THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE
THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE

LORENZO GIACOMELLI, JOSE M. MAZÓN AND SALVADOR MOLL

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the L^2-distance — from a domain of \mathbb{R}^m into a hyperoctant of the N-dimensional unit sphere, \mathbb{S}^{N-1}_+, under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on \mathbb{S}^{N-1}_+ with respect to a metric which penalizes the closeness to their geodesic midpoint.

1. Introduction

Throughout the paper, $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz continuous boundary $\partial \Omega$ and \mathbb{S}^{N-1} is the unit sphere of \mathbb{R}^N. For a smooth map $u : \Omega \to \mathbb{S}^{N-1}$ and $1 \leq p < \infty$, the p-energy of u is given by

$$E_p(u) = \int_{\Omega} |Du|^p \, dx.$$

A critical point $u \in C^1(\Omega; \mathbb{S}^{N-1})$ of the p-energy, a p-harmonic map, formally satisfies the Euler–Lagrange equation

$$- \text{div}(|Du|^{p-2} Du) = |Du|^p u.$$ \hspace{1cm} (1-1)

The term $|Du|^p$ plays the role of a Lagrange multiplier corresponding to the pointwise constraint $|u| = 1.$

Mazón and Moll have been partially supported by the Spanish MEC project MTM2012–31103.

Keywords: harmonic flows, total variation flow, nonlinear parabolic systems, lower semicontinuity and relaxation, nonconvex variational problems, geodesics, Riemannian manifolds with boundary, image processing.
One well-known method to obtain (distributional) solutions to (1-1), the so-called heat-flow method, introduced by J. Eells and J. H. Sampson [1964] for \(p = 2 \) in the general framework of Riemannian manifolds, consists in looking at long time limits of solutions to

\[
 u_t = \text{div}(|Du|^{p-2}Du) + u|Du|^p, \quad |u| = 1.
\]

Equation (1-2) is also a prototype for often quite complicated reaction-diffusion systems for the evolution of director fields which arise in various contexts — multigrain problems [Kobayashi et al. 2000], theory of liquid crystals [van der Hout 2001], ferromagnetism [DeSimone and Podio-Guidugli 1996], and image processing [Sapiro 2001]. For \(p > 1 \), (1-2) with various boundary conditions has been widely studied over the last decades; referenced discussions of the cases \(p = 2 \) and \(p \in (1, \infty) \) may be found, for example, in [Bertsch et al. 2003; Bertsch et al. 2002; Chen 1989; Struwe 1992] and [Chen et al. 1994; Hungerbühler 2004; Misawa 2002], respectively.

Here we are interested in the case \(p = 1 \), for which (1-2) formally reads

\[
 u_t = \text{div} \left(\frac{Du}{|Du|} \right) + u|Du|, \quad u \in S^{N-1}. \tag{1-3}
\]

More precisely, we focus on the homogeneous Neumann problem for (1-3) when the target space is a compact subset \(\mathbb{A} \) of \(S^{N-1} \); that is,

\[
\begin{cases}
 u_t = \text{div} \left(\frac{Du}{|Du|} \right) + u|Du|, \quad u \in \mathbb{A} \subseteq S^{N-1}, & \text{in } Q_T = (0, T) \times \Omega, \\
 \frac{Du}{|Du|} \nu = 0 & \text{on } S_T = (0, T) \times \partial \Omega, \\
 u(0, \cdot) = u_0(\cdot), \quad u_0 \in \mathbb{A}, & \text{in } \Omega,
\end{cases} \tag{1-4}
\]

where \(\nu \) denotes the outward unit normal to \(\partial \Omega \). Problem (1-4) was proposed as a tool to denoise either two-dimensional image gradients and optical flows, in which case \(N = 2 \) and \(\mathbb{A} = S^1 \) [Tang et al. 2000], or color images by smoothing the chromaticity data while preserving the contrast, in which case \(N = 3 \) and \(\mathbb{A} \) is an octant of the sphere [Tang et al. 2001].

While the scalar and unconstrained version of (1-3), that is, the so-called total variation flow, is by now well understood after the pioneering paper [Andreu et al. 2001] (see the monograph [Andreu-Vaillo et al. 2004] and the references therein or [Bonforte and Figalli 2012] for an up-to-date reference list). An existence theory for (1-3) is still open in general. Special cases considered so far have dealt with piece-wise constant data [Giga and Kobayashi 2003; Giga et al. 2005; Giga et al. 2007], initial data with “small” energy [Giga et al. 2004], and rotationally symmetric solutions [Giga and Kuroda 2004; Dal Passo et al. 2008; Giacomelli and Moll 2010]. We refer to [Giacomelli et al. 2013a] for a detailed discussion of previous attempts to obtain a solution to (1-4) given in [Barrett et al. 2008; Feng 2010].

In dealing with (1-3), the most delicate issue is of course the interpretation of the bounded matrix \(Z \), which represents \(Du/|Du| \), and of the measure \(\mu \), which represents \(u|Du| \), the latter being the product between a measure and a possibly discontinuous function. Very recently, an interpretation of (1-3) has
been proposed in [Giacomelli et al. 2013a]; in summary,

\[u_t(t) - \text{div} Z(t) \in u_\# |Du|(t), \ u(t) \in \mathbb{A} \quad \text{for a.e.} \ t \in [0, T] \quad (1-5) \]

in the sense of distributions, where \(Z(t) \) is a bounded matrix that represents \(Du(t)/|Du(t)| \) (the precise meaning is given in Proposition 3.5) and \(u_\# |Du|(t) \) denotes a set of vector-valued measures which are oriented as \(u(t) \) (the precise representative of \(u(t) \)) and have total variation density \(|Du(t)| \). For \(N = 2 \), this interpretation has led to the existence and uniqueness of a solution to (1-4) when \(\mathbb{A} \) is a semicircle [Giacomelli et al. 2013a, Theorems 4.1 and 5.1] together with the existence of a solution when \(\mathbb{A} = S^1 \) and \(u_0 \in BV(\Omega; S^1) \) has no jumps by an “angle” larger than \(\pi \).

The aim of this paper is to prove an existence result, according to the same interpretation, for an arbitrary dimension of the target sphere. We consider (1-4) in the first hyperoctant of the \(N \)-sphere:

\[\mathbb{A} = S^{N-1} := \{(x_1, \ldots, x_N) \in S^{N-1} : x_i \geq 0 \text{ for } i = 1, \ldots, N \} \]

(a natural assumption in the context of image processing; see above). Note that in this case, for every pair \(u_-, u_+ \in S^{N-1} \) there exists a unique geodesic midpoint, \(u_\# = (u_+ + u_-)/|u_+ + u_-| \) (see Definition 3.1). Hence we may define the geodesic representative of \(u \in BV(\Omega; S^{N-1}) \), \(u_\# := u^*/|u^*| \) (see Definition 3.2 and Remark 3.3) and the set of measures in (1-5) reduces to the singleton \(u(t)_\# |Du(t)| \).

The complete definition of a solution and the statement of the main result are given in Definition 3.4 and Theorem 3.6, respectively. We obtain a solution as the limit of a sequence of solutions to the following approximating problems (see Proposition 3.7 and Lemma 3.8):

\[
\begin{cases}
 u^e_t = \text{div} Z^e + \mu^e, & u^e \in S^{N-1}_+ \quad \text{in } \Omega_T, \\
 [Z^e, v] = 0 & \text{on } S_T,
 \\
 u^e(0, \cdot) = u_0^e(\cdot) & \text{in } \Omega,
\end{cases}
\]

where

\[Z^e = \varepsilon^a \nabla u^e + \frac{\nabla u^e}{\sqrt{\nabla u^e|^2 + \varepsilon^2}}, \quad \mu^e = \varepsilon^a u^e |\nabla u^e|^2 + u^e \frac{|\nabla u^e|^2}{\sqrt{\nabla u^e|^2 + \varepsilon^2}}, \quad (1-6) \]

and the initial data suitably converge to a given \(u_0 \in BV(\Omega; S^{N-1}_+) \) (see Lemma 3.9). The strategy we follow is completely different from that in [Giacomelli et al. 2013a], where the special structure of \(S^1 \) was heavily used. Its core, neglecting any technicality and concentrating on the crucial issues, may be summarized as follows (see also [Giacomelli et al. 2013b] for a slightly more detailed discussion). By fairly standard compactness arguments, we obtain convergence of \(u^e, Z^e, \) and \(\mu^e \) to \(u, Z, \) and \(\mu, \) respectively (see Step 1 in the proof of Theorem 3.6). The functions \(u \) and \(Z \) can be seen to satisfy, for a.e. \(t \in [0, T] \),

\[u_t(t) - \text{div} Z(t) = \mu(t), \quad \mu = * (Z \wedge u \wedge Du) \quad \text{and} \quad |\mu(t)| \leq |Du(t)| \quad \text{as measures for a.e. } t \in [0, T] \quad (1-7) \]

Then we show, by a relatively soft argument, which nevertheless requires quite a few preliminaries, that
(see Step 2 in the proof of Theorem 3.6). Hence, in order to identify μ it suffices to show that

$$u(t)_{g} \cdot \frac{\mu(t)}{|Du(t)|} \geq 1 \quad \text{for a.e. } t \in [0, T],$$

(1-8)

where $\mu(t)/|Du(t)|$ denotes the Radon–Nikodým derivative of $\mu(t)$ with respect to $|Du(t)|$. Indeed, (1-7) and simple vectorial identities then imply that

$$\mu(t) = u(t)_{g} |Du(t)| \quad \text{for a.e. } t \in [0, T]$$

(see Step 6 in the proof of Theorem 3.6). In view of (1-6), the lower bound (1-8) for the diffuse part of μ follows (see Step 4 in the proof of Theorem 3.6) from a suitable modification of a relaxation result [Alicandro et al. 2007], applied to each of the components of

$$\mathcal{F}(v) := \int_{\Omega} v(x)|\nabla v(x)| \, dx$$

(see Section 2F). On the other hand, the same argument would lead to a suboptimal lower bound on $\mu(t)$ over the jump set of $u(t)$ (see Remark 3.10). Moreover, the results in [Alicandro et al. 2007] cannot be directly applied to $u(t)_{g} \cdot \mu^e(t)$, since $u(t)_{g}$ is a discontinuous function (though a very special one). For these reasons, we revisit the blow-up argument in [Fonseca and Müller 1993] and the dimensional reduction argument in [Fonseca and Rybka 1992] to conclude that

$$u(t)_{g} \cdot \frac{\mu(t)}{|Du(t)|} \geq \frac{1}{|u(t)_{+}(x) - u(t)_{-}(x)|} \inf_{\gamma \in \tilde{\Gamma}_{N}} \int_{0}^{1} u(t)_{g}(x) \cdot \gamma(s)|\gamma'(s)| \, ds$$

(1-9)

for a.e. t and \mathcal{F}^{m-1}-a.e. $x \in J_{u(t)}$, where

$$\tilde{\Gamma}_{N} := \{ \gamma \in W^{1,1}((0, 1); \mathbb{S}_{+}^{N-1}) : \gamma(0) = u(t)_{-}(x), \gamma(1) = u(t)_{+}(x) \}$$

(1-10)

(see Step 5 in the proof of Theorem 3.6). The minimization problem which appears on the right-hand side of (1-9) is crucial in our argument. In Section 4 we argue that

$$\min_{\gamma \in \Gamma} \int_{0}^{1} u_{g} \cdot \gamma(s)|\gamma'(s)| \, ds = |u_{+} - u_{-}|,$$

where $\Gamma = \{ \gamma \in W^{1,1}((0, 1); \mathbb{S}_{+}^{N-1}) : \gamma(0) = u_{-}, \gamma(1) = u_{+} \}$

(1-11)

(see Theorem 4.1). Together with (1-9), (1-11) yields the lower bound (1-8) on the jump set of $u(t)$ too.

The minimization problem in (1-11) is equivalent to finding — and characterizing the length of — shortest paths between u_{-} and u_{+} in a Riemannian manifold with boundary whose metric penalizes the closeness to u_{g}. In addition, the metric may degenerate at a point of the manifold: for instance, if $N = 3$, $u_{-} = (0, 0, 1)$, and $u_{+} = (0, 1, 0)$, then $u_{g} \cdot (1, 0, 0) = 0$. In these respects, the minimization problem has a geometrical interest of its own.

It turns out that the minimum in (1-11) is achieved by the standard geodesic on \mathbb{S}_{+}^{N-1} connecting u_{-} and u_{+}; see Lemma 4.2. Nevertheless, the analysis of (1-11) is highly nontrivial for two reasons. Firstly, one has to characterize the length of candidate shortest paths which may in principle intersect and/or de-touch from the boundary of the manifold. Secondly, the functional in (1-11) is genuinely nonconvex:
indeed, besides the aforementioned standard geodesic, it always possesses a second smooth critical point, which we show not to be a shortest path. In addition, in the extreme cases in which \(u_+ \) and \(u_- \) are two distinct “vertices” of \(S^{N-1}_+ \), the functional in (1-11) possesses a second shortest path which is not a critical point: it follows the boundary of \(S^{N-1}_+ \) and passes through the point of degeneracy. For instance, if \(N = 3 \), \(u_- = (0, 0, 1) \), and \(u_+ = (0, 1, 0) \), then \(u_g = (0, 1, 1)/\sqrt{2} \) and the curve

\[
\gamma(s) = \begin{cases}
 (\sin(\pi s), 0, \cos(\pi s)) & \text{if } s \in [0, 1/2], \\
 (\sin(\pi s), -\cos(\pi s), 0) & \text{if } s \in (1/2, 1]
\end{cases}
\]

is such that

\[
\int_0^1 u_g \cdot \gamma(s) |\gamma'(s)| \, ds = 2 \int_0^{1/2} \frac{\cos(\pi s)}{\sqrt{2}} \pi \, ds = \sqrt{2} = |u_+ - u_-|.
\]

Finally, we note that if the paths in \(\Gamma \) are allowed to take values in a set \(\mathbb{A} \) which contains \(S^{N-1}_+ \), then in general the standard geodesic is not a minimizer and (1-11) does not hold; an example is given in Remark 4.4.

The paper is organized as follows. In Section 2 we collect the definitions and results which we need concerning multivector fields, functions of bounded variations, a generalized Green’s formula, tensor fields, and lower semicontinuity of integral functionals. In Section 3 we introduce the concept of and prove the existence of a solution to (1-4). Section 4 is devoted to the minimization problem in (1-11).

2. Preliminaries

In this section we introduce some notation and some preliminary results that we need in the sequel.

General notations. Throughout this paper \(\mathbb{H}^{m-1} \) denotes the \((m-1)\)-dimensional Hausdorff measure and \(\mathcal{L}^m \) the \(m \)-dimensional Lebesgue measure. We denote by \(\mathcal{M}(\Omega; \mathbb{R}^N) \) the space of \(\mathbb{R}^N \)-valued finite Radon measures on \(\Omega \); see [Ambrosio et al. 2000, Definition 1.40]. We recall that \(\mathcal{M}(\Omega; \mathbb{R}^N) \) is the dual space of \(C_0(\Omega; \mathbb{R}^N) \). Throughout, the subscript \(0 \) denotes spaces of compactly supported functions. We denote \(\mathcal{D}(\Omega; \mathbb{R}^N) := C_0^\infty(\Omega; \mathbb{R}^N) \). When \(N = 1 \), we often do not specify the target space (for example, \(\mathcal{M}(\Omega) = \mathcal{M}(\Omega; \mathbb{R}) \)). Finally, if \(\mathbb{A} \subset \mathbb{R}^N \) is compact and \(\mathcal{Y}(\Omega; \mathbb{R}^N) \) is a space of functions, we sometimes use the notation \(\mathcal{Y}(\Omega; \mathbb{A}) := \{ u \in \mathcal{Y}(\Omega; \mathbb{R}^N) : u(x) \in \mathbb{A} \text{ for } \mathcal{L}^m \text{-a.e. } x \in \Omega \} \).

2A. Multivectors. Here we recall some definitions and basic properties about multivectors that we need in our analysis. We refer to, for example, [Federer 1969, Chapter 1; Darling 1994, Chapter 1] for details.

The spaces \(\Lambda_0(\mathbb{R}^N) \) and \(\Lambda_1(\mathbb{R}^N) \) coincide with \(\mathbb{R} \) and \(\mathbb{R}^N \), respectively. For \(2 \leq k \leq \mathbb{N} \), the \(k \)-th exterior power of \(\mathbb{R}^N \), denoted by \(\Lambda_k(\mathbb{R}^N) \), is a set spanned by elements of the form

\[
u_1 \wedge \cdots \wedge u_k, \quad u_i \in \mathbb{R}^N, \quad i = 1, \ldots, k
\]

(elements of this form are called “generators”) and subject to the following rules:

1. \((av + bw) \wedge u_2 \wedge \cdots \wedge u_k = a(v \wedge u_2 \wedge \cdots \wedge u_k) + b(w \wedge u_2 \wedge \cdots \wedge u_k)\).
2. \(u_1 \wedge \cdots \wedge u_k\) changes sign if two entries are transposed.
(3) For any basis \(\{ e_1, \ldots, e_n \} \) of \(\mathbb{R}^N \), \(\{ e_\alpha := e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_k} : \alpha \in I(k, N) \} \) is a basis for \(\Lambda_k(\mathbb{R}^N) \).

Here we have used the standard notation for ordered multiindexes:

\[I(k, N) = \{ \alpha = (\alpha_1, \ldots, \alpha_k) : \alpha_i \in \mathbb{Z}, \ 1 \leq \alpha_1 < \cdots < \alpha_k \leq N \}. \] (2-1)

The elements of \(\Lambda_k(\mathbb{R}^N) \) are called multivectors (or \(k \)-vectors), and \(\Lambda_k(\mathbb{R}^N) \) is a vector space of dimension \(\binom{N}{k} \). We will use the well-known equality [Darling 1994, Formula 1.68]

\[|a|^2|b|^2 = (a \cdot b)^2 + (a \wedge b)^2 \quad \text{for all } a, b \in \mathbb{R}^N. \] (2-2)

Given \(k, p \in \{0, \ldots, N\} \) with \(k + p \leq N \), there exists a unique bilinear map \((\lambda, \mu) \mapsto \lambda \wedge \mu \) from \(\Lambda_k(\mathbb{R}^N) \times \Lambda_p(\mathbb{R}^N) \) to \(\Lambda_{k+p}(\mathbb{R}^N) \), whose effect on generators is

\[(u_1 \wedge u_2 \wedge \cdots \wedge u_k) \wedge (v_1 \wedge v_2 \wedge \cdots \wedge v_p) = u_1 \wedge u_2 \wedge \cdots \wedge u_k \wedge v_1 \wedge v_2 \wedge \cdots \wedge v_p. \]

This map satisfies

\[\lambda \wedge \mu = (-1)^{-kp}(\mu \wedge \lambda) \quad \text{for } \lambda \in \Lambda_k(\mathbb{R}^N), \ \mu \in \Lambda_p(\mathbb{R}^N). \] (2-3)

The Hodge-star operator is an isomorphism from \(\Lambda_k(\mathbb{R}^N) \) to \(\Lambda_{N-k}(\mathbb{R}^N) \), defined on the basis as

\[*(e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_k}) := e_{\alpha_{k+1}} \wedge \cdots \wedge e_{\alpha_N}, \] (2-4)

where \(\{ \alpha_1, \ldots, \alpha_N \} \) has positive signature. In particular, in what follows we will systematically identify \(\Lambda_{N-1}(\mathbb{R}^N) \) with \(\mathbb{R}^N \). We will use the following well-known formulas:

\[*(\star \lambda) = (-1)^{k(N-k)}\lambda \quad \text{for all } \lambda \in \Lambda_k(\mathbb{R}^N) \] (2-5)

(see, for example, [Darling 1994, (1.64)]) and

\[a \wedge *(b \wedge c) = (a \cdot c) * b - (a \cdot b) * c \quad \text{for all } a, b, c \in \mathbb{R}^N \] (2-6)

(see, for example, [Darling 1994, Table 1.2]). It follows from (2-3), (2-6), and (2-5) that

\[|b|^2a = (a \cdot b)b - *(a \wedge b) \wedge b \quad \text{for all } a, b \in \mathbb{R}^N. \] (2-7)

Introducing the norm

\[|\lambda|_k = \left(\sum_{\alpha \in I(k, N)} |\lambda_\alpha|^2 \right)^{1/2}, \quad \text{where } \lambda = \sum_{\alpha \in I(k, N)} \lambda_\alpha e_\alpha \] (2-8)

and using (2-4), it is immediate to see that

\[|\star \lambda|_{N-k} = |\lambda|_k \quad \text{for any } \lambda \in \Lambda_k(\mathbb{R}^N). \] (2-9)

Finally, we recall that, given \(\lambda \in \Lambda_k(\mathbb{R}^N) \) and \(\eta \in \Lambda_p(\mathbb{R}^N) \) such that one of them is a generator, we have

\[|\lambda \wedge \eta|_{k+p} \leq |\lambda|_k |\eta|_p; \] (2-10)

see [Federer 1969, p. 32].
2B. Vector-valued functions. Let \((X, \| \cdot \|)\) a Banach space with dual \(X'\) and let \(U \subset \mathbb{R}^d\) be a bounded open set endowed with the Lebesgue measure \(\mathcal{L}^d\). We denote by \(\langle \cdot, \cdot \rangle\) the pairing between \(X\) and \(X'\). A function \(u : U \to X\) is called simple if there exist \(x_1, \ldots, x_n \in X\) and \(U_1, \ldots, U_n \mathcal{L}^m\)-measurable subsets of \(U\) such that \(u = \sum_{i=1}^n x_i \chi_{U_i}\). The function \(u\) is called strongly measurable if there exists a sequence of simple functions \(\{u_n\}\) such that \(\|u_n(x) - u(x)\| \to 0\) as \(n \to +\infty\) for almost all \(x \in U\). If \(1 \leq p < \infty\), then \(L^p(U; X)\) stands for the space of \((\text{equivalence classes of})\) strongly measurable functions \(u : U \to X\) with

\[
\|u\|_p := \left(\int_U \|u(x)\|^p \, dx\right)^{1/p} < \infty.
\]

Endowed with this norm, \(L^p(U; X)\) is a Banach space. For \(p = \infty\), the symbol \(L^\infty(U; X)\) stands for the space of \((\text{equivalence classes of})\) strongly measurable functions \(u : U \to X\) such that

\[
\|u\|_\infty := \text{esssup}\{\|u(x)\| : x \in U\} < \infty.
\]

If \(U = (0, T)\), we write \(L^p(0, T; X) = L^p((0, T); X)\). For \(1 \leq p < \infty\), \(L^{p'}(0, T; X')\) \((1/p + 1/p' = 1)\) is isometric to a subspace of \((L^p(0, T; X))'\), with equality if and only if \(X'\) has the Radon–Nikodým property; see, for instance, [Dieudonné 1977].

