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FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS
ON THE HEISENBERG GROUP

YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

Marcinkiewicz multipliers are L? bounded for 1 < p < oo on the Heisenberg group H” >~ C" x R, as shown
by D. Miiller, F. Ricci, and E. M. Stein. This is surprising in that these multipliers are invariant under
a two-parameter group of dilations on C" x R, while there is no two-parameter group of automorphic
dilations on H". This lack of automorphic dilations underlies the failure of such multipliers to be in
general bounded on the classical Hardy space H' on the Heisenberg group, and also precludes a pure
product Hardy space theory.

We address this deficiency by developing a theory of flag Hardy spaces Hé’ag on the Heisenberg group,
0 < p <1, thatis in a sense “intermediate” between the classical Hardy spaces H?” and the product Hardy
spaces H;oducl on C" x R developed by A. Chang and R. Fefferman. We show that flag singular integral
operators, which include the aforementioned Marcinkiewicz multipliers, are bounded on Hé"ag, as well

as from Hé;g to L?, for 0 < p < 1. We also characterize the dual spaces of Hf}ag and H! , and establish a

flag®
Calderén—-Zygmund decomposition that yields standard interpolation theorems for the flag Hardy spaces
Hé;g. In particular, this recovers some L? results of Miiller, Ricci, and Stein (but not their sharp versions)

by interpolating between those for H and L>.

flag
1. Introduction 1466
PartI. Flag Hardy spaces: definitions and results 1469
2. The square function on the Heisenberg group 1472
3. The wavelet Calderén reproducing formula 1481
Part II. Proofs of results 1487
4. L? estimates for the Littlewood—Paley square function 1487
5. Developing the wavelet Calderén reproducing formula 1489
6. Boundedness of flag singular integrals 1506
7. Duality of Hardy spaces Hffag 1513
8. Calderén—Zygmund decomposition and interpolation decomposition 1521
9. A counterexample for the one-parameter Hardy space 1525
Part III. Appendix 1529
10. The Heisenberg grid 1529
11. Rectangles in the Heisenberg group 1531
References 1532

Lu was supported partly by NSF grants DMS 0901761 and 1301595. Sawyer was supported in part by a grant from NSERC.

MSC2010: 42B15, 42B35.

Keywords: flag singular integrals, flag Hardy spaces, Calderén reproducing formulas, discrete Calderdn reproducing formulas,
discrete Littlewood—Paley analysis.

1465


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2014.7-7
http://dx.doi.org/10.2140/apde.2014.7.1465
http://msp.org

1466 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

1. Introduction

Classical Calder6n—Zygmund theory centers around singular integrals associated with the Hardy—Little-
wood maximal operator M that commutes with the usual dilations on R", § - x = (dxy, ..., dx,) for
8 > 0. On the other hand, product Calder6n—Zygmund theory centers around singular integrals associated
with the strong maximal function M that commutes with the multiparameter dilations on R", 6 - x =

(01x1, ..., 8,x,) for 8 = (81, ..., 8,) € R’.. The strong maximal function [Jessen et al. 1935] is given by
1
Ms(f)(x) = sup —/ lfMldy, (1-1)
xer |RI JR

where the supremum is taken over the family of all rectangles R with sides parallel to the axes.

For Calder6n—Zygmund theory in the product setting, one considers operators of the form 7f = K * f,
where K is homogeneous, that is, §; ---§,K(§ - x) = K (x), or, more generally, K (x) satisfies certain
differential inequalities and cancellation conditions such that the kernels & - - - §, K (8 - x) also satisfy the
same bounds. Such operators have been studied, for example, in [Gundy and Stein 1979; Fefferman and
Stein 1982; Fefferman 1986; 1987; 1999; Chang 1979; Chang and Fefferman 1985; 1982; 1980; Journé
1985; 1986; Pipher 1986; Ferguson and Lacey 2002], where both the L? theory for 1 < p < oo and
H? theory for 0 < p <1 were developed. More precisely, Fefferman and Stein [1982] studied the L?
boundedness (1 < p < oo) for the product convolution singular integral operators. Journé [1985; 1988]
introduced non-convolution-product singular integral operators, established the product 7'1 theorem, and
proved the L*® — BMO boundedness of such operators. The product Hardy space H” (R" x R™) was
first introduced by Gundy and Stein [1979]. Chang and Fefferman [1985; 1982; 1980] developed the
theory of atomic decomposition and established the dual space of the Hardy space H'!(R" x R™), namely
the product BMO(R" x R™) space. Another characterization of such product BMO space was given in
conjunction with Hankel theorems and commutators in the product setting by Ferguson and Lacey [2002]
and Lacey and Terwilleger [2005]. Carleson [1974] disproved by a counterexample the conjecture that
the product atomic Hardy space on R" x R™ could be defined by rectangle atoms. This motivated Chang
and Fefferman to replace the role of cubes in the classical atomic decomposition of H”(R") by arbitrary
open sets of finite measures in the product H” (R" x R™). Subsequently, Fefferman [1987] established
the criterion for the H? — L? boundedness of singular integral operators in Journé’s class by considering
its action only on rectangle atoms by using Journé’s lemma. However, Fefferman’s criterion cannot be
extended to three or more parameters without further assumptions on the nature of 7', as shown in [Journé
1985; Journé 1988]. In fact, Journé provided a counterexample in the three-parameter setting of singular
integral operators such that Fefferman’s criterion breaks down. Subsequently, the H? to L? boundedness
for Journé’s class of singular integral operators with arbitrary number of parameters was established
by J. Pipher [1986] by considering directly the action of the operator on (nonrectangle) atoms and an
extension of Journé’s geometric lemma to higher dimensions.

On the other hand, multiparameter analysis has only recently been developed for L? theory with
1 < p < oo when the underlying multiparameter structure is not explicit, but implicit, as in the flag
multiparameter structure studied in [Nagel et al. 2001] and its counterpart on the Heisenberg group H"
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studied in [Miiller et al. 1995; 1996]. In these latter two papers the authors obtained the surprising result
that certain Marcinkiewicz multipliers, invariant under a two-parameter group of dilations on C" x R, are
bounded on L? (H"), despite the absence of a two-parameter automorphic group of dilations on H". This
striking result exploited an implicit product, or semiproduct, structure underlying the group multiplication
in H" >~ C" x R. In contrast to this, it is not hard to see that the class of flag singular integrals considered
there is not in general bounded on the standard one-parameter Hardy space H'(H") as in [Fefferman and
Stein 1972] (see, for example, Theorem 67 in Section 11 below). The lesson learned here is that Hardy
space theories for 0 < p < 1 must be tailored to the invariance properties of the class of singular integral
operators under consideration.

The goal of this paper is to develop for the Heisenberg group a theory of flag Hardy spaces Hé’ag with
0 < p < 1. The first two authors have treated the Euclidean flag structure in [Han and Lu 2008]; see also
the multiparameter setting associated with the Zygmund dilation [Han and Lu 2010]. The ideas developed
in this paper and [Han and Lu 2008; Han and Lu 2010] have been adapted to some other multiparameter
cases, such as the product spaces of Carnot—Carathéodory spaces [Han et al. 2013a], where the L? theory
was established in [Nagel and Stein 2004], and the composition of two singular integrals with different
homogeneity [Han et al. 2013b].

This flag theory for the Heisenberg group is most conveniently explained when p =1 in the more
general context of spaces (X, p, du) of homogeneous type [Coifman and Weiss 1976], which already
include Euclidean spaces R" and stratified graded nilpotent Lie groups such as the Heisenberg groups
H" = C" x R. We may assume here that p and du are connected by the equivalence

w(B,(x,r))~r, where B,(x,r)={yeX:px,y)<r} (1-2)

In particular, the usual structure on Euclidean space R” is given by p(x, y) = |x — y|" and du(x) = dx.
Recall that one of several equivalent definitions of the Hardy space H!(X) is as the set of f € (C"(X))*
with
N ey = 18U L1y < 00,

where the Littlewood-Paley g-function g(f) is given by

o :
g(f>={ > |E,~f|2} :
j=—00
where {E;}%° __is an appropriate Littlewood—Paley decomposition of the identity on L*(du).
Jij=—00 pprop y p y

The product Hardy space leroduct(X x X') corresponding to a product of homogeneous spaces

(X, p,dw) and (X', p’, dit) is given as the set of f € (C"(X x X'))* with

||f||leoduct(XXX/) = ||gpr0duct(f)”L'(duxdu’) < 00,

I

where the product Littlewood—Paley g-function gproduct(f) is given by

1
oo >
2

’

gpmducm:{ > |DjD;-/f|2}

.

Joj'=—00
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and where {D ﬂ?’;i oo and {D},}??:_  are Littlewood—-Paley decompositions of the identities on L*(dp)
and L2(du'), respectively (and act separately on the respective distinct variables). Note that if j = j/,
then D; D;., =D; D;. satisfies estimates similar to those for E; in the standard one-parameter Hardy
space H'(X x X'). Thus, we see that
= b %
IDjD}/fIZ} > {Z |D,~D;-f|2} ~ {Z |Ejf|2} =g(f),
j j

o0

gproduct(f) = { Z

joj'=—00

and so we have the inclusion
H!  (XxX)cH' (X xX).

product

Now we specialize the space of homogeneous type X to be the Heisenberg group H" = C* x R. The
flag structure on the Heisenberg group H" arises in an intermediate manner, namely, as a homogeneous
space structure derived from the Heisenberg multiplication law that is adapted to the product of the
homogeneous spaces C” and R. The appropriate definition of the flag Hardy space Hﬂlag([l-l]") is already
suggested in [Miiller et al. 1996], where a Littlewood—Paley g-function gg,, is introduced that is adapted
to the flag structure on the Heisenberg group H" = C" x R:

1

gﬂag(f)z{ 3 |EkD,-f|2}2,

Jok=—00

where {D;}% is the standard Littlewood—Paley decomposition of the identity on L*(H"), and

j==—00

{E}72 _o 1s the standard Littlewood—Paley decomposition of the identity on L?*(R). One can then
define H! (H") to consist of appropriate “distributions” f on H" with

flag
”f”Hf}a"(IH]") = ||gﬂag(f)||L1(I]-ﬂ") < 0o0.

Now, for k < 2j, it turns out that E; D, is essentially the one-parameter Littlewood—Paley function D;
while, for k > 2, it turns out that E} D; is essentially the product Littlewood—Paley function Ey F;, where
{F j}?i— 18 the standard Littlewood—Paley decomposition of the identity on L?(C"). Thus we see that
8flag(f) 1s a semiproduct Littlewood—Paley function satisfying

gproduct () 2 811ag(f) 2 8(f): Hproguer(X x X') C Hgoo (X x X') C H' (X x X').

We describe this structure as “semiproduct”, since only vertical Heisenberg rectangles (which are es-
sentially unions of contiguous Heisenberg balls of fixed radius stacked one on top of the other) arise
essentially as the supports of the components E;D;, when k > 2j. When k < 2j, the support of E;D; is
essentially a Heisenberg cube. Thus no horizontal rectangles arise, and the structure is “semiproduct”.
Of course, we must also address the nature of the “distributions” referred to above, and for this we
will use a lifting technique introduced in [Miiller et al. 1995] to define projected flag molecular spaces
Mpag(H"), and then the aforementioned distributions will be elements of the dual space Mgae (H")". We
also show that these distributions are essentially the same as those obtained from the dual of a more
familiar moment flag molecular space /M r(H"). Finally, we mention that a theory of flag Hardy spaces
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can also be developed with the techniques used here, but without recourse to any notion of “distributions”,
by simply defining Hzfl’)stract(ﬂ-l]”) to be the abstract completion of the metric space

XP(H") ={f € L*(H") : gnag(f) € LP(H")}
with metric
d(fi, f) = llgnag(fi = PN pamy> [ € XP(H).

We show that the abstract space Hﬁ)stract(ﬂ-ﬂ”), whose elements are realized only as equivalence classes of
Cauchy sequences, is in fact isomorphic to the space Htﬁg(l]-l]”), whose elements have the advantage of
being realized as a subspace of distributions, namely those f in Jgae(H")" whose flag Littlewood—Paley
function grae(f) belongs to LP(H"). Here Mg, (H") is a molecule space with implicit product structure.

In Part I of the paper we define flag Hardy spaces and state our results. In Part II we give the proofs,
and in Part III we construct a dyadic grid adapted to the flag structure.

Remark 1. Some of the proofs we need in this paper are straightforward modifications of arguments
already in the literature, and in order not to interrupt the flow of the paper, we have left these proofs out.
However, all the details are included in the expanded version of this paper [Han et al. 2012].

Part I. Flag Hardy spaces: definitions and results

Our point of departure is to develop a wavelet Calderén reproducing formula associated with the given
two-parameter structure as in [Miiller et al. 1996], and then to prove a Plancherel-Pdlya-type inequality
in this setting. This will provide the flexibility needed to define flag Hardy spaces and prove boundedness
of flag singular integrals, duality, and interpolation theorems for these spaces. To explain the novelty in
this approach more carefully, we point out the following three types of reproducing formulas derived
from the original idea of Calderén:

) =f0 Yo f0 2L
@)=Y D;D;f(x),

JjezZ
L) =Y U@ * DI (x, x0).
i1

We refer to the first formula as a continuous Calderén reproducing formula, its advantage being
the use of compactly supported components y, that are repeated. We refer to the second formula as a
discrete Calder6n reproducing formula, in which D; is generally a compactly supported nonconvolution
operator in a space of homogeneous type, and 133 is no longer compactly supported but satisfies molecular
estimates. In certain cases, such as in Euclidean space, it is possible to use the Fourier transform to obtain
a discrete decomposition with repeated convolution operators D; = ;.

Finally, we refer to the third formula as a wavelet Calderén reproducing formula, which can also be
developed in a space of homogeneous type. For example, such formulas were first developed in certain
situations in [Frazier and Jawerth 1990]. The advantage of the third formula is that it expresses f as a
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sum of molecular, or wavelet-like, functions 1/~/ ;j(x, x7) with coefficients [I](v/; * f)(x) that are obtained
by evaluating v/; * f at any convenient point in the set / from a dyadic decomposition at scale 2/ of the
space. As a consequence, we can replace the coefficient |7]|(3; * f)(x;) with either the supremum or
infimum of such choices and retain appropriate estimates(see Theorem 19 below). We note in passing
that the collection of functions {y/ j(x,x7)}j, 1 forms a Riesz basis for L?. In certain cases when such
functions form an orthogonal basis, the decomposition is referred to as a wavelet decomposition, and it
is from this that we borrow our terminology.

This “wavelet” scheme is particularly useful in dealing with the Hardy spaces H” for 0 < p <1, and
using this, we will show that flag singular integral operators are bounded on Hffag forall0 < p <1, and
furthermore that these operators are bounded from Hé’ag to L? for all 0 < p < 1. These ideas can also be

applied in the pure product setting to provide a different approach to proving Hép to L? boundedness

roduct
than that used by Fefferman, and thus to bypass both the action of singular integral operators on rectangle
atoms, and the use of Journé’s covering lemma.

We now recall the example of implicit multiparameter structure that provides the main motivation for this
paper. In [Miiller et al. 1995], Miiller, Ricci, and Stein uncovered a new class of flag singular integrals on
Heisenberg(-type) groups, which arose in the investigation of Marcinkiewicz multipliers. To be more pre-
cise, let m(&£, i T) be the Marcinkiewicz multiplier operator, where &£ is the sub-Laplacian, 7T is the central
element of the Lie algebra on the Heisenberg group H" = C” x R, and m satisfies Marcinkiewicz conditions
as in [Miiller et al. 1995]. It was proved in [Miiller et al. 1995] that the kernel of m (£, i T) satisfies the stan-
dard one-parameter Calderén—Zygmund-type estimates associated with automorphic dilations in the region
where |f| < |z|?, and the multiparameter Calderén—Zygmund-type estimates in the region where |f| > |z|2.

The proof of L” boundedness of m (£, iT) given in [Miiller et al. 1995] requires lifting the operator to
a larger group, H" x R. This lifts K, the kernel of m(£,iT) on H", to a product kernel K on H" x R.

The lifted kernel K is constructed so that it projects to K by

o0 ~
K(th)zf K(Z’t_uvu)dua

]

taken in the sense of distributions. The operator T corresponding to the product kernel K can be dealt
with in terms of tensor products of operators, and one can obtain their L?” boundedness from the known
pure product theory. Finally, the L? boundedness of the operator with kernel K follows from the
transference method of [Coifman and Weiss 1976], using the projection 7 : H* x R — H" given by
w((z,t),u) = (z,t+u). One of our main results, Corollary 27 below, is an extension of the boundedness
of m(£,iT) to flag Hardy spaces Hffag for all 0 < p < 1, and follows from the boundedness of flag
singular integrals on Hfﬁg.

In [Miiller et al. 1996], the authors obtained the same boundedness results, but with optimal regularity
on the multipliers. This required working directly on the group without lifting to a product, and led to the
introduction of a continuous flag Littlewood—Paley g-function and a corresponding continuous Calderén
reproducing formula. We remark that one of the main features of our extension of these results to H? for
0 < p <1 is the construction of a wavelet Calderén reproducing formula.
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We note that the regularity satisfied by flag singular kernels is better than that of the product singular
kernels. More precisely, the singularity of the standard pure product kernel on C" x R is contained in the
union {(z, 0)} U {(0, u)} of two subspaces, while the singularity of K (z, u), the flag singular kernel on
H" x R defined by Definition 7 below, is contained in a single subspace {(0, «)}, but is more singular on
yet a smaller subspace {(0, 0)}, a situation described neatly in terms of the flag (or filtration) of subspaces,
{(0, 0)} ; {0, u)} ;Cé H". In the following, we describe some natural questions that arise.

Question 1. What is the correct definition of a flag Hardy space Hé;g associated with flag singular integral
operators for 0 < p <1 so that both (1) flag singular integral operators are bounded, and (2) a satisfactory
theory of interpolation emerges?

Question 2. What is the correct definition of spaces BMOy,g of bounded mean oscillation for flag singular
integral operators, and are the singular integrals bounded on them?

Question 3. What is the duality theory for Hé’ag? Is there an analogue of BMO and Carleson measure-type

function spaces which are dual spaces of the flag Hardy spaces H}

flag A8 in the pure product setting?

Question 4. Is there a Calderén—-Zygmund decomposition adapted to functions in flag Hardy spaces H{ﬁg

that leads, for example, to an appropriate theory of interpolation?

Question 5. What is the relationship between classical Hardy spaces H? and the flag Hardy spaces Hé’ag?

We address these five questions as follows. As in the L? theory for p > 1 considered in [Miiller et al.
1995], one is naturally tempted to establish Hardy space theory under the implicit two-parameter structure
associated with the flag singular kernel by invoking the method of lifting to the pure product setting
together with the transference method in [Coifman and Weiss 1976]. However, this direct lifting method
is not readily adaptable to the case of p < 1 because the transference method is not known to be valid. A
different approach centering on the use of a continuous flag Littlewood—Paley g-function was carried
out in [Miiller et al. 1996]. This suggests that the flag Hardy space Hé)ag
two-parameter structure for 0 < p < 1 should be defined in terms of this or a similar g-function. Crucial

associated with this implicit

for this is the use of a space of test functions arising from the lifting technique in [Miiller et al. 1995],
and a “wavelet” Calderén reproducing formula adapted to these test functions. Here is the order in which
we implement these ideas.

(1) We first use the L” theory of Littlewood—Paley square functions gq, as in [Miiller et al. 1996] to
develop a Plancherel-Pdlya-type inequality.

(2) We next define the flag Hardy spaces Hﬂ';lg

test functions that is motivated by the lifting technique in [Miiller et al. 1995]. We then develop the

using the flag g-function gg,e together with a space of

theory of Hardy spaces Hé)ag associated to the two-parameter flag structures and the boundedness of
flag singular integrals on these spaces. We also establish the boundedness of flag singular integrals

from Hé)ag to LP.

(3) We then turn to duality theory for the flag Hardy space Hﬁpag and introduce the dual space CMO? .
In particular we establish the duality between H ﬁlag and the space BMO,,,. We then establish the
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boundedness of flag singular integrals on BMO,,, . It is worthwhile to point out that in the classical
one-parameter or pure product case, BMO is related to the concept of Carleson measure. The space
CMO? . for all 0 < p <1, as the dual space of Hffag introduced in this paper, is then defined by a
generalized Carleson measure condition.

(4) We finally establish a Calderén—Zygmund decomposition lemma for any Hj function (0 < p < 00)

ﬂag
in terms of functions in H ﬂ{:; and H ﬂig with 0 < p; < p < p» < oo. This gives rise to an interpolation

theorem between Hﬂ’:g' and Hﬂf: for any 0 < pp < p1 <00 (Hﬁfa’g =LPforl < p <o00).

We now describe our approach and results in more detail. Proofs will be given in subsequent parts of
the paper.

2. The square function on the Heisenberg group

We begin with an implicit two-parameter continuous variant of the Littlewood—Paley square function that
is introduced in [Miiller et al. 1996]. For this we need the standard Calderén reproducing formula on the
Heisenberg group. Note that spectral theory was used in place of the Calderén reproducing formula in
[Miiller et al. 1996].

Theorem 2 [Geller and Mayeli 2006, Corollary 1]. There is v € C*°(H") satisfying either

Y € S(H™) and all moments of Y vanish, or
Y € C°(H") and all arbitrarily large moments of ¥ vanish,

such that the following Calderon reproducing formula holds:
* ds
fzf st*‘ps*f?, feLZ(IH]n)’
0

where x is Heisenberg convolution, ¥~ (¢) = (¢ =), and V(2. t) = s "2y (z/s, u/s>) for s > 0.

Remark 3. We will usually assume that ¢ above has compact support. However, it will sometimes be
convenient for us if the component functions ¥y have infinitely many vanishing moments. In particular
we can then use the same component functions to define the flag Hardy spaces for all 0 < p < oo (the
smaller p is, the more vanishing moments are required to obtain necessary decay of singular integrals).
Thus we will sometimes sacrifice the property of having compactly supported component functions.

We now wish to extend this formula to encompass the flag structure on the Heisenberg group H".

2.1. The component functions. Following [Miiller et al. 1996], we construct a Littlewood—Paley compo-
nent function ¥ defined on H" >~ C" x R, given by the partial convolution *; in the second variable only:

¥z u) =D sy @z, u) =f vV, u—v)y@@ydv, (z,u) eC" xR,
R
where (D € P(H") is as in Theorem 2, and ¥ € P(R) satisfies

f P =
0
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for all n € R\{0}, along with the moment conditions
/ Z2uPy Dz, u)dzdu =0, |a|+2B<M,
/ VP (w)ydv=0, y=>0.
R

Here the positive integer M may be taken arbitrarily large when the support of /(! is compact, and may
be infinite otherwise.
Thus we have

Rl ds dt
= [ [T reo® e peen, @
0o Jo
where the functions v, are given by
Vi (o) =¥V w0 v (2w, (2-2)

with
Cone Z u _ v
l//s(l)(zv u) =S 2 2110(1) (;’ S2) and wl(z)(v) =t lw(Z) <;)1

and where the integrals in (2-1) converge in L?>(H™). Indeed,

Vot kpn Ysg £ @) = @D 50 0P s D 50 .2 sy £z 0)
= @D s PO s (2 5w 0 P) 52 (2, 00)

yields (2-1) upon invoking the standard Calderén reproducing formula on R and then Theorem 2 on H":

Rl el ds dt < v SN ) dt | ds
/ / Vs *1e Ys,r *¥un f (2, M)?T = / Wv(l) K WY(D Hpgn {/ Y, xr Y, %2 f(2, M)T}?
o Jo 0 0

. v d
= f Y s D e (2, u);s = f(z.u).
0

For f € L?, 1 < p < oo, the continuous Littlewood—Paley square function gqae(f) of f is defined by

gﬂag<f><z,u)={f / |ws,f*f(z,u>|2d—sﬂ}2,
0 0 s t

Note that we have the flag moment conditions, so called because they include only half of the product
moment conditions associated with the product C" x R:

/ u*Y(z,u)du=0 foralla € Z, and z € C". (2-3)
R

Indeed, with the change of variable u’ = u — v and the binomial theorem

W+ =Y c, s,

B=y+3s
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we have

fu“w<z,u>du=fu“{f VO u— vy, v)dv}du
R R R

= f { / (u’+v)“w<2>(u’)du}w<”<z, v) dv
R R

= D e f { / <u/)yw<2>(u/)du/}v%“’(z, v) dv
R R

a=y+5

= > cy,(;/{O}v“w(”(z, v)dv =0
R

a=y+4

for all « € Z and each z € C". Note that, as a consequence, the full moments an 2uPy(z, u) dz du all
vanish, but that, in general, the partial moments an 7%v¥ (z, u) dz do not vanish.

Remark 4. As observed in [Nagel et al. 2012], there is a weak cancellation substitute for this failure to
vanish, namely an estimate for f@n 2% (z, u) dz that is derived from the vanishing moments of (1 (z, v)
and the smoothness of ¥ (1) via the identity

/ Z“W(z,u)dz=/ fzaw(l)(z, VYD (u—v)dzdv
cr o Jr

= / f 2y P, YP W —v) — P @)ldzdv.
n JR

We will not pursue this further here.

We will also consider the associated sequence of component functions {v/; i} xez, Where the functions
Y.k are given by
Vik(z )=y vz, u), 2-4)
with
‘//,(-1)(2» u) = 2aj(2n+2)w(l)(2ajz’ 22aju) and %52)(1)) _ 22akw(2)(22akv),

and ¥ and @ as above. Here « is a small positive constant that will be fixed in Theorem 17 below,
where we establish a wavelet Calderén reproducing formula using this sequence of component functions
for small «. We then have a corresponding discrete (convolution) Littlewood—Paley square function

gﬂag(f) defined by
2hag () (2, u) = {Z Y Wik f(z, u>|2}2.
J ok

This should be compared with the analogous square function in [Miiller et al. 1996].

Remark 5. The terminology “implicit two-parameter structure” is inspired by the fact that the functions
V5,1 (z, u) and ¥ x(z, u) are not dilated directly from v (z, u), but rather from a lifting of v to a product
function. It is the subtle convolution *; that facilitates a passage from one-parameter “cubes” to two-
parameter “rectangles” as dictated by the geometry of the kernels considered.
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2.2. Square function inequalities. Altogether, we have from above that

ds di
s t’

Fleu)= fo /O Vo % U % £ (20 u0) e’ 2-5)

Note that if one considers the integral on the right-hand side as an operator, then, by the construction
of the function v, it is a flag singular integral operator and has the implicit multiparameter structure
mentioned above. Using iteration and the vector-valued Littlewood—Paley estimate together with the
Calderén reproducing formula on L? allows us to obtain L? estimates for 8flag> 1 < p < 00, in Theorem 6
below. This should be compared to the variant in [Miiller et al. 1996, Proposition 4.1] for g-functions
constructed from spectral theory for &£ and T'.

Theorem 6. Let 1 < p < 00. There exist constants Cy and C, depending on n and p such that

Cillfllp = I8pag(Nlp = Call fllp,  f € LPH.

In order to state our results for flag singular integrals on H", we need to recall some definitions given
in [Nagel et al. 2001]. We begin with the definition of a class of distributions on Euclidean space RY. A
k-normalized bump function on a space RY is a C*-function supported on the unit ball with C*¥ norm
bounded by 1. As pointed out in [Nagel et al. 2001], the definitions given below are independent of the
choices of k > 1, and thus we will simply refer to a “normalized bump function” without specifying the
index k.

We will rephrase Definition 2.1.1 in [Nagel et al. 2001] of a flag kernel in the case of the Heisenberg
group as follows.

Definition 7. A flag convolution kernel on H" = C" x R is a distribution K on R?**! which coincides
with a C* function away from the coordinate subspace {(0, u)} C H", where 0 € C" and u € R, and
satisfies the following:

(1) (differential inequalities) For any multi-indices & = («1, ..., ), 8 =(B1, ..., Bm),

10208 K (2, u)] < Caplal "1 (12 + [u) P!

Z
for all (z, u) € H" with z # 0.

(2) (cancellation condition) For every multi-index « and every normalized bump function ¢ on R and
every § > 0,

=< Coz|Z|_2n_‘a|;

/ B?K(z, u)p1(Su) du
R

for every multi-index $ and every normalized bump function ¢, on C" and every é > 0,

< Cylu '

/ 3P K (z, u)pa(82) dz

and for every normalized bump function ¢3 on H" and every §; > 0 and §; > 0,

<C.

/ K (z,u)p3(812, Sru) dz du
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As in [Miiller et al. 1995], we may always assume that a flag kernel K (z, u) is integrable on H" by
using a smooth truncation argument.
Informally, we can now define the flag Hardy space Hé’ag([l-l]”) on the Heisenberg group for 0 < p <1
by
Hé)ag(l]-l]") = {f adistribution on H" : gao (f) € LY (H")},

and, for f € Hé’ag(l]-l]”), define
I ez, = 18aag () p-

Of course we need to give a precise definition of distribution in this context, and a natural question then
arises as to whether or not the resulting definition is independent of the choice of component functions
¥« in the definition of the square function ggae. Moreover, to study the Hlfag—boundedness of flag singular
integrals and establish the duality theory of Htﬁg, this definition is difficult to use when 0 < p < 1. We need
to approximately discretize the quasinorm of Hlﬁg. In order to obtain this discrete Hffag quasinorm we
will prove certain Plancherel-P6lya-type inequalities, and the main tool used in proving such inequalities
will be the wavelet Calderén reproducing formula that we define below. To be more specific, we will
prove that the formula (2-5) converges in certain spaces of test functions ./I/Lﬁfig(l]-ﬂ”) adapted to the flag
structure, and thus also in the dual spaces Jl/tﬁ’flg(l]-l]”)/ (see Theorem 17 below). Furthermore, using an
approximation procedure and an almost-orthogonality argument, we prove in Theorem 17 below a wavelet
Calder6n reproducing formula which expresses f as a Fourier-like series of molecules or “wavelets”
(z,u) —> &j,k(z, u, z7, uy) with coefficients ¥; x * f(z7, uy).

In order to describe this formula explicitly in Section 3 below, we will use the flag dyadic decomposition

H'= | s
(a,7)€K;

of the Heisenberg group given in Theorem 68 below (this is a “hands on” variant of the tiling construction
in [Strichartz 1992]), as well as the notion of Heisenberg rectangles

%zi:(’i’:(ver) and %;ﬁf::(hor)

given in Definition 69 below when j <k and &; 4 - and ¥} g ,, are dyadic cubes in H" with ¥ o  C Pk g0
Recall that

{1} 1 ayadic = {1} jez and we2iz>»
is the usual dyadic grid in C" and that
{7} ayadic = {J} }kez ana rextz
is the usual dyadic grid in R. The projection of the dyadic cube ¥; 4 . onto C" is the dyadic cube IO{ , and

QR;A“’: : (ver) (respectively QR;k/ ﬁ : (hor))
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plays the role of the dyadic rectangle IO{ X JS" (respectively 1 g X Jr2 J ). In the Heisenberg group, these
rectangles necessarily “rotate” with the group structure.

Notation 8. It will be convenient to use the suggestive, if somewhat imprecise, notation
R=1xJ=1I xJ*

for the dyadic rectangle R, Tepv . (ver), etc. It should be emphasized that R = I x J is not a product set,
but rather a dyadic Helsenberg rectangle @{ fh (Ver) that serves as a Heisenberg substitute for the actual
product set Iy / times J3 2k Thus we will say that the dyadic rectangle % = I x J has side lengths £(I) = 2/
and £(J) = 22%. For j < k, the collection of all dyadic Heisenberg rectangles % = I x J with side lengths
2/ and 2%* will be denoted by

R27 x 2% = {97{ =IxJ= I({ X JS" = %z’;‘f’: (ver) : Fj o C yk,ﬂ,v}.

Caution: For k < j, the support of the component function v; x defined in (2-4) is essentially a vertical
Heisenberg rectangle I x J having side lengths £(1) =27/ and £(J) =272k, Note the passage from j, k
to —j, —k.

2.3. Standard test functions. We now describe the features inherent in giving a precise definition of
the flag Hardy space Hé)ag(I]-I]”) as elements in the dual of familiar test spaces. We begin by introducing

the test spaces MY (H") associated with the flag structure on H” that are obtained by projecting the

flag

corresponding product test spaces MY (H" x R) onto H". Our definitions here will encompass the

product
entire range 0 < p < 1. For this we use the projection of functions F defined on H" x R to functions

f = F defined on H" as introduced in [Miiller et al. 1995]:

f(z,u)= @ F)(z, u)E/ F((z,u—v),v)dv. (2-6)
R

We will also use the notation 7 F = F), as in [Miiller et al. 1995]. Recall that 2n + 1 is the Euclidean
dimension of the Heisenberg group H” = C" x R and that Q =2n+2 is the homogeneous dimension of H".
In this notation, the component function 1 (z, u) in Subsection 2.1 above is given by w W (z, u), where

W(z,u,v) =P, u)y® ). (2-7)

My, M>, M

We now define an appropriate product molecular space A/Lproduct

My, My, M.

on H" x R with three parameters

Remark 9. Note that, in the definition below, we require equally many moments and derivatives in each
of the u and v variables, and exactly twice as many moments and derivatives in the z variable. The
integer M controls the decay of the function, the integer M controls the total number of moments, and
the integer M, controls the total weighted number of derivatives permitted.

Definition 10. Let M, M, M, € N be positive integers and let 0 < § < 1. The product molecular space

M+6,My,
‘/‘/Lproduct

conditions

My (H" x R) consists of all functions F((z, u), v) on H” x R satisfying the product moment
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f Z2uPF((z,u),v)dzdu =0 forall || +28 < M,
" (2-3)
/UVF((Z’M)’U)dvzo fOI‘allZySMl,
R

and such that there is a nonnegative constant A satisfying the four differential inequalities

1 1
(1+ |Z|2 + |M|)(Q+M+|a|+2;3+5)/2 (1+ |v|)1+M+y+6
for all |¢| +28 < My and 2y < M,, (2-9)

“3B3Y F((z,u),v)| < A

Zu-v

|0

1929297 F((z,u), v) —8%9P9Y F (', u'), v)|

Zu-v
[z, u)o (2, u)~!|° 1
- (1+|Z|2+|u|)(Q+M+M2+28)/2 (1+|v|)1+M+y+8

for all |o| +28 = My and [z, u) o (', u) ™| < 3(1 + |2+ ul)2,  (2-10)

1929207 F((z,u), v) — 8%9P9Y F((z, u), v')|
A 1 lv—v'°
— (1 + |Z|2+ |u|)(Q+M+|a|+2ﬂ+5)/2 (1 + |v|)]+M+M2/2+28’
for all |a| +2B8 < My, 2y = M,, and |[v—v'| < %(1 + v, (2-11)

10207 9) F((z. 1), v)—820f 0] F((2', u"), v)]—[959] 8] F((z, u), v') = 8% 0f 0] F (2", u), v)]|

Zu-v u-v Zu-v Zu-v
|z u)o (@, ul)~")° lv—v')°
T (1 2|2+ |u|)(@HMAM428)/2 (] 4 |y|) LM +Ma/2428

for all || +2f = My, 2y =My, |z, )o@’ u)™ | < L(1+zP+lu)?. and v—v'| < JA+[u]).  (2-12)

The space A/tgf;ii’c[y‘ M2 ([ « R) becomes a Banach space under the norm defined by the least nonneg-

ative number A for which the above four inequalities hold.

Now we define the flag molecular space Mggs,Mth (H™) as the projection of A/Lg/rlozi’f"Mz(H” x R)

under the map 7 given in (2-6).

Definition 11. Let M, M|, M, € N be positive integers and 0 < § < 1. The flag molecular space

M%;’S’M"MZ(H”) consists of all functions f on H" such that there is F € A/ngi’cy"m(l]-l]" x R) with
f =nF = F,. Define a norm on Mggs’M"MZ(H”) by

||f”Mg’£;6'M1~M2(Hn) = F:}llfj"[F ||F||Mg;[;i'c1:41~M2(anR)‘
M+65,M;,

flag M2 (Hmy is the quotient norm

Thus the norm on Jil
5, ) _
1 g2y = Mo O x R) /7~ ({OD),
ag

M+38,Mi, M pany +
and Jl/Lﬂag (H™) is a Banach space.
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We record here an intertwining formula for 7 and a convolution operator 7 on H". Let
Tf(z,u) = K [ (2, u) =/ K((z,u)o @, u)™ ) f( u)dZ du'.
H»
Extend T to an operator T =T ®3§ on the group H" x R by acting 7" in the H" factor only:

TF((z,u),v) = / K((z,u)o(Z,u) " WF( u',v)dZ du'.

n

Lemma 12. Let T be a convolution operator on H" and let T =T ® 8y be its extension to H" x R defined
above. Then

T (7 F)(z,u) = (T F)(z, u).

Proof. Formally we have

T(nF)(z, u)=/ K((z,u)o(Z,u')y NV F)(Z,u')dZ du'

n

=/)K«Lwo@CWYU{éFQCM—uvﬁw}ﬂﬂw
= / /R K(z—z ,u—u'+2Imz/2)F(Z,u' —v,v)dvd? du'.
Now make the change of variable w’ = u’ — v to get
T(tF)(z,u)= /n '/R KGz—7Z, u—w —v+2Imz2)F(Z, w', v)dvd7 dw
= /R{/n K((z,u—v)o(Z,w) HF(, v, v) dz’dw/} dv

=/{fF(z,u—v, v)}dv:n(TF)(z, u). O
R

Later in the paper we will fix M| = M, = M and denote ./l/tg/;;s’M"Mz(l]-l]") simply by A/ng‘s(l]-ﬂ”), but

for now we will allow M, and M, to remain independent of M in order to further analyze the space

M~+8,M,M> /i nn
A (H").

2.3.1. An analysis of the projected flag molecular space. Lemma 14 below shows that functions f(z, u)
M+8,M
flag 1
as more moments in the (z, u) variable than we might expect. We refer loosely to this situation as

in the “projected” flag molecular space M2 (") have moments in the u variable alone, as well

having half-product moments. There is a more familiar space of test functions MyM’M“MZ([H]”), defined
below with half-product moments, that avoids the operation of projection, and that is closely related
to the projected test space M2 MM (qn) While we do not know if the spaces M2 TM1-M2(qn) and

flag flag
M];]M’M”MZ(I]-I]”) coincide, the embeddings in Lemma 14 below are enough for our purposes.
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Definition 13. Let M, M, M, € N be positive integers and 0 < § < 1. Define the “moment” flag molecular

M+5,M;, Mz(lH]n

space M ) to consist of all functions f on H" satisfying the moment conditions

/z“uﬂf(z,u)dzdu:o for all |a| < My, |o|+2B <2M,; +2,

/u”f(z,u)du:O for all y < M|,
R

and such that there is a nonnegative constant A satisfying the differential inequalities

1
%P
070, f(z,u)| <A (0T 2+ )@ i+aTr262 for all |a|+28 < M>,
[z, u) o (2, u)~ P

10295 f(z,u) — 3%3F f(/, u)| < A

(14 |Z|2 + |u|)(Q+M+5+M2)/2

for all || +2B8 = M, and |(z, u) o (2, u) ' < 21 +|z* + lul)?.

Note that the moment conditions in the definition of MMJ”S Mi. MZ(I]-[I”) permit larger values of 8

depending on |«| than in the definition of ‘A/LMJ”S Mt MZ(I]-I]”). The space M/;’J”S’M"MZ(I]-I]”) becomes a
Banach space under the norm defined by the least nonnegative number A for which the above two
inequalities hold.

Lemma 14. The spaces Mﬁé;a’M“Mz (H™) and I\/I];IH’MI’MZ(H") satisfy the containments

3M+8+My,M,2M,+4 M+68,M, M M+8,M, M.
MF +0+Ma, My, 2Mr+ (Hn)cl/‘/tﬂa;', 1, Z(HH)CMF‘Fq 1, Z(Hn),

which are continuous:

||f||M}1‘:’+‘va1«M2(Hn) 5 ||f||Mg;5«M1~M2(Hn) S ”f||M1M+5+M2~M112M2+4(Hn)'

M+65,M,
flag

of a wavelet Calderén reproducing formula for this space of test functions; see Theorem 17 below.
M~+8,M,M> (IH]n)

Remark 15. The importance of the “projected” flag molecular space .it Mo (H™) lies in the existence
We do not know if such a reproducing formula holds for the “moment” flag space M
but the embeddings in Lemma 14 will prove important in identifying the distributions in the dual space
J‘/LM+5,M1, M'+8,M|.M é(l]_l]n)/

flag M2 (1)’ as being “roughly” those in a dual space My
. M+468,Mq,
in My

M2 (Hm) remains the same
M+5,M,, Mz(Hn

Remark 16. The integer M that controls the number of moments

in both the smaller space MgM oM M2MaH4 () and the larger space M ). However, we
lose both derivatives and decay in passing from the smaller to the larger space.

HP
flag

HP(H"), we can show that the quotient space

0h (H") = HY (H")/M},

(H™) can be identified with a closed subspace of the corresponding quotient space

While we cannot say that H; (H") is a subspace of the more familiar one-parameter Hardy space

M'+8.M] Mz([H]n)

of Hé’ag

M'+8,M{, M}

QP (H") = HP(H") /Mg (HY*



FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP 1481

of H?(H"), thus giving a sense in which the distributions we use to define Hiﬁg([l-[l’l) are “roughly” the
same as those used to define H?”(H"). See [Han et al. 2012] for details.

3. The wavelet Calderén reproducing formula

We can now state our wavelet Calderdn reproducing formula for the flag structure in terms of the projected

prOdUCt test spaces
Mﬁ{l;—(s ([H]n) = Mg{lgs,M.M ([H]n)’

defined by projecting the product test spaces

MMES (" x R) = MM MM (g Ry,

product product

We remind the reader that Euclidean versions of such reproducing formulas were obtained by Frazier and
Jawerth [1990] using the Fourier transform together with the very special property that R" is tiled by the
compact abelian torus T" and its discrete dual group, the lattice Z".

It is convenient to introduce some new notation for the dyadic rectangles defined in Notation 8. Given
0 <o < 1 and a positive integer N, we write

R(.]7 k) = %(2_a(j+N) X 2_201(/(-‘1-1\7))’
Q(j) = RQAUTN)  p-20(+N)y,

Now, for 2 € Q(j), let (za, ug) be any fixed point in the cube 2, and for R € R(j, k) with k < j, let
(za, um) be any fixed point in the rectangle . Let us write the collection of all dyadic cubes as

Q=Jau.

jez
and the collection of all strictly vertical dyadic rectangles as

Rent = | R(. ).
j>k
We now set

vh =y if 2 € Q(j),
Vo =ik =" %y if ReR(. ),

where the v ; are as in (2-4). Given an appropriate distribution f on H", we define its wavelet coefficients
fo and fq by

fo =14 * f(zo,u9) if2eQ,
fa =¥ * f(za, ug) if R € Ryen, thatis, when j > k.

Below is the wavelet Calderén reproducing formula.
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Theorem 17. Suppose the notation is as above. Then there are associated functions Vo, Yg, € MM (HM)

flag
for 2 € Q and R € Ryey satisfying
190 L agss gy S W5 a2 €Q,
Il ey S W3 lLagss oy P € Ruens
and
fGwy =) oy w+ Y favalw, (zu)eH, (3-1)

2eQ ReRyert
where the series in (3-1) converges in three spaces:
(1) in LP(H") for 1 < p < o0,

(2) in the Banach space Jl/tgfl:;‘s([}-ﬂ”) for M’ large enough,

(3) and in the corresponding dual space Jl/tgfl;‘s([}-ﬂ”)/ for M’ large enough.

Remark 18. Note that only half of the collection of dyadic rectangles, namely the vertical ones Ry, are
used in the wavelet Calderdn reproducing formula. This is a reflection of the implicit product structure
inherent in the Heisenberg group H”".

3.1. Plancherel-Polya inequalities and flag Hardy spaces. The wavelet Calder6n reproducing formula
(3-1) yields the following Plancherel-Pélya-type inequalities; cf. [Pélya 1936; Plancherel and Pdlya
1937]. We use the notation A ~ B to indicate that two quantities A and B are comparable.

Theorem 19. Suppose vV, ¢V € (C") and v @, p® € S(R), and let
Ve = [¥Ocu- 0w,
R

¢<z,u)=/¢<”(z,u—v)w@<v>dv
R

be two component functions that each satisfies the conditions in Section 2.1. Then with Q, Ryer, ¥, and

Y, as above, and for f € M

flag (H™),0 < p < 00, and M chosen large enough depending on n and p,

{Z sup [y f (& u) P xazu)+ Y sup I%*f(Z’,u’)lzm(z,u)}z

2eQ (Z,u')ed ReRyen (Z ,u)eR

The Plancherel-Pdlya-type inequalities in Theorem 19 will prove useful in establishing properties of

LP(H")
1

2
{}: inf [y * fE& ) xozu)+ »  inf Iwg’k*f(zﬂu’)lzm(z,u)}
9eq (z/,u")ed PR (Z.u)eRr

%

L7 (Hm)

the wavelet Littlewood—Paley g-function
1
2
2ag (/) (2, M)={Z|W§z*f(zsz, )P xozow)+ Y W * f s m)ﬁm(z,m} ,

2eQ RERvert

where we are using the notation of Theorems 17 and 19.
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We can now give a precise definition of the flag Hardy spaces.

Definition 20. Let 0 < p < co. Then, for M sufficiently large depending on n and p, we define the flag
Hardy space Hﬂpag([}-ﬂ”) on the Heisenberg group by

Hp (HY = {f € Mg 2 (HYY : gnag () € LP(HM},

and, for f € Hifag([]-l]”), we set

111z, = l8nag (Pl (3-2)
Remark 21. We can take M in Definition 20 to satisfy
M>M,,=@2n +2)[% —1]+1.

We have not computed the optimal value of M, ,.

It is easy to see using Theorem 19 that the Hardy space Hé’ag in Definition 20 is well defined and that

the Hé’ag norm of f is equivalent to the L” norm of ggae. By use of the Plancherel-Pélya-type inequalities,
we will prove the boundedness of flag singular integrals on Hé’ag below.

3.2. Boundedness of singular integrals and Marcinkiewicz multipliers. Our main result is the Hé’ag —
Hé’ag boundedness of flag singular integrals.

Theorem 22. Suppose that T is a flag singular integral with kernel K (z, u) as in Definition 7. Then T is

bounded on HY

flag for 0 < p < 1. Namely, for all 0 < p <1 there exists a constant C, , such that

<
ITfllag, < Cpall fllg,

To obtain the H?

flag — L? boundedness of flag singular integrals, we prove the following general result:

Theorem 23. Let 0 < p < 1. If T is a linear operator which is bounded simultaneously on L*(R*'*1)
and H{fag(l]-ﬂ”), then T can be extended to a bounded operator from Hﬂpag(ll-ﬂ") to LP(R¥+1,

Remark 24. From the proof given in the next part of the paper, we see that this result holds in a larger
setting, which includes the classical one-parameter and product Hardy spaces and the Hardy spaces on
spaces of homogeneous type. Thus this provides an alternative approach to using Fefferman’s criterion
on boundedness of a singular integral operator by restricting its action on rectangle atoms [Fefferman
1986], and then combining this with Journé’s geometric lemma; see [Journé 1985; 1986; Pipher 1986].

In particular, for flag singular integrals we can deduce the following.

Corollary 25. Let T be a flag singular integral as in Theorem 23. Then T is bounded from Hlfag(ﬂ-ﬂ”) to
LP(R” N for0 < p < 1.

Remark 26. The conclusions of both Theorem 22 and Corollary 25 persist if we only require the moment
and smoothness conditions on the flag kernel in Definition 7 to hold for |«|, B8 < N, ,, where N,, , < 00
is taken sufficiently large.
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As a consequence, we can extend the Marcinkiewicz multiplier theorem in [Miiller et al. 1995] (see
Lemma 2.1 there) to flag Hardy spaces for 0 < p < 1. To describe this extension, recall the standard
sub-Laplacian & on the Heisenberg group

H*=C"xR={(z,1) :2=(z;)}=, zj =x; +iy; €C, t e R},
defined by

n

0 0 0 0
P==) X347V, X;j=—42y;—, Vj=— —2x;—.
JZ_;( pTYD. Xp= oA Wi Y=g Ty,
The operators £ and T = 9/(d¢) commute, and so do their spectral measures dE(£) and dE>(n). Given
a bounded function m (&€, ) on Ry x R, define the multiplier operator m (<, iT) on L*(H") by

m(sz,m://R (6 ) dE1 ) dEx().

Then m (%, iT) is automatically bounded on L?(H"), and if we impose Marcinkiewicz conditions on the
multiplier, we obtain boundedness on flag Hardy spaces; this despite the fact that m is invariant under a

two-parameter family of dilations §(, ) which are group automorphisms only when t = s2.

Corollary 27. Let 0 < p < 1, and suppose that m(&, n) is a bounded function defined on Ry x R that
satisfies the Marcinkiewicz conditions

1(£0g)* (3,)Pm(&, n)| < Cap

forall |a|, B < N, ,, where N, , < o0 is taken sufficiently large. Then m(£, iT) is a bounded operator

on Hé;g(l]-l]”)foro <p<L

The corollary follows from the results above together with [Miiller et al. 1995, Theorem 3.1], which
shows that the kernel K (z, u) of a Marcinkiewicz multiplier m (&, i T) satisfies the conditions defining a
flag convolution kernel in Definition 7.

3.3. Carleson measures and duality. To study the dual space of H ag> We introduce the Carleson measure
space CMOgag.

Notation 28. It will often be convenient from now on to bundle the set Q of all dyadic cubes and the set
Ryert Of all vertical dyadic rectangles into a single set

R+ = Q U Rvert
consisting of all dyadic cubes and all vertical dyadic rectangles. We also write

" _{1/@; if R=9€Q,
g, if R e Ryen
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Definition 29. Let v/; ; be as in (2-4) with notation as above. We say that f € CMO‘gag if fe L/I/ng‘s (H™Y

and the norm || f ||CMOg is finite, where
ag

— 1 2 %
IIflchogag=SgP{W > /Q D Wa £z, w)l Xm(z,u)dzdu}

Re R+ RCQ

for all open sets €2 in H" with finite measure.

p
flag*
When p = 1, we denote the space CMOéag as usual by BMOg,e. To see that the space CMOEag is

well defined, one needs to show that the definition of CMO‘H’ag is independent of the choice of the
p

component functions v; ;. This can be proved just as for the Hardy space Hipg

Note that the Carleson measure condition is used with the implicit multiparameter structure in CMO

using the following
Plancherel-Pdlya-type inequality.

Theorem 30. Suppose , ¢ satisfy the conditions as in Theorem 19. Then, for f € Mg’f‘ga (H™Y,

1 1
1 i P 1 , N
S%"{W YY" sup [Yarf(zuw)l |9R|} NS?P{W > 2 nf e fw |9R|},

ReR, e GER ReR, RCQ
where Q2 ranges over all open sets in H" with finite measure.

To show that CMO? is the dual of H?

flag flag> WE introduce appropriate sequence spaces.

Definition 31. Let s” be the collection of all sequences s = {sa }acr, such that

1
2
{ > |s%|2||%|—‘x@t}

%ER+

< Q.

Isllsr = ‘
LP(H")

Let c? be the collection of all sequences s = {sg} such that

1
1 >
lIsller = SI;ZP!W Z Z |S9R|2} < 00,

ReRL RCQ
where 2 ranges over all open sets in H" with finite measure.

We point out that only certain of the dyadic rectangles are used in s” and c¢” and these choices reflect
the implicit multiparameter structure. Moreover, the Carleson measure condition is used in the definition
of ¢”. Next, we obtain the following duality theorem for sequence spaces.

Theorem 32. Let 0 < p < 1. Then we have (sP)* = cP. More precisely, the map which sends s = {sq} to
(s, 1) =D g Saty defines a continuous linear functional on s? with operator norm |t || sry= = ||t||cr, and,
moreover, every £ € (sP)* is of this form for some t € c?.

When p =1, this theorem in the one-parameter setting on R"” was proved in [Frazier and Jawerth 1990].
The proof given in [Frazier and Jawerth 1990] depends on estimates of certain distribution functions,
which seem to be difficult to apply to the multiparameter case. For all 0 < p < 1, we give a simple
and more constructive proof of Theorem 32, which uses a stopping time argument for sequence spaces.
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Theorem 32 together with the discrete Calderén reproducing formula and the Plancherel-Pdlya-type
inequalities yield the duality of Hy, .

Theorem 33. Let 0 < p < 1. Then

p
(Hy

2e)" =CMOL.

More precisely, if g € CMogag, the map Lg given by L, (f) = (f, g), defined initially for f € Mgﬁ;s(ﬂ-ﬂ"),

extends to a continuous linear functional on Hé’ag with ||, ||~ g IICMOgag. Conversely, for every € € (Hé;g)*,

there exists some g € CMOgag so that £ = £g4. In particular, (Hﬂlag)* = BMOyqg.

As a consequence of the duality of Hﬁlag and BMOg,,, together with the Hﬁlag—boundedness of flag
singular integrals, we obtain the BMOy,z-boundedness of flag singular integrals. Furthermore, we will see
that L°° € BMOg,g and hence the L>° — BMOyg,, boundedness of flag singular integrals is also obtained.
These provide the endpoint results of [Miiller et al. 1995; Nagel et al. 2001], and can be summarized as
follows.

Theorem 34. Suppose that T is a flag singular integral with kernel as in Definition 7. Then T is bounded
on BMOyye. Moreover, there exists a constant C such that

IT ()IBMOge = C I f IBMOgsg -

3.4. Calderon-Zygmund decompositions and interpolation. Now we give the Calder6n—Zygmund de-
composition and interpolation theorems for flag Hardy spaces. We note that Hffag(ﬂ-ﬂ”) = LP(R**1) for
1 < p < 0o by Theorem 6.

Theorem 35 (Calder6n—Zygmund decomposition for flag Hardy spaces). Let 0 < py <1, pr < p < p1 <00,
let @ > 0 be given, and suppose f € Hé’ag(ﬂ-ﬂ”). Then we can write

f=g+b,
where g € Hiil‘g([l-[l") with p < py <ooandb € Hif;g([l-[l") with 0 < py < p, such that

pLo< CalPP| 1P and |b||P%, < CaP?7P| ¥
”g”Hf{’ﬂ'g < ”f”Hé’ag [ ”Hﬂ’fg < ||f||Hé;g,

where C is an absolute constant.

Theorem 36 (interpolation theorem on flag Hardy spaces). Let 0 < py < p1 < 0o and let T be a linear
operator which is bounded from Hé’jg to LP? and bounded from Hé;‘g to LP'. Then T is bounded from
Hé’ag to L? for all py < p < py. Similarly, if T is bounded on Hé’;g and Hé;fg, then T is bounded on Hé’ag
forall p) < p < p1.

Remark 37. Combining Theorem 36 with Corollary 27 recovers the L? boundedness of Marcinkiewicz
multipliers in [Miiller et al. 1995] (but not the sharp versions in [Miiller et al. 1996]).

We point out that the Calder6n—Zygmund decomposition in pure product domains for all L? functions
(1 < p <2)into H' and L? functions, as well as the corresponding interpolation theorem, was established
by Chang and Fefferman [1985; 1982].
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Part II. Proofs of results
Part II of this paper contains the proofs of the results stated in Part I, and is organized as follows.

(1) In Section 4, we establish L? estimates for the multiparameter Littlewood—Paley g-function when
1 < p < 00, and prove Theorems 6 and 38.

(2) In Section 5, we show that the Calderén reproducing formula holds on the flag molecular test function
space A/Lé’,ﬁ;a and its dual space (Mﬁ{lg‘s)’ . Then we prove the almost-orthogonality estimates and
establish the wavelet Calder6n reproducing formula on ./l/Lng;”S and (Mlﬁg‘s)/ in Theorem 17. Some
estimates are established for the strong maximal function, and together with the wavelet Calder6én

reproducing formula, we then derive the Plancherel-Pdlya-type inequalities in Theorem 19.

(3) In Section 6, we give a general result for bounding the L? norm of the function by its Htf ag OM
(Theorem 56). We then prove the Hé’ag boundedness of flag singular integrals for all 0 < p < 1
in Theorem 22. The boundedness from Hé';g to L? for all 0 < p <1 for the flag singular integral
operators, Theorem 23, is thus a consequence of Theorem 22 and Theorem 56.

(4) Duality theory for the Hardy space H ﬂag is then established in Section 7 along with the boundedness
of flag singular integral operators on BMOg,s. The proofs of Theorems 30, 32, 33, and 34 will all

be given in Section 7.

(5) In Section 8, we prove the Calderon—Zygmund decomposition in the flag two-parameter setting
(Theorem 35) and then derive an interpolation result, Theorem 36.

(6) In Section 9, we show that flag singular integrals are not in general bounded from the classical
one-parameter Hardy space H'(H") on the Heisenberg group to L' (H").

4. L? estimates for the Littlewood—Paley square function

The purpose of this section is to show that the L” norm of f is equivalent to the L” norm of gpag(f)
when 1 < p < oo. This was shown in [Miiller et al. 1996, Proposition 4.1] for a function ggae(f) only
slightly different than that used here. Our proof is similar in spirit to that work.

Proof of Theorem 6. The proof is similar to that in the pure product case given in [Fefferman and Stein
1982], and follows from iteration and standard vector-valued Littlewood—Paley inequalities. To see this,
define

LPHY> f > FeH=1¢
by F(z,u) = {1/f](~1) * f(z,u)}, so that

1

IF Iy = {Zw(“*f(z )| }

For z fixed, set
1

g(F)(zu) = {Z Iy 2 Fz, -)(y)ll%{}z-
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It is then easy to see that g(F)(z, u) = gqag(f)(z, u). For z fixed, by the vector-valued Littlewood—Paley
inequality,

/é(F)”(z,u)dzduscf | FII% dz du.

n

However, || F ||1’ZI = {Z Ix 1//1(.1) * f(z, y)lz}” / 2, so integrating with respect to z together with the standard
Littlewood—Paley inequality yields

p/2
fcnfwgﬂagu)"(z, u)dzduscfn/;{ZWf”*f(z, u)F} dzdu < C|[ 117, -
J

which shows that [|gaag(/)Il, < CIl flp-

The proof of the estimate || f], < Cllgrag(f) |, is a routine duality argument using the Calderén
reproducing formula on L>(H"), forall f e L’NL?, g e L>N L? and 1/p+1/p’ =1, and the inequality
llgfag () Ilp < Cll flp, which was just proved. This completes the proof of Theorem 6. Il

As in Theorem 6, let (' € $(H") be supported in the unit ball in H” and ¥® e $(R) be supported
in the unit ball of R and satisfy
/ 9 (4 =
0

for all n € R\{0}. We define ¥’ (z, u, v) = vV (z, )y @ ). Set vV (z, u) = s 2D (z/s, u/s?),
¥ P () =1t7"¥(z/1) and

Voo t) = / VOG- @ @) dv.
R

Repeating the proof of Theorem 6, we get, for 1 < p < oo,

(e
11y~ H{f/ [ Y S . y>|2d”’s}

The L? boundedness of flag singular integrals for 1 < p < oo is then an easy consequence of Theorem 6.

=Clfllp

and

(4-1)

p

This theorem was originally obtained in [Miiller et al. 1995] using a different proof that involved the
method of transference.

Theorem 38. Suppose that T is a flag singular integral defined on H" with flag kernel K (z, u) as in
Definition 7 above. Then T is bounded on L? for 1 < p < co. Moreover, there exists a constant C
depending on p such that, for f € L?,

ITfllp =<Clfllp, 1<p<oo.
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Proof. We may first assume that K is an integrable function and then prove the L? boundedness of T is
independent of the L' norm of K. The conclusion for general K then follows by an argument used in
[Miiller et al. 1995]. For all f € L?, by (4-1),

dt d.
||T(f)||p<CH{/ / W Yo % K % fIPF S} (4-2)
P
Now we claim the following estimate: for f € L?,
V5,1 % K s f(z, u)| < CMs(f)(z, u), (4-3)

where C is a constant which is independent of the L' norm of K and Mg(f) is the strong maximal
function of f defined in (1-1).
Assuming (4-3) for the moment, we obtain from (4-2) that

=Clflp
p

1T, < C'H f (Ms (% )P4 ‘“}

where the last inequality follows from the Fefferman—Stein vector-valued maximal inequality.

We now turn to the claim (4-3). This follows from dominating | ;* K * f | by a product Poisson integral
Pprod f» and then dominating the product Poisson integral Ppq f by the strong maximal function My f.
The arguments are familiar and we leave them to the reader. ]

5. Developing the wavelet Calderén reproducing formula

In this section, we develop the wavelet Calderén reproducing formula and the Plancherel-Pdlya-type
inequalities on test function spaces. These are the main tools used in establishing the theory of Hardy
spaces associated with the flag dilation structure. In order to establish the wavelet Calderén reproducing
formula and the Plancherel-Pdlya-type inequalities, we use the continuous version of the Calderén
reproducing formula on L?(H") and the almost-orthogonality estimates.

We now start the relatively long proof of Theorem 17, beginning with the Calderén reproducing formula
in (2-1) that holds for f € L?(H") and converges in L?(H"). For any given o > 0, we discretize it as

- / [

D —2ak

/ / wvt*‘/fsl*f(za )ﬂd_s
J 7 2—a(j+1) Jp—2a(k+1)

=cou Y Yk ok Wik [ 1)+ Zxﬁj,k i f (2, 1)

J<k j>k
9—2ak dt d
Y S
+ E / / Wt % W — Wjaex Vs * £ (2, W
] ieZ a(j+1) Jo—2a(k+1)

=TV fz,u) + T2 f(z,u) + Ro f (2, u),
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where

2-af
Vjk = Yo-oj g2k, Cq = /
-

a(j+1) Jo-2ek+) T S

270t ds 2-i 020k

= 2
= 2—a(j+1) In 2 —2a(k+1) =2« In 2)°.

Notation 39. We have relabeled v/,-«; 520 as simply v/; x when we replace integrals fooo fooo (ds/s)(dt/t)
by sums > j.kez- This abuse of notation should not cause confusion as we will always use j, k, j' Kk as
subscripts for the discrete components ¥/; , while we always use s, 7, s’, t" as subscripts for the continuous
components v, ;. Note however that directions are reversed in passing from s, ¢ € (0, 00) to j, k € Z, in
the sense that s =27 and r = 272 decrease as j and k increase.

To continue we choose a large positive integer N to be fixed later. We decompose the first term
T,V f(z, u) by writing the Heisenberg group H" as a pairwise disjoint union of dyadic cubes 2 of side
length 27¢U+N)_that is,

9 € RQ AUV 072+

We decompose the second term 7. f(z, u) by writing the Heisenberg group H" as a pairwise disjoint
union of dyadic rectangles R of dimension 2—aU+N) 5 9=20k+N) that is. b € R(2—CU+N) 5 2 24(+N)y
Recall that
R(j, k) = RQOUTN) g 2ek+N)y
Q(]) = %(Z—G(j—i-N) X 2_2(¥(j+N))’

and that (zg, ug) is any fixed point in the cube 2 € Q(j), and that (za, ug) is any fixed point in the
rectangle R € R(j, k).

We further discretize the terms T,,E”f (z,u) and Tofz)f (z, u) in different ways, exploiting the one-
parameter structure of the Heisenberg group for Tof D and exploiting the implicit product structure for Tofz).
We rewrite Tofl)f(z, u) as

TV f(zu) =co Y Pjuxju® £z, u)

J<k

=co »_ Uy D) (0 s ) # f(2u)
J<k

=ca 3 W w2y ) w Y x £z u)
J<k

=cCqy Z(l}jl) *) <Z 1};52) £ 152)>) * 1#](.1) * f(z,u)
JjEZ k>j

=ca) Wix P f(u),
jez

where
v = W;U and &j — 1pj(_l) . (Z ILIEZ) . w}gz)). (5-1)

k>j
Remark 40. It is a standard exercise to prove that 1} ; satisfies the same type of estimates as does lﬁj(.l)

on the Heisenberg group H".
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Now we write

T fuy=Y" Y fovalzu)+RY\ f(z ),

J<k 2€Q(j)

TP fuw=Y " Y fava w+RI\f (w0,

j>k ReR(j,k)

where
Jo=cal2lji* fza, ua) for2 € Q(j) and k = j,
Jfo = cal RV i * (2, ug) for R € R(j, k) and k < j,
Vol(z, u) = é /9 Vix((z u)o (2 u') ") dZ'du'  for 2 € Q(j) and k > j,
Yo (z, u) = ﬁ /;{ Vik((@ u)yo @, u) Yd du'  for R e R(j, k) and k < j,
and

RO f@uw)y=ca Y /9 Uia(@w) o &)™) x Wy ax f&u) = Wjax fza, un)lde dud,

Jj<k 2€Q(j)

g

>k RER(,K)

ROf@wy=cay . > /ﬁ Vja((@ow) o (&)™) x [y f &) = Wjack f (2 ua)] dz du’.

Altogether we have

fawy=>"Y" foyazw+Y_ Y favalz

JEZ 2€Q(j) Jj>k ReR(j,k)
1 2
+{Ra f (2. )+ RUN f (2 w) + REN f (2 w)}. (5-2)

Recall that we denote by Q = |_J jez Q(Jj) the collection of all dyadic cubes, and by Ryen = U ik RG, &)
the collection of all strictly vertical dyadic rectangles. Then we can rewrite (5-2) as

fawy =) fovo@w)+ Y fava(@ )+ {Ra+R\N+ RN (. w), (5-3)
2eQ ReRvert
which is a precursor to the wavelet form of the Calderén reproducing formula given in the statement of
Theorem 17.
The following theorem is the analogue of [Han 1994, Theorem 1.19] for the operators R, RS}\,,
(@)
and R y.

Theorem 41. For fixed M and 0 < § < 1, we can choose M' and 0 < a < ¢ sufficiently small, and then
choose N sufficiently large, so that the operators Ry, Rél), and Réz) satisfy

1 2
IRa f oy +IRSN Fllrem HIREN Flliremy < M flirgm,  f e LPHY, 1< p < oo,

)

(M @ i s gpqny O
”Raf”/l/tg/;/;a(ﬂ'ﬂ")—i_”R%Nf”JMﬁ/gM(H")_{—”Rast||MgZ‘/g+5(H”) = §||f||M£{),g+5(H”)’ f € ‘/M“ﬂag (H )
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With Theorem 41 in hand, we obtain that the operator
San=1—Ry— R\ f— R
is bounded and invertible on mﬁgs(H"). It follows that, with o = S, \ ¥ and Yz = S, \y ¥,
fw =) fpiaGw+ Y favaGw, [eMyFH, (5-5)
2eQ RERvert

where 1/791 and @gt are in ./i/tfi‘f;gﬁ”S (H™), and the convergence in (5-5) is in both L?(H") and in the Banach
space A/Lﬁfg‘s(ﬂ-ﬂ"). This finally is the wavelet form of the Calderén reproducing formula given in the
statement of Theorem 17. The same argument shows that (5-5) holds for f € L?(H") with convergence
in L?(H"), provided 1 < p < oco. In fact we obtain that (5-5) holds for f in any Banach space & (H")

with convergence in &€ (H"), provided we have operator bounds
1 2
1R f sy + I RSN S ey + IR N £ llacany < 31wy, f € H(EH).
We turn first to proving the molecular estimates in (5-4), but only for
)] )
||Ra,Nf||Mg’g/g+5(Hn) and ”R(Y»Nf”./l/t‘[;g;ra(ﬂ‘ﬂ”)’

) is similar, but easier. We will use the following special T 1-type theorem

on the Heisenberg group H" (see [Han 1998; 1994] for the Euclidean case) to prove a corresponding

as the estimate for || Ry f| UM+
flag

product version below. Recall the definition of the one-parameter molecular space Y " (HM).

Definition 42. Let M’ € N be a positive integer, 0 < § < 1, and let Q = 2n + 2 denote the homogeneous
dimension of H". The one-parameter molecular space MM "+ (H™) consists of all functions f(z, u) on
H" satisfying the moment conditions

/ 2%uP f(z,u)dzdu =0 forall |a|+2|8| <M,

and such that there is a nonnegative constant A satisfying the differential inequalities

1

aqp
[07°0;, f(z, u)l fA(1+|Z|2+|u|)(Q+M’+IOl|+2|ﬂ\+8)/2

for all |a| +2|8| < M’

and
I(z,u)o (2, u)~1)?

aqp __qaap ro
1959y, f (2, u) = 879, f (2, u)| < A(l + |z]? + |u|)(@Q+M+3+M'+25)/2

for all o +2|8] = M’ and |(z, u) o (' u) | < L1+ |22+ Jul)?.

Theorem 43. Suppose T : L>(H") — L*(H") is a bounded linear operator with kernel K ((z, u), (z', u'));
that is,

Tf(zu)= f K (2 w), (s u) f (s u'y d2' .
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Suppose furthermore that K satisfies

/ Z2uPK((z, ), (z',u")) dzdu =0,

f ) W)PK((z,u), (7, u))d7 du' =0
[H]Vl

forall 0 < |«|, B, and

1
|(Z, M) o (Z/, u/)—1|Q+|a\+2ﬂ+\a/|+2ﬁ/

1090899 05 K ((z, w), (Z,u'))| < A

zu 7
forall 0 < |al, B, ||, B'. Then
T:LP(H") - LP(H") for1l < p < o0,
T MM HY) > MM MY forall M and 0 < § < 1,
and, moreover, the operator norms satisfy
IT L@y < CpA  and T || yowr+s gy < Cur sA.

We will use the technique of lifting to the product space Jl/té,"r[(;jfct(ﬂ-ﬂ" x R) together with the following

special product T 1-type theorem on the product group H"” x R.

Theorem 44. Suppose that T : L>(H" x R) — L*>(H" x R) is a bounded linear operator with kernel
K([(z,u), v], [(z, u"), v']); that is,

Tf((z,u),v) = / K([(z,u), v], [z, u), v D f (&, u), v") dz' du' dv’.

