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DECOMPOSITION RANK OF Z-STABLE C�-ALGEBRAS

AARON TIKUISIS AND WILHELM WINTER

We show that C�-algebras of the form C.X/˝Z, where X is compact and Hausdorff and Z denotes the
Jiang–Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for
C�-bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine
structure of nuclear C�-algebras of Toms and Winter, even in a nonsimple setting, and gives evidence that
the topological dimension of noncommutative spaces is governed by fibres rather than base spaces.

1. Introduction

The structure and classification theory of nuclear C�-algebras has seen rapid progress in recent years,
largely spurred by the subtle interplay between certain topological and algebraic regularity properties,
such as finite topological dimension, tensorial absorption of suitable strongly self-absorbing C�-algebras,
and order completeness of homological invariants; see [Elliott and Toms 2008] for an overview. In the
simple and unital case, these relations were formalized by A. Toms and W. Winter as follows.

Conjecture 1.1. For a separable, simple, unital, nonelementary, stably finite and nuclear C�-algebra A,
the following are equivalent:

(i) A has finite decomposition rank: in symbols, drA <1.

(ii) A is Z-stable: AŠ A˝Z.

(iii) A has strict comparison of positive elements.

Here, decomposition rank is a notion of noncommutative topological dimension introduced in [Kirch-
berg and Winter 2004], Z denotes the Jiang–Su algebra introduced in [Jiang and Su 1999], and strict
comparison essentially means that positive elements may be compared in terms of tracial values of their
support projections; compare [Rørdam 2006]. If one drops the finiteness assumption on A, one should
replace (i) by

(i0) A has finite nuclear dimension, dimnucA <1,

where nuclear dimension [Winter and Zacharias 2010] is a variation of the decomposition rank that can
have finite values also for infinite C�-algebras.

The conjecture still makes sense in the nonsimple situation, provided one asks A to have no elementary
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subquotients (this is a minimal requirement for Z-stability); one also has to be slightly more careful about
the definition of comparison in this case.

Nuclearity in this context manifests itself most prominently via approximation properties with particu-
larly nice completely positive maps [Christensen et al. 2012; Hirshberg et al. 2012a].

Conjecture 1.1 has a number of important consequences for the structure of nuclear C�-algebras and it
has turned out to be pivotal for many recent classification results, especially in view of the examples given
in [Villadsen 1999; Rørdam 2003; Toms 2008]. Moreover, it highlights the striking analogy between
the classification program for nuclear C�-algebras (see [Elliott 1995]) and Connes’ [1976] celebrated
classification of injective II1 factors.

Implications .i/; .i0/D) .ii/D) .iii/ of Conjecture 1.1 are by now known to hold in full generality
[Rørdam 2004; Winter 2010; 2012]; (iii) D) (ii) has been established under certain additional structural
hypotheses [Matui and Sato 2012; Winter 2012], all of which, in particular, guarantee sufficient divisibility
properties.

Arguably, it is (ii) D) (i) which remains the least well understood of these implications. While there
are promising partial results available [Winter and Zacharias 2010; Lin 2011b; Winter 2012], all of these
factorize through classification theorems of some sort. This in turn makes it hard to explicitly identify the
origin of finite dimensionality.1

In the simple purely infinite (hence O1-stable, hence Z-stable [Kirchberg and Rørdam 2002; Kirchberg
2006]) case, one has to use Kirchberg–Phillips classification [Kirchberg 1995; Kirchberg and Phillips
2000] as well as a range result providing models to exhaust the invariant [Rørdam 2002] and then again
Kirchberg–Phillips classification to show that these models have finite nuclear dimension [Winter and
Zacharias 2010].2

In the simple stably finite case, at this point only approximately homogeneous (AH) algebras or
approximately subhomogeneous (ASH) algebras for which projections separate traces are covered [Lin
2011a; Lin and Niu 2008; Winter 2004; 2007]. (This approach also includes crossed products associated
to uniquely ergodic minimal dynamical systems [Toms and Winter 2009; 2013].) While both of these
classes after stabilizing with Z can by now be shown directly to consist of TAI and TAF algebras [Lin
2011b], again finite topological dimension will only follow from classification results [Elliott et al. 2007;
Winter 2010; Lin 2011a; Toms 2011] and after comparing to models which exhaust the invariant [Elliott
1996; Villadsen 1998]; see also [Rørdam 2002] for an overview. (Note that certain crossed products
are shown directly to have finite nuclear dimension, or even finite decomposition rank [Hirshberg et al.
2012b; Szabo 2013]; however, Z-stability is not assumed in these cases.)

1After this article appeared on the arXiv, Matui and Sato [2013] posted a very nice paper in which they prove finite
decomposition rank for separable, simple, unital, nuclear, and Z-stable C�-algebras provided these are quasidiagonal and have a
unique tracial state. While this result is restricted to the simple and monotracial case (conditions we do not need at all), it only
uses quasidiagonality as additional structural hypothesis (and this is of course much more general than our local homogeneity);
see also [Sato et al. 2014]. Matui and Sato’s approach heavily relies on deep results of Connes and of Haagerup and, in a sense,
is almost perpendicular to ours; we believe that the two methods nicely complement each other.

2[Matui and Sato 2013] also contains a proof of finite nuclear dimension for simple purely infinite C�-algebras, which does
not rely on classification; see also [Barlak et al. 2014].
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Once again, the classification procedure does not make it entirely transparent where the finite topological
dimension comes from, but at least Elliott–Gong–Li classification of simple AH algebras (of very slow
dimension growth — later shown to be equivalent to slow dimension growth and to Z-stability [Winter
2012]) heavily relies on Gong’s deep dimension reduction theorem [2002]. Gong gives an essentially
explicit way of replacing a given AH limit decomposition with one of low topological dimension.
However, this method is technically very involved and requires both simplicity and the given inductive
limit decomposition. It does not fully explain to what extent the two are necessary; in particular, it is
in principle conceivable that a decomposition similar to that of Gong exists for algebras of the form
C.X/˝Q, where Q is the universal UHF algebra.3

In this article we show how finite topological dimension indeed arises for algebras of this type; in
fact, we are able to cover algebras of the form C.X/˝Z, and hence also locally homogeneous Z-stable
C�-algebras (not necessarily simple, or with a prescribed inductive limit structure). We hope our argument
will shed new light on the conceptual reasons why finite topological dimension should arise in the presence
of sufficient C�-algebraic regularity. Our method is based on approximately embedding the cone over the
Cuntz algebra O2 into tracially small subalgebras of the algebra in question; these play a similar role as
the small corners used in the definition of TAF algebras [Lin 2004] or the small hereditary subalgebras
in property SI [Matui and Sato 2012]. We mention that we only obtain (a strong version of) finite
decomposition rank, whereas Gong’s reduction theorem yields an inductive limit decomposition; however,
for many purposes, finite decomposition rank is sufficient; see [Winter 2010; Toms and Winter 2013].

In [Kirchberg and Rørdam 2005], algebras of the form C.X/˝O2 were shown to be approximated by
algebras of the form C.�/˝O2 with � one-dimensional. Since O2 is by now known to have finite nuclear
dimension [Winter and Zacharias 2010], this may be regarded as strong evidence that the topological
dimension of a C�-bundle depends on the noncommutative size of the fibres more than the size of the
base space. (A somewhat similar phenomenon was already observed for stable rank by Rieffel [1983].)

It is remarkable that [Kirchberg and Rørdam 2005] does not rely on a classification result in any way.
It does, however, mix commutativity (of the structure algebra) and pure infiniteness (of the fibres).

