Vol. 7, No. 2, 2014

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Nondispersive decay for the cubic wave equation

Roland Donninger and Anıl Zenginoğlu

Vol. 7 (2014), No. 2, 461–495
Abstract

We consider the hyperboloidal initial value problem for the cubic focusing wave equation

(t2 + Δ x)v(t,x) + v(t,x)3 = 0,x 3.

Without symmetry assumptions, we prove the existence of a codimension-4 Lipschitz manifold of initial data that lead to global solutions in forward time which do not scatter to free waves. More precisely, for any δ (0,1), we construct solutions with the asymptotic behavior

v v0L4(t,2t)L4(B(1δ)t) t1 2 +

as t , where v0(t,x) = 2t and B(1δ)t := {x 3 : |x| < (1 δ)t}.

Keywords
nonlinear wave equations, soliton resolution conjecture, hyperboloidal initial value problem, Kelvin coordinates
Mathematical Subject Classification 2010
Primary: 35L05, 58J45, 35L71
Secondary: 35Q75, 83C30
Milestones
Received: 24 April 2013
Accepted: 22 August 2013
Published: 30 May 2014
Authors
Roland Donninger
Department of Mathematics
École Polytechnique Fédérale de Lausanne
Station 8
CH-1015 Lausanne
Switzerland
Anıl Zenginoğlu
Theoretical Astrophysics
California Institute of Technology
M/C 350–17
Pasadena, CA 91125
United States