H" xR

Suppose furthermore that K satisfies

/ 2P K [z, w), ], (2, ), v']) dz du =0,
/ ) )P K ([(z, u), v], [z, u'), v']) dz’du’ =0,
IH]V!
f o K ([(z. u), ], [/, '), v']) dv = 0,
R

/ W) K([(z, u), v], [z, u), v']) dv' =0
R

forall 0 <|«|, B, y,and

1 1

aqBayaqa qbf qv ro ’
|a a 8 a 81,4/ av/ K([(Z’ l/i), U]a [(Z , U )7 v ])l S A I(Z, M) o (Z/’ u/)—l|Q+|a|+2ﬁ+|a’|+2’3/ |U _ v/|1+y|+y2

z Ju v V7

forall0 < |al|, B, y, ||, B,y Then
T:LP(H"xR) — LP(H" x R) forl < p < o0,
T M4 (H x R) — MM (1" x R)  forall M and 0 < § < 1,

produc produc



1494 YONGSHENG HAN, GUOZHEN LU aND ERIC SAWYER
and, moreover, the operator norms satisfy

ITNLrinxmy < CpA and || T|| s

‘product

(" xR) < CM/,QA.

We postpone the proofs of these T 1-type theorems, and turn now to using them to complete the proof

of Theorem 41, which in turn completes the proof of Theorem 17.

5.1. Boundedness on the flag molecular space. We prove the estimates for the operators R‘y}v and Rézg\,

in Theorem 41 separately, beginning with Rgzv

5.1.1. The operator Rf}v Here we prove the boundedness of the error operator

RO f@w=cay Y, /% Va2 u)o (& u) ™) x [Wjuox £ (& u') =y x% f (2, ug)1dz dud

j>k ReR(j,k)

on the flag molecular space JI/L%:;‘S (H™), where M’ is taken sufficiently small compared to M as in the
component functions. We begin by lifting the desired inequality to the product group H" x R and reducing
matters to Theorem 44. So we begin by writing

2
RO\ f(z.u)

—0 Y ¥ [ dutcwecr™

j>k ReR(j,k)

X f Wi u)o (" u"Y ™) =W f (2, ug) o (27, u") D" u")dZ" du” d7’ du’

=Co{Z Z /%{/1}1(-1)(Z—z/,u—u’—i—Imzz_/—w)xZ,fz)(w)dw}

Jj>k ReR(j k)
« f{/ w;l)(zl — 2w —u +ImZ/Z_N _ w/)lpIEZ)(w/)
- / Wj(-l)(zgt — 7" ug —u" +Imzgz" — w’)lﬁ,?)(w’)} dw’ / FZ" u" —w', wdw",

where

f(z,u):nF(z,u):/F((z,u—w),w)dw

and F((z,u), w) € A/tgf(;jfct(H" x R). We continue with

Rsew=aY, ¥ [ [0z imez - i
>k ReR(j,k) ‘R
X {w;l)(Z/—ZN,M/—M//—FImZ/Z_N—U)/)—l//](-l)(ZQR—Z//,M%—u//+ImZ%;”_w/)}

X 1},52)(w’)F(z”, u" —w", w")dZ" du" dw” dw'dw dz' du'’.
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Now for fixed w” make the change of variable u” — u” + w” (in the sense that u” — u#” + w” and we
then rewrite & as u”’) to obtain

RS)Nf(z, u) = Cqy Z Z / //// 1/ij(-1)(z —7Zu—u' +Imzz — w)t/vfliz)(w)
>k ReR(j.k) VR
< (Y@ =2 = —w +Im 77 —w) — ¢V e — g — 1+ Imzg” — w' —w))

x Y2 W F (' u", w")dZ" du” dw" dw' dw dz' du’.

Then, making a change of variable w" — w’ —w” (in the sense of the previous change of variable), we get

Rgvf(z,u):caz Z /;i//f ‘/V/;l)(Z—Z/,u—u/+Imzz_’—w)1/Vf,§2)(w)

j>k ReR(j,k)
1 7 1 7
% {wj( )(Z/ _ Z”, u —u' +ImZ/Z// _ w/) _ wj( )(Z% _ ZN, Ug, — u’ +ImZQ7tZ// _ w/)}

X P (W —w")F (' u", w")dZ" du dw” dw' dw dz' du'.
Finally, making the change of variable w — w — w’, we get

2
RO\ f(z,w)

=CaZ Z /%f//f1}1(.1)(z—z/,u—u’+Imzz_/—w+w’)1Z,§2)(w—w/)

j>k ReR(,k)
1y ,_s "o " 1~ / (1) " " 7 M2 o "
x{Y; (@ =2 uw —u +Imzz" —w) =Y (g — 2 ug —u +Imzg” —w)ly T (w —w
x F(Z', u",w")d7" du” dw” dw'dw d7’ du’

=/§$\,F((z,u—w),w)dw,

)

where the kernel of ﬁf  1s given by

RO, w, (@ =e Y 3 [ [P mad )i - )

j>k ReR(j,k)
X{W;])(Z/—Z//, ul—u//—i-ImZ/Z_”—w/)—WJ(-l)(ZQR—Z”, I/tgg—M//+ImZ%;”—w/)}lb,iz)(w/—w”) dz’du/dw’.
Now it suffices to show that
52 M'+§
ROVF e M0 (H" x R)

product

with small norm, since we then conclude that

K2 )

with small norm. To do this we need only check that the kernel of 1?5{23\, satisfies the conditions of
Theorem 44 with small bounds.
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For this we rewrite the kernel in terms of Heisenberg group multiplication as

RO 0w, @ o= Y Y [ [P e @ =) i w = w)

j>k ReR(j.k)

< (W (@ —w)y o & u") T =9 (G ug — w0 )T (W — w') e du du’
By construction we have
Ui (@ —w) o )T =9 (G um — w0 )T ~ 27N W —wh o )T,

in the sense that the left side satisfies the same moment, size and smoothness conditions as the right side.
Thus we have

> f / Ui (@) o @ u —w)™h
R

ReR(j,k)
< A (@ = w) o @ ") = Y (g ug —w) o (& u) ) d7 du

~ Z / / 1/;;1)((z, M) ° (Z/, M/ _ w/)_l)z_Nl//J(.l)((Z/, M/ _ w/) ° (ZN, u//)—])dz/du/
R

ReR(j k)
~ 27V (@ o @ ). (5-6)

We also have
/ 1/‘}152)(11) _ w/)lpéZ)(w/ _ w//) dw' ~ w}EZ)(w _ w//)‘
So altogether we obtain
Ryl w), w), (@) w ]~ 27" Y P (@) o )™ (w —w),
Jj>k

which satisfies the hypotheses of Theorem 44 with bounds roughly 27V, since v € $(H") and
¥ @ e $(R). Here we are using the well-known fact that the partial sums ) j<m ¥ of an approximate
identity satisfy Calder6n—Zygmund kernel conditions of infinite order uniformly in M.

5.1.2. The operator RS}V. Now we turn to boundedness of the error operator

RONVfaw=ca) Y / Vi@ ) o @ ) Wk f& o u') = jax f (2o, un)ldzdud,
j<k2€Q(j)”?
M'+6
flag 5
component functions. Applying the calculation used for the term R((xgv above, we can obtain

on the flag molecular space it (H™), where M’ is taken sufficiently small compared to M as in the

1 51
R;,gvf(z’ u) = / Ré}vF((z, u—w),w)dw,



FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP 1497

where the kernel of ﬁg;v is given by

ROV(Gow), w), (@ u), w )] =ca . > fg / VPG u—u +ImzZ + )P (w - w)

j<k 2€Q(j)

X{‘/’;”(Z/—ZN, u/—u”—i-Imz/z_”—w/)—lﬁj(-l)(Zgg—z”, ugi—u”+IngRz_”—w/)}l/vf,gz)(w/—w”) d7 du' dw'.
By construction we have

(D ro ’ 7o on—1 (D ’ o on—1 —N (1) ro / noon—1
V(@ u—w)o(z,u) )=y (g, ug —w)o (2, u”) ) ~277¢, (@, u —w)o(z,u) ),

in the sense that the left side satisfies the same moment, size, and smoothness conditions as the right side.
Thus we have

> / f U@ wo @ u —w)™
2

2eQ())
x (@ = w') o & u") T = Y (G ug = w0 (7w T d2 dud

~ > / / Ui (@w e @' —w) ™2 My —w o (7w de du!
2eQ() 7

~ 2Ny (@ o &) ),
‘We also have

f &E)(w _ w/)WIEZ)(w/ —w"ydw' ~ 1#;52)(’0 —w").
So altogether we obtain

Ry (o), w) (@ u"), w ]~ 270 3 i (w0 ) THu (w = w"),
Jj<k

which satisfies the hypotheses of Theorem 44 with bounds roughly 2=V, since ¥ € $(H") and
v? e P(R).

It now follows that the kernels of both ﬁélgv and I?;z}\, satisfy the hypotheses of Theorem 44 with
bounds roughly 27V, and we conclude that

” @)

F <27M|F
N IIM(;L@C[(H"X@N [ EN| g5

‘product

xRy L= 1,2.

Thus we obtain, for eachi =1, 2,
0 ) N =27V
”RaaNf”Jf/tgi;‘S(H") = flznan ||Ra'NF||M3/£r/>:lruit(HnXR) S 2 fI:rg:F ” FHMS?;L%:((H"XR) =2 ”f”J%gIﬂ;s(H”)’
and taking N sufficiently large completes the proof of the molecular estimates in (5-4).

5.1.3. The L? estimates. Finally, we turn to proving the L? estimates in (5-4) for 1 < p < oo,

1 2
1Ra fllremy + IRy Fllogmy + IR F Lo < S1F Lo g)-
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The estimates for R((xlgv and Rf;\, follow from the estimates established above for the kernels of the lifted

operators ﬁfxlg\, and 1?523\, Indeed, for f € L?(H"), we can use a result in [Miiller et al. 1995] to find

FelP(H"xR) with f =xnF and || FllLr@rxry < Cl| fllLr ). Then we have
IRy Flleraw < IRy Fllizraosry S27VIFlraesry < C27V I Fllzogm.

In similar fashion, the kernel of the lifted operator R, can be shown to satisfy product kernel estimates
with constant A that is a multiple of 1 —27%, and so we obtain from Theorem 44 that

IR Fllo@rsmy S (1= 27 I Fll o sy,
and hence, with f = F as above,
IRs fllLr@ry < IR Fllranxmy S (1 =27 Fllor@nxmy < CA =27 fllr @)

If we now take 0 < o < 1 sufficiently small, and then N sufficiently large, we obtain the L? estimates
in (5-4). This concludes our proof of Theorem 41.

5.2. The T1-type theorems. The proof of Theorem 43 in the one-parameter case follows the argument
in [Gilbert et al. 2002], where the same result is proved in the Euclidean setting. For this we will need an
extension to the Heisenberg group of the generalization of Meyer’s lemma by Torres [1991].

Lemma 45. Suppose T : L?>(H") — L*(H") is a bounded linear operator with kernel K ((z, u), (z’, u'))
satisfying the kernel conditions in the hypotheses of Theorem 43. Suppose that M > 0 and that
T((z, u) " F)Y = 0 for all multi-indices («”, B") with || + 28" < M. Then, for any two points
(z,u), (Z",u") € H" and any smooth ¢ on H" with compact support, and any multi-index («’, ') with
la’| +28" = M’ < M, we have the identity
ag/af/Tga(Z, u)_ag/af/T(p(Z//’ u”

= / 020l K (z,w), (2, u))

X{WC W= Y a3 e (@ u)ole, )TN IO 'y de dud
|a//|+2l3//§M/
—~ / 3 0f K (2", u"), (2, u'))

x {(p(zl, u/)_ Z Ca//,ﬂ//ag”af”(/)(z//, u [(Z/, u/)o(ZN, u” —1](04//,/3//) é(Z/, u/) dz/du/
|(XNH>2}3”SM/

+f{ag’af’1<((z, u), (2, u) =3¢ 98 K (", u"), (2, u"))}

X {go(z’, W)= Y carpd? 3 @ UG u)o @ " l]<‘)f’“/~“”)}(1 —0(z,u'))dZ du’
|a//|+2‘3//§M/
—|— Z {C(x”,ﬂ”ag 85 (p(Z, I,[)— Z C(X’”,ﬂ”’ag +o 83,3 +2/3
|a//|+2’6//§M/ |0[W|+2,3W§M/—\O(”|—2,3”
x @z, u")(z, u)o(Z", u" ll(amﬁm)}T(w/,,s”x(a/,ﬁ/)é(z, u).
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The proof of this lemma follows verbatim that of [Torres 1991, Lemma 3.1.22, page 62].
With this result in hand, the proof of Theorem 43 follows closely the argument in the Euclidean case
in [Gilbert et al. 2002], and the reader can find complete details in [Han et al. 2012].

Proof of Theorem 44. To prove the product version we note that the above one-parameter proof extends
virtually verbatim to establish a vector-valued version in a Banach space. Indeed, all the main tools, such
as integration, differentiation, and Taylor’s formula, carry over to the Banach space setting. First we
will define the X-valued molecular space JM+3-MuM2(7: X) and then we will give the extension of
Theorem 43 to this space.

Definition 46. Let X be a Banach space with norm |x| for x € X. Let M, M|, M, € N be positive
integers, 0 < § < 1, and let Q = 2n 4 2 denote the homogeneous dimension of H". The one-parameter
molecular space MM +3MLM2(7: X)) consists of all X-valued functions f : H" — X satisfying the
moment conditions

22uf f(z,u)dzdu =0 forall |a|+2|8| < M,
[H])‘l

and such that there is a nonnegative constant A satisfying the differential inequalities

1
A (14 |z|? 4 |u|)(@+M+al+21B1+6)/2

10202 f (z, w)lx < for all [a| +2|8] < M,
and

I(z,u) o (z/,u)~1?

(1 + |Z|2+ |M|)(Q+M+8+Mz+28)/2

1020F f (z,u) — 820 f (', u))x < A
for all |a| +2|8] = My and |(z, u) o (/)" < L1+ |2+ ul) .

We have the following extension of Theorem 43 to X-valued functions for an arbitrary Banach space X.

Theorem 47. Suppose T : L>(H") — L*(H") is a bounded linear operator with kernel K ((z, u), (z', u'));
that is,

17w = [ K@, G G ddal, e L.
HY!
Suppose furthermore that K satisfies

/ Z2uPK((z, ), (z',u"))dzdu =0,

) W)PK((z, ), (2, u))dZ du' =0
[H])l

forall 0 < |«|, B, and

1
|(Z, u) o (Z/, u/)—1|Q+|a\+2ﬂ+\a’|+2ﬁ/

10970% 90 K ((z,w), (, )| S

zu "7

forall0 < |a|, B, |&'|, B. For [ :H" — X, we define T f by the Banach-space-valued integrals

Tf(zu)= f Kz w), (s u)) f (s 'y d2' .
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Then
T MMM X) — MM HH: X)
is bounded for all M' and 0 < § < 1. Moreover, the operator norm satisfies
”T”./MM’*‘S([I-I]";X) < CM’,S-
Proof. We simply repeat the scalar proof of Theorem 43 but replace |97 37 f(z,u)| by |37 af fz,w|x
throughout and use Banach space analogues of Taylor’s theorem and the identities of [Torres 1991]. [J

Now we can quickly finish the proof of Theorem 44. We take X = M +3(R) and note that the
identification of product and iterated molecular spaces, namely,

./‘/LM/+8 t(I]_I]n % R) — ./‘/LM/+8 (Hn, MM/+5(R)) — ./‘/l,M/—HS([H]n; X), (5_7)

produc

follows immediately from the definitions of the spaces involved; see Definitions 42 and 10 and the
definition of MM+ M-M2(R) which we recall here.

Definition 48. Let M € N be a positive integer and 0 < § < 1. The one-parameter molecular space
MMH3MLM2 (RY consists of all functions f(v) on R satisfying the moment conditions

/vyf(v)dvzo for all 2y < M,
R

and such that there is a nonnegative constant A satisfying the differential inequalities

1
(1 + |v|)l+M+y+8

0y f(w)| <A for all 2y < M,
lv—v'|°

M M /
|9, 2fw) - 9y f)l = A(l + |U|)1+(3/2)M+}/+28

for all [v —v'| < (1 + |v)).

For f € MM D ((H" x R), denote the realization of f as an X-valued map by f CHE — M (R).

produc produc

Then, from (5-7) and Theorem 47, we have

”Tf”Mg/{;Ifa(H"XR) = ”Tf”MM’Jré(I]—ﬂn;MM’Jr&([R)) = C”f”MMUrS(Hn;MMUrS(R)) = C||f||MM’+5

product

(H"xR)*

This completes the proof of Theorem 44. U
5.3. Orthogonality estimates and the proof of the Plancherel-Pélya inequalities. We will need almost-
orthogonality estimates in order to prove both the Plancherel-Pdlya inequalities and the boundedness

of flag singular integrals on Hé’ag(l]-l]”). Recall from (2-2) the definition of the components v, ; of the
continuous decomposition of the identity adapted to the Heisenberg group:

vz, u) =9V v @(z,u) =/ vV, u—v)Yy@@)dv, (z,u)eC" xR,
R

and

Vs W =v; 0y P, “):/ vz, u—v)‘//s(z)(v)dv:/ f_Z"_QW(1)<E, . = U)S_le)(B) dv.
R R t t s
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Here vV € $(H") is as in Theorem 2, and ¥® € ¥(R) satisfies
f O =
0

for all n € R\{0}, along with the moment conditions

/ ZuPy Dz, u)dzdu =0, |a|+2B<M,

fvw@)w)dv:o, y >0,
R

where M may be fixed arbitrarily large.
In particular, the collection of component functions {y; s} s~0 satisfies

s =1 .
1 — Z u—v
I( )(Z9 M) n= zw(l)( tz )’

t
@y — =1V
WS (v) =S W (S)’
vV, @) e MM (H" x R).

product

(5-8)

Of course the conditions in (5-8) imply that v, ; € J(/Lﬁﬁg(l]-l]”) for all ¢, s > 0, but (5-8) also contains
the implicit dilation information that cannot be expressed solely in terms of v; ;. Motivated by these
considerations we make the following definition.

Definition 49. To each function ¥ € Mgf;iict([]—[]” x R) we associate a collection of product dilations
{\pt,s}t,s>0 defined by

T u\v
/ u,v) =12y ,
l‘&(Z ) P t2 P

and a collection of component functions {{; s}; s~ defined by

u—v v
Vs (2, u):nwt,xz,u):/t‘z"‘zs‘l\v((? 2 )—) dv, t.s>0.
R t t N

M+6
product

we have the almost-orthogonality estimates given below. We use *y» to denote convolution on the

Given two functions in A (H" x R) and their corresponding collections of component functions

Heisenberg group H", and s «g to denote convolution on the product group H" x R. From Lemma 12
we obtain that 7 intertwines these two convolutions, which we record here.

Lemma 50. For {5, Yy 5, ¢p s, O ¢ as above, we have
wr,s K[ ¢t/,s’ = n{\pt,s KH1 xR q)t’,s’}- (5'9)

We now give the orthogonality estimates, first in the product case and then in the flag case. The product
case in Lemma 51 will prove crucial in establishing Theorem 41 for the flag molecular space JI/LM B (HM).

For convenience, we give the almost orthogonal estimates only for the case Mi%&itZM 2M (I]-I]” x R).
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4AM+-2,2M 2M
product

Lemma 51. Suppose ¥, ® € M
only on M such that

(H" x R). Then there exists a constant C = C (M) depending

|\IJZ,S *He xR CD[’,S/((Z9 M), U)|
<l, t/>2M+l ( s S/)M+1 (t Vi t/)2(4M+2)/2 (S V. S/)4M+2
<c

J— /\ J— .
vt (V1) 222 + |u]) QHMFD]2 (5 5/ 1 |v]) [ FH4M+2

s’ s

(5-10)
The proof of Lemma 51 uses a standard orthogonality argument on the integral

Vi s xtrxr Pr s (2, w), v) = / W (2 u)o (2 u) ™ v =)y o (@ u'), V) dZ du' dv', (5-11)
H" xR
and we refer the reader to [Han et al. 2012] for details.
There are corresponding orthogonality estimates for component functions on H".

Lemma 52. Suppose ¥, d € MM (H® x R) and let {Vr.5}e.s=0 and {¢; .5}t >0 be the associated

product
collections of component functions as defined in (2-7) above. Then there exists a constant C = C(M)

depending only on M such that, if ¢ Vt')? < sV s, then

t \NMrs o \M (tvit)yM (s vsHM
V1,5 b Prr (2, )] SC(;/\?> (;/\?> X (12T (s s/ ) (5-12)
and if (¢ Vi) >s Vs, then
t \Mrs o s\M (tv 1M (tvi)M
[We,s % @ 5 (2, 1)l SC(;/\7) (;/\?) X N D (1 el (5-13)

Roughly speaking, v, s * ¢y (z, u) satisfies the product multiparameter almost-orthogonality when
(t vt")? < s Vs and the one-parameter almost-orthogonality when (1 v ¢/)? > s Vv s’

Proof of Lemma 52. We will use Lemma 50 to pass from the orthogonality estimates for the product
dilations {¥; }; =0 and {®; ;}; s~0 in Lemma 51 to the estimates for the component functions {v; s} s>0
and {¢; s};.s>0 in Lemma 52.

From (5-10) and (5-9) we obtain

|wt,s * ¢I’,s’(Z’ M)|

/ \Ill,s *Hr xR q)l/,s/((zs u— U), U) dv
R

IN\2M N\NM naM N2M
SC(LAI_) (i//\s_) X/ v (s vs) dv. (5-14)
R

1t s s ((t V) 24|z2 + Ju — v])rH1H2M (g v 5/ |v]) 124

Now we consider four cases separately.
Case 1: (tV1')? <sVvs and |u| > s Vvs'. In this case we use the fact that

(svs)y™ 1 1
(s V s+ )M T s v (14+]v/(s Vv s')|)1+2M

(5-15)
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has integral roughly 1, with essential support [—s V s/, s V 5'], to obtain

/ (tvi)M (s V)M "
R (1 V)2 42| + [u — v)rTIH2M (5 v s/ |u]) 1+2M
N (tVv1)M (tv )M (tv1)M
TV P2 A )RS (V2 2Py (v )2+ [u]) M
(tvi)M (s vsHM

T (V) FZDEM (s v s 4 |u]) M
Plugging this estimate into the right side of (5-14) leads to the correct product estimate (5-12) for this case.

Case 2: (tV1')? <sVvs' and |u| <sVs'. In this case we bound the left side of (5-15) by 1/(s VV s') to
obtain

/ (l Vi t/)4M (S V. s/)2M J
v
R (1 V)22 + [u — o) T1H2M (5 v s/4|]) 1424
1 tv )M
< / (tvi) v
svs' Jg (V1) +]z]? + Ju — ]y ti+2M
na4M "n2M nM
< 1 (tvt) - (rvt) (svs)

~ eV ((t\/t/)2—|—|z|2)"+2M — ((t\/t’)—|—|z|)2”+2M (S Vs + |u|)1+M'

Plugging this estimate into the right side of (5-14) again leads to the correct product estimate (5-12) for
this case.

Case 3: (t V)2 >sVvs and |u| < (t vt')%. In this case we have

(t v 1)M (sVvs)M
[I;i (e V)2 ]z + Ju — o) TIF2M (5 v 5/ 4[] 121
< (tvit)M < (tVv1)M (tVv1)M
(V) |z HIERM Y (v )2 |2 )M (v )2 u ) M
(tv )M (tv )M

(t vV EHZD2H2M (0 v 1/ ul)2H2M

Plugging this estimate into the right side of (5-14) leads to the correct one-parameter estimate (5-13) for
this case.

Case 4: (t VvV 1')? > sV s and |u| > (t v t')%. In this case we have

/ (t Vv 1)M (svs)M "
R (1 V)2 4[z2)% + Ju — o)1 TIF2M (5 v 574 |u]) 121
(t Vv 1)M < (tVv1)M (tVv1)M
(V) |z A )M (v )22 M (v )2 |u]) M
(t V1M (tvt)M

TVt |z M (t V 1+ /)22
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Plugging this estimate into the right side of (5-14) again leads to the correct one-parameter esti-
mate (5-13). O

5.3.1. Proof of the Plancherel-Pdélya inequalities. Before we prove the Plancherel-Pdlya-type inequality
in Theorem 19, we first prove the following lemma. We will often use the notation (x;, y;) in place of
(z1,uy) for the center of the dyadic rectangle I x J in H"; that is, we write x in place of z, and y in
place of u.

Lemma 53. Let I x J and I' x J' be dyadic rectangles in H" such that
e =277"N gy =27"Ngpo kN gy =2"T"N and 0(J))=27""N y27KN

Thus, for any (u, v) and (u*, v*) in H", we have, when j A j' >k ANk,

2—\j—j’\L1—\k—k/lez—(jAj/)Kl—(kAk/)Kz|[/| 1|

ST 7 . ik Xy, ’
2(2—1/\1 +|u_xl,|)2n+K1(2—k/\k +|v—y1/|)1+K2 |¢J’k f G, yol

r,Jj
’ 1

oyl
< Ci(N,1, j, j' k, k)2 =0k 2—"‘—k"L2{Ms[<Z Y gy fxr, yf/>|xj/x,/) “ (u*, v*),

Jor
and when j A j' <k ANk,

2 li=J L= k=K |Lap=GADKi=GAID K 1)1 1|

IZJ/ @I 4 u— PR @I T [y =y ik 120 e L )

1
N
< Co(N, 7, j, ' ke, k)27l T kg k=KL o {M[(Z > g £, yw)mw) “ u*, v%),

Jr

where M is the Hardy-Littlewood maximal function on H", My is the strong maximal function on H" as
defined in (1-1), max{2n/(2n+ K1), 1/(1 + K3)} < r and

Cl(N p J j/ k k/) :2(1/r71)N(2n+1) .2[2n(j/\j’7j’)+(k/\k’fk’)](lfl/r)
Co(N. 7, j. j' ke, k) = 20/r=DNQrtD) oG] =0+ GAT =] MOI=1/1).

Proof. We set

_ /-, N _j/_N |M—)C]/|

o i |U—yJ’|
B()::J/:E(J/)ZZ SN 4 ok N,wfl )

where x;» € I’ and y;» € J', and where, for £ > 1,i > 1,

u—x
| I’|<25

_ ’. N _n—j—N ~t—1
Ag_{l.ﬂ(l)_2 2T <SS }

T 1 s |v—yj/| :
B,~={J’:€(J’)=2 JN pomkeN l<W52’ :
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We first consider the case when j A j' > k A K/, and let

r= [2n(j/\j’—j’)—k(k/\k/—k’)](l - %)
Then

2—(j/\j/)K1—(kAk’)K2|I/| |]/|

1/2:\1/ (2_j/\j/ + |L{ _x1,|)2ﬂ+K1(2—k/\k/ n |v _yj/|)1+K2 . |¢j”k/ * f(-x]/v )’J')l

< Z 2*@(2n+K1)2*1'(1+K2)2*N(2n+1)2(j/\j/*j')n+(k/\k'*k’)m Z |¢j’,k’ * f(xp, yp)l

£,i>0 1'eAy,J €B;
1/r
=y 2—£(n+K1)2—i(m+K2)2—N(n+m)2(jAj’—j’)2n+(k/\k’—k’)( > gy flxr yJ,)Dr)
€,i=0 I'eA,J'eB;

_ Z A —L@n+K D) =i (1+K2) =N Q@n+1) 5 (G Aj = 2n+EKAK —K)

£,i>0 . . 1/r
X(f LAY |¢j/,k’*f(x1/s)’J’)|rXI/XJ’)

FGA@,J’EB,’
< Z 7 —L@n+K1=2n/r)=i(14K2—1/r)+(1/r—=DN 2n+1)

0,i>0 1/r
X21<MS< > |¢j’,k’*f(x1uy/’)I’XI/XJ)(u*,v*))

I’EA[,J/GBI‘
1/r
<Ci(N,r, j.k, j/ k) (MS<Z |6 i % f e, )’J’)|FXI’XJ’)(M*, v*))
rJ
The last inequality follows from the assumption that r > max{2n/(2n + K1), 1/(1 + K>)}, which can be
achieved by choosing K, K, large enough. The second inequality can be proved similarly. ]

We are now ready to give the proof of the Plancherel-Pdlya inequality.

Proof of Theorem 19. By Theorem 17, f € J(/Lﬁg‘s(ﬂ-ﬂ")’ can be represented by

F)y =3I N NI 1y (o) o Gepr i) ™) @i # ) ).
j/ k/ J/ ]/
We write

Wik x ) =D DS ST | Wk # By () 0 ey y0) ™ N v) (b )G, yir).
j/ k/ J/ I/
By the almost-orthogonality estimates in Lemma 52, and by choosing t =27/, s =27%, ' =27/ /,
s’ =27 and for any given positive integers L1, Ly, K1, K2, we have, if j A j' >k A K/,
Wk by ()0 Gy y) ™)), v)
2—|j—j’\L|—|k—k’|L22—(jAj/)K1—(kAk/)K2|]/| 17|
< — 7 ik k ) ")s
= @I = xp PR QR gy ek (P S )]
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and when j A j' <k Ak, we have

Wik % bjrae () 0 ey yu) ™) (e, )]
2= lj=J'\L1— k=K |L2p—(GAJYK1=(jAj) K2 Valrd
= (2—j/\j/ + |M —X[/|)2n+K1 (2—jAj/ + |U — y]/|)1+K2 |¢j”k1 * f(XI/, yj/)|.

Using Lemma 53, for any u,u* € I, xp € I', v, v* € J, and y;» € J/, we have

[V f (u, )]

o, ) r 1/r
<G Y 2_J_JL"2_|k_kLZX{Ms[(zz|¢j/,k/*f(xz/,YJ’)le/Xl)]} (u*, v*)

JILK A =RAK Jr

., , r 1/r
+C Y 2"L"Z'kkL2><{M[(ZZ|¢jzk'*f(xf,yw)leXr)]} (u*, v*)

JK A <kAK Jor

i— i’ / r 1/r
<C Zz—U—J ILy | 2—|k—k |L> % {MS|:<Z Z |¢j’,k’ " f(xl’, yJ’)|XJ’XI’) ]} (M*, U*),

j,,k/ J’ I

where M is the Hardy-Littlewood maximal function on H”, My is the strong maximal function on H",
and max{2n/(2n+ K1), 1/(1 4+ Ky)} <r < p.
Applying Holder’s inequality and summing over j, k, I, J yields

% ry2/r %
{ZZ sup |wj,k*f<u,v>|2x,xj} sC{Z{Ms<Z |¢j’,k’*f(xl’,)’J’)|X1’XJ’)} }

jk 1J uel,vel K 1

Since x;/ and y, are arbitrary points in /" and J’, respectively, we have

% ry2/r %
{ZZ sup ij,k*f(u,v)lzxmj} sC{Z{Ms<232;|¢,-/,kf*f(u,v>|foxJ/)} }

jk 1. welhvel K sy

and hence, by the Fefferman—Stein vector-valued maximal function inequality [Fefferman and Stein 1982]
with r < p, we get

H{ZZZZsugm,k*ﬂu,v>|2x,xj}2 ECH{ZZZZinlf,|¢j’,k/*f(u,v)|2X1/X1/}2
;e T T ’ e

j/ k' J’ I UGJ/ P

This completes the proof of Theorem 19. ]

6. Boundedness of flag singular integrals

As a consequence of Theorem 19, it is easy to see that the Hardy space Héjag is independent of the choice
of the functions . Moreover, we have the following characterization of Hé’ag using the wavelet norm.
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Proposition 54. Let 0 < p < 1. Then we have

1 U, ~ H { YN ik £, yJ>|2x,<x)xJ<y)}2
i k J 1

where j, k, V, x1, X7, X1, Y are as in Theorem 19.

’
p

Before we give the proof of the boundedness of flag singular integrals on H! , we demonstrate several

flag®
: p
properties of Hﬂag.

Proposition 55. mgggﬁ (H") is dense in Hﬁ’;g(H") for M large enough.

Proof. Suppose f € Hﬂpag, andset W ={(j,k, I, J):|j|<L,lk|<M,IxJ C B(,r)}, where I x J is
a dyadic rectangle in H” with £(1) =27/~ and £(J) =27%" 4277~ and where B(0, r) is the ball
in H" centered at the origin with radius r. It is easy to see that

S W@y o Cer y) Dk £ ya)
(j,k,1,J)eW

J‘/LM+8

is a test function in Jlg ag

(H™) for any fixed L, M, r. To obtain the proposition, it suffices to prove
> NG y) o (e y) ™D Wju* fGer y0)

Gk 1, J)eWe
tends to zero in the Héjag
in the proof of Theorem 19. In fact, repeating the argument in Theorem 19 yields

norm as L, M, r tend to infinity. This follows from an argument similar to that

> TG y) o (e y )™ Wj* F s y0)

(j,k,l,])eWL‘ Hﬂpag
2
SCH Do Wax fr o)l XIXJ} :
(k1 J)ewe P
where the last term tends to zero as L, M, r tend to infinity whenever f € Hé’a . 0

As a consequence of Proposition 55, LZ(H") N Hffag(l]-l]”) is dense in Hé;g([]-l]”). Furthermore, we have
the following theorem.

Theorem 56. If f € L2(H") N Hé”ag([}-ﬂ"), 0 < p <1, then f € LP(H") and there is a constant C, > 0

which is independent of the L* norm of f such that
Ay = ClLf g, -

To prove Theorem 56, we need a discrete Calderén reproducing formula on L?(H"). To be more
precise, take ¢! € C5°(H") as in Theorem 2 with

¢ (2, u)z%uPdzdu =0 forall o, B satisfying 0 < || < My, 0 < |B] < Mo,
[H]ﬂ



1508 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

and take ¢ € Co° (R) with
/ ¢ )z’ dv=0 forall 0 <|y| < My,
R

and Y, |6 (27%&,)% = 1 for all & € R\{0}.
Furthermore, we may assume that ¢’ and ¢® are radial functions and supported in the unit balls of
H" and R, respectively. Set

btz = [ 91— 00 @) do,
R

By Theorem 2 we have the following continuous version of the Calderén reproducing formula on L?: for
f e L>(HY,

f@w =Y duxdu*fz u).
ik

For our purposes, we need a discrete version of the above reproducing formula.

Theorem 57. There exist functions ¢ ik and an operator Ty, U such that

FEN=D Y3 16 y) 0 Gery y) ™ Djax (T () (xr ya),
j k J 1

J

where the functions ggjk((x, y)o (xg, yj)_l) satisfy the conditions in Theorem 17 with oy, B1, y1, N, M
depending on My. Moreover, T1\7] is bounded on both L*(H") and Hlfag(l]-l]”), and the series converges
in L>(H").

Remark 58. The difference between Theorems 57 and 17 is that the ¢ ik in Theorem 57 have compact
support. The price we pay here is that ¢ ik only satisfies moment conditions of finite order, unlike in
Theorem 17, where moment conditions of infinite order are satisfied. Moreover, the formula in Theorem 57

only holds on L?(H") while the formula in Theorem 17 holds in both the test function space ,/(/Lﬁ’gg*‘s and
M8y
).

its dual space (JI/Lﬂalg

Proof of Theorem 57. Following the proof of Theorem 17, we have

[z ) = ZZZZUJ f1¢j,k<<z, u) o (u, v)”") du dv](qs,-,k*f)(x[, YD +Rf(x, ),
j kT I

where I, J, j, k, and R are as in Theorem 17.
We need the following lemma to handle the remainder term Q.

Lemma 59. Ler 0 < p < 1. Then the operator R is bounded on L*(H") and H,fag([l-ﬂ") whenever My is

chosen to be a large positive integer. Moreover, there exists a constant C > 0 such that

1% fll2 < C27NNfll2 and RSNy, awy < C27N N F g, o)
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Proof. Following the proofs of Theorems 17 and 19 and using the wavelet Calderén reproducing formula
for f € L>(H"), we have

lgfag (Rl
Zry
P>

J

S W *%f)lzxnu}z
1

p

=

’

p

IR0 () o ey y) ™) - W * f (e, ym)|2x[xf}
Ijk,J.I

where j, k, ¥, x1, xJ, X1, ys are as in Theorem 19.

Claim. We have

Wik xR (-, ) 0 (xpry y1) ")) (2, )]

<C2—N2—|j—j’|1<2—|k—k'|l<f _ .
. R QUM [z — x| i — v — y PRI -G [y K

2—(injHK 7 —(kAK)K

where, for simplicity, we have chosen

2n 1
Ll_L2_K1—K2—K<M0, max<2n+K,1_|_—K><pa

and My is chosen to be a larger integer later.

Assuming the claim for the moment, we can repeat an argument used in Lemma 53, and then use
Theorem 19 to obtain

l1gnag (R NI, < C27Y

rq2/r %
{Z [MS(ZZW/",k'*f(XI’,YJ’)|XJ’X1’>] }

j/ k/ J/ I/

{Z Z Z Z [V jr ke f(xr, J’J’)lzXI’XJ/}Z

j/ k/ J/ I/

p

<c27VN

-N
=< C2 ”f”[-[é’ag(ﬂ.nn)-
P

It is clear that the above estimates continue to hold when p is replaced by 2. This completes the proof of
Lemma 59 modulo the claim.
In order to prove the claim made above, we note that Theorem 41 shows that the functions

QR(‘ﬁj/,k/(( “,)o(xp, YJ’)_I))(Z, u)
are flag molecules. Then the claim follows from Lemma 53, and this completes the proof of Lemma 59. [

We now return to the proof of Theorem 57. Let (Ty)' = Zfz] %!, where

1
Tnf = ; ; ;;(m f/ flqs,-,k((x, o (s v)Y) du dv)m T1@ % F)Cxrs y0).
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Lemma 59 shows that if NV is large enough, then both 7 and (Ty)~" are bounded on LZ(H")N Hiﬁg(l]-l]”).
Hence, we can get the reproducing formula

=Y 33 Y I a((x, y)y o (xr, ) Dja* (T ), y0),
j ok J I

where the functions $ ik((x, y)o(xy,y 7~ are flag molecules, and the series converges in L?(H™). This
completes the proof of Theorem 57. (I

As a consequence of Theorem 57, we obtain the following corollary.

Corollary 60. If f € L*(H") N Hy, ,(H") and 0 < p < 1, then

£ g, ~ H {Z YN g (T yJ>|2xI<z>xJ<u)}2
i ok T I

where the constants are independent of the L* norm of f.

p

Proof. Note that if f € L>(H"), we can apply the Calderén reproducing formula in Theorem 57 and then
repeat the proof of Theorem 19. We leave the details to the reader. (Il

We now start the proof of Theorem 56. We define a square function by
1
3

2z u) = {Z DN ik (T ()G y1>|2xl<z>xj<u)}
j kT I

where the ¢, are as in Theorem 57. By Corollary 60, for f € L>(H"H N Hé’ag(l]-l]”), we have
1§ ey = CULF g ay-
To complete the proof of Theorem 56, let f € L>(H") N Hifag([l-[ln). Set
Qi ={(z.u) e H" 1 g(f)(z, u) > 2'}.

Let
B ={(, k1, D) | x DN > T x T|, | x )N Qyr] < 51 x T},

where I x J are rectangles in H” with side lengths £(/) =27/~ and £(J) =27%V 4+27/=N_ Since
f € L*(H"), the discrete Calderén reproducing formula in Theorem 57 gives

F@w=> 33" "¢ uyo(xr. y) NI Iju Ty (I yo)

k J 1

J
=Y > Uiz w) o (xr, y) Vi (T () Cern ya),s

ik, 1,J)eB;

where the series converges rapidly in L? norm, and hence almost everywhere.
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Claim. We have

p .
< C2'P|Q|,
p

> Iz w) o Gpy y) Vi (Ty () (xr. ys)
ik, 1, 0)EB;
which together with the fact that 0 < p <1 yields

~ p
(= D HIIGjx(zw) o (xr, y) ™ Njax (T () e, y0)

i Nk, D)e®;

<C Y 2Pl < CIENIL < CIAIYy -
i

p

flag

To obtain the claim, note that ¢1 and v are radial functions supported in unit balls in H” and R,
respectively. Hence, if (j, k, I, J) € B;, then ¢ ((z, u) o (x4, y/)_l) is supported in

Qi ={(z. w) : Ms(xe,) . 1) > 1i5 ).

Thus, by Holder’s inequality,

p
S 1N w0 Gepy y) s (T () (. y0)
(j,k,1,J)ERB; V4
p
ISP DT TN w) o Ger y) Dk (T ()G y0)
(j,k,1,J)EB; 2
By duality, for all g € L? with ||g|l» < 1,
< > |J||1|¢3j,k((z,u)o(xl,yJ)—1>¢j,k*(TN1<f))<x1,yJ),g>‘
(j,k,1,J)EB;
= D WI$jk*gr. y)bja* Ty () ys)
(j,k,1,J)EB;
1 1
2 - 2
§C< > |I||J||¢j,k*<TN1<f>>(x1,yJ>|2)-( > |I||J||¢j,k*g<x1,y1)|2).
(j,k,1,J)eB; (j,k,1,J)eB;
Since

1 1

( 3 |1||J||<5,-,k*g<x1,y1>|2>2s( 3 |1||J|<Ms<¢3j,k*g><z,u)m(z)m(u))z)z

(k. 1, J)eR; (k. 1, J)eR;

IA

(S | Ms@ux X wdzdw) = Clgl,
I Ccr JR
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the claim now follows from the fact that |$2;| < C|€2;| and the estimate

C2%19) > f~ PN @wdzduz Y g (T (NG y)IPIU x )N G\
Qi\Qi+1 .k, I,J)ER;

S NN Ty ()@ v,

(j.k,1,J)eR;

=

N —

where the fact that [(I x J) N S’Z-\Q,-Jrﬂ > %|I x J| when (j, k, I, J) € B; is used in the last inequality.
This finishes the proof of Theorem 56.
As a consequence of Theorem 56, we have the following corollary.

Corollary 61. Hj, (H") is a subspace of L' (H").

Proof. Given f € Hf}ag([}-ﬂ”), by Proposition 55, there is a sequence { f;,} such that f, € L*>(H")N Hf}ag([l-[l”)
and f, converges to f in the norm of Hﬂlag(l]-l]”). By Theorem 56, f, converges to g in L'(H") for some
g € L'(H"). Therefore, f = g in (m{{gfs)/. O

Proof of Theorem 22. We assume that K is the kernel of T. Applying the discrete Calderén reproducing
formula in Theorem 57 implies that, for f € L>(H"H) N Hépag(l]-ﬂ”),

H {Z S lgjuk K 5 £, u)|2x,<x>x/<y>}2

-l

jk 1.7

p
SO NN 1gjacx K xjrie () 0 (xpn )~z w)

j’,k’ 1,J .
X @jw* (Ty (), yyr)

) 1

XI()C)XJ()’)}2

’

p

where the discrete Calderdn reproducing formula in L2(H") is used.
Note that the ¢, are dilations of bump functions, and by estimates similar to those in (5-10), one can
easily check that

Gjk* K xdj i ((-,)o(xp, ) Dz, u)l

<c2—'i—f’K2—'k—k/'K/ — . ; dv,
- g (20N 4|z —xp | fu— v — yp 2K QA K

2—(niHK 9~ (knk)K

where K depends on M given in Theorem 22, and My is chosen large enough.
Repeating an argument similar to that in the proof of Theorem 19, together with Corollary 60, we obtain

ry2/r
1T 1Nl < CH {Z Z{Ms (Z D i # (T () s yw)leXw) } (2, u)}
j/ k/

J

= CH {Z Z Z Z Bk % (T (PN Y P (30) X (x) }2

j/ k' J’ I

2

P

=< Cllf g,
p

where the last inequality follows from Corollary 60.
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Since LZ(H")N ﬂag(l]-l]") is dense in ﬂag([H]”) T can be extended to a bounded operator on ﬂag(I]-I]")
and this ends the proof of Theorem 22. Il

Proof of Theorem 23. We note that Hffag N L? is dense in Htfag, so we only have to obtain the required

inequality for f € Hé’ag N L2, Thus Theorem 23 follows immediately from Theorems 22 and 56. O

7. Duality of Hardy spaces Hé;g

Chang and Fefferman [1985] established that the dual space of H'(H") is BMO(H") by using the bi-
Hilbert transform, and, consequently, their method is not directly applicable to the implicit two-parameter
ﬂag([I-I]”) for all
0 < p <1, we proceed differently, and first prove Theorem 30, the Plancherel-P6lya inequalities for the
Carleson space CMOﬁag. This theorem implies that the function space CMOé’alg is well defined.

structure associated to flag singular integrals. In order to deal with the duality theory of

Proof of Theorem 30. The idea of the proof of this theorem is, as in the proof of Theorem 19, to use the
wavelet Calderén reproducing formula and the almost-orthogonality estimate. For convenience, we prove
Theorem 30 for the smallest Heisenberg group H' = C x R. However, it will be clear from the proof
that its extension to general H" is straightforward. Moreover, to simplify notation, we denote f; = fr,
where R =1 x J C H!, ¢(I) =277V, ¢(J) =27%N 4 27/=N [ is a dyadic cube in R? and J is an
interval in R. Here N is the same as in Theorem 17. We also denote by dist(/, I") the distance between
intervals I and I’,
Sk =sup [yg* f, v)I*,  Te = inf lpg * f (u, v)|*,

355 veJ

With this notation, we can rewrite the wavelet Calderén reproducing formula in Theorem 17 as

fwy= " UIJIgr(z, w)pr* f(x1, y1),
R=IxJ
where the sum runs over all rectangles R =1 x J. Let

R=0IxJ, |I'l=27/"N |J|=277"Nyo k=N,

Applying the above wavelet Calderén reproducing formula and the almost-orthogonality estimates in
Section 5.3 yields, for all (u, v) € R,

IR NEAS
* =C a
Yk * f(u, v)]? R/Z <|1/| 1l PARENVS
L 1'* EAN (1T g f Cerrs yo)
(14 1t = xp DT (17 + o =y HOIFED e

3 <|I| |1’|)L(|J| |J/|)
/ /\ / /\
L NI ) N
1% )X

J <k
X
(1] + = xp DA (1| + v —

a1 119w £ v P
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where K, L are any positive integers which can be chosen such that L, K > 2/p — 1 (for general H", K
can be chosen greater than (2n 4 2)(2/p — 1)), the constant C depends only on K, L, and the functions
Y and ¢, where x; and y;/, are any fixed points in /" and J', respectively.

Adding up over R C €2, we obtain

S OHNIISe=C Y Y NI Ir(R, RYP(R, R) T, (7-1)
RCQ RCQ R’
where
I 1/ L—1 J J/ L—1
FR R (|/|Au> <| N |)
' 1] 'Vl
and
1
P(R,R) =
(R, K) (L+dist(Z, I')/|1')K (1 +dist(J, J')/|J])HK
if j/ >k, and
1
P(R,R) =
(R, R) (1+dist(Z, I')/|1') K (1 +dist(J, J')/|I'|)1+K
if j/ <k’

We estimate the right-hand side in the above inequality, where we first consider

R=IxJ, |]/|:2—]'/—N’ |J/|:2—j/—N+2—k/—N’ j/>k/.
Define

Qi — U 3211 x24J) fori, ¢ > 0.
IxJCQ

Let B; ¢ be a collection of dyadic rectangles R’ so that, for i, £ > 1,

Biy={R=0IxJ:321x27)nQ" #@and 32 'I'x27' V) nQ" = o},

Boy={R =1'xJ :3(I'x2"7)NQ" # @ and 3(' x 211N Q" = &} for € > 1,
Bio={R =IxJ:3Q1'xJ)NQ"#@and 32 'I'x J)NQ"" = &} fori>1,
={R' =1'xJ":3('xJ)NQ"" £ o}.

We write

SO IR RYP(R. RVTp =Y > > |I'||J|r(R, RYP(R, R))T.

RCQ R i>0 R'eB; ¢ RCQ
£>0

To estimate the right-hand side of the above equality, we first consider the case when i = £ = (. Note
that when R’ € By o, 3R’ N Q"0 #£ @. For each integer 1 > 1, let

%:{R I'xJ €Byg: |3 x3J)nQ%| > |31/><3J|}
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Let @, = F4\%F),_1, and Q), = UR,E% R’. Finally, assume that, for any open set Q C R?,

> TR < ClQPP
R=IxJCQ

Since By = thl %y, and for each R’ € By o, P(R, R’) < 1, we have

Y D NI IrR RYP(R RV <> Y Y N1 |r(R, R) g

R'€Byo REQ h>1 R'CQy; RCQ

For each & > 1 and R’ C ©;, we decompose {R : R C Q} into
Aoo(R) ={R=1xJCQ:dist(Z, I') < I|v|I'], dist(J, J") < |J| v ]I},
Apro(RY={R=1xJCQ: 2" (1| v|I')) <dist(, I") < 2" (| v |I']), dist(J, J)) < |J |V [J']},
Aoe(RY={R=1xJCQ:dist(I, ") <|I|v|I'l, 27 (I v |J']) < dist(J, J) <2° (1T vV 1I'D},
Ao (RY={R=1xJCQ: 2" 1|V |I']) < dist(Z, I') < 2" (1| v |I']),

271V ) < dist(J, ) <28 (T VD]

where i’, ¢/ > 1.

Now we split Y ;-1 > rcq, 2orca lI'lIJIr(R, R)P(R, R') Ty into

ZZ( DD DD D DD S S )|1/||J’|r(R,R/)P(R,R/)TR/

h>1 R'eQy “ReAgo(R))  i'>1 ReAy o(R)  €>1 ReAgy(R)  i','>1 ReAy y(R")
= h+hL+15:+1.

To estimate the term /;, we only need to estimate ), Aoo(R) r(R, R, since P(R, R’) <1 in this
case.

Note that R € Ag o(R’) implies 3R N3R’ # &. For such R, there are four cases:

Case 1: |I'| > |I|,|J'| < |J].

Case2: |I'| < |I|,|J'| = |J].

Case3: |I'| > 1|, |J'| = |J]|.

Case 4: |I'| < |I|, |J'| <|J]|.

In each case, we can estimate ) _ . A0 T(R, R’) < C27" by using a simple geometric argument similar
to that in [Chang and Fefferman 1980]. This implies that /; is bounded by

Zz—hL|Qh|2/p—l <C Zh2/p—12—h(L—2/p+l)|QO,O|2/[)—1 < C|Q|2/p—1’
h>1 h>1
since |2, < Ch2"Q%9] and |Q%°| < C|Q|.
Thus it remains to estimate term I4, since estimates of I; and I3 can be derived using the same
techniques as for /; and I4. The estimate for this term is more complicated than that for term /.
As in estimating term /1, we only need to estimate the sum ZReA[_,l/(R/) r(R, R, since P(R, R') <
2 i+K) =" (1+K) Note that R € Ay ¢/(R’) implies 32" I x 28 J)N3(Q2" I’ x 2 J') # @. We also split
our estimate into four cases.
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Case 1. In this case, |2°1'| > 21|, |2¢' J'| < |2¢ J|. Then

|2i/1| i’y o 7 i’y o 7 i 4
m|3(2 I'x 2800 < 3@ x 28 J)| A 1321 x 28 1))
o s 1 1 . ,
<C22Y 3R NQ%0 < 212t Zh—_l|3R/| < CF|3(2”1/ x 24 7).

Thus |2'1') = Y"1+ |2¢ 1| for some n > 0. For each fixed 7, the number of such 2/’ must be < 2" - 5.
As for |2¢J| = 2m|2¢ J'|, for some m > 0, for each fixed m, 3-2¢'J N3-2¢J # & implies that the
number of such 2¢ J is less than 5. Thus

1 L
/ n g2 —hL
> R B2 Y (G ) 2R =2
R e Case 1 m,n>0
We can handle the other three cases similarly. Combining the four cases, we have
> rR.R)y=C2',
ReAy ¢ (R')
which, together with the estimate for P(R, R’), imply that
L=CY o Yo 3o 27 OO T
h>1i'4>1RCQ),
Hence 14 is bounded by
Z 2—]’1L|Qh |2/p—] S C Z h2/p—12—h(L—2/p+l) |Q0,0|2/p—1 S C|Q|2/p—1 ,
h>1 h>1

since Y- picq, 11| Trr < 12477 " and |Q] < Ch2MQ00] and [Q7°] < C|Q|. Combining Iy, I,
Iz, and 14, we have

1

i 2 20 VIR ROP(R, ROTe = Csup /197 3 111117

R'€Byy RSQ RCO

Now we consider

D3 D I IFR, RYP(R, R)Tw:.
i{>1R

/EB,‘_( RCQ
Note that for R’ € B; ¢, 3Q2'1' x 2¢J) N Qi ¢ # @. Let
. . . 1 .
Fht = {R’ €Bio: 3R x2T)N QM| > 2—h|3(211/ x 2‘31/)|},

0 il o
Dy =T \F

and

=) R

i
Ry,
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Since B¢ = U gt we first estimate
> >N Ir(R, RYP(R, R Tk
R'ewy" REQ
for some i, ¢, h > 1.
Note that for each R’ e@;e, 31 x247)YNQI~ T =&, So, for any R € Q, we have 2/ (|1 Vv |I']) <
dist(Z, I') and 2°(|J| v |J’]) < dist(J, J'). We decompose {R : R C Q} as
A e (R) = {R CQ: 2721 v |I')) < dist(Z, ') <272/ (1| v |T')),
2012 V1D = dist(d, 0 =221 v 1D

where i/, ¢ > 1. Then we write
SO N IHRRYP(R. RYT= Y > Y |Il|JIr(R,R)P(R,R)Tg .
R’Egbz’e RCQ i’ 0>1 R’E@;{l REA[v/y{/(R/)
Since

P(R, R/) < Cz—i(l—i—K)2—13(1+K)2—i’(1+K)2—2’(1+K)

for R" € B; ¢y and R € A;/ ¢ (R’), repeating the same proof with By ¢ replaced by B; ; and using the fact that

QLY < c2"i@lt), 190 < ca2ye2hH 1%, 9% < e,
yield
Y > WNJIrR, RYP(R, R)Tx
R/EQ);{Z REAI-/,@/(R’)
. ., , . 1
< C2 i (1+K)p—t(1+K)y—i'(1+K)y—¢ (1+K)|QZK|2/P—1 — Z |1/| |J/|TR’
Qb=
R'CQy

< Cz—i(l+1<)2—e(1+K)2—i’(1+1<)2—e/(1+1<)i2/p—12i(2/p—1)£2/p—125(2/p—1)h2/p—12—h(L—2/p+1)|Q|2/p—1

|s2|2/ 2 I TR

RCQ
Adding over all i, £, i’, ¢, h > 1, we get

|Q|2/p S0 Y M Ir(R, R P(R, R Tr < Csup |Q|2/ Z 11|10 T
i£>1 R'eB;y RCQ RCG
Similar estimates, which we leave to the reader, hold for
DTN N Ir(R.RYP(R, R)Te and > Y S I |r(R, R)P(R, R)Tg,
i>1 R'eBjo RCQ £>1 R'eBy¢ RCQ
which, after adding over all i, £ > 0, completes the proof of Theorem 30. (I

As a consequence of Theorem 30, it is easy to see that the space CMOIIZ is well defined. In particular,
we have the following:
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Corollary 62. We have

1
1 2
1f llemor, = sup{W YD Wy far y)PH |J|} ,
o LIS ik IxJCS
where I x J is a dyadic rectangle in H" with £(I) =277V and €(J) =277V 4 2k=N_ and where
X7, yj are any fixed points in 1, J, respectively.

Proof of Theorem 32. We first prove c¢” C (s”)*. Applying the proof in Theorem 56, set
1
2
s(z.u) = {Z |sm|2|1|—‘|J|—‘xI(z>xJ(u)}
IxJ
and

Qi ={(z,u) e H" : s(z, u) > 2'}.
Let
By ={I x J): | x HN| > S x T, [ x )N Q] < 511 x J|},

where I x J is a dyadic rectangle in H" with £(I) = 277~ and £(J) = 27/~ 4+ 27%=N_ Suppose
t ={t;xy} € c?, and write

Zslxlflxj Z Z stJfli

IxJ i (IxJ)e®B;
p/2 p/2y\1/p
S{Z[ > |51><J|2:| |: > Itli|2] }
i (IxJ)eB; (IxJ)eB;
p/2y1/p
sc||r||cp{2|s2,-|1—f’/2[ > |sm|2} } , (7-2)
l

(IxJ)eB;
since if I x J € B;, then
IxJCQi={Gu:Ms(xe) @ u) >3},
1] < Cll,

and {t;«s} € c? yield
1

2
{ Z |tl><J|2} §C||t||cp|Qi|1/p—1/2.

(IxJ)eB;
The same proof as in the claim of Theorem 56 implies
D sl = C271Q.
(IxJ)eB;

Substituting the above term back into the last term in (7-2) gives ¢” C (s”)*.
The proof of the converse is simple and is similar to the one given in [Frazier and Jawerth 1990] for
p =1 in the one-parameter setting on R". If £ € (s”)*, then it is clear that £(s) =), ; Sixjtrxy for
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some t = {t;«s}. Now fix an open set 2 C H" and let S be the sequence space of all s = {s; s} such that
I x J C . Finally, let 1 be a measure on S so that the -measure of the “point” I x J is 1/|2|>/?~!. Then,

1

{W Z |flx1|} = trxslle2s.au)
IxJCQ
1

—_— St
|Q|2/P*1 Z IxJtIxJ
IxJCQ

= sup
lIs1 25,y <1

1

< itlisry=  sup 1QE/rT

sl 25,4, <!

SIxJ

sP

By Holder’s inequality,

—1 2 1 p/2 1/p
y = |Q|2/pl{/s;< Z Isps |11 x J| X[(X)XJ(y)) dzdu}

IxJCQ

1
s —_—
IxJ |S‘2|2/p71

1 5 » 12
“liepr J, D Ao PH < I ) xs D dzdut = lisllegs.an < 1,
IxXJCQ

which shows ||7]lcr < || ]|(sp)*- O

In order to use Theorem 32 to obtain Theorem 33, we introduce a map S which takes f € (J(/Lﬁﬁ"g'ra)’ to

the sequence of coefficients

Sf = tsis) = {HTIZ1 124 % £ (xr, v},

where I x J is a dyadic rectangle in H" with £(1) =27/~ and £(J) =27/ + 27k=N"and where
X1, yy are any fixed points in I, J, respectively. For any sequence s = {s;« s}, we define a map T which

T = > > S B w)six,
i kT I

where the 1/;j,k are as in (3-1).
The following result together with Theorem 32 will give Theorem 33.

takes s to

Theorem 63. The maps S : Hﬂpag —sPand S : CMOI";ag — cP,as well as the maps T : sP? — Hﬂpag and

T:cP — CMOf{ag, are bounded. Moreover, T o S is the identity on both Hﬁpag and CMOgag.

Proof. The boundedness of S on Hé’ag and CMO‘ﬂ’ag follows directly from the Plancherel-Pdlya inequalities,
Theorems 19 and 30. The boundedness of T also follows from the arguments in Theorems 19 and 30.

Indeed, to see that T is bounded from s” to H?

flag? let s = {s;xs}. Then, by Proposition 54,

1Ty, < CH {ZZZZ Wjax T (9)(z, u>|2x,<xm<y)}2
i kT I

p
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By adapting an argument similar to that in the proof of Theorem 19, we have, for some 0 < r < p,

[ jx % T (s)(z, w) X1 () x s (I

2
~ _1 _1
= IS ST I a5 e (o ) o s T3 20 ()0 ()
j’,k’l’,.]’
o, , ry2/r
<Cc ) 2—'f—f'Kz—"‘—k'K{Ms(Z|swf||1’|—1|J/|‘1x,/x,/>} (2. ) X1 (x) X7 ()
kANK'<jAj! r,J
o, ) ry2/r
+ Y z—f—f'Kz—k—k'K{M(Z|sM/||1/|—1|J’|—1x1/x,/)} (1) X1 () xs ().
kAK'>jAj’ 1,J’

Repeating the argument in Theorem 19 gives the boundedness of T from s? to Hffag. A similar adaptation

P
flag*

We leave the details to the reader. The discrete Calderén reproducing formula and Theorems 17 and 30

show that 7' o S is the identity on both Hg,, and CMOg, . O

of the argument in the proof of Theorem 30 applies to yield the boundedness of T from c¢? to CMO

We are now ready to give the proofs of Theorems 33 and 34.

Proof of Theorem 33. If f € J(/Lﬁ’gg‘s and g € CMO’ﬂ’ag, let £, = (f, g). Then the discrete Calderén

reproducing formula and Theorems 30 and 32 imply

el = ()= D [T IWw* f @ y)Tr@Cr. v < ClLf g, I8 llemor-
R=IxJ
Because J(/Lgﬁ;‘s is dense in Hé’ag, this shows that the map £, = (f, g), defined initially for f € Méﬁ;‘s,

. . . p .
can be extended to a continuous linear functional on Hy,o with [[£.]| < C ”g”CMOg’ag'

Conversely, let £ € (Hé;.g)* and set £; = £ o T, where T is defined as in Theorem 32. Then, by
Theorem 32, £; € (s”)*, so by Theorem 30, there exists t = {f; s} such that £;(s) =), Syxytixy for

all s = {s7« s}, and where
2ller = [1€1]l < ClIENl,

because T is bounded. Again by Theorem 32, £ =£0T oS = ¢, 0 S. Hence, with

feMﬁi;‘s and g=ZZIXJWR((L”)O(xl»yj)il),
IxJ

and where without loss the generality we may assume that ¥ is a radial function, we have
L =4(S(NH) =(S(f), 1) =(f. g
This proves £ = £,, and by Theorem 32 we have

lgllemor = Clitller < Cll€g|l- O
flag

Proof of Theorem 34. As mentioned earlier, Hf}ag is a subspace of L!. By the duality of Hﬂlag and BMOqy,,
we now conclude that L* is a subspace of BMOy;g, and from the boundedness of flag singular integrals

on H}

flag> W€ get that flag singular integrals are bounded on BMOg,, and also from L* to BMOg,e. [
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8. Calderon-Zygmund decomposition and interpolation decomposition

In this section we derive a Calderén—Zygmund decomposition using functions in flag Hardy spaces. As
an application, we prove an interpolation theorem for the spaces Hé’ag([}-ﬂ").

We first recall that Chang and Fefferman [1982] established the following Calderén—Zygmund decom-
position on the pure product domain R% x R2 .

Lemma 64 (Calder6n—Zygmund lemma). Let a > 0 be given and f € LP(R?), 1 < p < 2. Then
we may write f = g + b, where g € L>(R*) and b € H'(R3 x R3) with |Igl3 < «*7P||f|}, and
||b||[7,1(|Rz+XRz+ < Cal-? ||f||§, where c is an absolute constant.

We now prove the Calderén—Zygmund decomposition in the setting of flag Hardy spaces on the
Heisenberg group.

Proof of Theorem 35. We first assume f € L>(H") N Hy, (H"). Let @ > 0 and
Q= {(z,u) e 0" : S(f)(z, u) > a2},

where, as in Corollary 60,
1
2
S(f)(z,u) = {ZZ 1k (T (F N e, yJ>|2x,(x)xJ(y)} .
Jk LJ
It was shown in Corollary 60 that for f € LZ(H") N Hé’ag(ﬂ-ﬂ”), we have ”f”Hé;g ~ SOl p-

In the following, we denote dyadic rectangles in H” by R = I x J with £(I) =277~V and £(J) =
27/=N £ 27%=N 'where j, k are integers and N is sufficiently large. Let
Ro={R=1xJ:|[RNQ| < 3|RI}
and, for £ > 1,
Re={R=1xJ:|[RNQ_1| > 3R] but [RN| < 3IRI}.
By the discrete Calderén reproducing formula in Theorem 57,
f@w) =YY N6z w) o (xr, y) " Djicx (Ty ()&, )
jk 1,J

=Y > U)o (pn y) ™D (T (N Gers yo)

£>1 IxJeR, -
+ Z |I||J|¢jk((z,M)O(xh)’J)_l)¢jk*(T1\71(f))(x1,)’J)
=b(z,u)+ g(z,u) fxJedo

When p; > 1, using a duality argument it is easy to show

||g||pIEC{ > |¢jk*<TN—1<f))<x1,y»ﬁm}z

R=IxJeRy

P1
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Next, we estimate || g || HY! when 0 < p; <1. Clearly, the duality argument will not work here. Nevertheless,
ag

we can estimate the Hé;‘g norm directly by using the discrete Calderén reproducing formula in Theorem 57.
To this end, we note that

gl = {ZZK%W * ) (X, yJ/)|2XI/(Z)XJ/(u)}
) JLKTT L
Since
Wy * )G y) =Y Wy @) (Gerr yor) o Ger yn) ™ Djiex (T () Cxra v,
Ix]e%o

we can repeat the argument in the proof of Theorem 56 to obtain

H {Z S 1) s y ) P @) 3 () }2

j/,k/ 1/"1/

{ 3 |¢,-k*(m1<f))<x1,yJ>|2x,xJ}2

R=IxJeRy

<|

LP1 pi1

This shows that for all 0 < p; < oo,

{ > |¢jk*<m]<f))<x1,y»ﬂmm}z

R=IxJeRy

gl < c‘
¢ P1

Claim 65. We have

{ )3 |¢jk*(TN—1(f>>(x1,y»hm}z

R=IxJeRy

/ Spl(f)(z,u)dzduzc‘
S(f)(z,u)<a

P1

This claim implies

gl py SC/ S”l(f)(z,u)dzdqua’”_”/ SP(f) @ w)dzdu < Ca Pl fllgy -
S (zu)=a S (z.u)=a fag

To prove Claim 65, we let R =1 x J € Ry. Choose 0 < g < p; and note that

/ SPY(f)(z, u) dz du
S(f)(z,u)<a

p1/2
=/ {ZZ $51% (T (M), y1)|2X1(X)XJ(y)} dz du
S(f)(zu)=a

jok 1
p1/2
C/C > |¢jk*<TN—1(f))(x,,y1)|2x,xj} dz du

0 RG?RU

p1/2
C/n—un Z |¢jk*(TA71(f))(x1,YJ)IZXRng(Z,M)} dz du

RE%O

q/2\p1/q
{ > (Msje = (T ()G y ) xrgs) (2, u))z/q} } dz du

Re?ko

v

v
a
T

p1/2
Z 9% (T " () xr, y)IPxr(z, M)} dzdu.

ReR

v
A
T
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In the last inequality above we have used the fact that |2 N (I x J)| > %|I x J| for I x J € Ry, and thus

Xr (2. u) <2 Mg (xrng) '/ (2. u).

In the second-to-last inequality above we have used the vector-valued Fefferman—Stein inequality for the

o0 1/r o0 1/r
' (Z(Msfk)’) (Z |fk|’)
k=1 k=1

with the exponents r =2/g > 1 and p = p;/q > 1. Thus Claim 65 follows.
We now recall that QV( = {(z, u) e H" : Ms(xq,) > %}

strong maximal function

’

p

<c
P

Claim 66. For p, <1,

P2 .
D I8y o Gy e (Ty N yn | < CQRIPIQe].
IXJE%[ Hﬂazg
Claim 66 implies
16172, <> Q2'a)™ |2 |
flag >1
<C) Qe Q]
£>1

ECf SP2 f(z,u)dzdu
S(fHz,u)>a

< Ca””’/ SP f(z,u)dzdu < Ca?=P|| f||7, .
S(N)zw)>a fag

To prove Claim 66, we again have

P2

D UGG, y) o G y) Db (T ) (xr. ys)

IxJeR, Hé?g
2}
SCHZZ D NI # @) (e, yod o (er, y) ™ Dbjix (T ) (xrs yo) }
k1,9 I TeRy Lr2
scH > |¢>,~k*<T1;1f)(x1,y1>|2xm} :

R=IxJeR, P2

where we can use an argument similar to that in the proof of Theorem 56 to prove the last inequality.
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However,

2(2@ )P2(Q—1| = / S(f)P(z, u) dz du

Qo-1\2¢

p2/2
= fQ . {ZZW,-M(T];‘(f))(xI,yf)|2><1(z>xf<u)} dz du

.k 1,J

P2/2
:/n ZZij*(T,\?l(f))(xl,)’J)|2X(1x1)ms~21_1\9()(z, u)} dz du

jk 17
>
n
>
n

In the above string of inequalities, we have used the fact that, for R € R,, we have

p2/2
> 1k (T VL YD P Ao @ u>} dz du
IxJeR,

p2/2
> |¢jk*<T,;1<f)>(x,,yj>|2x,(z)xf(u>} dz du.

IxJeRy

I[RNQe—1] > 3IR| and  |RNQ| < 3IR],
and, consequently, R C Q1. Therefore
IRN (Qe-1\Q0)| > 3IRI.
Thus the same argument applies here to conclude the last inequality above. Finally, since

L") N Hp, (H")

is dense in H,

ﬂag(I]-I]”), Theorem 35 is proved. O

We are now ready to prove the interpolation theorem on Hardy spaces H, ﬂag for all 0 < p < o0.

Proof of Theorem 36 Suppose that 7" is bounded from Hy, P2 g fo LP? and from Hé] a'g to LP'. For any given

A>0and f € Hy , by the Calderon—Zygmund decomposmon

ﬁag’

f(z,u)=g(z,u)+b(z, u)
with
||8|Hp1 <CAP'™ ”Ilfllp and ||b|”2,,2 < CAP*™ ”Ilfllp

ag

Moreover, we have proved the estimates

gl <C / SNz uydzdu and ||p])%, <
S(f)(z,u)<a

flag flag

/ S(f)P*(z, u) dzdu,
S(f)(z,u)>a
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which imply that
o0
ITfIb =p/0 " (2w 1 |Tf (2 w)| > A} dot
[e.¢] o
Sp/o o’ @ u) | Tgz u)l > %A}|d(x+p/0 a? " (z u) : |1Tb(z, w)| > 2r}| de

o0 o0
§p/ ap_I/ S(f)pl(z,u)dzdudoz—l—p/ ozp_I/ S(HP*(z,u)dzduda
0 Sz, u)<a 0 S(H(zu)>a
P
<CIfll, .