It is not clear from [Kirchberg and Rørdam 2005] whether such a dimension type reduction also occurs
in the setting of stably finite fibres. In the present article we show that it does, by developing a method
to transport [Kirchberg and Rørdam 2005] to the situation where the fibres are UHF algebras (to pass
to the case where each fibre is Z then requires a certain amount of additional machinery — at least if
one wants to increase the dimension by no more than one). The crucial concept to link purely infinite
and stably finite fibres is quasidiagonality of the cone over O2, discovered by Voiculescu [1993] and
Kirchberg [1991]. In many ways it is most interesting just to know that the Z-stable C�-algebras in
our main result have finite decomposition rank, and the very small bound that we are able to derive is
secondary. Certain technicalities can be circumvented, using [Carrión 2011, Lemma 3.1] in order to prove
just finite decomposition rank, as we describe in Remarks 4.8 and 4.9. We are indebted to one of the
referees for suggesting this shortcut.

3Added in proof: It turns out that this is not, in fact, conceivable; see [Tikuisis 2014].
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One should mention that the fact that the fibres are specific strongly self-absorbing algebras in both
[Kirchberg and Rørdam 2005] and in our result plays an important but in some sense secondary role: In
[Kirchberg and Rørdam 2005] (combined with [Winter and Zacharias 2010]) one can replace O2 with O1,
or in fact with any UCT Kirchberg algebra, and still arrive at finite nuclear dimension. More generally,
our result yields the respective statement if the fibres have finite nuclear dimension and are Z-stable, for
example, in the simple, nuclear, classifiable case.

While at the current stage we only cover the case of highly homogeneous bundles, it will be an important
task to handle bundles with non-Hausdorff spectrum, for example, B ˝ Z with B subhomogeneous,
in order to also cover transformation group C�-algebras. This will be pursued in subsequent work by
combining our technical Lemma 4.7, with the methods of [Winter 2004]; in preparation, we have stated
Lemma 4.7 in a form slightly more general than necessary for the current main result Theorem 4.1. One of
the referees has raised the question of whether (local) triviality of C.X/˝Z is needed to show that it has
finite decomposition rank, particularly in light of the interesting examples of C.X/-algebras appearing in
[Dadarlat 2009b; Hirshberg et al. 2007]; in response, we have added Section 5, in which we show that
our result easily extends to nontrivial bundles such as these examples.

We would like to take this opportunity to thank both referees for their careful proofreading and inspiring
comments.

We remind the reader that the Jiang–Su algebra Z is an inductive limit of so-called dimension-drop
C�-algebras

Zp0;p1 WD ff 2 C.Œ0; 1�;Mp0 ˝Mp1/ W f .0/ 2Mp0 ˝C � 1p1 and f .1/ 2 C � 1p0 ˝Mp1g; (1-1)

where p0; p1 2 N are coprime, and it can be defined as the unique simple, monotracial limit of such
algebras. It has also been realized as an inductive limit of generalized dimension-drop algebras, which
are defined as in (1-1), but with p0; p1 taken to be coprime supernatural numbers (so that Mpi denotes a
UHF algebra) [Rørdam and Winter 2010, Theorem 3.4]. The connecting maps in this inductive limit have
the crucial feature of being trace-collapsing.

2. Decomposition rank of homomorphisms

In this section we introduce the notions of decomposition rank and nuclear dimension of �-homomorphisms,
building naturally on the respective notions for C�-algebras, just as nuclearity for �-homomorphisms
arises from the completely positive approximation property for C�-algebras. We first recall from [Winter
2003] the notion of completely positive contractive (c.p.c.) order zero maps.

Definition 2.1. Let A;B be C�-algebras and let � WA!B be a c.p.c. map. We say that � has order zero
if it preserves orthogonality in the sense that if a; b 2 AC satisfy ab D 0, then �.a/�.b/D 0.

Definition 2.2. Let ˛ W A! B be a �-homomorphism of C�-algebras. We say that ˛ has decomposition
rank at most n, and write dr.˛/ � n, if, for any finite subset F� A and any � > 0, there exists a finite
dimensional C�-algebra F and c.p.c. maps

 W A! F and � W F ! B
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such that � is .nC 1/-colourable, in the sense that we can write

F D F .0/˚ � � �˚F .n/

and �jF .i/ has order zero for all i , and such that � is point-norm close to ˛, in the sense that, for a 2F,

k˛.a/�� .a/k< �:

We may define nuclear dimension of ˛ similarly (and write dimnuc.˛/� n), where instead of requiring
that � is contractive, we only ask that �jF .i/ is contractive for each i .

Remark 2.3. The decomposition rank (respectively nuclear dimension) of a C�-algebra, as defined in
[Kirchberg and Winter 2004, Definition 3.1] (respectively [Winter and Zacharias 2010, Definition 2.1]) is
just the decomposition rank (respectively nuclear dimension) of the identity map.

The following generalizes some permanence properties for decomposition rank and nuclear dimension
of C�-algebras. Proofs are omitted, as they are essentially the same as those found in [Kirchberg and
Winter 2004; Winter 2003; Winter and Zacharias 2010].

Proposition 2.4. Let A;B be C�-algebras and let ˛ W A! B be a �-homomorphism.

(i) Suppose that A is locally approximated by a family of C�-subalgebras .A�/ƒ, in the sense that, for
every finite subset F� A and every tolerance � > 0, there exists � such that F�� A�. Then

dr.˛/� sup
ƒ

dr.˛jA�/ and dimnuc.˛/� sup
ƒ

dimnuc.˛jA�/:

(ii) If C � A is a hereditary C�-subalgebra, then

dr.˛C /� dr.˛/ and dimnuc.˛C /� dimnuc.˛/;

where ˛C WD ˛jC W C ! her.˛.C //.

When computing the decomposition rank (or nuclear dimension), it is often convenient to replace the
codomain by its sequence algebra, defined to be

A1 WD

�Y
N

A

�.�M
N

A

�
:

We shall denote by
�1 W

Y
N

A! A1

the quotient map, and by �1 W A! A1 the canonical embedding as constant sequences.

Proposition 2.5. Let ˛ W A! B be a �-homomorphism.
Then

dr.˛/D dr.�1 ı˛/ and dimnuc.˛/D dimnuc.�1 ı˛/:

Proof. Straightforward, using stability of the relations defining c.p.c. order zero maps on finite dimensional
domains [Kirchberg and Winter 2004]. �
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Proposition 2.6. Let D be a strongly self-absorbing C�-algebra (as defined in [Toms and Winter 2007]),
and let A be a D-stable C�-algebra.

Then
dr.A/D dr.idA˝ 1D/ and dimnuc.A/D dimnuc.idA˝ 1D/:

Proof. This follows easily from the fact that idA has approximate factorizations of the form

D
idA˝1D
����! D˝D

�
�! A˝D;

where � is a �-isomorphism. �

3. C.X/-algebras and decomposition rank

For a locally compact Hausdorff space X , a C0.X/-algebra is a C�-algebra A equipped with a nonde-
generate �-homomorphism C0.X/!ZM.A/, called the structure map [Kasparov 1988, Definition 1.5].
Here M.A/ refers to the multiplier algebra of A and ZM.A/ to its centre; note that if A is unital, so is the
structure map. In this section, we study the decomposition rank of such structure maps. Proposition 3.2
below is reminiscent of [Winter 2003, Proposition 2.19], which shows that the completely positive rank
of C.X/ equals the covering dimension of X .

Definition 3.1. Let A be a C0.X/-algebra and let a 2A. Define the support of a to be the smallest closed
set F �X such that ag D 0 whenever g 2 C0.XnF /� C0.X/. (This is easily seen to be well defined.)

We note the following property of order zero maps, which was obtained in the proof of [Kirchberg and
Winter 2004, Proposition 5.1] (sixth line from the bottom of p. 79): if � W A! B is an order zero map
and A is a unital C�-algebra, then

k�.x/k D k�.1A/kkxk for any x 2 A: (3-1)

Proposition 3.2. Let X be a compact Hausdorff space, and let A be a unital C.X/-algebra with structure
map � W C.X/!Z.A/.

The following are equivalent:

(i) dr.�/� n.

(ii) dimnuc.�/� n.

(iii) The definition of dr.�/� n holds with the additional requirements that F is abelian and  is a unital
�-homomorphism.

