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SCATTERING FOR A MASSLESS CRITICAL NONLINEAR WAVE EQUATION
IN TWO SPACE DIMENSIONS

MARTIN SACK

We prove scattering for a massless wave equation which is critical in two space dimensions. Our method
combines conformal inversion with decay estimates from Struwe’s previous work on global existence of a
similar equation.

1. Introduction
We study the asymptotic behavior of solutions to the nonlinear wave equation
upr — A+ u@E—1-u?)=0 onRxR2 1)
with compactly supported initial data
(u,ur)lr=0 = (1o, u1) € C°(R?) x C°(R?). 2)
Their initial energy is given by

Eo= 4 [ +1%u0f + 11— ) g

Interest in this equation arises because it lies at the boundary of what one considers an energy-critical
equation. For the defocusing nonlinear wave equation with power nonlinearity in dimension d > 3,

ugg —Au+ [uP2u=0 onRxR?,

this border is marked by the Sobolev-critical power p* = 2d/(d — 2). In the subcritical case p < p* as
well as in the critical case p = p* well-posedness in the energy space is known to hold. However, little
is known for the supercritical case p > p*. In two space dimensions the embedding H!(R?) C L?(R?)
for p < oo renders every power nonlinearity subcritical. However, H ! (R?) & L>°(R?). Instead, we have
the Trudinger—Moser inequality

<Cl|Q| ifa<4
sup /e““zdx {_ 1<2] %a_ i 4
ueH, () Q =00 if o > 4,
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for a smooth bounded domain  C R2. Since

2 2
sup / e dx = sup / e dx,
ueH(Q) Q ueH (Q) Q
Vull32@2,=1 IVull?2@2)=a
it seems that well-posedness, for instance of the initial value problem for the equation

u,t—Au+ue”2:0 on R x R?, 5)

may depend on the size of the initial energy
E.=1 / (u? 4 |Vuol® + oo 1)dx,
2 R2

(or, in the case of (1), on the size of Ey).

For small data, global well-posedness for (5) was shown in [Nakamura and Ozawa 1999]. Ibrahim,
Majdoub, and Masmoudi [Ibrahim et al. 2006] proved global existence for data with energy E < 2,
which they define to be (sub)critical. Due to the dispersive nature of (5), they also expected u to decay in
time and to scatter towards a solution of the linear Klein—Gordon equation

utt—Au+u=O. (6)

Indeed, together with Nakanishi [Ibrahim et al. 2009], they established scattering for the modified equation

u,t—Au—I—u(e"z—uz):O on R x R?, @)
as long as
E| = %/ (u% + |Vuo|? +e”%— 1— %ug) dx <2m,
R2

leaving open the corresponding questions in the supercritical regime when E > 2w or E1 > 2m. Note
that we reserve the notation E for the context of (5), while Ey and E; refer to equations (1) and (7),
respectively.

Surprisingly, Struwe [2013] was able to establish global existence for (5) for arbitrary smooth initial
data using only energy estimates.

Here we show that for scattering, too, there is no restriction on the energy, at least when we consider
the massless wave equation (1) for radially symmetric initial data. As a consequence of the next result,
we consider (1), (5), and (7) to be critical problems only, regardless of the size of the initial energy.

Theorem 1.1. For any solution u to the Cauchy problem (1), (2) with smooth compactly supported radial
data (uo,u1), uo(x) = uo(|x]), u1(x) = u(|x|), there exists (vy,v1) € H'(R2) x L2(R2) such that

||(u(t)—v(t),8;u(t)—8,v(t))||H1(R2)XL2(R2) —0 ast— oo, (8)
where v is the solution to the linear wave equation
Ut — Av =0 (9)

with Cauchy data (v, v¢)|s=0 = (vo, v1).
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We assume smooth data. We remark, however, that to our knowledge Struwe’s result has not been
extended to data in energy space.
To prepare for the proof of Theorem 1.1, we rewrite (1) abstractly as
Uyr —Au+ N =0, (10)
with the nonlinearity

N(u) := (e”z— 1—u?)u.

