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THE GLOBAL STABILITY OF THE MINKOWSKI SPACETIME SOLUTION
TO THE EINSTEIN-NONLINEAR SYSTEM

IN WAVE COORDINATES

JARED SPECK

We study the coupling of the Einstein field equations of general relativity to a family of nonlinear
electromagnetic field equations. The family comprises all covariant electromagnetic models that satisfy
the following criteria: (i) they are derivable from a sufficiently regular Lagrangian; (ii) they reduce to
the standard Maxwell model in the weak-field limit; (iii) their corresponding energy-momentum tensors
satisfy the dominant energy condition. Our main result is a proof of the global nonlinear stability of the
(1+ 3)-dimensional Minkowski spacetime solution to the coupled system for any member of the family,
which includes the standard Maxwell model. This stability result is a consequence of a small-data global
existence result for a reduced system of equations that is equivalent to the original system in our wave-
coordinate gauge. Our analysis of the spacetime metric components is based on a framework recently
developed by Lindblad and Rodnianski, which allows us to derive suitable estimates for tensorial systems
of quasilinear wave equations with nonlinearities that satisfy the weak null condition. Our analysis of the
electromagnetic fields, which satisfy quasilinear first-order equations that have a special null structure, is
based on an extension of a geometric energy-method framework developed by Christodoulou together
with a collection of pointwise decay estimates for the Faraday tensor developed in the article. We work
directly with the electromagnetic fields and thus avoid the use of electromagnetic potentials.

1. Introduction

The Einstein field equations are the fundamental equations of general relativity. They connect the
Einstein tensor Rµν − 1

2 gµνR, which contains information about the curvature of spacetime1 (M, gµν),
to the energy-momentum-stress-density tensor (energy-momentum tensor for short) Tµν , which contains
information about the matter present in M. Here, gµν is the spacetime metric, Rµν is the Ricci curvature
tensor of gµν , and R = (g−1)κλRκλ is the scalar curvature of gµν . In this article, we show the stability of
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the (1+ 3)-dimensional Minkowski spacetime solution of the Einstein-nonlinear electromagnetic system,
which takes the following form relative to an arbitrary coordinate system:

Rµν − 1
2 gµνR = Tµν (µ, ν = 0, 1, 2, 3), (1.0.1a)

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (1.0.1b)

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (1.0.1c)

Above, Tµν (see (3.5.4a)) is one of the energy-momentum tensors corresponding to a family of nonlinear
models of electromagnetism, d denotes the exterior derivative operator, the two-form Fµν denotes the
Faraday tensor, the two-form Mµν denotes the Maxwell tensor, and Mµν is connected to (gµν,Fµν)

through a constitutive relation (see (3.2.4)). We make the following three assumptions concerning the
electromagnetic matter model:

(1) Its Lagrangian ?L is a scalar-valued function of the two electromagnetic invariants2

�(1)
def
=

1
2(g
−1)κµ(g−1)λνFκλFµν and �(2)

def
=

1
4(g
−1)κµ(g−1)λνFκλ

?Fµν,

where ? denotes the Hodge duality operator corresponding to gµν .

(2) The energy-momentum tensor Tµν corresponding to ?L satisfies the dominant energy condition
(sufficient conditions on ?L are given in (3.3.4a)–(3.3.4b) below).

(3) ?L is a sufficiently differentiable function of (�(1), �(2)), and its Taylor expansion around (0, 0) agrees
with that of the linear3 Maxwell–Maxwell4 equations to first order; i.e., ?L(�(1), �(2))=− 1

2�(1)+
O`+2(|(�(1), �(2))|2), where `≥ 10 is an integer; see Section 2.13 regarding the notation O`+2( · ).

The fundamental results in [Fourès-Bruhat 1952; Choquet-Bruhat and Geroch 1969] together imply
that the system (1.0.1a)–(1.0.1c) has an initial-value problem formulation in which suitably regular initial
data launch a unique maximal globally hyperbolic development. Roughly speaking, the maximal globally
hyperbolic development, which is uniquely determined up to isomorphism, is the largest possible solution
to the equations that is uniquely determined by the data. However, the results cited are abstract in the
sense that they do not provide any detailed quantitative information about the global structure of the
maximal globally hyperbolic development. In particular, the results do not address the question of whether
the resulting spacetime (M, gµν) is geodesically complete. The main goal of this article is to provide a
detailed qualitative and quantitative description of the global structure of maximal globally hyperbolic
developments launched by data near that of the most fundamental solution to (1.0.1a)–(1.0.1c): the
vacuum Minkowski spacetime. We briefly summarize our main results here. They are rigorously stated
and proved in Section 16.

2Throughout the article, we use Einstein’s summation convention in that repeated indices are summed over.
3By “linear”, we mean that the familiar electromagnetic equations of Maxwell are linear on any fixed spacetime background

(M, gµν); the coupled Einstein–Maxwell system is highly nonlinear.
4Throughout the article, we use the terminology “Maxwell–Maxwell” equations in place of the more common terminology

“Maxwell” equations. The justification is that Maxwell’s theory is based on the electromagnetic equations (1.0.1b)–(1.0.1c) and
the constitutive relation M= ?F; in a general covariant nonlinear electromagnetic theory, such as the ones considered in this
article, the equations (1.0.1b)–(1.0.1c) survive while the constitutive relation differs from that of Maxwell.
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Main results. The vacuum Minkowski spacetime solution g̃µν
def
= diag(−1, 1, 1, 1) and F̃µν

def
= 0 (µ, ν =

0, 1, 2, 3) to the system (1.0.1a)–(1.0.1c) is globally stable. In particular, small perturbations of the
trivial initial data corresponding to (g̃µν, F̃µν) have maximal globally hyperbolic developments that
are geodesically complete. Furthermore, the perturbed solution converges to the Minkowski spacetime
solution as the evolution progresses. These conclusions are consequences of a small-data global existence
result plus decay estimates for solutions to the reduced system (3.7.1a)–(3.7.1c) under the wave-coordinate
gauge condition (g−1)κλ0

µ
κ λ = 0 (µ= 0, 1, 2, 3), where (g−1)κλ0

µ
κ λ is a contracted Christoffel symbol

of gµν . Furthermore, relative to the wave-coordinate system that we construct (i.e., a coordinate system
{xµ}µ=0,1,2,3 such that (g−1)κλ0

µ
κ λ = 0 (µ = 0, 1, 2, 3)), the system (1.0.1a)–(1.0.1c) is equivalent to

the reduced system.

We recall the following standard facts (see, e.g., [Christodoulou 2008; Wald 1984]) concerning the
initial data for the system (1.0.1a)–(1.0.1c), which we refer to as “abstract” initial data. The abstract initial
data consist of a three-dimensional manifold 60 together with the following fields on 60: a Riemannian
metric g̊ jk , a symmetric type-

(0
2

)
tensor field K̊ jk , and a pair of electromagnetic one-forms D̊ j and B̊ j

( j, k = 1, 2, 3). Furthermore, viable data must satisfy the Gauss, Codazzi, and electromagnetic constraint
equations, which are respectively given by

R̊− K̊ab K̊ ab
+ [(g̊−1)ab K̊ab]

2
= 2T (N̂ , N̂ )|60, (1.0.2a)

(g̊−1)abD̊a K̊bj − (g̊−1)abD̊ j K̊ab = T
(

N̂ , ∂

∂x j

)∣∣∣
60

( j = 1, 2, 3), (1.0.2b)

(g̊−1)abD̊aD̊b = 0, (1.0.3a)

(g̊−1)abD̊aB̊b = 0. (1.0.3b)

In the above expressions, the indices are lowered and raised with g̊ jk and (g̊−1) jk , R̊ denotes the scalar
curvature of g̊ jk , D̊ denotes the Levi-Civita connection corresponding to g̊ jk , and N̂µ is the future-directed
unit g-normal to 60 (viewed as an embedded Riemannian submanifold of (M, gµν)). The one-forms D̊ j

and B̊ j together form a geometric decomposition of Fµν |60 , and the right-hand sides of (1.0.2a)–(1.0.2b)
can be computed (in principle) in terms of g̊ jk , D̊ j , and B̊ j alone; see Section 9.2 for more details
concerning the relationship of D̊ j and B̊ j to Fµν |60 . The dominant energy condition manifests itself
along 60 as the inequalities T (N̂ , N̂ )≥ 0 and T (N̂ , N̂ )2− (g̊−1)abT (N̂ , ∂/∂xa)T (N̂ , ∂/∂xb)≥ 0.

In this article, we consider the case 60 = R3. We will construct spacetimes of the form M= I ×R3,
where I is a time interval and 60 is a spacelike Cauchy hypersurface in (M, gµν). The constraints
(1.0.2a)–(1.0.2b) are necessary to ensure that (1.0.1a) can be satisfied along 60 while the constraints
(1.0.3a)–(1.0.3b) are necessary to ensure that the electromagnetic equations (1.0.1b)–(1.0.1c) can be
satisfied along 60. Our stability criteria for the abstract initial data include both decay assumptions at
spatial infinity and smallness assumptions. We provide here a description of our decay assumptions at
spatial infinity, which are based on the assumptions of [Lindblad and Rodnianski 2010]. Our smallness
assumptions will be discussed in detail in Section 10.
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Assumptions on the abstract initial data. We assume that there exists a global coordinate chart x =
(x1, x2, x3) on 60 = R3, a real number κ > 0, and an integer ` ≥ 10 such that (with r def

= |x | def
=√

(x1)2+ (x2)2+ (x3)2 and j, k = 1, 2, 3)

g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , (1.0.4a)

h̊(0)jk = χ(r)
2M
r
δ jk, (1.0.4b)

h̊(1)jk = o`+1(r−1−κ) as r→∞, (1.0.4c)

K̊ jk = o`(r−2−κ) as r→∞, (1.0.4d)

D̊ j = o`(r−2−κ) as r→∞, (1.0.4e)

B̊ j = o`(r−2−κ) as r→∞, (1.0.4f)

where the meaning of o`( · ) is described in Section 2.13. The cut-off function χ( · ) in (1.0.4b) is defined
in (4.2.1).

The parameter M in (1.0.4a), which is known as the ADM mass, is constrained by the following
requirements: according to the positive mass theorem of Schoen and Yau [1979; 1981] and Witten
[1981], under the assumption that Tµν satisfies the dominant energy condition, the only solutions g̊ jk

and K̊ jk to the constraint equations (1.0.2a)–(1.0.2b) that have an expansion of the form (1.0.4a) with the
asymptotic behavior (1.0.4b)–(1.0.4d) either have (i) M > 0 or (ii) M = 0, in which case the Riemannian
manifold (60, g̊ jk) embeds isometrically into Minkowski spacetime with second fundamental form K̊ jk .
The groundbreaking work of Christodoulou and Klainerman [1993] (which is discussed further in
Section 1.1.1) demonstrated the stability of the Minkowski spacetime solution to the Einstein-vacuum
equations in the case that the initial data are strongly asymptotically flat, which corresponds to the
parameter range κ≥ 1

2 in the above expansions. Our work here, which relies on the alternate framework
developed by Lindblad and Rodnianski [2010] (see Section 1.1.1), allows for the parameter range κ> 0.

In this article, we do not consider the issue of solving the constraint equations. The standard method
for solving the constraint equations is called the conformal method. For a detailed discussion of this
method, see, e.g., [Choquet-Bruhat and York 1980]. Roughly speaking, in this approach, part of the data
can be specified freely, and the constraint equations imply nonlinear elliptic PDEs for the remaining part.
To the best of our knowledge, under the restrictions on ?L described at the beginning of Section 1, there
are presently no rigorous results concerning the construction of initial data on the manifold R3 that satisfy
the constraints. However, we remark that, for the Einstein-vacuum equations Tµν ≡ 0, initial data that
satisfy the constraints and that coincide with the standard Schwarzschild data (written here relative to
isotropic coordinates)

g̊ jk =

(
1+ M

2r

)4
δ jk ( j, k = 1, 2, 3), (1.0.5a)

K̊ jk = 0 ( j, k = 1, 2, 3) (1.0.5b)
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outside of the unit ball centered at the origin were shown to exist in [Chruściel and Delay 2002a; 2002b;
Corvino 2000]. We remark that the stability of the Minkowski spacetime solution to the Einstein-
vacuum equations for such data follows from the methods of the aforementioned works [Christodoulou
and Klainerman 1993], [Lindblad and Rodnianski 2010] (and its precursor [2005]), and also from the
conformal method approach of Friedrich [1986] (this is not the same conformal method that was mentioned
above in connection with the constraint equations).

Remark 1.1. The only role of the dominant energy condition in this article is to ensure the physical
condition M ≥ 0; we assume this physical condition throughout the article. However, only the smallness
of |M | is needed to prove our global stability result; the sign of M does not enter into our stability
analysis for solutions to the evolution equations. In particular, if there existed small initial data with small
negative ADM mass M , we would still be able to prove that the corresponding solution to the evolution
equations exists globally. Similarly, if we made the replacement Tµν→−Tµν in the reduced equations
(3.7.1a)–(3.7.1c), we could still prove a small-data global existence result.

1.1. Comparison with previous work.

1.1.1. Mathematical comparisons. Our result is an extension of a large and growing hierarchy of global
stability results for the (1+ 3)-dimensional Minkowski spacetime solution to the Einstein equations.
The hierarchy began with the celebrated work of Christodoulou and Klainerman [1993], who proved
stability in the case of the Einstein-vacuum equations (i.e., Tµν ≡ 0). Klainerman and Nicolò [2003]
gave a second proof of this result using alternate (but related) techniques. Both of these proofs used
a manifestly covariant framework for the formulation of the equations and the derivation of estimates.
However, mathematically speaking, the closest relatives to the present article are the seminal works [2005;
2010], in which Lindblad and Rodnianski developed a technically simpler framework for showing the
stability of the Minkowski spacetime solution of the Einstein-scalar field system using a wave-coordinate
gauge. As we previously mentioned, a wave-coordinate gauge is a coordinate system in which the
contracted Christoffel symbols (g−1)κλ0

µ
κ λ completely vanish. Relative to such a coordinate system, the

Einstein-vacuum equations are equivalent to a reduced system comprising quasilinear wave equations for
the components gµν ; in the present article, the analogous equation is (3.7.1a). In her celebrated result
[1952], Choquet-Bruhat used wave coordinates to prove local well-posedness for the Einstein equations.
However, because of the logarithmic divergences discussed below in Section 1.2.4 and because of the
delicate nonlinearities in the Einstein equations, it was unexpected (see, e.g., [Choquet-Bruhat 1973]) that
the wave-coordinate approach of [Lindblad and Rodnianski 2005; 2010] for proving the global stability
of Minkowski spacetime is in fact viable. We remark that although the decay estimates of [Lindblad and
Rodnianski 2005; 2010] are not as precise as those of [Christodoulou and Klainerman 1993; Klainerman
and Nicolò 2003], these works are much shorter than their predecessors yet are robust enough to allow
for modifications, including the presence of the nonlinear electromagnetic fields examined in this article.
We also remark that many of the technical results we need are contained in [Lindblad and Rodnianski
2005; 2010], and we will often direct the reader to these works for their proofs.
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Other stability results in this vein include [2000], in which Zipser extended the framework of
[Christodoulou and Klainerman 1993] to show the stability of the Minkowski spacetime solution to
the Einstein–Maxwell system, and [2007], in which Bieri weakened the assumptions of [Christodoulou
and Klainerman 1993] on the decay of the initial data at spatial infinity. We also mention the work [2008]
(see also [2006; 2009]), in which Loizelet used the framework of [Lindblad and Rodnianski 2005; 2010] to
demonstrate the stability of the Minkowski spacetime solution of the Einstein-scalar field-Maxwell system
in 1+ n (n ≥ 3) dimensions. Moreover, in spacetimes of dimension 1+ n, with n ≥ 5 odd, it has been
shown [Choquet-Bruhat et al. 2006] that a conformal method (distinct from the one used by Friedrich)
can be used to show the stability of the Minkowski spacetime solution to the Einstein–Maxwell system for
initial data that coincide with the standard Schwarzschild data outside of a compact set. Roughly speaking,
a conformal method is a way of mapping a global existence problem into a local existence problem by
working with rescaled solution variables. When a conformal method is viable, it tends to give very precise
information concerning the asymptotics of the global solutions. In particular, the results of [Choquet-Bruhat
et al. 2006] provide a more detailed description of the asymptotics than the results of [Loizelet 2008].

We now compare the amount of regularity and decay that we require on the data to the amount required
in the alternate frameworks. The Christodoulou and Klainerman [1993], Zipser [2000], and Klainerman
and Nicolò [2003] proofs required two derivatives on the curvature (i.e., four derivatives on the metric).
Furthermore, the initial metric was required to be strongly asymptotically flat in the sense described above.
Zipser’s proof required (in addition) three derivatives on the Faraday tensor. Bieri’s [2007] proof required
only one derivative on the curvature (i.e., three derivatives on the metric), and it allowed for very slow decay
of the data at spatial infinity: g̊ jk=δ jk+o3(r−1/2) and K̊ jk=o2(r−3/2). The present article is less efficient:
we require 11 derivatives on the metric and 10 derivatives on the Faraday tensor. We also require asymptotic
flatness in the sense of (1.0.4a)–(1.0.4f), which is in between the decay required by Christodoulou and
Klainerman and Bieri. Our assumptions are similar to the ones made by Lindblad and Rodnianski [2010]
and Loizelet [2008]. For example, in n ≥ 3 spatial dimensions, Loizelet’s proof required 7+2b(n+2)/2c
derivatives of the metric. The main focus of the Lindblad–Rodnianski wave-coordinate approach is on
providing a technically simpler approach to the proof of stability as opposed to a proof that closes at a low
regularity level. There are at least two ways in which the wave-coordinate approach is suboptimal from the
point of view of the number of derivatives. The first is that all product nonlinearities are estimated in L2 on
constant-time hypersurfaces from only L2

−L∞ estimates with no use of intermediate L p norms, norms on
other hypersurfaces,5 or Calderón–Zygmund theory. That is, all nonlinear products are estimated in spatial
L2 by bounding the factor with the most derivatives on it in L2 and all other factors in L∞. For quadratic
terms, this means that we must be able to bound approximately half of the total number of derivatives in L∞.
This approach stands in contrast to the approaches of [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007], where, e.g., intermediate L p norms and other hypersurface
integrals played an important role in the analysis. The second source of suboptimality comes from the
version of the weighted Klainerman–Sobolev inequality that we use (see Section 1.2.7 and (1.2.10)). This

5As is explained in Section 1.2.6, our proof of global stability also makes use of the positivity of certain time integrals of the
L2 integrals (i.e., positive spacetime integrals) that arise in our energy identities.
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inequality allows one to estimate a weighted L∞ norm of a function by weighted L2 norms of up-to-
order-three weighted derivatives. The reason that three derivatives are used (instead of the familiar two
derivatives of standard Sobolev embedding H 2(R3) ↪→ L∞(R3)) is that this allows one to avoid putting
more than one derivative on the weight function (the at-most-two other derivatives are rotations, which pass
through the weight function); see the proof given in [Lindblad and Rodnianski 2010, Proposition 14.1].

We also emphasize the following point: the techniques used in this article to analyze the electromagnetic
fields differ in a fundamental way from those used by Loizelet [2008]. Our methods are closer in spirit
to (though distinct from) the methods used by Zipser [2000]. More specifically, Loizelet [2008] analyzed
the standard Maxwell–Maxwell equations through the use of a four-potential6 Aµ satisfying the Lorenz
gauge condition (g−1)κλDκ Aλ = 0, where D is the Levi-Civita connection corresponding to gµν . In
Loizelet’s analysis of the Maxwell–Maxwell equations, the Lorenz gauge leads to a diagonal system of
semilinear-in-Aµ wave equations for the components Aµ. Furthermore, these equations can be analyzed
by using the same techniques that are used in the study of the components of the metric (see (3.7.1a)) and
the scalar field. In particular, in Loizelet’s analysis, Lemma 12.2 can be used to deduce suitable weighted
energy estimates for the components ∇µAν . In contrast, as discussed in [Speck 2012], it is not clear that
the Lorenz gauge can be used to analyze the kinds of quasilinear-in-F electromagnetic field equations
(1.0.1c) studied in this article. More specifically, it is not clear that the Lorenz gauge in general leads to a
hyperbolic formulation of the electromagnetic equations that is suitable for deriving the kinds of L2 energy
estimates needed for our analysis. For this reason, throughout this article, we work directly with the
Faraday tensor. In particular, as described in detail in Section 8, we use Christodoulou’s [2000] geometric
framework to construct energy currents that can be used to derive the kinds of L2 estimates needed in our
analysis. Using these methods, we prove Lemma 12.1, which compensates for the fact that Lemma 12.2
is not generally available for controlling the electromagnetic quantities. We remark that there is another
advantage to working directly with the Faraday tensor: our smallness condition for stability depends only
on the physical field variables and not on auxiliary mathematical quantities such as the components ∇µAν .

Now roughly speaking, the reason that we are able to prove our main stability result is because, in
our wave-coordinate gauge, the nonlinear terms have a special algebraic structure, which Lindblad and
Rodnianski [2003] have labeled the weak null condition; see Section 1.2.5 for additional details. We remark
that, in order for small-data global existence to hold, it is essential that the quadratic nonlinearities have
special structure: John’s [1981] blow-up result shows that quadratic perturbations7 of the homogeneous
linear wave equation in (1+ 3)-dimensional Minkowski spacetime (of which our equations (1.2.4a)
below are an example) can sometimes lead to finite-time blow-up even for arbitrarily small data. Now by
definition, a system of PDEs satisfies the weak null condition if the corresponding asymptotic system has
small-data global solutions. Roughly, the asymptotic system is obtained by keeping only the quadratic
terms with both factors involving derivatives that are transversal to the outgoing Minkowskian null cones
and the related linear term that drives their evolution along those cones (see the discussion in Section 1.2.4);
the discarded terms are expected to decay faster than the remaining terms. The general philosophy is that,

6Recall that a four-potential is a one-form Aµ such that Fµν = (d A)µν .
7In [John 1981], it was shown that both semilinear and quasilinear quadratic perturbations can lead to small-data blow-up.
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if the asymptotic system has small-data global existence, then one should be hopeful that the original
system does too. Lindblad and Rodnianski [2010] showed that the asymptotic system corresponding to the
Einstein-scalar field system in wave coordinates has global solutions for small (i.e., near-Minkowskian)
data. Although we do not carry out such an analysis in this article, we remark that it can be checked that the
asymptotic system8 corresponding to the Einstein-nonlinear electromagnetic system in wave coordinates
also has global solutions for small data. This was our original motivation for pursuing the present work.

The aforementioned weak null condition is a generalization of the classic null condition of Klainerman
[1986] (see also [Christodoulou 1986]), in which the quadratic nonlinearities are standard null forms
(which are defined below in the statement of Lemma 3.8). We remark that standard null forms have a very
favorable structure and are completely discarded when one forms the asymptotic system. By now, there is
a very large body of global existence and almost-global existence results that are based on the analysis of
nonlinearities that satisfy generalizations of Klainerman’s null condition. This includes the global stability
results for the Einstein equations mentioned above but also many other results; there are far too many
to list exhaustively, but we mention the following as examples: [Katayama 2005; Klainerman and Sideris
1996; Lindblad 2004; 2008; Metcalfe and Sogge 2007; Metcalfe et al. 2005; Sideris 1996; Speck 2012].

1.1.2. Connections to the “divergence” problem. One of the most important unresolved issues in physics
is that of the so-called “divergence problem”. In the setting of classical electrodynamics on the Minkowski
spacetime background, this problem manifests itself as the unhappy fact that the standard Maxwell–
Maxwell equations with point-charge sources (i.e., delta-function source terms modeling the point
charges) together with the Lorentz force law9 (which is supposed to drive the motion of the point charges)
do not form a well-defined system of equations. This is because the theory dictates that the Lorentz force
at the location of a point charge is “infinite in all directions” so that the charge’s motion is ill-defined.
A further symptom of the divergence problem in this theory is that the energy of a static point charge
is infinite. Moreover, our present-day flagship model of quantum electrodynamics (QED), which is
based on a quantization of the classical Maxwell–Dirac field equations, has not yet fixed the crux of the
problem; similar manifestations of the divergence problem arise in QED; see [Kiessling 2004a; 2004b]
for a detailed discussion of these issues.

Now in [2004a; 2004b], Kiessling has taken a preliminary step in the direction of resolving the diver-
gence problem by reconsidering classical electrodynamics in Minkowski spacetime. One of Kiessling’s
primary strategies is to follow the lead of Max Born [1933] by replacing the standard Maxwell–Maxwell
equations with a suitable nonlinear system, the hope being that it will be possible to make rigorous
mathematical sense of the motion of point charges in the nonlinear theory. Kiessling’s leading candidate
is the Maxwell–Born–Infeld (MBI) model of classical electromagnetism, which was proposed by Born
and Infeld [1934] based on Born’s [1933] earlier ideas. The electromagnetic Lagrangian for this model is

?L(MBI)
def
=

1
β4 −

1
β4

(
1+β4�(1)−β8�2

(2)
)1/2
=

1
β4 −

1
β4 (detg(g+β2F))1/2, (1.1.1)

8To obtain this asymptotic system, one also discards the quadratic terms containing the fast-decaying null components α[F],
ρ[F], and σ [F] of the Faraday tensor; see Section 1.2.4.

9Recall that the Lorentz force is FLorentz = q[E + v× B], where q is the charge associated to the point charge, E is the
electric field, v is the instantaneous point charge velocity, and B is the magnetic induction.
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where β> 0 denotes Born’s “aether” constant. We point out that, as verified in, e.g., [Speck 2012], this
Lagrangian satisfies the assumptions (3.3.3a) and (3.3.4a)–(3.3.4b) so that the main results of this article
apply to the MBI model. Now it turns out that it was not enough for Kiessling to simply replace the
standard Maxwell–Maxwell equations with the Maxwell–Born–Infeld equations, for such a modification
fails to fix the problem of the Lorentz force being ill-defined at the location of the point charge. On the
other hand, in MBI theory on the Minkowski spacetime background, there exist Lipschitz-continuous
electromagnetic potentials corresponding to solutions to the field equations with a single static point-charge
source. Kiessling observed that this level of regularity is (just barely) sufficient for a relativistic version
of Hamilton–Jacobi theory to be well-defined. He thus proposed a new relativistic Hamilton–Jacobi
“guiding law” of motion for the point charges (see [Kiessling 2004a] for the details).

Kiessling’s interest in the Maxwell–Born–Infeld system was further motivated by results contained in
[Boillat 1970; Plebaǹski 1970], which show that it is the unique10 theory of classical electromagnetism
that is derivable from a Lagrangian and that satisfies the following five postulates (see also the discussions
in [Białynicki-Birula 1983; Kiessling 2004a]):

(i) The field equations transform covariantly under the Poincaré group.

(ii) The field equations are covariant under a Weyl (gauge) group.

(iii) The electromagnetic energy surrounding a stationary point charge is finite.

(iv) The field equations reduce to the standard Maxwell–Maxwell equations in the weak field limit.

(v) The solutions to the field equations are not birefringent.

We remark that the standard Maxwell–Maxwell system satisfies all of the above postulates except for
(iii) and that the MBI system was shown to satisfy (iii) by Born [1933]. Physically, postulate (v) is
equivalent to the statement that the “speed of light propagation” is independent of the polarization of the
wave fields. Mathematically, this is the postulate that there is only a single null cone11 associated to the
electromagnetic equations; in a typical theory of classical electromagnetism, the causal structure of the
electromagnetic equations is more complicated than the structure corresponding to a single null cone (see
[Speck 2012] for a detailed discussion of this issue in the context of the Maxwell–Born–Infeld equations
on the Minkowski spacetime background).

We can now clarify the connection of the present article to Kiessling’s work. First, as noted in [2004a],
Kiessling expects that his theory can be generalized to the case of a curved spacetime through a coupling
to the Einstein equations. Next, we mention that although the Maxwell–Born–Infeld system is Kiessling’s
leading candidate for an electromagnetic model, he is also considering other models. In particular, by
relaxing postulate (v) above, a relaxation that in principle could be supported by experimental evidence,
one is led to consider a larger family of electromagnetic models. Now one basic criterion for any viable
electromagnetic model is that small, nearly linear-Maxwellian electromagnetic fields in near-Minkowski
spacetimes should not lead to a severe breakdown in the structure of spacetime or other degenerate

10More precisely, there is a one-parameter family of such theories indexed by β> 0.
11In general, this “light cone” does not have to coincide with the gravitational null cone although it does in the case of the

standard Maxwell–Maxwell equations.



780 JARED SPECK

behavior. The present work confirms this criterion for a large family of electromagnetic models coupled
to the Einstein equations, including the Maxwell–Born–Infeld system and many other models that fall
under the scope of Kiessling’s program.

1.2. Discussion of the analysis.

1.2.1. The splitting of the spacetime metric and setting up the equations. As in [Lindblad and Rodnianski
2005; 2010], in order to analyze the spacetime metric, we split it into the following three pieces (where
we view h(1)µν as the “new unknown metric variable”):

gµν = mµν + hµν (µ, ν = 0, 1, 2, 3), (1.2.1a)

hµν = h(0)µν + h(1)µν (µ, ν = 0, 1, 2, 3), (1.2.1b)

h(0)µν
def
= χ

(r
t

)
χ(r)2M

r
δµν (µ, ν = 0, 1, 2, 3), (1.2.1c)(

h(0)µν
∣∣
t=0 = χ(r)

2M
r
δµν, ∂t h(0)µν

∣∣
t=0 = 0

)
,

where mµν = diag(−1, 1, 1, 1) is the Minkowski metric and the function χ plays several roles that will
be discussed in Section 1.2.9. Above and throughout, χ(z) is a fixed cut-off function that satisfies

χ ∈ C∞, χ ≡ 1 for z ≥ 3
4 , and χ ≡ 0 for z ≤ 1

2 . (1.2.2)

We remark that, here and throughout the rest of the article, unless we explicitly indicate otherwise, all
indices on all tensors are lowered and raised with the Minkowski metric mµν = diag(−1, 1, 1, 1) and
its inverse (m−1)µν = diag(−1, 1, 1, 1) (as is explained in Section 2.2, we use the symbol # whenever
we raise indices with g−1). Furthermore, as in [Lindblad and Rodnianski 2005; 2010], we work in
a wave-coordinate system, which is a coordinate system in which the contracted Christoffel symbols
0µ

def
= (g−1)κλ0

µ
κ λ (see (3.0.2d)) of gµν satisfy

0µ = 0 (µ= 0, 1, 2, 3). (1.2.3)

We remark that several equivalent definitions of the wave-coordinate gauge (1.2.3) are discussed in
Section 3.1 and that the viability of the wave-coordinate gauge for proving local well-posedness for the
system (1.0.1a)–(1.0.1c) (which is a rather standard result based on the fundamental ideas of [Fourès-
Bruhat 1952]) is discussed in Section 4.3.

As is discussed in detail in Section 3.7, in a wave-coordinate system (t, x), the equations (1.0.1a)–
(1.0.1c) are equivalent to the reduced equations

2̃gh(1)µν = Hµν − 2̃gh(0)µν (µ, ν = 0, 1, 2, 3), (1.2.4a)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (1.2.4b)

N #µνκλ
∇µFκλ = Fν (ν = 0, 1, 2, 3), (1.2.4c)

where 2̃g = (g−1)κλ∇κ∇λ is the reduced wave operator corresponding to gµν , ∇ is the Levi-Civita
connection corresponding to the Minkowski metric mµν ,
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N #µνκλ def
=

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ − hµκ(m−1)νλ

+ hµλ(m−1)νκ − (m−1)µκhνλ+ (m−1)µλhνκ
)
+ N #µνκλ

4
,

N #µνκλ
4

= O`(|(h,F)|2) is a quadratic error term that depends on the chosen model of nonlinear elec-
tromagnetism, and Hµν and Fν are inhomogeneous terms that depend in part on the chosen model of
nonlinear electromagnetism.

The question of the stability of the Minkowski spacetime solution to (1.0.1a)–(1.0.1c) has thus been
reduced to two subquestions: (i) show that the reduced system (1.2.4a)–(1.2.4c), where the unknowns
are viewed to be (h(1)µν ,Fµν), has small-data global existence (if the ADM mass M is sufficiently small)
and (ii) show that the resulting spacetime (R1+3, gµν =mµν + h(0)µν + h(1)µν) is geodesically complete. The
second question is very much related to the first, for as in [Lindblad and Rodnianski 2005, Section 16] and
[Loizelet 2008, Section 9], the question of geodesic completeness can be answered if one has sufficiently
detailed information about the asymptotic behavior of h(1)µν ; our stability theorem (see Section 16) provides
sufficient information. Therefore, the main focus of this article is (i).

1.2.2. The smallness condition. Our smallness condition on the abstract initial data is stated in terms
of the ADM mass M and a weighted Sobolev norm of the field data ∇ i h̊

(1)
jk , K̊ jk , D̊ j , and B̊k . More

specifically, in order to deduce global existence, we will require that

E`;γ(0)+M < ε`, (1.2.5)

where ε` > 0 is a sufficiently small positive number, E`;γ(0)≥ 0 is defined by

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
, (1.2.6)

the weighted Sobolev norm ‖ · ‖H `
1/2+γ

is defined in Definition 10.1 below, 0< γ< 1
2 is a constant, and

` ≥ 10 is an integer. The condition ` ≥ 10 is needed for various weighted Sobolev embedding results,
including the weighted Klainerman–Sobolev inequality (1.2.10), and the results stated in Appendix A.
In the above expressions, ∇ is the Levi-Civita connection corresponding to the Euclidean metric12

m jk
def
= diag(1, 1, 1). Note that the assumed fall-off conditions (1.0.4c)–(1.0.4f) guarantee the existence

of a constant 0< γ< 1
2 such that E`;γ(0) <∞.

Although the norm (1.2.6) is useful for expressing the small-data global existence condition in terms
of quantities inherent to the data, from the perspective of analysis, a more useful quantity is the energy
E`;γ;µ(t)≥ 0, which is defined by

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

{
|∇∇

I
Zh(1)|2+ |LI

ZF|2
}
w(q) d3x, (1.2.7)

12Throughout the article, we use the symbol m to denote both the Euclidean metric m jk
def
= diag(1, 1, 1) on R3 and the

first fundamental form mµν
def
= diag(0, 1, 1, 1) of the constant time hypersurfaces 6t viewed as embedded hypersurfaces of

Minkowski spacetime; this double-use of notation should not cause any confusion.
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where ∇ denotes the Levi-Civita connection corresponding to the full Minkowski spacetime metric,
q def
= |x | − t is a null coordinate, the weight function w(q) is defined by

w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(1.2.8)

γ is from (1.2.6), and 0 < µ < 1
2 is a fixed constant. In the above expression, Z

def
= {∂µ, xµ∂ν − xν∂µ,

xκ∂κ}0≤µ≤ν≤3 is a subset of the conformal Killing fields of Minkowski spacetime, I is a vector field
multi-index, ∇ I

Z represents iterated Minkowski covariant differentiation with respect to vector fields in Z,
and LI

Z represents iterated Lie differentiation with respect to vector fields in Z. The significance of the set
Z is that it is needed for the weighted Klainerman–Sobolev inequality (1.2.10), which is discussed below.

Remark 1.2. The presence of the parameter µ>0 in (1.2.8) might seem unnecessary as 1+(1+|q|)−2µ
≈1.

However, as is explained in Section 1.2.6, the presence of µ> 0 ensures that w′(q) > 0, an inequality
that plays a key role in our energy estimates.

1.2.3. Overall strategy of the proof. The overall strategy is to deduce a hierarchy of Gronwall-amenable
inequalities for the energies Ek;γ;µ(t) (0≤ k ≤ `); this is accomplished in (16.2.5) below. The net effect
is that, under the assumptions that E`;γ(0)+M ≤ ε and ε is sufficiently small, we are able to deduce the
following a priori estimate for the solution, which is valid during its classical lifetime:

E`;γ;µ(t)≤ c`ε(1+ t)c̃`ε. (1.2.9)

In the above inequality, c` and c̃` are positive constants. Now it is a standard result in the theory of
hyperbolic PDEs that, if ε is sufficiently small, then an a priori estimate of the form (1.2.9) implies that
the solution exists for (t, x) ∈ (−∞,∞)×R3; see Proposition 14.1 for more details. Furthermore, as
shown in [Lindblad and Rodnianski 2005; Loizelet 2008], if ε is sufficiently small, then it also follows
that the spacetime (R1+3, gµν =mµν+h(0)µν +h(1)µν) is geodesically complete. The main goal of this article
is therefore to derive (1.2.9).

1.2.4. Geometry and null decompositions. Let us now describe the tools used to derive (1.2.9). First and
foremost, as mentioned above in Section 1.1.1, the reason we are able to prove our stability result is that
the reduced equations (1.2.4a)–(1.2.4c) have a special algebraic structure and satisfy (in the language
of Lindblad and Rodnianski) the weak null condition. Now in order to see the special structure of the
terms in the reduced equations, we use the strategy of Lindblad and Rodnianski and decompose them
into their Minkowskian null components; we refer to this as a Minkowskian null decomposition. We
emphasize the following point: the Minkowskian geometry is not the “correct” geometry to use for
analyzing the equations, for the actual characteristics of the system correspond to the null cones of the
spacetime metric gµν and the characteristics of the nonlinear electromagnetic equations (which in general
do not have to coincide with the gravitational null cones). However, the errors that we make in using the
Minkowskian geometry (which has the advantage of being simple) are controllable.

We stress that the strategy of using the Minkowskian geometry to prove a global stability result for
the Minkowski spacetime solution (in wave coordinates) was a novel (and unexpectedly viable) feature of
[Lindblad and Rodnianski 2005; 2010]. The previous works [Christodoulou and Klainerman 1993; Zipser
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2000; Klainerman and Nicolò 2003; Bieri 2007] used foliations of spacetime built out of outgoing null
cones of the actual spacetime metric gµν , which logarithmically diverge from the corresponding outgoing
cones of Minkowski spacetime as t→∞. The use of the actual geometry allowed these authors to derive
sharp estimates for the asymptotic behavior of the perturbed solution. However, this approach required an
enormous effort. In addition to (i) constructing geometric foliations, the authors also had to (ii) carefully
decompose every term relative to a g-null frame, (iii) construct vector fields (with controllable deformation
tensors) for commuting the equations, and (iv) use an elaborate collection of elliptic estimates to control
the foliations. At the expense of reduced precision, the Lindblad–Rodnianski approach eliminates many
of these difficulties: the Minkowskian geometry is very easy to “construct”, one only has to carefully
decompose “the important terms” relative to the Minkowskian null frame, the vector field differential
operators are prespecified, and no elliptic estimates are needed since the foliations are prespecified.

Let us briefly recall the meaning of a Minkowskian null decomposition; a more detailed description is
offered in Section 5. The notion of a Minkowskian null decomposition is intimately connected to the
following spacetime subsets: the outgoing Minkowskian null cones C+q

def
= {(τ, y) | |y|−τ =q}, the ingoing

Minkowskian null cones C−s
def
= {(τ, y) | |y|+τ = s}, the constant time slices 6t

def
= {(τ, y) | τ = t}, and the

Euclidean spheres Sr,t
def
= {(τ, y) | t = τ, |y| = r}. Observe that the null coordinate q def

= |x |− t associated
to the spacetime point with coordinates (t, x) is constant on the outgoing cones and the null coordinate
s def
= |x | + t is constant on the ingoing cones. These coordinates will be used throughout the article to

describe the rates of decay of various quantities. With ω j def
= x j/r ( j = 1, 2, 3), we also define the ingoing

Minkowskian null geodesic vector field Lµ def
= (1,−ω1,−ω2,−ω3), which satisfies mκλLκLλ = 0 and is

tangent to the C−s , and the outgoing Minkowskian null geodesic vector field Lµ def
= (1, ω1, ω2, ω3), which

satisfies mκλLκLλ = 0 and mκλLκLλ =−2 and is tangent to the C+q . Furthermore, in a neighborhood
of each nonzero spacetime point p, there exists a locally defined pair of m-orthonormal vector fields e1

and e2 that are tangent to the family of Euclidean spheres and m-orthogonal to L and L . The set
N

def
= {L, L , e1, e2}, which spans the tangent space at each point, is known as a Minkowskian null frame.

In the discussion that follows, we will also make use of the set T
def
= {L , e1, e2}, which is the subset

consisting of only those frame vectors tangent to the C+q , and the set L
def
= {L}.

Given any two-form F, we can decompose it into its Minkowskian null components α[F], α[F],
ρ[F], and σ [F], where α and α are two-forms m-tangent13 to the spheres Sr,t and ρ and σ are scalars.
More specifically, we define αA = FAL , αA = FAL , ρ = 1

2 FL L , and σ = F12, where A ∈ {1, 2} and
we have abbreviated FAL

def
= eκA LλFκλ, etc. Similarly, we can decompose the tensor hµν into its null

components hL L , hL L , hLT , etc., where T stands for any of the vectors in T. We are now ready to
discuss one of the major themes running throughout this article: the rates of decay of the various null
components of F and h are distinguished by the kinds of contractions taken against the null frame vectors.
In particular, contractions against L , e1, and e2 are associated with favorable decay, with L being the most
favorable, while contractions against L are associated with unfavorable decay. Similarly, differentiation in
the directions L , e1, and e2 are associated with creating additional favorable decay in the null coordinate s
while differentiation in the direction L is associated with creating less favorable additional decay in q

13By m-tangent, we mean that their vector duals relative to the Minkowski metric are tangent to the Sr,t .
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(see Lemma 6.16 for a precise version of this claim). Equivalently, the operator ∇ creates favorable decay
in s while ∇ only creates decay in q . Here and throughout, ∇ is the null frame projection (of the derivative
component only when ∇ is applied to a tensor field) of the Minkowski connection ∇ onto the outgoing
Minkowski null cones (i.e., ∇ projects away the L component of ∇). From this point of view, the most
dangerous terms in the equations are α and hL L and the ∂q ∼∇L derivatives (see Section 2.7) of these
quantities. We recommend that at this point the reader should examine the conclusions of Propositions 15.6
and 15.7 to get a feel for the kind of decay properties possessed by the various null components.

The main idea behind the Minkowskian null decomposition is that it can be used to show the following
fact: the worst possible combinations of terms, from the point of view of decay rates, are not present in
the reduced equations (1.2.4a)–(1.2.4c). This special algebraic structure, which is of central importance
in our small-data global existence proof, is examined in detail in Propositions 11.1–11.4. As revealed
in [Lindblad and Rodnianski 2003; 2005; 2010], this special algebraic structure is highly tensorial in
nature. A related fact is that various null components of the lower-order derivatives of the solution exhibit
a partially decoupled behavior. Moreover, this partial decoupling allows us to derive a hierarchy of
“upgraded pointwise decay” estimates for the lower-order derivatives. These estimates, which play an
essential role in the proof of our main theorem, provide bounds that are stronger than the bounds implied
by the size of E`;γ;µ(t). This critical issue is discussed in more detail in Section 1.2.11.

1.2.5. The special structure of the nonlinearities involving the Faraday tensor. We now briefly summarize
the special structures that allow us to extend the results of [Lindblad and Rodnianski 2010] to include
small electromagnetic fields. We emphasize the following point: because of our assumptions on the
electromagnetic Lagrangian, all of the important nonlinearities (from the point of view of small-data
global existence) are the quadratic ones that are present in the case of the standard Maxwell–Maxwell
Lagrangian ?L(Maxwell) =−

1
2�(1); all of the other electromagnetic theories that are covered by our main

theorem introduce cubic and higher-order nonlinearities into the PDEs that are relatively easy to control.
We first discuss how the electromagnetic fields couple into the equations for the components of the metric
term hµν = gµν−mµν . The presence of the electromagnetic fields introduces only one important nonlinear
term into these equations: the main F-containing quadratic term Q(2;h)µν (F,F) on the right-hand side
of (3.7.2a). A null decomposition reveals that this term has only one dangerous component involving the
product |α|2: Q(2;h)L L , which will be shown to decay like |Q(2;h)|L L . ε2(1+ t)−2 (see inequalities (11.2.7e)
and (15.3.3)). All other null components of Q(2;h) have a negligible effect on the dynamics because at
least one of their factors is a “good” null component of F (see inequalities (11.2.7d) and (15.3.4c)); these
quadratic terms therefore decay rapidly. Furthermore, a null decomposition of the wave equations (3.7.1a)
reveals that the dangerous component only directly influences the behavior of the metric perturbation
component |∇h|L L . The main point is that Lindblad and Rodnianski [2010] were able to close their proof
even though they allowed |∇h|L L to decay at a slower rate than the other null components of ∇h. The
decay rate |Q(2;h)|L L . ε2(1+ t)−2, though relatively slow, still allows us to prove the same estimates
for |∇h|L L and |h|L L as in [ibid.] (see Proposition 15.6 and note the presence of the growing ln(1+ t)
factor in (15.3.2b) compared to the other estimates).
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We now discuss the nonlinearities present in the electromagnetic field equations for the components
of F. There are three important nonlinear terms: the main quadratic terms Pν

(F)(h,∇F) and Qν(1;F)(h,∇F)

from (3.7.3a) and the main quadratic term Qν(2;F)(∇h,F) from (3.7.2b). The terms Qν(1;F)(h,∇F) and
Qν(2;F)(∇h,F) have a very favorable null structure (all quadratic factors involve either a good tangential
derivative ∇ or a good component of F) and therefore have a negligible effect on the dynamics (see
inequalities (11.2.7h)–(11.2.7i)). Furthermore, this special structure survives upon commuting the
equations with LI

Z. In contrast, the term Pν
(F)(h,∇F) has a less favorable null structure and must be

handled with care. For example, if X is any one-form, then in order to bound |XνPν
(F)(h,∇F)|, one must

in particular bound |X ||h|LL|∇F| (see inequality (11.2.7f)). The product |h|LL|∇F| is only expected
to decay like ε2(1+ t)−2 thanks to the presence of the worst null components of ∇F (the worst null
component combination in the product |h|LL|∇F| is the magnitude of the product 1

4 hL L∇Lαν , which is
discussed below in the third paragraph of Section 1.2.11). The main reason that we are able to handle
the difficult term Pν

(F)(h,∇F) is that the wave-coordinate condition allows one to derive independent
estimates for |h|LL that are just good enough to close the proof of stability; this is discussed in more
detail in Section 1.2.10. Another difficulty is that some of this structure is destroyed after one commutes
Pν
(F)(h,∇F) with LI

Z. In particular, the commuted term |LI
Zh|LL must be carefully analyzed, for Lie

differentiation results in the presence of some potentially dangerous lower-order terms. These terms are
discussed in more detail at the end of Section 1.2.12.