(iv) For any finite open cover U of X , any � > 0, and any b 2 C.X/C, there exists an .nC 1/-colourable
�-approximate finite partition of b; that is, positive elements b.i/j 2 A for i D 0; : : : ; n; j D 1; : : : ; r ,
such that

(a) for each i , the elements b.i/1 ; : : : ; b
.i/
r are pairwise orthogonal,

(b) for each i; j , the support of b.i/j is contained in some open set in the given cover U, and
(c)



P
i;j

b
.i/
j � �.b/



� �.
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Proof. (iii)) (i)) (ii) is obvious.

(ii)) (iv). Let us first assume b D 1. Let F be a finite partition of unity such that, for each f 2F, there
exists Uf 2U such that suppf � Uf . Set

� WD
�

2jFj.nC 1/
: (3-2)

Use dimnuc.�/� n to obtain

C.X/
 
�! F .0/˚ � � �˚F .n/

�
�! A

such that  is c.p.c., �jF .i/ is c.p.c. and order zero for all i D 0; : : : ; n, �. .f //D� f for f 2 F, and
�. .1//D�=2 1. Set

F .i/ WD

riM
jD1

Mm.i;j /:

(By throwing in some zero summands if necessary, we may as well assume all the ri to be equal.)
For each i D 0; : : : ; n and j D 1; : : : ; ri , we set

a
.i/
j WD

�
�. .1C.X//1Mm.i;j//�

�

2.nC 1/

�
C

:

For each i , since �jF .i/ is order zero, a.i/1 ; : : : ; a
.i/
ri are orthogonal. We estimate

1D�=2 �. .1//D

nX
iD0

riX
jD1

�. .1/1Mm.i;j//D .nC1/�
2.nC1/

X
i;j

a
.i/
j ;

where the last approximation is obtained using the fact that the inner summands are orthogonal.
Lastly, we must verify that each a.i/j has support contained in an open set from the cover U. Fix i

and j . Let fi;j 2F maximize f 7! k .f /1Mm.i;j//k. We shall show that the support of a.i/j is contained
in the support of fi;j by showing that a.i/j jK D 0, where

K WD fx 2X W fi;j D 0g:

Since 1D
P
f 2F

f , we must have

k .fi;j /1Mm.i;j/k �
1

jFj
k .1/1Mm.i;j/k: (3-3)

Noting that

fi;j D� �. .fi;j //� �. .fi;j /1Mm.i;j//;

we must have

k�. .fi;j /1Mm.i;j//jKk � �: (3-4)
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We get

k�. .1/1Mm.i;j//jKk
(3-1)
D k�.1Mm.i;j//jKkk .1/1Mm.i;j/k

(3-3)
� k�.1Mm.i;j//jKkjFjk .fi;j /1Mm.i;j/k

(3-1)
D k�. .fi;j /1Mm.i;j//jKk

(3-2)

(3-4)
�

�

2.nC 1/
I

therefore, a.i/j jK D 0, as required.
If b is not the unit, we may still assume that kbk � 1 and use the argument above to obtain an

.nC 1/-colourable approximate partition of unity .a.i/j / subordinate to U. Then simply set b.i/j D ba
.i/
j .

(iv) ) (iii). It will suffice to prove the condition in (iii) assuming that F consists of self-adjoint
contractions.

Take an open cover U of X along with points xU 2 U for every U 2 U such that, for any f 2 F,
U 2U, and x 2 U ,

jf .x/�f .xU /j<
�

2
: (3-5)

Use (iv) with b D 1 to find an .nC 1/-colourable �=2-approximate partition of unity

.a
.i/
j /iD0;:::;nI jD1;:::;r

subordinate to U. By a standard rescaling argument, we may assume that
P
a
.i/
j � 1. For each i; j , let

U.i; j / 2U be such that supp a.i/j � U.i; j /.
Define  W C.X/! .Cr/n by

 .f /D .f .xU.i;j ///iD0;:::;nI jD1;:::;r

and define � W .Cr/n! C.X;A/ by

�.�i;j /iD0;:::;nI jD1;:::;r D
X
i;j

�i;j � a
.i/
j :

Clearly,  is a �-homomorphism, while � is c.p.c. and its restriction to each copy of Cr is order zero.
To verify that � ı approximates � in the appropriate sense, fix f 2F and x 2X . We shall show that

k� .f /.x/�f .x/k< � (in the fibre A.x/). Let

S D f.i; j / 2 f0; : : : ; ng � f1; : : : ; rg W x 2 U.i; j /g;

so that

�. .f //.x/D
X

.i;j /2S

f .xU.i;j // � a
.i/
j .x/ and 1D�=2

X
.i;j /2S

a
.i/
j .x/:
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By (3-5),
.f .x/� �=2/ �

X
.i;j /2S

a
.i/
j .x/�

X
.i;j /2S

f .xU.i;j // � a
.i/
j .x/

� .f .x/C �=2/ �
X

.i;j /2S

a
.i/
j .x/:

It follows that

�. .f //D
X

.i;j /2S

f .xU.i;j // � a
.i/
j D�=2 f .x/ �

X
.i;j /2S

a
.i/
j D�=2 f .x/;

as required. �

Proposition 3.3. Let X be a locally compact metrizable space with finite covering dimension, and let A
be a C0.X/-algebra all of whose fibres are isomorphic to O2. Let U �X be an open subset such that U
is compact.

Then C0.U /AŠ C0.U;O2/ as C0.U /-algebras.

Proof. [Dadarlat 2009a, Theorem 1.1] says that AjU Š C.U ;O2/, as C.U /-algebras. Viewing C0.U /A
as an ideal of AjU , the result follows. �

4. Decomposition rank of C0.X; Z/

In this section, we prove our main result.

Theorem 4.1. Let A be a C�-algebra which is locally approximated by hereditary subalgebras of C�-
algebras of the form C.X;K/, with X compact Hausdorff.

Then
dr.A˝Z/� 2:

In particular, any Z-stable AH C�-algebra has decomposition rank at most 2.

In our proof, we will make use of the huge amount of space provided by the noncommutative fibres in
two ways. First, we exhaust the identity on X by pairwise orthogonal functions up to a tracially small
hereditary subalgebra. This will be designed to host an algebra of the form C0.Z/˝O2, which is possible
by quasidiagonality of the cone over O2. The first factor embedding of C0.Z/ into the latter can be
approximated by 2-colourable maps as shown by Kirchberg and Rørdam (see below). Together with the
initial set of functions, we obtain a 3-colourable, hence 2-dimensional, approximation of the first factor
embedding of C.X/ into C.X/˝Z.

We will first carry out this construction with a UHF algebra in place of Z; a slight modification will
then allow us to pass to certain C.Œ0; 1�/-algebras with UHF fibres, which immediately yields the general
case.

In fact, if one is only concerned with showing that A˝Z has finite decomposition rank, our argument
can be significantly shortened; using [Carrión 2011, Lemma 3.1], it suffices to show that A˝U has
finite decomposition rank, when U is an infinite dimensional, self-absorbing UHF algebra. Remarks 4.8
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and 4.9 describe how one can easily modify (and skip some long technicalities in) the arguments below
in order to efficiently prove that A˝Z has finite decomposition rank.

As noted above, a result of Kirchberg and Rørdam [2005, Proposition 3.7] on 1-dimensional approx-
imations in the case of O2-fibred bundles is a crucial ingredient; this in turn relies on the fact that the
unitary group of C.S1;O2/ is connected [Cuntz 1981]. We note the following direct consequence which
is more adapted to our needs.

Theorem 4.2. For any locally compact Hausdorff space X , the decomposition rank of the first factor
embedding C0.X/! C0.X;O2/ is at most one.