The solution to (10) is given by the Duhamel formula

t
u(t) = 0 R(t) xug + R(t) *uy +/ R(t —s)* N(u(s))ds an
0
with R the fundamental solution to (9). In Fourier space it reads
sin(|&]¢)
FRE ="

From the Duhamel formula (11), we read off how the initial data are propagated. We define

v = 9;—1(&0_/0“) %ﬁm ds), vy = @—1(5“ +/Ooo cos(|£]s) N (s) ds)

as initial data for the linear wave equation, which we understand in the trace sense by energy control
(compare [Lions and Magenes 1970]). We call v the solution to the corresponding Cauchy problem.
Using the Duhamel formula (11), one calculates

% sin(€](r =) &
(6 = 00l 71 g2y = “/ IEC=) §5yas) (12)
t €] HI®2)
and a corresponding expression for the time derivative. To prove scattering, we need to establish
convergence of the integrals defining the initial data (vg, v;) in the norm H! x L2. In the following

lemma we reduce this problem to a bound on the nonlinearity N.

Lemma 1.2. If

N2 (10,00);22®2)) < 00,

the integrals

i) 5 [P
/o £] N(s)ds, /o cos(|€|s)N (s) ds

converge in H' x L2

The lemma follows from the equivalences

loall g = 181 ] o0 Nvlle = 1192

Thus, once N € L} L2 is established, the assertion of Theorem 1.1 follows from (12).
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In the case of the nonlinear Klein—Gordon equation, we find similar representation formule and
analogous results with the fundamental solution replaced by

sin(<€>1)
EY

where <€) = /1 + |£|2. Then scattering takes place in the norm H! x L2.
This discussion highlights the significance of leaving out the cubic term in (1). Informally, to ensure

F(R())(E) =

’

that N(u) = u(e“z— 1) lies in L! L2 we need to control |ju ||L?L§JC. However, L3 LS is not an admissible
Strichartz norm in two space dimensions. In this respect, we agree with [Ibrahim et al. 2009]. In the
course of our argument we will encounter further reasons that justify omission of the cubic term.

Moreover, for large data we restrict our result to the massless equation (1). The reason is that the
method of conformal inversion that we employ in Section 3 to control the nonlinearity in this case only
seems to work for the massless equation. It is not clear whether a similar control can also be achieved
when working in the original coordinates. However, even then, the contribution to the energy from the
mass term might spoil the validity of an estimate like Lemma 3.1.

Our work is organized as follows. In Section 2 we derive estimates for the nonlinear term. As a
by-product we obtain a scattering result for the massive equation (7) for small data, where we only use
standard L? L% Strichartz estimates, instead of the more elaborate estimates for Besov spaces used in
[Nakamura and Ozawa 1999; Ibrahim et al. 2009].

In Section 3 we prove Theorem 1.1 for large radially symmetric data. In a first step, by applying the
method of conformal inversion as in [Grillakis 1990] and adapting the decay estimates from [Struwe
2013], we find a hyperboloid contained inside the support of the solution u such that || N ||, 172 is bounded
inside the hyperboloid. For this part of the argument, we need not assume the initial data to be radial.
In the final step, we use the radial symmetry of the data to bound || N ||, 172 in the complement of the
hyperboloid.

2. Scattering for small data

For small data, scattering for (7) was first shown in [Nakamura and Ozawa 1999]. In [Ibrahim et al.
2009], the authors extend the result to include initial data with energy £ < 27. Both these works rely
on Besov space techniques. In this section, we show scattering for small data via a more direct approach.
We assume ug,u; € C° ([R{Z) with E1 bounded by an absolute constant g¢ to be determined later.

The modulus of the nonlinearity |N | = (e”z— u? — 1)|u| behaves like |u|* for small values of |u|. For
large values of |u| the exponential dominates. More precisely, we have the pointwise estimate
X yk W[40/ — 1) if [u| > 1,

N| = —u?—u| = |u]? < [ulPe~1) <
NI =( )ul "g(k+1)z—"( )= e 0 < ul < 1.

