a, c− b, c− a− b+ 1; 1− z)

and thus, there exist constants c`(λ) and c̃`(λ) such that

v(z)= c`(λ)φ1,`(z; λ)+ c̃`(λ)φ̃1,`(z; λ).

3Strictly speaking, this is only true for c− a− b =−λ 6= 0. In the case λ= 0 there exists a solution φ̃1,` which behaves like
log(1− z) as z→ 1−.
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The function φ1,`(z; λ) is analytic around z= 1 whereas φ̃1,`(z; λ)∼ (1− z)−λ as z→ 1− provided λ 6= 0.
In the case λ= 0 we have φ̃1,`(z; λ)∼ log(1− z) as z→ 1−. Since u ∈ H 1

rad(0, 1) implies v ∈ H 1
( 1

2 , 1
)

and we assume Re λ >−1
2 , it follows that c̃`(λ)= 0. Another fundamental system of (4-28) is given by

φ0,`(z; λ)= 2 F1(a, b, c; z),

φ̃0,`(z; λ)= z1−c
2 F1(a− c+ 1, b− c+ 1, 2− c; z),

and since φ̃0,`(z; λ) ∼ z−`−
1
2 as z→ 0+, we see that the function ρ 7→ ρ`φ̃`,0(ρ

2) does not belong to
H 1

rad(0,
1
2). As a consequence, we must have v(z) = d`(λ)φ0,`(z; λ) for some suitable d`(λ) ∈ C. In

summary, we conclude that the functions φ0,`( · ; λ) and φ1,`( · ; λ) are linearly dependent and in view of
the connection formula [Olver et al. 2010]

φ1,`(z; λ)=
0(1− c)0(a+ b+ 1− c)
0(a+ 1− c)0(b+ 1− c)

φ0,`(z; λ)+
0(c− 1)0(a+ b+ 1− c)

0(a)0(b)
φ̃0,`(z; λ)

this is possible only if a or b is a pole of the 0-function. This yields −a ∈ N0 or −b ∈ N0 and thus,
1
2(1−`−λ)∈N0 or− 1

2(4+`+λ)∈N0. The latter condition is not satisfied for any `∈N0 and the former
one is satisfied only if (`, λ)= (0, 1) or (`, λ)= (1, 0), which proves σ(L)⊂ {z ∈ Re z ≤− 1

2} ∪ {0, 1}.
Furthermore, the above argument and the derivation in the proof of Lemma 4.5 also show that the
geometric eigenspaces of the eigenvalues 0 and 1 are at most three- and one-dimensional, respectively. �

Remark 4.7. According to the discussion at the beginning of Section 4, the two unstable eigenvalues 1
and 0 emerge from the time translation and Lorentz invariance of the wave equation.

Spectral projections. In order to force convergence to the attractor, we need to “remove” the eigenvalues
0 and 1 from the spectrum of L. This is achieved by the spectral projection

P :=
1

2π i

∫
γ

(z− L)−1 dz, (4-29)

where the contour γ is given by the curve γ (s) = 1
2 +

3
4 e2π is , s ∈ [0, 1]. By Proposition 4.6 it follows

that γ (s) ∈ ρ(L) for all s ∈ [0, 1] and thus, the integral in (4-29) is well-defined as a Riemann integral
over a continuous function (with values in a Banach space, though). Furthermore, the contour γ encloses
the two unstable eigenvalues 0 and 1. The operator L decomposes into two parts:

Lu : rg P ∩D(L)→ rg P, Lu u = Lu,

Ls : ker P ∩D(L)→ ker P, Ls u = Lu,

and for the spectra we have σ(Lu) = {0, 1} as well as σ(Ls) = σ(L)\{0, 1}. We also emphasize the
crucial fact that P commutes with the semigroup S(τ ) and thus, the subspaces rg P and ker P of H

are invariant under the linearized flow. We refer to [Kato 1995] and [Engel and Nagel 2000] for these
standard facts. However, it is important to keep in mind that P is not an orthogonal projection since L is
not self-adjoint. Consequently, the following statement on the dimension of rg P is not trivial.

Lemma 4.8. The algebraic multiplicities of the eigenvalues 0, 1 ∈ σp(L) equal their geometric multiplici-
ties. In particular, we have dim rg P = 4.
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Proof. We define the two spectral projections P0 and P1 by

Pn =
1

2π i

∫
γn

(z− L)−1 dz, n ∈ {0, 1}

where γ0(s)= 1
2 e2π is and γ1(s)= 1+ 1

2 e2π is for s ∈ [0, 1]. Note that P = P0+ P1 and P0 P1= P1 P0= 0;
see [Kato 1995]. By definition, the algebraic multiplicity of the eigenvalue n ∈ σp(L) equals dim rg Pn .
First, we exclude the possibility dim rg Pn =∞. Suppose this is true. Then n belongs to the essential
spectrum of L, i.e., n−L fails to be semi-Fredholm [Kato 1995, p. 239, Theorem 5.28]. Since the essential
spectrum is invariant under compact perturbations (see [Kato 1995, p. 244, Theorem 5.35]), we infer
n ∈ σ(L0), which contradicts the spectral statement in Proposition 4.1. Consequently, dim rg Pn <∞.
We conclude that the operators L(n) := L|rg Pn∩D(L) are in fact finite-dimensional and σ(L(n))= {n}. This
implies that n− L(n) is nilpotent and thus, there exist mn ∈ N such that (n− L(n))mn = 0. We assume
mn to be minimal with this property. If mn = 1 we are done. Thus, assume mn ≥ 2. We first consider
L(0). Since ker L is spanned by {u j ( · ; 0) : j = 1, 2, 3} by Proposition 4.6, it follows that there exists a
u ∈ rg P0 ∩D(L) and constants c1, c2, c3 ∈ C, not all of them zero, such that

L(0)u(ξ)= Lu(ξ)=
3∑

j=1

c j u j (ξ ; 0)=
(

c jξ
j

2c jξ
j

)
.

This implies u2(ξ)= ξ
j∂ j u1(ξ)+ u1(ξ)+ c jξ

j and thus,

−(δ jk
− ξ jξ k)∂ j∂ku1(ξ)+ 4ξ j∂ j u1(ξ)− 4u1(ξ)=−5c jξ

j
= |ξ |

1∑
m=−1

c̃mY1,m

(
ξ

|ξ |

)
.

As before in the proof of Lemma 4.5, we expand u1 as

u1(ξ)=

∞∑
`,m

u`,m(|ξ |)Y`,m
(
ξ

|ξ |

)
and find

−(1− ρ2)u′′1,m(ρ)−
2
ρ

u′1,m(ρ)+ 4ρu′1,m(ρ)− 4u1,m(ρ)+
2
ρ2 u1,m(ρ)= c̃mρ. (4-30)

For at least one m ∈ {−1, 0, 1} we have c̃m 6= 0 and by normalizing u1,m accordingly, we may assume
c̃m = 1. Of course, (4-30) with c̃m = 0 is nothing but the spectral equation (4-25) with ` = 1 and
λ= 0. An explicit solution is therefore given by ψ(ρ)= ρ which may of course also be easily checked
directly. Another solution is ψ̃(ρ) := ψ̃0,1(ρ; 0)= ρφ̃0,1(ρ

2
; 0), where φ̃1,0( · ; 0) is the hypergeometric

function from the proof of Proposition 4.6. We have the asymptotic behavior ψ̃(ρ)∼ ρ−2 as ρ→ 0+
and |ψ̃(ρ)| ' | log(1− ρ)| as ρ→ 1−. By the variation of constants formula we infer that u1,m must be
of the form

u1,m(ρ)= cψ(ρ)+ c̃ψ̃(ρ)+ψ(ρ)
∫ ρ

ρ0

ψ̃(s)
W (s)

s
1− s2 ds− ψ̃(ρ)

∫ ρ

ρ1

ψ(s)
W (s)

s
1− s2 ds (4-31)
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for suitable constants c, c̃ ∈ C, ρ0, ρ1 ∈ [0, 1] and

W (ρ)=W (ψ, ψ̃)(ρ)=
d

ρ2(1− ρ2)

where d ∈ R\{0}. Recall that u1 ∈ H 1(B) implies u1,m ∈ H 1
rad(0, 1) and by considering the behavior of

(4-31) as ρ→ 0+, we see that necessarily

c̃ =
∫ 0

ρ1

ψ(s)
W (s)

s
1− s2 ds,

which leaves us with

u1,m(ρ)= cψ(ρ)+ψ(ρ)
∫ ρ

ρ0

ψ̃(s)
W (s)

s
1− s2 ds− ψ̃(ρ)

∫ ρ

0

ψ(s)
W (s)

s
1− s2 ds.

Next, we consider the behavior as ρ→ 1−. Since∣∣∣∣∫ ρ

ρ0

ψ̃(s)
W (s)

s
1− s2 ds

∣∣∣∣. 1

for all ρ ∈ (0, 1) and ψ̃ /∈ H 1
rad

( 1
2 , 1

)
, we must have

lim
ρ→1−

∫ ρ

0

ψ(s)
W (s)

s
1− s2 ds = 0.

This, however, is impossible since
ψ(s)
W (s)

s
1− s2 =

1
d

s4.

Thus, we arrive at a contradiction and our initial assumption m0 ≥ 2 must be wrong. Consequently, from
Proposition 4.6 we infer dim rg P0 = dim ker L = 3 as claimed. By exactly the same type of argument
one proves that dim rg P1 = 1. �

Resolvent estimates. Our next goal is to obtain existence of the resolvent RL(λ)∈B(H) for λ∈H
−

1
2+ε
:=

{z ∈ C : Re z ≥− 1
2 + ε} and |λ| large.

Lemma 4.9. Fix ε > 0. Then there exists a constant C > 0 such that RL(λ) exists as a bounded operator
on H for all λ ∈ H

−
1
2+ε

with |λ|> C.

Proof. From Proposition 4.1 we know that RL0(λ) ∈B(H) for all λ ∈ H
−

1
2+ε

with the bound (see [Engel
and Nagel 2000, p. 55, Theorem 1.10])

‖RL0(λ)‖ ≤
1

Re λ+ 1
2

.

Furthermore, recall the identity RL(λ)= RL0(λ)[1− L′RL0(λ)]
−1. By definition of L′ we have

L′RL0(λ) f =
(

0
6[RL0(λ) f ]1

)
,
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where we use the notation [g]k for the k-th component of the vector g. Set u= RL0(λ) f for a given f ∈H.
Then we have u ∈D(L0) and (λ− L0)u= f , which implies u2(ξ)= ξ

j∂ j u1(ξ)+ (λ+ 1)u1(ξ)− f1(ξ),
or, equivalently,

[RL0(λ) f ]1(ξ)=
1

λ+ 1

[
−ξ j∂ j [RL0(λ) f ]1(ξ)+ [RL0(λ) f ]2(ξ)+ f1(ξ)

]
.

Consequently, we infer

‖[RL0(λ) f ]1‖L2(B) .
1

|λ+ 1|

[
‖[RL0(λ) f ]1‖H1(B)+‖[RL0(λ) f ]2‖L2(B)+‖ f1‖L2(B)

]
.
‖ f ‖
|λ+ 1|

,

which yields ‖L′RL0(λ)‖. 1/|λ+ 1| for all λ ∈ H
−

1
2+ε

. We conclude that the Neumann series

[1− L′RL0(λ)]
−1
=

∞∑
k=0

[L′RL0(λ)]
k

converges in norm provided |λ| is sufficiently large. This yields the desired result. �

Estimates for the linearized evolution. Finally, we obtain improved growth estimates for the semigroup S
from Lemma 4.3 which governs the linearized evolution.

Proposition 4.10. Fix ε > 0. Then the semigroup S from Lemma 4.3 satisfies the estimates

‖S(τ )(1− P) f ‖ ≤ Ce(−
1
2+ε)τ‖(1− P) f ‖,

‖S(τ )P f ‖ ≤ Ceτ‖P f ‖,

for all τ ≥ 0 and f ∈H.