We consider the vector space \(\mathcal{D}'(U; X) := C_0^\infty(U; X)\), endowed with the topology for which a sequence \(\varphi_n \to 0\) as \(n \to +\infty\) if there exists \(K \subset U\) compact such that \(\text{supp}(\varphi_n) \subset K\) for any \(n \in \mathbb{N}\) and \(D^\alpha \varphi_n \to 0\) uniformly on \(K\) as \(n \to +\infty\) for all multiindexes \(\alpha\). We denote by \(\mathcal{D}'(U; X)\) the space of distributions on \(U\) with values in \(X\), that is, the set of all linear continuous maps \(T : \mathcal{D}'(U; X) \to \mathbb{R}\). As is well known, \(L^p(U; X) \subset \mathcal{D}'(U; X)\) through the standard continuous injection. Given \(T \in \mathcal{D}'(U; X)\), the distributional derivative of \(T\) is defined by

\[
\langle D_i T, \varphi \rangle := -\langle T, \partial_i \varphi \rangle \quad \text{for any } \varphi \in \mathcal{D}(U; X) \text{ and any } i \in \{1, \ldots, d\}.
\]

General notations for matrices. If \(A = (a_i^\ell)\) is an \(N \times m\) matrix, we write \(a^\ell = (a_1^\ell, \ldots, a_m^\ell)\) for \(1 \leq \ell \leq N\) and \(a_i = (a_i^1, \ldots, a_i^N)\) for \(1 \leq i \leq m\). If \(B = (b_i^\ell)\) is also an \(N \times m\) matrix, we let

\[
A : B = \sum_{\ell=1}^N \sum_{i=1}^m a_i^\ell b_i^\ell \quad \text{and} \quad |A| = (A : A)^{1/2} = \left(\sum_{\ell=1}^N \sum_{i=1}^m (a_i^\ell)^2\right)^{1/2}.
\]

Given \(A = (a_1, \ldots, a_m) \in \mathbb{R}^{N \times m}\) and \(b \in \mathbb{R}^N\), we let

\[
A \wedge b := (a_1 \wedge b, \ldots, a_m \wedge b),
\]

\[
*(A \wedge b) := *(a_1 \wedge b), \ldots, *(a_m \wedge b).
\]

2C. Functions of bounded variation. A vector-field \(u \in L^1(\Omega; \mathbb{R}^N)\) has bounded variation, and we write \(u \in BV(\Omega; \mathbb{R}^N)\), if there is an \(N \times m\) matrix \(Du\), whose components \(D_l u^\ell\) are finite Radon measures, such that
\[
\sum_{\ell=1}^{N} \int_{\Omega} u^\ell \text{div} \phi^\ell \, dx = -\sum_{\ell=1}^{N} \sum_{i=1}^{m} \int_{\Omega} \phi^\ell_i \, dD_i u^\ell \quad \text{for all } \phi \in (C_0^1(\Omega; \mathbb{R}^N))^m.
\]

Its variation measure \(|Du|\) is a finite Radon measure defined on open sets \(U \subseteq \Omega\) by
\[
|Du|(U) = \sup \left\{ \sum_{\ell=1}^{N} \int_{U} u^\ell \text{div} \phi^\ell \, dx : \phi \in (C_0^1(U; \mathbb{R}^N))^m, \|\phi\|_\infty \leq 1 \right\}.
\]

The matrix-valued Radon measure \(Du\) is decomposed into three mutually orthogonal measures (see [Ambrosio et al. 2000; Evans and Gariepy 1992; Ziemer 1989]):
\[
Du = \nabla u \mathcal{L}^m + D^e u + D^j u,
\]

where \(\nabla u\) denotes the Radon–Nikodym derivative of \(Du\) with respect to \(\mathcal{L}^m\). The Cantor part \(D^e u\) is supported on the set of Lebesgue points of \(u\), \(\Omega \setminus S_u\), that is, those points \(x \in \Omega\) for which there exists \(\tilde{u}(x) \in \mathbb{R}^N\) such that
\[
\lim_{\rho \downarrow 0} \frac{1}{\mathcal{L}^m(B_{\rho}(x))} \int_{B_{\rho}(x)} |u(y) - \tilde{u}(x)| \, dy = 0.
\]

The jump part \(D^j u\) is supported on the set of approximate jump points of \(u\), \(J_u\), that is, those points \(x \in \Omega\) for which there exist \(u_+ (x) \neq u_- (x) \in \mathbb{R}^N\) and \(v_u(x) \in S^{m-1}\) such that
\[
\lim_{\rho \downarrow 0} \frac{1}{\mathcal{L}^m(B_{\rho}^\pm(x, v_u(x)))} \int_{B_{\rho}^\pm(x, v_u(x))} |u(y) - u_\pm (x)| \, dy = 0,
\]

where
\[
B_{\rho}^\pm(x, v_u(x)) = \{y \in B_{\rho}(x) : \langle y - x, v_u(x) \rangle \geq 0\}.
\]

The jump set \(J_u\) is a Borel subset of \(S_u\) that satisfies \(\mathcal{H}^{m-1}(S_u \setminus J_u) = 0\). The precise representative \(u^* : \Omega \setminus (S_u \setminus J_u) \to \mathbb{R}^N\) of \(u\) is defined to be equal to \(\tilde{u}\) on \(\Omega \setminus S_u\) and equal to \((u_- + u_+)/2\) on \(J_u\). In what follows, we identify \(u = \tilde{u} = u^*\) on \(\Omega \setminus S_u\).

2D. A generalized Green’s formula. Let
\[
X_{\mathcal{H}}(\Omega) = \{z \in L^\infty(\Omega; \mathbb{R}^m) : \text{div} \, z \in \mathcal{M}(\Omega)\}
\]

and
\[
\mathcal{M}(\Omega; \mathbb{R}^N) := \{\mu \in \mathcal{M}(\Omega; \mathbb{R}^N) : |\mu|(B) = 0 \text{ for any Borel set } B \subset \Omega : \mathcal{H}^{m-1}(B) = 0\}.
\]

In [Anzellotti 1983, Theorem 1.2] (see also [Andreu-Vaillo et al. 2004; Chen and Frid 1999]), the weak trace on \(\partial \Omega\) of the normal component of \(z \in X_{\mathcal{H}}(\Omega)\) is defined. Namely, it is proved that there exists a linear operator \([z, v] : X_{\mathcal{H}}(\Omega) \to L^\infty(\partial \Omega)\) such that \(\|[z, v]\|_{L^\infty(\partial \Omega)} \leq \|z\|_{L^\infty(\Omega)}\) for all \(z \in X_{\mathcal{H}}(\Omega)\) and \([z, v]\) coincides with the pointwise trace of the normal component if \(z\) is smooth:
\[
[z, v](x) = z(x) \cdot v(x) \quad \text{for all } x \in \partial \Omega \text{ if } z \in C^1(\overline{\Omega}, \mathbb{R}^m).
\]
It follows from [Chen and Frid 1999, Proposition 3.1] or [Ambrosio et al. 2005, Proposition 3.4] that
\begin{equation}
\text{div } z \in \mathcal{M}_{\mathcal{H}}(\Omega) \quad \text{for all } z \in X_{\mathcal{H}}(\Omega).
\end{equation}
Therefore, given $z \in X_{\mathcal{H}}(\Omega)$ and $u \in BV(\Omega) \cap L^\infty(\Omega)$, the functional $(z, Du) \in \mathcal{D}'(\Omega)$ given by
\begin{equation}
\langle (z, Du), \varphi \rangle := -\int_{\Omega} u^* \varphi \, d(\text{div } z) - \int_{\Omega} uz \nabla \varphi \, dx
\end{equation}
is well defined, and the following holds (in [Caselles 2011], see Lemma 5.1, Theorem 5.3, and the discussion after Lemma 5.4):

Lemma 2.1. Let $z \in X_{\mathcal{H}}(\Omega)$ and $u \in BV(\Omega) \cap L^\infty(\Omega)$. Then the functional $(z, Du) \in \mathcal{D}'(\Omega)$ defined by (2-13) is a Radon measure which is absolutely continuous with respect to $|Du|$. Furthermore,
\begin{equation}
\int_{\Omega} u^* \, d(\text{div } z) + (z, Du)(\Omega) = \int_{\partial \Omega} [z, v] \cdot u \, d\mathcal{H}^{m-1}
\end{equation}
and
\begin{equation}
\text{div}(zu) = u^* \text{div } z + (z, Du) \quad \text{as measures.}
\end{equation}

We will use the vector-valued version of Lemma 2.1. To this aim, we introduce the space
\begin{equation*}
X^N_{\mathcal{H}}(\Omega) = \{ Z = (z^1, \ldots, z^N)^T : z^\ell \in X_{\mathcal{H}}(\Omega) \text{ for } \ell = 1, \ldots, N \}.
\end{equation*}
Given $Z \in X^N_{\mathcal{H}}(\Omega)$ and $u \in BV(\Omega; \mathbb{R}^N) \cap L^\infty(\Omega; \mathbb{R}^N)$, we use the notation
\begin{align*}
\text{div } Z &:= (\text{div } z^1, \ldots, \text{div } z^N), \\
[Z, v] &:= ([z^1, v], \ldots, [z^N, v]), \\
Z: Du &:= \sum_{\ell=1}^N (z^\ell, Du^\ell).
\end{align*}

Then, as an immediate consequence of (2-12) and Lemma 2.1, we have:

Corollary 2.2. Let $Z \in X^N_{\mathcal{H}}(\Omega)$. Then
\begin{equation*}
\text{div } Z \in \mathcal{M}_{\mathcal{H}}(\Omega; \mathbb{R}^N).
\end{equation*}
Furthermore, for any $u \in BV(\Omega; \mathbb{R}^N) \cap L^\infty(\Omega; \mathbb{R}^N)$, $Z: Du$ is a Radon measure which is absolutely continuous with respect to $|Du|$, and
\begin{equation}
\int_{\Omega} u^* \cdot d(\text{div } Z) + (Z: Du)(\Omega) = \int_{\partial \Omega} [Z, v] \cdot u \, d\mathcal{H}^{m-1}
\end{equation}
and
\begin{equation}
\text{div}(Z^T u) = u^* \cdot \text{div } Z + Z: Du \quad \text{as measures.}
\end{equation}
2E. **Multivector fields.** Let \(U \subset \mathbb{R}^d \). A multivector distribution in \(U \) is a linear continuous map \(\lambda \in \mathcal{D}'(U; \Lambda_k(\mathbb{R}^N)) \) (see Section 2B). It may be expressed in terms of the basis (3) as
\[
\lambda = \sum_{\alpha \in I(k, N)} \lambda_\alpha e_\alpha \quad \text{with } \lambda_\alpha \in \mathcal{D}'(U; \mathbb{R}^N) \text{ for any } \alpha \in I(k, N).
\]
Then, according to (2-11),
\[
D_i \lambda = \sum_{\alpha \in I(k, N)} D_i \lambda_\alpha e_\alpha \quad \text{for any } i \in \{1, \ldots, d\}.
\] (2-16)

From (2-16), the following two identities are easily seen to hold for \(k, p \in \mathbb{N} \) and \(i \in \{1, \ldots, d\} \):
\[
D_i(\lambda \wedge \eta) = D_i \lambda \wedge \eta + \lambda \wedge D_i \eta \quad \text{(2-17)}
\]
for any \(\lambda \in L^2(U; \Lambda_k(\mathbb{R}^N)) \) such that \(D_i \lambda \in L^2(U; \Lambda_k(\mathbb{R}^N)) \) and any \(\eta \in L^2(U; \Lambda_p(\mathbb{R}^N)) \) such that \(D_i \eta \in L^2(U; \Lambda_p(\mathbb{R}^N)) \);
\[
(D_i \lambda) = D_i(\lambda) \quad \text{for any } \lambda \in \mathcal{D}'(U; \Lambda_k(\mathbb{R}^N)).
\] (2-18)

For any \(k \in \mathbb{N} \), \((\Lambda_k(\mathbb{R}^N))^m \) is a Banach space. We use the norm
\[
||\mathcal{A}|| := \left(\sum_{i=1}^m |\mathcal{A}_i|^2_k \right)^{1/2}
\]
with \(|\cdot|_k \) given by (2-8).

We will now state and prove the analogue of Corollary 2.2 for a multivector field
\[
\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m) \in L^\infty(\Omega; (\Lambda_k(\mathbb{R}^N))^m).
\]
We define
\[
\text{div } \mathcal{A} := \sum_{i=1}^m D_i(\mathcal{A}_i).
\] (2-19)

Square-integrability of \text{div } \mathcal{A} suffices for our purposes. Hence, we introduce the space
\[
\mathcal{X}_2(\Omega; \Lambda_{N-2}(\mathbb{R}^N)) := \{ \mathcal{A} \in L^\infty(\Omega; (\Lambda_{N-2}(\mathbb{R}^N))^m) : \text{div } \mathcal{A} \in L^2(\Omega; \Lambda_{N-2}(\mathbb{R}^N)) \}.
\]

The following holds:

Lemma 2.3. Let \(\mathcal{A} \in \mathcal{X}_2(\Omega; \Lambda_{N-2}(\mathbb{R}^N)) \) and consider \(u \in \text{BV}(\Omega; \mathbb{R}^N) \cap L^2(\Omega; \mathbb{R}^N) \). Then the functional
\[
*(\mathcal{A} \wedge Du) : \mathcal{D}(\Omega; \mathbb{R}^N) \to \mathbb{R}
\]
defined by
\[
(*\mathcal{A} \wedge Du)(\Phi) := -\int_\Omega (*)\mathcal{A} \wedge u \cdot \Phi \, dx - \sum_{i=1}^m \int_\Omega *\mathcal{A}_i \wedge u \cdot \partial_i \Phi \, dx \quad \text{(2-20)}
\]
is an \(\mathbb{R}^N \)-valued Radon measure on \(\Omega \), absolutely continuous with respect to \(\lvert Du \rvert \), with
\[
\lvert * \mathcal{A} \wedge Du \rvert(B) \leq \lVert \mathcal{A} \rVert_\infty \lvert Du \rvert(B) \quad \text{for any Borel set } B \subseteq \Omega.
\] (2-21)
Furthermore,
\[\text{div}(\{\mathcal{A} \land u\}) = \{\mathcal{A} \land Du\} + \{\text{div } \mathcal{A} \land u\} \mathcal{L}^m \text{ as measures.} \] (2-22)

Proof. Since Ω has compact Lipschitz boundary, it follows from [Ambrosio et al. 2000, Theorem 3.21, Remark 3.22, and Corollary 3.80] that the sequence \(u_n := (Tu) \ast \rho_n \in C^\infty(\overline{\Omega}) \) (here \(T \) denotes an extension operator) is such that \(u_n \to u \) in \(\text{BV}(\Omega; \mathbb{R}^N) \), \(\int_\Omega |\nabla u_n| \, dx \to |Du|(\Omega), \) and \(u_n \to u^* \mathcal{H}^{m-1} \text{-a.e. in } \overline{\Omega}. \) Furthermore, by construction and since \(u \in L^2(\Omega; \mathbb{R}^N) \), we have \(u_n \to u \) in \(L^2(\Omega; \mathbb{R}^N) \). Then

\[
\{\{\mathcal{A} \land Du\}, \Phi\} \overset{(2-20)}{=} \lim_{n \to \infty} \left(\int_\Omega \{\text{div } \mathcal{A} \land u_n\} \cdot \Phi \, dx + \sum_{i=1}^m \int_\Omega \{\mathcal{A}_i \land \mathcal{A}_i \cdot \partial_i \Phi \, dx \right).
\]

Integrating by parts and using (2-18), we obtain

\[
\{\{\mathcal{A} \land Du\}, \Phi\} = - \lim_{n \to \infty} \left(\int_\Omega \{\text{div } \mathcal{A} \land u_n\} \cdot \Phi \, dx - \sum_{i=1}^m \int_\Omega \{\partial_i (\mathcal{A}_i \land u_n)\} \cdot \Phi \, dx \right)
\]

\[
\overset{(2-17)}{=} \lim_{n \to \infty} \sum_{i=1}^m \int_\Omega \{\mathcal{A}_i \land \partial_i u_n\} \cdot \Phi \, dx.
\]

Therefore, applying the Hölder and Cauchy–Schwarz inequalities,

\[
\{\{\mathcal{A} \land Du\}, \Phi\} \overset{(2-9)}{\leq} \|\Phi\|_\infty \lim_{n \to \infty} \sum_{i=1}^m \int_\Omega |\mathcal{A}_i \land \partial_i u_n| \, dx
\]

\[
\overset{(2-10)}{\leq} \|\Phi\|_\infty \lim_{n \to \infty} \int_\Omega \sum_{i=1}^m |\partial_i u_n||\mathcal{A}_i| \, dx
\]

\[
\leq \|\Phi\|_\infty \|\mathcal{A}\|_\infty \lim_{n \to \infty} \int_\Omega |\nabla u_n| \left(\sum_{i=1}^m |\mathcal{A}_i|_{N-2}^2 \right)^{1/2} \, dx
\]

\[
\leq \|\Phi\|_\infty \|\mathcal{A}\|_\infty \lim_{n \to \infty} \int_\Omega |\nabla u_n| \, dx
\]

\[
= \|\Phi\|_\infty \|\mathcal{A}\|_\infty |Du|(\Omega).
\]

The arbitrariness of \(\Phi \) completes the proof of (2-21). It follows from (2-20) and (2-19) that \(\text{div}(\{\mathcal{A} \land u\}) \) is also an \(\mathbb{R}^N \)-valued Radon measure in \(\Omega \), and (2-22) follows from (2-19).

