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FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS
ON THE HEISENBERG GROUP

YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

Marcinkiewicz multipliers are L p bounded for 1< p<∞ on the Heisenberg group Hn
'Cn
×R, as shown

by D. Müller, F. Ricci, and E. M. Stein. This is surprising in that these multipliers are invariant under
a two-parameter group of dilations on Cn

×R, while there is no two-parameter group of automorphic
dilations on Hn . This lack of automorphic dilations underlies the failure of such multipliers to be in
general bounded on the classical Hardy space H 1 on the Heisenberg group, and also precludes a pure
product Hardy space theory.

We address this deficiency by developing a theory of flag Hardy spaces H p
flag on the Heisenberg group,

0< p ≤ 1, that is in a sense “intermediate” between the classical Hardy spaces H p and the product Hardy
spaces H p

product on Cn
×R developed by A. Chang and R. Fefferman. We show that flag singular integral

operators, which include the aforementioned Marcinkiewicz multipliers, are bounded on H p
flag, as well

as from H p
flag to L p, for 0< p ≤ 1. We also characterize the dual spaces of H 1

flag and H p
flag, and establish a

Calderón–Zygmund decomposition that yields standard interpolation theorems for the flag Hardy spaces
H p

flag. In particular, this recovers some L p results of Müller, Ricci, and Stein (but not their sharp versions)
by interpolating between those for H p

flag and L2.
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1. Introduction

Classical Calderón–Zygmund theory centers around singular integrals associated with the Hardy–Little-
wood maximal operator M that commutes with the usual dilations on Rn , δ · x = (δx1, . . . , δxn) for
δ > 0. On the other hand, product Calderón–Zygmund theory centers around singular integrals associated
with the strong maximal function MS that commutes with the multiparameter dilations on Rn , δ · x =
(δ1x1, . . . , δnxn) for δ = (δ1, . . . , δn) ∈Rn

+
. The strong maximal function [Jessen et al. 1935] is given by

MS( f )(x)= sup
x∈R

1
|R|

∫
R
| f (y)| dy, (1-1)

where the supremum is taken over the family of all rectangles R with sides parallel to the axes.
For Calderón–Zygmund theory in the product setting, one considers operators of the form T f = K ∗ f ,

where K is homogeneous, that is, δ1 · · · δn K (δ · x) = K (x), or, more generally, K (x) satisfies certain
differential inequalities and cancellation conditions such that the kernels δ1 · · · δn K (δ · x) also satisfy the
same bounds. Such operators have been studied, for example, in [Gundy and Stein 1979; Fefferman and
Stein 1982; Fefferman 1986; 1987; 1999; Chang 1979; Chang and Fefferman 1985; 1982; 1980; Journé
1985; 1986; Pipher 1986; Ferguson and Lacey 2002], where both the L p theory for 1 < p <∞ and
H p theory for 0< p ≤ 1 were developed. More precisely, Fefferman and Stein [1982] studied the L p

boundedness (1< p <∞) for the product convolution singular integral operators. Journé [1985; 1988]
introduced non-convolution-product singular integral operators, established the product T 1 theorem, and
proved the L∞→ BMO boundedness of such operators. The product Hardy space H p(Rn

×Rm) was
first introduced by Gundy and Stein [1979]. Chang and Fefferman [1985; 1982; 1980] developed the
theory of atomic decomposition and established the dual space of the Hardy space H 1(Rn

×Rm), namely
the product BMO(Rn

×Rm) space. Another characterization of such product BMO space was given in
conjunction with Hankel theorems and commutators in the product setting by Ferguson and Lacey [2002]
and Lacey and Terwilleger [2005]. Carleson [1974] disproved by a counterexample the conjecture that
the product atomic Hardy space on Rn

×Rm could be defined by rectangle atoms. This motivated Chang
and Fefferman to replace the role of cubes in the classical atomic decomposition of H p(Rn) by arbitrary
open sets of finite measures in the product H p(Rn

×Rm). Subsequently, Fefferman [1987] established
the criterion for the H p

→ L p boundedness of singular integral operators in Journé’s class by considering
its action only on rectangle atoms by using Journé’s lemma. However, Fefferman’s criterion cannot be
extended to three or more parameters without further assumptions on the nature of T , as shown in [Journé
1985; Journé 1988]. In fact, Journé provided a counterexample in the three-parameter setting of singular
integral operators such that Fefferman’s criterion breaks down. Subsequently, the H p to L p boundedness
for Journé’s class of singular integral operators with arbitrary number of parameters was established
by J. Pipher [1986] by considering directly the action of the operator on (nonrectangle) atoms and an
extension of Journé’s geometric lemma to higher dimensions.

On the other hand, multiparameter analysis has only recently been developed for L p theory with
1 < p <∞ when the underlying multiparameter structure is not explicit, but implicit, as in the flag
multiparameter structure studied in [Nagel et al. 2001] and its counterpart on the Heisenberg group Hn



FLAG HARDY SPACES AND MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP 1467

studied in [Müller et al. 1995; 1996]. In these latter two papers the authors obtained the surprising result
that certain Marcinkiewicz multipliers, invariant under a two-parameter group of dilations on Cn

×R, are
bounded on L p(Hn), despite the absence of a two-parameter automorphic group of dilations on Hn . This
striking result exploited an implicit product, or semiproduct, structure underlying the group multiplication
in Hn

' Cn
×R. In contrast to this, it is not hard to see that the class of flag singular integrals considered

there is not in general bounded on the standard one-parameter Hardy space H 1(Hn) as in [Fefferman and
Stein 1972] (see, for example, Theorem 67 in Section 11 below). The lesson learned here is that Hardy
space theories for 0< p ≤ 1 must be tailored to the invariance properties of the class of singular integral
operators under consideration.

The goal of this paper is to develop for the Heisenberg group a theory of flag Hardy spaces H p
flag with

0< p ≤ 1. The first two authors have treated the Euclidean flag structure in [Han and Lu 2008]; see also
the multiparameter setting associated with the Zygmund dilation [Han and Lu 2010]. The ideas developed
in this paper and [Han and Lu 2008; Han and Lu 2010] have been adapted to some other multiparameter
cases, such as the product spaces of Carnot–Carathéodory spaces [Han et al. 2013a], where the L p theory
was established in [Nagel and Stein 2004], and the composition of two singular integrals with different
homogeneity [Han et al. 2013b].

This flag theory for the Heisenberg group is most conveniently explained when p = 1 in the more
general context of spaces (X, ρ, dµ) of homogeneous type [Coifman and Weiss 1976], which already
include Euclidean spaces RN and stratified graded nilpotent Lie groups such as the Heisenberg groups
Hn
= Cn

×R. We may assume here that ρ and dµ are connected by the equivalence

µ(Bρ(x, r))≈ r, where Bρ(x, r)= {y ∈ X : ρ(x, y) < r}. (1-2)

In particular, the usual structure on Euclidean space Rn is given by ρ(x, y)= |x − y|n and dµ(x)= dx .
Recall that one of several equivalent definitions of the Hardy space H 1(X) is as the set of f ∈ (Cη(X))∗

with
‖ f ‖H1(X) ≡ ‖g( f )‖L1(dµ) <∞,

where the Littlewood–Paley g-function g( f ) is given by

g( f )=
{ ∞∑

j=−∞

|E j f |2
}1

2

,

where {E j }
∞

j=−∞ is an appropriate Littlewood–Paley decomposition of the identity on L2(dµ).
The product Hardy space H 1

product(X × X ′) corresponding to a product of homogeneous spaces
(X, ρ, dµ) and (X ′, ρ ′, dµ′) is given as the set of f ∈ (Cη(X × X ′))∗ with

‖ f ‖H1
product(X×X ′) ≡ ‖gproduct( f )‖L1(dµ×dµ′) <∞,

where the product Littlewood–Paley g-function gproduct( f ) is given by

gproduct( f )=
{ ∞∑

j, j ′=−∞

|D j D′j ′ f |
2
}1

2

,
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and where {D j }
∞

j=−∞ and {D′j ′}
∞

j ′=−∞ are Littlewood–Paley decompositions of the identities on L2(dµ)
and L2(dµ′), respectively (and act separately on the respective distinct variables). Note that if j = j ′,
then D j D′j ′ = D j D′j satisfies estimates similar to those for E j in the standard one-parameter Hardy
space H 1(X × X ′). Thus, we see that

gproduct( f )=
{ ∞∑

j, j ′=−∞

|D j D′j ′ f |
2
}1

2

≥

{ ∞∑
j

|D j D′j f |2
}1

2

≈

{ ∞∑
j

|E j f |2
}1

2

= g( f ),

and so we have the inclusion
H 1

product(X × X ′)⊂ H 1(X × X ′).

Now we specialize the space of homogeneous type X to be the Heisenberg group Hn
= Cn

×R. The
flag structure on the Heisenberg group Hn arises in an intermediate manner, namely, as a homogeneous
space structure derived from the Heisenberg multiplication law that is adapted to the product of the
homogeneous spaces Cm and R. The appropriate definition of the flag Hardy space H 1

flag(H
n) is already

suggested in [Müller et al. 1996], where a Littlewood–Paley g-function gflag is introduced that is adapted
to the flag structure on the Heisenberg group Hn

= Cn
×R:

gflag( f )=
{ ∞∑

j,k=−∞

|Ek D j f |2
} 1

2

,

where {D j }
∞

j=−∞ is the standard Littlewood–Paley decomposition of the identity on L2(Hn), and
{Ek}

∞

k=−∞ is the standard Littlewood–Paley decomposition of the identity on L2(R). One can then
define H 1

flag(H
n) to consist of appropriate “distributions” f on Hn with

‖ f ‖H1
flag(H

n) ≡ ‖gflag( f )‖L1(Hn) <∞.

Now, for k ≤ 2 j , it turns out that Ek D j is essentially the one-parameter Littlewood–Paley function D j ;
while, for k > 2 j , it turns out that Ek D j is essentially the product Littlewood–Paley function Ek F j , where
{F j }

∞

j=−∞ is the standard Littlewood–Paley decomposition of the identity on L2(Cn). Thus we see that
gflag( f ) is a semiproduct Littlewood–Paley function satisfying

gproduct( f )& gflag( f )& g( f ), H 1
product(X × X ′)⊂ H 1

flag(X × X ′)⊂ H 1(X × X ′).

We describe this structure as “semiproduct”, since only vertical Heisenberg rectangles (which are es-
sentially unions of contiguous Heisenberg balls of fixed radius stacked one on top of the other) arise
essentially as the supports of the components Ek D j , when k > 2 j . When k ≤ 2 j , the support of Ek D j is
essentially a Heisenberg cube. Thus no horizontal rectangles arise, and the structure is “semiproduct”.

Of course, we must also address the nature of the “distributions” referred to above, and for this we
will use a lifting technique introduced in [Müller et al. 1995] to define projected flag molecular spaces
Mflag(H

n), and then the aforementioned distributions will be elements of the dual space Mflag(H
n)′. We

also show that these distributions are essentially the same as those obtained from the dual of a more
familiar moment flag molecular space MF (H

n). Finally, we mention that a theory of flag Hardy spaces
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can also be developed with the techniques used here, but without recourse to any notion of “distributions”,
by simply defining H p

abstract(H
n) to be the abstract completion of the metric space

X p(Hn)≡ { f ∈ L2(Hn) : gflag( f ) ∈ L p(Hn)}

with metric
d( f1, f2)≡ ‖gflag( f1− f2)‖

p
L p(Hn), f j ∈ X p(Hn).

We show that the abstract space H p
abstract(H

n), whose elements are realized only as equivalence classes of
Cauchy sequences, is in fact isomorphic to the space H p

flag(H
n), whose elements have the advantage of

being realized as a subspace of distributions, namely those f in Mflag(H
n)′ whose flag Littlewood–Paley

function gflag( f ) belongs to L p(Hn). Here Mflag(H
n) is a molecule space with implicit product structure.

In Part I of the paper we define flag Hardy spaces and state our results. In Part II we give the proofs,
and in Part III we construct a dyadic grid adapted to the flag structure.

Remark 1. Some of the proofs we need in this paper are straightforward modifications of arguments
already in the literature, and in order not to interrupt the flow of the paper, we have left these proofs out.
However, all the details are included in the expanded version of this paper [Han et al. 2012].

Part I. Flag Hardy spaces: definitions and results

Our point of departure is to develop a wavelet Calderón reproducing formula associated with the given
two-parameter structure as in [Müller et al. 1996], and then to prove a Plancherel–Pólya-type inequality
in this setting. This will provide the flexibility needed to define flag Hardy spaces and prove boundedness
of flag singular integrals, duality, and interpolation theorems for these spaces. To explain the novelty in
this approach more carefully, we point out the following three types of reproducing formulas derived
from the original idea of Calderón:

f (x)=
∫
∞

0
ψt ∗ψt ∗ f (x)dt

t
,

f (x)=
∑
j∈Z

D̃ j D j f (x),

f (x)=
∑

j

∑
I

{|I |(ψ j ∗ f )(x I )}ψ̃ j (x, x I ).

We refer to the first formula as a continuous Calderón reproducing formula, its advantage being
the use of compactly supported components ψt that are repeated. We refer to the second formula as a
discrete Calderón reproducing formula, in which D j is generally a compactly supported nonconvolution
operator in a space of homogeneous type, and D̃ j is no longer compactly supported but satisfies molecular
estimates. In certain cases, such as in Euclidean space, it is possible to use the Fourier transform to obtain
a discrete decomposition with repeated convolution operators D j = ψ j .

Finally, we refer to the third formula as a wavelet Calderón reproducing formula, which can also be
developed in a space of homogeneous type. For example, such formulas were first developed in certain
situations in [Frazier and Jawerth 1990]. The advantage of the third formula is that it expresses f as a
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sum of molecular, or wavelet-like, functions ψ̃ j (x, x I ) with coefficients |I |(ψ j ∗ f )(x I ) that are obtained
by evaluating ψ j ∗ f at any convenient point in the set I from a dyadic decomposition at scale 2 j of the
space. As a consequence, we can replace the coefficient |I |(ψ j ∗ f )(x I ) with either the supremum or
infimum of such choices and retain appropriate estimates(see Theorem 19 below). We note in passing
that the collection of functions {ψ̃ j (x, x I )} j,I forms a Riesz basis for L2. In certain cases when such
functions form an orthogonal basis, the decomposition is referred to as a wavelet decomposition, and it
is from this that we borrow our terminology.

This “wavelet” scheme is particularly useful in dealing with the Hardy spaces H p for 0< p ≤ 1, and
using this, we will show that flag singular integral operators are bounded on H p

flag for all 0< p ≤ 1, and
furthermore that these operators are bounded from H p

flag to L p for all 0< p ≤ 1. These ideas can also be
applied in the pure product setting to provide a different approach to proving H p

product to L p boundedness
than that used by Fefferman, and thus to bypass both the action of singular integral operators on rectangle
atoms, and the use of Journé’s covering lemma.

We now recall the example of implicit multiparameter structure that provides the main motivation for this
paper. In [Müller et al. 1995], Müller, Ricci, and Stein uncovered a new class of flag singular integrals on
Heisenberg(-type) groups, which arose in the investigation of Marcinkiewicz multipliers. To be more pre-
cise, let m(L, iT ) be the Marcinkiewicz multiplier operator, where L is the sub-Laplacian, T is the central
element of the Lie algebra on the Heisenberg group Hn

=Cn
×R, and m satisfies Marcinkiewicz conditions

as in [Müller et al. 1995]. It was proved in [Müller et al. 1995] that the kernel of m(L, iT ) satisfies the stan-
dard one-parameter Calderón–Zygmund-type estimates associated with automorphic dilations in the region
where |t |< |z|2, and the multiparameter Calderón–Zygmund-type estimates in the region where |t | ≥ |z|2.

The proof of L p boundedness of m(L, iT ) given in [Müller et al. 1995] requires lifting the operator to
a larger group, Hn

×R. This lifts K , the kernel of m(L, iT ) on Hn , to a product kernel K̃ on Hn
×R.

The lifted kernel K̃ is constructed so that it projects to K by

K (z, t)=
∫
∞

−∞

K̃ (z, t − u, u) du,

taken in the sense of distributions. The operator T̃ corresponding to the product kernel K̃ can be dealt
with in terms of tensor products of operators, and one can obtain their L p boundedness from the known
pure product theory. Finally, the L p boundedness of the operator with kernel K follows from the
transference method of [Coifman and Weiss 1976], using the projection π : Hn

× R→ Hn given by
π((z, t), u)= (z, t +u). One of our main results, Corollary 27 below, is an extension of the boundedness
of m(L, iT ) to flag Hardy spaces H p

flag for all 0 < p ≤ 1, and follows from the boundedness of flag
singular integrals on H p

flag.
In [Müller et al. 1996], the authors obtained the same boundedness results, but with optimal regularity

on the multipliers. This required working directly on the group without lifting to a product, and led to the
introduction of a continuous flag Littlewood–Paley g-function and a corresponding continuous Calderón
reproducing formula. We remark that one of the main features of our extension of these results to H p for
0< p ≤ 1 is the construction of a wavelet Calderón reproducing formula.
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We note that the regularity satisfied by flag singular kernels is better than that of the product singular
kernels. More precisely, the singularity of the standard pure product kernel on Cn

×R is contained in the
union {(z, 0)} ∪ {(0, u)} of two subspaces, while the singularity of K (z, u), the flag singular kernel on
Hn
×R defined by Definition 7 below, is contained in a single subspace {(0, u)}, but is more singular on

yet a smaller subspace {(0, 0)}, a situation described neatly in terms of the flag (or filtration) of subspaces,
{(0, 0)}$ {(0, u)}$ Hn . In the following, we describe some natural questions that arise.

Question 1. What is the correct definition of a flag Hardy space H p
flag associated with flag singular integral

operators for 0< p ≤ 1 so that both (1) flag singular integral operators are bounded, and (2) a satisfactory
theory of interpolation emerges?

Question 2. What is the correct definition of spaces BMOflag of bounded mean oscillation for flag singular
integral operators, and are the singular integrals bounded on them?

Question 3. What is the duality theory for H p
flag? Is there an analogue of BMO and Carleson measure-type

function spaces which are dual spaces of the flag Hardy spaces H p
flag as in the pure product setting?

Question 4. Is there a Calderón–Zygmund decomposition adapted to functions in flag Hardy spaces H p
flag

that leads, for example, to an appropriate theory of interpolation?

Question 5. What is the relationship between classical Hardy spaces H p and the flag Hardy spaces H p
flag?

We address these five questions as follows. As in the L p theory for p > 1 considered in [Müller et al.
1995], one is naturally tempted to establish Hardy space theory under the implicit two-parameter structure
associated with the flag singular kernel by invoking the method of lifting to the pure product setting
together with the transference method in [Coifman and Weiss 1976]. However, this direct lifting method
is not readily adaptable to the case of p ≤ 1 because the transference method is not known to be valid. A
different approach centering on the use of a continuous flag Littlewood–Paley g-function was carried
out in [Müller et al. 1996]. This suggests that the flag Hardy space H p

flag associated with this implicit
two-parameter structure for 0< p ≤ 1 should be defined in terms of this or a similar g-function. Crucial
for this is the use of a space of test functions arising from the lifting technique in [Müller et al. 1995],
and a “wavelet” Calderón reproducing formula adapted to these test functions. Here is the order in which
we implement these ideas.

(1) We first use the L p theory of Littlewood–Paley square functions gflag as in [Müller et al. 1996] to
develop a Plancherel–Pólya-type inequality.

(2) We next define the flag Hardy spaces H p
flag using the flag g-function gflag together with a space of

test functions that is motivated by the lifting technique in [Müller et al. 1995]. We then develop the
theory of Hardy spaces H p

flag associated to the two-parameter flag structures and the boundedness of
flag singular integrals on these spaces. We also establish the boundedness of flag singular integrals
from H p

flag to L p.

(3) We then turn to duality theory for the flag Hardy space H p
flag and introduce the dual space CMOp

flag
.

In particular we establish the duality between H 1
flag

and the space BMOflag . We then establish the
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boundedness of flag singular integrals on BMOflag . It is worthwhile to point out that in the classical
one-parameter or pure product case, BMO is related to the concept of Carleson measure. The space
CMOp

flag
for all 0< p ≤ 1, as the dual space of H p

flag introduced in this paper, is then defined by a
generalized Carleson measure condition.

(4) We finally establish a Calderón–Zygmund decomposition lemma for any H p
flag function (0< p <∞)

in terms of functions in H p1
flag

and H p2
flag

with 0< p1 < p< p2 <∞. This gives rise to an interpolation
theorem between H p1

flag
and H p2

flag
for any 0< p2 < p1 <∞ (H p

flag
= L p for 1< p <∞).

We now describe our approach and results in more detail. Proofs will be given in subsequent parts of
the paper.

2. The square function on the Heisenberg group

We begin with an implicit two-parameter continuous variant of the Littlewood–Paley square function that
is introduced in [Müller et al. 1996]. For this we need the standard Calderón reproducing formula on the
Heisenberg group. Note that spectral theory was used in place of the Calderón reproducing formula in
[Müller et al. 1996].

Theorem 2 [Geller and Mayeli 2006, Corollary 1]. There is ψ ∈ C∞(Hn) satisfying either

ψ ∈ S(Hn) and all moments of ψ vanish, or

ψ ∈ C∞c (H
n) and all arbitrarily large moments of ψ vanish,

such that the following Calderón reproducing formula holds:

f =
∫
∞

0
ψ∨s ∗ψs ∗ f ds

s
, f ∈ L2(Hn),

where ∗ is Heisenberg convolution, ψ∨(ζ )= ψ(ζ−1), and ψs(z, t)= s−2n−2ψ(z/s, u/s2) for s > 0.

Remark 3. We will usually assume that ψ above has compact support. However, it will sometimes be
convenient for us if the component functions ψs have infinitely many vanishing moments. In particular
we can then use the same component functions to define the flag Hardy spaces for all 0< p <∞ (the
smaller p is, the more vanishing moments are required to obtain necessary decay of singular integrals).
Thus we will sometimes sacrifice the property of having compactly supported component functions.

We now wish to extend this formula to encompass the flag structure on the Heisenberg group Hn .

2.1. The component functions. Following [Müller et al. 1996], we construct a Littlewood–Paley compo-
nent function ψ defined on Hn

' Cn
×R, given by the partial convolution ∗2 in the second variable only:

ψ(z, u)= ψ (1) ∗2 ψ
(2)(z, u)=

∫
R

ψ (1)(z, u− v)ψ (2)(v) dv, (z, u) ∈ Cn
×R,

where ψ (1) ∈ S(Hn) is as in Theorem 2, and ψ (2) ∈ S(R) satisfies∫
∞

0
|ψ̂ (2)(tη)|2 dt

t
= 1
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for all η ∈ R\{0}, along with the moment conditions∫
Hn

zαuβψ (1)(z, u) dz du = 0, |α| + 2β ≤ M,∫
R

vγψ (2)(v)dv = 0, γ ≥ 0.

Here the positive integer M may be taken arbitrarily large when the support of ψ (1) is compact, and may
be infinite otherwise.

Thus we have

f (z, u)=
∫
∞

0

∫
∞

0
ψ̌s,t ∗ψs,t ∗ f (z, u)ds

s
dt
t
, f ∈ L2(Hn), (2-1)

where the functions ψs,t are given by

ψs,t(z, u)= ψ (1)s ∗2 ψ
(2)
t (z, u), (2-2)

with

ψ (1)s (z, u)= s−2n−2ψ (1)
(

z
s
,

u
s2

)
and ψ

(2)
t (v)= t−1ψ (2)

(
v

t

)
,

and where the integrals in (2-1) converge in L2(Hn). Indeed,

ψ̌s,t ∗Hn ψs,t ∗Hn f (z, u)= (ψ̌ (1)s ∗2 ψ
(2)
t ) ∗Hn (ψ̌ (1)s ∗2 ψ

(2)
t ) ∗Hn f (z, u)

= (ψ̌ (1)s ∗Hn ψ̌ (1)s ) ∗Hn (ψ
(2)
t ∗R ψ

(2)
t ) ∗2 f (z, u)

yields (2-1) upon invoking the standard Calderón reproducing formula on R and then Theorem 2 on Hn:∫
∞

0

∫
∞

0
ψ̌s,t ∗Hn ψs,t ∗Hn f (z, u)ds

s
dt
t
=

∫
∞

0
ψ̌ (1)s ∗Hn ψ̌ (1)s ∗Hn

{∫
∞

0
ψ
(2)
t ∗R ψ

(2)
t ∗2 f (z, u)dt

t

}
ds
s

=

∫
∞

0
ψ̌ (1)s ∗Hn ψ̌ (1)s ∗Hn f (z, u)ds

s
= f (z, u).

For f ∈ L p, 1< p <∞, the continuous Littlewood–Paley square function gflag( f ) of f is defined by

gflag( f )(z, u)=
{∫
∞

0

∫
∞

0
|ψs,t ∗ f (z, u)|2 ds

s
dt
t

}1
2

,

Note that we have the flag moment conditions, so called because they include only half of the product
moment conditions associated with the product Cn

×R:∫
R

uαψ(z, u) du = 0 for all α ∈ Z+ and z ∈ Cn. (2-3)

Indeed, with the change of variable u′ = u− v and the binomial theorem

(u′+ v)β =
∑
β=γ+δ

cγ,δ(u′)γ vδ,
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we have ∫
R

uαψ(z, u) du =
∫

R

uα
{∫

R

ψ (2)(u− v)ψ (1)(z, v) dv
}

du

=

∫
R

{∫
R

(u′+ v)αψ (2)(u′) du
}
ψ (1)(z, v) dv

=

∑
α=γ+δ

cγ,δ

∫
R

{∫
R

(u′)γψ (2)(u′) du′
}
vδψ (1)(z, v) dv

=

∑
α=γ+δ

cγ,δ

∫
R

{0}vδψ (1)(z, v) dv = 0

for all α ∈ Z+ and each z ∈ Cn . Note that, as a consequence, the full moments
∫

Hn zαuβψ(z, u) dz du all
vanish, but that, in general, the partial moments

∫
Cn zαψ(z, u) dz do not vanish.

Remark 4. As observed in [Nagel et al. 2012], there is a weak cancellation substitute for this failure to
vanish, namely an estimate for

∫
Cn zαψ(z, u) dz that is derived from the vanishing moments of ψ (1)(z, v)

and the smoothness of ψ (2)(u) via the identity∫
Cn

zαψ(z, u) dz =
∫

Cn

∫
R

zαψ (1)(z, v)ψ (2)(u− v) dz dv

=

∫
Cn

∫
R

zαψ (1)(z, v)[ψ (2)(u− v)−ψ (2)(u)] dz dv.

We will not pursue this further here.

We will also consider the associated sequence of component functions {ψ j,k} j,k∈Z, where the functions
ψ j,k are given by

ψ j,k(z, u)= ψ (1)j ∗2 ψ
(2)
k (z, u), (2-4)

with
ψ
(1)
j (z, u)= 2α j (2n+2)ψ (1)(2α j z, 22α j u) and ψ

(2)
k (v)= 22αkψ (2)(22αkv),

and ψ (1) and ψ (2) as above. Here α is a small positive constant that will be fixed in Theorem 17 below,
where we establish a wavelet Calderón reproducing formula using this sequence of component functions
for small α. We then have a corresponding discrete (convolution) Littlewood–Paley square function
gflag( f ) defined by

gflag( f )(z, u)=
{∑

j

∑
k

|ψ j,k ∗ f (z, u)|2
}1

2

.

This should be compared with the analogous square function in [Müller et al. 1996].

Remark 5. The terminology “implicit two-parameter structure” is inspired by the fact that the functions
ψs,t(z, u) and ψ j,k(z, u) are not dilated directly from ψ(z, u), but rather from a lifting of ψ to a product
function. It is the subtle convolution ∗2 that facilitates a passage from one-parameter “cubes” to two-
parameter “rectangles” as dictated by the geometry of the kernels considered.
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2.2. Square function inequalities. Altogether, we have from above that

f (z, u)=
∫
∞

0

∫
∞

0
ψs,t ∗ψs,t ∗ f (z, u)ds

s
dt
t
, f ∈ L2(Hn). (2-5)

Note that if one considers the integral on the right-hand side as an operator, then, by the construction
of the function ψ , it is a flag singular integral operator and has the implicit multiparameter structure
mentioned above. Using iteration and the vector-valued Littlewood–Paley estimate together with the
Calderón reproducing formula on L2 allows us to obtain L p estimates for gflag, 1< p<∞, in Theorem 6
below. This should be compared to the variant in [Müller et al. 1996, Proposition 4.1] for g-functions
constructed from spectral theory for L and T .

Theorem 6. Let 1< p <∞. There exist constants C1 and C2 depending on n and p such that

C1‖ f ‖p ≤ ‖gflag( f )‖p ≤ C2‖ f ‖p, f ∈ L p(Hn).

In order to state our results for flag singular integrals on Hn , we need to recall some definitions given
in [Nagel et al. 2001]. We begin with the definition of a class of distributions on Euclidean space RN . A
k-normalized bump function on a space RN is a Ck-function supported on the unit ball with Ck norm
bounded by 1. As pointed out in [Nagel et al. 2001], the definitions given below are independent of the
choices of k ≥ 1, and thus we will simply refer to a “normalized bump function” without specifying the
index k.

We will rephrase Definition 2.1.1 in [Nagel et al. 2001] of a flag kernel in the case of the Heisenberg
group as follows.

Definition 7. A flag convolution kernel on Hn
= Cn

×R is a distribution K on R2n+1 which coincides
with a C∞ function away from the coordinate subspace {(0, u)} ⊂ Hn , where 0 ∈ Cn and u ∈ R, and
satisfies the following:

(1) (differential inequalities) For any multi-indices α = (α1, . . . , αn), β = (β1, . . . , βm),

|∂αz ∂
β
u K (z, u)| ≤ Cα,β |z|−2n−|α|

· (|z|2+ |u|)−1−|β|

for all (z, u) ∈ Hn with z 6= 0.

(2) (cancellation condition) For every multi-index α and every normalized bump function φ1 on R and
every δ > 0, ∣∣∣∣∫

R

∂αz K (z, u)φ1(δu) du
∣∣∣∣≤ Cα|z|−2n−|α|

;

for every multi-index β and every normalized bump function φ2 on Cn and every δ > 0,∣∣∣∣∫
Cn
∂βu K (z, u)φ2(δz) dz

∣∣∣∣≤ Cγ |u|−1−|β|
;

and for every normalized bump function φ3 on Hn and every δ1 > 0 and δ2 > 0,∣∣∣∣∫
Hn

K (z, u)φ3(δ1z, δ2u) dz du
∣∣∣∣≤ C.
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As in [Müller et al. 1995], we may always assume that a flag kernel K (z, u) is integrable on Hn by
using a smooth truncation argument.

Informally, we can now define the flag Hardy space H p
flag(H

n) on the Heisenberg group for 0< p ≤ 1
by

H p
flag(H

n)= { f a distribution on Hn
: gflag( f ) ∈ L p(Hn)},

and, for f ∈ H p
flag(H

n), define

‖ f ‖H p
flag
= ‖gflag( f )‖p.

Of course we need to give a precise definition of distribution in this context, and a natural question then
arises as to whether or not the resulting definition is independent of the choice of component functions
ψ j,k in the definition of the square function gflag. Moreover, to study the H p

flag-boundedness of flag singular
integrals and establish the duality theory of H p

flag, this definition is difficult to use when 0< p≤ 1. We need
to approximately discretize the quasinorm of H p

flag. In order to obtain this discrete H p
flag quasinorm we

will prove certain Plancherel–Pólya-type inequalities, and the main tool used in proving such inequalities
will be the wavelet Calderón reproducing formula that we define below. To be more specific, we will
prove that the formula (2-5) converges in certain spaces of test functions MM

flag(H
n) adapted to the flag

structure, and thus also in the dual spaces MM
flag(H

n)′ (see Theorem 17 below). Furthermore, using an
approximation procedure and an almost-orthogonality argument, we prove in Theorem 17 below a wavelet
Calderón reproducing formula which expresses f as a Fourier-like series of molecules or “wavelets”
(z, u)→ ψ̃ j,k(z, u, z I , u J ) with coefficients ψ j,k ∗ f (z I , u J ).

In order to describe this formula explicitly in Section 3 below, we will use the flag dyadic decomposition

Hn
=

.⋃
(α,τ )∈K j

S j,α,τ

of the Heisenberg group given in Theorem 68 below (this is a “hands on” variant of the tiling construction
in [Strichartz 1992]), as well as the notion of Heisenberg rectangles

R
Sk,β,υ
S j,α,τ

(ver) and R
Sk,β,υ
S j,α,τ

(hor)

given in Definition 69 below when j ≤ k and S j,α,τ and Sk,β,υ are dyadic cubes in Hn with S j,α,τ ⊂Sk,β,υ .
Recall that

{I }I dyadic = {I j
α } j∈Z and α∈2 j Z2n

is the usual dyadic grid in Cn and that

{J }J dyadic = {J k
τ }k∈Z and τ∈2k Z

is the usual dyadic grid in R. The projection of the dyadic cube S j,α,τ onto Cn is the dyadic cube I j
α , and

R
Sk,β,υ
S j,α,τ

(ver) (respectively R
Sk,β,υ
S j,α,τ

(hor))
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plays the role of the dyadic rectangle I j
α × J 2k

υ (respectively I k
β × J 2 j

τ ). In the Heisenberg group, these
rectangles necessarily “rotate” with the group structure.

Notation 8. It will be convenient to use the suggestive, if somewhat imprecise, notation

R= I × J = I j
α × J 2k

υ

for the dyadic rectangle R
Sk,β,υ
S j,α,τ

(ver), etc. It should be emphasized that R= I × J is not a product set,
but rather a dyadic Heisenberg rectangle R

Sk,β,υ
S j,α,τ

(ver) that serves as a Heisenberg substitute for the actual
product set I j

α times J 2k
υ . Thus we will say that the dyadic rectangle R= I × J has side lengths `(I )= 2 j

and `(J )= 22k . For j ≤ k, the collection of all dyadic Heisenberg rectangles R= I × J with side lengths
2 j and 22k will be denoted by

R(2 j
× 22k)≡

{
R= I × J = I j

α × J 2k
υ =R

Sk,β,υ
S j,α,τ

(ver) : S j,α,τ ⊂ Sk,β,υ
}
.

Caution: For k ≤ j , the support of the component function ψ j,k defined in (2-4) is essentially a vertical
Heisenberg rectangle I × J having side lengths `(I )= 2− j and `(J )= 2−2k . Note the passage from j, k
to − j,−k.

2.3. Standard test functions. We now describe the features inherent in giving a precise definition of
the flag Hardy space H p

flag(H
n) as elements in the dual of familiar test spaces. We begin by introducing

the test spaces MM
flag(H

n) associated with the flag structure on Hn that are obtained by projecting the
corresponding product test spaces MM

product(H
n
×R) onto Hn . Our definitions here will encompass the

entire range 0 < p ≤ 1. For this we use the projection of functions F defined on Hn
×R to functions

f = πF defined on Hn as introduced in [Müller et al. 1995]:

f (z, u)= (πF)(z, u)≡
∫

R

F((z, u− v), v) dv. (2-6)

We will also use the notation πF = F[ as in [Müller et al. 1995]. Recall that 2n+ 1 is the Euclidean
dimension of the Heisenberg group Hn

=Cn
×R and that Q= 2n+2 is the homogeneous dimension of Hn .

In this notation, the component function ψ(z, u) in Subsection 2.1 above is given by π9(z, u), where

9(z, u, v)≡ ψ (1)(z, u)ψ (2)(v). (2-7)

We now define an appropriate product molecular space MM1,M2,M
product on Hn

×R with three parameters
M1,M2,M .

Remark 9. Note that, in the definition below, we require equally many moments and derivatives in each
of the u and v variables, and exactly twice as many moments and derivatives in the z variable. The
integer M controls the decay of the function, the integer M1 controls the total number of moments, and
the integer M2 controls the total weighted number of derivatives permitted.

Definition 10. Let M,M1,M2 ∈ N be positive integers and let 0< δ ≤ 1. The product molecular space
MM+δ,M1,M2

product (Hn
×R) consists of all functions F((z, u), v) on Hn

×R satisfying the product moment
conditions
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Hn

zαuβF((z, u), v) dz du = 0 for all |α| + 2β ≤ M1,∫
R

vγ F((z, u), v) dv = 0 for all 2γ ≤ M1,
(2-8)

and such that there is a nonnegative constant A satisfying the four differential inequalities

|∂αz ∂
β
u ∂

γ
v F((z, u), v)| ≤ A

1
(1+ |z|2+ |u|)(Q+M+|α|+2β+δ)/2

1
(1+ |v|)1+M+γ+δ

for all |α| + 2β ≤ M2 and 2γ ≤ M2, (2-9)

|∂αz ∂
β
u ∂

γ
v F((z, u), v)− ∂αz ∂

β
u ∂

γ
v F((z′, u′), v)|

≤ A
|(z, u) ◦ (z′, u′)−1

|
δ

(1+ |z|2+ |u|)(Q+M+M2+2δ)/2

1
(1+ |v|)1+M+γ+δ

for all |α| + 2β = M2 and |(z, u) ◦ (z′, u′)−1
| ≤

1
2(1+ |z|

2
+ |u|)

1
2 , (2-10)

|∂αz ∂
β
u ∂

γ
v F((z, u), v)− ∂αz ∂

β
u ∂

γ
v F((z, u), v′)|

≤ A
1

(1+ |z|2+ |u|)(Q+M+|α|+2β+δ)/2

|v− v′|δ

(1+ |v|)1+M+M2/2+2δ ,

for all |α| + 2β ≤ M2, 2γ = M2, and |v− v′| ≤ 1
2(1+ |v|), (2-11)∣∣[∂αz ∂βu ∂γv F((z, u), v)−∂αz ∂

β
u ∂

γ
v F((z′, u′), v)]−[∂αz ∂

β
u ∂

γ
v F((z, u), v′)−∂αz ∂

β
u ∂

γ
v F((z′, u′), v′)]

∣∣
≤ A

|(z, u) ◦ (z′, u′)−1
|
δ

(1+ |z|2+ |u|)(Q+M+M2+2δ)/2

|v− v′|δ

(1+ |v|)1+M+M2/2+2δ

for all |α|+2β=M2, 2γ =M2, |(z, u)◦(z′, u′)−1
|≤

1
2(1+|z|

2
+|u|)

1
2 , and |v−v′|≤ 1

2(1+|v|). (2-12)

The space MM+δ,M1,M2
product (Hn

×R) becomes a Banach space under the norm defined by the least nonneg-
ative number A for which the above four inequalities hold.

Now we define the flag molecular space MM+δ,M1,M2
flag (Hn) as the projection of MM+δ,M1,M2

product (Hn
×R)

under the map π given in (2-6).

Definition 11. Let M,M1,M2 ∈ N be positive integers and 0 < δ ≤ 1. The flag molecular space
MM+δ,M1,M2

flag (Hn) consists of all functions f on Hn such that there is F ∈ MM+δ,M1,M2
product (Hn

× R) with
f = πF = F[. Define a norm on MM+δ,M1,M2

flag (Hn) by

‖ f ‖
M

M+δ,M1,M2
flag (Hn)

≡ inf
F : f=πF

‖F‖
M

M+δ,M1,M2
product (Hn×R)

.

Thus the norm on MM+δ,M1,M2
flag (Hn) is the quotient norm

‖ f ‖
M

M+δ,M1,M2
flag (Hn)

=MM+δ,M1,M2
product (Hn

×R)/π−1({0}),

and MM+δ,M1,M2
flag (Hn) is a Banach space.
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We record here an intertwining formula for π and a convolution operator T on Hn . Let

T f (z, u)= K ∗Hn f (z, u)=
∫

Hn
K ((z, u) ◦ (z′, u′)−1) f (z′, u′) dz′ du′.

Extend T to an operator T̃ = T ⊗ δ0 on the group Hn
×R by acting T in the Hn factor only:

T̃ F((z, u), v)=
∫

Hn
K ((z, u) ◦ (z′, u′)−1)F(z′, u′, v) dz′ du′.

Lemma 12. Let T be a convolution operator on Hn and let T̃ = T ⊗ δ0 be its extension to Hn
×R defined

above. Then

T (πF)(z, u)= π(T̃ F)(z, u).

Proof. Formally we have

T (πF)(z, u)=
∫

Hn
K ((z, u) ◦ (z′, u′)−1)(πF)(z′, u′) dz′du′

=

∫
Hn

K ((z, u) ◦ (z′, u′)−1)

{∫
R

F(z′, u′− v, v) dv
}

dz′du′

=

∫
Hn

∫
R

K (z− z′, u− u′+ 2 Im z′z)F(z′, u′− v, v) dv dz′du′.

Now make the change of variable w′ = u′− v to get

T (πF)(z, u)=
∫

Hn

∫
R

K (z− z′, u−w′− v+ 2 Im z′z)F(z′, w′, v) dv dz′dw′

=

∫
R

{∫
Hn

K ((z, u− v) ◦ (z′, w′)−1)F(z′, w′, v) dz′dw′
}

dv

=

∫
R

{T̃ F(z, u− v, v)} dv = π(T̃ F)(z, u). �

Later in the paper we will fix M1 = M2 = M and denote MM+δ,M1,M2
flag (Hn) simply by MM+δ

flag (Hn), but
for now we will allow M1 and M2 to remain independent of M in order to further analyze the space
MM+δ,M1,M2

flag (Hn).

2.3.1. An analysis of the projected flag molecular space. Lemma 14 below shows that functions f (z, u)
in the “projected” flag molecular space MM+δ,M1,M2

flag (Hn) have moments in the u variable alone, as well
as more moments in the (z, u) variable than we might expect. We refer loosely to this situation as
having half-product moments. There is a more familiar space of test functions MM+δ,M1,M2

F (Hn), defined
below with half-product moments, that avoids the operation of projection, and that is closely related
to the projected test space MM+δ,M1,M2

flag (Hn). While we do not know if the spaces MM+δ,M1,M2
flag (Hn) and

MM+δ,M1,M2
F (Hn) coincide, the embeddings in Lemma 14 below are enough for our purposes.
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Definition 13. Let M,M1,M2∈N be positive integers and 0<δ≤1. Define the “moment” flag molecular
space MM+δ,M1,M2

F (Hn) to consist of all functions f on Hn satisfying the moment conditions∫
Hn

zαuβ f (z, u) dz du = 0 for all |α| ≤ M1, |α| + 2β ≤ 2M1+ 2,∫
R

uγ f (z, u) du = 0 for all γ ≤ M1,

and such that there is a nonnegative constant A satisfying the differential inequalities

|∂αz ∂
β
u f (z, u)| ≤ A

1
(1+ |z|2+ |u|)(Q+M+|α|+2β)/2 for all |α| + 2β ≤ M2,

|∂αz ∂
β
u f (z, u)− ∂αz ∂

β
u f (z′, u′)| ≤ A

|(z, u) ◦ (z′, u′)−1
|
δ

(1+ |z|2+ |u|)(Q+M+δ+M2)/2

for all |α| + 2β = M2 and |(z, u) ◦ (z′, u′)−1
| ≤

1
2(1+ |z|

2
+ |u|)

1
2 .

Note that the moment conditions in the definition of MM+δ,M1,M2
F (Hn) permit larger values of β

depending on |α| than in the definition of MM+δ,M1,M2
flag (Hn). The space MM+δ,M1,M2

F (Hn) becomes a
Banach space under the norm defined by the least nonnegative number A for which the above two
inequalities hold.

Lemma 14. The spaces MM+δ,M1,M2
flag (Hn) and MM+δ,M1,M2

F (Hn) satisfy the containments

M3M+δ+M2,M1,2M2+4
F (Hn)⊂MM+δ,M1,M2

flag (Hn)⊂MM+δ,M1,M2
F (Hn),

which are continuous:

‖ f ‖
M

M+δ,M1,M2
F (Hn)

. ‖ f ‖
M

M+δ,M1,M2
flag (Hn)

. ‖ f ‖
M

3M+δ+M2,M1,2M2+4
F (Hn)

.

Remark 15. The importance of the “projected” flag molecular space MM+δ,M1,M2
flag (Hn) lies in the existence

of a wavelet Calderón reproducing formula for this space of test functions; see Theorem 17 below.
We do not know if such a reproducing formula holds for the “moment” flag space MM+δ,M1,M2

F (Hn),
but the embeddings in Lemma 14 will prove important in identifying the distributions in the dual space
MM+δ,M1,M2

flag (Hn)′ as being “roughly” those in a dual space M
M ′+δ,M ′1,M

′

2
F (Hn)′.

Remark 16. The integer M1 that controls the number of moments in MM+δ,M1,M2
F (Hn) remains the same

in both the smaller space M3M+δ+M2,M1,2M2+4
F (Hn) and the larger space MM+δ,M1,M2

F (Hn). However, we
lose both derivatives and decay in passing from the smaller to the larger space.

While we cannot say that H p
flag(H

n) is a subspace of the more familiar one-parameter Hardy space
H p(Hn), we can show that the quotient space

Q p
flag(H

n)≡ H p
flag(H

n)/M
M ′+δ,M ′1,M

′

2
F (Hn)⊥

of H p
flag(H

n) can be identified with a closed subspace of the corresponding quotient space

Q p(Hn)≡ H p(Hn)/M
M ′+δ,M ′1,M

′

2
F (Hn)⊥
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of H p(Hn), thus giving a sense in which the distributions we use to define H p
flag(H

n) are “roughly” the
same as those used to define H p(Hn). See [Han et al. 2012] for details.

3. The wavelet Calderón reproducing formula

We can now state our wavelet Calderón reproducing formula for the flag structure in terms of the projected
product test spaces

MM+δ
flag (Hn)≡MM+δ,M.M

flag (Hn),

defined by projecting the product test spaces

MM+δ
product(H

n
×R)≡MM+δ,M,M

product (Hn
×R).

We remind the reader that Euclidean versions of such reproducing formulas were obtained by Frazier and
Jawerth [1990] using the Fourier transform together with the very special property that Rn is tiled by the
compact abelian torus Tn and its discrete dual group, the lattice Zn .

It is convenient to introduce some new notation for the dyadic rectangles defined in Notation 8. Given
0< α < 1 and a positive integer N , we write

R( j, k)≡R(2−α( j+N )
× 2−2α(k+N )),

Q( j)≡R(2−α( j+N )
× 2−2α( j+N )).

Now, for Q ∈ Q( j), let (zQ, uQ) be any fixed point in the cube Q, and for R ∈ R( j, k) with k < j , let
(zR, uR) be any fixed point in the rectangle R. Let us write the collection of all dyadic cubes as

Q≡
⋃
j∈Z

Q( j),

and the collection of all strictly vertical dyadic rectangles as

Rvert ≡
⋃
j>k

R( j, k).

We now set

ψ ′Q = ψ
(1)
j if Q ∈ Q( j),

ψ ′R = ψ j,k = ψ
(1)
j ∗2 ψ

(2)
k if R ∈ R( j, k),

where the ψ j,k are as in (2-4). Given an appropriate distribution f on Hn , we define its wavelet coefficients
fQ and fR by

fQ = ψ
′

Q ∗ f (zQ, uQ) if Q ∈ Q,

fR = ψ
′

R ∗ f (zR, uR) if R ∈ Rvert, that is, when j > k.

Below is the wavelet Calderón reproducing formula.
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Theorem 17. Suppose the notation is as above. Then there are associated functions ψ̃Q, ψ̃R ∈MM+δ
flag (Hn)

for Q ∈ Q and R ∈ Rvert satisfying

‖ψ̃Q‖MM+δ
flag (Hn) . ‖ψ

′

Q‖MM+δ
flag (Hn), Q ∈ Q,

‖ψ̃R‖MM+δ
flag (Hn) . ‖ψ

′

R‖MM+δ
flag (Hn), R ∈ Rvert,

and
f (z, u)=

∑
Q∈Q

fQψ̃Q(z, u)+
∑

R∈Rvert

fRψ̃R(z, u), (z, u) ∈ Hn, (3-1)

where the series in (3-1) converges in three spaces:

(1) in L p(Hn) for 1< p <∞,

(2) in the Banach space MM ′+δ
flag (Hn) for M ′ large enough,

(3) and in the corresponding dual space MM ′+δ
flag (Hn)′ for M ′ large enough.

Remark 18. Note that only half of the collection of dyadic rectangles, namely the vertical ones Rvert, are
used in the wavelet Calderón reproducing formula. This is a reflection of the implicit product structure
inherent in the Heisenberg group Hn .

3.1. Plancherel–Pólya inequalities and flag Hardy spaces. The wavelet Calderón reproducing formula
(3-1) yields the following Plancherel–Pólya-type inequalities; cf. [Pólya 1936; Plancherel and Pólya
1937]. We use the notation A ≈ B to indicate that two quantities A and B are comparable.

Theorem 19. Suppose ψ (1), φ(1) ∈ S(Cn) and ψ (2), φ(2) ∈ S(R), and let

ψ(z, u)=
∫

R

ψ (1)(z, u− v)ψ (2)(v) dv,

φ(z, u)=
∫

R

φ(1)(z, u− v)ψ (2)(v) dv

be two component functions that each satisfies the conditions in Section 2.1. Then with Q, Rvert, ψ ′Q, and
ψ ′R as above, and for f ∈MM+δ

flag (Hn)′, 0< p <∞, and M chosen large enough depending on n and p,∥∥∥∥{∑
Q∈Q

sup
(z′,u′)∈Q

|ψ ′Q ∗ f (z′, u′)|2χQ(z, u)+
∑

R∈Rvert

sup
(z′,u′)∈R

|ψ ′R ∗ f (z′, u′)|2χR(z, u)
}1

2
∥∥∥∥

L p(Hn)

≈

∥∥∥∥{∑
Q∈Q

inf
(z′,u′)∈Q

|ψ ′Q ∗ f (z′, u′)|2χQ(z, u)+
∑

R∈Rvert

inf
(z′,u′)∈R

|ψ ′R ∗ f (z′, u′)|2χR(z, u)
}1

2
∥∥∥∥

L p(Hn)

.

The Plancherel–Pólya-type inequalities in Theorem 19 will prove useful in establishing properties of
the wavelet Littlewood–Paley g-function

gflag( f )(z, u)=
{∑

Q∈Q

|ψ ′Q ∗ f (zQ, uQ)|
2χQ(z, u)+

∑
R∈Rvert

|ψ ′R ∗ f (zR, uR)|
2χR(z, u)

}1
2

,

where we are using the notation of Theorems 17 and 19.
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We can now give a precise definition of the flag Hardy spaces.

Definition 20. Let 0< p <∞. Then, for M sufficiently large depending on n and p, we define the flag
Hardy space H p

flag(H
n) on the Heisenberg group by

H p
flag(H

n)=
{

f ∈MM+δ
flag (Hn)′ : gflag( f ) ∈ L p(Hn)

}
,

and, for f ∈ H p
flag(H

n), we set
‖ f ‖H p

flag
= ‖gflag( f )‖p. (3-2)

Remark 21. We can take M in Definition 20 to satisfy

M ≥ Mn,p ≡ (2n+ 2)
[ 2

p
− 1

]
+ 1.

We have not computed the optimal value of Mn,p.

It is easy to see using Theorem 19 that the Hardy space H p
flag in Definition 20 is well defined and that

the H p
flag norm of f is equivalent to the L p norm of gflag. By use of the Plancherel–Pólya-type inequalities,

we will prove the boundedness of flag singular integrals on H p
flag below.

3.2. Boundedness of singular integrals and Marcinkiewicz multipliers. Our main result is the H p
flag→

H p
flag boundedness of flag singular integrals.

Theorem 22. Suppose that T is a flag singular integral with kernel K (z, u) as in Definition 7. Then T is
bounded on H p

flag for 0< p ≤ 1. Namely, for all 0< p ≤ 1 there exists a constant C p,n such that

‖T f ‖H p
flag
≤ C p,n‖ f ‖H p

flag
.

To obtain the H p
flag→ L p boundedness of flag singular integrals, we prove the following general result:

Theorem 23. Let 0 < p ≤ 1. If T is a linear operator which is bounded simultaneously on L2(R2n+1)

and H p
flag(H

n), then T can be extended to a bounded operator from H p
flag(H

n) to L p(R2n+1).

Remark 24. From the proof given in the next part of the paper, we see that this result holds in a larger
setting, which includes the classical one-parameter and product Hardy spaces and the Hardy spaces on
spaces of homogeneous type. Thus this provides an alternative approach to using Fefferman’s criterion
on boundedness of a singular integral operator by restricting its action on rectangle atoms [Fefferman
1986], and then combining this with Journé’s geometric lemma; see [Journé 1985; 1986; Pipher 1986].

In particular, for flag singular integrals we can deduce the following.

Corollary 25. Let T be a flag singular integral as in Theorem 23. Then T is bounded from H p
flag(H

n) to
L p(R2n+1) for 0< p ≤ 1.

Remark 26. The conclusions of both Theorem 22 and Corollary 25 persist if we only require the moment
and smoothness conditions on the flag kernel in Definition 7 to hold for |α|, β ≤ Nn,p, where Nn,p <∞

is taken sufficiently large.
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As a consequence, we can extend the Marcinkiewicz multiplier theorem in [Müller et al. 1995] (see
Lemma 2.1 there) to flag Hardy spaces for 0 < p ≤ 1. To describe this extension, recall the standard
sub-Laplacian L on the Heisenberg group

Hn
= Cn

×R= {(z, t) : z = (z j )
n
j=1, z j = x j + iy j ∈ C, t ∈ R},

defined by

L≡−

n∑
j=1

(X2
j + Y 2

j ), X j =
∂

∂x j
+ 2y j

∂

∂t
, Y j =

∂

∂y j
− 2x j

∂

∂t
.

The operators L and T = ∂/(∂t) commute, and so do their spectral measures dE1(ξ) and dE2(η). Given
a bounded function m(ξ, η) on R+×R, define the multiplier operator m(L, iT ) on L2(Hn) by

m(L, iT )=
∫∫

R+×R

m(ξ, η) dE1(ξ) dE2(η).

Then m(L, iT ) is automatically bounded on L2(Hn), and if we impose Marcinkiewicz conditions on the
multiplier, we obtain boundedness on flag Hardy spaces; this despite the fact that m is invariant under a
two-parameter family of dilations δ(s,t) which are group automorphisms only when t = s2.

Corollary 27. Let 0 < p ≤ 1, and suppose that m(ξ, η) is a bounded function defined on R+×R that
satisfies the Marcinkiewicz conditions

|(ξ∂ξ )
α(η∂η)

βm(ξ, η)| ≤ Cα,β

for all |α|, β ≤ Nn,p, where Nn,p <∞ is taken sufficiently large. Then m(L, iT ) is a bounded operator
on H p

flag(H
n) for 0< p ≤ 1.

The corollary follows from the results above together with [Müller et al. 1995, Theorem 3.1], which
shows that the kernel K (z, u) of a Marcinkiewicz multiplier m(L, iT ) satisfies the conditions defining a
flag convolution kernel in Definition 7.

3.3. Carleson measures and duality. To study the dual space of H p
flag, we introduce the Carleson measure

space CMOp
flag.

Notation 28. It will often be convenient from now on to bundle the set Q of all dyadic cubes and the set
Rvert of all vertical dyadic rectangles into a single set

R+ = Q∪Rvert

consisting of all dyadic cubes and all vertical dyadic rectangles. We also write

ψR =

{
ψ ′Q if R= Q ∈ Q,

ψ ′R if R ∈ Rvert.
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Definition 29. Let ψ j,k be as in (2-4) with notation as above. We say that f ∈CMOp
flag if f ∈MM+δ

flag (Hn)′

and the norm ‖ f ‖CMOp
flag

is finite, where

‖ f ‖CMOp
flag
≡ sup

�

{
1

|�|2/p−1

∑
R∈R+

∫
�

∑
R⊂�

|ψR ∗ f (z, u)|2χR(z, u) dz du
}1

2

for all open sets � in Hn with finite measure.

Note that the Carleson measure condition is used with the implicit multiparameter structure in CMOp
flag.

When p = 1, we denote the space CMO1
flag as usual by BMOflag. To see that the space CMOp

flag is
well defined, one needs to show that the definition of CMOp

flag is independent of the choice of the
component functions ψ j,k . This can be proved just as for the Hardy space H p

flag, using the following
Plancherel–Pólya-type inequality.

Theorem 30. Suppose ψ, φ satisfy the conditions as in Theorem 19. Then, for f ∈MM+δ
flag (Hn)′,

sup
�

{
1

|�|2/p−1

∑
R∈R+

∑
R⊂�

sup
(z,u)∈R

|ψR∗ f (z,u)|2|R|
}1

2

≈ sup
�

{
1

|�|2/p−1

∑
R∈R+

∑
R⊂�

inf
(z,u)∈R

|ψR∗ f (z,u)|2|R|
}1

2

,

where � ranges over all open sets in Hn with finite measure.

To show that CMOp
flag is the dual of H p

flag, we introduce appropriate sequence spaces.

Definition 31. Let s p be the collection of all sequences s = {sR}R∈R+ such that

‖s‖s p =

∥∥∥∥{∑
R∈R+

|sR|
2
||R|−1χR

}1
2
∥∥∥∥

L p(Hn)

<∞.

Let cp be the collection of all sequences s = {sR} such that

‖s‖cp = sup
�

{
1

|�|2/p−1

∑
R∈R+

∑
R⊂�

|sR|
2
}1

2

<∞,

where � ranges over all open sets in Hn with finite measure.

We point out that only certain of the dyadic rectangles are used in s p and cp and these choices reflect
the implicit multiparameter structure. Moreover, the Carleson measure condition is used in the definition
of cp. Next, we obtain the following duality theorem for sequence spaces.

Theorem 32. Let 0< p ≤ 1. Then we have (s p)∗ = cp. More precisely, the map which sends s = {sR} to
〈s, t〉 ≡

∑
R sR t̄R defines a continuous linear functional on s p with operator norm ‖t‖(s p)∗ ≈ ‖t‖cp , and,

moreover, every ` ∈ (s p)∗ is of this form for some t ∈ cp.

When p= 1, this theorem in the one-parameter setting on Rn was proved in [Frazier and Jawerth 1990].
The proof given in [Frazier and Jawerth 1990] depends on estimates of certain distribution functions,
which seem to be difficult to apply to the multiparameter case. For all 0 < p ≤ 1, we give a simple
and more constructive proof of Theorem 32, which uses a stopping time argument for sequence spaces.
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Theorem 32 together with the discrete Calderón reproducing formula and the Plancherel–Pólya-type
inequalities yield the duality of H p

flag.

Theorem 33. Let 0< p ≤ 1. Then
(H p

flag)
∗
= CMOp

F .

More precisely, if g ∈ CMOp
flag, the map `g given by `g( f )= 〈 f, g〉, defined initially for f ∈MM+δ

flag (Hn),
extends to a continuous linear functional on H p

flag with ‖`g‖≈‖g‖CMOp
flag

. Conversely, for every `∈(H p
flag)
∗,

there exists some g ∈ CMOp
flag so that `= `g. In particular, (H 1

flag)
∗
= BMOflag.

As a consequence of the duality of H 1
flag and BMOflag, together with the H 1

flag-boundedness of flag
singular integrals, we obtain the BMOflag-boundedness of flag singular integrals. Furthermore, we will see
that L∞ ⊆BMOflag and hence the L∞→BMOflag boundedness of flag singular integrals is also obtained.
These provide the endpoint results of [Müller et al. 1995; Nagel et al. 2001], and can be summarized as
follows.

Theorem 34. Suppose that T is a flag singular integral with kernel as in Definition 7. Then T is bounded
on BMOflag. Moreover, there exists a constant C such that

‖T ( f )‖BMOflag ≤ C‖ f ‖BMOflag .

3.4. Calderón–Zygmund decompositions and interpolation. Now we give the Calderón–Zygmund de-
composition and interpolation theorems for flag Hardy spaces. We note that H p

flag(H
n)= L p(R2n+1) for

1< p <∞ by Theorem 6.

Theorem 35 (Calderón–Zygmund decomposition for flag Hardy spaces). Let 0< p2≤1, p2< p< p1<∞,
let α > 0 be given, and suppose f ∈ H p

flag(H
n). Then we can write

f = g+ b,

where g ∈ H p1
flag(H

n) with p < p1 <∞ and b ∈ H p2
flag(H

n) with 0< p2 < p, such that

‖g‖p1

H
p1

flag
≤ Cα p1−p

‖ f ‖p
H p

flag
and ‖b‖p2

H
p2

flag
≤ Cα p2−p

‖ f ‖p
H p

flag
,

where C is an absolute constant.

Theorem 36 (interpolation theorem on flag Hardy spaces). Let 0< p2 < p1 <∞ and let T be a linear
operator which is bounded from H p2

flag to L p2 and bounded from H p1
flag to L p1 . Then T is bounded from

H p
flag to L p for all p2 < p < p1. Similarly, if T is bounded on H p2

flag and H p1
flag, then T is bounded on H p

flag
for all p2 < p < p1.

Remark 37. Combining Theorem 36 with Corollary 27 recovers the L p boundedness of Marcinkiewicz
multipliers in [Müller et al. 1995] (but not the sharp versions in [Müller et al. 1996]).

We point out that the Calderón–Zygmund decomposition in pure product domains for all L p functions
(1< p< 2) into H 1 and L2 functions, as well as the corresponding interpolation theorem, was established
by Chang and Fefferman [1985; 1982].
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Part II. Proofs of results

Part II of this paper contains the proofs of the results stated in Part I, and is organized as follows.

(1) In Section 4, we establish L p estimates for the multiparameter Littlewood–Paley g-function when
1< p <∞, and prove Theorems 6 and 38.

(2) In Section 5, we show that the Calderón reproducing formula holds on the flag molecular test function
space MM+δ

flag and its dual space (MM+δ
flag )′. Then we prove the almost-orthogonality estimates and

establish the wavelet Calderón reproducing formula on MM+δ
flag and (MM+δ

flag )′ in Theorem 17. Some
estimates are established for the strong maximal function, and together with the wavelet Calderón
reproducing formula, we then derive the Plancherel–Pólya-type inequalities in Theorem 19.

(3) In Section 6, we give a general result for bounding the L p norm of the function by its H p
flag norm

(Theorem 56). We then prove the H p
flag boundedness of flag singular integrals for all 0 < p ≤ 1

in Theorem 22. The boundedness from H p
flag to L p for all 0< p ≤ 1 for the flag singular integral

operators, Theorem 23, is thus a consequence of Theorem 22 and Theorem 56.

(4) Duality theory for the Hardy space H p
flag is then established in Section 7 along with the boundedness

of flag singular integral operators on BMOflag. The proofs of Theorems 30, 32, 33, and 34 will all
be given in Section 7.

(5) In Section 8, we prove the Calderón–Zygmund decomposition in the flag two-parameter setting
(Theorem 35) and then derive an interpolation result, Theorem 36.

(6) In Section 9, we show that flag singular integrals are not in general bounded from the classical
one-parameter Hardy space H 1(Hn) on the Heisenberg group to L1(Hn).

4. L p estimates for the Littlewood–Paley square function

The purpose of this section is to show that the L p norm of f is equivalent to the L p norm of gflag( f )
when 1< p <∞. This was shown in [Müller et al. 1996, Proposition 4.1] for a function gflag( f ) only
slightly different than that used here. Our proof is similar in spirit to that work.

Proof of Theorem 6. The proof is similar to that in the pure product case given in [Fefferman and Stein
1982], and follows from iteration and standard vector-valued Littlewood–Paley inequalities. To see this,
define

L p(Hn) 3 f → F ∈ H = `2

by F(z, u)= {ψ (1)j ∗ f (z, u)}, so that

‖F‖H =

{∑
j

|ψ
(1)
j ∗ f (z, u)|2

}1
2

.

For z fixed, set

g̃(F)(z, u)=
{∑

k

‖ψ
(2)
k ∗2 F(z, · )(y)‖2H

}1
2

.
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It is then easy to see that g̃(F)(z, u)= gflag( f )(z, u). For z fixed, by the vector-valued Littlewood–Paley
inequality, ∫

Hn
g̃(F)p(z, u) dz du ≤ C

∫
Hn
‖F‖p

H dz du.

However, ‖F‖p
H =

{∑
j : ψ

(1)
j ∗ f (z, y)|2

}p/2, so integrating with respect to z together with the standard
Littlewood–Paley inequality yields∫

Cn

∫
R

gflag( f )p(z, u) dz du ≤ C
∫

Cn

∫
R

{∑
j

|ψ
(1)
j ∗ f (z, u)|2

}p/2

dz du ≤ C‖ f ‖p
L p(Hn),

which shows that ‖gflag( f )‖p ≤ C‖ f ‖p.
The proof of the estimate ‖ f ‖p ≤ C‖gflag( f )‖p is a routine duality argument using the Calderón

reproducing formula on L2(Hn), for all f ∈ L2
∩ L p, g ∈ L2

∩ L p′ and 1/p+1/p′ = 1, and the inequality
‖gflag( f )‖p ≤ C‖ f ‖p, which was just proved. This completes the proof of Theorem 6. �

As in Theorem 6, let ψ (1) ∈ S(Hn) be supported in the unit ball in Hn and ψ (2) ∈ S(R) be supported
in the unit ball of R and satisfy ∫

∞

0
|ψ̂ (2)(tη)|4 dt

t
= 1

for all η ∈ R\{0}. We define ψ\(z, u, v) = ψ (1)(z, u)ψ (2)(v). Set ψ (1)s (z, u) = s−n−2ψ (1)(z/s, u/s2),
ψ
(2)
t (v)= t−1ψ(z/t) and

ψs,t(z, u)=
∫

R

ψ (1)s (z, u− v)ψ (2)t (v) dv.

Repeating the proof of Theorem 6, we get, for 1< p <∞,∥∥∥∥{∫ ∞
0

∫
∞

0
|ψs,t ∗ f (z, u)|2 dt

t
ds
s

}1
2
∥∥∥∥

p
≤ C‖ f ‖p

and

‖ f ‖p ≈

∥∥∥∥{∫ ∞
0

∫
∞

0
|ψs,t ∗ψs,t ∗ f (z, y)|2 dt

t
ds
s

}1
2
∥∥∥∥

p
. (4-1)

The L p boundedness of flag singular integrals for 1< p<∞ is then an easy consequence of Theorem 6.
This theorem was originally obtained in [Müller et al. 1995] using a different proof that involved the
method of transference.

Theorem 38. Suppose that T is a flag singular integral defined on Hn with flag kernel K (z, u) as in
Definition 7 above. Then T is bounded on L p for 1 < p <∞. Moreover, there exists a constant C
depending on p such that, for f ∈ L p,

‖T f ‖p ≤ C‖ f ‖p, 1< p <∞.
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Proof. We may first assume that K is an integrable function and then prove the L p boundedness of T is
independent of the L1 norm of K . The conclusion for general K then follows by an argument used in
[Müller et al. 1995]. For all f ∈ L p, by (4-1),

‖T ( f )‖p ≤ C
∥∥∥∥{∫ ∞

0

∫
∞

0
|ψs,t ∗ψs,t ∗ K ∗ f |2 dt

t
ds
s

}1
2
∥∥∥∥

p
. (4-2)

Now we claim the following estimate: for f ∈ L p,

|ψs,t ∗ K ∗ f (z, u)| ≤ C MS( f )(z, u), (4-3)

where C is a constant which is independent of the L1 norm of K and MS( f ) is the strong maximal
function of f defined in (1-1).

Assuming (4-3) for the moment, we obtain from (4-2) that

‖T f ‖p ≤ C
∥∥∥∥{∫ ∞

0

∫
∞

0
(MS(ψs,t ∗ f ))2 dt

t
ds
s

}1
2
∥∥∥∥

p
≤ C‖ f ‖p,

where the last inequality follows from the Fefferman–Stein vector-valued maximal inequality.
We now turn to the claim (4-3). This follows from dominating |ψs,t∗K ∗ f | by a product Poisson integral

Pprod f , and then dominating the product Poisson integral Pprod f by the strong maximal function MS f .
The arguments are familiar and we leave them to the reader. �

5. Developing the wavelet Calderón reproducing formula

In this section, we develop the wavelet Calderón reproducing formula and the Plancherel–Pólya-type
inequalities on test function spaces. These are the main tools used in establishing the theory of Hardy
spaces associated with the flag dilation structure. In order to establish the wavelet Calderón reproducing
formula and the Plancherel–Pólya-type inequalities, we use the continuous version of the Calderón
reproducing formula on L2(Hn) and the almost-orthogonality estimates.

We now start the relatively long proof of Theorem 17, beginning with the Calderón reproducing formula
in (2-1) that holds for f ∈ L2(Hn) and converges in L2(Hn). For any given α > 0, we discretize it as

f (z, u)=
∫
∞

0

∫
∞

0
ψ̌s,t ∗Hn ψs,t ∗Hn f (z, u)ds

s
dt
t

=

∑
j,k∈Z

∫ 2−α j

2−α( j+1)

∫ 2−2αk

2−2α(k+1)
ψ̌s,t ∗ψs,t ∗ f (z, u)dt

t
ds
s

= cα
∑
j≤k

ψ̌ j,k ∗ψ j,k ∗ f (z, u)+ cα
∑
j>k

ψ̌ j,k ∗ψ j,k ∗ f (z, u)

+

∑
j,k∈Z

∫ 2−α j

2−α( j+1)

∫ 2−2αk

2−2α(k+1)
{ψ̌s,t ∗ψs,t − ψ̌ j,k ∗ψ j,k} ∗ f (z, u)dt

t
ds
s

= T (1)
α f (z, u)+ T (2)

α f (z, u)+ Rα f (z, u),
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where

ψ j,k = ψ2−α j ,2−2αk , cα =
∫ 2−α j

2−α( j+1)

∫ 2−2αk

2−2α(k+1)

dt
t

ds
s
= ln

2−α j

2−α( j+1) ln
2−2αk

2−2α(k+1) = 2(α ln 2)2.

Notation 39. We have relabeledψ2−α j ,2−2αk as simplyψ j,k when we replace integrals
∫
∞

0

∫
∞

0 (ds/s)(dt/t)
by sums

∑
j,k∈Z. This abuse of notation should not cause confusion as we will always use j, k, j ′, k ′ as

subscripts for the discrete components ψ j,k , while we always use s, t, s ′, t ′ as subscripts for the continuous
components ψs,t . Note however that directions are reversed in passing from s, t ∈ (0,∞) to j, k ∈ Z, in
the sense that s = 2−α j and t = 2−2αk decrease as j and k increase.

To continue we choose a large positive integer N to be fixed later. We decompose the first term
T (1)
α f (z, u) by writing the Heisenberg group Hn as a pairwise disjoint union of dyadic cubes Q of side

length 2−α( j+N ), that is,
Q ∈R(2−α( j+N )

× 2−2α( j+N )).

We decompose the second term T (2)
α f (z, u) by writing the Heisenberg group Hn as a pairwise disjoint

union of dyadic rectangles R of dimension 2−α( j+N )
× 2−2α(k+N ), that is, R ∈R(2−α( j+N )

× 2−2α(k+N )).
Recall that

R( j, k)≡R(2−α( j+N )
× 2−2α(k+N )),

Q( j)≡R(2−α( j+N )
× 2−2α( j+N )),

and that (zQ, uQ) is any fixed point in the cube Q ∈ Q( j), and that (zR, uR) is any fixed point in the
rectangle R ∈ R( j, k).

We further discretize the terms T (1)
α f (z, u) and T (2)

α f (z, u) in different ways, exploiting the one-
parameter structure of the Heisenberg group for T (1)

α , and exploiting the implicit product structure for T (2)
α .

We rewrite T (1)
α f (z, u) as

T (1)
α f (z, u)= cα

∑
j≤k

ψ̌ j,k ∗ψ j,k ∗ f (z, u)

= cα
∑
j≤k

(ψ̌
(1)
j ∗2 ψ̌

(2)
k ) ∗ (ψ

(1)
j ∗2 ψ

(2)
k ) ∗ f (z, u)

= cα
∑
j≤k

(ψ̌
(1)
j ∗2 ψ̌

(2)
k ∗2 ψ

(2)
k ) ∗ψ

(1)
j ∗ f (z, u)

= cα
∑
j∈Z

(
ψ̌
(1)
j ∗2

(∑
k≥ j

ψ̌
(2)
k ∗2 ψ

(2)
k

))
∗ψ

(1)
j ∗ f (z, u)

= cα
∑
j∈Z

ψ̌ j ∗ψ j ∗ f (z, u),

where

ψ j ≡ ψ
(1)
j and ψ̌ j ≡ ψ̌

(1)
j ∗2

(∑
k≥ j

ψ̌
(2)
k ∗2 ψ

(2)
k

)
. (5-1)

Remark 40. It is a standard exercise to prove that ψ̌ j satisfies the same type of estimates as does ψ (1)j
on the Heisenberg group Hn .
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Now we write
T (1)
α f (z, u)=

∑
j≤k

∑
Q∈Q( j)

fQψQ(z, u)+ R(1)α,N f (z, u),

T (2)
α f (z, u)=

∑
j>k

∑
R∈R( j,k)

fRψR(z, u)+ R(2)α,N f (z, u),

where

fQ ≡ cα|Q|ψ j,k ∗ f (zQ, uQ) for Q ∈ Q( j) and k ≥ j,

fR ≡ cα|R|ψ j,k ∗ f (zR, uR) for R ∈ R( j, k) and k < j,

ψQ(z, u)=
1
|Q|

∫
Q
ψ̌ j,k((z, u) ◦ (z′, u′)−1) dz′du′ for Q ∈ Q( j) and k ≥ j,

ψR(z, u)=
1
|R|

∫
R
ψ̌ j,k((z, u) ◦ (z′, u′)−1) dz′du′ for R ∈ R( j, k) and k < j,

and

R(1)α,N f (z, u)= cα
∑
j≤k

∑
Q∈Q( j)

∫
Q
ψ̌ j,k((z, u) ◦ (z′, u′)−1)×[ψ j,k ∗ f (z′, u′)−ψ j,k ∗ f (zQ, uQ)] dz′du′,

R(2)α,N f (z, u)= cα
∑
j>k

∑
R∈R( j,k)

∫
R
ψ̌ j,k((z, u) ◦ (z′, u′)−1)×[ψ j,k ∗ f (z′, u′)−ψ j,k ∗ f (zR, uR)] dz′du′.

Altogether we have

f (z, u)=
∑
j∈Z

∑
Q∈Q( j)

fQψQ(z, u)+
∑
j>k

∑
R∈R( j,k)

fRψR(z, u)

+{Rα f (z, u)+ R(1)α,N f (z, u)+ R(2)α,N f (z, u)}. (5-2)

Recall that we denote by Q≡
⋃

j∈Z Q( j) the collection of all dyadic cubes, and by Rvert ≡
⋃

j>k R( j, k)
the collection of all strictly vertical dyadic rectangles. Then we can rewrite (5-2) as

f (z, u)=
∑
Q∈Q

fQψQ(z, u)+
∑

R∈Rvert

fRψR(z, u)+{Rα + R(1)α,N + R(2)α,N } f (z, u), (5-3)

which is a precursor to the wavelet form of the Calderón reproducing formula given in the statement of
Theorem 17.

The following theorem is the analogue of [Han 1994, Theorem 1.19] for the operators Rα, R(1)α,N ,
and R(2)α,N .

Theorem 41. For fixed M and 0< δ < 1, we can choose M ′ and 0< α < ε sufficiently small, and then
choose N sufficiently large, so that the operators Rα, R(1)α , and R(2)α satisfy

‖Rα f ‖L p(Hn)+‖R
(1)
α,N f ‖L p(Hn)+‖R

(2)
α,N f ‖L p(Hn) ≤

1
2‖ f ‖L p(Hn), f ∈ L p(Hn), 1< p <∞,

‖Rα f ‖
MM ′+δ

flag (Hn)
+‖R(1)α,N f ‖

MM ′+δ
flag (Hn)

+‖R(2)α,N f ‖
MM ′+δ

flag (Hn)
≤

1
2‖ f ‖

MM ′+δ
flag (Hn)

, f ∈MM ′+δ
flag (Hn).

(5-4)
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With Theorem 41 in hand, we obtain that the operator

Sα,N ≡ I − Rα − R(1)α,N f − R(2)α,N

is bounded and invertible on MM ′+δ
flag (Hn). It follows that, with ψ̃Q ≡ S−1

α,NψQ and ψ̃R ≡ S−1
α,NψR,

f (z, u)=
∑
Q∈Q

fQψ̃Q(z, u)+
∑

R∈Rvert

fRψ̃R(z, u), f ∈MM ′+δ
flag (Hn), (5-5)

where ψ̃Q and ψ̃R are in MM ′+δ
flag (Hn), and the convergence in (5-5) is in both L p(Hn) and in the Banach

space MM ′+δ
flag (Hn). This finally is the wavelet form of the Calderón reproducing formula given in the

statement of Theorem 17. The same argument shows that (5-5) holds for f ∈ L p(Hn) with convergence
in L p(Hn), provided 1 < p <∞. In fact we obtain that (5-5) holds for f in any Banach space X(Hn)

with convergence in X(Hn), provided we have operator bounds

‖Rα f ‖X(Hn)+‖R
(1)
α,N f ‖X(Hn)+‖R

(2)
α,N f ‖X(Hn) ≤

1
2‖ f ‖X(Hn), f ∈ X(Hn).

We turn first to proving the molecular estimates in (5-4), but only for

‖R(1)α,N f ‖
MM ′+δ

flag (Hn)
and ‖R(2)α,N f ‖

MM ′+δ
flag (Hn)

,

as the estimate for ‖Rα f ‖
MM ′+δ

flag (Hn)
is similar, but easier. We will use the following special T 1-type theorem

on the Heisenberg group Hn (see [Han 1998; 1994] for the Euclidean case) to prove a corresponding
product version below. Recall the definition of the one-parameter molecular space MM ′+δ(Hn).

Definition 42. Let M ′ ∈ N be a positive integer, 0< δ ≤ 1, and let Q = 2n+ 2 denote the homogeneous
dimension of Hn . The one-parameter molecular space MM ′+δ(Hn) consists of all functions f (z, u) on
Hn satisfying the moment conditions∫

Hn
zαuβ f (z, u) dz du = 0 for all |α| + 2|β| ≤ M ′,

and such that there is a nonnegative constant A satisfying the differential inequalities

|∂αz ∂
β
u f (z, u)| ≤ A

1
(1+ |z|2+ |u|)(Q+M ′+|α|+2|β|+δ)/2 for all |α| + 2|β| ≤ M ′

and

|∂αz ∂
β
u f (z, u)− ∂αz ∂

β
u f (z′, u′)| ≤ A

|(z, u) ◦ (z′, u′)−1
|
δ

(1+ |z|2+ |u|)(Q+M+δ+M ′+2δ)/2

for all |α| + 2|β| = M ′ and |(z, u) ◦ (z′, u′)−1
| ≤

1
2(1+ |z|

2
+ |u|)

1
2 .

Theorem 43. Suppose T : L2(Hn)→ L2(Hn) is a bounded linear operator with kernel K ((z, u), (z′, u′));
that is,

T f (z, u)=
∫

Hn
K ((z, u), (z′, u′)) f (z′, u′) dz′du′.
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Suppose furthermore that K satisfies∫
Hn

zαuβK ((z, u), (z′, u′)) dz du = 0,∫
Hn
(z′)α(u′)βK ((z, u), (z′, u′)) dz′du′ = 0

for all 0≤ |α|, β, and

|∂αz ∂
β
u ∂

α′

z′ ∂
β ′

u′ K ((z, u), (z′, u′))| ≤ A
1

|(z, u) ◦ (z′, u′)−1|Q+|α|+2β+|α′|+2β ′

for all 0≤ |α|, β, |α′|, β ′. Then

T : L p(Hn)→ L p(Hn) for 1< p <∞,

T :MM ′+δ(Hn)→MM ′+δ(Hn) for all M ′ and 0< δ < 1,

and, moreover, the operator norms satisfy

‖T ‖L p(Hn) ≤ C p A and ‖T ‖MM ′+δ(Hn) ≤ CM ′,δA.

We will use the technique of lifting to the product space MM ′+δ
product(H

n
×R) together with the following

special product T 1-type theorem on the product group Hn
×R.

Theorem 44. Suppose that T : L2(Hn
× R)→ L2(Hn

× R) is a bounded linear operator with kernel
K ([(z, u), v], [(z′, u′), v′]); that is,

T f ((z, u), v)=
∫

Hn×R

K ([(z, u), v], [(z′, u′), v′]) f ((z′, u′), v′) dz′du′dv′.

Suppose furthermore that K satisfies∫
Hn

zαuβK ([(z, u), v], [(z′, u′), v′]) dz du = 0,∫
Hn
(z′)α(u′)βK ([(z, u), v], [(z′, u′), v′]) dz′du′ = 0,∫

R

vγ K ([(z, u), v], [(z′, u′), v′]) dv = 0,∫
R

(v′)γ K ([(z, u), v], [(z′, u′), v′]) dv′ = 0

for all 0≤ |α|, β, γ , and

|∂αz ∂
β
u ∂

γ
v ∂

α′

z′ ∂
β ′

u′ ∂
γ ′

v′ K ([(z, u), v], [(z′, u′), v′])| ≤ A
1

|(z, u) ◦ (z′, u′)−1|Q+|α|+2β+|α′|+2β ′
1

|v− v′|1+γ1+γ2

for all 0≤ |α|, β, γ, |α′|, β ′, γ ′. Then

T : L p(Hn
×R)→ L p(Hn

×R) for 1< p <∞,

T :MM ′+δ
product(H

n
×R)→MM ′+δ

product(H
n
×R) for all M ′ and 0< δ < 1,
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and, moreover, the operator norms satisfy

‖T ‖L p(Hn×R) ≤ C p A and ‖T ‖
MM ′+δ

product(H
n×R)
≤ CM ′,αA.

We postpone the proofs of these T 1-type theorems, and turn now to using them to complete the proof
of Theorem 41, which in turn completes the proof of Theorem 17.

5.1. Boundedness on the flag molecular space. We prove the estimates for the operators R(1)α,N and R(2)α,N
in Theorem 41 separately, beginning with R(2)α,N .

5.1.1. The operator R(2)α,N . Here we prove the boundedness of the error operator

R(2)α,N f (z, u)= cα
∑
j>k

∑
R∈R( j,k)

∫
R
ψ̌ j,k((z, u) ◦ (z′, u′)−1)×[ψ j,k ∗ f (z′, u′)−ψ j,k ∗ f (zR, uR)] dz′du′

on the flag molecular space MM ′+δ
flag (Hn), where M ′ is taken sufficiently small compared to M as in the

component functions. We begin by lifting the desired inequality to the product group Hn
×R and reducing

matters to Theorem 44. So we begin by writing

R(2)α,N f (z, u)

= cα
∑
j>k

∑
R∈R( j,k)

∫
R
ψ̌ j,k((z, u) ◦ (z′, u′)−1)

×

∫
[ψ j,k((z′, u′) ◦ (z′′, u′′)−1)−ψ j,k ∗ f ((zR, uR) ◦ (z′′, u′′)−1)] f (z′′, u′′) dz′′du′′dz′du′

= cα
∑
j>k

∑
R∈R( j,k)

∫
R

{∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′−w)ψ̌ (2)k (w) dw

}

×

∫ {∫
ψ
(1)
j (z′− z′′, u′− u′′+ Im z′z′′−w′)ψ̌ (2)k (w′)

−

∫
ψ
(1)
j (zR− z′′, uR− u′′+ Im zRz′′−w′)ψ (2)k (w′)

}
dw′

∫
F(z′′, u′′−w′′, w′′) dw′′,

where

f (z, u)= πF(z, u)=
∫

F((z, u−w),w) dw

and F((z, u), w) ∈MM ′+δ
product(H

n
×R). We continue with

R(2)α,N f (z, u)= cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫∫∫∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′−w)ψ̌ (2)k (w)

×{ψ
(1)
j (z′− z′′, u′− u′′+ Im z′z′′−w′)−ψ (1)j (zR− z′′, uR− u′′+ Im zRz′′−w′)}

× ψ̌
(2)
k (w′)F(z′′, u′′−w′′, w′′) dz′′du′′dw′′dw′dw dz′du′.
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Now for fixed w′′ make the change of variable u′′→ u′′+w′′ (in the sense that u′′→ ũ′′+w′′ and we
then rewrite ũ′′ as u′′) to obtain

R(2)α,N f (z,u)= cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫∫∫∫
ψ̌
(1)
j (z− z′,u− u′+ Im zz′−w)ψ̌ (2)k (w)

×{ψ
(1)
j (z′− z′′,u′− u′′−w′′+ Im z′z′′−w′)−ψ (1)j (zR− z′′,uR− u′′+ Im zRz′′−w′−w′′)}

× ψ̌
(2)
k (w′)F(z′′,u′′,w′′)dz′′du′′dw′′dw′dw dz′du′.