Proof. The operator Ls is the generator of the subspace semigroup Ss defined by Ss(τ ) := S(τ )|ker P .
We have σ(Ls) ⊂ {z ∈ C : Re z ≤ −1

2} and the resolvent RLs (λ) is the restriction of RL(λ) to ker P .
Consequently, by Lemma 4.9 we infer ‖RLs (λ)‖. 1 for all λ ∈ H

−
1
2+ε

and thus, the Gearhart–Prüss–
Greiner theorem (see [Engel and Nagel 2000, p. 302, Theorem 1.11]) yields the semigroup decay
‖Ss(τ )‖. e(−

1
2+ε)τ . The estimate for S(τ )P follows from the fact that rg P is spanned by eigenfunctions

of L with eigenvalues 0 and 1 (Proposition 4.6 and Lemma 4.8). �

5. Nonlinear perturbation theory

In this section we consider the full problem (3-5),

∂0φ1 =−ξ
j∂ jφ1−φ1+φ2,

∂0φ2 = ∂ j∂
jφ1− ξ

j∂ jφ2− 2φ2+ 6φ1+ 3
√

2φ2
1 +φ

3
1,

(5-1)



NONDISPERSIVE DECAY FOR THE CUBIC WAVE EQUATION 489

with prescribed initial data at τ = 0. An operator formulation of (5-1) is obtained by defining the
nonlinearity

N(u) :=
(

0
3
√

2u2
1+ u3

1

)
.

It is an immediate consequence of the Sobolev embedding H 1(B) ↪→ L p(B), p ∈ [1, 6], that N :H→H

and we have the estimate

‖N(u)− N(v)‖. ‖u− v‖(‖u‖+‖v‖) (5-2)

for all u, v ∈H with ‖u‖, ‖v‖ ≤ 1. The Cauchy problem for (5-1) is formally equivalent to

d
dτ
8(τ)= L8(τ)+ N(8(τ)),

8(0)= u,
(5-3)

for a strongly differentiable function 8 : [0,∞)→H where u are the prescribed data. In fact, we shall
consider the weak version of (5-3) which reads

8(τ)= S(τ )u+
∫ τ

0
S(τ − σ)N(8(σ)) dσ. (5-4)

Since the semigroup S is unstable, one cannot expect to obtain a global solution of (5-4) for general data
u ∈H. However, on the subspace ker P , the semigroup S is stable (Proposition 4.10). In order to isolate
the instability in the nonlinear context, we formally project (5-4) to the unstable subspace rg P which
yields

P8(τ)= S(τ )Pu+
∫ τ

0
S(τ − σ)P N(8(σ)) dσ.

This suggests to subtract the “bad” term

S(τ )Pu+
∫
∞

0
S(τ − σ)P N(8(σ)) dσ

from (5-4) in order to force decay. We obtain the equation

8(τ)= S(τ )(1− P)u+
∫ τ

0
S(τ − σ)N(8(σ)) dσ −

∫
∞

0
S(τ − σ)P N(8(σ)) dσ. (5-5)

First, we solve (5-5) and then we relate solutions of (5-5) to solutions of (5-4).

Solution of the modified equation. We solve (5-5) by a fixed point argument. To this end we define

Ku(8)(τ) := S(τ )(1− P)u+
∫ τ

0
S(τ − σ)N(8(σ)) dσ −

∫
∞

0
S(τ − σ)P N(8(σ)) dσ

and show that Ku defines a contraction mapping on (a closed subset of) the Banach space X, given by

X :=
{
8 ∈ C([0,∞),H) : sup

τ>0
e(

1
2−ε)τ‖8(τ)‖<∞

}
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with norm
‖8‖X := sup

τ>0
e(

1
2−ε)τ‖8(τ)‖,

where ε ∈ (0, 1
2) is arbitrary but fixed. We further write

Xδ := {8 ∈ X : ‖8‖X ≤ δ}

for the closed ball of radius δ > 0 in X.

Proposition 5.1. Let δ > 0 be sufficiently small and suppose u ∈H with ‖u‖< δ2. Then Ku maps Xδ to
Xδ and we have the estimate

‖Ku(8)− Ku(9)‖X ≤ Cδ‖8−9‖X

for all 8,9 ∈ Xδ.

Proof. First observe that Ku : Xδ → C([0,∞),H) since ‖N(8(τ))‖ . e(−1+2ε)τ for any 8 ∈ Xδ. We
have

P Ku(8)(τ)=−

∫
∞

τ

S(τ − σ)P N(8(σ)) dσ, (5-6)

which yields∥∥P[Ku(8)(τ)− Ku(9)(τ)]
∥∥. ∫ ∞

τ

eτ−σ‖8(σ)−9(σ)‖
(
‖8(σ)‖+‖9(σ)‖

)
dσ

. ‖8−9‖X(‖8‖X+‖9‖X)eτ
∫
∞

τ

e(−2+2ε)σ dσ

. δe(−1+2ε)τ
‖8−9‖X

for all 8,9 ∈ Xδ by Proposition 4.10. On the stable subspace we have

(1− P)Ku(8)(τ)= S(τ )(1− P)u+
∫ τ

0
S(τ − σ)(1− P)N(8(σ)) dσ

and thus,∥∥(1− P)[Ku(8)(τ)− Ku(9)(τ)]
∥∥. ∫ τ

0
e(−

1
2+ε)(τ−σ)‖8(σ)−9(σ)‖

(
‖8(σ)‖+‖9(σ)‖

)
dσ

. ‖8−9‖Xδe(−
1
2+ε)τ

∫ τ

0
e(−

1
2+ε)σ dσ

. δe(−
1
2+ε)τ‖8−9‖X

again by Proposition 4.10. We conclude that

‖Ku(8)− Ku(9)‖X . δ‖8−9‖X

for all 8,9 ∈ X. By a slight modification of the above argument one similarly proves ‖Ku(8)‖X ≤ δ for
all 8 ∈ Xδ (here ‖u‖ ≤ δ2 is used). �

Now we can conclude the existence of a solution to (5-5) by invoking the contraction mapping principle.
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Lemma 5.2. Let δ > 0 be sufficiently small. Then, for any u ∈ H with ‖u‖ ≤ δ2, there exists a unique
solution 8u ∈ Xδ to (5-5).

Proof. By Proposition 5.1 we may choose δ > 0 so small that

‖Ku(8)− Ku(9)‖X ≤
1
2‖8−9‖X

for all 8,9 ∈ Xδ and thus, the contraction mapping principle implies the existence of a unique 8u ∈ Xδ
with 8u = Ku(8u). By the definition of Ku, 8u is a solution to (5-5). �

Solution of (5-4). Recall that rg P is spanned by eigenfunctions of L with eigenvalues 0 and 1; see
Lemma 4.8. As in the proof of Lemma 4.8 we write P = P0 + P1, where Pn , n ∈ {0, 1}, projects
to the geometric eigenspace of L associated to the eigenvalue n ∈ σp(L). Consequently, we infer
S(τ )Pn = enτ Pn . This shows that the “bad” term we subtracted from (5-4) may be written as

S(τ )Pu+
∫
∞

0
S(τ − σ)P N(8u(σ )) dσ = S(τ )[Pu− F(u)],

where F is given by

F(u) := −P0

∫
∞

0
N(8u(σ )) dσ − P1

∫
∞

0
e−σ N(8u(σ )) dσ.

According to Lemma 5.2, the function F is well-defined on Bδ2 := {u ∈ H : ‖u‖ < δ2
} with values

in rg P and this shows that we have effectively modified the initial data by adding an element of the
four-dimensional subspace rg P of H. Note, however, that the modification depends on the solution
itself. Consequently, if the initial data for (5-4) are of the form u+ F(u) for u ∈ ker P , (5-4) and (5-5)
are equivalent and Lemma 5.2 yields the desired solution of (5-4). We also remark that F(0)= 0. The
following result implies that the graph

{u+ F(u) : u ∈ ker P, ‖u‖< δ2
} ⊂ ker P ⊕ rg P =H

defines a Lipschitz manifold of codimension 4.

Lemma 5.3. Let δ > 0 be sufficiently small. Then the function F :Bδ2 → rg P ⊂H satisfies

‖F(u)− F(v)‖ ≤ Cδ‖u− v‖.

Proof. First, we claim that u 7→8u :Bδ2→Xδ ⊂X is Lipschitz-continuous. Indeed, since 8u = Ku(8u)

we infer

‖8u−8v‖X ≤ ‖Ku(8u)− Ku(8v)‖X+‖Ku(8v)− Kv(8v)‖X

. δ‖8u−8v‖X+‖u− v‖

by Proposition 5.1 and the fact that

‖Ku(8v)(τ )− Kv(8v)(τ )‖ = ‖S(τ )(1− P)(u− v)‖. e(−
1
2+ε)τ‖u− v‖.

The claim now follows from ‖N(u)− N(v)‖. ‖u− v‖(‖u‖+‖v‖). �
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We summarize our results in a theorem.

Theorem 5.4. Let δ > 0 be sufficiently small. There exists a codimension-4 Lipschitz manifold M⊂H

with 0 ∈M such that for any u ∈M, (5-4) has a solution 8 ∈ Xδ . Moreover, 8 is unique in C([0,∞),H).
If , in addition, u ∈ D(L) then 8 ∈ C1([0,∞),H) and 8 solves (5-3) with 8(0)= u.

Proof. The last statement follows from standard results of semigroup theory. Uniqueness in C([0,∞),H)
is a simple exercise. �

Proof of Theorem 1.1. Theorem 1.1 is now a consequence of Theorem 5.4: (3-4) implies

v◦8T (X)−v0◦8T (X)
T 2−|X |2

=
1

(−T )
φ
(
− log(−T ), X

(−T )

)
(5-7)

and thus,

|T |−1
‖v− v0‖L2(6T ) = |T |

−2
∥∥∥φ1

(
− log(−T ), ·

|T |

)∥∥∥
L2(B|T |)

= |T |−
1
2
∥∥φ1(− log(−T ), · )

∥∥
L2(B)

. |T |−ε .

Similarly, we obtain

∂X j
v◦8T (X)−v0◦8T (X)

T 2−|X |2
=

1
T 2 ∂ jφ1

(
− log(−T ), X

(−T )

)
,

which yields

‖v− v0‖Ḣ1(6T )
= T−2

∥∥∥∇φ1

(
− log(−T ), ·

|T |

)∥∥∥
L2(B|T |)

. |T |−ε .

For the time derivative we infer

∂T
v ◦8T (X)− v0 ◦8T (X)

T 2− |X |2
=

1
T 2

(
∂0φ+

X j

(−T )
∂ jφ+φ

)(
− log(−T ), X

(−T )

)
=

1
T 2φ2

(
− log(−T ), X

(−T )

)
and hence,

‖∇nv−∇nv0‖L2(6T ) = T−2
∥∥∥φ2

(
− log(−T ), ·

|T |

)∥∥∥
L2(B|T |)

. |T |−ε .

Finally, we turn to the Strichartz estimate. First, note that the modulus of the determinant of the
Jacobian of (T, X) 7→ (t, x) is (T 2

− |X |2)−4. This is easily seen by considering the transformation

Xµ
7→ yµ =−

Xµ

Xσ Xσ
,

which has the same Jacobian determinant (up to a sign) since t =−y0 and x j
= y j . We obtain

∂ν yµ =−
Xσ Xσ δν

µ
− 2XνXµ

(Xσ Xσ )2
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and hence,

∂ν yµ∂µyλ =
δν
λ

(Xσ Xσ )2

which yields |det(∂ν yµ)| = (Xσ Xσ )−4
= (T 2

−|X |2)−4. Furthermore, note that s ∈ [t, 2t] and x ∈ B(1−δ)t
imply

S := −
s

s2− |x |2
≥−

t
t2− |x |2

≥−
cδ
t
,

S ≤ −
2t

4t2− |x |2
≤−

1
2t
.

Consequently, by (5-7) and Sobolev embedding we infer

‖v− v0‖
4
L4(t,2t)L4(B(1−δ)t )

≤

∫
−

1
2t

−
cδ
t

∫
B(1−δ)|S|

∣∣∣∣v ◦8S(X)− v0 ◦8S(X)
S2− |X |2

∣∣∣∣4 d X d S

.
∫
−

1
2t

−
cδ
t

|S|−4
∥∥∥φ(− log(−S), ·

|S|

)∥∥∥4

L4(B|S|)
d S

=

∫
−

1
2t

−
cδ
t

|S|−1∥∥φ(− log(−S), · )
∥∥4

L4(B) d S

.
∫
−

1
2t

−
cδ
t

|S|−1∥∥φ(− log(−S), · )
∥∥4

H1(B) d S

.
∫
−

1
2t

−
cδ
t

|S|1−4ε d S ' t−2+4ε

as claimed.
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A NON-SELF-ADJOINT LEBESGUE DECOMPOSITION

MATTHEW KENNEDY AND DILIAN YANG

We study the structure of bounded linear functionals on a class of non-self-adjoint operator algebras that
includes the multiplier algebra of every complete Nevanlinna–Pick space, and in particular the multiplier
algebra of the Drury–Arveson space. Our main result is a Lebesgue decomposition expressing every
linear functional as the sum of an absolutely continuous (i.e., weak-* continuous) linear functional and a
singular linear functional that is far from being absolutely continuous. This is a non-self-adjoint analogue
of Takesaki’s decomposition theorem for linear functionals on von Neumann algebras. We apply our
decomposition theorem to prove that the predual of every algebra in this class is (strongly) unique.