Thus,
17Ny < Cll fllg,

for any p» < p < p;. Hence T is bounded from Hé’ag to L?.
Now we prove the second assertion, that 7" is bounded on Hff'ag for p» < p < p;. For any given A > 0

and f € Hifag, we have, again by the Calderén—Zygmund decomposition,

(@ w) : 1g(T )z w)| > a}
<@ w:1g(Te)z w|> ta}| +|{G u) : 1g(Th)(z, u)| > Ja}|
< Ca™P|Tgll?, +Ca | Th|",,

flag flag

< Ca™ " |gll} +Ca|bl);

flag Ht{;zg
< Cag™ P / (SHP (z, u)dzdu+Ca_p2/ (Sf)P*(z, u) dz du,
S(fHz.u)<a S(f)(zu)>a
which, as above, shows that ||Tf||Hé) <Cllg(TH)|, =< C||f||Héz for any pr < p < p1. U
ag ag

9. A counterexample for the one-parameter Hardy space

Recall that H* = C" x R is the Heisenberg group with group multiplication

({v t)(nvs) == (; +n’t+s+2’lm(€ ﬁ))9 (§9 t)’ (nvs) € Cn X Ra

and that (1, s)~' = (=5, —s). Consider the mixed kernel K (z, 1) = K1(z)K»(z, t) for (z, 1) e H" =C" xR
given by
Q(2)

KI(Z)=W

d K(z,t) = ——,
an 2(z, 1) By

where €2 is smooth with mean zero on the unit sphere in C". We show in the subsection below that K

satisfies the smoothness and cancellation conditions required of a flag kernel. It then follows from [Miiller
et al. 1995] that there is an operator T having kernel K such that, for each 1 < p < oo,

ITf ey < Conll fllr@ry,  f € LP(HY).
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The action of the corresponding singular integral operator 7T f = K * f is given by

TR 1) = K spr (5. 1) = / K((€.0)0 (o 5)" ) f(n. 5) dnds

=/H S, K& —n,t—s—21Im(¢ -n))dnds
Q& —n) 1 J
1E =0 [ —n2+i(t —s —2Im(Z - 7))

Theorem 67. There is a smooth function Q2 with mean zero on the unit sphere in C" such that there is no
operator T having kernel K that is bounded from H LH™) to LY (HM).

= S, s) nds.
Hﬂ

To prove the theorem, we fix f(z, u) = ¥ (z)p(u), where
(1) ¢ is smooth with support in the unit ball of C",
(2) ¢ is smooth with support in (—1, 1),
3) fon ¥(2)dz=0and [, o(u)du=1.

Such a function f is clearly in H'(H") since f is smooth, compactly supported, and has mean zero:

f(z, u)dzdu:/

R

{ Y (2) dz}w(u) du = / {0} (u) du = 0.
on R

[H])l
We next show that 7 fails to be bounded from H!(H") to L' (H"), and then that T is a flag singular integral.
9.1. Failure of boundedness of T. For
£ € B((100,0),0) = {(¢1, ) e Rx C* 12 (5 — 10002+ 1" < 1}, 1] > 108,

we have
Q¢ —n) 1

12 g+t —205]%)

Tf@. 0|~ / b e(s) dn ds

since, for ¢ € B((100, 0), 0), we have

¢ 12e)

‘/w(n)ﬂ(z—n)dn >c >0,

for an appropriately chosen 2 with mean zero on the sphere. The point is that both functions v and €2
have mean zero on their respective domains, but the product can destroy enough of the cancellation. For
example, when n = 1, we can take

_
Vx4 y? ’
V(x, y) = yy1(x)v2(y),
where ; is an even function identically one on (— 1/2,1/ 2) and supported in (—1/ V2, 1/+/2). Then, for

Qx,y)=

¢ =(100+v, ), [vP*+|of*<1,
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we have

fw(n)Q(C—n)dn=/Wl(X)Iﬂz(y)Q(IOOJrv—x,a)—y)

_ ®—y

= f YY) Y2() N ESTEe e

_ Y1) Y2(y) _ Y21 @) (y)
VA00+v—x)2+(@—y)?2 J J(100+v—x)2+ (0 —y)>

~_ L

~ 1000

We conclude from the above that

TF,Dlde di z/ d¢ di = oo.
H" {¢

€B((100,0),0) and J¢|>106} S 1" |7]
9.2. T is a flag singular integral. Let K be the kernel
Q@ 1

=—>— (z,t) e H".
|z|2" |z|2 + it )

K(z, 1)

In order to show that K is a flag kernel, we must establish the following smoothness and cancellation
conditions.

(1) (differential inequalities) For any multi-indices & = (a1, ..., &), B=(B1,---, Bm),
1929 K (2, )] = Capla] "~ (2 + u) =17V

for all (z, u) € H" with z # 0.

(2) (cancellation condition) For every multi-index «, every normalized bump function ¢; on R, and
every 6 > 0,

< Cylz|27 1,

‘/ 0K (z, )y (Su) du
R

for every multi-index 8, every normalized bump function ¢, on C”", and every 6 > 0,

< Cylul 77,

/ AP K (z, u)y(8z) dz
@n

and for every normalized bump function ¢3 on H" and every é; > 0 and §, > O,

<C.

/ K (z,u)¢3(81z, Sru) dz du

The differential inequalities in (1) follow immediately from the definition of K.
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The first cancellation condition in (2) exploits the fact that ¢ is an odd function. For convenience we

Q(2) |z|2 it
— ot) dt
/R|z|2"{|z|4+z2 PR A

1 2 j
< / 660 di + fR @550 gy(O)} i

|Z|2" |Z|4+f2 | |2n | |4_|_[2
1

< © ] 1 s
< dt + f - dt
|Z|2"2/0 |z|* + 12 lz> Jo  lz|* 412

! /OO ! dt < ! </Z| ld—i—/ooldt) !
121272 Jo lzl*t 412 Y22\ Jz2)t 22 12 |z|>”

and, for |z|2 < 1/8, we have

18 542 2> 542 1/8 542 21
/ 7 zdtSJ/ —4d f —Zdl‘gs%‘FlSl,
o lz|*+1 o Izl FER |z]

while for |z|? > 1/8, we have

1/6 81‘2 1/6 8t2 1/ 3
/ 2 2dt,§/ —4dt§8#§1.
o lz|*+1t o Izl |z]

Altogether we have |fR K(z,1)¢p1(81) dt| < |z|7" as required.
The second cancellation condition in (2) uses the assumption that €2 has mean zero on the sphere. For

assume o = 0. We then have

‘/ K(z,)¢1(6t)dt| =
R

Now

convenience we take 8 = 0. Then we have

1 1
56/ ————|z|dz
tzi<tys) 12177 1212 + 1t
5 (V1 3 )
Sm ran(rZ" Vary ~ 171,

as required.
The third cancellation condition in (2) is handled similarly. We have

K (z,t)$3(812, 62t) dz dt
[H]Il

Q@[ Izl it
= H |Z|2n |Z|4+t2 - |Z|4+t2 {¢3(81Z582t)_¢3(07 52t)}dzdt

2
=/ Lo ———1{#3(812, 821) — ¢3(0, 821)} dz dt

|Z|2n |Z|4 +l‘2

Q
_/ |z|(f,3 |z|4lt+[z (¢3(812. 821) — ¢3(0, 821) — $3(812, 0) + 3(0, 0)} dz dr,
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and so

/ K(z,t)¢$3(81z, 62t) dz dt

1 |z|? 1 |7]
61|z|dzdt+/ / ——4811z|82|t| dz dt =1+ 11.
,/|;|<1/az /|z|<1/a. 122" |z[* + 12 t1<1/8> J1zI<1/8 1212 |2 + 12

Now if 1/8, < |z|?, then

1 /62 1 1/8
1551/ —{/ —dt}dz§81/ —dzmsl/ dr=1,
ci=<is 121273 Lo Iz <1/, 121271 0

while if 1/8, > |z|?, then

|z|? 1/82

1 1 1 1

ISS] T 4dt+ _Zdt dZS(S] sz%l
lzi<tys 1217772 Lo Izl 2t lz1<1/8, 127"~

Finally, we have

nu<s / 1 {5 / 1‘2 dt} dz <8 /‘ 1 d |
~ 91 2 —_— ) 7~ 1.
lz1<1/68; |Z|2n ! [t|<1/8, |Z|4-|-l‘2 21<1/8, |Z|2n71

Part III. Appendix

Here in the appendix, we construct a flag dyadic decompositon of the Heisenberg group using the
tiling theorem of Strichartz. See [Han et al. 2012] for an approach that generalizes to certain products of
spaces of homogeneous type.

10. The Heisenberg grid

Let H" = C" x R be the Heisenberg group with group multiplication
& 0-ms)=C+nt+s+2Im@-n), (&, 1), (15 €C" xR
Note that (17, s)~' = (—n, —s). Relative to this multiplication, we define the dilation
8.6, 1) = (18, 3%0),
and its corresponding ‘“norm” on H" by
P, 1) = VI[E*+ 12

Then we define a symmetric quasimetric d on H" by

d((¢, 1), (n,5) = p((¢, 1) - (n,5)7 1),
and note that

d(SA(g" t)’ (SA(U» S)) = )\'d((g’ t)’ (77’ S))
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The center of the group H" is
¥ ={(, 1) eH" : ¢ =0},

which is isomorphic to the abelian group R. The quotient group @" = H" /%" consists of equivalence
classes [(¢, t)] such that [(¢, )] = [(n, s)] if and only if

(&, 1)-(n,5)"" e¥", thatis, ¢ =1.

Thus we may identify Q" with C" as abelian groups. Thus we see that H" = C" Qqyist R is a twisted group
product of the abelian groups C" and R with bihomomorphism S(z, w) =2 Im(z - w). See the appendix
for a discussion of this notion of twisted group product.

Now we apply the usual dyadic decomposition to the quotient metric space Q" = C" to obtain a grid
of “almost balls” (which are actually cubes here)

{I}I dyadic = {Io][ }jeZ and a €2/ 72" 5

where I({ = [0, 2/)?" and I({ = I({ +oaforjeZanda € 277", so that E(I({) =2/, By a grid of almost
balls we mean that the sets I decompose C" at each scale 2/, are almost balls, and are nested at differing
scales; that is, there are positive constants Cy, C, and points ¢ ;i€ I} such that

c =1y jez,

B(c,;,Ci2))C 1] CB(c,;,C22))  jeZ ae2/7”, (10-1)
hcr, rict o I5=Ii

Here we can take c; to be the center of the cube I, and C; = 1/2, C; = +/2n/2 = /n/2. We also have

the usual dyadic grid {J*}¢c7 and ze2¢7 for R, where Jé‘ =1[0,2%) and I* = I(l)‘ +tforkeZand T €2¢7.

In order to use these grids to construct a “product-like” grid for H", we must take into account the twisted

structure of the product H" = C" ®wist R. Here is our theorem on the existence of a twisted grid for H".

Theorem 68. There is a positive integer m and positive constants Cy, Co, such that, for each j € mZ and
(a,7) € K; =277 x2%7,

there are subsets ¥ ; o - of H" satisfying

H" = U Fiars foreach j e mZ,
(Ol,‘L’)EKj
PonS iy =17, jemZ, (a, 1) € K;,
c' ja,t a- - J ( ) j (10-2)
By(¢jar, C12’) CFj o C Bi(cjar, C227), jemZ, (a,7) € K;,

g)j,a,t C Efj’,a’,r’v Efjj’,ot’,'[’ - ETDj,oz,'L' or ETDj,oz,'f myj’,ot’,‘[’ =¢,
1~2j
Cj,Ol,'L’ = (Pj,Ola T + 52 ])7

where Pj o =c, J and Pgn denotes orthogonal projection of H" onto C".
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Thus at each dyadic scale 2/ with j € mZ, we have a pairwise disjoint decomposition of H" into sets
¥ ;.. that are almost Heisenberg balls of radius 2/. These decompositions are nested, and moreover are
product-like in the sense that the sets &; 4 . project onto the usual dyadic grid in the factor C", and have
centers Cj q,r = (Pj,a, T+ %2” ) that for each j form a product set indexed by K; = 2/7%" x 2%/7 and
satisfy

. 9
|Cj,oz,r _Cj,oz’,tl =2/ and |Cj,a,r _Cj,oz,r’| =2,

if « and o are neighbors in 2/7%" and if T and 7’ are neighbors in 2%/7Z.

Theorem 68 follows easily from the theory of self-similar tilings (neatly stacked over dyadic cubes) in
[Strichartz 1992]. An excellent source for this material is [Tyson 2008, pp. 39—42]. See [Han et al. 2012]
for more detail.

11. Rectangles in the Heisenberg group

Recall from Theorem 68 that at each dyadic scale 2/ with j € mZ there is a pairwise disjoint decomposition
of H" into sets ¥; ., that are “almost Heisenberg ball” of radius 2/. We will refer to these sets as
dyadic cubes at scale 2/. These decompositions are nested, and moreover are product-like in the
sense that the cubes ¥ , ; project onto IO{ in the usual dyadic grid in the factor C", and have centers
Cjat = (Pjas T+ 32%/) that, for each j, form a product set indexed by K; = 2/7>" x 2%/7Z and satisfy

. Y
|Cj,oz,r - Cj,oz/,rl =2/ and |Cj,(¥,‘[ - Cj,oz,t/| =2,

if @ and o’ are neighbors in 2/7%" and if T and 7’ are neighbors in 2%/Z.

We now define vertical and horizontal dyadic rectangles relative to this decomposition into dyadic
cubes. The analogy with dyadic rectangles in the plane R? that we are pursuing here is that a dyadic
rectangle I = I} x I, in the plane is vertical if |I| > |[1]|, and is horizontal if |I1| > |I3| (and both if and
only if 7 is a dyadic square). If we consider the grid of dyadic cubes {¥; .} in H" in place of the grid of
dyadic squares in R?, we are led to the following definition.

Definition 69. Let j,k € mZ, with j < k, and let ¥;, . and ¥ g, be dyadic cubes in H" with
Fjar CFrpo- The set
Fr.pv
Gi(ver) = Ry (ver) = ( (S jav S jwr € Frpo)

will be referred to as a vertical dyadic rectangle, or, more precisely, the vertical dyadic rectangle in ¥y g ,,
containing ¥; 4 .. We define the base of the rectangle % (ver) to be the dyadic cube 1] in C", and we
define the cobase of the rectangle R(ver) to be the dyadic interval J2* in R. We say the rectangle R (ver)
has width 2/ and height 2%, Similarly, the set

Fr.pv
R(hor) = Ry (hor) = J(F e : P C Fapn)

will be referred to as a horizontal dyadic rectangle, or, more precisely, the horizontal dyadic rectangle in
Fk,p,v containing F; o ;. We define the base of the rectangle % (hor) to be the dyadic cube / g in C", and
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we define the cobase of the rectangle R (ver) to be the dyadic interval J,2 /in R. We say the rectangle
% (hor) has width 2* and height 2% .

We will usually write just & to denote a dyadic rectangle that is either vertical or horizontal. Note that
a dyadic rectangle 9 is both vertical and horizontal if and only if % is a dyadic cube ¥ 4 .. Finally note
that R, o “hv (Ver) can be thought of as a Helsenberg substitute for the Euclidean rectangle Iy 7 x J2K in 1"
with w1dth 2/ and height 22" and that R, s _ (hor) can be thought of as a Heisenberg substitute for the
Euclidean rectangle /g k% J, in H" with w1dth 2% and height 2%/. The vertical Heisenberg rectangles are
constructed by stackmg Heisenberg cubes neatly on top of each other, while the horizontal Heisenberg
rectangles are constructed by placing Heisenberg cubes next to each other, although the placement is far
from neat.

Remark 70. In applications to operators with flag kernels, or more generally a semiproduct structure, it
is appropriate to restrict attention to the set of vertical dyadic rectangles.
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Characterization results for equality cases and for rigidity of equality cases in Steiner’s perimeter inequality
are presented. (By rigidity, we mean the situation when all equality cases are vertical translations of
the Steiner symmetral under consideration.) We achieve this through the introduction of a suitable
measure-theoretic notion of connectedness and a fine analysis of barycenter functions for sets of finite
perimeter having segments as orthogonal sections with respect to a hyperplane.
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1. Introduction

1A. Overview. Steiner symmetrization is a classical and powerful tool in the analysis of geometric
variational problems. Indeed, while volume is preserved under Steiner symmetrization, other relevant
geometric quantities, like diameter or perimeter, behave monotonically. In particular, Steiner’s perimeter
inequality asserts the crucial fact that perimeter is decreased by Steiner symmetrization, a property that, in
turn, lies at the heart of a well-known proof of the Euclidean isoperimetric theorem; see [De Giorgi 1958].
In the seminal paper [Chlebik et al. 2005], which we briefly review in Section 1B, Chlebik, Cianchi and
Fusco discuss Steiner’s inequality in the natural framework of sets of finite perimeter, and provide a
sufficient condition for the rigidity of equality cases. By rigidity of equality cases we mean that situation
when the only sets achieving equality in Steiner’s inequality are obtained as translations of the Steiner
symmetral. Roughly speaking, the sufficient condition for rigidity found in [Chlebik et al. 2005] amounts
to requiring that the Steiner symmetral has “no vertical boundary” and “no vanishing sections”. While
simple examples show that rigidity may indeed fail if one of these two assumptions is dropped, it is
likewise easy to construct polyhedral Steiner symmetrals such that rigidity holds and both these conditions

MSC2010: 49K21.
Keywords: symmetrization, rigidity, equality cases.
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are violated. In particular, the problem of a geometric characterization of rigidity of equality cases in
Steiner’s inequality was left open in [Chlebik et al. 2005], even in the fundamental case of polyhedra.

In the recent paper [Cagnetti et al. 2013], we have fully addressed the rigidity problem in the case of
Ehrhard’s inequality for a Gaussian perimeter. Indeed, we obtain a characterization of rigidity, rather
than a mere sufficient condition for it. A crucial step in proving (and, actually, formulating) this sharp
result consists in the introduction of a measure-theoretic notion of connectedness, and, more precisely, of
what it means for a Borel set to “disconnect” another Borel set; see Section 1C for more details.

In this paper, we aim to exploit these ideas in the study of Steiner’s perimeter inequality. In order to
achieve this goal we shall need a sharp description of the properties of the barycenter function of a set of
finite perimeter having segments as orthogonal sections with respect to a hyperplane (Theorem 1.7). With
these tools at hand, we completely characterize equality cases in Steiner’s inequality in terms of properties
of their barycenter functions (Theorem 1.9). Starting from this result, we obtain a general sufficient
condition for rigidity (Theorem 1.11), and we show that, if the slice length function is of special bounded
variation with locally finite jump set, then equality cases are necessarily obtained by at most countably
many vertical translations of “chunks” of the Steiner symmetral (Theorem 1.13); see Section 1D.

In Section 1E, we introduce several characterizations of rigidity. In Theorem 1.16 we provide two
geometric characterizations of rigidity under the “no vertical boundary” assumption considered in [Chlebik
et al. 2005]. In Theorem 1.20 we characterize rigidity in the case when the Steiner symmetral is a
generalized polyhedron. (Here, the generalization of the usual notion of polyhedron consists in replacing
affine functions over bounded polygons with W!:!-functions over sets of finite perimeter and volume.)
We then characterize rigidity when the slice length function is of special bounded variation with locally
finite jump set, by introducing a condition we call the mismatched stairway property (Theorem 1.29).
Finally, in Theorem 1.30, we prove two characterizations of rigidity in the planar setting.

By building on the results and methods introduced in this paper, it is of course possible to analyze
the rigidity problem for Steiner perimeter inequalities in higher codimensions. Although it would have
been natural to discuss these issues here, the already considerable length and technical complexity of the
present paper suggested we do this in a separate forthcoming paper.

1B. The Steiner inequality and the rigidity problem. We begin by recalling the definition of Steiner
symmetrization and the main result from [Chlebik et al. 2005]. In doing so, we shall refer to some concepts
from the theory of sets of finite perimeter and functions of bounded variation (that are summarized in
Section 2B), and we shall fix a minimal set of notation used through the rest of the paper. We decompose
R", n > 2, as the Cartesian product R"~! x R, denoting by p : R” — R"~! and ¢ : R” — R the horizontal
and vertical projections, so that x = (px, gx) with px = (x1, ..., x,—1), gx = x,, for every x € R". Given
E C R" we denote by E, the vertical section of E with respect to z € R"~!, that is, we set

E,={teR:(z,t) € E}.
Moreover, given a function v : R — [0, o0), we say that E is v-distributed if

v(z) = #'(E,) for 9" '-ae.ze R
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(Here, 9¢%(S) stands for the k-dimensional Hausdorff measure on the Euclidean space containing the set S
under consideration.) Among all v-distributed sets, we denote by F[v] the (only) one that is symmetric
by reflection with respect to {gx = 0}, and whose vertical sections are segments, that is, we set

Flv]={x e R": |gx| < Jv(px)}.

If E is a v-distributed set, then the set F[v] is the Steiner symmetral of E, and is usually denoted as E*.
(Our notation reflects the fact that, in addressing the structure of equality cases, we are more concerned
with properties of v rather than with the properties of a particular v-distributed set.) The set F[v] has
finite volume if and only if v € L'(R"~!), and it is of finite perimeter if and only if v € BV(R"~!) with
%"~1({v > 0}) < oo; see Proposition 3.2. Denoting by P(E; A) the relative perimeter of E with respect
to the Borel set A C R" (so that, for example, P(E; A) = H""'(ANJE)if E is an open set with Lipschitz
boundary in R"), the Steiner perimeter inequality implies that, if E is a v-distributed set of finite perimeter,
then

P(E; G xR) > P(F[v]; G xR) for every Borel set G C R"~!. (1-1)

Inequality (1-1) was first proved in this generality by De Giorgi [1958], in the course of his proof of the
Euclidean isoperimetric theorem for sets of finite perimeter. Indeed, an important step in his argument
consists in showing that if a set E satisfies (1-1) with equality, then, for #"~'-a.e. z € G, the vertical
section E. is %¢'-equivalent to a segment; see [Maggi 2012, Chapter 14]. The study of equality cases in
Steiner’s inequality was then resumed by Chlebik et al. [2005]. We now recall two important results from
their paper. The first theorem, which is easily deduced by means of [Chlebik et al. 2005, Theorem 1.1,
Proposition 4.2], completes De Giorgi’s analysis of necessary conditions for equality, and, in turn, provides
a characterization of equality cases whenever 3* E has no vertical parts. Given a Borel set G C R*~!, we
set

Mg() ={E C R": E v-distributed and P(E; G x R) = P(F[v]; G x R)} (1-2)
to denote the family of sets achieving equality in (1-1), and simply set M(v) = Mpa-1 (V).

Theorem A [Chlebik et al. 2005]. Let v € BV(R"™") and let E be a v-distributed set of finite perimeter. If
E € Mg (v) then, for #"'-a.e. 7€ G, E. is #'-equivalent to a segment (t~, t 1), with (z, t1), (z,t ") € 9*E,
Pve(z,tT) = pvp(z,t7), and que(z, t1) = —que(z, 7).

The converse implication holds provided 9* E has no vertical parts above G, that is,

9" ({x € 3*EN(G x R) : qug(x) =0}) =0, (1-3)

where 0* E denotes the reduced boundary of E, while vg is the measure-theoretic outer unit normal of E,
see Section 2B.

The second main result, from [Chlebik et al. 2005, Theorem 1.3], provides a sufficient condition for
the rigidity of equality cases in Steiner’s inequality over an open connected set. Note indeed that some
assumptions are needed in order to expect rigidity; see Figure 1.
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E E
Fv] F[v]
1
o-o --------------- .]--> .Oz -------- o!->

Figure 1. Left: 9* F[v] has vertical parts over 2 = (0, 1) and (1-6) does not hold. Right:
9* F[v] has no vertical parts over Q = (0, 1), but (1-5) fails (indeed, 0 = vv(%) = vA(%)).

Theorem B [Chlebik et al. 2005]. IfveBV(R"™!), Q c R*~! is an open connected set with %"~ () < oo,
and

Dv. =0, (1-4)
V>0 " 2-a.e on S, (1-5)

then for every E € Mg (v) we have
" ((EA(te, + FID)N (2 x R)) =0 for some t € R. (1-6)

Remark 1.1. Here, D*v stands for the singular part of the distributional derivative Dv of v, while v”
and v" denote the approximate lower and upper limits of v (so that if vy = v, a.e. on R"~!, then vy = vy
and v] = v} everywhere on R"~!). We call [v] = v¥ — v” the jump of v, and define the approximate
discontinuity set of v as S, = {v¥ > v"} = {[v] > 0}, so that S, is countably %" ~2-rectifiable, and there
exists a Borel vector field v, : S, — $"~! such that D*v = v,[v]#"2LS, + Dv, where D¢v stands for
the Cantorian part of Dv. These concepts are reviewed in Sections 2A and 2B.

Remark 1.2. Assumption (1-4) is clearly equivalent to asking that v e W1(Q) (so that v = v" #"2-a.e.
on £2), and, in turn, it is also equivalent to asking that 0* F[v] have no vertical parts above €2, that is —
compare with (1-3) —

9" ({x € 3* F[v]N (2 x R) : quppy (x) = 0}) = 0; (1-7)
see [Chlebik et al. 2005, Proposition 1.2] for a proof.

Remark 1.3. Although assuming the “no vertical parts” (1-4) and “no vanishing sections” (1-5) conditions
appears natural in light of the examples sketched in Figure 1, it should be noted that these assumptions are
far from being necessary for rigidity. For example, Figure 2 shows the case of a polyhedron in R* such
that (1-6) holds, but the “no vertical parts” condition fails. Similarly, in Figure 3, we have a polyhedron
in R? such that (1-6) and (1-4) hold, but such that (1-5) fails.
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Figure 2. A polyhedron in R? such that the rigidity condition (1-6) is satisfied (with
Q = (0, 1)?) but the “no vertical parts” condition fails.

{v=0}

Figure 3. A polyhedron in R? such that the rigidity condition (1-6) and the “no vertical
parts” condition hold (with € = (0, 1)?), but the “no vanishing sections” condition fails.

1C. Essential connectedness. The examples discussed in Figure 1 and Remark 1.3 suggest that in order
to characterize rigidity of equality cases in Steiner’s inequality one should first make precise the sense in
which the (n—2)-dimensional set S, = {v" < v"} (contained in the projection of vertical boundaries) may
disconnect the (n—1)-dimensional set {v > 0} (that is, the projection of F[v]). In the study of rigidity of
equality cases for Ehrhard’s perimeter inequality — see [Cagnetti et al. 2013] — we have addressed this
kind of question by introducing the following definition.

Definition 1.4. Let K and G be Borel sets in R”. One says that K essentially disconnects G if there
exists a nontrivial Borel partition {G;, G_} of G modulo #™ such that

7" (GY NG NG\ K)=0; (1-8)

conversely, one says that K does not essentially disconnect G if, for every nontrivial Borel partition
{G+, G_} of G modulo #™,

" 1(GVY N3G, NI*G_)\ K) > 0. (1-9)
Finally, G is essentially connected if @ does not essentially disconnect G.
In the above definition, by a nontrivial Borel partition {G 1, G_} of G modulo #" we mean that
H"(GLNG-)=0, H"(GAGL+UG-)=0, H"(GLH"(G-)=>DO0.
Moreover, 3°G denotes the essential boundary of G, which is defined as

°G =R"\ (GOuGW),
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G G
G
’V\K ,«A'A\.."%. -l"’ "--‘““..\K/
G_

Figure 4. Left: G is a disk and K is a smooth curve that divides G in two open regions
G and G_, in such a way that (1-8) holds: thus, K essentially disconnects G. Right:
Let K’ be obtained by removing some points from K. If we remove a set of length
zero, that is, if #'(K \ K’) =0, then K" still essentially disconnects G (although G \ K’
may easily be topologically connected); if, instead, %' (K \ K’) > 0, then K’ does not
essentially disconnect G, since (1-9) holds (with K’ in place of K).

where G© and GV denote the sets of points of density 0 and 1 of G; see Section 2A.

Remark 1.5. If #”" (GAG’) =0 and %"~ (K AK’) =0, then K essentially disconnects G if and only if
K’ essentially disconnects G’; see Figure 4.

Remark 1.6. We refer to [Cagnetti et al. 2013, Section 1.5] for more comments on the relation between
this definition and the notions of indecomposable currents [Federer 1969, 4.2.25] and indecomposable sets
of finite perimeter [Dolzmann and Miiller 1995, Definition 2.11] or [Ambrosio et al. 2001, Section 4] used
in geometric measure theory. We just recall here that a set of finite perimeter E is said to be indecomposable
if P(E) < P(E4)+ P(E_) whenever {E, E_} is a nontrivial partition modulo #" of E by sets of finite
perimeter. Moreover, the latter inequality is equivalent to %"~ (E(V N 9°E, N3°E_) > 0. Let us also
note that this measure-theoretic notion of connectedness is compatible with essential connectedness:
indeed, as proved in [Cagnetti et al. 2013, Remark 2.3], a set of finite perimeter is indecomposable if and
only if it is essentially connected. Nevertheless, when possible, we shall use the term indecomposable in
place of the term essentially connected, in order to make immediate the identification of those statements
and conditions whose formulation genuinely requires Definition 1.4.

1D. Equality cases and barycenter functions. With the notion of essential connectedness at hand we
can easily conjecture several possible improvements of Theorem B. As it turns out, a fine analysis of the
barycenter function for sets of finite perimeter with segments as sections is crucial in order to actually
prove these results. Given a v-distributed set E, we define the barycenter function of E, bg : R > R,
by setting, for every z € R"~!,

bE(z)zif rd¥#' (1) if v(z) >0 and/ rd¥' (1) e R, (1-10)
v(z) JE, E.

and bg(z) = 0 otherwise. In general, by may only be a Lebesgue measurable function. When E has
segments as sections and finite perimeter, the following theorem provides a degree of regularity for bg
that turns out to be sharp; see Remark 3.5. Note that the set where v vanishes is critical for the regularity
of the barycenter, as implicitly expressed by (1-11).
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Theorem 1.7. Ifve BV(R"™!) and E is a v-distributed set of finite perimeter such that E. is #'-equivalent
to a segment for #" " '-a.e. z € R*™!, then

bs = l{y=s8)bE € GBV(R"™) (1-11)

for every § > 0 such that {v > §} is a set of finite perimeter. Moreover, bg is approximately differentiable
%"~ !-a.e. on R"~!, and for every Borel set G C {v" > 0} we have the coarea formula

/%"Z(Gmae{bE >t})dt=f |VbE|d%"1+/ [be]d¥H" ™2 + Db |T(G), (1-12)
R G G

meE
where |Dbg | is the Borel measure on R"~! defined by

IDbE|T(G) = 5lir(r)1+ |D¢bs|(G) = sup | D°bs|(G) forall G C R"'. (1-13)
e §>0

Remark 1.8. Let us recall that u € GBV(R"™1) if and only if 7y (u) € BVoe(R*™1) for every M > 0
(where 7);(s) = max{—M, min{M, s}} for s € R), and that for every u € GBV(R"~!) we can define a
Borel measure | Du| on R"~! by setting

|IDul(G) = lim |D(zyu)|(G) = sup |D(tyu)|(G) (1-14)

M— 00 M=>0

for every Borel set G C R"™!. (If u e BV(R"1), then the total variation of the Cantorian part of Du
agrees with the measure defined in (1-14) on every Borel set.) The measures | D bs| appearing in (1-13)

are thus defined by means of (1-14), and this makes sense by (1-11). Concerning |D°bg|*, we just note
that if by € GBV(R"™') —and thus | Dbg| is well-defined — then we have

|Dbg|" = |Dbg| {v" > 0} on Borel sets of R"~!.

Starting from Theorem 1.7, we can prove a formula for the perimeter of E in terms of v and bg (see
Corollary 3.3) that in turn leads to the following characterization of equality cases in Steiner’s inequality
in terms of barycenter functions. We recall that, here and in the following results, the assumption
v e BV(R"!; [0, 00)) with %"~ ({v > 0}) is equivalent to asking that F[v] be of finite perimeter, and is
thus necessary to make sense of the rigidity problem. In addition we recall that X C R™ is a concentration
set for a Borel measure p on R if u(R™\ X) =0.

Theorem 1.9. Let v € BV(R"!; [0, 00)) with #"~'({v > 0}) < 0o, and let E be a v-distributed set of
finite perimeter. Then, E € M(v) if and only if

E. is %' -equivalent to a segment for #" '-a.e. z € R"!, (1-15)

Vbp(z) =0 for #" '-ae z e R", (1-16)

2[bp]l <[v] #"2-a.e. on{v" >0}, and (1-17)

D (tmbs)(G) =/ fd(D) (1-18)
GN{w>8YON{|bg|<M}D

for every bounded Borel set G C R"~! and for #'-a.e. § > 0 and M > 0, where f : R"~! — [—%, %] isa
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v (z) =0 v (z) >0

Figure 5. If E € M (v), then the jump [bg] of the barycenter of E can be arbitrarily large
on {v" = 0}, but is necessarily bounded by half the jump of v on {v" > 0}; see (1-17).
Moreover, the same rule applies to the Cantorian “jumps”, see (1-18) and (1-19).

Borel function; see Figure 5. In particular, E € M(v) implies that
2|Dbg|T(G) < |Dv|(G) for every Borel set G C R, (1-19)

and that, if K is a concentration set for Dv and G is a Borel subset of {v" > 0}, then

/%"_Z(Gﬂae{bE > t})dt:/ [(bpld¥" 2 +|Dbg|T(GNK). (1-20)
R G

DS;,EMSU

Remark 1.10. By Theorem 1.7, (1-15) allows us to make sense of Vbg, |Dbg|", and D(tybs) (for
a.e. 6 > 0), and thus to formulate (1-16), (1-18), (1-19), and (1-20). In particular, (1-20) is an immediate
consequence of (1-12), (1-16), (1-17), and (1-19).

Theorem 1.9 is a powerful tool in the study of rigidity of equality cases. Indeed, rigidity amounts to
asking that br be constant on {v > 0}. Now, b is nonconstant (modulo %"~!) on {v > 0} if and only
if there exists 7 C R with %! (I) > 0 such that, if r € I, then {{b > t}, {br < t}} is a nontrivial Borel
partition of {v > 0} (modulo %"~"). In other words, the failure of rigidity is equivalent to saying that
0%{br > t} essentially disconnects {v > 0} for every ¢ € I with %*'(1) > 0. By combining this point of
view with the coarea formula (1-20) and with the definition of essential connectedness, we quite easily
deduce the following sufficient condition for rigidity.

Theorem 1.11. If v € BV(R"~!; [0, 00)), #"~'({v > 0}) < oo, and the Cantor part Dv of Dv is
concentrated on a Borel set K such that

{v* =0} U S, UK does not essentially disconnect {v > 0}, (1-21)

then for every E € M(v) there exists t € R such that K" (EA(ten + F[v])) =0.

Remark 1.12. Note that Theorem 1.11 provides a sufficient condition for rigidity without a priori
structural assumption on F[v]. In particular, the theorem admits for nontrivial vertical boundaries and
vanishing sections, which are excluded in Theorem B by (1-4) and (1-5). (In fact, as shown in Appendix A,
Theorem B can be deduced from Theorem 1.11.) We also note that condition (1-21) is clearly not necessary
for rigidity as soon as vertical boundaries are present; see Figure 2.
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A natural question about equality cases of Steiner’s inequality that is left open by Theorem 1.9 is to
describe the situation when every E € Jil(v) is obtained by at most countably many vertical translations
of parts of F[v]. In other words, we want to understand when to expect every E € Jl(v) to satisfy

E =50 |_J(chen + (FIV1N (Gi x R))), (1-22)
hel
where [ is at most countable, {cy}ne; C R, and {Gp},<; is a Borel partition modulo %1 of {v > 0}.
The following theorem shows that this happens when v is of special bounded variation with locally
finite jump set. The notion of v-admissible partition of {v > 0} used in the theorem is introduced in
Definition 1.25; see Section 1E.

Theorem 1.13. Ler v € SBV(R"™!; [0, 00)). Assume that #"~' ({v > 0}) < oo, and that
Sy N{v" > 0} is locally H">-finite. (1-23)

Let E be a v-distributed set of finite perimeter. Then, E € M(v) if and only if E satisfies (1-22) for a
v-admissible partition {Gp}per of {v > 0} and 2[bg] < [v] H"2-a.e. on {v" > 0). Moreover, if these
hold, then |Dbg|*t = 0.

Remark 1.14. Let us recall that, by definition, v € SBV(R" 1) if v € BV(R*') and Dv = 0. The
approximate discontinuity set S, of a generic v € SBV(R"~!) is always countably %" ~2-rectifiable, but it
may fail to be locally " ~2finite. If v € SBV(R"~1) but (1-23) fails, then it may happen that (1-22) does
not hold for some E € J/(v); see Remark 1.32 below.

We close our analysis of equality cases with the following proposition, which shows a general way
of producing equality cases in Steiner’s inequality that (potentially) do not satisfy the basic structure
condition (1-22).

Proposition 1.15. If v = v; + vy, where vy, v € BV(R"!: [0, 00)), Dv; = D%vy, vy is not constant
(modulo ¥"~") on {v > 0}, Dvy = Dvy, and 0 < ¥~ ({v > 0}) < oo, then rigidity fails for v. Indeed, if
we set

E ={x eR": —vy(px) — 501(px) < gx < 3vi(px) + (1 = 2)va(px)} (1-24)

for A € [0, 11\ {3}, then E € M(v) but %" (E A(te, + F[v])) > 0 for every t € R. (Note that in (1-24) the
choice A = % gives E = F[v].)

1E. Characterizations of rigidity. We now start to discuss the problem of characterizing rigidity of
equality cases. We shall analyze this question under different geometric assumptions on the considered
Steiner symmetral, and see how different structural assumptions lead to different characterizations.

We begin our analysis by working under the assumption that no vertical boundaries are present where
the slice length function v is essentially positive, that is, on {v”* > 0}. It turns out that, in this case, the
sufficient condition (1-21) takes the form

{v* =0} does not essentially disconnect {v > 0}, (1-25)
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and that, in turn, this same condition is also necessary to rigidity. Moreover, an alternative characterization
can obtained by merely requiring that F[v] be indecomposable.

Theorem 1.16. Let v e BV(R"™!; [0, 00)) with #"~'({v > 0}) < oo and
Dv {v” >0} =0. (1-26)
Then the following are equivalent:
(1) If E € M(v) then #" (EA(te,, + F[v])) =0 for some t € R.
(i) {v" = 0} does not essentially disconnect {v > 0}.
(iii) F[v] is indecomposable.

Remark 1.17. Note that condition (1-26) does not prevent 9* F[v] from containing vertical parts, provided
they are concentrated where the lower approximate limit of v vanishes. Indeed, (1-26) implies that
D¢v =0 (see step one in the proof of Theorem 1.16 in Section 4E), and that S, is contained in {v" = 0}
modulo %" 2. We also note that the equivalence between conditions (ii) and (iii) is actually true whenever
v e BV(R"!; [0, 00)) with #"~!({v > 0}) < oo; in other words, (1-26) plays no role in proving this
equivalence. This is proved in Section 4D, Theorem 4.3.

The situation becomes much more complex when we allow 8* F[v] to have vertical parts above {v" > 0}.
As already noted, simple polyhedral examples, like the one depicted in Figure 2, show that condition (1-21)
is not even a viable candidate as a characterization of rigidity in this case. We shall begin our discussion
of this problem by solving it in the case of polyhedra and, in fact, in the much broader class of sets
introduced in the next definition.

Definition 1.18. Let v : R"~! — [0, 0o). We say that F[v] is a generalized polyhedron if there exists
a finite disjoint family of indecomposable sets of finite perimeter and volume {A;},c; in R"!, and a
family of functions {v;}jc; C WLL(R" 1), such that

v=> vjla;. (1-27)
jeJ
(" =01\ (v =0}D)US, Cyo2 | J0°4;. (1-28)
jeJ

(Here and in the following, A Cg« B stands for (A \B)=0.)

Remark 1.19. Condition (1-28) amounts to requiring that v can jump or essentially vanish on {v > 0}
only inside the essential boundaries of the sets A ;. For example, if {A;};c; is a finite disjoint family of
bounded open sets with Lipschitz boundary in R"~!, {v j}jes CC (R 1), and v j >0on A; for every
jeJ, thenv=">" jes Vjla; defines a generalized polyhedron F[v]. Note that in this case (1-28) holds,
since v can jump only over the boundaries of the A, so that S, C {J;c; 9A;, while {v; =0}NA; CIA;
for every j € J.

Theorem 1.20. If v : R"~! — [0, 00) is such that F[v] is a generalized polyhedron, then the following
two statements are equivalent:
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(1) If E € M(v) then #" (EA(te,, + F[v])) =0 for some t € R.
(ii) For every &€ > 0 the set {v" = 0} U {[v] > &} does not essentially disconnect {v > 0}.

Remark 1.21. In the example depicted in Figure 2, the set {v"* =0}N{v > 0} is empty, the set {[v] > 0}
essentially disconnects {v > 0}, but there is no ¢ > 0 such that {[v] > ¢} essentially disconnects {v > 0}.
Indeed, in this case, rigidity holds.

Note that, if F[v] is a generalized polyhedron, then v € SBV(R"~!) with S, locally %" ~2-rectifiable,
so that v satisfies the assumptions of Theorem 1.13. We now discuss the rigidity problem in this more
general situation.

As shown by Example 1.22 below, condition (ii) in Theorem 1.20 is not even a sufficient condition for
rigidity under the assumptions on v considered in Theorem 1.13. A key remark here is that, in the situations
considered in Theorem 1.16 and Theorem 1.20, we can create failure of rigidity by performing a vertical
translation of F[v] above a single part of {v > 0}. For example, when condition (ii) in Theorem 1.20
fails, there exist € > 0 and a nontrivial Borel partition {G, G_} of {v > 0} modulo %"~ such that

(w>0VN3G,LNIG_ Cynr (v =0} U{[v] > ¢}.
In that case, as we shall prove later on, the v-distributed set E(¢) defined as
E@) = ((ten + Flv]) N (G4 x [R{)) UFvIN(G- xR)), teR,

and obtained by a single vertical translation of F[v] above G, satisfies P(E(t)) = P(F[v]) whenever
t € (0, /2). (Moreover, when condition (1-25) fails, we have E(¢) € Al(v) for every t € R.) However,
there may be situations in which violating rigidity by a single vertical translation of F[v] is impossible,
but where this task can be accomplished by simultaneously performing countably many independent
vertical translations of F[v]. An example is obtained as follows.

Example 1.22. We construct a function v : R* — [0, 0o) in such a way that v € SBV(R?), S, is locally
%! -rectifiable, the set {v" = 0} U {[v] > ¢} does not essentially disconnect {v > 0} for any ¢ > 0, but,
nevertheless, rigidity fails. Given € R and £ > 0, denote by Q(t, £) the open square in R? with center at
(z,0), sides parallel to the direction (1, 1) and (1, —1), and diagonal of length 2¢. Then we set u1 =1¢(0,1),
and define a sequence {u} jen of piecewise constant functions

ur=uy — 3lo3/a 14+ 310G/41/4),
us =uz — 31o15/16.1/16) + 31 0—9/16,1/16) — 11 000/16,1/16) + 11 0(15/16,1/16)

etc.; see Figure 6. This sequence has pointwise limit v € SBV(R?; [0, o0)) such that {v > 0} = Q(0, 1)
and Dv = D’v. In particular, if we define E as in (1-24) with A = 0, v; = 0, and v, = v, then, by
Proposition 1.15, E € M(v). Since bg = %v, we easily see that (1-34), and thus (1-22), holds; in
other words, E is obtained by countably many vertical translations of F[v] over suitable disjoint Borel
sets G, h € N. At the same time, any set E( obtained by a vertical translation of F[v] over one (or over
finitely many) of the G is bound to violate the necessary condition for equality, 2[bg,] < [v] H2-a.e.
on S, N{v” > 0}, as the infimum of [v] on 3°G; N S, N {v”" > 0} is zero for every & € N. We also note
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Figure 6. The functions u, and u4 in the construction of Example 1.22.

that, as a simple computation shows, S, N {v” > 0} is not only countably %¢!-rectifiable in R? but actually
%! -finite (thus, it is locally %! -rectifiable).

All the above considerations finally suggest the following condition, which, in turn, characterizes
rigidity under the assumptions on v considered in Theorem 1.13. We begin by recalling the definition of
a Caccioppoli partition.

Definition 1.23. Let G ¢ R"*~! be a set of finite perimeter and let {Gp},<; be an at most countable Borel
partition of G modulo -1, (That is, I is a finite or countable set with #1 > 2, G =gpm-1 Uhe 1 Gh,
%"1(Gy) > 0 for every h € I, and %"~1(G, N Gy) =0 for every h, k € I, h # k.) We say that {Gp}ner
is a Caccioppoli partition of G if )", _; P(G},) < o0.

Remark 1.24. When G is an open set and {G},¢; is an at most countable Borel partition of G mod-
ulo %"~ 1, then, according to [Ambrosio et al. 2000, Definition 4.16], {G},cs is a Caccioppoli partition
of Gif ), ; P(Gp; G) < oo. Of course, if we assume in addition that G is of finite perimeter, then
> ner P(Gr; G) < 0o is equivalent to ), ., P(Gj) < oo. Thus Definition 1.23 and [Ambrosio et al.
2000, Definition 4.16] agree in their common domain of applicability (that is, on open sets of finite
perimeter).

Definition 1.25. Let v € BV(R"!; [0, 00)), and let {G}}rc; be an at most countable Borel partition
of {v > 0}. We say that {Gj}nes 1S a v-admissible partition of {v > 0} if {G, N BrN{v > §}}ser isa
Caccioppoli partition of {v > 8} N Bg for every § > 0 such that {v > §} is of finite perimeter and for
every R > 0.

Definition 1.26. One says that v € BV(R"!; [0, 00)) satisfies the mismatched stairway property if the
following holds: If {Gp}ner is a v-admissible partition of {v > 0} and if {c,}re; C R is a sequence with
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¢, # ¢ whenever h # k, then there exist hg, kg € I with hg £ ko and a Borel set X with
¥ C 3Gy, NGy, N 0" >0}, #H"2(2) >0, (1-29)

such that
[v](z) <2|cp, —cx,| forall z € X. (1-30)

Remark 1.27. The terminology adopted here intends to suggest the following idea. One considers a
v-admissible partition {Gp}xe; of {v > 0} such that {v > 0} N Upes 906Gy s contained in {v =0} U S,,.
Next, one modifies F[v] by performing vertical translations ¢, above each Gy, thus constructing a new
set E having a “stairway-like” barycenter function. This new set will have the same perimeter of F[v],
and thus will violate rigidity if #1 > 2, provided all the steps of the stairway match the jumps of v, in the
sense that 2[bg] = 2|c;, — ¢i| < [v] on each 3G, N 3°G N {v" > 0}. Thus, when all equality cases have
a stairway-like barycenter function, we expect rigidity to be equivalent to asking that every such stairway
has at least one step that is mismatched with respect to [v]; compare with (1-30).

Remark 1.28. If v € BV(R"~!; [0, 00)) has the mismatched stairway property, then, for every & > 0,
{v" =0} U{[v] > €} does not essentially disconnect {v > 0}. In particular, {v" = 0} does not essentially
disconnect {v > 0}, {v > 0} is essentially connected, and although it may still happen that {v" =0} U S,
essentially disconnects {v > 0}, in this case one has

%" 2 essinf[v] = 0.
SyN{v" >0}

We prove the claim arguing by contradiction. If {v" = 0} U {[v] > &} essentially disconnects {v > 0},
then there exist & > 0 and a nontrivial Borel partition {G,, G_} of {v > 0} modulo %"~! such that
(v>01DN3G L NIG_ Cynna {v) =0} U{[v] > €}. Since (2-9) below implies {v" > 0} C {v > 0}V,

we have
{(v* > 0}N3d°GLNAIG_ Cyma {[v] > &}, (1-31)

so that, for every § > 0 (and since {v > 8§}V N3°G,L = {v > 8§}V NI°G_),
(v>81N3G, ={v>8PVN3IGCLNIG_ Cynn {[v] > &}. (1-32)

If we set Go5 = G+ N {v > 8}, then 3°G+s C 3%{v > 8} U ({v > 8}V N 3°G), and, by (1-32),
0°Gis Cymoa 3°{v > 8} U {[v] > €}. Since [v] € L1(#"2LS,), we find #"2({[v] > t}) < oo for
every ¢ > 0, and, in particular

P(Gys) + P(G_s) <2P({v > 8}) + 2" *({[v] > &}) < o0

whenever {v > 48} is of finite perimeter. This shows that {G_, G_} is a v-admissible partition. If we now set
I={+,—-},cy=¢/2,and c_ =0, then I, {Gp}ser, and {c; }nes are admissible in the mismatched stairway
property. By the mismatched stairway property, there exists a Borel set © C {v* >0} N3d°G L N3I°G_
such that [v] < 2|cy —c_| =€ on ¥ and #"2(X) > 0, a contradiction to (1-31).

It turns out that if v is a SBV-function with locally finite jump set, then rigidity is characterized by the
mismatched stairway property.
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Theorem 1.29. Ifv € SBV(R"™!; [0, 00)), %"~ ({v > 0}) < 00, and S, N {v" > 0} is locally ¥"~>-finite,
then the following two statements are equivalent:

(i) If E € M(v), then #"(E A(te, + F[v])) =0 for some t € R.
(i1) v has the mismatched stairway property.

The question of a geometric characterization of rigidity when v € BV is thus left open. The considerable
complexity of the mismatched stairway property may be seen as a negative indication about the tractability
of this problem. In the planar case, due to the trivial topology of the real line, these difficulties can be
overcome, and we obtain the following complete result.

Theorem 1.30. If v € BV(R; [0, 00)) and %' ({v > 0}) < oo, then the following are equivalent:
(i) If E € M(v), then #*(E A(te; + F[v])) =0 for some t € R.
(i) {v>0}is %l-equivalent to a bounded open interval (a, b), v € wh(a, b), and v" > 0 on (a, b).

(iii) F[v]is an indecomposable set that has no vertical boundary above {v" > 0}, i.e.,
' ({x € 3*F[v]: qurp (x) =0, v"(px) > 0}) = 0. (1-33)

The extension of our results to the case of the localized Steiner inequality is discussed in Appendix A. In
particular, we shall explain how to derive Theorem B from Theorem 1.11 via an approximation argument.

1F. Some closing remarks. We conclude this introduction with a few remarks of more technical nature.
The first two remarks deal with the issue addressed in Theorem 1.13, namely, understanding when equality
cases are necessarily obtained by countably many vertical translations of the Steiner symmetral; see (1-22).
Theorem 1.13 ensures this is the case if v € SBV(R"~!) with S, N {v”" > 0} locally %" —2-finite. In the
following two remarks we show that, if we merely assume that v € SBV(R"~!), then we can indeed
construct equality cases that do not satisfy (1-22).

Remark 1.31. Condition (1-22) can be reformulated in terms of a property of the barycenter function.
Indeed, (1-22) is equivalent to asking that

be=) cilg, #"'-ae. onR"! (1-34)
hel

for I, {cp}ner and {Gp}per as in (1-22). It should be noted that, if no additional conditions are assumed on
the partition {Gp}er, then (1-34) is not equivalent to saying that br has “countable range”. An example
is obtained as follows. Let K be the middle-third Cantor set in [0, 1], let {Gj}ren be the disjoint family of
open intervals such that K = [0, 1]\ Uh en G, and let {c;}ren C R be such that the Cantor function u g
satisfies ux = c; on Gy. In this way, ug =), cnlg, on [0, 11\ K, thus %'-a.e. on [0, 1]. Of course,
since u g is a nonconstant, continuous, and increasing function, it does not have “countable range” in any
reasonable sense. At the same time, if we set v(z) = 1j9,17(z) dist(z, K) for z € R, then v is a Lipschitz
function on R (thus it satisfies all the assumptions in Theorem 1.13) and the set

E={xeR*:ug(px)— sv(px) < qx < ug(px)+ 1v(px)}
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is such that E € Al(v), as one can check by Corollary 3.3 and Corollary 3.4 in Section 3B. We also note
that, in this example, | Dbg|_{v" = 0} # 0, while |D°bg|t = 0.

Remark 1.32. We now describe the example introduced in Remark 1.14. Given {gj}neny = Q N[O, 1]
and {ay}ren € (0, 00) such that ZheN o), < 0o, we can define v € SBV(R) such that %' ({v > 0}) = 1
and Dv = D’v = D/ v, by setting

v(t) = Z Olhzzahl(q,,,l](l), teR.
{heN:g,<t<1} heN
If we let v =0, v, = v, and, say, A = 0, in Proposition 1.15 below, then we obtain a set E € A (v). At
the same time, (1-34), and thus (1-22), cannot hold, as bg = %v %'-a.e. on R and v is strictly increasing
on [0, 1]. (The requirement that the sets G, in (1-34) are mutually disjoint modulo %"~ plays a crucial
role in here, of course.) Note that, as expected, S, N {v" > 0} = QN [0, 1] is not locally %O-finite.

The following final remark is instead concerned with the characterization presented in Theorem 1.29
in terms of the mismatched stairway property.

Remark 1.33. Is it important to observe that, in order to characterize rigidity, only v-admissible partitions
of {v > 0} have to be considered in the definition of the mismatched stairway property. Indeed, let n = 2
and set v = 1(9,1) € SBV(R; [0, 00)), so that rigidity holds for v. Now let {G},},en be the family of open
intervals used to define the middle-third Cantor set K, so that K = [0, 1]\ | nen Gi- Note that {Gp }pen
is a nontrivial countable Borel partition of {v > 0} = (0, 1) modulo %'. However, since 3°G;,N3°Gy = @
whenever & # k, it is not possible to find a set X satisfying (1-29), whatever choice of {c;},en We make.
In particular, if we did not restrict the partitions in Definition 1.26 to v-admissible partitions, then this
particular v (satisfying rigidity) would not have the mismatched stairway property. Note of course that, in
this example, ), P(GrN{v > 8} N Bg) = oo for every §, R > 0.

2. Notions from geometric measure theory

We gather here some notions from geometric measure theory needed in the sequel, referring to [Ambrosio
et al. 2000; Maggi 2012] for further details. We start by reviewing our general notation in R”. We denote
by B(x, r) the open Euclidean ball of radius » > 0 and center x € R". Given x € R” and v € §"~! we
denote by Hj , and H", the complementary half-spaces

Hf,=(yeR":(y—x)-v=0}, H_,=(yeR":(y—x)-v=0}L 2-D

Finally, we decompose R” as the product R"~! x R, and denote by p : R" — R"~! and ¢ : R” — R the
corresponding horizontal and vertical projections, so that

x=(px,qx)=x',x,), x'=(1,...,x,_1) forall x e R",

and define the vertical cylinder of center x € R” and radius r > 0, and the (n—1)-dimensional ball in R"~!
of center z € R"~! and radius r > 0 by setting, respectively,

Cor=1{yeR":|px—pyl<rlgx—qyl<r}), Dy={weR" " :|lw—zl<r}
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In this way, Cy , = Dy » X (gx —r, gx +r). We shall use the following two notions of convergence for
Lebesgue measurable subsets of R”. Given Lebesgue measurable sets { £, }neny and E in R, we shall say
that Ej, locally converge to E, and write

loc
E,— E ash— oo,

provided #"((E,AE)NK) — 0 as h — oo for every compact set K C R"; we say that E;, converge to E
as h — oo, and write E;, — E, provided #"(E,AE) — 0 as h — oo.

2A. Density points and approximate limits. If E is a Lebesgue measurable set in R” and x € R", then
we define the upper and lower n-dimensional densities of E at x as

%" (E N B(x, . 9"(ENB(x,
0*(E. x) = limsup LN BET) 4 0,(E. x) = liminf 2 £ BG. 1)

r—0t w, " r—0t w,r"

respectively. In this way we define two Borel functions on R” that agree a.e. on R". In particular, the
n-dimensional density of E at x,

H"(ENB
O(E,x) = lim ( (x’r)),
r—0t wy, 1"

is defined for a.e. x € R", and 6(E, -) is a Borel function on R" (up to extending it by a constant value
on the #"-negligible set {0*(E, -) > 6,(E, -)}). Correspondingly, for ¢ € [0, 1], we define

EV ={x eR":6(E,x)=t)}. (2-2)

By the Lebesgue differentiation theorem, {E®, E(V} is a partition of R” up to an #"-negligible set. It is
useful to keep in mind that

xeED ifandonlyif E, -5 R"asr — 0,

. . 1
xcEQ ifandonlyif E,, — @asr— 0T,

where E, , denotes the blow-up of E at x at scale r, defined as

Exrzuz Y~X . yeEl, xeR'.r>o.
, ; r y

The set 3°E = R" \ (E©@ U EW) is called the essential boundary of E. Thus, in general, we only have
#H"(0°E) = 0, but we do not know 9°E to be “(n—1)-dimensional” in any sense. Strictly related to
the notion of density is that of approximate upper and lower limits of a measurable function. Given a
Lebesgue measurable function f : R” — R we define the (weak) approximate upper and lower limits
of fatx e R" as

fY@)y=inflt eR:0({f >1},x) =0} =inflt eR:0({f <t},x) =1},
Frx)=sup{t e R:0({f <t},x) =0} =sup{t e R:0({f > t},x) =1}.

As it turns out, f¥ and f” are Borel functions with values on R U {Z00} defined ar every point x
of R", and they do not depend on the Lebesgue representative chosen for the function f. Moreover, for
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"-a.e. x € R", we have that f¥(x) = f"(x) € RU {zo0}, so that the approximate discontinuity set
of f, Sy ={f" < f"}, satisfies %" (Sy) = 0. On noticing that, though f”" and f" may take infinite
values on Sy, the difference fV(x) — f”(x) is always well-defined in R U {£o0} for x € S, we define
the approximate jump of f as the Borel function [ f] : R" — [0, oo] defined by

[Y@) = frx) if x €Sy,

Lf](x):{o if x € R"\ Sy,

so that Sy = {[ f] > 0}. Finally, the approximate average of f is the Borel function f:R" > RU{+o0}

defined as
%(fv(x) + fAMx)) if x eR"\{f"=—o0, ¥V =400},

. (2-3)
0 if xe{f"=—o0, f¥ = +ool.

fx)= {

The motivation behind definition (2-3) is that (in step two of the proof of Theorem 3.1) we want the limit
relation

Foo= lim w(HE) = lim deu(f)+au(f) forall xR (2-4)

to hold for every Lebesgue measurable function f : R” — R, where here and in the rest of the paper we
set

Ty (s) = max{—M, min{M, s}}, se€ RU{ztoo}. (2-5)
The validity of (2-4) is easily checked by noticing that
(A =, () = (), (D@ =)+ (. (26

With these definitions at hand, we note the validity of the following properties, which follow easily from
the above definitions, and hold for every Lebesgue measurable f : R" — R and for every t € R:

{FIY <ty ={—t < fAIN{fY <1}, 2-7)
(¥ <tyc(f <V c{fY <1, (2-8)
(P>t c{f>n®cif =1 (2-9)

(Note that all the inclusions may be strict, that we also have { f < ¢}V ={fY < }1, and that all the other
analogous relations hold.) Moreover, if f, g : R" — R are Lebesgue measurable functions and f = g
#"-a.e. on a Borel set E, then

o =¢"w), ffe)=g"®), [flx)=I[glx) foral xeEWM. (2-10)

If f:R"— Rand A C R" are Lebesgue measurable, and x € R" is such that 6*(A, x) > 0, then we say
that ¢t € RU {300} is the approximate limit of f at x with respect to A, and write t = aplim(f, A, x), if
9({|f—t|>8}mA;X)=0 forall e>0 (teR),
O{f <M}NA;x)=0 forall M >0 (t=+00),
O({f>—-MINA;x)=0 forall M >0 (r=—00).
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We say that x € Sy is a jump point of f if there exists v € §"=1 such that

fY @) =aplim(f, H},,x),  f"(x) = aplim(f, Hy,, x).

If this is the case we set v = v (x), the approximate jump direction of f at x. We denote by J the set of
approximate jump points of f, so that J; C S; moreover, vy : Jy — S"~1is a Borel function. It will be
particularly useful to keep in mind the following proposition; see [Cagnetti et al. 2013, Proposition 2.2]
for a proof.

Proposition 2.1. We have that x € J if and only if, for every T € (f"(x), fV(x)),
loc + loc _ +
{f>th,—Hy, and {f <th,— H,, asr—0". (2-11)

Finally, if f : R" — R is Lebesgue measurable, then we say f is approximately differentiable at x € S;-
provided f"(x) = f¥(x) € R and there exists £ € R" such that

aplim(g, R", x) =0,

where g(y) = (f(y) — f(x) —&-(y—x))/|ly—x| for y € R"\ {x}. If this is the case, then £ is uniquely
determined, we set £ =V f(x), and call V f(x) the approximate differential of f at x. The localization
property (2-10) holds also for approximate differentials: precisely, if f, g : R* — R are Lebesgue
measurable functions, f = g #"*-a.e. on a Borel set E, and f is approximately differentiable #"-a.e.
on E, then g is approximately differentiable #"-a.e. on E too, with

Vf(x)=Vg(x) for #"ae xckE. (2-12)

2B. Rectifiable sets and functions of bounded variation. Let1 <k <n, k € N. A Borel set M C R" is
countably #*-rectifiable if there are Lipschitz functions f;, : R¥ — R", h €N, such that M Cop | nen Jh (RX).
We further say that M is locally #*-rectifiable if %*(M N K) < oo for every compact set K C R”, or,
equivalently, if #*_M is a Radon measure on R". Hence, for a locally #*-rectifiable set M in R" the
following definition is well-posed: we say that M has a k-dimensional subspace L of R" as its approximate
tangent plane at x € R", L = T, M, if #*_(M — x)/r — %*_L as r — 0" weakly star in the sense of
Radon measures. It turns out that T M exists and is uniquely defined at 9¢*-a.e. x € M. Moreover, given
two locally % -rectifiable sets M, and M, in R”, we have T, M, = T, M, for ¥*-a.e. x € M, N M,.

A Lebesgue measurable set £ C R” is said to be of locally finite perimeter in R" if there exists an
R"*-valued Radon measure g, called the Gauss—Green measure of E, such that

/Vgo(x)dx:/ @(x)dug(x) forall ¢ € CH(R").
E n

The relative perimeter of £ in A C R”" is then defined by setting P(E; A) = |ug|(A), while the perimeter
of E is P(E) = P(E; R"). The reduced boundary of E is the set 0*E of those x € R” such that

B(x, .
vE(x) = lim M exists and belongs to §" .

r—0* [ugl(B(x, 1))
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The Borel function vg : 8*E — "~ ! is called the measure-theoretic outer unit normal to E. It turns out
that 0*F is a locally %"~ _rectifiable set in R” [Maggi 2012, Corollary 16.1], that ug = vEHILO*E,
and that

/Vgo(x)dx=/ (xX)vg(x)d¥™ ' (x) forall g € C!(R").
E *E

In particular, P(E; A) = #"~'(ANd*E) for every Borel set A C R". We say that x € R" is a jump point
of E if there exists v € $"~! such that

E., =5 Hf, asr—0F, (2-13)
and we denote by 37 E the set of jump points of E. Note that we always have 3’ E ¢ E(1/? C 3°E. In
fact, if E is a set of locally finite perimeter and x € 0*E, then (2-13) holds with v = —vg(x), so that
0*E C 8’ E. Summarizing, if E is a set of locally finite perimeter, we have

3*Eco’Ec EYY co°E (2-14)
and, moreover, by Federer’s theorem [Ambrosio et al. 2000, Theorem 3.61; Maggi 2012, Theorem 16.2],
5" (9°E\9*E) =0,

so that 3°E is locally %"~ !-rectifiable in R”. We shall need on several occasions to use the following
very fine criterion for finite perimeter, known as Federer’s criterion [1969, 4.5.11] (see also [Evans and
Gariepy 1992, Section 5.11, Theorem 1]): if E is a Lebesgue measurable set in R” such that 9°F is
locally %"~ !-finite, then E is a set of locally finite perimeter.

Given a Lebesgue measurable function f : R* — R and an open set Q2 C R" we define the rotal
variation of f in Q2 as

|Df|(§2):sup{/ f)DivT(x)dx:T € CL(Q;: R"), |T| < 1}.
Q

We say that f € BV(Q2) if |Df|(2) <ocoand f € L(S), and that f € BV, (Q) if f € BV(Q') for every
open set Q' compactly contained in . If f € BVo.(R") then the distributional derivative Df of f is
an R"-valued Radon measure. Note in particular that E is a set of locally finite perimeter if and only
if 1g € BVio(R"), and that in this case ug = —D1g. Sets of finite perimeter and functions of bounded
variation are related by the fact that, if f € BV o.(R"), then, for a.e. t € R, {f > t} is a set of finite
perimeter, and the coarea formula,

/RP({f - 1} G)di = |DfI(G). (2-15)

holds (as an identity in [0, co]) for every Borel set G C R". If f € BVi,.(R"), then the Radon—Nikodym
decomposition of D f with respect to X" is denoted by Df = D*f + D°f, where D*f and " are mutually
singular, and where D*f <« #". The density of D“f with respect to #" is by convention denoted as V f,
so that V f € L'(Q; R") with D“f = V f d¥". Moreover, for a.e. x € R", V f(x) is the approximate
differential of f at x. If f € BV)oc(R"), then S is countably %"~ !_rectifiable with %"~ (S \Jr)=0,
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[f]le L) (%”_ILJ r), and the R"-valued Radon measure D/ f, defined as

loc
Dif =[flvyd¥" 'Ly,

is called the jump part of Df. Since D*f and D/ f are mutually singular, by setting D°f = Df — D/f
we come to the canonical decomposition of Df into the sum Df + D/f 4+ D°f. The R"-valued Radon
measure DCf is called the Cantorian part of Df. It has the distinctive property that |D°f|(M) =0 if M
is o-finite with respect to #"~!'. We shall often need to use (in combination with (2-10) and (2-12)) the
following localization property of Cantorian derivatives.

Lemma 2.2. Ifv € BV(R"), then | D v|({v" =0}) = 0. In particular, if f, g € BV(R") and f = g #"-a.e.
on a Borel set E, then D°f_E"Y = D¢g  EW.

Proof. Step one: Let v e BV(R"), and let K C S5 be a concentration set for D v that is 3" -negligible.
By the coarea formula,

|Dv|({v" = 0}) = [D|(K N {v" = 0}) = [Dv|(K N {v" =0})

:/ H"2(K N v =0YNa*{v > 1)) dr

R

= / H"2(K N (0=0}Nd"{v>t)Ndt=0 (by v =v" on S5),
R

where in the last identity we have noticed that {v =0} N9*{v >t} NS = if r #0.

Step two: Let f, g € BV(R") with f = g #"-a.e. on a Borel set E. Let v = f — g so that v € BV(R").
Since v =0 on E, we easily see that EWM c {# =0}. Thus |Dv|(EM) =0, by step one. O

Lemma 2.3. If f, g € BV(R"), E is a set of finite perimeter, and f = 1gg, then

Vf=1gVg #"-a.e. on R", (2-16)
Df = DgL EW, (2-17)
S;NED =8,nED. (2-18)

Proof. Since f = g on E, by (2-12) we find that Vf = Vg #"-a.e. on E; since f =0 on R" \ E,
again by (2-12) we find that Vf = 0 #"-a.e. on R" \ E; this proves (2-16). For the same reasons,
but this time exploiting Lemma 2.2 in place of (2-12), we see that D°fL E®V = D¢g. E) and that
D¢fLR"\ E)D = D¢fLE® = 0; since 3°E is locally %" 2-rectifiable, and thus | Df|-negligible, we
come to (2-17). Finally, (2-18) is an immediate consequence of (2-10). U

Given a Lebesgue measurable function f : R* — R we say that f is a function of generalized
bounded variation on R", f € GBV(R"), if ¥ o f € BV}o.(R") for every ¥ € C!(R) with ' € CO(R),
or, equivalently, if T, (f) € BV o (R") for every M > 0, where 1), was defined in (2-5). Note that, if
f € GBV(R"), then we do not require that f € L}OC(R"), so that the distributional derivative Df of f may
even fail to be defined. Nevertheless, the structure theory of BV-functions holds for GBV-functions too.
Indeed, if f € GBV(R"), then—see [Ambrosio et al. 2000, Theorem 4.34] — { f > t} is a set of finite
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perimeter for a.e. € R, f is approximately differentiable #"-a.e. on R", S is countably 36"~ _rectifiable
and %"~ '-equivalent to J r, and the coarea formula (2-15) takes the form

/P({f>t}; G>dz=f |Vf|d%"+/ LF1d%~" +|D4FI(G) (2-19)
R G Gns;

for every Borel set G C R", where | D¢f| denotes the Borel measure on R” defined as the least upper
bound of the Radon measures |D¢(ty(f))|; and, in fact,

IDfI(G) = lim [D(ep (FHIG) = sup D (em (S NIG) (2-20)

whenever G is a Borel set in R”; see [Ambrosio et al. 2000, Definition 4.33].

3. Characterization of equality cases and barycenter functions

We now prove the results presented in Section 1D. In Section 3A, Theorem 3.1, we obtain a formula for
the perimeter of a set whose sections are segments, which is then applied in Section 3B to study barycenter
functions of such sets and prove Theorem 1.7. Sections 3C and 3D contain the proof of Theorem 1.9
concerning the characterization of equality cases in terms of barycenter functions, while Theorem 1.13 is
proved in Section 3E.

3A. Sets with segments as sections. Given u : R"~! — RU {#o00}, let £, = {x € R" : ¢x > u(px)} and
X' ={xeR":qx <u(px)}, respectively, denote the epigraph and the subgraph of u. As proved in [Cagnetti
et al. 2013, Proposition 3.1], X, is a set of locally finite perimeter if and only if 7 (1) € BV o (R 1) for
every M > 0. (Note that this does not mean that u € GBV(R"~!), as here u takes values in RU {3-00}.)
Moreover, it is well known that if u € BVjo.(R*~!) then, for every Borel set G C R"!, the identity

P(Eu;GxR)=/ \/1+|VM|2d%"1+/ [u]d*" 2 + | D u|(G) (3-D
G G

NS,
holds in [0, oc]; see [Giaquinta et al. 1998b, Chapter 4, Sections 1.5 and 2.4]. In the study of equality cases
for Steiner’s inequality, thanks to Theorem A, we are concerned with sets E of the form £ = X, N X*2
corresponding to Lebesgue measurable functions #; and u; such that u; < u; on R*~!. A characterization
of those pairs of functions u;, u, corresponding to sets E of finite perimeter and volume is presented in
Proposition 3.2. In Theorem 3.1, we provide instead a formula that is analogous to (3-1) for the perimeter
of E in terms of u; and u, in the case that u, u» € GBV(R" ™).

Theorem 3.1. If uy,u; € GBV(R"™Y with u; < us, and E = 3y, N X2 has finite volume, then E is a
set of locally finite perimeter and, for every Borel set G C R"™!,

P(E;leR):/ \/1+|VM1|2d?€”_l+f V1+|Vua2d%" ™ +|Dur [ (GN iy <iiz})
GN{uy<us} GN{uy<us}
+ [Dus| (G N{iy < uiz}) +/ min{2(iiy — iiy), [u1] + [u2]} d%" 2, (3-2)

GO(Su,USuy)

where this identity holds in [0, 00], and with the convention that iy, — i1 = 0 when iy = it} = +00.
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A

W ui(2)

E us (2)
............. o .
uy (2)

" uy (2)

Figure 7. The inclusion (3-3).

