
ANALYSIS & PDE

msp

Volume 7 No. 4 2014

JEAN-PHILIPPE ANKER AND VITTORIA PIERFELICE

WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC
SPACES



ANALYSIS AND PDE
Vol. 7, No. 4, 2014

dx.doi.org/10.2140/apde.2014.7.953 msp

WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC SPACES

JEAN-PHILIPPE ANKER AND VITTORIA PIERFELICE

We consider the Klein–Gordon equation associated with the Laplace–Beltrami operator � on real
hyperbolic spaces of dimension n� 2; as � has a spectral gap, the wave equation is a particular case of
our study. After a careful kernel analysis, we obtain dispersive and Strichartz estimates for a large family
of admissible couples. As an application, we prove global well-posedness results for the corresponding
semilinear equation with low regularity data.

1. Introduction

Dispersive properties of the wave and other evolution equations have been proved to be very useful
in the study of nonlinear problems. The theory is well-established for the Euclidean wave equation in
dimension n� 3: �

@2t u.t; x/��xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/:

(1)

The Strichartz estimates

krR�RnukLp.I I PH��;q.Rn// . kf k PH1.Rn/
CkgkL2.Rn/CkF kL zp0.I I PH z�;zq0.Rn//

hold for solutions u to the Cauchy problem (1) on any (possibly unbounded) time interval I � R under
the assumptions that

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�

and the couples .p; q/; . zp; zq/ 2 Œ2;1�� Œ2;1/ satisfy

2

p
C n�1

q
D n�1

2
and 2

zp C
n�1
zq D n�1

2
: (2)

We refer to [Ginibre and Velo 1995; Keel and Tao 1998] for more details.
These estimates serve as a tool for several existence results about the nonlinear wave equation in the

Euclidean setting. The problem of finding minimal regularity conditions on the initial data ensuring
local well-posedness for semilinear wave equations was addressed in [Kapitanski 1994] and then almost
completely answered in [Lindblad and Sogge 1995; Keel and Tao 1998] (see Figure 5 in Section 6). In
general, local solutions cannot be extended to global ones unless further assumptions are made on the
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nonlinearity or on the initial data. A successful machinery was developed towards the global existence
of small solutions to the semilinear wave equation

�
@2t u.t; x/��xu.t; x/D F.u/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/

(3)

with power-like nonlinearities

F.u/� juj
 .
 > 1/: (4)

The results depend on the space dimension n. After the pioneer work of John [1979] in dimension nD 3,
Strauss [1989] conjectured that the problem (3) is globally well posed in dimension n� 2 for small initial
data provided that


 > 
0 D 1

2
C 1

n�1 C
r�

1

2
C 1

n�1
�2
C 2

n�1: (5)

On one hand, the negative part of the conjecture was established by Sideris [1984], who proved blow-up
for nonlinearities F.u/D juj
 with 1 < 
 < 
0 and for rather general initial data. On the other hand, the
positive part of the conjecture was proved for any dimension in several steps (see, e.g., [Klainerman and
Ponce 1983; Georgiev et al. 1997; D’Ancona et al. 2001] and [Georgiev 2000] for a comprehensive survey).

Analogous results hold for the Klein–Gordon equation

@2t u.t; x/��xu.t; x/Cu.t; x/D F.t; x/

though its study has not been carried out as thoroughly as for the wave equation; in particular, the
sharpness of several well-posedness results is yet unknown (see [Bahouri and Gérard 1999; Ginibre and
Velo 1985; Machihara et al. 2004; Nakanishi 1999] and the references therein).

In view of the rich Euclidean theory, it is natural to look at the corresponding equations on more
general manifolds. Here we consider real hyperbolic spaces Hn, which are the most simple examples
of noncompact Riemannian manifolds with negative curvature. For geometric reasons, we expect better
dispersive properties and hence stronger results than in the Euclidean setting.

Consider the wave equation associated to the Laplace–Beltrami operator �D�Hn on Hn:
�
@2t u.t; x/��xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/:

(6)

The operator �� is positive on L2.Hn/, and its L2-spectrum is the half-line Œ�2;C1/, where � D
.n� 1/=2. Thus, (6) may be considered as a special case of the family of Klein–Gordon equations

�
@2t u.t; x/��xu.t; x/C cu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(7)

where

c � ��2 D�.n� 1/
2

4
(8)

is a constant. In the limit case c D��2, (7) is called the shifted wave equation.



WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC SPACES 955

Pierfelice [2008] obtained Strichartz estimates for the nonshifted wave equation (6) with radial data
on a class of Riemannian manifolds containing all hyperbolic spaces. The wave equation (6) was also
investigated on the 3-dimensional hyperbolic space by Metcalfe and Taylor [2011; 2012], who proved
dispersive and Strichartz estimates with applications to small-data global well-posedness for the semilinear
wave equation. In his recent thesis, Hassani [2011a; 2011b] obtains a first set of results on noncompact
Riemannian symmetric spaces of higher rank.

To our knowledge, the shifted wave equation (7) in the limit case c D ��2 was first considered by
Fontaine [1994; 1997] in low dimensions nD 3 and nD 2. Tataru [2001] obtained dispersive estimates for
the operators sin

�
t
p
�C �2�=

p
�C �2 and cos

�
t
p
�C �2� acting on inhomogeneous Sobolev spaces

on Hn and then transferred them to Rn in order to get well-posedness results for the Euclidean semilinear
wave equation (see also [Georgiev 2000]). Complementary results were obtained by Ionescu [2000], who
investigated Lq! Lq Sobolev estimates for the above operators on all hyperbolic spaces.

A more detailed analysis of the shifted wave equation was carried out in [Anker et al. 2012]. There
Strichartz estimates were obtained for a wider range of couples than in the Euclidean setting, and conse-
quently stronger well-posedness results were shown to hold for the nonlinear equations. Corresponding
results for the Schrödinger equation were obtained in [Anker and Pierfelice 2009; Anker et al. 2011;
Ionescu and Staffilani 2009].

In the present paper, we study the family of equations (7) in the remaining range c > ��2 and in
dimension n� 2, which includes the particular case c D 0 and nD 3 considered in [Metcalfe and Taylor
2011; 2012]. In order to state and describe our results, it is convenient to rewrite the constant (8) as

c D �2� �2 with � > 0 (9)

and to introduce the operator

D D
p
��� �2C �2 (10)

as well as
zD D

p
��� �2C Q�2; (11)

where Q� > � is another fixed constant. Thus, our family of equations (7) becomes
�
@2t u.t; x/CD2xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(12)

the wave equation (6) corresponding to the choice � D � and the shifted wave equation to the limit
case � D 0.

Let us now describe the content of this paper and present our main results, which we state for simplicity
in dimension n� 3. In Section 2, we recall the basic tools of spherical Fourier analysis on real hyperbolic
spaces Hn. After analyzing carefully the integral kernel of the half-wave operator

W �
t D zD��eitD

in Section 3, we prove in Section 4 the following dispersive estimates, which combine the small time
estimates [Anker et al. 2012] for the shifted wave equation and the large time estimates [Anker and
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Pierfelice 2009] for the Schrödinger equation:

kW �
t kLq!Lq0 .

�jt j�.n�1/.1=2�1=q/ if 0 < jt j< 1;
jt j�3=2 if jt j � 1;

where 2 < q <1 and � � .nC 1/.1=2� 1=q/. Notice that we don’t deal with the limit case q D1,
where Metcalfe and Taylor [2011] have obtained an H 1! BMO estimate in dimension nD 3.

In Section 5, we deduce the Strichartz estimates

krR�HnukLp.I IH��;q.Hn// . kf kH1.Hn/CkgkL2.Hn/CkF kL zp0.I IH z�;zq0.Hn//
for solutions u to (12). Here I � R is any time interval,

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�
;

and the couples .1=p; 1=q/ and .1= zp; 1=zq/ belong to the triangle
n�
1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� n�1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o
: (13)

These estimates are similar to those obtained in [Anker et al. 2012] for the shifted wave equation except
that they involve standard Sobolev spaces and no exotic ones. Notice that the range (13) of admissible
couples for Hn is substantially wider than the range (2) for Rn, which corresponds to the lower edge of
the triangle (13).

In Section 6, we apply the results of the previous sections to the problem of global existence with
small data for the corresponding semilinear equations. In contrast with the Euclidean case, where the
range of admissible nonlinearities F.u/� juj
 is restricted to 
 > 
0, we prove global well-posedness for
powers 
 > 1 arbitrarily close to 1. This result improves in particular [Metcalfe and Taylor 2011], where
global well-posedness for (6) was obtained in the case nD 3 and � D � under the assumption 
 > 5

3
.

As already observed for the Schrödinger equation [Anker and Pierfelice 2009; Anker et al. 2011] and
for the shifted wave equation [Anker et al. 2012; 2014], the fact that better results hold for Hn than for Rn

may be regarded as a consequence of the stronger dispersion properties in negative curvature. The final
section is the Appendix, where we estimate some oscillatory integrals occurring in the kernel analysis
carried out in Section 3.

