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We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total
variation of a vector field with respect to the L2-distance — from a domain of Rm into a hyperoctant of
the N -dimensional unit sphere, SN−1

+ , under homogeneous Neumann boundary conditions. In particular,
we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the
“geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower
semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a
shortest path between two points on SN−1

+ with respect to a metric which penalizes the closeness to their
geodesic midpoint.
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1. Introduction

Throughout the paper, �⊂ Rm is a bounded domain with Lipschitz continuous boundary ∂� and SN−1

is the unit sphere of RN . For a smooth map u :�→SN−1 and 1≤ p<∞, the p-energy of u is given by

E p(u)=
∫
�

|Du|p dx .

A critical point u∈C1(�;SN−1) of the p-energy, a p-harmonic map, formally satisfies the Euler–Lagrange
equation

− div(|Du|p−2 Du)= |Du|pu. (1-1)

The term |Du|p plays the role of a Lagrange multiplier corresponding to the pointwise constraint |u| = 1.
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One well-known method to obtain (distributional) solutions to (1-1), the so-called heat-flow method,
introduced by J. Eells and J. H. Sampson [1964] for p = 2 in the general framework of Riemannian
manifolds, consists in looking at long time limits of solutions to

ut = div(|Du|p−2 Du)+ u|Du|p, |u| = 1. (1-2)

Equation (1-2) is also a prototype for often quite complicated reaction-diffusion systems for the evolution
of director fields which arise in various contexts — multigrain problems [Kobayashi et al. 2000], theory
of liquid crystals [van der Hout 2001], ferromagnetism [DeSimone and Podio-Guidugli 1996], and image
processing [Sapiro 2001]. For p> 1, (1-2) with various boundary conditions has been widely studied over
the last decades; referenced discussions of the cases p = 2 and p ∈ (1,∞) may be found, for example, in
[Bertsch et al. 2003; Bertsch et al. 2002; Chen 1989; Struwe 1992] and [Chen et al. 1994; Hungerbühler
2004; Misawa 2002], respectively.

Here we are interested in the case p = 1, for which (1-2) formally reads

ut = div
(

Du
|Du|

)
+ u|Du|, u ∈ SN−1. (1-3)

More precisely, we focus on the homogeneous Neumann problem for (1-3) when the target space is a
compact subset A of SN−1; that is,

ut = div
(

Du
|Du|

)
+ u|Du|, u ∈ A ⊆ SN−1, in QT = (0, T )×�,

Du
|Du|

ν = 0 on ST = (0, T )× ∂�,

u(0, · )= u0( · ), u0 ∈ A, in �,

(1-4)

where ν denotes the outward unit normal to ∂�. Problem (1-4) was proposed as a tool to denoise either
two-dimensional image gradients and optical flows, in which case N = 2 and A = S1 [Tang et al. 2000],
or color images by smoothing the chromaticity data while preserving the contrast, in which case N = 3
and A is an octant of the sphere [Tang et al. 2001].

While the scalar and unconstrained version of (1-3), that is, the so-called total variation flow, is by
now well understood after the pioneering paper [Andreu et al. 2001] (see the monograph [Andreu-Vaillo
et al. 2004] and the references therein or [Bonforte and Figalli 2012] for an up-to-date reference list).
An existence theory for (1-3) is still open in general. Special cases considered so far have dealt with
piece-wise constant data [Giga and Kobayashi 2003; Giga et al. 2005; Giga et al. 2007], initial data with
“small” energy [Giga et al. 2004], and rotationally symmetric solutions [Giga and Kuroda 2004; Dal Passo
et al. 2008; Giacomelli and Moll 2010]. We refer to [Giacomelli et al. 2013a] for a detailed discussion of
previous attempts to obtain a solution to (1-4) given in [Barrett et al. 2008; Feng 2010].

In dealing with (1-3), the most delicate issue is of course the interpretation of the bounded matrix Z,
which represents Du/|Du|, and of the measure µ, which represents u|Du|, the latter being the product
between a measure and a possibly discontinuous function. Very recently, an interpretation of (1-3) has
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been proposed in [Giacomelli et al. 2013a]: in summary,

ut(t)− div Z(t) ∈ ug |Du|(t), u(t) ∈ A for a.e. t ∈ [0, T ] (1-5)

in the sense of distributions, where Z(t) is a bounded matrix that represents Du(t)/|Du(t)| (the precise
meaning is given in Proposition 3.5) and ug|Du|(t) denotes a set of vector-valued measures which are
oriented as u(t)∗ (the precise representative of u(t)) and have total variation density |Du(t)|. For N = 2,
this interpretation has led to the existence and uniqueness of a solution to (1-4) when A is a semicircle
[Giacomelli et al. 2013a, Theorems 4.1 and 5.1] together with the existence of a solution when A = S1

and u0 ∈ BV (�;S1) has no jumps by an “angle” larger than π .
The aim of this paper is to prove an existence result, according to the same interpretation, for an

arbitrary dimension of the target sphere. We consider (1-4) in the first hyperoctant of the N -sphere:

A = SN−1
+
:= {(x1, . . . , xN ) ∈ SN−1

: xi ≥ 0 for i = 1, . . . , N }

(a natural assumption in the context of image processing; see above). Note that in this case, for every pair
u−, u+ ∈ SN−1

+ there exists a unique geodesic midpoint, ug = (u++ u−)/|u++ u−| (see Definition 3.1).
Hence we may define the geodesic representative of u ∈ BV (�;SN−1

+ ), ug := u∗/|u∗| (see Definition 3.2
and Remark 3.3) and the set of measures in (1-5) reduces to the singleton u(t)g|Du(t)|.

The complete definition of a solution and the statement of the main result are given in Definition 3.4
and Theorem 3.6, respectively. We obtain a solution as the limit of a sequence of solutions to the following
approximating problems (see Proposition 3.7 and Lemma 3.8):

uεt = div Zε +µε, uε ∈ SN−1
+

in �T ,

[Zε, ν] = 0 on ST ,

uε(0, · )= uε0( · ) in �,

where

Zε = εα∇uε +
∇uε√
|∇uε|2+ ε2

, µε = εαuε|∇uε|2+ uε
|∇uε|2√
|∇uε|2+ ε2

, (1-6)

and the initial data suitably converge to a given u0 ∈ BV (�;SN−1
+ ) (see Lemma 3.9). The strategy

we follow is completely different from that in [Giacomelli et al. 2013a], where the special structure of
S1 was heavily used. Its core, neglecting any technicality and concentrating on the crucial issues, may
be summarized as follows (see also [Giacomelli et al. 2013b] for a slightly more detailed discussion).
By fairly standard compactness arguments, we obtain convergence of uε, Zε, and µε to u, Z, and µ,
respectively (see Step 1 in the proof of Theorem 3.6). The functions u and Z can be seen to satisfy, for
a.e. t ∈ [0, T ],

ut(t)− div Z(t)= µ(t) in M(�;RN ).

Then we show, by a relatively soft argument, which nevertheless requires quite a few preliminaries, that

µ= ∗(∗(Z∧ u)∧ Du) and |µ(t)| ≤ |Du(t)| as measures for a.e. t ∈ [0, T ] (1-7)
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(see Step 2 in the proof of Theorem 3.6). Hence, in order to identify µ it suffices to show that

u(t)g ·
µ(t)
|Du(t)|

≥ 1 for a.e. t ∈ [0, T ], (1-8)

where µ(t)/|Du(t)| denotes the Radon–Nikodým derivative of µ(t) with respect to |Du(t)|. Indeed,
(1-7) and simple vectorial identities then imply that

µ(t)= u(t)g|Du(t)| for a.e. t ∈ [0, T ]

(see Step 6 in the proof of Theorem 3.6). In view of (1-6), the lower bound (1-8) for the diffuse part of
µ follows (see Step 4 in the proof of Theorem 3.6) from a suitable modification of a relaxation result
[Alicandro et al. 2007], applied to each of the components of

F(v) :=

∫
�

v(x)|∇v(x)| dx

(see Section 2F). On the other hand, the same argument would lead to a suboptimal lower bound on µ(t)
over the jump set of u(t) (see Remark 3.10). Moreover, the results in [Alicandro et al. 2007] can not
be directly applied to u(t)g ·µε(t), since u(t)g is a discontinuous function (though a very special one).
For these reasons, we revisit the blow-up argument in [Fonseca and Müller 1993] and the dimensional
reduction argument in [Fonseca and Rybka 1992] to conclude that

u(t)g ·
µ(t)
|Du(t)|

≥
1

|u(t)+(x)− u(t)−(x)|
inf
γ∈0̃N

∫ 1

0
u(t)g(x) · γ (s)|γ ′(s)| ds (1-9)

for a.e. t and Hm−1-a.e. x ∈ Ju(t), where

0̃N := {γ ∈W 1,1((0, 1);SN−1
+

) : γ (0)= u(t)−(x), γ (1)= u(t)+(x)} (1-10)

(see Step 5 in the proof of Theorem 3.6). The minimization problem which appears on the right-hand
side of (1-9) is crucial in our argument. In Section 4 we argue that

min
γ∈0

∫ 1

0
ug · γ (s)|γ ′(s)| ds = |u+− u−|,

where 0 = {γ ∈W 1,1((0, 1);SN−1
+

) : γ (0)= u−, γ (1)= u+} (1-11)

(see Theorem 4.1). Together with (1-9), (1-11) yields the lower bound (1-8) on the jump set of u(t) too.
The minimization problem in (1-11) is equivalent to finding — and characterizing the length of —

shortest paths between u− and u+ in a Riemannian manifold with boundary whose metric penalizes the
closeness to ug. In addition, the metric may degenerate at a point of the manifold: for instance, if N = 3,
u− = (0, 0, 1), and u+ = (0, 1, 0), then ug · (1, 0, 0)= 0. In these respects, the minimization problem
has a geometrical interest of its own.

It turns out that the minimum in (1-11) is achieved by the standard geodesic on SN−1
+ connecting u−

and u+; see Lemma 4.2. Nevertheless, the analysis of (1-11) is highly nontrivial for two reasons. Firstly,
one has to characterize the length of candidate shortest paths which may in principle intersect and/or
de-touch from the boundary of the manifold. Secondly, the functional in (1-11) is genuinely nonconvex:
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indeed, besides the aforementioned standard geodesic, it always possesses a second smooth critical point,
which we show not to be a shortest path. In addition, in the extreme cases in which u+ and u− are
two distinct “vertices” of SN−1

+ , the functional in (1-11) possesses a second shortest path which is not a
critical point: it follows the boundary of SN−1

+ and passes through the point of degeneracy. For instance,
if N = 3, u− = (0, 0, 1), and u+ = (0, 1, 0), then ug = (0, 1, 1)/

√
2 and the curve

γ (s)=
{
(sin(πs), 0, cos(πs)) if s ∈ [0, 1/2],
(sin(πs),− cos(πs), 0) if s ∈ (1/2, 1]

is such that ∫ 1

0
ug · γ (s)|γ ′(s)| ds = 2

∫ 1/2

0

cos(πs)
√

2
π ds =

√
2= |u+− u−|.

Finally, we note that if the paths in 0 are allowed to take values in a set A which contains SN−1
+ , then

in general the standard geodesic is not a minimizer and (1-11) does not hold; an example is given in
Remark 4.4.

The paper is organized as follows. In Section 2 we collect the definitions and results which we need
concerning multivector fields, functions of bounded variations, a generalized Green’s formula, tensor
fields, and lower semicontinuity of integral functionals. In Section 3 we introduce the concept of and
prove the existence of a solution to (1-4). Section 4 is devoted to the minimization problem in (1-11).

2. Preliminaries

In this section we introduce some notation and some preliminary results that we need in the sequel.

General notations. Throughout this paper Hm−1 denotes the (m− 1)-dimensional Hausdorff measure
and Lm the m-dimensional Lebesgue measure. We denote by M(�;RN ) the space of RN -valued finite
Radon measures on �; see [Ambrosio et al. 2000, Definition 1.40]. We recall that M(�;RN ) is the dual
space of C0(�;R

N ). Throughout, the subscript 0 denotes spaces of compactly supported functions. We
denote D(�;RN ) := C∞0 (�;R

N ). When N = 1, we often do not specify the target space (for example,
M(�)=M(�;R)). Finally, if A ⊂ RN is compact and ϒ(�;RN ) is a space of functions, we sometimes
use the notation ϒ(�;A) := {u ∈ ϒ(�;RN ) : u(x) ∈ A for Lm-a.e. x ∈�}.

2A. Multivectors. Here we recall some definitions and basic properties about multivectors that we need
in our analysis. We refer to, for example, [Federer 1969, Chapter 1; Darling 1994, Chapter 1] for details.

The spaces30(R
N ) and31(R

N ) coincide with R and RN , respectively. For 2≤ k≤N, the k-th exterior
power of RN , denoted by 3k(R

N ), is a set spanned by elements of the form

u1 ∧ · · · ∧ uk, ui ∈ RN , i = 1, . . . , k

(elements of this form are called “generators”) and subject to the following rules:

(1) (av+ bw)∧ u2 ∧ · · · ∧ uk = a(v∧ u2 ∧ · · · ∧ uk)+ b(w∧ u2 ∧ · · · ∧ uk).

(2) u1 ∧ · · · ∧ uk changes sign if two entries are transposed.
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(3) For any basis {e1, . . . en} of RN , {eα := eα1 ∧ · · · ∧ eαk : α ∈ I (k, N )} is a basis for 3k(R
N ).

Here we have used the standard notation for ordered multiindexes:

I (k, N )= {α = (α1, . . . , αk) : αi ∈ Z, 1≤ α1 < · · ·< αk ≤ N }. (2-1)

The elements of3k(R
N ) are called multivectors (or k-vectors), and3k(R

N ) is a vector space of dimension( N
k

)
. We will use the well-known equality [Darling 1994, Formula 1.68]

|a|2|b|2 = (a · b)2+ (a∧ b)2 for all a, b ∈ RN . (2-2)

Given k, p ∈ {0, . . . , N } with k + p ≤ N , there exists a unique bilinear map (λ,µ)→ λ ∧ µ from
3k(R

N )×3p(R
N ) to 3k+p(R

N ), whose effect on generators is

(u1 ∧ u2 ∧ · · · ∧ uk)∧ (v1 ∧ v2 ∧ · · · ∧ vp)= u1 ∧ u2 ∧ · · · ∧ uk ∧ v1 ∧ v2 ∧ · · · ∧ vp.