Then, making a change of variable w′→w′−w′′ (in the sense of the previous change of variable), we get

R(2)α,N f (z, u)= cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫∫∫∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′−w)ψ̌ (2)k (w)

×{ψ
(1)
j (z′− z′′, u′− u′′+ Im z′z′′−w′)−ψ (1)j (zR− z′′, uR− u′′+ Im zRz′′−w′)}

× ψ̌
(2)
k (w′−w′′)F(z′′, u′′, w′′) dz′′du′′dw′′dw′dw dz′du′.

Finally, making the change of variable w→ w−w′, we get

R(2)α,N f (z, u)

= cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫∫∫∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′−w+w′)ψ̌ (2)k (w−w′)

×{ψ
(1)
j (z′− z′′, u′− u′′+ Im z′z′′−w′)−ψ (1)j (zR− z′′, uR− u′′+ Im zRz′′−w′)}ψ̌ (2)k (w′−w′′)

× F(z′′, u′′, w′′) dz′′du′′dw′′dw′dw dz′du′

=

∫
R̃(2)α,N F((z, u−w),w) dw,

where the kernel of R̃(2)α,N is given by

R̃(2)α,N [((z, u), w), ((z′′, u′′), w′′)] = cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′+w′)ψ̌ (2)k (w−w′)

×{ψ
(1)
j (z′−z′′, u′−u′′+Im z′z′′−w′)−ψ (1)j (zR−z′′, uR−u′′+Im zRz′′−w′)}ψ̌ (2)k (w′−w′′) dz′du′dw′.

Now it suffices to show that

R̃(2)α,N F ∈MM ′+δ
product(H

n
×R)

with small norm, since we then conclude that

R(2)α,N f ∈MM ′+δ
flag (Hn)

with small norm. To do this we need only check that the kernel of R̃(2)α,N satisfies the conditions of
Theorem 44 with small bounds.
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For this we rewrite the kernel in terms of Heisenberg group multiplication as

R̃(2)α,N [((z, u), w), ((z′′, u′′), w′′)] = cα
∑
j>k

∑
R∈R( j,k)

∫
R

∫
ψ̌
(1)
j ((z, u) ◦ (z′, u′−w′)−1)ψ̌

(2)
k (w−w′)

×{ψ
(1)
j ((z′, u′−w′) ◦ (z′′, u′′)−1)−ψ

(1)
j ((zR, uR−w

′) ◦ (z′′, u′′)−1)}ψ
(2)
k (w′−w′′) dz′du′dw′.

By construction we have

ψ
(1)
j ((z′, u′−w′)◦ (z′′, u′′)−1)−ψ

(1)
j ((zR, uR−w

′)◦ (z′′, u′′)−1)∼ 2−Nψ
(1)
j ((z′, u′−w′)◦ (z′′, u′′)−1),

in the sense that the left side satisfies the same moment, size and smoothness conditions as the right side.
Thus we have∑
R∈R( j,k)

∫
R

∫
ψ̌
(1)
j ((z, u) ◦ (z′, u′−w′)−1)

×{ψ
(1)
j ((z′, u′−w′) ◦ (z′′, u′′)−1)−ψ

(1)
j ((zR, uR−w

′) ◦ (z′′, u′′)−1)} dz′du′

∼

∑
R∈R( j,k)

∫
R

∫
ψ̌
(1)
j ((z, u) ◦ (z′, u′−w′)−1)2−Nψ

(1)
j ((z′, u′−w′) ◦ (z′′, u′′)−1) dz′du′

∼ 2−Nψ
(1)
j ((z, u) ◦ (z′′, u′′)−1). (5-6)

We also have ∫
ψ̌
(2)
k (w−w′)ψ

(2)
k (w′−w′′) dw′ ∼ ψ (2)k (w−w′′).

So altogether we obtain

R̃(2)α,N [((z, u), w), ((z′′, u′′), w′′)] ∼ 2−N
∑
j>k

ψ
(1)
j ((z, u) ◦ (z′′, u′′)−1)ψ

(2)
k (w−w′′),

which satisfies the hypotheses of Theorem 44 with bounds roughly 2−N , since ψ (1) ∈ S(Hn) and
ψ (2) ∈ S(R). Here we are using the well-known fact that the partial sums

∑
j<M ψ j of an approximate

identity satisfy Calderón–Zygmund kernel conditions of infinite order uniformly in M .

5.1.2. The operator R(1)α,N . Now we turn to boundedness of the error operator

R(1)α,N f (z, u)= cα
∑
j≤k

∑
Q∈Q( j)

∫
Q
ψ̌ j,k((z, u) ◦ (z′, u′)−1)[ψ j,k ∗ f (z′, u′)−ψ j,k ∗ f (zQ, uQ)] dz′du′,

on the flag molecular space MM ′+δ
flag (Hn), where M ′ is taken sufficiently small compared to M as in the

component functions. Applying the calculation used for the term R(2)α,N above, we can obtain

R(1)α,N f (z, u)=
∫

R̃(1)α,N F((z, u−w),w) dw,
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where the kernel of R̃(1)α,N is given by

R̃(1)α,N [((z, u), w), ((z′′, u′′), w′′)] = cα
∑
j≤k

∑
Q∈Q( j)

∫
Q

∫
ψ̌
(1)
j (z− z′, u− u′+ Im zz′+w′)ψ̌ (2)k (w−w′)

×{ψ
(1)
j (z′−z′′, u′−u′′+Im z′z′′−w′)−ψ (1)j (zR−z′′, uR−u′′+Im zRz′′−w′)}ψ̌ (2)k (w′−w′′) dz′du′dw′.

By construction we have

ψ
(1)
j ((z′, u′−w′)◦ (z′′, u′′)−1)−ψ

(1)
j ((zR, uR−w

′)◦ (z′′, u′′)−1)∼ 2−Nψ
(1)
j ((z′, u′−w′)◦ (z′′, u′′)−1),

in the sense that the left side satisfies the same moment, size, and smoothness conditions as the right side.
Thus we have∑
Q∈Q( j)

∫
Q

∫
ψ̌
(1)
j ((z, u) ◦ (z′, u′−w′)−1)

×{ψ
(1)
j ((z′, u′−w′) ◦ (z′′, u′′)−1)−ψ

(1)
j ((zR, uR−w

′) ◦ (z′′, u′′)−1)} dz′du′

∼

∑
Q∈Q( j)

∫
R

∫
ψ̌
(1)
j ((z, u) ◦ (z′, u′−w′)−1)2−Nψ

(1)
j ((z′, u′−w′) ◦ (z′′, u′′)−1) dz′du′

∼ 2−Nψ
(1)
j ((z, u) ◦ (z′′, u′′)−1).

We also have ∫
ψ̌
(2)
k (w−w′)ψ

(2)
k (w′−w′′) dw′ ∼ ψ (2)k (w−w′′).

So altogether we obtain

R̃(1)α,N [((z, u), w), ((z′′, u′′), w′′)] ∼ 2−N
∑
j≤k

ψ
(1)
j ((z, u) ◦ (z′′, u′′)−1)ψ

(2)
k (w−w′′),

which satisfies the hypotheses of Theorem 44 with bounds roughly 2−N , since ψ (1) ∈ S(Hn) and
ψ (2) ∈ S(R).

It now follows that the kernels of both R̃(1)α,N and R̃(2)α,N satisfy the hypotheses of Theorem 44 with
bounds roughly 2−N , and we conclude that

‖R̃(i)α,N F‖
MM ′+δ

product(H
n×R)
. 2−N

‖F‖
MM ′+δ

product(H
n×R)

, i = 1, 2.

Thus we obtain, for each i = 1, 2,

‖R(i)α,N f ‖
MM ′+δ

flag (Hn)
≤ inf

f=πF
‖R̃(i)α,N F‖

MM ′+δ
product(H

n×R)
. 2−N inf

f=πF
‖F‖

MM ′+δ
product(H

n×R)
= 2−N

‖ f ‖
MM ′+δ

flag (Hn)
,

and taking N sufficiently large completes the proof of the molecular estimates in (5-4).

5.1.3. The L p estimates. Finally, we turn to proving the L p estimates in (5-4) for 1< p <∞,

‖Rα f ‖L p(Hn)+‖R
(1)
α,N f ‖L p(Hn)+‖R

(2)
α,N f ‖L p(Hn) ≤

1
2‖ f ‖L p(Hn).



1498 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

The estimates for R(1)α,N and R(2)α,N follow from the estimates established above for the kernels of the lifted
operators R̃(1)α,N and R̃(2)α,N . Indeed, for f ∈ L p(Hn), we can use a result in [Müller et al. 1995] to find
F ∈ L p(Hn

×R) with f = πF and ‖F‖L p(Hn×R) ≤ C‖ f ‖L p(Hn). Then we have

‖R(i)α,N f ‖L p(Hn) ≤ ‖R̃
(i)
α,N F‖L p(Hn×R) . 2−N

‖F‖L p(Hn×R) ≤ C2−N
‖ f ‖L p(Hn).

In similar fashion, the kernel of the lifted operator R̃α can be shown to satisfy product kernel estimates
with constant A that is a multiple of 1− 2−α, and so we obtain from Theorem 44 that

‖R̃αF‖L p(Hn×R) . (1− 2−α)‖F‖L p(Hn×R),

and hence, with f = πF as above,

‖Rα f ‖L p(Hn) ≤ ‖R̃αF‖L p(Hn×R) . (1− 2−α)‖F‖L p(Hn×R) ≤ C(1− 2−α)‖ f ‖L p(Hn).

If we now take 0< α < 1 sufficiently small, and then N sufficiently large, we obtain the L p estimates
in (5-4). This concludes our proof of Theorem 41.

5.2. The T1-type theorems. The proof of Theorem 43 in the one-parameter case follows the argument
in [Gilbert et al. 2002], where the same result is proved in the Euclidean setting. For this we will need an
extension to the Heisenberg group of the generalization of Meyer’s lemma by Torres [1991].

Lemma 45. Suppose T : L2(Hn)→ L2(Hn) is a bounded linear operator with kernel K ((z, u), (z′, u′))
satisfying the kernel conditions in the hypotheses of Theorem 43. Suppose that M ≥ 0 and that
T ((z, u)(α

′′,β ′′)) = 0 for all multi-indices (α′′, β ′′) with |α′′| + 2β ′′ ≤ M. Then, for any two points
(z, u), (z′′, u′′) ∈ Hn and any smooth ϕ on Hn with compact support, and any multi-index (α′, β ′) with
|α′| + 2β ′ = M ′ ≤ M , we have the identity

∂α
′

z ∂
β ′

u Tϕ(z, u)−∂α
′

z ∂
β ′

u Tϕ(z′′, u′′)

=

∫
∂α
′

z ∂
β ′

u K ((z, u), (z′, u′))

×

{
ϕ(z′, u′)−

∑
|α′′|+2β ′′≤M ′

cα′′,β ′′∂α
′′

z ∂
β ′′

u ϕ(z, u)[(z′, u′)◦(z, u)−1
]
(α′′,β ′′)

}
θ̃ (z′, u′) dz′du′

−

∫
∂α
′

z ∂
β ′

u K ((z′′, u′′), (z′, u′))

×

{
ϕ(z′, u′)−

∑
|α′′|+2β ′′≤M ′

cα′′,β ′′∂α
′′

z ∂
β ′′

u ϕ(z′′, u′′)[(z′, u′)◦(z′′, u′′)−1
]
(α′′,β ′′)

}
θ̃ (z′, u′) dz′du′

+

∫
{∂α

′

z ∂
β ′

u K ((z, u), (z′, u′))−∂α
′

z ∂
β ′

u K ((z′′, u′′), (z′, u′))}

×

{
ϕ(z′, u′)−

∑
|α′′|+2β ′′≤M ′

cα′′,β ′′∂α
′′

z ∂
β ′′

u ϕ(z′′, u′′)[(z′, u′)◦(z′′, u′′)−1
]
(α′′,β ′′)

}
(1−θ̃ (z′, u′)) dz′du′

+

∑
|α′′|+2β ′′≤M ′

{
cα′′,β ′′∂α

′′

z ∂
β ′′

u ϕ(z, u)−
∑

|α′′′|+2β ′′′≤M ′−|α′′|−2β ′′
cα′′′,β ′′′∂α

′′′
+α′′

z ∂2β ′′′+2β ′′
u

×ϕ(z′′, u′′)[(z, u)◦(z′′, u′′)−1
]
(α′′′,β ′′′)

}
T(α′′,β ′′),(α′,β ′)θ̃ (z, u).
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The proof of this lemma follows verbatim that of [Torres 1991, Lemma 3.1.22, page 62].
With this result in hand, the proof of Theorem 43 follows closely the argument in the Euclidean case

in [Gilbert et al. 2002], and the reader can find complete details in [Han et al. 2012].

Proof of Theorem 44. To prove the product version we note that the above one-parameter proof extends
virtually verbatim to establish a vector-valued version in a Banach space. Indeed, all the main tools, such
as integration, differentiation, and Taylor’s formula, carry over to the Banach space setting. First we
will define the X -valued molecular space MM+δ,M1,M2(Hn

; X), and then we will give the extension of
Theorem 43 to this space.

Definition 46. Let X be a Banach space with norm |x | for x ∈ X . Let M,M1,M2 ∈ N be positive
integers, 0< δ ≤ 1, and let Q = 2n+ 2 denote the homogeneous dimension of Hn . The one-parameter
molecular space MM+δ,M1,M2(Hn

; X) consists of all X -valued functions f : Hn
→ X satisfying the

moment conditions ∫
Hn

zαuβ f (z, u) dz du = 0 for all |α| + 2|β| ≤ M1,

and such that there is a nonnegative constant A satisfying the differential inequalities

|∂αz ∂
β
u f (z, u)|X ≤ A

1
(1+ |z|2+ |u|)(Q+M+|α|+2|β|+δ)/2 for all |α| + 2|β| ≤ M2

and

|∂αz ∂
β
u f (z, u)− ∂αz ∂

β
u f (z′, u′)|X ≤ A

|(z, u) ◦ (z′, u′)−1
|
δ

(1+ |z|2+ |u|)(Q+M+δ+M2+2δ)/2

for all |α| + 2|β| = M2 and |(z, u) ◦ (z′, u′)−1
| ≤

1
2(1+ |z|

2
+ |u|)

1
2 .

We have the following extension of Theorem 43 to X -valued functions for an arbitrary Banach space X .

Theorem 47. Suppose T : L2(Hn)→ L2(Hn) is a bounded linear operator with kernel K ((z, u), (z′, u′));
that is,

T f (z, u)=
∫

Hn
K ((z, u), (z′, u′)) f (z′, u′) dz′du′, f ∈ L2(Hn).

Suppose furthermore that K satisfies∫
Hn

zαuβK ((z, u), (z′, u′)) dz du = 0,∫
Hn
(z′)α(u′)βK ((z, u), (z′, u′)) dz′du′ = 0

for all 0≤ |α|, β, and

|∂αz ∂
β
u ∂

α′

z′ ∂
β ′

u′ K ((z, u), (z′, u′))|.
1

|(z, u) ◦ (z′, u′)−1|Q+|α|+2β+|α′|+2β ′

for all 0≤ |α|, β, |α′|, β ′. For f : Hn
→ X , we define T f by the Banach-space-valued integrals

T f (z, u)=
∫

Hn
K ((z, u), (z′, u′)) f (z′, u′) dz′du′.
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Then
T :MM ′+δ(Hn

; X)→MM ′+δ(Hn
; X)

is bounded for all M ′ and 0< δ < 1. Moreover, the operator norm satisfies

‖T ‖MM ′+δ(Hn;X) ≤ CM ′,δ.

Proof. We simply repeat the scalar proof of Theorem 43 but replace |∂αz ∂
β
u f (z, u)| by |∂αz ∂

β
u f (z, u)|X

throughout and use Banach space analogues of Taylor’s theorem and the identities of [Torres 1991]. �

Now we can quickly finish the proof of Theorem 44. We take X = MM ′+δ(R) and note that the
identification of product and iterated molecular spaces, namely,

MM ′+δ
product(H

n
×R)=MM ′+δ(Hn

;MM ′+δ(R)
)
=MM ′+δ(Hn

; X), (5-7)

follows immediately from the definitions of the spaces involved; see Definitions 42 and 10 and the
definition of MM+δ,M1,M2(R), which we recall here.

Definition 48. Let M ∈ N be a positive integer and 0 < δ ≤ 1. The one-parameter molecular space
MM+δ,M1,M2(R) consists of all functions f (v) on R satisfying the moment conditions∫

R

vγ f (v) dv = 0 for all 2γ ≤ M1,

and such that there is a nonnegative constant A satisfying the differential inequalities

|∂γv f (v)| ≤ A
1

(1+ |v|)1+M+γ+δ for all 2γ ≤ M2,

|∂M2
v f (v)− ∂M2

v f (v′)| ≤ A
|v− v′|δ

(1+ |v|)1+(3/2)M+γ+2δ for all |v− v′| ≤ 1
2(1+ |v|).

For f ∈MM ′+δ
product(H

n
×R), denote the realization of f as an X -valued map by f̃ : Hn

→MM ′+δ
product(R).

Then, from (5-7) and Theorem 47, we have

‖T f ‖
MM ′+δ

product(H
n×R)
= ‖T f̃ ‖MM ′+δ(Hn;MM ′+δ(R)) ≤ C‖ f̃ ‖MM ′+δ(Hn;MM ′+δ(R)) = C‖ f ‖

MM ′+δ
product(H

n×R)
.

This completes the proof of Theorem 44. �

5.3. Orthogonality estimates and the proof of the Plancherel–Pólya inequalities. We will need almost-
orthogonality estimates in order to prove both the Plancherel–Pólya inequalities and the boundedness
of flag singular integrals on H p

flag(H
n). Recall from (2-2) the definition of the components ψt,s of the

continuous decomposition of the identity adapted to the Heisenberg group:

ψ(z, u)= ψ (1) ∗2 ψ
(2)(z, u)=

∫
R

ψ (1)(z, u− v)ψ (2)(v) dv, (z, u) ∈ Cn
×R,

and

ψt,s(z, u)=ψ (1)t ∗2ψ
(2)
s (z, u)=

∫
R

ψ
(1)
t (z, u−v)ψ (2)s (v) dv=

∫
R

t−2n−2ψ (1)
(

z
t
,

u− v
t2

)
s−1ψ (2)

(
v

s

)
dv.
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Here ψ (1) ∈ S(Hn) is as in Theorem 2, and ψ (2) ∈ S(R) satisfies∫
∞

0
|ψ̂ (2)(tη)|2 dt

t
= 1

for all η ∈ R\{0}, along with the moment conditions∫
Hn

zαuβψ (1)(z, u) dz du = 0, |α| + 2β ≤ M,∫
R

vγψ (2)(v) dv = 0, γ ≥ 0,

where M may be fixed arbitrarily large.
In particular, the collection of component functions {ψt,s}t,s>0 satisfies

ψt,s = ψ
(1)
t ∗2 ψ

(2)
s ,

ψ
(1)
t (z, u)= t−2n−2ψ (1)

(
z
t
,

u− v
t2

)
,

ψ (2)s (v)= s−1ψ (2)
(
v

s

)
,

ψ (1)(z, u)ψ (2)(v) ∈MM+δ
product(H

n
×R).

(5-8)

Of course the conditions in (5-8) imply that ψt,s ∈ MM
flag(H

n) for all t, s > 0, but (5-8) also contains
the implicit dilation information that cannot be expressed solely in terms of ψ1,1. Motivated by these
considerations we make the following definition.

Definition 49. To each function 9 ∈ MM+δ
product(H

n
× R) we associate a collection of product dilations

{9t,s}t,s>0 defined by

9t,s(z, u, v)= t−2n−2s−19

((
z
t
,

u
t2

)
,
v

s

)
,

and a collection of component functions {ψt,s}t,s>0 defined by

ψt,s(z, u)= π9t,s(z, u)=
∫

R

t−2n−2s−19

((
z
t
,

u− v
t2

)
,
v

s

)
dv, t, s > 0.

Given two functions in MM+δ
product(H

n
×R) and their corresponding collections of component functions

we have the almost-orthogonality estimates given below. We use ∗Hn to denote convolution on the
Heisenberg group Hn , and ∗Hn×R to denote convolution on the product group Hn

×R. From Lemma 12
we obtain that π intertwines these two convolutions, which we record here.

Lemma 50. For ψt,s, 9t,s, φt ′,s′,8t ′,s′ as above, we have

ψt,s ∗Hn φt ′,s′ = π{9t,s ∗Hn×R8t ′,s′}. (5-9)

We now give the orthogonality estimates, first in the product case and then in the flag case. The product
case in Lemma 51 will prove crucial in establishing Theorem 41 for the flag molecular space MM ′+δ

flag (Hn).

For convenience, we give the almost orthogonal estimates only for the case M4M+2,2M,2M
product (Hn

×R).
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Lemma 51. Suppose 9,8 ∈M4M+2,2M,2M
product (Hn

×R). Then there exists a constant C = C(M) depending
only on M such that

|9t,s ∗Hn×R8t ′,s′((z, u), v)|

≤ C
(

t
t ′
∧

t ′

t

)2M+1( s
s ′
∧

s ′

s

)M+1
(t ∨ t ′)2(4M+2)/2

((t ∨ t ′)2+|z|2+ |u|)(Q+4M+2)/2

(s ∨ s ′)4M+2

(s ∨ s ′+|v|)1+4M+2 . (5-10)

The proof of Lemma 51 uses a standard orthogonality argument on the integral

9t,s ∗Hn×R8t ′,s′((z, u), v)=
∫

Hn×R

9t,s((z, u) ◦ (z′, u′)−1, v− v′)8t ′,s′((z′, u′), v′) dz′du′dv′, (5-11)

and we refer the reader to [Han et al. 2012] for details.
There are corresponding orthogonality estimates for component functions on Hn .

Lemma 52. Suppose 9,8 ∈ M2M
product(H

n
× R) and let {ψt,s}t,s>0 and {φt,s}t,s>0 be the associated

collections of component functions as defined in (2-7) above. Then there exists a constant C = C(M)
depending only on M such that, if (t ∨ t ′)2 ≤ s ∨ s ′, then

|ψt,s ∗Hn φt ′,s′(z, u)| ≤ C
(

t
t ′
∧

t ′

t

)2M( s
s ′
∧

s ′

s

)M

×
(t ∨ t ′)2M

(t ∨ t ′+|z|)2n+2M

(s ∨ s ′)M

(s ∨ s ′+|u|)1+M , (5-12)

and if (t ∨ t ′)2 ≥ s ∨ s ′, then

|ψt,s ∗φt ′,s′(z, u)| ≤ C
(

t
t ′
∧

t ′

t

)M( s
s ′
∧

s ′

s

)M

×
(t ∨ t ′)M

(t ∨ t ′+|z|)2n+M

(t ∨ t ′)M

(t ∨ t ′+
√
|u|)2+2M

. (5-13)

Roughly speaking, ψt,s ∗φt ′,s′(z, u) satisfies the product multiparameter almost-orthogonality when
(t ∨ t ′)2 ≤ s ∨ s ′ and the one-parameter almost-orthogonality when (t ∨ t ′)2 ≥ s ∨ s ′.

Proof of Lemma 52. We will use Lemma 50 to pass from the orthogonality estimates for the product
dilations {9t,s}t,s>0 and {8t,s}t,s>0 in Lemma 51 to the estimates for the component functions {ψt,s}t,s>0

and {φt,s}t,s>0 in Lemma 52.
From (5-10) and (5-9) we obtain

|ψt,s ∗φt ′,s′(z, u)|

=

∣∣∣∣∫
R

9t,s ∗Hn×R8t ′,s′((z, u− v), v) dv
∣∣∣∣

. C
(

t
t ′
∧

t ′

t

)2M( s
s ′
∧

s ′

s

)M

×

∫
R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M dv. (5-14)

Now we consider four cases separately.

Case 1: (t ∨ t ′)2 ≤ s ∨ s ′ and |u| ≥ s ∨ s ′. In this case we use the fact that

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M =
1

s ∨ s ′
1

(1+|v/(s ∨ s ′)|)1+2M (5-15)
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has integral roughly 1, with essential support [−s ∨ s ′, s ∨ s ′], to obtain∫
R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M dv

≈
(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u|)n+1+2M ≤
(t ∨ t ′)2M

((t ∨ t ′)2+|z|2)n+M

(t ∨ t ′)2M

((t ∨ t ′)2+ |u|)1+M

≤
(t ∨ t ′)2M

((t ∨ t ′)+|z|)2n+2M

(s ∨ s ′)M

(s ∨ s ′+ |u|)1+M .

Plugging this estimate into the right side of (5-14) leads to the correct product estimate (5-12) for this case.

Case 2: (t ∨ t ′)2 ≤ s ∨ s ′ and |u| ≤ s ∨ s ′. In this case we bound the left side of (5-15) by 1/(s ∨ s ′) to
obtain∫

R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M dv

.
1

s ∨ s ′

∫
R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M dv

.
1

s ∨ s ′
(t ∨ t ′)4M

((t ∨ t ′)2+|z|2)n+2M ≤
(t ∨ t ′)2M

((t ∨ t ′)+|z|)2n+2M

(s ∨ s ′)M

(s ∨ s ′+ |u|)1+M .

Plugging this estimate into the right side of (5-14) again leads to the correct product estimate (5-12) for
this case.

Case 3: (t ∨ t ′)2 ≥ s ∨ s ′ and |u| ≤ (t ∨ t ′)2. In this case we have∫
R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M dv

.
(t ∨ t ′)4M

((t ∨ t ′)2+|z|2)n+1+2M .
(t ∨ t ′)2M

((t ∨ t ′)2+|z|2)n+M

(t ∨ t ′)2M

((t ∨ t ′)2+|u|)1+M

≈
(t ∨ t ′)2M

(t ∨ t ′+|z|)2n+2M

(t ∨ t ′)2M

(t ∨ t ′+
√
|u|)2+2M

.

Plugging this estimate into the right side of (5-14) leads to the correct one-parameter estimate (5-13) for
this case.

Case 4: (t ∨ t ′)2 ≥ s ∨ s ′ and |u| ≥ (t ∨ t ′)2. In this case we have∫
R

(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u− v|)n+1+2M

(s ∨ s ′)2M

(s ∨ s ′+|v|)1+2M dv

.
(t ∨ t ′)4M

((t ∨ t ′)2+|z|2+ |u|)n+1+2M .
(t ∨ t ′)2M

((t ∨ t ′)2+|z|2)n+M

(t ∨ t ′)2M

((t ∨ t ′)2+|u|)1+M

≈
(t ∨ t ′)2M

(t ∨ t ′+|z|)2n+2M

(t ∨ t ′)2M

(t ∨ t ′+
√
|u|)2+2M

.
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Plugging this estimate into the right side of (5-14) again leads to the correct one-parameter esti-
mate (5-13). �

5.3.1. Proof of the Plancherel–Pólya inequalities. Before we prove the Plancherel–Pólya-type inequality
in Theorem 19, we first prove the following lemma. We will often use the notation (x I , yJ ) in place of
(z I , u J ) for the center of the dyadic rectangle I × J in Hn; that is, we write x in place of z, and y in
place of u.

Lemma 53. Let I × J and I ′× J ′ be dyadic rectangles in Hn such that

`(I )= 2− j−N , `(J )= 2− j−N
+ 2−k−N , `(I ′)= 2− j ′−N , and `(J ′)= 2− j ′−N

+ 2−k′−N .

Thus, for any (u, v) and (u∗, v∗) in Hn , we have, when j ∧ j ′ ≥ k ∧ k ′,∑
I ′,J ′

2−| j− j ′|L1−|k−k′|L22−( j∧ j ′)K1−(k∧k′)K2 |I ′||J ′|
(2− j∧ j ′ + |u− x I ′ |)2n+K1(2−k∧k′ + |v− yJ ′ |)1+K2

· |φ j ′,k′ ∗ f (x I ′, yJ ′)|

≤ C1(N , r, j, j ′, k, k ′)2−| j− j ′|L1 × 2−|k−k′|L2

{
MS

[(∑
J ′

∑
I ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r]} 1
r

(u∗, v∗),

and when j ∧ j ′ ≤ k ∧ k ′,∑
I ′,J ′

2−| j− j ′|L1−|k−k′|L22−( j∧ j ′)K1−( j∧ j ′)K2 |I ′||J ′|
(2− j∧ j ′ + |u− x I ′ |)2n+K1(2− j∧ j ′ + |v− yJ ′ |)1+K2

|φ j ′,k′ ∗ f (x I ′, yJ ′)|

≤ C2(N , r, j, j ′, k, k ′)2−| j− j ′|L12−|k−k′|L2 ×

{
M
[(∑

J ′

∑
I ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r]} 1
r

(u∗, v∗),

where M is the Hardy–Littlewood maximal function on Hn , MS is the strong maximal function on Hn as
defined in (1-1), max{2n/(2n+ K1), 1/(1+ K2)}< r and

C1(N , r, j, j ′, k, k ′)= 2(1/r−1)N (2n+1)
· 2[2n( j∧ j ′− j ′)+(k∧k′−k′)](1−1/r),

C2(N , r, j, j ′, k, k ′)= 2(1/r−1)N (2n+1)
· 2[2n( j∧ j ′− j ′)+( j∧ j ′− j ′∧k′)](1−1/r).

Proof. We set

A0 =

{
I ′ : `(I ′)= 2− j ′−N ,

|u− x I ′ |

2− j∧ j ′ ≤ 1
}
,

B0 =

{
J ′ : `(J ′)= 2− j ′−N

+ 2−k′−N ,
|v− yJ ′ |

2−k∧k′ ≤ 1
}
,

where x I ′ ∈ I ′ and yJ ′ ∈ J ′, and where, for `≥ 1, i ≥ 1,

A` =
{

I ′ : `(I ′)= 2− j ′−N , 2`−1 <
|u− x I ′ |

2− j∧ j ′ ≤ 2`
}
.

Bi =

{
J ′ : `(J ′)= 2− j ′−N

+ 2−k′−N , 2i−1 <
|v− yJ ′ |

2−k∧k′ ≤ 2i
}
.
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We first consider the case when j ∧ j ′ ≥ k ∧ k ′, and let

τ = [2n( j ∧ j ′− j ′)+ (k ∧ k ′− k ′)]
(

1− 1
r

)
.

Then∑
I ′,J ′

2−( j∧ j ′)K1−(k∧k′)K2 |I ′||J ′|
(2− j∧ j ′ + |u− x I ′ |)2n+K1(2−k∧k′ + |v− yJ ′ |)1+K2

· |φ j ′,k′ ∗ f (x I ′, yJ ′)|

≤

∑
`,i≥0

2−`(2n+K1)2−i(1+K2)2−N (2n+1)2( j∧ j ′− j ′)n+(k∧k′−k′)m
∑

I ′∈A`,J ′∈Bi

|φ j ′,k′ ∗ f (x I ′, yJ ′)|

≤

∑
`,i≥0

2−`(n+K1)2−i(m+K2)2−N (n+m)2( j∧ j ′− j ′)2n+(k∧k′−k′)
( ∑

I ′∈A`,J ′∈Bi

(|φ j ′,k′ ∗ f (x I ′, yJ ′)|)
r
)1/r

=

∑
`,i≥0

2−`(2n+K1)−i(1+K2)−N (2n+1)2( j∧ j ′− j ′)2n+(k∧k′−k′)

×

(∫
Hn
|I ′|−1

|J ′|−1
∑

I ′∈A`,J ′∈Bi

|φ j ′,k′ ∗ f (x I ′, yJ ′)|
rχI ′χJ ′

)1/r

≤

∑
`,i≥0

2−`(2n+K1−2n/r)−i(1+K2−1/r)+(1/r−1)N (2n+1)

× 2τ
(

MS

( ∑
I ′∈A`,J ′∈Bi

|φ j ′,k′ ∗ f (x I ′, yJ ′)|
rχI ′χJ ′

)
(u∗, v∗)

)1/r

≤ C1(N , r, j, k, j ′, k ′)
(

MS

(∑
I ′,J ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|

rχI ′χJ ′

)
(u∗, v∗)

)1/r

The last inequality follows from the assumption that r >max{2n/(2n+ K1), 1/(1+ K2)}, which can be
achieved by choosing K1, K2 large enough. The second inequality can be proved similarly. �

We are now ready to give the proof of the Plancherel–Pólya inequality.

Proof of Theorem 19. By Theorem 17, f ∈MM+δ
flag (Hn)′ can be represented by

f (z, u)=
∑

j ′

∑
k′

∑
J ′

∑
I ′
|J ′||I ′|φ̃ j ′,k′((z, u) ◦ (x I ′, yJ ′)

−1)(φ j ′,k′ ∗ f )(x I ′, yJ ′).

We write

(ψ j,k ∗ f )(u, v)=
∑

j ′

∑
k′

∑
J ′

∑
I ′
|I ′||J ′|(ψ j,k ∗ φ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)

−1))(u, v)(φ j ′,k′ ∗ f )(x I ′, yJ ′).

By the almost-orthogonality estimates in Lemma 52, and by choosing t = 2− j , s = 2−k , t ′ = 2− j ′ ,
s ′ = 2−k′ , and for any given positive integers L1, L2, K1, K2, we have, if j ∧ j ′ ≥ k ∧ k ′,

|(ψ j,k ∗ φ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1))(u, v)|

≤
2−| j− j ′|L1−|k−k′|L22−( j∧ j ′)K1−(k∧k′)K2 |I ′||J ′|

(2− j∧ j ′ + |u− x I ′ |)2n+K1(2−k∧k′ + |v− yJ ′ |)1+K2
|φ j ′,k′ ∗ f (x I ′, yJ ′)|,
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and when j ∧ j ′ ≤ k ∧ k ′, we have

|(ψ j,k ∗ φ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1))(u, v)|

≤
2−| j− j ′|L1−|k−k′|L22−( j∧ j ′)K1−( j∧ j ′)K2 |I ′||J ′|

(2− j∧ j ′ + |u− x I ′ |)2n+K1(2− j∧ j ′ + |v− yJ ′ |)1+K2
|φ j ′,k′ ∗ f (x I ′, yJ ′)|.

Using Lemma 53, for any u, u∗ ∈ I , x I ′ ∈ I ′, v, v∗ ∈ J , and yJ ′ ∈ J ′, we have

|ψ j,k ∗ f (u, v)|

≤ C1
∑

j ′,k′: j∧ j ′≥k∧k′
2−| j− j ′|L1 · 2−|k−k′|L2 ×

{
MS

[(∑
J ′

∑
I ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r]}1/r

(u∗, v∗)

+C2
∑

j ′,k′: j∧ j ′≤k∧k′
2−| j− j ′|L1 · 2−|k−k′|L2 ×

{
M
[(∑

J ′

∑
I ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r]}1/r

(u∗, v∗)

≤ C
∑
j ′,k′

2−| j− j ′|L1 · 2−|k−k′|L2 ×

{
MS

[(∑
J ′

∑
I ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r]}1/r

(u∗, v∗),

where M is the Hardy–Littlewood maximal function on Hn , MS is the strong maximal function on Hn ,
and max{2n/(2n+ K1), 1/(1+ K2)}< r < p.

Applying Hölder’s inequality and summing over j , k, I , J yields{∑
j,k

∑
I,J

sup
u∈I,v∈J

|ψ j,k ∗ f (u, v)|2χIχJ

}1
2

≤ C
{∑

j ′,k′

{
MS

(∑
I ′,J ′
|φ j ′,k′ ∗ f (x I ′, yJ ′)|χI ′χJ ′

)r}2/r}1
2

.

Since x I ′ and yJ ′ are arbitrary points in I ′ and J ′, respectively, we have{∑
j,k

∑
I,J

sup
u∈I,v∈J

|ψ j,k ∗ f (u, v)|2χIχJ

}1
2

≤ C
{∑

j ′,k′

{
MS

(∑
I ′,J ′

inf
u∈I ′
v∈J ′

|φ j ′,k′ ∗ f (u, v)|χI ′χJ ′

)r}2/r}1
2

,

and hence, by the Fefferman–Stein vector-valued maximal function inequality [Fefferman and Stein 1982]
with r < p, we get∥∥∥∥{∑

j

∑
k

∑
J

∑
I

sup
u∈I
v∈J

|ψ j,k∗ f (u, v)|2χIχJ

} 1
2
∥∥∥∥

p
≤C

∥∥∥∥{∑
j ′

∑
k′

∑
J ′

∑
I ′

inf
u∈I ′
v∈J ′

|φ j ′,k′∗ f (u, v)|2χI ′χJ ′

} 1
2
∥∥∥∥

p
.

This completes the proof of Theorem 19. �

6. Boundedness of flag singular integrals

As a consequence of Theorem 19, it is easy to see that the Hardy space H p
flag is independent of the choice

of the functions ψ . Moreover, we have the following characterization of H p
flag using the wavelet norm.
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Proposition 54. Let 0< p ≤ 1. Then we have

‖ f ‖H p
flag
≈

∥∥∥∥{∑
j

∑
k

∑
J

∑
I

|ψ j,k ∗ f (x I , yJ )|
2χI (x)χJ (y)

}1
2
∥∥∥∥

p
,

where j , k, ψ , χI , χJ , x I , yJ are as in Theorem 19.

Before we give the proof of the boundedness of flag singular integrals on H p
flag, we demonstrate several

properties of H p
flag.

Proposition 55. MM+δ
flag (Hn) is dense in H p

flag(H
n) for M large enough.

Proof. Suppose f ∈ H p
flag, and set W = {( j, k, I, J ) : | j | ≤ L , |k| ≤ M, I × J ⊆ B(0, r)}, where I × J is

a dyadic rectangle in Hn with `(I )= 2− j−N and `(J )= 2−k−N
+ 2− j−N , and where B(0, r) is the ball

in Hn centered at the origin with radius r . It is easy to see that∑
( j,k,I,J )∈W

|I ||J |ψ̃ j,k((z, y) ◦ (x I , yJ )
−1)ψ j,k ∗ f (x I , yJ )

is a test function in MM+δ
flag (Hn) for any fixed L ,M, r . To obtain the proposition, it suffices to prove∑
( j,k,I,J )∈W c

|I ||J |ψ̃ j,k((z, y) ◦ (x I , yJ )
−1)ψ j,k ∗ f (x I , yJ )

tends to zero in the H p
flag norm as L ,M, r tend to infinity. This follows from an argument similar to that

in the proof of Theorem 19. In fact, repeating the argument in Theorem 19 yields∥∥∥∥ ∑
( j,k,I,J )∈W c

|I ||J |ψ̃ j,k((z, y) ◦ (x I , yJ )
−1)ψ j,k ∗ f (x I , yJ )

∥∥∥∥
H p

flag

≤ C
∥∥∥∥{ ∑

( j,k,I,J )∈W c

|ψ j,k ∗ f (x I , yJ )|
2χIχJ

}1
2
∥∥∥∥

p
,

where the last term tends to zero as L ,M, r tend to infinity whenever f ∈ H p
flag. �

As a consequence of Proposition 55, L2(Hn)∩ H p
flag(H

n) is dense in H p
flag(H

n). Furthermore, we have
the following theorem.

Theorem 56. If f ∈ L2(Hn)∩ H p
flag(H

n), 0 < p ≤ 1, then f ∈ L p(Hn) and there is a constant C p > 0
which is independent of the L2 norm of f such that

‖ f ‖p ≤ C‖ f ‖H p
flag
.

To prove Theorem 56, we need a discrete Calderón reproducing formula on L2(Hn). To be more
precise, take φ(1) ∈ C∞0 (H

n) as in Theorem 2 with∫
Hn
φ(1)(z, u)zαuβdz du = 0 for all α, β satisfying 0≤ |α| ≤ M0, 0≤ |β| ≤ M0,
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and take φ(2) ∈ C∞0 (R) with ∫
R

φ(2)(v)zγ dv = 0 for all 0≤ |γ | ≤ M0,

and
∑

k |φ̂
(2)(2−kξ2)

2
= 1 for all ξ2 ∈ R\{0}.

Furthermore, we may assume that φ(1) and φ(2) are radial functions and supported in the unit balls of
Hn and R, respectively. Set

φ jk(z, u)=
∫

R

φ
(1)
j (z, u− v)φ(2)k (v) dv.

By Theorem 2 we have the following continuous version of the Calderón reproducing formula on L2: for
f ∈ L2(Hn),

f (z, u)=
∑

j

∑
k

φ jk ∗φ jk ∗ f (z, u).

For our purposes, we need a discrete version of the above reproducing formula.

Theorem 57. There exist functions φ̃ jk and an operator T−1
N such that

f (x, y)=
∑

j

∑
k

∑
J

∑
I

|I ||J |φ̃ j,k((x, y) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ ),

where the functions φ̃ jk((x, y) ◦ (x I , yJ )
−1) satisfy the conditions in Theorem 17 with α1, β1, γ1, N , M

depending on M0. Moreover, T−1
N is bounded on both L2(Hn) and H p

flag(H
n), and the series converges

in L2(Hn).

Remark 58. The difference between Theorems 57 and 17 is that the φ̃ jk in Theorem 57 have compact
support. The price we pay here is that φ̃ jk only satisfies moment conditions of finite order, unlike in
Theorem 17, where moment conditions of infinite order are satisfied. Moreover, the formula in Theorem 57
only holds on L2(Hn) while the formula in Theorem 17 holds in both the test function space MM+δ

flag and
its dual space (MM+δ

flag )′.

Proof of Theorem 57. Following the proof of Theorem 17, we have

f (z, u)=
∑

j

∑
k

∑
J

∑
I

[∫
J

∫
I
φ j,k((z, u) ◦ (u, v)−1) du dv

]
(φ j,k ∗ f )(x I , yJ )+R f (x, y),

where I , J , j , k, and R are as in Theorem 17.
We need the following lemma to handle the remainder term R.

Lemma 59. Let 0< p ≤ 1. Then the operator R is bounded on L2(Hn) and H p
flag(H

n) whenever M0 is
chosen to be a large positive integer. Moreover, there exists a constant C > 0 such that

‖R f ‖2 ≤ C2−N
‖ f ‖2 and ‖R f ‖H p

flag(H
n) ≤ C2−N

‖ f ‖H p
flag(H

n).
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Proof. Following the proofs of Theorems 17 and 19 and using the wavelet Calderón reproducing formula
for f ∈ L2(Hn), we have

‖gflag(R f )‖p

≤

∥∥∥∥{∑
j

∑
k

∑
J

∑
I

|(ψ j,k ∗R f )|2χIχJ

}1
2
∥∥∥∥

p

=

∥∥∥∥{ ∑
j,k,J,I

∑
j ′,k′,J ′,I ′

|J ′||I ′||(ψ j,k ∗R ˜ψ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1) ·ψ j ′k′ ∗ f (x I ′, yJ ′))|

2χIχJ

}1
2
∥∥∥∥

p
,

where j , k, ψ , χI , χJ , x I , yJ are as in Theorem 19.

Claim. We have

|(ψ j,k ∗R(ψ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1)))(z, u)|

≤ C2−N 2−| j− j ′|K 2−|k−k′|K
∫

R

2−( j∧ j ′)K

(2−( j∧ j ′)+ |z− x I ′ | + |u− v− yJ ′)2n+1+K

2−(k∧k′)K

(2−(k∧k′)+ |v|)1+K dv,

where, for simplicity, we have chosen

L1 = L2 = K1 = K2 = K < M0, max
( 2n

2n+K
,

1
1+K

)
< p,

and M0 is chosen to be a larger integer later.

Assuming the claim for the moment, we can repeat an argument used in Lemma 53, and then use
Theorem 19 to obtain

‖|gflag(R f )‖p ≤ C2−N
∥∥∥∥{∑

j ′

∑
k′

[
MS

(∑
J ′

∑
I ′
|ψ j ′,k′ ∗ f (x I ′, yJ ′)|χJ ′χI ′

)r ]2/r}1
2
∥∥∥∥

p

≤ C2−N
∥∥∥∥{∑

j ′

∑
k′

∑
J ′

∑
I ′
|ψ j ′,k′ ∗ f (x I ′, yJ ′)|

2χI ′χJ ′

}1
2
∥∥∥∥

p
≤ C2−N

‖ f ‖H p
flag(H

n).

It is clear that the above estimates continue to hold when p is replaced by 2. This completes the proof of
Lemma 59 modulo the claim.

In order to prove the claim made above, we note that Theorem 41 shows that the functions

R(ψ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1))(z, u)

are flag molecules. Then the claim follows from Lemma 53, and this completes the proof of Lemma 59. �

We now return to the proof of Theorem 57. Let (TN )
−1
=
∑
∞

i=1 Ri , where

TN f =
∑

j

∑
k

∑
J

∑
I

(
1
|I ||J |

∫
J

∫
I
φ j,k((x, y) ◦ (u, v)−1) du dv

)
|I ||J |(φ j,k ∗ f )(x I , yJ ).
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Lemma 59 shows that if N is large enough, then both TN and (TN )
−1 are bounded on L2(Hn)∩H p

flag(H
n).

Hence, we can get the reproducing formula

f (x, y)=
∑

j

∑
k

∑
J

∑
I

|I ||J |φ̃ j,k((x, y) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N f )(x I , yJ ),

where the functions φ̃ jk((x, y) ◦ (x I , yJ )
−1) are flag molecules, and the series converges in L2(Hn). This

completes the proof of Theorem 57. �

As a consequence of Theorem 57, we obtain the following corollary.

Corollary 60. If f ∈ L2(Hn)∩ H p
flag(H

n) and 0< p ≤ 1, then

‖ f ‖H p
flag
≈

∥∥∥∥{∑
j

∑
k

∑
J

∑
I

|φ jk ∗ (T−1
N f )(x I , yJ )|

2χI (z)χJ (u)
}1

2
∥∥∥∥

p
,

where the constants are independent of the L2 norm of f .

Proof. Note that if f ∈ L2(Hn), we can apply the Calderón reproducing formula in Theorem 57 and then
repeat the proof of Theorem 19. We leave the details to the reader. �

We now start the proof of Theorem 56. We define a square function by

g̃( f )(z, u)=
{∑

j

∑
k

∑
J

∑
I

|φ j,k ∗ (T−1
N ( f ))(x I , yJ )|

2χI (z)χJ (u)
} 1

2

,

where the φ jk are as in Theorem 57. By Corollary 60, for f ∈ L2(Hn)∩ H p
flag(H

n), we have

‖g̃( f )‖L p(Hn) ≤ C‖ f ‖H p
flag(H

n).

To complete the proof of Theorem 56, let f ∈ L2(Hn)∩ H p
flag(H

n). Set

�i = {(z, u) ∈ Hn
: g̃( f )(z, u) > 2i

}.

Let

Bi = {( j, k, I, J ) : |(I × J )∩�i |>
1
2 |I × J |, |(I × J )∩�i+1| ≤

1
2 |I × J |},

where I × J are rectangles in Hn with side lengths `(I ) = 2− j−N and `(J ) = 2−k−N
+ 2− j−N . Since

f ∈ L2(Hn), the discrete Calderón reproducing formula in Theorem 57 gives

f (z, u)=
∑

j

∑
k

∑
J

∑
I

φ̃ j,k((z, u) ◦ (x I , yJ )
−1)|I ||J |φ j,k ∗ (T−1

N ( f ))(x I , yJ )

=

∑
i

∑
( j,k,I,J )∈Bi

|I ||J |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ ),

where the series converges rapidly in L2 norm, and hence almost everywhere.
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Claim. We have∥∥∥∥ ∑
( j,k,I,J )∈Bi

|I ||J |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ )

∥∥∥∥p

p
≤ C2i p

|�i |,

which together with the fact that 0< p ≤ 1 yields

‖ f ‖p
p ≤

∑
i

∥∥∥∥ ∑
( j,k,I,J )∈Bi

|I ||J |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ )

∥∥∥∥p

p

≤ C
∑

i

2i p
|�i | ≤ C‖g̃( f )‖p

p ≤ C‖ f ‖p
H p

flag
.

To obtain the claim, note that φ(1) and ψ (2) are radial functions supported in unit balls in Hn and R,
respectively. Hence, if ( j, k, I, J ) ∈Bi , then φ j,k((z, u) ◦ (x I , yJ )

−1) is supported in

�̃i =
{
(z, u) : MS(χ�i )(z, u) > 1

100

}
.

Thus, by Hölder’s inequality,∥∥∥∥ ∑
( j,k,I,J )∈Bi

|J ||I |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ )

∥∥∥∥p

p

≤ |�̃i |
1−p/2

∥∥∥∥ ∑
( j,k,I,J )∈Bi

|J ||I |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ )

∥∥∥∥p

2
.

By duality, for all g ∈ L2 with ‖g‖2 ≤ 1,∣∣∣∣〈 ∑
( j,k,I,J )∈Bi

|J ||I |φ̃ j,k((z, u) ◦ (x I , yJ )
−1)φ j,k ∗ (T−1

N ( f ))(x I , yJ ), g
〉∣∣∣∣

=

∣∣∣∣ ∑
( j,k,I,J )∈Bi

|J ||I |φ̃ j,k ∗ g(x I , yJ )φ j,k ∗ (T−1
N ( f ))(x I , yJ )

∣∣∣∣
≤ C

( ∑
( j,k,I,J )∈Bi

|I ||J ||φ j,k ∗ (T−1
N ( f ))(x I , yJ )|

2
)1

2

·

( ∑
( j,k,I,J )∈Bi

|I ||J ||φ̃ j,k ∗ g(x I , yJ )|
2
)1

2

.

Since( ∑
( j,k,I,J )∈Bi

|I ||J ||φ̃ j,k ∗ g(x I , yJ )|
2
)1

2

≤

( ∑
( j,k,I,J )∈Bi

|I ||J |(MS(φ̃ j,k ∗ g)(z, u)χI (z)χJ (u))2
)1

2

≤ C
(∑

j,k

∫
Cn

∫
R

(MS(φ̃ j,k ∗ g)2(z, u) dz du)
)1

2

≤ C‖g‖2,
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the claim now follows from the fact that |�̃i | ≤ C |�i | and the estimate

C22i
|�i | ≥

∫
�̃i\�i+1

g̃2( f )(z, u) dz du ≥
∑

( j,k,I,J )∈Bi

|φ j,k ∗ (T−1
N ( f ))(x I , yJ )|

2
|(I × J )∩ �̃i\�i+1|

≥
1
2

∑
( j,k,I,J )∈Bi

|I ||J ||φ j,k ∗ (T−1
N ( f ))(x I , yJ )|

2,

where the fact that |(I × J )∩ �̃i\�i+1|>
1
2 |I × J | when ( j, k, I, J ) ∈Bi is used in the last inequality.

This finishes the proof of Theorem 56.
As a consequence of Theorem 56, we have the following corollary.

Corollary 61. H 1
flag(H

n) is a subspace of L1(Hn).

Proof. Given f ∈ H 1
flag(H

n), by Proposition 55, there is a sequence { fn} such that fn ∈ L2(Hn)∩H 1
flag(H

n)

and fn converges to f in the norm of H 1
flag(H

n). By Theorem 56, fn converges to g in L1(Hn) for some
g ∈ L1(Hn). Therefore, f = g in (MM+δ

flag )′. �

Proof of Theorem 22. We assume that K is the kernel of T . Applying the discrete Calderón reproducing
formula in Theorem 57 implies that, for f ∈ L2(Hn)∩ H p

flag(H
n),∥∥∥∥{∑

j,k

∑
I,J

|φ j,k ∗ K ∗ f (z, u)|2χI (x)χJ (y)
}1

2
∥∥∥∥

p

=

∥∥∥∥{∑
j,k

∑
I,J

∣∣∣∣∑
j ′,k′

∑
I ′,J ′
|J ′||I ′|φ j,k ∗ K ∗ φ̃ j ′,k′(( · , · ) ◦ (x I , yJ )

−1)(z, u)

×φ j ′,k′ ∗ (T−1
N ( f ))(x I ′, yJ ′)

∣∣∣∣2χI (x)χJ (y)
}1

2
∥∥∥∥

p
,

where the discrete Calderón reproducing formula in L2(Hn) is used.
Note that the φ jk are dilations of bump functions, and by estimates similar to those in (5-10), one can

easily check that

|φ j,k ∗ K ∗ φ̃ j ′,k′(( · , · ) ◦ (x I ′, yJ ′)
−1)(z, u)|

≤ C2−| j− j ′|K 2−|k−k′|K
∫

R

2−( j∧ j ′)K

(2−( j∧ j ′)+ |z− x I ′ | + |u− v− yJ ′ |)2n+1+K ·
2−(k∧k′)K

(2−(k∧k′)+ |v|)1+K dv,

where K depends on M0 given in Theorem 22, and M0 is chosen large enough.
Repeating an argument similar to that in the proof of Theorem 19, together with Corollary 60, we obtain

‖T f ‖H p
flag
≤ C

∥∥∥∥{∑
j ′

∑
k′

{
MS

(∑
J ′

∑
I ′
|φ j ′,k′ ∗ (T−1

N ( f ))(x I ′, yJ ′)|χJ ′χI ′

)r}2/r

(z, u)
}1

2
∥∥∥∥

p

≤ C
∥∥∥∥{∑

j ′

∑
k′

∑
J ′

∑
I ′
|φ j ′,k′ ∗ (T−1

N ( f ))(x I ′, yJ ′)|
2χJ ′(y)χI ′(x)

}1
2
∥∥∥∥

p
≤ C‖ f ‖H p

flag
,

where the last inequality follows from Corollary 60.
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Since L2(Hn)∩H p
flag(H

n) is dense in H p
flag(H

n), T can be extended to a bounded operator on H p
flag(H

n),
and this ends the proof of Theorem 22. �

Proof of Theorem 23. We note that H p
flag ∩ L2 is dense in H p

flag, so we only have to obtain the required
inequality for f ∈ H p

flag ∩ L2. Thus Theorem 23 follows immediately from Theorems 22 and 56. �

7. Duality of Hardy spaces H p
flag

Chang and Fefferman [1985] established that the dual space of H 1(Hn) is BMO(Hn) by using the bi-
Hilbert transform, and, consequently, their method is not directly applicable to the implicit two-parameter
structure associated to flag singular integrals. In order to deal with the duality theory of H p

flag(H
n) for all

0< p ≤ 1, we proceed differently, and first prove Theorem 30, the Plancherel–Pólya inequalities for the
Carleson space CMOp

flag. This theorem implies that the function space CMOp
flag is well defined.

Proof of Theorem 30. The idea of the proof of this theorem is, as in the proof of Theorem 19, to use the
wavelet Calderón reproducing formula and the almost-orthogonality estimate. For convenience, we prove
Theorem 30 for the smallest Heisenberg group H1

= C×R. However, it will be clear from the proof
that its extension to general Hn is straightforward. Moreover, to simplify notation, we denote f j,k = fR ,
where R = I × J ⊂ H1, `(I ) = 2− j−N , `(J ) = 2−k−N

+ 2− j−N , I is a dyadic cube in R2 and J is an
interval in R. Here N is the same as in Theorem 17. We also denote by dist(I, I ′) the distance between
intervals I and I ′,

SR = sup
u∈I
v∈J

|ψR ∗ f (u, v)|2, TR = inf
u∈I
v∈J

|φR ∗ f (u, v)|2.

With this notation, we can rewrite the wavelet Calderón reproducing formula in Theorem 17 as

f (z, u)=
∑

R=I×J

|I ||J |φ̃R(z, u)φR ∗ f (x I , yJ ),

where the sum runs over all rectangles R = I × J . Let

R′ = I ′× J ′, |I ′| = 2− j ′−N , |J ′| = 2− j ′−N
+ 2−k′−N .

Applying the above wavelet Calderón reproducing formula and the almost-orthogonality estimates in
Section 5.3 yields, for all (u, v) ∈ R,

|ψR ∗ f (u, v)|2 ≤ C
∑

R′=I ′×J ′
j ′>k′

(
|I |
|I ′|
∧
|I ′|
|I |

)L(
|J |
|J ′|
∧
|J ′|
|J |

)L

×
|I ′|K

(|I ′| + |u− x I ′ |)(1+K )

|J ′|K

( |J ′| + |v− yJ ′ |)(1+K ) |I
′
||J ′||φR′ ∗ f (x I ′, yJ ′)|

2

+C
∑

R′=I ′ J ′
j ′≤k′

(
|I |
|I ′|
∧
|I ′|
|I |

)L(
|J |
|J ′|
∧
|J ′|
|J |

)L

×
|I ′|K

(|I ′| + |u− x I ′ |)(1+K )

|I ′|K

(|I ′| + |v− yJ ′ |)(1+K ) |I
′
||J ′||φR′ ∗ f (x I ′, yJ ′)|

2,



1514 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

where K , L are any positive integers which can be chosen such that L , K > 2/p− 1 (for general Hn , K
can be chosen greater than (2n+ 2)(2/p− 1)), the constant C depends only on K , L , and the functions
ψ and φ, where x I ′ and yJ ′ , are any fixed points in I ′ and J ′, respectively.

Adding up over R ⊆�, we obtain∑
R⊆�

|I ||J |SR ≤ C
∑
R⊆�

∑
R′
|I ′||J ′|r(R, R′)P(R, R′)TR′, (7-1)

where

r(R, R′)=
(
|I |
|I ′|
∧
|I ′|
|I |

)L−1(
|J |
|J ′|
∧
|J ′|
|J |

)L−1

and

P(R, R′)=
1

(1+ dist(I, I ′)/|I ′|)1+K (1+ dist(J, J ′)/|J ′|)1+K

if j ′ > k ′, and

P(R, R′)=
1

(1+ dist(I, I ′)/|I ′|)1+K (1+ dist(J, J ′)/|I ′|)1+K

if j ′ ≤ k ′.
We estimate the right-hand side in the above inequality, where we first consider

R′ = I ′× J ′, |I ′| = 2− j ′−N , |J ′| = 2− j ′−N
+ 2−k′−N , j ′ > k ′.

Define

�i,`
=

⋃
I×J⊂�

3(2i I × 2` J ) for i, `≥ 0.

Let Bi,` be a collection of dyadic rectangles R′ so that, for i, `≥ 1,

Bi,` =
{

R′ = I ′× J ′ : 3(2i I ′× 2` J ′)∩�i,`
6=∅ and 3(2i−1 I ′× 2`−1 J ′)∩�i,`

=∅
}
,

B0,` =
{

R′ = I ′× J ′ : 3(I ′× 2` J ′)∩�0,`
6=∅ and 3(I ′× 2`−1 J ′)∩�0,`

=∅
}

for `≥ 1,

Bi,0 =
{

R′ = I ′× J ′ : 3(2i I ′× J ′)∩�i,0
6=∅ and 3(2i−1 I ′× J ′)∩�i,0

=∅
}

for i ≥ 1,

B0,0 =
{

R′ = I ′× J ′ : 3(I ′× J ′)∩�0,0
6=∅

}
.

We write ∑
R⊆�

∑
R′
|I ′||J ′|r(R, R′)P(R, R′)TR′ =

∑
i≥0
`≥0

∑
R′∈Bi,`

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ .

To estimate the right-hand side of the above equality, we first consider the case when i = `= 0. Note
that when R′ ∈ B0,0, 3R′ ∩�0,0

6=∅. For each integer h ≥ 1, let

Fh =

{
R′ = I ′× J ′ ∈ B0,0 : |(3I ′× 3J ′)∩�0,0

| ≥
1
2h |3I ′× 3J ′|

}
.
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Let Dh = Fh\Fh−1, and �h =
⋃

R′∈Dh
R′. Finally, assume that, for any open set �⊂ R2,∑

R=I×J⊆�

|I ||J |TR ≤ C |�|2/p−1.

Since B0,0 =
⋃

h≥1 Dh and for each R′ ∈ B0,0, P(R, R′)≤ 1, we have∑
R′∈B0,0

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ ≤
∑
h≥1

∑
R′⊆�h

∑
R⊆�

|I ′||J ′|r(R, R′)TR′ .

For each h ≥ 1 and R′ ⊆�h , we decompose {R : R ⊆�} into

A0,0(R′)=
{

R = I × J ⊆� : dist(I, I ′)≤ |I | ∨ |I ′|, dist(J, J ′)≤ |J | ∨ |J ′|
}
,

Ai ′,0(R′)=
{

R = I × J ⊆� : 2i ′−1(|I | ∨ |I ′|) < dist(I, I ′)≤ 2i ′(|I | ∨ |I ′|), dist(J, J ′)≤ |J | ∨ |J ′|
}
,

A0,`′(R′)=
{

R = I × J ⊆� : dist(I, I ′)≤ |I | ∨ |I ′|, 2`
′
−1(|J | ∨ |J ′|) < dist(J, J ′)≤ 2`

′

(|J | ∨ |J ′|)
}
,

Ai ′,`′(R′)=
{

R = I × J ⊆� : 2i ′−1(|I | ∨ |I ′|) < dist(I, I ′)≤ 2i ′(|I | ∨ |I ′|),
2`
′
−1(|J | ∨ |J ′|) < dist(J, J ′)≤ 2`

′

(|J | ∨ |J ′|)
}
,

where i ′, `′ ≥ 1.
Now we split

∑
h≥1

∑
R′⊆�h

∑
R⊆� |I

′
||J ′|r(R, R′)P(R, R′)TR′ into∑

h≥1

∑
R′∈�h

( ∑
R∈A0,0(R′)

+

∑
i ′≥1

∑
R∈Ai ′,0(R′)

+

∑
`′≥1

∑
R∈A0,`′ (R′)

+

∑
i ′,`′≥1

∑
R∈Ai ′,`′ (R′)

)
|I ′||J ′|r(R, R′)P(R, R′)TR′

=: I1+ I2+ I3+ I4.

To estimate the term I1, we only need to estimate
∑

R∈A0,0(R′) r(R, R′), since P(R, R′) ≤ 1 in this
case.

Note that R ∈ A0,0(R′) implies 3R ∩ 3R′ 6=∅. For such R, there are four cases:
Case 1: |I ′| ≥ |I |, |J ′| ≤ |J |.
Case 2: |I ′| ≤ |I |, |J ′| ≥ |J |.
Case 3: |I ′| ≥ |I |, |J ′| ≥ |J |.
Case 4: |I ′| ≤ |I |, |J ′| ≤ |J |.
In each case, we can estimate

∑
R∈A0,0

r(R, R′)≤C2−hL by using a simple geometric argument similar
to that in [Chang and Fefferman 1980]. This implies that I1 is bounded by∑

h≥1

2−hL
|�h|

2/p−1
≤ C

∑
h≥1

h2/p−12−h(L−2/p+1)
|�0,0
|
2/p−1

≤ C |�|2/p−1,

since |�h| ≤ Ch2h
|�0,0
| and |�0,0

| ≤ C |�|.
Thus it remains to estimate term I4, since estimates of I2 and I3 can be derived using the same

techniques as for I1 and I4. The estimate for this term is more complicated than that for term I1.
As in estimating term I1, we only need to estimate the sum

∑
R∈Ai ′,`′ (R′)

r(R, R′), since P(R, R′)≤

2−i(1+K )2−i ′(1+K ). Note that R ∈ Ai ′,`′(R′) implies 3(2i ′ I × 2`
′

J )∩ 3(2i ′ I ′× 2`
′

J ′) 6=∅. We also split
our estimate into four cases.
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Case 1. In this case, |2i I ′| ≥ |2i ′ I |, |2`
′

J ′| ≤ |2`
′

J |. Then

|2i ′ I |
|3 · 2i ′ I ′|

|3(2i ′ I ′× 2`
′

J ′)| ≤ |3(2i ′ I ′× 2`
′

J ′)| ∧ |3(2i I × 2`
′

J )|

≤ C2i ′2`
′

|3R′ ∩�0,0
| ≤ C2i ′2`

′ 1
2h−1 |3R′| ≤ C

1
2h−1 |3(2

i ′ I ′× 2`
′

J ′)|.

Thus |2i ′ I ′| =
∑h−1+n

|2i I | for some n ≥ 0. For each fixed n, the number of such 2i ′ I must be ≤ 2n
· 5.

As for |2`
′

J | = 2m
|2`
′

J ′|, for some m ≥ 0, for each fixed m, 3 · 2`
′

J ∩ 3 · 2`
′

J ′ 6= ∅ implies that the
number of such 2`

′

J ′ is less than 5. Thus∑
R ∈Case 1

r(R, R′)≤
∑

m,n≥0

(
1

2n+m+h−1

)L

2n
· 52
≤ C2−hL .

We can handle the other three cases similarly. Combining the four cases, we have∑
R∈Ai ′,`′ (R′)

r(R, R′)≤ C2−hL ,

which, together with the estimate for P(R, R′), imply that

I4 ≤ C
∑
h≥1

∑
i ′,`′≥1

∑
R′⊆�h

2−hL2−i ′(1+K )2−`
′(1+K )

|I ′||J ′|TR′ .

Hence I4 is bounded by∑
h≥1

2−hL
|�h|

2/p−1
≤ C

∑
h≥1

h2/p−12−h(L−2/p+1)
|�0,0
|
2/p−1

≤ C |�|2/p−1,

since
∑

R′⊂�h
|I ′||J ′|TR′ ≤ C |�h|

2/p−1 and |�h| ≤ Ch2h
|�0,0
| and |�0,0

| ≤ C |�|. Combining I1, I2,
I3, and I4, we have

1
|�|2/p−1

∑
R′∈B0,0

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ ≤ C sup
�

1/|�|2/p−1
∑
R′⊆�

|I ′||J ′|TR′ .

Now we consider ∑
i,`≥1

∑
R′∈Bi,`

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ .

Note that for R′ ∈ Bi,`, 3(2i I ′× 2` J )∩�i,` 6=∅. Let

Fi,`
h =

{
R′ ∈ Bi,` : |3(2i I ′× 2` J ′)∩�i,`

| ≥
1
2h |3(2

i I ′× 2` J ′)|
}
,

Di,`
h = Fi,`

h \Fi,`
h−1,

and

�
i,`
h =

⋃
R′∈Di,`

h

R′.
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Since Bi,` =
⋃

h≥1 Di,`
h , we first estimate∑

R′∈Di,`
h

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′

for some i, `, h ≥ 1.
Note that for each R′ ∈Di,`

h , 3(2i I ′×2` J ′)∩�i−1,`−1
=∅. So, for any R⊆�, we have 2i (|I |∨|I ′|)≤

dist(I, I ′) and 2`(|J | ∨ |J ′|)≤ dist(J, J ′). We decompose {R : R ⊆�} as

Ai ′,`′(R′)=
{

R ⊆� : 2i ′−12i (|I | ∨ |I ′|)≤ dist(I, I ′)≤ 2i ′2i (|I | ∨ |I ′|),

2`
′
−12`(|J | ∨ |J ′|)≤ dist(J, J ′)≤ 2`

′

2`(|J | ∨ |J ′|)
}
,

where i ′, `′ ≥ 1. Then we write∑
R′∈Di,`

h

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ =
∑

i ′,`′≥1

∑
R′∈Di,`

h

∑
R∈Ai ′,`′ (R′)

|I ′||J ′|r(R, R′)P(R, R′)TR′ .

Since
P(R, R′)≤ C2−i(1+K )2−`(1+K )2−i ′(1+K )2−`

′(1+K )

for R′ ∈ Bi,` and R ∈ Ai ′,`′(R′), repeating the same proof with B0,0 replaced by Bi,` and using the fact that

|�
i,`
h | ≤ C2h

|�i,`
|, |�i,`

| ≤ C(i2i )(`2`)|�0,0
|, |�0,0

| ≤ C |�|,

yield∑
R′∈Di,`

h

∑
R∈Ai ′,`′ (R′)

|I ′||J ′|r(R, R′)P(R, R′)TR′

≤ C2−i(1+K )2−`(1+K )2−i ′(1+K )2−`
′(1+K )

|�
i,`
h |

2/p−1
(

1

|�
i,`
h |

2/p−1

∑
R′⊂�i,`

h

|I ′||J ′|TR′

)
≤ C2−i(1+K )2−`(1+K )2−i ′(1+K )2−`

′(1+K )i2/p−12i(2/p−1)`2/p−12`(2/p−1)h2/p−12−h(L−2/p+1)
|�|2/p−1

× sup
�

1
|�|2/p−1

∑
R′⊂�

|I ′||J ′|TR′ .

Adding over all i , `, i ′, `′, h ≥ 1, we get

1
|�|2/p−1

∑
i,`≥1

∑
R′∈Bi,`

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ ≤ C sup
�

1
|�|2/p−1

∑
R′⊆�

|I ′||J ′|TR′ .

Similar estimates, which we leave to the reader, hold for∑
i≥1

∑
R′∈Bi,0

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′ and
∑
`≥1

∑
R′∈B0,`

∑
R⊆�

|I ′||J ′|r(R, R′)P(R, R′)TR′,

which, after adding over all i, `≥ 0, completes the proof of Theorem 30. �

As a consequence of Theorem 30, it is easy to see that the space CMOp
F is well defined. In particular,

we have the following:



1518 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

Corollary 62. We have

‖ f ‖CMOp
F
≈ sup

�

{
1

|�|2/p−1

∑
j

∑
k

∑
I×J⊆�

|ψ j,k ∗ f (x I , yJ )|
2
|I ||J |

}1
2

,

where I × J is a dyadic rectangle in Hn with `(I ) = 2− j−N and `(J ) = 2− j−N
+ 2−k−N , and where

x I , yJ are any fixed points in I, J , respectively.

Proof of Theorem 32. We first prove cp
⊆ (s p)∗. Applying the proof in Theorem 56, set

s(z, u)=
{∑

I×J

|sI×J |
2
|I |−1
|J |−1χI (z)χJ (u)

}1
2

and
�i = {(z, u) ∈ Hn

: s(z, u) > 2i
}.

Let
Bi =

{
(I × J ) : |(I × J )∩�i |>

1
2 |I × J |, |(I × J )∩�i+1| ≤

1
2 |I × J |

}
,

where I × J is a dyadic rectangle in Hn with `(I ) = 2− j−N and `(J ) = 2− j−N
+ 2−k−N . Suppose

t = {tI×J } ∈ cp, and write∣∣∣∣∑
I×J

sI×J t̄I×J

∣∣∣∣= ∣∣∣∣∑
i

∑
(I×J )∈Bi

sI×J t̄I×J

∣∣∣∣
≤

{∑
i

[ ∑
(I×J )∈Bi

|sI×J |
2
]p/2[ ∑

(I×J )∈Bi

|tI×J |
2
]p/2}1/p

≤ C‖t‖cp

{∑
i

|�i |
1−p/2

[ ∑
(I×J )∈Bi

|sI×J |
2
]p/2}1/p

, (7-2)

since if I × J ∈Bi , then

I × J ⊆ �̃i =
{
(z, u) : MS(χ�i )(z, u) > 1

2

}
,

|�̃i | ≤ C |�i |,

and {tI×J } ∈ cp yield { ∑
(I×J )∈Bi

|tI×J |
2
}1

2

≤ C‖t‖cp |�i |
1/p−1/2.

The same proof as in the claim of Theorem 56 implies∑
(I×J )∈Bi

|sI×J |
2
≤ C22i

|�i |.

Substituting the above term back into the last term in (7-2) gives cp
⊆ (s p)∗.

The proof of the converse is simple and is similar to the one given in [Frazier and Jawerth 1990] for
p = 1 in the one-parameter setting on Rn . If ` ∈ (s p)∗, then it is clear that `(s) =

∑
I×J sI×J t̄I×J for
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some t = {tI×J }. Now fix an open set �⊂Hn and let S be the sequence space of all s = {sI×J } such that
I× J ⊆�. Finally, let µ be a measure on S so that the µ-measure of the “point” I× J is 1/|�|2/p−1. Then,{

1
|�|2/p−1

∑
I×J⊆�

|tI×J |
2
}1

2

= ‖tI×J‖`2(S,dµ)

= sup
‖s‖

`2(S,dµ)≤1

∣∣∣∣ 1
|�|2/p−1

∑
I×J⊆�

sI×J t̄I×J

∣∣∣∣
≤ ‖t‖(s p)∗ sup

‖s‖
`2(S,dµ)≤1

∥∥∥∥sI×J
1

|�|2/p−1

∥∥∥∥
s p
.

By Hölder’s inequality,∥∥∥∥sI×J
1

|�|2/p−1

∥∥∥∥
s p
=

1
|�|2/p−1

{∫
�

( ∑
I×J⊆�

|sI×J |
2
|I × J |−1χI (x)χJ (y)

)p/2

dz du
}1/p

≤

{
1

|�|2/p−1

∫
�

∑
I×J⊆�

|sI×J |
2
|I × J |−1χI (x)χJ (y) dz du

}1/2

= ‖s‖`2(S,dµ) ≤ 1,

which shows ‖t‖cp ≤ ‖t‖(s p)∗ . �

In order to use Theorem 32 to obtain Theorem 33, we introduce a map S which takes f ∈ (MM+δ
flag )′ to

the sequence of coefficients

S f ≡ {sI×J } =
{
|I |

1
2 |J |

1
2ψ j,k ∗ f (x I , yJ )

}
,

where I × J is a dyadic rectangle in Hn with `(I ) = 2− j−N and `(J ) = 2− j−N
+ 2−k−N , and where

x I , yJ are any fixed points in I, J , respectively. For any sequence s = {sI×J }, we define a map T which
takes s to

T (s)=
∑

j

∑
k

∑
J

∑
I

|I |
1
2 |J |

1
2 ψ̃ j,k(z, u)sI×J ,

where the ψ̃ j,k are as in (3-1).
The following result together with Theorem 32 will give Theorem 33.

Theorem 63. The maps S : H p
flag→ s p and S : CMOp

flag→ cp, as well as the maps T : s p
→ H p

flag and
T : cp

→ CMOp
flag, are bounded. Moreover, T ◦ S is the identity on both H p

flag and CMOp
flag.

Proof. The boundedness of S on H p
flag and CMOp

flag follows directly from the Plancherel–Pólya inequalities,
Theorems 19 and 30. The boundedness of T also follows from the arguments in Theorems 19 and 30.
Indeed, to see that T is bounded from s p to H p

flag, let s = {sI×J }. Then, by Proposition 54,

‖T (s)‖H p
flag
≤ C

∥∥∥∥{∑
j

∑
k

∑
J

∑
I

|ψ j,k ∗ T (s)(z, u)|2χI (x)χJ (y)
}1

2
∥∥∥∥

p
.
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By adapting an argument similar to that in the proof of Theorem 19, we have, for some 0< r < p,

|ψ j,k ∗ T (s)(z, u)χI (x)χJ (y)|2

=

∣∣∣∣∑
j ′,k′

∑
I ′,J ′
|I ′||I ′|ψ j,k ∗ ψ̃ j ′,k′( · , · )(z, u)sI ′×J ′ |I ′|−

1
2 |J ′|−

1
2χI (x)χJ (y)

∣∣∣∣2
≤ C

∑
k∧k′≤ j∧ j ′

2−| j− j ′|K 2−|k−k′|K
{

MS

(∑
I ′,J ′
|sI ′×J ′ ||I ′|−1

|J ′|−1χJ ′χI ′

)r}2/r

(z, u)χI (x)χJ (y)

+

∑
k∧k′> j∧ j ′

2−| j− j ′|K 2−|k−k′|K
{

M
(∑

I ′,J ′
|sI ′×J ′ ||I ′|−1

|J ′|−1χJ ′χI ′

)r}2/r

(z, u)χI (x)χJ (y).

Repeating the argument in Theorem 19 gives the boundedness of T from s p to H p
flag. A similar adaptation

of the argument in the proof of Theorem 30 applies to yield the boundedness of T from cp to CMOp
flag.

We leave the details to the reader. The discrete Calderón reproducing formula and Theorems 17 and 30
show that T ◦ S is the identity on both H p

flag and CMOp
flag. �

We are now ready to give the proofs of Theorems 33 and 34.

Proof of Theorem 33. If f ∈ MM+δ
flag and g ∈ CMOp

flag, let `g = 〈 f, g〉. Then the discrete Calderón
reproducing formula and Theorems 30 and 32 imply

|`g| = |〈 f, g〉| =
∣∣∣∣ ∑

R=I×J

|I ||J |ψR ∗ f (x I , yJ )ψ̃R(g)(x I , yJ )

∣∣∣∣≤ C‖ f ‖H p
flag
‖g‖CMOp

F
.

Because MM+δ
flag is dense in H p

flag, this shows that the map `g = 〈 f, g〉, defined initially for f ∈MM+δ
flag ,

can be extended to a continuous linear functional on H p
flag with ‖`g‖ ≤ C‖g‖CMOp

flag
.

Conversely, let ` ∈ (H p
flag)
∗ and set `1 = ` ◦ T , where T is defined as in Theorem 32. Then, by

Theorem 32, `1 ∈ (s p)∗, so by Theorem 30, there exists t = {tI×J } such that `1(s)=
∑

I×J sI×J t̄I×J for
all s = {sI×J }, and where

‖t‖cp ≈ ‖`1‖ ≤ C‖`‖,

because T is bounded. Again by Theorem 32, `= ` ◦ T ◦ S = `1 ◦ S. Hence, with

f ∈MM+δ
flag and g =

∑
I×J

tI×JψR((z, u) ◦ (x I , yJ )
−1),

and where without loss the generality we may assume that ψ is a radial function, we have

`( f )= `1(S( f ))= 〈S( f ), t〉 = 〈 f, g〉.

This proves `= `g, and by Theorem 32 we have

‖g‖CMOp
flag
≤ C‖t‖cp ≤ C‖`g‖. �

Proof of Theorem 34. As mentioned earlier, H 1
flag is a subspace of L1. By the duality of H 1

flag and BMOflag,
we now conclude that L∞ is a subspace of BMOflag, and from the boundedness of flag singular integrals
on H 1

flag, we get that flag singular integrals are bounded on BMOflag and also from L∞ to BMOflag. �
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8. Calderón–Zygmund decomposition and interpolation decomposition

In this section we derive a Calderón–Zygmund decomposition using functions in flag Hardy spaces. As
an application, we prove an interpolation theorem for the spaces H p

flag(H
n).

We first recall that Chang and Fefferman [1982] established the following Calderón–Zygmund decom-
position on the pure product domain R2

+
×R2

+
.

Lemma 64 (Calderón–Zygmund lemma). Let α > 0 be given and f ∈ L p(R2), 1 < p < 2. Then
we may write f = g + b, where g ∈ L2(R2) and b ∈ H 1(R2

+
× R2

+
) with ‖g‖22 ≤ α

2−p
‖ f ‖p

p and
‖b‖H1(R2

+×R2
+)
≤ Cα1−p

‖ f ‖p
p, where c is an absolute constant.

We now prove the Calderón–Zygmund decomposition in the setting of flag Hardy spaces on the
Heisenberg group.

Proof of Theorem 35. We first assume f ∈ L2(Hn)∩ H p
flag(H

n). Let α > 0 and

�` = {(z, u) ∈ Hn
: S( f )(z, u) > α2`},

where, as in Corollary 60,

S( f )(z, u)=
{∑

j,k

∑
I,J

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χI (x)χJ (y)
}1

2

.

It was shown in Corollary 60 that for f ∈ L2(Hn)∩ H p
flag(H

n), we have ‖ f ‖H p
flag
≈ ‖S( f )‖p.

In the following, we denote dyadic rectangles in Hn by R = I × J with `(I ) = 2− j−N and `(J ) =
2− j−N

+ 2−k−N , where j, k are integers and N is sufficiently large. Let

R0 =
{

R = I × J : |R ∩�0|<
1
2 |R|

}
and, for `≥ 1,

R` =
{

R = I × J : |R ∩�`−1| ≥
1
2 |R| but |R ∩�`|< 1

2 |R|
}
.

By the discrete Calderón reproducing formula in Theorem 57,

f (z, u)=
∑
j,k

∑
I,J

|I ||J |φ̃ jk((z, u) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N ( f ))(x I , yJ )

=

∑
`≥1

∑
I×J∈R`

|I ||J |φ̃ jk((z, u) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N ( f ))(x I , yJ )

+

∑
I×J∈R0

|I ||J |φ̃ jk((z, u) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N ( f ))(x I , yJ )

= b(z, u)+ g(z, u)

When p1 > 1, using a duality argument it is easy to show

‖g‖p1 ≤ C
∥∥∥∥{ ∑

R=I×J∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χIχJ

}1
2
∥∥∥∥

p1

.
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Next, we estimate ‖g‖H
p1

flag
when 0< p1≤1. Clearly, the duality argument will not work here. Nevertheless,

we can estimate the H p1
flag norm directly by using the discrete Calderón reproducing formula in Theorem 57.

To this end, we note that

‖g‖H
p1

flag
≤

∥∥∥∥{∑
j ′,k′

∑
I ′,J ′
|(ψ j ′k′ ∗ g)(x I ′, yJ ′)|

2χI ′(z)χJ ′(u)
}1

2
∥∥∥∥

L p1

.

Since

(ψ j ′,k′ ∗ g)(x I ′, yJ ′)=
∑

I×J∈R0

|I ||J |(ψ j ′k′ ∗ φ̃ jk)((x I ′, yJ ′) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N ( f ))(x I , yJ ),

we can repeat the argument in the proof of Theorem 56 to obtain∥∥∥∥{∑
j ′,k′

∑
I ′,J ′
|(ψ j ′k′∗g)(x I ′, yJ ′)|

2χI ′(z)χJ ′(u)
}1

2
∥∥∥∥

L p1

≤C
∥∥∥∥{ ∑

R=I×J∈R0

|φ jk∗(T−1
N ( f ))(x I , yJ )|

2χIχJ

}1
2
∥∥∥∥

p1

.

This shows that for all 0< p1 <∞,

‖g‖H
p1

flag
≤ C

∥∥∥∥{ ∑
R=I×J∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χIχJ

}1
2
∥∥∥∥

p1

.

Claim 65. We have∫
S( f )(z,u)≤α

S p1( f )(z, u) dz du ≥ C
∥∥∥∥{ ∑

R=I×J∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χIχJ

}1
2
∥∥∥∥

p1

.

This claim implies

‖g‖p1 ≤C
∫

S( f )(z,u)≤α
S p1( f )(z, u) dz du ≤Cα p1−p

∫
S( f )(z,u)≤α

S p( f )(z, u) dz du ≤Cα p1−p
‖ f ‖p

H p
flag(H

n)
.

To prove Claim 65, we let R = I × J ∈R0. Choose 0< q < p1 and note that∫
S( f )(z,u)≤α

S p1( f )(z, u) dz du

=

∫
S( f )(z,u)≤α

{∑
j,k

∑
I,J

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χI (x)χJ (y)
}p1/2

dz du

≥ C
∫
�c

0

{∑
R∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χIχJ

}p1/2

dz du

= C
∫

Hn

{∑
R∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χR∩�c
0
(z, u)

}p1/2

dz du

≥ C
∫

Hn

{{∑
R∈R0

(MS(|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

qχR∩�c
0
)(z, u))2/q

}q/2}p1/q

dz du

≥ C
∫

Hn

{∑
R∈R0

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χR(z, u)
}p1/2

dz du.
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In the last inequality above we have used the fact that |�c
0∩ (I × J )| ≥ 1

2 |I × J | for I × J ∈R0, and thus

χR(z, u)≤ 21/q MS(χR∩�c
0
)1/q(z, u).

