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RESONANCE WIDTHS FOR THE MOLECULAR PREDISSOCIATION

ALAIN GRIGIS AND ANDRÉ MARTINEZ

We consider a semiclassical 2× 2 matrix Schrödinger operator of the form

P =−h21I2+ diag(V1(x), V2(x))+ h R(x, h Dx ),

where V1, V2 are real-analytic, V2 admits a nondegenerate minimum at 0 with V2(0)= 0, V1 is nontrapping
at energy 0, and R(x, h Dx )= (r j,k(x, h Dx ))1≤ j,k≤2 is a symmetric 2× 2 matrix of first-order pseudodif-
ferential operators with analytic symbols. We also assume that V1(0) > 0. Then, denoting by e1 the first
eigenvalue of −1+〈V ′′2 (0)x, x〉/2, and under some ellipticity condition on r1,2 and additional generic
geometric assumptions, we show that the unique resonance ρ1 of P such that ρ1= (e1+r2,2(0, 0))h+O(h2)

(as h→ 0+) satisfies

Im ρ1 =−hn0+(1−n0)/2 f
(

h, ln
1
h

)
e−2S/h,

where f
(
h, ln 1

h

)
∼
∑

0≤m≤` f`,mh`
(
ln 1

h

)m is a symbol with f0,0 > 0, S > 0 is the so-called Agmon
distance associated with the degenerate metric max(0,min(V1, V2)) dx2, between 0 and {V1 ≤ 0}, and
n0 ≥ 1, n0 ≥ 0 are integers that depend on the geometry.

1. Introduction

The theory of predissociation goes back to the very first years of quantum mechanics (see [Kronig 1928;
Landau 1932a; 1932b; Zener 1932; Stückelberg 1932], for example). Roughly speaking, it describes
the possibility for a molecule to dissociate spontaneously (after a sufficiently large time) into several
submolecules, for energies below the crossing of the corresponding energy surfaces of the initial molecule
and the final dissociated state. From a physical point of view, one naturally expects that this (typically
quantum) phenomenon occurs with extremely small (but nonzero) probability.

Despite the fact that statements concerning this problem are present in the physics literature for more
than 70 years, the first mathematically rigorous result is due to M. Klein [1987], where an upper bound
on the time of predissociation is given in the framework of the Born–Oppenheimer approximation. More
precisely, denoting by h the square root of the ratio of electronic to nuclear mass, Klein proves the
existence of resonances ρ with real part below the crossing of the energy surfaces and with exponentially
small imaginary part; that is

|Im ρ| = O(e−2(1−ε)S/h),

Grigis partly supported by the GDR INdAM-CNRS GrefiMefi. Martinez partly supported by Università di Bologna, Funds for
Selected Research Topics.
MSC2010: primary 35P15, 35C20; secondary 35S99, 47A75.
Keywords: resonances, Born–Oppenheimer approximation, eigenvalue crossing, microlocal analysis.
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1028 ALAIN GRIGIS AND ANDRÉ MARTINEZ

where S > 0 is a geometric constant, ε > 0 is fixed arbitrarily, and the estimate holds uniformly as h goes
to zero.

In terms of probabilities, this result corresponds to an upper bound on the transition probability between
the initial molecule and the dissociated state. The purpose of this article is to obtain more complete
information on this quantity, in particular, a lower bound. More precisely, under suitable conditions, we
prove that the imaginary part of the lowest resonance admits a complete asymptotic expansion of the type

Im ρ1 =−hn0+(1−n0)/2e−2S/h
∑

0≤m≤`

f`,mh`
(

ln 1
h

)m
,

in the sense that, for any N ≥ 1, one has∣∣∣∣Im ρ1+ hn0+(1−n0)/2e−2S/h
∑

0≤m≤`≤N

f`,mh`
(

ln 1
h

)m
∣∣∣∣= O(hn0+(1−n0)/2+N e−2S/h),

where S>0, n0≥1 and n0≥0 are all geometric constants, and where the leading coefficient f0,0 is positive.
As is well-known, the quantity Im ρ is closely related to the oscillatory behavior of the corresponding

resonant state in the unbounded classically allowed region. Hence, the main issue will be to know
sufficiently well this behavior.

The strategy of the proof consists in starting from the WKB construction at the bottom of the well and
then trying to extend it as much as possible, at least up to the classically allowed unbounded region. This
is mainly the same strategy used in [Helffer and Sjöstrand 1986] for the study of shape resonances.

However, from a technical point of view, several new problems are encountered, because of the crossing
of the electronic levels.

The first one is that, at the crossing, the only reference on WKB constructions is that of [Pettersson
1997], which has been done for a special type of matrix Schrödinger operators. In particular, it strongly
uses the fact that only differential operators are involved. In our case, since our operator comes from a
Born–Oppenheimer reduction, it is necessarily of pseudodifferential kind (see [Klein et al. 1992; Martinez
and Sordoni 2009], for example). As a consequence, our first step will consist in extending Pettersson’s
method to pseudodifferential operators. Unfortunately, this extension is far from being straightforward,
and needs a specific formal calculus adapted to expressions involving the Weber functions.

The second one is that, after having overcome the crossing, the symbols of the resulting WKB
expansions do not anymore satisfy analytic estimates (usually needed in order to resum them, up to
exponentially small error terms). In particular, this prevents us from using directly the constructions of
[Helffer and Sjöstrand 1986] near the classically allowed unbounded region. Instead, we have to adapt the
method of Fujiié, Lahmar-Benbernou and Martinez [Fujiié et al. 2011], which, without analyticity, allows
us to extend the WKB constructions into the classically allowed unbounded region up to a distance of
order (h ln |h|)2/3 from the barrier. This is not much, but it is enough to have sufficient control in this
region on the difference between the true solution and the WKB one. This is actually done by adapting
the specific arguments of propagation introduced in [loc. cit.], where the propagation takes place in
h-dependent domains.
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In the next section, we describe in details the geometrical context and the assumptions.
In Section 3, we state our main result.
Section 4 is devoted to the WKB constructions, starting from the well and proceeding away along some

minimal geodesics, until crossing the boundary of the classically forbidden region. It is in this section that
we develop a formal pseudodifferential calculus adapted to expressions involving the Weber functions.

Next, in Section 5, we extend the well-known Agmon estimates to our pseudodifferential context. In
this case, the main feature is that, since we cannot use general Lipschitz weight functions, we replace
them by h-dependent smooth functions with bounded gradient, but with derivatives of higher order that
can grow to infinity as h→ 0.

In Section 6, we use these estimates in order to obtain a bound for the difference between the WKB
solutions and a solution of a modified problem, and this permits us to define an asymptotic solution in a
whole neighborhood of the classically forbidden region (but only up to a distance of order (h ln |h|)1/3

from this region).
Section 7 contains the a priori estimates and the propagation arguments that lead to a good control on

the difference between the asymptotic solution and the actual one.
Finally, Section 8 makes the link with the width of the resonance. Even if the idea is standard (practically

an application of the Green formula; see [Helffer and Sjöstrand 1986], for example), here we have to be
careful with the double problem that, on the one hand, we deal with pseudodifferential (not differential)
operators and, on the other hand, the magnitude of freedom outside the classically forbidden region is of
order (h ln |h|)1/3 as h→ 0.

2. Geometrical assumptions

We consider the semiclassical 2× 2 matrix Schrödinger operator

P =
(

P1 0
0 P2

)
+ h R(x, h Dx), (2-1)

with
Pj := −h21+ V j (x), j = 1, 2,

where x = (x1, . . . , xn) is the current variable in Rn (n ≥ 1), h > 0 denotes the semiclassical parameter,
and R(x, h Dx)= (r j,k(x, h Dx))1≤ j,k≤2 is a formally self-adjoint 2×2 matrix of first-order semiclassical
pseudodifferential operators, in the sense that, for all α ∈N2n , ∂αr j,k(x, ξ)= O(1+|ξ |) uniformly on R2n .

Let us observe that this is typically the kind of operator one obtains in the Born–Oppenheimer
approximation, after reduction to an effective Hamiltonian [Klein et al. 1992; Martinez and Sordoni 2009].
In that case, the quantity h2 stands for the inverse of the mass of the nuclei.

Assumption 1: The potentials V1 and V2 are smooth and bounded on Rn , and satisfy:

V1(0) > 0 and E = 0 is a nontrapping energy for V1, (2-2)

V1 has a strictly negative limit as |x | →∞, (2-3)

V2 ≥ 0, V−1
2 (0)= {0}, Hess V2(0) > 0, lim inf

|x |→∞
V2 > 0. (2-4)
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��

��

��
�����x = 0

V1

V2

E = 0

In particular, we assume that V2 has a unique nondegenerate well at x = 0. We define the island Ö as
the bounded open set

Ö = {x ∈ Rn
: V1(x) > 0}, (2-5)

and the sea as the set where V1(x)<0. With (2-2) and (2-4), the well {x=0} for V2 is included in the island.
The fact that 0 is a nontrapping energy for V1 means that, for any (x, ξ) ∈ p−1

1 (0), one has that
|exp t Hp1(x, ξ)| → +∞ as t → ∞, where we let p1(x, ξ) := ξ 2

+ V1(x) be the symbol of P1 and
Hp1 := (∇ξ p1,−∇x p1) be the Hamilton field of p1.

Conditions (2-2)–(2-4) correspond to molecular predissociation, as described in [Klein 1987].
Since we plan to study the resonances of P near the energy level E = 0, we also assume:

Assumption 2: The potentials V1 and V2 extend to bounded holomorphic functions near a complex sector
of the form SR0,δ := {x ∈ Cn

: |Re x | ≥ R0, |Im x | ≤ δ|Re x |}, with R0, δ > 0. Moreover V1 tends to its
limit at∞ in this sector and Re V2 stays away from 0 in this sector.

Assumption 3: The symbols r j,k(x, ξ) for ( j, k)= (1, 1), (1, 2), (2, 2) extend to holomorphic functions
in (x, ξ) near

S̃R0,δ := SR0,δ ×{ξ ∈ Cn
: |Im ξ | ≤max(δ〈Re x〉,

√
M0)},

with

M0 > sup
x∈Rn

min(V1(x), V2(x)),

and, for real x , r j,k is a smooth function of x with values in the set of holomorphic functions of ξ near
{|Im ξ | ≤

√
M0}. Moreover we assume that, for any α ∈ N2n , they satisfy

∂αr j,k(x, ξ)= O(〈Re ξ〉) uniformly on S̃R0,δ ∪
(
Rn
×{|Im ξ | ≤

√
M0}

)
. (2-6)

Now we define the cirque � as

�= {x ∈ Rn
: V2(x) < V1(x)}. (2-7)

Hence, the well is in the cirque and the cirque is in the island.
We also consider the Agmon distance associated to the pseudometric

(min(V1, V2))+ dx2
;

see [Pettersson 1997]. There are three places where this metric is not a standard one.
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The first is near the well 0, but this case is well-known. It was treated in [loc. cit.] and also in [Helffer
and Sjöstrand 1984]. The Agmon distance,

ϕ(x) := d(x, 0), (2-8)

is smooth at 0. The point (x, ξ)= (0, 0) is a hyperbolic singular point of the Hamilton vector field Hq2 ,
where q2= ξ

2
−V2(x), and the stable and unstable manifold near this point are respectively the Lagrangian

manifolds {ξ =∇ϕ(x)} and {ξ =−∇ϕ(x)}.
Secondly, on ∂�, precisely at the points where V1 = V2. This case has been also considered by

Pettersson. At such a point, if one assume that ∇V1 6= ∇V2, then any geodesic which is transversal to the
hypersurface {V1 = V2} is C1.

Finally there is the boundary of the island ∂ Ö , where V1 = 0. This situation was considered in [Helffer
and Sjöstrand 1986]. We will follow this work in the next assumption.

Now we consider the distance from the well to the sea, that is, to ∂ Ö:

S := d(0, ∂ Ö). (2-9)

Setting BS := {x ∈ Ö : ϕ(x) < S} and denoting by BS its closure, we also consider the set BS∩∂ Ö that
consists of the points of the boundary of the island that are joined to the well by a minimal d-geodesic
included in the island. These points are called points of type 1 in [loc. cit.], and we denote by G the set
of minimal geodesics joining such a point to 0 in Ö .

We make the following assumption:

Assumption 4: For all γ ∈G, γ intersects ∂� at a finite number of points and the intersection is transversal
at each of these points. Moreover, ∇V1 6= ∇V2 on γ ∩ ∂�.

Let us recall that the assumption that 0 is a nontrapping energy for V1 implies that ∇V1 6= 0 on ∂ Ö ,
and therefore that ∂ Ö is a smooth hypersurface.

We define the caustic set C as the union of the set of points of type 1 and the set of points x ∈ Ö with
ϕ(x)= S+ d(x, ∂ Ö). As in [loc. cit.] we assume:

Assumption 5: The points of type 1 form a submanifold 0, and C has a contact of order exactly two with
∂ Ö along 0.

We denote by n0 the dimension of 0. Moreover, for any γ ∈ G, we denote by Nγ := #(γ ∩ ∂�) the
number of points where γ crosses the boundary of the cirque, and we set

n0 :=min
γ∈G

Nγ , G0 := {γ ∈ G : Nγ = n0}.

Then, we make an assumption that somehow insures that an interaction between the two Schrödinger
operators does exist.

Assumption 6: There exists at least one γ ∈ G0 for which the ellipticity condition r12(x, i∇ϕ(x)) 6= 0
holds at every point x ∈ γ ∩ ∂�.
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3. Main result

Under the previous assumption we plan to study the resonances of the operator P given in (2-1), where
R(x, h Dx) is defined as

R(x, h Dx) :=

(
OpL

h (r1,1) OpL
h (r1,2)

OpR
h (r1,2) OpL

h (r2,2)

)
,

where for any symbol a(x, ξ) we use the quantizations

OpL
h (a)u(x)=

1
(2πh)n

∫
ei(x−y)ξ/ha(x, ξ)u(y) dy dξ,

OpR
h (a)u(x)=

1
(2πh)n

∫
ei(x−y)ξ/ha(y, ξ)u(y) dy dξ.

In order to define the resonances we consider the distortion given as follows. Let F(x) ∈ C∞(Rn,Rn)

be such that F(x)= 0 for |x | ≤ R0 and F(x)= x for |x | large enough. For θ > 0 small enough, we define
the distorted operator Pθ as the value at ν = iθ of the extension to the complex numbers of the operator
UνPU−1

ν , which is defined for ν real small enough and analytic in ν, where we have set

Uνφ(x)= det(1+ ν d F(x))1/2φ(x + νF(x)). (3-1)

Since we have a pseudodifferential operator R(x, h D), the fact that UνPU−1
ν is analytic in ν is not

completely standard but can be done without problem (thanks to Assumption 3), and by using the Weyl
perturbation theorem, one can also see that there exists ε0 > 0 such that for any θ > 0 small enough, the
spectrum of Pθ is discrete in [−ε0, ε0] − i[0, ε0θ ]. The eigenvalues of Pθ are called the resonances of P
[Hunziker 1986; Helffer and Sjöstrand 1986; Helffer and Martinez 1987].

We will need another small parameter k > 0 related to the semiclassical parameter h > 0, defined as

k := h ln 1
h
. (3-2)

In the sequel, we will study the resonances in the domain [−ε0,Ch] − i[0,Ck], where C > 0 is
arbitrarily large. In this case, we can adapt the WKB constructions near the well made in [Helffer and
Sjöstrand 1984] and show that these resonances form a finite set {ρ1, . . . , ρm}, with asymptotic expansions
as h→ 0 of the form

ρ j ∼ h
∑
`≥0

ρ j,`h`/2,

where ρ j,` ∈ R and ρ j,0 = e j + r2,2(0, 0), e j being the j-th eigenvalue of the harmonic oscillator
−1+〈V ′′2 (0)x, x〉/2 (actually, to be more precise, one must also assume that the arbitrarily large constant
C does not coincide with one of the e j ).

In this paper we are interested in the imaginary part of these resonances. We have:

Theorem 3.1. Under Assumptions 1 to 6, the first resonance ρ1 of P is such that

Im ρ1 =−hn0+(1−n0)/2 f
(

h, ln 1
h

)
e−2S/h,
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where f
(

h, ln 1
h

)
admits an asymptotic expansion of the form

f
(

h, ln 1
h

)
∼

∑
0≤m≤`

f`,mh`
(

ln 1
h

)m
as h→ 0,

with f0,0 > 0 and S > 0 as defined in (2-9).
Moreover the other resonances in [−ε0,Ch] − i[0,Ck] verify

Im ρ j = O(hβ j e−2S/h),

for some real β j , uniformly as h→ 0.

4. WKB constructions

In this section, we fix some minimal d-geodesic γ ∈ G and we denote by x (1), . . . , x (Nγ ) the sequence
of points that constitute γ ∩ ∂�, ordered from the closest to 0 up to the closest to Ö (note that Nγ is
necessarily an odd number). We also denote by γ (1), γ (2), . . . , γ (Nγ+1) the portions of γ \ ∂� that are
in-between 0 and x (1), x (1) and x (2), . . ., x (Nγ ) and Ö , respectively, in such a way that we have

γ = γ (1) ∪ {x (1)} ∪ γ (2) ∪ · · · ∪ {x (Nγ )} ∪ γ (Nγ+1),

where the union is disjoint (in particular, by convention we assume that 0 ∈ γ (1)). Moreover, we start by
considering the first resonance ρ1 only.

In the cirque. As in [Pettersson 1997], the starting point of the construction consists of the WKB
asymptotics given near the well x = 0 by a method due to Helffer and Sjöstrand [1984]. More precisely,
because of the matricial nature of the operator and the fact that p1 is elliptic above x = 0, one finds a
formal solution w1 of Pw1 = ρ1w1 of the form

w1(x; h)=
(

ha1(x, h)
a2(x, h)

)
e−ϕ(x)/h, (4-1)

where ϕ is defined in (2-8) and a j ( j = 1, 2) is a classical symbol of order 0 in h, that is, a formal series
in h of the form

a j (x, h)=
∞∑

k=0

hka j,k(x), (4-2)

with a j,k smooth near 0 (here no half-powers of h appear since we consider the first resonance ρ1 only).
Moreover, a2 is elliptic in the sense that a2,0 never vanishes. Note that the generalization of the construc-
tions of [Helffer and Sjöstrand 1984] to the case of pseudodifferential operators is done by the use of a so-
called formal semiclassical pseudodifferential calculus, which in our case is based on the following result.

Lemma 4.1. Let ϕ̃ = ϕ̃(x) be a real bounded C∞ function on Rn and let p = p(x, ξ) ∈ S(1) extend to a
bounded function, holomorphic with respect to ξ in a neighborhood of the set

{(x, ξ) ∈ supp∇ϕ̃×Cn
: | Im ξ | ≤ |∇ϕ̃(x)|}.
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Then, denoting by OpL
h the left (or standard) semiclassical quantization of symbols, the operator

eϕ̃/h OpL
h (p)e

−ϕ̃/h is uniformly bounded on L2(Rn) and, for any a ∈ C∞0 (R
n) and N ≥ 1, one has,

with 8(x, y) := ϕ̃(x)− ϕ̃(y)− (x − y)∇ϕ̃(x),(
eϕ̃/h OpL

h (p)e
−ϕ̃/ha

)
(x; h)=

∑
|α|≤N

1
α!

(h
i

)|α|
∂αξ p(x, i∇ϕ̃(x))∂αy

(
a(y)e8(x,y)/h)∣∣

y=x +O(hN/2), (4-3)

locally uniformly with respect to x , and uniformly with respect to h small enough.

The proof of this lemma is rather standard, e.g., [Martinez 1987] and we omit it.
Then, the construction can be performed by using the formal series given in (4-3) in order to define the

formal action of R(x, h Dx) on w1. Afterwards, these constructions can be continued along the integral
curves of the vector field ∇ξ p2(x, i∇ϕ(x))Dx = 2∇ϕ(x).∇x (that is, along the minimal geodesic of d
starting at 0), as long as p1(x, i∇ϕ(x)) does not vanish (that is, as long as these minimal geodesics stay
inside the cirque �). In that way, after resummation and multiplication by a cutoff function, we obtain a
function w1 of the form (4-1) that satisfies

Pw1− ρ1w1 = O(h∞e−ϕ/h) (4-4)

locally uniformly in
⋃
γ , where the union is taken over all the minimal d-geodesics γ coming from the

well 0 and staying in �. In particular, (4-4) is satisfied in a neighborhood N1 of γ (1).

At the boundary of the cirque. Now, we study the situation near the point x (1) ∈ ∂�. By Theorem 2.14
of [Pettersson 1997], we know that there exist a neighborhood V1 of x (1) and two positive functions
ϕ1, ϕ2 ∈ C∞(V1) such that

ϕ1 = ϕ on V1 ∩ {V1 < V2};

ϕ2 = ϕ on V1 ∩ {V2 < V1};

|∇ϕ j (x)|2 = V j (x), j = 1, 2;

ϕ1 = ϕ2 and ∇ϕ1 =∇ϕ2 on V1 ∩ ∂�;

ϕ2(x)−ϕ1(x)∼ d(x, ∂�)2.

Actually, ϕ2 is just d2(0, x), where d2 is the Agmon distance associated with the metric V2(x) dx2 and ϕ1

is the phase function of the Lagrangian manifold obtained as the flow-out of {(x,∇ϕ2(x)) : x ∈V1∩ ∂�}

under the Hamilton flow of q1(x, ξ) := ξ 2
− V1(x).

Then, we set
ψ := 1

2(ϕ1+ϕ2), (4-5)

and we consider the smooth function z(x) defined for x ∈ V1 by

z(x)2 = 2(ϕ2(x)−ϕ1(x))

z(x) < 0 on V1 ∩ {V2 < V1}. (4-6)
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In order to extend the WKB construction (4-1) across ∂� near x (1), we follow Pettersson and try a
formal ansatz,

w2(x; h)=
∑
k≥0

hk
(
αk(x, h)Yk,0

(
z(x)
√

h

)
+
√

hβk(x, h)Yk,1

(
z(x)
√

h

))
e−ψ(x)/h, (4-7)

where

αk(x, h)=
(

hαk,1(x, h)
αk,2(x, h)

)
, βk(x, h)=

(
βk,1(x, h)
hβk,2(x, h)

)
. (4-8)

Here αk, j and βk, j are formal symbols of the type

∑
l≥0

l∑
m=0

hl(ln h)mγ l,m(x) (4-9)

(with γ l,m smooth in ω1) and, for any k ≥ 0 and ε ∈ C, the function Yk,ε is the so-called Weber function,
defined by

Yk,ε(z)= ∂k
εY0,ε(z), (4-10)

where Y0,ε is the unique entire function with respect to ε and z that is a solution of the Weber equation,

Y ′′0,ε +
(1

2
− ε−

z2

4

)
Y0,ε = 0, (4-11)

such that, for ε > 0, one has
Y0,ε(z)∼ e−z2/4z−ε as z→−∞. (4-12)

(Then, one also has Y0,ε(z) ∼
(√

2π/0(ε)
)
ez2/4zε−1 as z → +∞, by Proposition A.2 of [Pettersson

1997].) As is shown in Pettersson’s Theorem 4.3, a resummation of (4-7) is possible up to an error of
order O(h∞e−ϕ/h).

Now, since ϕ is not C∞ (but only C1) near x (1), we need to find some generalization of Lemma 4.1.
For technical reasons, in the rest of this section we prefer to work with the right semiclassical quantization
of symbols, which we denote by OpR

h .
For ν0>0 and g∈C∞(R2n

;R+), we denote by Sν0(g(x, ξ)) the set of (possibly h-dependent) functions
p ∈ C∞(R2n) that extend to holomorphic functions with respect to ξ in the strip

Aν0 := {(x, ξ) ∈ Rn
×Cn

: |Im ξ |< ν0}

such that, for all α ∈ N2n , one has

∂α p(x, ξ)= O(g(x,Re ξ)), (4-13)

uniformly with respect to (x, ξ) ∈Aν0 and h > 0 small enough. We also denote by S0(g) the analogous
space of smooth symbols obtained by switching R2n to Aν0 and “smooth” to “holomorphic”.

Lemma 4.2. Let ν0 > 0, m ∈ R, p = p(x, ξ) ∈ Sν0(〈ξ〉
m), and let φ = φ(x) be a real bounded Lipschitz

function on Rn such that
‖∇φ(x)‖L∞ < ν0.
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Let also a = a(x; h) ∈ C∞(Rn) be such that, for all α ∈ Nn ,

(h Dx)
αa(x; h)= O(e−φ(x)/h),

uniformly with respect to h small enough and x ∈ Rn . Then

(OpR
h (p)a)(x; h)= O(e−φ(x)/h)

uniformly with respect to h small enough and x ∈ Rn .

Proof. We write

eφ(x)/h OpR
h (p)a(x; h)=

1
(2πh)n

∫
ei(x−y)ξ/h+φ(x)/h p(y, ξ)a(y; h) dy dξ (4-14)

and, following [Sjöstrand 1982], we make the change of contour of integration in ξ ,

Rn
3 ξ 7→ ξ + iν1

x − y
|x − y|

, (4-15)

where ‖∇φ(x)‖L∞ < ν1 < ν0. We obtain

eφ(x)/h OpR
h (p)a(x; h)=

1
(2πh)n

∫
ei(x−y)ξ/h p

(
y, ξ + iν1

x − y
|x − y|

)
θ(x, y; h) dy dξ, (4-16)

with

θ(x, y; h)= a(y; h)e(φ(x)−ν1|x−y|)/h
= O(eφ(x)−φ(y)−ν1|x−y|/h).

Therefore

θ(x, y; h)= O(e−δ|x−y|/h), (4-17)

with δ = ν1−‖∇φ‖L∞ > 0.
Then, in the case m <−n, the result follows immediately from (4-16)–(4-17) (and standard estimates

on oscillatory integrals). In the general case, we just write

OpR
h (p)= OpR

h (p)(2ν0− h21x)
−k(2ν0− h21x)

k, (4-18)

with k an integer large enough (e.g., k= 1+|[m]|+n) and, since OpR
h (p)(2ν0−h21x)

−k is a semiclassical
pseudodifferential operator with (h-dependent) symbol in Sν0(〈ξ〉

m−2k) ⊂ Sν0(〈ξ〉
−n−1), the result follows

by applying the previous case with a replaced by (2ν0− h21x)
ka. �

Now, as preparation for defining a formal pseudodifferential calculus acting on expressions such
as (4-7), for j = 1, . . . , n and x ∈ ω1, we set

A j (x) :=


∂ϕ2(x)
∂x j

0

0
∂ϕ1(x)
∂x j

 ∈M2(R). (4-19)
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Then, for any k ≥ 0, we have (see [Pettersson 1997, (4.18)])

(h Dx j − i A j (x))

Yk,0

(
z(x)
√

h

)
Yk,1

(
z(x)
√

h

)
 e−ψ(x)/h

=

√
h

i
(∂x j z(x))

kYk−1,1

(
z(x)
√

h

)
Yk,0

(
z(x)
√

h

)
 e−ψ(x)/h . (4-20)

If a and b are (scalar) formal symbols of the type (4-9) and k ∈ N, we set

Ik(a, b)(x; h)= a(x; h)Yk,0

(
z(x)
√

h

)
+ b(x; h)Yk,1

(
z(x)
√

h

)
, (4-21)

and we plan to exploit (4-20) in order to define a formal action of a pseudodifferential operator on
Ik(a, b)e−ψ/h . Using (4-20), we see that we have

(h Dx − i∇ϕ2(x))(Ik(a, 0)e−ψ/h)= (Ik(h Dxa, 0)+ Ik−1(0, k
√

haDx z))e−ψ/h,

(h Dx − i∇ϕ1(x))(Ik(0, b)e−ψ/h)= Ik(
√

hbDx z, h Dx b)e−ψ/h .
(4-22)

Now, for any p ∈ Sν0(〈ξ〉
m), N ≥ 1 and j = 1, 2, Taylor’s formula gives

p(x, ξ)=
∑
|α|≤N

1
α!
∂αξ p(x, i∇ϕ j (x))(ξ − i∇ϕ j (x))α +

∑
|α|=N+1

p j,α(x, ξ)(ξ − i∇ϕ j (x))α, (4-23)

where the p j,α are in Sν0(〈ξ〉
m). Moreover, we have:

Lemma 4.3. Let ν0 > supx∈ω1
min(
√

V1(x),
√

V2(x)) and m ∈R. Then, for any q = q(x, ξ) ∈ Sν0(〈ξ〉
m),

k ≥ 0, a in C∞0 (ω1) and α ∈ Nn , one has

OpR
h
(
q(x, ξ)(ξ − i∇ϕ2(x))α

)
(Ik(a, 0)e−ψ(x)/h)= O(|ln h|kh|α|/2e−ϕ(x)/h),

OpR
h
(
q(x, ξ)(ξ − i∇ϕ1(x))α

)
(Ik(0, a)e−ψ(x)/h)= O(|ln h|kh|α|/2e−ϕ(x)/h),

(4-24)

where the estimates hold uniformly for h small enough and x ∈ Rn .

Proof. We prove both estimates together, by induction on |α|. We first notice that, by Lemma 4.6 of
[Pettersson 1997], for β ∈ Nn and j ∈ {0, 1}, one has

(h Dx)
β

(
Yk, j

(
z(x)
√

h

)
e−ψ(x)/h

)
= O(|ln h|ke−ϕ(x)/h). (4-25)

As a consequence, the result for α = 0 follows directly from Lemma 4.2.
Now, assume it is true for |α| ≤ N (N ∈N fixed arbitrarily), and let γ ∈Nn , |γ | = 1. Using the notation

Ik,2(a) := Ik(a, 0)e−ψ/h, Ik,1(a) := Ik(0, a)e−ψ/h, (4-26)

we write (for |α| ≤ N and j = 1, 2)

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h fα(y, ξ)(ξ − i∇ϕ j (y))γ Ik, j (a)(y)e−ψ(y)/h dy dξ,
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with fα(y, ξ) := q(y, ξ)(ξ − i∇ϕ j (y))α . Now, assuming without loss of generality that γ = (1, 0, . . . , 0)
and using the fact that

ξ1ei(x−y)ξ/h
=−h Dy1(e

i(x−y)ξ/h),

we obtain

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h

(
h Dy1 − i

∂ϕ j

∂x1
(y)
)

Ik, j ( fα(y, ξ)a(y))e−ψ(y)/h dy dξ,

and therefore, by (4-22),

OpR
h
(
q(x, ξ)(ξ−i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h Ĩk, j ( fα(y, ξ)a(y))e−ψ(y)/h dy dξ,

with

Ĩk,2(a) := hIk,2(Dx1a)+ k
√

hIk−1,1(aDx1 z), Ĩk,1(a) :=
√

hIk,2(aDx1 z)+ hIk,1(Dx1a).

Then, applying the induction hypothesis (and using the fact that Dy1 fα is a sum of terms of the type
g(y, ξ)(η− i A(y))β with |β| ≥ |α| − 1) this gives

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

= O
(
|ln h|kh1+(|α|−1)/2

+ |ln h|k−1h(1+|α|)/2+ |ln h|kh(1+|α|)/2
)
e−ϕ/h

= O
(
|ln h|kh(1+|α|)/2

)
e−ϕ/h,

and the proof is complete. �

Using Lemma 4.3 and (4-23), for any a in C∞0 (ω1), we obtain (with the notation (4-26))

OpR
h (p)(Ik, j (a)e−ψ/h)

=

∑
|α|≤N

1
α!

OpR
h
(
∂αξ p(x, i∇ϕ j (x))(ξ − i∇ϕ j (x))α

)
(Ik, j (a)e−ψ(x)/h)+O(hN/2e−ϕ/h)

=

∑
|α|≤N
β≤α

1
i |β|β!(α−β)!

OpR
h (∂

α
ξ p(x, i∇ϕ j )(∇ϕ j )

βξα−β)(Ik, j (a)e−ψ(x)/h)+O(hN/2e−ϕ/h),

and thus, as before, writing down the corresponding oscillatory integral, in the same way we deduce

OpR
h (p)(Ik, j (a)e−ψ/h)

=

∑
|α|≤N
β≤α

1
i |β|β!(α−β)!

(h Dx)
α−β
[(∇ϕ j )

β∂αξ p(x, i∇ϕ j )Ik, j (a)e−ψ/h
] +O(hN/2e−ϕ/h). (4-27)

Now, for an integer M ≤ 0 and �⊂ Rn open, we consider the space of sequences of formal symbols,

SM(ω1) :=

{
a = (ak)k∈N : ak(x, h)=

∞∑
l=−M

l∑
m=0

hl(ln h)mγ l,m
k (x), γ l,m

k ∈ C∞(ω1)

}
,
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and, for a, b ∈ SM(ω1), we set

I (a, b) :=
∑
k≥0

hk Ik(ak,
√

hbk). (4-28)

Using (4-22), we see that, for j = 1, . . . , n, we have

h Dx j I (a, b)e−ψ/h
= I ((i A j + L j )(a, b))e−ψ/h, (4-29)

where i A j (a, b)= (i(∂x jϕ2)a, i(∂x jϕ1)b) and L j is the operator

L j : SM
× SM

→ SM−1
× SM−1,

(a, b) 7→ (ã j , b̃ j ),

defined by, for k ∈ N,
ã j

k := h Dx j ak + hbk Dx j z,

b̃ j
k := h Dx j bk + (k+ 1)hak+1 Dx j z.

(4-30)

In particular, using the notation L = (L1, . . . , Ln) and Lα = Lα1
1 · · · L

αn
n , for all α ∈ Nn we have

Lα maps SM(ω1)× SM(ω1) into SM−|α|(ω1)× SM−|α|(ω1). (4-31)

For any smooth diagonal M2(C)-valued function B(x)= diag(B1(x), B2(x)), we let it act on SM
× SM

by setting
B(a, b)= (B1a, B2b), (4-32)

and we define the formal action of a pseudodifferential operator with symbol p ∈ Sν0(〈ξ〉
m) on expressions

of the type I (a, b)e−ψ/h by the formula

OpF
h (p)(I (a, b)e−ψ/h) :=

∑
α∈Nn

β≤α

1
i |β|β!(α−β)!

I
(
(i A(x)+ L)α−β A(x)β∂αξ p(x, i A(x))(a, b)

)
e−ψ/h,

(4-33)
where we have also set A := (A1, . . . , An) and

∂αξ p(x, i A(x))(a, b) :=
(
∂αξ p(x, i(∇ϕ2))a, ∂αξ p(x, i(∇ϕ1))b

)
.

Then, in view of Lemma 4.3 and (4-27), we immediately obtain:

Proposition 4.4. Let a, b ∈ SM(ω1) and denote by Ĩ (a, b)e−ψ/h any resummation of I (a, b)e−ψ/h up
to an O(h∞e−ϕ/h) error term. Then, for any χ ∈ C∞0 (ω1), the quantity OpR

h (p)(χ Ĩ (a, b)e−ψ/h) is a
resummation of OpF

h (p)(I (χa, χb)e−ψ/h), up to an O(h∞e−ϕ/h) error term.

In particular, the operator P naturally acts (up to O(h∞e−ϕ/h) error terms) on expressions of the type

w2 =

(
I (hα1, β1)

I (α2, hβ2)

)
e−ψ/h, (4-34)

where α j = (α j,k)k≥0 and β j = (β j,k)k≥0 are in S0(ω1) ( j = 1, 2).



1040 ALAIN GRIGIS AND ANDRÉ MARTINEZ

Writing down the equation P̃w2 = ρ1w2, setting

α j,k =
∑
l≥0

l∑
m=0

hl(ln h)mαl,m
j,k (x),

and the analogous formula for β j,k , and identifying the coefficients of hl(ln h)m for 0≤ m ≤ l ≤ 1, we
find (denoting by p =

( p1+hr1,1 hr1,2
hr2,1 p2+hr2,2

)
the right symbol of P),

p1(x, i∇ϕ2)α
0,0
1,0 + r1,2(x, i∇ϕ2)α

0,0
2,0

+
[ 1

i ∇ξ p1(x, i∇ϕ1)(∇z)+ 1
2〈(Hessξ p1)(x, i∇ϕ1)∇z,∇(ϕ2−ϕ1)〉

]
β

0,0
1,0 = 0; (4-35)

[∂ξ p1(x, i∇ϕ1)Dx − i(∇x · ∇ξ p1)(x, i∇ϕ1)+ r1,1(x, i∇ϕ1)− ρ1]β
0,0
1,0 = 0; (4-36)

p2(x, i∇ϕ1)β
0,0
2,0 + r2,1(x, i∇ϕ1)β

0,0
1,0

+
[ 1

i ∂ξ p2(x, i∇ϕ2)(∇z)+ 1
2〈(Hessξ p2)(x, i∇ϕ2)∇z,∇(ϕ1−ϕ2)〉

]
α

0,0
2,1 = 0; (4-37)

(∂ξ p2(x, i∇ϕ2)Dx − i(∇x · ∇ξ p2)(x, i∇ϕ2)+ r2,2(x, i∇ϕ2)− ρ1)α
0,0
2,0 = 0. (4-38)

Here we also have used the fact that ρ ∼
∑

k≥1 hkρk as h→ 0.
Identifying the other coefficients, one obtains a series of equations that (in a way similar to [Pettersson

1997, Section 4]) can be solved in V1 (possibly after having shrunk it a little bit around x (1)), and in such
a way that one also has

w̃2− w̃1 = O(h∞e−ϕ/h) locally uniformly in V1 ∩ {V2 < V1}, (4-39)

where w1 is defined in (4-1) and w̃1 and w̃2 are resummations of w1 and w2. Among other things, this
implies

α
0,0
2,0 = a2,0 in V1 ∩ {V2 < V1}. (4-40)

Moreover, we see in (4-36) and (4-38) that β0,0
1,0 (respectively α0,0

2,0) is a solution of a differential equation of
order 1 on each integral curve of the real vector field ∇ϕ1(y) ·∇y (respectively ∇ϕ2(y) ·∇y). In particular,
because of the ellipticity of a2,0, we deduce from (4-38) and (4-40) that we have that

α
0,0
2,0 never vanishes in V1. (4-41)

Now, Assumption 6 implies that, if γ ∈ G0, then

r1,2(x, i∇ϕ2) 6= 0 on V1. (4-42)

Since p1(y, i∇ϕ2)= p1(y, i∇ϕ1)= 0 on ω1∩∂�, we deduce from (4-35) and (4-41) that, if γ ∈G0, then
β

0,0
1,0 does not vanish on ω1 ∩ ∂�. As before, because of (4-36) (and the fact that R(x, h Dx) is formally

self-adjoint), this implies:

if γ ∈ G0, then β0,0
1,0 never vanishes in V1. (4-43)
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In the island, outside the cirque. Now, we look at what happens on γ (2) and, at first, near x (1). Using the
asymptotics of Yk,ε(z/

√
h) given in [Pettersson 1997, Section 4], one also finds that, in V1 ∩ {V1 < V2},

w2 can be formally identified with

w3(x, h)=
√

2πh
(

b1(x, h)
hb2(x, h)

)
e−ϕ(x)/h, (4-44)

where b1, b2 are symbols of the form

b j (x; h)=
∑
l≥0

l∑
m=0

hl(ln h)mbl,m
j (x) ( j = 1, 2), (4-45)

with bl,m
j ∈ C∞(V1 ∩ {V1 < V2}), in the sense that, for any resummations w̃2 and w̃3 of w2 and w3,

w̃2− w̃3 = O(h∞e−ϕ/h) locally uniformly in �∩0+. (4-46)

Moreover, one also has

b0,0
1 = β

0,0
1,0 , (4-47)

which, by (4-43), shows that, when γ ∈ G0, b1 is elliptic in V1 ∩ {V1 < V2}.
Since p2(x, i∇ϕ(x)) 6= 0 in {V1 < V2}, we can formally solve the equation Pw3 = ρ1w3, and we see

again that b1 and b2 can be continued along the integral curves of ∇ϕ, as long as these curves stay inside
{V1 < V2} and ϕ1 does not develop caustics. In particular, they can be continued in a neighborhood N2

of γ (2), and the continuation of b1 remains elliptic in �2.
Clearly, the previous steps can be repeated near x (2), x (3), etc. (in the case Nγ ≥ 3), up to x (Nγ+1),

obtaining in that way (after having pasted everything in a standard way by using a partition of unity) a
function w(x, h), smooth on a neighborhood N(γ ) of γ in Ö , satisfying

(P − ρ1)w = O(h∞e−ϕ/h),

locally uniformly in N(γ ). Moreover, N(γ ) can be decomposed into

N(γ )= N1 ∪V1 ∪ · · · ∪VNγ ∪NNγ+1,

where, for all j , V j is a neighborhood of x ( j) and N j is a neighborhood of γ ( j), in such a way that, in
each N j , w admits a WKB asymptotics of the form,

w(x; h)∼ h( j−1)/2

(
h(1−(−1) j )/2a( j)

1 (x, h)
h(1+(−1) j )/2a( j)

2 (x, h)

)
e−ϕ(x)/h, (4-48)

where a( j)
1 and a( j)

2 are symbols of the same form as in (4-45), and a( j)
1 is elliptic if j is even, while a( j)

2 is
elliptic if j is odd (in particular, a(Nγ+1)

1 is elliptic). On the other hand, in each V j , w can be represented
by means of the Weber function, in a way similar to that of (4-7).
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At and after the boundary of the island. Let us denote by xγ ∈ γ ∩ ∂ Ö the point of type 1 where γ
touches the boundary of the island. When x ∈ γ ∩ Ö is close enough to xγ , we know from the previous
subsection that the asymptotic solution w is of the form

w(x; h)∼ hNγ /2
(

b1(x, h)
hb2(x, h)

)
e−ϕ(x)/h, (4-49)

where b1, b2 are smooth symbols on NNγ+1 of the same form as in (4-45), and b1 is elliptic. Moreover, as
x approaches xγ , b1 and b2 (together with ϕ) develop singularities on some set C (called the caustic set).
However, following an idea of [Helffer and Sjöstrand 1986], we can represent h−Nγ /2eS/hw in the integral
(Airy) form

I [c1, c2](x, h)= h−
1
2

∫
γ (x)

(
c1(x ′, ξn, h)

hc2(x ′, ξn, h)

)
e−(xnξn+g(x ′,ξn))/h dξn, (4-50)

where we have used local Euclidean coordinates (x ′, xn) ∈ Rn−1
× R centered at γ ∩ ∂ Ö , such that

V1(x)=−C0xn+O(x2) near this point. For x in Ö close to γ∩∂ Ö , the phase function ξn 7→ xnξn+g(x ′, ξn)

admits two real critical points that are close to 0. Then, choosing conveniently the x-dependent interval
γ (x), the steepest descent method at one of these points gives us the asymptotic expansion of I [c1, c2].
Comparing this with the symbols b1 and b2, one can determine c1 and c2 so that the asymptotic expansion
of h−Nγ /2eS/hw coincides with that of I [c1, c2] in Ö . In particular, when γ ∈ G0, one finds that c1

remains elliptic near 0.
At this point, since we did not assume any analyticity of the potentials near Ö , we have to follow

the methods of [Fujiié et al. 2011] — a reference we will henceforth abbreviate as [FLM] — where a
similar situation is considered. Indeed, following the constructions of [FLM, Section 4] (that are made in
the scalar case, but can be generalized without problem to our vectorial case), we see that there exists a
constant δ > 0 such that, for any N ≥ 1, one can construct a (vectorial) function wN , smooth on the set

WN (γ ) := {|x − xγ |< ε} ∩ {dist(x, Ö) < 2(Nk)2/3} (4-51)

with ε > 0 small enough (recall from (3-2) that k = |h ln h|), such that [FLM, Propositions 4.5 and 4.6]:

• (P − ρ1)wN = O(hδN e−Re ϕ̃N /h) uniformly in WN (γ ).

• For any α ∈ Zn
+

, there exists mα ≥ 0 independent of N such that

∂αx wN = O(h−mαe−Re ϕ̃N /h)

uniformly in WN (γ ).

• wN can be represented by an integral of the form (4-50) (with γ (x)= γN (x) depending on N ) in all
of WN (γ ).

• wN = w in NNγ+1 ∩WN (γ ).
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• For any large enough L , there exist CL > 0 and δL > 0, both independent of N , such that, uniformly
in WN (γ )∩ {dist(x, Ö)≥ (Nk)2/3}, one has

wN (x, h)= hNγ /2

( L+[Nk/CL h]∑
`=0

0≤m≤`

h`(ln h)m
(

f `,m1,N (x)

h f `,m2,N (x)

)
+O(hδL N

+ hL)

)
e−ϕ̃N (x)/h as h→ 0, (4-52)

with f `,m1,N (x), f `,m2,N (x) independent of h and of the form

f̃ `,mj,N (x)= (dist(x,C))−3`/2−1/4β
`,m
j,N (x, dist(x,C)), j = 1, 2, (4-53)

where β`,mj,N is smooth near (xγ , 0), and β`,m1 (xγ , 0) 6= 0 in the case γ ∈ G0.

Here, ϕ̃N is a (complex-valued) C1 function on WN (γ ), smooth on WN (γ ) \ C, such that [FLM,
Lemma 4.1]:

• ϕ̃N = ϕ+O(h∞) uniformly in NNγ+1 ∩WN (γ ).

• (∇ϕ̃N )
2
= V1(x)+O(h∞) uniformly in WN (γ ).

• There exists ε(h)= O(h∞) real such that, for x ∈WN (γ ) \ Ö , one has

Re ϕ̃N (x)≥ S− ε(h). (4-54)

• One has
Im∇ϕN (x)=−νN (x)

√
dist(x,C)∇ dist(x,C)+O(dist(x,C)),

uniformly with respect to h > 0 small enough and x ∈WN (γ ) \ Ö with νN (x)≥ δ.

The previous results show that we can extend w by taking wN in WN (γ ), and we obtain in that
way a function wN smooth on N(γ )∪WN (γ ), such that (P − ρ1)wN = O(hδN e−Re ϕ̃/h) uniformly in
N(γ ) ∪WN (γ ). Note that, thanks to Assumption 4, the number Nγ is constant on each connected
component of 0.

5. Agmon estimates

Preliminaries. In order to perform Agmon estimates in the same spirit as in [Helffer and Sjöstrand 1984],
we need some preliminary results because of the fact that we have to deal with pseudodifferential operators
(and not only Schrödinger operators). For this reason, we prefer to work with C∞ weight functions
(instead of Lipschitz ones), and the idea is to take h-dependent regularizations of Lipschitz weights.

At first, we need:

Proposition 5.1. Let ν0 > 0, m ≥ 0, a = a(x, ξ) ∈ Sν0(〈ξ〉
2m). For h > 0 small enough, let also

8h ∈ C∞(Rn) be real-valued, such that

sup |∇8h|< ν0 (5-1)

and, for any multi-index α ∈ Nn with |α| ≥ 2,

∂α8h(x)= O(h1−|α|), (5-2)
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uniformly for x ∈ Rn and h > 0 small enough. Then, for any 6̃ ⊂ Rn with dist(6,Rn
\ 6̃) > 0, the

operator e8h/h Ae−8h/h
:= e8h/h OpW

h (a)e
−8h/h satisfies

‖e8h/h Ae−8h/hu‖L2 ≤ C1‖〈h Dx 〉
mu‖L2, (5-3)

uniformly for all h > 0 small enough and u ∈ H m(Rn).

Proof. For u ∈ C∞0 (R
n), we write

e8/h Ae−8/hu(x)=
1

(2πh)n

∫
ei(x−y)ξ/h+(8(x)−8(y))/ha

(
x + y

2
, ξ

)
u(y) dy dξ,

and the property (5-1) shows that we can make the change of contour of integration given by

Rn
3 ξ 7→ ξ + i9(x, y),

where 9(x, y) :=
∫ 1

0 ∇8((1− t)x+ t y) dt (in particular, one has 8(x)−8(y)= (x− y)9(x, y)). Then,
denoting by Oph the semiclassical quantization of symbols depending on 3n variables (see, e.g., [Martinez
2002, Section 2.5]), we obtain

e8/h Ae−8/h
= Oph

(
a
(

x + y
2

, ξ + i9(x, y)
))
,

and, using (5-2), we see that, for any α, β, γ ∈ Zn
+

, we have

∂αx ∂
β
y ∂

γ

ξ

(
a
(

x + y
2

, ξ + i9(x, y)
))
= O(h−|α+β|〈ξ〉m). (5-4)

Then, the result is an easy consequence of the Calderón–Vaillancourt Theorem; see [Martinez 2002,
Exercise 2.10.15], for example. �

Proposition 5.2. Let φ and V be two bounded real-valued Lipschitz functions on Rn with |∇φ(x)|2≤V (x)
almost everywhere. Let also χ1 ∈ C∞0 (R

n
; [0, 1]) be supported in the ball {|x | ≤ 1}, with

∫
χ1(x) dx = 1.

For any h > 0, we set χh(x)= h−nχ(x/h). Then, the smooth function

φh := χh ∗φ

(where ∗ stands for the standard convolution) satisfies:

• φh = φ+O(h) uniformly for h > 0 small enough and x ∈ Rn .

• For all x ∈ Rn , one has |∇φh(x)|2 ≤ V (x)+ h‖∇V ‖L∞ .

• For all α ∈ Zn
+

with |α| ≥ 1, one has ∂αφh = O(h1−|α|).

The proof of this proposition is very standard and almost obvious, and we leave it to the reader. Observe
that, in particular, φh satisfies the estimates (5-2).
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Agmon estimates. As a corollary of the two previous propositions, we have:

Corollary 5.3. Let φ and φh be as in Proposition 5.2, with V = min(V1, V2)+. Then one has, for any
u = (u1, u2) ∈ H 2(Rn)⊕ H 2(Rn),

Re〈eφh/h Pu, eφh/hu〉

≥ ‖h∇(eφh/hu)‖2+
2∑

j=1

〈(V j − |∇φh|
2)eφh/hu j , eφh/hu j 〉−CRh(‖eφh/hu‖2+‖h∇(eφh/hu)‖2),

where CR > 0 is a constant that depends on R(x, h Dx), χ1 and sup |∇φ| only.

Proof. It is standard (and elementary) to show that

Re〈eφh/h(−h21+ V j )u j , eφh/hu j 〉 = ‖h∇(eφh/hu j )‖
2
+〈(V j − |∇φh|

2)eφh/hu j , eφh/hu j 〉.

Therefore, it is enough to estimate 〈eφh/h R(x, h Dx)u, eφh/hu〉. Applying Proposition 5.1 , we see that
the operator eφh/h R(x, h Dx)e−φh/h

〈h Dx 〉
−1 is uniformly bounded on L2.

Moreover, since the constants appearing in the estimates (5-4) depend on a, α, and on the estimates
on the ∂β8 only, we see that the norm of eφh/h R(x, h Dx)e−φh/h

〈h Dx 〉
−1 depends on r and on estimates

on ∂β(χh ∗∇φ)= (∂
βχh) ∗∇φ (|β| ≤ |α|) only. Since the latter depend on α, χ1 and sup |∇φ| only, the

result follows. �

6. Global asymptotic solution

The constructions of Section 4 can be done in a neighborhood of any minimal geodesic γ ∈G, and give rise
(after having pasted them together with a partition of unity) to an asymptotic solution (still denoted
by wN ) on a neighborhood of

⋃
γ∈G γ . Now, we plan to extend this solution to a whole (h-dependent)

neighborhood of {V1 ≥ 0}, by using a modified self-adjoint operator with discrete spectrum near 0.
At first, we fix ε0 > 0 sufficiently small, and a cutoff function χ0 ∈ C∞0 (Ö; [0, 1]) such that

χ0(x)= 1 if V1(x)≥ 2ε0, χ0(x)= 0 if V1(x)≤ ε0,

and we set
Ṽ1 := χ0V1+ ε0(1−χ0). (6-1)

In particular, Ṽ1 coincides with V1 on {V1 ≥ 2ε0}, and we have Ṽ1 ≥ ε0 everywhere. Then, we define
P̃1 := −h21+ Ṽ1, and we consider the self-adjoint operator

P̃ =
(

P̃1 0
0 P2

)
+ h R(x, h Dx). (6-2)

By construction, for all C > 0 and h small enough, the spectrum of P̃ is discrete in [−Ch,Ch], and
a straightforward adaptation of the arguments used in [Helffer and Sjöstrand 1984] shows that its first
eigenvalue E1 admits the same asymptotics as ρ1 as h → 0+. We denote by v its first normalized
eigenfunction, and by N0 ⊂ {V1 > 2ε0} some fixed neighborhood of

⋃
γ∈G ∩ {V1 > 2ε0} where the

asymptotic solution wN is well-defined. We have:



1046 ALAIN GRIGIS AND ANDRÉ MARTINEZ

Proposition 6.1. There exists θ0 ∈ R independent of h such that, for any compact subset K of N0, and for
any α ∈ Zn

+
, one has

‖eϕ/h∂α(eiθ0v− hn/4wN )‖K = O(h∞).

Proof. The existence of θ0 such that ∂α(eiθ0v− hn/4wN )= O(h∞) uniformly near 0 is a consequence of
[Helffer and Sjöstrand 1984, Proposition 2.5] and standard Sobolev estimates. Let χ ∈ C∞0 (N0; [0, 1]),
with χ = 1 in a neighborhood of K ∪ {0}. Following [Helffer and Sjöstrand 1984; Pettersson 1997], we
plan to apply Corollary 5.3 to u := χ(eiθ0v− hn/4wN ), with a suitable weight function φ. Let us first
observe that, using Corollary 5.3, for any ε > 0 one has

‖e(1−ε)ϕ̃/h
〈h Dx 〉v‖H1 = O(1), (6-3)

where ϕ̃(x)≥ ϕ(x) is the Agmon distance associated with min(Ṽ1, V2) between 0 and x . Now, for C ≥ 1
arbitrarily large, we define

φ(x) :=min(φ1, φ2),

where

φ1(x) :=

{
ϕ(x)−Ch ln

(
ϕ(x)

h

)
if ϕ(x)≥ Ch,

ϕ(x)−Ch ln C if ϕ(x)≤ Ch,

φ2(x) :=

{
inf

χ(y) 6=1
(1− 2ε)(ϕ(y)+ d(y, x)) if x ∈ suppχ,

(1− 2ε)ϕ(x) if x /∈ suppχ.

Here, ε > 0 is taken sufficiently small to have φ2(x) > ϕ(x) when x ∈ K . Then, φ is Lipschitz continuous,
and one has φ = φ1 on K and φ = φ2 on Rn

\ {χ = 1}. Moreover, one sees as in the proof of [Pettersson
1997, Theorem 5.5] that, if we set V :=min(V1, V2), φ satisfies

|∇φ|2 = V in {ϕ ≤ Ch}, |∇φ|2 ≤ V − δ0Ch in {ϕ ≥ Ch},

where δ0 = infx∈suppχ, x 6=0(V (x)/ϕ(x)) > 0. As a consequence, by Proposition 5.2, the regularized φh

of φ satisfies

|∇φh|
2
≤ V + h‖V ‖L∞ in {ϕ ≤ Ch}, |∇φh|

2
≤ V − (δ0C −‖V ‖L∞)h in {ϕ ≥ Ch}.

Then, choosing C sufficiently large and setting u := χ(eiθ0v−hn/4wN ), we see that Corollary 5.3 implies

‖h∇(eφh/hu)‖2+C ′h‖eφh/hu‖2
{ϕ≥Ch} ≤ 〈e

φh/h(P̃ − E1)u, eφh/hu〉, (6-4)

with C ′ = C ′(C) arbitrarily large. Moreover, if χ̃ ∈ C∞0 (N0) is such that χ̃χ = χ , we have

(P̃ − E1)u = [P̃, χ]χ̃u+O(h∞e−ϕ/h),

and since φh = (1−2ε)ϕ+O(h) on supp∇χ , minsupp∇χ ϕ=: δ1 > 0 and, by Proposition 5.1, the operator
eφh/h
[R, χ]e−φh/h is uniformly bounded, we obtain, using also (6-3),

〈eφh/h(P̃ − E1)u, eφh/hu〉 = O(‖e(1−ε)ϕ/h
〈h Dx 〉χ̃u‖2supp∇χ + h‖eφh/hu‖2)= O(e−2εδ1/h

+ h‖eφh/hu‖2).
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Inserting this estimate into (6-4) and taking C sufficiently large, this permits us to obtain

‖h∇(eφh/hu)‖2+ h‖eφh/hu‖2 = O(e−2εδ1/h
+‖eφh/hu‖2

{ϕ≤Ch}).

In particular, since φh = φ1+O(h) on K and φh = (1− 2ε)ϕ ≤ Ch on {ϕ ≤ Ch},

‖hCϕ−C eϕ/hh∇u‖2K +‖h
Cϕ−C eϕ/hu‖2K = O(e−2εδ1/h

+‖u‖2
{ϕ≤Ch}).

Therefore,
‖eϕ/h

∇u‖2K +‖e
ϕ/hu‖2K = O(h∞),

and the result follows by standard Sobolev estimates. �

Now, following [FLM, Section 4.3], we observe that, if ε0 has been taken small enough, the asymptotic
solution wN is O(hδN e−S/h) uniformly on the set{

dist
(

x,
⋃
γ∈G

γ
)
≥ ε0

}
∩ {V1 ≤ 2ε0} ∩

( ⋃
γ∈G

N(γ )∪WN (γ )
)

Moreover, by (6-3), the same is true for v on
{
dist(x,

⋃
γ∈Gγ )≥ ε0

}
∩ {V1 ≤ 2ε0}. Therefore, using also

Proposition 6.1, we can paste together eiθ0v and h−n/4wN in order to obtain a function uN that satisfies
the properties of the following proposition; see also [FLM, Proposition 4.6].

Proposition 6.2. There exists a function uN , smooth on ÖN := {dist(x, Ö) < 2(Nk)2/3}, such that

(P − ρ)uN = O(hδN e−ReϕN /h), ∂αuN = O(h−mαe−ReϕN /h),

uniformly on ÖN , where ϕ̃N is as in (4-54). Moreover, in
⋃
γ∈G WN (γ )∩ {dist(x, Ö) ≥ (Nk)2/3} one

can write uN as in (4-52) (with β`,m1 (xγ , 0) 6= 0), while away from
⋃
γ∈G WN (γ ) ∩ {x /∈ Ö}, uN is

O(hδN e−ReϕN /h).

7. Comparison between asymptotic and true solution

A priori estimates. In the same spirit as in [FLM, Theorem 2.2], we start with an a priori estimate for
the resonant state of P . From now on, we denote by u the outgoing solution of

Pu = ρ1u, (7-1)

normalized in the following way: we fix some analytic distorted space (also more recently introduced, in
the context of computational physics, under the name of perfectly matched layer; see [Berenger 1994],
for example) of the form

R̃n
θ := {x + iθF(x) : x ∈ Rn

}, (7-2)

where F ∈ C∞(Rn
;Rn), F(x) = 0 if |x | ≤ R0, F(x) = x for |x | large enough, and where θ > 0 is

sufficiently small and may also tend to 0 with h, but not too rapidly (here, we take θ = h|ln h| = k). Then,
by definition, the fact that ρ1 is a resonance of P means that (7-1) admits a solution in L2(R̃n

θ ), and here
we take u such that

‖u‖L2(R̃n
θ )
= 1. (7-3)
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As before, d stands for the Agmon distance associated with the pseudometric min(V1, V2)+ dx2, and we
denote by Bd(S) := {x ∈ Rn

: d(0, x) < S} the corresponding open ball of radius S = d(0, ∂ Ö). Then,
we first have:

Proposition 7.1. For any compact subset K ⊂ Rn , there exists NK ≥ 0 such that

‖es(x)/h u‖H1(K ) = O(h−NK ),

uniformly as h→ 0, where s(x)= ϕ(x) if x ∈ Bd(S) and s(x)= S otherwise.

Proof. The proof is very similar to that of [FLM, Theorem 2.2], with the only difference that here we
have to deal with pseudodifferential operators, forbidding us to use Dirichlet realizations and nonsmooth
weight functions. Instead, we modify V1 in a way similar to (6-1), and we regularize the weights as in
Proposition 5.2.

We consider a cutoff function χ̂ (dependent on h) such that

χ̂(x)= 1 if V1(x)≥ 2k2/3, χ̂(x)= 0 if V1(x)≤ k2/3, ∂αχ̂ = O(k−2|α|/3),

and we set

V̂1 := χ̂V1+ k2/3(1− χ̂), P̂1 := −h21+ V̂1, P̂ =
(

P̂1 0
0 P2

)
+ h R(x, h Dx). (7-4)

We denote by Ê the first eigenvalue of P̂ , and by v̂ its first normalized eigenfunction. Moreover, we
consider the Agmon distance d̂ associated with the pseudometric (min(V1, V2)+− Ê) dx2, and we set
ϕ̂(x) := d̂(0, x). Then, the same proof as in [FLM, Lemma 3.1] shows the existence of a constant C1 > 0
such that

s(x)−C1k ≤ ϕ̂(x)≤ ϕ(x) (x ∈ Rn). (7-5)

Moreover, an adaptation of the proof of [FLM, Lemma 3.2] (obtained by using Proposition 5.2 in order
to regularize the Lipschitz weight) gives

‖eϕ̂/h v̂‖H1(Rn) = O(h−N0), (7-6)

for some N0 ≥ 0. Then, the result follows by considering the function χ̂ v̂ and by observing that, thanks
to (7-6), one has [FLM, Lemma 3.3 and Formula (3.20)]∥∥∥χ̂ v̂− 1

2iπ

∫
γ

(z− Pθ )−1χ̂ v̂ dz
∥∥∥

H1
= O(h−N1e−S/h).

Here, γ is the oriented complex circle {z ∈ C : |z− Ê | = h2
} and Pθ is a convenient distortion of P . The

previous estimate actually shows that the distorted uθ of u coincides — up to O(h−N1e−S/h)— with µχ̂v̂,
where µ is a complex constant satisfying |µ| = 1+O(e−δ/h), for some δ > 0. �

Remark 7.2. The previous proof also gives a global estimate on uθ ,

‖es(x)/h uθ‖H1(Rn) = O(h−N ′1),

for some constant N ′1 ≥ 0. See [FLM, Lemma 3.3 and Formula (3.20)].
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Now, we plan to give an even better a priori estimate on the difference u− uN near the boundary of
the island. Here again, we follow the arguments given in [FLM, Section 5]. For any N ≥ 1, we set

UN := {x ∈ Rn
: dist(x, ∂ Ö) < 2(Nk)2/3}.

We have [FLM, Propositions 5.1 and 5.2]:

Proposition 7.3. There exist N1 ≥ 0 and C ≥ 1 such that, for any N ≥ 1 large enough, one has

‖u− uC N‖H1(UN ) ≤ h−N2e−S/h .

Proof. We just recall the main lines of the proof in [FLM]. At first, thanks to Proposition 7.1 and the
particular form of uC N , we immediately see that the estimate is true on the set {ϕ(x)≥ S−2k}. Then, we
take a cutoff function χ̃ ∈ C∞0 (ϕ(x) < S− k) such that χ̃ = 1 on {ϕ(x)≥ S− 2k} and ∂αχ̃ = O(h−Nα )

for some Nα ≥ 0. We also consider the Lipschitz weight

φN (x)=min
(
ϕ(x)+C1 Nk+ k(S−ϕ(x))1/3, S+ (1− k1/3)(S−ϕ(x))

)
and, by using Propositions 7.1 and 6.2, we see that, if C is large enough, we have

‖eφN /h(P − ρ1)χ̃(u− uC N )‖L2(Rn) = O(h−M1),

for some M1 ≥ 0 independent of N . Then, regularizing φN as in Proposition 5.2, we can perform Agmon
estimates as in the proof of [FLM, Proposition 5.1], and we find

‖eφN /hχ̃(u− uC N )‖L2(Rn) = O(h−M2),

for some M1 ≥ 0 independent of N , and the result follows. �

Propagation. Now, we plan to prove (see [FLM, Proposition 6.1]):

Theorem 7.4. For any L > 0 and for any α ∈ Zn
+

, there exists NL ,α ≥ 1 such that, for any N ≥ NL ,α,

∂αx (u− uC N )(x, h)= O(hLe−S/h) as h→ 0, (7-7)

uniformly in UN .

Proof. As in [FLM], the proof relies on three different types of microlocal propagation arguments. We fix
some x̂ ∈ ∂ Ö and we define the Fourier–Bors–Iagolnitzer transform T (see [Sjöstrand 1982; Martinez
2002], for example) as

T u(x, ξ ; h) :=
∫

Rn
ei(x−y)ξ/h−(x−y)2/2hu(y) dy.

(1) Standard C∞ propagation. Since u is outgoing (that is, it becomes L2 when restricted to the distorted
space or the perfectly matched layer defined in (7-2)), one can see as in [FLM, Lemma 6.2] that, if t0 > 0
is large enough, one has

T u(x, ξ)= O(h∞e−S/h),

uniformly near exp(−t0 Hp1)(x̂, 0). Moreover, by Proposition 7.1, we know that eS/h u remains O(h−N0)

(for some N0 ≥ 0) on a neighborhood of the x-projection of {exp(−t Hp1)(x̂, 0) : 0< t ≤ t0}.
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Then, the standard C∞ propagation of the frequency set for the solution to a real principal type operator
(see, e.g., [Martinez 2002]) shows that the previous estimate remains valid near exp(−t Hp1)(x̂, 0) for
any t > 0.

(2) Nonstandard propagation in h-dependent domains. Thanks to the previous result, we can concentrate
our attention on a sufficiently small neighborhood of x̂ . As before, we choose local Euclidean coordinates
(x ′, xn) ∈ Rn−1

×R centered at x̂ , such that V1(x)=−C0xn +O(|x − x̂ |2). We also set µN := (Nk)−
1
3 ,

and we consider the modified Fourier–Bors–Iagolnitzer transform TN defined by

TN u(x, ξ ; h) :=
∫

Rn
ei(x−y)ξ/h−(x ′−y′)2/2h−µN (xn−yn)

2/2hu(y) dy. (7-8)

Then, using the previous result it is elementary to show that, for any (fixed) t > 0 small enough, one has
[FLM, Lemma 6.3]

TN 1K1 u(x, ξ)= O(h∞e−S/h),

uniformly near exp(−t Hp1)(x̂, 0). Here K1 is of the form K1 = K \ Bd(S), where K is any compact
neighborhood of the closure of Ö . The interest of the latter property is that, as shown in [FLM], it can be
propagated up h-dependent times t of order (Nk)1/3. More precisely, setting

exp(t Hp1)(x̂, 0)= (x ′(t), xn(t); ξ ′(t), ξn(t)) (t ∈ R),

we have [FLM, Lemma 6.4]:

Lemma 7.5. There exists δ0 > 0 such that, for any δ ∈ (0, δ0], for all N ≥ 1 large enough, and for
tN ,δ := δ

−1(Nk)1/3, one has

TN 1K1 u = O(hδN e−S/h) uniformly in W(tN , h),

where

Wδ(N , h) :=
{
|xn − xn(−tN ,δ)| ≤ δ(Nk)2/3, |ξn − ξn(−tN ,δ)| ≤ δ(Nk)1/3, |x ′− x ′(−tN ,δ)| ≤ δ(Nk)1/3,

|ξ ′− ξ ′(−tN ,δ)| ≤ δ(Nk)1/3
}
.

Proof. The proof is based on the refined exponential weighted estimates (in the same spirit as in [Martinez
2002]) given in [FLM, Proposition 8.3], which we apply here to the operator P1. Since the proof is very
similar to that of [FLM, Lemma 6.4], we omit the details. �

On the other hand, using the explicit form of uC N given in (4-52), one also sees that, for any L large
enough, there exists δL > 0 such that, for any N ≥ 1, one has [FLM, Lemma 6.7]:

TN 1K1 uC N = O((hδL N
+ hL)e−S/h) uniformly in Wδ(N , h).

In particular, taking N = L/δL with L � 1, we obtain a sequence N = NL along which

TN 1K1 uC N = O(hδL N e−S/h) uniformly in Wδ(N , h),

and with both N and δL N arbitrarily large.
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As a consequence, along the same sequence, we also obtain

TN 1K1(u− uC N )= O(hδ
′

L N e−S/h) uniformly in Wδ(N , h),

with δ′L =min(δ, δL).
Moreover we see that, when y ∈UN ∩ Bd(S) and x ∈5x Wδ(N , h) (where 5x stands for the natural

projection onto the x-space), we have

µN (xn − yn)
2
+ s(x)− S ≥ CδNk,

with Cδ > 0 constant (and actually Cδ → ∞ as δ → 0). Therefore, using Proposition 7.3 and the
expression (7-8) for TN , we also obtain

TN 1UN∩Bd (S)(u− uC N )= O(hδN e−S/h) uniformly in Wδ(N , h).

As a consequence, if we set

χN (x) := χ0

(
|xn − x̂n|

(Nk)2/3

)
χ0

(
|x ′− x̂ ′|
(Nk)1/2

)
, (7-9)

where the function χ0 ∈ C∞0 (R+; [0, 1]) satisfies χ0 = 1 in a sufficiently large neighborhood of 0, and is
fixed in such a way that χN (x)= 1 in{

|xn − x̂n| ≤ |xn(−tN )− x̂n| + 2δ(Nk)2/3, |x ′− x̂ ′| ≤ |x ′(−tN )− x̂ ′| + 2δ(Nk)1/2
}

(here, tN and δ are those of Lemma 7.5), then the function

vN := χN eS/h(u− uC N )

is such that

TNvN = O(hδ
′

L N e−S/h) uniformly in Wδ(N , h). (7-10)

Moreover, we have [FLM, Section 6.2]

(P − ρ1)vN = [P, χN ]eS/h(u− uC N )+O(hδN ),

and thus, on {dN (x, supp∇χN ) ≥ ε} ×Rn , where ε > 0 is fixed small enough and dN is the distance
associated with the metric (Nk)−1(dx ′)2+ (Nk)−

4
3 dx2

n ,

TN (P − ρ1)vN = O(hδ
′N ),

for some δ′ = δ′(ε) > 0.

(3) (Almost) standard analytic propagation. Although we are in a region where no analytic assumption
is made, a rescaling of the problem gives estimates similar to those encountered in the analytic context.
Indeed, setting

h̃ = h̃N :=
h

Nk
=

(
N ln 1

h

)−1
,
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and performing the change of variables (still working in the same coordinates, for which x̂ = 0)

x 7→ x̃ = (x̃ ′, x̃n) := ((Nk)−
1
2 x ′, (Nk)−

2
3 xn),

ξ 7→ ξ̃ = (ξ̃ ′, ξ̃n) := ((Nk)−
1
2 ξ ′, (Nk)−

2
3 ξn),

we see that the estimate (7-10) implies (see [FLM, Formula (6.43)])

T ṽN (x̃, ξ̃ ; h̃N )= O(e−δ
′

L/2h̃N )

uniformly in the tubular domain

W̃(h̃) :=
{
|x̃n − x̃n(−δ

−1)| ≤ δ, |ξ̃n − ξ̃n(−δ
−1)| ≤ δ, |x̃ ′− x̃ ′(−δ−1)| ≤ δ(Nk)−

1
6 ,

|ξ̃ ′− ξ̃ ′(−δ−1)| ≤ δ(Nk)−
1
6
}
, (7-11)

where
ṽN (x̃) := (Nk)(n−1)/4+ 1

3 vN ((Nk)1/2 x̃ ′, (Nk)2/3 x̃n),

(x̃(t̃), ξ̃ (t̃)) := exp t̃ H p̃1(0, 0),

p̃1(x̃, ξ̃ ) := (Nk)1/3|ξ̃ ′|2+ ξ̃ 2
n +W1(x̃, h̃),

W1(x̃, h̃) := (Nk)−
2
3 V1((Nk)1/2 x̃ ′, (Nk)2/3 x̃n)− (Nk)−

2
3ρ1.

Moreover, setting
P̃ := −(Nk)1/3h̃21x̃ ′ − h̃2∂2

x̃n
+W1(x̃),

then, for any N ≥ 1 large enough, we also have

T P̃ ṽN (x̃, ξ̃ ; h̃N )= O(e−δ
′/2h̃N ),

uniformly with respect to h > 0 small enough and (x̃, ξ̃ ) ∈ R2n satisfying

dN
(
((Nk)1/2 x̃ ′, (Nk)2/3 x̃n), supp∇χN

)
≥ ε.

Finally, by Proposition 7.1 and Proposition 7.3, we have the a priori estimate

‖ṽN‖H1 = O(h−N1)= O(eN1/(Nh̃)),

for some N1 ≥ 0 independent of N , and we observe that, for N = L/δL , one has N1/(δL N )→ 0 as
L→+∞.

At this point, a small refinement of the propagation of the microsupport (see [FLM, Proposition 6.8])
gives the existence of a constant δ1 > 0 independent of L such that, for all L large enough and N = L/δL ,
one has

T ṽN (x̃, ξ̃ ; h̃)= O(e−δ1δL/h̃), (7-12)

uniformly in V (δ1)= {x̃ : |x̃ | ≤ δ1}×
{
ξ̃ : (Nk)1/6|ξ̃ ′| + |ξ̃n| ≤ δ1

}
.

Then, using an ellipticity property of p̃1 away from
{
ξ̃ : (Nk)1/6|ξ̃ ′| + |ξ̃n| ≤ δ1

}
and reconstructing

ṽN from T ṽN , one finally finds
‖ṽN‖Hm(|x̃ |≤δ2) = O(e−δ2δL/h̃),
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with m ≥ 0 arbitrary, δ2 > 0 independent of L , N = L/δL , and L arbitrarily large. Therefore, turning back
to the original coordinates x and parameter h and making x̂ vary on all of ∂ Ö , Theorem 7.4 follows. �

8. Asymptotics of the width

As before, we denote by Pθ the distorted operator obtained from P by means of a complex distortion
as in (7-2), with R0 sufficiently large in order to have Ö ⊂ {|x | ≤ R0/2}. We also denote by uθ the
corresponding distorted state obtain from u by applying the same distortion (see, e.g., [FLM] for more
details).