1.2.6. Energy inequalities and the canonical stress. The first major analytical step in deriving the all-
important Gronwall-amenable estimate (16.2.5) (which is the main ingredient in the derivation of the a
priori estimate (1.2.9)) is to deduce the energy inequalities of Lemmas 12.1 and 12.2, which respectively
provide L2 estimates for solutions to the electromagnetic equations of variation and L2 estimates for
solutions to quasilinear wave equations whose principal operator agrees with that of (1.2.4a) (i.e., whose
principal operator is 2̃g). The equations of variation are linear (in the principal term) PDEs that are
satisfied by the derivatives of solutions F to (1.2.4b)–(1.2.4c). Specifically, the equations of variation
are the PDEs (8.1.1a)–(8.1.1b). As is explained below, these equations come into play because we
require L2 estimates for higher-order derivatives of h(1) and F in order to close our global existence
argument. We will comment mainly on the estimates for the electromagnetic equations of variation since
the estimates of Lemma 12.2 are perhaps more familiar to the reader and in any case are explained in
detail in [Lindblad and Rodnianski 2010, Lemma 6.1 and Proposition 6.2]. Our proof of Lemma 12.1 is
based on the construction of a suitable energy current J̇µ def

= −Q̇µ
νXν , where Q̇µ

ν is the canonical stress.
Q̇µ

ν = Q̇µ
ν[Ḟ, Ḟ] is a tensor field that depends quadratically on the variations Ḟµν

def
= LI

ZF, Xν def
= w(q)δν0

(ν = 0, 1, 2, 3) is a “multiplier vector field”, and w(q) is the weight function defined in (1.2.8). The end
result is provided by inequality (12.2.1) below. Although at first glance inequality (12.2.1) may appear
to be a standard energy inequality, one of the most important features of this particular energy current
is that it provides the additional positive spacetime integral

∫ t2
t1

∫
6τ
(|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ on the
left-hand side of (12.2.1); here, α̇, ρ̇, and σ̇ are the “favorable” null components of the two-form Ḟ. This
additional positive quantity, which is analogous to the quantity

∫ t2
t1

∫
6τ
|∇φ|2w′(q) d3x dτ on the left-hand

side of (12.2.4) that was exploited by Lindblad and Rodnianski, is one of the key advantages afforded
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by our use of a weight function of the form (1.2.8). Its availability is directly related to the fact that we
have better integrated control over the quadratic terms |α̇|2+ ρ̇2

+ σ̇ 2 than we do over the term |α̇|2. The
spacetime integral plays a key role in our derivation of the energy inequality (16.2.5).

Let us now make a few comments concerning the canonical stress and the construction of the energy
current J̇µ introduced above. A very detailed description is located in [Christodoulou 2000; Speck 2012],
so we confine ourselves here to its two most salient features. The canonical stress (see (8.2.2)) plays
the role of an energy-momentum-type tensor for the electromagnetic equations of variation. Because
these (linear-in-Ḟ) equations depend on the “background” Fµν in addition to the linearized variables Ḟµν ,
it is not the case that Dµ(Q̇

µ
ν[Ḟ, Ḟ]) = 0; this is in contrast to the property (g−1)κλDκTλν = 0 (see

(3.5.3)) enjoyed by the energy-momentum tensor. However, we now point out the first key property of
the canonical stress: ∇µ(Q̇

µ
ν[Ḟ, Ḟ]) is lower-order in the sense that it does not depend on ∇λḞµν ; by

using the equations of variation for substitution, the ∇λḞµν terms can be replaced with inhomogeneous
terms (see (8.2.4)). It is already important to appreciate the availability of this nontrivial quadratic-in-Ḟ
quantity whose divergence can be expressed in terms of only F, ∇F, Ḟ, and inhomogeneous terms.
The availability of such a quantity is not a feature inherent to all systems of equations,14 but is instead
related to the symmetry properties of the indices of the principal terms (i.e., the terms on the left-hand
side) in equations (8.1.1a)–(8.1.1b), which themselves are related to the fact that the original nonlinear
electromagnetic equations are derivable from a Lagrangian.

The second key property enjoyed by the canonical stress is that of integrated positivity upon contraction
against certain pairs (ξ, X) consisting of a one-form ξ and a vector field X . More precisely, for certain
hypersurfaces 6, there exist choices of (ξ, X) such that ξ is normal to 6 (in the sense of covector-vector
annihilation) and such that the quantity

∫
6

Q̇µ
νξµXν

[Ḟ, Ḟ] d6 is bounded from below by the square of
an L2-type norm of Ḟ along 6. This is a general fact that holds for all electromagnetic equations of
variation that are regularly hyperbolic in the sense of [Christodoulou 2000]. However, in the present
article, a stronger condition than integrated positivity holds: for certain pairs (ξ, X), Q̇µ

νξµXν
[ · , · ] is in

fact a positive-definite quadratic form in Ḟ. We remark that this stronger property concerns the structure of
the quadratic form Q̇µ

νξµXν
[ · , · ] and therefore has nothing to do with whether Ḟ satisfies the equations

of variation.
The two key properties are analogous to (but distinct from) the positivity properties of an energy-

momentum tensor satisfying the dominant energy condition and the positivity properties of the Bel–
Robinson tensor (which played a central role in [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007]). As is explained in [Christodoulou 2000; Speck 2012], the
set of pairs (ξ, X) leading to integrated positivity is intimately connected to the hyperbolicity of and the
geometry of the electromagnetic equations and to the speeds and directions of propagation in the system.
In this article, the only hypersurfaces that we integrate over are the constant-time hypersurfaces 6t and the
only pair (ξ, X) that we use is ξµ =−δ0

µ, and Xν
= w(q)δν0 . The special positivity properties stemming

from this choice of (ξ, X), and in particular the availability of the additional positive spacetime integral∫ t2
t1

∫
6τ
(|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ mentioned above, are derived in Lemma 12.1. We emphasize that

14However, such quantities do in fact exist for all scalar wave equations.
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our derivation of this additional spacetime integral is not just a consequence of the second key property;
rather, our derivation requires Ḟ to be a solution to the equations of variation.

1.2.7. Weighted Klainerman–Sobolev inequalities. Based on the energy inequalities of Proposition 12.3,
which are relatively straightforward consequences of Lemmas 12.1 and 12.2, it is clear that most of the
hard work in deriving the estimate (16.2.5) goes into estimating the integrals involving the inhomogeneous
terms I and Ḟ on the right-hand sides of (12.2.6) and (12.2.8). In particular, we attempt to summarize
here the origin of the factors (1+ τ)−1 and (1+ τ)−1+Cε that appear in (16.2.5) and that are of central
importance in our derivation of the fundamental a priori energy estimate (1.2.9). Roughly speaking, these
factors arise from a collection of pointwise decay estimates that we will soon explain. The first tools
of interest to us along these lines are the weighted Klainerman–Sobolev inequalities, which allow us to
deduce pointwise decay estimates for functions φ ∈ C∞0 (R

3) in terms of weighted L2 estimates for φ and
its Minkowskian covariant derivatives with respect to vector fields Z ∈ Z. More specifically (see also
Appendix B), the weighted Klainerman–Sobolev inequalities state that (with q def

= |x | − t)

(1+ t + |x |)[(1+ |q|)w(q)]1/2|φ(t, x)| ≤ C
∑
|I |≤3

‖w1/2(q)∇ I
Zφ(t, · )‖L2 . (1.2.10)

We refer to these estimates as “weak pointwise decay estimates” since they have nothing to do with the
special structure of the Einstein-nonlinear electromagnetic equations; a major theme permeating this
article is that, in order to close our global existence bootstrap argument, the estimate (1.2.10) needs to be
upgraded using the special structure of the equations. Inequality (1.2.10) can therefore be viewed as a
preliminary estimate that will play a role in the proof of the upgraded estimates.

The form of the inequalities (1.2.10) raises several important issues. First, in order to apply the weighted
Klainerman–Sobolev inequalities to h(1), we have to achieve L2 control over the quantities w1/2(q)∇ I

Zh(1).
To this end, we have to study the equations satisfied by the quantities ∇ I

Zh(1). In order to derive these
equations, we have to commute the operator ∇ I

Z through the reduced wave operator term 2̃gh(1). Lindblad
and Rodnianski accomplished this commutation through the use of modified covariant derivatives ∇̂Z ,
which are equal to ordinary covariant derivatives plus a scalar multiple (depending on Z ∈ Z) of the
identity; see Definition 6.5. The main advantage of these operators is that ∇̂Z2m −2m∇Z = 0, where
2m

def
= (m−1)κλ∇κ∇λ denotes the wave operator of the Minkowski metric; see Lemma 6.13. Therefore,

∇
I
Zh(1) is a solution to the equation 2̃g∇

I
Zh(1)=∇̂ I

Z2̃gh(1)+H κλ
∇κ∇λ∇

I
Zh(1)−∇̂ I

Z(H
κλ
∇κ∇λh(1)), where

2̃gh(1) is equal to the inhomogeneous term on the right-hand side of (1.2.4a) above and Hµν def
= (g−1)µν−

(m−1)µν = −hµν + O(|h|2). We remark that the analysis of the commutator term H κλ
∇κ∇λ∇

I
Zh(1)−

∇̂
I
Z(H

κλ
∇κ∇λh(1)), which was performed in [Lindblad and Rodnianski 2010] (see also Proposition 7.1

and Lemma 16.11), is among the most challenging work encountered. Rather than repeat this analysis and
the discussion behind it, which is thoroughly explained and carried out in [Lindblad and Rodnianski 2010],
we will instead focus on the analogous difficulties that arise in our analysis of F. We do, however, point
out the role that the Hardy inequalities of Proposition C.1 play in the analysis of h(1): they are used to
estimate a weighted L2 norm of ∇ I

Zh(1) by a weighted L2 norm of ∇∇ I
Zh(1). The main point is that ∇ I

Zh(1)
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is not directly controlled in L2 by the energy while ∇∇ I
Zh(1) is. The cost of applying the Hardy inequalities

is powers of 1+ |q|, which are always sufficiently available thanks to our use of the weight w(q).

1.2.8. The role of Lie derivatives. The next important issue concerning the weighted Klainerman–Sobolev
inequality (1.2.10) is that it is more convenient to work with Lie derivatives of F rather than covariant
derivatives of F; note that our definition (1.2.7) of our energy E`;γ;µ(t) involves Lie derivatives of F.
According to inequality (6.5.22) below, inequality (1.2.10) remains valid if we replace the operators ∇ I

Z

with LI
Z. However, as in the case of the ∇ I

Zh(1), we have to study the equations satisfied by the LI
ZF.

Now on the one hand, Lemma 6.8 shows that the operator LZ can be commuted through the Minkowski
connection ∇ in (1.2.4b). On the other hand, to commute Lie derivatives through (1.2.4c), it is convenient
to work with modified Lie derivatives L̂Z , which are equal to ordinary Lie derivatives plus a scalar
multiple15 (depending on Z ∈ Z) of the identity; see Definition 6.5. Unlike covariant derivatives, these
operators have favorable commutation properties with the linear Maxwell–Maxwell term ∇µFµν , which
is the leading term in (1.2.4c). More specifically, L̂Z [((m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ)∇µFκλ] =

[(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ ]∇µLZ Fκλ; see Lemma 6.14. As is captured by Proposition 8.1,
these operators are also useful for differentiating the nonlinear equation (1.2.4c); the error terms generated
have a favorable null structure that is captured in Proposition 11.4.

1.2.9. The tensor field h(0)µν . Let us now discuss the ideas behind the Lindblad–Rodnianski splitting of the
metric defined in (1.2.1a)–(1.2.1c). We first note that because of the 2M/r ADM mass term present in h(0)µν ,
substituting the tensor field hµν

def
= h(0)µν + h(1)µν in place of h(1)µν in the definition of the energy would lead

to E`;γ;µ(0)=∞. Thus, as a practical matter, the introduction of h(1)µν allows us to work with a quantity
of finite energy. Now according to the discussion in [Lindblad and Rodnianski 2010], the precise form
h(0)µν =χ(r/t)χ(r)(2M/r)δµν was determined by making an “educated” guess concerning the contribution
of the ADM mass term χ(r)(2M/r)δ jk , which is present in the data, to the solution. The term h(0)µν
manifests itself in the reduced equations as the 2̃gh(0)µν inhomogeneous term on the right-hand side of the
reduced equation (1.2.4a). Because of the identity 2m(1/r)= 0 for r > 0, where 2m = (m−1)κλ∇κ∇λ is
the Minkowski wave operator, it follows that the main contribution of the term 2̃gh(0)µν comes from the
“interior” region

{
(t, x)

∣∣ 1
2 < r/t < 3

4

}
; this is because the derivatives of χ(z) are supported in the interval[1

2 ,
3
4

]
. Now in the interior region, the quantities 1+ |q| and 1+ s are uniformly comparable. Thus, the

weighted Klainerman–Sobolev inequality (1.2.10) predicts strong decay for the solution in this region,
and consequently, one can derive suitable weighted Sobolev bounds for the inhomogeneity 2̃gh(0)µν ; see
Lemma 16.10 for a precise statement of this estimate.

1.2.10. The wave-coordinate condition. Before expanding our discussion of the pointwise decay estimates,
we will discuss the analytic role of the wave-coordinate condition∇ν[

√
|det g|(g−1)µν]=0 (µ=0, 1, 2, 3),

which plays multiple roles in this article. First, it hyperbolizes the Einstein equations. Second, it allows us
to replace certain unfavorable nonlinear terms from the equations (1.0.1a)–(1.0.1c) with more favorable
ones; the culmination of this procedure is exactly the reduced system (1.2.4a)–(1.2.4c). Finally, the
wave-coordinate condition also allows us to deduce several independent and improved estimates, both

15The multiple is 2cZ , where cZ is the multiple corresponding to the modified covariant derivative ∇̂Z .



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 789

at both the pointwise level and the L2 level, for the components hL L and hLT . As we will see, these
improved estimates are central to the structure of the proof of Theorem 16.1, and our stability argument
would not close without them. More specifically, as shown in [Lindblad and Rodnianski 2010], a null
decomposition of the wave-coordinate condition leads to the algebraic inequalities

|∇h|LT . |∇h| + |h||∇h|, (1.2.11a)

|∇∇Z h|LL . |∇∇Z h| +
∑

|I1|+|I2|≤1

|∇
I1
Z h||∇∇ I2

Z h| (Z ∈ Z), (1.2.11b)

where ∇ is the null frame projection of ∇ (the derivative component only) onto the outgoing Minkowski
cones. Note that the right-hand side of (1.2.11a) involves only favorable derivatives of h and quadratic
error terms while the left-hand side involves all derivatives of h, including the dangerous ∇L derivative.
Generalizations of (1.2.11a) for∇ I

Zh are stated in Proposition 11.1. We remark that it is important to note in
these generalizations that the estimates for |∇∇Z h|LL are stronger than what can be proved for |∇∇Z h|LT.

1.2.11. Upgraded pointwise decay estimates. We now discuss the full collection of upgraded pointwise
decay estimates (see Propositions 15.5–15.7 below), which are of central importance in closing the global
existence bootstrap argument. For as mentioned above, the weighted Klainerman–Sobolev estimates
(1.2.10) are not sufficient to close the argument. We remark that the reasons that we truly need the
upgraded pointwise decay estimates are discussed in more detail at beginning of Section 15. Aside
from the components hL L and hLT , which are controlled by the wave-coordinate condition, there is a
relatively strong coupling between the evolution of the remaining components of h and the evolution of the
dangerous α[F] component of the Faraday tensor. Therefore, our proofs of the upgraded estimates (and
Proposition 15.7 in particular) have a hierarchical structure; i.e., the order in which they are proved is very
important. Although we don’t provide a complete description of all of the subtleties of this hierarchy in this
introduction, we do provide a preliminary description of some of its salient features. We first emphasize the
following important feature: most null components of h, the α null component of F, and the components
∇Z hL L (for Z ∈Z) have better t-decay properties than their higher-order-derivative counterparts; this is the
content of Proposition 15.6. Roughly speaking, the reason for this discrepancy is that the nondifferentiated
reduced equations have a more favorable algebraic structure than the differentiated reduced equations. This
feature will be particularly important during our global existence argument, for the principal terms (from
the point of view of differentiability) in the Leibniz expansion of the operator∇ I

Z acting on a quadratic term
are of the form u∇ I

Zv and similarly for the operator LI
Z. Consequently, the strong pointwise decay property

of the nondifferentiated quantity, which is represented by u, is a crucially important ingredient of the
derivation of the Cε

∫ t
0 (1+ τ)

−1E2
k;γ;µ(τ ) dτ term on the right-hand side of (16.2.5). We emphasize that

our stability proof would not go through if this term were replaced with Cε
∫ t

0 (1+ τ)
−1+CεE2

k;γ;µ(τ ) dτ .
The derivation of the upgraded pointwise decay estimates for the Faraday tensor begins with Propo-

sition 9.3, which provides a null decomposition of the electromagnetic equations of variation, and
Proposition 11.4, which provides a null decomposition of the inhomogeneous terms that result after differ-
entiating the reduced electromagnetic equations with modified Lie derivatives. The net effect is that the
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null components of the lower-order Lie derivatives of F satisfy ordinary differential inequalities16 (which
we loosely refer to as ODEs) along ingoing and outgoing cones (see Proposition 11.5), and furthermore, the
inhomogeneous terms appearing on the right-hand side of the ODEs can be inductively controlled (see the
proofs of Propositions 15.5–15.7). We remark that this analysis of the lower-order derivatives of F involves
a loss of several derivatives because the right-hand sides of the ODEs depend on the higher-order derivatives
of F, which are pointwise bounded via the weighted Klainerman–Sobolev estimates (1.2.10). We stress that
this loss of differentiability is not a concern because we only need to analyze the lower-order derivatives
of F in this fashion. Similar remarks apply for our analysis of the upgraded pointwise decay estimates
for h, which are briefly described below. It is important to distinguish between two classes of ODEs that
play a role in this analysis. The first class consists of ODEs for rescaled versions of the null components
(α̇, ρ̇, σ̇ )

def
= (α[LI

ZF], ρ[LI
ZF], σ [LI

ZF]) and involves differentiation in the direction of the null generators
of the ingoing Minkowskian cones; i.e., the principal part of the ODEs is ∇L . We remark that this point of
view represents a rather crude treatment of (9.1.8b)–(9.1.8d), but because of the favorable decay properties
of the inhomogeneities, this approach is sufficient to conclude the desired estimates: by integrating back
towards the Cauchy hypersurface 60 in the direction −L , we are able to deduce t-decay for α[LI

ZF],
ρ[LI

ZF], and σ [LI
ZF] from t-decay of the inhomogeneous terms at the expense of a loss of decay in q.

We remark that the proof of the upgraded estimates for these components happens in two stages. We refer
to the first-stage estimates, which are proved in Proposition 15.5, as the “initial upgraded” pointwise decay
estimates. These first-stage estimates follow from using the weighted Klainerman–Sobolev estimates to
bound the inhomogeneous terms in the ODEs. The second-stage upgraded estimates, which we refer to as
“fully upgraded” pointwise decay estimates, are proved at the end of Proposition 15.7 after all of the other
upgraded pointwise decay estimates for the remaining components of the lower-order derivatives of h and F

have been proved. For at this point in the upgraded hierarchy, we will have better pointwise control over
the inhomogeneous terms in the ODEs than that afforded by the weighted Klainerman–Sobolev estimates.

The next class consists of ODEs for rescaled versions of the null component α̇ def
= α[LI

ZF]. Notice that
(see (9.1.8a)), unlike the other null components, α̇ does not satisfy an ODE that to 0-th order involves
differentiation in the direction of L . Instead, at first sight, it might appear that one should reason in
analogy with the first class and view (9.1.8a) as an ODE in the direction of L with inhomogeneous terms.
However, the desired decay estimates do not close at this level. Instead, one must also consider the effect
of the quadratic term −6m λ

ν hµκ∇µḞκλ. A null decomposition of this term reveals that it contains the
dangerous term 1

4 hL L∇L α̇ν , which decays too slowly to be treated as an inhomogeneous term in the
ODE satisfied by α̇. To remedy this difficulty, we introduce the vector field 3 = L + 1

4 hL L L , which
can be viewed as a first-order correction to the Minkowski outgoing null direction arising from the
presence of a nonzero tensor field h in the expansion gµν = mµν + hµν . Note that, for these upgraded
pointwise decay estimates for the lower-order Lie derivatives, we do not bother to correct for the fact
that the electromagnetic model is not necessarily the Maxwell–Maxwell model; the deviation from the
Maxwell–Maxwell model comprises cubic terms, which we can treat as small inhomogeneities. We may
thus view (9.1.8a) as an ODE in the direction of 3 with inhomogeneous terms; this is exactly the point of

16More precisely, the null components satisfy transport equations with small sources.
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view emphasized in Proposition 11.5. Because we have a sufficiently strong independent decay estimates
for hL L and for the inhomogeneities, this approach is sufficient to achieve the desired estimates.

Our analysis of the upgraded pointwise decay estimates for the metric-related quantities h and h(1)

closely mirrors the analysis in [Lindblad and Rodnianski 2010]. Hence, we will not discuss them in full
detail here but instead refer the reader to the discussion in [ibid.]. The estimates can be divided into
three classes, the first one being the estimates (15.3.1a) and (15.3.1b) for |∇h|LT, |∇∇Z h|LL, |h|LT,
and |∇Z h|LL. As was suggested above, the first-class estimates are consequences of the additional special
algebraic structure that follows from the wave-coordinate condition together with the weighted Klainerman–
Sobolev inequality. The second class consists of the estimates (15.3.2a) and (15.3.2b) for |∇h|TN and |∇h|.
These estimates heavily rely on the decay estimates of Lemma 13.2 and Corollary 13.3 below, which
were proved in [Lindblad and Rodnianski 2010] and which are of independent interest. The lemma
and its corollary can be viewed as a second-order counterpart to the ODE estimates for the Faraday
tensor discussed in the previous paragraphs. It is important to note that the hypotheses of the lemma
and its corollary are satisfied as a consequence of the independent upgraded pointwise decay estimates
provided by the wave-coordinate condition. The third class consists of the estimates (15.3.4a), (15.3.4b),
and (15.3.4c) for |∇∇ I

Zh(1)|, |∇ I
Zh(1)|, and |∇∇ I

Zh(1)| (related estimates for the tensor field h also hold).
Their derivation is similar in spirit to the derivation of the second-class estimates, but the inductive proof
we give is highly coupled to the simultaneous derivation of analogous upgraded pointwise decay estimates
for |LI

ZF|, which were discussed two paragraphs ago.

1.2.12. Lie differentiation, Minkowski-covariant differentiation, and null structure. We make some final
comments concerning the relationship between Lie derivatives and Minkowski-covariant derivatives. On
the one hand, because we commute the equations satisfied by h(1) with the operators∇ I

Z, our analysis of h(1)

naturally requires us to estimate the quantities |∇ I
Zh|, |∇ I

Zh|LL, |∇ I
Zh|LT, etc. Furthermore, as discussed

above, the quantities |∇ I
Zh|LL and |∇ I

Zh|LT have a distinguished role in view of their connection to the
wave-coordinate condition. On the other hand, because we commute the electromagnetic equations with
Lie derivatives, we will have to confront the terms |LI

Zh|, |LI
Zh|LL, |LI

Zh|LT, etc. In order to bridge the
gap between Lie derivative estimates and covariant derivative estimates, we provide Proposition 6.19, the
proof of which relies on the special algebraic-geometric structure of the vector fields in Z. Proposition 6.19
is an especially important ingredient in the null decomposition estimate (11.1.11b). As an example of the
role played by this proposition, we cite the estimate (6.5.23c), which reads

|LI
Zh|LL . |∇

I
Zh|LL+

∑
|J |≤|I |−1

|∇
J
Zh|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇
J ′
Z h|︸ ︷︷ ︸

absent if |I | ≤ 1

.

This shows that, in the translation from Lie derivatives to covariant derivatives, the error terms that
arise in the analysis of the | · |LL seminorm are either 1 degree lower in order and controllable by the
wave-coordinate condition (i.e., the terms with |J | ≤ |I |−1) or are 2 degrees lower in order (i.e., the terms
with |J ′| ≤ |I | − 2). This fact, and others similar to it, play an essential role in allowing our hierarchy of
estimates to unfold in a viable order.
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1.3. Outline of the article. The remainder of the article is organized as follows.

• In Section 2, we provide for convenience a summary of the notation that is used throughout the article.

• In Section 3, we discuss the Einstein-nonlinear electromagnetic equations in detail. We also introduce
our wave-coordinate condition and our assumptions on the electromagnetic Lagrangian. Next, we derive a
reduced system of equations, which is equivalent to the system of interest in our wave-coordinate gauge. In
Section 3.7, we summarize the version of the reduced equations that we work with for most of the article.

• In Section 4, we construct initial data for the reduced system from the abstract initial data in a manner
compatible with the wave-coordinate condition. We also sketch a proof of the fact that the wave-coordinate
condition is preserved by the flow of the reduced equations.

• In Section 5, we introduce the notion of a Minkowskian null frame and discuss the corresponding null
decomposition of various tensor fields.

• In Section 6, we introduce the differential operators that will be used throughout the remainder of the
article, including modified Lie derivatives and modified covariant derivatives with respect to a special
subset Z of Minkowskian conformal Killing fields. We also provide a collection of lemmas that relate
the various operators.

• In Section 7, we provide a preliminary algebraic expression for the equations satisfied by ∇ I
Zh(1), where

h(1) is a solution to the reduced equations.

• In Section 8, we introduce the electromagnetic equations of variation, which are a linearized version of
the electromagnetic equations. We also provide a preliminary algebraic expression for the inhomogeneous
terms in the equations of variation satisfied by LI

ZF, where F is a solution to the reduced equations. We
then introduce the canonical stress tensor and use it to construct an energy current that will be used to
control weighted Sobolev norms of LI

ZF.

• In Section 9, we perform two decompositions of the electromagnetic equations, including a null
decomposition of the electromagnetic equations of variation and a decomposition of the electromagnetic
equations into constraint equations and evolution equations for the Minkowskian one-forms E , D, B,
and H . In order to connect these one-forms to the abstract initial data, we also introduce the geometric
electromagnetic one-forms E, D, B, and H.

• In Section 10, we introduce our smallness condition on the abstract initial data. We then prove that
this smallness condition guarantees that the energy E`;γ;µ(t) of the corresponding solution to the reduced
equations is small at t = 0; it is this smallness of E`;γ;µ(0) that will lead to a global solution of the
reduced equations.

• In Section 11, we provide algebraic estimates for the inhomogeneities in the reduced equations under
the assumption that the wave-coordinate condition holds. We also derive ordinary differential inequalities
for the null components of LI

ZF and provide algebraic estimates for the corresponding inhomogeneities.

• In Section 12, we prove weighted energy estimates for solutions to the electromagnetic equations of
variation. We also recall some results of [Lindblad and Rodnianski 2010] that provide analogous weighted
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energy estimates for both scalar wave equations and tensorial systems of wave equations with principal
part (g−1)κλ∇κ∇λ.
• In Section 13, we recall some results of [Lindblad and Rodnianski 2010] that provide pointwise
decay estimates for both scalar wave equations and tensorial systems of wave equations with principal
part (g−1)κλ∇κ∇λ.
• In Section 14, we state a basic local well-posedness result and continuation principle for the reduced
equations. The continuation principle will be used in Section 16 in order to deduce small-data global
existence for the reduced equations from a suitable bound on the energy E`;γ;µ(t).
• In Section 15, we introduce our bootstrap assumption on the energy E`;γ;µ(t). We then use this
assumption to deduce a collection of pointwise decay estimates for solutions to the reduced equations
under the assumption that the wave-coordinate condition holds.
• In Section 16, we prove our main results. The results are separated into two theorems. In Theorem 16.1,
we use the decay estimates proved in Section 15 to derive a “strong” a priori estimate for the energy
E`;γ;µ(t); the proof of this theorem is the centerpiece of the article. Theorem 16.3, which is our main
theorem demonstrating the stability of Minkowski spacetime, is then an easy consequence of Theorem 16.1
and the continuation principle of Section 14. Both of these theorems rely upon the assumption that the
wave-coordinate condition holds.

2. Notation

For convenience, in this section, we collect some of the important notation that is introduced throughout
the article.

2.1. Constants. We use the symbols c, c̃, C , and C̃ to denote generic positive constants that are free to
vary from line to line. In general, they can depend on many quantities, but in the small-solution regime
that we consider in this article, they can be chosen uniformly. Sometimes it is illuminating to explicitly
indicate one of the quantities Q that a constant depends on; we do by writing, e.g., CQ. If A and B are
two quantities, then we often write

A . B

to mean that “there exists a uniform constant C > 0 such that A ≤ C B”. Furthermore, if A . B and
B . A, then we often write

A ≈ B.

2.2. Indices.

• Lowercase Latin indices a, b, j , k, etc., take on the values 1, 2, or 3.
• Greek indices κ , λ, µ, ν, etc., take on the values 0, 1, 2, or 3.
• Primed indices κ ′, λ′, etc., are used in the same way as unprimed indices.
• Uppercase Latin indices A, B, etc., take on the values 1 or 2 and are used to enumerate the two
Minkowski-orthonormal null frame vectors tangent to the spheres Sr,t .
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• As a convention, the tensor fields Fµν , Mµν , Rµν , Tµν , εµνκλ, and Nµνκλ are assumed to “naturally”
have all of their indices downstairs, and unless indicated otherwise, all indices on all tensors are lowered
and raised with the Minkowski metric mµν and its inverse (m−1)µν ; e.g., T µν

= (m−1)µκ(m−1)νλTκλ.

• The symbol # is used to indicate that all indices of a given tensor field have been raised with g−1; e.g.,
T #µν

= (g−1)µκ(g−1)νλTκλ.

• Repeated indices are summed over.

2.3. Coordinates.

• {xµ}µ=0,1,2,3 denotes the wave-coordinate system.

• t = x0, x = (x1, x2, x3).

• q = r − t and s = r + t are the null coordinates of the spacetime point (t, x), where r = |x |.

• q− = 0 if q ≥ 0, and q− = |q| if q < 0.

• ω j
= x j/r ( j = 1, 2, 3).

2.4. Surfaces. Relative to the wave-coordinate system:

• C−s = {(τ, y) | |y| + τ = s} are the ingoing Minkowskian null cones.

• C+q = {(τ, y) | |y| − τ = q} are the outgoing Minkowskian null cones.

• 6t = {(τ, y) | τ = t} are the constant Minkowskian time slices.

• Sr,t = {(τ, y) | τ = t, |y| = r} are the Euclidean spheres.

2.5. Metrics and volume forms.

• mµν denotes the standard Minkowski metric on R1+3; mµν = diag(−1, 1, 1, 1) in our wave-coordinate
system.

• m denotes the Minkowskian first fundamental form of 6t ; mµν = diag(0, 1, 1, 1) in our wave-coordinate
system.

• 6m denotes the Minkowskian first fundamental form of Sr,t ; relative to an arbitrary coordinate system,
6mµν = mµν +

1
2(LµLν + LµLν), where L and L are defined in Section 2.9.

• gµν denotes the spacetime metric.

• gµν = mµν + h(0)µν + h(1)µν is the splitting of the spacetime metric into the Minkowski metric mµν , the
Schwarzschild tail h(0)µν = χ(r/t)χ(r)(2M/r)δµν , and the remainder h(1)µν .

• hµν = h(0)µν + h(1)µν .

• (g−1)µν = (m−1)µν + Hµν

(0) + Hµν

(1) is the splitting of the inverse spacetime metric into the inverse
Minkowski metric (m−1)µν , the Schwarzschild tail Hµν

(0) =−χ(r/t)χ(r)(2M/r)δµν , and the remainder
Hµν

(1) .

• Hµν
= Hµν

(0) + Hµν

(1) .

• g̊ denotes the first fundamental form of the Cauchy hypersurface 60 relative to the spacetime metric g.
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• g̊ jk = δ jk+χ(r)(2M/r)δ jk+ h̊(1)jk is the splitting of g̊ jk into the Euclidean metric δ jk , the Schwarzschild
tail χ(r)(2M/r)δ jk , and the remainder h̊(1)jk .

• υµνκλ = |det m|1/2[µνκλ] denotes the volume form of the Minkowski metric m; [µνκλ] is totally
antisymmetric with normalization [0123] = 1; |det m|1/2 = 1 in our wave-coordinate system.

• εµνκλ = |det g|1/2[µνκλ] denotes the volume form of the spacetime metric g.

• ε#µνκλ
=−|det g|−1/2

[µνκλ] denotes the volume form of the spacetime metric g with all of the indices
raised with g−1.

• υνκλ = [0νκλ] denotes the Euclidean volume form of the surfaces 6t viewed as embedded Riemannian
submanifolds of Minkowski spacetime equipped with the wave-coordinate system.

• υ i jk = [i jk] denotes the Euclidean volume form of the surfaces 6t viewed as a Riemannian 3-manifold
equipped with the standard Euclidean coordinate system.

• 6υµν = υµνκλLκLλ denotes the Euclidean volume form of the spheres Sr,t .

2.6. Hodge duals. For an arbitrary two-form Fµν :

•
?Fµν =

1
2 gµµ′gνν′ε#µ′ν′κλFκλ=−

1
2 |det g|−1/2gµµ′gνν′[µ′ν ′κλ]Fκλ denotes the Hodge dual of Fµν with

respect to the spacetime metric gµν .

•
~Fµν=

1
2υ

κλ
µν Fκλ=−

1
2 |det m|−1/2mµµ′mνν′[µ

′ν ′κλ]Fκλ denotes the Hodge dual of Fµν with respect
to the Minkowski metric mµν . In our wave-coordinate system, |det m|−1/2

= 1.

2.7. Derivatives.

• ∇ denotes the Levi-Civita connection corresponding to m.

• D denotes the Levi-Civita connection corresponding to g.

• D̊ denotes the Levi-Civita connection corresponding to g̊.

• ∇ denotes the Levi-Civita connection corresponding to m.

• 6 ∇ denotes the Levi-Civita connection corresponding to 6m.

• ∇ denotes the null frame projection of ∇ onto the outgoing Minkowski null cones; i.e., ∇µ = π κ
µ ∇κ ,

where π ν
µ = δ

ν
µ+

1
2 LµLν projects vectors Xµ onto the outgoing Minkowski null cones.

• In our wave-coordinate system {xµ}µ=0,1,2,3, ∂µ = ∂
∂xµ and ∇µ =∇(∂/∂xµ).

• In our wave-coordinate system, ∂r = ω
a∂a denotes the radial derivative, where ω j

= x j/r .

• In our wave-coordinate system, ∂s =
1
2(∂r + ∂t) and ∂q =

1
2(∂r − ∂t) denote the null derivatives; ∂q

denotes partial differentiation at fixed s and fixed angle x/|x | while ∂s denotes partial differentiation at
fixed q and fixed angle x/|x |.

• If X is a vector field and φ is a function, then Xφ = Xκ ∂κφ.

• ∇X denotes the differential operator Xκ
∇κ .

• ∇X denotes the differential operator Xκ
∇κ .

• 6 ∇X denotes the differential operator Xκ
6 ∇κ .
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• LX denotes the Lie derivative with respect to the vector field X .

• [X, Y ]µ = (LX Y )µ = Xκ ∂κYµ− Y κ ∂κXµ denotes the Lie bracket of the vector fields X and Y .

• For Z ∈ Z, ∇̂Z =∇Z + cZ denotes the modified covariant derivative, where the constant cZ is defined
in Section 2.8.

• For Z ∈ Z, L̂Z = LZ + 2cZ denotes the modified Lie derivative, where the constant cZ is defined in
Section 2.8.

• ∇
I U , ∇ I U , ∇ I

ZU , ∇̂ I
ZU , LI

ZU , and L̂I
ZU respectively denote an |I |-th order iterated Minkowski

covariant derivative, iterated Euclidean (spatial) covariant derivative, iterated Minkowski Z-covariant
derivative, iterated modified Minkowski Z-covariant derivative, iterated Z-Lie derivative, and iterated
modified Z-Lie derivative of the tensor field U .

• 2m = (m−1)κλ∇κ∇λ denotes the standard Minkowski wave operator.

• 2̃g = (g−1)κλ∇κ∇λ denotes the reduced wave operator corresponding to the spacetime metric g. Note
that ∇ is the Minkowskian connection.

2.8. Minkowskian conformal Killing fields. Relative to the wave-coordinate system {xµ}µ=0,1,2,3 =

(t, x):

• ∂µ =
∂
∂xµ (µ= 0, 1, 2, 3) denotes a translation vector field.

• � jk = x j
∂
∂xk − xk

∂
∂x j (1≤ j < k ≤ 3) denotes a rotation vector field.

• �0 j =−t ∂
∂x j − x j

∂
∂t ( j = 1, 2, 3) denotes a Lorentz boost vector field.

• S = xκ ∂
∂xκ denotes the scaling vector field.

• O= {� jk}1≤ j<k≤3 are the rotational Minkowskian Killing fields.

• Z=
{
∂
∂xµ , �µν, S

}
0≤µ≤ν≤3.

• For Z ∈ Z, (Z)πµν =∇µZν +∇νZµ = cZ mµν is the Minkowskian deformation tensor of Z , where cZ

is a constant.

• Commutation properties with the Maxwell–Maxwell term:

L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ.

• Commutation properties with the Minkowski wave operator 2m = (m−1)κλ∇κ∇λ:

[2m, ∂µ] = [2m, �µν] = 0, [2m, S] = 22m, [∇Z ,2m] = −cZ2m, and 2m∇Zφ = ∇̂2mφ.

2.9. Minkowskian null frames.

• L = ∂t − ∂r denotes the Minkowskian null geodesic vector field transversal to the C+q ; it generates the
cones C−s .

• L = ∂t + ∂r denotes the Minkowskian null geodesic vector field generating the cones C+q .

• eA (A=1, 2) denotes Minkowski-orthonormal vector fields spanning the tangent space of the spheres Sr,t .

• The set L= {L} contains only L .
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• The set T= {L , e1, e2} denotes the frame vector fields tangent to the C+q .
• The set N= {L, L , e1, e2} denotes the entire Minkowski null frame.

2.10. Minkowskian null frame decomposition.

• For an arbitrary vector field X and frame vector field N ∈N, we define X N = XκN κ , where Xµ=mµκXκ .
• For an arbitrary vector field X , X = Xκ ∂κ = X L L + X L L + X AeA, where X L

=−
1
2 X L , X L

=−
1
2 X L ,

and X A
= X A.

• For an arbitrary pair of vector fields X and Y ,

m(X, Y )= mκλXκXλ
= XκYκ =− 1

2 X LYL −
1
2 X LYL + X AYA.

If Fµν is any two-form, its Minkowskian null components are:

• αµ = 6m ν
µ FνλLλ.

• αµ = 6m ν
µ FνλLλ.

• ρ = 1
2 FκλLκLλ.

• σ = 1
2 6υ

κλFκλ.

2.11. Electromagnetic decompositions. If Fµν is any two-form, ?Mµν = gµκgνλ
(
∂?L
∂Fκλ
−

∂?L
∂Fλκ

)
and N̂µ

is the future-directed unit g-normal to 6t , then its electromagnetic components are:

• Eµ = Fµκ N̂ κ .
• Bµ =−

?Fµκ N̂ κ .
• Dµ =−

?Mµκ N̂ κ .
• Hµ =−Mµκ N̂ κ .

If Fµν is any two-form, then relative to the wave-coordinate system, its Minkowskian electromagnetic
components are:

• Eµ = Fµ0.
• Bµ =−~Fµ0.
• Dµ =−

~Mµ0.
• Hµ =−Mµ0.

2.12. Seminorms and energies. For an arbitrary type-
(0

2

)
tensor field Pµν and V,W ∈ {L,T,N}:

• |P|VW =
∑

V∈V,W∈W|V
κW λPκλ|.

• |∇P|VW =
∑

N∈N, V∈V,W∈W|V
κW λN γ

∇γ Pκλ|.
• |∇P|VW =

∑
T∈T, V∈V,W∈W|V

κW λT γ
∇γ Pκλ|.

• |P| = |P|NN.
• |∇P| = |∇P|NN.
• |∇P| = |∇P|NN.
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• We use similar notation for an arbitrary tensor field U of type
(n

m

)
.

For an arbitrary tensor field U defined on the Euclidean space 60 with Euclidean coordinate system
x = (x1, x2, x3):

• ‖U‖2L2 =
∫

x∈R3 |U (x)|2 d3x is the square of the standard spatial L2 norm of U .
• ‖U‖L∞ = ess supx∈R3 |U (x)| is the standard spatial L∞ norm of U .
• ‖U‖2H `

η
=
∑
|I |≤`

∫
x∈R3(1+ |x |2)(η+|I |)|∇ I U (x)|2 d3x is the square of a weighted Sobolev norm of U .

• ‖U‖2C`
η
=
∑
|I |≤` ess supx∈R3(1+ |x |2)(η+|I |)|∇ I U (x)|2 is the square of a weighted L∞ norm of U .

For arbitrary abstract initial data (h̊(1)jk , K̊ jk, D̊ j , B̊ j ) on the manifold R3:

• E2
`;γ(0)= ‖∇h̊(1)‖2

H `
1/2+γ
+‖K̊‖2

H `
1/2+γ
+‖D̊‖2

H `
1/2+γ
+‖B̊‖2

H `
1/2+γ

is the square of the norm of the abstract
initial data.

For an arbitrary symmetric type-
(0

2

)
tensor field h(1)µν and an arbitrary two-form Fµν :

• E2
`;γ;µ(t)= sup0≤τ≤t

∑
|I |≤`

∫
6τ
(|∇∇ I

Zh(1)|2+|LI
ZF|2)w(q) d3x is the square of the energy of the pair

(h(1)µν ,Fµν).

2.13. O`( · ) and o`( · ).

• Given an `-times continuously differentiable function f (Q1, . . . ,Qm) depending on the tensorial
quantities Q1, . . . ,Qm , we write f (Q1, . . . ,Qm) = O`(|Q1|

p1 · · · |Qk |
pk ;Qk+1, . . . ,Qm) if we can

decompose f (Q1, . . . ,Qm)=
∑n

i=1 Pi (Q1, . . . ,Qk) f̃i (Q1, . . . ,Qm), where n is a positive integer, each
Pi (Q1, . . . ,Qk) is a polynomial in the components of Q1, . . . ,Qk that satisfies |Pi (Q1, . . . ,Qk)| .
|Q1|

p1 · · · |Qk |
pk on a neighborhood of the origin, and f̃i ( · ) is `-times continuously differentiable on a

neighborhood of the origin.
• Given an `-times continuously differentiable function f (x), if limr→∞|∇

I f (x)|/ra+|I |
= 0 for |I | ≤ `,

we write f (x)= o`(r−a).

2.14. Fixed constants. The fixed constants `, δ, γ, µ, γ′, and µ′ are subject to the following constraints:

• To prove our global stability theorem, we assume that ` is an integer satisfying `≥ 10.
• 0< δ< 1

4 .
• 0< δ< γ< 1

2 .
• 0< γ′ < γ− δ.
• 0< δ< µ′ < 1

2 .
• 0< µ< 1

2 −µ′.

2.15. Weights.

• w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0

is the energy estimate weight function.

• $ =$(q)=
{
(1+ |q|)1+γ

′

if q > 0,
(1+ |q|)1/2−µ

′

if q < 0
is the pointwise decay estimate weight function.
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3. The Einstein-nonlinear electromagnetic system in wave coordinates

In this section, we discuss (1.0.1a)–(1.0.1c) in detail. We also discuss our assumptions on the electro-
magnetic Lagrangian and introduce our wave-coordinate gauge. We then derive a reduced system of
equations that is equivalent to the system (1.0.1a)–(1.0.1c) in the wave-coordinate gauge. Finally, we
summarize the results by providing the version (3.7.1a)–(3.7.1c) of the reduced equations, which will
be used throughout the remainder of the article. In particular, in this version, we distinguish between
principal terms, which require a careful treatment, and “error terms”, which are, from the point of view
of decay rates, relatively easy to estimate.

In this article, we consider the (1+3)-dimensional electrogravitational system (1.0.1a)–(1.0.1c), which
we restate here for convenience:

Rµν − 1
2 gµνR = Tµν (µ, ν = 0, 1, 2, 3), (3.0.1a)

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (3.0.1b)

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (3.0.1c)

We remark that the spacetimes we consider will always have the manifold structure I ×R3 for some
“time” interval I . The energy-momentum tensor Tµν is given below in (3.5.4a), while Mµν is related
to (gµν,Fµν) via the constitutive relation (3.2.4). The precise forms of Tµν and Mµν depend on the
chosen model of electromagnetism, which, as is discussed in detail in Section 3.2, we assume is a
Lagrangian-derived model subject to the restrictions (3.3.3a) and (3.3.4a)–(3.3.4b) below. We recall (see,
e.g., [Christodoulou 2008; Wald 1984]) the following relationships between the spacetime metric gµν ,
the Riemann curvature tensor17 R λ

µκν , the Ricci tensor Rµν , the scalar curvature R, and the Christoffel
symbols 0 κ

µ ν , which are valid in an arbitrary coordinate system:

R λ
µκν

def
= ∂κ0

λ
µ ν − ∂µ0

λ
κ ν +0

λ
κ β0

β
µ ν −0

λ
µ β0

β
κ ν, (3.0.2a)

Rµν
def
= R κ

µκν = ∂κ0
κ
µ ν − ∂µ0

κ
κ ν +0

κ
κ λ0

λ
µ ν −0

λ
µ κ0

κ
λ ν, (3.0.2b)

R def
= (g−1)κλRκλ, (3.0.2c)

0 κ
µ ν

def
=

1
2(g
−1)κλ(∂µgλν + ∂νgµλ− ∂λgµν). (3.0.2d)

We also recall the following symmetry properties:

Rµν = Rνµ, (3.0.3)

0 κ
µ ν = 0

κ
ν µ. (3.0.4)

We note for future use that taking the trace with respect to g of each side of (3.0.1a) implies that

R =−(g−1)κλTκλ. (3.0.5)

Hence, (3.0.1a) is equivalent to

17Under our sign convention, DµDνXκ −DνDµXκ = R λ
µνκ Xλ.



800 JARED SPECK

Rµν = Tµν − 1
2 gµν(g−1)κλTκλ. (3.0.1a′)

Furthermore, we note that the twice-contracted Bianchi identities (see, e.g., [Wald 1984]) are the relation
(see Section 2.2 concerning our use of the notation #)

Dµ(R#µν
−

1
2(g
−1)µνR)= 0 (ν = 0, 1, 2, 3) (3.0.6)

so that by (3.0.1a) Tµν necessarily satisfies the following divergence-free condition:

DµT #µν
= 0 (ν = 0, 1, 2, 3). (3.0.7)

In the above expressions, D denotes the Levi-Civita connection corresponding to gµν .

3.1. Wave coordinates. In this article, we use the framework developed in [Lindblad and Rodnianski
2005; 2010] and work in a wave-coordinate system, which is defined to be a coordinate system in which

0µ
def
= (g−1)κλ0

µ
κ λ = 0 (µ= 0, 1, 2, 3). (3.1.1a)

The condition (3.1.1a) is also known as harmonic gauge or de Donder gauge. It is easy to check that the
condition (3.1.1a) is equivalent to the conditions

gµν(g−1)κλ0 ν
κ λ = 0 (µ= 0, 1, 2, 3), (3.1.1b)

(g−1)κλ ∂κgλµ− 1
2(g
−1)κλ ∂µgκλ = 0 (µ= 0, 1, 2, 3), (3.1.1c)

∂ν
[√
|det g|(g−1)µν

]
= 0 (µ= 0, 1, 2, 3). (3.1.1d)

We also note that condition (3.1.1d) follows from the identity

0µ
def
= (g−1)κλ0

µ
κ λ =−

1
√
|det g|

∂ν
[√
|det g|(g−1)µν

]
(µ= 0, 1, 2, 3), (3.1.2)

which holds in any coordinate system. Furthermore, if the wave-coordinate system is also interpreted
to be a coordinate system in which the Minkowski metric takes the form mµν = diag(−1, 1, 1, 1), then
all coordinate derivatives ∂ can be interpreted as covariant derivatives ∇, where ∇ is the Levi-Civita
connection corresponding to the Minkowski metric. Throughout the article, we will often take this point
of view because it allows for a covariant interpretation of all of our equations.

We remark that the use of wave coordinates in the study of the Einstein equations goes back at least to
the work of de Donder [1921]. However, it was not until Choquet-Bruhat’s [1952] fundamental work
that it became clear that the Einstein equations are fundamentally hyperbolic in nature and that wave
coordinates can be used to prove local well-posedness. See Section 4.3 for further discussion on the
viability of using wave coordinates to analyze the system (3.0.1a)–(3.0.1c).