This map satisfies

λ∧µ= (−1)−kp(µ∧λ) for λ ∈3k(R
N ), µ ∈3p(R

N ). (2-3)

The Hodge-star operator is an isomorphism from 3k(R
N ) to 3N−k(R

N ), defined on the basis as

∗(eα1 ∧ · · · ∧ eαk ) := eαk+1 ∧ · · · ∧ eαN , (2-4)

where {α1, . . . , αN } has positive signature. In particular, in what follows we will systematically identify
3N−1(R

N ) with RN . We will use the following well-known formulas:

∗(∗λ)= (−1)k(N−k)λ for all λ ∈3k(R
N ) (2-5)

(see, for example, [Darling 1994, (1.64)]) and

a∧∗(b∧ c)= (a · c) ∗ b− (a · b) ∗ c for all a, b, c ∈ RN (2-6)

(see, for example, [Darling 1994, Table 1.2]). It follows from (2-3), (2-6), and (2-5) that

|b|2a = (a · b)b−∗(∗(a∧ b)∧ b) for all a, b ∈ RN . (2-7)

Introducing the norm

|λ|k =

( ∑
α∈I (k,N )

|λα|
2
)1/2

, where λ=
∑

α∈I (k,N )

λαeα (2-8)

and using (2-4), it is immediate to see that

| ∗λ|N−k = |λ|k for any λ ∈3k(R
N ). (2-9)

Finally, we recall that, given λ ∈3k(R
N ) and η ∈3p(R

N ) such that one of them is a generator, we have

|λ∧ η|k+p ≤ |λ|k |η|p; (2-10)

see [Federer 1969, p. 32].
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2B. Vector-valued functions. Let (X, ‖ · ‖) a Banach space with dual X ′ and let U ⊂ Rd be a bounded
open set endowed with the Lebesgue measure Ld . We denote by 〈 · , · 〉 the pairing between X and X ′.
A function u : U → X is called simple if there exist x1, . . . , xn ∈ X and U1, . . . ,Un Lm-measurable
subsets of U such that u =

∑n
i=1 xiχUi . The function u is called strongly measurable if there exists a

sequence of simple functions {un} such that ‖un(x)− u(x)‖→ 0 as n→+∞ for almost all x ∈U . If
1≤ p<∞, then L p(U ; X) stands for the space of (equivalence classes of) strongly measurable functions
u :U → X with

‖u‖p :=

(∫
U
‖u(x)‖p dx

)1/p

<∞.

Endowed with this norm, L p(U ; X) is a Banach space. For p =∞, the symbol L∞(U ; X) stands for the
space of (equivalence classes of) strongly measurable functions u :U → X such that

‖u‖∞ := esssup{‖u(x)‖ : x ∈U }<∞.

If U = (0, T ), we write L p(0, T ; X)= L p((0, T ); X). For 1≤ p<∞, L p′(0, T ; X ′) (1/p+1/p′= 1)
is isometric to a subspace of (L p(0, T ; X))′, with equality if and only if X ′ has the Radon–Nikodým
property; see, for instance, [Diestel and Uhl 1977].

We consider the vector space D(U ; X) :=C∞0 (U ; X), endowed with the topology for which a sequence
ϕn→ 0 as n→+∞ if there exists K ⊂U compact such that supp(ϕn)⊂ K for any n ∈N and Dαϕn→ 0
uniformly on K as n→+∞ for all multiindexes α. We denote by D′(U ; X) the space of distributions
on U with values in X , that is, the set of all linear continuous maps T :D(U ; X)→ R. As is well known,
L p(U ; X)⊂D′(U ; X) through the standard continuous injection. Given T ∈D′(U ; X), the distributional
derivative of T is defined by

〈Di T, ϕ〉 := −〈T, ∂iϕ〉 for any ϕ ∈ D(U ; X) and any i ∈ {1, . . . , d}. (2-11)

General notations for matrices. If A= (a`i ) is an N ×m matrix, we write a` = (a`1, . . . a
`
m) for 1≤ `≤ N

and ai = (a1
i , . . . , aN

i ) for 1≤ i ≤ m. If B = (b`i ) is also an N ×m matrix, we let

A : B =
N∑
`=1

m∑
i=1

a`i b`i and |A| = (A : A)1/2 =
( N∑
`=1

m∑
i=1

(a`i )
2
)1/2

.

Given A= (a1, . . . , am) ∈ RN×m and b ∈ RN , we let

A∧ b := (a1 ∧ b, . . . , am ∧ b),

∗(A∧ b) := (∗(a1 ∧ b), . . . , ∗(am ∧ b)).

2C. Functions of bounded variation. A vector-field u∈ L1(�;RN ) has bounded variation, and we write
u ∈ BV(�;RN ), if there is an N ×m matrix Du, whose components Di u` are finite Radon measures,
such that
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N∑
`=1

∫
�

u` divϕ` dx =−
N∑
`=1

m∑
i=1

∫
�

ϕ`i dDi u` for all ϕ ∈ (C1
0(�;R

N ))m .

Its variation measure |Du| is a finite Radon measure defined on open sets U ⊆� by

|Du|(U )= sup
{ N∑
`=1

∫
U

u` divϕ` dx : ϕ ∈ (C1
0(U ;R

N ))m, ‖ϕ‖∞ ≤ 1
}
.

The matrix-valued Radon measure Du is decomposed into three mutually orthogonal measures (see
[Ambrosio et al. 2000; Evans and Gariepy 1992; Ziemer 1989]):

Du =∇uLm
+ Dcu+ D j u,

where ∇u denotes the Radon–Nikodým derivative of Du with respect to Lm . The Cantor part Dcu is
supported on the set of Lebesgue points of u, � \ Su, that is, those points x ∈� for which there exists
ũ(x) ∈ RN such that

lim
ρ↓0

1
Lm(Bρ(x))

∫
Bρ(x)
|u(y)− ũ(x)| dy = 0.

The jump part D j u is supported on the set of approximate jump points of u, Ju, that is, those points
x ∈� for which there exist u+(x) 6= u−(x) ∈ RN and νu(x) ∈ Sm−1 such that

lim
ρ↓0

1
Lm(B±ρ (x, νu(x)))

∫
B±ρ (x,νu(x))

|u(y)− u±(x)| dy = 0,

where

B±ρ (x, νu(x))= {y ∈ Bρ(x) : 〈y− x, νu(x)〉≷ 0}.

The jump set Ju is a Borel subset of Su that satisfies Hm−1(Su\Ju) = 0. The precise representative
u∗ : �\(Su\Ju)→ RN of u is defined to be equal to ũ on �\Su and equal to (u− + u+)/2 on Ju. In
what follows, we identify u = ũ = u∗ on � \ Su.

2D. A generalized Green’s formula. Let

XM(�)= {z ∈ L∞(�;Rm) : div z ∈M(�)}

and

MH(�;R
N ) := {µ ∈M(�;RN ) : |µ|(B)= 0 for any Borel set B ⊂� :Hm−1(B)= 0}.

In [Anzellotti 1983, Theorem 1.2] (see also [Andreu-Vaillo et al. 2004; Chen and Frid 1999]), the weak
trace on ∂� of the normal component of z ∈ XM(�) is defined. Namely, it is proved that there exists a
linear operator [ · , ν] : XM(�)→ L∞(∂�) such that ‖[z, ν]‖L∞(∂�) ≤ ‖z‖L∞(�) for all z ∈ XM(�) and
[z, ν] coincides with the pointwise trace of the normal component if z is smooth:

[z, ν](x)= z(x) · ν(x) for all x ∈ ∂� if z ∈ C1(�,Rm).
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It follows from [Chen and Frid 1999, Proposition 3.1] or [Ambrosio et al. 2005, Proposition 3.4] that

div z ∈MH(�) for all z ∈ XM(�). (2-12)

Therefore, given z ∈ XM(�) and u ∈ BV (�)∩ L∞(�), the functional (z, Du) ∈ D′(�) given by

〈(z, Du), ϕ〉 := −
∫
�

u∗ϕ d(div z)−
∫
�

uz∇ϕ dx (2-13)

is well defined, and the following holds (in [Caselles 2011], see Lemma 5.1, Theorem 5.3, and the
discussion after Lemma 5.4):

Lemma 2.1. Let z ∈ XM(�) and u ∈ BV (�)∩ L∞(�). Then the functional (z, Du) ∈ D′(�) defined by
(2-13) is a Radon measure which is absolutely continuous with respect to |Du|. Furthermore,∫

�

u∗ d(div z)+ (z, Du)(�)=
∫
∂�

[z, ν]u dHm−1

and

div(zu)= u∗ div z+ (z, Du) as measures.

We will use the vector-valued version of Lemma 2.1. To this aim, we introduce the space

X N
M(�)= {Z = (z

1, . . . , zN )T : z` ∈ XM(�) for `= 1, . . . , N }.

Given Z ∈ X N
M(�) and u ∈ BV(�;RN )∩ L∞(�;RN ), we use the notation

div Z := (div z1, . . . , div zN ),

[Z, ν] := ([z1, ν], . . . , [zN , ν]),

Z : Du :=
N∑
`=1

(z`, Du`).

Then, as an immediate consequence of (2-12) and Lemma 2.1, we have:

Corollary 2.2. Let Z ∈ X N
M(�). Then

div Z ∈MH(�;R
N ).

Furthermore, for any u ∈ BV(�;RN )∩ L∞(�;RN ), Z : Du is a Radon measure which is absolutely
continuous with respect to |Du|,∫

�

u∗ · d(div Z)+ (Z : Du)(�)=
∫
∂�

[Z, ν] · udHm−1 (2-14)

and

div(ZT u)= u∗ · div Z+ Z : Du as measures. (2-15)
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2E. Multivector fields. Let U ⊂ Rd . A multivector distribution in U is a linear continuous map
λ ∈ D′(U ;3k(R

N )) (see Section 2B). It may be expressed in terms of the basis (3) as

λ=
∑

α∈I (k,N )

λαeα with λα ∈ D′(U ;RN ) for any α ∈ I (k, N ).

Then, according to (2-11),

Diλ=
∑

α∈I (k;N )

Diλαeα for any i ∈ {1, . . . , d}. (2-16)

From (2-16), the following two identities are easily seen to hold for k, p ∈ N and i ∈ {1, . . . , d}:

Di (λ∧ η)= Diλ∧ η+λ∧ Diη (2-17)

for any λ ∈ L2(U ;3k(R
N )) such that Diλ ∈ L2(U ;3k(R

N )) and any η ∈ L2(U ;3p(R
N )) such that

Diη ∈ L2(U ;3p(R
N ));

∗(Diλ)= Di (∗λ) for any λ ∈ D′(U ;3k(R
N )). (2-18)

For any k ∈ N, (3k(R
N ))m is a Banach space. We use the norm

‖A‖ :=

( m∑
i=1

|Ai |
2
k

)1/2

for A= (A1, . . . ,Am)

with | · |k given by (2-8).
We will now state and prove the analogue of Corollary 2.2 for a multivector field

A= (A1, . . . ,Am) ∈ L∞(�; (3k(R
N ))m).

We define

div A :=

m∑
i=1

Di (Ai ). (2-19)

Square-integrability of div A suffices for our purposes. Hence, we introduce the space

X2(�;3N−2(R
N )) := {A ∈ L∞(�; (3N−2(R

N ))m) : div A ∈ L2(�;3N−2(R
N ))}.

The following holds:

Lemma 2.3. Let A∈ X2(�;3N−2(R
N )) and consider u∈BV(�;RN )∩L2(�;RN ). Then the functional

∗(A∧ Du) : D(�;RN )→ R defined by

〈∗(A∧ Du),8〉 := −
∫
�

∗(div A∧ u) ·8 dx −
m∑

i=1

∫
�

∗(Ai ∧ u) · ∂i8 dx (2-20)

is an RN -valued Radon measure on �, absolutely continuous with respect to |Du|, with

| ∗ (A∧ Du)|(B)≤ ‖A‖∞|Du|(B) for any Borel set B ⊆�. (2-21)
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Furthermore,
div(∗(A∧ u))= ∗(A∧ Du)+∗(div A∧ u)Lm as measures. (2-22)

Proof. Since � has compact Lipschitz boundary, it follows from [Ambrosio et al. 2000, Theorem 3.21,
Remark 3.22, and Corollary 3.80] that the sequence un := (T u) ? ρn ∈ C∞(�) (here T denotes an
extension operator) is such that un ⇀ u in BV(�;RN ),

∫
�
|∇un| dx→|Du|(�), and un→ u∗ Hm−1-a.e.

in �. Furthermore, by construction and since u ∈ L2(�;RN ), we have un→ u in L2(�;RN ). Then

〈∗(A∧ Du),8〉(2-20)
= − lim

n→∞

(∫
�

∗(div A∧ un)·8 dx +
m∑

i=1

∫
�

∗(Ai ∧ un)·∂i8 dx
)
.

Integrating by parts and using (2-18), we obtain

〈∗(A∧ Du),8〉 = − lim
n→∞

(∫
�

∗(div A∧ un)·8 dx −
m∑

i=1

∫
�

∗(∂i (Ai ∧ un)) ·8 dx
)

(2-17)
= lim

n→∞

m∑
i=1

∫
�

∗(Ai ∧ ∂i un)·8 dx .

Therefore, applying the Hölder and Cauchy–Schwarz inequalities,

|〈∗(A∧ Du),8〉|
(2-9)
≤ ‖8‖∞ lim

n→∞

m∑
i=1

∫
�

|Ai ∧ ∂i un|N−1 dx

(2-10)
≤ ‖8‖∞ lim

n→∞

∫
�

m∑
i=1

|∂i un||Ai |N−2 dx

≤ ‖8‖∞ lim
n→∞

∫
�

|∇un|

( m∑
i=1

|Ai |
2
N−2

)1/2

dx

≤ ‖8‖∞‖A‖∞ lim
n→∞

∫
�

|∇un| dx

= ‖8‖∞‖A‖∞|Du|(�).

The arbitrariness of 8 completes the proof of (2-21). It follows from (2-20) and (2-19) that div(∗(A∧u))
is also an RN -valued Radon measure in �, and (2-22) follows from (2-19). �

2F. Lower semicontinuity of integral functionals over W1,1(�;SN−1
+ ). Let f : �×SN−1

+ → R+ and
consider the energy functional defined in L1(�;SN−1

+ ) by

F f (v) :=


∫
�

f (x, v(x))|∇v(x)| dx if v ∈W 1,1(�;SN−1
+ ),

+∞ otherwise.