In the second-to-last inequality above we have used the vector-valued Fefferman–Stein inequality for the
strong maximal function

∥∥∥∥( ∞∑
k=1

(MS fk)
r
)1/r∥∥∥∥

p
≤ C

∥∥∥∥( ∞∑
k=1

| fk |
r
)1/r∥∥∥∥

p
,

with the exponents r = 2/q > 1 and p = p1/q > 1. Thus Claim 65 follows.
We now recall that �̃` =

{
(z, u) ∈ Hn

: MS(χ�`) >
1
2

}
.

Claim 66. For p2 ≤ 1,∥∥∥∥ ∑
I×J∈R`

|I ||J |φ̃ jk((x, y) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N f )(x I , yJ )

∥∥∥∥p2

H
p2

flag

≤ C(2`α)p2 |�̃`−1|.

Claim 66 implies

‖b‖p2

H
p2

flag
≤

∑
`≥1

(2`α)p2 |�̃`−1|

≤ C
∑
`≥1

(2`α)p2 |�`−1|

≤ C
∫

S( f )(z,u)>α
S p2 f (z, u) dz du

≤ Cα p2−p
∫

S( f )(z,u)>α
S p f (z, u) dz du ≤ Cα p2−p

‖ f ‖p
H p

flag
.

To prove Claim 66, we again have∥∥∥∥ ∑
I×J∈R`

|I ||J |φ̃ jk((x, y) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N f )(x I , yJ )

∥∥∥∥p2

H
p2

flag

≤ C
∥∥∥∥{∑

j ′k′

∑
I ′,J ′

∣∣∣∣ ∑
I×J∈R`

|I ||J |(ψ j ′k′ ∗ φ̃ jk)((x I ′, yJ ′) ◦ (x I , yJ )
−1)φ jk ∗ (T−1

N f )(x I , yJ )

∣∣∣∣2}1
2
∥∥∥∥

L p2

≤ C
∥∥∥∥{ ∑

R=I×J∈R`

|φ jk ∗ (T−1
N f )(x I , yJ )|

2χIχJ

}1
2
∥∥∥∥

p2

,

where we can use an argument similar to that in the proof of Theorem 56 to prove the last inequality.
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However,

∞∑
`=1

(2`α)p2 |�̃`−1| ≥

∫
�̃`−1\�`

S( f )p2(z, u) dz du

=

∫
�̃`−1\�`

{∑
j,k

∑
I,J

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χI (z)χJ (u)
}p2/2

dz du

=

∫
Hn

{∑
j,k

∑
I,J

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χ(I×J )∩�̃`−1\�`)
(z, u)

}p2/2

dz du

≥

∫
Hn

{ ∑
I×J∈R`

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χ(I×J )∩�̃`−1\�`)
(z, u)

}p2/2

dz du

≥

∫
Hn

{ ∑
I×J∈R`

|φ jk ∗ (T−1
N ( f ))(x I , yJ )|

2χI (z)χJ (u)
}p2/2

dz du.

In the above string of inequalities, we have used the fact that, for R ∈R`, we have

|R ∩�`−1|>
1
2 |R| and |R ∩�`| ≤ 1

2 |R|,

and, consequently, R ⊂ �̃`−1. Therefore

|R ∩ (�̃`−1\�`)|>
1
2 |R|.

Thus the same argument applies here to conclude the last inequality above. Finally, since

L2(Hn)∩ H p
flag(H

n)

is dense in H p
flag(H

n), Theorem 35 is proved. �

We are now ready to prove the interpolation theorem on Hardy spaces H p
flag for all 0< p <∞.

Proof of Theorem 36. Suppose that T is bounded from H p2
flag to L p2 and from H p1

flag to L p1 . For any given
λ > 0 and f ∈ H p

flag, by the Calderón–Zygmund decomposition,

f (z, u)= g(z, u)+ b(z, u)

with

‖g‖p1

H
p1

flag
≤ Cλp1−p

‖ f ‖p
H p

flag
and ‖b‖p2

H
p2

flag
≤ Cλp2−p

‖ f ‖p
H p

flag
.

Moreover, we have proved the estimates

‖g‖p1

H
p1

flag
≤ C

∫
S( f )(z,u)≤α

S( f )p1(z, u) dz du and ‖b‖p2

H
p2

flag
≤ C

∫
S( f )(z,u)>α

S( f )p2(z, u) dz du,
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which imply that

‖T f ‖p
p = p

∫
∞

0
α p−1∣∣{(z, u) : |T f (z, u)|> λ}

∣∣ dα

≤ p
∫
∞

0
α p−1∣∣{(z, u) : |T g(z, u)|> 1

2λ
}∣∣ dα+ p

∫
∞

0
α p−1∣∣{(z, u) : |T b(z, u)|> 1

2λ
}∣∣ dα

≤ p
∫
∞

0
α p−1

∫
S( f )(z,u)≤α

S( f )p1(z, u) dz du dα+ p
∫
∞

0
α p−1

∫
S( f )(z,u)>α

S( f )p2(z, u) dz du dα

≤ C‖ f ‖p
H p

flag
.

Thus,

‖T f ‖p ≤ C‖ f ‖H p
flag

for any p2 < p < p1. Hence T is bounded from H p
flag to L p.

Now we prove the second assertion, that T is bounded on H p
flag for p2 < p < p1. For any given λ > 0

and f ∈ H p
flag, we have, again by the Calderón–Zygmund decomposition,∣∣{(z, u) : |g(T f )(z, u)|> α}

∣∣
≤
∣∣{(z, u) : |g(T g)(z, u)|> 1

2α
}∣∣+ ∣∣{(z, u) : |g(T b)(z, u)|> 1

2α
}∣∣

≤ Cα−p1‖T g‖p1

H
p1

flag
+Cα−p2‖T b‖p2

H
p2

flag

≤ Cα−p1‖g‖p1

H
p1

flag
+Cα−p2‖b‖p2

H
p2

flag

≤ Cα−p1

∫
S( f )(z,u)≤α

(S f )p1(z, u) dz du+Cα−p2

∫
S( f )(z,u)>α

(S f )p2(z, u) dz du,

which, as above, shows that ‖T f ‖H p
flag
≤ C‖g(T F)‖p ≤ C‖ f ‖H p

flag
for any p2 < p < p1. �

9. A counterexample for the one-parameter Hardy space

Recall that Hn
= Cn

×R is the Heisenberg group with group multiplication

(ζ, t) · (η, s)= (ζ + η, t + s+ 2 Im(ζ · η̄)), (ζ, t), (η, s) ∈ Cn
×R,

and that (η, s)−1
= (−η,−s). Consider the mixed kernel K (z, t)= K1(z)K2(z, t) for (z, t)∈Hn

=Cn
×R

given by

K1(z)=
�(z)
|z|2n and K2(z, t)=

1
|z|2+ i t

,

where � is smooth with mean zero on the unit sphere in Cn . We show in the subsection below that K
satisfies the smoothness and cancellation conditions required of a flag kernel. It then follows from [Müller
et al. 1995] that there is an operator T having kernel K such that, for each 1< p <∞,

‖T f ‖L p(Hn) ≤ C p,n‖ f ‖L p(Hn), f ∈ L p(Hn).



1526 YONGSHENG HAN, GUOZHEN LU AND ERIC SAWYER

The action of the corresponding singular integral operator T f = K ∗ f is given by

T f (ζ, t)= K ∗Hn f (ζ, t)=
∫

Hn
K ((ζ, t) ◦ (η, s)−1) f (η, s) dη ds

=

∫
Hn

f (η, s)K (ζ − η, t − s− 2 Im(ζ · η̄)) dη ds

=

∫
Hn

f (η, s)
�(ζ − η)

|ζ − η|2n

1
|ζ − η|2+ i(t − s− 2 Im(ζ · η̄))

dη ds.

Theorem 67. There is a smooth function � with mean zero on the unit sphere in Cn such that there is no
operator T having kernel K that is bounded from H 1(Hn) to L1(Hn).

To prove the theorem, we fix f (z, u)= ψ(z)ϕ(u), where

(1) ψ is smooth with support in the unit ball of Cn ,

(2) ϕ is smooth with support in (−1, 1),

(3)
∫

Cn ψ(z) dz = 0 and
∫

R
ϕ(u) du = 1.

Such a function f is clearly in H 1(Hn) since f is smooth, compactly supported, and has mean zero:∫
Hn

f (z, u) dz du =
∫

R

{∫
Cn
ψ(z) dz

}
ϕ(u) du =

∫
R

{0}ϕ(u) du = 0.

We next show that T fails to be bounded from H 1(Hn) to L1(Hn), and then that T is a flag singular integral.

9.1. Failure of boundedness of T . For

ζ ∈ B((100, 0), 0)= {(ζ1, ζ
′) ∈ R×Cn−1

: (ζ1− 100)2+ |ζ ′|2 < 1}, |t |> 106,

we have

|T f (ζ, t)| ≈
∫
ψ(η)ϕ(s)

�(ζ − η)

|ζ |2n

1
|ζ |2+ i(t − 2|ζ |2)

dη ds ≈
1

|ζ |2n|t |
,

since, for ζ ∈ B((100, 0), 0), we have∣∣∣∣∫ ψ(η)�(ζ − η) dη
∣∣∣∣≥ c > 0,

for an appropriately chosen � with mean zero on the sphere. The point is that both functions ψ and �
have mean zero on their respective domains, but the product can destroy enough of the cancellation. For
example, when n = 1, we can take

�(x, y)=
y√

x2+ y2
,

ψ(x, y)= yψ1(x)ψ2(y),

where ψi is an even function identically one on
(
−1/2, 1/2

)
and supported in (−1/

√
2, 1/
√

2). Then, for

ζ = (100+ ν, ω), |ν|2+ |ω|2 ≤ 1,
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we have∫
ψ(η)�(ζ − η) dη =

∫
yψ1(x)ψ2(y)�(100+ ν− x, ω− y)

=

∫
yψ1(x)ψ2(y)

ω− y√
(100+ ν− x)2+ (ω− y)2

= ω

∫
yψ1(x)ψ2(y)√

(100+ ν− x)2+ (ω− y)2
−

∫
y2ψ1(x)ψ2(y)√

(100+ ν− x)2+ (ω− y)2

≈−
1

100
.

We conclude from the above that∫
Hn
|T f (ζ, t)| dζ dt &

∫
{ζ∈B((100,0),0) and |t |>106}

1
|ζ |2n|t |

dζ dt =∞.

9.2. T is a flag singular integral. Let K be the kernel

K (z, t)=
�(z)
|z|2n

1
|z|2+ i t

, (z, t) ∈ Hn.

In order to show that K is a flag kernel, we must establish the following smoothness and cancellation
conditions.

(1) (differential inequalities) For any multi-indices α = (α1, . . . , αn), β = (β1, . . . , βm),

|∂αz ∂
β
u K (z, u)| ≤ Cα,β |z|−2n−|α|

· (|z|2+ |u|)−1−|β|

for all (z, u) ∈ Hn with z 6= 0.

(2) (cancellation condition) For every multi-index α, every normalized bump function φ1 on R, and
every δ > 0, ∣∣∣∣∫

R

∂αz K (z, u)φ1(δu) du
∣∣∣∣≤ Cα|z|−2n−|α|

;

for every multi-index β, every normalized bump function φ2 on Cn , and every δ > 0,∣∣∣∣∫
Cn
∂βu K (z, u)φ2(δz) dz

∣∣∣∣≤ Cγ |u|−1−|β|
;

and for every normalized bump function φ3 on Hn and every δ1 > 0 and δ2 > 0,∣∣∣∣∫
Hn

K (z, u)φ3(δ1z, δ2u) dz du
∣∣∣∣≤ C.

The differential inequalities in (1) follow immediately from the definition of K .
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The first cancellation condition in (2) exploits the fact that t is an odd function. For convenience we
assume α = 0. We then have∣∣∣∣∫

R

K (z, t)φ1(δt) dt
∣∣∣∣= ∣∣∣∣∫

R

�(z)
|z|2n

{
|z|2

|z|4+ t2 −
i t

|z|4+ t2

}
φ1(δt) dt

∣∣∣∣
≤

∫
R

1
|z|2n

|z|2

|z|4+ t2 |φ1(δt)| dt +
∣∣∣∣∫

R

�(z)
|z|2n

i t
|z|4+ t2 {φ1(δt)−φ1(0)} dt

∣∣∣∣
.

1
|z|2n−2

∫
∞

0

1
|z|4+ t2 dt +

1
|z|2n

∫ 1/δ

0

δt2

|z|4+ t2 dt.

Now
1

|z|2n−2

∫
∞

0

1
|z|4+ t2 dt .

1
|z|2n−2

(∫
|z|2

0

1
|z|4

dt +
∫
∞

|z|2

1
t2 dt

)
.

1
|z|2n ,

and, for |z|2 ≤ 1/δ, we have∫ 1/δ

0

δt2

|z|4+ t2 dt .
∫
|z|2

0

δt2

|z|4
dt +

∫ 1/δ

|z|2

δt2

t2 dt . δ
|z|6

|z|4
+ 1. 1,

while for |z|2 > 1/δ, we have∫ 1/δ

0

δt2

|z|4+ t2 dt .
∫ 1/δ

0

δt2

|z|4
dt . δ

(1/δ)3

|z|4
. 1.

Altogether we have
∣∣∫

R
K (z, t)φ1(δt) dt

∣∣. |z|−2n as required.
The second cancellation condition in (2) uses the assumption that � has mean zero on the sphere. For

convenience we take β = 0. Then we have∣∣∣∣∫
Cn

K (z, t)φ2(δz) dz
∣∣∣∣= ∣∣∣∣∫

Cn

�(z)
|z|2n

1
|z|2+ i t

{φ2(δz)−φ2(0)} dz
∣∣∣∣

. δ
∫
{|z|≤1/δ}

1
|z|2n

1
|z|2+ |t |

|z| dz

.
δ

|t |

∫ 1/δ

0

1
r2n r(r2n−1 dr)≈ |t |−1,

as required.
The third cancellation condition in (2) is handled similarly. We have∫

Hn
K (z, t)φ3(δ1z, δ2t) dz dt

=

∫
Hn

�(z)
|z|2n

{
|z|2

|z|4+ t2 −
i t

|z|4+ t2

}
{φ3(δ1z, δ2t)−φ3(0, δ2t)} dz dt

=

∫
Hn

�(z)
|z|2n

|z|2

|z|4+ t2 {φ3(δ1z, δ2t)−φ3(0, δ2t)} dz dt

−

∫
Hn

�(z)
|z|2n

i t
|z|4+ t2 {φ3(δ1z, δ2t)−φ3(0, δ2t)−φ3(δ1z, 0)+φ3(0, 0)} dz dt,
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and so∣∣∣∣∫
Hn

K (z, t)φ3(δ1z, δ2t) dz dt
∣∣∣∣

.
∫
|t |≤1/δ2

∫
|z|≤1/δ1

1
|z|2n

|z|2

|z|4+ t2 δ1|z| dz dt +
∫
|t |≤1/δ2

∫
|z|≤1/δ1

1
|z|2n

|t |
|z|4+ t2 δ1|z|δ2|t | dz dt = I+ II.

Now if 1/δ2 ≤ |z|2, then

I. δ1

∫
|z|≤1/δ1

1
|z|2n−3

{∫ 1/δ2

0

1
|z|4

dt
}

dz . δ1

∫
|z|≤1/δ1

1
|z|2n−1 dz ≈ δ1

∫ 1/δ1

0
dr = 1,

while if 1/δ2 > |z|2, then

I. δ1

∫
|z|≤1/δ1

1
|z|2n−3

{∫
|z|2

0

1
|z|4

dt +
∫ 1/δ2

|z|2

1
t2 dt

}
dz . δ1

∫
|z|≤1/δ1

1
|z|2n−1 dz ≈ 1.

Finally, we have

II. δ1

∫
|z|≤1/δ1

1
|z|2n−1

{
δ2

∫
|t |≤1/δ2

t2

|z|4+ t2 dt
}

dz . δ1

∫
|z|≤1/δ1

1
|z|2n−1 dz ≈ 1.

Part III. Appendix

Here in the appendix, we construct a flag dyadic decompositon of the Heisenberg group using the
tiling theorem of Strichartz. See [Han et al. 2012] for an approach that generalizes to certain products of
spaces of homogeneous type.

10. The Heisenberg grid

Let Hn
= Cn

×R be the Heisenberg group with group multiplication

(ζ, t) · (η, s)= (ζ + η, t + s+ 2 Im(ζ · η̄)), (ζ, t), (η, s) ∈ Cn
×R.

Note that (η, s)−1
= (−η,−s). Relative to this multiplication, we define the dilation

δλ(ζ, t)= (λζ, λ2t),

and its corresponding “norm” on Hn by

ρ(ζ, t)= 4
√
|ζ |4+ t2.

Then we define a symmetric quasimetric d on Hn by

d((ζ, t), (η, s))= ρ((ζ, t) · (η, s)−1),

and note that
d(δλ(ζ, t), δλ(η, s))= λd((ζ, t), (η, s)).
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The center of the group Hn is
Zn
= {(ζ, t) ∈ Hn

: ζ = 0},

which is isomorphic to the abelian group R. The quotient group Qn
= Hn/Zn consists of equivalence

classes [(ζ, t)] such that [(ζ, t)] = [(η, s)] if and only if

(ζ, t) · (η, s)−1
∈ Zn, that is, ζ = η.

Thus we may identify Qn with Cn as abelian groups. Thus we see that Hn
=Cn

⊗twist R is a twisted group
product of the abelian groups Cn and R with bihomomorphism β(z, w)= 2 Im(z · w̄). See the appendix
for a discussion of this notion of twisted group product.

Now we apply the usual dyadic decomposition to the quotient metric space Qn
= Cn to obtain a grid

of “almost balls” (which are actually cubes here)

{I }I dyadic = {I j
α } j∈Z and α∈2 j Z2n ,

where I j
0 = [0, 2 j )2n and I j

α = I j
0 +α for j ∈ Z and α ∈ 2 j Z2n , so that `(I j

α )= 2 j . By a grid of almost
balls we mean that the sets I j

α decompose Cn at each scale 2 j , are almost balls, and are nested at differing
scales; that is, there are positive constants C1,C2 and points cI j

α
∈ I j

α such that

Cn
=

.⋃
I j
α j ∈ Z,

B(cI j
α
,C12 j )⊂ I j

α ⊂ B(cI j
α
,C22 j ) j ∈ Z, α ∈ 2 j Z2n, (10-1)

I j ′

α′ ⊂ I j
α , I j

α ⊂ I j ′

α′ or I j ′

α′ = I j
α .

Here we can take cI to be the center of the cube I , and C1 = 1/2, C2 =
√

2n/2=
√

n/2. We also have
the usual dyadic grid {J k

τ }k∈Z and τ∈2k Z for R, where J k
0 = [0, 2k) and I k

τ = I k
0 + τ for k ∈ Z and τ ∈ 2kZ.

In order to use these grids to construct a “product-like” grid for Hn , we must take into account the twisted
structure of the product Hn

= Cn
⊗twist R. Here is our theorem on the existence of a twisted grid for Hn .

Theorem 68. There is a positive integer m and positive constants C1,C2, such that, for each j ∈mZ and

(α, τ ) ∈ K j ≡ 2 j Z2n
× 22 j Z,

there are subsets S j,α,τ of Hn satisfying

Hn
=

.⋃
(α,τ )∈K j

S j,α,τ , for each j ∈ mZ,

PCn S j,α,τ = I j
α , j ∈ mZ, (α, τ ) ∈ K j ,

Bd(c j,α,τ ,C12 j )⊂ S j,α,τ ⊂ Bd(c j,α,τ ,C22 j ), j ∈ mZ, (α, τ ) ∈ K j ,

S j,α,τ ⊂ S j ′,α′,τ ′, S j ′,α′,τ ′ ⊂ S j,α,τ or S j,α,τ ∩S j ′,α′,τ ′ = φ,

c j,α,τ =
(
Pj,α, τ +

1
2 22 j),

(10-2)

where Pj,α = cI j
α

and PCn denotes orthogonal projection of Hn onto Cn .
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Thus at each dyadic scale 2 j with j ∈ mZ, we have a pairwise disjoint decomposition of Hn into sets
S j,α,τ that are almost Heisenberg balls of radius 2 j . These decompositions are nested, and moreover are
product-like in the sense that the sets S j,α,τ project onto the usual dyadic grid in the factor Cn , and have
centers c j,α,τ =

(
Pj,α, τ +

1
2 22 j

)
that for each j form a product set indexed by K j ≡ 2 j Z2n

× 22 j Z and
satisfy

|c j,α,τ − c j,α′,τ | = 2 j and |c j,α,τ − c j,α,τ ′ | = 22 j ,

if α and α′ are neighbors in 2 j Z2n and if τ and τ ′ are neighbors in 22 j Z.
Theorem 68 follows easily from the theory of self-similar tilings (neatly stacked over dyadic cubes) in

[Strichartz 1992]. An excellent source for this material is [Tyson 2008, pp. 39–42]. See [Han et al. 2012]
for more detail.

11. Rectangles in the Heisenberg group

Recall from Theorem 68 that at each dyadic scale 2 j with j ∈mZ there is a pairwise disjoint decomposition
of Hn into sets S j,α,τ that are “almost Heisenberg ball” of radius 2 j . We will refer to these sets as
dyadic cubes at scale 2 j . These decompositions are nested, and moreover are product-like in the
sense that the cubes S j,α,τ project onto I j

α in the usual dyadic grid in the factor Cn , and have centers
c j,α,τ =

(
Pj,α, τ +

1
2 22 j

)
that, for each j , form a product set indexed by K j ≡ 2 j Z2n

× 22 j Z and satisfy

|c j,α,τ − c j,α′,τ | = 2 j and |c j,α,τ − c j,α,τ ′ | = 22 j ,

if α and α′ are neighbors in 2 j Z2n and if τ and τ ′ are neighbors in 22 j Z.
We now define vertical and horizontal dyadic rectangles relative to this decomposition into dyadic

cubes. The analogy with dyadic rectangles in the plane R2 that we are pursuing here is that a dyadic
rectangle I = I1× I2 in the plane is vertical if |I2| ≥ |I1|, and is horizontal if |I1| ≥ |I2| (and both if and
only if I is a dyadic square). If we consider the grid of dyadic cubes {S j,α,τ } in Hn in place of the grid of
dyadic squares in R2, we are led to the following definition.

Definition 69. Let j, k ∈ mZ, with j ≤ k, and let S j,α,τ and Sk,β,υ be dyadic cubes in Hn with
S j,α,τ ⊂ Sk,β,υ . The set

R(ver)=R
Sk,β,υ
S j,α,τ

(ver)=
⋃
{S j,α,τ ′ : S j,α,τ ′ ⊂ Sk,β,υ}

will be referred to as a vertical dyadic rectangle, or, more precisely, the vertical dyadic rectangle in Sk,β,υ

containing S j,α,τ . We define the base of the rectangle R(ver) to be the dyadic cube I j
α in Cn , and we

define the cobase of the rectangle R(ver) to be the dyadic interval J 2k
υ in R. We say the rectangle R(ver)

has width 2 j and height 22k . Similarly, the set

R(hor)=R
Sk,β,υ
S j,α,τ

(hor)=
⋃
{S j,α′,τ : S j,α′,τ ⊂ Sk,β,υ}

will be referred to as a horizontal dyadic rectangle, or, more precisely, the horizontal dyadic rectangle in
Sk,β,υ containing S j,α,τ . We define the base of the rectangle R(hor) to be the dyadic cube I k

β in Cn , and
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we define the cobase of the rectangle R(ver) to be the dyadic interval J 2 j
τ in R. We say the rectangle

R(hor) has width 2k and height 22 j .

We will usually write just R to denote a dyadic rectangle that is either vertical or horizontal. Note that
a dyadic rectangle R is both vertical and horizontal if and only if R is a dyadic cube S j,α,τ . Finally note
that R

Sk,β,υ
S j,α,τ

(ver) can be thought of as a Heisenberg substitute for the Euclidean rectangle I j
α × J 2k

υ in Hn

with width 2 j and height 22k , and that R
Sk,β,υ
S j,α,τ

(hor) can be thought of as a Heisenberg substitute for the
Euclidean rectangle I k

β × J 2 j
τ in Hn with width 2k and height 22 j . The vertical Heisenberg rectangles are

constructed by stacking Heisenberg cubes neatly on top of each other, while the horizontal Heisenberg
rectangles are constructed by placing Heisenberg cubes next to each other, although the placement is far
from neat.

Remark 70. In applications to operators with flag kernels, or more generally a semiproduct structure, it
is appropriate to restrict attention to the set of vertical dyadic rectangles.
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FILIPPO CAGNETTI, MARIA COLOMBO, GUIDO DE PHILIPPIS AND FRANCESCO MAGGI

Dedicated to Nicola Fusco, for his mentorship

Characterization results for equality cases and for rigidity of equality cases in Steiner’s perimeter inequality
are presented. (By rigidity, we mean the situation when all equality cases are vertical translations of
the Steiner symmetral under consideration.) We achieve this through the introduction of a suitable
measure-theoretic notion of connectedness and a fine analysis of barycenter functions for sets of finite
perimeter having segments as orthogonal sections with respect to a hyperplane.
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1. Introduction

1A. Overview. Steiner symmetrization is a classical and powerful tool in the analysis of geometric
variational problems. Indeed, while volume is preserved under Steiner symmetrization, other relevant
geometric quantities, like diameter or perimeter, behave monotonically. In particular, Steiner’s perimeter
inequality asserts the crucial fact that perimeter is decreased by Steiner symmetrization, a property that, in
turn, lies at the heart of a well-known proof of the Euclidean isoperimetric theorem; see [De Giorgi 1958].
In the seminal paper [Chlebík et al. 2005], which we briefly review in Section 1B, Chlebík, Cianchi and
Fusco discuss Steiner’s inequality in the natural framework of sets of finite perimeter, and provide a
sufficient condition for the rigidity of equality cases. By rigidity of equality cases we mean that situation
when the only sets achieving equality in Steiner’s inequality are obtained as translations of the Steiner
symmetral. Roughly speaking, the sufficient condition for rigidity found in [Chlebík et al. 2005] amounts
to requiring that the Steiner symmetral has “no vertical boundary” and “no vanishing sections”. While
simple examples show that rigidity may indeed fail if one of these two assumptions is dropped, it is
likewise easy to construct polyhedral Steiner symmetrals such that rigidity holds and both these conditions
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are violated. In particular, the problem of a geometric characterization of rigidity of equality cases in
Steiner’s inequality was left open in [Chlebík et al. 2005], even in the fundamental case of polyhedra.

In the recent paper [Cagnetti et al. 2013], we have fully addressed the rigidity problem in the case of
Ehrhard’s inequality for a Gaussian perimeter. Indeed, we obtain a characterization of rigidity, rather
than a mere sufficient condition for it. A crucial step in proving (and, actually, formulating) this sharp
result consists in the introduction of a measure-theoretic notion of connectedness, and, more precisely, of
what it means for a Borel set to “disconnect” another Borel set; see Section 1C for more details.

In this paper, we aim to exploit these ideas in the study of Steiner’s perimeter inequality. In order to
achieve this goal we shall need a sharp description of the properties of the barycenter function of a set of
finite perimeter having segments as orthogonal sections with respect to a hyperplane (Theorem 1.7). With
these tools at hand, we completely characterize equality cases in Steiner’s inequality in terms of properties
of their barycenter functions (Theorem 1.9). Starting from this result, we obtain a general sufficient
condition for rigidity (Theorem 1.11), and we show that, if the slice length function is of special bounded
variation with locally finite jump set, then equality cases are necessarily obtained by at most countably
many vertical translations of “chunks” of the Steiner symmetral (Theorem 1.13); see Section 1D.

In Section 1E, we introduce several characterizations of rigidity. In Theorem 1.16 we provide two
geometric characterizations of rigidity under the “no vertical boundary” assumption considered in [Chlebík
et al. 2005]. In Theorem 1.20 we characterize rigidity in the case when the Steiner symmetral is a
generalized polyhedron. (Here, the generalization of the usual notion of polyhedron consists in replacing
affine functions over bounded polygons with W 1,1-functions over sets of finite perimeter and volume.)
We then characterize rigidity when the slice length function is of special bounded variation with locally
finite jump set, by introducing a condition we call the mismatched stairway property (Theorem 1.29).
Finally, in Theorem 1.30, we prove two characterizations of rigidity in the planar setting.

By building on the results and methods introduced in this paper, it is of course possible to analyze
the rigidity problem for Steiner perimeter inequalities in higher codimensions. Although it would have
been natural to discuss these issues here, the already considerable length and technical complexity of the
present paper suggested we do this in a separate forthcoming paper.

1B. The Steiner inequality and the rigidity problem. We begin by recalling the definition of Steiner
symmetrization and the main result from [Chlebík et al. 2005]. In doing so, we shall refer to some concepts
from the theory of sets of finite perimeter and functions of bounded variation (that are summarized in
Section 2B), and we shall fix a minimal set of notation used through the rest of the paper. We decompose
Rn , n ≥ 2, as the Cartesian product Rn−1

×R, denoting by p :Rn
→Rn−1 and q : Rn

→R the horizontal
and vertical projections, so that x = ( px, qx) with px = (x1, . . . , xn−1), qx = xn for every x ∈Rn . Given
E ⊂ Rn we denote by Ez the vertical section of E with respect to z ∈ Rn−1, that is, we set

Ez = {t ∈ R : (z, t) ∈ E}.

Moreover, given a function v : Rn−1
→ [0,∞), we say that E is v-distributed if

v(z)=H1(Ez) for Hn−1-a.e. z ∈ Rn−1.
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(Here, Hk(S) stands for the k-dimensional Hausdorff measure on the Euclidean space containing the set S
under consideration.) Among all v-distributed sets, we denote by F[v] the (only) one that is symmetric
by reflection with respect to {qx = 0}, and whose vertical sections are segments, that is, we set

F[v] = {x ∈ Rn
: |qx |< 1

2v( px)}.

If E is a v-distributed set, then the set F[v] is the Steiner symmetral of E , and is usually denoted as E s .
(Our notation reflects the fact that, in addressing the structure of equality cases, we are more concerned
with properties of v rather than with the properties of a particular v-distributed set.) The set F[v] has
finite volume if and only if v ∈ L1(Rn−1), and it is of finite perimeter if and only if v ∈ BV(Rn−1) with
Hn−1({v > 0}) <∞; see Proposition 3.2. Denoting by P(E; A) the relative perimeter of E with respect
to the Borel set A⊂Rn (so that, for example, P(E; A)=Hn−1(A∩∂E) if E is an open set with Lipschitz
boundary in Rn), the Steiner perimeter inequality implies that, if E is a v-distributed set of finite perimeter,
then

P(E;G×R)≥ P(F[v];G×R) for every Borel set G ⊂ Rn−1. (1-1)

Inequality (1-1) was first proved in this generality by De Giorgi [1958], in the course of his proof of the
Euclidean isoperimetric theorem for sets of finite perimeter. Indeed, an important step in his argument
consists in showing that if a set E satisfies (1-1) with equality, then, for Hn−1-a.e. z ∈ G, the vertical
section Ez is H1-equivalent to a segment; see [Maggi 2012, Chapter 14]. The study of equality cases in
Steiner’s inequality was then resumed by Chlebík et al. [2005]. We now recall two important results from
their paper. The first theorem, which is easily deduced by means of [Chlebík et al. 2005, Theorem 1.1,
Proposition 4.2], completes De Giorgi’s analysis of necessary conditions for equality, and, in turn, provides
a characterization of equality cases whenever ∂∗E has no vertical parts. Given a Borel set G ⊂ Rn−1, we
set

MG(v)= {E ⊂ Rn
: E v-distributed and P(E;G×R)= P(F[v];G×R)} (1-2)

to denote the family of sets achieving equality in (1-1), and simply set M(v)=MRn−1(v).

Theorem A [Chlebík et al. 2005]. Let v ∈ BV(Rn−1) and let E be a v-distributed set of finite perimeter. If
E ∈MG(v) then, for Hn−1-a.e. z∈G, Ez is H1-equivalent to a segment (t−, t+), with (z, t+), (z, t−)∈∂∗E ,
pνE(z, t+)= pνE(z, t−), and qνE(z, t+)=−qνE(z, t−).

The converse implication holds provided ∂∗E has no vertical parts above G, that is,

Hn−1(
{x ∈ ∂∗E ∩ (G×R) : qνE(x)= 0}

)
= 0, (1-3)

where ∂∗E denotes the reduced boundary of E , while νE is the measure-theoretic outer unit normal of E ;
see Section 2B.

The second main result, from [Chlebík et al. 2005, Theorem 1.3], provides a sufficient condition for
the rigidity of equality cases in Steiner’s inequality over an open connected set. Note indeed that some
assumptions are needed in order to expect rigidity; see Figure 1.



1538 FILIPPO CAGNETTI, MARIA COLOMBO, GUIDO DE PHILIPPIS AND FRANCESCO MAGGI

F[v]

110 0

E E

1
2

F[v]

Figure 1. Left: ∂∗F[v] has vertical parts over �= (0, 1) and (1-6) does not hold. Right:
∂∗F[v] has no vertical parts over �= (0, 1), but (1-5) fails (indeed, 0= v∨(1

2)= v
∧(1

2)).

Theorem B [Chlebík et al. 2005]. If v∈BV(Rn−1),�⊂Rn−1 is an open connected set with Hn−1(�)<∞,
and

Dsvx�= 0, (1-4)

v∧ > 0 Hn−2-a.e. on �, (1-5)

then for every E ∈M�(v) we have

Hn((E1(ten + F[v])
)
∩ (�×R)

)
= 0 for some t ∈ R. (1-6)

Remark 1.1. Here, Dsv stands for the singular part of the distributional derivative Dv of v, while v∧

and v∨ denote the approximate lower and upper limits of v (so that if v1 = v2 a.e. on Rn−1, then v∨1 = v
∨

2
and v∧1 = v

∧

2 everywhere on Rn−1). We call [v] = v∨− v∧ the jump of v, and define the approximate
discontinuity set of v as Sv = {v∨ > v∧} = {[v]> 0}, so that Sv is countably Hn−2-rectifiable, and there
exists a Borel vector field νv : Sv→ Sn−1 such that Dsv = νv[v]H

n−2xSv + Dcv, where Dcv stands for
the Cantorian part of Dv. These concepts are reviewed in Sections 2A and 2B.

Remark 1.2. Assumption (1-4) is clearly equivalent to asking that v∈W 1,1(�) (so that v∧= v∨ Hn−2-a.e.
on �), and, in turn, it is also equivalent to asking that ∂∗F[v] have no vertical parts above �, that is —
compare with (1-3) —

Hn−1(
{x ∈ ∂∗F[v] ∩ (�×R) : qνF[v](x)= 0}

)
= 0; (1-7)

see [Chlebík et al. 2005, Proposition 1.2] for a proof.

Remark 1.3. Although assuming the “no vertical parts” (1-4) and “no vanishing sections” (1-5) conditions
appears natural in light of the examples sketched in Figure 1, it should be noted that these assumptions are
far from being necessary for rigidity. For example, Figure 2 shows the case of a polyhedron in R3 such
that (1-6) holds, but the “no vertical parts” condition fails. Similarly, in Figure 3, we have a polyhedron
in R3 such that (1-6) and (1-4) hold, but such that (1-5) fails.
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{[v]> 0}

(0, 1)2

F[v]

Figure 2. A polyhedron in R3 such that the rigidity condition (1-6) is satisfied (with
�= (0, 1)2) but the “no vertical parts” condition fails.

{v = 0}

F[v] (0, 1)2

Figure 3. A polyhedron in R3 such that the rigidity condition (1-6) and the “no vertical
parts” condition hold (with �= (0, 1)2), but the “no vanishing sections” condition fails.

1C. Essential connectedness. The examples discussed in Figure 1 and Remark 1.3 suggest that in order
to characterize rigidity of equality cases in Steiner’s inequality one should first make precise the sense in
which the (n−2)-dimensional set Sv = {v∧ < v∨} (contained in the projection of vertical boundaries) may
disconnect the (n−1)-dimensional set {v > 0} (that is, the projection of F[v]). In the study of rigidity of
equality cases for Ehrhard’s perimeter inequality — see [Cagnetti et al. 2013] — we have addressed this
kind of question by introducing the following definition.

Definition 1.4. Let K and G be Borel sets in Rm . One says that K essentially disconnects G if there
exists a nontrivial Borel partition {G+,G−} of G modulo Hm such that

Hm−1((G(1)
∩ ∂eG+ ∩ ∂eG−) \ K )= 0; (1-8)

conversely, one says that K does not essentially disconnect G if, for every nontrivial Borel partition
{G+,G−} of G modulo Hm ,

Hm−1((G(1)
∩ ∂eG+ ∩ ∂eG−) \ K ) > 0. (1-9)

Finally, G is essentially connected if ∅ does not essentially disconnect G.

In the above definition, by a nontrivial Borel partition {G+,G−} of G modulo Hm we mean that

Hm(G+ ∩G−)= 0, Hm(G1(G+ ∪G−))= 0, Hm(G+)Hm(G−) > 0.

Moreover, ∂eG denotes the essential boundary of G, which is defined as

∂eG = Rm
\ (G(0)

∪G(1)),
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G+

K ′K

GG

G−

Figure 4. Left: G is a disk and K is a smooth curve that divides G in two open regions
G+ and G−, in such a way that (1-8) holds: thus, K essentially disconnects G. Right:
Let K ′ be obtained by removing some points from K . If we remove a set of length
zero, that is, if H1(K \ K ′)= 0, then K ′ still essentially disconnects G (although G \ K ′

may easily be topologically connected); if, instead, H1(K \ K ′) > 0, then K ′ does not
essentially disconnect G, since (1-9) holds (with K ′ in place of K ).

where G(0) and G(1) denote the sets of points of density 0 and 1 of G; see Section 2A.

Remark 1.5. If Hm(G1G ′)= 0 and Hm−1(K1K ′)= 0, then K essentially disconnects G if and only if
K ′ essentially disconnects G ′; see Figure 4.

Remark 1.6. We refer to [Cagnetti et al. 2013, Section 1.5] for more comments on the relation between
this definition and the notions of indecomposable currents [Federer 1969, 4.2.25] and indecomposable sets
of finite perimeter [Dolzmann and Müller 1995, Definition 2.11] or [Ambrosio et al. 2001, Section 4] used
in geometric measure theory. We just recall here that a set of finite perimeter E is said to be indecomposable
if P(E) < P(E+)+ P(E−) whenever {E+, E−} is a nontrivial partition modulo Hn of E by sets of finite
perimeter. Moreover, the latter inequality is equivalent to Hn−1(E (1) ∩ ∂e E+ ∩ ∂e E−) > 0. Let us also
note that this measure-theoretic notion of connectedness is compatible with essential connectedness:
indeed, as proved in [Cagnetti et al. 2013, Remark 2.3], a set of finite perimeter is indecomposable if and
only if it is essentially connected. Nevertheless, when possible, we shall use the term indecomposable in
place of the term essentially connected, in order to make immediate the identification of those statements
and conditions whose formulation genuinely requires Definition 1.4.

1D. Equality cases and barycenter functions. With the notion of essential connectedness at hand we
can easily conjecture several possible improvements of Theorem B. As it turns out, a fine analysis of the
barycenter function for sets of finite perimeter with segments as sections is crucial in order to actually
prove these results. Given a v-distributed set E , we define the barycenter function of E , bE : R

n−1
→ R,

by setting, for every z ∈ Rn−1,

bE(z)=
1
v(z)

∫
Ez

t dH1(t) if v(z) > 0 and
∫

Ez

t dH1(t) ∈ R, (1-10)

and bE(z) = 0 otherwise. In general, bE may only be a Lebesgue measurable function. When E has
segments as sections and finite perimeter, the following theorem provides a degree of regularity for bE

that turns out to be sharp; see Remark 3.5. Note that the set where v vanishes is critical for the regularity
of the barycenter, as implicitly expressed by (1-11).
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Theorem 1.7. If v∈BV(Rn−1) and E is a v-distributed set of finite perimeter such that Ez is H1-equivalent
to a segment for Hn−1-a.e. z ∈ Rn−1, then

bδ = 1{v>δ}bE ∈ GBV(Rn−1) (1-11)

for every δ > 0 such that {v > δ} is a set of finite perimeter. Moreover, bE is approximately differentiable
Hn−1-a.e. on Rn−1, and for every Borel set G ⊂ {v∧ > 0} we have the coarea formula∫

R

Hn−2(G ∩ ∂e
{bE > t}) dt =

∫
G
|∇bE | dHn−1

+

∫
G∩SbE

[bE ] dHn−2
+ |DcbE |

+(G), (1-12)

where |DcbE |
+ is the Borel measure on Rn−1 defined by

|DcbE |
+(G)= lim

δ→0+
|Dcbδ|(G)= sup

δ>0
|Dcbδ|(G) for all G ⊂ Rn−1. (1-13)

Remark 1.8. Let us recall that u ∈ GBV(Rn−1) if and only if τM(u) ∈ BV loc(R
n−1) for every M > 0

(where τM(s) = max{−M,min{M, s}} for s ∈ R), and that for every u ∈ GBV(Rn−1) we can define a
Borel measure |Dcu| on Rn−1 by setting

|Dcu|(G)= lim
M→∞

|Dc(τM u)|(G)= sup
M>0
|Dc(τM u)|(G) (1-14)

for every Borel set G ⊂ Rn−1. (If u ∈ BV(Rn−1), then the total variation of the Cantorian part of Du
agrees with the measure defined in (1-14) on every Borel set.) The measures |Dcbδ| appearing in (1-13)
are thus defined by means of (1-14), and this makes sense by (1-11). Concerning |DcbE |

+, we just note
that if bE ∈ GBV(Rn−1)— and thus |DcbE | is well-defined — then we have

|DcbE |
+
= |DcbE |x{v

∧ > 0} on Borel sets of Rn−1.

Starting from Theorem 1.7, we can prove a formula for the perimeter of E in terms of v and bE (see
Corollary 3.3) that in turn leads to the following characterization of equality cases in Steiner’s inequality
in terms of barycenter functions. We recall that, here and in the following results, the assumption
v ∈ BV(Rn−1

; [0,∞)) with Hn−1({v > 0}) is equivalent to asking that F[v] be of finite perimeter, and is
thus necessary to make sense of the rigidity problem. In addition we recall that X ⊂Rm is a concentration
set for a Borel measure µ on Rm if µ(Rm

\ X)= 0.

Theorem 1.9. Let v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞, and let E be a v-distributed set of

finite perimeter. Then, E ∈M(v) if and only if

Ez is H1-equivalent to a segment for Hn−1-a.e. z ∈ Rn−1, (1-15)

∇bE(z)= 0 for Hn−1-a.e. z ∈ Rn−1, (1-16)

2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0}, and (1-17)

Dc(τM bδ)(G)=
∫

G∩{v>δ}(1)∩{|bE |<M}(1)
f d(Dcv) (1-18)

for every bounded Borel set G ⊂ Rn−1 and for H1-a.e. δ > 0 and M > 0, where f : Rn−1
→ [−

1
2 ,

1
2 ] is a
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1
2 [v](z)

v∧(z) > 0v∧(z)= 0

zz

Figure 5. If E ∈M(v), then the jump [bE ] of the barycenter of E can be arbitrarily large
on {v∧ = 0}, but is necessarily bounded by half the jump of v on {v∧ > 0}; see (1-17).
Moreover, the same rule applies to the Cantorian “jumps”, see (1-18) and (1-19).

Borel function; see Figure 5. In particular, E ∈M(v) implies that

2|DcbE |
+(G)≤ |Dcv|(G) for every Borel set G ⊂ Rn−1, (1-19)

and that, if K is a concentration set for Dcv and G is a Borel subset of {v∧ > 0}, then∫
R

Hn−2(G ∩ ∂e
{bE > t}) dt =

∫
G∩SbE∩Sv

[bE ] dHn−2
+ |DcbE |

+(G ∩ K ). (1-20)

Remark 1.10. By Theorem 1.7, (1-15) allows us to make sense of ∇bE , |DcbE |
+, and Dc(τM bδ) (for

a.e. δ > 0), and thus to formulate (1-16), (1-18), (1-19), and (1-20). In particular, (1-20) is an immediate
consequence of (1-12), (1-16), (1-17), and (1-19).

Theorem 1.9 is a powerful tool in the study of rigidity of equality cases. Indeed, rigidity amounts to
asking that bE be constant on {v > 0}. Now, bE is nonconstant (modulo Hn−1) on {v > 0} if and only
if there exists I ⊂ R with H1(I ) > 0 such that, if t ∈ I , then {{bE > t}, {bE ≤ t}} is a nontrivial Borel
partition of {v > 0} (modulo Hn−1). In other words, the failure of rigidity is equivalent to saying that
∂e
{bE > t} essentially disconnects {v > 0} for every t ∈ I with H1(I ) > 0. By combining this point of

view with the coarea formula (1-20) and with the definition of essential connectedness, we quite easily
deduce the following sufficient condition for rigidity.

Theorem 1.11. If v ∈ BV(Rn−1
; [0,∞)), Hn−1({v > 0}) < ∞, and the Cantor part Dcv of Dv is

concentrated on a Borel set K such that

{v∧ = 0} ∪ Sv ∪ K does not essentially disconnect {v > 0}, (1-21)

then for every E ∈M(v) there exists t ∈ R such that Hn
(
E1(ten + F[v])

)
= 0.

Remark 1.12. Note that Theorem 1.11 provides a sufficient condition for rigidity without a priori
structural assumption on F[v]. In particular, the theorem admits for nontrivial vertical boundaries and
vanishing sections, which are excluded in Theorem B by (1-4) and (1-5). (In fact, as shown in Appendix A,
Theorem B can be deduced from Theorem 1.11.) We also note that condition (1-21) is clearly not necessary
for rigidity as soon as vertical boundaries are present; see Figure 2.
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A natural question about equality cases of Steiner’s inequality that is left open by Theorem 1.9 is to
describe the situation when every E ∈M(v) is obtained by at most countably many vertical translations
of parts of F[v]. In other words, we want to understand when to expect every E ∈M(v) to satisfy

E =Hn

⋃
h∈I

(
chen + (F[v] ∩ (Gh ×R))

)
, (1-22)

where I is at most countable, {ch}h∈I ⊂ R, and {Gh}h∈I is a Borel partition modulo Hn−1 of {v > 0}.
The following theorem shows that this happens when v is of special bounded variation with locally

finite jump set. The notion of v-admissible partition of {v > 0} used in the theorem is introduced in
Definition 1.25; see Section 1E.

Theorem 1.13. Let v ∈ SBV(Rn−1
; [0,∞)). Assume that Hn−1({v > 0}) <∞, and that

Sv ∩ {v∧ > 0} is locally Hn−2-finite. (1-23)

Let E be a v-distributed set of finite perimeter. Then, E ∈ M(v) if and only if E satisfies (1-22) for a
v-admissible partition {Gh}h∈I of {v > 0} and 2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0}. Moreover, if these
hold, then |DcbE |

+
= 0.

Remark 1.14. Let us recall that, by definition, v ∈ SBV(Rn−1) if v ∈ BV(Rn−1) and Dcv = 0. The
approximate discontinuity set Sv of a generic v ∈ SBV(Rn−1) is always countably Hn−2-rectifiable, but it
may fail to be locally Hn−2-finite. If v ∈ SBV(Rn−1) but (1-23) fails, then it may happen that (1-22) does
not hold for some E ∈M(v); see Remark 1.32 below.

We close our analysis of equality cases with the following proposition, which shows a general way
of producing equality cases in Steiner’s inequality that (potentially) do not satisfy the basic structure
condition (1-22).

Proposition 1.15. If v = v1 + v2, where v1, v2 ∈ BV(Rn−1
; [0,∞)), Dv1 = Dav1, v2 is not constant

(modulo Hn−1) on {v > 0}, Dv2 = Dsv2, and 0<Hn−1({v > 0}) <∞, then rigidity fails for v. Indeed, if
we set

E = {x ∈ Rn
: −λv2( px)− 1

2v1( px)≤ qx ≤ 1
2v1( px)+ (1− λ)v2( px)} (1-24)

for λ ∈ [0, 1] \ { 12}, then E ∈M(v) but Hn
(
E1(ten + F[v])

)
> 0 for every t ∈ R. (Note that in (1-24) the

choice λ= 1
2 gives E = F[v].)

1E. Characterizations of rigidity. We now start to discuss the problem of characterizing rigidity of
equality cases. We shall analyze this question under different geometric assumptions on the considered
Steiner symmetral, and see how different structural assumptions lead to different characterizations.

We begin our analysis by working under the assumption that no vertical boundaries are present where
the slice length function v is essentially positive, that is, on {v∧ > 0}. It turns out that, in this case, the
sufficient condition (1-21) takes the form

{v∧ = 0} does not essentially disconnect {v > 0}, (1-25)
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and that, in turn, this same condition is also necessary to rigidity. Moreover, an alternative characterization
can obtained by merely requiring that F[v] be indecomposable.

Theorem 1.16. Let v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞ and

Dsvx{v∧ > 0} = 0. (1-26)

Then the following are equivalent:

(i) If E ∈M(v) then Hn
(
E1(ten + F[v])

)
= 0 for some t ∈ R.

(ii) {v∧ = 0} does not essentially disconnect {v > 0}.

(iii) F[v] is indecomposable.

Remark 1.17. Note that condition (1-26) does not prevent ∂∗F[v] from containing vertical parts, provided
they are concentrated where the lower approximate limit of v vanishes. Indeed, (1-26) implies that
Dcv = 0 (see step one in the proof of Theorem 1.16 in Section 4E), and that Sv is contained in {v∧ = 0}
modulo Hn−2. We also note that the equivalence between conditions (ii) and (iii) is actually true whenever
v ∈ BV(Rn−1

; [0,∞)) with Hn−1({v > 0}) <∞; in other words, (1-26) plays no role in proving this
equivalence. This is proved in Section 4D, Theorem 4.3.

The situation becomes much more complex when we allow ∂∗F[v] to have vertical parts above {v∧>0}.
As already noted, simple polyhedral examples, like the one depicted in Figure 2, show that condition (1-21)
is not even a viable candidate as a characterization of rigidity in this case. We shall begin our discussion
of this problem by solving it in the case of polyhedra and, in fact, in the much broader class of sets
introduced in the next definition.

Definition 1.18. Let v : Rn−1
→ [0,∞). We say that F[v] is a generalized polyhedron if there exists

a finite disjoint family of indecomposable sets of finite perimeter and volume {A j } j∈J in Rn−1, and a
family of functions {v j } j∈J ⊂W 1,1(Rn−1), such that

v =
∑
j∈J

v j 1A j , (1-27)

(
{v∧ = 0} \ {v = 0}(1)

)
∪ Sv ⊂Hn−2

⋃
j∈J

∂e A j . (1-28)

(Here and in the following, A ⊂Hk B stands for Hk(A \ B)= 0.)

Remark 1.19. Condition (1-28) amounts to requiring that v can jump or essentially vanish on {v > 0}
only inside the essential boundaries of the sets A j . For example, if {A j } j∈J is a finite disjoint family of
bounded open sets with Lipschitz boundary in Rn−1, {v j } j∈J ⊂ C1(Rn−1), and v j > 0 on A j for every
j ∈ J , then v =

∑
j∈J v j 1A j defines a generalized polyhedron F[v]. Note that in this case (1-28) holds,

since v can jump only over the boundaries of the A j , so that Sv ⊂
⋃

j∈J ∂A j , while {v j = 0}∩ A j ⊂ ∂A j

for every j ∈ J .

Theorem 1.20. If v : Rn−1
→ [0,∞) is such that F[v] is a generalized polyhedron, then the following

two statements are equivalent:
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(i) If E ∈M(v) then Hn
(
E1(ten + F[v])

)
= 0 for some t ∈ R.

(ii) For every ε > 0 the set {v∧ = 0} ∪ {[v]> ε} does not essentially disconnect {v > 0}.

Remark 1.21. In the example depicted in Figure 2, the set {v∧= 0}∩{v > 0}(1) is empty, the set {[v]> 0}
essentially disconnects {v > 0}, but there is no ε > 0 such that {[v]> ε} essentially disconnects {v > 0}.
Indeed, in this case, rigidity holds.

Note that, if F[v] is a generalized polyhedron, then v ∈ SBV(Rn−1) with Sv locally Hn−2-rectifiable,
so that v satisfies the assumptions of Theorem 1.13. We now discuss the rigidity problem in this more
general situation.

As shown by Example 1.22 below, condition (ii) in Theorem 1.20 is not even a sufficient condition for
rigidity under the assumptions on v considered in Theorem 1.13. A key remark here is that, in the situations
considered in Theorem 1.16 and Theorem 1.20, we can create failure of rigidity by performing a vertical
translation of F[v] above a single part of {v > 0}. For example, when condition (ii) in Theorem 1.20
fails, there exist ε > 0 and a nontrivial Borel partition {G+,G−} of {v > 0} modulo Hn−1 such that

{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0} ∪ {[v]> ε}.

In that case, as we shall prove later on, the v-distributed set E(t) defined as

E(t)=
(
(ten + F[v])∩ (G+×R)

)
∪ (F[v] ∩ (G−×R)), t ∈ R,

and obtained by a single vertical translation of F[v] above G+, satisfies P(E(t))= P(F[v]) whenever
t ∈ (0, ε/2). (Moreover, when condition (1-25) fails, we have E(t) ∈M(v) for every t ∈ R.) However,
there may be situations in which violating rigidity by a single vertical translation of F[v] is impossible,
but where this task can be accomplished by simultaneously performing countably many independent
vertical translations of F[v]. An example is obtained as follows.

Example 1.22. We construct a function v : R2
→ [0,∞) in such a way that v ∈ SBV(R2), Sv is locally

H1-rectifiable, the set {v∧ = 0} ∪ {[v] > ε} does not essentially disconnect {v > 0} for any ε > 0, but,
nevertheless, rigidity fails. Given t ∈ R and ` > 0, denote by Q(t, `) the open square in R2 with center at
(t, 0), sides parallel to the direction (1, 1) and (1,−1), and diagonal of length 2`. Then we set u1= 1Q(0,1),
and define a sequence {u j } j∈N of piecewise constant functions

u2 = u1−
1
2 1Q(−3/4,1/4)+

1
2 1Q(3/4,1/4),

u3 = u2−
1
4 1Q(−15/16,1/16)+

1
4 1Q(−9/16,1/16)−

1
4 1Q(9/16,1/16)+

1
4 1Q(15/16,1/16),

etc.; see Figure 6. This sequence has pointwise limit v ∈ SBV(R2
; [0,∞)) such that {v > 0} = Q(0, 1)

and Dv = Dsv. In particular, if we define E as in (1-24) with λ = 0, v1 = 0, and v2 = v, then, by
Proposition 1.15, E ∈ M(v). Since bE =

1
2v, we easily see that (1-34), and thus (1-22), holds; in

other words, E is obtained by countably many vertical translations of F[v] over suitable disjoint Borel
sets Gh , h ∈ N. At the same time, any set E0 obtained by a vertical translation of F[v] over one (or over
finitely many) of the Gh is bound to violate the necessary condition for equality, 2[bE0] ≤ [v] Hn−2-a.e.
on Sv ∩ {v∧ > 0}, as the infimum of [v] on ∂eGh ∩ Sv ∩ {v∧ > 0} is zero for every h ∈ N. We also note
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Figure 6. The functions u2 and u4 in the construction of Example 1.22.

that, as a simple computation shows, Sv ∩{v∧ > 0} is not only countably H1-rectifiable in R2 but actually
H1-finite (thus, it is locally H1-rectifiable).

All the above considerations finally suggest the following condition, which, in turn, characterizes
rigidity under the assumptions on v considered in Theorem 1.13. We begin by recalling the definition of
a Caccioppoli partition.

Definition 1.23. Let G ⊂ Rn−1 be a set of finite perimeter and let {Gh}h∈I be an at most countable Borel
partition of G modulo Hn−1. (That is, I is a finite or countable set with #I ≥ 2, G =Hn−1

⋃
h∈I Gh ,

Hn−1(Gh) > 0 for every h ∈ I , and Hn−1(Gh ∩Gk)= 0 for every h, k ∈ I , h 6= k.) We say that {Gh}h∈I

is a Caccioppoli partition of G if
∑

h∈I P(Gh) <∞.

Remark 1.24. When G is an open set and {Gh}h∈I is an at most countable Borel partition of G mod-
ulo Hn−1, then, according to [Ambrosio et al. 2000, Definition 4.16], {Gh}h∈I is a Caccioppoli partition
of G if

∑
h∈I P(Gh;G) <∞. Of course, if we assume in addition that G is of finite perimeter, then∑

h∈I P(Gh;G) <∞ is equivalent to
∑

h∈I P(Gh) <∞. Thus Definition 1.23 and [Ambrosio et al.
2000, Definition 4.16] agree in their common domain of applicability (that is, on open sets of finite
perimeter).

Definition 1.25. Let v ∈ BV(Rn−1
; [0,∞)), and let {Gh}h∈I be an at most countable Borel partition

of {v > 0}. We say that {Gh}h∈I is a v-admissible partition of {v > 0} if {Gh ∩ BR ∩ {v > δ}}h∈I is a
Caccioppoli partition of {v > δ} ∩ BR for every δ > 0 such that {v > δ} is of finite perimeter and for
every R > 0.

Definition 1.26. One says that v ∈ BV(Rn−1
; [0,∞)) satisfies the mismatched stairway property if the

following holds: If {Gh}h∈I is a v-admissible partition of {v > 0} and if {ch}h∈I ⊂ R is a sequence with
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ch 6= ck whenever h 6= k, then there exist h0, k0 ∈ I with h0 6= k0 and a Borel set 6 with

6 ⊂ ∂eGh0 ∩ ∂
eGk0 ∩ {v

∧ > 0}, Hn−2(6) > 0, (1-29)

such that
[v](z) < 2|ch0 − ck0 | for all z ∈6. (1-30)

Remark 1.27. The terminology adopted here intends to suggest the following idea. One considers a
v-admissible partition {Gh}h∈I of {v > 0} such that {v > 0}(1)∩

⋃
h∈I ∂

eGh is contained in {v∧ = 0}∪ Sv .
Next, one modifies F[v] by performing vertical translations ch above each Gh , thus constructing a new
set E having a “stairway-like” barycenter function. This new set will have the same perimeter of F[v],
and thus will violate rigidity if #I ≥ 2, provided all the steps of the stairway match the jumps of v, in the
sense that 2[bE ] = 2|ch − ck | ≤ [v] on each ∂eGh ∩ ∂

eGk ∩ {v
∧ > 0}. Thus, when all equality cases have

a stairway-like barycenter function, we expect rigidity to be equivalent to asking that every such stairway
has at least one step that is mismatched with respect to [v]; compare with (1-30).

Remark 1.28. If v ∈ BV(Rn−1
; [0,∞)) has the mismatched stairway property, then, for every ε > 0,

{v∧ = 0} ∪ {[v]> ε} does not essentially disconnect {v > 0}. In particular, {v∧ = 0} does not essentially
disconnect {v > 0}, {v > 0} is essentially connected, and although it may still happen that {v∧ = 0} ∪ Sv
essentially disconnects {v > 0}, in this case one has

Hn−2-essinf
Sv∩{v∧>0}

[v] = 0.

We prove the claim arguing by contradiction. If {v∧ = 0} ∪ {[v] > ε} essentially disconnects {v > 0},
then there exist ε > 0 and a nontrivial Borel partition {G+,G−} of {v > 0} modulo Hn−1 such that
{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0} ∪ {[v]> ε}. Since (2-9) below implies {v∧ > 0} ⊂ {v > 0}(1),
we have

{v∧ > 0} ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {[v]> ε}, (1-31)

so that, for every δ > 0 (and since {v > δ}(1) ∩ ∂eG+ = {v > δ}(1) ∩ ∂eG−),

{v > δ}(1) ∩ ∂eG+ = {v > δ}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {[v]> ε}. (1-32)

If we set G±δ = G± ∩ {v > δ}, then ∂eG±δ ⊂ ∂e
{v > δ} ∪ ({v > δ}(1) ∩ ∂eG±), and, by (1-32),

∂eG±δ ⊂Hn−2 ∂e
{v > δ} ∪ {[v] > ε}. Since [v] ∈ L1(Hn−2xSv), we find Hn−2({[v] > t}) < ∞ for

every t > 0, and, in particular

P(G+δ)+ P(G−δ)≤ 2P({v > δ})+ 2Hn−2(
{[v]> ε}

)
<∞

whenever {v>δ} is of finite perimeter. This shows that {G+,G−} is a v-admissible partition. If we now set
I ={+,−}, c+= ε/2, and c−= 0, then I , {Gh}h∈I , and {ch}h∈I are admissible in the mismatched stairway
property. By the mismatched stairway property, there exists a Borel set 6 ⊂ {v∧ > 0} ∩ ∂eG+ ∩ ∂eG−
such that [v]< 2|c+− c−| = ε on 6 and Hn−2(6) > 0, a contradiction to (1-31).

It turns out that if v is a SBV-function with locally finite jump set, then rigidity is characterized by the
mismatched stairway property.
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Theorem 1.29. If v ∈ SBV(Rn−1
; [0,∞)), Hn−1({v > 0}) <∞, and Sv ∩{v∧ > 0} is locally Hn−2-finite,

then the following two statements are equivalent:

(i) If E ∈M(v), then Hn
(
E1(ten + F[v])

)
= 0 for some t ∈ R.

(ii) v has the mismatched stairway property.

The question of a geometric characterization of rigidity when v ∈BV is thus left open. The considerable
complexity of the mismatched stairway property may be seen as a negative indication about the tractability
of this problem. In the planar case, due to the trivial topology of the real line, these difficulties can be
overcome, and we obtain the following complete result.

Theorem 1.30. If v ∈ BV(R; [0,∞)) and H1({v > 0}) <∞, then the following are equivalent:

(i) If E ∈M(v), then H2
(
E1(te2+ F[v])

)
= 0 for some t ∈ R.

(ii) {v > 0} is H1-equivalent to a bounded open interval (a, b), v ∈W 1,1(a, b), and v∧ > 0 on (a, b).

(iii) F[v] is an indecomposable set that has no vertical boundary above {v∧ > 0}, i.e.,

H1(
{x ∈ ∂∗F[v] : qνF[v](x)= 0, v∧( px) > 0}

)
= 0. (1-33)

The extension of our results to the case of the localized Steiner inequality is discussed in Appendix A. In
particular, we shall explain how to derive Theorem B from Theorem 1.11 via an approximation argument.

1F. Some closing remarks. We conclude this introduction with a few remarks of more technical nature.
The first two remarks deal with the issue addressed in Theorem 1.13, namely, understanding when equality
cases are necessarily obtained by countably many vertical translations of the Steiner symmetral; see (1-22).
Theorem 1.13 ensures this is the case if v ∈ SBV(Rn−1) with Sv ∩ {v∧ > 0} locally Hn−2-finite. In the
following two remarks we show that, if we merely assume that v ∈ SBV(Rn−1), then we can indeed
construct equality cases that do not satisfy (1-22).

Remark 1.31. Condition (1-22) can be reformulated in terms of a property of the barycenter function.
Indeed, (1-22) is equivalent to asking that

bE =
∑
h∈I

ch1Gh Hn−1-a.e. on Rn−1 (1-34)

for I , {ch}h∈I and {Gh}h∈I as in (1-22). It should be noted that, if no additional conditions are assumed on
the partition {Gh}h∈I , then (1-34) is not equivalent to saying that bE has “countable range”. An example
is obtained as follows. Let K be the middle-third Cantor set in [0, 1], let {Gh}h∈N be the disjoint family of
open intervals such that K = [0, 1] \

⋃
h∈N Gh , and let {ch}h∈N ⊂ R be such that the Cantor function uK

satisfies uK = ch on Gh . In this way, uK =
∑

h∈N ch1Gh on [0, 1] \ K , thus H1-a.e. on [0, 1]. Of course,
since uK is a nonconstant, continuous, and increasing function, it does not have “countable range” in any
reasonable sense. At the same time, if we set v(z)= 1[0,1](z) dist(z, K ) for z ∈ R, then v is a Lipschitz
function on R (thus it satisfies all the assumptions in Theorem 1.13) and the set

E = {x ∈ R2
: uK ( px)− 1

2v( px) < qx < uK ( px)+ 1
2v( px)}
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is such that E ∈M(v), as one can check by Corollary 3.3 and Corollary 3.4 in Section 3B. We also note
that, in this example, |DcbE |x{v∧ = 0} 6= 0, while |DcbE |

+
= 0.

Remark 1.32. We now describe the example introduced in Remark 1.14. Given {qh}h∈N = Q∩ [0, 1]
and {αh}h∈N ∈ (0,∞) such that

∑
h∈N αh <∞, we can define v ∈ SBV(R) such that H1({v > 0}) = 1

and Dv = Dsv = D jv, by setting

v(t)=
∑

{h∈N:qh<t≤1}

αh =
∑
h∈N

αh1(qh ,1](t), t ∈ R.

If we let v1 = 0, v2 = v, and, say, λ= 0, in Proposition 1.15 below, then we obtain a set E ∈M(v). At
the same time, (1-34), and thus (1-22), cannot hold, as bE =

1
2v H1-a.e. on R and v is strictly increasing

on [0, 1]. (The requirement that the sets Gh in (1-34) are mutually disjoint modulo Hn−1 plays a crucial
role in here, of course.) Note that, as expected, Sv ∩ {v∧ > 0} =Q∩ [0, 1] is not locally H0-finite.

The following final remark is instead concerned with the characterization presented in Theorem 1.29
in terms of the mismatched stairway property.

Remark 1.33. Is it important to observe that, in order to characterize rigidity, only v-admissible partitions
of {v > 0} have to be considered in the definition of the mismatched stairway property. Indeed, let n = 2
and set v = 1(0,1) ∈ SBV(R; [0,∞)), so that rigidity holds for v. Now let {Gh}h∈N be the family of open
intervals used to define the middle-third Cantor set K , so that K = [0, 1] \

⋃
h∈N Gh . Note that {Gh}h∈N

is a nontrivial countable Borel partition of {v > 0} = (0, 1) modulo H1. However, since ∂eGh∩∂
eGk =∅

whenever h 6= k, it is not possible to find a set 6 satisfying (1-29), whatever choice of {ch}h∈N we make.
In particular, if we did not restrict the partitions in Definition 1.26 to v-admissible partitions, then this
particular v (satisfying rigidity) would not have the mismatched stairway property. Note of course that, in
this example,

∑
h∈N P(Gh ∩ {v > δ} ∩ BR)=∞ for every δ, R > 0.

2. Notions from geometric measure theory

We gather here some notions from geometric measure theory needed in the sequel, referring to [Ambrosio
et al. 2000; Maggi 2012] for further details. We start by reviewing our general notation in Rn . We denote
by B(x, r) the open Euclidean ball of radius r > 0 and center x ∈ Rn . Given x ∈ Rn and ν ∈ Sn−1 we
denote by H+x,ν and H−x,ν the complementary half-spaces

H+x,ν ={y ∈ Rn
: (y− x) · ν ≥ 0}, H−x,ν ={y ∈ Rn

: (y− x) · ν ≤ 0}. (2-1)

Finally, we decompose Rn as the product Rn−1
×R, and denote by p : Rn

→ Rn−1 and q : Rn
→ R the

corresponding horizontal and vertical projections, so that

x = ( px, qx)= (x ′, xn), x ′ = (x1, . . . , xn−1) for all x ∈ Rn,

and define the vertical cylinder of center x ∈Rn and radius r > 0, and the (n−1)-dimensional ball in Rn−1

of center z ∈ Rn−1 and radius r > 0 by setting, respectively,

Cx,r = {y ∈ Rn
: | px − py|< r, |qx − q y|< r}, Dz,r= {w ∈ Rn−1

: |w− z|< r}.
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In this way, Cx,r = Dpx,r × (qx − r, qx + r). We shall use the following two notions of convergence for
Lebesgue measurable subsets of Rn . Given Lebesgue measurable sets {Eh}h∈N and E in Rn , we shall say
that Eh locally converge to E , and write

Eh
loc
−→ E as h→∞,

provided Hn((Eh1E)∩K )→ 0 as h→∞ for every compact set K ⊂Rn; we say that Eh converge to E
as h→∞, and write Eh→ E , provided Hn(Eh1E)→ 0 as h→∞.

2A. Density points and approximate limits. If E is a Lebesgue measurable set in Rn and x ∈ Rn , then
we define the upper and lower n-dimensional densities of E at x as

θ∗(E, x)= lim sup
r→0+

Hn(E ∩ B(x, r))
ωnrn and θ∗(E, x)= lim inf

r→0+

Hn(E ∩ B(x, r))
ωnrn

respectively. In this way we define two Borel functions on Rn that agree a.e. on Rn . In particular, the
n-dimensional density of E at x ,

θ(E, x)= lim
r→0+

Hn(E ∩ B(x, r))
ωnrn ,

is defined for a.e. x ∈ Rn , and θ(E, · ) is a Borel function on Rn (up to extending it by a constant value
on the Hn-negligible set {θ∗(E, · ) > θ∗(E, · )}). Correspondingly, for t ∈ [0, 1], we define

E (t) = {x ∈ Rn
: θ(E, x)= t}. (2-2)

By the Lebesgue differentiation theorem, {E (0), E (1)} is a partition of Rn up to an Hn-negligible set. It is
useful to keep in mind that

x ∈ E (1) if and only if Ex,r
loc
−→ Rn as r→ 0+,

x ∈ E (0) if and only if Ex,r
loc
−→∅ as r→ 0+,

where Ex,r denotes the blow-up of E at x at scale r , defined as

Ex,r =
E−x

r
=

{ y−x
r
: y ∈ E

}
, x ∈ Rn, r > 0.

The set ∂e E = Rn
\ (E (0) ∪ E (1)) is called the essential boundary of E . Thus, in general, we only have

Hn(∂e E) = 0, but we do not know ∂e E to be “(n−1)-dimensional” in any sense. Strictly related to
the notion of density is that of approximate upper and lower limits of a measurable function. Given a
Lebesgue measurable function f : Rn

→ R we define the (weak) approximate upper and lower limits
of f at x ∈ Rn as

f ∨(x)= inf{t ∈ R : θ({ f > t}, x)= 0} = inf{t ∈ R : θ({ f < t}, x)= 1},

f ∧(x)= sup{t ∈ R : θ({ f < t}, x)= 0} = sup{t ∈ R : θ({ f > t}, x)= 1}.

As it turns out, f ∨ and f ∧ are Borel functions with values on R ∪ {±∞} defined at every point x
of Rn , and they do not depend on the Lebesgue representative chosen for the function f . Moreover, for
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Hn-a.e. x ∈ Rn , we have that f ∨(x) = f ∧(x) ∈ R ∪ {±∞}, so that the approximate discontinuity set
of f , S f = { f ∧ < f ∨}, satisfies Hn(S f ) = 0. On noticing that, though f ∧ and f ∨ may take infinite
values on S f , the difference f ∨(x)− f ∧(x) is always well-defined in R∪ {±∞} for x ∈ S f , we define
the approximate jump of f as the Borel function [ f ] : Rn

→ [0,∞] defined by

[ f ](x)=
{

f ∨(x)− f ∧(x) if x ∈ S f ,

0 if x ∈ Rn
\ S f ,

so that S f = {[ f ]> 0}. Finally, the approximate average of f is the Borel function f̃ : Rn
→ R∪ {±∞}

defined as

f̃ (x)=
{1

2( f ∨(x)+ f ∧(x)) if x ∈ Rn
\ { f ∧ =−∞, f ∨ =+∞},

0 if x ∈ { f ∧ =−∞, f ∨ =+∞}.
(2-3)

The motivation behind definition (2-3) is that (in step two of the proof of Theorem 3.1) we want the limit
relation

f̃ (x)= lim
M→∞

τ̃M( f )(x)= lim
M→∞

1
2(τM( f ∨)+ τM( f ∧)) for all x ∈ Rn (2-4)

to hold for every Lebesgue measurable function f : Rn
→ R, where here and in the rest of the paper we

set

τM(s)=max{−M,min{M, s}}, s ∈ R∪ {±∞}. (2-5)

The validity of (2-4) is easily checked by noticing that

τM( f )∧ = τM( f ∧), τM( f )∨ = τM( f ∨), τ̃M( f )(x)= 1
2τM( f ∨)+ τM( f ∧). (2-6)

With these definitions at hand, we note the validity of the following properties, which follow easily from
the above definitions, and hold for every Lebesgue measurable f : Rn

→ R and for every t ∈ R:

{| f |∨ < t} = {−t < f ∧} ∩ { f ∨ < t}, (2-7)

{ f ∨ < t} ⊂ { f < t}(1) ⊂ { f ∨ ≤ t}, (2-8)

{ f ∧ > t} ⊂ { f > t}(1) ⊂ { f ∧ ≥ t}. (2-9)

(Note that all the inclusions may be strict, that we also have { f < t}(1)= { f ∨< t}(1), and that all the other
analogous relations hold.) Moreover, if f, g : Rn

→ R are Lebesgue measurable functions and f = g
Hn-a.e. on a Borel set E , then

f ∨(x)= g∨(x), f ∧(x)= g∧(x), [ f ](x)= [g](x) for all x ∈ E (1). (2-10)

If f : Rn
→ R and A ⊂ Rn are Lebesgue measurable, and x ∈ Rn is such that θ∗(A, x) > 0, then we say

that t ∈ R∪ {±∞} is the approximate limit of f at x with respect to A, and write t = aplim( f, A, x), if

θ
(
{| f − t |> ε} ∩ A; x

)
= 0 for all ε > 0 (t ∈ R),

θ({ f < M} ∩ A; x)= 0 for all M > 0 (t =+∞),

θ({ f >−M} ∩ A; x)= 0 for all M > 0 (t =−∞).
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We say that x ∈ S f is a jump point of f if there exists ν ∈ Sn−1 such that

f ∨(x)= aplim( f, H+x,ν, x), f ∧(x)= aplim( f, H−x,ν, x).

If this is the case we set ν = ν f (x), the approximate jump direction of f at x . We denote by J f the set of
approximate jump points of f , so that J f ⊂ S f ; moreover, ν f : J f → Sn−1 is a Borel function. It will be
particularly useful to keep in mind the following proposition; see [Cagnetti et al. 2013, Proposition 2.2]
for a proof.

Proposition 2.1. We have that x ∈ J f if and only if , for every τ ∈ ( f ∧(x), f ∨(x)),

{ f > τ }x,r
loc
−→ H+0,ν and { f < τ }x,r

loc
−→ H−0,ν as r→ 0+. (2-11)

Finally, if f :Rn
→R is Lebesgue measurable, then we say f is approximately differentiable at x ∈ Sc

f
provided f ∧(x)= f ∨(x) ∈ R and there exists ξ ∈ Rn such that

aplim(g,Rn, x)= 0,

where g(y)= ( f (y)− f̃ (x)− ξ · (y− x))/|y− x | for y ∈ Rn
\ {x}. If this is the case, then ξ is uniquely

determined, we set ξ = ∇ f (x), and call ∇ f (x) the approximate differential of f at x . The localization
property (2-10) holds also for approximate differentials: precisely, if f, g : Rn

→ R are Lebesgue
measurable functions, f = g Hn-a.e. on a Borel set E , and f is approximately differentiable Hn-a.e.
on E , then g is approximately differentiable Hn-a.e. on E too, with

∇ f (x)=∇g(x) for Hn-a.e. x ∈ E . (2-12)

2B. Rectifiable sets and functions of bounded variation. Let 1≤ k ≤ n, k ∈N. A Borel set M ⊂ Rn is
countably Hk-rectifiable if there are Lipschitz functions fh :R

k
→Rn , h∈N, such that M⊂Hk

⋃
h∈N fh(R

k).
We further say that M is locally Hk-rectifiable if Hk(M ∩ K ) <∞ for every compact set K ⊂ Rn , or,
equivalently, if HkxM is a Radon measure on Rn . Hence, for a locally Hk-rectifiable set M in Rn the
following definition is well-posed: we say that M has a k-dimensional subspace L of Rn as its approximate
tangent plane at x ∈ Rn , L = Tx M , if Hkx(M − x)/r ⇀ HkxL as r → 0+ weakly star in the sense of
Radon measures. It turns out that Tx M exists and is uniquely defined at Hk-a.e. x ∈ M . Moreover, given
two locally Hk-rectifiable sets M1 and M2 in Rn , we have Tx M1 = Tx M2 for Hk-a.e. x ∈ M1 ∩M2.

A Lebesgue measurable set E ⊂ Rn is said to be of locally finite perimeter in Rn if there exists an
Rn-valued Radon measure µE , called the Gauss–Green measure of E , such that∫

E
∇ϕ(x) dx =

∫
Rn
ϕ(x) dµE(x) for all ϕ ∈ C1

c (R
n).

The relative perimeter of E in A⊂Rn is then defined by setting P(E; A)= |µE |(A), while the perimeter
of E is P(E)= P(E;Rn). The reduced boundary of E is the set ∂∗E of those x ∈ Rn such that

νE(x)= lim
r→0+

µE(B(x, r))
|µE |(B(x, r))

exists and belongs to Sn−1.
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The Borel function νE : ∂
∗E→ Sn−1 is called the measure-theoretic outer unit normal to E . It turns out

that ∂∗E is a locally Hn−1-rectifiable set in Rn [Maggi 2012, Corollary 16.1], that µE = νE Hn−1x∂∗E ,
and that ∫

E
∇ϕ(x) dx =

∫
∂∗E

ϕ(x)νE(x) dHn−1(x) for all ϕ ∈ C1
c (R

n).

In particular, P(E; A)=Hn−1(A∩ ∂∗E) for every Borel set A⊂ Rn . We say that x ∈ Rn is a jump point
of E if there exists ν ∈ Sn−1 such that

Ex,r
loc
−→ H+0,ν as r→ 0+, (2-13)

and we denote by ∂ J E the set of jump points of E . Note that we always have ∂ J E ⊂ E (1/2) ⊂ ∂e E . In
fact, if E is a set of locally finite perimeter and x ∈ ∂∗E , then (2-13) holds with ν = −νE(x), so that
∂∗E ⊂ ∂ J E . Summarizing, if E is a set of locally finite perimeter, we have

∂∗E ⊂ ∂ J E ⊂ E (1/2) ⊂ ∂e E (2-14)

and, moreover, by Federer’s theorem [Ambrosio et al. 2000, Theorem 3.61; Maggi 2012, Theorem 16.2],

Hn−1(∂e E \ ∂∗E)= 0,

so that ∂e E is locally Hn−1-rectifiable in Rn . We shall need on several occasions to use the following
very fine criterion for finite perimeter, known as Federer’s criterion [1969, 4.5.11] (see also [Evans and
Gariepy 1992, Section 5.11, Theorem 1]): if E is a Lebesgue measurable set in Rn such that ∂e E is
locally Hn−1-finite, then E is a set of locally finite perimeter.

Given a Lebesgue measurable function f : Rn
→ R and an open set � ⊂ Rn we define the total

variation of f in � as

|D f |(�)= sup
{∫

�

f (x)Div T (x) dx : T ∈ C1
c (�;R

n), |T | ≤ 1
}
.

We say that f ∈ BV(�) if |D f |(�) <∞ and f ∈ L1(�), and that f ∈ BV loc(�) if f ∈ BV(�′) for every
open set �′ compactly contained in �. If f ∈ BV loc(R

n) then the distributional derivative D f of f is
an Rn-valued Radon measure. Note in particular that E is a set of locally finite perimeter if and only
if 1E ∈ BV loc(R

n), and that in this case µE =−D1E . Sets of finite perimeter and functions of bounded
variation are related by the fact that, if f ∈ BV loc(R

n), then, for a.e. t ∈ R, { f > t} is a set of finite
perimeter, and the coarea formula, ∫

R

P({ f > t};G) dt = |D f |(G), (2-15)

holds (as an identity in [0,∞]) for every Borel set G ⊂ Rn . If f ∈ BV loc(R
n), then the Radon–Nikodym

decomposition of D f with respect to Hn is denoted by D f = Da f +Ds f , where Ds f and Hn are mutually
singular, and where Da f �Hn . The density of Da f with respect to Hn is by convention denoted as ∇ f ,
so that ∇ f ∈ L1(�;Rn) with Da f = ∇ f dHn . Moreover, for a.e. x ∈ Rn , ∇ f (x) is the approximate
differential of f at x . If f ∈ BV loc(R

n), then S f is countably Hn−1-rectifiable with Hn−1(S f \ J f )= 0,
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[ f ] ∈ L1
loc(H

n−1xJ f ), and the Rn-valued Radon measure D j f , defined as

D j f = [ f ]ν f dHn−1xJ f ,

is called the jump part of D f . Since Da f and D j f are mutually singular, by setting Dc f = Ds f − D j f
we come to the canonical decomposition of D f into the sum Da f + D j f + Dc f . The Rn-valued Radon
measure Dc f is called the Cantorian part of D f . It has the distinctive property that |Dc f |(M)= 0 if M
is σ -finite with respect to Hn−1. We shall often need to use (in combination with (2-10) and (2-12)) the
following localization property of Cantorian derivatives.

Lemma 2.2. If v ∈ BV(Rn), then |Dcv|({v∧ = 0})= 0. In particular, if f, g ∈ BV(Rn) and f = g Hn-a.e.
on a Borel set E , then Dc f xE (1) = DcgxE (1).

Proof. Step one: Let v ∈ BV(Rn), and let K ⊂ Sc
v be a concentration set for Dcv that is Hn-negligible.

By the coarea formula,

|Dcv|({v∧ = 0})= |Dcv|(K ∩ {v∧ = 0})= |Dv|(K ∩ {v∧ = 0})

=

∫
R

Hn−2(K ∩ {v∧ = 0} ∩ ∂∗{v > t}) dt

=

∫
R

Hn−2(K ∩ {ṽ = 0} ∩ ∂∗{v > t}) dt = 0 (by v∧ = v∨ on Sc
v),

where in the last identity we have noticed that {ṽ = 0} ∩ ∂∗{v > t} ∩ Sc
v =∅ if t 6= 0.

Step two: Let f, g ∈ BV(Rn) with f = g Hn-a.e. on a Borel set E . Let v = f − g so that v ∈ BV(Rn).
Since v = 0 on E , we easily see that E (1) ⊂ {ṽ = 0}. Thus |Dcv|(E (1))= 0, by step one. �

Lemma 2.3. If f, g ∈ BV(Rn), E is a set of finite perimeter, and f = 1E g, then

∇ f = 1E∇g Hn-a.e. on Rn, (2-16)

Dc f = DcgxE (1), (2-17)

S f ∩ E (1) = Sg ∩ E (1). (2-18)

Proof. Since f = g on E , by (2-12) we find that ∇ f = ∇g Hn-a.e. on E ; since f = 0 on Rn
\ E ,

again by (2-12) we find that ∇ f = 0 Hn-a.e. on Rn
\ E ; this proves (2-16). For the same reasons,

but this time exploiting Lemma 2.2 in place of (2-12), we see that Dc f xE (1) = DcgxE (1) and that
Dc f x(Rn

\ E)(1) = Dc f xE (0) = 0; since ∂e E is locally Hn−2-rectifiable, and thus |Dc f |-negligible, we
come to (2-17). Finally, (2-18) is an immediate consequence of (2-10). �

Given a Lebesgue measurable function f : Rn
→ R we say that f is a function of generalized

bounded variation on Rn , f ∈ GBV(Rn), if ψ ◦ f ∈ BV loc(R
n) for every ψ ∈ C1(R) with ψ ′ ∈ C0

c (R),
or, equivalently, if τM( f ) ∈ BV loc(R

n) for every M > 0, where τM was defined in (2-5). Note that, if
f ∈GBV(Rn), then we do not require that f ∈ L1

loc(R
n), so that the distributional derivative D f of f may

even fail to be defined. Nevertheless, the structure theory of BV-functions holds for GBV-functions too.
Indeed, if f ∈ GBV(Rn), then — see [Ambrosio et al. 2000, Theorem 4.34] — { f > t} is a set of finite
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perimeter for a.e. t ∈R, f is approximately differentiable Hn-a.e. on Rn , S f is countably Hn−1-rectifiable
and Hn−1-equivalent to J f , and the coarea formula (2-15) takes the form∫

R

P({ f > t};G) dt =
∫

G
|∇ f | dHn

+

∫
G∩S f

[ f ] dHn−1
+ |Dc f |(G) (2-19)

for every Borel set G ⊂ Rn , where |Dc f | denotes the Borel measure on Rn defined as the least upper
bound of the Radon measures |Dc(τM( f ))|; and, in fact,

|Dc f |(G)= lim
M→∞

|Dc(τM( f ))|(G)= sup
M>0
|Dc(τM( f ))|(G) (2-20)

whenever G is a Borel set in Rn; see [Ambrosio et al. 2000, Definition 4.33].