3.2. The Lagrangian formulation of nonlinear electromagnetism. In this section, we recall some stan-
dard facts concerning a classical electromagnetic field theory in a Lorentzian spacetime (R1+3, gµν). Our
goal is to explain the origin of (3.0.1b)–(3.0.1c). We remark that, for our purposes in this section, we may
assume that the spacetime is known. The fundamental quantity in such a classical electromagnetic field
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theory is the Faraday tensor Fµν , which is an antisymmetric type-
(0

2

)
tensor field (i.e., a two-form). We

assume the Faraday–Maxwell law, which is the postulate that Fµν is closed:

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.1)

where d denotes the exterior derivative operator.
We restrict our attention to covariant theories of nonlinear electromagnetism arising from a Lagrangian

L. In such a theory, the Hodge dual18 ?L of L is a scalar-valued function of the two invariants of the
Faraday tensor, which we denote by �(1) and �(2):

?L= ?L(�(1), �(2)), (3.2.2a)

�(1) = �(1)[F]
def
=

1
2(g
−1)κµ(g−1)λνFκλFµν, (3.2.2b)

�(2) = �(2)[F]
def
=

1
4(g
−1)κµ(g−1)λνFκλ

?Fµν =
1
8ε

#κλµνFκλFµν . (3.2.2c)

Throughout the article, we use ? to denote the Hodge duality operator corresponding to the spacetime
metric gµν :

?F#µν def
=

1
2ε

#µνκλFκλ. (3.2.3)

Here, ε#µνκλ is totally antisymmetric with normalization ε#0123
= −|det g|−1/2 while εµνκλ is totally

antisymmetric with normalization ε0123 = |det g|1/2. See Section 2.2 concerning our use of the notation #.
We remind the reader that our main results are derived for a class of Lagrangians that satisfy certain
assumptions; these assumptions are listed in (3.3.3a) and (3.3.4a)–(3.3.4b) below.

We now introduce the Maxwell tensor Mµν , a two-form whose Hodge dual ?Mµν is defined by

?M#µν def
=

∂?L

∂Fµν

−
∂?L

∂Fνµ

. (3.2.4)

We also postulate that Mµν is closed:

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (3.2.5)

Taken together, (3.2.1) and (3.2.5) are the electromagnetic equations for Fµν corresponding to ?L.
We remark for future use that it is straightforward to verify that (3.2.1) is equivalent to any of

DλFµν +DνFλµ+DµFνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.6a)

∇λFµν +∇νFλµ+∇µFνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.6b)

Dµ
?F#µν

= 0 (ν = 0, 1, 2, 3), (3.2.6c)

∇µ
~Fµν

= 0 (ν = 0, 1, 2, 3) (3.2.6d)

18For brevity, we often refer to ?L as the Lagrangian.
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and that (3.2.5) is equivalent to any of

DλMµν +DνMλµ+DµMνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.7a)

∇λMµν +∇νMλµ+∇µMνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.7b)

Dµ
?M#µν

= 0 (ν = 0, 1, 2, 3), (3.2.7c)

∇µ
~Mµν

= 0 (ν = 0, 1, 2, 3). (3.2.7d)

In the above formulas, ~ denotes the Hodge duality operator corresponding to the Minkowski metric mµν ;
this operator is defined in Section 2.6.

We state as a lemma the following identities, which will be used for various computations. We leave
the proof as a simple exercise for the reader.

Lemma 3.1 (Basic identities). The following identities hold:

∂|det g|
∂gµν

= |det g|(g−1)µν, (3.2.8a)

∂(g−1)κλ

∂gµν
=−(g−1)κµ(g−1)λν, (3.2.8b)

�2
(2) = |det F||det g|−1, (3.2.8c)

(g−1)κλFµκFνλ− (g−1)κλ?Fµκ
?Fνλ = �(1)gµν, (3.2.8d)

(g−1)κλFµκ
?Fνλ = �(2)gµν, (3.2.8e)

∂�(1)
∂gµν

=−gκλF#µκF#νλ, (3.2.8f)

∂�(2)
∂gµν

=−
1
2�(2)(g

−1)µν, (3.2.8g)

∂�(1)
∂Fµν

= F#µν, (3.2.8h)

∂�(2)
∂Fµν

=
1
2
?F#µν, (3.2.8i)

∂F#µν

∂Fκλ

= (g−1)µκ(g−1)νλ, (3.2.8j)

∂?F#µν

∂Fκλ

=
1
2ε

#µνκλ, (3.2.8k)

Dµ�(1) = F#κλDµFκλ (µ= 0, 1, 2, 3), (3.2.8l)

Dµ�(2) = 1
2
?F#κλDµFκλ (µ= 0, 1, 2, 3), (3.2.8m)

?M#µν
= 2

∂?L

∂�(1)
F#µν

+
∂?L

∂�(2)
?F#µν . (3.2.8n)
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3.3. Assumptions on the electromagnetic Lagrangian. The standard Maxwell–Maxwell equations cor-
respond to the Lagrangian

?L(Maxwell) =−
1
2�(1), (3.3.1)

which by (3.2.8n) leads to the relationship

M(Maxwell)
µν =

?Fµν . (3.3.2)

Roughly speaking, we will assume that our electromagnetic Lagrangian is a covariant perturbation
of ?L(Maxwell). More precisely, we make the following assumptions concerning our Lagrangian ?L:

Assumptions. We assume that, in a neighborhood of (0, 0), ?L is an (` + 2)-times (where ` ≥ 10)
continuously differentiable function of the invariants (�(1), �(2)) that can be expanded as follows:

?L= ?L(Maxwell)+ O`+2(|(�(1), �(2))|2). (3.3.3a)

The notation O`+2( · ) is defined in Section 2.13.
We also assume that the corresponding energy-momentum tensor Tµν , which is defined below in (3.5.1),

satisfies the dominant energy condition, which is the assumption that

TκλXκY λ ≥ 0 (3.3.3b)

whenever the following conditions are satisfied:

• X and Y are both timelike (i.e., gκλXκXλ < 0 and gκλY κY λ < 0).

• X and Y are g-future-directed.

As discussed in, e.g., [Gibbons and Herdeiro 2001], sufficient conditions for the dominant energy
condition to hold are

∂?L

∂�(1)
< 0, (3.3.4a)

?L− �(1)
∂?L

∂�(1)
− �(2)

∂?L

∂�(2)
≤ 0. (3.3.4b)

We remark that it is straightforward to verify the sufficiency of these conditions by using (3.5.4b) below
and that condition (3.3.4b) is equivalent to the nonpositivity of the trace of the energy-momentum
tensor corresponding to ?L. Furthermore, we recall that the trace vanishes in the case of the standard
Maxwell–Maxwell model.

Remark 3.2. We make the (`+2)-times differentiability assumption because we will need to differentiate
the equations (3.3.7) below ` times in order to prove our main stability theorem.

We will now derive an equivalent version of the electromagnetic equations that will be used throughout
the remainder of the article. The final form, which is valid only in a wave-coordinate system, is given
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below in Lemma 3.4. To begin, we use (3.2.6c), (3.2.7c), and (3.2.8n) to compute that the following
equation holds:

−2
∂?L

∂�(1)
DµF#µν

− 2F#µνDµ

( ∂?L
∂�(1)

)
−
?F#µνDµ

( ∂?L
∂�(2)

)
= 0. (3.3.5)

Furthermore, from the chain rule and the fact that Dµφ =∇µφ for scalar-valued functions φ, it follows
from (3.3.5) and (3.2.8l)–(3.2.8m) that

−2
∂?L

∂�(1)
DµF#µν

−

(
2F#µν ∂

2?L

∂�2
(1)
+
?F#µν ∂2?L

∂�(1) ∂�(2)

)
∇µ�(1)

−

(
2F#µν ∂2?L

∂�(1) ∂�(2)
+
?F#µν ∂

2?L

∂�2
(2)

)
∇µ�(2) = 0. (3.3.6)

We note for future use that (3.3.6) can be expressed as

N #µνκλDµFκλ = 0 (ν = 0, 1, 2, 3), (3.3.7)

where the tensor field N #µνκλ is defined by

N #µνκλ def
= −

∂?L

∂�(1)

(
(g−1)µκ(g−1)νλ− (g−1)µλ(g−1)νκ

)
− 2

∂2?L

∂�2
(1)

F#µνF#κλ

−
∂2?L

∂�(1)∂�(2)

(
F#µν?F#κλ

+
?F#µν?F#κλ)

−
1
2
∂2?L

∂�2
(2)

?F#µν?F#κλ. (3.3.8)

We also note that N #µνκλ has the following symmetry properties, which will play an important role during
our construction of suitable energies for Fµν (and in particular during our proof of Lemma 8.5):

N #νµκλ
=−N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3), (3.3.9a)

N #µνλκ
=−N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3), (3.3.9b)

N #κλµν
= N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3). (3.3.9c)

The moral reason that the above properties are satisfied is that N #µνκλ is closely related to the Hessian
of ?L (with respect to F):

N #µνκλ
=−

1
2

∂2?L

∂Fµν ∂Fκλ

+
1
2
∂?L

∂�(2)
ε#µνκλ. (3.3.10)

We have added the last term on the right-hand side of (3.3.10) in order to cancel a term appearing in the
Hessian; this is permissible because (3.2.6a) implies that this term does not contribute to (3.3.7).

Our next goal is to formulate a “reduced” electromagnetic equation that is equivalent to (3.3.7) in a
wave-coordinate system. We also decompose the reduced equation into the principal terms and error
terms of an equation involving the Minkowski connection ∇. This is accomplished in Lemma 3.4 below.
Before proving this lemma, we first provide the following preliminary lemma, whose simple proof is left
to the reader:
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Lemma 3.3 (Expansions). Assume that the electromagnetic Lagrangian ?L satisfies (3.3.3a). Then in
terms of the expansion hµν

def
= gµν −mµν from (1.2.1a) and with Hµν def

= (g−1)µν − (m−1)µν , we have

Hµν
=−hµν + O∞(|h|2)

=−hµν + O∞(|H |2), (3.3.11a)

∇λ(g−1)µν =−(g−1)µµ
′

(g−1)νν
′

∇λhµ′ν′

=−(m−1)µµ
′

(m−1)νν
′

∇λhµ′ν′ + O∞(|h||∇h|), (3.3.11b)

|det g| = 1+ (m−1)κλhκλ+ O∞(|h|2)

= 1−mκλH κλ
+ O∞(|H |2), (3.3.11c)

|det g|1/2 = 1+ 1
2(m

−1)κλhκλ+ O∞(|h|2)

= 1− 1
2 mκλH κλ

+ O∞(|H |2), (3.3.11d)

|det g|−1/2
= 1− 1

2(m
−1)κλhκλ+ O∞(|h|2)

= 1+ 1
2 mκλH κλ

+ O∞(|H |2), (3.3.11e)

ε#µνκλ
=−(1+ O∞(|h|))[µνκλ], (3.3.11f)

εµνκλ = (1+ O∞(|h|))[µνκλ], (3.3.11g)

F#µν
= Fµν

+ O∞(|h||F|) def
= (m−1)µκ(m−1)νλFκλ+ O∞(|h||F|), (3.3.11h)

?Fµν =
~Fµν + O∞(|h||F|) def

= −
1
2 mµµ′mνν′[µ

′ν ′κλ]Fκλ+ O∞(|h||F|), (3.3.11i)

�(1) = 1
2(m

−1)κµ(m−1)λνFκλFµν + O∞(|h||F|2), (3.3.11j)

�(2) =− 1
8 [µνκλ]FµνFκλ+ O∞(|h||F|2), (3.3.11k)

?L=− 1
4(m

−1)ηκ(m−1)ζλFκλFηζ + O`+2(|h||F|2)+ O`+2(|F|4; h), (3.3.11l)

∇�(i) = O∞(|F||∇F|)+ O∞(|∇h||F|2; h)+ O∞(|h||F||∇F|), (3.3.11m)

Mµν =
~Fµν + O`+1(|h||F|)+ O`+1(|F|3; h). (3.3.11n)

In (3.3.11f)–(3.3.11g), [µνκλ] is totally antisymmetric with normalization [0123] = 1, ? denotes the
Hodge duality operator corresponding to the spacetime metric gµν , and ~ denotes the Hodge duality
operator corresponding to the Minkowski metric mµν . Furthermore, the notation O( · ) is defined in
Section 2.13.

3.4. The reduced electromagnetic equations. In this section, we provide the aforementioned decompo-
sition of the reduced electromagnetic equations.

Lemma 3.4 (The reduced electromagnetic equations). Assume that the wave-coordinate condition (3.1.1a)
holds. Then in terms of the expansion (1.2.1a), the system of electromagnetic equations (3.2.1) and (3.3.7)
is equivalent to the following reduced system of equations:
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∇λFµν +∇µFνλ+∇νFλµ = 0, (3.4.1a)

N #µνκλ
∇µFκλ = Qν(2;F)(∇h,F)+ O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.4.1b)

where

N #µνκλ
=

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
+

1
2

(
−hµκ(m−1)νλ+ hµλ(m−1)νκ

)
+

1
2

(
−(m−1)µκhνλ+ (m−1)µλhνκ

)
+ N #µνκλ

4
, (3.4.2)

Qν(2;F)(∇h,F)= (m−1)µκ(m−1)νν
′

(m−1)λλ
′

(∇µhν′λ′)Fκλ. (3.4.3)

Furthermore,
N #µνκλ
4

= O`
(
|(h,F)|2

)
, (3.4.4)

and like N #µνκλ, the tensor field N #µνκλ
4

also possesses the symmetry properties (3.3.9a)–(3.3.9c).

Remark 3.5. Equations (3.4.1a)–(3.4.3) are equivalent to (3.2.1) and (3.3.7) only in a wave-coordinate
system. Hence, we refer to (3.4.1a)–(3.4.3) as the “reduced” electromagnetic equations.

Proof. We use the assumption (3.3.3a) and the Leibniz rule to expand (3.3.6) and apply the results of
Lemma 3.3, arriving at the following expansion:

DµF#µν
+ Ñµνκλ

∇µFκλ = O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.4.5)

where Ñµνκλ
= O`(|(h,F)|2). Let us now decompose the DµF#µν term. Using the antisymmetry

of F#µν , the symmetry of the Christoffel symbol 0 ν
µ λ under the exchanges µ↔ λ, the identity 0 κ

κ µ =

(1/
√
|det g|)∇µ(

√
|det g|), and the wave-coordinate condition ∇µ[

√
|det g|(g−1)µκ ] = 0 (κ = 0, 1, 2, 3),

we have that

DµF#µν
=∇µF#µν

+0 κ
κ µF#µν

+0 ν
µ λF#µλ

=∇µ

[
(g−1)µκ(g−1)νλFκλ

]
+

[
1

√
|det g|

∇µ(
√
|det g|)

]
(g−1)µκ(g−1)νλFκλ

=
1

√
|det g|

∇µ

[√
|det g|(g−1)µκ(g−1)νλFκλ

]
= (g−1)µκ(g−1)νλ∇µFκλ+

[
(g−1)µκ∇µ(g−1)νλ

]
Fκλ. (3.4.6)

Using (3.3.11a), we conclude that the term (g−1)µκ(g−1)νλ∇µFκλ on the right-hand side of (3.4.6) can
be expressed as the terms in parentheses on the right-hand side of (3.4.2) plus O`(|h2

|)∇µFκλ.
Similarly, using (3.3.11b), we conclude that the term [(g−1)µκ∇µ(g−1)νλ]Fκλ on the right-hand

side of (3.4.6) is equal to −Qν(2;F)(∇h,F) + O`(|h||∇h||F|), where Qν(2;F)(∇h,F) is defined in (3.4.3).
Combining these expansions with (3.4.5), we arrive at (3.4.1b)–(3.4.4).

The fact that N #µνκλ
4

possesses the symmetry properties (3.3.9a)–(3.3.9c) follows trivially from the fact
that both N #µνκλ and the term in parentheses on the right-hand side of (3.4.2) have these properties. �
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Remark 3.6. With the help of the identity (3.1.2), the above proof shows that the reduced equation
(3.4.1b) is obtained by adding the inhomogeneous term −0κ(g−1)νλFκλ to the right-hand side of (3.3.7).
That is, (3.4.1b) is equivalent to

N #µνκλDµFκλ =−0
κ(g−1)νλFκλ. (3.4.7)

We will use this fact in our proof of Proposition 4.2.

3.5. The energy-momentum tensor. In this section, we discuss the energy-momentum tensor Tµν appear-
ing on the right-hand side of (3.0.1a). We recall that the energy-momentum tensor for an electromagnetic
Lagrangian field theory is defined as follows:

T #µν def
= 2

∂?L

∂gµν
+ (g−1)µν?L. (3.5.1)

It follows trivially from the definition (3.5.1) that Tµν is symmetric:

Tµν = Tνµ (µ, ν = 0, 1, 2, 3). (3.5.2)

Furthermore, we recall that, if Fµν is a solution to the (nonreduced) electromagnetic equations (3.0.1b)–
(3.0.1c), then

DµT #µν
= 0 (ν = 0, 1, 2, 3). (3.5.3)

For the class of electromagnetic energy-momentum tensors considered in this article, we can use the
chain rule and Lemma 3.1 to express Tµν as follows:

Tµν =−2
∂?L

∂�(1)
(g−1)κλFµκFνλ− �(2)

∂?L

∂�(2)
gµν + gµν?L (3.5.4a)

=−2
∂?L

∂�(1)
T (Maxwell)
µν +

1
4 T gµν, (3.5.4b)

where
T (Maxwell)
µν

def
= (g−1)κλFµκFνλ−

1
2�(1)gµν (3.5.5)

is the energy-momentum tensor corresponding to the standard Maxwell–Maxwell equations and

T def
= (g−1)κλTκλ = 4

(
?L− �(1)

∂?L

∂�(1)
− �(2)

∂?L

∂�(2)

)
(3.5.6)

is the trace of Tµν with respect to gµν . Furthermore, from (3.5.4a) and the expansions of Lemma 3.3, it
follows that

Tµν = (m−1)κλFµκFνλ−
1
4 mµν(m−1)κη(m−1)λζFκλFηζ + O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.7)

We now compute the right-hand side of (3.0.1a′). First, taking the trace of (3.5.7) with respect to g, we
compute that

(g−1)κλTκλ = O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.8)
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Combining (3.5.7) and (3.5.8) and using the expansion (1.2.1a), we have that the right-hand side of
(3.0.1a′) can be expressed as follows:

Tµν − 1
2 gµν(g−1)κλTκλ = (m−1)κλFµκFνλ−

1
4 mµν(m−1)κη(m−1)λζFκλFηζ

+ O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.9)

To conclude this section, we note for future use that, if Fµν is a solution to the inhomogeneous system

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.5.10a)

N #µνκλDµFκλ = Iν (ν = 0, 1, 2, 3), (3.5.10b)

then with the help of Lemma 3.1, it can be shown that the following identity holds:

(g−1)κλDκTλν = IκFνκ (ν = 0, 1, 2, 3). (3.5.11)

We will use this fact in our proof of Proposition 4.2 (which shows that the wave-coordinate gauge is
preserved by the flow of the reduced equations), where Iν will be equal to the right-hand side of (3.4.7).
We also remark that (3.5.3) corresponds to the special case Iν = 0 (ν = 0, 1, 2, 3).

3.6. The modified Ricci tensor. Throughout the remainder of this article, we perform the standard wave-
coordinate system procedure (see, e.g., [Wald 1984]) of replacing the Ricci tensor Rµν in the Einstein
field equation (3.0.1a) with a modified Ricci tensor R̃µν . As we will soon see, this replacement transforms
equations (3.0.1a) into a system of quasilinear wave equations.

Definition 3.7. We define the modified Ricci tensor R̃µν of the metric gµν as follows:

R̃µν
def
= Rµν − 1

2(gκνDµ0
κ
+ gκµDν0

κ)+ uµνκ(g, g−1, ∂g)0κ , (3.6.1)

where the Ricci tensor Rµν is defined in (3.0.2b) and the “gauge term” uµνκ(g, g−1, ∂g)0κ is a smooth
function of g, g−1, and ∂g that will be discussed in Lemma 3.8. We remark that, for purposes of covariant
differentiation by D in (3.6.1), the 0µ are treated as the components of a vector field.

In the next lemma, we provide an algebraic decomposition of the modified Ricci tensor.

Lemma 3.8 (Decomposition of the modified Ricci tensor [Lindblad and Rodnianski 2005, Lemmas 3.1
and 3.2]). For a suitable choice of the gauge term uµνκ(g, g−1, ∂g)0κ , the modified Ricci tensor R̃µν of
the metric gµν = mµν + hµν can be decomposed as follows:

R̃µν =− 1
2

(
2̃ggµν −P(∇µh,∇νh)−Q(1;h)µν (∇h,∇h)

)
+ O∞(|h||∇h|2), (3.6.2)

where

2̃g
def
= (g−1)κλ∇κ∇λ (3.6.3)

is the reduced wave operator corresponding to gµν and the quadratic terms P(∇µ · ,∇ν · ) and Q(1;h)µν ( · , · )

are defined by their action on tensor fields 5µν , 2µν , and hµν as follows:
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P(∇µ5,∇ν2)
def
=

1
4(∇µ5

κ
κ )(∇ν2

λ
λ )−

1
2(∇µ5

κλ)(∇ν2κλ), (3.6.4)

Q(1;h)µν (∇h,∇h) def
= (m−1)λλ

′

Q0(∇hλµ,∇hλ′ν)

− (m−1)κκ
′

(m−1)λλ
′

Qκλ′(∇hλµ,∇hκ ′ν)

+ (m−1)κκ
′

(m−1)λλ
′

Qµκ(∇hκ ′λ′,∇hλν)

+ (m−1)κκ
′

(m−1)λλ
′

Qνκ(∇hκ ′λ′,∇hλµ)

+
1
2(m

−1)κκ
′

(m−1)λλ
′

Qλ′µ(∇hκκ ′,∇hλν)

+
1
2(m

−1)κκ
′

(m−1)λλ
′

Qλ′ν(∇hκκ ′,∇hλµ). (3.6.5)

The bilinear forms Q0( · , · ) and Qµν( · , · ), which appear on the right-hand side of (3.6.5), are known
as the standard null forms. They are defined through their action on the derivatives of scalar-valued
functions ψ and χ by

Q0(∇ψ,∇χ)
def
= (m−1)κλ(∇κψ)(∇λχ), (3.6.6a)

Qµν(∇ψ,∇χ)
def
= (∇µψ)(∇νχ)− (∇νψ)(∇µχ). (3.6.6b)

Proof. This decomposition is carried out in Lemmas 3.1 and 3.2 of [Lindblad and Rodnianski 2005]. �

We conclude this section by observing that (3.0.1a′), (3.5.9), and (3.6.2) together imply that under the
wave-coordinate condition (3.1.1a), and under the assumption (3.3.3a) on the Lagrangian, the Einstein
field equation (3.0.1a) is equivalent to the following equation:

2̃ggµν =P(∇µh,∇νh)+Q(1;h)µν (∇h,∇h)−2(m−1)κλFµκFνλ+
1
2 mµν(m−1)κη(m−1)λζFκλFηζ

+ O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h). (3.6.7)

3.7. Summary of the reduced system. In this section, we summarize the above results by stating the form
of the reduced Einstein-nonlinear electromagnetic system that we work with for most of the remainder of
the article, namely (3.7.1a)–(3.7.1c); the derivation of this version of the reduced equations follows easily
from the previous results of Section 3. We remind the reader that the reduced equations are obtained by
adding the inhomogeneous term −0κ(g−1)νλFκλ to the right-hand side of (3.3.7) and by substituting the
modified Ricci tensor in place of the Ricci tensor in (3.0.1a). Furthermore, in a wave-coordinate system,
the reduced system is equivalent to the system (3.0.1a)–(3.0.1c) (see Proposition 4.2).

Reduced system. The reduced system (where gµν = mµν + h(0)µν + h(1)µν and the unknowns are viewed to
be (h(1)µν ,Fµν)) can be expressed as

2̃gh(1)µν = Hµν − 2̃gh(0)µν (µ, ν = 0, 1, 2, 3), (3.7.1a)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.7.1b)

N #µνκλ
∇µFκλ = Fν (ν = 0, 1, 2, 3), (3.7.1c)

where 2̃g
def
= (g−1)κλ∇κ∇λ is the reduced wave operator corresponding to gµν .
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The quantities Hµν , N #µνκλ, and Fν can be decomposed into principal terms and error terms (which
are denoted with a “4”) as follows:

Hµν = P(∇µh,∇νh)+Q(1;h)µν (∇h,∇h)+Q(2;h)µν (F,F)+H4µν, (3.7.2a)

Fν = Qν(2;F)(∇h,F)+Fν
4
, (3.7.2b)

N #µνκλ
=

1
2((m

−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ)

+
1
2(−hµκ(m−1)νλ+ hµλ(m−1)νκ)

+
1
2(−(m

−1)µκhνλ+ (m−1)µλhνκ)+ N #µνκλ
4

, (3.7.2c)

where P(∇µh,∇νh) is defined in (3.6.4), Q(1;h)µν (∇h,∇h) is defined in (3.6.5), and

Q(2;h)µν (F,G)=−2(m−1)κλFµκGνλ+
1
2 mµν(m−1)κλ(m−1)λκFκλGκλ, (3.7.2d)

Qν(2;F)(∇h,F)= (m−1)µκ(m−1)λλ
′

(m−1)νν
′

(∇µhν′λ′)Fκλ, (3.7.2e)

H4µν = O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h), (3.7.2f)

Fν
4
= O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.7.2g)

N #µνκλ
4

= O`(|(h,F)|2). (3.7.2h)

Furthermore, the left-hand side of (3.7.1c) can be expressed as

N #µνκλ
∇µFκλ =

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

−Pν
(F)(h,∇F)−Qν(1;F)(h,∇F)+ N #µνκλ

4
∇µFκλ, (3.7.3a)

where

Pν
(F)(h,∇F)= (m−1)µµ

′

(m−1)κκ
′

(m−1)νλhµ′κ ′∇µFκλ, (3.7.3b)

Qν(1;F)(h,∇F)= (m−1)µκ(m−1)νν
′

(m−1)λλ
′

hν′λ′∇µFκλ. (3.7.3c)

More precisely, (3.7.1a) follows from (3.6.7) and the expansions (1.2.1a)–(1.2.1b) while (3.7.1b)–(3.7.1c)
were derived in Lemma 3.4.

4. The initial-value problem

In this section, we discuss the abstract initial data and the constraint equations for the Einstein-nonlinear
electromagnetic system. We then use the abstract initial data to construct initial data for the reduced
equations that satisfy the wave-coordinate condition at t = 0. Finally, we sketch a proof of the well-known
fact that the wave-coordinate condition is satisfied by the solution to the reduced equations launched by this
data; this result shows that the wave-coordinate gauge is a viable gauge for studying the Einstein-nonlinear
electromagnetic system.

4.1. The abstract initial data. The initial-value problem formulation of the Einstein equations goes
back to the seminal work by Fourès-Bruhat [1952]. In this article, initial data for the Einstein-nonlinear
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electromagnetic system consist of the 3-dimensional manifold60=R3 together with the following fields on
60: a Riemannian metric g̊ jk , a symmetric two-tensor K̊ jk , and a pair of one-forms D̊ j and B̊ j . After we
construct the ambient Lorentzian spacetime (M, gµν), g̊ jk and K̊ jk will respectively be the first and second
fundamental forms of 60 while D̊ j and B̊ j , which are defined below in Section 9.2, will be an electro-
magnetic decomposition of Fµν |60 into a pair of one-forms that are both m-tangent and g-tangent to 60.

It is well-known that one cannot consider arbitrary data for the Einstein-nonlinear electromagnetic
system. The data are subject to the following constraints:

R̊− K̊ab K̊ ab
+
[
(g̊−1)ab K̊ab

]2
= 2T (N̂ , N̂ )|60, (4.1.1a)

(g̊−1)abD̊a K̊bj − (g̊−1)abD̊ j K̊ab = T
(

N̂ , ∂

∂x j

)∣∣∣
60

( j = 1, 2, 3), (4.1.1b)

(g̊−1)abD̊aD̊b = 0, (4.1.2a)

(g̊−1)abD̊aB̊b = 0, (4.1.2b)

where D̊ is the Levi-Civita connection corresponding to g̊ jk , R̊ is the scalar curvature of g̊ jk , Tµν is defined
in (3.5.4a), and N̂µ is the future-directed unit g-normal to 60. The right-hand sides of (4.1.1a)–(4.1.1b)
can (in principle) be computed in terms of and g̊ jk , D̊ j , and B̊ j with the help of the relations (9.2.3),
which connect these quantities to Fµν |60 . In (4.1.1a)–(4.1.1b), indices are lowered and raised with the
Riemannian metric g̊ jk and its inverse (g̊−1) jk . The constraints (4.1.1a)–(4.1.1b) are respectively known
as the Gauss and Codazzi equations while (4.1.2a)–(4.1.2b) are known as the electromagnetic constraints.
They relate the fields present in the ambient spacetime (M, gµν,Fµν) (which has to be constructed) to
the fields induced on an embedded Riemannian hypersurface (which will be (60, g̊ jk, D̊ j , B̊ j ) after
construction). Without providing the rather standard details (see, e.g., [Christodoulou 2008]), we remark
that they are consequences of the following assumptions:

• 60 is a spacelike submanifold of the spacetime manifold M.

• g̊ jk is the first fundamental form of 60, and K̊ jk is the second fundamental form of 60.

• The Einstein-nonlinear electromagnetic system is satisfied along 60.

• Along 60 (viewed as a subset of M), Bµ =−
?Fµκ N̂ κ and Dµ =−

?Mµκ N̂ κ .

We recall that, under the above assumptions, g̊ and K̊ are defined by

g̊|p(X, Y )= g|p(X, Y ) ∀X, Y ∈ Tp60, (4.1.3)

K̊ |p(X, Y )= g|p(DX N̂ , Y ) ∀X, Y ∈ Tp60, (4.1.4)

where N̂ is the future-directed unit g-normal19 to60 at p and D is the Levi-Civita connection corresponding
to g. Furthermore, if X and Y are vector fields tangent to 60, then

DX Y = D̊X Y + K̊ (X, Y )N̂ . (4.1.5)

19Under the assumptions of Section 4.2, it follows that, at every point p ∈ 60, N̂µ = (A−1, 0, 0, 0), where A is defined
by (4.2.2).
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We also remind the reader that our stability theorem requires the hypothesis that the abstract initial
data decay at spatial infinity according to the rates (1.0.4a)–(1.0.4f).

4.2. The initial data for the reduced equations. We assume that we are given “abstract” initial data
(g̊ jk, K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) on the manifold R3 for the Einstein equations as discussed in the
previous section. In this section, we will use this data to construct data (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)
(µ, ν = 0, 1, 2, 3) for the reduced equations (3.7.1a)–(3.7.1c) that satisfy the wave-coordinate condition
0µ|t=0 = 0. We begin by recalling that χ(z) is a fixed cut-off function with the following properties:

χ ∈ C∞, χ ≡ 1 for z ≥ 3
4 , and χ ≡ 0 for z ≤ 1

2 . (4.2.1)

We then define the function A(x1, x2, x3)≥ 0 by

A2 def
= 1− 2M

r
χ(r) and r def

= |x |. (4.2.2)

We define the data for the spacetime metric gµν by

g00|t=0 =−A2, g0 j |t=0 = 0, g jk |t=0 = g̊ jk, (4.2.3a)

∂t g00|t=0 = 2A3(g̊−1)ab K̊ab,

∂t g0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t g jk |t=0 = 2AK̊ jk

(4.2.3b)

and the data for the Faraday tensor Fµν by

F j0|t=0 = E̊ j and F jk |t=0 = [i jk]B̊i . (4.2.4)

The one-forms E̊ j and B̊ j can be expressed in terms of h̊ jk and the one-forms D̊ j and B̊ j appearing in the
constraint equations (4.1.2a)–(4.1.2b) by using the relations (9.2.3) and (9.2.4) below. The precise form
of these relations depends on the choice of Lagrangian ?L, but in the small-data regime, the estimates
(9.2.7) (9.2.8a), and (9.2.8b) hold.

We now state the main result of this section.

Lemma 4.1 (Wave-coordinate condition holds at t = 0). Suppose that the initial data (gµν |t=0, ∂t gµν |t=0)

(µ, ν = 0, 1, 2, 3) for the reduced equations are constructed from abstract initial data (g̊ jk, K̊ jk) ( j, k =
1, 2, 3) as described above. Then the wave-coordinate condition holds initially:

0µ|t=0 (µ= 0, 1, 2, 3). (4.2.5)

Proof. Lemma 4.1 follows from the expression (3.1.1c), the definitions (4.2.3a)–(4.2.3b), and straightfor-
ward calculations. �

Note that the above definitions induce the following data for the spacetime metric “remainder” piece
h(1)µν , which is defined by (1.2.1a)–(1.2.1c):
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h(1)00 |t=0 = 0, h(1)0 j |t=0 = 0, h(1)jk |t=0 = h̊(1)jk , (4.2.6a)

∂t h
(1)
00 |t=0 = 2A3(g̊−1)ab K̊ab,

∂t h
(1)
0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −

1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t h
(1)
jk |t=0 = 2AK̊ jk .

(4.2.6b)

Similarly, the following data are induced in hµν = h(0)µν + h(1)µν , which is defined in (1.2.1b):

h00|t=0 = χ(r)
2M
r
, h0 j |t=0 = 0, h jk |t=0 = χ(r)

2M
r
δ jk + h̊(1)jk , (4.2.7a)

∂t h00|t=0 = 2A3(g̊−1)ab K̊ab,

∂t h0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t h jk |t=0 = 2AK̊ jk .

(4.2.7b)

We will make use of these facts in our proof of Proposition 10.4 below.

4.3. Preservation of the wave-coordinate gauge. In this section, we sketch a proof of the fact that, if
the reduced data are constructed from abstract data as described in Section 4.2, then the wave-coordinate
condition 0µ = 0 is preserved by the flow of the reduced equations. This result requires the assumption
that the abstract data satisfy the constraints (4.1.1a)–(4.1.2b). To simplify the discussion, we assume in
this section that the data are smooth. However, the result also holds in the regularity class we use during
our global existence proof. We remark that this result is quite standard and that we have included it only
for convenience.

Proposition 4.2 (Preservation of the wave-coordinate gauge). Suppose that (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) are smooth initial data for the reduced equations (3.7.1a)–(3.7.1c) that are constructed
from abstract initial data satisfying the constraints (4.1.1a)–(4.1.2b) as described in Section 4.2. In
particular, by Lemma 4.1, the wave-coordinate condition 0µ|t=0 holds. Assume further that the reduced
data are small enough so that they lie within the regime of hyperbolicity20 of the reduced equations. Let
(gµν,Fµν) be the corresponding smooth solution to the reduced equations that is launched by the data.
Let T > 0, and assume that the reduced solution exists on the slab [0, T )×R3 and lies within the regime
of hyperbolicity of the reduced equations. Then 0µ ≡ 0 for [t, x) ∈ [0, T )×R3.

Sketch of proof. Our goal is to show that under the assumptions of the proposition, whenever we have
a smooth solution to the reduced equations (3.7.1a)–(3.7.1c) on [0, T ) × R3, the corresponding 0µ

satisfy a homogeneous-in-0µ system of wave equations with principal part equal to (g−1)κλ ∂κ ∂λ and
with trivial initial data 0µ|t=0 = ∂t0

µ
|t=0 = 0. The conclusion that 0µ ≡ 0 for (t, x) ∈ [0, T )× R3

then follows from a standard uniqueness theorem for such wave equations that is based on energy
estimates (see, e.g., [Hörmander 1997; Sogge 2008] for ideas on how to prove such a theorem). To
derive the equations satisfied by the 0µ, we will view 0µ as a vector field for purposes of covariant

20Since our electromagnetic equations are perturbations of the standard Maxwell–Maxwell equations, there will always be
such a regime.
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differentiation. We first recall (see Remark 3.6) that (3.6.2) is obtained by adding the gauge term
−

1
2(gκνDµ0

κ
+ gκµDν0

κ)+ uµνκ(g, g−1, ∂g)0κ to the expression (3.0.2b) for Rµν . Consequently, it
follows that, for a solution to the reduced equations (3.7.1a)–(3.7.1c), we have that

Rµν − 1
2 Rgµν − Tµν = 1

2(gκνDµ0
κ
+ gκµDν0

κ)− uµνκ(g, g−1, ∂g)0κ

−
1
2 gµνDκ0

κ
+

1
2 gµν(g−1)κλuκλδ(g, g−1, ∂g)0δ. (4.3.1)

We note that the left-hand side of (4.3.1) is simply the difference of the left-hand and right-hand sides of
the Einstein equation (1.0.1a).

We now apply (g−1)νλDλ to each side of (4.3.1), use the Bianchi identity (g−1)νλDλ(Rµν− 1
2 Rgµν)=0,

the fact that (g−1)νλDλTµν = −0κ(g−1)βλFκλFµβ (see Remark 3.6 and (3.5.11)), and the curvature
relation DµDκ0

κ
= DκDµ0

κ
− Rµκ0κ , and expand the covariant derivatives in terms of coordinate

derivatives and Christoffel symbols to deduce that the 0µ are solutions to the following hyperbolic system
of wave equations that is homogeneous in 0µ:

(g−1)κλ ∂κ ∂λ0
µ
= Aµκλ(g, g−1, ∂g, ∂∂g) ∂κ0λ+Bµκ(g, g−1, ∂g, ∂∂g,F)0κ (µ=0, 1, 2, 3), (4.3.2)

where the Aµκλ(g(t, x), g−1(t, x), ∂g(t, x), ∂∂g(t, x)) and Bµκ(g(t, x), g−1(t, x), ∂g(t, x), ∂∂g(t, x),
F(t, x)) are smooth functions of (t, x).

To complete our sketch of the proof, it remains to show that ∂t0
µ
|t=0 = 0. Since the abstract initial

data (g̊ jk, K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) are assumed to satisfy the constraint equations (4.1.1a)–(4.1.1b),
it follows that the left-hand side of (4.3.1) is equal to 0 at t = 0 after contracting21 against N̂µ N̂ ν or
N̂µXν , where N̂µ is the future-directed unit g-normal to 60 and Xµ is any vector tangent to 60.

Recalling that N̂µ
|t=0 = A−1δ

µ

0 and choosing Xν
= δνj , it therefore follows that the right-hand side

must also be equal to 0 at t = 0 upon contraction (where j = 1, 2, 3 in (4.3.3b)):(
gκ0Dt0

κ
− u00κ(g, g−1, ∂g)0κ − 1

2 g00Dλ0
λ

+
1
2 g00(g−1)κλuκλδ(g, g−1, ∂g)0δ

)∣∣
t=0 = 0, (4.3.3a)( 1

2(gκ j Dt0
κ
+ gκ0D j0

κ)− u0 jκ(g, g−1, ∂g)0κ − 1
2 g0 j Dλ0

λ

+
1
2 g0 j (g−1)κλuκλδ(g, g−1, ∂g)0δ

)∣∣
t=0 = 0. (4.3.3b)

Expanding the covariant differentiation in (4.3.3a)–(4.3.3b) in terms of coordinate derivatives and Christof-
fel symbols and using (4.2.3a) plus the fact that the initial data were constructed so as to satisfy 0µ|t=0= 0,
it is straightforward to verify that ∂t0

µ must also necessarily be trivial at t = 0:

∂t0
µ
|t=0 = 0 (µ= 0, 1, 2, 3). (4.3.4)

This completes our sketch of a proof of the proposition. �

21In fact, one derives the constraint equations by assuming that these contractions are 0 at t = 0.
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5. Geometry and the Minkowskian null frame

In this section, we introduce the families of ingoing Minkowskian null cones C−s , outgoing Minkowskian
light cones C+q , constant Minkowskian time slices 6t , and Euclidean spheres Sr,t . We then discuss the
well-known notion of a Minkowskian null frame, which allows us to geometrically decompose the tangent
space at p as a direct sum TpR1+3

= span{L|p}⊕ span{L|p}⊕ Tp Sr,t . These decompositions allow us to
geometrically decompose tensor fields. In Section 5.3, we provide a full description of the null decompo-
sition of a two-form F into its Minkowskian null components. This decomposition will be essential to our
subsequent analysis of the decay properties of the Faraday tensor. In Section 9.1, we will derive equations
for these null components under the assumption that F is a solution to the reduced electromagnetic
equations (3.7.1b)–(3.7.1c). In Section 15, we will use the equations for the null components to deduce
“upgraded” pointwise decay estimates for the lower-order Lie derivatives of F; these estimates are essential
for closing our global existence bootstrap argument in Section 16. We refer the reader to Section 1.2.4
for discussion on how our use of Minkowskian decompositions compares and contrasts against other
decompositions that have been used by other authors in the context of the stability of Minkowski spacetime.

5.1. The Minkowskian null frame. Before proceeding, we introduce the subsets C+q , C−s , 6t , and Sr,t .

Definition 5.1. In our wave-coordinate system (t, x), we define the outgoing Minkowski null cones C+q ,
ingoing Minkowski null cones C−s , constant Minkowskian time slices 6t , and Euclidean spheres Sr,t as

C+q
def
= {(τ, y) | |y| − τ = q}, (5.1.1a)

C−s
def
= {(τ, y) | |y| + τ = s}, (5.1.1b)

6t
def
= {(τ, y) | τ = t}, (5.1.1c)

Sr,t
def
= {(τ, y) | τ = t, |y| = r}. (5.1.1d)

In the above formulas, y def
= (y1, y2, y3) and |y| def

=
√
(y1)2+ (y2)2+ (y2)2.

We also introduce the following vector fields, which play a fundamental role throughout this article:

Definition 5.2. We define the ingoing Minkowski-null geodesic vector field L and the outgoing Minkowski-
null geodesic vector field L by

Lµ = (1,−ω1,−ω2,−ω3), (5.1.2a)

Lµ = (1, ω1, ω2, ω3), (5.1.2b)

where ω j def
= x j/r . By “Minkowski-null”, we mean that m(L, L)=m(L , L)= 0. Note that L is tangent to

the ingoing cones C−s , that L is tangent to the outgoing cones C+q , and that L and L are both m-orthogonal
to the Sr,t . By “Minkowski-geodesic”, we mean that ∇L L =∇L L = 0.



816 JARED SPECK

Note that

L = ∂t − ∂r , (5.1.3a)

L = ∂t + ∂r . (5.1.3b)

We now recall the definitions of the Minkowskian first fundamental forms of the surfaces 6t and Sr,t .

Definition 5.3. The Minkowskian first fundamental forms of the surfaces 6t and Sr,t are respectively
defined to be the following intrinsic metrics:

mµν
def
= diag(0, 1, 1, 1), (5.1.4a)

6mµν
def
= mµν +

1
2(LµLν + LµLν). (5.1.4b)

Recall that m|p(X, Y )=m|p(X, Y ) for X, Y ∈ Tp6t and 6m(X, Y )=m(X, Y ) for X, Y ∈ Tp Sr,t . Note
also that the tensor fields m ν

µ and 6m ν
µ respectively m-orthogonally project onto the 6t and the Sr,t .

We now define a related tensor field corresponding to the outgoing Minkowski null cones C+q .

Definition 5.4. The tensor field π ν
µ , which projects vectors Xµ onto the outgoing cones C+q , is defined as

π ν
µ

def
= δνµ+

1
2 LµLν . (5.1.5)

Note in particular that π ν
µ Lµ = 0 while π ν

µ Xµ
= Xν whenever X is tangent to C+q .

Furthermore, we recall the definitions of the Minkowskian volume forms of Minkowski spacetime and
of the surfaces 6t and Sr,t .

Definition 5.5. The Minkowskian volume forms of Minkowski spacetime, the surfaces 6t , and the
Euclidean spheres Sr,t are respectively defined relative to our wave-coordinate system as follows:

υµνκλ
def
= [µνκλ], (5.1.6a)

υνκλ
def
= υ0νκλ, (5.1.6b)

6υµν
def
= υµνκλLκLλ, (5.1.6c)

where [µνκλ] is totally antisymmetric with normalization [0123] = 1.

We also recall what it means for a spacetime tensor field to be m-tangent to the surfaces 6t or Sr,t .

Definition 5.6. Let U be a type-
(n

m

)
spacetime tensor field. We say that U is m-tangent to the time

slices 6t if
U ν1···νn
µ1···µm

= m
µ′1

µ1 · · ·m
µ′m

µm m ν1
ν′1
· · ·m νn

ν′n
U

ν′1···ν
′
n

µ′1···µ
′
m

. (5.1.7)

Equivalently, U is m-tangent to the 6t if and only if every wave-coordinate component of U containing a
0 index vanishes.

Similarly, we say that U is m-tangent to the spheres Sr,t if

U ν1···νn
µ1···µm

= 6m
µ′1

µ1 · · · 6m
µ′m

µm 6m ν1
ν′1
· · · 6m νn

ν′n
U

ν′1···ν
′
n

µ′1···µ
′
m

. (5.1.8)
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Equivalently, U is m-tangent to the spheres Sr,t if and only if any contraction of any index of U with
either L or L vanishes.

We are now ready to introduce the notion of a Minkowskian null frame. We complement the vector
fields L and L with a locally defined pair of m-orthogonal vector fields e1 and e2 that are tangent
to the spheres Sr,t and therefore m-orthogonal to L and L . The resulting collection of vector fields

N
def
= {L, L , e1, e2} is known as Minkowskian null frame. It spans the tangent space TpR1+3 at each point

p where it is defined.
We leave the proof of the following lemma, which summarizes some of the important properties of the

geometric quantities introduced in this section, as an exercise for the reader:

Lemma 5.7 (Null frame field properties). The following identities hold:

∇L L =∇L L = 0, (5.1.9a)

∇L L =∇L L = 0, (5.1.9b)

LκLκ =−2, (5.1.9c)

eκA Lκ = eκA Lκ = 0 (A = 1, 2), (5.1.9d)

mκλeκAeλB = δAB (A, B = 1, 2), (5.1.9e)

∇L 6mµν =∇L 6mµν = 0 (µ, ν = 0, 1, 2, 3), (5.1.10)

∇L 6υµν =∇L 6υµν = 0 (µ, ν = 0, 1, 2, 3). (5.1.11)

See Definition 6.4 concerning our use of notation in these formulas.

Later in the article, we will see that the decay rates of the null components (see Section 5.3) of h and F

are distinguished according to the kinds of contractions of F taken against L , L , e1, and e2. With these
ideas in mind, we introduce the following sets of vector fields:

L
def
= {L}, T

def
= {L , e1, e2}, and N

def
= {L, L , e1, e2}. (5.1.12)

In order to measure the size of the contractions of various tensors and their covariant derivatives against
vectors belonging to the sets L, T, and N, we introduce the following definitions:

Definition 5.8. If V and W denote any two of the above sets and P is a type-
(0

2

)
tensor, then we define

the following pointwise seminorms:

|P|VW
def
=

∑
V∈V, W∈W

|V κW λPκλ|, (5.1.13a)

|∇P|VW
def
=

∑
N∈N, V∈V, W∈W

|V κW λN γ
∇γ Pκλ|, (5.1.13b)

|∇P|VW
def
=

∑
T∈T, V∈V, W∈W

|V κW λT γ
∇γ Pκλ|. (5.1.13c)

We often use the abbreviations |P| def
= |P|NN, |∇P| def

= |∇P|NN, and |∇P| def
= |∇P|NN.
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The above definition generalizes in an obvious way to arbitrary type-
(n

m

)
tensor fields U ν1···νn

µ1···µm
.