The purpose of this section is to restate, to the extent we need in the present setting, a few lower
semicontinuity results obtained in [Fonseca and Rybka 1992; Alicandro et al. 2007] (see also [Giaquinta
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and Mucci 2006] for related results when the target space is a general manifold). We consider the
following hypotheses for f :

(H1) f is continuous and nonnegative;

(H2) (uniform boundedness) a positive constant C1 exists such that

| f (x, s)| ≤ C1 for all (x, s) ∈�×SN−1
+
;

(H3) for every compact set U ⊂�, there exist a continuous function ω, with ω(0)= 0, such that

| f (x, s)− f (x ′, s′)| = ω(|x − x ′| + |s− s′|) for all (x, s), (x ′, s′) ∈U ×SN−1
+

.

For ς ∈ Rm such that |ς | = 1, we define Qς := Rς
[
−

1
2 ,

1
2

]m , where Rς denotes a rotation such that
Rςem = ς . Given a, b ∈ SN−1

+ , we set

K f (x, a, b, ς) := inf
{∫

Qς

f (x, v(y))|∇v(y)| dy : v ∈ P(a, b, ς)
}
, (2-23)

where

P(a, b, ς) :=
{
v ∈W 1,1(Qς ;S

N−1
+

) : v(x)= a if x · ς =− 1
2 , v(x)= b if x · ς = 1

2

}
. (2-24)

Lemma 2.4. Assume (H1). Then

K f (x, a, b, ς)= inf
{∫ 1

0
f (x, γ (t))|γ̇ (t)| dt : γ ∈W 1,1((0, 1);SN−1

+
), γ (0)= a, γ (1)= b

}
. (2-25)

The proof of Lemma 2.4 is identical to that of [Fonseca and Rybka 1992, Proposition 2.6], where the
same result has been proved (under more general assumptions on the energy density) when the target
space is RN rather than SN−1

+ . Therefore we omit it.
In order to obtain a lower bound on the lower semicontinuous envelope of F f , in particular of its

jump part, one needs an approximation lemma which relates a generic sequence in W 1,1(Qς ;S
N−1
+ ),

converging to a step function, to a nongeneric one in P(a, b, ς):

Lemma 2.5. Assume (H1) and (H2).
Let a, b ∈ SN−1

+ and let vn ∈W 1,1(Qς ;S
N−1
+ ) such that vn→ u0 in L1(Qς ;S

N−1
+ ), where

u0(x) :=
{

b if 〈x, ς〉 ≥ 0,
a if 〈x, ς〉< 0.

Then a sequence wn ∈ P(a, b, ς) exists such that wn→ u0 in L1(Qς ;S
N−1
+ ) and

lim inf
n→∞

∫
Qς

f (x, vn)|∇vn| dx ≥ lim sup
n→∞

∫
Qς

f (x,wn)|∇wn| dx .

Lemma 2.5 may be proved following line by line that of [Alicandro et al. 2007, Lemma 5.2], where the
same result was proved (under more general assumptions on the energy density) when the target space is
SN−1, and therefore we omit it. We just mention that the proof may in fact be simplified in the present
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setting by using the standard projection onto SN−1
+ (see estimate (3-23) and Lemma 3.9 below for a

related approximation result).
Let G f be the functional defined in BV(�;SN−1

+ ) by

G f (v) :=

∫
�

f (x, v)|∇v| dx +
∫

J (v)
K f (x, v−, v+, νv) dHm−1

+

∫
�

f (x, v) d|Dcv|

(and +∞ elsewhere). Under an additional coercivity assumption on f , and when the target space is SN−1,
in [Alicandro et al. 2007, Proposition 5.1] it is proved that G f coincides with the lower semicontinuous
envelope of F f with respect to the L1-convergence. Of course, coercivity is crucial for the upper bound in
that it guarantees that any sequence along which G f is bounded has a convergent subsequence. However,
it may be dropped when only a lower bound is needed, provided it is a priori known that a sequence has
good convergence properties:

Proposition 2.6. Let f satisfy (H1)–(H3) and let vn ∈W 1,1(�;SN−1
+ ) such that vn ⇀ v ∈ BV(�;SN−1

+ )

and vn→ v in L1(�;SN−1
+ ). Then

G f (v)≤ lim inf
n→∞

F f (vn).

Given Lemma 2.5, the proof follows line by line that of [Alicandro et al. 2007, Proposition 5.1], and
the difference between the target spaces (SN−1 versus SN−1

+ ) is harmless. Therefore we omit it.

3. Existence of solutions

In this section we introduce the notion of solutions to (1-4) and we prove their existence.
As is mentioned in Section 2C, on its jump set Ju a function u ∈ BV(�;RN ) has a jump discontinuity

between two distinct values, u+ and u−, and the value of the precise representative of u is given by
(u++ u−)/2. Note that (u++ u−)/2 is the midpoint of the segment which connects u+ and u−. In this
sense, (u++ u−)/2 has natural counterparts in SN−1 endowed with the standard geodesic distance dg on
SN−1, the geodesic midpoints:

Definition 3.1. Let A be a geodesically convex subset of SN−1 and let u−, u+ ∈ A. A point ug ∈ A is
called a geodesic midpoint on A between u− and u+ if

(i) ug belongs to a greatest circle of SN−1 passing through u− and u+, and

(ii) dg(ug, u−)= dg(ug, u+).

In particular, when A = SN−1
+ , geodesic midpoints are uniquely determined:

ug =
u−+ u+
|u−+ u+|

for all u−, u+ ∈ SN−1
+

.

Thus we can introduce the notion of geodesic representative of u ∈ BV(�;SN−1
+ ):
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Definition 3.2. Let u ∈ BV(�;SN−1
+ ). The geodesic representative ug : �\(Su\Ju)→ SN−1

+ of u is
defined by

ug =

{
u∗ on �\Su,

u∗/|u∗| on Ju.

Note that ug ∈BV(�;SN−1
+ ) since u+ and u− are Hm−1-measurable on Ju; see [Ambrosio et al. 2000,

Proposition 3.69]. Hence the following Radon measures are well defined:

|u∗||Du| := |∇u|Lm
+ |Dcu| + |u∗||u+− u−|Hm−1xJu , (3-1)

ug|Du| := u(|∇u|Lm
+ |Dcu|)+ ug|u+− u−|Hm−1 xJu . (3-2)

Moreover, ug|Du| ∈MH(�;R
N ) (see Section 2D).

Remark 3.3. As shown in the proof of Lemma 3.9, the projections onto SN−1
+ of the mollifications of u

point-wise converge to ug in �. In this sense, the geodesic representative ug is a natural representative
for BV-vector fields with values into SN−1

+ .

We are now ready to introduce the concept of solution for (1-4).

Definition 3.4. Let A = SN−1
+ , T > 0, and u0 ∈ BV(�;SN−1

+ ). A function

u ∈ L∞(0, T ;BV(�;RN ))∩C(0, T ; L1(�;RN )), ut ∈ L2(0, T ; L2(�;RN ))

is a solution to (1-4) in QT if u(0)= u0, u ∈ SN−1
+ a.e. in QT , and there exists a matrix-valued function

Z ∈ L∞(QT ,RN×m), with ‖Z‖∞ ≤ 1 and Z(t) ∈ X N
M(�) for almost all t ∈ (0, T ), such that

ut(t)− div Z(t)= u(t)g|Du(t)| as measures for a.e. t ∈ [0, T ], (3-3)

ut(t)∧ u(t)= div(Z(t)∧ u(t)) in L2(�;32(R
N )) for a.e. t ∈ [0, T ], (3-4)

ZT u = 0 a.e. in QT , (3-5)

and
[Z(t), ν] = 0 Hm−1-a.e. on ∂� for a.e. t ∈ [0, T ]. (3-6)

The next observation clarifies the concept of solution given in Definition 3.4.

Proposition 3.5. Let u be a solution of (1-4) in the sense of Definition 3.4. Then

Z(t) : Du(t)= |u(t)∗||Du(t)| as measures for a.e. t ∈ (0, T ). (3-7)

Proof. We take any ϕ ∈ D(�). Then∫
�

ϕ d(Z(t) : Du(t))(2-15)
= −

∫
�

ϕu(t)∗ · d(div Z(t))−
∫
�

(Z(t)T u(t)) · ∇ϕ dx

(3-5)

(3-3)
=

∫
�

ϕu∗(t) · d(ut(t)+ u(t)g|Du(t)|)

=

∫
�

ϕu(t)∗ · d(u(t)g|Du(t)|),
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where in the last line we have used the facts that |u(t)| = 1, ut ∈ L2(QT ;R
N ) and the fact that

u(t)g|Du(t)| ∈MH(�;R
N ) a.e. t ∈ (0, T ). Finally, by (3-1) we get∫

�

ϕ d(Z(t) : Du(t))=
∫
�

ϕ d(|∇u(t)|Lm
+ |Dc(u(t))|)+

∫
Ju(t)

ϕ|u(t)∗||u(t)+− u(t)−| dHm−1

=

∫
�

ϕ d(|u(t)∗||Du(t)|). �

Our main result is the following existence theorem.

Theorem 3.6. For any T > 0 and any u0 ∈ BV(�;SN−1
+ ), there exists a solution u to (1-4) in the sense

of Definition 3.4.

To prove Theorem 3.6 we need to recall or establish several results. The first one follows as a particular
case from [Barrett et al. 2008, Theorem 4.1, (4.24), and (4.25)] (with λ= g = 0 and p = 2).

Proposition 3.7. Let ε > 0, T > 0, and α > 0. If uε0 ∈W 1,2(�;SN−1), then there exists

uε ∈ L∞(0, T ;W 1,2(�;RN ))∩W 1,2(0, T ; L2(�;RN ))

such that uε(0, · )= uε0,

|uε| = 1 a.e. in QT , (3-8)

and uε is a weak solution to {
uεt = div Zε +µε in QT ,

[Zε, ν] = 0 in ST ,
(3-9)

where

Zε = εα∇uε +
∇uε√
|∇uε|2+ ε2

and µε = εαuε|∇uε|2+ uε
|∇uε|2√
|∇uε|2+ ε2

(3-10)

in the sense that ∫ T

0

∫
�

(uεt · v+ Zε : ∇v−µε · v) dx dt = 0 for all v ∈ C1(QT ;R
N ). (3-11)

Furthermore,

(Zε)T uε = 0 a.e. in QT , (3-12)

uεt · u
ε
= 0 a.e. in QT , (3-13)

uεt ∧ uε = div(Zε ∧ uε), (3-14)

and

J εα (u
ε(t))+

∫ t

0

∫
�

|uεt |
2 dx ds ≤ J εα (u0) for a.e. t ∈ [0, T ], (3-15)

where the energy functional J εα is defined as

J εα (v) := ε
α

∫
�

|∇v(x)|2 dx +
∫
�

√
|∇v(x)|2+ ε2 dx, v ∈W 1,2(�;RN ),
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and a positive ε-independent constant C exists such that

‖div Zε‖L2(0,T ;L1(�;RN )) ≤ C, (3-16)

‖div(Zε ∧ uε)‖L2(0,T ;L2(�;32(RN ))) ≤ C, (3-17)

εα/2‖∇uε(t)‖L∞(0,T ;L2(�;RN×m)) ≤ C. (3-18)

We next show that if uε0 takes values in the first hyperoctant, then uε does too:

Lemma 3.8. If uε0 ∈W 1,2(�;SN−1
+ ), then the weak solution to Problem (3-9) given by Proposition 3.7

verifies uε ∈ SN−1
+ a.e. in QT .

Proof. Let (s)− = max{0,−s} and let (uε)− = ((uε,1)−, . . . , (uε,N )−). Pick a sequence of smooth
functions vn such that vn→ (uε)− in L2(0, T ;W 1,2(�))∩W 1,2(0, T ; L2(�)) as n→+∞. Choosing
v = vn in (3-11) and passing to the limit as n→+∞, we obtain on the one hand∫ T

0

∫
�

(uε)− · uεt dx dt =
∫ T

0

∫
�

(
εα +

1√
ε2+ |∇uε|2

)
|∇(uε)−|2(1− |(uε)−|2) dx dt ≥ 0. (3-19)

On the other hand, since uε ∈W 1,2(0, T ; L2(�;RN )),

0≤
∫ T

0

∫
�

(uε)− · uεt dx dt =
∫
�

(|(u0)
−
|
2
− |(uε(T ))−|2) dx =−

∫
�

|(uε(T ))−|2 dx, (3-20)

hence the negative part of each component remains 0 for all times. �

Provided α is large enough, any function in BV(�;SN−1
+ ) can be approximated in W 1,2(�;SN−1

+ ) in
such a way that the initial energy is controlled.

Lemma 3.9. Given u0 ∈ BV(�;SN−1
+ ) and α > m, there exist uε0 ∈W 1,2(�;SN−1

+ ) such that

(i) uε0→ u0 in L p(�;RN ) for all p <∞ as ε→ 0,

(ii) uε0→ (u0)g Hm−1-a.e. in � as ε→ 0,

(iii) J εα (u
ε
0)→ L <+∞ as ε→ 0.

Proof. We will construct uε0 as the projection onto SN−1
+ of the convolution of a suitable extension T u0 of

u0 with a standard mollifier. In order to do this, we proceed as in [Ambrosio et al. 2000, Proposition 3.21],
to which we refer for further details; see also [Brezis 2011, Theorem 9.7].

Since � is compact, there exists a finite collection {Ri }i∈I of open rectangles whose union B contains
�, which satisfies the following property: for any i ∈ I , either

(a) Ri ⊂� or

(b) ∂�∩ Ri is the graph of a Lipschitz function defined on one face L i of Ri and the closure of ∂�∩ Ri

intersects neither L i nor the closure of the face opposite to L i .

Let�i =�∩Ri . In case (b), up to a translation, a rotation, and a homothety, we have Ri = L i×(−1, 1)
with�i on the upper side of Ri (that is, �i ={x = (y, z) : z>φi (y)}). A vertical deformation ϕ : Ri→ Ri
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exists such that ϕ(�i )= R+i = L i × (0, 1) and both ϕ and its inverse are Lipschitz. Given u ∈ BV(�),
the operator Ti : Ri → R is defined as the identity in case (a) and as

Ti (u)= T ′i (u ◦ϕ
−1) ◦ϕ, where T ′i (u)(y, z)= u(y, |z|),

in case (b). Note that |u0| = 1 a.e. in �, the maps ϕ and its inverse are Lipschitz, and T ′i does not change
the value of u. Hence

Ui := {x ∈ Ri : |(Ti (u1
0), . . . , Ti (uN

0 ))| 6= 1} has zero measure.

Let {ηi }i∈I be a partition of unity relative to {Ri }i∈I , that is, supp(ηi )⊂ Ri , 0≤ ηi ≤ 1 for any i ∈ I and
there exists r > 0 such that

∑
i∈I ηi ≡ 1 in a neighborhood of � containing �⊕ Br . We now define

T u0 : B =
⋃
i∈I

Ri → RN , T u0 :=

(∑
i∈I

Ti (u1
0)ηi , . . . ,

∑
i∈I

Ti (uN
0 )ηi

)
.