2. Essentials about real hyperbolic spaces

In this paper, we consider the simplest class of Riemannian symmetric spaces of the noncompact type,
namely real hyperbolic spaces Hn of dimension n� 2. We refer to Helgason’s books [2001; 2000; 1994]
and to Koornwinder’s survey [1984] for their algebraic structure and geometric properties as well as
for harmonic analysis on these spaces, and we shall be content with the following information. Hn can
be realized as the symmetric space G=K, where G D SO.1; n/0 and K D SO.n/. In geodesic polar
coordinates, the Laplace–Beltrami operator on Hn writes

�Hn D @2r C .n� 1/ coth r@r C sinh�2 r�Sn�1 :
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The spherical functions '� on Hn are normalized radial eigenfunctions of �D�Hn :
�
�'� D�.�2C �2/'�;
'�.0/D 1;

where � 2 C and �D .n� 1/=2. They can be expressed in terms of special functions:

'�.r/D �.n=2�1;�1=2/�
.r/D 2F1

��
2
C i �

2
; �
2
� i �

2
I n
2
I � sinh2 r

�
;

where �.˛;ˇ/
�

denotes the Jacobi functions and 2F1 the Gauss hypergeometric function. In the sequel, we
shall use the Harish-Chandra formula

'�.r/D
Z

K

dk e�.�Ci�/H.a�rk/ (14)

and the basic estimate

j'�.r/j � '0.r/. .1C r/e��r 8� 2 R; r � 0: (15)

We shall also use the Harish-Chandra expansion

'�.r/D c.�/ˆ�.r/C c.��/ˆ��.r/ 8� 2 C nZ; r > 0; (16)

where the Harish-Chandra c-function is given by

c.�/D �.2�/

�.�/

�.i�/

�.i�C �/ (17)

and
ˆ�.r/D .2 sinh r/i���2F1

��
2
� i �

2
;���1

2
� i �

2
I 1� i�I � sinh�2 r

�

D .2 sinh r/��ei�r
C1X

kD0
�k.�/e

�2kr

� e.i���/r as r!C1: (18)

The coefficients �k.�/ in the expansion (18) are rational functions of � 2 C that satisfy the recurrence
formula 8

<̂

:̂

�0.�/D 1;
�k.�/D

�.�� 1/
k.k� i�/

k�1X

jD0
.k� j /�j .�/:

Their classical estimates were improved as follows in [Anker et al. 2011, Lemma 2.1].

Lemma 2.1. Let 0 < " < 1 and �" D f� 2 C j Re�� "j�j; Im�� �1C "g. Then there exist � � 0 and,
for every ` 2 N, C` � 0 such that

j@`��k.�/j � C`k�.1Cj�j/�`�1 8k 2 N�; � 2 C n�": (19)

Under suitable assumptions, the spherical Fourier transform of a bi-K-invariant function f on G is
defined by

Hf .�/D
Z

G

dg f .g/'�.g/;
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and the following inversion formula holds:

f .x/D const
Z C1

0

d� jc.�/j�2Hf .�/'�.x/:

Here is a well-known estimate of the Plancherel density:

jc.�/j�2 . j�j2.1Cj�j/n�3 8� 2 R: (20)

Via the spherical Fourier transform, the Laplace–Beltrami operator � corresponds to

��2� �2

and hence the operators D D
p
��� �2C �2 and zD D

p
��� �2C Q�2 to

p
�2C �2 and

p
�2C Q�2:

Recall eventually the definition of Sobolev spaces on Hn and the Sobolev embedding theorem. We refer to
[Triebel 1992] for more details about function spaces on Riemannian manifolds. Let � 2R and 1<q <1.
Then H�;q.Hn/ denotes the image of Lq.Hn/ under .��/��=2 (in the space of distributions on Hn)
equipped with the norm

kf kH�;q D k.��/�=2f kLq :

In this definition, we may replace .��/��=2 byD�� D .����2C�2/��=2 as long as � >2j1=2�1=qj�
and in particular by zD�� D .��� �2C Q�2/��=2 since Q� > �. If � DN is a nonnegative integer, then
H�;q.Hn/ coincides with the Sobolev space

W N;q.Hn/D ff 2 Lq.Hn/ j rjf 2 Lq.Hn/ 8j; 1� j �N g

defined in terms of covariant derivatives. In the L2 setting, we write H� .Hn/ instead of H�;2.Hn/.

Proposition 2.2. Let 1 < q1; q2 <1 and �1; �2 2 R such that �1� �2 � n=q1�n=q2 � 0. Then

H�1;q1.Hn/�H�2;q2.Hn/:

By this inclusion, we mean that there exists a constant C � 0 such that

kf kH�2;q2 � Ckf kH�1;q1 8f 2 C1c .Hn/:

3. Kernel estimates

In this section, we derive pointwise estimates for the radial convolution kernel w�t of the operator
W �
t D zD��eitD for suitable exponents � 2 R. By the inversion formula of the spherical Fourier

transform,

w�t .r/D const
Z C1

�1
d� jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 :
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Contrarily to the Euclidean case, this kernel has different behaviors depending on whether t is small or
large, and therefore, we cannot use any rescaling. Let us split up

w�t .r/D w�;0t .r/Cw�;1t .r/

D const
Z C1

�1
d��0.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2

C const
Z C1

�1
d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2

using smooth, even cut-off functions �0 and �1 on R such that

�0.�/C�1.�/D 1 and
�
�0.�/D 1 8j�j � �;
�1.�/D 1 8j�j � �C 1:

We shall first estimate w�;0t and next a variant of w�;1t . The kernel w�;1t has indeed a logarithmic
singularity on the sphere r D t when � D .nC 1/=2. We bypass this problem by considering the analytic
family of operators

eW �;1
t D e�

2

�..nC1/=2��/�1.D/ zD
��eitD

in the vertical strip 0� Re � � .nC 1/=2 and the corresponding kernels

zw�;1t .r/D const e�
2

�..nC1/=2��/
Z C1

�1
d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 : (21)

Notice that the gamma function (which occurs naturally in the theory of Riesz distributions) will allow
us to deal with the boundary point � D .nC 1/=2 while the exponential function yields boundedness at
infinity in the vertical strip.

3A. Estimate of w0t D w
�;0
t .

Theorem 3.1. Let � 2 R. The following pointwise estimates hold for the kernel w0t :

(i) For every t 2 R and r � 0, we have

jw0t .r/j. '0.r/:
(ii) Assume that jt j � 2. Then for every 0� r � jt j=2, we have

jw0t .r/j. jt j�3=2.1C r/'0.r/:
Proof. Recall that

w0t .r/D const
Z �C1

���1
d��0.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 : (22)

By symmetry, we may assume that t > 0.
It follows from the estimates (15) and (20) that

jw0t .r/j.
Z �C1

���1
d��2'0.r/. '0.r/;
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proving (i). We prove (ii) by substituting in (22) the first integral representation of '� in (14) and by
reducing in this way to Fourier analysis on R. Specifically,

w0t .r/D
Z

K

dk e��H.a�rk/
Z C1

�1
d� a.�/eit.

p
�2C�2�H.a�rk/�=t/;

where a.�/D const�0.�/jc.�/j�2.�2C Q�2/��=2. Since
Z

K

dk e��H.a�rk/ D '0.r/

and jH.a�rk/j � r , it remains for us to estimate the oscillatory integral

I.t; x/D
Z C1

�1
d� a.�/eit.

p
�2C�2�x�=t/

by jt j�3=2.1C jxj/. This is obtained by the method of stationary phase. More precisely, we apply
Lemma A.1 in the Appendix, whose assumption (A-1) is fulfilled according to (20). �

3B. Estimate of zw1
t D zw

�;1
t .

Theorem 3.2. The following pointwise estimates hold for the kernel zw1t , uniformly in � 2 C with
Re � D .nC 1/=2:

(i) Assume that jt j � 2. Then for every r � 0, we have

j zw1t .r/j. jt j�1:
(ii) Assume that 0 < jt j � 2.

(a) If r � 3, then zw1t .r/D O.r�1e��r/.

(b) If 0� r � 3, then j zw1t .r/j.
�jt j�.n�1/=2 if n� 3;
jt j�1=2.1� logjt j/ if nD 2:

Throughout the proof of Theorem 3.2, we may assume again by symmetry that t > 0.