3. Characterization of equality cases and barycenter functions

We now prove the results presented in Section 1D. In Section 3A, Theorem 3.1, we obtain a formula for
the perimeter of a set whose sections are segments, which is then applied in Section 3B to study barycenter
functions of such sets and prove Theorem 1.7. Sections 3C and 3D contain the proof of Theorem 1.9
concerning the characterization of equality cases in terms of barycenter functions, while Theorem 1.13 is
proved in Section 3E.

3A. Sets with segments as sections. Given u : Rn−1
→ R∪{±∞}, let 6u = {x ∈ Rn

: qx > u( px)} and
6u
={x ∈Rn

:qx<u( px)}, respectively, denote the epigraph and the subgraph of u. As proved in [Cagnetti
et al. 2013, Proposition 3.1], 6u is a set of locally finite perimeter if and only if τM(u) ∈ BV loc(R

n−1) for
every M > 0. (Note that this does not mean that u ∈ GBV(Rn−1), as here u takes values in R∪ {±∞}.)
Moreover, it is well known that if u ∈ BV loc(R

n−1) then, for every Borel set G ⊂ Rn−1, the identity

P(6u;G×R)=

∫
G

√
1+ |∇u|2 dHn−1

+

∫
G∩Su

[u] dHn−2
+ |Dcu|(G) (3-1)

holds in [0,∞]; see [Giaquinta et al. 1998b, Chapter 4, Sections 1.5 and 2.4]. In the study of equality cases
for Steiner’s inequality, thanks to Theorem A, we are concerned with sets E of the form E =6u1 ∩6

u2

corresponding to Lebesgue measurable functions u1 and u2 such that u1 ≤ u2 on Rn−1. A characterization
of those pairs of functions u1, u2 corresponding to sets E of finite perimeter and volume is presented in
Proposition 3.2. In Theorem 3.1, we provide instead a formula that is analogous to (3-1) for the perimeter
of E in terms of u1 and u2 in the case that u1, u2 ∈ GBV(Rn−1).

Theorem 3.1. If u1, u2 ∈ GBV(Rn−1) with u1 ≤ u2, and E = 6u1 ∩6
u2 has finite volume, then E is a

set of locally finite perimeter and, for every Borel set G ⊂ Rn−1,

P(E;G×R)=

∫
G∩{u1<u2}

√
1+ |∇u1|2 dHn−1

+

∫
G∩{u1<u2}

√
1+ |∇u2|2 dHn−1

+|Dcu1|(G∩{ũ1< ũ2})

+ |Dcu2|(G ∩ {ũ1 < ũ2})+

∫
G∩(Su1∪Su2 )

min{2(ũ2− ũ1), [u1] + [u2]} dHn−2, (3-2)

where this identity holds in [0,∞], and with the convention that ũ2− ũ1 = 0 when ũ2 = ũ1 =+∞.
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u2 u∨2 (z)

E

u∨1 (z)

u∧2 (z)

u∧1 (z)

Figure 7. The inclusion (3-3).

If E =6u1 ∩6
u2 is of locally finite perimeter, then it is not necessarily true that u1, u2 ∈ GBV(Rn−1).

The regularity of u1 and u2 is, in fact, quite minimal, and completely degenerates as we approach the set
where u1 and u2 coincide.

Proposition 3.2. Let u1, u2 : Rn−1
→ R be Lebesgue measurable functions with u1 ≤ u2 on Rn−1.

Then E = 6u1 ∩6
u2 is of finite perimeter with 0 < |E | <∞ if and only if v = u2 − u1 ∈ BV(Rn−1),

v 6= 0, Hn−1({v > 0}) < ∞, {u2 > t > u1} is of finite perimeter for a.e. t ∈ R, and f ∈ L1(R) for
f (t)= P({u2 > t > u1}), t ∈ R. In particular,∫

R

P({u2 > t > u1}) dt ≤ P(E),

|Dv|(Rn−1)≤ P(F[v]),

Hn−1({v > 0})≤ 1
2 P(F[v]).

Moreover (see Figure 7),

(∂e E)z ⊂ [u∧1 (z), u∨1 (z)] ∪ [u
∧

2 (z), u∨2 (z)] for all z ∈ Rn−1, (3-3)

and
(Su1 ∪ Su2) \ ({u

∨

2 = u∨1 } ∩ {u
∧

2 = u∧1 }) (3-4)

is countably Hn−2-rectifiable, with {v∨ = 0} ⊆ {u∨2 = u∨1 } ∩ {u
∧

2 = u∧1 }.

Proof. We first note that, if we set E(t)= {z ∈ Rn−1
: (z, t) ∈ E}, then we have E(t)= {u1 < t < u2} for

every t ∈ R, and that, by Fubini’s theorem, E has finite volume if and only if v ∈ L1(Rn−1); if these hold,
then |E | =

∫
Rn−1 v.

Step one: Let us assume that E has finite perimeter and that 0< |E |<∞; in particular, v ∈ L1(Rn−1). By
Steiner’s inequality, F[v] has finite perimeter. By [Maggi 2012, Proposition 19.22], since |F[v]∩{xn > 0}|
equals

∫
Rn−1

1
2v =

1
2 |E |> 0, we have that

1
2 P(F[v])≥ P(F[v]; {xn > 0})≥Hn−1(F[v](1) ∩ {xn = 0})=Hn−1({v > 0}).

If T ∈ C1
c (R

n−1
;Rn−1) with supRn−1 |T | ≤ 1, and we set S ∈ C1

c (R
n
;Rn) to be S(x)= (T ( px), 0), then

by Fubini’s theorem and Steiner’s inequality we find that∫
Rn−1

v(z)Div T (z) dz =
∫

F[v]
Div S ≤ P(F[v])≤ P(E).
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Hence, v ∈ BV(Rn−1) with |Dv|(Rn−1) ≤ P(F[v]). If wh ∈ C1
c (R

n) with wh → 1E in L1(Rn) and
|Dwh|(R

n)→ P(E) as h→∞, then wh( · , t)→ 1E(t) in L1(Rn−1) for a.e. t ∈ R, and, therefore,∫
E(t)

Div T = lim
h→∞

∫
Rn−1

whDiv T =− lim
h→∞

∫
Rn−1

T · ∇wh ≤ lim
h→∞

∫
Rn−1
|∇wh(z, t)| dz.

Hence, by Fatou’s lemma,∫
R

sup
{∣∣∣∣ ∫

E(t)
Div T

∣∣∣∣ : T ∈ C1
c (R

n−1
;Rn−1), sup

Rn−1
|T | ≤ 1

}
dt ≤ lim inf

h→∞

∫
Rn
|∇wh| = P(E),

so that E(t) is of finite perimeter for a.e. t ∈ R, and
∫

R
P(E(t)) dt ≤ P(E), as required.

Step two: We now show the converse implication. To this end let ϕ ∈ C1
c (R

n), then∫
E
∂nϕ =

∫
Rn−1

ϕ(z, u2(z))−ϕ(z, u1(z)) dz ≤ 2 sup
Rn
|ϕ|Hn−1({v > 0}),

while∫
E
∇zϕ=

∫
R

dt
∫

E(t)
∇zϕ(z, t) dz=

∫
R

dt
∫
∂∗E(t)

ϕ(z, t)νE(t)(z) dHn−2(z)≤ sup
Rn
|ϕ|

∫
q(sptϕ)

P(E(t)) dt.

If we set f (t)= P(E(t)), then we have just proved∣∣∣∣ ∫
E
∇ϕ

∣∣∣∣≤ sup
Rn
|ϕ|
(
2Hn−1({v > 0})+‖ f ‖L1(R)

)
,

so that E has finite perimeter.

Step three: For every x ∈ Rn and r > 0 we have

Hn(E ∩Cx,r )=

∫ qx+r

qx−r
Hn−1(Dpx,r ∩ {u1 < s} ∩ {u2 > s}) ds.

If qx > u∨2 ( px), then given t ∈ (u∨2 ( px), qx) and r < qx − t we find that

Hn(E ∩Cx,r )≤ 2rHn−1(Dpx,r ∩ {u2 > t})= o(rn),

so that x ∈ E (0). By a similar argument, we show that

{x ∈ Rn
: qx > u∨2 ( px)} ∪ {x ∈ Rn

: qx < u∧1 ( px)} ⊂ E (0),

{x ∈ Rn
: u∨1 ( px) < qx < u∧2 ( px)} ⊂ E (1).

We thus conclude that, if x ∈ ∂e E , then u∧1 ( px)≤ qx ≤ u∨2 ( px) and either qx ≤ u∨1 ( px) or qx ≥ u∧2 ( px).

Step four: Let I be a countable dense subset of R such that {u1 < t < u2} is of finite perimeter for
every t ∈ I . We claim that

{u∧2 > u∧1 } ∩ Su1 ⊂

⋃
t∈I

∂e
{u2 > t > u1}. (3-5)

Indeed, if min{u∧2 (z), u∨1 (z)}> t > u∧1 (z), then

θ({u2 > t}, z)= 1, θ∗({u1 < t}, z) > 0, θ∗({u1 < t}, z) < 1,
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which implies that θ∗({u1 < t < u2}, z) > 0 and θ∗({u1 < t < u2}, z) < 1, and thus (3-5). In particular,
{u∧2 > u∧1 } ∩ Su1 is countably Hn−2-rectifiable. By entirely similar arguments, one may check that the
sets {u∨2 > u∨1 } ∩ Su2 , Sc

u1
∩ Su2 , and Su1 ∩ Sc

u2
are included in the set on the right-hand side of (3-5), and

thus complete the proof of (3-4).

Step five: We prove that {v∨ = 0} ⊆ {u∨2 = u∨1 } ∩ {u
∧

2 = u∧1 }. Indeed from the general fact that
( f + g)∨ ≤ f ∨+ g∨, we obtain that 0≤ u∨2 − u∨1 ≤ (u2− u1)

∨
= v∨. At the same time,

0≤ u∧2 − u∧1 = (−u1)
∨
− (−u2)

∨
≤ (−u1+ u2)

∨
= v∨. �

Proof of Theorem 3.1. Step one: We first consider the case that u1, u2 ∈ BV loc(R
n−1). By [Giaquinta et al.

1998a, Section 4.1.5], 6u1 and 6u2 are of locally finite perimeter, with

∂∗6u1 ∩ (S
c
u1
×R)=Hn−1 {x ∈ Rn

: ũ1( px)= qx}, (3-6)

∂∗6u1 ∩ (Su1 ×R)=Hn−1 {x ∈ Rn
: u∧1 ( px) < qx < u∨1 ( px)}, (3-7)

and, by similar arguments, with

6(1)u1
∩ (Sc

u1
×R)=Hn−1 {x ∈ Rn

: ũ1( px) < qx}, (3-8)

6(1)u1
∩ (Su1 ×R)=Hn−1 {x ∈ Rn

: u∨1 ( px) < qx}, (3-9)

(6u2)(1) ∩ (Sc
u2
×R)=Hn−1 {x ∈ Rn

: ũ2( px) > qx}, (3-10)

(6u2)(1) ∩ (Su2 ×R)=Hn−1 {x ∈ Rn
: u∧2 ( px) > qx}. (3-11)

Let us now recall that, by [Maggi 2012, Theorem 16.3], if F1, F2 are sets of locally finite perimeter, then

∂∗(F1 ∩ F2)=Hn−1 (F (1)1 ∩ ∂
∗F2)∪ (F

(1)
2 ∩ ∂

∗F1)∪ (∂
∗F1 ∩ ∂

∗F2 ∩ {νF1 = νF2}); (3-12)

moreover, if F1 ⊂ F2, then νF1 = νF2 Hn−1-a.e. on ∂∗F1 ∩ ∂
∗F2. Since u1 ≤ u2 implies 6u2 ⊂6u1 , and

6u2 = Rn
\6u2 , so that µ6u2

=−µ6u2 , we thus find

ν6u1
=−ν6u2 Hn−1-a.e. on ∂∗6u1 ∩ ∂

∗6u2 . (3-13)

By (3-12) and (3-13), since E =6u1 ∩6
u2 we find

∂∗E =Hn−1
(
∂∗6u1 ∩ (6

u2)(1)
)
∪
(
∂∗6u2 ∩ (6u1)

(1)).
We now apply (3-6) to u1 and (3-10) to u2 to find(

∂∗6u1 ∩ (6
u2)(1)

)
∩ ((Sc

u1
∩ Sc

u2
)×R)=Hn−1 {(z, ũ1(z)) : z ∈ (Sc

u1
∩ Sc

u2
), ũ1(z) < ũ2(z)}. (3-14)

We combine (3-7) applied to u1 and (3-10) applied to u2 to find(
∂∗6u1∩(6

u2)(1)
)
∩((Su1∩Sc

u2
)×R)=Hn−1

{
(z, t) : z∈ Su1∩Sc

u2
, u∧1 (z)< t<min{u∨1 (z), ũ2(z)}

}
. (3-15)

We combine (3-7) applied to u1 and (3-11) applied to u2 to find(
∂∗6u1∩(6

u2)(1)
)
∩((Su1∩Su2)×R)=Hn−1

{
(z, t) : z∈ Su1∩Su2, u∧1 (z)< t<min{u∨1 (z), u∧2 (z)}

}
. (3-16)
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We finally apply (3-6) to u1 and (3-11) to u2 to find(
∂∗6u1 ∩ (6

u2)(1)
)
∩ ((Sc

u1
∩ Su2)×R)=Hn−1 {(z, ũ1(z)) : z ∈ Sc

u1
∩ Su2, ũ1(z) < u∧2 (z)}. (3-17)

This gives, by (3-1), and using (3-14) for the first two terms and (3-15) and (3-16) for the third term on
the right-hand side,

Hn−1(∂∗6u1 ∩ (6
u2)(1) ∩ (G×R)

)
=

∫
G∩{u1<u2}

√
1+ |∇u1|2 dHn−1

+ |Dcu1|(G ∩ {ũ1 < ũ2})+

∫
G∩Su1

(min{u∨1 , u∧2 }− u∧1 )+ dHn−2,

where we have also used that, as a consequence of (3-17), we simply have

Hn−1((∂∗6u1 ∩ (6
u2)(1))∩ ((Sc

u1
∩ Su2)×R)

)
= 0,

by [Federer 1969, 3.2.23]. Also, by exchanging the role of u1 and u2,

Hn−1(∂∗6u2 ∩ (6u1)
(1)
∩ (G×R))

=

∫
G∩{u1<u2}

√
1+ |∇u2|2 dHn−1

+ |Dcu2|(G ∩ {ũ1 < ũ2})+

∫
G∩Su2

(u∨2 −max{u∧2 , u∨1 })+ dHn−2.

In conclusion, we have proved

P(E;G×R)

=

∫
G∩{u1<u2}

(
√

1+ |∇u1|2+
√

1+ |∇u2|2) dHn−1
+|Dcu1|(G∩{ũ1 < ũ2})+|Dcu2|(G∩{ũ1 < ũ2})

+

∫
G∩(Su1∪Su2 )

(
min{u∨1 , u∧2 }− u∧1

)
+
+
(
u∨2 −max{u∧2 , u∨1 }

)
+

dHn−2. (3-18)

We thus deduce (3-2) by means of (3-18) and the identity

min{2(ũ2− ũ1), [u1] + [u2]} =min{u∨2 + u∧2 − (u
∨

1 + u∧1 ), u∨1 − u∧1 + u∨2 − u∧2 }

= u∨2 − u∧1 +min{u∧2 − u∨1 , u∨1 − u∧2 }

= u∨2 − u∧1 +min{u∧2 , u∨1 }−max{u∧2 , u∨1 }

= (min{u∨1 , u∧2 }− u∧1 )++ (u
∨

2 −max{u∧2 , u∨1 })+ .

This completes the proof of the theorem in the case that u1, u2 ∈ BV loc(R
n−1).

Step two: We now address the general case. If u1, u2 ∈ GBV(Rn−1), then 6u1 and 6u2 are sets of locally
finite perimeter, by [Cagnetti et al. 2013, Proposition 3.1], and thus E is of locally finite perimeter. We
now prove (3-2). To this end, since (3-2) is an identity between Borel measures on Rn−1, it suffices to
consider the case that G is bounded. Given M > 0, let EM =6τM (u1)∩6

τM (u2). Since τM ui ∈BV loc(R
n−1)

for every M > 0, i = 1, 2, by step one we find that EM is a set of locally finite perimeter, and that (3-2)
holds on EM with τM(u1) and τM(u2) in place of u1 and u2. We are thus going to complete the proof of
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the theorem by showing that

P(E;G×R)= lim
M→∞

P(EM ;G×R), (3-19)∫
G∩{u1<u2}

√
1+ |∇ui |

2 dHn−1
= lim

M→∞

∫
G∩{τM (u1)<τM (u2)}

√
1+ |∇τM(ui )|2 dHn−1, (3-20)

|Dcui |(G ∩ {ũ1 < ũ2})= lim
M→∞

|DcτM(ui )|
(
G ∩ {τ̃M(u1) < τ̃M(u2)}

)
, (3-21)

and that∫
G∩(Su1∪Su2 )

min{2(ũ2− ũ1), [u1] + [u2]} dHn−2

= lim
M→∞

∫
G∩(SτM (u1)∪SτM (u2))

min{2(τ̃M(u2)− τ̃M(u1)), [τM(u1)] + [τM(u2)]} dHn−2. (3-22)

Let us set fM(a, b)= τM(b)− τM(a) for a, b ∈ R∪{±∞}. By (2-6), we can write the right-hand side of
(3-22) as

∫
G hM dHn−2, where

hM = 1SτM (u1)∪SτM (u2)
γ ( fM(u∨1 , u∨2 ), fM(u∧1 , u∧2 ), fM(u∧1 , u∨1 ), fM(u∧2 , u∨2 ))

for a function γ : R×R×R×R→ [0,∞) that is increasing in each of its arguments. Since, for every
a, b ∈ R∪ {±∞} with a ≤ b, the quantity fM(a, b) is increasing in M , with

lim
M→∞

fM(a, b)=
{

0 if a = b =+∞ or a = b =−∞,
b− a otherwise,

we see that {SτM (ui )}M>0 is a monotone increasing family of sets whose union is Sui , {hM}M>0 is an
increasing family of functions on Rn−1, and that

lim
M→∞

hM = 1Su1∪Su2
min{2(ũ2− ũ1), [u1] + [u2]},

where the convention that ũ2− ũ1 = 0 if ũ2 = ũ1 =+∞ was also used; we have thus completed the proof
of (3-22). Similarly, since

{τ̃M(u1) < τ̃M(u2)} = { fM(u∨1 , u∨2 )+ fM(u∧1 , u∧2 ) > 0} = { fM(u∨1 , u∨2 ) > 0} ∪ { fM(u∧1 , u∧2 ) > 0},

{{τ̃M(u1) < τ̃M(u2)}}M>0 is a monotone increasing family of sets whose union is {u∨2 > u∨1 }∪ {u
∧

2 > u∧1 }.
Therefore, by definition of |Dcui |, we find, for i = 1, 2,

lim
M→∞

|DcτM ui |
(
G ∩ {τ̃M(u1) < τ̃M(u2)}

)
= |Dcui |

(
G ∩ ({u∨2 > u∨1 } ∪ {u

∧

2 > u∧1 })
)

= |Dcui |(G ∩ {ũ1 < ũ2}),

where in the last identity we used that Su1 ∪ Su2 is countably Hn−2-rectifiable, and thus |Dcui |-negligible
for i = 1, 2. This proves (3-21). Next, we note that

|∇τM(ui )| = 1{|ui |<M}|∇ui | Hn−1-a.e. on Rn−1,
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so that (3-20) follows again by monotone convergence. By (3-2) applied to EM , this shows in particular
that the limit as M→∞ of P(EM ;G×R) exists in [0,∞]. Thus, in order to prove (3-19) it suffices to
show that P(E;G ×R) is the limit of P(EMh ;G ×R) as h→∞, where {Mh}h∈N has been chosen in
such a way that

lim
h→∞

Hn−1(E (1) ∩ {|xn| = Mh})= 0, Hn−1(∂e E ∩ {|xn| = Mh})= 0 for all h ∈ N. (3-23)

(Notice that the choice of {Mh}h∈N is possible because |E | <∞ and Hn−1x∂e E is a Radon measure.)
Indeed, by EM = E ∩ {|xn|< M}, (3-23), and [Maggi 2012, Theorem 16.3], we have that

∂e EMh =
(
{|xn|< Mh} ∩ ∂

e E
)
∪
(
{|xn| = Mh} ∩ E (1)

)
for all h ∈ N,

so that, by the first identity in (3-23), we find P(E;G×R)= limh→∞ P(EMh ;G×R), as required. �

In practice, we shall always apply Theorem 3.1 in situations where the sets under consideration are
described in terms of their barycenter and slice length functions.

Corollary 3.3. If v ∈ (BV ∩ L∞)(Rn−1
; [0,∞)), b ∈ GBV(Rn−1), and

W =W [v, b] = {x ∈ Rn
: |qx − b( px)|< 1

2v( px)}, (3-24)

then u1 = b− 1
2v ∈ GBV(Rn−1), u2 = b+ 1

2v ∈ GBV(Rn−1), W is a set of locally finite perimeter with
finite volume, and for every Borel set G ⊂ Rn−1 we have

P(W ;G×R)=

∫
G∩{v>0}

√
1+ |∇(b+ 1

2v)|
2+

√
1+ |∇(b− 1

2v)|
2 dHn−1

+

∫
G∩(Sv∪Sb)

min
{
v∨+ v∧,max{[v], 2[b]}

}
dHn−2

+ |Dc(b+ 1
2v)|(G ∩ {ṽ > 0})+ |Dc(b− 1

2v)|(G ∩ {ṽ > 0}), (3-25)

where this identity holds in [0,∞].

Proof. It is easily seen that (BV ∩ L∞)+GBV ⊂ GBV . By Theorem 3.1, W = 6u1 ∩6
u2 is of locally

finite perimeter, and P(W ;G ×R) can be computed by means of (3-2) for every Borel set G ⊂ Rn−1.
We are thus left to prove that, Hn−2-a.e. on Su1 ∪ Su2 ,

min{2(ũ2− ũ1), [u1] + [u2]} =min
{
v∨+ v∧,max{[v], 2[b]}

}
. (3-26)

On Ju1 ∩ Ju2 ∩ {νu1 = νu2}, we have that

b∨ = 1
2(u
∨

1 + u∨2 ), v∨ =max{u∨2 − u∨1 , u∧2 − u∧1 },

b∧ = 1
2(u
∧

1 + u∧2 ), v∧ =min{u∨2 − u∨1 , u∧2 − u∧1 },

while on Ju1 ∩ Ju2 ∩ {νu1 =−νu2} we find

b∨ =max{ 12(u
∨

2 + u∧1 ),
1
2(u
∧

2 + u∨1 )}, v∨ = u∨2 − u∧1 ,

b∧ =min{ 12(u
∨

2 + u∧1 ),
1
2(u
∧

2 + u∨1 )}, v∧ = u∧2 − u∨1 ,
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so that (3-26) is proved through an elementary case-by-case argument on Ju1 ∩ Ju2 , and thus, Hn−2-a.e.
on Su1 ∩ Su2 . At the same time, on Su1 ∩ Sc

u2
we have

b∨ = 1
2(ũ2+ u∨1 ), v∨ = ũ2− u∧1 ,

b∧ = 1
2(ũ2+ u∧1 ), v∧ = ũ2− u∨1 ,

from which we easily deduce (3-26) on Su1 ∩ Sc
u2

; by symmetry, we see the validity of (3-26) on Sc
u1
∩ Su2 ,

and thus conclude the proof of the corollary. �

Corollary 3.4. Let v : Rn−1
→ [0,∞) be Lebesgue measurable. Then, F[v] is of finite perimeter and

volume if and only if v ∈ BV(Rn−1
; [0,∞)) and Hn−1({v > 0}) <∞. If these hold, let F = F[v], then

for every z ∈ Rn−1 we have

(−1
2v
∧(z), 1

2v
∧(z))⊂ (F (1))z⊂ [− 1

2v
∧(z), 1

2v
∧(z)], (3-27)

{t ∈ R : 1
2v
∧(z) < |t |< 1

2v
∨(z)} ⊂ (∂e F)z⊂ {t ∈ R : 1

2v
∧(z)≤ |t | ≤ 1

2v
∨(z)}, (3-28)

while, for every Borel set G ⊂ Rn−1,

P(F;G×R)= 2
∫

G∩{v>0}

√
1+ |12∇v|

2 dHn−1
+

∫
G∩Sv
[v] dHn−2

+ |Dcv|(G). (3-29)

Proof. By Proposition 3.2 and the coarea formula (2-15), we see that F[v] is of finite perimeter if and
only if v ∈ BV(Rn−1

; [0,∞)) and Hn−1({v > 0}) < ∞. By arguing as in step three of the proof of
Proposition 3.2, we easily prove (3-27) and (3-28). Finally, by applying Theorem 3.1 to u2 =

1
2v and

u1=−
1
2v, we prove (3-29) with |Dcv|(G∩{ṽ > 0}) in place of |Dcv|(G). By Lemma 2.2, this concludes

the proof of the corollary. �

We close this section with the proof of Proposition 1.15.

Proof of Proposition 1.15. We want to prove that, if λ ∈ [0, 1] \ { 12} and

E =
{

x ∈ Rn
: −λv2( px)− 1

2v1( px)≤ qx ≤ 1
2v1( px)+ (1− λ)v2( px)

}
, (3-30)

then E ∈M(v) and Hn
(
E1(ten + F[v])

)
> 0 for every t ∈ R. By Corollary 3.4,

P(F[v])= 2
∫

Rn−1

√
1+ |∇( 1

2v1)|2+ |Dsv2|(R
n−1). (3-31)

At the same time, E =W [v, b], where b = (1
2 − λ)v2. Since Dsv1 = 0, Dav2 = 0, and

v∨+ v∧ ≥ [v] = [v2] ≥ 2[b] Hn−2-a.e. on Rn−1,

we easily find that

∇(b± 1
2v)=±∇(

1
2v1) Hn−1-a.e. on Rn−1,

min
{
v∨+ v∧,max{[v], 2[b]}

}
= [v2] Hn−2-a.e. on Rn−1,

Dc(b+ 1
2v)= (1− λ)D

cv2,

Dc(b− 1
2v)=−λDcv2.
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Since Sb ∪ Sv =Hn−2 Sv2 , we find P(E)= P(F[v]) by (3-31) and (3-25). At the same time,

Hn(E1(ten + F[v])
)
= 2

∫
{v>0}
|t − (1

2 − λ)v2| dHn−1 for all t ∈ R,

so that Hn
(
E1(ten + F[v])

)
> 0, as λ 6= 1

2 and v2 is nonconstant on {v > 0}. �

3B. A fine analysis of the barycenter function. We now prove Theorem 1.7, which states in particular
that bE 1{v>δ} ∈ GBV(Rn−1) whenever E is a v-distributed set of finite perimeter and {v > δ} is of finite
perimeter. We first discuss some examples showing that this is the optimal degree of regularity we
can expect for the barycenter. (Let us also recall that the regularity of barycenter functions in arbitrary
codimension, but under “no vertical boundaries” and “no vanishing sections” assumptions, was addressed
in [Barchiesi et al. 2013, Theorem 4.3].)

Remark 3.5. In the case n = 2, as will be clear from the proof of Theorem 1.7, conclusion (1-11) can be
strengthened to 1{v>δ}bE ∈ (BV ∩ L∞)(Rn−1). The localization on {v > δ} is necessary. Indeed, let us
define E ⊂ R2 as

E =
⋃
h∈N

{
x ∈ R2

:
1

h+ 1
< px <

1
h
, |qx − (−1)h|<

1
h2

}
,

so that E has finite perimeter and volume, and has segments as sections. However,

bE(z)=
∑
h∈N

(−1)h1((h+1)−1,h−1)(z), z ∈ R,

so that bE ∈ L∞(R) \BV(R). We also note that, in the case n ≥ 3, the use of generalized functions of
bounded variation is necessary. For example, let Eα ⊂ R3 be such that

Eα =
⋃
h∈N

{
x ∈ R3

:
1

(h+ 1)2
< | px |<

1
h2 , |qx − hα|< 1

2

}
, α > 0.

In this way, Eα always has finite perimeter and volume, with v(z)= 1 if |z|< 1 and

1{v>δ}(z)bEα (z)= bEα (z)=
∑
h∈N

1((h+1)−2,h−2)(|z|)h
α for all z ∈ R2, 0< δ < 1.

In particular, 1{v>δ}bE2 ∈ L1(R2)\BV(R2) and 1{v>δ}bE4 6∈ L1
loc(R

2). Hence, without truncation, 1{v>δ}bE

may either fail to be of bounded variation (even if it is locally summable), or it may just fail to be locally
summable.

Before entering into the proof of Theorem 1.7, we shall need to prove that the momentum function m E

of a vertically bounded set E is of bounded variation; see Lemma 3.6 below. Given E ⊂ Rn , we say that
E is vertically bounded (by M > 0) if E ⊂Hn {x ∈ Rn

: |qx |< M}.

Lemma 3.6. If v ∈ BV(Rn−1
; [0,∞)) and E is a vertically bounded, v-distributed set of finite perimeter,

then m E ∈ (BV ∩ L∞)(Rn−1), where

m E(z)=
∫

Ez

t dH1(t) for all z ∈ Rn−1.
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Proof. If E is vertically bounded by M > 0, then v ∈ L∞(Rn−1), |m E | ≤ Mv, and m E ∈ L∞(Rn−1).
Moreover, m E ∈ BV(Rn−1) as, for every ϕ ∈ C1

c (R
n−1),∫

Rn−1
m E∇

′ϕdHn−1
=

∫
E
∇
′(ϕ( px)qx)dHn(x)=

∫
∂∗E
ϕ( px)qx pνE(x)dHn−1(x)≤M sup

Rn−1
|ϕ|P(E). �

Proof of Theorem 1.7. Step one: Let us decompose z ∈ Rn−1 as z = (z1, z′) ∈ R×Rn−2. For every fixed
z′ ∈ Rn−2, f : Rn−1

→ R, G ⊂ Rn−1, and E ⊂ Rn , we define

f z′
: R→ R, f z′(z1)= f (z1, z′),

Gz′
= {z1 ∈ R : (z1, z) ∈ G},

E z′
= {(z1, t) ∈ R2

: (z1, z′, t) ∈ E}.

We now consider v and E as in the statement, and identify a set I ⊂ (0, 1) such that H1((0, 1) \ I )= 0
and, if δ ∈ I , then {v > δ} is a set of finite perimeter. We now fix δ ∈ I , and consider a set J ⊂ Rn−2 such
that Hn−2(Rn−2

\ J )= 0 and, for every z′ ∈ J , E z′ is a set of finite perimeter in R2 (hence, vz′
∈ BV(R))

and {v > δ}z
′

= {vz′ > δ} is a set of finite perimeter in R. Note that J depends on δ, and its existence is a
consequence of Theorem C in Section 4D. As we shall see in step three, for every z′ ∈ J ,∣∣D(τM(1{vz′>δ}bE z′ ))

∣∣(R)≤ C(M, δ)
{

P({vz′ > δ})+ P(E z′)
}
.

If we thus take into account that

(τM(1{v>δ}bE))
z′
= τM(1{vz′>δ}bE z′ ),

we conclude that∫
Rn−2

∣∣D((τM(1{v>δ}bE))
z′)∣∣(R) dHn−2(z′)≤ C(M, δ)

∫
Rn−2
{P({vz′ > δ})+ P(E z′)} dHn−2(z′)

≤ C(M, δ){P({v > δ})+ P(E)},

where in the last step we have used [Maggi 2012, Proposition 14.5]. We can repeat this argument along
each coordinate direction in Rn−1 and combine it with [Ambrosio et al. 2000, Remark 3.104] to conclude
that τM(1{v>δ}bE) ∈ (BV ∩ L∞)(Rn−1), with∣∣D(τM(1{v>δ}bE))

∣∣(Rn−1)≤ C(M, δ)
{

P({v > δ})+ P(E)
}
.

The proof of (1-11) will then be completed in the following two steps.

Step two: Let n = 2. We claim that P(E s) < ∞ implies v ∈ L∞(R), while P(E) < ∞ implies
bE ∈ L∞({v > σ }) for every σ > 0. The first claim follows by Corollary 3.4: indeed, P(E s) <∞ implies
v ∈ BV(R) and thus, trivially, v ∈ L∞(R). To prove the second claim, let us recall from step two in the
proof of [Maggi 2012, Theorem 19.15] that if a, b ∈ R are such that a 6= b and

H1(E (1)a )+H1(E (1)b ) <∞, H1(E (1)a ∩ E (1)b )= 0, H1(∂∗E (1)a )=H1(∂∗E (1)b )= 0,

then one has
H1(E (1)a )+H1(E (1)b )≤ P(E; {a < x1 < b}). (3-32)
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Should bE fail to be essentially bounded on {v > σ } for some σ > 0, then we may construct a strictly
increasing sequence {ah}h∈N ⊂ R with σ ≤ H1(E (1)ah ) <∞, H1(∂∗E (1)ah ) = 0, and H1(E (1)ah ∩ E (1)ak ) = 0
if h 6= k. Therefore, by (3-32), we would get

2σ ≤ P(E; {ah < x1 < ah+1}) for all h ∈ N,

and thus conclude that P(E)=+∞.

Step three: Let v ∈ BV(R), let E be a v-distributed set of finite perimeter in R2 such that Ez is a segment
for H1-a.e. z ∈ R, and let δ > 0 be such that {v > δ} is a set of finite perimeter in R. According to step
one, in order to complete the proof of (1-11) we are left to show that, if M > 0, then∣∣D(τM(1{v>δ}bE))

∣∣(R)≤ C(M, δ)
{

P({v > δ})+ P(E)
}
. (3-33)

By step two, v ∈ L∞(R) and bE ∈ L∞({v > δ}). In particular, E is vertically bounded above {v > δ},
that is, there exists L(δ) > 0 such that

E(δ)= E ∩ ({v > δ}×R)⊂H2 {x ∈ R2
: v( px) > δ, |qx |< L(δ)}. (3-34)

Let us now set vδ = 1{v>δ}v. Since {v > δ} is of finite perimeter, we have

vδ ∈ (BV ∩ L∞)(R), {vδ > 0} = {v > δ}.

Concerning E(δ), we note that, since {v > δ}×R is of locally finite perimeter, then E(δ) is, at least, a
vδ-distributed set of locally finite perimeter such that E(δ)z is a segment for H1-a.e. z ∈ R. But, in fact,
(3-34) implies {|xn|> L(δ)} ⊂ E(δ)(0), while at the same time we have the inclusion

∂e E(δ)⊂
[
∂e E ∩ ({v > δ}(1)×R)

]
∪
[
(∂e
{v > δ}×R)∩ (E (1) ∪ ∂e E)

]
;

in particular, E(δ) is of finite perimeter by Federer’s criterion, as

Hn−1(∂e E(δ))≤ P(E; {v > δ}(1)×R)+ 2L(δ)P({v > δ}).

We now note that bE(δ)= 1{v>δ}bE ∈ L∞(R), with P(E(δ); {v > δ}(1)×R)≤ P(E); hence, (3-33) follows
if we show that∣∣D(τM(bE(δ)))

∣∣(R)≤ C(M, δ)
{

P({vδ > 0})+ P(E(δ); {vδ > 0}(1)×R)
}

for every M > 0. It is now convenient to reset notation.

Step four: By step three, the proof of (1-11) will be completed by showing that, if v ∈ (BV ∩ L∞)(R)
is such that, for some δ > 0, {v > 0} = {v > δ} is a set of finite perimeter in R, and E is a vertically
bounded, v-distributed set of finite perimeter in R2 with bE ∈ L∞(R), then, for every M > 0,∣∣D(τM(bE))

∣∣(R)≤ C(M, δ)
{

P({v > 0})+ P(E; {v > 0}(1)×R)
}
. (3-35)

We start by noting that, since E is vertically bounded, then by Lemma 3.6 we have m E ∈ (BV ∩ L∞)(R).
Moreover, if we set

w =
1{v>0}

v
=

1{v>δ}
v

,



1566 FILIPPO CAGNETTI, MARIA COLOMBO, GUIDO DE PHILIPPIS AND FRANCESCO MAGGI

then we have w ∈ (BV ∩ L∞)(R), and thus bE = wm E ∈ (BV ∩ L∞)(R). We now note that, since
{v = 0} ⊂ {τM(bE)= 0}, we have {v = 0}(1) ⊂ {τM(bE)= 0}(1); at the same time, a simple application of
the coarea formula shows that

0=
∣∣D(τM(bE))

∣∣({τM(bE)= 0}(1))≥
∣∣D(τM(bE))

∣∣({v = 0}(1))=
∣∣D(τM(bE))

∣∣({v > 0}(0)). (3-36)

Moreover, since {v > 0} is a set of finite perimeter, we know that ∂e
{v > 0} is a finite set, so that∣∣D(τM(bE))

∣∣(∂e
{v > 0})=

∫
SτM (bE )∩∂

e{v>0}
[τM(bE)] dH0

≤ 2M P({v > 0}), (3-37)

where we have used that [τM(bE)] ≤ 2M , since |τM(bE)| ≤ M on Rn−1. By (3-36) and (3-37), in order
to achieve (3-35) we are left to prove that∣∣D(τM(bE))

∣∣({v > 0}(1))≤ C(M, δ)P(E; {v > 0}(1)×R). (3-38)

By (2-9) and since {v > δ} = {v > 0} we have

{v∧ > 0} ⊂ {v > 0}(1) = {v > δ}(1) ⊂ {v∧ ≥ δ} ⊂ {v∧ > 0},

that is, {v > 0}(1) = {v∧ > 0}. By applying Corollary 3.3 to G = {v > 0}(1) = {v∧ > 0},

P(E; {v > 0}(1)×R)

=

∫
{v>0}

√
1+|(bE+

1
2v)
′|2+

√
1+|(bE−

1
2v)
′|2 dH1

+

∫
{v>0}(1)∩(Sv∪SbE )

min
{
v∨+v∧,max{[v],2[bE ]}

}
dH0

+|Dc(bE+
1
2v)|({v

∧ > 0}∩{ṽ > 0})+|Dc(bE−
1
2v)|({v

∧ > 0}∩{ṽ > 0}). (3-39)

Since {v∧ = 0} = {ṽ = 0} ∪ {v∨ > 0 = v∧}, where {v∨ > 0 = v∧} ⊂H0 Jv, we find that {v∧ = 0} is
|Dc f |-equivalent to {ṽ = 0} for every f ∈ BV loc(R

n−1); hence,

|Dc(bE ±
1
2v)|({v

∧ > 0} ∩ {ṽ > 0})= |Dc(bE ±
1
2v)|({v

∧ > 0}). (3-40)

By (3-39), (3-40), the triangle inequality, and as v∧ ≥ δ on {v > 0}(1) = {v > δ}(1),

P(E; {v > 0}(1)×R)≥ 2
∫
{v>0}
|b′E | dH1

+2
∫
{v>0}(1)∩SbE

min{δ, [bE ]} dH0
+2|DcbE |({v

∧> 0}). (3-41)

At the same time, by [Ambrosio et al. 2000, Theorem 3.99], for every M > 0 we have

|D(τM(bE))|({v > 0}(1))=
∫
{|bE |<M}∩{v>0}

|b′E | dH1
+ |DcbE |

(
{|b̃E |< M} ∩ {v > 0}(1)

)
+

∫
SbE∩{b

∧

E<M}∩{b∨E>−M}∩{v>0}(1)
min{M, b∨E }−max{−M, b∧E } dH0. (3-42)

As is easily seen by arguing on a case-by-case basis,

min{M, b∨E }−max{−M, b∧E } ≤max
{

1, 2M
δ

}
min{δ, [bE ]} on SbE . (3-43)

By combining (3-41), (3-42), and (3-43) we conclude the proof of (3-38), and thus of step four. The
proof of (1-11) is now complete.
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Step five: Since {v > δ} is of finite perimeter for a.e. δ > 0, we find that bδ = 1{v>δ}bE ∈ GBV(Rn−1)

for a.e. δ > 0. In particular, bδ is approximately differentiable at Hn−1-a.e. x ∈ Rn−1. Since bδ = bE

on {v > δ}, by (2-12) it follows that

∇bE(x)=∇bδ(x) for Hn−1-a.e. x ∈ {v > δ}. (3-44)

By considering δh→ 0 as h→∞ with {v > δh} of finite perimeter for every h ∈ N, we find that bE is
approximately differentiable at Hn−1-a.e. x ∈ {v > 0}. Since, trivially, bE is approximately differentiable
at every x ∈ {v = 0}(1) with ∇bE(x) = 0, we conclude that bE is approximately differentiable at
Hn−1-a.e. x ∈ Rn−1. By [Ambrosio et al. 2000, Theorem 4.34], for every Borel set G ⊂ Rn−1 we have∫

R

Hn−2(G ∩ ∂e
{bδ > t}) dt =

∫
G
|∇bδ| dHn−1

+

∫
G∩Sbδ

[bδ] dHn−2
+ |Dcbδ|(G). (3-45)

Let us note that, by (2-10), [bδ] = [bE ] on {v > δ}(1), and thus Sbδ ∩ {v > δ}
(1)
= SbE ∩ {v > δ}

(1). By
(3-44) and by applying (3-45) to G ∩ {v > δ}(1), where G ⊂ Rn−1 is a Borel set, we find∫

R

Hn−2(G ∩ {v > δ}(1) ∩ ∂e
{bδ > t}) dt

=

∫
G∩{v>δ}

|∇bE | dHn−1
+

∫
G∩SbE∩{v>δ}

(1)
[bE ] dHn−2

+ |Dcbδ|(G ∩ {v > δ}(1)). (3-46)

Since τM bδ = 1{v>δ}τM bδ, by applying Lemma 2.3 we find that, for every G ⊂ Rn−1,

|Dcbδ|(G ∩ {v > δ}(1))= lim
M→∞

|DcτM bδ|(G ∩ {v > δ}(1))= lim
M→∞

|DcτM bδ|(G)= |Dcbδ|(G). (3-47)

At the same time, since {v > δ} ∩ {bδ > t} = {v > δ} ∩ {bE > t} for every t ∈ R, we have

{v > δ}(1) ∩ ∂e
{bδ > t} = {v > δ}(1) ∩ ∂e

{bE > t} for all t ∈ R,

and thus ∫
R

Hn−2(G ∩ {v > δ}(1) ∩ ∂e
{bδ > t}) dt =

∫
R

Hn−2(G ∩ {v > δ}(1) ∩ ∂e
{bE > t}) dt.

If we now set δ = δh in (3-46) and then let h→∞, then since

{v∧ > 0} =
⋃
h∈N

{v > δh}
(1) (3-48)

(which follows by (2-9)), by (3-47), and thanks to the definition (1-13) of |DcbE |
+, we find that (1-12)

holds for every Borel set G ⊂{v∧> 0}, as required. We have thus completed the proof of Theorem 1.7. �

3C. Characterization of equality cases, part one. In this section we prove the necessary conditions for
equality cases in Steiner’s inequality stated in Theorem 1.9. The proof requires the following simple
lemma.

Lemma 3.7. If µ and ν are Rn−1-valued Radon measures on Rn−1, then

2|µ|(G)≤ |ν+µ|(G)+ |ν−µ|(G) (3-49)
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for every Borel set G ⊂ Rn−1. Moreover, equality holds in (3-49) for every bounded Borel set G ⊂ Rn−1

if and only if there exists a Borel function f : Rn−1
→ [−1, 1] with

ν(G)=
∫

G
f dµ for every bounded Borel set G ⊂ Rn−1.

Proof. The validity of (3-49) follows immediately from the fact that, if G is a Borel set in Rn−1, then
|µ|(G) is the supremum of the sums

∑
h∈N |µ(Gh)| over partitions {Gh}h∈N of G into bounded Borel sets.

From the same fact, we immediately deduce that |ν+µ|(G)= |ν−µ|(G)= |ν|(G) whenever |µ|(G)= 0;
therefore, if G is such that |µ|(G)= 0 and (3-49) holds as an equality, then |ν|(G)= 0. In particular, if
equality holds in (3-49) for every bounded Borel set G ⊂ Rn−1, then |ν| is absolutely continuous with
respect to |µ|. By the Radon–Nikodym theorem we have that ν = g d|µ| for a |µ|-measurable function
g : Rn−1

→ Rn−1, as well as µ= h d|µ| for a |µ|-measurable function h : Rn−1
→ Sn−2. In particular,

ν±µ= (g± h) d|µ|, and thus, since equality holds in (3-49),

2|µ|(G)= |ν+µ|(G)+ |ν−µ|(G)=
∫

G
|g+ h| d|µ| +

∫
G
|g− h| d|µ|

for every Borel set G ⊂ Rn−1, which gives

|g+ h| + |h− g| = 2= 2|h| |µ|-a.e. on Rn−1.

Thus, there exists λ : Rn−1
→ [0,∞) such that (h− g)= λ(g+ h) |µ|-a.e. on Rn−1, i.e.,

g =
1− λ
1+ λ

h |µ|-a.e. on Rn−1.

This proves that ν = f dµ, where f = (1−λ)/(1+λ). By Borel regularity of |µ|, we can assume without
loss of generality that f is Borel measurable. The proof is complete. �

Proof of Theorem 1.9 (necessary conditions). Let E ∈ M(v). By Theorem A, we have that Ez is
H1-equivalent to a segment for Hn−1-a.e. z ∈ Rn−1, which is (1-15). As a consequence, by Theorem 1.7,
we have bδ = 1{v>δ}bE ∈ GBV(Rn−1) whenever {v > δ} is of finite perimeter. Let us set

I = {δ > 0 : {v > δ} and {v < δ} are sets of finite perimeter}, (3-50)

Jδ = {M > 0 : {bδ < M} and {bδ >−M} are sets of finite perimeter}, (3-51)

and note that H1((0,∞) \ I )= 0 since v ∈ BV(Rn−1), and that H1((0,∞) \ Jδ)= 0 for every δ ∈ I , as
bδ ∈GBV(Rn−1)whenever δ∈ I . By taking total variations in (1-18), we find 2|Dc(τM bδ)|(G)≤|Dcv|(G)
for every bounded Borel set G ⊂ Rn−1. By letting first M→∞ (in Jδ) and then δ→ 0 (in I ) we prove
(1-19). Let us also note that (1-20) is an immediate corollary of (1-12) and (1-19), once (1-16) and (1-17)
have been proved. Summarizing, these remarks show that we only need to prove the validity of (1-16),
(1-17), and (1-18) (for δ ∈ I and M ∈ Jδ) in order to complete the proof of the necessary conditions for
equality cases. This is accomplished in various steps.

Step one: Let us fix δ, L ∈ I and M ∈ Jδ, and set

6δ,L ,M = {δ < v < L} ∩ {|bE |< M} = {|bδ|< M} ∩ {δ < v < L},
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so that 6δ,L ,M is a set of finite perimeter. Since τM bδ ∈ (BV ∩ L∞)(Rn−1) (see the end of step one in the
proof of Theorem 1.7), 16δ,L ,M ∈ (BV ∩ L∞)(Rn−1), and τM bδ = bδ = bE on 6δ,L ,M , we have

bδ,L ,M = 16δ,L ,M bE ∈ (BV ∩ L∞)(Rn−1).

We now claim that there exists a Borel function fδ,L ,M : Rn−1
→ [−

1
2 ,

1
2 ] such that

∇bδ,L ,M(z)= 0 for Hn−1-a.e. z ∈6δ,L ,M , (3-52)

Dcbδ,L ,M(G)=
∫

G
fδ,L ,M d(Dcv) for every bounded Borel set G ⊂6(1)δ,L ,M . (3-53)

Indeed, let us set vδ,L ,M = 16δ,L ,Mv. Since vδ,L ,M , bδ,L ,M ∈ (BV∩L∞)(Rn−1), we can apply Corollary 3.3
to W =W [vδ,L ,M , bδ,L ,M ]. Since W [vδ,L ,M , bδ,L ,M ] = E ∩ (6δ,L ,M ×R), and thus

∂e E ∩ (6(1)δ,L ,M ×R)= ∂eW [vδ,L ,M , bδ,L ,M ] ∩ (6
(1)
δ,L ,M ×R),

we find that, for every Borel set G ⊂6(1)δ,L ,M\ (Svδ,L ,M ∪ Sbδ,L ,M ),

P(E;G×R)= P(W [vδ,L ,M , bδ,L ,M ];G×R)

=

∫
G

√
1+ |∇(bδ,L ,M + 1

2vδ,L ,M)|
2+

√
1+ |∇(bδ,L ,M − 1

2vδ,L ,M)|
2 dHn−1

+ |Dc(bδ,L ,M + 1
2vδ,L ,M)|(G)+ |D

c(bδ,L ,M − 1
2vδ,L ,M)|(G). (3-54)

By Lemma 2.3 applied to vδ,L ,M = 16δ,L ,Mv, we find that

∇vδ,L ,M = 16δ,L ,M∇v Hn−1-a.e. on Rn−1,

Dcvδ,L ,M = Dcvx6(1)δ,L ,M , Svδ,L ,M ∩6
(1)
δ,L ,M = Sv ∩6

(1)
δ,L ,M .

By (3-54), we thus find that

P(E;G×R)=

∫
G

√
1+ |∇(bδ,L ,M + 1

2v)|
2+

√
1+ |∇(bδ,L ,M − 1

2v)|
2 dHn−1

+ |Dc(bδ,L ,M + 1
2v)|(G)+ |D

c(bδ,L ,M − 1
2v)|(G) (3-55)

for every Borel set G ⊂6(1)δ,L ,M\ (Sv ∪ Sbδ,L ,M ). By Corollary 3.4, for every Borel set G ⊂ Rn−1,

P(F[v];G×R)= 2
∫

G

√
1+ |12∇v|

2 dHn−1
+

∫
G∩Sv
[v] dHn−2

+ |Dcv|(G). (3-56)

Taking into account that P(E;G ×R) = P(F[v];G ×R) for every Borel set G ⊂ Rn−1, we combine
(3-55) and (3-56), together with the convexity of the map ξ 7→

√
1+ |ξ |2, ξ ∈ Rn−1, and (3-49), to find

that, if G ⊂6(1)δ,L ,M\ (Sv ∪ Sbδ,L ,M ), then

0=
∫

G

√
1+ |∇(bδ,L ,M + 1

2v)|
2+

√
1+ |∇(bδ,L ,M − 1

2v)|
2− 2

√
1+ |12∇v|

2 dHn−1, (3-57)

0= |Dc(bδ,L ,M + 1
2v)|(G)+ |D

c(bδ,L ,M − 1
2v)|(G)− |D

cv|(G). (3-58)
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Since 6(1)δ,L ,M \ (Sv ∪ Sbδ,L ,M ) is Hn−1-equivalent to 6δ,L ,M , by (3-57) and by the strict convexity of
ξ ∈ Rn−1

7→
√

1+ |ξ |2 we obtain (3-52). By applying Lemma 3.7 to

µ= 1
2 Dcv, ν = Dcbδ,L ,Mx

(
6
(1)
δ,L ,M \ (Sv ∪ Sbδ,L ,M )

)
= Dcbδ,L ,Mx6

(1)
δ,L ,M ,

we prove (3-53). This completes the proof of (3-52) and (3-53).

Step two: We prove (1-18). Let δ, L ∈ I and M ∈ Jδ . Since bδ,L ,M = 16δ,L ,M τM bδ , by Lemma 2.3 we have

Dcbδ,L ,M = Dc(τM bδ)x6
(1)
δ,L ,M .

We combine this fact with (3-53) to find a Borel function fδ,M : Rn−1
→ [−

1
2 ,

1
2 ] with

DcτM bδ(G)=
∫

G
fδ,M d(Dcv) for every bounded Borel set G ⊂6(1)δ,L ,M .

As a consequence, the Radon measures DcτM bδ and fδ,M Dcv coincide on every bounded Borel set
contained in ⋃

L∈I

6
(1)
δ,L ,M =

⋃
L∈I

{v > δ}(1) ∩ {|bE |< M}(1) ∩ {v < L}(1)

=
(
{v > δ}(1) ∩ {|bE |< M}(1)

)
∩

⋃
L∈I

{v < L}(1)

= {v > δ}(1) ∩ {|bE |< M}(1) ∩ {v∨ <∞},

where in the last identity we have used (2-8). Since Hn−2({v∨ =∞})= 0 by [Federer 1969, 4.5.9(3)],
the set {v∨ =∞} is negligible with respect to both |DcτM bδ| and |Dcv|. We have thus proved that, for
every bounded Borel set G ⊂ {v > δ}(1) ∩ {|bE |< M}(1),

Dc(τM bδ)(G)=
∫

G
fδ,M d(Dcv). (3-59)

Since for every M ′ > M and δ′ < δ we have that τM bδ = τM ′bδ′ on {v > δ} ∩ {|bE |< M}, by Lemma 2.2
we obtain that

Dc(τM bδ)x{v > δ}(1) ∩ {|bE |< M}(1) = Dc(τM ′bδ′)x{v > δ}(1) ∩ {|bE |< M}(1),

and therefore (3-59) can be rewritten with a function f independent of M and δ; thus,

Dc(τM bδ)(G)=
∫

G
f d(Dcv) (3-60)

for every bounded Borel set G ⊂ {v > δ}(1)∩{|bE |< M}(1). We next note that, if δ ∈ I and M ∈ Jδ , then

τM bδ = M1{bδ≥M}−M1{bδ≤−M}+ 1{|bδ |<M}∩{v>δ}τM bδ on Rn−1

is an identity between BV functions. By [Ambrosio et al. 2000, Example 3.97] we thus find

DcτM bδ = Dc(1{|bδ |<M}∩{v>δ}τM bδ)= 1({|bδ |<M}∩{v>δ})(1) D
c(τM bδ)

= Dc(τM bδ)x
(
{|bδ|< M}(1) ∩ {v > δ}(1)

)
. (3-61)
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Since, by (3-61), the measure Dc(τM bδ) is concentrated on {v > δ}(1) ∩ {|bE |< M}(1), we deduce from
(3-60) that, for every bounded Borel set G ⊂ Rn−1,

Dc(τM bδ)(G)= Dc(τM bδ)
(
G ∩ {v > δ}(1) ∩ {|bE |< M}(1)

)
=

∫
G∩{v>δ}(1)∩{|bE |<M}(1)

f d(Dcv),

which proves (1-18).

Step three: We prove (1-16). Let δ, L ∈ I and M ∈ Jδ. Since bδ,L ,M = bE on 6δ,L ,M , by (3-52) and
by (2-12) we find that ∇bE = 0 Hn−1-a.e. on 6δ,L ,M . By taking a union first over M ∈ Jδ, and then
over δ, L ∈ I , we find that∇bE =0 Hn−1-a.e. on {v>0}. At the same time, bE =0 on {v=0} by definition,
and thus, again by (2-12), we have ∇bE = 0 Hn−1-a.e. on {v = 0}. This completes the proof of (1-16).

Step four: We prove (1-17). We fix δ, L ∈ I and define 6δ,L = {δ < v < L}, bδ,L = 16δ,L bE , and
vδ,L = 16δ,Lv. Since 6δ,L is a set of finite perimeter, bδ,L ∈ GBV(Rn−1), while, by construction,
vδ,L ∈ (BV∩L∞)(Rn−1). We are in position to apply Corollary 3.3 to obtain a formula for the perimeter of
W [vδ,L , bδ,L ] relative to cylinders G×R for Borel sets G⊂Rn−1. In particular, if G⊂6(1)δ,L∩(Svδ,L∪Sbδ,L ),
then

P(E;G×R)= P(W [vδ,L , bδ,L ];G×R)=

∫
G

min
{
v∨δ,L + v

∧

δ,L ,max{[vδ,L ], 2[bδ,L ]}
}

dHn−2.

Since, by (2-10), 6(1)δ,L ∩ Svδ,L =6
(1)
δ,L ∩ Sv with v∨δ,L = v

∨, v∧δ,L = v
∧, and [vδ,L ] = [v] on 6(1)δ,L , we have

P(E;G×R)=

∫
G

min
{
v∨+ v∧,max{[v], 2[bδ,L ]}

}
dHn−2

whenever G ⊂6(1)δ,L ∩ (Sv ∪ Sbδ,L ). Since P(E;G×R)= P(F[v];G×R), by (3-56),

min
{
v∨+ v∧,max{[v], 2[bδ,L ]}

}
= [v] Hn−2-a.e. on (Sbδ,L ∪ Sv)∩6

(1)
δ,L .

Since v∧ ≥ δ on 6(1)δ,L , we deduce that v∨+ v∧ > [v] on 6(1)δ,L , and thus the above condition immediately
implies that

2[bδ,L ] ≤ [v] Hn−2-a.e. on (Sbδ,L ∪ Sv)∩6
(1)
δ,L .

In particular, Sbδ,L ∩6
(1)
δ,L ⊂Hn−2 Sv, and we have proved

2[bδ,L ] ≤ [v] Hn−2-a.e. on 6(1)δ,L .

By (2-10), [bδ,L ] = [bE ] on 6(1)δ,L . By taking the union of 6(1)δ,L on δ, L ∈ I , and using (2-8) and (2-9),
we find that

2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0} ∪ {v∨ <∞}.

Since, as noted above, {v∨ =∞} is Hn−2-negligible, we have proved (1-17). �

3D. Characterization of equality cases, part two. We now complete the proof of Theorem 1.9, by
showing that if a v-distributed set of finite perimeter E satisfies (1-15), (1-16), (1-17), and (1-18), then
E ∈M(v). The following proposition will play a crucial role.
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Proposition 3.8. If v ∈ BV(Rn−1
; [0,∞)), Hn−1({v > 0}) <∞, and E is a v-distributed set of finite

perimeter with segments as sections, then

P(E; {v∧ = 0}×R)= P(F[v]; {v∧ = 0}×R)=

∫
{v∧=0}

v∨ dHn−2. (3-62)

Remark 3.9. With Proposition 3.8, one can actually go back to Corollary 3.3 and obtain a formula
for P(E;G × R) in terms of v and bE whenever E is a v-distributed set of finite perimeter with
segments as sections. Since such a formula may be of independent interest, we have included its proof
in Appendix B.

Proof of Proposition 3.8. Let I = {t > 0 : {v > t} and {v < t} are of finite perimeter}, so that we have, as
usual, H1((0,∞) \ I )= 0. Since∫

∞

0
P({v > t}) dt =

∫
∞

0
P({v < t}) dt = |Dv|(Rn−1) <∞,

we can find two sequences {δh}h∈N, {Lh}h∈N ⊂ I such that

lim
h→∞

δh = 0, lim
h→∞

δh P({v > δh})= 0, (3-63)

lim
h→∞

Lh =∞, lim
h→∞

Lh P({v < Lh})= 0. (3-64)

Let us set 6h = {Lh > v > δh} and Eh = E ∩ (6h × R). Note that Eh is, trivially, a set of locally
finite perimeter. Now, Eh locally converges to E as h → ∞, and also P(Eh;6

(0)
h × R) = 0 and

∂e Eh ∩ (6
(1)
h ×R)= ∂e E ∩ (6(1)h ×R), so we have

P(E)≤ lim inf
h→∞

P(Eh)= lim inf
h→∞

P(E;6(1)h ×R)+ P(Eh; ∂
e6h ×R). (3-65)

By (2-8) and (2-9),

lim
h→∞

1
6
(1)
h
(z)= 1{v∧>0}∩{v∨<∞}(z) for all z ∈ Rn−1,

so that, by dominated convergence and thanks to the fact that E has finite perimeter,

lim
h→∞

P(E;6(1)h ×R)= P
(
E; ({v∧ > 0} ∩ {v∨ <∞})×R

)
= P(E; {v∧ > 0}×R).

(In the last identity we have first used [Federer 1969, 4.5.9(3)] to infer that Hn−2({v∨ =∞})= 0, and
then [Federer 1969, 2.10.45] to conclude that Hn−1({v∨ =∞}×R)= 0.) Hence, by (3-65),

P(E; {v∧ = 0}×R)≤ lim inf
h→∞

P(Eh; ∂
e6h ×R). (3-66)

Since δh, Lh ∈ I , we have vh = 16hv ∈ (BV ∩ L∞)(Rn−1) and ah = 16h bE ∈ GBV(Rn−1) (indeed,
ah = 1{v<Lh}bδh , where bδh = 1{v>δh}bE ∈ GBV(Rn−1), thanks to Theorem 1.7). Since Eh = W [vh, ah]

according to (3-24), we can apply (3-25) in Corollary 3.3 to G = ∂e6h to find that

P(Eh; ∂
e6h ×R)=

∫
∂e6h∩(Svh∪Sah )

min
{
v∨h + v

∧

h ,max{[vh], 2[ah]}
}

dHn−2. (3-67)
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Note that, since ∂e6h is countably Hn−2-rectifiable, we are only interested in the “jump” contribution
in (3-25). Let us now set

K 1
h = ∂

e6h ∩ ∂
e
{v > δh}, K 2

h = ∂
e6h\ ∂

e
{v > δh} ⊂ ∂

e
{v < Lh}.

The key observation to exploit (3-67) is that, as one can check with standard arguments,

v∨h = v
∨
≥ δh ≥ v

∧ and v∧h = 0 Hn−2-a.e. on K 1
h , (3-68)

v∨ ≥ Lh ≥ v
∧
= v∨h and v∧h = 0 Hn−2-a.e. on K 2

h . (3-69)

For example, in order to prove (3-69), we argue as follows. First, we note that we always have v∨≥ Lh≥v
∧

and v∧h = 0 on ∂e
{v < Lh}. In particular, ṽ = Lh on Sc

v ∩ ∂
e
{v < Lh}, and this immediately implies

v∨h = Lh on Sc
v ∩ ∂

e
{v < Lh}. By noting that vh = 16hv with 6h ⊂ {v < Lh}, one checks that v∧ = v∨h

Hn−2-a.e. on Jv ∩ ∂∗{v < Lh}. By (3-68) and (3-69), we have

min
{
v∨h + v

∧

h ,max{[vh], 2[ah]}
}
= v∨ Hn−2-a.e. on K 1

h , (3-70)

min
{
v∨h + v

∧

h ,max{[vh], 2[ah]}
}
= v∧ Hn−2-a.e. on K 2

h , (3-71)

so that, by (3-67) and since K 1
h ⊂Hn−2 Svh — which again follows from (3-68) — we find

P(Eh; ∂
e6h ×R)≤

∫
K 1

h

v∨dHn−2
+

∫
K 2

h

v∧ dHn−2. (3-72)

By (3-69) and (3-64), we have

lim sup
h→∞

∫
K 2

h

v∧ dHn−2
≤ lim sup

h→∞
LhHn−2(K 2

h )≤ lim sup
h→∞

Lh P({v < Lh})= 0. (3-73)

We are now going to prove that

lim
h→∞

∫
∂e{v>δh}

v∨ dHn−2
=

∫
{v∧=0}

v∨ dHn−2. (3-74)

This will be useful in the estimate of the right-hand side of (3-67) because K 1
h ⊂ ∂

e
{v > δh}. Since

{v∧ = 0}∩∂e
{v > δh} = {v

∧
= 0}∩ Sv ∩∂e

{v > δh} = {v
∧
= 0}∩ {[v] ≥ δh}, we have that, monotonically

as h→∞,
v∨1{v∧=0}∩∂e{v>δh}→ v∨1{v∧=0}∩Sv pointwise on Rn−1.

Hence,

lim
h→∞

∫
{v∧=0}∩∂e{v>δh}

v∨ dHn−2
=

∫
{v∧=0}∩Sv

v∨ dHn−2
=

∫
{v∧=0}

v∨ dHn−2. (3-75)

We now claim that

lim
h→∞

∫
{v∧>0}∩∂e{v>δh}

v∨ dHn−2
= 0. (3-76)

Indeed, since v∨ = v∧ = δh on Sc
v ∩ ∂

e
{v > δh}, we find that∫

Sc
v∩{v

∧>0}∩∂e{v>δh}

v∨ dHn−2
≤ δhHn−2(∂e

{v > δh})= δh P({v > δh}),
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so that, by (3-63),

lim sup
h→∞

∫
{v∧>0}∩∂e{v>δh}

v∨ dHn−2
= lim sup

h→∞

∫
Sv∩{v∧>0}∩∂e{v>δh}

v∨ dHn−2

= lim sup
h→∞

∫
Sv∩{v∧>0}∩∂e{v>δh}

[v] + v∧ dHn−2

≤ lim sup
h→∞

∫
Sv∩{v∧>0}∩∂e{v>δh}

[v] dHn−2
+ δhHn−2(∂e

{v > δh})

= lim sup
h→∞

∫
Sv∩{v∧>0}∩∂e{v>δh}

[v] dHn−2, (3-77)

where the inequality follows by (3-68), and the last equality is by (3-63). Now, if z ∈ {v∧ > 0}, then
z ∈ {v > δ}(1) for every δ < v∧(z), so that

1Sv∩{v∧>0}∩∂e{v>δh}→ 0 pointwise on Rn−1

as h→∞. Since [v] ∈ L1(Hn−2xSv), by dominated convergence we find

lim
h→∞

∫
Sv∩{v∧>0}∩∂e{v>δh}

[v] dHn−2
= 0. (3-78)

By combining (3-77) and (3-78), we obtain (3-76). By (3-75) and (3-76), we deduce (3-74). From
K 1

h ⊂ ∂
e
{v > δh}, (3-72), (3-73), and (3-74), we deduce that

lim sup
h→∞

P(Eh; ∂
e6h ×R)≤

∫
{v∧=0}

v∨ dHn−2.

By combining this last inequality with (3-66), we find

P(E; {v∧ = 0}×R)≤

∫
{v∧=0}

v∨ dHn−2
= P(F[v]; {v∧ = 0}×R)≤ P(E; {v∧ = 0}×R),

where the equality follows by (3-29), and the final inequality is, of course, (1-1). This completes the
proof of (3-62). �

Remark 3.10. Let v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞, and let E be a v-distributed set with

segments as sections. Then, E is of finite perimeter if and only if suph∈N P(Eh) <∞, where

Eh = E ∩ (6h ×R), 6h = {Lh > v > δh},

and {δh}h∈N, {Lh}h∈N ⊂ (0,∞) are such that

lim
h→∞

δh = 0, lim
h→∞

δh P({v > δh})= 0,

lim
h→∞

Lh =∞, lim
h→∞

Lh P({v < Lh})= 0.

The fact that P(E)<∞ implies suph∈N P(Eh)<∞ is implicit in the proof of Proposition 3.8. Conversely,
if {Eh}h∈N is defined as above, then Eh→ E as h→∞, and thus suph∈N P(Eh) <∞ implies P(E) <∞
by lower semicontinuity of perimeter.
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Lemma 3.11. If v ∈ (BV ∩ L∞)(Rn−1), b : Rn−1
→ R is such that τM b ∈ (BV ∩ L∞)(Rn−1) for a.e.

M > 0, and µ is an Rn−1-valued Radon measure such that

lim
M→∞

|µ− DcτM b|(G)= 0 for every bounded Borel set G ⊆ Rn−1, (3-79)

then
|Dc(b+ v)|(G)≤ |µ+ Dcv|(G) for every Borel set G ⊆ Rn−1. (3-80)

Proof. Let us assume that |v| ≤ L Hn−1-a.e. on Rn−1. If f ∈ BV(Rn−1), then

τM f = M1{ f>M}−M1{ f<−M}+ 1{| f |<M}τM f ∈ (BV ∩ L∞)(Rn−1)

for every M such that { f > M} and { f <−M} are of finite perimeter, and thus, by [Ambrosio et al. 2000,
Example 3.97],

DcτM f = Dc(1{| f |<M}τM f )= 1{| f |<M}(1) D
c(τM f )= Dc(τM f )x{| f |< M}(1);

in particular,
|DcτM f | = |Dc f |x{| f |< M}(1) ≤ |Dc f |. (3-81)

From the equality τM(τM+L(b)+ v) = τM(b + v) and from (3-81) applied with f = τM+L(b)+ v it
follows that, for every Borel set G ⊆ Rn−1,∣∣Dc(τM(b+ v))

∣∣(G)= ∣∣Dc(τM(τM+L(b)+ v)
)∣∣(G)≤ ∣∣Dc(τM+L(b)+ v)

∣∣(G). (3-82)

By (3-79),
lim

M→∞

∣∣Dc(τM+L(b)+ v)
∣∣(G)= |µ+ Dcv|(G).

We let M→∞ in (3-82), and by definition of |Dc(b+ v)| we obtain (3-80). �

Proof of Theorem 1.9 (sufficient conditions). Let E be a v-distributed set of finite perimeter satisfying
(1-15), (1-16), (1-17), and (1-18). Let I and Jδ be defined as in (3-50) and (3-51). If δ, S ∈ I and we
set bδ,S = 1{δ<v<S}bE = 1{δ<v<S}bδ , then, for every M ∈ Jδ , we have τM bδ ∈ (BV ∩ L∞)(Rn−1) (see the
end of step one in the proof of Theorem 1.7), and so we obtain that τM bδ,S ∈ (BV ∩ L∞)(Rn−1). Let us
consider the Rn−1-valued Radon measure µδ,S on Rn−1 defined for every bounded Borel set G ⊂Rn−1 by

µδ,S(G)=
∫

G∩{δ<v<S}(1)∩{|bE |∨<∞}

f d Dcv

Since τM bδ,S = 1{v<S}τM bδ , by Lemma 2.3 we have Dc
[τM bδ,S] = 1{v<S}(1) Dc

[τM bδ], and thus, for every
Borel set G ⊂ Rn−1,

lim
M→∞

|µδ,S − Dc
[τM bδ,S]|(G)= lim

M→∞
|µδ,S − Dc

[τM bδ]|(G ∩ {v < S}(1))

≤ lim
M→∞

∫
G∩{δ<v<S}(1)∩[{|bE |∨<∞}\{|bE |<M}(1)]

| f | d|Dcv| = 0, (3-83)

where the inequality follows by (1-18), and the last equality follows from the fact that {{|bE |< M}(1)}M∈I

is an increasing family of sets whose union is {|bE |
∨ <∞}. By applying Lemma 3.11 to bδ,S and ± 1

2vδ,S
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(with vδ,S = 1{δ<v<S}v), and Lemma 3.7 to µδ,S and ±1
2 Dcvδ,S and recalling (1-18), we find that, for

every bounded Borel set G ⊂ Rn−1,

|Dc(bδ,S + 1
2vδ,S)|(G)+ |D

c(bδ,S − 1
2vδ,S)|(G)≤ |µδ,S +

1
2 Dcvδ,S|(G)+ |µδ,S − 1

2 Dcvδ,S|(G)

= |Dcvδ,S|(G). (3-84)

Since bδ,S ∈ GBV(Rn−1) and vδ,S ∈ (BV ∩ L∞)(Rn−1), if W = W [vδ,S, bδ,S], then we can compute
P(W ;G×R) for every Borel set G ⊂ Rn−1 by Corollary 3.3. In particular, if G ⊂ {δ < v < S}(1), then
by E ∩ ({δ < v < S}×R)=W ∩ ({δ < v < S}×R) we find that

P(E;G×R)= P(W ;G×R)

=

∫
G

√
1+ |∇(bδ,S + 1

2vδ,S)|
2+

√
1+ |∇(bδ,S − 1

2vδ,S)|
2 dHn−1

+

∫
G∩(Svδ,S∪Sbδ,S )

min
{
v∨δ,S + v

∧

δ,S,max{[vδ,S], 2[bδ,S]}
}

dHn−2

+ |Dc(bδ,S + 1
2vδ,S)|(G)+ |D

c(bδ,S − 1
2vδ,S)|(G). (3-85)

We can also compute P(F[vδ,S];G×R) using Corollary 3.4. Since

F[v] ∩ ({δ < v < S}×R)= F[vδ,S] ∩ ({δ < v < S}×R),

we conclude that

P(F;G×R)= P(F[vδ,S];G×R)

= 2
∫

G

√
1+ |12∇vδ,S|

2 dHn−1
+

∫
G∩Svδ,S

[vδ,S] dHn−2
+ |Dcvδ,S|(G). (3-86)

From (1-16) and (1-17) we deduce that (applying (2-10) and (2-12) to bE and v)

∇bδ,S(z)=∇bE = 0 for Hn−1-a.e. z ∈ {δ < v < S}, (3-87)

2[bδ,S] = 2[bE ] ≤ [v] = [vδ,S] Hn−2-a.e. on {δ < v < S}(1). (3-88)

Substituting (3-87), (3-88), and (3-84) into the first, second, and third parts of (3-85) respectively, we find
that

P(E; {δ < v < S}(1)×R)≤ P(F; {δ < v < S}(1)×R), (3-89)

where, in fact, equality holds thanks to (1-1). By (2-9) it follows that⋃
M∈I

{v < M}(1) = {v∨ <∞} =Hn−2 Rn−1, (3-90)

as Hn−2({v∨ =∞})= 0 by [Federer 1969, 4.5.9(3)]. By taking a union over δh ∈ I and Sh ∈ I such that
δh→ 0 and Sh→∞ as h→∞, we deduce from (3-89), (3-48), and (3-90) that

P(E; {v∧ > 0}×R)= P(F; {v∧ > 0}×R).

By Proposition 3.8, P(E; {v∧ = 0}×R)= P(F; {v∧ = 0}×R), and thus P(E)= P(F), as required. �
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3E. Equality cases by countably many vertical translations. We finally address the problem of charac-
terizing the situation when equality cases are necessarily obtained by countably many vertical translations
of parts of F[v]; see (1-22). In particular, we want to show this situation is characterized by the assumptions
that v ∈ SBV(Rn−1

; [0,∞)) with Hn−1({v > 0}) <∞ and Sv is locally Hn−2-rectifiable. We shall need:

Theorem 3.12. Let u : Rn−1
→ R be Lebesgue measurable. The following are equivalent:

(i) u ∈ GBV(Rn−1) with |Dcu| = 0, ∇u = 0 Hn−1-a.e. on Rn−1, and Su locally Hn−2-finite.

(ii) There exist an at most countable set I , {ch}h∈I ⊂ R, and a partition {Gh}h∈I of Rn−1 into Borel sets
such that

u =
∑
h∈I

ch1Gh Hn−1-a.e. on Rn−1 (3-91)

and
∑

h∈I P(Gh ∩ BR) <∞ for every R > 0.

Moreover, if we assume that ch 6= ck for h 6= k ∈ I then, when (i) and (ii) hold,

Su ⊂Hn−2

⋃
h 6=k∈I

∂eGh ∩ ∂
eGk (3-92)

with [u] = |ch − ck | H
n−2-a.e. on ∂eGh ∩ ∂

eGk . In particular,∑
h∈I

P(Gh; BR)= 2Hn−2(Su ∩ BR) for all R > 0.

Proof of Theorem 3.12. Step one: We recall that, by [Ambrosio et al. 2000, Definitions 4.16 and 4.21,
Theorem 4.23], for every open set � and u ∈ L∞(�), the following two conditions are equivalent:

(j) There exist an at most countable set I , {ch}h∈I ⊂ R, and a partition {Gh}h∈I of � such that∑
h∈I P(Gh;�) <∞ and

u =
∑
h∈I

ch1Gh Hn−1-a.e. on �. (3-93)

(jj) u ∈ BV loc(�), Du = DuxSu , and Hn−2(Su ∩�) <∞.

When these hold, we have 2Hn−2(Su ∩�)=
∑

h∈I P(Gh;�).

Step two: Let us prove that (i) implies (ii). Let u ∈GBV(Rn−1) with |Dcu|= 0, ∇u= 0 Hn−1-a.e. on Rn−1,
and Su locally Hn−2-finite. For every R, M > 0, we have, by the definition of GBV , that τM u ∈ BV(BR).
Moreover, |DcτM u| = 0, ∇τM u = 0, and SτM u ∩ BR ⊂ BR ∩ Su is Hn−2-finite. By step one, there exist an
at most countable set IR,M , {cR,M,h}h∈IR,M ⊂ R, and a partition {G R,M,h}h∈IR,M of BR into sets of finite
perimeter such that

∑
h∈IR,M

P(G R,M,h; BR) <∞ and

τM u =
∑

h∈IR,M

cR,M,h1G R,M,h Hn−1-a.e. on BR.

By a simple monotonicity argument we find (3-91). By (3-91), if we set JM = {h ∈ N : |ch| ≤ M} then,
Hn−1-a.e. on Rn−1,

τM u = M1{u>M}∩BR −M1{u<−M}∩BR +

∑
h∈JM

ch1Gh∩BR Hn−1-a.e. on BR. (3-94)
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By step one,

P({u > M}; BR)+ P({u <−M}; BR)+
∑

h∈JM

P(Gh; BR)= 2Hn−2(SτM u ∩ BR).

Thus, ∑
h∈JM

P(Gh; BR)≤ 2Hn−2(SτM u ∩ BR)≤ 2Hn−2(Su ∩ BR).

Since
⋃

M>0 JM = I , letting M → ∞ we find that
∑

h∈I P(Gh; BR) < ∞, which clearly implies∑
h∈I P(Gh ∩ BR) <∞.

Step three: We prove that (ii) implies (i). We easily see that, for every R, M > 0, τM u satisfies the
assumptions (jj) in step one in BR . Thus, τM u ∈ BV(BR) with DτM u = DτM uxSτM u in BR , and

2Hn−2(SτM u ∩ BR)=
∑

h∈JM

P(Gh; BR)≤
∑
h∈I

P(Gh ∩ BR) <∞,

where, as before, JM = {h ∈N : |ch| ≤ M}. This shows that u ∈GBV(Rn−1) with |Dcu| = 0 and ∇u = 0
Hn−1-a.e. on Rn−1. Since

⋃
M>0 SτM u = Su , this immediately implies that Su is locally Hn−2-finite.

Step four: We now complete the proof of the theorem. Since {Gh}h∈I is an at most countable Borel
partition of Rn−1 with

∑
h∈N P(Gh ∩ BR) <∞, we have that

Rn−1
=Hn−2

⋃
h∈I

G(1)
h ∪

⋃
h 6=k∈I

∂eGh ∩ ∂
eGk;

compare with [Ambrosio et al. 2000, Theorem 4.17]. Since Su∩G(1)
h =∅ for every h∈ I , this proves (3-92).

If we now exploit the fact that, for every h 6= k ∈ I with ch 6= ck , Gh and Gk are disjoint sets of locally
finite perimeter, then by a blow-up argument we easily see that [u] = |ch−ck | H

n−2-a.e. on ∂eGh ∩∂
eGk ,

as required. This completes the proof of theorem. �

Proof of Theorem 1.13. Step one: We prove that, if E ∈M(v), then there exist a finite or countable set I ,
{ch}h∈I ⊂ R, and {Gh}h∈I a v-admissible partition of {v > 0}, such that bE =

∑
h∈I ch1Gh Hn−1-a.e.

on Rn−1 (so that E satisfies (1-22); see Remark 1.31), |DcbE |
+
=0, and 2[bE ]≤ [v]H

n−2-a.e. on {v∧>0}.
The last two properties of bE follow immediately from Theorem 1.9 since Dcv = 0. We now prove that
bE =

∑
h∈I ch1Gh Hn−1-a.e. on Rn−1. Let δ > 0 be such that {v > δ} is a set of finite perimeter, and let

bδ = 1{v>δ}bE . By Theorem 1.7 and by (1-16), (1-17), and (1-19), recalling also (2-10), (2-12) and the
definition of |DcbE |

+, we have that bδ ∈ GBV(Rn−1) with

∇bδ(z)= 0 for Hn−1-a.e. z ∈ {v > δ}, (3-95)

2[bδ] ≤ [v] Hn−2-a.e. on {v > δ}(1), (3-96)

2|Dcbδ|(G)≤ |Dcv|(G) for every Borel set G ⊂ Rn−1. (3-97)

Since Dcv = 0, we have that |Dcbδ| = 0 on Borel sets, by (3-97). Since, trivially, ∇bδ = 0 Hn−1-a.e.
on {v ≤ δ}, by (3-95) we have that ∇bδ = 0 Hn−1-a.e. on Rn−1. Finally, by (3-96) we have that

Sbδ ⊂Hn−2 (Sv ∩ {v > δ}(1))∪ ∂e
{v > δ} ⊂ (Sv ∩ {v∧ > 0})∪ ∂e

{v > δ}, (3-98)
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so that Sbδ is locally Hn−2-finite. We can thus apply Theorem 3.12 to bδ to find a finite or countable
set Iδ, {cδh}h∈Iδ ⊂ R, and a Borel partition {Gδ

h}h∈Iδ of {v > δ} with

bδ =
∑
h∈Iδ

cδh1Gδ
h

Hn−1-a.e. on {v > δ}.

By a diagonal argument over a sequence δh→0 as h→∞with {v>δh} of finite perimeter for every h ∈N,
we prove the existence of I , {ch}h∈I and {Gh}h∈I as in (1-22) such that bE =

∑
h∈I ch1Gh Hn−1-a.e.

on {v > 0} (and thus Hn−1-a.e. on Rn−1). This means that

bδ =
∑
h∈Iδ

ch1Gh∩{v>δ} Hn−1-a.e. on Rn−1,

and thus, again by Theorem 3.12,
∑

h∈I P(Gh ∩ {v > δ} ∩ BR) < ∞. This shows that {Gh}h∈N is
v-admissible and completes the proof.

Step two: We now assume that E is a v-distributed set of finite perimeter such that (1-22) holds, with
{Gh}h∈I v-admissible, and 2[bE ]≤[v]H

n−2-a.e. on {v∧>0}, and aim to prove that E ∈M(v). Since E is v-
distributed with segments as sections and {Gh}h∈I is v-admissible, we see that bδ satisfies assumption (ii) of
Theorem 3.12 for a.e. δ>0. By applying that theorem, and then by letting δ→0+, we deduce that∇bE =0
Hn−1-a.e. on Rn−1 and that |DcbE |

+
= 0. Hence, by applying Theorem 1.9, we deduce that E ∈M(v). �

4. Rigidity in Steiner’s inequality

In this section we discuss the rigidity problem for Steiner’s inequality. We begin in Section 4A by proving
the general sufficient condition for rigidity stated in Theorem 1.11. We then present our characterizations
of rigidity: in Section 4B we prove Theorem 1.29 (characterization of rigidity for v ∈ SBV(Rn−1

; [0,∞))
with Sv locally Hn−2-finite), while Section 4C and 4E deal with the cases of generalized polyhedra and “no
vertical boundaries”. (Note that the equivalence between the indecomposability of F[v] and the condition
that {v∧ = 0} does not essentially disconnect {v > 0} is proved in Section 4D.) Finally, in Section 4F
we address the proof of Theorem 1.30 about the characterization of equality cases for planar sets.

4A. A general sufficient condition for rigidity. The general sufficient condition of Theorem 1.11 follows
quite easily from Theorem 1.9.