It is readily checked that T ∈ BV(�⊕ Br ;R
N ). Now let k > 0 be the cardinality of I and U =

⋃
i∈I Ui

(a set of zero measure). We observe that

|T u0(x)| ≥
1
k

for all x ∈�⊕ Br \U. (3-21)

Indeed, for each x ∈ (�⊕ Br ) \U , there exists i(x) ∈ I such that ηi(x)(x)≥ 1/k: since each component
of u0 is nonnegative and x /∈Ui(x),

|T u0(x)|2 ≥
1
k2

(
(Ti(x)(u1

0))
2
+ · · ·+ (Ti(x)(uN

0 ))
2)
=

1
k2 .

Given ε < r , let ρε(x) := ε−mρ(x/ε) be a standard mollifier. As is well known (see, for example,
[Ambrosio et al. 2000, Remark 3.22]) T u0 ? ρε converges to T u0 strictly in BV(�;RN ) and strongly in
L1(�;RN ). Since ‖T u0 ? ρε‖∞ ≤ 1, the last convergence upgrades to

T u0 ? ρε→ T u0 in L p(�;RN ) for all 1≤ p <∞. (3-22)

By (3-21) and since (T (u0))
`
≥ 0 for `= 1, . . . , N , a direct computation shows that

|T u0 ? ρε(x)| ≥
1

k
√

N
for all x ∈�. (3-23)

In addition, it follows from [Ambrosio et al. 2000, Corollary 3.80] that T u0?ρε→ (T u0)
∗
= u∗0 pointwise

in � \ (Su0 \ Ju0). Together with (3-23), this implies that

uε0 :=
T u0 ? ρε

|T u0 ? ρε|
→ (u0)g Hm−1-a.e. in �. (3-24)

Furthermore, (3-23) and (3-22) easily imply that uε0→ u0 in L p(�;RN ) for all 1 ≤ p <∞. Finally,
applying the chain rule and (3-23), [Ambrosio et al. 2000, Proposition 3.2], and [Ambrosio et al. 2000,
Theorem 2.2(b)] (in this order), we see that∫

�

|∇uε0| dx ≤ C
∫
�

|∇(T u0 ? ρε)| dx = C
∫
�

|(DT u0) ? ρε| dx ≤ C |DT u0|(�⊕ Bε). (3-25)
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Similarly,∫
�

|∇uε0|
2 dx ≤ C

∫
�

|(DT u0) ? ρε|
2 dx ≤ C‖(DT u0) ? ρε‖∞

∫
�

|(DT u0) ? ρε| dx,

and, using the definition of ρε, we conclude that

εα
∫
�

|∇uε0|
2 dx ≤ Cεα−m(|DT u0|(�⊕ Bε))2. (3-26)

Inequalities (3-25) and (3-26), together with (3-24), complete the proof. �

Proof of Theorem 3.6. We proceed in steps. In the first step, we use the previous lemmas, together with
standard compactness arguments, to identify a triplet (u, Z,µ). In the second step we identify µ in terms
of u and Z, which automatically yields an upper bound on |µ|. In the third step, collecting the information
of the previous two steps, we note that u satisfies all the properties in Definition 3.4 except for

µ(t)= u(t)g|Du(t)| as measures for a.e. t ∈ [0, T ], (3-27)

to which the rest of the proof is devoted. In the fourth step we use the lower semicontinuity results in
Section 2F to prove a lower bound on µ(t) over the diffuse support of |Du(t)|. In the fifth step, we revise
the blow-up argument given in [Fonseca and Müller 1993; Fonseca and Rybka 1992] to obtain a lower
bound on µ(t) over Ju(t). Finally, in the sixth step we complete the proof.

Step 1: Passage to the limit. Let uε0 and uε be as given by Lemma 3.9 and Proposition 3.7, respectively.
By Lemma 3.8, uε ∈ SN−1

+ a.e. in QT . By (3-8), Lemma 3.9(iii), and (3-15), a positive constant C
(independent of ε) exists such that

sup
t∈(0,T )

‖uε‖W 1,1(�) ≤ C, (3-28)

‖uεt ‖L2(0,T ;L2(�;RN )) ≤ C. (3-29)

We recall that BV(�;RN ) is compactly embedded in L1(�;RN ) [Ambrosio et al. 2000, Theorem 3.23].
Hence the Aubin–Simon compactness criterion [Simon 1987, Corollary 8.4], together with (3-28) and
(3-29), implies that

uε→ u in C(0, T ; L1(�;RN )) and a.e. in QT (3-30)

for a subsequence. By the lower semicontinuity of the total variation [Ambrosio et al. 2000, Remark 3.5],
(3-30) and (3-15) imply that

u ∈ L∞(0, T ;BV(�;RN )). (3-31)

From (3-30) and Lemma 3.9(i), we have

u(0)= u0 (3-32)

and, using also (3-8),

|u| = 1 a.e. in QT . (3-33)
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By a standard interpolation argument, the boundedness of uε in L∞(0, T ; L∞(�;RN )) and (3-30) imply
that

uε→ u in L p(0, T ; Lq(�;RN )) for all p, q ∈ [1,∞) and a.e. in QT . (3-34)

Moreover, it follows from (3-29) that

uεt ⇀ ut in L2(0, T ; L2(�;RN )). (3-35)

By (3-15), Lemma 3.9(iii), and (3-18), a subsequence exists such that

εα∇uε⇀ 0 in L2(0, T ; L2(�;RN×m)), (3-36)
∇uε√

|∇uε|2+ ε2

∗

⇀ Z in L∞(QT ;R
N×m). (3-37)

Recalling the definition (3-10) of Zε, by (3-36) and (3-37) we obtain that

Zε⇀Z in L2(0, T ; L2(�;RN×m)), (3-38)

and from (3-37) we also obtain that
‖Z‖L∞(QT ) ≤ 1. (3-39)

Since {µε} is bounded in L∞(0, T ; L1(�;RN )) and

L∞(0, T ; L1(�;RN ))⊂ L∞(0, T ;M(�;RN ))⊂ (L1(0, T ;C0(�;R
N )))′

(see Section 2B), we have

µε
∗

⇀ µ in (L1(0, T ;C0(�;R
N )))′. (3-40)

Analogously, by (3-16),

div Zε
∗

⇀ div Z in (L2(0, T ;C0(�;R
N )))′. (3-41)

Passing to the limit as ε→ 0 in (3-9)1 (using (3-35), (3-41), and (3-40)), we obtain

ut − div Z = µ in (L2(0, T ;C0(�;R
N )))′. (3-42)

Passing to the limit as ε→ 0 in (3-12) (using (3-38) and (3-34)), in (3-13) (using (3-35) and (3-34)), and
in (3-14) (using (3-35), (3-38), and (3-34)), we get that

ZT u = 0 a.e. in QT , (3-43)

ut · u = 0 a.e. in QT , (3-44)

ut(t)∧ u(t)= div(Z(t)∧ u(t)) in L2(�;32(R
N )) for a.e. t ∈ [0, T ]. (3-45)

Step 2: The intermediate identification of µ and its upper bound. We claim that

µ= ∗(∗(Z∧ u)∧ Du) ∈ L∞(0, T ;M(�;RN )) (3-46)
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with

|µ(t)| ≤ |Du(t)| as measures for a.e. t ∈ [0, T ]. (3-47)

Let

A= (A1, . . . ,Am) := ∗(Z∧ u) ∈ L∞(QT ; (3N−2(R
N ))m). (3-48)

We have

∗(ut ∧ u) (3-45)
= ∗(div(Z∧ u)) (2-18)

= div(∗(Z∧ u))= div A, (3-49)

hence A(t) ∈ X2(�;3N−2(R
N )) for a.e. t . Therefore, by Lemma 2.3, ∗(A(t)∧ Du(t)) ∈M(�;RN ) for

almost every t with

|∗(A(t)∧ Du(t))|
(2-21)
≤ ‖A(t)‖∞|Du(t)| (2-9)

= ‖Z(t)∧ u(t)‖∞|Du(t)|
(2-10),(3-33),(3-39)

≤ |Du(t)|, (3-50)

and in addition

∗(A(t)∧ Du(t)) (2-22)
= −∗ (div A(t)∧ u(t))Lm

+ div(∗(A(t)∧ u(t))). (3-51)

It follows from (3-50) and (3-31) that

∗(A∧ Du) ∈ L∞(QT ;M(�;R
N )). (3-52)

Using (3-51), we see that

ut
(3-33)
= |u|2ut

(2-7)
= (ut · u)u−∗(∗(ut ∧ u)∧ u)

(3-44)

(3-49)
= −∗(div A∧ u) (3-51)

= ∗(A∧ Du)− div((∗(A∧ u))). (3-53)

On the other hand,

−∗ (A∧ u)(3-48)
= −(∗(∗(Z∧ u)∧ u))

= −(∗(∗(z1 ∧ u)∧ u), . . . , ∗(∗(zm ∧ u)∧ u))
(2-7)
= (|u|2z1− (u · z1)u, . . . , |u|2zm − (u · zm)u)

= Z− (ZT u)u (3-43)
= Z. (3-54)

Combining (3-53) and (3-54), we obtain

ut = ∗(A∧ Du)+ div Z,

which together with (3-42), (3-48), and (3-52), implies (3-46). Finally, (3-47) follows immediately from
(3-46) and (3-50).

Step 3: Intermediate summary. It follows from (3-42), (3-35), and (3-46) that div Z∈ L2(0, T ;M(�;RN )).
Hence (3-42) upgrades to

ut(t)− div Z(t)= µ(t) as measures for a.e. t ∈ [0, T ]. (3-55)
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In particular,
Z(t) ∈ X N

M(�) for a.e. t ∈ [0, T ]. (3-56)

Thus the weak trace [Z(t), ν] on ∂� of the normal component of Z(t) is well defined, and for all smooth
w we have∫ T

0

∫
∂�

[Z, ν] ·w dHm−1 dt
(2-14)
=

∫ T

0

(∫
�

w · d(div Z)+ Z : ∇w dx
)

dt

(3-38)

(3-41)
= lim

ε→0

(∫ T

0

∫
�

(w · div Zε + Zε : ∇w) dx dt
)

(3-9)2
= 0.

Hence
[Z(t), ν] = 0 Hm−1-a.e. on ∂� for a.e. t ∈ [0, T ]. (3-57)

Collecting (3-31), (3-30), (3-35), (3-32), (3-33), (3-39), (3-56), (3-43), (3-45), and (3-57), we see that all
the properties of u stated in Definition 3.4 are satisfied except for (3-3). In view of (3-55), in order to
prove (3-3), it remains to show (3-27).

Step 4: The lower bound on µ over the diffuse support of |Du|. In view of (3-47), µ(t) can be decomposed
as

µ(t)=
µ(t)
|Du(t)|

(|∇u(t)|Lm
+ |Dc(u(t))|)+

µ(t)
|Du(t)|

|u(t)+− u(t)−|Hm−1 x Ju(t), (3-58)

where µ(t)/|Du(t)| ∈ (L1(�; |Du(t)|))N denotes the Radon–Nikodým derivative of µ(t) with respect
to |Du(t)|. We claim that

u(t) ·
µ(t)
|Du(t)|

≥ 1 (|∇u(t)|Lm
+ |Dc(u(t))|)-a.e. in �. (3-59)

We first notice that

µε,`
(3-10)
≥ uε,`(

√
ε2+ |∇uε|2− ε)≥ uε,`(|∇uε| − ε), `= 1, . . . N . (3-60)

For any ϕ ∈ C(�; [0,∞)), 0≤ ψ ∈ L1((0, T )), and ` ∈ {1, . . . , N }, we have∫ T

0
ψ(t)

(∫
�

ϕ dµ`(t)
)

dt
(3-40)
= lim

ε→0

∫ T

0
ψ(t)

(∫
�

ϕµε,`(t) dx
)

dt

(3-60)
≥ lim inf

ε→0

∫ T

0
ψ(t)

(∫
�

ϕuε,`(t)|∇uε(t)| dx
)

dt.

We claim that, for a.e. t ∈ (0, T ),

uε(t) ⇀ u(t) in BV(�;RN ) as ε→ 0. (3-61)

Indeed, in view of (3-28), for a.e. t we have ‖uε(t)‖W 1,1(�) <∞. Take any such t and assume for a
contradiction that (3-61) does not hold, that is, that uε(t) 6⇀ u(t) for a subsequence. By (3-28), a further
subsequence would exist such that uε(t) ⇀ ũ for some ũ ∈ BV(�;RN ). On the other hand, because of
(3-30), uε(t)→ u(t) in L1(�;RN ): hence ũ = u(t), a contradiction.



648 LORENZO GIACOMELLI, JOSE M. MAZÓN AND SALVADOR MOLL

In view of (3-61) and (3-30), we may apply Proposition 2.6 to the right-hand side of (3-60) with
f = fϕ,` :�×RN

→ [0,∞) defined by fϕ,`(x, s) := ϕ(x)s`|ξ |. This implies that∫ T

0
ψ(t)

(∫
�

ϕ dµ`(t)
)

dt ≥
∫ T

0
ψ(t)

(∫
�

ϕu`(t)(|∇u(t)| dx + d|Dcu(t)|)+
∫

Ju(t)
ϕK `

t dHm−1
)

dt,

where

K `
t = inf

{∫ 1

0
γ `(τ )|γ̇ (τ )| dτ : γ ∈W 1,1((0, 1);SN−1

+
), γ (0)= u(t)−, γ (1)= u(t)+

}
. (3-62)

By the arbitrariness of ψ , we conclude that∫
�

ϕ dµ`(t)≥
∫
�

ϕu`(t)(|∇u(t)| dx + d|Dcu(t)|)+
∫

Ju(t)
ϕK `

t dHm−1 for all ϕ ∈ C(�) (3-63)

for a.e. t ∈ [0, T ] and for all ` ∈ {1, . . . , N }. Recalling (3-58), (3-63) yields

µ`(t)
|Du(t)|

≥ u`(t) (|∇u(t)|Lm
+ |Dc(u(t))|)-a.e. in �

for a.e. t ∈ [0, T ] and all `= 1, . . . , N . Now, recalling that |u(t)| = 1 a.e. in �, we obtain the inequality
(3-59) at once.

Remark 3.10. On the jump set Ju(t), the above argument would yield

|u+(t)− u−(t)|u(t)g ·
µ(t)
|Du(t)|

≥ u(t)g · (K 1
t , . . . , K N

t ) Hm−1-a.e. on Ju(t).