Proof. We begin with the case that X is compact and metrizable. By [Kirchberg and Rørdam 2005,
Proposition 3.7], there exists a �-subalgebraA�C.X;O2/which containsC.X/˝1O2 and is isomorphic to
C.Y / where Y is compact metrizable with covering dimension at most one. Therefore, the decomposition
rank of the first factor embedding C.X/!C.X/˝O2 is at most the decomposition rank of the inclusion
C.X/˝ 1O2 � A, which in turn is at most drA� 1.

For X compact but not metrizable, C.X/ is locally approximated by finitely generated unital subalge-
bras, which are of the form C.Y / where Y is compact and metrizable. Therefore, by Proposition 2.4(i),
the claim holds in this case too.

For the case that X is not compact, we let zX denote the one-point compactification of X . Then
C0.X;O2/ is the hereditary subalgebra of C. zX;O2/ generated by C0.X/, and therefore the result follows
from Proposition 2.4(ii). �

Remark 4.3. The preceding result also implies that dimnuc.A˝O2/� 3 for A as in Theorem 4.1 — this
can be seen using Proposition 2.6, [Winter and Zacharias 2010, Theorem 7.4], and the analogue of [Winter
and Zacharias 2010, Proposition 2.3(ii)].

In what follows, Dn denotes the diagonal subalgebra of Mn.

Lemma 4.4. Let I1; : : : ; In � .0; 1/ be nonempty closed intervals and let a1=2 2 C0..0; 1/;Dn/C be a
function of norm 1 such that, for t 2 Is , the s-th diagonal entry of a1=2.t/ is 1.

Then there exist a0; a1; e0; e1=2; e1 2 C.Œ0; 1�;Dn/C such that

(i) e0 and e1 are orthogonal,

(ii) a0C a1=2C a1 D e0C e1=2C e1 D 1,

(iii) for i D 0; 1, we have ai .i/D 1n,

(iv) e0; e1 act like a unit on a0; a1, respectively, and

(v) a1=2 acts like a unit on e1=2.

Proof. Since Dn Š Cn, it suffices to work in one coordinate at a time — that is, to assume that nD 1.
Then define

a0.x/ WD

�
1� a1=2.x/ if x is to the left of I1;
0 otherwise,

a1.x/ WD

�
1� a1=2.x/ if x is to the right of I1;
0 otherwise.
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Note that since a1=2 � 1 on I1, these are continuous. Now, we may find continuous orthogonal functions
e0; e1 such that e0 is 1 to the left of I1, and e1 is 1 to the right of I1. Finally, set e1=2 WD 1� .e0C e1/.
Then (i), (ii), and (iii) clearly hold by construction. (iv) holds since each ai is nonzero only on one side
of I1, and the corresponding ei is identically 1 on that side. Likewise, (v) holds since e1=2 is nonzero
only on I1, where a1=2 is identically 1. �

We mention the following well-known fact explicitly for convenience. Here ˝ denotes the minimal
tensor product.

Proposition 4.5. Let A1, A2, B1, and B2 be C�-algebras, and suppose that �.i/ W Ai ! .Bi /1 is a
�-homomorphism for i D 1; 2 with a c.p. lift .�.i/

k
/N W Ai !

Q
NBi .

Then
�1˝�2 D �1 ı .�

.1/

k
˝�

.2/

k
/N W A1˝A2! .B1˝B2/1

is a �-homomorphism.

Lemma 4.6. Let A be an infinite dimensional UHF algebra.
Then there exist positive orthogonal contractions

a0; a1 2 C.Œ0; 1�; A/1;

a �-homomorphism
 W C0.Z;O2/! C0..0; 1/; A/1;

where Z D .0; 1�2, and a positive element c 2 Cc.Z;C � 1O2/ such that  .c/ commutes with a0; a1,

a0C a1C .c/D 1; (4-1)

and a0.0/D a1.1/D 1. In addition, there exist positive contractions e0; e1=2; e1 2 C.Œ0; 1�; A/1 such
that

(i) e0; e1 are orthogonal,

(ii) e0C e1=2C e1 D 1,

(iii)  .c/ acts like a unit on e1=2,

(iv) ei acts like a unit on ai for i D 0; 1, and

(v) e0, e1=2, e1, a0, a1,  .c/ all commute.

Proof. Let ADMn1n2��� where n1; n2; : : : are a sequence of natural numbers � 2. Since the cone over
O2 is quasidiagonal (see [Voiculescu 1991] and [Kirchberg 1993, Theorem 5.1]) there exists a sequence
of c.p.c. maps

�k W C0..0; 1�;O2/!Mn1���nk

which are approximately multiplicative and approximately isometric, meaning that

k�k.a/�k.b/��k.ab/k! 0 and k�k.a/k! kak as k!1
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for all a; b 2 C0..0; 1�;O2/. Fix a positive element

d 2 Cc..0; 1�;C � 1O2/

of norm 1.
For each k, let �k denote the greatest eigenvalue of �k.d/. Note that

�k D k�k.d/k! 1 as k!1:

Fix k for a moment and let l D n1 � � �nk . Let

I1; : : : ; Il

be nonempty disjoint closed intervals in .0; 1/. Let

u1; : : : ; ul 2Ml

be unitaries such that, for each s, us�k.d/u�s is a diagonal matrix whose s-th diagonal entry is �k . Let

h1; : : : ; hl 2 C0..0; 1//

be positive normalized functions with disjoint support, such that hsjIs � 1 for each s. Set Z WD .0; 1�2

and define

 k W C0.Z;O2/Š C0..0; 1�/˝C0..0; 1�;O2/! C.Œ0; 1�/˝Ml Š C.Œ0; 1�;Ml/� C.Œ0; 1�; A/

by

 k.f ˝ b/D

lX
sD1

f .hs/˝us�k.b/u
�
s :

Let f 2 Cc..0; 1�/ be a function satisfying f .1/D 1 and set

c D f ˝ d 2 Cc.Z;C � 1O2/:

By construction,  k.c/ 2 C..0; 1/;Dl/C, and for t 2 Is , the s-th diagonal entry is �k . Let

c0k 2 C.Œ0; 1�;Dl/C

be of norm 1, such that
kc0k � k.c/k D j1��kj

and for t 2 Is , the s-th diagonal entry is 1. Feeding

a1=2 WD c
0
k

to Lemma 4.4, let
a0;k; a1;k; e0;k; e1=2;k; e1;k 2 C.Œ0; 1�;Dl/C

be the output, satisfying (i)–(v) of Lemma 4.4.
Having found these for each k, set

 WD �1 ı . 1;  2; : : : / W C0.Z;O2/! C.Œ0; 1�; A/1:
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Set
ai WD �1.ai;1; ai;2; : : : /

for i D 0; 1 and
ei WD �1.ei;1; ei;2; : : : /

for i D 0; 1
2
; 1.

Since all unitaries in Ml (and in particular, all the us) are in the same path component,  k is unitarily
equivalent to ˛˝�k , where

˛ W C0..0; 1�/! C.Œ0; 1�/

is the �-homomorphism given by
f 7! f .h1C � � �Chl/:

From this observation and Proposition 4.5, it follows that  is a �-homomorphism.
Notice further that

 .c/D �1.c
0
1; c
0
2; : : :/;

and therefore, drawing on the finite stage results, we see that

a0C a1C .c/D 1

and that (i)–(v) hold. �

Lemma 4.7. Let p; q > 1 be natural numbers. Let X D Œ0; 1�m for some m and let � > 0.
Then there exist positive orthogonal elements

h0; : : : ; hk 2 C.X;Z/1;

a �-homomorphism
� W C0.Z;O2/! C.X;Z/1

for some locally compact, metrizable, finite dimensional spaceZ, and a positive element c 2Cc.Z;C �1O2/

such that �.c/ commutes with h0; : : : ; hk ,

h0C � � �ChkC�.c/D 1;

and the support of hi has diameter at most � for i D 0; : : : ; k with respect to the `1 metric on Œ0; 1�m.
In addition, there exist positive contractions e0; e1=2; e1 2 C.X;Z/1 such that

(i) e0; e1 are orthogonal,

(ii) e0C e1=2C e1 D 1,

(iii) ej is identically 1 on fj g � Œ0; 1�m�1, for j D 0; 1,

(iv) �.c/ acts like a unit on e1=2,

(v) e0C e1 acts like a unit on hi for all i D 0; : : : ; k, and

(vi) e0; e1=2; e1; h0; : : : ; hk; �.c/ all commute.
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Remark 4.8. This lemma of course holds with a self-absorbing UHF algebra in place of Z (since such a
UHF algebra contains Z). But, in fact, this variation is shown in Steps 1 and 2 of the proof below, and, as
we will see in Remark 4.9, this variation is sufficient to prove that A˝Z as in Theorem 4.1 has finite
decomposition rank. A reader only interested in showing finite decomposition rank may therefore skip
the third step of the proof below.