Proof of Theorem 1.11. Let E ∈M(v), so that, by Theorem 1.9, we know that∫
R

Hn−2(G ∩ ∂e
{bE > t}) dt =

∫
G∩SbE∩Sv

[bE ] dHn−2
+ |DcbE |

+(G ∩ K ) (4-1)

whenever G is a Borel subset of {v∧ > 0} and K is a Borel set of concentration for |DcbE |
+. If bE is

not constant on {v > 0}, then there exists a Lebesgue measurable set I ⊂ R such that H1(I ) > 0 and, for
every t ∈ I , the Borel sets G+ = {bE > t} ∩ {v > 0} and G− = {bE ≤ t} ∩ {v > 0} define a nontrivial
Borel partition {G+,G−} of {v > 0}. Since

{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− = {v > 0}(1) ∩ ∂e
{bE > t},
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by (1-21) we deduce that

Hn−2(({v > 0}(1) ∩ ∂e
{bE > t}) \ ({v∧ = 0} ∪ Sv ∪ K )

)
> 0 for all t ∈ I. (4-2)

At the same time, by plugging G = {v > 0}(1) \ ({v∧ = 0} ∪ Sv ∪ K )⊂ {v∧ > 0} into (4-1), we find∫
R

Hn−2(({v > 0}(1) ∩ ∂e
{bE > t}) \ ({v∧ = 0} ∪ Sv ∪ K )

)
dt = 0.

This is of course in contradiction with (4-2) and H1(I ) > 0. �

Remark 4.1. By the same argument used in the proof of Theorem 1.11, one easily sees that if a Borel
set G ⊂Rm is essentially connected and f ∈ BV(Rm) is such that |D f |(G(1))= 0, then there exists c ∈R

such that f = c Hm-a.e. on G. In the case that G is an indecomposable set, this property was proved in
[Dolzmann and Müller 1995, Proposition 2.12].

4B. Characterization of rigidity for v in SBV with locally finite jump. This section contains the proof
of Theorem 1.29.

Proof of Theorem 1.29. Step one: We first prove that the mismatched stairway property implies rigidity.
We argue by contradiction, and assume the existence of E ∈M(v) such that Hn

(
E1(ten+ F[v])

)
> 0 for

every t ∈R. By Theorem 1.13, there exists a finite or countable set I , {ch}h∈I ⊂R, {Gh}h∈I a v-admissible
partition of {v > 0} such that bE =

∑
h∈I ch1Gh Hn−1-a.e. on Rn−1, E =Hn W [v, bE ], and

2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0}. (4-3)

Of course, we may assume without loss of generality that Hn−1(Gh) > 0 for every h ∈ I and that
ch 6= ck for every h, k ∈ I , h 6= k (if any). In fact, #I ≥ 2, because if #I = 1 then we would have
Hn
(
E1(cen+ F[v])

)
= 0 for some c ∈R. We can apply the mismatched stairway property to I , {Gh}h∈I

and {ch}h∈I , to find h0, k0 ∈ I , h0 6= k0, and a Borel set 6 with Hn−2(6) > 0 such that

6 ⊂ ∂eGh0 ∩ ∂
eGk0 ∩ {v

∧ > 0} and [v](z) < 2|ch0 − ck0 | for all z ∈6. (4-4)

Since b∨E ≥max{ch0, ck0} and b∧E ≤min{ch0, ck0} on ∂eGh0 ∩ ∂
eGk0 , (4-3) implies

2|ch0 − ck0 | ≤ [v] Hn−2-a.e. on ∂eGh0 ∩ ∂
eGk0 ∩ {v

∧ > 0},

a contradiction to (4-4) and Hn−2(6) > 0.

Step two: We show that the failure of the mismatched stairway property implies the failure of rigidity.
Indeed, let us assume the existence of a v-admissible partition {Gh}h∈I of {v > 0}, and {ch}h∈I ⊂ R

with ch 6= ck for every h, k ∈ I , h 6= k, such that

2|ch − ck | ≤ [v] Hn−2-a.e. on ∂eGh ∩ ∂
eGk ∩ {v

∧ > 0} (4-5)

whenever h, k ∈ I with h 6= k. We now claim that E ∈M(v), where

E =
⋃
h∈I

(
chen + (F[v] ∩ (Gh ×R))

)
.



RIGIDITY OF EQUALITY CASES IN STEINER’S PERIMETER INEQUALITY 1581

To prove this claim, let δ > 0 be such that {v > δ} is a set of finite perimeter. By Theorem 3.12,
bδ = bE 1{v>δ} ∈GBV(Rn−1) with ∇bδ = 0 Hn−1-a.e. on Rn−1, |Dcbδ| = 0, Sbδ is locally Hn−2-finite, and

{v > δ}(1) ∩ Sbδ ⊂Hn−2

⋃
h 6=k∈I

∂eGh,δ ∩ ∂
eGk,δ, (4-6)

[bδ] = |ch − ck | Hn−2-a.e. on ∂eGh,δ ∩ ∂
eGk,δ ∩ {v > δ}

(1), h 6= k ∈ I , (4-7)

where Gh,δ = Gh ∩ {v > δ} for every h ∈ I . By (4-5), (4-6), and (4-7), we find

2[bδ] ≤ [v] Hn−2-a.e. on Sbδ ∩ {v > δ}
(1). (4-8)

Now let {δh}h∈N, {Lh}h∈N be sequences satisfying (3-63), (3-64), and set Eh = E ∩ ({δh < v < Lh}×R),
6h = {δh < v < Lh}, bh = 16h bE = 1{v<Lh}bδh and vh = 16hv. Since vh ∈ (BV ∩ L∞)(Rn−1) and
bh ∈ GBV(Rn−1), we can apply Corollary 3.3 to compute P(Eh;6

(1)
h ×R), to get (using that ∇bδ = 0

Hn−1-a.e. on Rn−1, |Dcbδ| = 0, and (4-8)), that

P(Eh;6
(1)
h ×R)= P(F[v];6(1)h ×R) for all h ∈ N;

in particular,
lim

h→∞
P(Eh;6

(1)
h ×R)= P(F[v]; {v∧ > 0}×R).

Moreover, by repeating the argument used in the proof of Proposition 3.8, we have

lim
h→∞

P(Eh; ∂
e6h ×R)= P(F[v]; {v∧ = 0}×R).

We thus conclude that
P(E)≤ lim inf

h→∞
P(Eh)= P(F[v]),

that is, E is of finite perimeter with E ∈M(v). �

4C. Characterization of rigidity on generalized polyhedra. We now prove Theorem 1.20. The proof is
based on the following lemma.

Lemma 4.2. If v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞ is such that

{v > 0} is of finite perimeter, (4-9)

{v∨ = 0} ∩ {v > 0}(1) and Sv are Hn−2-finite, (4-10)

and if there exists ε > 0 such that {v∧ = 0} ∪ {[v]> ε} essentially disconnects {v > 0}, then there exists
E ∈M(v) such that Hn

(
E1(ten + F[v])

)
> 0 for every t ∈ R.

Proof. If ε > 0 is such that {v∧ = 0} ∪ {[v] > ε} essentially disconnects {v > 0}, then there exists a
nontrivial Borel partition {G+,G−} of {v > 0} modulo Hn−1 such that

{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0} ∪ {[v]> ε}. (4-11)

We are now going to show that the set E defined by

E =
(
( 1

2εen + F[v])∩ (G+×R)
)
∪ (F[v] ∩ (G−×R))
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satisfies E ∈M(v); this will prove the lemma. To this end we first prove that G+ is a set of finite perimeter.
Indeed, since G+ ⊂ {v > 0}, we have

∂eG+ ⊂ (∂eG+ ∩ {v > 0}(1))∪ ∂e
{v > 0}, (4-12)

where ∂eG+ ∩ {v > 0}(1) = ∂eG+ ∩ ∂eG− ∩ {v > 0}(1), and thus, by (4-11),

∂eG+∩{v > 0}(1)⊂Hn−2 ∂eG+∩{v > 0}(1)∩
(
{v∧= 0}∪{[v]>ε}

)
⊂ (∂eG+∩{v∨= 0}∩{v > 0}(1))∪Sv.

(4-13)
By combining (4-9), (4-10) (4-12), and (4-13), we conclude that Hn−2(∂eG+)<∞, and thus, by Federer’s
criterion, that G+ is a set of finite perimeter. Since bE =

1
2ε1G+ , we thus have bE ∈ BV(Rn−1), and

thus E =W [v, bE ] is of finite perimeter with segments as sections. Since ∇bE = 0 Hn−1-a.e. on Rn−1

and DcbE = 0, we are only left to check that 2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0} in order to conclude
that E ∈ M(v) by means of Theorem 1.9. Indeed, since bE =

1
2ε1G+ , we have SbE = ∂

eG+ with
[bE ] =

1
2ε Hn−2-a.e. on ∂eG+. By (2-9) and (4-11),

SbE ∩ {v
∧ > 0} = ∂eG+ ∩ {v∧ > 0} = ∂eG+ ∩ ∂eG− ∩ {v > 0}(1) ∩ {v∧ > 0} ⊂Hn−2 {[v]> ε}. �

Proof of Theorem 1.20. Step one: We prove that, if F[v] is a generalized polyhedron, then v ∈ SBV(Rn−1),
Sv and {v∨ = 0} \ {v = 0}(1) are Hn−2-finite, and {v > 0} is of finite perimeter. Indeed, by assumption,
there exist a finite disjoint family of indecomposable sets of finite perimeter and volume {A j } j∈J in Rn−1,
and a family of functions {v j } j∈J ⊂W 1,1(Rn−1), such that

v =
∑
j∈J

v j 1A j , ({v∧ = 0} \ {v = 0}(1))∪ Sv ⊂Hn−2

⋃
j∈J

∂e A j . (4-14)

By [Ambrosio et al. 2000, Example 4.5], v j 1A j ∈ SBV(Rn−1) for every j ∈ J , so that v ∈ SBV(Rn−1),
as J is finite. Similarly, (4-14) gives that {v∧ = 0} \ {v = 0}(1) and Sv are both Hn−2-finite. Since
{v∨ = 0} \ {v = 0}(1) and ∂e

{v > 0} are both subsets of {v∧ = 0} \ {v = 0}(1), we deduce that
{v∨ = 0} \ {v = 0}(1) and ∂e

{v > 0} are Hn−2-finite. In particular, by Federer’s criterion, {v > 0}
is a set of finite perimeter.

Step two: By step one, if F[v] is a generalized polyhedron, then v satisfies the assumptions of Lemma 4.2.
In particular, if {v∧ = 0} ∪ {[v]> ε} essentially disconnects {v > 0}, then rigidity fails. This shows the
implication (i)⇒ (ii) in the theorem.

Step three: We show that if rigidity fails, then {v∧= 0}∪{[v]>ε} essentially disconnects {v > 0}. By step
one, if F[v] is a generalized polyhedron, then v satisfies the assumptions of Theorem 1.13. In particular,
if E ∈M(v), then ∇bE = 0, SbE ∩ {v

∧ > 0} ⊂ Sv , 2[bE ] ≤ [v] Hn−2-a.e. on {v∧ > 0}, and |DcbE |
+
= 0,

so that, by (1-28) and (1-20), we find

SbE ⊂Hn−2

⋃
j∈J

∂e A j , (4-15)

∫
R

Hn−2(G ∩ ∂e
{bE > t}) dt =

∫
G∩SbE

[bE ] dHn−2 (4-16)
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for every Borel set G ⊂ {v∧ > 0}. We now combine (4-15) and (4-16) to deduce that∫
R

Hn−2(A(1)j ∩ ∂
e
{bE > t}) dt = 0 for all j ∈ J.

Since each A j is indecomposable, by arguing as in the proof of Theorem 1.11 we see that there exists
{c j } j∈J ⊂ R such that bE =

∑
j∈J c j 1A j Hn−1-a.e. on Rn−1. In particular, we have bE =

∑
j∈J0

a j 1B j

Hn−1-a.e. on Rn−1, where #J0≤#J , {a j } j∈J0⊂R with a j 6=ai if i , j ∈ J0, i 6= j , and {B j } j∈J0 is a partition
modulo Hn−1 of Rn−1 into sets of finite perimeter. (Notice that each B j may fail to be indecomposable.)
Let us now assume, in addition to E ∈M(v), that Hn

(
E1(ten + F[v])

)
> 0 for every t ∈ R. In this case,

the formula for bE we have just proved implies that #J0 ≥ 2. We now set

ε =min{|ai − a j | : i, j ∈ J0, i 6= j},

so that ε > 0, and, for some j0 ∈ J0, we set G+ = B j0 and G− =
⋃

j∈J0, j 6= j0 B j . In this way {G+,G−}
defines a nontrivial Borel partition of {v > 0} modulo Hn−1 with the property that

[v] ≥ 2[bE ] ≥ 2ε Hn−2-a.e. on {v∧ > 0} ∩ ∂eG+ ∩ ∂eG− .

Thus, {v∧ = 0}∪{[v]> ε} essentially disconnects {v > 0}, and the proof of Theorem 1.20 is complete. �

4D. Characterization of indecomposability on Steiner symmetrals. We show here that requiring that
{v∧= 0} does not essentially disconnect {v > 0} is in fact equivalent to saying that F[v] is an indecompos-
able set of finite perimeter. This result shall be used to provide a second type of characterization of rigidity
when F[v] has no vertical parts, as well as in the planar case; see Theorem 1.16 and Theorem 1.30.

Theorem 4.3. If v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞, then F[v] is indecomposable if and

only if {v∧ = 0} does not essentially disconnect {v > 0}.

We start by recalling a version of Vol’pert’s theorem; see [Barchiesi et al. 2013, Theorem 2.4].

Theorem C. If E is a set of finite perimeter in Rn , then there exists a Borel set G E ⊂ {v > 0} with
Hn−1({v > 0} \ G E) = 0 such that Ez is a set of finite perimeter in R with ∂∗(Ez) = (∂∗E)z for
every z ∈ G E . Moreover, if z ∈ G E and s ∈ ∂∗Ez , then

qνE(z, s) 6= 0, νEz (s)=
qνE(z, s)
|qνE(z, s)|

. (4-17)

Proof of Theorem 4.3. In Lemma 4.4 below, we prove that, if F = F[v] is indecomposable, then {v∧ = 0}
does not essentially disconnect {v > 0}. We prove here the reverse implication. Precisely, let us assume
the existence of a nontrivial partition {F+, F−} of F into sets of finite perimeter such that

0=Hn−1(F (1) ∩ ∂e F+ ∩ ∂e F−)=Hn−1(F (1) ∩ ∂e F+). (4-18)

We aim to prove that, if we set

G+ = {z ∈ Rn−1
:H1((F+)z) > 0}, G− = {z ∈ Rn−1

:H1((F−)z) > 0},
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then {G+,G−} defines a nontrivial Borel partition modulo Hn−1 of {v > 0} such that

{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0}. (4-19)

Step one: We prove that {G+,G−} is a nontrivial Borel partition (modulo Hn−1) of {v > 0}. The
only nontrivial fact to obtain is that Hn−1(G+ ∩G−) = 0. By Theorem C there exists G∗

+
⊂ G+ with

Hn−1(G+\G∗
+
)= 0 such that, if z ∈ G∗

+
, then

• (F+)z is a set of finite perimeter in R with (∂∗F+)z = ∂∗((F+)z),

• (F−)z is a set of finite perimeter in R,

• {(F+)z, (F−)z} is a partition modulo H1 of (F (1))z ,

where the last property follows by Fubini’s theorem and Hn(F1F (1))= 0. Now let

G∗∗
+
= {z ∈ G∗

+
:H1((F (1))z\ (F+)z) > 0} = G∗

+
∩G− .

If z ∈ G∗∗
+

, then {(F+)z, (F−)z} is a nontrivial partition modulo H1 of (F (1))z into sets of finite perimeter.
Since (F (1))z is an interval for every z ∈ Rn−1 (see [Maggi 2012, Lemma 14.6]), we thus have

H0(
[(F (1))z](1) ∩ ∂∗((F+)z)∩ ∂∗((F−)z)

)
≥ 1 for all z ∈ G∗∗

+
.

In particular, since (∂∗F+)z = ∂∗((F+)z), [(F (1))z](1) ⊂ (F (1))z , and (A ∩ B)z = Az ∩ Bz for every
A, B ⊂ Rn , we have

H0((F (1) ∩ ∂∗F+)z)≥ 1 for all z ∈ G∗∗
+
.

Hence, G∗∗
+
⊂ p(F (1) ∩ ∂∗F+), and by (4-18) and [Maggi 2012, Proposition 3.5] we conclude

0=Hn−1(F (1) ∩ ∂∗F+)≥Hn−1( p(F (1) ∩ ∂∗F+))≥Hn−1(G∗∗
+
)=Hn−1(G∗

+
∩G−),

that is, Hn−1(G+ ∩G−)= 0.

Step two: We now show that

F (1) ∩ ((∂eG+ ∩ ∂eG−)×R)⊂ ∂e F+ ∩ ∂e F− . (4-20)

Indeed, let (z, s) belong to the set on the left-hand side of this inclusion; if — seeking contradiction —
(z, s) 6∈ ∂e F+ ∩ ∂e F−, then either (z, s) ∈ F (1)− or (z, s) ∈ F (1)+ . In the former case,

Hn(C(z,s),r )=Hn(F− ∩C(z,s),r )+ o(rn)≤ 2rHn−1(G− ∩ Dz,r )+ o(rn),

that is, z ∈ G(1)
− , contradicting z ∈ ∂eG−; the latter case is treated analogously.

Step three: We conclude the proof. Arguing by contradiction, we can assume that

0<Hn−2({v > 0}(1) ∩ ∂eG+ ∩ ∂eG−\ {v∧ = 0})

=Hn−2(∂eG+ ∩ ∂eG− ∩ {v∧ > 0})

= lim
ε→0+

Hn−2(∂eG+ ∩ ∂eG− ∩ {v∧ > ε}),
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where it should be noted that all these measures could be equal to +∞. However, by [Mattila 1995,
Theorem 8.13], if ε is sufficiently small, then there exists a compact set K with 0<Hn−2(K ) <∞ and
K ⊂ ∂eG+ ∩ ∂eG− ∩ {v∧ > ε}. Therefore, by (4-20),

Hn−1(F (1) ∩ ∂e F+ ∩ ∂e F−)≥Hn−1(F (1) ∩ ((∂eG+ ∩ ∂eG−)×R)
)

≥Hn−1(F (1) ∩ (K ×R))

≥Hn−1(
{x ∈ Rn

: px ∈ K , |qx |< 1
2v
∧( px)}

)
by (3-27)

≥Hn−1({x ∈ Rn
: px ∈ K , |qx |< 1

2ε}) since K ⊂ {v∧ > ε}

≥ c(n)Hn−2(K )ε > 0

by [Federer 1969, 2.10.45], a contradiction to (4-18). �

Lemma 4.4. Let v ∈ BV(Rn−1
; [0,∞)) with Hn−1({v > 0}) <∞. If {G+,G−} is a Borel partition of

{v > 0} such that
{v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0}, (4-21)

then F+ = F[v] ∩ (G+×R) and F− = F[v] ∩ (G−×R) are sets of finite perimeter, with

P(F+)+ P(F−)= P(F[v]).

Proof. Step one: We prove that F+ is a set of finite perimeter (the same argument works, of course, in the
case of F−). Indeed, let G+0 = G+ ∪ {v = 0}. Since F[v] ∩ (G+0×R)= F+ ∩ (G+0×R), we find that

Hn−1(∂e F ∩ (G(1)
+0×R))=Hn−1(∂e F+ ∩ (G

(1)
+0×R)), (4-22)

where we have set F = F[v]. Since ∂e F+ ∩ (G
(0)
+0×R)=∅, we find

Hn−1(∂e F+ ∩ (G
(0)
+0×R))= 0. (4-23)

We now note that
Rn−1

\ (G(1)
+0 ∪G(0)

+0)= ∂
eG+0 = ∂

eG− .

Since {v > 0}(0)∩∂eG− =∅, ∂e
{v > 0} ⊂ {v∧ = 0}, and {v > 0}(1)∩∂eG+∩∂eG− = {v > 0}(1)∩∂eG−,

by (4-21) we find that
∂eG− ⊂Hn−2 {v∧ = 0}. (4-24)

Thus, by (4-22), (4-23), (4-24), and by Federer’s criterion, in order to prove that F+ is a set of finite
perimeter, we are left to show that

Hn−1(∂e F+ ∩ ({v∧ = 0}×R)
)
<∞. (4-25)

Since (∂e F+)z =∅ whenever z ∈ {v = 0}(1), we find that

Hn−1(∂e F+ ∩ ({v = 0}(1)×R)
)
= 0. (4-26)

Since F+ ⊂ F , ∂e F+ ⊂ F (1) ∪ ∂e F . At the same time, if z ∈ {v∨ = 0}, then (∂e F)z ∪ (F (1))z ⊂ {0} by
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(3-27) and (3-28), so that, if G ⊂ {v∨ = 0}, then

Hn−1(∂e F+ ∩ (G×R))≤Hn−1(G×{0})=Hn−1(G).

By the Lebesgue density theorem, Hn−1({v∨ = 0} \ {v = 0}(1))= 0, thus, if we plug in the above identity
G = {v∨ = 0} \ {v = 0}(1), then (4-26) gives

Hn−1(∂e F+ ∩ ({v∨ = 0}×R)
)
= 0. (4-27)

Finally, if z ∈ {v∧= 0<v∨}, then (F (1))z ⊂ {0} and (∂e F)z ⊂ [−1
2v
∨(z), 1

2v
∨(z)] by Corollary 3.4. Since

{v∧ = 0< v∨} is countably Hn−2-rectifiable, by [Federer 1969, 3.2.23] and (3-29) we find

Hn−1(∂e F+ ∩ (G×R))=

∫
G

H1((∂e F+)z) dHn−2(z)≤
∫

G
v∨ dHn−2

= P(F;G×R) (4-28)

for every Borel set G ⊂ {v∧ = 0< v∨}. By combining (4-28) (with G = {v∧ = 0< v∨}) and (4-27), we
obtain (4-25) for F+. The proof for F− is of course entirely analogous.

Step two: We now prove that P(F+)+ P(F−)= P(F). Since F is Hn-equivalent to F+∪ F−, by [Maggi
2012, Lemma 12.22] it suffices to prove that P(F+) + P(F−) ≤ P(F). By (4-22), (4-27), and the
analogous relations for F−, we are actually left to show that

P(F+;G×R)+ P(F−;G×R)≤ P(F;G×R) (4-29)

for every Borel set G ⊂ {v∧ = 0< v∨}. Since F+ = F[1G+v] is of finite perimeter, by Corollary 3.4 we
have v+ = 1G+v ∈ BV(Rn−1), with

P(F+;G×R)= 2
∫

G∩{v+>0}

√
1+ |12∇v+|

2+

∫
G∩Sv+

[v+] dHn−2
+ |Dcv+|(G) (4-30)

for every Borel set G ⊂ Rn−1. Since {v∧ = 0< v∨} is countably Hn−2-rectifiable, we find

P(F+;G×R)=

∫
G∩Sv+

[v+] dHn−2
= P(F+;G ∩ Sv+)

for every Borel set G ⊂ {v∧ = 0< v∨}; moreover, an analogous formula holds for F−. Thus, (4-29) takes
the form

P(F+;G ∩ Sv+)+ P(F−;G ∩ Sv−)≤ P(F;G×R) (4-31)

for every Borel set G ⊂ {v∧ = 0 < v∨}. If G ⊂ {v∧ = 0 < v∨} \ Sv− , then (4-31) reduces to
P(F+;G ∩ Sv+)≤ P(F;G×R), which follows immediately from (4-28). A similar argument holds if
we choose G ⊂ {v∧ = 0< v∨} \ Sv+ . We may thus conclude the proof of the lemma by showing that

Hn−2({v∧ = 0< v∨} ∩ Sv+ ∩ Sv−)= 0. (4-32)
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To prove (4-32), let us note that for Hn−2-a.e. z ∈ {v∧ = 0< v∨} ∩ Sv+ ∩ Sv− , we have

{v > t}z,t
loc
−→ H0 for all t ∈ (0, v∨(z)), (4-33)

{v+ > t}z,t
loc
−→ H1 for all t ∈ (v∧

+
(z), v∨

+
(z)), (4-34)

{v− > t}z,t
loc
−→ H2 for all t ∈ (v∧

−
(z), v∨

−
(z))

as r → 0+. Now, v∨
+
(z) ≤ v∨(z), therefore (v∧

+
(z), v∨

+
(z)) ⊂ (0, v∨(z)). We may thus pick t > 0 such

that (4-33) and (4-34) hold, and, therefore,

{v > t}z,t
loc
−→ H0, (G+ ∩ {v > t})z,r = {v+ > t}z,t

loc
−→ H1

as r→ 0+. Since G+ ∩ {v > t} ⊂ {v > t}, we have H1 ⊂ H0, and thus H1 = H0. This implies that

Hn−1(Dz,r ∩ ((z+ H0) \G+)
)
= o(rn−1) as r→ 0+.

The same argument applies to v− and gives

Hn−1(Dz,r ∩ ((z+ H0) \G−)
)
= o(rn−1) as r→ 0+.

Hence, θ∗(G+ ∩G−, z)≥ θ(z+ H0, z)= 1
2 , a contradiction to Hn−1(G+ ∩G−)= 0. �

4E. Characterizations of rigidity without vertical boundaries. We now prove Theorem 1.16, by com-
bining Theorem 1.11 and the results from Section 4D.

Proof of Theorem 1.16. We start by noticing that the equivalence between (ii) and (iii) was proved in
Theorem 4.3. We are thus left to prove the equivalence between (i) and (ii).

Step one: We prove that (ii) implies (i). By Lemma 2.2, we have that Dcvx{v∧ = 0} = 0; since we are
now assuming that Dsvx{v∧ > 0} = 0, we conclude that Dcv = 0. We now show that {v∧ = 0} ∪ Sv
does not essentially disconnect {v > 0}. Otherwise, there exists a nontrivial Borel partition {G+,G−}
modulo Hn−1 of {v > 0} such that

{v∧ > 0} ∩ ∂eG+ ∩ ∂eG− ⊂ {v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0} ∪ Sv, (4-35)

where the first inclusion follows from (2-9). Since {v∧ = 0} does not essentially disconnect {v > 0} and
since Dsvx{v∧ > 0} = 0 implies Hn−2(Sv ∩ {v∧ > 0})= 0, we conclude

0<Hn−2(({v > 0}(1) ∩ ∂eG+ ∩ ∂eG−) \ {v∧ = 0}
)

=Hn−2({v∧ > 0} ∩ ∂eG+ ∩ ∂eG−)=Hn−2(({v∧ > 0} ∩ ∂eG+ ∩ ∂eG−) \ Sv
)
,

a contradiction to (4-35). This proves that {v∧ = 0} ∪ Sv does not essentially disconnect {v > 0}. Since
Dcv = 0, we can thus apply Theorem 1.11 to deduce (i).

Step two: We prove that (i) implies (ii). Indeed, if (ii) fails, then there exists a nontrivial Borel par-
tition {G+,G−} of {v > 0} modulo Hn−1 such that {v > 0}(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hn−2 {v∧ = 0}. By
Lemma 4.4, we find that F+ = F ∩ (G+×R) and F− = F ∩ (G−×R) are sets of finite perimeter with
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P(F+)+ P(F−)= P(F). Let us now set E = (en+ F+)∪ F−. By [Maggi 2012, Lemma 12.22], we have
that E is a v-distributed set of finite perimeter with

P(F)≤ P(E)≤ P(en + F+)+ P(F−)= P(F+)+ P(F−)= P(F),

that is, E ∈M(v). However, Hn(E1(ten + F)) > 0 for every t ∈ R, since {G+,G−} was a nontrivial
Borel partition of {v > 0}. �

4F. Characterizations of rigidity on planar sets. We finally prove Theorem 1.30, which addresses the
rigidity problem for planar sets.

Proof of Theorem 1.30. Step one: Let us assume that (ii) holds. We first note that, in this case, Dcv = 0,
so that, thanks to Theorem 1.11, we are left to prove that

{v∧ = 0} ∪ Sv does not essentially disconnect {v > 0} (4-36)

in order to show the validity of (i). Since (ii) implies that {v∧ = 0} ∪ Sv ⊂ R \ (a, b), where {v > 0} is
H1-equivalent to (a, b), (4-36) follows from the fact that R \ (a, b) does not essentially disconnect (a, b).

Step two: We now assume the validity of (i). Let [a, b] be the least closed interval which contains {v > 0}
modulo H1. (Note that [a, b] could a priori be unbounded.) Let us assume without loss of generality
that H1({v > 0}) > 0, so that (a, b) is nonempty. We now show that v∧(c) > 0 for every c ∈ (a, b).
Indeed, let F = F[v], F+ = F ∩[[c,∞)×R], and F− = F ∩[(−∞, c)×R]. Since F+ = F[1[c,∞)v] and
F− = F[1(−∞,c)v], we can apply (3-29) to find that

P(F+)= 2
∫
{v>0}∩(c,∞)

√
1+ |12v

′|2+

∫
Sv∩(c,∞)

[v] dH0
+ v(c+)+ |Dcv|({ṽ > 0} ∩ (c,∞)) (4-37)

and

P(F−)= 2
∫
{v>0}∩(−∞,c)

√
1+ |12v

′|2+

∫
Sv∩(−∞,c)

[v] dH0
+v(c−)+|Dcv|({ṽ > 0}∩(−∞, c)), (4-38)

where we have set v(c+) = aplim(v, (c,∞), c), v(c−) = aplim(v, (−∞, c), c), and we have used the
fact that Dc(1(c,∞)v) is the restriction of Dcv to (c,∞), that

[1(c,∞)v](z)=


[v](z) if z > c,
v(c+) if z = c,
0 if z < c,

as well as the analogous facts for 1(−∞,c)v. Notice that, if v∧(c)= 0, then either v(c+)= 0 or v(c−)= 0,
and, therefore, P(F+)+ P(F−) = P(F) by (3-29), (4-37), and (4-38). As a consequence, if we set
E = F+ ∪ (e2+ F−), then by arguing as in step two of the proof of Theorem 1.16 we find that

P(F)≤ P(E)≤ P(F+)+ P(e2+ F−)= P(F+)+ P(F−)= P(F),

that is, E ∈M(v), in contradiction to (i). This proves that v∧(c) > 0 for every c ∈ (a, b). In particular,
since {v > 0} is H1-equivalent to {v∧ > 0}, we find that {v > 0} is H1-equivalent to (a, b). We now prove
that (a, b) is bounded. Let us decompose v as v = v1+ v2, where v1 ∈ W 1,1(R) and v2 ∈ BV(R) with



RIGIDITY OF EQUALITY CASES IN STEINER’S PERIMETER INEQUALITY 1589

Dav2 = 0; see [Ambrosio et al. 2000, Corollary 3.33]. If v2 is nonconstant (modulo H1) in (a, b), then
we find a contradiction with (i), by Proposition 1.15. Thus, there exists t ∈ R such that v2 = t on (a, b),
and so v = v1+ t ∈ W 1,1(a, b). In particular, since {v > 0} =H1 (a, b) and H1({v > 0}) <∞, we find
that (a, b) is bounded.

Step three: We prove that (ii) implies (iii). Indeed, since {v > 0} is H1-equivalent to (a, b) and v∧ > 0
on (a, b), by Remark 1.5 we have that {v∧ = 0} does not essentially disconnect {v > 0}. In particular,
by Theorem 4.3, we have that F[v] is indecomposable. Since v ∈ W 1,1(a, b), by [Chlebík et al. 2005,
Proposition 1.2], we find that

H1(
{x ∈ ∂∗F[v] : qνF[v] = 0, px ∈ (a, b)}

)
= 0. (4-39)

Since {v∧ > 0} = (a, b), we deduce (1-33).

Step four: We prove that (iii) implies (ii). Since F[v] is now indecomposable, by Theorem 4.3 we have
that {v∧ = 0} does not essentially disconnect {v > 0}. In particular, {v > 0} is an essentially connected
subset of R, and thus, by [Cagnetti et al. 2013, Proof of Theorem 1.6, step one], {v > 0} is H1-equivalent
to an interval. Since H1({v > 0}) <∞, we thus have that {v > 0} =H1 (a, b), with (a, b) bounded. Since
{v∧ = 0} does not essentially disconnect {v > 0}, we have v∧ > 0 on (a, b). Finally, by (1-33) and the
fact that v∧ > 0 on (a, b), we find (4-39). Again by [Chlebík et al. 2005, Proposition 1.2], we conclude
that v ∈W 1,1(a, b). �

Appendix A: Equality cases in the localized Steiner inequality

The rigidity results described in this paper for the equality cases in Steiner’s inequality P(E)≥ P(F[v])
can be suitably formulated and proved for the localized Steiner inequality P(E;�×R)≥ P(F[v];�×R)

under the assumption that� is an open connected set. This generalization does not require the introduction
of new ideas, but, of course, requires clumsier notation. Another possible approach is that of obtaining
the localized rigidity results through an approximation process. For the sake of clarity, we exemplify this
by showing a proof of Theorem B based on Theorem 1.11. The required approximation technique is
described in the following lemma.

Lemma A.1. If � is a connected open set in Rn−1, v ∈ BV(�; [0,∞)) with Hn−1({v > 0}) <∞, E is a
v-distributed set with P(E;�×R) <∞ and segments as vertical sections, then there exists an increasing
sequence {�k}k∈N of bounded open connected sets of finite perimeter such that � =

⋃
k∈N�k , �k is

compactly contained in�, vk = 1�kv ∈ BV(Rn−1
; [0,∞)) with Hn−1({vk > 0}) <∞, Ek = E ∩ (�k×R)

is a vk-distributed set of finite perimeter, and

P(Ek)= P(E;�k ×R)+ P(F[vk]; ∂
∗�k ×R), (A-1)

P(F[vk])= P(F[v];�k ×R)+ P(F[vk]; ∂
∗�k ×R). (A-2)

Finally, if E ∈M�(v)— see (1-2) — then Ek ∈M(vk).

Proof. By intersecting � with increasingly larger balls, and by a diagonal argument, we may assume that
� is bounded. Let u be the distance function from Rn−1

\�. By [Maggi 2012, Remark 18.2], {u > ε} is
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an open bounded set of finite perimeter with ∂∗{u > ε} =Hn−2 {u = ε} for a.e. ε > 0. Moreover, if we
set f (x) = u( px), x ∈ Rn , then f : Rn

→ R is a Lipschitz function with |∇ f | = 1 a.e. on �×R, and
{ f = ε} = {u = ε} ×R for every ε > 0, so that, by the coarea formula for Lipschitz functions [Maggi
2012, Theorem 18.1],∫

∞

0
Hn−1(E (1) ∩ ({u = ε}×R)

)
dε =

∫
E (1)∩(�×R)

|∇ f | dHn
= ‖v‖L1(�) <∞.

We may thus claim that, for a.e. ε > 0,

Hn−1(E (1) ∩ (∂∗{u > ε}×R)
)
<∞. (A-3)

We now fix a sequence {εk}k∈N such that εk→ 0+ as k→∞, {u > εk} is an open set of finite perimeter
and ε = εk satisfies (A-3) for every k ∈ N. Now let {Ak,i }i∈Ik be the family of connected components
of {u > εk}. Since ∂Ak,i ⊂ {u = εk}, and {u = εk} =Hn−2 ∂∗{u > εk} is Hn−2-finite, we conclude by
Federer’s criterion that Ak,i is of finite perimeter for every k ∈N and i ∈ Ik . Let us now fix z ∈�, and let
k0 ∈ N be such that z ∈ {u > εk} for every k ≥ k0. In this way, for every k ≥ k0, there exists ik(z) ∈ Ik

such that z ∈ Ak,ik(z). We shall set

�k = Ak,ik(z).

By construction, each �k is a bounded open connected set of finite perimeter, and �k ⊂ �k+1 for
every k ≥ k0. Let us now prove �=

⋃
k∈N�k . Indeed, let y ∈ �, let γ ∈ C0([0, 1];�) with γ (0)= z

and γ (1)= y, and consider K = γ ([0, 1]). Since K is compact, there exists k1 ∈N such that K ⊂{u>εk}

for every k ≥ k1. Since K is connected and {z} ⊂ K ∩�k for every k ≥ k1, we find that K ⊂�k , and thus
y ∈�k , for every k≥ k1. We now prove that Ek is a set of finite perimeter. Indeed, since Ek= E∩(�k×R),
we have ∂e Ek ⊂ [∂

e E ∩ (�k×R)]∪ [E (1)∩ (∂e�k×R)]. Since �k is compactly contained in �, we find
Hn−1(∂e E∩(�k×R))≤ P(E;�×R)<∞; thus, by taking (A-3) into account, we find Hn−1(∂e Ek)<∞,
and thus that Ek is a set of finite perimeter thanks to Federer’s criterion. By Proposition 3.2, vk ∈BV(Rn−1)

with Hn−1({vk > 0}) <∞, and F[vk] is a set of finite perimeter too. Since Ek is a vk-distributed set of
finite perimeter and ∂e�k is a countably Hn−2-rectifiable set contained in {v∧k = 0}, by Proposition 3.8,

P(Ek; ∂
e�k ×R)= P(F[vk]; ∂

e�k ×R).

Moreover, since Ek = E ∩ (�k ×R) and F[vk] = F[v] ∩ (�k ×R),

P(Ek;�
(1)
k ×R)= P(E;�(1)k ×R), P(F[vk];�

(1)
k ×R)= P(F[v];�(1)k ×R).

Since �(0)k ×R⊂ E (0)k ∩ F[vk]
(0), we have proved (A-1) and (A-2). Finally, if E ∈M�(v), then by (1-1)

we have P(E;�k ×R)= P(F[v];�k ×R), and thus, by (A-1) and (A-2), that P(Ek)= P(F[vk]). �

Proof of Theorem B. Let v ∈ BV(�; [0,∞)) with Hn−1({v > 0}) < ∞, Dsvx{v∧ > 0} = 0 and
v∧ > 0 Hn−2-a.e. on � (so that Dsvx� = 0). Let E ∈ M�(v), and assume for contradiction that
Hn
(
E1(ten + F[v])

)
> 0 for every t ∈ R. Let �k be defined as in Lemma A.1, and let vk = 1�kv,

Ek = E ∩ (�k × R), so that Ek ∈ M(vk) for every k ∈ N. However, Hn
(
Ek1(ten + F[vk])

)
> 0 for
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every t ∈R and for every k large enough. Thus, rigidity fails for vk if k is large enough. By Theorem 1.11,

{v∧k = 0} ∪ Svk ∪Mk essentially disconnects {vk > 0}, (A-4)

where Mk is a concentration set for Dcvk . Since v∧k = 1
�
(1)
k
v∧ in �, v∧ > 0 Hn−2-a.e. on �, and �k is

compactly contained in �, we find that

{v∧k = 0} = (Rn−1
\�

(1)
k )∪ ({v∧ = 0} ∩�(1)k )=Hn−2 Rn−1

\�
(1)
k .

Since Dsvx�= 0, using Lemma 2.3 and (again) that �k is compactly contained in � we find that

Svk ∩�
(1)
k = Sv ∩�

(1)
k =Hn−2 Sv ∩ (�

(1)
k \�)=∅.

Moreover, by Lemma 2.3, Dcvk = Dcvx�(1)k = Dcvx(�(1)k \�)= 0, so that we may take Mk =∅. Finally,
{vk > 0} is Hn−1-equivalent to �k , and thus, by Remark 1.5, (A-4) can be equivalently rephrased as

(Rn−1
\�

(1)
k )∪ (Svk\�

(1)
k ) essentially disconnects �k . (A-5)

In turn, this is equivalent to saying that �k is not essentially connected. Since �k is of finite perimeter,
�k is not indecomposable, by Remark 1.6. By [Ambrosio et al. 2001, Proposition 2], �k is not connected.
We have thus reached a contradiction. �

Appendix B: A perimeter formula for vertically convex sets

We summarize here a perimeter formula for sets with segments as vertical sections that can be obtained
as a consequence of Corollary 3.3 and Proposition 3.8, and that may be of independent interest.

Theorem B.1. If E = {x ∈ Rn
: u1( px) < qx < u2( px)} is a set of finite perimeter and volume defined

by u1, u2 : R
n−1
→ R with u1 ≤ u2 on Rn−1, then u1 and u2 are approximately differentiable Hn−1-a.e.

on {u2 > u1}, and

P(E)=
∫
{v>0}

√
1+ |∇u1|2+

√
1+ |∇u2|2 dHn−1

+

∫
Sv∪Sb

min
{
v∨+ v∧,max{[v], 2[b]}

}
dHn−2

+ |Dcu1|
+({v∧ > 0})+ |Dcu2|

+({v∧ > 0}),

where v = u2− u1, b = 1
2(u1+ u2) and, for every Borel set G ⊂ Rn−1, we set

|Dcui |
+(G)= lim

h→∞
|Dc(16h ui )|(G), i = 1, 2, (B-1)

where 6h = {δh < v < Lh} for sequences δh → 0 and Lh →∞ as h →∞ such that {v > δh} and
{v < Lh} are sets of finite perimeter. (Notice that 16h ui ∈ GBV(Rn−1) for i = 1, 2, so that |Dc(16h ui )|

are well-defined as Borel measures, and the right-hand side of (B-1) makes sense by monotonicity.)

Proof. By construction and by Theorem 1.7, if we set vh=16hv and bh=16h b, then vh ∈ (BV∩L∞)(Rn−1)

and bh ∈ GBV(Rn−1) for every h ∈ N, so that

16h u1 = bh −
1
2vh ∈ GBV(Rn−1), 16h u2 = bh +

1
2vh ∈ GBV(Rn−1),
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and, by Corollary 3.3, we find

P(Eh;G×R)=

∫
G∩{vh>0}

√
1+ |∇bh +

1
2∇vh|

2+

√
1+ |∇bh −

1
2∇vh|

2 dHn−1

+ |Dc(bh +
1
2vh)|(G ∩ {v∧h > 0})+ |Dc(bh −

1
2vh)|(G ∩ {v∧h > 0})

+

∫
G∩(Svh∪Sbh )

min
{
v∨h + v

∧

h ,max{[vh], 2[bh]}
}

dHn−2

for every Borel set G⊂Rn−1, provided we set Eh =W [vh, bh]. Since P(E;6(1)h ×R)= P(Eh;6
(1)
h ×R),

the above formula gives

P(E;6(1)h ×R)=

∫
6h

√
1+ |∇b+ 1

2∇v|
2+

√
1+ |∇b− 1

2∇v|
2 dHn−1

+

∫
6
(1)
h ∩(Sv∪Sb)

min
{
v∨+ v∧,max{[v], 2[b]}

}
dHn−2

+ |Dc(bh +
1
2vh)|({v

∧ > 0})+ |Dc(bh −
1
2vh)|({v

∧ > 0}),

where we have also used that, for every h ∈ N,

|Dc(bh ±
1
2vh)|(6

(1)
h )= |Dc(bh ±

1
2vh)|(R

n−1)= |Dc(bh ±
1
2vh)|({v

∧ > 0}).

By monotonicity, and since
⋃

h∈N6
(1)
h = {v

∧ > 0} ∩ {v∨ =∞} =Hn−2 {v∧ > 0}— thanks to [Federer
1969, 4.5.9(3)] and since, by Proposition 3.2, v ∈ BV(Rn−1)— we find that

P(E; {v∧ > 0}×R)

=

∫
{v>0}

√
1+ |∇u1|2+

√
1+ |∇u2|2 dHn−1

+

∫
{v∧>0}∩(Sv∪Sb)

min
{
v∨+ v∧,max{[v], 2[b]}

}
dHn−2

+ |Dcu1|
+({v∧ > 0})+ |Dcu2|

+({v∧ > 0}).

At the same time, by Proposition 3.8, we have P(E; {v∧ = 0}×R)=
∫

Sv∩{v∧=0} v
∨ dHn−2. Adding up

the last two identities we complete the proof of the formula for P(E). �
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SINGULAR BOHR–SOMMERFELD CONDITIONS
FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE

YOHANN LE FLOCH

We state the Bohr–Sommerfeld conditions around a singular value of hyperbolic type of the principal
symbol of a selfadjoint semiclassical Toeplitz operator on a compact connected Riemann surface. These
conditions allow the description of the spectrum of the operator in a fixed-size neighborhood of the singu-
larity. We provide numerical computations for three examples, each associated with a different topology.

1. Introduction

Let M be a compact, connected Riemann surface with area form ω. Assume that M is endowed with
a prequantum bundle L , that is, a Hermitian, holomorphic line bundle whose Chern connection has
curvature −iω. Let K be another Hermitian holomorphic line bundle,1 and define the quantum Hilbert
space Hk as the space of holomorphic sections of L⊗k

⊗ K , for every positive integer k. We consider
(Berezin–)Toeplitz operators (see for instance [Boutet de Monvel and Guillemin 1981; Borthwick et al.
1998; Charles 2003a; Ma and Marinescu 2008] or the expository works [Ma 2010; Schlichenmaier 2010;
Zelditch 2014]) acting on Hk . The semiclassical limit corresponds to k→+∞.

The usual Bohr–Sommerfeld conditions, derived in [Charles 2006], describe the intersection of the
spectrum of a selfadjoint Toeplitz operator and a neighborhood of any regular value of its principal symbol
a0 in terms of geometric quantities. More precisely, this intersection is the union of a finite number of
families whose elements are, up to an error O(k−2), the solutions of an equation of the form

c0(λ)+ k−1(c1(λ)+ επ) ∈ 2πk−1Z,

where

• c0(λ) is the holonomy associated with the parallel transport in L along a connected component of
the level set a−1

0 (λ),

• c1(λ) contains the integral of a differential form involving the subprincipal symbol of the operator,

• ε ∈ {0, 1} is an index associated with a half-forms structure.

MSC2010: primary 58J50; secondary 53D50, 81S10, 35P20.
Keywords: semiclassical analysis, spectral theory, Toeplitz operators.

1The reader must be warned that, in this work, the letter K does not refer to the canonical bundle unless explicitly stated
otherwise.
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Precise definitions of these quantities and a more explicit formulation of the Bohr–Sommerfeld rules can
be found in Section 4F.

A natural question is whether one can write Bohr–Sommerfeld conditions near a singular value of the
principal symbol. In the case of a nondegenerate singularity of elliptic type (a local extremum), it was
answered positively in [Le Floch 2014], and the result is quite simple: roughly speaking, the singular
Bohr–Sommerfeld conditions are nothing but the limit of the regular Bohr–Sommerfeld conditions when
the energy tends to the singular value. The hyperbolic case (presence of saddle points) is much more
difficult, because of the complicated topology of a neighborhood of the singular level. For instance, in
the case of one hyperbolic point, the critical level looks like a figure eight, and crossing it has the effect
of adding (or removing) one connected component from the regular level.

Let us mention that the case of Toeplitz operators is very close to the case of pseudodifferential
operators. In this setting, the problem of describing the spectrum of a selfadjoint operator near a singular
level of hyperbolic type was handled by Colin de Verdière and Parisse [1994a; 1994b; 1999]. In this
article, we use analogous techniques to write hyperbolic Bohr–Sommerfeld conditions in the context of
Toeplitz operators. The novelty is that they can be applied in this context.

1A. Main result. Let Ak be a selfadjoint Toeplitz operator on M ; its normalized symbol a0+ h̄a1+ · · ·

is real-valued. Assume that 0 is a critical value of the principal symbol a0, that the level set 00 = a−1
0 (0)

is connected and that every critical point contained in 00 is nondegenerate and of hyperbolic type. Let
S = {s j }1≤ j≤n be the set of these critical points. 00 is a compact graph embedded in M , and each of its
vertices has degree 4 (this is a consequence of the usual Morse lemma, for instance). At each vertex s j ,
we denote by em , m = 1, 2, 3, 4, the local edges, labeled with cyclic order (1, 3, 2, 4) (with respect to
the orientation of M near s j ) and such that e1, e2 (resp. e3, e4) correspond to the local unstable (resp.
stable) manifolds. Cut n+ 1 edges of 00, each one corresponding to a cycle γi in a basis (γ1, . . . , γn+1)

of H1(00,Z), in such a way that the remaining graph is a tree T; usually T is called a spanning tree and
the basis (γ1, . . . , γn+1) is called a fundamental cycle basis (see for instance [Berge 1973, pp. 25–26]).
Our main result is the following:

Theorem (Theorem 6.1, Theorem 6.4). Zero is an eigenvalue of Ak up to O(k−∞) if and only if the
following system of 3n+ 1 linear equations with unknowns (xe ∈ Ck)e∈{edges of T} (here Ck is the set of
constant symbols; see Section 2A) has a nontrivial solution:

(1) If the edges (e1, e2, e3, e4) connect at s j (with the same convention as before for their labeling), then( xe3

xe4

)
= T j

( xe1

xe2

)
.

(2) If the edges α and β are the extremities of a cut cycle γi , then

xα = exp(ikθ(γi , k))xβ,

where the following orientation is assumed: γi can be represented as a closed path starting on the
edge α and ending on the edge β.
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Moreover, T j is a matrix depending only on a semiclassical invariant ε j (k) of the system at the singular
point s j (see (8)), and θ(γ, k) admits an asymptotic expansion in nonpositive powers of k. The first two
terms of this expansion involve regularizations of the geometric invariants (actions and index) appearing
in the usual Bohr–Sommerfeld conditions.

For spectral purposes, we use this theorem by replacing Ak by Ak − E for E varying in a fixed-size
neighborhood of the singular level. Away from the critical energy, we recover the regular Bohr–Sommerfeld
conditions (see Section 6D).

This is very similar to the results of [Colin de Verdière and Parisse 1999], but the novelty lies in the
framework that had to be set in order to extend their techniques to the Toeplitz setting (especially the
sheaf-theoretic approach to the spectral theory of Toeplitz operators), and also in the geometric invariants
that are specific to this context.

1B. Structure of the article. As said earlier, the case of Toeplitz operators is very close to the case of
pseudodifferential operators; in mathematical terms, there is a microlocal equivalence between Toeplitz
operators and pseudodifferential operators. When the phase space is the whole complex plane, this
equivalence is realized by the Bargmann transform, and allows one to use some of the results obtained in
the pseudodifferential setting. This is why the article is organized as follows: first, we discuss microlocal
properties of the Bargmann transform. Then we introduce the sheaf of microlocal solutions of the equation
(Ak − E)uk = 0, explain its structure and recall the usual Bohr–Sommerfeld conditions. In Section 5, we
construct a microlocal normal form for Ak near each critical point s j , 1≤ j ≤ n, on Bargmann spaces,
and we use the properties of the Bargmann transform and the study of Colin de Verdière and Parisse
[1994a] to describe the space of microlocal solutions of Ak near s j . Finally, we adapt the reasoning
of [Colin de Verdière and Parisse 1999; Colin de Verdière and Vũ Ngo.c 2003] to obtain the singular
Bohr–Sommerfeld conditions (in Section 6). We give numerical evidence in the last section.

2. Preliminaries and notation

2A. Symbol classes. We introduce rather standard symbol classes. Let d be a positive integer. For u in
Cd
' R2d , let m(u) = (1+‖u‖2)1/2. For every integer j , we define the symbol class Sd

j as the set of
sequences of functions in C∞(Cd)which admit an asymptotic expansion of the form a( · , k)=

∑
`≥0 k−`a`

in the sense that

• For all ` ∈ N and all α, β ∈ N2d , there exists C`,α,β > 0 such that |∂αz ∂
β

z̄ a`| ≤ C`,α,βm j .

• For all L ∈ N∗ and all α, β ∈ N2d , there exists CL ,α,β > 0 such that∣∣∣∣∂αz ∂βz̄ (a−
L−1∑
`=0

k−`a`

)∣∣∣∣≤ CL ,α,βk−Lm j .

We set Sd
=
⋃

j∈Z Sd
j . If, in the definition of S1

0, we only consider symbols independent of z, we obtain
the class Ck of constant symbols.
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2B. Function spaces. Using standard notation, we denote by S (R) the Schwartz space of functions
f ∈C∞(R) such that supt∈R |t

j f (p)(t)|<+∞ for all j, p ∈N, by D ′(R) the space of distributions on R,
and by S ′(R)⊂D ′(R) the space of tempered distributions on R (the dual space of S (R)). We recall that

S (R)=
⋂
j∈N

S j (R),

where S j (R) is the space of functions f in C j (R) with ‖ f ‖S j finite, with

‖ f ‖S j = max
0≤p≤ j

(
sup
t∈R

∣∣(1+ t2)( j−p)/2 f (p)(t)
∣∣).

The topology of S (R) is defined by the countable family of seminorms ‖ · ‖S j , j ∈ N.
We recall the definition of Bargmann spaces [Bargmann 1961; 1967], which are spaces of square-

integrable functions with respect to a Gaussian weight: for k ∈ N∗,

Bk =

{
fψk

∣∣∣ f : C 7→ C holomorphic,
∫

R2
| f (z)|2 exp(−k|z|2) dλ(z) <+∞

}
with ψ : C→ C, z 7→ exp

(
−

1
2 |z|

2
)
, ψk
: C→ C⊗k its k-th tensor power, and λ the Lebesgue measure

on R2. We denote by ‖ · ‖Bk the naturally associated L2-norm:

‖ fψk
‖Bk =

(∫
R2
| f (z)|2 exp(−k|z|2) dλ(z)

)1/2

.

Of course, this norm is still defined for elements of the form fψk satisfying the integrability condition
with f not necessarily holomorphic; when this is the case, we denote it by ‖ fψk

‖L2,exp. Furthermore,
we introduce the subspace

Sk =

{
ϕ ∈Bk

∣∣∀ j ∈ N, sup
z∈C

(
|ϕ(z)|(1+ |z|2) j/2)<+∞} (1)

of Bk , with topology induced by the obvious associated family of seminorms. It is the analogue of the
Schwartz space on the Bargmann side; see Section 3A for a more precise statement.

2C. Weyl quantization and pseudodifferential operators. We briefly recall some standard notation and
properties of the theory of pseudodifferential operators (for details, see e.g. [Colin de Verdière 2009;
Dimassi and Sjöstrand 1999; Zworski 2012]), replacing the usual small parameter h̄ by k−1, because this
is all we need in the rest of the paper.

2C1. Pseudodifferential operators. A pseudodifferential operator in one degree of freedom is an operator
(possibly unbounded) acting on L2(R) which is the Weyl quantization of a symbol a( · , k) ∈ S1, seen as
a sequence of functions defined on the cotangent space T ∗R' R2; more precisely,

(OpW
k (a)u)(x)=

k
2π

∫
R2

exp(ik(x − y)ξ)a
( x+y

2
, ξ, k

)
u(y) dy dξ.

The leading term a0 in the asymptotic expansion of a( · , k) is the principal symbol of Ak = OpW
k (a).

Ak is said to be elliptic at (x0, ξ0) ∈ T ∗R if a0(x0, ξ0) 6= 0.
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2C2. Wavefront set.

Definition 2.1. A sequence uk of elements of D ′(R) is said to be admissible if, for any pseudodif-
ferential operator Pk whose symbol is compactly supported, there exists an integer N ∈ Z such that
‖Pkuk‖L2(R) = O(k N ).

We recall the standard definition of the wavefront set WF(uk) of an admissible sequence of distributions.

Definition 2.2. Let uk be an admissible sequence in D ′(R). A point (x0, ξ0) does not belong to WF(uk) if
and only if there exists a pseudodifferential operator Pk , elliptic at (x0, ξ0), such that ‖Pkuk‖L2(R)=O(k−∞).

One can refine these definitions in the case where uk belong to S (R).

Definition 2.3. A sequence (uk)k≥1 of elements of S (R) is said to be

• S -admissible if there exists N in Z such that every Schwartz seminorm of uk is O(k N ),

• S -negligible if every Schwartz seminorm of uk is O(k−∞). We write uk = OS (k−∞).

Now, instead of using the L2-norm in Definition 2.2, one can actually consider the seminorms ‖ · ‖S j .

Lemma 2.4. A point (x0, ξ0) does not belong to WF(uk) if and only if there exists a pseudodifferential
operator Pk , elliptic at (x0, ξ0), such that Pkuk = OS (k−∞).

Proof. The sufficient condition comes from the previous definition, so we only prove the necessary
condition. We only adapt a standard argument used when one wants to deal with C j -norms (see [Robert
1987, Proposition IV-8]). Assume that (x0, ξ0) does not belong to WF(uk); there exists a pseudodifferential
operator Pk , elliptic at (x0, ξ0), such that ‖Pkuk‖L2(R)=O(k−∞). Consider a compactly supported smooth
function χ equal to one in a neighborhood of (x0, ξ0), and set Qk =OpW(χ)Pk . For every R ∈R[X ] and
every integer j > 0,

k− j d j

dx j R OpW(χ)

is a pseudodifferential operator of order 0, hence bounded L2(R)→ L2(R) by a constant C > 0 (by
the Calderón–Vaillancourt theorem; see [Robert 1987, Theorem II-36] or [Dimassi and Sjöstrand 1999,
Theorem 7.11]). Thus, one has∥∥∥∥k− j d j

dx j RQkuk

∥∥∥∥
L2(R)

≤ C‖Pkuk‖L2(R) = O(k−∞).

Hence, ‖RQkuk‖H s(R) = O(k−∞) for every integer s > 0, where we recall that the Sobolev space H s(R)

is the subspace of L2(R) whose elements have their s first derivatives in L2(R); Sobolev injections then
yield that every C j -norm of RQkuk is O(k−∞). Since this holds for every polynomial R, we obtain
the result. �
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2D. Geometric quantization and Toeplitz operators. We also recall the standard definitions and notation
in the Toeplitz setting. Unless otherwise mentioned, “smooth” will always mean C∞, and a section
of a line bundle will always be assumed to be smooth. The space of sections of a bundle E → M
will be denoted by C∞(M, E). Let M be a connected, compact Kähler manifold, with fundamental
2-form ω ∈�2(M,R). Assume M is endowed with a prequantum bundle L→ M , that is, a Hermitian
holomorphic line bundle whose Chern connection ∇ has curvature −iω. Let K → M be a Hermitian
holomorphic line bundle. For every positive integer k, define the quantum space Hk as

Hk = H 0(M, Lk
⊗ K )= {holomorphic sections of Lk

⊗ K }.

The space Hk is a subspace of the space L2(M, Lk
⊗ K ) of sections of finite L2-norm, where the scalar

product is given by

〈ϕ,ψ〉 =

∫
M

hk(ϕ, ψ)µM ,

with hk the Hermitian product on Lk
⊗ K induced by those of L and K , and µM the Liouville measure

on M . Since M is compact, Hk is finite-dimensional, and is thus given a Hilbert space structure with this
scalar product.

2D1. Admissible and negligible sequences. Let (sk)k≥1 be a sequence such that, for each k, sk belongs
to C∞(M, Lk

⊗ K ). We say that (sk)k≥1 is

• admissible if for every positive integer `, for all vector fields X1, . . . , X` on M , and for every
compact set C ⊂ M , there exist a constant c> 0 and an integer N (depending on X1, . . . , X` and C)
such that

‖∇X1 · · · ∇X`sk(p)‖ ≤ ck N for all p ∈ C;

• negligible if for all positive integers ` and N , for all vector fields X1, . . . , X` on M , and for every
compact set C ⊂ M , there exists a constant c > 0 (depending on X1, . . . , X`, C and N ) such that

‖∇X1 · · · ∇X`sk(p)‖ ≤ ck−N for all p ∈ C.

We say that (sk)k≥1 is negligible over an open set U ⊂ M if the previous estimates hold for every compact
subset of U . The microsupport MS(sk) of an admissible sequence (sk)k≥1 is the complement of the set of
points of M which admit a neighborhood where (sk)k≥1 is negligible. Finally, we say that two admissible
sequences (tk)k≥1 and (sk)k≥1 are microlocally equal on an open set U if MS(tk − sk)∩U =∅; unless
explicitly stated otherwise, the symbol ∼ will indicate microlocal equivalence.

2D2. Toeplitz operators. Let 5k be the orthogonal projector of L2(M, Lk
⊗ K ) onto Hk . A Toeplitz

operator is any sequence (Tk :Hk→Hk)k≥1 of operators of the form

Tk =5k M f ( · ,k)+ Rk,

where f ( · , k) is a sequence in C∞(M) with an asymptotic expansion f ( · , k) =
∑

`≥0 k−` f` for the
C∞ topology, M f ( · ,k) is the operator of multiplication by f ( · , k), and Rk is an operator acting on Hk
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with ‖Rk‖ = O(k−∞). Let T be the set of Toeplitz operators, and define the contravariant symbol map

σcont : T→ C∞(M)[[h̄]]

sending Tk into the formal series
∑

`≥0 h̄` f`. We will mainly work with the normalized symbol

σnorm =

(
Id+ h̄

2
1
)
σcont,

where 1= ∂∗∂ is the holomorphic Laplacian acting on C∞(M); unless otherwise mentioned, when we
talk about a subprincipal symbol, this refers to the normalized symbol.

We can define the notions of admissibility, negligibility, microsupport and microlocal equivalence for
Toeplitz operators, using the fact that their Schwartz kernels are sequences of sections of some line bundle
(see [Charles 2006, Equation (4.1)] for a more precise statement).

2D3. The case of the complex plane. Let us briefly recall how to adapt the previous constructions
to the case of the whole complex plane. We consider the Kähler manifold C ' R2 with coordinates
(x, ξ), standard complex structure and symplectic form ω0 = dξ ∧ dx . Let L0 = R2

×C→ R2 be the
trivial fiber bundle with standard Hermitian metric h0 and connection ∇0 with 1-form (1/ i)α, where
αu(v) =

1
2ω0(u, v); endow L0 with the unique holomorphic structure compatible with h0 and ∇0. For

every positive integer k, the quantum space at order k is

H0
k = H 0(R2, Lk

0)∩ L2(R2, Lk
0),

and it turns out that H0
k = Bk (see Section 2B for the definition of Bk); indeed, if we choose the

holomorphic coordinate z = 1
√

2
(x − iξ), then a section ϕ of Lk

0→ R2 is holomorphic if and only if

∂z̄ϕ+
kz
2
ϕ = 0.

Hence, for ψ : C→ C, z 7→ exp
(
−

1
2 |z|

2
)
, the section ψk is a nonvanishing element of H 0(R2, Lk

0), and
any other holomorphic section is of the form fψk , where f is a holomorphic function.

One can define the algebra of Toeplitz operators and the various symbols in a similar way as in the
compact case; see [Le Floch 2014] for details. We will call T j the class of Toeplitz operators with symbol
in S1

j . In what follows, 50
k will denote the orthogonal projector of L2(R2, Lk

0) onto H0
k , and we define

the Toeplitz operator Op( f · , k)=50
k M f ( · ,k) for f ( · , k) in S1

j .
Let us give more details about the microsupport in this setting. We start by recalling the following

inequality in Bargmann spaces [Bargmann 1961, Equation (1.7)].

Lemma 2.5. Let φk ∈Bk . Then, for every complex variable z,

|φk(z)| ≤
( k

2π

)1/2
‖φk‖Bk .

Similarly, for all vector fields X1, . . . , X p on C, there exists a polynomial P ∈ R[x1, x2] with positive
values such that, for every z ∈ C,

|(∇X1 · · · ∇X pφk)(z)| ≤ P(|z|, k)1/2‖φk‖Bk .
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Proof. The first claim is proved in [Bargmann 1961] in the case k = 1; the general case then comes from
a change of variables. The second claim can be proved in the same way. �

Lemma 2.6. Let uk be a sequence of elements of Bk and � a bounded open subset of C. Assume that
‖uk‖L2(�),exp = O(k−∞); then, for any compact subset K of �, uk and all its covariant derivatives are
uniformly O(k−∞) on K .

Proof. Choose a compactly supported smooth function η which is positive, vanishing outside � and with
constant value 1 on K , and set vk = Op(η)uk . One has

‖vk‖Bk = ‖5
0
kηuk‖Bk ≤ ‖ηuk‖L2,exp ≤ ‖uk‖L2(�),exp

since 50
k is continuous L2(R2, Lk

0)→ L2(R2, Lk
0) with norm smaller than 1. Hence, ‖vk‖Bk = O(k−∞).

By Lemma 2.5, this implies that vk and its covariant derivatives are uniformly O(k−∞) on K ; since
uk = vk + O(k−∞) on K , the same holds for uk . �

Lemma 2.7. Let (uk)k≥1 be an admissible sequence of elements of Bk and z0 ∈ C. Then z0 /∈MS(uk) if
and only if there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that ‖Tkuk‖Bk = O(k−∞).

Proof. Assume that z0 /∈MS(uk). There exists a neighborhood U of z0 such that uk is negligible on U.
Choose a compactly supported function χ ∈ C∞(C,R) with support K contained in U and such that
χ(z0)= 1, and set Tk = Op(χ). One has, for z1 ∈ C,

(Tkuk)(z1)=
k

2π

∫
K

exp
(
−

k
2
(|z1|

2
+ |z2|

2
− 2z1 z̄2)

)
χ(z2)uk(z2) dµ(z2),

which gives

|(Tkuk)(z1)| ≤
k

2π
sup

K
|uk |

∫
K

exp
(
−

k
2
|z1− z2|

2
)

dµ(z2).

This allows to estimate the norm of Tkuk :

‖Tkuk‖
2
Bk
≤

( k
2π

)2(
sup

K
|uk |

)2
∫

C

∫
K

exp(−k|z1− z2|
2) dµ(z1) dµ(z2).

Hence
‖Tkuk‖

2
Bk
≤

( k
2π

)2(
sup

K
|uk |

)2
µ(K )

∫
C

exp(−k|z1|
2) dµ(z1),

and the necessary condition is proved since the integral is O(k−1/2).
Conversely, assume that there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that ‖Tkuk‖Bk =

O(k−∞). There exists a neighborhood of z0 where Tk is elliptic. Hence, by symbolic calculus, we can
find a Toeplitz operator Sk ∈T0 such that Sk Tk ∼5

0
k near (z0, z0). Thus, there exists a neighborhood � of

z0 such that Sk Tkuk ∼ uk on �; this implies that ‖Sk Tkuk‖L2(�) = ‖uk‖L2(�)+ O(k−∞). But, since Sk is
bounded Bk→Bk by a constant C > 0 which does not depend on k, one has ‖Sk Tkuk‖L2(�)≤C‖Tkuk‖Bk ;
this yields that ‖uk‖L2(�) is O(k−∞). Lemma 2.6 then gives the negligibility of uk on �. �

Definition 2.8. A sequence (uk)k≥1 of elements of Sk is said to be

• Sk-admissible if there exists N in Z such that every Sk seminorm of uk is O(k N );
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• Sk-negligible if every Sk seminorm of uk is O(k−∞). We write uk = OSk (k
−∞).

Lemma 2.9. Let (uk)k≥1 be an admissible sequence of elements of Bk and z0 ∈ C. Then z0 /∈MS(uk) if
and only if there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that Tkuk = OSk (k

−∞).

Proof. The proof is nearly the same as the one of Lemma 2.4. One can show that if z0 /∈MS(uk), there
exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that for every polynomial function P(z) of z only,
supz∈C |P(z)(Tkuk)(z)|=O(k−∞), using the fact that the multiplication by P(z) is a Toeplitz operator. �

3. The Bargmann transform

3A. Definition and first properties. The Bargmann transform is the unitary operator Bk : L2(R)→Bk

defined by

(Bk f )(z)=
(( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z

2
+ t2)+

√
2zt
))

f (t) dt
)
ψk(z).

We claimed earlier that the subspace Sk of Bk defined in (1) is the analogue of the Schwartz space on
the Bargmann side. The case k = 1 is treated by the following theorem.

Theorem 3.1 [Bargmann 1967, Theorem 1.7]. The Bargmann transform B1 is a bijective, bicontinuous
mapping between S (R) and S1.

This allows us to handle the general case.

Proposition 3.2. The Bargmann transform Bk is a bijection between S (R) and Sk .

Proof. If f belongs to S (R), one has, for z in C,

(Bk f )(z)=
( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z

2
+ t2)+

√
2zt
))

f (t) dt;

introducing the variables u and w such that z = k−1/2w and t = k−1/2u, this reads

(Bk f )(z)= (kπ)−1/4
∫

R

exp
(
−

1
2(w

2
+ u2)+

√
2wu

)
f (k−1/2u) du.

Hence, we have (Bk f )(z)= (kπ)−1/4(B1g)(k1/2z), where g(t)= f (k−1/2t). Obviously, the function g
belongs to S (R); thus, by the previous theorem, B1g belongs to S1. Hence, for j ∈ N, there exists a
constant C j > 0 such that, for every complex variable w,∣∣(B1g)(w) exp

(
−

1
2 |w|

2)∣∣≤ C j (1+ |w|2)− j/2.

This implies that, for every z in C,∣∣∣(Bk f )(z) exp
(
−

k
2
|z|2

)∣∣∣≤ C j k− j/2(1+ k|z|2)− j/2,

and since k ≥ 1, this yields ∣∣∣(Bk f )(z) exp
(
−

k
2
|z|2

)∣∣∣≤ C j (1+ |z|2)− j ,
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which means that Bk f belongs to Sk . The converse is proved in the same way, using the explicit form of
the inverse mapping:

(B∗k g)(t)=
( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z̄

2
+ t2)+

√
2z̄t − |z|2

))
g(z) dµ(z)

for g in Sk and t ∈ R. �

3B. Action on Toeplitz operators. The Bargmann transform has the good property to conjugate a Toeplitz
operator with symbol defined on C (thus acting on the spaces Bk) to a pseudodifferential operator with
symbol defined on T ∗R (thus acting on L2(R)), and conversely.

Lemma 3.3. Let Tk be a Toeplitz operator in the class T j , with contravariant symbol σcont(Tk)= f ( · , h̄).
Then B∗k Tk Bk is a pseudodifferential operator with Weyl symbol

σW (B∗k Tk Bk)(x, ξ)= I ( f ( · , h̄))(x, ξ)= 1
π h̄

∫
C

exp(−2h̄−1
|w|2) f (w+ z, h̄) dλ(w),

where z = 1
√

2
(x− iξ). The map I is continuous S j→S j . Moreover, for any f ( · , h̄) ∈S j and all p ≥ 1,

I ( f ( · , h̄))=
p−1∑
j=0

( h̄
2

) j 1 j f ( · , h̄)
j !

+ h p Rp( f ( · , h̄)), (2)

where Rp is a continuous map from S j to S j .

Proof. Thanks to [Charles and Vũ Ngo.c 2008, Theorem 5.2], we know that the result holds when
Tk =5

0
k f50

k , f being a bounded function on C not depending on k. Now, using the stationary phase
method, one can prove that the map I is continuous S j → S j with the asymptotic expansion (2), and
conclude by a density argument. �

3C. Microlocalization and Bargmann transform.

Lemma 3.4. (1) Bk maps S -admissible functions to Sk-admissible sections, and B∗k maps Sk-ad-
missible sections to S -admissible functions.

(2) Bk maps OS (k−∞) into OSk (k
−∞), and B∗k maps OSk (k

−∞) into OS (k−∞).

Proof. These results are proved by performing a change of variables, as in Proposition 3.2. �

We can now prove the link between the wavefront set and the microsupport via the Bargmann transform.

Proposition 3.5. Let uk be an admissible sequence of elements of S (R). Then (x0, ξ0) /∈WF(uk) if and
only if z0 =

1
√

2
(x0− iξ0) /∈MS(Bkuk).

Proof. Assume that z0=
1
√

2
(x0−iξ0) does not belong to MS(Bkuk); by Lemma 2.9, there exists a Toeplitz

operator Tk , elliptic at z0, such that Tk Bkukψ
k
= OSk (k

−∞). Thanks to Lemma 3.3, Pk = B∗k Tk Bk is a
pseudodifferential operator elliptic at (x0, ξ0). Furthermore, thanks to Lemma 3.4, Pkuk = B∗k Tk Bkukψk =

OS (k−∞); we conclude by Lemma 2.4. The proof of the converse follows the same steps. �
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4. The sheaf of microlocal solutions

In this section, Tk is a selfadjoint Toeplitz operator on M with normalized symbol f ( · , h̄)=
∑

`≥0 h̄` f `.
Following [Vũ Ngo. c 1998; 2000], we introduce the sheaf of microlocal solutions of the equation Tkψk = 0.

Let us recall the motivation for considering microlocal solutions: roughly speaking, they allow to split
the eigenvalue equation Tkψk = λψk into several local problems, the Bohr–Sommerfeld rules being a
necessary and sufficient condition to glue together the solutions to these problems in order to obtain a
global approximate solution to this equation. For the sake of brevity, we begin with the case λ= 0, and
we introduce a spectral parameter only in Section 4F.

4A. Microlocal solutions. For an open subset U of M , we call a sequence of sectionsψk ∈C∞(U,Lk
⊗K )

a local state over U .

Definition 4.1. We say that a local state ψk is a microlocal solution of

Tkψk = 0 (3)

on U if it is admissible and, for every x ∈U , there exists a function χ ∈ C∞(M) with support contained
in U , equal to 1 in a neighborhood of x and such that

5k(χψk)= ψk + O(k−∞), Tk(5k(χψk))= O(k−∞)

on a neighborhood of x .

One can show that if ψk ∈Hk is admissible and satisfies Tkψk = 0, then the restriction of ψk to U is a
microlocal solution of (3) on U . Moreover, the set S(U ) of microlocal solutions of this equation on U is
a Ck-module containing the set of negligible local states as a submodule (let us recall that Ck is the set of
constant symbols; see Section 2A). We denote by Sol(U ) the module obtained by taking the quotient
of S(U ) by the negligible local states; the notation [ψk] will stand for the equivalence class of ψk ∈ S(U ).

Lemma 4.2. The collection of modules Sol(U ) for U an open subset of M , together with the natural
restriction maps rU,V : Sol(V ) → Sol(U ) for U, V open subsets of M such that U ⊂ V , define a
complete presheaf.

Thus, we obtain a sheaf Sol over M , called the sheaf of microlocal solutions on M .

4B. The sheaf of microlocal solutions. One can show that if the principal symbol f0 of Tk does not
vanish on U , then Sol(U ) = {0}. Equivalently, if ψk ∈ Hk satisfies Tkψk = 0, then its microsupport is
contained in the level 00 = f −1

0 (0). This implies the following lemma.

Lemma 4.3. Let � be an open subset of 00; write �=U ∩00, where U is an open subset of M. Then
the restriction map

r� : Sol(U )→ FU (�) := r�(Sol(U )), [ψk] 7→ [ψk |�]

is an isomorphism of Ck-modules.
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We want to define a new sheaf F→ 00 that still describes the microlocal solutions of (3). In order to
do so, we will check that the module FU (�) does not depend on the open set U such that �= 00 ∩U .
We first prove:

Lemma 4.4. Let U, Ũ be two open subsets of M such that �=U ∩00 = Ũ ∩00. Then there exists an
isomorphism between Sol(U ) and Sol(Ũ ) commuting with the restriction maps.

Proof. Assume that U and Ũ are distinct and set V = U ∩ Ũ ; of course � ⊂ V . Write Ũ = V ∪W
where the open set W is such that there exists an open set X ⊂ V containing � such that W ∩ X = ∅.
Let χV , χW be a partition of unity subordinate to Ũ = V ∪W ; in particular, χV (x)= 1 whenever x ∈ X .
One can show that the class FχV (ψk) = [χVψk] belongs to Sol(Ũ ). We claim that the map FχV is an
isomorphism with the required property. �

From these two lemmas, we deduce:

Proposition 4.5. Let U, Ũ be two open subsets of M such that�=U∩00=Ũ∩00. Then FU (�)=FŨ (�).

This allows to define a sheaf F→ 00, which will be called the sheaf of microlocal solutions over 00.
Let us point out that so far, we have made no assumption on the structure (regularity) of the level 00.

4C. Regular case. Consider a point m ∈ 00 which is regular for the principal symbol f0. Then there
exists a symplectomorphism χ between a neighborhood of m in M and a neighborhood of the origin
in R2 such that ( f0 ◦χ

−1)(x, ξ)= ξ . We can quantize this symplectomorphism by means of a Fourier
integral operator [Boutet de Monvel and Guillemin 1981; Zelditch 1997; Charles 2003b; Le Floch 2014]:
there exists an admissible sequence of operators U (m)

k : C∞(R2, Lk
0)→ C∞(M, Lk

⊗ K ) such that

U (m)
k (U (m)

k )∗ ∼5k near m

and
(U (m)

k )∗U (m)
k ∼50

k,
(
U (m)

k

)∗TkU (m)
k ∼ Sk near 0,

where Sk is the Toeplitz operator

Sk =
i
√

2

(
z− 1

k
d
dz

)
,

which means that Sku = i
√

2

(
z f − 1

k
d f
dz

)
ψk if u = fψk . Consider the element 8k of C∞(R2, Lk

0)

given by
8k(z)= exp(kz2/2)ψk(z), ψ(z)= exp

(
−

1
2 |z|

2)
;

it satisfies Sk8k = 0. Choosing a suitable cutoff function η and setting 8(m)k =5
0
k(η8k), we obtain an

admissible sequence 8(m)k of elements of Bk microlocally equal to 8k near the origin and generating the
Ck-module of microlocal solutions of Skuk = 0 near the origin.

Proposition 4.6. The Ck-module of microlocal solutions of (3) near m is free of rank 1,2 generated
by U (m)

k 8
(m)
k .

2We recall that this means that this module admits a basis with one element.
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This is a slightly modified version of Proposition 3.6 of [Charles 2003b], in which the normal form is
achieved on the torus instead of the complex plane.

Thus, if 00 contains only regular points of the principal symbol f0, then F→ 00 is a sheaf of free
Ck-modules of rank 1; in particular, this implies that F→ 00 is a flat sheaf, thus characterized by its
Čech holonomy holF.

4D. Lagrangian sections. In order to compute the holonomy holF, we have to understand the structure
of the microlocal solutions. For this purpose, a family of solutions of particular interest is given by
Lagrangian sections; let us define these. Consider a curve 0 ⊂ 00 containing only regular points, and let
j : 0→ M be the embedding of 0 into M . Let U be an open set of M such that U0 = j−1(U ∩0) is
contractible; then there exists a flat unitary section t0 of j∗L→U0. Now, consider a formal series∑

`≥0

h̄`g` ∈ C∞(U0, j∗K )[[h̄]].

Let V be an open subset of M such that V ⊂ U . Then a sequence 9k ∈ Hk is a Lagrangian section
associated to (0, t0) with symbol

∑
`≥0 h̄`g` if

9k(m)=
( k

2π

)1/4
Fk(m)g̃(m, k) over V,

where

• F is a section of L→U such that

j∗F = t0 and ∂̄F = 0

modulo a section vanishing to every order along j (0), and |F(m)|< 1 if m /∈ j (0);

• g̃( · , k) is a sequence in C∞(U, K ) admitting an asymptotic expansion
∑

`≥0 k−`g̃` in the C∞ topol-
ogy such that

j∗g̃` = g` and ∂̄ g̃` = 0

modulo a section vanishing at every order along j (0).

Assume furthermore that 9k is admissible in the sense that 9k(m) is uniformly O(k N ) for some N and
the same holds for its successive covariant derivatives. It is possible to construct such a section with given
symbol

∑
`≥0 h̄`g` (see [Charles 2006, §3]). Furthermore, if 9k is a nonzero Lagrangian section, then

the constants ck ∈ Ck such that ck9k is still a Lagrangian section are the elements of the form

ck = ρ(k) exp(ikφ(k))+ O(k−∞), (4)

where ρ(k), φ(k) ∈R admit asymptotic expansions of the form ρ(k)=
∑

`≥0 k−`ρ`, φ(k)=
∑

`≥0 k−`φ`.
Lagrangian sections are important because they provide a way to construct microlocal solutions. Indeed,

if 9k is a Lagrangian section over V associated to (0, t0) with symbol
∑

`≥0 h̄`g`, then Tk9k is also a
Lagrangian section over V associated to (0, t0), and one can in principle compute the elements ĝ`, `≥ 0
of the formal expansion of its symbol as a function of the g`, ` ≥ 0 (by means of a stationary phase
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expansion). This allows to solve (3) by prescribing the symbol of 9k so that for every `≥ 0, ĝ` vanishes.
Let us detail this for the two first terms.

Introduce a half-form bundle (δ, ϕ), that is, a line bundle δ→ M together with an isomorphism of line
bundles ϕ : δ⊗2

→31,0T ∗M . Since the first Chern class of M , which is equal to its Euler characteristic,
is even, such a pair exists. Introduce the Hermitian holomorphic line bundle L1 such that K = L1⊗ δ.
Define the subprincipal form κ as the 1-form on 0 such that

κ(X f0)=− f1,

where X f0 stands for the Hamiltonian vector field associated to f0. Introduce the connection ∇1 on
j∗L1→ 0 defined by

∇
1
=∇

j∗L1 +
1
i
κ,

with ∇ j∗L1 the connection induced by the Chern connection of L1 on j∗L1. Let δ0 be the restriction of δ
to 0; the map

ϕ0 : δ
⊗2
0 → T ∗0⊗C, u 7→ j∗ϕ(u)

is an isomorphism of line bundles. Define a connection ∇δ0 on δ0 by

∇
δ0
X σ = Lδ0

X σ,

where Lδ0
X is the first-order differential operator acting on sections of δ0 such that

ϕ0
(
Lδ0

X g⊗ g
)
=

1
2 LXϕ0(g⊗2)

for every section g; here, L stands for the standard Lie derivative of forms.
It was proved in [Charles 2006, Theorems 3.3 and 3.4] that Tk9k is a Lagrangian section over V

associated to t0 with symbol ( j∗ f0)g0+ O(h̄)= O(h̄) (so 9k satisfies (3) up to order O(k−1)) and that
the subprincipal symbol of Tk9k is

( j∗ f1)g0+
1
i
(
∇

j∗L1
X f0
⊗ Id+ Id⊗Lδ0

X f0

)
g0.

Consequently, (3) is satisfied by 9k up to order O(k−2) if and only if(
f1+

1
i
(
∇

j∗L1
X f0
⊗ Id+ Id⊗Lδ0

X f0

))
g0 = 0 over V ∩0. (5)

This can be interpreted as a parallel transport equation: if we endow j∗L1 ⊗ δ0 with the connection
induced from ∇1 and ∇δ0 , (5) means that g0 is flat.

4E. Holonomy. We now assume that 00 is connected (otherwise, one can consider connected components
of 00) and contains only regular points; it is then a smooth closed curve embedded in M . We would like
to compute the holonomy of the sheaf F→ 00.

Proposition 4.7. The holonomy holF(00) is of the form

holF(00)= exp(ik2(k))+ O(k−∞), (6)
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where 2(k) is real-valued and admits an asymptotic expansion of the form 2(k)=
∑

`≥0 k−`2`.

In particular, this means that if we consider another set of solutions to compute the holonomy, we only
have to keep track of the phases of the transition constants.

Proof. Cover 00 by a finite number of open subsets �α in which the normal form introduced before
Proposition 4.6 applies, and let Uα

k and 8αk be as in this proposition. We obtain a family uαk of microlocal
solutions; observe that for each α, uαk is a Lagrangian section associated to 0. Hence, if �α ∩�β is
nonempty, the unique (modulo O(k−∞)) constant cαβk ∈ Ck such that uαk = cαβk uβk on �α ∩�β is of the
form given in (4):

cαβk = ρ
αβ(k) exp(ikφαβ(k))+ O(k−∞).

But if m belongs to �α ∩�β , then near m we have uαk ∼Uα
k 8

(m)
k and uβk ∼Uβ

k 8
(m)
k , where 8(m)k is an

admissible sequence of elements of Bk microlocally equal to 8k near the origin. Therefore, we have

cαβk 8
(m)
k = (U

β

k )
−1Uα

k 8
(m)
k + O(k−∞),

and the fact that the operators Uα
k , Uβ

k are microlocally unitary yields |cαβk |
2
= 1+O(k−∞). This implies

that the coefficients ραβ` in the asymptotic expansion of ραβ(k) vanish for `≥ 1, which gives the result. �

Let us be more specific and compute the first terms of this asymptotic expansion. Consider a finite
cover (�α)α of 00 by open subsets with j−1(�α) contractible, and endow a neighborhood of each �α
in M with a nontrivial microlocal solution 9α

k which is a Lagrangian section. Choose a flat unitary
section tα of the line bundle j∗L→ j−1(�α) and write, for m ∈�α,

9α
k (m)=

( k
2π

)1/4
gα(m, k)tk

α(m),

where the section gα( · , k) of j∗K →�α is the symbol of 9α
k , whose principal symbol will be denoted

by g(0)α . Now, assume that �α ∩�β 6= ∅; there exists a unique (up to O(k−∞)) cαβk ∈ Ck such that
9α

k ∼ cαβk 9
β

k on �α ∩�β .

