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AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS
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A classical pseudodifferential operator P on Rn satisfies the µ-transmission condition relative to a smooth
open subset � when the symbol terms have a certain twisted parity on the normal to ∂�. As shown
recently by the author, this condition assures solvability of Dirichlet-type boundary problems for P in
full scales of Sobolev spaces with a singularity dµ−k , d(x)= dist(x, ∂�). Examples include fractional
Laplacians (−1)a and complex powers of strongly elliptic PDE.

We now introduce new boundary conditions, of Neumann type, or, more generally, nonlocal type.
It is also shown how problems with data on Rn

\� reduce to problems supported on �, and how the
so-called “large” solutions arise. Moreover, the results are extended to general function spaces F s

p,q and
Bs

p,q , including Hölder–Zygmund spaces Bs
∞,∞. This leads to optimal Hölder estimates, e.g., for Dirichlet

solutions of (−1)au = f ∈ L∞(�), u ∈ daCa(�) when 0< a < 1, a 6= 1
2 .

Boundary value problems for elliptic pseudodifferential operators (ψdo’s) P , on a smooth subset �
of a Riemannian manifold �1, have been studied under various hypotheses through the years. There is a
well-known calculus initiated by Boutet de Monvel [Boutet de Monvel 1971; Rempel and Schulze 1982;
Grubb 1984; 1990; 1996; 2009; Schrohe 2001] for integer-order ψdo’s with the 0-transmission property
(preserving C∞ up to the boundary), including boundary value problems for elliptic differential operators
and their inverses. There are theories treating more general operators with suitable factorizations of the
principal symbol, initiated by Vishik and Eskin (see, e.g., [Eskin 1981; Shargorodsky 1994; Chkadua
and Duduchava 2001]). Theories for operators without the transmission property have been developed
by Schulze and coauthors, see, e.g., [Rempel and Schulze 1984; Harutyunyan and Schulze 2008], and
theories where the boundary is considered as a singularity of the manifold have been developed in works
of Melrose and coauthors, see, e.g., [Melrose 1993; Albin and Melrose 2009].

A category of ψdo’s lying between the operators handled by the Boutet de Monvel calculus and the
very general categories mentioned above consists of the ψdo’s with a µ-transmission property, µ ∈ C,
with respect to ∂�. Only recently, a systematic study in H s

p Sobolev spaces was given in [Grubb 2015a],
departing from a result on such operators in C∞-spaces by Hörmander [1985, Theorem 18.2.18] (in fact
developed from the lecture notes [Hörmander 1965]). This category includes fractional Laplacians (−1)a

and complex powers of strongly elliptic differential operators, and also more generally polyhomogeneous
ψdo’s with symbol p ∼

∑
j∈N0

p j having even parity (that is, p j (x,−ξ) = (−1) j p j (x, ξ) for j ≥ 0)
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or a twisted parity involving a factor eiπ%. The general µ-transmission operators have such a reflection
property of the symbol at ∂� just in the normal direction; see (1-5) below. This allows regularity and
solvability results not only for s in a finite interval, but for arbitrarily large s.

The fractional Laplacian and its generalizations, often formulated as singular integral operators, are
currently of interest in probability theory, finance, mathematical physics and geometry.

The work [Grubb 2015a] showed the Fredholm solvability of homogeneous or nonhomogeneous
Dirichlet-type problems in large scales of Sobolev spaces, for µ-transmission ψdo’s. In the present paper,
we introduce more general boundary conditions and find criteria for their solvability. There are the general
nonlocal conditions γ0 Bu = ψ , where B is a µ-transmission ψdo; in addition to this, local higher-order
conditions such as a Neumann-type condition involving the normal derivative at ∂� are treated. The case
of N × N systems of ψdo is briefly considered.

Moreover, we show by use of [Johnsen 1996] that the theory also works in the Besov–Triebel–Lizorkin
spaces Bs

p,q and F s
p,q , with special attention to the spaces Bs

∞,∞, which coincide with Hölder spaces C s

for s ∈ R+ \N. In comparison with [Grubb 2015a], this allows for a sharpening of Hölder results for
(−1)a (and other a-transmission operators) as follows: Let � be a compact subset of Rn . For solutions
u ∈ e+L∞(�) of r+(−1)au = f ,

f ∈ L∞(�) =⇒ u ∈ e+d(x)aCa(�), when a ∈ ]0, 1[, a 6= 1
2 , (0-1)

which is optimal in the Hölder exponent. (For a = 1
2 , it holds with Ca replaced by Ca−ε. Also higher

regularities are treated, and optimal Hölder estimates for nonhomogeneous Dirichlet and Neumann
problems are likewise shown.) In a new work, Ros-Oton and Serra [2014a] have studied integral operators
with homogeneous, positive, even kernel and obtained (0-1) with Ca replaced by Ca−ε; in the smooth case
this is covered by the present theory. (We are concerned with linear operators; the nonlinear implications
in [Ros-Oton and Serra 2014a] are not touched here.) Such operators were treated in cases without
boundary by Caffarelli and Silvestre, see, e.g., [2009].

Furthermore, we show the equivalence of Dirichlet problems for u supported in � with problems
prescribing a value of u on the exterior Rn

\�, obtaining new results for the latter, which were treated
recently by, for example, Felsinger, Kassmann and Voigt [Felsinger et al. 2014] and Abatangelo [2013].

For nonhomogeneous problems the solutions can be “large” at the boundary; cf. [Abatangelo 2013]
and its references. We show how the solutions have a specific power singularity when the boundary data
are nontrivial.

The case a = 1
2 enters as a boundary integral operator in treatments of mixed boundary value problems

for elliptic differential operators. The present results are applied to mixed problems in [Grubb 2015b].

Outline. In Section 1, we briefly recall the relevant definitions of operators and spaces. Section 2 presents
the basic results on Dirichlet and Neumann problems for (−1)a , including situations with given exterior
data, and derives conclusions in Hölder spaces. Section 3 explains the extension of the general results to
Besov–Triebel–Lizorkin spaces, including Bs

∞,∞. Section 4 introduces new nonlocal boundary conditions
γ0 Bu = ψ , as well as local Neumann-type conditions; also N × N systems of ψdo are discussed. The
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Appendix illustrates the theory by treating a particular constant-coefficient case, showing how the problems
for (1−1)a on Rn

+
can be solved in full detail by explicit calculations.

1. Preliminaries

The notation of [Grubb 2015a] will be used. We shall give a brief account, and refer there for further details.
Consider a Riemannian n-dimensional C∞ manifold �1 (it can be Rn) and an embedded smooth n-

dimensional manifold� with boundary ∂� and interior�. For�1=Rn ,� can be Rn
±
=
{

x ∈Rn
| xn≷ 0

}
;

we will denote (x1, . . . , xn−1) by x ′. In the general manifold case, � is taken to be compact. For ξ ∈ Rn ,
we let (1+ |ξ |2)

1
2 = 〈ξ〉, and denote by [ξ ] a positive C∞-function equal to |ξ | for |ξ | ≥ 1 and ≥ 1

2 for
all ξ . Restriction from Rn to Rn

±
(or from �1 to � or {�, respectively) is denoted by r±, extension by

zero from Rn
±

to Rn (or from � or {�, respectively, to �1) is denoted by e±.
A pseudodifferential operator (ψdo) P on Rn is defined from a symbol p(x, ξ) on Rn

×Rn by

Pu = p(x, D)u = OP(p(x, ξ))u = (2π)−n
∫

ei x ·ξ p(x, ξ)û dξ = F−1
ξ→x(p(x, ξ)û(ξ)); (1-1)

here, F is the Fourier transform (Fu)(ξ)= û(ξ)=
∫

Rn e−i x ·ξu(x) dx . The symbol p is assumed to be such
that for some r ∈ R, ∂βx ∂αξ p(x, ξ) is O(〈ξ〉r−|α|) for all α, β (defining the symbol class Sr

1,0(R
n
×Rn));

the symbol then has order r . The definition of P is carried over to manifolds by use of local coordinates.
We refer to textbooks such as [Hörmander 1985; Taylor 1981; Grubb 2009] for the rules of calculus;
[Grubb 2009] moreover gives an account of the Boutet de Monvel calculus of pseudodifferential boundary
problems, see also, e.g., [Grubb 1996; Schrohe 2001]. When P is a ψdo on Rn or �1, P+ = r+Pe+

denotes its truncation to Rn
+

or �, respectively.
Let 1< p <∞ (with 1/p′ = 1− 1/p), then we define for s ∈ R the spaces

H s
p(R

n)= {u ∈ S′(Rn) | F−1(〈ξ〉s û) ∈ L p(R
n)},

Ḣ s
p(R

n
+
)= {u ∈ H s

p(R
n) | supp u ⊂ Rn

+
},

H s
p(R

n
+
)= {u ∈ D′(Rn

+
) | u = r+U for some U ∈ H s

p(R
n)};

(1-2)

here, supp u denotes the support of u. For a compact subset � of �1, the definition extends to define
Ḣ s

p(�) and H s
p(�) by use of a finite system of local coordinates. We shall in the present paper moreover

work in the Triebel–Lizorkin and Besov spaces F s
p,q and Bs

p,q , defined for s ∈ R, 0< p, q ≤∞ (we take
p<∞ in the F-case), and the derived spaces Ḟ s

p,q and F s
p,q , etc. Here we refer to [Triebel 1995; Johnsen

1996] for basic definitions. ([Triebel 1995] writes F̃ instead of Ḟ , etc.; the present notation stems from
Hörmander’s works.) For a Hölder space C t , Ċ t(�) denotes the Hölder functions on �1 supported in �.
Bs

p,p is also denoted by Bs
p when p <∞, and F s

p,p = Bs
p,p, F s

p,2 = H s
p, H s

2 = Bs
2 .

We shall use the conventions
⋃
ε>0 H s+ε

p = H s+0
p and

⋂
ε>0 H s−ε

p = H s−0
p , applied in a similar way

for the other scales of spaces.
The results hold in particular for Bs

∞,∞-spaces. These are interesting because Bs
∞,∞(R

n) equals the
Hölder space C s(Rn) when s ∈ R+ \N. (There are similar statements for derived spaces over Rn

+
and �.)

The spaces Bs
∞,∞(R

n) can be identified with the Hölder–Zygmund spaces, often denoted Cs(Rn) when
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s > 0. There is a nice account of these spaces in Section 8.6 of [Hörmander 1997], where they are denoted
by C s

∗
(Rn) for all s ∈ R; we shall use that label below, for simplicity of notation:

Bs
∞,∞ = C s

∗
for all s ∈ R. (1-3)

For integer values of k one has, with Ck
b(R

n) denoting the space of functions with bounded continuous
derivatives up to order k,

Ck
b(R

n)⊂ Ck−1,1(Rn)⊂ Ck
∗
(Rn)⊂ Ck−0(Rn) when k ∈ N,

C0
b(R

n)⊂ L∞(Rn)⊂ C0
∗
(Rn),

(1-4)

and similar statements for derived spaces.
A ψdo P is called classical (or polyhomogeneous) when the symbol p has an asymptotic expansion

p(x, ξ) ∼
∑

j∈N0
p j (x, ξ) with p j homogeneous in ξ of degree m − j for all j . Then P has order m.

One can even allow m to be complex; then p ∈ SRe m
1,0 (Rn

×Rn), and the operator and symbol are still
said to be of order m.

Here there is an additional definition: P satisfies the µ-transmission condition (in short, is of type µ)
for some µ ∈ C when, in local coordinates,

∂βx ∂
α
ξ p j (x,−N )= eπ i(m−2µ− j−|α|)∂βx ∂

α
ξ p j (x, N ) (1-5)

for all x ∈ ∂�, all j, α, β, where N denotes the interior normal to ∂� at x . The implications of the
µ-transmission property were a main subject of [Grubb 2015a].

A special role in the theory is played by the order-reducing operators. There is a simple definition of
operators 4µ± on Rn:

4
µ
± = OP(([ξ ′] ± iξn)

µ)

(or with [ξ ′] replaced by 〈ξ ′〉); they preserve support in Rn
±

, respectively. Here the function ([ξ ′] ± iξn)
µ

does not satisfy all the estimates required for the class SReµ(Rn
×Rn), but the operators are useful for

some purposes. There is a more refined choice 3µ± (with symbol λµ±(ξ)) that does satisfy all the estimates,
and there is a definition 3(µ)± in the manifold situation. These operators define homeomorphisms for all
s ∈ R such as

3
(µ)
+ : Ḣ

s
p(�)−→

∼ Ḣ s−Reµ
p (�),

3
(µ)
−,+ : H

s
p(�)−→

∼ H s−Reµ
p (�);

(1-6)

here, 3(µ)−,+ is short for r+3(µ)− e+, suitably extended to large negative s (see Remark 1.1 and Theorem 1.3
in [Grubb 2015a]).