1. Introduction

The main result in this paper is a decomposition theorem for bounded linear functionals on a class of
operator algebras that includes the multiplier algebra of every complete Nevanlinna–Pick space. Results
of this kind can be seen as a noncommutative generalization of the Yosida–Hewitt decomposition of a
measure into completely additive and purely finitely additive parts, or more classically, the Lebesgue
decomposition of a measure into absolutely continuous and singular parts.

Takesaki [1958] proved that a bounded linear functional on a von Neumann algebra can be decomposed
uniquely into the sum of a normal (i.e., weak-* continuous) linear functional and a singular linear functional
that is far from being normal. Ando [1978] proved a direct analogue of Takesaki’s decomposition theorem
for linear functionals on the algebra H∞, of bounded analytic functions on the complex unit disk D.
More recently, Ueda [2009; 2011] proved a generalization of Ando’s result for finite maximal subdiagonal
algebras, which are “analytic” subalgebras of finite von Neumann algebras introduced by Arveson [1967]
as a noncommutative generalization of the algebra H∞.

A compelling case can be made that the natural function-theoretic generalization of H∞ is the
algebra H∞d of multipliers on the Drury–Arveson space H 2

d . The algebra H∞d is contained in the algebra
H∞(Bd) of bounded analytic functions on the complex unit ball Bd of Cd , but for d ≥ 2 this inclusion is
proper, and H∞d is seemingly much more tractable than H∞(Bd) (see, for example, [Arveson 1998]).
The Drury–Arveson space H 2

d and the multiplier algebra H∞d are universal in the following sense: Every
irreducible complete Nevanlinna–Pick space embeds into H 2

d , and the corresponding multiplier algebra
arises as the compression of H∞d onto this embedding (see [Agler and McCarthy 2000] for details).

Both authors are partially supported by NSERC.
MSC2010: 46B04, 47B32, 47L50, 47L55.
Keywords: Lebesgue decomposition, extended F. and M. Riesz theorem, unique predual, Drury–Arveson space.
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Examples of complete Nevanlinna–Pick spaces include the Hardy space and the Dirichlet space on the
disk, the Drury–Arveson space itself, and more generally the class of Besov–Sobolev spaces on Bd .

One explanation for the tractability of H∞d is the fact that H∞d arises as a quotient of the noncommutative
analytic Toeplitz algebra F∞d (see, for example, [Davidson and Pitts 1998b; Arias and Popescu 2000]).
This algebra, introduced in [Popescu 1989a], can be viewed as an algebra of noncommutative analytic
functions acting by left multiplication on a Hardy space F2

d of noncommutative analytic functions. The
operator-algebraic structure of F∞d , which is now well understood, turns out to be strikingly similar to
that of H∞ (see, for example, [Popescu 1989a; 1989b; 1991; 1995; Arias and Popescu 2000; Davidson
and Pitts 1998a; 1998b; 1999; Davidson and Yang 2008]).

For a weak-* closed two-sided ideal I of F∞d , we let AI denote the algebra AI= F∞d /I. These algebras
are the main objects of interest in this paper, for the following reason: The multiplier algebra of every
irreducible complete Nevanlinna–Pick space arises as the compression of F∞d to a coinvariant subspace,
and this compression is completely isometrically isomorphic and weak-* to weak-* homeomorphic to
a quotient of F∞d by a two-sided ideal (see [Davidson and Pitts 1998b; Arias and Popescu 2000] for
details).

Our main result is the following decomposition theorem for linear functionals on quotients of F∞d .
A functional is said to be absolutely continuous if it is weak-* continuous, and singular if it is, roughly
speaking, far from being weak-* continuous (we give a precise definition below).

Theorem 1.1 (Lebesgue decomposition for quotients of F∞d ). Let I be a weak-* closed two-sided ideal
of F∞d , and let φ be a bounded linear functional on AI. Then there are unique linear functionals φa

and φs on AI such that φ = φa +φs , where φa is absolutely continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1. Moreover, these constants are optimal.

The following result for multiplier algebras of complete Nevanlinna–Pick spaces is an immediate
consequence of Theorem 1.1.

Corollary 1.2 (Lebesgue decomposition for multiplier algebras). Let A be the multiplier algebra of a
complete Nevanlinna–Pick space, and let φ be a bounded linear functional on A. Then there are unique
linear functionals φa and φs on A such that φ = φa + φs , where φa is absolutely continuous and φs is
singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

We first prove that Theorem 1.1 holds for F∞d . The proof for quotients of F∞d requires the following
generalization of the classical F. and M. Riesz theorem, which is similar in spirit to the noncommutative
F. and M. Riesz-type theorems proved in [Exel 1990] for operator algebras with the Dirichlet property
and in [Blecher and Labuschagne 2007; Ueda 2009] for maximal subdiagonal algebras.

Theorem 1.3 (extended F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d , and
let φ = φa +φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts as in
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Theorem 1.1. Let I be a weak-* closed two-sided ideal of F∞d . If φ is zero on I, then φa and φs are both
zero on I.

Grothendieck [1955] proved that L1 is the unique predual of L∞ (up to isometric isomorphism). Sakai
[1956] generalized Grothendieck’s result by proving that the predual of every von Neumann algebra
is unique. In fact, this latter result follows from the proof of Sakai’s characterization of von Neumann
algebras as C∗-algebras which are dual spaces.

The uniqueness of the predual of a von Neumann algebra can also be proved using Takesaki’s decom-
position theorem [1958] (see, for example, the proof of Corollary 3.9 of [Takesaki 2002]). A similar idea
was used by Ando [1978] to prove the uniqueness of the predual of H∞, and more recently by Ueda
[2009] to prove that the predual of every maximal subdiagonal algebra is unique.

Inspired by these results, we apply Theorem 1.3 to prove that the predual of every quotient AI is
(strongly) unique.

Theorem 1.4. Let I be a weak-* closed two-sided ideal of F∞d . Then the algebra AI has a strongly
unique predual.

It follows immediately from Theorem 1.4 that the multiplier algebra of every complete Nevanlinna–Pick
space has a unique predual.

Corollary 1.5. The multiplier algebra of every complete Nevanlinna–Pick space has a strongly unique
predual.

In particular, Corollary 1.5 implies that the multiplier algebra H∞d on the Drury–Arveson space has
a unique predual. We believe this result is especially interesting in light of the fact that, for d ≥ 2, the
uniqueness of the predual of H∞(Bd) is an open problem.

In addition to this introduction, this paper has five other sections. In Section 2, we provide a brief
review of the requisite background material. In Section 3, we prove the Lebesgue decomposition for F∞d ,
and give an example showing that the constant in the statement of the theorem is optimal. In Section 4,
we prove the extended F. and M. Riesz theorem. In Section 5, we prove the Lebesgue decomposition
theorem for quotients of F∞d , and hence for multiplier algebras of complete Nevanlinna–Pick spaces. In
Section 6, we use the Lebesgue decomposition theorem to prove that the predual of every quotient of F∞d
is unique, and hence that the predual of the multiplier algebra of every complete Nevanlinna–Pick space
is unique.

2. Preliminaries

The noncommutative analytic Toeplitz algebra. For fixed 1≤ d ≤∞, let C〈Z〉 =C〈Z1, . . . , Zd〉 denote
the algebra of noncommutative polynomials in the variables Z1, . . . , Zd . As a vector space, C〈Z〉 is
spanned by the set of monomials

{Zw = Zw1 · · · Zwn | w = w1 · · ·wn ∈ F∗d , n ≥ 0},

where F∗d denotes the free semigroup generated by {1, . . . , d}. The noncommutative Hardy space F2
d is
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the Hilbert space obtained by completing C〈Z〉 in the natural inner product

〈Zw, Zw′〉 = δw,w′, w,w′ ∈ F∗d .

Equivalently, F2
d is the Hilbert space consisting of noncommutative power series with square summable

coefficients,

F2
d =

{∑
w∈F∗d

awZw

∣∣∣∣ ∑
w∈F∗d

|aw|2 <∞
}
.

We think of the elements of F2
d as noncommutative analytic functions.

Every element in F2
d gives rise to a multiplication operator on F2

d in the following way (note that in
this noncommutative setting, it is necessary to specify whether multiplication occurs on the left or the
right). For F in F2

d , the left multiplication operator L F is defined by

L F G = FG, G ∈ F2
d .

The operator L F is not necessarily bounded in general, simply because the product of two elements in
F2

d is not necessarily contained in F2
d . However, it is always densely defined on C〈Z〉.

The noncommutative analytic Toeplitz algebra F∞d is the noncommutative multiplier algebra of F2
d . It

consists precisely of the functions F in F2
d such that the corresponding left multiplication operator is

bounded,

F∞d = {F ∈ F2
d | FG ∈ F2

d for all G ∈ F2
d }.

Equivalently, if we identity F in F∞d with the left multiplication operator L F on the Hilbert space F2
d ,

then F∞d is obtained as the closure of C〈Z〉 in the weak-* topology on B(F2
d ). The noncommutative disk

algebra Ad is the closure of C〈Z〉 in the norm topology. Note that it is properly contained in F∞d .
The algebras Ad and F∞d were introduced by Popescu in [1996] and [1995], respectively. For d = 1,

F2
d can be identified with the classical Hardy space H 2, F∞d can be identified with the classical algebra

of bounded analytic functions H∞, and Ad can be identified with the classical disk algebra of functions
that are analytic on D with continuous extensions to the boundary.

The structure of an isometric tuple.

Definition 2.1. Let V = (V1, . . . , Vd) be an isometric tuple.

(1) V is a unilateral shift if it is unitarily equivalent to a multiple of L Z = (L Z1, . . . , L Zd ).

(2) V is absolutely continuous if the unital weak operator closed algebra W(V1, . . . , Vd) generated by
V1, . . . , Vd is algebraically isomorphic to the noncommutative analytic Toeplitz algebra F∞d .

(3) V is singular if the weakly closed algebra W (V1, . . . , Vd) is a von Neumann algebra.

(4) V is of dilation type if it has no summand that is absolutely continuous or singular.
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Theorem 2.2 (Lebesgue–von Neumann–Wold decomposition [Kennedy 2013]). Let V = (V1, . . . , Vd)

be an isometric d-tuple. Then V can be decomposed as

V = Vu ⊕ Va ⊕ Vs ⊕ Vd ,

where Vu is a unilateral d-shift, Va is an absolutely continuous unitary d-tuple, Vs is a singular unitary
d-tuple and Vd is a unitary d-tuple of dilation type.

Theorem 2.3 (structure theorem for free semigroup algebras [Davidson et al. 2001]). Let V = (V1, . . . , Vd)

be an isometric d-tuple, and let V = W(V1, . . . , Vd) denote the unital weak operator closed algebra
generated by V1, . . . , Vd . Then there is a maximal projection P in V with the range of P coinvariant for
V such that

(1) VP =
⋂
k≥1
(V0)

k , where (V0)
k denotes the ideal (V0)

k
=

∑
|w|=k

VwV.

(2) If P⊥ 6= 0, then the restriction of V to the range of P⊥ is an analytic free semigroup algebra.

(3) The compression of V to the range of P is a von Neumann algebra.

(4) V= P⊥VP⊥+W∗(V )P.

Let V = Vu ⊕ Va ⊕ Vs ⊕ Vd be the Lebesgue–von Neumann–Wold decomposition of an isometric
tuple V , as in Theorem 2.2, where Vu is a unilateral n-shift, Va is an absolutely continuous unitary
n-tuple, Vs is a singular unitary n-tuple and Vd is a unitary n-tuple of dilation type. Suppose that V is
defined on a Hilbert space H , and let H = Hu ⊕ Ha ⊕ Hs ⊕ Hd denote the corresponding decomposition
of H . By Corollary 2.7 of [Davidson et al. 2001], there is a maximal invariant subspace K for Vd

such that the restriction of Vd to K is analytic. The projection P in Theorem 2.3 is determined by
P⊥ = PHu ⊕ PHa ⊕ PK .