Unfortunately, by (3-62) and obvious properties of the infimum,

u(t)g · (K 1
t , . . . , K N

t )

≤ inf
{∫ 1

0
u(t)g · γ (τ )|γ̇ (τ )| dτ : γ ∈W 1,1((0, 1);SN−1

+
), γ (0)= u(t)−, γ (1)= u(t)+

}
, (3-64)

whilst, as we shall see, it is the right-hand side of (3-64) which yields the sharp lower bound on the jump
part (cf. (3-70)–(3-73) below). On the other hand, we can not use the results in Proposition 2.6 directly
on u∗ ·µε, since u∗ is a discontinuous function (though a very special one). This motivates the discussion
that follows.

Step 5: The lower bound on µ over Ju(t). We claim that

u(t)g ·
µ(t)
|Du(t)|

≥ 1 Hm−1-a.e. on Ju(t). (3-65)

It follows from (3-8) and (3-28) that, for a.e. t ∈ [0, T ], there exists a subsequence εk such that

uεk (t)|∇uεk (t)|
∗

⇀ µ̃(t) in M(�;RN ). (3-66)

Then (3-60) and the fact that uε,` ≥ 0 imply that

µ`(t)≥ µ̃`(t)≥ 0 as measures for a.e. t ∈ [0, T ], ` ∈ {1, . . . , N }. (3-67)
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Hereafter, we argue for a fixed t and we do not specify dependence on t for notational convenience. Using
the Radon–Nikodým theorem [Ambrosio et al. 2000, Theorem 1.28], we decompose µ̃ into four mutually
orthogonal measures:

µ̃=
µ̃

|Du|
|∇u|LN

+
µ̃

|Du|
|Dcu| +

µ̃

|Du|
|u+− u−|Hm−1 x Ju+ (µ̃)

o

with (µ̃)o⊥|Du|. It follows from (3-67) and (3-58) that

ug ·
µ

|Du|
≥ ug ·

µ̃

|Du|
Hm−1-a.e. on Ju.

Therefore, (3-65) is proved once we have shown that

ug ·
µ̃

|Du|
≥ 1 Hm−1-a.e. on Ju. (3-68)

To prove (3-68) we apply the same blow-up argument as in [Fonseca and Müller 1993, Section 3].
From the Besicovitch differentiation theorem [Ambrosio et al. 2000, Theorem 2.22], for Hm−1-a.e.

x0 ∈ Ju, we have
µ̃

|Du|
(x0)= lim

δ→0

µ̃(x0+ δQνu(x0)
)

|u+− u−|Hm−1(Ju ∩ (x0+ δQνu(x0)
))
,

where Qς is defined in Section 2F. On the other hand, by [Fonseca and Müller 1993, Lemma 2.6], for
Hm−1 a.e. x0 ∈ Ju, we also have

lim
δ→0

1
δm−1

∫
(x0+δQνu(x0)

)∩Ju

|u+(x)− u−(x)| dHm−1
= |u+(x0)− u−(x0)|.

Therefore, letting
M = |u+(x0)− u−(x0)|

for notational convenience, we obtain that

M
µ̃

|Du|
(x0)= lim

δ→0

1
δm−1

∫
x0+δQνu(x0)

dµ̃.

Then, for any ` ∈ {1, . . . , N }, since the function χx0+δQνu(x0)
is upper semicontinuous with compact

support in � if δ is sufficiently small, we have

M
µ̃`

|Du|
(x0) = lim

δ→0

1
δm−1

∫
x0+δQνu(x0)

dµ̃`

(3-66)
≥ lim sup

δ→0
lim sup

k→∞

1
δm−1

∫
x0+δQνu(x0)

uεk ,`|∇uεk | dx

= lim sup
δ→0

lim sup
k→∞

∫
Qνu(x0)

v`δ,k(y)|∇vδ,k(y)| dy, (3-69)

where
vδ,k(y) := uεk (x0+ δy).
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We now observe that vδ,k ∈W 1,1(Qνu(x0)
;RN ) and (see [Fonseca and Müller 1993, formula (3.2)])

lim
δ→0

lim
k→∞
‖vδ,k −w0‖L1(Qνu(x0)

;RN ) = 0,

where

w0(y) :=
{

ccu+(x0) if y · νu(x0) > 0,
u−(x0) if y · νu(x0) < 0.

Then, by a diagonalization argument, we may extract a subsequence vk converging tow0 in L1(Qνu(x0)
;RN ).

It follows from (3-69) that

M
µ̃`

|Du|
(x0)≥ lim

k→∞

∫
Qνu(x0)

v`k(y)|∇vk(y)| dy.

Since (u`)∗ ≥ 0 for all ` ∈ {1, . . . , N }, this implies that

M
(

ug ·
µ̃

|Du|

)
(x0)≥ lim

k→∞

∫
Qνu(x0)

ug(x0) · vk(y)|∇vk(y)| dy.

The function f (x, s) = f (s) = ug(x0) · s is continuous, nonnegative, and bounded. Then, applying
Lemma 2.5, we obtain a new sequence

wk ∈ P(u+(x0), u−(x0), νu(x0))

(with P given by (2-24)) converging to w0 in L1(Qνu(x0)
;RN ) and such that

M
(

ug ·
µ̃

|Du|

)
(x0)≥ lim sup

k→∞

∫
Qνu(x0)

ug(x0) ·wk(y)|∇wk(y)| dy.

We may now apply Lemma 2.4. It follows from (2-23) and (2-25) that

M
(

ug ·
µ̃

|Du|

)
(x0)≥ inf

γ∈0̃N (u+(x0),u−(x0))
JN [u+(x0), u−(x0)](γ ), (3-70)

where

JN [v0, v1](γ ) :=

∫ 1

0
vg · γ (t)|γ̇ (t)| dt, vg :=

v0+ v1

|v0+ v1|
, (3-71)

and

0̃N (v0, v1) := {γ ∈W 1,1((0, 1);SN−1
+

) : γ (0)= v0, γ (1)= v1}. (3-72)

In view of (3-70), (3-68) and therefore (3-65) follows from

inf
γ∈0̃N (u+(x0),u−(x0))

JN [u+(x0), u−(x0)](γ )≥ M = |u+(x0)− u−(x0)|. (3-73)

This last inequality will be proved in Theorem 4.1, to which the next section is devoted.
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Step 6: Conclusion. Recalling (3-58), the upper bound on |µ| given by (3-47) immediately implies that∣∣∣∣ µ(t)
|Du(t)|

∣∣∣∣≤ 1 |Du(t)|-a.e. in � (3-74)

for a.e. t ∈ [0, T ]. In particular, recalling (3-33),

u(t) ·
µ(t)
|Du(t)|

≤ 1 (|∇u(t)|Lm
+ |Dc(u(t))|)-a.e. in �,

u(t)g ·
µ(t)
|Du(t)|

≤ 1 Hm−1-a.e. on Ju(t)

for a.e. t ∈ [0, T ]. Combining these inequalities with the lower bounds in (3-59) and (3-65), we obtain

u(t) ·
µ(t)
|Du(t)|

= 1 (|∇u(t)|Lm
+ |Dc(u(t))|)-a.e. in �, (3-75)

u(t)g ·
µ(t)
|Du(t)|

= 1 Hm−1-a.e. on Ju(t) (3-76)

for a.e. t ∈ [0, T ]. We are now ready to complete the proof. By (2-2), we have∣∣∣∣ µ(t)
|Du(t)|

∧ u(t)
∣∣∣∣2 = ∣∣∣∣ µ(t)

|Du(t)|

∣∣∣∣2− ∣∣∣∣ µ(t)
|Du(t)|

· u(t)
∣∣∣∣2 (|∇u(t)|Lm

+ |Dc(u(t))|)-a.e. in � (3-77)

and ∣∣∣∣ µ(t)
|Du(t)|

∧ u(t)g
∣∣∣∣2 = ∣∣∣∣ µ(t)

|Du(t)|

∣∣∣∣2|u(t)g|2− ∣∣∣∣ µ(t)
|Du(t)|

· u(t)g
∣∣∣∣2 Hm−1-a.e. on Ju(t). (3-78)

Now, from (3-74),(3-75), and (3-77), we get∣∣∣∣ µ(t)
|Du(t)|

∧ u(t)
∣∣∣∣2 = 0 (|∇u(t)|Lm

+ |Dc(u(t))|)-a.e. in �,

and from (3-74),(3-76), and (3-78), we get∣∣∣∣ µ(t)
|Du(t)|

∧ u(t)g
∣∣∣∣2 = 0 Hm−1-a.e. on Ju(t).

Hence the wedge products on the left-hand side are zero.
Therefore, applying (2-7) and using once more the equalities in (3-75) and (3-76), we conclude that

µ(t)
|Du(t)|

= |u(t)|2
µ(t)
|Du(t)|

= u(t) (|∇u(t)|Lm
+ |Dc(u(t))|)-a.e. in �,

µ(t)
|Du(t)|

= |u(t)g|2
µ(t)
|Du(t)|

= u(t)g Hm−1-a.e. onJu(t).

Plugging these expressions into (3-58), we obtain (3-27), and the proof is complete. �



652 LORENZO GIACOMELLI, JOSE M. MAZÓN AND SALVADOR MOLL

4. A nonconvex variational problem

In this section we study the minimization of a nonconvex functional, and, as a result, we prove the
inequality (3-73).

Theorem 4.1. Let v0, v1 ∈ SN−1 and let JN [v0, v1](γ ) and 0̃N (v0, v1) be given by (3-71) and (3-72). If
v0 · v1 ≥ 0, then

min
γ∈0̃N (v0,v1)

JN [v0, v1](γ )= |v1− v0|.

Of course, it suffices to consider v0 6= v1. Up to a rotation, we may assume without loss of generality
that

vg =
v0+ v1

|v0+ v1|
= eN and v0, v1 ∈ span{eN−1, eN }.

Since vg is the geodesic midpoint and v0 · v1 ≥ 0, there exists θ0 ∈ (0, π/4] such that

v0 = (0, . . . , 0, sin θ0, cos θ0) and v1 = (0, . . . , 0,− sin θ0, cos θ0).

Then
|v1− v0| = 2 sin θ0. (4-1)

A curve which attains the equality in (4-3) is easily obtained: it is just the geodesic with respect to the
standard metric of SN−1.

Lemma 4.2. Let γmin(t)=
(
0, . . . , 0, sin((1− 2t)θ0), cos((1− 2t)θ0)

)
. Then J (γmin)= 2 sin θ0.

After the above-mentioned rotation, SN−1
+ is transformed into a geodesic simplex T in SN−1. We

consider a larger set of curves: let PN (v0, v1) be given by

PN (v0, v1)= {v ∈ SN−1
: v · v0 ≥ 0, v · v1 ≥ 0}

and let
0N (v0, v1)= {γ ∈W 1,1((0, 1);PN (v0, v1)) : γ (0)= v0, γ (1)= v1}.

Then

JN [v0, v1](γ )=

∫ 1

0
γ N (t)|γ̇ (t)| dt for γ = (γ 1, . . . , γ N ) ∈ 0N (v0, v1) .

Hence, recalling (4-1) and Lemma 4.2, it suffices to prove that

inf
γ∈0N (v0,v1)

JN [v0, v1](γ )≥ 2 sin θ0. (4-2)

We now show that the problem in SN−1 may be reduced to the same problem in S2. Let

v̄i = (0, (−1)i sin θ0, cos θ0), i = 0, 1,

denote the projection of vi onto the three-dimensional subspace span{eN−2, eN−1, eN }.

Lemma 4.3. Let N ≥ 4. Then

inf
γ∈0N (v0,v1)

JN [v0, v1](γ )≥ inf
γ∈03(v̄0,v̄1)

J3[v̄0, v̄1](γ ).
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Proof. For any γ ∈ 0N (v0, v1), consider the curve

γ̃ =
(
0, . . . , 0,

√
(γ 1)2+ · · ·+ (γ N−2)2, γ N−1, γ N ).

Clearly γ̃ ∈W 1,1((0, 1),SN−1). Since v0 and v1 belong to span{eN−1, eN } and the projections of γ̃ and
γ onto span{eN−1, eN } coincide, γ̃ ∈W 1,1((0, 1);PN (v0, v1)) and the end-point conditions are satisfied.
Therefore γ̃ ∈ 0N (v0, v1). In addition, letting

δ = (γ 1, . . . , γ N−2),

we may apply the chain rule [Ambrosio and Dal Maso 1990, Corollary 3.2]: since δ ∈W 1,1((0, 1);RN−2)

and f (x)= |x | is a Lipschitz function with f (0)= 0, we have |δ| = f ◦ δ ∈W 1,1((0, 1);R), for almost
every t ∈ (0, 1) the restriction of f to the affine space

T δ
t := {y ∈ RN−2

: y = δ(t)+ ηδ̇(t) for some η ∈ R}

is differentiable at δ(t), and finally

d
dt
|δ| = ∇( f |T δt )(δ(t)) · δ̇(t) for a.e. t ∈ (0, 1).

Since the Lipschitz constant of f is 1, we get that
∣∣(d/dt)|δ|

∣∣≤ |(d/dt)δ|. Hence |(d/dt)γ̃ | ≤ |(d/dt)γ |,
which implies that JN [v0, v1](γ̃ )≤ JN [v0, v1](γ ), since γ̃ N

= γ N . Arguing as above, we also see that

γ̄ = (

√
(γ 1)2+ · · ·+ (γ N−2)2, γ N−1, γ N )

belongs to 03(v̄0, v̄1). Since JN [v0, v1](γ̃ )= J3[v̄0, v̄1](γ̄ ), the proof is complete. �

Hereafter we let

vi := v̄i , J := J3[v0, v1], P := P3(v0, v1), 0 := 03(v0, v1).

Because of (4-2) and Lemma 4.3, it suffices to prove that

inf
γ∈0

J (γ )≥ 2 sin θ0. (4-3)

Proving (4-3) is far from trivial, both since the functional is genuinely nonconvex (see Lemmas 4.9
and 4.10) and since the curves are constrained to an octant of the sphere. However, it is exactly for this
reason that the lower bound holds:

Remark 4.4. In the extremal case θ0 = π/4, there are exactly two paths γ such that J (γ )= 2 sin θ0: the
one given in Lemma 4.2, and the one which coincides with ∂P (see Section 1 or Lemma 4.14 with ϕ0 = 0
and ϕ1 = π/2). If the constraint is removed, the lower bound (4-3) does not hold any more: for instance,
the curve

γ (t) :=


(0, sin θ, cos θ), θ = θ0+ 3t (π/2− θ0) ∈ (θ0, π/2) if 0≤ t ≤ 1

3 ,

(sinϕ, cosϕ, 0), ϕ = 3π(t − 1
3) ∈ (0, π) if 1

3 < t ≤ 2
3 ,

(0,− sin θ, cos θ), θ = π/2+ 3(t − 2
3)(θ0−π/2) ∈ (θ0, π/2) if 2

3 < t ≤ 1
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is such that

J (γ )= 2
∫ 1/3

0
cos θ |θ̇ | dt = 2

∫ π/2

θ0

cos θ dθ = 2(1− sin θ0),

hence J (γ )= 2(1− sin θ0) < 2 sin θ0 if θ0 > π/6.