(13)

By Holder’s inequality,

40/9  u? 40/9 u?
[[u™" (e —1)IIL;L§SIIMIIL?O/gL%OIIe — oo 1875
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To control the norm of the exponential term we roughly estimate

1

vz

18.,,2 2
<es3¥ 1 <t

("= 1)
Then we can use a version of the Trudinger—Moser inequality [Ruf 2005]:
sup / (64””2— 1)dx < Crm (14)
el 2 +1Vull 2 <1 /$2

with a constant Cry independent of the region Q C R?. Because of the finite speed of propagation, the
support of u stays bounded locally uniformly in time. Since the energy is nonincreasing in time, if g9 < 3,
the condition ||u| ;2 + || Vu||;2 <1 is satisfied for all times. Therefore we may combine (14) with (13)
to obtain

40/9

Lo ooy el

5
”N”L}([O’T);L%(R2)) = CTM””” L?([O,T);L;O(Rz))' (15)

We have chosen the power % for convenience. However, we are not free in our choice, as we want to
estimate ¥ in L(,ZL; with Strichartz estimates. Wave admissibility [Keel and Tao 1998] demands that

1 1 1
— _ << =
q+2r_4’

so we need ¢ > 4. By Strichartz estimates (as in [Nakanishi and Schlag 2011, Corollary 2.41, Lemma 2.43]),
H(T) = ”u”L?O/Q([O,T);L,ZCO(Rz)) +ullLs o,y 10 @2y
< Cs(Ilo. vl @2yxr2@) + IN L1 o, 7:222)) (16)
with a constant Cg that does not depend on the initial data. Then, by (15) and (16), we have
F(T) = Cs (| @o, u) | 1 @2y L2 @2) + Crn (T + e f(T)°).

The function f(7) is continuous and nondecreasing with f(0) = 0. Therefore there exists a time Ty > 0
such that f(T) <1for0<T < Tp and

F(T) = Cs (1o uD) |1 @2yxr2 @2y + (e + Cm) £(T)*07°) (17)
for all times T € [0, Tp). Let A = min{1, Ao}, where Ag satisfies
Cs(e + Crm)(240)**° = 3 4.
Suppose [[(vo, u1)[| g1 @2)x22@2) < €0, Where
Cseo = SA.

Then relation (17) implies f(T) < A as long as f(T) <2A. Hence, by continuity, f(7p) < A. By the
definition of A and continuity again, Ty can be arbitrarily extended and the bound f(7") < A holds for all
times. By (15) we have

||N||L}([o,oo);L§(R2)) < CrmA*® 4 eA® < oo

Therefore u scatters for || (w0, u1)|l g1 (r2)xL2(R2) < €0, and in particular for £ < &.
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3. Scattering for large data

Conformal inversion. Suppose we are given initial data at time @ > 0. We assume they are compactly
supported inside a ball of radius a /2. Because of the finite speed of propagation, the solution is confined
within the forward light cone emanating from the origin at time a/2:

suppu(t,-) C B;_gq/2(0), t>a.
We perform a conformal inversion
D:(t,x,u)y—~ (T, X,U),

as in [Grillakis 1990]; that is, we define

r=_'_ x=_ py.=—q
.—tz_rz, .—t2—r2, = u

with the weight
1

A _ 72 2
Q.—tz_rz—T _Ry

where r = |x|, R = | X|. Conformal inversion leaves the structure of the d’ Alembert operator invariant
[Godin 1994, Lemma 4.2] and

(02 — Ax)U = Q73 (0> — Ap)u.