Remark 2.4. For d = 1, an isometry is the direct sum of a unilateral shift, an absolutely continuous
unitary and a singular unitary. Theorem 2.3 implies that, in this case, the structure projection P is the
projection onto the singular unitary part. In particular, this implies that P is reducing. For d ≥ 2, the
proof of Theorem 2.3 shows that P is reducing if and only if there is no summand of dilation type.

The universal representation. We require the universal representation πu : F∞d →B(Hu) of F∞d . This
can be constructed as in 2.4.4 of [Blecher and Le Merdy 2004], as the restriction of the universal
representation of C∗max(F

∞

d ). By [ibid., 3.2.12], we can identify the double dual (F∞d )∗∗ of F∞d with the
algebra obtained as the weak-* closure of πu(F∞d ). We will require the operator algebra structure on
(F∞d )∗∗ provided by this identification. By replacing πu by π (∞)u if necessary, we can suppose that πu

has infinite multiplicity, and hence that the weak operator topology coincides with the weak-* topology
on (F∞d )∗∗.

Let φ be a bounded linear functional on F∞d . By the Hahn–Banach theorem, we can extend φ to a
functional on C∗max(F

∞

d ) with the same norm. Hence by the construction of the universal representation
of C∗max(F

∞

d ), there are vectors x and y in Hu with ‖x‖‖y‖ = ‖φ‖ such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .
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If we identify F∞d with its image πu(F∞d ) in (F∞d )∗∗, then the functional φ has a unique weak-* continuous
extension to a functional on (F∞d )∗∗ with the same norm. We will use this fact repeatedly.

Since πu is the restriction of a *-homomorphism of C∗max(F
∞

d ), and since the d-tuple (L Z1, . . . , L Zd )

is isometric, it follows that the d-tuple (πu(L Z1), . . . , πu(L Zd )) is also isometric. Since (F∞d )∗∗ contains
πu(Ad), it necessarily contains the weak operator closed algebra generated by (πu(L Z1), . . . , πu(L Zd )).
Let Pu denote the projection in (F∞d )∗∗ guaranteed by Theorem 2.3. We will refer to Pu as the universal
structure projection in (F∞d )∗∗.

Remark 2.5. Let S denote the unital weak operator closed algebra generated by πu(L Z1), . . . , πu(L Zd ).
From above we have S⊆ (F∞d )∗∗, and one might guess that S= (F∞d )∗∗. However, this is not the case.
Indeed, let φ be a bounded nonzero functional on F∞d that is zero on the noncommutative disk algebra Ad .
Then as above, there are vectors x and y in Hu such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

Let ψ denote the weak operator continuous functional on S defined by

ψ(S)= 〈Sx, y〉 for all S ∈ S.

Since φ is zero on Ad , ψ must be zero on πu(Ad). Then, since πu(Ad) is weak operator dense in S,
it follows that ψ(S) = 〈Sx, y〉 = 0 for all S in S. But, by assumption, there is A in F∞d such that
φ(A)= 〈πu(A)x, y〉 6= 0. So we see that πu(A) /∈ S, and hence that the inclusion S⊆ (F∞d )∗∗ is proper.

3. The Lebesgue decomposition

In this section, we introduce the definitions of absolutely continuous and singular linear functionals
on the noncommutative analytic Toeplitz algebra F∞d , and establish the first version of the Lebesgue
decomposition. In [Davidson et al. 2005], Davidson, Li and Pitts proved a Lebesgue-type decomposition
for functionals on the noncommutative disk algebra Ad . Although the algebra F∞d is bigger than Ad , the
next definition is closely related to (and directly inspired by) the corresponding definition for Ad .

Definition 3.1. Let φ be a bounded linear functional on F∞d . Then

(1) φ is absolutely continuous if it is weak-* continuous, and

(2) φ is singular if ‖φ‖ = ‖φk
‖ for every k ≥ 1, where φk denotes the restriction of φ to the ideal of

F∞d generated by {L Zw | |w| = k}.

Let φ be a bounded linear functional on F∞d . Then as in Section 2, there are vectors x and y in Hu

with ‖x‖‖y‖ = ‖φ‖ such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

We will write Puφ and P⊥u φ for the linear functionals defined on F∞d by

(Puφ)(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d ,

(P⊥u φ)(A)= 〈πu(A)P⊥u x, y〉 for all A ∈ F∞d ,
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where Pu denotes the universal structure projection from Section 2. The purpose of the next result is to
verify that Puφ and P⊥u φ are well defined.

Lemma 3.2. Let φ be a bounded linear functional on F∞d . Then the functionals Puφ and P⊥u φ, as defined
above, do not depend on the choice of vectors x and y.

Proof. Let x1, y1 and x2, y2 be pairs of vectors in Hu such that

〈πu(A)x1, y1〉 = 〈πu(A)x2, y2〉 for all A ∈ F∞d .

Since πu(F∞d ) is weak-* dense in the algebra (F∞d )∗∗, which contains Pu , it follows immediately that

〈πu(A)Pu x1, y1〉 = 〈πu(A)Pu x2, y2〉 for all A ∈ F∞d ,

and similarly that
〈πu(A)P⊥u x1, y1〉 = 〈πu(A)P⊥u x2, y2〉 for all A ∈ F∞d . �

Proposition 3.3. A bounded functional φ on F∞d is singular if and only if φ = Puφ.

Proof. Let φ be a singular functional on F∞d . We can assume that ‖φ‖ = 1. As in Section 2, there are
vectors x and y in Hu such that ‖x‖‖y‖ = 1 and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

By the singularity of φ, we can find a sequence (Ak) of elements in F∞d such that limφ(Ak)→ 1, and
such that each Ak belongs to the unit ball of (F∞d,0)

k
=
∑
|w|=k F∞d L Zw . Let T be an accumulation point of

the sequence (πu(Ak)) in (F∞d )∗∗, and let S denote the unital weak operator closed algebra generated by
(πu(L Z1), . . . , πu(L Zd )). It is clear that the weak-* closure of the image πu((F∞d,0)

k) of the ideal (F∞d,0)
k

can be written as (F∞d )∗∗Sk
0, where S0 denotes the ideal in S generated by πu(L Z1), . . . , πu(L Zd ). Thus

πu(Ak) belongs to (F∞d )∗∗Sk
0. By Theorem 2.3, SPu =

⋂
k≥1

Sk
0. Hence T belongs to the unit ball of

⋂
k≥1

(F∞d )∗∗Sk
0 = (F

∞

d )∗∗
⋂
k≥1

Sk
0 = (F

∞

d )∗∗Pu .

In particular, this means that T = T Pu . Since φ(T )= 1, this gives

‖x‖‖y‖ = 1= 〈T x, y〉 = 〈T Pu x, y〉 ≤ ‖Pu x‖‖y‖ ≤ ‖x‖‖y‖.

Hence Pu x = x , and it follows that φ = Puφ.
Conversely, let φ be a functional on F∞d such that φ = Puφ. As before, we can assume that ‖φ‖ = 1,

and there are vectors x and y in Hu such that ‖x‖‖y‖ = 1 and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

The fact that Puφ = φ implies that we can choose x satisfying x = Pu x , and hence that

φ(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d .
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Let ψ denote the functional on (F∞d )∗∗ defined by

ψ(T )= 〈T Pu x, y〉 for all T ∈ (F∞d )∗∗,

and for k ≥ 1, let ψk denote the restriction of ψ to (F∞d )∗∗Sk
0. Then as above,

(F∞d )∗∗Pu =
⋂
k≥1

(F∞d )∗∗Sk
0.

Hence ‖ψ‖ = ‖ψk
‖ for every k ≥ 1. It follows that ‖φ‖ = ‖φk

‖, where φk is defined as in Definition 3.1,
and hence that φ is singular. �

Lemma 3.4. The range of the projection P⊥u is invariant for (F∞d )∗∗.

Proof. It suffices to show that whenever x and y are vectors in F2
d such that x = P⊥u x and y = Pu y, and

the functional φ on F∞d is defined by

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d ,

then φ = 0. By Theorem 2.3, the range of P⊥u is invariant for πu(Ad). Hence φ is zero on Ad . Let A be
an element of F∞d . By Corollary 2.6 of [Davidson and Pitts 1998a], for k ≥ 1, we can write A uniquely as

A =
∑
|w|<k

awL Zw + A′,

where the aw are scalars, and A′ belongs to (F∞d,0)
k . The fact that φ is zero on Ad implies that φ(A)=φ(A′).

It follows from Definition 3.1 that φ is singular. Hence by Proposition 3.3, φ = Puφ, i.e.,

φ(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d .

Since x = P⊥u x , it follows that φ = 0, as required. �

Proposition 3.5. Let φ be a bounded linear functional on F∞d . Then φ is absolutely continuous if and
only if φ = P⊥u φ.

Proof. Suppose first that φ is absolutely continuous. Then it is weak-* continuous, so there are sequences
of vectors (xk) and (yk) in F2

d such that

φ(A)=
∑
〈Axk, yk〉 for all A ∈ F∞d .

Since the d-tuple (L Z1, . . . , L Zd ) is equivalent to a restriction of the unilateral shift part of the d-tuple
(πu(L Z1), . . . , πu(L Zd )), F2

d can be identified with a subspace of Hu , and it follows that φ = P⊥u φ.
Conversely, suppose that φ= P⊥u φ. As in Section 2, there are vectors x and y in Hu with ‖x‖‖y‖=‖φ‖

such that
φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

The fact that φ = P⊥u φ implies that we can choose x satisfying P⊥u x = x . Since, by Lemma 3.4, the
range of P⊥u is invariant for πu(F∞d ), it follows that for every A in F∞d , we have

φ(A)= 〈πu(A)x, y〉 = 〈P⊥u πu(A)P⊥u x, y〉 = 〈πu(A)P⊥u x, P⊥u y〉.



A NON-SELF-ADJOINT LEBESGUE DECOMPOSITION 505

Hence we can also choose y satisfying P⊥u y = y.
By the construction of Pu , the restriction of the operators πu(L Z1), . . . , πu(L Zd ) to the cyclic subspace

generated by x and y is analytic. Thus, by the main result of [Kennedy 2013], the weak-* closed algebra
generated by this restriction is completely isometrically isomorphic and weak-* to weak-* homeomorphic
to F∞d . It follows that φ is weak-* continuous on F∞d . �

Theorem 3.6 (Lebesgue decomposition for F∞d ). Let φ be a bounded linear functional on F∞d . Then there
are unique bounded linear functionals φa and φs on F∞d such that φ = φa +φs , where φa is absolutely
continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1.

Proof. As in Section 2, there are vectors x and y in Hu such that ‖x‖‖y‖ = ‖φ‖ and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

Define φa and φs by φa = P⊥u φ and φs = Puφ, respectively. Then φa is absolutely continuous by
Proposition 3.5, and φs is singular by Proposition 3.3. We clearly have φ = φa+φs . To see that φa and φs

are unique, suppose that
φa +φs = ψa +ψs,

where ψa is absolutely continuous and ψs is absolutely continuous. Then

φa −ψa = ψs −φs .

It is clear that the functional φa − ψa is absolutely continuous, and Proposition 3.3 implies that the
functional ψs−φs is singular. Applying Proposition 3.5 and Proposition 3.3 again, we can therefore write

φa −ψa = P⊥u (φa −ψa)= P⊥u (ψs −φs)= Pu P⊥u (ψs −φs)= 0.

Hence φa = ψa , and it follows similarly that φs = ψs . Finally, we compute

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤ ‖Px‖‖y‖+‖P⊥x‖‖y‖ ≤
√

2‖x‖‖y‖ =
√

2‖φ‖.

If d = 1, then Remark 2.4 implies that (F∞d )∗∗ is the direct sum of two algebras reduced by Pu . If we
identify F∞d with its image in (F∞d )∗∗, then the functionals φ, φa and φs extend uniquely to weak-*
continuous functionals on (F∞d )∗∗ with the same norm. Since φa = P⊥u φa and φs = Puφs , it follows that
in this case, ‖φ‖ = ‖φa‖+‖φs‖. �

The next example is based on Example 5.10 from [Davidson et al. 2005]. It establishes that for d ≥ 2,
the constant

√
2 in the statement of Theorem 3.6 is the best possible.