2F. Lower semicontinuity of integral functionals over \(W^{1,1}(\Omega; \mathbb{S}^N_{+}) \). Let \(f : \Omega \times \mathbb{S}^N_{+} \to \mathbb{R}_+ \) and consider the energy functional defined in \(L^1(\Omega; \mathbb{S}^N_{+}) \) by

\[
\mathcal{F}_f(v) := \begin{cases}
\int_\Omega f(x, v(x))|\nabla v(x)| \, dx & \text{if } v \in W^{1,1}(\Omega; \mathbb{S}^N_{+}), \\
+\infty & \text{otherwise}.
\end{cases}
\]

The purpose of this section is to restate, to the extent we need in the present setting, a few lower semicontinuity results obtained in [Fonseca and Rybka 1992; Alicandro et al. 2007] (see also [Giaquinta...}
and Mucci 2006] for related results when the target space is a general manifold). We consider the following hypotheses for f:

(H1) f is continuous and nonnegative;

(H2) (uniform boundedness) a positive constant C_1 exists such that

$$|f(x, s)| \leq C_1 \quad \text{for all } (x, s) \in \Omega \times \mathbb{S}^{N-1}_+;$$

(H3) for every compact set $U \subset \Omega$, there exist a continuous function ω, with $\omega(0) = 0$, such that

$$|f(x, s) - f(x', s')| = \omega(|x - x'| + |s - s'|) \quad \text{for all } (x, s), (x', s') \in U \times \mathbb{S}^{N-1}_+.$$

For $\zeta \in \mathbb{R}^m$ such that $|\zeta| = 1$, we define $Q_{\zeta} := R_{\zeta}\left[-\frac{1}{2}, \frac{1}{2}\right]^m$, where R_{ζ} denotes a rotation such that $R_{\zeta}\varepsilon_m = \zeta$. Given $a, b \in \mathbb{S}^{N-1}_+$, we set

$$K_f(x, a, b, \zeta) := \inf \left\{ \int_{Q_{\zeta}} f(x, \nu(y))|\nabla \nu(y)| \, dy : \nu \in \mathcal{P}(a, b, \zeta) \right\}, \quad (2-23)$$

where

$$\mathcal{P}(a, b, \zeta) := \left\{ \nu \in W^{1,1}(Q_{\zeta}; \mathbb{S}^{N-1}_+) : \nu(x) = a \text{ if } x \cdot \zeta = -\frac{1}{2}, \quad \nu(x) = b \text{ if } x \cdot \zeta = \frac{1}{2} \right\}. \quad (2-24)$$

Lemma 2.4. Assume (H1). Then

$$K_f(x, a, b, \zeta) = \inf \left\{ \int_0^1 f(x, \gamma(t))|\dot{\gamma}(t)| \, dt : \gamma \in W^{1,1}((0, 1); \mathbb{S}^{N-1}_+), \quad \gamma(0) = a, \quad \gamma(1) = b \right\}. \quad (2-25)$$

The proof of Lemma 2.4 is identical to that of [Fonseca and Rybka 1992, Proposition 2.6], where the same result has been proved (under more general assumptions on the energy density) when the target space is \mathbb{R}^N rather than \mathbb{S}^{N-1}_+. Therefore we omit it.

In order to obtain a lower bound on the lower semicontinuous envelope of \mathcal{F}_f, in particular of its jump part, one needs an approximation lemma which relates a generic sequence in $W^{1,1}(Q_{\zeta}; \mathbb{S}^{N-1}_+)$, converging to a step function, to a nongeneric one in $\mathcal{P}(a, b, \zeta)$:

Lemma 2.5. Assume (H1) and (H2).

Let $a, b \in \mathbb{S}^{N-1}_+$ and let $\nu_n \in W^{1,1}(Q_{\zeta}; \mathbb{S}^{N-1}_+)$ such that $\nu_n \rightharpoonup u_0$ in $L^1(Q_{\zeta}; \mathbb{S}^{N-1}_+)$, where

$$u_0(x) := \begin{cases} b & \text{if } \langle x, \zeta \rangle \geq 0, \\ a & \text{if } \langle x, \zeta \rangle < 0. \end{cases}$$

Then a sequence $w_n \in \mathcal{P}(a, b, \zeta)$ exists such that $w_n \rightharpoonup u_0$ in $L^1(Q_{\zeta}; \mathbb{S}^{N-1}_+)$ and

$$\liminf_{n \to \infty} \int_{Q_{\zeta}} f(x, \nu_n)|\nabla \nu_n| \, dx \geq \limsup_{n \to \infty} \int_{Q_{\zeta}} f(x, w_n)|\nabla w_n| \, dx.$$

Lemma 2.5 may be proved following line by line that of [Alicandro et al. 2007, Lemma 5.2], where the same result was proved (under more general assumptions on the energy density) when the target space is \mathbb{S}^{N-1}_+, and therefore we omit it. We just mention that the proof may in fact be simplified in the present
setting by using the standard projection onto \mathbb{S}^{N-1}_+ (see estimate (3-23) and Lemma 3.9 below for a related approximation result).

Let \mathcal{G}_f be the functional defined in $\text{BV}(\Omega; \mathbb{S}^{N-1}_+)$ by

$$
\mathcal{G}_f(v) := \int_{\Omega} f(x, v)|\nabla v| \, dx + \int_{J(v)} K_f(x, v_-, v_+, v_\nu) \, d\mathcal{H}^{m-1} + \int_{\Omega} f(x, v) \, d|D^c v|
$$

(and $+\infty$ elsewhere). Under an additional coercivity assumption on f, and when the target space is \mathbb{S}^{N-1}_+, in [Alicandro et al. 2007, Proposition 5.1] it is proved that \mathcal{G}_f coincides with the lower semicontinuous envelope of \mathcal{G}_f with respect to the L^1-convergence. Of course, coercivity is crucial for the upper bound in that it guarantees that any sequence along which \mathcal{G}_f is bounded has a convergent subsequence. However, it may be dropped when only a lower bound is needed, provided it is a priori known that a sequence has good convergence properties:

Proposition 2.6. Let f satisfy (H1)–(H3) and let $v_n \in W^{1,1}(\Omega; \mathbb{S}^{N-1}_+)$ such that $v_n \rightharpoonup v \in \text{BV}(\Omega; \mathbb{S}^{N-1}_+)$ and $v_n \to v$ in $L^1(\Omega; \mathbb{S}^{N-1}_+)$. Then

$$
\mathcal{G}_f(v) \leq \liminf_{n \to \infty} \mathcal{G}_f(v_n).
$$

Given Lemma 2.5, the proof follows line by line that of [Alicandro et al. 2007, Proposition 5.1], and the difference between the target spaces (\mathbb{S}^{N-1}_+ versus \mathbb{S}^{N-1}_+) is harmless. Therefore we omit it.

3. Existence of solutions

In this section we introduce the notion of solutions to (1-4) and we prove their existence.

As is mentioned in Section 2C, on its jump set J_u a function $u \in \text{BV}(\Omega; \mathbb{R}^N)$ has a jump discontinuity between two distinct values, u_+ and u_-, and the value of the precise representative of u is given by $(u_+ + u_-)/2$. Note that $(u_+ + u_-)/2$ is the midpoint of the segment which connects u_+ and u_-. In this sense, $(u_+ + u_-)/2$ has natural counterparts in \mathbb{S}^{N-1} endowed with the standard geodesic distance d_g on \mathbb{S}^{N-1}, the geodesic midpoints:

Definition 3.1. Let A be a geodesically convex subset of \mathbb{S}^{N-1} and let $u_-, u_+ \in A$. A point $u_g \in A$ is called a geodesic midpoint on A between u_- and u_+ if

(i) u_g belongs to a greatest circle of \mathbb{S}^{N-1} passing through u_- and u_+, and

(ii) $d_g(u_g, u_-) = d_g(u_g, u_+)$.

In particular, when $A = \mathbb{S}^{N-1}_+$, geodesic midpoints are uniquely determined:

$$
u_g = \frac{u_- + u_+}{|u_- + u_+|} \quad \text{for all } u_-, u_+ \in \mathbb{S}^{N-1}_+.
$$

Thus we can introduce the notion of geodesic representative of $u \in \text{BV}(\Omega; \mathbb{S}^{N-1}_+)$:
Definition 3.2. Let $u \in BV(\Omega; S^N_+)$. The geodesic representative $u_g : \Omega \setminus (S_u \setminus J_u) \to S^N_+$ of u is defined by

$$u_g = \begin{cases} u^* & \text{on } \Omega \setminus S_u, \\ u^*/|u^*| & \text{on } J_u. \end{cases}$$

Note that $u_g \in BV(\Omega; S^N_+)$ since u_+ and u_- are \mathcal{H}^{m-1}-measurable on J_u; see [Ambrosio et al. 2000, Proposition 3.69]. Hence the following Radon measures are well defined:

$$|u^*|Du := |\nabla u|^L_m + |D^e u| + |u^*| |u_+ - u_-| \mathcal{H}^{m-1} \llcorner J_u, \quad (3-1)$$

$$u_g Du := u(|\nabla u|^L_m + |D^e u|) + u_g |u_+ - u_-| \mathcal{H}^{m-1} \llcorner J_u. \quad (3-2)$$

Moreover, $u_g Du \in \mathcal{M}(\Omega; \mathbb{R}^N)$ (see Section 2D).

Remark 3.3. As shown in the proof of Lemma 3.9, the projections onto S^N_+ of the mollifications of u point-wise converge to u_g in Ω. In this sense, the geodesic representative u_g is a natural representative for BV-vector fields with values into S^N_+.

We are now ready to introduce the concept of solution for (1-4).

Definition 3.4. Let $\mathcal{A} = S^N_+$, $T > 0$, and $u_0 \in BV(\Omega; S^N_+)$. A function

$$u \in L^\infty(0, T; BV(\Omega; \mathbb{R}^N)) \cap C(0, T; L^1(\Omega; \mathbb{R}^N)), \quad u_t \in L^2(0, T; L^2(\Omega; \mathbb{R}^N))$$

is a solution to (1-4) in Q_T if $u(0) = u_0$, $u \in S^N_+$ a.e. in Q_T, and there exists a matrix-valued function $Z \in L^\infty(Q_T, \mathbb{R}^{N \times m})$, with $\|Z\|_\infty \leq 1$ and $Z(t) \in X^N_+(\Omega)$ for almost all $t \in (0, T)$, such that

$$u_t(t) - \text{div } Z(t) = u(t)_g |Du(t)| \quad \text{as measures for a.e. } t \in [0, T], \quad (3-3)$$

$$u_t(t) \wedge u(t) = \text{div}(Z(t) \wedge u(t)) \quad \text{in } L^2(\Omega; \Lambda_2(\mathbb{R}^N)) \text{ for a.e. } t \in [0, T], \quad (3-4)$$

$$Z^T u = 0 \quad \text{a.e. in } Q_T, \quad (3-5)$$

and

$$[Z(t), v] = 0 \quad \mathcal{H}^{m-1}-\text{a.e. on } \partial \Omega \text{ for a.e. } t \in [0, T]. \quad (3-6)$$

The next observation clarifies the concept of solution given in Definition 3.4.

Proposition 3.5. Let u be a solution of (1-4) in the sense of Definition 3.4. Then

$$Z(t) : Du(t) = |u(t)^*||Du(t)| \quad \text{as measures for a.e. } t \in (0, T). \quad (3-7)$$

Proof. We take any $\varphi \in \mathcal{D}(\Omega)$. Then

$$\int_\Omega \varphi \, d(Z(t) : Du(t)) = \int_\Omega \varphi u(t)^* \cdot d(\text{div } Z(t)) - \int_\Omega (Z(t)^T u(t)) \cdot \nabla \varphi \, dx$$

$$\stackrel{(2-15)}{=} - \int_\Omega \varphi u(t)^* \cdot d(\text{div } Z(t)) - \int_\Omega (Z(t)^T u(t)) \cdot \nabla \varphi \, dx$$

$$\stackrel{(3-5)}{=} \int_\Omega \varphi u(t)^* \cdot d(u_t(t) + u(t)_g |Du(t)|)$$

$$= \int_\Omega \varphi u(t)^* \cdot d(u(t)_g |Du(t)|),$$
where in the last line we have used the facts that $|u(t)| = 1$, $u, \in L^2(Q_T; \mathbb{R}^N)$ and the fact that $u(t) \cdot Du(t) \in \mathcal{M}(\Omega; \mathbb{R}^N)$ a.e. $t \in (0, T)$. Finally, by (3-1) we get

$$
\int_\Omega \varphi d(Z(t) : Du(t)) = \int_\Omega \varphi d(|\nabla u(t)|^2 + |D^e(u(t))|) + \int_{\Gamma_{\epsilon}(t)} \varphi |u(t)^+ - u(t)^-| d\mathcal{H}^{N-1}
$$

$$
= \int_\Omega \varphi d(|u(t)^+||Du(t)|). \quad \Box
$$

Our main result is the following existence theorem.

Theorem 3.6. For any $T > 0$ and any $u_0 \in BV(\Omega; \mathbb{S}^{N-1}_+)$, there exists a solution u to (1-4) in the sense of Definition 3.4.

To prove Theorem 3.6 we need to recall or establish several results. The first one follows as a particular case from [Barrett et al. 2008, Theorem 4.1, (4.24), and (4.25)] (with $\lambda = g = 0$ and $p = 2$).

Proposition 3.7. Let $\epsilon > 0$, $T > 0$, and $\alpha > 0$. If $u_0^\epsilon \in W^{1,2}(\Omega; \mathbb{S}^{N-1})$, then there exists $u^\epsilon \in L^\infty(0, T; W^{1,2}(\Omega; \mathbb{R}^N)) \cap W^{1,2}(0, T; L^2(\Omega; \mathbb{R}^N))$

such that $u^\epsilon(0, \cdot) = u_0^\epsilon$, $|u^\epsilon| = 1$ a.e. in Q_T, (3-8)

and u^ϵ is a weak solution to

$$
\begin{align*}
\{ u_t^\epsilon &= \text{div} Z^\epsilon + \mu^\epsilon \quad \text{in} \, Q_T, \\
[Z^\epsilon, v] &= 0 \quad \text{in} \, S_T,
\end{align*}
$$

(3-9)

where

$$
Z^\epsilon = \epsilon^{\alpha} \nabla u^\epsilon + \frac{\nabla u^\epsilon}{\sqrt{|\nabla u^\epsilon|^2 + \epsilon^2}} \quad \text{and} \quad \mu^\epsilon = \epsilon^{\alpha} u^\epsilon |\nabla u^\epsilon|^2 + u^\epsilon \frac{|\nabla u^\epsilon|^2}{\sqrt{|\nabla u^\epsilon|^2 + \epsilon^2}}
$$

(3-10)

in the sense that

$$
\int_0^T \int_\Omega (u_t^\epsilon \cdot v + Z^\epsilon : \nabla v - \mu^\epsilon \cdot v) \, dx \, dt = 0 \quad \text{for all} \, v \in C^1(\overline{Q_T}; \mathbb{R}^N). \quad (3-11)
$$

Furthermore,

$$
(Z^\epsilon)^T u^\epsilon = 0 \quad \text{a.e. in} \, Q_T, \quad (3-12)
$$

$$
u_t^\epsilon \cdot u^\epsilon = 0 \quad \text{a.e. in} \, Q_T, \quad (3-13)
$$

$$
u_t^\epsilon \wedge u^\epsilon = \text{div}(Z^\epsilon \wedge u^\epsilon), \quad (3-14)
$$

and

$$
J_\alpha^\epsilon(u^\epsilon(t)) + \int_0^t \int_{\Gamma_{T_s}} |u_t^\epsilon|^2 \, dx \, ds \leq J_\alpha^\epsilon(u_0) \quad \text{for a.e.} \, t \in [0, T], \quad (3-15)
$$

where the energy functional J_α^ϵ is defined as

$$
J_\alpha^\epsilon(v) := \epsilon^{\alpha} \int_\Omega |\nabla v(x)|^2 \, dx + \int_\Omega \sqrt{|\nabla v(x)|^2 + \epsilon^2} \, dx, \quad v \in W^{1,2}(\Omega; \mathbb{R}^N),
$$
and a positive ε-independent constant C exists such that

\[\| \text{div} Z^\varepsilon \|_{L^2(0,T;L^1(\Omega;\mathbb{R}^N))} \leq C, \] (3-16)

\[\| \text{div}(Z^\varepsilon \wedge u^\varepsilon) \|_{L^2(0,T;L^2(\Omega;\mathbb{R}^N))} \leq C, \] (3-17)

\[\varepsilon^{\alpha/2} \| \nabla u^\varepsilon(t) \|_{L^\infty(0,T;L^2(\Omega;\mathbb{R}^{N\times m}))} \leq C. \] (3-18)

We next show that if \(u_0^\varepsilon \) takes values in the first hyperoctant, then \(u^\varepsilon \) does too:

Lemma 3.8. If \(u_0^\varepsilon \in W^{1,2}(\Omega; \mathbb{S}^N_{+}) \), then the weak solution to Problem (3-9) given by Proposition 3.7 verifies \(u^\varepsilon \in \mathbb{S}^N_{+} \) a.e. in \(Q_T \).

Proof. Let \((s)^- = \max\{0, -s\} \) and let \((u^\varepsilon)^- = ((u^\varepsilon)^{-1}), \ldots, (u^\varepsilon)^{-N}) \). Pick a sequence of smooth functions \(v_n \) such that \(v_n \rightarrow (u^\varepsilon)^- \) in \(L^2(0,T; W^{1,2}(\Omega)) \cap W^{1,2}(0,T; L^2(\Omega)) \) as \(n \rightarrow +\infty \). Choosing \(v = v_n \) in (3-11) and passing to the limit as \(n \rightarrow +\infty \), we obtain on the one hand

\[\int_0^T \int_{\Omega} (u^\varepsilon)^- \cdot u^\varepsilon \, dx \, dt = \int_0^T \int_{\Omega} \left(\varepsilon^{\alpha} + \frac{1}{\sqrt{\varepsilon^2 + |\nabla u^\varepsilon|^2}} \right) |\nabla (u^\varepsilon)^-|^2 (1 - |(u^\varepsilon)^-|^2) \, dx \, dt \geq 0. \] (3-19)

On the other hand, since \(u^\varepsilon \in W^{1,2}(0,T; L^2(\Omega; \mathbb{R}^N)) \),

\[0 \leq \int_0^T \int_{\Omega} (u^\varepsilon)^- \cdot u^\varepsilon \, dx \, dt = \int_\Omega \int_\Omega |(u^\varepsilon(T))^2 - (u^\varepsilon(T))|^2 \, dx = -\int_\Omega |(u^\varepsilon(T))^2 - (u^\varepsilon(T))|^2 \, dx, \] (3-20)

hence the negative part of each component remains 0 for all times. \(\square \)

Provided \(\alpha \) is large enough, any function in \(\text{BV}(\Omega; \mathbb{S}^N_{+}) \) can be approximated in \(W^{1,2}(\Omega; \mathbb{S}^N_{+}) \) in such a way that the initial energy is controlled.

Lemma 3.9. Given \(u_0 \in \text{BV}(\Omega; \mathbb{S}^N_{+}) \) and \(\alpha > m \), there exist \(u_0^\varepsilon \in W^{1,2}(\Omega; \mathbb{S}^N_{+}) \) such that

(i) \(u_0^\varepsilon \rightarrow u_0 \) in \(L^p(\Omega; \mathbb{R}^N) \) for all \(p < \infty \) as \(\varepsilon \rightarrow 0 \),

(ii) \(u_0^\varepsilon \rightarrow (u_0)_g \) \(\mathcal{H}^{m-1} \)-a.e. in \(\Omega \) as \(\varepsilon \rightarrow 0 \),

(iii) \(J_\alpha(u_0^\varepsilon) \rightarrow L < +\infty \) as \(\varepsilon \rightarrow 0 \).