In fact, conformal inversion can be regarded as a Kelvin transform of Minkowski space (R!*2, ) with
metric 7y, = diag(+1, —1, —1). This can be seen by writing the transformation as

G:x* > x)t(x“x"nw)_1 = xM¢x, x>;1.
One then calculates the differential,

i‘ ( xX+ty ): Y 2x{x, )y
dtli=0\ <x, x>y +2t<x, >0 +12(y, y0n ) X, X0 (x,x)7

d
dGx(y)= 4| _ Glx+1y)=

so that {(dGyx)y, (dGx)y>y = {x,x) ;2 {y, >y and the differential is a conformal transformation with
respect to the metric 7.
In the new variables 7, X, (1) becomes

U — AU + Q72U —1-QU?) =0. (18)

Note that we changed the direction of time. The transformed function U has support inside the set

2
suppU =3(T,X): T+ R < — and > a and additionally R < T';.
a

T2 _ R2
For the following arguments we fix a. This is not a restriction. In fact, for any initial data with compact
support, we may shift the initial time such that the support of the initial data at the starting time is
contained inside our fixed cone. We choose a = 1. This leads to 2 <1 for T < 1.
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Energy-flux relation in conformal coordinates. For the remainder of the argument we closely follow
[Struwe 2013]. We multiply (18) with Ur. Then we obtain

ore—divm =TP (19)
with the scaled energy density

e:=L(U2+ VU + Q73" —1-Qu? - 1a2U?)).
the momentum density
m:=UrVU,

and the remainder

oA (o120 QU 1 orr2y AlQU 1 o2 L2y 8 N QU
P:=Q % (QU?*(e 1-QU?)—3(e 1-QU?—1Q*U%) =U®> ———(k+1)=0.
= (k+4)

The power series expansion of P shows that the right-hand side of (19) is positive. Therefore the scaled
energy is nonincreasing as we approach the origin. Note that removing the mass term is crucial at this
point. Without doing so, we are left with an additional term —2Q~2U? in P that spoils the definite sign
of the remainder. Furthermore, the same observation holds for the u3-term in the original equation.

For Tp < 1, we integrate (19) over the forward light cone {R < T'} where we truncate by the initial
data surface and the support of U, that is, we integrate over

K:={T,X)esuppU, To <T, |X|=R<T}.

Its boundary 0K has four components. The first one is the initial data surface. It contributes the energy
E, on the initial data surface. The second is the boundary of the support of U inside {R < T}. Its
contribution vanishes. The third boundary is the mantle of the light cone,

My :={(T.X):To<T <1, |X|=R=T}.
We write
V(Y):=U(Y|.Y)

for the restriction of U to the mantle. We call the quantity

[MT LIVVP + Q732 —1- Q2 12V4) ay
T

the flux of U through the mantle M77:12. The last boundary yields the energy in new coordinates:

E(Ty) ::/ edX.
BTo(O)

Putting everything together, we find

1 1
E(To) + i Flux(M},) = Eq — /K PT dX dT.
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In particular, we have the energy inequality

1
E(To) + —= Flux(M7,) < E,.

V2

Therefore the limit TlimoE (T, BT(0)) exists and the flux decays:
—

Flux(M):= sup Flux(MI)—0, T -o. (20)
0<S<T

Moreover, the remainder term P 7' is bounded by the initial energy

/ PTdXdT < E,. 21
K
Pointwise estimates for the average on the mantle. We derive pointwise estimates for the spherical
averages
— 1 [ .
V=V(T)=— / V(e'®T)de (22)
2 0

of V, the trace of U on MOT 9. By Holder’s inequality, for any 0 < T < T,

_ _ T _ _ T T S %
=+ | |V’(S)|dS§|V(T1)|+(/ wvesas. | ?)
T T T
172 T
= |V(Tl)| +7T_% Flux%(M;"‘)log% ?1

Flux decays towards the origin by (20). So there exists a time Tp < 1 such that, for smaller times
0<T <Ty, we have

Flux%(M;O) < Flux%(MOTO) < %.
With this explicit bound on the flux, we can fix a second time 77, 0 < T7 < Tp, such that 8|I_/(T0)| <
logl/z(l/T) for0 < T < Tj. By To <1 we have log(Ty/T) <log(1/T). Therefore,

11

41V(T)| < log? - forall0<7 <Ti. (23)

Decay of energy. We introduce polar coordinates R, ¢. The energy law (19) becomes

o7 (Re) — dp(Rm) = %%(UT Us) + RTP, (24)

where now
ei= LU+ UZ+ R2UZ + 23" —1-Qu? - 1Q2U?)).
m = UTUR.