Definition 4.8. Let A, B ∈ M and γ be a piecewise smooth curve joining A and B; denote by PA,B,γ :

L A→ L B the linear isomorphism given by parallel transport from A to B along γ . Given two sections s, t
of L→ M such that s(A) 6= 0 and t (B) 6= 0, define the phase difference between s(A) and t (B) along γ
as the number

(8s(A)−8t(B))γ = arg λA,B,γ − c0([A, B]) ∈ R/2πZ,

where λA,B,γ is the unique complex number such that PA,B,γ (s(A))= λA,B,γ t (B) and c0([A, B]) is the
(phase of the) holonomy of γ in (L ,∇) (computed with respect to some fixed trivializations at A, B).
Define in the same way the phase difference for two sections of K → M , this time using the Chern
connection of K .

Now, consider three points A, B,C ∈ M , and let γ1 and γ2 be piecewise smooth curves joining A to B
and B to C , respectively. Let γ be the concatenation of γ1 and γ2. It is easily checked that

(8s(A)−8t(B))γ1 + (8t(B)−8u(C))γ2 = (8s(A)−8u(C))γ
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for three sections s, t, u of L . Furthermore, if γ is a closed curve and A is a point on γ , then the phase
difference between s(A) and s(A) along γ is

(8s(A)−8s(A))γ = 0

by definition of the holonomy c0. This is why we write this number as a difference. Note that this still
holds true if we change the set of trivializations used to compute c0.

Coming back to our problem, denote by 8(−1)
α (A)−8(−1)

β (B) the phase difference between tα(A)
and tβ(B) along 00 in L , and by 8(0)α (A)−8

(0)
β (B) the phase difference between g(0)α (A) and g(0)β (B)

along 00 in K . Let ζ be the path in 00 starting at a point A ∈�α and ending at B ∈�α ∩�β . Since tα is
flat and the principal symbol g0 of 9α

k satisfies (5), we have

arg cαβk = k
(
c0(ζ )+8

(−1)
α (A)−8(−1)

β (B)
)
+ c1(ζ )+ holδ00

(ζ )+8(0)α (A)−8
(0)
β (B) + O(k−1),

where c1(ζ ) is the holonomy of ζ in (L1,∇
1) and holδ00

(ζ ) is the holonomy of ζ in (δ00,∇
δ00 ) (both

computed with respect to some fixed trivializations of L1 and δ00 at A, B).
Thanks to the discussion above, we know that the term

k
(
8(−1)
α (A)−8(−1)

β (B)
)
+8(0)α (A)−8

(0)
β (B)

is a Čech coboundary. The values c0(00), c1(00) and holδ00
(00) do not depend on the trivializations

chosen for the computations. Moreover, one can check that ∇δ00 has holonomy in Z/2Z, represented by
ε(00) ∈ {0, 1}. Thus, we obtain:

Proposition 4.9. The first two terms of the asymptotic expansion of the quantity 2(k) defined in
Proposition 4.7 are given by

20 = c0(00)

and
21 = c1(00)+ ε(00)π.

Since one can construct a nontrivial microlocal solution over 00 if and only if 2(k) ∈ 2πZ, we recover
the usual Bohr–Sommerfeld conditions.

Let us give another interpretation of the index ε. Consider a smooth closed curve γ immersed in M .
Denote by ι : γ → M this immersion, and by δγ = ι∗δ the pullback bundle over γ . Let ι̃ : δγ → δ be the
natural lift of ι, and define ι̃2 : δ⊗2

γ → δ⊗2 by the formula ι̃2(u⊗ v)= ι̃(u)⊗ ι̃(v). The map

ϕγ : δ
⊗2
γ → T ∗γ ⊗C, u 7→ ι∗ϕ(ι̃2(u))

is an isomorphism of line bundles. The set

{u ∈ δγ | ϕγ (u⊗2) > 0}

has one or two connected components. In the first case, we set ε(γ )= 1, and in the second case ε(γ )= 0.
One can check that this definition coincides with the one above when γ is a smooth embedded closed
curve. Notice that the value of ε(γ ) only depends on the isotopy class of γ in M .
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4F. Spectral parameter dependence. For spectral analysis, one has to do the same study as above,
replacing the operator Tk with Tk − λ, λ ∈ R; then it is natural to ask if the previous study can be done
taking into account the dependence of the operator on the spectral parameter λ.

Assume that there exists a tubular neighborhood � of 0 such that for λ close enough to 0, the
intersection 0λ∩� is regular. Then we can construct microlocal solutions of (Tk−λ)uk = 0 as Lagrangian
sections depending smoothly on a parameter (see [Charles 2003b, §2.6]); these solutions are uniform in λ.
We can then define all the previous objects with smooth dependence in λ. Proceeding this way, we obtain
the parameter-dependent Bohr–Sommerfeld conditions, which we describe below.

Let I be an interval of regular values of the principal symbol f0 of the operator. For λ ∈ I , denote
by C j (λ), 1≤ j ≤ N , the connected components of f −1

0 (λ) in such a way that for j fixed and λ1 6= λ2 ∈ I ,
C j (λ1) and C j (λ2) belong to the same connected component of f −1

0 (I ). Observe that C j (λ) is a
smooth embedded closed curve, endowed with the orientation depending continuously on λ given by
the Hamiltonian flow of f0. Define the principal action c( j)

0 ∈ C∞(I ) in such a way that the parallel
transport in L along C j (λ) is the multiplication by exp(ic( j)

0 (λ)). Define the subprincipal action c( j)
1 in

the same way, replacing L by L1 and using the connection ∇1 (depending on λ) described above. Finally,
set ε( j)

λ = ε(C j (λ)); in fact, ε( j)
λ is a constant ε( j)

λ = ε
( j) for λ in I . Fix E in I ; the Bohr–Sommerfeld

conditions (see [Charles 2006] for more details) state that there exists η > 0 such that the intersection
of the spectrum of Tk with [E − η, E + η] modulo O(k−∞) is the union of the spectra σ j , 1 ≤ j ≤ N ,
where the elements of σ j are the solutions of

g( j)(λ, k) ∈ 2πk−1Z,

where g( j)( · , k) is a sequence of functions of C∞(I ) admitting an asymptotic expansion

g( j)( · , k)=
∑
`≥0

k−`g( j)
`

with coefficients g( j)
` ∈ C∞(I ). Furthermore, one has

g( j)
0 (λ)= c( j)

0 (λ) and g( j)
1 (λ)= c( j)

1 (λ)+ ε( j)π.

5. Microlocal normal form

5A. Normal form on the Bargmann side. Let Pk be the operator defined by

Pk =
i
2

(
z2
−

1
k2
∂2

∂z2

)
with domain C[z] ⊂Bk ; it is a Toeplitz operator with normalized symbol p0(x, ξ)= xξ . We will use this
operator to understand the behavior of Ak when acting on sections localized near each s j , 1≤ j ≤ n. In
fact, we study the operator Ak − E , where E ∈ R is allowed to vary in a neighborhood of zero.

Let j ∈ [[1, n]]. The isochore Morse lemma [Colin de Verdière and Vey 1979] yields a symplectomor-
phism χE from a neighborhood of s j in M to a neighborhood of the origin in R2, depending smoothly on
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E , and a smooth function gE
j , again depending smoothly on E , such that

((a0− E) ◦χ−1
E )(x, ξ)= gE

j (xξ)

and (gE
j )
′(0) 6= 0. Using a Taylor formula, one can write

gE
j (t)= w

E
j (t)(t − f j (E))

with wE
j smooth, depending smoothly on E , and such that wE

j (0) 6= 0, and with f j a smooth function
of E with f j (0) = 0. This symplectic normal form can be quantized to the following semiclassical
normal form.

Proposition 5.1. Fix j ∈ [[1, n]]. Then there exist a smooth function f j , a Fourier integral operator
U E

k : Bk → Hk , a Toeplitz operator W E
k , elliptic at 0, and a sequence of smooth functions ε j ( · , k)

admitting an asymptotic expansion ε j (E, k)=
∑
+∞

`=0 k−`ε(`)j (E) such that

(U E
k )
∗(Ak − E)U E

k ∼W E
k
(
Pk − f j (E)− k−1ε j (E, k)

)
microlocally near s j . Furthermore,

• Uk and Wk depend smoothly on E ,

• f j (E) is the value of xξ whenever (x, ξ)= χE(m) for m ∈ 0E , and

• the first term of the asymptotic expansion of ε j (0, k) is given by

ε
(0)
j (0)=

−a1(s j )

|det(Hess(a0)(s j ))|1/2
,

where Hess(a0)(s j ) is the Hessian of a0 at s j .

The proof is an adaptation of the one in [Colin de Verdière and Parisse 1994a, §3] to the Toeplitz
setting; see also [Le Floch 2014, Theorem 5.3] for a similar result in the elliptic case.

5B. Link with the pseudodifferential setting. Now we use the Bargmann transform to understand the
structure of the space of microlocal solutions of Pk − E = 0.

Lemma 5.2. For u ∈S (R), one has

B∗k Pk Bku = 1
ik
(x∂x + 1)u.

From now on, we will denote by Sk the pseudodifferential operator (1/ ik)(x∂x + 1). This correspon-
dence will allow us to understand the space of microlocal solutions of Pk − E on a neighborhood of the
origin. Let us recall the results of [Colin de Verdière and Parisse 1994a; 1994b] that will be useful for
our study.

Proposition 5.3 [Colin de Verdière and Parisse 1994a, Proposition 3]. Let E be such that |E |< 1. The
space of microlocal solutions of (Sk − E)uk = 0 on Q = [−1, 1]2 is a free Ck-module of rank 2.
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Moreover, we know two bases of this module. Indeed, let Fk be the semiclassical Fourier transform:

(Fku)(ξ)= k
2π

∫
R

exp(−ikxξ)u(x) dx;

then the tempered distributions v( j)
k,E , j ∈ [[1, 4]], defined as

v
(1),(2)
k,E (x)= 1R∗±

(x) exp
((
−

1
2 + ik E

)
ln |x |

)
,

v
(3),(4)
k,E (x)= F−1

k

(
1R∗±

(ξ) exp
((
−

1
2 + ik E

)
ln |ξ |

))
(x),

are exact solutions of the equation (Sk−E)v( j)
k,E = 0; better than that, the pairs (v(1)k,E , v

(2)
k,E) and (v(3)k,E , v

(4)
k,E)

each form a basis of the space of solutions of this equation. Now, choose a compactly supported function
χ ∈C∞(R) with constant value 1 on a neighborhood of I = [−1, 1] and vanishing outside 2I . Define the
pseudodifferential operator 5Q by

5Qu(x)= k
2π

∫
R2

exp(ik(x − y)ξ)χ(ξ)χ(y)u(y) dy dξ.

Then 5Q maps D ′(R) into S (R), and 5Q ∼ Id on Q. Set

w
( j)
k,E =5Qv

( j)
k ;

then the w( j)
k,E , j ∈ [[1, 4]], belong to S (R), and are microlocal solutions of (Sk − E)w( j)

k,E = 0 on Q. The
matrix of the change of basis from (w

(3)
k,E , w

(4)
k,E)|Q to (w(1)k,E , w

(2)
k,E)|Q is given by

Mk(E)= µk(E)
(

1 i exp(−πk E)
i exp(−πk E) 1

)
+ O(k−∞), (7)

with

µk(E)=
1
√

2π
0
( 1

2 + ik E
)

exp
(
π

4
(2k E − i)− ik E ln k

)
.

5C. Microlocal solutions of (Pk− E)uk = 0. Now, consider the Bargmann transforms of the sequences
w
( j)
k,E : u( j)

k,E = Bkw
( j)
k,E . Propositions 5.3 and 3.5 yield:

Proposition 5.4. For E such that |E | < 1, the space of microlocal solutions of (Pk − E)uk = 0 on
Q = [−1, 1]2 ⊂ C is a free Ck-module of rank 2. Moreover, the pairs (u(1)k,E , u(2)k,E) and (u(3)k,E , u(4)k,E) are
two bases of this module; the transfer matrix is given by (7).

Remark. The sections u( j)
k,E , j = 1, . . . , 4, can be written in terms of parabolic cylinder functions.

Nonnenmacher and Voros [1997] studied these functions in order to understand the behavior of the
generalized eigenfunctions of Pk ; the result of this subtle analysis, based on Stokes lines techniques, was
not exactly what we needed here, and this is partly why we chose to use the microlocal properties of the
Bargmann transform instead.
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6. Bohr–Sommerfeld conditions

To obtain the Bohr–Sommerfeld conditions, we will recall the reasoning of [Colin de Verdière and Parisse
1999], and will also refer to [Colin de Verdière and Vũ Ngo.c 2003]. Since the general approach is the
same, we only recall the main ideas and focus on what differs in the Toeplitz setting.

6A. The sheaf of standard bases. As in Section 4, introduce the sheaf (F, 00) of microlocal solutions of
Akψk = 0 over 00; we recall that a global nontrivial microlocal solution corresponds to a global nontrivial
section of this sheaf. However, since the topology of 00 is much more complicated than in the regular
case, the condition for the existence of such a section is not as simple as saying that a holonomy must
be trivial. In particular, we have to handle what happens at critical points. To overcome this difficulty,
the idea is to introduce a new sheaf over 00 that will contain all the information we need to construct a
global nontrivial microlocal solution; roughly speaking, this new sheaf can be thought of as the limit of
the sheaf F→ 0E of microlocal solutions over regular levels as E goes to 0.

Following [Colin de Verdière and Parisse 1999], we introduce a sheaf (L, 00) of free Ck-modules of
rank 1 over 00 as follows: to each point m ∈ 00, associate the free module L(m) generated by standard
bases at m. If m is a regular point, a standard basis is any basis of the space of microlocal solutions near m.
At a critical point s j , we define a standard basis in the following way. The Ck-module of microlocal
solutions near s j is free of rank 2; moreover, it is the graph of a linear function. Indeed, number the
four local edges near s j with cyclic order 1, 3, 2, 4, so that the edges e1, e2 are the ones that leave s j .
Let us denote by Sol(e1e2) and Sol(e3e4) the modules of microlocal solutions over the disjoint union
of the local unstable edges e1, e2 and stable edges e3, e4, respectively. Sol(e1e2) and Sol(e3e4) are free
modules of rank 2, and there exists a linear map T j : Sol(e3e4)→ Sol(e1e2) such that u is a solution
near s j if and only if its restrictions satisfy u|Sol(e1e2) = T j u|Sol(e3e4). Equivalently, given two solutions
on the entering edges, there is a unique way to obtain two solutions on the leaving edges by passing
the singularity. One can choose a basis element for each F(ei ), i ∈ [[1, 4]], and express T j as a 2× 2
matrix (defined modulo O(k−∞)); one can show that the entries of this matrix are all nonvanishing. An
argument of elementary linear algebra shows that, once the matrix T j is chosen, the basis elements of
the modules F(ei ) are fixed up to multiplication by the same factor; this means that for T j fixed, the
Ck-module of basis elements is of rank 1. Moreover, the study of the previous section implies that there
exists a choice of basis elements such that T j has the following expression:

T j = exp
(
−

iπ
4

)
Ek(ε j (0, k))

(
1 i exp(−πε j (0, k))

i exp(−πε j (0, k)) 1

)
, (8)

where

Ek(t)=
1
√

2π
0
(1

2 + i t
)

exp
(

t
(
π

2
− i ln k

))
. (9)

This allows us to call the choice of the basis elements of F(ei ) a standard basis if T j is given by (8).



SINGULAR BOHR–SOMMERFELD CONDITIONS FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE 1615

(L, 00) is a locally free sheaf of rank-1 Ck-modules, and its transition functions are constants. Hence,
it is flat, thus characterized by its holonomy

holL : H1(00)→ Ck .

In terms of Čech cohomology, if γ is a cycle in 00 and �1, . . . , �` is an ordered sequence of open sets
covering the image of γ , each �i being equipped with a standard basis ui (at a critical point, we make
the abusive correspondence between a standard basis and its elements), then

holL(γ )= x1,2 · · · x`−1,`x`,1, (10)

where xi, j ∈ Ck is such that ui = xi, j u j on �i ∩� j .
Now, cut n+1 edges of 00, each one corresponding to a cycle γi in a basis (γ1, . . . , γn+1) of H1(00,Z),

in such a way that the remaining graph is a tree T. Then the sheaf (L,T) has a nontrivial global section.
The conditions to obtain a nontrivial global section of the sheaf (F, 00) of microlocal solutions on 00 are
given in the following theorem. They were already present in the work of Colin de Verdière and Parisse
in the case of pseudodifferential operators, but the fact that they extend to our setting is a consequence of
the results obtained in the previous sections.

Theorem 6.1. The sheaf (F, 00) has a nontrivial global section if and only if the following linear system
of 3n+ 1 equations with 3n+ 1 unknowns (xα ∈ Ck)α∈{edges of T} has a nontrivial solution:

(1) If the edges (α1, α2, α3, α4) connect at s j (with the same convention as before for the labeling of the
edges), then ( xα3

xα4

)
= T j

( xα1

xα2

)
(2) If α and β are the extremities of a cut cycle γi , then

xα = holL(γi )xβ,

where the following orientation is assumed: γi can be represented as a closed path starting on the
edge α and ending on the edge β.

Proof. It follows from Propositions 4.6 and 5.4 that the proof can be directly adapted from the one of
[Colin de Verdière and Vũ Ngo. c 2003, Theorem 2.7]. �

6B. Singular invariants. Of course, in order to use this result, it remains to compute the holonomy holL.
For this purpose, let us introduce some geometric quantities close to the ones used to express the regular
Bohr–Sommerfeld conditions. Let γ be a cycle in 00, and denote by s jm , m = 1, . . . , p, the critical points
contained in γ .

Definition 6.2 (singular subprincipal action). Decompose γ as a concatenation of smooth paths and paths
containing exactly one critical point; if A and B are the ordered endpoints of a path, we will call it
[A, B]. Define the subprincipal action c̃1(γ ) as the sum of the contributions of these paths, given by the
following rules:
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Pa,b

b

B

a A

s

Figure 1. Computation of c̃1([A, B]).

• If [A, B] contains only regular points, its contribution to the singular subprincipal action is

c̃1([A, B])= c1([A, B]),

as in the regular case (see Section 4E for the definition of c1([A, B]));

• If [A, B] contains the singular point s and is smooth at s, then

c̃1([A, B])= lim
a,b→s

(c1([A, a])+ c1([b, B])),

where a and b lie on the same branches as A and B, respectively;

• If [A, B] contains the singular point s and is not smooth at s, we set

c̃1([A, B])= lim
a,b→s

(
c1([A, a])+ c1([b, B])± ε(0)s ln

∣∣∣∣∫
Pa,b

ω

∣∣∣∣), (11)

where Pa,b is the parallelogram (defined in any coordinate system) built on the vectors −→sa and
−→
sb ,

±=+ if [A, B] is oriented according to the flow of Xa0 , ±=− otherwise, and

ε(0)s =
−a1(s)

|det(Hess(a0)(s))|1/2
,

as before.

Definition 6.3 (singular index). Let (γt)t be a continuous family of immersed closed curves such that
γ0 = γ and γt is smooth for t > 0. Then the function t 7→ ε(γt), t > 0, is constant; we denote by ε its
value. We define the singular index ε̃(γ ) by setting

ε̃(γ )= ε+

p∑
m=1

ρm

4
, (12)

where ρm = 0 if γ is smooth at s jm , ρm = +1 if at s jm , γ turns in the direct sense with respect to the
cyclic order (1, 3, 2, 4) of the local edges, and ρm =−1 otherwise.
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Observe that both c̃1 and ε̃ define Z-linear maps on H1(00,Z).

Theorem 6.4. Let γ be a cycle in 00. Then the holonomy holL(γ ) of γ in L has the form

holL(γ )= exp(ikθ(γ, k)), (13)

where θ(γ, k) admits an asymptotic expansion in nonpositive powers of k. Moreover, if we denote by
θ(γ, k)=

∑
`≥0 k−`θ`(γ ) this expansion, the first two terms are given by the formulas

θ0(γ )= c0(γ ), θ1(γ )= c̃1(γ )+ ε̃(γ )π. (14)

Proof. We just prove here that the holonomy has the claimed behavior. It is enough to show that one can
choose a finite open cover (�α)α of γ and a section uαk of L→�α for which the transition constants cαβk
have the required form. On the edges of γ , this follows from the analysis of Section 4. At a vertex, we
choose the standard basis U 0

k u( j)
k,ε j (0,k), where u( j)

k,E is defined in Section 5C and U E
k is the operator of

Proposition 5.1; to conclude, we observe that the restrictions of these sections to the corresponding edge
are Lagrangian sections. �

6C. Computation of the singular holonomy. This section is devoted to the proof of the second part of
Theorem 6.4. We use the method of [Colin de Verdière and Vũ Ngo.c 2003], but of course, our case is
simpler, because in the latter, the authors investigated the case of singularities in (real) dimension 4 (for
pseudodifferential operators). Let us work on microlocal solutions of the equation

(Ak − E)uk = 0, (15)

where E varies in a small interval I containing the critical value 0. The critical value separates I into
two open sets I+ and I−, with the convention I± = I ∩R∗

±
. Let D± = I± ∪ {0}, and let C± be the set of

connected components of the open set a−1
0 (I±). The smooth family of circles in the component p± is

denoted by Cp±(E), E ∈ I±.
As in Section 4, for E 6= 0, we denote by (F, 0E) the sheaf of microlocal solutions of (15) on 0E ;

remember that it is a flat sheaf of rank-1 Ck-modules, characterized by its Čech holonomy holF. The idea
is to let E go to 0 and compare this holonomy to the holonomy of the sheaf L→ 00.

Definition 6.5. Near each critical point s j , we consider two families of points A j (E) and B j (E) in
C∞(D±, p̄± \ {s j }) lying on Cp±(E), and such that A j (0) and B j (0) lie in the stable and unstable mani-
folds, respectively. Endow a small neighborhood of A j (resp. B j ) with a microlocal solution u A j (resp. u B j )
of (15) which is a Lagrangian section uniform in E ∈ D±. Define the quantity 2([A j (E), B j (E)], k) as
the phase of the Čech holonomy of the path [A j (E), B j (E)] ⊂ 0E joining A j (E) and B j (E) in the sheaf
(F, 0E) computed with respect to u A j and u B j . Define in the same way the quantity2([B j (E), A j ′(E)], k)
for the path joining B j (E) and A j ′(E).

Note that if we change the sections u A j and u B j ′
, the phase of the holonomy is modified by an additive

term admitting an asymptotic expansion in k C∞(D±)[[k−1
]]. The singular behavior of the holonomy is

thus preserved; moreover, the added term is a Čech coboundary, and hence does not change the value of
the holonomy along a closed path.
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s2

ζ loc
2

ζ loc
1

ζreg
1

ζreg
2

A2(E)
s1

B1(E)

A1(E)

B2(E)

Figure 2. Regular and local paths.

Then, we consider continuous families of paths (ζE)E∈D± drawn on a circle Cp±(E) and whose
endpoints are some of the A j (E) and B j ′(E) of the previous definition. We say that ζE is

• regular if ζ0 does not contain any of the critical points s j ,

• local if ζ0 contains exactly one critical point,

and we consider only these two types of paths. The following proposition implies that a path that is
local in the above sense can always be assumed to be local in the sense that it is included in a small
neighborhood of the critical point that it contains.

Proposition 6.6. If ζE = [B j (E), A j ′(E)] is a regular path, then the map E 7→ 2(ζE , k) belongs
to C∞(D±) and admits an asymptotic expansion in k C∞(D±)[[k−1

]]. This expansion starts as follows:

2(ζE , k)= k
(
c0(ζE)+8

(−1)
B j (E)(B j (E))−8

(−1)
A j ′ (E)

(A j ′(E))
)

+ c1(ζE)+ holδζE
(ζE)+8

(0)
B j (E)(B j (E))−8

(0)
A j ′ (E)

(A j ′(E))+ O(k−1); (16)

see Section 4E for the notation.

In order to study the behavior of the holonomy of a local path with respect to E , we use the parameter-
dependent normal form given by Proposition 5.1. Using the notation of this proposition, we will write
e j (E, k)= f j (E)+ k−1ε j (E, k). Introduce the Bargmann transform wi

k,E of vi
k,E , where

v
1,2
k,E(x)= 1R∗±

(x)|x |−1/2 exp(ike j (E, k) ln |x |),

v
3,4
k,E(x)= F−1

k

(
1R∗±

(x)(ξ)|ξ |−1/2 exp(ike j (E, k) ln |ξ |)
)
(x).

Let w̃i
k,E be a sequence having microsupport in a sufficiently small neighborhood of the origin and

microlocally equal towi
k,E on it; then w̃i

k,E is a basis of the module of microlocal solutions of Pk−e j (E, k)
near the image of the edge with label i by the symplectomorphism χE . Consequently, the section
φ
(i)
k,E = U E

k w̃
i
k,E , where U E

k is the operator used for the normal form, is a basis of the module of
microlocal solutions of (15) near the edge ei . Moreover, it displays good behavior with respect to the
spectral parameter.

Lemma 6.7. The restriction of φ(i)k,E to a neighborhood of the edge numbered i is a Lagrangian section
uniformly for E ∈ D±.
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Proof. First, we prove using a parameter-dependent stationary phase lemma that wi
k,E is a Lagrangian

section associated to the image of the i-th edge, uniformly in E ∈ D±. We conclude by the fact that the
image of a Lagrangian section depending smoothly on a parameter by a Fourier integral operator is a
Lagrangian section depending smoothly on this parameter. �

We also recall the following useful lemma.

Lemma 6.8 [Colin de Verdière and Vũ Ngo. c 2003, Lemma 2.18]. Set β j (E, k)= 1
2 + ike j (E, k) and

ν+j =
( k

2π

)1/2
0(β j ) exp

(
−β j ln k− iβ j

π

2

)
,

ν−j =
( k

2π

)1/2
0(β j ) exp

(
−β j ln k+ iβ j

π

2

)
,

so that

Mk(e j (E, k))=
(
ν+j (E, k) ν−j (E, k)
ν j
−(E, k) ν j

+(E, k)

)
where Mk was defined in (7). Then, for any E ∈ I±,

−i ln ν±j = k
(

f j (E) ln | f j (E)| − f j (E)
)
+ ε

(0)
j (E) ln | f j (E)| ∓

π

4
+ OE(k−1).

The following proposition shows that the holonomy 2(ζE , k), which has a singular behavior as E
tends to 0, can be regularized.

Proposition 6.9. Fix a component p± ∈C±, and let ζE =[A j (E), B j (E)] be a local path near the critical
point s j . Assume moreover that ζE is oriented according to the flow of a0. Then there exists a sequence
of R/2πZ-valued functions gζ ( · , k) ∈ C∞(D±), E 7→ gζE (k), admitting an asymptotic expansion in
k C∞(D±)[[k−1

]] of the form

gζ (E, k)=
+∞∑
`=−1

k−`g(`)ζ (E),

such that
gζ (E, k)=2(ζE , k)− i ln ν±j (E) (mod 2πZ) for all E ∈ I±.

The first terms of the asymptotic expansion of gζ ( · , k) are given, for E ∈ I±, by

g(−1)
ζ (E)= c0(ζE)+

(
f j (E) ln | f j (E)| − f j (E)

)
+8

(−1)
A j (E)(A j (E))−8

(−1)
B j (E)(B j (E)) (17)

and

g(0)ζ (E)= c1(ζE)+ holδζE
(ζE)∓

π

4
+ ε0

j (E) ln | f j (E)| +8
(0)
A j (E)(A j (E))−8

(0)
B j (E)(B j (E)). (18)

Proof. We can assume that the paths ζE , E ∈ D± all entirely lie in the open set �s j where the normal
form of Proposition 5.1 is valid. Endow each edge ei with the section φ(i)k,E defined earlier; by Lemma 6.7,
these sections can be used to compute a new holonomy 2̃(ζE , k). But we know how the different
sections φ(i)k,E are related: (7) shows that 2̃(ζE , k)− i ln ν±j (E)= 0. Now, coming back to the microlocal
solutions u A j , u B j , we have that 2(ζE , k) = 2̃(ζE , k)+ c(E, k), where c(E, k) admits an asymptotic
expansion in k C∞(D±)[[k−1

]]. �
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Since the sections φ(i)k,E , i = 1 . . . 4, form a standard basis at s j , they can also be used to compute the
holonomy holL. Of course, for this choice of sections, one has holL(ζ0)= 1. This allows to obtain the
following result.

Proposition 6.10. Let γ be a cycle in 00, oriented according to the Hamiltonian flow of a0, and of the
form

γ = ζ loc
1 (0)ζ reg

1 (0)ζ loc
2 (0)ζ reg

2 (0) · · · ζ loc
p (0)ζ reg

p (0),

where ζ loc
j and ζ reg

j are local and regular paths, respectively, in the sense introduced earlier. Define

g(0, k)∼
+∞∑
`=−1

g(`)(0)k−`

as the sum
g(0, k)= gζ loc

1
(0, k)+ gζ reg

1
(0, k)+ · · ·+ gζ loc

p
(0, k)+ gζ reg

p
(0, k),

where gζ loc
j

is given by Proposition 6.9 and gζ reg
j
(E, k)=2(ζ reg

j (E), k). Then

holL(γ )= exp(ig(0, k))+ O(k−∞).

Proof. Notice that g̃ζ loc
j
(0, k) = 0, where g̃ζ loc

j
( · , k) is defined as gζ loc

j
( · , k), replacing 2(ζ loc

j , k)
by 2̃(ζ loc

j , k), and hence holL(ζ loc
j (0)) = exp(i g̃ζ loc

j
(0, k)). As in the previous proof, come back to

the solutions u A j , u B j , and set

c j (E, k)= gζ loc
j
(E, k)− g̃ζ loc

j
(0, k).

Putting g̃ζ reg
j
(E, k)= 2̃(ζ reg

j (E), k), a simple computation shows that

p∑
j=1

g̃ζ reg
j
(E, k)=

p∑
j=1

(gζ reg
j
(E, k)+ c j (E, k)),

and the conclusion follows. �

This is enough to prove the second part of Theorem 6.4, recalled in the following corollary.

Corollary 6.11. The first two terms in the asymptotic expansion of the phase of holL(γ ) are given by (14).

Note that γ cannot always be obtained as a limit of smooth families of regular cycles; consider for
instance the cycles γ1, γ2, γ3 in the example treated in Section 7C (see Figures 13, 14). This is why the
proof of this result requires some care.

Proof. We start with the case of a cycle γ oriented according to the Hamiltonian flow of a0. Since
e0

j (0)= 0, formula (17) gives, for j ∈ [[1, p]],

g(−1)
ζ loc

j
(0)= c0(ζ

loc
j (0))+8(−1)

A j
(A j (0))−8

(−1)
B j

(B j (0)),

while Proposition 6.6 shows that (identifying j = p+ 1 with j = 1)

g(−1)
ζ

reg
j
(0)= c0(ζ

reg
j (0))+8(−1)

B j
(B j (0))−8

(−1)
A j+1

(A j+1(0)).
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Consequently,

g(−1)(0)= c0(γ ).

Let us now compute the subprincipal term g(0)
ζ loc

j
(0). Recall that it is equal to the limit of

c1(ζ
loc
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))∓ π

4
+ ε

(0)
j (E) ln | f j (E)| +8

(0)
A j (E)(A j (E))−8

(0)
B j (E)(B j (E))

as E goes to 0, which is equal to

8
(0)
A j (0)(A j (0))−8

(0)
B j (0)(B j (0))∓

π

4
+ lim

E→0

(
c1(ζ

loc
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))+ ε(0)j (E) ln | f j (E)|

)
.

First, we show that

lim
E→0

(
c1(ζ

loc
j (E))+ ε(0)j (E) ln | f j (E)|

)
= c̃1(ζ

loc
j (0)), (19)

where c̃1 was introduced in Definition 6.2. Decompose

c1(ζ
loc
j (E))=

∫
ζ loc

j (E)
ν+

∫
ζ loc

j (E)
κE ,

where we recall that −iν stands for the local connection 1-form associated to the Chern connection of L1,
and κE is such that κE(Xa0)=−a1. Of course, the term

∫
ζ loc

j (E) ν converges to
∫
ζ loc

j (0) ν as E tends to 0.
Moreover, we have seen that there exist a symplectomorphism χE and a smooth function gE

j such that
(gE

j )
′(0) > 0 and

(a0 ◦χ
−1
E )(x, ξ)− E = gE

j (xξ). (20)

Hence, if we denote by ã0 (resp. ã1, κ̃E ) the pullback of a0 (resp. a1, κE ) by χ−1
E , we have

X ã0(x, ξ)= (g
E
j )
′(xξ)Xxξ (x, ξ),

so that κ̃E is characterized by

κ̃E(Xxξ )=
−ã1(x, ξ)
(gE

j )
′(xξ)

.

Since (gE
j )
′(0) 6= 0, the function

b(x, ξ)=
−ã1(x, ξ)
(gE

j )
′(xξ)

is smooth (considering a smaller neighborhood of s j for the definition of ζ loc
j if necessary). Moreover,

from (20), one finds that (gE
j )
′(0)= |det(Hess(a0)(s))|−1/2, which yields b(0)= ε(0)j (0). Using a known

result (see [Guillemin and Schaeffer 1977, Theorem 2, p. 175] for instance), we can construct smooth
functions F : R2

→ R and K : R→ R such that

b(x, ξ)= K (xξ)− L Xxξ F(x, ξ);

since xξ = f j (E) whenever χ−1
E (x, ξ) belongs to 0E , this can be written

b(x, ξ)= K ( f j (E))− L Xxξ F(x, ξ).
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Therefore, the function

G = K ( f j (E)) ln |x | − F (or − K ( f j (E)) ln |ξ | − F where x = 0)

restricted to χ(0E) is a primitive of κ̃E . This yields∫
ζ loc

j (E)
κE = G(B̃ j )−G( Ã j )= K ( f j (E))(ln |xB j | − ln |xA j |)+ F(( Ã j )− F(B̃ j ), (21)

where m̃ = χE(m) for any point m ∈ M , and (xm, ξm) are the coordinates of m̃ (E being implicit to
simplify notation). Writing ln |xB j | − ln |xA j | = ln |xB j ξA j | − ln |xA j ξA j |, we obtain∫
ζ loc

j (E)
κE + ε

(0)
j (E) ln | f j (E)|

= F( Ã j )− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j | + (ε
(0)
j (E)− K ( f j (E))) ln | f j (E)|.

By definition of K , b(0)− K (0)= 0, hence K ( f j (E))= b(0)+ O( f j (E))= ε
(0)
j (0)+ O( f j (E)). Thus,

the term (ε
(0)
j (E)− K ( f j (E))) ln | f j (E)| tends to zero as E tends to zero; this induces

lim
E→0

∫
ζ loc

j (E)
κE + ε

(0)
j (E) ln | f j (E)| = F( Ã j )− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j |

(one must keep in mind that in this formula, we should write Ã j = Ã j (0), etc.). Now, if a and b are
points on ζ loc

j (0) located in [A j , sm j ] and [sm j , B j ], respectively, then the term on the right-hand side of
the previous equation is equal to

I = lim
a,b→s j

(
F( Ã j )− F(ã)+ F(b̃)− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j |

)
.

Using (21), it is easily seen that

I = lim
a,b→s j

(∫
[A j ,a]

κE +

∫
[b,B j ]

κE + ε
(0)
j (0) ln |xbξa|

)
.

Remembering Definition 6.2, this proves (19). Since g(0)
ζ loc

j
and the quantities

8
(−1)
A j

(A j )−8
(−1)
B j

(B j ) and 8
(0)
A j
(A j )−8

(0)
B j
(B j )

are continuous at E = 0, the term
holδ

ζ loc
j (E)

(ζ loc
j (E))

is continuous at E = 0. Hence, if we sum up all the contributions from regular and local paths, we
finally obtain

g(0)(γ )= c̃1(γ )+

p∑
m=1

ρmπ

4
+ `(γ ),

where ρm and c̃1 were introduced in Definitions 6.3 and 6.2, respectively, and `(γ ) is the quantity

`(γ )=

p∑
j=1

(
holδ

ζ
reg
j (0)

(ζ
reg
j (0))+ lim

E→0
holδ

ζ loc
j (E)

(ζ loc
j (E))

)
;
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ηj(E)

ζ loc
j (E)

γ

νj(E)

Aj(0)

γ

Aj(0)

ζ loc
j (E)

τj(E)

ζreg
j (E)

τj(E)

Figure 3. Computation of `(γ ).

it is not hard to show that `(γ ) is independent of the choice of the local and regular paths. Furthermore,
let ε be the index of any smooth embedded cycle which is a continuous deformation of γ . If the regular
and local paths can be chosen so that they all lie in the same connected component γE of 0E , it is clear
that `(γ )= ε, because for E 6= 0,

p∑
j=1

(
holδ

ζ
reg
j (E)

(ζ
reg
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))

)
= ε(γE)= ε.

If it is not the case, we remove a small path η j (E) of ζ reg
j (E) at any point A j or B j where there is a

change of connected component, and replace it by a smooth path ν j (E) connecting ζ reg
j (E) and ζ loc

j (E)
(see Figure 3). We obtain a smooth path γ̃ (E); on the one hand, one has ε(γ̃ (E))= ε. On the other hand,
ε(γ̃ (E)) is the sum of the holonomies of the paths composing γ̃ (E). But, if we denote by τ j (E) the part
of ζ reg

j (E) that remains when we remove η j (E), we have

holδτ j (E)
(τ j (E))= holδ

ζ
reg
j (E)

(ζ
reg
j (E))− holδη j (E)

(η j (E)),

which implies

holδτ j (E)
(τ j (E))+ holδν j (E)

(ν j (E))−→
E→0

holδ
ζ

reg
j (0)

(ζ
reg
j (0))

because

holδν j (E)
(ν j (E))− holδη j (E)

(η j (E))−→
E→0

0.

This shows that `(γ )= ε, which concludes the proof for this first case, where γ is oriented according to
the Hamiltonian flow of a0.

If the orientation of the cycle γ is opposite to the one of the flow of Xa0 , we only have to change the
sign of the holonomy.

It remains to investigate the case where there are some paths in γ oriented according to the flow of Xa0

and some oriented in the opposite direction, which means γ is smooth at some critical point s. We can
use the analysis above by introducing two local paths ζ loc

1 and ζ loc
2 at s as in Figure 4 (we make a small

move forwards and backwards on an edge added to γ ); one can obtain the claimed result by looking
carefully at the obtained holonomies, remembering that the two paths have opposite orientation on the
added edge. Note that the choice of the added edge does not change the result. �
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γs

ζ loc
1

ζ loc
2

Figure 4. Case of a cycle γ , smooth at s.

6D. Derivation of the Bohr–Sommerfeld conditions. The previous results allow to compute the spec-
trum of Ak in an interval of size O(1) around the singular energy. Indeed, let γE , E ∈ I± be a connected
component of the level a−1

0 (E) and γ be the cycle in 00 obtained by letting E go to 0. Then one can
choose the local and regular paths used to compute the holonomy holL(γ ) so that they all lie on γE , and
define g(E, k) as the sum

g(E, k)= gζ loc
1
(E)+ gζ reg

1
(E)+ · · ·+ gζ loc

p
(E)+ gζ reg

p
(E).

Furthermore, the matrix of change of basis associated to the sections φ(i)k,E is given by

T j (E)= exp
(
−

iπ
4

)
Ek(ke j (E, k))

(
1 i exp(−kπe j (E, k))

i exp(−kπe j (E, k)) 1

)
,

where the function Ek is defined in (9). To compute eigenvalues near E , apply Theorem 6.1 with T j

replaced by T j (E) and holL(γ ) by exp(ig(E, k)). Applying Stirling’s formula, we obtain

T j (E)= exp(ikθ(E, k))
(

1 0
0 1

)
+ O(k−1), f j (E) > 0,

and

T j (E)= exp(ikθ(E, k))
(

0 i
i 0

)
+ O(k−1), f j (E) < 0,

with θ(E, k)= f j (E) ln | f j (E)| − f j (E)+ k−1(ε
(0)
j (E) ln | f j (E)| −π/4). Together with equations (17)

and (18), this ensures that we recover the usual Bohr–Sommerfeld conditions away from the critical energy.
In the rest of the paper, we will look for eigenvalues of the form k−1e+ O(k−2), where e is allowed

to vary in a compact set. Hence, we have to replace Ak by Ak − k−1e; this operator still has principal
symbol a0, but its subprincipal symbol is a1− e. Thanks to Theorem 6.4, we are able to compute the
singular holonomy and the invariants ε j up to O(k−2); hence, we approximate the spectrum up to an
error of order O(k−2).

6E. The case of a unique saddle point. If 00 contains a unique saddle point, it is not difficult to write
the Bohr–Sommerfeld conditions in a more explicit form. The critical level 00 looks like a figure eight.
We choose the convention for the cut edges and cycles as in Figure 5.
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γ2

1

4
γ1

s
2

3

Figure 5. The singular level 00 = a−1
0 (0) and the choice of cut edges and cycles.

Let s be the saddle point, and let ε(e, k) be the invariant associated to the operator Ak − k−1e at s;
one has ε(0)(e)= ε(0)(0)+ e |det(Hess(a0)(s))|−1/2. Denote by h j (e, k)= exp(iθ j (e, k)) the holonomy
of the loop γ j in L; remember that θ j is given by

θ j (e, k)= k c0(γ j )+ c̃1(γ j )+ ε̃(γ j )π + O(k−1).

The Bohr–Sommerfeld conditions are given by the holonomy equations

x4 = h2x1, x3 = h1x2,

and by the transfer relation at the critical point( x3
x4

)
= T

( x1
x2

)
,

where T = T (ε) is defined in (8). Using Lemma 2 of [Colin de Verdière and Parisse 1994b], the
quantization rule can in fact be written as a real scalar equation.

Proposition 6.12. The equation Akuk = k−1e uk + O(k−∞) has a normalized eigenfunction if and only
if e satisfies the condition

1√
1+ exp(2πε)

cos
(
θ1− θ2

2

)
= sin

(
θ1+ θ2

2
+
π

4
+ ε ln k− arg0

( 1
2 + iε

))
, (22)

where we wrote for the sake of brevity θ j , ε instead of θ j (e, k), ε(e, k) (see definitions above).

7. Examples

We conclude by investigating two examples on the torus and one on the sphere; these examples present
various topologies. More precisely, using the terminology of [Oshemkov 1994; Bolsinov and Fomenko
2004] for atoms (neighborhoods of singular levels of Morse functions), we provide an example of a
type B atom — the only type in complexity 1 (here, complexity means the number of critical points
on the singular level) in the orientable case — and two examples of atoms of complexity 2: one is of
type C2 (xy on the sphere S2) and the other is of type C1 (Harper’s Hamiltonian on the torus T2). It is a
remarkable fact that these two examples are natural not only as the canonical realization of the atom on a
surface but also because they come from the simplest possible Toeplitz operators with critical level of
given type.
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Note that there are two other types of atoms of complexity 2 in the orientable case (more precisely, types
D1 and D2); it would be interesting to realize each of them as a hyperbolic level of the principal symbol
of a selfadjoint Toeplitz operator and to complete this study. Note that in the context of pseudodifferential
operators, Colin de Verdière and Parisse [1999] treated the case of a type D1 atom (the triple well potential)
among some other examples. More generally, one could use the classification of Bolsinov, Fomenko and
Oshemkov to write the Bohr–Sommerfeld conditions for all cases in low complexity (≤ 3 for instance);
however, the case of two critical points already gives rise to rather tedious computations.

The details of the quantization of the torus and the sphere are quite standard. Nevertheless, for the
sake of completeness, we will recall a few of them at the beginning of each paragraph.

7A. Height function on the torus. Firstly, we consider the quantization of the height function on the
torus. This is one of the first examples in Morse theory, perhaps because this is the simplest and most
intuitive example with critical points of each type. In particular, the description of the two hyperbolic
levels is quite simple.

Endow R2 with the linear symplectic form ω0 and let L0 → R2 be the complex line bundle with
Hermitian form and connection defined in Section 2D3. Let K be the canonical line of R2 with respect
to its standard complex structure j : K = {α ∈ (R2)∗⊗C | α( j · ) = iα}. Choose a half-form line, that
is, a complex line δ with an isomorphism ϕ : δ⊗2

→ K . There is a natural scalar product on K such
that the square of the norm of α is iα∧ ᾱ/ω0; endow δ with the scalar product 〈 · , · 〉δ such that ϕ is an
isometry. The half-form bundle we work with, that we still denote by δ, is the trivial line bundle with
fiber δ over R2.

Consider a lattice 3 with symplectic volume 4π . The Heisenberg group H = R2
×U (1) with product

(x, u) · (y, v)=
(

x + y, uv exp
( i

2
ω0(x, y)

))
acts on the bundle L0→R2, with action given by the same formula. This action preserves the prequantum
data, and the lattice 3 injects into H ; therefore, the fiber bundle L0 reduces to a prequantum bundle L
over T2

= R2/3. The action extends to the fiber bundle Lk
0 by

(x, u) · (y, v)=
(

x + y, ukv exp
( ik

2
ω0(x, y)

))
.

We let the Heisenberg group act trivially on δ. We obtain a half-form bundle δ̃ over T2 and an action

T ∗ :3→ End(C∞(R2, Lk
0⊗ δ)), u 7→ T ∗u .

The Hilbert space Hk = H 0(M, Lk
⊗ δ̃) can naturally be identified with the space H3,k of holomorphic

sections of Lk
0⊗ δ→ R2 which are invariant under the action of 3, endowed with the Hermitian product

〈ϕ,ψ〉 =

∫
D
〈ϕ,ψ〉δ |ω0|,

where D is the fundamental domain of the lattice. Furthermore, 3/2k acts on H3,k . Let e and f be
generators of3 satisfying ω0(e, f )= 4π ; one can show that there exists an orthonormal basis (ψ`)`∈Z/2kZ
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Figure 6. Height function on the torus.

of H3,k such that

T ∗e/2kψ` = w
`ψ`

T ∗f/2kψ` = ψ`+1

}
for all ` ∈ Z/2kZ,

with w = exp(iπ/k). The sections ψ` can be expressed in terms of 2 functions.
Set Mk = T ∗e/2k and Lk = T ∗f/2k . Let (q, p) be coordinates on R2 associated to the basis (e, f ) and
[q, p] be the equivalence class of (q, p). Both Mk and Lk are Toeplitz operators, with respective principal
symbols [q, p] 7→ exp(2iπp) and [q, p] 7→ exp(2iπq), and vanishing subprincipal symbols. For more
details, see for instance [Charles and Marché 2011, §2.2, §3.1].

It is a well-known fact that T2 is diffeomorphic to the surface shown in Figure 6, which is obtained by
rotating a circle of radius r around a circle of radius R > r contained in the yz plane; the diffeomorphism
is given by the explicit formulas

x = r sin(2πq), y = (R+ r cos(2πq)) cos(2πp), z = (R+ r cos(2πq)) sin(2πp).

Hence, the Hamiltonian that we consider is

a0(q, p)= (R+ r cos(2πq)) sin(2πp)

on the fundamental domain D. We try to quantize it, that is, find a selfadjoint Toeplitz operator Ak with
principal symbol a0. The Toeplitz operators

Bk =
1
2i
(Mk −M∗k ), Ck = R5k +

r
2
(Lk + L∗k),

are selfadjoint, and

σnorm(Bk)= sin(2πp)+ O(h̄2), σnorm(Ck)= R+ r cos(2πq)+ O(h̄2).
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Hence Ak =
1
2(BkCk +Ck Bk) is a selfadjoint Toeplitz operator with normalized symbol a0+ O(h̄2). Its

matrix in the basis (ψ`)`∈Z/2kZ is written as

Rα0
r
4(α0+α1) 0 · · · 0 r

4(α2k−1+α0)
r
4(α0+α1) Rα1

r
4(α1+α2) 0 · · · 0

0 r
4(α1+α2) Rα2

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . Rα2k−2

r
4(α2k−2+α2k−1)

r
4(α0+α2k−1) 0 · · · 0 r

4(α2k−2+α2k−1) Rα2k−1


(23)

with α` = sin(`π/k).
The level0R−r =a−1

0 (R−r) contains one hyperbolic point s=
(1

2 ,
1
4

)
. It is the union of the two branches

p = 1
2π

arcsin R−r
R+r cos(2πq)

and p = 1
2
−

1
2π

arcsin R−r
R+r cos(2πq)

.

The Hamiltonian vector field associated to a0 is given by

Xa0(q, p)= 1
2
(R+ r cos(2πq)) cos(2πp) ∂

∂q
+

r
2

sin(2πq) sin(2πp) ∂
∂p
.

Moreover, one has

ε(0) =
e

π
√

r(R− r)
. (24)

We choose the cycles γ1 and γ2 with the convention given in Section 6E. We have to compute the
principal and subprincipal actions of γ1, γ2 and their indices ε̃. Let us detail the calculations in the case
of γ1.

We parametrize γ1 by

q 7→
(

q, 1
2
−

1
2π

arcsin R−r
R+r cos(2πq)

)
.

The principal action is given by

c0(γ1)= 2I (R, r)− 2π, (25)

where I (R, r) is the integral

I (R, r)=
∫ 1

0
arcsin R−r

R+r cos(2πq)
dq;

unfortunately, we do not know any explicit expression for this integral, so for numerical computations,
once the radii R and r are fixed, we obtain the value of I (R, r) thanks to numerical integration routines.

On γ1, the subprincipal form reads

κ0 =
−2e dq√

(R+ r cos(2πq))2− (R− r)2
.
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Figure 7. Eigenvalues in [R−r−10k−1, R−r+10k−1
]; in red diamonds, the eigenvalues

of Ak obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr–Sommerfeld conditions. The results are indexed with respect to the eigenvalue
closest to the critical energy, labeled as 0. Even for k = 10, the method is very accurate.

One can obtain an explicit primitive thanks to any computer algebra system. Furthermore, some computa-
tions show that the symplectic area of the parallelogram Ra,b is equal to∫

Ra,b

ω = 8π
√

r
R−r

(
qa −

1
2

)(1
2 − qb

)
.

This yields the following value for the subprincipal action:

c̃1(γ1)= ε
(0) ln

(
32
π

√
r
R

(
1− r

R

))
. (26)

Finally, the index associated to half-forms is ε̃(γ1)=
1
4 . For γ2, one can check that

c0(γ2)= 2I (R, r), c̃1(γ2)= ε
(0) ln

(
32
π

√
r
R

(
1− r

R

))
, ε̃(γ2)=

1
4 . (27)

With this data, one can test the Bohr–Sommerfeld condition for different pairs (R, r). We illustrate
this with (R, r)= (4, 1) (note that we have tested several pairs). We compare the eigenvalues obtained
numerically from the matrix (23) and the ones derived from the Bohr–Sommerfeld conditions (22) in
the interval I = [R − r − 10k−1, R − r + 10k−1

]. In Figure 7, we plot the theoretical and numerical
eigenvalues; Figure 8 shows the error between the eigenvalues and the solutions of the Bohr–Sommerfeld
conditions for fixed k, while Figure 9 is a graph of the logarithm of the maximal error in the interval I as
a function of ln k.

7B. x y on the 2-sphere. Let us consider another simple example, but this time with two saddle points
on the critical level. We will quantize the Hamiltonian a0(x, y, z)= xy on the sphere S2. Let us briefly
recall the details of the quantization of this surface.
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Figure 8. Absolute value of the difference between the numerical and theoretical eigen-
values; the error is smaller near the critical energy (R− r = 3 in this case).
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Figure 9. Logarithm of the maximal error as a function of the logarithm of k; the error
displays a behavior in O(k−2), as expected.

Start from the complex projective plane CP1 and let L = O(1) be the dual bundle of the tautological
bundle

O(−1)= {(u, v) ∈ CP1
×C2

| v ∈ u},

with natural projection. L is a Hermitian, holomorphic line bundle; let us denote by ∇ its Chern
connection. The 2-form ω = i curv(∇) is the symplectic form on CP1 associated with the Fubini–Study
Kähler structure, and L → CP1 is a prequantum bundle. Moreover, the canonical bundle is naturally
identified with O(−2), hence one can choose the line bundle δ = O(−1) as a half-form bundle. The state
space Hk = H 0(CP1, Lk

⊗ δ) can be identified with the space Cpk [z1, z2] of homogeneous polynomials
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of degree pk = k− 1 in two variables. The polynomials

P`(z1, z2)=

√
(pk + 1)

(pk
`

)
2π

z`1z pk−`

2 , 0≤ `≤ pk,

form an orthonormal basis of Hk . The sphere S2
= {(x, y, z) ∈ R3

| x2
+ y2
+ z2
= 1} is diffeomorphic

to CP1 via the stereographic projection (from the north pole to the plane z = 0). The symplectic form ω

on CP1 is carried to the symplectic form ωS2 =−
1
2�, with � the usual area form on S2 (the one which

gives the area 4π ). The operator Ak acting on the basis (P`)0≤`≤pk by

Ak P` =
i
p2

k
(α`,k P`−2−β`,k P`+2),

with

α`,k =
√
`(`− 1)(pk − `+ 1)(pk − `+ 2)

and

β`,k =
√
(`+ 1)(`+ 2)(pk − `− 1)(pk − `),

is a Toeplitz operator with principal symbol a0(x, y, z)= xy and vanishing subprincipal symbol (for more
details, one can consult [Bloch et al. 2003, §3] for instance). Note that α`,k = βpk−`,k , which implies that
if λ is an eigenvalue of Ak , then −λ is also.

The level a−1
0 (0) is critical, and contains two saddle points: the poles N (north) and S (south). It is

the union of the two great circles x = 0 and y = 0. We choose the cut edges and cycles as indicated in
Figure 10.

x1

γ3

y2
y1

N

S

x4

y4 y3

x2

γ1

x3

γ2

Figure 10. Choice of the cycles and cut edges.
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Set h j = holL(γ j )= exp(iθ j ); remember that θ j = kc0(γ j )+ c̃1(γ j )+ ε̃(γ j )π+O(k−1). The holonomy
equations read

y2 = x3, y4 = h1x1, y3 = h2x2, x4 = h3 y1, (28)

while the transfer equations are given by( x3
x4

)
= TS

( x1
x2

)
,

( y3
y4

)
= TN

( y1
y2

)
. (29)

The system (28) + (29) has a solution if and only if the matrix

U = TS

(
0 exp(−iθ1)

exp(−iθ2) 0

)
TN

(
0 exp(−iθ3)

1 0

)
admits 1 as an eigenvalue. The matrix U is unitary, and if we write U =

(a
c

b
d

)
, a straightforward

computation shows that

|a|2 = |d|2 =
1− 2 cos(θ2− θ1) exp(−π(εS + εN ))+ exp(−2π(εS + εN ))

(1+ exp(−2πεS))(1+ exp(−2πεN ))
;

hence, by Lemma 2 of [Colin de Verdière and Parisse 1994b], 1 is an eigenvalue of U if and only if

|a| sin
(arg(ad)−π

2
− arg a

)
= sin

(arg(ad)−π
2

)
.

This amounts to the equation

|a| cos
(arg z− argw

2

)
= sin

(arg z+ argw
2

+ arg0
(1

2 + iεN
)
+ arg0

( 1
2 + iεS

)
− (εS + εN ) ln k

)
,

with

z = exp(−i(θ2+ θ3))− exp(−π(εS + εN )− i(θ1+ θ3))

and

w = exp(−iθ1)− exp(−π(εN + εS)− iθ2).

One has

ε
(0)
S = ε

(0)
N = ε

(0)
=

e
2
. (30)

Moreover, the principal actions are

c0(γ1)=−
π

2
, c0(γ2)=

π

2
, c0(γ3)= π. (31)

Then, one finds for the subprincipal actions

c̃1(γ1)= 2ε(0) ln 2= c̃1(γ2), c̃1(γ3)= 0. (32)

Finally, the indices ε̃ are

ε̃(γ1)=
3
2 , ε̃(γ2)=

1
2 , ε̃(γ3)= 1. (33)
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Figure 11. Eigenvalues in [−2k−1, 2k−1
]; in red diamonds, the eigenvalues of Ak

obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr–Sommerfeld conditions.

Figure 11 shows the theoretical eigenvalues obtained by using these results, as well as the numerical
evaluation of the eigenvalues of Ak from its matrix form.

7C. Harper’s Hamiltonian on the torus. Keeping the conventions and notation of the first example,
we consider the Hamiltonian (sometimes known as Harper’s Hamiltonian since it is related to Harper’s
equation [Helffer and Sjöstrand 1988])

a0(q, p)= 2(cos(2πp)+ cos(2πq))

on the torus. The operator Ak = Mk +M∗k + Lk + L∗k is a Toeplitz operator with principal symbol a0 and
vanishing subprincipal symbol. Its matrix in the basis (ψ`)`∈Z/2kZ is

2α0 1 0 . . . 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 . . . 0 1 2α2k−1


where

α` = cos `π
k
, 0≤ `≤ 2k− 1.

The critical level 00 = a−1
0 (0) contains two hyperbolic points: s1 =

(
0, 1

2

)
and s2 =

( 1
2 , 0

)
. On the

fundamental domain, it is the union of the four segments described in Figure 12; hence, its image on the
torus it is the union of two circles that intersect at two points.
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Figure 12. Critical level 00 on the fundamental domain; the arrows indicate the direction
of the Hamiltonian flow of a0.
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Figure 14. Cycles on the fundamental domain.
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Figure 15. Eigenvalues in [−10k−1, 10k−1
]; in red diamonds, the eigenvalues of Ak

obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr–
Sommerfeld conditions.

We choose the cycles and cut edges as in Figure 13 (for a representation of the two circles in a
two-dimensional view) and Figure 14 (for a representation of the cycles on the fundamental domain).

We write the holonomy equations

y1 = x3, y3 = h1x2, y4 = h2x1, x4 = h3 y1, (34)

and the transfer equations ( x3
x4

)
= T2

( x1
x2

)
,

( y3
y4

)
= T1

( y1
y2

)
, (35)

where h j = holL(γ j ) = exp(iθ j ). Following the same steps as in the previous example, one can show
that the system (34) + (35) has a solution if and only if e is a solution of the scalar equation

|a| cos
(argw− arg z

2

)
= cos

(arg z+ argw
2

+ arg0
( 1

2 + iε1
)
+ arg0

( 1
2 + iε2

)
− (ε1+ ε2) ln k

)
,

with

|a|2 =
exp(−2πε1)+ exp(−2πε2)+ 2 cos(θ2− θ1) exp(−π(ε1+ ε2))

(1+ exp(−2πε1))(1+ exp(−2πε2))
,

w = exp(−πε2− i(θ2+ θ3))+ exp(−πε1− i(θ1+ θ3)),

and
z = exp(−πε1− iθ2)+ exp(−πε2− iθ1).

Moreover, one has
ε
(0)
1 = ε

(0)
2 =

e
2π
:= ε(0). (36)

It remains to compute the quantities θ j (up to O(k−1)). The principal actions are easily computed:

c0(γ1)=−π, c0(γ2)= 3π, c0(γ1)=−2π. (37)
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Furthermore, one can check that the subprincipal actions are given by

c̃1(γ1)= 2ε(0) ln 8
π
= c̃1(γ2), c̃1(γ3)= 0. (38)

Finally, one has
ε̃(γ1)= ε̃(γ2)= ε̃(γ3)= 0. (39)

The results thus obtained are displayed in Figure 15.
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RESOLVENT ESTIMATES FOR THE MAGNETIC SCHRÖDINGER OPERATOR

GEORGI VODEV

We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form

G =−1+ ib(x) · ∇ + i∇ · b(x)+ V (x)

on L2(Rn), n ≥ 3, where b(x) and V (x) are large magnetic and electric potentials, respectively.

1. Introduction and statement of results

Let 1 be the (negative) Euclidean Laplacian on Rn . It is well-known that the self-adjoint realization G0

of the operator −1 on L2(Rn) has an absolutely continuous spectrum consisting of the interval [0,+∞)
and satisfies the resolvent estimate∥∥〈x〉−s∂α1

x (G0− λ
2
± iε)−1∂α2

x 〈x〉
−s
∥∥

L2→L2 ≤ Cλ|α1|+|α2|−1, λ≥ 1, (1-1)

for all multi-indices α1 and α2 such that |α1| + |α2| ≤ 2, where s > 1
2 , 0< ε ≤ 1, and the constant C > 0

does not depend on λ or ε. The same estimate still holds (see [Cardoso and Vodev 2002; Rodnianski
and Tao 2011], for example) for λ large enough for perturbations of the form −1+ V (x), where V is a
real-valued function satisfying the conditions below. Note that (1-1) for α1 = α2 = 0 together with the
ellipticity of the operator G0 imply that the estimate (1-1) holds for all multi-indices α1 and α2 such that
|α1| + |α2| ≤ 2. This fact remains valid for more general elliptic perturbations of −1.

The purpose of this work is to prove an analogue of (1-1) for perturbations by large magnetic and
electric potentials, extending the recent results in [Cardoso et al. 2013; 2014a] to a larger class (most
probably optimal) of magnetic potentials. More precisely, we study the high-frequency behavior of the
resolvent of self-adjoint operators of the form

G =−1+ ib(x) · ∇ + i∇ · b(x)+ V (x) on L2(Rn), n ≥ 3,

where b= (b1, . . . , bn) ∈ L∞(Rn
;Rn) is a magnetic potential and V ∈ L∞(Rn

;R) is an electric potential.
Hereafter, the operator ∇ · b is defined by (∇ · b)u = ∇ · (bu). Introduce the polar coordinates r = |x |,
w= x/|x | ∈Sn−1. We suppose that b(x)= bL(x)+bS(x), V (x)= V L(x)+V S(x) with long-range parts
bL and V L belonging to C1([r0,+∞)), r0� 1 with respect to the radial variable r and satisfying the

MSC2010: 47A10.
Keywords: magnetic potential, resolvent estimates.
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conditions

|V L(rw)| ≤ C, (1-2)

∂r V L(rw)≤ Cr−1−δ, (1-3)

|∂k
r bL(rw)| ≤ Cr−k−δ, k = 0, 1, (1-4)

for all r ≥ r0, w ∈ Sn−1, with some constants C, δ > 0. The short-range parts satisfy

|bS(x)| + |V S(x)| ≤ C〈x〉−1−δ. (1-5)

Note that in the case bL
≡ 0, V L

≡ 0 and bS , V S satisfying (1-5), the operator G has an absolutely
continuous spectrum consisting of the interval [0,+∞) with no strictly positive eigenvalues (see [Koch
and Tataru 2006]). It follows from our result below that in the more general case when the long-range
parts are not identically zero the spectrum of the operator G has a similar structure in an interval of the
form [a,+∞) with some constant a > 0. Our main result is the following:

Theorem 1.1. Under the conditions (1-2)–(1-5), for every s > 1
2 there exist constants C, λ0 > 0 so that

for λ≥ λ0, 0< ε ≤ 1, |α1|, |α2| ≤ 1, we have the estimate∥∥〈x〉−s∂α1
x (G− λ

2
± iε)−1∂α2

x 〈x〉
−s
‖L2→L2 ≤ Cλ|α1|+|α2|−1. (1-6)

This kind of resolvent estimates plays an important role in proving uniform local energy decay,
dispersive, smoothing and Strichartz estimates for solutions to the corresponding wave and Schrödinger
equations (see [Cardoso et al. 2013; 2014b; Erdoğan et al. 2009], for example). In particular, it follows
from the above theorem that the smoothing and Strichartz estimates for solutions to the corresponding
Schrödinger equation proved in [Erdoğan et al. 2009] hold true without the continuity condition on the
magnetic potential.

Theorem 1.1 is proved in [Cardoso et al. 2013] assuming additionally that bS(x) is continuous with
respect to the radial variable r uniformly in w. In the case bL

≡ 0, V L
≡ 0 and bS , V S satisfying (1-5), the

estimate (1-6) is proved in [Erdoğan et al. 2009] under the extra assumption that b(x) is continuous in x .
In fact, no continuity of the magnetic potential is needed in order to have (1-6), as shown in [Cardoso
et al. 2014a]. Instead, it was supposed in [Cardoso et al. 2014a] that div bL and div bS exist as functions
in L∞. This assumption allows us to conclude that the perturbation (which is a first-order differential
operator) sends the Sobolev space H 1 into L2, a fact used in an essential way in [Cardoso et al. 2014a].
Thus, our goal in the present paper is to remove this technical condition on the magnetic potential. To this
end, we propose a new approach inspired by the global Carleman estimates proved recently in [Datchev
2014] in a different context. In what follows we will describe the main points of our proof.

There are two main difficulties in proving the above theorem. The first one is that, under our assumptions,
the commutator of the gradient and the magnetic potential is not an L∞ function. Consequently, the
perturbation does not send the Sobolev space H 1 into L2. Instead, it is bounded from H 1 into H−1.
Secondly, the magnetic potential is large, and therefore it is hard to apply perturbation arguments similar
to those used in [Cardoso et al. 2013]. Thus, to prove Theorem 1.1 we first observe that (1-6) is equivalent
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to a semiclassical a priori estimate on weighted Sobolev spaces (see (2-10) below). Furthermore, we
derive this a priori estimate from a semiclassical Carleman estimate on weighted Sobolev spaces (see
(2-7) below) with a suitably chosen phase function independent of the semiclassical parameter. To get
this Carleman estimate we first prove a semiclassical Carleman estimate on weighted Sobolev spaces for
the long-range part of the operator (see Theorem 2.1 below) and we then apply a perturbation argument.
Note that the estimate (2-1) is valid for any phase function ϕ(r) ∈ C2(R) whose first derivative ϕ′(r) is
of compact support and nonnegative. The main feature of our Carleman estimate is that it is uniform with
respect to the phase function ϕ (that is, the constant C1 does not depend on ϕ), and the weight in the
right-hand side is smaller than the usual one (that is, (〈x〉−2s

+ϕ′(|x |))−1/2 instead of 〈x〉s). Thus, we can
make this weight small on an arbitrary compact set by choosing the phase function properly. Moreover,
in the right-hand side we have the better semiclassical Sobolev H−1 norm instead of the L2 one, which is
crucial for the application we make here. Note also that Carleman estimates similar to (2-1) and (2-7)
have recently been proved in [Datchev 2014] for operators of the form −h21+ V (x, h), where V is a
real-valued long-range potential which is C1 with respect to the radial variable r . There are, however,
several important differences between the Carleman estimates in [Datchev 2014] and ours. First, the
phase function in [Datchev 2014] is of the form ϕ = ϕ1(r)/h, where ϕ1 does not depend on h and must
satisfy some conditions. Thus, the Carleman estimates in [Datchev 2014] lead to the conclusion that
the resolvent in that case is bounded by eC/h , C > 0 being a constant. Secondly, in [Datchev 2014] the
Carleman estimates are not uniform with respect to the phase function and the norm in the right-hand
side is L2 (and not H−1). Finally, the operator in [Datchev 2014] does not contain a magnetic potential.

To prove Theorem 2.1 we make use of methods originating from [Cardoso and Vodev 2002]. Note that in
[Cardoso and Vodev 2002] the high-frequency behavior of the resolvent of operators of the form −1g+V
is studied, where V is a real-valued scalar potential and 1g is the negative Laplace–Beltrami operator
on unbounded Riemannian manifolds, such as, for example, asymptotically Euclidean and hyperbolic
ones. Similar techniques have been also used in [Rodnianski and Tao 2011], where actually all ranges of
frequencies are covered. In these two papers, however, no perturbations by magnetic potentials are studied.

2. Proof of Theorem 1.1

Set h = λ−1, P(h) = h2G, b̃(x, h) = hb(x), b̃L(x, h) = hχ(|x |)bL(x), b̃S(x, h) = b̃(x, h)− b̃L(x, h),
Ṽ (x, h) = h2V (x), Ṽ L(x, h) = h2χ(|x |)V L(x), Ṽ S(x, h) = Ṽ (x, h)− Ṽ L(x, h), where χ ∈ C∞(R),
χ(r)= 0 for r ≤ r0+ 1, χ(r)= 1 for r ≥ r0+ 2. Throughout this paper, H 1(Rn) will denote the Sobolev
space equipped with the semiclassical norm

‖u‖2H1 =

∑
0≤|α|≤1

‖Dα
x u‖2L2 ,

where Dx = ih∂x . Furthermore, H−1 will denote the dual space of H 1 with respect to the scalar product
〈 · , · 〉L2 with the norm

‖v‖H−1 = sup
06=u∈H1

|〈u, v〉L2 |

‖u‖H1
.
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Let ρ ∈ C∞(R) be a function independent of h such that 0≤ ρ ≤ 1 and ρ(σ)= 1 for σ ≤ 0, ρ(σ)= 0
for σ ≥ 1. Define the function ϕ(r) ∈ C∞(R) as follows: ϕ(0)= 0 and

ϕ′(r)= τρ(r − A),

where τ , A ≥ 1 are parameters independent of h to be fixed later on. Introduce the operator

P L(h)=−h21+ ihb̃L(x, h) · ∇ + ih∇ · b̃L(x, h)+ Ṽ L(x, h)

and set

P L
ϕ (h)= eϕP L(h)e−ϕ,

Pϕ(h)= eϕP(h)e−ϕ = P L
ϕ (h)+ ihb̃S(x, h) · ∇ + ih∇ · b̃S(x, h)− 2ihb̃S(x, h) · ∇ϕ+ Ṽ S(x, h),

µ(x)=
√
〈x〉−2s +ϕ′(|x |).

In this section we will show that Theorem 1.1 follows from:

Theorem 2.1. Suppose (1-2), (1-3), (1-4) hold and let 1
2 < s< 1

2(1+δ). Then, for all functions f ∈H 1(Rn)

such that 〈x〉s(P L
ϕ (h)− 1± iε) f ∈ H−1(Rn), we have the a priori estimate

‖〈x〉−s f ‖H1 ≤
C1

h
‖µ−1(P L

ϕ (h)− 1± iε) f ‖H−1 +C2

(
ε

h

)1/2

‖ f ‖L2 (2-1)

for 0< ε ≤ 1, 0< h ≤ h0(τ, A)� 1, with a constant C1 > 0 independent of f , ε, h, τ , A, and a constant
C2 > 0 independent of f , ε, h.

Let us first see that (2-1) implies the estimate

‖〈x〉−s f ‖H1 ≤
2C1

h
‖〈x〉s(Pϕ(h)− 1± iε) f ‖H−1 + 2C2

(
ε

h

)1/2

‖ f ‖L2 . (2-2)

Using that µ(x)≥ τ 1/2 for |x | ≤ A and µ(x)≥ 〈x〉−s for |x | ≥ A+ 1 together with the condition (1-4),
we get (for 0< s− 1

2 � 1)

〈x〉sµ(x)−1(
|b̃S(x, h)| + |Ṽ S(x, h)|

)
≤ Ch(τ−1/2

+ A2s−1−δ), (2-3)

〈x〉sµ(x)−1
|b̃S(x, h)| |∇ϕ| ≤ Oτ,A(h). (2-4)

By (2-3) and (2-4),

‖µ−1(Pϕ(h)− P L
ϕ (h))〈x〉

s
‖H1→H−1 ≤ Ch(τ−1/2

+ A2s−1−δ
+ O(h)). (2-5)

By (2-1) and (2-5),

‖〈x〉−s f ‖H1

≤
C1

h
‖µ−1(Pϕ(h)− 1± iε) f ‖H−1 +

C1

h
‖µ−1(Pϕ(h)− P L

ϕ (h)) f ‖H−1 +C2

(
ε

h

)1/2

‖ f ‖L2

≤
C1

h
‖〈x〉s(Pϕ(h)−1±iε) f ‖H−1+C(τ−1/2

+A2s−1−δ
+O(h))‖〈x〉−s f ‖H1+C2

(
ε

h

)1/2

‖ f ‖L2 . (2-6)
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Taking now τ−1, A−1 and h small enough, we can absorb the second term in the right-hand side of (2-6)
to obtain (2-2).

Applying (2-2) with f = eϕg we obtain the Carleman estimate

‖〈x〉−seϕg‖H1 ≤
2C1

h
‖〈x〉seϕ(P(h)− 1± iε)g‖H−1 + 2C2

(
ε

h

)1/2

‖eϕg‖L2 . (2-7)

Since the function ϕ does not depend on h, the function eϕ is bounded by positive constants both from
below and from above. Thus, we deduce from (2-7) the a priori estimate

‖〈x〉−s g‖H1 ≤
C̃1

h
‖〈x〉s(P(h)− 1± iε)g‖H−1 + C̃2

(
ε

h

)1/2

‖g‖L2 (2-8)

with constants C̃1, C̃2 > 0 independent of h, ε and g. On the other hand, since the operator P(h) is
symmetric on L2(Rn), we have

ε‖g‖2L2 =∓ Im〈(P(h)− 1± iε)g, g〉L2 ≤ γ−1h−1
‖〈x〉s(P(h)− 1± iε)g‖2H−1 + γ h‖〈x〉−s g‖2H1 (2-9)

for every γ > 0. Taking γ small enough, independent of h, we deduce from (2-8) and (2-9) the a priori
estimate

‖〈x〉−s g‖H1 ≤
C
h
‖〈x〉s(P(h)− 1± iε)g‖H−1 (2-10)

with a constant C > 0 independent of h, ε and g. It is easy to see now that (2-10) implies the resolvent
estimate (1-6) for 0< s− 1

2 � 1. On the other hand, we clearly have that, if (1-6) holds for some s0 >
1
2 ,

it holds for all s ≥ s0. Hence (1-6) holds for all s > 1
2 .

3. Proof of Theorem 2.1

We will first prove the following:

Proposition 3.1. Under the conditions of Theorem 2.1 we have the estimate

‖〈x〉−s f ‖H1 ≤
C1

h
‖µ−1(P L

ϕ (h)− 1± iε) f ‖L2 +C2

(
ε

h

)1/2

‖ f ‖H1 (3-1)

for every 0< ε ≤ 1, 0< h ≤ h0(τ, A)� 1, with a constant C1 > 0 independent of f , ε, h, τ , A, and a
constant C2 > 0 independent of f , ε, h.

Proof. We pass to the polar coordinates (r, w) ∈ R+ × Sn−1, r = |x |, w = x/|x |, and recall that
L2(Rn)∼= L2(R+×Sn−1, rn−1 dr dw). Denote by X the Hilbert space L2(R+×Sn−1, dr dw). We also
denote by ‖ · ‖ and 〈 · , · 〉 the norm and the scalar product on L2(Sn−1). We will make use of the identity

r (n−1)/21r−(n−1)/2
= ∂2

r +
1̃w

r2 , (3-2)

where 1̃w = 1w − 1
4(n− 1)(n− 3) and 1w denotes the negative Laplace–Beltrami operator on Sn−1.

Observe also that
r (n−1)/2∂x j r

−(n−1)/2
= w j∂r + r−1q j (w, ∂w), (3-3)
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where w j = x j/|x | and q j is a first-order differential operator on Sn−1, independent of r , antisymmetric
on L2(Sn−1). It is easy to see that the operators Q j (w,Dw)= ihq j (w, ∂w) and 3w =−h21̃w ≥ 0 satisfy
the estimate

‖Q j (w,Dw)v‖ ≤ C‖31/2
w v‖+Ch‖v‖ for all v ∈ H 1(Sn−1), (3-4)

with a constant C > 0 independent of h and v. Set u = r (n−1)/2 f ,

P±(h)= r (n−1)/2(P L(h)− 1± iε)r−(n−1)/2,

P±ϕ (h)= r (n−1)/2(P L
ϕ (h)− 1± iε)r−(n−1)/2

= eϕP±(h)e−ϕ.

Using (3-2) and (3-3) we can write the operator P±(h) in the coordinates (r, w) as follows:

P±(h)= D2
r +

3w

r2 − 1± iε+ Ṽ L
+

n∑
j=1

w j
(
b̃L

j (rw, h)Dr +Dr b̃L
j (rw, h)

)
+ r−1

n∑
j=1

(b̃L
j (rw, h)Q j (w,Dw)+ Q j (w,Dw)b̃L

j (rw, h)),

where we have put Dr = ih∂r . Since the function ϕ depends only on the variable r , this implies

P±ϕ (h)= D2
r +

3w

r2 − 1± iε+ Ṽ L
+W − 2ihϕ′Dr +

n∑
j=1

w j (b̃L
j (rw, h)Dr +Dr b̃L

j (rw, h))

+ r−1
n∑

j=1

(
b̃L

j (rw, h)Q j (w,Dw)+ Q j (w,Dw)b̃L
j (rw, h)

)
,

where

W =−h2ϕ′(r)2− h2ϕ′′(r)− 2ihϕ′
n∑

j=1

w j b̃L
j .

Set

8s(r)= ‖〈r〉−su(r, · )‖2+‖〈r〉−sDr u(r, · )‖2+‖〈r〉−sr−131/2
w u(r, · )‖2,

9s = ‖〈r〉−su‖2L2(X)+‖〈r〉
−sDr u‖2L2(X)+‖〈r〉

−sr−131/2
w u‖2L2(X) =

∫
∞

0
8s(r) dr,

M±(r)= ‖P±ϕ (h)u(r, · )‖
2,

M± =

∫
∞

0
µ−2 M±(r) dr,

N (r)= ‖u(r, · )‖2+‖Dr u(r, · )‖2,

N=

∫
∞

0
N (r) dr,

E(r)=−〈(r−23w − 1+ Ṽ L)u(r, · ), u(r, · )〉+ ‖Dr u(r, · )‖2

− 2r−1
n∑

j=1

Re〈b̃L
j (rw, h)Q j (w,Dw)u(r, · ), u(r, · )〉.

To prove (3-1) we will make use of the method of [Cardoso and Vodev 2002; Rodnianski and Tao 2011]
(used there in the case when the magnetic potential is identically zero), which is based on the observation
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that the first derivative of the function E(r) has a nice lower bound. The situation is more complex in the
presence of a nontrivial magnetic potential, but we will show in what follows that the method still works.
To be more precise, observe first that, in view of (1-1), (1-3) and (3-4), we have

E(r)≥−‖r−131/2
w u(r, · )‖2+ 1

2‖u(r, · )‖
2
+‖Dr u(r, · )‖2− O(h)8(1+δ)/2(r), (3-5)

provided h is taken small enough. Furthermore, using that Im〈b̃L
j Dr u,Dr u〉 = 0 and Q∗j = Q j , it is easy

to check that E(r) satisfies the identity — see also [Cardoso et al. 2013; 2014a], where the same identity
is used in an essential way —

E ′(r) :=
d E(r)

dr

=
2
r
〈r−23wu(r, · ), u(r, · )〉−

〈
∂ Ṽ L

∂r
u(r, · ), u(r, · )

〉
− 2

n∑
j=1

Re
〈
∂(b̃L

j (rw, h)/r)

∂r
Q j (w,Dw)u(r, · ), u(r, · )

〉

− 2
n∑

j=1

Re
〈
w j
∂ b̃L

j (rw, h)

∂r
u(r, · ),Dr u(r, · )

〉
+ 2h−1 Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉

∓ 2εh−1 Re〈u(r, · ),Dr u(r, · )〉+ 4〈ϕ′Dr u(r, · ),Dr u(r, · )〉

− 2h−1 Im〈W u(r, · ),Dr u(r, · )〉. (3-6)

In view of (1-2), (1-3), (3-4) and (3-6), we obtain the inequality

E ′(r)≥
2
r
‖r−131/2

w u(r, · )‖2+ 4ϕ′‖Dr u(r, · )‖2− 2h−1
‖P±ϕ (h)u(r, · )‖‖Dr (r, · )‖

− O(h)8(1+δ)/2(r)− O(εh−1)N (r). (3-7)

Since 8(1+δ)/2(r)≤8s(r) for 1
2 < s ≤ 1

2(1+ δ), we obtain from (3-7)

E ′(r)≥
2
r
‖r−131/2

w u(r, · )‖2+ 4ϕ′‖Dr u(r, · )‖2− γ−1h−2µ−2 M±(r)

− γµ2
‖Dr (r, · )‖2− O(h)8s(r)− O(εh−1)N (r)

≥
2
r
‖r−131/2

w u(r, · )‖2− γ−1h−2µ−2 M±(r)− O(h+ γ )8s(r)− O(εh−1)N (r) (3-8)

for every 0< γ � 1. By (3-5) and (3-8),

〈r〉−2s(E(r)+ r E ′(r))≥8s(r)− γ−1h−2µ−2 M±(r)− O(h+ γ )8s(r)− O(εh−1)N (r). (3-9)

Integrating (3-8) from t (t > 0) to +∞ we get

E(t)=−
∫
∞

t
E ′(r) dr ≤ O(γ−1h−2)M±+ O(εh−1)N+ O(h+ γ )9s . (3-10)
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Let ψ > 0 be a function independent of h and such that
∫
∞

0 ψ(r) dr <∞. Multiplying (3-10) by ψ(t)
and integrating from 0 to +∞, we get∫

∞

0
ψ(r)E(r) dr ≤ O(γ−1h−2)M±+ O(εh−1)N+ O(h+ γ )9s . (3-11)

Observe now that we have the identity∫
∞

0
〈r〉−2s(E(r)+ r E ′(r)) dr =

∫
∞

0
ψ(r)E(r) dr, (3-12)

where ψ(r)= 2sr〈r〉−2s−1. Combining (3-9), (3-11) and (3-12) and taking γ and h small enough, we
conclude

9s ≤ O(h−2)M±+ O(εh−1)N. (3-13)

Clearly, (3-13) implies (3-1). �

We will now show that (2-1) follows from (3-1) and the following:

Lemma 3.2. Let ` ∈ R. Then we have the estimate

‖µ−`(P L
ϕ (h)− i)−1µ`‖H−1→H1 ≤ C (3-14)

for 0< h ≤ h0(τ, A)� 1, with a constant C > 0 independent of h, τ and A.