The following special spaces, introduced by Hörmander, are particularly adapted to µ-transmission
operators P:

Hµ(s)
p (Rn

+
)=4

−µ
+ e+H s−Reµ

p (Rn
+
), s > Reµ− 1/p′,

Hµ(s)
p (�)=3

(−µ)
+ e+H s−Reµ

p (�), s > Reµ− 1/p′,

Eµ(�)= e+{u(x)= d(x)µv(x) | v ∈ C∞(�)};

(1-7)
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namely, r+P (of order m) maps them into H s−Re m
p (Rn

+
), H s−Re m

p (�) and C∞(�) respectively (see
[Grubb 2015a] Sections 1.3, 2, 4), and they appear as domains of realizations of P in the elliptic case. In
the third line, Reµ >−1 (for other µ, see [Grubb 2015a]) and d(x) is a C∞-function vanishing to order
1 at ∂� and positive on �, e.g., d(x)= dist(x, ∂�) near ∂�. One has that Hµ(s)

p (�)⊃ Ḣ s
p(�), and the

distributions are locally in H s
p on �, but at the boundary they in general have a singular behavior. More

about that in the text below.
The order-reducing operators also operate in the Besov–Triebel–Lizorkin scales of spaces, satisfying

the relevant versions of (1-6), and the definitions in (1-7) extend.

2. Three basic problems for the fractional Laplacian

As a useful introduction, we start out by giving a detailed presentation of boundary problems for the basic
example of the fractional Laplacian.

Let Pa = (−1)
a , a > 0, and let � be a bounded open subset of Rn with a C∞-boundary ∂� = 6.

Pa , acting as u 7→F−1(|ξ |2a û), is a pseudodifferential operator on Rn of order 2a, and it is of type a and
has factorization index a relative to �, as defined in [Grubb 2015a]. With terminology introduced by Hör-
mander in the notes [1965] and now exposed in [Grubb 2015a], we consider the following problems for Pa:

(1) The homogeneous Dirichlet problem:{
r+Pau = f on �,
supp u ⊂�.

(2-1)

(2) A nonhomogeneous Dirichlet problem (with u less regular than in (2-1)):
r+Pau = f on �,
supp u ⊂�,
d(x)1−au = ϕ on 6.

(2-2)

(3) A nonhomogeneous Neumann problem:
r+Pau = f on �,
supp u ⊂�,
∂n(d(x)1−au)= ψ on 6.

(2-3)

It is shown in [Grubb 2015a] that (2-1) and (2-2) have good solvability properties in suitable Sobolev
spaces and Hölder spaces, and we shall include (2-3) in the study below. In the following, we derive
further properties of each of the three problems.

Remark 2.1. The theorems in Sections 2A and 2B below are also valid when (−1)a is replaced by
a general a-transmission ψdo P of order 2a and with factorization index a, except that bijectivity is
replaced by the Fredholm property. They also hold when � is a compact subset of a manifold �1. The
results in Section 2C extend to such operators when they are principally like (−1)a .

In the Appendix of this paper we have included a treatment of (1−1)a on a half-space; it is a model
case where one can obtain the solvability results directly by Fourier transformation.
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2A. The homogeneous Dirichlet problem. From the point of view of functional analysis (as used for
example in [Frank and Geisinger 2014]), it is natural to define the Dirichlet realization Pa,D as the
Friedrichs extension of the symmetric operator Pa,0 in L2(�) acting like r+Pa with domain C∞0 (�).
There is an associated sesquilinear form

pa,0(u, v)= (2π)−n
∫

Rn
|ξ |2a û(ξ)v̂(ξ) dξ, u, v ∈ C∞0 (�). (2-4)

Since
(
‖u‖2L2

+
∫
|ξ |2a
|û|2 dξ

) 1
2 is a norm equivalent with ‖u‖Ha

2
, the completion of C∞0 (�) in this norm

is V = Ḣa
2 (�), and pa,0 extends to a continuous nonnegative symmetric sesquilinear form on V . A

standard application of the Lax–Milgram lemma (e.g., as in [Grubb 2009, Chapter 12]) gives an operator
Pa,D that is selfadjoint nonnegative in L2(�) and acts like r+Pa : Ḣa

2 (�)→ H −a
2 (�), with domain

D(Pa,D)=
{
u ∈ Ḣa

2 (�) | r
+Pau ∈ L2(�)

}
. (2-5)

The operator has compact resolvent, and the spectrum is a nondecreasing sequence of nonnegative
eigenvalues going to infinity. As we shall document below, 0 is not an eigenvalue, so Pa,D in fact has a
positive lower bound and is invertible.

The results of [Grubb 2015a, Sections 4, 7] clarify the mapping properties and solvability properties
further: For 1< p <∞, r+Pa maps continuously:

r+Pa : Ha(s)
p (�)→ H s−2a

p (�), when s > a− 1/p′; (2-6)

there is the regularity result

u ∈ Ḣa−1/p′+0
p (�), r+Pau ∈ H s−2a

p (�)=⇒ u ∈ Ha(s)
p (�), when s > a− 1/p′, (2-7)

and the mapping (2-6) is Fredholm. (It is even bijective, as seen below.) As an application of the results
for s = 2a, p = 2, we have in particular that

D(Pa,D)= Ha(2a)
2 (�)=3

(−a)
+ e+Ha

2(�); (2-8)

see also Example 7.2 in [Grubb 2015a]. We recall from [Grubb 2015a, Theorem 5.4] that

Ha(s)
p (�)


= Ḣ s

p(�) when a− 1/p′ < s < a+ 1/p,
⊂ Ḣ s−0

p (�) when s = a+ 1/p,
⊂ e+da H s−a

p (�)+ Ḣ s
p(�) when s > a+ 1/p, s− a− 1/p /∈ N,

⊂ e+da H s−a
p (�)+ Ḣ s−0

p (�) when s− a− 1/p ∈ N.

(2-9)

In [Grubb 2015a, Section 7], we used Sobolev embedding theorems to draw conclusions for Hölder
spaces. Slightly sharper (often optimal) results can be obtained if we use an extension of the results of
[Grubb 2015a] to the general scales of Triebel–Lizorkin and Besov spaces F s

p,q and Bs
p,q . The extended

theory will be presented in detail below in Sections 3–4; for the moment we shall borrow some results to
give powerful statements for (−1)a , 0 < a < 1. We recall that the notation Bs

∞,∞ is simplified to C s
∗
,
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and that C s
∗

equals C s (the ordinary Hölder space) for s ∈ R+ \N; see also (1-4). Moreover, as special
cases of Definition 3.1 and Theorem 3.4 below for p = q =∞,

Cµ(s)
∗

(�)=3
(−µ)
+ e+C s−Reµ

∗
(�) for s > Reµ− 1,

Cµ(s)
∗

(�)⊂

{
d(x)µe+C s−Reµ

∗ (�)+ Ċ s
∗
(�) when s > Reµ, s−Reµ /∈ N,

d(x)µe+C s−Reµ
∗ (�)+ Ċ s−0

∗
(�) when s > Reµ, s−Reµ ∈ N.

(2-10)

Note also that the distributions in Cµ(s)
∗ (�) are locally in C s

∗
on �, by the ellipticity of 3(−µ)+ .

We focus in the following on the case 0< a < 1, assumed in the rest of this chapter. Here we find the
following results, with conclusions formulated in ordinary Hölder spaces:

Theorem 2.2. Let s > a − 1. If u ∈ Ċa−1+ε
∗

(�) for some ε > 0 (e.g., if u ∈ e+L∞(�)), and r+Pu ∈
C s−2a
∗

(�), then u ∈ Ca(s)
∗ (�). The mapping r+Pa defines a bijection

r+Pa : Ca(s)
∗
(�)→ C s−2a

∗
(�). (2-11)

In particular, for any f ∈ L∞(�), there exists a unique solution u of (2-1) in Ca(2a)
∗ ; it satisfies

u ∈ e+d(x)aCa(�)∩C2a(�), when a 6= 1
2 ,

u ∈
(
e+d(x)

1
2 C

1
2 (�)+ Ċ1−0(�)

)
∩C1−0(�)⊂ e+d(x)

1
2 C

1
2−0(�)∩C1−0(�), when a = 1

2 .
(2-12)

For f ∈ C t(�), t > 0, the solution satisfies

u ∈


e+d(x)aCa+t(�)∩C2a+t(�) when a+ t and 2a+ t /∈ N,(
e+d(x)aCa+t−0(�)+ Ċ2a+t−0(�)

)
∩C2a+t(�) when a+ t ∈ N,(

e+d(x)aCa+t(�)+ Ċ2a+t−0(�)
)
∩C2a+t−0(�) when 2a+ t ∈ N.

(2-13)

Also, the mappings in (2-6) are bijections for s > a− 1/p′.

Proof. The first two statements are a special case of Theorem 3.2 below (see Example 3.3), except that we
have replaced the Fredholm property with bijectivity. According to [Ros-Oton and Serra 2014b, Proposi-
tion 1.1] a weak solution (a solution in Ḣa

2 (�)) of the problem (2-1) with f ∈ L∞(�) satisfies ‖u‖Ca ≤

C‖ f ‖L∞ ; in particular, it is unique. For f ∈ H −a
2 (�), the Fredholm property of r+Pa from Ha(a)

2 (�)=

Ḣa
2 (�) to H −a

2 (�) is covered by [Grubb 2015a, Theorem 7.1] with s = a, p= 2. Moreover, the kernel N

is in Ea(�) by Theorem 3.5 below. If the kernel were nonzero, there would exist nontrivial null-solutions
u ∈Ea(�), contradicting the uniqueness for f ∈ L∞(�)mentioned above. Thus N= 0. Then the kernel of
the Dirichlet realization Pa,D in L2(�) recalled above is likewise 0, and, since it is a selfadjoint operator
with compact resolvent, it must be bijective. So the cokernel in L2(�) is likewise 0. This shows the bijec-
tivity of (2-6) in the case s= 2a, p= 2. In view of Theorem 3.5 below, this bijectivity carries over to all the
other versions, including (2-6) for general s> a−1/p′, and the mapping (2-11) in C s

∗
-spaces for s> a−1.

For (2-12) we use Theorem 3.4 (as recalled in (2-10)), noting that Ca
∗
(�) = Ca(�), that Ċ2a

∗
(�) =

Ċ2a(�)⊂ d(x)aCa(�) when a 6= 1
2 , and that u ∈C2a(�) by interior regularity when a 6= 1

2 , with slightly
weaker statements when a = 1

2 . The rest of the statements follow similarly by use of (2-10) with µ= a
and the various information on the relation between the C s

∗
-spaces and standard Hölder spaces. �
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Ros-Oton and Serra [2014b] showed, under weaker smoothness hypotheses on �, the inclusion
u ∈ daCα(�) for any α with 0< α <min{a, 1− a}, and improved it in [Ros-Oton and Serra 2014a] to
α = a− ε. They observe that α > a cannot be obtained, so α = a, which we obtain in (2-12), is optimal.

We also have as shown in [Grubb 2015a, Theorem 4.4] that for functions u supported in � (see the
first inclusion in (2-7)),

r+Pau ∈ C∞(�) ⇐⇒ u ∈ Ea(�)≡
{
u = e+d(x)av(x) | v ∈ C∞(�)

}
. (2-14)

It is worth emphasizing that the functions in Ea have a nontrivially singular behavior at 6 when a /∈N0;
e+C∞(�) and Ea(�) are very different spaces. The appearance of a factor dµ0 , where µ0 is the
factorization index, was observed in C∞-situations also in [Eskin 1981, p. 311] and in [Chkadua and
Duduchava 2001, Theorem 2.1].

The solution operator is denoted by R; its form as a composition of pseudodifferential factors was
given in [Grubb 2015a].

There is another point of view on the Dirichlet problem for Pa that we shall also discuss. In a number
of papers (see, e.g., [Hoh and Jacob 1996; Felsinger et al. 2014] and their references), the Dirichlet
problem for Pa (and other related operators) is formulated as{

PaU = f in �,
U = g on {�.

(2-15)

Although the main aim is to determine U on �, the prescription of the values of U on {� is explained
as necessitated by the nonlocality of Pa . As observed explicitly in [Hoh and Jacob 1996], the transmission
property of [Boutet de Monvel 1971] is not satisfied; hence that theory of boundary problems for
pseudodifferential operators is of no help. But now that we have the µ-transmission calculus, it is worth
investigating what the methods can give.