Proof of Theorem 3.2(i). By evenness, we have

zw1t .r/D 2 const e�
2

�..nC1/=2��/
Z C1

0

d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit
p
�2C�2 : (23)

If 0� r � t=2, we resume the proof of Theorem 3.1(ii), using Lemma A.2 instead of Lemma A.1, and
conclude that

j zw1t .r/j. t�1'0.r/: (24)

If r � t=2, we substitute in (23) the Harish-Chandra expansion (16) of '�.r/ and reduce this way again
to Fourier analysis on R. Specifically, our task consists in estimating the expansion

zw1t .r/D .sinh r/��
C1X

kD0
e�2krfIC;1

k
.t; r/C I�;1

k
.t; r/g (25)
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involving oscillatory integrals

I
˙;1
k

.t; r/D
Z C1

0

d� a˙k .�/e
i.t
p
�2C�2˙r�/

with amplitudes

a˙k .�/D 2 const e�
2

�..nC1/=2��/�1.�/c.��/
�1.�2C Q�2/��=2�k.˙�/:

Notice that a˙
k
.�/ is a symbol of order

d D
��1 if k D 0;
�2 if k 2 N�

uniformly in � 2C with Re � D .nC1/=2. This follows indeed from the expression (17) of the c-function
and from the estimate (19) of the coefficients �k . Consequently, the integrals

I
˙;1
k

.t; r/D O.k�/ (26)

are easy to estimate when k > 0 while IC;10 .t; r/ and especially I�;10 .t; r/ require more work. As far
as the penultimate integral is concerned, we integrate by parts

I
C;1
0 .t; r/D

Z C1

0

d� aC0 .�/e
it�.�/;

using eit�.�/ D .i t�0.�//�1 @
@�
eit�.�/ and the following properties of �.�/Dp�2C �2C .r=t/�:

� �0.�/D �p
�2C�2 C

r

t
� r
t
� 1
2

,

� �00.�/D �2.�2C �2/�3=2 is a symbol of order �3.

We obtain this way
I
C;1
0 .t; r/D O.r�1/ (27)

and actually
I
C;1
0 .t; r/D O.r�1/

by repeated integrations by parts. Let us turn to the last integral, which we rewrite as follows:

I
�;1
0 .t; r/D

Z C1

0

d� a�0 .�/eit.
p
�2C�2��/ei.t�r/�:

After performing an integration by parts based on ei.t�r/� D �i.t � r/�1 @
@�
ei.t�r/� and by using the

fact that

 .�/D
p
�2C �2��D �2p

�2C �2C� (28)

is a symbol of order �1, we obtain

I
�;1
0 .t; r/D O

�
t

jr�t j
�
: (29)
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This estimate is enough for our purpose as long as r stays away from t . If jr � t j � 1, let us split up

eit .�/ D 1CO.t .�//

and

I
�;1
0 .t; r/D

Z C1

0

d� a�0 .�/ei.t�r/�CO.t/ (30)

accordingly. The remaining integral was estimated in [Anker et al. 2011] at the end of the proof of
Theorem 4.2(ii): Z C1

0

d� a�0 .�/ei.t�r/� D O.1/: (31)

By combining the estimates (26), (27), (29), (30), and (31), we deduce from (25) that

j zw1t .r/j. e��r t . t�1 8r � t
2
� 1

uniformly in � 2 C with Re � D .nC 1/=2. This concludes the proof of Theorem 3.2(i). �
Let us turn to the small time estimates in Theorem 3.2.

Proof of Theorem 3.2(ii)(a). Since 0 < t � 2 and r � 3, we can resume the proof of Theorem 3.2(i) in the
case r � t C 1� t=2. By using the expansion (25) and the estimates (26), (27), and (29), we obtain

j zw1t .r/j. r�1e��r

uniformly in � 2 C with Re � D .nC 1/=2. This concludes the proof of Theorem 3.2(ii)(a). �
Proof of Theorem 3.2(ii)(b). Let us rewrite and expand (23) as follows:

zw1t .r/D 2 const e�
2

�..nC1/=2��/
Z C1

0

d��1.�/jc.�/j�2.�2C Q�2/��=2eit .�/eit�'�.r/ (32)

D
Z C1

0

d� a.�/eit�'�.r/C
Z C1

0

d� b.�/eit�'�.r/; (33)

where  is given by (28),

a.�/D 2 const e�
2

�..nC1/=2��/�1.�/jc.�/j
�2.�2C Q�2/��=2

is a symbol of order .n� 3/=2, uniformly in � 2 C with Re � D .nC 1/=2, and

b.�/D 2 const e�
2

�..nC1/=2��/�1.�/jc.�/j
�2.�2C Q�2/��=2feit .�/� 1g

is a symbol of .n� 5/=2, uniformly in 0 < t � 2 and � 2 C with Re � D .nC 1/=2. The first integral in
(33) was analyzed in [Anker et al. 2011, Appendix C] and estimated there by

C

�
t�.n�1/=2 if n� 3;
t�1=2.1� logjt j/ if nD 2:

The second integral is easier to estimate for instance by Ct�.n�2/=2. This concludes the proof of
Theorem 3.2(ii)(b). �
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Remark 3.3. As far as local estimates of wave kernels are concerned, we might have used the Hadamard
parametrix [Hörmander 2007, §17.4] instead of spherical analysis.

Remark 3.4. The kernel analysis carried out in this section still holds for the operators D�� zD�z�eitD ,
provided that we assume Re � CRe z� D .nC 1/=2 in Theorem 3.2.

4. Dispersive estimates

In this section, we obtain Lq
0!Lq estimates for the operator W �

t D zD��eitD , which will be crucial for
our Strichartz estimates in next section. Let us split up its kernel w�t D w�;0t Cw�;1t as before. We will
handle the contribution of w�;0t , using the pointwise estimates obtained in Section 3A and the following
criterion (see for instance [Anker et al. 2011, Theorem 3.4]) based on the Kunze–Stein phenomenon:

Lemma 4.1. There exists a constant C > 0 such that, for every radial measurable function � on Hn and
for every 2� q <1 and f 2 Lq0.Hn/,

kf � �kLq � Cqkf kLq0
�Z C1

0

dr .sinh r/n�1j�.r/jq=2'0.r/
�2=q

:

For the second part w�;1t , we resume the Euclidean approach, which consists of interpolating analyti-
cally between L2! L2 and L1! L1 estimates for the family of operators

eW �;1
t D e�

2

�..nC1/=2��/�1.D/ zD
��eitD (34)

in the vertical strip 0� Re � � .nC 1/=2.

4A. Small-time dispersive estimates.

Theorem 4.2. Assume that 0 < jt j � 2, 2 < q <1, and � � .nC 1/.1=2� 1=q/. Then

k zD��eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if n� 3;
jt j�.1=2�1=q/.1� logjt j/1�2=q if nD 2:

Proof. We divide the proof into two parts, corresponding to the kernel decomposition wt D w0t Cw1t .
By applying Lemma 4.1 and using the pointwise estimates in Theorem 3.1(i), we obtain on one hand

kf �w0t kLq .
�Z C1

0

dr .sinh r/n�1'0.r/jw0t .r/jq=2
�2=q
kf kLq0

.
�Z C1

0

dr .1C r/q=2C1e�.q=2�1/�r
�2=q
kf kLq0

. kf kLq0 8f 2 Lq
0

:

On the other hand, in order to estimate the Lq
0!Lq norm of f 7! f �w1t , we proceed by interpolation

for the analytic family (34). If Re � D 0, then

kf � zw1t kL2 . kf kL2 8f 2 L2:
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If Re � D .nC 1/=2, we deduce from the pointwise estimates in Theorem 3.2(ii) that

kf � zw1t kL1 . jt j�.n�1/=2kf kL1 8f 2 L1:
By interpolation, we conclude for � D .nC 1/.1=2� 1=q/ that

kf �w1t kLq . jt j�.n�1/.1=2�1=q/kf kLq0 8f 2 Lq
0

: �

4B. Large-time dispersive estimate.

Theorem 4.3. Assume that jt j � 2, 2 < q <1, and � � .nC 1/.1=2� 1=q/. Then

k zD��eitDkLq0!Lq . jt j�3=2:
Proof. We divide the proof into three parts, corresponding to the kernel decomposition

wt D 1B.0;jt j=2/w0t C1HnnB.0;jt j=2/w0t Cw1t :

Estimate 1. By applying Lemma 4.1 and using the pointwise estimate in Theorem 3.1(ii), we obtain

kf � f1B.0;jt j=2/w0t gkLq .
�Z jt j=2

0

dr .sinh r/n�1'0.r/jw0t .r/jq=2
�2=q
kf kLq0

.
�Z jt j=2

0

dr .1C r/qC1e�.q=2�1/�r
�2=q

„ ƒ‚ …
<C1

jt j�3=2kf kLq0 8f 2 Lq
0

:

Estimate 2. By applying Lemma 4.1 and using the pointwise estimate in Theorem 3.1(i), we obtain

kf � f1HnnB.0;jt j=2/w0t gkLq .
�Z C1

jt j=2
dr .sinh r/n�1'0.r/jw0t .r/jq=2

�2=q
kf kLq0

.
�Z C1

jt j=2
dr rq=2C1e�.q=2�1/�r

�2=q

„ ƒ‚ …
.jt j�1

kf kLq0 8f 2 Lq
0

:

Estimate 3. We proceed by interpolation for the analytic family (34). If Re � D 0, then

kf � zw1t kL2 . kf kL2 8f 2 L2:
If Re � D .nC 1/=2, we deduce from Theorem 3.2(i) that

kf � zw1t kL1 . jt j�1kf kL1 8f 2 L1:
By interpolation, we obtain for � D .nC 1/.1=2� 1=q/ that

kf �w1t kLq . jt j�1kf kLq0 8f 2 Lq
0

:

We conclude the proof of Theorem 4.3 by summing up the previous estimates. �
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4C. Global dispersive estimates. As noticed in Remark 3.4, similar results hold for the operators
D�� zD�z�eitD .