Proof. We will construct \(u_0^\varepsilon \) as the projection onto \(\mathbb{S}^N_{+} \) of the convolution of a suitable extension \(T u_0 \) of \(u_0 \) with a standard mollifier. In order to do this, we proceed as in [Ambrosio et al. 2000, Proposition 3.21], to which we refer for further details; see also [Brezis 2011, Theorem 9.7].

Since \(\overline{\Omega} \) is compact, there exists a finite collection \(\{R_i\}_{i \in I} \) of open rectangles whose union \(B \) contains \(\overline{\Omega} \), which satisfies the following property: for any \(i \in I \), either

(a) \(R_i \subset \Omega \) or

(b) \(\partial \Omega \cap R_i \) is the graph of a Lipschitz function defined on one face \(L_i \) of \(R_i \) and the closure of \(\partial \Omega \cap R_i \) intersects neither \(L_i \) nor the closure of the face opposite to \(L_i \).

Let \(\Omega_i = \Omega \cap R_i \). In case (b), up to a translation, a rotation, and a homothety, we have \(R_i = L_i \times (-1, 1) \) with \(\Omega_i \) on the upper side of \(R_i \) (that is, \(\Omega_i = \{x = (y,z) : z > \phi_i(y)\} \)). A vertical deformation \(\varphi : R_i \rightarrow R_i \)
exists such that \(\varphi(\Omega_i) = R_i^+ = L_i \times (0, 1) \) and both \(\varphi \) and its inverse are Lipschitz. Given \(u \in BV(\Omega) \), the operator \(T_i : R_i \to \mathbb{R} \) is defined as the identity in case (a) and as

\[
T_i(u) = T'_i((u \circ \varphi^{-1}) \circ \varphi, \quad \text{where } T'_i(u)(y, z) = u(y, |z|),
\]
in case (b). Note that \(|u_0| = 1 \) a.e. in \(\Omega \), the maps \(\varphi \) and its inverse are Lipschitz, and \(T'_i \) does not change the value of \(u \). Hence

\[
U_i := \{ x \in R_i : |(T_i(u^1_0), \ldots, T_i(u^N_0))| \neq 1 \}
\]
has zero measure.

Let \(\{ \eta_i \}_{i \in I} \) be a partition of unity relative to \(\{ R_i \}_{i \in I} \), that is, \(\text{supp}(\eta_i) \subset R_i, 0 \leq \eta_i \leq 1 \) for any \(i \in I \) and there exists \(r > 0 \) such that \(\sum_{i \in I} \eta_i \equiv 1 \) in a neighborhood of \(\bar{\Omega} \) containing \(\Omega \oplus B_r \). We now define

\[
Tu_0 : B = \bigcup_{i \in I} R_i \to \mathbb{R}^N, \quad Tu_0 := \left(\sum_{i \in I} T_i(u^1_0)\eta_i, \ldots, \sum_{i \in I} T_i(u^N_0)\eta_i \right).
\]

It is readily checked that \(T \in BV(\Omega \oplus B_r; \mathbb{R}^N) \). Now let \(k > 0 \) be the cardinality of \(I \) and \(U = \bigcup_{i \in I} U_i \) (a set of zero measure). We observe that

\[
|Tu_0(x)| \geq \frac{1}{k} \text{ for all } x \in \Omega \oplus B_r \setminus U. \quad (3-21)
\]

Indeed, for each \(x \in (\Omega \oplus B_r) \setminus U \), there exists \(i(x) \in I \) such that \(\eta_{i(x)}(x) \geq 1/k \); since each component of \(u_0 \) is nonnegative and \(x \notin U_{i(x)} \),

\[
|Tu_0(x)|^2 \geq \frac{1}{k^2} \left((T_{i(x)}(u^1_0))^2 + \cdots + (T_{i(x)}(u^N_0))^2 \right) = \frac{1}{k^2}.
\]

Given \(\epsilon < r \), let \(\rho_\epsilon(x) := \epsilon^{-m} \rho(x/\epsilon) \) be a standard mollifier. As is well known (see, for example, [Ambrosio et al. 2000, Remark 3.22]) \(Tu_0 \ast \rho_\epsilon \) converges to \(Tu_0 \) strictly in \(BV(\Omega; \mathbb{R}^N) \) and strongly in \(L^1(\Omega; \mathbb{R}^N) \). Since \(\|Tu_0 \ast \rho_\epsilon\|_\infty \leq 1 \), the last convergence upgrades to

\[
Tu_0 \ast \rho_\epsilon \to Tu_0 \quad \text{in } L^p(\Omega; \mathbb{R}^N) \quad \text{for all } 1 \leq p < \infty.
\]

By (3-21) and since \((Tu_0)^\ell \geq 0 \) for \(\ell = 1, \ldots, N \), a direct computation shows that

\[
|Tu_0 \ast \rho_\epsilon(x)| \geq \frac{1}{k\sqrt{N}} \text{ for all } x \in \Omega. \quad (3-23)
\]

In addition, it follows from [Ambrosio et al. 2000, Corollary 3.80] that \(Tu_0 \ast \rho_\epsilon \to (Tu_0)^* = u_0^* \) pointwise in \(\Omega \setminus (S_{u_0} \setminus J_{u_0}) \). Together with (3-23), this implies that

\[
u^\epsilon_0 := \frac{Tu_0 \ast \rho_\epsilon}{|Tu_0 \ast \rho_\epsilon|} \to (u_0)_g \quad \mathcal{H}^{m-1}-\text{a.e. in } \Omega. \quad (3-24)
\]

Furthermore, (3-23) and (3-22) easily imply that \(u^\epsilon_0 \to u_0 \) in \(L^p(\Omega; \mathbb{R}^N) \) for all \(1 \leq p < \infty \). Finally, applying the chain rule and (3-23), [Ambrosio et al. 2000, Proposition 3.2], and [Ambrosio et al. 2000, Theorem 2.2(b)] (in this order), we see that

\[
\int_\Omega |\nabla u^\epsilon_0| \, dx \leq C \int_\Omega |\nabla(Tu_0 \ast \rho_\epsilon)| \, dx = C \int_\Omega |(DTu_0) \ast \rho_\epsilon| \, dx \leq C |DTu_0| (\Omega \oplus B_r). \quad (3-25)
\]
Similarly,
\[\int_\Omega |\nabla u_0^\varepsilon|^2 \, dx \leq C \int_\Omega |(Du_0) \ast \rho_\varepsilon|^2 \, dx \leq C \| (Du_0) \ast \rho_\varepsilon \|_\infty \int_\Omega |(Du_0) \ast \rho_\varepsilon| \, dx, \]
and, using the definition of \(\rho_\varepsilon \), we conclude that
\[\varepsilon^a \int_\Omega |\nabla u_0^\varepsilon|^2 \, dx \leq C \varepsilon^{a-m} (|Du_0|((\Omega \oplus B_\varepsilon))^2. \tag{3-26} \]
Inequalities (3-25) and (3-26), together with (3-24), complete the proof.

\[\text{Proof of Theorem 3.6.} \]
We proceed in steps. In the first step, we use the previous lemmas, together with standard compactness arguments, to identify a triplet \((u, Z, \mu)\). In the second step we identify \(\mu \) in terms of \(u \) and \(Z \), which automatically yields an upper bound on \(|\mu| \). In the third step, collecting the information of the previous two steps, we note that \(u \) satisfies all the properties in Definition 3.4 except for
\[\mu(t) = u(t)^g |Du(t)| \text{ as measures for a.e. } t \in [0, T], \tag{3-27} \]
to which the rest of the proof is devoted. In the fourth step we use the lower semicontinuity results in Section 2F to prove a lower bound on \(\mu(t) \) over the diffuse support of \(|Du(t)| \). In the fifth step, we revise the blow-up argument given in [Fonseca and Müller 1993; Fonseca and Rybka 1992] to obtain a lower bound on \(\mu(t) \) over \(J_\mu(t) \). Finally, in the sixth step we complete the proof.

Step 1: Passage to the limit. Let \(u_0^\varepsilon \) and \(u^\varepsilon \) be as given by Lemma 3.9 and Proposition 3.7, respectively. By Lemma 3.8, \(u^\varepsilon \in S_+^{N-1} \) a.e. in \(Q_T \). By (3-8), Lemma 3.9(iii), and (3-15), a positive constant \(C \) (independent of \(\varepsilon \)) exists such that
\[\sup_{t \in (0, T)} \| u^\varepsilon \|_{W^{1,1}(\Omega)} \leq C, \tag{3-28} \]
\[\| u_t^\varepsilon \|_{L^2(0, T; L^2(\Omega; \mathbb{R}^N))} \leq C. \tag{3-29} \]
We recall that \(BV(\Omega; \mathbb{R}^N) \) is compactly embedded in \(L^1(\Omega; \mathbb{R}^N) \) [Ambrosio et al. 2000, Theorem 3.23]. Hence the Aubin–Simon compactness criterion [Simon 1987, Corollary 8.4], together with (3-28) and (3-29), implies that
\[u^\varepsilon \rightharpoonup u \quad \text{in } C(0, T; L^1(\Omega; \mathbb{R}^N)) \text{ and a.e. in } Q_T \tag{3-30} \]
for a subsequence. By the lower semicontinuity of the total variation [Ambrosio et al. 2000, Remark 3.5], (3-30) and (3-15) imply that
\[u \in L^\infty(0, T; BV(\Omega; \mathbb{R}^N)). \tag{3-31} \]
From (3-30) and Lemma 3.9(i), we have
\[u(0) = u_0 \tag{3-32} \]
and, using also (3-8),
\[|u| = 1 \quad \text{a.e. in } Q_T. \tag{3-33} \]
By a standard interpolation argument, the boundedness of u^ε in $L^\infty(0, T; L^q(\Omega; \mathbb{R}^N))$ and (3-30) imply that
\[u^\varepsilon \to u \quad \text{in } L^p(0, T; L^q(\Omega; \mathbb{R}^N)) \quad \text{for all } p, q \in [1, \infty) \text{ and a.e. in } Q_T. \tag{3-34} \]
Moreover, it follows from (3-29) that
\[u^\varepsilon t \rightharpoonup u_t \quad \text{in } L^2(0, T; L^2(\Omega; \mathbb{R}^N)). \tag{3-35} \]
By (3-15), Lemma 3.9(iii), and (3-18), a subsequence exists such that
\[\varepsilon \alpha \nabla u^\varepsilon \rightharpoonup 0 \quad \text{in } L^2(0, T; L^2(\Omega; \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N)), \tag{3-36} \]
\[\sqrt{|\nabla u^\varepsilon|^2 + \varepsilon^2} \ast Z \rightharpoonup \text{a.e. in } Q_T; \mathbb{R}^N \times \mathbb{R}^N). \tag{3-37} \]
Recalling the definition (3-10) of Z^ε, by (3-36) and (3-37) we obtain that
\[Z^\varepsilon \rightharpoonup Z \quad \text{in } L^2(0, T; L^2(\Omega; \mathbb{R}^N \times \mathbb{R}^N)), \tag{3-38} \]
and from (3-37) we also obtain that
\[\|Z\|_{L^\infty(Q_T)} \leq 1. \tag{3-39} \]
Since $\{\mu^\varepsilon\}$ is bounded in $L^\infty(0, T; L^1(\Omega; \mathbb{R}^N))$ and
\[L^\infty(0, T; L^1(\Omega; \mathbb{R}^N)) \subset L^\infty(0, T; \mathcal{M}(\Omega; \mathbb{R}^N)) \subset (L^1(0, T; C_0(\Omega; \mathbb{R}^N)))' \]
(see Section 2B), we have
\[\mu^\varepsilon \rightharpoonup \mu \quad \text{in } (L^1(0, T; C_0(\Omega; \mathbb{R}^N)))'. \tag{3-40} \]
Analogously, by (3-16),
\[\text{div } Z^\varepsilon \rightharpoonup \text{div } Z \quad \text{in } (L^2(0, T; C_0(\Omega; \mathbb{R}^N)))'. \tag{3-41} \]
Passing to the limit as $\varepsilon \to 0$ in (3-9), (3-35), (3-41), and (3-40), we obtain
\[u_t - \text{div } Z = \mu \quad \text{in } (L^2(0, T; C_0(\Omega; \mathbb{R}^N)))'. \tag{3-42} \]
Passing to the limit as $\varepsilon \to 0$ in (3-12), (3-38), (3-34), (3-13), (3-35), (3-38), and (3-34), we get that
\[Z^\varepsilon u = 0 \quad \text{a.e. in } Q_T, \tag{3-43} \]
\[u_t \cdot u = 0 \quad \text{a.e. in } Q_T, \tag{3-44} \]
\[u_t(t) \cap u(t) = \text{div}(Z(t) \cap u(t)) \quad \text{in } L^2(\Omega; \Lambda_2(\mathbb{R}^N)) \text{ for a.e. } t \in [0, T]. \tag{3-45} \]
\[\text{Step 2: The intermediate identification of } \mu \text{ and its upper bound.} \quad \text{We claim that} \]
\[\mu = \ast((Z \cap u) \cap Du) \in L^\infty(0, T; \mathcal{M}(\Omega; \mathbb{R}^N))) \tag{3-46} \]
with
\[|\mu(t)| \leq |Du(t)| \] as measures for a.e. \(t \in [0, T] \).

Let
\[\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m) := *(Z \wedge u) \in L^\infty(Q_T; (\Lambda_{N-2}(\mathbb{R}^N))^m). \] (3-48)

We have
\[*(u_t \wedge u) = *(\text{div}(Z \wedge u)) = \text{div}(*(Z \wedge u)) = \text{div} \mathcal{A}, \] (3-49)

hence \(\mathcal{A}(t) \in X_2(\Omega; \Lambda_{N-2}(\mathbb{R}^N)) \) for a.e. \(t \). Therefore, by Lemma 2.3, \(*(\mathcal{A}(t) \wedge Du(t)) \in \mathcal{M}(\Omega; \mathbb{R}^N) \) for almost every \(t \) with
\[|*(\mathcal{A}(t) \wedge Du(t))| \leq \|\mathcal{A}(t)\|_\infty |Du(t)| \leq \|Z(t) \wedge u(t)\|_\infty |Du(t)| \leq |Du(t)|, \] (3-50)

and in addition
\[*(\mathcal{A}(t) \wedge Du(t)) = -*(\text{div} \mathcal{A}(t) \wedge u(t)) \mathbb{L}^m + \text{div}(*(\mathcal{A}(t) \wedge u(t))). \] (3-51)

It follows from (3-50) and (3-31) that
\[*(\mathcal{A} \wedge Du) \in L^\infty(Q_T; \mathcal{M}(\Omega; \mathbb{R}^N)). \] (3-52)

Using (3-51), we see that
\[u_t = |u|^2 u_t = (u_t \cdot u)u - *(u_t \wedge u) \] (3-53)
\[-*(\text{div} \mathcal{A} \wedge u) = *(\mathcal{A} \wedge Du) - \text{div}(*(\mathcal{A} \wedge u)). \] (3-54)

On the other hand,
\[-*(\mathcal{A} \wedge u) = -*(Z \wedge u) \] (3-55)
\[= -*(z_1 \wedge u) - \ldots - *(z_m \wedge u) \]
\[= |u|^2 z_1 - (u \cdot z_1)u, \ldots, |u|^2 z_m - (u \cdot z_m)u \]
\[= Z - (Z^T u) u. \] (3-56)

Combining (3-53) and (3-54), we obtain
\[u_t = *(\mathcal{A} \wedge Du) + \text{div} Z, \]

which together with (3-42), (3-48), and (3-52), implies (3-46). Finally, (3-47) follows immediately from (3-46) and (3-50).

Step 3: Intermediate summary. It follows from (3-42), (3-35), and (3-46) that \(\text{div} Z \in L^2(0, T; \mathcal{M}(\Omega; \mathbb{R}^N)) \). Hence (3-42) upgrades to
\[u_t(t) - \text{div} Z(t) = \mu(t) \] as measures for a.e. \(t \in [0, T] \). (3-55)
We first notice that
\[Z(t) \in X^N_{\#}(\Omega) \quad \text{for a.e. } t \in [0, T]. \] (3-56)

Thus the weak trace \([Z(t), v]\) on \(\partial \Omega\) of the normal component of \(Z(t)\) is well defined, and for all smooth \(w\) we have
\[
\int_0^T \int_{\partial \Omega} [Z, v] \cdot w \, d|\mathcal{H}^{m-1}| \, dt \overset{(2-14)}{=} \int_0^T \left(\int_{\Omega} w \cdot (d(div Z) + Z : \nabla w) \right) \, dt
\]
\[
= \lim_{\varepsilon \to 0} \left(\int_0^T \int_{\Omega} (w \cdot \nabla Z^\varepsilon + \nabla w) \, dx \, dt \right) \overset{(3-9)_2}{=} 0.
\]

Hence
\[
[Z(t), v] = 0 \quad |\mathcal{H}^{m-1}|\text{-a.e. on } \partial \Omega \text{ for a.e. } t \in [0, T]. \] (3-57)

Collecting (3-31), (3-30), (3-35), (3-32), (3-33), (3-39), (3-36), (3-43), (3-45), and (3-57), we see that all the properties of \(u\) stated in Definition 3.4 are satisfied except for (3-3). In view of (3-55), in order to prove (3-3), it remains to show (3-27).

Step 4: The lower bound on \(\mu\) over the diffuse support of \(|Du|\). In view of (3-47), \(\mu(t)\) can be decomposed as
\[
\mu(t) = \frac{\mu(t)}{|Du(t)|} (|\nabla u(t)||\mathcal{L}^m + |D^c(u(t))|) + \frac{\mu(t)}{|Du(t)|} |u(t)_+ - u(t)_-| |\mathcal{H}^{m-1} \cap J_u(t)|,
\] (3-58)

where \(\mu(t)/|Du(t)| \in (L^1(\Omega; |Du(t)|))^N\) denotes the Radon–Nikodým derivative of \(\mu(t)\) with respect to \(|Du(t)|\). We claim that
\[
u(t) \cdot \frac{\mu(t)}{|Du(t)|} \geq 1 \quad (|\nabla u(t)||\mathcal{L}^m + |D^c(u(t))|)\text{-a.e. in } \Omega.
\] (3-59)

We first notice that
\[
\mu^{\varepsilon, \ell} \overset{(3-10)}{=} u^{\varepsilon, \ell}(\sqrt{\varepsilon^2 + |\nabla u^\varepsilon|^2} - \varepsilon) \geq u^{\varepsilon, \ell}(|\nabla u^\varepsilon| - \varepsilon), \quad \ell = 1, \ldots, N.
\] (3-60)

For any \(\varphi \in C(\overline{\Omega}; [0, \infty))\), \(0 \leq \psi \in L^1((0, T))\), and \(\ell \in \{1, \ldots, N\}\), we have
\[
\int_0^T \psi(t) \left(\int_{\Omega} \varphi \, d\mu^{\varepsilon, \ell}(t) \right) \, dt \overset{(3-40)}{=} \lim_{\varepsilon \to 0} \int_0^T \psi(t) \left(\int_{\Omega} \varphi \mu^{\varepsilon, \ell}(t) \, dx \right) \, dt
\]
\[
\geq \liminf_{\varepsilon \to 0} \int_0^T \psi(t) \left(\int_{\Omega} \varphi u^{\varepsilon, \ell}(t) |\nabla u^\varepsilon(t)| \, dx \right) \, dt.
\] (3-60)

We claim that, for a.e. \(t \in (0, T)\),
\[
u^\varepsilon(t) \rightharpoonup u(t) \quad \text{in } BV(\Omega; \mathbb{R}^N) \quad \text{as } \varepsilon \to 0.
\] (3-61)

Indeed, in view of (3-28), for a.e. \(t\) we have \(\|u^\varepsilon(t)\|_{W^{1,1}(\Omega)} < \infty\). Take any such \(t\) and assume for a contradiction that (3-61) does not hold, that is, that \(u^\varepsilon(t) \not\rightharpoonup u(t)\) for a subsequence. By (3-28), a further subsequence would exist such that \(u^\varepsilon(t) \rightharpoonup \tilde{u}\) for some \(\tilde{u} \in BV(\Omega; \mathbb{R}^N)\). On the other hand, because of (3-30), \(u^\varepsilon(t) \rightharpoonup u(t)\) in \(L^1(\Omega; \mathbb{R}^N)\): hence \(\tilde{u} = u(t)\), a contradiction.
In view of (3-61) and (3-30), we may apply Proposition 2.6 to the right-hand side of (3-60) with
\(f = f_{\varphi, \ell} : \Omega \times \mathbb{R}^N \to [0, \infty) \) defined by \(f_{\varphi, \ell}(x, s) := \varphi(x)s^\ell|\xi| \). This implies that
\[
\int_0^T \psi(t) \left(\int_\Omega \varphi \, d\mu^\ell(t) \right) dt \geq \int_0^T \psi(t) \left(\int_\Omega \varphi u^\ell(t)(|\nabla u(t)| \, dx + d|D^c u(t)|) + \int_{J_{u(t)}} \varphi K^\ell_i \, d\mathcal{H}^{m-1} \right) dt,
\]
where
\[
K^\ell_i = \inf \left\{ \int_0^1 \gamma^\ell(\tau) |\dot{\gamma}(\tau)| \, d\tau : \gamma \in W^{1,1}((0, 1); \mathbb{S}^N_{+}), \, \gamma(0) = u(t)_-, \, \gamma(1) = u(t)_+ \right\}. \tag{3-62}
\]
By the arbitrariness of \(\psi \), we conclude that
\[
\int_\Omega \varphi \, d\mu^\ell(t) \geq \int_\Omega \varphi u^\ell(t)(|\nabla u(t)| \, dx + d|D^c u(t)|) + \int_{J_{u(t)}} \varphi K^\ell_i \, d\mathcal{H}^{m-1} \quad \text{for all } \varphi \in \mathcal{C}(\overline{\Omega}) \tag{3-63}
\]
for a.e. \(t \in [0, T] \) and for all \(\ell \in \{1, \ldots, N\} \). Recalling (3-58), (3-63) yields
\[
\frac{\mu^\ell(t)}{|Du(t)|} \geq u^\ell(t) \quad (|\nabla u(t)|\mathcal{H}^{m} + |D^c u(t)|)-\text{a.e. in } \Omega
\]
for a.e. \(t \in [0, T] \) and all \(\ell = 1, \ldots, N \). Now, recalling that \(|u(t)| = 1 \) a.e. in \(\Omega \), we obtain the inequality (3-59) at once.