Proof. This will be proven in three steps. In Step 1, we will prove the statement of the proposition with Z

replaced by a UHF algebra of infinite type and with mD 1. In Step 2, we will still replace A by a UHF
algebra of infinite type, but we will allow any m 2 N. Step 3 will be the proof of the proposition.

Step 1. Let A be a UHF algebra of infinite type. Let

a0; a1;  ; c; e
0
0; e
0
1=2; e

0
1; Z

be as in Lemma 4.6, with e0i in place of ei . Note that each ai has a positive normalized lift

.ai;j /
1
jD1 2

Y
N

C.Œ0; 1�; A/

such that ai;j .t/D ıi;t1 for all i; t D 0; 1 and all j ; likewise, each e0i , i D 0;
1
2
; 1, has a positive normalized

lift
.e0i;j /

1
jD1 2

Y
N

C.Œ0; 1�; A/

such that, for i D 0; 1, e0i;j .i/D 1.
Let k � 2=� be a natural number. For i D 0; : : : ; k, j 2 N, and t 2 Œ0; 1�, set

hi;j .t/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if t � i�1
k

or t � iC1
k
;

a1;j .kt � .i � 1// if t 2
h
i�1

k
;
i

k

i
;

a0;j .kt � i/ if t 2
h
i

k
;
iC1

k

i
:

(4-2)

Note that the endpoint conditions on ai;j make hi;j well defined and continuous on Œ0; 1�. Likewise, set

ei;j .t/ WD

8̂̂̂<̂
ˆ̂:
e0i;j .0/ if t D 0;

e0i;j .1/ if t � 1
k
;

e0i;j .kt/ if t 2
h
0;
1

k

i
:

(4-3)

Set
hi WD �1.hi;1; hi;2; : : : /; ei WD �1.ei;1; ei;2; : : : / 2 C.Œ0; 1�; A/1

for i D 0; 1. Choose a c.p.c. lift for  , that is, c.p.c. maps

 j W C0.Z;O2/! C0..0; 1/; A/� C.Œ0; 1�; A/

such that
 WD �1 ı . 1;  2; : : : /:
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Define
�j W C0.Z;O2/! C.Œ0; 1�; A/

by
�j .a/.t/D  j .a/.kt � i/; (4-4)

if i 2N is such that t 2 Œi=k; .iC1/=k�. Note that this is well defined since the image of  j is contained
in C0..0; 1/; A/. Use .�j /1jD1 to define

� D �1 ı .�1; �2; : : : / W C0.Z;O2/! C.Œ0; 1�; A/1:

Then � is a �-homomorphism.
Let us first show that h0C� � �ChkC�.c/D 1, and then that (i)–(vi) hold. For t 2 Œ0; 1�, let i be such

that t 2 Œi=k; .i C 1/=k�. Then, by (4-2), we have, for all i ,

hi .t/D a0.kt � i/; hiC1.t/D a1.kt � i/; hj .t/D 0

for j ¤ i; i C 1. Thus

.h0C � � �ChkC�.c//.t/
(4-4)
D a0.kt � i/C a1.kt � i/C .c/.kt � i/

(4-1)
D 1:

Properties (i) and (ii) hold by Lemma 4.6(i) and (ii), and since, for each t 2 Œ0; 1�, there exists s such
that ej .t/D e0j .s/ for j D 0; 1

2
; 1 (by (4-3)). Property (iii) holds since ei .i/D e0i .i/ (by (4-3)) and since

ai .i/D 1.

(iv): e1=2 is supported on Œ0; 1=k�, so it suffices to show that

.�.c/e1=2/.t/D e1=2.t/

for t 2 Œ0; 1=k�. But, for such t ,

.�.c/e1=2/.t/
(4-3)

(4-4)
D  .c/.kt/e01=2.kt/

Lemma 4.6(iii)
D e01=2.kt/

(4-3)
D e1=2.t/:

(v): By a similar computation, this time using Lemma 4.6(iv), we see that e0a0 D a0, while e1ai D ai
for i D 1; : : : ; k.

(vi) is clear from (4-2), (4-3), (4-4), and Lemma 4.6(v).
Finally, also, for each i , the support of hi is contained in

h
i�1

k
;
iC1

k

i
, which has diameter at most �.

Step 2. From Step 1, let
g0; : : : ; gk0 2 C.Œ0; 1�; A/1

be orthogonal positive contractions,

 W C0.Y;O2/! C.Œ0; 1�; A/1

a �-homomorphism for some locally compact, metrizable, finite dimensional space Y , and d 2Cc.Y;C�1O2/

a positive contraction such that  .d/ commutes with g0; : : : ; gk0 ,

g0C � � �Cgk0 C .d/D 1
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and the support of gi has diameter at most � for i D 0; : : : ; k0; furthermore, let

e00; e
0
1=2; e

0
1 2 C.Œ0; 1�; A/1

be such that

(i0) e00; e
0
1 are orthogonal,

(ii0) e00C e
0
1=2
C e01 D 1,

(iii0) e0j is identically 1 on fj g � Œ0; 1�m�1, for j D 0; 1,

(iv0)  .d/ acts like a unit on e0
1=2

,

(v0) e00C e
0
1 acts like a unit on gi for all i D 0; : : : ; k0, and

(vi0) e00; e
0
1=2
; e01; g0; : : : ; gk0 ;  .d/ all commute.

For i D .i1; : : : ; im/ 2 f0; : : : ; k0gm, set

hi WD gi1 ˝ � � �˝gim 2 .C.Œ0; 1�; A/
˝m/1;

where we have used the canonical inclusion

.C.Œ0; 1�; A/1/
˝m
! .C.Œ0; 1�; A/˝m/1I

compare Proposition 4.5.
Then fhig is a set of pairwise orthogonal positive contractions, and each one has support with diameter

at most � (recall that we are using the `1 metric on Œ0; 1�m). Proposition 4.5 gives us a �-homomorphism

�0 WD . �/˝m W C WD .C0.Y;O2/
�/˝m! .C.Œ0; 1�;Mn1/

˝m/1:

Set
c WD 1� .1� d/˝m 2 C:

We can easily see that �0.c/ commutes with each hi ; a simple computation shows thatX
i

hi C�
0.c/D 1:

Setting
ei WD e

0
i ˝ 1

˝.m�1/ for i D 0; 1
2
; 1;

it is easy to see that (i), (ii), (iii), (v), and (vi) hold (with �0 in place of �). To see that (iv) holds, we
compute

�0.c/e1=2 D .1� .1� .d//˝m/.e01=2˝ 1
˝.m�1//

D �0.c/� .e01=2� .d/e
0
1=2/˝ .1� .d//

˝.m�1/

(iv0)
D �0.c/:

We may set
k WD .k0C 1/m� 1

and relabel the hi as h0; : : : ; hk .
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All that remains is to modify �0 to make it a map whose domain is C0.Z;O2/ for some Z. Set

Z0 WD .Y qf1g/�m:

Then C may be identified with a certain C.Z0/-subalgebra of C.Z0;O˝m2 /. All of the fibres of C are
isomorphic to O2 except for the fibre at .1; : : : ;1/, which is C. One can easily verify that the element
c is in C0.U;C � 1O˝m2