Corollary 4.4. Let 2 < q <1 and �; z� 2 R such that � C z� � .nC 1/.1=2� 1=q/. Then

kD�� zD�z�eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1: (35)

In particular, if 2 < q <1 and � � .nC 1/.1=2� 1=q/, then

k zD��eitDkLq0!Lq C



 zD1�� e

itD

D





Lq
0!Lq .

�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1: (36)

These results hold in dimension n� 3. In dimension nD 2, there is an additional logarithmic factor in the
small time bound, which becomes jt j�.1=2�1=q/.1� logjt j/1�2=q .

Remark 4.5. On L2.Hn/, we know by spectral theory that

� eitD is a 1-parameter group of unitary operators,

� D�� zD�z� is a bounded operator if � C z� � 0.

Remark 4.6. Let us specialize our results for the wave equation (6). In this case, we have D Dp��,
and we may take zD DD. Let 2 < q <1 and � � .nC 1/.1=2� 1=q/. Then

kD��eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1 (37)

in dimension n� 3 and

kD��eitDkLq0!Lq .
�jt j�.1=2�1=q/.1� logjt j/1�2=q if 0 < jt j � 1;
jt j�3=2 if jt j � 1

in dimension nD 2. Let us compare (37) with the dispersive estimates by Metcalfe and Taylor [2011;
2012] in dimension nD 3. Actually, the weaker bound jt j�6.1=2�1=q/, obtained in [Metcalfe and Taylor
2011, §3] when jt j is large and 2 < q < 4, was improved in [Metcalfe and Taylor 2012] after the release
of a preprint version of the present paper. On the other hand, these authors are able to deal with the
endpoint case q D1, using local Hardy and BMO spaces on Hn.

5. Strichartz estimates

We shall assume n� 4 throughout this section and discuss the dimensions nD 3 and nD 2 in the final
remarks. Consider the linear equation (12) on Hn, whose solution is given by Duhamel’s formula:

u.t; x/D .cos tDx/f .x/C sin tDx
Dx

g.x/

„ ƒ‚ …
uhom.t;x/

C
Z t

0

ds
sin.t � s/Dx

Dx
F.s; x/

„ ƒ‚ …
uinhom.t;x/

:

Definition 5.1. A couple .p; q/ will be called admissible (see Figure 1) if .1=p; 1=q/ belongs to the
triangle n�

1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� n�1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o
: (38)
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0 1

1

1
2

1
2

1
2

� 1
n�1

1
p

1
q

Figure 1. Admissibility in dimension n� 4.

Theorem 5.2. Let .p; q/ and . zp; zq/ be two admissible couples, and let

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�
: (39)

Then the following Strichartz estimate holds for solutions to the Cauchy problem (12):

krR�HnukLpH��;q . kf kH1 CkgkLp0L2 CkF kL zp0H z�;zq0 : (40)

Proof. We shall prove the following estimate, which amounts to (40):

k zD��C1=2x u.t; x/kLpt Lqx Ck zD
���1=2
x @tu.t; x/kLpt Lqx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
: (41)

Consider the operator

Tf .t; x/D zD��C1=2x
e˙itDxp
Dx

f .x/;

initially defined from L2.Hn/ into L1.RIH� .Hn//, and its formal adjoint

T �F.x/D
Z C1

�1
ds zD��C1=2x

e�isDxp
Dx

F.s; x/;

initially defined from L1.RIH�� .Hn// into L2.Hn/. The T T � method consists in proving first the
Lp
0

.RILq0.Hn//! Lp.RILq.Hn// boundedness of the operator

T T �F.t; x/D
Z C1

�1
ds zD�2�C1x

e˙i.t�s/Dx
Dx

F.s; x/
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and of its truncated version

TF.t; x/D
Z t

�1
ds zD�2�C1x

e˙i.t�s/Dx
Dx

F.s; x/;

for every admissible couple .p; q/ and for every � � .nC 1/.1=2� 1=q/=2, and in decoupling next the
indices.

We may disregard the endpoint case .p; q/D .1; 2/, which is easily dealt with, using the boundedness
on L2.Hn/ of eitD (t 2 R) and zD��C1=2D�1=2 (� � 0). Thus, assume that .p; q/ is an admissible
couple that is different from the endpoints .1; 2/ and .2; 2.n� 1/=.n� 3//. It follows from (36) that the
norms kT T �F.t; x/kLpt Lqx and kTF.t; x/kLpt Lqx are bounded above by






Z

0<jt�sj<1
ds jt � sj�˛kF.s; x/k

L
q0

x






L
p
t

C





Z

jt�sj�1
ds jt � sj�3=2kF.s; x/k

L
q0

x






L
p
t

; (42)

where ˛ D .n � 1/.1=2 � 1=q/ 2 .0; 1/. On one hand, the convolution kernel jt � sj�3=21fjt�sj�1g
defines obviously a bounded operator from Lp1.R/ to Lp2.R/ for all 1 � p1 � p2 �1 in particular
from Lp

0

.R/ to Lp.R/ since p � 2. On the other hand, the convolution kernel jt � sj�˛1f0<jt�sj�1g
with 0 < ˛ < 1 defines a bounded operator from Lp1.R/ to Lp2.R/ for all 1 < p1; p2 <1 such that
0� 1=p1� 1=p2 � 1�˛ in particular from Lp

0

.R/ to Lp.R/ since p � 2 and 2=p � ˛.
At the endpoint .p; q/D .2; 2.n� 1/=.n� 3//, we have ˛ D 1. Thus, the previous argument breaks

down and is replaced by the refined analysis carried out in [Keel and Tao 1998]. Notice that the problem
lies only in the first part of (42) and not in the second one, which involves an integrable convolution
kernel on R.

Thus, T T � and T are bounded from Lp
0

.RILq0.Hn// to Lp.RILq.Hn// for every admissible couple
.p; q/. As a consequence, T � is bounded from Lp

0

.RILq0.Hn// to L2.Hn/ and T is bounded from
L2.Hn/ to Lp.RILq.Hn//. We deduce in particular that

k zD��C1=2x .cos tDx/f .x/kLpt Lqx . k zDx�C1=2e
˙itDxf .x/kLpt Lqx . kD

1=2
x f .x/kL2x

and



 zD��C1=2x

sin tDx
Dx

g.x/




L
p
t L

q
x

. k zD��C1=2x D�1x e˙itDxg.x/kLpt Lqx . kD
�1=2
x g.x/kL2x :

In summary,

k zD��C1=2x uhom.t; x/kLpt Lqx . kD
1=2
x f .x/kL2x CkD

�1=2
x g.x/kL2x : (43)

We next decouple the indices in the Lp
0

Lq
0 ! LqLq estimate of T T � and T. Let .p; q/ ¤ . zp; zq/

be two admissible couples, and let � � .nC 1/.1=2� 1=q/=2 and z� � .nC 1/.1=2� 1=zq/=2. Since T
and T � are separately continuous, the operator

T T �F.t; x/D
Z C1

�1
ds zD���z�C1x

e˙i.t�s/Dx
Dx

F.s; x/
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is bounded from L zp0.RILzq0.Hn// to Lp.RILq.Hn//. According to [Christ and Kiselev 2001], this result
remains true for the truncated operator

TF.t; x/D
Z t

�1
ds zD���z�C1x

e˙i.t�s/Dx
Dx

F.s; x/

and hence for
zTF.t; x/D

Z t

0

ds zD���z�C1x

sin.t � s/Dx
Dx

F.s; x/

as long as p and zp are not both equal to 2. For the remaining case, where p D zp D 2 and 2 < q ¤ zq �
2.n� 1/=.n� 3/, we argue as in the proof of [Anker et al. 2011, Theorem 6.3] by resuming part of the
bilinear approach in [Keel and Tao 1998]. Hence,

k zD��C1=2x uinhom.t; x/kLpt Lqx . k zD
z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
(44)

for all admissible couples .p; q/ and . zp; zq/.
The Strichartz estimate

k zD��C1=2x u.t; x/kLpt Lqx . kD
1=2
x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x

is obtained by summing up the homogeneous estimate (43) and the inhomogeneous estimate (44). As far
as it is concerned, the Strichartz estimate of

@tu.t; x/D�.sin tDx/Dxf .x/C .cos tDx/g.x/C
Z t

0

ds Œcos.t � s/Dx�F .s; x/

is obtained in the same way and is actually easier. More precisely, we consider this time the operator

zT f .t; x/D zD��x e˙itDxf .x/
and its adjoint

zT �F.x/D
Z C1

�1
ds zD��x e�isDxF.s; x/: �

By using the Sobolev embedding theorem, Theorem 5.2 can be extended to all couples .1=p; 1=q/ and
.1= zp; 1=zq/ in the square �

0; 1
2

�� �0; 1
2

�[ ˚�0; 1
2

�	
: (45)

Corollary 5.3. Let .p; q/ and . zp; zq/ be two couples corresponding to the square (45), and let �; z� 2 R.
Assume that � � �.p; q/, where

�.p; q/D nC1
2

�
1

2
� 1
q

�
Cmax

n
0;
n�1
2

�
1

2
� 1
q

�
� 1
p

o
D

8
<̂

:̂

nC1
2

�
1

2
� 1
q

�
if 1
p
� n�1

2

�
1

2
� 1
q

�
;

n
�
1

2
� 1
q

�
� 1
p

if 1
p
� n�1

2

�
1

2
� 1
q

�
;

and similarly, z� � �. zp; zq/ .see Figure 2/. Then the conclusion of Theorem 5.2 holds for solutions to the
Cauchy problem (12). More precisely, we have again the Strichartz estimate

krR�HnukLpH��;q . kf kH1 CkgkL2 CkF kL zp0H z�;zq0 ; (40)
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Figure 2. Case n� 4.

which amounts to

k zD��C1=2x u.t; x/kLpt Lqx Ck zD
���1=2
x @tu.t; x/kLpt Lqx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
: (41)

Proof. We may restrict to the limit cases � D �.p; q/ and z� D �. zp; zq/. Define Q by

1

Q
D

8
<̂

:̂

1

q
if 1
p
� n�1

2

�
1

2
� 1
q

�
;

1

2
� 2

n�1
1

p
if 1
p
� n�1

2

�
1

2
� 1
q

�

and zQ similarly. Since .p;Q/ and . zp; zQ/ are admissible couples, it follows from Theorem 5.2 and more
precisely from (41) that

k zD�†C1=2x u.t; x/k
L
p
t L

Q
x
Ck zD�z†�1=2x @tu.t; x/kLpt LQx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z†�1=2
x F.t; x/k

L
zp0

t L
zQ0

x

; (46)

where †D .nC 1/.1=2� 1=Q/=2 and z†D .nC 1/.1=2� 1= zQ/=2. Since � �†D n.1=Q� 1=q/, we
have

k zD��C1=2x u.t; x/kLpt Lqx . k zD
�†C1=2
x u.t; x/k

L
p
t L

Q
x

(47)

according to the Sobolev embedding theorem (Proposition 2.2). Similarly,

k zD z†�1=2x F.t; x/k
L
zp0

t L
zQ0

x

. k zDz��1=2x F.t; x/k
L
zp0

t L
zq
x
: (48)

We conclude by combining (46), (47), and (48). �
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Figure 3. Case nD 3.

Remark 5.4. Theorem 5.2 and Corollary 5.3 hold true in dimension nD 3 with the same proofs. Notice
that the endpoint .p; q/ D .2;1/ is excluded (see Figure 3). These results hold in particular for the
3-dimensional wave equation (6) and include the Strichartz estimates obtained by Metcalfe and Taylor
[2011, §4] in the smaller region

n�
1

p
;
1

q

�
2
h
0;
1

2

i
�
�
0;
1

2

i ˇ̌
ˇ 1
p
� 3

�
1

2
� 1
q

�o
n
n�
1

2
;
1

3

�o
:

0 1

1

1
2

1
2

1
4

1
p

1
q

Figure 4. Case nD 2.
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Remark 5.5. The analysis carried out in this section still holds in dimension nD 2 except for the first
convolution kernel in (42), which becomes

jt � sj�˛.1� logjt � sj/ˇ1f0<jt�sj<1g

with ˛ D 1=2 � 1=q and ˇ D 2.1=2 � 1=q/. Consequently, the admissibility region in Theorem 5.2
becomes n�

1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
>
1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o

and the inequalities � � �.p; q/, z� � �. zp; zq/ in Corollary 5.3 (see Figure 4) become strict in the triangle
n�
1

p
;
1

q

�
2
�
0;
1

4

�
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� 1
2

�
1

2
� 1
q

�o
:

6. Global well-posedness in Lp.R; Lq.Hn//

In this section, following the classical fixed-point scheme, we use the Strichartz estimates obtained in
Section 5 to prove global well-posedness for the semilinear equation

�
@2t u.t; x/CD2xu.t; x/D F.u.t; x//
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/

(49)

on Hn with power-like nonlinearities

F.u/� juj
 .
 > 1/

and small initial data f and g. We assume n� 3 throughout the section and discuss the 2-dimensional
case in the final remark. The statement and proof of our result involve the powers


1 D 1C 3

n
; 
2 D 1C 2

n�1
2
C 2

n�1
; 
conf D 1C 4

n�1;


3 D

8
ˆ̂<
ˆ̂:

1

n

�
nC6
2
C 2

n�1 C
r
4nC

�
6�n
2
C 2

n�1
�2 �

if n� 5;

1C 2
n�1
2
� 1

n�1
if n� 6;


4 D
8
<
:
1C 4

n�2 if n� 5;
n�1
2
C 3

nC1 �
r�

n�3
2
C 3

nC1
�2
� 4 n�1

nC1 if n� 6;

(50)

which are computed in Table 1, and the curves

�1.
/D nC1
4
� .nC1/.nC5/

8n

1


�nC1
2n

; �2.
/D nC1
4
� 1


�1; and �3.
/D n

2
� 2


�1: (51)

The powers 
1, 
2, and 
conf and the curves C1, C2, and C3 parametrized by �1, �2, and �3 occur
already in the Euclidean setting. More precisely, they are involved in the conditions, illustrated in Figure 5,



972 JEAN-PHILIPPE ANKER AND VITTORIA PIERFELICE

n 
1 
2 
conf 
3 
4

3 2 2 3 11Cp73
6

' 3:26 5

4 7
4
D 1:75 25

13
' 1:92 7

3
' 2:33 5

2
' 2:5 3

5 8
5
' 1:6 9

5
' 1:8 2 6Cp21

5
' 2:12 7

3
' 2:33

6 3
2
D 1:5 49

29
' 1:69 9

5
D 1:8 43

23
' 1:87 2

� 7 < 
2 < 
conf < 
3 < 
4 < 2

Table 1. Critical powers.

of minimal regularity � on the initial data f and g that are needed in order to ensure local well-posedness
of (49). We refer again to [Kapitanski 1994; Lindblad and Sogge 1995; Keel and Tao 1998] for more
details. Notice that, in dimension nD 3, 
1 coincides with 
2 and there is no curve C1.

As mentioned in the introduction, global well-posedness of (49) on Rn requires additional conditions.
Recall that smooth solutions with small-amplitude blow up or not depending on whether 
 is smaller or
larger than the critical power 
0 defined in (5).

In Section 5, we have obtained Strichartz estimates on Hn for a range of admissible couples that is
wider than on Rn. As a consequence, we deduce in this section stronger well-posedness results for (49).
In particular, we prove global well-posedness for small initial data in H� .Hn/�H��1.Hn/ if 1< 
 < 
1
and � > 0 is small. Thus, there is no blow-up for small powers 
 > 1 on Hn in sharp contrast with Rn.

0

1

1
2

n
2

C1
C2

C3



1 
2 
conf

�

Figure 5. Regularity for local well-posedness on Rn in dimension n� 3.
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0

1

1
2

n
2

C1
C2

C3



1 
2 
4
conf

�

Figure 6. Regularity for global well-posedness on Hn in dimension n� 3.

Theorem 6.1. Assume that the nonlinearity F satisfies

jF.u/j � C juj
 and jF.u/�F.v/j � C.juj
�1Cjvj
�1/ju� vj: (52)

Then in dimension n � 3, (49) is globally well posed for small initial data in H� .Hn/ �H��1.Hn/
provided that 8

ˆ̂̂
<
ˆ̂̂
:

� D 0C if 1 < 
 � 
1;
� D �1.
/ if 
1 < 
 � 
2;
� D �2.
/ if 
2 � 
 � 
conf;

� D �3.
/ if 
conf � 
 � 
4;
(53)

where � D 0C stands for any � > 0 sufficiently close to 0 (see Figure 6). More precisely, in each case,
there exist 2� p; q <1 and ı; " > 0 such that, for any initial data .f; g/ 2H� .Hn/�H��1.Hn/ with
norm � ı, the Cauchy problem (49) has a unique solution u with norm � " in the Banach space

X D C.RIH� .Hn//\C 1.RIH��1.Hn//\Lp.RILq.Hn//:

Remark 6.2. In dimension nD3, 
1 coincides with 
2, the second and third conditions in (53) boil down to

� � �2.
/ if 
1 D 
2 < 
 � 
conf;

and there is no curve C1 in Figure 6.
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Proof of Theorem 6.1 for 1 < 
 � 
conf. We resume the fixed-point method based on Strichartz estimates.
Define uDˆ.v/ as the solution to the Cauchy problem