Remark 3.10. On the jump set \(J_{u(t)} \), the above argument would yield
\[
|u_+(t) - u_-(t)|u(t)_\mathcal{S} \cdot \frac{\mu(t)}{|Du(t)|} \geq u(t)_\mathcal{S} \cdot (K_1^1, \ldots, K_N^N) \quad \mathcal{H}^{m-1}\text{-a.e. on } J_u(t).
\]
Unfortunately, by (3-62) and obvious properties of the infimum,
\[
\left. u(t)_\mathcal{S} \cdot (K_1^1, \ldots, K_N^N) \right. \\
\leq \inf \left\{ \int_0^1 u(t)_\mathcal{S} \cdot \varphi(\tau) |\dot{\varphi}(\tau)| \, d\tau : \varphi \in W^{1,1}((0, 1); \mathbb{S}^N_{+}), \, \varphi(0) = u(t)_-, \, \varphi(1) = u(t)_+ \right\}, \tag{3-64}
\]
whilst, as we shall see, it is the right-hand side of (3-64) which yields the sharp lower bound on the jump part (cf. (3-70)–(3-73) below). On the other hand, we can not use the results in Proposition 2.6 directly on \(u^* \cdot \mu^\ell \), since \(u^* \) is a discontinuous function (though a very special one). This motivates the discussion that follows.

Step 5: The lower bound on \(\mu \) over \(J_{u(t)} \). We claim that
\[
u(t)_\mathcal{S} \cdot \frac{\mu(t)}{|Du(t)|} \geq 1 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}.
\tag{3-65}
\]
It follows from (3-8) and (3-28) that, for a.e. \(t \in [0, T] \), there exists a subsequence \(\varepsilon_k \) such that
\[
u^\varepsilon_k(t)|\nabla u^\varepsilon_k(t)| \rightharpoonup \tilde{\mu}(t) \quad \text{in } \mathcal{M}(\Omega; \mathbb{R}^N).
\tag{3-66}
\]
Then (3-60) and the fact that \(u^\varepsilon, \ell \geq 0 \) imply that
\[
u^\ell(t) \geq \tilde{\mu}^\ell(t) \geq 0 \quad \text{as measures for a.e. } t \in [0, T], \quad \ell \in \{1, \ldots, N\}.
\tag{3-67}
Hereafter, we argue for a fixed \(t \) and we do not specify dependence on \(t \) for notational convenience. Using the Radon–Nikodým theorem [Ambrosio et al. 2000, Theorem 1.28], we decompose \(\tilde{\mu} \) into four mutually orthogonal measures:

\[
\tilde{\mu} = \frac{\tilde{\mu}}{|Du|} |\nabla u|^N + \frac{\tilde{\mu}}{|Du|} |D^c u| + \frac{\tilde{\mu}}{|Du|} |u_+ - u_-|\mathcal{H}^{m-1} \cup J_u + (\tilde{\mu})^o
\]

with \((\tilde{\mu})^o \perp |Du|\). It follows from (3-67) and (3-58) that

\[
u_g \cdot \frac{\mu}{|Du|} \geq u_g \cdot \frac{\tilde{\mu}}{|Du|} \quad \mathcal{H}^{m-1}\text{-a.e. on } J_u.
\]

Therefore, (3-65) is proved once we have shown that

\[
u_g \cdot \frac{\tilde{\mu}}{|Du|} \geq 1 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_u. \quad (3-68)
\]

To prove (3-68) we apply the same blow-up argument as in [Fonseca and Müller 1993, Section 3].

From the Besicovitch differentiation theorem [Ambrosio et al. 2000, Theorem 2.22], for \(\mathcal{H}^{m-1}\text{-a.e. } x_0 \in J_u \), we have

\[
\frac{\tilde{\mu}}{|Du|}(x_0) = \lim_{\delta \to 0} \frac{\tilde{\mu}(x_0 + \delta Q_w(x_0))}{|u_+ - u_-|\mathcal{H}^{m-1}(J_u \cap (x_0 + \delta Q_w(x_0)))},
\]

where \(Q_w \) is defined in Section 2F. On the other hand, by [Fonseca and Müller 1993, Lemma 2.6], for \(\mathcal{H}^{m-1} \text{ a.e. } x_0 \in J_u \), we also have

\[
\lim_{\delta \to 0} \frac{1}{\delta^{m-1}} \int_{(x_0 + \delta Q_w(x_0)) \cap J_u} |u_+(x) - u_-(x)| \, d\mathcal{H}^{m-1} = |u_+(x_0) - u_-(x_0)|.
\]

Therefore, letting

\[
M = |u_+(x_0) - u_-(x_0)|
\]

for notational convenience, we obtain that

\[
M \frac{\tilde{\mu}}{|Du|}(x_0) = \lim_{\delta \to 0} \frac{1}{\delta^{m-1}} \int_{x_0 + \delta Q_w(x_0)} d\tilde{\mu}.
\]

Then, for any \(\ell \in \{1, \ldots, N\} \), since the function \(\chi_{x_0 + \delta Q_w(x_0)} \) is upper semicontinuous with compact support in \(\Omega \) if \(\delta \) is sufficiently small, we have

\[
M \frac{\tilde{\mu}^{\ell}}{|Du|}(x_0) = \lim_{\delta \to 0} \frac{1}{\delta^{m-1}} \int_{x_0 + \delta Q_w(x_0)} d\tilde{\mu}^{\ell} \geq \limsup_{\delta \to 0} \sup_{k \to \infty} \frac{1}{\delta^{m-1}} \int_{x_0 + \delta Q_w(x_0)} u^{\ell_k} |\nabla u^{\ell_k}| \, dx
\]

\[
= \limsup_{\delta \to 0} \sup_{k \to \infty} \int_{Q_w(x_0)} v^{\ell_k}(y) |\nabla v^{\ell_k}(y)| \, dy, \quad (3-69)
\]

where

\[
v^{\ell_k}(y) := u^{\ell_k}(x_0 + \delta y).
\]
We now observe that \(v_{\delta,k} \in W^{1,1}(Q_{w(x_0)}; \mathbb{R}^N) \) and (see [Fonseca and Müller 1993, formula (3.2)])
\[
\lim_{\delta \to 0} \lim_{k \to \infty} \left\| v_{\delta,k} - w_0 \right\|_{L^1(Q_{w(x_0)}; \mathbb{R}^N)} = 0,
\]
where
\[
w_0(y) = \begin{cases}
ccu_+(x_0) & \text{if } y \cdot u_{x_0} > 0, \\
u_- (x_0) & \text{if } y \cdot u_{x_0} < 0.
\end{cases}
\]
Then, by a diagonalization argument, we may extract a subsequence \(v_k \) converging to \(w_0 \) in \(L^1(Q_{w(x_0)}; \mathbb{R}^N) \). It follows from (3-69) that
\[
M \frac{\tilde{u}^\ell}{|Du|}(x_0) \geq \lim_{k \to \infty} \int_{Q_{w(x_0)}} v_k^\ell(y) \left| \nabla v_k(y) \right| dy.
\]
Since \((u^\ell)^* \geq 0 \) for all \(\ell \in \{1, \ldots, N\} \), this implies that
\[
M \left(\frac{\tilde{u}}{|Du|} \right)(x_0) \geq \lim_{k \to \infty} \int_{Q_{w(x_0)}} u_k(x_0) \cdot v_k(y) \left| \nabla v_k(y) \right| dy.
\]
The function \(f(x, s) = u_k(x_0) \cdot s \) is continuous, nonnegative, and bounded. Then, applying Lemma 2.5, we obtain a new sequence
\[
w_k \in \mathcal{P}(u_+(x_0), u_-(x_0), v_{x_0})
\]
(with \(\mathcal{P} \) given by (2-24)) converging to \(w_0 \) in \(L^1(Q_{w(x_0)}; \mathbb{R}^N) \) and such that
\[
M \left(\frac{\tilde{u}}{|Du|} \right)(x_0) \geq \limsup_{k \to \infty} \int_{Q_{w(x_0)}} u_k(x_0) \cdot w_k(y) \left| \nabla w_k(y) \right| dy.
\]
We may now apply Lemma 2.4. It follows from (2-23) and (2-25) that
\[
M \left(\frac{\tilde{u}}{|Du|} \right)(x_0) \geq \inf_{\gamma \in \tilde{\Gamma}_N(u_+(x_0), u_-(x_0))} J_N[u_+(x_0), u_-(x_0)](\gamma), \tag{3-70}
\]
where
\[
J_N[v_0, v_1](\gamma) := \int_0^1 v_g \cdot \gamma(t) |\dot{\gamma}(t)| dt, \quad v_g := \frac{v_0 + v_1}{|v_0 + v_1|}, \tag{3-71}
\]
and
\[
\tilde{\Gamma}_N(v_0, v_1) := \{ \gamma \in W^{1,1}((0, 1); S^N_+) : \gamma(0) = v_0, \gamma(1) = v_1 \}. \tag{3-72}
\]
In view of (3-70), (3-68) and therefore (3-65) follows from
\[
\inf_{\gamma \in \tilde{\Gamma}_N(u_+(x_0), u_-(x_0))} J_N[u_+(x_0), u_-(x_0)](\gamma) \geq M = |u_+(x_0) - u_-(x_0)|. \tag{3-73}
\]
This last inequality will be proved in Theorem 4.1, to which the next section is devoted.
Step 6: Conclusion. Recalling (3-58), the upper bound on $|\mu|$ given by (3-47) immediately implies that

$$\frac{\mu(t)}{|Du(t)|} \leq 1 \quad |Du(t)|\text{-a.e. in } \Omega$$

(3-74)

for a.e. $t \in [0, T]$. In particular, recalling (3-33),

$$u(t) \cdot \frac{\mu(t)}{|Du(t)|} \leq 1 \quad (|\nabla u(t)|^m + |D^e(u(t))|)\text{-a.e. in } \Omega,$$

$$u(t)_g \cdot \frac{\mu(t)}{|Du(t)|} \leq 1 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}$$

for a.e. $t \in [0, T]$. Combining these inequalities with the lower bounds in (3-59) and (3-65), we obtain

$$\frac{\mu(t)}{|Du(t)|} = 1 \quad (|\nabla u(t)|^m + |D^e(u(t))|)\text{-a.e. in } \Omega,$$

(3-75)

$$\frac{\mu(t)}{|Du(t)|} \leq 1 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}$$

(3-76)

for a.e. $t \in [0, T]$. We are now ready to complete the proof. By (2-2), we have

$$\left| \frac{\mu(t)}{|Du(t)|} \wedge u(t) \right|^2 = \left| \frac{\mu(t)}{|Du(t)|} \right|^2 - \left| \frac{\mu(t)}{|Du(t)|} \cdot u(t) \right|^2 \quad (|\nabla u(t)|^m + |D^e(u(t))|)\text{-a.e. in } \Omega$$

(3-77)

and

$$\left| \frac{\mu(t)}{|Du(t)|} \wedge u(t)_g \right|^2 = \left| \frac{\mu(t)}{|Du(t)|} \right|^2 \left| u(t)_g \right|^2 - \left| \frac{\mu(t)}{|Du(t)|} \cdot u(t)_g \right|^2 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}.$$

(3-78)

Now, from (3-74),(3-75), and (3-77), we get

$$\left| \frac{\mu(t)}{|Du(t)|} \wedge u(t) \right|^2 = 0 \quad (|\nabla u(t)|^m + |D^e(u(t))|)\text{-a.e. in } \Omega,$$

and from (3-74),(3-76), and (3-78), we get

$$\left| \frac{\mu(t)}{|Du(t)|} \wedge u(t)_g \right|^2 = 0 \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}.$$

Hence the wedge products on the left-hand side are zero.

Therefore, applying (2-7) and using once more the equalities in (3-75) and (3-76), we conclude that

$$\frac{\mu(t)}{|Du(t)|} = \left| u(t) \right|^2 \quad \frac{\mu(t)}{|Du(t)|} = u(t) \quad (|\nabla u(t)|^m + |D^e(u(t))|)\text{-a.e. in } \Omega,$$

$$\frac{\mu(t)}{|Du(t)|} = \left| u(t)_g \right|^2 \quad \frac{\mu(t)}{|Du(t)|} = u(t)_g \quad \mathcal{H}^{m-1}\text{-a.e. on } J_{u(t)}.$$

Plugging these expressions into (3-58), we obtain (3-27), and the proof is complete. □
4. A nonconvex variational problem

In this section we study the minimization of a nonconvex functional, and, as a result, we prove the inequality (3-73).

Theorem 4.1. Let \(v_0, v_1 \in \mathbb{S}^{N-1} \) and let \(J_N(v_0, v_1)(\gamma) \) and \(\Gamma_N(v_0, v_1) \) be given by (3-71) and (3-72). If \(v_0 \cdot v_1 \geq 0 \), then

\[
\inf_{\gamma \in \Gamma_N(v_0, v_1)} J_N(v_0, v_1)(\gamma) = |v_1 - v_0|.
\]

Of course, it suffices to consider \(v_0 \neq v_1 \). Up to a rotation, we may assume without loss of generality that

\[
v_g = \frac{v_0 + v_1}{|v_0 + v_1|} = e_N \quad \text{and} \quad v_0, v_1 \in \text{span}\{e_{N-1}, e_N\}.
\]

Since \(v_g \) is the geodesic midpoint and \(v_0 \cdot v_1 \geq 0 \), there exists \(\theta_0 \in (0, \pi/4] \) such that

\[
v_0 = (0, \ldots, 0, \sin \theta_0, \cos \theta_0) \quad \text{and} \quad v_1 = (0, \ldots, 0, -\sin \theta_0, \cos \theta_0).
\]

Then

\[
|v_1 - v_0| = 2 \sin \theta_0.
\] (4-1)

A curve which attains the equality in (4-3) is easily obtained: it is just the geodesic with respect to the standard metric of \(\mathbb{S}^{N-1} \).

Lemma 4.2. Let \(\gamma_{\min}(t) = (0, \ldots, 0, \sin((1 - 2t)\theta_0), \cos((1 - 2t)\theta_0)) \). Then \(J(\gamma_{\min}) = 2 \sin \theta_0 \).

After the above-mentioned rotation, \(\mathbb{S}^{N-1}_+ \) is transformed into a geodesic simplex \(\mathcal{T} \) in \(\mathbb{S}^{N-1} \). We consider a larger set of curves: let \(\mathcal{P}_N(v_0, v_1) \) be given by

\[
\mathcal{P}_N(v_0, v_1) = \{ v \in \mathbb{S}^{N-1} : v \cdot v_0 \geq 0, \ v \cdot v_1 \geq 0 \}
\]

and let

\[
\Gamma_N(v_0, v_1) = \{ \gamma \in W^{1,1}((0, 1); \mathcal{P}_N(v_0, v_1)) : \gamma(0) = v_0, \ \gamma(1) = v_1 \}.
\]

Then

\[
J_N(v_0, v_1)(\gamma) = \int_0^1 \gamma^N(t)|\dot{\gamma}(t)| \, dt \quad \text{for} \quad \gamma = (\gamma^1, \ldots, \gamma^N) \in \Gamma_N(v_0, v_1).
\]

Hence, recalling (4-1) and Lemma 4.2, it suffices to prove that

\[
\inf_{\gamma \in \Gamma_N(v_0, v_1)} J_N(v_0, v_1)(\gamma) \geq 2 \sin \theta_0.
\] (4-2)

We now show that the problem in \(\mathbb{S}^{N-1} \) may be reduced to the same problem in \(\mathbb{S}^2 \). Let

\[
\tilde{v}_i = (0, (-1)^i \sin \theta_0, \cos \theta_0), \quad i = 0, 1,
\]

denote the projection of \(v_i \) onto the three-dimensional subspace \(\text{span}\{e_{N-2}, e_{N-1}, e_N\} \).