If E=X,, NX* is of locally finite perimeter, then it is not necessarily true that u, u, € GBV(R"™1).
The regularity of u; and u; is, in fact, quite minimal, and completely degenerates as we approach the set
where u; and u, coincide.

Proposition 3.2. Let uy, u; : R — R be Lebesgue measurable functions with uy < up on R,
Then E = %, N $2 is of finite perimeter with 0 < |E| < oo if and only if v = uy — u; € BV(R"™1),
v#0, # ' ({v > 0})) < oo, {ur > t > uy} is of finite perimeter for a.e. t € R, and f € L'(R) for
f@)=P{uy >t >u1}),t €R. Inparticular,

/P({Mz >1>u}))dt < P(E),
§ \Dol®) < P(F[o]),
%" ({v>0) < P(FIvD).
Moreover (see Figure 7),
(3°E), C [u}(2), uy (21U [ur(2), uy ()] forall ze R, (3-3)
and

(Suy USu) \ ({uy = uiy Nf{uy =u)) (3-4)

is countably %" 2-rectifiable, with {v¥ = 0} C {uy =uyy N {u) =up}.

Proof. We first note that, if we set E(t) = {z € R"~! : (z, ) € E}, then we have E(t) = {u; <t < u} for
every ¢ € R, and that, by Fubini’s theorem, E has finite volume if and only if v € L (R"~1); if these hold,
then |E| = [p.-1 v.

Step one: Let us assume that E has finite perimeter and that 0 < |E| < oo; in particular, v € L' (R"~!). By
Steiner’s inequality, F'[v] has finite perimeter. By [Maggi 2012, Proposition 19.22], since | F[v]N{x, > 0}
equals [p, ;30 = 1|E| > 0, we have that

IP(F[v]) = P(F[]; {x, > 0}) = %" (F[v]V N {x, = 0}) = %"~ ({v > O}).

If T e CL(R"!; R*™!) with supg.—1 |T| < 1, and we set S € C}(R"; R") to be S(x) = (T (px), 0), then
by Fubini’s theorem and Steiner’s inequality we find that

/ v(z2)DivT (z)dz =/ DivS < P(F[v]) < P(E).
Rr—1 Flv]
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Hence, v € BV(R"™!) with |Dv|(R""!) < P(F[v]). If w, € CL(R") with wy, — 15 in L'(R") and
|Dw,|(R") — P(E) as h — oo, then w;,(-,t) = 1g() in L'(R"1) for a.e. t € R, and, therefore,

/ DivT = lim wpDivT = — lim T-Vw, < lim [Vwy(z,t)|dz.
E(1)

h—00 Jgn-1 h—00 JRn-1 h—00 Jgn—1

Hence, by Fatou’s lemma,

Jooel

so that E(¢) is of finite perimeter for a.e. t € R, and fR P(E(t))dt < P(E), as required.

f DivT‘:Tecg(R“;R"1),sup|T|51}dz5hminf/ |Vw,| = P(E),
E(t) Rn

Rr—1 h—o00

Step two: We now show the converse implication. To this end let ¢ € C Ll (R™), then

/ I = / ¢(z,u2(z)) —(z,u1(2))dz < 2Sﬂgp o3 ({v > 0)),
E Rr—1 n

while

/Vzwzfdt/ V.0(z, t)dzz/dt/ o(z, t)vE(,)(z)d%”_Z(z)§sup|<p|/ P(E(t))dt.
E R E®) R *E(1) R" 4 (spte)

If we set f(t) = P(E(t)), then we have just proved

A
E

so that £ has finite perimeter.

< sup 123" (v > 0D + [ fll 1wy )

Step three: For every x € R" and r > 0 we have

qx—+r
H(ENC,,) = / "Dy, N{uy < sy N {ua > s)) ds.

qx—r

If gx > uy (px), then given r € (u; (px), gx) and r < gx —t we find that
H'(ENCrp) < 2rH" ™ (Dprr Nuz > 1)) = 0(™),
so that x € E). By a similar argument, we show that
xeR":gx>u)(px)}U{x e R": gx < ui(px)} C EO,
{x eR":uy(px) < qx <ub(px)} c ED.
We thus conclude that, if x € 3°E, then u7 (px) < gx <u; (px) and either gx <u} (px) or gx > u} (px).

Step four: Let I be a countable dense subset of R such that {u; < ¢ < u,} is of finite perimeter for
every t € I. We claim that
{ud >uf}ins,, Cuae{u2>t>u1}. (3-5)

tel

Indeed, if min{u? (z), uy (z)} >t > u} (z), then

OUury >t},2)=1, O0*(u; <t},2)>0, O6.,({u; <t} z)<l,
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which implies that 0* ({u; <t < u3},z) > 0 and 6,({u; <t < us}, z) < 1, and thus (3-5). In particular,
{uf >u}NS,, is countably " ~2-rectifiable. By entirely similar arguments, one may check that the
sets {uy > uy} N Sy,, S, N Su,, and S, N S5, are included in the set on the right-hand side of (3-5), and
thus complete the proof of (3-4).

Step five: We prove that {v¥ = 0} C {uy = u]} N {u) = u}. Indeed from the general fact that
(f+8)" < fY+g", weobtain that 0 < u; —u) < (up —u;)" =v". At the same time,

0<uh) —up =(—up)’ — (—uz)” < (—u1+ux)’ =v". 0

Proof of Theorem 3.1. Step one: We first consider the case that |, uy € BVo.(R"!). By [Giaquinta et al.
1998a, Section 4.1.5], X, and X*? are of locally finite perimeter, with

9% S0, N1 (SE, % R) =01 (x € R : iy (px) = gx), (3-6)
* Ty N (S, X R) =gp1 {x € R" 1 u (px) < qx < uy (px)}, (3-7)

and, by similar arguments, with

=N (SE, x R) =g fx € R 2ty (px) < qx), (3-8)
E;P N (Su; X R) =501 {x € R" : 1) (px) < qx}, (3-9)
(=)D N (S, x R) =1 {x € R" 1 ila(px) > qx}, (3-10)
()M N (S, X R) =gn1 {x € R : u) (px) > qx)}. (3-11)

Let us now recall that, by [Maggi 2012, Theorem 16.3], if F, F, are sets of locally finite perimeter, then
O*(Fi N Fy) =gt (FVN0*F) UFY Na*F) U@ FLNa*F, N {vr, = vp,)); (3-12)

moreover, if 1 C F», then vp, = v, %" 1-a.e. on 3" F; N3*F,. Since u; < us implies %, C ¥,,, and
¥ =R"\ X,,, so that Uz, = —Hzu, We thus find

vg, =—vge #H'l-ae ond*T, NI*Te. (3-13)
By (3-12) and (3-13), since E = ¥, N ¥“? we find
I*E =51 (3*Z,, N(Z)D) U (8* 2" N (2, D).
We now apply (3-6) to u; and (3-10) to u, to find
(32, N(E)D) N (S5, N SE) x R) =501 {(z, 1(2)) : 2 € (S5, N SS), i11(2) < iiz(2)}.  (3-14)
We combine (3-7) applied to u; and (3-10) applied to u, to find
(3% 20, V) DYN((Su, NS X R) =501 { (2, 1) 1€ S, NS, ul (2) <t <minfu (2), ii2(2)}}. (3-15)
We combine (3-7) applied to u; and (3-11) applied to u, to find

(30, N(E)D)N((Sy, NSu) X R) =gn-1 { (2, 1) 12 € Su, NSuy» uf (2) <t <minfu (), uh (2)}}. (3-16)
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We finally apply (3-6) to u; and (3-11) to u; to find
(3% 20, N(E2) D) N ((SE, N Suy) X R) =501 {(z, #1(2)) 12 € 85, N Sy, i11(2) <ub (@)} (3-17)

This gives, by (3-1), and using (3-14) for the first two terms and (3-15) and (3-16) for the third term on
the right-hand side,

9" (02, N (") N (G x R))

:/ V1 |Vu 2d®" + | Dui |(G N (it <ﬂ2})+f (min{u}, uj} —u?)y d%" 2,
GN{uy<us}

GNSy,
where we have also used that, as a consequence of (3-17), we simply have
90Dy, N (B D) N ((SE, N Suy) x R)) =0,
by [Federer 1969, 3.2.23]. Also, by exchanging the role of u; and u»,
5" (@*z2 N (2,,) P N (G x R))
- / V14 Vs 2d5" " + | Dus | (G N (il < iia)) +f (uy —max{ub, u}) 4 d¥" 2.
GN{uy <uz)

GNSu,
In conclusion, we have proved
P(E; G xR)

=/ V14 Vur P41+ |Vua2) d%" " +|Dur |(G N iy < iia}) +|DCua|(G N ity < i)
GN{uy<uy}

+/ (minfu), up} —u?), + (uy —max{uy, uy'}), d#" 2. (3-18)
GN(Suy USiy)

We thus deduce (3-2) by means of (3-18) and the identity

min{2(it — ity), [u1] + [u2]} = min{uy +ub — (uy +u?), u] —ul +uy —ub}
=uy —uf +min{u) —uy, uy —up}
=uy —u} +min{ub, uy} — max{ul, uy'}

= (minf{u;, u)} —ul)+ + (uy —max{ub, uy .

This completes the proof of the theorem in the case that u, us € BVio.(R"1).

Step two: We now address the general case. If u;, us € GBV(R"™1), then ¥, and X*2 are sets of locally
finite perimeter, by [Cagnetti et al. 2013, Proposition 3.1], and thus E is of locally finite perimeter. We
now prove (3-2). To this end, since (3-2) is an identity between Borel measures on R"~!, it suffices to
consider the case that G is bounded. Given M > 0, let Ey = X1,y N 2™ “2). Since tyu; € BVjoc (R*1)
for every M > 0,i =1, 2, by step one we find that Ej; is a set of locally finite perimeter, and that (3-2)
holds on Ej; with 757 (u1) and 737 (u2) in place of u; and u,. We are thus going to complete the proof of
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the theorem by showing that

P(E;GxR)= lim P(Ey; G xR), (3-19)
M— o0
/ 14 |Vu;2d9" ' = lim 14 |V (u)2dse =", (3-20)
GN{uy <us} M—00 J Gy (ur) <ty (1)}

IDWIG N iy <)) = lim Dty (@] (G N Ewen) < 2arln)). (3-21)
and that
/ min(2(iia — i), [11] + [ua]) dH"2
GN(S1;USuy)

= lim min{2(ty (2) — T (1)), [rag u)] + [rag u2) 1} dH" 2. (3-22)

M—o0 Gm(SrM(ul)UStM(uz))
Let us set fiy(a, b) =ty (b) — Ty (a) for a, b € RU {£o00}. By (2-6), we can write the right-hand side of
(3-22) as [; hy d%"~2, where

Bt =15, 0 USey ¥ (P Y s u3), fur ey, uy), fur s uy), fau(us, uy))

for a function y : R x R x R x R — [0, 0o) that is increasing in each of its arguments. Since, for every
a,b e RU{z*oo} with a < b, the quantity fys(a, b) is increasing in M, with

. 0 ifa=b=+0c0 ora=b=—00,
lim ,b) =
Mso fu(a.b) {b —a otherwise,

we see that {S;,,,)}m>0 1S @ monotone increasing family of sets whose union is S,;, {Am}m=o is an
increasing family of functions on R”~!, and that

lim hy =1, us,, min{2(@uz — ), [ui] + [u2]},
M— o0

where the convention that i1, — i1y = 0 if &1y = 1] = 400 was also used; we have thus completed the proof
of (3-22). Similarly, since

(tn (1) < T u2)} = {fn o) + Fur o uh) > O = { far Y ud) > 0} U {far (u}), 1) > O},

{{rar(u1) < Ty (U2)}} =0 1S @ monotone increasing family of sets whose union is {uzv > ulv} U{uy > ul}.
Therefore, by definition of |Du;|, we find, fori =1, 2,

Jim Dty (G 0 (g (1) < Tar @2)}) = 1D°us|(G N (e} > uY YU {up > ui'))
= |Du;|(G N{iay < itz}),

where in the last identity we used that S, U S,, is countably %" ~2-rectifiable, and thus | Du; |-negligible
for i =1, 2. This proves (3-21). Next, we note that

IV ()| = L <ay | Vui| - %€ '-ae. on R~
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so that (3-20) follows again by monotone convergence. By (3-2) applied to E), this shows in particular
that the limit as M — oo of P(Ey; G x R) exists in [0, oc]. Thus, in order to prove (3-19) it suffices to
show that P(E; G x R) is the limit of P(Ey,; G x R) as h — oo, where {M},},en has been chosen in
such a way that

Jim H" Y EWD N {|x,| = My}) =0, H N OCEN{|x,| =My}) =0 forall heN.  (3-23)
— 00

(Notice that the choice of {M}},en is possible because |E| < oo and #"~1L3°E is a Radon measure.)
Indeed, by Ey = E N{|x,| < M}, (3-23), and [Maggi 2012, Theorem 16.3], we have that

°Ep, = ({xnl < Mp}N°E) U ({Ixa]l = M} NEW)  forall heN,
so that, by the first identity in (3-23), we find P(E; G x R) =limj_, o P(Epy,; G X R), as required. [J

In practice, we shall always apply Theorem 3.1 in situations where the sets under consideration are
described in terms of their barycenter and slice length functions.

Corollary 3.3. Ifv e (BVNL®)(R"!; [0, 00)), b € GBV(R"™1), and
W =W[v,bl={x eR": [gx — b(px)| < 30(px)}, (3-24)

thenu, =b— %v e GBV(IR" ), up = b+ %v € GBV(R"™ 1), W is a set of locally finite perimeter with
finite volume, and for every Borel set G C R"~! we have

PwiGxR= [ Jlewesbors 9o - torae
GN{v>0}

+/ min{v" +v", max{[v], 2[17]}}41%”*2
GN(S,USp)

+ Db+ 2v)(GN{D > 0}) + D (b — )(GN{D > 0}), (3-25)
where this identity holds in [0, co].

Proof. 1t is easily seen that (BV N L*>°) + GBV C GBV. By Theorem 3.1, W = X,, N "2 is of locally
finite perimeter, and P(W; G x R) can be computed by means of (3-2) for every Borel set G C R"~!.
We are thus left to prove that, #"~2-a.e. on S, U S,,,

min(2(iz — i), [ur] + w2} = min{o” +v", max{[v]., 2(]}}. (3-26)
On Jy,, N Jy, N {vy, = vy, }, we have that
b =L@y +uy), v =max{uy —uy,ub —ut},
b =L@ +up), v =minfuy —uy, ub —up),
while on J,, N J,, N {v,, = —v,,} we find

b = max{%(ug +u?), %(uﬁ\ +u()}, vW=u

<

ol 1
b" =min{5 (uy +uy), 5wy +uy)}, v =up —uy,
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so that (3-26) is proved through an elementary case-by-case argument on J,,, N J,,, and thus, %" 2-a.e.
on S,, NS,,. At the same time, on §,, N S;z we have

bV =@ +uy), v =i, —uf,

b =L@ +ut), v =i, —uy,
from which we easily deduce (3-26) on S, N S}, ;

and thus conclude the proof of the corollary. (I

by symmetry, we see the validity of (3-26) on §;; N S,,,

Corollary 3.4. Let v : R*~! — [0, 00) be Lebesgue measurable. Then, F[v] is of finite perimeter and

volume if and only if v € BV(R"™!; [0, 00)) and %"~ ' ({v > 0}) < oo. If these hold, let F = F[v], then
for every 7 € R"™! we have

—3v"(2), 30" (2)) € (FM).C [-3v"(2), 50" (2)], (3-27)

teR: v @) <Itl < }v (@)} C(@°F).C{teR: 30 () < It] < $v¥ (D)}, (3-28)

while, for every Borel set G C R"™1,
P(F;G xR) :2/ V1+13Vo2dger! +/ [v]1d%" % 4+ |Dv|(G). (3-29)
GN{v>0} GNS,

Proof. By Proposition 3.2 and the coarea formula (2-15), we see that F[v] is of finite perimeter if and
only if v € BV(R"!; [0, 00)) and #"~!({v > 0}) < oo. By arguing as in step three of the proof of
Proposition 3.2, we easily prove (3-27) and (3-28). Finally, by applying Theorem 3.1 to u; = %v and
uy = —%v, we prove (3-29) with | Dv|(G N{v > 0}) in place of | Dv|(G). By Lemma 2.2, this concludes
the proof of the corollary. U

We close this section with the proof of Proposition 1.15.
Proof of Proposition 1.15. We want to prove that, if A € [0, 1]\ {%} and
E={x eR": —Ava(px) — $v1(px) < gx < 3v1(px) + (1 — Dva(px)}, (3-30)
then E € M(v) and #"(E A(te, + F[v])) > O for every 1 € R. By Corollary 3.4,
P(FlvD =2 1+ VGu)PP +[D v @ ). (3-31)
Rn—1
At the same time, E = W|[v, b], where b = (% — A)vy. Since D¥vy =0, D%y =0, and
v+ 0" > [v] =[v2] > 2[b] #"*-ae.on R,
we easily find that
V(b+iv)=+V(Gv) 9" -ae on R,
min{v" +v", max{[v], 2[b]}} = [v2] %" *-ae.on R""!,
D(b+ §v) = (1= 1) Dvs,
D“(b — $v) = —ADv;.
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Since Sp U Sy, =gm—2 Sy,, we find P(E) = P(F[v]) by (3-31) and (3-25). At the same time,

9" (EA(te, + Flv))) =2f It — (3 —Mvo|d¥"~! forall € R,
{v>0}

so that #" (EA(te,, + F[v])) >0,as A # % and v, is nonconstant on {v > 0}. O

3B. A fine analysis of the barycenter function. We now prove Theorem 1.7, which states in particular
that bpliyssy € GBV(R"!) whenever E is a v-distributed set of finite perimeter and {v > §} is of finite
perimeter. We first discuss some examples showing that this is the optimal degree of regularity we
can expect for the barycenter. (Let us also recall that the regularity of barycenter functions in arbitrary
codimension, but under “no vertical boundaries” and “no vanishing sections” assumptions, was addressed
in [Barchiesi et al. 2013, Theorem 4.3].)

Remark 3.5. In the case n = 2, as will be clear from the proof of Theorem 1.7, conclusion (1-11) can be
strengthened to 1(,~5b € (BV N L®)(R"1). The localization on {v > 8} is necessary. Indeed, let us
define E C R? as

1 1 1
_ 2. _ (=" —
E_h|EN|{xE[R€ .h+1<px<h,|qx ( 1)|<h2},

so that E has finite perimeter and volume, and has segments as sections. However,
be(z) = Z(—l)hl((thl)fl,hfl)(Z), z€eR,
heN
so that by € L (R) \ BV(R). We also note that, in the case n > 3, the use of generalized functions of

bounded variation is necessary. For example, let E, C R? be such that

1 1 1
— 3. _ 1
Ea—]EJN{XGR .(h+1)2<|px|<h—2, lgx h“|<2}, o> 0.

In this way, E, always has finite perimeter and volume, with v(z) =1 if |z] < 1 and

liw>8y(2)bE, (z) = bE,(2) = Z 1((,,+1)7z’h72)(|z|)h°‘ forall zeR?, 0<8 < 1.
heN

In particular, 1;,~sbE, € LY(R?) \BV(RQ) and 1{,~5bg, & LIIOC(RZ). Hence, without truncation, 1, sbg
may either fail to be of bounded variation (even if it is locally summable), or it may just fail to be locally

summable.

Before entering into the proof of Theorem 1.7, we shall need to prove that the momentum function m g
of a vertically bounded set E is of bounded variation; see Lemma 3.6 below. Given E C R", we say that
E is vertically bounded (by M > 0) if E Cyn {x € R" : |gx| < M}.

Lemma 3.6. Ifv € BV(R"™!; [0, 00)) and E is a vertically bounded, v-distributed set of finite perimeter,
then mg € (BV N L) (R"~1), where

mE(Z)=/ td¥'(t) forall ze R"!.
E;
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Proof. If E is vertically bounded by M > 0, then v € L®(R"™ "), |mg| < Mv, and mg € L®(R"™1).
Moreover, mg € BV(R"™1) as, for every ¢ € CC1 (R" 1,

/ mgV'od¥H" ! =/V’(<p(pX)qX)d%”(x) =/ @(px)qx pve(x)d#"~' (x) <M sup |p|P(E). O
Re-1 E d*E R
Proof of Theorem 1.7. Step one: Let us decompose z € R"~! as 7 = (z1, z') € R x R"2. For every fixed
7 e R"2, f R*-! 5> R, G cR" ! and E c R", we define

fRSR ) = f1.2),

G* ={z1€R: (z1.2) € G},

EY ={(z1,) eR*: (21,7, 1) € E}.
We now consider v and E as in the statement, and identify a set / C (0, 1) such that %'((0, 1) \1)=0
and, if § € I, then {v > 8} is a set of finite perimeter. We now fix § € I, and consider a set / C R"~2 such
that #"~2(R"~2\ J) = 0 and, for every ' € J, E< is a set of finite perimeter in R? (hence, v e BV (R))

and {v>§ }Z/ = {vz/ > §} is a set of finite perimeter in R. Note that J depends on §, and its existence is a
consequence of Theorem C in Section 4D. As we shall see in step three, for every z' € J,

1D (1 (1o yb e )| (R) < C(M, ){ P({v* > 8}) + P(E¥)}.
If we thus take into account that

(tm (Lpp=8ybp))* = m (Lo sbpe),
we conclude that

A HID((rM(l{v>a}bE))Z/)|(R) d¥"2(Z) < C(M, §) /R H{P({vl’ > 8)) + P(E¥)} d9"2(2))

=CWM, H{P({v>3d})+ P(E)},

where in the last step we have used [Maggi 2012, Proposition 14.5]. We can repeat this argument along
each coordinate direction in R*~! and combine it with [Ambrosio et al. 2000, Remark 3.104] to conclude
that Ty (1(y=5ybE) € (BV N L®)(R"™1), with

|D(ty (Lp=syp) |(R*™) < C(M, $){ P({v > 8}) + P(E)}.

The proof of (1-11) will then be completed in the following two steps.

Step two: Let n = 2. We claim that P(E®) < oo implies v € L*°(R), while P(E) < oo implies
bg € L®°({v > o}) for every ¢ > 0. The first claim follows by Corollary 3.4: indeed, P(E*) < oo implies
v € BV(R) and thus, trivially, v € L°°(R). To prove the second claim, let us recall from step two in the
proof of [Maggi 2012, Theorem 19.15] that if a, b € R are such that a # b and

9 (EM) + % (EV) <00, #H'WELPNEM) =0, 9%'*ED)=%""E)") =0,

then one has
9 (EW) + 9 (ESV) < P(E; {a < x1 < b}). (3-32)
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Should b fail to be essentially bounded on {v > o} for some o > 0, then we may construct a strictly
increasing sequence {a,}pen C R with o < %I(Efl,ll)) < 00, %I(B*Efl,ll)) =0, and %I(Eéi) N E;i)) =0
if h # k. Therefore, by (3-32), we would get

20 < P(E;{ap < x1 <apy1}) forall heN,

and thus conclude that P(E) = +o0.

Step three: Let v € BV(R), let E be a v-distributed set of finite perimeter in R* such that E, is a segment
for #'-a.e. z € R, and let § > 0 be such that {v > 8} is a set of finite perimeter in R. According to step
one, in order to complete the proof of (1-11) we are left to show that, if M > 0, then

|D(tm (11p=5)pE)|(R) < C(M, §){ P({v > 8}) + P(E)}. (3-33)

By step two, v € L°°(R) and by € L>®({v > §}). In particular, E is vertically bounded above {v > §},
that is, there exists L(8) > 0 such that

EG)=EN{v >} xR) Cy {x € R?: v(px) >4, |qx| < L(5)}. (3-34)
Let us now set vs = 1{y~syv. Since {v > §} is of finite perimeter, we have
vs € (BVNL®)(R), {vs>0}={v>S§}

Concerning E (§), we note that, since {v > §} x R is of locally finite perimeter, then E(3) is, at least, a
vs-distributed set of locally finite perimeter such that E(8), is a segment for #'-a.e. z € R. But, in fact,
(3-34) implies {|x,| > L(8)} C E(6)?, while at the same time we have the inclusion

IE®) C[°EN(fv> 8}V x R)|U[(@%{v > 8} x R)N(EP UIFE)];
in particular, E(§) is of finite perimeter by Federer’s criterion, as
H" N (D°E(8)) < P(E; {v> 8}V x R)+ 2L P({v > 8}).

We now note that bgs) = 1(y=s1br € L¥(R), with P(E(8); {v > 8§}V x R) < P(E); hence, (3-33) follows
if we show that

|D(ty (bE)|(R) < C(M, 8§){ P({vs > 0}) + P(E(8); {vs > 0}V x R)}

for every M > 0. It is now convenient to reset notation.
Step four: By step three, the proof of (1-11) will be completed by showing that, if v € (BV N L*)(R)

is such that, for some § > 0, {v > 0} = {v > §} is a set of finite perimeter in R, and E is a vertically
bounded, v-distributed set of finite perimeter in R* with b € L>°(R), then, for every M > 0,

|D(ty (b)) |(R) < C(M, 8){P({v> 0} + P(E; {v> 01" xR }. (3-35)

We start by noting that, since E is vertically bounded, then by Lemma 3.6 we have mg € (BV N L*)(R).

Moreover, if we set
w= =0 _ lo=s
v v
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then we have w € (BV N L*°)(R), and thus by = wmg € (BV N L*)(R). We now note that, since
{v=0} C {tyx(bg) =0}, we have {v =0}V C {4 (bg) = 0}V; at the same time, a simple application of
the coarea formula shows that

0= |D(tmbe)|({tm (br) = 0}") = | D(ta (b)) |(fv = 0}V) = [ D(rp (b)) |(fv > 0}, (3-36)

Moreover, since {v > 0} is a set of finite perimeter, we know that d°{v > 0} is a finite set, so that

| D (e (bE))|(8%{v > 0}) = / [ty (be)]d#° <2M P ({v > 0}), (3-37)

STM(bE)ﬂac{U>O}

where we have used that [t (bg)] < 2M, since |ty (bg)| < M on R" 1. By (3-36) and (3-37), in order
to achieve (3-35) we are left to prove that

| Dty (be))|(fo > 0}D) < C(M, 8) P(E; {v> 0}V x R). (3-38)
By (2-9) and since {v > 6} = {v > 0} we have
>0 c{v>0"Y=>8Pc =8 c >0}
that is, {v > 0}V) = {v" > 0}. By applying Corollary 3.3 to G = {v > 0}V = {v" > 0},
P(E;: {v> 0"V xR)
:/{ 0}\/1+|(b5+%v)’|2+\/1+|(bg—%v)’lzd%l—k/{ min{v"+v", max{[v], 2[b£]}} d%"

v>0}(l)ﬂ(SUUS1,E)

D (bp+1v) (v > 0}N{F > 0D +|D (be—Lv)|(v" > 0}N{T > 0}).  (3-39)

Since {(v* =0} = {0 =0} U {v¥ > 0 = v"}, where {v¥ > 0 = v} Cyo J,, we find that {v"* = 0} is
| D¢f|-equivalent to {§ = 0} for every f € BV},.(R"~!); hence,

|D“(bg £ 3v)| ({v" > 0} N {T > 0}) = | D (bg £ Jv)| ({v" > 0}). (3-40)
By (3-39), (3-40), the triangle inequality, and as v > 8 on {v > 0} = {v > §}D,
P(E;: {v>0"" xR) > 2/ bl | d%€! +2/ min{8, [be]} d#°+2|Dbg|({v" > 0}). (3-41)
{v>0} {v>01NS,

At the same time, by [Ambrosio et al. 2000, Theorem 3.99], for every M > 0 we have

|D(tp (b)) (fo > 0}V = / b1 d3t +|Dbe|({1be| < MYN (v > 0)Y)
{Ibel<M}N{v>0}
+ f min{M, by} — max{—M, by} d#°. (3-42)
Spp NbE <M)N{bY>—M}N{v>0}D
As is easily seen by arguing on a case-by-case basis,
min{M, b}} — max{—M, b}} < max{l, 2TM} min{8, [br]} on S, . (3-43)

By combining (3-41), (3-42), and (3-43) we conclude the proof of (3-38), and thus of step four. The
proof of (1-11) is now complete.



RIGIDITY OF EQUALITY CASES IN STEINER’S PERIMETER INEQUALITY 1567

Step five: Since {v > §} is of finite perimeter for a.e. § > 0, we find that bs = 1(,~5bg € GBV(R"™1)
for a.e. § > 0. In particular, bs is approximately differentiable at %"~ '-a.e. x € R"~!. Since bs = bg
on {v > §}, by (2-12) it follows that

Vbg(x) = Vbs(x) for #" 1-ae.x e {v>3). (3-44)

By considering §, — 0 as h — oo with {v > §;} of finite perimeter for every 4 € N, we find that b is
approximately differentiable at #"~'-a.e. x € {v > 0}. Since, trivially, bg is approximately differentiable
at every x € {v = 0}() with Vbg(x) = 0, we conclude that bg is approximately differentiable at
%"~ !-a.e. x € R""!. By [Ambrosio et al. 2000, Theorem 4.34], for every Borel set G C R"~! we have

/ H"'2(G N3%{bs > 1)) dt = / |Vbs| d5" " + / [bs]1d%" =2 + | D bs|(G). (3-45)
R G GNSps

Let us note that, by (2-10), [bs] = [b£] on {v > 8}V, and thus Sy, N {v > 8§}V = S, N {v > §}V. By
(3-44) and by applying (3-45) to G N {v > 8}V, where G ¢ R"! is a Borel set, we find
/ H"2(GN{v >8PV Na{bs > 1)) dr

R

=/ |VbE|d%"—1+/ [be]1d%" =2 +| D bs|(G N{v > 8}V). (3-46)
GN{v>8} GNSp, N{v>8}D

Since tybs = 1{y>5)Tmbs, by applying Lemma 2.3 we find that, for every G C R,
|Dbs|(G N {v > 8}V) = Jim | D Tybs|(G N {v > 8}V = Jim | Dty bs|(G) = | DCbs|(G). (3-47)
—>00 —00
At the same time, since {v > 6} N{bs >t} = {v > 8§} N {bg > t} for every ¢t € R, we have

(v>8VNd%bs >t} ={v>8VN3bg >t} forall reR,
and thus

f H"2(GN{v> 8V N3 bs > 1)) dt = / H"2(GN{v > 8V Na%{bg > 1)) dt.
R R
If we now set § = 6§y, in (3-46) and then let 7 — o0, then since

"> 0= J{v> 8} (3-48)
heN

(which follows by (2-9)), by (3-47), and thanks to the definition (1-13) of | D bg|™, we find that (1-12)
holds for every Borel set G C {v" > 0}, as required. We have thus completed the proof of Theorem 1.7. [J

3C. Characterization of equality cases, part one. In this section we prove the necessary conditions for
equality cases in Steiner’s inequality stated in Theorem 1.9. The proof requires the following simple
lemma.

Lemma 3.7. If i and v are R"~'-valued Radon measures on R"~!, then

2|ul(G) = v+ ul(G) + v —ul(G) (3-49)
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for every Borel set G C R"~'. Moreover, equality holds in (3-49) for every bounded Borel set G C R"~!
if and only if there exists a Borel function f : R"~! — [—1, 1] with

v(G) = / fdu for every bounded Borel set G C R"™1.
G

Proof. The validity of (3-49) follows immediately from the fact that, if G is a Borel set in R"~!, then
|| (G) is the supremum of the sums ), |(Gp)| over partitions {G}nen of G into bounded Borel sets.
From the same fact, we immediately deduce that |v+ ©|(G) = |v — u|(G) = |v|(G) whenever |u|(G) =0;
therefore, if G is such that |1|(G) = 0 and (3-49) holds as an equality, then |v|(G) = 0. In particular, if
equality holds in (3-49) for every bounded Borel set G C R"~!, then |v| is absolutely continuous with
respect to |u|. By the Radon—-Nikodym theorem we have that v = g d|u| for a |i¢|-measurable function
g:R" ! = R"! as well as u = h d|u| for a |i|-measurable function 4 : R"~! — §"~2. In particular,
v+ u = (g=xh)d|un|, and thus, since equality holds in (3-49),

2101(G) = v + 1I(G) + v — uI(G) = /G g +hldlul +/G g —hldlul

for every Borel set G C R"~!, which gives
lg+h|+|h—gl=2=2|h| |u|-a.e. on R

Thus, there exists A : R"~! — [0, co) such that (h — g)=A(g+h) |ul-a.e. on R ie.,
g= 1;)Lh |i]-a.e. on R*~1.
1+A
This proves that v = f du, where f = (1 —X)/(1+X). By Borel regularity of ||, we can assume without

loss of generality that f is Borel measurable. The proof is complete. (Il

Proof of Theorem 1.9 (necessary conditions). Let E € JMM(v). By Theorem A, we have that E; is
%! -equivalent to a segment for #"'-a.e. z € R"~!, which is (1-15). As a consequence, by Theorem 1.7,
we have bs = 1(y~4)bE € GBV(R"!) whenever {v > 8} is of finite perimeter. Let us set

I =1{6>0:{v> 4} and {v < &} are sets of finite perimeter}, (3-50)
Js={M > 0:{bs < M} and {bs > —M} are sets of finite perimeter}, (3-51)

and note that %! ((0, co) \I)=0since v € BV(R"1), and that %' ((0, 00) \ Js) =0 forevery § € I, as
bs € GBV(R"~!) whenever § € I. By taking total variations in (1-18), we find 2| D¢ (ty1b5)|(G) < | Dv|(G)
for every bounded Borel set G C R"~!. By letting first M — oo (in Js) and then § — 0 (in 1) we prove
(1-19). Let us also note that (1-20) is an immediate corollary of (1-12) and (1-19), once (1-16) and (1-17)
have been proved. Summarizing, these remarks show that we only need to prove the validity of (1-16),
(1-17), and (1-18) (for 6 € I and M € Js) in order to complete the proof of the necessary conditions for
equality cases. This is accomplished in various steps.

Step one: Letus fix §, L € [ and M € Js, and set

Ssom =18 <v<L}N{|bg| < M}={lbs] < M}N {8 <v <L},
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so that X5 1 a is a set of finite perimeter. Since Ty bs € (BV N L*®)(R"1) (see the end of step one in the
proof of Theorem 1.7), 15, , ,, € (BV N L®)(R"1), and tpybs = bs = bg on ¥s...m»> We have

bs,..m =1s;, ,beE € (BV N L®)(R" .
We now claim that there exists a Borel function fs 1y : R — [—%, %] such that
Vbs.p m(z) =0 for %" '-ae.z€ 5.1 m, (3-52)

Dbs 1 m(G) = f fs...md(D) for every bounded Borel set G C E(gle (3-53)
G
Indeed, let us set vs, 1, p = I, ,,v. Since vs 1 m, bs, L .m € (BVNL>®)(R"~!), we can apply Corollary 3.3
to W= Wlvs r.m,bs .yl Since Wlvs .y, bs, L. m]l=EN(Zs .. m x R), and thus
EN(Z)) 4y xR) = 8W[vs, L., s, m ] N (S 4y x R),
we find that, for every Borel set G C E(g’li’M\ (Svs.z00 Y Shspan)s
P(E; G xR) = P(Wlvs,L.m»bs.L.m]; G X R)
= f \/1 + V(b L.m + 3vs.0.m)1> + \/1 + |V (bs,.m — 2vs.m) > dH" !
G

+ D (bs, 1. m + 38,0 (G) + | D (bs 1.m — 3vs...m)I(G).  (3-54)

By Lemma 2.3 applied to vs,., i = 15, , ,, v, we find that

Vusp.m = lsg;, , VU " 1-ae.on R" 1,
D¢ = Dv .= Sy, , NN =5 Nz
Vs, L.M = D 0u2isy g Ousp (25 1 0 = D01 257 e

By (3-54), we thus find that

PAE:GxB) = [ 1419 s+ 1P+ 1+ Vs~ S aser™
G
+ D (bs,.m + 3VI(G) + | D (bs, L. — 3V)I(G)  (3-55)

for every Borel set G C E;}Z,M\ (Sy U Sps, ) By Corollary 3.4, for every Borel set G C Rr—1
P(F[v]; G xR) = 2/ J1+1AveRage! +/ [v]d%" % + | DV|(G). (3-56)
G GNS,

Taking into account that P(E; G x R) = P(F[v]; G x R) for every Borel set G C R"~!, we combine
(3-55) and (3-56), together with the convexity of the map & — /1 + |£|2, £ e R"~!, and (3-49), to find
that, if G C 5 ,\ (SyU S, ) then

o:f JIH IV s+ 30P+ 1+ 1V @ — S0P =21+ 1 Ivopase=!,  (357)
G

0=|D(bs..u + 3V(G) + D (bs L. — 5V)I(G) — | DVI(G). (3-58)
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Since E(g’lz’M \ (Sy U Spyp ) 18 %"_l—equivalent to X5 ..M, by (3-57) and by the strict convexity of
£ e R~ /1 +|£|? we obtain (3-52). By applying Lemma 3.7 to
pw=1D%, v=D%ss i (Z5] 4\ (SuUSh,, ) = Dbs 1 B 4,
we prove (3-53). This completes the proof of (3-52) and (3-53).
Step two: We prove (1-18). Leté, L € I and M € Js. Since bs, 1 ; = 15, , ,, Tmbs, by Lemma 2.3 we have
D°bs 1. = D (tubs) 2] 4.

We combine this fact with (3-53) to find a Borel function fs y : R [—%, %] with
Dtybs(G) = / fs.m d(Dv) for every bounded Borel set G C E;lz M-
G L,

As a consequence, the Radon measures Dty bs and fs5 D v coincide on every bounded Borel set

contained in
1
=0 0= U >80 (bel < MO 0o < L)®
Lel Lel

= (v> 8V n{lbel < M}V)N U{v <Ly
Lel

={v=>8YnN{be| < M}V N{Y < oo},

where in the last identity we have used (2-8). Since H2({v¥ =o0}) =0 by [Federer 1969, 4.5.9(3)],
the set {v¥ = oo} is negligible with respect to both | D ty;bs| and | Dv|. We have thus proved that, for
every bounded Borel set G C {v > 8}V N {|bg| < M}D,

DC(TMbs)(G)=/ fs,m d(DV). (3-59)
G

Since for every M’ > M and 8’ < § we have that Ty bs = Tppbs on {v > §} N {|bg| < M}, by Lemma 2.2
we obtain that

D¢ (tibs)fv > 8}V N {|bg| < M}V = D (tprby) {v > 8}V N {lbe| < M}V,

and therefore (3-59) can be rewritten with a function f independent of M and §; thus,
D (ubs)(G) = [ (D (3-60)
G

for every bounded Borel set G C {v > SV N {|bg| < MYV, We next note that, if § € I and M € Js, then
tibs = M1p,= ) — M1 (b, <— a1y + Ly <myn=5)Tmbs  on R~
is an identity between BV functions. By [Ambrosio et al. 2000, Example 3.97] we thus find

D tybs = D (151 <minfo=8)Tmbs) = 1((ps) <mynfv=sp® D (Tarbs)
= D (tpbs) ({Ibs] < M}D N{v > 8} V). (3-61)
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Since, by (3-61), the measure D(tybs) is concentrated on {v > SV N{bg| < M}V, we deduce from
(3-60) that, for every bounded Borel set G C R 1

D (zybs)(G) = D (tubs) (G N {v > 8}V N {jbe| < M}D) = / fd(D),
GN{v>8}ON{|bg|<M}D

which proves (1-18).

Step three: We prove (1-16). Let 6, L € I and M € Js. Since bs ; py = bg on X5 1 m, by (3-52) and
by (2-12) we find that Vbg =0 %" l.ae. on 3s...m. By taking a union first over M € Js, and then
over$8, L € I, we find that Vb =0 %" '-a.e. on {v > 0}. At the same time, b =0 on {v =0} by definition,
and thus, again by (2-12), we have Vbg =0 %"~ !-a.e. on {v = 0}. This completes the proof of (1-16).

Step four: We prove (1-17). We fix §, L € I and define X5, = {§ <v < L}, bs, = 15, ,bg, and
vs,. = ly;,v. Since Xj is a set of finite perimeter, bs ; € GBV(R"™ 1), while, by construction,
5.1 € (BVNL>®)(R"~!). We are in position to apply Corollary 3.3 to obtain a formula for the perimeter of
W(vs.1, bs. ] relative to cylinders G x R for Borel sets G C R"~!. In particular, if G C Eélz N(Sys, USps 1),
then

P(E; G xR)=PWlus L, b5 L]; G xR) =/ minf{vy, +v§ . max{[vs 1], 2[bs, 1} } 4" 2.
G
Since, by (2-10), Z;lz NSy, = Zélz NS, with v(SV,L =vY, vs'p =v", and [v; L] =[v] on Z(g’lz, we have

P(E; G xR) =/ min{vv + v, max{[v], 2[b5,L]}} Ay 2
G

whenever G C Z§') N (S,U S, ). Since P(E; G x R) = P(F[v]; G x R), by (3-56),
min{v" +v", max{[v], 2[bs,. ]} = [v] %" 2-a.e. on (Sp,, US,) Ny

Since v > § on E(g}z, we deduce that v¥ 4 v > [v] on Eé’lz, and thus the above condition immediately
implies that
20b5,] < [v] %" 2-ae. on (Sp,, US,) NEy)).

In particular, S, , N Z(glz Cyem—2 Sy, and we have proved
20b5,L] <[v] %" 2-ae.on ).

By (2-10), [bs..] = [b£] on =j'). By taking the union of ;') on 8, L € I, and using (2-8) and (2-9),
we find that
2[bg] <[v] %" 2-ae.on {v" > 0}U{v" < o0}.

Since, as noted above, {v¥ = oo} is #"~2-negligible, we have proved (1-17). (]

3D. Characterization of equality cases, part two. We now complete the proof of Theorem 1.9, by
showing that if a v-distributed set of finite perimeter E satisfies (1-15), (1-16), (1-17), and (1-18), then
E € /M(v). The following proposition will play a crucial role.
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Proposition 3.8. If v € BV(R"!; [0, 00)), %"~ ({v > 0}) < o0, and E is a v-distributed set of finite
perimeter with segments as sections, then

P(E; {v) =0} xR)=P(F[v]; {v" =0} xR) = f vV dge 2. (3-62)
{v"=0}

Remark 3.9. With Proposition 3.8, one can actually go back to Corollary 3.3 and obtain a formula
for P(E; G x R) in terms of v and by whenever E is a v-distributed set of finite perimeter with
segments as sections. Since such a formula may be of independent interest, we have included its proof
in Appendix B.

Proof of Proposition 3.8. Let I = {t > 0: {v >t} and {v < ¢t} are of finite perimeter}, so that we have, as
usual, #'((0, 00) \ I) = 0. Since

/OO P{v>t}))dr= /00 P{v <thdt = |Dv|(IR"*1) < 00,
0 0

we can find two sequences {8 }nen, {Ln}ren C I such that

lim 8, =0, lim 8,P({v > 8,}) =0, (3-63)
h— 00 h—o0

lim Lj, = oo, lim L,P({v < Lj}) =0. (3-64)
h— 00 h— o0

Letusset ¥, ={L;, > v > 6} and E;, = E N (X, x R). Note that Ej, is, trivially, a set of locally

finite perimeter. Now, Ej locally converges to E as h — oo, and also P(Ey; E,EO) x R) = 0 and

0°E, N (E}(;]) xR)=0°E N (E,(ll) x R), so we have
P(E) <liminf P(E;) = liminf P (E; D X R) 4+ P(Ej; 3, x R). (3-65)
—00 —00

By (2-8) and (2-9),

. ~1
hll)ngo lzzn(z) = lprso)nov<ooy(z) forall zeR"™,
so that, by dominated convergence and thanks to the fact that £ has finite perimeter,

Jim P(E: ) x R) = P(E; (v > 0} N {v" < 00}) x R) = P(E; (v > 0} x R).

(In the last identity we have first used [Federer 1969, 4.5.9(3)] to infer that %2 ({vY = o00}) =0, and
then [Federer 1969, 2.10.45] to conclude that %"~ ! ({v" = oo} x R) = 0.) Hence, by (3-65),

P(E;{v" =0} xR) < lihmian(Eh; °Y, x R). (3-66)
—> 00

Since 8, Ly € I, we have v, = Ix,v € (BV N L®)(R"!) and a;, = 15,br € GBV(R"™!) (indeed,
ap = lyy<r,1bs,» Where bs, = l(ys,)bE € GBV(R"1), thanks to Theorem 1.7). Since E;, = W[vy, aj]
according to (3-24), we can apply (3-25) in Corollary 3.3 to G = 9°%, to find that

P(Ep; °Z, xR) = / min{v}f + vy, max{[vy], 2[ah]}} Ay 2. (3-67)
3 THN(Sy, USa,)
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Note that, since 3°%), is countably #"~2-rectifiable, we are only interested in the “jump” contribution
in (3-25). Let us now set

K}i =09, No%{v > &), Kﬁ =0°%,\ 0%v > &,} C 0%{v < Ly}.
The key observation to exploit (3-67) is that, as one can check with standard arguments,
v =v">8>v" and v, =0 %" 2-ae. onk}, (3-68)
vW>L,>v"=v/ and v, =0 %" *-ae. onKk}. (3-69)

For example, in order to prove (3-69), we argue as follows. First, we note that we always have v¥ > L;, > v"
and v;' =0 on 8°{v < L;}. In particular, v = L, on S5 N 3°{v < L}, and this immediately implies
v,/ = Lj on SN 3°{v < Ly}. By noting that v, = 15, v with ¥, C {v < L}, one checks that v"* = v’
%" 2-a.e.on J,Nd*{v < L,}. By (3-68) and (3-69), we have

min{v, +v;, max{[vs], 2[ap]}} =v¥ %" "*-ae.on K}, (3-70)

min{vz + v}, max{[vp], 2[ah]}} =v" #"2-ae.on K7, (3-71)

so that, by (3-67) and since K ,1 Coen—2 Sy, — which again follows from (3-68) — we find

P(Ep; %%, xR) < f VA T + / v dger 2. (3-72)
K, Kj
By (3-69) and (3-64), we have
lim sup / v d¥H" ™ <limsup L, %" *(K}?) <limsup L, P({v < L,,}) =0. (3-73)
h— 00 Kﬁ h— 00 h— 00
We are now going to prove that
lim vV d¥ T = / v d¥" 2. (3-74)
h—00 Jae(y>s,} (v =0}

This will be useful in the estimate of the right-hand side of (3-67) because K ,ﬁ C 0%{v > §,}. Since
{vh =0}Na%{v > &} ={v" =0}NS,NI{w > §,} = (v =0} N{[v] > &}, we have that, monotonically
as h — oo,

v 1 pr=0)npe(u=s,) — V" ljpr=oyns, pointwise on R 1.

Hence,

lim v dH 2 = f v dH T = / vV dgen 2. (3-75)
h—00 Jiyr=0}nae{v>8)} {(vA=0}NS, (v =0}

‘We now claim that

lim vV dH T =0. (3-76)
h—00 J{prs0)nae(v>8p)

Indeed, since v¥ = v”" =§; on S5 N3°{v > &}, we find that

/ 0V dH < 5,323 > 84)) = 84 P({v > 84,
Scn{vr>0}Noc{v>4y}
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so that, by (3-63),

vV dgen—?

lim sup/ vV d¥" % =lim supf
h—o0 J{v">0}Na¢{v>38y} h—oo JS§,N{v">0}Nac{v>6,}

= lim sup [v] + v d¥" 2

h—o0 /Svﬂ{vA>0}ﬂ33{v>5h}

< limsup [W]dH" =2 4 8,%"2(8%(v > 8,,})

h— o0 [SUH{UA>O}QBC{U>8h}

= lim sup [v]d¥" =2, (3-77)

h— o0 ~/Svﬂ{vA>O}ﬁ8°{v>8h}
where the inequality follows by (3-68), and the last equality is by (3-63). Now, if z € {v" > 0}, then
z € {v> 8}V for every § < v”\(z), so that

ls,n{r=0)nae(v=5,] — O pointwise on R"~!

as h — oo. Since [v] € L' (%"~2LS,), by dominated convergence we find

lim [v]d¥" 2 =0. (3-78)

h—00 Jig,n{v">0)Nd<(v>5)
By combining (3-77) and (3-78), we obtain (3-76). By (3-75) and (3-76), we deduce (3-74). From
K} C 8%{v > 8}, (3-72), (3-73), and (3-74), we deduce that

limsup P(Ej; °%Z, x R) < / oY dH" 2.
h— o0 {vr=0}
By combining this last inequality with (3-66), we find
PE; (v =0} xR) < / vV dH 2 = P(F[v]; (v =0} xR) < P(E; {v"\ =0} x R),
{v"=0}

where the equality follows by (3-29), and the final inequality is, of course, (1-1). This completes the
proof of (3-62). O

Remark 3.10. Let v € BV(R"™!; [0, 00)) with %"~ ({v > 0}) < o0, and let E be a v-distributed set with
segments as sections. Then, E is of finite perimeter if and only if sup, . P(Ep) < 00, where

Eyn=ENZ,xR), X,={Lyp>v>,},

and {6x}nen, {Lnlnen C (0, 00) are such that

lim &), =0, lim 8,P({v> 8,}) =0,
h—00 h—o0

lim Ly = o0, lim L,P({v<Ly})=0.
h—00 h—00

The fact that P(E) < oo implies sup,, .y P (E}) < oo is implicit in the proof of Proposition 3.8. Conversely,
if {Ep}nen 1s defined as above, then Ej — E as h — oo, and thus sup, .y P (E)) < oo implies P(E) < 00
by lower semicontinuity of perimeter.
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Lemma 3.11. Ifv € (BVNL®)(R"™), b : R"! — R is such that tyyb € (BV N L®) (R for a.e.
M > 0, and w is an R"~'-valued Radon measure such that

Mlim |l — Dty b|(G) =0  for every bounded Borel set G € R"™!, (3-79)
— 00
then
|DC(b+v)|(G) < |+ DV|(G) for every Borel set G € R" 1. (3-80)
Proof. Let us assume that [v| < L %" '-a.e. on R*~'. If f € BV(R"™!), then
i f = Moy — Ms oy + Lpemytn f € BVOLZ) R
for every M such that { f > M} and { f < —M} are of finite perimeter, and thus, by [Ambrosio et al. 2000,
Example 3.97],
Dty f = D (g piemytu ) = 1y pyepnyo D (o f) = D (a A1 f| < MYD;
in particular,
|D v f1 = IDfIAI f] < MYV < DS ). (3-81)
From the equality tp/(tpr+1(b) + v) = t30(b 4+ v) and from (3-81) applied with f = ty11(b) + v it
follows that, for every Borel set G C R,
| D (za1 (b + v)|[(G) = | D (tas (Tar+L (B) + v)) |(G) < | D (Tar4L(B) + )| (G). (3-82)
By (3_79)’
Jim [ DX (@i (0) +)|(G) = |+ DVI(G).
We let M — oo in (3-82), and by definition of | D¢(b + v)| we obtain (3-80). O

Proof of Theorem 1.9 (sufficient conditions). Let E be a v-distributed set of finite perimeter satisfying
(1-15), (1-16), (1-17), and (1-18). Let I and Js be defined as in (3-50) and (3-51). If §, S € I and we
set bs, s = ls<v<5}0E = l{s<v<s)bs, then, for every M € Js, we have ty/bs € (BV N L®)(R*1) (see the
end of step one in the proof of Theorem 1.7), and so we obtain that ty/bs s € (BV N L®)(R"1). Let us
consider the R"~!-valued Radon measure 115 s on R"~! defined for every bounded Borel set G C R"~! by

s.s(6) = fdDe
GN{8<v<S}IN{|bg|Y <0}

Since Ty bs s = 1{v<syTmbs, by Lemma 2.3 we have D[ty b5 5] = 1{, 5300 D[Tibs], and thus, for every
Borel set G ¢ R*~1,

lim |ps,s — D[tubs s11(G) = lim |us s — D[tibs11(G N {v < S}D)
M— o0 M—o0
< lim |f1d|Dv| =0, (3-83)
M—00 JGn{s<v<SION[{|bg|Y <col\{Ibp|<M}D)]

where the inequality follows by (1-18), and the last equality follows from the fact that {{|bg| < M}V } s
is an increasing family of sets whose union is {|bg|¥ < 0co}. By applying Lemma 3.11 to bs g and :}:%vg,s
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(with vs s = 1{s<y<syv), and Lemma 3.7 to us s and :i:%DCU(g,S and recalling (1-18), we find that, for
every bounded Borel set G C R"™!,

|D (bs,s + 35,5)|(G) + | D (bs,s — 3v5,9)|(G) < |ps,s + 3 Dvs,51(G) + | s,s — 3 D s, 51(G)
= | D5 5/(G). (3-84)
Since bs s € GBV(R" 1) and vs.s € (BV N L®)Y R, if W = Wlvs.s, bs.s], then we can compute

P(W; G x R) for every Borel set G C R"~! by Corollary 3.3. In particular, if G C {§ < v < S}V, then
by EN({§ <v<S}xR)y=WN{S <v < S} xR) we find that

P(E;GxR)=P(W; G xR)
=/ U+ IVBss+ 105,92+ 14 V(Bs.s — Lus )P doe™!
G

+/ min{vsv,s—i—v(ﬁs,max{[v(g,g], 2[b5,5]}}d?f€"_2
GO(Sus 5 UShy )

+ | D (bs.s + 3v5.9)1(G) + | D (bs.s — 505.9)1(G).  (3-85)
We can also compute P (F[vs s]; G x R) using Corollary 3.4. Since
Fvln({d <v < S} xR)=Fluvs s]IN({§ <v < S} xR),

we conclude that

P(F; G xR)=P(Flvs,s]; G xR)

:2/ ,/1+|%Vv3,s|2d%"—1+/ [vs.5]d¥" ™ + | D vs 5| (G). (3-86)
G G

NSus 5
From (1-16) and (1-17) we deduce that (applying (2-10) and (2-12) to bg and v)
Vbs s(z) =Vbp =0 for #"lae ze{§<v<S}, (3-87)
2[bs 5] =2[bg] <[v] =[vs,s] *"*-ae. on{s<v<S}. (3-88)

Substituting (3-87), (3-88), and (3-84) into the first, second, and third parts of (3-85) respectively, we find
that
P(E; {8 <v<SIVxR) < P(F; {8 <v<S8}VxR), (3-89)

where, in fact, equality holds thanks to (1-1). By (2-9) it follows that

U <M® =" < oo} =2 R, (3-90)
Mel

as #"2({v¥ =00}) =0 by [Federer 1969, 4.5.9(3)]. By taking a union over §, € I and S;, € I such that
8p — 0 and S, — oo as h — 00, we deduce from (3-89), (3-48), and (3-90) that

P(E; {v" >0} xR) = P(F; {v" >0} xR).

By Proposition 3.8, P(E; {v* =0} x R) = P(F; {v" =0} x R), and thus P(E) = P(F), as required. [J
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3E. Equality cases by countably many vertical translations. We finally address the problem of charac-
terizing the situation when equality cases are necessarily obtained by countably many vertical translations
of parts of F[v]; see (1-22). In particular, we want to show this situation is characterized by the assumptions
that v € SBV(R"!; [0, 00)) with %"~!({v > 0}) < oo and S, is locally %" ~2-rectifiable. We shall need:
Theorem 3.12. Let u : R"~! — R be Lebesgue measurable. The following are equivalent:

() u € GBV(R"™Y) with |Du| =0, Vu =0 %" -a.e. on R"~, and S, locally #">-finite.

(ii) There exist an at most countable set 1, {cy}ne; C R, and a partition {Gp}ner of R*~! into Borel sets

such that
u=Yy cylg, %" '-ae onR" (3-91)
hel

and ) ,.; P(G, N Bg) < oo for every R > 0.
Moreover, if we assume that c, # ck for h # k € I then, when (i) and (ii) hold,

Su G | 9°GrN3°Gy (3-92)
h#kel

with [u] = |cp — cx| #"2-a.e. on 3°Gj, N 3°Gy. In particular,
> P(Gy: B) =29""*(S,N Bg) forall R>0.
hel
Proof of Theorem 3.12. Step one: We recall that, by [Ambrosio et al. 2000, Definitions 4.16 and 4.21,
Theorem 4.23], for every open set 2 and u € L>(£2), the following two conditions are equivalent:
(j) There exist an at most countable set I, {cy}ne; C R, and a partition {G}ne; of Q such that
Y nes P(Gy; Q) < 0o and
u=Yy cylg, %" '-ae onQ. (3-93)
hel
(i) u € BVioe(R), Du = DuLS,, and %" ~2(S, N Q) < oo.
When these hold, we have 2#"2(S, N Q) = Y ner P(Ghi Q).
Step two: Let us prove that (i) implies (ii). Let u € GBV(R"™!) with |Du| =0, Vu =0 %""'-a.e. on R" !,
and S, locally %" —2-finite. For every R, M > 0, we have, by the definition of GBV, that ty;u € BV(Bg).
Moreover, |Dtyu| =0, Viyyu =0, and S;,,, N Br C BRN S, is %" 2 finite. By step one, there exist an
at most countable set Ir a1, {Cr M n}neir,, C R, and a partition {G g am n}nery ,, Of Bg into sets of finite
perimeter such that Zhe]R " P(Ggr.pm.p; Br) < oo and

MU = Z CR,M,hlGR_M‘/, %" !-ae. on Br.
hEIR,M
By a simple monotonicity argument we find (3-91). By (3-91), if we set Jyy = {h € N : |c;,| < M} then,
%" 1ae. on R 1

MU = Ml{u>M}ﬂBR — Ml{u<fM}ﬂBR + Z ChlGhﬁBR %" !-ae. on Bg. (3-94)
hE./M
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By step one,

P({u > MY; Br)+ P({u < —M}: Bp)+ Y P(Gp: Bg) = 29" 2(Se,0u N Br).

hEJM
Thus,

Y P(G; Br) < 29" *(Seyu N Br) < 29" (S, N B).

hEJM
Since (Jy,-oJu = I, letting M — oo we find that ), _, P(Gs; Bg) < oo, which clearly implies
Zhel P(G, N Bg) < o0.

Step three: We prove that (ii) implies (i). We easily see that, for every R, M > 0, tpu satisfies the
assumptions (jj) in step one in Bg. Thus, tyu € BV(Bgr) with Dtyu = Dtyur Sy, in Bg, and

20" (Sru N Br)= Y _ P(Gy: Bp) <Y _ P(GyN Bg) < o0,
hedy hel
where, as before, Jy; = {h € N : |¢;,| < M}. This shows that u € GBV(R"~!) with |Du| =0 and Vu =0
%" 1-a.e. on R"!. Since Upr~0 Styu = Su, this immediately implies that S, is locally %" —2-finite.

Step four: We now complete the proof of the theorem. Since {Gp},e; is an at most countable Borel
partition of R"~! with ", ., P(G, N Bg) < oo, we have that

R =2 | J G} U | 9°Ghna°Gy:
hel h#kel

compare with [Ambrosio et al. 2000, Theorem 4.17]. Since S, ﬂGﬁll) = & for every h € I, this proves (3-92).
If we now exploit the fact that, for every h # k € I with ¢, # ¢k, G and Gy are disjoint sets of locally
finite perimeter, then by a blow-up argument we easily see that [u] = |c;, — x| H"2-a.e. on 9°G;, N3Gy,
as required. This completes the proof of theorem. O

Proof of Theorem 1.13. Step one: We prove that, if E € Jl(v), then there exist a finite or countable set /,
{cn}ner C R, and {Gp}ner a v-admissible partition of {v > 0}, such that b =), _, cilg, ¥l ae.
on R~ (so that E satisfies (1-22); see Remark 1.31), |Dbg|t =0, and 2[bg] < [v] #"2-a.e. on {v" > 0}.
The last two properties of b follow immediately from Theorem 1.9 since D°v = 0. We now prove that
b=, cnla, %" !-a.e. on R"!. Let § > 0 be such that {v > 8} is a set of finite perimeter, and let
bs = 1jy~sybg. By Theorem 1.7 and by (1-16), (1-17), and (1-19), recalling also (2-10), (2-12) and the
definition of | D¢bg|t, we have that by € GBV(R"~!) with

Vbs(z) =0 for %" '-ae. z e {v> 6}, (3-95)
2[bs] <[v] %" 2-ae.on {v>8}D, (3-96)
2|D°bs|(G) < |Dv|(G) for every Borel set G C R"~. (3-97)

Since Dv = 0, we have that |D°bs| = 0 on Borel sets, by (3-97). Since, trivially, Vbs =0 ¥ ae.
on {v < §}, by (3-95) we have that Vbs =0 %" '-a.e. on R*1. Finally, by (3-96) we have that

Spy Copn2 (Sy N {v > 8} YU (v > 8} C (S, N{v" > 0)) Ud{v > 8}, (3-98)
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so that S, is locally #"~2-finite. We can thus apply Theorem 3.12 to bs to find a finite or countable
set I, {¢3}ner, C R, and a Borel partition {G$ }e, of {v > 8} with

bs = Z chG;s 3"~ '-a.e. on {v > §}.
h615
By a diagonal argument over a sequence §, — 0 as h — oo with {v > §;} of finite perimeter for every h € N,
we prove the existence of I, {cy}ne; and {Gp}ner as in (1-22) such that by = Zhe] cnlg, #1-ae.
on {v > 0} (and thus %" '-a.e. on R"~"). This means that

bs = Z ChlGhﬂ{v>8} %" !-ae. on Rn_l,
hel,;
and thus, again by Theorem 3.12, >, _; P(G;, N{v > 8} N Bg) < oo. This shows that {Gj}xen is
v-admissible and completes the proof.

Step two: We now assume that E is a v-distributed set of finite perimeter such that (1-22) holds, with
{Gn}ner v-admissible, and 2[bg] < [v] %" 2-a.e. on {v” > 0}, and aim to prove that E € M(v). Since E is v-
distributed with segments as sections and {G 1, },<; is v-admissible, we see that b satisfies assumption (ii) of
Theorem 3.12 for a.e. § > 0. By applying that theorem, and then by letting § — 0T, we deduce that Vb =0
¥"~!-a.e. on R"~! and that |[D°bg|* = 0. Hence, by applying Theorem 1.9, we deduce that E € .M(v). O

4. Rigidity in Steiner’s inequality

In this section we discuss the rigidity problem for Steiner’s inequality. We begin in Section 4A by proving
the general sufficient condition for rigidity stated in Theorem 1.11. We then present our characterizations
of rigidity: in Section 4B we prove Theorem 1.29 (characterization of rigidity for v € SBV(R"~!; [0, 00))
with S, locally 9" 2-finite), while Section 4C and 4E deal with the cases of generalized polyhedra and “no
vertical boundaries”. (Note that the equivalence between the indecomposability of F[v] and the condition
that {v" = 0} does not essentially disconnect {v > 0} is proved in Section 4D.) Finally, in Section 4F
we address the proof of Theorem 1.30 about the characterization of equality cases for planar sets.

4A. A general sufficient condition for rigidity. The general sufficient condition of Theorem 1.11 follows
quite easily from Theorem 1.9.

Proof of Theorem 1.11. Let E € M (v), so that, by Theorem 1.9, we know that
/%"—Z(Gmae{b,; > t})dt:/ (be]1d¥#" 2 +|Dbe|T(GNK) 4-1)
R GNSp, NS,

whenever G is a Borel subset of {v"* > 0} and K is a Borel set of concentration for |D¢bg|*. If bg is
not constant on {v > 0}, then there exists a Lebesgue measurable set / C R such that %'(I) > 0 and, for
every t € I, the Borel sets G = {bg >t} N{v > 0} and G_ = {bg <t} N {v > 0} define a nontrivial
Borel partition {G1, G_} of {v > 0}. Since

(w>0PN3G,LNG_={v>0YNd{bg > 1},
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by (1-21) we deduce that
9" ({v > 0V Na%{bg > th \ ({(v* =0}US,UK)) >0 forall el (4-2)

At the same time, by plugging G = {v > 0}V'\ ({v" = 0}U S, UK) C {v" > 0} into (4-1), we find
/ w2 (0> 0}V N o (bg > )\ (" =0} US, UK)) dr = 0.
R

This is of course in contradiction with (4-2) and %' (1) > 0. O

Remark 4.1. By the same argument used in the proof of Theorem 1.11, one easily sees that if a Borel
set G C R™ is essentially connected and f € BV(R™) is such that |Df|(G") = 0, then there exists ¢ € R
such that f = c #™-a.e. on G. In the case that G is an indecomposable set, this property was proved in
[Dolzmann and Miiller 1995, Proposition 2.12].

4B. Characterization of rigidity for v in SBV with locally finite jump. This section contains the proof
of Theorem 1.29.

Proof of Theorem 1.29. Step one: We first prove that the mismatched stairway property implies rigidity.
We argue by contradiction, and assume the existence of E € /M (v) such that #" (E A(te, + F[v] )) > 0 for
every t € R. By Theorem 1.13, there exists a finite or countable set I, {cj}ne; CR, {Gp}ner @ v-admissible
partition of {v > 0} such that by =), _; clg, %" 1-ae. on R* !, E =y W[v, bg], and

2[bg] <[v] %" 2-ae.on {v" > 0). (4-3)

Of course, we may assume without loss of generality that %"~!'(G},) > 0 for every h € I and that
cn # c for every h, k € I, h # k (if any). In fact, # > 2, because if #/ = 1 then we would have
" (E A(ce,+ F [v])) =0 for some ¢ € R. We can apply the mismatched stairway property to I, {Gp}ner
and {cp}ner, to find hg, kg € I, hg # ko, and a Borel set ¥ with #"~2(X) > 0 such that

X C3°Gy, N3Gy, N{v" > 0} and [v](z) < 2|cp, —ck,| forall z € X. (4-4)
Since b)Y, > max{cy,, cx,} and b2 < min{cy,, cx,} on 3°Gy, N 3Gy, (4-3) implies
E 0 0 E 0 0 0 0 p
2lchy — ¢kl <[v] " 2-ae. on 3°Gy, N 3°Gy, N {v” > 0},

a contradiction to (4-4) and #"2(%) > 0.

Step two: We show that the failure of the mismatched stairway property implies the failure of rigidity.
Indeed, let us assume the existence of a v-admissible partition {Gj}ne; of {v > 0}, and {cp}rer C R
with ¢y # ¢ for every h, k € I, h # k, such that

2ep — ekl < [v] 9" 2-ae. on 3G, N3G N {v” > 0} (4-5)
whenever &, k € I with h # k. We now claim that E € Jl(v), where

E = J(chen + (FIVIN (G x R))).
hel
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To prove this claim, let § > O be such that {v > §} is a set of finite perimeter. By Theorem 3.12,
bs =bgly-s € GBV(R" 1) with Vbs =0 %" '-a.e. on R"~!, |Dbs| =0, Sps 1s locally %" 2 finite, and

v >8NSy, Coonz | 3°Gs N3G, (4-6)
h#kel
[bs]=lch —ck| #"%-ae.on 3°Gy s N3°GrsN{v>8D h#kel, 4-7)

where G, s = G, N {v > §} for every h € I. By (4-5), (4-6), and (4-7), we find
2[bs] < [v] %" 2-ae.on Sy, N{v>8}D. (4-8)

Now let {65 }nen, {Ln}nen be sequences satisfying (3-63), (3-64), and set E, = EN ({6, <v < Ly} X R),
Th = {8 < v < Ly}, by = lg,bp = ljy=r,)bs, and v, = 1x,v. Since v, € (BV N L®)(R""!) and
b, € GBV(R"™!), we can apply Corollary 3.3 to compute P(Ej; 21(11) x R), to get (using that Vbs =0
%" 1-ae.on R" 1, |Ds| =0, and (4-8)), that

P(Ey; SV xR) = P(F[ul; Z\” xR) forall heN;
in particular,
Jim P(E); =V x R) = P(F[v]; v > 0} x R).
—00

Moreover, by repeating the argument used in the proof of Proposition 3.8, we have
hlim P(Ey; 0°Zy x R) = P(F[v]; (v =0} x R).
—00
We thus conclude that
P(E) < lihmian(Eh) = P(F[v]),
—00

that is, E is of finite perimeter with E € J(v). [l

4C. Characterization of rigidity on generalized polyhedra. We now prove Theorem 1.20. The proof is
based on the following lemma.

Lemma 4.2. Ifv e BV(R"!; [0, 00)) with %"~ '({v > 0}) < oo is such that
{v > 0} is of finite perimeter, 4-9)
(v =0N{v >0} and S, are %”_z—ﬁnite, (4-10)

and if there exists € > 0 such that {v" = 0} U {[v] > &} essentially disconnects {v > 0}, then there exists
E € M(v) such that #" (EA(ten + F[v])) > 0 foreveryt € R.

Proof. If &€ > 0 is such that {v"* = 0} U {[v] > ¢} essentially disconnects {v > 0}, then there exists a
nontrivial Borel partition {G, G_} of {v > 0} modulo %"~! such that

{v>0YN3°G,LNIG_ Cypn V" =0} U{[v] > &} (4-11)
We are now going to show that the set £ defined by

E = ((3sen+ FIv) N (G4 x R) U(Fv]N (G- x R))
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satisfies E € Al (v); this will prove the lemma. To this end we first prove that G is a set of finite perimeter.
Indeed, since G C {v > 0}, we have

3°G, C (0°GN{v>0}D)yUuas{v > 0}, (4-12)
where 3G N{v > 0}V =93°G L Na°G_ N {v > 0}V, and thus, by (4-11),

G+ N{v>01Y 2 3°G L N{v > 0}V N (v =0} U{[v] > £}) C (3°GN{vY =0}N{v > 0} US,.