Observe that, for any such tensor field, the following inequalities hold in our wave-coordinate system:

|U | ≈
3∑

µ1,...,µm ,ν1,...,νn=0

|U ν1···νn
µ1···µm

|. (5.1.14)

5.2. Minkowskian null frame decomposition of a tensor field. For an arbitrary vector field X and frame
vector field N ∈ N, we define

X N
def
= XκN κ , where Xµ

def
= mµκXκ . (5.2.1)

The components X N are known as the Minkowskian null components of X . In the sequel, we often
abbreviate

X A
def
= XeA and ∇A

def
= ∇eA , etc. (5.2.2)

It follows from (5.2.1) that

X = Xκ ∂κ = X L L + X L L + X AeA, (5.2.3)

X L
=−

1
2 X L , X L

=−
1
2 X L , X A

= X A. (5.2.4)

Furthermore, it is easy to check that

m(X, Y ) def
= mκλXκXλ

= XκYκ =− 1
2 X LYL −

1
2 X LYL + δ

AB X AYB . (5.2.5)

The above null decomposition of a vector field generalizes in the obvious way to higher-order tensor
fields. In the next section, we provide a detailed version of the null decomposition of two-forms F

since this decomposition is needed for our derivation of decay estimates later in the article; see, e.g.,
Propositions 9.3 and 11.5.

5.3. The detailed Minkowskian null decomposition of a two-form.

Definition 5.9. Given any two-form F, we define its Minkowskian null components to be the following
pair of one-forms αµ and αµ and the following pair of scalars ρ and σ :

αµ
def
= 6m ν

µ FνλLλ (µ= 0, 1, 2, 3), (5.3.1a)

αµ
def
= 6m ν

µ FνλLλ (µ= 0, 1, 2, 3), (5.3.1b)

ρ
def
=

1
2 FκλLκLλ, (5.3.1c)

σ
def
=

1
2 6υ

κλFκλ. (5.3.1d)

It is a simple exercise to check that αµ and αµ are m-tangent to the spheres Sr,t :

ακLκ = 0, ακLκ = 0, (5.3.2a)

ακLκ = 0, ακLκ = 0. (5.3.2b)
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Furthermore, relative to the null frame N
def
= {L, L , e1, e2}, we have that

αA = FAL (A = 1, 2), (5.3.3a)

αA = FAL (A = 1, 2), (5.3.3b)

ρ = 1
2 FL L , (5.3.3c)

σ = F12. (5.3.3d)

In terms of the seminorms introduced in Definition 5.8, it follows that

|F| ≈ |F|NN ≈ |α| + |α| + |ρ| + |σ |, (5.3.4a)

|F|LN ≈ |α| + |ρ|, (5.3.4b)

|F|TT ≈ |α| + |σ |. (5.3.4c)

The null components of ~F (the Minkowskian Hodge duality operator ~ is defined in Section 2.6) can
be expressed in terms of the above null components of F. Denoting the null components22 of ~F by �α,
�α, �ρ, and �σ , we leave it as a simple exercise for the reader to check that

�αA =−α
B
6υB A (A = 1, 2), (5.3.5a)

�αA = α
B
6υB A (A = 1, 2), (5.3.5b)

�ρ = σ, (5.3.5c)
�σ =−ρ. (5.3.5d)

6. Differential operators

In this section, we introduce a collection of differential operators that will be used throughout the remainder
of the article. In order to define these operators, we also introduce subsets O and Z of Minkowskian
conformal Killing fields. Finally, we prove a collection of lemmas that expose useful properties of these
operators and that illustrate various relationships between them.

6.1. Covariant derivatives. As previously mentioned, throughout the article, ∇ denotes the Levi-Civita
connection of the Minkowski metric m. Let m and 6m be the first fundamental forms of the 6t and Sr,t as
defined in Definition 5.3, and let ∇ and 6 ∇ be their corresponding Levi-Civita connections. We state as a
lemma the following well-known identities, which relate the connections ∇ and 6 ∇ to ∇:

Lemma 6.1 (Relationships between connections). If U is any type-
(n

m

)
tensor field m-tangent to the

6t , then

∇λU ν1···νn
µ1···µm

= m λ′

λ m
µ′1

µ1 · · ·m
µ′m

µm m ν1
ν′1
· · ·m νn

ν′n
∇λ′U

ν′1···ν
′
n

µ′1···µ
′
m

. (6.1.1)

22We use the symbol � in order to avoid confusion with the Minkowskian Hodge duality operator ~; i.e., it is not true that
~(α[F])= α[~F].
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Similarly, if U is any type-
(n

m

)
tensor field m-tangent to Sr,t , then

6 ∇λU ν1···νn
µ1···µm

= 6m λ′

λ 6m
µ′1

µ1 · · · 6m
µ′m

µm 6m ν1
ν′1
· · · 6m νn

ν′n
∇λ′U

ν′1···ν
′
n

µ′1···µ
′
m

. (6.1.2)

We recall the following fundamental properties of the connections ∇, ∇, and 6 ∇:

∇λmµν = 0=∇λ(m−1)µν (λ, µ, ν = 0, 1, 2, 3), (6.1.3a)

∇λmµν = 0 (λ, µ, ν = 0, 1, 2, 3), (6.1.3b)

6 ∇λ 6mµν = 0 (λ, µ, ν = 0, 1, 2, 3). (6.1.3c)

We will also make use of the projection of the operator ∇ onto the favorable directions, i.e., the
directions tangent to the outgoing Minkowski cones C+q .

Definition 6.2. If U is any type-
(n

m

)
spacetime tensor field, then we define the projected Minkowskian

covariant derivative ∇U by

∇λU ν1···νn
µ1···µm

= π λ′

λ ∇λ′U
ν1···νn

µ1···µm
, (6.1.4)

where the null frame projection π ν
µ is defined in (5.1.5).

Remark 6.3. Note that only the λ component is projected onto the outgoing cones so that the tensor field
∇λU ν1···νn

µ1···µm
need not be m-tangent to the outgoing Minkowski cones.

Definition 6.4. If X is any vector field, then we define the covariant derivative operators ∇X and 6 ∇X by

∇X
def
= Xκ

∇κ , (6.1.5a)

6 ∇X
def
= Xκ

6 ∇κ . (6.1.5b)

6.2. Minkowskian conformal Killing fields. In this section, we introduce the special set of vector fields Z

that appears in the definition (1.2.7) of our energy E`;γ;µ(t) and in the weighted Klainerman–Sobolev
inequality (1.2.10). We begin by recalling that a Minkowskian conformal Killing field is a vector field Z
such that

∇µZν +∇νZµ = (Z)φmµν (6.2.1)

for some function (Z)φ(t, x). The tensor field

(Z)πµν
def
= ∇µZν +∇νZµ (6.2.2)

is known as the Minkowskian deformation tensor of Z . If (Z)πµν = 0, then Z is known as a Minkowskian
Killing field. We also recall that the conformal Killing fields of the Minkowski metric mµν form a Lie
algebra under the Lie bracket [ · , · ] (see (6.3.1)). The Lie algebra is generated by the following 15 vector
fields (see, e.g., [Christodoulou 2008]):

(i) the four translations ∂µ = ∂
∂xµ (µ= 0, 1, 2, 3),

(ii) the three rotations � jk
def
= x j

∂
∂xk − xk

∂
∂x j (1≤ j < k ≤ 3),

(iii) the three Lorentz boosts �0 j
def
= −t ∂

∂x j − x j
∂
∂t ( j = 1, 2, 3),
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(iv) the scaling vector field S def
= xκ ∂

∂xκ , and

(v) the four acceleration vector fields Kµ
def
= −2xµS+ gκλxκxλ ∂

∂xµ (µ= 0, 1, 2, 3).

It can be checked that the translations, rotations, and Lorentz boosts are in fact Killing fields of mµν .
Two subsets of the above conformal Killing fields will play a prominent role in the remainder of the

article, namely the rotations O and a larger set Z, which are defined by

O
def
= {� jk}1≤ j<k≤3, (6.2.3a)

Z
def
=

{
∂

∂xµ
, �µν, S

}
0≤µ≤ν≤3

. (6.2.3b)

The vector fields in Z satisfy a strong version of the relation (6.2.1). That is, if Z ∈ Z, then

∇µZν = (Z)cµν, (6.2.4)

where the components (Z)cµν are constants in our wave-coordinate system. In particular, we compute for
future use that

∇µSν = mµν, (6.2.5a)

∇µ(�κλ)ν = mµκmνλ−mµλmνκ . (6.2.5b)

We note in addition that if Z ∈ Z then there exists a constant cZ such that

∇µZν +∇νZµ = cZ mµν . (6.2.6)

Furthermore, by contracting each side of (6.2.6) against (m−1)µν , we deduce that

cZ =
1
4
(Z)π κ

κ =
1
2
(Z)c κ

κ . (6.2.7)

6.3. Lie derivatives. As mentioned in Section 1.2.3, it is convenient to use Lie derivatives to differentiate
the electromagnetic equations (3.7.1b)–(3.7.1c). In this section, we recall some basic facts concerning
Lie derivatives.

We recall that, if X and Y are any pair of vector fields, then relative to an arbitrary coordinate system
their Lie bracket [X, Y ] can be expressed as

[X, Y ]µ = Xκ ∂κYµ− Y κ ∂κXµ. (6.3.1)

Furthermore, we have that
LX Y = [X, Y ], (6.3.2)

where L denotes the Lie derivative operator. Given a tensor field U of type
(0

m

)
and vector fields

Y(1), . . . , Y(m), the Leibniz rule for L implies that (6.3.2) generalizes as follows:

(LXU )(Y(1), . . . , Y(m))

= X{U (Y(1), . . . , Y(m))}−
n∑

i=1

U (Y(1), . . . , Y(i−1), [X, Y(i)], Y(i+1), . . . , Y(m)). (6.3.3)

Using Lemma 6.7 below, we see that the left-hand side of (6.2.6) is equal to the Lie derivative of the
Minkowski metric. It therefore follows that if Z ∈ Z then
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LZ mµν = cZ mµν, (6.3.4a)

(LZ m−1)µν =−cZ (m−1)µν, (6.3.4b)

where the constant cZ is defined in (6.2.6).

6.4. Modified covariant and modified Lie derivatives. It will be convenient for us to work with modified
Minkowski covariant derivatives ∇̂Z and modified Lie derivatives23 L̂Z .

Definition 6.5. For Z ∈ Z, we define the modified Minkowski covariant derivative ∇̂Z by

∇̂Z
def
= ∇Z + cZ , (6.4.1)

where cZ denotes the constant from (6.2.6).
For each vector field Z ∈ Z, we define the modified Lie derivative L̂Z by

L̂Z
def
= LZ + 2cZ , (6.4.2)

where cZ denotes the constant from (6.2.6).

The crucial features of the above definitions are captured by Lemmas 6.13 and 6.14 below. The first
shows that, for each Z ∈ Z, ∇̂Z2mφ = 2m∇Zφ, where 2m = (m−1)κλ∇κ∇λ is the Minkowski wave
operator. The second shows that

L̂Z
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ.

Furthermore, Lemma 6.8 shows that LZ∇[λFµν] =∇[λLZ Fµν], where [ · ] denotes antisymmetrization.
These commutation identities suggest that the operators ∇̂Z and L̂Z are potentially useful operators
for differentiating the nonlinear equations (3.7.1a) and (3.7.1b)–(3.7.1c), respectively. This suggestion
is borne out in Propositions 11.4 and 11.6, which show that the inhomogeneous terms generated by
differentiating the nonlinear equations have a special algebraic structure, a structure that will be exploited
during our global existence bootstrap argument.

6.5. Vector-field algebra. We introduce here some notation that will allow us to compactly express
iterated derivatives. If A is one of the sets from (6.2.3a)–(6.2.3b), then we label the vector fields in A

as Z ι1, . . . , Z ιd , where d is the cardinality of A. Then for any multi-index I = (ι1, . . . , ιk) of length k,
where each ιi ∈ {1, 2, . . . , d}, we make the following definition:

Definition 6.6. The iterated derivative operators are defined by

∇
I
A

def
= ∇Z ι1 ◦ · · · ◦ ∇Z ιk , (6.5.1a)

∇̂
I
A

def
= ∇̂Z ι1 ◦ · · · ◦ ∇̂Z ιk , (6.5.1b)

LI
A

def
= LZ ι1 ◦ · · · ◦LZ ιk , (6.5.1c)

L̂I
A

def
= L̂Z ι1 ◦ · · · ◦ L̂Z ιk , etc. (6.5.1d)

23Note that these are not the same modified Lie derivatives that appear in [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007].
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Similarly, if I = (µ1, . . . , µk) is a coordinate multi-index of length k, where µ1, . . . , µk ∈ {0, 1, 2, 3}
and U is a tensor field, then we use shorthand notation such as

∇
I U def
= ∇µ1 · · · ∇µk U, etc. (6.5.2)

Under the above conventions, the Leibniz rule can be written as, e.g.,

LI
Z(U V )=

∑
I1+I2=I

(LI1
Z U )(LI2

Z V ), etc., (6.5.3)

where by a sum over I1 + I2 = I we mean a sum over all order-preserving partitions of the index I
into two multi-indices. That is, if I = (ι1, . . . , ιk), then I1 = (ιi1, . . . , ιia ) and I2 = (ιia+1, . . . , ιik ), where
i1, . . . , ik is any reordering of the integers 1, . . . , k such that i1 < · · ·< ia and ia+1 < · · ·< ik .

The next standard lemma provides a useful expression relating Lie derivatives to covariant derivatives.

Lemma 6.7 (Lie derivatives in terms of covariant derivatives [Wald 1984, p. 441]). Let X be a vector
field, and let U be a tensor field of type

(n
m

)
. Then LXU can be expressed in terms of covariant derivatives

of U and X as follows:

LXU ν1···νn
µ1···µm

=∇XU ν1···νn
µ1···µm

+U ν1···νn
κµ2···µm

∇µ1 Xκ
+ · · ·+U ν1···νn

µ1···µm−1κ
∇µm Xκ

−U κν2···νn
µ1···µm

∇κXν1 − · · ·−U ν1···νn−1κ
µ1···µm

∇κXνn . (6.5.4)

The next lemma shows that the operators LZ and L̂Z commute with ∇ if Z ∈ Z.

Lemma 6.8 (LZ and ∇ commute). Let ∇ denote the Levi-Civita connection corresponding to the
Minkowski metric m, and let I be a Z-multi-index. Let L̂I

Z be the iterated modified Lie derivative
from Definitions 6.5 and 6.6. Then

[∇,LI
Z] = 0 and [∇, L̂I

Z] = 0. (6.5.5)

In an arbitrary coordinate system, equations (6.5.5) are equivalent to the following relations, which
hold for all type-

(n
m

)
tensor fields U :

∇µ{L
I
ZU ν1···νn

µ1···µm
} = LI

Z{∇µU ν1···νn
µ1···µm

},

∇µ{L̂
I
ZU ν1···νn

µ1···µm
} = L̂I

Z{∇µU ν1···νn
µ1···µm

}. (6.5.6)

Proof. The relation (6.5.5) can be shown via induction in |I | by using (6.5.4) and the fact that ∇∇Z =0. �

The next lemma captures the commutation properties of vector fields Z ∈ Z.

Lemma 6.9 (Lie bracket relations [Christodoulou and Klainerman 1990, p. 139]). Relative to the wave-
coordinate system {xµ}µ=0,1,2,3, the vector fields belonging to the subset Z

def
=
{
∂
∂xµ , �µν, S

}
0≤µ≤ν≤3 of

the Minkowskian conformal Killing fields satisfy the following commutation relations, where (Z)c κ
µ is

defined in (6.2.4):
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∂

∂xµ
,
∂

∂xν
]
= 0= (∂/∂xν)c κ

µ

∂

∂xκ
(µ, ν = 0, 1, 2, 3), (6.5.7a)[

∂

∂xλ
, �µν

]
= mλµ

∂

∂xν
−mλν

∂

∂xµ
=
(�µν)c κ

λ

∂

∂xκ
(λ, µ, ν = 0, 1, 2, 3), (6.5.7b)[

∂

∂xµ
, S
]
=

∂

∂xµ
=
(S)c κ

µ

∂

∂xκ
(µ= 0, 1, 2, 3), (6.5.7c)

[�κλ, �µν] = mκµ�νλ−mκν�µλ+mλµ�κν −mλν�κµ (κ, λ, µ, ν = 0, 1, 2, 3), (6.5.7d)

[�µν, S] = 0 (µ, ν = 0, 1, 2, 3). (6.5.7e)

We now provide the following simple commutation lemma:

Lemma 6.10 (∇Z and ∇∂/∂xµ commutation relations). Let Z ∈ Z. Then relative to the wave-coordinate
system {xµ}µ=0,1,2,3, the differential operators ∇∂/∂xµ and ∇Z satisfy the following commutation relations:

[∇∂/∂xµ,∇Z ] =
(Z)c κ

µ

∂

∂xκ
, (6.5.8)

where (Z)c κ
µ is defined in (6.2.4).

Proof. The relation (6.5.8) follows from Lemma 6.9 and the identity [∇X ,∇Y ]=∇[X,Y ], which holds for all
pairs of vector fields X and Y ; this identity holds because of the torsion-free property of the connection ∇
and because the Riemann curvature tensor of the Minkowski metric mµν completely vanishes. �

The next lemma shows that the operators ∇ and ∇ I
Z commute up to lower-order terms.

Lemma 6.11 (∇ and ∇ I
Z commutation inequalities). Let U be a type-

(n
m

)
tensor field, and let I be a

Z-multi-index. Then the following inequality holds:

|∇
I
Z∇U |. |∇∇ I

ZU | +
∑

|J |≤|I |−1

|∇∇
J
ZU |. (6.5.9)

Proof. Using (5.1.14), we have that

|∇
I
Z∇U | ≈

3∑
µ=0

|∇
I
Z∇∂/∂xµU |. (6.5.10)

We therefore repeatedly apply Lemma 6.10 to deduce that there exist constants Cν
I ;J such that

∇
I
Z∇∂/∂xµU =∇∂/∂xµ∇

I
ZU +

∑
|J |≤|I |−1

3∑
ν=0

Cν
I ;J∇∂/∂xν∇

J
ZU. (6.5.11)

Inequality (6.5.9) now follows from applying (5.1.14) to each side of (6.5.11). �

The next lemma provides some important differential identities.

Lemma 6.12 (Geometric differential identities). Let L and L be the Minkowski-null geodesic vector fields
defined in (5.1.2a)–(5.1.2b), and let O ∈ O. Then the vector fields L , L , and O mutually commute:

[L, L] = 0, [L, O] = 0, and [L , O] = 0. (6.5.12)
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Furthermore, let υκλµν , 6mµν , and 6υµν denote the tensor fields defined in (5.1.4b), (5.1.6a), and (5.1.6c).
Then

LOυκλµν = 0, (6.5.13a)

LO 6mµν = 0, (6.5.13b)

LO 6υµν = 0. (6.5.13c)

Proof. Equation (6.5.12) can be checked by performing straightforward calculations and using the
definitions (5.1.2a)–(5.1.2b) of L and L , the definitions of the rotations O ∈ O given at the beginning of
Section 6.2, and the Lie bracket formula (6.3.1). Equation (6.5.13a) follows from the well-known identity
LXυκλµν =

1
2
(X)π

β
βυκλµν , where (X)πµν is defined in (6.2.2), together with the fact that LOmµν =

(O)πµν = 0 (i.e., that O is a Killing field of mµν). Equations (6.5.13b) and (6.5.13c) then follow from
definitions (5.1.4b) and (5.1.6c) and the identities (6.5.12)–(6.5.13a). �

The next lemma shows that the modified covariant derivatives ∇̂ I
Z have favorable commutation properties

with the Minkowski wave operator.

Lemma 6.13 (∇̂ I
Z and 2m commutation properties). Let I be a Z-multi-index, and let φ be any function.

Let ∇̂ I
Z be the iterated modified Minkowski covariant derivative operator from Definitions 6.5 and 6.6,

and let 2m
def
= (m−1)κλ∇κ∇λ denote the Minkowski wave operator. Then

∇̂
I
Z2mφ =2m∇

I
Zφ. (6.5.14)

Proof. Using the symmetry of the tensor field ∇κ∇λφ together with (6.1.3a), (6.2.6), and definition (6.4.1),
we compute that

2m∇Zφ = (m−1)κλ∇κ∇λ(Z ζ∇ζφ)=∇Z2mφ+ 2(∇κ Zλ)∇λ∇κφ

=∇Z2mφ+ (∇
κ Zλ+∇λZκ)∇κ∇λφ

=∇Z2mφ+ cZ2mφ

def
= ∇̂Z2mφ. (6.5.15)

This proves (6.5.14) in the case |I | = 1. The general case now follows inductively. �

The next lemma shows that the modified Lie derivative LI
Z operator has favorable commutation prop-

erties with the linear Maxwell–Maxwell term ∇µFµν
=

1
2 [(m

−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ ]∇µFκλ.

Lemma 6.14 (Commutation properties of L̂I
Z with a linear Maxwell–Maxwell term). Let I be a Z-multi-

index, and let F be a two-form. Let L̂I
Z be the iterated modified Lie derivative from Definitions 6.5 and 6.6.

Then

L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ. (6.5.16)

Proof. Let Z ∈ Z. By the Leibniz rule, (6.3.4b), and Lemma 6.8, we have that
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LZ
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=−2cZ

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

+
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ. (6.5.17)

It thus follows from Definition 6.5 that

L̂Z
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ. (6.5.18)

This implies (6.5.16) in the case |I | = 1. The general case now follows inductively. �

The next lemma shows that some of the differential operators we have introduced commute with the
null decomposition of a two-form.

Lemma 6.15 (Differential operators that commute with the null decomposition). Let F be a two-form, and
let α, α, ρ, and σ be its Minkowskian null components. Let O ∈ O be any of the rotational Minkowskian
Killing fields � jk (1≤ j < k ≤ 3). Then LOα[F] = α[LOF], LOα[F] = α[LOF], LOρ[F] = ρ[LOF],
and LOσ [F] = σ [LOF]. An analogous result holds for the operators ∇L and ∇L ; i.e., LO , ∇L , and ∇L

commute with the null decomposition of F.

Proof. Lemma 6.15 follows from Definition 5.9, Lemmas 5.7 and 6.12, and the fact that LOmµν =

(LOm−1)µν = 0. �

The next lemma shows that weighted covariant derivatives can be controlled by covariant derivatives
with respect to vector fields Z ∈ Z.

Lemma 6.16 (Weighted pointwise differential operator inequalities [Lindblad and Rodnianski 2010,
Lemma 5.1]). For any tensor field U and any two-tensor 5, we have the following pointwise estimates
(where |∇2U | def

= |∇∇U |):

(1+ t + |q|)|∇U | + (1+ |q|)|∇U |.
∑
|I |≤1

|∇
I
ZU |, (6.5.19a)

|∇
2U | + r−1

|∇U |. r−1(1+ t + |q|)−1
∑
|I |≤2

|∇
I
ZU |, (6.5.19b)

|5κλ
∇κ∇λU |.

(
(1+ t + |q|)−1

|5| + (1+ |q|)−1
|5|LL

)∑
|I |≤1

|∇∇
I
ZU |. (6.5.19c)

The next lemma shows that rotational Lie derivatives can be used to approximate weighted Sr,t -intrinsic
covariant derivatives.

Lemma 6.17 (Weighted covariant derivatives approximated by rotational Lie derivatives [Speck 2012,
Lemma 8.0.5]). Let U be any tensor field m-tangent to the spheres Sr,t and k ≥ 0 be any integer. Then
with r def

= |x |, we have that ∑
|I |≤k

r |I || 6 ∇ I U | ≈
∑
|I |≤k

|LI
OU |. (6.5.20)
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Corollary 6.18. Let F be a two-form, and let α[F], α[F], ρ[F], and σ [F] denote its Minkowskian null
components. Then with r = |x |, we have that

r | 6 ∇α[F]|.
∑
|I |≤1

|α[LI
ZF]|. (6.5.21)

Furthermore, analogous inequalities hold for α[F], ρ[F], and σ [F].

Proof. Inequality (6.5.21) follows from Lemmas 6.15 and 6.17. �

Finally, the following proposition provides pointwise inequalities relating various Lie and covariant
derivative operators under various contraction seminorms:

Proposition 6.19 (Lie derivative and Minkowski covariant derivative comparison inequalities). Let U be
a tensor field. Then ∑

|I |≤k

|LI
ZU | ≈

∑
|I |≤k

|∇
I
ZU |. (6.5.22)

Furthermore, let P be a symmetric or an antisymmetric type-
(0

2

)
tensor field. Then the following

inequalities hold:∑
|I |≤k

|∇LI
Z P|.

∑
|I |≤k

|∇∇
I
Z P|, (6.5.23a)

∑
|I |≤k

|∇LI
Z P|.

∑
|I |≤k

|∇∇
I
Z P|, (6.5.23b)

|LI
Z P|LL . |∇

I
Z P|LL+

∑
|J |≤|I |−1

|∇
J
Z P|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇
J ′
Z P|︸ ︷︷ ︸

absent if |I | ≤ 1

, (6.5.23c)

|∇LI
Z P|LL . |∇∇

I
Z P|LL+

∑
|J |≤|I |−1

|∇
J
Z P|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇∇
J ′
Z P|︸ ︷︷ ︸

absent if |I | ≤ 1

, (6.5.23d)

|∇P|LN+ |∇P|TT . (1+ |q|)−1
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
+ (1+ t + |q|)−1

∑
|I |≤1

|LI
Z P|. (6.5.23e)

Proof. Inequality (6.5.22) follows inductively from (6.2.4) and (6.5.4).
To prove the remaining inequalities, for each Z ∈ Z, we define the contraction operator CZ by

(CZ P)µν
def
= Pκν(Z)c κ

µ + Pµκ(Z)c κ
ν , (6.5.24)

where the covariantly constant tensor field (Z)c κ
µ is defined in (6.2.4). It follows from definition (6.5.24)

and Lemma 6.7 that
LZ P =∇Z P +CZ P. (6.5.25)

Since each Z ∈ Z is a conformal Killing field and since LµLνmµν = 0, it follows that LµLν(Z)c ν
µ = 0.

Also using the fact that each (Z)c ν
µ is a constant, we have that
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|CZ P|LL . |P|LT, (6.5.26)

|CZ P|. |P|. (6.5.27)

If I = (ι1, . . . , ιk) is a Z-multi-index with 1≤ |I | = k, then using the fact that the components (Z)c κ
µ

are constants, we have that

LI
Z P def
= LZ ι1 ◦ · · · ◦LZ ιk P

= (∇Z ι1 +CZ ι1 ) ◦ · · · ◦ (∇Z ιk +CZ ιk )P

=∇
I
Z P +

k∑
i=1

CZ ιi ◦∇Z ι1 ◦ · · · ◦ ∇Z ιi−1 ◦∇Z ιi+1 ◦ · · · ◦ ∇Z ιk P +

absent if k = 1︷ ︸︸ ︷∑
I1+I2=I
|I2|≤k−2

CI1
Z∇

I2
Z P . (6.5.28)

Inequality (6.5.23a) now follows from applying ∇ to each side of (6.5.28), from using the fact that
the operator ∇ commutes through the operators CZ , and from (6.5.27). Inequality (6.5.23b) follows
from similar reasoning. Inequalities (6.5.23c) and (6.5.23d) also follow from similar reasoning together
with (6.5.26).

To prove (6.5.23e), we first observe that, by (6.5.19a) and (6.5.22), we have that

|∇P|LN+ |∇P|TT . |∇L P|LN+ |∇L P|TT+ |∇P|

. |∇L P|LN+ |∇L P|TT+ (1+ t + |q|)−1
∑
|I |≤1

|LI
Z P|. (6.5.29)

Therefore, from (6.5.29), we see that to prove (6.5.23e) it suffices to prove that the following inequality
holds for any symmetric or antisymmetric type-

(0
2

)
tensor field P:

|∇L P|LN+ |∇L P|TT . (1+ |q|)−1
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.30)

To this end, we use the vector fields S = xκ ∂κ and �0 j =−t ∂ j − x j ∂t to decompose

L =−q−1(S+ωa�0a) and ωa def
= xa/r, (6.5.31)

which implies that

−q∇L Pµν =∇S Pµν +ωa
∇�0a Pµν . (6.5.32)

Using (6.2.5a), (6.2.5b), and (6.5.4), we compute that

∇S Pµν = LS Pµν − 2Pµν, (6.5.33)

ωa
∇�0a Pµν = ωaL�0a Pµν − 1

2

(
LµLκ Pκν − LµLκ Pκν + LνLκ Pµκ − LνLκ Pµκ

)
. (6.5.34)

Inserting these two identities into (6.5.32), we conclude that

−q∇L Pµν = LS Pµν +ωaL�0a Pµν − 2Pµν

−
1
2

(
LµLκ Pκν − LµLκ Pκν + LνLκ Pµκ − LνLκ Pµκ

)
. (6.5.35)
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Contracting (6.5.35) against the sets LN and TT, we see that

|q||∇L P|LN+ |q||∇L P|TT .
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.36)

Furthermore, by decomposing

L = ∂t − ∂r = ∂t −ω
a ∂a (6.5.37)

and using the fact that (∂/∂t)c ν
µ =

(∂/∂x j )c ν
µ = 0 (where (Z)cµν is defined in (6.2.4)), we deduce that

∇L Pµν = L∂/∂t Pµν −ωaL∂/∂xa Pµν . (6.5.38)

Contracting (6.5.38) against the sets LN and TT, we have that

|∇L P|LN+ |∇L P|TT .
∑
|I |=1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.39)

Adding (6.5.36) and (6.5.39), we arrive at inequality (6.5.30). This completes our proof of (6.5.23e). �

7. The reduced equation satisfied by ∇ I
Zh(1)

In this short section, we assume that h(1)µν is a solution to the reduced equation (3.7.1a). We provide a
proposition that gives a preliminary description of the inhomogeneities in the equation satisfied by ∇ I

Zh(1)µν .

Proposition 7.1 (Inhomogeneities for ∇ I
Zh(1)µν ). Suppose that h(1)µν is a solution to the reduced equation

(3.7.1a), and let I be any Z-multi-index. Then ∇ I
Zh(1)µν is a solution to the inhomogeneous system

2̃g∇
I
Zh(1)µν = H(1;I )µν , (7.0.1)

H(1;I )µν = ∇̂
I
ZHµν −∇̂

I
Z2̃h(0)µν −

(
∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν

)
= ∇̂

I
ZHµν −∇̂

I
Z2̃h(0)µν −

(
∇̂

I
Z

(
H κλ
∇κ∇λh(1)µν

)
− H κλ

∇κ∇λ∇
I
Zh(1)µν

)
. (7.0.2)

Proof. Proposition 7.1 follows from differentiating each side of (3.7.1a) with modified covariant derivatives
∇̂

I
Z and applying Lemma 6.13. �

8. The equations of variation, the canonical stress, and electromagnetic energy currents

In this section, we introduce the electromagnetic equations of variation, which are linearized versions of
the reduced electromagnetic equations. The significance of the equations of variation is the following:
if F is a solution to the reduced electromagnetic equations (3.7.1b)–(3.7.1c), then LI

ZF is a solution to the
equations of variation. We then provide a preliminary description of the structure of the inhomogeneous
terms in the equations of variation satisfied by LI

ZF. Additionally, we introduce the canonical stress
tensor field and use it to construct energy currents. The energy currents are vector fields that will be used
in the divergence theorem to derive weighted energy estimates for solutions to the equations of variation;
this analysis is carried out in Section 12.
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8.1. Equations of variation. The equations of variation in the unknowns Ḟµν are the linearization24 of
(3.7.1b)–(3.7.1c) around a background (hµν,Fµν). More specifically, the equations of variation are the
system

∇λḞµν +∇µḞνλ+∇νḞλµ = Ḟλµν (λ, µ, ν = 0, 1, 2, 3), (8.1.1a)

N #µνκλ
∇µḞκλ = Ḟν (ν = 0, 1, 2, 3), (8.1.1b)

where N #µνκλ is the (hµν,Fµν)-dependent tensor field defined in (3.7.2c) and Ḟλµν and Ḟν are inhomoge-
neous terms that are specified in Proposition 8.1. In this article, the equations of variation will arise when
we differentiate the reduced equations (3.7.1b)–(3.7.1c) with modified Lie derivatives. In particular, Ḟ will
be equal to LI

ZFµν . The next proposition, which is a companion of Proposition 7.1, provides a preliminary
expression of the inhomogeneous terms that arise in the study of the equations of variation satisfied
by LI

ZFµν . We remark that the proof of the proposition uses lemmas that are proved in Section 11.

Proposition 8.1 (Inhomogeneities for LI
ZFµν). If Fµν is a solution to the reduced electromagnetic

equations (3.7.1b)–(3.7.1c) and I is a Z-multi-index, then Ḟµν
def
= LI

ZFµν is a solution to the equations
of variation (8.1.1a)–(8.1.1b) (corresponding to the background (hµν,Fµν)) with inhomogeneous terms
Ḟλµν

def
= F(I )λµν and Ḟν

def
= Fν(I ), where

F(I )λµν = 0, (8.1.2a)

Fν(I ) = L̂I
ZF

ν
+
(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z

(
N #µνκλ

∇µFκλ

))
. (8.1.2b)

Furthermore, there exist constants C̃1;I1,I2 , C̃2;I1,I2 , C̃P;I1,I2 , C̃F4;J , and C̃N #
4
;I1,I2

such that

L̂I
ZF

ν
=

∑
|I1|+|I2|≤|I |

C̃2;I1,I2Qν(2;F)(∇LI1
Z h,LI2

Z F)+
∑
|J |≤|I |

C̃F4;J LJ
ZF

ν
4
, (8.1.3a)

N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)

=

∑
|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃P;I1,I2Pν
(F)(L

I1
Z h,∇LI2

Z F)+
∑

|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃1;I1,I2Qν(1;F)(L
I1
Z h,∇LI2

Z F)

+

∑
|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃N #
4
;I1,I2

(LI1
Z N #µνκλ
4

)∇µLI2
Z Fκλ. (8.1.3b)

In the above formulas, Fν
4

and N #µνκλ
4

are the error terms appearing in (3.7.2g) and (3.7.2h), respectively,
while Pν

(F)( · , · ) and Qν(i;F)( · , · ) (i = 1, 2 and ν = 0, 1, 2, 3) are the quadratic forms defined in (3.7.3b),
(3.7.3c), and (3.7.2e), respectively.

Proof. To prove (8.1.2a), we first recall (3.7.1b), which states that Fµν is a solution to ∇[κFµν]= 0, where
[ · ] denotes antisymmetrization. From (6.5.5), it therefore follows that

0= LI
Z∇[λFµν] =∇[λLI

ZFµν], (8.1.4)

which is the desired result.
24More precisely, the equations of variation are linear in Ḟ.
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To derive (8.1.2b), we conclude that L̂I
Z(N

#µνκλ
∇µFκλ)= L̂I

ZF
ν by simply differentiating each side

of (8.1.1b) with L̂I
Z. Trivial algebraic manipulation then leads to the fact that N #µνκλ

∇µLI
ZFκλ = Fν(I ),

where Fν(I ) is defined by (8.1.2b).
Equation (8.1.3a) follows from (3.7.2b), Definition 6.5 of L̂Z , and Lemma 11.8, which is proved in

Section 11.2.
To prove (8.1.3b), we first recall the decomposition (3.7.3a):

N #µνκλ
∇µFκλ =

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

−Pν
(F)(h,∇F)−Qν(1;F)(h,∇F)+ N #µνκλ

4
∇µFκλ. (8.1.5)

The commutator term arising from the first term on the right-hand side of (8.1.5) vanishes. More
specifically, we use (6.5.16) to conclude that(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ

− L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
= 0. (8.1.6)

Therefore, it follows from (8.1.5) and (8.1.6) that

N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)= L̂I

ZPν
(F)(h,∇F)−Pν

(F)(h,∇LI
ZF)

+ L̂I
ZQν(1;F)(h,∇F)−Qν(1;F)(h,∇LI

ZF)

+ N #µνκλ
4

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
4

∇µFκλ). (8.1.7)

The expression (8.1.3b) now follows from (8.1.7), the Leibniz rule, Definition 6.5 of L̂Z , Lemma 6.8,
and Lemma 11.8 below. �

8.2. The canonical stress. The notion of the canonical stress tensor field Q̇µ
ν in the context of PDE

energy estimates was introduced by Christodoulou [2000]. As explained in Section 1.2.6, from the point
of view of energy estimates, it plays the role of an energy-momentum-type tensor for the equations
of variation. Its two key properties are (i) its divergence is lower-order (in the sense of the number of
derivatives falling on the variations Ḟµν) and (ii) contraction against certain pairs (ξ, X) consisting of
a one-form ξµ and a vector field Xν leads to an energy density that can be used derive L2 control of
solutions Ḟµν to the equations of variation. As we will see, property (i) is captured by Lemma 8.5 and
(8.3.3) while property (ii) is captured by (8.3.2), (12.2.1), and (12.2.8). In order to explain the origin
of the canonical stress, we first define the linearized Lagrangian; our definition is modeled after the
definition given by Christodoulou [2000].

Definition 8.2. Given an electromagnetic Lagrangian L[ · ] (as described in Section 3.2) and a “back-
ground” (hµν,Fµν), we define the linearized Lagrangian by

L̇
def
= −

1
4 N #ζηκλḞζηḞκλ, (8.2.1)

where N #ζηκλ is the (hµν,Fµν)-dependent tensor field defined in (3.3.8).
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Remark 8.3. L̇ is equal to 1
2(∂

2?L[h,F]/(∂Fζη ∂Fκλ))ḞζηḞκλ up to a correction term 1
4(∂

?L/∂�(2)) ·
ε#µνκλḞζηḞκλ corresponding to the term 1

2(∂
?L/∂�(2))ε#µνκλ from (3.3.10).

The merit of Definition 8.2 is the following: the principal part (from the point of view of number of
derivatives) of the Euler–Lagrange equations (assuming that we view (h,F) as a known background
and Ḟ to be the unknowns and that an appropriately defined action25 is stationary with respect to closed
variations of Ḟ) corresponding to L̇[Ḟ; h,F] is identical to the principal part of the electromagnetic
equations of variation (8.1.1b); i.e., L̇[Ḟ; h,F] generates the principal part of the linearized equations.

Definition 8.4. Given a linearized Lagrangian L̇[Ḟ; h,F], the canonical stress tensor field Q̇µ
ν is defined

as follows:

Q̇µ
ν = Q̇µ

ν[Ḟ, Ḟ]
def
= −2

∂L̇

∂Ḟµζ

Ḟνζ + δ
µ
ν L̇= N #µζκλḞκλḞνζ −

1
4δ
µ
ν N #ζηκλḞζηḞκλ, (8.2.2)

where N #µνκλ is defined in (3.3.8).

Note that, in contrast to the energy-momentum tensor Tµν , Q̇µν
def
= mµκ Q̇κ

ν is in general not symmetric.
We use the notation Q̇µ

ν[Ḟ, Ḟ] whenever we want to emphasize the quadratic dependence of Q̇µ
ν on Ḟ.

Because of our assumption (3.3.3a) concerning the Lagrangian, Q̇µ
ν is equal to the energy-momentum

tensor (in Ḟ) for the standard Maxwell–Maxwell equations in Minkowski spacetime plus small corrections.
More precisely, we insert the decomposition (3.7.2c) of N #µζκλ into the right-hand side of (8.2.2) and
perform simple computations, thereby arriving at the following decomposition of Q̇µ

ν :

Q̇µ
ν[Ḟ, Ḟ] =

terms from linear Maxwell–Maxwell
equations in Minkowski spacetime︷ ︸︸ ︷

Ḟµζ Ḟνζ −
1
4δ
µ
ν ḞζηḞζη

corrections to Minkowskian linear
Maxwell–Maxwell equations arising from h︷ ︸︸ ︷

− hµκḞκζ Ḟ ζ
ν − hκλḞµ

κḞνλ+
1
2δ
µ
ν hκλḞκηḞ

η
λ

+ N #µζκλ
4

ḞκλḞνζ −
1
4δ
µ
ν N #ζηκλ
4

ḞζηḞκλ︸ ︷︷ ︸
error terms

. (8.2.3)

The next lemma captures the lower-order divergence property enjoyed by Q̇µ
ν .

Lemma 8.5 (Divergence of the canonical stress). Let Ḟµν be a solution to the equations of variation
(8.1.1a)–(8.1.1b) corresponding to the background (hµν,Fµν), and let Ḟλµν and Ḟν be the inhomogeneous
terms from the right-hand sides of (8.1.1a)–(8.1.1b). Let Q̇µ

ν[Ḟ, Ḟ] be the canonical stress tensor field
defined in (8.2.2). Then

∇µ

(
Q̇µ

ν[Ḟ, Ḟ]
)
=−

1
2 N #ζηκλḞζηḞνκλ+ ḞνηḞ

η
+ (∇µN #µζκλ)ḞκλḞνζ −

1
4(∇νN #ζηκλ)ḞζηḞκλ

=−
1
2 N #ζηκλḞζηḞνκλ+ ḞνηḞ

η
− (∇µhµκ)Ḟκζ Ḟ ζ

ν − (∇µhκλ)Ḟµ
κḞνλ

+
1
2(∇νh

κλ)ḞκηḞ
η
λ + (∇µN #µζκλ

4
)ḞκλḞνζ −

1
4(∇νN #ζηκλ

4
)ḞζηḞκλ. (8.2.4)

Proof. To obtain (8.2.4), we use (8.1.1a)–(8.1.1b), the expansion (3.7.2c), and the properties (3.3.9a)–
(3.3.9c) (which are also satisfied by the tensor field N #µζκλ

4
). �

25A suitable action AC[Ḟ] is, e.g., of the form AC[Ḟ]
def
=
∫
CbM L̇[Ḟ; h,F] d4x , where C is a compact subset of spacetime.
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8.3. Electromagnetic energy currents. In this section, we introduce the energy currents that will be
used to derive the weighted energy estimate (12.2.1) for a solution Ḟ to the equations of variation
(8.1.1a)–(8.1.1b).

Definition 8.6. Let hµν be a symmetric type-
(0

2

)
tensor field, and let Fµν and Ḟµν be a pair of two-forms.

Let w(q) be the weight defined in (12.1.1), and let Xν def
= w(q)δν0 be the “multiplier” vector field. We

define the energy current J̇µ(h,F)[Ḟ] corresponding to the variation Ḟµν and the background (hµν,Fµν) to
be the vector field

J̇µ(h,F)[Ḟ]
def
= −Q̇µ

ν[Ḟ, Ḟ]Xν
=−w(q)Q̇µ

0[Ḟ, Ḟ], (8.3.1)

where Q̇µ
ν[Ḟ, Ḟ] is the canonical stress tensor field from (8.2.2).

Lemma 8.7 (Positivity of J̇ 0
(h,F)). Let J̇µ(h,F)[Ḟ] be the energy current defined in (8.3.1). Then

J̇ 0
(h,F) =

1
2 |Ḟ|

2w(q)+
(
O∞(|h|;F)+ O`(|(h,F)|2)

)
|Ḟ|2w(q). (8.3.2)

Furthermore, if Ḟµν is a solution to the equations of variation (8.1.1a)–(8.1.1b) with inhomogeneous
terms Ḟλµν ≡ 0, then the Minkowskian divergence of J̇(h,F) can be expressed as follows:

∇µ J̇µ(h,F) =−
1
2w
′(q)(|α̇|2+ ρ̇2

+ σ̇ 2)−w(q)Ḟ0ηḞ
η

−w(q)
(
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

)
−w′(q)

(
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

)
−w(q)

(
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

)
−w′(q)

(
LµN #µζκλ

4
ḞκλḞ0ζ +

1
4 N #ζηκλ
4

ḞζηḞκλ

)
, (8.3.3)

where α̇ def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ] are the “favorable” Minkowskian null components of Ḟ

defined in Section 5.3.

Remark 8.8. The term 1
2w
′(q)(|α̇|2+ ρ̇2

+ σ̇ 2) appearing on the right-hand side of (8.3.3) is of central
importance for closing the bootstrap argument during our global existence proof. It manifests itself
as the additional positive spacetime integral

∫ t
0

∫
6τ
(|Ḟ|2LN+ |Ḟ|

2
TT)w

′(q) d3x dτ on the left-hand side
of (12.2.1) below and provides a means for controlling some of the spacetime integrals that emerge in
Section 16.4.

Proof. Equation (8.3.2) follows from (8.2.3), simple calculations, and (3.7.2h).
To prove (8.3.3), we first recall that since q = r − t it follows that ∇µq = Lµ, where L is defined in

(5.1.2b). Hence, we have that ∇µw(q)=w′(q)Lµ. Using this fact, (8.2.3), and (8.2.4), we calculate that
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∇µ J̇µ(h,F) =−w(q)Ḟ0ηḞ
η
−w(q)

(
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

)
−w(q)

(
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

)
−w′(q)

(
LµḞµζ Ḟ0ζ +

1
4 ḞκλḞκλ︸ ︷︷ ︸

(|α̇|2+ρ̇2+σ̇ 2)/2

)
−w′(q)

(
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

)
−w′(q)

(
LµN #µζκλ

4
ḞκλḞ0ζ +

1
4 N #ζηκλ
4

ḞζηḞκλ

)
. (8.3.4)

The expression (8.3.3) thus follows. �

9. Decompositions of the electromagnetic equations

In this section we perform two decompositions of the electromagnetic equations. The first is a null
decomposition of the equations of variation, which will be used in Section 15 to derive pointwise decay
estimates for the lower-order Lie derivatives of Fµν . The second is a decomposition of the electromagnetic
equations into constraint and evolution equations for the Minkowskian one-forms Eµ and Bµ, which
are respectively known as the electric field and magnetic induction. This decomposition will be used
in Section 10 to prove that our smallness condition on the abstract data necessarily implies a smallness
condition on the initial energy E`;γ;µ(0) of the corresponding solution to the reduced equations. We remark
that the Minkowskian one-forms Dµ and Hµ, which are respectively known as the electric displacement
and the magnetic field, and also the geometric electromagnetic one-forms Eµ, Bµ, Dµ, and Hµ will play
a role in the discussion.

9.1. The Minkowskian null decomposition of the electromagnetic equations of variation. In this sec-
tion, we decompose the equations of variation into equations for the null components of Ḟ. The main
advantage of our decomposition, which is given in Proposition 9.3, is that the terms in each equation can
be separated into two classes: (i) a derivative of a null component in a “nearly Minkowski-null” direction26

and (ii) the error terms. Although from the point of view of differentiability some of the error terms
are higher-order, it will turn out that all error terms are lower-order in terms of decay rates. In this way,
the equations can be viewed as ordinary differential inequalities with inhomogeneous terms (which we
loosely refer to as ODEs) for the null components of Ḟ. This point of view is realized in Proposition 11.5.
The key point is that the ODEs we derive are amenable to Gronwall estimates. In Section 15, we will use
this line of argument to derive pointwise decay estimates for the null components of the lower-order Lie
derivatives of a solution F to the electromagnetic equations (3.7.1b)–(3.7.1c). These estimates will be an
improvement over what can be deduced from the weighted Klainerman–Sobolev inequality (B.4) alone;
see the beginning of Section 15 for additional details regarding this improvement.