The case g = 0 corresponds to the formulation (2-1). But also, in general, (2-15) can be reduced to
(2-1) when the spaces are suitably chosen. For (2-15), let f be given in H s−2a

p (�) (with s > a− 1/p′),
and let g be given in H s

p
(
{�
)
; then we search for U in a Sobolev space over Rn .

Let G = `g be an extension of g to H s
p(R

n). Then u =U −G must satisfy{
r+Pau = f − r+PaG in �,
supp u ⊂�.

(2-16)

Here PaG ∈ H s−2a
p,loc (R

n), so f − r+PaG ∈ H s−2a
p (�).

According to our analysis of (2-1), there is a unique solution u = R( f −r+PaG) ∈ Ha(s)
p (�) of (2-16).

Then (2-15) has the solution U = u+G ∈ Ha(s)
p (�)+H s

p(R
n). Moreover, there is at most one solution to

(2-15) in this space, for if U1 = u1+G1 and U2 = u2+G2 are two solutions, then v= u1−u2+G1−G2

is supported in �, hence lies in Ha(s)
p (�)+ Ḣ s

p(�)= Ha(s)
p (�) and satisfies (2-1) with f = 0; hence it

must be 0.
This reduction allows a study of higher regularity of the solutions. The treatment in [Felsinger et al.

2014] seems primarily directed towards the regularity involved in variational formulations (p = 2, s = a)
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where Vishik and Eskin’s results would be applicable; moreover, [Felsinger et al. 2014] allows a less
smooth boundary.

We have shown:

Theorem 2.3. Let s > a − 1/p′, and let f ∈ H s−2a
p (�) and g ∈ H s

p
(
{�
)

be given. Then the problem

(2-15) has the unique solution U = u+G ∈ Ha(s)
p (�)+ H s

p(R
n), where G ∈ H s

p(R
n) is an extension of g

and
u = R( f − r+PaG) ∈ Ha(s)

p (�); (2-17)

here, R is the solution operator for (2-1).

Observe in particular that the solution is independent of the choice of an extension operator ` : g 7→ G.
There is an immediate corollary for solutions in Hölder spaces (as in [Grubb 2015a, Section 7]):

Corollary 2.4. Let p> n/a. For f ∈ L p(�), g ∈C2a+0
(
{�
)
∩H 2a

p
(
{�
)
, the solution of (2-15) according

to Theorem 2.3 satisfies

U ∈ e+daCa−n/p(�)+C2a+0(Rn)∩ H 2a
p (R

n), (2-18)

if 2a− n/p 6= 1. If 2a− n/p equals 1, we need to add the space Ċ1−0(�).

Proof. The intersection with H 2a
p
(
{�
)

serves as a bound at∞. We extend g to a function G ∈C2a+0(Rn);
then G ∈ C2a+0(Rn) ∩ H 2a

p (R
n) (since C t+0

⊂ H t
p over bounded sets). Theorem 2.3 now gives the

existence of a solution U = u+G, where u ∈ Ha(2a)
p (�). By [Grubb 2015a, Corollary 5.5] (see (2-9)

above), this is contained in daCa−n/p(�)when 2a−n/p 6= 1 (a−1/p and a−n/p are already noninteger).
If 2a− p/n=1, then we have to add the space Ċ1−0(�), due to the embedding Ḣ 1+n/p

p (�)⊂ Ċ1−0(�). �

Results for problems with f ∈ L∞(�) or Hölder spaces were obtained in [Grubb 2015a] by letting
p→∞; here we shall obtain sharper results by applying the general method to the C s

∗
-scale. Repeating

the proof of Theorem 2.3 in this scale, we find:

Theorem 2.5. Let s > a− 1, and let f ∈ C s−2a
∗

(�) and g ∈ C s
∗

(
{�
)

be given. Then the problem (2-15)
has the unique solution U = u+G ∈ Ca(s)

∗ (�)+C s
∗
(Rn), where G ∈ C s

∗
(Rn) is an extension of g and

u = R( f − r+PaG) ∈ Ca(s)
∗
(�); (2-19)

here, R is the solution operator for (2-1).

Let us spell this out in more detail for s = 2a and s = 2a+ t in terms of ordinary Hölder spaces. In
Corollary 2.6(1), we take g to be compactly supported in {�; in (2) and (3), a very general term supported
away from � is added (it can in particular lie in C2a+t

∗
). Recall from (1-4) that L∞ ⊂ C0

∗
.

Corollary 2.6. (1) For f ∈ L∞(�), g ∈ C2a
comp

(
{�
)
, the solution of (2-15) according to Theorem 2.5

satisfies
U ∈ e+daCa(�)∩C2a(�)+C2a

comp(R
n), (2-20)

with C2a replaced by C1−0 if a = 1
2 , and the same for C2a

comp.
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(2) Let X be any of the function spaces Fσp,q(R
n) or Bσp,q(R

n), and denote by Xext the subset of elements
with support disjoint from �. For f ∈ L∞(�), g ∈ C2a

comp
(
{�
)
+ Xext, there exists a solution U of (2-15)

satisfying

U ∈ e+daCa(�)∩C2a(�)+C2a
comp(R

n)+ Xext, (2-21)

with C2a replaced by C1−0 if a = 1
2 , and the same for C2a

comp.

(3) For f ∈ C t(�), g ∈ C2a+t
comp

(
{�
)
+ Xext, t > 0, the solution according to (2) satisfies

U ∈ e+daCa+t(�)∩C2a+t(�)+C2a+t
comp(R

n)+ Xext, (2-22)

with Ca+t , C2a+t and C2a+t
comp replaced by Ca+t−0 C2a+t−0 and C2a+t−0

comp , respectively, when the exponents
hit an integer.

Proof. (1) That g ∈ C2a
comp

(
{�
)

means that g is in C2a over the closed set {� and vanishes outside a
large ball; it extends to a function G ∈ C2a

comp(R
n). Since C2a

comp(R
n)⊂ C2a

comp,∗(R
n), the construction in

Theorem 2.5 gives a solution U = u+G, where u is as in (2-12).

(2) The function spaces are as described, for example, in [Johnsen 1996], with σ ∈ R, 0 < p, q ≤∞
(p < ∞ in the F-case), and ψdo’s are well-defined in these spaces. We write g = g1 + g2, where
g1 ∈C2a

comp
(
{�
)

and g2 ∈ Xext. The problem (2-15) with g replaced by g1 has a solution u1+G1 as in (1).
For the problem (2-15) with f replaced by 0 and g replaced by g2 we take G2 = g2. Then PaG2 is C∞

on a neighborhood of � (by the pseudolocal property of pseudodifferential operators, see, e.g., [Grubb
2009, p. 177]), so the reduced problem has a solution u2 ∈ Ea(�), and the given problem then has the
solution u2+ g2.

The sum of the solutions u1+G1+ u2+ g2 solves (2-15) and lies in the asserted space.

(3) This is shown in a similar way, using (2-13). �

Remark 2.7. Note that according to this corollary, the effect on the solution over � of an exterior
contribution to g supported at a distance from � is only a term in Ea(�).

2B. A nonhomogeneous Dirichlet problem. For the nonhomogeneous Dirichlet problem (2-2), the
crucial observation that leads to its solvability is that we can identify Ea−1(�)/Ea(�) with C∞(6) by
use of the mapping

γa−1,0 : u 7→ 0(a)(d(x)1−au)|6 ≡ 0(a)γ0(d1−au). (2-23)

(The gamma-function is included for consistency in calculations of Fourier transformations and Taylor
expansions.) Namely, using normal and tangential coordinates x = y′+ yn En(y′) on a tubular neighborhood
Uδ = {y′+ yn En(y′) | y′ ∈6, |yn|< δ} of 6 (where En(y′) denotes the interior normal at y′), we have for
v ∈ C∞(�) that

v(x)= v(y′+ yn En)= v0(y′)+ ynw(x) on Uδ ∩�,
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where v0 ∈ C∞(6) is the restriction of v to 6 (also denoted γ0v), and w is C∞ on Uδ ∩�. Now, when
u ∈ Ea−1(�) is written as u = e+0(a)−1d(x)a−1v with v ∈ C∞(�) and d(x) taken as yn on Uδ, then

u(x)= 0(a)−1d(x)a−1v0(y′)+0(a)−1d(x)aw(x) on Uδ ∩�, (2-24)

where 0(a)−1d(x)aw is a function in Ea(�). Here, v0 is determined uniquely from v and hence γa−1,0u
is determined uniquely from u, and the null-space of the mapping u 7→ γa−1,0u is Ea(�). See also
Section 5 of [Grubb 2015a]; there it is moreover shown that the mapping

γa−1,0 : Ea−1(�)→ C∞(6), with null-space Ea(�),

extends to a continuous surjective mapping

γa−1,0 : H (a−1)(s)
p (�)→ Bs−a+1/p′

p (6), with null-space Ha(s)
p (�), for s > a− 1/p′. (2-25)

Now since we have the bijectivity of r+Pa in (2-6), we can simply adjoin the mapping (2-25) and
conclude the bijectivity of(

r+Pa

γa−1,0

)
: H (a−1)(s)

p (�)−→∼ H s−2a
p (�)× Bs−a+1/p′

p (6). (2-26)

This gives the unique solvability of the problem (2-2) in these spaces. There is an inverse

(
R K

)
=

(
r+Pa

γa−1,0

)−1

,

where R is the inverse of (2-6) as introduced above and K is a mapping going from 6 to �. (Further
details in [Grubb 2015a, Section 6].)

In C s
∗
-spaces, we likewise have an extension of the mapping γa−1,0:

γa−1,0 : C (a−1)(s)
∗

(�)→ C s−a+1
∗

(6), with null-space Ca(s)
∗
(�), for s > a− 1. (2-27)

Then the result is as follows (as a special case of Theorem 3.2 below), with conclusions in Hölder spaces:

Theorem 2.8. Let s > a− 1. The mapping {r+Pa, γa−1,0} defines a bijection

{r+Pa, γa−1,0} : C (a−1)(s)
∗

(�)→ C s−2a
∗

(�)×C s−a+1
∗

(6). (2-28)

In particular, for any f ∈ L∞(�), ϕ ∈ Ca+1(6), there exists a unique solution u of (2-2) in
C (a−1)(2a)
∗ (�); it satisfies

u ∈
{

e+d(x)a−1Ca+1(�)+ Ċ2a(�) when a 6= 1
2 ,

e+d(x)−
1
2 C

3
2 (�)+ Ċ1−0(�) when a = 1

2 .
(2-29)

For f ∈ C t(�), ϕ ∈ Ca+1+t(6), t > 0, the solution satisfies

u ∈


e+d(x)a−1Ca+1+t(�)+ Ċ2a+t(�) when a+ t and 2a+ t /∈ N,

e+d(x)a−1Ca+1+t−0(�)+ Ċ2a+t−0(�) when a+ t ∈ N,

e+d(x)a−1Ca+1+t(�)+ Ċ2a+t−0(�) when 2a+ t ∈ N.

(2-30)
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Proof. The bijectivity holds in view of the bijectivity in Theorem 2.2, and (2-27). The implications
(2-29) and (2-30) follow from (2-10) with µ= a− 1, together with the embedding properties recalled in
Section 1. Note that since a+ 1> 2a, there is no need to mention an intersection with C2a(+t)(�). �

This gives a sharpening of Theorem 7.4 in [Grubb 2015a]. We moreover recall that as shown in [Grubb
2015a, Theorem 7.1], for functions u ∈ H (a−1)(s)

p (�) for some s, p with s > a− 1/p′,

f ∈ C∞(�), ϕ ∈ C∞(6) ⇐⇒ u ∈ Ea−1(�). (2-31)

Also for the nonhomogeneous Dirichlet problem, there exist formulations where the support condition
on u is replaced by a prescription of its value on {�. Abatangelo [2013] considers problems of the type

r+PaU = f on �,
U = g on {�,
γa−1,0U = ϕ on 6.

(2-32)

(The boundary condition in [Abatangelo 2013] takes the form of the third line when � is a ball, but is
described in a more general way for other domains.)

For (2-32), let f, g, ϕ be given, with

{ f, g, ϕ} ∈ H s−2a
p (�)× H s

p
(
{�
)
× Bs−a+1/p′

p (6), with s > a− 1/p′. (2-33)

Then we search for a solution U in a Sobolev space over Rn that allows definition of γa−1,0U .
We want to take as G an extension of g to H s

p(R
n). If s > n/p, such that H s

p(R
n) ⊂ C0(Rn), we

have that γa−1,0 : G 7→ 0(a)γ0(d(x)1−aG) is well-defined and gives 0 for G ∈ H s
p(R

n) (since a < 1).
If s < 1/p, we can take G as the extension by 0 on �

(
since H s

p
(
{�
)

is identified with Ḣ s
p
(
{�
)

when
−1/p′ < s < 1/p

)
. If 1/p ≤ s ≤ n/p, we can also use the extension by 0 and note that the boundary

value from � is zero, but G is only in H 1/p−0
p (Rn). Now U1 =U −G must satisfy

r+PaU1 = f − r+PaG in �,

supp U1 ⊂�,

γa−1,0U1 = ϕ.