Let ψ0 ∈ C∞0 ([0, 2); [0, 1]) with ψ0 = 1 near [0, 1], and set

ψN (x) := ψ0

(
dist(x, Ö)
(Nk)2/3

)
,

where, as before, N = L/δL with L ≥ 1 arbitrarily large.
Then, since ψN u = ψN uθ , Pθuθ = ρ1uθ and ψN PθψN uθ = ψN PψN u, we have

Im ρ1‖ψN u‖2 = Im〈ψN Pθuθ , ψN u〉 = Im〈[ψN , Pθ ]uθ , ψN u〉,
and thus

Im ρ1 = Im

〈
2h2(∇ψN )∇u+ h2(1ψN )u, ψN u

〉
+ h

〈
[ψN , Rθ ]uθ , ψN u

〉
‖ψN u‖2

. (8-1)

Moreover, we know that ‖ψN u‖ = 1+O(e−δ/h) with δ > 0 and, by Theorem 7.4, on supp ψ̃N we can
replace u by uC N , up to an error O(hLe−S/h). Also, using Proposition 7.1 we deduce

Im ρ1 = Im〈2h2(∇ψN )∇uC N + h2(1ψN )u, ψN uC N 〉+ h〈[ψN , Rθ ]uθ , ψN u〉+O(hL−N0)e−2S/h (8-2)

for some fixed N0 ≥ 0 independent of L .
Now, we let ψ̃0 ∈ C∞0 ((1, 2); [0, 1]) with ψ̃0 = 1 near supp∇ψ0 and set ψ̃N (x)= ψ̃0

(dist(x, Ö)
(Nk)2/3

)
.

Lemma 8.1. One has

〈[ψN , Rθ ]uθ , ψN u〉 = 〈ψN [ψN , R]ψ̃N u, ψ̃N u〉+O(h∞e−2S/h). (8-3)

Proof. Thanks to Assumption 3, in [ψN , Rθ ], we can make the (complex) change of contour of integration

Rn
3 ξ 7→ ξ + i

√
M0

x − y√
(x − y)2+ h2

.

We obtain

[ψN , Rθ ]uθ (x)=
1

(2πh)n

∫
ei(x−y)ξ/h−8/h(ψN (x)−ψN (y))r̃θuθ (y) dy dξ,

with

8 :=
√

M0
(x − y)2√
(x − y)2+ h2

, ∂αx,y∂
β
ξ r̃θ (x, y, ξ)= O(h−|α|〈ξ〉).

By construction, on the set

AN := supp(ψN (x)−ψN (y))∩ {ψ̃N (x) 6= 1 or ψ̃N (y) 6= 1},
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we have |x − y| ≥ c(Nk)2/3 for some constant c > 0. As a consequence, on this set, the quantity
|x− y|/

√
(x − y)2+ h2 tends to 1 uniformly as h→ 0. Moreover, still on this set, we have either s(x)= S

or s(y)= S, and since |s(x)−s(y)| ≤µ|x− y| with 0<µ<
√

M0, we deduce the existence of a constant
c0 > 0 such that for (x, y) ∈ AN , one has s(x)+ s(y)+8≥ 2S+ c0(Nk)2/3.

Therefore, by the Calderón–Vaillancourt theorem (and also using Proposition 5.2 in order to regularize
the function s(x)), we obtain

‖e−s/h
[ψN , Rθ ]e−s/h(1− ψ̃N )〈h Dn〉

−1
‖+‖(1− ψ̃N )e−s/h

[ψN , Rθ ]e−s/h
〈h Dn〉

−1
‖ = O(h∞e−2S/h).

Then, writing
〈[ψN , Rθ ]uθ , ψN u〉 = 〈e−s/h

[ψN , Rθ ]e−s/h(es/h uθ ), ψN es/h u〉

and using Proposition 7.1 and Remark 7.2, the result follows. �

Inserting (8-3) into (8-2) and approaching ψ̃N u by ψ̃N uC N , we obtain

Im ρ1 = Im〈2h2(∇ψN )∇uC N

+ h2(1ψN )u, ψN uC N 〉+ h〈ψN [ψN , R]ψ̃N uC N , ψ̃N uC N 〉+O(hL−N0)e−2S/h . (8-4)

Finally, using Proposition 6.2 (in particular the expression (4-52) of uC N in
⋃
γ∈G WN (γ )∩ supp ψ̃N ),

we can perform a stationary-phase expansion in (8-4) (as in [FLM, Section 7]) and, for L large enough,
we obtain

Im ρ1 =−h(1−n0)/2
L∑

j=n0

∑
0≤m≤`≤L

f j,`,mh j+`
|ln h|me−2S/h

+O(hL/2)e−2S/h,

with fn0,0,0 > 0. In particular, the result for ρ1 follows.
The result for ρ j , j ≥ 2, can be done along the same lines, by using a representation of Im ρ j analogous

to (8-1) and by approaching u by a linear combination of WKB expressions similar to uC N , where the
number of terms depends on the asymptotic multiplicity of the resonance; see [Helffer and Sjöstrand
1986, Section 10].
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QUASIMODES AND A LOWER BOUND ON THE UNIFORM
ENERGY DECAY RATE FOR KERR–ADS SPACETIMES

GUSTAV HOLZEGEL AND JACQUES SMULEVICI

We construct quasimodes for the Klein–Gordon equation on the black hole exterior of Kerr–AdS (anti-
de Sitter) spacetimes. Such quasimodes are associated with time-periodic approximate solutions of
the Klein–Gordon equation and provide natural candidates to probe the decay of solutions on these
backgrounds. They are constructed as the solutions of a semiclassical nonlinear eigenvalue problem
arising after separation of variables, with the (inverse of the) angular momentum playing the role of
the semiclassical parameter. Our construction results in exponentially small errors in the semiclassical
parameter. This implies that general solutions to the Klein Gordon equation on Kerr–AdS cannot decay
faster than logarithmically. The latter result completes previous work by the authors, where a logarithmic
decay rate was established as an upper bound.
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1. Introduction

There is currently a lot of mathematical activity concerning the analysis of waves on the exterior of black
hole backgrounds.1 The main motivation is the black hole stability problem, i.e., the conjectured nonlinear
asymptotic stability of the two-parameter family of asymptotically flat Kerr spacetimes (M, gM,a), the
latter being stationary solutions of the vacuum Einstein equations Ric[g] = 0. From the point of view of
nonlinear partial differential equations, the analysis of linear scalar waves on black holes is a prerequisite
to successfully understanding the nonlinear hyperbolic Einstein equations in a neighborhood of the Kerr
family.

MSC2010: primary 58J50; secondary 83C57.
Keywords: wave equation, black holes, decay estimates, Kerr – anti-de Sitter.

1See [Dafermos and Rodnianski 2013] for an introduction and a review of recent results.
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A major insight that crystallized in the last decade [Dafermos and Rodnianski 2005; 2009; 2010a;
2010b; Marzuola et al. 2010; Tataru and Tohaneanu 2011; Andersson and Blue 2009; Dyatlov 2011; 2012]
is that the fundamental geometric obstacles to the decay of waves, namely superradiance and trapped
null-geodesics, can be overcome by exploiting the normal hyperbolicity of the trapping, the redshift effect
near the event horizon and the natural dispersion of waves in asymptotically flat (and asymptotically de
Sitter) spacetimes. In particular, polynomial decay rates have been established for solutions to the scalar
wave equation on the exterior of any member of the subextremal Kerr family of spacetimes [Dafermos
and Rodnianski 2010b].

Changing the black hole geometry can have dramatic effects on the behavior of linear waves through
the subtle interplay of the redshift, the superradiance and the trapping. Aretakis [2012; 2013] showed
that for extremal black holes (whose vanishing surface gravity leads to a degeneration of the redshift
effect) the transversal derivatives of general solutions to the wave equation will grow along the event
horizon. In [Shlapentokh-Rothman 2014], it is proven that for the massive wave equation on a subextremal
(|a|< M) Kerr spacetime, exponentially growing solutions can be constructed on the exterior, exploiting
an amplification of the superradiance caused by the confining properties of the mass term.

In this paper, we shall be interested in a black hole geometry for which a strong trapping phenomenon
leads to a very slow (only logarithmic) decay of waves. More precisely, we will study the behavior of
solutions to the massive wave equation (

�g +
α

l2

)
ψ = 0 (1)

in the exterior of asymptotically anti-de Sitter (AdS) black holes with spacetime metric g.
Due to their AdS asymptotics, these spacetimes are not globally hyperbolic. Nonetheless, Equation (1)

is well-posed in suitably weighted Sobolev spaces, denoted here by H k
AdS, provided α satisfies the

Breitenlohner–Friedmann bound α < 9
4 . See [Holzegel 2012] as well as [Vasy 2012; Bachelot 2008; 2011;

Ishibashi and Wald 2004; Warnick 2013] for a complete treatment of general boundary conditions.
The global properties of solutions to (1) on the exterior of nonsuperradiant2 Kerr–AdS black holes were

studied in [Holzegel 2010; Holzegel and Smulevici 2013a; Holzegel and Warnick 2014]. In particular,
boundedness was obtained in [Holzegel 2010; Holzegel and Warnick 2014] and logarithmic decay in
time for general H 2

AdS solutions in [Holzegel and Smulevici 2013a]. We summarize these results in the
following theorem. We refer to Section 2A1 for the precise definitions of the Kerr–AdS spacetimes, the
area-radius r+ of the event horizon and the 6t?-foliation and to Section 2B for the definitions of the norms
and energies used in the statement below. At this point we only remark that e1[ψ] is an energy density
involving all first derivatives of ψ while e2[ψ] and ẽ2[ψ] involve all second derivatives (with appropriate
weights):

Theorem 1.1. Let (g,R) denote the black hole exterior of a Kerr–AdS spacetime with mass M > 0,
angular momentum per unit mass a and cosmological constant 3=−3/l2. Assume that the parameters
satisfy α < 9

4 , |a|< l. Fix a spacelike slice 6t?0 intersecting H+. Then:

2This means that the parameters of the black hole satisfy r2
+
> |a|l. See Remark 1.3 and Section 2.
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1. Equation (1) is well-posed in CH k
AdS on (g,R) for any k ≥ 2 for initial data prescribed on 6t?0 .

(See [Holzegel 2012].)

2. The solutions of (1) arising from data prescribed on 6t?0 remain uniformly bounded on the black hole
exterior provided r2

+
> |a|l holds. In particular,∫

6t∗
e1[ψ](t?) r2 sin θ dr dθ dφ .

∫
6t?0

e1[ψ](t?0 ) r2 sin θ dr dθ dφ. (2)

Analogous statements hold for all higher H k
AdS-norms. In particular,∫

6t∗
e2[ψ](t?) r2 sin θ dr dθ dφ .

∫
6t?0

e2[ψ](t?0 ) r2 sin θ dr dθ dφ, (3)

and the same statement for ẽ2[ψ](t?). (See [Holzegel 2010; Holzegel and Warnick 2014].3)

3. If the parameters satisfy r2
+
> |a|l, the solutions of (1) satisfy the global decay estimate∫

6t∗
e1[ψ](t?) r2 sin θ dr dθ dφ .

1
[log(2+ t?)]2

∫
6t?0

e2[ψ](t?0 ) r2 sin θ dr dθ dφ (4)

for all t? ≥ t?0 > 0. (See [Holzegel and Smulevici 2013a].)

Remark 1.2. The constant implicit in the symbol “.” appearing in items 2 and 3 depends only on the
fixed parameters M , `, a and α.

Remark 1.3. The condition r2
+
> |a|l on the parameters in items 2 and 3 guarantees the existence of a

globally causal Killing vector field on the black hole exterior, the Hawking–Reall vector field [Hawking
and Reall 2000], which explains why such black holes are sometimes referred to as “nonsuperradiant”. If
one restricts to axisymmetric solutions of (1), this condition can be dropped for statements 2 and 3 in
Theorem 1.1.

Remark 1.4. The boundedness statement (2) does not lose derivatives while the decay statement (4) does.
This is the familiar loss of derivatives caused by the existence of trapped null-geodesics [Ralston 1969;
Sbierski 2013].

This logarithmic decay rate (4) was conjectured to be sharp in [Holzegel and Smulevici 2013a] in view
of the discovery of a new stable trapping phenomenon, itself a consequence of the coupling between the
lack of dispersion at the asymptotic end and the usual (unstable) trapping on black hole exteriors [ibid.].

1A. The main results. In this paper, we shall prove that the logarithmic decay estimate of Theorem 1.1
is indeed sharp. Recall that for the obstacle problem, it is classical [Ralston 1969] that lower bounds on
the rate of energy decay can be obtained from the construction of approximate eigenfunctions, also called
quasimodes, of the associated elliptic operator, obtained by formally taking the Fourier transform in time

3These papers and [Holzegel 2012] are only concerned with the ẽ2[ψ] energy. It is remarked that by commutation with
angular momentum operators one can prove boundedness for the e2[ψ] energy (which differs from the ẽ2[ψ] energy through the
weights of the angular derivatives). For completeness, we provide in an Appendix an explicit proof of this statement.
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of the wave operator. Our main theorem establishes the existence of such quasimodes for Kerr–AdS with
exponentially small errors.4

The statement of the following theorem will involve the quantity

rmax ∈

(
r+,

3M
1− a2/l2

]
,

which is determined in Lemma 3.1 as the location of the unique maximum of a simple radial function.
For Schwarzschild–AdS, rmax = 3M will be the location of the well-known photon sphere.

Theorem 1.5 (quasimodes for Kerr–AdS). Let (g,R) denote the black hole exterior of a Kerr–AdS
spacetime, with mass M > 0, angular momentum per unit mass a and cosmological constant 3=−3/l2.
Assume that the parameters satisfy α < 9

4 , |a| < l. Let (t, r, θ, ϕ) denote standard Boyer–Lindquist
coordinates on R. Then, for δ > 0 sufficiently small (depending only on the parameters l, M , a, α), there
exists a family of nonzero functions ψ` ∈ H k

AdS for any k ≥ 0 satisfying the following conditions:

(1) ψ`(t, r, θ, ϕ)= eiω`tϕ`(r, θ) (axisymmetric and time-periodic).

(2) 0< c <
ω2
`

`(`+1)
< C , for constants c and C independent of ` (uniform bounds on the frequencies).

(3) For all t? ≥ t?0 and all k ≥ 0, we have
∥∥(�g +α/ l2

)
ψ`
∥∥

H k
Ads(6t? )

≤ Cke−Ck`‖ψ`‖H0
AdS(6t?0 )

, for some
Ck > 0 independent of ` (approximate solutions to the wave equation).

(4) The support of F` := (�g+α/ l2)ψ` is contained in {rmax ≤ r ≤ rmax+ δ} (spatial localization of the
error).

(5) The support of ϕ`(r, θ) is contained in {r ≥ rmax} (spatial localization of the solution).

Note that the ψ` have constant H k
AdS-norms and hence exhibit no decay. On the other hand, a

standard application of Duhamel’s formula shows that the ψ` are good approximations to the solution of
(�g +α/ l2)ψ = 0 arising from the data induced by ψ`, at least up to a time t ∼ eCk`.

Corollary 1.6. Let (R, g) denote the black hole exterior of a Kerr–AdS spacetime as in Theorem 1.5.
Denote by SCH 2

AdS the set of CH 2
AdS solutions to (1) with α < 9

4 . Let t?0 ≥ 0 be fixed and define for any
nonzero ψ and t? ≥ 0

Q[ψ](t?) := log(2+ t?)
(∫

6t?∩{r≥rmax}
e1[ψ](t?) r2 sin θ dr dθ dφ∫

6t?0
e2[ψ](t?0 )r

2 sin θ dr dθ dφ

)1
2

.

Then there exists a universal (depending only on M , α, |a| and l) constant C > 0 such that

lim sup
t?→+∞

sup
ψ∈SCH2

AdS
ψ 6=0

Q[ψ](t?) > C > 0.

Remark 1.7. Corollary 1.6 implies that the semilocal energy in {r ≥ rmax} cannot decay universally faster
than (log t?)−2, unless one loses more derivatives.

4Note that in order to deduce the sharpness of the logarithmic decay rate from the quasimodes, polynomial errors would a
priori not be sufficient.
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Remark 1.8. We emphasize that no smallness assumption on the angular momentum a is needed, apart
from the condition |a|< l which ensures that the metric is a regular black hole metric.

Remark 1.9. The ψ` constructed in Theorem 1.5 are axisymmetric, while the decay estimate of Theorem
1.1 holds for general solutions (provided r2

+
> |a|l holds in the nonaxisymmetric case). Since we are

concerned here with a lower bound on the uniform decay rate, an analysis within axisymmetry is sufficient.
This allows us to drop the nonsuperradiant condition r2

+
> |a|l in the analysis. On the other hand, for

(sufficiently) superradiant black holes r2
+
< |a|l one can adapt the proof of [Shlapentokh-Rothman 2014]

to construct exponentially growing solutions. Hence in this case, the quasimodes we construct are not the
“worst” solutions on these backgrounds.

Remark 1.10. Stable trapping occurs only in the region r ≥ rmax and is associated to certain frequencies.
As a consequence, stronger local energy decay in r ≤ rmax or for some frequency projections of solutions
is a priori compatible with the results of this paper.

1B. Related works and discussion.

1B1. Nonlinear analysis on asymptotically AdS spacetimes. In [Holzegel and Smulevici 2012a; 2013b],
the nonlinear spherically symmetric Einstein–Klein–Gordon system for asymptotically AdS initial data
was studied, and, in particular, asymptotic stability of Schwarzschild–AdS was proven within this model.

For a discussion connecting the logarithmic decay to the nonlinear stability or instability of asymptoti-
cally AdS black holes, we refer to Section 1.4 of [Holzegel and Smulevici 2013a]. We also mention the
recent heuristic analysis of [Dias et al. 2012] drawing attention to a potential stability mechanism caused
by the lack of exact nonlinear resonances in this setting. For AdS itself, instability was conjectured in
[Dafermos and Holzegel 2006; Anderson 2006; Dafermos 2006]. More recently, both numerical and
additional heuristic evidence has been presented [Bizon and Rostworowski 2011]. Finally, let us note that
asymptotically AdS solutions to the Einstein equations have been constructed in [Friedrich 1995].

1B2. Quasinormal modes of the asymptotically AdS black holes. Quasinormal modes, also called reso-
nances, are complex frequencies generalizing the well-known normal modes to systems which dissipate
energy. There is a strong connection between quasimodes and resonances [Tang and Zworski 1998]. One
way to mathematically define them is as poles of the meromorphic continuation of a truncated resolvent.
In the case of asymptotically de Sitter black holes, this theory has been very successfully developed;
see [Bony and Häfner 2008; Dyatlov 2011; 2012]. In a recent paper, Gannot [2014] has established,
in the case of Schwarzschild–AdS, the existence of a sequence of quasinormal modes (based on an
independent construction of quasimodes), indexed by angular momentum `, and with imaginary parts
of size O(exp(−`/C)). In particular, his construction confirms the numerical results of [Festuccia and
Liu 2009] and provides an independent proof of Theorem 1.5 and Corollary 1.6, albeit restricted to the
Schwarzschild–AdS case. While we restrict ourselves here to the construction of quasimodes, we strongly
believe that our results can be used as a basis for the construction of resonances in the Kerr–AdS case for
the whole range of parameters satisfying |a|< l and r2

+
> |a|l.
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1B3. Universal minimal decay rates of waves outside stationary black holes. In the context of the obstacle
problem in Minkowski space, a celebrated result of Burq [1998] establishes a logarithmic decay rate for
the local energy of waves, independently of the geometry of the obstacle causing the trapping. For waves
outside black holes, in view of the results of [Holzegel and Smulevici 2013a], a natural conjecture is:
Given any black hole exterior (R, g) of a stationary spacetime, a logarithmic decay of energy similar
to that of [ibid.] will hold, provided a uniform boundedness statement is true for solutions to the wave
equation �gψ = 0 on R.

1C. Outline and overview of the proof. Section 2 introduces the family of Kerr–AdS spacetimes as well
as the norms required to state our estimates. In Section 3, we exploit the classical fact that the wave
equation separates on Kerr–AdS. An ingredient which considerably simplifies our analysis here is the
important observation that we can restrict ourselves to axisymmetric solutions. With axisymmetry, the
separation of variables leads to relatively simple, one-dimensional, second order ordinary differential
equations for the radial functions. In the case of Schwarzschild, they are roughly of the form of the
semiclassical problem

−u′′`
1

`(`+ 1)
+ Vσu` =

ω2

`(`+ 1)
u` (5)

for a potential Vσ (r), whose general form is depicted below.5 In Section 3C, we shall describe in detail
the analytic properties of the potentials appearing in these equations.

1/l2

E

r ? = π/2
r =∞

r = rmax

E + δ

u = 0
u = 0

r = rmax+ δ
′

E − δ

Vσ

To construct the quasimodes, we first construct eigenfunctions for the problem (5) with Dirichlet conditions
u = 0 imposed on u at r = rmax and r →∞ (Section 4). In particular, we prove a version of Weyl’s
law, ensuring that for any energy between 1/l2 < E < Vmax = Vσ (rmax) we can find (lots of) eigenvalues

5For the purpose of this exposition, we neglect terms of lower order in 1
`(`+1) in the potential, as well as the mass term. The

latter is actually unbounded and needs to be absorbed with a Hardy inequality. We suppress such technical difficulties in the
present discussion.
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ω2
`/(`(`+ 1)) of (5) in a strip [E−δ, E+δ]. In the Kerr case, the eigenvalue problem (5) turns into a

problem of the form6

−u′′`
1

µ`(a2ω2)
+ Vσu` =

ω2

µ`(a2ω2)
u`, (6)

which is nonlinear in ω2. An application of the implicit function theorem together with global estimates
on the behavior of the eigenvalues still allow us to conclude the existence of eigenfunctions u` of (6)
with corresponding eigenvalues in the range

(
1/l2, E + δ

]
. These estimates, together with the analysis of

the potential in the Kerr–AdS case, constitute the core of our paper.
In Section 5, we recall the so-called Agmon estimates, their proof being included to make the paper

self-contained. These estimates quantify that the solutions u` constructed from the above eigenvalue
problem decay exponentially in ` in a region [rmax, rmax+ δ

′
].

In Section 6, the quasimodes are constructed by cutting off the solution u` of the eigenvalue problem in
[rmax, rmax+ δ

′
] so that it vanishes with all derivatives at rmax and then continuing it to be identically zero

in [r+, rmax]. The function φ` thus constructed will be defined on [r+,∞) and the corresponding wave
function ψ` = eiω`φ` will satisfy the wave equation everywhere except in the small strip [rmax, rmax+ δ

′
],

where the error is exponentially small by the Agmon estimate.
In the last section, we prove Corollary 1.6 using the Duhamel formula. Finally, the Appendix contains

a proof of boundedness for the second energy used in this paper. This boundedness statement differs from
that obtained in [Holzegel 2010; Holzegel and Warnick 2014] in that it allows for stronger radial weights
near infinity for the angular derivatives.

2. Preliminaries

2A. The Kerr–AdS family of spacetimes. We recall here some basic facts about the family of Kerr–AdS
spacetimes required in the paper. We refer the reader to the detailed discussion in our work [Holzegel and
Smulevici 2013a].

2A1. The fixed manifold with boundary R. Let R denote the manifold with boundary

R= [0,∞)×R×S2.

We define standard coordinates y∗ for [0,∞), t? for R and (θ, φ) for S2. This defines a coordinate system
on R which is global up to the well-known degeneration of the spherical coordinates. We define the event
horizon H+ to be the boundary of R:

H+ = ∂R= {y∗ = 0}.

The manifold R will coincide with the domain of outer communication of the black hole spacetimes
including the future event horizon H+.

6The µ`(a2ω2) generalize the familiar spherical eigenvalues `(`+ 1) of the Schwarzschild case to Kerr. See Section 3A.
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2A2. The parameter space and the radial function. A Kerr–AdS spacetime is characterized by its mass
M > 0, its angular momentum per unit mass a and the value of the cosmological constant 3< 0. For
convenience, we shall use mostly l =

√
3/|3|, instead of 3. For the spacetime to be regular, we will

require |a|< l. Let us thus fix M , l > 0 and |a|< l. We then define r+(M, l, a) > 0 as the unique real
solution of 1−(x)= 0, where

1−(x)=
(

1+
x2

l2

)
(x2
+ a2)− 2Mx . (7)

We now define a function r on R as follows. As a function of (t?, y?, ϕ, θ), r only depends on y?

and is a diffeomorphism from [0,∞) to [r+,∞). The collection (t?, r(y?), ϕ, θ) then forms a coordinate
system on R, global up to the degeneration of the spherical coordinates. Moreover, the horizon H+

coincides with {r = r+}.

2A3. More coordinates: r?, t , φ̃. Let us define r? by

dr?

dr
(r)=

r2
+ a2

1−(r)
, r?(r =+∞)=

π

2
,

where 1−(r) is given by (7). Note that r?(r+)=−∞.
By a small abuse of notation, we shall often write for functions f and g, f (r?) = g(r), instead of

f (r?)= g(r(r?)) or f (r?(r))= g(r).
Finally, let rcut = r+ + 1

2(rmax − r+), with rmax > r+ defined in Lemma 3.1 depending only on the
parameters M , a and l, and let χ(r) be a smooth cut-off function with the property

χ(r)=
{

1 if r ∈
[
r+, 1

2(rcut− r+)
]
,

0 if r ≥ rcut.
(8)

We introduce the time coordinate t and another angular coordinate φ̃ as

t = t?− A(r)χ(r) and φ̃ = φ− B(r)χ(r), (9)

where
d A
dr
=

2Mr
1−(1+ r2/l2)

,
d B
dr
=

a(1− a2/l2)

1−
,

and A and B vanish at infinity.
Note that t , φ̃ and r? are not well-behaved functions at the horizon r = r+. As a consequence, the

coordinate systems (t, r, θ, φ̃) and (t, r?, θ, φ) only cover int(R). Observe also that the two coordinate
systems (t, r, θ, φ̃) and (t?, r, θ, φ) are identical for r ≥ rcut.

2A4. The Kerr–AdS metric for fixed (a,M, l). We may now introduce the Kerr–AdS metric as the unique
smooth extension to R of the tensor given in the Boyer–Lindquist chart by

gKAdS =
6

1−
dr2
+
6

1θ
dθ2
+
1θ (r2

+ a2)2−1−a2 sin2 θ

426
sin2 θ dφ̃2

−2
1θ (r2

+ a2)−1−

46
a sin2 θ dφ̃dt −

1−−1θa2 sin2 θ

6
dt2, (10)
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where 1− is defined by (7) and

6 = r2
+ a2 cos2 θ, 1θ = 1−

a2

l2 cos2 θ, 4= 1−
a2

l2 . (11)

See [Holzegel and Smulevici 2013a] for explicit expressions for the inverse of (10) and its determinant in
Boyer–Lindquist coordinates. That the tensor (10) indeed extends to a smooth metric on R is clear from
expressing the metric in (t?, r, θ, φ) coordinates, which is carried out explicitly in [ibid.]. Note that for
a = 0 the metric (10) reduces to the well-known Schwarzschild–AdS spacetime

g =−
(

1−
2M
r
+

r2

l2

)
dt2
+

(
1−

2M
r
+

r2

l2

)−1

dr2
+ r2 dσS2,

where dσS2 is the standard metric on the unit sphere.
The Boyer–Lindquist coordinates degenerate at the horizon r = r+, but the importance of these

coordinates is that it is in these coordinates that the Klein–Gordon operator separates (see Section 3).

2A5. The Klein–Gordon operator in Boyer–Lindquist coordinates. For any Lorentzian metric g and any
scalar function ψ , we define as usual

�gψ =
1
√
|g|
∂α(
√
|g|gαβ∂βψ);

the Klein–Gordon operator acting on scalar functions in Boyer–Lindquist coordinates is given by(
�g +

α

l2

)
ψ =

(
−
(r2
+ a2)2

61−
+

a2 sin2 θ

61θ

)
∂2

t ψ +
1
6
∂r (1−∂rψ)+ 2

(
4(r2

+ a2)a
1−6

−
4a
1θ6

)
∂t∂φ̃ψ

+

(
42

1θ6

1

sin2 θ
−
42a2

61−

)
∂φ̃∂φ̃ψ +

1
6 sin θ

∂θ (1θ sin θ∂θψ)+
α

l2ψ. (12)

2B. The norms. Let /g and /∇ denote the induced metric and the covariant derivative on the spheres S2
t?,r

of constant t? and r in R.
We write | /∇ · · · /∇ψ |2 = /g AA′

· · · /gB B ′ /∇ A · · · /∇Bψ /∇ A′ · · · /∇B ′ψ to denote the induced norms on these
spheres. We denote by �i with i = 1, 2, 3 the standard basis of angular momentum operators on the unit
sphere in θ , φ coordinates.

With these conventions, we define the energy densities

e1[ψ] =
1
r2 (∂t?ψ)

2
+ r2(∂rψ)

2
+ | /∇ψ |2+ψ2,

ẽ2[ψ] = e1[ψ] + e1[∂t?ψ] + r4(∂r∂rψ)
2
+ r2
|∂r /∇ψ |

2
+ | /∇ /∇ψ |2,

e2[ψ] = ẽ2[ψ] +
∑

i

e1[�iψ].
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Similarly, we define the following energy norms for the scalar field ψ (see [Holzegel 2012]):

‖ψ‖2
H0,s

AdS(6t? )
=

∫
6t∗

r sψ2r2 dr sin θ dθ dφ

‖ψ‖2
H1,s

AdS(6t? )
=

∫
6t∗

r s(r2(∂rψ)
2
+ | /∇ψ |2+ψ2) r2 dr sin θ dθ dφ

‖ψ‖2
H2,s

AdS(6t? )
= ‖ψ‖2

H1,s
AdS(6t? )

+

∫
6t∗

r s(r4(∂r∂rψ)
2
+ r2
| /∇∂rψ |

2
+ | /∇ /∇ψ |2

)
r2 dr sin θ dθ dφ.

Note in particular the relations∫
6t∗

e1[ψ]r2 dr sin θ dθ dφ = ‖ψ‖2
H1,0

AdS(6t? )
+‖∂t?ψ‖

2
H0,−2

AdS (6t? )
, (13)∫

6t∗
e2[ψ]r2 dr sin θ dθ dφ = ‖�iψ‖

2
H1,0

AdS(6t? )
+‖∂t?ψ‖

2
H1,0

AdS(6t? )
+‖ψ‖2

H2,0
AdS(6t? )

+‖∂t?∂t?ψ‖
2
H0,−2

AdS (6t? )
.(14)

Higher-order norms may be defined similarly. We denote by H k,s
AdS(6t?) the space of functions ψ such

that ∇ iψ ∈ L2
loc(6t?) for i = 0, . . . , k and ‖ψ‖2

H k,s
AdS(6t? )

<∞. We denote by CH k,s
AdS the set of functions

ψ defined on R such that

ψ ∈
⋂

q=0,...,k

Cq(Rt?; H k−q,sq
AdS (6t?)

)
, where sk =−2, sk−1 = 0 and s j = s for j = 0, . . . , k− 2.

When s = 0, we will feel free to drop the s in the notation, i.e., H k,0
AdS := H k

AdS and CH k
AdS := CH k,0

AdS.

2C. A final remark. In [Holzegel and Smulevici 2013a], the coordinates t and φ̃ in (9) are defined with
the χ(r) of (8) being globally equal to 1. Here, for convenience in the subsequent analysis (which happens
mostly away from the horizon, in r ≥ rmax), we have altered these coordinates away from the horizon
to agree with the Boyer–Lindquist coordinates. Note that these two coordinate systems are equivalent
in the sense that the statement ‖ψ‖2H k,s

AdS(6t? ) decays logarithmically in t? is independent of whether the
coordinates (and 6t?-slices) of our earlier paper or the cut-off coordinates (9) are used.

3. Separation of variables and reduced equations

3A. The (modified) oblate spheroidal harmonics. For each ξ ∈R, define the unbounded L2(sin θ dθ dφ̃)-
self-adjoint operator PS2(ξ) with domain the space of H 2(S2)-complex valued functions (see Section 7
of [Dafermos and Rodnianski 2010a] for a more detailed discussion), as

−PS2(ξ) f =
1

sin θ
∂θ (1θ sin θ ∂θ f )+

42

1θ

1

sin2 θ
∂2
φ̃

f +4
ξ 2

1θ
cos2 θ f − 2iξ

4

1θ

a2

l2 cos2 θ ∂φ̃ f. (15)

We also define the operator Pα, which is equal to

PS2,α(ξ)=


P(ξ)+ α

l2 a2 sin2 θ if α > 0,

P(ξ)+ |α|
l2 a2 cos2 θ if α ≤ 0.

(16)
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The motivation for introducing these operators is that, formally replacing ξ by ai∂tψ , they appear naturally
in the Klein–Gordon operator (12) when trying to separate variables; see the next section.

When l→∞ the operator PS2(ξ) reduces to an oblate spheroidal operator on S2 as considered for
instance in [ibid.]. If also ξ = a = 0 we recover the Laplacian on the round sphere. Both operators PS2(ξ)

and PS2,α(ξ) have discrete spectra. We will use the following notation:

PS2,α(ξ) has eigenvalues λm`(ξ) with eigenfunctions Sm`(ξ, cos θ)eimφ̃.

Later we will restrict attention to axisymmetric solutions and hence to the eigenvalues λ0` of the operators

−Pθ,α(ξ 2) := −PS2,α(ξ)
∣∣
m=0. (17)

In fact, it will be convenient (in view of their manifest positivity) to work with the eigenvalues of the
shifted operators, which are, for α ≤ 0,

−Pθ,α(ξ 2)− ξ 2
=

1
sin θ

∂θ (1θ sin θ∂θ ( · ))−
|α|

l2 a2 cos2 θ −
sin2 θ

1θ
ξ 2 (18)

(cos2 is replaced by sin2 in the second term if α > 0). In view of these considerations, we shall denote
the eigenvalues of the operator Pθ,α(ξ 2)+ ξ 2 by µ`(ξ 2). By min-max and comparison with the spherical
Laplacian [Holzegel and Smulevici 2013a, Lemma 5.1] in the axisymmetric case, we have

µ`(ξ
2)≥ µ`(0)≥4`(`+ 1) > ca,l`(`+ 1). (19)

3B. The separation of variables. We now present the reduced equations obtained after separation of
variables. For this purpose, we consider the Klein–Gordon operator in Boyer–Lindquist coordinates (12).

For the construction of quasimodes, it would be sufficient to start directly from the reduced equations.
However, we will instead derive them from the Klein–Gordon equation (1) to show this relation. Thus, in
this section ψ will denote any regular solution to (1). Let us introduce the time-Fourier transform7

ψ(t, r, θ, φ̃)= 1
√

2π

∫
∞

−∞

e−iωt ψ̂(ω, r, θ, φ̃) dω. (20)

We decompose the ψ̂ of (20) as

ψ̂(ω, r, θ, φ̃)=
∑
m`

(ψ̂)
(aω)
m` (r)Sm`(aω, cos θ)eimφ̃, (21)

where Sm` are the modified spheroidal harmonics introduced above and

(ψ̂)
(aω)
m` (r)=

1
√

2π

∫
∞

−∞

dt
∫

S2(t,r)
dσ̃ eiωt Sm`(aω, cos θ)e−imφ̃ψ(t, r, θ, φ̃),

with dσ̃ = sin θ dθ dφ̃.
After the renormalization

u(aω)m` (r)= (r
2
+ a2)1/2(ψ̂)

(aω)
m` (r), (22)

7Note that in general ψ is not an L2-function in time and therefore, ψ̂ is defined only as a tempered distribution. Since here
we are merely trying to justify the origin of the reduced equations, it will be sufficient to understand all computations formally.
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we finally obtain from (1) and (12) the equation(
u(aω)m` (r)

)′′
+
(
ω2
− V (aω)

m` (r)
)
u(aω)m` = 0, (23)

where ′ denotes differentiation with respect to r? and where the potential V (aω)
m` (r) is defined as

V (aω)
m` (r)= V (aω)

+,m`(r)+ V (aω)
0,m` (r)+ Vα(r), (24)

where

V (aω)
+,m`(r)=−1

2
−

3r2

(r2+ a2)4
+1−

5r4/l2
+ 3r2(1+ a2/l2)− 4Mr + a2

(r2+ a2)3
= (r2

+ a2)−1/2(
√

r2+ a2)′′,

V (aω)
0,m` (r)=

1−(λm`+ω
2a2)−42a2m2

− 2mωa4(1−− (r2
+ a2))

(r2+ a2)2
, (25)

Vα(r)=−
α

l2

1−

(r2+ a2)2
(r2
+2(α)a2), (26)

with 2(α)= 1 if α > 0 and 2(α)= 0 if α ≤ 0 (recall that the λm` also depend on α through (16)). Note
that V+ grows like 2r2/l4 near infinity, while the V0 part remains bounded.

3C. The axisymmetric reduced equations. We now look at the axisymmetric case; that is, we consider
the above equations under the assumption that ψ is independent of the azimuthal variable φ̃. The reduced
equations are then obtained by setting m = 0 in the decomposed equations. Hence, we will consider the
following set of equations: (

u(aω)0` (r)
)′′
+
(
ω2
− V (aω)

0` (r)
)
u(aω)0` (r)= 0, (27)

where the potential V (aω)
0` (r) is defined as

V (aω)
0` (r)= Vjunk(r)+ Vmass(r)+ Vσ (r) ·µ`(ω2a2), (28)

where

Vjunk(r)=−12
−

3r2

(r2+a2)4
+1−

5r4/l2
+3r2(1+a2/l2)−4Mr+a2

(r2+a2)3
−

2
l2

1−r2

(r2+a2)2
−
α

l2

1−

(r2+a2)2
2(α)a2,

Vmass(r)=
2−α

l2

1−r2

(r2+a2)2
, Vσ (r)=

1−

(r2+a2)2
. (29)

Here we rearranged the terms in the different potentials so that Vmass = 0 corresponds to the conformal
case α = 2. In particular, we have

|Vjunk(r)| ≤ CM,l,a
1−

(r2+ a2)2
. Vσ ;

hence Vjunk is uniformly bounded.

Lemma 3.1 (properties of Vσ ). For all |a|< l, the potential Vσ enjoys the following properties:

• Vσ (r?)→ 1/l2 as r?→ π/2.



QUASIMODES AND THE UNIFORM ENERGY DECAY RATE FOR KERR–ADS SPACETIMES 1069

• Vσ has a unique local and global maximum Vmax at r?max in [r?
+
, π/2). Also, Vσ is monotonically

decreasing in [r?max, π/2).

• Vmax = Vσ (r?max)≥
1
l2 +

3M/4+4a2(
(3M/4)2+ a2

)2 .

Remark 3.2. In particular, for any 0< a0 < l and all |a| ≤ a0, the size of the interval [1/l2, Vσ (r?max)] is
bounded uniformly (in a) from below by a strictly positive uniform constant.

Proof. The first claim can be trivially checked. For the second and third claims, let us write

Vσ (r)=
1−

(r2+ a2)2
=
(r2
+ a2)(r2/l2

+ a2/l2
+4)− 2Mr

(r2+ a2)2
=

1
l2 +

4(r2
+ a2)− 2Mr
(r2+ a2)2

. (30)

The r -derivative of Vσ is

∂r Vσ (r)=
(r2
+a2)2(24r−2M)−4r(r2

+a2)(4(r2
+a2)−2Mr)

(r2+a2)4

=
(r2
+a2)(24r−2M)−4r(4(r2

+a2)−2Mr)
(r2+a2)3

=
−24r3

+6Mr2
−24a2r−2Ma2

(r2+a2)3
. (31)

If a = 0, then one has as usual that the only zero in [r+,∞) is at r = 3M . Assume a 6= 0. Observe that
the derivative is positive near −∞, negative at r = 0, positive at r = r+ and negative near∞. This tells us
that there are three real roots for ∂r Vσ . The one of interest to us is the one corresponding to the (unique)
maximum of Vσ in the interval [r+,∞). Define rguess = 3M/4. We claim r+ < rguess <∞. This follows
from r+ < 2M , which is in turn a consequence of the fact that 1− = r(r − 2M)+ r4/l2

+ a2(1+ r2/l2)

is positive for r ≥ 2M . Finally, at rguess = 3M/4 we have from (30)

Vσ (rguess)=
1
l2 +

3M/4+4a2

(r2
guess+ a2)2

>
1
l2 . �

4. Bound states

As proven in [Holzegel and Smulevici 2013a], there exist no periodic solutions of the massive wave
equation on Kerr–AdS. In this section, we will introduce an additional boundary, located at r = rmax

(the location of the top of the potential Vσ , as defined in Lemma 3.1), enabling us to construct periodic
solutions whose associated energies lie below the top of Vσ .

In order to avoid confusion between the mode number ` and the real number l determining the
cosmological constant, we introduce the semiclassical parameter h > 0 by defining

h−2(`, ω) := λ0`(a2ω2)+ a2ω2
= µ`(a2ω2), (32)

as well as the shorthand
h−2

0 = h−2(`, 0)= µ`(0). (33)

In the rest of this paper, the notation u` or uh will be used when we want to make explicit that a solution
u depends on ` or h.
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Having in mind a semiclassical-type analysis with semiclassical parameter h, we then rewrite (27) as
the nonlinear eigenvalue problem

h2ω2u = P(h)u := −h2u′′+ Vσu+ h2(Vjunk+ Vmass)u,

with boundary conditions u(r?max)= 0 and
∫ π/2

r?max

(|u′|2+ r2u2) dr? <∞.
(34)

Remark 4.1. We will refer to these boundary conditions as Dirichlet conditions. They imply that
u(π/2)= 0. See Remark 4.2 below.

Unless a = 0, (34) is a nonlinear eigenvalue problem. Indeed, a solution to the eigenvalue problem

κu = P(h)u (35)

with Dirichlet boundary conditions is a solution of (34) if and only if κ = h2ω2. If a = 0, (34) reduces to
the linear problem (35), since the P(h) operator becomes independent of ω, and, therefore, given any
solution to (35), one simply obtains a solution to (34) by defining ω2

= h−2κ .
What we would like to prove is that, given fixed parameters M , a, l and α, we can find, for any

sufficiently small h (or, equivalently, any sufficiently large `), an ω2
` such that (34) is solved for some u`,

and that we can control the size of this ω2
` (see Proposition 4.8 below).

In order to understand (34), it will be useful to first look at the following linear eigenvalue problem:

h2
0ω

2 u = Pbase(h0)u := −h2
0u′′+ Vσu+ h2

0(Vjunk+ Vmass)u,

with boundary conditions u(r?max)= 0 and
∫ π/2

r?max

[|u′|2+ r2u2
] dr? <∞.

(36)

As explained above, (36) can be seen as a linear eigenvalue problem because h0, and therefore Pbase(h0),
depends only on ` (but not on ω).

Remark 4.2. By Proposition 4 of [Holzegel and Warnick 2014], (36) is a well-posed eigenvalue problem.
This is a nontrivial statement because the potential Vmass is unbounded on the domain (r?max, π/2i)
unless α = 2. The condition

∫ π/2
r?max
[|u′|2+ r2u2

] dr? <∞ implies that ψ =
√

r2+ a2 u · S0`(θ) ∈ H 1
AdS

(in particular, r1/2−εu(π/2)= 0 for any ε > 0) and ensures the existence of a positive discrete spectrum
with eigenfunctions in the energy space.8

To prove that eigenvalues h2
0ω

2 for (36) exist in a suitable range, we will perform a semiclassical-type
analysis for a semiclassical operator whose principal part should be −h2

0u′′ + Vσu. Since h2
0 Vjunk is

controlled by h2
0 Vσ , this term will be of lower order and hence negligible. On the other hand, unless one

considers the conformal case α = 2, the a priori lower-order (in powers of h0) potential term h2
0 Vmass is

unbounded near r? = π/2, so that some care (a Hardy inequality) is required.
Observe finally that if we set a = 0 in Vσ , Vjunk and Vmass in (36), then

Pa=0
base (h0)u = κ · u (37)

8Using the twisted derivatives of [Holzegel and Warnick 2014], i.e., writing u′′+Vmassu = rn(r−2n(rnu)′ )′+Vtwist ·u with
n = 1

2 (1−
√

9− 4α), so Vtwist is uniformly bounded, one could generalize our construction to other boundary conditions.
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would be precisely the eigenvalue problem one needs to study for Schwarzschild–AdS. In any case, in
the next section we will establish the existence of eigenvalues κ = h2

0ω
2 of the more general eigenvalue

problem (36) as the latter is easier to connect to the full problem (34).

4A. Weyl’s law for the linear eigenvalue problem (36). The aim of this section is to prove a Weyl’s-
law-type result for the linear problem (36). This is a classical problem which we will approach using
a slight modification of the usual Dirichlet–Neumann bracketing argument (see for instance [Reed and
Simon 1978], Section XIII.15, for an introduction to this method).

For the purpose of this section, it will be convenient to introduce the following notation. For all c < d ,
we define Pbase

DD (c, d) as the eigenvalue problem

Pbase(h0)u = κu,

with Dirichlet boundary conditions u(c) = u(d) = 0, plus the condition
∫ d

c dr?(|u′|2 + r2
· u2) <∞

if d = π/2 (see Remark 4.2); here Pbase(h0) is the operator defined by (36). Similarly, we will write
Pbase

N N (c, d) for the Neumann problem (which will never be considered with d = π/2). Finally, we
write Pbase

N D (c, d) for the Neumann boundary at c and Dirichlet at d. In the latter case we again impose∫ d
c dr?(|u′|2 + r2

· u2) <∞ if d = π/2 to ensure that all eigenfunctions live in the energy space; see
Remark 4.2. Note that Pbase

DD (r
?
max, π/2) is precisely the linear eigenvalue problem (36).

Proposition 4.3. Let α < 9
4 , M > 0 and |a| < l be fixed, and E ∈ (1/l2, Vmax) be given. Then, for any

δ > 0 such that [E−δ, E+δ] ⊂ (1/l2, Vmax), there exists an H0 > 0, such that, for any 0< h0 ≤ H0, there
exists a smooth solution uh0 of the eigenvalue problem Pbase

DD (r
?
max, π/2), with corresponding eigenvalue

κ lying in [E−δ, E+δ]. In particular, there exists a sequence ((h0)n, u(h0)n ) such that the associated
eigenvalues κ((h0)n)→ E as (h0)n→ 0.

In the rest of this section, (a,M, l, α) are fixed parameters satisfying the assumptions of the proposition.
We shall in fact prove in this section a stronger result than Proposition 4.3, namely a version of

Weyl’s law adapted to our problem. This is the statement of Lemma 4.5, from which Proposition 4.3
immediately follows. The proof of Lemma 4.5 in turn requires the following auxiliary lemma, which
ensures nonexistence of eigenvalues below a certain threshold.

Lemma 4.4. Let E > 0 be given. Then there exists an H0 > 0 so that for all 0 < h0 ≤ H0, there exists
a r?K (E, h0, α) such that the problems Pbase

DD (r
?
K , π/2) and Pbase

N D (r
?
K , π/2) have no solutions with κ ≤ E.

Moreover,
rmax < rK ≤

C
h0
· E, (38)

where C depends only on M , a, l and α.

Proof. Assume there was a solution u of Pbase
DD (r

?
K , π/2) or Pbase

N D (r
?
K , π/2) with κ ≤ E . Then we would

have ∫ π/2

r?K

dr?
[
h2

0 |u
′
|
2
+ (Vσ + h2

0 Vjunk+ h2
0 Vmass− E)|u|2

]
≤ 0 (39)

for this u. On the other hand, since u solves Pbase
DD (r

?
K , π/2) or Pbase

N D (r
?
K , π/2), we have r1/2u(r)= o(1),
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so that the Hardy inequality ∫ π/2

r?K

dr?
1−

r2+ a2 |u|
2
≤ 4l2

∫ π/2

r?K

dr?|u′|2 (40)

proven in [Holzegel and Smulevici 2013a] holds for u. This implies that∫ π/2

r?K

dr?
[(

h2
0

1
4l2

1−

r2+ a2 + Vσ + h2
0 Vjunk+ h2

0 Vmass− E
)
|u|2

]
≤ 0.

The dominant term in the integrand near infinity is h2
0

( 9
4 − α

)
r2/l2, which is positive, while all other

terms remain bounded. Hence by choosing r?K sufficiently large (rK ≥ C/h0 · E for some constant C) we
obtain a contradiction as the parenthetical in the integrand eventually becomes positive. �

Consider now the eigenvalue problem Pbase
DD (r

?
max, π/2) and fix an energy level E ∈ (1/l2, Vmax).

Lemma 4.4 produces an r?K (E, h0, α), to which we associate the phase space volume

PE,h0,α = Vol
{
(ξ, r?) ∈ R×[r?max, r

?
K ]
∣∣ ξ 2
+ Vσ + h2

0 Vmass+ h2
0 Vjunk ≤ E

}
= 2

∫ r?K

r?max

dr?
√

E− V (r?) ·χ{V (r?)≤E}. (41)

Note that for fixed E this expression converges uniformly in h0 as h0→ 0. This is already immediate for
α ≤ 2: V (r?) is then bounded below and hence the integrand itself is obviously uniformly bounded in h0.
For 2< α < 9

4 , the integral (41) also converges uniformly in h0 since∫ r?K

r?max

dr? h0r ≤ C
∫ rK

rmax

dr h0
1
r
≤ Ch0 log

(
C
h0

E
)

goes to zero as h0→ 0. Here we have used the estimate (38) on rK .
Finally, to state and prove Weyl’s law, we also introduce an expression for the phase space volume

between two energy levels, say [E − δ, E + δ] ⊂ (1/l2, Vmax):

QE,α = lim
h0→0

PE+δ,h0,α − lim
h0→0

PE−δ,h0,α = Vol{(ξ, r?) | E − δ ≤ ξ 2
+ Vσ ≤ E + δ} .

By an elementary computation, we have a lower bound QE,α ≥ CE,M,l,αδ for a constant independent
of h0.

Lemma 4.5. Consider the eigenvalue problem Pbase
DD (r

?
max, π/2). Fix an energy level Vmax > E > 1/l2

and prescribe a small δ > 0. Then the number of eigenvalues of Pbase
DD (r

?
max, π/2) lying in the interval

[E−δ, E+δ] ⊂ (1/l2, Vmax), denoted by N [E−δ, E+δ], satisfies Weyl’s law

N [E−δ, E+δ] ∼
h0→0

1
2πh0

QE,α. (42)

Proof. Choose r?K (E + δ, h0) such that by Lemma 4.4 there are no eigenvalues below E + δ of
Pbase

DD (r
?
K , π/2) and Pbase

N D (r
?
K , π/2). We equipartition the domain [r?max, r

?
K (E, h0)] into k intervals
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of length β = (π/2− r?K )/k. We then consider two comparison problems:

• The Dirichlet problem Pbase
DD (r

?
K , π/2) in conjunction with k Dirichlet problems P i+

D (i = 1, . . . , k)
arising as follows: They are the problems Pbase

DD (r
?
max, r

?
max+β), . . . , Pbase

DD (r
?
K −β, r

?
K ) but with the

potential replaced by a constant, which equals the maximum of the potential on the interval.

• The mixed problem Pbase
N D (r

?
K , π/2) in conjunction with k Neumann problems P i−

N (i = 1, . . . , k)
arising as follows: They are the problems Pbase

N N (r
?
max, r

?
max+β), . . . , Pbase

N N (r
?
K −β, r

?
K ) but with the

potential replaced by a constant, which equals the minimum of the potential on the interval.

We can estimate the number of eigenvalues of Pbase
DD (r

?
max, π/2) below a threshold E by

k∑
i=1

N≤E(P i+
D )+ N≤E

(
Pbase

DD (r
?
K , π/2)

)
≤ N≤E

(
Pbase

DD (r
?
max, π/2)

)
≤

k∑
i=1

N≤E(P i−
N )+ N≤E

(
Pbase

N D (r
?
K , π/2)

)
.

By our choice of r?K , we have N≤E

(
Pbase

DD (r
?
K , π/2)

)
= N≤E

(
Pbase

N D (r
?
K , π/2)

)
= 0 for E= E + δ. On the

other hand, for each P i+
D and each P i−

N , the number of eigenvalues can be estimated directly (as each
problem can be solved explicitly). We have

k∑
i=1

N≤E(P i+
D )=

k∑
i=1

⌊
β

2πh0
max(0,E−V i

+
)
√

E−V i
+

⌋
=

k∑
i=1

β

2πh0
max(0,E−V i

+
)
√

E−V i
+
+O(k).

The estimate for P i−
N is similar, with the potential replaced by V i

−
and the number of eigenvalues in each

cell being ⌊
β

2πh0
max(0,E− V i

−
)
√

E− V i
−

⌋
+ 1.

To conclude, let us choose the number of cells k such that k(h0) tends to ∞ as h0 goes to 0 and
moreover k(h)= o(1/h0). The sums converge as a Riemann sum and the errors are then of order o(1/h0).
Therefore we get

k∑
i=1

N≤E(P i+
D ) ∼

h0→0

1
2πh0

∫ r?K

r?max

dr?
√

E− V (r?) ·χV (r?)≤E. (43)

The statement of the lemma then follows from

N [E−δ, E+δ] = N≤E+δ − N≤E−δ

using the previous formula with E= E ± δ. �

4B. Kerr–AdS. In the last section we showed that for any fixed given parameters M > 0, |a|< l, α < 9
4 ,

the eigenvalue problem (36), Pbase(h0)u = κ · u with Dirichlet conditions, admits (lots of) eigenvalues κ
in the range E − δ ≤ κ = h2

0ω
2 < E + δ, provided h0 is chosen sufficiently small (i.e., ` large).
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As an immediate corollary, we obtain the existence of eigenvalues in the desired range for Schwarzschild–
AdS, simply by setting a = 0; see (37). For the Kerr–AdS case, we still need to relate the above result to
the full problem, which we recall is the nonlinear eigenvalue problem (34) given by

P(h)u = κ · u, with κ = ω2h2

and boundary conditions u(r?max)= 0 as well as
∫ π/2

r?max
dr?[|u′|2+ r2u2

]<∞. To achieve this, consider

for fixed |a|< l, M > 0, α < 9
4 the two-parameter family of linear eigenvalue problems

Q`(b2, ω2)u =3(b2, ω2)u (44)

for the operator

Q`(b2, ω2)u := −u′′+
(
Vσ µ`(b2a2ω2)u+ (Vjunk+ Vmass−ω

2)
)
u, (45)

complemented by the above boundary conditions. Here b2
∈ [0, 1] is a dimensionless parameter and

ω2
∈ R+. Our goal is to show that for b = 1 there exists an ω2 such that the above problem has a zero

eigenvalue and, moreover, to suitably control the size of this ω2.
By the results of the previous section, we know that for b= 0 there exists, for any sufficiently large `, an

ω2
0,` (satisfying E−δ≤ω2

0,`/µ`(0)≤ E+δ) such that Q`(0, ω2
0,`) admits a zero eigenvalue. Moreover, this

eigenvalue is nondegenerate, by standard Sturm–Liouville theory. Listing the eigenvalues of Q`(0, ω2
0,`)

in ascending order, let us say that it is the n`-th eigenvalue, which is zero.
The strategy, now, is the following: We will show by an application of the implicit function theorem

that for any b ∈ [0, 1] we can find an ω2
b,` such that the n`-th eigenvalue of the operator Q(b2, ω2

b,`) is
zero. As a second step, we will provide a global estimate on the quotient ω2

b,`/µ`(b
2a2ω2

b,`). For this last
step, an important monotonicity will be exploited.

Lemma 4.6. Fix parameters |a|< l, M > 0 and α < 9
4 . Suppose we are given parameters b0 ∈ [0, 1] and

ω2
b0,`
∈ R+ such that the n`-th eigenvalue of Q`(b2

0, ω
2
b0,`
) is zero. Then, there exists an ε > 0 such that:

1. For any b2
∈ (max(0, b2

0 − ε), b2
0 + ε) one can find an associated ω2

b,` ∈ R+ such that the n`-th
eigenvalue of Q`(b2, ω2

b,`) is zero,

2. ω2
b,` changes differentiably in b2

∈ (max(0, b2
0− ε), b2

0+ ε), and we have the estimate

0≤
dω2

b,`

db2 ≤ Cω2
b,`,

for some constant C > 0 which is independent of b0, ` and ε.

3. The ε > 0 can be taken to be independent of b0 (but may depend on `).

4. ω2
b,` satisfies the estimate

c−1
≤

ω2
b,`

`(`+ 1)
≤ c,

for some c > 0 depending only on the parameters a, l,M, α.
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Proof. The n-th eigenvalue of Q`(b2, ω2
b,`), denoted by 3n(b2, ω2), moves smoothly in the parameters

b2 and ω2, and we have the formula

3n(b2, ω2)=

∫ π/2

r?max

dr?ψn(b2, ω2)Q`(b2, ω2)ψn(b2, ω2) (46)

for the eigenvalue, provided we normalize the associated eigenfunctions ψn(b2, ω2) by∫ π/2

r?max

dr?|ψn(b2, ω2)|2 = 1.

By assumption, 3n(b2
0, ω

2
b0,`
)= 0. Note that from the normalized condition on the eigenfunctions∫ π/2

r?max

dr∗
∂ψn

∂ω2 (b
2, ω2)ψn(b2, ω2)= 0,

which, combined with the eigenvalue equation 3nψn = Q`ψn , leads to∫ π/2

r?max

dr∗
∂ψn

∂ω2 (b
2, ω2)Q`(b2, ω2)ψn(b2, ω2)= 0.

Thus, differentiating (46), we get

∂3n

∂ω2 =

∫ π/2

r?max

dr∗ψn(b2, ω2)
∂Q`

∂ω2 (b
2, ω2)ψn(b2, ω2),

and a similar formula holds replacing ∂

∂ω2 with ∂

∂b2 . Using this, we compute

∂3n

∂ω2 (b
2
0, ω

2
b0,`
)=

∫ π/2

r?max

dr?ψ2
n (b

2
0, ω

2
b0,`
) ·

(
Vσ ·

∂µ`

∂ω2 (b
2
0, ω

2
b0,`
)− 1

)
, (47)

∂3n

∂b2 (b
2
0, ω

2
b0,`
)=

∫ π/2

r?max

dr?ψ2
n (b

2
0, ω

2
b0,`
) ·

(
Vσ ·

∂µ`

∂b2 (b
2
0, ω

2
b0,`
)

)
. (48)

The angular eigenvalue µ`(b2, ω2) is itself a smooth function of the two parameters b2 and ω2. We have
the formula

µ`(b2, ω2)=

∫ π

0
dθ sin θ φ`(b2, ω2)[Pθ,α(b2a2ω2)+ b2a2ω2

]φ`(b2, ω2) (49)

for the eigenvalues, provided we normalize the associated eigenfunctions φ`(b2, ω2) by∫ π

0
dθ sin θ |φ`(b2, ω2)|2.

Recalling from (18) that

Pθ,α(b2a2ω2) f + b2a2ω2 f =−
1

sin θ
∂θ (1θ sin θ∂θ f )+

sin2 θ

1θ
b2a2ω2 f +

|α|

l2 a2
{

cos2 θ f
sin2 θ f

, (50)
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to be read with the upper (lower) line if α < 0 (α ≥ 0), we obtain

∂µ`

∂ω2 (b
2
0, ω

2
b0,`
)= b2

0l2
· Tx and

∂µ`

∂b2 (b
2
0, ω

2
b0,`
)= ω2

b0,`
l2
· Tx , (51)

where

Tx =

∫ π

0
dθ sin θ

sin2 θ

1θ

a2

l2 |φ`(b
2
0, ω

2
b0,`
)|2 ≤ sup

θ

(
sin2 θ

1θ

a2

l2

)∫ π

0
dθ sin θ |φ`(b2

0, ω
2
b0,`
)|2 ≤

a2

l2 , (52)

where we have used the estimate supθ∈[0,π)(sin2 θ/1θ ) ≤ 1, which can be easily checked using (11).
Going back to (47) and (48), the implicit function theorem allows us to solve for ω2 as a (smooth) function
of b2 locally near (b2

0, ω
2
b0,`
), provided that the right-hand side of (47) is nonzero. To achieve this, note

that

1− Vσ
∂µ`

∂ω2 ≥ 1− b2
0a2Vσ ≥ 1− a2Vσ ,

using the estimate obtained for ∂µ`
∂ω2 from (51) and (52). On the other hand, using (30),

a2Vσ =
a2

l2 +
4a2

r2+a2 =
a2

l2 +4−
4r2

r2+a2 < 1− cM,l,a,

where cM,l,a is a constant depending only on the parameters M, l, a. It then follows that the right-hand
side of (47) is bounded away from zero with the lower bound being independent of b0 (and `), i.e.,

−
∂3n

∂ω2 (b
2
0, ω

2
b0,`
)≥ cM,l,a . (53)

This concludes the proof of the first item of the lemma (with ε a priori depending also on b2
0).

The implicit function theorem also provides a formula for the derivative of the function ω2(b2) just
obtained, namely

dω2
b,`

db2 (b
2)=

∂3n
∂b2 (b

2, ω2
b,`)

−
∂3n
∂ω2 (b

2, ω2
b,`)

for any b2
∈ (max(0, b2

0− ε), b2
0+ ε). (54)

We can now repeat the computations following (47) with b2
0 replaced by any b2

∈ (max(0, b2
0−ε), b2

0+ε).
Proceeding in this way, we obtain the uniform lower bound on the denominator (53) for any such b2. The
numerator is easily estimated in view of (51), again replacing b2

0 by b2. Note moreover that this derivative
has a positive sign since µ` is an increasing function of b and (48). We thus obtain an estimate of the form

0≤
dω2

b,`

db2 (b
2)≤ CM,l,aω

2
b,` for any b2

∈ (max(0, b2
0− ε), b2

0+ ε), (55)

establishing item 2 of the lemma.
We can now apply part 1 of the lemma, first with b2

0 = 0, then with b2
0 + δ, etc. Integrating the

differential inequality (55) from b2
0 = 0 to any point in the interval thus produced will provide the uniform

bound ω2
b,` ≤ CM,l,aω

2
0,`. Now, 3n(b2, ω2) is a smooth function on the compact set [0, 1]× [0, ω2

max,`],
where ω2

max,` denotes an upper bound for ω2
b2,`

(independent of b!). Since we also have the uniform bound



QUASIMODES AND THE UNIFORM ENERGY DECAY RATE FOR KERR–ADS SPACETIMES 1077

(53) we obtain uniform control of the errors arising in the implicit function theorem and can conclude
that the ε in the implicit function theorem does not depend on b0. This is item 3.

To establish item 4, we observe that the identity 3n(ω
2, b2)= 0 implies (using the Hardy inequality

(40) as well as Vσ ≥ 1/l2) that ω2
b,`≥ (1/2l2)µ`(b2ω2)≥ (1/2l2)µ`(0)≥ cM,l,a`(`+1) for any b2

∈ [0, 1].
Hence the quantity ω2

b,` will stay strictly away from zero and

CM,l,a ≥
ω2

0,`

`(`+ 1)
≥ C−1

M,l,a

ω2
b,`

`(`+ 1)
≥ cM,l,a, (56)

the first inequality following from the analysis of the linear eigenvalue problem (36) in Section 4A, and
the second from the uniform estimate (55) on dω2

b,`/db2. �

In view of the fact that ε is uniform in b2
0, we can apply the implicit function theorem all the way

from b0 = 0 to b = 1. Note that ε can depend on `. However, for each fixed ` it only takes finitely many
applications of the implicit function theorem to reach b = 1.

To gain quantitative global control beyond (56) on the behavior of ω2
b,`(b

2), let us look at the quotient

En(b2) :=
ω2

b,`(b
2)

µ`(b2a2ω2
b,`(b2))

with b2
∈ [0, 1], (57)

which by construction is the n`-th eigenvalue of the semiclassical operator

Q̃b(u)= En(b2)u

with

Q̃b(u)=−u′′
(
µ`(b2a2ω2

b,`)
)−1
+
(
Vσ + [µ`(b2a2ω2

b,`)]
−1(Vjunk+ Vmass)

)
u.

Recall that E is an energy level such that E ∈ (1/l2, Vmax) and that, with the notation just introduced,
En(0) ∈ [E−δ, E+δ] for some small δ > 0.

Lemma 4.7. For all δ′ > 0, there exists an L such that, for all ` > L , we have

1
l2 ≤ En(1)≤ E + δ+ δ′. (58)

Proof. We first establish the upper bound. Using the Hardy inequality (40) together with (19) (which
implies that σ := 1/µ`(0)− 1/µ`(b2a2ω2

b,`)≥ 0 for any 1≥ b > 0), we can estimate∫ π/2

r?max

dr?[u(Q̃0− Q̃b)u] ≥ σ
∫ π/2

r?max

dr?|u|2
(

1
4l2

1−

r2+ a2 + Vjunk+ Vmass

)

≥ σ

∫ π/2

r?max

dr?
((

9
4
−α

)
1
l2

1−

r2+ a2 |u|
2
−CM,l,a|u|2

)
, (59)

since Vjunk is bounded uniformly. In view of |σ | ≤ CM,l,a
`(`+1)

, we conclude that

Q̃0 ≥ Q̃b−
CM,l,a

`(`+ 1)
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holds for any 1≥ b > 0. Hence, by min-max, we infer in particular that (independently of the parameters
a, M , ` and α)

En(1)≤ En(0)+ δ′ ≤ E + δ+ δ′, (60)

where δ′ can be chosen arbitrarily small by choosing ` sufficiently large.
For the lower bound, we will establish that

∫
dr?u(Q̃b(u)u) > 1/l2 holds for any u ∈ H 2

AdS and ` large.
To prove the latter, note first that the Hardy inequality (40) reduces the problem to showing that

Vσ + h2
(

1
4

1−

r2+ a2 + Vjunk+ Vmass

)
>

1
l2 . (61)

The square bracket is manifestly positive in a region [r?L , π/2) for some large r?L close to π/2 (depending
only on the parameters M , |a|< l and α < 9

4 ). We fix this r?L and, in view of Vσ ≥ 1
l2 , have established

(61) in [r?L , π/2). In [r?max, r
?
L ], we have the global estimate

Vσ ≥
1
l2 +

Mr
(r2+ a2)2

. (62)

The second term on the right will dominate the term h2
· (Vjunk) pointwise in [r?max, r

?
L ], provided h is

chosen small depending only on M , l, a, α. �

We summarize our results in the following analogue of Proposition 4.3.

Proposition 4.8. Let α < 9
4 , M > 0, |a| < l be fixed and E ∈ (1/l2, Vmax) be given. Then, there exists

an L > 0 such that for any ` > L there exist an ω2
` ∈ R+ and a smooth solution u` of the axisymmetric

reduced equation

−u′′` +
(
Vσ ·µ`(a2ω2

`)+ Vjunk+ Vmass
)
u` = ω2

` · u` (63)

satisfying u`(r?max)=0 and
∫ π/2

r?

(
|u′`|

2
+|u`|2r2) dr?<∞. Moreover, the ω2

` satisfy the uniform estimates

1
l2 <

ω2
`

µ`(a2ω2
`)
≤ E +

Vmax− E
2

and cM,l,a ≤
ω2
`

`(`+ 1)
≤ CM,l,a . (64)

5. Agmon estimates

In this section, we recall the Agmon estimates. These are (well-known) exponential decay estimates for
eigenfunctions for Schrödinger-type operators, in the so-called forbidden regions.

5A. Energy inequalities. The Agmon estimates will rely on the following identity.

Lemma 5.1 (energy identity for conjugated operator). Let r?1 > r?0 . Let h > 0 and let W , φ be smooth
real-valued functions on [r?0 , r

?
1 ]. For all smooth functions u defined on [r?0 , r

?
1 ], we have the identity
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r?0

(∣∣∣∣ d
dr?

(
e
φ
h u
)∣∣∣∣2+h−2

(
W−

(
dφ
dr?

)2 )
e2 φh |u|2

)
dr?

=

∫ r?1

r?0

(
−

d2ū
dr?2+h−2W ū

)
ue2 φh dr?+

∫ x1

x0

h−1 dφ
dr?

e2 φh 2i=
(

ū du
dr?

)
dr?

+

(
e2 φh dū

dr?
u
)
(r?1)−

(
e2 φh dū

dr?
u
)
(r?0).

In particular, if u is real-valued and vanishes at r?0 and r?1 , then∫ r?1

r?0

(∣∣∣∣ d
dr?

(
e
φ
h u
)∣∣∣∣2+h−2

(
W−

(
dφ
dr?

)2 )
e2 φh |u|2

)
dr? =

∫ r?1

r?0

(
−

d2u
dr?2+h−2W u

)
ue2 φh dr?.

The same identity holds if instead of assuming that W is smooth on [r?0 , r
?
1 ], we assume only that

W |u|2 ∈ L1(r?0 , r
?
1). By density, we may also replace smoothness of u and φ by the conditions that

u ∈ H 1
0 [r

?
0 , r

?
1 ] and φ is a Lipschitz function.

Proof. This follows easily from the computations∫ r?1

r?0

(
−

d2

dr?2 + h−2W
)(

e
φ
h u
)
ue

φ
h dr?

=

∫ r?1

r?0

∣∣∣∣ d
dr?

e
φ
h u
∣∣∣∣2+ h−2W e2 φh |u|2 dr?−

(
d

dr?
(
e
φ
h u
)
ue

φ
h

)
(r?1)+

d
dr?

(
e
φ
h u
)
ue

φ
h (r?0)

and∫ r?1

r?0

(
−

d2

dr?2

)(
e
φ
h u
)
ue

φ
h dr?

=

∫ r?1

r?0

−
d

dr?

(
h−1 dφ

dr?
ūe

φ
h+

du
dr?

e
φ
h

)
ue

φ
h dr?

=

∫ r?1

r?0

[
−h−1 dφ

dr?
du
dr?

ue2 φh−
d2ū
dr?2 ue2 φh

]
dr?+

∫ r?1

r?0

[
h−1 dφ

dr?
du
dr?

ūe2 φh+h−2
(

dφ
dr?

)2

ūue2 φh

]
dr?

−h−1
(

dφ
dr?
|u|2e2 φh

)
(r?1)+h−1

(
dφ
dr?
|u|2e2 φh

)
(r?0)

=

∫ r?1

r?0

(
h−2

(
dφ
dr?

)2

|u|2e2 φh−
d2ū
dr?2 ue2 φh

)
dr?+

∫ r?1

r?0

h−1 dφ
dr?

e2 φh 2i=(ūur?) dr?

−h−1
(

dφ
dr?
|u|2e2 φh

)
(r?1)+h−1

(
dφ
dr?
|u|2e2 φh

)
(r?0). �

5B. The Agmon distance. We will rely on the Agmon distance to establish our exponential decay
estimates.9 Given any energy level E > 0 and a potential V = V (r?) (which may also depend on a

9The Agmon distance is actually typically used to obtain optimal exponential decay estimates; see for instance [Fournais
and Helffer 2010]. For the main purpose of this paper (the construction of quasimodes), we could have used smooth cut-off
constructions to prove slightly weaker exponential decay estimates. However, the Agmon distance (despite leading only to
Lipschitz cut-offs) has a nice interpretation, which is why we choose to use it here.
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parameter h), we define the Agmon distance d between r?1 and r?2 as

d = d(V−E)+(r
?
1 , r

?
2)=

∣∣∣∣∫ r?2

r?1

χ{V≥E}(r?)(V (r?)−E)1/2 dr?
∣∣∣∣,

where χ{V≥E} is the characteristic function of the set of r? satisfying V (r?)≥ E. In other words, d is the
distance associated to the Agmon metric (V −E)+ dr?2, where f+ =max(0, f ) for any function f .

It is easily checked that d satisfies the triangular inequality and that

|∇r?d(r?, r?2)|
2
≤ (V −E)+(r?).

The distance to a set can also be defined as usual. In particular, we define

dE(r?) := inf
r?0∈{E≥V }

d(r?, r?0),

which measures the distance to the classical region. We have again

|∇r?dE(r?)|2 ≤ (V −E)+(r?).

For a given small ε ∈ (0, 1) we define the two complementary r?-regions

�+ε =�
+

ε (E) := {r
?
| V (r?) > E+ ε},

�−ε =�
−

ε (E) := {r
?
| V (r?)≤ E+ ε}.

E

E+ ε

r ?�−ε �+ε �−ε

5C. The main estimate. We would like to apply Lemma 5.1 between r?max and π/2 for u, a solution to
the eigenvalue problem (34), and for suitable φ.

Lemma 5.2. Let u be a solution to the eigenvalue problem (34); i.e., κ · u = P(h)u for some κ = h2ω2.
Define, for any ε ∈ (0, 1),

φκ,ε := (1− ε)dκ . (65)

Then, for all ε sufficiently small, u satisfies∫ π/2

r?max

h2
∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣2 dx + ε2

∫
�+ε

e2φκ,ε/h
|u|2 dr? ≤ D(κ + ε)e2a(ε)/h

‖u‖2L2(r?max,π/2)
, (66)

where a(ε)= sup�−ε dκ and D > 0 is a constant depending only on the parameters a,M, l and α.
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Remark 5.3. Note

aκ(ε)= sup
�−ε

dκ→ 0 as ε→ 0,

uniformly in h (and κ) for h sufficiently small. In view of the exponential weight in the second term on
the left, the estimate (66) quantifies that u is exponentially small in the forbidden region, provided we can
show a uniform lower bound for φκ,ε in a suitable subset of �+ε . This will be achieved in Lemma 5.4.