(4-13)
By combining (4-9), (4-10) (4-12), and (4-13), we conclude that %”_2(8°G+) < 00, and thus, by Federer’s
criterion, that G, is a set of finite perimeter. Since br = %81(; .» we thus have b € BV(R"™ 1), and
thus £ = W|[v, bg] is of finite perimeter with segments as sections. Since Vbg =0 %" !-ae. on R"1
and Db = 0, we are only left to check that 2[bg] < [v] %" 2-a.e. on {v" > 0} in order to conclude
that £ € Jl(v) by means of Theorem 1.9. Indeed, since bg = %81G+, we have Sp, = 0°G with
[bg] = 3¢ %" 2-ae. on 3°G,. By (2-9) and (4-11),

Sp, N >0} =0°G L N{" >0} =03°G, N3°G_N{v>0VN{w" >0} Copoa {[v] >¢}). O

Proof of Theorem 1.20. Step one: We prove that, if F[v] is a generalized polyhedron, then v € SBV(R"~!),
S, and {v¥ =0} \ {v =0} are %" ~2-finite, and {v > 0} is of finite perimeter. Indeed, by assumption,
there exist a finite disjoint family of indecomposable sets of finite perimeter and volume {A ;};c; in R™1,
and a family of functions {v;};ec; C WLIL(R1), such that

v= Z vila,, (W' =0\{v=0}")US, Cy U 3°A;. (4-14)
jet jeJ
By [Ambrosio et al. 2000, Example 4.5], v;l4; € SBV(R"~1) for every j € J,sothatv € SBV(R*™1),
as J is finite. Similarly, (4-14) gives that {v* = 0} \ {v = 0}V and S, are both %" 2-finite. Since
{(vV =0} \ {v = 0}V and 8°{v > 0} are both subsets of {v" = 0} \ {v = 0}V, we deduce that
vV =0} \ {v =0}V and 3°{v > 0} are ¥">-finite. In particular, by Federer’s criterion, {v > 0}
is a set of finite perimeter.

Step two: By step one, if F[v] is a generalized polyhedron, then v satisfies the assumptions of Lemma 4.2.
In particular, if {v" =0} U {[v] > &} essentially disconnects {v > 0}, then rigidity fails. This shows the
implication (i) = (ii) in the theorem.

Step three: We show that if rigidity fails, then {v" = 0}U{[v] > ¢} essentially disconnects {v > 0}. By step
one, if F[v] is a generalized polyhedron, then v satisfies the assumptions of Theorem 1.13. In particular,
if E € M(v), then Vbg =0, Sp, N {v" > 0} C S, 2[be] < [v] #"2-ae. on {v" > 0}, and |Dbg|* =0,
so that, by (1-28) and (1-20), we find

Spe Coo2 | 0°A;, (4-15)
jeJ
/%”2(Gﬂae{bg > t}) dt =/ [bpld¥" 2 (4-16)
R GNSpp
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for every Borel set G C {v” > 0}. We now combine (4-15) and (4-16) to deduce that
/ #'2(AV N0 {bg > 1)) dt =0 forall jeJ.
R

Since each A; is indecomposable, by arguing as in the proof of Theorem 1.11 we see that there exists
{cj}jes CRsuchthatbp =3, ,;
%" 1-a.e.on R" 1, where #Jy <#J, {aj}jes, CRwithaj #a;ifi, j € Jy,i# j,and {B;} ey, is a partition
modulo #"~! of R"~! into sets of finite perimeter. (Notice that each B ; may fail to be indecomposable.)
Let us now assume, in addition to E € Jl(v), that " (EA(te,, + F[v])) > 0 for every ¢ € R. In this case,
the formula for bg we have just proved implies that #Jy > 2. We now set

. n—1 n—1 : — .
cjla; %" '-a.e. on R"™. In particular, we have bg =}, a;15

e = min{la; —aj| i, j € Jo, i # j).

so that & > 0, and, for some jy € Jo, we set G, = B and G_ = UjeJo,j;éjo B;. In this way {G 1, G_}

defines a nontrivial Borel partition of {v > 0} modulo %" ~! with the property that
[v] > 2[bg] > 2¢ H#"2-ae.on {v">0}N3°GLNIG_.
Thus, {v" =0} U{[v] > ¢} essentially disconnects {v > 0}, and the proof of Theorem 1.20 is complete. []

4D. Characterization of indecomposability on Steiner symmetrals. We show here that requiring that
{v" =0} does not essentially disconnect {v > 0} is in fact equivalent to saying that F[v] is an indecompos-
able set of finite perimeter. This result shall be used to provide a second type of characterization of rigidity
when F[v] has no vertical parts, as well as in the planar case; see Theorem 1.16 and Theorem 1.30.

Theorem 4.3. If v € BV(R"!; [0, 00)) with %"~ ({v > 0}) < oo, then F[v] is indecomposable if and
only if {v" = 0} does not essentially disconnect {v > 0}.

We start by recalling a version of Vol’pert’s theorem; see [Barchiesi et al. 2013, Theorem 2.4].

Theorem C. If E is a set of finite perimeter in R", then there exists a Borel set Gg C {v > 0} with
#"'{v > 0} \ Gg) = O such that E, is a set of finite perimeter in R with 3*(E,) = (0*E). for
every z € Gg. Moreover, ifz € Gg and s € 0*E,, then

qu(Zs S)

_— 4-17
lqve(z, 5] @1

qUE(sz)#Ov VEZ(S)Z

Proof of Theorem 4.3. In Lemma 4.4 below, we prove that, if F = F[v] is indecomposable, then {v" = 0}
does not essentially disconnect {v > 0}. We prove here the reverse implication. Precisely, let us assume
the existence of a nontrivial partition {Fy, F_} of F into sets of finite perimeter such that

0=9"""(FVNFNF)=%""FPNaF). (4-18)
We aim to prove that, if we set

Gy={zeR" L %'(F),) >0}, G_={zeR"': %' (F.), >0},
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then {G 1, G_} defines a nontrivial Borel partition modulo %! of {v > 0} such that
{v>0YN3G,NIG_ Coyn2 (v =0}. (4-19)

Step one: We prove that {G, G_} is a nontrivial Borel partition (modulo %1 of {v > 0}. The
only nontrivial fact to obtain is that #"~' (G, N G_) = 0. By Theorem C there exists G C G4 with
%"~ (G4+\ G*) =0 such that, if z € G* , then

e (F.), is a set of finite perimeter in R with (3*F,), = 0*((F4),),
e (F_), is a set of finite perimeter in R,
e {(Fy)., (F_).} is a partition modulo #' of (F(V)_,
where the last property follows by Fubini’s theorem and #" (FAF () = 0. Now let
G ={ze Gt %" (FV),\(Fy),) >01=G*NG_.

If z € G%*, then {(F})., (F_).} is a nontrivial partition modulo %' of (F(1), into sets of finite perimeter.
Since (F1), is an interval for every z € R"~! (see [Maggi 2012, Lemma 14.6]), we thus have

O (IF AV Na*(F))NI*(F-))) =1 forall z e G

In particular, since (0*F,), = 0*((F4).), [(F), 1M c (FM)_, and (AN B). = A. N B, for every
A, B C R", we have
HO(FVNI*Fy),)>1 forall ze G

Hence, G** C p(F" N9*F,), and by (4-18) and [Maggi 2012, Proposition 3.5] we conclude
0=#"""FUNFF) =% (p(FVNa*Fp)) > %" (G =% (G NG.),
that is, #"~1(GLNG_) =0.
Step two: We now show that
FYN((3°GLNG_) xR) C9°F, N3°F_. (4-20)

Indeed, let (z, s) belong to the set on the left-hand side of this inclusion; if — seeking contradiction —
(z,s) € 0°F, NA°F_, then either (z, s) € FY or (z,8) € FJ(FI). In the former case,

H'(Cierpyr) = H'(F-N Ciopy,r) + 0™ <205~ (G_N D) + 0™,

that is, z € GV, contradicting z € 3°G_; the latter case is treated analogously.
Step three: We conclude the proof. Arguing by contradiction, we can assume that
0<% 2{v>01"N3°G,LNIG_\ {v =0}
=H"2(0°G,LNG_N{" >0}
= lim ¥ 2(3°G,.NI°G_N{" > ¢},

e—>0t
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where it should be noted that all these measures could be equal to +co. However, by [Mattila 1995,
Theorem 8.13], if ¢ is sufficiently small, then there exists a compact set K with 0 < %" —2(K) < oo and
K Cc3°G,Noa°G_N{v" > g}. Therefore, by (4-20),

L (FO N F N F) > 9" (FPN((0°G4+N3*G_) x R))
> %" L(FY N (K x R))
> %" ({x eR": px € K, |gx| < 3v"\(px)}) by (3-27)
> 9" '({x eR": px € K, |gx| < 3&}) since K C {v" > ¢}
> c(n)#H"2(K)e > 0
by [Federer 1969, 2.10.45], a contradiction to (4-18). U

Lemma 4.4. Let v € BV(R"!; [0, 00)) with #" ' ({v > 0}) < oo. If {G4, G_} is a Borel partition of
{v > 0} such that
fv>01"YN3GLNG_ Cyn2 {v" =0}, 4-21)

then Fi = F[vI]N (G4 xR) and F_ = F[v]N (G- x R) are sets of finite perimeter, with
P(F})+ P(F_) = P(F[v]).

Proof. Step one: We prove that F is a set of finite perimeter (the same argument works, of course, in the
case of F_). Indeed, let G19 = G+ U{v =0}. Since F[v]N(G19 X R) = FL N (G419 x R), we find that

# 1 (°F N (G x R) = %" 1(3°F, N (G x R)), (4-22)
where we have set F' = F[v]. Since 9°F, N (Gf()) x R) = &, we find

?6"_1(3"'FJr N (Gf()) x R)) =0. (4-23)
‘We now note that
RN\ (G UGT) =8°Go=0°G_.

Since {v>0}PNs°G_ =@, 3¢{v >0} C {v) =0}, and {v > 0}V NG, NIG_={v>0VNsG_,
by (4-21) we find that
3°G_ Cym— {v" =0}. (4-24)

Thus, by (4-22), (4-23), (4-24), and by Federer’s criterion, in order to prove that F, is a set of finite
perimeter, we are left to show that

g1 (3°F N (fv" = 0} x R)) < oo. (4-25)
Since (3°F,), = @ whenever z € {v = 0}"", we find that
¥ (3°FL N (fv =01V xR)) =0. (4-26)

Since F, C F, 3°F, c F(DUQ3°F. At the same time, if z € {v¥ = 0}, then (3°F). U (F). c {0} by
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(3-27) and (3-28), so that, if G C {v¥ = 0}, then
H" 1B F. N (G x R)) <#H" (G x {0}) = %" 1(G).

By the Lebesgue density theorem, 3"~ ({v¥ = 0} \ {v = 0}(V) =0, thus, if we plug in the above identity
G = {v¥ =0} \ {v=0}", then (4-26) gives

g1 (3°Fr N ({v¥ =0} x R)) = 0. (4-27)

Finally, if z € {v" =0 < vV}, then (FM), {0} and (3°F), C [—%vv(z), %vv(z)] by Corollary 3.4. Since
{v" =0 < v} is countably %" 2-rectifiable, by [Federer 1969, 3.2.23] and (3-29) we find

5" (3°F, N (G x R)) = / H((B°F),) dH"2(2) < / vVWdH" 2= P(F; G xR) (4-28)
G G

for every Borel set G C {v" =0 < v"}. By combining (4-28) (with G = {v"* =0 < v"}) and (4-27), we
obtain (4-25) for F. The proof for F_ is of course entirely analogous.

Step two: We now prove that P(F,)+ P(F_) = P(F). Since F is #"-equivalent to Fy U F_, by [Maggi
2012, Lemma 12.22] it suffices to prove that P(F;) + P(F-) < P(F). By (4-22), (4-27), and the
analogous relations for F_, we are actually left to show that

P(F1;GxR)+P(F_;GxR)< P(F; G xR) (4-29)

for every Borel set G C {v" =0 < v"}. Since F = F[lg,v] is of finite perimeter, by Corollary 3.4 we
have vy =1g, v € BV(R"1), with

P(Fy: G x R) =2 / JU+ 15V, P+ / 01492 + | D0, |(G) (430)
GN{vy>0} GNSy,

for every Borel set G C R"~!. Since {v" =0 < vV} is countably %" ~2-rectifiable, we find

P(Fy: G xR) =/ [V ]1d¥H" > = P(Fy; GNSy,)
GNS,,

for every Borel set G C {v" =0 < v"}; moreover, an analogous formula holds for F_. Thus, (4-29) takes
the form

P(F;GNS, )+P(F_;GNS, )< P(F;GxR) (4-31)

for every Borel set G C (v =0 < vY}. If G C {v* =0 < vY}\ S,_, then (4-31) reduces to
P(Fy;GNS,,) < P(F; G xR), which follows immediately from (4-28). A similar argument holds if
we choose G C {v" =0 <v”}\ S,,. We may thus conclude the proof of the lemma by showing that

H" (v =0<vV}NS,, NS, )=0. (4-32)
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To prove (4-32), let us note that for #"2-ae. z € {v* =0 < vV}N Sy, NSy_, we have

> 1) -5 Hy forall 7€ (0,v"(2), (4-33)
vy > 1)y -5 Hy forall t e (v} (2), v} (2)), (4-34)

{v_ >t} Lo, Hy forall t € (v (z),vY(2))

as r — 07. Now, v} (z) < v"(z), therefore (v} (2), vy (2)) C (0, v”(z)). We may thus pick 7 > 0 such
that (4-33) and (4-34) hold, and, therefore,

> 1)y -5 Ho, (GoN{v> 1))y ={vs > thr -5 H,
asr — 0T, Since Gy N{v >t} C {v > t}, we have H| C Hy, and thus H; = Hy. This implies that
"' (D., N((z+ H)\Gy)) = 00" ") asr—07.
The same argument applies to v_ and gives
9" (D, N((z+H)\G-)) = 00" ") asr—07.
Hence, 6* (G NG_,z) >60(z+ Hy, 2) = %, a contradiction to #"~'(GLNG_) =0. O
4E. Characterizations of rigidity without vertical boundaries. We now prove Theorem 1.16, by com-

bining Theorem 1.11 and the results from Section 4D.

Proof of Theorem 1.16. We start by noticing that the equivalence between (ii) and (iii) was proved in
Theorem 4.3. We are thus left to prove the equivalence between (i) and (ii).

Step one: We prove that (ii) implies (i). By Lemma 2.2, we have that Dv_{v”" = 0} = 0; since we are
now assuming that D*v._{v" > 0} = 0, we conclude that Dv = 0. We now show that {v" =0} U S,

does not essentially disconnect {v > 0}. Otherwise, there exists a nontrivial Borel partition {G, G_}
modulo %"~ of {v > 0} such that

(" >0}N3°GL NG C{v>0VN3°G,L NG Cyo v =0}US,, (4-35)
where the first inclusion follows from (2-9). Since {v" = 0} does not essentially disconnect {v > 0} and
since D*v_{v" > 0} = 0 implies #"~2(S, N {v" > 0}) =0, we conclude

0 <" *(({v>0"N3G,LNIG_)\ {v" =0})

=%H"2([v" > 0}N 3G NIG_) = #H"*(({v" > 0} N3°G;+ N3°G_)\ S,),

a contradiction to (4-35). This proves that {v"* = 0} U S, does not essentially disconnect {v > 0}. Since
D¢v =0, we can thus apply Theorem 1.11 to deduce (i).

Step two: We prove that (i) implies (ii). Indeed, if (ii) fails, then there exists a nontrivial Borel par-
tition {G,, G_} of {v > 0} modulo #"~! such that {v > 0}V N 3°G, N 3°G_ Cym- {v" = 0}. By
Lemma 4.4, we find that F, = FN (G4 xR) and F_ = FN(G_ x R) are sets of finite perimeter with
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P(Fy)+ P(F_)= P(F). Letus now set E = (e, + F+) U F_. By [Maggi 2012, Lemma 12.22], we have
that E is a v-distributed set of finite perimeter with

P(F) < P(E) < P(en+ Fy)+ P(F-) = P(Fy) + P(F-) = P(F),

that is, E € M(v). However, #"(EA(te, + F)) > 0 for every ¢ € R, since {G;, G_} was a nontrivial
Borel partition of {v > 0}. ]

4F. Characterizations of rigidity on planar sets. We finally prove Theorem 1.30, which addresses the
rigidity problem for planar sets.

Proof of Theorem 1.30. Step one: Let us assume that (ii) holds. We first note that, in this case, Dv = 0,
so that, thanks to Theorem 1.11, we are left to prove that

{v* =0} U S, does not essentially disconnect {v > 0} (4-36)

in order to show the validity of (i). Since (ii) implies that {v* =0} U S, C R\ (a, b), where {v > 0} is
%l-equivalent to (a, b), (4-36) follows from the fact that R\ (a, b) does not essentially disconnect (a, b).

Step two: We now assume the validity of (i). Let [a, b] be the least closed interval which contains {v > 0}
modulo ¥#!. (Note that [a, b] could a priori be unbounded.) Let us assume without loss of generality
that %' ({v > 0}) > 0, so that (a, b) is nonempty. We now show that v"(c) > 0 for every ¢ € (a, b).
Indeed, let F = F[v], F+ = FN[[c,00) x R], and F_ = FN[(—o0, ¢) x R]. Since F; = F[l{.,o)v] and
F_ = F[1(—o,¢v], we can apply (3-29) to find that

J1+ |%u/|2+/ [V]1dH° 4+ v(cT) + | DV|({D > 0} N (c, 00))  (4-37)

SyN(c,00)

P(Fy) :2/

{v>0}N(c,00)
and

P(F_)=2/ 1+|lv’|2+/ [v]d%0+v(c_)+|Dcv|({17>O}ﬂ(—oo, c)), (4-38)
{v>0}ﬂ(—oo,c)\/72 SyN(—00,¢)

where we have set v(c™) = aplim(v, (¢, 0), ¢), v(c™) = aplim(v, (—o0, c), ¢), and we have used the
fact that D(1(¢,o)v) is the restriction of D v to (c, 00), that

[vl(z) if z>c,
Mic.oov](2) = v(ch) if z=c,
0 if z<ec,

as well as the analogous facts for 1(_n (yv. Notice that, if v"*(c) = 0, then either v(ict)=0orv(c™) =0,
and, therefore, P(F.) + P(F-) = P(F) by (3-29), (4-37), and (4-38). As a consequence, if we set
E = F; U(ey+ F_), then by arguing as in step two of the proof of Theorem 1.16 we find that

P(F) = P(E) < P(F})+ P(e2+ F_) = P(F}) + P(F-) = P(F),

that is, £ € Jl(v), in contradiction to (i). This proves that v (c) > O for every ¢ € (a, b). In particular,
since {v > 0} is %l—equivalent to {v" > 0}, we find that {v > 0} is %l—equivalent to (a, b). We now prove
that (a, b) is bounded. Let us decompose v as v = v| + vy, where v; € WLHR) and v, € BV(R) with
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D%, = 0; see [Ambrosio et al. 2000, Corollary 3.33]. If v; is nonconstant (modulo %) in (a, b), then
we find a contradiction with (i), by Proposition 1.15. Thus, there exists ¢ € R such that v, = ¢ on (a, b),
and so v = vy +1 € W"!(a, b). In particular, since {v > 0} =4 (a, b) and #' ({v > 0}) < oo, we find
that (a, b) is bounded.

Step three: We prove that (ii) implies (iii). Indeed, since {v > 0} is %'-equivalent to (a, b) and v" > 0
on (a, b), by Remark 1.5 we have that {v"* = 0} does not essentially disconnect {v > 0}. In particular,
by Theorem 4.3, we have that F[v] is indecomposable. Since v € wWh(a, b), by [Chlebik et al. 2005,
Proposition 1.2], we find that

%' (Ix € 9*F[v]: qurp = 0, px € (a, b)}) =0. (4-39)

Since {v" > 0} = (a, b), we deduce (1-33).

Step four: We prove that (iii) implies (ii). Since F[v] is now indecomposable, by Theorem 4.3 we have
that {v”* = 0} does not essentially disconnect {v > 0}. In particular, {v > 0} is an essentially connected
subset of R, and thus, by [Cagnetti et al. 2013, Proof of Theorem 1.6, step one], {v > 0} is #'-equivalent
to an interval. Since %' ({v > 0}) < oo, we thus have that {v > 0} =40 (a, b), with (a, b) bounded. Since
{v" = 0} does not essentially disconnect {v > 0}, we have v" > 0 on (a, b). Finally, by (1-33) and the
fact that v > 0 on (a, b), we find (4-39). Again by [Chlebik et al. 2005, Proposition 1.2], we conclude
that v e Whl(a, b). O

Appendix A: Equality cases in the localized Steiner inequality

The rigidity results described in this paper for the equality cases in Steiner’s inequality P(E) > P(F[v])
can be suitably formulated and proved for the localized Steiner inequality P(E; Q2 xR) > P(F[v]; 2 xR)
under the assumption that €2 is an open connected set. This generalization does not require the introduction
of new ideas, but, of course, requires clumsier notation. Another possible approach is that of obtaining
the localized rigidity results through an approximation process. For the sake of clarity, we exemplify this
by showing a proof of Theorem B based on Theorem 1.11. The required approximation technique is
described in the following lemma.

Lemma A.1. If Q is a connected open set in R"~!, v € BV(Q; [0, 00)) with ¥ 1 ({fv>0)) <oo, Eisa

v-distributed set with P(E; Q x R) < 0o and segments as vertical sections, then there exists an increasing

sequence {Q }xen of bounded open connected sets of finite perimeter such that Q = J; o Q. Qi is

compactly contained in Q, vy = 1g,v € BV(R"!: [0, 00)) with %"~ ({vx > 0}) < 00, Ex = E N (Q x R)
is a vi-distributed set of finite perimeter, and

P(Ey) = P(E; Q X R) + P(F[v]; 0% x R), (A-1)

P(Flv]) = P(F[v]; @ x R) + P(F[uv]; 9*Qk x R). (A-2)

Finally, if E € Mg (v) —see (1-2) —then Ej € M(vy).

Proof. By intersecting €2 with increasingly larger balls, and by a diagonal argument, we may assume that
Q is bounded. Let u be the distance function from R"~!'\ Q. By [Maggi 2012, Remark 18.2], {u > &} is
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an open bounded set of finite perimeter with 0*{u > ¢} =g {4 = ¢} for a.e. ¢ > 0. Moreover, if we
set f(x) =u(px), x € R*, then f : R" — R is a Lipschitz function with |V f| =1 a.e. on 2 x R, and
{f =¢}={u=¢} xR for every ¢ > 0, so that, by the coarea formula for Lipschitz functions [Maggi
2012, Theorem 18.1],

/ 5" (ED N ({u=e} xR))de 2/ V14K = vl ) < oo.
A EON@QxR)

We may thus claim that, for a.e. ¢ > 0,
9" (ED N (0*u > e} x R)) < oo. (A-3)

We now fix a sequence {&;}ren such that s — 0 as k — oo, {u > &} is an open set of finite perimeter
and ¢ = ¢ satisfies (A-3) for every k € N. Now let {A ;};ez, be the family of connected components
of {u > er}. Since 0Ax; C {u = &}, and {u = &} =gpm—2 0*{u > &} is %" ~2-finite, we conclude by
Federer’s criterion that Ay ; is of finite perimeter for every k € N and i € [;. Let us now fix z € 2, and let
ko € N be such that z € {u > &} for every k > k. In this way, for every k > ko, there exists ix(z) € I}
such that z € Ay, ;). We shall set

Q= Ak i)

By construction, each 2 is a bounded open connected set of finite perimeter, and Q; C ;4 for
every k > ko. Let us now prove Q2 = UkeN Q. Indeed, let y € Q, let y € ([0, 1]; Q) with y(0) =z
and y (1) =y, and consider K =y ([0, 1]). Since K is compact, there exists k| € N such that K C {u > &}
for every k > kj. Since K is connected and {z} C K N for every k > k;, we find that K C €2, and thus
y € Q4, for every k > k;. We now prove that E}, is a set of finite perimeter. Indeed, since E; = EN(2; X R),
we have 3°E; C [0°E N (2 x R)JUTEM N (32 x R)]. Since 2 is compactly contained in €2, we find
H"~L(@°EN(Q xR)) < P(E; ©xR) < 0o; thus, by taking (A-3) into account, we find 3"~ (3°Ey) < oo,
and thus that E} is a set of finite perimeter thanks to Federer’s criterion. By Proposition 3.2, vy € BV(R"~1)
with %"~ ({vx > 0}) < 00, and F[v] is a set of finite perimeter too. Since Ej is a vg-distributed set of
finite perimeter and d°$; is a countably #"~2-rectifiable set contained in {v;> = 0}, by Proposition 3.8,

P(E; 3°Q x R) = P(F[w]; Q2% x R).
Moreover, since E; = E N (2 x R) and Flvi] = Flv] N (2 x R),
.oM _ .o oM _ oM
P(E; 2, xR)y=P(E; Q" xR), P(F[wl; 2, xR)=P(F[v]; 2" xR).

Since 2" x R C E” N F[v]©, we have proved (A-1) and (A-2). Finally, if E € Alg(v), then by (1-1)
we have P(E; Qi x R) = P(F[v]; Q¢ x R), and thus, by (A-1) and (A-2), that P(Ey) = P(F[ve]). O

Proof of Theorem B. Let v € BV(L2; [0, c0)) with " 1({fv > 0}) < oo, D’vi{v" > 0} = 0 and
vN > 0 %" 2-ae. on Q (so that DSvi Q2 = 0). Let E € MMq(v), and assume for contradiction that
H" (EA(ten + F[v])) > 0 for every t € R. Let €, be defined as in Lemma A.1, and let vy = Ig, v,
Er = EN (2 x R), so that Ex € M(vg) for every k € N. However, %”(EkA(ten + F[vk])) > 0 for
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every ¢ € R and for every k large enough. Thus, rigidity fails for vy if & is large enough. By Theorem 1.11,
{v)) =0}US,, UM, essentially disconnects {v; > 0}, (A-4)

where M is a concentration set for Dvy. Since v = lgmv/\ inQ, v) >0 %" 2-ae.on Q, and 4 is
k
compactly contained in €2, we find that

=0y =@® "\ ") U =0y nQ) =52 R\ Q.
Since D*vLQ =0, using Lemma 2.3 and (again) that €24 is compactly contained in €2 we find that
S, NP =5,nQ" = s,n@\ Q) =o.

Moreover, by Lemma 2.3, D vy = DCUI_QI({D = DCU\_(Q,((D \ ) =0, so that we may take M = &. Finally,
{vr > 0} is %"~ '-equivalent to €, and thus, by Remark 1.5, (A-4) can be equivalently rephrased as

R\ Q) U (S, \ 2L") essentially disconnects $2. (A-5)

In turn, this is equivalent to saying that €2 is not essentially connected. Since €2y is of finite perimeter,
€ is not indecomposable, by Remark 1.6. By [Ambrosio et al. 2001, Proposition 2], €2, is not connected.
We have thus reached a contradiction. O

Appendix B: A perimeter formula for vertically convex sets

We summarize here a perimeter formula for sets with segments as vertical sections that can be obtained
as a consequence of Corollary 3.3 and Proposition 3.8, and that may be of independent interest.

Theorem B.1. If E = {x e R" : u;(px) < qx < ur(px)} is a set of finite perimeter and volume defined
byui,uy: R — R with u; < ur on R"Y, then uy and u, are approximately differentiable ¥ 1.q.e.
on {uy > u}, and

P(E) = V14 Vu 2 +V1+ | Vus |2 dge ™! +/ min{v"¥ +v", max{[v], 2[b]}} d%¢" 2
{v>0} SyUSp

+ DU [F({v" > 0}) + | Dus| " ({v" > 0}),
where v=u> —u;, b= %(ul + uy) and, for every Borel set G C R*1, we set
|Du;|"(G) = lim |D°(15,u)|(G), i=1,2, (B-1)
h—o0

where ¥, = {6, < v < Ly} for sequences §, — 0 and L, — 0o as h — oo such that {v > &,} and
{v < Ly} are sets of finite perimeter. (Notice that 1x,u; € GBV([R”_I)fori =1, 2, so that |D (15, u;)|
are well-defined as Borel measures, and the right-hand side of (B-1) makes sense by monotonicity.)

Proof. By construction and by Theorem 1.7, if we set v, = 15, v and by, = 15, b, then v, € (BVNL®)(R"~1)
and b, € GBV(R"™1) for every h € N, so that

Is,uy =by — v, € GBV(R"™), 1x,ur=by+ tv, € GBV(R"™),
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and, by Corollary 3.3, we find

P(Ep; G xR) = / \/1 + |Vby + 3 Vup|? +\/1 + Vb — 1V, 2da" !
GN{v, >0}

+ D (b + 3 [(G N {v)y > 0} + D (b, — 3vn) (G N {v) > 0}
+ / min{v; +v;, max{[vs], 2[bs]}} Ay 2
GN(Sy,USs,)

for every Borel set G C R, provided we set E, = W{vy, by]. Since P(E; E,(ll) xR)=P(Ey; E}(ll) x R),
the above formula gives

P(E; 2P x R) :/ \/1 + Vb + %Vv|2+\/1 +|Vb—1vy2ag!
Eh

min{v" +v", max{[v], 2[b]}} %"
2 0N(S,USp)

+|D (b, + %vh)l({vA > 0}) + | D (by — 3v) | ({v" > O),
where we have also used that, for every 7 € N,

1D (b, £ Lo [(Z") = |DC (b, £ Lup) [(R"™Y) = | D (by, + Lup) (0" > 0)).

By monotonicity, and since |,y E}(Il) = {v" > 0} N {vY = 00} =gpmn—2 {v" > 0} — thanks to [Federer
1969, 4.5.9(3)] and since, by Proposition 3.2, v € BV(R""!)—we find that
P(E; (v >0} xR)

= \/1—|—|Vu1|2+\/1+|Vu2|2d§¥€”_1—|—f min{v" +v", max{[v], 2[b]}} d%€" >

{v>0} {vA>0}N(S,USp)
+ 1D [T ({v" > 0}) + |Dus| " ({v" > 0}).

At the same time, by Proposition 3.8, we have P(E; {v" =0} x R) = fsvm{m=0} vV d¥" 2. Adding up
the last two identities we complete the proof of the formula for P(E). (|
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SINGULAR BOHR-SOMMERFELD CONDITIONS
FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE

YOHANN LE FLOCH

We state the Bohr—Sommerfeld conditions around a singular value of hyperbolic type of the principal
symbol of a selfadjoint semiclassical Toeplitz operator on a compact connected Riemann surface. These
conditions allow the description of the spectrum of the operator in a fixed-size neighborhood of the singu-
larity. We provide numerical computations for three examples, each associated with a different topology.

1. Introduction

Let M be a compact, connected Riemann surface with area form @. Assume that M is endowed with
a prequantum bundle L, that is, a Hermitian, holomorphic line bundle whose Chern connection has
curvature —iw. Let K be another Hermitian holomorphic line bundle,' and define the quantum Hilbert
space ¥y as the space of holomorphic sections of L®* ® K, for every positive integer k. We consider
(Berezin—)Toeplitz operators (see for instance [Boutet de Monvel and Guillemin 1981; Borthwick et al.
1998; Charles 2003a; Ma and Marinescu 2008] or the expository works [Ma 2010; Schlichenmaier 2010;
Zelditch 2014]) acting on #;. The semiclassical limit corresponds to k — +o0.

The usual Bohr—Sommerfeld conditions, derived in [Charles 2006], describe the intersection of the
spectrum of a selfadjoint Toeplitz operator and a neighborhood of any regular value of its principal symbol
ap in terms of geometric quantities. More precisely, this intersection is the union of a finite number of
families whose elements are, up to an error O (k~2), the solutions of an equation of the form

coW) +k e\ +em) €27k~ 7,
where

* co(A) is the holonomy associated with the parallel transport in L along a connected component of
the level set a, o,
 c1(A) contains the integral of a differential form involving the subprincipal symbol of the operator,
e € € {0, 1} is an index associated with a half-forms structure.
MSC2010: primary 58J50; secondary 53D50, 81510, 35P20.

Keywords: semiclassical analysis, spectral theory, Toeplitz operators.

I The reader must be warned that, in this work, the letter K does not refer to the canonical bundle unless explicitly stated
otherwise.
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Precise definitions of these quantities and a more explicit formulation of the Bohr—Sommerfeld rules can
be found in Section 4F.

A natural question is whether one can write Bohr—Sommerfeld conditions near a singular value of the
principal symbol. In the case of a nondegenerate singularity of elliptic type (a local extremum), it was
answered positively in [Le Floch 2014], and the result is quite simple: roughly speaking, the singular
Bohr—Sommerfeld conditions are nothing but the limit of the regular Bohr—Sommerfeld conditions when
the energy tends to the singular value. The hyperbolic case (presence of saddle points) is much more
difficult, because of the complicated topology of a neighborhood of the singular level. For instance, in
the case of one hyperbolic point, the critical level looks like a figure eight, and crossing it has the effect
of adding (or removing) one connected component from the regular level.

Let us mention that the case of Toeplitz operators is very close to the case of pseudodifferential
operators. In this setting, the problem of describing the spectrum of a selfadjoint operator near a singular
level of hyperbolic type was handled by Colin de Verdiere and Parisse [1994a; 1994b; 1999]. In this
article, we use analogous techniques to write hyperbolic Bohr—Sommerfeld conditions in the context of
Toeplitz operators. The novelty is that they can be applied in this context.

1A. Main result. Let Ay be a selfadjoint Toeplitz operator on M; its normalized symbol ag + fia; + - - -

is real-valued. Assume that 0 is a critical value of the principal symbol ao, that the level set I'g = a,,; L0)
is connected and that every critical point contained in I'y is nondegenerate and of hyperbolic type. Let
S = {sj}1<j<n be the set of these critical points. I'y is a compact graph embedded in M, and each of its
vertices has degree 4 (this is a consequence of the usual Morse lemma, for instance). At each vertex s,
we denote by e,,, m = 1, 2, 3, 4, the local edges, labeled with cyclic order (1, 3, 2, 4) (with respect to
the orientation of M near s;) and such that ey, e> (resp. e3, e4) correspond to the local unstable (resp.
stable) manifolds. Cut n + 1 edges of I'y, each one corresponding to a cycle y; in a basis (y1, ..., Yu+1)
of H;(I'g, Z), in such a way that the remaining graph is a tree J; usually J is called a spanning tree and
the basis (y1, ..., ¥a+1) is called a fundamental cycle basis (see for instance [Berge 1973, pp. 25-26]).
Our main result is the following:

Theorem (Theorem 6.1, Theorem 6.4). Zero is an eigenvalue of Ay up to O(k™°°) if and only if the
following system of 3n + 1 linear equations with unknowns (x, € Ci)eefedges of 7} (here Cy is the set of
constant symbols; see Section 2A) has a nontrivial solution:

(1) If the edges (e, e2, e3, e4) connect at s (with the same convention as before for their labeling), then
(2)-n()
Xe, Xe,
(2) Ifthe edges a and B are the extremities of a cut cycle y;, then
Xo = exp(ikO(y;, k))xg,

where the following orientation is assumed: y; can be represented as a closed path starting on the
edge o and ending on the edge B.
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Moreover, T; is a matrix depending only on a semiclassical invariant ¢ ; (k) of the system at the singular
point s (see (8)), and 0(y, k) admits an asymptotic expansion in nonpositive powers of k. The first two
terms of this expansion involve regularizations of the geometric invariants (actions and index) appearing
in the usual Bohr—Sommerfeld conditions.

For spectral purposes, we use this theorem by replacing Ay by Ay — E for E varying in a fixed-size
neighborhood of the singular level. Away from the critical energy, we recover the regular Bohr—Sommerfeld
conditions (see Section 6D).

This is very similar to the results of [Colin de Verdiere and Parisse 1999], but the novelty lies in the
framework that had to be set in order to extend their techniques to the Toeplitz setting (especially the
sheaf-theoretic approach to the spectral theory of Toeplitz operators), and also in the geometric invariants
that are specific to this context.

1B. Structure of the article. As said earlier, the case of Toeplitz operators is very close to the case of
pseudodifferential operators; in mathematical terms, there is a microlocal equivalence between Toeplitz
operators and pseudodifferential operators. When the phase space is the whole complex plane, this
equivalence is realized by the Bargmann transform, and allows one to use some of the results obtained in
the pseudodifferential setting. This is why the article is organized as follows: first, we discuss microlocal
properties of the Bargmann transform. Then we introduce the sheaf of microlocal solutions of the equation
(A — E)uy =0, explain its structure and recall the usual Bohr—Sommerfeld conditions. In Section 5, we
construct a microlocal normal form for A, near each critical point s;, 1 < j <n, on Bargmann spaces,
and we use the properties of the Bargmann transform and the study of Colin de Verdiere and Parisse
[1994a] to describe the space of microlocal solutions of Ay near s;. Finally, we adapt the reasoning
of [Colin de Verdiere and Parisse 1999; Colin de Verdiere and Vii Ngoc 2003] to obtain the singular
Bohr-Sommerfeld conditions (in Section 6). We give numerical evidence in the last section.

2. Preliminaries and notation

2A. Symbol classes. We introduce rather standard symbol classes. Let d be a positive integer. For u in
C4 ~R* let m(u) = (1 + ||u|®)'/?. For every integer j, we define the symbol class 9’;{ as the set of
sequences of functions in €*°(C¥) which admit an asymptotic expansion of the forma(-, k) =) >0 k~ta,
in the sense that B

e Forall £ € N and all &, 8 € N??, there exists Ct,q,p > 0 such that |8§‘8§ag| < Cg,a,ﬂmj.
e Forall LeN*andall o, 8 € N2 there exists Cr.,a,p > 0 such that

L—-1
8?35 (a — Z k_eag> ‘ < CL,a’/gk_Lmj.
=0

We set 94 = | J jez 8";. If, in the definition of ¥}, we only consider symbols independent of z, we obtain

the class Cy of constant symbols.
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2B. Function spaces. Using standard notation, we denote by .7 (R) the Schwartz space of functions
f € 6®(R) such that sup, g |t/ fP)(t)| < +oo forall j, p €N, by Z'(R) the space of distributions on R,
and by ./ (R) C 2'(R) the space of tempered distributions on R (the dual space of . (R)). We recall that
SR =) ®),
jeN

where . (R) is the space of functions f in @/ (R) with || f [|.# finite, with

£l = max <Sup|(1 +t2)(j—p)/2f<p>(t)|>'

0=p<j\teR

The topology of .#(R) is defined by the countable family of seminorms || - ||, j € N.
We recall the definition of Bargmann spaces [Bargmann 1961; 1967], which are spaces of square-
integrable functions with respect to a Gaussian weight: for k € N*,

By = :fwk ‘ f : C+— C holomorphic, / If(z)lzexp(—klzlz) di(z) < —i—oo}
R2

withy : C— C,z —~ exp(—%|z|2), Yk : C — C®F its k-th tensor power, and A the Lebesgue measure
on R2. We denote by || - |, the naturally associated L?-norm:

1/2
179 Nl = ( fR i If(Z)IzeXP(—kIZIz)d/\(z)> :

Of course, this norm is still defined for elements of the form fi/* satisfying the integrability condition
with f not necessarily holomorphic; when this is the case, we denote it by || f¥X| 12,exp- Furthermore,
we introduce the subspace

& — {(p | V) eN, sup(lp 11+ 2)i7) < —|—oo} (1)
z€E€

of By, with topology induced by the obvious associated family of seminorms. It is the analogue of the
Schwartz space on the Bargmann side; see Section 3A for a more precise statement.

2C. Weyl quantization and pseudodifferential operators. We briefly recall some standard notation and
properties of the theory of pseudodifferential operators (for details, see e.g. [Colin de Verdiere 2009;
Dimassi and Sjostrand 1999; Zworski 2012]), replacing the usual small parameter / by k!, because this
is all we need in the rest of the paper.

2C1. Pseudodifferential operators. A pseudodifferential operator in one degree of freedom is an operator
(possibly unbounded) acting on L2(R) which is the Weyl quantization of a symbol a( -, k) € ¥', seen as
a sequence of functions defined on the cotangent space T*R ~ R?; more precisely,

Op @) = 3 | expliktx = ya(*52. & k)u(r) dy de.

The leading term ag in the asymptotic expansion of a( -, k) is the principal symbol of Ay = Op,tv (a).
Ay is said to be elliptic at (xg, &) € T*R if ag(xo, &) # 0.
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2C2. Wavefront set.

Definition 2.1. A sequence u; of elements of 2'(R) is said to be admissible if, for any pseudodif-
ferential operator P, whose symbol is compactly supported, there exists an integer N € Z such that
| Preaall 2y = O (k™).

We recall the standard definition of the wavefront set WF (i) of an admissible sequence of distributions.

Definition 2.2. Let u; be an admissible sequence in 2'(R). A point (xq, &) does not belong to WF(uy) if
and only if there exists a pseudodifferential operator Py, elliptic at (xo, &), such that || Peu || 12 @)= 0 (k™).

One can refine these definitions in the case where u; belong to .7 (R).
Definition 2.3. A sequence (uy)r>1 of elements of . (R) is said to be

o -admissible if there exists N in Z such that every Schwartz seminorm of uy is O (kV),

o -negligible if every Schwartz seminorm of uy is O (k™). We write uy = O (k~).

Now, instead of using the L?-norm in Definition 2.2, one can actually consider the seminorms || - [|.,.

Lemma 2.4. A point (xg, &) does not belong to WF(uy) if and only if there exists a pseudodifferential
operator Py, elliptic at (xg, &), such that Pyuy = O o (k~).

Proof. The sufficient condition comes from the previous definition, so we only prove the necessary
condition. We only adapt a standard argument used when one wants to deal with ¢/-norms (see [Robert
1987, Proposition I'V-8]). Assume that (xg, &) does not belong to WF(uy); there exists a pseudodifferential
operator P, elliptic at (xo, &), such that || Pyug || ,2r) = O (k~°°). Consider a compactly supported smooth
function x equal to one in a neighborhood of (xg, &y), and set Oy = Opw( x) Px. For every R € R[X] and
every integer j > 0,
j
K4 ROPV 0

is a pseudodifferential operator of order 0, hence bounded L*(R) — L*(R) by a constant C > 0 (by
the Calderén—Vaillancourt theorem; see [Robert 1987, Theorem 1I-36] or [Dimassi and Sjostrand 1999,
Theorem 7.11]). Thus, one has

< Cl|Peukll 2@y = O (k).

L2(R)

o d/
Hk_]ERQkMk

Hence, || R Qxui || gsm) = O (k~°) for every integer s > 0, where we recall that the Sobolev space H*(R)
is the subspace of L?*(R) whose elements have their s first derivatives in L?(R); Sobolev injections then
yield that every €/-norm of R Qjuy is O(k~*°). Since this holds for every polynomial R, we obtain
the result. (Il
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2D. Geometric quantization and Toeplitz operators. We also recall the standard definitions and notation
in the Toeplitz setting. Unless otherwise mentioned, “smooth” will always mean €°°, and a section
of a line bundle will always be assumed to be smooth. The space of sections of a bundle £ — M
will be denoted by €°°(M, E). Let M be a connected, compact Kihler manifold, with fundamental
2-form w € QZ(M , R). Assume M is endowed with a prequantum bundle L — M, that is, a Hermitian
holomorphic line bundle whose Chern connection V has curvature —iw. Let K — M be a Hermitian
holomorphic line bundle. For every positive integer k, define the quantum space € as

Hy = HO(M, L@ K) = {holomorphic sections of LF® K}.

The space ¥ is a subspace of the space L>(M, L*¥ ® K) of sections of finite L2-norm, where the scalar
product is given by

0. ) =/ (o V) b,
M

with A the Hermitian product on L* ® K induced by those of L and K, and s, the Liouville measure
on M. Since M is compact, ¥} is finite-dimensional, and is thus given a Hilbert space structure with this
scalar product.

2D1. Admissible and negligible sequences. Let (sx)x>1 be a sequence such that, for each k, s; belongs
to (M, L*¥ ® K). We say that (s;)i>1 is

o admissible if for every positive integer ¢, for all vector fields X1, ..., Xy on M, and for every
compact set C C M, there exist a constant ¢ > 0 and an integer N (depending on X1, ..., X¢ and C)
such that

IVx, - Vx,sx(p)|| < ck™ forall pecC;

« negligible if for all positive integers £ and N, for all vector fields Xy, ..., X; on M, and for every
compact set C C M, there exists a constant ¢ > 0 (depending on X, ..., X¢, C and N) such that

IVx, - Vxse(p)l <ck™ forall pecC.

We say that (sg)>1 is negligible over an open set U C M if the previous estimates hold for every compact
subset of U. The microsupport MS(sy) of an admissible sequence (sx)r>1 is the complement of the set of
points of M which admit a neighborhood where (s;)r>1 is negligible. Finally, we say that two admissible
sequences (fx)k>1 and (sg)r>1 are microlocally equal on an open set U if MS(#; — s;) N U = J; unless
explicitly stated otherwise, the symbol ~ will indicate microlocal equivalence.

2D2. Toeplitz operators. Let TT; be the orthogonal projector of L>(M, L* ® K) onto %;. A Toeplitz
operator is any sequence (T : # — ¥ )r>1 of operators of the form

Ty =T My g+ Ry,

where f(-, k) is a sequence in €°°(M) with an asymptotic expansion f(-,k) = Zzzo kKt fe for the
%> topology, My (. x) is the operator of multiplication by f (-, k), and Ry is an operator acting on ¥
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with || R || = O (k~°°). Let J be the set of Toeplitz operators, and define the contravariant symbol map
Ocont - T — CGOQ(]M)IIh]]

sending 7} into the formal series ;. 7% f,. We will mainly work with the normalized symbol

h
Onorm = (Id + 5 A) Ocont>»

where A = 0*9 is the holomorphic Laplacian acting on €°°(M); unless otherwise mentioned, when we
talk about a subprincipal symbol, this refers to the normalized symbol.

We can define the notions of admissibility, negligibility, microsupport and microlocal equivalence for
Toeplitz operators, using the fact that their Schwartz kernels are sequences of sections of some line bundle
(see [Charles 2006, Equation (4.1)] for a more precise statement).

2D3. The case of the complex plane. Let us briefly recall how to adapt the previous constructions
to the case of the whole complex plane. We consider the Kihler manifold C ~ R? with coordinates
(x, £), standard complex structure and symplectic form wy = d& A dx. Let Ly = R?> x C — R? be the
trivial fiber bundle with standard Hermitian metric Ao and connection V° with 1-form (1 /1)a, where
o, (v) = %a)o(u, v); endow L with the unique holomorphic structure compatible with #y and V0. For
every positive integer k, the quantum space at order k is

%) = HO(R?, L{) N L*(R?, LY),

and it turns out that %2 = By (see Section 2B for the definition of %By); indeed, if we choose the
holomorphic coordinate z = %(x —i&), then a section ¢ of L’é — R? is holomorphic if and only if
kz

85§0+7§0 =0.

Hence, for ¢y : C — C, z — exp(—%lzlz), the section ¥ is a nonvanishing element of HO(R?, LS), and
any other holomorphic section is of the form fv*, where f is a holomorphic function.

One can define the algebra of Toeplitz operators and the various symbols in a similar way as in the
compact case; see [Le Floch 2014] for details. We will call 7 ; the class of Toeplitz operators with symbol
in ¥ i In what follows, l'[g will denote the orthogonal projector of L?(R?, Lg) onto #?, and we define
the Toeplitz operator Op(f -, k) = H,(C)Mf(.,k) for f(-,k)in EI’}.

Let us give more details about the microsupport in this setting. We start by recalling the following
inequality in Bargmann spaces [Bargmann 1961, Equation (1.7)].

Lemma 2.5. Let ¢ € By. Then, for every complex variable z,

172
1= (5) " 19l

Similarly, for all vector fields X1, ..., X, on C, there exists a polynomial P € R[xy, x2] with positive
values such that, for every z € C,

[(Vx, -+ Vx, 00 @] < P(lzl, ©)' Il el s,
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Proof. The first claim is proved in [Bargmann 1961] in the case k = 1; the general case then comes from
a change of variables. The second claim can be proved in the same way. (I

Lemma 2.6. Let uy be a sequence of elements of By and Q a bounded open subset of C. Assume that
lurll 22(@),exp = O (k™) then, for any compact subset K of 2, uy and all its covariant derivatives are
uniformly O (k=) on K.

Proof. Choose a compactly supported smooth function n which is positive, vanishing outside €2 and with
constant value 1 on K, and set vy = Op(n)ug. One has

0
lvillan, = ITenurllan, < lmullz2.exp < lukllL2(@),exp

since T1Y is continuous L?(R?, LK) — L?(R?, L) with norm smaller than 1. Hence, [vg[ls, = O (k=™).
By Lemma 2.5, this implies that v; and its covariant derivatives are uniformly O(k~°°) on K; since
ur = vr + O (k™) on K, the same holds for uy. O

Lemma 2.7. Let (uy)k>1 be an admissible sequence of elements of By and zo € C. Then zo ¢ MS(ux) if
and only if there exists a Toeplitz operator Ty € 7, elliptic at zo, such that || Tyu ||, = O (k™).

Proof. Assume that zg ¢ MS(uy). There exists a neighborhood AU of zg such that u; is negligible on U.
Choose a compactly supported function xy € €°°(C, R) with support K contained in U and such that
x (zo) = 1, and set Ty = Op(x). One has, for z; € C,

T = 3 [ exp(=4 0P + 2ol = 2012 ) o) Go) disG),

which gives

k k
|(Teui) (1) < 2—sup|uk|/ exp( =3 121 — 22?) du(z2).
T K 2
This allows to estimate the norm of Ty uy:
2 k \? 2 2
1Ty, = (5) (suplunl)” [ | exp(—klzi = 22 du(an) dia(z2):
T K cJk

Hence 2 5
2 k- 2
il < () (suplusd) k) [ exp(—kizs P dute

and the necessary condition is proved since the integral is O (k~!/2).

Conversely, assume that there exists a Toeplitz operator T € Jy, elliptic at zg, such that || Txullg, =
O (k—°). There exists a neighborhood of zg where Ty is elliptic. Hence, by symbolic calculus, we can
find a Toeplitz operator Sy € T such that Sy Tj ~ Hg near (zo, zo). Thus, there exists a neighborhood €2 of
2o such that Sy Tyug ~ uy on 2; this implies that || Sy Truk |l 12(q) = lluk |l L2(q) + O (k™). But, since Sy is
bounded By — By by a constant C > 0 which does not depend on &, one has || Sg Trui |l 2(q) < C | Teur o, ;
this yields that [lug |l 2 is O (k™). Lemma 2.6 then gives the negligibility of u; on . ([l

Definition 2.8. A sequence (u)r>1 of elements of S is said to be

o Gy-admissible if there exists N in Z such that every &, seminorm of uy is O (kN);
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o Gy-negligible if every Gy seminorm of uy is O (k~°°). We write u; = Og, (k~°).

Lemma 2.9. Let (up)x>1 be an admissible sequence of elements of By and zo € C. Then zo ¢ MS(ux) if
and only if there exists a Toeplitz operator Ty € 7, elliptic at zo, such that Tyux = Og, (k~°°).

Proof. The proof is nearly the same as the one of Lemma 2.4. One can show that if zg ¢ MS(uy), there
exists a Toeplitz operator T € J, elliptic at zg, such that for every polynomial function P (z) of z only,
sup,cc | P(2) (Truy)(z)| = O (k™°°), using the fact that the multiplication by P (z) is a Toeplitz operator. []

3. The Bargmann transform

3A. Definition and first properties. The Bargmann transform is the unitary operator By : L?(R) — By
defined by

1/4
(Bef)(2) = <(§) /R exp(k(—1 (2% +1%) + v2z1)) f(t)dt)xﬂk(z).

We claimed earlier that the subspace & of By defined in (1) is the analogue of the Schwartz space on
the Bargmann side. The case k = 1 is treated by the following theorem.

Theorem 3.1 [Bargmann 1967, Theorem 1.7]. The Bargmann transform By is a bijective, bicontinuous
mapping between . (R) and &.

This allows us to handle the general case.
Proposition 3.2. The Bargmann transform By is a bijection between . (R) and Sy.

Proof. If f belongs to .(R), one has, for z in C,
(Bef)(2) = (S)l/4 /R exp(k(—1(22 +12) +V2z21)) (1) dir:
introducing the variables u and w such that z = k~'/?w and t = k~!/?u, this reads
(Be f)(z) = (k)= '/ fR exp(—1 (w? + u?) 4+ v2wu) £ (k™ ?u) du.

Hence, we have (By f)(z) = (k)™ Y/*(B,g)(k'/?z), where g(t) = f(k~'/?t). Obviously, the function g
belongs to . (R); thus, by the previous theorem, B;g belongs to &;. Hence, for j € N, there exists a
constant C; > 0 such that, for every complex variable w,

|(B1g)(w) exp(—3wl*)| < C;(1+ [w[*) ™2,
This implies that, for every z in C,
‘(ka)(z) exp(—§|z|2)) < CikI(1 + k|22,
and since k > 1, this yields

|Ben@exp(-512P)| = €1 +12P) 7,
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which means that By f belongs to G. The converse is proved in the same way, using the explicit form of
the inverse mapping:

1/4
(Bi g)(1) = (g) /R exp(k(—1(Z + %) +v2zt — |21%)) g(2) du(2)
for g in &4 and t € R. (I

3B. Action on Toeplitz operators. The Bargmann transform has the good property to conjugate a Toeplitz
operator with symbol defined on C (thus acting on the spaces ;) to a pseudodifferential operator with
symbol defined on T*R (thus acting on L?(R)), and conversely.

Lemma 3.3. Let Tj be a Toeplitz operator in the class T ;, with contravariant symbol ocon(Ti) = f (-, h).
Then B} T; By, is a pseudodifferential operator with Weyl symbol

O’W(BE:TkBk)(x,%‘)=1(f(-,h))(x,€)=n]—h/CGXP(—%_lIwIZ)f(erZ,h)d?»(w),

where 7 = %(x —i&). The map I is continuous & j — & j. Moreover, forany f(-,h) € ¥;andall p > 1,

p—1 A
A F(- R
IfC )= (g)f—f;‘ L RPR, (£ ). ®)

j=0 '

where R, is a continuous map from ¥ to & ;.
Proof. Thanks to [Charles and Vi Ngoc 2008, Theorem 5.2], we know that the result holds when
T = 1'[2 fT1Y, f being a bounded function on C not depending on k. Now, using the stationary phase

method, one can prove that the map I is continuous ¥; — &; with the asymptotic expansion (2), and
conclude by a density argument. (I

3C. Microlocalization and Bargmann transform.

Lemma 3.4. (1) By maps #-admissible functions to Sy-admissible sections, and B; maps Sy-ad-
missible sections to .-admissible functions.
(2) By maps 0.4 (k=) into Og, (k=°), and B maps Og, (k™) into O .o (k™).
Proof. These results are proved by performing a change of variables, as in Proposition 3.2. O

We can now prove the link between the wavefront set and the microsupport via the Bargmann transform.

Proposition 3.5. Let u; be an admissible sequence of elements of .7 (R). Then (xo, &) ¢ WF(uy) if and
only if zo = \/%(xo —i&0) & MS(Byuy).

Proof. Assume that zg = %(xo —i&p) does not belong to MS(Byuy); by Lemma 2.9, there exists a Toeplitz
operator Ty, elliptic at zg, such that Ty Brupy* = Og, (k~°). Thanks to Lemma 3.3, Py = B;T; By is a
pseudodifferential operator elliptic at (xo, &y). Furthermore, thanks to Lemma 3.4, Pyuy = B T Byu i =
O .~ (k~°°); we conclude by Lemma 2.4. The proof of the converse follows the same steps. U
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4. The sheaf of microlocal solutions

In this section, T% is a selfadjoint Toeplitz operator on M with normalized symbol f(-,h) =), e fe.
Following [V Ngoc 1998; 2000], we introduce the sheaf of microlocal solutions of the equation T/:wk =0.

Let us recall the motivation for considering microlocal solutions: roughly speaking, they allow to split
the eigenvalue equation Ty, = Ay into several local problems, the Bohr—Sommerfeld rules being a
necessary and sufficient condition to glue together the solutions to these problems in order to obtain a
global approximate solution to this equation. For the sake of brevity, we begin with the case A =0, and
we introduce a spectral parameter only in Section 4F.

4A. Microlocal solutions. For an open subset U of M, we call a sequence of sections y; € 6*°(U, L*®K)
a local state over U.

Definition 4.1. We say that a local state 1 is a microlocal solution of

Ty =0 3)

on U if it is admissible and, for every x € U, there exists a function x € €°°(M) with support contained
in U, equal to 1 in a neighborhood of x and such that

Me(xy) = Y+ Ok™),  Ti(Mk(x ) = O(k™)
on a neighborhood of x.

One can show that if ¥, € # is admissible and satisfies Ty = 0, then the restriction of i to U is a
microlocal solution of (3) on U. Moreover, the set S(U) of microlocal solutions of this equation on U is
a Cy-module containing the set of negligible local states as a submodule (let us recall that Cy, is the set of
constant symbols; see Section 2A). We denote by Sol(U) the module obtained by taking the quotient
of S(U) by the negligible local states; the notation [ ] will stand for the equivalence class of i, € S(U).

Lemma 4.2. The collection of modules Sol(U) for U an open subset of M, together with the natural
restriction maps ry.y : Sol(V) — Sol(U) for U,V open subsets of M such that U C V, define a
complete preshea.

Thus, we obtain a sheaf Sol over M, called the sheaf of microlocal solutions on M.

4B. The sheaf of microlocal solutions. One can show that if the principal symbol fy of 7} does not
vanish on U, then Sol(U) = {0}. Equivalently, if vy € € satisfies Ty = 0, then its microsupport is
contained in the level I'g = fo_] (0). This implies the following lemma.

Lemma 4.3. Let Q2 be an open subset of I'y; write Q = U N Ty, where U is an open subset of M. Then
the restriction map

rg 1 Sol(U) — §u () :=ra(Sol(V)), [Vl [Yilel

is an isomorphism of Cy-modules.



1606 YOHANN LE FLOCH

We want to define a new sheaf § — I'( that still describes the microlocal solutions of (3). In order to
do so, we will check that the module Fy (£2) does not depend on the open set U such that Q =TyNU.
We first prove:

Lemma 4.4. Let U, U be two open subsets of M such that Q =U NIy = Un Io. Then there exists an
isomorphism between Sol(U) and Sol(l7 ) commuting with the restriction maps.

Proof. Assume that U and U are distinct and set V = U NU; of course Q C V. Write U = VU W
where the open set W is such that there exists an open set X C V containing €2 such that WN X = @.
Let xv, xw be a partition of unity subordinate to U=VUW;in particular, xy (x) = 1 whenever x € X.
One can show that the class F,, (¥x) = [xv V] belongs to Sol(ﬁ). We claim that the map F,, is an
isomorphism with the required property. U

From these two lemmas, we deduce:
Proposition 4.5. Let U, U be two open subsets of M such that Q=UNI"g= ﬁﬂl"o. Then Sy (2) =F5(L2).

This allows to define a sheaf § — I'y, which will be called the sheaf of microlocal solutions over I'y.
Let us point out that so far, we have made no assumption on the structure (regularity) of the level I'y.

4C. Regular case. Consider a point m € I'g which is regular for the principal symbol fy. Then there
exists a symplectomorphism x between a neighborhood of m in M and a neighborhood of the origin
in R? such that (fyo x ~1)(x, £) = £&. We can quantize this symplectomorphism by means of a Fourier
integral operator [Boutet de Monvel and Guillemin 1981; Zelditch 1997; Charles 2003b; Le Floch 2014]:
there exists an admissible sequence of operators U, k(m) 6> (R?, L’é) — ©®°(M, L* ® K) such that

U,fm)(U,fm))* ~Tl; nearm

and
(Uk(m))*Ulgm) ~ 119, (Uk(m))*TkU,fm) ~ S, near 0,

where Sy is the Toeplitz operator

Se= (e 1)

which means that Syu = %(z — %%)1//" if u = fwk. Consider the element ®; of ¢ (R2, L’é)

Dy (2) = expkz® /DY (2), ¥ (2) = exp(—3lz[*);

given by

it satisfies Sy @, = 0. Choosing a suitable cutoff function n and setting <I>,(<m) = Hg(ncbk), we obtain an
admissible sequence CD,(:") of elements of %B; microlocally equal to ®; near the origin and generating the
Ck-module of microlocal solutions of Syu; = 0 near the origin.

Proposition 4.6. The Cy-module of microlocal solutions of (3) near m is free of rank 1,> generated
by UM o

2We recall that this means that this module admits a basis with one element.
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This is a slightly modified version of Proposition 3.6 of [Charles 2003b], in which the normal form is
achieved on the torus instead of the complex plane.

Thus, if I’y contains only regular points of the principal symbol fj, then § — I'¢ is a sheaf of free
Ci-modules of rank 1; in particular, this implies that § — T’y is a flat sheaf, thus characterized by its

Cech holonomy holg.

4D. Lagrangian sections. In order to compute the holonomy holg, we have to understand the structure
of the microlocal solutions. For this purpose, a family of solutions of particular interest is given by
Lagrangian sections; let us define these. Consider a curve I' C I'y containing only regular points, and let
j:T — M be the embedding of I' into M. Let U be an open set of M such that Ur = j~'(UNT) is
contractible; then there exists a flat unitary section 1 of j*L — Upr. Now, consider a formal series

> h'ge € 6 (Ur, j*K)IA].

>0
Let V be an open subset of M such that V Cc U. Then a sequence Wy € ¥y is a Lagrangian section
associated to (T, fr) with symbol Zzzo htgy if

Wi (m) = (%)1/4Fk(m)§(m, k) over V,

where

e Fis a section of L — U such that
j*F=1tr and 9F =0

modulo a section vanishing to every order along j(I'), and |F(m)| < 1ifm ¢ j(I');
e &(-, k) is asequence in 6*°(U, K) admitting an asymptotic expansion » _,. k=tg, in the €> topol-
ogy such that
j*8 =g and 9g =0

modulo a section vanishing at every order along j(I").

Assume furthermore that Wy, is admissible in the sense that Wy (m) is uniformly O (k") for some N and
the same holds for its successive covariant derivatives. It is possible to construct such a section with given
symbol ), Kt g¢ (see [Charles 2006, §3]). Furthermore, if W is a nonzero Lagrangian section, then
the constants cr € Cy such that ¢ Wy is still a Lagrangian section are the elements of the form

cx = p(k) exp(ikg (k) + O (k~), )

where p (k), ¢ (k) € R admit asymptotic expansions of the form p(k) =), k~pe, ¢ (k) = D =0 k.

Lagrangian sections are important because they provide a way to construct microlocal solutions. Indeed,
if Wy is a Lagrangian section over V associated to (T', rr) with symbol ) _,_, ht ge¢, then T Wy, is also a
Lagrangian section over V associated to (I', 1), and one can in principle con_lpute the elements g,, £ >0
of the formal expansion of its symbol as a function of the g;, £ > 0 (by means of a stationary phase
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expansion). This allows to solve (3) by prescribing the symbol of Wy so that for every £ > 0, g, vanishes.
Let us detail this for the two first terms.

Introduce a half-form bundle (6, ¢), that is, a line bundle § — M together with an isomorphism of line
bundles ¢ : 8®2 — ALOT* M. Since the first Chern class of M, which is equal to its Euler characteristic,
is even, such a pair exists. Introduce the Hermitian holomorphic line bundle L such that K = L| ® §.
Define the subprincipal form « as the 1-form on I" such that

k(X f) =—f1,

where X 7, stands for the Hamiltonian vector field associated to fp. Introduce the connection V! on

Jj*Li — T defined by

Vl = Vj*Ll +%K,

with V/"L1 the connection induced by the Chern connection of L on j*L;. Let ér be the restriction of §
to I'; the map
or:82 > T'T®C, ur> j*ou)
is an isomorphism of line bundles. Define a connection V" on 81 by
Vf{ o= SE‘;F o,
where &B‘;{ is the first-order differential operator acting on sections of §p such that
s
or(£yg®g) = 1Lxor(g®%)

for every section g; here, & stands for the standard Lie derivative of forms.

It was proved in [Charles 2006, Theorems 3.3 and 3.4] that T; ¥ is a Lagrangian section over V
associated to fr with symbol (j* fo)go + O (h) = O(h) (so Wy satisfies (3) up to order O (k~')) and that
the subprincipal symbol of 7 Wy is

. 1 ,oj*L t)
G* F)go + 7(v§f01 ®Id+1Id ®§£;f0)go.
Consequently, (3) is satisfied by Wy up to order O (k~2) if and only if
1 i Li 8r _
(fi+:(V@u+1d@ey ))e=0 overvATl. ®)

This can be interpreted as a parallel transport equation: if we endow j*L; ® ér with the connection
induced from V! and V°r, (5) means that g is flat.

4E. Holonomy. We now assume that I'¢ is connected (otherwise, one can consider connected components
of I'p) and contains only regular points; it is then a smooth closed curve embedded in M. We would like
to compute the holonomy of the sheaf § — ['g.

Proposition 4.7. The holonomy holz(I'o) is of the form
holz(I'o) = exp(ik®(k)) + O (k™™), (6)
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where O (k) is real-valued and admits an asymptotic expansion of the form ® (k) = ZE;O k=tO,.

In particular, this means that if we consider another set of solutions to compute the holonomy, we only
have to keep track of the phases of the transition constants.

Proof. Cover I'y by a finite number of open subsets €2, in which the normal form introduced before
Proposition 4.6 applies, and let U’ and @} be as in this proposition. We obtain a family u} of microlocal
solutions; observe that for each «, u} is a Lagrangian section associated to I'. Hence, if Q, N Qg is
nonempty, the unique (modulo O (k~°°)) constant c,(fﬁ € Cy such that u)f = c,‘fﬁ u,’f on 2, N Qg is of the
form given in (4):

cif = p (k) exp(ike™ (k) + O (k™).

But if m belongs to 2, N 2, then near m we have u® ~ U*®"™ and uf ~ U &™), where ®™ is an
admissible sequence of elements of %; microlocally equal to ®; near the origin. Therefore, we have

P o = UH ' UF o™ + 0,

and the fact that the operators Uy, U f are microlocally unitary yields |c,‘f/3 |> =1+ O(k=*°). This implies

B

that the coefficients pg in the asymptotic expansion of p*# (k) vanish for £ > 1, which gives the result. [J

Let us be more specific and compute the first terms of this asymptotic expansion. Consider a finite
cover (2,)q of I'y by open subsets with j~!(€2,) contractible, and endow a neighborhood of each €2,
in M with a nontrivial microlocal solution W} which is a Lagrangian section. Choose a flat unitary
section t, of the line bundle j*L — j ~1(Q,) and write, for m € Qg,

1/4
W om = (5) " galm, 1k Om),

where the section g, (-, k) of j*K — 4 is the symbol of W, whose principal symbol will be denoted
by géo). Now, assume that 2, N Qg # &; there exists a unique (up to O (k™)) c,‘fﬂ € Cy such that

Wy~ c,‘jﬁllf,’f on Q4 N Q.

Definition 4.8. Let A, B € M and y be a piecewise smooth curve joining A and B; denote by P, g, :
L o — L p the linear isomorphism given by parallel transport from A to B along y. Given two sections s, ¢
of L — M such that s(A) # 0 and #(B) # 0, define the phase difference between s(A) and ¢ (B) along y

as the number
(®5(A) — @,(B)), =argra g, —co([A, B]) e R/2nZ,

where A4 p,, is the unique complex number such that P4 g, (s(A)) = Aa ,,t(B) and co([A, B]) is the
(phase of the) holonomy of y in (L, V) (computed with respect to some fixed trivializations at A, B).
Define in the same way the phase difference for two sections of K — M, this time using the Chern
connection of K.

Now, consider three points A, B, C € M, and let y; and y» be piecewise smooth curves joining A to B
and B to C, respectively. Let y be the concatenation of y; and y;. It is easily checked that

(Cps (A) - q)t(B))yl + (CI),(B) - q)u(c))yz = (CDS (A) - Cbu(c))y
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for three sections s, ¢, u of L. Furthermore, if y is a closed curve and A is a point on y, then the phase
difference between s(A) and s(A) along y is

(P5(A) = P5(A))y, =0

by definition of the holonomy cgy. This is why we write this number as a difference. Note that this still
holds true if we change the set of trivializations used to compute cg.

Coming back to our problem, denote by d>((x_l)(A) — CIJA(;])(B) the phase difference between #,(A)
and 74(B) along I'g in L, and by CID((),O)(A) — QDI(SO)(B) the phase difference between gg,o)(A) and géo)(B)
along I'g in K. Let ¢ be the path in I'y starting at a point A € 2, and ending at B € 2, N Qg. Since 7, is
flat and the principal symbol go of W} satisfies (5), we have

arg i = k(co(@) + @5 (4) — @7V (B)) +1(¢) + holsy, () + DY (A) — @ (B) + Ok,

where c¢1(¢) is the holonomy of ¢ in (L, v!) and hOlarO (¢) is the holonomy of ¢ in (dr,, V‘SFO) (both
computed with respect to some fixed trivializations of L and ér, at A, B).
Thanks to the discussion above, we know that the term

K@ () = 0 (B)) + 0 (4) — o (B)

is a Cech coboundary. The values co(I'p), c1(I'p) and h015r0 (I'g) do not depend on the trivializations
chosen for the computations. Moreover, one can check that V7o has holonomy in Z/27, represented by
€(lp) € {0, 1}. Thus, we obtain:

Proposition 4.9. The first two terms of the asymptotic expansion of the quantity © (k) defined in
Proposition 4.7 are given by
©9 = co(I'o)
and
©1 =c1(I'g) +€(To)m.

Since one can construct a nontrivial microlocal solution over I'g if and only if ® (k) € 27 Z, we recover
the usual Bohr—Sommerfeld conditions.

Let us give another interpretation of the index €. Consider a smooth closed curve y immersed in M.
Denote by ¢ : y — M this immersion, and by 8,, = (*§ the pullback bundle over y. Let ¢: 3, — & be the
natural lift of ¢, and define * : 8)‘?2 — 592 by the formula Pu®v)=1iu)i(v). The map

@y 8)?2 —>T*y®C, ur> o))
is an isomorphism of line bundles. The set
{ued, o, w®) >0}

has one or two connected components. In the first case, we set €(y) = 1, and in the second case €(y) = 0.
One can check that this definition coincides with the one above when y is a smooth embedded closed
curve. Notice that the value of €(y) only depends on the isotopy class of y in M.
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4F. Spectral parameter dependence. For spectral analysis, one has to do the same study as above,
replacing the operator Ty with 7 — A, A € R; then it is natural to ask if the previous study can be done
taking into account the dependence of the operator on the spectral parameter A.

Assume that there exists a tubular neighborhood €2 of I'" such that for A close enough to 0O, the
intersection I, N2 is regular. Then we can construct microlocal solutions of (7 —A)uy = 0 as Lagrangian
sections depending smoothly on a parameter (see [Charles 2003b, §2.6]); these solutions are uniform in A.
We can then define all the previous objects with smooth dependence in A. Proceeding this way, we obtain
the parameter-dependent Bohr—Sommerfeld conditions, which we describe below.