(2-34)

We continue the analysis for s /∈[1/p, n/p]; when s>0, this can be achieved by taking p sufficiently large.
Since PaG ∈ H s−2a

p,loc (R
n), f − r+PaG ∈ H s−2a

p (�). In this way, we have reduced the problem to the
form (2-3), where we have the solution operator

(
R K

)
, see (2-26) and the following. This implies that

(2-32) has the solution

U = R( f − r+PaG)+ Kϕ+G ∈ Ha(s)
p (�)+ H (a−1)(s)

p (�)+ H s
p(R

n). (2-35)

It is unique, since zero data give a zero solution (as we know from (2-15) in the case ϕ = 0). Recall that
Ha(s)

p (�)⊂ H (a−1)(s)
p (�).

This shows the first part of the following theorem:
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Theorem 2.9. (1) Let s > a− 1/p′ (if s > 0 assume moreover that s /∈ [1/p, n/p]), and let f, g, ϕ be
given as in (2-33). Let G ∈ H s

p(R
n) be an extension of g (by zero if s < 1/p).

The problem (2-32) has the unique solution (2-35) in H (a−1)(s)
p (�)+ H s

p(R
n).

(2) Let s > a− 1, s 6= 0, and let f, g, ϕ be given, with

{ f, g, ϕ} ∈ C s−2a
∗

(�)×C s
∗

(
{�
)
×C s−a+1

∗
(6). (2-36)

Let G ∈ C s
∗
(Rn) be an extension of g (by zero if s < 0).

The problem (2-32) has the unique solution

U = R( f − r+PaG)+ Kϕ+G ∈ C (a−1)(s)
∗

(�)+C s
∗
(Rn). (2-37)

Proof. (1) was shown above, and (2) is shown in an analogous way:
For s > 0, the extension G has boundary value γa−1,0G = 0(a)γ0(d1−aG)= 0 since G is continuous

and 1− a > 0, and for s < 0 the boundary value from � is 0, since G is extended by zero (using the
identification of C s

∗

(
{�
)

with Ċ s
∗

(
{�
)

when −1< s < 0). We then apply Theorem 2.8 to u =U −G. �

This reduction allows a study of higher regularity of the solutions. The treatment in [Abatangelo 2013]
seems primarily directed towards solutions for not very smooth data. The boundary of � is only assumed
C1,1 there.

Remark 2.10. When s > a+ n/p, we note that since Ha(s)
p (�)⊂ e+d(x)aC0(�)⊂ C0(Rn) (see (2-9)

or [Grubb 2015a, Corollary 5.5]), the solution (2-35) is the sum of a continuous function and a term
Kϕ ∈ H (a−1)(s)

p (�) that stems solely from the boundary value ϕ. To further describe Kϕ, consider a
localized situation, where � is replaced by Rn

+
, d(x) is replaced by xn , and Pa is carried over to a similar

operator P (of type and factorization index a). As shown in the proof of [Grubb 2015a, Theorem 6.5],
the solution Kϕ (in a parametrix sense) of

r+Pu = 0 in Rn
+
, γa−1,0u = ϕ at xn = 0,

is of the form Kϕ = z+w, where

z = Ka−1,0ϕ =4
1−a
+

e+K0ϕ = e+ca−1xa−1
n K0ϕ, w =−Rr+Pz ∈ Ha(s)(Rn

+
)⊂ C0(Rn);

here K0 is the standard Poisson operator sending ϕ ∈ Bs−a+1/p′
p (Rn−1) into

K0ϕ = F−1
ξ→x(ϕ̂(ξ

′)([ξ ′] + iξn)
−1)= F−1

ξ ′→x ′(ϕ̂(ξ
′)e−[ξ

′
]xn ) ∈ H s−a+1

p (Rn
+
),

with γ0K0ϕ = ϕ (see also Corollary 5.3 and the proof of Theorem 5.4 in [Grubb 2015a]). Then

z = e+ca−1xa−1
n K0ϕ ∈ e+xa−1

n H s−a+1
p (Rn

+
)⊂ e+xa−1

n C s−a+1−n/p(Rn
+
),

with K0ϕ 6= 0 at {xn = 0} when ϕ 6= 0. For higher s, the factor K0ϕ lies in higher-order Sobolev and
Hölder spaces, but is always nontrivial at {xn = 0} when ϕ 6= 0.
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When this is carried back to the manifold situation, we have that U is the sum of a term in C0(Rn)

and a term e+d(x)a−1v, v ∈ H s−a+1
p (�), where v is nonzero at ∂� when ϕ 6= 0. Since a < 1, this term

blows up at the boundary.
Hence the solutions are “large” at the boundary in this precise sense, consisting of a continuous function

plus a term containing the factor d(x)a−1 nontrivially. See also (2-31).
It is a theme of [Abatangelo 2013] that there exist “large” solutions of the nonhomogeneous Dirichlet

problem; we here see that this is not an exception but a rule of the setup, provided naturally by the part of
the solution mapping going from 6 to �.

Theorem 2.9(1) gives the following result in Hölder spaces when f ∈ L p(�)= H 0
p(�).

Corollary 2.11. Let p > n/a. For f ∈ L p(�), g ∈ C2a+0
(
{�
)
∩ H 2a

p
(
{�
)

and ϕ ∈ Ca+1/p′+0(6), the
solution U of (2-32) according to Theorem 2.8 satisfies

U ∈ e+da−1Ca+1−n/p(�)+ Ċ2a−n/p(�)+C2a+0(Rn)∩ H 2a
p (R

n), (2-38)

with C2a−n/p replaced by C1−0 if 2a− n/p = 1.

Proof. Note that 2a > n/p. We extend g as in Corollary 2.4 to a function G ∈ C2a+0(Rn)∩ H 2a
p (R

n),

and note that ϕ ∈ Ca+1/p′+0(6)⊂ Ba+1/p′
p (6). Theorem 2.9(1) shows that there is a (unique) solution

U = u+ Kϕ+G with

u+ Kϕ ∈ H (a−1)(2a)
p (�)⊂ e+da−1Ca+1−n/p(�)+ Ċ2a−n/p(�)

(one may consult [Grubb 2015a, (7.15)]), with the mentioned modification if 2a− n/p is integer. �

For f ∈ L∞(�) or C t(�), we get the sharpest results by applying the statement for C s
∗
-spaces:

Corollary 2.12. (1) For f ∈ L∞(�), g ∈ C2a
comp

(
{�
)

and ϕ ∈ Ca+1(6), the solution of (2-32) satisfies

U ∈ e+da−1Ca+1(�)+C2a
comp(R

n), (2-39)

with C2a
comp replaced by C1−0

comp if a = 1
2 .

(2) Let X be any of the function spaces Fσp,q(R
n) or Bσp,q(R

n), and denote by Xext the subset of elements
with support disjoint from �. For f ∈ L∞(�), g ∈ C2a

comp
(
{�
)
+ Xext and ϕ ∈ Ca+1(6), there exists a

solution of (2-32) satisfying

U ∈ e+da−1Ca+1(�)+C2a
comp(R

n)+ Xext, (2-40)

with C2a
comp replaced by C1−0

comp if a = 1
2 .

(3) For f ∈ C t(�), g ∈ C2a+t
comp

(
{�
)
+ Xext and ϕ ∈ Ca+1+t(6), the solution according to (2) satisfies

U ∈ e+da−1Ca+1+t(�)+C2a+t
comp(R

n)+ Xext,

with Ca+1+t and C2a+t
comp replaced by Ca+1+t−0 and C2a+t−0

comp , respectively, when the exponents hit an
integer.

Proof. We apply Theorem 2.9(2) in essentially the same way as in Corollary 2.6; details can be omitted. �



µ-TRANSMISSION AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS 1663

2C. A nonhomogeneous Neumann problem. The Neumann boundary value defined in connection with
(−1)a is

γa−1,1u = 0(a+ 1)γ0
(
∂n(d(x)1−au)

)
; (2-41)

it is proportional to the second coefficient in the Taylor expansion of d1−au in the normal variable at the
boundary (like γ0w when w is as in (2-24)).

We here have, by use of Theorem 4.3 below:

Theorem 2.13. The mapping {r+Pa, γa−1,1} defines a Fredholm operator

{r+Pa, γa−1,1} : H (a−1)(s)
p (�)→ H s−2a

p (�)× Bs−a−1/p
p (6), (2-42)

for s > a+ 1/p.

Proof. The continuity of the mapping (2-42) follows from [Grubb 2015a, Theorem 5.1] with µ= a− 1,
M = 2. The Fredholm property follows from Theorem 4.3 below in a special case (see (3-2)) by piecing
together a parametrix from the parametrix construction in local coordinates given there. We use that the
parametrix exists since Pa in local coordinates has principal symbol |ξ |2a . �

There is a similar version in C s
∗
-spaces, with consequences for Hölder estimates:

Theorem 2.14. Let s > a. The mapping {r+Pa, γa−1,1} defines a Fredholm operator

{r+Pa, γa−1,1} : C (a−1)(s)
∗

(�)→ C s−2a
∗

(�)×C s−a
∗
(6). (2-43)

In particular, for { f, ψ} ∈ L∞(�)×Ca(6) subject to a certain finite set of linear constraints there
exists a solution u of (2-3) in C (a−1)(2a)

∗ (�); it is unique modulo a finite dimensional linear subspace
N⊂ Ea−1(�) and satisfies

u ∈
{

e+d(x)a−1Ca+1(�)+ Ċ2a(�) when a 6= 1
2 ,

e+d(x)−
1
2 C

3
2 (�)+ Ċ1−0(�) when a = 1

2 .
(2-44)

For f ∈ C t(�), ψ ∈ Ca+t(6), t > 0, the solution satisfies

u ∈


e+d(x)a−1Ca+1+t(�)+ Ċ2a+t(�) when a+ t and 2a+ t /∈ N,

e+d(x)a−1Ca+1+t−0(�)+ Ċ2a+t−0(�) when a+ t ∈ N,

e+d(x)a−1Ca+1+t(�)+ Ċ2a+t−0(�) when 2a+ t ∈ N.

(2-45)

Proof. The first statement is the analogue of Theorem 2.13, now derived from Theorem 4.3, for p= q=∞.
In the next, detailed statements we formulate the Fredholm property explicitly, using also Theorem 3.5
on the smoothness of the kernel. Here the inclusions (2-44) and (2-45) follow from the description (2-10)
of C (a−1)(s)

∗ (�) as in the proof of Theorem 2.8. �

Also in the Neumann case, one can formulate versions of the theorems with u prescribed on Rn
\�,

and show their equivalence with the set-up for u supported in �; we think this is sufficiently exemplified
by the treatment of the Dirichlet condition above that we can leave details to the interested reader.
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3. Boundary problems in general spaces

One of the conclusions in [Grubb 2015a] of the study of the ψdo P of order m ∈ C, with factorization
index and type µ0 ∈ C, was that it could be linked, by the help of the special order-reducing operators
3
(µ)
± , to an operator

Q =3(µ0−m)
− P3(−µ0)

+ (3-1)

of order 0 and with factorization index and type 0, which could be treated by the help of the calculus of
Boutet de Monvel on H s

p-spaces, as accounted for in [Grubb 1990]. Results for P and its boundary value
problems could then be deduced from those for Q in the case of a homogeneous boundary condition. With a
natural definition of boundary operators γµ,k , nonhomogeneous boundary conditions could also be treated.
In particular, we found the structure of parametrices of r+P , with homogeneous or nonhomogeneous
Dirichlet-type conditions, as compositions of operators belonging to the Boutet de Monvel calculus with
the special order-reducing operators; see Theorems 4.4, 6.1 and 6.5 of [Grubb 2015a].

The results of [Grubb 1990] have been extended to the much more general families of spaces F s
p,q

(Triebel–Lizorkin spaces) and Bs
p,q (Besov spaces) by Johnsen [1996]. He shows that elliptic systems on

a compact manifold with a smooth boundary, belonging to the Boutet de Monvel calculus, have Fredholm
solvability also in these more general spaces, with C∞ kernels and range complements (cokernels) indepen-
dent of s, p, q . Here 0< p, q ≤∞ is allowed for the Bs

p,q -spaces, and the same goes for the F s
p,q -spaces,

except that p is taken<∞ (to avoid long explanations of exceptional cases). The parameter s is taken> s0,
for a suitable s0 depending on p and the order and class of the involved operators. We refer to [Johnsen
1996] (or to Triebel’s books) for detailed descriptions of the spaces, recalling just that for 1< p <∞,

F s
2,2 = Bs

2,2 = H s
2 , L2-Sobolev spaces,

F s
p,2 = H s

p, Bessel-potential spaces,

Bs
p,p = Bs

p, Besov spaces.