We will often use spherical coordinates centered at (0, 0, 1):

X (ϕ, θ) := (sinϕ sin θ, cosϕ sin θ, cos θ). (4-4)

In this case v0 = X (0, θ0), v1 = X (π, θ0), the functional reads

J (γ )=
∫ 1

0
cos θ(t)

√
(θ̇(t))2+ (ϕ̇(t))2 sin2 θ(t) dt, where γ (t)= X (ϕ(t), θ(t)), (4-5)

and the constraint γ (t) ∈ P is equivalent to

θ(t) ∈ [0, π/2], θ(t)≤ arctan
1

tan θ0 |cosϕ(t)|
=: θ∗(ϕ(t)). (4-6)

It is convenient to cut-off from P a neighborhood of z = 0: in this way, the new constraint has a smooth
boundary and the density of J does not degenerate. Thus, let θ∗ε ∈ C∞(R) be such that

θ∗ε is π -periodic, even w.r.t. π/2, increasing in (0, π/2),

θ∗ε (ϕ)= θ
∗(ϕ) if |π/2−ϕ| ≥ ε, θ∗ε < π/2, and |(θ∗ε )

′
| ≤ C

(4-7)

for some ε-independent positive constant C . Note that here and after primes denote differentiation with
respect to ϕ, and that the latter property of θ∗ε may be fulfilled since θ∗ is Lipschitz-continuous. Now let

Pε := {X (ϕ, θ) : ϕ ∈ [0, 2π ], 0≤ θ ≤ θ∗ε (ϕ)},

0ε := {γ ∈W 1,1((0, 1);Pε) : γ (0)= v0, γ (1)= v1}.

In what follows, ω(ε) denotes a generic positive universal function which goes to zero as ε→ 0. The
next lemma shows that we may equivalently work on Pε:

Lemma 4.5. Assume that

inf
γ∈0ε

J (γ )≥ 2 sin θ0−ω(ε). (4-8)

Then (4-3) holds true, and therefore so does Theorem 4.1.

Proof. Given γ ∈ 0, we replace the parts of γ which enter into P\Pε by arcs of ∂Pε. More precisely, let

Iε = {t ∈ (0, 1) : γ (t) ∈ P \Pε}.

Since the spherical coordinates (4-4) are a bijection away from the north pole (0, 0, 1), in Iε we may
define ϕ(t) and θ(t) through γ (t)=: X (ϕ(t), θ(t)). Then we let

γ ε(t)=
{
γ (t) if t /∈ Iε,
(ϕ(t), θ∗ε (ϕ(t))) if t ∈ Iε.
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It follows from (4-7) that ∣∣∣π2 − θ∗ε (ϕ(t))∣∣∣= ω(ε). (4-9)

We may now estimate

J (γ )− J (γ ε)
(4-5)
≥ −

∫
Iε

cos θ∗ε (ϕ)|ϕ̇|
√
(θ∗

′

ε )
2
+ sin2 θ∗ε (ϕ) dt

(4-7)

(4-9)
≥ −ω(ε)

∫ 1

0
|ϕ̇| dt.

Therefore

J (γ )
(4-8)
≥ 2 sin θ0−ω(ε)

(
1+

∫ 1

0
|ϕ̇| dt

)
.

Passing to the limit as ε→ 0, the arbitrariness of γ ∈ 0 yields (4-3). �

The rest of the section will be concerned with the proof of (4-8). Let

0ε(w0,w1) := {γ ∈W 1,1((0, 1);Pε) : γ (0)= w0, γ (1)= w1} for w0,w1 ∈ Pε.

Lemma 4.6. For any w0,w1 ∈ Pε, there exists a minimizer γ of J in 0ε(w0,w1). Furthermore γ lies in
W 1,∞((0, 1);R3), satisifes γ 3

|γ̇ | = J (γ ) a.e. in [0, 1], and is also a minimizer of

E(γ ) :=
∫ 1

0
(γ 3(t))2|γ̇ (t)|2 dt

among all γ ∈ 0ε(w0,w1)∩ H 1((0, 1);R3).

Though we could appeal to general results on geodesics for Riemannian manifolds with boundary (see
[Alexander et al. 1993] and the references therein), we prefer to give a self-contained proof.

Proof. We preliminarily observe that

for all γ ∈ 0ε(w0,w1), there exists γ̃ ∈ 0ε(w0,w1)∩W 1,∞((0, 1);R3)

such that γ̃ 3(t)| ˙̃γ (t)| = L := J (γ ) for a.e. t ∈ [0, 1]. (4-10)

To see this, let

s(t)=
1
L

∫ t

0
γ 3(τ )|γ̇ (τ )| dτ. (4-11)

Obviously s ∈ W 1,1([0, 1]; [0, 1]), s is nondecreasing, and s(t1) = s(t2) if and only if γ (t) = γ (t1) in
[t1, t2]. Therefore, for any σ ∈ [0, 1], either there exists a unique t (σ ) such that s(t (σ )) = σ , or there
exists an interval Iσ such that s(t)= σ for all t ∈ Iσ , and in this case we let, for example, t (σ )= inf Iσ ,
so that again s(t (σ ))= σ . Now let γ̃ (σ ) := γ (t (σ )). By construction,

γ (t)= γ̃ (s(t)) for all t ∈ [0, 1]. (4-12)
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Note that γ̃ ∈W 1,∞((0, 1);Pε). Indeed,

|γ̃ (σ1)− γ̃ (σ2)| = |γ (t (σ1))− γ (t (σ2))| ≤

∫ t (σ2)

t (σ1)

|γ̇ (τ )| dτ

(4-11)
≤

L
inf

τ∈[t (σ1),t (σ2)]
γ 3(τ )

|s(t (σ1))− s(t (σ2))|

(4-7)
≤

L
ω(ε)
|σ1− σ2|. (4-13)

Hence, it follows from (4-12) and the chain rule formula given in [Ambrosio et al. 2000, Theorem 3.101]
that

γ̇ (t)=
dγ̃
ds
(s(t))ṡ(t) in L1((0, 1)). (4-14)

Therefore,

L =
∫ 1

0
γ 3(t)|γ̇ (t)| dt (4-14)

(4-12)
=

∫ 1

0
γ̃ 3(s(t))

∣∣∣∣dγ̃ds
(s(t))

∣∣∣∣ ṡ(t) dt =
∫ 1

0
γ̃ 3(s)

∣∣∣∣dγ̃ds
(s)
∣∣∣∣ ds. (4-15)

On the other hand, given s ∈ [0, 1] and ε > 0, let s1, s2 ∈ [0, 1] with |si − s|< ε. Then

γ̃ 3(s)|γ̃ (s1)− γ̃ (s2)|
(4-13)
≤

γ̃ 3(s)
inf

τ∈[t (s1),t (s2)]
γ 3(τ )

L|s2− s1|. (4-16)

If τ ∈ [t (s1), t (s2)], then, by the monotonicity of s and since s(τ (s))= s, we have s(τ ) ∈ [s1, s2]. Hence

inf
τ∈[t (s1),t (s2)]

γ 3(τ )
(4-12)
= inf

τ∈[t (s1),t (s2)]
γ̃ 3(s(τ ))≥ inf

s∈[s1,s2]
γ̃ 3(s). (4-17)

Combining (4-16) and (4-17) and passing to the limit as ε→ 0, we obtain

γ̃ 3(s)
∣∣∣∣dγ̃ds

(s)
∣∣∣∣≤ L for a.e. s ∈ [0, 1],

which together with (4-15) concludes the proof of the claim (4-10).
We consider the functional E defined on Gε(w0,w1) := 0ε(w0,w1)∩H 1((0, 1);R3). By the Cauchy–

Schwarz inequality,

(J (γ ))2 ≤ E(γ ) for all γ ∈ Gε(w0,w1). (4-18)

Hence inf E(γ )≥ inf(J (γ ))2. On the other hand, let γ n be a minimizing sequence for J , and let γ̃ n be
as given by (4-10): then E(γ̃ n)= (J (γ n))

2, which means that inf E ≤ inf J 2. Therefore,

inf
γ∈Gε(w0,w1)

E(γ )= inf
γ∈0ε(w0,w1)

(J (γ ))2.

The inf on the left-hand side is attained. Indeed, let γ n be a minimizing sequence. By the coercivity
of E ensured by the definition of Pε, a subsequence (not relabeled) exists such that γ n→ γ weakly in
H 1((0, 1);Pε) and in C([0, 1];Pε). Therefore E(γ )≤ lim infn→+∞ E(γ n).
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Let γ 0 be a minimizer of E , and let γ̃ 0 be as given by (4-10). Then

E(γ 0)
(4-18)
≥ (J (γ 0))

2
= (J (γ̃ 0))

2
= E(γ̃ 0),

that is, γ̃ 0 is also a minimizer of E , and

(J (γ ))2 = (J (γ̃ ))2 = E(γ̃ )≥ E(γ̃ 0)= (J (γ̃ 0))
2 for all γ ∈ 0ε(w0,w1),

hence γ̃ 0 (or γ 0) is a minimizer of J . Therefore J has a minimizer too. �

The rest of the section is concerned with estimating the length of a minimizer of J in 0ε as given by
Lemma 4.6, a shortest path in what follows. Our first observation concerns those shortest paths which
pass through the north pole:

Lemma 4.7. If a shortest path γ passes through (0, 0, 1), then J (γ )≥ 2 sin θ0.

Proof. Let t0 and t1 be the first, respectively the last, time in which γ = (0, 0, 1). Then, using the spherical
coordinates (4-4),

J (γ )≥
∫ t0

0
cos θ

√
(θ̇)2+ (ϕ̇)2 sin2 θ dt +

∫ 1

t1
cos θ

√
(θ̇)2+ (ϕ̇)2 sin2 θ dt

≥

∫ t0

0
cos θ |θ̇ | dt +

∫ 1

t1
cos θ |θ̇ | dt =

∫ t0

0

∣∣∣∣ d
dt

sin θ
∣∣∣∣ dt +

∫ 1

t1

∣∣∣∣ d
dt

sin θ
∣∣∣∣ dt,

and the lemma follows, since θ(t0)= θ(t1)= 0 and θ(0)= θ(1)= θ0. �

We may therefore restrict our attention to shortest paths not passing through the north pole. There,
the spherical coordinates (4-4) are a diffeomorphism. In fact, we may also restrict our attention to those
paths for which ϕ is nondecreasing and which are symmetric with respect to ϕ = π/2. In what follows,
we shall call them symmetric shortest paths.

Lemma 4.8. Let γ = X (ϕ, θ) be a shortest path not passing through (0, 0, 1). Then ϕ ∈ [0, π] and ϕ is
nondecreasing. Moreover, there exists a shortest path γ̃ = X (ϕ̃, θ̃ ) not passing through (0, 0, 1) such that
ϕ̃ is symmetric with respect to π/2:

{(ϕ̃(t), θ̃ (t)) : t ∈ [0, 1]} = {(π − ϕ̃(t), θ̃ (t)) : t ∈ [0, 1]}.

Proof. Without loss of generality, ϕ(0)= 0 and ϕ(1)= (2k+ 1)π with k ≥ 0. It is straightforward to see
that max{ϕ, 0} and min{ϕ, π} both decrease the value of J , hence k = 0. Analogously, if t0 < t1 < t2 are
such that ϕ(t1) < ϕ(t2)= ϕ(t0), then replacing ϕ with ϕ(t0) in (t0, t2) decreases the value of J . Therefore,
ϕ is nondecreasing along a shortest path.

In order to construct γ̃ , we claim that

J1 :=

∫ t∗

0
cos θ

√
(θ̇)2+ (ϕ̇)2 sin2 θ dt =

∫ 1

t∗
cos θ

√
(θ̇)2+ (ϕ̇)2 sin2 θ dt =: J2 (4-19)
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for any t∗ ∈ (0, 1) such that ϕ(t∗) = π/2. Suppose by contradiction that (4-19) does not hold. Then,
without loss of generality, we can suppose J1 < J2. We define γ̃ (t)= X (ϕ̃(t), θ̃ (t)), where

θ̃ (t)=

θ(t) if t ≤ t∗,

θ

(
t∗(1− t)

1− t∗

)
if t > t∗,

and ϕ̃(t)=

ϕ(t) if t ≤ t∗,

π −ϕ

(
t∗(1− t)

1− t∗

)
if t > t∗.

(4-20)

Then, by letting t̂ = t∗(1− t)/(1− t∗) and using the 1-homogeneity of the integrands with respect to t ,
we see that

J (γ̃ )= J1+
t∗

1− t∗

∫ 1

t∗
cos θ(t̂)

√
(θ̇(t̂))2+ (ϕ̇(t̂))2 sin2 θ(t̂) dt

= J1+

∫ t∗

0
cos θ(t̂)

√
(θ̇(t̂))2+ (ϕ̇(t̂))2 sin2 θ(t̂) dt̂ = 2J1

< J1+ J2 = J (γ ), (4-21)

a contradiction, since γ is a shortest path. Therefore (4-19) holds. Then, defining γ̃ (t)= X (ϕ̃(t), θ̃ (t))
as in (4-20), it follows from (4-21) that J (γ̃ )= 2J1 = J1+ J2 = J (γ ), hence γ̃ is also a shortest path. �

We now characterize arcs of shortest paths contained in P̊ε.