We begin the analysis by using (3.7.2c) to write the equations of variation (8.1.1a)–(8.1.1b) in the
following form:

26By “nearly Minkowski-null”, we mean vectors that are nearly parallel to L or L with some corrections coming from the
presence of a nonzero h in the case of the vector field L .
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∇λḞµν +∇µḞνλ+∇νḞλµ = 0, (9.1.1a)
1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µḞκλ

+
1
2

(
−hµκ(m−1)νλ+ hµλ(m−1)νκ

)
∇µḞκλ

+
1
2

(
−(m−1)µκhνλ+ (m−1)µλhνκ

)
∇µḞκλ+ N #µνκλ

4
∇µḞκλ = Ḟν . (9.1.1b)

In our calculations below, we will make use of the identities

∇A L =−r−1eA and ∇A L = r−1eA, (9.1.2)

which can be directly calculated in our wave-coordinate system by using (5.1.2a)–(5.1.2b). We will also
make use of the identity

6 ∇ AeB =∇AeB +
1
2 m(∇AeB, L)L + 1

2 m(∇AeB, L)L

=∇AeB −
1
2 m(eB,∇A L)L − 1

2 m(eB,∇A L)L

=∇AeB +
1
2r−1δAB(L − L), (9.1.3)

which follows from (6.1.2) and (9.1.2).
Furthermore, if U is a type-

(0
m

)
tensor field and X(i) (1≤ i ≤ m) and Y are vector fields, then by the

Leibniz rule we have that
∇Y {U (X(1), . . . , X(m))} = (∇Y U )(X(1), . . . , X(m))+U (∇Y X(1), X(2), . . . , X(m))

+ · · ·+U (X(1), X(2), . . . ,∇Y X(m)). (9.1.4)

Similarly, if U is m-tangent to the spheres Sr,t , then

6 ∇eA{U (eB(1), . . . , eB(m))} = ( 6 ∇ AU )(eB(1), . . . , eB(m))+U ( 6 ∇ AeB(1), eB(2), . . . , eB(m))

+ · · ·+U (eB(1), eB(2), . . . , 6 ∇ AeB(m)). (9.1.5)

Applying (9.1.4) and (9.1.5) to F and using (9.1.2), (9.1.3), and (5.3.5a)–(5.3.5d), we compute (as in
[Christodoulou and Klainerman 1990, p. 161]) the following identities, which we state as a lemma:

Lemma 9.1 (Contracted derivatives expressed in terms of the null components [Christodoulou and
Klainerman 1990, p. 161]). Let F be a two-form, and let α, α, ρ, and σ be its Minkowskian null
components. Then the following identities hold:

∇AFBL = 6∇ AαB − r−1(ρδAB + σ 6υ AB), (9.1.6a)

∇AFBL = 6∇ AαB − r−1(ρδAB − σ 6υ AB), (9.1.6b)

∇A
~FBL =−6υC B 6 ∇ AαC − r−1(σδAB − ρ 6υ AB), (9.1.6c)

∇A
~FBL = 6υC B 6 ∇ AαC − r−1(σδAB + ρ 6υ AB), (9.1.6d)

1
2∇AFL L = 6∇ Aρ+

1
2r−1(αA+αA), (9.1.6e)

1
2∇A

~FL L = 6∇ Aσ +
1
2r−1(−6υB AαB + 6υB AαB), (9.1.6f)

∇AFBC = 6υBC
(
6 ∇ Aσ +

1
2r−1(−6υD AαD + 6υD AαD)

)
. (9.1.6g)

In all of our expressions, contractions are taken after differentiating; e.g., ∇AFBL
def
= eµAeκB Lλ∇µFκλ.



836 JARED SPECK

Remark 9.2. The identities in Lemma 9.1 can be reinterpreted as identities for spacetime tensors that
are m-tangent to the spheres Sr,t . That is, they can be rephrased in terms of our wave-coordinate frame
with the help of the projection 6m ν

µ and the spherical volume form 6υ ν
µ defined in (5.1.4b) and (5.1.6c),

respectively. For example, (9.1.6a) is equivalent to the following equation:

6m µ′

µ 6m
ν′

ν Lκ∇κFν′κ = 6m µ′

µ 6m
ν′

ν ∇µ′αν′ − r−1(ρ 6mµν + σ 6υµν). (9.1.7)

We will use the spacetime-coordinate-frame version of the identities in our proof of Proposition 9.3.

We now derive equations for the null components of a solution Ḟ to (9.1.1a)–(9.1.1b).

Proposition 9.3 (Minkowskian null decomposition of the equations of variation). Let Ḟ be a solution
to the equations of variation (9.1.1a)–(9.1.1b), and let α̇ def

= α[Ḟ], α̇ def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ]

denote its Minkowskian null components. Assume that the source term Ḟλµν on the right-hand side of
(9.1.1a) vanishes.27 Then the following equations are satisfied by the null components:

∇L α̇ν + r−1α̇ν + 6m
κ
ν ∇κ ρ̇− 6υ

κ
ν ∇κ σ̇ −

6mνλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

6m λ
ν hµκ∇µḞκλ−

6mνλQλ
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

6mνν′(m−1)µκhν
′λ
∇µḞκλ

+6mνν′N
#µν′κλ
4

∇µḞκλ = 6mνν′Ḟ
ν′, (9.1.8a)

∇L α̇ν − r−1α̇ν − 6m κ
ν ∇κ ρ̇− 6υ

κ
ν ∇κ σ̇ −

6mνλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

6m λ
ν hµκ∇µḞκλ−

6mνλQλ
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

6mνν′(m−1)µκhν
′λ
∇µḞκλ

+6mνν′N
#µν′κλ
4

∇µḞκλ = 6mνν′Ḟ
ν′, (9.1.8b)

∇L ρ̇− 2r−1ρ̇+ 6mµν
∇µα̇ν −

LλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

Lλhµκ∇µḞκλ−

LνQν
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

Lν(m−1)µκhνλ∇µḞκλ

+LνN #µνκλ
4

∇µḞκλ = LλḞλ, (9.1.8c)

∇L σ̇ − 2r−1σ̇ + 6υµν∇µα̇ν = 0, (9.1.8d)

∇L ρ̇+ 2r−1ρ̇− 6mµν
∇µα̇ν +

LλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

Lλhµκ∇µḞκλ+

LνQν
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

Lν(m−1)µκhνλ∇µḞκλ

−LνN #µνκλ
4

∇µḞκλ =−LλḞλ, (9.1.8e)

∇L σ̇ + 2r−1σ̇ + 6υµν∇µα̇ν = 0. (9.1.8f)

In the above expressions, the quadratic terms Pλ
(F)(h,∇Ḟ) and Qλ(1;F)(h,∇Ḟ) are as defined in Section 3.7.

Remark 9.4. Note that in the above equations, we have that, e.g., 6m κ
ν ∇κ = 6m

κ
ν 6 ∇κ and 6υ κ

ν ∇κ = 6υ
κ
ν 6 ∇κ

so that these operators only involve favorable angular derivatives.

Proof. To obtain (9.1.8a) and (9.1.8b), we contract (9.1.1a) against LλLµeνA and (9.1.1b) against (eA)ν

and use Lemma 9.1 plus Remark 9.2 to deduce that

27By Proposition 8.1, this assumption holds for the variations Ḟ of interest in this article.
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∇Lαν −∇Lαν + 2 6m ν′

ν ∇ν′ρ+ r−1(αν +αν)= 0, (9.1.9)

∇Lαν +∇Lαν − 2 6υ κ
ν ∇κσ + r−1(αν −αν)

− 2 6m λ
ν hµκ∇µḞκλ− 2 6mνν′(m−1)µκhν

′λ
∇µḞκλ+ 6mνν′N

#µν′κλ
4

∇µḞκλ = 2 6mνν′Ḟ
ν′ . (9.1.10)

Adding the two above equations gives (9.1.8a) while subtracting the first from the second gives (9.1.8b).
Similarly, to deduce (9.1.8d), we contract (9.1.1a) against Lλe µ

A e ν
B and then contract against 6υ AB ;

to deduce (9.1.8f), we contract (9.1.1a) against Lλe µ
A e ν

B and then against 6υ AB ; to deduce (9.1.8c), we
contract (9.1.1b) against Lν ; and to deduce (9.1.8e), we contract (9.1.1b) against −Lν . �

9.2. Electromagnetic one-forms. In this section, we introduce the one-forms E, B, D, and H, which
are derived from a geometric decomposition of F that depends on the spacetime metric gµν . We also
introduce the one-forms E , B, D, and H , which are derived from a Minkowskian decomposition of F. We
then derive an equivalent version of the electromagnetic equations, namely constraint and electromagnetic
evolution equations for the Minkowskian one-forms. These quantities play a role only in Section 10,
where they are used to connect the smallness of the abstract initial data to the smallness of the energy of
the corresponding reduced solution at t = 0. Furthermore, we show that the abstract one-forms D̊ and B̊

satisfy the constraints (1.0.3a)–(1.0.3b) if and only if the corresponding Minkowskian one-forms D̊ and B̊
satisfy a Minkowskian version of the constraints.

We will perform our electromagnetic decompositions of the equations with the help of two versions of
the (nonreduced) electromagnetic equations, namely (3.2.6a) and (3.2.7a) and (3.2.6b) and (3.2.7b). We
restate them here for convenience:

DλFµν +DµFνλ+DνFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.1a)

DλMµν +DµMνλ+DνMλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.1b)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.2a)

∇λMµν +∇µMνλ+∇νMλµ = 0 (λ, µ, ν = 0, 1, 2, 3). (9.2.2b)

Before decomposing the equations, we first define the aforementioned geometric electromagnetic
one-forms.

Definition 9.5. Let N̂µ
= N̂µ(t, x) denote the future-directed unit g-normal to the hypersurface 6t . Then

in components relative to an arbitrary coordinate system, we define the following one-forms:

Eµ = Fµκ N̂ κ , Bµ =−
?Fµκ N̂ κ , Dµ =−

?Mµκ N̂ κ , and Hµ =−Mµκ N̂ κ . (9.2.3)

Note that, in the above expressions, ? denotes the Hodge duality operator corresponding to the spacetime
metric g.

We now define the Minkowskian electromagnetic one-forms.

Definition 9.6. In components relative to the wave-coordinate system {xµ}µ=0,1,2,3, we define the electric
field E , the magnetic induction B, the electric displacement D, and the magnetic field H by

Eµ = Fµ0, Bµ =−~Fµ0, Dµ =−
~Mµ0, and Hµ =−Mµ0. (9.2.4)
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Note that in the above expressions, ~ denotes the Hodge duality operator corresponding to the Minkowski
metric m.

Observe that (9.2.4) implies that

F jk = [i jk]Bi , B j =
1
2 [ jab]Fab, and D j =

1
2 [ jab]Mab ( j, k = 1, 2, 3). (9.2.5)

Remark 9.7. Our definition of B coincides with the one commonly found in the physics literature, but it
has the opposite sign convention of the definition given in [Christodoulou and Klainerman 1990].

It follows from the antisymmetry of Fµν and Mµν that Eµ, Bµ, Dµ, and Hµ are m-tangent to the
hyperplanes 6t ; i.e., we have that E0 = B0 = D0 = H0 = 0. We may therefore view these four quantities
as one-forms that are intrinsic to 6t . Similarly, we have that Eµ N̂µ

=Bµ N̂µ
=Dµ N̂µ

= Hµ N̂µ
= 0.

From the assumption (3.3.3a) on the electromagnetic Lagrangian, (3.3.11n), Definition 9.6, (9.2.5),
and the implicit-function theorem, we deduce that, when all of the fields are sufficiently small, we have
(see Section 2.13 for the definition of O`+1( · )):

D = E + O`+1(|h||(E, B)|)+ O`+1(|(E, B)|3; h), (9.2.6a)

H = B+ O`+1(|h||(E, B)|)+ O`+1(|(E, B)|3; h), (9.2.6b)

E = D+ O`+1(|h||(D, B)|)+ O`+1(|(D, B)|3; h), (9.2.6c)

H = B+ O`+1(|h||(D, B)|)+ O`+1(|(D, B)|3; h). (9.2.6d)

We now assume that the reduced initial data (gµν |60, ∂t gµν |60,F0 j |60 = E̊ j ,F jk |60 = [i jk]B̊i ) have
been constructed from the abstract initial data (g̊ jk, K̊ jk, D̊ j , B̊ j ) in the manner described in Section 4.2.
In particular, we recall that N̂ ν

|60 = A−1δν0 , where A def
=
√

1− (2M/r)χ(r). Consequently, we can use
(3.3.11i) and (4.2.7a) to deduce that

E̊ = D̊+ O`+1(
|h̊(1)||(D̊, B̊)|;χ(r)M/r

)
+ O`+1(

|χ(r)M/r ||(D̊, B̊)|; h̊(1)
)
+ O`+1(

|(D̊, B̊)|3;χ(r)M/r; h̊(1)
)
. (9.2.7)

Using also Definitions 9.5 and 9.6, we infer that the following relations hold:

B̊ = B̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8a)

D̊ = D̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8b)

B̊= B̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8c)

D̊= D̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
. (9.2.8d)

Remark 9.8. Logically speaking, the ADM mass M (and hence also the components of the unit normal
vector N̂ |60) is only well-defined after one has solved the abstract Einstein constraint equations (1.0.2a)–
(1.0.3b).

The main goal of this section is to deduce the following proposition, which is a decomposition of the
electromagnetic equations into constraint equations and evolution equations:
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Proposition 9.9 (Electromagnetic constraint and evolution equations). Under the assumption (3.3.3a)
on ?L, the (nonreduced) electromagnetic equations (9.2.2a)–(9.2.2b) are equivalent to pairs of constraint
equations and evolution equations that have the following structure (the precise details depend on the
choice of electromagnetic Lagrangian ?L):

Constraint equations

(m−1)ab
∇a Db = 0, (9.2.9a)

(m−1)ab
∇a Bb = 0, (9.2.9b)

Evolution equations

∂t B j =−[ jab]∇a Eb, (9.2.10a)

∂t E j = [ jab]∇a Bb+ O`
(
|h||∇(E, B)|; (E, B)

)
+ O`

(
|(E, B)|2|∇(E, B)|; h

)
+ O`

(
|∇h||(E, B)|; h

)
. (9.2.10b)

Furthermore, assume that the reduced initial data (gµν |60, ∂t gµν |60,F0 j |60 = E̊ j ,F jk |60 = [i jk]B̊i )

have been constructed from the abstract initial data (g̊ jk, K̊ jk, D̊ j , B̊ j ) in the manner described in
Section 4.2. Then (9.2.9a)–(9.2.9b) hold for D̊ and B̊ along 60 if and only if the following equations hold
along 60:

Abstract constraint equations

(g̊−1)abD̊aD̊b = 0, (9.2.11a)

(g̊−1)abD̊aB̊b = 0. (9.2.11b)

In the above expressions, g̊ jk is the first fundamental form of 60 and D̊ is the Levi-Civita connection
corresponding to g̊ jk .

Remark 9.10. In (9.2.9a)–(9.2.9b), (m−1)ab
∇a is the standard Euclidean divergence operator while in

equations (9.2.10a)–(9.2.10b) [ jab]∇a is the standard Euclidean curl operator.

Remark 9.11. With the help of (9.2.16)–(9.2.17) below, it is straightforward to check that, if a classical
solution to the evolution equations satisfies the constraints at t = 0, then it necessarily satisfies the
constraints (9.2.9a)–(9.2.9b) at all later times (as long as it persists).

Proof. We first show that (9.2.9b) and (9.2.11b) follow from either (9.2.1a) or (9.2.2a) (which are
equivalent) and that (9.2.9b) holds if and only if (9.2.11b) holds. To this end, we first note that, since N̂µ

is the future-directed unit g-normal to 6t and gµν = g̊µν − N̂µ N̂ν along 60, the following identities hold
for any one-form Xµ g-tangent to 60 and any two-form Pµν :

(g̊−1)abD̊a Xb = (g−1)κλDκXλ− Xλ N̂ κDκ N̂λ, (9.2.12)

(g−1)κλPλνDκ N̂ ν
= Pλν N̂ ν N̂ κDκ N̂λ. (9.2.13)
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Using (9.2.12) and (9.2.13) with Xµ
def
= Bµ and Pµν

def
=

?Fµν , we compute that the following identities
hold along 60:

(g̊−1)abD̊aBb = (g−1)κλDκBλ−Bλ N̂ κDκ N̂λ

=−(g−1)κλDκ(
?Fλν N̂ ν)+ ?Fλν N̂ ν N̂ κDκ N̂λ

=−
1
2 gνν′ N̂ ν′ε#µνκλDµFκλ. (9.2.14)

Identities analogous to (9.2.14) hold if we make the replacements (g̊−1, g, D̊,D, ?, N̂µ, ε#µνκλ,B)→

(m−1,m,∇,∇,~, n̂µ, υµνκλ, B), where n̂µ(t, x) is the future-directed Minkowskian unit normal to 6t .
Now by (9.2.14) and the Minkowskian analogy of (9.2.14), (9.2.9b) and (9.2.11b) follow from either
(9.2.1a) or (9.2.2a) since either (9.2.1a) or (9.2.2a) is sufficient to guarantee that the right-hand side of
(9.2.14) is 0. Furthermore, since gνν′ N̂ ν′ and mνν′ n̂ν

′

are proportional along 60, since ε#µνκλ and υµνκλ

are proportional, and since the Christoffel symbols of D and ∇ are symmetric in their two lower indices,
it follows that

gνν′ N̂ ν′ε#µνκλDµFκλ|60 = 0 ⇐⇒ mνν′ n̂ν
′

υµνκλ∇µFκλ|60 = 0. (9.2.15)

Hence, (9.2.9b) holds along 60 if and only if (9.2.11b) holds along 60. The derivation of (9.2.9a) and
(9.2.11a) along 60 from (9.2.1b) or (9.2.2b) and the proof of the equivalence of (9.2.9a) and (9.2.11a)
along 60 are similar.

We now set λ= 0, µ= a, and ν = b in (9.2.2a), contract against the Euclidean volume form [ jab],
and use (9.2.4)–(9.2.5) to deduce that

∂t B j =−[ jab]∇a Eb. (9.2.16)

Similarly, we set λ= 0, µ= a, and ν = b in (9.2.2b), contract against [ jab], and use (9.2.4)–(9.2.5) to
deduce that

∂t D j = [ jab]∇a Hb. (9.2.17)

Finally, we use (9.2.16), (9.2.17), and (9.2.6a)–(9.2.6b) to deduce (9.2.10a)–(9.2.10b). �

10. The smallness condition on the abstract data

In this section, we assume that we are given abstract initial data (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3) on the manifold R3 satisfying the constraint equations (4.1.1a)–(4.1.2b). Our goal is to
describe in detail the smallness condition on (h̊(0)jk , h̊(1)jk , K̊ jk, D̊ j , B̊ j ) that will lead to global existence for
the reduced system (3.7.1a)–(3.7.1c) under the assumption that its initial data (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) are constructed from the abstract initial data as described in Section 4.2. Recall that
our global existence argument is heavily based on the analysis of E`;γ;µ(t), which is the energy defined
in (1.2.7). In particular, E`;γ;µ(0) must be sufficiently small in order for us to close the argument. The
energy depends on both normal and tangential Minkowskian covariant derivatives of the quantities
(∇λh(1)µν ,Fµν) at t = 0. On the other hand, our smallness condition will be expressed in terms of the
ADM mass M and E`;γ(0), which is a weighted Sobolev norm of (∇ i h̊

(1)
jk , K̊ jk, D̊ j , B̊ j ) depending only

on tangential derivatives of the abstract data. More specifically, our smallness condition is expressed
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in terms of the weighted Sobolev norms ‖ · ‖H `
1/2+γ

introduced in Definition 10.1. The main result of
this section is contained in Proposition 10.4, which shows that, if E`;γ(0)+M is sufficiently small and
(h(1)µν ,Fµν) is the corresponding solution to the reduced equations, then E`;γ;µ(0). E`;γ(0)+M . Thus,
Proposition 10.4 allows us to deduce the smallness of E`;γ;µ(0) from the smallness of quantities that
depend exclusively on the abstract initial data.

We begin by introducing the weighted Sobolev norm discussed in the above paragraph.

Definition 10.1. Let U (x) be a tensor field defined along the Euclidean space R3. Then for any integer
`≥ 0 and any real number η, we define the H `

η norm of U by

‖U‖2H `
η

def
=

∑
|I |≤`

∫
x∈R3

(1+ |x |2)(η+|I |)|∇ I U (x)|2 d3x . (10.0.1)

We also introduce the following norm, which can be controlled in terms of a suitable H `
η norm via a

Sobolev embedding result; see Proposition A.1.

Definition 10.2. Let U (x) be a tensor field defined along the Euclidean space R3. Then for any integer
`≥ 0 and any real number η, we define the C`

η norm of U by

‖U‖2C`
η

def
=

∑
|I |≤`

ess sup
x∈R3

(1+ |x |2)(η+|I |)|∇ I U (x)|2. (10.0.2)

We are now ready to introduce our norm E`;γ(0)≥0 on the abstract initial data. Recall that, as discussed
in Section 4.1, the data are the following four fields on R3: (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk︸ ︷︷ ︸

h̊ jk

, K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3).

Definition 10.3. The norm E`;γ(0)≥ 0 of the abstract initial data is defined by

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
. (10.0.3)

The smallness condition. Our smallness condition for global existence is

E`;γ(0)+M ≤ ε`, (10.0.4)

where ε` is a sufficiently small positive number.
Recall that the energy E`;γ;µ(t)≥ 0 is defined by

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x, (10.0.5)

where ∇ denotes the full Minkowski spacetime covariant derivative operator and the weightw(q) is defined
in (12.1.1). The dependence on γ and µ in E`;γ;µ is through w(q). The next proposition, which is the main
result of this section, shows that the smallness of E`;γ;µ(0) follows from the smallness of E`;γ(0)+M :

Proposition 10.4 (The smallness of the initial energy). Let (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3) be abstract initial data on the manifold R3 for the Einstein-nonlinear electromagnetic
system (1.0.1a)–(1.0.1c). Assume that the abstract initial data satisfy the constraints (1.0.2a)–(1.0.3b) and
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that they are asymptotically flat in the sense that (1.0.4a)–(1.0.4f) hold. Let (gµν |t=0 = mµν + h(0)µν |t=0+

h(1)µν |t=0, ∂t gµν |t=0 = ∂t h
(0)
µν |t=0+ ∂t h

(1)
µν |t=0,Fµν |t=0) (µ, ν = 0, 1, 2, 3) be the corresponding initial data

for the reduced system (3.7.1a)–(3.7.1c) as defined in Section 4.2, and let (gµν = mµν + h(0)µν + h(1)µν ,Fµν)

be the solution to the reduced system launched by this data. Let ` ≥ 10 be an integer. In particular, by
Proposition 4.2, the wave-coordinate condition (3.1.1a) is satisfied by the reduced solution. Then there
exist a constant ε0 > 0 and a constant C` > 0 such that, if E`;γ(0)+M ≤ ε ≤ ε0, then

E`;γ;µ(0)≤ C`{E`;γ(0)+M} ≤ C`ε. (10.0.6)

Remark 10.5. Note that q ≥ 0 holds at t = 0. Therefore, E`;γ;µ(0) does not depend on the constant µ.

The proof of Proposition 10.4 starts on page 845. We first establish some technical lemmas.

Lemma 10.6 (Energy in terms of h(1), E, and B). Let Fµν be a two-form, let the pair of one-forms (Eµ,Bµ)
be its Minkowskian electromagnetic decomposition as defined in Section 9.2, and let h(1)µν be an arbitrary
type-

(0
2

)
tensor field. Let E`;γ;µ(t) be the energy defined in (10.0.5). Then

E2
`;γ;µ(t)≈ sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |∇ I

Z E |2+ |∇ I
Z B|2

)
w(q) d3x . (10.0.7)

Proof. Equation (10.0.7) easily follows from (6.5.22) and the identity |∇ I
ZF|2 = 2|∇ I

Z E |2+ 2|∇ I
Z B|2, the

verification of which we leave to the reader. �

Lemma 10.7. The following estimates hold for any `-times differentiable spacetime tensor field U (t, x)
defined in a neighborhood of 60

def
= {(t, x) | t = 0}, where w(q) is the weight defined in (12.1.1):(∑

|I |≤`

w1/2(q)|∇ I
ZU |

)∣∣∣∣
60

≈

(∑
|I |≤`

(1+ r)1/2+γ+|I ||∇ I U |
)∣∣∣∣
60

≈

( ∑
|J |+k≤`

(1+ r)1/2+γ+|J |+k
|∂k

t ∇
J U |

)∣∣∣∣
60

. (10.0.8)

The same estimates hold if ∇ I
Z is replaced with LI

Z. The notation |60 is meant to indicate that the
estimates only hold along 60.

Proof. By iterating the identity ∂
∂xµ = (x

κ�κµ+xµS)/qs and noting that q=r=s along60, we deduce that

(1+ r)|I ||∇ I U |.
∑
|J |≤|I |

|∇
J
ZU |. (10.0.9)

It thus follows from the definition (12.1.1) of w(q) that(∑
|I |≤`

(1+ r)1/2+γ+|I ||∇ I U |
)∣∣∣∣
60

.

(∑
|I |≤`

w1/2(q)|∇ I
ZU |

)∣∣∣∣
60

. (10.0.10)

On the other hand, the opposite inequality follows easily from expanding the operator ∇ I
Z and using

the Leibniz rule plus (6.2.4). This proves the first ≈ in (10.0.8). The second ≈ is trivial. We have thus
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established (10.0.8). To establish the same estimates with the operator LI
Z in place of ∇ I

Z, we simply use
(6.5.22). �

Corollary 10.8. Under the assumptions of Lemma 10.6, we have that

E2
`;γ;µ(0)≈

∑
k+|I |≤`

∫
R3
(1+ |x |)1+2γ+2(k+|I |)(

|∂k
t ∇

I ∂t h(1)|2(0, x)+ |∇ I
∇h(1)|2(0, x)

)
d3x

+

∫
R3
(1+ |x |)1+2γ+2(k+|I |)(

|∂k
t ∇

I E |2(0, x)+ |∂k
t ∇

I B|2(0, x)
)

d3x . (10.0.11)

Proof. Corollary 10.8 follows easily from Lemmas 10.6 and 10.7. �

Lemma 10.9. Assume the hypotheses of Proposition 10.4. Let k ≥ 1 and `≥ 10 be integers, and let J be
a ∇-multi-index. Assume that |J | + k ≤ `. Define the arrays V , V (0), V (1), W , W (0), and W (1) by

V def
= (h,∇h, ∂t h, E, B)= V (0)

+ V (1), (10.0.12a)

V (0) def
= (h(0),∇h(0), ∂t h(0), 0, 0), (10.0.12b)

V (1) def
= (h(1),∇h(1), ∂t h(1), E, B), (10.0.12c)

W def
= (0,∇h, ∂t h, E, B)=W (0)

+W (1), (10.0.12d)

W (0) def
= (0,∇h(0), ∂t h(0), 0, 0), (10.0.12e)

W (1) def
= (0,∇h(1), ∂t h(1), E, B). (10.0.12f)

In the above expressions, the tensor fields h(0)µν and h(1)µν are defined by (1.2.1a)–(1.2.1c) while the electro-
magnetic one-forms Eµ and Bµ are defined in (9.2.4). Assume further that |V (1)

| +M ≤ ε. Then if ε is
sufficiently small, ∂k

t ∇
J W (1) can be written as the following finite linear combination:

∇
J∂k

t W (1)
=
∑

terms, (10.0.13)

where each term can be written as

term=
∑

|I1|+···+|Is |≤|J |+k
0≤|I1|,...,|Is |

F(I1,...,Is ;J ;k;s)(t, x)×M(I1,...,Is ;J ;k;s)(V )[∇
I1 W (1), . . . ,∇ Is W (1)

], (10.0.14)

and:

(i) The array-valued functions M(I1,...,Is ;J ;k;s)(V )[∇
I1 W (1), . . . ,∇ Is W (1)

] are continuous in a neighbor-
hood of V = 0 and are multilinear in the arguments [∇ I1 W (1), . . . ,∇ Is W (1)

].

(ii) If s=0 (i.e., if there are no multilinear arguments [ · ]), the array-valued functions F(I1,...,Is ;J ;k;s)(t, x)
are smooth and satisfy |F(I1,...,Is ;J ;k;s)(t, x)|. M(1+ t + |x |)−(3+|J |+k), where M is the ADM mass.

(iii) When s ≥ 1, |F(I1,...,Is ;J ;k;s)(t, x)|. (1+ t+|x |)−d , where d ≥ |J |+ k− (|I1|+ · · ·+ |Is |)− (s−1).

Proof. We first claim that we can write the reduced system (3.7.1a)–(3.7.1c) as a finite linear combination

∂t W (1)
=
∑

terms, (10.0.15a)
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where each term can be written in the form

term=
∑
|I |=1

M(I ;0;1;1)(V )[∇ I W (1)
] +M(0;0;1;2)(V )[W (1),W (1)

]

+ f(0;0;1;1)(t, x)M(0;0;1;1)(V )[W (1)
] + f(0;0;1;0)(t, x)M(0;0;1;0)(V ). (10.0.15b)

Above, the functions M( · )(V )[ · ], which depend on the (`+ 2)-times continuously differentiable La-
grangian ?L for the electromagnetic equations, have the properties stated in the conclusions of the theo-
rem. In addition, f(0;0;1;1)(t, x) and f(0;0;1;0)(t, x) are smooth functions satisfying |∇ I f(0;0;1;1)(t, x)|.
(1+ t + |x |)−(2+|I |) and |∇ I f(0;0;1;0)(t, x)| . M(1+ t + |x |)−(3+|I |) for any ∇-multi-index I . Let us
accept the claim (10.0.15b) for now; we will briefly discuss the derivation of (10.0.15b) at the end of the
proof. We also note that

∂t V = ∂t W (1)
+51W (1)

+ ∂t V (0), (10.0.16)

∇V =∇W (1)
+52W (1)

+∇V (0), (10.0.17)

where V (0)(t, x) satisfies |∇ I ∂t V (0)(t, x)|+|∇ I
∇V (0)(t, x)|. (1+t+|x |)−(2+|I |) for any∇-multi-index I

(see Lemma 15.1),51W (1) def
= (∂t h(1), 0, 0, 0, 0), and 52W (1) def

= (∇h(1), 0, 0, 0, 0). Now with the help
of (10.0.16)–(10.0.17), the chain rule, and the Leibniz rule, we repeatedly partially differentiate (10.0.15b)
with respect to time and spatial derivatives, using the resulting equations to replace time derivatives
with spatial derivatives, thereby inductively arriving at an expression of the form (10.0.14) verifying the
properties (i)–(iii). The properties (ii)–(iii) capture the fact that each additional differentiation of ∂t W (1)

either (a) creates an additional decay factor of (1+ t + |x |)−1 (when the derivative falls on one of the
f···(t, x)), (b) increases one of the powers |I j | (when the derivative is spatial and falls on one of the
multilinear factors [. . . ,∇ I j W (1), . . . ]), or (c) increases s by one (when the derivative falls on M(V ),
thereby creating an additional multilinear factor of ∇W (1) via the chain rule).

We now return to the issue of expressing ∂t W (1) in the form (10.0.15a)–(10.0.15b). We will make
repeated use of the splitting h = h(0) + h(1), where h(0) is the smooth function of (t, x) with the de-
cay properties (15.1.1a), which are proved in Section 15.1. We first note that ∂t E and ∂t B can be
expressed in the desired form by using (9.2.10a)–(9.2.10b) together with the splitting of h and the
properties (15.1.1a). We remark that, although (9.2.10a)–(9.2.10b) are nonreduced electromagnetic
equations, they are nonetheless satisfied by virtue of the fact that the wave-coordinate condition holds
and the fact that the reduced and nonreduced equations are equivalent under that condition. Next,
we note that the quantities ∂t∇h(1)µν can be expressed in the desired form through the trivial identity
∂t∇h(1)µν =∇∂t h

(1)
µν . The quantities ∂2

t h(1)µν can be expressed in the desired form by using (3.7.1a) to isolate
them. We remark that the MI ;0;1;1(V )[∇ I W (1)

] term on the right-hand side of (10.0.15b) arises from the
spatial derivatives and mixed spacetime derivatives of h(1) contained in the term 2̃gh(1)µν on the left-hand
side of (3.7.1a). Furthermore, the M0;0;1;2(V )[W (1),W (1)

] term on the right-hand side of (10.0.15b)
arises from the quadratic and higher-order-in-W (1) terms on the right-hand sides of (3.7.1a) and (9.2.10b)
while the f0;0;1;1(t, x)M0;0;1;1(V )[W (1)

] term on the right-hand side of (10.0.15b) arises from the h(0)-
and ∇h(0)-containing factors that arise from the terms on the right-hand sides of (3.7.1a) and (9.2.10b)
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that contain a linear factor of h or ∇h. Finally, the f0;0;1;0(t, x)M0;0;1;0(V ) term on the right-hand side
of (10.0.15b) arises from the 2̃gh(0)µν term on the right-hand side of (3.7.1a) and from the O(|∇h(0)|2)
terms arising from splitting the O(|∇h|2) terms on the right-hand side of (3.7.1a). �

Corollary 10.10. Assume the hypotheses of Proposition 10.4, which include the smallness condition
E`;γ(0) + M ≤ ε. Let k ≥ 0 be an integer, let J be a ∇ multi-index, and assume that |J | + k ≤ `.
Let V (t, x), . . . ,W (1)(t, x) be the array-valued functions defined in (10.0.12a)–(10.0.12f), let V̊ (x) =
V (0, x), . . . , W̊ (1)(x)=W (1)(0, x), and assume that ‖V̊ (1)

‖L∞+‖W̊ (1)
‖H `

1/2+γ
≤ ε. Then if ε is sufficiently

small, the following inequality holds:∥∥(1+ |x |)1/2+γ+|J |+k
∇

J ∂k
t W (1)(0, x)

∥∥
L2 . ‖W̊ (1)

‖H `
1/2+γ
+M. (10.0.18)

Proof. We first consider the case s=0 in (10.0.14). Then using that |F(0;J ;k;0)(t, x)|.M(1+|x |)−(3+|J |+k)

(i.e., property (ii) from the conclusions of Lemma 10.9) and recalling that 0< γ< 1
2 , we deduce that∥∥(1+ |x |)1/2+γ+|J |+k F(0;J ;k;0)(0, x)M(0;J ;k;0)(V̊ (x))

∥∥2
L2

=

∫
x∈R3

(1+ |x |)1+2γ+2|J |+2k
|F(0;J ;k;0)(0, x)M(0;J ;k;0)(V̊ (x))|2 d3x

. M2
∫

x∈R3
(1+ |x |)2γ−5 d3x . M2. (10.0.19)

For the case s ≥ 1, we first use Proposition A.1 to deduce that, for all ∇-indices K with |K | ≤ `− 2,
we have

|∇
K W̊ (1)(x)|. (1+ |x |)−(|K |+1)

‖W̊ (1)
‖H |K |+2

1/2+γ
. (10.0.20)

Then (without loss of generality assuming |I1| ≤ |I2| ≤ · · · ≤ |Is |) we use |F(I1,...,Is ;J ;k;s)(t, x)| .
(1+ t + |x |)−(|J |+k−(|I1|+···+|Is |)−(s−1)) (i.e., property (iii)), together with (10.0.20), to deduce∥∥(1+ |x |)1/2+γ+|J |+k F(I1,...,Is ;J ;k;s)(0, x)×M(I1,...,Is ;J ;k;s)(V̊ (x))[∇

I1 W̊ (1)(x), . . . ,∇ Is W̊ (1)(x)]
∥∥

L2

.

∥∥∥∥(1+ |x |)|I1|+···+|Is−1|+(s−1)
s−1∏
i=1

∇
Ii W̊ (1)(x)

∥∥∥∥
L∞
×
∥∥(1+ |x |)1/2+γ+|Is |∇

Is W̊ (1)(x)
∥∥

L2

.
∥∥(1+ |x |)1/2+γ+|Is |∇

Is W̊ (1)(x)
∥∥

L2 . ‖W̊ (1)
‖H `

1/2+γ
. (10.0.21)

Combining (10.0.19) and (10.0.21), we arrive at (10.0.18). �

We are now ready for the proof of the proposition.

Proof of Proposition 10.4. We first stress that the estimates derived in this proof are valid under the
assumption that ε is sufficiently small. Recall that gµν(t, x)= mµν +χ(r/t)χ(r)(2M/r)δµν + h(1)µν(t, x).
Also recall that, according to the assumptions of the proposition, we have (see (4.2.6a)–(4.2.6b)) the
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following relations (where we slightly abuse matrix notation):

h(1)(0, x)=

(
0 0
0 h̊(1)jk

)
, (10.0.22a)

∂t h(1)(0, x)=

(
2A3(g̊−1)ab K̊ab A2(g̊−1)ab ∂a g̊bj −

1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A

A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A∂ j A 2AK̊ jk

)
,

(10.0.22b)
where A(x) =

√
1− (2M/r)χ(r) and g̊ jk(x) = δ jk + (2M/r)χ(r)δ jk + h̊(1)jk (x). Note that (g̊−1) jk

=

δ jk
+O∞(|(M/r)χ(r)|; h̊(1))+O∞(|h̊(1)|; (M/r)χ(r)). Our immediate objectives are to relate ‖E̊‖H `

1/2+γ

and ‖∂t h(1)(0, · )‖H `
1/2+γ

to the inherent quantities ‖∇ h̊‖H `
1/2+γ

, ‖K̊‖H `
1/2+γ

, ‖D̊‖H `
1/2+γ

, ‖B̊‖H `
1/2+γ

, and M .
To this end, we first observe that the following estimates hold for sufficiently small M :∣∣∣∇ I

(M
r
χ(r)

)∣∣∣. M(1+ r)−(1+|I |), (10.0.23)

|A(x)|. 1, (10.0.24)

|∇
I A(x)|. M(1+ r)−(1+|I |) (|I | ≥ 1). (10.0.25)

With the help of (10.0.22a)–(10.0.22b), the decay estimates (10.0.23)–(10.0.25), the Leibniz rule,
Corollary A.4, the definition of ‖ · ‖H `

1/2+γ
, and the assumption 0 < γ < 1

2 , it is straightforward to
check that

‖∂t h(1)(0, · )‖H `
1/2+γ
. ‖∇h̊(1)‖H `

1/2+γ
+‖K̊‖H `

1/2+γ
+M. (10.0.26)

Furthermore, from (9.2.8a)–(9.2.8d) and Corollary A.4, it follows that

‖D̊‖H `
1/2+γ
+‖B̊‖H `

1/2+γ
≈ ‖D̊‖H `

1/2+γ
+‖B̊‖H `

1/2+γ
. (10.0.27)

Similarly, from (9.2.6a) and (9.2.6c), we have that

‖E̊‖H `
1/2+γ
+‖B̊‖H `

1/2+γ
≈ ‖D̊‖H `

1/2+γ
+‖B̊‖H `

1/2+γ
. (10.0.28)

By (10.0.26), (10.0.27), (10.0.28), and Proposition A.1, it follows that, if E`;γ(0)+ M is sufficiently
small, then the smallness conditions28 for ‖V̊ (1)

‖L∞ and ‖W̊ (1)
‖H `

1/2+γ
in the hypotheses of Lemma 10.9

and Corollary 10.10 hold. Therefore, combining Corollaries 10.8 and 10.10, (10.0.26), (10.0.27), and
(10.0.28), we deduce that, if ε is sufficiently small, then

E2
`;γ;µ(0). ‖∇h̊(1)‖2H `

1/2+γ
+‖∂t h(1)(0, · )‖2H `

1/2+γ
+‖E̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
+M2

. ‖∇h̊(1)‖2H `
1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
+M2

def
= E2

`;γ(0)+M2. (10.0.29)

This concludes our proof of Proposition 10.4. �

28As in the Lindblad–Rodnianski proof of Corollary 15.3 below, the smallness condition |h(1)(0, x)|. ε(1+r)−1−γ follows
from integrating the smallness condition |∂r h(1)(0, x)|. ε(1+r)−2−γ, which is a consequence of Proposition A.1, from spatial
infinity, and from using the decay assumption (1.0.4c) for |h̊(1)(x)| at spatial infinity.
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11. Algebraic estimates of the nonlinearities

In this section, we provide algebraic estimates for the inhomogeneous terms that arise from commuting
the reduced equations (3.7.1a)–(3.7.1c) with various differential operators. We also use the equations
of Proposition 9.3 to derive ordinary differential inequalities for the null components of Ḟ = LI

ZF.
Furthermore, we provide algebraic estimates for the inhomogeneous terms appearing on the right-hand
sides of these inequalities. Many of the estimates derived in this section rely on the wave coordinate
condition.

11.1. Statement and proofs of the propositions. The proofs of the propositions given in this section use
the results of a collection of technical null-structure lemmas, which we relegate to the end of the section.
We begin by quoting the following proposition, which is central to many of the estimates. The basic
idea is the following: many of our estimates would break down if we could not achieve good control
of the components hL L and hLT . Amazingly, as shown in [Lindblad and Rodnianski 2005; 2010], the
wave-coordinate condition allows for independent, improved estimates of exactly these components.

Proposition 11.1 (Algebraic consequences of the wave coordinate condition [Lindblad and Rodnianski
2010, Proposition 8.2]). Let g be a Lorentzian metric satisfying the wave-coordinate condition (3.1.1a)
relative to the coordinate system {xµ}µ=0,1,2,3. Let I be a Z-multi-index, and assume that |∇ J

Zh| ≤ ε holds
for all Z-multi-indices J satisfying |J | ≤ b|I |/2c, where hµν

def
= gµν −mµν . Then if ε is sufficiently small,

the following pointwise estimates hold for the tensor Hµν def
= (g−1)µν − (m−1)µν :

|∇∇
I
Z H |LT .

∑
|J |≤|I |

|∇∇
J
Z H | +

∑
|J |≤|I |−1

|∇∇
J
Z H |︸ ︷︷ ︸

absent if |I | = 0

+

∑
|I1|+|I2|≤|I |

|∇
I1
Z H ||∇∇ I2

Z H |, (11.1.1a)

|∇∇
I
Z H |LL .

∑
|J |≤|I |

|∇∇
J
Z H | +

∑
|J |≤|I |−2

|∇∇
J
Z H |︸ ︷︷ ︸

absent if |I | ≤ 1

+

∑
|I1|+|I2|≤|I |

|∇
I1
Z H ||∇∇ I2

Z H |. (11.1.1b)

Furthermore, analogous estimates hold for the tensor hµν .

The next lemma provides an analogous version of the proposition for the “remainder” pieces of (g−1)µν

and gµν .

Lemma 11.2 (Algebraic/analytic consequences of the wave-coordinate condition; slight extension of [Lind-
blad and Rodnianski 2010, Lemma 15.4]). Let g be a Lorentzian metric satisfying the wave-coordinate
condition (3.1.1a) relative to the coordinate system {xµ}µ=0,1,2,3, and let Hµν def

= (g−1)µν − (m−1)µν . Let
k ≥ 0 be an integer, and assume that there is a constant ε such that |∇ J

Zh| ≤ ε holds for all Z-multi-
indices J satisfying |J | ≤ bk/2c, where hµν

def
= gµν −mµν . Let

Hµν

(1)
def
= Hµν

− Hµν

(0) and Hµν

(0)
def
= −χ

(r
t

)
χ(r)2M

r
δµν, (11.1.2)

where Hµν

(1) is the tensor obtained by subtracting the Schwarzschild part Hµν

(0) from Hµν , and χ0
( 1

2 < z< 3
4

)
denotes the characteristic function of the interval

[ 1
2 ,

3
4

]
. Assume further that M≤ε. Then if ε is sufficiently
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small, the following pointwise estimates hold:∑
|I |≤k

|∇∇
I
Z H(1)|LL+

∑
|J |≤k−1

|∇∇
J
Z H(1)|LT

.
∑
|I |≤k

|∇∇
I
Z H(1)| + ε

∑
|I |≤k

(1+ t + |q|)−1
+ ε

∑
|I |≤k

(1+ t + |q|)−2
|∇

I
Z H(1)||∇∇ I

Z H(1)|

+

∑
|I1|+|I2|≤k

|∇
I1
Z H(1)||∇∇

I2
Z H(1)| +

∑
|J ′|≤k−2

|∇∇
J ′
Z H(1)|︸ ︷︷ ︸

absent if k ≤ 1

+ ε(1+ t + |q|)−2χ0

(1
2
<

r
t
<

3
4

)
+ ε2(1+ t + |q|)−3. (11.1.3)

Additionally, let

h(1)µν
def
= hµν − h(0)µν and h(0)µν

def
= χ

(r
t

)
χ(r)2M

r
δµν, (11.1.4)

where h(1)µν is the tensor field obtained by subtracting the Schwarzschild part h(0)µν from hµν . Then an
estimate analogous to (11.1.2) holds if we replace the tensor field H(1) with the tensor field h(1).

Proof. The estimates for the tensor field Hµν

(1) were proved as [Lindblad and Rodnianski 2010, Lemma 15.4].
The analogous estimates for the tensor field h(1)µν follow from those for Hµν

(1) together with the fact that
H(1);µν =−h(1)µν+O∞(|h(0)+h(1)|2) and the decay estimates for h(0) provided by Lemma 15.1 below. �

We now provide the following proposition, which captures the algebraic structure of the inhomogeneous
term Hµν appearing on the right-hand side of the reduced equation (3.7.1a).

Proposition 11.3 (Algebraic estimates of Hµν and ∇ I
ZHµν ; extension of [Lindblad and Rodnianski 2010,

Proposition 9.8]). Let Hµν be the inhomogeneous term on the right-hand side of the reduced equation
(3.7.1a), and assume that the wave-coordinate condition (3.1.1a) holds. Then

|H|TN . |∇h||∇h|+(|F|LN+|F|TT)|F|+O∞(|h||∇h|2)+O`+1(|h||F|2)+O`+1(|F|3; h), (11.1.5a)

|H|. |∇h|2TN+|∇h||∇h|+|F|2+O∞(|h||∇h|2)+O`+1(|h||F|2)+O`+1(|F|3; h). (11.1.5b)

In addition, assume that there exists an ε > 0 such that |∇ J
Zh|+|LJ

ZF| ≤ ε holds for all Z-multi-indices
|J | ≤ b|I |/2c. Then if ε is sufficiently small, the following pointwise estimates hold:

|∇
I
ZH|.

∑
|I1|+|I2|≤|I |

(
|∇∇

I1
Z h|TN|∇∇

I2
Z h|TN+ |∇∇

I1
Z h||∇∇ I2

Z h|
)
+

∑
|I1|+|I2|≤|I |

|LI1
Z F||LI2

Z F|

+

∑
|I1|+|I2|≤|I |−2

|∇∇
I1
Z h||∇∇ I2

Z h|︸ ︷︷ ︸
absent if |I | ≤ 1

+

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||∇∇ I2

Z h||∇∇ I3
Z h|

+

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||LI2

Z F||LI3
Z F| +

∑
|I1|+|I2|+|I3|≤|I |

|LI1
Z F||LI2

Z F||LI3
Z F|. (11.1.5c)
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Proof. Using (3.7.2a), we can decompose Hµν into

Hµν = (i)µν + (ii)µν + (iii)µν + (iv)µν, (11.1.6)
where

(i)µν
def
= P(∇µh,∇νh), (11.1.7)

(ii)µν
def
= Q(1;h)µν (∇h,∇h), (11.1.8)

(iii)µν
def
= Q(2;h)µν (F,F), (11.1.9)

(iv)µν
def
= O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h). (11.1.10)

We will analyze each of the four pieces separately.
The facts that |(i)|TN . the right-hand side of (11.1.5a) and that |(i)|. the right-hand side of (11.1.5b)

follow from Proposition 11.1, (11.2.7a), and (11.2.7b). The fact that |∇ I
Z(i)| . the right-hand side

of (11.1.5c) follows from Proposition 11.1, (11.2.2c), and (11.2.7a).
The facts that |(ii)|TN. the right-hand side of (11.1.5a) and that |(ii)|. the right-hand side of (11.1.5b)

both follow from (11.2.7c). The fact that |∇ I
Z(ii)|. the right-hand side of (11.1.5c) follows from (11.2.2a)

and (11.2.7c).
The fact that |(iii)|TN . the right-hand side of (11.1.5a) follows from (11.2.7d) while the fact that
|(iii)|. the right-hand side of (11.1.5b) follows from (11.2.7e). The fact that |∇ I

Z(iii)|. the right-hand
side of (11.1.5c) follows from (6.5.22), (11.2.2b), and (11.2.7e).