(3-2)

Here the Bessel-potential spaces H s
p are also called W s

p (or W s,p) for s ∈N0, and the Besov spaces Bs
p are

also called W s
p (or W s,p) for s ∈ R+ \N, under the common name Sobolev–Slobodetskii spaces. Recall

moreover that F s
p,p = Bs

p,p for 0< p <∞ (also denoted Bs
p).

We return to the general situation of � smoothly embedded in a Riemannian manifold �1, with
Rn
+
⊂ Rn used in localizations. Hörmander’s notation Ḟ, F and Ḃ, B will be used for the general scales,

in the same way as for H s
p; see (1-2) and the following.

In the present paper, we shall in particular be interested in the case of the scale of spaces Bs
∞,∞ = C s

∗

(see the text around (1-3)), which gives a shortcut to sharp results on solvability in Hölder spaces.
Since we are mostly interested in results for large p, we shall assume p ≥ 1, which simplifies the

quotations from [Johnsen 1996]; namely, the condition s>max{1/p−1, n/p−n} simplifies to s>1/p−1,
since 1/p− 1 ≥ n/p− n when p ≥ 1. (In situations where p < 1 would be needed, e.g., in bootstrap
regularity arguments, one can supply the presentation here with the appropriate results from [Johnsen
1996].) The usual notation 1/p′ = 1− 1/p is understood as 0 or 1 when p = 1 or∞, respectively. We
assume p ≤∞ in B-cases, p <∞ in F-cases, and take 0< q ≤∞.



µ-TRANSMISSION AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS 1665

The scales F s
p,q and Bs

p,q have analogous roles in definitions over �, but the trace mappings on them
are slightly different: when s > 1/p,

γ0 : F s
p,q(�)→ Bs−1/p

p,p (∂�) and γ0 : Bs
p,q(�)→ Bs−1/p

p,q (∂�), (3-3)

continuously and surjectively. (One could also write F s
p,p instead of Bs

p,p; in [Johnsen 1996], both
cases occur.)

To reduce repetitive formulations, we shall introduce the common notation

X s
p,q stands for either F s

p,q or Bs
p,q , as necessary, (3-4)

with the same choice in each place if the notation appears several times in the same calculation. Formulas
involving boundary operators will be given explicitly in the two different cases resulting from (3-3).

In addition to the mapping and Fredholm properties established for Boutet de Monvel systems in
[Johnsen 1996], we need the following generalizations of (1-6) (as in [Grubb 2015a, (1.11)–(1.20)]):

4
µ
+ and 3µ+ : Ẋ

s
p,q(R

n
+
)−→∼ Ẋ s−Reµ

p,q (Rn
+
), with inverses 4−µ+ and 3−µ+ ,

4
µ
−,+ and 3µ−,+ : X

s
p,q(R

n
+
)−→∼ X s−Reµ

p,q (Rn
+
), with inverses 4−µ−,+ and 3−µ−,+,

3
(µ)
+ : Ẋ

s
p,q(�)−→

∼ Ẋ s−Reµ
p,q (�),

3
(µ)
−,+ : X

s
p,q(�)−→

∼ X s−Reµ
p,q (�),

(3-5)

valid for all s ∈ R. The cases with integer µ are covered by [Johnsen 1996] as a direct extension of the
presentation in [Grubb 1990]; the cases of more general µ likewise extend, since the support-preserving
properties extend.

We can then define (analogously to the definitions and observations in [Grubb 2015a, Sections 1.2, 1.3]):

Definition 3.1. Let s > Reµ− 1/p′.

(1) A distribution u on Rn is in Xµ(s)
p,q (R

n
+
) if and only if4µ+u ∈ Ẋ−1/p′+0

p,q (Rn
+
) and r+4µ+u ∈ X s−Reµ

p,q (Rn
+
).

In fact, r+4µ+ maps Xµ(s)
p,q (R

n
+
) bijectively onto X s−Reµ

p,q (Rn
+
), with inverse 4−µ+ e+, and

Xµ(s)
p,q (R

n
+
)=4

−µ
+ e+X s−Reµ

p,q (Rn
+
), (3-6)

with the inherited norm. Here 3−µ+ can equivalently be used.

(2) A distribution u on �1 is in Xµ(s)
p,q (�) if and only if 3(µ)+ u ∈ Ẋ−1/p′+0

p,q (�) and r+3(µ)+ u ∈ X s−Reµ
p,q (�).

In fact, r+3(µ)+ maps Xµ(s)
p,q (�) bijectively onto X s−Reµ

p,q (�), with inverse 3(−µ)+ e+, and

Xµ(s)
p,q (�)=3

(−µ)
+ e+X s−Reµ

p,q (�), (3-7)

with the inherited norm.

The distributions in Xµ(s)
p,q (R

n
+
) and Xµ(s)

p,q (�) are locally in X s
p,q over Rn

+
and �, respectively, by

interior regularity.
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By use of the mapping properties of the standard trace operators γ j described in [Johnsen 1996], and use
of (3-5) above, the trace operators %µ,M introduced in [Grubb 2015a, Section 5] extend to the general spaces

%µ,M = {γµ,0, γµ,1, . . . , γµ,M−1} :

{
Fµ(s)p,q (�)→

∏
0≤ j<M Bs−Reµ− j−1/p

p,p (∂�),

Bµ(s)p,q (�)→
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�),

(3-8)

for s > Reµ+M − 1/p′; they are surjective with kernels F (µ+M)(s)
p,q (�) and B(µ+M)(s)

p,q (�).
We can now formulate some important results from [Grubb 2015a] in these scales of spaces. Recall

that when P is of type µ, it is also of type µ′ for µ−µ′ ∈ Z.

Theorem 3.2. (1) Let the ψdo P on �1 be of order m ∈ C and of type µ ∈ C relative to the boundary of
the smooth compact subset �⊂�1. Then when s > Reµ− 1/p′, r+P maps Xµ(s)

p,q (�) continuously into
X s−Re m

p,q (�).

(2) Assume in addition that P is elliptic and has factorization index µ0, where µ− µ0 ∈ Z. Let s >
Reµ0− 1/p′. If u ∈ Ẋσ

p,q(�) for some σ > Reµ0− 1/p′ and r+Pu ∈ X s−Re m
p,q (�), then u ∈ Xµ0(s)

p,q (�).
The mapping r+P defines a Fredholm operator

r+P : Xµ0(s)
p,q (�)→ X s−Re m

p,q (�). (3-9)

Moreover, {r+P, γµ0−1,0} defines a Fredholm operator

{r+P, γµ0−1,0} :

{
F (µ0−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−Reµ0+1−1/p

p,p (∂�),

B(µ0−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−Reµ0+1−1/p
p,q (∂�).

(3-10)

(3) Let P be as in (2), and let µ′ = µ0 − M for a positive integer M. Then when s > Reµ0 − 1/p′,
{r+P, %µ′,M} defines a Fredholm operator

{r+P, %µ′,M} :

{
Fµ
′(s)

p,q (�)→ F s−Re m
p,q (�)×

∏
0≤ j<M Bs−Reµ′− j−1/p

p,p (∂�),

Bµ
′(s)

p,q (�)→ Bs−Re m
p,q (�)×

∏
0≤ j<M Bs−Reµ′− j−1/p

p,q (∂�).
(3-11)

Proof. (1) This is the extension of [Grubb 2015a, Theorem 4.2] to the general spaces. We recall that
the proof consist of a reduction of the study of r+P to the consideration of Q+ (with Q as in (3-1) for
µ= µ0) of type 0; this works well in the present spaces.

(2)–(3). Here, (3-9) is obtained by a generalization of [Grubb 2015a, Theorem 4.4] and its proof to the
current spaces. Now (3-11) is obtained as in [Grubb 2015a, Theorem 6.1] by adjoining the mapping (3-8)
(with µ= µ′) to r+P . Here (3-10) is the special case M = 1, as in [Grubb 2015a, Corollary 6.2] �

The parametrices R and
(
R K

)
described by formulas in [Grubb 2015a, Theorems 4.4, 6.5] also work

in the present spaces.

Example 3.3. As an example, we have for the choice X = B, p = q =∞, i.e., X s
p,q = Bs

∞,∞ = C s
∗
, that

Theorem 3.2(2) shows the following:
Let P be elliptic of order m and of type µ0, with factorization index µ0, and let s > Reµ0 − 1. If

u ∈ Ċσ
∗
(�) for some σ > Reµ0− 1 and r+Pu ∈ C s−Re m

∗
(�), then u ∈ Cµ0(s)

∗ (�). The mapping r+P
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defines a Fredholm operator

r+P : Cµ0(s)
∗

(�)→ C s−Re m
∗

(�). (3-12)

Moreover, {r+P, γµ0−1,0} defines a Fredholm operator

{r+P, γµ0−1,0} : C (µ0−1)(s)
∗

(�)→ C s−Re m
∗

(�)×C s−Reµ0+1
∗

(∂�). (3-13)

For Reµ>−1/p′, the spaces Xµ(s)
p,q (R

n
+
) and Xµ(s)

p,q (�) are further described by the following general-
ization of [Grubb 2015a, Theorem 5.4]:

Theorem 3.4. One has for Reµ >−1, s > Reµ− 1/p′, with M ∈ N:

Xµ(s)
p,q (R

n
+
)

{
= Ẋ s

p,q(R
n
+
) if s−Reµ ∈ ]−1/p′, 1/p[,

⊂ Ẋ s−0
p,q (R

n
+
) if s−Reµ= 1/p,

Xµ(s)
p,q (R

n
+
)⊂ e+xµn X s−Reµ

p,q (Rn
+
)+

{
Ẋ s

p,q(R
n
+
) if s−Reµ ∈ M + ]−1/p′, 1/p[,

Ẋ s−0
p,q (R

n
+
) if s−Reµ= M + 1/p.

(3-14)

The inclusions (3-14) also hold in the manifold situation, with Rn
+

replaced by � and xn replaced
by d(x).

Proof. The first statement in (3-14) follows since e+X t
p,q(R

n
+
) = Ẋ t

p,q(R
n
+
) for −1/p′ < t < 1/p; see

[Johnsen 1996, (2.51)–(2.52)].
For the second statement we use the representation of u as in [Grubb 2015a, (5.13)–(5.14)], in the

same way as in the proof of Theorem 5.4 there. The crucial fact is that the Poisson operator K0 maps
γµ,0u ∈ Bs−Reµ−1/p

p,p (Rn−1) and Bs−Reµ−1/p
p,q (Rn−1) into F s−Reµ

p,q (Rn
+
) and Bs−Reµ

p,q (Rn
+
), respectively

(by [Johnsen 1996]), defining a term

v0 = e+Kµ,0γµ,0u = cµe+xµn K0γµ,0u ∈ e+xµn X s−Reµ
p,q (Rn

+
),

with similar descriptions of terms e+Kµ, jγµ, j u for j up to M − 1, such that u by subtraction of these
terms gives a term in Ẋ s

p,q(R
n
+
) (with s replaced by s− 0 if s−Reµ− 1/p hits an integer). �

Moreover, it is important to observe the following invariance property of kernels and cokernels (typical
in elliptic theory):

Theorem 3.5. For the Fredholm operators considered in Theorem 3.2, the kernel is a finite-dimensional
subspace N of Eµ(�), independent of the choice of s, p, q and F or B.

There is a finite-dimensional range complement M⊂C∞(�) for (3-9), and M1 ⊂C∞(�)×C∞(∂�)M

for (3-10)–(3-11), that is independent of the choice of s, p, q , F , B.

Proof. This follows from the similar statement for operators in the Boutet de Monvel calculus in [Johnsen
1996, Section 5.1] when we apply the mappings 3(µ)± , etc., in the reduction of the homogeneous Dirichlet
problem to a problem in the Boutet de Monvel calculus. �
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4. More general boundary conditions

In Theorem 3.2, we obtain the Fredholm solvability of Dirichlet-type problems defined by operators

{r+P, γµ−1,0} :

{
F (µ−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−Reµ+1/p′

p,p (∂�),

B(µ−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−Reµ+1/p′
p,q (∂�),

(4-1)

for s > Reµ−1/p′, where P is elliptic of order m, is of type µ, and has factorization index µ (called µ0

there). In Theorem 6.5 of [Grubb 2015a] we constructed a parametrix in local coordinates, which in the
Besov–Triebel–Lizorkin scales maps as

(
RD K D

)
:

{
F s−Re m

p,q (Rn
+
)× Bs−Reµ+1/p′

p,p (Rn−1)→ F (µ−1)(s)
p,q (Rn

+
),

Bs−Re m
p,q (Rn

+
)× Bs−Reµ+1/p′

p,q (Rn−1)→ B(µ−1)(s)
p,q (Rn

+
),

(4-2)

where RD = 3
−µ
+ e+ Q̃+3

µ−m
−,+ and K D = 4

1−µ
+ e+K ′ or 31−µ

+ e+K ′′. Here Q̃+ is a parametrix of Q+
(where Q is recalled in (3-1)), and K ′ and K ′′ are Poisson operators in the Boutet de Monvel calculus of
order 0.