Let I be an interval of regular values of the principal symbol fj of the operator. For A € I, denote
by €;(A), 1 < j < N, the connected components of f(;1 (X) in such a way that for j fixed and Ay A € 1,
%;(X1) and €;(A2) belong to the same connected component of fO_I(I ). Observe that €;(X) is a
smooth embedded closed curve, endowed with the orientation depending continuously on A given by
the Hamiltonian flow of fj. Define the principal action c(()j ) e €°°(I) in such a way that the parallel
transport in L along 6; (1) is the multiplication by exp(i c(()j )(k)). Define the subprincipal action cij ) in
the same way, replacing L by L; and using the connection V' (depending on 1) described above. Finally,
set e;j) = €(€;(A)); in fact, eij) is a constant e;j) = ¢ for A in I. Fix E in I; the Bohr—Sommerfeld
conditions (see [Charles 2006] for more details) state that there exists n > 0 such that the intersection
of the spectrum of T; with [E —n, E 4+ n] modulo O (k™) is the union of the spectrac;, 1 < j <N,
where the elements of o; are the solutions of

gV, k) e2nk™ 7,
where g/ (-, k) is a sequence of functions of €°°(/) admitting an asymptotic expansion
gV =Y kg
€20

with coefficients géj ) e %°°(I). Furthermore, one has

g =c’n) and gV =V ) +eVn.

5. Microlocal normal form

5A. Normal form on the Bargmann side. Let P; be the operator defined by

. 52
P=3(7 - 52)
with domain C[z] C %By; it is a Toeplitz operator with normalized symbol po(x, £) = x&. We will use this
operator to understand the behavior of A; when acting on sections localized near each s;, 1 < j <n. In
fact, we study the operator Ay — E, where E € R is allowed to vary in a neighborhood of zero.
Let j € [[1, n]l. The isochore Morse lemma [Colin de Verdiére and Vey 1979] yields a symplectomor-
phism g from a neighborhood of s; in M to a neighborhood of the origin in R?, depending smoothly on
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E, and a smooth function gJE , again depending smoothly on E, such that

((ao— E) o xz)(x, &) = g} (x€)

and (gf )'(0) # 0. Using a Taylor formula, one can write

gr () =wr @)t — fi(E))

with wf smooth, depending smoothly on E, and such that wf (0) #0, and with f; a smooth function
of E with f;(0) = 0. This symplectic normal form can be quantized to the following semiclassical
normal form.

Proposition 5.1. Fix j € [1,n]l. Then there exist a smooth function f;, a Fourier integral operator
UkE : Br = ¥y, a Toeplitz operator WkE , elliptic at 0, and a sequence of smooth functions €;(-, k)
admitting an asymptotic expansion €;(E, k) = Z;z:g k_eeﬁ.e)(E) such that

WU Ak = EYUE ~ W (P~ fi(E) — k™ 'e(E, k)
microlocally near s ;. Furthermore,
e Uy and Wy depend smoothly on E,
o fj(E) is the value of x§ whenever (x,§) = xg(m) form € I'g, and
o the first term of the asymptotic expansion of (0, k) is given by

—ay(s;)

) _
0= (et Hess(an) 5T

where Hess(ao)(s;) is the Hessian of ag at s;.
The proof is an adaptation of the one in [Colin de Verdiere and Parisse 1994a, §3] to the Toeplitz

setting; see also [Le Floch 2014, Theorem 5.3] for a similar result in the elliptic case.

5B. Link with the pseudodifferential setting. Now we use the Bargmann transform to understand the
structure of the space of microlocal solutions of P, — E = 0.

Lemma 5.2. Foru € ¥ (R), one has
B} Py Byu = i(xax + Du.

From now on, we will denote by S; the pseudodifferential operator (1/ik)(xd, + 1). This correspon-
dence will allow us to understand the space of microlocal solutions of Py — E on a neighborhood of the
origin. Let us recall the results of [Colin de Verdiere and Parisse 1994a; 1994b] that will be useful for
our study.

Proposition 5.3 [Colin de Verdiere and Parisse 1994a, Proposition 3]. Let E be such that |E| < 1. The
space of microlocal solutions of (Sy — E)uy =0 on Q = [—1, 117 is a free Cy-module of rank 2.
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Moreover, we know two bases of this module. Indeed, let %, be the semiclassical Fourier transform:
(F)€) = 2= fR exp(—ikxt)u(x) dx:
then the tempered distributions v,ﬁj 2, j €11, 4], defined as
v 3P (0) = Iy (0) exp((—1 + ik E) In|x]),

o p 00 =77 (1as @) exp((—3 +ikE) Infg]) ) (o),

are exact solutions of the equation (Sy — E )v,g I)E =0; better than that, the pairs (v,S‘)E, U/g};) and (v,fg, v,g'l)g)
each form a basis of the space of solutions of this equation. Now, choose a compactly supported function
X € €°°(R) with constant value 1 on a neighborhood of I = [—1, 1] and vanishing outside 2/. Define the

pseudodifferential operator ITy by

k .
Mou(r) = 3 [ explik(x = 16X €)x )ur) dy ds.
R
Then Ty maps 2'(R) into ./(R), and [Ty ~ Id on Q. Set
ol =Tian{

then the w,E’ ‘)Y, j €11, 4], belong to .(R), and are microlocal solutions of (S — E )w,E{ 2 =0on Q. The

matrix of the change of basis from (w,(f}i, w,(c435)|Q to (w,ilz w,(cz)E)lg is given by
1 iexp(—nmkE)

My (E) = ju(E) (l. exp(—kE) 1

) +O0k™), (N

with

1 b
i(E) = ——T(1 4 ikE)ex (—(2kE—i)—ikElnk>.
k \/ﬂ (2 ) P 4

5C. Microlocal solutions of (P — E)uy = 0. Now, consider the Bargmann transforms of the sequences

w,(cj)E u,(fg = Bkw,((%. Propositions 5.3 and 3.5 yield:

Proposition 5.4. For E such that |E| < 1, the space of microlocal solutions of (Py — E)uy = 0 on
0=[-1,11>cCis a free Cy-module of rank 2. Moreover, the pairs (u,(cfz, ”/(535) and (u,(j%, u,({g) are
two bases of this module; the transfer matrix is given by (7).

Remark. The sections u,({j 1)9, j =1,...,4, can be written in terms of parabolic cylinder functions.
Nonnenmacher and Voros [1997] studied these functions in order to understand the behavior of the
generalized eigenfunctions of Py; the result of this subtle analysis, based on Stokes lines techniques, was
not exactly what we needed here, and this is partly why we chose to use the microlocal properties of the

Bargmann transform instead.
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6. Bohr—Sommerfeld conditions

To obtain the Bohr—Sommerfeld conditions, we will recall the reasoning of [Colin de Verdiere and Parisse
1999], and will also refer to [Colin de Verdiere and Vii Ngoc 2003]. Since the general approach is the
same, we only recall the main ideas and focus on what differs in the Toeplitz setting.

6A. The sheaf of standard bases. As in Section 4, introduce the sheaf (F, I'g) of microlocal solutions of
A =0 over I'g; we recall that a global nontrivial microlocal solution corresponds to a global nontrivial
section of this sheaf. However, since the topology of I'y is much more complicated than in the regular
case, the condition for the existence of such a section is not as simple as saying that a holonomy must
be trivial. In particular, we have to handle what happens at critical points. To overcome this difficulty,
the idea is to introduce a new sheaf over I'y that will contain all the information we need to construct a
global nontrivial microlocal solution; roughly speaking, this new sheaf can be thought of as the limit of
the sheaf § — I'g of microlocal solutions over regular levels as E goes to 0.

Following [Colin de Verdiere and Parisse 1999], we introduce a sheaf (£, ['g) of free Ci-modules of
rank 1 over I'g as follows: to each point m € 'y, associate the free module £(m) generated by standard
bases at m. If m is a regular point, a standard basis is any basis of the space of microlocal solutions near m.
At a critical point s;, we define a standard basis in the following way. The C;-module of microlocal
solutions near s; is free of rank 2; moreover, it is the graph of a linear function. Indeed, number the
four local edges near s; with cyclic order 1, 3,2, 4, so that the edges ey, e, are the ones that leave s;.
Let us denote by Sol(eje;) and Sol(ezesq) the modules of microlocal solutions over the disjoint union
of the local unstable edges e}, e, and stable edges es, es, respectively. Sol(eje;) and Sol(eses) are free
modules of rank 2, and there exists a linear map 7 : Sol(eze4) — Sol(ejez) such that u is a solution
near s; if and only if its restrictions satisfy u|sol(e,e,) = TjU|sol(eses)- Equivalently, given two solutions
on the entering edges, there is a unique way to obtain two solutions on the leaving edges by passing
the singularity. One can choose a basis element for each §(e;), i € [1,4]], and express T; as a2 x 2
matrix (defined modulo O (k~°°)); one can show that the entries of this matrix are all nonvanishing. An
argument of elementary linear algebra shows that, once the matrix 7} is chosen, the basis elements of
the modules §(e;) are fixed up to multiplication by the same factor; this means that for 7 fixed, the
Ci-module of basis elements is of rank 1. Moreover, the study of the previous section implies that there
exists a choice of basis elements such that 7 has the following expression:

o _im ' 1 i exp(—me;(0,k))
T; _exp( 1 )%k(s](o, k) (l. exp(—e; (0, k) L ) ®)
where

& (t) = \/Lz_”r(% +ir) exp(t(% —iln k)) 9)

This allows us to call the choice of the basis elements of §(e;) a standard basis if T is given by (8).
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(£, Tp) is a locally free sheaf of rank-1 Ci-modules, and its transition functions are constants. Hence,
it is flat, thus characterized by its holonomy

hOlQ . H] (Fo) — (Dk-

In terms of Cech cohomology, if y is a cycle in T'g and €, ..., ; is an ordered sequence of open sets
covering the image of y, each 2; being equipped with a standard basis u; (at a critical point, we make
the abusive correspondence between a standard basis and its elements), then

holg(y) =x12- - X¢—1,0%e,1, (10)

where x; ; € Cy is such that u; = x; ju; on ; N ;.

Now, cut n+1 edges of I'g, each one corresponding to a cycle y; in a basis (y1, ..., ¥u+1) of H (g, Z),
in such a way that the remaining graph is a tree J. Then the sheaf (£, ) has a nontrivial global section.
The conditions to obtain a nontrivial global section of the sheaf (§, ['g) of microlocal solutions on I'g are
given in the following theorem. They were already present in the work of Colin de Verdiere and Parisse
in the case of pseudodifferential operators, but the fact that they extend to our setting is a consequence of
the results obtained in the previous sections.

Theorem 6.1. The sheaf (§, o) has a nontrivial global section if and only if the following linear system
of 3n + 1 equations with 3n + 1 unknowns (xo € Ci)aefedges of 7} has a nontrivial solution:

(1) If the edges (a1, a2, a3, ag) connect at s (with the same convention as before for the labeling of the

()=t
Xy X

(2) If « and B are the extremities of a cut cycle y;, then

edges), then

Xo = hole(yi)xg,

where the following orientation is assumed: y; can be represented as a closed path starting on the
edge o and ending on the edge B.

Proof. 1t follows from Propositions 4.6 and 5.4 that the proof can be directly adapted from the one of
[Colin de Verdiere and Vii Ngoc 2003, Theorem 2.7]. O

6B. Singularinvariants. Of course, in order to use this result, it remains to compute the holonomy holg.
For this purpose, let us introduce some geometric quantities close to the ones used to express the regular
Bohr—Sommerfeld conditions. Let y be a cycle in I'g, and denote by s;,,m =1, ..., p, the critical points
contained in y.

Definition 6.2 (singular subprincipal action). Decompose y as a concatenation of smooth paths and paths
containing exactly one critical point; if A and B are the ordered endpoints of a path, we will call it
[A, B]. Define the subprincipal action ¢1(y) as the sum of the contributions of these paths, given by the
following rules:
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Figure 1. Computation of ¢;([A, B]).

» If [A, B] contains only regular points, its contribution to the singular subprincipal action is
ci([A, B]) = ci([A, B)),

as in the regular case (see Section 4E for the definition of ¢ ([A, B]));

 If [A, B] contains the singular point s and is smooth at s, then
c1([A, B]) = alirils(cl([A’ a]) +c1([b, B])),

where a and b lie on the same branches as A and B, respectively;

e If [A, B] contains the singular point s and is not smooth at s, we set

&[4, B)) = lim (q([A, al) +ci([b, Bl) £ In

L e
Pa,h

where P, is the parallelogram (defined in any coordinate system) built on the vectors 5a and ﬂ)),
£+ =+ if [A, B] is oriented according to the flow of X,,, &= = — otherwise, and

8(0) . —daj (S)
S |det(Hess(ao)(s))| /2’

as before.

Definition 6.3 (singular index). Let (y;); be a continuous family of immersed closed curves such that
yo = ¥ and y; is smooth for # > 0. Then the function # — €(y;), t > 0, is constant; we denote by € its
value. We define the singular index €(y) by setting

p
g(y):e+2%’”, (12)
m=1

where p,, = 0 if y is smooth at s;,, p,, = +1 if at s;,, y turns in the direct sense with respect to the
cyclic order (1, 3, 2, 4) of the local edges, and p,, = —1 otherwise.
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Observe that both ¢; and € define Z-linear maps on H; (I'g, Z).

Theorem 6.4. Let y be a cycle in I'y. Then the holonomy holg(y) of y in £ has the form

holg(y) = exp(ikf(y, k)), (13)

where 6(y, k) admits an asymptotic expansion in nonpositive powers of k. Moreover, if we denote by
Oy, k)=>_ =0 k=0, (y) this expansion, the first two terms are given by the formulas

bo(y) =co(y), Oi(y)=ci(y)+ey)m. (14)

Proof. We just prove here that the holonomy has the claimed behavior. It is enough to show that one can
choose a finite open cover (£24), of ¥ and a section uj of £ — €, for which the transition constants czﬁ
have the required form. On the edges of y, this follows from the analysis of Section 4. At a vertex, we
choose the standard basis U,?u,(c{ ;/ (0.k)> Where u,(cj 1)5 is defined in Section 5C and U,f is the operator of
Proposition 5.1; to conclude, we observe that the restrictions of these sections to the corresponding edge

are Lagrangian sections. (Il

6C. Computation of the singular holonomy. This section is devoted to the proof of the second part of
Theorem 6.4. We use the method of [Colin de Verdiere and Vii Ngoc 2003], but of course, our case is
simpler, because in the latter, the authors investigated the case of singularities in (real) dimension 4 (for
pseudodifferential operators). Let us work on microlocal solutions of the equation

(Ax — E)ug =0, (15)

where E varies in a small interval I containing the critical value 0. The critical value separates [ into
two open sets I+ and I, with the convention It=1In RY%. Let D* = [*U{0}, and let ¢* be the set of
connected components of the open set a, L(I¥). The smooth family of circles in the component p¥ is
denoted by € ,+(E), E € I*.

As in Section 4, for E # 0, we denote by (§, ['g) the sheaf of microlocal solutions of (15) on I'g;
remember that it is a flat sheaf of rank-1 Cz-modules, characterized by its Cech holonomy holg. The idea
is to let E go to 0 and compare this holonomy to the holonomy of the sheaf £ — I'y.

Definition 6.5. Near each critical point s;, we consider two families of points A;(E) and B;(E) in
®>(D*, p*\ {s5;}) lying on 6,+(E), and such that A;(0) and B;(0) lie in the stable and unstable mani-
folds, respectively. Endow a small neighborhood of A (resp. B;) with a microlocal solution u 4; (resp. u;)
of (15) which is a Lagrangian section uniform in E € D*. Define the quantity O([A;(E), B;(E)], k) as
the phase of the Cech holonomy of the path [A;(E), B;(E)] C I'g joining A;(E) and B;(E) in the sheaf
(&, I'g) computed with respect to u 4 ; and u g;. Define in the same way the quantity ©([B; (E), A (E)], k)
for the path joining B;(E) and A ;/(E).

Note that if we change the sections u4; and ug,,, the phase of the holonomy is modified by an additive
term admitting an asymptotic expansion in k € (D¥)[[k~']. The singular behavior of the holonomy is

thus preserved; moreover, the added term is a Cech coboundary, and hence does not change the value of
the holonomy along a closed path.
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Figure 2. Regular and local paths.

Then, we consider continuous families of paths ({g)gep+ drawn on a circle €,+(E) and whose
endpoints are some of the A;(E) and B (E) of the previous definition. We say that (g is

o regular if gy does not contain any of the critical points s,
e local if ¢o contains exactly one critical point,

and we consider only these two types of paths. The following proposition implies that a path that is
local in the above sense can always be assumed to be local in the sense that it is included in a small
neighborhood of the critical point that it contains.

Proposition 6.6. If (g = [B;(E), Aj(E)] is a regular path, then the map E +— ©O((g, k) belongs
1o €°°(D*) and admits an asymptotic expansion in k€ (DH)[k~']. This expansion starts as follows:
O, k) =k(co(@r) + Py (1 (Bj(E)) — Yy ) (A (E)))

+c1(¢e) +hols,, (65) + DY) ) (B (E) = DY) (A (BN + O™ (16)
see Section 4E for the notation.

In order to study the behavior of the holonomy of a local path with respect to E, we use the parameter-
dependent normal form given by Proposition 5.1. Using the notation of this proposition, we will write
¢;j(E, k)= fj(E)+ k‘lej(E, k). Introduce the Bargmann transform w,ic’E of v,’;’E, where

v p (0 = g (0)lx| ™ explike; (E. k) In fx)).
v () = F ! (L (@15 explike; (E. ) In [£D) ().

Let 17)}( ¢ be a sequence having microsupport in a sufficiently small neighborhood of the origin and
microlocally equal to w,’;y £ onit; then ﬁ,’(  1s a basis of the module of microlocal solutions of Py —e;(E, k)
near the image of the edge with label i by the symplectomorphism yxg. Consequently, the section
¢y = UFW, ., where UF is the operator used for the normal form, is a basis of the module of
microlocal solutions of (15) near the edge e;. Moreover, it displays good behavior with respect to the
spectral parameter.

Lemma 6.7. The restriction of ¢,§1)E to a neighborhood of the edge numbered i is a Lagrangian section
uniformly for E € D*.
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Proof. First, we prove using a parameter-dependent stationary phase lemma that wj;’ g 1s a Lagrangian
section associated to the image of the i-th edge, uniformly in E € D*. We conclude by the fact that the
image of a Lagrangian section depending smoothly on a parameter by a Fourier integral operator is a
Lagrangian section depending smoothly on this parameter. O

We also recall the following useful lemma.
Lemma 6.8 [Colin de Verdiere and Vii Ngoc 2003, Lemma 2.18]. Set B;(E, k) = % +ike;(E, k) and

Vi = (%)mr(ﬁj) exp(—B;Ink —iB; % ).

_ k \!/2 .

vy = (E) F(ﬂj)exp(—ﬁj 1nk+lﬂj%),
so that
uj(E,k) vj_(E,k)>

My (ej(E. k) = (vj_(E,k) v (E. k)

where My, was defined in (7). Then, for any E € I+,

i v = k(f;(E)In | f;(E)| = fi(E)) + ¢ (E) In| f3(E)| F -+ Op k™).

The following proposition shows that the holonomy ® (¢g, k), which has a singular behavior as E
tends to 0, can be regularized.

Proposition 6.9. Fix a component p* € ¢+, and let cp =[A ;(E), Bj(E)] be alocal path near the critical
point s ;. Assume moreover that {g is oriented according to the flow of ag. Then there exists a sequence
of R/2m Z-valued functions g (-, k) € €>*°(D%), E +— 8¢ (k), admitting an asymptotic expansion in

k€ (D) [k~ of the form
+00

g (E. )= kg (E),
l=—1
such that

gc(E, k) =O(g, k) —ilnvi (E) (mod 277) forall E €I
The first terms of the asymptotic expansion of g. (-, k) are given, for E € 1 £ by

88 (B) = coler) + (f (Y| f5(E)| = £5(B)) + @Y U (A (E)) — @y 0, (B (B))  (17)
and

8¢ (E) = c1(5p) +hols, (Cp) F 7 +)(E) I | f;(E)| + ) (A (E)) = @ ) (Bi(E)).  (18)

Proof. We can assume that the paths ¢z, E € D7 all entirely lie in the open set 2;; where the normal
form of Proposition 5.1 is valid. Endow each edge e; with the section ¢,E’)E defined earlier; by Lemma 6.7,
these sections can be used to compute a new holonomy @(;‘E, k). But we know how the different
sections ¢,EZ)E are related: (7) shows that (:i(g E,k)—1iIn ij.E(E ) = 0. Now, coming back to the microlocal
solutions UA;, UB;, WE have that ®(¢g, k) = @)(;E, k) + c(E, k), where c(E, k) admits an asymptotic
expansion in k €*°(D¥)[k~']. [l
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Since the sections ¢k g»1=1...4, form a standard basis at s;, they can also be used to compute the
holonomy holg. Of course, for this choice of sections, one has holg(y) = 1. This allows to obtain the
following result.

Proposition 6.10. Let y be a cycle in 'y, oriented according to the Hamiltonian flow of ay, and of the
Jorm
y = %0)52(0)5, (002,50 - - - £, (0) £ 7(0),

where ¢ jl.oc and {;eg are local and regular paths, respectively, in the sense introduced earlier. Define

“+00
(0. k)~ Y g Ok
t=—1
as the sum

800, k) = gue(0. k) + g2 (0. K) + -+ + 810 (0. &) + g2 0, &),
where g 1c is given by Proposition 6.9 and g,«(E, k) = ®(§Jr.eg(E), k). Then
J J

holg(y) = exp(ig(0, k)) + O (k~).

Proof. Notice that g;loc(o k) = 0, where g{loc( , k) is defined as g;loc( , k), replacing @(g‘loC k)
by ®(§l°° k), and hence holL(g“l"c(O)) = exp(z 8yle (0, k)). As in the previous proof, come back to
the solutlons UA;, UB; , and set

CJ(E,k) =g§.jl_oc(E,k) —gg.jl_oc(o, k)

Putting g.rz(E, k) = @)(;;eg(E ), k), a simple computation shows that
J

P p
D& (E k) =) (g(E k) +c;(E. k),
j=1 j=1
and the conclusion follows. t
This is enough to prove the second part of Theorem 6.4, recalled in the following corollary.

Corollary 6.11. The first two terms in the asymptotic expansion of the phase of holg(y) are given by (14).

Note that y cannot always be obtained as a limit of smooth families of regular cycles; consider for
instance the cycles yi, 32, y3 in the example treated in Section 7C (see Figures 13, 14). This is why the
proof of this result requires some care.

Proof. We start with the case of a cycle y oriented according to the Hamiltonian flow of ag. Since
e(J).(O) =0, formula (17) gives, for j € [[1, p],
1 1 -1
gow (0) = co@[(0) + @5V (4,(0) — 5. (B; (0)).
J

while Proposition 6.6 shows that (identifying j = p 4+ 1 with j = 1)
8y (0) = o(¢7(0) + @} V(B;(0) = BT (A 11 0).
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Consequently,
g0 = o).

Let us now compute the subprincipal term gé?(?c (0). Recall that it is equal to the limit of
j

c1 (6] (ED) +hols . (¢(EN F T+ e (E)In | f(E) + ) ) (A () — ® ) (B (E))
as E goes to 0, which i; equal to
@Y ) (A4 (0)) = @ (B;(0) F 5 + lim (e1 (6] (E)) + hols sy D) + eV (E)In|f;(E)|).
First, we show that
lim (e1(£(E)) + &} (E) In| f(E)]) = &1(¢*(0)), (19)

where ¢; was introduced in Definition 6.2. Decompose

e En=[ v [
¢(E) (E)

where we recall that —iv stands for the local connection 1-form associated to the Chern connection of L,
and g is such that kg (X,,) = —a;. Of course, the term f £ (E) v converges to f £ (0) v as E tends to O.
Moreover, we have seen that there exist a symplectomorphlsm xe and a smooth ‘function gk i such that
(gf) (0) > 0 and

(ago xz ) (x, &) — E = g¥(x). (20)

Hence, if we denote by ag (resp. a;, Kg) the pullback of ag (resp. a;, kg) by bel, we have

Xay(x, &) = (8]) (x€) Xt (x, £),

so that kg is characterized by

. —ay(x,§)

Xeg) = —— 22

K = ey

Since (gf ) (0) # 0, the function .
—a(x, &)

b(x,&) = ——222

8= Gy et

is smooth (considering a smaller neighborhood of s; for the definition of ¢j loc if necessary). Moreover,
from (20), one finds that (gf ) (0) = |det(Hess(ag)(s))|~ /2, which yields b(()) = 8( )(0) Using a known
result (see [Guillemin and Schaeffer 1977, Theorem 2, p. 175] for instance), we can construct smooth
functions F : R> - R and K : R — R such that

b(x,§) = K(x§) — Ly, F(x,§);

since x§ = f;(E) whenever XE_I(x, &) belongs to I'g, this can be written

b(x,8) = K(f;(E)) — Lx, F(x,§).
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Therefore, the function
G=K(fj(E))In|x|—=F (or — K(f;(E))In|&§|— F where x =0)
restricted to y (['g) is a primitive of kg. This yields

/1 kg =G(B)) = G(A)) = K(f(E)(In|xp| —Inlxs )+ F(A) = F(B). Q)
£ (E)

where m = yg(m) for any point m € M, and (x,,, &,) are the coordinates of m (E being implicit to
simplify notation). Writing In [xp;| —In|x4;[ =In|xp;Ea;| —In|xa,64;|, we obtain

/ e ENLfE)
;joc y -

= F(A)) = F(B))+ K (f;(E) Inlxg &, |+ (e (E) = K (f1(E)) In | f;(E).
By definition of K, »(0) — K (0) =0, hence K (f;(E)) =b(0) + O(f;(E)) = 85'0) 0)+0(f;(E)). Thus,

the term (85-0)(E) — K(f;(E)))In|f;(E)| tends to zero as E tends to zero; this induces

L ei) (E)In| f;(E)| = F(A;) — F(Bj) + K(f;(E)) In|xp €|
j
(one must keep in mind that in this formula, we should write A j= A ;j(0), etc.). Now, if a and b are
points on {]l."c (0) located in [A, Sm; ] and [$m;» Bjl, respectively, then the term on the right-hand side of
the previous equation is equal to
I=1lim (F(Aj) = F(@+ F(b) = F(Bj)+ K(f;(E) In|xp,&4,1).
,b—>s;

Using (21), it is easily seen that

/= lim (/ et [ KE+e§°)<0>1n|xbsa|).
a,b—s; [A},a] [b,B;]

Remembering Definition 6.2, this proves (19). Since géo)

loc
J

and the quantities
—1 —1 0 0
q>gj '(A)) _cpgj )(B;) and <I>£‘;(Aj) —cbgj?(Bj)

are continuous at £ = 0, the term
loc
holy .., (¢}°(E))

is continuous at £ = 0. Hence, if we sum up all the contributions from regular and local paths, we
finally obtain

14
§O) =&+ Y e,

m=1
where p,, and ¢; were introduced in Definitions 6.3 and 6.2, respectively, and £(y) is the quantity

p
(y) = Z(hola{;eg(o) (¢%(0)) + lim hol,
j=1

(1 (ED):

loc
¢ (E)
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Figure 3. Computation of £(y).

it is not hard to show that £(y) is independent of the choice of the local and regular paths. Furthermore,
let € be the index of any smooth embedded cycle which is a continuous deformation of y. If the regular
and local paths can be chosen so that they all lie in the same connected component yg of ['g, it is clear
that £(y) = €, because for E # 0,
P

D (B0l (675CED) + bl ., (EF(E))) = €(ye) = .

j=1
If it is not the case, we remove a small path n;(E) of ;;eg (E) at any point A; or B; where there is a
change of connected component, and replace it by a smooth path v;(E) connecting {;eg(E ) and {}OC(E )
(see Figure 3). We obtain a smooth path y (E); on the one hand, one has €(y (E)) = €. On the other hand,
€(Y(E)) is the sum of the holonomies of the paths composing y (E). But, if we denote by 7;(E) the part
of g“;eg(E ) that remains when we remove 7;(E), we have

hols, i, (2 (ED) = holy e, (6%(E)) = hols, i, (1 (ED),
which implies
reg
h015fj(5) (T] (E)) + h015vj(5) (Uj (E)) Ej) hOIBC;eg(O) (C] (0))
because
hO]gvj(E) (Vj (E)) — h013;7j<E) (77]' (E)) E——>B 0.

This shows that £(y) = €, which concludes the proof for this first case, where y is oriented according to
the Hamiltonian flow of ay.

If the orientation of the cycle y is opposite to the one of the flow of X,,, we only have to change the
sign of the holonomy.

It remains to investigate the case where there are some paths in y oriented according to the flow of X,
and some oriented in the opposite direction, which means y is smooth at some critical point s. We can
use the analysis above by introducing two local paths §]1°° and g“é“ at s as in Figure 4 (we make a small
move forwards and backwards on an edge added to y); one can obtain the claimed result by looking
carefully at the obtained holonomies, remembering that the two paths have opposite orientation on the

added edge. Note that the choice of the added edge does not change the result. U
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Figure 4. Case of a cycle y, smooth at s.

6D. Derivation of the Bohr—Sommerfeld conditions. The previous results allow to compute the spec-
trum of A in an interval of size O (1) around the singular energy. Indeed, let yg, E € I* be a connected
component of the level a; Y(E) and y be the cycle in I'y obtained by letting E go to 0. Then one can
choose the local and regular paths used to compute the holonomy hole(y) so that they all lie on yg, and
define g(E, k) as the sum

G(E. k) = gope (E) + ges(E) + -+ -+ gewe (E) + g1 ().
Furthermore, the matrix of change of basis associated to the sections ¢,§')E is given by

1 iexp(—kme;(E, k)))

— exp( T ,
Ti(E) = exp( 4 )%k(kef (E, k) <i exp(—kme;(E, k)) 1

where the function €, is defined in (9). To compute eigenvalues near E, apply Theorem 6.1 with T;
replaced by 7;(E) and holg(y) by exp(ig(E, k)). Applying Stirling’s formula, we obtain

0

1
T;(E) =exp(ik0(E, k)) (O |

) +0®k&™, fi(E)>0,

and
i

0
T;(E) =exp(ik0(E, k)) (i 0

) +O0*k™),  fi(E) <0,
with 0(E, k) = f;(E)In| f;(E)| — f;(E) + k' (¢” (E) In| f;(E)| — 7/4). Together with equations (17)
and (18), this ensures that we recover the usual Bohr—Sommerfeld conditions away from the critical energy.
In the rest of the paper, we will look for eigenvalues of the form k~'e + O (k~?), where e is allowed
to vary in a compact set. Hence, we have to replace A; by Ay — k~!e; this operator still has principal
symbol ag, but its subprincipal symbol is a; — e. Thanks to Theorem 6.4, we are able to compute the
singular holonomy and the invariants ¢; up to O (k~?); hence, we approximate the spectrum up to an
error of order O (k—2).

6E. The case of a unique saddle point. 1f "y contains a unique saddle point, it is not difficult to write
the Bohr—Sommerfeld conditions in a more explicit form. The critical level I'g looks like a figure eight.
We choose the convention for the cut edges and cycles as in Figure 5.
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Figure 5. The singular level I'y = a;, 1(0) and the choice of cut edges and cycles.

Let s be the saddle point, and let ¢(e, k) be the invariant associated to the operator Ay — ke ats;
one has £ (e) = £ (0) + ¢|det(Hess(ag)(s))|~!/2. Denote by hj(e, k) = exp(if;(e, k)) the holonomy
of the loop y; in £; remember that 6; is given by

0(e. k) =kco(y;) +E1(y)) +Eym+ Ok™).

The Bohr—Sommerfeld conditions are given by the holonomy equations

x4 =hoxy, x3=hixa,
and by the transfer relation at the critical point

(2)=r(2)
X4 X7

where T = T (e) is defined in (8). Using Lemma 2 of [Colin de Verdiere and Parisse 1994b], the
quantization rule can in fact be written as a real scalar equation.

Proposition 6.12. The equation Aguy =k~'euy + O (k=) has a normalized eigenfunction if and only
if e satisfies the condition

1 6, —6 0, + 6
cos( ! 2):sin( 1+ 2+%+elnk—argf‘(%+i8)), (22)

JV1+exp2me) 2 2

where we wrote for the sake of brevity 0;, ¢ instead of 0; (e, k), (e, k) (see definitions above).

7. Examples

We conclude by investigating two examples on the torus and one on the sphere; these examples present
various topologies. More precisely, using the terminology of [Oshemkov 1994; Bolsinov and Fomenko
2004] for atoms (neighborhoods of singular levels of Morse functions), we provide an example of a
type B atom— the only type in complexity 1 (here, complexity means the number of critical points
on the singular level) in the orientable case — and two examples of atoms of complexity 2: one is of
type C» (xy on the sphere S?) and the other is of type C; (Harper’s Hamiltonian on the torus T?). It is a
remarkable fact that these two examples are natural not only as the canonical realization of the atom on a
surface but also because they come from the simplest possible Toeplitz operators with critical level of
given type.
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Note that there are two other types of atoms of complexity 2 in the orientable case (more precisely, types
D and Dy); it would be interesting to realize each of them as a hyperbolic level of the principal symbol
of a selfadjoint Toeplitz operator and to complete this study. Note that in the context of pseudodifferential
operators, Colin de Verdiere and Parisse [1999] treated the case of a type D; atom (the triple well potential)
among some other examples. More generally, one could use the classification of Bolsinov, Fomenko and
Oshemkov to write the Bohr—Sommerfeld conditions for all cases in low complexity (< 3 for instance);
however, the case of two critical points already gives rise to rather tedious computations.

The details of the quantization of the torus and the sphere are quite standard. Nevertheless, for the
sake of completeness, we will recall a few of them at the beginning of each paragraph.

7A. Height function on the torus. Firstly, we consider the quantization of the height function on the
torus. This is one of the first examples in Morse theory, perhaps because this is the simplest and most
intuitive example with critical points of each type. In particular, the description of the two hyperbolic
levels is quite simple.

Endow R? with the linear symplectic form wy and let Ly — R? be the complex line bundle with
Hermitian form and connection defined in Section 2D3. Let K be the canonical line of R? with respect
to its standard complex structure j: K = {o € (R*)*®C | af j+) =ia}. Choose a half-form line, that
is, a complex line § with an isomorphism ¢ : > — K. There is a natural scalar product on K such
that the square of the norm of « is i A @/wy; endow & with the scalar product (-, - )5 such that ¢ is an
isometry. The half-form bundle we work with, that we still denote by §, is the trivial line bundle with
fiber § over R

Consider a lattice A with symplectic volume 47r. The Heisenberg group H = R? x U (1) with product

(x,u)-(y,v)= (x +y,uv exp(%wo(x, y)))

acts on the bundle Ly — R?, with action given by the same formula. This action preserves the prequantum
data, and the lattice A injects into H; therefore, the fiber bundle L reduces to a prequantum bundle L
over T2 = R?/A. The action extends to the fiber bundle L§ by

() () = (x+ 3, vexp(Faotr, ).
We let the Heisenberg group act trivially on 8. We obtain a half-form bundle & over T2 and an action
T*: A — End(€®R?* LE®6)), wurs TF.

The Hilbert space % = H°(M, L¥ ® §) can naturally be identified with the space % Ak of holomorphic
sections of Llé ® 8 — R? which are invariant under the action of A, endowed with the Hermitian product

0. ) =/ 0. )5 lol,
D

where D is the fundamental domain of the lattice. Furthermore, A /2k acts on ¥, ;. Let e and f be
generators of A satisfying wo(e, f) = 4, one can show that there exists an orthonormal basis (V¢)¢ez/24z
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Figure 6. Height function on the torus.

of # A i such that
Te*/zkllfz = we‘//z
T;/szZ = Y41

with w = exp(imr/ k). The sections 1, can be expressed in terms of ® functions.

} forall £ € Z/2kZ,

Set M = Te*/Zk and Ly = TJZ“/Zk. Let (g, p) be coordinates on R? associated to the basis (e, f) and
[g, p] be the equivalence class of (g, p). Both M} and L; are Toeplitz operators, with respective principal
symbols [g, p] — exp(2imp) and [q, p] — exp(2imq), and vanishing subprincipal symbols. For more
details, see for instance [Charles and Marché 2011, §2.2, §3.1].

It is a well-known fact that T2 is diffeomorphic to the surface shown in Figure 6, which is obtained by
rotating a circle of radius r around a circle of radius R > r contained in the yz plane; the diffeomorphism
is given by the explicit formulas

x =rsin2rg), y=(R+rcosRmg))cosnrp), z=(R+rcos2mq))sin2mrp).
Hence, the Hamiltonian that we consider is
ao(q, p) = (R+rcos(2mq)) sin(2m p)

on the fundamental domain D. We try to quantize it, that is, find a selfadjoint Toeplitz operator A; with
principal symbol agy. The Toeplitz operators

1
By =5 (M~ M), Ci=RI;+ g(Lk +L)),

are selfadjoint, and

Onorm(Bi) = sin2p) + O(h?),  Gnorm(Cr) = R +7 cos(2mq) + O (h?).
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Hence A, = %(Bk Ci + Cy By) is a selfadjoint Toeplitz operator with normalized symbol ag + O (hz). Its
matrix in the basis (¥¢)¢ez/2¢z 18 Wwritten as

Rayg a0+ o) 0 0 7@ 1 + )
7@ +oap) Ray Gl +oaz) O 0
0 iler+a) R :
. : (23)
0
: Rag— (o2 + 1)
7(ao +oo—1) 0 E 0 7(aak—2+a2-1) Ragp—y

with oy = sin(4mr / k).

Thelevel Tr_, =a, '(R—r) contains one hyperbolic point s = % }1) It is the union of the two branches

—~

= LarcsinL and =
P=n R+rcos(2mq) p=

R—r

arcsin m .

N =
gl-

The Hamiltonian vector field associated to ag is given by
1 a 1 . . 0
Xa(q, p) = E(R +rcos(2mq)) cos(2np)£ + 5 sin(2rq) sm(27rp)@.

Moreover, one has

o _ ¢
¥ =~ N T (24)

We choose the cycles y; and y, with the convention given in Section 6E. We have to compute the
principal and subprincipal actions of y;, y» and their indices €. Let us detail the calculations in the case
of Y-

We parametrize y; by

— ( 1_1 arcsin L)
1 7" 21 R+rcosCrqg)/

The principal action is given by
co(y1) =2I(R,r) —2m, (25)

where I (R, r) is the integral

R—r

1
I(R,r):/(; arcsmm dq,

unfortunately, we do not know any explicit expression for this integral, so for numerical computations,
once the radii R and r are fixed, we obtain the value of I (R, r) thanks to numerical integration routines.
On vy, the subprincipal form reads

—2edq

o= V(R+rcosrqg)?—(R—r)?
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Figure 7. Eigenvaluesin[R—r—10k~', R—r+10k~']; in red diamonds, the eigenvalues
of Aj obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr—-Sommerfeld conditions. The results are indexed with respect to the eigenvalue
closest to the critical energy, labeled as 0. Even for k£ = 10, the method is very accurate.

One can obtain an explicit primitive thanks to any computer algebra system. Furthermore, some computa-
tions show that the symplectic area of the parallelogram R, is equal to

| o=sr 75 @ -a)

a,b

This yields the following value for the subprincipal action:

Gy =@ 1n(fr—2 /%(1—%)). (26)

Finally, the index associated to half-forms is €(y;) = ;. For y», one can check that

1
e

coly) =20 (R, 1), 1(y2) = m(%/%(l - %)) =1 @)

With this data, one can test the Bohr—Sommerfeld condition for different pairs (R, r). We illustrate
this with (R, r) = (4, 1) (note that we have tested several pairs). We compare the eigenvalues obtained
numerically from the matrix (23) and the ones derived from the Bohr—Sommerfeld conditions (22) in
the interval / = [R —r — 10k~', R — r + 10k~ ']. In Figure 7, we plot the theoretical and numerical
eigenvalues; Figure 8 shows the error between the eigenvalues and the solutions of the Bohr—Sommerfeld
conditions for fixed k, while Figure 9 is a graph of the logarithm of the maximal error in the interval / as
a function of Ink.

7B. xy on the 2-sphere. Let us consider another simple example, but this time with two saddle points
on the critical level. We will quantize the Hamiltonian ag(x, y, z) = xy on the sphere S. Let us briefly
recall the details of the quantization of this surface.
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—4
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Figure 8. Absolute value of the difference between the numerical and theoretical eigen-
values; the error is smaller near the critical energy (R —r = 3 in this case).

In(error)

|
S
+

|
=
+

—14

Ink

Figure 9. Logarithm of the maximal error as a function of the logarithm of k; the error
displays a behavior in O (k=2), as expected.

Start from the complex projective plane CP!' and let L = 0(1) be the dual bundle of the tautological
bundle

0(=1) = {(u, v) € CP' x C? | v € u},

with natural projection. L is a Hermitian, holomorphic line bundle; let us denote by V its Chern
connection. The 2-form w = i curv(V) is the symplectic form on CP! associated with the Fubini—Study
Kibhler structure, and L — CP! is a prequantum bundle. Moreover, the canonical bundle is naturally
identified with O(—2), hence one can choose the line bundle § = O(—1) as a half-form bundle. The state
space ¥, = H*(CP!, L* ® 6) can be identified with the space C pel21, 22] of homogeneous polynomials
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of degree py =k — 1 in two variables. The polynomials

(pe+D(7}) Lot

’ 0<E< ’
2 =t=h

Py(z1,22) =
form an orthonormal basis of . The sphere S* = {(x, y, z) € R? | x> 4 y? 4 7% = 1} is diffeomorphic
to CP! via the stereographic projection (from the north pole to the plane z = 0). The symplectic form w
on CP! is carried to the symplectic form wg = —%Q, with Q the usual area form on S (the one which
gives the area 47). The operator Ay acting on the basis (Py)o<¢<p, by

i
APy = ?(Ote,k Py_2— Be ik Pri2),
k

with

arg =Ll —D(pr =L+ D(pp —£+2)

and

Bex =€+ DE+2)(pr — €~ D(p — £),

is a Toeplitz operator with principal symbol ap(x, y, z) = xy and vanishing subprincipal symbol (for more
details, one can consult [Bloch et al. 2003, §3] for instance). Note that a x = B, ¢k, which implies that
if A is an eigenvalue of Ay, then —A is also.

The level a; ! (0) is critical, and contains two saddle points: the poles N (north) and S (south). It is
the union of the two great circles x = 0 and y = 0. We choose the cut edges and cycles as indicated in
Figure 10.

L1 S To

Figure 10. Choice of the cycles and cut edges.
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Set hj =hole(y;) =exp(i6;); remember that 6; = kco(y;) +c1(y;) +€(yj)m+ O (k). The holonomy
equations read

Y2=x3, Yya=hixi, y3=hoxa, Xx4=h3yi, (28)

while the transfer equations are given by

()=7n() G)=m() @)

The system (28) + (29) has a solution if and only if the matrix

_ 0 exp(—ify) 0 exp(—i6s)
U=Ts (exp(—i@z) 0 ) Ty (1 0 )

admits 1 as an eigenvalue. The matrix U is unitary, and if we write U = (‘: Z), a straightforward
computation shows that

1 —2cos(0, —0)) exp(—m(es+en)) +exp(—2m (s +en))
(1 +exp(—2mes))(1 +exp(—2men)) ’

2 2
lal” =1d|” =

hence, by Lemma 2 of [Colin de Verdiere and Parisse 1994b], 1 is an eigenvalue of U if and only if

. sarg(ad) —n
la| sm(—

arg(ad) — n)
> — ).

—arg a) = sm( >

This amounts to the equation

la| cos(@) = in(argz—i-# + arg F(% +iey)+arg F(% +ieg) — (65 +&n) lnk),
with
z=exp(—i(6h+03)) —exp(—m(es+en) — i (01 +63))
and
w = exp(—if;) —exp(—m(ey +e5) —167).
One has
séo) = 81(\(,)) =0 = %. (30)
Moreover, the principal actions are
o) =-5. =75, al=r 31
Then, one finds for the subprincipal actions
aiy) =260 m2=2¢1(), G =0. (32)
Finally, the indices € are
EyN=3 ém=3 &=L (33)
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Figure 11. Eigenvalues in [—2k~!, 2k~ 1]; in red diamonds, the eigenvalues of Ay
obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr—Sommerfeld conditions.

Figure 11 shows the theoretical eigenvalues obtained by using these results, as well as the numerical
evaluation of the eigenvalues of Ay from its matrix form.

7C. Harper’s Hamiltonian on the torus. Keeping the conventions and notation of the first example,
we consider the Hamiltonian (sometimes known as Harper’s Hamiltonian since it is related to Harper’s
equation [Helffer and Sjostrand 1988])

aop(q, p) = 2(cos(2mp) + cos(2mq))

on the torus. The operator Ay = M + M + L + L} is a Toeplitz operator with principal symbol ag and
vanishing subprincipal symbol. Its matrix in the basis (Y¢)¢ez/2¢z 18

2 1 0 ... 0 1
Lo 0
0

0
0 SO
10 ... 0 1 2ay

where

O[e=COS%, 0<i<2k—1.

The critical level I'y = a; ' (0) contains two hyperbolic points: s; = (0, 1) and s, = (%,0). On the
fundamental domain, it is the union of the four segments described in Figure 12; hence, its image on the
torus it is the union of two circles that intersect at two points.
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52

S1

NI—

0

1
3 I q

Figure 12. Critical level I'y on the fundamental domain; the arrows indicate the direction
of the Hamiltonian flow of ay.

i) Tq

Figure 13. Choice of the cycles and cut edges.

p p p
S 82 52
1 1 1
4! Vv Vs
1 1 1
3 S 3 S S 3 S
$2 52
1 1 1
0 ! 1 ¢ 0 ! 1 ¢ 0 : q

Figure 14. Cycles on the fundamental domain.
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Figure 15. Eigenvalues in [—10k~!, 10k~1]; in red diamonds, the eigenvalues of Ay
obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr—
Sommerfeld conditions.

We choose the cycles and cut edges as in Figure 13 (for a representation of the two circles in a
two-dimensional view) and Figure 14 (for a representation of the cycles on the fundamental domain).
We write the holonomy equations

Vi=x3, ys=hixa, ysa=hoxi, x4=h3yi, (34)

(=) G)=n()

where h; =holg(y;) = exp(i6;). Following the same steps as in the previous example, one can show
that the system (34) + (35) has a solution if and only if e is a solution of the scalar equation

and the transfer equations
(35)

la| cos(@) = s(%;rgw +arg F(% +ier) +arg F(% +igr) — (1 +€2) lnk),
with
|a|2 _exp(—2me;) +exp(—2mer) +2cos(0r — 01) exp(—m (€1 + €2))
N (14+exp(—2mer))(1 +exp(—2mer)) ’
w =exp(—mey —i(02+03)) +exp(—mwe; —i(0) +603)),
and

z=exp(—mwe; —ibh) +exp(—mey —iby).

Moreover, one has

O_ O0_ e . _ ©
£l =& =, _i=E (36)

It remains to compute the quantities 6; (up to O (k~")). The principal actions are easily computed:
coy)) =—m, co(y2) =37, co(y1) =—2m. (37
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Furthermore, one can check that the subprincipal actions are given by

~ 8 ~
G =26YIn— =& (), &) =0. (38)

Finally, one has
€(y1) =€(r2) =€(y3) =0. (39)

The results thus obtained are displayed in Figure 15.
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RESOLVENT ESTIMATES FOR THE MAGNETIC SCHRODINGER OPERATOR

GEORGI VODEV

We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form
G=—-A+ib(x)-V+iV-b(x)+V(x)

on L?(R"), n > 3, where b(x) and V (x) are large magnetic and electric potentials, respectively.

1. Introduction and statement of results

Let A be the (negative) Euclidean Laplacian on R". It is well-known that the self-adjoint realization Gg
of the operator —A on L?(R") has an absolutely continuous spectrum consisting of the interval [0, +00)
and satisfies the resolvent estimate

[(x) 8% (Go — A% £ie) 192 (x , S CAllFleal =g > (1-1)

>—S ||L24>L

for all multi-indices oy and o such that |o;| + |z < 2, where s > % 0 <& <1, and the constant C > 0
does not depend on A or . The same estimate still holds (see [Cardoso and Vodev 2002; Rodnianski
and Tao 2011], for example) for A large enough for perturbations of the form —A 4 V(x), where V is a
real-valued function satisfying the conditions below. Note that (1-1) for «; = ap = 0 together with the
ellipticity of the operator G imply that the estimate (1-1) holds for all multi-indices &1 and o such that
|1 | + |az| < 2. This fact remains valid for more general elliptic perturbations of —A.

The purpose of this work is to prove an analogue of (1-1) for perturbations by large magnetic and
electric potentials, extending the recent results in [Cardoso et al. 2013; 2014a] to a larger class (most
probably optimal) of magnetic potentials. More precisely, we study the high-frequency behavior of the

resolvent of self-adjoint operators of the form
G=—A+ib(x)-V+iV-b(x)+V(x) on L*@R"), n>3,

where b = (by, ..., b,) € L°°(R"; R") is a magnetic potential and V € L°°(R"; R) is an electric potential.
Hereafter, the operator V - b is defined by (V - b)u = V - (bu). Introduce the polar coordinates r = |x|,
w=x/|x| € $"~'. We suppose that b(x) = b’ (x) +b5(x), V(x) = VE(x) + V5 (x) with long-range parts
bl and VI belonging to C Y([ro, +00)), ro > 1 with respect to the radial variable r and satisfying the

MSC2010: 47A10.
Keywords: magnetic potential, resolvent estimates.
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conditions
IVEGrw)| < C, (1-2)
o, VE(rw) < cr 179, (1-3)
185pE (rw)| < Cr*%, k=0,1, (1-4)

for all r > rp, w € S"!, with some constants C, § > 0. The short-range parts satisfy
6% @) + V3 ()| < Clx) ™', (1-5)

Note that in the case b* = 0, VL = 0 and b5, V5 satisfying (1-5), the operator G has an absolutely
continuous spectrum consisting of the interval [0, +-00) with no strictly positive eigenvalues (see [Koch
and Tataru 2006]). It follows from our result below that in the more general case when the long-range
parts are not identically zero the spectrum of the operator G has a similar structure in an interval of the
form [a, +00) with some constant @ > 0. Our main result is the following:

Theorem 1.1. Under the conditions (1-2)—(1-5), for every s > % there exist constants C, Lo > 0 so that
for A > X, 0 < e <1, |ay], az| <1, we have the estimate

[x) ™09 (G — A% £ie) 71922 (x) ™ |l 2y 12 < CAlrIHIel=, (1-6)

This kind of resolvent estimates plays an important role in proving uniform local energy decay,
dispersive, smoothing and Strichartz estimates for solutions to the corresponding wave and Schrédinger
equations (see [Cardoso et al. 2013; 2014b; Erdogan et al. 2009], for example). In particular, it follows
from the above theorem that the smoothing and Strichartz estimates for solutions to the corresponding
Schrodinger equation proved in [Erdogan et al. 2009] hold true without the continuity condition on the
magnetic potential.

Theorem 1.1 is proved in [Cardoso et al. 2013] assuming additionally that 55 (x) is continuous with
respect to the radial variable r uniformly in w. In the case b =0, VL =0 and b3, V¥ satisfying (1-5), the
estimate (1-6) is proved in [Erdogan et al. 2009] under the extra assumption that b(x) is continuous in x.
In fact, no continuity of the magnetic potential is needed in order to have (1-6), as shown in [Cardoso
et al. 2014a]. Instead, it was supposed in [Cardoso et al. 2014a] that div bL and div b3 exist as functions
in L*°. This assumption allows us to conclude that the perturbation (which is a first-order differential
operator) sends the Sobolev space H' into L?, a fact used in an essential way in [Cardoso et al. 2014a].
Thus, our goal in the present paper is to remove this technical condition on the magnetic potential. To this
end, we propose a new approach inspired by the global Carleman estimates proved recently in [Datchev
2014] in a different context. In what follows we will describe the main points of our proof.

There are two main difficulties in proving the above theorem. The first one is that, under our assumptions,
the commutator of the gradient and the magnetic potential is not an L° function. Consequently, the
perturbation does not send the Sobolev space H! into L. Instead, it is bounded from H' into H~!.
Secondly, the magnetic potential is large, and therefore it is hard to apply perturbation arguments similar
to those used in [Cardoso et al. 2013]. Thus, to prove Theorem 1.1 we first observe that (1-6) is equivalent
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to a semiclassical a priori estimate on weighted Sobolev spaces (see (2-10) below). Furthermore, we
derive this a priori estimate from a semiclassical Carleman estimate on weighted Sobolev spaces (see
(2-7) below) with a suitably chosen phase function independent of the semiclassical parameter. To get
this Carleman estimate we first prove a semiclassical Carleman estimate on weighted Sobolev spaces for
the long-range part of the operator (see Theorem 2.1 below) and we then apply a perturbation argument.
Note that the estimate (2-1) is valid for any phase function ¢(r) € C?(R) whose first derivative ¢’(r) is
of compact support and nonnegative. The main feature of our Carleman estimate is that it is uniform with
respect to the phase function ¢ (that is, the constant C; does not depend on ¢), and the weight in the
right-hand side is smaller than the usual one (that is, ((x)™2 +¢'(|x])) /% instead of (x)*). Thus, we can
make this weight small on an arbitrary compact set by choosing the phase function properly. Moreover,
in the right-hand side we have the better semiclassical Sobolev H ! norm instead of the L? one, which is
crucial for the application we make here. Note also that Carleman estimates similar to (2-1) and (2-7)
have recently been proved in [Datchev 2014] for operators of the form —h%*A +V(x,h), where V is a
real-valued long-range potential which is C' with respect to the radial variable r. There are, however,
several important differences between the Carleman estimates in [Datchev 2014] and ours. First, the
phase function in [Datchev 2014] is of the form ¢ = ¢ (r)/h, where ¢ does not depend on & and must
satisfy some conditions. Thus, the Carleman estimates in [Datchev 2014] lead to the conclusion that
the resolvent in that case is bounded by ¢€/”, C > 0 being a constant. Secondly, in [Datchev 2014] the
Carleman estimates are not uniform with respect to the phase function and the norm in the right-hand
side is L? (and not H~"). Finally, the operator in [Datchev 2014] does not contain a magnetic potential.

To prove Theorem 2.1 we make use of methods originating from [Cardoso and Vodev 2002]. Note that in
[Cardoso and Vodev 2002] the high-frequency behavior of the resolvent of operators of the form —A,+V
is studied, where V is a real-valued scalar potential and A, is the negative Laplace—Beltrami operator
on unbounded Riemannian manifolds, such as, for example, asymptotically Euclidean and hyperbolic
ones. Similar techniques have been also used in [Rodnianski and Tao 2011], where actually all ranges of
frequencies are covered. In these two papers, however, no perturbations by magnetic potentials are studied.

2. Proof of Theorem 1.1

Set h = A~1, P(h) = h2G, b(x, h) = hb(x), b%(x, h) = hx (|Ix))bE(x), b5(x, h) = b(x, h) — b (x, h),
Vix,h) = h2V(x), VE(x, h) = i2x(Ix)VE), VS(x,h) = V(x, h) — VE(x, h), where x € C®(R),
x(r)y=0forr <rg+1, x(r) =1 for r > rg+ 2. Throughout this paper, H I(R™) will denote the Sobolev
space equipped with the semiclassical norm

2 2
Il = > 19%ul,,

0<|a|=1

where @, = i hd,. Furthermore, H~!' will denote the dual space of H ! with respect to the scalar product
(-, )2 with the norm

u,v)r2
Il = sup Hvizl
0£ucH! lloell g1



1642 GEORGI VODEV

Let p € C*°(R) be a function independent of 4 such that 0 < p <1 and p(c) =1foro <0, p(c) =0
for o > 1. Define the function ¢(r) € C*(R) as follows: ¢(0) =0 and

¢'(r)=tp(r — A),
where 7, A > 1 are parameters independent of % to be fixed later on. Introduce the operator
PE(h) = —h?A+ihb"(x, h) -V +ihV b (x, h) + VE(x, h)
and set
PL(h) =e? Pt (h)e™?,
Py(h) =e*P(h)e™ = PL(h) +ihbS(x, h) -V +ihV - b5 (x, h) — 2ihb5 (x, h) - Vo + VS (x, ),
1(x) =V (x)=% 4+ ¢'(Jx]).
In this section we will show that Theorem 1.1 follows from:

Theorem 2.1. Suppose (1-2), (1-3), (1-4) hold and let % <s< %(1—!—8). Then, for all functions f € H'(R")
such that (x)s(PWL (h) —1+ie) f € H'(R"), we have the a priori estimate

O 1 N _
1) fllg < hIIM (P, (h)—1=xie) fllg-1+Co ; /122 (2-1)

for0<e<1,0<h <hy(r, A) K 1, with a constant C| > 0 independent of f, ¢, h, T, A, and a constant
C, > 0 independent of f, ¢, h.

Let us first see that (2-1) implies the estimate

2C 172
1) ™ flln =< Tll|(x>s(P(p(h) —lxie) fllp- +2C2<%> If 1l (2-2)

Using that p(x) > /2 for |x] < A and pu(x) > (x)~ for |x| > A+ 1 together with the condition (1-4),
Weget(f0r0<s—%<<1)

() 1) (165 Ce, )|+ VS (x, )[) < Ch(x ™24 AZT179), (2-3)
(x)° () 7B (x, )| |Vl < O a(h). (2-4)
By (2-3) and (2-4),
s~ (Py(h) = PL () (x) [l g1 -1 < Ch(z ™2+ AX 7120+ O (h)). (2-5)
By (2-1) and (2-5),
1) ™ Fll g
< %nu*l(&,(h) —1xie) fllg + %nu”(ﬂp(m — Py () fllg + Cz(%)l/zllfllp

C 1/2
< 71||<x>S(P¢(h>—liie)f||H1+C<r—”2+A25—1—“+0(h>>||<x>—Sf||Hn+cz<%) I fll2. (2-6)
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Taking now 7~!, A=! and & small enough, we can absorb the second term in the right-hand side of (2-6)
to obtain (2-2).
Applying (2-2) with f = e?g we obtain the Carleman estimate

_ 2C . e\'"?
1{x) e gl s7||<x>SeW(P<h>—1ize)g||H1+zcz(z) le?gll 2. (2-7)

Since the function ¢ does not depend on 4, the function ¢? is bounded by positive constants both from
below and from above. Thus, we deduce from (2-7) the a priori estimate

s Ci . ~ (e

1) gl < III(X)“(P(h) —lxie)gly- +C2(ﬁ) gz (2-8)
with constants C 1, 52 > 0 independent of %, ¢ and g. On the other hand, since the operator P (h) is
symmetric on L*(R™), we have

ellgl?, = FIm((P(h) — L £ie)g, &)z <y ' [(x) (P (h) — 1 £ie)gl3, - + vhll(x) " gll3, (2-9)

for every y > 0. Taking y small enough, independent of /., we deduce from (2-8) and (2-9) the a priori
estimate

C ,
) gl < EII(X)“(P(h) —1xie)glp- (2-10)

with a constant C > 0 independent of &, ¢ and g. It is easy to see now that (2-10) implies the resolvent
estimate (1-6) for 0 < s — % &« 1. On the other hand, we clearly have that, if (1-6) holds for some s¢ > %,
it holds for all s > s3. Hence (1-6) holds for all s > %

3. Proof of Theorem 2.1

We will first prove the following:

Proposition 3.1. Under the conditions of Theorem 2.1 we have the estimate

C 1/2
1) Flla < —= ™ (P () =1 £ie) £ 2 +C2<%> £l (3-1)

forevery) <e <1,0<h <ho(tr, A) < 1, with a constant C| > 0 independent of f, e, h, t, A, and a
constant Cy > 0 independent of f, ¢, h.

Proof. We pass to the polar coordinates (r, w) € Rt x §"7!, r = |x|, w = x/|x|, and recall that
L2(R") = L>(R* x S"~!, r"~! dr dw). Denote by X the Hilbert space L>(R* x S"~!, dr dw). We also
denote by || - || and (-, - ) the norm and the scalar product on L?(S"1). We will make use of the identity

~

PN A0 g2y B (3-2)
r

where Zw = Ay — %(n —1)(n —3) and A, denotes the negative Laplace—Beltrami operator on S" .
Observe also that
P02, D2 <8, 4 g (w, D), (3-3)
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where w; = x;/|x| and g is a first-order differential operator on S"~!, independent of r, antisymmetric
on L2(S" ). Itis easy to see that the operators Q ;j(w, 9,,) =ihq;(w, dy) and A, = —hzzw > () satisfy
the estimate

1Q,(w, By)v|l < CIAY*v||+Chljv|| forall ve H'(S"™), (3-4)

with a constant C > 0 independent of 4 and v. Set u = r®=D/2 f,
PEh) = r"V2(PE(h) — 1 £ie)r~ D2,
P (h) =r"D2(PL() — 1 xie)r~ "D = e PF(h)e 7.
Using (3-2) and (3-3) we can write the operator P*(h) in the coordinates (r, w) as follows:
PE(h) = D2 + A—;" —ltie+VE+ Z w; (b% (rw, )%, +%,bY (rw, )
r o

+r Y G w ) Qj(w, D) + Q (w, Bu)bE (rw, b)),
j=l1

where we have put 9, = ihd,. Since the function ¢ depends only on the variable r, this implies

A ~ LR "
Py =97+ — 1 kie+VE+ W =2ihg'D, + ) w;(bf (rw, hD, +%,b7 (rw, h)
j=1

+rY (BErw. )0 (w, D) + Q;(w, Bu)bE (rw, b)),
j=1
where .
W =—h>¢'(r)> —h%¢" (r) — 2ih(p/ijl;JL~.
Set j=1
Dy (r) = 1(r) S ulr, I+ 1) Deue(r, DI+ 1)~ r A 2ulr, I,
Wy = () " ull oy + 107 7Bl Ja gy + 10 5 r T A Pulfa = fo @, (r) dr,
M*(r) = |2 (Wu(r, )|,

ME = /‘00 M_ZMi(r) dr,
0
N(r) = llulr, I+ 1Dulr, I,
N:/ N(r)dr,
0
E(r)=—(r2 Ay = 14+ VEur, ), ulr, )+ 19,u(r, )|

— 2! ZRe(l;]L-(rw, h)Qj(w, Boy)u(r, - ), u(r, -)).
j=1

To prove (3-1) we will make use of the method of [Cardoso and Vodev 2002; Rodnianski and Tao 2011]
(used there in the case when the magnetic potential is identically zero), which is based on the observation
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that the first derivative of the function E(r) has a nice lower bound. The situation is more complex in the
presence of a nontrivial magnetic potential, but we will show in what follows that the method still works.
To be more precise, observe first that, in view of (1-1), (1-3) and (3-4), we have

E(r) = —|r "N 2ulr, 1P+ Slule DI+ 1Deur, N2 — Oh)@1s)2(r), (3-5)

provided 4 is taken small enough. Furthermore, using that Im(l;ngbru, %,u) =0 and ij = Qj, it is easy
to check that E(r) satisfies the identity — see also [Cardoso et al. 2013; 2014a], where the same identity
is used in an essential way —

dr
2, <a\7L >
= —(r “Ayu(r,-),u(r,-)) —(——u(r,-),ur,-)
r or

n d(bk (rw, h
- 22&{# Q;(w, Du(r, ), ur, -)>

j=1
" b (rw, h) ~
-2 ;Re<w,’a—ru(n ), Dru(r, -)> + 20 I (hyu(r, -), Drur, -))
F2eh ™' Re(u(r, - ), Drulr, ) +4(@'Drulr, - ), Dyur, -))
— 20~ Im(Wu(r, - ), Dyu(r, -)). (3-6)

In view of (1-2), (1-3), (3-4) and (3-6), we obtain the inequality
2 , _
E'(r) = Zlr = A2 D17 + 49 19,ur, )11 = 202G (utr, 1D, )
— O(M)@(145)2(r) — O(eh"N(r). (3-7)
Since @ (145)2(r) < ®(r) for 3 < s < 2(1+3), we obtain from (3-7)
2
E'(r) = 2l A Putr, DI + 401D, D17 = y T R M)

— YD, (r, ) I* — O(h) Dy (r) — O(eh™ )N (r)
> %nr*lA}/Zu(n M=y TP ME@E) — O(h+ y)Ds(r) — O(eh ™ HN(r) (3-8)

for every 0 < y <« 1. By (3-5) and (3-8),
() (E@) +rE(r) = O5(r) —y 202 ME(r) — O(h+y)®5(r) — O(eh™HN().  (3-9)

Integrating (3-8) from ¢ (¢ > 0) to +00 we get

E(t)=— foo E'(rdr <0y 'hHME+ O0@Eh YN+ O(h +y)V,. (3-10)
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Let ¢ > 0 be a function independent of / and such that fooo Y (r) dr < oco. Multiplying (3-10) by ¥ (¢)
and integrating from 0 to 400, we get

/OO Y(E(r)dr <Oy~ ') ME + O(eh™ YN + O(h +y) V. (3-11)
0
Observe now that we have the identity
/oo(r)_zs(E(r) +7rE'(r)dr = /00 w(r)E(r)dr, (3-12)
0 0

where ¥ (r) = 2sr(r)~>~!. Combining (3-9), (3-11) and (3-12) and taking y and & small enough, we
conclude
W, < O(h"HME + O(ch™hHN. (3-13)

Clearly, (3-13) implies (3-1). O
We will now show that (2-1) follows from (3-1) and the following:

Lemma 3.2. Let £ € R. Then we have the estimate
I “(PE(m) =)'y <C (3-14)
for 0 < h < hy(r, A) K 1, with a constant C > 0 independent of h, T and A.
We are going to use (3-1) with f = (P(pL (h) —i)~"'g. In view of the identity
L= —iFie)(Py(h) =)~ + (P (h)—i)~ (Py(h)— 1 £ie)
and Lemma 3.2, we have
1) gl < 20(x) (P (h) — )~ gl + 1(x) " (PL(h) — )~ (P (h) — 1 £ie)g| i A

2C _ — .
< 5T Py ) =) (P () — el

& 172 L n—1 L —1 L H
+26( 1) IEED =D gl + G PR — i) (BEG) — 1 £ i)gll

<

2C _ o _ .
T PR = T g 2 T PR — 1 ie)gl

1/2
& o\ —
+2C2<z> ICPEGR) =)Mo gl

+ Cll(PE(R) =) Ml g1 (P (h) — 1 £ ig)gll -

C/ B . P 1/2 , )
= ln ‘(Pj(h)—lizs)gnH-l+CQ<Z> Igllz2+C3ll(Pr (R —1%ie)gly-1 (3-15)

with a constant C| > 0 independent of ¢, &, T, A and g, and constants C}, C; > 0 independent of ¢, i
and g. Since the function p is bounded on R”, there exists 0 < hg(p) < 1 such that for O < h < hg the
last term in the right-hand side of (3-15) can be bounded by the first one. Thus we get (2-1) from (3-15).
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4. Proof of Lemma 3.2

It is easy to see that the estimate (3-14) holds with £ = 0 and Pq,L (h) replaced by —h%A. Indeed,
in this case the L?> — L? bound is trivial, while the H~' — H! bound follows from the fact that
I fllas ~ 111 = h2A)72 fll;2, s = —1, 1. We will use this to show that (3-14) with £ = 0 still holds for
first-order perturbations of the form —h?A + Q(h), where

Q)= g, mIL+ D B3qP (x, h) +qolx, h)

la|=1 o] =1
with coefficients satisfying
lgP (e, )| +1qP (x, h)| + |qo(x, h)| < Ch  for all x € R". (4-1)
Clearly, (4-1) implies
QM g1 g1+ < Ch. (4-2)

By (4-2) and the resolvent identity
(=h’A+ Q) —i) ' = (=R*A =D+ (=RPA=D'Q) (=R’ A+ Q(h) — D)),
we get

I(=r*A+ Q) =) g1
<N=R2A=D) g1 ot HI R A=) " g g 1 QD i g (=R A+ Q) =) ™ -1
<CHOMWNRA+QMh) =) g1 (4-3)
Now, taking & small enough (depending on the coefficients of Q (%)) we can absorb the last term in the
right-hand side of (4-3) and obtain the desired estimate with a constant C > 0 independent of qél), qéz),
qo and h.

Thus, to prove (3-14) it suffices to show that the operator 1~ P(pL (h)ut equals —h%A plus a first-order
differential operator with coefficients satisfying (4-1). To do so, observe first that u~“ P (h)u* = Pvf (h),
where ¥ = ¢ — £ log . Furthermore, we have

Py (h) = —h*A+ (ib" —hVy) - hV +hV - (ib" — hVy) — h*|Vy|> = 2ihb" -V + Ve

It is easy to see that |1/ ()] is bounded on R, and hence |V (|x|)| is bounded on R". This together with
the assumptions on bt and VL imply the desired properties of the coefficients of the operator P15 (h. O
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LOCAL AND NONLOCAL BOUNDARY CONDITIONS FOR p-TRANSMISSION
AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS

GERD GRUBB

A classical pseudodifferential operator P on R” satisfies the p-transmission condition relative to a smooth
open subset 2 when the symbol terms have a certain twisted parity on the normal to d€2. As shown
recently by the author, this condition assures solvability of Dirichlet-type boundary problems for P in
full scales of Sobolev spaces with a singularity d**, d(x) = dist(x, 3Q). Examples include fractional
Laplacians (—A)“ and complex powers of strongly elliptic PDE.

We now introduce new boundary conditions, of Neumann type, or, more generally, nonlocal type.
It is also shown how problems with data on R” \ € reduce to problems supported on €, and how the
so-called “large” solutions arise. Moreover, the results are extended to general function spaces F,, , and

B, . including Holder—Zygmund spaces B, .. This leads to optimal Hélder estimates, e.g., for Dirichlet

solutions of (—A)u = f € Loo(R2),u € d*C*(Q)when0<a < 1,a #* %

Boundary value problems for elliptic pseudodifferential operators (rdo’s) P, on a smooth subset €2
of a Riemannian manifold 21, have been studied under various hypotheses through the years. There is a
well-known calculus initiated by Boutet de Monvel [Boutet de Monvel 1971; Rempel and Schulze 1982;
Grubb 1984; 1990; 1996; 2009; Schrohe 2001] for integer-order ¥do’s with the O-transmission property
(preserving C* up to the boundary), including boundary value problems for elliptic differential operators
and their inverses. There are theories treating more general operators with suitable factorizations of the
principal symbol, initiated by Vishik and Eskin (see, e.g., [Eskin 1981; Shargorodsky 1994; Chkadua
and Duduchava 2001]). Theories for operators without the transmission property have been developed
by Schulze and coauthors, see, e.g., [Rempel and Schulze 1984; Harutyunyan and Schulze 2008], and
theories where the boundary is considered as a singularity of the manifold have been developed in works
of Melrose and coauthors, see, e.g., [Melrose 1993; Albin and Melrose 2009].