Lemma 4.3. Let \(N \geq 4 \). Then

\[
\inf_{\gamma \in \Gamma_N(v_0, v_1)} J_N(v_0, v_1)(\gamma) \geq \inf_{\gamma \in \Gamma_3(\tilde{v}_0, \tilde{v}_1)} J_3(\tilde{v}_0, \tilde{v}_1)(\gamma).
\]
Proof. For any $\gamma \in \Gamma_N(\mathbf{v}_0, \mathbf{v}_1)$, consider the curve

$$\tilde{\gamma} = (0, \ldots, 0, \sqrt{(y_1)^2 + \cdots + (y_{N-2})^2}, y_{N-1}, y_N).$$

Clearly $\tilde{\gamma} \in W^{1,1}((0, 1), \mathbb{S}^{N-1})$. Since \mathbf{v}_0 and \mathbf{v}_1 belong to $\text{span}\{e_{N-1}, e_N\}$ and the projections of $\tilde{\gamma}$ and γ onto $\text{span}\{e_{N-1}, e_N\}$ coincide, $\tilde{\gamma} \in W^{1,1}((0, 1); \mathcal{P}_N(\mathbf{v}_0, \mathbf{v}_1))$ and the end-point conditions are satisfied. Therefore $\tilde{\gamma} \in \Gamma_N(\mathbf{v}_0, \mathbf{v}_1)$. In addition, letting

$$\delta = (\gamma^1, \ldots, \gamma^{N-2}),$$

we may apply the chain rule [Ambrosio and Dal Maso 1990, Corollary 3.2]: since $\delta \in W^{1,1}((0, 1); \mathbb{R}^{N-2})$ and $f(x) = |x|$ is a Lipschitz function with $f(0) = 0$, we have $|\delta| = f \circ \delta \in W^{1,1}((0, 1); \mathbb{R})$, for almost every $t \in (0, 1)$ the restriction of f to the affine space

$$T_t^\delta := \{y \in \mathbb{R}^{N-2} : y = \delta(t) + \eta \delta(t) \text{ for some } \eta \in \mathbb{R}\}$$

is differentiable at $\delta(t)$, and finally

$$\frac{d}{dt}|\delta| = \nabla(f|_{T_t^\delta})(\delta(t)) \cdot \dot{\delta}(t) \quad \text{for a.e. } t \in (0, 1).$$

Since the Lipschitz constant of f is 1, we get that $|(d/dt)|\delta| | \leq |(d/dt)\delta|$. Hence $|(d/dt)\tilde{\gamma}| \leq |(d/dt)\gamma|$, which implies that $J_N[\mathbf{v}_0, \mathbf{v}_1](\tilde{\gamma}) \leq J_N[\mathbf{v}_0, \mathbf{v}_1](\gamma)$, since $\tilde{\gamma}^N = \gamma^N$. Arguing as above, we also see that

$$\tilde{\gamma} = (\sqrt{(y_1)^2 + \cdots + (y_{N-2})^2}, y_{N-1}, y_N)$$

belongs to $\Gamma_3(\mathbf{v}_0, \mathbf{v}_1)$. Since $J_N[\mathbf{v}_0, \mathbf{v}_1](\tilde{\gamma}) = J_3[\mathbf{v}_0, \mathbf{v}_1](\tilde{\gamma})$, the proof is complete. \qed

Hereafter we let

$$\mathbf{v}_i := \tilde{\mathbf{v}}_i, \quad J := J_3[\mathbf{v}_0, \mathbf{v}_1], \quad \mathcal{P} := \mathcal{P}_3(\mathbf{v}_0, \mathbf{v}_1), \quad \Gamma := \Gamma_3(\mathbf{v}_0, \mathbf{v}_1).$$

Because of (4-2) and Lemma 4.3, it suffices to prove that

$$\inf_{\gamma \in \Gamma} J(\gamma) \geq 2 \sin \theta_0. \quad (4-3)$$

Proving (4-3) is far from trivial, both since the functional is genuinely nonconvex (see Lemmas 4.9 and 4.10) and since the curves are constrained to an octant of the sphere. However, it is exactly for this reason that the lower bound holds:

Remark 4.4. In the extremal case $\theta_0 = \pi/4$, there are exactly two paths γ such that $J(\gamma) = 2 \sin \theta_0$: the one given in Lemma 4.2, and the one which coincides with $\partial \mathcal{P}$ (see Section 1 or Lemma 4.14 with $\varphi_0 = 0$ and $\varphi_1 = \pi/2$). If the constraint is removed, the lower bound (4-3) does not hold any more: for instance, the curve

$$\gamma(t) := \begin{cases} (0, \sin \theta, \cos \theta), & \theta = \theta_0 + 3t(\pi/2 - \theta_0) \in (\theta_0, \pi/2) \quad \text{if } 0 \leq t \leq \frac{1}{3}, \\ (\sin \varphi, \cos \varphi, 0), & \varphi = 3\pi(t - \frac{1}{3}) \in (0, \pi) \quad \text{if } \frac{1}{3} < t \leq \frac{2}{3}, \\ (0, -\sin \theta, \cos \theta), & \theta = \pi/2 + 3(t - \frac{2}{3})(\theta_0 - \pi/2) \in (\theta_0, \pi/2) \quad \text{if } \frac{2}{3} < t \leq 1, \end{cases}$$

for almost any $\theta_0 \in (0, \pi/2)$.
is such that
\[J(\gamma) = 2 \int_0^{1/3} \cos \theta \, |\dot{\theta}| \, dt = 2 \int_{\theta_0}^{\pi/2} \cos \theta \, d\theta = 2(1 - \sin \theta_0), \]
hence \(J(\gamma) = 2(1 - \sin \theta_0) < 2 \sin \theta_0 \) if \(\theta_0 > \pi/6 \).

We will often use spherical coordinates centered at \((0, 0, 1)\):
\[X(\varphi, \theta) := (\sin \varphi \sin \theta, \cos \varphi \sin \theta, \cos \theta). \tag{4-4} \]
In this case \(\nu_0 = X(0, \theta_0), \nu_1 = X(\pi, \theta_0) \), the functional reads
\[J(\gamma) = \int_0^1 \cos \theta(t) \sqrt{\dot{\theta}(t)^2 + (\dot{\varphi}(t))^2 \sin^2 \theta(t)} \, dt, \quad \text{where } \gamma(t) = X(\varphi(t), \theta(t)), \tag{4-5} \]
and the constraint \(\gamma(t) \in \mathcal{P} \) is equivalent to
\[\theta(t) \in [0, \pi/2], \quad \theta(t) \leq \arctan \frac{1}{\tan \theta_0 |\cos \varphi(t)|} =: \theta^*(\varphi(t)). \tag{4-6} \]
It is convenient to cut-off from \(\mathcal{P} \) a neighborhood of \(\varphi = 0 \): in this way, the new constraint has a smooth boundary and the density of \(J \) does not degenerate. Thus, let \(\theta^*_\varepsilon \in C^\infty(\mathbb{R}) \) be such that
\[\theta^*_\varepsilon \] is \(\pi \)-periodic, even w.r.t. \(\pi/2 \), increasing in \((0, \pi/2)\),
\[\theta^*_\varepsilon(\varphi) = \theta^*(\varphi) \quad \text{if } |\pi/2 - \varphi| \geq \varepsilon, \theta^*_\varepsilon < \pi/2, \text{ and } |(\theta^*_\varepsilon)'| \leq C \tag{4-7} \]
for some \(\varepsilon \)-independent positive constant \(C \). Note that here and after primes denote differentiation with respect to \(\varphi \), and that the latter property of \(\theta^*_\varepsilon \) may be fulfilled since \(\theta^* \) is Lipschitz-continuous. Now let
\[\mathcal{P}_\varepsilon := \{ X(\varphi, \theta) : \varphi \in [0, 2\pi], \ 0 \leq \theta \leq \theta^*_\varepsilon(\varphi) \}, \]
\[\Gamma_\varepsilon := \{ \gamma \in W^{1,1}((0, 1); \mathcal{P}_\varepsilon) : \gamma(0) = \nu_0, \ \gamma(1) = \nu_1 \}. \]
In what follows, \(\omega(\varepsilon) \) denotes a generic positive universal function which goes to zero as \(\varepsilon \to 0 \). The next lemma shows that we may equivalently work on \(\mathcal{P}_\varepsilon \):

Lemma 4.5. Assume that
\[\inf_{\gamma \in \Gamma_\varepsilon} J(\gamma) \geq 2 \sin \theta_0 - \omega(\varepsilon). \tag{4-8} \]
Then (4-3) holds true, and therefore so does Theorem 4.1.

Proof. Given \(\gamma \in \Gamma \), we replace the parts of \(\gamma \) which enter into \(\mathcal{P} \setminus \mathcal{P}_\varepsilon \) by arcs of \(\partial \mathcal{P}_\varepsilon \). More precisely, let
\[I_\varepsilon = \{ t \in (0, 1) : \gamma(t) \in \mathcal{P} \setminus \mathcal{P}_\varepsilon \}. \]
Since the spherical coordinates (4-4) are a bijection away from the north pole \((0, 0, 1)\), in \(I_\varepsilon \) we may define \(\varphi(t) \) and \(\theta(t) \) through \(\gamma(t) =: X(\varphi(t), \theta(t)) \). Then we let
\[\gamma_\varepsilon(t) = \begin{cases} \gamma(t) & \text{if } t \notin I_\varepsilon, \\ (\varphi(t), \theta^*_\varepsilon(\varphi(t))) & \text{if } t \in I_\varepsilon. \end{cases} \]
We may now estimate
\[\frac{\pi}{2} - \theta^*(\varphi(t)) = \omega(\varepsilon). \] (4-9)

We may now estimate
\[J(y) - J(y_\varepsilon) \geq - \int_t \cos \theta^*(\varphi) |\dot{\varphi}| \sqrt{\left(\theta^*\right)^2 + \sin^2 \theta^*(\varphi)} \, dt \geq -\omega(\varepsilon) \int_0^1 |\dot{\varphi}| \, dt. \]

Therefore
\[J(y) \geq 2 \sin \theta_0 - \omega(\varepsilon) \left(1 + \int_0^1 |\dot{\varphi}| \, dt \right). \]

Passing to the limit as \(\varepsilon \to 0 \), the arbitrariness of \(y \in \Gamma \) yields (4-3).

The rest of the section will be concerned with the proof of (4-8). Let
\[\Gamma_\varepsilon(w_0, w_1) := \{ y \in W^{1,1}((0, 1); \mathbb{P}_\varepsilon) : y(0) = w_0, \ y(1) = w_1 \} \quad \text{for} \ w_0, w_1 \in \mathbb{P}_\varepsilon. \]

Lemma 4.6. For any \(w_0, w_1 \in \mathbb{P}_\varepsilon \), there exists a minimizer \(y \) of \(J \) in \(\Gamma_\varepsilon(w_0, w_1) \). Furthermore \(y \) lies in \(W^{1,\infty}((0, 1); \mathbb{R}^3) \), satisfies \(\gamma^3 |\dot{y}| = J(y) \) a.e. in \([0, 1]\), and is also a minimizer of
\[E(y) := \int_0^1 (\gamma^3(t))^2 |\dot{y}(t)|^2 \, dt \]
among all \(y \in \Gamma_\varepsilon(w_0, w_1) \cap H^1((0, 1); \mathbb{R}^3) \).

Though we could appeal to general results on geodesics for Riemannian manifolds with boundary (see [Alexander et al. 1993] and the references therein), we prefer to give a self-contained proof.

Proof. We preliminarily observe that

for all \(y \in \Gamma_\varepsilon(w_0, w_1) \), there exists \(\tilde{y} \in \Gamma_\varepsilon(w_0, w_1) \cap W^{1,\infty}((0, 1); \mathbb{R}^3) \)
such that \(\tilde{y}^3(t) |\dot{\tilde{y}}(t)| = L := J(y) \) for a.e. \(t \in [0, 1] \). (4-10)

To see this, let
\[s(t) = \frac{1}{L} \int_0^t \gamma^3(\tau) |\dot{y}(\tau)| \, d\tau. \] (4-11)

Obviously \(s \in W^{1,1}([0, 1]; [0, 1]) \), \(s \) is nondecreasing, and \(s(t_1) = s(t_2) \) if and only if \(y(t) = y(t_1) \) in \([t_1, t_2]\). Therefore, for any \(\sigma \in [0, 1] \), either there exists a unique \(t(\sigma) \) such that \(s(t(\sigma)) = \sigma \), or there exists an interval \(I_{\sigma} \) such that \(s(t) = \sigma \) for all \(t \in I_{\sigma} \), and in this case we let, for example, \(t(\sigma) = \inf I_{\sigma} \), so that again \(s(t(\sigma)) = \sigma \). Now let \(\tilde{y}(\sigma) := y(t(\sigma)) \). By construction,
\[y(t) = \tilde{y}(s(t)) \quad \text{for all} \ t \in [0, 1]. \] (4-12)
Note that $\tilde{\gamma} \in W^{1,\infty}((0,1); \mathbb{R})$. Indeed,
\[
|\tilde{\gamma}(\sigma_1) - \tilde{\gamma}(\sigma_2)| = |\gamma(t(\sigma_1)) - \gamma(t(\sigma_2))| \leq \int_{t(\sigma_1)}^{t(\sigma_2)} |\dot{\gamma}(\tau)| \, d\tau
\]
\[
\leq \inf_{\tau \in [t(\sigma_1), t(\sigma_2)]} \frac{L}{\gamma^3(\tau)} |s(t(\sigma_1)) - s(t(\sigma_2))|
\]
\[
\leq \frac{L}{\omega(\varepsilon)} |\sigma_1 - \sigma_2|.
\] (4-13)

Hence, it follows from (4-12) and the chain rule formula given in [Ambrosio et al. 2000, Theorem 3.101] that
\[
\dot{\gamma}(t) = \frac{d\tilde{\gamma}}{ds}(s(t))\dot{s}(t) \quad \text{in } L^1((0,1)).
\] (4-14)

Therefore,
\[
L = \int_0^1 \gamma^3(t) |\dot{\gamma}(t)| \, dt \leq \int_0^1 \tilde{\gamma}^3(s(t)) \left| \frac{d\tilde{\gamma}}{ds}(s(t)) \right| \dot{s}(t) \, dt = \int_0^1 \tilde{\gamma}^3(s) \left| \frac{d\tilde{\gamma}}{ds}(s) \right| \, ds.
\] (4-15)

On the other hand, given $s \in [0,1]$ and $\varepsilon > 0$, let $s_1, s_2 \in [0,1]$ with $|s_1 - s| < \varepsilon$. Then
\[
|\tilde{\gamma}^3(s)\tilde{\gamma}(s_1) - \tilde{\gamma}(s_2)| \leq \inf_{\tau \in [t(s_1), t(s_2)]} \frac{\tilde{\gamma}^3(s)}{\gamma^3(\tau)} L |s_2 - s_1|.
\] (4-16)

If $\tau \in [t(s_1), t(s_2)]$, then, by the monotonicity of s and since $s(\tau(s)) = s$, we have $s(\tau) \in [s_1, s_2]$. Hence
\[
\inf_{\tau \in [t(s_1), t(s_2)]} \gamma^3(\tau) \geq \inf_{s \in [s_1, s_2]} \tilde{\gamma}^3(s).
\] (4-17)

Combining (4-16) and (4-17) and passing to the limit as $\varepsilon \to 0$, we obtain
\[
\tilde{\gamma}^3(s) \left| \frac{d\tilde{\gamma}}{ds}(s) \right| \leq L \quad \text{for a.e. } s \in [0,1],
\]
which together with (4-15) concludes the proof of the claim (4-10).

We consider the functional E defined on $G_\varepsilon(w_0, w_1) := \Gamma_\varepsilon(w_0, w_1) \cap H^1((0,1); \mathbb{R}^3)$. By the Cauchy–Schwarz inequality,
\[
(J(\gamma))^2 \leq E(\gamma) \quad \text{for all } \gamma \in G_\varepsilon(w_0, w_1).
\] (4-18)

Hence $\inf E(\gamma) \geq \inf (J(\gamma))^2$. On the other hand, let γ_n be a minimizing sequence for J, and let $\tilde{\gamma}_n$ be as given by (4-10): then $E(\tilde{\gamma}_n) = (J(\gamma_n))^2$, which means that $\inf E \leq \inf J^2$. Therefore,
\[
\inf_{\gamma \in G_\varepsilon(w_0, w_1)} E(\gamma) = \inf_{\gamma \in G_\varepsilon(w_0, w_1)} (J(\gamma))^2.
\]

The inf on the left-hand side is attained. Indeed, let γ_n be a minimizing sequence. By the coercivity of E ensured by the definition of \mathcal{P}_ε, a subsequence (not relabeled) exists such that $\gamma_n \to \gamma$ weakly in $H^1((0,1); \mathbb{R})$ and in $C([0,1]; \mathcal{P}_\varepsilon)$. Therefore $E(\gamma) \leq \liminf_{n \to +\infty} E(\gamma_n)$.

Let \(y_0 \) be a minimizer of \(E \), and let \(\tilde{y}_0 \) be as given by (4-10). Then

\[
E(y_0) \overset{(4-18)}{=} (J(y_0))^2 = (J(\tilde{y}_0))^2 = E(\tilde{y}_0),
\]

that is, \(\tilde{y}_0 \) is also a minimizer of \(E \), and

\[
(J(y))^2 = (J(\tilde{y}))^2 = E(\tilde{y}) \geq E(\tilde{y}_0) = (J(\tilde{y}_0))^2 \quad \text{for all } y \in \Gamma_{\varepsilon}(w_0, w_1),
\]

hence \(\tilde{y}_0 \) (or \(y_0 \)) is a minimizer of \(J \). Therefore \(J \) has a minimizer too. \(\square \)

The rest of the section is concerned with estimating the length of a minimizer of \(J \) in \(\Gamma_{\varepsilon} \) as given by Lemma 4.6, a shortest path in what follows. Our first observation concerns those shortest paths which pass through the north pole:

Lemma 4.7. If a shortest path \(y \) passes through \((0, 0, 1)\), then \(J(y) \geq 2 \sin \theta_0 \).

Proof. Let \(t_0 \) and \(t_1 \) be the first, respectively the last, time in which \(y = (0, 0, 1) \). Then, using the spherical coordinates (4-4),

\[
J(y) \geq \int_0^{t_0} \cos \theta \sqrt{(\dot{\theta})^2 + (\dot{\phi})^2 \sin^2 \theta} \, dt + \int_{t_1}^1 \cos \theta \sqrt{(\dot{\theta})^2 + (\dot{\phi})^2 \sin^2 \theta} \, dt
\]

\[
\geq \int_0^{t_0} \cos \theta |\dot{\theta}| \, dt + \int_{t_1}^1 \cos \theta |\dot{\theta}| \, dt = \int_0^{t_0} \frac{d}{dt} \sin \theta \, dt + \int_{t_1}^1 \left| \frac{d}{dt} \sin \theta \right| \, dt,
\]

and the lemma follows, since \(\theta(t_0) = \theta(t_1) = 0 \) and \(\theta(0) = \theta(1) = \theta_0 \). \(\square \)

We may therefore restrict our attention to shortest paths not passing through the north pole. There, the spherical coordinates (4-4) are a diffeomorphism. In fact, we may also restrict our attention to those paths for which \(\varphi \) is nondecreasing and which are symmetric with respect to \(\varphi = \pi/2 \). In what follows, we shall call them symmetric shortest paths.

Lemma 4.8. Let \(y = X(\varphi, \theta) \) be a shortest path not passing through \((0, 0, 1)\). Then \(\varphi \in [0, \pi] \) and \(\varphi \) is nondecreasing. Moreover, there exists a shortest path \(\tilde{y} = X(\tilde{\varphi}, \tilde{\theta}) \) not passing through \((0, 0, 1)\) such that \(\tilde{\varphi} \) is symmetric with respect to \(\pi/2 \):

\[
\{ (\tilde{\varphi}(t), \tilde{\theta}(t)) : t \in [0, 1] \} = \{ (\pi - \tilde{\varphi}(t), \tilde{\theta}(t)) : t \in [0, 1] \}.
\]

Proof. Without loss of generality, \(\varphi(0) = 0 \) and \(\varphi(1) = (2k + 1)\pi \) with \(k \geq 0 \). It is straightforward to see that \(\max \{ \varphi, 0 \} \) and \(\min \{ \varphi, \pi \} \) both decrease the value of \(J \), hence \(k = 0 \). Analogously, if \(t_0 < t_1 < t_2 \) are such that \(\varphi(t_1) < \varphi(t_2) = \varphi(t_0) \), then replacing \(\varphi \) with \(\varphi(t_0) \) in \((t_0, t_2)\) decreases the value of \(J \). Therefore, \(\varphi \) is nondecreasing along a shortest path.

In order to construct \(\tilde{y} \), we claim that

\[
J_1 := \int_0^{t_*} \cos \theta \sqrt{(\dot{\theta})^2 + (\dot{\phi})^2 \sin^2 \theta} \, dt = \int_{t_*}^1 \cos \theta \sqrt{(\dot{\theta})^2 + (\dot{\phi})^2 \sin^2 \theta} \, dt =: J_2 \quad (4-19)
\]
for any \(t^* \in (0, 1) \) such that \(\varphi(t^*) = \pi/2 \). Suppose by contradiction that (4-19) does not hold. Then, without loss of generality, we can suppose \(J_1 < J_2 \). We define \(\tilde{\gamma} = X(\tilde{\varphi}(t), \tilde{\theta}(t)) \), where

\[
\tilde{\theta}(t) = \begin{cases}
\theta(t) & \text{if } t \leq t_* , \\
\left(\frac{t_* (1 - t)}{1 - t_*} \right) & \text{if } t > t_* ,
\end{cases} \quad \text{and} \quad \tilde{\varphi}(t) = \begin{cases}
\varphi(t) & \text{if } t \leq t_* , \\
\pi - \varphi\left(\frac{t_* (1 - t)}{1 - t_*} \right) & \text{if } t > t_* .
\end{cases}
\]

(4-20)

Then, by letting \(\hat{t} = t_* (1 - t)/(1 - t_*) \) and using the 1-homogeneity of the integrands with respect to \(t \), we see that

\[
J(\tilde{\gamma}) = J_1 + \frac{t_*}{1 - t_*} \int_{t_*}^{1} \cos \theta(\hat{t}) \sqrt{(\hat{\varphi}(\hat{t}))^2 + (\hat{\theta}(\hat{t}))^2 \sin^2 \theta(\hat{t})} \, d\hat{t}
= J_1 + \int_{0}^{t_*} \cos \theta(\hat{t}) \sqrt{(\hat{\varphi}(\hat{t}))^2 + (\hat{\theta}(\hat{t}))^2 \sin^2 \theta(\hat{t})} \, d\hat{t} = 2J_1
< J_1 + J_2 = J(\gamma),
\]

(4-21)

a contradiction, since \(\gamma \) is a shortest path. Therefore (4-19) holds. Then, defining \(\tilde{\gamma} = X(\tilde{\varphi}(t), \tilde{\theta}(t)) \) as in (4-20), it follows from (4-21) that \(J(\tilde{\gamma}) = 2J_1 = J_1 + J_2 = J(\gamma) \), hence \(\tilde{\gamma} \) is also a shortest path. \(\square \)

We now characterize arcs of shortest paths contained in \(\tilde{\mathcal{P}}_\varepsilon \).