�
@2t u.t; x/CD2xu.t; x/D F.v.t; x//;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(54)

which is given by Duhamel’s formula:

u.t; x/D .cos tDx/f .x/C sin tDx
Dx

g.x/C
Z t

0

ds
sin.t � s/Dx

Dx
F.s; x/:

On one hand, according to Theorem 5.2, the Strichartz estimate

ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
Cku.t; x/kLpt Lqx

. kf .x/kH�
x
Ckg.x/kH��1

x
CkF.v.t; x//k

L
zp0

t H
�Cz��1;zq0

x

holds whenever 8
<
:
.p; q/ and . zp; zq/ are admissible couples;

� � nC1
2

�
1

2
� 1zq

�
and z� � nC1

2

�
1

2
� 1zq

�
:

On the other hand, by our nonlinear assumption (52) and by the Sobolev embedding theorem (Proposition
2.2), we have

kF.v.t; x//k
L
zp0

t H
�Cz��1;zq0

x
. kjv.t; x/j
k

L
zp0

t H
�Cz��1;zq0

x
. kjv.t; x/j
k

L
zp0

t L
zQ0

x

. kv.t; x/k

L

 zp0

t L

 zQ0

x

;

provided that
� C z� � 1; 1 < zQ0 � zq0 <1; and n

zQ0 �
n

zq0 � 1� � � z�: (55)

In order to remain within the same function space, we require in addition that


 zp0 D p and 
 zQ0 D q:
In summary,

ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
Cku.t; x/kLpt Lqx

� C ˚kf .x/kH�
x
Ckg.x/kH��1

x
Ckvk


L
p
t L

q
x

	
(56)

if the following set of conditions is satisfied:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

(a) .p; q/ and . zp; zq/ are admissible couples;

(b) � � nC1
2

�
1

2
� 1
q

�
, z� � nC1

2

�
1

2
� 1zq

�
, and � C z� � 1;

(c)



p
C 1

zp D 1;

(d) 1� 

q
C 1zq � 1C

1���z�
n

;

(e) q > 
:

(57)
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For such a choice, ˆ maps the Banach space

X D C.RIH� .Hn//\C 1.RIH��1.Hn//\Lp.RILq.Hn//;
equipped with the norm

kukX D ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
CkukLpt Lqx ;

into itself. Let us show that ˆ is a contraction on the ball

X" D fu 2X j kukX � "g;
provided that " > 0 and kf kH� CkgkH��1 are sufficiently small. Let v; Qv 2X , uDˆ.v/, and QuDˆ. Qv/.
By resuming the arguments leading to (56) and by using in addition Hölder’s inequality, we obtain the
estimate

ku� QukX � CkF.v/�F. Qv/k
L
zp0

t L
zQ0

x

� Ckfjvj
�1Cj Qvj
�1gjv� Qvjk
L
zp0

t L
zQ0

x

� C ˚kvk
�1
L
p
t L

q
x
CkQvk
�1

L
p
t L

q
x

	kv� QvkLpt Lqx
� C ˚kvk
�1X CkQvk
�1X

	kv� QvkX : (58)

Thus, if we assume kvkX � ", k QvkX � ", and kf kH� CkgkH��1 � ı, then (56) and (58) yield

kukX � CıCC"
 ; k QukX � CıCC"
 ; and ku� QukX � 2C"
�1kv� QvkX :
Hence,

kukX � "; k QukX � "; and ku� QukX � 1
2
kv� QvkX

if C"
�1 � 1
4

and Cı � 3
4
". One concludes by applying the fixed-point theorem in the complete metric

space X".
It remains for us to check that the set of conditions (57) can be fulfilled in the various cases (53).

Notice that we may assume the following equalities in (57)(b):

� D nC1
2

�
1

2
� 1
q

�
and z� D nC1

2

�
1

2
� 1zq

�
:

Thus, (57) reduces to the set of conditions:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

(a) .p; q/ and . zp; zq/ are admissible couples;

(b) 1

q
C 1zq �

n�1
nC1;

(c)



p
C 1

zp D 1;

(d)(i)



q
C 1zq � 1;

(d)(ii)
�
2n

n�1
 �
nC1
n�1

�
1

q
C 1zq �

nC1
n�1 ;

(e) q > 
:

(59)
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We shall discuss these conditions first in high dimensions and next in low dimensions.

I Assume that n� 6.
Firstly notice that 
conf < 2. As 
 � 
conf and q > 2, (59)(e) is trivially satisfied. Secondly, we claim

that (59)(a) and (59)(c) reduce to the single condition




q
C 1zq �


 C 1
2
� 2

n�1 (60)

in the square

RD
h
1

2
� 1

n�1;
1

2

�
�
h
1

2
� 1

n�1;
1

2

�
: (61)

More precisely, if .p; q/ and . zp; zq/ are admissible couples satisfying (59)(c), then .1=q; 1=zq/ is a point in
the square R satisfying (60). Conversely, if .1=q; 1=zq/ 2R satisfies (60), then there exists a 1-parameter
family of admissible couples .p; q/ and . zp; zq/ satisfying (59)(c). All these claims can be deduced from
Figure 7.

1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1
2


1
2


1� 

2

1� 

2

1
2

� 1



1
n�1

1
2

� 2�

n�1



p

C 1
zp D 1



q

C 1
zq D 
C1

2
� 2
n�1

Figure 7. Case 
 < 2.
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(62)(b)

(62)(d)(i)

(62)(d)(ii)

�
1
q1
; 1zq1

�

Figure 8. Sector S .

Thirdly, as 
 � 
conf, (60) follows actually from (59)(d)(i). Fourthly, we claim that (59)(b) follows
from (59)(d)(i) and (59)(d)(ii). Consider indeed the three lines

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

(b) 1

q
C 1zq D

n�1
nC1;

(d)(i)



q
C 1zq D 1;

(d)(ii)
�
2n

n�1
 �
nC1
n�1

�
1

q
C 1zq D

nC1
n�1

(62)

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 9. Case 1 < 
 � 1C 2

n
.
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�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 10. Case 1C 2

n
� 
 � 1C 2

n�1 .

in the plane with coordinates .1=q; 1=zq/. On one hand, they meet at the same point, whose coordinates are
8
<̂

:̂

1

q1
D 2

nC1
1


�1;
1

zq1 D
n�1
nC1 �

2

nC1
1


�1:
(63)

On the other hand, the coefficients of 1=q occur in increasing order in (62):

1 < 
 <
2n

n�1
 �
nC1
n�1 :

Hence, (59)(b) follows from (59)(d)(i) and (59)(d)(ii), which define the sector S with vertex .1=q1; 1=zq1/
and edges (62)(d)(i) and (62)(d)(ii) depicted in Figure 8.

In summary, the set of conditions (59) reduce to the three conditions (59)(d)(i), (59)(d)(ii), and (61) in
the plane with coordinates .1=q; 1=zq/. In order to conclude, we examine the possible intersections of the

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 11. Case 1C 2

n�1 � 
 � 
1.
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�
1
q1
; 1zq1

�

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

Figure 12. Case 
1 < 
 � 
2.

sector S defined by (59)(d)(i) and (59)(d)(ii) with the square R defined by (61), and we determine in
each case the minimal regularity � D .nC 1/.1=2� 1=q/=2.

� Case 1: 1 < 
 � 
1.
In the following three subcases, the minimal regularity condition is � > 0 as 1=q > 1=2 can be chosen

arbitrarily close to 1
2

:

ı Subcase 1.1: 1 < 
 � 1C 2

n
(see Figure 9).

ı Subcase 1.2: 1C 2

n
� 
 � 1C 2

n�1 (see Figure 10).

ı Subcase 1.3: 1C 2

n�1 � 
 � 
1 (see Figure 11).

� Case 2: 
1 < 
 � 
2 (see Figure 12).
The minimal regularity � D �1.
/ is reached at the boundary point

�
1

q
;
1

zq
�
D
�
nC5
4n

1


�.nC1/=2n;
1

2
� 1

n�1
�
:

� Case 3: 
2 � 
 � 
conf (see Figure 13).

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 13. Case 
2 � 
 � 
conf.
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;

1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1



1



1
2


1
2


1
2

� 1



1
n�1

1
2

� 2



1
n�1



p

C 1
zp D 1



q

C 1
zq D 
C1

2
� 2
n�1

Figure 14. Case 
 � 2.

The minimal regularity � D �2.
/ is reached at the vertex .1=q1; 1=zq1/. In the limit case 
 D 
conf,
notice that all indices 1=q1, 1=zq1, 1=p1 D .n� 1/.1=2� 1=q1/=2, and 1= zp1 D .n� 1/.1=2� 1=zq1/=2
become equal to the Strichartz index .n� 1/=2.nC 1/D 1=2� 1=.nC 1/.

�
1
q1
; 1zq1

�

Figure 15. Case 
1 < 
 � 
2.
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�
1
q1
; 1zq1

�

Figure 16. Subcase 
2 � 
 < 2.