4A. Boundary operators of type γ0 B. We shall now describe a general way to let other boundary
operators enter in lieu of γµ−1,0. The point is to reduce the problem to a problem in the Boutet de Monvel
calculus (with ψdo’s of type 0 and integer order). We can assume that the family of auxiliary operators
3
(%)
± is chosen such that (3(%)± )

−1
=3

(−%)
± .

Theorem 4.1. Let P be elliptic of order m ∈ C on �1, having type µ and factorization index µ with
respect to the smooth compact subset �. Let B be a ψdo of order m0+µ and of type µ, with m0 integer.
Consider the mapping

{r+P, γ0r+B} :

{
F (µ−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−m0−Reµ+1/p′

p,p (∂�),

B(µ−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−m0−Reµ+1/p′
p,q (∂�),

(4-3)

for s > Reµ+max{m0, 0}− 1/p′.

(1) For u ∈ X (µ−1)(s)
p,q (Rn

+
), the problem

r+Pu = f on �, γ0r+Bu = ψ on ∂�, (4-4)

can be reduced to an equivalent problem

P ′
+
w = g on �, γ0 B ′

+
w = ψ on ∂�, (4-5)

where w = r+3(µ−1)
+ u ∈ X s−Reµ+1

p,q (�), g =3(µ−m)
−,+ f ∈ X s−Reµ

p,q (�), and where

P ′ =3(µ−m)
− P3(1−µ)+ , B ′ = B3(1−µ)+ , (4-6)

are ψdo’s of order 1 and m0+ 1, respectively, and type 0.
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(2) The problem (4-4) is Fredholm solvable for s > Reµ+max{m0, 0}− 1/p′ if and only if the problem
(4-5) is Fredholm solvable, as a mapping

{P ′
+
, γ0 B ′

+
} :

{
F t+1

p,q (�)→ F t
p,q(�)× B t−m0+1/p′

p,p (∂�),

B t+1
p,q (�)→ B t

p,q(�)× B t−m0+1/p′
p,q (∂�),

(4-7)

for t >max{m0, 0}− 1/p′.

(3) The operator in (4-7) belongs to the Boutet de Monvel calculus; therefore Fredholm solvability holds if
and only if (in addition to the invertibility of the interior symbol) the boundary symbol operator is bijective
at each (x ′, ξ ′) ∈ T ∗(∂�) \ 0. This can also be formulated as the unique solvability of the model problem
for (4-4) at each x ′ ∈ ∂�, ξ ′ 6= 0.

(4) In the transition between (4-4) and (4-5),
(
R′B K ′B

)
is a parametrix for (4-5) if and only if

(
RB K B

)
=

(
3
(1−µ)
+ e+R′B3

(µ−m)
−,+ 3

(1−µ)
+ e+K ′B

)
(4-8)

is a parametrix for (4-4).

Proof. The mapping (4-3) is well-defined, since r+B : X (µ−1)(s)
p,q (�)→ X s−m0−Reµ

p,q (�) by Theorem 3.2(1),
and γ0 acts as in (3-3).

(1) Let us go through the transition between (4-4) and (4-5), as already laid out in the formulation of the
theorem.

We have from Definition 3.1 that u ∈ X (µ−1)(s)
p,q (�) if and only if w = r+3(µ−1)

+ u ∈ X s−Reµ+1
p,q (�);

here u =3(1−µ)+ e+w. Moreover, since 3(%)−,+ : X
t
p,q(�)−→

∼ X t−Re %
p,q (�) for all % and t , f ∈ X s−Re m

p,q (�)

if and only if g =3(µ−m)
−,+ f ∈ X s−Reµ

p,q (�). Hence the first equation in (4-4) carries over to

3
(µ−m)
−,+ r+P3(1−µ)+ e+w = g.

Here 3(µ−m)
−,+ r+P3(1−µ)+ e+w can be simplified to r+3(µ−m)

− P3(1−µ)+ e+w = P ′
+
w, as accounted for in

the proof of Theorem 4.4 in [Grubb 2015a] in a similar situation. The boundary condition in (4-4) carries
over to that in (4-5) since B ′

+
w = r+B3(1−µ)+ e+w = r+Bu.

The order and type of the operators is clear from the definitions.

(2) Since the transition takes place by use of bijections, the Fredholm property carries over between the
two situations.

(3) The model problem is the problem defined from the principal symbols of the involved operators at
a boundary point x ′, in a local coordinate system where � is replaced by Rn

+
and the operator is applied

only in the xn-direction for fixed ξ ′ 6= 0. The hereby-defined operator on R+ is called the boundary
symbol operator in the Boutet de Monvel calculus. The first statement in (3) is just a reference to facts
from the Boutet de Monvel calculus. The second statement follows immediately when the transition is
applied on the principal symbol level.
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(4) Finally, when w = R′B g+ K ′Bψ , we have

u =3(1−µ)+ e+w =3(1−µ)+ e+(R′B g+ K ′Bψ)=3
(1−µ)
+ e+R′B3

(µ−m)
−,+ f +3(1−µ)+ e+K ′Bψ,

showing the last statement. �

The search for a parametrix here requires the analysis of model problems in Sobolev-type spaces
over R+. It can be an advantage to reduce this question to the boundary, where it suffices to investigate
the ellipticity of a ψdo (i.e., invertibility of its principal symbol), as in classical treatments of differential
and pseudodifferential problems.

Theorem 4.2. Consider the problem (4-3)–(4-4) in Theorem 4.1, and its transformed version (4-5).

(1) The nonhomogeneous Dirichlet system for P ′, {P ′
+
, γ0}, is elliptic, and has a parametrix for s > 1/p:

(
R′D K ′D

)
:

{
F s−1

p,q (�)× Bs−1/p
p,p (∂�)→ F s

p,q(�),

Bs−1
p,q (�)× Bs−1/p

p,q (∂�)→ Bs
p,q(�).

(4-9)

(2) Define

S′B = γ0 B ′
+

K ′D, (4-10)

a ψdo on ∂� of order m0. Then (4-3) defines a Fredholm operator if and only if S′B is elliptic. When this
is so, if S̃′B denotes a parametrix, then {r+P, γ0r+B} has the parametrix

(
RB K B

)
, where

RB =3
(1−µ)
+ (I − K ′D S̃′Bγ0 B ′

+
)R′D3

(µ−m)
−,+ , K B =3

(1−µ)
+ K ′D S̃′B . (4-11)

Proof. We begin by discussing the solvability of the type 0 problem (4-5) with B ′ = I . Set Q1 =

3
(µ−m)
− P3(1−µ)+ 3

(−1)
+ ; it is very similar to the operator Q = 3(µ−m)

− P3(−µ)+ used in [Grubb 2015a,
Theorems 4.2 and 4.4] being of order 0, type 0 and having factorization index 0. Then we can write

P ′ = Q13
(1)
+ , P ′

+
= r+Q13

(1)
+ e+ = r+Q1e+r+3(1)+ e+ = Q1,+3

(1)
+,+, (4-12)

where we used that r−3(1)+ e+ is 0 on X s
p,q(�) for s > 1/p.

The operator 3(1)+ defines an elliptic (bijective) system for s > 1/p,

{3
(1)
+,+, γ0} :

{
F s

p,q(�)−→
∼ F s−1

p,q (�)× Bs−1/p
p,p (∂�),

Bs
p,q(�)−→

∼ Bs−1
p,q (�)× Bs−1/p

p,q (∂�).
(4-13)

This is shown in [Grubb 1990, Theorem 5.1] for q = 2 in the F-case, and extends to the Besov–Triebel–
Lizorkin spaces by the results of [Johnsen 1996]. Composition with the operator Q1,+ preserves this
ellipticity, so {P ′

+
, γ0} forms an elliptic system with regards to the mapping property

{P ′
+
, γ0} :

{
F s

p,q(�)→ F s−1
p,q (�)× Bs−1/p

p,p (∂�),

Bs
p,q(�)→ Bs−1

p,q (�)× Bs−1/p
p,q (∂�),

(4-14)
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for s > 1/p. Hence there is a parametrix (
R′D K ′D

)
of this Dirichlet problem, continuous in the opposite direction of (4-14). This shows (1).

Next, we can discuss the general problem (4-5) by the help of this special problem; such a discussion
is standard within the Boutet de Monvel calculus. Define S′B by (4-10), it is a ψdo on ∂� of order m0 by
the rules of calculus. If it is elliptic, it has a parametrix, which we denote S̃′B .

On the principal symbol level, the discussion takes place for exact operators; here we denote principal
symbols of the involved operators P ′, B ′, K ′D , etc., by p′, b′, k ′D , etc. To solve the model problem (at a
point (x ′, ξ ′) with ξ ′ 6= 0), with g ∈ L2(R+), ψ ∈ C,

p′
+
(x ′, ξ ′, Dn)w(xn)= g(xn) on R+, γ0b′

+
(x ′, ξ ′, Dn)w(xn)= ψ at xn = 0, (4-15)

let z = w− r ′Dg; then z should satisfy

p′
+

z = 0, γ0b′
+

z = ψ − γ0b′
+

r ′Dg ≡ ζ. (4-16)

Assuming that z satisfies the first equation, set

γ0z = ϕ; then z = k ′Dϕ,

as the solution of the semihomogeneous Dirichlet problem for p′
+

. To adapt z to the second part of (4.16),
we require that γ0b′

+
z = ζ ; here

γ0b′
+

z = γ0b′
+

k ′Dϕ = s ′Bϕ,

when we define s ′B by (4-10) on the principal symbol level; it is just a complex number depending on
(x ′, ξ ′). The equation

s ′Bϕ = ζ (4-17)

is uniquely solvable precisely when s ′B 6= 0. In that case, (4-17) is solved uniquely by ϕ = (s ′B)
−1ζ .

With this choice of ϕ, z = k ′Dϕ is the unique solution of (4-16), and w= r ′Dg+ z is the unique solution
of (4-15). The formula in complete detail is

w = r ′Dg+ k ′D(s
′

B)
−1ζ = (I − k ′D(s

′

B)
−1γ0b′

+
)r ′Dg+ k ′D(s

′

B)
−1ψ. (4-18)

Expressed for the full operators, this shows that the problem (4-5) is elliptic precisely when the ψdo
S′B is so.

For the full operators, a similar construction can be carried out in a parametrix sense, but it is perhaps
simpler to test directly by compositions that the operator(

R′B K ′B
)
=
(
(I − K ′D S̃′Bγ0 B ′

+
)R′D K ′D S̃′B

)
, (4-19)
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defined in analogy with (4-18), is a parametrix for {P ′
+
, γ0 B ′

+
}: since R′D P ′

+
+ K ′Dγ0 = I +R and

S̃′Bγ0 B ′
+

K D = S̃′B S′B = I +S, with operators R and S of order −∞, we have

(
R′B K ′B

) ( P ′
+

γ0 B ′
+

)
= (I − K ′D S̃′Bγ0 B ′

+
)R′D P ′

+
+ K ′D S̃′Bγ0 B ′

+

= (I − K ′D S̃′Bγ0 B ′
+
)(1+R− K ′Dγ0)+ K ′D S̃′Bγ0 B ′

+

= I − K ′D S̃′Bγ0 B ′
+
− K ′Dγ0+ K ′D S̃′Bγ0 B ′

+
K ′Dγ0+ K ′D S̃′Bγ0 B ′

+
+R1

= I +R2, (4-20)

with operators R1 and R2 of order −∞. The composition in the opposite order is similarly checked.
All this takes place in the Boutet de Monvel calculus. For our original problem we now find the

parametrix as in (4-11), by the transition described in Theorem 4.1. �

The order assumption on B was made for the sake of arriving at operators to which the Boutet de
Monvel calculus applies. We think that m0 could be allowed to be noninteger, with some more effort,
drawing on results from [Grubb and Hörmander 1990].

The treatment can be extended to problems with vector-valued boundary conditions γ0r+B, where we
also involve %µ,M for M > 1; see (3-8).