Lemma 4.9. Let γ be a shortest path not passing through (0, 0, 1) and let (t0, t1) be an interval in which
γ |(t0,t1) ⊂ P̊ε. Then

cos θ(t) sin2 θ(t)ϕ̇(t)√
(θ̇(t))2+ (ϕ̇(t))2 sin2 θ(t)

= K for all t ∈ (t0, t1) (4-22)

for some K ∈ [0, 1/2]. If K = 0, then ϕ is constant. If K > 0, then ϕ is strictly increasing, the function

(ϕ(t0), ϕ(t1))=: I 3 ϕ 7→ θ(t (ϕ)) (4-23)

is a smooth solution of

θ ′′ sin θ cos θ = (θ ′)2(cos2 θ + cos(2θ))+ cos(2θ) sin2 θ (4-24)
with

sin2 θ (cos2 θ sin2 θ − K 2)= K 2(θ ′)2, (4-25)

and

J (γχ(t0,t1))=
∫ ϕ(t1)

ϕ(t0)
cos θ

√
(θ ′)2+ sin2 θ dϕ. (4-26)

Proof. Up to a linear reparametrization, γ is also a minimizer of J in 0ε(γ (t0), γ (t1)). Hence, by
Lemma 4.6, it is also a minimizer of E in 0ε(γ (t0), γ (t1))∩ H 1((0, 1);R3). Since it does not touch the
north pole, we can write γ = X (ϕ, θ) with ϕ and θ Lipschitz, and

E(γχ(t0,t1))=
∫ t1

t0
cos2 θ (θ̇2

+ sin2 θϕ̇2) dt.

Taking the first variation with respect to ϕ, we obtain sin2 θ cos2 θϕ̇ = H, and, recalling that γ 3
|γ̇ | is

constant, (4-22) follows. Since sin θ > 0 (γ does not cross the north pole), cos θ > 0 (γ ∈ Pε), and
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ϕ is nondecreasing (by Lemma 4.8), we see that K ≥ 0. If K = 0, then ϕ is constant. If K > 0,
then ϕ̇ > 0 in (t0, t1) and we may use ϕ as independent variable: letting θ be as in (4-23), we have
θ ′ = dθ/dϕ = θ̇/ϕ̇ ∈ L∞((t0, t1)) (because of (4-22)). Then (4-26) follows at once from (4-5) and the
definition of K may be rewritten as

cos θ sin2 θ√
(θ ′)2+ sin2 θ

= K , (4-27)

which is equivalent to (4-25). From (4-25) one sees immediately that K ≤ 1/2. Differentiating (4-27),
we obtain (4-24) in the sense of distributions, and a bootstrap argument starting from θ ∈W 1,∞((t0, t1))
yields smoothness. �

If γ = X (ϕ, θ(ϕ)) : (t0, t1)→ S2 is a curve which does not pass through (0, 0, 1) and such that
ϕ ∈ I := (ϕ(t0), ϕ(t1)) is strictly increasing, then, following (4-26), we hereafter write (with a slight
abuse of notation)

J (γχ(t0,t1))= JI (θ) :=

∫
I

cos θ
√
(θ ′)2+ sin2 θ dϕ, J (θ) := J(0,π)(θ).

In view of Lemma 4.9, it is convenient to state a few properties of the solutions to (4-24), some of which
are visualized in Figure 1.

Lemma 4.10. Let θ be any solution of (4-24) such that θ ∈ (0, π/2) at some point of its domain. Then:

(a) θ is globally defined, periodic, and θ ∈ (0, π/2);

(b) within a period, θ has a unique local (and therefore global) maximum, θM ≥ π/4, and a unique local
(and therefore global) minimum, θm = π/2− θM , and it is symmetric with respect to its maximum
(minimum) point;

(c) the period P is larger than π ;

(d) the length of each interval in which θ ≤ π/4 is at least π/
√

2;

(e) θ ′ has a unique local (and therefore global) maximum and a unique local (and therefore global)
minimum.

Proof. (a) and (b) easily follow from (4-25) rewritten as

(θ ′)2 =
1

K 2 sin2 θ (sin2 θ cos2 θ − K 2)=: fK (θ), K ∈ [0, 1/2] (4-28)

and plotted in the phase space (see Figure 1). We just observe explicitly that, since θ ′ = 0 at the extremal
values of θ , we can characterize K from (4-25) as

K = cos θm sin θm = cos θM sin θM , (4-29)

which explains why θM = π/2− θm . Also (e) follows immediately from (4-28), since after differentiation
we see that

2θ ′′ = f ′K (θ),
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Figure 1. The phase plane (θ, θ ′).

whence the arrows in Figure 1.
To prove (c), we let ϕm and ϕM be a point of minimum and of maximum, respectively, chosen such

that no local extremum exists in between. Then, in view of (b),

P
2
=

∫ ϕM

ϕm

dϕ
(4-25)
=

∫ ϕM

ϕm

K θ ′

sin θ
√

cos2 θ sin2 θ − K 2
dϕ =

∫ θM

θm

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ.

We now observe that

K
(4-29)
= cos θM sin θM = cos θM cos θm ≥ cos θM cos θ for all θ ∈ (θm, θM).

Therefore,
P
2
≥ cos θM

∫ θM

θm

cos θ

sin θ
√

cos2 θ sin2 θ − K 2
dθ,

whose primitives may be computed explicitly:

cos θM

∫
cos θ

sin θ
√

cos2 θ sin2 θ − K 2
dθ =

1
2 sin θM

arcsin
sin2 θ − 2 sin2 θM cos2 θM

sin2 θ |1− 2 cos2 θM |
.

Hence
P
2
≥

1
2 sin θM

(
π

2
+
π

2

)
=

π

2 sin θM
>
π

2
,

which proves (c).

To prove (d), let ϕm be a minimum point and let ϕ∗ be the closest point to ϕm such that ϕm ≤ ϕ∗ and
θ(ϕ∗)= π/4. By (b), the length of the interval within a period where θ ≤ π/4 is exactly

2
∫ ϕ∗

ϕm

dϕ
(4-25)
= 2

∫ π/4

θm

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ.
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Since cos θ ≥ 1/
√

2 if θ ∈ [0, π/4],

2
∫ ϕ∗

ϕm

dϕ ≥
√

2
∫ π/4

θm

K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ.

The primitives of the right-hand side may be computed explicitly (via the substitution z = sin2(2θ)):∫
K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ =− arctan

2K cos(2θ)√
sin2(2θ)− 4K 2

+C. (4-30)

After a substitution we get (d). �

Lemma 4.11. Let γ be a symmetric shortest path not passing through (0, 0, 1) and let γ = X (ϕ, θ). If
t1 ∈ [0, 1] is such that θ(t1) < π/6 and ϕ(t1) < π/2, then θ(t) < π/6 as long as ϕ(t) < π −ϕ(t1).

Proof. Let w = sin θ and let t2 > t1 be the first time in which ϕ(t2)= π −ϕ(t1). We have

J (γχ(t1,t2))=
∫ t2

t1

√
(ẇ(t))2+ (ϕ̇(t))2w(t)2(1−w(t)2) dt.

By assumption, w(t1) < 1
2 . If there is an interval Ĩ ⊂ [t1, t2] where w(t) > 1

2 , then a symmetrization of w
with respect to 1

2 would strictly decrease the value of J , since

(1−w)2(1− (1−w)2)−w2(1−w2)= 2w(1−w)(1− 2w) < 0 if w ∈ (1/2, 1).

This contradicts that γ is a shortest path and thus proves the lemma. �

We are now ready to exclude shortest paths which are contained in P̊ε:

Lemma 4.12. There is no symmetric shortest path γ not passing through (0,0,1) such that γ ((0,1))⊂ P̊ε.

Proof. Assume for a contradiction that such a γ exists. We will argue that J (γ )> 2 sin θ0, in contradiction
with Lemma 4.2 (note that γmin ⊆ Pε for all ε).

Since ϕ has to travel from 0 to π , it can not be constant in [0, 1]. Then, it follows from Lemma 4.9
that γ (t)= X (ϕ(t), θ(t)), where ϕ 7→ θ(t (ϕ)) is a smooth solution of (4-24) such that θ(0)= θ(π)= θ0.
Since γ is symmetric, we have θ ′(π/2)= 0. Because of (b) and (c) in Lemma 4.10, θ is monotone in
(0, π/2). Hence, letting θ1 = θ(π/2), we have

K
(4-25)
= K (θ1)= cos θ1 sin θ1 and cos2 θ sin2 θ ≥ K 2 for all t ∈ (0, 1). (4-31)

We claim that θ1 > π/4. If not, it follows from (4-31) that θ1 ≤ θ0. Hence θ is nonincreasing in (0, π/2),
and

π

2
(4-25)
=

∫ π/2

0

K θ ′

sin θ
√

cos2 θ sin2 θ − K 2
dϕ =

∫ θ0

θ1

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ

≤ cos(θ1)

∫ π/4

θ1

K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ. (4-32)

By (4-30), we would have π ≤ π cos(θ1), a contradiction. Hence θ1 > π/4.
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We note the obvious bound

1
2 J (θ)≥

∫ π/2

0
cos θ sin θ dϕ

(4-31)
≥

π

2
sin θ1 cos θ1.

Hence we are done if
π

2
sin θ1 cos θ1 > sin θ0,

that is, if
θ0 < arcsin

(
π

2
sin θ1 cos θ1

)
= arcsin

(
π

4
sin(2θ1)

)
. (4-33)

We claim that (4-33) does hold. If not, recalling Lemma 4.11, we would have

θ0 ≥max
{

arcsin
(
π

4
sin(2θ1)

)
,
π

6

}
=: f (θ1).

Then, arguing as in (4-32), we write

π

2
=

∫ θ1

θ0

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ

< cos π
6

∫ π/4

f (θ1)

K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ + cos π

4

∫ θ1

π/4

K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ

=

√
3

2
arctan

sin θ1 cos θ1 cos(2 f (θ1))√
sin2(2 f (θ1))− 4 sin2 θ1 cos2 θ1

+

√
2

2
π

2
=: F(θ1).

It is now a calculus exercise to check that F is increasing in (π/4, θ̄ ) := (0, 1
2(π − arcsin (2/π))) and

decreasing in (θ̄ , π/2): therefore F has a global maximum at θ̄ , with F(θ̄)<π/2. Since this is impossible,
(4-33) holds and the proof is complete. �

The rest of the section is concerned with estimating the length of candidate symmetric shortest paths
which intersect ∂Pε (and do not pass through the north pole). We firstly infer some properties of those
candidate shortest paths which reach ∂Pε.

Lemma 4.13. Let θ0 < π/4, let ε be sufficiently small, and let γ = X (ϕ, θ) be a symmetric shortest path
not intersecting the north pole. If t1 > 0 exists such that γ (t1) ∈ ∂Pε and γ (t) ∈ P̊ε in [0, t1), then:

(i) θ(t)≥ π/6 for all t ∈ [0, t1);

(ii) θ is increasing in [0, t1);

(iii) ϕ(t1)≤ π/2− ε.

Proof. (i) follows immediately from Lemma 4.11.
To prove (ii), we note that by Lemma 4.9, (4-22) holds in [0, t1). Let ϕ1 = ϕ(t1). By symmetry,

ϕ1 ≤ π/2. If K = 0, we would have ϕ(t) = ϕ1 in (0, t1): since γ does not reach the north pole, this
means that ϕ1 = 0 and θ is increasing from θ0 up to θ(t1) = π/2− θ0. If instead K > 0, then (4-23)
holds in (0, ϕ1). We will prove that θ ′ ≥ 0 in (0, ϕ1), which implies (ii). Assume by contradiction that
θ ′ < 0 somewhere in (0, ϕ1). Then, by Lemma 4.10(b), there exists ϕ2 ∈ (0, ϕ1) such that θ(ϕ2)= θm . By
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Lemma 4.10(d) and since θ(ϕ1) > π/4, we have ϕ1 ≥ ϕ1−ϕ2 ≥ π/(2
√

2). Then, since θ∗ε is increasing
in (0, π/2) and provided ε is sufficiently small,

θ1 := θ(ϕ1)= θ
∗

ε (ϕ1)≥ θ
∗

ε

(
π

2
√

2

)
= θ∗

(
π

2
√

2

)
(4-6)
≥ arctan

1

cos(π/(2
√

2))
>
π

3
.

By (4-25), this implies that sin θm cos θm ≤ sin θ1 cos θ1 <
√

3/4, that is, θm < π/6, which is impossible
in view of Lemma 4.11.

To prove (iii), assume for a contradiction that ϕ(t1) ∈ (π/2− ε, π/2]. We have

π

2
− ε ≤

∫ ϕ(t1)

0
dϕ

(4-25)
=

∫ θ(ϕ(t1))

θ0

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ ≤

∫ θM

θ0

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ,

where in the last inequality we have used (ii). Splitting the right-hand side and applying (i), we then
obtain

π

2
− ε ≤

∫ π/4

π/6

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ +

√
2

2

∫ θM

π/4

K

sin θ cos θ
√

cos2 θ sin2 θ − K 2
dθ

(4-30)
=

∫ π/4

π/6

K

sin θ
√

cos2 θ sin2 θ − K 2
dθ +

π
√

2
4
. (4-34)

Furthermore, again by (ii), we have

K = sin θM cos θM ≤ sin θ(ϕ(t1)) cos θ(ϕ(t1))≤ sin θ∗(ϕ− ε) cos θ∗(ϕ− ε)→ 0 as ε→ 0.

Therefore the integral on the right-hand side of (4-34) vanishes as ε→ 0, yielding a contradiction for ε
sufficiently small. �

Lemma 4.14. Let ϕ ∈ I = (ϕ0, ϕ1)⊆ [0, π/2− ε]. Then

JI (θ
∗

ε )=

[
sin θ0 sinϕ√

1+ tan2 θ0 cos2 ϕ

]ϕ=ϕ1

ϕ=ϕ0

. (4-35)

Proof. Since θ∗ε = θ
∗ for ϕ ≤ π/2− ε, a straightforward computation shows that

cos θ∗ε
√
(θ∗

′

ε )
2
+ sin2 θ∗ε =

4 sin θ0 cosϕ√
1+ tan2 θ0 cos2 ϕ (3+ cos 2θ0+ 2 cos 2ϕ sin2 θ0)

.

An integration of this expression yields (4-35). �

We now show that if the graph of a solution to (4-24) emanates from ∂P∩ ∂Pε into P̊ε, then it does
not return to ∂P∩ ∂Pε.

Lemma 4.15. Let ϕ1 ∈ [0, π/2− ε) and let θ be a solution of (4-24) such that θ(ϕ1) = θ
∗(ϕ1) and

θ ′(ϕ1)≤ θ
∗
′

(ϕ1). Then X (ϕ, θ(ϕ))⊂ P̊ε for all ϕ ∈ (ϕ1, π/2− ε].

Proof. We let θ1 = θ(ϕ1) and we distinguish two cases.
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Case 1: θ ′(ϕ1) ≤ 0. If θ0 = π/4, ϕ1 = 0, and θ ′(ϕ1)= 0, then θ ≡ π/4 and the lemma is trivially true.
Else Lemma 4.10 implies that θ decreases until either ϕ = π or it reaches its minimum. In the former
case the lemma is proved. In the latter, part (d) of Lemma 4.10 implies that θ < θ∗(ϕ1) at least until
ϕ = ϕ1+π/

√
2> π/2.