Proof. Applying Lemma 5.1 between r?max and π/2, we get∫ π/2

r?max

h2
∣∣∣∣ d
dr?

e
φ
h u
∣∣∣∣2 dr?+

∫
�+ε

(
V −κ−

∣∣∣∣ dφ
dr?

∣∣∣∣2)e2 φh |u|2 dr? =
∫
�−ε

(
κ−V +

∣∣∣∣ dφ
dr?

∣∣∣∣2)e2 φh |u|2 dr?. (67)

In view of our choice φ = φκ,ε , we have in �+ε the estimate

V − κ −
∣∣∣∣dφκ,εdr?

∣∣∣∣2 ≥ (1− (1− ε)2)(V − κ)≥ ε2 (68)

for ε sufficiently small, which we will use to estimate the left-hand side of (67).
For the right-hand side of (67), we note that if V ≥ 0 (which occurs if α ≤ 2), then we immediately

obtain ∫
�−ε

(
κ − V +

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr? ≤ (κ + ε)e2a(ε)/h

‖u‖2L2(r?max,π/2)
, (69)

so that combining (68) and (69) yields (66).
To obtain (66) also in the case α > 2 (for which we have V (r?)→−∞ as r?→ π/2), we need once

again to appeal to a Hardy-type inequality to absorb the error by the derivative term on the left-hand side
of (67). This we do as follows.

Recall that V = Vσ + h2(Vjunk+ Vmass), and the unbounded term is h2Vmass = h2 2−α
l2

1−r2

(r2+a2)2
< 0

for α > 2. Note that
1−r2

(r2+ a2)2
=

1−

(r2+ a2)
−

1−a2

(r2+ a2)2
.

The second term is bounded (and in fact will contribute with the right sign if α ≥ 2) so its contribution
can be treated as before. Thus, we only need to estimate∫

�−ε

1−

(r2+ a2)
e2φκ,ε/h

|u|2 dr?.

By [Holzegel and Smulevici 2013a, Lemma 7.2] (see (40)) we have, for any function v in H 1
0 (r

?
max, π/2),∫ π/2

R?

1−

(r2+ a2)
|v|2 dr? ≤ 4l2

∫ π/2

R?

∣∣∣∣ dv
dr∗

∣∣∣∣2 dr∗ for any R? ≥ r?max. (70)

Applying the above Hardy inequality to v = eφκ,ε/hu, we obtain that there exists a uniform constant C > 0
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such that∫ π/2

r?max

h2
(

9
4
−α

)∣∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣∣2dr?+

∫
�+ε

(
V − κ −

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr?

≤ C(κ + ε)e2a(ε)/h
‖u‖2L2(r?max,π/2)

;

i.e., there exists a constant D > 0 (which degenerates as α→ 9
4 ) such that∫ π/2

r?max

h2
∣∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣∣2 dr?+

∫
�+ε

(
Vσ − κ −

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr?

≤ D(κ + ε)e2a(ε)/h
‖u‖2L2(r?max,π/2)

. (71)

This estimate, when combined with (68), yields again (66) from (67). �

5D. Application of the main estimate. Before we can exploit (66), we need the following lemma, which
quantifies the size of the forbidden region for a given energy level.

Lemma 5.4. Let E ∈ (1/l2, Vmax) and suppose that κ ∈ (1/l2, E+δ] for some δ>0 such that E+δ<Vmax.
Then there exists δ′ > 0 and C > 0, both constants independent of h, such that Vσ − κ > 2C , in
[rmax, rmax+ δ

′
], for all κ ∈ [E−δ, E+δ].

Proof. This is a simple consequence of the continuity of Vσ at r?max. �

In view of the full potential being V = Vσ + h2(Vjunk+ Vmass) we also obtain:

Corollary 5.5. For h sufficiently small (depending only on M , l and a) we have V − κ > C in
[rmax, rmax+ δ

′
] for all κ ∈ [E−δ, E+δ], with both δ′ and C depending only on M , l and a.

With E ∈ (1/l2, Vmax) given, we now fix δ′ > 0 and C > 0 as promised by Lemma 5.4. This implies
that φκ,ε ≥ cM,l,a in [rmax, rmax+ δ

′
] uniformly in ε (the constant cM,l,a being of size C · δ′). Next we fix

ε > 0 sufficiently small so that, in particular, a(ε)≤ cM,l,a/2. We finally conclude from (66) that there
exists a C̃ > 0 (independent of h) such that∫ r?max+δ

′

r?max

|u|2 dr? ≤ C̃e−C̃/h
‖u‖2L2(r?max,π/2)

. (72)

Turning to the derivative term on the left of (71), we also have∫ r?max+δ
′

r?max

h2e2φκ,ε/h
(

1
h2

∣∣∣∣dφκ,εdr?

∣∣∣∣2|u|2+ 2
h

dφκ,ε
dr?

u
du
dr?
+

∣∣∣∣ du
dr?

∣∣∣∣2) dr? . e2a(ε)/h
‖u‖2L2(r?max,π/2)

.

The |u|2 term in the above integral can be ignored since it has the right sign. The cross-term can be
absorbed using (72) and 1

2 of the derivative term. Therefore,∫ r?max+δ
′

r?max

∣∣∣∣ du
dr?

∣∣∣∣2 dr? ≤ C̃h−2e−C̃/h
‖u‖2L2(r?max,π/2)

.
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�+ε
r?

2δ′

r?max

κ
κ + ε

�−ε �−ε

Summarizing these decay estimates, we have proven:

Lemma 5.6. Let E ∈ (1/l2, Vmax) be fixed and let δ be sufficiently small so that [E − δ, E + δ] ⊂
(1/l2, Vmax). Then there exist constants D, δ′ > 0, depending only on the parameters M , l, a and α, such
that the sequence of eigenfunctions [u`]∞`≥L arising from Proposition 4.8 satisfies the estimate∫ r?max+δ

′

r?max

(∣∣∣∣du`
dr?

∣∣∣∣2+ |u`|2) dr? ≤ De−D/h
‖u`‖2L2(r?max,π/2)

,

where h = (µ`(a2ω2
`))
−1/2 and ω` are as in Proposition 4.8.

We remark that by reusing once again the equation, we can obtain such exponential decay estimates on
all higher-order derivatives, with the constants in the above lemma depending on the order of commutation.

6. The construction of quasimodes

By now we have established the existence (Proposition 4.8) of a sequence of functions [u`] such that for
each ` the corresponding u` solves

ω2
`h

2u` = P(h)u`,

where h = (µ`(a2ω2
`))
−1/2
→ 0 as `→∞, and such that these u` obey the estimate of Lemma 5.6 with

some constants D, δ′ > 0 independent of h (or equivalently `).
Now let χ be a smooth function such that χ = 1 on [r?max+ δ

′, π/2] and χ = 0 on (−∞, r?max]. We
then define ψ`(t, r, θ, φ̃) as

ψ`(t, r, θ, φ̃)= eiω`tχ(r?(r))(r2
+ a2)−1/2u`(r?(r))S`0(θ). (73)

Remark 6.1. As defined above, the ψ` are complex functions but, of course, we could have worked
below with <(ψ`) or =(ψ`).

We now show that the ψ` satisfy the Klein–Gordon equation up to an exponentially small error.

Lemma 6.2. For each ` and each k ≥ 0, ψ` ∈ CH k
AdS. Moreover, there exists L > 0 such that we have the

following estimates. For all k ≥ 0, there exists a Ck > 0 such that for all `≥ L and all t ≥ t0,∥∥∥∥�gψ`+
α

l2ψ`

∥∥∥∥
H k

Ads(6t )

≤ Cke−Ck`‖ψ`‖H0
AdS(6t0 )

.
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Moreover, the error
∣∣�gψ`+ (α/ l2)ψ`

∣∣ is supported on [rmax, rmax+δ′], for some δ′ > 0 independent of `.
Finally, all the H k

AdS-norms of ψ` and of its time derivatives on each 6t are constant in t .

Proof. By standard elliptic estimates, any u` is smooth on (r?max, π/2). Thus, as far as the regularity of ψ`
is concerned, it is sufficient to check that ψ` and its derivative decay sufficiently fast near r =∞, which
is easy and therefore omitted.

Moreover, in view of our construction, we have (�g +α/ l2)ψ` = 0 in [r+, rmax] ∪ [r(r?max+ δ
′),∞].

Hence, the error is supported in a bounded strip in which we have the following naïve estimate: For all
(t, r, θ, φ) with r ∈ [rmax, rmax+ δ

′
],∣∣∣∣�gψ`+

α

l2ψ`

∣∣∣∣. (ω2
|u`| + |u′′` | + |u

′

`| + h−2
|u`|

)
S`0(θ),

which gives the required estimate for k = 0 after integration, using the Agmon estimates of the previous
section and the equation satisfied by u` in order to estimate u′′` . For higher k, it suffices to commute the
equation and to use the equation for u` every time two radial derivatives occur, or the equation for S`0
every time angular derivatives occur. �

Note that we finally proved Theorem 1.5. Indeed, the ψ` are of the form claimed in (1) by construction
of (73). The estimate on the ω` in (2) was obtained as part of Proposition 4.8. The error estimate (3) is
the statement of Lemma 6.2, while the localization properties (4) and (5) are obvious from (73) itself.

7. Proof of Corollary 1.6

In this section, we prove Corollary 1.6. Given the quasimodes, the proof is standard, but we include it for
the paper to be self-contained.

Let us therefore fix a Kerr–AdS spacetime such that the assumption of Corollary 1.6 is satisfied, and
also a Klein–Gordon mass α < 9

4 . For convenience, we set t?0 = 0. Recall also that t? = t in r ≥ rmax.
We shall consider solutions ψ to homogeneous and inhomogeneous Klein–Gordon equations with

initial data ψ |6t and ∂tψ |6t given on slices of constant t . We shall avoid completely issues regarding the
facts that ∂t is not always timelike and that the coordinate t breaks down at the horizon by considering
only axisymmetric data which is compactly supported away from the horizon.

Thus, given any t, s ∈ R and given any smooth, axisymmetric initial data set w = (ψ, Tψ) whose
support is bounded away from the horizon and which decays sufficiently fast near infinity, we will denote
by P(t, s)w the unique solution at time t of the homogenous problem(

�g +
α

l2

)
ψ = 0, ψ |6s = ψ,

∂ψ

∂t

∣∣∣∣
6s

= Tψ.

Given a smooth axisymmetric function F defined on R, compactly supported in r away from the
horizon and infinity, we can consider the inhomogeneous problem(

�g +
α

l2

)
ψ = F, ψ |60 = ψ,

∂ψ

∂t

∣∣∣∣
60

= Tψ.
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For regular data as above, this problem is well-posed in CH 2
AdS and we shall denote its solution by ψF (t),

suppressing the dependence on r and the angular variables. If the data is axisymmetric, then ψF will be
axisymmetric and, writing v(s)= (0, F(s)(gt t)−1), ψF (t) is given by the Duhamel formula

ψF (t)= P(t, 0)w+
∫ t

0
P(t, s)v(s) ds.

We now consider the family of ψ` given by Theorem 1.5. For each `, ψ` provides an initial data set

w` =

(
ψ`(t = 0),

∂ψ`

∂t
(t = 0)

)
for (1) on the slice t = 0. Moreover, each ψ` satisfies the inhomogeneous Klein–Gordon equation(

�g +
α

l2

)
ψ` = F`,

for some F` satisfying ‖F`‖H k,−2
AdS
≤ Cke−Ck`‖ψ`‖H0

AdS
.

Note that since, from Lemma 6.2, the error F` is supported away from r =+∞ independently of `,
we can safely ignore all powers of r in the following estimates.

Let ψ̃` denote the solution of the homogeneous problem associated with the same initial data w`, i.e.,
ψ̃` = P(t, 0)w`. From Duhamel’s formula, we then get

‖ψ`− ψ̃`‖H1
AdS(6t∩{r≥rmax})

≤ t sup
s∈[0,t]
‖P(t, s)(0, F`)(s)‖H1

AdS(6t∩{r≥rmax})

≤ tC‖F`‖H0,−2
AdS (60)

≤ tCe−C`
‖ψ`‖H0

AdS(60∩{r≥rmax})

≤ tCe−C`
‖ψ`‖H1

AdS(60∩{r≥rmax})
, (74)

where we use the boundedness statement of Theorem 1.1 to bound ‖P(t, s)(0, F`)(s)‖H0
AdS(6t∩{r≥rmax})

in
terms of the data, as well as Lemma 6.2. In particular, since the norms of ψ` are time-invariant, for any
t ≤ eC`/2C , the reverse triangle inequality and (74) yield(∫

6t∩{r≥rmax}

e1[ψ̃`]r2 dr sin θ dθ dφ
)1

2

≥ ‖ψ̃`‖H1
AdS(6t∩{r≥rmax})

≥
1
2
‖ψ̃`‖H1

AdS(60∩{r≥rmax})

≥
c

2`
[
‖�i ψ̃`‖H1

AdS(60∩{r≥rmax})
+‖∂t?ψ̃`‖H1

AdS(60∩{r≥rmax})

]
≥

c
2`

(∫
60

e2[ψ̃`]r2 dr sin θ dθ dφ
)1

2

. (75)

Here we have used — in the step from the second to the third line — that the data for ψ̃` is frequency-
localized, which allows us to exchange angular and time derivatives with powers of ` using the second
item of Theorem 1.5, and radial derivatives by angular and time derivatives using the wave equation the
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ψ̃` satisfy. From the third to the fourth line we exploited the fact that the data is localized in r ≥ rmax.
The constant c depends only on the parameters M , l, a and α.

Finally, setting t`= eC`/2C , we obtain from (75) a family (t`, ψ`) such that, for any sufficiently large `,
Q[ψ̃`](t`) > C > 0 holds, which proves the corollary.

Appendix: The improved boundedness statement

The boundedness statement at the H 2-level proven in [Holzegel 2010; 2012] is the estimate (3) for the
ẽ2[ψ]-based energies (see Section 2B). It is remarked in the second of these references that stronger norms
can be shown to be uniformly bounded using commutation by angular momentum operators leading to the
statement (3). Since the latter statement has been used in this paper and also in [Holzegel and Smulevici
2013a], we provide here a sketch of the proof of this well-known (but absent from the literature) argument.
We define the energies

E1[ψ](t?)=
∫
6t∗

e1[ψ](t?) r2 sin θ dr dθ dφ (76)

and, with the obvious replacement, E2[ψ](t?) and Ẽ2[ψ](t?). Recall that uniform boundedness for the
Ẽ2[ψ] energy is derived by, in addition to using known techniques near the horizon (cf. the red-shift
vector field), commuting the Klein–Gordon equation with ∂t (which yields (2) with ψ replaced by ∂tψ)
followed by elliptic estimates on spacelike slices, which control the H 2

AdS norm.
Let us sketch how to prove boundedness (3) for the E2[ψ] energy. If we commute the Klein–Gordon

equation with angular momentum operators we obtain

�g(�iψ)+
α

l2 (�iψ)= 2(�i )πµν · ∇µ∇νψ +
(
2∇α

(
(�i )παµ

)
−∇µ

(
(�i )παα

))
∇
µψ, (77)

with (�i )π the (nonvanishing in Kerr!) deformation tensor of �i . The right-hand side decays suitably
in r but not in t . More precisely, in view of the fact that there is no integrated decay estimate available,
we cannot close the basic energy estimate on its own. Let us instead commute with localized angular
momentum operators �̃i = χ(r)�i , where χ(r) is equal to 1 for r ≥ 2R and equal to 0 for r ≤ R.
Applying the energy estimate for the vector field ∂t? , we can derive

‖�̃iψt‖H0,−2
AdS (6t?∩{r≥2R})+‖�̃iψ‖H1

AdS(6t?∩{r≥2R})

≤CM,l,a,α
(
‖�̃iψt‖H0,−2

AdS (6t?0 )
+‖�̃iψ‖H1

AdS(6t?0 )
)
+(τ2−τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+ε · Ẽ2[ψ](0)
)
, (78)

where ε can be made small by choosing R large. The last term arises from the spacetime error term which
decays strongly in r .

The idea is to combine this with an integrated decay estimate for the �̃iψ which loses linearly in τ .
Recall that if �9 + (α/ l2)9 = f , then we have the identity

∇a9∇
aψ −

α

l29
2
=∇

µ(9∇µ9)− gt?t?
∇t?9∇t?9 − 2gt?b

∇t?9∇b9 − f9, (79)
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where a, b run over r, θ, φ only. When integrating this identity (with 9 replaced by �̃iψ and f the error
arising from the commutation in (77)) with the usual spacetime volume we observe that:

• The left-hand side is nonnegative and controls all spatial derivatives after applying the standard
Hardy inequality (40).

• The second and third terms on the right are essentially controlled by the Ẽ2[ψ] energy times the
length of the time interval (τ2− τ1):

gt?t?
∇t?(�̃iψ)∇t?(�̃iψ)∼

1
r2 r2
|∂t? /∇ψ |

2
/g = |∂t? /∇ψ |

2
/g ≤ e1[∂t?ψ],

gt?r
∇t?(�̃iψ)∇r (�̃iψ)∼

1
r3 r2(|∂t? /∇ψ |

2
/g + |∂r /∇ψ |

2
/g)≤ e1[∂t?ψ],

gt?φ
∇t?(�̃iψ)∇φ(�̃iψ)∼

1
r2 r2

(1
ε
|∂t? /∇ψ |

2
/g + ε|∂φ

/∇ψ |2
/g

)
≤ Cε · e1[∂t?ψ] + ε · e2[ψ],

(80)

and gt?θ
= 0. (We need to borrow an ε of e2[ψ] because the t?φ coordinates are not optimal

near infinity.) The cross-term gt?φ would have much stronger decay in coordinates adapted to the
asymptotically AdS end, which would allow us to estimate all terms by the weaker energy Ẽ2[ψ].

• The first term on the right-hand side is a boundary term, which can be estimated by∣∣∣∣∫
D(τ1,τ2)

∇
µ(�̃iψ∇µ(�̃iψ))

∣∣∣∣≤ sup
t?

∫
6t∗

ẽ2[ψ]r2 sin θ dr dθ dφ. (81)

• The last term in (79) is controlled as previously by the last line in the energy estimate (78).

It follows that integrating (79) furnishes the estimate∫
D(τ1,τ2)∩{r≥2R}

r2 sin θ dt? dr dθ dφ
(
r2
|∂r�iψ |

2
+ | /∇�iψ |

2)
≤max(1, τ2− τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+C · Ẽ2[ψ](0)
)
. (82)

Now note that

Ẽ2[ψ](t?)+‖�iψt‖
2
H0,−2

AdS (6t?∩{r≤2R})
+‖�iψ‖

2
H1

AdS(6t?∩{r≤2R})≤CR · Ẽ2[ψ](t?)≤CR · Ẽ2[ψ](0) (83)

follows right from the boundedness statement for the Ẽ2[ψ] energy and estimating the weights away
from infinity. We can integrate (83) in time and add it to (82) which yields (first without the boxed terms)

E2[ψ](τ2) +

∫ τ2

τ1

E2[ψ](τ ) dτ

≤ CM,l,a,α · E2[ψ](τ1) +max(1, τ2− τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+Cε · Ẽ2[ψ](0)
)
. (84)

The estimate also holds with the boxed terms included, as follows from adding (78) and (83). We claim
that (84) implies E2[ψ](t?). E2[ψ](0) provided ε is sufficiently small depending only on the parameters
(the constant CM,l,a,α), and leave the verification to the reader.
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Remark. An easier proof is available if one is willing to go to H 3
AdS. The Carter operator

Qψ =1S2ψ − ∂2
φψ + (a

2 sin2 θ)∂2
t ψ (85)

commutes with the wave operator. Since ∂2
φ and ∂2

t trivially commute, we have

E1[1S2ψ](t?). E1[Qψ](t?)+ E1[∂
2
φψ](t

?)+ E1[∂
2
t ψ](t

?)

. E1[Qψ](0)+ E1[∂
2
φψ](0)+ E1[∂

2
t ψ](0),

(86)

and we can control all derivatives on S2 from controlling the Laplacian via elliptic estimates. This yields
the desired gain, albeit at the level of three derivatives. This is analogous to commuting with angular
momentum operators twice.
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CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING
BY CONVEX CURVATURE FUNCTIONS

BEN ANDREWS AND MAT LANGFORD

We prove a complete family of cylindrical estimates for solutions of a class of fully nonlinear curvature
flows, generalising the cylindrical estimate of Huisken and Sinestrari [Invent. Math. 175:1 (2009), 1–14,
§5] for the mean curvature flow. More precisely, we show, for the class of flows considered, that, at points
where the curvature is becoming large, an (m+1)-convex (0≤m ≤ n−2) solution either becomes strictly
m-convex or its Weingarten map becomes that of a cylinder Rm

× Sn−m . This result complements the
convexity estimate we proved with McCoy [Anal. PDE 7:2 (2014), 407–433] for the same class of flows.

1. Introduction

Let M be a smooth, closed manifold of dimension n, and X0 : M → Rn+1 a smooth hypersurface
immersion. We are interested in smooth families X : M ×[0, T )→ Rn+1 of smooth immersions X ( · , t)
solving the initial value problem{

∂t X (x, t)=−F(W(x, t))ν(x, t),
X ( · , 0)= X0,

(CF)

where ν is the outer normal field of the evolving hypersurface X and W the corresponding Weingarten
curvature. In order that the problem (CF) be well-posed, we require that F(W) be given by a smooth,
symmetric function f : 0 → R of the principal curvatures κi which is monotone increasing in each
argument. The symmetry of f ensures that F is a smooth, basis-invariant function of the components
of the Weingarten map (or an orthonormal frame-invariant function of the components of the second
fundamental form) [Glaeser 1963]. Monotonicity ensures that the flow is (weakly) parabolic. This
guarantees local existence of solutions of (CF), as long as the principal curvature n-tuple of the initial
data lies in 0; see [Langford 2014].

For technical reasons, we require some additional conditions:

Conditions. (i) f is homogeneous of degree one.

(ii) f is convex.

Since the normal points out of the region enclosed by the solution, we may assume, by condition
(ii), that (1, . . . , 1) ∈ 0. Thus, by condition (i), we may further assume that f is normalised such that
f (1, . . . , 1)= 1.
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Keywords: curvature flows, cylindrical estimates, fully nonlinear, convexity estimates.

1091

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2014.7-5
http://dx.doi.org/10.2140/apde.2014.7.1091
http://msp.org
http://dx.doi.org/10.1007/s00222-008-0148-4
http://dx.doi.org/10.1007/s00222-008-0148-4
http://dx.doi.org/10.2140/apde.2014.7.407


1092 BEN ANDREWS AND MAT LANGFORD

The additional conditions (i)–(ii) have several consequences. Most importantly, they allow us to obtain a
preserved cone 00⊂0 of curvatures for the flow (Lemma 2.2). This allows us to obtain uniform estimates
on any degree-zero homogeneous function of curvature along the flow (Lemma 2.3); in particular, we
deduce a uniform parabolicity condition (Corollary 2.4). The convexity condition then allows us to apply
the second derivative Hölder estimate of [Evans 1982; Krylov 1982] to deduce that the solution exists on
a maximal time interval [0, T ), T <∞, such that maxM×{t} F→∞ as t→ T ; see [Andrews et al. 2014a,
Proposition 2.6]. Thus, it is of interest to study the behaviour of solutions as F→∞. Let us recall the
following curvature estimate [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]).

Theorem 1.1 (convexity estimate). Let X : M×[0, T )→Rn+1 be a solution of (CF) such that f satisfies
conditions (i)–(ii). Then, for all ε > 0, there is a constant Cε <∞ such that

G(x, t)≤ εF(x, t)+Cε for all (x, t) ∈ M ×[0, T ),

where G is given by a smooth, nonnegative, degree-one homogeneous function of the principal curvatures
of the evolving hypersurface that vanishes at a point (x, t) if and only if W(x,t) ≥ 0.

We remark that the constant Cε depends only on ε, the dimension n, the choice of speed function f ,
the preserved curvature cone 00, and bounds for the initial volume and diameter [Langford 2014].

Theorem 1.1 implies that the ratio of the smallest principal curvature to the speed is almost positive
wherever the curvature is large. Combining it with the differential Harnack inequality of [Andrews 1994b]
and the strong maximum principle [Hamilton 1986] yields useful information about the geometry of
solutions of (CF) near singularities [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]):

Corollary 1.2. Any blow-up limit of a solution of (CF) is weakly convex. In particular, any type-II
blow-up limit about a type-II singularity is an eternal solution of the form X∞ : (Rk

×0n−k)×R→Rn+1,
k ∈ {0, 1, . . . , n− 1}, such that X∞|Rk is flat, and X∞|0n−k is a strictly convex translation solution of the
corresponding flow in Rn−k+1.

Motivated by the surgery construction of [Huisken and Sinestrari 2009, §5] for 2-convex mean curvature
flow, we will apply Theorem 1.1 to obtain the following family of cylindrical estimates for solutions
of (CF):

Theorem 1.3 (cylindrical estimate). Let X be a solution of (CF) such that conditions (i)–(ii) hold. Suppose
also that X is uniformly (m+1)-convex for some m ∈ {0, 1, . . . , n−2}. That is, κ1+· · ·+κm+1 ≥ βF for
some β > 0. Then, for all ε > 0, there is a constant Cε > 0 such that

Gm(x, t)≤ εF(x, t)+Cε for all (x, t) ∈ M ×[0, T ),

where Gm : M ×[0, T )→ R is given by a smooth, nonnegative, degree-one homogeneous function of the
principal curvatures that vanishes at a point (x, t) if and only if

κ1(x, t)+ · · ·+ κm+1(x, t)≥ 1
cm

f (κ1(x, t), . . . , κn(x, t)),

where cm is the value F takes on the unit radius cylinder Rm
× Sn−m .



CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS 1093

We note that the constant Cε will only depend on ε, β, m, the dimension n, the choice of speed
function f , the preserved curvature cone 00, and upper bounds for the initial volume and diameter.
Theorem 1.3 implies that the ratio of the quantity

Km := κ1+ · · ·+ κm+1−
1

cm
F

to the speed is almost positive wherever the curvature is large. Observe that this quantity is nonnegative
on a weakly convex hypersurface 6 only if either 6 is strictly m-convex or 6 =Rm

× Sn−m . In particular,
we find that, whenever κ1(x, t)+· · ·+κm(x, t) is small compared to the speed, the Weingarten curvature
is close to that of a thin, round cylinder Rm

× Sn−m . We therefore obtain a refinement of Corollary 1.2:

Corollary 1.4. Any blow-up limit of an (m+1)-convex, 0≤ m ≤ n− 2, solution of (CF) is either strictly
m-convex, or a shrinking cylinder Rm

× Sn−m . In particular, if the blow-up is of type-II, then this limit is
of the form X∞ : (Rk

×0n−k)×R→Rn+1 for k ∈ {0, 1, . . . ,m−1}, such that X∞|Rk is flat and X∞|0n−k

is a strictly convex translation solution of the corresponding flow in Rn−k+1.

The m = 0 case of the cylindrical estimates demonstrates that convex hypersurfaces become umbilic
at points where the curvature is blowing up, generalising a result of Huisken [1984, Theorem 5.1] for
the mean curvature flow (we note that the convergence result of [Huisken 1984] has been obtained by
the first author for the class of flows considered here without the need for such an estimate [Andrews
1994a]). Moreover, Huisken and Sinestrari [2009] have recently obtained the m = 1 case of the cylindrical
estimates for the mean curvature flow, making spectacular use of it through their surgery program, which
yields a classification of 2-convex hypersurfaces. The convexity and cylindrical estimates stated above, in
addition to generalising the Huisken–Sinestrari cylindrical estimate to all m in {0, . . . , n− 2}, constitute
a first step towards improving upon such results by allowing a larger class of evolution equations.

2. Preliminaries

We will follow the notation used in [Andrews et al. 2014b]. In particular, we recall that a smooth,
symmetric function g of the principal curvatures gives rise to a smooth function G of the components h j

i
of the Weingarten map. Equivalently, G is an orthonormal frame invariant function of the components
hi j of the second fundamental form. To simplify notation, we denote G(x, t)≡ G(W(x, t))= g(κ(x, t))
and use dots to denote derivatives of functions of curvature as follows:

ġk(z)vk =
d
ds

∣∣∣
s=0

g(z+ sv), Ġkl(A)Bkl =
d
ds

∣∣∣
s=0

G(A+ s B),

g̈ pq(z)vpvq =
d2

ds2

∣∣∣
s=0

g(z+ sv), G̈ pq,rs(A)Bpq Brs =
d2

ds2

∣∣∣
s=0

G(A+ s B).

The derivatives of g and G are related in the following way:

Lemma 2.1 [Gerhardt 1996; Andrews 1994a; 2007]. Let g : 0→ R be a smooth, symmetric function.
Define the function G : S0 :→ R by G(A) := g(λ(A)), where λ(A) denotes the eigenvalues of A (up
to order) and S0 denotes the set of symmetric matrices with eigenvalues in 0. Then, for any diagonal
A ∈ S0,
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Ġkl(A)= ġk(λ(A))δkl, (2-1)

and, for any diagonal A ∈ S0 with distinct eigenvalues and any symmetric B ∈ GL(n),

G̈ pq,rs(A)Bpq Brs = g̈ pq(λ(A))Bpp Bqq + 2
∑
p>q

ġ p(λ(A))− ġq(λ(A))
λp(A)− λq(A)

(Bpq)
2. (2-2)

We note that g̈≥ 0 if and only if (ġ p
− ġq)(z p−zq)≥ 0 for all p, q [Andrews et al. 2014b, Lemma 2.2],

so Lemma 2.1 implies that G is convex if and only if g is convex.
The following useful lemma was proved in [Andrews et al. 2014b]:

Lemma 2.2. Let f : 0 → R be a flow speed for (CF) satisfying Conditions (i)–(ii). Then, for any
admissible initial datum X0 : M→ Rn+1 there exists a cone 00 ⊂ Rn satisfying 00 \ {0} ⊂ 0 such that
the principal curvatures of the solution X : M ×[0, T )→ Rn+1 of the initial value problem (CF) satisfy
κ(x, t) := (κ1(x, t), . . . , κn(x, t)) ∈ 00 for all (x, t) ∈ M ×[0, T ).

We refer to such a cone 00 as a preserved cone for the solution X . As mentioned in the introduction,
the existence of a preserved cone allows us to obtain bounds for homogeneous functions of the curvature:

Lemma 2.3. Let X :M×[0, T )→Rn+1 be a solution of (CF) such that f satisfies conditions (i)–(ii). Let
g : 0→ R be a smooth, degree-zero homogeneous symmetric function. Then there exists c> 0 (depending
only on n, f and M0) such that

−c ≤ g(κ1(x, t), . . . , κn(x, t))≤ c for all (x, t) ∈ M ×[0, T ).

If g > 0, then there exists c > 0 such that

1
c
≤ g(κ1(x, t), . . . , κn(x, t))≤ c.

Proof. Let 00 be a preserved cone for the solution X . Then K := 00 ∩ Sn is compact. Since g is
continuous, the required bounds hold on K . But these extend to 00 \ {0} by homogeneity. The claim
follows since κ(x, t) ∈ 00 \ {0} for all (x, t) ∈ M ×[0, T ). �

By condition (i), the derivative ḟ of f is homogeneous of degree zero. Since ḟ k > 0 for each k, we
obtain uniform parabolicity of the flow:

Corollary 2.4. There exists a constant c> 0 (depending only on n, f and M0) such that, for any v ∈ T ∗M ,
it holds that

1
c
|v|2 ≤ Ḟ i jviv j ≤ c|v|2,

where | · | is the (time-dependent) norm on M corresponding to the (time-dependent) metric induced by
the flow.

We now recall the following evolution equation (see for example [Andrews et al. 2013]).
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Lemma 2.5. Let X : M × [0, T )→ Rn+1 be a solution of (CF) such that f satisfies conditions (i)–(ii).
Let G : M × [0, T )→ R be given by a smooth, symmetric, degree-one homogeneous function g of the
principal curvatures. Then G satisfies the evolution equation

(∂t −L)G = (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇h pq∇hrs +G|W|2F , (2-3)

where L := Ḟkl
∇k∇l is the linearisation of F , and |W|2F := Ḟklhk

r hrl .

In particular, the speed function F satisfies (∂t −L)F = F |W|2F .
As we shall see, in order to obtain Theorem 1.3, it is crucial to obtain a good upper bound on the term

Q(∇W,∇W) := (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs

for the pinching functions Gm which we construct in the following section. The following decomposition
of Q is crucial in obtaining this bound.

Lemma 2.6. For any totally symmetric T ∈ Rn
⊗Rn

⊗Rn , we have

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs = (ġk f̈ pq

− ḟ k g̈ pq)
∣∣
zTkppTkqq

+ 2
∑
p>q

( ḟ p ġq
− ġ p ḟ q)

∣∣
z

z p − zq
((Tpqq)

2
+ (Tqpp)

2)+ 2
∑

k>p>q

(Egkpq × Efkpq)
∣∣
z · Ezkpq(Tkpq)

2 (2-4)

at any diagonal matrix B with distinct eigenvalues zi , where “×” and “ ·” are the three-dimensional
cross and dot product respectively, and we have defined the vectors

Efkpq : = ( ḟ k, ḟ p, ḟ q),

Egkpq : = (ġk, ġ p, ġq),

Ezkpq : =

(
z p − zq

(zk − z p)(zk − zq)
,

zk − zq

(zk − z p)(z p − zq)
,

zk − z p

(z p − zq)(zk − zq)

)
.

Proof. Since B is diagonal, Lemma 2.1 yields (suppressing the dependence on B)

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)Tkpq Tlrs

=

∑
k,p,q

(ġk f̈ pq
− ḟ k g̈ pq)TkppTkqq + 2

∑
k

∑
p>q

(
ġk ḟ p

− ḟ q

z p − zq
− ḟ k ġ p

− ġq

z p − zq

)
(Tkpq)

2.

We now decompose the second term into the terms satisfying k = p, k = q , k > p, p > k > q , and q > k
respectively:∑

k

∑
p>q

(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq

)
(Tkpq)

2

=

∑
p>q

(
ġ p ḟ p

− ḟ q

z p−zq
− ḟ p ġ p

− ġq

z p−zq

)
(Tppq)

2
+

∑
p>q

(
ġq ḟ p

− ḟ q

z p−zq
− ḟ q ġ p

− ġq

z p−zq

)
(Tqpq)

2

+

( ∑
k>p>q

+

∑
p>k>q

+

∑
p>q>k

)(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq

)
(Tkpq)

2
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=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)

+

∑
k>p>q

(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq
+ ġ p ḟ k

− ḟ q

zk−zq
− ḟ p ġk

− ġq

zk−zq
+ ġq ḟ k

− ḟ p

zk−z p
− ḟ q ġk

− ġ p

zk−z p

)
(Tkpq)

2

=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)+
∑

k>p>q

[
(ġ p ḟ q

− ḟ q ġ p)

(
1

zk−z p
−

1
zk−zq

)

−(ġk ḟ q
− ḟ k ġq)

(
1

z p−zq
+

1
zk−z p

)
+(ġk ḟ p

− ḟ k ġ p)

(
1

z p−zq
−

1
zk−zq

)]
(Tkpq)

2

=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)+
∑

k>p>q

(Egkpq× Efkpq)·Ezkpq(Tkpq)
2. �

We complete this section by proving that (m+1)-convexity is preserved by the flow (CF), so that this
assumption need only be made on initial data:

Proposition 2.7. Let X be a solution of (CF) such that conditions (i)–(ii) are satisfied. Suppose that there
is some m ∈ {1, . . . , n− 1} and some β > 0 such that

κσ(1)(x, 0)+ · · ·+ κσ(m)(x, 0)≥ βF(x, 0)

for all x ∈ M and all permutations σ ∈ Pn . Then this estimate persists at all later times.

Proof. Denote by SM the unit tangent bundle over M ×[0, T ) and consider the function Z defined on⊕m SM by

Z(x, t, ξ1, . . . , ξm)=

m∑
α=1

h(ξα, ξα)−βF(x, t).

Since we have

inf
ξ1,...,ξm∈S(x,t)M

Z(x, t, ξ1, . . . , ξm)= κσ(1)(x, t)+ · · ·+ κσ(m)(x, t)−βF(x, t)

for some σ ∈ Pn , it suffices to show that Z remains nonnegative. First fix any t1 ∈ [0, T ) and consider
the function Zε(x, t, ξ1, . . . , ξm) := Z(x, t, ξ1, . . . , ξm)+ εe(1+C)t , where C := supM×[0,t1] |W|

2
F . Note

that C is finite since M is compact and Ḟ is bounded. Observe that Zε is positive when t = 0. We will
show that Zε remains positive on M ×[0, t1] for all ε > 0. So suppose to the contrary that Zε vanishes
at some point (x0, t0, ξ 0

1 , . . . , ξ
0
m). We may assume that t0 is the first such time. Now extend the vector

ξ 0
:= (ξ 0

1 , . . . , ξ
0
m) to a field ξ := (ξ1, . . . , ξn) near (x0, t0) by parallel translation in space and solving

∂ξ i
α

∂t
= Fξ j

αh j
i .

Since the metric evolves according to

∂t gi j =−2Fhi j
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the resulting fields have unit length. Now recall (see for example [Andrews 1994a]) the following evolution
equation for the second fundamental form:

∂t hi j = Lhi j + F̈ pq,rs
∇i h pq∇ j hrs + |W|

2
F hi j − 2Fh2

i j ,

where L := Ḟkl
∇k∇l and |W|2F := Ḟklh2

kl . It follows that

(∂t −L)(Zε(x, t, ξ))= ε(1+C)e(1+C)t
+

m∑
α=1

F̈ pq,rs
∇ξαh pq∇ξαhrs + |W(x, t)|2F Z(x, t, ξ)

≥ ε(1+C)e(1+C)t
+ |W(x, t)|2F Z(x, t, ξ).

Since the point (x0, t0, ξt=t0) is a minimum of Zε, we obtain

0≥ (∂t −L)
∣∣
(x0,t0)

(Zε(x, t, ξ))≥ ε(1+C)e(1+C)t0 −Cεe(1+C)t0 = εe(1+C)t0 > 0 .

This is a contradiction, implying that Zε cannot vanish at any time in the interval [0, t1]. Since ε > 0
was arbitrary, we find Z ≥ 0 at all times in the interval [0, t1]. Since t1 ∈ [0, T ) was arbitrary, we obtain
Z ≥ 0. �

3. Constructing the pinching function

In this section we construct the pinching functions Gm satisfying the conditions in Theorem 1.3. Let us
first introduce the pinching cones

0m := {z ∈ 0 : zσ(1)+ · · ·+ zσ(m+1) > c−1
m f (z) for all σ ∈ Hm},

where Hm is the quotient of Pn , the group of permutations of the set {1, . . . , n}, by the equivalence
relation

σ ∼ ω if σ({1, . . . ,m+1})= ω({1, . . . ,m+1}).

Using the methods of [Huisken 1984], and their adaptations to 2-convex flows in [Huisken and Sinestrari
2009] and fully nonlinear flows in [Andrews et al. 2014b], we will see that, in order to prove Theorem 1.3,
it suffices to construct a smooth function gm : 0→ R satisfying the following properties.

Properties. (i) gm(z)≥ 0 for all z ∈ 0 with equality if and only if z ∈ 0m ∩0.

(ii) gm is smooth and homogeneous of degree one.

(iii) For every ε > 0 there exists cε > 0 such that

(Ġkl
m F̈ pq,rs

− Ḟkl G̈ pq,rs
m )

∣∣
B Tkpq Tlrs ≤−cε

|T |2

F

for all B ∈ S00 satisfying Gm(B)≥ εF(B) and all totally symmetric T ∈ Rn
⊗Rn

⊗Rn , where Gm

is the matrix function corresponding to gm as described in Section 2, and 00 is a preserved cone for
the flow.
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(iv) For every δ > 0, ε > 0, and C > 0, there exist γ1 > 0, γ2 > 0 and γ3 > 0 such that

(Gm Ḟkl
− FĠkl

m )
∣∣

B B2
kl ≤−γ1 F2(Gm − δγ2 F)

∣∣
B + γ3C F2∣∣

B

for all (m+ 1)-positive B ∈ S00 satisfying Gm(B)≥ εF(B) and

λmin(B)≥−δF(B)−C.

Our construction of the pinching function gm will be similar for each choice of m. So let us fix
m ∈ {0, 1, . . . , n − 2} and assume that the flow is (m+1)-convex. We first consider the preliminary
function g : 0→ R defined by

g(z) := f (z)
∑
σ∈Hm

ϕ

(∑m+1
i=1 zσ(i)− c−1

m f (z)
f (z)

)
, (3-1)

where ϕ : R→ R is a smooth1 function which is strictly convex and positive, except on R+∪{0} where it
vanishes identically. Such a function is readily constructed; for example, we could take

ϕ(r)=
{

r4e−1/r2
if r < 0,

0 if r ≥ 0.

We note that such a function necessarily satisfies ϕ(r)− rϕ′(r) ≤ 0 and ϕ′(r) ≤ 0 with equality if and
only if r ≥ 0.

Now define the scalar G : M ×[0, T )→ R by

G(x, t) := g(κ1(x, t), . . . , κn(x, t)).

Then G is a smooth, degree-one homogeneous function of the components of the Weingarten map which
is invariant under a change of basis. Moreover, G is nonnegative and vanishes at, and only at, points for
which the sum of the smallest (m+1)-principal curvatures is not less than c−1

m F . Thus properties (i) and
(ii) are satisfied by g.

We now show that property (iii) is satisfied weakly by g:

Lemma 3.1. Let G be the matrix function corresponding to the function g defined by (3-1). Then, for any
symmetric matrix B and totally symmetric 3-tensor T ,

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs ≤ 0.

Proof. We will show that each of the terms in the decomposition (2-4) in Lemma 2.6 is nonpositive. Note
that, by the invarance properties of G and F , it suffices to prove the claim for diagonal B. In fact, we can
also assume that B has distinct eigenvalues, since the result at an arbitrary diagonal matrix B may then be

1In fact, ϕ need only be twice continuously differentiable.
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obtained by taking a limit B(k)→ B such that each matrix B(k) has distinct eigenvalues. We first compute

ġk
= ḟ k

∑
σ∈Hm

ϕ(rσ )+
∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

(
δk
σ(i)−

zσ(i)
f

ḟ k
)

= ḟ k
∑
σ∈Hm

(
ϕ(rσ )−ϕ′(rσ )

∑m+1
i=1 zσ(i)

f

)
+

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )δk
σ(i)

and

g̈ pq
=

( ∑
σ∈Hm

ϕ(rσ )−
∑
σ∈Hm

ϕ′(rσ )
∑m+1

i=1 zσ(i)
f

)
f̈ pq

+

∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
,

where we have set

rσ (z) :=
∑m+1

i=1 zσ(i)− c−1
m f (z)

f (z)
.

It follows that

ġk f̈ pq
− ḟ k g̈ pq

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )δk
σ(i) f̈ pq

− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
.

If we fix the index k and set ξp = Tkpp, then, by convexity of ϕ and positivity of ḟ k , we have

− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
ξpξq

=− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

(m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
)
ξp

)2

≤ 0.

On the other hand, since ϕ is monotone nonincreasing, and f is convex, we have

ϕ′(rσ )
m+1∑
i=1

δk
σ(i) f̈ pqξpξq ≤ 0

for each σ . Since both inequalities hold for all k, we deduce that∑
k,p,q

(
ġk f̈ pq

− ḟ k g̈ pq)TkppTkqq ≤ 0.

We next consider

ḟ p ġq
− ġ p ḟ q

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )(δ
q
σ(i) ḟ p

− δ
p
σ(i) ḟ q)=

∑
σ∈Oq

ϕ′(rσ ) ḟ p
−

∑
σ∈Op

ϕ′(rσ ) ḟ q .
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where we have introduced the sets

Oa :=
{
σ ∈ Hm : a ∈ σ({1, . . . ,m+ 1})

}
.

If z p > zq , we obtain

ḟ p ġq
− ġ p ḟ q

≤ ḟ p
( ∑
σ∈Oq

ϕ′(rσ )−
∑
σ∈Op

ϕ′(rσ )
)
,

We now show that the term in brackets is nonpositive whenever z p > zq .

Lemma 3.2. If z p ≥ zq , then ∑
σ∈Op

ϕ′(rσ )−
∑
σ∈Oq

ϕ′(rσ )≥ 0 .

Moreover, equality holds only if either z p = zq or rσ (z)≥ 0 for all σ ∈ Oq,p := Oq\Op.

Proof of Lemma 3.2. First note that∑
σ∈Op

ϕ′(rσ )−
∑
σ∈Oq

ϕ′(rσ )=
∑
σ∈Op,q

ϕ′(rσ )−
∑
σ∈Oq,p

ϕ′(rσ ) ,

where Oa,b := Oa\Ob. Next observe that, if σ ∈ Op,q , then

zσ(1)+ · · ·+ zσ(m+1) = z p + zσ̂ (i1)+ · · ·+ zσ̂ (im) (3-2)

for some σ̂ ∈ Hm−2(p, q) := Pn−2(p, q)/∼, where Pn−2(p, q) denotes the set of permutations of
{1, . . . , n} \ {p, q}; i1, . . . , im are m distinct elements of {1, . . . , n} \ {p, q}; and ∼ is defined by

σ̂ ∼ ω̂ if σ̂ ({i1, . . . , im})= ω̂({i1, . . . , im}).

Observe also that the converse holds (that is, (3-2) defines a bijection), so that

∑
σ∈Oq,p

ϕ′(rσ )−
∑
σ∈Op,q

ϕ′(rσ )=
∑

σ̂∈Hm−2(p,q)

(
ϕ′
(

z p +
∑m

k=1 zσ̂ (ik)− c−1
m f

f

)
−ϕ′

(
zq +

∑m
k=1 zσ̂ (ik)− c−1

m f
f

))
.

Since z p ≥ zq , the claim follows from (strict) convexity of ϕ (where it is positive). �

Thus, ∑
p>q

ḟ p ġq
− ġ p ḟ q

z p − zq

(
(Tpqq)

2
+ (Tqpp)

2)
≤ 0.

We now compute

Egkpq =

(
g
f
−

∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

zσ(i)
f

)
Efkpq +

∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

(δk
σ(i), δ

p
σ(i), δ

q
σ(i)),
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so that

(Egkpq × Efkpq) · Ezkpq =
∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )
[(
δk
σ(i), δ

p
σ(i), δ

q
σ(i)

)
× Efkpq

]
· Ezkpq

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )
[
(δ

p
σ(i) ḟ q

− δ
q
σ(i) ḟ p)(z p − zq)

(zk − z p)(zk − zq)
+
(δ

q
σ(i) ḟ k

− δk
σ(i) ḟ q)(zk − zq)

(zk − z p)(z p − zq)

+
(δk
σ(i) ḟ p

− δ
p
σ(i) ḟ k)(zk − z p)

(zk − zq)(z p − zq)

]
.

Removing the positive factor αkpq := [(zk − z p)(zk − zq)(z p − zq)]
−1 and setting

Pa :=
∑
σ∈Oa

ϕ′(rσ ),

we obtain

(Egkpq× Efkpq)·Ezkpq=αkpq
[
(Pp ḟ q

−Pq ḟ p)(z p−zq)
2
+(Pq ḟ k

−Pk ḟ q)(zk−zq)
2
+(Pk ḟ p

−Pp ḟ k)(zk−z p)
2].

Applying Lemma 3.2 yields

(Egkpq × Efkpq) · Ezkpq ≤ αkpq(Pq ḟ k
− Pk ḟ q)[(zk − zq)

2
− (zk − z p)

2
− (z p − zq)

2
].

Since the term in square brackets is nonnegative, applying Lemma 3.2 once more yields

(Egkpq × Efkpq) · Ezkpq ≤ 0.

This completes the proof of the lemma. �

Corollary 3.3. There exists C <∞ (depending only on n, f and M0) such that G/F ≤ C along the flow.

Proof. In view of Lemma 3.1 and the evolution equation (2-3), this is a simple application of the maximum
principle. �

In order to obtain the uniform estimate required by property (iii), we modify G in order to obtain a
function with a strict convexity property. A well-known trick (cf. [Andrews 1994b, Lemma 7.10; Huisken
and Sinestrari 1999a, Theorem 2.14; Andrews et al. 2014b, Lemma 3.3]) then allows us to extract the
required uniform estimate. First, we relabel the preliminary pinching function g→ g1 (G→ G1), and
consider the new pinching function g defined by

g := K (g1, g2) :=
g2

1

g2
, (3-3)

where g2(z)= M
∑n

i=1 zi − |z| for some large constant M � 1, for which g2 is positive along the flow.
That there is such a constant follows from applying the maximum principle to the evolution equation (2-3)
for the function G2(x, t) := g2(κ(x, t)) as in [Andrews et al. 2014b, Lemma 3.1]. Note that K̇ 1 > 0,
K̇ 2 < 0 and K̈ > 0 wherever g1 > 0.
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Observe that properties (i) and (ii) are not harmed in the transition from g1 to g. We now show that the
estimates listed in properties (iii) and (iv) are satisfied by the curvature function defined in (3-3).

Proposition 3.4. Let g be the pinching function defined by (3-3) and G its corresponding matrix function.
Then, for every ε > 0, there exists cε > 0 (depending only on ε, n, f and 00) such that

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs ≤−cε

|T |2

F

for all B ∈ S00 satisfying G(B)≥ εF(B) and all totally symmetric T ∈ Rn
⊗Rn

⊗Rn .

Proof. First note that (suppressing dependence on B)

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)Tkpq Tlrs = K̇ α(Ġkl

α F̈ pq,rs
− Ḟkl G̈ pq,rs

α )Tkpq Tlrs − Ḟkl K̈ αβ Ġ pq
α Ġrs

β Tkpq Tlrs

≤ K̇ 2(Ġkl
2 F̈ pq,rs

− Ḟkl G̈ pq,rs
2 )Tkpq Tlrs

≤−K̇ 2 Ḟkl G̈ pq,rs
2 Tkpq Tlrs,

where we used Lemma 3.1, convexity of K , and the inequalities K̇ 1
≥ 0 and Ḟ ≥ 0 in the first inequality,

and the inequalities Ġ2 ≥ 0 and K̇ 2
≤ 0, and convexity of F in the second. Since K̇ 2 < 0 whenever

G1 > 0 and G2 is strictly concave in nonradial directions, the claim follows exactly as in [Andrews et al.
2014b, Lemma 3.3]. �

The uniform estimate of Proposition 3.4 yields a good bound for the term Q(∇W,∇W) in the evolution
equations for the pinching functions. This is a crucial component in obtaining the L p-estimates of the
following section. This is the starting point for the Stampacchia–de Giorgi iteration argument. The
second crucial estimate is the Poincaré-type inequality, Lemma 4.2 (see also [Huisken and Sinestrari 2009,
§§4–5; in particular, Lemma 5.5]), which we can obtain with the help of property (iv). This estimate
(corresponding to [Huisken and Sinestrari 2009, Lemma 5.2]) provides an estimate on the zero order term
that occurs in contracting the Simons-type identity for Ḟ pq

∇p∇qhi j with Ġi j (see [Andrews et al. 2014b,
Proposition 4.4]).

Proposition 3.5. Let g be the pinching function defined by (3-3) and G its corresponding matrix function.
,Then for every δ > 0, ε > 0, and C > 0 there exist γ1 > 0, γ2 > 0 and γ3 > 0 (depending only on δ, ε > 0,
C , n, m, f and 00) such that

Z(B) := (FĠkl
−G Ḟkl)

∣∣
B B2

kl ≥ γ1 F2(G− δγ2 F)
∣∣

B − γ3 F2∣∣
B

for all symmetric, (m+1)-positive matrices B satisfying λ(B) ∈ 00, λmin(B) ≥ −δF(B) − C , and
Gm(B)≥ εF(B).

Proof. From the definition of G we have

Z = K̇ 1 Z1+ K̇ 2 Z2,

where

Zi (B) := (FĠkl
i −Gi Ḟkl)

∣∣
B B2

kl .
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Thus, since K̇ 2
= 2g1/g2 is uniformly bounded below when g ≥ ε f , it suffices to prove the estimate

for Z1.
So let B be a symmetric, (m+1)-positive matrix with eigenvalues z1 ≤ · · · ≤ zn . Then

Z1(B)= f ġ p
1 z2

p − g1 ḟ pz2
p =

∑
p>q

(
ġ p

1 ḟ q
− ġq

1 ḟ p)z pzq(z p − zq)=
∑
p>q

(
Pp ḟ q

− Pq ḟ p)z pzq(z p − zq)

=

( ∑
p>q>l

+

∑
p>l≥q

+

∑
l≥p>q

)(
Pp ḟ q

− Pq ḟ p)z pzq(z p − zq),

where we recall the notation Pa :=
∑

σ∈Oa
ϕ′(rσ ) and we have defined l ≤m as the number of nonpositive

eigenvalues zi . Recalling that Pp ḟ q
− Pq ḟ p

≥ 0 whenever z p ≥ zq , we discard the final sum and part of
the first to obtain

Z1(B)≥
n∑

p=m+2

m+1∑
q=l+1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)+

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)

=

n∑
p=m+2

m+1∑
q=l+1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)− f 2

l∑
i=1

zi

+ f 2
l∑

i=1

zi +

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq).

So consider the term

S1(z) :=
n∑

p=m+2

m+1∑
q=l+1

(Pp(z) ḟ q(z)− Pq(z) ḟ p(z))z pzq(z p − zq)− f (z)2
l∑

i=1

zi .

Observe that S1 ≥ 0. We claim that S1(z) > 0 for all z in the cone

0ε,l := {z ∈ 00 : g(z)≥ ε f (z), z1 ≤ · · · ≤ zl ≤ 0< zl+1 ≤ · · · ≤ zn}.

Suppose, to the contrary, that S1(z) = 0 for some z ∈ 0ε,l . Then z1 = · · · = zl = 0 and, for all
p>m+1≥q> l, (Pp(z) ḟ q(z)−Pq(z) ḟ p(z))z pzq(z p−zq)=0. But, by Lemma 3.2, the latter implies that,
for all p>m+1≥q> l, either z p= zq , or rσ (λ)≥0 for all σ ∈Oq,p. Note that the latter case cannot occur:
since p>m+1≥q , there is a permutation σ ∈Oq,p such that 0≤rσ (z)= (z1+· · ·+zm+1−c−1

m f (z))/ f (z),
which implies g1(z)= 0, contradicting z ∈ 0ε,l . On the other hand, if z p = zq for all p > m+ 1≥ q > l,
then we again obtain the contradiction g1(z) = 0. Thus, S1 > 0 on 0ε,l . Since S1 is homogeneous of
degree three, it follows that

S1 ≥ c1 f 2g

on 0ε,l , where c1 :=minl min0ε,l
S1
f 2g

> 0.
Now consider

S2 := f 2
l∑

i=1

λi +

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq).
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Note that, by homogeneity, c2 := sup{Pp(z) ḟ q(z)− Pq(z) ḟ p(z) : z ∈ 00, 1≤ p, q ≤ n}<∞. Thus, S2

is easily controlled using the “convexity estimate” λ1 ≥−δ f −C :

S2 ≥−l f 2(δ f +C)+ (n− l)c2zn

l∑
q=1

zq(zn − zq)≥−n f 2(δ f +C)+ 2nc2c2
3 f 2

l∑
q=1

zq

≥−n f 2(δ f +C)− 2nc2c2
3 f 2(δF +C)≥−n(1+ 2c2c2

3) f 2(δ f +C),

where c3 :=max{|zi |/ f (z) : z ∈ 00, 1≤ i ≤ n}.
The claim follows. �

We note that the above estimate is only useful in the presence of the convexity estimate Theorem 1.1,
since then, for any δ > 0, there is a constant Cδ > 0 for which 0δ,Cδ := {z ∈00 : zi >−δ f (z)−Cδ for all i}
is preserved by the flow.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, it suffices to obtain, for any ε > 0, an upper bound on the function

Gε,σ :=

(G
F
− ε

)
Fσ

for some σ > 0. We will use the estimates of Propositions 3.5 and 3.4 to obtain bounds on the spacetime
L p-norms of the positive part of Gε,σ , so long as p is sufficiently large and σ sufficiently small, just as in
[Huisken and Sinestrari 1999b; 1999a; 2009] (see also [Andrews et al. 2014b] where these techniques
are applied in the fully nonlinear setting). A Stampacchia–de Giorgi iteration procedure similar to that
used in [Huisken 1984] (see also [Huisken and Sinestrari 1999b; Andrews et al. 2014b]) then allows us to
extract a supremum bound on Gε,σ .

We begin with an evolution equation for Gε,σ :

Lemma 4.1 [Andrews et al. 2014b]. The function Gε,σ satisfies the evolution equation

(∂t −L)Gε,σ = Fσ−1(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs

+
2(1− σ)

F
〈∇Gε,σ ,∇F〉F −

σ(1− σ)
F2 |∇F |2F + σGε,σ |W|

2
F , (4-1)

where 〈u, v〉F := Ḟklukul .

Now set E := max{Gε,σ , 0}. We need to obtain spacetime L p-estimates for E . Let us first observe
that integration by parts and application of Young’s inequality, in conjunction with Lemma 2.3 and
Proposition 3.4, yields the estimate (cf. [Andrews et al. 2014b])

d
dt

∫
E p dµ≤−

(
A1 p(p− 1)− A2 p

3
2
)∫

E p−2
|∇Gε,σ |

2 dµ

−
(
B1 p− B2 p

1
2
) ∫

E p |∇W|2

F2 dµ+C1σ p
∫

E p
|W|2dµ (4-2)

for some positive constants A1, A2, B1, B2, C1 (which depend only on ε, n, m, f and M0).
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To estimate the final term, we make use of Proposition 3.5 in a similar manner to [Huisken and
Sinestrari 2009, §5]. We first observe:

Lemma 4.2. There are positive constants A3, A4, A5, B3, B4,C2, independent of p and σ , such that∫
E p Z(W)

F
dµ≤

(
A3 p

3
2 + A4 p

1
2 + A5

) ∫
E p−2
|∇Gε,σ |

2 dµ+
(
B3 p

1
2 + B4

) ∫
E p |∇W|2

F2 dµ.

Proof. As in [Andrews et al. 2014b, §4], contraction of the commutation formula for ∇2W with Ḟ and Ġ
yields the identity

LGε,σ =−Fσ−1 Q(∇W,∇W)+ Fσ−1 Z(W)+ Fσ−2(FĠkl
−G Ḟkl)∇k∇l F

+
σ

F
Gε,σLF − 2(1−σ)

F
〈∇F,∇Gε,σ 〉F +

σ(1−σ)
F2 Gε,σ |∇F |2F .

The claim is now proved using integration by parts and Young’s inequality, with the help of Lemma 2.3
and Proposition 3.4 (see [Andrews et al. 2014b, Lemma 4.2]). �

Corollary 4.3. For all ε > 0 there exist constants ` > 0 and L <∞ (depending only on ε, n, m, f and
M0) such that for all p > L and 0< σ < `p−

1
2 there is a constant K = Kε,σ,p (depending only on ε, n, m,

f , M0, σ and p) for which the following estimate holds:∫
(Gε,σ )

p
+ dµ≤

∫
(Gε,σ ( · , 0))p

+ dµ0+ t Kµ0(M),

where µ0 is the measure induced on M by the initial immersion.

Proof. Recall Proposition 3.5. Setting δ = ε/(2γ2) and applying the convexity estimate, we obtain

Z(W)

F
≥
ε

2
γ1 F2

− γ3Cε/(2γ2)F (4-3)

whenever G− εF > 0. We now use Young’s inequality to obtain (cf. [Huisken and Sinestrari 2009, §5])

F = F−σ p F1+σ p
≤ F−σ p

(
bq

q
Fq(1+σ p)

+
b−q ′

q ′

)
for any b > 0 and q > 0, where q ′ is the Hölder conjugate of q: 1

q
+

1
q ′
= 1. Choosing q = 2+σ p

1+σ p
, so

that q ′ = 2+ σ p, we obtain

F ≤ b(2+σ p)/(1+σ p) 1+ σ p
2+ σ p

F2
+

b−(2+σ p)

2+ σ p
F−σ p

≤ b(2+σ p)/(1+σ p)F2
+ b−(2+σ p)F−σ p.

Now choose b :=
(

εγ1

4γ3Cε/(2γ2)

)1+σ p
2+σ p

, so that

γ3Cε/(2γ2)F ≤
εγ1

4
F2
+ K F−σ p,

where

K := γ3Cε/(2γ2)

(
εγ1

4γ3Cε/(2γ2)

)−(1+σ p)

.
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Returning to Equation (4-3), we find

εγ1

4
F2
≤ K F−σ p

+
Z(W)

F
.

Estimating Gε,σ ≤ c1 Fσ and |W|2 ≤ c2 F2, we obtain

E p
|W|2 ≤ K̃ + c3 E p Z(W)

F

for some constants K̃ > 0 (depending on F , M0, ε, σ and p) and c3 > 0 (depending on F , M0, and ε).
Combining Lemma 4.2 and inequality (4-2) now yields

d
dt

∫
E p dµ≤ Kε,σ,pµ0(M)−

(
α0 p2

−α1σ p
5
2 −α2 p

3
2 −α3 p

) ∫
E p−2
|Gε,σ |

2 dµ

−
(
β0 p−β1σ p

3
2 −β2σ p−β3 p

1
2
) ∫

E p |∇W|2

F2 dµ

for some positive constants αi and βi , which depend on ε but not on σ or p, and Kε,σ,p, which depends
on ε, σ and p.

It is clear that L > 0 and ` > 0 may be chosen such that(
α0 p2

−α1σ p
5
2 −α2 p

3
2 −α3 p

)
≥ 0 and

(
β0 p−β1σ p

3
2 −β2σ p−β3 p

1
2
)
≥ 0

for all p> L and 0<σ <`p−
1
2 . The claim then follows by integrating with respect to the time variable. �

The proof of Theorem 1.3 is completed by proceeding with Huisken’s Stampacchia–de Giorgi iteration
argument. We omit these details as the arguments required already appear in [Andrews et al. 2014b, §5]
with no significant changes necessary.
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UNIFORM L p-IMPROVING FOR WEIGHTED AVERAGES ON CURVES

BETSY STOVALL

We define variable parameter analogues of the affine arclength measure on curves and prove near-optimal
L p-improving estimates for associated multilinear generalized Radon transforms. Some of our results are
new even in the convolution case.

1. Introduction

We consider weighted versions of multilinear generalized Radon transforms of the form

M0( f1, . . . , fk) :=

∫
Rd

k∏
i=1

fi ◦πi (x)a(x) dx, (1-1)

where a is a continuous cutoff function and the πi : R
d
→ Rd−1 are smooth submersions.

In [Tao and Wright 2003; Stovall 2011], near endpoint estimates of the form

|M0( f1, . . . , fk)| ≤ C
k∏

i=1

‖ fi‖L pi (Rd−1), (1-2)

with C = C(π1, . . . , πk, p1, . . . , pk), were established for M0 under the assumption that the πi satisfy
a certain finite-type condition on the support of a. In particular, it was found that the exponents on the
right in (1-2) depend on this type. These results are nearly sharp in the sense that if the type of the πi

degenerates anywhere on the set where a 6= 0, then the corresponding near endpoint estimates also fail. It
is not, however, known in general what happens when the type degenerates at some point where a 6= 0
(for instance, on the boundary of the support) or the rate at which the constants in (1-2) blow up as the
type degenerates.

Our goal is to quantify and counteract the failure of (1-2) in such situations by replacing M0 by
an appropriately weighted operator, for which we will establish near-optimal Lebesgue space bounds.
The exponents (though not the implicit constants) in these bounds will be independent of the choice of
π1, . . . , πk and the cutoff function a. Further, the weights we employ transform naturally under changes
of coordinates, so they may reasonably be viewed as generalizations of the affine arclength measure on
curves in Rd . A number of recent articles (such as [Bak et al. 2009; Dendrinos et al. 2009; Dendrinos and
Müller 2013; Dendrinos and Stovall 2012; Dendrinos and Wright 2010; Drury and Marshall 1987; Oberlin
2002; 2003; 2010; Sjölin 1974; Stovall 2010]) have been devoted to establishing uniform estimates for

MSC2010: 42B99.
Keywords: generalized Radon transform, affine arclength.
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operators weighted by affine arclength measure, and these results provide much of the motivation for this
article.

A motivating example. Stating the main results of this article, or even the results of [Tao and Wright
2003; Stovall 2011] requires some notation, so we postpone this until the next section. By way of
background and motivation, we will spend the remainder of the introduction describing a concrete case
about which much is known, and which provides the inspiration for the more general operators considered
in this article. Let γ : R→ Rd be a smooth curve and a a continuous cutoff function. Consider the
operator

T0 f (x) :=
∫

R

f (x − γ (t))a(t) dt, f ∈ C0
0(R

d).

By duality, T0 : L p(Rd)→ Lq(Rd) if and only if, for all f ∈ L p(Rd) and g ∈ Lq(Rd),∣∣∣∣∫
Rd

∫
R

f (x − γ (t))g(x)a(t) dt
∣∣∣∣≤ C(γ, p, q)‖ f ‖L p(Rd )‖g‖Lq′ (Rd );

this may be compared with (1-2).
The curve γ is said to be of type (at most) N when det(γ ′(t), . . . , γ (d)(t)) vanishes to order at most

N at any point. The results of [Dendrinos and Stovall 2014] imply that if γ is of type N on the support
of a, ‖T0‖L p→Lq <∞ if (p−1, q−1) lies in the trapezoid with vertices

(0, 0), (1, 1), (p−1
N , q−1

N ) :=
( d

N+d(d+1)/2
,

d−1
N+d(d+1)/2

)
, (1− q−1

N , 1− p−1
N ). (1-3)

(The nonendpoint result was due to Tao and Wright [2003].) Further, if N is the maximal type of T0 on
{t : a(t) 6= 0}, this is sharp. If γ is not of finite type, T0 satisfies no L p(Rd)→ Lq(Rd) estimates off the
line {p = q}.

It was first noticed in [Sjölin 1974] and [Drury and Marshall 1985] that affine, as opposed to Euclidean,
arclength has a uniformizing effect on the bounds for convolution and Fourier restriction operators
associated to possibly degenerate curves. It is now known that, for a polynomial curve γ , the convolution
operator with affine arclength measure on γ ,

T f (x) :=
∫

R

f (x − γ (t))|det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1)) dt,

maps L p(Rd) boundedly into Lq(Rd) if and only if (p−1, q−1) lies on the line segment joining (p−1
0 , q−1

0 ),
(1− q−1

0 , 1− p−1
0 ), with p0, q0 defined as above (provided T 6≡ 0) [Oberlin 2002; Dendrinos et al. 2009;

Stovall 2010]. Further, the operator norms these papers established depend only on the degree of the
polynomial; for this, it is crucial that the affine arclength transforms nicely under reparametrizations and
affine transformations. Further investigations have been carried out in [Oberlin 2010; Dendrinos and
Stovall 2014] in the nonpolynomial case. The above mentioned results are essentially optimal, both in
terms of the exponents involved and in terms of pointwise estimates on the weight [Oberlin 2003] (see
Proposition 2.2). Analogous results are also known for the restricted X-ray transform [Dendrinos and
Stovall 2012; 2014]. There have also been a number of recent articles aimed at establishing uniform
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estimates for Fourier restriction to curves with affine arclength measure, for instance [Bak et al. 2009;
Dendrinos and Müller 2013; Dendrinos and Wright 2010; Stovall 2014].

Our goal in this article is to address the gap between the general results of [Tao and Wright 2003;
Stovall 2011] and the type-independent results of [Dendrinos et al. 2009; Dendrinos and Stovall 2012;
Oberlin 2002; Stovall 2010] by introducing a generalization of the affine arclength measure, well-suited
to (1-1). We will also prove near endpoint bounds for the weighted operator and, in particular, will
generalize the results of [Tao and Wright 2003; Stovall 2011] to the case when the πi completely fail to
be of finite type on the support of a. Some of our results are new even in the translation-invariant case.

2. Basic notions and statements of the main results

Notation. Throughout the article, we will use the now-standard notation A . B to mean that A ≤ C B
for some innocuous implicit constant C . The value of this constant will be allowed to change from line
to line. The meaning of “innocuous” will be specified at the beginning of most sections, though in this
section it will be specified in situ, and in the next it does not arise. Additionally, A & B if B . A, and
A∼ B if A. B and B . A. We denote the nonnegative integers by Z0. If ` is any integer, δ is an `-tuple
of real numbers and β ∈ Z`0 is a multiindex, we denote by δβ the quantity δβ1

1 · · · δ
β`
` .

We will also use some less standard notation. We consider the partial order � on Zk
0 defined by b1 � b2

if bi
1 ≤ bi

2 for 1≤ i ≤ k. We say b1 ≺ b2 if at least one of these inequalities is strict. If B⊆ Zk
0 is any set,

we define a polytope
P(B) := ch

⋃
b∈B

([0,∞)k +{b}),

where “ch” denotes the convex hull.
Fix a dimension d and an integer k ≥ 2; k may exceed d. We will consider vector fields X1, . . . , Xk ,

defined and smooth on the closure of an open set U . A word w is an element of W :=
⋃
∞

n=1{1, . . . , k}n .
To each word is associated a vector field Xw, defined recursively by X(i) := X i for 1 ≤ i ≤ k and
X(w,i) := [Xw, X i ] for w ∈W and 1≤ i ≤ k. The degree of w ∈W is the k-tuple, degw, whose i-th entry
is the number of occurrences of i in w.

All brackets of such vector fields lie in the span of the Xw: if w,w′ ∈W,

[Xw, Xw′] =
∑

deg w̃=degw+degw′
C w̃
w,w′Xw̃, (2-1)

where C w̃
w,w′ is an integer. Indeed, by the Jacobi identity,

[Xw, [Xw′, X i ]] = [[Xw, Xw′], X i ] − [X(w,i), Xw′],

so (2-1) is easily obtained by inducting on ‖degw′‖`1 [Hörmander 1967]. We note that for each b ∈ Nk

there are only finitely many words w with degw = b, so the sum in (2-1) is finite.
If I = (w1, . . . , wd) is a d-tuple of words, we define deg I :=

∑d
i=1 degwi and

λI := det(Xw1, . . . , Xwd ).



1112 BETSY STOVALL

The Newton polytope of the vector fields X1, . . . , Xk at the point x0 ∈U is defined to be

Px0 := P({deg I : I is a d-tuple of words satisfying λI (x0) 6= 0}),

and we define the Newton polytope of a set A ⊆U to be

PA := ch
(⋃

x∈A

Px

)
.

The Hörmander condition is the statement that Px0 6=∅ for each x0 ∈U . When the X i are nonvanishing
vector fields tangent to the fibers of the πi , this is the finite-type hypothesis in [Tao and Wright 2003;
Stovall 2011].

Results. Let U ⊆ Rd be an open set and let π1, . . . , πk :U → Rd−1 be smooth submersions (i.e., they
have surjective differentials). Letting ? denote the composition of the Hodge-star operator, which maps
(d−1)-forms to 1-forms, with the natural identification of 1-forms with vectors via the Euclidean metric,
we define vector fields

X j := ?(dπ1
j ∧ · · · ∧ dπd−1

j ), 1≤ j ≤ k. (2-2)

Let a be a continuous function with compact support contained in U .
Fix a d-tuple of words I0 = (w1, . . . , wd) and define the generalized affine arclength

ρ = ρI0 := |det(Xw1, . . . , Xwd )|
1/(|deg I0|1−1), (2-3)

where |b|1 denotes the `1-norm. Define a k-linear form M : [C0(Rd)]k→ C by

M( f1, . . . , fk) :=

∫
Rd

k∏
j=1

f j ◦π j (x)ρ(x)a(x) dx . (2-4)

For b ∈ Rk with |b|1 > 1, define
q(b) := b

|b|1−1
. (2-5)

It is easy to check that q equals its own inverse. The following is our main theorem.

Theorem 2.1. Assume that deg I0 is an extreme point of Psupp a . Then, for all p ∈ [1,∞]k satisfying
(p−1

1 , . . . , p−1
k )� q(b) and p−1

j < q j (b) when (deg I0) j 6= 0, we have the estimate

|M( f1, . . . , fk)|.
k∏

j=1

‖ f j‖L p j (Rd−1), (2-6)

for all continuous f1, . . . , fk . The implicit constant depends on the π j , a, p and b0, but not on the f j .
Thus M extends to a bounded k-linear form on

∏k
j=1 L p j (Rd−1).

The extremality hypothesis seems natural by analogy with the translation-invariant case; it also leads to
certain invariants of the weight, as we will discuss below. However, we ultimately prove a more general
result, Theorem 6.1, which does not require extremality. (We postpone stating the latter because it requires
more notation.)
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With the given weight, the above theorem is nearly sharp. Indeed, under the hypotheses and notation
above, we have the following.

Proposition 2.2. Let µ be a nonnegative Borel measure whose support is contained in U , and assume
that the bound

Mµ(χE1, . . . , χEk ) :=

∫
Rd

k∏
j=1

χE j ◦π j dµ≤ A(µ)
k∏

j=1

|E j |
1/p j (2-7)

holds for all Borel sets E1, . . . , Ek⊆Rd−1 and some constant A(µ)<∞. Ifµ 6≡0, (p1, . . . , pk)∈[1,∞]k .
If
∑

j p−1
j > 1, let bp := q(p−1

1 , . . . , p−1
k ). Then µ({x : bp /∈ Px}) = 0. If in addition bp is an extreme

point of Psuppµ, then µ is absolutely continuous with respect to Lebesgue measure and its Radon–Nikodym
derivative satisfies

dµ
dx
. A(µ)

∑
deg I=bp

|λI |
1/(|bp|1−1). (2-8)

The implicit constant in (2-8) may be chosen to depend only on d and p; A(µ) has the same value in (2-7)
and (2-8).