The desired estimates for term (iv) follow easily with the help of the Leibniz rule and (6.5.22). �

The next proposition captures the special algebraic structure of the reduced inhomogeneous term Fν(I )
defined in (8.1.2b).

Proposition 11.4 (Algebraic estimates of Fν(I )). Let Fν be the inhomogeneous term (3.7.2b) in the reduced
electromagnetic equations, let I be a Z-multi-index with |I | = k, and let Xν be any one-form. In addition,
assume that there exists an ε > 0 such that |∇ J

Zh| + |LJ
ZF| ≤ ε holds for all Z-multi-indices |J | ≤ bk/2c.

Then if ε is sufficiently small, the following pointwise estimates hold:

|XνL̂I
ZF

ν
|

.
∑

|I1|+|I2|≤k

|X ||∇∇ I1
Z h||LI2

Z F| +
∑

|I1|+|I2|≤k

|X ||∇∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I1|+|I2|+|I3|≤k

|X ||∇ I1
Z h||∇∇ I2

Z h||LI3
Z F| +

∑
|I1|+|I2|+|I3|≤k

|X ||∇∇ I1
Z h||LI2

Z F||LI3
Z F|

. (1+ t + |q|)−1
∑

|I1|+|I2|≤k+1
|I2|≤k

|X ||∇ I1
Z h||LI2

Z F| + (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I2|≤k

|X ||∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+ (1+ |q|)−1

∑
|I1|+|I2|+|I3|≤k+1
|I2|,|I3|≤k

|X ||∇ I1
Z h||∇ I2

Z h||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I2|,|I3|≤k

|X ||∇ I1
Z h||LI2

Z F||LI3
Z F|. (11.1.11a)
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In addition, the same estimates hold if we replace modified Lie derivatives L̂I
Z with standard Lie deriva-

tives LI
Z.

Furthermore, let N #µνκλ be the tensor field from the reduced electromagnetic equation (3.7.1c). Then
if ε is sufficiently small and k ≥ 1, the following pointwise commutator estimate holds:

∣∣Xν(N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)

)∣∣
. (1+ |q|)−1

∑
|I ′|=k, |J |≤1

|X ||∇ I ′
Z h|LL|L

J
ZF|

+ (1+ |q|)−1
∑

|J |≤1, |I ′|=k

|X ||∇ J
Zh|LL|L

I ′
Z F|

+ (1+ |q|)−1
∑
|I ′|=k

|X ||h|LT|L
I ′
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X ||∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)

+ (1+ t + |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X ||∇ I1
Z h||LI2

Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X |L|∇
I1
Z h||LI2

Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|≤k−1, |I2|≤k−1

|X ||∇ I1
Z h|LL|L

I2
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k
|I1|≤k−1, |I2|≤k−1

|X ||∇ I1
Z h|LT|L

I2
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k−1
|I1|≤k−2, |I2|≤k−1

|X ||∇ I1
Z h||LI2

Z F|

︸ ︷︷ ︸
absent if k = 1

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||∇ I1
Z h||∇ I2

Z h||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||∇ I1
Z h||LI2

Z F||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||LI1
Z F||LI2

Z F||LI3
Z F|. (11.1.11b)
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Proof. To derive (11.1.11a), we first appeal to the relation (8.1.3a), which shows that we have to estimate
principal terms of the form XνQν(2;F)(∇LI1

Z h,LI2
Z F) and error terms of the form XνLJ

ZF
ν
4

. The desired
estimates for the principal terms follow from the null-structure estimate (11.2.7i) together with inequalities
(6.5.22), (6.5.23a), and (6.5.23b), which allow us to estimate Lie derivatives of h in terms of covariant
derivatives of h. The error terms can easily be bounded by the right-hand side of (11.1.11a), where we
use Lemma 6.16 to derive the second inequality in (11.1.11a).

Inequality (11.1.11b) can be proved in a similar fashion with the help of the relation (8.1.3b). In
this case, there are two kinds of principal terms that have to be estimated: XνPν

(F) (L
I1
Z h,∇LI2

Z F) and
XνQν(1;F)(L

I1
Z h,∇LI2

Z F) while the error terms are of the form Xν(L
I1
Z N #µνκλ
4

)∇µLI2
Z Fκλ. The error terms

can be estimated as in the previous paragraph. The principal terms can be bounded by using the null-
structure estimates (11.2.7f) and (11.2.7h). As in the previous paragraph, we use (6.5.22) and (6.5.23c) to
estimate Lie derivatives of h in terms of covariant derivatives of h. �

As discussed at the beginning of Section 9.1, the null components of the lower-order Lie derivatives of F

satisfy ordinary differential inequalities with controllable inhomogeneous terms. The next proposition
provides convenient algebraic expressions for the inhomogeneities. In Section 15, these algebraic
expressions will be combined with preliminary pointwise decay estimates to deduce upgraded pointwise
decay estimates for the null components of F and its lower-order Lie derivatives.

Proposition 11.5 (Ordinary differential inequalities for α[LI
ZF], α[LI

ZF], ρ[LI
ZF], and σ [LI

ZF]). Let
F be a solution to the reduced electromagnetic equations (3.7.1b)–(3.7.1c), and let α, α, ρ, and σ denote
its Minkowskian null components. Let 3 def

= L + 1
4 hL L L , and assume that |h| + |F| ≤ ε holds. Then if ε is

sufficiently small, the following pointwise estimate holds:

r−1
|∇3(rα)|. r−1

|h|LL|α| +
∑
|I |≤1

r−1(
|LI

ZF|LN+ |L
I
ZF|TT

)
+

∑
|I1|+|I2|≤1

r−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I |≤1

(1+ |q|)−1
|h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|. (11.1.12)

Similarly, for each Z-multi-index I , let α[LI
ZF], α[LI

ZF], ρ[LI
ZF], and σ [LI

ZF] denote the Minkowsk-
ian null components of LI

ZF. Furthermore, let $(q) be any differentiable function of q. Assume that
|∇

I
Zh|+ |LI

ZF| ≤ ε holds for |I | ≤ bk/2c. Then if ε is sufficiently small, the following pointwise estimates
also hold:
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|I |≤k

r−1∣∣∇3(r$(q)α[LI
ZF]

)∣∣.∑
|I |≤k

r−1$(q)|h|LL

∣∣α[LI
ZF]

∣∣+∑
|I |≤k

$ ′(q)|h|LL

∣∣α[LI
ZF]

∣∣
+

∑
|I |≤k, |J |≤1

$(q)(1+ |q|)−1
|∇

I
Zh|LL

∣∣α[LJ
ZF]

∣∣
︸ ︷︷ ︸

absent if k ≤ 1

+

∑
|J |≤1, |I |≤k

$(q)(1+ |q|)−1
|∇

J
Zh|LL

∣∣α[LI
ZF]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I |≤k

$(q)(1+ |q|)−1
|h|LT

∣∣α[LI
ZF]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I1|+|I2|≤k+1

|I1|≤k−1, |I2|≤k−1

$(q)(1+ |q|)−1
|∇

I1
Z h|

∣∣α[LI2
Z F]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I |≤|k|+1

$(q)r−1(|LI
ZF|LN+ |L

I
ZF|TT)

+

∑
|I1|+|I2|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I1|+|I2|≤k+1

$(q)(1+ t + |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13a)

∑
|I |≤k

r−1∣∣∇L(rα[LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF| +
∑

|I1|+|I2|≤k+1
|I1|≤k

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13b)
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|I |≤k

r−2∣∣∇L(r2ρ[LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF| +
∑

|I1|+|I2|≤k+1
|I1|≤k

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13c)

∑
|I |≤k

r−2∣∣∇L(r2σ [LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF|. (11.1.13d)

Proof. Our proof of (11.1.12) is based on decomposing the terms in (9.1.8a), where α̇ν
def
= αν[F], Ḟν

′

=Fν
′

,
etc., in the equation. We remind the reader that this equation is a consequence of performing a Minkowskian
null decomposition on the electromagnetic equations (3.7.1b)–(3.7.1c). Here, Fν

′

is defined in (3.7.2b).
We begin by noting that the first two terms in (9.1.8a) can be written as r−1

∇L(rα). We then remove
the dangerous − 1

4 hL L∇Lαν component from the quadratic term 6mνλPλ
(F)(h,∇F)

def
= 6m λ

ν hµκ∇µFκλ on
the left-hand side of (9.1.8a) and add it to the r−1

∇L(rαν) term. From the fact that ∇3r = 1− 1
4 hL L , it

follows that the resulting sum can be written as r−1
∇3(rαν)+ 1

4r−1hL Lαν . We then put the 1
4r−1hL Lαν

term on the right-hand side of (11.1.12) as the first inhomogeneous term; all the remaining terms in
(9.1.8a) will also be placed on the right-hand side of (11.1.12). The left-over terms in Pν

(F)(h,∇F) (after
the dangerous component 1

4 hL L∇Lα
ν has been removed) are denoted by P̃ν

(F)(h,∇F) in Lemma 11.10
below. Now by (11.2.7g), with Xν′

def
= 6mνν′ (so that |X |L = 0), it follows that the left-over terms

Xν′P̃ν′

(F)(h,∇F) are bounded by the right-hand side of (11.1.12). The terms 6 ∇ρ and 6 ∇σ appearing on
the left-hand side of (9.1.8a) (see Remark 9.4) can be bounded by the second term on the right-hand
side of (11.1.12) via Corollary 6.18. The remaining terms in (11.1.12) that need to be bounded can be
expressed as Xν′Qν

′

(1;F)(h,∇F), Xν′N
#βν′κλ
4

∇βFκλ, and Xν′Fν
′

. The first of these can be bounded by
using (11.2.7h) and the third with (11.1.11a) (in the case |I | = 0) while the second (with the help of
Lemma 6.16) contributes to the cubic terms on the right-hand side of (11.1.12).

Our proof of (11.1.13a) is similar but more elaborate. To begin, we differentiate the electromagnetic
equations with the iterated modified Lie derivative L̂I

Z to obtain the equations of variation (8.1.1a)–
(8.1.1b) for Ḟµν

def
= LI

ZFµν with inhomogeneous terms Ḟν = Fν(I ), where Fν(I ) is defined in (8.1.2b). We
then perform a null decomposition of the equations of variation, obtaining (9.1.8a) with α̇ν

def
= αν[L

I
ZF],

Ḟν
′ def
= Fν

′

(I ), etc. Next, we multiply (9.1.8a) by$(q), use the identities∇3r =1− 1
4 hL L and∇3q=− 1

2 hL L ,
and argue as above, removing the dangerous −1

4 hL L∇Lαν[L
I
ZF] component from the quadratic term

6mνλPλ
(F)(h,∇LI

ZF)
def
= 6m λ

ν hµκ∇µLI
ZFκλ and denoting the remaining terms by 6mνλP̃λ

(F)(h,∇LI
ZF),

to deduce that $(q)(∇Lαν[L
I
ZF] + 1

4 hL L∇Lαν[L
I
ZF] + r−1αν[L

I
ZF]) = r−1

∇3(r$(q)αν[LI
ZF]) +

1
4r−1$(q)hL Lαν[L

I
ZF] + 1

2$
′(q)hL Lαν[L

I
ZF]. The first of these three terms is the only term on the

left-hand side of (11.1.13a) while the last two are brought over to the right-hand side of (11.1.13a). To
bound 6mνν′F

ν′

(I ) by the right-hand side of (11.1.13a), we again set Xν′
def
= 6mνν′ (so that |X |L = 0); the



854 JARED SPECK

desired bound then follows from (11.1.11a) and (11.1.11b) together with repeated use of the inequality
|LI

ZF|. |α[LI
ZF]| + |LI

ZF|LN+ |L
I
ZF|TT. The terms $(q) 6 ∇ρ[LI

ZF] and $(q) 6 ∇σ [LI
ZF] appearing

on the left-hand side of (9.1.8a) (see Remark 9.4) can be bounded by the seventh sum on the right-hand
side of (11.1.13a) with the help of Corollary 6.18. The remaining three terms on the left-hand side
of (9.1.8a) to be estimated are Xν′P̃ν′

(F)(h,∇LI
ZF), Xν′Qν

′

(1;F)(h,∇LI
ZF), and Xν′N

#βν′κλ
4

∇βLI
ZFκλ. The

first of these can be bounded by using (11.2.7g) and the second with (11.2.7h) while the third (with the
help of Lemma 6.16) contributes to the cubic terms on the right-hand side of (11.1.12).

The proofs of (11.1.13b)–(11.1.13d), which are based on an analysis of (9.1.8b)–(9.1.8d), are similar
but much simpler. We will provide a brief overview of how to derive (11.1.13b); we then leave the
remaining details to the reader. To begin, as in the previous paragraph, we differentiate the electromagnetic
equations with the iterated modified Lie derivative L̂I

Z and null-decompose the equations of variation.
We use the same notation as in the previous paragraph and also the notation α̇ν

def
= αν[L

I
ZF]. To derive

inequality (11.1.13b), we will manipulate the equation (9.1.8b) satisfied by α̇ν . First, we rewrite the first
two terms on the left-hand side of (9.1.8b) as r−1

∇L(r α̇). This term is the only one that appears on the
left-hand side of (11.1.13b); all other terms are placed on the right-hand side. The only thing that remains
to be discussed is how to bound these other terms from (9.1.8b) by the right-hand side of (11.1.13b).
These terms separate into two classes: the linear terms involving angular derivatives 6 ∇ and the remaining
nonlinear terms. As in the previous paragraph, the linear terms can be suitably bounded by the first sum
on the right-hand side of (11.1.13b) thanks to Corollary 6.18. With the help of Lemma 6.16, the nonlinear
terms can all bounded in the crudest possible fashion by estimates of, e.g., the form∑

|I |≤k

|∇
I
Z(U∇V )|. (1+ |q|)−1

∑
|I1|+|I2|≤k+1
|I1|≤k

|∇
I1
Z U ||∇ I2

Z V |. �

The next proposition provides pointwise estimates for the challenging commutator term 2̃g∇
I
Zh(1)−

∇̂
I
Z2̃gh(1) from the right-hand side of (7.0.1).

Proposition 11.6 (Algebraic estimates of [2̃g,∇
I
Z] [Lindblad and Rodnianski 2010, Proposition 5.3]).

Let gµν be a Lorentzian metric, hµν
def
= gµν−mµν , and Hµν def

= (g−1)µν−mµν . Let 2̃g
def
= 2m+H κλ

∇κ∇λ,
and let I be a Z-multi-index with 1≤ |I |. Let ∇̂ I

Z denote the modified Minkowskian covariant derivative
operator defined in (6.4.1). Assume that there is a constant ε such that |∇ J

Zh| ≤ ε holds for all Z-multi-
indices J satisfying |J | ≤ b|I |/2c. Then if ε is sufficiently small, the following pointwise estimate holds:

|2̃g∇
I
Zh(1)−∇̂ I

Z2̃gh(1)|. (1+ t + |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

, (11.1.15)
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where (|K | − 1)+
def
= 0 if |K | = 0 and (|K | − 1)+

def
= |K | − 1 if |K | ≥ 1.

Corollary 11.7 (Algebraic estimates of |2̃g∇
I
Zh(1)|). Assume that h(1)µν (µ, ν = 0, 1, 2, 3) is a solution to

the reduced equation (3.7.1a). Then under the assumptions of Proposition 11.6, we have that

|2̃g∇
I
Zh(1)|. |∇̂ I

ZH| + |∇̂
I
Z2̃gh(0)| + (1+ t + |q|)−1

∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

. (11.1.16)

Proof. Simply use Proposition 7.1 to decompose 2̃g∇
I
Zh(1)=∇̂ I

ZH−∇̂
I
Z2̃gh(0)+(2̃g∇

I
Zh(1)−∇̂ I

Z2̃gh(1))
and apply Proposition 11.6. �

11.2. Null-structure lemmas. In this section, we provide the lemmas that are used in the proofs of
some of the previous propositions. We will make repeated use of the following decompositions of the
Minkowski metric and its inverse:

mµν =−
1
2 LµLν − 1

2 LµLν + 6mµν, (11.2.1a)

(m−1)µν =− 1
2 LµLν − 1

2 LµLν + 6mµν, (11.2.1b)

where 6mµν is the Euclidean first fundamental form of the spheres Sr,t defined in (5.1.4b).
We begin with a lemma that shows that the essential algebraic structure of the quadratic terms appearing

on the right-hand sides of the reduced equations (3.7.1a)–(3.7.1c) is preserved under differentiation.

Lemma 11.8 (Leibniz rules for the quadratic terms). Let Q0(∇ψ,∇χ) and Qµν(∇ψ,∇χ) denote the
standard null forms defined in (3.6.6a)–(3.6.6b), and let Q(1;h)µν (∇h,∇h), Q(2;h)µν (F,F), P(∇µh,∇νh),
Pν
(F)(∇h,F), Qν(1;F)(h,∇F), and Qν(2;F)(h,∇F) denote the quadratic terms defined in (3.6.5), (3.7.2d),

(3.6.4), (3.7.3b), (3.7.3c), and (3.7.2e), respectively. Let I be a Z-multi-index. Then there exist constants
Cκλγ γ ′δδ′

I1,I2;µν
, C0;γ γ ′δδ′

I1,I2;µν
, C I1,I2 , Cκλ

P;I1,I2;µν
, CP;I1,I2 , and Ci;I1,I2 such that

∇
I
ZQ(1;h)µν (∇h,∇h)=

∑
|I1|+|I2|≤|I |

Cκλγ γ ′δδ′

I1,I2;µν
Qκλ(∇∇

I1
Z hγ γ ′,∇∇

I2
Z hδδ′)

+

∑
|I1|+|I2|<|I |

C0;γ γ ′δδ′

I1,I2;µν
Q0(∇∇

I1
Z hγ γ ′,∇∇

I2
Z hδδ′), (11.2.2a)

∇
I
ZQ(2;h)µν (F,F)=

∑
|I1|+|I2|≤|I |

C I1,I2Q(2;h)µν (∇
I1
Z F,∇ I2

Z F), (11.2.2b)

∇
I
ZP(∇µh,∇νh)=

∑
|I1|+|I2|≤|I |

Cκλ
P;I1,I2;µν

P(∇κ∇
I1
Z h,∇λ∇

I2
Z h), (11.2.2c)
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LI
ZPν

(F)(∇h,F)=
∑

|I1|+|I2|≤|I |

CP;I1,I2Pν
(F)(∇LI1

Z h,LI2
Z F), (11.2.2d)

LI
ZQν(i;F)(h,∇F)=

∑
|I1|+|I2|≤|I |

Ci;I1,I2Qν(i;F)(L
I1
Z h,∇LI2

Z F) (i = 1, 2). (11.2.2e)

Proof. By pure calculation, if Z ∈ Z, then the following identity holds for the standard null form
Qµν(∇ψ,∇χ):

∇Z Qµν(∇ψ,∇χ)= Qµν(∇∇Zψ,∇χ)+Qµν(∇ψ,∇∇Zχ)

−
(Z)c κ

µ Qκν(∇ψ,∇χ)−
(Z)c κ

ν Qµκ(∇ψ,∇χ), (11.2.3)

where (Z)cµν is the covariantly constant tensor field defined in (6.2.4). A similar identity holds for the
standard null form Q0(∇ψ,∇χ). Equation (11.2.2a) now follows inductively from these facts and the
Leibniz rule since Q(1;h)µν (∇h,∇h) is a linear combination of standard null forms. Equation (11.2.2c)
follows similarly. Equation (11.2.2b) follows trivially from definition (3.7.2d) and the Leibniz rule.
Equations (11.2.2d) and (11.2.2e) follow from (6.3.4b), Lemma 6.8, and the Leibniz rule. �

The next lemma concerns the null structure of the standard null forms.

Lemma 11.9 (Null structure estimates for the standard null forms). Let Q0(∇ψ,∇χ)
def
= (m−1)κλ(∇κψ) ·

(∇λχ) and Qµν(∇ψ,∇χ)
def
= (∇µψ)(∇νχ)− (∇νψ)(∇µχ) denote the standard null forms defined in

(3.6.6a)–(3.6.6b). Then

|Q0(∇ψ,∇χ)| + |Qµν(∇ψ,∇χ)|. |∇ψ ||∇χ | + |∇χ ||∇ψ |. (11.2.4)

Proof. The estimate (11.2.4) for Q0 easily follows from using (11.2.1b) to decompose (m−1)κλ. To obtain
the estimates for Qµν(∇ψ,∇χ), we first consider the Qµν(∇ψ,∇χ) to be components of a 2-covariant
tensor Q(∇ψ,∇χ). Inequality (11.2.4) is equivalent to the following inequality:

|Q(∇ψ,∇χ)|NN . |∇ψ ||∇χ | + |∇χ ||∇ψ |. (11.2.5)

Contracting Qµν(∇ψ,∇χ) against frame vectors Nµ, N ν
∈ N, we see that the only component on the

left-hand side of (11.2.5) that could pose any difficulty is LµLνQµν(∇ψ,∇χ). But the antisymmetry of
the Qµν( · , · ) implies that this component is 0. �

The next lemma addresses the null structure of some of the terms appearing in the reduced equations
(3.7.1a)–(3.7.1c).

Lemma 11.10 (Null structure estimates for the reduced equations). Let P(∇µ5,∇ν2), Q(1;h)µν (∇h,∇h),
Q(2;h)µν (F,G), Pν

(F)(h,∇F), Qν(1;F)(h,∇F), and Qν(2;F)(∇h,F) be the quadratic forms defined in Section
3.7, and define the quadratic form P̃ν

(F)(h,∇F) by removing the ∇Lα
ν
[F]-containing component of

Pν
(F)(h,∇F):

P̃ν
(F)(h,∇F)

def
= Pν

(F)(h,∇F)− 1
4 hL L 6mνν′

∇LFLν′

= Pν
(F)(h,∇F)+ 1

4 hL L∇Lα
ν
[F]. (11.2.6)
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Let Xν be any one-form, let 5µν and 2µν be symmetric type-
(0

2

)
tensor fields, and let Fµν and Gµν be

two-forms. Then the following pointwise inequalities hold:

|P(∇µ5,∇ν2)|. |∇5|TN|∇2|TN

+ |∇5|LL|∇2| + |5||∇2|LL (µ, ν = 0, 1, 2, 3), (11.2.7a)∑
T∈T, N∈N

|T µN νP(∇µ5,∇ν2)|. |∇5||∇2|, (11.2.7b)

|Q(1;h)µν (∇5,∇2)|. |∇5||∇2| + |∇5||∇2| (µ, ν = 0, 1, 2, 3), (11.2.7c)∑
T∈T, N∈N

|T µN νQ(2;h)µν (F,G)|. (|F|LN+ |F|TT)|G| + |F|(|G|LN+ |G|TT), (11.2.7d)

|Q(2;h)µν (F,G)|. |F||G| (µ, ν = 0, 1, 2, 3), (11.2.7e)

|XνPν
(F)(h,∇F)|. |X ||h||∇F| + |X ||h|

(
|∇F|LN+ |∇F|TT

)
+ |X ||h|LL|∇F| + |X |L|h||∇F|

. (1+ t + |q|)−1
∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+ (1+ |q|)−1

∑
|I |≤1

|X ||h|LL|L
I
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X |L|h||LI
ZF|, (11.2.7f)

|XνP̃ν
(F)(h,∇F)|. |X ||h||∇F| + |X ||h|

(
|∇F|LN+ |∇F|TT

)
+ |X |L|h||∇F|

. (1+ t + |q|)−1
∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+ (1+ |q|)−1

∑
|I |≤1

|X |L|h||LI
ZF|, (11.2.7g)

|XνQν(1;F)(h,∇F)|. |X ||h||∇F| + |X ||h|
(
|∇F|LN+ |∇F|TT

)
. (1+ t + |q|)−1

∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
, (11.2.7h)

|XνQν(2;F)(∇h,F)|. |X ||∇h||F| + |X ||∇h||F|LN

. (1+ t + |q|)−1
∑
|I |≤1

|X ||∇ I
Zh||F|

+ (1+ |q|)−1
∑
|I |≤1

|X ||∇ I
Zh|

(
|F|LN+ |F|TT

)
. (11.2.7i)
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Proof. Inequality (11.2.7c) follows directly from Lemma 11.9 since Q(1;h)µν (∇h,∇h) is a linear combination
of standard null forms. Inequality (11.2.7e) is trivial while (11.2.7a), (11.2.7b), and the first inequalities
in (11.2.7d)–(11.2.7i) are straightforward to verify by using (11.2.1a)–(11.2.1b). The second inequalities
in (11.2.7d)–(11.2.7i) then follow from the first ones, Lemma 6.16, and Proposition 6.19. �

The next lemma addresses the null structure of some of the cubic terms on the right-hand side of (12.2.4).

Lemma 11.11 (Null structure estimates for quasilinear wave equations [Lindblad and Rodnianski 2010,
Lemma 4.2]). Let 5 be a type-

(0
2

)
tensor field, and let φ be a scalar function. Then the following

inequalities hold:

|5κλ(∇κφ)(∇λφ)|. |5|LL|∇φ|
2
+ |5||∇φ||∇φ|, (11.2.8a)

|Lκ5κλ
∇λφ|. |5|LL|∇φ| + |5||∇φ|, (11.2.8b)

|(∇κ5
κλ)∇λφ|. |∇5|LL|∇φ| + |∇5||∇φ| + |∇5||∇φ|, (11.2.8c)

|5κλ
∇κ∇λφ|. |5|LL|∇∇φ| + |∇∇φ|. (11.2.8d)

The following lemma addresses the null structure of some of the cubic terms on the right-hand side
of (12.2.8):

Lemma 11.12 (Null structure estimates for the terms appearing in the divergence of the electromagnetic
energy currents). Let hµν be a type-

(0
2

)
tensor field, and let Fµν be a two-form. Then the following

inequalities hold:

|(∇µhµκ)FκζF
ζ

0 |. |∇h|LL|F|
2
+ |∇h||F|2+ |∇h||F|(|F|LN+ |F|TT), (11.2.9a)

|(∇µhκλ)Fµ
κF0λ|. |∇h||F|2+ |∇h||F|(|F|LN+ |F|TT), (11.2.9b)

|(∇t hκλ)FκηF
η
λ |. |∇h|LL|F|

2
+ |∇h||F|(|F|LN+ |F|TT), (11.2.9c)

|LµhµκFκζF
ζ

0 |. |h|LL|F|
2
+ |h||F|(|F|LN+ |F|TT), (11.2.9d)

|LµhκλFµ
κF0λ|. |h||F||F|LN, (11.2.9e)

|hκλFκηF
η
λ |. |h|LL|F|

2
+ |h||F|(|F|LN+ |F|TT). (11.2.9f)

Proof. It is straightforward to derive inequalities (11.2.9a)–(11.2.9f) by using (11.2.1a). �

12. Weighted energy estimates for the electromagnetic equations of variation and for systems of
nonlinear wave equations in a curved spacetime

In this section, we prove weighted energy estimates for the electromagnetic equations of variation

∇λḞµν +∇µḞνλ+∇νḞλµ = Ḟλµν (λ, µ, ν = 0, 1, 2, 3), (12.0.1a)

N #µνκλ
∇µḞκλ = Ḟν (ν = 0, 1, 2, 3). (12.0.1b)

Our estimates complement the weighted energy estimates proved in [Lindblad and Rodnianski 2010] for
the inhomogeneous wave equation

2̃gφ = I (12.0.2)
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and for tensorial systems of inhomogeneous wave equations with principal part 2̃g:

2̃gφµν = Iµν (µ, ν = 0, 1, 2, 3). (12.0.3)

12.1. The energy estimate weight function w(q). As in [Lindblad and Rodnianski 2010], our energy
estimates will involve the weight function w(q) defined by

w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(12.1.1)

where the constants γ and µ are subject to the restrictions stated in Section 2.14.
Observe that the following inequalities follow from the definition (12.1.1):

w′ ≤ 4(1+ |q|)−1w ≤ 16µ−1(1+ q−)2µw′, (12.1.2)

where q− = 0 if q ≥ 0 and q− = |q| if q < 0.

12.2. Weighted energy estimates. We begin by deriving weighted energy estimates for the electro-
magnetic equations of variation.

Lemma 12.1 (Weighted energy estimates for Ḟ). Assume that Ḟµν is a solution to the equations of
variation (8.1.1a)–(8.1.1b) corresponding to the background (hµν,Fµν), where hµν

def
= gµν −mµν . Let

α̇
def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ] denote the “favorable” Minkowskian null components of Ḟ as

defined in Definition 5.9. Assume that |h|+|F| ≤ ε. Then if ε is sufficiently small and t1≤ t2, the following
integral inequality holds:∫
6t2

|Ḟ|2w(q) d3x +
∫ t2

t1

∫
6τ

(
|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ

.
∫
6t1

|Ḟ|2w(q) d3x +
∫ t2

t1

∫
6τ

∣∣Ḟ0ηḞ
η
∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣−(∇µhµκ)Ḟκζ Ḟ
ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣LµhµκḞκζ Ḟ
ζ

0 + LµhκλḞµ
κḞ0λ+

1
2 hκλḞκηḞ

η
λ

∣∣w′(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣(∇µN #µζκλ
4

)ḞκλḞ0ζ −
1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

∣∣w′(q) d3x dτ. (12.2.1)

Proof. It follows from (8.3.2) that, if ε is sufficiently small, we have that

1
4 |Ḟ|

2w(q)≤ J̇ 0
(h,F) ≤ |Ḟ|

2w(q). (12.2.2)
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From (8.3.3) and the divergence theorem, it follows that∫
6t2

J̇ 0
(h,F) d3x + 1

2

∫ t2

t1

∫
6τ

w′(q)(|α̇|2+ ρ̇2
+ σ̇ 2) d3x dτ

=

∫
6t1

J̇ 0
(h,F) d3x −

∫ t2

t1

∫
6τ

w(q)Ḟ0ηḞ
η d3x dτ

−

∫ t2

t1

∫
6τ

w(q)
{
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w′(q)
{
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w(q)
{
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w′(q)
{

LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

}
d3x dτ, (12.2.3)

which, with the help of (12.2.2), implies (12.2.1). �

We now recall the analogous lemma proved in [Lindblad and Rodnianski 2010] for solutions to the
inhomogeneous wave equation in curved spacetime.

Lemma 12.2 (Weighted energy estimates for a scalar wave equation [Lindblad and Rodnianski 2010,
Lemma 6.1]). Assume that the scalar-valued function φ is a solution to the equation 2̃gφ = I, and let
Hµν def
= (g−1)µν − (m−1)µν . Assume that the metric gµν is such that |H | ≤ 1

2 . Then∫
6t2

|∇φ|2w(q) d3x + 2
∫ t2

t1

∫
6τ

|∇φ|2w′(q) d3x dτ

≤ 4
∫
6t1

|∇φ|2w(q) d3x + 4
∫ t2

t1

∫
6τ

|Iκ∇tφ
κ
|w(q) d3x dτ

+ 4
∫ t2

t1

∫
6τ

∣∣(∇νH νλ)(∇λφ)(∇tφ)−
1
2(∇t Hλκ)(∇λφ)(∇κφ)

∣∣w(q) d3x dτ

+ 4
∫ t2

t1

∫
6τ

∣∣(ω j H jλ
− H 0λ)︸ ︷︷ ︸

Lκ Hκλ

(∇tφ)(∇λφ)+
1
2 Hλκ(∇λφ)(∇κφ)

∣∣w′(q) d3x dτ. (12.2.4)

We now extend the results of the previous lemmas by estimating (under assumptions that are compatible
with our global stability theorem) some of the cubic terms on the right-hand sides of (12.2.1) and (12.2.4).

Proposition 12.3 (Weighted energy estimates for the reduced equations; extension of [Lindblad and
Rodnianski 2010, Proposition 6.2]). Let φ be a solution to 2̃gφ = I for the metric gµν , and let
Hµν def
= (g−1)µν − (m−1)µν . Let γ and µ be positive constants satisfying the restrictions described



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 861

in Section 2.14. Assume that the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|H |L L + |∇H |L L + |∇H | ≤ Cε(1+ t + |q|)−1, (12.2.5a)

(1+ |q|)−1
|H | + |∇H | ≤ Cε(1+ t + |q|)−1/2(1+ |q|)−1/2(1+ q−)−µ, (12.2.5b)

where q−= 0 if q ≥ 0 and q−= |q| if q < 0. Then there exists a constant C1> 0 such that, if 0<ε≤µ/C1,
then the following integral inequality holds for t ∈ [0, T ):∫
6t

|∇φ|2w(q) d3x +
∫ t

0

∫
6τ

|∇φ|2w′(q) d3x dτ

.
∫
60

|∇φ|2w(q) d3x +
∫ t

0

∫
6τ

(Cε|∇φ|2

1+ τ
+ |I||∇φ|

)
w(q) d3x dτ. (12.2.6)

Furthermore, let Ḟµν be a solution to the electromagnetic equations of variation (8.1.1a)–(8.1.1b) cor-
responding to the background (hµν,Fµν), where hµν

def
= gµν −mµν . Assume that the following pointwise

estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|h|LL+ |∇h|LL+ |∇h| + |F| ≤ Cε(1+ t + |q|)−1, (12.2.7a)

(1+ |q|)−1
|h| + |∇h| + |∇F| ≤ Cε(1+ t + |q|)−1/2(1+ |q|)−1/2(1+ q−)−µ, (12.2.7b)

where q−= 0 if q ≥ 0 and q−= |q| if q < 0. Then there exists a constant C1> 0 such that, if 0<ε≤µ/C1,
then the following integral inequality holds for t ∈ [0, T ):∫
6t

|Ḟ|2w(q) d3x +
∫ t

0

∫
6τ

(
|Ḟ|2LN+ |Ḟ|

2
TT

)
w′(q) d3x dτ

.
∫
60

|Ḟ|2w(q) d3x + ε
∫ t

0

∫
6τ

|Ḟ|2

1+ τ
w(q) d3x dτ +

∫ t

0

∫
6τ

|Ḟ0κ Ḟ
κ
|w(q) d3x dτ. (12.2.8)

Remark 12.4. Proposition 12.3 will not be used until the proof of Theorem 16.1, where it plays a key role;
see Section 16.2. We also remark that the hypotheses of the proposition are implied by the hypotheses of
the theorem; see Section 2.14 and Remark 16.2.

Proof. Inequality (12.2.6) was proved as Proposition 6.2 of [Lindblad and Rodnianski 2010]. The proof
was based on using Lemma 11.11 to estimate the inhomogeneous terms on the right-hand side of (12.2.4).
Rather than reproving this inequality, we only give the proof of (12.2.8), which is based on (12.2.1) and
uses related ideas.

We commence with the proof of (12.2.8), our goal being to deduce suitable pointwise bounds for some
of the terms appearing on the right-hand side of (12.2.1). For the cubic terms, we use Lemma 11.12, the
hypotheses of the proposition, and the inequality |ab|. a2

+ b2 to conclude that∣∣(∇µhµκ)Ḟκζ Ḟ
ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

∣∣
. (|∇h|LL+ |∇h|)|Ḟ|2+ |∇h||Ḟ|(|Ḟ|LN+ |Ḟ|TT)

. ε(1+ t + |q|)−1
|Ḟ|2+ ε(1+ |q|)−1(1+ q−)−2µ(

|Ḟ|2LN+ |Ḟ|
2
TT

)
(12.2.9)
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and∣∣LµhµκḞκζ Ḟ
ζ

0 + LµhκλḞµ
κḞ0λ+

1
2 hκλḞκηḞ

η
λ

∣∣
. |h|LL|Ḟ|

2
+ |h||Ḟ|(|Ḟ|LN+ |Ḟ|TT)

. ε(1+ |q|)(1+ t + |q|)−1
|Ḟ|2+ ε(1+ q−)−2µ(

|Ḟ|2LN+ |Ḟ|
2
TT

)
. (12.2.10)

For the higher-order terms, we use (3.7.2h), the hypotheses of the proposition, and the inequality
|ab|. a2

+ b2 to deduce that∣∣(∇µN #µζκλ
4

)ḞκλḞ0ζ −
1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

∣∣. (|(h,F)||(∇h,∇F)|
)
|Ḟ|2

. ε(1+ t + |q|)−1
|Ḟ|2 (12.2.11)

and ∣∣LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

∣∣. |(h,F)|2|Ḟ|2

. ε(1+ |q|)(1+ t + |q|)−1
|Ḟ|2. (12.2.12)

Inserting (12.2.9)–(12.2.12) into the right-hand side of (12.2.1) and using (12.1.2), we have that∫
6t

|Ḟ|2w(q) d3x +
∫ t

0

∫
6τ

(
|Ḟ|2LN+ |Ḟ|

2
TT

)
w′(q) d3x dτ

≤ C
∫
60

|Ḟ|2w(q) d3x +C1ε

∫ t

0

∫
6τ

(
|Ḟ|2

1+ τ
w(q)+

(
|Ḟ|2LN+ |Ḟ|

2
TT

)w′(q)
µ

)
d3x dτ

+C
∫ t

0

∫
6τ

|Ḟ0κ Ḟ
κ
|w(q) d3x dτ. (12.2.13)

Now if C1ε/µ is sufficiently small, we can absorb the C1ε
∫ t

0

∫
6τ
[(|Ḟ|2LN+ |Ḟ|

2
TT)w

′(q)/µ] d3x dτ
term on the right-hand side of (12.2.13) into the second term on the left-hand side at the expense of
increasing the constants C . Inequality (12.2.8) thus follows. �

13. Pointwise decay estimates for wave equations in a curved spacetime

In this section, we state a lemma and a corollary proved in [Lindblad and Rodnianski 2010]. They
allow one to deduce pointwise decay estimates for solutions to inhomogeneous wave equations (e.g., for
the hµν). The main advantage of these estimates is that, if one has good control over the inhomogeneous
terms, then the pointwise decay estimates provided by the lemma and its corollary are improvements
over what can be deduced from the weighted Klainerman–Sobolev inequalities of Proposition B.1. In
particular, the lemma and its corollary play a fundamental role in the proofs of Propositions 15.6 and 15.7.
See the beginning of Section 15 for additional details regarding this improvement.

Remark 13.1. The Faraday tensor analogs of Lemma 13.2 and Corollary 13.3 are contained in the
estimates of Proposition 11.5. More specifically, the analogous inequalities would arise from integrating
(in the direction of the first-order vector field differential operators on the left-hand sides of the inequalities)
the inequalities in the proposition. We will carry out these integrations in Section 15, which will allow
us to derive improved pointwise decay estimates for the lower-order Lie derivatives of the Faraday
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tensor (improved relative to what can be deduced from the weighted Klainerman–Sobolev inequalities of
Proposition B.1).

13.1. The decay estimate weight function $(q). As in [Lindblad and Rodnianski 2010], our decay
estimates will involve the following weight function $(q), which is chosen to complement the energy-
estimate weight function w(q) defined in (12.1.1):

$ =$(q)=
{
(1+ |q|)1+γ

′

if q > 0,
(1+ |q|)1/2−µ

′

if q < 0,
(13.1.1)

where 0< δ< µ′ < 1
2 −µ and 0< γ′ < γ− δ are fixed constants. Its complementary role will become

apparent in Section 15.

13.2. Pointwise decay estimates. We now state the lemma concerning pointwise decay estimates for
solutions to inhomogeneous quasilinear wave equations.

Lemma 13.2 (Pointwise decay estimates for solutions to a scalar wave equation [Lindblad and Rodnianski
2010, Lemma 7.1]). Let φ be a solution of the scalar wave equation (13.2.1)

2̃gφ = I (13.2.1)

on a curved background with metric gµν . Assume that the tensor Hµν def
= (g−1)µν − (m−1)µν obeys the

following estimates:

|H |≤ε′,
∫
∞

0
(1+t)−1

‖H(t, · )‖L∞(Dt ) dt≤ 1
4 , and |H |LT≤ε

′(1+t+|x |)−1(1+|q|) (13.2.2)

in the region

Dt
def
= {x | t/2< |x |< 2t} (13.2.3)

for t ∈ [0, T ). Then with α
def
= max(1+γ′, 1

2 −µ′), the following pointwise estimate holds for (t, x) ∈
[0, T )×R3:

(1+ t + |q|)$(q)|∇φ|. sup
0≤τ≤t

∑
|I |≤1

‖$(q)∇ I
Zφ(τ, · )‖L∞ +

∫ t

τ=0
ε′α‖$(q)∇φ(τ, · )‖L∞ dτ

+

∫ t

τ=0
(1+ τ)‖$(q)I(τ, · )‖L∞(Dτ ) dτ

+

∫ t

τ=0

∑
|I |≤2

(1+ τ)−1
‖$(q)∇ I

Zφ(τ, · )‖L∞(Dτ ) dτ. (13.2.4)

We now state the following corollary, which provides similar decay estimates for the null components
of tensorial systems of wave equations:

Corollary 13.3 (Pointwise decay estimates for solutions to a system of tensorial wave equations [Lindblad
and Rodnianski 2010, Corollary 7.2]). Let φµν be a solution of the system

2̃gφµν = Iµν (13.2.5)
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on a curved background with a metric gµν . Assume that the tensor Hµν def
= (g−1)µν − (m−1)µν obeys the

following estimates:

|H |≤ ε
′

4
,

∫
∞

0
(1+t)−1

‖H(t, · )‖L∞(Dt ) dt≤ε′, and |H |LT≤
ε′

4
(1+t+|q|)−1(1+|q|) (13.2.6)

in the region

Dt
def
= {x | t/2< |x |< 2t} (13.2.7)

for t ∈ [0, T ). Then for any U,V ∈ {L,T,N} and with α
def
= max(1+γ′, 1

2 −µ′), the following pointwise
estimate holds for (t, x) ∈ [0, T )×R3:

(1+ t + |q|)$(q)|∇φ|UV . sup
0≤τ≤t

∑
|I |≤1

‖$(q)∇ I
Zφ(τ, · )‖L∞ +

∫ t

τ=0
ε′α‖$(q)|∇φ(τ, · )|UV‖L∞ dτ

+

∫ t

τ=0
(1+ τ)‖$(q)|I(τ, · )|UV‖L∞(Dτ ) dτ

+

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖$(q)∇ I
Zφ(τ, · )‖L∞(Dτ ) dτ. (13.2.8)

14. Local well-posedness and the continuation principle for the reduced equations

In this short section, we state for convenience a standard proposition concerning local well-posedness and
a continuation principle for the reduced equations (3.7.1a)–(3.7.1c). The continuation principle shows
that a suitable a priori bound on the energy of the solution implies global existence. It therefore plays a
fundamental role in our global stability argument of Section 16.

Proposition 14.1 (Local well-posedness and the continuation principle). Let (h(1)µν |t=0,∂t h
(1)
µν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) be initial data for the reduced equations (3.7.1a)–(3.7.1c) constructed from abstract
initial data (h̊(1)jk , K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) on the manifold R3 satisfying the constraints (4.1.1a)–
(4.1.2b) as described in Section 4.2. Assume that the data are asymptotically flat in the sense of (1.0.4a)–
(1.0.4f). Let `≥ 4 be an integer, and let γ> 0 and µ> 0 be constants satisfying the restrictions stated in
Section 2.14. Assume that E`;γ(0) < ε, where E`;γ(0) is the norm of the abstract data defined in (10.0.3).
Then if ε is sufficiently small,29 these data launch a unique classical solution to the reduced equations
existing on a nontrivial maximal spacetime slab [0, Tmax)× R3. The energy E`;γ;µ(t) of the solution,
which is defined in (1.2.7), satisfies E`;γ;µ(0) . ε and is continuous on [0, Tmax). Furthermore, either
Tmax =∞, or one of the following two “breakdown” scenarios must occur:

(i) lim t↑Tmax E`;γ;µ(t)=∞.

(ii) The solution escapes the regime of hyperbolicity of the reduced equations.

Remark 14.2. The classification of the two breakdown scenarios is known as a continuation principle.

29This smallness assumption ensures that the reduced data lie within the regime of hyperbolicity of the reduced equations.
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Remark 14.3. Note that, in order to deduce global existence, Proposition 14.1 shows that it suffices
to derive an a priori bound on E4;γ;µ(t) together with a bound ensuring that the solution remains in
the regime of hyperbolicity. However, our methods do not allow us to derive an a priori bound for
E4;γ;µ(t) alone; our derivation of upgraded pointwise estimates (see Section 15), which are essential for
our derivation of an a priori energy estimate, requires that we work with E`;γ;µ(t) for `≥ 10.

The main ingredients in the proof of Proposition 14.1 are Lemmas 12.1 and 12.2, which provide
weighted energy estimates for linearized versions of the reduced equations. Based on the availability of
these estimates, the proof is rather standard, and we omit the details. Readers may consult, e.g., [Hörmander
1997, Chapter VI; Majda 1984, Chapter 2; Shatah and Struwe 1998, Chapter 5; Sogge 2008, Chapter 1;
Speck 2009b; Taylor 1996, Chapter 16] for details concerning local existence and, e.g., [Hörmander 1997,
Chapter VI; Sogge 2008, Chapter 1; Speck 2009a] for the ideas behind the continuation principle.

15. The fundamental energy bootstrap assumption and pointwise decay estimates
for the reduced equations

In this section, we introduce our fundamental bootstrap assumption (15.0.1) for the energy of a solution
to the reduced equations. Under this assumption, we derive a collection of pointwise decay estimates
that will play a crucial role in the proof of Theorem 16.1. In particular, these decay estimates are used to
deduce the factors (1+ τ)−1 and (1+ τ)−1+Cε in (16.2.10), which are essential for deriving the a priori
energy bound (16.1.8). The decay estimates can be roughly divided into two classes: the weak pointwise
decay estimates and the upgraded pointwise decay estimates. The weak decay estimates are consequences
of the weighted Klainerman–Sobolev inequality (1.2.10). These estimates inherit a loss of approximately
(1+ t)δ relative to what is needed to prove our main result. We remark that δ is a fixed small constant
that is independent of the data while ε is connected to the size of the data. The loss comes from the loss
we allow in our energy bootstrap assumption. Roughly speaking, if one tried to prove global stability
using only the weak estimates, then the factors (1+ τ)−1 and (1+ τ)−1+Cε in (16.2.10) would have to be
replaced with (1+ τ)−1+δ; this loss of approximately (1+ t)δ would completely destroy the viability
of our approach. The purpose of the upgraded pointwise decay estimates is precisely to eliminate some
of this loss for the lower-order derivatives of the solution. The upgraded estimates are derived using
the weak estimates and the special structure of the equations in wave coordinates; that is, many of the
estimates we derive in this section rely upon the wave-coordinate condition.

We recall that the spacetime metric gµν is split into the pieces gµν = mµν + h(0)µν + h(1)µν and that the
energy E`;γ;µ(t) (see (1.2.7)) is a functional of (h(1),F). Our main bootstrap assumption for the energy is

E`;γ;µ(t)≤ ε(1+ t)δ, (15.0.1)

where `≥ 10 is an integer, 0<γ< 1
2 is a fixed constant, δ is a fixed constant satisfying both 0< δ< 1

4 and
0< δ< γ, 0< µ< 1

2 is a fixed constant (all of which will be chosen during the proof of Theorem 16.3),
and ε is a small positive number whose required smallness is adjusted (as many times as necessary) during
the derivation of our inequalities. With the help of (6.5.22), inequality (15.0.1) implies the following
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more explicit consequence of the energy bootstrap assumption:∑
|I |≤`

(∥∥w1/2(q)∇∇ I
Zh(1)

∥∥
L2 +

∥∥w1/2(q)LI
ZF
∥∥

L2

)
≤ Cε(1+ t)δ. (15.0.2)

In the remaining estimates in this article, we will also often make the following smallness assumption
on the ADM mass:

M ≤ ε. (15.0.3)

15.1. Preliminary (weak) pointwise decay estimates. In this section, we provide some preliminary point-
wise decay estimates that are essentially a consequence of the weighted Klainerman–Sobolev inequalities
of Appendix B. Unlike the upgraded pointwise decay estimates of the next section, these estimates do
not take into account the special structure of the reduced equations under the wave-coordinate condition.