/ where U is some open subset of Z0 whose closure does not contain .1; : : : ;1/.
Let Z be an open subset of Z0 such that U � Z and whose closure does not contain .1; : : : ;1/;

in particular, Z is a compact subset of Z0nf.1; : : : ;1/g. By Proposition 3.3, C0.Z/C Š C0.Z;O2/
as C0.Z/-algebras. With this identification, we have c 2 Cc.Z;C � 1O2/ (since c is in the image of the
structure map, which is fixed by the isomorphism C0.Z/C Š C0.Z;O2/), and we may define

� WD �0jC0.Z/C W C0.Z;O2/! C.X;A/1:

Step 3. Let p0; p1 be coprime natural numbers. Since Zp10 ;p
1
1

(as defined in [Rørdam and Winter
2010, Section 2]) embeds unitally into Z [Rørdam 2004, Proposition 2.2], it suffices to do this part with
Zp10 ;p

1
1

in place of Z.
From Step 2, for i D 0; 1, we may find

h
.i/
0 ; : : : ; h

.i/

k
2 C.X;Mp1

i
/1;

a �-homomorphism
�i W C0.Zi ;O2/! C.X;Mp1

i
/1

for some locally compact, metrizable, finite dimensional space Zi , and a positive element

ci 2 Cc.Zi ;C � 1O2/

such that �i commutes with h.i/0 ; : : : ; h
.i/

k
,

h
.i/
0 C � � �Ch

.i/

k
C�i .ci /D 1;

and the support of h.i/j has diameter at most � for j D 1; : : : ; k. We may also find e.i/
l

for l D 0; 1
2
; 1

satisfying (i)–(vi).
From Lemma 4.6, let

a0; a1; e
0
0; e
0
1=2; e

0
1 2 C

��
1
3
; 2
3

�
; A
�
1

be positive orthogonal contractions, let

 W C0.Y;O2/! C0
��
1
3
; 2
3

�
;M.p0p1/1

�
1

be a �-homomorphism for some locally compact, metrizable, finite dimensional space Y , and let

d 2 Cc.Z;C � 1O2/

be positive such that  .d/ commutes with a0; a1,

a0C a1C .d/D 1;
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a0
�
1
3

�
D a1

�
2
3

�
D 1, and such that (i)–(v) of Lemma 4.6 hold. We continuously extend a0, a1, e00, e0

1=2
,

e01 to Œ0; 1� by allowing them to be constant on
�
0; 1
3

�
and on

�
2
3
; 1
�
.

Upon choosing an isomorphism

M.p0p1/1 ˝Mp10 ˝Mp
1
1
ŠMp10 ˝Mp

1
1

and using the diagonal restriction C.X;Mp10 /1˝C.X;Mp11 /1! C.X;Mp10 ˝Mp
1
1
/1, we obtain

a �-homomorphism

� W C.Œ0;1�;M.p0p1/1/1˝C.X;Mp10 /1˝C.X;Mp
1
1
/1! C.Œ0;1��X;M.p0p1/1˝Mp10 ˝Mp

1
1
/1

Š C.Œ0;1��X;Mp10 ˝Mp
1
1
/1;

and define

Oh0;j WD �
�
a0˝ h

.0/
j ˝ 1C.X;Mp1

1
/1

�
and Oh1;j WD �

�
a1˝ 1C.X;Mp1

0
/1 ˝ h

.1/
j

�
for j D 1; : : : ; k. Note that ai has a lift

.ai;k/
1
kD1
2
Q

N C.Œ0; 1�;M.p0p1/1/

such that ai;k.t/ 2 C � 1 for t D 0; 1, and, consequently,

Ohi;j 2 C.X;Zp10 ;p
1
1
/1:

Define a �-homomorphism

� W C.Œ0; 1�/˝C0.Y;O2/
�
˝C0.Z0;O2/

�
˝C0.Z1;O2/

�
! C.Œ0; 1��X;Mp10 ˝Mp

1
1
/1

by

� WD � ı
�
idC.Œ0;1�/˝ . 

�/˝ .��0 /˝ .�
�
1 /
�
:

Let

Y 0 WD fy 2 Y W d.y/ > 0g and Z0i WD fz 2Zi W ci .z/¤ 0g;

and, using these, set

C WD C�
�
C0Œ0; 1/˝ 1C0.Y;O2/� ˝C0.Z

0
0;O2/˝ 1C0.Z1;O2/� ;

C0.0; 1�˝ 1C0.Y;O2/� ˝ 1C0.Z0;O2/� ˝C0.Z
0
1;O2/;

1C.Œ0;1�/˝C0.Y
0;O2/˝ 1C0.Z0;O2/� ˝ 1C0.Z1;O2/�

�
:

Using Proposition 3.3 as in Step 2, C is a subalgebra of some C0.Z/-algebra

D � C Œ0; 1�˝C0.Y;O2/
�
˝C0.Z0;O2/˝C0.Z1;O2/

for some open subset Z of

Œ0; 1�� .Y 0[f1g/� .Z00[1/� .Z
0
1[1/;
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and D is isomorphic, as a C0.Z/-algebra, to C0.Z;O2/, via an isomorphism taking C into Cc.Z;O2/.
One easily sees that �.C /� C.X;Zp0;p1/.

Let f0 2 C0Œ0; 1/C be identically 1 on
�
0; 2
3

�
, and let f1 2 C0.0; 1�C be identically 1 on

�
1
3
; 1
�
. Set

Oc WD f0˝ 1˝ c0˝ 1Cf1˝ 1˝ 1˝ c1C 1˝ d ˝ 1˝ 1 2 C:

Identifying D with C0.Z;O2/, we see that Oc 2 Cc.Z;C � 1O2/. It is straightforward to check that �. Oc/
commutes with Ohi;j for all i; j , and we may easily compute

�. Oc/C
X
i;j

Ohi;j � 1:

Let g 2 C0.0;1� be the function g.t/Dmaxft; 1g and set

c WD g. Oc/:

Then, by commutativity, it follows that

�.c/C
X
i;j

Ohi;j � 1: (4-5)

Let g0; g1=2; g1 2 C.X/C be a partition of unity such that gj is identically 1 on fj g � Œ0; 1�m�1 for
j D 0; 1, g0 is supported on

�
0; 1
3

�
� Œ0; 1�m�1, and g1 is supported on

�
2
3
; 1
�
� Œ0; 1�m�1. Let us define

ej WD �.e
0
0˝ e

.0/
j ˝ 1C e

0
1˝ 1˝ e

.1/
j /Cgj�.e

0
1=2˝ 1˝ 1/ (4-6)

for j D 0; 1
2
; 1. It is clear by their definitions that e0, e1=2, e1, Oh0, : : : , Ohk , �.c/ all commute.

Let us now check that .e0C e1/ Ohi;j D Ohi;j . Certainly

.e0Ce1/ Oh0;j

(4-6)
D

�
�.e00˝.e

.0/
0 Ce

.0/
1 /˝1Ce01˝1˝.e

.1/
0 ˝e

.1/
1 //C.g0Cg1/�.e

0
1=2˝1˝1/

�
�.a0˝h

.0/
j ˝1/

Lemma

4.6(ii,iv)
D �.a0˝..e

.0/
0 Ce

.0/
1 /h

.0/
j /˝1/

Step 2(v)
D �.a0˝h

.0/
j ˝1/ D

Oh0;j ;

and likewise, .e0C e1/ Oh1;j D Oh1;j as required.
Since all terms in (4-5) commute, it is easy to see that for any � > 0, there exist orthogonal elements
Qhi;j � Ohi;j which commute with e0; e1=2; e1 and �.c/, such that

�.c/C
X
i;j

Qhi;j D� 1:

Then, by a diagonal sequence argument, it follows that there exist orthogonal elements hi;j with supports
contained in those of Ohi;j , commuting with e0; e1=2; e1 and �.c/, and such that

�.c/C
X
i;j

hi;j D 1 and .e0C e1/hi;j D hi;j :
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Hence (v) holds.
Now let us verify (i)–(iv).

