Vol. 7, No. 4, 2014

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 8, 1891–2146
Issue 7, 1643–1890
Issue 7, 1397–1644
Issue 6, 1397–1642
Issue 5, 1149–1396
Issue 4, 867–1148
Issue 3, 605–866
Issue 2, 259–604
Issue 1, 1–258

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
 
Other MSP Journals
Wave and Klein–Gordon equations on hyperbolic spaces

Jean-Philippe Anker and Vittoria Pierfelice

Vol. 7 (2014), No. 4, 953–995
Abstract

We consider the Klein–Gordon equation associated with the Laplace–Beltrami operator Δ on real hyperbolic spaces of dimension n 2; as Δ has a spectral gap, the wave equation is a particular case of our study. After a careful kernel analysis, we obtain dispersive and Strichartz estimates for a large family of admissible couples. As an application, we prove global well-posedness results for the corresponding semilinear equation with low regularity data.

Keywords
hyperbolic space, wave kernel, semilinear wave equation, semilinear Klein–Gordon equation, dispersive estimate, Strichartz estimate, global well-posedness
Mathematical Subject Classification 2010
Primary: 35L05, 43A85, 43A90, 47J35
Secondary: 22E30, 35L71, 58D25, 58J45, 81Q05
Milestones
Received: 3 August 2013
Accepted: 1 March 2014
Published: 27 August 2014
Authors
Jean-Philippe Anker
Fédération Denis Poisson (FR 2964) & Laboratoire MAPMO (UMR 7349), Bâtiment de Mathématiques
Université d’Orléans & CNRS
B.P. 6759
45067 Orléans cedex 2
France
Vittoria Pierfelice
Fédération Denis Poisson (FR 2964) & Laboratoire MAPMO (UMR 7349), Bâtiment de Mathématiques
Université d’Orléans & CNRS
B.P. 6759
45067 Orléans Cedex 2
France