A category of ¥rdo’s lying between the operators handled by the Boutet de Monvel calculus and the
very general categories mentioned above consists of the ¥rdo’s with a p-transmission property, u € C,
with respect to 9€2. Only recently, a systematic study in H, Sobolev spaces was given in [Grubb 2015a],
departing from a result on such operators in C*°-spaces by Hormander [1985, Theorem 18.2.18] (in fact
developed from the lecture notes [Hormander 1965]). This category includes fractional Laplacians (—A)“
and complex powers of strongly elliptic differential operators, and also more generally polyhomogeneous

Yrdo’s with symbol p ~ ZjeNO pj having even parity (that is, p;(x, —§) = (—l)jpj (x,&) for j > 0)

MSC2010: primary 35515; secondary 45E99, 46E35, 58J40.

Keywords: fractional Laplacian, boundary regularity, Dirichlet and Neumann conditions, large solutions, Holder—Zygmund
spaces, Besov—Triebel-Lizorkin spaces, transmission properties, elliptic pseudodifferential operators, singular integral
operators.
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or a twisted parity involving a factor ¢'™¢. The general u-transmission operators have such a reflection
property of the symbol at d€2 just in the normal direction; see (1-5) below. This allows regularity and
solvability results not only for s in a finite interval, but for arbitrarily large s.

The fractional Laplacian and its generalizations, often formulated as singular integral operators, are
currently of interest in probability theory, finance, mathematical physics and geometry.

The work [Grubb 2015a] showed the Fredholm solvability of homogeneous or nonhomogeneous
Dirichlet-type problems in large scales of Sobolev spaces, for p-transmission ¥rdo’s. In the present paper,
we introduce more general boundary conditions and find criteria for their solvability. There are the general
nonlocal conditions yyBu = Y, where B is a u-transmission yrdo; in addition to this, local higher-order
conditions such as a Neumann-type condition involving the normal derivative at d<2 are treated. The case
of N x N systems of {do is briefly considered.

Moreover, we show by use of [Johnsen 1996] that the theory also works in the Besov—Triebel-Lizorkin
spaces B), , and F,, ,, with special attention to the spaces B, ., which coincide with Holder spaces C*
for s € R4 \ N. In comparison with [Grubb 2015a], this allows for a sharpening of Holder results for
(—A)? (and other a-transmission operators) as follows: Let Qbea compact subset of R". For solutions
ucetLo(RQ)of rt(—A)u=f,

feLloo(R) = uecetdx)C*Q), whena €10, 1[, a # % (0-1)

which is optimal in the Holder exponent. (For a = % it holds with C“ replaced by C*~°. Also higher
regularities are treated, and optimal Holder estimates for nonhomogeneous Dirichlet and Neumann
problems are likewise shown.) In a new work, Ros-Oton and Serra [2014a] have studied integral operators
with homogeneous, positive, even kernel and obtained (0-1) with C* replaced by C*~?; in the smooth case
this is covered by the present theory. (We are concerned with linear operators; the nonlinear implications
in [Ros-Oton and Serra 2014a] are not touched here.) Such operators were treated in cases without
boundary by Caffarelli and Silvestre, see, e.g., [2009].

Furthermore, we show the equivalence of Dirichlet problems for u supported in © with problems
prescribing a value of u on the exterior R" \ €2, obtaining new results for the latter, which were treated
recently by, for example, Felsinger, Kassmann and Voigt [Felsinger et al. 2014] and Abatangelo [2013].

For nonhomogeneous problems the solutions can be “large” at the boundary; cf. [Abatangelo 2013]
and its references. We show how the solutions have a specific power singularity when the boundary data
are nontrivial.

The case a = % enters as a boundary integral operator in treatments of mixed boundary value problems
for elliptic differential operators. The present results are applied to mixed problems in [Grubb 2015b].

Outline. In Section 1, we briefly recall the relevant definitions of operators and spaces. Section 2 presents
the basic results on Dirichlet and Neumann problems for (—A)“, including situations with given exterior
data, and derives conclusions in Holder spaces. Section 3 explains the extension of the general results to
Besov-Triebel-Lizorkin spaces, including B, .. Section 4 introduces new nonlocal boundary conditions
yoBu =, as well as local Neumann-type conditions; also N x N systems of ¢rdo are discussed. The
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Appendix illustrates the theory by treating a particular constant-coefficient case, showing how the problems
for (1 — A)“ on R} can be solved in full detail by explicit calculations.

1. Preliminaries

The notation of [Grubb 2015a] will be used. We shall give a brief account, and refer there for further details.

Consider a Riemannian n-dimensional C* manifold €27 (it can be R") and an embedded smooth #-
dimensional manifold © with boundary 9€2 and interior 2. For 2; =R", Q can be R, = {x eR"|x, 2 0};
we will denote (x1, ..., x,_1) by x". In the general manifold case, Q is taken to be compact. For & € R",
we let (1 + |§|2)% = (&), and denote by [£] a positive C*°-function equal to |&| for |£] > 1 and > % for
all £. Restriction from R”" to R (or from 2 to Q or 0L, respectively) is denoted by r*, extension by
zero from R to R" (or from 2 or 0, respectively, to Q1) is denoted by e*.

A pseudodifferential operator (yydo) P on R” is defined from a symbol p(x, £) on R” x R" by

Pu = p(x, D)u=OP(p(x, §)u = (27) " / e p(x, E)ade = F L (p(x. ORE):  (1-)

here, ¥ is the Fourier transform (Fu)(§) =u (&) = fRn e~y (x) dx. The symbol p is assumed to be such
that for some r € R, afagp(x, £)is O (&) 1!y for all «, B (defining the symbol class S{’O(IR" x R™));
the symbol then has order r. The definition of P is carried over to manifolds by use of local coordinates.
We refer to textbooks such as [Hormander 1985; Taylor 1981; Grubb 2009] for the rules of calculus;
[Grubb 2009] moreover gives an account of the Boutet de Monvel calculus of pseudodifferential boundary
problems, see also, e.g., [Grubb 1996; Schrohe 2001]. When P is a yvdo on R" or Q;, Py = rt Pe*
denotes its truncation to R’ or €2, respectively.
Let 1 < p < oo (with 1/p’ =1—1/p), then we define for s € R the spaces

HY(R") ={u e S'R") | F~'(6)) € L,(RM)},
H}(RY) = {u € H)(R") | suppu C R}, (1-2)
HY (R ={u € D' RY}) |u=r"U for some U € H)(R")};

here, supp u denotes the support of u. For a compact subset Q of i, the definition extends to define
H ;(5_2) and H »(§2) by use of a finite system of local coordinates. We shall in the present paper moreover

work in the Triebel-Lizorkin and Besov spaces F ;’ q and B‘[‘,’ @ defined for s € R, 0 < p, g < oo (we take

p < oo in the F-case), and the derived spaces F [S, q and F j, ¢ ©tc. Here we refer to [Triebel 1995; Johnsen

1996] for basic definitions. ([Triebel 1995] writes F instead of F , etc.; the present notation stems from
Hoérmander’s works.) For a Holder space C?, C'(€2) denotes the Holder functions on €2, supported in 2.
B;,p is also denoted by B; when p < 00, and F;’p = B;,p’ F;’2 =H;), H) = B;.

We shall use the conventions | J,_, H ;,J“? =H 1§+0 and (.o H , f=H IS,_O, applied in a similar way
for the other scales of spaces.

The results hold in particular for B, ,,-spaces. These are interesting because B, ,,(R") equals the
Holder space C*(R") when s € Ry \ N. (There are similar statements for derived spaces over R’} and €2.)

The spaces B, ,,(R") can be identified with the Holder-Zygmund spaces, often denoted ¢* (R") when
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s > 0. There is a nice account of these spaces in Section 8.6 of [Hérmander 1997], where they are denoted
by C{(R") for all s € R; we shall use that label below, for simplicity of notation:

Bl . =C. forallseR. (1-3)

For integer values of k£ one has, with C llj([R{”) denoting the space of functions with bounded continuous
derivatives up to order &,

CHRY c MR c CE®RY € CFOR™) when k e N,

(1-4)
CYHR") C Loo(R™) C COUR™M),

and similar statements for derived spaces.

A Yrdo P is called classical (or polyhomogeneous) when the symbol p has an asymptotic expansion
p(x, &)~ ZjeNO pj(x,&) with p; homogeneous in & of degree m — j for all j. Then P has order m.
One can even allow m to be complex; then p € SE%’"([R" x R™), and the operator and symbol are still
said to be of order m.

Here there is an additional definition: P satisfies the p-transmission condition (in short, is of type u)

for some u € C when, in local coordinates,
o pj(x, —N) =™ "=l b (x, N) (1-5)

for all x € 9€2, all j, , B, where N denotes the interior normal to 92 at x. The implications of the
p-transmission property were a main subject of [Grubb 2015a].

A special role in the theory is played by the order-reducing operators. There is a simple definition of
operators EY on R":

B = OP(([£'1 £ i&)")

(or with [£'] replaced by (£')); they preserve support in @i, respectively. Here the function ([£'] +i&,)*
does not satisfy all the estimates required for the class SR#(R" x R"), but the operators are useful for
some purposes. There is a more refined choice A (with symbol A% (£)) that does satisfy all the estimates,
and there is a definition A;é‘ ) in the manifold situation. These operators define homeomorphisms for all

s € R such as o . B

AL HY @) = HY M@, e
_ _ -6)
AW, H (@) = B Rer(Q);

here, A(_“)Jr is short for r* A™et, suitably extended to large negative s (see Remark 1.1 and Theorem 1.3
in [Grubb 2015a]).
The following special spaces, introduced by Hormander, are particularly adapted to p-transmission
operators P:
HYORY) =B e HRMRY), s>Reu—1/p,
HYO @) = A HRMQ), s = Rep =1/, (1-7)
€u(Q) = e ux) =d(x)*v(x) | v e C*(Q));
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namely, r* P (of order m) maps them into H ;,_Re’"([RR’jr), H ;_Re’"(Q) and C>(Q) respectively (see
[Grubb 2015a] Sections 1.3, 2, 4), and they appear as domains of realizations of P in the elliptic case. In
the third line, Re > —1 (for other u, see [Grubb 2015a]) and d(x) is a C*°-function vanishing to order
1 at 0€2 and positive on €2, e.g., d(x) = dist(x, d€2) near d€2. One has that H,’,L(S)(Q) D I-.II“,'(S_Z), and the
distributions are locally in H, on €2, but at the boundary they in general have a singular behavior. More
about that in the text below.

The order-reducing operators also operate in the Besov—Triebel-Lizorkin scales of spaces, satisfying
the relevant versions of (1-6), and the definitions in (1-7) extend.

2. Three basic problems for the fractional Laplacian

As a useful introduction, we start out by giving a detailed presentation of boundary problems for the basic
example of the fractional Laplacian.

Let P, = (—A)% a > 0, and let 2 be a bounded open subset of R* with a C*°-boundary 02 = X.
P,, acting as u — F~1(|&|>4), is a pseudodifferential operator on R” of order 24, and it is of type a and
has factorization index a relative to €2, as defined in [Grubb 2015a]. With terminology introduced by Hor-
mander in the notes [1965] and now exposed in [Grubb 2015a], we consider the following problems for P,:

(1) The homogeneous Dirichlet problem:

rtPu=f onQ, 2-1)
suppu C Q.

(2) A nonhomogeneous Dirichlet problem (with u less regular than in (2-1)):

rtPau=f on €,
suppu C L, (2-2)
dx)'"u=¢ onX.

(3) A nonhomogeneous Neumann problem:

rtPau=f on €2,

suppu C Q, (2-3)

3, dx)'"u)=vy onX.
It is shown in [Grubb 2015a] that (2-1) and (2-2) have good solvability properties in suitable Sobolev
spaces and Holder spaces, and we shall include (2-3) in the study below. In the following, we derive
further properties of each of the three problems.

Remark 2.1. The theorems in Sections 2A and 2B below are also valid when (—A)“ is replaced by
a general a-transmission yydo P of order 2a and with factorization index a, except that bijectivity is
replaced by the Fredholm property. They also hold when € is a compact subset of a manifold ;. The
results in Section 2C extend to such operators when they are principally like (—A)“.

In the Appendix of this paper we have included a treatment of (1 — A)? on a half-space; it is a model
case where one can obtain the solvability results directly by Fourier transformation.
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2A. The homogeneous Dirichlet problem. From the point of view of functional analysis (as used for
example in [Frank and Geisinger 2014]), it is natural to define the Dirichlet realization P, p as the
Friedrichs extension of the symmetric operator P, in L,(2) acting like r™ P, with domain Coo(2).
There is an associated sesquilinear form

Pao(, v) = (2m)™" /R n EP0E)0(E) dE,  u,veCP(R). (2-4)

Since ([lullg, + [ 1€1*|al? dé)% is a norm equivalent with [|u|| 2, the completion of C§°(€2) in this norm
is V. = H{(Q2), and p, o extends to a continuous nonnegative symmetric sesquilinear form on V. A
standard application of the Lax—Milgram lemma (e.g., as in [Grubb 2009, Chapter 12]) gives an operator
P, p that is selfadjoint nonnegative in L,(£2) and acts like r* P, : HZ“(S_Z) — H 5 (), with domain

D(P,p) ={ue H{(Q) | rtPue Ly(Q)}. (2-5)

The operator has compact resolvent, and the spectrum is a nondecreasing sequence of nonnegative
eigenvalues going to infinity. As we shall document below, O is not an eigenvalue, so P, p in fact has a
positive lower bound and is invertible.

The results of [Grubb 2015a, Sections 4, 7] clarify the mapping properties and solvability properties
further: For 1 < p < oo, r™ P, maps continuously:

rt P, HS(Q) — H}7>(Q), whens >a—1/p'; (2-6)
there is the regularity result
we HEVPHOQ), rT P e H(Q) = u e HY®(Q), whens >a—1/p/, (2-7)

and the mapping (2-6) is Fredholm. (It is even bijective, as seen below.) As an application of the results
for s =2a, p =2, we have in particular that

D(Py,p) = Hy*¥(@) = AT Ve H§(Q); (2-8)
see also Example 7.2 in [Grubb 2015a]. We recall from [Grubb 2015a, Theorem 5.4] that

= H3(Q) whena—1/p' <s<a+1/p,

C Hy Q) when s =a + 1/p,
Ce+d“H;_“(Q)+I:I[‘§(§._2) whens >a+1/p,s—a—1/p &N,
C e*d“ﬁ‘z_“(ﬁ) —I—I-'I;_O(S_Z) whens —a—1/p € N.

HI®(Q) (2-9)

In [Grubb 2015a, Section 7], we used Sobolev embedding theorems to draw conclusions for Holder
spaces. Slightly sharper (often optimal) results can be obtained if we use an extension of the results of
[Grubb 2015a] to the general scales of Triebel-Lizorkin and Besov spaces F, q and By, q- The extended
theory will be presented in detail below in Sections 3—4; for the moment we shall borrow some results to
give powerful statements for (—A)“, 0 < a < 1. We recall that the notation B, ., is simplified to Cy,
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and that C; equals C* (the ordinary Holder space) for s € R4 \ N; see also (1-4). Moreover, as special
cases of Definition 3.1 and Theorem 3.4 below for p = g = o0,

CLO@ = A e O @) fors >Rep—1,

d(x)*etCL " (Q)+C5(Q)  whens >Rep, s—Rep ¢ N, (2-10)

CrO(Q) c { _r R
o () d(x)*etCi M (Q)+C50(Q) whens >Rep, s —Rep €N,

Note also that the distributions in C/**’(Q) are locally in C* on , by the ellipticity of AS:“ ),
We focus in the following on the case 0 < a < 1, assumed in the rest of this chapter. Here we find the
following results, with conclusions formulated in ordinary Holder spaces:

Theorem 2.2. Let s > a — 1. If u € C¢~'44(Q) for some ¢ > 0 (e.g., if u € e* Loo()), and r* Pu €
Ei_za(Q), then u € CZ(S)(S_Z). The mapping r* P, defines a bijection
rtP, 1 COO(Q) - CS72(Q). (2-11)

a2a)
sk

In particular, for any f € Lo (2), there exists a unique solution u of (2-1) in C ; it satisfies

u€etd(x)'CU(Q) NC*(Q), whena # 1,

o _ (2-12)
we(etdx)iC1(@) +C @) NCUQ)C etd(x)?C @) N C'Q), whena = 1.
For f € C! (S_Z), t > 0, the solution satisfies
etd(x)4CT(Q) N C?*H(Q) whena+t and2a+1t ¢ N,
u e (etdx)*Cc=%(Q) + C*H0(Q))NC*¥H(Q) whena+teN, (2-13)

(eTd(x)*CH(Q) + CHH=0(Q))NC*H=0(Q)  when2a+1teN.
Also, the mappings in (2-6) are bijections for s >a —1/p’.

Proof. The first two statements are a special case of Theorem 3.2 below (see Example 3.3), except that we
have replaced the Fredholm property with bijectivity. According to [Ros-Oton and Serra 2014b, Proposi-
tion 1.1] a weak solution (a solution in FIZ“(Q)) of the problem (2-1) with f € L, (€2) satisfies ||u]|ce <
C|| fllL; in particular, it is unique. For f € H , (), the Fredholm property of rT P, from Hza (”)(S_Z) =
Hz“(S_Z) to H 5 “(£2) is covered by [Grubb 2015a, Theorem 7.1] with s = a, p = 2. Moreover, the kernel N
is in €, () by Theorem 3.5 below. If the kernel were nonzero, there would exist nontrivial null-solutions
ueé,(Q), contradicting the uniqueness for f € L (£2) mentioned above. Thus N'=0. Then the kernel of
the Dirichlet realization P, p in L,(€2) recalled above is likewise 0, and, since it is a selfadjoint operator
with compact resolvent, it must be bijective. So the cokernel in L,(2) is likewise 0. This shows the bijec-
tivity of (2-6) in the case s =2a, p =2. In view of Theorem 3.5 below, this bijectivity carries over to all the
other versions, including (2-6) for general s > a —1/p’, and the mapping (2-11) in C-spaces for s > a— 1.

For (2-12) we use Theorem 3.4 (as recalled in (2-10)), noting that (_?i () = C4Q), that C"f”(S_Z) =
C%(Q) C d(x)*C*() when a # %, and that u € C?*(S) by interior regularity when a # 1, with slightly
weaker statements when a = % The rest of the statements follow similarly by use of (2-10) with u =a
and the various information on the relation between the C;-spaces and standard Hoélder spaces. ]
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Ros-Oton and Serra [2014b] showed, under weaker smoothness hypotheses on €2, the inclusion
u € d*Cc¥() for any « with 0 < o < min{a, 1 — a}, and improved it in [Ros-Oton and Serra 2014a] to
o = a — ¢. They observe that « > a cannot be obtained, so « = a, which we obtain in (2-12), is optimal.

We also have as shown in [Grubb 2015a, Theorem 4.4] that for functions u supported in Q (see the
first inclusion in (2-7)),

rtPaueC®(Q) <= uec,(Q) ={u=etdx)v(x)|veC*)]}. (2-14)

It is worth emphasizing that the functions in €, have a nontrivially singular behavior at ¥ when a ¢ Np;
et C®(Q) and €,(Q) are very different spaces. The appearance of a factor d"*°, where wg is the
factorization index, was observed in C*-situations also in [Eskin 1981, p. 311] and in [Chkadua and
Duduchava 2001, Theorem 2.1].

The solution operator is denoted by R; its form as a composition of pseudodifferential factors was
given in [Grubb 2015a].

There is another point of view on the Dirichlet problem for P, that we shall also discuss. In a number
of papers (see, e.g., [Hoh and Jacob 1996; Felsinger et al. 2014] and their references), the Dirichlet
problem for P, (and other related operators) is formulated as

{PaU —f inQ, 015)

U=¢g on (.

Although the main aim is to determine U on €2, the prescription of the values of U on [ is explained
as necessitated by the nonlocality of P,. As observed explicitly in [Hoh and Jacob 1996], the transmission
property of [Boutet de Monvel 1971] is not satisfied; hence that theory of boundary problems for
pseudodifferential operators is of no help. But now that we have the p-transmission calculus, it is worth
investigating what the methods can give.

The case g = 0 corresponds to the formulation (2-1). But also, in general, (2-15) can be reduced to
(2-1) when the spaces are suitably chosen. For (2-15), let f be given in H *;,_2“ (R) (withs >a —1/p"),
and let g be given in H » (ES_Z); then we search for U in a Sobolev space over R".

Let G = {£g be an extension of g to H,(R"). Then u = U — G must satisfy

{r*Pau =f—-r"P,G inQ, (2-16)

suppu C Q.

Here P,G € H) 2/ (R"), so f —rT P,G € H(RQ).
According to our analysis of (2-1), there is a unique solution u = R(f —r T P,G) € H,‘,’(S)(S_Z) of (2-16).
Then (2-15) has the solution U =u+G € H ; (S)(S_Z) +H ;(IR”). Moreover, there is at most one solution to
(2-15) in this space, for if Uy = u; + G| and U, = up + G, are two solutions, then v =u; —ur+ G| — G,
is supported in €2, hence lies in H,‘,’(s)(S_Z) + H;(S_Z) = H,?(”(s_z) and satisfies (2-1) with f = 0; hence it
must be 0.
This reduction allows a study of higher regularity of the solutions. The treatment in [Felsinger et al.

2014] seems primarily directed towards the regularity involved in variational formulations (p =2, s = a)
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where Vishik and Eskin’s results would be applicable; moreover, [Felsinger et al. 2014] allows a less
smooth boundary.
We have shown:

Theorem 2.3. Lets >a— 1/p’, and let f € ﬁ;‘z"(Q) and g € H;, (ES_Z) be given. Then the problem
(2-15) has the unique solution U =u+ G € Hgm(S_Z) + H;([R?"), where G € H;,([RR”) is an extension of g
and

u=R(f—-r*P,G) e HI®(Q); (2-17)

here, R is the solution operator for (2-1).

Observe in particular that the solution is independent of the choice of an extension operator £ : g — G.
There is an immediate corollary for solutions in Holder spaces (as in [Grubb 2015a, Section 7]):

Corollary 2.4. Let p>n/a. For f € L,(2), g € C2“+O(EQ) N ﬁf,“ (CS_Z), the solution of (2-15) according
to Theorem 2.3 satisfies

Ueetd*C™"P(Q) + C*OR) N HX[R"), (2-18)
if2a—n/p # 1. If 2a — n/ p equals 1, we need to add the space C'9().

Proof. The intersection with H %“ (US_Z) serves as a bound at co. We extend g to a function G € C2+O(R");
then G € C*HO(R™) N Hﬁ“([R{”) (since C'T0 ¢ H! over bounded sets). Theorem 2.3 now gives the
existence of a solution U = u + G, where u € H,‘,Zé)a) (). By [Grubb 2015a, Corollary 5.5] (see (2-9)
above), this is contained in d*C*~"/P(Q) when 2a—n/p # 1 (a—1/p and a—n/ p are already noninteger).

If 2a— p/n =1, then we have to add the space Cl_o(ﬁ), due to the embedding I-'I;r"/p(K_Z) C CI_O(S_Z). [

Results for problems with f € L(2) or Holder spaces were obtained in [Grubb 2015a] by letting
p — o0; here we shall obtain sharper results by applying the general method to the C;-scale. Repeating
the proof of Theorem 2.3 in this scale, we find:

Theorem 2.5. Lets >a—1,and let | € 61_2"(9) and g € Ei (CS_Z) be given. Then the problem (2-15)
has the unique solution U =u+ G € Cﬁf(s)(S_Z) + C(R"), where G € Ci(R") is an extension of g and

u=R(f—rtP,G) e C(Q); (2-19)
here, R is the solution operator for (2-1).

Let us spell this out in more detail for s = 2a and s = 2a + ¢ in terms of ordinary Holder spaces. In
Corollary 2.6(1), we take g to be compactly supported in (€2; in (2) and (3), a very general term supported
away from Q is added (it can in particular lie in C f“” ). Recall from (1-4) that Lo, C C 2 .

Corollary 2.6. (1) For f € Loo(R), g € C24 (CR), the solution of (2-15) according to Theorem 2.5

comp
satisfies

U eetdCYQ)NCH(Q)+C>* (R"), (2-20)

comp

2a
comp*

with C* replaced by C'~° ifa = 1, and the same for C

1
2’
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(2) Let X be any of the function spaces F} ,(R") or By (R"), and denote by Xex the subset of elements
with support disjoint from Q. For f € Loo(RQ), g € Cczgmp (CQ) + Xext, there exists a solution U of (2-15)
satisfying

U eetd C(Q) NC*(Q) + Cosp(R") + Xext, (2-21)
with C?@ replaced by C'~ ifa = %, and the same for Cczgmp.
(3) For f e C'(Q), g € Cczg;i; ([]SZ) + Xext, T > 0, the solution according to (2) satisfies
UeetdC(Q)NC*M(Q) + CIH (R") + Xext, (2-22)

with C*t, C2* and Cczgrj{é replaced by C4'=0 C24+1=0 gnd ngnfé_o, respectively, when the exponents

hit an integer.

Proof. (1) That g € C2¢ (CQ) means that g is in C?¢ over the closed set 0Q and vanishes outside a

comp

large ball; it extends to a function G € C, 2a (R"). Since C2¢ (R") C C2¢_(R™), the construction in

comp comp comp, *
Theorem 2.5 gives a solution U = u 4+ G, where u is as in (2-12).

(2) The function spaces are as described, for example, in [Johnsen 1996], with o € R, 0 < p, g < 00
(p < oo in the F-case), and rdo’s are well-defined in these spaces. We write ¢ = g1 + g2, where
g1 € ngmp (CR) and g5 € Xex.. The problem (2-15) with g replaced by g; has a solution u; + G as in (1).
For the problem (2-15) with f replaced by 0 and g replaced by g, we take G, = g5. Then P,G; is C*®
on a neighborhood of Q (by the pseudolocal property of pseudodifferential operators, see, e.g., [Grubb
2009, p. 177]), so the reduced problem has a solution u, € €,(2), and the given problem then has the
solution u; + g».

The sum of the solutions u; + G| + u» + g» solves (2-15) and lies in the asserted space.

(3) This is shown in a similar way, using (2-13). [l

Remark 2.7. Note that according to this corollary, the effect on the solution over © of an exterior
contribution to g supported at a distance from € is only a term in €, ().

2B. A nonhomogeneous Dirichlet problem. For the nonhomogeneous Dirichlet problem (2-2), the
crucial observation that leads to its solvability is that we can identify €,_ (Q) /%a(S_Z) with C*°(X) by
use of the mapping

Ya—1,0: > T(@)(d @) ™ w)|x = T(a)yo(d'u). (2-23)

(The gamma-function is included for consistency in calculations of Fourier transformations and Taylor
expansions.) Namely, using normal and tangential coordinates x =y’ + y,7(y’) on a tubular neighborhood
Us={y +y.i(y) | y € Z, |y,| < 8} of ¥ (where 71(y’) denotes the interior normal at y’), we have for
v € C®(R) that

v(x) = v(y + yait) = vo(y") + yaw(x) on UsNE,
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where vy € C®(X) is the restriction of v to ¥ (also denoted yyv), and w is C* on Us N . Now, when
u € €,u_1(Q) is written as u = et '(a@) " 'd(x)* v with v € C®(Q) and d(x) taken as y, on Us, then

u(x) =T(@) ' d@)* v (y) + @) dx) wx) onUsNQ, (2-24)

where I'(a)~'d(x)“w is a function in €,(Q). Here, v is determined uniquely from v and hence y,_ 1 ou
is determined uniquely from u, and the null-space of the mapping u + y,_1.ou is €,(Q). See also
Section 5 of [Grubb 2015a]; there it is moreover shown that the mapping

Ya1.0: €4—1() — C>®(X), with null-space €,(R),
extends to a continuous surjective mapping
Ya—1.0" HIS“_I)(S)(S_Z) — B;_“H/”,(E), with null-space HI‘,’(S)(S_Z), fors >a—1/p'. (2-25)
Now since we have the bijectivity of r™ P, in (2-6), we can simply adjoin the mapping (2-25) and

conclude the bijectivity of

+ —_— _— /
(r P“) HODO(@) = H72(Q) x By (). (2-26)
Ya—-1,0
This gives the unique solvability of the problem (2-2) in these spaces. There is an inverse
i -1
(R K) = <r Pa) )
Ya—1,0

where R is the inverse of (2-6) as introduced above and K is a mapping going from X to Q. (Further
details in [Grubb 2015a, Section 6].)
In Cj-spaces, we likewise have an extension of the mapping y,—1,0:

Ya—1.0: CO™DO(Q) — ¢s7*F1 (%), with null-space C*“)(Q), fors >a — 1. (2-27)
Then the result is as follows (as a special case of Theorem 3.2 below), with conclusions in Holder spaces:
Theorem 2.8. Let s > a — 1. The mapping {r* P,, Ya_1.0} defines a bijection
{(rT Py, Ya—1,0}: CO7VO(Q) — CI72(Q) x C574H (D). (2-28)
In particular, for any f € Loo(RQ), ¢ € CTI(X), there exists a unique solution u of (2-2) in
Ciail)(za)(S_Z); it satisfies

{e+d(x)a—lca+l(g_2) + C’v2a(g_2) when a # %, (2-29)
Td)TICH@Q+COQ@) whena=1.

For f € CH(Q), ¢ € CATIH(E), t > 0, the solution satisfies
etd(x)e~1cat+(Q) + C2t1(Q) whena+tand2a+1t ¢ N,
ue etd(x)1CorIH=0Q) + C*H0(Q)  whena+teN, (2-30)
etd(x) et (Q) + 2t —0(Q) when 2a +t € N.
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Proof. The bijectivity holds in view of the bijectivity in Theorem 2.2, and (2-27). The implications
(2-29) and (2-30) follow from (2-10) with u© = a — 1, together with the embedding properties recalled in
Section 1. Note that since a + 1 > 2a, there is no need to mention an intersection with C2¢+9(Q). O

This gives a sharpening of Theorem 7.4 in [Grubb 2015a]. We moreover recall that as shown in [Grubb
2015a, Theorem 7.1], for functions u € H ™" (Q) for some s, p with s > a —1/p/,

feC®Q), peCP(X) <= ucé,1(Q). (2-31)

Also for the nonhomogeneous Dirichlet problem, there exist formulations where the support condition
on u is replaced by a prescription of its value on 0. Abatangelo [2013] considers problems of the type

r*tP,U=f onQ,
U=g on 02, (2-32)
Ya—1,0U =¢ on X.

(The boundary condition in [Abatangelo 2013] takes the form of the third line when €2 is a ball, but is
described in a more general way for other domains.)
For (2-32), let f, g, ¢ be given, with

{f. g 0} € H2(Q) x HS,(CQ) x By *TV/P(2),  withs>a—1/p. (2-33)

Then we search for a solution U in a Sobolev space over R" that allows definition of y,_; oU.

We want to take as G an extension of g to H;([R”). If s > n/p, such that H;,([RR”) c COURY), we
have that y,_10: G — I'(a)yo(d(x)!~¢G) is well-defined and gives 0 for G € H;(IR") (since a < 1).
If s < 1/p, we can take G as the extension by 0 on 2 (since H » (ES_Z) is identified with H > (EQ) when
—1/p <s < l/p). If 1/p <s <n/p, we can also use the extension by 0 and note that the boundary
value from €2 is zero, but G is only in H;/pfo(lR”). Now U; = U — G must satisfy

r*PU =f—rTP,G inQ,
supp U; C 9, (2-34)
Ya—1,0U1 = .

We continue the analysis for s ¢ [1/p, n/p]; when s > 0, this can be achieved by taking p sufficiently large.
Since P,G € H ;_lfc“ (RY, f—rTP,G € H ;,_2“(9). In this way, we have reduced the problem to the
form (2-3), where we have the solution operator (R K ), see (2-26) and the following. This implies that

(2-32) has the solution
U=R(f—r"P,G)+Ko+G e Hi® Q) + H" P (Q) + H}(R"). (2-35)

It is unique, since zero data give a zero solution (as we know from (2-15) in the case ¢ = 0). Recall that
HEOQ) c H 7 "Y(@Q).
This shows the first part of the following theorem:
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Theorem 2.9. (1) Let s > a — 1/p’ (if s > 0 assume moreover that s ¢ [1/p,n/pl), and let f, g, ¢ be
given as in (2-33). Let G € H; (R™) be an extension of g (by zero if s < 1/p).
The problem (2-32) has the unique solution (2-35) in Hy'~"" (@) + H}(R").

2)Lets >a—1,s #0, and let f, g, ¢ be given, with
{f, g, 9} € C572(Q) x C3(CQ) x C: (). (2-36)

Let G € C}(R") be an extension of g (by zero if s < 0).
The problem (2-32) has the unique solution

U=R(f—r"P,G)+Kop+G e CUO VQ)+ C5R). (2-37)

Proof. (1) was shown above, and (2) is shown in an analogous way:

For s > 0, the extension G has boundary value y,_1,0G =I"(a)y (d'~*G) =0 since G is continuous
and 1 —a > 0, and for s < O the boundary value from € is 0, since G is extended by zero (using the
identification of C$(CQ) with C3(CQ) when —1 <5 < 0). We then apply Theorem 2.8 tou =U — G. O

This reduction allows a study of higher regularity of the solutions. The treatment in [Abatangelo 2013]
seems primarily directed towards solutions for not very smooth data. The boundary of 2 is only assumed
C!! there.

Remark 2.10. When s > a +n/p, we note that since H,?(S)(S_Z) Cetd(x)*C%Q) c CORM) (see (2-9)
or [Grubb 2015a, Corollary 5.5]), the solution (2-35) is the sum of a continuous function and a term
Kpe H ,S“‘”(S)(s_z) that stems solely from the boundary value ¢. To further describe K ¢, consider a
localized situation, where €2 is replaced by R” , d(x) is replaced by x,,, and P, is carried over to a similar
operator P (of type and factorization index a). As shown in the proof of [Grubb 2015a, Theorem 6.5],
the solution K¢ (in a parametrix sense) of

rTPu=0in RL, Ya—rou=¢atx,=0,
is of the form K¢ = z + w, where
z2=Ky_ 100 = Elr_“eJrKo(p = e+ca,1x,‘1‘_1K0¢J, w=—RrtPze H“(S)(@’i) C CO(R”);
here K| is the standard Poisson operator sending ¢ € B;_Hl/ b /(IR"_I) into
Kop =F. @EV(E1+i&) ) =F,1 L (@@E)e EP) e B TH(RY)

00 =T, (@ n R’ ) 1,
with y9Kop = ¢ (see also Corollary 5.3 and the proof of Theorem 5.4 in [Grubb 2015a]). Then

z=eTcq1x) ' Kop € et xf T HTOTNRY) Cetxg T OO TR,

with Kop # 0 at {x, = 0} when ¢ # 0. For higher s, the factor Ko lies in higher-order Sobolev and
Holder spaces, but is always nontrivial at {x, = 0} when ¢ # 0.
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When this is carried back to the manifold situation, we have that U is the sum of a term in C(R")
and a term etd(x) v, v e ﬁj,‘““(Q), where v is nonzero at Q2 when ¢ # 0. Since a < 1, this term
blows up at the boundary.

Hence the solutions are “large” at the boundary in this precise sense, consisting of a continuous function
plus a term containing the factor d (x)e! nontrivially. See also (2-31).

It is a theme of [Abatangelo 2013] that there exist “large” solutions of the nonhomogeneous Dirichlet
problem; we here see that this is not an exception but a rule of the setup, provided naturally by the part of
the solution mapping going from X to Q2.

Theorem 2.9(1) gives the following result in Holder spaces when f € L,(2) = H (I))(Q).

Corollary 2.11. Let p > n/a. For f € L,(Q), g € C**°(0Q) N H3*(CQ) and ¢ € Catl/P+0(s), the
solution U of (2-32) according to Theorem 2.8 satisfies

U € etd® ' coH1=1/P(Q) + C2411P(Q) + C2HO(RY) N H]za(Rn)’ (2-38)
with C* /P replaced by C'° if2a —n/p = 1.
Proof. Note that 2a > n/p. We extend g as in Corollary 2.4 to a function G € C?***O(R") N H;“([R”),
and note that ¢ € C“+1/p/+0(2) - BZH/I’,(E). Theorem 2.9(1) shows that there is a (unique) solution
U=u+Kgp+ G with

utKge HI()a—l)(Za)(S_Z) C etd® CoIIP(Q) + G P ()
(one may consult [Grubb 2015a, (7.15)]), with the mentioned modification if 2a —n/p is integer. U
For f € Loo(R) or C!'(R2), we get the sharpest results by applying the statement for C$-spaces:

Corollary 2.12. (1) For f € Loo(R2), g € cx (CQ) and ¢ € C*tI(X), the solution of (2-32) satisfies

comp

Ueetd'c Q)+ C% (RY), (2-39)

comp

12 1-0 :p 1
with CZ% __ replaced by C, ifa=s5.

comp comp
(2) Let X be any of the function spaces Fg’ q (R™) or Bg, q (R™), and denote by Xex; the subset of elements
with support disjoint from Q. For feL(R),gc€ Cczgmp (CQ) + Xext and ¢ € C*tI(), there exists a
solution of (2-32) satisfying

Ueetd'CN(Q) + Copp(R") + Xext. (2-40)
with Cczgmp replaced by Cclgn?p ifa= %
(3) For f e C'(Q), g € Cczgrf{; (CQ) + Xext and ¢ € CHTIH (), the solution according to (2) satisfies

U €etd® ' Q) + C2H (RY) + Xex,

comp

with C*t1* and CZell replaced by C*M1*'=0 and CZ4LH™O, respectively, when the exponents hit an

integer.

Proof. We apply Theorem 2.9(2) in essentially the same way as in Corollary 2.6; details can be omitted. [
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2C. A nonhomogeneous Neumann problem. The Neumann boundary value defined in connection with
(—A)*is
Va—t1u =@+ Dyo(d.(d(0)' ™ w)); (2-41)

it is proportional to the second coefficient in the Taylor expansion of d!~%u in the normal variable at the
boundary (like ypw when w is as in (2-24)).
We here have, by use of Theorem 4.3 below:

Theorem 2.13. The mapping {r* P,, y._1.1} defines a Fredholm operator
{r* Pa. ya11) : HYVO(Q) — H724(Q) x By 7P (D), (2-42)
fors >a+1/p.

Proof. The continuity of the mapping (2-42) follows from [Grubb 2015a, Theorem 5.1] with y =a — 1,
M = 2. The Fredholm property follows from Theorem 4.3 below in a special case (see (3-2)) by piecing
together a parametrix from the parametrix construction in local coordinates given there. We use that the
parametrix exists since P, in local coordinates has principal symbol ||, U

There is a similar version in C;-spaces, with consequences for Holder estimates:

Theorem 2.14. Let s > a. The mapping {r* P,, Y.—1.1} defines a Fredholm operator
(rF Pay Ya1.0) 1 CETVO@) — C2(Q) x (D). (2-43)

In particular, for {f, v} € Loo(2) X C*(X) subject to a certain finite set of linear constraints there
exists a solution u of (2-3) in Ciail)(za)(ﬁ); it is unique modulo a finite dimensional linear subspace
N C€,_1(Q) and satisfies

{e+d(x)“_lC“+1(S_2) +C¥(Q)  whena # 3, (4t
etd(x)3CHQ) +C0Q)  whena=1.
For f € CH(Q), ¥ € C*T(X), t > 0, the solution satisfies
eTd(x)* 1ot (Q) + C2+(Q) whena+t and2a+1t ¢ N,
ue etdx)1cetH=0(Q) + C2+-0(Q)  whena+1t €N, (2-45)

etd(x)*1CotIH(Q) + C2at=0(Q) when 2a +1t € N.

Proof. The first statement is the analogue of Theorem 2.13, now derived from Theorem 4.3, for p = g = oc.
In the next, detailed statements we formulate the Fredholm property explicitly, using also Theorem 3.5
on the smoothness of the kernel. Here the inclusions (2-44) and (2-45) follow from the description (2-10)
of Cia_l)(s)(S_Z) as in the proof of Theorem 2.8. U

Also in the Neumann case, one can formulate versions of the theorems with u prescribed on R" \ €2,
and show their equivalence with the set-up for u supported in Q; we think this is sufficiently exemplified
by the treatment of the Dirichlet condition above that we can leave details to the interested reader.
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3. Boundary problems in general spaces

One of the conclusions in [Grubb 2015a] of the study of the {rdo P of order m € C, with factorization
index and type uo € C, was that it could be linked, by the help of the special order-reducing operators
Ai‘ ) to an operator

Q =AM p AT (3-1)

of order 0 and with factorization index and type 0, which could be treated by the help of the calculus of
Boutet de Monvel on H ;-spaces, as accounted for in [Grubb 1990]. Results for P and its boundary value
problems could then be deduced from those for Q in the case of a homogeneous boundary condition. With a
natural definition of boundary operators y,, x, nonhomogeneous boundary conditions could also be treated.
In particular, we found the structure of parametrices of »+ P, with homogeneous or nonhomogeneous
Dirichlet-type conditions, as compositions of operators belonging to the Boutet de Monvel calculus with
the special order-reducing operators; see Theorems 4.4, 6.1 and 6.5 of [Grubb 2015a].

The results of [Grubb 1990] have been extended to the much more general families of spaces F), ,
(Triebel-Lizorkin spaces) and Bj, , (Besov spaces) by Johnsen [1996]. He shows that elliptic systems on
a compact manifold with a smooth boundary, belonging to the Boutet de Monvel calculus, have Fredholm
solvability also in these more general spaces, with C* kernels and range complements (cokernels) indepen-
dentof s, p, g. Here 0 < p, g < o0 is allowed for the B;,  -spaces, and the same goes for the F),  -spaces,
except that p is taken < oo (to avoid long explanations of exceptional cases). The parameter s is taken > sq,
for a suitable so depending on p and the order and class of the involved operators. We refer to [Johnsen
1996] (or to Triebel’s books) for detailed descriptions of the spaces, recalling just that for 1 < p < oo,

Fy,=B5,=H,, L>-Sobolev spaces,

F,,=H,, Bessel-potential spaces, (3-2)
B, ,=B,, Besov spaces.

Here the Bessel-potential spaces H ; are also called Wls, (or W¥:P) for s € Ny, and the Besov spaces B;, are
also called W, (or W*7) for s € R4 \ N, under the common name Sobolev—Slobodetskii spaces. Recall
moreover that F,, , = Bj, , for 0 < p < oo (also denoted B))).

We return to the general situation of 2 smoothly embedded in a Riemannian manifold €2;, with
@i C R" used in localizations. Hormander’s notation F , F and B , B will be used for the general scales,
in the same way as for H?; see (1-2) and the following.

In the present paper, we shall in particular be interested in the case of the scale of spaces B, ,, = C;
(see the text around (1-3)), which gives a shortcut to sharp results on solvability in Holder spaces.

Since we are mostly interested in results for large p, we shall assume p > 1, which simplifies the
quotations from [Johnsen 1996]; namely, the condition s > max{l/p—1, n/p—n} simplifiestos > 1/p—1,
since 1/p—1>n/p—n when p > 1. (In situations where p < 1 would be needed, e.g., in bootstrap
regularity arguments, one can supply the presentation here with the appropriate results from [Johnsen
1996].) The usual notation 1/p’ =1 —1/p is understood as 0 or 1 when p = 1 or oo, respectively. We
assume p < oo in B-cases, p < oo in F-cases, and take 0 < g < oo.
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The scales F, , and By, , have analogous roles in definitions over Q, but the trace mappings on them
are slightly different: when s > 1/p,

vo: F (@) — B, /P(3Q) and y: B, () — B} /7 (09). (3-3)

continuously and surjectively. (One could also write F, , instead of By, ,; in [Johnsen 1996], both

cases occur.)
To reduce repetitive formulations, we shall introduce the common notation

) . S S
X, q stands for either F g OF B, v s necessary, (3-4)

with the same choice in each place if the notation appears several times in the same calculation. Formulas
involving boundary operators will be given explicitly in the two different cases resulting from (3-3).
In addition to the mapping and Fredholm properties established for Boutet de Monvel systems in
[Johnsen 1996], we need the following generalizations of (1-6) (as in [Grubb 2015a, (1.11)—(1.20)]):
't and AY : (R”) o~ XS Re“([R{”) with inverses Efr”“ and A",
g” , and A’i,+ 2 g (R = XS Re“([R ), with inverses E_" and A_",
() s s—Reu (3_5)
ALY XM(Q) = X3 X9,
AW XS () = X5 Rer(q),
valid for all s € R. The cases with integer u are covered by [Johnsen 1996] as a direct extension of the
presentation in [Grubb 1990]; the cases of more general u likewise extend, since the support-preserving
properties extend.
We can then define (analogously to the definitions and observations in [Grubb 2015a, Sections 1.2, 1.3]):
Definition 3.1. Lets > Repu—1/p’.
(1) A distribution uon R" is in X”(S)([R ) if and only if X u € X, 1/” +O(R” )and rtEu e X3y, Re“(R ).
In fact, T E/Y maps X/, (S)(R" ) bijectively onto XS Re“ ([F\R'i), Wlth inverse E,"e™, and

XEO@L) = B et X5 JHRY), (3-6)

with the inherited norm. Here AI“ can equivalently be used.

(2) A distribution « on ; is in X“( )(Q) if and only if A(“)u € X_l/p 0(Q) and r+A(“)u eX,, Re”(Q).
In fact, r+Ai’f) maps X“( )(Q) bijectively onto Xs Re“(Q), with inverse ASr W eT, and

XU (@) = ATH et X Ko (), (3-7)
with the inherited norm.

The distributions in X/, (q)([R ) and X% (S)(Q) are locally in X, over R} and €, respectively, by
interior regularity.
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By use of the mapping properties of the standard trace operators y; described in [Johnsen 1996], and use
of (3-5) above, the trace operators g, » introduced in [Grubb 2015a, Section 5] extend to the general spaces

O¥re! —Rep—j—1
FK;)(Q)_)HOSj<M stmp e /P(ag)’

_ i (3-8)
By (@) = Toejon Bpg " 77 (09),

QIL,M = {VH«,O! y,u,,la sy V[L,M—l} :

for s > Re u + M — 1/p’; they are surjective with kernels F,(,’,ZJFM)(S)(S_Z) and B;,‘f;M)(S)(S_Z).

We can now formulate some important results from [Grubb 2015a] in these scales of spaces. Recall
that when P is of type w, it is also of type u' for u — u’ € Z.
Theorem 3.2. (1) Let the yrdo P on Q| be of order m € C and of type u € C relative to the boundary of
the smooth compact subset Q C Q. Then when s > Re uw—1/p’, r* P maps X ﬁ,(;;) (Q) continuously into
)_(S—Re m (Q)

p.q
(2) Assume in addition that P is elliptic and has factorization index |1y, where i — g € Z. Let s >
Rewo—1/p’. Ifu € Xg’q(ﬁ)for some o > Reuyg—1/p’ andr™ Pu € )_(‘;,TqRem(Q), thenu € XZ?,}S)(K_Z).
The mapping r* P defines a Fredholm operator

rtP: XEOO(Q) — X3 XM(Q). (3-9)
Moreover, {r* P, y,,-1,0} defines a Fredholm operator

F[()lfq()—l)(S)(S_z) N F;’—qRem(Q) % B;TpRellﬁ“l*l/P(aQ),

et g B (3-10)
BYSO@) > By k(@) x By 09,

{r+Pv VMO*I,O} : {
(3) Let P be as in (2), and let u' = o — M for a positive integer M. Then when s > Re g — 1/p/,
{r* P, 0,v.m} defines a Fredholm operator

’ — = —Reu'—j—1
Fi$ Q) — FiRem(@) x o Byp "™ P(3Q),

B“,(S) Q Bs—Rem () Bs—Re//—j—l/p 90 (3-11)
pq () = B " () X [o<jm Bpg (0€2).

{r+Pv Q,U./,M} : {
Proof. (1) This is the extension of [Grubb 2015a, Theorem 4.2] to the general spaces. We recall that
the proof consist of a reduction of the study of r* P to the consideration of Q. (with Q as in (3-1) for
w = o) of type 0; this works well in the present spaces.

(2)—(3). Here, (3-9) is obtained by a generalization of [Grubb 2015a, Theorem 4.4] and its proof to the
current spaces. Now (3-11) is obtained as in [Grubb 2015a, Theorem 6.1] by adjoining the mapping (3-8)
(with & = ') to r* P. Here (3-10) is the special case M = 1, as in [Grubb 2015a, Corollary 6.2] O

The parametrices R and (R K ) described by formulas in [Grubb 2015a, Theorems 4.4, 6.5] also work
in the present spaces.

Example 3.3. As an example, we have for the choice X = B, p =g =00, i.e., X}, , = B, ., = Cj, that
Theorem 3.2(2) shows the following:

Let P be elliptic of order m and of type o, with factorization index pg, and let s > Re o — 1. If
u € C2(Q) for some o > Re o — 1 and r+ Pu € C37Re™(Q), then u € C“)(Q). The mapping r* P
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defines a Fredholm operator

rt P CloO(Q) —» CIRem(Q). (3-12)
Moreover, {r™ P, Yuo—1,0} defines a Fredholm operator
(rt P, yue_1.0) : CHOTDEN(Q) — CSRem(Q) x ¢ Rematl (). (3-13)

For Re ;u > —1/p’, the spaces X/, (’)(R ) and X ”“(5)(52) are further described by the following general-
ization of [Grubb 2015a, Theorem 5.4]:

Theorem 3.4. One has forReu > —1,s >Reu—1/p’, with M € N:
Lq®) ifs—Repel-1/p',1/pl,
CXS O(R ) ifs—Repu=1/p,

R ifs—RepeM+]1-1/p', 1/pl,
X5 O(R ) ifs—Reu=M+1/p.

XM(S)( +){
(3-14)
XEO(RY) C et xlf X0 N (RY )+{

The inclusions (3-14) also hold in the manifold situation, with R’ replaced by 2 and x, replaced
by d(x).

Proof. The first statement in (3-14) follows since e*Xt ([RE )= ([RR ) for —1/p’ <t < 1/p; see
[Johnsen 1996, (2.51)—(2.52)].

For the second statement we use the representation of u# as in [Grubb 2015a, (5.13)—(5.14)], in the
same way as in the proof of Theorem 5.4 there. The crucial fact is that the Poisson operator Ko maps
Yuol € B, Re” VP (Rr=1y and B, Re“ VP (®Rr=1Y into Fy. Re”(IR{ ) and B, Re’“‘(IR ), respectively
(by [Johnsen 1996]), defining a term

vo=e" K, oyuou=cue x'Koyou €e )C“XA Re“(R ),

with similar descriptions of terms et K, ;y,, ju for j up to M — 1, such that u by subtraction of these
terms gives a term in X (R ) (with s replaced by s — 0 if s —Re . — 1/p hits an integer). ]

Moreover, it is important to observe the following invariance property of kernels and cokernels (typical
in elliptic theory):

Theorem 3.5. For the Fredholm operators considered in Theorem 3.2, the kernel is a finite-dimensional
subspace N of%u(s_l), independent of the choice of s, p, q and F or B.

There is a finite-dimensional range complement M C C®(Q) for (3-9), and M1 C C®(Q) x C®OQM
for (3-10)—(3-11), that is independent of the choice of s, p, q, F, B.

Proof. This follows from the similar statement for operators in the Boutet de Monvel calculus in [Johnsen
1996, Section 5.1] when we apply the mappings A(“ ) etc., in the reduction of the homogeneous Dirichlet
problem to a problem in the Boutet de Monvel calculus. U
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4. More general boundary conditions
In Theorem 3.2, we obtain the Fredholm solvability of Dirichlet-type problems defined by operators

F[gﬂq 1)(‘)(9) - Fs Rem(Q) X BS Rel'H‘l/P (aQ)’

(4-1)
B[()l’/« 1)(5)(9)_) Bs Rem(Q) B RBM'H/P 0Q),

{r+Pa V,LL—I,O} : {
fors > Reu—1/p’, where P is elliptic of order m, is of type u, and has factorization index w (called g
there). In Theorem 6.5 of [Grubb 2015a] we constructed a parametrix in local coordinates, which in the
Besov-Triebel-Lizorkin scales maps as

Fs— Rem(R )XBS Re u+1/p’ (R~ l)_) F(lt 1)(S)(R ),

(4-2)
Bv Rem(R ) x B~ RCM‘H/P (R~ 1)_> B;I:Lq 1)(S)(R+),

(ko 0): {1

where Rp = Afr”eJré:A’f,_ and Kp = \.4+ “HMeTK' or A1 "eTK". Here Q is a parametrix of Q.
(where Q is recalled in (3-1)), and K’ and K" are Poisson operators in the Boutet de Monvel calculus of
order 0.

4A. Boundary operators of type yoB. We shall now describe a general way to let other boundary
operators enter in lieu of y,,_1,0. The point is to reduce the problem to a problem in the Boutet de Monvel
calculus (with ¥do’s of type 0 and integer order). We can assume that the family of auxiliary operators
A'? is chosen such that (A?)~1 = AL?.

Theorem 4.1. Let P be elliptic of order m € C on 21, having type u and factorization index u with
respect to the smooth compact subset Q. Let B be a rdo of order mq + i and of type ., with mg integer:
Consider the mapping

F(M—l)(Y)(Q)% Fs Rem(Q) 5 mo Re u+1/p’ 0Q),

(P yor "B} BYV @) — B Rem(@) x By (0, (4-3)
for s > Re u +max{mg, 0} —1/p’.
(1) Foru € X;,’fq_l)(s)([l% ), the problem
rtPu= fon Q, yor"Bu=1von 3%, 4-4)
can be reduced to an equivalent problem
Plw=gon Q, yB w=1ondQ, (4-5)
where w = r+A5f_1)u € )_(;,,_}WH(Q), g= A(“ m)f € XS ReM(Q), and where
P =AY pAlTW B =BA!TY, (4-6)

are Wrdo’s of order 1 and mg + 1, respectively, and type 0.
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(2) The problem (4-4) is Fredholm solvable for s > Re . + max{mg, 0} — 1/ p’ if and only if the problem
(4-5) is Fredholm solvable, as a mapping
Firl@) — F (@) x Byt (09,

{PLvoBY )2y
B — B (@) x ’"’O“/P(asz),

(4-7)

for t > max{mg, 0} —1/p’.

(3) The operator in (4-7) belongs to the Boutet de Monvel calculus; therefore Fredholm solvability holds if
and only if (in addition to the invertibility of the interior symbol) the boundary symbol operator is bijective
at each (x', &") € T*(0Q) \ 0. This can also be formulated as the unique solvability of the model problem
for (4-4) at each x' € 3R, §&' £ 0.

(4) In the transition between (4-4) and (4-5), (R;9 K 1’9) is a parametrix for (4-5) if and only if
(Rp Kp)= (Aﬁ*me;;A(jf;’”) Aﬁf‘”ﬁl{%) (4-8)
is a parametrix for (4-4).

Proof. The mapping (4-3) is well-defined, since r ¥ B : X;,’fq*l)(s) Q) — )_(ZTL;"WRW(Q) by Theorem 3.2(1),
and yy acts as in (3-3).

(1) Let us go through the transition between (4-4) and (4-5), as already laid out in the formulation of the

theorem.
We have from Definition 3.1 that u € X(“‘”“)(s‘z) if and only if w = r*AY Vu e X5 5" (Q);
here u = A(1 Wotw. Moreover, since A(Q) (Q) = Xt ReQ(Q) forall pand ¢, f € X‘ Re’"(Q)

if and only if g = A(“ ) feX,, X Re“ (2). Hence the first equation in (4-4) carries over to

AT PAN ety =g
Here A(,’fjrm)rJrPAg_”)eer can be simplified to r+A(,”_m)PA$_”)e+w = P w, as accounted for in
the proof of Theorem 4.4 in [Grubb 2015a] in a similar situation. The boundary condition in (4-4) carries
over to that in (4-5) since B/, w = r+BA$_”)e+w =r'Bu.

The order and type of the operators is clear from the definitions.

(2) Since the transition takes place by use of bijections, the Fredholm property carries over between the
two situations.

(3) The model problem is the problem defined from the principal symbols of the involved operators at
a boundary point x’, in a local coordinate system where 2 is replaced by R’, and the operator is applied
only in the x,-direction for fixed &’ # 0. The hereby-defined operator on R, is called the boundary
symbol operator in the Boutet de Monvel calculus. The first statement in (3) is just a reference to facts
from the Boutet de Monvel calculus. The second statement follows immediately when the transition is
applied on the principal symbol level.
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(4) Finally, when w = Ry ¢ + K, we have

u=A"etw = APt (Rpg + Kpy) = AL e RyAYT" f+ AMet Ky,
showing the last statement. (]

The search for a parametrix here requires the analysis of model problems in Sobolev-type spaces
over R;. It can be an advantage to reduce this question to the boundary, where it suffices to investigate
the ellipticity of a ¥rdo (i.e., invertibility of its principal symbol), as in classical treatments of differential
and pseudodifferential problems.

Theorem 4.2. Consider the problem (4-3)—(4-4) in Theorem 4.1, and its transformed version (4-5).
(1) The nonhomogeneous Dirichlet system for P', {P._, vy}, is elliptic, and has a parametrix for s > 1/ p:

ms—1 s—=1/p o
(Rpy Kp): | Tra DX B (0= 1 (52),

| B (@ x By (0 — B, ().

(4-9)

(2) Define
St = yoB, K}, (4-10)

a ydo on 32 of order m. Then (4-3) defines a Fredholm operator if and only if S is elliptic. When this
is so, if 3'2 denotes a parametrix, then {r™ P, yor ™ B} has the parametrix (R g K B), where

1— i1 — 1— ~
Rp =AU = KpSynB )R AT, Kp=AY""K)S,. 4-11)

Proof. We begin by discussing the solvability of the type 0 problem (4-5) with B’ = I. Set Q| =
AP PATTM AT it is very similar to the operator Q = A% PAT™ used in [Grubb 2015a,
Theorems 4.2 and 4.4] being of order 0, type 0 and having factorization index 0. Then we can write

1 1 1 1
P =0AY, PL=rt0AVet =rtQietrtAlet = 01 1A, (4-12)

where we used that r_ASrl)eJr is 0 on )_(‘;,’q (2) for s > 1/p.
The operator ASFI) defines an elliptic (bijective) system for s > 1/p,

FS () = F1(Q) x B),"(0%),

B (Q)=> BS1(Q) x BS/7(3Q) 1)
P.q P.q X Dpg .

1
(AL v {
This is shown in [Grubb 1990, Theorem 5.1] for ¢ = 2 in the F-case, and extends to the Besov—Triebel—
Lizorkin spaces by the results of [Johnsen 1996]. Composition with the operator QO 4 preserves this
ellipticity, so { P/, yo} forms an elliptic system with regards to the mapping property

F3, () = F5 () x By, "7 (39),

_ _ (4-14)
_ s—1/
B} () — B3 () x B, 4" (09),

{PL,vo}: {
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for s > 1/p. Hence there is a parametrix
(R Kp)

of this Dirichlet problem, continuous in the opposite direction of (4-14). This shows (1).

Next, we can discuss the general problem (4-5) by the help of this special problem; such a discussion
is standard within the Boutet de Monvel calculus. Define S 39 by (4-10), it is a ¥rdo on 92 of order mg by
the rules of calculus. If it is elliptic, it has a parametrix, which we denote E}g

On the principal symbol level, the discussion takes place for exact operators; here we denote principal
symbols of the involved operators P’, B’, K}, etc., by p’, b’, ki, etc. To solve the model problem (at a
point (x’, &) with &’ # 0), with g € L,(R,), ¥ € C,

PG & Dy)w(xy) = g(xy) on Ry, yob (x', &', Dy)w(xy) = at x, =0, (4-15)
let z = w — rp,g; then z should satisfy
plz=0, wbl z=v—yb rpg=¢. (4-16)
Assuming that z satisfies the first equation, set
Y0z = ¢; then z =kph,

as the solution of the semihomogeneous Dirichlet problem for p’, . To adapt z to the second part of (4.16),
we require that ypb/, z = ¢; here

yob',z = yob kg = s,
when we define s by (4-10) on the principal symbol level; it is just a complex number depending on
(x’, &"). The equation
S =1 (4-17)
is uniquely solvable precisely when s7 7 0. In that case, (4-17) is solved uniquely by ¢ = (s%)‘1 Z.

With this choice of ¢, z =k}, ¢ is the unique solution of (4-16), and w = r},g + z is the unique solution
of (4-15). The formula in complete detail is

w=rpg+kp(sp) ¢ = —kp(sp)~ b\ )rpg +kp(sp) v (4-18)
Expressed for the full operators, this shows that the problem (4-5) is elliptic precisely when the yrdo
S’ is so.

For the full operators, a similar construction can be carried out in a parametrix sense, but it is perhaps
simpler to test directly by compositions that the operator

(Ry Kp)= (I = KpSymBLOR, KpSh), (4-19)
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defined in analogy with (4-18), is a parametrix for {P/, yoB/ }: since R, P, + Kpyo = I +% and
SivoB,. Kp =S, Sy = I + 9, with operators % and & of order —oo, we have

P/
(Ry Kp) (y B,) (I—-K, SgyoB )Rp P+ K] SByoB’

= (I —K)SpnB) (1 +R— Kpyo) + K}y SpoB,
=1—KpSyyoB,. — Kpyo+ KpSyvoB Kpyo + K SpyoBl, + R
=1 +R, (4-20)

with operators R, and R, of order —oo. The composition in the opposite order is similarly checked.
All this takes place in the Boutet de Monvel calculus. For our original problem we now find the
parametrix as in (4-11), by the transition described in Theorem 4.1. U

The order assumption on B was made for the sake of arriving at operators to which the Boutet de
Monvel calculus applies. We think that mq could be allowed to be noninteger, with some more effort,
drawing on results from [Grubb and Hérmander 1990].

The treatment can be extended to problems with vector-valued boundary conditions yr* B, where we
also involve g, » for M > 1; see (3-8).

4B. The Neumann boundary operator y,,_1,1. For ease of comparison to [Grubb 2015a], we denote
the u used above by g here.

The boundary conditions with B of noninteger order mg + 1o are generally nonlocal, since B is so.
But there do exist local boundary conditions too. For example, the Dirichlet-type operator y,,,—1,0 is local;
see (2-23). So are the systems (see (3-8)) 0uo—m,m = {Vig—M,05 - - - » Vuo—m,m—1}, Which also define
Fredholm operators together with r* P; see Theorem 3.2(3). Note that {r* P, 0,,,—m.m} Operates on a
larger space X(“" M)(s)(Q) than X(“O 1)(S)(Q) when M > 1.

What we shall show now is that one can impose a higher-order local boundary condition defined on
X ;,“ 2_1)(” (RQ) itself, leading to a meaningful boundary value problem with Fredholm solvability under a
reasonable ellipticity condition.

Here we treat the Neumann-type condition y,,,—1,1u = V¥, recalling from [Grubb 2015a, (5.3)ff.] that

Vuo—1.1 =T (1o + 1)yo(3n (d(x) ™ 0u)). (4-21)
By application of (3-8) with M =2, u = g —1,

FISI’IL(]()*I)(S)(Q) 5 Re/‘«O 1/P(aQ)

_ (4-22)
By 1)(S)(Q)—>B;,qRe“° <),

Yuo—1,1 = Yu,M~1:
is well-defined for s > Reu+M —1/p' =Re uo+ 1/p.
The discussion of ellipticity takes place in local coordinates, so let us now assume that we are in a
localized situation where P is given on R", globally estimated, elliptic of order m and of type 1o and
with factorization index i relative to the subset R” , as in [Grubb 2015a, Theorem 6.5].
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For R}, we can express y,,-1,1 in terms of auxiliary operators by

Vio— 110 = Y00, BX " u — (o — DID 1y EX ' u; (4-23)

see the calculations after Corollary 5.3 in [Grubb 2015a]. (In the manifold situation there is a certain
freedom in choosing d(x) and 9,, so we are tacitly assuming that a choice has been made that carries
over to d(x) = x,, 9, = d/dx, in the localization.)

There is an obstacle to applying the results of Section 4A to this, namely, that Eio_l is not truly a
ydo! This is a difficult fact that has been observed throughout the development of the theory. However,
in connection with boundary conditions, operators like Ei work to some extent like the truly pseudodif-
ferential operators Ai. It is for this reason that we gave two versions of the operator K p in (4-2) and the

following, stemming from [Grubb 2015a, Theorem 6.5], in which Lemma 6.6 there was used.

Theorem 4.3. Let P be given on R", globally estimated, elliptic of order m and of type o and with
factorization index g relative to the subset R"_, and let (R p K D) be a parametrix of the nonhomogeneous

Dirichlet problem, as recalled in (4-2) and the following, with Kp = Elr_“"e*K " for a certain Poisson
operator K' of order 0.

Consider the Neumann-type problem

r*Pu=f, Yu-11u=1, (4-24)
where (mo—1)(s) smpn -s—Rem (pn s—Rewo—1/p jmpn—1
(P Yug-1.1) F’Z;ii-n<s> i ijﬁz o Bff{%euofl/p(R 71)’ (4-25)
By VO ®1) — B Rem®1) x By, (R,
fors > uo+1/p.
(1) The operator
SN = Yuo—1.1Kp (4-26)

equals (Y90, — (1o — D[D'1y0)K' and is a ydo on R"~! of order 1.
(2) If Sy is elliptic, then, with a parametrix of Sy denoted Sy, there is the parametrix for {r* P, y,,-1.1}
(Rv Kn)= (U = KpSyyu-1.0Rp KpS). (4-27)

(3) Ellipticity holds in particular when the principal symbol of P equals c¢(x)|&|**, with Re pg > 0,
c(x) #0.
Proof. (1) By the formulas for y,,—1,1 and Kp,
SN = Yiuo-1,1K D = (00 — (1o — DID ) B ™ 857K = (109, — (o — DID Ty K,
and it follows from the rules of the Boutet de Monvel calculus that this is a ¥7do on R"~! of order 1.

(2) In the elliptic case, one checks that (4-27) is a parametrix by calculations as in Theorem 4.2.

(3) In this case, the model problem for {r* P, Yuo—1,1} can be reduced to that for {rt(1 — A)ro, Yieo—1,1}-
For the latter, we have shown unique solvability in Theorem A.2 and Remark A.3 in the appendix. [
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Remark 4.4. The operator Sy is in fact the Dirichlet-to-Neumann operator for P, sending the Dirichlet
data over into the Neumann data for solutions of »* Pu = 0 in an approximate sense (modulo operators
of order —o0). From the calculations in the Appendix we see that its principal symbol equals —pg|&’]
when P is principally equal to (—A)*°, with Re pg > 0.

4C. Systems, further perspectives. The factorization property used above will not in general hold for
systems (N x N-matrices) in a convenient way with smooth dependence on &', even if every element of
the matrix has a factorization. But with the p-transmission property we can establish an extremely useful
connection to systems in the Boutet de Monvel calculus:

Proposition 4.5. Let N be an integer > 1, and let P be an N x N-system, P = (Pji) j k=1,...N, of classical
Ydo’s Pji of order m € C on Q1 and of type u € C relative to Q2. Let o € 4 + Z. Then the operator

Q=AM pATH (4-28)
is of order and type 0, and hence belongs to the Boutet de Monvel calculus.

Proof. The factors AT and AS__” 9 should be understood as diagonal matrices with AYO™™ and
AS:“ 0, respectively, in the diagonal. When they are composed with P, they act on each entry by defining
an operator of order and type 0 by the symbol composition rules. ([

This will allow for a general application of the Boutet de Monvel theory in the discussion of boundary
value problems. Leaving the most general case for future works, we shall in the present paper just draw
conclusions for systems where the operator (4-28) defines a system Q. that is in itself elliptic. Let us
give a name to such cases, where the present considerations will apply without further efforts:

Definition 4.6. Let N be an integer > 1, and let P be an elliptic N x N-system, P = (Pjt)k=1,...nN» Of
classical yrdo’s Pj; of order m € C on 1 and of type u € C relative to Q2. Let uo € u+Z. Then P is
said to be wo-reducible when the operator Q, defined in (4-28) of order and type 0, has the property that
Q4 is elliptic in the Boutet de Monvel calculus (without auxiliary boundary operators).

The condition in the definition means that in local coordinates at the boundary, the model operator
qo(x’, 0, &', D)+ is bijective in LQ(R+)N . It holds for N =1 for the operators with factorization index
o, as accounted for in the proof of [Grubb 2015a, Theorem 4.4]. Another important case is where the
operator P (a scalar or a system) is strongly elliptic, as observed in [Eskin 1981, Example 17.1].

Lemma 4.7. Let N > 1, and let P be of order m € Ry on Q2| and of type 1o = m /2 relative to Q. If P is
strongly elliptic, i.e., satisfies in local coordinates (with ¢ > 0),

Re(po(x, £)v,v) > c[&|"|v]* forall £ e R", v e CV,
then P is wo-reducible.

Proof. Here Q equals AT PASr_m/ ) This is strongly elliptic of order 0, because the principal symbols
of AT and Ai_m/ 2 are conjugates and homogeneous elliptic of order —m /2:

Re(qo(x. £)v, v) = Re(po(x, )2}y > ©)v, 175 E)) = cle" 21" 2 @)v* = o],
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forall £ e R*, v e CV, in local coordinates. Thus for each x’ € 9%, & # 0, the model operator
qo(x’,0,&’, D,) on R satisfies

Re(qou, u) = Cllull g foru e Ly®)"Y,

as seen by Fourier transformation in &,. In particular, the restriction of r*gq to C8°(R+)N satisfies
the above inequality, and the inequality extends to its closure, r Tgoe™, defined on L,(R,)Y, which is
therefore injective. Similar considerations hold for the adjoint, so indeed, go(x’, 0, &', D, is bijective
in Ly(R,)V. O

Theorem 4.8. Let P be an elliptic N x N system, P = (Pji)j k=1
m € Con Q) and of type 1o € C relative to .
Define Q by (4-28) and assume that P is jo-reducible. Then we have:

N, of classical yrdo’s Pj of order

.....