We multiply (18) with X - VU. Then
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o (X -m) —div(X - VUVU = £ (IVUP - U2 + 973207~ 1 - QU2 - 1 @2U*))
+UZ—Q (e —1—QU? - 1Q2U*) = —R?P.
In polar coordinates,
dr(R*m) — Lar(R2(UZ + U3 — R72U2 — 73 (e%V°— 1 - QU2 - 1Q2U*)))
+ R(UZ—Q 732V —1-QU? - 1Q2U*)) = 3,(UrUs) — RPP.  (25)
Multiplying (18) with (U — V'), we obtain
— ) = 2 2 = -2 7, QU? 2
Ar(Ur (U =V))—=div(VU(U = V) + VU - UF + UrVr + Q2UU - V) (" = 1-QU?) =0.
Or, again in polar coordinates,
I7(RUT (U—V))—0r(RUR(U—V))+R(IVU|*~UF+Ur 177+Q_2U(U—I7)(eQU2—1—QU2))
1 _
= 2 0((U=V)Up). (26)

We rescale the energy identity (24) with R/ T. Then

9 R 9 R + R> + R 9 1U Us | + R*P (27)
—e | — —m —e+—m= — .
T R\7T 72° 7T P\T7THe

We divide both (25) and (26) by T'. Then

R? R?
aT(7m) —Log (7(U% +UR-R2UZ -3 (W —1-QUu? - %QZU“)))
R? R 2 -3(,QU? 2_ 102774 1 R
—i—ﬁm—l—T(UT—Q (¥ —1-QU —EQU))=3¢(7 RU¢)—7P. (28)

and

ar(gw(u - V)) ok (§UR<U - V))

R 2 2 Y/
+= |\VU|?-U7 +UrVr+Ur

_7\2
= 3T(§(UT(U —V)+ (U—V))) —BR(gUR(U— I_/))

+Q2UU - I_/)(eQUz— 1— QUZ))

T 2T
R _ Uu-v (U-V)? —
+T(|VU|2—U%+UTVT+VT - +( T2) +S2_2U(U—V)(eQU2—1—QU2))

Uu-V
= a¢( e U¢). (29)
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Adding (27) and (28) with one half of (29) yields

R? U-V (U-V)?
orl — 1
T(T(€+m+2UT R + TR ))

R? Uu-v
—BR(7(e—|—m—R_2U(§—Q_3(eQU2—1—QUZ—%QZU“)—I—UR ))

2R _
—|—;((l—l—;)(e—l—m)—kéUTI_/T—H_/TU;TV_I_(Uz—T;/)z)
=g (% (UR +Ur + Uz;v)uﬁ)
+§(%Q_3(eQUz—l—QUZ—%QZU“)—%Q_zU(U—I_/)(eQUz—l—QUZ))-i—RZ(1—?)P. (30)

Lemma 3.1. For any time T, with 0 < T> < T1, we have

R (U—-V)2\dXdT y 3
/;(Tz((lzl:T)(e:I:m)—i— 73 ) 7 =CU+ Ea + T Ep),

where K12 is the truncated light cone
K= {((T.X):T<Th |X|<T}.

Proof. Fix T, < T7. We integrate (30) over the truncated cone K T2 Then

I / 1+ R (e + )+(U_I7)2 dXdT _ vy
= — J(e+m
T e T 272 T - ’

where we label the terms I, II, IV, and V as in the proof of [Struwe 2013, Lemma 3.1]. As shown there,
by Poincaré’s inequality, we obtain

< E, IV<CFlux(M]?) <CE,.
The first two terms of our error term
—  _ U=V R
V= Ly V-V RT|[1-=|P
/KTZ(ZTT T2T+(T)

+3Q73( - 1— QU2 - 12U - LU - 7)Q 2 (e -1 - QUZ))

dX dT
T

are the same as in Struwe’s work and so, for any § > 0, we have

— _ U-V\dXdT T2 dX dT
‘/ (UTVT+VT ) ‘505[ [ VU |? +C8I4 +C8™ Flux(M?).
K2 T T 0 B7/2(0) T