Lemma 4.9. Let \(\gamma \) be a shortest path not passing through \((0, 0, 1)\) and let \((t_0, t_1)\) be an interval in which \(\gamma|_{(t_0, t_1)} \subset \tilde{\mathcal{P}}_\varepsilon \). Then

\[
\frac{\cos \theta(t) \sin^2 \theta(t) \varphi(t)}{\sqrt{(\hat{\theta}(\hat{t}))^2 + (\hat{\varphi}(\hat{t}))^2 \sin^2 \theta(\hat{t})}} = K \quad \text{for all } t \in (t_0, t_1)
\]

(4-22)

for some \(K \in [0, 1/2] \). If \(K = 0 \), then \(\varphi \) is constant. If \(K > 0 \), then \(\varphi \) is strictly increasing, the function

\[
(\varphi(t_0), \varphi(t_1)) =: I \ni \varphi \mapsto \theta(t(\varphi))
\]

(4-23)

is a smooth solution of

\[
\theta'' \sin \theta \cos \theta = (\theta')^2 (\cos^2 \theta + \cos(2\theta)) + \cos(2\theta) \sin^2 \theta
\]

(4-24)

with

\[
\sin^2 \theta (\cos^2 \theta \sin^2 \theta - K^2) = K^2 (\theta')^2,
\]

(4-25)

and

\[
J(\gamma \chi_{(t_0, t_1)}) = \int_{\varphi(t_0)}^{\varphi(t_1)} \cos \theta \sqrt{(\theta')^2 + \sin^2 \theta} \, d\varphi.
\]

(4-26)

Proof. Up to a linear reparametrization, \(\gamma \) is also a minimizer of \(J \) in \(\Gamma_\varepsilon(\gamma(t_0), \gamma(t_1)) \). Hence, by Lemma 4.6, it is also a minimizer of \(E \) in \(\Gamma_\varepsilon(\gamma(t_0), \gamma(t_1)) \cap H^1((0, 1); \mathbb{R}^3) \). Since it does not touch the north pole, we can write \(\gamma = X(\varphi, \theta) \) with \(\varphi \) and \(\theta \) Lipschitz, and

\[
E(\gamma \chi_{(t_0, t_1)}) = \int_{t_0}^{t_1} \cos^2 \theta (\theta'^2 + \sin^2 \theta \phi^2) \, dt.
\]

Taking the first variation with respect to \(\varphi \), we obtain \(\sin^2 \theta \cos^2 \theta \phi = H \), and, recalling that \(\gamma^3 | \dot{\gamma} | \) is constant, (4-22) follows. Since \(\sin \theta > 0 \) (\(\gamma \) does not cross the north pole), \(\cos \theta > 0 \) (\(\gamma \in P_\varepsilon \)), and
\(\varphi \) is nondecreasing (by Lemma 4.8), we see that \(K \geq 0 \). If \(K = 0 \), then \(\varphi \) is constant. If \(K > 0 \), then \(\dot{\varphi} > 0 \) in \((t_0, t_1) \) and we may use \(\varphi \) as independent variable: letting \(\theta \) be as in (4-23), we have \(\theta' = d\theta/d\varphi = \dot{\theta}/\dot{\varphi} \in L^\infty((t_0, t_1)) \) (because of (4-22)). Then (4-26) follows at once from (4-5) and the definition of \(K \) may be rewritten as
\[
\frac{\cos \theta \sin^2 \theta}{\sqrt{(\theta')^2 + \sin^2 \theta}} = K, \tag{4-27}
\]
which is equivalent to (4-25). From (4-25) one sees immediately that \(K \leq 1/2 \). Differentiating (4-27), we obtain (4-24) in the sense of distributions, and a bootstrap argument starting from \(\theta \in W^{1,\infty}((t_0, t_1)) \) yields smoothness.

If \(\gamma = X(\varphi, \theta(\varphi)) : (t_0, t_1) \to S^2 \) is a curve which does not pass through \((0, 0, 1)\) and such that \(\varphi \in I := (\varphi(t_0), \varphi(t_1)) \) is strictly increasing, then, following (4-26), we hereafter write (with a slight abuse of notation)
\[
J(\gamma \chi_{(t_0, t_1)}) = J_I(\theta) := \int_I \cos \theta \sqrt{(\theta')^2 + \sin^2 \theta} \, d\varphi, \quad J(\theta) := J_{(0, \pi)}(\theta).
\]

In view of Lemma 4.9, it is convenient to state a few properties of the solutions to (4-24), some of which are visualized in Figure 1.

Lemma 4.10. Let \(\theta \) be any solution of (4-24) such that \(\theta \in (0, \pi/2) \) at some point of its domain. Then:

(a) \(\theta \) is globally defined, periodic, and \(\theta \in (0, \pi/2) \);
(b) within a period, \(\theta \) has a unique local (and therefore global) maximum, \(\theta_M \geq \pi/4 \), and a unique local (and therefore global) minimum, \(\theta_m = \pi/2 - \theta_M \), and it is symmetric with respect to its maximum (minimum) point;
(c) the period \(P \) is larger than \(\pi \);
(d) the length of each interval in which \(\theta \leq \pi/4 \) is at least \(\pi/\sqrt{2} \);
(e) \(\theta' \) has a unique local (and therefore global) maximum and a unique local (and therefore global) minimum.

Proof. (a) and (b) easily follow from (4-25) rewritten as
\[
(\theta')^2 = \frac{1}{K^2} \sin^2 \theta (\sin^2 \theta \cos^2 \theta - K^2) =: f_K(\theta), \quad K \in [0, 1/2] \tag{4-28}
\]
and plotted in the phase space (see Figure 1). We just observe explicitly that, since \(\theta' = 0 \) at the extremal values of \(\theta \), we can characterize \(K \) from (4-25) as
\[
K = \cos \theta_m \sin \theta_m = \cos \theta_M \sin \theta_M, \tag{4-29}
\]
which explains why \(\theta_M = \pi/2 - \theta_m \). Also (e) follows immediately from (4-28), since after differentiation we see that
\[
2\theta'' = f_K'(\theta),
\]
Figure 1. The phase plane (θ, θ').

whence the arrows in Figure 1.

To prove (c), we let \(\varphi_m \) and \(\varphi_M \) be a point of minimum and of maximum, respectively, chosen such that no local extremum exists in between. Then, in view of (b),

\[
\frac{P}{2} = \int_{\varphi_m}^{\varphi_M} d\varphi \overset{(4-25)}{=} \int_{\varphi_m}^{\varphi_M} \frac{K \theta'}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\varphi = \int_{\theta_m}^{\theta_M} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\theta.
\]

We now observe that

\[
K \overset{(4-29)}{=} \cos \theta_M \sin \theta_M = \cos \theta_M \cos \theta_m \geq \cos \theta_M \cos \theta \quad \text{for all } \theta \in (\theta_m, \theta_M).
\]

Therefore,

\[
\frac{P}{2} \geq \cos \theta_M \int_{\theta_m}^{\theta_M} \frac{\cos \theta}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\theta,
\]

whose primitives may be computed explicitly:

\[
\cos \theta_M \int \frac{\cos \theta}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\theta = \frac{1}{2 \sin \theta_M} \arcsin \left(\frac{\sin^2 \theta - 2 \sin^2 \theta_M \cos^2 \theta_M}{\sin^2 \theta |1 - 2 \cos^2 \theta_M|} \right).
\]

Hence

\[
\frac{P}{2} \geq \frac{1}{2 \sin \theta_M} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{\pi}{2 \sin \theta_M} > \frac{\pi}{2},
\]

which proves (c).

To prove (d), let \(\varphi_m \) be a minimum point and let \(\varphi_* \) be the closest point to \(\varphi_m \) such that \(\varphi_m \leq \varphi_* \) and \(\theta(\varphi_*) = \pi/4 \). By (b), the length of the interval within a period where \(\theta \leq \pi/4 \) is exactly

\[
2 \int_{\varphi_m}^{\varphi_*} d\varphi \overset{(4-25)}{=} 2 \int_{\theta_m}^{\pi/4} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\theta.
\]
We claim that \(\theta \) with Lemma 4.2 (note that \(\gamma \) with respect to \(\Box \))

After a substitution we get (d).

The primitives of the right-hand side may be computed explicitly (via the substitution \(z = \sin^2(2\theta) \)):

\[
\int \frac{K}{\sin \theta \cos \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} d\theta = -\arctan \frac{2K \cos(2\theta)}{\sqrt{\sin^2(2\theta) - 4K^2}} + C. \tag{4-30}
\]

After a substitution we get (d).

Lemma 4.11. Let \(\gamma \) be a symmetric shortest path not passing through \((0, 0, 1)\) and let \(\gamma = X(\varphi, \theta) \). If \(t_1 \in [0, 1] \) is such that \(\theta(t_1) < \pi/6 \) and \(\varphi(t_1) < \pi/2 \), then \(\theta(t) < \pi/6 \) as long as \(\varphi(t) < \pi - \varphi(t_1) \).

Proof. Let \(w = \sin \theta \) and let \(t_2 > t_1 \) be the first time in which \(\varphi(t_2) = \pi - \varphi(t_1) \). We have

\[
J(\gamma, \chi(t_1,t_2)) = \int_{t_1}^{t_2} \sqrt{(w'(t))^2 + (\dot{\varphi}(t))^2w(t)^2(1 - w(t)^2)} \, dt.
\]

By assumption, \(w(t_1) < \frac{1}{2} \). If there is an interval \(I \subset [t_1, t_2] \) where \(w(t) > \frac{1}{2} \), then a symmetrization of \(w \) with respect to \(\frac{1}{2} \) would strictly decrease the value of \(J \), since

\[
(1 - w)^2(1 - (1 - w)^2) - w^2(1 - w^2) = 2w(1 - w)(1 - 2w) < 0 \quad \text{if} \quad w \in (1/2, 1).
\]

This contradicts that \(\gamma \) is a shortest path and thus proves the lemma.

We are now ready to exclude shortest paths which are contained in \(\hat{P}_k \):

Lemma 4.12. There is no symmetric shortest path \(\gamma \) not passing through \((0, 0, 1)\) such that \(\gamma((0, 0)) \subset \hat{P}_k \).

Proof. Assume for a contradiction that such a \(\gamma \) exists. We will argue that \(J(\gamma) > 2 \sin \theta_0 \), in contradiction with Lemma 4.2 (note that \(\gamma_{\min} \subset \hat{P}_k \) for all \(\varepsilon \)).

Since \(\varphi \) has to travel from 0 to \(\pi \), it can not be constant in \([0, 1]\). Then, it follows from Lemma 4.9 that \(\gamma(t) = X(\varphi(t), \theta(t)) \), where \(\varphi \mapsto \theta(t(\varphi)) \) is a smooth solution of (4-24) such that \(\theta(0) = \theta(\pi) = \theta_0 \). Since \(\gamma \) is symmetric, we have \(\theta'(\pi/2) = 0 \). Because of (b) and (c) in Lemma 4.10, \(\theta \) is monotone in \((0, \pi/2) \). Hence, letting \(\theta_1 = \theta(\pi/2) \), we have

\[
K \overset{(4-25)}{=} K(\theta_1) = \cos \theta_1 \sin \theta_1 \quad \text{and} \quad \cos^2 \theta \sin^2 \theta \geq K^2 \quad \text{for all} \quad t \in (0, 1). \tag{4-31}
\]

We claim that \(\theta_1 > \pi/4 \). If not, it follows from (4-31) that \(\theta_1 \leq \theta_0 \). Hence \(\theta \) is nonincreasing in \((0, \pi/2) \), and

\[
\frac{\pi}{2} \overset{(4-25)}{=} \int_{0}^{\pi/2} \frac{K \theta'}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\varphi \overset{K}{=} \int_{\theta_1}^{\theta_0} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta \leq \cos(\theta_1) \int_{\theta_1}^{\pi/4} \frac{K}{\sin \theta \cos \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta. \tag{4-32}
\]

By (4-30), we would have \(\pi \leq \pi \cos(\theta_1) \), a contradiction. Hence \(\theta_1 > \pi/4 \).
We note the obvious bound
\[\frac{1}{2} J(\theta) \geq \int_0^{\pi/2} \cos \theta \sin \theta \, d\varphi \geq \frac{\pi}{2} \sin \theta_1 \cos \theta_1. \]

Hence we are done if
\[\frac{\pi}{2} \sin \theta_1 \cos \theta_1 > \sin \theta_0, \]
that is, if
\[\theta_0 < \arcsin \left(\frac{\pi}{2} \sin \theta_1 \right) = \arcsin \left(\frac{\pi}{4} \sin(2\theta_1) \right). \]

We claim that (4-33) does hold. If not, recalling Lemma 4.11, we would have
\[\partial \text{ which intersect } \Box \]
then, arguing as in (4-32), we write
\[\text{Lemma 4.13.} \]

(i) follows immediately from Lemma 4.11.

Proof. \[\varphi(0) \]

\[\theta \]

\[\pi \]

\[\theta \]
Lemma 4.10(d) and since \(\theta(\varphi_1) > \pi/4 \), we have \(\varphi_1 \geq \varphi_1 - \varphi_2 \geq \pi/(2\sqrt{2}) \). Then, since \(\theta_\varepsilon^* \) is increasing in \((0, \pi/2)\) and provided \(\varepsilon \) is sufficiently small,

\[
\theta_1 := \theta(\varphi_1) = \theta_\varepsilon^*(\varphi_1) \geq \theta_\varepsilon^* \left(\frac{\pi}{2\sqrt{2}} \right) = \theta_\varepsilon^* \left(\frac{\pi}{2\sqrt{2}} \right)^{(4-6)} \geq \arctan \frac{1}{\cos(\pi/(2\sqrt{2}))} > \frac{\pi}{3}.
\]

By (4-25), this implies that \(\sin \theta_m \cos \theta_m \leq \sin \theta_1 \cos \theta_1 < \sqrt{3}/4 \), that is, \(\theta_m < \pi/6 \), which is impossible in view of Lemma 4.11.

To prove (iii), assume for a contradiction that \(\varphi(t_1) \in (\pi/2 - \varepsilon, \pi/2) \). We have

\[
\frac{\pi}{2} - \varepsilon \leq \int_0^{\varphi(t_1)} d\varphi \equiv \int_{b_0}^{\theta(\varphi(t_1))} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta \leq \int_{b_0}^{\theta_M} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta,
\]

where in the last inequality we have used (ii). Splitting the right-hand side and applying (i), we then obtain

\[
\frac{\pi}{2} - \varepsilon \leq \int_{\pi/6}^{\pi/4} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta + \frac{\sqrt{2}}{2} \int_{\pi/4}^{\theta_M} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta
\]

\[
\equiv \int_{\pi/6}^{\pi/4} \frac{K}{\sin \theta \sqrt{\cos^2 \theta \sin^2 \theta - K^2}} \, d\theta + \frac{\pi \sqrt{2}}{4} \tag{4-34}
\]

Furthermore, again by (ii), we have

\[
K = \sin \theta_M \cos \theta_M \leq \sin \theta(\varphi(t_1)) \cos \theta(\varphi(t_1)) \leq \sin \theta_\varepsilon^*(\varphi - \varepsilon) \cos \theta_\varepsilon^*(\varphi - \varepsilon) \rightarrow 0 \quad \text{as} \quad \varepsilon \rightarrow 0.
\]

Therefore the integral on the right-hand side of (4-34) vanishes as \(\varepsilon \rightarrow 0 \), yielding a contradiction for \(\varepsilon \) sufficiently small.

Therefore the integral on the right-hand side of (4-34) vanishes as \(\varepsilon \rightarrow 0 \), yielding a contradiction for \(\varepsilon \) sufficiently small. \hfill \Box

Lemma 4.14. Let \(\varphi \in I = (\varphi_0, \varphi_1) \subseteq [0, \pi/2 - \varepsilon] \). Then

\[
J_I(\theta_\varepsilon^*) = \left[\frac{\sin \theta_0 \sin \varphi}{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi}} \right]_{\varphi = \varphi_0}^{\varphi = \varphi_1}. \tag{4-35}
\]

Proof. Since \(\theta_\varepsilon^* = \theta^* \) for \(\varphi \leq \pi/2 - \varepsilon \), a straightforward computation shows that

\[
\cos \theta_\varepsilon^* \sqrt{(\theta_\varepsilon^*)^2 + \sin^2 \theta_\varepsilon^*} = \frac{4 \sin \theta_0 \cos \varphi}{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi (3 + \cos 2\theta_0 + 2 \cos 2\varphi \sin^2 \theta_0)}}.
\]

An integration of this expression yields (4-35). \hfill \Box

We now show that if the graph of a solution to (4-24) emanates from \(\partial \mathcal{P} \cap \partial \mathcal{P}_\varepsilon \) into \(\hat{\mathcal{P}}_\varepsilon \), then it does not return to \(\partial \mathcal{P} \cap \partial \mathcal{P}_\varepsilon \).

Lemma 4.15. Let \(\varphi_1 \in [0, \pi/2 - \varepsilon) \) and let \(\theta \) be a solution of (4-24) such that \(\theta(\varphi_1) = \theta^*(\varphi_1) \) and \(\theta'(\varphi_1) \leq \theta^*(\varphi_1) \). Then \(\mathcal{X}(\varphi, \theta(\varphi)) \subset \hat{\mathcal{P}}_\varepsilon \) for all \(\varphi \in (\varphi_1, \pi/2 - \varepsilon) \).

Proof. We let \(\theta_1 = \theta(\varphi_1) \) and we distinguish two cases.
Case 1: \(\theta'(\varphi_1) \leq 0 \). If \(\theta_0 = \pi/4, \varphi_1 = 0, \) and \(\theta'(\varphi_1) = 0, \) then \(\theta \equiv \pi/4 \) and the lemma is trivially true. Else Lemma 4.10 implies that \(\theta \) decreases until either \(\varphi = \pi \) or it reaches its minimum. In the former case the lemma is proved. In the latter, part (d) of Lemma 4.10 implies that \(\theta < \theta^*(\varphi_1) \) at least until \(\varphi = \varphi_1 + \pi/\sqrt{2} > \pi/2 \).