We begin with a simple lemma concerning pointwise decay estimates for the Schwarzschild tail of the
metric and its derivatives.

Lemma 15.1 (Decay estimates for h(0)). Let h(0) be as in (1.2.1c), and let I be any ∇-multi-index. Then
the following pointwise estimate holds for (t, x) ∈ [0,∞)×R3:

|∇
I h(0)| ≤ C M(1+ t + |q|)−(1+|I |), (15.1.1a)

where M is the ADM mass.
Furthermore, if I is any ∇-multi-index and J is any Z-multi-index, then the following pointwise

estimate holds for (t, x) ∈ [0,∞)×R3:

|∇
I
∇

J
Zh(0)| + |∇ J

Z∇
I h(0)| ≤ C M(1+ t + |q|)−(1+|I |). (15.1.1b)

Remark 15.2. Since H(0)µν =−h(0)µν (where Hµν

(0) is defined in (11.1.2)), the above estimates also hold if
we replace h(0) with H(0).

Proof. The lemma follows from simple computations, the definition (4.2.1) of the cut-off function χ , the
definition of h(0), and the definitions of the vector fields Z ∈ Z. �

Corollary 15.3 (Weak pointwise decay estimates; slight extension of [Lindblad and Rodnianski 2010,
Corollary 9.4]). Let ` ≥ 10 be an integer. Assume that the abstract initial data are asymptotically
flat in the sense of (1.0.4a)–(1.0.4f), that the ADM mass smallness condition (15.0.3) holds, that the
constraints (4.1.1a)–(4.1.2b) are satisfied, and that the initial data for the reduced system are constructed
from the abstract initial data as described in Section 4.2. Let (gµν

def
= mµν + h(0)µν + h(1)µν ,Fµν) be the

corresponding solution to the reduced system (3.7.1a)–(3.7.1c) existing on a slab (t, x) ∈ [0, T )×R3,
where h(1) is defined in (1.2.1b). In particular, by Proposition 4.2, the wave-coordinate condition (3.1.1a)
holds for (t, x) ∈ [0, T )×R3. Assume in addition that the pair (h(1),F) satisfies the energy bootstrap
assumption (15.0.1) on the interval [0, T ). Then if ε is sufficiently small, the following pointwise estimates
hold for (t, x) ∈ [0, T )×R3:
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|∇∇
I
Zh(1)||LI

ZF| ≤

{
Cε(1+ t + |q|)−1(1+ t)δ(1+ |q|)−1−γ if q > 0,
Cε(1+ t + |q|)−1(1+ t)δ(1+ |q|)−1/2 if q < 0

(|I | ≤ `− 3), (15.1.2a)

|∇
I
Zh(1)| ≤

{
Cε(1+ t + |q|)−1+δ(1+ |q|)−γ if q > 0,
Cε(1+ t + |q|)−1+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 3), (15.1.2b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF|

≤

{
Cε(1+ t + |q|)−2+δ(1+ |q|)−γ if q > 0,
Cε(1+ t + |q|)−2+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 4). (15.1.2c)

In addition, the tensor field Hµν

(1) defined in (11.1.2) satisfies the same estimates as h(1)µν . Furthermore,
if we make the substitution γ→ δ in the above inequalities, then the same estimates hold for the tensor
fields h(0)µν , hµν

def
= h(0)µν + h(1)µν , H(0)µν

def
= −h(0)µν , Hµν def

= (g−1)µν − (m−1)µν , and Hµν

(1)
def
= Hµν

− Hµν

(0) .

Proof. This corollary is a slight extension of Corollary 9.4 of [Lindblad and Rodnianski 2010], in which
estimates for h(0) =−H(0), h(1), and h were proved. The main idea in the proof is to use the weighted
Klainerman–Sobolev estimates of Proposition B.1 under the assumption (15.0.2) together with the decay
(1.0.4c)–(1.0.4f) of the initial data at spatial infinity and Lemma 15.1. The estimates for F follow in a
straightforward fashion from the arguments of [Lindblad and Rodnianski 2010, Corollary 9.4] while the
estimates for H(1) and H follow from those for h(1) and h together with (3.3.11a). �

In the next lemma, we use the weak decay estimates to derive pointwise estimates for the Schwarzschild
tail term ∇ I

Z2̃gh(0) appearing on the right-hand side of (7.0.1).

Lemma 15.4 (Pointwise decay estimates for ∇ I
Z2̃gh(0) [Lindblad and Rodnianski 2010, Lemma 9.9]).

Let h(0) be the Schwarzschild part of h as defined in (1.2.1c), and assume the hypotheses/conclusions of
Corollary 15.3. Let I be a Z-multi-index subject to the restrictions stated below. Then if ε is sufficiently
small, the following pointwise estimates hold for (t, x) ∈ [0, T )×R3, where M is the ADM mass:

|∇
I
Z2̃gh(0)| ≤

{
C Mε(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
C M(1+ t + |q|)−3 if q < 0

(|I | ≤ `− 3). (15.1.3a)

Furthermore, the following pointwise estimates also hold for (t, x) ∈ [0, T )×R3:

|∇
I
Z2̃gh(0)|≤C M

∑
|J |≤|I |

(1+t+|q|)−3
|∇

J
Zh(1)|+

{
C Mε(1+ t + |q|)−4 if q > 0,
C M(1+ t + |q|)−3 if q < 0

(|I |≤`). (15.1.3b)

Proof. We first observe that 2̃gh(0) = 2mh(0) + H κλ
∇κ∇λh(0), where 2m

def
= (m−1)κλ∇κ∇λ is the

Minkowski wave operator. From (15.1.1b), the definition of h(0), the Leibniz rule, and the fact that
2m(1/r)= 0 for r > 0, it follows that

|∇
I
Z2mh(0)|. M(1+ t + |q|)−3χ0

(1
2
≤

r
t
≤

3
4

)
, (15.1.4)∣∣∇ I

Z

(
H κλ
∇κ∇λh(0)

)∣∣. M(1+ t + |q|)−3
∑
|J |≤|I |

|∇
J
Z H |, (15.1.5)
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where χ0
(1

2 ≤ z ≤ 3
4

)
is the characteristic function of the interval

[ 1
2 ,

3
4

]
. Furthermore, using H =

−h(0)− h(1)+ O∞(|h(0)+ h(1)|2), we deduce that∑
|J |≤|I |

|∇
J
Z H |. ε(1+ t + |q|)−1

+

∑
|J |≤|I |

|∇
J
Zh(1)|. (15.1.6)

Using (15.1.5), (15.1.6), and the estimate (15.1.2b), we have that∣∣∇ I
Z

(
H κλ
∇κ∇λh(0)

)∣∣. {Mε(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
Mε(1+ t + |q|)−4+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 3) (15.1.7)

and∣∣∇ I
Z

(
H κλ
∇κ∇λh(0)

)∣∣. Mε(1+ t + |q|)−4
+Mε(1+ t + |q|)−3

∑
|J |≤|I |

|∇
J
Zh(1)| (|I | ≤ `). (15.1.8)

Inequalities (15.1.3a) and (15.1.3b) now easily follow from the above estimates. �

15.2. Initial upgraded pointwise decay estimates for |LI
ZF|LN and |LI

ZF|TT. In this section, we prove
some upgraded pointwise decay estimates for the “favorable” components of the lower-order Lie derivatives
of F. Our estimates take into account the special structure revealed by our null decomposition of the
electromagnetic equations of variations, a structure that was captured by Proposition 11.5 and that depends
in part upon the wave-coordinate condition. We remark that in Section 15.3 some of these decay estimates
will be further improved (hence our use of the terminology “initial upgraded” here).

Proposition 15.5 (Initial upgraded pointwise decay estimates for |LI
ZF|LN and |LI

ZF|TT). Assume the
hypotheses/conclusions of Corollary 15.3. Then if ε is sufficiently small, the following pointwise estimates
hold for (t, x) ∈ [0, T )×R3:

|LI
ZF|LN+ |L

I
ZF|TT ≤

{
Cε(1+ t + |q|)−2+2δ(1+ |q|)−γ−δ if q > 0,
Cε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0

(|I | ≤ `− 4). (15.2.1)

Proof. Since |LI
ZF|LN+ |L

I
ZF|TT| ≈ |α[L

I
ZF]| + |ρ[LI

ZF]| + |σ [LI
ZF]|, it suffices to prove the desired

decay estimates for |α[LI
ZF]|, |ρ[LI

ZF]|, and |σ [LI
ZF]| separately. We provide proof for the null

component α[LI
ZF]. The proofs for the components ρ[LI

ZF] and σ [LI
ZF] are similar, and we leave these

details to the reader. Let W
def
= {(t, x) | |x | ≥ 1+ t/2} ∩ {(t, x) | |x | ≤ 2t − 1} denote the “wave-zone”

region. Then for (t, x) /∈W, we have that 1+ |q| ≈ (1+ t + |q|). Using this fact, for (t, x) /∈W, we can
bound |α[LI

ZF]| by the right-hand side of (15.2.1) by using the weak decay estimate (15.1.2a).
We now consider the case (t, x) ∈ W. Let f def

= rα[LI
ZF]. Then from (11.1.13b), the fact that

r ≈ (1+ t + |q|)≈ (1+ s+ |q|) on W, and the weak decay estimates of Corollary 15.3, it follows that
(with ∂q defined in Section 2.7)

|∂q f (t, x)|.
{
ε(1+ s+ |q|)−1+2δ(1+ |q|)−1−γ−δ if q > 0,
ε(1+ s+ |q|)−1+2δ(1+ |q|)−1/2−δ if q < 0.

(15.2.2)

Let (τ (q ′), y(q ′)) be the q ′-parametrized line segment of constant s and angular values that begins
at (t, x) and terminates at the point (t0, x0) lying to the past of (t, x) and on the boundary of W. Let q
and s be the null coordinates corresponding to (t, x). Then the null coordinates corresponding to (t0, x0)
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are q0=
s
3−

2
3 and s0= s. Integrating the inequality (15.2.2) along this line segment (i.e., integrating dq ′),

we have that

| f (t, x)|. | f (t0, x0)| +

∫ q ′=s/3−2/3

q ′=q

{
ε(1+ s+ |q ′|)−1+2δ(1+ |q ′|)−1−γ−δ if q ′ > 0,
ε(1+ s+ |q ′|)−1+δ(1+ |q ′|)−1/2−δ if q ′ < 0

}
dq ′

. | f (t0, x0)| +

{
ε(1+ s)−1+2δ(1+ |q|)−γ−δ if q > 0,
ε(1+ s)−1+δ(1+ |q|)1/2−δ if q < 0.

(15.2.3)

From the facts that r0 ≈ 1+ |q0| ≈ 1+ t0+ |q0| ≈ 1+ s0+ |q0| ≈ 1+ s, together with the weak decay
estimate (15.1.2a), it follows that

| f (t0, x0)|. ε(1+ s)−1−γ+δ. (15.2.4)

Combining (15.2.3) and (15.2.4), and using the fact that 1+s≈ 1+ t+|q|, we deduce that |α[LI
ZF(t, x)]|

is bounded from above by the right-hand side of (15.2.1). This completes our proof of (15.2.1) for
the α[LI

ZF] component. �

15.3. Upgraded pointwise decay estimates for |∇ I
Zh| and |LI

ZF| and fully upgraded pointwise decay
estimates for |LI

ZF|LN and |LI
ZF|TT. In this section, we state two propositions that strengthen some

of the pointwise decay estimates proved in Sections 15.1 and 15.2. Their proofs, which are provided in
Sections 15.4 and 15.5, are based on a careful analysis of the special structure of the reduced equations
and in particular rely upon the decompositions performed in Section 11, which in turn rely in part upon the
wave-coordinate condition. These estimates play a central role in our derivation of the “strong” a priori
energy estimate (16.1.8), which is the main step in the proof of our stability theorem.

Proposition 15.6 (Upgraded pointwise decay estimates for F and certain components of h, ∇h, and ∇Z h;
extension of [Lindblad and Rodnianski 2010, Proposition 10.1]). Assume the hypotheses/conclusions
of Corollary 15.3. In particular, by Proposition 4.2, the wave-coordinate condition (3.1.1a) holds
for (t, x) ∈ [0, T )×R3. Then if ε is sufficiently small, for every vector field Z ∈Z, the following pointwise
estimates hold for (t, x) ∈ [0, T )×R3:

|∇h|LT+ |∇∇Z h|LL ≤

{
Cε(1+ t + |q|)−2+δ(1+ |q|)−δ if q > 0,
Cε(1+ t + |q|)−2+δ(1+ |q|)1/2 if q < 0,

(15.3.1a)

|h|LT+ |∇Z h|LL ≤

{
Cε(1+ t + |q|)−1 if q > 0,
Cε(1+ t + |q|)−1(1+ |q|)1/2+δ if q < 0,

(15.3.1b)

|∇h|TN ≤ Cε(1+ t + |q|)−1, (15.3.2a)

|∇h| ≤ Cε(1+ t + |q|)−1(1+ ln(1+ t)), (15.3.2b)

|F| ≤ Cε(1+ t + |q|)−1. (15.3.3)

Furthermore, the same estimates hold for the tensor fields h(0)µν , h(1)µν , Hµν def
= (g−1)µν − (m−1)µν , Hµν

(0) ,
and Hµν

(1) .

Proposition 15.7 (Upgraded pointwise decay estimates for the lower-order derivatives of h and F; exten-
sion of [Lindblad and Rodnianski 2010, Proposition 10.2]). Under the assumptions of Proposition 15.6,



870 JARED SPECK

let 0 < γ′ < γ− δ and 0 < δ < µ′ < 1
2 be fixed constants. Let I be any Z-multi-index subject to the

restrictions stated below. Then there exist constants Mk and Ck depending on γ′, µ′, and δ such that, if ε
is sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|∇∇
I
Zh(1)| + |LI

ZF|

≤

{
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−1−γ′ if q > 0,
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−1/2+µ′ if q < 0

(|I | = k ≤ `− 5), (15.3.4a)

|∇
I
Zh(1)| ≤

{
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−γ

′

if q > 0,
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)1/2+µ

′

if q < 0
(|I | = k ≤ `− 5), (15.3.4b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
Ckε(1+ t + |q|)−2+Mkε(1+ |q|)−γ

′

if q > 0,
Ckε(1+ t + |q|)−2+Mkε(1+ |q|)1/2+µ

′

if q < 0
(|I | = k ≤ `− 6). (15.3.4c)

Furthermore, the same estimates hold for hµν
def
= gµν −mµν and Hµν def

= (g−1)µν − (m−1)µν if we
replace γ′ with Mkε.

15.4. Proof of Proposition 15.6. We only prove the estimates for hµν and Fµν . The estimates for h(0)µν ,
h(1)µν , Hµν , Hµν

(0) , and Hµν

(1) follow easily from those for hµν , (3.3.11a), and Lemma 15.1.

15.4.1. Proofs of (15.3.1a) and (15.3.1b). We will argue as in Lemma 10.4 of [Lindblad and Rodnianski
2010]; we first provide a lemma that establishes a more general version of the desired estimates.

Lemma 15.8 (Pointwise estimates for |∇∇ I
Zh|LL, |∇ I

Zh|LL, |∇∇ I
Zh|LT, and |∇ I

Zh|LT [Lindblad and
Rodnianski 2010, Lemma 10.4]). Under the hypotheses of Proposition 15.6, if k ≤ ` − 4 and ε is
sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:∑
|I |≤k

|∇∇
I
Zh|LL+

∑
|J |≤k−1

|∇∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

|∇∇
K
Z h|︸ ︷︷ ︸

absent if k ≤ 1

+

{
ε(1+ t + |q|)−2+2δ(1+ |q|)−2δ if q > 0,
ε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0,

(15.4.1)

∑
|I |≤k

|∇
I
Zh|LL+

∑
|J |≤k−1

|∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

∫ %=|x |+t

%=|x |
|∇∇

K
Z h|(t + |q| − %, %x/|x |) d%︸ ︷︷ ︸

absent if k ≤ 1

+

{
ε(1+ t + |q|)−1 if q > 0,
ε(1+ t + |q|)−1(1+ |q|)1/2+δ if q < 0.

(15.4.2)

Furthermore, the same estimates hold for the tensor Hµν def
= (g−1)µν − (m−1)µν .

Proof. By Proposition 11.1, we have that∑
|I |≤k

|∇∇
I
Zh|LL+

∑
|J |≤k−1

|∇∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

|∇∇
J
Zh|︸ ︷︷ ︸

absent if k ≤ 1

+

∑
|J |≤k

|∇∇
J
Zh|+

∑
|I1|+|I2|≤k

|∇
I1
Z h||∇∇ I2

Z h|. (15.4.3)
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By Corollary 15.3, we have that∑
|J |≤k

|∇∇
J
Zh| +

∑
|I1|+|I2|≤k

|∇
I1
Z h||∇∇ I2

Z h|

.

{
ε(1+ t + |q|)−2+2δ(1+ |q|)−2δ if q > 0,
ε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0

(k ≤ `− 4). (15.4.4)

Combining (15.4.3) and (15.4.4), we deduce (15.4.1). Inequality (15.4.2) follows from integrating
inequality (15.4.1) for |∂q∇

I
Zh|. |∇∇ I

Zh|, q def
= |x | − t , along the lines along which the angle ω def

= x/|x |
and the null coordinate s = |x | + t are constant (i.e., integrating dq) and using (15.1.2b) at t = 0.

The proofs of the estimates for Hµν follow from the estimates for hµν , (3.3.11a), and Corollary 15.3.
This concludes our proof of the lemma. �

Having proved the lemma, inequalities (15.3.1a) and (15.3.1b) now follow from inequalities (15.4.1)
and (15.4.2) and the weak decay estimates of Corollary 15.3.

15.4.2. Proof of (15.3.3). Let W
def
= {(t, x) | |x | ≥ 1+ t/2}∩{(t, x) | |x | ≤ 2t−1} denote the “wave-zone”

region. Note that r ≈ 1+ t + |q| ≈ 1+ t + s for (t, x) ∈W. Now as in the proof of Proposition 15.5,
inequality (15.3.3) follows from the weak decay estimates of Corollary 15.3 if (t, x) /∈W. Furthermore,
we have that |F| ≈ |α[F]| + |α[F]| + |ρ[F]| + |σ [F]|, and by Proposition 15.5, inequality (15.3.3) has
already been shown to hold for |α[F]| + |ρ[F]| + |σ [F]| ≈ |F|LN+ |F|TT.

It remains to prove the desired estimate for |α[F(t, x)]| under the assumption that (t, x) ∈W. To this
end, we use (11.1.12), the weak decay estimates of Corollary 15.3, and Proposition 15.5 to deduce that if
(t, x) ∈W then ∣∣∇3(rα[F])∣∣. ε(1+ t + |q|)−3/2+δ∣∣rα[F]∣∣+ ε(1+ t + |q|)−2+3δ, (15.4.5)

where 3 def
= L + 1

4 hL L L . Let (τ (λ), y(λ)) be the integral curve30 of the vector field 3 passing through the
point (t, x)= (τ (λ1), y(λ1))∈W. By the already-proved smallness estimate (15.3.1b) for hL L , every such
integral curve must intersect the boundary of W at a point (t0, x0)= (τ (λ0), y(λ0)) to the past of (t, x).
Furthermore, by (15.3.1b) again, we have that dτ

dλ ≈ 1 along the integral curves, and for all (τ, y) ∈W, we
have that |y| ≈ τ ≈ 1+|τ | ≈ 1+|τ |+ ||y|− τ |. We now set f (λ) def

=
∣∣|y(λ)|α[F(τ (λ), y(λ))]

∣∣, integrate
inequality (15.4.5) along the integral curve (which is contained in W), use the assumption 0< δ< 1

4 , and
change variables so that τ is the integration variable to obtain

f (λ(t))︷ ︸︸ ︷∣∣rα[F](t, x)
∣∣≤ f (λ0)︷ ︸︸ ︷∣∣r0α[F(t0, x0)]

∣∣+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−2+3δ dλ+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−3/2+δ f (λ) dλ

≤ Cε+Cε
∫ τ=t

τ=t0
(1+ τ)−2+3δ dτ +Cε

∫ τ=t

τ=t0
(1+ τ)−3/2+δ f (λ ◦ τ) dτ

≤ Cε+Cε
∫ τ=t

τ=t0
(1+ τ)−3/2+δ f (λ ◦ τ) dτ, (15.4.6)

30By integral curve, we mean the solution to the ODE system dτ
dλ =3

0(τ, y) and dy j

dλ =3
j (τ, y) ( j = 1, 2, 3) passing

through the point (t, x) at parameter value λ= λ1.
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where we have used (15.1.2a) to obtain the bound |r0α[F(t0, x0)]| ≤ Cε for the point (t0, x0) lying on
the boundary of W. Applying Gronwall’s lemma to (15.4.6), we deduce that∣∣rα[F(t, x)]

∣∣≤ Cε exp
(

Cε
∫ τ=t

τ=t0
(1+ τ)−3/2+δ dτ

)
≤ Cε, (15.4.7)

from which it trivially follows that∣∣α[F(t, x)]
∣∣≤ Cεr−1

≤ Cε(1+ t + |q|)−1 (15.4.8)

as desired.

15.4.3. Proofs of (15.3.2a) and (15.3.2b). In the next two lemmas, we will use the fact that the tensor
field hµν

def
= gµν −mµν is a solution to the system

2̃ghµν = Hµν, (15.4.9)

where the inhomogeneous term Hµν is defined in (3.7.2a).

Lemma 15.9 (Pointwise estimates for the Hµν inhomogeneities; extension of [Lindblad and Rodnianski
2010, Lemma 10.5]). Suppose that the assumptions of Proposition 15.6 hold. Then if ε is sufficiently
small, the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|H|TN ≤ Cε(1+ t + |q|)−3/2+δ
|∇h| +Cε(1+ t + |q|)−5/2+δ, (15.4.10a)

|H| ≤ Cε(1+ t + |q|)−3/2+δ
|∇h| +C |∇h|2TN+Cε2(1+ t + |q|)−2. (15.4.10b)

Proof. Lemma 15.9 follows from Proposition 11.3, Corollary 15.3, Proposition 15.5, the already-proved
estimate (15.3.3), and the assumption 0< δ< 1

4 . �

Lemma 15.10 (Integral inequalities for |∇h|TN and |∇h|; extension of [Lindblad and Rodnianski 2010,
Lemma 10.6]). Suppose that the assumptions of Proposition 15.6 hold. Then if ε is sufficiently small, the
following integral inequalities hold for t ∈ [0, T ):

(1+ t)‖|∇h|TN(t, · )‖L∞ ≤ Cε+Cε
∫ t

0
(1+ τ)−1/2+δ

‖∇h(τ, · )‖L∞ dτ, (15.4.11a)

(1+ t)‖∇h(t, · )‖L∞ ≤ Cε+Cε2 ln(1+ t)+Cε
∫ t

0
(1+ τ)−1/2+δ

‖∇h(τ, · )‖L∞ dτ

+Cε
∫ t

0
(1+ τ)‖|∇h|2TN(τ, · )‖L∞ dτ. (15.4.11b)

Proof. We first observe that (15.1.2b) and (15.3.1b) (the version for the tensor H ) imply that the hypotheses
of Lemma 13.2 and Corollary 13.3 hold. Therefore, using the lemma and the corollary with $(q) def

= 1
and α

def
= 0, and noting that hµν satisfies the system (15.4.9), we have that

(1+ t)|∇h|TN . sup
0≤τ≤t

∑
|I |≤1

‖∇
I
Zh(τ, · )‖L∞ +

∫ t

τ=0
(1+ τ)‖|H|TN‖L∞(Dτ ) dτ

+

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖∇
I
Zh‖L∞(Dτ ) dτ. (15.4.12)
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Using (15.1.2b) (the version for the tensor h), we estimate the first and third terms on the right-hand side
of (15.4.12) as follows:

sup
0≤τ≤t

∑
|I |≤1

‖∇
I
Zh(τ, · )‖L∞ ≤ Cε, (15.4.13)

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖∇
I
Zh‖L∞(Dτ ) dτ ≤ Cε

∫
∞

τ=0
(1+ τ)−3/2+δ dτ ≤ Cε. (15.4.14)

To estimate the second term, we use (15.4.10a) to conclude that for x ∈ Dt we have that

(1+ t)|H|TN ≤ Cε(1+ t)−1/2+δ
|∇h| +Cε(1+ t)−3/2+δ. (15.4.15)

Inequality (15.4.11a) now follows from (15.4.12)–(15.4.15) and the fact that Cε
∫ t

0 (1+τ)
−3/2+δ dτ ≤Cε.

Inequality (15.4.11b) can be obtained in a similar fashion by using (15.4.10b). �

To finish the proof of Proposition 15.6, we will apply the following Gronwall-type inequality:

Lemma 15.11 (Gronwall-type inequality; slight modification of [Lindblad and Rodnianski 2010, Lemma
10.7]). Assume that the continuous functions b(t)≥ 0 and c(t)≥ 0 satisfy

b(t)≤ Cε+Cε
∫ t

0
(1+ τ)−1−ac(τ ) dτ, (15.4.16a)

c(t)≤ Cε + Cε2 ln(1+ t)+Cε
∫ t

0
(1+ τ)−1−ac(τ ) dτ +C

∫ t

0
(1+ τ)−1b2(τ ) dτ (15.4.16b)

for some positive constants a and C such that ε < a/4C and ε < 2a/(1+ 4C2). Then

b(t)≤ 2Cε, (15.4.17a)

c(t)≤ 2Cε(1+ a ln(1+ t)). (15.4.17b)

Proof. We slightly modify the proof of [Lindblad and Rodnianski 2010, Lemma 10.7]. Let T be the largest
time such that the bounds (15.4.17a)–(15.4.17b) hold. Then inserting these bounds into the inequalities
(15.4.16a)–(15.4.16b) and using the bound (and the change of variables z def

= a ln(1+ τ))∫
∞

τ=0
(1+ τ)−1−a(1+ a ln(1+ τ)) dτ = a−1

∫
∞

z=0
e−z(1+ z) dz = 2a−1, (15.4.18)

we deduce that the following inequalities hold for t ∈ [0, T ]:

b(t)≤ Cε(1+ 4Cεa−1) < 2Cε, (15.4.19)

c(t)≤ Cε(1+ 4Cεa−1
+ (1+ 4C2)ε ln(1+ t)) < 2Cε(1+ a ln(1+ t)). (15.4.20)

Since the above inequalities are a strict improvement of the assumed bounds (15.4.17a)–(15.4.17b), we
thus conclude that T =∞. �

To complete the proofs of (15.3.2a) and (15.3.2b), we apply Lemmas 15.10 and 15.11 with b(t) def
=

(1+ t)‖|∇h|TN(t, · )‖L∞ and c(t) def
= (1+ t)‖∇h(t, · )‖L∞ . This implies (15.3.2a) and (15.3.2b) with
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(1+ t) in place of (1+ t + |q|). The additional decay in |q| in (15.3.2a) and (15.3.2b) follows directly
from (15.1.2a) (the version for the tensor h). �

15.5. Proof of Proposition 15.7. We will prove the proposition using a series of inductive steps. We only
prove the estimates for h(1)µν and Fµν . The estimates for hµν and Hµν follow easily from those for h(1)µν ,
(3.3.11a), and Lemma 15.1. We first prove a technical lemma that will be used during the proof of the
proposition.

Lemma 15.12 (Pointwise estimates for the |∇ I
ZH| inhomogeneities). Suppose that the hypotheses of

Proposition 15.6 hold, and let Hµν be the inhomogeneous term on the right-hand side of the reduced
equation (3.7.1a). Then if I is any Z-multi-index with |I | ≤ `, the following pointwise estimates hold for
(t, x) ∈ [0, T )×R3:

|∇
I
ZH| ≤ Cε

∑
|J |≤|I |

(1+ t + |q|)−1(
|∇∇

J
Zh(1)| + |∇ J

ZF|
)

+C
∑

|I1|+|I2|≤|I |
|I1|,|I2|≤|I |−1

(
|∇∇

I1
Z h(1)| + |LI1

Z F|
)(
|∇∇

I2
Z h(1)| + |LI2

Z F|
)
+Cε2(1+ t + |q|)−4. (15.5.1)

Proof. Lemma 15.12 follows from (11.1.5c), Lemma 15.1, the weak decay estimates of Corollary 15.3,
(15.3.2a), (15.3.3), and the assumption that 0< δ< 1

4 . We remark that the Cε2(1+ t +|q|)−4 term arises
from the estimate |∇∇ I1

Z h(0)||∇∇ I2
Z h(0)| ≤ Cε2(1+ t + |q|)−4. �

We are now ready for the proof of Proposition 15.7. To prove (15.3.4a)–(15.3.4c), we will argue
inductively, using the inequalities in the case |I | ≤ k to deduce that they hold in the case |I | = k+ 1. We
also remark that the base case k = 0 is covered by our argument.

Induction Step 1: Upgraded pointwise decay estimates for |∇ I
Zh|LL for |I | = k + 1 and |∇ J

Zh|LT for
|J | = k. As a first step, we will use the wave-coordinate condition to upgrade the estimates for |∇ I

Zh|LL

for |I | = k+ 1 and |∇ J
Zh|LT for |J | = k. To this end, we appeal to inequality (15.4.2), using inequality

(15.3.4a) for h under the induction hypothesis to bound the integrand and thereby concluding that∑
|I |=k+1

|∇
I
Zh|LL+

∑
|J |=k

|∇
J
Zh|LT .

{
ε(1+ t + |q|)−1+Mk−1ε(1+ |q|)−Mk−1ε if q > 0,
ε(1+ t + |q|)−1+Mk−1ε(1+ |q|)1/2+µ

′

if q < 0.
(15.5.2)

In the above estimates, the constant µ′ is subject to the restrictions stated in the hypotheses of Proposition
15.7. Furthermore, since Hµν

=−hµν + O∞(|h|2), (15.1.2b) implies that the same estimates hold for
the tensor H .

Induction Step 2: Upgraded pointwise decay estimates for |LI
ZF| and |I | = k + 1. Let W

def
= {(t, x) |

|x | ≥ 1+ t/2} ∩ {(t, x) | |x | ≤ 2t − 1} denote the “wave-zone” region. Then for (t, x) /∈W, we have that
1+|q| ≈ 1+ t+|q|. Using this fact, we see that for (t, x) /∈W the weak decay estimate (15.1.2a) implies
that inequality (15.3.4a) holds for |LI

ZF| in the case |I | = k+ 1. Furthermore, by Proposition 15.5, the
inequality (15.3.4a) holds for the null components |α[LI

ZF]|, |ρ[LI
ZF]|, and |σ [LI

ZF]| when |I | = k+ 1.



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 875

It remains to consider |α[LI
ZF(t, x)]| in the case (t, x) ∈W. Note that r ≈ 1+ t + |q| ≈ 1+ t + s for

(t, x) ∈W. We will make use of the weight $(q) defined in (13.1.1). From (11.1.13a), Corollary 15.3
(the version for the tensor field h), Proposition 15.5, (15.3.1b), (15.3.3), the induction hypothesis, and
(15.5.2), it follows that∑
|I |≤k+1

∣∣∇3(r$(q)α[LI
ZF]

)∣∣≤ Cε(1+ t + |q|)−1
∑
|I |≤k+1

∣∣r$(q)α[LI
ZF]

∣∣
+Cε(1+ t + |q|)−(1+a)

+Cε2(1+ t + |q|)−1+Cε, (15.5.3)

where 0< a <min{µ′− δ,γ− δ−γ′} is a fixed constant and 3 def
= L + 1

4 hL L L . Note the importance of
the independent estimate (15.3.1b) for bounding the second, fourth, and fifth sums on the right-hand side
of (11.1.13a) and of the independent estimate (15.5.2) (in the case |I | = k+ 1) for bounding the third
sum on the right-hand side of (11.1.13a).

Let (τ (λ), y(λ)) be the integral curve (as defined in Section 15.4.2) of the vector field3 passing through
the point (t, x) = (τ (λ1), y(λ1)) ∈W. By the inequality (15.3.1b) for hL L , every such integral curve
must intersect the boundary of W at a point (t0, x0)= (τ (λ0), y(λ0)) lying to the past of (t, x). Using
(15.3.1b) again, we have that dt

dλ ≈ 1 along the integral curves, and in the entire region W, we have that
|y| ≈ τ ≈ 1+|τ | ≈ 1+|τ |+||y|−τ |. We define f (λ) def

=
∑
|I |≤k+1

∣∣|y(λ)|$(q(λ))α[LI
ZF(τ (λ), y(λ))]

∣∣,
where q(λ) def

= |y(λ)| − τ(λ). Note that f (λ1) =
∑
|I |≤k+1|r$(q)α[L

I
ZF]|, where q def

= q(λ1)= |x | − t
while the weak decay estimate (15.1.2a) implies that f (λ0) ≤ Cε. Integrating inequality (15.5.3) and
changing variables so that τ is the integration variable, we have that

f (λ1)︸ ︷︷ ︸
f (λ(t))

≤ f (λ0)+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−1 f (λ) dλ

+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−(1+a) dλ+Cε2
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−1+Cε dλ

≤ Cε(1+ t)Cε +Cε
∫ τ=t

τ=t0
(1+ τ)−1 f (λ ◦ τ) dτ. (15.5.4)

Applying Gronwall’s inequality to (15.5.4), we have that

f (λ ◦ t︸︷︷︸
λ1

)≤ Cε(1+ t)Cε exp
(

Cε
∫ τ=t

τ=t0
(1+ τ)−1 dτ

)
≤ Cε(1+ t)2Cε, (15.5.5)

from which it easily follows that for (t, x) ∈W we have that∑
|I |≤k+1

∣∣α[LI
ZF]

∣∣≤ Cε(1+ t)−1+2Cε$−1(q). (15.5.6)

Combining (15.5.6) and the previous arguments covering (t, x) /∈ W and the other null components
of LI

ZF, we have shown that the estimate (15.3.4a) holds for |LI
ZF| in the case |I | = k+ 1.
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Final Induction Step: Upgraded pointwise decay estimates for |∇∇ I
Zh| and |∇ I

Zh| (|I | = k+ 1). Our first
goal is to prove the following estimate in the case |I | = k+ 1:

|2̃g∇
I
Zh(1)|. ε

∑
|K |≤|I |

(1+ t+|q|)−1
|∇∇

K
Z h(1)|+

{
ε2(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
ε(1+ t + |q|)−3 if q < 0

+

{
ε2(1+ t + |q|)−2+2Mkε(1+ |q|)−1−γ′ if q > 0,
ε2(1+ t + |q|)−2+2Mkε(1+ |q|)−1/2+µ′ if q < 0.

(15.5.7)

To prove (15.5.7), we first recall Corollary 11.7, which states that

|2̃g∇
I
Zh(1)|. |∇̂ I

ZH| + |∇̂
I
Z2̃gh(0)| + (1+ t + |q|)−1

∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL (15.5.8)

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

, (15.5.9)

where (|K | − 1)+
def
= 0 if |K | = 0 and (|K | − 1)+

def
= |K | − 1 if |K | ≥ 1. We first bound the terms from line

(15.5.8) onwards, considering separately the cases |K |< |I | and |K |= |I |=k+1. For |K |< |I |=k+1, we
use (15.5.2) (for the tensor field H ) and (15.3.4b) (for the tensor field H ) under the induction hypotheses
to conclude that

(1+ |q|)−1
∑
|J |≤k+1
|J ′|≤k
|J ′′|≤k−1

(
|∇

J
Z H |LL+ |∇

J ′
Z H |LT+ |∇

J ′′
Z H |

)
.

{
ε(1+ t + |q|)−1+Mkε(1+ |q|)−1−Mkε if q > 0,
ε(1+ t + |q|)−1+Mkε(1+ |q|)−1/2+µ′ if q < 0.

(15.5.10)

Also using (15.3.4a) under the induction hypotheses to bound |∇∇K
Z h(1)|, we deduce that all of the terms

from line (15.5.8) onwards in the case |K |< |I | can be bounded by the last term on the right-hand side
of (15.5.7).

We now consider the case |K | = |I | = k + 1. Since |J | ≤ 1 and |J ′| = 0 in this case, we can use
(15.3.1b) (for the tensor field H ) to deduce the bound

(1+ |q|)−1
∑
|K |=|I |

(
|∇∇

K
Z h(1)|

( ∑
|J |+(|K |−1)+≤|I |

|∇
J
Z H |LL+

∑
|J ′|+(|K |−1)+≤|I |−1

|∇
J ′
Z H |LT

))
. ε

∑
|K |=|I |

(1+ t + |q|)−1
|∇∇

K
Z h(1)|. (15.5.11)

Thus, all of the terms from line (15.5.8) onwards in the case |K | = |I | = k+ 1 can be bounded by the
first term on the right-hand side of (15.5.7).
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With the help of Corollary 15.3 (the version for the tensor field H ), the

(1+ t + |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇
J
Z H ||∇∇K

Z h(1)|

sum on the right-hand side of (15.5.9) can be bounded by the first sum on the right-hand side of (15.5.7).
For the |∇̂ I

Z2̃gh(0)| term from the right-hand side of (15.5.9), we simply use Lemma 15.4, which shows
that |∇̂ I

Z2̃gh(0)| is bounded by the next-to-last term on the right-hand side of (15.5.7).
To bound the |∇ I

ZH| term from the right-hand side of (15.5.9), we apply Lemma 15.12. Using the
already-proved upgraded estimates for |LI

ZF| (|I | ≤ k+ 1), we see that the first and third sums from the
right-hand side of (15.5.1) are bounded by the right-hand side of (15.5.7). The second sum

∑
|J |+|K |≤|I |
|J |≤|K |<|I |

(
|∇∇

J
Zh(1)| + |LJ

ZF|
)(
|∇∇

K
Z h(1)| + |LK

Z F|
)

from the right-hand side of (15.5.1) can be bounded by the last term on the right-hand side of (15.5.7)
by using the induction hypotheses since |J | ≤ |K | ≤ k. This completes the proof of (15.5.7) in the case
of |I | = k+ 1.

To obtain the desired upgraded pointwise estimate for |∇∇ I
Zh(1)|, we will estimate the quantity

nk+1(t)
def
= (1+ t)

∑
|I |≤k+1

∥∥$(q)∇∇ I
Zh(1)(t, · )

∥∥
L∞, (15.5.12)

where $(q) is the weight defined in (13.1.1). Our goal is to use Lemma 13.2 with φ def
= ∇

I
Zh(1)µν to obtain

an integral inequality for nk+1(t) that is amenable to Gronwall’s inequality. We begin by estimating the
terms on the right-hand side of (13.2.8). First, with a def

= min(µ′− δ,γ− δ−γ′) > 0, by the weak decay
estimate (15.1.2b), we have that

$(q)|∇ I
Zh(1)|.

{
ε(1+ t + |q|)−1+δ(1+ |q|)1+γ

′
−γ if q > 0,

ε(1+ t + |q|)−1+δ(1+ |q|)1−µ
′

if q < 0

}
. ε(1+t)−a (|I |≤ `−3). (15.5.13)

This will serve as a suitable bound for estimating the first and fourth sums on the right-hand side of (13.2.8).
Next, using (15.5.7) and the definition (15.5.12), we deduce the following pointwise estimate:

$(q)|2̃g∇
I
Zh(1)|. (1+ t)−2(εnk+1+ ε

2(1+ t)2Mkε + ε(1+ t)−1/2−µ′). (15.5.14)

This will serve as a suitable bound for estimating the third sum on the right-hand side of (13.2.8).
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We now apply Lemma 13.2, using (15.5.13), (15.5.14), and the assumption k+1≤ `−5 to deduce that

nk+1(t)≤ C sup
0≤τ≤t

∑
|I |≤k+2

∥∥$(q)∇ I
Zh(1)(τ, · )

∥∥
L∞

+C
∑
|I |≤k+1

∫ t

0
ε
∥∥$(q)∇∇ I

Zh(1)(τ, · )
∥∥

L∞ dτ

+C
∑
|I |≤k+1

∫ t

0
(1+ τ)

∥∥$(q)|2̃g∇
I
Zh(1)|(τ, · )

∥∥
L∞(Dτ )

dτ

+C
∑
|I |≤k+3

∫ t

0
(1+ τ)−1∥∥$(q)∇ I

Zh(1)(τ, · )
∥∥

L∞(Dτ )
dτ

≤ Cε(1+ t)−a
+C

∫ t

0
(1+ τ)−1εnk+1(τ ) dτ

+C
∫ t

0
(1+τ)−1{ε2(1+τ)Cε+ε(1+τ)−1/2−µ′

+ε(1+τ)−a} dτ

≤ Cε+Cε(1+ t)Cε +Cε
∫ t

0
(1+ τ)−1nk+1(τ ) dτ. (15.5.15)

From (15.5.15) and Gronwall’s inequality, we conclude that nk+1(t)≤ 2Cε(1+ t)2Cε, which proves
(15.3.4a) in the case |I | = k + 1. As in our proof of Lemma 15.8, the estimate (15.3.4b) follows
from integrating the bound for |∂q∇

I
Zh(1)| implied by (15.3.4a) along the line ω def

= x/|x | = constant and
t + |x | = constant, from the hyperplane t = 0, and using (15.1.2b) at t = 0. This closes the induction
argument. We have completed the proof of Proposition 15.7 with the exception of showing that inequality
(15.3.4c) holds for |∇∇ I

Zh(1)|, |∇LI
ZF|, |LI

ZF|LN, and |LI
ZF|TT, where |I | ≤ `−6. In the next paragraph,

we address these inequalities using an argument that is not part of the induction process.

Upgraded pointwise decay estimates for |∇∇ I
Zh(1)|, |∇LI

ZF|, |LI
ZF|LN, and |LI

ZF|TT (|I | ≤ `− 6).
We first note that inequality (15.3.4c) for |∇∇ I

Zh(1)| and |∇LI
ZF| follows from Lemma 6.16, (6.5.22),

(15.3.4a), and (15.3.4b).
We now focus on proving the estimate (15.3.4c) for |LI

ZF|LN and |LI
ZF|TT in (15.3.4c); all of the

other estimates of Proposition 15.7 have already been proved. Recall that |LI
ZF|LN + |L

I
ZF|TT ≈

|α[LI
ZF]|+ |ρ[LI

ZF]|+ |σ [LI
ZF]|. We will prove the desired estimate for |α[LI

ZF]| in detail; the proofs
for |ρ[LI

ZF]| and |σ [LI
ZF]| are similar.

Our proof mirrors the proof of Proposition 15.5 except that we now are able to use the already-proved
upgraded estimates of Proposition 15.7 in place of the weak decay estimates of Corollary 15.3. We will
use the notation defined in the proof of Proposition 15.5. With the help of the upgraded pointwise decay
estimates (15.3.4a) and (15.3.4b) (including the versions for the tensor field h = h(0)+ h(1)), inequality
(15.2.2) for f (t, x) def

= rα[LI
ZF(t, x)] can be upgraded to

|∂q f (t, x)| ≤
{

Ckε(1+ s)−1+Cε(1+ |q|)−1−γ′ if q > 0,
Ckε(1+ s)−1+Cε(1+ |q|)−1/2+µ′ if q < 0

(|I | ≤ `− 6). (15.5.16)
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Arguing as in the proof of Proposition 15.5, and using in particular (15.2.4), we deduce from (15.5.16) that

∣∣rα[LI
ZF(t, x)]

∣∣≤ Cε(1+ s)−1−

>0︷︸︸︷
(γ−δ)

+

{
Ckε(1+ s)−1+Cε(1+ |q ′|)−γ

′

if q ′ > 0,
Ckε(1+ s)−1+Cε(1+ |q ′|)1/2+µ

′

if q ′ < 0
(|I | ≤ `− 6), (15.5.17)

from which it easily follows that

∣∣α[LI
ZF(t, x)]

∣∣≤ {Ckε(1+ t + |q|)−2+Cε(1+ |q|)−γ
′

if q > 0,
Ckε(1+ t + |q|)−2+Cε(1+ |q|)1/2+µ

′

if q < 0
(|I | ≤ `− 6). (15.5.18)

We have thus obtained the desired bound (15.3.4c) for |α[LI
ZF]|. �

16. Global existence and stability

In this section, we prove our main stability results. We separate our results into two theorems. The main
conclusions are proved in Theorem 16.3, which is an easy consequence of Theorem 16.1. Theorem 16.1,
which concerns the reduced equations (3.7.1a)–(3.7.1c), contains the crux of our bootstrap argument.
In this theorem, we make certain assumptions concerning the smallness of the abstract initial data and
various pointwise decay estimates for the solution on a local interval of existence [0, T ). We then use
these assumptions to derive a “strong” a priori estimate for the energy E`;γ;µ(t) of the reduced solution on
the same interval [0, T ). Furthermore, in Section 15, the pointwise decay assumptions of Theorem 16.1
were shown to be automatic consequences of the smallness assumptions on the data and the “weak”
bootstrap assumption (15.0.1) for E`;γ;µ(t) as long as `≥ 10. Consequently, in our proof of Theorem 16.3,
we will be able to appeal to the continuation principle of Proposition 14.1 to conclude that the solution to
the reduced equation exists globally in time. Furthermore, this line of reasoning leads to an estimate on
the size of E`;γ;µ(t), which can be used to deduce various decay estimates for the global solution. The
wave-coordinate condition plays a central role in many of the estimates in this section.

16.1. Statement of the strong-a priori-energy-estimate theorem and proof of the global stability theo-
rem. We begin by recalling that the norm E`;γ(0)≥ 0 of the abstract initial data is

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
. (16.1.1)

We furthermore recall that the energy E`;γ;µ(t)≥ 0 of the reduced solution is

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x . (16.1.2)

In the above expressions, the weight function w(q) and its derivative w′(q) are
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w = w(q) def
=

{
1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(16.1.3a)

w′(q)=
{
(1+ 2γ)(1+ |q|)2γ if q > 0,
2µ(1+ |q|)−2µ−1 if q < 0.

(16.1.3b)

The constants µ and γ are subject to the restrictions summarized in Section 2.14. The spacetime metric is
split into the three pieces

gµν = mµν + h(0)µν + h(1)µν , (16.1.4a)

h(0)µν = χ
(r

t

)
χ(r)2M

r
δµν, (16.1.4b)

where the cut-off function χ is defined in (4.2.1). Furthermore, by Proposition 10.4, if ε is sufficiently
small and E`;γ(0)+M ≤ ε, then the initial energy for the reduced solution satisfies

E`;γ;µ(0). E`;γ(0)+M . ε. (16.1.5)

We now state our technical theorem concerning the derivation of a “strong” a priori energy estimate.
The proof will be provided in Section 16.2.