We are going to use (3-1) with f = (P L
ϕ (h)− i)−1g. In view of the identity

1= (1− i ∓ iε)(P L
ϕ (h)− i)−1

+ (P L
ϕ (h)− i)−1(P L

ϕ (h)− 1± iε)

and Lemma 3.2, we have

‖〈x〉−s g‖H1 ≤ 2‖〈x〉−s(P L
ϕ (h)− i)−1g‖H1 +‖〈x〉−s(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖H1 A

≤
2C1

h
‖µ−1(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖L2

+ 2C2

(
ε

h

)1/2

‖(P L
ϕ (h)− i)−1g‖H1 +C3‖(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖H1

≤
2C1

h
‖µ−1(P L

ϕ (h)− i)−1µ‖H−1→L2‖µ−1(P L
ϕ (h)− 1± iε)g‖H−1

+ 2C2

(
ε

h

)1/2

‖(P L
ϕ (h)− i)−1

‖L2→H1‖g‖L2

+C3‖(P L
ϕ (h)− i)−1

‖H−1→H1‖(P L
ϕ (h)− 1± iε)g‖H−1

≤
C ′1
h
‖µ−1(P L

ϕ (h)−1± iε)g‖H−1+C ′2

(
ε

h

)1/2

‖g‖L2+C ′3‖(P
L
ϕ (h)−1± iε)g‖H−1 (3-15)

with a constant C ′1 > 0 independent of ε, h, τ , A and g, and constants C ′2, C ′3 > 0 independent of ε, h
and g. Since the function µ is bounded on Rn , there exists 0< h0(ϕ)� 1 such that for 0< h ≤ h0 the
last term in the right-hand side of (3-15) can be bounded by the first one. Thus we get (2-1) from (3-15).
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4. Proof of Lemma 3.2

It is easy to see that the estimate (3-14) holds with ` = 0 and P L
ϕ (h) replaced by −h21. Indeed,

in this case the L2
→ L2 bound is trivial, while the H−1

→ H 1 bound follows from the fact that
‖ f ‖H s ∼ ‖(1− h21)s/2 f ‖L2 , s =−1, 1. We will use this to show that (3-14) with `= 0 still holds for
first-order perturbations of the form −h21+ Q(h), where

Q(h)=
∑
|α|=1

q(1)α (x, h)Dα
x +

∑
|α|=1

Dα
x q(2)α (x, h)+ q0(x, h)

with coefficients satisfying

|q(1)α (x, h)| + |q(2)α (x, h)| + |q0(x, h)| ≤ Ch for all x ∈ Rn. (4-1)

Clearly, (4-1) implies
‖Q(h)‖H1→H−1 ≤ Ch. (4-2)

By (4-2) and the resolvent identity

(−h21+ Q(h)− i)−1
= (−h21− i)−1

+ (−h21− i)−1 Q(h)(−h21+ Q(h)− i)−1,

we get

‖(−h21+ Q(h)− i)−1
‖H−1→H1

≤‖(−h21−i)−1
‖H−1→H1+‖(−h21−i)−1

‖H−1→H1‖Q(h)‖H1→H−1‖(−h21+Q(h)−i)−1
‖H−1→H1

≤ C + O(h)‖(−h21+ Q(h)− i)−1
‖H−1→H1 . (4-3)

Now, taking h small enough (depending on the coefficients of Q(h)) we can absorb the last term in the
right-hand side of (4-3) and obtain the desired estimate with a constant C > 0 independent of q(1)α , q(2)α ,
q0 and h.

Thus, to prove (3-14) it suffices to show that the operator µ−`P L
ϕ (h)µ

` equals −h21 plus a first-order
differential operator with coefficients satisfying (4-1). To do so, observe first that µ−`P L

ϕ (h)µ
`
= P L

ψ (h),
where ψ = ϕ− ` logµ. Furthermore, we have

P L
ψ (h)=−h21+ (i b̃L

− h∇ψ) · h∇ + h∇ · (i b̃L
− h∇ψ)− h2

|∇ψ |2− 2ihb̃L
· ∇ψ + Ṽ L .

It is easy to see that |ψ ′(r)| is bounded on R, and hence |∇ψ(|x |)| is bounded on Rn . This together with
the assumptions on b̃L and Ṽ L imply the desired properties of the coefficients of the operator P L

ψ (h). �
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LOCAL AND NONLOCAL BOUNDARY CONDITIONS FOR µ-TRANSMISSION
AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS

GERD GRUBB

A classical pseudodifferential operator P on Rn satisfies the µ-transmission condition relative to a smooth
open subset � when the symbol terms have a certain twisted parity on the normal to ∂�. As shown
recently by the author, this condition assures solvability of Dirichlet-type boundary problems for P in
full scales of Sobolev spaces with a singularity dµ−k , d(x)= dist(x, ∂�). Examples include fractional
Laplacians (−1)a and complex powers of strongly elliptic PDE.

We now introduce new boundary conditions, of Neumann type, or, more generally, nonlocal type.
It is also shown how problems with data on Rn

\� reduce to problems supported on �, and how the
so-called “large” solutions arise. Moreover, the results are extended to general function spaces F s

p,q and
Bs

p,q , including Hölder–Zygmund spaces Bs
∞,∞. This leads to optimal Hölder estimates, e.g., for Dirichlet

solutions of (−1)au = f ∈ L∞(�), u ∈ daCa(�) when 0< a < 1, a 6= 1
2 .

Boundary value problems for elliptic pseudodifferential operators (ψdo’s) P , on a smooth subset �
of a Riemannian manifold �1, have been studied under various hypotheses through the years. There is a
well-known calculus initiated by Boutet de Monvel [Boutet de Monvel 1971; Rempel and Schulze 1982;
Grubb 1984; 1990; 1996; 2009; Schrohe 2001] for integer-order ψdo’s with the 0-transmission property
(preserving C∞ up to the boundary), including boundary value problems for elliptic differential operators
and their inverses. There are theories treating more general operators with suitable factorizations of the
principal symbol, initiated by Vishik and Eskin (see, e.g., [Eskin 1981; Shargorodsky 1994; Chkadua
and Duduchava 2001]). Theories for operators without the transmission property have been developed
by Schulze and coauthors, see, e.g., [Rempel and Schulze 1984; Harutyunyan and Schulze 2008], and
theories where the boundary is considered as a singularity of the manifold have been developed in works
of Melrose and coauthors, see, e.g., [Melrose 1993; Albin and Melrose 2009].

A category of ψdo’s lying between the operators handled by the Boutet de Monvel calculus and the
very general categories mentioned above consists of the ψdo’s with a µ-transmission property, µ ∈ C,
with respect to ∂�. Only recently, a systematic study in H s

p Sobolev spaces was given in [Grubb 2015a],
departing from a result on such operators in C∞-spaces by Hörmander [1985, Theorem 18.2.18] (in fact
developed from the lecture notes [Hörmander 1965]). This category includes fractional Laplacians (−1)a

and complex powers of strongly elliptic differential operators, and also more generally polyhomogeneous
ψdo’s with symbol p ∼

∑
j∈N0

p j having even parity (that is, p j (x,−ξ) = (−1) j p j (x, ξ) for j ≥ 0)

MSC2010: primary 35S15; secondary 45E99, 46E35, 58J40.
Keywords: fractional Laplacian, boundary regularity, Dirichlet and Neumann conditions, large solutions, Hölder–Zygmund

spaces, Besov–Triebel–Lizorkin spaces, transmission properties, elliptic pseudodifferential operators, singular integral
operators.
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or a twisted parity involving a factor eiπ%. The general µ-transmission operators have such a reflection
property of the symbol at ∂� just in the normal direction; see (1-5) below. This allows regularity and
solvability results not only for s in a finite interval, but for arbitrarily large s.

The fractional Laplacian and its generalizations, often formulated as singular integral operators, are
currently of interest in probability theory, finance, mathematical physics and geometry.

The work [Grubb 2015a] showed the Fredholm solvability of homogeneous or nonhomogeneous
Dirichlet-type problems in large scales of Sobolev spaces, for µ-transmission ψdo’s. In the present paper,
we introduce more general boundary conditions and find criteria for their solvability. There are the general
nonlocal conditions γ0 Bu = ψ , where B is a µ-transmission ψdo; in addition to this, local higher-order
conditions such as a Neumann-type condition involving the normal derivative at ∂� are treated. The case
of N × N systems of ψdo is briefly considered.

Moreover, we show by use of [Johnsen 1996] that the theory also works in the Besov–Triebel–Lizorkin
spaces Bs

p,q and F s
p,q , with special attention to the spaces Bs

∞,∞, which coincide with Hölder spaces C s

for s ∈ R+ \N. In comparison with [Grubb 2015a], this allows for a sharpening of Hölder results for
(−1)a (and other a-transmission operators) as follows: Let � be a compact subset of Rn . For solutions
u ∈ e+L∞(�) of r+(−1)au = f ,

f ∈ L∞(�) =⇒ u ∈ e+d(x)aCa(�), when a ∈ ]0, 1[, a 6= 1
2 , (0-1)

which is optimal in the Hölder exponent. (For a = 1
2 , it holds with Ca replaced by Ca−ε. Also higher

regularities are treated, and optimal Hölder estimates for nonhomogeneous Dirichlet and Neumann
problems are likewise shown.) In a new work, Ros-Oton and Serra [2014a] have studied integral operators
with homogeneous, positive, even kernel and obtained (0-1) with Ca replaced by Ca−ε; in the smooth case
this is covered by the present theory. (We are concerned with linear operators; the nonlinear implications
in [Ros-Oton and Serra 2014a] are not touched here.) Such operators were treated in cases without
boundary by Caffarelli and Silvestre, see, e.g., [2009].

Furthermore, we show the equivalence of Dirichlet problems for u supported in � with problems
prescribing a value of u on the exterior Rn

\�, obtaining new results for the latter, which were treated
recently by, for example, Felsinger, Kassmann and Voigt [Felsinger et al. 2014] and Abatangelo [2013].

For nonhomogeneous problems the solutions can be “large” at the boundary; cf. [Abatangelo 2013]
and its references. We show how the solutions have a specific power singularity when the boundary data
are nontrivial.

The case a = 1
2 enters as a boundary integral operator in treatments of mixed boundary value problems

for elliptic differential operators. The present results are applied to mixed problems in [Grubb 2015b].

Outline. In Section 1, we briefly recall the relevant definitions of operators and spaces. Section 2 presents
the basic results on Dirichlet and Neumann problems for (−1)a , including situations with given exterior
data, and derives conclusions in Hölder spaces. Section 3 explains the extension of the general results to
Besov–Triebel–Lizorkin spaces, including Bs

∞,∞. Section 4 introduces new nonlocal boundary conditions
γ0 Bu = ψ , as well as local Neumann-type conditions; also N × N systems of ψdo are discussed. The
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Appendix illustrates the theory by treating a particular constant-coefficient case, showing how the problems
for (1−1)a on Rn

+
can be solved in full detail by explicit calculations.

1. Preliminaries

The notation of [Grubb 2015a] will be used. We shall give a brief account, and refer there for further details.
Consider a Riemannian n-dimensional C∞ manifold �1 (it can be Rn) and an embedded smooth n-

dimensional manifold� with boundary ∂� and interior�. For�1=Rn ,� can be Rn
±
=
{

x ∈Rn
| xn≷ 0

}
;

we will denote (x1, . . . , xn−1) by x ′. In the general manifold case, � is taken to be compact. For ξ ∈ Rn ,
we let (1+ |ξ |2)

1
2 = 〈ξ〉, and denote by [ξ ] a positive C∞-function equal to |ξ | for |ξ | ≥ 1 and ≥ 1

2 for
all ξ . Restriction from Rn to Rn

±
(or from �1 to � or {�, respectively) is denoted by r±, extension by

zero from Rn
±

to Rn (or from � or {�, respectively, to �1) is denoted by e±.
A pseudodifferential operator (ψdo) P on Rn is defined from a symbol p(x, ξ) on Rn

×Rn by

Pu = p(x, D)u = OP(p(x, ξ))u = (2π)−n
∫

ei x ·ξ p(x, ξ)û dξ = F−1
ξ→x(p(x, ξ)û(ξ)); (1-1)

here, F is the Fourier transform (Fu)(ξ)= û(ξ)=
∫

Rn e−i x ·ξu(x) dx . The symbol p is assumed to be such
that for some r ∈ R, ∂βx ∂αξ p(x, ξ) is O(〈ξ〉r−|α|) for all α, β (defining the symbol class Sr

1,0(R
n
×Rn));

the symbol then has order r . The definition of P is carried over to manifolds by use of local coordinates.
We refer to textbooks such as [Hörmander 1985; Taylor 1981; Grubb 2009] for the rules of calculus;
[Grubb 2009] moreover gives an account of the Boutet de Monvel calculus of pseudodifferential boundary
problems, see also, e.g., [Grubb 1996; Schrohe 2001]. When P is a ψdo on Rn or �1, P+ = r+Pe+

denotes its truncation to Rn
+

or �, respectively.
Let 1< p <∞ (with 1/p′ = 1− 1/p), then we define for s ∈ R the spaces

H s
p(R

n)= {u ∈ S′(Rn) | F−1(〈ξ〉s û) ∈ L p(R
n)},

Ḣ s
p(R

n
+
)= {u ∈ H s

p(R
n) | supp u ⊂ Rn

+
},

H s
p(R

n
+
)= {u ∈ D′(Rn

+
) | u = r+U for some U ∈ H s

p(R
n)};

(1-2)

here, supp u denotes the support of u. For a compact subset � of �1, the definition extends to define
Ḣ s

p(�) and H s
p(�) by use of a finite system of local coordinates. We shall in the present paper moreover

work in the Triebel–Lizorkin and Besov spaces F s
p,q and Bs

p,q , defined for s ∈ R, 0< p, q ≤∞ (we take
p<∞ in the F-case), and the derived spaces Ḟ s

p,q and F s
p,q , etc. Here we refer to [Triebel 1995; Johnsen

1996] for basic definitions. ([Triebel 1995] writes F̃ instead of Ḟ , etc.; the present notation stems from
Hörmander’s works.) For a Hölder space C t , Ċ t(�) denotes the Hölder functions on �1 supported in �.
Bs

p,p is also denoted by Bs
p when p <∞, and F s

p,p = Bs
p,p, F s

p,2 = H s
p, H s

2 = Bs
2 .

We shall use the conventions
⋃
ε>0 H s+ε

p = H s+0
p and

⋂
ε>0 H s−ε

p = H s−0
p , applied in a similar way

for the other scales of spaces.
The results hold in particular for Bs

∞,∞-spaces. These are interesting because Bs
∞,∞(R

n) equals the
Hölder space C s(Rn) when s ∈ R+ \N. (There are similar statements for derived spaces over Rn

+
and �.)

The spaces Bs
∞,∞(R

n) can be identified with the Hölder–Zygmund spaces, often denoted Cs(Rn) when
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s > 0. There is a nice account of these spaces in Section 8.6 of [Hörmander 1997], where they are denoted
by C s

∗
(Rn) for all s ∈ R; we shall use that label below, for simplicity of notation:

Bs
∞,∞ = C s

∗
for all s ∈ R. (1-3)

For integer values of k one has, with Ck
b(R

n) denoting the space of functions with bounded continuous
derivatives up to order k,

Ck
b(R

n)⊂ Ck−1,1(Rn)⊂ Ck
∗
(Rn)⊂ Ck−0(Rn) when k ∈ N,

C0
b(R

n)⊂ L∞(Rn)⊂ C0
∗
(Rn),

(1-4)

and similar statements for derived spaces.
A ψdo P is called classical (or polyhomogeneous) when the symbol p has an asymptotic expansion

p(x, ξ) ∼
∑

j∈N0
p j (x, ξ) with p j homogeneous in ξ of degree m − j for all j . Then P has order m.

One can even allow m to be complex; then p ∈ SRe m
1,0 (Rn

×Rn), and the operator and symbol are still
said to be of order m.

Here there is an additional definition: P satisfies the µ-transmission condition (in short, is of type µ)
for some µ ∈ C when, in local coordinates,

∂βx ∂
α
ξ p j (x,−N )= eπ i(m−2µ− j−|α|)∂βx ∂

α
ξ p j (x, N ) (1-5)

for all x ∈ ∂�, all j, α, β, where N denotes the interior normal to ∂� at x . The implications of the
µ-transmission property were a main subject of [Grubb 2015a].

A special role in the theory is played by the order-reducing operators. There is a simple definition of
operators 4µ± on Rn:

4
µ
± = OP(([ξ ′] ± iξn)

µ)

(or with [ξ ′] replaced by 〈ξ ′〉); they preserve support in Rn
±

, respectively. Here the function ([ξ ′] ± iξn)
µ

does not satisfy all the estimates required for the class SReµ(Rn
×Rn), but the operators are useful for

some purposes. There is a more refined choice 3µ± (with symbol λµ±(ξ)) that does satisfy all the estimates,
and there is a definition 3(µ)± in the manifold situation. These operators define homeomorphisms for all
s ∈ R such as

3
(µ)
+ : Ḣ

s
p(�)−→

∼ Ḣ s−Reµ
p (�),

3
(µ)
−,+ : H

s
p(�)−→

∼ H s−Reµ
p (�);

(1-6)

here, 3(µ)−,+ is short for r+3(µ)− e+, suitably extended to large negative s (see Remark 1.1 and Theorem 1.3
in [Grubb 2015a]).

The following special spaces, introduced by Hörmander, are particularly adapted to µ-transmission
operators P:

Hµ(s)
p (Rn

+
)=4

−µ
+ e+H s−Reµ

p (Rn
+
), s > Reµ− 1/p′,

Hµ(s)
p (�)=3

(−µ)
+ e+H s−Reµ

p (�), s > Reµ− 1/p′,

Eµ(�)= e+{u(x)= d(x)µv(x) | v ∈ C∞(�)};

(1-7)
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namely, r+P (of order m) maps them into H s−Re m
p (Rn

+
), H s−Re m

p (�) and C∞(�) respectively (see
[Grubb 2015a] Sections 1.3, 2, 4), and they appear as domains of realizations of P in the elliptic case. In
the third line, Reµ >−1 (for other µ, see [Grubb 2015a]) and d(x) is a C∞-function vanishing to order
1 at ∂� and positive on �, e.g., d(x)= dist(x, ∂�) near ∂�. One has that Hµ(s)

p (�)⊃ Ḣ s
p(�), and the

distributions are locally in H s
p on �, but at the boundary they in general have a singular behavior. More

about that in the text below.
The order-reducing operators also operate in the Besov–Triebel–Lizorkin scales of spaces, satisfying

the relevant versions of (1-6), and the definitions in (1-7) extend.

2. Three basic problems for the fractional Laplacian

As a useful introduction, we start out by giving a detailed presentation of boundary problems for the basic
example of the fractional Laplacian.

Let Pa = (−1)
a , a > 0, and let � be a bounded open subset of Rn with a C∞-boundary ∂� = 6.

Pa , acting as u 7→F−1(|ξ |2a û), is a pseudodifferential operator on Rn of order 2a, and it is of type a and
has factorization index a relative to �, as defined in [Grubb 2015a]. With terminology introduced by Hör-
mander in the notes [1965] and now exposed in [Grubb 2015a], we consider the following problems for Pa:

(1) The homogeneous Dirichlet problem:{
r+Pau = f on �,
supp u ⊂�.

(2-1)

(2) A nonhomogeneous Dirichlet problem (with u less regular than in (2-1)):
r+Pau = f on �,
supp u ⊂�,
d(x)1−au = ϕ on 6.

(2-2)

(3) A nonhomogeneous Neumann problem:
r+Pau = f on �,
supp u ⊂�,
∂n(d(x)1−au)= ψ on 6.

(2-3)

It is shown in [Grubb 2015a] that (2-1) and (2-2) have good solvability properties in suitable Sobolev
spaces and Hölder spaces, and we shall include (2-3) in the study below. In the following, we derive
further properties of each of the three problems.

Remark 2.1. The theorems in Sections 2A and 2B below are also valid when (−1)a is replaced by
a general a-transmission ψdo P of order 2a and with factorization index a, except that bijectivity is
replaced by the Fredholm property. They also hold when � is a compact subset of a manifold �1. The
results in Section 2C extend to such operators when they are principally like (−1)a .

In the Appendix of this paper we have included a treatment of (1−1)a on a half-space; it is a model
case where one can obtain the solvability results directly by Fourier transformation.
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2A. The homogeneous Dirichlet problem. From the point of view of functional analysis (as used for
example in [Frank and Geisinger 2014]), it is natural to define the Dirichlet realization Pa,D as the
Friedrichs extension of the symmetric operator Pa,0 in L2(�) acting like r+Pa with domain C∞0 (�).
There is an associated sesquilinear form

pa,0(u, v)= (2π)−n
∫

Rn
|ξ |2a û(ξ)v̂(ξ) dξ, u, v ∈ C∞0 (�). (2-4)

Since
(
‖u‖2L2

+
∫
|ξ |2a
|û|2 dξ

) 1
2 is a norm equivalent with ‖u‖Ha

2
, the completion of C∞0 (�) in this norm

is V = Ḣa
2 (�), and pa,0 extends to a continuous nonnegative symmetric sesquilinear form on V . A

standard application of the Lax–Milgram lemma (e.g., as in [Grubb 2009, Chapter 12]) gives an operator
Pa,D that is selfadjoint nonnegative in L2(�) and acts like r+Pa : Ḣa

2 (�)→ H −a
2 (�), with domain

D(Pa,D)=
{
u ∈ Ḣa

2 (�) | r
+Pau ∈ L2(�)

}
. (2-5)

The operator has compact resolvent, and the spectrum is a nondecreasing sequence of nonnegative
eigenvalues going to infinity. As we shall document below, 0 is not an eigenvalue, so Pa,D in fact has a
positive lower bound and is invertible.

The results of [Grubb 2015a, Sections 4, 7] clarify the mapping properties and solvability properties
further: For 1< p <∞, r+Pa maps continuously:

r+Pa : Ha(s)
p (�)→ H s−2a

p (�), when s > a− 1/p′; (2-6)

there is the regularity result

u ∈ Ḣa−1/p′+0
p (�), r+Pau ∈ H s−2a

p (�)=⇒ u ∈ Ha(s)
p (�), when s > a− 1/p′, (2-7)

and the mapping (2-6) is Fredholm. (It is even bijective, as seen below.) As an application of the results
for s = 2a, p = 2, we have in particular that

D(Pa,D)= Ha(2a)
2 (�)=3

(−a)
+ e+Ha

2(�); (2-8)

see also Example 7.2 in [Grubb 2015a]. We recall from [Grubb 2015a, Theorem 5.4] that

Ha(s)
p (�)


= Ḣ s

p(�) when a− 1/p′ < s < a+ 1/p,
⊂ Ḣ s−0

p (�) when s = a+ 1/p,
⊂ e+da H s−a

p (�)+ Ḣ s
p(�) when s > a+ 1/p, s− a− 1/p /∈ N,

⊂ e+da H s−a
p (�)+ Ḣ s−0

p (�) when s− a− 1/p ∈ N.

(2-9)

In [Grubb 2015a, Section 7], we used Sobolev embedding theorems to draw conclusions for Hölder
spaces. Slightly sharper (often optimal) results can be obtained if we use an extension of the results of
[Grubb 2015a] to the general scales of Triebel–Lizorkin and Besov spaces F s

p,q and Bs
p,q . The extended

theory will be presented in detail below in Sections 3–4; for the moment we shall borrow some results to
give powerful statements for (−1)a , 0 < a < 1. We recall that the notation Bs

∞,∞ is simplified to C s
∗
,
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and that C s
∗

equals C s (the ordinary Hölder space) for s ∈ R+ \N; see also (1-4). Moreover, as special
cases of Definition 3.1 and Theorem 3.4 below for p = q =∞,

Cµ(s)
∗

(�)=3
(−µ)
+ e+C s−Reµ

∗
(�) for s > Reµ− 1,

Cµ(s)
∗

(�)⊂

{
d(x)µe+C s−Reµ

∗ (�)+ Ċ s
∗
(�) when s > Reµ, s−Reµ /∈ N,

d(x)µe+C s−Reµ
∗ (�)+ Ċ s−0

∗
(�) when s > Reµ, s−Reµ ∈ N.

(2-10)

Note also that the distributions in Cµ(s)
∗ (�) are locally in C s

∗
on �, by the ellipticity of 3(−µ)+ .

We focus in the following on the case 0< a < 1, assumed in the rest of this chapter. Here we find the
following results, with conclusions formulated in ordinary Hölder spaces:

Theorem 2.2. Let s > a − 1. If u ∈ Ċa−1+ε
∗

(�) for some ε > 0 (e.g., if u ∈ e+L∞(�)), and r+Pu ∈
C s−2a
∗

(�), then u ∈ Ca(s)
∗ (�). The mapping r+Pa defines a bijection

r+Pa : Ca(s)
∗
(�)→ C s−2a

∗
(�). (2-11)

In particular, for any f ∈ L∞(�), there exists a unique solution u of (2-1) in Ca(2a)
∗ ; it satisfies

u ∈ e+d(x)aCa(�)∩C2a(�), when a 6= 1
2 ,

u ∈
(
e+d(x)

1
2 C

1
2 (�)+ Ċ1−0(�)

)
∩C1−0(�)⊂ e+d(x)

1
2 C

1
2−0(�)∩C1−0(�), when a = 1

2 .
(2-12)

For f ∈ C t(�), t > 0, the solution satisfies

u ∈


e+d(x)aCa+t(�)∩C2a+t(�) when a+ t and 2a+ t /∈ N,(
e+d(x)aCa+t−0(�)+ Ċ2a+t−0(�)

)
∩C2a+t(�) when a+ t ∈ N,(

e+d(x)aCa+t(�)+ Ċ2a+t−0(�)
)
∩C2a+t−0(�) when 2a+ t ∈ N.

(2-13)

Also, the mappings in (2-6) are bijections for s > a− 1/p′.

Proof. The first two statements are a special case of Theorem 3.2 below (see Example 3.3), except that we
have replaced the Fredholm property with bijectivity. According to [Ros-Oton and Serra 2014b, Proposi-
tion 1.1] a weak solution (a solution in Ḣa

2 (�)) of the problem (2-1) with f ∈ L∞(�) satisfies ‖u‖Ca ≤

C‖ f ‖L∞ ; in particular, it is unique. For f ∈ H −a
2 (�), the Fredholm property of r+Pa from Ha(a)

2 (�)=

Ḣa
2 (�) to H −a

2 (�) is covered by [Grubb 2015a, Theorem 7.1] with s = a, p= 2. Moreover, the kernel N

is in Ea(�) by Theorem 3.5 below. If the kernel were nonzero, there would exist nontrivial null-solutions
u ∈Ea(�), contradicting the uniqueness for f ∈ L∞(�)mentioned above. Thus N= 0. Then the kernel of
the Dirichlet realization Pa,D in L2(�) recalled above is likewise 0, and, since it is a selfadjoint operator
with compact resolvent, it must be bijective. So the cokernel in L2(�) is likewise 0. This shows the bijec-
tivity of (2-6) in the case s= 2a, p= 2. In view of Theorem 3.5 below, this bijectivity carries over to all the
other versions, including (2-6) for general s> a−1/p′, and the mapping (2-11) in C s

∗
-spaces for s> a−1.

For (2-12) we use Theorem 3.4 (as recalled in (2-10)), noting that Ca
∗
(�) = Ca(�), that Ċ2a

∗
(�) =

Ċ2a(�)⊂ d(x)aCa(�) when a 6= 1
2 , and that u ∈C2a(�) by interior regularity when a 6= 1

2 , with slightly
weaker statements when a = 1

2 . The rest of the statements follow similarly by use of (2-10) with µ= a
and the various information on the relation between the C s

∗
-spaces and standard Hölder spaces. �
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Ros-Oton and Serra [2014b] showed, under weaker smoothness hypotheses on �, the inclusion
u ∈ daCα(�) for any α with 0< α <min{a, 1− a}, and improved it in [Ros-Oton and Serra 2014a] to
α = a− ε. They observe that α > a cannot be obtained, so α = a, which we obtain in (2-12), is optimal.

We also have as shown in [Grubb 2015a, Theorem 4.4] that for functions u supported in � (see the
first inclusion in (2-7)),

r+Pau ∈ C∞(�) ⇐⇒ u ∈ Ea(�)≡
{
u = e+d(x)av(x) | v ∈ C∞(�)

}
. (2-14)

It is worth emphasizing that the functions in Ea have a nontrivially singular behavior at 6 when a /∈N0;
e+C∞(�) and Ea(�) are very different spaces. The appearance of a factor dµ0 , where µ0 is the
factorization index, was observed in C∞-situations also in [Eskin 1981, p. 311] and in [Chkadua and
Duduchava 2001, Theorem 2.1].

The solution operator is denoted by R; its form as a composition of pseudodifferential factors was
given in [Grubb 2015a].

There is another point of view on the Dirichlet problem for Pa that we shall also discuss. In a number
of papers (see, e.g., [Hoh and Jacob 1996; Felsinger et al. 2014] and their references), the Dirichlet
problem for Pa (and other related operators) is formulated as{

PaU = f in �,
U = g on {�.

(2-15)

Although the main aim is to determine U on �, the prescription of the values of U on {� is explained
as necessitated by the nonlocality of Pa . As observed explicitly in [Hoh and Jacob 1996], the transmission
property of [Boutet de Monvel 1971] is not satisfied; hence that theory of boundary problems for
pseudodifferential operators is of no help. But now that we have the µ-transmission calculus, it is worth
investigating what the methods can give.

The case g = 0 corresponds to the formulation (2-1). But also, in general, (2-15) can be reduced to
(2-1) when the spaces are suitably chosen. For (2-15), let f be given in H s−2a

p (�) (with s > a− 1/p′),
and let g be given in H s

p
(
{�
)
; then we search for U in a Sobolev space over Rn .

Let G = `g be an extension of g to H s
p(R

n). Then u =U −G must satisfy{
r+Pau = f − r+PaG in �,
supp u ⊂�.

(2-16)

Here PaG ∈ H s−2a
p,loc (R

n), so f − r+PaG ∈ H s−2a
p (�).

According to our analysis of (2-1), there is a unique solution u = R( f −r+PaG) ∈ Ha(s)
p (�) of (2-16).

Then (2-15) has the solution U = u+G ∈ Ha(s)
p (�)+H s

p(R
n). Moreover, there is at most one solution to

(2-15) in this space, for if U1 = u1+G1 and U2 = u2+G2 are two solutions, then v= u1−u2+G1−G2

is supported in �, hence lies in Ha(s)
p (�)+ Ḣ s

p(�)= Ha(s)
p (�) and satisfies (2-1) with f = 0; hence it

must be 0.
This reduction allows a study of higher regularity of the solutions. The treatment in [Felsinger et al.

2014] seems primarily directed towards the regularity involved in variational formulations (p = 2, s = a)
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where Vishik and Eskin’s results would be applicable; moreover, [Felsinger et al. 2014] allows a less
smooth boundary.

We have shown:

Theorem 2.3. Let s > a − 1/p′, and let f ∈ H s−2a
p (�) and g ∈ H s

p
(
{�
)

be given. Then the problem

(2-15) has the unique solution U = u+G ∈ Ha(s)
p (�)+ H s

p(R
n), where G ∈ H s

p(R
n) is an extension of g

and
u = R( f − r+PaG) ∈ Ha(s)

p (�); (2-17)

here, R is the solution operator for (2-1).

Observe in particular that the solution is independent of the choice of an extension operator ` : g 7→ G.
There is an immediate corollary for solutions in Hölder spaces (as in [Grubb 2015a, Section 7]):

Corollary 2.4. Let p> n/a. For f ∈ L p(�), g ∈C2a+0
(
{�
)
∩H 2a

p
(
{�
)
, the solution of (2-15) according

to Theorem 2.3 satisfies

U ∈ e+daCa−n/p(�)+C2a+0(Rn)∩ H 2a
p (R

n), (2-18)

if 2a− n/p 6= 1. If 2a− n/p equals 1, we need to add the space Ċ1−0(�).

Proof. The intersection with H 2a
p
(
{�
)

serves as a bound at∞. We extend g to a function G ∈C2a+0(Rn);
then G ∈ C2a+0(Rn) ∩ H 2a

p (R
n) (since C t+0

⊂ H t
p over bounded sets). Theorem 2.3 now gives the

existence of a solution U = u+G, where u ∈ Ha(2a)
p (�). By [Grubb 2015a, Corollary 5.5] (see (2-9)

above), this is contained in daCa−n/p(�)when 2a−n/p 6= 1 (a−1/p and a−n/p are already noninteger).
If 2a− p/n=1, then we have to add the space Ċ1−0(�), due to the embedding Ḣ 1+n/p

p (�)⊂ Ċ1−0(�). �

Results for problems with f ∈ L∞(�) or Hölder spaces were obtained in [Grubb 2015a] by letting
p→∞; here we shall obtain sharper results by applying the general method to the C s

∗
-scale. Repeating

the proof of Theorem 2.3 in this scale, we find:

Theorem 2.5. Let s > a− 1, and let f ∈ C s−2a
∗

(�) and g ∈ C s
∗

(
{�
)

be given. Then the problem (2-15)
has the unique solution U = u+G ∈ Ca(s)

∗ (�)+C s
∗
(Rn), where G ∈ C s

∗
(Rn) is an extension of g and

u = R( f − r+PaG) ∈ Ca(s)
∗
(�); (2-19)

here, R is the solution operator for (2-1).

Let us spell this out in more detail for s = 2a and s = 2a+ t in terms of ordinary Hölder spaces. In
Corollary 2.6(1), we take g to be compactly supported in {�; in (2) and (3), a very general term supported
away from � is added (it can in particular lie in C2a+t

∗
). Recall from (1-4) that L∞ ⊂ C0

∗
.

Corollary 2.6. (1) For f ∈ L∞(�), g ∈ C2a
comp

(
{�
)
, the solution of (2-15) according to Theorem 2.5

satisfies
U ∈ e+daCa(�)∩C2a(�)+C2a

comp(R
n), (2-20)

with C2a replaced by C1−0 if a = 1
2 , and the same for C2a

comp.
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(2) Let X be any of the function spaces Fσp,q(R
n) or Bσp,q(R

n), and denote by Xext the subset of elements
with support disjoint from �. For f ∈ L∞(�), g ∈ C2a

comp
(
{�
)
+ Xext, there exists a solution U of (2-15)

satisfying

U ∈ e+daCa(�)∩C2a(�)+C2a
comp(R

n)+ Xext, (2-21)

with C2a replaced by C1−0 if a = 1
2 , and the same for C2a

comp.

(3) For f ∈ C t(�), g ∈ C2a+t
comp

(
{�
)
+ Xext, t > 0, the solution according to (2) satisfies

U ∈ e+daCa+t(�)∩C2a+t(�)+C2a+t
comp(R

n)+ Xext, (2-22)

with Ca+t , C2a+t and C2a+t
comp replaced by Ca+t−0 C2a+t−0 and C2a+t−0

comp , respectively, when the exponents
hit an integer.

Proof. (1) That g ∈ C2a
comp

(
{�
)

means that g is in C2a over the closed set {� and vanishes outside a
large ball; it extends to a function G ∈ C2a

comp(R
n). Since C2a

comp(R
n)⊂ C2a

comp,∗(R
n), the construction in

Theorem 2.5 gives a solution U = u+G, where u is as in (2-12).

(2) The function spaces are as described, for example, in [Johnsen 1996], with σ ∈ R, 0 < p, q ≤∞
(p < ∞ in the F-case), and ψdo’s are well-defined in these spaces. We write g = g1 + g2, where
g1 ∈C2a

comp
(
{�
)

and g2 ∈ Xext. The problem (2-15) with g replaced by g1 has a solution u1+G1 as in (1).
For the problem (2-15) with f replaced by 0 and g replaced by g2 we take G2 = g2. Then PaG2 is C∞

on a neighborhood of � (by the pseudolocal property of pseudodifferential operators, see, e.g., [Grubb
2009, p. 177]), so the reduced problem has a solution u2 ∈ Ea(�), and the given problem then has the
solution u2+ g2.

The sum of the solutions u1+G1+ u2+ g2 solves (2-15) and lies in the asserted space.

(3) This is shown in a similar way, using (2-13). �

Remark 2.7. Note that according to this corollary, the effect on the solution over � of an exterior
contribution to g supported at a distance from � is only a term in Ea(�).

2B. A nonhomogeneous Dirichlet problem. For the nonhomogeneous Dirichlet problem (2-2), the
crucial observation that leads to its solvability is that we can identify Ea−1(�)/Ea(�) with C∞(6) by
use of the mapping

γa−1,0 : u 7→ 0(a)(d(x)1−au)|6 ≡ 0(a)γ0(d1−au). (2-23)

(The gamma-function is included for consistency in calculations of Fourier transformations and Taylor
expansions.) Namely, using normal and tangential coordinates x = y′+ yn En(y′) on a tubular neighborhood
Uδ = {y′+ yn En(y′) | y′ ∈6, |yn|< δ} of 6 (where En(y′) denotes the interior normal at y′), we have for
v ∈ C∞(�) that

v(x)= v(y′+ yn En)= v0(y′)+ ynw(x) on Uδ ∩�,
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where v0 ∈ C∞(6) is the restriction of v to 6 (also denoted γ0v), and w is C∞ on Uδ ∩�. Now, when
u ∈ Ea−1(�) is written as u = e+0(a)−1d(x)a−1v with v ∈ C∞(�) and d(x) taken as yn on Uδ, then

u(x)= 0(a)−1d(x)a−1v0(y′)+0(a)−1d(x)aw(x) on Uδ ∩�, (2-24)

where 0(a)−1d(x)aw is a function in Ea(�). Here, v0 is determined uniquely from v and hence γa−1,0u
is determined uniquely from u, and the null-space of the mapping u 7→ γa−1,0u is Ea(�). See also
Section 5 of [Grubb 2015a]; there it is moreover shown that the mapping

γa−1,0 : Ea−1(�)→ C∞(6), with null-space Ea(�),

extends to a continuous surjective mapping

γa−1,0 : H (a−1)(s)
p (�)→ Bs−a+1/p′

p (6), with null-space Ha(s)
p (�), for s > a− 1/p′. (2-25)

Now since we have the bijectivity of r+Pa in (2-6), we can simply adjoin the mapping (2-25) and
conclude the bijectivity of(

r+Pa

γa−1,0

)
: H (a−1)(s)

p (�)−→∼ H s−2a
p (�)× Bs−a+1/p′

p (6). (2-26)

This gives the unique solvability of the problem (2-2) in these spaces. There is an inverse

(
R K

)
=

(
r+Pa

γa−1,0

)−1

,

where R is the inverse of (2-6) as introduced above and K is a mapping going from 6 to �. (Further
details in [Grubb 2015a, Section 6].)

In C s
∗
-spaces, we likewise have an extension of the mapping γa−1,0:

γa−1,0 : C (a−1)(s)
∗

(�)→ C s−a+1
∗

(6), with null-space Ca(s)
∗
(�), for s > a− 1. (2-27)

Then the result is as follows (as a special case of Theorem 3.2 below), with conclusions in Hölder spaces:

Theorem 2.8. Let s > a− 1. The mapping {r+Pa, γa−1,0} defines a bijection

{r+Pa, γa−1,0} : C (a−1)(s)
∗

(�)→ C s−2a
∗

(�)×C s−a+1
∗

(6). (2-28)

In particular, for any f ∈ L∞(�), ϕ ∈ Ca+1(6), there exists a unique solution u of (2-2) in
C (a−1)(2a)
∗ (�); it satisfies

u ∈
{

e+d(x)a−1Ca+1(�)+ Ċ2a(�) when a 6= 1
2 ,

e+d(x)−
1
2 C

3
2 (�)+ Ċ1−0(�) when a = 1

2 .
(2-29)

For f ∈ C t(�), ϕ ∈ Ca+1+t(6), t > 0, the solution satisfies

u ∈


e+d(x)a−1Ca+1+t(�)+ Ċ2a+t(�) when a+ t and 2a+ t /∈ N,

e+d(x)a−1Ca+1+t−0(�)+ Ċ2a+t−0(�) when a+ t ∈ N,

e+d(x)a−1Ca+1+t(�)+ Ċ2a+t−0(�) when 2a+ t ∈ N.

(2-30)



1660 GERD GRUBB

Proof. The bijectivity holds in view of the bijectivity in Theorem 2.2, and (2-27). The implications
(2-29) and (2-30) follow from (2-10) with µ= a− 1, together with the embedding properties recalled in
Section 1. Note that since a+ 1> 2a, there is no need to mention an intersection with C2a(+t)(�). �

This gives a sharpening of Theorem 7.4 in [Grubb 2015a]. We moreover recall that as shown in [Grubb
2015a, Theorem 7.1], for functions u ∈ H (a−1)(s)

p (�) for some s, p with s > a− 1/p′,

f ∈ C∞(�), ϕ ∈ C∞(6) ⇐⇒ u ∈ Ea−1(�). (2-31)

Also for the nonhomogeneous Dirichlet problem, there exist formulations where the support condition
on u is replaced by a prescription of its value on {�. Abatangelo [2013] considers problems of the type

r+PaU = f on �,
U = g on {�,
γa−1,0U = ϕ on 6.

(2-32)

(The boundary condition in [Abatangelo 2013] takes the form of the third line when � is a ball, but is
described in a more general way for other domains.)

For (2-32), let f, g, ϕ be given, with

{ f, g, ϕ} ∈ H s−2a
p (�)× H s

p
(
{�
)
× Bs−a+1/p′

p (6), with s > a− 1/p′. (2-33)

Then we search for a solution U in a Sobolev space over Rn that allows definition of γa−1,0U .
We want to take as G an extension of g to H s

p(R
n). If s > n/p, such that H s

p(R
n) ⊂ C0(Rn), we

have that γa−1,0 : G 7→ 0(a)γ0(d(x)1−aG) is well-defined and gives 0 for G ∈ H s
p(R

n) (since a < 1).
If s < 1/p, we can take G as the extension by 0 on �

(
since H s

p
(
{�
)

is identified with Ḣ s
p
(
{�
)

when
−1/p′ < s < 1/p

)
. If 1/p ≤ s ≤ n/p, we can also use the extension by 0 and note that the boundary

value from � is zero, but G is only in H 1/p−0
p (Rn). Now U1 =U −G must satisfy

r+PaU1 = f − r+PaG in �,

supp U1 ⊂�,

γa−1,0U1 = ϕ.

(2-34)

We continue the analysis for s /∈[1/p, n/p]; when s>0, this can be achieved by taking p sufficiently large.
Since PaG ∈ H s−2a

p,loc (R
n), f − r+PaG ∈ H s−2a

p (�). In this way, we have reduced the problem to the
form (2-3), where we have the solution operator

(
R K

)
, see (2-26) and the following. This implies that

(2-32) has the solution

U = R( f − r+PaG)+ Kϕ+G ∈ Ha(s)
p (�)+ H (a−1)(s)

p (�)+ H s
p(R

n). (2-35)

It is unique, since zero data give a zero solution (as we know from (2-15) in the case ϕ = 0). Recall that
Ha(s)

p (�)⊂ H (a−1)(s)
p (�).

This shows the first part of the following theorem:



µ-TRANSMISSION AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS 1661

Theorem 2.9. (1) Let s > a− 1/p′ (if s > 0 assume moreover that s /∈ [1/p, n/p]), and let f, g, ϕ be
given as in (2-33). Let G ∈ H s

p(R
n) be an extension of g (by zero if s < 1/p).

The problem (2-32) has the unique solution (2-35) in H (a−1)(s)
p (�)+ H s

p(R
n).

(2) Let s > a− 1, s 6= 0, and let f, g, ϕ be given, with

{ f, g, ϕ} ∈ C s−2a
∗

(�)×C s
∗

(
{�
)
×C s−a+1

∗
(6). (2-36)

Let G ∈ C s
∗
(Rn) be an extension of g (by zero if s < 0).

The problem (2-32) has the unique solution

U = R( f − r+PaG)+ Kϕ+G ∈ C (a−1)(s)
∗

(�)+C s
∗
(Rn). (2-37)

Proof. (1) was shown above, and (2) is shown in an analogous way:
For s > 0, the extension G has boundary value γa−1,0G = 0(a)γ0(d1−aG)= 0 since G is continuous

and 1− a > 0, and for s < 0 the boundary value from � is 0, since G is extended by zero (using the
identification of C s

∗

(
{�
)

with Ċ s
∗

(
{�
)

when −1< s < 0). We then apply Theorem 2.8 to u =U −G. �

This reduction allows a study of higher regularity of the solutions. The treatment in [Abatangelo 2013]
seems primarily directed towards solutions for not very smooth data. The boundary of � is only assumed
C1,1 there.

Remark 2.10. When s > a+ n/p, we note that since Ha(s)
p (�)⊂ e+d(x)aC0(�)⊂ C0(Rn) (see (2-9)

or [Grubb 2015a, Corollary 5.5]), the solution (2-35) is the sum of a continuous function and a term
Kϕ ∈ H (a−1)(s)

p (�) that stems solely from the boundary value ϕ. To further describe Kϕ, consider a
localized situation, where � is replaced by Rn

+
, d(x) is replaced by xn , and Pa is carried over to a similar

operator P (of type and factorization index a). As shown in the proof of [Grubb 2015a, Theorem 6.5],
the solution Kϕ (in a parametrix sense) of

r+Pu = 0 in Rn
+
, γa−1,0u = ϕ at xn = 0,

is of the form Kϕ = z+w, where

z = Ka−1,0ϕ =4
1−a
+

e+K0ϕ = e+ca−1xa−1
n K0ϕ, w =−Rr+Pz ∈ Ha(s)(Rn

+
)⊂ C0(Rn);

here K0 is the standard Poisson operator sending ϕ ∈ Bs−a+1/p′
p (Rn−1) into

K0ϕ = F−1
ξ→x(ϕ̂(ξ

′)([ξ ′] + iξn)
−1)= F−1

ξ ′→x ′(ϕ̂(ξ
′)e−[ξ

′
]xn ) ∈ H s−a+1

p (Rn
+
),

with γ0K0ϕ = ϕ (see also Corollary 5.3 and the proof of Theorem 5.4 in [Grubb 2015a]). Then

z = e+ca−1xa−1
n K0ϕ ∈ e+xa−1

n H s−a+1
p (Rn

+
)⊂ e+xa−1

n C s−a+1−n/p(Rn
+
),

with K0ϕ 6= 0 at {xn = 0} when ϕ 6= 0. For higher s, the factor K0ϕ lies in higher-order Sobolev and
Hölder spaces, but is always nontrivial at {xn = 0} when ϕ 6= 0.
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When this is carried back to the manifold situation, we have that U is the sum of a term in C0(Rn)

and a term e+d(x)a−1v, v ∈ H s−a+1
p (�), where v is nonzero at ∂� when ϕ 6= 0. Since a < 1, this term

blows up at the boundary.
Hence the solutions are “large” at the boundary in this precise sense, consisting of a continuous function

plus a term containing the factor d(x)a−1 nontrivially. See also (2-31).
It is a theme of [Abatangelo 2013] that there exist “large” solutions of the nonhomogeneous Dirichlet

problem; we here see that this is not an exception but a rule of the setup, provided naturally by the part of
the solution mapping going from 6 to �.

Theorem 2.9(1) gives the following result in Hölder spaces when f ∈ L p(�)= H 0
p(�).

Corollary 2.11. Let p > n/a. For f ∈ L p(�), g ∈ C2a+0
(
{�
)
∩ H 2a

p
(
{�
)

and ϕ ∈ Ca+1/p′+0(6), the
solution U of (2-32) according to Theorem 2.8 satisfies

U ∈ e+da−1Ca+1−n/p(�)+ Ċ2a−n/p(�)+C2a+0(Rn)∩ H 2a
p (R

n), (2-38)

with C2a−n/p replaced by C1−0 if 2a− n/p = 1.

Proof. Note that 2a > n/p. We extend g as in Corollary 2.4 to a function G ∈ C2a+0(Rn)∩ H 2a
p (R

n),

and note that ϕ ∈ Ca+1/p′+0(6)⊂ Ba+1/p′
p (6). Theorem 2.9(1) shows that there is a (unique) solution

U = u+ Kϕ+G with

u+ Kϕ ∈ H (a−1)(2a)
p (�)⊂ e+da−1Ca+1−n/p(�)+ Ċ2a−n/p(�)

(one may consult [Grubb 2015a, (7.15)]), with the mentioned modification if 2a− n/p is integer. �

For f ∈ L∞(�) or C t(�), we get the sharpest results by applying the statement for C s
∗
-spaces:

Corollary 2.12. (1) For f ∈ L∞(�), g ∈ C2a
comp

(
{�
)

and ϕ ∈ Ca+1(6), the solution of (2-32) satisfies

U ∈ e+da−1Ca+1(�)+C2a
comp(R

n), (2-39)

with C2a
comp replaced by C1−0

comp if a = 1
2 .

(2) Let X be any of the function spaces Fσp,q(R
n) or Bσp,q(R

n), and denote by Xext the subset of elements
with support disjoint from �. For f ∈ L∞(�), g ∈ C2a

comp
(
{�
)
+ Xext and ϕ ∈ Ca+1(6), there exists a

solution of (2-32) satisfying

U ∈ e+da−1Ca+1(�)+C2a
comp(R

n)+ Xext, (2-40)

with C2a
comp replaced by C1−0

comp if a = 1
2 .

(3) For f ∈ C t(�), g ∈ C2a+t
comp

(
{�
)
+ Xext and ϕ ∈ Ca+1+t(6), the solution according to (2) satisfies

U ∈ e+da−1Ca+1+t(�)+C2a+t
comp(R

n)+ Xext,

with Ca+1+t and C2a+t
comp replaced by Ca+1+t−0 and C2a+t−0

comp , respectively, when the exponents hit an
integer.

Proof. We apply Theorem 2.9(2) in essentially the same way as in Corollary 2.6; details can be omitted. �
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2C. A nonhomogeneous Neumann problem. The Neumann boundary value defined in connection with
(−1)a is

γa−1,1u = 0(a+ 1)γ0
(
∂n(d(x)1−au)

)
; (2-41)

it is proportional to the second coefficient in the Taylor expansion of d1−au in the normal variable at the
boundary (like γ0w when w is as in (2-24)).

We here have, by use of Theorem 4.3 below:

Theorem 2.13. The mapping {r+Pa, γa−1,1} defines a Fredholm operator

{r+Pa, γa−1,1} : H (a−1)(s)
p (�)→ H s−2a

p (�)× Bs−a−1/p
p (6), (2-42)

for s > a+ 1/p.

Proof. The continuity of the mapping (2-42) follows from [Grubb 2015a, Theorem 5.1] with µ= a− 1,
M = 2. The Fredholm property follows from Theorem 4.3 below in a special case (see (3-2)) by piecing
together a parametrix from the parametrix construction in local coordinates given there. We use that the
parametrix exists since Pa in local coordinates has principal symbol |ξ |2a . �

There is a similar version in C s
∗
-spaces, with consequences for Hölder estimates:

Theorem 2.14. Let s > a. The mapping {r+Pa, γa−1,1} defines a Fredholm operator

{r+Pa, γa−1,1} : C (a−1)(s)
∗

(�)→ C s−2a
∗

(�)×C s−a
∗
(6). (2-43)

In particular, for { f, ψ} ∈ L∞(�)×Ca(6) subject to a certain finite set of linear constraints there
exists a solution u of (2-3) in C (a−1)(2a)

∗ (�); it is unique modulo a finite dimensional linear subspace
N⊂ Ea−1(�) and satisfies

u ∈
{

e+d(x)a−1Ca+1(�)+ Ċ2a(�) when a 6= 1
2 ,

e+d(x)−
1
2 C

3
2 (�)+ Ċ1−0(�) when a = 1

2 .
(2-44)

For f ∈ C t(�), ψ ∈ Ca+t(6), t > 0, the solution satisfies

u ∈


e+d(x)a−1Ca+1+t(�)+ Ċ2a+t(�) when a+ t and 2a+ t /∈ N,

e+d(x)a−1Ca+1+t−0(�)+ Ċ2a+t−0(�) when a+ t ∈ N,

e+d(x)a−1Ca+1+t(�)+ Ċ2a+t−0(�) when 2a+ t ∈ N.

(2-45)

Proof. The first statement is the analogue of Theorem 2.13, now derived from Theorem 4.3, for p= q=∞.
In the next, detailed statements we formulate the Fredholm property explicitly, using also Theorem 3.5
on the smoothness of the kernel. Here the inclusions (2-44) and (2-45) follow from the description (2-10)
of C (a−1)(s)

∗ (�) as in the proof of Theorem 2.8. �

Also in the Neumann case, one can formulate versions of the theorems with u prescribed on Rn
\�,

and show their equivalence with the set-up for u supported in �; we think this is sufficiently exemplified
by the treatment of the Dirichlet condition above that we can leave details to the interested reader.
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3. Boundary problems in general spaces

One of the conclusions in [Grubb 2015a] of the study of the ψdo P of order m ∈ C, with factorization
index and type µ0 ∈ C, was that it could be linked, by the help of the special order-reducing operators
3
(µ)
± , to an operator

Q =3(µ0−m)
− P3(−µ0)

+ (3-1)

of order 0 and with factorization index and type 0, which could be treated by the help of the calculus of
Boutet de Monvel on H s

p-spaces, as accounted for in [Grubb 1990]. Results for P and its boundary value
problems could then be deduced from those for Q in the case of a homogeneous boundary condition. With a
natural definition of boundary operators γµ,k , nonhomogeneous boundary conditions could also be treated.
In particular, we found the structure of parametrices of r+P , with homogeneous or nonhomogeneous
Dirichlet-type conditions, as compositions of operators belonging to the Boutet de Monvel calculus with
the special order-reducing operators; see Theorems 4.4, 6.1 and 6.5 of [Grubb 2015a].

The results of [Grubb 1990] have been extended to the much more general families of spaces F s
p,q

(Triebel–Lizorkin spaces) and Bs
p,q (Besov spaces) by Johnsen [1996]. He shows that elliptic systems on

a compact manifold with a smooth boundary, belonging to the Boutet de Monvel calculus, have Fredholm
solvability also in these more general spaces, with C∞ kernels and range complements (cokernels) indepen-
dent of s, p, q . Here 0< p, q ≤∞ is allowed for the Bs

p,q -spaces, and the same goes for the F s
p,q -spaces,

except that p is taken<∞ (to avoid long explanations of exceptional cases). The parameter s is taken> s0,
for a suitable s0 depending on p and the order and class of the involved operators. We refer to [Johnsen
1996] (or to Triebel’s books) for detailed descriptions of the spaces, recalling just that for 1< p <∞,

F s
2,2 = Bs

2,2 = H s
2 , L2-Sobolev spaces,

F s
p,2 = H s

p, Bessel-potential spaces,

Bs
p,p = Bs

p, Besov spaces.

(3-2)

Here the Bessel-potential spaces H s
p are also called W s

p (or W s,p) for s ∈N0, and the Besov spaces Bs
p are

also called W s
p (or W s,p) for s ∈ R+ \N, under the common name Sobolev–Slobodetskii spaces. Recall

moreover that F s
p,p = Bs

p,p for 0< p <∞ (also denoted Bs
p).

We return to the general situation of � smoothly embedded in a Riemannian manifold �1, with
Rn
+
⊂ Rn used in localizations. Hörmander’s notation Ḟ, F and Ḃ, B will be used for the general scales,

in the same way as for H s
p; see (1-2) and the following.

In the present paper, we shall in particular be interested in the case of the scale of spaces Bs
∞,∞ = C s

∗

(see the text around (1-3)), which gives a shortcut to sharp results on solvability in Hölder spaces.
Since we are mostly interested in results for large p, we shall assume p ≥ 1, which simplifies the

quotations from [Johnsen 1996]; namely, the condition s>max{1/p−1, n/p−n} simplifies to s>1/p−1,
since 1/p− 1 ≥ n/p− n when p ≥ 1. (In situations where p < 1 would be needed, e.g., in bootstrap
regularity arguments, one can supply the presentation here with the appropriate results from [Johnsen
1996].) The usual notation 1/p′ = 1− 1/p is understood as 0 or 1 when p = 1 or∞, respectively. We
assume p ≤∞ in B-cases, p <∞ in F-cases, and take 0< q ≤∞.



µ-TRANSMISSION AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS 1665

The scales F s
p,q and Bs

p,q have analogous roles in definitions over �, but the trace mappings on them
are slightly different: when s > 1/p,

γ0 : F s
p,q(�)→ Bs−1/p

p,p (∂�) and γ0 : Bs
p,q(�)→ Bs−1/p

p,q (∂�), (3-3)

continuously and surjectively. (One could also write F s
p,p instead of Bs

p,p; in [Johnsen 1996], both
cases occur.)

To reduce repetitive formulations, we shall introduce the common notation

X s
p,q stands for either F s

p,q or Bs
p,q , as necessary, (3-4)

with the same choice in each place if the notation appears several times in the same calculation. Formulas
involving boundary operators will be given explicitly in the two different cases resulting from (3-3).

In addition to the mapping and Fredholm properties established for Boutet de Monvel systems in
[Johnsen 1996], we need the following generalizations of (1-6) (as in [Grubb 2015a, (1.11)–(1.20)]):

4
µ
+ and 3µ+ : Ẋ

s
p,q(R

n
+
)−→∼ Ẋ s−Reµ

p,q (Rn
+
), with inverses 4−µ+ and 3−µ+ ,

4
µ
−,+ and 3µ−,+ : X

s
p,q(R

n
+
)−→∼ X s−Reµ

p,q (Rn
+
), with inverses 4−µ−,+ and 3−µ−,+,

3
(µ)
+ : Ẋ

s
p,q(�)−→

∼ Ẋ s−Reµ
p,q (�),

3
(µ)
−,+ : X

s
p,q(�)−→

∼ X s−Reµ
p,q (�),

(3-5)

valid for all s ∈ R. The cases with integer µ are covered by [Johnsen 1996] as a direct extension of the
presentation in [Grubb 1990]; the cases of more general µ likewise extend, since the support-preserving
properties extend.

We can then define (analogously to the definitions and observations in [Grubb 2015a, Sections 1.2, 1.3]):

Definition 3.1. Let s > Reµ− 1/p′.

(1) A distribution u on Rn is in Xµ(s)
p,q (R

n
+
) if and only if4µ+u ∈ Ẋ−1/p′+0

p,q (Rn
+
) and r+4µ+u ∈ X s−Reµ

p,q (Rn
+
).

In fact, r+4µ+ maps Xµ(s)
p,q (R

n
+
) bijectively onto X s−Reµ

p,q (Rn
+
), with inverse 4−µ+ e+, and

Xµ(s)
p,q (R

n
+
)=4

−µ
+ e+X s−Reµ

p,q (Rn
+
), (3-6)

with the inherited norm. Here 3−µ+ can equivalently be used.

(2) A distribution u on �1 is in Xµ(s)
p,q (�) if and only if 3(µ)+ u ∈ Ẋ−1/p′+0

p,q (�) and r+3(µ)+ u ∈ X s−Reµ
p,q (�).

In fact, r+3(µ)+ maps Xµ(s)
p,q (�) bijectively onto X s−Reµ

p,q (�), with inverse 3(−µ)+ e+, and

Xµ(s)
p,q (�)=3

(−µ)
+ e+X s−Reµ

p,q (�), (3-7)

with the inherited norm.

The distributions in Xµ(s)
p,q (R

n
+
) and Xµ(s)

p,q (�) are locally in X s
p,q over Rn

+
and �, respectively, by

interior regularity.
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By use of the mapping properties of the standard trace operators γ j described in [Johnsen 1996], and use
of (3-5) above, the trace operators %µ,M introduced in [Grubb 2015a, Section 5] extend to the general spaces

%µ,M = {γµ,0, γµ,1, . . . , γµ,M−1} :

{
Fµ(s)p,q (�)→

∏
0≤ j<M Bs−Reµ− j−1/p

p,p (∂�),

Bµ(s)p,q (�)→
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�),

(3-8)

for s > Reµ+M − 1/p′; they are surjective with kernels F (µ+M)(s)
p,q (�) and B(µ+M)(s)

p,q (�).
We can now formulate some important results from [Grubb 2015a] in these scales of spaces. Recall

that when P is of type µ, it is also of type µ′ for µ−µ′ ∈ Z.

Theorem 3.2. (1) Let the ψdo P on �1 be of order m ∈ C and of type µ ∈ C relative to the boundary of
the smooth compact subset �⊂�1. Then when s > Reµ− 1/p′, r+P maps Xµ(s)

p,q (�) continuously into
X s−Re m

p,q (�).

(2) Assume in addition that P is elliptic and has factorization index µ0, where µ− µ0 ∈ Z. Let s >
Reµ0− 1/p′. If u ∈ Ẋσ

p,q(�) for some σ > Reµ0− 1/p′ and r+Pu ∈ X s−Re m
p,q (�), then u ∈ Xµ0(s)

p,q (�).
The mapping r+P defines a Fredholm operator

r+P : Xµ0(s)
p,q (�)→ X s−Re m

p,q (�). (3-9)

Moreover, {r+P, γµ0−1,0} defines a Fredholm operator

{r+P, γµ0−1,0} :

{
F (µ0−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−Reµ0+1−1/p

p,p (∂�),

B(µ0−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−Reµ0+1−1/p
p,q (∂�).

(3-10)

(3) Let P be as in (2), and let µ′ = µ0 − M for a positive integer M. Then when s > Reµ0 − 1/p′,
{r+P, %µ′,M} defines a Fredholm operator

{r+P, %µ′,M} :

{
Fµ
′(s)

p,q (�)→ F s−Re m
p,q (�)×

∏
0≤ j<M Bs−Reµ′− j−1/p

p,p (∂�),

Bµ
′(s)

p,q (�)→ Bs−Re m
p,q (�)×

∏
0≤ j<M Bs−Reµ′− j−1/p

p,q (∂�).
(3-11)

Proof. (1) This is the extension of [Grubb 2015a, Theorem 4.2] to the general spaces. We recall that
the proof consist of a reduction of the study of r+P to the consideration of Q+ (with Q as in (3-1) for
µ= µ0) of type 0; this works well in the present spaces.

(2)–(3). Here, (3-9) is obtained by a generalization of [Grubb 2015a, Theorem 4.4] and its proof to the
current spaces. Now (3-11) is obtained as in [Grubb 2015a, Theorem 6.1] by adjoining the mapping (3-8)
(with µ= µ′) to r+P . Here (3-10) is the special case M = 1, as in [Grubb 2015a, Corollary 6.2] �

The parametrices R and
(
R K

)
described by formulas in [Grubb 2015a, Theorems 4.4, 6.5] also work

in the present spaces.

Example 3.3. As an example, we have for the choice X = B, p = q =∞, i.e., X s
p,q = Bs

∞,∞ = C s
∗
, that

Theorem 3.2(2) shows the following:
Let P be elliptic of order m and of type µ0, with factorization index µ0, and let s > Reµ0 − 1. If

u ∈ Ċσ
∗
(�) for some σ > Reµ0− 1 and r+Pu ∈ C s−Re m

∗
(�), then u ∈ Cµ0(s)

∗ (�). The mapping r+P
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defines a Fredholm operator

r+P : Cµ0(s)
∗

(�)→ C s−Re m
∗

(�). (3-12)

Moreover, {r+P, γµ0−1,0} defines a Fredholm operator

{r+P, γµ0−1,0} : C (µ0−1)(s)
∗

(�)→ C s−Re m
∗

(�)×C s−Reµ0+1
∗

(∂�). (3-13)

For Reµ>−1/p′, the spaces Xµ(s)
p,q (R

n
+
) and Xµ(s)

p,q (�) are further described by the following general-
ization of [Grubb 2015a, Theorem 5.4]:

Theorem 3.4. One has for Reµ >−1, s > Reµ− 1/p′, with M ∈ N:

Xµ(s)
p,q (R

n
+
)

{
= Ẋ s

p,q(R
n
+
) if s−Reµ ∈ ]−1/p′, 1/p[,

⊂ Ẋ s−0
p,q (R

n
+
) if s−Reµ= 1/p,

Xµ(s)
p,q (R

n
+
)⊂ e+xµn X s−Reµ

p,q (Rn
+
)+

{
Ẋ s

p,q(R
n
+
) if s−Reµ ∈ M + ]−1/p′, 1/p[,

Ẋ s−0
p,q (R

n
+
) if s−Reµ= M + 1/p.

(3-14)

The inclusions (3-14) also hold in the manifold situation, with Rn
+

replaced by � and xn replaced
by d(x).

Proof. The first statement in (3-14) follows since e+X t
p,q(R

n
+
) = Ẋ t

p,q(R
n
+
) for −1/p′ < t < 1/p; see

[Johnsen 1996, (2.51)–(2.52)].
For the second statement we use the representation of u as in [Grubb 2015a, (5.13)–(5.14)], in the

same way as in the proof of Theorem 5.4 there. The crucial fact is that the Poisson operator K0 maps
γµ,0u ∈ Bs−Reµ−1/p

p,p (Rn−1) and Bs−Reµ−1/p
p,q (Rn−1) into F s−Reµ

p,q (Rn
+
) and Bs−Reµ

p,q (Rn
+
), respectively

(by [Johnsen 1996]), defining a term

v0 = e+Kµ,0γµ,0u = cµe+xµn K0γµ,0u ∈ e+xµn X s−Reµ
p,q (Rn

+
),

with similar descriptions of terms e+Kµ, jγµ, j u for j up to M − 1, such that u by subtraction of these
terms gives a term in Ẋ s

p,q(R
n
+
) (with s replaced by s− 0 if s−Reµ− 1/p hits an integer). �

Moreover, it is important to observe the following invariance property of kernels and cokernels (typical
in elliptic theory):

Theorem 3.5. For the Fredholm operators considered in Theorem 3.2, the kernel is a finite-dimensional
subspace N of Eµ(�), independent of the choice of s, p, q and F or B.

There is a finite-dimensional range complement M⊂C∞(�) for (3-9), and M1 ⊂C∞(�)×C∞(∂�)M

for (3-10)–(3-11), that is independent of the choice of s, p, q , F , B.

Proof. This follows from the similar statement for operators in the Boutet de Monvel calculus in [Johnsen
1996, Section 5.1] when we apply the mappings 3(µ)± , etc., in the reduction of the homogeneous Dirichlet
problem to a problem in the Boutet de Monvel calculus. �
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4. More general boundary conditions

In Theorem 3.2, we obtain the Fredholm solvability of Dirichlet-type problems defined by operators

{r+P, γµ−1,0} :

{
F (µ−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−Reµ+1/p′

p,p (∂�),

B(µ−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−Reµ+1/p′
p,q (∂�),

(4-1)

for s > Reµ−1/p′, where P is elliptic of order m, is of type µ, and has factorization index µ (called µ0

there). In Theorem 6.5 of [Grubb 2015a] we constructed a parametrix in local coordinates, which in the
Besov–Triebel–Lizorkin scales maps as

(
RD K D

)
:

{
F s−Re m

p,q (Rn
+
)× Bs−Reµ+1/p′

p,p (Rn−1)→ F (µ−1)(s)
p,q (Rn

+
),

Bs−Re m
p,q (Rn

+
)× Bs−Reµ+1/p′

p,q (Rn−1)→ B(µ−1)(s)
p,q (Rn

+
),

(4-2)

where RD = 3
−µ
+ e+ Q̃+3

µ−m
−,+ and K D = 4

1−µ
+ e+K ′ or 31−µ

+ e+K ′′. Here Q̃+ is a parametrix of Q+
(where Q is recalled in (3-1)), and K ′ and K ′′ are Poisson operators in the Boutet de Monvel calculus of
order 0.

4A. Boundary operators of type γ0 B. We shall now describe a general way to let other boundary
operators enter in lieu of γµ−1,0. The point is to reduce the problem to a problem in the Boutet de Monvel
calculus (with ψdo’s of type 0 and integer order). We can assume that the family of auxiliary operators
3
(%)
± is chosen such that (3(%)± )

−1
=3

(−%)
± .

Theorem 4.1. Let P be elliptic of order m ∈ C on �1, having type µ and factorization index µ with
respect to the smooth compact subset �. Let B be a ψdo of order m0+µ and of type µ, with m0 integer.
Consider the mapping

{r+P, γ0r+B} :

{
F (µ−1)(s)

p,q (�)→ F s−Re m
p,q (�)× Bs−m0−Reµ+1/p′

p,p (∂�),

B(µ−1)(s)
p,q (�)→ Bs−Re m

p,q (�)× Bs−m0−Reµ+1/p′
p,q (∂�),

(4-3)

for s > Reµ+max{m0, 0}− 1/p′.

(1) For u ∈ X (µ−1)(s)
p,q (Rn

+
), the problem

r+Pu = f on �, γ0r+Bu = ψ on ∂�, (4-4)

can be reduced to an equivalent problem

P ′
+
w = g on �, γ0 B ′

+
w = ψ on ∂�, (4-5)

where w = r+3(µ−1)
+ u ∈ X s−Reµ+1

p,q (�), g =3(µ−m)
−,+ f ∈ X s−Reµ

p,q (�), and where

P ′ =3(µ−m)
− P3(1−µ)+ , B ′ = B3(1−µ)+ , (4-6)

are ψdo’s of order 1 and m0+ 1, respectively, and type 0.
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(2) The problem (4-4) is Fredholm solvable for s > Reµ+max{m0, 0}− 1/p′ if and only if the problem
(4-5) is Fredholm solvable, as a mapping

{P ′
+
, γ0 B ′

+
} :

{
F t+1

p,q (�)→ F t
p,q(�)× B t−m0+1/p′

p,p (∂�),

B t+1
p,q (�)→ B t

p,q(�)× B t−m0+1/p′
p,q (∂�),

(4-7)

for t >max{m0, 0}− 1/p′.

(3) The operator in (4-7) belongs to the Boutet de Monvel calculus; therefore Fredholm solvability holds if
and only if (in addition to the invertibility of the interior symbol) the boundary symbol operator is bijective
at each (x ′, ξ ′) ∈ T ∗(∂�) \ 0. This can also be formulated as the unique solvability of the model problem
for (4-4) at each x ′ ∈ ∂�, ξ ′ 6= 0.

(4) In the transition between (4-4) and (4-5),
(
R′B K ′B

)
is a parametrix for (4-5) if and only if

(
RB K B

)
=

(
3
(1−µ)
+ e+R′B3

(µ−m)
−,+ 3

(1−µ)
+ e+K ′B

)
(4-8)

is a parametrix for (4-4).

Proof. The mapping (4-3) is well-defined, since r+B : X (µ−1)(s)
p,q (�)→ X s−m0−Reµ

p,q (�) by Theorem 3.2(1),
and γ0 acts as in (3-3).

(1) Let us go through the transition between (4-4) and (4-5), as already laid out in the formulation of the
theorem.

We have from Definition 3.1 that u ∈ X (µ−1)(s)
p,q (�) if and only if w = r+3(µ−1)

+ u ∈ X s−Reµ+1
p,q (�);

here u =3(1−µ)+ e+w. Moreover, since 3(%)−,+ : X
t
p,q(�)−→

∼ X t−Re %
p,q (�) for all % and t , f ∈ X s−Re m

p,q (�)

if and only if g =3(µ−m)
−,+ f ∈ X s−Reµ

p,q (�). Hence the first equation in (4-4) carries over to

3
(µ−m)
−,+ r+P3(1−µ)+ e+w = g.

Here 3(µ−m)
−,+ r+P3(1−µ)+ e+w can be simplified to r+3(µ−m)

− P3(1−µ)+ e+w = P ′
+
w, as accounted for in

the proof of Theorem 4.4 in [Grubb 2015a] in a similar situation. The boundary condition in (4-4) carries
over to that in (4-5) since B ′

+
w = r+B3(1−µ)+ e+w = r+Bu.

The order and type of the operators is clear from the definitions.

(2) Since the transition takes place by use of bijections, the Fredholm property carries over between the
two situations.

(3) The model problem is the problem defined from the principal symbols of the involved operators at
a boundary point x ′, in a local coordinate system where � is replaced by Rn

+
and the operator is applied

only in the xn-direction for fixed ξ ′ 6= 0. The hereby-defined operator on R+ is called the boundary
symbol operator in the Boutet de Monvel calculus. The first statement in (3) is just a reference to facts
from the Boutet de Monvel calculus. The second statement follows immediately when the transition is
applied on the principal symbol level.
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(4) Finally, when w = R′B g+ K ′Bψ , we have

u =3(1−µ)+ e+w =3(1−µ)+ e+(R′B g+ K ′Bψ)=3
(1−µ)
+ e+R′B3

(µ−m)
−,+ f +3(1−µ)+ e+K ′Bψ,

showing the last statement. �

The search for a parametrix here requires the analysis of model problems in Sobolev-type spaces
over R+. It can be an advantage to reduce this question to the boundary, where it suffices to investigate
the ellipticity of a ψdo (i.e., invertibility of its principal symbol), as in classical treatments of differential
and pseudodifferential problems.

Theorem 4.2. Consider the problem (4-3)–(4-4) in Theorem 4.1, and its transformed version (4-5).

(1) The nonhomogeneous Dirichlet system for P ′, {P ′
+
, γ0}, is elliptic, and has a parametrix for s > 1/p:

(
R′D K ′D

)
:

{
F s−1

p,q (�)× Bs−1/p
p,p (∂�)→ F s

p,q(�),

Bs−1
p,q (�)× Bs−1/p

p,q (∂�)→ Bs
p,q(�).

(4-9)

(2) Define

S′B = γ0 B ′
+

K ′D, (4-10)

a ψdo on ∂� of order m0. Then (4-3) defines a Fredholm operator if and only if S′B is elliptic. When this
is so, if S̃′B denotes a parametrix, then {r+P, γ0r+B} has the parametrix

(
RB K B

)
, where

RB =3
(1−µ)
+ (I − K ′D S̃′Bγ0 B ′

+
)R′D3

(µ−m)
−,+ , K B =3

(1−µ)
+ K ′D S̃′B . (4-11)

Proof. We begin by discussing the solvability of the type 0 problem (4-5) with B ′ = I . Set Q1 =

3
(µ−m)
− P3(1−µ)+ 3

(−1)
+ ; it is very similar to the operator Q = 3(µ−m)

− P3(−µ)+ used in [Grubb 2015a,
Theorems 4.2 and 4.4] being of order 0, type 0 and having factorization index 0. Then we can write

P ′ = Q13
(1)
+ , P ′

+
= r+Q13

(1)
+ e+ = r+Q1e+r+3(1)+ e+ = Q1,+3

(1)
+,+, (4-12)

where we used that r−3(1)+ e+ is 0 on X s
p,q(�) for s > 1/p.

The operator 3(1)+ defines an elliptic (bijective) system for s > 1/p,

{3
(1)
+,+, γ0} :

{
F s

p,q(�)−→
∼ F s−1

p,q (�)× Bs−1/p
p,p (∂�),

Bs
p,q(�)−→

∼ Bs−1
p,q (�)× Bs−1/p

p,q (∂�).
(4-13)

This is shown in [Grubb 1990, Theorem 5.1] for q = 2 in the F-case, and extends to the Besov–Triebel–
Lizorkin spaces by the results of [Johnsen 1996]. Composition with the operator Q1,+ preserves this
ellipticity, so {P ′

+
, γ0} forms an elliptic system with regards to the mapping property

{P ′
+
, γ0} :

{
F s

p,q(�)→ F s−1
p,q (�)× Bs−1/p

p,p (∂�),

Bs
p,q(�)→ Bs−1

p,q (�)× Bs−1/p
p,q (∂�),

(4-14)



µ-TRANSMISSION AND FRACTIONAL ELLIPTIC PSEUDODIFFERENTIAL OPERATORS 1671

for s > 1/p. Hence there is a parametrix (
R′D K ′D

)
of this Dirichlet problem, continuous in the opposite direction of (4-14). This shows (1).

Next, we can discuss the general problem (4-5) by the help of this special problem; such a discussion
is standard within the Boutet de Monvel calculus. Define S′B by (4-10), it is a ψdo on ∂� of order m0 by
the rules of calculus. If it is elliptic, it has a parametrix, which we denote S̃′B .

On the principal symbol level, the discussion takes place for exact operators; here we denote principal
symbols of the involved operators P ′, B ′, K ′D , etc., by p′, b′, k ′D , etc. To solve the model problem (at a
point (x ′, ξ ′) with ξ ′ 6= 0), with g ∈ L2(R+), ψ ∈ C,

p′
+
(x ′, ξ ′, Dn)w(xn)= g(xn) on R+, γ0b′

+
(x ′, ξ ′, Dn)w(xn)= ψ at xn = 0, (4-15)

let z = w− r ′Dg; then z should satisfy

p′
+

z = 0, γ0b′
+

z = ψ − γ0b′
+

r ′Dg ≡ ζ. (4-16)

Assuming that z satisfies the first equation, set

γ0z = ϕ; then z = k ′Dϕ,

as the solution of the semihomogeneous Dirichlet problem for p′
+

. To adapt z to the second part of (4.16),
we require that γ0b′

+
z = ζ ; here

γ0b′
+

z = γ0b′
+

k ′Dϕ = s ′Bϕ,

when we define s ′B by (4-10) on the principal symbol level; it is just a complex number depending on
(x ′, ξ ′). The equation

s ′Bϕ = ζ (4-17)

is uniquely solvable precisely when s ′B 6= 0. In that case, (4-17) is solved uniquely by ϕ = (s ′B)
−1ζ .

With this choice of ϕ, z = k ′Dϕ is the unique solution of (4-16), and w= r ′Dg+ z is the unique solution
of (4-15). The formula in complete detail is

w = r ′Dg+ k ′D(s
′

B)
−1ζ = (I − k ′D(s

′

B)
−1γ0b′

+
)r ′Dg+ k ′D(s

′

B)
−1ψ. (4-18)

Expressed for the full operators, this shows that the problem (4-5) is elliptic precisely when the ψdo
S′B is so.

For the full operators, a similar construction can be carried out in a parametrix sense, but it is perhaps
simpler to test directly by compositions that the operator(

R′B K ′B
)
=
(
(I − K ′D S̃′Bγ0 B ′

+
)R′D K ′D S̃′B

)
, (4-19)
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defined in analogy with (4-18), is a parametrix for {P ′
+
, γ0 B ′

+
}: since R′D P ′

+
+ K ′Dγ0 = I +R and

S̃′Bγ0 B ′
+

K D = S̃′B S′B = I +S, with operators R and S of order −∞, we have

(
R′B K ′B

) ( P ′
+

γ0 B ′
+

)
= (I − K ′D S̃′Bγ0 B ′

+
)R′D P ′

+
+ K ′D S̃′Bγ0 B ′

+

= (I − K ′D S̃′Bγ0 B ′
+
)(1+R− K ′Dγ0)+ K ′D S̃′Bγ0 B ′

+

= I − K ′D S̃′Bγ0 B ′
+
− K ′Dγ0+ K ′D S̃′Bγ0 B ′

+
K ′Dγ0+ K ′D S̃′Bγ0 B ′

+
+R1

= I +R2, (4-20)

with operators R1 and R2 of order −∞. The composition in the opposite order is similarly checked.
All this takes place in the Boutet de Monvel calculus. For our original problem we now find the

parametrix as in (4-11), by the transition described in Theorem 4.1. �

The order assumption on B was made for the sake of arriving at operators to which the Boutet de
Monvel calculus applies. We think that m0 could be allowed to be noninteger, with some more effort,
drawing on results from [Grubb and Hörmander 1990].

The treatment can be extended to problems with vector-valued boundary conditions γ0r+B, where we
also involve %µ,M for M > 1; see (3-8).

4B. The Neumann boundary operator γµ0−1,1. For ease of comparison to [Grubb 2015a], we denote
the µ used above by µ0 here.

The boundary conditions with B of noninteger order m0+µ0 are generally nonlocal, since B is so.
But there do exist local boundary conditions too. For example, the Dirichlet-type operator γµ0−1,0 is local;
see (2-23). So are the systems (see (3-8)) %µ0−M,M = {γµ0−M,0, . . . , γµ0−M,M−1}, which also define
Fredholm operators together with r+P; see Theorem 3.2(3). Note that {r+P, %µ0−M,M} operates on a
larger space X (µ0−M)(s)

p,q (�) than X (µ0−1)(s)
p,q (�) when M > 1.

What we shall show now is that one can impose a higher-order local boundary condition defined on
X (µ0−1)(s)

p,q (�) itself, leading to a meaningful boundary value problem with Fredholm solvability under a
reasonable ellipticity condition.

Here we treat the Neumann-type condition γµ0−1,1u = ψ , recalling from [Grubb 2015a, (5.3)ff.] that

γµ0−1,1u = 0(µ0+ 1)γ0
(
∂n(d(x)1−µ0u)

)
. (4-21)

By application of (3-8) with M = 2, µ= µ0− 1,

γµ0−1,1 = γµ,M−1 :

{
F (µ0−1)(s)

p,q (�)→ Bs−Reµ0−1/p
p,p (∂�),

B(µ0−1)(s)
p,q (�)→ Bs−Reµ0−1/p

p,q (∂�),
(4-22)

is well-defined for s > Reµ+M − 1/p′ = Reµ0+ 1/p.
The discussion of ellipticity takes place in local coordinates, so let us now assume that we are in a

localized situation where P is given on Rn , globally estimated, elliptic of order m and of type µ0 and
with factorization index µ0 relative to the subset Rn

+
, as in [Grubb 2015a, Theorem 6.5].
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For Rn
+

, we can express γµ0−1,1 in terms of auxiliary operators by

γµ0−1,1u = γ0∂n4
µ0−1
+ u− (µ0− 1)[D′]γ04

µ0−1
+ u; (4-23)

see the calculations after Corollary 5.3 in [Grubb 2015a]. (In the manifold situation there is a certain
freedom in choosing d(x) and ∂n , so we are tacitly assuming that a choice has been made that carries
over to d(x)= xn , ∂n = ∂/∂xn in the localization.)

There is an obstacle to applying the results of Section 4A to this, namely, that 4µ0−1
+ is not truly a

ψdo! This is a difficult fact that has been observed throughout the development of the theory. However,
in connection with boundary conditions, operators like 4µ+ work to some extent like the truly pseudodif-
ferential operators 3µ+. It is for this reason that we gave two versions of the operator K D in (4-2) and the
following, stemming from [Grubb 2015a, Theorem 6.5], in which Lemma 6.6 there was used.

Theorem 4.3. Let P be given on Rn , globally estimated, elliptic of order m and of type µ0 and with
factorization index µ0 relative to the subset Rn

+
, and let

(
RD K D

)
be a parametrix of the nonhomogeneous

Dirichlet problem, as recalled in (4-2) and the following, with K D =4
1−µ0
+ e+K ′ for a certain Poisson

operator K ′ of order 0.
Consider the Neumann-type problem

r+Pu = f, γµ0−1,1u = ψ, (4-24)

where

{r+P, γµ0−1,1} :

{
F (µ0−1)(s)

p,q (Rn
+
)→ F s−Re m

p,q (Rn
+
)× Bs−Reµ0−1/p

p,p (Rn−1),

B(µ0−1)(s)
p,q (Rn

+
)→ Bs−Re m

p,q (Rn
+
)× Bs−Reµ0−1/p

p,q (Rn−1),
(4-25)

for s > µ0+ 1/p.

(1) The operator
SN = γµ0−1,1K D (4-26)

equals (γ0∂n − (µ0− 1)[D′]γ0)K ′ and is a ψdo on Rn−1 of order 1.

(2) If SN is elliptic, then, with a parametrix of SN denoted S̃N , there is the parametrix for {r+P, γµ0−1,1}(
RN KN

)
=
(
(I − K D S̃Nγµ0−1,1)RD K D S̃N

)
. (4-27)

(3) Ellipticity holds in particular when the principal symbol of P equals c(x)|ξ |2µ0 , with Reµ0 > 0,
c(x) 6= 0.

Proof. (1) By the formulas for γµ0−1,1 and K D ,

SN = γµ0−1,1K D = (γ0∂n − (µ0− 1)[D′]γ0)4
µ0−1
+ 4

1−µ0
+ K ′ = (γ0∂n − (µ0− 1)[D′]γ0)K ′,

and it follows from the rules of the Boutet de Monvel calculus that this is a ψdo on Rn−1 of order 1.

(2) In the elliptic case, one checks that (4-27) is a parametrix by calculations as in Theorem 4.2.

(3) In this case, the model problem for {r+P, γµ0−1,1} can be reduced to that for {r+(1−1)µ0, γµ0−1,1}.
For the latter, we have shown unique solvability in Theorem A.2 and Remark A.3 in the appendix. �
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Remark 4.4. The operator SN is in fact the Dirichlet-to-Neumann operator for P , sending the Dirichlet
data over into the Neumann data for solutions of r+Pu = 0 in an approximate sense (modulo operators
of order −∞). From the calculations in the Appendix we see that its principal symbol equals −µ0|ξ

′
|

when P is principally equal to (−1)µ0 , with Reµ0 > 0.

4C. Systems, further perspectives. The factorization property used above will not in general hold for
systems (N × N -matrices) in a convenient way with smooth dependence on ξ ′, even if every element of
the matrix has a factorization. But with the µ-transmission property we can establish an extremely useful
connection to systems in the Boutet de Monvel calculus:

Proposition 4.5. Let N be an integer≥ 1, and let P be an N×N-system, P = (Pjk) j,k=1,...,N , of classical
ψdo’s Pjk of order m ∈ C on �1 and of type µ ∈ C relative to �. Let µ0 ∈ µ+Z. Then the operator

Q =3(µ0−m)
− P3(−µ0)

+ (4-28)

is of order and type 0, and hence belongs to the Boutet de Monvel calculus.