(i) holds using the following orthogonalities:

e
.i/
0 ? e

.i/
1 ; i D 0; 1;

g0 ? g1;

e00 ? e
0
1;

�.1˝ e
.0/
j ˝ 1/? g1�j ; j D 0; 1;

�.1˝ 1˝ e
.1/
j /? g1�j ; j D 0; 1:

(ii): We compute

�0C e1=2C e1
(4-6)
D �

�
e00˝ .e

.0/
0 C e

.0/

1=2
C e

.0/
1 /˝ 1C e01˝ 1˝ .e

.1/
0 C e

.1/

1=2
C e

.1/
1 /

�
C .g0Cg1=2Cg1/�.e

0
1=2˝ 1˝ 1/

Step 2(ii)
D �..e00C e

0
1C/˝ 1˝ 1/

Lemma

4.6(ii)
D 1:

(iii): For x 2 fj g � Œ0; 1�m�1,

ej .x/
Step 2(iii)
D e00C e

0
1Cgj .x/e

0
1=2

Lemma

4.6(ii)
D 1:

(iv) follows from the fact that �. Oc/e1=2 D e1=2�. Oc/� e1=2, by considering irreducible representations of
C�.�. Oc/; e1=2/. �

Proof of Theorem 4.1. By Proposition 2.4(i) and [Kirchberg and Winter 2004, Proposition 3.8], it suffices
to verify the theorem for C�-algebras A of the form C.X;K/, where X is compact and Hausdorff. By
[ibid., (3.5)], it suffices to prove it for AD C.X/. Again by Proposition 2.4(i), it suffices to assume that
C.X/ is finitely generated. Finally, when C.X/ is finitely generated, it is a quotient of C.Œ0; 1�m/ for
some m, and so, by [ibid., (3.3)], the result reduces to showing that drC.X;Z/� 2 for X D Œ0; 1�m. By
Proposition 2.6, we must show that the first factor embedding C.X;Z/!C.X;Z/˝Z has decomposition
rank at most 2.

We will do this in two steps. In Step 1, we will use Lemma 4.7 to show that the first factor embedding
�0 WC.X/!C.X/˝Z has decomposition rank at most 2. In Step 2, we will use Step 1, with X replaced
by X � Œ0; 1�, to prove the theorem.

Step 1. Due to Proposition 2.5, it suffices to replace �0 by its composition with the inclusion C.X/˝Z�

.C.X/˝Z/1, that is, �0 is now

C.X/Š C.X/˝ 1Z � C.X/˝Z� .C.X/˝Z/1:

To show that dr �0 � 2, we verify condition (iv) of Proposition 3.2. Let U be an open cover of X and let
� > 0. By the Lebesgue covering lemma, we may possibly reduce � so that U is refined by the set of all
open sets of diameter at most �. Then, it suffices to assume that U is in fact the set of all open sets of
diameter at most �.
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Let h0; : : : ; hk , �, c be as in Lemma 4.7. By Theorem 4.2 and condition (iv) of Proposition 3.2, we
may find

b
.i/
j 2 C0.X �Z;O2/Š C.X/˝C0.Z/˝O2

for i D 0; 1; j D 0; : : : ; r such that

(i) for each i D 0; 1, the elements b.i/0 ; : : : ; b
.i/
r are pairwise orthogonal,

(ii) for each i; j , the support of b.i/j is contained in U �Z for some U 2U, and

(iii)


P
i;j

b
.i/
j � 1C.X/˝ c



< � (note that c 2 C0.Z/˝ 1O2).

Define
O� W C0.X �Z;O2/Š C.X/˝C0.Z;O2/! C.X;Z/1

by O�.f ˝ a/D f �.a/. This is a �-homomorphism. For i D 0; 1 and j D 0; : : : ; r , set

a
.i/
j WD

O�.b
.i/
j /;

and, for j D 0; 1 : : : ; k, set
a
.2/
j WD hj :

Since O� is a homomorphism, a.i/0 ; : : : ; a
.i/
r are pairwise orthogonal for i D 0; 1. Also, by the definition

of O� and the choice of b.i/j , the support of each a.i/j is contained in some set in U, for i D 0; 1. Since the
supports of the hj have diameter at most �, the respective statement holds for the a.2/j as well. Finally,

X
i;j

a
.i/
j D

O�

� X
iD0;1

kX
jD0

b
.i/
j

�
C

kX
jD0

hj D� O�.1˝ c/C

kX
jD0

hj D �.c/C

kX
jD0

hj D 1;

as required.

Step 2. Since Z is an inductive limit of algebras of the form Zp;q (for p; q 2N), by Proposition 2.4(i), it
suffices to show that the decomposition rank of the first factor embedding

� WD idC.X;Zp;q/˝ 1Z W C.X;Zp;q/! C.X;Zp;q/˝Z (4-7)

is at most 2. The proof will combine Step 1 with the idea of Proposition 3.2(iv)) (iii).
For t 2 Œ0; 1�, we let evt W Zp;q!Mp˝Mq denote the point-evaluation at t , while we also let

ev0 W Zp;q!Mp and ev1 W Zp;q!Mq

denote the irreducible representations which satisfy

ev0. � /D ev0. � /˝ 1Mq and ev1. � /D 1Mp ˝ ev1. � /:

Let F� C.X;Zp;q/ be the finite set to approximate, and let � > 0 be the tolerance. Let us assume that
F consists of contractions. Let U be an open cover of X � Œ0; 1�, such that, for all f 2 F and U 2U, if
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.x; t/; .x0; t 0/ 2 U , then

kevt .f .x//� evt 0.f .x0//k< �=2:

Let us also assume that no U 2U intersects both X � f0g and X � f1g.
Using Step 1 (with X � Œ0; 1� in place of X) and Proposition 3.2(iv), we may find a 3-colourable

�=2-approximate partition of unity

.a
.i/
j /iD0;1;2IjD0;:::;r � C.X � Œ0; 1�/˝Z

subordinate to U, and such that P
a
.i/
j � 1:

Upon replacing U by a subcover, we may clearly assume that U is of the form .U
.i/
j /iD0;1;2IjD0;:::;r ,

with the support of each a.i/j being contained in U .i/j .
For each i; j , we shall choose a matrix algebra F .i/j and produce maps

C.X;Zp;q/
 
.i/

j

�! F
.i/
j

�
.i/

j

�! C.X;Zp;q/˝Z:

We distinguish three cases, depending on properties of the set U .i/j 2U. In every case, we arrange that

�
.i/
j  

.i/
j .f /D a

.i/
j ˝ ev

t
.i/

j

.f .x
.i/
j //;

where .x.i/j ; t
.i/
j / is a point from U

.i/
j , and we make sense of the right-hand side by using the canonical

identification of C.X;Zp;q/˝Z with a subalgebra of

C.X � Œ0; 1�/˝Z˝Mp˝Mq

(determined by boundary conditions at X � f0g and at X � f1g).

Case 1. If U .i/j \ .X � f0g/¤¿, let .x.i/j ; t .i/j D 0/ be a point in this intersection. We set F .i/j WDMp
and define

 .i/j .f / WD ev0.f .x.i/j //;

�.i/j .T / WD a.i/j ˝T ˝ 1Mq :

By assumption, U .i/j \ .X � f1g/D¿, so, for all x 2X ,

ev1.�.i/j .T /.x//D 0;

and therefore, the range of �.i/j lies in C.X;Zp;q/˝Z.