This concludes the proof of Theorem 6.1 for 1 < 
 � 
conf and n� 6.

I Assume that nD 4 or 5.
Let us adapt the proof above. If 
 � 2, (59)(e) must be checked and (59)(a) and (59)(c) reduce again

to (60) but this time in the slightly larger square

RD
h
1

2
� 1

n�1;
1

2

�
�
h
1

2
� 1

n�1;
1

2

i
(64)

(see Figure 14). Thus, (59) reduces to
�

(59)(d)(i), (59)(d)(ii), and (64) if 1 < 
 < 2;
(59)(d)(i), (59)(d)(ii), (59)(e), and (64) if 2� 
 � 
conf:

The case-by-case study of the intersection S \R is carried out as above and yields the same results. The
only difference lies in the fact that the sector S exits the square R through the top edge instead of the left
edge (see Figures 15, 16, and 17 below). Notice that (59)(e) is satisfied as q1 > 
 when 2� 
 � 
conf.

� Case 2: 
1 < 
 � 
2 (see Figure 15).

� Case 3: 
2 � 
 < 
conf.

ı Subcase 3.1: 
1 < 
 � 
2 (see Figure 16).

ı Subcase 3.2: 
2 � 
 < 2 (see Figure 17).

This concludes the proof of Theorem 6.1 for 1 < 
 � 
conf and nD 4; 5.

I Assume that nD 3.

�
1
q1
; 1zq1

�

Figure 17. Subcase 2� 
 � 
conf.
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Figure 18. Case 
 D 2.

The proof works the same except that the square becomes

RD
(�
0; 1
2

�� �0; 1
2

�
if 1 < 
 < 2;

�
0; 1
2

�� �0; 1
2

�
if 2� 
 � 
conf

(65)

and that .1=q1; 1=zq1/ enters the square R through the vertex
�
1
2
; 0
�

instead of the bottom edge. This
happens when 
 D 2 (see Figure 18), and in this case, (59)(e) is satisfied. It is further satisfied when
2 < 
 � 
conf as q1 > 
 .

This concludes the proof of Theorem 6.1 for 1 < 
 � 
conf. �

Proof of Theorem 6.1 for 
conf � 
 � 
4. We resume the fixed-point method above, using Corollary 5.3
instead of Theorem 5.2, and obtain in this way the set of conditions

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

(a) 2� p �1 and 2� q <1 satisfy 1

p
� n�1

2

�
1

2
� 1
q

�
;

(ã) 2� zp �1 and 2� zq <1 satisfy 1

zp �
n�1
2

�
1

2
� 1zq

�
;

(b) � � n
�
1

2
� 1
q

�
� 1
p

, z� � n
�
1

2
� 1zq

�
� 1zp , and � C z� � 1;

(c)



p
C 1

zp D 1;

(d) 1� 

q
C 1zq � 1C

1���z�
n

;

(e) q > 
:

(66)

We may assume that

� D n
�
1

2
� 1
q

�
� 1
p

and z� D n
�
1

2
� 1zq

�
� 1zp :

With this choice, the conditions

� C z� � 1 and



q
C 1zq � 1C

1���z�
n

become
1

p
C 1

zp C 1� n
�
1� 1

q
� 1zq

�
(67)
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and
1

p
C 1

zp C 1� .
 � 1/
n

q
: (68)

Notice moreover that (67) follows from (68), combined with 
=qC1=zq� 1, and that (68) can be rewritten
as follows, using (66)(c):

1

p
C n
q
� 2


�1:

Thus, (66) reduces to the set of conditions

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

(a) 2� p �1 and 2� q <1 satisfy 1

p
� n�1

2

�
1

2
� 1
q

�
;

(ã) 2� zp �1 and 2� zq <1 satisfy 1

zp �
n�1
2

�
1

2
� 1zq

�
;

(c)



p
C 1

zp D 1;

(d)(i)



q
C 1zq � 1;

(d)(ii)
1

p
C n
q
� 2


�1;
(e) q > 
:

(69)

Among these conditions, consider first (69)(a) and (69)(d)(ii). In the plane with coordinates .1=p; 1=q/,
the two lines 8

<̂

:̂

(a) 1

p
C n�1

2

1

q
D n�1

4
;

(d)(ii) 1

p
C n
q
D 2


�1
(70)

0

1
2

1
2

1
p

1
q

�
1
p2
; 1
q2

�
1
2

� 1
n�1

(70)(a)

(70)(d)(ii)

2
n.
�1/

Figure 19. Case 4: 
conf � 
 � 
3.
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0

1
2

1
2

1
p

1
q

(70)(a)

(70)(d)(ii)

2
n.
�1/

1
n

�
2

�1 � 1

2

�

Figure 20. Case 5: 
3 � 
 � 
4.

meet at the point .1=p2; 1=q2/ given by
8
<̂

:̂

1

p2
D n�1
nC1

�
n

2
� 2


�1
�
;

1

q2
D 1

nC1
�
4


�1 �
n�1
2

�
:

(71)

As 
 varies between 
conf and 
3, this point moves on the line (70)(a) between the Strichartz point
.1=2�1=.nC1/; 1=2�1=.nC1// and the Keel–Tao endpoint .1=2; 1=2�1=.n�1//, where it exits the
square

�
0; 1
2

�� �0; 1
2

�
. Thus, (69)(a) and (69)(d)(ii) determine the regions depicted in Figure 19 and in

Figure 20. For later use, notice that the minimal regularity

� D n
�
1

2
� 1
q

�
� 1
p
� �3.
/ (72)

is reached on the boundary line (70)(d)(ii) and that

p2 < 2
: (73)

This inequality holds indeed when 
 D 
conf, and it remains true as 
 increases while p2 decreases.
Let us next discuss all conditions (69), first in high dimensions and next in low dimensions.

I Assume that n� 6.
Firstly, notice that (69)(e) is trivially satisfied in this case. On one hand, we have indeed 
 � 
4 � 2.

On the other hand, it follows from (69)(d)(ii) that

1

q
� 2

n.
�1/ �
2

n.
conf�1/ D
1

2

�
1� 1

n

�
<
1

2
:

Hence, 
 � 2 < q.
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Secondly, we claim that (69)(a), (69)(ã), (69)(c), and (69)(d)(ii) reduce to the conditions

8
<̂

:̂

(a)



q
C 1zq �


 C 1
2
� 2

n�1;

(d)(ii)



q
C n�1

2n

1

q
� nC3

4n
C 2

n

1


�1
(74)

in the rectangle

RD
�
0;
1

n

�
2


�1 �
1

2


�i
�
�
0;
1

2
� 2�

n�1

i
: (75)

Actually, they even reduce to the single condition (74)(d)(ii) if 
 � 
3. All these claims are obtained by
examining Figures 21 and 22 as we did with Figure 7 in the case 
 � 
conf.

1
p
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1
q

1
zq

�
1
p2
; 1
q2

�

�
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; 1zq2

� �
1
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; 1zp2

�

�
1
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; 1zq2

�

1
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1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2


1� 

2

1
n

�
2

�1 � 1

2


�

1
2

� 2�

n�1

(69)(c)

(70)(a)

(70)(d)(ii)

(76)(a)

(76)(d)(ii)

Figure 21. Case 4: 
conf � 
 � 
3.



986 JEAN-PHILIPPE ANKER AND VITTORIA PIERFELICE

1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2
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n�1

1
2


1� 

2

1
n

�
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�1 � 1

2

�

1
n

�
2

�1 � 1

2


�

1
2

� 2�

n�1

(69)(c)

(70)(d)(ii)(76)(d)(ii)

Figure 22. Case 5: 
3 � 
 � 
4.

(76)(a)

(76)(d)(i)

(76)(d)(ii)

�
1
q2
; 1zq2

�

�
1
q3
; 1zq3

�

Figure 23. Convex region C .
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�
1
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; 1zq2

�
�
1
q3
; 1zq3

�

1
n

�
2

�1 � 1
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�

1
2

� 2�

n�1

(76)(a)
(76)(d)(i)

(76)(d)(ii)

Figure 24. Case 4: 
conf � 
 � 
3.

Thirdly, in the plane with coordinates .1=q; 1=zq/, the conditions (69)(d)(i), (74)(a), and (74)(d)(ii)
define the convex region C in Figure 23 with edges

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

(a)



q
C 1zq D


 C 1
2
� 2

n�1;

(d)(i)



q
C 1zq D 1;

(d)(ii)



q
C n�1

2n

1

zq D
nC3
4n
C 2

n

1


�1

(76)

0

1
q

1
zq

�
1
q3
; 1zq3

�

1
n

�
2

�1 � 1

2


�

1
2

� 2�

n�1

(76)(d)(i)

(76)(d)(ii)

Figure 25. Case 5: 
3 � 
 � 
4.
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and with vertices given by
8
<̂

:̂

1

q2
D 4

nC1
1


�1 �
1

2

n�1
nC1;

1

zq2 D
n

nC1
 �
4

nC1
1


�1 C
1

2
� 2

n�1 �
4

nC1;
1

q3
D 4

nC1
1


�1 �
1

2

nC3
nC1

1



;

1

zq3 D
3

2

n�1
nC1 �

4

nC1
1


�1:
(77)

In order to conclude, it remains for us to determine the possible intersections of the convex region C
above with the rectangleR defined by (75) and in each case the minimal regularity �Dn.1=2�1=q/�1=p.