(1) Lets >Reug—1/p'. Ifu € X;,q(Q)Nfor some o > Rewg—1/p andr* Pu € )_(‘;,quem(Q)N, then
ue ng)f)(f_Z)N. The mapping

rtp- Xg’oq(s)(ﬁ)N N )_(;TqRem(Q)N (4-29)
is Fredholm, and has the parametrix
R=AT"et 0y AT X5 Rem@)N o xmo0 (@)V, (4-30)

where Q4 is a parametrix of Q. It has the structure §+ + G with G a singular Green operator of order
and class 0.

(2) In particular, if r* Pu € C®(Q)N, then u € %MO(S_Z)N, and the mapping
TP €, Q)N - c2 @Y (4-31)
is Fredholm.

(3) Moreover, let ;. = juo — M for a positive integer M. Then when s > Re uo—1/p’, {r* P, 0. m} defines
a Fredholm operator

M(S)(Q)N Fs Rem(Q)NXHO<j<M B‘ Rey, Jj— 1/P(89)N’

{r*P,oum}: B“(s)(Q)N Bs Rem(Q)N % Tloc s - B Rep, =P ()N (4-32)
Proof. The proof goes as in [Grubb 2015a, Theorems 4.4 and 6.1]:
(1) We replace the equation
rtPu=feX X", (4-33)

by composition on the left with A(_’“fﬂ__m), by the equivalent problem

ATt Pu=g,  where g=AM" f e X5 Remo()V, (4-34)
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using the homeomorphism properties of A(_‘f(jr_m), applied to vectors. Here f = A(_”:” 0 g. Moreover
(see Remark 1.1 in [Grubb 2015a]),

A(fffm)rJrPu — AT py
Next, we set v = r+ASf°)u; then u = Aﬂr_“‘))eﬂ), and equation (4-33) becomes
Qiv=g, withg givenin )_(j;qRe Ho(Q), (4-35)

where Q is defined by (4-28).

The properties of P imply that Q is elliptic of order 0 and type 0, and hence belongs to the Boutet
de Monvel calculus. The rest of the argument takes place within that calculus. By our assumption,
Q. =rtQe" defines an elliptic boundary problem (without auxiliary trace or Poisson operators) there,
and Q. is continuous in X', X' ¢(§2) fort > —1/ p’. By the ellipticity, Q. has a parametrlx Q+, continuous
in the opposite direction, and with the mentioned structure. Since v € X 1/ P +0(S2) by hypothesis,
solutions of Qv =g with g € Xp,q(Q) for some t > —1/p’ are in Xp’q (). Moreover,

0, : }_(tp’q(ﬂ) — )_(;,q(Q) is Fredholm for all t > —1/p.

When carried back to the original functions, this shows (1).
(2) This follows by letting s — 00, using that (), X4 ()N =¢,(Q)".

(3) We use that the mapping o, » in (3-8) extends immediately to vector-valued functions

FM(S)(Q)N_)]_[0<]<M BY Reu j— 1/P(aQ)N’

(4-36)
Bl;,(S)(Q)N_)l_[O<‘/<MBY Reu ] l/p(aQ)N’

Ou.M -
when s > Re 1o — 1/p/, surjective with null-space X% O(s)(Q)N (recall u = wo — M). When we adjoin
this mapping to (4-29), we obtain (4-32). ]

One of the things we obtain here is that results from [Eskin 1981] (extended to L, in [Shargorodsky
1994; Chkadua and Duduchava 2001]), on solvability for s in an interval of length 1 around Re pg, are
lifted to regularity and Fredholm properties for all larger s, with exact information on the domain, also in
general scales of function spaces. Moreover, our theorem is obtained via a systematic variable-coefficient
calculus, whereas the results in [Eskin 1981] are derived from constant-coefficient considerations by
ad hoc perturbation methods in L,-Sobolev spaces.

Also the results on other boundary conditions in the present paper extend to suitable systems. One
can moreover extend the results to operators in vector bundles (since they can be locally expressed by
matrices of operators).

The Boutet de Monvel theory is not an easy theory (as the elaborate presentations [Boutet de Monvel
1971; Rempel and Schulze 1982; Grubb 1984; 1990; 1996; 2009; Schrohe 2001] in the literature show),
but one could have feared that a theory for the more general p-transmission operators and their boundary
problems would be a step up in difficulty. Fortunately, as we have seen, many of the issues can be dealt
with by reductions using the special operators A(i“ ) to cases where the type O theory applies.
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There is currently also an interest in problems with less smooth symbols. For this connection, we
mention that there do exist pseudodifferential theories for such problems, also with boundary conditions;
see [Abels 2005; Grubb 2014] and their references. One finds that a lack of smoothness in the x-variable
narrows down the interval of parameters s where one has good solvability properties, and compositions
are delicate. It is also possible to work under limitations on the number of standard estimates in &.

Appendix: Calculations in an explicit example

Pseudodifferential methods are a refinement of the application of the Fourier transform, making it useful
even for variable-coefficient partial differential operators, and, for example, allowing generalizations to
operators of noninteger order. But to explain some basic mechanisms, it may be useful to consider a
simple “constant-coefficient” case, where explicit elementary calculations can be made, not requiring
intricate composition rules. This is the case for (1 — A)“ (a > 0) on R" , where everything can be worked
out by hand in exact detail (in the spirit of the elementary [Grubb 2009, Chapter 9]). We here restrict the
attention to H,-spaces.
The symbol of (1 — A)? factors as

(ENV+ED = ((E) —i&) ((E) +i&)" (A-1)

Now we shall use the definitions of simple order-reducing operators &/, and Poisson operators K ;
from [Grubb 2015a], with (£') instead of [£'], because they fit particularly well with the factors in (A-1).
We shall often abbreviate (§') to o.

The homogeneous Dirichlet problem

rT(1—A)u=f, with f givenin H > (R), (A-2)

s>a— 1/ p’, has a unique solution u in H a=l1/p +0([R{ ) determined as follows:

With & = OP(( (§) +i&,)"), we have that (1 — A)* = E“ B4 on R". Let v = r"8%u; it is in

H_l/p +0([RE )= l/p +0([R ), and u = E; e v. Then (A-2) becomes
rtE%etv=f. (A-3)
Here r*E% et = B9 4 1s known to map H! »(R%}) homeomorphically onto H', H' - “(RY) for all t € R, with
inverse E_7, (see, e.g., [Grubb 2015a, Sectlon 1].) In particular, with f glven in HS 2“([Ri ), (A-3) has
the unique solution v = E"%, f € H 5 4(R). Then (A-2) has the unique solution
u=E;""8I" f=Rpf, (A-4)

and it belongs to H ”(S)([R{ ) by the definition of that space. Thus the solution operator for (A-2) is
Rp=E] deTEZ “ . (This is a simple variant of the proof of [Grubb 2015a, Theorem 4.4].)

Next, we go to the larger space HI(,” 1)(‘)([R’i), still assuming s > a — 1/p’, where we study the
nonhomogeneous Dirichlet problem. By [Grubb 2015a, Theorem 5.1] with u =a —1 and M =1, we
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have a mapping y,_1.0, acting as

Va—1.0 > T(@)yo(x)~u),

also equal to ¥ Ei_lu, and sending H,(,a_l)(s)(@’i) onto B;—a+1—1/p (R"~1) with kernel H;,‘(‘Y)(@’i). To-
gether with (1 — A), it therefore defines a homeomorphism for s > a —1/p/,

(r (=AY yamr0} : HyTVORY) — H72(RY) x By VP @, (A-5)

It represents the problem
P —=A)Yu=f Yiero0u=g, (A-6)

which we regard as the nonhomogeneous Dirichlet problem for (1 — A)“. The solution operator in the
case ¢ = 0 is clearly Rp defined above, since the kernel of y,_1 0 is H ; (S)(@i)-

Also, the solution operator for the problem (A-6) with f = 0 can be found explicitly:

On the boundary symbol level we consider the problem (recall o = (§'))

(0 — 00 + 9, u(x,) =0 on R,. (A-7)
Since OP,((o — i&,)*) preserves support in R_ for all 11, ¥ must equivalently satisfy
(0 +0,)%u(x,) =0 on R,. (A-8)
This has the distribution solution
u(x)) =F; ', (0 +i&) “=T(a) 'xi etrie o (A-9)

(see, e.g., [Hormander 1983, Example 7.1.17] or [Grubb 2015a, (2.5)]), and the derivatives B,Ifu are
likewise solutions, since

(0 +i6)" (16 (0 +i€) ™ = (16" = Fyyme, ),
where Sék) is supported in {0}. The undifferentiated function matches our problem. Set
ko100, &) =T(@) 't et rte ™ =F. 1 (0 +i&)7 (A-10)
then, since ya,l,olza,l’o =1, the mapping Co ¢+ ¢- r+12a,1,0 solves the problem
(0 +0) u(x,) =00n Ry,  ya—1,0u=0. (A-11)
Using the Fourier transform in & also, we find that (A-6) with f = 0 has the solution
() = Ko-1,00 = Fp L, o (ka=1,000n, §)9(E)). (A-12)

It can be denoted OPK(lzu_l,o)go, by a generalization of the notation from the Boutet de Monvel calculus.
We moreover define k,_1 ¢(§) = %ﬁgnéa_l,o(xn, &)= (o +i&)™% lza_l,g and k,_1,o are the symbol-
kernel and symbol of K,_1 o, respectively.
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Note that

ka—1,0E' &) = (') +i&) ™" = (") +i&)" (') +i&) ™", hence
Kq- 10—u+ “Ko, (A-13)

where Ko = OPK(((E/) + ién)_l) is the Poisson operator for the Dirichlet problem for 1 — A
Kop =F; L (") +i&) "9

(see, e.g., [Grubb 2009, Chapter 9]). Ky is usually considered as mapping into a space over R’ , and it is
well-known that K : l 1/p R - H! ([RR ) for all ¢ € R. However, the above formula shows that it
in fact maps into dlStI‘lbuthl’lS on R" supported in R, so we can, with a slight abuse of notation, identify
Ko with e* Ko, mapping into e™ H' (R), and conclude that

Kooyo: By V@l > HIDOM®Y)  forall s € R. (A-14)
‘We have shown:

Theorem A.1. Let a > 0. The nonhomogeneous Dirichlet problem (A-6) for (1 — A)® on R’ is uniquely
solvable, in that the operator (A-5) for s > a — 1/ p’ has inverse

1=\
<r( )) — (Rp Ka-10). (A-15)

Ya—1,0

where Rp and K,_1 o are defined in (A-4) and (A-12).
Third, we consider the boundary problem
A =MN'u=f vorau=1y, (A-16)

which we shall view as a nonhomogeneous Neumann problem for (1 — A)*. We here assume s >
(a—1)+2—1/p’=a+1/p, to use the construction in [Grubb 2015a, Theorem 5.1] with u =a — 1,
M =?2. Recall from [Grubb 2015a, (5.3)ff.], that y,_1 1 acts as

Va—1,1 21> T(a+ Dy (3,06, “u)). (A-17)
Moreover, we can infer from the text after Corollary 5.3 in [Grubb 2015a] (with [£'] replaced by (£')) that
Va—1,11 = Y03, B4 ' — (a — 1) (D') yu—1,0u

for u € H(a 1)(S)([RR ) with s > a + 1/p. Then, for a null solution z written in the form z = K,_1 0 =
B Ko (recall (A-13)), we have, since y9, Ko = —(D’),

Va-1,12 =10 Y 'z — (a— 1) (D) yau1,02 = 109 Kop — (a — 1){D)p = —a (D')g.

Hence in order for z to solve (A-16) with f =0, ¢ must satisfy

¥ =—a(D)y.
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Since a # 0, the coefficient —a(D’) is an elliptic invertible 1do, so (A-16) with f =0 is uniquely solvable
with solution

2 =Ky, where Ky = —K,_j0a (D) ' = -E"Koa (D). (A-18)
To solve (A-16) with a given f #0, and ¢ =0, we let v = Rp f and reduce to the problem for z = u —v:
rP(1=A) " u—v)=0, yo11(u—v)==ys11Rpf.
This has the unique solution
u—v=—Kyy,—11Rpf; andhenceu=Rpf —Kyya_1,1Rpf.
Altogether, we find:
Theorem A.2. The Neumann problem (A-16) for (1—A)* on RY_is uniquely solvable, in that the operator
(rr (=2 yara} t HYmVO®RY) — H7ARY) > By VPRYY, (A-19)
for s > a+1/p is a homeomorphism, with inverse
(Rv Kn)= (I — KnYa—1,)RD Kv), (A-20)
with Rp and Ky described in (A-4) and (A-18).

Note that there is here a Dirichlet-to-Neumann operator Ppy sending the Dirichlet-type data over into
Neumann-type data for solutions of r*(1 — A)*u = 0:

Ppy = —a(D'). (A-21)

Remark A.3. We have here assumed a real in order to relate to the fractional powers of the Laplacian,
but all the above goes through in the same way if a is replaced by a complex u with Re i > 0; then in
Sobolev exponents and inequalities for s, a should be replaced by Re .

One can also let higher order boundary operators y,_; ; enter in a similar way, defining single
boundary conditions.
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ON THE UNCONDITIONAL UNIQUENESS OF SOLUTIONS
TO THE INFINITE RADIAL CHERN-SIMONS-SCHRODINGER HIERARCHY

XUWEN CHEN AND PAUL SMITH

In this article, we establish the unconditional uniqueness of solutions to an infinite radial Chern—Simons—
Schrodinger (IRCSS) hierarchy in two spatial dimensions. The IRCSS hierarchy is a system of infinitely
many coupled PDEs that describes the limiting Chern—Simons—Schrodinger dynamics of infinitely many
interacting anyons. The anyons are two-dimensional objects that interact through a self-generated field.
Due to the interactions with the self-generated field, the IRCSS hierarchy is a system of nonlinear PDEs,
which distinguishes it from the linear infinite hierarchies studied previously. Factorized solutions of
the IRCSS hierarchy are determined by solutions of the Chern—Simons—Schrédinger system. Our result
therefore implies the unconditional uniqueness of solutions to the radial Chern—Simons—Schrédinger
system as well.
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1. Introduction
1A. The Chern-Simons—Schrodinger system. The Chern—Simons—Schrodinger system is given by

Dip=iY;_, DiDep+iglol?o,
;A1 —01A0 = —Im(¢ D2¢p),

- ey
0:Ar — 02A0 =Im(¢D1¢),
Ay — hA =—3l¢)%
where the associated covariant differentiation operators are defined in terms of the potential A by
Dy =0y +iAy, a€f{0,1,2}, (2)
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and where we adopt the convention that dp := 9, and D, := Dgy. The wavefunction ¢ is complex-valued,
the potential A a real-valued 1-form, and the pair (A, ¢) is defined on I x R? for some time interval /.
The Lagrangian action for this system is

LA @)=+ / (1@ D)+ 1D — Elg1*| dx dr + ! / ANdA, 3)

2 Jre+ 2 2 Jre+

where here |D,¢|? := |D;¢|* + | D2¢|>. Although the potential A appears explicitly in the Lagrangian,
it is easy to see that locally L(A, ¢) only depends upon the field F = d A. Precisely, the Lagrangian is
invariant with respect to the gauge transformations

pr>e 99, A A+db 4)

for compactly supported real-valued functions 6(¢, x). The Chern—Simons—Schrddinger system (1),
obtained as the Euler-Lagrange equations of (3), inherits this gauge freedom.

The system (1) is a basic model of Chern—Simons dynamics [Jackiw and Pi 1992; Ezawa, Hotta, and
Iwazaki 1991a; 1991b; Jackiw and Pi 1991]. It plays a role in describing certain physical phenomena,
such as the fractional quantum Hall effect, high-temperature superconductivity, and Aharonov—Bohm
scattering, and also provides an example of a Galilean-invariant planar gauge field theory [Jackiw and
Templeton 1981; Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Martina, Pashaeyv,
and Soliani 1993; Wilczek 1990].

One interpretation of (1) is as a mean-field equation. Informally, one may consider (1) as describing the
behavior of a large number of anyons, interacting with each other directly and through a self-generated
field, in the case where the N-body wave function factorizes. There are a number of challenges one
encounters in trying to formalize and prove this statement, and this paper addresses some of them. We
will postpone further discussion of many-body dynamics to the next subsection and instead point out that,
because the main evolution equation in (1) includes a cubic nonlinearity, one might hope to prove for (1)
what one can prove for the cubic nonlinear Schrodinger equation (NLS). It is important to note, however,
that (1) has many nonlinear terms, some nonlocal and some involving the derivative of the wave function.
These terms appear because of the geometric structure that arises from modeling the interactions with
the self-generated field. Due to the complexity of the nonlinearity in (1) and the gauge freedom (4), the
system (1) is significantly more challenging to analyze than the cubic NLS. This difference is seen even
at the level of the wellposedness theory, to which we now turn.

The system (1) is Galilean-invariant and has conserved charge

che(@) = [ 10P d )

and energy
1 8
E@) = [ [ID0P - S10r]ax. ©)
2 R2 2
Moreover, for each A > 0, there is the scaling symmetry

b (1, x) > Ap(A\2t, Ax), Aj(t, x) > LA (A%t ax),  je{l,2),
bo(x) = Ago(Ax), Ao(t, x) > A2Ag(A%t, Ax),
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which preserves both the system and the charge of the initial data ¢g. Therefore, from the point of view
of wellposedness theory, the system (1) is L>-critical. We remark that system (1) is defocusing when
g < 1 and focusing when g > 1. The defocusing/focusing dichotomy is most readily seen by rewriting
the energy (6) using the so-called Bogomol’nyi identity. After using this identity, one may also see
the dichotomy manifested in the virial and Morawetz identities. For more details, see [Liu and Smith
2014, §4, §5]. Note also that the sign convention for g that we adopt, which is the one used in the
Chern—Simons literature, is opposite to the usual one adopted for the cubic NLS. A more significant
difference between Chern—Simons systems and the cubic NLS is that, unlike the case for the cubic NLS,
the coupling parameter g cannot be rescaled to belong to a discrete set of canonical values.

Nevertheless, (1) is ill-posed so long as it retains the gauge freedom (4). This freedom is eliminated
by imposing an additional constraint equation. The most common gauge choice for studying (1) is the
Coulomb gauge, which is the constraint

01A] + 0,A, =0. @)

Coupling (7) with the field equations quickly leads to explicit expressions for Ay, « =0, 1, 2, in terms
of ¢. These expressions also happen to be nonlinear and nonlocal:

Ao= AT Im(@Drg) — HhIm(¢D19)],  A1=3AT'Bol% Ar=—1AT"dil9) ©®)

Local wellposedness of (1) with respect to the Coulomb gauge at the Sobolev regularity of H? is
established in [Bergé, De Bouard, and Saut 1995]. This is improved to H "in [Huh 2013]. Local
wellposedness for data small in H*, s > 0, is established in [Liu, Smith, and Tataru 2012] using the heat
gauge, whose defining condition is d; A + d A2 = Ag. This result relies upon various Strichartz-type
spaces as well as more sophisticated U” and V? spaces. We refer the reader to [Liu, Smith, and Tataru
2012, §2] for a comparison of the Coulomb and heat gauges.

In symmetry-reduced settings, one may say more, and in particular, [Liu and Smith 2014] establishes
large-data global wellposedness results at the critical regularity for the equivariant Chern—Simons—
Schrédinger system. To introduce the equivariance (or vortex) ansatz, it is convenient to use polar
coordinates. Define

X1 X2

A =—A1+—=A, Ag = —x2A1 +x1A,. 9)
x| x|

We can invert the transform by writing
Ay =A;cos0 —LAgsing, Ay =A,sinf + LA cosd. (10)

Note that these relations are analogous to
X1 X2
0 = —01 + — 02, 0 = —x201 +x102
|x] |x|
and

31 = (cos ), — L(sin6)dp, = (sin6)d, + 1 (cos 0)dp.
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The equivariant ansatz, then, is
imé X2 X1
(,i)(t,x):e M(tvr)a A](tvx)=__v(tar)a AZ(ta-x)=_v(t9r)v AO(I,X)=U)(t,I"), (11)
r r

where we assume that m is a nonnegative integer, u is real-valued at time zero, and v and w are real-valued
for all time. This ansatz implies that A, = 0 and that Ay is a radial function. It also places us in the
Coulomb gauge, i.e., 31 A| + 0 A, =0 or equivalently 9, A, + %Ar + :—289 Ay = 0. For some motivation for
studying vortex solutions in Chern—Simons theories, see [Paul and Khare 1986; de Vega and Schaposnik
1986a; 1986b; Jackiw and Weinberg 1990; R. M. Chen and Spirn 2009; Byeon, Huh, and Seok 2012].

Converting (1) into polar coordinates and utilizing (11), we obtain the equivariant Chern—Simons—
Schrodinger system (see [Liu and Smith 2014, §1] for full details):

(0 + AN =22 Agdp+ Aop + 5 A3 — glo 0,
3 Ao =L(m+ Ag)lo|*,

& Ao = r Im(¢0, ), (12)
3 Ag = —%oI*r,
A, =0.

Global wellposedness holds for equivariant L2 data of arbitrary (nonnegative) charge in the defocusing
case g < | and for L? data with charge less than that of the ground state in the focusing case g > 1; this
is the main result of [Liu and Smith 2014].

In this paper, we are interested in the radial case (m = 0) of system (12), which is

(0, + A = Aop + 5 A50 — glo|*d.
Ao =1Aq10|*,

0 Ag = r Im(¢9,¢), (13)
3 Ag = —3l¢Ir,
A, =0.

1B. The infinite Chern—Simons—Schrodinger hierarchy. The infinite Chern—Simons—Schrodinger hier-
archy is a sequence of trace class nonnegative operator kernels that are symmetric in the sense that
y O, xe, xp) = y® (2, x;, x0),
and
y(k)(t’ xo(l)’ L] xO‘(k)» x(/;-(l)a U] x;(k)) = V(k)(t» Xlsenns xk’ xi’ L] x[/()’ (14)

for any permutation o, and which satisfy the two-dimensional infinite Chern—Simons—Schrédinger
hierarchy of equations

k k
oy 4+ iAot xp), y®P1=D " ilD0 D0, y Pl +ig Y Bjniy®Y, (15)
j=1 j=1t=1 j=1
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where R? 5 x = (xj.l), x§2)) for each j, as well as the corresponding field-current identities from [Jackiw
and Pi 1990, (1.7a)—(1.7¢)], i.e.,

For = —=P(t, x) — Ax(t, x) p(2, x),
Foo = Pi(t, x) + A (t, x)p(t, x), (16)
F12 = _%p(ta x)a

where, as before, F' :=dA. Here g is the coupling constant,

Bj i1y = Tre g [8(xj — 1), y €11, (17)

the momentum P (z, x) is given by

P x) = / ei@*f%#%”(r,s, &) de de’,

and p (¢, x) is a shorthand for
p(t,x) =y, x, x). (18)

Each x; € R?, and x; := (x1, ..., x;) € R?. Given a compactly supported (¢, x), the kernels y ®) and
potential A transform under a change of gauge according to

k
y® s p® 1_[ 10 g100X)) A A+d6.
j=1
The invariance of (15) and (16) under such transformations can be checked straightforwardly.
For the purposes of our analysis, it is more convenient to write (15) as

k k2
iy @+ 1Ay yP1= )0 1204000 80 Ao + ATo, y Y]
' j=1t=l1 k k
+ ) TAo(t, x), v Pl1—g Y Biniy®. (19)
j=1 j=1

The Coulomb gauge condition (7), upon being coupled to (16), leads to
Ao=AT31(Pr+A20) = (Pi+A1p)],  A1=3AT'dp,  Ar=—3A7'dip.

This is analogous to how (8) for the Chern—Simons—Schrédinger system (1) is obtained by coupling to
the field equations in (1) the gauge condition (7). Because each A, involves p, defined in (18), it is clear
that each term involving y ®) in the right-hand side of (19) is best thought of as a nonlinear term. This
nonlinear dependence persists under changes of gauge, though some gauges lead to tamer nonlinearities
than others.

We remark that, while the specific form the nonlinearity of (19) takes indeed depends upon the gauge
selection made, the observables associated with the system do not depend upon the gauge choice.

We note that the system (1) generates a special solution to the infinite hierarchy (15)—(16). In particular,
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if (A, ¢) solves (1), then (A4, {y®}) solves (15)—(16), where each y® is given by

k
y O e x) = [T o xpd@. x)).
Jj=1

We start our analysis of many-body dynamics with the above infinite hierarchy. Ideally, one would
prefer instead to begin with a many-body system with only finitely many quantum particles. Because
the basic particles in question are neither bosons nor fermions, there are difficulties to overcome with
such an approach. Concerning the difficulties in dealing with microscopic statistics, one can refer to
[Benedetto, Castella, Esposito, and Pulvirenti 2005], for instance. Fortunately, as remarked in [Benedetto,
Castella, Esposito, and Pulvirenti 2005], microscopic statistics disappear as the particle number tends to
infinity. Thus, the infinite hierarchy satisfies the symmetry condition (14). We finally remark that the
field equations (16) depend merely on the 1-particle density ¥ (), as has been observed formally in the
physics literature [Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Jackiw and Pi
1991; Jackiw and Templeton 1981; Jackiw and Weinberg 1990].

One motivation for pursuing an analysis of the infinite hierarchy even without first specifying the
finite hierarchy is that the known approaches to rigorously deriving mean-field equations, e.g., the
Boltzmann equation and the cubic NLS, all require a uniqueness theorem for the corresponding infinite
hierarchy. Establishing uniqueness of the infinite hierarchy is, moreover, a critical step. We therefore
anticipate that our result in this article will be the linchpin of any future rigorous derivation of the
Chern—Simons—Schrodinger system.

As remarked before, the analysis of the Chern—Simons—Schrddinger system with general data is, at the
moment, very delicate. The same remark applies all the more to the associated infinite hierarchy, to which
(1) is a special solution. Thus, we consider the radial version of the infinite Chern—Simons—Schrodinger
hierarchy in this paper. The nonradial equivariant case (m > 0), though still much simpler than the
general system, is slightly more challenging than the radial case. Unfortunately, the techniques we employ
for studying the radial case do not immediately extend to the nonradial equivariant case due to certain
logarithmic divergences.

The infinite radial Chern—Simons—Schrodinger hierarchy. The Chern—Simons—Schrodinger system (1)
simplifies to (13) under the assumption of radiality. Similarly, by assuming radiality, we reduce Equations
(15) through (18) to the infinite radial Chern—Simons—Schrédinger hierarchy

k k k
. 1
079+ Y (A, 1= [ Aot bsh + At D). rO] e Biany ™ @0
j=1 j=1 xj j=1
and the field equations
Frp(t, 1x]) = =5|x|p(@. |x])
and

Foo(t, |x|) = x| P, |x]),
For (2, x]) = = Aa (1, IxDp (1, |x]),
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for y(k) = y(k) (t, rg, r,i). In particular, here we assume that

y® =ut, re, rp),
A, =0,
Ag =v(t, 1),
where u is real-valued at time zero and v is real-valued for all time. This assumption enforces the Coulomb
gauge. Recall that B; ;4 is defined in (17) and p is given by (18). As before, F' := d A, though now we
are adopting polar coordinates for A. Though we could rewrite everything exclusively in terms of polar

coordinates, we choose instead to use both Cartesian and polar coordinates.
Putting everything together, we see that we are studying solutions y® =y ® (¢, ry, r,) of

iy © + 3 TA y®1= T [Ao( D + Rr A 13D,y ®] = g Xy Bjay @0,
0 Ao(t, X)) = 7 App (. |x1).

x|

1 dAg(t, x]) = x| P (2, |x]), 21)
9 Ap(t, Ix) = —3lx|p(t, |x]),
A, =0.

We interpret y X as a complex-valued function on R, x [R{'jr X [RR'_‘|r subject to the symmetries

y O ) =y )
and
y®, Fo()s - -+ s To(k)s r(’,(l), el r(/,(k)) =y®@,r, ... FlsenoesTh)- (22)
Though each r; € Ry, we associate to this space the measure rdr, as indeed we think of r; = |x;|
forx; € R2.
Note that we can eliminate Ay and Ag in (21). In particular, we have

1 r
Ae(t,r)=—§f p(t,s)sds (23)
0
and

1 [ s ds
Ao(t, r)=§/ p(t,s)/o p(t,w)udu e (24)

which reflect the natural boundary conditions for Ag and Ag that we adopt for (1). Therefore, we may
rewrite (21) as

k k ;

. | s ds 1 1 [ 2
latj/(k)+§ [ij’y(k)]: E [5/ ,o(t,s)/‘0 ,O(l,u)udu?-i-r—z(—ij(; p(t,S)SdS) J’(k)j|
= rj J

j=1 j=1 k
k1
_gZBj,k—HV( ),
j=1

y®0) =y, keN, (25)
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1C. Main results. Our main theorem says that any admissible mild solution of the radial infinite CSS
2/3
rad

the space 97, to be the collection of sequences {y®}ren of density matrices in Lfym([Rzk) such that

hierarchy is unconditionally unique in L7g, 79,4 To explain what this means, for s € R, we define

y® =y®(t, e, r}) and
Tr(|S(k’S)y(k) ) < M?* for all k € N and for some constant M > 0,
where

k
sE=TTa—ay2a—a"
j=1

Here L2, denotes the space of L? functions satisfying (14). Let U® (¢) denote the propagator

sym

A —itA
x]’(.

UB (1) =P rie (26)

A mild solution of (25) in the space L[O&T]Y)fad is a sequence of marginal density matrices I' =

(y®(#))ken solving

®) ® @ n i [ ® NS v dv

yo@)=U0")y (0)—1/0 U™ (t—s) Z 5/ ,o(t,v)/o p(t,u)ua’u?
j=1ke I

1
N P ool (k+1)
t=3\ 73 p(t,v)vdv |,y _gZBj,k—HV ds
T 0 j=1
and satisfying

sup Tr(|S“Yy @ (n))) < M*
tel0,7T)

for a finite constant M independent of k. Note that, if we are given factorized initial data

k
vo (i ) = [ [ dor)eo (),

j=1
then the condition that (y(k) (0)) € 97,4 is equivalent to

Tr(|S®9y ) = Ipoll sk < M*, keN,

s
rad

which is to say that ||¢g|| gs < M for some M < oo. Then a solution to the IRCSS hierarchy in Lz[o,T)ﬁ
is given by the sequence of factorized density matrices

k
y O, i, r) =] ornd: ()

j=1

provided the corresponding 1-particle wave function ¢, satisfies the radial Chern—Simons—Schrodinger
system (13).
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Admissibility we take to mean that Try® =1 for all k € N and

y® =T (™), keN. (27)

This is required in our application of the quantum de Finetti theorem. As there are weak analogues of the
quantum de Finetti theorem applicable to limiting hierarchies, we expect our techniques to apply to the
problem of rigorously deriving the radial CSS from large, finite systems.

2/3

Theorem 1.1 (unconditional uniqueness for the infinite hierarchy). There is at most one L?:[O,T)f)rad

admissible solution to the infinite radial Chern—Simons—Schrodinger hierarchy (21).

Theorem 1.2 (unconditional uniqueness for the Chern—Simons—Schrodinger system). There is at most
one L;’g[o T)H 2/3(R?) solution to the radial Chern—Simons—Schrodinger system (13).

Before explaining our main theorem, we first remark that deriving mean-field equations from many-
body systems by studying infinite hierarchies is a very rich subject. For works related to the Boltzmann
equation, see [Lanford 1975; King 1975; Arkeryd, Caprino, and laniro 1991; Cercignani, Illner, and
Pulvirenti 1994; Gallagher, Saint-Raymond, and Texier 2013]. For works related to the Hartree equation,
see [Spohn 1980; Frohlich, Knowles, and Schwarz 2009; Erdés and Yau 2001; Rodnianski and Schlein
2009; Knowles and Pickl 2010; Grillakis, Machedon, and Margetis 2010; 2011; X. Chen 2012b; L. Chen,
Lee, and Schlein 2011; Michelangeli and Schlein 2012; Ammari and Nier 2008; 2011; Lewin, Nam, and
Rougerie 2014]. For works related to the cubic NLS, see [Adami, Golse, and Teta 2007; Elgart, Erdés,
Schlein, and Yau 2006; Erdés, Schlein, and Yau 2006; 2007; 2010; 2009; Klainerman and Machedon
2008; Kirkpatrick, Schlein, and Staffilani 2011; T. Chen and Pavlovi¢ 2011; 2010; T. Chen, Pavlovi¢,
and Tzirakis 2012; T. Chen and Pavlovi¢ 2014; Pickl 2011; X. Chen 2012a; 2013; Benedikter, Oliveira,
and Schlein 2012; Grillakis and Machedon 2013; X. Chen and Holmer 2013c; 2013b; T. Chen, Hainzl,
Pavlovié, and Seiringer 2014; X. Chen and Holmer 2013a; Hong, Taliaferro, and Xie 2014; Gressman,
Sohinger, and Staffilani 2014; Sohinger and Staffilani 2014; Sohinger 2014a; 2014b]. For works related
to the quantum Boltzmann equation, see [Benedetto, Castella, Esposito, and Pulvirenti 2006; 2005; 2008;
2004]. The infinite hierarchies considered previously to the present one are all linear. In contrast to this,
the infinite radial Chern—Simons—Schrodinger hierarchy is nonlinear.

For our problem, we have taken the phrase “unconditional uniqueness” from the study of the NLS.
It is shown by Cercignani’s counterexample [Cercignani, Illner, and Pulvirenti 1994] that solutions
to infinite hierarchies like the Boltzmann hierarchy and the Gross—Pitaevskii hierarchy are generally
not unconditionally unique in the sense that a solution is not uniquely determined by the initial datum
unless one assumes appropriate space-time bounds on the solution. In the NLS literature, “unconditional
uniqueness” usually means establishing uniqueness without assuming that some Strichartz norm is finite.
Since we are using tools from the study of the NLS, we therefore call our main theorems unconditional

uniqueness theorems. !

Un other words, the uniqueness theorems regarding the Gross—Pitaevskii hierarchies [Klainerman and Machedon 2008; Kirk-
patrick, Schlein, and Staffilani 2011; X. Chen 2012a; X. Chen and Holmer 2013a; Gressman, Sohinger, and Staffilani 2014] are
conditional, whereas [Adami, Golse, and Teta 2007; Erdés, Schlein, and Yau 2007; T. Chen, Hainzl, Pavlovi¢, and Seiringer 2014;
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Finally, we remark that, for the proof of the main theorems, we apply the quantum de Finetti theorem
in a manner similar to [T. Chen, Hainzl, Pavlovi¢, and Seiringer 2014; Hong, Taliaferro, and Xie 2014]
but with adjustments tailored to deal with the nonlinearity in the infinite hierarchy that we consider. The
quantum de Finetti theorem is a version of the classical Hewitt—Savage theorem. T. Chen, C. Hainzl,
N. Pavlovi¢, and R. Seiringer are the first to apply the quantum de Finetti theorem to the study of infinite
hierarchies in the quantum setting. For results regarding the uniqueness of the Boltzmann hierarchy using
the Hewitt—Savage theorem, see [Arkeryd, Caprino, and laniro 1991].

2. Proof of the main theorem

We will prove that, if we are given two LE’&T]Jﬁfﬁ solutions {yl(k)} and { yz(k)} to system (21) subject to
the same initial datum, then the trace norm of the difference {y ¥’ = yl(k) — yz(k)} is zero. In contrast to
the usual infinite hierarchies (e.g., Boltzmann, Gross—Pitaevskii, . ..), system (21) is nonlinear. Thus, y(k)
does not solve system (21). In order to show that y ¥ has zero trace norm, we first express y*) as a
suitable Duhamel-Born series, which contains a nonlinear part and an interaction part (see Section 2A).
These two parts we estimate separately with bounds contained respectively in Theorems 2.3 and 2.4,
which together constitute our main estimates. In Section 2B, we prove the main theorem, Theorem 1.1,
assuming the main estimates. The proof of Theorem 2.3 is postponed to Section 4 (and Theorem 2.4 we

handle in this section).

2A. Setup. Set for short

1
a(r;) == Aolt, rj)+ﬁA§(z, r;) (28)
and !
k
a(re) =Y _a(r)). (29)

j=1

Let s4® denote the operator that acts according to

A® f = [a(r). 1. (30)
Also, set for short
k k
Bt = Z Bji+1 = ZTrk+1[8(xj — Xig1)s * - (3D
j=1 j=1

With these abbreviations, the first equation of (21) assumes the form
10y ® + Ay, yP1= AWy ® — gBy y Y. (32)

Remark 2.1. The operator 4® is linear but itself depends upon y V. In fact, it only depends upon the
diagonal p(t,r) = y(l) (t, r,r). The term sd(k)y(k) is therefore better thought of as a nonlinear term rather
than a linear one.

Hong, Taliaferro, and Xie 2014; Sohinger 2014b] are unconditional in the NLS sense. Yet they are all considered conditional in
the Boltzmann literature.
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Let {yl(k)} and {yz(k)} be solutions subject to the same initial data with, respectively, pi(¢,r) :=
yl(l)(t, r,r) and p(t,r) = yz(l)(t, r,r). Let y® = yl(k) - yZ(k). Then

. k) (k k) (k
10y © + 1Ay, yP1= "y — a9, — By *Y. (33)
We can rewrite (33) using the relation

k k k k k k k k
‘Sﬁ(l )yl( ) _ﬂé)y; ) :‘%g )y( )+ﬂ( )yz( )’
where now
k) . &) (k)
A® = Ay =y,

so that it becomes

or, equivalently,

Recalling the corresponding linear propagator U ®)(¢) defined in (26), we write (34) in integral form, i.e.,

I
y® ) = —ig/ dti U® (1 —tk+1)[&ﬂ§k)l/(k)(fk+1) +s4®y 0 (1) + Biriy“ (tg)]. (39)
0

In invoking this formula in future calculations, we set g = —1 for simplicity and we ignore the i in front so
that we do not need to keep track of its exact power, as the precise power is not relevant to the estimates.

Remark 2.2. The choice of g = —1 corresponds to a defocusing case in (12). It is important to note,
however, that the choice g = —1 at this step is purely for the sake of convenience; all subsequent arguments
can accommodate any g # —1 at the cost of certain powers of |g|. In particular, our arguments apply to
the self-dual case g = 1, which is the most interesting from the physical point of view.

For the purpose of proving unconditional uniqueness, it suffices to show " = 0. Iterating (35)

I. times,> we obtain

I3l 1
y D)) = / di UV (1 — 1) (A y D (1) + 4V (12)) + f dt,UD (11 — 1) Byy @ (1)
0 0

41
=/ dl‘zU(l)(l‘l—fz)(&ﬁil))/(l)(fz)+&i(1)3/2(1)(f2))
0

n 15}
+ / dUD (1, — 1) B / AU (1 — 13) (AP y @ (13) + 4P (1))
0 0

151 15}
+ / dyUV (4 — 1) By f dzUP (ty — 13) B3y P (13)
0 0

= NP 4+ IP(IC>’ (36)

2Here, I stands for the level of coupling. When /. = 0, one recovers (34).
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where NP and TP, the nonlinear part and the interaction part, respectively, are given by

le — on t

NP =GO+ 3 [ M U0 = By UG~ 0B G ) BT
r=1 0 0

and

| lic+1
1Pl = / / dty---dt UVt —1)By--- UtV (@, — 1 ) B2y “ P (1,02),  (38)
0 0

where

Tk
GO ) = / Aty 1 UP (5 — 5e0) (AP y O (10) + A9 90 (411)).
0

2B. Proof assuming the main estimates.

Theorem 2.3. There exists a constant C > O such that

Tr|NP(1")(t1)| <Ct; sup Tr|]/(1)(t)|
t€[0,1]

for all coupling levels |, and all sufficiently small t,.
Proof. We postpone the proof to Section 3. (Il
Theorem 2.4. There exists a constant C > 0 such that
TeIP" (1) < (C1y)
for all coupling levels ..

Proof. This estimate follows from the same method used for the corresponding term in [T. Chen, Hainzl,
Pavlovié, and Seiringer 2014], which relies on the quantum de Finetti theorem and on a combinatorial
analysis of the graphs that one can associate to the Duhamel expansions. One merely needs to replace the
three-dimensional trilinear estimates [T. Chen, Hainzl, Pavlovi¢, and Seiringer 2014, (6.19), (6.20)] with
(55) and (56), respectively, taking s = %, and replace the three-dimensional Sobolev estimate

I f oy S NI e @)

with the two-dimensional Sobolev estimate
I fllcsmey S I a2sme)-
We remark that it is because of this Sobolev estimate that we take s = % in H? rather than a smaller s. [
With Theorems 2.3 and 2.4, we then infer from (36) that
Trly (0] < TrINPY (1) + Tr|IPY (1))

<Cr sup Trly @) + (€1
tel0,1]

<CT sup TrlyD @)+ (CT!3)k
tel0,T]
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for all #; € [0, T']. Take the supremum in time on both sides to get
sup Tr|y(1)(t)| <CT sup TrlyV)|+ (CT'3)k,
1€[0,T] 1€[0,T]
Therefore, for all 7 small enough, we obtain

I osup Trly V@) < (€T -0 asi. — oo,
t€[0,T]

ie.,

sup Trly P ()] =0.
t€[0,T]

Hence, we have finished the proof of the main theorem assuming Theorem 2.3. The bulk of the rest of
the paper is devoted to proving Theorem 2.3.

3. Estimate for the nonlinear part

Recall

le f 1
NP =GO+ f / dty - dty UVt = 0)Bs -+ UD (1 — 1) Brat GO (1711)
r=1 0 0

=:1+1I,
where

173
GO ) = / Aty 1 UP (5 — 100) (A y O (4 10) + AP0 (411)). (39)
0

We will first treat Tr|G" (¢;)| coming from part I and then, with some additional tools, the corresponding
term coming from part II. Both of the estimates rely upon the quantum de Finetti theorem stated below.

Theorem 3.1 (quantum de Finetti theorem [Hudson and Moody 1976; Stgrmer 1969; Ammari and Nier
2008; 2011; Lewin, Nam, and Rougerie 2014]). Let ¥ be a separable Hilbert space, and let Ik = ®]S<ym H
denote the corresponding bosonic k-particle space. Let I" denote a collection of bosonic density matrices
ond#, ie.,

I'= (y(l), y(z), ool

with y® a non-negative trace class operator on #*. If T is admissible, i.e., for all k € N we have
Try® =1and y® =Triy y &, where Tryy| denotes the partial trace over the (k + 1)-th factor, then
there exists a unique Borel probability measure (1, supported on the unit sphere in ¥, and invariant under
multiplication of ¢ € ¥ by complex numbers of modulus one, such that

y o = / du(@) () S)P  forall k € N.

Remark 3.2. The u determined by Theorem 3.1 is finite and so, in particular, o -finite. Therefore, the
Fubini-Tonelli theorem, which is crucial in the proof, applies. See [Dunford and Schwartz 1988, p. 190].
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Using Theorem 3.1, we write

y© ) = f A @) () @D, j=1.2,
and

YO (1) = / i (@) (1))

where ; := M;” ,u,(2) is a signed measure supported on the unit sphere of L2(R?). We remark that

Trly (1) =/d|m|<¢>||¢||iz =/d|uz|(¢)

while

1 |
Trly (1) = / du” g7, = / du;” =

Here |u,| is defined, in the usual way, as the sum of the positive part and the negative part of u,, which

itself is another ﬁmte measure since || < u(l) + M§2> Write ,ufo) = u; for convenience. The main
properties of M, ) that we need are
sup / dlu” @) gl55n < M* fori=0,1,2 (40)
1€[0,T]
and
14 1({¢ € L2@®) | ¢l g2 > M}) =0 fori=0,1,2, (41)

where |M§i)| is of course ,u,(i) ifi =1o0r2. Fori =1, 2, estimate (40) is equivalent to the energy condition

k k
sup TY<H<VXj>2/3)Vi(k’(t)(H(Vx;>2/ 3) <M* fori=1,2, (42)

0.7\ i1

and (41) then follows from (40) using Chebyshev’s inequality.3 The i = 0 case then follows from the
definition.
Putting these structures into s, for £ =1, 2, we have

k
AP f(1) = / / A W) dui? (@)Y ay e wp () = @y we D] f (43)
j=1

and

*Sd(k)f(l‘) — (ﬂgk) . ﬂ;k))f
k
= f/ d/J«[(I)(w) dﬂt(w Z Ay, ‘w‘z(rj) —apyp, |w|2(”/-)]f

// dp () dM )(60) Z a|¢|2 |a)|2(rj) — Ay, |w|2(" )]f (44)

3See [T. Chen, Hainzl, Pavlovié, and Seiringer 2014, Lemma 4.4] or [Hong, Taliaferro, and Xie 2014, (2.17)].
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where a2 |2 is defined by

212 1 2 2
a|10|2,|w|2(t’ r) = A(()Wll ol )(l, r) + r_zAg‘//‘ )(f, F)Aélw‘ )(l, r)
with
o0 d 1 r
A(()WP,\&)P)(I’ l") — _[ Aé‘\//\z)([, S)|a)|2(t’ S) _S’ Aép)(t, I") = _E / p(t, S)S ds.
r s 0

Informally speaking, a2, i, (r) is similar to a(r) defined in (28) but is linear with respect to || and
|w|? independently rather than quadratic with respect to a single |¢|.
This notation enables us to represent the core term of G*) by

sty ® 0+ APy, (1)

k
=3 ¥ [[[ anwran @an? @la o) - age e e)lierep @)

j=1 (,m,n)eP

if we take % = {(1, 1, 0), (2,2, 0), (1, 0, 2), (0, 2, 2)}. The set P is for bookkeeping, incorporating the
terms from (43) and (44), and we remind the readers that d MEO) :=du,. We remark that, to reach (45),
we used the quantum de Finetti theorem (i.e., Theorem 3.1) four times: twice for the y® term (once

for y; and once for y,) and twice for the terms in the self-generated potential & (they are quadratic in p).

3A. Estimate of Tr|G™V(t)|. Putting k = 2 in (45) and replacing ¥, w, and ¢ with ¢, ¢, and ¢3,
respectively, we have

Tr|GV ()| = Tr

4]
/ di UM (1 = 1) (4] y P (1) + &4(1))/2(1)([2))‘
0

141
< ¥ / dtzf//d|u§?|<¢1)dlufi")|(¢z)d|u§§”|(¢3>
(,mmep 0 B
X Tr|UD (01 = 12)[@19,2, g2 (1) = ig, 19,2 D [ 3 1) 3 (D
Using the fact that

THUD @) () (r))] = / 7 f (e g ()| diy
<lle"®fllrzlle™ gl
=1 £lz2ligll 2.

we have

1
TGV < Y / dn, f// A1 @) I 1(62) d1in |89 gy ol 2 1032
0 23l

(I,m,n)eP

Corollary 4.9, i.e., the main nonlinear estimate, turns the above into

IRl DIENDY /Odzz///d|u§§)|(¢1)d|u§T’|<¢z>dluﬁf)|<¢3>x||¢3||L;

(I,m,n)eP .
X o1l i ligall i grélgll%(l)IIHXI/2II¢r(2)||HX1/2 [pz3)llL2-
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One of [, m, or n is zero, and we may put the corresponding term in L% ie.,

2 f
60l =Y [ dn [[[ an @0 au? @ i 1610011021 101
=1 ! ! ’
1
+ [Vt [[ ] ant @0 dlanl @ di? @101 10nlz 12l gyl 10l

+ [t [ [ [ o0 a2 6 dnd @101 10l 601yl

Using the fact that each /L;j ) is supported on the unit sphere in L? and thanks to (40) and (41), we obtain

Tr|GV (1) < 4M31; sup / dluzl(¢)§CM3t1< sup Tr|y<”<z>|).

te[0,1] te[0,1]

Thus, we have proved that

TrIG“)(tl)ISCtl( sup Tr|y“>(r)|>. (46)
tel0,1]

3B. Estimate for part II. Recall that
le — rn t
n=3 / / diy---dt, UV (0 =) By Uty = ) Bria G0 (1 40).
r=1 0 0

Because each B; is a sum of 2(j — 1) terms (see (31)), integrands of summands of NPU) have up to O (k!)
summands themselves. We use the Klainerman—Machedon board game argument to combine them and
hence reduce the number of terms that need to be treated. Define

T (fU) =UD @t —0)By - UVt — 1j11)Bja fUTY,

where 7,1 means (1, ..., ;;+1). Then the Klainerman—Machedon board game argument implies the
lemma.

Lemma 3.3 (Klainerman—Machedon board game [2008]). One can express

51 t; .
/ x / T (FV ) de
0 0
as a sum of at most 4/ terms of the form
/ J(j+1, o) (fYTD)y dtjin,
D

or in other words,
1 tj . i
/ / ](£j+1)(f(]+]))de+1:Z/ J(Zj+1a0)(f(j+l))dfj+1.
0 0 o D

Here D C [0, 2]/, the o range over the set of maps from {2, ..., j+ 1} to {1, ..., j} satisfying 0 (2) = 1
ando(l) <l foralll, and

J(tj+1, ) fITN) =UD (1 =) BiaUP(a —13)Boay s - - UV (4 — tj41) Bo i1y, j+1 (YD),
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With Lemma 3.3, we can write a typical summand of part II as

131 1,
/ e / dty -+ dt, UVt —12)By -+ UV (t; — t,41) By i1 GV (141)
0 0
=> / dtr1J (tr1,0)(GU D),
—Jp
where the sum has at most 4" terms inside. Let
n" = / dtri1J (ty41,0)(GUTD). (47)
D

To estimate part II, it suffices to prove the following lemma:

Lemma 3.4. There is a Cy depending on M in (42) such that, for all r, we have

T[T |(1) < [ + 1)(Cot11/3)r]t1( sup Tr|y<‘><z>|>.
te[0,4]

With the above lemma, we have

le
Tr|H|<n>SZZ[(rH)(cor}”)’]n( sup Tr|y“)<t>|)

i 1€l0,n]

5:1( sup Trly(l)(t)|)Z4’[(r+1)(Cotll/3)r]

te[0,11] =1

< Crl( sup Tr|y<”(t)|> (48)
1€[0,11]
for #; small enough so that the series converges.
Together the estimates (46) and (48) establish Theorem 2.3.
Before proving Lemma 3.4, we illustrate how to obtain the estimate for a specific example.

Example 3.5. To avoid heavy notation and demonstrate the main idea of the proof of Lemma 3.4, we
first prove it for a concrete example. The general case uses the same underlying idea, which turns out
to be quite simple as compared to what must be done for the interaction part IP. We adapt the example
and use the notation in [T. Chen, Hainzl, Pavlovi¢, and Seiringer 2014, §6.1] for our o), Denoting
UYD (1 —1) by Uk(’jl), we consider

IOl = [ draU{3512U8 82208 Baal 6 o)
D

4 f
<> > /[O pd“/o drs///d|u§?|<w>d|u§;’”|(w)d|u§;”|(¢>

j=1({,m,n)e®
1 2 3 4
x Tr|UY) B1 2Uy3 Ba sU3 ) B3 aUy 2 (112, () = iy p o PD1) D )] (49)

Remark 3.6. In the above, there is a U fs) after B3 4. This is the main difference between the nonlinear
part NP and the interaction part IP. As noted in [T. Chen, Hainzl, Pavlovi¢, and Seiringer 2014], since
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the last B in IP is not followed by a Schrodinger propagator, it creates a factor of |¢|2¢, which has to be
handled by Sobolev embedding rather than Strichartz estimates.

It suffices to treat

f[o | dt4f dts /f/d|u,?|(x/f>d|u§?)|<w>d|u(")|(¢)
tlg

,n)EP
x Tr|U{Y B, UL B 3 UL B WU ([, o r0)1(18) (8D )| (50)

where Bfr2 is half of Bj >, namely
B]-":2(y(2)) = y(Z)(xla X1, xi, xl)'

When we plug the estimate of (50) into (49), we will pick up a 23 since there are three B’s in (49).

2/3)3

However, compensating for this is the factor (t1 that emerges by the end. Hence, our simplification is

a valid one.

Step I (structure). We enumerate the four factors of (|¢)(¢])®* for the purpose of bookkeeping even
though these factors are physically indistinguishable. So we write ®?: | Ui, ordered with increasing
index i. We first have

2

B3 U Sapy 1 jop (ra) (19) (¢ ) ®* = (Ufg (®ui>) ® 03,
i=1

where
O3 = B, (U (3 ® apy o (r4)us))
= Bffz(U4,5¢(X3))(U5,4<5(X§))(U4,5[a|¢\2,\w\2(r4)¢(x4)])(U5,4<l_5(xf;))
= (Us,5¢(x3)) (Us 5[a)y 2,102 (r3) 9 (x3)]) (Us 4 (x3)) (Us 4 (x3))
= T3(x3)(Us 4 (x3)) (51)

with Uy 5 = ¢/“~"5)2_ Here T stands for the trilinear form

(Us slapy 2, jop ()9 (x3)]) (Us 4 (x3)) (Us 4 (x3)).

‘We make similar substitutions below and, to bound these terms, shall invoke the trilinear estimate (56),
which states that

1T Chs f2 P, 02 Se 02 1A 2Nl 2l £l s

for0 <s <2.

Applying BZ 3 Uﬁ, we reach
By US) BY Uy 2@y, () (10) (0D = B U (U Su1 @ Uy Jur @ 03)
= Us U du1 ® ©,

I
3(5)M1®®2,
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where ) ]
® = B, U (U, 312 ® ©3)

= B, (Us 32 ® U} 03)

= Bf’z((U3,5¢(x2))(U573¢(x§))(U3’4T3 (x3)) (Us 3Us 49(x5)))

= (U3,5¢(x2)) (U3 4T3(x2)) (Us 3¢(x2)) (Us 3 (x3))

= T (x2)(Us 3¢(x3)). (52)

Finally, with U (1)B+ U2(23) , we get
U B Uz 3 BY UL BLULS @y op () (10) (8D
= UI(IZ)B;F2U2(23)(U3(}5)M1 ® 0,)
= U}3 B (U301 @ U;50,)
— Ul(}z)Bffz[(U2,5¢(xl))(Us,gqs(x{))(UzgTz(xz))(U3,2U5,3q_§(xé))]
= U [(Un56 (1) (U3 To(x1)) (Us 26 () (Us 2b ()]
= U1<’12)[T1 (x1)Us 29 (x))]. (53)

Step II (iterative estimate). Plugging the calculation in Step I into (50), we have

(50) < /0 rd” f dts / f / A1) d il 1(@) di (O D)l 2 1]l 2

(I,m,n)eP [

S [ ans [ [[[ it ant o < imie
[0.11]

1/3
ITillzy 2 = €t Nl s I T2 2 1] 2

( ,n)eP

where

by (56). Thus,

(50) < ct,”? Z f

n
[ s [ [ a6 a1 @i 1@ 10l 1 Tl 1o
] 0

e Y10
By (56) again,
17202l 22, < €10l an I T3 101 2,
and hence,
50) < (C1,”%)? " d A1) 1™ [(w) | T
(50) t Z ts [t | (W) dlgg (@) d g I(¢)|I¢||H2/zll 3||L1 L2,
(I,m,n)eP

< Y / dis [[[ il 160 dius” @) il | @ 161 oy 0050

(I,m,n)eP
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By the fact that |/,Ltl)| is supported in the set

{¢p € L*(RY) | 9]l g2 < M},
we have

50) < (cMn) 3 / dts f// d|py 1) (@) g @) |y jop )P (63) | 2

(I,m,n)eP
One then proceeds as in the estimate of Tr|GV(1))] to reach
(50) < (cM1}*)’ M, ( sup Tr|y(1)(t)|>.
1€10,1(]

Selecting a C¢ bigger than M? and 1, we obtain

3

(50) = (Cory ) n( sup Tr|y“>(z>|).
1€[0,11]
Plugging the above estimate back into (49), we get
Te U3 |(1)) < [4-23 - (Cot,’ 3)3]t1< sup Tr|y<1>(z)|)
te[0,1]
as desired. This finishes the proof of the example.
One observation to make concerning our approach in Example 3.5 is that the structure found in Step I

is crucial. Such a structure generated by the collision operator B and propagator U is found in general,
and we state its relevant properties in the following lemma:

Lemma 3.7. Let M e N, M > 1, andfor each j, 1 < j < M, suppose that the two functions f;(x;)
and f (x ) belong to* L H} ([R2) <s < %. Then there exist L H; (R?) Sfunctions h and h' such that

M1
Bni(M)MU]E/IMII/I—Q—I |:1_[ fiGp) fi ] )i| _hU(M)(xU(M))h(r(M)(xa(M))UMMMi-)l|: 1_[ fj(xj)ff(x})i|-
Jj=1 i=1
! jo (M)

In the case where B is B;'( M)Y.M> h is a trilinear form of the type (54) and h' is a linear evolution. In the
case where B is B_ M) M the roles of h and h' are reversed.

Proof. The collision operator leaves untouched each term for which j ¢ {M, o (M)}. Only the propagator
affects these terms. So we have

M
B:(M) MUZ(VIMI{/I—H |:1_[ i (xj)f;(x}):|
i=1

(M-2 —i(ty— l‘M_H)A
—UMM&[ I1 enyjies >} To 1) M ()€ £ a0 E )
Je{l,... MI\{M,o (M)}

We suppress the time dependence in the notation and allow restriction to time intervals, which may be achieved, for instance,
by introducing sharp time cutoffs.
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where

T my, M (Xo ()
= e/ TR0 £y (o) - € T B0 iy (g ) - €T MR 0w £ (g (1))

Similarly,

M
B;(M),MUJE%:/IH |:1_[ i (xj)f;(x})}

j=1
M—2 i (ty—t Ay
- UJ(W,M+)1|: I1 fj(xj)ff(X})} Ty Caan)e ™R £ (o),
Je{l,.... M\{M,o (M)}
where
To:(M),M(xc/r(M))
ity —tym+1) Ay —i(ty—tym+1)Ay =ity —ty+1) Dy
— e o (M) fM(x;(M)) e o (M) fé(M)(xé(M))‘e o (M) fJ{/[(x(;(M)).

The Lt] H; bounds follow from (55) and Strichartz. [l
Proof of Lemma 3.4. Using (47), (39), and (45), we write

r+l tr41
H(”»U) = Z Z f dlr—H-’(Zr-H, U){f dtr+2U(r+1)(tr+1 - tr+2)
j=1 mnyep P 0

X /// d,ut(,liz(vf) dﬂgﬁ)z(w) dﬂ§?£2(¢)[a|w|zv|w|2(|x]'|) —a|,/,|z’|w|2(|x}|)](|¢>(¢|)®(r+l)}.

We abbreviate

r

1 2
J(tr1,0) =U{)B12Us3Bo 3+~ U Botri.ri
and write

Tr[I1"7 | (1)

r+l "
< Z Z / d!r+1/ dty 1> ///d|u§f12|(w)dluﬁ,"ill(w)d|u§f32|(¢)
i=1 (tm,nyep ¢ 0] 0

1 1
xTr|lUY B2 - U Boran st UG S lan o (155D = appop (D] 16) @D BT,

To simplify calculations, we drop, without loss of generality, the —a|1/,|z‘|w|z(|x} |) term. Also, we split

each Bj into two pieces B]j.’[k so that B ; = B]J.fk — B,

Consider first the innermost terms

+ (r+1) ®(r+1)
Bo(r+1),r+l Ur+1,r+2a|¢|27|w|2(|xj DAY BD=" .

The index j € {1, ...,r + 1} and the permutation o together determine at what point a2 ,,2(|x;|) is
directly affected by a collision operator. In any case, we claim that, with respect to the variables x4 (-41)
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and x’ the term

o(r+l1)’

+ (r+1 . ®@+1)
BS i rr1Ur i1 2@y 2 jop (1% D (19) (1) '

is a trilinear form of the form 7 in (54) (see (51), (52), and (53) for examples of these trilinear forms) in
the x5 (-+1) variable and a linear flow in the x(’, r+1) variable (the term with B~ instead of B is similar
but with the roles of the primed and unprimed variables reversed). Note that precisely one of the terms in
the trilinear form T involves @)y 2 |2 (Ix;]). This follows from Lemma 3.7. Additionally, Lemma 3.7
is formulated so that we can apply it iteratively until termination, at which point we have one term that
is trilinear of the form (54) in precisely one of x; or x| and another term that is a linear evolution of a
function of the remaining spatial variable. Step I of Example 3.5 illustrates such a process.

The final step is to iteratively bound the terms. We follow Step II of Example 3.5. The underlying idea
behind the iterative bounds is relatively straightforward. We start by controlling the trace norm using
Cauchy-Schwarz in space. One factor is simply a ¢ term associated to the measure and so will have L2
norm equal to one. This leaves us with the other term in L}LZ. The next step is to apply (56). This places
one factor in H* and the remaining ones in L2. So that we can eventually apply (70), it is important to
always place in L? the term appearing in the right-hand side that involves a1y 2,0 (|x;1). To control the
term placed in H*, we apply (55). For the terms in L2, we use (56) or (70) as appropriate. ]

Remark 3.8. We first remind the reader that, because at each step we are estimating a linear term of
the type ¢/’2 f or a trilinear term of the form (54), we do not need to apply Sobolev embedding as is

@ 9

necessary for estimating the interaction part. Secondly, the “a” term cannot be generated by B, and thus,
we do not need to keep track of multiple “copies” of |¢|?¢ generated by B in contrast to what must be
done in controlling the interaction part. In particular, there is no need to introduce binary tree graphs or
keep track of complicated factorization structures of kernels in controlling the nonlinear part.

4. Multilinear estimates

In this section, we will need the following fractional Leibniz rule from [Christ and Weinstein 1991,
Proposition 3.3]:

Lemmad4.1. LetO<s <landl <vr, p1, p2,q1,q2 < 00 such that%: #—i—%fori =1,2. Then

VIO SN ller 1IVEgILa + 1V fllerligllie.
Define the trilinear form T by
T(f, g h) =€ (TWAf . UmIhg (U=l (54)
Lemma 4.2. Let 0 <s < % The trilinear form T given by (54) satisfies’

ITCf g M s St ILf s gl s 1Al gs- (55)

t€[0,19) " x

3Such trilinear estimates are the precursors to the Klainerman—Machedon collapsing estimates widely used in the literature.
For those estimates, see [Klainerman and Machedon 2008; Kirkpatrick, Schlein, and Staffilani 2011; Grillakis and Margetis
2008; T. Chen and Pavlovi¢ 2011; X. Chen 2011; 2012a; Beckner 2014; Gressman, Sohinger, and Staffilani 2014].
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Proof. By the fractional Leibniz rule, we have
i(t—1)A i(t—1)A i(t—13)A
ITCfo g Wy SN2 Fllaslle T2 apslle! T2
i (t—t1)A i(t—1)A i(t—13)A
H1 TR Fll e e TRl arolle™ T Rl
i(t—t1)A i(t—t)A i(t—13)A
1A f e e TRl s e T AR s
By Sobolev embedding, we bound the first term by

i(t—11)A i(t—t)A i(t—13)A
L A ) e { PR ] PN

where % = é + 5. Note that 2 < p < 6. Let g be given by é + % = % so that (¢, p) forms a Schrodinger-
admissible Strichartz pair (see, for instance, [Tao 2006, §2]). So we use Holder in time to bound the
expression by

i(f— 1/3—1 i (f— 3-1 i(f—
”el(t tl)Af”L?W;(’t()/ /(1”61(1 nH)A / /q”el(t tg)Ah”L

1
8lleviprto i

Finally, we conclude by applying Strichartz estimates and noting that % — 5 = 5. The second and third

terms are similar. 0O

Lemma 4.3. Let 0 < s < 2. The trilinear form T given by (54) satisfies

2
ITCFg W, iz S0 1 T lgloe Il . (56)

Proof. By Holder’s inequality,

s/2

i(t—t)A i(t—h)A i(t—13)A
||T(f,g,h)||L[1€[0JO)L)2[ <t ||el(t ) f”L;’L;”el(t 1) g”L?L;”el(t 13) h||L,°°Lf’

where é = % - r= %, and p =2/(1 — s). Using Strichartz estimates and Sobolev embedding, we

control the right-hand side by
s/2

i (t—13) A
o N2 gl 2 e’ Al e g

Finally, we conclude the bound stated in the lemma by noting that the Schrodinger propagator is an
isometry on L?-based spaces. O

Remark 4.4. From the proofs of both (55) and (56), it is evident that any of ¢! —A £ el((=12)A g and
¢!~} can be replaced by its complex conjugate in the trilinear form (54).

For the next set of estimates, recall

0 Ao=1Aop, B Ag=—%rp

and

 Ap(s) L[
Ao(t,r) = —/ S p(s)ds, Ag(t,r) = —5/0 p(s)sds. 57

When it is important to indicate the dependence upon the density function p, we write Aép )(t, r) for
Ag(t, r). Recall

(p1,02) > (p1) ds
Ag (t,r)y=-— Ay (S),Oz(S)T, (58)

r
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where Aé’o " is defined using (57) but with p; in place of p in the right-hand side, i.e.,
1 r
AL (@t r) = —= / 01(s)s ds.
2 Jo
Define the operators [9,]~!, [r " 9,171, and [rd,]! acting on radial functions by

o0 _ r OOl
[ar]—lfm:—/ f(s)ds, [r—"ar]—lfm:/o f(s)s" ds, [rar]—lf(r)z—/ ~f©)ds.

Then it follows by a direct argument that

Ira 1" fllee Spllflle, 1< p < oo, (59)
=" 9,07 fllee Sp I fllee, 1< p <oo, (60)
131" Fllzz S Fll gt (61)

These estimates appear, for instance, in [Bejenaru, Ionescu, Kenig, and Tataru 2013, (1.5)] and also find
application in [Liu and Smith 2014, §2].

Remark 4.5. In these estimates and those below, we use the Lebesgue measure on R? for all L? spaces.
In particular, for radial functions of r, we essentially adopt the rdr measure.

Lemma 4.6 (elementary bounds for A). The connection coefficients Ag and Ay, given by (57), satisfy
lAollze Sloller 346l e Sloliz. 546l Sl wherel < p<oo,  (62)
and
Aol S llelltlipll e, where 1 < p < oo, lAolliLe < IIpIIiE- (63)
Moreover, Ag satisfies the bounds
|54 S Upllcliply,  wherel < p<oco, [ 5AG] .« S lol7: (64)

Proof. These estimates are essentially contained in [Liu and Smith 2014, §2].
The first inequality of (62) is trivial. The second follows from Cauchy—Schwarz:

00 1/2
|A9(t,r)|5r(/ |p(s)|2sds> .
0

The third is an application of (60) with n = 1.

The first inequality of (63) follows from the first inequality of (62) and from (59). The second is a
consequence of Cauchy—Schwarz and the third inequality of (62) with p = 2.

The first inequality of (64) follows from the first and third inequalities of (62). The second follows
from two applications of the second inequality of (62). ]



UNIQUENESS OF SOLUTIONS TO THE INFINITE RADIAL CHERN-SIMONS-SCHRODINGER HIERARCHY 1707

Lemma 4.7 (weighted estimates). Let % + %1 — 1 with | < q < oo, and suppose that p = ||* and
pj= |Wj|2f0rj =1,2. Then

Ir=4AY I < ||W||§_'le/q’ o
||r—1/qAép)||L;>O S Ml el (09

and
”rl/pAéPlvm) e < gréislgllll’r(l) ”il'xl/q el g W@z, (67)

where S denotes the set of permutations on two elements.
Proof. To establish (66), use Holder’s inequality to obtain
Aol S 711 172,
and then use Sobolev embedding. The estimate (65) follows from Holder’s inequality, which yields
[Aal S0y 2 19D 2

and Hardy’s inequality.
To prove (67), use Holder to write

, -2 -1 -1
AL S WAL Lo llr = Pyl 2 il 2 2
Then, using (65) and Hardy’s inequality, we obtain
1 : 2
172 AL e S 1100 12l o 121122
Finally, we may repeat the argument with the roles of | and v reversed. ]

Lemma 4.8 (bounds for the nonlinear terms). Suppose that p; = |/ | for j =1,2. Then
145 Ol + | 5 AT AP O 1 < Wl 12l g 1Ol e minen e ez (68)
Proof. We start with
1AL Ol S I 2AL 2 el = 2Ol S IF AL e 1010

and then appeal to (67) with p =g = 2.
Similarly,
|| rLZAéPI)AéPZ)G) || 2 S ”rflAéPl) ||L)o{o ||r*1/2Aé,02) ”L30 ”’,.71/2@”[‘%

2
S Wil 12l gz vz 181 e,

where we have used (66) and (65) with p = ¢ =2 and Hardy’s inequality. Finally, we may repeat the
estimate but with the roles of v and , reversed. [l
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Now we introduce (see (28) to compare)
py o (8, 7) 1= AL (1) + LAPY 1 AL (2, 1). (69)
For the definitions of the terms on the right-hand side, see the equations and comments from (57) to (58).

Corollary 4.9. Suppose p; = |wj|2forj =1,2. Then
lao1.0, V3l S Wil gz W2l e min[[Yr )l g2Vl e l¥e ez, (70)
3
where Sz denotes the set of permutations on three elements.

Proof. For all but two permutations, the estimate follows from (68). To establish the estimate for the
remaining two cases, we need L°° bounds on A(()p 122 and r%Aép ‘)Aép 2 Using the second estimate of (62)
twice and Sobolev embedding, we obtain

|48 A | e < 13 A 11 7 A8 | e S It Ta V2050 S W10 121

To bound A(()p 1p 2), we proceed in a manner similar to that of the second estimate of (63) and (67). In
particular, invoking (66) with ¢ =2 and Hardy, we obtain

o0
/ s_lAép‘)s_1 [V |%s ds

(p1,02)
1A e = ‘
,

S AL Lo llr ™ Py o SIS 12 . OO
L * -
Remark 4.10. From the proofs of these estimates, we see that the limiting factor in lowering the regularity
of the unconditional uniqueness result lies in the interaction part, which requires s = % rather than the s = %
required for the nonlinear part. By using negative-regularity Sobolev spaces, [Hong, Taliaferro, and Xie
2014] lowers the regularity required for the interaction part. Such a procedure does not seem to work, at
least directly, for the problem at hand. This is because one would need to obtain the same negative-order
Sobolev index in the right-hand side of (70) for the purpose of moving the term arising from controlling

the nonlinear part back over to the left-hand side (see the argument following the proof of Theorem 2.4).
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