Case 2. If U .i/j \ .X � f1g/¤¿, as in Case 1, let .x.i/j ; t .i/j D 1/ be a point in this intersection. We set
F .i/j WDMq and define

 .i/j .f / WD ev1.f .x.i/j // and �.i/j .T / WD a.i/j ˝ 1Mp ˝T:
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Case 3. If U .i/j \ .X � f0g/D¿ and U .i/j \ .X � f1g/D¿, then let .x.i/j ; t .i/j / be any point in U .i/j . We
set F .i/j WDMp˝Mq and define

 .i/j .f / WD evt.i/j .f .x
.i/
j // and �.i/j .T / WD a.i/j ˝T:

We now set F WD
L
i;j

F .i/j and use . .i/j / and .�.i/j / to define

C.X;Zp;q/
 
�! F

�
�! C.X;Zp;q/˝Z:

We have that  is c.p.c. since all of its components are. Each �.i/j is c.p. and order zero. For each i , j1,
j2, if j1 ¤ j2, the images of �.i/j1 and �.i/j2 are orthogonal. Thus, for each i ,

�jL
j F

.i/
j

is order zero. Also, �.1/D
P
a.i/j � 1, so that � is contractive.

Finally, let f 2F and let us check that � .f /D� f . As in the proof of Proposition 3.2(iv)) (iii),
we have for each i; j that if x 2 U .i/j , then

evt.i/j .f .x
.i/
j //D�=2 evt .f .x//;

and therefore,

evt .f .x//�
�

2
� 1Mp˝Mq � evt.i/j .f .x

.i/
j //� evt .f .x//C

�

2
� 1Mp˝Mq :

Since a.i/j commutes with f , this gives

a
.i/
j .x; t/

�
evt .f .x//�

�

2
� 1Mp˝Mq

�
� a

.i/
j .x; t/ev

t
.i/

j

.f .x
.i/
j //

� a
.i/
j .x; t/

�
evt .f .x//C

�

2
� 1Mp˝Mq

�
:

Moreover, since a.i/j vanishes outside of U .i/j , these inequalities continue to hold for all x 2X and all
t 2 Œ0; 1�.

Summing over i; j , we find thatX
i;j

a
.i/
j .x; t/

�
evt .f .x//�

�

2
� 1Mp˝Mq

�
�

X
i;j

a
.i/
j .x; t/ev

t
.i/

j

.f .x
.i/
j //

�

X
i;j

a
.i/
j .x; t/

�
evt .f .x//C

�

2
� 1Mp˝Mq

�
;

and therefore

evt .f .x//D�=2
X
i;j

a
.i/
j .x; t/evt .f .x//D�=2

X
i;j

a
.i/
j .x; t/ev

t
.i/

j

.f .x
.i/
j //D evt .� .f /.x//:

Since this holds for all x 2X; t 2 Œ0; 1�, this means that kf �� .f /k< �, as required. �
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Remark 4.9. Here we describe how one can give a shorter proof that A˝Z has decomposition rank at
most 5, for A as in Theorem 4.1. Since A˝Z is an inductive limit of A˝Zp1;q1 , it suffices to show
that the latter has decomposition rank at most 5. This algebra is a C.Œ0; 1�/-algebra whose fibres are all
of the form A˝U , where U is a self-absorbing UHF algebra. Hence, by [Carrión 2011, Lemma 3.1],
A˝Zp1;q1 has decomposition rank at most 5D .dimŒ0; 1�C 1/.2C 1/� 1 if we show that A˝U has
decomposition rank at most 2 for every infinite dimensional, self-absorbing UHF algebra.

As in the first paragraph of the proof above, it suffices to show that the first-factor embedding
C.X;U /! C.X;U /˝U has decomposition rank at most 2, when X D Œ0; 1�m. Since U is a limit of
finite dimensional C�-algebras, by Proposition 2.4(i), the decomposition rank of this first-factor embedding
agrees with the decomposition rank of the first-factor embedding �0 WC.X/!C.X/˝U . Then following
Step 1 of the above proof verbatim, except with U in place of Z, shows that this �0 has decomposition
rank at most 2; moreover, we only need to use the variation of Lemma 4.7 where Z is replaced by U ,
and, as explained in Remark 4.8, the proof of that lemma can be simplified in that case.

5. Z-stable C.X/-algebras

The proof of [Carrión 2011, Lemma 3.1] actually shows the following.

Lemma 5.1. LetX be a compact metric space, letA be a C.X/-algebra, and letB be a unital C�-algebra.
Denote by �C.X/ W C.X/! C.X/˝B and �A W A! A˝B the first-factor embeddings. Then

dr �A � .dr �C.X/C 1/
�
max
x2X

drA.x/C 1
�
� 1 (5-1)

and
dimnuc �A � .dimnuc �C.X/C 1/

�
max
x2X

dimnucA.x/C 1
�
� 1: (5-2)

Proof. Although this is essentially the same as the proof of [Carrión 2011, Lemma 3.1], we provide a
detailed proof of (5-1) for the reader’s convenience.

Set k WD maxx2X drA.x/ and l WD dr �C.X/. Let F � A be a finite subset and let � > 0. Without
loss of generality, F consists of self-adjoint contractions. As shown in the proof of [Carrión 2011,
Lemma 3.1], there exists an open cover U of X such that, for each U 2U, there exists a finite dimensional
C�-algebra FU and c.p.c. maps  U W A! FU , �U W FU ! A such that �U is .kC 1/-colourable and
�U U .a/.x/D�=2 a.x/ for all a 2 F and all x 2 U . By Proposition 3.2(iv), let .b.i/j /jD1;:::;rI iD0;:::;l �

C.X/˝B be an .lC1/-colourable, �=2-approximate partition of 1, subordinate to U, and, by a rescaling
argument, we may assume b.i/j � 1 for each i; j . Hence, for each i; j , we may pick some U .i/j 2 U

containing the support of b.i/j . Define

 WD
M
i;j

 
U
.i/

j

W A!
M
i;j

F
U
.i/

j

and � W
L
i;j

F
U
.i/

j

! A˝B by

�..a
.i/
j // WD

X
i;j

�
U
.i/

j

.a
.i/
j /˝ b

.i/
j :
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One readily verifies that � is .kC 1/.l C 1/-colourable, and, as in the proof of Proposition 3.2(iv))
(iii), that � .a/D� a˝ 1B for all a 2 F. �

Corollary 5.2. If A is a Z-stable C.X/-algebra whose fibres have decomposition rank (respectively
nuclear dimension) bounded by M , the decomposition rank (respectively nuclear dimension) of A is at
most 3.M C 1/� 1.

Proof. We shall apply Lemma 5.1 with Z in place of B . Using the notation of Lemma 5.1, Theorem 4.1
tells us that dimnuc �C.X/ � dr �C.X/ � 2. Thus, if the fibres of A have decomposition rank at most M ,
then, by Lemma 5.1, dr �A � .2C 1/.M C 1/� 1. �

This shows in particular that the C.X/-algebra in [Hirshberg et al. 2007, Example 4.7] (which is
Z-stable by [Dadarlat and Toms 2009]) has decomposition rank at most 2, and that the C.X/-algebra
E in [Dadarlat 2009b, Section 3] (which is Z-stable since it is an extension of patently Z-stable C�-
algebras) has nuclear dimension at most 5. On the other hand, the C.X/-algebra in [Hirshberg et al. 2007,
Example 4.8] is not Z-stable, and it is shown in [Robert and Tikuisis 2013, Section 7.4] that it does not
have finite nuclear dimension.

Another immediate application is the following strengthening of Theorem 4.1. See [Dadarlat and
Pennig 2013] for a discussion of C.X/-algebras with fibres D˝K, where D is either Z or an infinite
dimensional UHF algebra.

Corollary 5.3. If A is a Z-stable C.X/-algebra whose fibres are all AF algebras tensored by Z, then
drA� 2.

Proof. It suffices to show that B WD A˝Zp1;q1 has decomposition rank at most 2. Note that B is a
Z-stable C.X�Œ0; 1�/-algebra with AF fibres. Therefore, by Corollary 5.2, drB is at most 3.0C1/�1D2,
as required. �
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