Theorem 16.1 (Derivation of a strong a priori energy estimate). Let (gµν
def
= mµν +

hµν︷ ︸︸ ︷
h(0)µν + h(1)µν ,Fµν) be a

local-in-time solution of the reduced equations (3.7.1a)–(3.7.1c) satisfying the wave-coordinate condition
(3.1.1a) for (t, x) ∈ [0, T )×R3. Let `≥ 0 be an integer. Suppose also that, for some constants µ′ and γ

satisfying 0< µ′ < 1
2 and 0< γ< 1

2 , for all vector fields Z ∈ Z, for all Z-multi-indices I subject to the
restrictions stated below, and for the sets L= {L}, T= {L , e1, e2}, and N= {L, L , e1, e2}, the following
pointwise decay estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|h|LT+ (1+ |q|)−1

|∇Z h|LL+ |∇h|TN+ |F| ≤ Cε(1+ t + |q|)−1, (16.1.6a)

(1+ |q|)−1
|∇

I
Zh| + |∇∇ I

Zh| + |LI
ZF|

≤

{
Cε(1+ t + |q|)−1+Cε(1+ |q|)−1−Cε if q > 0,
Cε(1+ t + |q|)−1+Cε(1+ |q|)−1/2+µ′ if q < 0

(|I | ≤ b`/2c), (16.1.6b)

|∇∇
I
Zh| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
Cε(1+ t + |q|)−2+Cε(1+ |q|)−Cε if q > 0,
Cε(1+ t + |q|)−2+Cε(1+ |q|)1/2+µ

′

if q < 0
(|I | ≤ b`/2c). (16.1.6c)

In addition, assume that the following smallness conditions on the abstract initial data and ADM mass hold:

E`;γ(0)+M ≤ ε̊. (16.1.7)

Then for any constant µ satisfying 0< µ< 1
2 −µ′, there exist positive constants ε`, c`, and c̃` depending

on `, µ, µ′, and γ such that, if ε̊ ≤ ε ≤ ε`, then the following energy inequality holds for t ∈ [0, T ):

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε. (16.1.8)
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Remark 16.2. By Lemma 15.1, the decompositions h = h(0) + h(1) and H = H(0) + H(1) (where
Hµν def
= (g−1)µν − (m−1)µν), and the fact that Hµν

(1) = −h(1)µν + O∞(|h(0)+ h(1)|2), it follows that the
estimates stated in the assumptions of the theorem also hold if we replace h with h(0), H(0), h(1), or H(1).

We now state and (using the results of Theorem 16.1) prove our main global stability theorem.

Theorem 16.3 (Global stability of the Minkowski spacetime solution). Let (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk ,

K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) be abstract initial data on the manifold R3 for the Einstein-nonlinear
electromagnetic system (1.0.1a)–(1.0.1c) that satisfy the constraints (4.1.1a)–(4.1.2b), and let (gµν |t=0 =

mµν + h(0)µν |t=0 + h(1)µν |t=0, ∂t gµν |t=0 = ∂t h
(0)
µν |t=0 + ∂t h

(1)
µν |t=0,Fµν |t=0) (µ, ν = 0, 1, 2, 3) be the corre-

sponding initial data for the reduced system (3.7.1a)–(3.7.1c) as defined in Section 4.2. Assume that the
abstract initial data are asymptotically flat in the sense that (1.0.4a)–(1.0.4f) hold. Let `≥ 10 be an integer,
and let 0< γ< 1

2 be a fixed constant. Let E`;γ(0) be the norm of the abstract data given in (16.1.1), and
let M be the ADM mass corresponding to the abstract data. Then there exists a constant ε` > 0 depending
on γ and ` such that, if ε ≤ ε` and if

E`;γ(0)+M ≤ ε, (16.1.9)

then the reduced data launch a unique, classical solution (gµν
def
= mµν + h(0)µν + h(1)µν ,Fµν) that exists

for (t, x) ∈ (−∞×∞)×R3. The solution satisfies both31 the reduced system (3.7.1a)–(3.7.1c) and the
Einstein-nonlinear electromagnetic system (1.0.1a)–(1.0.1c), and the spacetime (R1+3, gµν) is geodesically
complete. In addition, the coordinates (t, x) form a global system of wave coordinates. Furthermore,
there exists a constant 0 < µ < 1

2 (see Remark 1.2), and constants c` > 0 and c̃` > 0 depending on γ

and `, such that the solution’s energy (16.1.2) satisfies the following bound for all t ∈ (−∞,∞):

E`;γ;µ(t)≤ c`ε(1+ |t |)c̃`ε. (16.1.10)

In addition, there exists a constant C` > 0 depending on γ and ` such that the following pointwise
decay estimates hold for all (t, x) ∈ (−∞,∞)×R3:

(1+ |t | + |q|)1−c̃`ε(1+ |q|)−3/2
|h(1)|LT+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−3/2

|∇Z h(1)|LL

+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−1/2
|∇h(1)|LT+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−1/2

|∇∇Z h(1)|LL

+ |∇h(1)|TN+{1+ ln(1+ |t |)}−1
|∇h(1)| + |F|

≤ C`ε(1+ |t | + |q|)−1, (16.1.11a)

(1+ |q|)−1
|∇

I
Zh(1)| + |∇∇ I

Zh(1)| + |LI
ZF|

≤

{
C`ε(1+ |t | + |q|)−1+c̃`ε(1+ |q|)−1−γ if q > 0,

C`ε(1+ |t | + |q|)−1+c̃`ε(1+ |q|)−1/2 if q < 0
(|I | ≤ `− 3), (16.1.11b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
C`ε(1+ |t | + |q|)−2+c̃`ε(1+ |q|)−γ if q > 0,
C`ε(1+ |t | + |q|)−2+c̃`ε(1+ |q|)1/2 if q < 0

(|I | ≤ `− 4). (16.1.11c)

31Of course, we technically mean here that the pair (h(1)µν ,Fµν) is a solution to the version (3.7.1a)–(3.7.1c) of the reduced
equations while the pair (gµν ,Fµν) is a solution to (1.0.1a)–(1.0.1c).
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Remark 16.4. Some of the (1+|q|)-decay estimates in inequalities (16.1.11a)–(16.1.11c) are not optimal
and can be improved with additional work. For example, in [Lindblad and Rodnianski 2010, Section 16],
with the help of the fundamental solution of the Minkowski wave operator 2m , the (1+ |q|)-decay
estimates (16.1.11b)–(16.1.11c) for the tensor field h(1) are strengthened by a power of 1

2 in the interior
region {q < 0}.

Remark 16.5. Proposition 4.2 shows that the wave-coordinate condition (3.1.1a) holds in the domain of
classical existence of the solution to the reduced equations; this is why the reduced solution also satisfies
the Einstein-nonlinear electromagnetic equations (1.0.1a)–(1.0.1c).

Remark 16.6. A global stability result for the reduced equations under the wave-coordinate assumption,
without regard for the abstract initial data, can be deduced from the smallness of E`;γ;µ(0)+ |M | (we
could even allow for negative M!) together with the assumption lim inf|x |→∞|h(1)(0, x)| = 0; this latter
assumption, which is needed to deduce the inequalities (15.1.2b) at t = 0, is automatically implied by the
assumptions of Theorem 16.3.

Proof. We only discuss the region of spacetime in which t ≥ 0; the argument for t ≤ 0 is similar. We
define E`;γ(0)+M def

= ε̊. By Proposition 14.1, we can choose constants γ′, µ, µ′, and δ subject to the
restrictions described in Section 2.14 (in particular, these constants depend on γ) and a constant A` > 0
such that, if ε def

= A`ε̊, A` is sufficiently large, and ε̊ is sufficiently small, then there exists a nontrivial
spacetime slab [0, T )×R3 upon which the solution to the reduced equations exists and satisfies the energy
bound E`;γ;µ(t)≤ ε(1+ t)δ for t ∈ [0, T ). We then define

T∗
def
= sup

{
T
∣∣ the solution exists classically and remains in the regime

of hyperbolicity of the reduced equations, and E`;γ;µ(t)≤ ε(1+ t)δ for t ∈ [0, T )
}
.

Note that, under the above assumptions, we have that T∗ > 0.
We now observe that the main energy bootstrap assumption (15.0.1) is satisfied on [0, T∗). Thus, if

ε is sufficiently small, then by Propositions 15.6 and 15.7, all of the hypotheses of Theorem 16.1 are
necessarily satisfied on [0, T∗). Here, we are using the fact that b`/2c ≤ `− 5, which holds if ` ≥ 10.
Consequently, the conclusion of that theorem (i.e., estimate (16.1.8)) allows us to deduce that the following
energy estimate holds for t ∈ [0, T∗):

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε = c`
( ε

A`
+ ε3/2

)
(1+ t)c̃`ε. (16.1.12)

Now if A` > 3c` and ε̊ is sufficiently small, then (16.1.12) implies that

E`;γ;µ(t) < 1
2 A`ε̊(1+ t)A`c̃`ε̊ = 1

2ε(1+ t)c̃`ε, (16.1.13)

which is a strict improvement over the bootstrap assumption (15.0.1). Thus, by (16.1.13), the weighted
Klainerman–Sobolev inequality (B.4) (which, together with (6.5.22) and the smallness of E`;γ;µ(t), implies
that the solution remains within the regime of hyperbolicity of the reduced equations), the continuation
principle of Proposition 14.1, and the continuity of E`;γ;µ(t), it follows that, if A` is sufficiently large and
ε̊ is sufficiently small, then T∗ =∞. Furthermore, under these assumptions, it is an obvious consequence
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of this reasoning that (16.1.13) holds for t ∈ [0,∞). After renaming the constants in (16.1.13), we arrive
at (16.1.10).

The inequalities (16.1.11b) follow as in the proof of Corollary 15.3 but with the strong energy estimate
(16.1.10) in place of the energy bootstrap assumption (15.0.1). Similarly, the inequalities (16.1.11a)
follow as in our proof of Proposition 15.6 but with the strong energy estimate (16.1.10) in place of the
energy bootstrap assumption (15.0.1). The inequalities (16.1.11c) for |∇∇ I

Zh(1)| and |∇LI
ZF| follow from

Lemma 6.16, (6.5.22), and (16.1.11b). The inequalities (16.1.11c) for |LI
ZF|LN and |LI

ZF|TT follow as
in our proof of (15.2.1) but with the strong energy estimate (16.1.10) in place of the energy bootstrap
assumption (15.0.1).

Based on these pointwise decay estimates, the geodesic completeness of the spacetime (R1+3, gµν
def
=

mµν + h(0)µν + h(1)µν) follows as in [Lindblad and Rodnianski 2005, Section 16; Loizelet 2008, Section 9].
�

16.2. The main argument in the proof of Theorem 16.1. Our goal is to use only the assumptions of
Theorem 16.1 to deduce (for all sufficiently small nonnegative ε and for sufficiently large fixed constants
c` and c̃`) the “strong” a priori energy estimate (16.1.8), which we restate for convenience:

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε. (16.2.1)

The proof of (16.2.1) is based on a hierarchy of Gronwall-amenable inequalities for Ek;γ;µ(t) (0≤ k ≤ `).
We derive this hierarchy by carefully analyzing the integrals of Proposition 12.3 involving the inhomoge-
neous terms H(1;I )µν and Fν(I ). We recall that the structure of these inhomogeneous terms is captured by
Propositions 7.1 and 8.1, which state that ∇ I

Zh(1)µν and LI
ZFµν are solutions to the following system of

equations:

2̃g∇
I
Zh(1)µν = H(1;I )µν (µ, ν = 0, 1, 2, 3), (16.2.2a)

∇λLI
ZFµν +∇µLI

ZFνλ+∇νLI
ZFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (16.2.2b)

N #µνκλ
∇µLI

ZFκλ = Fν(I ) (ν = 0, 1, 2, 3). (16.2.2c)

Most of the work goes into obtaining suitable estimates for the integrals involving H(1;I )µν and Fν(I ). In order
to avoid impeding the flow of the proof, we prove most of the desired inequalities later in this section
after the main argument. For the main part of the argument, we simply quote Corollaries 16.12 and 16.18,
which are the key estimates that allow us to apply a suitable version of Gronwall’s inequality. We will then
return to the proofs of Corollaries 16.12 and 16.18, which follow from a large collection of lemmas, each
of which involves the analysis of one of the constituent pieces of the integrals involving H(1;I )µν and Fν(I ).

We now proceed to the main argument. We first note that the hypotheses of Proposition 12.3 are
implied by the hypotheses of Theorem 16.1. Therefore, we can use Proposition 12.3 (with Ḟ

def
= LI

ZF in
the proposition) and Corollaries 16.12 and 16.18 to deduce that
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∑
|I |≤k

∫
6t

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

≤ C
∑
|I |≤k

∫
60

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +Cε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+C
∑
|I |≤k

∫ t

0

∫
6τ

(
|H(1;I )||∇∇ I

Zh(1)| +
∣∣(LI

ZF0ν)F
ν
(I )

∣∣)w(q) d3x dτ

≤ C
∑
|I |≤k

∫
60

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +C M
∑
|I |≤k

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ

+Cε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+Cε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+Cε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+Cε3.

(16.2.3)

Recalling the definition (where the dependence on µ and γ is through w(q))

E2
k;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤k

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x

and introducing the quantity Sk;γ;µ(t)≥ 0, which is defined by

S2
k;γ;µ(t)

def
=

∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ, (16.2.4)

it therefore follows from the final inequality of (16.2.3) that

E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ CE2
k;γ;µ(0)+C M

∫ t

0
(1+ τ)−3/2Ek;γ;µ(τ ) dτ +Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ

+ CεS2
k;γ;µ(t)︸ ︷︷ ︸

absorb into left-hand side

+Cε
∫ t

0
(1+ τ)−1+CεE2

k−1;γ;µ(τ ) dτ +Cε3. (16.2.5)

For ε sufficiently small, we may absorb the CεS2
k;γ;µ(t) term from (16.2.5) into the left-hand side at the

expense of increasing all of the constants. We can similarly absorb the term C M
∫ t

0 (1+τ)
−3/2Ek;γ;µ(τ ) dτ

by using the inequality C M
∫ t

0 (1+ τ)
−3/2Ek;γ;µ(τ ) dτ ≤ 1

2 E2
k;γ;µ(t)+C2 M2, which follows from the

algebraic estimate C MEk;γ;µ(τ )≤
1
4 E2

k;γ;µ(τ )+C2 M2, the integral inequality
∫ t

0 (1+τ)
−3/2 dτ ≤ 2, and

the fact that E2
k;γ;µ(τ ) is increasing. If we also use the fact that E2

k;γ;µ(0)≤ C(E2
`;γ(0)+M2)≤ C ε̊2 (i.e,

Proposition 10.4) and the inequality M ≤ ε̊, then we arrive at the following inequality, valid for all small ε:
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E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ C(ε̊2
+ ε3)+Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ

+Cε
∫ t

0
(1+ τ)−1+CεE2

k−1;γ;µ(τ ) dτ︸ ︷︷ ︸
absent if k = 0

. (16.2.6)

For k = 0, (16.2.6) implies that

E2
0;γ;µ(t)≤ C(ε̊2

+ ε3)+ c0ε

∫ t

0
(1+ τ)−1E2

0;γ;µ(τ ) dτ. (16.2.7)

From (16.2.7) and Gronwall’s inequality, we deduce that

E2
0;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)c0ε. (16.2.8)

Using (16.2.6) and the base case (16.2.8), we will argue inductively to derive the following estimate
for k ≥ 1:

E2
k;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)ckε. (16.2.9)

Assuming that (16.2.9) holds for the case k − 1, we insert inequality (16.2.9) for E2
k−1;γ;µ(t) into the

right-hand side of (16.2.6) and deduce that

E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ C(ε̊2
+ ε3)+Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ +Cε(ε̊2
+ ε3)

∫ t

0
(1+ τ)−1+Cε dτ

≤ C(ε̊2
+ ε3)(1+ t)Cε +Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ. (16.2.10)

Finally, from (16.2.10) and Gronwall’s lemma, we conclude that, if ε is sufficiently small, then

E2
k;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)ckε. (16.2.11)

We have therefore closed the induction and shown (16.1.8). This concludes the proof of Theorem 16.1.

16.3. Integral inequalities for the ∇ I
Zh(1)µν inhomogeneities. In this section, we analyze the integrals in

Proposition 12.3 corresponding to the inhomogeneous terms H(1;I )µν in (16.2.2a). The main goal is to arrive
at Corollary 16.12. The main point is that right-hand sides of the inequalities in the corollary can be
bounded in terms of time integrals of the energies Ek;γ;µ(t) (this was carried out in inequality (16.2.5)).
As opposed to the estimates proved in Section 16.4, most of the estimates proved in this section are a
straightforward generalization of the ones proved in [Lindblad and Rodnianski 2010]; i.e., the estimates
involve a similar analysis but with additional terms arising from the presence of the F terms appearing
on the right-hand side of the reduced equation (3.7.1a). The additional terms result in the presence of the
LJ

ZF component of the first term on the right-hand side of inequality (16.3.2) and the LJ ′
Z F component

of the next-to-last term of the same inequality. The most important aspect of our analysis is showing that
these additional terms respectively appear with the factors ε(1+ t)−1 and ε(1+ t)−1+Cε.

We begin with a lemma that follows easily from algebraic estimates of the form |ab|. a2
+ b2:

Lemma 16.7 (Arithmetic-geometric mean inequality). Let

H(1;I )µν = ∇̂
I
ZHµν −∇̂

I
Z2̃h(0)µν − (∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν)
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be the inhomogeneous term on the right-hand side of (7.0.1). Then the following algebraic inequality
holds:
|H(1;I )||∇∇ I

Zh(1)| ≤ ε−1(1+ t)|∇̂ I
ZH|

2
+ ε−1(1+ t)|∇̂ I

Z2̃gh(1)µν − 2̃g∇
I
Zh(1)µν |

2

+ ε(1+ t)−1
|∇∇

I
Zh(1)|2+ |∇̂ I

Z2̃gh(0)||∇∇ I
Zh(1)|. (16.3.1)

�

The next lemma provides a preliminary pointwise estimate for the |∇̂ I
ZH| term on the right-hand side

of (16.3.1).

Lemma 16.8 (Pointwise estimates for the |∇ I
ZH| inhomogeneities; extension of [Lindblad and Rodnianski

2010, Lemma 11.2]). Under the assumptions of Theorem 16.1, if I is any Z-multi-index with |I | ≤ ` and
if ε is sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|∇
I
ZH|. ε

∑
|J |≤|I |

(1+ t)−1
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣+ε ∑
|J |≤|I |

(1+ t+|q|)−1+Cε(1+|q|)−1/2+µ′
|∇∇

J
Zh(1)|

+ ε2
∑
|J |≤|I |

(1+ t + |q|)−1(1+ |q|)−1
|∇

J
Zh(1)|

+ ε
∑

|J ′|≤|I |−1

(1+ t)−1+Cε
∣∣∣∣(∇∇ J ′

Z h(1)

LJ ′
Z F

)∣∣∣∣︸ ︷︷ ︸
absent if |I | = 0

+ ε2(1+ t + |q|)−4. (16.3.2)

Proof. By Proposition 11.3, we have that

|∇
I
ZH|. |(i)| + |(ii)| + |(iii)|, (16.3.3)

where

|(i)| =
∑

|J |+|K |≤|I |

|∇∇
J
Zh|TN|∇∇

K
Z h|TN+ |∇∇

J
Zh||∇∇K

Z h|

+

∑
|J ′′|+|K ′′|≤|I |−2

|∇∇
J ′′
Z h||∇∇K ′′

Z h|︸ ︷︷ ︸
absent if |I | ≤ 1

, (16.3.4)

|(ii)| =
∑

|J |+|K |≤|I |

|LJ
ZF||LK

Z F|, (16.3.5)

|(iii)| =
∑

|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||∇∇ I2

Z h||∇∇ I3
Z h| +

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤|I |

|LI1
Z F||LI2

Z F||LI3
Z F|. (16.3.6)

The desired bound for |(i)| was proved in Lemma 11.2 of [Lindblad and Rodnianski 2010] by using
the decomposition h = h(1)+ h(0) and by combining Lemma 15.1 and inequalities (16.1.6a)–(16.1.6c).
The term |(ii)| is the main contribution to |∇ I

ZH| arising from the presence of nonzero electromagnetic
fields. To bound |(ii)| by the right-hand side of (16.3.2), we consider the cases (|J | = `, |K | = 0),
(|J | = 0, |K | = `), (|J | ≤ `− 1, |K | ≤ b`/2c), and (|J | ≤ b`/2c, |K | ≤ `− 1); clearly this exhausts
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all possible cases. In the first two cases, we use (16.1.6a) to achieve the desired bound while in the
last two we use (16.1.6b). The cubic terms from case (iii) can be similarly bounded by using the
decomposition h = h(1)+ h(0) and by combining Lemma 15.1 and inequality (16.1.6b). �

Using the previous lemma, we now derive the desired integral inequalities corresponding to the
ε−1(1+ t)|∇̂ I

ZH|
2 term on the right-hand side of (16.3.1).

Lemma 16.9 (Integral estimates for ε−1(1 + t)|∇̂ I
ZH|

2w(q); extension of [Lindblad and Rodnianski
2010, Lemma 11.3]). Under the assumptions of Theorem 16.1, if I is any Z-multi-index with |I | ≤ ` and
if ε is sufficiently small, then the following integral estimate holds for t ∈ [0, T ):

ε−1
∫ t

0

∫
6τ

(1+ τ)|∇̂ I
ZH|

2w(q) d3x dτ

. ε
∑
|J |≤|I |

∫ t

0

∫
6τ

(
(1+ τ)−1

∣∣∣∣(∇∇ J
Zh(1)

LJ
ZF

)∣∣∣∣2w(q)+ |∇∇ J
Zh(1)|2w′(q)

)
d3x dτ

+ ε
∑

|J ′|≤|I |−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J ′

Z h(1)

LJ ′
Z F

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if |I | = 0

+ ε3. (16.3.7)

Proof. After squaring both sides of (16.3.2), multiplying by ε−1(1 + t)w(q), using the inequality
(1+ |q|)−1(1+ q−)−2µw(q). w′(q) (i.e., inequality (12.1.2)) and the fact that µ+µ′< 1

2 , and integrating,
we see that the only terms that are not manifestly bounded by the right-hand side of (16.3.7) are

ε3
∑
|J |≤|I |

∫ t

0

∫
6t

(1+ τ)−1(1+ |q|)−2
|∇

J
Zh(1)|2w(q) d3x dτ. (16.3.8)

The desired bound for these terms can be achieved with the help of the Hardy inequalities of Proposition C.1,
which imply that∫

6t

(1+ τ)−1(1+ |q|)−2
|∇

J
Zh(1)|2w(q) d3x .

∫
6t

(1+ τ)−1
|∇∇

J
Zh(1)|2w(q) d3x . (16.3.9)

This concludes the proof. �

We now derive the desired integral inequalities corresponding to the |∇̂ I
Z2̃gh(0)||∇∇ I

Zh(1)| term on the
right-hand side of (16.3.1).

Lemma 16.10 (Integral estimates for |∇̂ I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) [Lindblad and Rodnianski 2010, Lemma
11.4]). Let M be the ADM mass. Under the assumptions of Theorem 16.1, if I is a Z-multi-index satisfying
|I | ≤ ` and if ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):
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0

∫
6τ

|∇̂
I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) d3x dτ

. M
∑
|J |≤|I |

∫ t

0

∫
6τ

(1+ τ)−2
|∇∇

I
Zh(1)|2w(q) d3x dτ

+M
∑
|J |≤|I |

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ. (16.3.10)

Proof. We first use the Cauchy–Schwarz inequality for integrals to obtain∫ t

0

∫
6τ

|∇̂
I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) d3x dτ

≤

∫ t

0

[(∫
6τ

|∇̂
I
Z2̃gh(0)|2w(q) d3x

)1/2

×

(∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)1/2]
dτ. (16.3.11)

Furthermore, under the present assumptions, the previous proof of inequality (15.1.3b) remains valid.
Thus, from (15.1.3b) and the Hardy inequalities of Proposition C.1, it follows that∫

6t

|∇̂
I
Z2̃gh(0)|2w(q) d3x . M2(1+ t)−3

+M2(1+ t)−4
∑
|J |≤|I |

∫
6t

|∇∇
J
Zh(1)|2w(q) d3x . (16.3.12)

The estimate (16.3.10) now follows from (16.3.11), (16.3.12), and the inequalities
√
|a| + |b|.

√
|a|+
√
|b|

and |ab|. a2
+ b2. �

The following integral estimate for the commutator term ε−1(1+ t)|∇̂ I
Z2̃gh(1)µν − 2̃g(∇

I
Zh(1)µν)|2 on the

right-hand side of (16.3.1) was proved in [Lindblad and Rodnianski 2010]. Its lengthy proof is similar to
our proof of Lemma 16.17 below, and we do not repeat it here.

Lemma 16.11 (Integral estimates for ε−1
|∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν |2w(q) [Lindblad and Rodnianski 2010,

Lemma 11.5]). Under the assumptions of Theorem 16.1, if I is a Z-multi-index satisfying 1≤ |I | ≤ ` and
if ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):

ε−1
∫ t

0

∫
6τ

(1+ τ)
∣∣∇̂ I

Z2̃gh(1)µν − 2̃g∇
I
Zh(1)µν

∣∣2w(q) d3x dτ

. ε
∑
|J |≤|I |

∫ t

0

∫
6τ

(
(1+ τ)−1

|∇∇
J
Zh(1)|2w(q)+ |∇∇ J

Zh(1)|2w′(q)
)

d3x dτ

+ ε
∑

|J ′|≤|I |−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ + ε3. (16.3.13)

Combining Lemmas 16.7, 16.9, 16.10, and 16.11, we arrive at the following corollary:

Corollary 16.12 (Estimates for the energy integrals corresponding to the h(1) inhomogeneities). Under
the assumptions of Theorem 16.1, if 0 ≤ k ≤ ` and ε is sufficiently small, then the following integral
inequality holds for t ∈ [0, T ):
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∑
|I |≤k

∫ t

0

∫
6τ

|H(1;I )||∇∇ I
Zh(1)| d3x dτ . M

∑
|I |≤k

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+ ε3. (16.3.14)

This completes our analysis of the integral inequalities for the h(1)µν inhomogeneities.

16.4. Integral inequalities for the LI
ZFµν inhomogeneities. In this section, we estimate the integrals

corresponding to the inhomogeneous terms in the LI
Z-commuted electromagnetic equations. More

precisely, we analyze the integrals in Proposition 12.3 corresponding to the inhomogeneous terms Fν(I )
in (16.2.2c). The main goal is to arrive at Corollary 16.18. As was the case for Corollary 16.12, the
main point is that right-hand sides of the inequalities in Corollary 16.18 can be bounded in terms of time
integrals of the energies Ek;γ;µ(t) (this was carried out in inequality (16.2.5)).

We begin with the following lemma, which provides pointwise estimates for the wave-coordinate-
controlled quantities |∇∇ I

Zh(1)|LL and |∇∇ J
Zh(1)|LT for |I | ≤ ` and |J | ≤ `−1. These pointwise estimates

will be used to help to derive suitable integral estimates later in this section.

Lemma 16.13 (Pointwise estimates for
∑
|I |≤k |∇∇

I
Zh(1)|LL +

∑
|J |≤k−1|∇∇

J
Zh(1)|LT). Under the as-

sumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the following pointwise inequality
holds for (t, x) ∈ [0, T )×R3:

∑
|I |≤k

|∇∇
I
Zh(1)|LL+

absent if k = 0︷ ︸︸ ︷∑
|J |≤k−1

|∇∇
J
Zh(1)|LT

.
∑
|I |≤k

|∇∇
I
Zh(1)| + ε(1+ t + |q|)−2χ0(1/2≤ r/t ≤ 3/4)+ ε2(1+ t + |q|)−3

+ ε
∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)1/2+µ
′

|∇∇
I
Zh(1)|

+ ε
∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)−1/2+µ′
|∇

I
Zh(1)| +

absent if k ≤ 1︷ ︸︸ ︷∑
|J ′|≤k−2

|∇∇
J ′
Z h(1)|, (16.4.1)

where χ0
(1

2 ≤ z ≤ 3
4

)
is the characteristic function of the interval

[1
2 ,

3
4

]
.
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Proof. Lemma 16.13 follows from Lemma 11.2 (for the tensor field h(1)µν ) and the pointwise decay
assumptions (16.1.6b) for h(1)µν . �

In the next lemma, we derive pointwise estimates for the term |(LI
ZF0ν)L̂

I
ZF

ν
|. This term appears in

the second spacetime integral on the right-hand side of (12.2.1), which is our basic energy inequality for
the Faraday tensor and its Lie derivatives. The pointwise estimates are preliminary estimates that will be
used in the subsequent lemma to estimate the corresponding spacetime integral.

Lemma 16.14 (Pointwise estimates for |(LI
ZF0ν)L̂

I
ZF

ν
|). Let Fν(I ) = L̂I

ZF
ν
+ [N #µνκλ

∇µLI
ZFκλ −

L̂I
Z(N

#µνκλ
∇µFκλ)] be the inhomogeneous term (8.1.2b) in the equations of variation (8.1.1b) satisfied

by Ḟ
def
= LI

ZF. Under the assumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the
following pointwise inequality holds for (t, x) ∈ [0, T )×R3:∑
|I |≤k

|(LI
ZF0ν)L̂

I
ZF

ν
|. ε

∑
|I |≤k

(1+ t + |q|)−1(
|LI

ZF|2+ |∇∇ I
Zh(1)|2

)
+ ε

∑
|I |≤k

(1+ |q|)−1(1+ q−)−2µ
|∇∇

I
Zh(1)|2

+ ε
∑
|I |≤|k|

(1+ |q|)−1(1+ q−)−2µ(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
+ ε

∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|. (16.4.2)

Proof. From (11.1.11a) with Xν
def
= LI

ZF0ν , the pointwise decay assumptions of Theorem 16.1, the
decomposition h = h(0)+ h(1), and the h(0)-decay estimates of Lemma 15.1, it follows that∑
|I |≤k

|(LI
ZF0ν)L̂

I
ZF

ν
|.

∑
|I |≤k

|I1|+|I2|≤|I |

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|

+

∑
|I |≤k

|I1|+|I2|≤|I |

|LI
ZF||∇∇ I1

Z h(1)|
(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I |≤k

|I1|+|I2|+|I3|≤|I |

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F||LI3

Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤|I |

|LI
ZF||∇ I1

Z h(1)||∇∇ I2
Z h(1)||LI3

Z F|

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|∇∇

I
Zh(1)|2

+ ε
∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|LI

ZF|2. (16.4.3)

Inequality (16.4.2) now follows from the assumptions of Theorem 16.1, (16.4.3), and repeated ap-
plication of algebraic inequalities of the form |ab| . ςa2

+ ς−1b2. As an example, we consider the
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term |LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|LN in the case that |I1| ≤ |I | ≤ b`/2c (such an inequality must be satisfied

by either |I1| or |I2|). Then with the help of (16.1.6b) and the fact that µ+µ′ < 1
2 , it follows that, if ε is

sufficiently small, then

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|LN . ε(1+ t + |q|)−1

|LI
ZF|2+ ε−1(1+ t + |q|)|∇∇ I1

Z h(1)|2|LI2
Z F|2LN

. ε(1+ t + |q|)−1
|LI

ZF|2+ ε(1+ |q|)−1(1+ q−)−2µ
|LI2

Z F|2LN. (16.4.4)

We now observe that the right-hand side of the above inequality is manifestly bounded by the right-hand
side of (16.4.2). �

We now use the pointwise estimates of the previous lemma to estimate part of the second space-
time integral on the right-hand side of (12.2.1). These estimates are easier than the corresponding
estimates involving the commutator term N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ), which are derived in

Lemma 16.17.

Lemma 16.15 (Integral estimates for |(LI
ZF0ν)L̂

I
ZF

ν
|w(q)). Under the assumptions of Lemma 16.14,

if 0≤ k ≤ ` and ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):∑
|I |≤k

∫ t

0

∫
6τ

∣∣(LI
ZF0ν)L̂

I
ZF

ν
∣∣w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|LI

ZF|2w(q) d3x dτ + ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ. (16.4.5)

Proof. Inequality (16.4.5) follows from multiplying inequality (16.4.2) by w(q), integrating
∫ t

0

∫
6τ

d3x dτ ,
using the fact that (1+ |q|)−1(1+ q−)−2µw(q). w′(q), and using the Hardy estimate (16.3.9) to bound
the integral corresponding to the last sum on the right-hand side of (16.4.2) by the second sum on the
right-hand side of (16.4.5). �

The next lemma is a companion to Lemma 16.14. In the lemma, we derive pointwise estimates for
the term |(LI

ZF0ν)[N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)]|. This term appears in the second spacetime

integral on the right-hand side of (12.2.1), which is our basic energy inequality for the Faraday tensor and
its Lie derivatives. As before, these pointwise estimates are preliminary estimates that will be used in the
subsequent lemma to estimate the corresponding spacetime integral.

Lemma 16.16 (Pointwise estimates for |(LI
ZF0ν)[N #µνκλ

∇µLI
ZFκλ−L̂I

Z(N
#µνκλ
∇µFκλ)]|). Let N #µνκλ

·

∇µLI
ZFκλ − L̂I

Z(N
#µνκλ
∇µFκλ) be the inhomogeneous commutator term (8.1.3b) in the equations of

variation (8.1.1b) satisfied by Ḟµν
def
= LI

ZFµν . Under the assumptions of Theorem 16.1, if 1≤ k ≤ ` and
ε is sufficiently small, then the following pointwise inequality holds for (t, x) ∈ [0, T )×R3:
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|I |≤k

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣
. ε

∑
|I |≤|k|

(1+ t + |q|)−1
|LI

ZF|2+ ε
∑
|I |≤|k|

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+ ε
∑
|I |≤|k|

(1+ |q|)−1(1+ q−)−2µ(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
+ ε

∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

I
Zh(1)|2LL

+ ε
∑
|J |≤k−1

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

J
Zh(1)|2LT

+ ε
∑
|J ′|≤k−2

(1+ t + |q|)−1+Cε(1+ |q|)−2
|∇

J ′
Z h(1)|2︸ ︷︷ ︸

absent if k = 1

+ ε
∑
|J |≤k−1

(1+ t + |q|)−1+Cε
|LJ

ZF|2. (16.4.6)

Proof. From inequality (11.1.11b) with Xν
def
= LI

ZF0ν , the pointwise decay assumptions of Theorem 16.1,
together with the decomposition h= h(0)+h(1) and the h(0) decay estimates of Lemma 15.1, it follows that∑
|I |≤k

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣
.

∑
|I |≤k, |I ′|≤k
|J |≤1

(1+ |q|)−1
|LI

ZF||∇ I ′
Z h(1)|LL|L

J
ZF| +

∑
|I |≤k, |I ′|≤k
|J |≤1

(1+ |q|)−1
|LI

ZF||∇ J
Zh(1)|LL|L

I ′
Z F|

+

∑
|I |≤k

(1+ |q|)−1
|LI

ZF|2|h|LT+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ |q|)−1
|LI

ZF|LN|∇
I1
Z h(1)||LI2

Z F|

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ t + |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F|

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|LI

ZF|2+ ε
∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|≤k−1, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|LL|L

I2
Z F|

+

∑
|I |≤k

|I1|+|I2|≤k
|I1|≤k−1, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|LT|L

I2
Z F|
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+

∑
|I |≤k

|I1|+|I2|≤k−1
|I1|≤k−2, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F|

︸ ︷︷ ︸
absent if k = 1

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||∇ I2

Z h(1)||LI3
Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F||LI3
Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||LI1
Z F||LI2

Z F||LI3
Z F|. (16.4.7)

We remark that the ε
∑
|I |≤k(1+t+|q|)−1

|LI
ZF|2 and ε

∑
|I |≤k(1+t+|q|)−1(1+|q|)−2

|∇
I
Zh(1)|2 sums on

the right-hand side of (16.4.7) account for all of the terms containing a factor∇ J
Zh(0) for some J . Inequality

(16.4.6) now follows from (16.4.7), the pointwise decay assumptions of Theorem 16.1 (including the im-
plied estimates for h(1)), and simple algebraic estimates of the form |ab|.ςa2

+ς−1b2 (as in (16.4.4)). �

The next lemma is a companion to Lemma 16.15. In the lemma, we use the pointwise estimates of the
previous lemma to estimate the part of the second spacetime integral on the right-hand side of (12.2.1)
that was not addressed by Lemma 16.15.

Lemma 16.17 (Integral estimates for |(LI
ZF0ν)[N #µνκλ

∇µLI
ZFκλ − L̂I

Z(N
#µνκλ
∇µFκλ)]|). Under the

assumptions of Lemma 16.14, if 1≤ k ≤ ` and ε is sufficiently small, then the following integral inequality
holds for t ∈ [0, T ):

∑
|I |≤k

∫ t

0

∫
6τ

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|LI

ZF|2w(q) d3x dτ + ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+ ε
∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|LJ

ZF|2w(q) d3x dτ + ε3. (16.4.8)
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Proof. We begin by multiplying both sides of (16.4.6) by w(q) and integrating
∫ t

0

∫
6τ

d3x dτ . The
integrals corresponding to the first and last sums on the right-hand side of (16.4.6) are manifestly
bounded by the first and next-to-last terms on the right-hand side of (16.4.8). Using also the fact that
(1+ |q|)−1(1+ q−)−2µw(q). w′(q), we deduce that the integral corresponding to the third sum on the
right-hand side of (16.4.6) is bounded by the third sum on the right-hand side of (16.4.8).

To bound the integral corresponding to the second sum on the right-hand side of (16.4.6), we simply
use the Hardy inequalities of Proposition C.1 to derive the inequality

∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ. (16.4.9)

After multiplication by ε, we see that the right-hand side of the above inequality is manifestly bounded
by the second sum on the right-hand side of (16.4.8). Using the same reasoning, we obtain the following
bound for the integral corresponding to the next-to-last sum on the right-hand side of (16.4.6):

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε(1+ |q|)−2
|∇

J ′
Z h(1)|2w(q) d3x dτ

.
∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ. (16.4.10)

We then multiply (16.4.10) by ε and observe that the right-hand side of the resulting inequality is manifestly
bounded by the right-hand side of (16.4.8).

To estimate the integrals corresponding to the fourth and fifth sums on the right-hand side of (16.4.6),
we will make use of the weight w̃(q), which is defined by

w̃(q) def
= min{w′(q), (1+ t + |q|)−1+Cεw(q)}. (16.4.11)

We note that by (12.1.2) the following inequality is satisfied:

w̃(q). (1+ |q|)−1w(q). (16.4.12)

With the help of Lemma 16.13, (16.4.12), and the Hardy inequalities of Proposition C.1, we estimate
the integral corresponding to the fourth sum on the right-hand side of (16.4.6) as follows:

∑
|I |≤k

∫ t

0

∫
6τ

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

I
Zh(1)|2LLw(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2LLw̃(q) d3x dτ
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.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε2
∫ t

0

∫
6τ

(1+ τ + |q|)−4χ2
0

(1
2
<

r
t
<

3
4

)
w′(q) d3x dτ

+ ε4
∫ t

0

∫
6τ

(1+ τ + |q|)−6w′(q) d3x dτ

+ ε2
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε2
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

+

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+

∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

+ ε2, (16.4.13)

where to pass to the final inequality we have again used Proposition C.1 to estimate∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ.

After multiplying both sides of (16.4.13) by ε, we see that the resulting right-hand side is manifestly
bounded by the right-hand side of (16.4.8) as desired. The integral corresponding to the fifth sum on the
right-hand side of (16.4.6) can be bounded via the same reasoning. �

Combining Lemmas 16.15 and 16.17, we arrive at the following corollary:

Corollary 16.18 (Estimates for the energy integrals corresponding to the F inhomogeneities). Let

Fν(I ) = L̂I
ZF

ν
+ [N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)]

be the inhomogeneous term (8.1.3b) in the equations of variation (8.1.1b) satisfied by Ḟµν
def
= LI

ZFµν .
Under the assumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the following integral
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inequality holds for t ∈ [0, T ):∑
|I |≤k

∫ t

0

∫
6τ

|(LI
ZF0ν)F

ν
(I )|w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+ ε3. (16.4.14)

Appendix A: Weighted Sobolev–Moser inequalities

The propositions and corollaries stated in this section were used in Section 10 to relate the smallness
condition on the abstract initial data to a smallness condition on the initial energy of the corresponding
solution to the reduced equations. The lemmas we state are slight extensions of Lemmas 2.4 and 2.5 of
[Choquet-Bruhat and Christodoulou 1981] while the corollaries are easy (and nonoptimal) consequences
of the lemmas. Throughout the appendix, we use the abbreviations

C`
η

def
= C`

η(R
3), H `

η

def
= H `

η (R
3),

and so on (see Definitions 10.1 and 10.2). Furthermore, (x1, x2, x3) denotes the standard Euclidean
coordinate system on R3 and |x | def

=

√
(x1)2+ (x2)2+ (x3)2.

Proposition A.1 (Weighted Sobolev embedding [Choquet-Bruhat and Christodoulou 1981, Lemma 2.4]).
Let ` and `′ be integers, and let η and η′ be real numbers subject to the constraints `′ < `− 3

2 and
η′ < η+ 3

2 . Assume that v ∈ H `
η . Then v ∈ C`′

η′ , and

‖v‖C`′

η′
. ‖v‖H `

η
. (A.1)

Proposition A.2 (Weighted Sobolev multiplication properties [Choquet-Bruhat and Christodoulou 1981,
Lemma 2.5]). Let `1, . . . , `p ≥ 0 be integers, and let η1, . . . , ηp be real numbers. Suppose that v j ∈ H ` j

η j

for j = 1, . . . , p. Assume that the integer ` satisfies 0≤ `≤min{`1, . . . , `p} and `≤
∑p

j=1 ` j − (p− 1) 3
2

and that η <
∑p

j=1 η j + (p− 1)3
2 . Then

p∏
j=1

v j ∈ H `
η , (A.2)

and the multiplication map

H `1
η1
× · · ·× H `p

ηp → Hη

` , (v1, . . . , vp)→

p∏
j=1

v j (A.3)

is continuous.
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Corollary A.3. Let ` ≥ 2 be an integer, and let η ≥ 0. Assume that v j ∈ H `
η for j = 1, . . . , p and that

I1, . . . , Ip are ∇-multi-indices satisfying
∑p

j=1|I j | ≤ `. Then

(1+ |x |2)(η+
∑p

j=1|I j |)/2
p∏

i=1

∇
Iivi ∈ L2 (A.4)

and ∥∥∥∥(1+ |x |2)(η+∑p
j=1|I j |)/2

p∏
i=1

∇
Iivi

∥∥∥∥
L2
.

p∏
i=1

‖vi‖H `
η
. (A.5)

Corollary A.4. Let ` ≥ 2 be an integer, let K be a compact set, and let F( · ) ∈ C`(K) be a function.
Assume that v1 is a function on R3 such that v1(R

3)⊂ K. Furthermore, assume that ∇v1, v2 ∈ H `
η . Then

(F ◦ v1)v2 ∈ H `
η , and

‖(F ◦ v1)v2‖H `
η
. ‖v2‖H `

η
|F |K+‖(1+ |x |)v2‖L∞‖∇v1‖H `−1

η

∑̀
j=1

|F ( j)
|K‖v1‖

j−1
L∞ , (A.6)

where F ( j) denotes the array of all j -th order partial derivatives of F with respect to its arguments and
|F ( j)
|K

def
= supv∈K|F

( j)(v)|.

Appendix B: Weighted Klainerman–Sobolev inequalities

In this section, we recall the weighted Klainerman–Sobolev inequalities that were proved in [Lindblad
and Rodnianski 2010]. Throughout this section, the weight function w(q) is defined by

w
def
= w(q) def

=

{
1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0.

(B.1)

In this section, we assume that γ and µ are fixed constants satisfying 0< γ< 1 and 0< µ< 1
2 . It easily

follows from (B.1) that

w′
def
= w′(q)=

{
(1+ 2γ)(1+ |q|)2γ if q > 0,
2µ(1+ |q|)−1−2µ if q < 0,

(B.2)

and
w′ ≤ 4(1+ |q|)−1w ≤ 16µ−1(1+ q−)2µw′. (B.3)

Proposition B.1 (Weighted Klainerman–Sobolev inequality [Lindblad and Rodnianski 2010, Proposition
14.1]). There exists a C > 0 such that, for all φ(t, · ) ∈ C∞0 (R

3), the following inequality holds:

(1+ t + |x |)[(1+ |q|)w(q)]1/2|φ(t, x)| ≤ C
∑
|I |≤3

∥∥w1/2
∇

I
Zφ(t, · )

∥∥
L2, q def

= |x | − t. (B.4)

Furthermore,

(1+ t + |x |)[(1+ |q|)w(q)]1/2|∇φ(t, x)| ≤ C
∑
|I |≤3

∥∥w1/2
∇∇

I
Zφ(t, · )

∥∥
L2, q def

= |x | − t. (B.5)

Proof. Equation (B.4) was proved in the paper cited; (B.5) follows from Lemma 6.11 and (B.4). �
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Appendix C: Hardy-type inequalities

In this section, we recall the weighted Hardy-type inequalities proved in [Lindblad and Rodnianski 2010].

Proposition C.1 (Hardy inequalities [Lindblad and Rodnianski 2010, Corollary 13.3]). Let γ> 0 and
µ > 0, q def

= |x | − t , and let w(q) and w′(q) be as defined in (B.1) and (B.2), respectively. Then for
any −1≤ a ≤ 1, there exists a C > 0 such that, for all φ ∈ C∞0 (R

3), we have the integral inequality∫
R3
(1+ t + |q|)−1+a(1+ |q|)−2

|φ|2w(q) d3x ≤ C
∫

R3
(1+ t + |q|)−1+a

|∂rφ|
2w(q) d3x, (C.1)

where ∂r = ω
b∂b, ω j def

= x j/r , denotes the radial vector field.
If in addition a < 2 min{γ,µ}, then with

w̃(q) def
= min{w′(q), (1+ t + |q|)−1+aw(q)}, (C.2)

there exists a constant C > 0 such that the integral inequality∫
R3
(1+ t + |q|)−1+a(1+ |q|)−(a+2)(1+ q−)−2µ

|φ|2w(q) d3x ≤ C
∫

R3
|∂rφ|

2w̃(q) d3x, (C.3)

holds, where q−
def
= |q| if q ≤ 0 and q− = 0 if q > 0.

Corollary C.2. Assume the hypotheses of Proposition C.1, and let Pµν be a type-
(0

2

)
tensor field. Let V

and W be any two of the subsets of null frame-field vectors defined in (5.1.12). Then the same conclusions
of Proposition C.1 hold if we replace |φ| and |∂rφ| with the contraction seminorms |P|VW and |∇P|VW,
respectively, where the contraction seminorms are defined in Definition 5.8.

Proof. Let 6m be the first fundamental form of the Sr,t defined in (5.1.4b), and recall that the tensor 6m ν
µ

projects m-orthogonally onto the Sr,t . Since ∂r =
1
2(L − L), it follows from (5.1.9a), (5.1.9b), and

(5.1.10) that

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.4)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.5)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.6)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.7)

∂r ( 6m κ
µ LλPκλ)= 1

2 6m
κ
µ Lλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.8)

∂r (Lκ 6m λ
µ Pκλ)= 1

2 Lκ 6m λ
µ (∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.9)

∂r ( 6m κ
µ LλPκλ)= 1

2 6m
κ
µ Lλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.10)

∂r (Lκ 6m λ
µ Pκλ)= 1

2 Lκ 6m λ
µ (∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.11)

∂r ( 6m κ
µ 6m

λ
ν Pκλ)= 1

2 6m
κ
µ 6m

λ
ν (∇L −∇L)Pκλ (µ, ν = 0, 1, 2, 3). (C.12)

That is to say, ∂r commutes with the null decomposition of P . The conclusion of the corollary now easily
follows from applying the proposition with φ equal to the scalar-valued functions LκLλPκλ, LκLλPκλ, . . . ,
6m κ
µ 6m

λ
ν Pκλ, respectively. �
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