In the translation-invariant case, a similar result is due to Oberlin [2003] (see [Dendrinos and Stovall
2012] for the restricted X-ray transform). The final statement in the proposition only applies in the
endpoint case, which is not otherwise addressed in this article. The endpoint version of Theorem 2.1 is
known to fail without further assumptions on the X i than those made here, as can be seen by considering
the example of convolution with affine arclength on γ (t)= (t, e−1/t sin(1/tk)), t > 0, for k sufficiently
large [Sjölin 1974].

The proofs of Theorem 2.1 and Proposition 2.2 will rely on a more general result about smooth vector
fields X1, . . . , Xk on Rd . To state this result, we need some additional terminology.

Let J ∈ {1, . . . , k}d . We define deg J to be the k-tuple whose i-th entry is the number of occurrences
of i in J . If α ∈ Zd

0 is a multiindex, we define degJ α to be the k-tuple whose i-th entry is
∑

`:J`=i α`.
We define

9 J
x0
(t1, . . . , td) := exp(td X Jd ) ◦ · · · ◦ exp(t1 X J1)(x0). (2-9)

We define another polytope,

P̃x0 := P
(
{deg J + degJ α : J ∈ {1, . . . , k}d and α ∈ (Z0)

d satisfy ∂αt det D9 J
x0
(0) 6= 0}

)
.

Proposition 2.3. For each x0 ∈U , P̃x0 = Px0 . Furthermore, for each extreme point b0 of Px0 ,∑
deg I=b0

|λI (x0)| ∼
∑

J∈{1,...,k}d

∑
α∈(Z0)d :

deg J+degJ α=b0

|∂αt det D9 J
x0
(0)|. (2-10)

The implicit constants may be taken to depend only on d and b0, and in particular may be chosen to be
independent of the X i .
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Examples. We take a moment to discuss a few concrete cases where these results apply.

The translation-invariant case. Let γ :R→Rd be a smooth map and for (t, x)∈R1+d define π1(t, x)= x ,
π2(t, x)= x − γ (t). Thus the unweighted operator M0 in (1-1) is essentially convolution with Euclidean
arclength measure on γ , paired with a test function.

Using the definition above, X1 = ∂t , X2 = ∂t +γ
′
·∇x . If w is any word of length n ≥ 2 and if the first

two letters of w are 1 and 2, Xw(t, x)= γ (n)(t). If d ≥ 2, the Hörmander condition is equivalent to the
statement that the torsion of γ does not vanish to infinite order at any point. We note in particular that

|det(X1, X2, X(1,2), . . . , X(1,...,1,2))| = |det(X1, X2, X(2,1), . . . , X(2,...,2,1))| = |det(γ ′, . . . , γ (d))|

and, if U is any open set, the only extreme points of PU (unless PU is empty) are( 1
2 d(d − 1)+ 1, d

)
,

(
d, 1

2 d(d − 1)+ 1
)
.

Thus the affine arclength in this case is defined in the usual way:

ρ(t, x)= |det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1)).

By Theorem 2.1, for any smooth γ : R→ Rd and any continuous cutoff function a, the convolution
operator

T f (x)=
∫

f (x − γ (t))|det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1))a(t) dt

maps L p(Rd) into Lq(Rd) whenever (p−1, q−1) lies in the interior of the trapezoid with vertices as in
(1-3) in the case N = 0. For general smooth curves this result is new but, as mentioned in the introduction,
even stronger results are known in some special cases.

Restricted X-ray transforms. Let γ : R→ Rd−1 be a smooth map and, for (s, t, x) ∈ R1+1+d−1, define
π1(s, t, x) := (t, x), π2(s, t, x) := (s, x − sγ (t)). Then the operator M0 in (1-1) is the restricted X-ray
transform

X f (t, x)=
∫

R

f (s, x − sγ (t))a(s, t) ds,

paired with a test function. Using the above definition,

X1 = ∂s, X2 = ∂t + sγ ′(t) · ∇x .

If d ≥ 3, the only (d+1)-tuples of words (w1, . . . , wd+1) with det(Xw1, . . . , Xwd+1) 6≡ 0 are, after
reordering, those satisfying

w1 = 1, w2 = 2, wi = (1, 2, . . . , 2), 3≤ i ≤ d + 1.

Thus the only extreme point of the Newton polytope is (d, 1+ 1
2 d(d − 1)), and

ρ(s, t, x)= |det(γ ′(t), . . . , γ (d−1)(t))|2/(d(d+1)),
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which is a power of the usual affine arclength. Theorem 2.1 thus gives a partial generalization of the
results of [Dendrinos and Stovall 2012], wherein a sharp strong-type bound for the X-ray transform
restricted to polynomial curves with affine arclength was established.

Generalized Loomis–Whitney. Let π1, . . . , πd : R
d
→ Rd−1 be smooth submersions. The point (1, . . . , 1)

is always extreme or in the exterior of the Newton polytope, so for ε > 0∣∣∣∣∫
Rd

d∏
i=1

fi ◦πi (x)|det(X1, . . . , Xd)(x)|1/(d−1)a(x) dx
∣∣∣∣. d∏

i=1

‖ fi‖Ld−1+ε(Rd−1),

with the implicit constant depending on the πi and ε. In the case when the X i do span at every point of the
support of a, the endpoint estimate was proved in [Bennett et al. 2005]. (The classical Loomis–Whitney
inequality is the endpoint estimate when the πi are linear and a ≡ 1.)

Outline. In Section 3, we show that the weights we employ satisfy certain natural invariants; this
makes them reasonable generalizations of the usual affine arclength measure. In Section 4, we prove
Proposition 2.3 by employing the results of [Street 2011] and a compactness argument; we also use a
combinatorial lemma, whose proof is postponed to the Appendix. In Section 5, we prove the optimality
result, Proposition 2.2. Finally, in Section 6, we prove a more general result, Theorem 6.1, which implies
Theorem 2.1. Our techniques for the proof of the main theorem are essentially those of [Christ 2008; Tao
and Wright 2003; Stovall 2011], with some modifications to handle the potential failure of the Hörmander
condition.

3. Invariants of the affine arclengths

Let U , π1, . . . , πk , and X1, . . . , Xk be as defined above. For 1≤ j ≤ k, let V j := π j (U ). Fix a d-tuple of
words I0, and assume that b0 := deg I0 is minimal in the sense that if deg I ′ ≺ deg I0, then λI ≡ 0. (This
minimality is essential.) Define ρ as in (2-3).

Proposition 3.1. Let F :U→Rd and G j :V j→Rd−1, 1≤ j≤k, be smooth maps. Define π̃ j :=G j◦π j◦F
for 1≤ j ≤ k, and let X̃ j , ρ̃ be defined as in (2-2), (2-3), with tildes inserted. Then

ρ̃ =

( k∏
j=1

|(det DG j ) ◦π j |
q j (b0)

)
|det DF |ρ ◦ F, (3-1)

where q is defined as in (2-5).

In the notation above, let a be a continuous, compactly supported function with supp a ⊆U , and define

M̃( f1, . . . , fk) :=

∫
U

k∏
j=1

f j ◦ π̃ j (x)ρ̃(x)a ◦ F(x) dx .

Proposition 3.1 implies that if each G j is equal to the identity and F is one-to-one, then

M̃( f1, . . . , fk)= M( f1, . . . , fk).
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If we simply assume that F and all of the G j are one-to-one, the proposition implies that

sup
f1,..., fk 6≡0

M̃( f1, . . . , fk)∏k
j=1 ‖ f j‖L p j (Rd−1)

= sup
f1,..., fk 6≡0

M( f1, . . . , fk)∏k
j=1 ‖ f j‖L p j (Rd−1)

for (p−1
1 , . . . , p−1

k ) := q(b0).

We stress, however, that our theorem covers only the nonendpoint cases satisfying (p−1
1 , . . . , p−1

k ) 6= q(b0)

and b0 extreme, so it is not known that either side is finite except in certain cases; see [Bennett et al. 2005;
Dendrinos et al. 2009; Dendrinos and Stovall 2012; Oberlin 2002; Stovall 2010].

If we fix j , we may consider the family of curves γ x
j (t) := π j (x, t). For any smooth one-to-one

function φ : R→ R, (x, t) 7→ (x, φ(t)) is also smooth and one-to-one and has Jacobian determinant
φ′(t). Thus we obtain:

Corollary 3.2. The generalized affine arclength defines a parametrization-invariant measure on each of
the curves γ x

j = π j (x, t).

Proof of Proposition 3.1. We will prove the proposition first when the G j are equal to the identity and
then when F is. The general case follows by taking compositions.

In the first case, it suffices by simple approximation arguments to prove the identity when det DF 6= 0.
In this case, careful computations reveal that

X̃ j = (det DF)F∗X j ,

where F∗ is the pullback by F , given by

F∗X := (DF)−1 X ◦ F. (3-2)

For 1 ≤ i ≤ k, let Yi = F∗X i . Then, by naturality of the Lie bracket, Yw = F∗Xw for w ∈W. By
induction (with base casew= ( j)), the coordinate expression for the Lie bracket [X, X ′]= X (X ′)−X ′(X),
and the product rule, for each w ∈W,

X̃w = (det DF)|degw|1Yw +
∑

degw′≺degw

fw,w′Yw′, (3-3)

where the fw,w′ are smooth functions.
By (3-3), (3-2) and our minimality assumption,

det(X̃w1, . . . , X̃wd )= (det DF)|b0|1 det(Yw1, . . . , Ywd )+
∑

b′≺b0

∑
deg I ′=b′

f I,I ′ det(Yw′1, . . . , Yw′d )

= (det DF)|b0|1−1 det(Xw1, . . . , Xwd ) ◦ F + 0.

This completes the proof in the first case.
In the second case, when F is the identity, it is easy to compute X̃ j = [(det DG j ) ◦π j ]X j , and it can

be shown using the product rule and minimality of b0 (as above) that

det(X̃w1, . . . , X̃wd )=

k∏
j=1

[(det DG j ) ◦π j ]
b j

0 det(Xw1, . . . , Xwd ),

which implies (3-1). �
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4. Equivalence of the two polytopes: the proof of Proposition 2.3

Fix a point b0 ∈ [0,∞)k . We say that an object (such as a constant, vector, or set) is admissible if it may
be chosen from a finite collection, depending only on b0 and d , of such objects. In particular, all implicit
constants in this section will be admissible.

The proof of Proposition 2.3 will rely on a compactness result about polytopes with vertices in Zk
0:

Proposition 4.1. Let B⊆ Zk
0 and assume that b0 /∈ P(B). There exist

(i) ε > 0 and v0 ∈ (ε, 1]k such that v0 · b0+ ε < v0 · p for every p ∈ P(B), and

(ii) a finite set A⊆ Zk
0 such that b0 /∈ P(A) and P(B)⊆ P(A).

Moreover, ε, v0, A are admissible.

Note that this also applies when b0 is an extreme point of P(B), since in this case b0 /∈ P(B \ {b0}).
Assuming the validity of Proposition 4.1 for now (it will be proved in the Appendix), we devote the

remainder of the section to the proof of Proposition 2.3.
We may of course assume that x0= 0 and that U is a bounded neighborhood of 0. Furthermore, we may

assume that k > d and X i = ∂i , 1≤ i ≤ d . Indeed, if the proposition holds under this assumption, it holds
for ∂1, . . . , ∂d , X1, . . . , Xk , with k+ d replacing k. We may then transfer the result back to X1, . . . , Xk

by restricting to those b ∈ [0,∞)k+d with b1
= · · · = bd

= 0. By this assumption, P0 6=∅, and it suffices
to prove that if b0 is an extreme point of Px0 then (2-10) holds, and if b0 /∈ Px0 then b0 /∈ P̃x0 .

We begin with the case when b0 is an extreme point of P0. Fix a neighborhood V of 0, sufficiently
small for later purposes, with V ⊆U . Choose a d-tuple I0 = (w1, . . . , wd) ∈Wd with deg I0 = b0 and

|λI0(0)| = max
deg I=b0

|λI (0)|. (4-1)

(Note that I0 is admissible, since only finitely many d-tuples of words give rise to this degree.) By
smoothness of the X j , we may assume that V is so small that

1
4 |λI0(0)| ≤

1
2 max

deg I=b0
|λI (x)| ≤ |λI0(x)| ≤ 2|λI0(0)|, for all x ∈ V .

By Proposition 4.1, we may choose admissible v0 = (v
1
0, . . . , v

k
0) ∈ (0, 1]k and ε > 0 such that

v0 · b0+ ε < v0 · p for every p ∈ P0 ∩Zk
0 \ {b0}.

Lemma 4.2. For each m ≥ 1, there exists δ(m) > 0, depending on m, b0, X1, . . . , Xk such that, for all
0< δ < δ(m), the map

8δ(y1, . . . , yd) := exp
(
y1δ

v0·degw1 Xw1 + · · ·+ ydδ
v0·wd Xwd

)
(0) (4-2)

and the pullbacks

Y δj := (8
δ)∗δv

j
0 X j = (D8δ)−1δv

j
0 X j ◦8

δ (4-3)

satisfy these properties: 8δ is a diffeomorphism of the unit ball B(1) onto a neighborhood of 0 in V ,

|det D8δ(y)| ∼ δv0·b0 |λI0(0)|, y ∈ B(1), (4-4)
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‖Y δj ‖Cm(B(1)) . 1, 1≤ j ≤ k, (4-5)

|det(Y δw1
(y), . . . , Y δwd

(y))| ∼ 1, y ∈ B(1). (4-6)

Proof. Recall that W is the set of all words. Let

W0 := {w ∈W : degw · v0 ≤ d} and W1 := {w ∈W : d < degw · v0 ≤ 2d}. (4-7)

Since v0 is an admissible element of (0, 1]k , these are admissible, finite sets, and W0 contains the one-letter
words (1), (2), . . . , (k). Furthermore, W0 contains b0 since our choice of v0 and assumption that X j = ∂ j

for 1≤ j ≤ d imply that

v0 · b0 ≤ v0 · (1, . . . , 1, 0, . . . , 0)= (v0)1+ · · ·+ (v0)d ≤ d.

The vector fields Xw are all smooth, W0 ∪W1 is a finite set, and each coefficient of v0 is positive.
Thus for each M ≥ 0, for all sufficiently small δ > 0 and all w ∈W0 ∪W1,

‖δv0·degwXw‖C0(V ) ≤
1
d

dist(0, ∂V ), ‖δv0·degwXw‖C M (V ) ≤ 1. (4-8)

Additionally, by our choice of v0 and ε,

|δv0·deg IλI (0)|< δε|δv0·b0λI0(0)|, I ∈ (W0 ∪W1)
d , deg I 6= b0. (4-9)

By the Jacobi identity, if w,w′ ∈W0,

[δv0·degwXw, δv0·degw′Xw′] =
∑

deg w̃=degw+degw′
C w̃
w,w′(δ

v0·deg w̃Xw̃), (4-10)

for constants C w̃
w,w′ that are admissible because W0 is. If v0 · (degw+ degw′)≤ d , each w̃ in the sum is

an element of W0. If not, each w̃ is in W1, and we can expand

δv0·deg w̃Xw̃ =
d∑

j=1

δv0·deg w̃X j
w̃∂ j =

d∑
j=1

(δv0·deg w̃−v j
0 X j

w̃)(δ
v

j
0 X j ).

Note that v0 · deg w̃− v j
0 > 0 for w̃ ∈W1. Using (4-10) to put the pieces back together, for sufficiently

small δ > 0 and any w,w′ ∈W0,

[δv0·degwXw, δv0·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′ δ
v0·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C M (V ) . 1. (4-11)

The conclusion of the lemma is now a direct application of [Street 2011, Theorem 5.3], whose (lengthy)
proof uses compactness arguments and Gronwall’s inequality, among other tools. For the convenience
of the reader wishing to verify this, we provide a short dictionary to translate the notation. Let M be
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sufficiently large (depending on m, d, I0) and choose δ(m) > 0 sufficiently small that (4-8), (4-9) and
(4-11) all hold. Then the terms

{X1, . . . , Xq}, {d1, . . . , dq}, A, (δd X), n0(x, δ)

from [Street 2011] are, in our notation,

{Xw}w∈W0, {degw}w∈W0, {(δ
v1

0 , . . . , δv
k
0 ) : 0< δ ≤ δ(m)}, (δv0·degwXw)w∈W0, d.

A priori, the results of [Street 2011] only guarantee that for each m ≥ 0 there exists an admissible
constant η> 0 such that the conclusions hold on B(η). We want η= 1, but this is just a matter of rescaling.
Define

Dη

v0,I0
(t1, . . . , td) := (ηv0·degw1 t1, . . . , ηv0·degwd td);

then
8ηδ =8δ ◦ Dη

v0,I0
, Y ηδw = (D

η

v0,I0
)−1ηv0·degwYw ◦ Dη

v0,I0
.

Thus the lemma holds with a slightly smaller (η times the original) value of δ(M). �

Lemma 4.3. Let m be a sufficiently large admissible integer, and let Y1, . . . , Yk be vector fields with the
properties that

‖Y j‖Cm(B(1)) . 1, (4-12)

|det(Yw1, . . . , Ywd )| ∼ 1 on B(1); (4-13)

here we recall that (w1, . . . , wd)= I0. For J ∈ {1, . . . , k}d , define

9̃ J (t1, . . . , td) := etd YJd ◦ · · · ◦ et1YJ1 (0).

Then
max

J∈{1,...,k}d
‖det D9̃ J

‖C0(B(c0)) ∼ 1 (4-14)

for some admissible constant c0 > 0; in particular, 9̃ J is defined on the ball B(c0).

Proof. There are similar results in [Christ 2008; Christ et al. 1999; Stovall 2011; Tao and Wright 2003],
but without the uniformity, so we give a complete proof.

The upper bound ‖det D9̃ J
‖C0(B(c0))∼ 1 is an immediate consequence of (4-12) for m ≥ 2, by Picard’s

existence theorem.
For the lower bound, we first show that if m ≥ |b0|1+2, the left side of (4-14) is nonzero. For 1≤ i ≤ d

and J ∈ {1, . . . , k}i , define
9̃ J

i (t1, . . . , ti ) := eti YJi ◦ · · · ◦ et1YJ1 (0);

9̃ J
i ∈ Cm+1(B(c0)) for admissible c0 > 0 by standard ODE existence results. Supposing that the left side

of (4-14) is zero, there exists some minimal i ∈ {0, . . . , d − 1} such that

max
J∈{1,...,k}i+1

‖∂t19̃
J
i+1 ∧ · · · ∧ ∂ti+19̃

J
i+1‖C0(B(c0)) = 0.

By (4-13), the Y j cannot all vanish at zero, so this i is at least 1.
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By minimality of i , there exist J ∈ {1, . . . , k}i , t0 ∈ Ri with |t0| < c0, and ε > 0 such that 9̃ J
i is an

injective immersion on {t ∈Ri
: |t−t0|<ε}=: Bt0(ε). Our assumption and the definition of exponentiation

imply that, for all 1≤ j ≤ k and (t1, . . . , ti ) ∈ B(c0),

0=
(
∂t19̃

(J, j)
i+1 ∧· · ·∧ ∂ti+19̃

(J, j)
i+1

)
(t1, . . . , ti , 0)=

(
∂t19̃

J
i ∧· · ·∧ ∂ti 9̃

J
i
)
(t1, . . . , ti )∧Y j

(
9̃ J

i (t1, . . . , ti )
)
.

Therefore Y1, . . . , Yk are tangent to 9̃ J
i (Bc0(ε)), as must be any Lie brackets that are defined, in particular

all of those up to order m. Since m ≥ |b0|1, this contradicts (4-13). Tracing back, we see that we must
have det 9̃ J

6≡ 0 on B(c0) for some J ∈ {1, . . . , k}d .
Now we prove that there is a uniform lower bound for m := |b0|1+ 3. If not, there exists a sequence(

Y (n)1 , . . . , Y (n)k

)
satisfying hypotheses (4-12) and (4-13), but with

max
J∈{1,...,k}d

‖det D9̃(n),J
‖C0(B(c0))→ 0,

where 9̃(n),J (t1, . . . , td) := exp
(
tdY (n)Jd

)
◦ · · · ◦ exp

(
t1Y (n)J1

)
(0). By Arzelà–Ascoli, after passing to a

subsequence, each
(
Y (n)j

)
converges in Cm−1(B(1)) to some vector field Y j . Thus for |degw|1 ≤ m− 1,

Y (n)w →Yw, and by standard ODE results, for each J , the sequence (9̃(n),J ) converges to 9̃ J in Cm(B(c0)).
So Y1, . . . , Yk satisfy hypotheses (4-12) and (4-13) (the former with m = |b0|1+ 2), but det D9̃ J

≡ 0 on
B(c0) for all J ∈ {1, . . . , k}d . This is impossible, so the lower bound in (4-14) must hold. �

We return to a consideration of the vector fields X1, . . . , Xk in the next lemma, where we transfer the
inequality in Lemma 4.3 from 9̃ J to 9 J .

Lemma 4.4. For J ∈ {1, . . . , k}d and α ∈ Zd
0 , if v0 · (deg J + degJ α) < v0 · b0, then ∂α det D9 J (0)= 0.

Furthermore, ∑
J∈{1,...,k}d

∑
α∈(Z0)d

v0·(deg J+degJ α)=v0·b0

|∂α det D9 J (0)| ∼ |λI0(0)|. (4-15)

Proof. For J ∈ {1, . . . , k}d , let

9 J,δ
:=9 J

◦ Dδ
J , where Dδ

J (t1, . . . , td) := (δv
J1
0 t1, . . . , δv

Jd
0 td),

9̃ J,δ
:= etd Y δJd ◦ · · · ◦ et1Y δJ1 (0),

with Y δ1 , . . . , Y δk as in (4-3). By naturality of exponentiation, 9 J,δ
=8δ ◦ 9̃ J,δ, where 8δ is defined in

(4-2). Hence by Lemmas 4.2 and 4.3,

max
J∈{1,...,k}d

‖det D9 J,δ
‖C0(B(c0)) ∼ δ

v0·b0 |λI0(0)|, 0< δ < δ(m), (4-16)

where m =m(b0, d) is sufficiently large and δ(m) is the (inadmissible) constant from Lemma 4.2. As we
will see, the lemma follows by sending δ↘ 0.
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Let M = M(b0, d) be a sufficiently large integer, let J ∈ {1, . . . , k}d , and let P J,δ be the degree M
Taylor polynomial of det D9 J,δ, centered at 0. Then

‖P J,δ
− det D9 J,δ

‖C0(B(c0)) =

(
δ

δ(m)

)v0·deg J
‖P J,δ(m)

− det D9 J,δ(m)
‖C0(Dδ/δ(m)B(c0))

. i
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
‖det D9 J,δ(m)

‖C0(Dδ/δ(m)B(c0))

.
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
, (4-17)

where the first inequality is by Taylor’s theorem and admissibility of M , and the second is from (4-8), if
m is sufficiently large, depending on M . Motivated by this inequality, we assume that v0 ·b0 < M mini v

i
0.

By the equivalence of all norms on the space of polynomials of d variables of degree at most M ,

‖P J,δ
‖C0(B(c0)) ∼

∑
|α|1≤M

|∂αP J,δ(0)| =
∑
|α|1≤M

δv0·(deg J+degJ α)|∂α det D9 J (0)|. (4-18)

If α ∈ Zd
0 and v0 · (deg J + degJ α)≤ v0 · b0, then |α|1 ≤ (v0 · degJ α)/mini v

i
0 ≤ M , and

δv0·(deg J+degJ α)|∂α det D9 J (0)| = |∂αP J,δ(0)|. ‖P J,δ
‖C0(B(c0))

. ‖det D9 J,δ
‖C0(B(c0))+

(
δ

δ(m)

)v0·deg J+(M+1)mini v
i
0

. δv0·b0 |λI0(0)| +
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
.

Sending δ↘ 0, we see that

∂α det D9 J (0)= 0 whenever v0 · (deg J + degJ α) < v0 · b0, (4-19)

|∂α det D9 J (0)|. |λI0(0)| if v0 · (deg J + degJ α)= v0 · b0. (4-20)

Now for the lower bound. By (4-16) and the fact that there are only finitely many choices for J , there
exist J ∈ {1, . . . , k}d and a sequence δn ↘ 0 such that

‖det D9 J,δn‖C0(B(c0)) & δ
v0·b0
n |λI0(0)|. (4-21)

Since M mini v
i
0 > v0 · b0 and λI0(0) 6= 0, (4-21), (4-17) and (4-18) imply that for δn sufficiently

(inadmissibly) small,

δv0·b0
n |λI0(0)|. ‖P

J,δn‖C0(B(c0)) .
∑
|α|1≤M

δ
v0·(deg J+degJ α)
n |∂α det D9 J (0)|.

Applying (4-19) and letting n→∞,

|λI0(0)|.
∑

v0·(deg J+degJ α)=v0·b0

|∂α det D9 J (0)|.

This completes the proof of (4-15), and thus of Lemma 4.4. �

By our choice of v0, (4-15) is just (2-10), so to complete the proof of Proposition 2.3, it suffices to
prove the following.
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Lemma 4.5. P0 = P̃0 .

Proof. By (2-10), P̃0 contains the extreme points of P0, so P0 ⊆ P̃0. Now suppose that b0 /∈ P0. Then
there exist v0 ∈ (0, 1]k and ε > 0 such that v0 · b0+ ε < v0 · p, for all p ∈ P0. At least one extreme point
b of P0 satisfies v0 · b =maxp∈P0 v0 · p; perturbing v0 slightly, we may assume that there exists b1 ∈ P0

such that

v0 · b0 < v0 · b1 < v0 · p, for all p ∈ P0 with p 6= b1.

By Lemma 4.4, ∂α det D9 J (0)= 0 whenever (deg J + degJ α) · v0 < v0 · b1, so b0 /∈ P̃0. Thus P0 ⊆ P̃0,
and we are done. �

Remarks. A more direct argument, using the Baker–Campbell–Hausdorff formula, should be possible,
but the author has not been able to carry this out. Let k = d and consider vector fields X1, . . . , Xd . Using
the approximation exp(t X)=

∑N
n=0(t

n/n!)Xn−1(X)+ O(|t |N ) [Christ et al. 1999], the formula for the
Lie derivative of a determinant of d vector fields, and somewhat tedious computations, one can show that

∂αt |t=0 det Dt
(
etd Xd ◦ · · · ◦ et1 X1

)
(x0)=±

∗∑
w1,...,wd

d∏
i=1

(
αi

degi wi+1, . . . , degi wd

)
det(Xw1, Xw2, . . . , Xwd ),

where ∗ indicates the sum is over those words wi = (w
1
i , . . . , w

ni
i ) that satisfy

∑
i degwi = α+(1, . . . , 1)

and w1
i = i >w2

i ≥ · · · ≥w
ni
i (in particular, w1 = (1)). Replacing X i above with X Ji gives an alternative

proof that the right (Jacobian) side of (2-10) is bounded by the left (determinant) side, but using this
formula to bound the left of (2-10) by the right seems nontrivial.

The estimate (2-10) may fail if b is not extreme (even if it is minimal). To see this, let γ (t) := (t, . . . , td)

and define X0 := ∂t , X i := ∂t −γ
′(t) ·∇x , 1≤ i ≤ d , and take b := (1+ 1

2 d(d−1), 1, . . . , 1). In this case,
the only I with deg I = b and λI 6≡ 0 are those of the form

I = ((1), ( j1), (1, j2), . . . , (1, . . . , 1, jd)),

with the ji distinct. Thus the left side of (2-10) is a nonzero dimensional constant. On the other hand,
simple combinatorial considerations show that the right side of (2-10) must be identically zero.

Less uniform versions of (2-10) may be found in [Christ et al. 1999; Stovall 2011; Tao and Wright
2003]. Let X1, . . . , Xk be smooth vector fields and assume that there exists a d-tuple I = (w1, . . . , wd)

such that |λI | ≥ 1 on U . Let δ1, . . . , δk be scalars satisfying the smallness and weak comparability
conditions

δi ≤ K , δi ≤ K δεj , 1≤ i, j ≤ k.

Then [Tao and Wright 2003; Stovall 2011] prove that there exist N ≥ |deg I |1 and N ′ (depending on I )
such that∑
|deg I |1≤N

( k∏
i=1

δ
(deg I )i
i

)
|λI (x0)| ∼

∑
J∈{1,...,k}d

∑
α∈(Z0)d

deg J+degJ α≤N ′

( k∏
i=1

δ
deg J+degJ α

i

)
|∂αt det Dt9

J
x0
(0)|, x0 ∈U,
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with inadmissible implicit constants. It is not shown, however, how to remove the dependence of the
implicit constant on ε, K , or the X i , or, in particular, how to remove the assumption that the Hörmander
condition holds uniformly.

5. Proof of the optimality result: Proposition 2.2

The entirety of this section will be devoted to the proof of Proposition 2.2. It suffices to prove the
proposition when suppµ ⊆ V , and V and W are bounded open subsets of U with V ⊆ W , W ⊆ U .
(Recall that U is the set on which the πi , and hence the X i , are defined.) By (2-7) with Ei = πi (V )
for 1≤ i ≤ k, µ(V ) <∞.

Throughout this section, an object will be said to be admissible if it depends (or it is taken from a finite
set depending) only on d and p = (p1, . . . , pk). All implicit constants will be admissible. The constant
A(µ) will always represent precisely the quantity in (2-7), and in particular will not be allowed to change
from line to line.

First suppose that p j0 < 1. Without loss of generality, j0 = 1. We may cover π1(V ) by CV,π1ε
−(d−1)

balls Bi of radius ε, so

µ(V )≤
∑

i

∫
χB1 ◦π1

k∏
j=2

χπ j (V ) ◦π j dµ≤ A(µ)
∑

i

|B1|
1/p1

k∏
j=2

|π j (V )|1/p j

≤ C(µ, d, p, V, π2, . . . , πk)ε
(d−1)(1/p1−1).

Letting ε→ 0, we see that µ≡ 0.
We now turn to the case when

∑
j p−1

j > 1. Replacing {X1, . . . , Xk} with {∂1, . . . , ∂d , X1, . . . , Xk},
(p1, . . . , pk) with (∞, . . . ,∞, p1, . . . , pk), and k with d + k if necessary, we may assume that X i = ∂i ,
1≤ i ≤ d , without affecting either of the sets

Z := {x ∈ V : bp /∈ Px}, � := {x ∈ V : bp is an extreme point of Px},

or the quantity on the right of (2-8).
The proposition will follow from the next two lemmas.

Lemma 5.1. µ(Z)= 0.

Lemma 5.2. If ρ :=
∑

deg I=bp
|λI |

1/(|bp |1−1) and

�n := {x ∈� : 2n
≤ ρ(x)≤ 2n+1

}, n ∈ Z,

then µ(�′). A(µ)2n
|�′| for any Borel set �′ ⊆�n .

Proof of Lemma 5.1. By Proposition 4.1, there exist admissible, finite sets Ai , i = 1, . . . ,C p,d such that
bp /∈ P(Ai ) for any i and, for each x ∈ Z , there exists an i such that Px ⊆ P(Ai ). For the remainder of
the proof of the lemma, we let A=Ai be fixed and define

Z ′ := {x ∈ Z : Px ⊆ P(A)}.

It suffices to show that µ(Z ′)= 0.
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Choose admissible ε > 0 and v ∈ (ε, 1]k such that

v · bp + ε < v · b, for b ∈ P(A).

Define

W0 := {w ∈W : v · degw ≤ d}.

Let N = Nd,p be an integer whose size will be determined in a moment and which is, in particular,
larger than d/ε. Since W is compact and contained in U , the X i are smooth on U and {Xw : w ∈W0}

contains the coordinate vector fields, it follows that there exists δ0 > 0, depending on the πi , p and W ,
such that for all 0< δ ≤ δ0, I ∈Wd

0 satisfying deg I ∈ P(A), x ∈W , and w,w′ ∈W0,

|δv·deg IλI (x)|< δεδv·bp , (5-1)

‖δv·degwXw‖C0(W ) ≤
1
d

dist(V, ∂W ), ‖δv·degwXw‖C N (W ) ≤ 1, (5-2)

[δv·degwXw, δv·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′δ
v·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C N (W )

. 1.

We omit the details since they are essentially the same as arguments found in the proof of Lemma 4.2.
For x ∈ Z ′ and 0< δ ≤ δ0, choose I δx ∈Wd

0 such that

δv·deg I δx |λI δx (x)| = max
I∈Wd

0

δv·deg I
|λI (x)|.

Let
8δx(t1, . . . , td) := exp

(
t1δv·degw1 Xw1 + · · ·+ tdδv·degwd Xwd

)
(x),

B(x, δ) := {8δx(t) : |t |< 1},
(5-3)

where I δx = (w1, . . . , wd). Then B(x, δ)⊆W by (5-2) and the fact that x ∈ Z ′ ⊆ V .
By the results of [Street 2011], provided N = Nd,p is sufficiently large, these balls are doubling in the

sense that |B(x, δ)| ∼ |B(x, 2δ)|, for all x ∈ Z ′ and 0< δ ≤ δ0. (Here we are using the fact that ε and v
are admissible.) Furthermore, for x ∈ V ,

|B(x, δ)| ∼ δv·deg I δx |λI δx (x)|, (5-4)

exp(t X i )(y) ∈ B(x,Cδ) whenever y ∈ B(x, δ), |t |< δv
i
, (5-5)

where C =Cd,p. By the doubling property, the change of variables formula and (5-5), if σi : πi (W )→Rd

is any smooth section of πi (i.e., σi ◦πi is the identity) with σi (πi (V ))⊆W , then

|B(x, δ)| ∼ |B(x,Cδ)| =
∫
πi (B(x,Cδ))

∫
R

χB(x,Cδ)(et X i (σi (y)) dt dy

≥

∫
πi (B(x,δ/2))

∫
R

χB(x,Cδ)(et X i (σi (y))) dt dy & δv
i
|πi (B(x, δ))|.

(5-6)
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By the Vitali covering lemma (as stated in [Stein 1993], for instance), for each 0< δ ≤ δ0 there exists
a collection of points {x j }

Mδ

j=1 ⊆ Z ′ such that Z ′ ⊆
⋃Mδ

j=1 B(x j , δ) and such that the balls B(x j ,C−1δ)

are pairwise disjoint. By this, (2-7) and the fact that χB(x j ,δ) ≤
∏k

i=1 χπi (B(x j ,δ)) ◦πi , (5-6), (5-4) and the
definition of bp, the doubling property and (5-1), and, finally, disjointness of the B(x j , δ),

µ(Z ′)≤
Mδ∑
j=1

µ(B(x j , δ))≤ A(µ)
∑

j

k∏
i=1

|πi (B(x j , δ))|
1/pi

. A(µ)
∑

j

|B(x j ,Cδ)|
∑

i 1/pi
∏

i

δ−v
i/pi

∼ A(µ)
∑

j

|B(x j ,Cδ)|(δv·deg I δx j
−v·bp
|λI δx j

(x j )|)
∑

i 1/pi−1

. A(µ)
∑

j

|B(x j ,C−1δ)|δε
∑

i 1/pi−1
≤ A(µ)|W |δε

∑
i 1/pi−1.

The lemma follows by sending δ to 0. �

Proof of Lemma 5.2. The proof is similar to that of Lemma 5.1. Fix n and �′ ⊆�n . Let x ∈�′. Since
�′ ⊆�, bp is an extreme point of Px . By the definition of ρ, maxdeg I=bp |λI (x)| ∼ 2n(|bp|1−1).

By Proposition 4.1 and a covering argument, we may assume that there exists a finite set A⊆ Zk
0 such

that bp /∈P(A) and for each x ∈�′, Px ⊆P(A∪{bp}). Choose ε > 0, v ∈ (ε, 1]k such that v ·bp+ε <v ·b
for each b ∈ P(A∪ {bp})∩Zk

0 \ {bp}, and let

W0 := {w ∈W : v · degw ≤ d}.

Since (1, . . . , 1, 0, . . . , 0) ∈ Px for each x ∈U , (1, . . . , 1, 0, . . . , 0) ∈ P(A∪ {bp}). Therefore we have
v · bp ≤

∑d
i=1 v

i
≤ d , so deg I = bp implies that I ∈Wd

0 .
Let N = Nd,p be a large integer. As before, there exists δn > 0, which depends on n, the πi and p,

such that for all 0< δ ≤ δn , x ∈�′, I ∈Wd
0 with deg I 6= bp, and w,w′ ∈W0,

|δv·deg IλI (x)|< δε max
deg I ′=bp

δv·deg I ′
|λI ′(x)|,

‖δv·degwXw‖C0(W ) ≤
1
d

dist(V, ∂W ), ‖δv·degwXw‖C N (W ) ≤ 1,

[δv·degwXw, δv·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′δ
v·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C N (W )

≤ Cd,p,

for all w,w′ ∈W0. In particular, we may choose δn sufficiently small that for each x ∈�′ and 0< δ ≤ δn ,
there exists a d-tuple I δx ∈Wd

0 such that deg I δx = bp and

δv·deg I δx |λI δx (x)| = max
I∈Wd

0

δv·deg I
|λI (x)| ∼ δv·bp 2n(|bp|1−1).
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Thus, considering the balls B(x, δ) (defined in (5-3)) for x ∈�′ and 0< δ ≤ δn ,

|B(x, δ)| ∼ 2n(|bp|1−1)δv·bp = 2n/(
∑

i 1/pi−1)δv·bp .

Since the balls B(x, δ) are doubling, for each η > 0 there exist a collection {x j }
Mδ

j=1 ⊆ �
′ and a

parameter 0< δ ≤ δn such that

�′ ⊆

Mδ⋃
j=1

B(x j , δ),

∣∣∣∣ Mδ⋃
j=1

B(x j , δ)

∣∣∣∣≤ |�′| + η,
and such that the B(x j ,C−1δ) are pairwise disjoint.

Arguing as in the proof of Lemma 5.1,

µ(�′)≤

Mδ∑
j=1

µ(B(x j , δ)). A(µ)
∑

j

|B(x j , δ)||B(x j , δ)|
∑

i 1/pi−1δ−v·bp(
∑

i 1/pi−1)

∼ A(µ)
∑

j

|B(x j , δ)|2n . A(µ)2n(|�′| + η).

Letting η→ 0 completes the proof. �

Remarks. The pointwise upper bound (2-8) is false if no assumptions are made on bp. Indeed, if bp lies
in the interior of Px0 , then for some θ < 1, bθp lies in the interior of Px0 , where θp = (θp1, . . . , θpk).
Thus for some neighborhood U of x0, bθp lies in the interior of Px for every x ∈U . Hence by the main
result in [Stovall 2011], if a is continuous with compact support in U ,∣∣∣∣∫ k∏

j=1

f j ◦π j (x)a(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖Lθp j .

Additionally, ∣∣∣∣∫ k∏
j=1

f j ◦π j (x)
∣∣log |x − x0|

∣∣a(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖L∞ .

Thus by interpolation, ∣∣∣∣∫ k∏
j=1

f j ◦π j (x)
∣∣log |x − x0|

∣∣1−θa(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖L p j .

For the unweighted bilinear operator in the “polynomial-like” case, the endpoint-restricted weak-type
bounds are known and are due to Gressman [2009]; in the multilinear case, the corresponding estimates
follow by combining his techniques with arguments in [Stovall 2011]. The deduction of endpoint bounds
from the arguments in [Gressman 2009] does not seem to be immediate in the weighted case, and so
these questions remain open except for certain special configurations (such as convolution or restricted
X-ray transform along polynomial curves).
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6. Proof of the main theorem: Theorem 2.1

In this section, undecorated constants and implicit constants (C , c, ., &, ∼) will be allowed to depend
on a cutoff function a (specifically, on upper bounds for diam(supp a) and ‖a‖L∞), a point b0 ∈ Zk

0, and
exponents p1, . . . , pk (all of which will be given in a moment), as well as the π j . Other parameters
(namely ε, δ, N ) that depend on b0, p1, . . . , pk will arise later on, so implicit constants may depend on
these quantities as well. Unless otherwise stated, decorated constants and implicit constants (cd , .N ,d ,
etc.) will only be allowed to depend on the objects in their subscripts.

Let J0 ∈ {1, . . . , k}d and for x ∈ U define 9 J0
x (t) as in (2-9). Let β0 be a multiindex and define

b0 := deg J0+ degJ0
β0. Let

ρ̃(x) :=
∣∣∂β0

t |t=0 det Dt9
J0
x (t)

∣∣1/(|b0|1−1)
. (6-1)

Let a be continuous and compactly supported in U , and define the multilinear form

M̃( f1, . . . , fk) :=

∫
Rd

k∏
j=1

f j ◦π j (x)ρ̃(x)a(x) dx .

In light of Proposition 2.3, the following more general result (we need not assume that b0 is extreme)
implies Theorem 2.1.

Theorem 6.1. Let (p1, . . . , pk) ∈ [1,∞)k satisfy (p−1
1 , . . . , p−1

k ) ≺ q(b0), with p−1
i < qi (b0) when

bi
0 6= 0. Then

|M̃( f1, . . . , fk)|.
k∏

j=1

‖ f j‖L p j , (6-2)

for all continuous f1, . . . , fk .

Since J0 and β0 are fixed, we will henceforth drop the tildes from our notation, with the understanding
that we are using (6-1) instead of (2-3) to define ρ.

It suffices to prove (6-2) when the f j are nonnegative. Suppose that b j = 0 for some j . Then π j

plays no role in the definition of ρ, and p j =∞ so, by Hölder’s inequality, we may ignore f j entirely.
Thus we may assume that b j 6= 0 for each j . In fact, we may assume that, for each j , p j <∞, since
‖ f j‖L p j (π j (supp a)) . ‖ f j‖L∞ , by the compact support of a.

We only claim a nonendpoint result, so by real interpolation with the trivial (by Hölder) inequalities of
the form

M( f1, . . . , fk).
k∏

j=1

‖ f j‖L p̃ j ,

k∑
j=1

p−1
j ≤ 1,

it suffices to prove that, for all Borel sets E1, . . . , Ek and some sufficiently small ε > 0,∫
Rd

k∏
j=1

χE j ◦π j (x)ρ(x)a(x) dx .
k∏

j=1

|E j |
q j (b0)−ε. (6-3)
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Letting � := supp a ∩
k⋂

j=1
π−1

j (E j ), (6-3) will follow from

ρ(�).
k∏

j=1

|π j (�)|
q j (b0)−ε. (6-4)

If we define
α j :=

ρ(�)

|π j (�)|
, (6-5)

a bit of arithmetic shows that (6-4) is equivalent to

k∏
j=1

α
q j (q(b0)−(ε,...,ε))

j . ρ(�),

which in turn would be implied by
k∏

j=1

α
b j

0+ε

j . ρ(�), (6-6)

with a slightly smaller ε. (We recall that q equals its own inverse.)
By the coarea formula,

α j = |π j (�)|
−1
∫
π j (�)

∫
π−1

j {y}
χ�(x)ρ(x)

1
|X j (x)|

dH1(x) dy. (6-7)

Since π j is a submersion, |X j |& 1 and H1(π−1
j {y}). 1 for all y ∈ π j (�). Since ρ . 1 by smoothness

of the π j , (6-7) implies that
α j . diam(�)≤ diam(supp a). (6-8)

By taking a partition of unity, we may assume that the α j are as small as we like, in particular, that they
are smaller than 1

2 . Reordering if necessary, α1 ≤ · · · ≤ αk .
For n ∈ Z, let �n = {x ∈� : 2n

≤ ρ(x) < 2n+1
}. Then for C sufficiently large, �n =∅ for all n > C .

On the other hand, since π1 is a submersion and supp a is compact,∑
n≤logα1−C

ρ(�n).
∑

n≤logα1−C

2n
|π1(�)|. 2−Cα1|π1(�)| = 2−Cρ(�).

Thus, for C sufficiently large,

ρ

( ⋃
n≤logα1−C

�n

)
< 1

2α1|π1(�)| =
1
2ρ(�).

By pigeonholing, there exists n with logα1−C ≤ n ≤ C such that

ρ(�n)≥
(
2(|logα1| + 2C)

)−1
ρ(�)& αε1ρ(�). (6-9)

Define
αn, j :=

ρ(�n)

|π j (�n)|
, j = 1, . . . , k.

By (6-9) and the triviality ρ(�n)≤ρ(�), together with the proof of (6-8) and the small diameter of supp a,

αε1α j . αn, j ≤
1
2 .
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Therefore (6-6) follows from

ρ(�n)&
k∏

j=1

(αn, j )
b j

0+ε, (6-10)

with a slightly smaller value of ε. Henceforth, we let ρ0 := 2n (for this value of n) and drop the n from
the notation in (6-10). We note that ρ(�)∼ ρ0|�|. Reordering again, we may continue to assume that
α1 ≤ · · · ≤ αk .

Let δ > 0 be a small constant (depending on ε, b0, d), which will be determined later on. Cover � by
cdα
−δd
1 balls of radius αδ1. By pigeonholing, there exists �′ ⊆� with

ρ(�′)& αδd1 ρ(�).

Arguing as above, the parameters α′j := |π j (�
′)|−1ρ(�′) satisfy

α1+δd
1 ≤ αδd1 α j . α

′

j . diam(�′)≤ αδ1. (6-11)

Thus, for δ sufficiently small, (6-10) would follow from

ρ(�′)&
k∏

j=1

(α′j )
b j

0+ε,

with a slightly smaller value of ε.
Since α′j . diam(supp a), we may assume that the α′j are as small as we like (depending on the π j ,

ε and δ). Thus (6-11) implies that, for each 1≤ j ≤ k,

diam(�′)≤ c(α′j )
δ,

for some slightly smaller value of δ and with c as small as we like. By the same argument as for (6-8),

α′j . ρ0 diam(�′). ρ0(α
′

j )
δ,

whence ρ0 ≥ c−1(α′j )
1−δ, again with a slightly smaller value of δ.

In summary, to complete the proof of Theorem 6.1 (and thereby that of Theorem 2.1) it suffices to
prove the following.

Lemma 6.2. Let ε > 0 be sufficiently small depending on b0 and δ > 0 be sufficiently small depending on
ε, b0. Let �⊆ supp a be a Borel set, and define α1, . . . , αk as in (6-5). Assume that α1 ≤ . . .≤ αk , that

ρ0 ≤ ρ(x)≤ 2ρ0 for all x ∈�,

and that
αk < c, ρ0 ≥ c−1α1−δ

k , diam(�)≤ cαδ1. (6-12)

Then for c sufficiently small, depending on the π j , b0, ε, δ, we have

k∏
j=1

α
b j

0+ε

j . ρ(�). (6-13)
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We note in particular that all constants and implicit constants are independent of ρ0, �, and the α j .
We devote the remainder of this section to the proof of Lemma 6.2. We use the method of refinements,

which originated in [Christ 1998] and was further developed in similar contexts in [Christ 2008; Tao and
Wright 2003].

Recalling (6-1),
|∂β0 det D9 J0

x0
(0)| ∼ ρ|b0|1−1

0 =: λ0, for x0 ∈�. (6-14)

As in [Tao and Wright 2003], for w > 0, we say that a set S ⊆ [−w,w] is a central set of width w if,
for any interval I ⊆ [−w,w],

|I ∩ S|.
(
|I |
w

)ε
|S|.

Lemma 6.3. For each subset�′⊆� with ρ(�′)& αCε
1 ρ(�) and each 1≤ j ≤ k, there exists a refinement

〈�′〉 j ⊆�
′ with ρ(〈�′〉 j )& α2Cε

1 ρ(�′) such that, for each x ∈ 〈�′〉 j , there is a central set

F j (x, 〈�′〉 j )⊆ {t : |t |. αδ1 and et X j (x) ∈ 〈�′〉 j } (6-15)

whose width w j and measure satisfy

ρ−1
0 α2Cε

1 α j . w j ≤ cαδ1 and |F j (x, 〈�′〉 j )|& ρ−1
0 α2Cε

1 α j . (6-16)

This lemma has essentially the same proof as [Tao and Wright 2003, Lemma 8.2], but we sketch the
argument for the convenience of the reader.

Sketch proof of Lemma 6.3. First we discard shorter-than-average π j fibers in�′, leaving a subset�′′⊆�′

with ρ(�′′)& ρ(�′) such that, for each x ∈�′′,∣∣{t : |t |. αδ1 and et X j (x) ∈�′′}
∣∣& |�′|

|π j (�′)|
& αCε

1 ρ−1
0 α j .

Next, if S ⊆ [−cαδ1, cαδ1] is a measurable set, it contains a translate S′ of a central set of measure at
least |S|1+2ε and width at most cαδ1. Indeed, take S′ = S∩ I ′, where I ′ is a minimal length dyadic interval
with |S ∩ I ′| ≥ (|I ′|/αδ1)

ε
|S|.

Using the exponential map, each π j fiber in �′′ is naturally associated to a set S ⊆ [−cαδ1, cαδ1]; S can
be refined to a translate S′ of a central set, and S′ is then a fiber of the set 〈�′〉 j . By the definition
of exponentiation, for x ∈ 〈�′〉 j the set F j (x, 〈�′〉 j ) in (6-15) contains 0, and it is easy to see that a
0-containing translate of a central set of width w is a central set of width 2w. Finally, by pigeonholing,
we can select only those fibers having the most popular dyadic width (there are at most logα1 options). �

Write J0 = ( j1, . . . , jd). With �0 :=�, for 1≤ i ≤ d we define

�i := 〈�i−1〉 jd−i+1 .

By Lemma 6.3, for each i , ρ(�i )& αCε
1 ρ(�).

Fix x0 ∈�d . Let
F1 := F j1(x0, �d), x1(t) := et X j1 (x0),
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and for 2≤ i ≤ d, let

Fi :=
{
(t1, . . . , ti ) : (t1, . . . , ti−1) ∈ Fi−1, ti ∈ F ji (xi−1(t1, . . . , ti−1), �d−i+1)

}
xi (t1, . . . , ti ) := eti X ji xi−1(t1, . . . , ti−1).

By construction, for each i and each (t1, . . . , ti ) ∈ Fi ,

xi (t1, . . . , ti ) ∈�d−i+1 ⊆�d−i ,

so F ji+1(xi (t1, . . . , ti ),�d−i ) is a central set whose width and measure satisfy (6-16) (with ji+1 in place
of j). Furthermore,

9 J0
x0
(Fd)⊆� and |Fd |& ρ

−d
0 αCε

1 αdeg J0; (6-17)

here we recall that deg J is the k-tuple whose i-th entry is the number of appearances of i in the d-tuple J .
Let 9N

x0
be the degree N Taylor polynomial of 9 J0

x0 , where N ≥ |b0|1+1 is a large integer to be chosen
later. Let Qw =

∏d
i=1[−wi , wi ] and let Q1 = Q(1,...,1). By scaling, the equivalence of all norms on the

degree N polynomials in d variables, and (6-14),

‖det D9N
x0
‖C0(Qw)

= sup
t∈Q1

|det D9N
x0
(w1t1, . . . , wd td)| ∼N ,d

∑
β

wβ |∂β det D9N
x0
(0)|

≥ wβ0 |∂β0 det D9N
x0
(0)| ∼ wβ0λ0.

Thus, by (6-16), the definition of λ0, and some arithmetic,

‖det D9N
x0
‖C0(Qw)

& ρd−1
0 αCε

1 α
degJ0

β0 . (6-18)

(We recall that degJ β is the k-tuple whose i-th entry equals
∑

`:J`=i β`.)

Lemma 6.4. If P is any degree N polynomial on Rd , there is a subset F ′d ⊆ Fd such that |F ′d |&N ,ε,d |Fd |

and

|P(t)|&N ,ε,d ‖P‖C0(Qw)
for t ∈ F ′d .

The lemma follows from [Christ 2008, Lemma 6.2] or [Tao and Wright 2003, Lemma 7.3]. Roughly, if
S is a central set of width w0 and p is a degree N polynomial, p is close to ‖p‖C0([−w0,w0]) on most of S.
This is because the set where p is small is the union of at most N small intervals. Recalling how our set
Fd was constructed (from a “tower” of central sets), it is possible to iterate d times to obtain the lemma.

Now we use 9N
x0

to control 9 J0
x0 via the following lemma, which just paraphrases [Christ 2008,

Lemma 7.1]. We recall that Q1 is the unit cube.

Lemma 6.5. Let N ,C1, c2, c3> 0. There exists a constant c0> 0, depending on C1, c2, c3, N and d , such
that the following holds. Let 9 : Q1→ Rd be twice continuously differentiable and let 9N

: Rd
→ Rd be

a degree N polynomial. Set J9 := ‖det D9‖C0(Q1) and assume that

‖9‖C0(Q1) ≤ C1, ‖9 −9
N
‖C2(Q1) ≤ c0J2

9 . (6-19)
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Let G ⊆ Q1 be a Borel set with the property that, for any degree N d polynomial P : Rd
→ R,∣∣{t ∈ G : |P(t)| ≥ c2‖P‖C0(Q1)}

∣∣≥ c3|G|. (6-20)

Then
|9(G)| ≥ c0|G|‖det D9N

‖C0(Q1).

For the complete details, see [Christ 2008]. We give a quick sketch of that argument here.

Sketch proof of Lemma 6.5. Let P = det D9N and let G ′ denote the set on the left of (6-20). By (6-19),

|det D9(t)| ∼ |P(t)| ∼ ‖P‖C0(Q1) ∼ J9, for t ∈ G ′, and ‖9N
‖C2(Q1) ≤ 2C1. (6-21)

This first series of inequalities above imply that∫
G ′
|det D9| ≥ c1/2

0 |G|‖det D9N
‖C0(Q1).

It remains to show that 9 is finite-to-one on G ′, so that |9(G ′)|&
∫

G ′ |det D9|.
First the local case. For c0 sufficiently small and B any ball with radius c1/2

0 J9 and center in G ′,
9,9N may be shown to be one-to-one on 10B and to satisfy

|det D9(t)| ∼ |P(t)| ∼ J9, t ∈ 10B. (6-22)

We cover G ′ by a finitely overlapping collection of such balls B.
Globally, we know (it is an application of Bezout’s theorem) that 9N is at most CN ,d-to-one on G ′.

Thus a point x ∈ Rd lies in 9N (10B) for at most CN ,d balls B ∈ B. We are done if we can show that
9(B) ⊆ 9N (10B). By the mean value theorem (applied to (9N )−1), then Cramer’s rule, (6-21) and
(6-22),

dist
(
9N (B), (9N (10B))c

)
≥ dist(B, (10B)c)‖(D9N )−1

‖
−1
C0(10B) > c1/2

0 J9 diam(B).

The right side is just c0J2
9 ≥ dist(9(B),9N (B)), so we are done. �

Let Dw denote the dilation Dw(t1, . . . , td) = (w1t1, . . . , wd td). We will apply Lemma 6.5 with
9 =9

J0
x0 ◦ Dw, 9N

=9N
x0
◦ Dw and G = DwFd . By Lemma 6.4, we just need to verify (6-19).

Since w j ≤ 1 for each j , ‖9‖C2(Q1) ≤ ‖9
J0
x0 ‖C2(Qw)

. 1. For the error bound,

‖9 J0
x0
−9N

x0
‖C2(Qw)

.max
i
wN−1

i ‖9 J0
x0
‖C N+1(Qw)

. (cαδ1)
N , (6-23)

where c is as in (6-12). (Recall that implicit constants do not depend on c.) We choose N larger than
δ−1(10 degJ0

β0+ 10d) and then choose c sufficiently small. Combining (6-23), (6-12) and (6-18),

‖9 J0
x0
−9N

x0
‖C2(Qw)

≤ c0

(∏
j

w j

)2

‖det D9N
x0
‖

2
C0(Qw)

.

For c0 sufficiently small, this implies that

‖det D9 J0
x0
− det D9N

x0
‖C0(Qw)

< 1
2‖det D9N

x0
‖C0(Qw)

,
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so ‖det D9 J0
x0 ‖C0(Qw)

≥
1
2‖det D9N

x0
‖C0(Qw)

. Rescaling gives us (6-19).
Applying Lemma 6.5, inequality (6-18), and b0 = deg J0+ degJ0

β0,

|�| ≥ |9 J0
x0
(Fd)|& |Fd |ρ

d−1
0 αCε

1 α
degJ0

β0 & ρ−1
0 α2Cε

1 αb0 .

The proof of Theorem 2.1 is finally complete.

Appendix: proof of Proposition 4.1

In this section we prove Proposition 4.1, which was used in proving Propositions 2.2 and 2.3. We fix, for
the remainder of this section, a point b0 ∈ [0,∞)k . An object is admissible if it may be chosen from a
finite collection, depending only on b0, of such objects, and all implicit constants will be admissible (i.e.,
depending only on b0).

The following two lemmas show that conclusions (i) and (ii) of Proposition 4.1 are equivalent.

Lemma A.1. If A ⊆ Zk
0 is a finite set and b0 /∈ P(A), there exist ε > 0 and v0 ∈ (ε, 1]k such that

v0 · b0+ ε < v0 · p for every p ∈ P(A).

Lemma A.2. If v0 ∈ (0, 1]k , there exists a finite set A⊆ Zk
0 such that b0 /∈ P(A) and

{b ∈ Zk
0 : v0 · b0 < v0 · b} ⊆ P(A).

Proof of Lemma A.1. We may assume that b0 6= (0, . . . , 0) and A 6= ∅; otherwise, the result is trivial.
Since b0 /∈P(A), there exists v1 ∈ Rk such that v1 · b0 < v1 · p for every p ∈P(A). Since P(A) contains
a translate of [0,∞)k , v1 ∈ [0,∞)k . We may assume that v1 ∈ [0, 1]k . Let

δ := 1
2 |b0|

−1
1 min

b∈A
v1 · (b− b0).

Since A is finite, δ > 0. Let v2 := v1+ (δ, . . . , δ). Then v2 ∈ [δ, 1+ δ]k . If b ∈A,

b · v2 = v1 · b0+ v1 · (b− b0)+ δ|b|1 ≥ v2 · b0+ δ|b0|1 ≥ v2 · b0+ δ.

The conclusion thus holds with ε := 1
2δ/(1+ δ), v0 := v2/(1+ δ). �

Proof of Lemma A.2. Let ε :=mini v
i
0 and let N := dkε−1(b0 · v0+ 1)e. If p ∈ Zk

0 and |p|1 ≥ N ,

v0 · p ≥min
j
v

j
0 max

i
pi
≥ ε

(N
k

)
≥ b0 · v0+ 1,

so the conclusion holds with

A := {b ∈ Zk
0 : |b|1 ≤ N and v0 · b > v0 · b0}. �

The following lemma implies that the conclusions of Proposition 4.1 hold whenever B is a finite set
with #B≤ k+ 1.

Lemma A.3. Let B⊆ Zk
0 be a finite set. Assume that #B ≤ k+ 1 and that b0 /∈ P(B). Then there exist

admissible ε > 0 and v0 ∈ (ε, 1]k such that b · v0 > b0 · v0+ ε for every p ∈ P(B).
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The same proof shows that, for any finite B with b0 /∈ P(B), there exist ε > 0 and v0 ∈ (ε, 1]k , taken
from a finite list that depends only on b0 and m, such that b · v0 > b0 · v0+ ε for every p ∈ P(B), but for
simplicity we only prove the version that we use.

Proof. The conclusion is trivial if B=∅, so we write B= {b1, . . . , bm} with m ≤ k+ 1. By Lemma A.1,
the conclusion is trivial if {b1, . . . , bm} is admissible; we will reduce to this case.

If |bi |1> |b0|1, 1≤ i ≤m, the conclusion holds with v0= (1, . . . , 1), ε= 1
2(d|b0|1+1e−1). Reindexing

if necessary, we may assume that |b1|1 ≤ |b0|1, in which case {b1} is admissible.
Assume that for some j < m, {b1, . . . , b j } is admissible. By assumption, b0 /∈P({b1, . . . , b j }), so by

Lemma A.1 there exist admissible ε j > 0, v j ∈ (ε j , 1]k such that v j · b0+ ε j < v j · bi for 1≤ i ≤ j . If
v j ·b0+ ε j < v j ·bi for every i , the conclusion of the lemma holds with ε = ε j , v0 = v j . Otherwise, after
reindexing, we may assume that v j ·b j+1≤ v j ·b0. Therefore b j+1 is admissible, and hence {b1, . . . , b j+1}

is admissible as well. The procedure must terminate after at most m ≤ k+ 1 steps, and so the lemma is
proved. �

Lemma A.3 has the following corollary.

Lemma A.4. Under the hypotheses of Lemma A.3, there exists an admissible ε > 0 such that if

b(θ) :=
m∑

i=1

θi bi

is any convex combination of b1, . . . , bm , there exists an i , 1≤ i ≤ k such that bi (θ)≥ bi
0+ ε.

Proof. By Lemma A.3, there exist admissible ε > 0, v0 ∈ (ε, 1]k such that

ε < (b(θ)− b0) · v0 ≤

( k∑
i=1

vi
0

)
max

1≤i≤k
(bi (θ)− bi

0)≤ max
1≤i≤k

(bi (θ)− bi
0). �

Finally, we are ready to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Let C > |b0|1 be a large constant, to be determined (admissibly) in a moment.
Define A :=B′ ∪B′′, where

B′ := {b ∈B : |b|1 ≤ C},

B′′ := {Cei : 1≤ i ≤ k}.

Here ei denotes the i-th standard basis vector. Then, since P(B′′)=P({b∈Zk
0 : |b|1≥C}), P(B)⊆P(A).

It remains to show that, for C sufficiently large, b0 /∈ P(A).
Assume that b0 ∈ P(A). By Carathéodory’s theorem from combinatorics (see, for instance, [Ziegler

1995, p. 46]), b0�
∑k+1

l=1 θlal , for some a1, . . . , ak+1 ∈A and 0≤ θl ≤ 1 satisfying
∑

l θl = 1. Reindexing
if necessary,

b0 �

j∑
l=1

θlCeil +

k+1∑
l= j+1

θlbl, (A-1)

where b j+1, . . . , bk+1 ∈B′. Since C > |b0|1,
k+1∑

l= j+1
θl > 0 and, since b0 /∈ P(B′)⊆ P(B),

j∑
l=1
θl > 0.
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Let

b(θ) :=
( k+1∑

l= j+1

θl

)−1 k+1∑
l= j+1

θlbl .

By Lemma A.4, there exists an i , 1≤ i ≤ k+1 such that bi (θ)≥ bi
0+ ε, where ε > 0 depends only on b0

(crucially, not on C). By (A-1),

b0 �

( k+1∑
l= j+1

θ j

)
b(θ),

so, comparing the i-th coordinates, we see that

k+1∑
l= j+1

θ j ≤
bi

0

bi
0+ ε

≤
|b0|∞

|b0|∞+ ε
,

so
j∑

l=1

θ j ≥ 1−
|b0|∞

|b0|∞+ ε
=

ε

|b0|∞+ ε
. (A-2)

On the other hand, by (A-1) and the fact that all coordinates of the bi are nonnegative,
∑ j

l=1 θ j ≤ |b0|1/C .
For C = C(ε, b0) sufficiently large (admissible since ε is), this contradicts (A-2), and the proof of
Proposition 4.1 is complete. �
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PROPAGATION OF SINGULARITIES FOR ROUGH METRICS

HART F. SMITH

We use a wave packet transform and weighted norm estimates in phase space to establish propagation of
singularities for solutions to time-dependent scalar hyperbolic equations that have coefficients of limited
regularity. It is assumed that the second order derivatives of the principal coefficients belong to L1

t L∞x ,
and that u is a solution to the homogeneous equation of global Sobolev regularity s0 = 0 or 1. It is then
proven that the H s0+1 wavefront set of u is a union of maximally extended null bicharacteristic curves.

1. Introduction

In this paper we establish a propagation of singularities theorem for second-order, scalar hyperbolic
operators of (t, x) ∈ (−T, T )×Rn of the form

L = D2
t − 2b j (t, x)D j Dt − ci j (t, x)Di D j + d0(t, x)Dt + d j (t, x)D j , 1≤ i, j ≤ n,

where summation notation is used, and Dt =−i∂t , D j =−i∂x j for 1≤ j ≤ n. Under the assumption that
the second derivatives of the principal coefficients belong to L1

t L∞x , we establish the following.

Theorem 1.1. Suppose that s0 ∈ {0, 1}. Suppose that Lu = 0 and that

u ∈ C0((−T, T ), H s0(Rn)), Dt u ∈ C0((−T, T ), H s0−1(Rn)). (1-1)

If γ (t) is a null bicharacteristic curve of L and γ (t0) /∈ WF s0+1(u) for some t0 ∈ (−T, T ), then γ ∩
WF s0+1(u)=∅.

The improvement of this paper over prior results for twice-differentiable coefficients is the gain of 1
derivative over the background regularity, which we show by example to be the best possible in the setting
we consider. Also, we assume integrability in t of the second order derivatives, as opposed to uniform
bounds, which by a limiting argument will show that the theorem holds for piecewise regular coefficients.
By Theorem B.2, the assumptions on u imply that WF s0+1(u) is contained in the characteristic set of L , so
the restriction to null bicharacteristics is natural. Theorem 1.1 can be localized in x ; see Remark B.7. Also,
for s0= 1, the regularity assumption on u may be reduced to u ∈ H 1((−T, T )×Rn) by Theorem B.6. For
s0 = 0, it is not clear how to interpret Lu in case u ∈ L2((−T, T )×Rn). However, if L is of divergence
form, or if the regularity assumption on the coefficients of L is increased to b j , ci j

∈C1,1((−T, T )×Rn),
and d0, d j

∈ C0,1((−T, T )×Rn), then Remark B.8 shows that Theorem 1.1 holds for L2 solutions.

This material is based upon work supported by the National Science Foundation under grant DMS-1161283. This work was
partially supported by a grant from the Simons Foundation (# 266371 to Hart Smith).
MSC2010: 35A21, 35L10.
Keywords: wavefront set, wave equation, propagation of singularities.
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Hörmander’s theorem [1971] on propagation of singularities for operators of real principal type shows
that if the coefficients of L are C∞, then the conclusion of Theorem 1.1 holds for all s0, with no global
regularity condition required of u. Propagation of singularities theorems in the setting of nonsmooth
nonlinear equations were obtained by Bony [1981], where the method of paradifferential operators was
introduced. In that case a local regularity assumption is required of u. Related work on nonlinear equations
includes [Rauch and Reed 1980; Beals and Reed 1984]. More closely related to this paper, Taylor [2000]
used the positive commutator method and paradifferential theory to establish propagation of singularities
for linear differential equations, including results for coefficients of Hölder regularity less than 2. In
the case of C1,1 coefficients, [Taylor 2000, Proposition 11.4, Chapter 3] implies invariance of the H s0+1

wavefront set if u ∈ H s0+ε , any ε > 0, for s0 ∈ [−1, 1]. In [de Hoop et al. 2012], the authors studied
reflection of the H s0 wavefront set off conormal singularities of metrics with singularities of Hölder
regularity C1,α, where 0 < α ≤ 1. The limiting result in [de Hoop et al. 2012] for α = 1 would be a
gain of 1/2 derivative relative to the assumed background regularity of u. For C2 metrics in domains
with C3 boundary, Burq [1997] established the propagation result for microlocal defect measures. In the
setting of [Burq 1997], as well as in that of [de Hoop et al. 2012], there may be multiple generalized
bicharacteristics passing through a given initial point in phase space.

We now make more precise the regularity conditions that we place on the coefficients. We assume that
the coefficient functions b j and ci j are real, and that the equation is uniformly hyperbolic in t :

n∑
i, j=1

ci j (t, x)ξiξ j ≥ c0|ξ |
2, c0 > 0. (1-2)

The b j and ci j are assumed continuously differentiable, with uniform bounds

sup
|t |<T,x∈Rn

∑
|γ |≤1

(|∂
γ
t,x b j (t, x)| + |∂γt,x ci j (t, x)|)≤ C0. (1-3)

In addition, we assume that the second-order derivatives of b j and ci j belong to L1L∞. Precisely, we
assume that their distributional derivatives of second-order are locally integrable functions of (t, x), and
that there exists a function α(t) ∈ L1((−T, T )) such that

sup
x∈Rn

∑
|γ |=2

(|∂
γ
t,x b j (t, x)| + |∂γt,x ci j (t, x)|)≤ α(t). (1-4)

This condition in fact implies that the coefficients are continuously differentiable functions of (t, x), so
that the assumption of C1 coefficients (as opposed to Lipschitz) is redundant. It also follows from (1-4)
that

‖ci j (t, · )− ci j (s, · )‖C1(Rn) ≤

∫ t

s
α(r) dr, (1-5)

so the map s→ ci j (s, · ) is continuous from (−T, T ) into C1(Rn), similarly for b j .
The coefficients d0 and d j are assumed to have the same regularity as the first order derivatives of b j

and ci j ; that is, d0 and d j are assumed to be continuous functions of (t, x) with uniform upper bounds,
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with first order derivatives in L1L∞. Precisely, for d denoting either d0 or d j , we assume bounds with
α(t) as above:

sup
|t |<T,x∈Rn

|d(t, x)| ≤ C0, sup
x∈Rn

∑
|γ |=1

|∂
γ
t,x d(t, x)| ≤ α(t). (1-6)

The coefficients of L all admit extensions to R×Rn with the same regularity. For example, consider
c(t, x) defined on t > 0 with second order derivatives belonging to L1L∞(R+×Rn). By (1-5), c(t, x)
extends to a C1 function on t ≥ 0. For t < 0 define

c(t, x)= 3c(−t, x)− 2c(−2t, x). (1-7)

It is then easily verified that all second order distributional derivatives of c belong to L1L∞(R1+n), and
that the same extension preserves the first order regularity of d0, d j . For convenience, we will thus
assume when needed that all coefficients of L have been extended to R×Rn , and, in addition, that L
equals the standard wave operator for |t | ≥ T + 1.

We note that the product of functions satisfying (1-3) and (1-4) is of the same type, hence there is
no loss of generality in our assumption that the coefficient of D2

t is 1. Such an L can also be written in
divergence form:

L = D2
t − 2D j b j (t, x)Dt − Di ci j (t, x)D j + d̃0(t, x)Dt + d̃ j (t, x)D j

for d̃ satisfying (1-6). This form will be more convenient for certain proofs.
Consider the principal symbol of L , where (τ, ξ) are the phase space coordinates dual to (t, x),

H(t, x, τ, ξ)= τ 2
− 2

n∑
j=1

b j (t, x)ξ jτ −

n∑
i, j=1

ci jξiξ j .

This factors as

H(t, x, τ, ξ)= (τ − p+(t, x, ξ))(τ + p−(t, x, ξ)),

where
p±(t, x, ξ)= p(t, x, ξ)± b j (t, x)ξ j ,

p(t, x, ξ)= (ci j (t, x)ξiξ j + (b j (t, x)ξ j )
2)

1
2 .

(1-8)

We modify p(t, x, ξ) near ξ = 0 so that it is smooth in ξ and homogeneous of degree 1 for |ξ |> 1. The
symbols p and p± are continuously differentiable in (t, x) and satisfy

sup
|ξ |=1

sup
|β|≤1
|∂
γ

ξ ∂
β
t,x p(t, x, ξ)| ≤ Cγ ,

sup
|ξ |=1

sup
|β|=2
|∂
γ

ξ ∂
β
t,x p(t, x, ξ)| ≤ Cγα(t),

(1-9)

and similarly for p±. As a consequence, the Hamiltonian flow of ±p±,

dxt

dt
=±dξ p±(t, xt , ξt),

dξt

dt
=∓dx p±(t, xt , ξt),
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is well-posed and induces a bilipschitz homeomorphism on R2n
x,ξ , since the Lipschitz norm of p± with

respect to (x, ξ) is bounded by α(t) ∈ L1((−T, T )). The null bicharacteristics of H(t, x, τ, ξ) are, after
reparametrization, curves of the form

γ (t)= (t, xt ,±p±(t, xt , ξt), ξt),

where (xt , ξt) is, respectively, an integral curve of ±p±. We will refer to such curves γ (t) as the null
bicharacteristic curves of L .

The outline of this paper is as follows. In Section 2 we reduce the proof of Theorem 1.1 to an analogous
result for a first order pseudodifferential equation, which requires a careful factorization of L . In Section 3
we construct the evolution groups for the first order factors of L as one-parameter families of operators on
the appropriate range of Sobolev spaces, through the use of wave packet transform methods. In Section 4
we establish spatial-wavefront mapping properties (pseudolocality) for the evolution operators at fixed
time. This is the heart of the paper, where pseudolocality is established via weighted-norm estimates
on the fixed-time evolution operators expressed in the wave-packet frame. In Section 5 we deduce the
space-time wavefront propagation of Theorem 1.1 from the fixed time result. In Section 6 we show
that Theorem 1.1 applies, through a limiting process, to coefficients that satisfy the above regularity
assumptions on the elements of a partition of (−T, T )×Rn into time slices, with matching assumptions
at the endpoints. We then produce an example of such a metric showing that the assumption of H s0

regularity on u cannot be relaxed when establishing propagation of H s0+1 singularities. Appendix A
contains the various commutator and paraproduct estimates that are used throughout the paper. Some
of these results are standard in paraproduct theory, but we collect them here for reference. Appendix B
contains energy estimates and well-posedness results for the operators considered in this paper.