Case 2: \(\theta'(\varphi_1) > 0 \). It is convenient to set

\[
v(\varphi) = \log \tan \left(\frac{1}{2} \theta(\varphi) \right).
\]

Lengthy but straightforward computations show that

\[
v'' = \frac{\cosh(2v) - 3}{\sinh(2v)} (1 + (v')^2).
\]

We now observe that

\[
cosh(2v) < 3 \iff \frac{1}{2} \log(3 - 2\sqrt{2}) < v < \frac{1}{2} \log(3 + 2\sqrt{2})
\]

\[
\iff \log \tan(\pi/8) < \log \tan(\theta/2) < \log \tan(3\pi/8)
\]

\[
\iff \theta \in (\pi/4, \pi/2),
\]

\[
sinh(2v) > 0 \iff v > 0 \iff \theta \in (\pi/8, \pi/2).
\]

Hence \(v'' < 0 \) if \(\theta > \pi/4 \). On the other hand, as long as \(\varphi \leq \pi/2 - \varepsilon \), we have

\[
\theta < \theta^*_\varphi = \theta^* \iff v < v^*(\varphi) := \log \tan \left(\frac{1}{2} \arctan \frac{1}{\tan \theta_0 |\cos \varphi|} \right)
\]

with

\[
v^* = \frac{\sin \theta_0 \cos \varphi}{(\sin^2 \theta_0 \cos^2 \varphi + \cos^2 \theta_0)^{3/2}} > 0.
\]

Hence \((v - v^*)'' < 0 \) as long as \(\theta > \pi/4 \) and \(\varphi \leq \pi/2 - \varepsilon \). Since \(v = v^* \) and \(v' \leq v^* \) at \(\varphi = \varphi_1 \), we have \(v < v^* \) as long as either \(\varphi = \pi/2 - \varepsilon \) or \(\theta = \pi/4 \). In the former case the proof is complete. In the latter case, part (d) of Lemma 4.10 implies that \(\theta \) will then remain below \(\pi/4 \) at least in an interval of length \(\pi/\sqrt{2} > \pi/2 \), and the proof is complete.

We now estimate \(J \) over a candidate symmetric shortest path which de-touches from \(\partial \mathcal{P} \cap \partial \mathcal{P}_e \) and reaches \(\varphi = \pi/2 - \varepsilon \):

\textbf{Lemma 4.16.} Let \(\gamma \) be a symmetric shortest path not passing through \((0,0,1)\) and let \(\gamma = X(\varphi, \theta) \). If \(t_1 \geq 0 \) exists such that \(\varphi_1 = \varphi(t_1) \in [0, \pi/2 - \varepsilon), \theta(t_1) = \theta^*(\varphi_1), \) and \(\gamma \not\subset \partial \mathcal{P} \) in a right-neighborhood of \(t_1 \), then

\[
J_{(\varphi_1, \pi/2 - \varepsilon)}(\theta) > J_{(\varphi_1, \pi/2)}(\theta^*) - \frac{\varepsilon}{2}.
\]
Proof. By assumption, for all $\sigma > 0$, there exists $t_\sigma \in (t_1, t_1 + \sigma)$ such that $\gamma(t_\sigma) \in \mathring{\mathcal{P}}_\epsilon$. By continuity, there exists $\tilde{t}_\sigma \in [t_1, t_\sigma)$ such that $\gamma(\tilde{t}_\sigma) \in \partial \mathcal{P}_\epsilon$ and $\gamma(t) \in \mathring{\mathcal{P}}_\epsilon$ for all $t \in (\tilde{t}_\sigma, t_\sigma]$. Then we may apply Lemma 4.9 in $(\tilde{t}_\sigma, t_\sigma]$.

If $K = 0$, then φ is constant, and since the curve is on $\partial \mathcal{P}_\epsilon$ at $t = \tilde{t}_\sigma$, θ must decrease. Hence γ remains smooth down to $t = 0$, the north pole. Therefore this case is excluded.

Then $K > 0$, φ is strictly increasing, and $\theta(\varphi)$ solves (4-24) in $(\tilde{t}_\sigma, t_\sigma)$. By Lemma 4.15, we in fact have $X(\varphi, \theta(\varphi)) \subset \mathring{\mathcal{P}}_\epsilon$ as long as $\varphi \leq \pi/2 - \varepsilon$, which in particular implies that $\tilde{t}_\sigma = t_1$ and that θ solves (4-24) as long as $\varphi \leq \pi/2 - \varepsilon$. We let $\theta_1 = \theta(\varphi_1) = \theta^*(\varphi_1)$

and we distinguish two cases.

Case 1: $\theta'(\varphi_1) \leq 0$. Lemma 4.10 and the symmetry of the path imply that θ does not increase until $\pi/2$ and $\theta(\pi/2) = \theta_m > 0$. If $\theta_1 = \theta_0 = \pi/4$ and $\varphi_1 = 0$, then $\gamma((0, 1)) \subset \mathring{\mathcal{P}}_\epsilon$, a case which has already been ruled out in Lemma 4.12. Hence $\theta_1 > \pi/4$.

We claim that

$$\min_{\varphi \in [0, \pi/2]} \sin \theta \cos \theta = \sin \theta_m \cos \theta_m.$$ \hspace{1cm} (4-36)

By (4-25),

$$\min_{\varphi \in [\varphi_1, \pi/2]} \sin \theta \cos \theta = \sin \theta_m \cos \theta_m.$$ \hspace{1cm} (4-37)

In particular,

$$\sin(\theta_1) \cos(\theta_1) \geq \sin \theta_m \cos \theta_m.$$ \hspace{1cm} (4-38)

On the other hand, by Lemma 4.13(ii), $\theta \in [\theta_0, \theta_1]$ for $\varphi \in [0, \varphi_1]$. Hence

$$\min_{\varphi \in [0, \varphi_1]} \sin \theta \cos \theta = \min \{ \sin \theta_0 \cos \theta_0, \sin \theta_1 \cos \theta_1 \}.$$ \hspace{1cm} (4-39)

Since θ^* is increasing,

$$\sin(\theta_1) \cos(\theta_1) \leq \sin(\theta^*(\varphi_1)) \cos(\theta^*(\varphi_1)) = \sin\left(\frac{\pi}{2} - \varphi_0\right) \cos\left(\frac{\pi}{2} - \varphi_0\right) = \sin(\theta_0) \cos(\theta_0),$$

therefore (4-39) reads

$$\min_{\varphi \in [0, \varphi_1]} \sin \theta \cos \theta = \sin \theta_1 \cos \theta_1 \geq \sin \theta_m \cos \theta_m.$$ \hspace{1cm} (4-40)

and (4-36) follows from (4-37) and (4-40).

We denote by $\tilde{\varphi}_1 \in (\varphi_1, \pi/2)$ the unique point such that $\theta(\tilde{\varphi}) = \theta_0$ (recall that $\theta_1 > \pi/4$, $\theta(\pi/2) = \theta_m < \pi/4$ and θ is decreasing in $(\varphi_1, \pi/2)$), and we define (see Figure 2)

$$\tilde{\theta}(\varphi) := \begin{cases} \theta(\varphi + \tilde{\varphi}_1) & \text{if } 0 \leq \varphi \leq \frac{\pi}{2} - \tilde{\varphi}_1, \\ \theta_m & \text{if } \frac{\pi}{2} - \tilde{\varphi}_1 \leq \varphi \leq \frac{\pi}{2}. \end{cases}$$

We have

$$J_{(0, \varphi_1)}(\theta) > \sin \theta_m \cos \theta_m \tilde{\varphi}_1 = J_{(\pi/2 - \tilde{\varphi}_1, \pi/2)}(\tilde{\theta}) \quad \text{and} \quad J_{(0, \pi/2 - \tilde{\varphi}_1)}(\tilde{\theta}) = J_{(\varphi_1, \pi/2)}(\theta).$$
Figure 2. Case 1 in the proof of Lemma 4.16. The path \((\varphi, \theta(\varphi))\) (continuous) is beaten by its competitor \((\varphi, \tilde{\theta}(\varphi))\) (dashed).

Therefore \(\gamma\) is not a shortest path and this case is excluded.

Case 2: \(\theta'(\varphi_1) > 0\). Lemma 4.10 and the symmetry of the path imply that \(\theta\) increases until \(\pi/2 - \varepsilon\). We now estimate its length in \(I_\varepsilon = (\varphi_1, \pi/2 - \varepsilon)\). By the assumption of Case 2, and since \(\gamma \in \mathcal{P}\) in \(I_\varepsilon\),

\[
0 < \theta'(\varphi_1) \leq (\theta^*)(\varphi_1)' .
\] (4-41)

By (4-25),

\[
\sin^2 \theta (\cos^2 \theta \sin^2 \theta - K^2) = K^2 (\theta')^2 \quad \text{for some } K \in (0, 1/2) .
\] (4-42)

Evaluating this expression at \(\varphi_1\), we have

\[
K = \frac{\sin^2 \theta^*(\varphi_1) \cos \theta^*(\varphi_1)}{\sqrt{(\theta^*(\varphi_1))^2 + \sin^2 \theta^*(\varphi_1)}} \geq \frac{\sin^2 \theta^*(\varphi_1) \cos \theta^*(\varphi_1)}{\sqrt{(\theta^*(\varphi_1))^2 + \sin^2 \theta^*(\varphi_1)}} .
\]

Of course, we have

\[
J_{I_\varepsilon}(\theta) \geq \int_{I_\varepsilon} \cos \theta \sin \theta \, d\varphi \geq |I_\varepsilon| K .
\]

This chain of inequalities implies that

\[
J_{I_\varepsilon}(\theta) > |I_\varepsilon| \frac{\sin^2 \theta^*(\varphi_1) \cos \theta^*(\varphi_1)}{\sqrt{(\theta^*(\varphi_1))^2 + \sin^2 \theta^*(\varphi_1)}} = \frac{|I_\varepsilon| \sin \theta_0 \cos \varphi_1}{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi_1}}
\]

(the latter equality follows from an explicit computation). On the other hand, by Lemma 4.14, the curve which just stays on the obstacle, \(\gamma^* = X(\varphi, \theta^*(\varphi))\), \(\varphi \in (\varphi_1, \pi/2)\), is such that

\[
J_{(\varphi_1, \pi/2)}(\theta^*) = \sin \theta_0 \left(1 - \frac{\sin \varphi_1}{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi_1}}\right) .
\]
Hence
\[
(J_{I_\varepsilon}(\theta) - J_{(\varphi_1, \pi/2)}(\theta^*)) \frac{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi_1}} {\sin \theta_0}
> |I_\varepsilon| \cos \varphi_1 + \sin \varphi_1 - \sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi_1}
\]
\[
> \left(\frac{\pi}{2} - \varepsilon - \varphi_1 \right) \cos \varphi_1 + \sin \varphi_1 - \sqrt{1 + \cos^2 \varphi_1} = F(\varphi_1) - \varepsilon \cos \varphi_1.
\]

Another calculus exercise shows that F is decreasing $[0, \pi/2]$: since $F(\pi/2) = 0$, F is positive. Therefore
\[
J_{I_\varepsilon}(\theta) > J_{(\varphi_1, \pi/2)}(\theta^*) - \varepsilon \frac{\sin \theta_0 \cos \varphi_1}{\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi_1}} > J_{(\varphi_1, \pi/2)}(\theta^*) - \frac{1}{2} \varepsilon.
\]

Next we characterize the candidate shortest paths joining $X(0, \theta^*(0))$ with another point on $\partial \mathcal{P} \cap \partial \mathcal{P}_\varepsilon$, which is on the same side with respect to $\pi/2$.

Lemma 4.17. Let $0 < \bar{\varphi} \leq \pi/2 - \varepsilon$. The shortest path which connects $X(0, \pi/2 - \theta_0)$ and $X(\bar{\varphi}, \theta^*(\bar{\varphi}))$ is (a smooth reparametrization of) $\gamma^* = X(\varphi, \theta^*(\varphi))$, $\varphi \in [0, \bar{\varphi}]$.

Proof. Let $I = (0, \bar{\varphi})$. We recall by Lemma 4.14 that
\[
J_I(\theta^*) = \frac{\sin \theta_0 \sin \bar{\varphi}} {\sqrt{1 + \tan^2 \theta_0 \cos^2 \varphi}} < \sin \theta_0.
\]

First note that γ does not reach the north pole. For if it did, at a time $\bar{t} \in (0, 1)$, we would have
\[
J(\gamma) \geq \int_0^{\bar{t}} \cos t |\dot{\varphi}| dt \geq \sin(\theta(0)) = \sin(\frac{\pi}{2} - \theta_0) \equiv \cos \theta_0 > \sin \theta_0 > J_I(\theta^*),
\]
which is impossible.

Therefore we may use the spherical coordinates (4-4), and arguing as in the proof of Lemma 4.8 we see that φ in nondecreasing.

Assume for a contradiction that γ does not coincide (up to a smooth reparametrization) with γ^*. Then $t_1 > 0$ and a right-neighborhood \bar{I} of t_1 exist such that $\varphi_1 := \varphi(t_1) < \bar{\varphi}$ and $\gamma(\bar{I}) \not\subset \partial \mathcal{P}$. Arguing as in the first lines of the proof of Lemma 4.16, one finds that there is $t_2 > t_1$ such that $\gamma(t) \in \bar{\mathcal{P}}$ for all $t \in (t_1, t_2)$. Then, arguing as in the proof of Lemma 4.9, one finds that (4-22) holds, and $K \geq 0$ since φ is nondecreasing. If $K > 0$, then $\theta(\varphi)$ would solve (4-24) in (t_1, t_2); but in view of Lemma 4.15, such a solution will not rehit the constraint until $\varphi = \pi/2 - \varepsilon$, hence $K > 0$ can not occur. If $K = 0$, then $\varphi \equiv \varphi_1$, and since we are on $\partial \mathcal{P}$ at time t_1, θ must move inwards. Hence γ remains smooth up to $\theta = 0$, the north pole, a contradiction.

Proof of Theorem 4.1. First of all, we note that Lemma 4.14 implies that $J(\theta^*) = 2 \sin \theta_0$. Hence, in view of Lemma 4.5, it suffices to show that
\[
\inf_{\gamma \in \Gamma_\varepsilon} J(\gamma) \geq J(\theta^*) - \omega(\varepsilon) = 2 \sin \theta_0 - \omega(\varepsilon),
\]
where ω is a universal function which vanishes as $\varepsilon \to 0$. By Lemma 4.6, the inf on the left-hand side of (4-43) is attained. Let γ be one such shortest path. If γ passes through $(0, 0, 1)$, then (4-43) follows from
Figure 3. Case 1 in the proof of Theorem 4.1. The path \((\varphi(t), \theta(t))\) (gray) is beaten by its competitor \((\tilde{\varphi}(t), \tilde{\theta}(t))\) (dashed).

Lemma 4.7. If not, we let \(y = X(\varphi, \theta)\) and, by Lemma 4.8, we assume without loss of generality that \(y\) is symmetric. For simplicity, we distinguish between \(\theta_0 < \pi/4\) and \(\theta_0 = \pi/4\).

Case 1: \(\theta_0 < \pi/4\). We already know from Lemma 4.12 that \(y\) has to intersect \(\partial\mathcal{P}_\varepsilon\). Let \(t_0\) and \(t_1\) be, respectively, the first time in which \(\theta(t) = \pi/4\) and the first time in which \(y\) intersects \(\partial\mathcal{P}_\varepsilon\):

\[t_1 := \sup \{ t > 0 : y \in \mathcal{P}_\varepsilon \text{ in } [0, t) \} \quad \text{and} \quad \varphi_1 = \varphi(t_1). \]

Provided \(\varepsilon\) is sufficiently small, by Lemma 4.13(ii), \(\theta\) is increasing in \((0, t_1)\). Hence the curve

\[\tilde{y}(t) := X(\varphi(t), \tilde{\theta}(t)), \quad \tilde{\theta}(t) := \begin{cases} \frac{\pi}{2} - \theta(t) & t \in [0, t_0], \\ \theta(t) & t \in [t_0, t_1] \end{cases} \]

is contained in \(\mathcal{P}_\varepsilon\) (see Figure 3). We claim that

\[J(\tilde{y} X_{(0, t_1)}) < J(y X_{(0, t_1)}), \tag{4-44} \]

which is equivalent to

\[J(\tilde{y} X_{(0, \varphi_1)}) < J(y X_{(0, \varphi_1)}). \tag{4-45} \]

By Lemma 4.9, \(y\) satisfies (4-22) in \((0, \varphi_0)\). If \(K = 0\), then \(\varphi \equiv 0\) and (4-45) follows from the expression (4-5) of \(J\):

\[\cos \left(\frac{\pi}{2} - \theta \right) = \sin(\theta) < \cos \theta \quad \text{if } \theta \leq \pi/4. \]

Otherwise, by Lemma 4.9 \(\varphi \mapsto \theta(\varphi)\) solves (4-24) in \((0, \varphi_0)\), where \(\varphi_0 = \varphi(t_0)\). Then it follows by Lemma 4.13(iii) that \(\varphi_0 < \pi/2 - \varepsilon\), and we may use the equivalent expression (4-26) for \(J\): since

\[\cos^2 \tilde{\theta}((\tilde{\theta}')^2 + \sin^2 \tilde{\theta}) = \sin^2 \theta((\theta')^2 + \cos^2 \theta) < \cos^2 \theta((\theta')^2 + \sin^2 \theta) \quad \text{in } (0, \varphi_0), \]

(4-45) follows.

Since \(\tilde{y}\) is a path connecting \(X(0, \pi/2 - \theta_0)\) to \(X(\varphi_1, \theta^*(\varphi_1))\), Lemma 4.17 implies that \(J(\tilde{y} X_{(0, \varphi_1)}) \geq J_{(0, \varphi_1)}(\theta^*)\). Together with (4-44), we obtain

\[J_{(0, \varphi_1)}(\theta^*) < J(y X_{(0, t_1)}). \tag{4-46} \]
Now let $t_2 \geq t_1$ be defined by
\[t_2 := \max\{t \geq t_1 : \gamma \in \partial \mathbb{P}_e \text{ in } [t_1, t]\} \quad \text{and} \quad \varphi_2 = \varphi(t_2). \]
The estimate in (t_1, t_2) is trivial since γ coincides with $\gamma^* := X(\varphi, \theta^*)$:
\[J(\gamma \chi(t_1, t_2)) = J_{(\varphi_1, \varphi_2)}(\theta^*). \]

On $(\varphi_2, \pi/2 - \varepsilon)$, Lemma 4.16 implies that
\[J_{(\varphi_2, \pi/2 - \varepsilon)}(\theta) > J_{(\varphi_2, \pi/2)}(\theta^*) - \frac{\varepsilon}{2} \quad \text{if} \quad \varphi_2 < \pi/2 - \varepsilon. \tag{4-47} \]
Finally, we just observe that
\[J_{(\pi/2 - \varepsilon, \pi/2)}(\theta^*) \leq \omega(\varepsilon). \tag{4-48} \]
Collecting (4-46)–(4-48) and recalling the symmetry of γ, we obtain (4-43).

Case 2: $\theta_0 = \pi/4$. This case is simpler. We let
\[t_2 = \max\{t \geq 0 : \gamma \in \partial \mathbb{P}_e \text{ in } [0, t]\} \geq 0 \quad \text{and} \quad \varphi_2 = \varphi(t_2), \]
and we argue exactly as above to obtain $J(\gamma \chi(0, t_2)) = J_{(0, \varphi_2)}(\theta^*)$ and (4-47)–(4-48).

Acknowledgement

We thank Manuel Ritoré for fruitful discussions on the geometrical problem in Section 4.

References

Received 18 Apr 2013. Accepted 27 Nov 2013.

LORENZO GIACOMELLI: lorenzo.giacomelli@sba.uniroma1.it
SBAI Department, Sapienza University of Rome, Via Scarpa, 16, I-00161 Roma, Italy

JOSE M. MAZÓN: mazon@uv.es
Departament d’Anàlisi Matemàtica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Spain

SALVADOR MOLL: j.salvador.moll@uv.es
Departament d’Anàlisi Matemàtica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Spain
Prescription du spectre de Steklov dans une classe conforme

PIERRE JAMMES

Semilinear geometric optics with boundary amplification

JEAN-FRANCOIS COULOMBEL, OLIVIER GUÉS and MARK WILLIAMS

The 1-harmonic flow with values in a hyperoctant of the \(N \)-sphere

LORENZO GIACOMELLI, JOSE M. MAZÓN and SALVADOR MOLL

Decomposition rank of \(L \)-stable \(C^* \)-algebras

AARON TIKUISIS and WILHELM WINTER

Scattering for a massless critical nonlinear wave equation in two space dimensions

MARTIN SACK

Large-time blowup for a perturbation of the cubic Szegő equation

HAIYAN XU

A geometric tangential approach to sharp regularity for degenerate evolution equations

EDUARDO V. TEIXEIRA and JOSÉ MIGUEL URBANO

The theory of Hahn-meromorphic functions, a holomorphic Fredholm theorem, and its applications

JÖRN MÜLLER and ALEXANDER STROHLMAIER