Example 3.7. Define φ on C〈Z〉 by setting

φ(L Zw)=

{
1/
√

2 if w =∅ or w = 21n for n ≥ 0,
0 otherwise,



506 MATTHEW KENNEDY AND DILIAN YANG

and extending by linearity. We will first show that φ extends to a bounded linear functional on the
noncommutative disk algebra A2. Let Hφ denote the Hilbert space Ce ⊕ F2

2 ,/ and define a 2-tuple
S = (S1, S2) on Hφ by setting

S1 =

(
I 0
0 L1

)
, S2 =

(
0 0

ξ∅e∗ L2

)
.

It is easy to check that S is isometric. By the universal property of the noncommutative disk algebra, we
obtain a completely isometric representation πφ of A2 satisfying

πφ(L Zw)= Sw1 · · · Swn , w = w1 · · ·wn ∈ F∗d ,

and we can extend φ to A2 by

φ(A)= 〈πφ(A)(e+ ξ∅)/
√

2, ξ∅〉, A ∈ A2.

From this, it is easy to check that ‖φ‖ ≤ 1.
Let S denote the unital weakly closed algebra generated by S1 and S2. The structure projection

from Theorem 2.3 is the projection P onto Ce, which is contained in S. Hence S contains the element
B = (S2 P + P⊥)/

√
2. The results of [Kennedy 2011] imply that Theorem 5.4 of [Davidson et al. 2005]

applies to the unital weak operator closed algebra generated by any isometric tuple. Thus there is a net
(Bλ) of elements in the unit ball of Ad such that w*-limπφ(Bλ)= B in S. It is easy to check that ‖B‖= 1
and 〈B(e+ ξ∅)/

√
2, ξ∅〉 = 1, so it follows that ‖φ‖ = 1.

By the Hahn–Banach theorem, we can extend φ to a functional on F∞d with the same norm, which we
continue to denote by φ. Let φ = φa+φs be the Lebesgue decomposition of φ into absolutely continuous
and singular parts as in Theorem 3.6. Then restricted to Ad , we can write

φa(A)= (P⊥φ)(A)= 〈π(A)ξ∅/
√

2, ξ∅〉, A ∈ A2,

φs(A)= (Pφ)(A)= 〈π(A)e/
√

2, ξ∅〉, A ∈ A2.

Letting B be as above, an easy computation gives

〈Bξ∅/
√

2, ξ∅〉 = 〈Be/
√

2, ξ∅〉 = 1/
√

2.

Arguing as before, this implies ‖φa‖ ≥ 1/
√

2 and ‖φs‖ ≥ 1/
√

2. By Theorem 3.6, it follows that
‖φa‖+‖φs‖ =

√
2‖φ‖.

Remark 3.8. It is well known that the algebra H∞ is completely isometrically isomorphic to a subalgebra
of L∞(T). Ando [1978] used this fact to define a notion of absolute continuity and singularity for
functionals on H∞. Namely, a functional on H∞ is absolutely continuous in the sense of [ibid.] if it
extends to a normal functional on L∞(T), and singular in the sense of [ibid.] if it extends to a singular
functional on L∞(T) (see Chapter 2 of [Takesaki 2002] for the definition of a singular functional on a
von Neumann algebra). We now show that these definitions agree with Definition 3.1.

It is clear that a functional on H∞ that is absolutely continuous in the sense of Definition 3.1 is also
absolutely continuous in the sense of [Ando 1978]. Let φ be a functional on H∞ that is singular in the
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sense of Definition 3.1. A Lebesgue decomposition theorem also holds for H∞ using the definition of
absolute continuity and singularity from [Ando 1978] (see, for example, [Ueda 2009]). Hence there are
functionals φ̃a and φ̃s on F∞d such that φ = φ̃a + φ̃s , where φ̃a is absolutely continuous in the sense of
[Ando 1978], and φ̃s is singular in the sense of [ibid.]. Moreover, ‖φ‖ = ‖φ̃a‖+‖φ̃s‖. Note that φ̃a is
absolutely continuous (in our sense). This implies that

‖φ̃s‖ ≤ ‖φ‖ = lim sup ‖φk
‖ ≤ lim sup(‖φ̃k

a‖+‖φ̃
k
s ‖)= lim sup ‖φ̃k

s ‖ ≤ ‖φ̃s‖.

Hence φ = φ̃s and φ is singular in the sense of [ibid.].
Now let φ be an arbitrary functional on H∞, let φ= φa+φs be the Lebesgue decompositions of φ as in

Theorem 3.6, and let φ= φ̃a+φ̃s be the Lebesgue decomposition of φ as in [ibid.]. Then φa−φ̃a = φ̃s−φs .
From above, φa − φ̃a is absolutely continuous in the sense of [ibid.], and φ̃s −φs is singular in the sense
of [ibid.]. Hence by the uniqueness of the Lebesgue decomposition, φa = φ̃a and φs = φ̃s .

We note that Definition 3.1 gives an intrinsic characterization of singular functionals on H∞, which
answers (at least in this classical setting) a question from [Ueda 2009]. For d ≥ 2, it would be interesting to
know if there is an appropriate noncommutative analogue of L∞(T) with a subalgebra that is completely
isometrically isomorphic to F∞d .

4. The extended F. and M. Riesz theorem

The results in this section can be viewed as noncommutative generalizations of the classical results
referred to as the F. and M. Riesz theorem. As mentioned in the introduction, results of this kind have
been established in different settings by Exel [1990], by Blecher and Labuschagne [2007], and by Ueda
[2009]. In fact, Blecher and Labuschagne seem to have anticipated that an F. and M. Riesz-type theorem
should hold for F∞d (see the introduction of [Blecher and Labuschagne 2007]).

Theorem 4.1 (extended F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d , and
let φ = φa +φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts as in
Theorem 3.6. Let I be a two-sided ideal of F∞d . If φ is zero on I, then φa and φs are both zero on I.

Proof. As in Section 2, there are vectors x and y in Hu such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

By Proposition 3.5 we can write φa = P⊥u φ, and by Proposition 3.3 we can write φs = Puφ. If we
identify F∞d with its image πu(F∞d ) in (F∞d )∗∗, then the functionals φ, φa and φs each have unique
weak-* continuous extensions to functionals on (F∞d )∗∗ with the same norm.

Let J denote the ideal in (F∞d )∗∗ obtained by taking the weak-* closure of πu(I). Since φ is zero
on I, it is zero on J. For A in I, πu(A)P⊥u belongs to J, which implies

0= (P⊥u φ)(A)= φa(A).

Hence φa is zero on I, and it follows immediately that φs is also zero on I. �
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Corollary 4.2 (F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d . If φ is zero on
F∞d,0, where F∞d,0 denotes the ideal of F∞d generated by L Z1, . . . , L Zd , then φ is absolutely continuous.

Proof. Let φ = φa+φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts
as in Theorem 3.6. By Theorem 4.1, φa and φs are both zero on F∞d,0. By Definition 3.1, if φs is zero on
F∞d,0, it is necessarily zero on all of F∞d . Hence φ = φa and φ is absolutely continuous. �

5. Quotient algebras

For a weak-* closed two-sided ideal I of F∞d , let AI denote the quotient algebra F∞d /I.

Definition 5.1. Let I be a weak-* closed two-sided ideal of F∞d , and let φ be a bounded functional
on AI. Then

(1) φ is absolutely continuous if it is weak-* continuous, and

(2) φ is singular if ‖φ‖ = ‖φk
‖ for every k ≥ 1, where φk denotes the restriction of φ to the ideal of AI

generated by {L Zw | |w| = k}, where for a word w in F∗d , L Zw denotes the image in AI of L Zw .

Theorem 5.2 (Lebesgue decomposition for quotients of F∞d ). Let I be a weak-* closed two-sided ideal
of F∞d , and let φ be a bounded linear functional on AI. Then there are unique linear functionals φa

and φs on AI such that φ = φa +φs , where φa is absolutely continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1.

Proof. By basic functional analysis, we can lift the functional φ to a functional ψ on F∞d with the
same norm. Let ψ = ψa + ψs be the Lebesgue decomposition of ψ into absolutely continuous and
singular parts as in Theorem 3.6. The functional ψ annihilates I, so by Theorem 4.1, both ψa and ψs

annihilate I. Hence ψa and ψs induce functionals φa and φs on AI, respectively, with the same norm.
Clearly φ = φa +φs , and the inequality

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖

follows from the corresponding inequality in Theorem 3.6. The functional φa is absolutely continuous
since ψa is absolutely continuous on F∞d . To see that φs is singular, simply note that for every k ≥ 1, the
ideal (AI,0)

k is the image in AI of the ideal (F∞d,0)
k . �

Corollary 5.3 (Lebesgue decomposition for multiplier algebras). Let A be the multiplier algebra of a
complete Nevanlinna–Pick space, and let φ be a bounded linear functional on A. Then there are unique
linear functionals φa and φs on A such that φ = φa + φs , where φa is absolutely continuous and φs is
singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.
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6. Uniqueness of the predual

Let X and Y be Banach spaces such that X∗ = Y . Then X is said to be a predual for Y . Every predual X
of Y naturally embeds into the dual space Y ∗, and a subspace X of Y ∗ is a predual of Y if and only if it
satisfies the following properties:

(1) The subspace X norms Y , i.e., sup{|x(y)| | x ∈ X, ‖x‖ ≤ 1} = ‖y‖ for all y in Y .

(2) The closed unit ball of Y is compact in the σ(Y, X) topology.

The space Y is said to have a strongly unique predual if there is a unique subspace X of Y ∗ such that
Y = X∗. For a survey on uniqueness results for preduals, we refer the reader to [Godefroy 1989].

In the operator-theoretic setting, the results of Sakai [1956], Ando [1978] and Ueda [2009] mentioned
in the introduction established that von Neumann algebras and maximal subdiagonal algebras have unique
preduals. Ruan [1992] proved that an operator algebra with a weak-* dense subalgebra of compact
operators has a unique predual, which applies to, for example, nest algebras and atomic CSL algebras.
Effros, Ozawa and Ruan proved in [Effros et al. 2001] that a W∗TRO (i.e., a corner of a von Neumann
algebras) has a unique predual. More recently, Davidson and Wright [2011] proved that a free semigroup
algebra has a unique predual. Note that Davidson and Wright’s result applies to F∞d , but not to quotients
of F∞d .

The following definition is closely related to the notion of an M-ideal in a Banach space (see [Harmand
et al. 1993] for more information).

Definition 6.1. A Banach space X is L-embedded if there is a projection P on the bidual X∗∗ with
range X such that

‖x‖ = ‖Px‖+‖x − Px‖ for all x ∈ X∗∗.

The following result of Pfitzner implies that every separable L-embedded space has Godefroy and
Talagrand’s property (X), and hence by a result of Godefroy and Talagrand [1981], that it is the unique
predual of its dual.

Theorem 6.2 [Pfitzner 2007]. Separable L-embedded spaces have property (X).

The results of Sakai, Ando and Ueda on decompositions of linear functionals imply that the preduals
of von Neumann algebras and maximal subdiagonal algebras are L-embedded, and hence by Pfitzner’s
theorem, that they are unique. However, Example 3.7 shows that preduals of quotients of F∞d are not,
in general, L-embedded, so we are unable to use Pfitzner’s result. Instead, we give a direct proof that
quotients of F∞d have (strongly) unique preduals.

Theorem 6.3. Let I be a weak-* closed two-sided ideal of F∞d . Then the algebra AI has a strongly
unique predual.

Proof. Suppose E is a predual for AI, identified with a subspace of (AI)
∗. By Theorem 5.2,

(AI)
∗
= (AI)

∗

a ⊕ (AI)
∗

s ,
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where (AI)
∗
a and (AI)

∗
s denote the set of absolutely continuous and singular functionals on AI, respec-

tively. We want to prove that E = (AI)
∗
a .

Let φ be a functional in E , and let φ = φa+φs be the Lebesgue decomposition of φ as in Theorem 5.2.
We will prove that φs = 0. Suppose to the contrary that φs 6= 0. By basic functional analysis, we can lift the
functional φ to a functional ψ on F∞d that is zero on I. Let ψ =ψa+ψs be the Lebesgue decomposition
of ψ as in Theorem 3.6. By Theorem 4.1, ψa and ψs are both zero on I, and by construction they induce
the functionals φa and φs , respectively, on the quotient AI.