Case 2: θ ′(ϕ1) > 0. It is convenient to set

v(ϕ)= log tan( 1
2θ(ϕ)).

Lengthy but straightforward computations show that

v′′ =
cosh(2v)− 3

sinh(2v)
(1+ (v′)2).

We now observe that

cosh(2v) < 3⇐⇒ 1
2 log(3− 2

√
2) < v < 1

2 log(3+ 2
√

2)

⇐⇒ log tan(π/8) < log tan(θ/2) < log tan(3π/8)

⇐H θ ∈ (π/4, π/2),

sinh(2v) > 0⇐⇒ v > 0⇐H θ ∈ (π/8, π/2).

Hence v′′ < 0 if θ > π/4. On the other hand, as long as ϕ ≤ π/2− ε, we have

θ < θ∗ε = θ
∗
⇐⇒ v < v∗(ϕ) := log tan

(
1
2

arctan
1

tan θ0 |cosϕ|

)
with

v∗
′′

=
sin θ0 cosϕ

(sin2 θ0 cos2 ϕ+ cos2 θ0)3/2
> 0.

Hence (v− v∗)′′ < 0 as long as θ > π/4 and ϕ ≤ π/2− ε. Since v = v∗ and v′ ≤ v∗
′

at ϕ = ϕ1, we have
v < v∗ as long as either ϕ = π/2− ε or θ = π/4. In the former case the proof is complete. In the latter
case, part (d) of Lemma 4.10 implies that θ will then remain below π/4 at least in an interval of length
π/
√

2> π/2, and the proof is complete. �

We now estimate J over a candidate symmetric shortest path which de-touches from ∂P∩ ∂Pε and
reaches ϕ = π/2− ε:

Lemma 4.16. Let γ be a symmetric shortest path not passing through (0, 0, 1) and let γ = X (ϕ, θ). If
t1 ≥ 0 exists such that ϕ1 = ϕ(t1) ∈ [0, π/2− ε), θ(t1) = θ∗(ϕ1), and γ 6⊂ ∂P in a right-neighborhood
of t1, then

J(ϕ1,π/2−ε)(θ) > J(ϕ1,π/2)(θ
∗)−

ε

2
.
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Proof. By assumption, for all σ > 0, there exists tσ ∈ (t1, t1+ σ) such that γ (tσ ) ∈ P̊ε. By continuity,
there exists t̃σ ∈ [t1, tσ ) such that γ (t̃σ ) ∈ ∂Pε and γ (t) ∈ P̊ε for all t ∈ (t̃σ , tσ ]. Then we may apply
Lemma 4.9 in (t̃σ , tσ ].

If K = 0, then ϕ is constant, and since the curve is on ∂Pε at t = t̃σ , θ must decrease. Hence γ remains
smooth down to θ = 0, the north pole. Therefore this case is excluded.

Then K > 0, ϕ is strictly increasing, and θ(ϕ) solves (4-24) in (t̃σ , tσ ). By Lemma 4.15, we in fact
have X (ϕ, θ(ϕ))⊂ P̊ε as long as ϕ ≤ π/2− ε, which in particular implies that t̃σ = t1 and that θ solves
(4-24) as long as ϕ ≤ π/2− ε. We let

θ1 = θ(ϕ1)= θ
∗(ϕ1)

and we distinguish two cases.

Case 1: θ ′(ϕ1)≤ 0. Lemma 4.10 and the symmetry of the path imply that θ does not increase until π/2
and θ(π/2)= θm > 0. If θ1 = θ0 = π/4 and ϕ1 = 0, then γ ((0, 1))⊂ P̊ε, a case which has already been
ruled out in Lemma 4.12. Hence θ1 > π/4.

We claim that
min

ϕ∈[0,π/2]
sin θ cos θ = sin θm cos θm . (4-36)

By (4-25),
min

ϕ∈[ϕ1,π/2]
sin θ cos θ = sin θm cos θm . (4-37)

In particular,
sin(θ1) cos(θ1)≥ sin θm cos θm . (4-38)

On the other hand, by Lemma 4.13(ii), θ ∈ [θ0, θ1] for ϕ ∈ [0, ϕ1]. Hence

min
ϕ∈[0,ϕ1]

sin θ cos θ =min{sin θ0 cos θ0, sin θ1 cos θ1}. (4-39)

Since θ∗ is increasing,

sin(θ1) cos(θ1)≤ sin(θ∗(0)) cos(θ∗(0))= sin
(
π

2
− θ0

)
cos
(
π

2
− θ0

)
= sin(θ0) cos(θ0),

therefore (4-39) reads

min
ϕ∈[0,ϕ1]

sin θ cos θ = sin θ1 cos θ1
(4-38)
≥ sin θm cos θm (4-40)

and (4-36) follows from (4-37) and (4-40).
We denote by ϕ̃1 ∈ (ϕ1, π/2) the unique point such that θ(ϕ̃) = θ0 (recall that θ1 > π/4, θ(π/2) =

θm < π/4 and θ is decreasing in (ϕ1, π/2)), and we define (see Figure 2)

θ̃ (ϕ) :=

{
θ(ϕ+ ϕ̃1) if 0≤ ϕ ≤ π

2
− ϕ̃1,

θm if π
2
− ϕ̃1 ≤ ϕ ≤

π

2
.

We have

J(0,ϕ̃1)(θ) > sin θm cos θm ϕ̃1 = J(π/2−ϕ̃1,π/2)(θ̃) and J(0,π/2−ϕ̃1)(θ̃)= J(ϕ̃1,π/2)(θ).
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Figure 2. Case 1 in the proof of Lemma 4.16. The path (ϕ, θ(ϕ)) (continuous) is beaten
by its competitor (ϕ, θ̃(ϕ)) (dashed).

Therefore γ is not a shortest path and this case is excluded.

Case 2: θ ′(ϕ1) > 0. Lemma 4.10 and the symmetry of the path imply that θ increases until π/2− ε. We
now estimate its length in Iε = (ϕ1, π/2− ε). By the assumption of Case 2, and since γ ∈ P in Iε,

0< θ ′(ϕ1)≤ (θ
∗)′(ϕ1). (4-41)

By (4-25),

sin2 θ (cos2 θ sin2 θ − K 2)= K 2(θ ′)2 for some K ∈ (0, 1/2). (4-42)

Evaluating this expression at ϕ1, we have

K =
sin2 θ∗(ϕ1) cos θ∗(ϕ1)√
(θ ′(ϕ1))2+ sin2 θ∗(ϕ1)

(4-41)
≥

sin2 θ∗(ϕ1) cos θ∗(ϕ1)√
(θ∗

′

(ϕ1))2+ sin2 θ∗(ϕ1)
.

Of course, we have

JIε(θ)≥

∫
Iε

cos θ sin θ dϕ
(4-42)
≥ |Iε|K .

This chain of inequalities implies that

JIε(θ) > |Iε|
sin2 θ∗(ϕ1) cos θ∗(ϕ1)√
(θ∗

′

(ϕ1))2+ sin2 θ∗(ϕ1)
=
|Iε| sin θ0 cosϕ1√
1+ tan2 θ0 cos2 ϕ1

(the latter equality follows from an explicit computation). On the other hand, by Lemma 4.14, the curve
which just stays on the obstacle, γ ∗ = X (ϕ, θ∗(ϕ)), ϕ ∈ (ϕ1, π/2), is such that

J(ϕ1,π/2)(θ
∗)= sin θ0

(
1−

sinϕ1√
1+ tan2 θ0 cos2 ϕ1

)
.
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Hence

(JIε(θ)− J(ϕ1,π/2)(θ
∗))

√
1+ tan2 θ0 cos2 ϕ1

sin θ0

> |Iε| cosϕ1+ sinϕ1−
√

1+ tan2 θ0 cos2 ϕ1

>
(
π

2
− ε−ϕ1

)
cosϕ1+ sinϕ1−

√
1+ cos2 ϕ1 =: F(ϕ1)− ε cosϕ1.

Another calculus exercise shows that F is decreasing [0, π/2]: since F(π/2)= 0, F is positive. Therefore

JIε(θ) > J(ϕ1,π/2)(θ
∗)− ε

sin θ0 cosϕ1√
1+ tan2 θ0 cos2 ϕ1

> J(ϕ1,π/2)(θ
∗)− 1

2ε. �

Next we characterize the candidate shortest paths joining X (0, θ∗(0)) with another point on ∂P∩ ∂Pε

which is on the same side with respect to π/2.

Lemma 4.17. Let 0< ϕ̄ ≤ π/2− ε. The shortest path which connects X (0, π/2− θ0) and X (ϕ̄, θ∗(ϕ̄))
is (a smooth reparametrization of ) γ ∗ = X (ϕ, θ∗(ϕ)), ϕ ∈ [0, ϕ̄].

Proof. Let I = (0, ϕ̄). We recall by Lemma 4.14 that

JI (θ
∗)=

sin θ0 sin ϕ̄√
1+ tan2 θ0 cos2 ϕ̄

< sin θ0.

First note that γ does not reach the north pole. For if it did, at a time t̄ ∈ (0, 1), we would have

J (γ )≥
∫ t̄

0
cos θ |θ̇ | dt ≥ sin(θ(0))= sin

(
π

2
− θ0

)
= cos θ0 > sin θ0 > JI (θ

∗),

which is impossible.
Therefore we may use the spherical coordinates (4-4), and arguing as in the proof of Lemma 4.8 we

see that ϕ in nondecreasing.
Assume for a contradiction that γ does not coincide (up to a smooth reparametrization) with γ ∗. Then

t1 > 0 and a right-neighborhood Ĩ of t1 exist such that ϕ1 := ϕ(t1) < ϕ̄ and γ ( Ĩ ) 6⊂ ∂P. Arguing as
in the first lines of the proof of Lemma 4.16, one finds that there is t2 > t1 such that γ (t) ∈ P̊ for all
t ∈ (t1, t2). Then, arguing as in the proof of Lemma 4.9, one finds that (4-22) holds, and K ≥ 0 since ϕ is
nondecreasing. If K > 0, then θ(ϕ) would solve (4-24) in (t1, t2); but in view of Lemma 4.15, such a
solution will not rehit the constraint until ϕ = π/2−ε, hence K > 0 can not occur. If K = 0, then ϕ ≡ ϕ1,
and since we are on ∂P at time t1, θ must move inwards. Hence γ remains smooth up to θ = 0, the north
pole, a contradiction. �

Proof of Theorem 4.1. First of all, we note that Lemma 4.14 implies that J (θ∗)= 2 sin θ0. Hence, in view
of Lemma 4.5, it suffices to show that

inf
γ∈0ε

J (γ )≥ J (θ∗)−ω(ε)= 2 sin θ0−ω(ε), (4-43)

where ω is a universal function which vanishes as ε→ 0. By Lemma 4.6, the inf on the left-hand side of
(4-43) is attained. Let γ be one such shortest path. If γ passes through (0, 0, 1), then (4-43) follows from
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Figure 3. Case 1 in the proof of Theorem 4.1. The path (ϕ(t), θ(t)) (gray) is beaten by
its competitor (ϕ(t), θ̃ (t)) (dashed).

Lemma 4.7. If not, we let γ = X (ϕ, θ) and, by Lemma 4.8, we assume without loss of generality that γ
is symmetric. For simplicity, we distinguish between θ0 < π/4 and θ0 = π/4.

Case 1: θ0 < π/4. We already know from Lemma 4.12 that γ has to intersect ∂Pε. Let t0 and t1 be,
respectively, the first time in which θ(t)= π/4 and the first time in which γ intersects ∂Pε:

t1 := sup{t > 0 : γ ∈ P̊ε in [0, t)} and ϕ1 = ϕ(t1).

Provided ε is sufficiently small, by Lemma 4.13(ii), θ is increasing in (0, t1). Hence the curve

γ̃ (t) := X (ϕ(t), θ̃ (t)), θ̃ (t) :=

{π
2
− θ(t) t ∈ [0, t0],

θ(t) t ∈ [t0, t1]

is contained in Pε (see Figure 3). We claim that

J (γ̃χ(0,t1)) < J (γχ(0,t1)), (4-44)

which is equivalent to
J (γ̃χ(0,t0)) < J (γχ(0,t0)). (4-45)

By Lemma 4.9, γ satisfies (4-22) in (0, t0). If K = 0, then ϕ ≡ 0 and (4-45) follows from the expression
(4-5) of J :

cos
(
π

2
− θ

)
= sin(θ) < cos θ if θ ≤ π/4.

Otherwise, by Lemma 4.9 ϕ 7→ θ(ϕ) solves (4-24) in (0, ϕ0), where ϕ0 = ϕ(t0). Then it follows by
Lemma 4.13(iii) that ϕ0 < π/2− ε, and we may use the equivalent expression (4-26) for J : since

cos2 θ̃ ((θ̃ ′)2+ sin2 θ̃ )= sin2 θ((θ ′)2+ cos2 θ) < cos2 θ((θ ′)2+ sin2 θ) in (0, ϕ0),

(4-45) follows.
Since γ̃ is a path connecting X (0, π/2− θ0) to X (ϕ1, θ

∗(ϕ1)), Lemma 4.17 implies that J (γ̃χ(0,t1))≥
J(0,ϕ1)(θ

∗). Together with (4-44), we obtain

J(0,ϕ1)(θ
∗) < J (γχ(0,t1)). (4-46)
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Now let t2 ≥ t1 be defined by

t2 :=max{t ≥ t1 : γ ∈ ∂Pε in [t1, t]} and ϕ2 = ϕ(t2).

The estimate in (t1, t2) is trivial since γ coincides with γ ∗ := X (ϕ, θ∗):

J (γχ(t1,t2))= J(ϕ1,ϕ2)(θ
∗).

On (ϕ2, π/2− ε), Lemma 4.16 implies that

J(ϕ2,π/2−ε)(θ) > J(ϕ2,π/2)(θ
∗)−

ε

2
if ϕ2 <

π

2
− ε. (4-47)

Finally, we just observe that

J(π/2−ε,π/2)(θ∗)
(4-7)
≤ ω(ε). (4-48)

Collecting (4-46)–(4-48) and recalling the symmetry of γ , we obtain (4-43).

Case 2: θ0 = π/4. This case is simpler. We let

t2 =max{t ≥ 0 : γ ∈ ∂Pε in [0, t]} ≥ 0 and ϕ2 = ϕ(t2),

and we argue exactly as above to obtain J (γχ(0,t2))= J(0,ϕ2)(θ
∗) and (4-47)–(4-48). �
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