Notation. We use the following notation for function spaces. For 1≤ p ≤∞, and s ∈ R, L p H s denotes
functions for which ‖u(t)‖H s(Rn) belongs to L p((−T, T )) with norm

‖u‖L p H s =

(∫ T

−T
‖u(t)‖p

H s dt
)1/p

,

with the obvious modification if p =∞, and where we write L2 instead of H 0. Here and throughout this
paper, u(t) denotes the function x→ u(t, x). The L p Lq norm is similarly defined as ‖u‖L p((−T,T ),Lq (Rn).

The space Ck,1, for nonnegative integer k, consists of functions whose k-th derivatives satisfy a
Lipschitz condition,

‖ f ‖C0,1 = sup
x 6=y

| f (x)− f (y)|
|x − y|

,

‖ f ‖Ck,1 = sup
|α|≤k
‖∂αx f ‖C0,1 .

For k a nonnegative integer, Ck H s denotes the space of u such that t→ u(t) is a Ck map of (−T, T )→
H s(Rn) with the norm

‖u‖Ck H s = sup
t∈(−T,T )

sup
j≤k
‖∂

j
t u(t)‖H s .
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The notation ‖ f ‖H s denotes the norm in the Sobolev space H s(Rn). In case we use the norm in
H s((−T, T )×Rn) or H s(R1+n), we write the domain explicitly unless it is obvious from the context; in
the first case, s will be a nonnegative integer.

For a sequence of functions f = { fk}
∞

k=0,

‖ f ‖`2 L2 =

( ∞∑
k=0

‖ fk‖
2
L2

)1
2

, ‖ f ‖2kσ `2 L2 =

( ∞∑
k=0

22kσ
‖ fk‖

2
L2

)1
2

.

The space Sm
⊂ C∞(Rn) denotes smooth symbols satisfying the standard multiplier condition; that is,

for all multi-indices α,

|∂αξ q(ξ)| ≤ Cα(1+ |ξ |)m−|α|.

The space Sm
cl ⊂ Sm denotes symbols that are homogeneous of degree m on |ξ | ≥ 1,

q(rξ)= rmq(ξ), r ≥ 1, |ξ | ≥ 1.

Given two positive functions f and g, we say that f . g, respectively f ≈ g, if there is a constant
C <∞ such that

f ≤ Cg, respectively C−1g ≤ f ≤ Cg.

2. Reduction to a first order operator

In this section we reduce Theorem 1.1 to results for a first order pseudodifferential equation through a
factorization of the operator L . We introduce the notation

P = p(t, x, D), P± = p±(t, x, D)= P ± b j D j (2-1)

with p and p± defined by (1-8).
Throughout, D = (D1, . . . , Dn) = −i∂x , and always 1 ≤ i, j ≤ n. The operator P(t), respectively

P±(t), will denote the corresponding pseudodifferential operator acting on functions of x , obtained by
freezing the t variable.

We start with a factorization of L of the form

L = (Dt + P−+ d0)(Dt − P+)+ R+1 , (2-2)

where R+1 (t) is a one-parameter family of first-order operators acting on functions of x , with the precise
form of R+1 (t) stated below.

Since P± = P ± b j D j , the product of parentheses on the right-hand side expands to

D2
t − 2b j D j Dt + bi b j Di D j + d0 Dt − P2

+ R,

where

R =−((Dt b j )− bi (Di b j ))D j − [Dt , P] + [b j D j , P] − d0 P+.
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Using a symbol expansion of the homogeneous symbol p(t, x, ξ) as in (A-1), we see that R is a
convergent sum of terms of the form

d(t, x)q0(D) and a1(t, x)[a2(t, x), q1(D)]q2(D), (2-3)

where d satisfies (1-6), each a j satisfies the regularity conditions (1-3) and (1-4), and each q j (ξ)∈ S1
cl(R

n).
Next, observe that

p(t, x, D)2 = p2(t, x, D)+ R = ci j Di D j + bi b j Di D j + R,

with R again of the form (2-3), as seen by using the symbol expansion (A-1) of p. Thus, (2-2) holds
with R+1 a convergent sum of terms of the form (2-3). By (1-3) and (1-4), and Theorem A.1, we have the
following bounds, for each t ∈ (−T, T ):

‖R+1 (t) f ‖L2 ≤ C‖ f ‖H1, (2-4)

‖R+1 (t) f ‖H s ≤ Cα(t)‖ f ‖H s+1, − 1≤ s ≤ 1, (2-5)

‖Dt R+1 (t) f ‖L2 +‖[q1(D), R+1 (t)] f ‖L2 ≤ Cα(t)‖ f ‖H1, (2-6)

whenever q1(D) is an order 0 multiplier in the x-variable. Additionally, by (2-6) or (1-5), we have the
following norm-continuity of R+1 (t) with respect to t :

‖R+1 (t) f − R+1 (s) f ‖L2 ≤ C
(∫ t

s
α(r) dr

)
‖ f ‖H1 . (2-7)

We now fix s0 ∈ {0, 1} and produce a factorization of L modulo order 0 terms,

L = (Dt + P−+ d0
+ Q+)(Dt − P+− Q+)+ R+0 , (2-8)

where Q+ = Q+(t) will be a uniformly bounded family of operators on H s0(Rn), depending on the
parameter t , and where the form of Q+ will depend on the choice of s0 ∈ {0, 1}. Here, R+0 (t) is a
one-parameter family of operators on H s0(Rn), and we construct Q+(t) such that

‖R+0 (t) f ‖H s0 ≤ Cα(t)‖ f ‖H s0 , (2-9)

and such that

‖Q+(t) f ‖H s ≤ Cα(t)‖ f ‖H s , s0− 1≤ s ≤ s0+ 1,

‖Q+(t) f ‖H s0 ≤ C‖ f ‖H s0 ,

‖Q+(t) f − Q+(s) f ‖H s0 ≤ C
(∫ t

s
α(r) dr

)
‖ f ‖H s0 .

(2-10)

In particular, Q+(t) is a continuous function of t in the H s0 operator norm.
Expanding the product of parentheses in (2-8) leads to

L − R+1 (t)− P(t)Q+(t)− Q+(t)P(t)− R(t),

where
R = [Dt , Q+] − [b j , Q+]D j − b j

[D j , Q+] + (Q+)2+ d0 Q+.
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Assuming (2-10), and since ‖d0(t, · )‖C0,1 ≤ Cα(t), the last two terms satisfy the bound in (2-9), and
hence can be absorbed into the error R+0 (t). The estimates (2-12) below will imply that the first three
terms also satisfy the bound in (2-9).

So, given R+1 of the form (2-3), it suffices to construct Q+(t) solving

P(t)Q+(t)+ Q+(t)P(t)− R+1 (t)= R+0 (t), (2-11)

with R+0 (t) satisfying (2-9) and Q+(t) satisfying the conditions

‖Dt Q+(t) f ‖H s0 +‖[Q+(t), q(D)] f ‖H s0 ≤ Cα(t)‖ f ‖H s0 ,

‖[b, Q+(t)] f ‖H s0 ≤ Cα(t)‖b‖C0,1‖ f ‖H s0−1,
(2-12)

where q(D) denotes a general S1
cl(R

n) multiplier in the x-variable, and b(x) a general Lipschitz function
of x . An immediate corollary of (2-12) is that

‖[Q+(t), q0(D)] f ‖H s+1 ≤ Cα(t)‖ f ‖H s , s0− 1≤ s ≤ s0, (2-13)

whenever q0 ∈ S0
cl(R

n), as is seen by interpolation and writing

[Q+(t), q0(D)]D = [Q+(t), q0(D)D] − q0(D)[Q+(t), D],

D[Q+(t), q0(D)] = [Q+(t), q0(D)D] + [Q+(t), D]q0(D).

After adding a harmless constant to p(t, x, ξ), by Lemma A.10 the operator P(t) is invertible for every
t , and with uniform bounds over t ∈ (−T, T ),

‖P(t)−1 f ‖H s ≤ C‖ f ‖H s−1, 0≤ s ≤ 2.

For the case s0 = 1, we define
Q+(t)= 1

2 P(t)−1 R+1 (t). (2-14)

Then (2-11) holds with
R+0 (t)=

1
2 P(t)−1

[R+1 (t), P(t)].

Lemma 2.1 below will show that

‖R+0 (t) f ‖H1 ≤ Cα(t)‖ f ‖H1 .

Thus (2-9) holds with s0 = 1. Furthermore, the operator

(Dt Q+)(t)= 1
2 P(t)−1(Dt P)(t)P(t)−1 R+1 (t)+

1
2 P(t)−1(Dt R+1 )(t)

has the same mapping properties by (2-6). This also holds for [D j , Q+(t)]. Finally, if b ∈ C0,1, then

2[b, Q+(t)] = P(t)−1
[b, P(t)]P(t)−1 R+1 (t)+ P(t)−1

[b, R+1 (t)].

The first term on the right maps L2 to H 1 with norm . α(t)‖b‖C0,1 , which follows by Theorem A.1
together with (2-5) for s =−1. For the second term, we apply Lemma 2.1 below to see that it satisfies
similar bounds on H 1. Thus, (2-12) holds with s0 = 1.
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For the case s0 = 0, we set

Q+(t)= 1
2 R+1 (t)P(t)

−1. (2-15)

Then (2-11) holds with

R+0 (t)=
1
2 [P(t), R+1 (t)]P(t)

−1.

Hence, by Lemma 2.1,

‖R+0 (t) f ‖L2 ≤ Cα(t)‖ f ‖L2 .

Furthermore, (2-10) and (2-12) hold with s0 = 0, so that the other terms in R+0 (t) have the same mapping
property. Hence (2-9) holds with s0 = 0 for this choice of Q+(t).

Lemma 2.1. Assuming R+1 (t) is a convergent sum of terms of the form (2-3),

‖[P(t), R+1 (t)] f ‖L2 ≤ Cα(t)‖ f ‖H1,

and, for b ∈ C0,1(Rn),

‖[R+1 (t), b] f ‖L2 ≤ Cα(t)‖b‖C0,1‖ f ‖L2 .

Proof. In these estimates, the type of terms in R+1 (t) of the form d(t, x)q(D) lead to commutators that
are easily handled, so we replace R+1 (t) in the statement by an operator of the form a1[a2, q1(D)]q2(D).

For the first estimate, we take the symbol expansion (A-1) of p(t, x, ξ) and consider a term of the form

[a0q0(D), a1[a2, q1(D)]q2(D)] = a0[q0(D), a1][a2, q1(D)]q2(D)+ a0a1[q0(D), [a2, q1(D)]]q2(D)

+ a1[a0, [a2, q1(D)]]q2(D)q0(D)+ a1[a2, q1(D)][a0, q2(D)]q0(D),

where each q j ∈ S1
cl(R

n). Each term on the right satisfies the desired bound by Theorem A.1 and
Lemma A.7.

For the second estimate, we need consider

[[a2, q1(D)]q2(D), b] = [a2, q1(D)][q2(D), b] + [b, [a2, q1(D)]]q2(D),

which is handled similarly. �

The same calculation also constructs one-parameter families of operators R−1 (t), Q−(t), and R−0 (t)
satisfying the above conditions, such that

L = (Dt − P++ d0)(Dt + P−)+ R−1 (2-16)

and

L = (Dt − P++ d0
− Q−)(Dt + P−+ Q−)+ R−0 . (2-17)

Suppose now that we are given s0 from Theorem 1.1, and construct the corresponding Q±(t) as above.
In the next section we construct evolution groups E±(t, t0), for t, t0 ∈ (−T, T ), satisfying

Dt E±(t, t0)=±(P±(t)+ Q±(t))E±(t, t0), E±(t0, t0)= I. (2-18)
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Precisely, E±(t, t0) is a bounded family of maps on H s(Rn) for s0 ≤ s ≤ s0 + 1, which is strongly
continuous in t and t0 such that if f ∈ H s(Rn) and t0 ∈ (−T, T ), then

E±(t, t0) f ∈ C0 H s
∩C1 H s−1, s0 ≤ s ≤ s0+ 1,

and such that

Dt E±(t, t0) f =±(P±(t)+ Q±(t))E±(t, t0) f, E(t0, t0) f = f.

Then the above factorizations show that

L E±(t, t0) f = R±0 (t)E±(t, t0) f.

Given the E± and a u ∈ C0 H s0 ∩C1 H s0−1 that solves the Cauchy problem

Lu = 0, u(t0)= u0, Dt u(t0)= u1, (u0, u1) ∈ H s0 × H s0−1

for some given t0 ∈ (−T, T ), we can write u in the form

u = v+
∑
±

E±(t, t0) f±, where f± ∈ H s0, WF s0+1(v)∩ char(L)=∅.

To see this, we impose the conditions

f++ f− = u0, (P+(t0)+ Q+(t0)) f+− (P−(t0)+ Q−(t0)) f− = u1,

which is solved by

f± = (2P(t0)+ Q−(t0)+ Q+(t0))−1(P∓(t0)u0+ Q∓(t0)u0± u1) ∈ H s0(Rn),

where the inverse exists by Lemma A.10, after adding a harmless constant to p. We then write

L
(

u−
∑
±

E± f±

)
=−

∑
±

R±0 E± f± ∈ L1 H s0 .

Also, (
u−

∑
±

E± f±

)∣∣∣
t=t0
= 0, Dt

(
u−

∑
±

E± f±

)∣∣∣
t=t0
= 0.

Thus, by Theorem B.6,

v = u−
∑
±

E± f± ∈ C0 H s0+1
∩C1 H s0,

and, in particular, WF s0+1(v)∩ char(L)=∅, since char(L)⊂ {ξ 6= 0}.
We can thus reduce Theorem 1.1 to a result about the functions E±(t, t0) f±. Suppose for simplicity that

the γ in the statement of Theorem 1.1 is contained in the forward cone τ = p+(t, x, ξ). By Theorem B.4,

γ ∩WF s0+1(E−(t, t0) f−)=∅.

Since γ ∩WF s0+1(v)=∅, Theorem 1.1 is reduced to the following.
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Theorem 2.2. Suppose that s0 ∈ {0, 1} and that E+(t, t0) is the wave group constructed in Section 3 for

Dt E+(t, t0)= (P+(t)+ Q+(t))E+(t, t0), E(t0, t0)= I,

where Q+(t) is given by (2-14) or (2-15), if s0 = 1 or s0 = 0, respectively.
Let γ (t) = (t, xt , p+(t, xt , ξt), ξt) be a null bicharacteristic curve of L. If f ∈ H s0 , and for some

t0 ∈ (−T, T ), we have γ (t0) /∈WF s0+1(E+(t, t0) f ). It follows that

γ ∩WF s0+1(E+(t, t0) f )=∅.

The analogous result holds for the wave group E−(t, t0).

3. The wave packet transform and construction of the wave group

In this section we construct the wave groups E±(t, t0). For simplicity we drop the superscripts + and −,
and let P(t) be either P±(t). Given s0 ∈ {0, 1}, we let Q(t) denote either Q±(t), given by (2-14) or
(2-15) if s0 = 1 or s0 = 0, respectively, where R1(t) is a convergent sum of expressions of the form (2-3).
There is a minor inconsistency in that the P(t) in (2-14) and (2-15) refers to the original p(t, x, D) as in
(2-1), but this is unimportant as all three symbols p and p± have the same regularity.

We construct E(t, t0) : H s0 → C0 H s0 such that

Dt E(t, t0) f = (P(t)+ Q(t))E(t, t0) f, E(t0, t0) f = f, f ∈ H s0 .

By Theorem B.5, the evolution group E(t, t0) is uniquely determined, although in the proof of Theorem 1.1
the existence of E(t, t0) with the desired properties is all that is used. Our construction will show that
E(t, t0) is also uniformly bounded on H s for s0 ≤ s ≤ s0+ 1 and is strongly continuous in both t and t0
on each such H s . It follows from (2-10) that if f ∈ H s for some s0 ≤ s ≤ s0+ 1, then

Q(t)E(t, t0) f ∈ C0 H s0 ⊂ C0 H s−1.

The same holds for P(t)E(t, t0) f . Thus, for s0 ≤ s ≤ s0+ 1,

E(t, t0) f ∈ C0 H s
∩C1 H s−1, if f ∈ H s . (3-1)

Since the proof below works equally well if Q≡ 0, it will also construct the evolution groups E0,±(t, t0)
for the equation

Dt E0,±(t, t0) f =±P±(t)E0,±(t, t0) f, E0(t0, t0) f = f, (3-2)

and (3-1) holds for f ∈ H s if 0≤ s ≤ 2.
Following [Smith 2006], we work with a scaled wave-packet transform, similar to the FBI transform

used in [Tataru 2002], but based on a Schwartz function with Fourier transform of compact support
instead of a Gaussian.

We fix a real, even Schwartz function h(x)∈S(Rn) with ‖h‖L2 = (2π)−n/2 and assume that its Fourier
transform ĥ(ξ) is supported in the unit ball {|ξ | ≤ 1}. For k ≥ 0, we define Tk : S

′(Rn)→ C∞(R2n) by
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the rule

(Tk g)(x, ξ)= 2nk/4
∫

e−i〈ξ,z−x〉h(2k/2(z− x))g(z) dz.

A simple calculation shows that

g(y)= 2nk/4
∫

ei〈ξ,y−x〉h(2k/2(y− x))(Tk g)(x, ξ) dx dξ,

so that Tk
∗Tk = I . In particular,

‖Tk g‖L2(R2n) = ‖g‖L2 .

The following shows that the L2-continuity of Tk holds under relaxed conditions.

Lemma 3.1 [Smith 2006, Lemma 3.1]. Suppose that hx,ξ (z) is a family of Schwartz functions on Rn

depending on the parameters x and ξ , with uniform bounds over x and ξ on each Schwartz seminorm of h.
Then the operator

(Rk g)(x, ξ)= 2nk/4
∫

e−i〈ξ,z−x〉hx,ξ (2k/2(z− x))g(z) dz

satisfies the bound

‖Rk g‖L2(R2n) ≤ C‖g‖L2 .

We will apply Tk to the localization of u at frequency k. We introduce a nonnegative function
β(s) ∈ C∞c (R), supported in the interval [2−δ, 21+δ

], where δ > 0 will be taken sufficiently small. With
βk(ξ)= β(2−k

|ξ |) if k ≥ 1, and β0 an appropriate compactly supported function on Rn , we assume that

∞∑
k=0

βk(ξ)
2
= 1. (3-3)

Now define T : L2(Rn)→ `2(N, L2(R2n)) by

T g ≡ g̃ ≡ {g̃k}
∞

k=0, g̃k = Tkβk(D)g.

Then T is a norm isomorphism, hence T ∗T = I . Furthermore, for k large enough so that 2−k/2
≤

2−δ(1− 2−δ), g̃k is supported in the set {2k−2δ
≤ |ξ | ≤ 2k+1+2δ

}. It follows that, for σ ∈ R,

‖g‖Hσ ≈

( ∞∑
k=0

22kσ
‖g̃k‖

2
L2(R2n)

)1
2

. (3-4)

We obtain E(t, t0) by constructing its lift Ẽ(t, t0) to `2(N, L2(R2n)) via the wave packet transform T :

Ẽ(t, t0) f = T E(t, t0)T ∗ f.

The group Ẽ(t, t0) will be constructed in a manner similar to that used in [Smith 2006], approximating
the lifted equation by the Hamiltonian flow of an appropriately mollified p and obtaining Ẽ(t, t0) by a
convergent iteration from the Hamiltonian flow group.
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For k ∈ N, we introduce the spatial regularization of p,

pk(t, x, ξ)= φ(2−k/2 D)p(t, x, ξ),

which regularizes the symbol in x to frequencies of magnitude ≤ c2k/2, some small fixed c > 0. We let
Pk(t)= pk(t, x, D). We remark that in [Smith 2006] the symbol regularization was over both t and x
variables, but that is unimportant for [Smith 2006, Lemmas 3.2 and 3.3], the specific results that we use
in this paper.

Let Vk = Vk(t, x, ξ, ∂x , ∂ξ ) denote the real, linear first-order differential operator

Vk f = dξ pk(t, x, ξ) · dx f − dx pk(t, x, ξ) · dξ f,

This vector field is Lipschitz regular in (x, ξ) provided |ξ | is bounded above, with Lipschitz constant
α(t) ∈ L1((−T, T )). Hence the associated flow group is well-posed.

Let 2k
s,t denote the associated time t→ s flow map on R2n ,

∂t f (2k
s,t(x, ξ))= Vk f (2k

s,t(x, ξ)),

which is the Hamiltonian flow induced by pk . Also let 2s,t denote the t→ s Hamiltonian flow map for
p. By a simple extension of [Smith 1998, Lemma 3.6], if (xt , ξt) is the flow out of (x0, ξ0) through p,
(xk

t , ξ
k
t ) is the flow out of (x0, ξ0) through pk , and |ξ0| ≈ 1, then

|xk
t − xt | + |ξ

k
t − ξt |. 2−k/2.

Also 2s,t , and each 2k
s,t , are biLipschitz measure preserving maps on R2n , homogeneous of degree 1 in

ξ , and, by homogeneity, it holds that |ξt | ≈ |ξ0|, and similarly |ξ k
t | ≈ |ξ0|.

We define a unitary evolution group W (t, s) on `2(N, L2(R2n)) by evolving each fk along Vk . Thus,
for f = { fk(x, ξ)}∞k=0 ∈ `

2(N, L2(R2n)), we set

(W (t, s) f )k = fk ◦2
k
s,t .

Suppose that ũ(t)= T (u(t)). Then the equation Dt u− P(t)u = Q(t)u is equivalent to the collection
of equations for k ∈ N,

−i(∂t −Vk)ũk = (Tk Pk + iVk Tk)βk(D)u+ Tk[βk(D), Pk]u+ Tkβk(D)(P− Pk)u+ Tkβk(D)Qu. (3-5)

Inserting u = T ∗ũ, we can write this as a series of equations

(∂t − Vk)ũk(t)= (B(t)ũ(t))k, (3-6)

where (Bũ)k is the right-hand side of (3-5) applied to u = T ∗ũ. Note that (Bũ)k is supported where
|ξ | ∈ [2k−3δ, 2k+1+3δ

], by the frequency localization of Pk and Tk .
We will show that

‖B(t) f ‖2kσ `2 L2 ≤ Cα(t)‖ f ‖2kσ `2 L2, s0− 1≤ σ ≤ s0+ 1, (3-7)
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where the norm denotes the one on the right-hand side in (3-4). We can then obtain the solution to (3-6)
with given initial condition ũ(t0) by solving the integral equation

ũ(t)=W (t, t0)ũ(t0)+
∫ t

t0
W (t, s)B(s)ũ(s) ds. (3-8)

Indeed, for u(t0) ∈ Hσ (Rn), s0 − 1 ≤ σ ≤ s0 + 1, the integral equation (3-8) admits a series solution
ũ =

∑
∞

j=0 ũ( j), convergent in C0((−T, T ), 2kσ `2L2), where

ũ(0)(t)=W (t, t0)ũ(t0), ũ( j+1)(t)=
∫ t

t0
W (t, s)B(s)ũ( j)(s) ds.

We express the solution as ũ(t) = Ẽ(t, t0)u(t0), which by uniqueness determines an evolution group
Ẽ(t, t0). Note that each ũ( j+1)

k is supported where C−12k
≤|ξ |≤C2k , for some fixed C , by the localization

of (Bũ)k and homogeneity of W (t, s).
It is easily seen from its construction that the group is strongly continuous in the 2kσ `2L2 norm,

as a function of the parameters (t, t0) ∈ (−T, T )2. Since (3-6) is obtained by lifting the equation
Dt u−P(t)u=Q(t)u, it follows that Ẽ(t, t0) preserves the range of T , and thus is of the form T E(t, t0)T ∗,
where E(t, t0)= T ∗ Ẽ(t, t0)T is consequently strongly continuous on Hσ in both parameters. It follows
from (3-8) that E(t, t0)u(t0) is a distribution solution of the equation Dt u− P(t)u = Q(t)u, which, as
noted before, belongs to C0 Hσ

∩C1 Hσ−1 provided that s0 ≤ σ ≤ s0+ 1.
It remains to establish (3-7). Let Bk j (t) denote the k j component of B(t), so (Bũ)k(t)=

∑
j Bk j (t)ũ j (t).

By the above, Bk j is the sum of four terms:

Bk j = (Tk Pk + iVk Tk)βk(D)β j (D)T ∗j + Tk
[
βk(D), Pk

]
β j (D)T ∗j

+ Tkβk(D)(P − Pk)β j (D)T ∗j + Tkβk(D)Qβ j (D)T ∗j
≡ 1 Bk j + 2 Bk j + 3 Bk j + 4 Bk j .

The bounds in (3-7) are satisfied by the operator 4 B = T Q(t)T ∗ by (3-4) and (2-10), so we focus on
the first three components of B(t). The terms 1 Bk j and 2 Bk j vanish unless | j − k| ≤ 1. Thus, it suffices to
prove that each is bounded on L2(R2n) with norm . α(t), uniformly over j and k. For 2 B jk , this follows
by Theorem A.1 (or indeed the S1,1/2 pseudodifferential calculus). For 1 B jk , it follows by [Smith 2006,
Lemmas 3.1 and 3.2]. In the next section we will prove even stronger estimates for these terms.

To handle the term 3 B, we take the symbol expansion (A-1) of p(t, x, ξ) to reduce matters to considering
p(t, x, D)= a(t, x)q(D). For | j − k| ≤ 1, uniform boundedness of 3 B jk follows, since ‖a− ak‖L∞ .
2−kα(t).

If | j − k| ≥ 2, then, after this substitution,

3 Bk j = Tkβk(D)a(t, x)q(D)β j (D)T ∗j , | j − k| ≥ 2.

These off-diagonal terms give an operator which is in fact smoothing of order 1, as we now show.
Set P(t)= a(t, x)q(D). If 2≤ | j−k| ≤ 3, since ‖a(t, · )‖C1,1 ≤ α(t) and q(D) is of order 1, we have

‖Tkβk(D)a(t, x)q(D)β j (D)T ∗j ‖L2→L2 . Cα(t)2−k . (3-9)
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If | j − k| ≥ 4, using the Littlewood–Paley partition of unity given by ψ j = β
2
j ,

3 Bk j =
∑
|l−m|≥2

Tkβk(D)ψl(D)a(t, x)q(D)ψm(D)β j (D)T ∗j ,

and hence

T Ra(t)q(D)T ∗−
∑
| j−k|≥4

3 Bk j (t)=
∑
| j−k|≤3
|l−m|≥2

Tkβk(D)ψl(D)a(t, x)q(D)ψm(D)β j (D)T ∗j ,

where Ra is defined as in Lemma A.4. In the latter sum, j, k, l,m differ by at most 5, and each term
satisfies the bound in (3-9). Combined with Lemma A.4, we see that∥∥∥∥ ∑

| j−k|≥2
3 Bk j (t) f j

∥∥∥∥
2k(σ+1)`2 L2

≤ Cα(t)‖ f ‖2kσ `2 L2, −1≤ σ ≤ 1. (3-10)

As a consequence, the operator 3 B satisfies the bound in (3-7) on the range −1≤ s ≤ 2, which contains
s0− 1≤ s ≤ s0+ 1 for s0 ∈ {0, 1}. This concludes the proof of (3-7), and hence the existence of E(t, t0).
If Q ≡ 0, then (3-7) holds on the union of the ranges, −1≤ σ ≤ 2, hence the wave group E0(t, t0) exists
on the range −1≤ s ≤ 2.

We summarize the results of this section.

Theorem 3.2. Suppose that s0 ∈ {0, 1} and that Q±(t) is respectively given by (2-15) or (2-14). Then
an evolution group E±(t, t0) for Equation (2-18) exists as a family of bounded maps on H s(Rn) for
s0− 1≤ s ≤ s0+ 1 and is strongly continuous in both t and t0. Additionally, for s0 ≤ s ≤ s0+ 1,

E±(t, t0) f ∈ C0 H s
∩C1 H s−1 when f ∈ H s .

The evolution group E0,±(t, t0) for the equation

Dt E0,±(t, t0)=±P±(t)E0,±(t, t0), E0,±(t0, t0)= I

similarly exists, is strongly continuous in both variables on H s for −1≤ s ≤ 2, and if 0≤ s ≤ 2, we have

E0,±(t, t0) f ∈ C0 H s
∩C1 H s−1 when f ∈ H s .

4. Weighted estimates for the wave group

The null bicharacteristics of τ ∓ p±(t, x, ξ) are in one-to-one correspondence with the Hamiltonian
curves (xt , ξt) for ±p±(t, x, ξ). In this section we prove the following result about wavefront mapping
properties on Rn for the fixed time wave groups E±(t, t0) constructed in the previous section, and in
Section 5 we derive Theorem 2.2 as a corollary.

Theorem 4.1. Given s0 ∈ {0, 1}, let E±(t, t0) be the wave group constructed in Section 3. Let (xt , ξt) be
the Hamiltonian curve of the corresponding ±p±(t, x, ξ) that passes through (x0, ξ0) at t = t0.

Then, given f ∈ H s0 , if (x0, ξ0) /∈WF s0+1( f ), it follows that

(xt , ξt) /∈WF s0+1(E±(t, t0) f ), t ∈ (−T, T ).
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Furthermore, if T <∞, there is a constant c> 0 such that if χt(x) is a C∞c (R
n)-bounded family of cutoffs

supported in the ball of radius c about xt , and if 0t(ξ) is an S0(Rn)-bounded family of conic cutoffs
supported in the cone of angle c about ξt , then, with uniform bounds over t ∈ (−T, T ),

0t(D)χt(x)(E±(t, t0) f ) ∈ H s0+1.

We consider the case of E+(t, t0) and denote the wavegroup simply by E(t, t0). We prove Theorem 4.1
through weighted-norm estimates on the lifted evolution group Ẽ(t, s)= T E(t, s)T ∗, where the weights
are time-dependent functions of (x, ξ). It suffices to consider the case t ≥ t0 in Theorem 4.1, which we
will assume in the rest of this section. Also, by making a smooth, t-dependent change of variables in x ,
we will from now on assume that ξt remains within a small cone about the positive ξ1 axis.

Suppose that M(t, x, ξ) is a family of strictly positive functions on (−T, T )×R2n , continuous in all
parameters, such that, for some C <∞,

C−1
〈ξ〉s0 ≤ M(t, x, ξ)≤ C〈ξ〉s0+1.

Assume that the following holds, where B(t) and W (t, s) are as in Section 3:

‖M(s, x, ξ)B(s) f ‖`2 L2 ≤ Cα(s)‖M(s, x, ξ) f ‖`2 L2 . (4-1)

In addition, for t0 ≤ s ≤ t ≤ T , assume that

‖M(t, x, ξ)W (t, s) f ‖`2 L2 ≤ C‖M(s, x, ξ) f ‖`2 L2 . (4-2)

It follows from (3-8) that

‖M(t, x, ξ)ũ( j+1)(t)‖`2 L2 ≤ C‖M(t0, x, ξ)ũ(t0)‖`2 L2 +C
∫ t

0
α(s)‖M(s, x, ξ)ũ( j)(s)‖`2 L2 ds.

Since α ∈ L1((−T, T )), the sum of the ũ( j) converges to ũ in the weighted norms, and we conclude that

sup
t∈(−T,T )

‖M(t, x, ξ)ũ(t)‖`2 L2 ≤ C exp
(

C
∫ t

t0
α(s) ds

)
‖M(t0, x, ξ)ũ(t0)‖`2 L2 . (4-3)

With data u(t0) ∈ H s0(Rn), we thus need to construct M(t, x, ξ) such that the right-hand side is finite if
(x0, ξ0) /∈WF s0+1(u(t0)), and such that finiteness of the left-hand side implies (xt , ξt) /∈WF s0+1(u(t)).
The weight M(t, x, ξ) we construct will be of size 〈ξ〉s0+1 on some locally uniform conic set about
(xt , ξt), so the statement about uniformity of the neighborhoods in Theorem 4.1 will be a consequence of
the following arguments, and we thus focus on the fixed time estimates.

We start by equating weighted L2(R2n) estimates on (T g)(x, ξ) to multiplier estimates on g(x).

Lemma 4.2. Suppose that w(ξ) ∈ C(Rn) is a strictly positive function for which there is a constant
m <∞ such that, if k ≥ 0 and 2k−1

≤ |ξ |, |η| ≤ 2k+2, we have

w(η)≤ Cw(ξ)(1+ 2−k/2
|ξ − η|)m .
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Assume also that C−1
〈ξ〉−N

≤ w(ξ) ≤ C〈ξ〉N for some N and C <∞. If g ∈ H s(Rn) for some s ∈ R,
then

‖w(D)±1g‖L2 ≈ ‖w(ξ)±1T g‖`2 L2,

and consequently
‖w(D)T ∗ f ‖L2 . ‖w(ξ) f ‖`2 L2 .

Proof. If χ ∈ C∞c is supported in the cube [−.6, .6]n such that
∑

j∈Zn χ(ξ − j) = 1, then, on the set
2k−1
≤ |ξ | ≤ 2k+2,

w(ξ)≈
∑
j∈Zn

w(2k/2 j)χ(2−k/2ξ − j).

If we replace w by the right-hand side, then, for |ξ |, |η| ≈ 2k ,

|∂αηw(η)
±1
| ≤ Cα2−k|α|/2w(ξ)±1(1+ 2−k/2

|ξ − η|)m . (4-4)

Smoothing out w in this way on each component of w with respect to a Littlewood–Paley decomposition,
we may assume that (4-4) is satisfied whenever 2k−1

≤ |ξ |, |η| ≤ 2k+2.
Since the conditions on w are symmetric in w and w−1, it suffices to show that

‖w(ξ)Tw(D)−1g‖2
`2 L2 . ‖g‖L2,

as writing g = T ∗T g and using the adjoint bound with w replaced by w−1 implies the reverse inequality.
Let gk = βk(D)g, and write

w(ξ)Tkw(D)−1gk = 2−nk/4
∫

ei〈ζ,x〉w(ξ)w(ζ )−1ĥ(2−k/2(ζ − ξ))ĝk(ζ ) dζ

= 2−nk/4
∫

ei〈ζ,x〉ĥξ (2−k/2(ζ − ξ))ĝk(ζ ) dζ,

where
ĥξ (η)= w(ξ)w(ξ − 2k/2η)−1ĥ(η).

Here, |ξ | ≈ 2k and |η| ≤ 1, so by (4-4) it follows that the function hξ (z) is a smooth function of z with
Schwartz seminorms bounded uniformly over ξ . By Lemma 3.1,

‖w(ξ)Tkw(D)−1gk‖L2 . ‖gk‖L2,

and the result follows. �

For weights in x , the analogue is the following result, which holds by a similar proof.

Lemma 4.3. Suppose that wk(x) ∈ C0(Rn) is a strictly positive function such that, for some m <∞,

wk(x)≤ Cwk(y)(1+ 2k/2
|x − y|)m .

Then
‖wk(x)±1Tk g‖L2(R2n) ≈ ‖wk(x)±1g‖L2,
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and consequently
‖wk(x)T ∗k f ‖L2 . ‖wk(x) f ‖L2(R2n).

Furthermore, the constants in the bounds are independent of k.

We can now use weighted estimates to characterize the Hσ -wavefront set of g.

Lemma 4.4. Suppose g ∈ H s(Rn) for some s. Then (x0, ξ0) /∈WFσ (g) if and only if there exists an open
ball � centered on x0 and an open conic set 0 ⊂ Rn centered on ξ0, such that

∞∑
k=0

∫
�×0

〈ξ〉2σ |g̃k(x, ξ)|2 dx dξ <∞. (4-5)

Proof. Suppose that (x0, ξ0) /∈WFσ (g). For χ(x) ∈ C∞c (R
n), and q(ξ) ∈ Sσcl real and homogeneous of

degree σ for |ξ | ≥ 1, we consider∫
χ(x)q(ξ)2|g̃k(x, ξ)|2 dx dξ =

∫
ei〈x,η−ζ 〉χ(x)bk(ζ, η)ĝ(η)ĝ(ζ ) dη dx dζ,

where
bk(ζ, η)= 2−nk/2

∫
q(ξ)2ĥ(2−k/2(η− ξ))ĥ(2−k/2(ζ − ξ))βk(η)βk(ζ )dξ.

Since ĥ is supported in the unit ball, bk(ζ, η) vanishes unless

2k−δ
≤ |η| ≤ 2k+1+δ, dist(η, supp(q))≤ 2−k/2,

and the same condition holds with η replaced by ζ . In particular, if 0′ is an open cone containing
the support of q, then bk(ζ, η) is supported in 0′ × 0′ for k sufficiently large. Additionally, a simple
calculation shows that

|∂αζ ∂
β
η bk(ζ, η)| ≤ Cα,β22kσ−(k/2)(|α|+|β|).

Hence, the compound symbol a(ζ, x, η) = χ(x)
∑
∞

k=0 bk(ζ, η) is of type Sσ,σ1/2,1/2,0. If the support of
χ(x)q(ξ) is contained in a small conic neighborhood of (x0, ξ0), then standard pseudodifferential calculus
arguments show that ∫

g(x)a(D, x, D)g(x) dx <∞.

The bound (4-5) follows by taking a sufficiently small conic neighborhood�×0 of (x0, ξ0)with χ(x)q(ξ)
equal to one on �×0.

Conversely, suppose (4-5) holds and g ∈ H s(Rn). Let q(ξ) ∈ Sσcl, and write

χ(y)(q(D)g)(y)=
∞∑

k=0

2−nk/4ei〈y−x,η〉χ(y)q(η)βk(η)ĥ(2−k/2(η− ξ))g̃k(x, ξ) dx dξ dη.

Let

K j,k(x ′, ξ ′; x, ξ)

= 2−n( j+k)/4
∫

ei〈y−x,η〉−i〈y−x ′,ζ 〉χ2(y)×q(ζ )β j (ζ )ĥ(2− j/2(ζ−ξ ′))q(η)βk(η)ĥ(2−k/2(η−ξ)) dη dy dζ.



1154 HART F. SMITH

Then K j,k vanishes unless ξ and ξ ′ both lie in a small conic neighborhood of the support of q, and
|ξ | ≈ 2k , |ξ ′| ≈ 2 j . Additionally, for all N ,

|K j,k(x ′, ξ ′; x, ξ)| ≤ CN 2σ( j+k)2−N | j−k|(1+ 2min( j,k)/2
|x − x ′|)−N (1+ 2−max( j,k)/2

|ξ − ξ ′|)−N

× (1+ 2k/2 dist(x, supp(χ)))−N (1+ 2 j/2 dist(x ′, supp(χ)))−N .

An application of the Schur test and the Schwarz inequality then show that, if χ is supported inside �
and q is supported inside the open cone 0, we have

‖χ(x)q(D)g‖2L2 .
∞∑

k=0

∫
�×0

〈ξ〉2σ |g̃k(x, ξ)|2 dx dξ +
∞∑

k=0

∫
R2n
〈ξ〉2s
|g̃k(x, ξ)|2 dx dξ,

hence (x0, ξ0) /∈WFσ (g) by elliptic regularity. �

Suppose that (x0, ξ0) /∈WF s0+1(u(t0)). Given �×0 as in Lemma 4.4, we will produce a family of
t-dependent weight functions M(t, x, ξ) for t ≥ t0, such that

C−1
〈ξ〉s0 ≤ M(t, x, ξ)≤ C〈ξ〉s0+1,

M(t0, x, ξ)≤ C〈ξ〉s0 for (x, ξ) /∈�×0.
(4-6)

Also, for some ct > 0, if

�t = {x : |x − xt |< ct }, 0t =

{
ξ :

∣∣∣∣ ξ|ξ | − ξt

|ξt |

∣∣∣∣< ct

}
,

then
M(t, x, ξ)≥ C−1

〈ξ〉s0+1 for (x, ξ) ∈�t ×0t . (4-7)

In addition, we will show that (4-1) and (4-2) hold. Theorem 4.1 then follows immediately from Lemma 4.4
and (4-3).

The weight function. For ct > 0 and ξt close to the positive ξ1 axis, we take M(t, x, ξ) to be the weight
function

〈ξ〉s0+1
(

1+ |ξ |min
(
1, dist2(x, �ct (xt))

)
+ |ξ | dist2

(
ξ

|ξ |
, Kct (ξt)

))−1

,

where �ct (xt) is the ball of radius ct centered on xt , and Kct (ξt) is the closed conic set contained in the
half-space ξ1 > 0 whose intersection with the set ξ1 = 1 is the cube of side length 2ct centered on ξt/(ξt)1,
with sides parallel to the ξ j axes. The time-dependent number ct is given in Lemma 4.5 below, where ct0

is chosen as follows.
Provided that �2ct0

(x0) ⊂ � and K2ct0
(ξ0) ⊂ 0, condition (4-6) is seen to hold. Thus, if (x0, ξ0) /∈

WF s0+1
(
u(t0)

)
, we can choose ct0 small so that

‖M(t0, x, ξ)ũ(t0)‖`2 L2 <∞.

Also, (4-7) holds (with the same ct ), since 0t ⊂ Kct (ξt). It thus remains to verify the mapping bounds
(4-1) and (4-2) for t0 ≤ s ≤ t ≤ T .
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We start with the proof of (4-2), which reduces to showing that, uniformly in k, t, s,∫
M(t, x, ξ)2| f ◦2k

s,t |
2(x, ξ) dx dξ ≤ C

∫
M(s, x, ξ)2| f |2(x, ξ) dx dξ, s ≤ t.

Since each 2k
s,t is a volume preserving diffeomorphism, this is equivalent to the bound

M(t,2t,s(x, ξ))≤ M(s, x, ξ), s ≤ t. (4-8)

The map 2k
s,t is homogeneous of degree 1 in ξ , and preserves |ξ | up to a uniform multiple, so the factor

〈ξ〉s0+1 can be ignored. Furthermore, the projective map induced by 2k
s,t on the cosphere bundle is a

bilipschitz map with uniform bounds over k, s, t . Thus, (4-8) holds as a consequence of the following.

Lemma 4.5. For c0 > 0, let

ct = c0 exp
(
−C

∫ t

t0
α(r) dr

)
.

Then, for c0 sufficiently small and C given below,

2t,s(�cs (xs)× Kcs (ξs))⊃�ct (xt)× Kct (ξt), s ≤ t.

Proof. Write ξ = (ξ1, ξ
′), and consider the projection (xt , ξt)→ (xt , 1, (ξt)

−1
1 ξ ′t ) of a Hamiltonian curve

onto the set ξ1 = 1. Let ζt = (ξt)
−1
1 ξ ′t . Then, by homogeneity of pk ,

ẋt = dξ pk(xt , 1, ζt), ζ̇t =−dx ′ pk(xt , 1, ζt)+ dx1 pk(xt , 1, ζt)ζt .

On the set |ζ | ≤ 10, the right-hand side is Lipschitz in (x, ζ ) with Lipschitz constant Cα(t). Hence, if we
let

Qc(x0, ζ 0)= {(x, ζ ) : |x − x0
| + sup

2≤i≤n
|ζi − ζ

0
i | ≤ c},

then for t > s the image of Qct (xt , ζt) under the reverse-time projected flow is contained in Qcs (xs, ζs),
where cs is as in the statement. Since Kct (ξt) is the conic subset of Rn

∩ {ξ1 > 0}, whose intersection
with {ξ1 = 1} equals Qct (xt , ζt), then, by homogeneity of the Hamiltonian flow, for t > s,

2t,s(�cs (xs)× Kcs (ξs))⊃�ct (xt)× Kct (ξt),

provided we choose ct0 small enough so that Qct (xt , ζt) remains within the set |ζ |< 10. Here we use that
ζt remains in the set |ζt |< 1 by the assumption that ξt lies in a cone of small angle about the ξ1 axis. �

Fixed time weight bounds for B(t). We now turn to the proof of (4-1). The operator B(t) : `2L2
→ `2L2

is a sum of four terms, B = 1 B+ 2 B+ 3 B+ 4 B. As before, we let Bk j (t) : L2(R2n)→ L2(R2n) denote
the j→ k component of B(t), which we recall is localized dyadically in ξ on each side.

We start by considering the terms m B for m=1, 2, 3. Recall that 1 Bk j and 2 Bk j vanish unless | j−k|≤1.
For 3 Bk j we may also restrict attention to | j − k| ≤ 1, since (4-1) holds for the sum over | j − k| ≥ 2 by
(3-10) and (4-6).
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Consider then the terms for | j − k| ≤ 1. By finite overlap in ξ , these are almost orthogonal in k, hence
we are reduced to establishing, for m = 1, 2, 3, that uniformly for j, k with | j − k| ≤ 1 and f ∈ L2(R2n),

‖M(s, x, ξ)m Bk j (s) f ‖L2(R2n) ≤ Cα(s)‖M(s, x, ξ) f ‖L2(R2n). (4-9)

We will consider the case j = k, as the terms with j = k± 1 are handled the same way. We ignore the
factor 〈ξ〉s0+1 in the definition of M , since it introduces the same factor of 2k(s0+1) on both sides.

The terms 1 Bkk and 2 Bkk are the simplest to handle. The operator 1 Bkk is, by [Smith 2006, Lemmas 3.1
and 3.2], represented by an integral kernel operator K satisfying

|K (x, ξ ; y, η)| ≤ CNα(s)(1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)−N .

On the other hand, if |ξ | ≈ |η| ≈ 2k , then[
M(s, x, ξ)
M(s, y, η)

]±1

≤ C(1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)2,

so the term 1 Bkk is seen by the Schur test to satisfy the desired weighted L2 bound (4-9). The operator

2 Bkk is represented by a similar kernel; this follows from the fact that α(s)−1
[βk(D), ak(s, x)]q(D) is an

S0
1,1/2 pseudodifferential operator in x , dyadically localized to |ξ | ≈ 2k .

For the term 3 Bkk , after substituting p(t, x, D)= a(t, x)q(D), freezing t , and replacing q(D)βk(D)
by 2kβk(D) (since the exact form of β is unimportant), we can assume that

3 Bkk = Tkβk(D)2k(a(x)− ak(x))βk(D)T ∗k ,

and we need to show that (4-9) holds with α(s)= 1 if ‖D2a‖L∞ ≤ 1. The adjoint operator 3 B∗kk then has
the same form as 3 Bkk , so that in the estimate (4-9) we may replace M(s, x, ξ) by M(s, x, ξ)−1. Letting
� = �cs (xs), K = Kcs (ξs), since the estimate is over the region |ξ | ≈ 2k , we may thus work with the
weight

M(x, ξ)= 1+ 2k min(1, dist2(x, �))+ 2−k dist2(ξ, K ),

and show that the analogue of (4-9) holds for 3 Bkk .
The conic set K is obtained by intersecting 2n− 2 distinct half-spaces. Let {ω j }

2n−1
j=1 be the collection

of their outer normals, together with the vector −e1 pointing on the negative ξ1 axis. We let

〈ω j , ξ〉+ =max(〈ω j , ξ〉, 0),

and claim that

dist2(ξ, K )≈
2n−1∑
j=1

〈ω j , ξ〉
2
+
. (4-10)

To see this, we first note that each term on the right vanishes on K , so the right side is dominated by the
left. To prove the converse, we make an affine transformation preserving ξ1 so that K is centered on the
ξ1 axis. The collection of 〈ω j , ξ〉 are then equivalent to the collection of ±ξ j − cξ1 and −ξ1. In the case
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where ξ1 ≤ 0, we have 〈−e1, ξ〉+ = |ξ1|. Since ξ1 ≤ 0,

|ξ j | ≤
∑
±

(±ξ j − cξ1)+,

so the right-hand side of (4-10) dominates |ξ |2 ≥ dist2(ξ, K ). If ξ1 > 0, let η be the point in K closest to
ξ . If |ξ j | ≤ cξ1, then η j = ξ j , so by reducing dimension and multiplying ξ j by −1 if needed, we may
assume that ξ j > cξ1 for each j . Then

2n−1∑
j=1

〈ω j , ξ〉
2
+
=

n∑
j=2

|ξ j − cξ1|
2
= dist2(ξ, (ξ1, cξ1, . . . , cξ1))

2
≥ dist2(ξ, K ).

Including the spatial weight, we can thus replace M(x, ξ) by a sum of 2n weights, and it suffices to
establish the analogue of (4-9) separately for each. Precisely, by Lemmas 4.2 and 4.3, it suffices to show
that multiplication by 2k(a(x)− ak(x)) preserves the spaces with norms∥∥(1+ 2k min(1, dist2(x, �))

)
g(x)

∥∥
L2(dx), ‖(1+ 2−k

〈ω, ξ〉2
+
)ĝ(ξ)‖L2(dξ)

for a general unit vector ω.
Boundedness in the first norm is immediate, since ‖a− ak‖L∞ ≤ 2−k

‖D2a‖L∞ . For the second norm,
we make a rotation to reduce to the case ω = (1, 0, . . . , 0). Let b(x)= 2k(a− ak)(2−k/2x). Then

‖b‖L∞ +‖Db‖L∞ +‖D2b‖L∞ . 1.

Thus, after scaling x→ 2k/2x , we need to show that

‖(1+ (ξ1)
2
+
)b̂ f ‖L2(dξ) . ‖b‖C1,1‖(1+ (ξ1)

2
+
) f̂ ‖L2(dξ).

Since the weight is a function of ξ1 only and C1,1(Rn)⊂ L∞(Rn−1,C1,1(R)), we may assume that n = 1,
that b ∈ C1,1(R), and we need show that

‖(1+ ξ 2
+
)b̂ f ‖L2(R) . ‖b‖C1,1‖(1+ ξ 2

+
) f̂ ‖L2(R).

If f̂ is supported in [0,∞), the bound follows from the fact that

‖〈D〉2(b f )‖L2 . ‖b‖C1,1‖〈D〉2 f ‖L2 .

Hence we may assume f̂ is supported in −(∞, 0]. Since

‖χ(−∞,2]b̂ f ‖L2 ≤ ‖b f ‖L2 ≤ ‖b‖L∞‖ f ‖L2 ≤ ‖b‖C1,1‖(1+ ξ 2
+
) f̂ ‖L2,

it suffices to then bound

‖〈ξ〉2b̂ f ‖L2([2,∞)) . ‖b‖C1,1‖ f ‖L2, supp( f̂ )⊂ (−∞, 0].
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Given h ∈ L2(R) with ĥ supported in [2,∞), using the functions φ j and ψ j from (A-2), we may write∣∣∣∣∫ h〈D〉2(b f ) dx
∣∣∣∣= ∣∣∣∣ ∑

k≤ j+2

∫
(ψk(D)〈D〉2h)(ψ j (D)b)(φ j+4(D) f ) dx

∣∣∣∣
≤

∑
k≤ j+2

4k− j
∫
|2−2kψk(D)〈D〉2h||22 jψ j (D)b||φ j+4(D) f | dx

. ‖h‖L2

( ∞∑
j=0

∫
|22 jψ j (D)b|2|φ j+4(D) f |2 dx

)1
2

. ‖h‖L2‖b‖C1,1‖ f ‖L2,

where at the last step we use Theorem A.3. This completes the proof for 3 B jk .
We now establish (4-1) for the term 4 B(t)= T Q(t)T ∗. Recall that

Q(t)=
{

P(t)−1 R1(t), s0 = 1,
R1(t)P(t)−1, s0 = 0,

where R1(t) is a convergent sum of terms of the form (2-3). We observe that if Ms0 =Ms0(t, x, ξ) denotes
the weight for s0, then

‖M1T g‖`2 L2 ≈ ‖M0T 〈D〉g‖`2 L2 .

Also, if q(ξ) ∈ S0(Rn), then

‖Ms0 T q(D)T ∗ f ‖`2 L2 ≤ C‖Ms0 f ‖`2 L2,

since the operator Tkβk(D)q(D)β j (D)T ∗j vanishes unless | j − k| ≤ 1, and, for | j − k| ≤ 1, is given by
an integral kernel with bound

|K (x, ξ ; y, η)| ≤ CN (1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)−N . (4-11)

Since T ∗T = I , it therefore suffices to show the bounds

‖M0T aT ∗ f ‖`2 L2 ≤ C‖a‖C0,1‖M0 f ‖`2 L2, (4-12)

‖M0T [a, q(D)]T ∗ f ‖`2 L2 ≤ C‖a‖C1,1‖M0 f ‖`2 L2, (4-13)

‖M0T 〈D〉P(t)−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2, (4-14)

where in (4-13) the multiplier q(ξ) belongs to S1
cl(R

n).
To establish (4-12), it suffices to prove

‖M0T jβ j (D)aβk(D)T ∗k f ‖L2 ≤ C‖a‖C0,1‖M0 f ‖L2, | j − k| ≤ 1, (4-15)

since the terms for | j − k| ≥ 2 are handled by the arguments leading to (3-10), together with Lemma A.4
and the fact that c ≤ M0 ≤ 〈ξ〉.

By taking adjoints, we may replace M0 by M−1
0 in (4-15) and ignore the factor 〈ξ〉 in M0, since

| j − k| ≤ 1. Furthermore, we may replace a by the operator (φk(D)a)φk(D) for a compactly supported
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φ(ξ). As with the handling of the term 3 Bkk , it suffices to prove that if ‖a‖C0,1(Rn)≤1, then (φk(D)a)φk(D)
preserves the spaces with norms∥∥(1+ 2k min(1, dist2(x, �))

)
g(x)

∥∥
L2, ‖(1+ 2−k

〈ω, ξ〉2
+
)ĝ(ξ)‖L2 . (4-16)

Boundedness in the first norm is simple, since φk(D) is a convolution kernel that is rapidly decreasing on
scale 2−k . For the second norm, we can reduce to the one-dimensional case, and we need to prove that

‖(1+ 2−k D2
+
)(φk(D)a)(φk(D)g)‖L2(R) ≤ C‖a‖C0,1‖(1+ 2−k D2

+
)ĝ‖L2(R),

where D+ is the operator with multiplier ξ+ =max(ξ, 0).
Consider first the case that ĝ is supported in ξ ≤ 0. Then, since |ξ |. 2k on the frequency support of

(φk(D)a)(φk(D)g), this follows from the bound

‖(1+ D+)(ag)‖L2 ≤ C‖a‖C0,1‖(1+ D+)g‖L2,

which holds by Theorem A.1 since ξ+ is a classical first order multiplier. If ĝ is supported in ξ ≥ 0, it
suffices to prove the bound

‖2−k D2(φk(D)a)(φk(D)g)‖L2 ≤ C‖a‖C0,1(‖g‖L2 + 2−k
‖D2g‖L2).

This holds by distributing derivatives and using the fact that ‖D2φk(D)a‖L∞ . 2k
‖a‖C0,1 , in addition to

‖Dφk(D)g‖L2 . 2k
‖g‖L2 .

The estimate (4-13) is similarly reduced by Lemma A.4 to handling | j − k| ≤ 1. We then need to
show that the commutator [(φk(D)a), ρk(D)q(D)] is bounded in the norms (4-16) with operator norm
. ‖a‖C1,1 . Here ρk(ξ)q(ξ) is an order 1 classical symbol dyadically localized to |ξ | ≈ 2k . Thus, the
kernel K (x, y) of the commutator has bounds

|K (x, y)| ≤ CN‖a‖C0,12kn(1+ 2k
|x − y|)−N ,

so boundedness in the first norm in (4-16) follows by the Schur test as the weight is slowly varying over
distance 2−k . For boundedness in the second norm, we assume 〈ω, ξ〉 = ξ1, let qk(D)= ρk(D)q(D), and
need to show that, if ĝ vanishes for |ξ | ≥ 2k , then

‖(1+ D1,+)[(φk(D)a), qk(D)]g‖L2 ≤ C‖a‖C1,1‖(1+ D1,+)g‖L2, (4-17)

‖2−k D2
1[(φk(D)a), qk(D)]g‖L2 ≤ C‖a‖C1,1(‖g‖L2 + 2−k

‖D2
1g‖L2). (4-18)

The estimate (4-17) follows from Corollary A.9, since we may replace the multiplier 1+ ξ1,+ by its
truncation to |ξ |. 2k . The estimate (4-18) follows by distributing derivatives similar to those above, and
using that ‖D1a‖C0,1 + 2−k

‖D2
1φk(D)a‖C0,1 . ‖a‖C1,1 together with Theorem A.1.

We now turn to the proof of (4-14). By Lemma A.10,

〈D〉P(t)−1
= 〈D〉(p](t, x, D)+ c)−1

∞∑
n=0

(
p[(t, x, D)(p](t, x, D)+ c)−1)n

,
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where the sum converges as a map on L2(Rn), uniformly over t . Since (p](t, x, D)+ c)−1 is a pseudo-
differential operator of class S−1

1,1/2, it follows from (A-6) that∥∥(p[(t, x, D)(p](t, x, D)+ c)−1)2g
∥∥

H1 ≤ C‖g‖L2

uniformly in t . Thus, the sum of terms over n ≥ 2 gives a bounded map from L2 to H 1, and the bound
(4-14) holds for these terms since c ≤ M0 ≤ 〈ξ〉.

It thus suffices to show that

‖M0T p[(t, x, D)〈D〉−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2, (4-19)

‖M0T 〈D〉(p](t, x, D)+ c)−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2 . (4-20)

In proving (4-19), we take the symbol expansion (A-1) of p, and use that order 0 multipliers are
bounded in the M0 norm to replace p[(x, D)〈D〉−1 by a[, and thus need to show

‖M0T a[T ∗ f ‖`2 L2 ≤ C0‖a‖C0,1‖M0 f ‖`2 L2 .

This is proven as for (4-12). Indeed, the off-diagonal terms of a[ are the same as for multiplication by a,
and if | j − k| ≤ 1, the bound holds for both a and φbk/2c(D)a.

The bound for (4-20) is simpler. The operator 〈D〉(p](t, x, D)+ c)−1 is a pseudodifferential operator
of type S0

1,1/2, so the off-diagonal part is a smoothing operator; in particular, it maps L2(Rn) to H 1(Rn).
And for | j − k| ≤ 1, the operator

T jβ j (D)〈D〉(p](t, x, D)+ c)−1βk(D)T ∗k

is an integral kernel operator with kernel satisfying (4-11). �

5. The space-time version: Proof of Theorem 2.2.

In this section we deduce the space-time wavefront estimate in Theorem 2.2 from the fixed-time wavefront
estimate established in Theorem 4.1. We use the notation of Section 3, with P = p(t, x, D) denoting a
choice of p±(t, x, D), and Q(t) constructed according to the choice of s0 ∈ {0, 1}.

Lemma 5.1. If u ∈ C0 H s0 satisfies Dt u− P(t)u− Q(t)u = 0, then

(t0, x0, p(t0, x0, ξ0), ξ0) /∈WF s0+1(u)H⇒ (x0, ξ0) /∈WF s0+1(u(t0)).

Proof. Let χ(t, x) and χ̃(t, x) denote cutoff functions, with χ̃ = 1 on a neighborhood of the support of
χ , and χ = 1 on a neighborhood of (t0, x0). Also, let 0(ξ) and 0̃(ξ) denote conic cutoffs, equal to one
on a neighborhood of ξ0, with 0̃ = 1 on a neighborhood of the support of 0.

Let φ ∈ C∞c (R) equal 1 near 0. If the support of φ ∈ C∞c (R) is suitably close to 0, and χ̃ and 0̃ also
have suitably small support, then γ (t0) /∈WF s0+1(u) implies that

0̃(D)φ(1− p(t0, x0, D)D−1
t )(χ̃u) ∈ H s0+1(R1+n).
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On the other hand, (2-10) implies that Q(t)u(t) ∈ C0 H s0 , so Theorem B.4 implies(
1−φ(1− p(t0, x0, D)D−1

t )
)
(χ̃u) ∈ L2 H s0+1,

hence

0̃(D)(χ̃u) ∈ L2 H s0+1. (5-1)

We next show that

(Dt − P(t)− Q(t))0(D)(χu) ∈ L1 H s0+1. (5-2)

Together with (5-1) and Theorem B.5, this implies 0(D)(χu)∈C0 H s0+1, hence (x0, ξ0) /∈WF s0+1(u(t0)).
To establish (5-2), we write

(Dt − P(t)− Q(t))0(D)χu

= [0(D)χ, Q(t)]u− [P(t), 0(D)χ ]0̃(D)χ̃u+0(D)χ P(t)(1− 0̃(D)χ̃)u

+ P(t)0(D)χ(1− 0̃(D)χ̃)u+0(D)(Dtχ)u. (5-3)

The next to last term on the right belongs to L1 H 2, since u ∈ C0L2 and the cutoffs give a smoothing
operator, and the last term belongs to L2 H s0+1 by (5-1), hence both are in L1 H s0+1.

Since u ∈ C0 H s0 , the first term on the right in (5-3) belongs to L1 H s0+1, by (2-13) and the fact that χ
is C∞c and the components of Q are smooth symbols in the ξ variable.

For the second and third terms in (5-3), by the symbol expansion (A-1) we may substitute p(t, x, D)=
a(t, x)q(D), with q(ξ) a symbol of order 1 and a ∈ C0,1

∩ L1C1,1. We note that, as a consequence of
Lemma A.4,

‖0(D)χa(t, · )q(D)(1− 0̃(D))u(t, · )‖H s0+1 ≤ C‖χa(t, · )‖C1,1‖u(t)‖H s0 ,

and, additionally, as a consequence of pseudolocality of q(D)0̃(D), where s0+ 1≤ 2,

‖0(D)χa(t, · )q(D)0̃(D)(1− χ̃)u(t, · )‖H s0+1 ≤ C‖a(t, · )‖C1,1‖u(t)‖H s0 .

Since u ∈ C0 H s0 , this handles the third term on the right in (5-3).
Now consider the second term on the right in (5-3), and write

[aq(D), 0(D)χ ] = a0(D)[q(D), χ] + [a, 0(D)]χq(D).

Consider the case s0 = 0. By Corollary A.2, we have

‖[aq(D), 0(D)χ ]v‖L2 H1 . ‖a‖L∞C0,1‖v‖L2 H1,

which we apply to v = 0̃(D)χ̃u ∈ L2 H 1.
In case s0 = 1, we use that v = 0̃(D)χ̃u ∈ L2 H 2

∩C0 H 1 by (5-1) and since u ∈ C0 H 1. We again
apply Corollary A.2 to obtain

‖D[a, 0(D)]χq(D)v‖L1 H1 ≤ ‖[(Da), 0(D)]χq(D)v‖L1 H1 +‖[a, 0(D)]Dχq(D)v‖L1 H1

. ‖Da‖L1C0,1‖v‖L∞H1 +‖a‖L∞C0,1‖v‖L1 H2 .
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Similarly, we use that 0(D)[q(D), χ]v ∈ L2 H 2
∩C0 H 1, and

‖aw‖L1 H2 ≤ ‖Da‖L1C0,1‖w‖L∞H1 +‖a‖L∞C0,1‖w‖L1 H2,

a consequence of the Leibniz rule, to handle the remaining term. �

We now observe that if the conditions of Theorem 2.2 hold and s ∈ (−T, T ), then, by Lemma 5.1 and
Theorem 4.1, there is a function χ ∈ C∞c (R

1+n) equal to 1 on a neighborhood of (s, xs), and conic cutoff
0(ξ) equal to 1 on a neighborhood of ξs , so that

0(D)χu ∈ L2 H s0+1,

where γ (s)= (s, xs, p(s, xs, ξs), ξs). Since p ≈ |ξ |, it follows that γ (s) /∈WF s0+1(u), which completes
the proof of Theorem 2.2. �

6. Piecewise regular coefficients

We work in this section with L of the form

L = D2
t − 2D j b j (t, x)Dt − Di ci j (t, x)D j + d0(t, x)Dt + d j (t, x)D j , (6-1)

where the coefficients satisfy certain piecewise regularity conditions with respect to a decomposition of
(−T, T )×Rn into disjoint time slabs −T = t1 < t2 < · · ·< tn−1 < tn = T . Given such a partition, we
assume that the coefficients ci j and b j satisfy the conditions (1-3) and (1-4) separately on each time slab
(t j , t j+1)×Rn . In addition, we assume that ci j and b j are continuous on [−T, T ] ×Rn . This implies
in particular that ci j and b j belong to C0,1([−T, T ]×Rn), and that the map t→ ci j (t, · ), respectively
t→ b j (t, · ), is continuous from [−T, T ] into C1(Rn).

Similarly, we assume d0 and d j satisfy (1-6) separately on each time slab, hence on each slab they
admit a continuous extension to [t j , t j+1] ×Rn . We allow d j to have jumps at t j for 1 ≤ j ≤ n. It is
unimportant how d j is defined at t = t j , but for definiteness we assume it is right continuous.

We assume the coefficient d0 belongs to C0([−T, T ] ×Rn), which with the above is equivalent to
assuming ∂t,x d0

∈ L1L∞((−T, T )×Rn). The continuity assumption on d0 is needed for weak solutions
of Lu = 0 to agree with solutions defined separately on each slab with matching Cauchy data at each t j .
At the end of this section, we indicate how to handle jumps in d0.

For s0 ∈ {0, 1, 2} and Cauchy data of regularity H s0 × H s0−1 at some t0, one obtains a solution to
Lu= 0 of regularity C0 H s0∩C1 H s0−1 by piecing together solutions on [t j , t j+1], and imposing continuity
of u and Dt u at t j . Such a solution is easily verified to satisfy

∫
uL tφ = 0 for φ ∈ C∞c ((−T, T )×Rn),

with L t the formal transpose of L .
That this u is the unique weak solution of regularity C0 H s0 ∩C1 H s0−1 follows immediately from

uniqueness for the Cauchy problem on each time slab, by the assumed continuity condition in t of
(u(t), Dt u(t)).

Since the first-order derivatives in x of ci j and b j satisfy the regularity conditions of d0, one can convert
between the standard form of L in the introduction and one of the form (6-1) and preserve the regularity
assumptions. Since the first order derivatives in t of b j satisfy the conditions on d j for 1≤ j ≤ n, one
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could also express a term of the form Dt b j D j in the form (6-1). Indeed, up to addition of an L1L∞

function, the class (6-1) is closed under transpose.
If we factor the principal symbol of L as before, as

H(t, x, τ, ξ)= (τ − p+(t, x, ξ))(τ + p−(t, x, ξ)),

then p± are C1, and ∂2
x,ξ p± belongs to L1L∞, hence the null bicharacteristics of L are well-defined C1

curves.

Theorem 6.1. Assume that the coefficients of L are as above. Suppose that s0 ∈ {0, 1}, that Lu = 0, and
that u ∈ C0 H s0 ∩C1 H s0−1.

Then, if γ (t) is a null bicharacteristic curve of L and γ (t0) /∈WF s0+1(u) for some t0 ∈ (−T, T ), then
γ ∩WF s0+1(u)=∅.

Proof. For simplicity, we assume that the partition consists of [−T, 0] ∪ [0, T ]. The general case follows
easily. By openness of the wavefront set, we may then assume t0 6= 0, and without loss of generality take
t0 < 0.

We derive the result as a limiting case of Theorem 1.1, using uniformity of the wavefront set estimates
over bounded sets of coefficients. Precisely, we use the fact that all of the bounds on wavefront sets
involve only uniform control over appropriate norms of the coefficients. To define uniform cutoffs, we
fix a smooth radial cutoff to the half-unit ball χ(t, x), supported in the unit ball, and let χc,t0,x0(t, x)=
χ(c−1(t − t0), c−1(x − x0)). We also fix a conic cutoff 0, rotationally symmetric about the ξ1 axis and
supported in the cone of angle cπ ,

0c(τ, ξ)= χ(c−1ξ−1
1 τ, c−1ξ−1

1 ξ ′, 0),

and define 0c,τ0,ξ0(τ, ξ) by composing 0c with a rotation that centers it on the ray through (τ0, ξ0). The
following result is then a consequence of the fact that the bounds and support of the cutoffs in the
wavefront estimates in the proof of Theorem 1.1 depend only on bounds for the cited quantities in L .

Corollary 6.2. Suppose that, for some 0 < c0,C0 <∞, the coefficients of L satisfy the bounds (1-2),
(1-3), (1-4), and (1-6), where ‖α‖L1 ≤ C0.

Suppose that u ∈ C0 H s0 ∩C1 H s0−1 satisfies Lu = 0, and that

sup
t∈(−T,T )

(‖u(t)‖H s0 +‖Dt u(t)‖H s0−1)≤ C0.

Let γ (t)= (t, xt , τt , ξt) be a null bicharacteristic for L , and suppose that the following holds for some
0< c1,C1 <∞ and some t0:

‖0c1,τt0 ,ξt0
(D)χc1,t0,xt0

u‖H s0+1 ≤ C1.

Then, if T ′ < T , there are 0< c2,C2 <∞, depending only on c0, C0, c1, C1, and T ′, so that

‖0c2,τt ,ξt (D)χc2,t,xt u‖H s0+1 ≤ C2

for all |t | ≤ T ′.
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We will consider a family of operators Ln of the form

Ln = D2
t − 2D j b j

n Dt − Di ci j
n D j + d0

n Dt + d j
n D j ,

which converge appropriately to L , and such that the coefficients of Ln satisfy (1-2), (1-3), (1-4), and
(1-6), with constants c0,C0 uniform over n. Since the class L of Theorem 1.1 can be expressed in the
form (6-1) with comparable c0,C0, the corollary applies to Ln .

To construct Ln , we fix an increasing function h ∈C∞(R) which vanishes for s<−1, equals 1 for s> 1,
and so that h(s)+h(−s)= 1. For ci j (t, x) as above, we let ci j

− denote its restriction to t ∈ [−T, 0], which,
using (1-7), we assume extended to a function on [−T, T ] satisfying (1-3) and (1-4) there. Similarly, let
ci j
+ denote its restriction to [0, T ], appropriately extended to [−T, T ]. Define

ci j
n (t, x)= h(−nt)ci j

−(t, x)+ h(nt)ci j
+(t, x)

= ci j
−(t, x)+ h(nt)(ci j

+(t, x)− ci j
−(t, x)).

Since ci j
+(0, x) = ci j

−(0, x), it is seen that the estimates (1-3) and (1-4) are satisfied by ci j
n on (−T, T )

with uniform bounds for ‖αn‖L1 . Furthermore,

ci j
n (t, x)= ci j (t, x) if |t |> 1

n
.

We apply this smoothing technique to the coefficients ci j and b j of L . Since d0 is already globally regular,
we set d0

n = d0. We also define

d j
n (t, x)= h(−nt)d j

−(t, x)+ h(nt)d j
+(t, x), 1≤ j ≤ n,

which satisfies (1-6) with uniform bounds on ‖αn‖L1 . We then define Ln to be the operator of form (6-1)
with modified coefficients, and note that L = Ln for |t |> 1/n.

If we factor the Hamiltonian of the principal part of Ln as

Hn(t, x, τ, ξ)= (τ − pn,+(t, x, ξ))(τ + pn,−(t, x, ξ)),

then pn,± = p± for |t |> 1/n, and Dx,ξ pn,± converges uniformly to Dx,ξ p± on compact sets. It follows
that the null bicharacteristic of Ln through a given initial point converges uniformly on [−T, T ] to the
null bicharacteristic of L through that point.

We henceforth assume n large so that t0 <−1/n. Then the solution to Lu = 0 with given Cauchy data
at t0 satisfies Lnu = 0 for −T < t < 1/n, in particular for t near t0. Thus, if we let un be the solution to
Lnun = 0, with the same Cauchy data as u at t0, then un = u for −T < t <−1/n. In particular, for all n
and c1 small,

‖0c1,τt0 ,ξt0
(D)χc1,t0,xt0

un‖H s0+1 ≤ C1.

Thus, since the null bicharacteristic of Ln through (t0, x0, τ0, ξ0) converges uniformly to the null bichar-
acteristic of L through (t0, x0, τ0, ξ0), Corollary 6.2 shows that, for n large and some small c2 > 0 with
C2 independent of n,

‖0c2,τt ,ξt (D)χc2,t,xt un‖H s0+1 ≤ C2.
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We will prove that some subsequence un j converges weakly as distributions to u, from which we obtain
the desired result,

‖0c2,τt ,ξt (D)χc2,t,xt u‖H s0+1 ≤ C2.

To show the convergence, we observe that, by weak compactness, some subsequence (un j , Dt un j )

converges weakly in L∞H s0 × L∞H s0−1 to (v, Dtv) ∈ L∞H s0 × L∞H s0−1. We next verify that v is in
fact of regularity C0 H s0 ∩C1 H s0−1 separately on [−T, 0]×Rn and [0, T ]×Rn . For t < 0, this is trivial,
since un = u for t < −1/n, hence v = u for t < 0. For t > 0, if s0 = 1, it follows from Theorem B.6,
since Lv = 0 and v ∈ H 1((−T, T )×Rn). If s0 = 0, then Lemma B.1 yields that L(〈D〉−1v) ∈ L1L2.
Since (〈D〉−1v, Dt 〈D〉−1v) ∈ L∞H 1

× L∞L2, the result again follows from Theorem B.6.
Thus v consists of regular solutions on (−T, 0) and (0, T ) to Lv = 0, and it remains only to show

that the Cauchy data match at t = 0, since v = u for t < 0. To see that the data match, we note that, for
ψ(t, x) ∈ C∞c ((−T, T )×Rn),

0=
∫
v(L tψ) dt dx .

Integration by parts separately on t > 0 and t < 0 leads to the condition∫
Rn
(v(0+, x)− v(0−, x))(Dtψ(0, x)− b j (0, x)D jψ(0, x)) dx

=

∫
Rn

(
Dtv(0+, x)− Dtv(0−, x)+ d0(0+, x)v(0+, x)− d0(0−, x)v(0−, x)

)
ψ(0, x)dx .