It follows from the results of [Kennedy 2011] that Theorem 5.4 of [Davidson et al. 2005] applies to
the unital weak operator closed algebra generated by any isometric tuple. Thus there is a net (Bλ) of
elements in the unit ball of F∞d such that w*-limπu(Bλ)= Pu in (F∞d )∗∗. Since the net (Bλ) is weak-*
convergent in (F∞d )∗∗, it is weakly Cauchy in F∞d . Since the closed unit ball of F∞d is compact in the
weak-* topology, and in particular is complete, this implies that there is B in the closed unit ball of
F∞d such that w*-lim Bλ = B in F∞d . For every weak-* continuous functional τ on F∞d , Proposition 3.5
implies that

τ(B)= lim
λ
τ(Bλ)= (Puτ)(1)= 0.

Hence B = 0.
Let A be an element in the unit ball of F∞d such that ψs(A) 6= 0. Since the net (Bλ) is weakly Cauchy

in F∞d , the image (Bλ) is weakly Cauchy in AI. It follows that the net (ABλ) is also weakly Cauchy
in AI. Since E is a predual of AI, the closed unit ball of AI is compact in the σ(AI, E) topology, and
in particular is complete. Thus, the net (ABλ) converges in the σ(AI, E) topology to an element C in
the unit ball of AI. By Proposition 3.3, we have

φ(C)= lim
λ
φ(ABλ)= lim

λ
ψ(ABλ)= (Puψ)(A)= ψs(A) 6= 0,

so that C 6= 0. But since w*-lim Bλ = 0 in F∞d , it follows that w*-lim ABλ = 0 in AI. So for every τ in
(AI)

∗
a , we necessarily have

τ(C)= lim
λ
τ(ABλ)= 0.

Since (AI)
∗
a separates points, this implies that C = 0, which gives a contradiction. Thus φ = φa , meaning

φ is absolutely continuous.
Since φ was arbitrary, it follows from above that every functional in E is absolutely continuous, i.e.,

that E is contained in (AI)
∗
a . If it were the case that E 6= (AI)

∗
a , then we could apply the Hahn–Banach

theorem to separate E from (AI)
∗
a with an element of AI. But the fact that E is a predual of AI means

in particular it must norm AI, so this is impossible. Therefore, we conclude that E = (AI)
∗
a , and hence

that (AI)
∗
a is the unique predual of AI. �

Corollary 6.4. The multiplier algebra of every complete Nevanlinna–Pick space has a strongly unique
predual.
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BOHR’S ABSOLUTE CONVERGENCE PROBLEM FOR H p-DIRICHLET SERIES
IN BANACH SPACES

DANIEL CARANDO, ANDREAS DEFANT AND PABLO SEVILLA-PERIS

The Bohr–Bohnenblust–Hille theorem states that the width of the strip in the complex plane on which an
ordinary Dirichlet series

∑
n ann−s converges uniformly but not absolutely is less than or equal to 1

2 , and
this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet
series in the Hardy space H∞ equals 1

2 . By a surprising fact of Bayart the same result holds true if H∞ is
replaced by any Hardy space Hp, 1≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients
in a Banach space X the maximal width of Bohr’s strips depend on the geometry of X ; Defant, García,
Maestre and Pérez-García proved that such maximal width equals 1− 1/Cot X , where Cot X denotes
the maximal cotype of X . Equivalently, the supremum over the absolute convergence abscissas of all
Dirichlet series in the vector-valued Hardy space H∞(X) equals 1− 1/Cot X . In this article we show
that this result remains true if H∞(X) is replaced by the larger class Hp(X), 1≤ p <∞.

1. Main result and its motivation

Given a Banach space X , an ordinary Dirichlet series in X is a series of the form D=
∑

n ann−s , where the
coefficients an are vectors in X and s is a complex variable. Maximal domains where such Dirichlet series
converge conditionally, uniformly or absolutely are half planes [Re>σ ], where σ =σc, σu or σa are called
the abscissa of conditional, uniform or absolute convergence, respectively. More precisely, σα(D) is the
infimum of all r ∈R such that on [Re> r ] we have convergence of D of the requested type α = c, u or a.
Clearly, we have σc(D)≤ σu(D)≤ σa(D), and it can be easily shown that sup σa(D)−σc(D)= 1, where
the supremum is taken over all Dirichlet series D with coefficients in X . To determine the maximal width
of the strip on which a Dirichlet series in X converges uniformly but not absolutely is more complicated.
The main result of [Defant et al. 2008] states, with the notation given below, that

S(X) := sup σa(D)− σu(D)= 1− 1
Cot X

. (1)

Recall that a Banach space X is of cotype q, 2≤ q <∞, whenever there is a constant C ≥ 0 such that
for each choice of finitely many vectors x1, . . . , xN ∈ X we have( N∑

k=1

‖xk‖
q
X

)1/q

≤ C
(∫

TN

∥∥∥∥ N∑
k=1

xkzk

∥∥∥∥2

X
dz
)1/2

, (2)
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where T := {z ∈ C | |z| = 1} and TN is endowed with the N -th product of the normalized Lebesgue
measure on T; we denote the best of such constants C by Cq(X). As usual we write

Cot X := inf{2≤ q <∞ | X is of cotype q},

and, although this infimum in general is not attained, we call it the optimal cotype of X . If there is no
2 ≤ q <∞ for which X has cotype q, then X is said to have no finite cotype, and we put Cot X =∞.
To see an example,

Cot `q =

{
q for 2≤ q ≤∞,
2 for 1≤ q ≤ 2 .

The scalar case X = C in (1) was first studied over a hundred years ago: Bohr [1913a] proved that
S(C)≤ 1

2 , and Bohnenblust and Hille [1931] that S(C)≥ 1
2 . Clearly, the equality

S(C)= 1
2 , (3)

nowadays called the Bohr–Bohnenblust–Hille theorem, fits with (1). Let us give a second formulation
of (1). Define the vector space H∞(X) of all Dirichlet series D =

∑
n ann−s in X such that

• σc(D)≤ 0,

• the function D(s)=
∑

n an(1/ns) on Re s > 0 is bounded.

Then H∞(X) together with the norm

‖D‖H∞(X) = sup
Re s>0

∥∥∥∥ ∞∑
n=1

an
1
ns

∥∥∥∥
X

forms a Banach space. For any Dirichlet series D in X we have

σu(D)= inf
{
σ ∈ R

∣∣∣∣∑
n

an

nσ
1
ns ∈H∞(X)

}
. (4)

In the scalar case X = C, this is (what we call) Bohr’s fundamental theorem [1913b], and for Dirichlet
series in arbitrary Banach spaces the proof follows similarly. Together with (4) a simply translation
argument gives the following reformulation of (1):

S(X)= sup
D∈H∞(X)

σa(D)= 1− 1
Cot X

. (5)

Following an ingenious idea of Bohr each Dirichlet series may be identified with a power series in
infinitely many variables. More precisely, fix a Banach space X and denote by P(X) the vector space
of all formal power series

∑
α cαzα in X and by D(X) the vector space of all Dirichlet series

∑
n ann−s

in X . Let as usual (pn)n be the sequence of prime numbers. Since each integer n has a unique prime



BOHR’S ABSOLUTE CONVERGENCE PROBLEM FOR Hp -DIRICHLET SERIES IN BANACH SPACES 515

number decomposition n = pα1
1 · · · p

αk
k = pα with α j ∈ N0, 1≤ j ≤ k, the linear mapping

BX : P(X)→ D(X),∑
α∈N

(N)
0

cαzα 
∞∑

n=1

ann−s if apα = cα,
(6)

is bijective; we call BX the Bohr transform in X . As discovered by Bayart [2002] this (a priori very)
formal identification allows us to develop a theory of Hardy spaces of scalar–valued Dirichlet series.

Similarly, we now define Hardy spaces of X -valued Dirichlet series. Denote by dw the normalized
Lebesgue measure on the infinite-dimensional polytorus T∞ =

∏
∞

k=1T, that is, the countable product
measure of the normalized Lebesgue measure on T. For any multiindex α = (α1, . . . , αn, 0, . . . ) ∈ Z(N)

(all finite sequences in Z) the α-th Fourier coefficient f̂ (α) of f ∈ L1(T
∞, X) is given by

f̂ (α)=
∫

T∞
f (w)w−α dw,

where we as usual write wα for the monomial wα1
1 · · ·w

αn
n . Then, given 1≤ p <∞, the X -valued Hardy

space on T∞ is the subspace of L p(T
∞, X) defined as

Hp(T
∞, X)= { f ∈ L p(T

∞, X) | f̂ (α)= 0 for all α ∈ Z(N) \N
(N)
0 }. (7)

Assigning to each f ∈Hp(T
∞, X) its unique formal power series

∑
α f̂ (α)zα we may consider Hp(T

∞, X)
as a subspace of P(X). We denote the image of this subspace under the Bohr transform BX by

Hp(X).

This vector space of all (so-called) Hp(X)-Dirichlet series D together with the norm

‖D‖Hp(X) = ‖B
−1
X (D)‖Hp(T∞,X)

forms a Banach space; in other words, through Bohr’s transform BX from (6) we by definition identify

Hp(X)= Hp(T
∞, X), 1≤ p <∞.

For p =∞ we this way of course could also define a Banach space H∞(X), and it turns out that at least
in the scalar case X = C this definition then coincides with the one given above; but we remark that
these two H∞(X)’s are different for arbitrary X . It is important to note that by the Birkhoff–Khinchin
ergodic theorem the following internal description of the Hp(X)-norm for finite Dirichlet polynomials
D =

∑n
k=1 akk−s holds:

‖D‖Hp(X) = lim
T→∞

(
1

2T

∫ T

−T

∥∥∥∥ n∑
k=1

ak
1
kt

∥∥∥∥p

X
dt
)1/p

(see, for example, Bayart [2002] for the scalar case, and the vector-valued case follows exactly the same
way).
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Motivated by (4) we define for D ∈D(X) and 1≤ p <∞

σHp(X)(D) := inf
{
σ ∈ R

∣∣∣∣∑
n

an

nσ
1
ns ∈Hp(X)

}
, (8)

the so-called Hp(X)-abscissa of D. In [Aleman et al. ≥ 2014], Aleman, Olsen, and Saksman prove that
the sequence (of Dirichlet series) 1/ns, n ∈ N is a Schauder basis in Hp(C) for 1< p <∞. Hence, for
1< p <∞ and any Dirichlet series D ∈D(C) we have

σHp(C)(D)= inf
{
σ ∈ R

∣∣∣∣( N∑
n=1

an

nσ
1
ns

)
N

is Cauchy in Hp(C)

}
, (9)

which (in the scalar case) is the perfect analog of Bohr’s fundamental theorem (i.e., the case p =∞ from
(4), where uniform convergence is precisely being Cauchy in Hp(C)). In [Defant 2013] it is shown that
(9) also holds true for p = 1 (although in this case the 1/ns are definitely no Schauder basis in H1(C)),
and even more: The arguments given in [Defant 2013] (inspired by Bohr’s original ideas [1913b]) prove
that (9) even holds for any 1≤ p ≤∞ and any X -valued Dirichlet series D ∈Hp(X). In view of (1) and
(5), it therefore seems natural to study

Sp(X) := sup
D∈D(X)

σa(D)− σHp(X)(D)= sup
D∈Hp(X)

σa(D)

(for the second equality use again a simple translation argument). The scalar case is completely understood
since, by a result of Bayart [2002],

Sp(C)=
1
2 for every 1≤ p <∞, (10)

which according to Helson [2005] is surprising since H∞(C) is much smaller than Hp(C).
The following theorem unifies and generalizes (1), (3) as well as (10), and it is our main result.

Theorem 1.1. For every 1≤ p ≤∞ and every Banach space X we have

Sp(X)= 1− 1
Cot X

.

The proof will be given in Section 3. But before we start let us give an interesting reformulation
in terms of the monomial convergence of X -valued Hp-functions on T∞. Fix a Banach space X and
1≤ p ≤∞, and define the set of monomial convergence of Hp(T

∞, X):

mon Hp(T
∞, X)=

{
z ∈ Bc0

∣∣∣∣∑
α

‖ f̂ (α)zα‖X <∞ for all f ∈ Hp(T
∞, X)

}
.