� Case 4: 
conf � 
 � 
3 (see Figure 24).

� Case 5: 
3 � 
 � 
4 (see Figure 25).
In both cases, the minimal regularity � D �3.
/ is reached when .1=p; 1=q/ and .1=q; 1=zq/ lie on the

edges (70)(d)(ii) and (76)(d)(ii). See Figures 21 and 22. This concludes the proof of Theorem 6.1 for

conf < 
 � 
4 and n� 6.

I Assume that 3� n� 5.
Then 
 � 
conf � 2, and Figures 21 and 22 become Figures 26 and 27, respectively. Consequently,

the four conditions (69)(a), (69)(ã), (69)(c), and (69)(d.ii) reduce again to the two conditions (74)(a)

1
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1
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1
zq
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�
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1
2

1
2

1
2

� 1
n�1

1



1
2


1
2

� 2
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1



1
n

�
2

�1 � 1

2


�

(69)(c)

(70)(a)

(70)(d)(ii)

(76)(a)

(76)(d)(ii)

Figure 26. Case 4: 
conf � 
 � 
3.
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1
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�
2

�1 � 1




�

1
n

�
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�1 � 1
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�

(69)(c)

(70)(d)(ii)(76)(d)(ii)

Figure 27. Case 5: 
3 � 
 � 
4.
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1
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1
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; 1zq3

�

1
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�1 � 1
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Figure 28. Case 4: 
conf � 
 � 
3.
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0

1
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1
q

1
zq

�
1
q3
; 1zq3

�

1
n

�
2

�1 � 1

2


�

(76)(d)(i)

(76)(d)(ii)

Figure 29. Case 5: 
3 � 
 � 
4.

and (74)(d)(ii) if 
conf � 
 � 
3, and actually to the single condition (74)(d)(ii) if 
3 � 
 � 
4, but this
time in the rectangle

RD
�
0;
1

n

�
2


�1 �
1

2


�i
�
�
0;
1

2

i
: (78)

Moreover, (69)(e) is satisfied as 1=q � .2=.
 � 1/� 1=2
/=n < 1=
 .
We conclude again by examining the possible intersections C \R of the convex region defined by

(69)(d)(i), (74)(a), and (74)(d)(ii) with the rectangle (78) and by determining in each case the minimal
regularity � D n.1=2� 1=q/� 1=p.

� Case 4: 
conf � 
 � 
3 (see Figure 28).

� Case 5: 
3 � 
 � 
4 (see Figure 29).

In both cases, the minimal regularity � D �3.
/ is reached again when .1=p; 1=q/ and .1=q; 1=zq/ lie
on the edges (70)(d)(ii) and (76)(d)(ii). See Figures 26 and 27. This concludes the proof of Theorem 6.1
for 
conf < 
 � 
4 and 3� n� 5. �

0

1

1 2 3

1
2

1
4

zC1
C2

C3



conf D 5

�

Figure 30. Regularity for global well-posedness on H2.
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Remark 6.3. In dimension nD 2, the statement of Theorem 6.1 holds true with (53) replaced by
8
ˆ̂̂
<
ˆ̂̂
:

� D 0C if 1 < 
 � 2;
� D z�1.
/C if 2� 
 � 3;
� D �2.
/ if 3 < 
 < 5;
� D �3.
/C if 5� 
 <1;

(79)

where z�1.
/D 3=4� 3=2
 . Notice that the condition q > 
 is not redundant if 2 < 
 < 3 and that it is
actually responsible for the curve zC1.

Remark 6.4. In dimension nD 3, Metcalfe and Taylor [2011] obtain a global existence result beyond

 D 
4. In [Anker and Pierfelice � 2014], we extend the results of our present paper to Damek–Ricci
spaces as we did for the Schrödinger equation in [Anker et al. 2011] and for the shifted wave equation in
[Anker et al. 2014], and we also discuss the case 
 > 
4 in this more general setting.

Appendix A

In this appendix, we collect some lemmas in Fourier analysis on R, which are used in the kernel analysis
carried out in Section 3.

Lemma A.1. Consider the oscillatory integral

I.t; x/D
Z C1

�1
d� a.�/eit�.�/

where the phase is given by

�.�/D
p
�2C �2� x�

t

.recall that � is a fixed constant > 0/ and the amplitude a 2 C1c .R/ has the behavior at the origin

a.�/D O.�2/: (A-1)

Then

jI.t; x/j. 1Cjxj
.1Cjt j/3=2 8jxj � jt j

2
:

Proof. Let us compute the first two derivatives

�0.�/D �p
�2C�2 �

x

t
and �00.�/D �2.�2C �2/�3=2: (A-2)

The phase � has a single stationary point:

�0 D � x
t

�
1� x

2

t2

��1=2
; (A-3)

which remains bounded under our assumption jxj � jt j=2:

j�0j � �p
3
� �: (A-4)
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For later use, let us compute

�.�0/D �
�
1� x

2

t2

�1=2
and �00.�0/D ��1

�
1� x

2

t2

�3=2
:

Since �00 > 0, we can perform a global change of variables �$ � on R so that

�.�/��.�0/D �2:
Specifically,

�D �.�/.���0/;
where

�.�/D
�Z 1

0

ds .1� s/�00�.1� s/�0C s�
��1=2

:

This way, our oscillatory integral becomes

I.t; x/D eit�.�0/
Z

R

d� Qa.�/e.�1Cit/�2 ;
where

Qa.�/D d�

d�
a.�.�//e�

2

is again a smooth function with compact support whose derivatives are controlled uniformly in t and x as
long as jxj � jt j=2. Using Taylor’s formula, let us expand

Qa.�/D
3X

jD0
Qaj�j C Qa4.�/�4;

where

Qa0 D
�

2

�00.�0/
�1=2

a.�0/D O.�20/D O
�
x2

t2

�
;

the other constants Qa1, Qa2, and Qa3, and the function Qa4.�/, as well as its derivatives, are bounded uniformly
in t and x. Let us split up accordingly

I.t; x/D
4X

jD0
Ij .t; x/;

where
Ij .t; x/D Qaj eit�.�0/

Z

R

d��j e.�1Cit/�2 .j D 0; 1; 2; 3/
and

I4.t; x/D eit�.�0/
Z

R

d� Qa4.�/�4e.�1Cit/�2 :

The first and third expressions are handled by elementary complex integration:

I0.t; x/D Qa0
p
�eit�.�0/.1� i t/�1=2 D O

�
x2

t2.1Cjt j/1=2
�
D O

� 1Cjxj
.1Cjt j/3=2

�
;

I2.t; x/D Qa2
p
�

2
eit�.�0/.1� i t/�3=2 D O

�
.1Cjt j/�3=2�:
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The expressions I1.t; x/ and I3.t; x/ vanish by oddness. The expression I4.t; x/ is obviously bounded
by the finite integral Z

R

d��4e��2 :

In order to improve this estimate when jt j is large, let us split up
Z

R

d�D
Z

j�j�jt j�1=2
d�C

Z

j�j>jt j�1=2
d�:

The first integral is easily estimated, using the uniform boundedness of Qa4.�/:
ˇ̌
ˇ̌
Z

j�j�jt j�1=2
d� Qa4.�/�4e.�1Cit/�2

ˇ̌
ˇ̌.

Z

j�j�jt j�1=2
d��4 . jt j�5=2:

After two integration by parts, using �e.�1Cit/�2 D .2.�1C i t//�1 @
@�
e.�1Cit/�2 , the second integral is

estimated by

jt j�5=2Cjt j�2
Z

R

d� .1Cj�j/2e��2 :

Altogether,
I4.t; x/D O..1Cjt j/�2/;

and this concludes the proof of Lemma A.1. �

Lemma A.2. Consider the oscillatory integral

J.t; x/D
Z C1

�1
d� a.�/eit�.�/

where the phase is given again by

�.�/D
p
�2C �2� x�

t

and the amplitude a.�/ is now a symbol .of any order/ on R, which vanishes on the interval Œ��; ��. Then

J.t; x/D O.jt j�1/ 8x; 0� jxj � jt j
2
:

Proof. According to (A-2), (A-3), and (A-4),

� � has a single stationary point �0 2
h
� �p

3
;
�p
3

i
, which remains away from the support of a,

� j�0.�/j D
ˇ̌
ˇ �p
�2C�2 �

x

t

ˇ̌
ˇ� 1p

2
� 1
2
> 0 on supp a,

� �00 is a symbol of order �3.

These facts allow us to perform several integrations by parts based on

eit�.�/ D 1

it�0.�/
@

@�
eit�.�/

and to reach the conclusion. �
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