By (21),

R
/ R(l——)PdXde/ TP dX dT < E,.
KT T KT
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For the remaining terms we add and subtract in the spherical averages as defined in (22):
3073V - 1-Qu2 - 12U%) — LU - 72 (e?V -~ 1 - QUu?)
- %Q_3(eQU2— 1-QU2 - 1Q2U* — (¥~ 1 - QV2 - 1Q274))
LU -7 (V-1 -QU?) + 3073 (2 - 1 - V2 - 1?74
= f(UV)+ 3732V —1-QV2 - 1Q?74),
We can compensate for the second term with the pointwise bound from (23):
173 - 1-ei2 - 12V =2 Z i 3V2k

le

| /\

i Vz) 3V6 QV?2
— (k +
<C log® 1)1
% g 77
where we used 2 < 1. Then

T
3 l)ldXdT< 3(l) -
/KTzlog (T T <C A log T dT < C < 0.
In the following, we analyze the nonlinear function f as above by comparing U(T, X) with V(T
pointwise in X for a fixed time slice. Recalling that

Qk =3(772k _ 2k Qk —2772k
.7 = ZZ U= vw - V>Z =

we observe that f(—U,—V) = f(U, V). Furthermore, if U and V have opposite sign, say U >0, V <0,
then U(U — V) > U?2. Comparing coefficients, we see that the second power series dominates the first
and f is negative. Therefore, we only need to analyze the case U, V > 0. We distinguish three subcases.
(i) If U <V, then - -

fU V) <7202~ 1-QV?) < 1762,

which we estimate with the bound on | V| as above.

(i) If V < U <4V, then

v 30—3(,16QV? 72_1 2774 3163776,16QV2 3(1)1

fUV)<35Q (e —1-16QV~" —3(16Q2)°V )5516 V®e <Clog (7)7’
where the factor 4 in (23) together with & < 1 ensures that the power in 1/ 7 stays smaller than 1.

(iii) For the remaining case U > 4V, we write V = U, that is, o < %. Then we analyze the power series

o0 k=3 172k _ 172k

Ty 176 _ 76y 3 QU -V

fu.vy=1w —V)+§k; o luw - V)kX;

Qk 2U2k
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For the leading term, we use o < % to compare with (U — V)®,
Ul—Ve=U%1-a® <CUS(1—-a)®=C(U-V)°,

pointwise. Then, by the Poincaré—Sobolev inequality, on each time slice,

U—V)° c 6 3
/ ud)(g—([ |VU|3dX) §CT(/ |VU|2dX) <CTE}.
Br@ T T'\JBr(0) Br(0)

Integration in time yields a term bounded by T22 E3. The remaining power series is negative, as

o0 k-3 2k 172k k—2772k
3 & Q3 U2k — Y2k Q U
3 > o ~lvw-v) Z

k=4 k=2

ey (szUZ)k(l—a2<"+3’)_1 s 3 UV
=3U Z (k +3)! all=a)U ,;)(k+2)!
o @U

<0.

Note that this calculation further motivates the exclusion of 1 in the original equation.
Combining, we arrive at the estimate

T>
V<C(+E, +T2E3+81+)+C8/ / VU |?

dx dT
Br/2(0) r

+ C57 Flux(M D).

By the energy inequality, Flux(MOT 2) < E,. Therefore,

Tz dX dT
I+SC(I+Ea+T22E3+81++8_1Ea)+C8/ / VU |? ,
Br/2(0) r
and, in the same fashion,
R U—-V)2\dXdT
I_=/ | — (e—m)—i-( )
KT> T 272 T

T dX dT
5C(1+Ea+T22E3+51++5—1Ea)+65/ / VU |? .
Br/2(0)

We have |VU|? < 2e = (e +m) + (e —m), and hence

T2 dX dT
/ / |IVU|? <Ii+2I_.
0 JBr,2(0) T

Choosing § > 0 sufficiently small, we conclude that

I4 +1-<C(1+ E,+ TFED). O
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Bound inside a hyperboloid. Recall that Ty was fixed to bound |V (T)| as in (23), which in turn was
crucial for smallness in Lemma 3.1.
For any ¢ > 0, we fix a time 0 < 7, < T7 such that

_T7\2
((1 i%)(eim)-l— w T2V) )dXTdT <e.