Philosophically, this is the largest set M on which for each f ∈ Hp(T
∞, X) the definition g(z) =∑

α f̂ (α)zα, z ∈ M leads to an extension of f from the distinguished boundary T∞ to its “interior” Bc0

(the open unit ball of the Banach space c0 of all null sequences). For a detailed study of sets of monomial
convergence in the scalar case X = C see [Defant et al. 2009], and in the vector-valued case [Defant and
Sevilla-Peris 2011].
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We later need the following two basic properties of monomial domains (in the scalar case see [Defant
et al. 2008, p. 550; 2014, Lemma 4.3], and in the vector-valued case the proofs follow similar lines).

Remark 1.2. (1) Let z∈mon Hp(T
∞, X). Then u= (zσ(n))n ∈mon Hp(T

∞, X) for every permutation σ
of N.

(2) Let z ∈mon Hp(T
∞, X) and x = (xn)n ∈ D∞ be such that |xn| ≤ |zn| for all but finitely many n’s.

Then x ∈mon Hp(T
∞, X).

Given 1≤ p ≤∞ and a Banach space X , the following number measures the size of mon Hp(T
∞, X)

within the scale of `r -spaces:

Mp(X)= sup{1≤ r ≤∞ | `r ∩ Bc0 ⊂mon Hp(T
∞, X)}.

The following result is a reformulation of Theorem 1.1 in terms of vector-valued Hp-functions on T∞

through Bohr’s transform BX . The proof is modeled along ideas from Bohr’s seminal article [1913a,
Satz IX].

Corollary 1.3. For each Banach space X and 1≤ p ≤∞ we have

Mp(X)=
Cot X

Cot X−1
.

Proof. We are going to prove that Sp(X)= 1/Mp(X), and as a consequence the conclusion follows from
Theorem 1.1. We begin by showing that Sp(X)≤ 1/Mp(X). We fix q < Mp(X) and r > 1/q; then we
have that (1/pr

n)n ∈ `q ∩ Bc0 and, by the very definition of Mp(X),
∑

α ‖ f̂ (α)(1/pr )α‖X <∞ converges
absolutely for every f ∈ Hp(T

∞, X). We choose now an arbitrary Dirichlet series

D =BX f =
∑

n

ann−s
∈Hp(X) with f ∈ Hp(T

∞, X).

Then ∑
n

‖an‖X
1
nr =

∑
α

‖apα‖X

( 1
pα
)r
=

∑
α

‖ f̂ (α)‖X

( 1
pr

)α
<∞.

Clearly, this implies that Sp(X) ≤ r . Since this holds for each r > 1/q, we get that Sp(X) ≤ 1/q, and
since this now holds for each q < Mp(X), we have Sp(X) ≤ 1/Mp(X). Conversely, let us take some
q > Mp(X); then there is z ∈ `q ∩ Bc0 and f ∈ Hp(T

∞, X) such that
∑

α f̂ (α)zα does not converge
absolutely. By Remark 1.2 we may assume that z is decreasing, and hence (znn1/q)n is bounded. We
choose now r > q and define wn = 1/p1/r

n . By the prime number theorem we know that there is a
universal constant C > 0 such that

0<
zn

wn
= zn p1/r

n = znn1/q p1/r
n

n1/q = znn1/q
( pn

n

)1/r 1
n1/q−1/r ≤ Cznn1/q (log n)1/r

n1/q−1/r .

The last term tends to 0 as n →∞; hence zn ≤ wn but for a finite number of n’s. By Remark 1.2
this implies that

∑
α f̂ (α)wα does not converge absolutely. But then D =BX f =

∑
n ann−s

∈Hp(X)
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satisfies ∑
n

‖an‖X
1

n1/r =
∑
α

‖apα‖X

( 1
p1/r

)α
=

∑
α

‖ f̂ (α)‖Xw
α
=∞.

This gives that σa(D)≥ 1/r for every r > q , hence σa(D)≥ 1/q . Since this holds for every q > Mp(X),
we finally have Sp(X)≥ 1/Mp(X). �

We shall use standard notation and notions from Banach space theory, as presented, for example, in
[Lindenstrauss and Tzafriri 1977; 1979]. For everything needed on polynomials in Banach spaces see, for
example, [Dineen 1999; Floret 1997].

2. Relevant inequalities

The main aim here is to prove a sort of polynomial extension of the notion of cotype. Recall the definition
of Cq(X) from (2). Moreover, from Kahane’s inequality we know that there is a (best) constant K ≥ 1
such that, for each Banach space X and each choice of finitely many vectors x1, . . . , xN ∈ X ,(∫

TN

∥∥∥∥ N∑
k=1

xkzk

∥∥∥∥2

X
dz
)1/2

≤ K
∫

TN

∥∥∥∥ N∑
k=1

xkzk

∥∥∥∥
X

dz.

As usual we write |α| = α1+ · · ·+αN and α! = α1! · · ·αN ! for every multiindex α ∈ NN
0 .

Proposition 2.1. Let X be a Banach space of cotype q, 2≤ q <∞, and

P : CN
→ X, P(z)=

∑
α∈NN

0
|α|=m

cαzα

be an m-homogeneous polynomial. Let

T : CN
× · · ·×CN

→ X, T (z(1), . . . , z(m))=
N∑

i1,...,im=1

ai1,...,im z(1)i1
· · · z(m)im

be the unique m-linear symmetrization of P. Then( ∑
i1,...,im

‖ai1,...,im‖
q
X

)1/q

≤ (Cq(X)K )m
mm

m!

∫
TN
‖P(z)‖X dz.

Before we give the proof let us note that [Bombal et al. 2004, Theorem 3.2] is an m-linear result that,
combined with polarization, gives (with the previous notation)( ∑

i1,...,im

‖ai1,...,im‖
q
X

)1/q

≤ Cq(X)m
mm

m!
sup

z∈DN
‖P(z)‖.

Our result allows us to replace (up to the constant K ) the ‖ ‖∞ norm with the smaller norm ‖ ‖1. We
prepare the proof of Proposition 2.1 with three lemmas. The first one is a complex version of [Defant
et al. 2010, Lemma 2.2] with essentially the same proof; we include it for the sake of completeness.
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Lemma 2.2. Let X be a Banach space of cotype q, 2≤ q <∞. Then, for every m-linear form

T : CN
× · · ·×CN

→ X, T (z(1), . . . , z(m))=
N∑

i1,...,im=1

ai1,...,im z(1)i1
· · · z(m)im

,

we have( N∑
i1,...,im=1

‖ai1,...,im‖
q
X

)1/q

≤ (Cq(X) K )m
∫

TN
· · ·

∫
TN
‖T (z(1), . . . , z(m))‖X dz(1) · · · dz(m).

Proof. We prove this result by induction on the degree m. For m = 1 the result is an immediate
consequence of the definition of cotype q and Kahane’s inequality. Assume that the result holds for m−1.
By the continuous Minkowski inequality we then conclude that for every choice of finitely many vectors
ai1,...,im ∈ X with 1≤ i j ≤ N , 1≤ j ≤ m we have∑
i1,...,im

‖ai1,...,im‖
q
X =

∑
i1,...,im−1

∑
im

‖ai1,...,im‖
q
X

≤ Cq(X)q K q
( ∑

i1,...,im−1

(∫
TN

∥∥∥∥∑
im

ai1,...,im z(m)im

∥∥∥∥
X

dz(m)
)q)q/q

≤ Cq(X)q K q
(∫

TN

( ∑
i1,...,im−1

∥∥∥∥∑
im

ai1,...,im z(m)im

∥∥∥∥q

X

)1/q

dz(m)
)q

≤ Cq(X)qm K qm
(∫

TN

∫
TN
· · ·

∫
TN︸ ︷︷ ︸

m−1

∥∥∥∥ ∑
i1,...,im−1

ai1,...,im−1 z(1)i1
, . . . , z(m−1)

im−1

∥∥∥∥
X

dz(1) · · · dz(m−1) dz(m)
)q

,

which is the conclusion. �

The following two lemmas are needed to produce a polynomial analog of the preceding result.

Lemma 2.3. Let X be a Banach space, and f : C→ X a holomorphic function. Then for R1, R2, R ≥ 0
with R1+ R2 ≤ R we have∫

T

∫
T

‖ f (R1z1+ R2z2)‖X dz1 dz2 ≤

∫
T

‖ f (Rz)‖X dz.

Proof. By the rotation invariance of the normalized Lebesgue measure on T we get∫
T

∫
T

‖ f (R1z1+ R2z2)‖X dz1 dz2 =

∫
T

∫
T

‖ f (R1z1z2+ R2z2)‖X dz1 dz2

=

∫
T

∫
T

‖ f (z2(R1z1+ R2))‖X dz1 dz2 =

∫
T

∫
T

‖ f (z2|R1z1+ R2|)‖X dz2 dz1

=

∫
T

∫
T

‖ f (z2r(z1)R)‖X dz2 dz1 =

∫ 2π

0

∫ 2π

0
‖ f (r(eis)Rei t)‖X

dt
2π

ds
2π
,
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where r(z)= (1/R)|R1z+ R2|, z ∈ T. We know that for each holomorphic function h : C→ X we have

∫
T

‖h(z)‖X dz = sup
0≤r≤1

∫ 2π

0
‖h(rei t)‖X

dt
2π

(see, for example, Blasco and Xu [1991, p. 338]). Define now h(z)= f
(
Rz
)
, and note that 0≤ r(z)≤ 1

for all z ∈ T. Then∫
T

∫
T

‖ f (R1z1+ R2z2)‖X dz1 dz2 =

∫ 2π

0

∫ 2π

0
‖h(r(eis)ei t)‖X

dt
2π

ds
2π

≤

∫ 2π

0

∫
T

‖h(z)‖X dz ds
2π
=

∫
T

‖ f (Rz)‖X dz.

This completes the proof. �

A sort of iteration of the preceding result leads to the next:

Lemma 2.4. Let X be a Banach space, and f : CN
→ X a holomorphic function. Then, for every m,∫

TN
· · ·

∫
TN
‖ f (z(1)+ · · ·+ z(m))‖X dz(1) · · · dz(m) ≤

∫
TN
‖ f (mz)‖X dz.

Proof. We fix some m, and do induction with respect to N . For N = 1 we obtain from Lemma 2.3 that∫
T

· · ·

∫
T︸ ︷︷ ︸

m−2

∫
T

∫
T

‖ f (z(1)+ · · ·+ z(m−2)
+ z(m−1)

+ z(m))︸ ︷︷ ︸
=:gz(1),...,z(m−2) (z(m−1)+z(m))

‖X dz(m−1) dz(m) dz(1) · · · dz(m−2)

≤

∫
T

· · ·

∫
T︸ ︷︷ ︸

m−2

∫
T

‖gz(1),...,z(m−2)(2w)‖X dw dz(1) · · · dz(m−2)

=

∫
T

· · ·

∫
T︸ ︷︷ ︸

m−3

∫
T

∫
T

‖ f (z(1)+ · · ·+ z(m−2)
+ 2w)‖X dw dz(m−2) dz(1) · · · dz(m−3)

≤

∫
T

· · ·

∫
T︸ ︷︷ ︸

m−3

∫
T

‖ f (z(1)+ · · ·+ z(m−3)
+ 3w)‖X dz(1) · · · dz(m−3) dw

≤ · · · ≤

∫
T

‖ f (mz)‖X dz.

We now assume that the conclusion holds for N − 1 and write each z ∈ TN as z = (u, w), with u ∈ TN−1

and w ∈ T. Then, using the case N = 1 in the first inequality and the inductive hypothesis in the second,
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we have∫
TN
· · ·

∫
TN
‖ f (z(1)+ · · ·+ z(m))‖X dz(1) · · · dz(m)

=

∫
TN−1
· · ·

∫
TN−1

(∫
T

· · ·

∫
T

‖ f ((u(1), w1)+ · · ·+ (u(m), wm))‖X dw1 · · · dwN

)
du(1) · · · du(m)

≤

∫
TN−1
· · ·

∫
TN−1

(∫
T

‖ f ((u(1),mw)+ · · ·+ (u(m),mw))‖X dw
)

du(1) · · · du(m)

=

∫
T

(∫
TN−1
· · ·

∫
TN−1
‖ f ((u(1),mw)+ · · ·+ (u(m),mw))‖X du(1) · · · du(m)

)
dw

≤

∫
T

(∫
TN−1
‖ f ((mu,mw)+ · · ·+ (mu,mw))‖X du

)
dw

=

∫
TN
‖ f (mz)‖X dz,

as desired. �

Proof of the inequality from Proposition 2.1. By the polarization formula we know that for every choice
of z(1), . . . , z(m) ∈ TN we have

T (z(1), . . . , z(m))=
1

2mm!