4B. The Neumann boundary operator γµ0−1,1. For ease of comparison to [Grubb 2015a], we denote
the µ used above by µ0 here.

The boundary conditions with B of noninteger order m0+µ0 are generally nonlocal, since B is so.
But there do exist local boundary conditions too. For example, the Dirichlet-type operator γµ0−1,0 is local;
see (2-23). So are the systems (see (3-8)) %µ0−M,M = {γµ0−M,0, . . . , γµ0−M,M−1}, which also define
Fredholm operators together with r+P; see Theorem 3.2(3). Note that {r+P, %µ0−M,M} operates on a
larger space X (µ0−M)(s)

p,q (�) than X (µ0−1)(s)
p,q (�) when M > 1.

What we shall show now is that one can impose a higher-order local boundary condition defined on
X (µ0−1)(s)

p,q (�) itself, leading to a meaningful boundary value problem with Fredholm solvability under a
reasonable ellipticity condition.

Here we treat the Neumann-type condition γµ0−1,1u = ψ , recalling from [Grubb 2015a, (5.3)ff.] that

γµ0−1,1u = 0(µ0+ 1)γ0
(
∂n(d(x)1−µ0u)

)
. (4-21)

By application of (3-8) with M = 2, µ= µ0− 1,

γµ0−1,1 = γµ,M−1 :

{
F (µ0−1)(s)

p,q (�)→ Bs−Reµ0−1/p
p,p (∂�),

B(µ0−1)(s)
p,q (�)→ Bs−Reµ0−1/p

p,q (∂�),
(4-22)

is well-defined for s > Reµ+M − 1/p′ = Reµ0+ 1/p.
The discussion of ellipticity takes place in local coordinates, so let us now assume that we are in a

localized situation where P is given on Rn , globally estimated, elliptic of order m and of type µ0 and
with factorization index µ0 relative to the subset Rn

+
, as in [Grubb 2015a, Theorem 6.5].
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For Rn
+

, we can express γµ0−1,1 in terms of auxiliary operators by

γµ0−1,1u = γ0∂n4
µ0−1
+ u− (µ0− 1)[D′]γ04

µ0−1
+ u; (4-23)

see the calculations after Corollary 5.3 in [Grubb 2015a]. (In the manifold situation there is a certain
freedom in choosing d(x) and ∂n , so we are tacitly assuming that a choice has been made that carries
over to d(x)= xn , ∂n = ∂/∂xn in the localization.)

There is an obstacle to applying the results of Section 4A to this, namely, that 4µ0−1
+ is not truly a

ψdo! This is a difficult fact that has been observed throughout the development of the theory. However,
in connection with boundary conditions, operators like 4µ+ work to some extent like the truly pseudodif-
ferential operators 3µ+. It is for this reason that we gave two versions of the operator K D in (4-2) and the
following, stemming from [Grubb 2015a, Theorem 6.5], in which Lemma 6.6 there was used.

Theorem 4.3. Let P be given on Rn , globally estimated, elliptic of order m and of type µ0 and with
factorization index µ0 relative to the subset Rn

+
, and let

(
RD K D

)
be a parametrix of the nonhomogeneous

Dirichlet problem, as recalled in (4-2) and the following, with K D =4
1−µ0
+ e+K ′ for a certain Poisson

operator K ′ of order 0.
Consider the Neumann-type problem

r+Pu = f, γµ0−1,1u = ψ, (4-24)

where

{r+P, γµ0−1,1} :

{
F (µ0−1)(s)

p,q (Rn
+
)→ F s−Re m

p,q (Rn
+
)× Bs−Reµ0−1/p

p,p (Rn−1),

B(µ0−1)(s)
p,q (Rn

+
)→ Bs−Re m

p,q (Rn
+
)× Bs−Reµ0−1/p

p,q (Rn−1),
(4-25)

for s > µ0+ 1/p.

(1) The operator
SN = γµ0−1,1K D (4-26)

equals (γ0∂n − (µ0− 1)[D′]γ0)K ′ and is a ψdo on Rn−1 of order 1.

(2) If SN is elliptic, then, with a parametrix of SN denoted S̃N , there is the parametrix for {r+P, γµ0−1,1}(
RN KN

)
=
(
(I − K D S̃Nγµ0−1,1)RD K D S̃N

)
. (4-27)

(3) Ellipticity holds in particular when the principal symbol of P equals c(x)|ξ |2µ0 , with Reµ0 > 0,
c(x) 6= 0.

Proof. (1) By the formulas for γµ0−1,1 and K D ,

SN = γµ0−1,1K D = (γ0∂n − (µ0− 1)[D′]γ0)4
µ0−1
+ 4

1−µ0
+ K ′ = (γ0∂n − (µ0− 1)[D′]γ0)K ′,

and it follows from the rules of the Boutet de Monvel calculus that this is a ψdo on Rn−1 of order 1.

(2) In the elliptic case, one checks that (4-27) is a parametrix by calculations as in Theorem 4.2.

(3) In this case, the model problem for {r+P, γµ0−1,1} can be reduced to that for {r+(1−1)µ0, γµ0−1,1}.
For the latter, we have shown unique solvability in Theorem A.2 and Remark A.3 in the appendix. �
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Remark 4.4. The operator SN is in fact the Dirichlet-to-Neumann operator for P , sending the Dirichlet
data over into the Neumann data for solutions of r+Pu = 0 in an approximate sense (modulo operators
of order −∞). From the calculations in the Appendix we see that its principal symbol equals −µ0|ξ

′
|

when P is principally equal to (−1)µ0 , with Reµ0 > 0.

4C. Systems, further perspectives. The factorization property used above will not in general hold for
systems (N × N -matrices) in a convenient way with smooth dependence on ξ ′, even if every element of
the matrix has a factorization. But with the µ-transmission property we can establish an extremely useful
connection to systems in the Boutet de Monvel calculus:

Proposition 4.5. Let N be an integer≥ 1, and let P be an N×N-system, P = (Pjk) j,k=1,...,N , of classical
ψdo’s Pjk of order m ∈ C on �1 and of type µ ∈ C relative to �. Let µ0 ∈ µ+Z. Then the operator

Q =3(µ0−m)
− P3(−µ0)

+ (4-28)

is of order and type 0, and hence belongs to the Boutet de Monvel calculus.

Proof. The factors 3(µ0−m)
− and 3(−µ0)

+ should be understood as diagonal matrices with 3(µ0−m)
− and

3
(−µ0)
+ , respectively, in the diagonal. When they are composed with P , they act on each entry by defining

an operator of order and type 0 by the symbol composition rules. �

This will allow for a general application of the Boutet de Monvel theory in the discussion of boundary
value problems. Leaving the most general case for future works, we shall in the present paper just draw
conclusions for systems where the operator (4-28) defines a system Q+ that is in itself elliptic. Let us
give a name to such cases, where the present considerations will apply without further efforts:

Definition 4.6. Let N be an integer ≥ 1, and let P be an elliptic N × N -system, P = (Pjk) j,k=1,...,N , of
classical ψdo’s Pjk of order m ∈ C on �1 and of type µ ∈ C relative to �. Let µ0 ∈ µ+Z. Then P is
said to be µ0-reducible when the operator Q, defined in (4-28) of order and type 0, has the property that
Q+ is elliptic in the Boutet de Monvel calculus (without auxiliary boundary operators).

The condition in the definition means that in local coordinates at the boundary, the model operator
q0(x ′, 0, ξ ′, Dn)+ is bijective in L2(R+)

N . It holds for N = 1 for the operators with factorization index
µ0, as accounted for in the proof of [Grubb 2015a, Theorem 4.4]. Another important case is where the
operator P (a scalar or a system) is strongly elliptic, as observed in [Eskin 1981, Example 17.1].

Lemma 4.7. Let N ≥ 1, and let P be of order m ∈ R+ on �1 and of type µ0 = m/2 relative to �. If P is
strongly elliptic, i.e., satisfies in local coordinates (with c > 0),

Re(p0(x, ξ)v, v)≥ c|ξ |m |v|2 for all ξ ∈ Rn, v ∈ CN ,

then P is µ0-reducible.

Proof. Here Q equals3(−m/2)
− P3(−m/2)

+ . This is strongly elliptic of order 0, because the principal symbols
of 3(−m/2)

− and 3(−m/2)
+ are conjugates and homogeneous elliptic of order −m/2:

Re(q0(x, ξ)v, v)= Re
(

p0(x, ξ)λ
−m/2
+,0 (ξ)v, λ

−m/2
+,0 (ξ)v

)
≥ c|ξ |m |λ−m/2

+,0 (ξ)v|2 ≥ c′|v|2,
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for all ξ ∈ Rn , v ∈ CN , in local coordinates. Thus for each x ′ ∈ ∂�, ξ ′ 6= 0, the model operator
q0(x ′, 0, ξ ′, Dn) on R satisfies

Re(q0u, u)≥ C‖u‖2L2(R)N for u ∈ L2(R)
N ,

as seen by Fourier transformation in ξn . In particular, the restriction of r+q0 to C∞0 (R+)
N satisfies

the above inequality, and the inequality extends to its closure, r+q0e+, defined on L2(R+)
N , which is

therefore injective. Similar considerations hold for the adjoint, so indeed, q0(x ′, 0, ξ ′, Dn)+ is bijective
in L2(R+)

N . �

Theorem 4.8. Let P be an elliptic N × N system, P = (Pjk) j,k=1,...,N , of classical ψdo’s Pjk of order
m ∈ C on �1 and of type µ0 ∈ C relative to �.

Define Q by (4-28) and assume that P is µ0-reducible. Then we have:

(1) Let s > Reµ0− 1/p′. If u ∈ Ẋσ
p,q(�)

N for some σ > Reµ0− 1/p′ and r+Pu ∈ X s−Re m
p,q (�)N , then

u ∈ Xµ0(s)
p,q (�)N . The mapping

r+P : Xµ0(s)
p,q (�)N

→ X s−Re m
p,q (�)N (4-29)

is Fredholm, and has the parametrix

R =3(−µ0)
+ e+ Q̃+3

(µ0−m)
−,+ : X s−Re m

p,q (�)N
→ Xµ0(s)

p,q (�)N , (4-30)

where Q̃+ is a parametrix of Q+. It has the structure Q̃++G with G a singular Green operator of order
and class 0.

(2) In particular, if r+Pu ∈ C∞(�)N , then u ∈ Eµ0(�)
N , and the mapping

r+P : Eµ0(�)
N
→ C∞(�)N (4-31)

is Fredholm.

(3) Moreover, let µ=µ0−M for a positive integer M. Then when s >Reµ0−1/p′, {r+P, %µ,M} defines
a Fredholm operator

{r+P, %µ,M} :

{
Fµ(s)p,q (�)

N
→ F s−Re m

p,q (�)N
×
∏

0≤ j<M Bs−Reµ− j−1/p
p,p (∂�)N ,

Bµ(s)p,q (�)
N
→ Bs−Re m

p,q (�)N
×
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�)N .

(4-32)

Proof. The proof goes as in [Grubb 2015a, Theorems 4.4 and 6.1]:

(1) We replace the equation

r+Pu = f ∈ X s−Re m
p,q (�)N , (4-33)

by composition on the left with 3(µ0−m)
−,+ , by the equivalent problem

3
(µ0−m)
−,+ r+Pu = g, where g =3(µ0−m)

−,+ f ∈ X s−Reµ0
p,q (�)N , (4-34)



1676 GERD GRUBB

using the homeomorphism properties of 3(µ0−m)
−,+ , applied to vectors. Here f = 3(m−µ0)

−,+ g. Moreover
(see Remark 1.1 in [Grubb 2015a]),

3
(µ0−m)
−,+ r+Pu = r+3(µ0−m)

− Pu.

Next, we set v = r+3(µ0)
+ u; then u =3(−µ0)

+ e+v, and equation (4-33) becomes

Q+v = g, with g given in X s−Reµ0
p,q (�), (4-35)

where Q is defined by (4-28).
The properties of P imply that Q is elliptic of order 0 and type 0, and hence belongs to the Boutet

de Monvel calculus. The rest of the argument takes place within that calculus. By our assumption,
Q+ = r+Qe+ defines an elliptic boundary problem (without auxiliary trace or Poisson operators) there,
and Q+ is continuous in X t

p,q(�) for t >−1/p′. By the ellipticity, Q+ has a parametrix Q̃+, continuous
in the opposite direction, and with the mentioned structure. Since v ∈ Ẋ−1/p′+0

p,q (�) by hypothesis,
solutions of Q+v = g with g ∈ X t

p,q(�) for some t >−1/p′ are in X t
p,q(�). Moreover,

Q+ : X t
p,q(�)→ X t

p,q(�) is Fredholm for all t >−1/p′.