Flux(u, MTS) + /
KTe

In the same fashion as in [Struwe 2013, Lemma 4.3], we obtain:

Lemma 3.2. There exists ¢ > 0 and a constant C < oo such that, for any 0 < T < 471T,, we have
/ AUdx dT <CT,
KT

The region ®~!1(KT) is a hyperboloid. Its asymptote is the cone {r =t —1/(2T)}.

In the following we fix T <47 !T,. Let tg = 1/ T, the smallest time inside the hyperboloid. Furthermore,
we denote D = &~ 1(KT).

Using Lemma 3.2, we obtain decay of the nonlinearity in L2 L2 locally in time.

Lemma 3.3. Let tp > t1 > tg. Then
/ INw)|?dxdt < Ct72.
Dn{t1<t<t>}

Proof. Inside D;f =DN{t) <t <tx}wehavet+r>tandt—r > 1/(2T). Therefore, Q2 < C/t; with
a constant C that is uniform over D;f Then we calculate

[tz (e’ —1—u?)|?dxdt = / QU2(RV’—1-QU?)?2Q~3dX dT
D [}

15
2 (D)

C T
5/ l %QZUIOeZQUdede—z t e3U2dXdT§C—2. 0
(D;?) 17 JoD?) i

We conclude:

Lemma 3.4. Inside D the nonlinearity is bounded in L} L2, that is,

00 3
/ (/ |N|2dx) dr < 0.
to DN({t}xR2)

Proof. Divide [tg, o0) into intervals I, = [t92", 192"+ 1). Then, by Holder’s inequality and Lemma 3.3,

00 % 1) %
/ (/ |N|2dx) dt:Z/ (/ |N|2dx) dt
to DN({t}xR2) ne0?In \JDN({1}xR2)

00 | 1
52@02")2(// |N|2dxdz)
= » I DNy xR?)

oo
1
<) Cty22"? <0, O
n=0
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The case of radial data. In the previous section we have obtained control of the nonlinearity inside a
hyperboloid ®~1(KT), where T <47 !T,. Let tg = 1/ T, the smallest time in the hyperboloid. Now fix
T and choose d > 1/(2T). Let

Ay ={t,x):t>1t1, t —d <|x| <t}.
Then there exists a time 1 > fo such that
{(t.x):t=1, x| <t} (@ UKT)N{(Et. x):t =1} UA,y,.

that is, the thinned cone A;, covers the region where we have not yet obtained control over the nonlinearity.
In the following, we will restrict ourselves to the case of radial solutions. We will show that we can
bound the nonlinearity inside A, in L!L2.
In the case of radially symmetric data, we employ the following bound. Let ¢ > ¢; fixed, t —d <r <t.
Recall that u is compactly supported within B;(0). Then

t t
lu(z,r)| 5/ |[0su(t,s)| ds 5/ |dsu(t,s)|ds
r t—d

t N B N |
< (/ |0su(t, s)|?s ds) (/ = ds) <CE2 (log ) .
t—d t—d S t—d

Therefore there exists £, > #1 such that |u(z, r)| < [1% for all # > t,, with a constant C independent of
t>1.

Lemma 3.5. Let 1, be as above. Then N is bounded in L} L2 inside Ay,.
Proof. Again we estimate

NG I= ul(e = 1=u?) < Suf®e”
pointwise. Then

[ ul0e24% g x <Ct-t>=Ctr %
B;(0)\B;—;(0)

00 5 % S
/ (/ ul0e2u dx) dt < C/ 172 dt < oo. O
153 B;(0)\B;—4(0) 153

Combining Lemmas 3.3 and 3.5, we obtain || N ||11(4,,00);22(r2)) < 00. Using Lemma 1.2, we conclude
the proof of Theorem 1.1

Therefore,
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