Since this vanishes for all ψ , we must have v(0+, x) = v(0−, x), and if d0(0+, x) = d0(0−, x), as we
assume, then also Dtv(0+, x)= Dtv(0−, x). �

We remark that if d0 is piecewise regular with jumps at t j , that is, of the same regularity as d j , then
the result still holds, but the solution u must be defined by piecing together C0 H s0 ∩C1 H s0−1 solutions
on [t j , t j+1] with the following matching conditions on u at each t j :

u(t+j )= u(t−j ), Dt u(t+j )− Dt u(t−j )+ d0(t+j )u(t
+

j )− d0(t−j )u(t
−

j )= 0. (6-2)

The proof shows that the limiting solution v agrees with this solution u, hence the result of Corollary 6.2
holds for u satisfying (6-2). The one modification to the proof is to define d0

n similar to d j
n , so that it

meets the regularity conditions (1-6).

An example showing sharpness. We now show that the assumption of global H s0 regularity on u cannot
be lowered in Theorem 6.1, hence it is necessary for Theorem 1.1 to hold with bounds depending only on
the appropriate norms of the coefficients. Precisely, we construct a piecewise smooth operator L and a
corresponding null bicharacteristic γ , and for each σ ≤ 2, a solution Lu = 0 with u of Hσ regularity,
such that u is microlocally smooth on γ (t) for t <−1, but for all ε > 1, we have γ (t) ∈WFσ+ε(u) for
t ≥−1.

Consider the following hyperbolic equation on Rt ×Rx :{
(∂2

t + t∂2
x )u(t, x)= 0, t ≤−1,

(∂2
t − ∂

2
x )u(t, x)= 0, t ≥−1.

(6-3)
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Let A(s)= Ai(ωs) be the solution to the Airy equation A′′(s)+ s A(s)= 0, where ω = e2π i/3. Then,
for s < 0,

A(s)= ei 2
3 (−s)3/2a(−s), a(s)∼

∞∑
k=0

aks−
1
4−

3
2 k .

Furthermore, A(s) 6= 0 for s < 0, and each ak 6= 0.
If ξ ≥ 1, we consider the solutions to (6-3)

uξ (t, x)=

eiξ x A(ξ 2/3t)
A(−ξ 2/3)

, t ≤−1,

eiξ x(c0(ξ)e−iξ(t+1)
+ c1(ξ)eiξ(t+1)), t ≥−1,

where the following matching conditions are met to yield u ∈ C1,1(R2):

c0(ξ)+ c1(ξ)= 1, −iξ(c0(ξ)− c1(ξ))= ξ
2/3 A′(−ξ 2/3)

A(−ξ 2/3)
=−iξ

(
1− iξ−1/3 a′(ξ 2/3)

a(ξ 2/3)

)
,

Then c0(ξ) and c1(ξ) are smooth on ξ ≥ 1, and admit an asymptotic expansion

c0(ξ)= 1− c1(ξ), c1(ξ)∼
i
8
ξ−1

(
1+

∞∑
k=1

dkξ
−k
)
.

If ξ ≤−1, we set
uξ (t, x)= u−ξ (t, x). (6-4)

For −1 ≤ ξ ≤ 1, we take a combination of the solutions A and Ā in the definition of uξ so that
uξ (−1, x)= eiξ x and (6-4) holds. Then

uξ (t, x)=
{

eiξ x+i 2
3 ξ(−t)3/2−i 2

3 ξa(t, ξ), t ≤−1,
eiξ x(c0(ξ)e−iξ(t+1)

+ c1(ξ)eiξ(t+1)), t ≥−1,

where a(t, ξ) and c0(ξ) are elliptic symbols in ξ of order 0, and c1(ξ) is elliptic of order −1.
Let b(ξ)= 〈ξ〉−1/2−σ log(2+ |ξ |)−1, and set

u(t, x)=
∫
∞

−∞

b(ξ)uξ (t, x) dξ.

Then u ∈ C0 Hσ
∩C1 Hσ−1

∩C2 Hσ−2. Consequently, WFσ (u)=∅ if σ ≤ 2.
For each σ ∈ R and ε > 0, on the set t <−1, we see by stationary phase that

WFσ+εu =
{
(t, x, τ, ξ) : x =− 2

3(−t)3/2+ 2
3 , τ + (−t)1/2ξ = 0

}
.

For t >−1 and 0< ε ≤ 1, since c1 is of order −1, we have

WFσ+εu = {(t, x, τ, ξ) : x = 1+ t, τ + ξ = 0},

On the other hand, for t >−1 and ε > 1, we have

WFσ+εu =
⋃
±

{(t, x, τ, ξ) : x =±(1+ t), τ ± ξ = 0}.
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Thus, if ε > 1, then WFσ+ε contains the null bicharacteristic γ (t)= (t,−(1+ t), 1, 1) for t ≥−1, but is
microlocally smooth on its continuation for t <−1, γ (t)=

(
t, 2

3(−t)3/2− 2
3 , (−t)1/2, 1

)
. �

Appendix A: Paraproduct estimates

In this section we collect the paraproduct and commutator estimates used throughout this paper. By a
standard multiplier of order m, we understand a function q(ξ) ∈ C∞(Rn) such that

|∂αξ q(ξ)| ≤ Cα(1+ |ξ |)m−|α|,

and denote the class of such multipliers by Sm(Rn). The best constants Cα form the seminorms of q . In
the statements of this section, it is implicit that the constant C in any given operator bound for a multiplier
depends on a finite number of the Cα. We say that q ∈ Sm is a classical multiplier if, in addition,

q(rξ)= rmq(ξ), r ≥ 1, |ξ | ≥ 1,

and denote this subspace by Sm
cl .

The homogeneous symbol p(t, x, ξ) admits a convergent expansion on the set |ξ | ≥ 1 of the form

p(t, x, ξ)=
∞∑

l=1

al(t, x)ql(ξ), ql(ξ)= |ξ |ωl(ξ/|ξ |) ∈ S1
cl(R

n), (A-1)

where ωl are spherical harmonics, and al(t, x) satisfies the regularity conditions in (1-3) and (1-4), with
constants Cl that decrease rapidly in l. We may smoothly extend the ql(ξ) near 0 so that this expansion is
valid for all ξ . The seminorms of ql grow at most polynomially in l, so the bounds in prior sections on
R±1 , etc., are convergent.

The Coifman–Meyer commutator theorem [1978], which generalizes the Calderón commutator theorem
[1965] for homogeneous multipliers, is the following.

Theorem A.1 (Coifman–Meyer commutator theorem). Suppose that a ∈ C0,1(Rn) and q ∈ S1(Rn). Then

‖[a, q(D)] f ‖L2 ≤ C‖a‖C0,1‖ f ‖L2 .

An immediate corollary, as seen by commuting or composing with D, is the following:

Corollary A.2. If q ∈ S1(Rn) and a ∈ C1,1(Rn), then

‖[a, q(D)] f ‖H s ≤ C‖a‖C1,1‖ f ‖H s , −1≤ s ≤ 1.

If q ∈ S0(Rn) and a ∈ C0,1(Rn), respectively a ∈ C1,1(Rn), then

‖[a, q(D)] f ‖H s+1 ≤ C‖a‖C0,1‖ f ‖H s , −1≤ s ≤ 0,

‖[a, q(D)] f ‖H s+1 ≤ C‖a‖C1,1‖ f ‖H s , −2≤ s ≤ 1.

A key ingredient in the proof of the commutator theorem is the following estimate, due to Carleson
[1962] and Fefferman and Stein [1972]; for a proof, see [Stein 1993, II.2.4, IV.4.3].
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Theorem A.3. Suppose that φ,ψ ∈S(Rn), and thatψ(0)=0. Letψ j (D)=ψ(2− j D), φ j (D)=φ(2− j D).
Then ( ∞∑

j=0

∫
Rn
|ψ j (D)a|2|φ j (D) f |2 dx

)1
2

≤ C‖a‖BMO‖ f ‖L2 .

Theorem A.3 yields smoothing estimates for the off-diagonal terms in paraproducts. To state these,
form a Littlewood–Paley partition of unity {ψk(ξ)}

∞

k=1 by taking ψk(ξ)= β
2
k (ξ), with βk as in (3-3). Then

let

φk(D)=
k−2∑
j=0

ψ j (D), ρk(D)=
k+1∑

j=k−1

ψ j (D). (A-2)

If g ∈ L2(Rn) and a ∈ L∞(Rn), we decompose ag = Rag+ Tag, where

Rag =
∑
| j−k|≥2

ψ j (D)(aψk(D)g)

=

∞∑
j=2

ψ j (D)(aφ j (D)g)+
∞∑

k=2

φk(D)(aψk(D)g)

and

Tag =
∑
| j−k|≤1

ψ j (D)(aψk(D)g)=
∞∑
j=0

ψ j (D)((φ j+4(D)a)(ρ j (D)g)).

With the exception of the last identity, in the above, a may be replaced by a general bounded linear
operator on L2.

Lemma A.4. Suppose a ∈ C1,1(Rn). If −1≤ σ ≤ 1, then

‖〈D〉1+σ Ra(〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 .

Suppose a ∈ C0,1(Rn). If 0≤ σ ≤ 1, then

‖〈D〉σ Ra(〈D〉1−σ g)‖L2 . ‖a‖C0,1‖g‖L2 .

Proof. We prove the first estimate; the second follows by similar steps. By interpolation we may restrict
attentions to σ = ±1, and by considering adjoints we can assume that σ = −1. We may then replace
〈D〉2 by D2, which denotes an arbitrary second-order derivative. First consider

∞∑
k=2

φk(D)(aψk(D)D2g)=
∞∑

k=2

φk(D)((ρk(D)a)ψk(D)D2g).

We take the inner product with h ∈ L2; by the Cauchy–Schwarz inequality and almost orthogonality over
k of ψk(D)g, we can dominate the result by( ∞∑

k=2

∫
|22kρk(D)a|2 · |φk(D)h|2 dx

)1
2

‖g‖L2 . ‖D2a‖BMO‖h‖L2‖g‖L2,
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where we use Theorem A.3 and write 22 jρ j (D)a = ρ̄ j (D)D2a.
Now consider the remaining term,

∞∑
j=2

ψ j (D)(aφ j (D)D2g)=
∞∑
j=2

ψ j (D)
(
(ρ j (D)a)φ j (D)D2g

)
.

By almost orthogonality over j we can dominate the L2 norm of this sum by( ∞∑
j=2

∫
|22 jρ j (D)a|2 · |2−2 jφ j (D)D2g|2 dx

) 1
2

. ‖D2a‖BMO‖g‖L2,

where we use Theorem A.3 and write 2−2 jφ j (D)D2g = φ̄ j (D)g. �

Corollary A.5. For a ∈ C0,1(Rn), define the operator a[ by

a[g =
∞∑
j=0

(a− (φb j/2c(D)a))ψ j (D)g.

Then
‖a[g‖H s+1/2 ≤ C‖a‖C0,1‖g‖H s , −1≤ s ≤ 1

2 .

If a ∈ C1,1(Rn), then
‖a[g‖H s+1 ≤ C‖a‖C1,1‖g‖H s , −2≤ s ≤ 1.

Proof. We write

a[g = Rag+
∞∑
j=0

ρ j (D)(a− (φb j/2c(D)a))ψ j (D)g.

The desired bound for Rag follows from Lemma A.4, and for the second term it follows by orthogonality
and the bound

‖a−φb j/2c(D)a‖L∞ ≤ C min(2− j/2
‖a‖C0,1, 2− j

‖a‖C1,1). �

Corollary A.6. Suppose a ∈ C1,1(Rn) and q ∈ S1(Rn). If 0≤ σ ≤ 1, then

‖〈D〉σ R[a,q(D)](〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 .

Proof. We note that R[a,q(D)] = [Ra, q(D)]. The estimate then follows by Lemma A.4, since it yields
that, for 0≤ σ ≤ 1,

‖q(D)〈D〉σ Ra(〈D〉1−σ g)‖L2 +‖〈D〉σ Raq(D)(〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 . �

We will need an extension of these results involving double commutators.

Lemma A.7. Suppose that a∈C1,1(Rn) and b∈C0,1(Rn), and that q0, q1∈ S1(Rn) are Fourier multipliers
on Rn . Then we have

‖[[a, q0(D)], q1(D)]g‖L2 ≤ C‖a‖C1,1‖g‖L2, (A-3)

‖[b, [a, q0(D)]]q1(D)g‖L2 ≤ C‖a‖C1,1‖b‖C0,1‖g‖L2 . (A-4)
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Proof. We start with the proof of (A-3). We decompose the multiplication operator a into Ta + Ra . By
Corollary A.6,

‖[Ra, q0(D)]q1(D)g‖L2 +‖q1(D)[Ra, q0(D)]g‖L2 ≤ C‖a‖C1,1‖g‖L2 .

For the term [Ta, q0(D)], since ψk(D) and ρ j (D) commute with the q(D) and have finite overlap of
support, it suffices to prove that, uniformly over j ,

‖ψ j (D)[[a, q0(D)], q1(D)]ρ j (D)g‖L2 ≤ C‖g‖L2 .

We may then replace q0(D) and q1(D) by their dyadic localization to |ξ | ≈ 2 j , in which case they are
represented by convolution kernels K0, j and K1, j for which

|K j (x − y)| ≤ CN 2 j (n+1)(1+ 2 j
|x − y|)−N for all N .

After this substitution, we may ignore the factors ψ j (D) and ρ j (D). We next expand

a(x)− a(y)= a′(x)(x − y)+ r(x, y)(x − y)2, ‖r(x, y)‖L∞ ≤ C‖a‖C1,1 . (A-5)

The integral kernel r(x, y)(x−y)2K0, j (x−y) has operator norm.2− j
‖a‖C1,1 , whereas K1, j has operator

norm . 2 j , hence this contribution to the double commutator is bounded on L2. Letting q ′0(D) denote
the L2-bounded operator with kernel (x − y)K0, j (x − y), the other term yields [a′, q1(D)]q ′0(D), which
is bounded on L2 with norm ‖a‖C1,1 by a similar argument, or using Theorem A.1.

To establish (A-4), we first use Corollary A.6 to see that

‖Raq0(D)g‖L2 +‖q0(D)Rag‖L2 ≤ C‖a‖C1,1‖g‖H−1 .

We may thus replace a by Ta . In the j -th term for [Ta, q0(D)], we may replace q0(D) and q1(D) by their
j-th dyadic localization as above. Expanding a as in (A-5), the second-order remainder term leads to a
bounded operator. It thus suffices to show that∥∥∥∥[b,

∑
j

ψ j (D)a′ρ j (D)q ′0(D)
]

q1(D)g
∥∥∥∥

L2
≤ C‖a′‖C0,1‖b‖C0,1‖g‖L2,

where q ′0(D) is a multiplier of order 0. We may write the commutator on the left-hand side as

a′[b, q ′0(D)]q1(D)− [b, Ra′q ′0(D)]q1(D).

The first term has the desired bound on L2 by Corollary A.2, and the second term has the desired bound
by Lemma A.4. �

Remark A.8. The estimate (A-4) can be established with ‖a‖C0,1‖b‖C0,1‖g‖L2 on the right-hand side.
This is the second commutator estimate; see for example [Stein 1993]. The simpler estimate in (A-4)
suffices for our purposes, however.

Corollary A.9. Suppose that q1(ξ1) ∈ S1(R) and q0(ξ) ∈ S1(Rn). Then, uniformly over k,

‖[[a, ρk(D)q0(D)], φk(D1)q1(D1)]g‖L2 ≤ C‖a‖C1,1‖g‖L2 .
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Proof. Let q0,k = ρkq0. As in the proof of (A-3), we write

[a, q0,k(D)] = a′(x)q ′0,k(D)+ rk, ‖rk g‖L2 ≤ C2−k
‖a‖C1,1‖g‖L2 .

The operator φk(D1)q1(D1) has norm . 2k , so [rk, φk(D1)q1(D1)] is suitably bounded. This leaves the
term [a′(x), φk(D1)q1(D1)]q ′0,k(D), which is bounded uniformly over k by Theorem A.1, since a′(x) is
a C0,1 function of x1, uniformly over (x2, . . . , xn), with norm less than ‖a‖C1,1 . �

Lemma A.10. Let s0 ∈ {0, 1} and Q± be constructed as in Section 2. Then, for c> 0 sufficiently large, the
operator 2P(t0)+Q+(t0)+Q−(t0)+c : H s0→ H s0−1 has a bounded right inverse for each t0 ∈ (−T, T ).
Furthermore, with uniform bounds over t ∈ (−T, T ),

(2P(t0)+ Q+(t0)+ Q−(t0)+ c)−1
: H s−1

→ H s, s0 ≤ s ≤ s0+ 1,

and the inverse is a continuous function of t0 into the operator norm topology. Also, P(t0)+c : L2
→ H−1

is invertible, and
(P(t0)+ c)−1

: H s−1
→ H s, 0≤ s ≤ 2,

with norm-continuity of the inverse over t ∈ (−T, T ).

Proof. Consider a fixed value of t0, and let p(x, ξ)= p(t0, x, ξ). We use only C0,1 bounds on the symbol
p(x, ξ), so all estimates on p in the following proof will be uniform over t and norm-continuous in t .
We write p(x, ξ)= p](x, ξ)+ p[(x, ξ) with

p](x, ξ)=
∞∑
j=0

(φb j/2c(D)p)(x, ξ)ψ j (ξ) ∈ S1
1,1/2,

where the frequency truncation is in the x variable. By Corollary A.5 and the symbol expansion (A-1),

‖p[(x, D)g‖H s ≤ C‖g‖H s+1/2, − 1
2 ≤ s ≤ 1. (A-6)

Since |p[(x, ξ)| ≤ C(1+ |ξ |)1/2, it follows that 2p](x, ξ) ≥ c1|ξ | − c0. For c > c0 + 1, the symbol
(2p](x, ξ)+ c)−1 is a bounded family in S−1

1,1/2, and c1/2(2p](x, ξ)+ c)−1 is a bounded family in S−1/2
1,1/2.

By the pseudodifferential calculus, the composition of the corresponding operator with 2p](x, D)+ c
differs from the identity by a pseudodifferential operator that has seminorm bounds in S0

1,1/2 of size
c−1/2. Hence, for c large, the operator 2p](x, D)+ c is left and right invertible on each given H s , and in
particular, for some c and all |s| ≤ 2,

‖(2p](x, D)+ cH s+1 ≤ Cs‖g‖H s ,

‖(2p](x, D)+ c)−1g‖H s+1/2 ≤ Csc−
1
2 ‖g‖H s .

Furthermore, the inverse is a pseudodifferential operator of class S−1
1,1/2.

It follows that, if s0−
1
2 ≤ s ≤ s0, where s0 ∈ {0, 1}, then

‖(2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1g‖H s ≤ Cs‖g‖H s−1/2,

‖(2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1g‖H s ≤ Csc−
1
2 ‖g‖H s .
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The operator 2P(t0)+ Q−(t0)+ Q+(t0) as a map from H s
→ H s−1 is invertible provided that

∞∑
n=0

(2p](x, D)+ c)−1((2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1)n

converges as a map H s−1
→ H s , which by the above is true for s0 ≤ s ≤ s0 + 1. Continuity in t of

the inverse follows by norm-continuity of P(t) and Q±(t) as functions of t . The same proof works for
0≤ s ≤ 2 with Q±(t0) replaced by 0. �

Appendix B: Energy estimates

In this section we establish the energy bounds and well-posedness results we use for L and its factors.
Throughout this section, we assume L satisfies the conditions in the introduction, and make use of the
equivalent form (6-1). Since we work with space-time mollification of L in this section, we assume
that the coefficients of the operator L have been extended to R1+n , as in (1-7), with the same regularity
conditions, and that the coefficients of L are constant for |t | ≥ T + 1. The solution u is defined only
on (−T, T )×Rn , however, and function space norms of u are with respect to that domain. Recall that
D = (Dt , D1, . . . , Dn)= (Dt , D).

The following result will be used when obtaining bounds for solutions of L2 regularity.

Lemma B.1. The commutator [L , 〈D〉−1
] = 〈D〉−1

[L , 〈D〉]〈D〉−1 admits an expansion of the form

[L , 〈D〉−1
]u(t)= B1(t)(Du)(t)+ B2(t)(Du)(t), (B-1)

where

‖B1(t)g‖L2 ≤ C‖g‖H−1, ‖B2(t)g‖H1 ≤ Cα(t)‖g‖H−1 .

Proof. We write L = D2
t − 2D j b j Dt − Di ci j D j + d0 Dt + d j D j , after absorbing derivatives of b j and

ci j into d . We use the commutator bound for functions c ∈ C0,1(Rn)

‖[c, 〈D〉−1
]g‖H1 ≤ C‖c‖C0,1‖g‖H−1,

as seen by writing [c, 〈D〉−1
] = 〈D〉−1

[c, 〈D〉]〈D〉−1 and applying Theorem A.1.
The terms Di [ci j , 〈D〉−1

]D j and D j [b j , 〈D〉−1
]Dt can thus be written as B1(t)D, and the terms

[d j , 〈D〉−1
]D j and [d0, 〈D〉−1

]Dt as B2(t)D. �

Theorem B.2. If u ∈ H 1
loc and Lu ∈ L2

loc, then WF2(u)⊆ char(L). If u ∈C0L2
∩C1 H−1 and Lu ∈ L1L2,

then WF1(u)⊆ char(L).

Proof. The first result relies only on the Lipschitz nature of L . As in Lemma B.1, we write L =
D A DT

+ d0 Dt + d j D j , where A is an (n + 1)× (n + 1) matrix function consisting of 1, b j and ci j .
The terms d0 Dt u + d j D j u belong to L2

loc by the assumed regularity of u, so we absorb them into F .
We decompose multiplication by A into A = A]+ A[ as in Corollary A.5, but where the regularization
φb j/2c(D) takes place over both the t and x variables.
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Let 0(τ, ξ)χ(t, x) be supported away from the characteristic set of L , where 0 ∈ S0
cl is a conic cutoff

and χ ∈ C∞c ((−T, T )×Rn). Suppose u ∈ H 1
loc, and write

D A]DT0(D)(χu)= [D A DT , 0(D)χ ]u− D A[DT0(D)(χu).

The first term on the right belongs to L2 by Corollary A.2, and the second to H−1/2 by Corollary A.5.
The operator D A]DT has symbol in S2

1,1/2, and is elliptic away from the characteristic set of L , hence
0(D)χu ∈ H 3/2. Corollary A.5 now yields that the second term on the right belongs to L2, and we
conclude 0(D)(χu) ∈ H 2.

For the second result, we let v = 〈D〉−1u. By Lemma B.1, Lv ∈ L2
+ L1 H 1. By Theorem B.6 below,

there exists w ∈ C0 H 2
∩C1 H 1 so that L(v−w) ∈ L2. Since v−w ∈ H 1

loc, we may apply the preceding
result to see that WF2(v−w)⊂ char(L). On the other hand 〈D〉w ∈ H 1

loc, so WF1(〈D〉w)=∅. �

Under a strengthened regularity assumption we can obtain results for L2 solutions.

Corollary B.3. Suppose that L = D A DT
+d0 Dt +d j D j , where A, d0, and d j belong to C0,1(R1+n). If

u ∈ L2
loc and Lu ∈ H−1

loc , then WF1(u)⊂ char(L).

Proof. Under the assumptions on d0 and d j , we have D A DT u ∈ H−1
loc . The proof then follows the same

steps as for the first part of Theorem B.2. �

Theorem B.4. Let s0 ∈ {0, 1}. Suppose that Dt u− p(t, x, D)u ∈ L2 H s0 and u ∈ L2 H s0 . If 0(τ, ξ)χ(t, x)
vanishes on a neighborhood of the characteristic set τ = p(t, x, ξ), where χ ∈ C∞c ((−T, T )×Rn) and
0 ∈ S0

cl, then 0(D)(χu) ∈ L2 H s0+1. In particular,

WF s0+1(u)⊂ {τ = p(t, x, ξ)} ∪ {ξ = 0}.

Proof. Consider first the case that 0(τ, ξ) vanishes near the set ξ = 0. We write

(Dt − p](t, x, D))0(D)(χu)

= 0(D)χ(Dt − p(t, x, D))u+0(D)(Dtχ)u− [p, 0(D)χ ]u+ p[(t, x, D)0(D)(χu),

where the frequency regularization defining p] takes place over both t and x variables. The first two terms
on the right belong to H s0(R1+n), where, since 0 vanishes near ξ = 0, we have 0(D) : L2 H s0(R1+n)→

H s0(R1+n), and similarly the last term belongs to H s0−1/2(R1+n) by Corollary A.5. To see that the
third term also belongs to H s0 , we take the symbol expansion (A-1) to replace p by a(t, x)q(D). The
commutator of q(D) and χ is bounded on H s0 , so we check that

‖[a, 0(D)]〈D〉g‖H s0 ≤ C‖a‖C0,1‖g‖L2 H s0 .

This follows from Corollary A.2, since ‖〈D〉g‖H s0−1 ≤ ‖g‖L2 H s0 for s0 ≤ 1.
The symbol τ− p](t, x, ξ) has a microlocal parametrix of class S−1

1,1/2 away from the set {ξ = 0}∪{τ =
p(t, x, ξ)}, and the result follows as in Theorem B.2.

Suppose then that 0 and 0̃ are supported in a small cone about the τ axis, vanish near τ = 0, with
0̃0 = 0. We write

(I − p(t, x, D)D−1
t 0̃(D))Dt0(D)χu = 0(D)χ(Dt − p(t, x, D))u+0(D)(Dtχ)u− [p, 0(D)χ ]u.
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The right-hand side belongs to L2 H s0 by steps similar to those above.
The operator p(t, x, D)D−1

t 0̃(D) is of small norm on L2 H s for −1≤ s ≤ 1, as seen by the symbol
expansion (A-1), since |ξ | � τ on the support of 0̃. We conclude that Dt0(D)χu ∈ L2 H s0 , and hence
that 0(D)χu ∈ L2 H s0+1. �

Theorem B.5. Let s0 ∈ {0, 1} and assume that p(t, x, ξ) satisfies (1-9) and that Q(t) satisfies (2-10). Let
E(t, t0) be the wave group of Theorem 3.2. Suppose that, in the sense of distributions,

Dt u− p(t, x, D)u− Q(t)u = F, (B-2)

and u ∈ L2 H s0, F ∈ L1 H s0 . Then u ∈ C0 H s0 , and, for each t0 ∈ (−T, T ),

u(t)= E(t, t0)u(t0)+
∫ t

t0
E(t, s)F(s) ds. (B-3)

In particular, if u ∈ L2 H s0+1 and F ∈ L1 H s0+1, then u ∈ C0 H s0+1.

Proof. We start by proving uniqueness for the equation

Dt u− p(t, x, D)u = G, supp(u)⊂ {t >−T + δ}, δ > 0, (B-4)

under the condition u ∈ L2 and G ∈ L1L2, and T <∞. This will show that, for such u,

u(t)=
∫ t

−T
E0(t, s)G(s) ds, (B-5)

where E0(t, t0) is as in Theorem 3.2.
Suppose first that u ∈ C∞((−T, T )×Rn) and is supported where t >−T + δ and |x | ≤ R, for some

δ > 0 and R <∞. Let u satisfy (B-4). We calculate

∂t

∫
|u(t, x)|2 dx =−2 Im

∫
u(t)p(t, x, D)u(t) dx − 2 Im

∫
u(t)G(t) dx .

Since p(t, x, ξ) is real, it follows by Theorem A.1 and the symbol expansion (A-1) that, uniformly over t ,

‖p(t, x, D)∗u(t)− p(t, x, D)u(t)‖L2 ≤ C‖u(t)‖L2,

hence
∂t‖u(t)‖2L2 ≤ 2C‖u(t)‖2L2 + 2‖G(t)‖L2‖u(t)‖L2 .

By the Gronwall inequality,

‖u(t)‖L2 ≤ eC(t+T )
∫ t

−T
‖G(s)‖L2 ds,

and, in particular,
‖u‖L2((−T,T )×Rn) ≤ CT ‖G‖L1 L2((−T,T )×Rn). (B-6)

Suppose now that u ∈ L2((−T, T )×Rn) satisfies (B-4). We choose χ ∈ C∞c (R
1+n) supported in t > 0

satisfying χ̂(0)= 1, and φ ∈C∞c (R
1+n) satisfying φ(0)= 1. Let Jε denote the family of causal, compactly

supported mollifiers
Jεu = φ(ε−1(t, x))χ̂(εD)u.
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Note that Jε is a uniformly bounded family of pseudodifferential operators of class S0
1,0. By Theorem A.1,

the following holds uniformly over ε > 0:

‖[Dt − p(t, x, D), Jε]u‖L2 ≤ C‖u‖L2 .

Since Jε→ I strongly on both H 1 and L2, as well as L1L2, then by density of H 1
⊂ L2 it follows that

lim
ε→0
‖[Dt − p(t, x, D), Jε]u‖L2((−T,T )×Rn) = 0.

It follows that (B-6) holds for general u ∈ L2 and G ∈ L1L2 under the condition (B-4), yielding uniqueness
of the solution, and thus the identity (B-5).

Now suppose that u ∈ L2 H s0 is supported in t >−T + δ, and satisfies (B-2) with F = 0. Since Q(t)
and E0(t, s) are uniformly bounded on H s0 , taking G(t)= Q(t)u(t) in (B-5), we see that

‖u‖L2((−T,−T+c),H s0 ) ≤ Cc
1
2 ‖u‖L2((−T,−T+c),H s0 ),

and, by a continuation argument, we must have u ≡ 0. Hence we have uniqueness for (B-2) for solutions
supported in t >−T + δ.

Thus, if ψ(t) ∈ C∞(R) is supported in t >−T , and u ∈ L2 H s0 satisfies (B-2), then

ψ(t)u(t)=
∫ t

−T
E(t, s)((Dsψ)(s)u(s)+ψ(s)F(s)) ds, (B-7)

since the right-hand side is a solution belonging to C((−T, T ), H s0). Reversing time, we obtain the
following bound for solutions to (B-2) without restrictions on the time-support of u:

‖u‖C((−T,T ),H s0 ) ≤ CT (‖u‖L2 H s0 +‖F‖L1 H s0 ).

In particular, u(t0) is well defined in H s0 for each t0 ∈ (−T, T ). Now let ψ be an increasing function
in C∞(R), which vanishes for t < t0− ε and equals 1 for t > t0+ ε. Letting ε→ 0, the formula (B-7)
shows that, for t > t0,

u(t)= E(t, t0)u(t0)+
∫ t

t0
E(t, s)F(s) ds, (B-8)

and, by time reversal, this holds for all t , which establishes (B-3).
Finally, if u ∈ L2 H s0+1 and F ∈ L1 H s0+1, then (B-7) necessarily holds, and since E(t, s) is a strongly

continuous evolution group on H s0+1, the same steps as above show that u ∈ C0 H s0+1, and that (B-8)
holds. �

Theorem B.6. Given t0 ∈ (−T, T ) and u0 ∈ L2, u1 ∈ H−1, F ∈ L1 H−1, there exists a unique solution
u ∈ C0L2

∩C1 H−1 to the Cauchy problem

Lu = F, u(t0)= u0, Dt u(t0)= u1.

If 0≤ s ≤ 2, and if u0 ∈ H s , u1 ∈ H s−1, F ∈ L1 H s−1, then the solution satisfies u ∈ C0 H s
∩C1 H s−1.

Also, if u ∈ H 1((−T, T )×Rn) satisfies Lu ∈ L1L2, then u ∈ C0 H 1
∩C1L2.
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Proof. We start by proving the existence of such a solution to the Cauchy problem. Assume 0≤ s ≤ 2
and (u0, u1) ∈ H s

× H s−1. We seek a solution u of the form

u(t)=
∑
±

E0,±(t, t0) f±+
∫ t

t0
(E0,+− E0,−)(t, s)(2P(s))−1G(s) ds. (B-9)

Here E0,± is the wave group (3-2) for Dt ∓ P±. We take G ∈ L1 H s−1 and set

f± = (2P(t0))−1(P∓(t0)u0± u1) ∈ H s,

that last inclusion holding by Lemma A.10. Recall that P++ P− = 2P .
Applying L and using (2-2) and (2-16), the equation Lu = F reduces to

G(t)+
∫ t

t0
(R+1 (t)E0,+(t, s)− R−1 (t)E0,−(t, s))(2P(s))−1G(s) ds = F(t)−

∑
±

R±1 (t)E0,±(t, t0) f±.

By Theorem 3.2 and (2-5), the right-hand side belongs to L1 H s−1. Also, by Lemma A.10,

‖(R+1 (t)E0,+(t, s)− R−1 (t)E0,−(t, s))(2P(s))−1G(s)‖H s−1 ≤ α(t)‖G(s)‖H s−1,

so that the Volterra equation for G is uniquely solvable on L1 H s−1, with solution given by a convergent
expansion. Note that if ‖F(t)‖H s−1 ≤ Cα(t), the same holds for G. Then u ∈ C0 H s

∩C1 H s−1 follows
by (B-9) and Theorem 3.2.

We now consider uniqueness. Suppose first that u ∈ C1((−T, T ),C2(Rn)) satisfies Lu = F ∈ L1C0,
and assume that u is supported in |x | ≤ R, some R <∞. It follows from Lu = F that D2

t u ∈ L1C0.
Using integration by parts, we calculate

∂t

∫ (
|Dt u(t, x)|2+

n∑
i, j=1

ci j (t, x)Di u(t, x)D j u(t, x)+ |u(t, x)|2
)

dx

= 2i Im
∫

F(t, x)Dt u(t, x) dx +
∫
(B(t, x)(u, Du)(t, x)) · (u, Du)(t, x) dx,

where B(t, x) is an (n+2)×(n+2) matrix whose coefficients consist of first-order space-time derivatives
of the coefficients b j , ci j , as well as d0 and d j . Hence

‖Bi j (t)‖C0 ≤ C, ‖DBi j (t)‖L∞ ≤ Cα(t).

By the positive definite condition on ci j and the Gronwall inequality, we conclude

‖(u, Du)(t)‖L2 ≤ Ce
∫ t

t0
α
‖(u, Du)(t0)‖L2 +

∫ t

t0
e
∫ t

s α‖F(s)‖L2 ds. (B-10)

By mollification and truncation with respect to the x variable, the bound (B-10) holds under the assumption
u ∈ C0 H 1

∩C1L2 and F ∈ L1L2.
Suppose that u ∈ C0L2

∩C1 H−1 satisfies Lu = F ∈ L1 H−1. By Lemma B.1, v = 〈D〉−1u satisfies

Lv = B0(t)(Dv)(t)+〈D〉−1 F(t), ‖B0(t)g‖L2 ≤ Cα(t)‖g‖L2 .
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The Gronwall inequality and (B-10) applied to v then imply

‖(u, Du)(t)‖H−1 ≤ Ce
∫ t

t0
α
‖(u, Du)(t0)‖H−1 +

∫ t

t0
e
∫ t

s α‖F(s)‖H−1 ds, (B-11)

from which the desired uniqueness follows.
To complete the proof of Theorem B.6, suppose now that u ∈ H 1((−T, T )×Rn) satisfies Lu = 0. We

want to show that
u ∈ C0 H 1

∩C1L2, (B-12)

since, by the above, the inhomogeneous problem admits a solution of this regularity.
We consider ψ(t)u as in the proof of Theorem B.5, where ψ = 0 near either ±T , and easily verify

that L(ψ(t)u(t)) ∈ L2((−T, T )×Rn). By the above, there exists a solution of regularity (B-12) with
inhomogeneity L(ψ(t)u), which also vanishes for t near the chosen ±T . Hence it suffices to prove that
if u ∈ H 1((−T, T )×Rn) satisfies Lu = 0 with u = 0 for t near either ±T , then u ≡ 0. For this we note
that (B-10) implies

‖u‖H1((−T,T )×Rn) ≤ C‖F‖L2((−T,T )×Rn),

if u satisfies (B-12) and vanishes near either ±T . The same inequality holds if u ∈ H 1 and F ∈ L2, as
seen by using the space-time mollifiers Jε from Theorem B.5 and noting that [L , Jε] maps H 1 to L2,
uniformly in ε. �

Remark B.7. Theorem B.6 together with finite propagation velocity shows that Theorem 1.1 holds
for solutions on an open set; that is, it holds for solutions to Lu = 0 with u ∈ C0((−T, T ), H s0

loc(�)),
Dt u ∈ C0((−T, T ), H s0−1

loc (�)), for an open set � ⊂ Rn , as long as γ remains above �. To see this,
assume that |Dξ p±| ≤ C . If χ ∈ C∞c (�) equals 1 on a ball of radius 2r about the spatial projection
of γ (t0), then, by finite propagation velocity, u agrees on the ball of radius r and |t − t0| ≤ C−1r with
the solution ũ on (−T, T )×Rn to Lũ = 0, where ũ has Cauchy data (χu(t0), χDt u(t0)) at t = t0. By
Theorem B.6, ũ ∈C0 H s0 ∩C1 H s0−1, and Theorem 1.1 implies that γ (t) /∈WF s0+1(u) for |t− t0| ≤C−1r .
The argument may then be repeated starting at t0±C−1r . �

Remark B.8. Under increased regularity of the coefficients, solutions u ∈ L2 to Lu = 0 satisfy (1-1).
Suppose L = D2

t −2D j b j Dt−Di ci j D j+d0 Dt+d j D j , where b j and ci j satisfy (1-3) and (1-4) as before,
but we make the stronger assumption that d0, d j

∈ C0,1((−T, T )×Rn). Suppose that Lu ∈ L2 H−1. By
Corollary B.3, we then have Du ∈ L2

loc H−1. Hence L(ψ(t)u) ∈ L2 H−1 for ψ ∈ C∞c ((−T, T )).
Suppose now that u ∈ L2((−T, T ) × Rn) satisfies Lu = 0. By Theorem B.6, there is a solution

v ∈ C0L2
∩C1 H−1 satisfying Lv = L(ψ(t)u). Hence, to prove u ∈ C0L2

∩C1 H−1, it suffices to prove
uniqueness of L2 solutions to Lu = F ∈ L2 H−1 when u is supported in |t | ≤ T − δ.

Fix χ ∈ C∞c (R
1+n) with χ̂(0)= 1. Then the commutator [L , χ̂(εD)] maps L2 to L2 H−1, uniformly

in ε. This follows from Corollary A.2 by the C0,1 regularity of the coefficients, and the form of L; in
particular the D2

t term commutes with χ̂(εD). By a density argument,

lim
ε→0
‖[L , χ̂(εD)]u‖L2 H−1 = 0, u ∈ L2.
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It follows from (B-11) that
‖u‖L2((−T,T )×Rn) ≤ C‖F‖L1 H−1,

from which the uniqueness of solutions follows. �
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WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS
IN METRIC MEASURE SPACES

LUIGI AMBROSIO AND DARIO TREVISAN

We establish, in a rather general setting, an analogue of DiPerna–Lions theory on well-posedness of flows
of ODEs associated to Sobolev vector fields. Key results are a well-posedness result for the continuity
equation associated to suitably defined Sobolev vector fields, via a commutator estimate, and an abstract
superposition principle in (possibly extended) metric measure spaces, via an embedding into R∞.

When specialized to the setting of Euclidean or infinite-dimensional (e.g., Gaussian) spaces, large parts
of previously known results are recovered at once. Moreover, the class of RCD(K,∞) metric measure
spaces, introduced by Ambrosio, Gigli and Savaré [Duke Math. J. 163:7 (2014) 1405–1490] and the
object of extensive recent research, fits into our framework. Therefore we provide, for the first time, well-
posedness results for ODEs under low regularity assumptions on the velocity and in a nonsmooth context.
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1. Introduction

DiPerna–Lions theory, initiated in the seminal paper [DiPerna and Lions 1989], provides existence,
stability and uniqueness results for ODEs associated to large classes of nonsmooth vector fields, most
notably that of Sobolev vector fields. In more recent times Ambrosio [2004] extended the theory to
include BV vector fields and, at the same time, he introduced a more probabilistic axiomatization based
on the duality between flows and continuity equation, while the approach of [DiPerna and Lions 1989]
relied on characteristics and the transport equation. In more recent years the theory developed in many
different directions, including larger classes of vector fields, quantitative convergence estimates, mild
regularity properties of the flow, and non-Euclidean spaces, including infinite-dimensional ones. We refer
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to [Ambrosio 2008; Ambrosio and Crippa 2008] for more exhaustive, but still incomplete, description of
the developments on this topic.

The aim of this paper is to extend the theory of well-posedness for the continuity equation and the
theory of flows to metric measure spaces (X, d,m). Roughly speaking, and obviously under additional
structural assumptions, we prove that if {bt }t∈(0,T ) is a time-dependent family of Sobolev vector fields
then there is a unique flow associated to bt , namely a family of absolutely continuous maps {X( · , x)}x∈X

from [0, T ] to X satisfying:

(i) X( · , x) solves the possibly nonautonomous ODE associated to bt for m-a.e. x ∈ X ;

(ii) the push-forward measures X(t, · )#m are absolutely continuous w.r.t. m and have uniformly bounded
densities.

Of course the notions of “Sobolev vector field” and even “vector field”, as well as the notion of solution
to the ODE have to be properly understood in this nonsmooth context, where not even local coordinates
are available. As far as we know, these are the first well-posedness results for ODEs under low regularity
assumptions and in a nonsmooth context.

One motivation for writing this paper has been the theory of “Riemannian” metric measure spaces
developed by the first author in collaboration with N. Gigli and G. Savaré, leading to a series of papers
[Ambrosio et al. 2014a; 2014b; 2014c] and to further developments in [Gigli 2012; 2013]. In this
perspective, it is important to develop new calculus tools in metric measure spaces. For instance, in the
proof of the splitting theorem in [Gigli 2013] a key role is played by the flow associated to the gradient
of a c-concave harmonic function, whose flow lines provide the fibers of the product decomposition;
therefore a natural question is under which regularity assumption on the potential V the gradient flow
associated to V has a unique solution, where uniqueness is not understood pointwise, but in the sense
of the DiPerna–Lions theory (see Theorem 8.3 and Theorem 9.7 for a partial answer to this question).
We also point out the recent paper [Gigli and Bang-Xian 2014], where continuity equations in metric
measure spaces are introduced and studied in connection with absolutely continuous curves with respect
to the Wasserstein distance W2, thus relying mainly on a “Lagrangian” point of view.

The paper is basically organized in three parts. In the “Eulerian” part, which has independent interest,
we study the well-posedness of continuity equations. In the “Lagrangian” part we define the notion of
solution to the ODE and relate well-posedness of the continuity equation to existence and uniqueness of
the flow (in the same spirit as [Ambrosio 2004; 2008], where the context was Euclidean). Eventually, in
the third part we see how a large class of previous results can be seen as particular cases of ours. On
the technical side, these are the main ingredients: for the first part, a new intrinsic way to write down
the so-called commutator estimate, obtained with 0-calculus tools (this point of view is new even for
such “nice” spaces as Euclidean spaces and Riemannian manifolds); for the second part, a more general
version of the so-called superposition principle (see, for instance, [Ambrosio et al. 2005, Theorem 8.2.1],
in the setting of Euclidean spaces), that allows us to lift, not canonically in general, nonnegative solutions
of the continuity equation to measures on paths.

We pass now to a more detailed description of the three parts.
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Part 1. This part consists of five sections, from Section 2 to Section 6. Section 2 is devoted to the
description of our abstract setup, which is the typical one of 0-calculus and of the theory of Dirichlet
forms; for the moment the distance is absent and we are given only a topology τ on X and a reference
measure m on X , which is required to be Borel, nonnegative and σ -finite. On L2(m) we are given a
symmetric, densely defined and strongly local Dirichlet form (E, D(E)) whose semigroup P is assumed
to be Markovian. We write V := D(E) and assume that a carré du champ 0 : V×V→ L1(m) is defined,
and that we are given a “nice” algebra A which is dense in V and which plays the role of the C∞c functions
in the theory of distributions.

Using A, we can define in Section 3 “vector fields” as derivations, in the same spirit as [Weaver 2000]
(see also [Ambrosio and Kirchheim 2000] for parallel developments in the theory of currents); a derivation
b is a linear map from A to the space of real-valued Borel functions on X , satisfying the Leibniz rule
b( f g) = f b(g)+ gb( f ), and a pointwise m-a.e. bound in terms of 0. We will use the more intuitive
notation (since differentials of functions are covectors) f 7→ d f (b) for the action of a derivation b on f .
An important example is provided by gradient derivations bV induced by V ∈ V, acting as follows:

d f (bV ) := 0(V, f ).

Although we will not need more than this, we would like to mention the forthcoming [Gigli 2014], which
provides equivalent axiomatizations, in which the Leibniz rule is not an axiom anymore, and it is shown
that gradient derivations generate, in a suitable sense, all derivations. Besides the basic example of
gradient derivations, the carré du champ also provides, by duality, a natural pointwise norm on derivations;
such duality can be used to define, via integration by parts, a notion of divergence div b for a derivation
(the divergence depends only on m, not on 0). In Section 4 we prove existence of solutions to the weak
formulation of the continuity equation dut/dt + div(ut bt)= 0 induced by a family (bt) of derivations,

d
dt

∫
f ut dm=

∫
d f (bt)ut dm ∀ f ∈A.

The strategy of the proof is classical: first we add a viscosity term and get a V-valued solution by
Hilbert space techniques, then we take a vanishing viscosity limit. Together with existence, we recover
also higher (or lower, since our measure m might be not finite and therefore there might be no inclusion
between L p spaces) integrability estimates on u, depending on the initial condition ū. Also, under a
suitable assumption (4-3) on A, we prove that the L1 norm is independent of time. Section 5 is devoted to
the proof of uniqueness of solutions to the continuity equation. The classical proof in [DiPerna and Lions
1989] is based on a smoothing scheme that, in our context, is played by the semigroup P (an approach
already proved to be successful in [Ambrosio and Figalli 2009; Trevisan 2013] in Wiener spaces). For
fixed t , one has to estimate carefully the so-called commutator

Cα(bt , ut) := div((Pαut)bt)−Pα(div(ut bt))

as α→ 0. The main new idea here is to imitate Bakry and Émery’s 0-calculus (see, e.g., the recent
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monograph [Bakry et al. 2014]), interpolating and writing, at least formally,

Cα(bt , ut)=

∫ α

0

d
ds

Pα−s
(
div(Ps(ut)bt)

)
ds (1-1)

=

∫ α

0

[
−1Pα−s

(
div(Ps(ut)bt)

)
+Pα−s

(
div(1Ps(ut)bt)

)]
ds.

It turns out that an estimate of the commutator involves only the symmetric part of the derivative (this, in
the Euclidean case, was already observed in [Capuzzo Dolcetta and Perthame 1996] for regularizations
induced by even convolution kernels). This structure can be recovered in our context: inspired by the
definition of the Hessian in [Bakry 1997] we define the symmetric part Dsymc of the gradient of a
deformation c by∫

Dsymc( f, g) dm := −1
2

∫ [
d f (c)1g+ dg(c)1 f − (div c)0( f, g)

]
dm. (1-2)

Using this definition in (1-1) (assuming here for simplicity div bt = 0), we establish the identity∫
f Cα(bt , ut) dm = 2

∫ α

0

∫
Dsymbt(Pα−s f,Psut) dmds ∀ f ∈A. (1-3)

Then, we assume the validity of the estimates (see Definition 5.2 for a more general setup with different
powers) ∣∣∣∣∫ Dsymbt( f, g) dm

∣∣∣∣≤ c
(∫

0( f )2 dm
)1

4
(∫

0(g)2 dm
)1

4

, (1-4)

which, in a smooth context, amount to an L2 control on the symmetric part of derivative. Luckily, the
control (1-4) on Dsymbt can be combined with (1-1) and (1-3) to obtain strong convergence to 0 of the
commutator as α→ 0 and therefore well-posedness of the continuity equation. This procedure works
assuming some regularizing properties of the semigroup P, especially the validity of(∫

0(Pt f )2 dm
)1

4

≤
c
√

t

(∫
| f |4 dm

)1
4

for every f ∈ L2
∩ L4(m), t ∈ (0, 1),

for some constant c ≥ 0 (see Theorem 5.4). In particular, these hold assuming an abstract curvature
lower bound on the underlying space, as discussed in Section 6, where we crucially exploit the recent
results in [Savaré 2014; Ambrosio et al. 2013] to show that our structural assumptions on P and on A are
fulfilled in the presence of lower bounds on the curvature. Furthermore, gradient derivations associated to
sufficiently regular functions satisfy (1-4).

Finally, we remark that, as in [DiPerna and Lions 1989], analogous well-posedness results could be
obtained for weak solutions to the inhomogeneous transport equation

d
dt

ut + dut(bt)= ct ut +wt ,
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under suitable assumptions on ct and wt . We confined our discussion to the case of the homogeneous
continuity equation (corresponding to ct = − div bt and wt = 0) for the sake of simplicity and for the
relevance of this PDE in connection with the theory of flows.

Part 2. This part consists of two sections. In Section 7 we show how solutions u to the continuity
equation dut/dt+div(ut bt)= 0 can be lifted to measures η in C([0, T ]; X). Namely, we would like that
(et)#η= utm for all t ∈ (0, T ) and that η is concentrated on solutions η to the ODE η̇= bt(η). This state-
ment is well-known in Euclidean spaces (or even Hilbert spaces) [Ambrosio et al. 2005, Theorem 8.2.1];
in terms of currents, it could be seen as a particular case of Smirnov’s [1993] decomposition of 1-currents
as superposition of rectifiable currents. Here, we realized that the most appropriate setup for the validity
of this principle is R∞; see Theorem 7.1, where only the Polish structure of R∞ matters and neither
distance nor reference measure come into play.

In order to extend this principle from R∞ to our abstract setup we assume the existence of a sequence
(gk)⊂ { f ∈A : ‖0( f )‖∞ ≤ 1} satisfying:

span(gk) is dense in V and any function gk is τ -continuous; (1-5)

∃ lim
n→∞

gk(xn) in R for all k H⇒ ∃ lim
n→∞

xn in X . (1-6)

This way, the embedding J : X → R∞ mapping x to (gk(x)) provides an homeomorphism of X with
J (X) and we can first read the solution to the continuity equation in R∞ (setting νt := J#(utm), with an
appropriate choice of the velocity in R∞) and then pull back the lifting obtained in P(C([0, T ];R∞)) to
obtain η ∈ P(C([0, T ]; X)); see Theorem 7.6. It turns out that η is concentrated on curves η satisfying

d
dt
( f ◦ η)= d f (bt) ◦ η in the sense of distributions in (0, T ), for all f ∈A, (1-7)

which is the natural notion of solution to the ODE η̇ = bt(η) in our context (again, consistent with
the fact that a vector can be identified with a derivation). We show, in addition, that this property
implies absolute continuity of η-almost every curve η with respect to the possibly extended distance
d(x, y) := supk |gk(x)− gk(y)|, with metric derivative |η̇| estimated from above by |bt | ◦ η. Notice also
that, in our setup, the distance appears only now. Also, we remark that a similar change of variables
appears in the recent paper [Kolesnikov and Röckner 2014], but not in a Lagrangian perspective: it is used
therein to prove well-posedness of the continuity equation when the reference measure is log-concave
(see Section 9E).

Section 8 is devoted to the proof of Theorem 8.3, which links well-posedness of the continuity equation
in the class of nonnegative functions L1

t (L
1
x ∩ L∞x ) with initial data ū ∈ L1

∩ L∞(m) to the existence and
uniqueness of the flow X according to (i), (ii) above, where (i) is now understood as in (1-7). The proof of
Theorem 8.3 is based on two facts: first, the possibility to lift solutions u to probabilities η, discussed in
the previous section; second, the fact that the restriction of η to any Borel set still induces a solution to the
continuity equation with the same velocity field. Therefore we can “localize” η to show that, whenever
some branching of trajectories occurs, then there is nonuniqueness at the level of the continuity equation.
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Let us comment that, in this abstract setting, it seems more profitable to the authors to deal uniquely
with continuity equations, instead of transport equations as in [DiPerna and Lions 1989], since the latter
require in their very definition a choice of “coordinates”, while the former arise naturally as the description
of evolution of underlying measures.

Part 3. This part consists of Section 9 only, where we specialize the general theory to settings where
continuity equations and associated flows have already been considered, and to RCD(K,∞)-metric
measure spaces. Since the transfer mechanism of well-posedness from the PDE to the ODE levels is
quite general, we mainly focus on the continuity equation. Moreover, in these particular settings (except
for RCD(K,∞) spaces), the proof of existence for solutions turns out to be a much easier task than
in the general framework, due to explicit and componentwise approximations by smooth vector fields.
Therefore, we limit ourselves to compare uniqueness results.

In Section 9A, we show how the classical DiPerna–Lions theory [1989] fits into our setting; in short,
we recover almost all the well-posedness results in [DiPerna and Lions 1989], with the notable exception
of W 1,1

loc -regular vector fields. In Section 9B we also describe how our techniques provide intrinsic proofs,
i.e., without reducing to local coordinates, of analogous results for weighted Riemannian manifolds.

In Section 9C and Section 9D, we deal with (infinite-dimensional) Gaussian frameworks, comparing
our results to those established respectively in [Ambrosio and Figalli 2009; Da Prato et al. 2014]; large
parts of these can be obtained as consequences of our general theory, which turns out to be more flexible,
e.g., we can allow for vector fields that do not necessarily take values in the Cameron–Martin space (see
at the end of Section 9D), which is not admissible in their work. In Section 9E we consider the even more
general setting of log-concave measures and make a comparison with some of the results contained in
[Kolesnikov and Röckner 2014]. The strength of our approach is immediately revealed; for example, we
are not limited as they are to uniformly log-concave measures.

We conclude in Section 9F by describing how the theory specializes to the setting of RCD(K,∞)-metric
measure spaces, that is one of our original motivations for this work. We show that Lagrangian flows do
exist in many cases (Theorem 9.7) and provide instances of so-called test plans. In the case of gradient
derivations, we also show that the trajectories satisfy a global energy dissipation identity (Theorem 9.6).

2. Notation and abstract setup

Let (X, τ ) be a Polish topological space, endowed with a σ -finite Borel measure m with full support (i.e.,
suppm= X ) and

a strongly local, densely defined and symmetric Dirichlet form E on L2(X,B(X),m)
enjoying a carré du champ 0 : D(E)× D(E)→ L1(X,B(X),m) and

generating a Markov semigroup (Pt)t≥0 on L2(X,B(X),m). (2-1)

The precise meaning of (2-1) is recalled below in this section.
To keep notation simple, we write L p(m) instead of L p(X,B(X),m) and denote L p(m) norms by ‖ · ‖p.

We also write L0(m) for the space of m-a.e. equivalence classes of Borel functions f : X 7→ [−∞,+∞]
that take finite values m-a.e. in X .
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Since (X, τ ) is Polish and m is σ -finite, the spaces L p(m) are separable for p ∈ [1,∞). We shall also
use the duality relations

(L p(m)+ Lq(m))∗ = L p′
∩ Lq ′(m), p, q ∈ [1,∞)

and the notation ‖ · ‖L p+Lq , ‖ · ‖L p′∩Lq′ . In addition, we will use that the spaces L p(m), 1≤ p ≤∞ (and
p= 0), are complete lattices with respect to the order relation induced by the inequality m-a.e. in X . This
follows at once from the general fact that, for any family of Borel functions fi : X→ [−∞,+∞], there
exists f : X→ [−∞,+∞] Borel such that f ≥ fi m-a.e. in X for all i ∈ I , and f ≤ g m-a.e. in X for
any function g with the same property. Existence of f can be achieved, for instance, by considering the
maximization of

J 7→
∫

tan−1(sup
i∈J

fi
)
ϑ dm

among the finite subfamilies J of I , with ϑ a positive function in L1(m) (notice that the pointwise
supremum could lead to a function which is not m-measurable).

2A. Dirichlet form and carré du champ. A symmetric Dirichlet form E is a L2(m)-lower semicontinuous
quadratic form satisfying the Markov property

E(η ◦ f )≤ E( f ) for every normal contraction η : R→ R, (2-2)

i.e., a 1-Lipschitz map satisfying η(0)= 0. We refer to [Bouleau and Hirsch 1991; Fukushima et al. 2011]
for equivalent formulations of (2-2). Recall that

V := D(E)⊂ L2(m) endowed with ‖ f ‖2V := ‖ f ‖22+E( f )

is a Hilbert space. Furthermore, V is separable because L2(m) is separable (see [Ambrosio et al. 2014c,
Lemma 4.9] for the simple proof).

We still denote by E( · , · ) : V×V→ R the associated continuous and symmetric bilinear form

E( f, g) := 1
4(E( f + g)−E( f − g)).

We will assume strong locality of E, namely:

for all f, g ∈ V, E( f, g)= 0, if ( f + a)g = 0 m-a.e. in X, for some a ∈ R.

It is possible to prove (see [Bouleau and Hirsch 1991, Proposition 2.3.2], for instance) that V∩ L∞(m) is
an algebra with respect to pointwise multiplication, so that for every f ∈ V∩ L∞(m) the linear form on
V∩ L∞(m),

0[ f ;ϕ] := 2E( f, f ϕ)−E( f 2, ϕ), ϕ ∈ V∩ L∞(m), (2-3)

is well-defined and, for every normal contraction η : R→ R, it satisfies [Bouleau and Hirsch 1991,
Proposition 2.3.3]

0≤ 0[η ◦ f ;ϕ] ≤ 0[ f ;ϕ] ≤ ‖ϕ‖∞ E( f ) for all f, ϕ ∈ V∩ L∞(m), ϕ ≥ 0. (2-4)
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The inequality (2-4) shows that for every nonnegative ϕ ∈ V∩ L∞(m) the function f 7→ 0[ f ;ϕ] is a
quadratic form in V∩ L∞(m) that satisfies the Markov property and can be extended by continuity to V.

We assume that for all f ∈ V the linear form ϕ 7→ 0[ f ;ϕ] can be represented by an absolutely
continuous measure w.r.t. m with density 0( f ) ∈ L1

+
(m), the so-called carré du champ. Since E is

strongly local, [Bouleau and Hirsch 1991, Theorem I.6.1.1] yields the representation formula

E( f, f )=
∫

X
0( f ) dm for all f ∈ V. (2-5)

It is not difficult to check that 0 as defined by (2-5) (see [Bouleau and Hirsch 1991, Definition I.4.1.2],
for example) is a quadratic continuous map defined in V with values in L1

+
(m), and that 0[ f − g;ϕ] ≥ 0

for all ϕ ∈ V∩ L∞(m) yields

|0( f, g)| ≤
√
0( f )

√
0(g) m-a.e. in X . (2-6)

We use the 0 notation also for the symmetric, bilinear and continuous map

0( f, g) := 1
4(0( f + g)−0( f − g)) ∈ L1(m), f, g ∈ V,

which, thanks to (2-5), represents the bilinear form E by the formula

E( f, g)= 1
2

∫
X
0( f, g) dm for all f, g ∈ V.

Because of the Markov property and locality, 0( · , · ) satisfies the chain rule [Bouleau and Hirsch 1991,
Corollary I.7.1.2]

0(η( f ), g)= η′( f )0( f, g) for all f, g ∈ V and η : R→ R Lipschitz with η(0)= 0, (2-7)

and the Leibniz rule

0( f g, h)= f 0(g, h)+ g0( f, h) for all f, g, h ∈ V∩ L∞(m).

Notice that, by [Bouleau and Hirsch 1991, Theorem I.7.1.1], (2-7) is well-defined since, for every Borel
set N ⊂ R (in particular the set where η is not differentiable),

L1(N )= 0 H⇒ 0( f )= 0 m-a.e. on f −1(N ). (2-8)

For p ∈ [1,∞], we introduce the spaces

Vp :=

{
u ∈ V∩ L p(m) :

∫
(0(u))p/2 dm<∞

}
, p ∈ [1,∞), (2-9)

with the obvious extension to p =∞. As in [Bouleau and Hirsch 1991, §I.6.2], one can endow each Vp

with the norm
‖ f ‖Vp = ‖ f ‖V+‖ f ‖p +‖0(u)1/2‖p, (2-10)

thus obtaining a Banach space, akin to the intersection of classical Sobolev spaces W 1,2
∩W 1,p. Notice

that V2 = V, with an equivalent norm. The Banach space structure plays a major role only starting from
Section 5, but the notation f ∈ Vp is conveniently used throughout.
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2B. Laplace operator and Markov semigroup. The Dirichlet form E induces a densely defined, neg-
ative and selfadjoint operator 1 : D(1) ⊂ V→ L2(m), defined by the integration by parts formula
E( f, g) = −

∫
X g1 f dm for all g ∈ V. The operator 1 is of “diffusion” type, since it satisfies the

following chain rule for every η ∈C2(R) with η(0)= 0 and bounded first and second derivatives [Bouleau
and Hirsch 1991, Corollary I.6.1.4]: whenever f ∈ D(1) with 0( f ) ∈ L2(m), then η( f ) ∈ D(1) and

1η( f )= η′( f )1 f + η′′( f )0( f ). (2-11)

The “heat flow” Pt associated to E is well-defined starting from any initial condition f ∈ L2(m). Recall
that in this framework the heat flow (Pt)t≥0 is an analytic Markov semigroup and that ft = Pt f can be
characterized as the unique C1 map f : (0,∞)→ L2(m) with values in D(1) satisfying

d
dt

ft =1 ft for t ∈ (0,∞),

lim
t↓0

ft = f in L2(m).

Because of this,1 can equivalently be characterized in terms of the strong convergence (Pt f − f )/t→1 f
in L2(m) as t ↓ 0.

Furthermore, we have the regularization estimates (in the more general context of gradient flows of
convex functionals, see [Ambrosio et al. 2005, Theorem 4.0.4(ii)], for instance)

E(Pt u,Pt u)≤ inf
v∈V

{
E(v, v)+

‖v− u‖22
2t

}
<∞ ∀t > 0, u ∈ L2(m), (2-12)

‖1Pt u‖22 ≤ inf
v∈D(1)

{
‖1v‖22+

‖v− u‖22
t2

}
<∞ ∀t > 0, u ∈ L2(m). (2-13)

For p ∈ (1,∞), we shall also need an L p version of (2-13), namely

‖1Pt f ‖p ≤
c1p
t
‖ f ‖p for every f ∈ L p

∩ L2(m) and every t ∈ (0, 1). (2-14)

This can be obtained as a consequence of the fact that P is analytic [Stein 1970, Theorem III.1]; these are
actually equivalent [Yosida 1980, §X.10].

As an easy corollary of (2-14), we obtain the following estimate.

Corollary 2.1. Let p ∈ (1,∞) and let c1p be the constant in (2-14). Then

‖Pt f −Pt−t ′ f ‖p ≤min
{

c1p log
(

1+
t ′

t − t ′

)
, 2
}
‖ f ‖p ∀ f ∈ L p

∩ L2(m),

for every t, t ′ ∈ (0, 1) with t ′ ≤ t .

Proof. The estimate with the constant 2 follows from L p contractivity. For the other one, we apply (2-14)
as follows:

‖Pt f −Pt−t ′ f ‖p ≤

∫ t ′

0
‖1Pt−t ′+r f ‖p dr ≤

∫ t ′

0

c1p
t − t ′+ r

dr‖ f ‖p = c1p log
(

1+
t ′

t − t ′

)
‖ f ‖p. �
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One useful consequence of the Markov property is the L p contraction of (Pt)t≥0 from L p
∩ L2 to

L p
∩L2. Because of the density of L p

∩L2 in L p when p ∈ [1,∞), this allows us to uniquely extend Pt to
a strongly continuous semigroup of linear contractions in L p(m), p∈ [1,∞), for which we retain the same
notation. Furthermore, (Pt)t≥0 is sub-Markovian (see [Bouleau and Hirsch 1991, Proposition I.3.2.1]),
since it preserves one-sided essential bounds: f ≤ C (resp. f ≥ C) m-a.e. in X for some C ≥ 0 (resp.
C ≤ 0) implies Pt f ≤ C (resp. Pt f ≥ C) m-a.e. in X , for all t ≥ 0.

Finally, it is easy to check, using L1-contractivity of P, that the dual semigroup P∞t : L
∞(m)→ L∞(m)

given by ∫
gP∞t f dm=

∫
f Pt g dm, f ∈ L∞(m), g ∈ L1(m), (2-15)

is well-defined. It is a contraction semigroup in L∞(m), sequentially w∗-continuous, and it coincides
with P on L2

∩ L∞(m).

2C. The algebra A. Throughout the paper we assume that an algebra A⊂ V is prescribed, with

A⊂
⋂

p∈[1,∞]

L p(m), A dense in V, (2-16)

and
8( f1, . . . , fn) ∈A whenever 8 ∈ C1(Rn), f1, . . . , fn ∈A. (2-17)

Additional conditions on A will be considered in specific sections of the paper. A particular role is
played by the condition A ⊂ Vp, for p ∈ [2,∞]. By interpolation, if such an inclusion holds, then it
holds for every q between 2 and p. Concerning the inclusion A⊂ Vp for p ∈ [1, 2], we prove:

Lemma 2.2. Let A⊂ V be dense in V and satisfy (2-17). Then, there exists A⊂A, such that (2-16) and
(2-17) hold, and

A is contained in and dense in Vp, for every p ∈ [1, 2]. (2-18)

In particular, without any loss of generality, we assume throughout that (2-18) holds.

Proof. We define
A= {8( f ) : f ∈A, 8 ∈ F} ⊂A,

where F consists of all functions 8 : R→ R bounded and Lipschitz, continuously differentiable and
null at the origin, with 8′(x)/x bounded in R. By the chain rule and Hölder’s inequality, it follows that
A⊂ L p(m) for all p ∈ [1,∞] and that (2-17) holds. We address the density of A in Vp for p ∈ [1, 2].

We consider Lipschitz functions φn : R 7→ [0, 1] such that φn(z) = 0 for |z| ≤ 1/(2n) and for
|z| ≥ 2n, while φn(z) = 1 for |z| ∈ [1/n, n], and we set 8n(z) =

∫ z
0 φn(t)dt . Notice that 8n ≡ 0 on

[−1/(2n), 1/(2n)], that 8n belongs to F, and that 8′n(z)= φn(z)→ 1 as n→∞. It is easily seen, by
the chain rule, that 8n( f )→ f in Vp as n→∞ for all f ∈ Vp, therefore density is achieved if we show
that all functions 8n( f ) belong to the closure of A. Since by assumption there exist fk ∈A convergent
to f in V (and m-a.e. on X ), it will be sufficient to show that, for every n ≥ 1, 8n( fk) converge to 8n( f )
in Vp as k→∞.
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We claim that, as k→∞, φn( fk) converge to φn( f ) in Lq(m) for every q ∈ [1,∞). To prove the
claim, it suffices to consider separately the sets {| f | ≥ 1/(3n)} and {| f |< 1/(3n)}. On the first set, which
has finite m-measure, we can use m-a.e. and dominated convergence to achieve the thesis, taking into
account the boundedness of φn (since n is fixed); on the second set, we have

|φn( fk)−φn( f )| = χ{| fk |≥1/(2n)}|φn( fk)−φn( f )| ≤ χ{| fk− f |≥1/(6n)}min{2,Lip(φn)| fk − f |}

and we can use Hölder’s inequality for q < 2 and uniform boundedness for q ≥ 2.
To show convergence of 8n( fk) to 8n( f ) in Vp as k →∞, we use the following straightforward

identity, valid for any h1, h2 ∈ V and 8 ∈ F:

0(8(h1)−8(h2))= (8
′(h1)−8

′(h2))
20(h1, h2)+8

′(h1)
20(h1, h1− h2)+8

′(h2)
20(h2, h2− h1).

Adding and subtracting 8′(h2)
20(h1, h1 − h2), and taking 8 = 8n , since 0 ≤ φn ≤ 1 we obtain the

inequality

0(8n(h1)−8n(h2))
1/2
≤ |φn(h1)−φn(h2)|0(h1)

1/40(h2)
1/4
+φn(h2)0(h1− h2)

1/2

+ 2|φn(h1)−φn(h2))|
1/20(h1)

1/40(h1− h2)
1/4. (2-19)

Finally, we let h1 = f and h2 = fk in this inequality and use the convergence of φn( fk) to φn( f ) in
every Lq(m) space, q ∈ [1,∞), as well as Hölder’s inequality, to deduce that the right-hand side above
converges to 0 in L p(m) as k→∞. �

We also deduce density in L p
∩ Lq -spaces, thanks to the following lemma.

Lemma 2.3. There exists a countable set D⊂A that is dense in L p
∩ Lq(m) for all 1≤ p ≤ q <∞ and

w∗-dense in L∞(m).

Proof. Since V is dense in L2(m) and we assume that A is dense in V, we obtain that A is dense in L2(m).
We consider first the case p = q ∈ [2,∞]. Let h ∈ L p′(m). Assuming

∫
hϕ dm= 0 for all ϕ ∈A, to

prove density in the w∗ topology (and then in the strong topology if p <∞) we have to prove that h = 0.
Let δ > 0, set fδ = sign hχ{|h|>δ} (set equal to 0 wherever h = 0) and find an equibounded sequence
(ϕn) ⊂ A convergent in L2(m) to fδ. Since (ϕn) are uniformly bounded in L∞(m), we obtain strong
convergence to fδ in L p for p ∈ [2,∞) and w∗-convergence for p=∞. It follows that

∫
{|h|>δ} |h| dm= 0

and we can let δ ↓ 0 to get h = 0.
To cover the cases p = q ∈ [1, 2), by interpolation we need only to consider p = 1. Given f ∈ L1(m)

nonnegative, we can find ϕn ∈ A convergent to
√

f in L2(m). It follows that the functions ϕ2
n belong

to A and converge to f in L1(m). In order to remove the sign assumption, we split f ∈ L1(m) into its
positive and negative parts.

Finally, in the case p < q we can use the density of bounded functions to reduce ourselves to the case
of approximation of a bounded function f ∈ L p

∩ Lq(m) by functions in A. Since f can be approximated
by equibounded functions fn ∈A in L p norm, we need only to use the fact that fn→ f also in Lq norm.

Finally, a simple inspection of the proof shows that we can achieve the same density result with a
countable subset of A, since V is separable. �
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Remark 2.4. Under the additional condition

A is invariant under the action of Pt , (2-20)

our basic assumption that A is dense in V can be weakened to the assumption that A is dense in L2(m);
indeed, standard semigroup theory shows that an invariant subspace is dense in V if and only if it is dense
in L2(m); see, for instance, [Ambrosio et al. 2014c, Lemma 4.9], but also Lemma 5.6 below.

3. Derivations

Since A might be regarded as an abstract space of test functions, we introduce derivations as linear
operators acting on it, satisfying a Leibniz rule and a pointwise m-a.e. upper bound in terms of 0 (even
though for some results an integral bound would be sufficient).

Definition 3.1 (derivation). A derivation is a linear operator b :A→ L0(m), f 7→ d f (b), satisfying

d( f g)(b)= f dg(b)+ gd f (b) m-a.e. in X , for every f, g ∈A, and

|d f (b)| ≤ g
√
0( f ) m-a.e. in X , for every f ∈A, for some g ∈ L0(m).

The smallest function g with this property will be denoted by |b|. For p, q ∈ [1,∞], we say that a
derivation b is in L p

+ Lq if |b| ∈ L p(m)+ Lq(m).

Existence of the smallest function g can easily be achieved using the fact that L0(m) is a complete
lattice, that is by considering the supremum among all functions f ∈A of the expression |d f (b)|0( f )−1/2

(set equal to 0 on the set {0( f )= 0}).
N. Gigli pointed out to us that linearity and the m-a.e. upper bound are sufficient to entail “locality”

and thus the Leibniz and chain rules, with a proof contained in the work in preparation [Gigli 2014],
akin to that of [Ambrosio and Kirchheim 2000, Theorem 3.5]. Since our work focuses on the continuity
equation and related Lagrangian flows, but not on the fine structure of the space of derivations, for the
sake of simplicity we have chosen to retain this slightly redundant definition and deduce only the validity
of the chain rule.

Proposition 3.2 (chain rule for derivations). Let b be a derivation and let 8 : Rn
→ R be a smooth

function with 8(0)= 0. Then, for any f = ( f1, . . . , fn) ∈A
n , there holds

d8( f )(b)=
n∑

i=1

∂i8( f )d fi (b) m-a.e. in X. (3-1)

Proof. Since 8( f ) ∈A, b(8( f )) is well-defined. Arguing by induction and linearity, the Leibniz rule
entails that (3-1) holds when 8 is a polynomial in n variables with 8(0)= 0. Since f is bounded, the
thesis follows by approximating 8 by a sequence (pk) of polynomials converging to 8, together with
their derivatives, uniformly on compact sets. �

Remark 3.3 (derivations ub). Let b be a derivation in Lq for some q ∈ [1,∞] and let u ∈ Lr (m), with
q−1
+ r−1

≤ 1. Then, f 7→ ud f (b) defines a derivation ub in Ls′ , where (s ′)−1
= q−1

+ r−1, i.e.,
q−1
+ r−1

+ s−1
= 1. By linearity, similar remarks apply when b is a derivation in L p

+ Lq .
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Example 3.4 (gradient derivations). The main example is provided by derivations bg induced by g ∈ V,
of the form

f ∈A 7→ d f (bg) := 0( f, g) ∈ L1(m). (3-2)

These derivations belong to L2, because (2-6) yields |bg| ≤
√
0(g). Since A is dense in V, it is not

difficult to show that equality holds.
By linearity, the L∞-module generated by this class of examples (i.e., finite sums

∑
i χi bgi with

χi ∈ L∞(m) and gi ∈ V) still consists of derivations in L2.

