Vol. 7, No. 3, 2014

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Decomposition rank of $\mathcal{Z}$-stable $\mathrm{C}^*$-algebras

Aaron Tikuisis and Wilhelm Winter

Vol. 7 (2014), No. 3, 673–700
Abstract

We show that C-algebras of the form C(X) Z, where X is compact and Hausdorff and Z denotes the Jiang–Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for C-bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine structure of nuclear C-algebras of Toms and Winter, even in a nonsimple setting, and gives evidence that the topological dimension of noncommutative spaces is governed by fibres rather than base spaces.

Keywords
nuclear $\mathrm{C}^*$-algebras, decomposition rank, nuclear dimension, Jiang–Su algebra, classification, $C(X)$-algebras
Mathematical Subject Classification 2010
Primary: 46L35, 46L85
Milestones
Received: 30 April 2013
Revised: 5 September 2013
Accepted: 4 October 2013
Published: 18 June 2014
Authors
Aaron Tikuisis
Institute of Mathematics
University of Aberdeen
Fraser Noble Building
Aberdeen
AB24 3UE
United Kingdom
Wilhelm Winter
Mathematisches Institut
Universität Münster
Einsteinstraße 62
D-48149 Münster
Germany