∑
εi=±1

εi · · · εm P
( N∑

i=1

εi z(i)
)

(see, for example, [Dineen 1999] or [Floret 1997]). Hence we deduce from Lemma 2.4∫
TN
· · ·

∫
TN
‖T (z(1), . . . , z(m))‖X dz(1) · · ·dz(m) ≤

1
2mm!

∑
εi=±1

∫
TN
· · ·

∫
TN

∥∥∥∥P
( N∑

i=1

εi z(i)
)∥∥∥∥

X
dz(1) · · ·dz(m)

=
1

2mm!

∑
εi=±1

∫
TN
· · ·

∫
TN

∥∥∥∥P
( N∑

i=1

z(i)
)∥∥∥∥

X
dz(1) · · ·dz(m)

=
1

m!

∫
TN
· · ·

∫
TN

∥∥∥∥P
( N∑

i=1

z(i)
)∥∥∥∥

X
dz(1) · · ·dz(m)

≤
1

m!

∫
TN
‖P(mz)‖X dz =

mm

m!

∫
TN
‖P(z)‖X dz.

Then by Lemma 2.2 we obtain( N∑
i1,...,im

‖ai1,...,im‖
q
X

)1/q

≤ (Cq(X)K )m
∫

T∞
· · ·

∫
T∞
‖T (z(1), . . . , z(m))‖X dz(1) · · · dz(m)

= (Cq(X)K )m
mm

m!

∫
TN
‖P(z)‖X dz,

which completes the proof of Proposition 2.1. �
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A second proposition is needed which allows us to reduce the proof of our main result (Theorem 1.1) to
the homogeneous case. It is a vector-valued version of a result of [Cole and Gamelin 1986, Theorem 9.2]
with a similar proof (here only given for the sake of completeness).

Proposition 2.5. There is a contractive projection

8m : Hp(T
N , X)→ Hp(T

N , X), f 7→ fm,

such that, for all f ∈ Hp(T
N , X),

f̂ (α)= f̂m(α) for all α ∈ NN
0 with |α| = m. (11)

Proof. Let P(CN , X)⊂ Hp(T
N , X) be the subspace of all finite polynomials f =

∑
α∈3 cαzα; here 3

is a finite set of multiindices in NN
0 and the coefficients cα ∈ X . Define the linear projection 80

m on
P(CN , X) by

80
m( f )(z)= fm(z)=

∑
α∈3,|α|=m

f̂ (α)zα ;

clearly, we have (11). In order to show that 80
m is a contraction on

(
P(CN , X), ‖ · ‖p

)
fix some function

f ∈ P(CN , X) and z ∈ TN , and define

f (z · ) : T→ X, w 7→ f (zw).

Clearly, we have

f (zw)=
∑

k

fk(z)wk,

and hence

fm(z)=
∫

T

f (zw)w−m dw.

Integration, Hölder’s inequality and the rotation invariance of the normalized Lebesgue measure on TN

give ∫
TN
‖ fm(z)‖

p
X dz =

∫
TN

∥∥∥∥∫
T

f (zw)w−m dw
∥∥∥∥p

X
dz

≤

∫
TN

(∫
T

‖ f (zw)‖X dw
)p

dz

≤

∫
T

∫
TN
‖ f (zw)‖p

X dz dw =
∫

TN
‖ f (z)‖p

X dz,

which proves that80
m is a contraction on (P(CN , X), ‖ · ‖p). By Fejér’s theorem (vector-valued) we know

that P(CN , X) is a dense subspace of Hp(T
N , X). Hence 80

m extends to a contractive projection 8m

on Hp(T
N , X). This extension 8m still satisfies (11) since the mapping Hp(T

N , X)→ X, f 7→ f̂ (α) is
continuous for each multiindex α. �
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3. Proof of the main result

We are now ready to prove Theorem 1.1. Let 1≤ p <∞, and recall from (1) that

1− 1
Cot X

= S∞(X)≤ Sp(X);

see Remark 3.1 for a direct argument. Hence it suffices to concentrate on the upper estimate in Theorem 1.1:
Since we obviously have Sp(X)≤ S1(X), we are going to prove that

S1(X)≤ 1− 1
Cot X

. (12)

Suppose first that X has no finite cotype, i.e., Cot X = ∞. For D =
∑

n ann−s
∈ H1(X) we take

f ∈ H1(T
∞, X) with D =BX f . Note that

‖ f̂ (α)‖X ≤

∫
T∞
‖ f (w)w−α‖X dw = ‖ f ‖L1(T∞,X) <∞;

hence, by the definition of BX , the coefficients of D are also bounded by ‖ f ‖L1(T∞,X). As a consequence,
for every σ > 1 we have

∞∑
n=1

‖an‖X
1

nσ
≤

∞∑
n=1

‖ f ‖L1(T∞,X)
1

nσ
<∞.

This means that S1(X)≤ 1 and as a consequence (12) holds.
Now if X has finite cotype, take q > Cot X and ε > 0, and put s = (1− 1/q)(1+ 2ε). Choose an

integer k0 such that pε/q
′

k0
> eCq(X)K

(∑
∞

j=1 1/p1+ε
j

)1/q ′ and define

p̃ = (pk0, . . . , pk0︸ ︷︷ ︸
k0 times

, pk0+1, pk0+2, . . . ).

We are going to show that there is a constant C(q, X, ε) > 0 such that for every f ∈ H1(T
∞, X) we have∑

α∈N
(N)
0

‖ f̂ (α)‖X
1

p̃sα ≤ C(q, X, ε)‖ f ‖H1(T∞,X). (13)

This finishes the argument: By Remark 1.2 the sequence 1/ps is in mon H1(T
∞, X). But in view of

Bohr’s transform from (6), this means that for every Dirichlet series D =
∑

n ann−s
=BX f ∈H1(X)

with f ∈ H1(T
∞, X) we have

∞∑
n=1

‖an‖X
1
ns =

∑
α∈N

(N)
0

‖ f̂ (α)‖X
1

psα <∞.

Therefore σa(D) ≤ (1− 1/q)(1+ 2ε) for each such D which, since ε > 0 was arbitrary, is what we
wanted to prove.

It remains to check (13); the idea is to show first that (13) holds for all X -valued H1-functions
which only depend on N variables: There is a constant C(q, X, ε) > 0 such that for all N and every
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f ∈ H1(T
N , X) we have ∑

α∈NN
0

‖ f̂ (α)‖X
1

p̃sα ≤ C(q, X, ε)‖ f ‖H1(TN ,X). (14)

In order to understand that (14) implies (13) (and hence the conclusion), assume that (14) holds and take
some f ∈ H1(T

∞, X). Given an arbitrary N , define

fN : T
N
→ X, fN (w)=

∫
T∞

f (w, w̃) dw̃.

Then it can be easily shown that fN ∈ L1(T
N , X), ‖ fN‖1 ≤ ‖ f ‖1, and f̂N (α)= f̂ (α) for all α ∈ ZN . If

we now apply (14) to this fN , we get∑
α∈NN

0

‖ f̂ (α)‖X
1

p̃sα ≤ C(q, X, ε)‖ f ‖H1(T∞,X),

which, after taking the supremum over all possible N on the left side, leads to (13).
We turn to the proof of (14), and here in a first step will show the following: For every N , every

m-homogeneous polynomial P : CN
→ X and every u ∈ `q ′ we have

∑
α∈NN

0
|α|=m

‖P̂(α)uα‖X ≤ (eCq(X)K )m
∫

TN
‖P(z)‖X dz

( ∞∑
j=1

|u j |
q ′
)m/q ′

. (15)

Indeed, take such a polynomial P(z) =
∑

α∈NN
0 ,|α|=m P̂(α)zα, z ∈ TN , and look at its unique m-linear

symmetrization

T : CN
× · · ·×CN

→ X, T (z(1), . . . , z(m))=
N∑

i1,...,im=1

ai1,...,im z(1)i1
, . . . , z(m)im

.

Then we know from Proposition 2.1 that( N∑
i1,...,im=1

‖ai1,...,im‖
q
X

)1/q

≤ (eCq(X)K )m
∫

TN
‖P(z)‖X dz.

Hence (15) follows by Hölder’s inequality:

∑
α∈NN

0
|α|=m

‖P̂(α)uα‖X =

N∑
i1,...,im=1

‖ai1,...,im‖X |ui1 · · · uiN | ≤ (eCq(X)K )m
∫

TN
‖P(z)‖X dz

( ∞∑
j=1

|u j |
q ′
)m/q ′

.

We finally give the proof of (14): Take f ∈ H1(T
N , X), and recall from Proposition 2.5 that for each

integer m there is an m-homogeneous polynomial Pm : C
N
→ X such that ‖Pm‖H1(TN ,X) ≤ ‖ f ‖H1(TN ,X)
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and P̂m(α) = f̂ (α) for all α ∈ NN
0 with |α| = m. From (15), the definition of s, and the fact that

max{pk0, p j } ≤ p̃ j for all j we have

∑
α∈NN

0

‖ f̂ (α)‖X
1

p̃sα =

∞∑
m=1

∑
α∈NN

0
|α|=m

‖P̂m(α)‖X
1

p̃sα

≤

∞∑
m=1

(eCq(X)K )m‖Pm‖H1(TN ,X)

( ∞∑
j=1

1

p̃sq ′
j

)m/q ′

=

∞∑
m=1

(eCq(X)K )m‖ f ‖H1(TN ,X)

( ∞∑
j=1

1

p̃1+2ε
j

)m/q ′

=

∞∑
m=1

(eCq(X)K )m‖ f ‖H1(TN ,X)

( ∞∑
j=1

1

p̃1+ε
j

1
p̃εj

)m/q ′

≤ ‖ f ‖H1(TN ,X)

∞∑
m=1

(
eCq(X)K

(∑
∞

j=1 p−(1+ε)j

)1/q ′
pε/q

′

k0︸ ︷︷ ︸
<1

)m

.

This completes the proof of Theorem 1.1. �

Remark 3.1. We end this note with a direct proof of the fact

1− 1
Cot X

≤ Sp(X), 1≤ p <∞, (16)

in which we do not use the inequality

1− 1
Cot X

≤ S∞(X) (17)

from [Defant et al. 2008] (here repeated in (1)). The proof of (17) given in that reference shows in a first
step that 1− 1/5(X)≤ S∞(X) where

5(X)= inf{r ≥ 2 | idX is (r, 1)-summing},

and then, in a second step, applies a fundamental theorem of Maurey and Pisier stating that5(X)=Cot X .
The following argument for (16) is very similar to the original one from [Defant et al. 2008] but does

not use the Maurey–Pisier theorem (since we here consider Hp(X), 1≤ p <∞ instead of H∞(X)): By
the proof of Corollary 1.3, inequality (16) is equivalent to

Mp(X)≤
Cot X

Cot X−1
.

Take r < Mp(X), so that `r ∩ Bc0 ⊂ mon Hp(T
∞, X). Let H 1

p(T
∞, X) be the subspace of Hp(T

∞, X)
formed by all 1-homogeneous polynomials (i.e., linear operators). We can define a bilinear operator
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`r × H 1
p(T
∞, X)→ `1(X) by (z, f ) 7→ (z j f (e j )) j which, by a closed graph argument, is continuous.

Therefore, there is a constant M such that for all z ∈ `r and all f ∈ H 1
p(T
∞, X) we have∑

j

|z j |‖ f (e j )‖X ≤ M‖z‖`r‖ f ‖Hp(T∞,X).

Taking the supremum over all z ∈ B`r we obtain for all f ∈ H 1
p(T
∞, X)(∑

j

‖ f (e j )‖
r ′
X

)1/r ′

≤ M‖ f ‖Hp(T∞,X).

Now, take x1, . . . , xN ∈ X , define f ∈ H 1
p(T
∞, X) by

f (e j )=

{
x j if 1≤ j ≤ N ,
0 if j > N

and extend it by linearity. By the previous inequality and Proposition 2.5 we have( N∑
j=1

‖x j‖
r ′
X

)1/r ′

≤ M
(∫

TN

∥∥∥∥ N∑
j=1

x j z j

∥∥∥∥r ′

X
dz
)1/r ′

.

By Kahane’s inequality, X has cotype r ′, which means that r ′ > Cot X or, equivalently, r < Cot X
Cot X−1

.
Since r < Mp(X) was arbitrary, we obtain (16).
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