When carried back to the original functions, this shows (1).

(2) This follows by letting s→∞, using that
⋂

s Xµ(s)
p,q (�)

N
= Eµ(�)

N .

(3) We use that the mapping %µ,M in (3-8) extends immediately to vector-valued functions

%µ,M :

{
Fµ(s)p,q (�)

N
→
∏

0≤ j<M Bs−Reµ− j−1/p
p,p (∂�)N ,

Bµ(s)p,q (�)
N
→
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�)N ,

(4-36)

when s > Reµ0− 1/p′, surjective with null-space Xµ0(s)
p,q (�)N (recall µ = µ0−M). When we adjoin

this mapping to (4-29), we obtain (4-32). �

One of the things we obtain here is that results from [Eskin 1981] (extended to L p in [Shargorodsky
1994; Chkadua and Duduchava 2001]), on solvability for s in an interval of length 1 around Reµ0, are
lifted to regularity and Fredholm properties for all larger s, with exact information on the domain, also in
general scales of function spaces. Moreover, our theorem is obtained via a systematic variable-coefficient
calculus, whereas the results in [Eskin 1981] are derived from constant-coefficient considerations by
ad hoc perturbation methods in L2-Sobolev spaces.

Also the results on other boundary conditions in the present paper extend to suitable systems. One
can moreover extend the results to operators in vector bundles (since they can be locally expressed by
matrices of operators).

The Boutet de Monvel theory is not an easy theory (as the elaborate presentations [Boutet de Monvel
1971; Rempel and Schulze 1982; Grubb 1984; 1990; 1996; 2009; Schrohe 2001] in the literature show),
but one could have feared that a theory for the more general µ-transmission operators and their boundary
problems would be a step up in difficulty. Fortunately, as we have seen, many of the issues can be dealt
with by reductions using the special operators 3(µ)± to cases where the type 0 theory applies.
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There is currently also an interest in problems with less smooth symbols. For this connection, we
mention that there do exist pseudodifferential theories for such problems, also with boundary conditions;
see [Abels 2005; Grubb 2014] and their references. One finds that a lack of smoothness in the x-variable
narrows down the interval of parameters s where one has good solvability properties, and compositions
are delicate. It is also possible to work under limitations on the number of standard estimates in ξ .

Appendix: Calculations in an explicit example

Pseudodifferential methods are a refinement of the application of the Fourier transform, making it useful
even for variable-coefficient partial differential operators, and, for example, allowing generalizations to
operators of noninteger order. But to explain some basic mechanisms, it may be useful to consider a
simple “constant-coefficient” case, where explicit elementary calculations can be made, not requiring
intricate composition rules. This is the case for (1−1)a (a > 0) on Rn

+
, where everything can be worked

out by hand in exact detail (in the spirit of the elementary [Grubb 2009, Chapter 9]). We here restrict the
attention to H s

p-spaces.
The symbol of (1−1)a factors as

(〈ξ ′〉2+ ξ 2
n )

a
= (〈ξ ′〉− iξn)

a(〈ξ ′〉+ iξn)
a. (A-1)

Now we shall use the definitions of simple order-reducing operators 4t
±

and Poisson operators K j

from [Grubb 2015a], with 〈ξ ′〉 instead of [ξ ′], because they fit particularly well with the factors in (A-1).
We shall often abbreviate 〈ξ ′〉 to σ .

The homogeneous Dirichlet problem

r+(1−1)au = f, with f given in H s−2a
p (Rn

+
), (A-2)

s > a− 1/p′, has a unique solution u in Ḣa−1/p′+0
p (Rn

+
) determined as follows:

With 4t
±
= OP

(
(〈ξ ′〉 + iξn)

t
)
, we have that (1 −1)a = 4a

−
4a
+

on Rn . Let v = r+4a
+

u; it is in

H −1/p′+0
p (Rn

+
)= Ḣ−1/p′+0

p (Rn
+
), and u =4−a

+ e+v. Then (A-2) becomes

r+4a
−

e+v = f. (A-3)

Here r+4a
−

e+ =4a
−,+ is known to map H t

p(R
n
+
) homeomorphically onto H t−a

p (Rn
+
) for all t ∈ R, with

inverse 4−a
−,+ (see, e.g., [Grubb 2015a, Section 1].) In particular, with f given in H s−2a

p (Rn
+
), (A-3) has

the unique solution v =4−a
−,+ f ∈ H s−a

p (Rn
+
). Then (A-2) has the unique solution

u =4−a
+

e+4−a
−,+ f ≡ RD f, (A-4)

and it belongs to Ha(s)
p (Rn

+
) by the definition of that space. Thus the solution operator for (A-2) is

RD =4
−a
+ e+4−a

−,+. (This is a simple variant of the proof of [Grubb 2015a, Theorem 4.4].)
Next, we go to the larger space H (a−1)(s)

p (Rn
+
), still assuming s > a − 1/p′, where we study the

nonhomogeneous Dirichlet problem. By [Grubb 2015a, Theorem 5.1] with µ = a− 1 and M = 1, we
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have a mapping γa−1,0, acting as

γa−1,0 : u 7→ 0(a)γ0(x1−a
n u),

also equal to γ04
a−1
+ u, and sending H (a−1)(s)

p (Rn
+
) onto Bs−a+1−1/p

p (Rn−1) with kernel Ha(s)
p (Rn

+
). To-

gether with (1−1)a , it therefore defines a homeomorphism for s > a− 1/p′,

{r+(1−1)a, γa−1,0} : H (a−1)(s)
p (Rn

+
)→ H s−2a

p (Rn
+
)× Bs−a+1−1/p

p (Rn−1). (A-5)

It represents the problem

r+(1−1)au = f, γa−1,0u = ϕ, (A-6)

which we regard as the nonhomogeneous Dirichlet problem for (1−1)a . The solution operator in the
case ϕ = 0 is clearly RD defined above, since the kernel of γa−1,0 is Ha(s)

p (Rn
+
).

Also, the solution operator for the problem (A-6) with f = 0 can be found explicitly:
On the boundary symbol level we consider the problem (recall σ = 〈ξ ′〉)

(σ − ∂n)
a(σ + ∂n)

au(xn)= 0 on R+. (A-7)

Since OPn((σ − iξn)
µ) preserves support in R− for all µ, u must equivalently satisfy

(σ + ∂n)
au(xn)= 0 on R+. (A-8)

This has the distribution solution

u(xn)= F−1
ξn→xn

(σ + iξn)
−a
= 0(a)−1xa−1

n e+r+e−σ xn (A-9)

(see, e.g., [Hörmander 1983, Example 7.1.17] or [Grubb 2015a, (2.5)]), and the derivatives ∂k
n u are

likewise solutions, since

(σ + iξn)
a(iξn)

k(σ + iξn)
−a
= (iξn)

k
= Fxn→ξnδ

(k)
0 ,

where δ(k)0 is supported in {0}. The undifferentiated function matches our problem. Set

k̃a−1,0(xn, ξ
′)= 0(a)−1xa−1

n e+r+e−σ xn = F−1
ξn→xn

(σ + iξn)
−a
; (A-10)

then, since γa−1,0k̃a−1,0 = 1, the mapping C 3 ϕ 7→ ϕ · r+k̃a−1,0 solves the problem

(σ + ∂n)
au(xn)= 0 on R+, γa−1,0u = ϕ. (A-11)

Using the Fourier transform in ξ ′ also, we find that (A-6) with f = 0 has the solution

u(x)= Ka−1,0ϕ ≡ F−1
ξ ′→x ′

(
k̃a−1,0(xn, ξ

′)ϕ̂(ξ ′)
)
. (A-12)

It can be denoted OPK(k̃a−1,0)ϕ, by a generalization of the notation from the Boutet de Monvel calculus.
We moreover define ka−1,0(ξ)= Fxn→ξn k̃a−1,0(xn, ξ

′)= (σ + iξn)
−a; k̃a−1,0 and ka−1,0 are the symbol-

kernel and symbol of Ka−1,0, respectively.
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Note that

ka−1,0(ξ
′, ξn)= (〈ξ

′
〉+ iξn)

−a
= (〈ξ ′〉+ iξn)

1−a(〈ξ ′〉+ iξn)
−1, hence

Ka−1,0 =4
1−a
+

K0, (A-13)

where K0 = OPK
(
(〈ξ ′〉+ iξn)

−1
)

is the Poisson operator for the Dirichlet problem for 1−1,

K0ϕ = F−1
ξ→x((〈ξ

′
〉+ iξn)

−1ϕ̂(ξ ′))

(see, e.g., [Grubb 2009, Chapter 9]). K0 is usually considered as mapping into a space over Rn
+

, and it is
well-known that K0 : B

t−1/p
p (Rn−1)→ H t

p(R
n
+
) for all t ∈ R. However, the above formula shows that it

in fact maps into distributions on Rn supported in Rn
+

, so we can, with a slight abuse of notation, identify
K0 with e+K0, mapping into e+H t

p(R
n
+
), and conclude that

Ka−1,0 : Bs−a+1−1/p
p (Rn−1)→ H (a−1)(s)

p (Rn
+
) for all s ∈ R. (A-14)

We have shown:

Theorem A.1. Let a > 0. The nonhomogeneous Dirichlet problem (A-6) for (1−1)a on Rn
+

is uniquely
solvable, in that the operator (A-5) for s > a− 1/p′ has inverse(

r+(1−1)a

γa−1,0

)−1

=
(
RD Ka−1,0

)
, (A-15)

where RD and Ka−1,0 are defined in (A-4) and (A-12).

Third, we consider the boundary problem

r+(1−1)au = f, γa−1,1u = ψ, (A-16)

which we shall view as a nonhomogeneous Neumann problem for (1 − 1)a . We here assume s >
(a− 1)+ 2− 1/p′ = a+ 1/p, to use the construction in [Grubb 2015a, Theorem 5.1] with µ= a− 1,
M = 2. Recall from [Grubb 2015a, (5.3)ff.], that γa−1,1 acts as

γa−1,1 : u 7→ 0(a+ 1)γ0(∂n(x1−a
n u)). (A-17)

Moreover, we can infer from the text after Corollary 5.3 in [Grubb 2015a] (with [ξ ′] replaced by 〈ξ ′〉) that

γa−1,1u = γ0∂n4
a−1
+

u− (a− 1) 〈D′〉 γa−1,0u

for u ∈ H (a−1)(s)
p (Rn

+
) with s > a+ 1/p. Then, for a null solution z written in the form z = Ka−1,0ϕ =

41−a
+ K0ϕ (recall (A-13)), we have, since γ0∂n K0 =−〈D′〉,

γa−1,1z = γ0∂n4
a−1
+

z− (a− 1) 〈D′〉 γa−1,0z = γ0∂n K0ϕ− (a− 1)〈D′〉ϕ =−a 〈D′〉ϕ.

Hence in order for z to solve (A-16) with f = 0, ϕ must satisfy

ψ =−a 〈D′〉ϕ.
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Since a 6= 0, the coefficient−a〈D′〉 is an elliptic invertible ψdo, so (A-16) with f = 0 is uniquely solvable
with solution

z = KNψ, where KN =−Ka−1,0a−1
〈D′〉−1

=−41−a
+

K0a−1
〈D′〉−1. (A-18)

To solve (A-16) with a given f 6= 0, and ψ = 0, we let v= RD f and reduce to the problem for z= u−v:

r+(1−1)a(u− v)= 0, γa−1,1(u− v)=−γa−1,1 RD f.

This has the unique solution

u− v =−KNγa−1,1 RD f ; and hence u = RD f − KNγa−1,1 RD f.

Altogether, we find:

Theorem A.2. The Neumann problem (A-16) for (1−1)a on Rn
+

is uniquely solvable, in that the operator

{r+(1−1)a, γa−1,1} : H (a−1)(s)
p (Rn

+
)→ H s−2a

p (Rn
+
)× Bs−a−1/p

p (Rn−1), (A-19)

for s > a+ 1/p is a homeomorphism, with inverse(
RN KN

)
=
(
(I − KNγa−1,1)RD KN

)
, (A-20)

with RD and KN described in (A-4) and (A-18).

Note that there is here a Dirichlet-to-Neumann operator PDN sending the Dirichlet-type data over into
Neumann-type data for solutions of r+(1−1)au = 0:

PDN =−a〈D′〉. (A-21)

Remark A.3. We have here assumed a real in order to relate to the fractional powers of the Laplacian,
but all the above goes through in the same way if a is replaced by a complex µ with Reµ > 0; then in
Sobolev exponents and inequalities for s, a should be replaced by Reµ.

One can also let higher order boundary operators γa−1, j enter in a similar way, defining single
boundary conditions.
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