Definition 3.5 (divergence). Let p, q ∈ [1,∞], assume that A⊂ Vp′ ∩Vq ′ and let b be a derivation in
L p
+ Lq . The distributional divergence div b is the linear operator on A defined by

A 3 f 7→ −
∫

d f (b) dm.

We say that div b ∈ L p(m)+ Lq(m) if the distribution div b is induced by g ∈ L p(m)+ Lq(m), that is∫
d f (b) dm =−

∫
f g dm for all f ∈A.

Analogously, we say that div b− ∈ L p(m) if there exists a nonnegative g ∈ L p(m) such that∫
d f (b) dm ≤

∫
f g dm, for all f ∈A, f ≥ 0.

Notice that we impose the additional condition A⊂ Vp′ ∩Vq ′ , to ensure integrability of d f (b).
As we did for |b|, we define div b− as the smallest nonnegative function g in L p(m) for which the

inequality above holds. Existence of the minimal g follows by a simple convexity argument, because the
class of admissible functions g is convex and closed in L p(m) (if p =∞, one has to consider the w∗

topology).

Example 3.6 (divergence of gradients). The distributional divergence of the “gradient” derivation bg

induced by g ∈ V as in (3-2) coincides with the Laplacian 1g, still understood in distributional terms.

Although the definitions given above are sufficient for many purposes, the following extensions will be
technically useful in Section 4C, and in Section 5 for the case q ∈ [1,∞).

Remark 3.7 (derivations in L2
+ L∞ extend to V). When a derivation b belongs to L2

+ L∞, we can
use the density of A in V to extend b uniquely to a continuous derivation, still denoted by b, defined on
V, with values in the space L1(m)+ L2(m). For all u ∈ V, it still satisfies

|du(b)| ≤ |b|
√
0(u) m-a.e. in X .

A similar remark holds for derivations belonging to Lq
+ L∞, for some q ∈ [1,∞), if A is assumed to be

dense in Vr , for some r ∈ [1,∞) with q−1
+ r−1

≤ 1. The extension is then a continuous linear operator
b mapping Vr into Ls′(m)+ L2(m), where q−1

+ r−1
+ s−1

= 1.
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By a similar density argument as above, any derivation b could be extended uniquely to a derivation
defined on V, with values in the space L0(m). However, such an extension is not useful when dealing with
integral functionals defined initially on A, e.g., divergence or weak solutions to the continuity equation,
because these are not continuous with respect to the topology of L0(m). Therefore, we avoid in what
follows considering such an extension, except for the case in the remark above.

We conclude this section noticing that if b is a derivation in L2
+ L∞, with div b ∈ L2(m)+ L∞(m),

the following integration by parts formula can be proved by approximation with functions in A:∫
du(b) f dm=−

∫
d f (b)u dm+

∫
u f div b dm ∀ f ∈A, ∀u ∈ V. (3-3)

4. Existence of solutions to the continuity equation

Let I = (0, T ) with T ∈ (0,∞). In this section we prove existence of weak solutions to the continuity
equation

d
dt

ut + div(ut bt)= wt ut in I × X, (4-1)

under suitable growth assumptions on bt and its divergence.

Remark 4.1. Starting from this section, we always assume that A is contained in V∞, i.e., 0( f )∈ L∞(m)
for every f ∈ A. We are motivated by the examples and by the clarity that we gain in the exposition,
although some variants of our results could be slightly reformulated and proved without this assumption.

Before we address the definition of (4-1), let us remark that a Borel family of derivations b= (bt)t∈I

is by definition a map t 7→ bt , taking values in the space of derivations on X , such that t 7→ d f (bt) is
Borel in I for all f ∈A and there exists a Borel function g : I × X 7→ [0,∞) satisfying

|bt | ≤ g(t, · ) m-a.e. in X , for a.e. t ∈ I .

As in the autonomous case we denote by |b| the smallest function g (in the L1
⊗m-a.e. sense) with this

property. We say that Borel family of derivations (bt)t∈I belongs to Lr
t (L

p
x + Lq

x ) if |b| ∈ Lr
t (L

p
x + Lq

x ).

Definition 4.2 (weak solutions to the continuity equation with initial condition ū). Let p, q ∈ [1,∞],
ū ∈ L p

∩ Lq(m), let (bt)t∈I be a Borel family of derivations in L1
t (L

p′
x + Lq ′

x ) and let w ∈ L1
t (L

p′
x + Lq ′

x ).
We say that u ∈ L∞t (L

p
x ∩ Lq

x ) solves (4-1) with the initial condition u0 = ū in the weak sense if∫ T

0

∫
[−ψ ′ϕ−ψdϕ(bt)−wt ]ut dmdt = ψ(0)

∫
ϕū dm, (4-2)

for all ϕ ∈A and all ψ ∈ C1([0, T ]) with ψ(T )= 0.

As usual with weak formulations of PDEs, the definition above has many advantages, the main one
being to provide a meaning to (4-1) without any regularity assumption on u. Notice that, without the
assumption A ⊂ V∞, one could define weak solutions u ∈ L∞t (L

2
x) to the equation associated to b

in L1
t (L
∞
x ).
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In order to prove the mass-conservation property of solutions to the continuity equation we assume the
existence of ( fn)⊂A satisfying

0≤ fn ≤ 1, fn ↑ 1 m-a.e. in X,
√
0( fn) ⇀ 0 weakly-∗ in L∞(m). (4-3)

The following theorem is our main result about existence; we address the case w = 0 only, the general
case following from a Duhamel’s principle that we do not pursue here.

Theorem 4.3 (existence of weak solutions in L∞t (L
1
x ∩ L2

x)). Assume that A⊂ V∞, let ū ∈ L1
∩ Lr (m)

for some r ∈ [2,∞] and let b = (bt)t∈I be a Borel family of derivations with |b| ∈ L1
t (L

2
x + L∞x ),

div b ∈ L1
t (L

2
x + L∞x ), and div b− ∈ L1

t (L
∞
x ). Then, there exists a weakly continuous in [0, T ) (in

duality with A) solution u ∈ L∞t (L
1
x ∩ Lr

x) of (4-1) according to Definition 4.2 with u0 = ū and wt = 0.
Furthermore, if ū ≥ 0, we can build a solution u in such a way that ut ≥ 0 for all t ∈ I . Finally, if (4-3)
holds, then ∫

ut dm=
∫

ū dm ∀t ∈ [0, T ). (4-4)

To prove existence of a solution u to (4-1) with wt = 0, we rely on a suitable approximation of the
equation. Following a classical strategy, we approximate the original equation by adding a diffusion term,
i.e., we solve, still in the weak sense of duality with test functions ψ(t)ϕ(x),

∂t ut + div(ut bt)= σ1ut , (4-5)

where σ > 0. By Hilbert space techniques, we show existence of a solution with some extra regularity,
namely u ∈ L2(I ;V). We use this extra regularity to derive a priori estimates and then we take weak
limits as σ ↓ 0.

Let us remark that such a technique forces the introduction of stronger assumptions than those known
to prove existence in particular classes of spaces (e.g., Euclidean or Gaussian), where ad hoc methods are
available; here, we trade some strength in the result in favor of generality.

4A. Auxiliary Hilbert spaces. In all of what follows, we consider the Gelfand triple

V⊂ L2(m)= (L2(m))∗ ⊂ V′,

that is we regard V as a dense subspace in V′ (proper if V 6= L2(m)) by means of

φ 7→ (φ∗ : f 7→
∫

f φ dm).

Notice that this is different from the identification V∼ V′ provided by the Riesz–Fischer theorem applied
to the Hilbert space V (which has been applied to L2(m) instead).

Given a vector space F , we introduce a space of F-valued test functions on I , namely

8F := span{ψ ·φ : ψ ∈ C1([0, T ]), ψ(T )= 0, φ ∈ F}.

We notice that, for every ϕ ∈8F , the function t 7→ ϕt is Lipschitz and continuously differentiable from I
to F , and there exists ϕ0 = limt↓0 ϕt in F (while limt↑T ϕt = 0 in F by construction).
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Assuming that F is a separable Hilbert space, starting from 8F one can consider completions with
respect to different norms. The classical space

L2(I ; F), 〈ϕ, ϕ̃〉L2(F) =

∫
I
〈ϕt , ϕ̃t 〉F dt,

is indeed the closure of 8F with respect to the norm induced by the scalar product above. Similarly, the
space H 1(I ; F) is obtained by completing 8F with respect to the norm

〈ϕ, ϕ̃〉H1(F) =

∫
I
〈ϕt , ϕ̃t 〉F +

〈
d
dt
ϕt ,

d
dt
ϕ̃t

〉
F

dt.

Arguing by mollification as in the case F = Rn , it is not difficult to prove that H 1(I ; F)=W 1,2(I ; F),
where the latter space is defined as the subspace of functions ϕ ∈ L2(I ; F) such that there exists
g ∈ L2(I ; F) which represents the distributional derivative of ϕ, i.e.,∫

I

〈
ϕt ,

d
dt
ϕ̃t

〉
F

dt =−
∫ T

0
〈gt , ϕ̃t 〉F dt for every ϕ̃ ∈8F with ϕ̃0 = 0.

4B. Existence under additional ellipticity. We address now the existence of some u ∈ L2(I ;V) that
solves the following weak formulation of (4-5) with the initial condition u0 = ū:∫ T

0

∫
[−∂tϕt − dϕt(bt)]ut + σ0(ϕt , ut) dmdt =

∫
ϕ0ū dm ∀ϕ ∈8A. (4-6)

We still assume that A⊂ V∞, and that σ ∈ (0, 1/2], |b| ∈ L∞t (L
2
x + L∞x ), div b− ∈ L∞t (L

∞
x ), ū ∈ L2(m).

Notice that the assumptions on |b| and div b− are stronger than those in Theorem 4.3, but only with
respect to integrability in time.

We obtain, together with existence, the a priori estimate

‖e−λt u‖L2(I ;V) ≤
‖ū‖2
σ

with λ := 1
2 |div b−|∞+ σ. (4-7)

To this aim, we change variables setting ht = e−λt ut and we pass to the equivalent weak formulation∫ T

0

∫
[−∂tϕt + λ− dϕt(bt)]ht + σ0(ϕt , ht) dmdt =

∫
ϕ0ū dm, ∀ϕ ∈8A. (4-8)

From now on we shall use the notation m̃ for the product measure L1
⊗m in I × X . Existence of h is

a consequence of J. L. Lions’ extension of the Lax–Milgram theorem, whose statement is recalled below
[Showalter 1997, Theorem III.2.1, Corollary III.2.3] applied with H = L2(I ;V), V =8A endowed with
the norm

‖ϕ‖2V = ‖ϕ‖
2
L2(I ;V)+‖ϕ0‖

2
2, (4-9)

B(ϕ, h)=
∫
[−∂tϕ+ λϕ− dϕ(b)]h+ σ0(ϕ, h) dm̃, `(ϕ)=

∫
ϕ0ū dm.

Theorem 4.4 (Lions). Let V , H be respectively a normed and a Hilbert space, with V continuously
embedded in H , with ‖v‖H ≤ ‖v‖V for all v ∈ V , and let B : V × H → R be bilinear, with B(v, · )
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continuous for all v ∈ V . If B is coercive, namely there exists c > 0 satisfying B(v, v) ≥ c‖v‖2V for all
v ∈ V , then for all ` ∈ V ′ there exists h ∈ H such that B( · , h)= ` and

‖h‖H ≤
‖`‖V ′

c
. (4-10)

Let us start by proving continuity; to this end, let ϕ ∈ V . The linear functional h 7→ B(ϕ, h) is
L2(I ;V)-continuous for all φ ∈ V , since we can estimate |B(ϕ, h)| from above with

‖h‖L2(I ;V)
[
‖∂tϕ‖L2

t (L2
x )
+ λ‖ϕ‖L2

t (L2
x )
+‖b‖L2

t (L2
x+L∞x )

‖

√
0(ϕ)‖L∞t (L2

x∩L∞x )+ σ‖
√
0(ϕ)‖L2

t (L2
x )

]
.

The functional ` satisfies ‖`‖V ′ ≤ ‖ū‖2, immediately from the definition of ‖ · ‖V in (4-9).
To conclude the verification of the assumptions of Theorem 4.4, we show coercivity (here the change

of variables we did and the choice of λ play a role):∫
[λϕ− dϕ(b)]ϕ dm̃= λ‖ϕ‖2L2

t (L2
x )
−

1
2

∫
dϕ2(b) dm̃

≥ λ‖ϕ‖2L2
t (L2

x )
−

1
2

∫
ϕ2 div b− dm̃

≥
(
λ− 1

2‖ div b−‖∞
)
‖ϕ‖2L2

t (L2
x )
= σ‖ϕ‖2L2

t (L2
x )
.

(4-11)

Since ϕ ∈ V = 8A, we obtain ∂tϕ
2
t = 2ϕt∂tϕt and

∫
−2ϕt∂ϕ dm̃ =

∫
ϕ2

0 dm. Hence, inequality (4-11)
entails that∫

[−∂tϕ+ λϕ− dϕ(b)]ϕ+ σ0(ϕ) dm̃≥ 1
2

∫
ϕ2

0 dm+ σ‖ϕ‖2L2
t (L2

x )
+ σ‖

√
0(ϕ)‖2L2

t (L2
x )
,

Since σ ≤ 1
2 , it follows from these two inequalities that

B(ϕ, ϕ)≥ σ‖ϕ‖2V . (4-12)

Finally, (4-7) follows at once from (4-10) and (4-12), taking into account that ‖`‖V ′ ≤ ‖ū‖2.

4C. A priori estimates. In this section we still consider weak solutions to∫ T

0

∫
−[∂tϕt + dϕt(bt)]ut + σ0(ϕt , ut) dmdt =

∫
ϕ0ū dm ∀ϕ ∈8A, (4-13)

obtained in the previous section. In order to state pointwise in time Lr estimates in space, we use the
following remark.

Remark 4.5 (equivalent formulation). Assuming A ⊂ V∞, u ∈ L2(I ;V) and |b| ∈ L1
t (L

2
x + L∞x ), an

equivalent formulation of (4-13), in terms of absolute continuity and pointwise derivatives w.r.t. time, is
the following: we are requiring that, for every f ∈A, t 7→

∫
f ut dm is absolutely continuous in I and

that its a.e. derivative in I is
∫
(d f (bt)ut + σ0( f, ut)) dm. In addition, the Cauchy initial condition is

encoded by
lim
t↓0

∫
f ut dm =

∫
f ū dm for every f ∈A (4-14)

(notice also that ū is uniquely determined by (4-14), thanks to the density of A in L2(m)).
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Indeed, it is clear that the definition above implies the formula for the distributional derivative, because
for absolutely continuous functions the two concepts coincide; the converse can be obtained using the
set D of Lemma 2.3 to redefine ut in a negligible set of times in order to get a weakly continuous
representative in the duality with A; see [Ambrosio et al. 2005, Lemma 8.1.2] for details.

We prove, by a suitable approximation, the following result:

Theorem 4.6. Assume that A ⊂ V∞, |b| ∈ L∞t (L
2
x + L∞x ), div b ∈ L∞t (L

2
x + L∞x ), div b− ∈ L∞t (L

∞
x ),

and that the initial condition ū belongs to L p
∩ Lq(m), with 1 ≤ p ≤ 2 ≤ q ≤∞. Then there exists a

weakly continuous (in duality with A) solution

u ∈ L∞t (L
p
x ∩ Lq

x )∩ L2(I ;V)

to (4-13) satisfying

sup
(0,T )
‖u±t ‖r ≤ ‖ū

±
‖r exp

((
1− 1

r

)
‖div b−‖L1

t (L∞x )

)
, (4-15)

for every r ∈ [p, q]. In particular, if ū ≥ 0, then ut ≥ 0 for all t ∈ (0, T ).

At this stage, it is technically useful to introduce another formulation of the continuity equation, suitable
for V-valued solutions u, with the derivation acting on u.

Remark 4.7 (transport weak formulation). Using (3-3) we obtain an equivalent weak formulation of
(4-13), namely∫ T

0

∫
−ut∂tϕt + dut(bt)ϕt + utϕt div bt + σ0(ϕt , ut) dmdt =

∫
ϕ0ū dm, ∀ϕ ∈8A. (4-16)

Remark 4.8 (basic formal identity). Before we address the proof of the a priori estimates, let us remark
that these, and uniqueness as well, strongly rely on the formal identity

d
dt

∫
β(ut) dm =−

∫
[β ′(ut)ut −β(ut)] div bt dm, (4-17)

which comes from chain rule in (4-2) and the formal identity
∫

div(β(ut)bt)= 0. To establish existence,
however, this computation is made rigorous by approximating the PDE (by vanishing viscosity, in
Theorem 4.6, or by other approximations), while to obtain uniqueness in Section 5B we approximate u.
In both cases technical assumptions on b will be needed.

A natural choice in (4-17) is a convex “entropy” function β : R→ R with β(0)= 0. In order to give a
meaning to the identity (4-17) also when β is not C1 (z 7→ z+ will be a typical choice of β) we define

Lβ(z) :=
{

zβ ′
+
(z)−β(z) if z ≥ 0,

zβ ′
−
(z)−β(z) if z ≤ 0,

(4-18)

where we write β ′
±
(z) := limy→z± β

′(y). Notice that the convexity of β and the condition β(0)= 0 give
that Lβ is nonnegative; for instance, if z ≥ 0, there holds

β(0)= 0≥ β(z)− zβ ′
−
(z)≥ β(z)− zβ ′

+
(z).

The argument for z ≤ 0 follows from Lβ̃(−z)= Lβ(z), where β̃(z)= β(−z).
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In order to approximate β with functions with linear growth in R, we will consider the approximations

βn(z) :=


β(−n)+β ′

−
(−n)(z+ n) if z <−n,

β(z) if −n ≤ z ≤ n,
β(n)+β ′

+
(n)(z− n) if z > n,

(4-19)

that satisfy Lβn (z)= Lβ(−n ∨ z ∧ n), so that Lβn ↑ Lβ as n→∞. On the other hand, in order to pass
from smooth to nonsmooth β, we will also need the following property, whose proof is elementary and
motivates our precise definition of Lβ in (4-18):

lim sup
i→∞

Lβi ≤ Lβ whenever βi are convex, βi → β uniformly on compact sets. (4-20)

Proof of Theorem 4.6. By Remark 4.5 we can assume with no loss of generality that t 7→ ut is weakly
continuous in [0, T ), in the duality with A.

We assume first that a weak solution u satisfies the strong continuity property

lim
t↓0

ut = ū in L2(m). (4-21)

We shall remove this assumption at the end of the proof.
We claim that, for any convex function β : R→ [0,∞) where β(0)= 0 and β ′(z)/z is bounded on R,

the inequality
d
dt

∫
β(ut) dm ≤

∫
Lβ(ut) div b−t dm (4-22)

holds in the sense of distributions in (0, T ). The assumption on the behavior of β near to the origin
is needed to ensure that both β(u) and Lβ(u) belong to L2

t (L
1
x), since at present we only know that

u ∈ L2
t (L

2
x). By approximation, taking (4-19) and (4-20) into account, we can assume with no loss of

generality that β ∈ C1 with bounded derivative.
In the proof of (4-22), motivated by the necessity to get strong differentiability w.r.t. time, we shall use

the regularization us
t := Psut and the following elementary remark [Showalter 1997, Prop. III.1.1].

Remark 4.9. Let X be a Banach space and let f, g ∈ L1((0, T ); X) satisfy ∂t f = g in the weak sense,
namely

−

∫ T

0
ψ ′(t)

∫
φ( f ) dmdt =

∫ T

0
ψ(t)

∫
φ(g) dmdt,

for every ψ ∈ C1
c (0, T ), φ ∈ D ⊂ X∗, dense w.r.t. the σ(X∗, X) topology. Then, f admits a unique

absolutely continuous representative from I to X and this representative is strongly differentiable a.e. in
I , with derivative equal to g.

Notice that X may not have the Radon–Nikodym property so that it might be the case that not all
absolutely continuous maps with values in X are strongly differentiable a.e. in their domain. Indeed, we
are going to apply it with X = L1(m)+ L2(m), so that X∗ = L2

∩ L∞(m), and D=A.
It is immediate to check, replacing ϕ in (4-16) by Psϕ and using (3-3), that for any s > 0 the function

t 7→ us
t solves

d
dt

us
t + div(bt us

t )= σ1us
t +Cs

t
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in the weak sense of duality with A, where Cs
t is the commutator between semigroup and divergence,

namely
Cs

t := div(bt us
t )−Ps(div(bt ut)).

Therefore, using (3-3) once more and expanding

Cs
t = us

t div bt + dus
t (bt)−Ps(ut div bt)−Ps(dut(bt))

we may use the assumption div b ∈ L∞t (L
2
x + L∞x ) and the continuity of derivations to obtain that

Cs
t → 0 strongly in L2

t (L
1
x + L2

x) as s ↓ 0. Similarly, expanding div(bt us
t ) = us

t div bt + dus
t (bt) and

using the regularization estimate (2-13) to estimate the Laplacian term in the derivative of ut , we obtain
d
dt us

t ∈ L2
t (L

1
x + L2

x) in the weak sense of duality with A; therefore by Remark 4.9, t 7→ us
t is strongly

(L1
+ L2)-differentiable a.e. in (0, T ) and absolutely continuous.

Since β is convex, we can start from the inequality∫
β(us

t ) dm−
∫
β(us

t ′) dm ≤
∫
β ′(us

t )(u
s
t − us

t ′) dm

and use the uniform boundedness of β ′(z) and of β ′(z)/z to obtain that β ′(us
t ) ∈ L2

t (L
2
x ∩ L∞x ); hence∫

β(us
t ) dm−

∫
β(us

t ′) dm≤ g(t)
∣∣∣∣∫ t

t ′

∥∥∥∥ d
dr

us
r

∥∥∥∥
L1+L2

dr
∣∣∣∣

with g(t) = ‖β ′(us
t )‖L2∩L∞ ∈ L2(0, T ). Since (again by the convexity of β) t 7→

∫
β(us

t ) dm is lower
semicontinuous, a straightforward application of a calculus lemma [Ambrosio et al. 2014b, Lemma 2.9]
entails that t 7→

∫
β(us

t ) dm is absolutely continuous in (0, T ) and that

d
dt

∫
β(us

t ) dm=
∫
β ′(us

t )
[
− div(bt us

t )+ σ1us
t +Cs

t
]

dm for a.e. t ∈ (0, T ). (4-23)

Since β(us
t ) ∈ V we get

∫
β ′(us

t )1us
t dm = −

∫
β ′′(us

t )0(u
s
t ) dm ≤ 0, hence we may disregard this

term. Using the chain rule twice and div b ∈ L2
t (L

2
x + L∞x ), Lβ(u) ∈ L2

t (L
1
x) gives

d
dt

∫
β(us

t ) dm ≤ −
∫
β ′(us

t )u
s
t div bt + dβ(us

t )(bt) dm+
∫
β ′(us

t )C
s
t dm

=−

∫
(β ′(us

t )u
s
t −β(u

s
t )) div bt dm+

∫
β ′(us

t )C
s
t dm

≤

∫
(β ′(us

t )u
s
t −β(u

s
t )) div b−t dm+

∫
β ′(us

t )C
s
t dm.

Eventually, since β ′(us
t ) are bounded in L2

t (L
2
x ∩ L∞x ), uniformly w.r.t. s, we let s ↓ 0 to obtain (4-22)

(convergence of the first term in the right-hand side follows from dominated convergence and convergence
in L2(m) of us

t → ut ).
We now prove (4-15). Let r ∈ [p, q], let β(z)= (z+)r and notice that Lβ(z)= (r−1)β(z). We cannot

apply (4-22) directly to β, because β ′(z)/z is unbounded near 0. If r < 2, we let
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βn(z) :=


(z+)2

2ε2−r if z ≤ ε,

(z+)r − ε
r

2
if z ≥ ε,

where ε = 1/n, so that βn are convex, β ′n(z)/z is bounded, Lβn ≤ βn , and βn→ β as n→∞.
If r ≥ 2, we use the approximations βn in (4-19), that satisfy Lβn (z)=Lβ(z∧ n), so that we still have

Lβn ≤ (r − 1)βn , and β ′n(z)/z is bounded.
Now, in both cases it is sufficient to apply Gronwall’s lemma to the differential inequality (4-22) with

β = βn (here we use the assumption (4-21) to ensure that the value at 0 is the expected one) and then let
n→∞ to conclude with Fatou’s lemma.

The correspondent inequalities for β(z)= (z−)r are settled similarly.
Finally, the assumption (4-21) can be removed by considering the solutions uεt relative to the same

initial condition and to the derivations

bεt :=
{

bt if t ∈ [ε, T ),
0 if t ∈ (0, ε).

Since uεt coincides with Pσ t ū for t ∈ (0, ε), (4-21) is fulfilled. Then, we can take weak limits in
L∞t (L

p
x ∩ Lq

x )∩ L2(I ;V) as ε ↓ 0 to obtain a function u satisfying the desired properties. �

4D. Vanishing viscosity and proof of Theorem 4.3. Let b= (bt)t∈I and ū ∈ L1
∩ Lr (m) (r ≥ 2) satisfy

the assumptions of Theorem 4.3. Let δ > 0, let ρ be a mollifying kernel in C1
c (0, 1) and set bδt :=∫ 1

0 bt+sδρ(s) ds (where bt = 0 for t > T ), i.e., we let

ϕ 7→ dϕ(bδt )=
∫ 1

0
dϕ(bt+sδ)ρ(s) ds.

Since |b| ∈ L1
t (L

2
x), div b ∈ L1

t (L
2
x + L∞x ), it follows that |bδ| ∈ L∞t (L

2
x), div bδ ∈ L∞t (L

2
x + L∞x ) and the

assumption div b−∈ L1
t (L

1
x∩L∞x ) entails (div bδ)−∈ L∞t (L

1
x∩L∞x ). Moreover, as δ↓0, dϕ(bδ) converges

to dϕ(b) in L1
t (L

2
x + L∞x ), for every ϕ ∈A and ‖(div bδ)−‖L1

t (L∞x )
converges to ‖(div b)−‖L1

t (L∞x )
.

For fixed δ > 0, consider a sequence un
= uδ,n of solutions to (4-13) with bδ in place of b, σ = 1/n,

n ≥ 2, as provided by Theorem 4.6 with p = 1 and q = r , and notice that (4-7) gives

1
n
‖e−(1+λ)t un

‖L2(I ;V) ≤ ‖ū‖2,

so that vn
:= un/n is bounded in L2(I ;V). We would like to pass to the limit as n→∞ in∫ T

0

∫
−
[
∂tϕt + dϕt(bδt )

]
un

t +0(ϕt , v
n
t ) dmdt =

∫
ϕ0ū dm ∀ϕ ∈8A. (4-24)

Inequality (4-15) entails that (un)n is bounded in L∞t (L
1
x ∩ Lr

x), so vn weakly converges to 0 in L2(I ;V).
In addition, there exists a subsequence n(k) such that (un(k))k converges, in duality with L1

t (L
2
x + L∞x ),

to some u := uδ ∈ L∞t (L
1
x ∩ Lr

x). This gives that uδ is a weak solution to the continuity equation with bδ

in place of b.
We then let δ ↓ 0 and again extract a subsequence δ(k) such that (uδ(k))k converges, in duality with
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L1
t (L

r ′
x + L∞x ), to some u := L∞t (L

1
x ∩ Lr

x) and is a weak solution to the continuity equation, thus
concluding the proof of Theorem 4.3, except for conservation of mass.

Finally, we prove conservation of mass for any weak solution to the continuity equation, assuming the
existence of fn ∈A as in (4-3). The proof is based on the simple observation that our assumptions on b
and u imply c := ub ∈ L1

t (L
1
x), and therefore

lim
n→∞

∫ T

0

∫
|d fn(ct)| dmdt = 0.

Since

lim
n→∞

∫
ut fn dm=

∫
ut dm ∀t ∈ [0, T ), and

d
dt

∫
ut fn dm=

∫
d fn(ct) dm,

we conclude that
∫

ut dm=
∫

ū dm for all t ∈ [0, T ).

5. Uniqueness of solutions to the continuity equation

In this section, we provide conditions that ensure uniqueness, in certain classes, for the continuity equation;
these involve further regularity of b, expressed in terms of bounds on its divergence and its deformation
(introduced below), density assumptions of A in Vp and the validity of inequalities which correspond, in
the smooth setting, to integral bounds on the gradient of the kernel of P.

Definition 5.1 (L p-0 inequality). Let p ∈ [1,∞]. We say that the L p-0 inequality holds if there exists
cp > 0 satisfying

‖
√
0(Pt f )‖p ≤

cp
√

t
‖ f ‖p for every f ∈ L2

∩ L p(m), t ∈ (0, 1).

Although the L p-0 inequality is expressed for t ∈ (0, 1), from its validity and L p contractivity of P,
we easily deduce that

‖
√
0(Pt f )‖p ≤ cp(t ∧ 1)−1/2

‖ f ‖p for every f ∈ L2
∩ L p(m), t ∈ (0,∞). (5-1)

Notice also that, thanks to (2-12), the L2-0 inequality always holds, with c2 = 1/
√

2. By Marcinkiewicz
interpolation, we obtain that if the L p-0 inequality holds then, for every q between 2 and p, the Lq-0
inequality holds as well.

Definition 5.2 (derivations with deformations of type (r, s)). Let q ∈ [1,∞], let b be a derivation in
Lq
+ L∞ with div b ∈ Lq(m)+ L∞(m), let r, s ∈ [1,∞] with q−1

+ r−1
+ s−1

= 1 and assume that A
is dense both in Vr and in Vs . We say that the deformation of b is of type (r, s) if there exists c ≥ 0
satisfying ∣∣∣∣∫ Dsymb( f, g) dm

∣∣∣∣≤ c‖
√
0( f )‖r‖

√
0(g)‖s, (5-2)

for all f ∈ Vr with 1 f ∈ Lr
∩ L2(m) and all g ∈ Vs with 1g ∈ Ls

∩ L2(m), where∫
Dsymb( f, g) dm := −1

2

∫
[d f (b)1g+ dg(b)1 f − (div b)0( f, g)] dm. (5-3)

We let ‖Dsymb‖r,s be the smallest constant c in (5-2).
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The density assumption of A in Vr and Vs is necessary to extend the derivation b to all of Vr and Vs ,
by Remark 3.7. Notice that the expression

∫
Dsymb( f, g) dm is symmetric with respect to f , g, so the

role of r and s above can be interchanged.

Remark 5.3 (deformation in the smooth case). Let (X, 〈 · , · 〉) be a compact Riemannian manifold, let m
be its associated Riemannian volume and let 0( f, g)= 〈∇ f,∇g〉. Let d f (b)= 〈b,∇ f 〉 for some smooth
vector field b and let Db be the covariant derivative of b. The expression

〈∇g,∇〈b,∇ f 〉〉+ 〈∇ f,∇〈b,∇g〉〉− 〈b,∇〈∇ f,∇g〉〉 = 〈Db∇g,∇ f 〉+ 〈Db∇ f,∇g〉

gives exactly twice the symmetric part of the tensor Db, namely 2〈Dsymb f, g〉. Integrating over X and
then integrating by parts, we obtain twice the expression in (5-3), so that the derivation b associated to a
smooth field b is of type (r, s) if |Dsymb| ∈ Lq(m), where q ∈ [1,∞] satisfies q−1

+ r−1
+ s−1

= 1.

Theorem 5.4 (uniqueness of solutions). Let 1 < s ≤ r <∞, q ∈ (1,∞] satisfy q−1
+ r−1

+ s−1
= 1.

Assume the existence of ( fn) ⊂ A that satisfy (4-3) and that, for p ∈ {r, s}, A is dense in Vp and the
L p-0 inequality holds. Let b= (bt)t∈(0,T ) be a Borel family of derivations, with

|b| ∈ L1
t (L

q
x + L∞x ), div b ∈ L1

t (L
q
x + L∞x ), div b− ∈ L1

t (L
∞

x ) and ‖Dsymbt‖r,s ∈ L1(0, T ).

Then, for every initial condition ū ∈ Lr
∩ L2(m), there exists at most one weak solution u in (0, T )× X to

the continuity equation dut/dt + div(ut bt)= 0 in the class

{u ∈ L∞t (L
r
x ∩ L2

x) : t 7→ ut is weakly continuous in [0, T ) and u0 = ū}.

The proof of this result is given in Section 5B and relies upon the strong convergence to 0 as α ↓ 0 of
the commutator between divergence and action of the semigroup

Cα(ut , bt) := div((Pαut)bt)−Pα(div(ut bt)), (5-4)

proved in Lemma 5.8 in the next section. We end this section with some comments on the density
assumption on A.

Remark 5.5 (on the density of A in Vp). The assumption that A⊂Vp is dense for p∈{r, s} is fundamental
to show that the semigroup approximation t 7→ Pαut is a solution to another continuity equation, (5-14)
below. This follows by the extension of the derivation on Vp provided by Remark 3.7. One could argue
that the invariance condition (2-20) is sufficient to define b(Pα f ), whenever f ∈A; indeed Theorem 5.4
holds, assuming (2-20) in place of the density of A in Vp, and the same proof goes through, with minor
modifications (e.g., in Definition 5.2 above we require f , g ∈A). In view of Remark 2.4, one could also
wonder whether (2-20) and the L p-0 inequality are sufficient to entail density in Vp; the next lemma
provides a partial affirmative answer (see Proposition 6.5 for an application of the lemma, assuming
curvature lower bounds).

Lemma 5.6. Let p ∈ [2,∞), assume that (2-20) and the L p-0 inequality hold and that

lim sup
t↓0
‖
√
0(Pt f )‖p ≤ ‖

√
0( f )‖p for every f ∈ Vp. (5-5)

Then, A is dense in Vp.
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Proof. Let f ∈ Vp. Notice first that, since Pt f converges to f in V as t ↓ 0, Fatou’s lemma gives

‖
√
0( f )‖p ≤ lim inf

t↓0
‖
√
0(Pt f )‖p

which combined with (5-5) gives convergence of 0(Pt f )1/2 to 0( f )1/2 in L p(m).
To prove density, we let f ∈Vp and consider the functions 8n :R→R, with derivative φn , introduced

in Lemma 2.2; since, by the chain rule, the 8n( f ) converge to f in Vp, it is sufficient to approximate
each 8n( f ) in Vp with elements of A.

We first show that limt↓08n(Pt f )=8n( f ) in Vp. Since convergence in V and in L p(m) is obvious,
we prove 0(8n(Pt f )−8n( f ))1/2→ 0 in L p(m). We let h1 = Pt f and h2 = f in (2-19) to get

0(8n(Pt f )−8n( f ))1/2 ≤ |φn(Pt f )−φn( f )|0( f )1/40(Pt f )1/4+φn( f )0(Pt f − f )1/2

+ 2|φn(Pt f )−φn( f )|1/20( f )1/4(0( f )1/4+0(Pt f )1/4). (5-6)

To handle the integral of the p-power of the term φn( f )0(Pt f − f )1/2 we notice that, since 0(Pt f )1/2

converges to 0( f )1/2 in L p(m), they converge also in L p(m′) with m′ = φn( f )pm. Because m′ is
finite we obtain that 0(Pt f )p/2 are equiintegrable with respect to m′, and then the Lebesgue–Vitali
convergence ensures convergence to 0. The first term can be handled similarly, by adding and sub-
tracting |φn(Pt f ) − φn( f )|p0( f )p/40( f )p/4 and using dominated convergence, since 0 ≤ φn ≤ 1;
the integral of the p-th power of the last term can be estimated with dominated convergence for∫
|φn(Pt f ) − φn( f )|p/20( f )p/2 dm and with the same argument as we used for the first term for∫
|φn(Pt f )−φn( f )|p/20( f )p/40(Pt f )p/4 dm.
We proceed then to approximate 8n(Pt f ) in Vp by elements of A, at fixed n ≥ 1 and t > 0. Let

( fk)⊂A converge to f in L2
∩ L p(m). We show that 8n(Pt fk) converge to 8n(Pt f ) in Vp. Notice that

8n(Pt fk) belong to A, because of (2-20) and (2-17). Since convergence in L2
∩L p(m) holds, convergence

in Vp follows again by (2-19) with h1 = Pt fk and h2 = Pt f , because

0(8n(Pt fk)−8n(Pt f ))1/2 ≤ |φn(Pt fk)−φn(Pt f )|0(Pt f )1/40(Pt fk)
1/4
+φn(Pt f )0(Pt fk −Pt f )1/2

+ 2|φn(Pt fk)−φn(Pt f )|1/20(Pt f )1/4(0(Pt fk)
1/4
+0(Pt f )1/4).

By the L2-0 inequality and the L p-0 inequality, 0(Pt fk)
1/2 converges to 0(Pt f )1/2 in L2

∩ L p(m) as
k→∞ and we can argue as we did in connection with (5-6) to obtain that 0(8n(Pt fk)−8n(Pt f ))1/2→ 0
in L p(m). �

Actually, the proof above entails the following result. Let p ∈ [1,∞), assume that the L p-0 inequality
holds, and let A⊂ V satisfy (2-17), (2-20), (5-5), and be dense in L2

∩ L p(m). Then A is dense in Vp.
Finally, notice that this gives another proof of Remark 2.4.

5A. The commutator lemma. We first collect some easy consequences of the Lr -0 inequality, for some
r ∈ (1,∞), which allow for an approximation of the derivation b, via the action of Pα, as expressed in
the next proposition. We denote by Bα the linear operator thus obtained, to stress the fact that it is not a
derivation.
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Proposition 5.7. Let r, s ∈ (1,∞), q ∈ (1,∞] satisfy q−1
+ r−1

+ s−1
= 1. Let b be a derivation in

Lq
+ L∞ and assume that A⊂ Vr is dense and that the Lr -0 inequality holds.

(1) For every α ∈ (0,∞), the map
A 3 f 7→ d(Pα f )(b)

extends uniquely to Bα ∈ L(Lr
∩ L2(m), Ls′(m)+ L2(m)), with

‖Bα‖ ≤max{cr , c2}(α∧ 1)−1/2
‖b‖Lq+L∞ . (5-7)

(2) For all f ∈ Lr
∩ L2(m) the map α 7→ Bα( f ) is continuous from (0,∞) to Ls′(m)+ L2(m) and, if

1 f ∈ Lr
∩ L2(m), it is C1((0,∞); Ls′(m)+ L2(m)), with

d
dα

Bα( f )= Bα(1 f ).

(3) Assume that u ∈ Lr
∩ L2(m), div b ∈ Lq(m)+ L∞(m). Then,

div(β(Pαu)b)= β(Pαu) div b+β ′(Pαu)Bα(u) ∈ Ls′(m)+ L2(m) (5-8)

for all α > 0 and all β ∈ C1(R)∩Lip(R) with β(0)= 0. In particular (5-8) with β(z)= z gives

div((Pαu)b)= (Pαu) div b+Bα(u) ∈ Ls′(m)+ L2(m). (5-9)

(4) Assume u ∈ Lr
∩ L2(m) and div b ∈ Lq(m)+ L∞(m). Then Cα(Pδu, b) ∈ Ls′(m)+ L2(m) for every

δ > 0 and
lim
α↓0
‖Cα(Pδu, b)‖Ls′+L2 = 0. (5-10)

Proof. (1) By Remark 3.7, if c is a derivation in Lq , then we can extend it to a linear operator on Vr , thus
d(Pα f )(c) is well-defined. Since the Lr -0 inequality holds for every f ∈A, we get

‖d(Pα f )(c)‖s′ ≤ ‖c‖q‖
√
0(Pα f )‖r ≤ cr (α∧ 1)−1/2

‖c‖q‖ f ‖r .

Analogously, if c is a derivation in L∞, d(Pα f )(c) is well-defined and there holds

‖d(Pα f )(c)‖2 ≤ ‖c‖∞‖
√
0(Pα f )‖2 ≤ c2(α∧ 1)−1/2

‖c‖∞‖ f ‖2.

This gives ‖Bα( f )‖Ls′+L2 ≤ max{cr , c2}(α ∧ 1)−1/2
‖b‖Lq+L∞‖ f ‖Lr∩L2 on A. By density of A in

Lr
∩ L2(m), this provides the existence of Bs and the estimate on its norm.

(2) The semigroup law and the uniqueness of the extension give

Bα+σ ( f )= Bα(Pσ f ) for every f ∈ Lr
∩ L2(m), α, σ ∈ (0,∞).

Then, continuity follows easily, combining identity with (5-7) and the strong continuity of Ps :

‖Bα+σ ( f )−Bα( f )‖Ls′+L2 ≤max{cr , c2}(α∧ 1)−1/2
‖b‖Lq+L∞‖Pσ f − f ‖Lr∩L2 .

A similar argument shows differentiability if 1 f ∈ Lr
∩ L2(m).

(3) We obtain (5-9) by (3-3). By the chain rule, the identity (5-8) follows.
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(4) To prove that Cα(Pδu, b) ∈ Ls′(m)+ L2(m), it is sufficient to apply (5-9) twice, to get

−Cα(Pδu, b)= Pα[(Pδu) div b] +Pα(B
δ(u))− (Pα+δu) div b−Bα+δ(u) ∈ Ls′(m)+ L2(m).

By strong continuity of α 7→ Pα at α = 0 and continuity of α 7→ Bα(u) in (0,∞), the same expression
shows that Cα(Pδu, b)→ 0 in Ls′(m)+ L2(m) as α ↓ 0. �

We are now in a position to state and prove the following crucial lemma.

Lemma 5.8 (commutator estimate). Let r, s ∈ (1,∞), q ∈ (1,∞] satisfy q−1
+ r−1

+ s−1
= 1. Let b be

a derivation in Lq
+ L∞ with div b ∈ Lq(m)+ L∞(m) and deformation of type (r, s). Assume that A is

dense in Vp and that the L p-0 inequality holds for p ∈ {r, s}. Then

‖Cα(u, b)‖Ls′+L2 ≤ c‖u‖Lr∩L2
[
‖Dsymb‖r,s +‖div b‖Lq+L∞

]
(5-11)

for all u ∈ Lr
∩ L2(m) and all α ∈ (0, 1), where c is a constant depending only on the constants cr and cs

in (5-1) and the constants c1r and c1s in (2-14). Moreover, Cα(u, b)→ 0 in Ls′(m)+ L2(m) as α ↓ 0.

Proof. For brevity, we introduce the notation gα := Pαg. By duality and density, inequality (5-11) is
equivalent to the validity of∫

d f α(b)u dm −
∫

d f (b)uα dm≤ c
[
‖Dsymb‖r,s +‖div b‖Lq+L∞

]
‖u‖Lr∩L2‖ f ‖Ls∩L2, (5-12)

for every f of the form f = Pεϕ, for some ϕ ∈A, ε > 0. Since both sides are continuous in u with respect
to Lr

∩ L2(m) convergence, it is also enough to establish it in a dense set; we therefore let u = Pδv for
some v ∈A, δ > 0.

We also notice that, by Proposition 5.7, we know that for such a choice of u, Cα(u, b) → 0 in
Ls′(m)+ L2(m) as α ↓ 0. Thus, once (5-11) is obtained, the same convergence as α ↓ 0 holds for every
u ∈ Lr

∩ L2(m), from a standard density argument.
Then, we have to estimate∫

d f α(b)u dm −
∫

d f (b)uα dm = F(α)− F(0),

where we let F(σ ) =
∫

d f σ (b)uα−σ dm, for σ ∈ [0, α]. Our assumption on f = Pεϕ entails, via
Proposition 5.7, that the map σ 7→ d f σ (b)= Bε(ϕσ ) is C1([0, α], Ls′(m)+ L2(m)), with

d
dσ
[d f σ (b)] = Bε(1ϕσ ).

On the other hand, (2-14) entails that1u=1Pδv ∈ Lr
∩L2(m) and so σ 7→ uσ in C1([0, α], Lr

∩L2(m)).
Thus, we are in a position to apply the Leibniz rule to obtain

F(α)− F(0)=
∫ α

0

(∫
Bε(1ϕσ )uα−σ − d f σ (b)1uα−σ dm

)
dσ.

By applying (5-9) with 1ϕσ in place of u, we integrate by parts to obtain∫
Bε(1ϕσ )uα−σ dm =−

∫
1 f σ duα−σ (b)+ (div b)(1 f σ )uα−σ dm.
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We now estimate separately the terms

I := −
∫
1 f σ duα−σ (b)+ d f σ (b)1uα−σ dm, II := −

∫
(div b)(1 f σ )uα−σ dm,

at fixed σ ∈ (0, α) and then integrate over σ .
To handle the first term, we add and subtract

∫
(div b)0( f σ , uα−σ ) dm, and thus recognize twice the

deformation of b, applied to f σ and uα−σ , which are admissible functions in the sense of Definition 5.2,
because of (5-1) and (2-14):

I = 2
∫

Dsymb( f σ , uα−σ ) dm −
∫
(div b)0( f σ , uα−σ ) dm.

We use the assumption on Dsymb, div b and Lr -0 and Ls-0 as well as L2-0 inequalities to obtain that

|I | ≤
[
2‖Dsymb‖r,s +‖div b‖Lq+L∞

] c
√
α(α− σ)

‖ f ‖Ls∩L2‖u‖Lr∩L2,

with c = cr + cs + c2. To handle integration over σ ∈ (0, α), we use∫ α

0

dσ
√
σ(α− σ)

= π.

To estimate the second term, we add and subtract∫
(div b)(1 f σ )uα dm = d

dσ

∫
(div b) f σuα dm,

obtaining

II =
∫
(div b)(1 f σ )(uα − uα−σ ) dm − d

dσ

∫
(div b) f σus dm.

We then estimate the first part of II by means of (2-14) and Corollary 2.1, to get

c1

σ
min

{
2, c1 log

(
1+ σ

α−σ

)}
‖ f ‖Ls∩L2‖u‖Lr∩L2,

with c1 = c1s + c1r + c12 .
The remaining part of II is estimated once we integrate over σ ∈ (0, α), as

−

∫ α

0

d
dσ

∫
(div b) f σuα dmdσ =

∫
div b( f − f α)uα ≤ 2‖div b‖Lq+L∞‖ f ‖Ls∩L2‖u‖Lr∩L2 .

To conclude, we notice that∫ α

0
min

{ 2
σ
,

c1

σ
log
(

1+ σ

α−σ

)}
dσ ≤max{2, c1}

∫ α

0
min

{ 1
σ
,

1
α−σ

}
dσ = 2 log 2 max{2, c1};

thus the proof of (5-12) is complete. �

Remark 5.9 (time-dependent commutator estimate). By integrating the commutator estimate with respect
to time, we can achieve a similar estimate for time-dependent derivations b of type (r, s) satisfying

|b| ∈ L1
t (L

q
x + L∞x ), div b ∈ L1

t (L
q
x + L∞x ) and ‖Dsymbt‖r,s ∈ L1(I ),
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still assuming the validity of the L p-0 inequalities for p ∈ {r, s}:∫
I
‖Cα(ut , bt)‖Ls′+L2 dt ≤ c‖u‖L∞t (Lr

x∩L2
x )

∫
I
‖Dsymbt‖r,s +‖div bt‖Lq+L∞ dt

for all u ∈ L∞t (L
r
x ∩ L2

x) and α ∈ (0,∞). Moreover, dominated convergence gives

lim
α↓0

∫
I
‖Cα(ut , bt)‖Ls′+L2 dt = 0. (5-13)

5B. Proof of Theorem 5.4. The proof of Theorem 5.4 is similar to that of Theorem 4.6, but it crucially
exploits Lemma 5.8 to show that the error terms are negligible.

Let ( fn)⊂A be a sequence given by (4-3). Starting from |z|1+r/s , we define β as in (4-19), namely

β(z) :=


1+ r+s

s
(z− 1) if z > 1,

|z|1+r/s if |z| ≤ 1,

1− r+s
s
(z+ 1) if z <−1,

so that Lβ ≤ (r/s)β and β has linear growth at infinity.
By the linearity of the equation we can assume ū= 0 and the goal is to prove that u= 0. We first extend

the time interval I = (0, T ) to (−1, T ), setting bt = 0 for t ∈ (−1, 0) and given the weakly continuous (in
duality with A) solution in [0, T ), with u ∈ L∞(Lr

x ∩ L2
x), we extend it to a weakly continuous solution

in (−1, T ), setting ut = 0 for t ∈ (−1, 0).
For every α > 0, let uαt = Pαut ∈ L∞(Lr

x ∩ L2
x). As in the proof of Theorem 4.6, replacing ϕ in (4-16)

by Psϕ (recall Remark 5.5), we can check that t 7→ uαt is a weakly continuous solution to the continuity
equation

∂t uαt + div(uαt bt)= Cα(ut , bt). (5-14)

By (5-9) in Proposition 5.7 and (5-11) in Lemma 5.8, this equation entails that

d
dt

uαt = Cα(ut , bt)− div(uαt bt) ∈ L1
t (L

s′
x + L2

x),

for a.e. t ∈ (−1, T ). Since t 7→
∫

fnβ(uαt ) dm is lower semicontinuous (because β is convex and t 7→ ut

is weakly continuous) and since |β ′(z)| ∼ |z|r/s near the origin and r ≥ s imply that β ′(uαt ) is uniformly
bounded in Ls

∩ L2(m), we can argue as in the proof of (4-23) to obtain that t 7→
∫

fnβ(uαt ) dm is
absolutely continuous and

d
dt

∫
fnβ(uαt ) dm=

∫
fnβ
′(uαt )

d
dt

uαt dm=
∫

fnβ
′(uαt )C

α(uαt , bt)− fnβ
′(uαt ) div(uαt bt) dm,

for a.e. t ∈ I . Now, setting 9n(t, α) :=
∫

fnβ(uαt ) dm, identities (5-8) and (5-9) in Proposition 5.7 give

d
dt
9n(t, α)=

∫
fnβ
′(uαt )C

α(uαt , bt) dm−
∫

fn div(β(uαt )bt)+ fnLβ(uαt ) div bt dm,
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for a.e. t ∈ I . Hence, denoting L t := (r/s)‖div b−t ‖∞ ∈ L1(−1, T ), we can use the inequality Lβ ≤ (r/s)β
to get

d
dt
9n(t, α)≤ L t9n(t, α)+

∫
fnβ
′(uαt )C

α(uαt , bt) dm+
∫
β(uαt )d fn(bt) dm.

Now we let α ↓ 0 and use the strong convergence of commutators in Ls′(m)+L2(m) and the boundedness
of β ′(uαt ) in Ls

∩ L2(m) to obtain that t 7→
∫

X fnβ(ut) is absolutely continuous, and that

d
dt

∫
X

fnβ(ut) dm≤ L t

∫
X

fnβ(ut) dm+
∫
β(ut)d fn(bt) dm.

By integration, taking into account that
∫

X fnβ(ut) dm ≡ 0 on (−1, 0), we get

log
(

1
δ

∫
X

fnβ(ut) dm+ 1
)
≤ ‖L‖1+

∫ T

0

∫
β(us)d fn(bs) dmds for all t ∈ (−1, T ) and all δ > 0.

Eventually we use (4-3) and the monotone convergence theorem to obtain

log
(

1
δ

∫
X
β(ut) dm+ 1

)
≤ ‖L‖1 for all t ∈ (−1, T ) and δ > 0.

Letting δ ↓ 0 gives u = 0.

6. Curvature assumptions and their implications

In this section we add to the basic setting (2-1) a suitable curvature condition, and see the implication of
this assumption on the structural conditions of density of A in the spaces Vp and the existence of fn ∈A

in (4-3) made in the previous sections.
In the sequel K denotes a generic but fixed real number, and IK denotes the real function

IK (t) :=
∫ t

0
eKr dr =

{ 1
K
(eK t
− 1) if K 6= 0,

t if K = 0.

Definition 6.1 (Bakry–Émery conditions). We say that BE2(K,∞) holds if

0(Pt f )≤ e−2K t Pt(0( f )) m-a.e. in X , for every f ∈ V, t ≥ 0. (6-1)

We say that BE1(K,∞) holds if√
0(Pt f )≤ e−K t Pt

(√
0( f )

)
m-a.e. in X , for every f ∈ V, t ≥ 0. (6-2)

We stated both the curvature conditions for the sake of completeness only, but we remark that BE2(K,∞)

is sufficient for many of the results we are interested in this section. Obviously, BE1(K,∞) implies
BE2(K,∞); the converse, first proved by Bakry [1985], has been recently extended to a nonsmooth setting
by Savaré [2014, Corollary 3.5] under the assumption that E is quasiregular. The quasiregularity property
has many equivalent characterizations; a transparent one is, for instance, in terms of the existence of a
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sequence of compact sets Fk ⊂ X such that⋃
k

{ f ∈ V : f = 0 m-a.e. in X \ Fk}

is dense in V.
The validity of the following inequality is actually equivalent to BE2(K,∞); see, for instance, [Ambrosio

et al. 2014a, Corollary 2.3] for a proof.

Proposition 6.2 (reverse Poincaré inequalities). If BE2(K,∞) holds, then

2I2K (t)0(Pt f )≤ Pt f 2
− (Pt f )2 m-a.e. in X , (6-3)

for all t > 0, f ∈ L2(m).

Corollary 6.3 (L p-0 inequalities). If BE2(K,∞) holds, then L p-0 inequalities hold for p ∈ [2,∞].

Proof. The validity of L p-0 inequalities for p ∈ [2,∞] is obtained by integrating (6-3),

(2I2K (t))p/2
∫
0(Pt f )p/2 dm ≤

∫
(Pt f 2)p/2 dm ≤

∫
f p dm

and using 2I2K (t)−1
= O(t−1) as t ↓ 0. �

Another consequence of BE2(K,∞) is the following higher integrability of 0( f ), recently proved in
[Ambrosio et al. 2013, Theorem 3.1] assuming higher integrability of f and 1 f .

Theorem 6.4 (gradient interpolation). Assume that BE2(K,∞) holds and let λ≥ K−, p ∈ {2,∞}. For
all f ∈ L2

∩ L∞(m) with 1 f ∈ L p(m), it holds that 0( f ) ∈ L p(m) with

‖0( f )‖p ≤ c‖ f ‖∞‖1 f + λ f ‖p (6-4)

for a universal (independent of f , λ, K , X , m) constant c.

Finally, we will need two more consequences of the BE2(K,∞) condition, proved under the quasireg-
ularity assumption in [Savaré 2014]. The first one, first proved in [Savaré 2014, Lemma 3.2] and then
slightly improved in [Ambrosio et al. 2013, Theorem 5.5], is the implication

f ∈ V, 1 f ∈ L4(m) H⇒ 0( f ) ∈ V. (6-5)

In particular, this implication provides L4-integrability of
√
0( f ), consistently with the integrability of

the Laplacian. Secondly, and particularly useful for the quantitative estimate, we have

0(0( f ))≤ 4γ2,K [ f ]0( f ) m-a.e. in X , whenever f ∈ V, 1 f ∈ L4(m), (6-6)

first proved in [Savaré 2014, Theorem 3.4] and then slightly improved in [Ambrosio et al. 2013, Corol-
lary 5.7]. The function γ2,K [ f ] in (6-6) is nonnegative, it satisfies the L1 estimate∫

γ2,K [ f ] dm≤
∫

X
((1 f )2− K0( f )) dm (6-7)
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and it can be represented as the density w.r.t. m of the nonnegative (and possibly singular w.r.t. m) measure
defined by

V 3 ϕ 7→

∫
X
−

1
20(0( f ), ϕ)+1 f 0( f, ϕ)+((1 f )2− K0( f ))ϕ dm. (6-8)

The nonnegativity of this measure is one of the equivalent formulations of BE2(K,∞); see [Savaré 2014,
§3] for a more detailed discussion.

6A. Choice of the algebra A. We first prove that the following “minimal” choice for the algebra A

provides (2-16), (2-17) and optimal density conditions.

Proposition 6.5. Under assumption BE2(K,∞), the algebra

A1 :=

{
f ∈

⋂
1≤p≤∞

L p(m) : f ∈ V,
√
0( f ) ∈

⋂
1≤p≤∞

L p(m)

}
(6-9)

satisfies (2-16), (2-17) and is dense in every space Vp, for p ∈ [1,∞).

Proof. Since (2-17) is obviously satisfied by the chain rule, we need only to show density of A1. First,
we consider the algebra A= V2 ∩V∞, which satisfies the invariance condition (2-20) because of (6-1).
Moreover, for p ∈ [2,∞), the validity of the L p-0 inequality entails that A is dense in L2

∩ L p, and
taking the L p/2 norm in (6-1) gives that (5-5) holds. By Lemma 5.6 (in particular, the remark below its
proof) we conclude that A is dense in Vp, for every p ∈ [2,∞).

To establish density of A1 in Vp for p ∈ [1,∞) it is sufficient to notice that the “refining” procedure
in Lemma 2.2 applied to A preserves all the densities in Vp for p ∈ [2,∞), and provides an algebra
contained in A1. �

Retaining the density condition and the algebra property, one can also consider classes smaller than A1,
including, for instance, bounds in L p(m) for the Laplacian.

6B. Conservation of mass. In this section we prove that the curvature condition, together with the
conservativity condition P∞t 1= 1 for all t > 0 (recall that P∞t : L

∞(m)→ L∞(m) is the dual semigroup
in (2-15)), imply the existence of a sequence ( fn) ⊂ A1 as in (4-3). Notice that the conservativity is
loosely related to a mass conservation property, for the continuity equation with derivation induced by the
logarithmic derivative of the density; therefore, even though sufficient conditions adapted to the prescribed
derivation b could be considered as well, it is natural to consider the conservativity of P in connection
with (4-3).

Proposition 6.6. If BE2(K,∞) holds and P is conservative, then there exist ( fn)⊂A1 satisfying (4-3).

Proof. Let (gn)⊂ L1
∩ L∞(m) be a nondecreasing sequence of functions (whose existence is ensured by

the σ -finiteness assumption on m) with

0≤ gn ≤ 1 for every n ≥ 1, and lim
n→∞

gn = 1 m-a.e. in X .

These conditions imply in particular that gn→ 1 weakly∗ in L∞(m).
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Let hn =
∫ 1

0 Ps gnds =
∫ 1

0 P∞s gnds and define fn := P1hn = P∞1 hn . By linearity and continuity of P∞

we obtain that fn→ P∞1 1=1 weakly∗ in L∞(m). In addition, expanding the squares, it is easily seen that

lim
n→∞

∫
(1− fn)

2v dm= 0 ∀v ∈ L1(m).

Hence, by a diagonal argument we can assume (possibly extracting a subsequence) that fn→ 1 m-a.e.
in X .

Since hn ≤ 1, the reverse Poincaré inequality (6-3) entails

0( fn)≤
P1h2

n − ( fn)
2

2I2K (1)
≤

1− ( fn)
2

2I2K (1)
m-a.e. in X .

Taking the square roots of both sides and using the a.e. convergence of fn we obtain, thanks to dominated
convergence, that

√
0( fn) weakly∗ converge to 0 in L∞(m).

Finally, we discuss the regularity of fn . Since

1 fn =

∫ 2

1
1Ps gn ds = P2gn −P1gn ∈ L∞(m),

we can use Theorem 6.4 to obtain
√
0( fn) ∈ L∞(m). In order to obtain integrability of the gradient for

powers between 1 and 2 we can replace fn by kn :=81( fn)/81(1), with 81 : R→ R as introduced in
Lemma 2.2. �

6C. Derivations associated to gradients and their deformation. In this section, we study in more detail
the class of “gradient” derivations bV in (3-2). More generally, we analyze the regularity of the derivation
f 7→ ω0( f, V ) associated to sufficiently regular V and ω in V.

For p ∈ (1,∞], let us denote

DL p(1) := { f ∈ V∩ L p(m) :1 f ∈ L p(m)}. (6-10)

Thanks to the implication (6-5), DL4(1)⊂ V4 and the Hessian

( f, g) 7→ H [V ]( f, g) := 1
2

[
0( f, 0(V, g))+0(g, 0(V, f ))−0(V, 0( f, g))

]
∈ L1(m) (6-11)

is well-defined on DL4(1)× DL4(1). Notice that the expression H [V ]( f, g) is symmetric in ( f, g), that
(V, f, g) 7→ H [V ]( f, g) is multilinear, and that

H [V ]( f, g1g2)= H [V ]( f, g1)g2+ g1 H [V ]( f, g2).

By [Savaré 2014, Theorem 3.4], we have the estimate

|H [V ]( f, g)| ≤
√
γ2,K [V ]

√
0( f )

√
0(g) m-a.e. in X , (6-12)

for every f, g ∈ DL4(1).

Theorem 6.7. If BE2(K,∞) holds and E is quasiregular, then for all V ∈ D(1), ω ∈ V∩ L∞(m) with
√
0(ω) ∈ L∞(m), and c ∈ R, the derivation b= (ω+ c)bV has deformation of type (4, 4) according to
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Definition 5.2 with q = 2, and it satisfies

‖Dsymb‖4,4 ≤ ‖ω+ c‖∞‖(1V )2− K0(V )‖1+‖
√
0(ω)‖∞‖

√
0(V )‖2. (6-13)

Proof. Assume first that V ∈ DL4(1). Let f, g ∈ DL4(1). After integrating by parts the Laplacians of f
and g, the very definition of Dsymb gives∫

Dsymb( f, g) dm =
∫
(ω+ c)H [V ]( f, g)+ 1

2 [0(ω, f )0(V, g)+0(ω, g)0(V, f )] dm. (6-14)

By Hölder inequality, we can use (6-12) to estimate
∣∣∫ Dsymb( f, g) dm

∣∣ from above with[
‖ω‖∞‖

√
γ2,K [V ]‖2+‖

√
0(ω)‖∞‖

√
0(V )‖2

]
‖
√
0( f )‖4‖

√
0(g)‖4.

Thus, by definition of ‖Dsymb‖4,4, (6-13) follows, taking also (6-7) into account. To pass to the general
case V ∈ D(1), it is sufficient to approximate V with Vn ∈ DL4(1) in such a way that Vn → V in V

and 1Vn → 1V in L2(m) and notice that
∫

Dsymbn( f, g) dm converge to
∫

Dsymb( f, g) dm directly
from (5-3). The existence of such an approximating sequence is obtained arguing as in [Ambrosio et al.
2013, Lemma 4.2], i.e., given f ∈ D(1), we let h = f −1 f ∈ L2(m),

hn :=max{min{h, n},−n} ∈ L2
∩ L∞(m)

and define fn as the unique (weak) solution to fn − 1 fn = hn . The maximum principle for 1 (or
equivalently the fact that the resolvent operator R1 = (I −1)−1 is Markov) gives fn ∈ L2

∩ L∞(m), thus
1 fn ∈ L2

∩L∞(m) and by L2-continuity of R1, as n→∞, both hn and fn converge, respectively towards
h and f . By difference, also 1 fn converge towards 1 f in L2(m) and this also easily gives convergence
of fn to f in V. �

We end this section with a technical result that will be useful when dealing with probability measures
on vector spaces, in particular in Section 9E.

Proposition 6.8. Assume that m(X)= 1, BE2(K,∞) holds, and E is quasiregular. Let (Vi )i≥1 ⊂ DL4(1)

generate an algebra dense in V and satisfy 0(Vi , V j )= δi, j m-a.e. in X. Then,

(a) 0( f )=
∑

i≥1 0(Vi , f )2 m-a.e. in X , for every f ∈ V;

(b) H [Vi ] = 0, for every i ≥ 1.

Moreover, for every q ∈ [1,∞] and b = (bi ) ∈ Lq(X; `2)), the associated derivation b given by

f 7→ d f (b)=
∑

i

bi0(Vi , f )

satisfies |b|2≤
∑

i |b
i
|
2 and therefore belongs to Lq . In addition, if r , s∈[4,∞) satisfy q−1

+r−1
+s−1

=1,
div b ∈ Lq(m), and bi ∈ V for every i ≥ 1, then

‖Dsymb‖r,s ≤ 1
2

∥∥∥∥(∑
i, j

|0(V j , bi )+0(Vi , b j )|
2
)1

2
∥∥∥∥

q
. (6-15)
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Proof. When f = ψ(V1, . . . , Vn) belongs to the algebra generated by (Vi ), the first identity is immediate
from 0(Vi , V j )= δi, j . The general case of (a) follows by density.

From the definition (6-11) of Hessian, H [Vi ](V j , Vk)= 0 for every i , j , k ≥ 1. For fixed i , j ≥ 1, the
derivation g 7→ H [Vi ](V j , g) belongs to L2(m) in virtue of (6-12); thus it can be extended by density of
A to all of V. By the chain rule, the extended derivation is identically zero on the algebra generated by
(Vi ); thus by density it is the null derivation. In particular, for g ∈A, H [Vi ](V j , g)= 0, for every j ≥ 1.
Keeping g ∈A fixed, we argue similarly and obtain that H [Vi ]( f, g)= 0 m-a.e. in X , for every f, g ∈A,
thus proving (b).

If only a finite number of bi ’s is different from 0, and they belong to V, the claimed estimate (6-15)
follows immediately by linearity, (6-14) and (b) above. The general case follows by “cylindrical”
approximation, where the assumption r , s ≥ 4 plays a role. Indeed, given f ∈ Vr ∩ DLr (1) and
g ∈Vs ∩DLs (1) we have f , g ∈ DL4(1), thus 0( f, g) ∈V and we can integrate by parts the last term in
(5-3), obtaining∫

Dsymb( f, g) dm =−1
2

∫
d f (b)1g+ dg(b)1 f + d(0( f, g))(b) dm. (6-16)

Let N ≥ 1 and let bN be the derivation associated to the sequence (b1, . . . , bN , 0, 0, . . .). Given h ∈ V,

|d(h)bN − d(h)b| ≤ 0(h)
1
2

(∑
i>N

|bi
|
2
)1

2

m-a.e. in X .

By this estimate with h = f , h = g and h = 0( f, g), Hölder’s inequality and dominated convergence
we conclude that the sequence

∫
DsymbN ( f, g) dm converges towards

∫
Dsymb( f, g) dm as N →∞,

entailing (6-15). �

Notice that the assumption r , s ∈ [4,∞) is used only to obtain 0( f, g) ∈ V and thus (6-16). The same
argument indeed shows that, for r , s ∈ [1,∞) and q ∈ (1,∞] with q−1

+ r−1
+ s−1

= 1, if A is dense
in the space Vp ∩ DL p(1), endowed with the norm ‖ f ‖ = ‖ f ‖Vp + ‖1 f ‖L2∩L p , for p ∈ {r, s} and it
satisfies 0( f, g) ∈ A for f , g ∈ A, then the last statement in Proposition 6.8 holds, regardless of the
condition r , s ∈ [4,∞).

7. The superposition principle in R∞ and in metric measure spaces

In this section we write R∞ for RN endowed with the product topology and we shall denote by
πn
:= (p1, . . . , pn) : R

∞
→ Rn the canonical projections from R∞ to Rn . On the space R∞ we consider

the complete and separable distance

d∞(x, y) :=
∞∑

n=1

2−n min{1, |pn(x)− pn(y)|}.

Accordingly, we consider the space C([0, T ];R∞) endowed with the distance

δ(η, η̃) :=

∞∑
n=1

2−n max
t∈[0,T ]

min{1, |pn(η(t))− pn(η̃(t))|},
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which makes C([0, T ];R∞) complete and separable as well. We shall also consider the subspace
ACw([0, T ];R∞) of C([0, T ];R∞) consisting of all η such that pi ◦η ∈AC([0, T ]) for all i ≥ 1. Notice
that for this class of curves the derivative η′∈R∞ can still be defined a.e. in (0, T ), arguing componentwise.
We use the notation ACw to avoid the confusion with the space of absolutely continuous maps from [0, T ]
to (R∞, d∞).

It is immediate to check that for any choice of convex superlinear and lower semicontinuous functions
9n : [0,∞)→ [0,∞], and for lower semicontinuous functions 8n : [0,∞)→ [0,∞] with 8n(v)→∞

as v→∞, the functional A : C([0, T ];R∞)→ [0,∞] defined by

A(η) :=


∞∑

n=1

[
8n(pn ◦ η(0))+

∫ T
0 9n(|(pn ◦ η)

′
|) dt

]
if η ∈ ACw([0, T ];R∞),

∞ if η ∈ C([0, T ];R∞) \ACw([0, T ];R∞),

is coercive in C([0, T ];R∞), that is to say all sublevels {A≤ M} are compact in C([0, T ];R∞).
We call a smooth cylindrical function any f : R∞→ R representable in the form

f (x)= ψ(πn(x))= ψ(p1(x), . . . , pn(x)), x ∈ R∞,

with ψ : Rn
→ R bounded and continuously differentiable with bounded derivative. When we want to

emphasize n, we say that f is n-cylindrical. Given ψ smooth cylindrical, we define ∇ f : R∞→ c0

(where c0 is the space of sequences (xn) null for n large enough) by

∇ f (x) :=
(
∂ψ

∂z1
(πn(x)), . . . ,

∂ψ

∂zn
(πn(x)), 0, 0, . . .

)
. (7-1)

We fix a Borel vector field c : (0, T )×R∞→ R∞ and a weakly continuous (in duality with smooth
cylindrical functions) family of Borel probability measures {νt }t∈(0,T ) in R∞ satisfying∫ T

0

∫
|pi (ct)|dνt dt <∞ ∀i ≥ 1, (7-2)

and, in the sense of distributions,

d
dt

∫
f dνt =

∫
(ct ,∇ f )dνt in (0, T ), for all f smooth cylindrical. (7-3)

Theorem 7.1 (superposition principle in R∞). Under assumptions (7-2) and (7-3), there exists a Borel
probability measure λ in C([0, T ];R∞) satisfying (et)#λ = νt for all t ∈ (0, T ), concentrated on
γ ∈ ACw([0, T ];R∞) which are solutions to the ODE γ̇ = ct(γ ) a.e. in (0, T ).

Proof. The statement is known in finite-dimensional spaces; for example, see [Ambrosio et al. 2005,
Theorem 8.2.1] for the case when

∫ ∫
|ct |

r dνt dt <∞ for some r > 1, and [Ambrosio and Crippa 2008,
Theorem 12] for the case r = 1. For i ≥ 1 we choose convex, superlinear, lower semicontinuous functions
9i : [0,∞)→ [0,∞] with ∫ T

0

∫
9i (|pi (ct)|) dνt dt ≤ 2−i (7-4)
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and coercive 8i : [0,∞)→ [0,∞) satisfying∫
8i (pi (x)) dν0(x)≤ 2−i , (7-5)

and define A accordingly.
Defining νn

t := (π
n)#νt and cn

t,i , 1≤ i ≤ n, as the density of (πn)#(pi (ct)νt) w.r.t. to νn
t , it is immediate

to check with Jensen’s inequality that∫ T

0

∫
9i (|cn

t,i |) dνn
t dt ≤

∫ T

0

∫
9i (|pi (ct)|) dνt dt, i ≥ 1, (7-6)

and that νn
t solves the continuity equation in Rn relative to the vector field cn

= (cn
i , . . . , cn

n). Therefore
the finite-dimensional statement provides probability measures λn in C([0, T ];Rn), concentrated on
absolutely continuous a.e. solutions to the ODE γ̇ = cn

t (γ ) and satisfying (et)#λn = ν
n
t for all t ∈ [0, T ].

In order to pass to the limit as n → ∞, it is convenient to view λn as probability measures in
C([0, T ];R∞) concentrated on curves γ such that pi (γ ) is null for i > n, and νn as probability measures
in R∞ concentrated on {x ∈ R∞ : pi (x)= 0, ∀i > n} ⊂ c0. Accordingly, if we set cn

t,i ≡ 0 for i > n, we
retain the property that λn is concentrated on absolutely continuous solutions to the ODE γ̇ = cn

t (γ ) and
satisfies (et)#λn = ν

n
t for all t ∈ [0, T ].

Using (7-6) and our choice of 9i and 8i we immediately obtain∫
A(γ ) dλn(γ )≤ 2;

hence the sequence (λn) is tight in P(C([0, T ];R∞)).
We claim that any limit point λ fulfills the properties stated in the lemma. Just for notational simplicity,

we assume in the sequel that the whole family (λn) weakly converges to λ. The lower semicontinuity of
A gives

∫
A dλ<∞; hence λ is concentrated on ACw([0, T ];R∞). Furthermore, since

γ 7→ πk ◦ γ (t), t ∈ [0, T ],

are continuous maps from C([0, T ];R∞) to Rk , by passing to the limit as n → ∞ in the identity
(πk)](et)]λn = (πk)]ν

n
t it follows that (πk)](et)]λ = (πk)]νt for all k. We can now use the fact that

cylindrical functions generate the Borel σ -algebra of R∞ to obtain that (et)]λ= νt .
It remains to prove that λ is concentrated on solutions to the ODE γ̇ = ct(γ ). To this aim, it suffices to

show that ∫ ∣∣∣∣pi ◦ γ (t)− pi ◦ γ (0)−
∫ t

0
pi ◦ cs(γ (s)) ds

∣∣∣∣ dλ(γ )= 0, (7-7)

for any t ∈ [0, T ] and i ≥ 1. The technical difficulty is that this test function, due to the lack of regularity
of c, is not continuous in C([0, T ];R∞). To this aim, we prove first that∫ ∣∣∣∣pi ◦ γ (t)− pi ◦ γ (0)−

∫ t

0
ds(γ (s)) ds

∣∣∣∣ dλ(γ )≤
∫
(0,T )×R∞

|pi ◦ c− d| dνt dt, (7-8)

for any bounded Borel function d where d(t, · ) is k-cylindrical for all t ∈ (0, T ), with k independent of t .
It is clear that the space {d ∈ L1(νt dt) : d(t, · ) is cylindrical for all t ∈ (0, T )} is dense in L1(νt dt); by
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a further approximation, also the space
∞⋃

k=1

{d ∈ L1(νt dt) : d(t, · ) is k-cylindrical for all t ∈ (0, T )}

is dense. Hence, choosing a sequence (dm) of functions admissible for (7-8) converging to pi ◦ c in
L1(νt dt) and noticing that∫

(0,T )×R∞
|pi ◦ cs(γ (s))− dm

s (γ (s))| dsdλ(γ )=
∫
(0,T )×R∞

|pi ◦ c− dm
| dνt dt→ 0,

we can take the limit in (7-8) with d = dm to obtain (7-7).
It remains to show (7-8). We first prove

lim sup
n→∞

∫
(0,T )×R∞

|pi ◦ cn
− d| dνn

s ds ≤
∫
(0,T )×R∞

|pi ◦ c− d| dνt dt (7-9)

for all bounded Borel functions d with d(t, · ) k-cylindrical for all t ∈ (0, T ), with k independent of t .
The proof is elementary, because for n ≥ k and t ∈ (0, T ) we have

(pi ◦ cn
t − dt)ν

n
t = (πn)#((pi ◦ ct − dt)νt).

Now we can prove (7-8), with a limiting argument based on the fact that (7-7) holds for cn and λn:∫ ∣∣∣∣pi ◦ γ (t)− pi ◦ γ (0)−
∫ t

0
ds(γ (s)) ds

∣∣∣∣ dλn(γ )=

∫ ∣∣∣∣∫ t

0

(
pi ◦ cn

s (γ (s))− ds(γ (s))
)

ds
∣∣∣∣ dλn(γ )

≤

∫∫ t

0
|pi ◦ cn

s − ds |(γ (s)) dsdλn(γ )

≤

∫
(0,T )×R∞

|pi ◦ cn
− d| dνn

s ds.

Since ds is cylindrical for all s and uniformly bounded w.r.t. s, the map

γ 7→

∣∣∣∣pi ◦ γ (t)− pi ◦ γ (0)−
∫ t

0
ds(γ (s)) ds

∣∣∣∣
belongs to C

(
C([0, T ];R∞)

)
and is nonnegative. Hence, taking the limit in the chain of inequalities

above and using (7-9), we obtain (7-8). �

We next consider the case of a (possibly extended) metric measure space (X, τ,m, d). Starting from
the basic setup of Section 2, we have only a topology τ and the measure m. We assume the existence of a
countable set A∗ ⊂ { f ∈A : ‖0( f )‖∞ ≤ 1} satisfying:

RA∗ is dense in V and any function in A∗ has a τ -continuous representative; (7-10)

∃ lim
n→∞

f (xn) in R for all f ∈A∗ H⇒ ∃ lim
n→∞

xn in X . (7-11)

Since suppm= X , the τ -continuous representative of an m-measurable function is unique if it exists, and
for this reason we do not use a distinguished notation for the continuous representative of functions in
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A∗ in (7-12) and in the sequel. Notice that (7-11) implies that the family A∗ separates the points of X
and that (7-10) and (7-11) can easily be fulfilled in many cases when an a priori distance d is given,
considering the distance functions from a countable and dense set of points; see Section 9F for details.

Remark 7.2 (extended distance induced by A∗). Following [Biroli and Mosco 1995] (see also [Sturm
1995; Stollmann 2010]) we build dA∗ : X × X→ [0,∞] as

dA∗(x, y)= sup{| f (x)− f (y)| : f ∈A∗}, x, y ∈ X. (7-12)

A priori, dA∗ is an extended distance in the sense of [Ambrosio et al. 2014b], since it may take the value
∞; nevertheless, by definition, all functions in A∗ are 1-Lipschitz w.r.t. dA∗ and dA∗ is the smallest
extended distance with this property. In particular the derivative d( f ◦ η)/dt , which occurs in the next
definition, makes sense a.e. in (0, T ) when f ∈A∗ and η ∈ AC([0, T ]; (X, dA∗)) because f ◦ η belongs
to AC([0, T ]). However, we will not use the topology induced by dA∗ , which could be much finer than
the topology τ and, in the next definition, we will require only continuity of η : [0, T ] → X (with the
topology τ in the target space X ) and W 1,1(0, T ) regularity of f ◦η, for f ∈A. A posteriori, in Lemma 7.4
we are going to recover some absolute continuity for η, with respect to dA∗ . In any case, whenever f ∈A
has a continuous representative (as it happens when f ∈A∗), the continuity of f ◦ η in conjunction with
Sobolev regularity gives f ◦ η ∈ AC([0, T ]).

Definition 7.3 (ODE induced by a family (bt) of derivations). Let η ∈P(C([0, T ]; X)) and let (bt)t∈(0,T )

be a Borel family of derivations. We say that η is concentrated on solutions to the ODE η̇ = bt(η) if

f ◦ η ∈W 1,1(0, T ) and
d
dt
( f ◦ η)(t)= d f (bt)(η(t)), for a.e. t ∈ (0, T ),

for η-a.e. η ∈ C([0, T ]; X), for all f ∈A.

Notice that the property of being concentrated on solutions to the ODE implicitly depends on the
choice of Borel representatives of the maps f and (t, x) 7→ d f (bt)(x), f ∈ A. As such, it should be
handled with care. We will see, however, that in the class of regular flows of Definition 8.1 this sensitivity
to the choice of Borel representatives disappears; see Remark 8.2.

The following simple lemma shows that time marginals of measures η concentrated on solutions to the
ODE η̇ = bt(η) provide weakly continuous solutions to the continuity equation.

Given a derivation b, we introduce the quantity

|b|∗ = sup{|d f (b)| : f ∈A∗}. (7-13)

Notice that |b|∗ is well-defined up to m-a.e. equivalence and that one has |b|∗ ≤ |b| m-a.e. in X . Also in
view of (7-14) below, it is natural to investigate the validity of the equality |b| = |b|∗ m-a.e. in X . We are
able to prove this in the setting of RCD spaces; see Lemma 9.2 below.

Lemma 7.4. Let η ∈ P(C([0, T ]; X)) be concentrated on solutions η to the ODE η̇ = bt(η), where
|b| ∈ L1

t (L
p
x ) for some p ∈ [1,∞] and µt := (et)#η ∈ P(X) are representable as utm with u ∈ L∞t (L

p′
x ).

Then, the following two properties hold:
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(a) The family (ut)t∈(0,T ) is a weakly continuous solution to the continuity equation.

(b) η is concentrated on AC([0, T ]; (X, dA∗)), with

|η̇|(t)= |bt |∗(η(t)) for a.e. t ∈ (0, T ), for η-a.e. η. (7-14)

Remark 7.5. Arguing as in the last part of [Ambrosio et al. 2005, Theorem 8.3.1] one can prove that
u ∈ L∞t (L

∞
x ) implies that (µt)t is an absolutely continuous curve in the Wasserstein space Wp naturally

associated to dA∗ (see [Gigli and Bang-Xian 2014] for a more systematic investigation of this connection
in metric measure spaces).

Proof. We integrate w.r.t. η the weak formulation∫ t

0
−ψ ′(t) f ◦ η(t) dt =

∫ T

0
ψ(t) d f (bt)(η(t)) dt

with f ∈A, ψ ∈ C1
c (0, T ) to recover the weak formulation of the continuity equation for (ut).

Given f ∈A∗, for η-a.e. η the map t 7→ f ◦ η(t) is absolutely continuous, with

f ◦ η(t)− f ◦ η(s)=
∫ t

s
d f (br )(η(r)) dr for all s, t ∈ [0, T ].

In particular one has d f (bt)(η(t)= ( f ◦ η)′(t) a.e. in (0, T ), for η-a.e. η.
By Fubini’s theorem and the fact that the marginals of η are absolutely continuous w.r.t. m we obtain

that, for η-a.e. η, one has

sup
f ∈A∗
|( f ◦ η)′(t)| = sup

f ∈A∗
|d f (bt)(η(t))| = |bt |∗(η(t)) for a.e. t ∈ (0, T ),

and therefore

dA∗(η(t), η(s))= sup
f ∈A∗
|( f ◦ η)(t)− ( f ◦ η)(s)| ≤

∫ t

s
|bt |∗(η(r)) dr for all s, t ∈ [0, T ],

proving that η∈AC([0, T ]; (X, dA∗)), with |η̇|(t)≤|bt |∗(η(t)), for a.e. t ∈ (0, T ). The converse inequality
follows from the fact that every f ∈A∗ is 1-Lipschitz with respect to dA∗ ; thus for η-a.e. η one has

|bt |∗(η(t))= sup
f ∈A∗
|( f ◦ η)′(t)| ≤ |η̇|(t) for a.e. t ∈ (0, T ). �

Even though, as we explained in Remark 7.2, the (extended) distance is hidden in the choice of the
family A∗, we call the next result “superposition in metric measure spaces”, because in most cases A∗

consists precisely of distance functions from a countable dense set (see also the recent papers [Bate
2013; Schioppa 2014] for related results on the existence of suitable measures in the space of curves, and
derivations).

Theorem 7.6 (superposition principle in metric measure spaces). Assume (7-10), (7-11). Let b=(bt)t∈(0,T )

be a Borel family of derivations and let µt = utm ∈ P(X), 0≤ t ≤ T , be a weakly continuous solution to
the continuity equation

∂tµt + div(btµt)= 0 (7-15)
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with

u ∈ L∞t (L
p
x ),

∫ T

0

∫
|bt |

r dµt dt <∞, 1
r
+

1
p
≤

1
2
. (7-16)

Then there exists η ∈ P(C([0, T ]; X)) satisfying

(a) η is concentrated on solutions η to the ODE η̇ = bt(η), according to Definition 7.3;

(b) µt = (et)#η for any t ∈ [0, T ].

Proof. We enumerate by fi , i ≥ 1, the elements of A∗ and define a continuous and injective map
J : X→ R∞ by

J (x) := ( f1(x), f2(x), f3(x), . . .). (7-17)

A simple consequence of (7-11), besides the injectivity we already observed, is that J (X) is a closed
subset of R∞ and that J−1 is continuous from J (X) to X .

Defining νt ∈ P(R∞) by νt := J#µt , c : (0, T )×R∞→ R∞ by

ci
t :=

{
(d fi (bt)) ◦ J−1 on J (X),
0 otherwise,

and noticing that

|ci
t | ◦ J ≤ |bt | m-a.e. in X , (7-18)

the chain rule (see Proposition 3.2)

dφ(bt)(x)=
n∑

i=1

∂ψ

∂zi
( f1(x), . . . , fn(x))ci

t (x)

for φ(x) = ψ( f1(x), . . . , fn(x)) shows that the assumptions of Theorem 7.1 are satisfied by νt with
velocity c, because (7-18) and µt �m give |ci

t | ≤ |bt | ◦ J−1 νt -a.e. in R∞.
As a consequence we can apply Theorem 7.1 to obtain λ∈P(C([0, T ];R∞)) concentrated on solutions

γ ∈ AC([0, T ];R∞) to the ODE γ̇ = ct(γ ) such that (et)#λ= νt for all t ∈ [0, T ]. Since all measures νt

are concentrated on J (X),

γ (t) ∈ J (X) for λ-a.e. γ , for all t ∈ [0, T ] ∩Q.

Then, the closedness of J (X) and the continuity of γ give γ ([0, T ])⊂ J (X) for λ-a.e. γ . For this reason,
it makes sense to define

η :=2#λ,

where 2 : C([0, T ]; J (X))→ C([0, T ]; X) is the map γ 7→2(γ ) := J−1
◦ γ . Since (J−1)#νt = µt , we

obtain immediately that (et)#η = µt .
Let i ≥ 1 be fixed. Since fi ◦2(γ ) = pi ◦ γ , taking the definition of ci into account we obtain that

fi ◦ η is absolutely continuous in [0, T ] and that

( fi ◦ η)
′(t)= d fi (bt)(η(t)) a.e. in (0, T ), for η-a.e. η. (7-19)
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We will complete the proof by showing that (7-19) extends from A∗ to all of A. By the chain rule we
observe, first of all, that (7-19) extends from fi to smooth truncations of fi . Therefore, by the density of
A∗ in V, for any f ∈A we can find gn satisfying:

(a) gn→ f in V and ‖gn‖∞ ≤ ‖ f ‖∞+ 1;

(b) gn ◦ η ∈ AC([0, T ]) and (gn ◦ η)
′(t)= dgn(bt)(η(t)) a.e. in (0, T ), for η-a.e. η.

Since ∫∫ T

0
|( f − gn)(η(t))| dtdη(η)=

∫ T

0

∫
| f − gn|ut dmdt→ 0 (7-20)

we can assume, possibly refining the sequence (gn), that gn ◦ η→ f ◦ η in L1(0, T ), for η-a.e. η.
In order to achieve Sobolev regularity of f ◦ η it remains to show convergence of the derivatives of

gn ◦ η, namely dgn(bt)(η(t)), to d f (bt)(η(t)). Arguing as in (7-20), we get∫∫ T

0
|d f (bt)(η(t))− dgn(bt)(η(t))| dtdη(η)=

∫ T

0

∫
|d( f − gn)(bt)|ut dmdt→ 0,

because of (7-16) and the convergence 0( f − gn)→ 0 in L1(m). Therefore, possibly refining (gn) once
more, dgn(b)(η)→ d f (b)(η) in L1(0, T ), for η-a.e. η. �

8. Regular Lagrangian flows

In this section we consider a Borel family of derivations b= (bt)t∈(0,T ) satisfying

b ∈ L1
t (L

1
x + L∞x ). (8-1)

Under the assumption that the continuity equation has uniqueness of solutions in the class

L+ := {u ∈ L∞t (L
1
x ∩ L∞x ) : t 7→ ut is weakly continuous in [0, T ], u ≥ 0} (8-2)

for any initial datum ū ∈ L1
∩ L∞(m), and existence of solutions in the class{

u ∈ L+ : ‖ut‖∞ ≤ C(b)‖u0‖∞ ∀t ∈ [0, T ]
}
, (8-3)

for any nonnegative initial datum ū ∈ L1
∩ L∞(m), we prove existence and uniqueness of the regular

flow X associated to b. Here, the need for a class as large as possible where uniqueness holds is hidden
in the proof of Theorem 8.4, where solutions are built by taking the time marginals of suitable probability
measures on curves and uniqueness leads to a nonbranching result. The concept of regular flow, adapted
from [Ambrosio 2004], is the following.

Definition 8.1 (regular flows). We say that X : [0, T ]× X→ X is a regular flow (relative to b) if:

(i) X(0, x)= x and X( · , x) ∈ C([0, T ]; X) for all x ∈ X ;

(ii) for all f ∈ A, f (X( · , x)) ∈ W 1,1(0, T ) and d f (X(t, x))/dt = d f (bt)(X(t, x)) for a.e. t ∈ (0, T ),
for m-a.e. x ∈ X ;

(iii) there exists a constant C = C(X) satisfying X(t, · )#m≤ Cm for all t ∈ [0, T ].
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Remark 8.2 (invariance under modifications of b and f ). Assume that b and b̃ satisfy:

for all f ∈A, d f (b)= d f (b̃) L1
⊗m-a.e. in (0, T )× X . (8-4)

Then X is a regular flow relative to b if and only if X is a regular flow relative to b̃. Indeed, let us fix f ∈A
and notice that for all t ∈ (0, T ) such that m({d f (bt) 6= d f (b̃t)}) = 0, condition (iii) of Definition 8.1
gives

d f (bt)(X(t, x))= d f (b̃t)(X(t, x)) for m-a.e. x ∈ X .

Thanks to (8-4) and Fubini’s theorem, the condition m({d f (bt) 6= d f (b̃t)}) = 0 is satisfied for a.e.
t ∈ (0, T ). Hence, we may apply Fubini’s theorem once more to get

d f (bt)(X(t, x))= d f (b̃t)(X(t, x)) a.e. in (0, T ), for m-a.e. x ∈ X .

With a similar argument, one can show that if we modify not only d f (b) but also f in an m-negligible set,
to obtain a Borel representative f̃ , then f (X( · , x)) ∈W 1,1(0, T ) and d f (X(t, x))/dt = bt(X(t, x)) for
a.e. t ∈ (0, T ) if and only if f̃ (X( · , x))∈W 1,1(0, T ) and d f̃ (X(t, x))/dt = bt(X(t, x)) for a.e. t ∈ (0, T ),
because Fubini’s theorem gives f̃ (X(t, x)) = f (X(t, x)) for a.e. t ∈ (0, T ), for m-a.e. x ∈ X . For this
reason the choice of a Borel representative of f ∈A is not really important. Whenever this is possible,
the natural choice of course is given by the continuous representative.

The main result of the section is the following existence and uniqueness result. We stress that uniqueness
is understood in the pathwise sense, namely X( · , x)= Y( · , x) in [0, T ] for m-a.e. x ∈ X , whenever X

and Y are regular Lagrangian flows relative to b.

Theorem 8.3 (existence and uniqueness of the regular Lagrangian flow). Assume (8-1) and that the
continuity equation induced by b has uniqueness of solutions in L+ for all initial data ū ∈ L1

∩ L∞(m),
as well as existence of solutions in the class (8-3) for all nonnegative initial data ū ∈ L1

∩ L∞(m). Then
there exists a unique regular Lagrangian flow relative to b.

Proof. Let B ∈B(X) with positive and finite m-measure and let us build first a “generalized” flow starting
from B. To this aim, we take ū=χB/m(B) as initial datum and we apply first the assumption on existence
of a solution u ∈ L+ starting from ū, with ut ≤ C(b)/m(B), and then the superposition principle stated
in Theorem 7.6 to obtain η ∈ P(C([0, T ]; X)) whose time marginals are utm, concentrated on solutions
to the ODE η̇ = bt(η). Then, Theorem 8.4 below (which uses the uniqueness part of our assumptions
relative to the continuity equation) provides a representation

η =
1

m(B)

∫
B
δηx dm(x),

with ηx ∈C([0, T ]; X), such that ηx(0)= x and η̇x = bt(η). Setting X( · , x)= ηx( · ) for x ∈ B, it follows
that X : B×[0, T ] is a regular flow, relative to b, with the only difference that (i) and (ii) in Definition 8.1
have to be understood for m-a.e. x ∈ B, and

X(t, · )#(ūm)= (et)#η = utm≤
C(b)
m(B)

m. (8-5)



WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS 1221

Next we prove consistency of these “local” flows XB . If B1 ⊂ B2 with m(B1) > 0 and m(B2) <∞,
we can consider the measure

η :=
1

2m(B1)

∫
B1

(
δX B1 ( · ,x)+ δX B2 ( · ,x)

)
dm(x) ∈ P(C([0, T ]; X))

to obtain from Theorem 8.4 that XB1( · , x)= XB2( · , x) for m-a.e. x ∈ B1.
Having gained consistency, we can build a regular Lagrangian flow by considering a nondecreasing

sequence of Borel sets Bn with positive and finite m-measure whose union m-almost covers X and the
corresponding local flows Xn : Bn ×[0, T ] → X . Notice that we needed a quantitative upper bound on
Xn(t, · )#(χBnm) precisely in order to be able to pass to the limit in condition (iii) of Definition 8.1, since
(8-5) gives X(t, · )#(χBm)≤ C(b)m.

This completes the existence part. The uniqueness part can be proved using Theorem 8.4 once more
and the same argument used to show consistency of the “local” flows. �

Theorem 8.4 (no splitting criterion). Assume (8-1) and that the continuity equation induced by b has at
most one solution in L+ for all ū ∈ L1

∩ L∞(m). Let η ∈ P(C([0, T ]; X)) satisfy:

(i) η is concentrated on solutions η to the ODE η̇ = bt(η);

(ii) there exists L0 ∈ [0,∞) satisfying

(et)#η ≤ L0m ∀ t ∈ [0, T ]. (8-6)

Then, the conditional measures ηx ∈ P(C([0, T ]; X)) induced by the map e0 are Dirac masses for
(e0)#η-a.e. x ; equivalently, there exist ηx ∈ C([0, T ]; X) solving the ODE η̇x = bt(ηx), ηx(0)= x , and
satisfying η =

∫
δηx d(e0)#η(x).

Proof. Using the uniqueness assumption at the level of the continuity equation, as well as the implication
provided by Lemma 7.4, the decomposition procedure of [Ambrosio and Crippa 2008, Theorem 18] (that
slightly improves the original argument of [Ambrosio 2004, Theorem 5.4], where comparison principle
for the continuity equation was assumed) gives the result. �

9. Examples

In this section, on one hand we illustrate relevant classes of metric measure spaces for which our abstract
theory applies. On the other hand we try to compare our results on the well-posedness of the continuity
equation with the ones obtained in other papers, for particular classes of spaces. Several variants of the
existence and uniqueness results are possible, varying the regularity and the growth conditions imposed
on b and on the density ut ; we focus mainly on the issue of uniqueness, since existence in particular classes
of spaces (e.g., the Euclidean ones) can be often be obtained by ad hoc methods (such as convolution
of the components of the vector field, which preserve bounds on divergence) not available in general
spaces. Also, we will not discuss the existence/uniqueness of the flow, which follow automatically from
well-posedness at the PDE level using the transfer mechanisms presented in Section 8. We list the
examples that follow, to some extent, in order of chronology and level of complexity.
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9A. Euclidean spaces: DiPerna–Lions theory. The theory of well-posedness for flows and for transport
and continuity equations was initiated by DiPerna and Lions [1989] and it (quite obviously) fits into our
abstract setting. More explicitly, in the basic setup (2-1) we let X = Rn , m= Ln (the Lebesgue measure)
and

E( f )=
∫
|∇ f |2(x) dLn(x) for f ∈W 1,2(Rn),

so that 1 is the usual Laplacian and (Pt)t is the heat semigroup, that corresponds (up to a factor 2 in the
time scale) to the transition semigroup of the Brownian motion, which is conservative. The algebra A of
Section 2C can be chosen to be the space of Lipschitz functions with compact support.

Given a Borel vector field b =
∑n

i=1 bi ei , with b ∈ (L1
+ L∞)n , its associated derivation b is

A 3 f 7→ d f (b)=
n∑

i=1

bi
∂ f
∂x i .

Obviously, div b is the usual distributional divergence and Dsymb is the symmetric part of the distributional
derivative of b. Then, the uniqueness Theorem 5.4 above corresponds to [DiPerna and Lions 1989,
Corollary II.1], as long as q ∈ (1,∞].

On the other hand, in Euclidean spaces the strong local convergence of commutators depends on local
regularity assumptions on b (and the use of convolutions with compact support), while our setting is
intrinsically global. In order to adapt our methods to this case, one could “localize the Dirichlet form” by
considering X = Br (0) and the form

Er ( f )=
∫

Br

|∇ f |2dLn for f ∈ H 1(Br ).

Thus 1 would be the Laplacian with Neumann boundary conditions and (Pt)t would be the semigroup
correspondent to the Brownian motion reflected at the boundary ∂Br (0), which is still conservative. Since
the ball is convex, it can be proved that BE2(0,∞) still holds; see, for instance, [Ambrosio et al. 2014c,
Theorem 6.20].

A second major difference is that uniqueness assuming the regularity b ∈ (W 1,1)n (or even b ∈ (BV)n ,
the case considered in [Ambrosio 2004]) is not covered. Indeed, the BV case seems difficult to reach in
the abstract setting, due to the present lack of a covariant derivative (but see [Gigli 2014]).

9B. Weighted Riemannian manifolds. Our arguments extend the classical DiPerna–Lions theory to
the setting of weighted Riemannian manifolds. Of course, in order to prove strong convergence of
commutators and the fact that solutions are renormalized one can always argue by local charts, but
computations become more cumbersome compared to the Euclidean case, and here the advantages of our
intrinsic approach become more manifest.

Let (M, g) be a smooth Riemannian manifold and let µ be its associated Riemannian volume measure.
Assume that the Ricci curvature tensor Ricg is pointwise bounded from below (in the sense of quadratic
forms) by some constant K ∈ R. More generally, one can add a “weight” V : M→ R to the measure:
consider a smooth nonnegative function and assume that the Bakry–Émery curvature tensor is bounded
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from below by K ∈ R, i.e.,

Ricg +Hess(V )≥ K .

The form (on smooth compactly supported functions)

f 7→ EV ( f )=
∫

M
g(∇ f,∇ f )e−V dµ,

is closable and we are in the setup (2-1). Once more, the algebra A of Section 2C can be chosen to be the
space of Lipschitz functions with compact support.

When V = 0, Bochner’s formula entails that BE2(K,∞) holds and it is a classical result due to S.-T.
Yau that the heat semigroup is conservative. In the case of weighted measures, analogous results can be
found in [Bakry 1994, Proposition 6.2] for the curvature bound and in [Grigor′yan 1999, Theorem 9.1]
for the conservativity of P, relying on a correspondent volume comparison theorem; see [Wei and Wylie
2009, Theorem 1.2], for example.

Given a Borel vector field b, i.e., a Borel section of the tangent bundle of M , its associated derivation
b acts on smooth functions by

f 7→ d f (b)= g(b,∇ f ).

The divergence can be given in terms of the µ-distributional divergence of b by

div b= div b− g(b,∇V ),

while the deformation is the symmetric part of the distributional covariant derivative; see Remark 5.3.

9C. Abstract Wiener spaces. Let (X, γ,H) be an abstract Wiener space, i.e., X is a separable Banach
space, γ is a centered nondegenerate Gaussian measure on X with covariance operator Q : X∗ 7→ X
and H⊂ X is its associated Cameron–Martin space, which is naturally endowed with a Hilbertian norm.
Moreover, Q X∗ ⊂H.

We define the set of smooth cylindrical functions FC∞b (X) as the set of all functions f (x) representable
as ϕ(x∗1 (x), . . . , x∗n (x)), with ϕ : Rn

→ R smooth and bounded, x∗i ∈ X∗ for i ∈ {1, . . . , n}, for some
integer n ≥ 1.

We introduce a notion of “gradient” on functions f ∈ FC∞b (X) letting ∇H f = Qd f , where d f is the
Fréchet differential of f . With these definitions, for f = ϕ(x∗1 , . . . , x∗n ), and any orthonormal basis (hi )

of H, we have

∇H f (x)=
n∑

j=1

∂ϕ

∂z j
Qx∗j =

∑
i

∂ f
∂hi

(x)hi , where
∂ f
∂hi

(x)= lim
ε→0

f (x + εhi )− f (x)
ε

.

It is well-known [Bouleau and Hirsch 1991] that Sobolev–Malliavin calculus on (X, γ,H) fits into the
setting (2-1), considering the closure of the quadratic form

E( f )=
∫

X
|∇H f |2H dγ for every f ∈ FC∞b (X).
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The domain V coincides with the space W 1,2(X, γ ). The semigroup P is the Ornstein–Uhlenbeck
semigroup, given by Mehler’s formula

Pt f (x)=
∫

X
f (e−t x +

√
1− e−2t y) dγ (y) for γ -a.e. x ∈ X .

From this, it is easy to show that BE2(1,∞) holds (indeed, on cylindrical functions, ∇HPt f = e−tPt∇H f ,
understanding the action of the semigroup componentwise); it is a classical result that E is quasiregular,
e.g., [Bogachev 1998, Theorem 5.9.9]. We let A= FC∞b (X), which is well-known to be dense in every
L p-space and satisfy (2-20) by Mehler’s formula above: in particular we obtain density in Vp spaces by
Lemma 5.6 and Lemma 2.2.

Given an H-valued field b =
∑

i bi hi , we introduce the derivation f 7→ b( f ) =
∑

i bi ∂ f/∂hi and
we briefly compare our well-posedness results for the continuity equation with those contained in
[Ambrosio and Figalli 2009]. Combining Proposition 6.8 and the subsequent remark, we obtain that our
notion of deformation for b is comparable to that of (∇b)sym introduced in [Ambrosio and Figalli 2009,
Definition 2.6]. Precisely, it can be proved that if b ∈ L Dq(γ ;H) for some q > 1, then the deformation of
b is of type (r, s), for any r , s, with q−1

+r−1
+s−1

= 1. It is then easy to realize that Theorem 5.4 entails
the uniqueness part of [Ambrosio and Figalli 2009, Theorem 3.1], with the exception, as we observed in
connection to the Euclidean theory, of the case b ∈W 1,1(X, γ ;H) (the case b ∈ BV(X, γ ;H) has been
recently settled in [Trevisan 2013]).

9D. Gaussian Hilbert spaces. We let X = H be a separable Hilbert space, with norm | · |, in the setting
introduced in the previous section, namely γ is a Gaussian centered and nondegenerate measure in H . By
identifying H = H∗ via the Riesz isomorphism induced by the norm, the covariance operator Q : H→ H
is a symmetric positive trace class operator, thus compact. In this setting the Cameron–Martin space is
H= Q1/2 H , with the norm |h|H = |Q−1/2h|.

We let (ei ) ⊂ H be an orthonormal basis of H consisting of eigenvectors of Q, with eigenvalues
(λi ), i.e., Qei = λi ei for every i ≥ 1: in this setting, we define the class of smooth cylindrical functions
FC∞b (H) as those functions f : X → R of the form f (x) = ϕ(〈ei , x〉, . . . 〈en, x〉), with ϕ : Rn

→ R

smooth and bounded. Given f ∈ FC∞b (H), from its Fréchet derivative d f : H 7→ H∗ we introduce
∇ f : H 7→ H via H = H∗, in coordinates:

∇ f (x)=
∑

i

∂i f (x)ei , where ∂i f (x)= lim
ε→0

f (x + εei )− f (x)
ε

.

To recover the abstract setting of the previous section, notice that the family hi =λ
1/2
i ei is an orthonormal

basis of H and that ∂/∂hi = λ
−1/2
i ∂i ; thus Q∇ f =∇H f . For α ∈ R, we introduce the form

Eα( f )=
∫

X

∣∣Q(1−α)/2
∇ f

∣∣2 dγ, f ∈ FC∞b (H),

which is closable: its domain is the space W 1,2
α (H, γ ); see [Da Prato 2004, Chapters 1 and 2] for more

details. Evidently, we recover (2-1), with 0( f )=
∑

i λ
1−α
i

∣∣∂i f
∣∣2. Notice that the associated distance is

the one induced by the norm |Q(α−1)/2x |, which is extended if and only if α < 1.
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The associated semigroup can be still be seen as the transition semigroup of an infinite-dimensional
stochastic differential equation, and its infinitesimal generator 1α is given by

1α f (x)= Tr[Q1−αD2 f (x)] − 〈x, Q−α∇ f (x)〉, f ∈ FC∞b (H).

It can be shown that BE2(1,∞) holds [Da Prato 2004, Proposition 2.60]. We let A= FC∞b (H), which
is dense in every L p(m) space and satisfies (2-20), thus obtaining density results in Vp, p ∈ [1,∞), by
Lemma 5.6 and Lemma 2.2.

For α = 0, we recover the abstract Wiener space setting discussed above, while for α = 1 we obtain
the setting of [Da Prato et al. 2014]. We show that our results encompass those in [Da Prato et al. 2014]
and analogues hold for any α ∈ R.

Given b : H 7→ H , b =
∑

i bi ei Borel, we consider the map

FC∞b (H) 3 f 7→ d f (b) := 〈b,∇ f 〉H =
∑

i

bi∂i f.

If |Q(α−1)/2b| ∈ Lq(H, γ ) for some q ∈ [1,∞], then b is a well-defined derivation, with |b| ≤ |Q(α−1)/2b|.
The Cameron–Martin theorem entails an integration by parts formula [Da Prato 2004, Theorem 1.4

and Lemma 1.5] that reads in our notation as

div ei (x)=−
〈ei , x〉
λi

, where d f (ei )= ∂i f .

On smooth “cylindrical” fields b =
n∑
i

bi ei , this gives

div b(x)=
∑

i

∂i bi (x)−
〈ei , x〉
λi

bi ,

where the series reduces to a finite sum. Notice that the expression does not depend on α but only on γ ,
in agreement with the notion of divergence as dual to derivation.

Notice also that the boundedness of the Gaussian Riesz transform [Bogachev 1998, Proposition 5.88]
entails that if b ∈ W 1,p(H, γ,H), then div b ∈ L p(H, γ ). These are only sufficient conditions and
their assumptions would force us to limit the discussion to H-valued fields, as in [Da Prato et al. 2014,
Section 5]. Our results hold even for some classes of fields not taking values in H; see at the end of this
section.

Arguing on smooth cylindrical functions,∫
Dsymb( f, g) dγ =

∫ ∑
i, j

1
2

[(
λi

λ j

)1−α
2
∂i b j +

(
λ j

λi

)1−α
2
∂ j bi

](
λ
(1−α)/2
i ∂i f

)(
λ
(1−α)/2
j ∂ j f

)
dγ, (9-1)

thus our bound on Dsymb is implied by an Lq bound of the Hilbert–Schmidt norm of the expression
in square brackets above (a fact that could also be seen as a consequence of Proposition 6.8 and the
subsequent remark, setting Vi (x)= λ

(α−1)/2
i 〈ei , x〉, for i ≥ 1).

Comparing our setting with that in [Da Prato et al. 2014], it is clear that Theorem 2.3 therein is a
consequence of Theorem 5.4.
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We end this section by considering a field b taking values outside H, to which our theory applies
(although well-posedness was already shown in [Mayer-Wolf and Zakai 2005]). Assume that each
eigenvalue of Q admits a two-dimensional eigenspace, thus, slightly changing the notation, we write
(ei , ẽi ) for an orthonormal basis of H consisting of eigenvectors of Q. We let

b =
∞∑

i=1

λ
1/2
i [(div ẽi )ei − (div ei )ẽi ]; thus

∫
|Q(α−1)/2b|2 dγ =

∞∑
i=1

λαi .

The series above converges if α = 1, and it does not if α = 0. Since (div ei , div ẽi )i are independent,
Kolmogorov’s 0–1 law entails that b is well-defined as an H -valued map, but b(x) /∈H for γ -a.e. x ∈ H .
The derivation b is therefore well-defined if α = 1, and |b| ∈ L2(m). From its structure and (9-1), both its
divergence and its deformation are seen to be identically 0, thus our results apply.

9E. Log-concave measures. Let (H, | · |) be a separable Hilbert space and let γ be a log-concave prob-
ability measure on H , i.e., for all open sets B, C ⊂ H ,

log γ ((1− t)B+ tC)≥ (1− t) log γ (B)+ t log γ (C) for every t ∈ [0, 1].

Assume also that γ is nondegenerate, namely that it is not concentrated on a proper closed subspace of H .
Consider the quadratic form

Eγ ( f )=
∫
|∇ f |2 dγ, defined for f ∈ C1

b(H),

where C1
b(H) denotes the space of continuously Fréchet differentiable functions which are bounded with

bounded differential.
It is shown in [Ambrosio et al. 2009] that the Eγ is closable, extending previous results obtained under

more restrictive assumptions on γ . Actually, in [Ambrosio et al. 2009] the so-called EVI property for the
associated semigroup P is proved, and since in [Ambrosio et al. 2014c] this is proved to be one of the
equivalent characterizations of RCD, it follows that (H, | · |, γ ) is an RCD(0,∞) space; thus the results
in Section 9F below apply and we already obtain an abstract well-posedness result under no additional
assumption on γ . Recall that in that abstract setting A can be taken as the space of Lipschitz functions
with bounded support.

Let (ei )i≥1 ⊂ H be an orthonormal basis. For every f ∈ V, there exist fn ∈ C1
b(H) such that fn→ f

in L2(γ ) and
lim

n,m→∞
Eγ ( fn − fm)→ 0;

thus an H -valued “gradient” ∇ f =
∑

i ∂i f ei is γ -a.e. defined in H .
Let b : H 7→ H , b =

∑
i bi ei ; we associate the derivation f 7→ d f (b)=

∑
i bi fi , thus |b| ≤ |b|. For

v ∈ H , we write v for the constant derivation corresponding to the constant vector field equal to v, and ei

for the derivation corresponding to ei .
Let us remark that, in this very general setting setting, bounds on the divergence of a given field b seem

to be difficult to obtain, even for constant vector fields; this is due to the fact that presently it is not known
whether every log-concave measure γ admits at least one nonzero direction v such that div v ∈ L1(m)
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[Bogachev 2010, §4.3]. On the other hand, our abstract arguments do not require any absolute continuity
of γ with respect to a Gaussian or other product measures and, combining our abstract well-posedness
results with Theorem 6.7, we are able to provide nontrivial derivations that admit a well-posed flow,
e.g., gradient derivations of functions in DL∞(1), such as those of the form

∫ 2
1 Pt f dt , for f ∈ L∞(m).

To state an explicit sufficient condition to bound the deformation of b, we assume that div ei � m

and, denoting by βi the density, we require that βi ∈ V for i ≥ 1, or equivalently that the function
x 7→ Vi (x)= 〈ei , x〉 satisfies 1Vi ∈V, thus, provided that r , s ≥ 4, Proposition 6.8 gives ‖Dsymb‖r,s <∞
if [∂i b j + ∂ j bi ]i, j ∈ Lq(γ ; `2(N⊗N)).

We conclude by comparing our results in this setting with [Kolesnikov and Röckner 2014, Theorem 7.6],
where uniqueness for the continuity equation is obtained in the case of log-concave measures formally
given by γ = e−V dL∞, for convex Hamiltonians V of specific form. In particular, the assumptions on βi

imposed therein are stronger than ours. Their assumptions on the field b in [Kolesnikov and Röckner
2014] entail that |b| ∈ La1(γ ), for some a1 > 1 and that [∂i b j + ∂ j bi ]i, j ∈ La2(γ ; `2(N⊗N)), for some
a2 > 4. Moreover, to deduce uniqueness, div b ∈ Lq(γ ) for some q > 1 is also assumed. Therefore, if
a1 ≥ 2 and q ≥ 2, we are in a position to recover, via Proposition 6.8, such a uniqueness result as a special
case of Theorem 5.4.

9F. RCD(K,∞)metric measure spaces. Recall that the class CD(K,∞), introduced and deeply studied
in [Lott and Villani 2009; Sturm 2006a; 2006b] consists of complete metric measure spaces such that
the Shannon relative entropy w.r.t. m is K -convex along Wasserstein geodesics; see [Villani 2009] for a
full account of the theory and its geometric and functional implications. The class of RCD(K,∞) metric
measure spaces was first introduced in [Ambrosio et al. 2014c], from a metric perspective, as a smaller
class than CD(K,∞), with the additional requirement that the so-called Cheeger energy is quadratic;
with this axiom, Finsler geometries are ruled out and stronger structural (and stability) properties can be
established. Subsequently, connections with the theory of Dirichlet forms gave rise to a series of works,
[Ambrosio et al. 2013; 2014a; Savaré 2014]. For a brief introduction to the setting and its notation, we
refer to Sections 4.1 and 4.2 in [Savaré 2014], and in particular to Theorem 4.1 therein, which collects
nontrivial equivalences among different conditions.

We will use the notation W 1,2(X, d,m) for the Sobolev space, Ch for the Cheeger energy arising from
the relaxation in L2(X,m) of the local Lipschitz constant

|D f |(x) := lim sup
y→x

| f (y)− f (x)|
d(y, x)

(9-2)

of L2(m) and Lipschitz maps f : X→ R.
To introduce RCD(K,∞) spaces we restrict the discussion to metric measure spaces (X, d,m) satisfying

the following three conditions:

(i) (X, d) is a complete and separable length space;

(ii) m is a nonnegative Borel measure with supp(m)= X , satisfying

m(Br (x))≤ c eAr2
for suitable constants c ≥ 0, A ≥ 0; (9-3)
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(iii) (X, d,m) is infinitesimally Hilbertian according to the terminology introduced in [Gigli 2012], i.e.,
the Cheeger energy Ch is a quadratic form.

As explained in [Ambrosio et al. 2014a; 2014c], the quadratic form Ch canonically induces a strongly
regular, strongly local Dirichlet form E in (X, τ ) (where τ is the topology induced by the distance d), as
well as a carré du champ 0 : D(E)× D(E)→ L1(m). Thus, we recover the basic setting of (2-1) and we
can identify W 1,2(X, d,m) with V. In addition, P is conservative because of (9-3) and the definition of
Ch provides the approximation property

∃ fn ∈ Lip(X)∩ L2(m) with fn→ f in L2(m) and |D fn| →
√
0( f ) in L2(m)i, (9-4)

for all f ∈ V.
The above discussions justify the following definition of RCD(K,∞). It is not the original one given

in [Ambrosio et al. 2014c] we mentioned at the beginning of this section, but it is more appropriate for
our purposes; the equivalence of the two definitions is given in [Ambrosio et al. 2014a].

Definition 9.1 (RCD(K,∞) metric measure spaces). We say that (X, d,m), satisfying (a), (b), (c) above,
is an RCD(K,∞) space if:

(i) the Dirichlet form associated to the Cheeger energy of (X, d,m) satisfies BE2(K,∞) according to
Definition 6.1;

(ii) any f ∈W 1,2(X, d,m)∩ L∞(m) with
∥∥0( f )

∥∥
∞
≤ 1 has a 1-Lipschitz representative.

From [Ambrosio et al. 2014c, Lemma 6.7] we obtain that E is quasiregular. We let A be the class of
Lipschitz functions with bounded support. It is easily seen that A is dense in V.

Lemma 9.2. There exists a countable set A∗ ⊂A with ‖0( f )‖∞ ≤ 1 for every f ∈A∗, such that (7-10)
and (7-11) are satisfied, the distance dA∗ defined by (7-12) in Remark 7.2 coincides with d, and for any
derivation b one has

|b| = |b|∗ m-a.e. in X, where |b|∗ is defined in (7-13). (9-5)

Proof. Since both (X, d) and V are separable, it is not difficult to exhibit a countable family A∗ ⊂ A

such that (7-10) and (7-11) are satisfied: let (xh)⊂ X be dense, and set fh,k := (d(xh, · )− k)− ∈A for
h, k ∈ N, then define

B :=

∞⋃
h, k=0

{ fh,k} ∪

∞⋃
h=0

{gh},

with (gh)⊂A dense in V. Then, defining A∗ = { f ∈B : ‖0( f )‖∞ ≤ 1} ⊂A, since RA∗ =B we obtain
(7-10), while (7-11) follows easily from the fact that all functions fh,k belong to A∗. To show that the
distances coincide, notice that dA∗ ≤ d is obvious, while d ≤ dA∗ follows from taking f = fh,k in (7-12),
with xh arbitrarily close to x and k larger than d(x, y).

We show that, up to a further enlargement of A∗, (9-5) holds (notice that d = dA∗ and (7-11) holds
automatically for the enlargement, and we need only to retain (7-10)). The problem reduces to arguing
that for f ∈A∗ one can improve the inequality |d f (b)| ≤ |b|∗ to |d f (b)| ≤ 0( f )1/2|b|∗ m-a.e. in X . This
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is based on a localization procedure akin to [Ambrosio et al. 2014a, Proposition 3.11], which leads to the
key inequality (9-8) below; the thesis follows then by a density argument, using the curvature assumption.

For any ε > 0, let Sε ∈ C1(R) be a 1-Lipschitz truncation function, given by Sε(r)= εS1(r/ε), where
S1(r) is a 1-Lipschitz function with {

S1(r)= 1 for r ≤ 1,
S1(r)= 0 for r ≥ 3.

(9-6)

We notice that Sε(r)= ε if r ≤ ε.
Fix f ∈V∩Cb(X) and assume that ζ : X→[0,∞) is a bounded upper-semicontinuous function, such

that 0( f )1/2 ≤ ζ m-a.e. in X . For any h ≥ 1, ε > 0, M > 0, such that M ≥ supB(xh ,3ε) ζ , we introduce
the following “localization” of f at xh ∈ X (as above, (xh)h≥1 ⊂ X is dense in X ):

Th,ε,M( f )( · ) :=
f ( · )− f (xh)

M
∧ [Sε ◦ d( · , xh)] ∨ [−Sε ◦ d( · , xh)].

The following properties are easy to check:

(a) Th,ε,M( f ) ∈ V is supported in B(xh, 3ε), and Th,ε,M( f )(xh)= 0.

(b) 0(Th,ε,M( f ))1/2 ≤ (0( f )1/2/M) ≤ 1 on B(xh, 3ε) and 0(Th,ε,M( f )) = 0 outside B(xh, 3ε); thus
Th,ε,M( f ) is 1-Lipschitz by condition (b) in Definition 9.1.

(c) Combining (a) and (b), we have |Th,ε,M( f )(x)| ≤ d(xh, x) in X , thus |Th,ε,M( f )(x)|<ε in B(xh, ε),
so that Th,ε,M( f )= ( f − f (xh))/M in B(xh, ε).

From (a) and (b) we obtain Th,ε,M f ∈A, which together with (c) leads to the identity

d f (b)= MdTh,ε,M( f )(b), m-a.e. in B(xh, ε). (9-7)

Indeed, for every g ∈A and a ∈ R, it holds that dg(b)= 0 m-a.e. in the set {g = a} as a consequence of
(2-8), with N = {a}, and the upper bound |dg(b)| ≤ |b|0(g)1/2. In the situation that we are considering,
take g = f −MTh,ε,M f and a = f (xh).

Let us assume that Th,ε,M( f ) ∈ A∗, for every h ≥ 1 and rational numbers ε, M > 0 such that
M ≥ supB(xh ,3ε) ζ . We claim that

|d f (b)| ≤ ζ |b|∗ m-a.e. in X . (9-8)

Indeed, from (9-7), we deduce

|d f (b)|(x)= M |dTh,ε,M( f )(b)| ≤ M |b|∗(x) for m-a.e. x ∈ B(xh, 3ε).

We pass to the infimum upon M (which is rational and greater than supB(xh ,3ε) ζ ) and h ≥ 1, then we let
ε ↓ 0, to obtain

|d f (b)|(x)≤ lim sup
ε↓0

inf
h:d(xh ,x)<ε

sup
B(xh ,3ε)

ζ |b|∗(x)≤ ζ(x)|b|∗(x) for m-a.e. x ∈ X ,

where the second inequality holds by upper-semicontinuity of ζ .
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Thanks to the curvature assumption, it is not difficult to show that the class of functions f ∈V∩Cb(X)
that admit functions ζ as above is not empty: by [Ambrosio et al. 2014a, Theorem 3.17] the operator Pt

maps L2
∩ L∞(m) into Cb(X) for every t > 0. In addition, if f ∈ V, it holds

0(Pt f )≤ e−2K tPt(0( f )) m-a.e. in X .

Thus, if 0( f ) ∈ L∞(m) we may let ζ 2 be the continuous version of the expression in the right-hand side
above that we denote by e−2K t P̃t(0( f )); see also [Ambrosio et al. 2014a, Proposition 3.2].

We are in a position to prove that, up to enlarging A∗, (9-5) holds. More precisely, we let ( fn)n≥1 ⊆A

be any countable family, with 0( fn)≤ 1 m-a.e. in X , for n ≥ 1, and such that the dilations (λ fn)λ∈R,n≥1

provide a dense set in V. We enlarge A∗ with the union of all functions

Tε,h,M(Pt fn),

for n, h ≥ 1 and rational numbers t , ε, M > 0 such that M2
≥ supB(xh ,3ε) e−2K t P̃t(0( f )).

For every n ≥ 1 and rational t > 0, (9-8) with Pt fn in place of f and ζ = e−K t
[P̃t(0( f ))]1/2 gives

|dPt fn(b)| ≤ e−K t
[P̃t(0( fn))]

1/2
|b|∗ m-a.e. in X .

We let t ↓ 0 to deduce that
|d fn(b)| ≤ 0( fn)

1/2
|b|∗ m-a.e. in X .

By homogeneity, a similar inequality holds for λ fn in place of fn , for every λ ∈R. To conclude, let g ∈A
and let (gk)k ⊆ (λ fn)λ∈R,n≥1 converge towards g in V. Then

|dg(b)| ≤ lim inf
k→∞

0(gk)
1/2
|b|∗+0(gk − g)1/2|b| = 0(g)1/2|b|∗ m-a.e. in X ,

and we deduce that |b| ≤ |b|∗ m-a.e. in X . �

We discuss now the fine regularity properties of functions in V, recalling some results developed in
[Ambrosio et al. 2014b]. We start with the notion of 2-plan.

Definition 9.3 (2-plans). We say that a positive finite measure η in P(C([0, T ]; X)) is a 2-plan if η is
concentrated on AC([0, T ]; (X, d)) and the following two properties hold:

(i)
∫∫ T

0
|η̇|2(t) dtdη(η) <∞;

(ii) there exists C ∈ [0,∞) satisfying (et)#η ≤ Cm for all t ∈ [0, T ].

Accordingly, we say that V : X→R is W 1,2 along 2-almost every curve if, for all s ≤ t and all 2-plans
η, the family of inequalities∫
|V (η(s))− V (η(t))| dη(η)≤

∫∫ t

s
g(η(r))|η̇(r)| drdη(η) for all s, t ∈ [0, T ) with s ≤ t, (9-9)

holds for some g ∈ L2(m). Since Lipschitz functions with bounded support are dense in V, a density
argument [Ambrosio et al. 2014b, Theorem 5.14] based on (9-4) provides the following result.

Proposition 9.4. Any V ∈V is W 1,2 along 2-almost every curve. In addition, (9-9) holds with g=
√
0(V ).
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Actually, a much finer result could be established [Ambrosio et al. 2014b, §5], namely the existence of a
representative Ṽ of V in the L2(m) equivalence class, with the property that Ṽ ◦η is absolutely continuous
for π -a.e. η for any 2-plan π , with |(Ṽ ◦ η)′| ≤

√
0(V )|η̇| a.e. in (0, T ). However, we shall not need this

fact in the sequel. Here we notice only that since χBη is a 2-plan for any Borel set B ⊂ C([0, T ]; X), it
follows from (9-9) with g =

√
0(V ) that

|V (η(s))− V (η(t))| ≤
∫∫ t

s

√
0(V )(η(r))|η̇(r)| dr for η-a.e. η (9-10)

for all s, t ∈ [0, T ) with s ≤ t .
Now, we would like to relate these known facts to solutions to the ODE η̇= bt(η). The first connection

between 2-plans and probability measures concentrated on solutions to the ODE is provided by the
following proposition.

Proposition 9.5. Let b = (bt) be a Borel family of derivations with |b| ∈ L1
t (L

2) and let u ∈ L∞t (L
∞
x ).

Let η be concentrated on solutions to the ODE η̇ = bt(η), with (et)#η = utm for all t ∈ (0, T ). Then η is
a 2-plan.

Proof. The fact that η has bounded marginals follows from the assumption u ∈ L∞t (L
∞
x ). By Lemma 7.4

and the identification d = dA∗ , η is concentrated on AC([0, T ]; (X, d)), with |η̇|(t)= |bt |(η(t)), L1-a.e.
in (0, T ) for η-a.e. η. Thus,∫∫ T

0
|η̇|2(t) dtdη(η)=

∫ T

0

∫
|bt |

2ut dmdt <∞. �

We now focus on the case of a “gradient” and time-independent derivation bV associated to V ∈ V.
Recall that in this case |bV |

2
= 0(V ) m-a.e. in X .

Theorem 9.6. Let V ∈ D(1) with 1V− ∈ L∞(m). Then, there exist weakly continuous solutions
(in [0, T ), in duality with A) u ∈ L∞t (L

1
x ∩ L∞x ) to the continuity equation, for any initial condition

ū ∈ L1
∩ L∞(m). In addition, if η is given by Theorem 7.6 (namely η is concentrated on solutions to the

ODE η̇ = bV (η) and (et)#η = ut , for all t ∈ (0, T )), then:

(a) η is concentrated on curves η satisfying |η̇|(t)= 0(V )1/2(η(t)), for a.e. t ∈ (0, T );

(b) for all s, t ∈ [0, T ) with s ≤ t ,

V ◦ η(t)− V ◦ η(s)=
∫ t

s
0(V )(η(r)) dr for η-a.e. η.

Proof. The proof of the first statement follows immediately by Theorem 4.3 with r =∞. Since∫ t

s

∫
0(V, f )ur dmdr =

∫
f ut −

∫
f us for all s, t ∈ [0, T ) with s ≤ t

for all f ∈A, we can use the density of A in V and a simple limiting procedure to obtain∫ t

s

∫
0(V )ur dmdr =

∫
V ut −

∫
V us for all s, t ∈ [0, T ) with s ≤ t . (9-11)
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If η is as in the statement of the theorem, since η is a 2-plan we can combine Proposition 9.4 and the
inequality |η̇| ≤ |bV |(η) stated in Lemma 7.4 to get∫

V (η(t))− V (η(s)) dη(η)≤
∫∫ t

s
0(V )1/2(η(r))|η̇|(r) drdη(η)≤

∫∫ t

s
0(V )(η(r)) dη(η),

for all s, t ∈ [0, T ) with s ≤ t . Since (er )#η = urm for all r ∈ [0, T ), it follows that∫
V ut −

∫
V us =

∫
V (η(t))− V (η(s)) dη(η)≤

∫ t

s
0(V )ur dmdr. (9-12)

Combining (9-11) and (9-12) it follows that all the intermediate inequalities we integrated w.r.t. η are
actually identities, so that, for η-a.e. η, |η̇| =

√
0(V ) ◦ η a.e. in (0, T ), and equality holds in (9-10). �

In particular, one could prove that η is a 2-plan representing the 2-weak gradient of V , according to
[Gigli 2012, Definition 3.7], where a weaker asymptotic energy dissipation inequality was required at
t = 0. Our global energy dissipation is stronger, but it requires additional bounds on the Laplacian.

We can also prove uniqueness for the continuity equation, considering just for simplicity still the
autonomous version.

Theorem 9.7. Let V ∈ D(1) with 1V− ∈ L∞(m). Then the continuity equation induced by bV has
existence and uniqueness in L∞t (L

1
x ∩ L∞x ) for any initial condition ū ∈ L1

∩ L∞(m).

Proof. We already discussed existence in Theorem 9.6. For uniqueness, we want to apply Theorem 5.4
with q = 2 and r = s = 4 (which provides uniqueness in the larger class L2

∩ L4(m)). In order to do
this we need only to know that (4-3) holds (this follows by conservativity of P and BE2(K,∞)), that
L4-0 inequalities hold in RCD(K,∞) spaces (this follows by BE2(K,∞), thanks to Corollary 6.3) and
that the deformation of bV is of type (4, 4) (this follows by Theorem 6.7). �

Acknowledgments

Ambrosio acknowledges the support of the ERC ADG GeMeThNES. Trevisan has been partially supported
by PRIN10-11 grant from MIUR for the project Calculus of Variations. Both authors are members of the
GNAMPA group of the Istituto Nazionale di Alta Matematica (INdAM).

The authors thank G. Savaré for pointing out to them, after reading a preliminary version of this work,
the possibility to dispense from the full curvature assumption, an observation that led to the present
organization of the paper. They also thank F. Ricci and G. Da Prato for useful discussions.

References

[Ambrosio 2004] L. Ambrosio, “Transport equation and Cauchy problem for BV vector fields”, Invent. Math. 158:2 (2004),
227–260. MR 2005f:35127 Zbl 1075.35087

[Ambrosio 2008] L. Ambrosio, “Transport equation and Cauchy problem for non-smooth vector fields”, pp. 1–41 in Calculus of
variations and nonlinear partial differential equations, edited by B. Dacorogna and P. Marcellini, Lecture Notes in Math. 1927,
Springer, Berlin, 2008. MR 2010b:35039 Zbl 1159.35041

[Ambrosio and Crippa 2008] L. Ambrosio and G. Crippa, “Existence, uniqueness, stability and differentiability properties of the
flow associated to weakly differentiable vector fields”, pp. 3–57 in Transport equations and multi-D hyperbolic conservation
laws, Lect. Notes Unione Mat. Ital. 5, Springer, Berlin, 2008. MR 2010j:35309 Zbl 1155.35313

http://dx.doi.org/10.1007/s00222-004-0367-2
http://msp.org/idx/mr/2005f:35127
http://msp.org/idx/zbl/1075.35087
http://dx.doi.org/10.1007/978-3-540-75914-0_1
http://msp.org/idx/mr/2010b:35039
http://msp.org/idx/zbl/1159.35041
http://dx.doi.org/10.1007/978-3-540-76781-7_1
http://dx.doi.org/10.1007/978-3-540-76781-7_1
http://msp.org/idx/mr/2010j:35309
http://msp.org/idx/zbl/1155.35313


WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS 1233

[Ambrosio and Figalli 2009] L. Ambrosio and A. Figalli, “On flows associated to Sobolev vector fields in Wiener spaces: An
approach à la DiPerna–Lions”, J. Funct. Anal. 256:1 (2009), 179–214. MR 2009k:35019 Zbl 1156.60036

[Ambrosio and Kirchheim 2000] L. Ambrosio and B. Kirchheim, “Currents in metric spaces”, Acta Math. 185:1 (2000), 1–80.
MR 2001k:49095 Zbl 0984.49025

[Ambrosio et al. 2005] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability
measures, Birkhäuser, Basel, 2005. MR 2006k:49001 Zbl 1090.35002

[Ambrosio et al. 2009] L. Ambrosio, G. Savaré, and L. Zambotti, “Existence and stability for Fokker–Planck equations with
log-concave reference measure”, Probab. Theory Related Fields 145:3-4 (2009), 517–564. MR 2010k:60271 Zbl 1235.60105

[Ambrosio et al. 2013] L. Ambrosio, A. Mondino, and G. Savaré, “On the Bakry–Émery condition, the gradient estimates and
the Local-to-Global property of RCD ∗ (K,N) metric measure spaces”, preprint, 2013. arXiv 1309.4664

[Ambrosio et al. 2014a] L. Ambrosio, N. Gigli, and G. Savaré, “Bakry–Émery curvature-dimension condition and Riemannian
Ricci curvature bounds”, (2014). arXiv 1209.5786

[Ambrosio et al. 2014b] L. Ambrosio, N. Gigli, and G. Savaré, “Calculus and heat flow in metric measure spaces and applications
to spaces with Ricci bounds from below”, Invent. Math. 195:2 (2014), 289–391. MR 3152751 Zbl 06261668

[Ambrosio et al. 2014c] L. Ambrosio, N. Gigli, and G. Savaré, “Metric measure spaces with Riemannian Ricci curvature
bounded from below”, Duke Math. J. 163:7 (2014), 1405–1490. MR 3205729 Zbl 06303881

[Bakry 1985] D. Bakry, “Transformations de Riesz pour les semi-groupes symétriques, II: Étude sous la condition 02 ≥ 0”, pp.
145–174 in Séminaire de probabilités, XIX, 1983/84, edited by J. Azéma and M. Yor, Lecture Notes in Math. 1123, Springer,
Berlin, 1985. MR 89h:42023 Zbl 0561.42011

[Bakry 1994] D. Bakry, “L’hypercontractivité et son utilisation en théorie des semigroupes”, pp. 1–114 in Lectures on probability
theory (Saint-Flour, 1992), edited by P. Bernard, Lecture Notes in Math. 1581, Springer, Berlin, 1994. MR 95m:47075
Zbl 0856.47026

[Bakry 1997] D. Bakry, “On Sobolev and logarithmic Sobolev inequalities for Markov semigroups”, pp. 43–75 in New trends in
stochastic analysis (Charingworth, 1994), edited by K. D. Elworthy et al., World Science, River Edge, NJ, 1997. MR 99m:60110

[Bakry et al. 2014] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der
Mathematischen Wissenschaften 348, Springer, Cham, 2014. MR 3155209 Zbl 06175511

[Bate 2013] D. Bate, “Structure of measures in Lipschitz differentiability spaces”, preprint, 2013. To appear in J. Amer. Math.
Soc. arXiv 1208.1954

[Biroli and Mosco 1995] M. Biroli and U. Mosco, “A Saint–Venant type principle for Dirichlet forms on discontinuous media”,
Ann. Mat. Pura Appl. (4) 169 (1995), 125–181. MR 97b:35082 Zbl 0851.31008

[Bogachev 1998] V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs 62, Amer. Math. Soc., Providence,
RI, 1998. MR 2000a:60004 Zbl 0913.60035

[Bogachev 2010] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs
164, Amer. Math. Soc., Providence, RI, 2010. MR 2012c:60146 Zbl 1247.28001

[Bouleau and Hirsch 1991] N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space, de Gruyter Studies in
Mathematics 14, Walter de Gruyter, Berlin, 1991. MR 93e:60107 Zbl 0748.60046

[Capuzzo Dolcetta and Perthame 1996] I. Capuzzo Dolcetta and B. Perthame, “On some analogy between different approaches to
first order PDE’s with nonsmooth coefficients”, Adv. Math. Sci. Appl. 6:2 (1996), 689–703. MR 2000g:35025 Zbl 0865.35032

[Da Prato 2004] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, Basel, 2004. MR 2005m:60002
Zbl 1066.60061

[Da Prato et al. 2014] G. Da Prato, F. Flandoli, and M. Röckner, “Uniqueness for continuity equations in Hilbert spaces with
weakly differentiable drift”, Stoch. PDE: Anal. and Comp. 2:2 (2014), 121–145.

[DiPerna and Lions 1989] R. J. DiPerna and P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”,
Invent. Math. 98:3 (1989), 511–547. MR 90j:34004 Zbl 0696.34049

[Fukushima et al. 2011] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov processes, 2nd ed.,
de Gruyter Studies in Mathematics 19, Walter de Gruyter, Berlin, 2011. MR 2011k:60249 Zbl 1227.31001

[Gigli 2012] N. Gigli, “On the differential structure of metric measure spaces and applications”, preprint, 2012. To appear in
Mem. Amer. Math. Soc. arXiv 1205.6622

http://dx.doi.org/10.1016/j.jfa.2008.05.007
http://dx.doi.org/10.1016/j.jfa.2008.05.007
http://msp.org/idx/mr/2009k:35019
http://msp.org/idx/zbl/1156.60036
http://dx.doi.org/10.1007/BF02392711
http://msp.org/idx/mr/2001k:49095
http://msp.org/idx/zbl/0984.49025
http://msp.org/idx/mr/2006k:49001
http://msp.org/idx/zbl/1090.35002
http://dx.doi.org/10.1007/s00440-008-0177-3
http://dx.doi.org/10.1007/s00440-008-0177-3
http://msp.org/idx/mr/2010k:60271
http://msp.org/idx/zbl/1235.60105
http://msp.org/idx/arx/1309.4664
http://msp.org/idx/arx/1209.5786
http://dx.doi.org/10.1007/s00222-013-0456-1
http://dx.doi.org/10.1007/s00222-013-0456-1
http://msp.org/idx/mr/3152751
http://msp.org/idx/zbl/06261668
http://dx.doi.org/10.1215/00127094-2681605
http://dx.doi.org/10.1215/00127094-2681605
http://msp.org/idx/mr/3205729
http://msp.org/idx/zbl/06303881
http://dx.doi.org/10.1007/BFb0075844
http://msp.org/idx/mr/89h:42023
http://msp.org/idx/zbl/0561.42011
http://dx.doi.org/10.1007/BFb0073872
http://msp.org/idx/mr/95m:47075
http://msp.org/idx/zbl/0856.47026
http://msp.org/idx/mr/99m:60110
http://dx.doi.org/10.1007/978-3-319-00227-9
http://msp.org/idx/mr/3155209
http://msp.org/idx/zbl/06175511
http://msp.org/idx/arx/1208.1954
http://dx.doi.org/10.1007/BF01759352
http://msp.org/idx/mr/97b:35082
http://msp.org/idx/zbl/0851.31008
http://dx.doi.org/10.1090/surv/062
http://msp.org/idx/mr/2000a:60004
http://msp.org/idx/zbl/0913.60035
http://dx.doi.org/10.1090/surv/164
http://msp.org/idx/mr/2012c:60146
http://msp.org/idx/zbl/1247.28001
http://dx.doi.org/10.1515/9783110858389
http://msp.org/idx/mr/93e:60107
http://msp.org/idx/zbl/0748.60046
http://msp.org/idx/mr/2000g:35025
http://msp.org/idx/zbl/0865.35032
http://dx.doi.org/10.1007/978-3-0348-7909-5
http://msp.org/idx/mr/2005m:60002
http://msp.org/idx/zbl/1066.60061
http://dx.doi.org/10.1007/s40072-014-0031-9
http://dx.doi.org/10.1007/s40072-014-0031-9
http://dx.doi.org/10.1007/BF01393835
http://msp.org/idx/mr/90j:34004
http://msp.org/idx/zbl/0696.34049
http://msp.org/idx/mr/2011k:60249
http://msp.org/idx/zbl/1227.31001
http://msp.org/idx/arx/1205.6622


1234 LUIGI AMBROSIO AND DARIO TREVISAN

[Gigli 2013] N. Gigli, “The splitting theorem in non-smooth context”, preprint, 2013. arXiv 1302.5555
[Gigli 2014] N. Gigli, “Nonsmooth differential geometry – An approach tailored for spaces with Ricci curvature bounded from
below”, preprint, 2014. arXiv 1407.0809

[Gigli and Bang-Xian 2014] N. Gigli and H. Bang-Xian, “The continuity equation on metric measure spaces”, Calc. Var. Partial
Differential Equations (2014), 1–29.

[Grigor′yan 1999] A. Grigor′yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion
on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.) 36:2 (1999), 135–249. MR 99k:58195 Zbl 0927.58019

[Kolesnikov and Röckner 2014] A. V. Kolesnikov and M. Röckner, “On continuity equations in infinite dimensions with
non-Gaussian reference measure”, J. Funct. Anal. 266:7 (2014), 4490–4537. MR 3170213 Zbl 06320688

[Lott and Villani 2009] J. Lott and C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math.
(2) 169:3 (2009), 903–991. MR 2010i:53068 Zbl 1178.53038

[Mayer-Wolf and Zakai 2005] E. Mayer-Wolf and M. Zakai, “The divergence of Banach space valued random variables on
Wiener space”, Probab. Theory Related Fields 132:2 (2005), 291–320. MR 2007e:60039 Zbl 1068.60077

[Savaré 2014] G. Savaré, “Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in
RCD(K ,∞) metric measure spaces”, Discrete Contin. Dyn. Syst. 34:4 (2014), 1641–1661. MR 3121635 Zbl 1275.49087

[Schioppa 2014] A. Schioppa, “Derivations and Alberti representations”, preprint, 2014. arXiv 1311.2439
[Showalter 1997] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathemat-
ical Surveys and Monographs 49, Amer. Math. Soc., Providence, RI, 1997. MR 98c:47076 Zbl 0870.35004

[Smirnov 1993] S. K. Smirnov, “Decomposition of solenoidal vector charges into elementary solenoids, and the structure of
normal one-dimensional flows”, Algebra i Analiz 5:4 (1993), 206–238. In Russian; translated in St. Petersburg Math. J. 5:4
(1994), 841–867. MR 94i:49054 Zbl 0832.49024

[Stein 1970] E. M. Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies 63,
Princeton University Press, 1970. MR 40 #6176 Zbl 0193.10502

[Stollmann 2010] P. Stollmann, “A dual characterization of length spaces with application to Dirichlet metric spaces”, Studia
Math. 198:3 (2010), 221–233. MR 2011i:30052 Zbl 1198.31005

[Sturm 1995] K.-T. Sturm, “Analysis on local Dirichlet spaces, II: Upper Gaussian estimates for the fundamental solutions of
parabolic equations”, Osaka J. Math. 32:2 (1995), 275–312. MR 97b:35003 Zbl 0854.35015

[Sturm 2006a] K.-T. Sturm, “On the geometry of metric measure spaces, I”, Acta Math. 1 (2006), 65–131. MR 2007k:53051a
Zbl 1105.53035

[Sturm 2006b] K.-T. Sturm, “On the geometry of metric measure spaces, II”, Acta Math. 1 (2006), 133–177. MR 2007k:53051b
Zbl 1106.53032

[Trevisan 2013] D. Trevisan, “Lagrangian flows driven by BV fields in Wiener spaces”, preprint, 2013. arXiv 1310.5655
[Villani 2009] C. Villani, Optimal transport: Old and new, Grundlehren der Mathematischen Wissenschaften 338, Springer,
Berlin, 2009. MR 2010f:49001 Zbl 1156.53003

[Weaver 2000] N. Weaver, “Lipschitz algebras and derivations, II: Exterior differentiation”, J. Funct. Anal. 178:1 (2000), 64–112.
MR 2002g:46040a Zbl 0979.46035

[Wei and Wylie 2009] G. Wei and W. Wylie, “Comparison geometry for the Bakry–Emery Ricci tensor”, J. Differential Geom.
83:2 (2009), 377–405. MR 2011a:53064 Zbl 1189.53036

[Yosida 1980] K. Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften 123, Springer, Berlin,
1980. MR 82i:46002 Zbl 0435.46002

Received 19 Feb 2014. Accepted 12 Jul 2014.

LUIGI AMBROSIO: luigi.ambrosio@sns.it
Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa, Italy

DARIO TREVISAN: dario.trevisan@sns.it
Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa, Italy

mathematical sciences publishers msp

http://msp.org/idx/arx/1302.5555
http://msp.org/idx/arx/1407.0809
http://dx.doi.org/10.1007/s00526-014-0744-7
http://dx.doi.org/10.1090/S0273-0979-99-00776-4
http://dx.doi.org/10.1090/S0273-0979-99-00776-4
http://msp.org/idx/mr/99k:58195
http://msp.org/idx/zbl/0927.58019
http://dx.doi.org/10.1016/j.jfa.2014.01.010
http://dx.doi.org/10.1016/j.jfa.2014.01.010
http://msp.org/idx/mr/3170213
http://msp.org/idx/zbl/06320688
http://dx.doi.org/10.4007/annals.2009.169.903
http://msp.org/idx/mr/2010i:53068
http://msp.org/idx/zbl/1178.53038
http://dx.doi.org/10.1007/s00440-004-0397-0
http://dx.doi.org/10.1007/s00440-004-0397-0
http://msp.org/idx/mr/2007e:60039
http://msp.org/idx/zbl/1068.60077
http://dx.doi.org/10.3934/dcds.2014.34.1641
http://dx.doi.org/10.3934/dcds.2014.34.1641
http://msp.org/idx/mr/3121635
http://msp.org/idx/zbl/1275.49087
http://msp.org/idx/arx/1311.2439
http://msp.org/idx/mr/98c:47076
http://msp.org/idx/zbl/0870.35004
http://mi.mathnet.ru/eng/aa405
http://mi.mathnet.ru/eng/aa405
http://msp.org/idx/mr/94i:49054
http://msp.org/idx/zbl/0832.49024
http://msp.org/idx/mr/40:6176
http://msp.org/idx/zbl/0193.10502
http://dx.doi.org/10.4064/sm198-3-2
http://msp.org/idx/mr/2011i:30052
http://msp.org/idx/zbl/1198.31005
http://projecteuclid.org/euclid.ojm/1200786053
http://projecteuclid.org/euclid.ojm/1200786053
http://msp.org/idx/mr/97b:35003
http://msp.org/idx/zbl/0854.35015
http://dx.doi.org/10.1007/s11511-006-0002-8
http://msp.org/idx/mr/2007k:53051a
http://msp.org/idx/zbl/1105.53035
http://dx.doi.org/10.1007/s11511-006-0003-7
http://msp.org/idx/mr/2007k:53051b
http://msp.org/idx/zbl/1106.53032
http://msp.org/idx/arx/1310.5655
http://dx.doi.org/10.1007/978-3-540-71050-9
http://msp.org/idx/mr/2010f:49001
http://msp.org/idx/zbl/1156.53003
http://dx.doi.org/10.1006/jfan.2000.3637
http://msp.org/idx/mr/2002g:46040a
http://msp.org/idx/zbl/0979.46035
http://projecteuclid.org/euclid.jdg/1261495336
http://msp.org/idx/mr/2011a:53064
http://msp.org/idx/zbl/1189.53036
http://dx.doi.org/10.1007/978-3-642-61859-8
http://msp.org/idx/mr/82i:46002
http://msp.org/idx/zbl/0435.46002
mailto:luigi.ambrosio@sns.it
mailto:dario.trevisan@sns.it
http://msp.org


ANALYSIS AND PDE
Vol. 7, No. 5, 2014

dx.doi.org/10.2140/apde.2014.7.1235 msp

ERRATUM TO
POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM

SCHRÖDINGER OPERATORS

JEAN-MICHEL COMBES, FRANÇOIS GERMINET AND ABEL KLEIN

Volume 3:1 (2010), 49–80

The following results in the paper in question are not proved, due to a mistake in the derivation of
inequality (5-8): Theorem 2.1, Theorem 2.2, Lemma 5.1.

All references are to [Combes et al. 2010]. The inequality stated in (5-8),

E
{(

tr P (3)ω (I )
)(

tr P (3)ω (I )− 1
)}
≤ Q1 Q2ρ+|I |

∑
j∈3̃

Eω⊥j

{
8
(3)
b,τ (ω

⊥

j )
}
,

is not correct. This inequality was derived by taking the expectation of both sides of (5-6) and estimating
E
{
tr
{√u j P (3)ω (I )√u j S(3)j

}}
by the spectral-averaging estimate stated in (3-5). Unfortunately, this

argument implicitly assumes8(3)b,τ (ω
⊥

j )≥ 0 (see (5-7)), which cannot be guaranteed. This error invalidates
the proof of Lemma 5.1. As a consequence, for continuum Anderson Hamiltonians, a Minami estimate
(Theorem 2.2) and Poisson statistics for eigenvalues (Theorem 2.1) remain conjectures.

The only results affected by the error in Lemma 5.1 are Theorems 2.1 and 2.2. Everything else in
Theorem 2.3 is correct. (Note that the proof of that theorem works with a weaker form of the Minami
estimate.) The Wegner estimates of Section 4, including Wegner estimates with constants that go to zero
as either the energy approaches the bottom of the spectrum or the disorder goes to infinity, are correct.
The new approach to Minami’s estimate for the discrete Anderson model in Section 3 is correct.
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