Proof. The factors 3(µ0−m)
− and 3(−µ0)

+ should be understood as diagonal matrices with 3(µ0−m)
− and

3
(−µ0)
+ , respectively, in the diagonal. When they are composed with P , they act on each entry by defining

an operator of order and type 0 by the symbol composition rules. �

This will allow for a general application of the Boutet de Monvel theory in the discussion of boundary
value problems. Leaving the most general case for future works, we shall in the present paper just draw
conclusions for systems where the operator (4-28) defines a system Q+ that is in itself elliptic. Let us
give a name to such cases, where the present considerations will apply without further efforts:

Definition 4.6. Let N be an integer ≥ 1, and let P be an elliptic N × N -system, P = (Pjk) j,k=1,...,N , of
classical ψdo’s Pjk of order m ∈ C on �1 and of type µ ∈ C relative to �. Let µ0 ∈ µ+Z. Then P is
said to be µ0-reducible when the operator Q, defined in (4-28) of order and type 0, has the property that
Q+ is elliptic in the Boutet de Monvel calculus (without auxiliary boundary operators).

The condition in the definition means that in local coordinates at the boundary, the model operator
q0(x ′, 0, ξ ′, Dn)+ is bijective in L2(R+)

N . It holds for N = 1 for the operators with factorization index
µ0, as accounted for in the proof of [Grubb 2015a, Theorem 4.4]. Another important case is where the
operator P (a scalar or a system) is strongly elliptic, as observed in [Eskin 1981, Example 17.1].

Lemma 4.7. Let N ≥ 1, and let P be of order m ∈ R+ on �1 and of type µ0 = m/2 relative to �. If P is
strongly elliptic, i.e., satisfies in local coordinates (with c > 0),

Re(p0(x, ξ)v, v)≥ c|ξ |m |v|2 for all ξ ∈ Rn, v ∈ CN ,

then P is µ0-reducible.

Proof. Here Q equals3(−m/2)
− P3(−m/2)

+ . This is strongly elliptic of order 0, because the principal symbols
of 3(−m/2)

− and 3(−m/2)
+ are conjugates and homogeneous elliptic of order −m/2:

Re(q0(x, ξ)v, v)= Re
(

p0(x, ξ)λ
−m/2
+,0 (ξ)v, λ

−m/2
+,0 (ξ)v

)
≥ c|ξ |m |λ−m/2

+,0 (ξ)v|2 ≥ c′|v|2,
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for all ξ ∈ Rn , v ∈ CN , in local coordinates. Thus for each x ′ ∈ ∂�, ξ ′ 6= 0, the model operator
q0(x ′, 0, ξ ′, Dn) on R satisfies

Re(q0u, u)≥ C‖u‖2L2(R)N for u ∈ L2(R)
N ,

as seen by Fourier transformation in ξn . In particular, the restriction of r+q0 to C∞0 (R+)
N satisfies

the above inequality, and the inequality extends to its closure, r+q0e+, defined on L2(R+)
N , which is

therefore injective. Similar considerations hold for the adjoint, so indeed, q0(x ′, 0, ξ ′, Dn)+ is bijective
in L2(R+)

N . �

Theorem 4.8. Let P be an elliptic N × N system, P = (Pjk) j,k=1,...,N , of classical ψdo’s Pjk of order
m ∈ C on �1 and of type µ0 ∈ C relative to �.

Define Q by (4-28) and assume that P is µ0-reducible. Then we have:

(1) Let s > Reµ0− 1/p′. If u ∈ Ẋσ
p,q(�)

N for some σ > Reµ0− 1/p′ and r+Pu ∈ X s−Re m
p,q (�)N , then

u ∈ Xµ0(s)
p,q (�)N . The mapping

r+P : Xµ0(s)
p,q (�)N

→ X s−Re m
p,q (�)N (4-29)

is Fredholm, and has the parametrix

R =3(−µ0)
+ e+ Q̃+3

(µ0−m)
−,+ : X s−Re m

p,q (�)N
→ Xµ0(s)

p,q (�)N , (4-30)

where Q̃+ is a parametrix of Q+. It has the structure Q̃++G with G a singular Green operator of order
and class 0.

(2) In particular, if r+Pu ∈ C∞(�)N , then u ∈ Eµ0(�)
N , and the mapping

r+P : Eµ0(�)
N
→ C∞(�)N (4-31)

is Fredholm.

(3) Moreover, let µ=µ0−M for a positive integer M. Then when s >Reµ0−1/p′, {r+P, %µ,M} defines
a Fredholm operator

{r+P, %µ,M} :

{
Fµ(s)p,q (�)

N
→ F s−Re m

p,q (�)N
×
∏

0≤ j<M Bs−Reµ− j−1/p
p,p (∂�)N ,

Bµ(s)p,q (�)
N
→ Bs−Re m

p,q (�)N
×
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�)N .

(4-32)

Proof. The proof goes as in [Grubb 2015a, Theorems 4.4 and 6.1]:

(1) We replace the equation

r+Pu = f ∈ X s−Re m
p,q (�)N , (4-33)

by composition on the left with 3(µ0−m)
−,+ , by the equivalent problem

3
(µ0−m)
−,+ r+Pu = g, where g =3(µ0−m)

−,+ f ∈ X s−Reµ0
p,q (�)N , (4-34)
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using the homeomorphism properties of 3(µ0−m)
−,+ , applied to vectors. Here f = 3(m−µ0)

−,+ g. Moreover
(see Remark 1.1 in [Grubb 2015a]),

3
(µ0−m)
−,+ r+Pu = r+3(µ0−m)

− Pu.

Next, we set v = r+3(µ0)
+ u; then u =3(−µ0)

+ e+v, and equation (4-33) becomes

Q+v = g, with g given in X s−Reµ0
p,q (�), (4-35)

where Q is defined by (4-28).
The properties of P imply that Q is elliptic of order 0 and type 0, and hence belongs to the Boutet

de Monvel calculus. The rest of the argument takes place within that calculus. By our assumption,
Q+ = r+Qe+ defines an elliptic boundary problem (without auxiliary trace or Poisson operators) there,
and Q+ is continuous in X t

p,q(�) for t >−1/p′. By the ellipticity, Q+ has a parametrix Q̃+, continuous
in the opposite direction, and with the mentioned structure. Since v ∈ Ẋ−1/p′+0

p,q (�) by hypothesis,
solutions of Q+v = g with g ∈ X t

p,q(�) for some t >−1/p′ are in X t
p,q(�). Moreover,

Q+ : X t
p,q(�)→ X t

p,q(�) is Fredholm for all t >−1/p′.

When carried back to the original functions, this shows (1).

(2) This follows by letting s→∞, using that
⋂

s Xµ(s)
p,q (�)

N
= Eµ(�)

N .

(3) We use that the mapping %µ,M in (3-8) extends immediately to vector-valued functions

%µ,M :

{
Fµ(s)p,q (�)

N
→
∏

0≤ j<M Bs−Reµ− j−1/p
p,p (∂�)N ,

Bµ(s)p,q (�)
N
→
∏

0≤ j<M Bs−Reµ− j−1/p
p,q (∂�)N ,

(4-36)

when s > Reµ0− 1/p′, surjective with null-space Xµ0(s)
p,q (�)N (recall µ = µ0−M). When we adjoin

this mapping to (4-29), we obtain (4-32). �

One of the things we obtain here is that results from [Eskin 1981] (extended to L p in [Shargorodsky
1994; Chkadua and Duduchava 2001]), on solvability for s in an interval of length 1 around Reµ0, are
lifted to regularity and Fredholm properties for all larger s, with exact information on the domain, also in
general scales of function spaces. Moreover, our theorem is obtained via a systematic variable-coefficient
calculus, whereas the results in [Eskin 1981] are derived from constant-coefficient considerations by
ad hoc perturbation methods in L2-Sobolev spaces.

Also the results on other boundary conditions in the present paper extend to suitable systems. One
can moreover extend the results to operators in vector bundles (since they can be locally expressed by
matrices of operators).

The Boutet de Monvel theory is not an easy theory (as the elaborate presentations [Boutet de Monvel
1971; Rempel and Schulze 1982; Grubb 1984; 1990; 1996; 2009; Schrohe 2001] in the literature show),
but one could have feared that a theory for the more general µ-transmission operators and their boundary
problems would be a step up in difficulty. Fortunately, as we have seen, many of the issues can be dealt
with by reductions using the special operators 3(µ)± to cases where the type 0 theory applies.
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There is currently also an interest in problems with less smooth symbols. For this connection, we
mention that there do exist pseudodifferential theories for such problems, also with boundary conditions;
see [Abels 2005; Grubb 2014] and their references. One finds that a lack of smoothness in the x-variable
narrows down the interval of parameters s where one has good solvability properties, and compositions
are delicate. It is also possible to work under limitations on the number of standard estimates in ξ .

Appendix: Calculations in an explicit example

Pseudodifferential methods are a refinement of the application of the Fourier transform, making it useful
even for variable-coefficient partial differential operators, and, for example, allowing generalizations to
operators of noninteger order. But to explain some basic mechanisms, it may be useful to consider a
simple “constant-coefficient” case, where explicit elementary calculations can be made, not requiring
intricate composition rules. This is the case for (1−1)a (a > 0) on Rn

+
, where everything can be worked

out by hand in exact detail (in the spirit of the elementary [Grubb 2009, Chapter 9]). We here restrict the
attention to H s

p-spaces.
The symbol of (1−1)a factors as

(〈ξ ′〉2+ ξ 2
n )

a
= (〈ξ ′〉− iξn)

a(〈ξ ′〉+ iξn)
a. (A-1)

Now we shall use the definitions of simple order-reducing operators 4t
±

and Poisson operators K j

from [Grubb 2015a], with 〈ξ ′〉 instead of [ξ ′], because they fit particularly well with the factors in (A-1).
We shall often abbreviate 〈ξ ′〉 to σ .

The homogeneous Dirichlet problem

r+(1−1)au = f, with f given in H s−2a
p (Rn

+
), (A-2)

s > a− 1/p′, has a unique solution u in Ḣa−1/p′+0
p (Rn

+
) determined as follows:

With 4t
±
= OP

(
(〈ξ ′〉 + iξn)

t
)
, we have that (1 −1)a = 4a

−
4a
+

on Rn . Let v = r+4a
+

u; it is in

H −1/p′+0
p (Rn

+
)= Ḣ−1/p′+0

p (Rn
+
), and u =4−a

+ e+v. Then (A-2) becomes

r+4a
−

e+v = f. (A-3)

Here r+4a
−

e+ =4a
−,+ is known to map H t

p(R
n
+
) homeomorphically onto H t−a

p (Rn
+
) for all t ∈ R, with

inverse 4−a
−,+ (see, e.g., [Grubb 2015a, Section 1].) In particular, with f given in H s−2a

p (Rn
+
), (A-3) has

the unique solution v =4−a
−,+ f ∈ H s−a

p (Rn
+
). Then (A-2) has the unique solution

u =4−a
+

e+4−a
−,+ f ≡ RD f, (A-4)

and it belongs to Ha(s)
p (Rn

+
) by the definition of that space. Thus the solution operator for (A-2) is

RD =4
−a
+ e+4−a

−,+. (This is a simple variant of the proof of [Grubb 2015a, Theorem 4.4].)
Next, we go to the larger space H (a−1)(s)

p (Rn
+
), still assuming s > a − 1/p′, where we study the

nonhomogeneous Dirichlet problem. By [Grubb 2015a, Theorem 5.1] with µ = a− 1 and M = 1, we
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have a mapping γa−1,0, acting as

γa−1,0 : u 7→ 0(a)γ0(x1−a
n u),

also equal to γ04
a−1
+ u, and sending H (a−1)(s)

p (Rn
+
) onto Bs−a+1−1/p

p (Rn−1) with kernel Ha(s)
p (Rn

+
). To-

gether with (1−1)a , it therefore defines a homeomorphism for s > a− 1/p′,

{r+(1−1)a, γa−1,0} : H (a−1)(s)
p (Rn

+
)→ H s−2a

p (Rn
+
)× Bs−a+1−1/p

p (Rn−1). (A-5)

It represents the problem

r+(1−1)au = f, γa−1,0u = ϕ, (A-6)

which we regard as the nonhomogeneous Dirichlet problem for (1−1)a . The solution operator in the
case ϕ = 0 is clearly RD defined above, since the kernel of γa−1,0 is Ha(s)

p (Rn
+
).

Also, the solution operator for the problem (A-6) with f = 0 can be found explicitly:
On the boundary symbol level we consider the problem (recall σ = 〈ξ ′〉)

(σ − ∂n)
a(σ + ∂n)

au(xn)= 0 on R+. (A-7)

Since OPn((σ − iξn)
µ) preserves support in R− for all µ, u must equivalently satisfy

(σ + ∂n)
au(xn)= 0 on R+. (A-8)

This has the distribution solution

u(xn)= F−1
ξn→xn

(σ + iξn)
−a
= 0(a)−1xa−1

n e+r+e−σ xn (A-9)

(see, e.g., [Hörmander 1983, Example 7.1.17] or [Grubb 2015a, (2.5)]), and the derivatives ∂k
n u are

likewise solutions, since

(σ + iξn)
a(iξn)

k(σ + iξn)
−a
= (iξn)

k
= Fxn→ξnδ

(k)
0 ,

where δ(k)0 is supported in {0}. The undifferentiated function matches our problem. Set

k̃a−1,0(xn, ξ
′)= 0(a)−1xa−1

n e+r+e−σ xn = F−1
ξn→xn

(σ + iξn)
−a
; (A-10)

then, since γa−1,0k̃a−1,0 = 1, the mapping C 3 ϕ 7→ ϕ · r+k̃a−1,0 solves the problem

(σ + ∂n)
au(xn)= 0 on R+, γa−1,0u = ϕ. (A-11)

Using the Fourier transform in ξ ′ also, we find that (A-6) with f = 0 has the solution

u(x)= Ka−1,0ϕ ≡ F−1
ξ ′→x ′

(
k̃a−1,0(xn, ξ

′)ϕ̂(ξ ′)
)
. (A-12)

It can be denoted OPK(k̃a−1,0)ϕ, by a generalization of the notation from the Boutet de Monvel calculus.
We moreover define ka−1,0(ξ)= Fxn→ξn k̃a−1,0(xn, ξ

′)= (σ + iξn)
−a; k̃a−1,0 and ka−1,0 are the symbol-

kernel and symbol of Ka−1,0, respectively.
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Note that

ka−1,0(ξ
′, ξn)= (〈ξ

′
〉+ iξn)

−a
= (〈ξ ′〉+ iξn)

1−a(〈ξ ′〉+ iξn)
−1, hence

Ka−1,0 =4
1−a
+

K0, (A-13)

where K0 = OPK
(
(〈ξ ′〉+ iξn)

−1
)

is the Poisson operator for the Dirichlet problem for 1−1,

K0ϕ = F−1
ξ→x((〈ξ

′
〉+ iξn)

−1ϕ̂(ξ ′))

(see, e.g., [Grubb 2009, Chapter 9]). K0 is usually considered as mapping into a space over Rn
+

, and it is
well-known that K0 : B

t−1/p
p (Rn−1)→ H t

p(R
n
+
) for all t ∈ R. However, the above formula shows that it

in fact maps into distributions on Rn supported in Rn
+

, so we can, with a slight abuse of notation, identify
K0 with e+K0, mapping into e+H t

p(R
n
+
), and conclude that

Ka−1,0 : Bs−a+1−1/p
p (Rn−1)→ H (a−1)(s)

p (Rn
+
) for all s ∈ R. (A-14)

We have shown:

Theorem A.1. Let a > 0. The nonhomogeneous Dirichlet problem (A-6) for (1−1)a on Rn
+

is uniquely
solvable, in that the operator (A-5) for s > a− 1/p′ has inverse(

r+(1−1)a

γa−1,0

)−1

=
(
RD Ka−1,0

)
, (A-15)

where RD and Ka−1,0 are defined in (A-4) and (A-12).

Third, we consider the boundary problem

r+(1−1)au = f, γa−1,1u = ψ, (A-16)

which we shall view as a nonhomogeneous Neumann problem for (1 − 1)a . We here assume s >
(a− 1)+ 2− 1/p′ = a+ 1/p, to use the construction in [Grubb 2015a, Theorem 5.1] with µ= a− 1,
M = 2. Recall from [Grubb 2015a, (5.3)ff.], that γa−1,1 acts as

γa−1,1 : u 7→ 0(a+ 1)γ0(∂n(x1−a
n u)). (A-17)

Moreover, we can infer from the text after Corollary 5.3 in [Grubb 2015a] (with [ξ ′] replaced by 〈ξ ′〉) that

γa−1,1u = γ0∂n4
a−1
+

u− (a− 1) 〈D′〉 γa−1,0u

for u ∈ H (a−1)(s)
p (Rn

+
) with s > a+ 1/p. Then, for a null solution z written in the form z = Ka−1,0ϕ =

41−a
+ K0ϕ (recall (A-13)), we have, since γ0∂n K0 =−〈D′〉,

γa−1,1z = γ0∂n4
a−1
+

z− (a− 1) 〈D′〉 γa−1,0z = γ0∂n K0ϕ− (a− 1)〈D′〉ϕ =−a 〈D′〉ϕ.

Hence in order for z to solve (A-16) with f = 0, ϕ must satisfy

ψ =−a 〈D′〉ϕ.
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Since a 6= 0, the coefficient−a〈D′〉 is an elliptic invertible ψdo, so (A-16) with f = 0 is uniquely solvable
with solution

z = KNψ, where KN =−Ka−1,0a−1
〈D′〉−1

=−41−a
+

K0a−1
〈D′〉−1. (A-18)

To solve (A-16) with a given f 6= 0, and ψ = 0, we let v= RD f and reduce to the problem for z= u−v:

r+(1−1)a(u− v)= 0, γa−1,1(u− v)=−γa−1,1 RD f.

This has the unique solution

u− v =−KNγa−1,1 RD f ; and hence u = RD f − KNγa−1,1 RD f.

Altogether, we find:

Theorem A.2. The Neumann problem (A-16) for (1−1)a on Rn
+

is uniquely solvable, in that the operator

{r+(1−1)a, γa−1,1} : H (a−1)(s)
p (Rn

+
)→ H s−2a

p (Rn
+
)× Bs−a−1/p

p (Rn−1), (A-19)

for s > a+ 1/p is a homeomorphism, with inverse(
RN KN

)
=
(
(I − KNγa−1,1)RD KN

)
, (A-20)

with RD and KN described in (A-4) and (A-18).

Note that there is here a Dirichlet-to-Neumann operator PDN sending the Dirichlet-type data over into
Neumann-type data for solutions of r+(1−1)au = 0:

PDN =−a〈D′〉. (A-21)

Remark A.3. We have here assumed a real in order to relate to the fractional powers of the Laplacian,
but all the above goes through in the same way if a is replaced by a complex µ with Reµ > 0; then in
Sobolev exponents and inequalities for s, a should be replaced by Reµ.

One can also let higher order boundary operators γa−1, j enter in a similar way, defining single
boundary conditions.
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ON THE UNCONDITIONAL UNIQUENESS OF SOLUTIONS
TO THE INFINITE RADIAL CHERN–SIMONS–SCHRÖDINGER HIERARCHY

XUWEN CHEN AND PAUL SMITH

In this article, we establish the unconditional uniqueness of solutions to an infinite radial Chern–Simons–
Schrödinger (IRCSS) hierarchy in two spatial dimensions. The IRCSS hierarchy is a system of infinitely
many coupled PDEs that describes the limiting Chern–Simons–Schrödinger dynamics of infinitely many
interacting anyons. The anyons are two-dimensional objects that interact through a self-generated field.
Due to the interactions with the self-generated field, the IRCSS hierarchy is a system of nonlinear PDEs,
which distinguishes it from the linear infinite hierarchies studied previously. Factorized solutions of
the IRCSS hierarchy are determined by solutions of the Chern–Simons–Schrödinger system. Our result
therefore implies the unconditional uniqueness of solutions to the radial Chern–Simons–Schrödinger
system as well.
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1. Introduction

1A. The Chern–Simons–Schrödinger system. The Chern–Simons–Schrödinger system is given by
Dtφ = i

∑2
`=1 D`D`φ+ ig|φ|2φ,

∂t A1− ∂1 A0 =− Im(φD2φ),

∂t A2− ∂2 A0 = Im(φD1φ),

∂1 A2− ∂2 A1 =−
1
2 |φ|

2,

(1)

where the associated covariant differentiation operators are defined in terms of the potential A by

Dα := ∂α + i Aα, α ∈ {0, 1, 2}, (2)
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and where we adopt the convention that ∂0 := ∂t and Dt := D0. The wavefunction φ is complex-valued,
the potential A a real-valued 1-form, and the pair (A, φ) is defined on I ×R2 for some time interval I .
The Lagrangian action for this system is

L(A, φ)=
1
2

∫
R2+1

[
Im(φDtφ)+ |Dxφ|

2
−

g
2
|φ|4

]
dx dt +

1
2

∫
R2+1

A∧ d A, (3)

where here |Dxφ|
2
:= |D1φ|

2
+ |D2φ|

2. Although the potential A appears explicitly in the Lagrangian,
it is easy to see that locally L(A, φ) only depends upon the field F = d A. Precisely, the Lagrangian is
invariant with respect to the gauge transformations

φ 7→ e−iθφ, A 7→ A+ dθ (4)

for compactly supported real-valued functions θ(t, x). The Chern–Simons–Schrödinger system (1),
obtained as the Euler–Lagrange equations of (3), inherits this gauge freedom.

The system (1) is a basic model of Chern–Simons dynamics [Jackiw and Pi 1992; Ezawa, Hotta, and
Iwazaki 1991a; 1991b; Jackiw and Pi 1991]. It plays a role in describing certain physical phenomena,
such as the fractional quantum Hall effect, high-temperature superconductivity, and Aharonov–Bohm
scattering, and also provides an example of a Galilean-invariant planar gauge field theory [Jackiw and
Templeton 1981; Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Martina, Pashaev,
and Soliani 1993; Wilczek 1990].

One interpretation of (1) is as a mean-field equation. Informally, one may consider (1) as describing the
behavior of a large number of anyons, interacting with each other directly and through a self-generated
field, in the case where the N -body wave function factorizes. There are a number of challenges one
encounters in trying to formalize and prove this statement, and this paper addresses some of them. We
will postpone further discussion of many-body dynamics to the next subsection and instead point out that,
because the main evolution equation in (1) includes a cubic nonlinearity, one might hope to prove for (1)
what one can prove for the cubic nonlinear Schrödinger equation (NLS). It is important to note, however,
that (1) has many nonlinear terms, some nonlocal and some involving the derivative of the wave function.
These terms appear because of the geometric structure that arises from modeling the interactions with
the self-generated field. Due to the complexity of the nonlinearity in (1) and the gauge freedom (4), the
system (1) is significantly more challenging to analyze than the cubic NLS. This difference is seen even
at the level of the wellposedness theory, to which we now turn.

The system (1) is Galilean-invariant and has conserved charge

chg(φ) :=
∫

R2
|φ|2 dx (5)

and energy

E(φ) :=
1
2

∫
R2

[
|Dxφ|

2
−

g
2
|φ|4

]
dx . (6)

Moreover, for each λ > 0, there is the scaling symmetry

φ(t, x) 7→ λφ(λ2t, λx), A j (t, x) 7→ λA j (λ
2t, λx), j ∈ {1, 2},

φ0(x) 7→ λφ0(λx), A0(t, x) 7→ λ2 A0(λ
2t, λx),
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which preserves both the system and the charge of the initial data φ0. Therefore, from the point of view
of wellposedness theory, the system (1) is L2-critical. We remark that system (1) is defocusing when
g < 1 and focusing when g ≥ 1. The defocusing/focusing dichotomy is most readily seen by rewriting
the energy (6) using the so-called Bogomol’nyi identity. After using this identity, one may also see
the dichotomy manifested in the virial and Morawetz identities. For more details, see [Liu and Smith
2014, §4, §5]. Note also that the sign convention for g that we adopt, which is the one used in the
Chern–Simons literature, is opposite to the usual one adopted for the cubic NLS. A more significant
difference between Chern–Simons systems and the cubic NLS is that, unlike the case for the cubic NLS,
the coupling parameter g cannot be rescaled to belong to a discrete set of canonical values.

Nevertheless, (1) is ill-posed so long as it retains the gauge freedom (4). This freedom is eliminated
by imposing an additional constraint equation. The most common gauge choice for studying (1) is the
Coulomb gauge, which is the constraint

∂1 A1+ ∂2 A2 = 0. (7)

Coupling (7) with the field equations quickly leads to explicit expressions for Aα, α = 0, 1, 2, in terms
of φ. These expressions also happen to be nonlinear and nonlocal:

A0 =1
−1
[∂1 Im(φD2φ)− ∂2 Im(φD1φ)], A1 =

1
21
−1∂2|φ|

2, A2 =−
1
21
−1∂1|φ|

2. (8)

Local wellposedness of (1) with respect to the Coulomb gauge at the Sobolev regularity of H 2 is
established in [Bergé, De Bouard, and Saut 1995]. This is improved to H 1 in [Huh 2013]. Local
wellposedness for data small in H s , s > 0, is established in [Liu, Smith, and Tataru 2012] using the heat
gauge, whose defining condition is ∂1 A1+ ∂2 A2 = A0. This result relies upon various Strichartz-type
spaces as well as more sophisticated U p and V p spaces. We refer the reader to [Liu, Smith, and Tataru
2012, §2] for a comparison of the Coulomb and heat gauges.

In symmetry-reduced settings, one may say more, and in particular, [Liu and Smith 2014] establishes
large-data global wellposedness results at the critical regularity for the equivariant Chern–Simons–
Schrödinger system. To introduce the equivariance (or vortex) ansatz, it is convenient to use polar
coordinates. Define

Ar =
x1

|x |
A1+

x2

|x |
A2, Aθ =−x2 A1+ x1 A2. (9)

We can invert the transform by writing

A1 = Ar cos θ − 1
r Aθ sin θ, A2 = Ar sin θ + 1

r Aθ cos θ. (10)

Note that these relations are analogous to

∂r =
x1

|x |
∂1+

x2

|x |
∂2, ∂θ =−x2∂1+ x1∂2

and

∂1 = (cos θ)∂r −
1
r (sin θ)∂θ , ∂2 = (sin θ)∂r +

1
r (cos θ)∂θ .
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The equivariant ansatz, then, is

φ(t, x)= eimθu(t, r), A1(t, x)=−
x2

r
v(t, r), A2(t, x)=

x1

r
v(t, r), A0(t, x)= w(t, r), (11)

where we assume that m is a nonnegative integer, u is real-valued at time zero, and v and w are real-valued
for all time. This ansatz implies that Ar = 0 and that Aθ is a radial function. It also places us in the
Coulomb gauge, i.e., ∂1 A1+∂2 A2= 0 or equivalently ∂r Ar+

1
r Ar+

1
r2 ∂θ Aθ = 0. For some motivation for

studying vortex solutions in Chern–Simons theories, see [Paul and Khare 1986; de Vega and Schaposnik
1986a; 1986b; Jackiw and Weinberg 1990; R. M. Chen and Spirn 2009; Byeon, Huh, and Seok 2012].

Converting (1) into polar coordinates and utilizing (11), we obtain the equivariant Chern–Simons–
Schrödinger system (see [Liu and Smith 2014, §1] for full details):

(i∂t +1)φ =
2m
r2 Aθφ+ A0φ+

1
r2 A2

θφ− g|φ|2φ,

∂r A0 =
1
r (m+ Aθ )|φ|2,

∂t Aθ = r Im(φ∂rφ),

∂r Aθ =− 1
2 |φ|

2r,

Ar = 0.

(12)

Global wellposedness holds for equivariant L2 data of arbitrary (nonnegative) charge in the defocusing
case g < 1 and for L2 data with charge less than that of the ground state in the focusing case g ≥ 1; this
is the main result of [Liu and Smith 2014].

In this paper, we are interested in the radial case (m = 0) of system (12), which is

(i∂t +1)φ = A0φ+
1
r2 A2

θφ− g|φ|2φ,

∂r A0 =
1
r Aθ |φ|2,

∂t Aθ = r Im(φ∂rφ),

∂r Aθ =− 1
2 |φ|

2r,

Ar = 0.

(13)

1B. The infinite Chern–Simons–Schrödinger hierarchy. The infinite Chern–Simons–Schrödinger hier-
archy is a sequence of trace class nonnegative operator kernels that are symmetric in the sense that

γ (k)(t, xk, x′k)= γ (k)(t, x′k, xk),

and

γ (k)(t, xσ(1), . . . , xσ(k), x ′σ(1), . . . , x ′σ(k))= γ
(k)(t, x1, . . . , xk, x ′1, . . . , x ′k), (14)

for any permutation σ , and which satisfy the two-dimensional infinite Chern–Simons–Schrödinger
hierarchy of equations

∂tγ
(k)
+

k∑
j=1

[i A0(t, x j ), γ
(k)
] =

k∑
j=1

2∑
`=1

i[Dx (`)j
Dx (`)j

, γ (k)] + ig
k∑

j=1

B j,k+1γ
(k+1), (15)
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where R2
3 x j = (x

(1)
j , x (2)j ) for each j , as well as the corresponding field-current identities from [Jackiw

and Pi 1990, (1.7a)–(1.7c)], i.e.,
F01 =−P2(t, x)− A2(t, x)ρ(t, x),

F02 = P1(t, x)+ A1(t, x)ρ(t, x),

F12 =−
1
2ρ(t, x),

(16)

where, as before, F := d A. Here g is the coupling constant,

B j,k+1γ
(k+1)
:= Trk+1[δ(x j − xk+1), γ

(k+1)
], (17)

the momentum P(t, x) is given by

P(t, x) :=
∫

ei(ξ−ξ ′)x ξ + ξ
′

2
γ̂ (1)(t, ξ, ξ ′) dξ dξ ′,

and ρ(t, x) is a shorthand for

ρ(t, x) := γ (1)(t, x, x). (18)

Each x j ∈ R2, and xk := (x1, . . . , xk) ∈ R2k . Given a compactly supported θ(t, x), the kernels γ (k) and
potential A transform under a change of gauge according to

γ (k) 7→ γ (k)
k∏

j=1

e−iθ(t,x j )eiθ(t,x ′j ), A 7→ A+ dθ.

The invariance of (15) and (16) under such transformations can be checked straightforwardly.
For the purposes of our analysis, it is more convenient to write (15) as

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

2∑
`=1

[−2i Ax (`)j
∂x (`)j
− i∂x (`)j

Ax (`)j
+ A2

x (`)j
, γ (k)]

+

k∑
j=1

[A0(t, x j ), γ
(k)
] − g

k∑
j=1

B j,k+1γ
(k+1). (19)

The Coulomb gauge condition (7), upon being coupled to (16), leads to

A0 =1
−1
[∂1(P2+ A2ρ)− ∂2(P1+ A1ρ)], A1 =

1
21
−1∂2ρ, A2 =−

1
21
−1∂1ρ.

This is analogous to how (8) for the Chern–Simons–Schrödinger system (1) is obtained by coupling to
the field equations in (1) the gauge condition (7). Because each Aα involves ρ, defined in (18), it is clear
that each term involving γ (k) in the right-hand side of (19) is best thought of as a nonlinear term. This
nonlinear dependence persists under changes of gauge, though some gauges lead to tamer nonlinearities
than others.

We remark that, while the specific form the nonlinearity of (19) takes indeed depends upon the gauge
selection made, the observables associated with the system do not depend upon the gauge choice.

We note that the system (1) generates a special solution to the infinite hierarchy (15)–(16). In particular,
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if (A, φ) solves (1), then (A, {γ (k)}) solves (15)–(16), where each γ (k) is given by

γ (k)(t, xk, x′k)=
k∏

j=1

φ(t, x j )φ(t, x ′j ).

We start our analysis of many-body dynamics with the above infinite hierarchy. Ideally, one would
prefer instead to begin with a many-body system with only finitely many quantum particles. Because
the basic particles in question are neither bosons nor fermions, there are difficulties to overcome with
such an approach. Concerning the difficulties in dealing with microscopic statistics, one can refer to
[Benedetto, Castella, Esposito, and Pulvirenti 2005], for instance. Fortunately, as remarked in [Benedetto,
Castella, Esposito, and Pulvirenti 2005], microscopic statistics disappear as the particle number tends to
infinity. Thus, the infinite hierarchy satisfies the symmetry condition (14). We finally remark that the
field equations (16) depend merely on the 1-particle density γ (1), as has been observed formally in the
physics literature [Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Jackiw and Pi
1991; Jackiw and Templeton 1981; Jackiw and Weinberg 1990].

One motivation for pursuing an analysis of the infinite hierarchy even without first specifying the
finite hierarchy is that the known approaches to rigorously deriving mean-field equations, e.g., the
Boltzmann equation and the cubic NLS, all require a uniqueness theorem for the corresponding infinite
hierarchy. Establishing uniqueness of the infinite hierarchy is, moreover, a critical step. We therefore
anticipate that our result in this article will be the linchpin of any future rigorous derivation of the
Chern–Simons–Schrödinger system.

As remarked before, the analysis of the Chern–Simons–Schrödinger system with general data is, at the
moment, very delicate. The same remark applies all the more to the associated infinite hierarchy, to which
(1) is a special solution. Thus, we consider the radial version of the infinite Chern–Simons–Schrödinger
hierarchy in this paper. The nonradial equivariant case (m > 0), though still much simpler than the
general system, is slightly more challenging than the radial case. Unfortunately, the techniques we employ
for studying the radial case do not immediately extend to the nonradial equivariant case due to certain
logarithmic divergences.

The infinite radial Chern–Simons–Schrödinger hierarchy. The Chern–Simons–Schrödinger system (1)
simplifies to (13) under the assumption of radiality. Similarly, by assuming radiality, we reduce Equations
(15) through (18) to the infinite radial Chern–Simons–Schrödinger hierarchy

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

[
A0(t, |x j |)+

1
|x j |

2 A2
θ (t, |x j |), γ

(k)
]
− g

k∑
j=1

B j,k+1γ
(k+1) (20)

and the field equations

Frθ (t, |x |)=− 1
2 |x |ρ(t, |x |)

and
F0θ (t, |x |)= |x |Pr (t, |x |),

F0r (t, |x |)=− 1
|x | Aθ (t, |x |)ρ(t, |x |),
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for γ (k) = γ (k)(t, rk, r ′k). In particular, here we assume that

γ (k) = u(t, rk, r ′k),

Ar = 0,

Aθ = v(t, r),

where u is real-valued at time zero and v is real-valued for all time. This assumption enforces the Coulomb
gauge. Recall that B j,k+1 is defined in (17) and ρ is given by (18). As before, F := d A, though now we
are adopting polar coordinates for A. Though we could rewrite everything exclusively in terms of polar
coordinates, we choose instead to use both Cartesian and polar coordinates.

Putting everything together, we see that we are studying solutions γ (k) = γ (k)(t, rk, r ′k) of

i∂tγ
(k)
+
∑k

j=1[1x j , γ
(k)
] =

∑k
j=1
[
A0(t, |x j |)+

1
|x j |2

A2
θ (t, |x j |), γ

(k)
]
− g

∑k
j=1 B j,k+1γ

(k+1),

∂r A0(t, |x |)= 1
|x | Aθρ(t, |x |),

∂t Aθ (t, |x |)= |x |Pr (t, |x |),

∂r Aθ (t, |x |)=− 1
2 |x |ρ(t, |x |),

Ar = 0.

(21)

We interpret γ (k) as a complex-valued function on Rt ×Rk
+
×Rk

+
subject to the symmetries

γ (k)(t, rk, r ′k)= γ (k)(t, r ′k, rk)

and

γ (k)(t, rσ(1), . . . , rσ(k), r ′σ(1), . . . , r
′

σ(k))= γ
(k)(t, r1, . . . , rk, r ′1, . . . , r

′

k). (22)

Though each r j ∈ R+, we associate to this space the measure rdr , as indeed we think of r j = |x j |

for x j ∈ R2.
Note that we can eliminate Aθ and A0 in (21). In particular, we have

Aθ (t, r)=−
1
2

∫ r

0
ρ(t, s)s ds (23)

and

A0(t, r)=
1
2

∫
∞

r
ρ(t, s)

∫ s

0
ρ(t, u)u du

ds
s
, (24)

which reflect the natural boundary conditions for Aθ and A0 that we adopt for (1). Therefore, we may
rewrite (21) as

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

[
1
2

∫
∞

r j

ρ(t, s)
∫ s

0
ρ(t, u)u du

ds
s
+

1
r2

j

(
−

1
2

∫ r j

0
ρ(t, s)s ds

)2
, γ (k)

]
− g

k∑
j=1

B j,k+1γ
(k+1),

γ (k)(0)= γ (k)0 , k ∈ N. (25)
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1C. Main results. Our main theorem says that any admissible mild solution of the radial infinite CSS
hierarchy is unconditionally unique in L∞t∈[0,T )H

2/3
rad . To explain what this means, for s ∈ R, we define

the space Hs
rad to be the collection of sequences {γ (k)}k∈N of density matrices in L2

sym(R
2k) such that

γ (k) = γ (k)(t, rk, r ′k) and

Tr(|S(k,s)γ (k)|) < M2k for all k ∈ N and for some constant M > 0,

where

S(k,s) :=
k∏

j=1

(1−1x j )
s/2(1−1x ′j )

s/2.

Here L2
sym denotes the space of L2 functions satisfying (14). Let U (k)(t) denote the propagator

U (k)(t) := e
i t1xk e

−i t1x′k . (26)

A mild solution of (25) in the space L∞
[0,T ]H

s
rad is a sequence of marginal density matrices 0 =

(γ (k)(t))k∈N solving

γ (k)(t)=U (k)(t)γ (k)(0)−i
∫ t

0
U (k)(t−s)

( k∑
j=1

[
1
2

∫
∞

r j

ρ(t, v)
∫ v

0
ρ(t, u)u du

dv
v

+
1
r2

j

(
−

1
2

∫ r j

0
ρ(t, v)v dv

)2

, γ (k)
]
−g

k∑
j=1

B j,k+1γ
(k+1)

)
ds

and satisfying

sup
t∈[0,T )

Tr(|S(k,s)γ (k)(t)|) < M2k

for a finite constant M independent of k. Note that, if we are given factorized initial data

γ
(k)
0 (rk, r ′k)=

k∏
j=1

φ0(r j )φ0(r ′j ),

then the condition that (γ (k)(0)) ∈ Hs
rad is equivalent to

Tr(|S(k,s)γ (k)(0)|)= ‖φ0‖
2k
H s < M2k, k ∈ N,

which is to say that ‖φ0‖H s <M for some M <∞. Then a solution to the IRCSS hierarchy in L∞t∈[0,T )H
s
rad

is given by the sequence of factorized density matrices

γ (k)(t, rk, r ′k)=
k∏

j=1

φt(r j )φt(r ′j )

provided the corresponding 1-particle wave function φt satisfies the radial Chern–Simons–Schrödinger
system (13).
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Admissibility we take to mean that Tr γ (k) = 1 for all k ∈ N and

γ (k) = Trk+1(γ
(k+1)), k ∈ N. (27)

This is required in our application of the quantum de Finetti theorem. As there are weak analogues of the
quantum de Finetti theorem applicable to limiting hierarchies, we expect our techniques to apply to the
problem of rigorously deriving the radial CSS from large, finite systems.

Theorem 1.1 (unconditional uniqueness for the infinite hierarchy). There is at most one L∞t∈[0,T )H
2/3
rad

admissible solution to the infinite radial Chern–Simons–Schrödinger hierarchy (21).

Theorem 1.2 (unconditional uniqueness for the Chern–Simons–Schrödinger system). There is at most
one L∞t∈[0,T )H

2/3(R2) solution to the radial Chern–Simons–Schrödinger system (13).

Before explaining our main theorem, we first remark that deriving mean-field equations from many-
body systems by studying infinite hierarchies is a very rich subject. For works related to the Boltzmann
equation, see [Lanford 1975; King 1975; Arkeryd, Caprino, and Ianiro 1991; Cercignani, Illner, and
Pulvirenti 1994; Gallagher, Saint-Raymond, and Texier 2013]. For works related to the Hartree equation,
see [Spohn 1980; Fröhlich, Knowles, and Schwarz 2009; Erdős and Yau 2001; Rodnianski and Schlein
2009; Knowles and Pickl 2010; Grillakis, Machedon, and Margetis 2010; 2011; X. Chen 2012b; L. Chen,
Lee, and Schlein 2011; Michelangeli and Schlein 2012; Ammari and Nier 2008; 2011; Lewin, Nam, and
Rougerie 2014]. For works related to the cubic NLS, see [Adami, Golse, and Teta 2007; Elgart, Erdős,
Schlein, and Yau 2006; Erdős, Schlein, and Yau 2006; 2007; 2010; 2009; Klainerman and Machedon
2008; Kirkpatrick, Schlein, and Staffilani 2011; T. Chen and Pavlović 2011; 2010; T. Chen, Pavlović,
and Tzirakis 2012; T. Chen and Pavlović 2014; Pickl 2011; X. Chen 2012a; 2013; Benedikter, Oliveira,
and Schlein 2012; Grillakis and Machedon 2013; X. Chen and Holmer 2013c; 2013b; T. Chen, Hainzl,
Pavlović, and Seiringer 2014; X. Chen and Holmer 2013a; Hong, Taliaferro, and Xie 2014; Gressman,
Sohinger, and Staffilani 2014; Sohinger and Staffilani 2014; Sohinger 2014a; 2014b]. For works related
to the quantum Boltzmann equation, see [Benedetto, Castella, Esposito, and Pulvirenti 2006; 2005; 2008;
2004]. The infinite hierarchies considered previously to the present one are all linear. In contrast to this,
the infinite radial Chern–Simons–Schrödinger hierarchy is nonlinear.

For our problem, we have taken the phrase “unconditional uniqueness” from the study of the NLS.
It is shown by Cercignani’s counterexample [Cercignani, Illner, and Pulvirenti 1994] that solutions
to infinite hierarchies like the Boltzmann hierarchy and the Gross–Pitaevskii hierarchy are generally
not unconditionally unique in the sense that a solution is not uniquely determined by the initial datum
unless one assumes appropriate space-time bounds on the solution. In the NLS literature, “unconditional
uniqueness” usually means establishing uniqueness without assuming that some Strichartz norm is finite.
Since we are using tools from the study of the NLS, we therefore call our main theorems unconditional
uniqueness theorems.1

1In other words, the uniqueness theorems regarding the Gross–Pitaevskii hierarchies [Klainerman and Machedon 2008; Kirk-
patrick, Schlein, and Staffilani 2011; X. Chen 2012a; X. Chen and Holmer 2013a; Gressman, Sohinger, and Staffilani 2014] are
conditional, whereas [Adami, Golse, and Teta 2007; Erdős, Schlein, and Yau 2007; T. Chen, Hainzl, Pavlović, and Seiringer 2014;
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Finally, we remark that, for the proof of the main theorems, we apply the quantum de Finetti theorem
in a manner similar to [T. Chen, Hainzl, Pavlović, and Seiringer 2014; Hong, Taliaferro, and Xie 2014]
but with adjustments tailored to deal with the nonlinearity in the infinite hierarchy that we consider. The
quantum de Finetti theorem is a version of the classical Hewitt–Savage theorem. T. Chen, C. Hainzl,
N. Pavlović, and R. Seiringer are the first to apply the quantum de Finetti theorem to the study of infinite
hierarchies in the quantum setting. For results regarding the uniqueness of the Boltzmann hierarchy using
the Hewitt–Savage theorem, see [Arkeryd, Caprino, and Ianiro 1991].

2. Proof of the main theorem

We will prove that, if we are given two L∞
[0,T ]H

2/3
rad solutions {γ (k)1 } and {γ (k)2 } to system (21) subject to

the same initial datum, then the trace norm of the difference {γ (k) = γ (k)1 − γ
(k)
2 } is zero. In contrast to

the usual infinite hierarchies (e.g., Boltzmann, Gross–Pitaevskii, . . . ), system (21) is nonlinear. Thus, γ (k)

does not solve system (21). In order to show that γ (k) has zero trace norm, we first express γ (k) as a
suitable Duhamel–Born series, which contains a nonlinear part and an interaction part (see Section 2A).
These two parts we estimate separately with bounds contained respectively in Theorems 2.3 and 2.4,
which together constitute our main estimates. In Section 2B, we prove the main theorem, Theorem 1.1,
assuming the main estimates. The proof of Theorem 2.3 is postponed to Section 4 (and Theorem 2.4 we
handle in this section).

2A. Setup. Set for short

a(r j ) := A0(t, r j )+
1
r2

j
A2
θ (t, r j ) (28)

and

a(rk) :=

k∑
j=1

a(r j ). (29)

Let A(k) denote the operator that acts according to

A(k) f := [a(rk), f ]. (30)

Also, set for short

Bk+1 :=

k∑
j=1

B j,k+1 =

k∑
j=1

Trk+1[δ(x j − xk+1), · ]. (31)

With these abbreviations, the first equation of (21) assumes the form

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)γ (k)− gBk+1γ

(k+1). (32)

Remark 2.1. The operator A(k) is linear but itself depends upon γ (1). In fact, it only depends upon the
diagonal ρ(t, r)= γ (1)(t, r, r). The term A(k)γ (k) is therefore better thought of as a nonlinear term rather
than a linear one.

Hong, Taliaferro, and Xie 2014; Sohinger 2014b] are unconditional in the NLS sense. Yet they are all considered conditional in
the Boltzmann literature.
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Let {γ (k)1 } and {γ (k)2 } be solutions subject to the same initial data with, respectively, ρ1(t, r) :=
γ
(1)
1 (t, r, r) and ρ2(t, r) := γ

(1)
2 (t, r, r). Let γ (k) := γ (k)1 − γ

(k)
2 . Then

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)

1 γ
(k)
1 −A(k)

2 γ
(k)
2 − gBk+1γ

(k+1). (33)

We can rewrite (33) using the relation

A(k)
1 γ

(k)
1 −A(k)

2 γ
(k)
2 =A(k)

1 γ (k)+A(k)γ
(k)
2 ,

where now
A(k)
:=A(k)

1 −A(k)
2 ,

so that it becomes

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)

1 γ (k)+A(k)γ
(k)
2 − gBk+1γ

(k+1) (34)

or, equivalently,
(i∂t +1xk −1x′k )γ

(k)
=A(k)

1 γ (k)+A(k)γ
(k)
2 − gBk+1γ

(k+1).

Recalling the corresponding linear propagator U (k)(t) defined in (26), we write (34) in integral form, i.e.,

γ (k)(tk)=−ig
∫ tk

0
dtk+1U (k)(tk − tk+1)

[
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)+ Bk+1γ

(k+1)(tk+1)
]
. (35)

In invoking this formula in future calculations, we set g=−1 for simplicity and we ignore the i in front so
that we do not need to keep track of its exact power, as the precise power is not relevant to the estimates.

Remark 2.2. The choice of g = −1 corresponds to a defocusing case in (12). It is important to note,
however, that the choice g=−1 at this step is purely for the sake of convenience; all subsequent arguments
can accommodate any g 6= −1 at the cost of certain powers of |g|. In particular, our arguments apply to
the self-dual case g = 1, which is the most interesting from the physical point of view.

For the purpose of proving unconditional uniqueness, it suffices to show γ (1) = 0. Iterating (35)
lc times,2 we obtain

γ (1)(t1)=
∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2γ

(2)(t2)

=

∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2

∫ t2

0
dt3U (2)(t2− t3)

(
A(2)

1 γ (2)(t3)+A(2)γ
(2)
2 (t3)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2

∫ t2

0
dt3U (2)(t2− t3)B3γ

(3)(t3)

= · · ·

= NP(lc)+ IP(lc), (36)

2Here, lc stands for the level of coupling. When lc = 0, one recovers (34).
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where NP(lc) and IP(lc), the nonlinear part and the interaction part, respectively, are given by

NP(lc) = G(1)
+

lc∑
r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1) (37)

and

IP(lc) =

∫ t1

0
· · ·

∫ tlc+1

0
dt2 · · · dtlc+1U (1)(t1− t2)B2 · · ·U (lc+1)(tlc − tlc+1)Blc+2γ

(lc+2)(tlc+2), (38)

where

G(k)(tk) :=
∫ tk

0
dtk+1U (k)(tk − tk+1)

(
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)

)
.

2B. Proof assuming the main estimates.

Theorem 2.3. There exists a constant C > 0 such that

Tr|NP(lc)(t1)| ≤ Ct1 sup
t∈[0,t1]

Tr|γ (1)(t)|

for all coupling levels lc and all sufficiently small t1.

Proof. We postpone the proof to Section 3. �

Theorem 2.4. There exists a constant C > 0 such that

Tr|IP(lc)(t1)| ≤ (Ct1/3
1 )lc

for all coupling levels lc.

Proof. This estimate follows from the same method used for the corresponding term in [T. Chen, Hainzl,
Pavlović, and Seiringer 2014], which relies on the quantum de Finetti theorem and on a combinatorial
analysis of the graphs that one can associate to the Duhamel expansions. One merely needs to replace the
three-dimensional trilinear estimates [T. Chen, Hainzl, Pavlović, and Seiringer 2014, (6.19), (6.20)] with
(55) and (56), respectively, taking s = 2

3 , and replace the three-dimensional Sobolev estimate

‖ f ‖L6(R3) . ‖ f ‖H1(R3)

with the two-dimensional Sobolev estimate

‖ f ‖L6(R2) . ‖ f ‖H2/3(R2).

We remark that it is because of this Sobolev estimate that we take s = 2
3 in H s rather than a smaller s. �

With Theorems 2.3 and 2.4, we then infer from (36) that

Tr|γ (1)(t1)| ≤ Tr|NP(lc)(t1)| +Tr|IP(lc)(t1)|

≤ Ct1 sup
t∈[0,t1]

Tr|γ (1)(t)| + (Ct1/3
1 )lc

≤ CT sup
t∈[0,T ]

Tr|γ (1)(t)| + (CT 1/3)lc
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for all t1 ∈ [0, T ]. Take the supremum in time on both sides to get

sup
t∈[0,T ]

Tr|γ (1)(t)| ≤ CT sup
t∈[0,T ]

Tr|γ (1)(t)| + (CT 1/3)lc .

Therefore, for all T small enough, we obtain

1
2 sup

t∈[0,T ]
Tr|γ (1)(t)| ≤ (CT 1/3)lc → 0 as lc→∞,

i.e.,

sup
t∈[0,T ]

Tr|γ (1)(t)| = 0.

Hence, we have finished the proof of the main theorem assuming Theorem 2.3. The bulk of the rest of
the paper is devoted to proving Theorem 2.3.

3. Estimate for the nonlinear part

Recall

NP(lc) = G(1)
+

lc∑
r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1)

=: I+ II,

where

G(k)(tk)=
∫ tk

0
dtk+1U (k)(tk − tk+1)

(
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)

)
. (39)

We will first treat Tr|G(1)(t1)| coming from part I and then, with some additional tools, the corresponding
term coming from part II. Both of the estimates rely upon the quantum de Finetti theorem stated below.

Theorem 3.1 (quantum de Finetti theorem [Hudson and Moody 1976; Størmer 1969; Ammari and Nier
2008; 2011; Lewin, Nam, and Rougerie 2014]). Let H be a separable Hilbert space, and let Hk

=
⊗k

sym H

denote the corresponding bosonic k-particle space. Let 0 denote a collection of bosonic density matrices
on H, i.e.,

0 = (γ (1), γ (2), . . .)

with γ (k) a non-negative trace class operator on Hk . If 0 is admissible, i.e., for all k ∈ N we have
Tr γ (k) = 1 and γ (k) = Trk+1 γ

(k+1), where Trk+1 denotes the partial trace over the (k+ 1)-th factor, then
there exists a unique Borel probability measure µ, supported on the unit sphere in H, and invariant under
multiplication of φ ∈H by complex numbers of modulus one, such that

γ (k) =

∫
dµ(φ)(|φ〉〈φ|)⊗k for all k ∈ N.

Remark 3.2. The µ determined by Theorem 3.1 is finite and so, in particular, σ -finite. Therefore, the
Fubini–Tonelli theorem, which is crucial in the proof, applies. See [Dunford and Schwartz 1988, p. 190].
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Using Theorem 3.1, we write

γ
(k)
j (t)=

∫
dµ( j)

t (φ)(|φ〉〈φ|)⊗k, j = 1, 2,

and

γ (k)(t)=
∫

dµt(φ)(|φ〉〈φ|)
⊗k,

where µt := µ
(1)
t −µ

(2)
t is a signed measure supported on the unit sphere of L2(R2). We remark that

Tr|γ (1)(t)| =
∫

d|µt |(φ)‖φ‖
2
L2 =

∫
d|µt |(φ)

while

Tr|γ (1)j (t)| =
∫

dµ( j)
t ‖φ‖

2
L2 =

∫
dµ( j)

t = 1.

Here |µt | is defined, in the usual way, as the sum of the positive part and the negative part of µt , which
itself is another finite measure since |µt | ≤ µ

(1)
t +µ

(2)
t . Write µ(0)t = µt for convenience. The main

properties of µ(i)t that we need are

sup
t∈[0,T ]

∫
d|µ(i)t |(φ)‖φ‖

2k
H2/3

x
≤ M2k for i = 0, 1, 2 (40)

and
|µ
(i)
t |
({
φ ∈ L2(R2)

∣∣ ‖φ‖H2/3 > M
})
= 0 for i = 0, 1, 2, (41)

where |µ(i)t | is of course µ(i)t if i = 1 or 2. For i = 1, 2, estimate (40) is equivalent to the energy condition

sup
t∈[0,T ]

Tr
( k∏

j=1

〈∇x j 〉
2/3
)
γ
(k)
i (t)

( k∏
j=1

〈∇x ′j 〉
2/3
)
≤ M2k for i = 1, 2, (42)

and (41) then follows from (40) using Chebyshev’s inequality.3 The i = 0 case then follows from the
definition.

Putting these structures into A, for `= 1, 2, we have

A(k)
` f (t)=

∫∫
dµ(`)t (ψ) dµ(`)t (ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f (43)

and

A(k) f (t)= (A(k)
1 −A(k)

2 ) f

=

∫∫
dµ(1)t (ψ) dµt(ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f

+

∫∫
dµt(ψ) dµ(2)t (ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f, (44)

3See [T. Chen, Hainzl, Pavlović, and Seiringer 2014, Lemma 4.4] or [Hong, Taliaferro, and Xie 2014, (2.17)].
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where a|ψ |2,|ω|2 is defined by

a|ψ |2,|ω|2(t, r) := A(|ψ |
2,|ω|2)

0 (t, r)+
1
r2 A(|ψ |

2)
θ (t, r)A(|ω|

2)
θ (t, r)

with

A(|ψ |
2,|ω|2)

0 (t, r)=−
∫
∞

r
A(|ψ |

2)
θ (t, s)|ω|2(t, s)

ds
s
, A(ρ)θ (t, r)=−

1
2

∫ r

0
ρ(t, s)s ds.

Informally speaking, a|ψ |2,|ω|2(r) is similar to a(r) defined in (28) but is linear with respect to |ψ |2 and
|ω|2 independently rather than quadratic with respect to a single |φ|2.

This notation enables us to represent the core term of G(k) by

A(k)
1 γ (k)(t)+A(k)γ

(k)
2 (t)

=

k∑
j=1

∑
(l,m,n)∈P

∫∫∫
dµ(l)t (ψ) dµ(m)t (ω) dµ(n)t (φ)

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]
(|φ〉〈φ|)⊗k (45)

if we take P= {(1, 1, 0), (2, 2, 0), (1, 0, 2), (0, 2, 2)}. The set P is for bookkeeping, incorporating the
terms from (43) and (44), and we remind the readers that dµ(0)t := dµt . We remark that, to reach (45),
we used the quantum de Finetti theorem (i.e., Theorem 3.1) four times: twice for the γ (k) term (once
for γ1 and once for γ2) and twice for the terms in the self-generated potential A (they are quadratic in ρ).

3A. Estimate of Tr|G(1)(t1)|. Putting k = 2 in (45) and replacing ψ , ω, and φ with φ1, φ2, and φ3,
respectively, we have

Tr|G(1)(t1)| = Tr
∣∣∣∣∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)∣∣∣∣
≤

∑
(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)

×Tr
∣∣U (1)(t1− t2)

[
a|φ1|2,|φ2|2(r1)− a|φ1|2,|φ2|2(r

′

1)
]
φ3(r1)φ3(r ′1)

∣∣.
Using the fact that

Tr|U (1)(t) f (r1)g(r ′1)| =
∫ ∣∣ei t1 f (r1)e−i t1g(r1)

∣∣ dx1

≤ ‖ei t1 f ‖L2
x
‖ei t1g‖L2

x

= ‖ f ‖L2
x
‖g‖L2

x
,

we have

Tr|G(1)(t1)| ≤
∑

(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)‖a|φ1|2,|φ2|2φ3‖L2

x
‖φ3‖L2

x
.

Corollary 4.9, i.e., the main nonlinear estimate, turns the above into

Tr|G(1)(t1)| ≤
∑

(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)×‖φ3‖L2

x

×‖φ1‖Ḣ1/2
x
‖φ2‖Ḣ1/2

x
min
τ∈S3
‖φτ(1)‖Ḣ1/2

x
‖φτ(2)‖Ḣ1/2

x
‖φτ(3)‖L2

x
.
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One of l, m, or n is zero, and we may put the corresponding term in L2, i.e.,

Tr|G(1)(t1)| ≤
2∑

l=1

∫ t1

0
dt2

∫∫∫
dµ(l)t2 (φ1) dµ(l)t2 (φ2) d|µ(0)t2 |(φ3)‖φ1‖

2
Ḣ1/2

x
‖φ2‖

2
Ḣ1/2

x
‖φ3‖

2
L2

x

+

∫ t1

0
dt2

∫∫∫
dµ(1)t2 (φ1) d|µt2 |(φ2) dµ(2)t2 (φ3)‖φ1‖

2
Ḣ1/2

x
‖φ2‖L2

x
‖φ2‖Ḣ1/2

x
‖φ3‖Ḣ1/2

x
‖φ3‖L2

x

+

∫ t1

0
dt2

∫∫∫
d|µt2 |(φ1) dµ(2)t2 (φ2) dµ(2)t2 (φ3)‖φ1‖L2

x
‖φ1‖Ḣ1/2

x
‖φ2‖

2
Ḣ1/2

x
‖φ3‖Ḣ1/2

x
‖φ3‖L2

x
.

Using the fact that each µ( j)
t is supported on the unit sphere in L2 and thanks to (40) and (41), we obtain

Tr|G(1)(t1)| ≤ 4M3t1 sup
t∈[0,t1]

∫
d|µt |(φ)≤ C M3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Thus, we have proved that

Tr|G(1)(t1)| ≤ Ct1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
. (46)

3B. Estimate for part II. Recall that

II=
lc∑

r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1).

Because each B j is a sum of 2( j−1) terms (see (31)), integrands of summands of NP(lc) have up to O(k!)
summands themselves. We use the Klainerman–Machedon board game argument to combine them and
hence reduce the number of terms that need to be treated. Define

J (t j+1)( f ( j+1))=U (1)(t1− t2)B2 · · ·U ( j)(t j − t j+1)B j+1 f ( j+1),

where t j+1 means (t2, . . . , t j+1). Then the Klainerman–Machedon board game argument implies the
lemma.

Lemma 3.3 (Klainerman–Machedon board game [2008]). One can express∫ t1

0
· · ·

∫ t j

0
J (t j+1)( f ( j+1)) dt j+1

as a sum of at most 4 j terms of the form∫
D

J (t j+1, σ )( f ( j+1)) dt j+1,

or in other words,∫ t1

0
· · ·

∫ t j

0
J (t j+1)( f ( j+1)) dt j+1 =

∑
σ

∫
D

J (t j+1, σ )( f ( j+1)) dt j+1.

Here D ⊂ [0, t2] j , the σ range over the set of maps from {2, . . . , j + 1} to {1, . . . , j} satisfying σ(2)= 1
and σ(l) < l for all l, and

J (t j+1, σ )( f ( j+1))=U (1)(t1− t2)B1,2U (2)(t2− t3)Bσ(3),3 · · ·U ( j)(t j − t j+1)Bσ( j+1), j+1( f ( j+1)).
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With Lemma 3.3, we can write a typical summand of part II as∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1)

=

∑
σ

∫
D

dtr+1 J (tr+1, σ )(G(r+1)),

where the sum has at most 4r terms inside. Let

II(r,σ ) =
∫

D
dtr+1 J (tr+1, σ )(G(r+1)). (47)

To estimate part II, it suffices to prove the following lemma:

Lemma 3.4. There is a C0 depending on M in (42) such that, for all r , we have

Tr|II(r,σ )|(t1)≤
[
(r + 1)

(
C0t1/3

1

)r ]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)
.

With the above lemma, we have

Tr|II|(t1)≤
lc∑

r=1

∑
σ

[
(r + 1)

(
C0t1/3

1

)r ]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)

≤ t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

) ∞∑
r=1

4r [(r + 1)
(
C0t1/3

1

)r ]
≤ Ct1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
(48)

for t1 small enough so that the series converges.
Together the estimates (46) and (48) establish Theorem 2.3.
Before proving Lemma 3.4, we illustrate how to obtain the estimate for a specific example.

Example 3.5. To avoid heavy notation and demonstrate the main idea of the proof of Lemma 3.4, we
first prove it for a concrete example. The general case uses the same underlying idea, which turns out
to be quite simple as compared to what must be done for the interaction part IP. We adapt the example
and use the notation in [T. Chen, Hainzl, Pavlović, and Seiringer 2014, §6.1] for our II(r,σ ). Denoting
U ( j)(tk − tl) by U ( j)

k,l , we consider

Tr|II(3,σ )|(t1)=
∫

D
dt4U (1)

1,2 B1,2U (2)
2,3 B2,3U (3)

3,4 B3,4[G(4)(t4)]

≤

4∑
j=1

∑
(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

×Tr
∣∣U (1)

1,2 B1,2U (2)
2,3 B2,3U (3)

3,4 B3,4U (4)
4,5

(
[a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )](|φ〉〈φ|)
⊗4)∣∣. (49)

Remark 3.6. In the above, there is a U (4)
4,5 after B3,4. This is the main difference between the nonlinear

part NP and the interaction part IP. As noted in [T. Chen, Hainzl, Pavlović, and Seiringer 2014], since
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the last B in IP is not followed by a Schrödinger propagator, it creates a factor of |φ|2φ, which has to be
handled by Sobolev embedding rather than Strichartz estimates.

It suffices to treat∑
(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

×Tr
∣∣U (1)

1,2 B+1,2U (2)
2,3 B+2,3U (3)

3,4 B+3,4U (4)
4,5

(
[a|ψ |2,|ω|2(r4)](|φ〉〈φ|)

⊗4)∣∣, (50)

where B+1,2 is half of B1,2, namely

B+1,2(γ
(2))= γ (2)(x1, x1, x ′1, x1).

When we plug the estimate of (50) into (49), we will pick up a 23 since there are three B’s in (49).
However, compensating for this is the factor

(
t2/3
1

)3 that emerges by the end. Hence, our simplification is
a valid one.

Step I (structure). We enumerate the four factors of (|φ〉〈φ|)⊗4 for the purpose of bookkeeping even
though these factors are physically indistinguishable. So we write

⊗4
i=1 ui , ordered with increasing

index i . We first have

B+3,4U (4)
4,5a|ψ |2,|ω|2(r4)(|φ〉〈φ|)

⊗4
=

(
U (2)

4,5

( 2⊗
i=1

ui

))
⊗23,

where
23 = B+1,2(U

(2)
4,5(u3⊗ a|ψ |2,|ω|2(r4)u4))

= B+1,2(U4,5φ(x3))(U5,4φ(x ′3))(U4,5[a|ψ |2,|ω|2(r4)φ(x4)])(U5,4φ(x ′4))

= (U4,5φ(x3))(U4,5[a|ψ |2,|ω|2(r3)φ(x3)])(U5,4φ(x3))(U5,4φ(x ′3))

≡ T3(x3)(U5,4φ(x ′3)) (51)

with U4,5 = ei(t4−t5)1. Here T3 stands for the trilinear form

(U4,5[a|ψ |2,|ω|2(r3)φ(x3)])(U5,4φ(x3))(U5,4φ(x ′3)).

We make similar substitutions below and, to bound these terms, shall invoke the trilinear estimate (56),
which states that

‖T ( f1, f2, f3)‖L1
t∈[0,t0)

L2
x
.s t s/2

0 ‖ f1‖L2‖ f2‖L2‖ f3‖Ḣ s

for 0< s ≤ 2.
Applying B+2,3U (3)

3,4 , we reach

B+2,3U (3)
3,4 B+3,4U (4)

4,5(aρl ,ρm (r j )(|φ〉〈φ|)
⊗4)= B+2,3U (3)

3,4(U
(1)
4,5u1⊗U (1)

4,5u2⊗23)

=U (1)
3,4U (1)

4,5u1⊗22

=U (1)
3,5u1⊗22,
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where
22 = B+1,2U (2)

3,4(U
(1)
4,5u2⊗23)

= B+1,2(U
(1)
3,5u2⊗U (1)

3,423)

= B+1,2
(
(U3,5φ(x2))(U5,3φ(x ′2))(U3,4T3(x3))(U4,3U5,4φ(x ′3))

)
= (U3,5φ(x2))(U3,4T3(x2))(U5,3φ(x2))(U5,3φ(x ′2))

≡ T2(x2)(U5,3φ(x ′2)). (52)

Finally, with U (1)
1,2 B+1,2U (2)

2,3 , we get

U (1)
1,2 B+1,2U (2)

2,3 B+2,3U (3)
3,4 B+3,4U (4)

4,5(a|ψ |2,|ω|2(r j )(|φ〉〈φ|)
⊗4)

=U (1)
1,2 B+1,2U (2)

2,3(U
(1)
3,5u1⊗22)

=U (1)
1,2 B+1,2(U

(1)
2,5u1⊗U (1)

2,322)

=U (1)
1,2 B+1,2

[
(U2,5φ(x1))(U5,2φ(x ′1))(U2,3T2(x2))(U3,2U5,3φ(x ′2))

]
=U (1)

1,2

[
(U2,5φ(x1))(U2,3T2(x1))(U5,2φ(x1))(U5,2φ(x ′1))

]
=U (1)

1,2[T1(x1)U5,2φ(x ′1)]. (53)

Step II (iterative estimate). Plugging the calculation in Step I into (50), we have

(50)≤
∑

(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖T1(x1)‖L2‖φ‖L2

≤

∑
(l,m,n)∈P

∫
[0,t1]2

dt3t4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)×‖T1‖L1

t2
L2,

where
‖T1‖L1

t2
L2 ≤ Ct1/3

1 ‖φ‖H2/3‖T2‖L2‖φ‖L2

by (56). Thus,

(50)≤ Ct1/3
1

∑
(l,m,n)∈P

∫
[0,t1]

t4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖H2/3‖T2‖L1

t3
L2 .

By (56) again,
‖T2(x2)‖L1

t3
L2

x2
≤ Ct1/3

1 ‖φ‖H2/3‖T3‖L2‖φ‖L2,

and hence,

(50)≤
(
Ct1/3

1

)2 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖

2
H2/3‖T3‖L1

t4
L2

x2

≤
(
Ct1/3

1

)3 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖

3
H2/3

∥∥a|ψ |2,|ω|2(r3)φ(x3)
∥∥

L2 .
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By the fact that |µ(i)t | is supported in the set

{φ ∈ L2(R2) | ‖φ‖H2/3 ≤ M},

we have

(50)≤
(
C Mt1/3

1

)3 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

∥∥a|ψ |2,|ω|2(r3)φ(x3)
∥∥

L2 .

One then proceeds as in the estimate of Tr|G(1)(t1)| to reach

(50)≤
(
C Mt1/3

1

)3 M3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Selecting a C0 bigger than M2 and 1, we obtain

(50)≤
(
C0t1/3

1

)3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Plugging the above estimate back into (49), we get

Tr|II(3,σ )|(t1)≤
[
4 · 23
·
(
C0t1/3

1

)3]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)

as desired. This finishes the proof of the example.

One observation to make concerning our approach in Example 3.5 is that the structure found in Step I
is crucial. Such a structure generated by the collision operator B and propagator U is found in general,
and we state its relevant properties in the following lemma:

Lemma 3.7. Let M ∈ N, M > 1, and for each j , 1 ≤ j ≤ M , suppose that the two functions f j (x j )

and f ′j (x
′

j ) belong to4 L1
t H s

x (R
2), 1

2 ≤ s ≤ 2
3 . Then there exist L1

t H s
x (R

2) functions h and h′ such that

B±σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]
= hσ(M)(xσ(M))h′σ(M)(x

′

σ(M))U
(M−2)
M,M+1

[
M−1∏
j=1

j 6=σ(M)

f j (x j ) f ′j (x
′

j )

]
.

In the case where B is B+σ(M),M , h is a trilinear form of the type (54) and h′ is a linear evolution. In the
case where B is B−σ(M),M , the roles of h and h′ are reversed.

Proof. The collision operator leaves untouched each term for which j /∈ {M, σ (M)}. Only the propagator
affects these terms. So we have

B+σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]

=U (M−2)
M,M+1

[ ∏
j∈{1,...,M}\{M,σ (M)}

f j (x j ) f ′j (x
′

j )

]
· Tσ(M),M(xσ(M))e

−i(tM−tM+1)1x ′
σ(M) f ′σ(M)(x

′

σ(M)),

4We suppress the time dependence in the notation and allow restriction to time intervals, which may be achieved, for instance,
by introducing sharp time cutoffs.
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where

Tσ(M),M(xσ(M))

:= ei(tM−tM+1)1xσ(M) fσ(M)(xσ(M)) · e
i(tM−tM+1)1xσ(M) fM(xσ(M)) · e

−i(tM−tM+1)1xσ(M) f ′M(xσ(M)).

Similarly,

B−σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]

=U (M−2)
M,M+1

[ ∏
j∈{1,...,M}\{M,σ (M)}

f j (x j ) f ′j (x
′

j )

]
· T ′σ(M),M(x

′

σ(M))e
i(tM−tM+1)1xσ(M) fσ(M)(xσ(M)),

where

T ′σ(M),M(x
′

σ(M))

:= e
i(tM−tM+1)1x ′

σ(M) fM(x ′σ(M)) · e
−i(tM−tM+1)1x ′

σ(M) f ′σ(M)(x
′

σ(M)) · e
−i(tM−tM+1)1x ′

σ(M) f ′M(x
′

σ(M)).

The L1
t H s

x bounds follow from (55) and Strichartz. �

Proof of Lemma 3.4. Using (47), (39), and (45), we write

II(r,σ ) =
r+1∑
j=1

∑
(l,m,n)∈P

∫
D

dtr+1 J (tr+1, σ )

{∫ tr+1

0
dtr+2U (r+1)(tr+1− tr+2)

×

∫∫∫
dµ(l)tr+2

(ψ) dµ(m)tr+2
(ω) dµ(n)tr+2

(φ)
[
a|ψ |2,|ω|2(|x j |)− a|ψ |2,|ω|2(|x

′

j |)
]
(|φ〉〈φ|)⊗(r+1)

}
.

We abbreviate
J (tr+1, σ )=U (1)

1,2 B1,2U (2)
2,3 Bσ(3),3 · · ·U

(r)
r,r+1 Bσ(r+1),r+1

and write

Tr|II(r,σ )|(t1)

≤

r+1∑
j=1

∑
(l,m,n)∈P

∫
[0,t1]r

dtr+1

∫ t1

0
dtr+2

∫∫∫
d|µ(l)tr+2

|(ψ) d|µ(m)tr+2
|(ω) d|µ(n)tr+2

|(φ)

×Tr
∣∣U (1)

1,2 B1,2 · · ·U
(r)
r,r+1 Bσ(r+1),r+1U (r+1)

r+1,r+2

[
a|ψ |2,|ω|2(|x j |)− a|ψ |2,|ω|2(|x

′

j |)
]
(|φ〉〈φ|)⊗(r+1)∣∣.

To simplify calculations, we drop, without loss of generality, the −a|ψ |2,|ω|2(|x ′j |) term. Also, we split
each B j,k into two pieces B±j,k so that B j,k = B+j,k − B−j,k .

Consider first the innermost terms

B±σ(r+1),r+1U (r+1)
r+1,r+2a|ψ |2,|ω|2(|x j |)(|φ〉〈φ|)

⊗(r+1).

The index j ∈ {1, . . . , r + 1} and the permutation σ together determine at what point a|ψ |2,|ω|2(|x j |) is
directly affected by a collision operator. In any case, we claim that, with respect to the variables xσ(r+1)
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and x ′σ(r+1), the term

B+σ(r+1),r+1U (r+1)
r+1,r+2a|ψ |2,|ω|2(|x j |)(|φ〉〈φ|)

⊗(r+1)

is a trilinear form of the form T in (54) (see (51), (52), and (53) for examples of these trilinear forms) in
the xσ(r+1) variable and a linear flow in the x ′σ(r+1) variable (the term with B− instead of B+ is similar
but with the roles of the primed and unprimed variables reversed). Note that precisely one of the terms in
the trilinear form T involves a|ψ |2,|ω|2(|x j |). This follows from Lemma 3.7. Additionally, Lemma 3.7
is formulated so that we can apply it iteratively until termination, at which point we have one term that
is trilinear of the form (54) in precisely one of x1 or x ′1 and another term that is a linear evolution of a
function of the remaining spatial variable. Step I of Example 3.5 illustrates such a process.

The final step is to iteratively bound the terms. We follow Step II of Example 3.5. The underlying idea
behind the iterative bounds is relatively straightforward. We start by controlling the trace norm using
Cauchy–Schwarz in space. One factor is simply a φ term associated to the measure and so will have L2

norm equal to one. This leaves us with the other term in L1
t L2. The next step is to apply (56). This places

one factor in Ḣ s and the remaining ones in L2. So that we can eventually apply (70), it is important to
always place in L2 the term appearing in the right-hand side that involves a|ψ |2,|ω|2(|x j |). To control the
term placed in Ḣ s , we apply (55). For the terms in L2, we use (56) or (70) as appropriate. �

Remark 3.8. We first remind the reader that, because at each step we are estimating a linear term of
the type ei t1 f or a trilinear term of the form (54), we do not need to apply Sobolev embedding as is
necessary for estimating the interaction part. Secondly, the “a” term cannot be generated by B, and thus,
we do not need to keep track of multiple “copies” of |φ|2φ generated by B in contrast to what must be
done in controlling the interaction part. In particular, there is no need to introduce binary tree graphs or
keep track of complicated factorization structures of kernels in controlling the nonlinear part.

4. Multilinear estimates

In this section, we will need the following fractional Leibniz rule from [Christ and Weinstein 1991,
Proposition 3.3]:

Lemma 4.1. Let 0< s ≤ 1 and 1< r, p1, p2, q1, q2 <∞ such that 1
r =

1
pi
+

1
qi

for i = 1, 2. Then

‖|∇|
s( f g)‖Lr . ‖ f ‖L p1‖|∇|

s g‖Lq1 +‖|∇|
s f ‖L p2‖g‖Lq2 .

Define the trilinear form T by

T ( f, g, h)= ei(t−t1)1 f · ei(t−t2)1g · ei(t−t3)1h. (54)

Lemma 4.2. Let 0< s ≤ 2
3 . The trilinear form T given by (54) satisfies5

‖T ( f, g, h)‖L1
t∈[0,t0)

Ḣ s
x
. t s

0‖ f ‖Ḣ s‖g‖Ḣ s‖h‖Ḣ s . (55)

5Such trilinear estimates are the precursors to the Klainerman–Machedon collapsing estimates widely used in the literature.
For those estimates, see [Klainerman and Machedon 2008; Kirkpatrick, Schlein, and Staffilani 2011; Grillakis and Margetis
2008; T. Chen and Pavlović 2011; X. Chen 2011; 2012a; Beckner 2014; Gressman, Sohinger, and Staffilani 2014].
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Proof. By the fractional Leibniz rule, we have

‖T ( f, g, h)‖L1
t Ḣ s

x
. ‖ei(t−t1)1 f ‖L3

t Ẇ s,6
x
‖ei(t−t2)1g‖L3

t L6
x
‖ei(t−t3)1h‖L3

t L6
x

+‖ei(t−t1)1 f ‖L3
t L6

x
‖ei(t−t2)1g‖L3

t Ẇ s,6
x
‖ei(t−t3)1h‖L3

t L6
x

+‖ei(t−t1)1 f ‖L3
t L6

x
‖ei(t−t2)1g‖L3

t L6
x
‖ei(t−t3)1h‖L3

t Ẇ s,6
x
.

By Sobolev embedding, we bound the first term by

‖ei(t−t1)1 f ‖L3
t Ẇ s,6

x
‖ei(t−t2)1g‖L3

t Ẇ s,p
x
‖ei(t−t3)1h‖L3

t Ẇ s,p
x
,

where 1
p =

1
6 +

s
2 . Note that 2≤ p < 6. Let q be given by 1

q +
1
p =

1
2 so that (q, p) forms a Schrödinger-

admissible Strichartz pair (see, for instance, [Tao 2006, §2]). So we use Hölder in time to bound the
expression by

‖ei(t−t1)1 f ‖L3
t Ẇ s,6

x
t1/3−1/q
0 ‖ei(t−t2)1g‖Lq

t Ẇ s,p
x

t1/3−1/q
0 ‖ei(t−t3)1h‖Lq

t Ẇ s,p
x
.

Finally, we conclude by applying Strichartz estimates and noting that 1
3 −

1
q =

s
2 . The second and third

terms are similar. �

Lemma 4.3. Let 0< s ≤ 2. The trilinear form T given by (54) satisfies

‖T ( f, g, h)‖L1
t∈[0,t0)

L2
x
. t s/2

0 ‖ f ‖L2‖g‖L2‖h‖Ḣ s . (56)

Proof. By Hölder’s inequality,

‖T ( f, g, h)‖L1
t∈[0,t0)

L2
x
≤ t s/2

0 ‖e
i(t−t1)1 f ‖Lq

t Lr
x
‖ei(t−t2)1g‖Lq

t Lr
x
‖ei(t−t3)1h‖L∞t L p

x
,

where 1
q =

1
2 −

s
4 , r = 4

s , and p = 2/(1− s). Using Strichartz estimates and Sobolev embedding, we
control the right-hand side by

t s/2
0 ‖ f ‖L2

x
‖g‖L2

x
‖ei(t−t3)1h‖L∞t Ḣ s

x
.

Finally, we conclude the bound stated in the lemma by noting that the Schrödinger propagator is an
isometry on L2-based spaces. �

Remark 4.4. From the proofs of both (55) and (56), it is evident that any of ei(t−t1)1 f , ei(t−t2)1g, and
ei(t−t3)1h can be replaced by its complex conjugate in the trilinear form (54).

For the next set of estimates, recall

∂r A0 =
1
r Aθρ, ∂r Aθ =− 1

2rρ

and

A0(t, r) := −
∫
∞

r

Aθ (s)
s

ρ(s) ds, Aθ (t, r) := −
1
2

∫ r

0
ρ(s)s ds. (57)

When it is important to indicate the dependence upon the density function ρ, we write A(ρ)θ (t, r) for
Aθ (t, r). Recall

A(ρ1,ρ2)
0 (t, r)=−

∫
∞

r
A(ρ1)
θ (s)ρ2(s)

ds
s
, (58)



1706 XUWEN CHEN AND PAUL SMITH

where A(ρ1)
θ is defined using (57) but with ρ1 in place of ρ in the right-hand side, i.e.,

A(ρ1)
θ (t, r)=−

1
2

∫ r

0
ρ1(s)s ds.

Define the operators [∂r ]
−1, [r−n∂r ]

−1, and [r∂r ]
−1 acting on radial functions by

[∂r ]
−1 f (r)=−

∫
∞

r
f (s) ds, [r−n∂r ]

−1 f (r)=
∫ r

0
f (s)sn ds, [r∂r ]

−1 f (r)=−
∫
∞

r

1
s

f (s) ds.

Then it follows by a direct argument that

‖[r∂r ]
−1 f ‖L p .p ‖ f ‖L p , 1≤ p <∞, (59)

‖r−n−1
[r−n∂r ]

−1 f ‖L p .p ‖ f ‖L p , 1< p ≤∞, (60)

‖[∂r ]
−1 f ‖L2 . ‖ f ‖L1 . (61)

These estimates appear, for instance, in [Bejenaru, Ionescu, Kenig, and Tataru 2013, (1.5)] and also find
application in [Liu and Smith 2014, §2].

Remark 4.5. In these estimates and those below, we use the Lebesgue measure on R2 for all L p spaces.
In particular, for radial functions of r , we essentially adopt the rdr measure.

Lemma 4.6 (elementary bounds for A). The connection coefficients Aθ and A0, given by (57), satisfy

‖Aθ‖L∞x . ‖ρ‖L1
x
,

∥∥ 1
r Aθ

∥∥
L∞x
. ‖ρ‖L2

x
,

∥∥ 1
r2 Aθ

∥∥
L p

x
. ‖ρ‖L p

x
, where 1< p ≤∞, (62)

and

‖A0‖L p
x
. ‖ρ‖L1

x
‖ρ‖L p

x
, where 1≤ p <∞, ‖A0‖L∞x . ‖ρ‖

2
L2

x
. (63)

Moreover, A2
θ satisfies the bounds∥∥ 1

r2 A2
θ

∥∥
L p

x
. ‖ρ‖L1

x
‖ρ‖L p

x
, where 1< p ≤∞,

∥∥ 1
r2 A2

θ

∥∥
L∞x
. ‖ρ‖2L2

x
. (64)

Proof. These estimates are essentially contained in [Liu and Smith 2014, §2].
The first inequality of (62) is trivial. The second follows from Cauchy–Schwarz:

|Aθ (t, r)|. r
(∫

∞

0
|ρ(s)|2s ds

)1/2

.

The third is an application of (60) with n = 1.
The first inequality of (63) follows from the first inequality of (62) and from (59). The second is a

consequence of Cauchy–Schwarz and the third inequality of (62) with p = 2.
The first inequality of (64) follows from the first and third inequalities of (62). The second follows

from two applications of the second inequality of (62). �
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Lemma 4.7 (weighted estimates). Let 1
p +

1
q = 1 with 1 < q < ∞, and suppose that ρ = |ψ |2 and

ρ j = |ψ j |
2 for j = 1, 2. Then

‖r−2/q A(ρ)θ ‖L∞x . ‖ψ‖
2
Ḣ1/q

x
, (65)

‖r−1/q A(ρ)θ ‖L∞x . ‖ψ‖Ḣ1/q
x
‖ψ‖L2

x
(66)

and

‖r1/p A(ρ1,ρ2)
0 ‖L∞x .min

τ∈S2
‖ψτ(1)‖

2
Ḣ1/q

x
‖ψτ(2)‖Ḣ1/p

x
‖ψτ(2)‖L2

x
, (67)

where S2 denotes the set of permutations on two elements.

Proof. To establish (66), use Hölder’s inequality to obtain

|Aθ |. r2/q
‖ψ‖2L2p

and then use Sobolev embedding. The estimate (65) follows from Hölder’s inequality, which yields

|Aθ |. r1/q
‖r−1/qψ‖L2

x
‖ψ‖L2

x
,

and Hardy’s inequality.
To prove (67), use Hölder to write

|A(ρ1,ρ2)
0 |. ‖r−2/q A(ρ1)

θ ‖L∞x ‖r
−1/pψ2‖L2

x
‖ψ2‖L2

x
r−1/p.

Then, using (65) and Hardy’s inequality, we obtain

‖r1/p A(ρ1,ρ2)
0 ‖L∞x . ‖ψ1‖

2
Ḣ1/q

x
‖ψ2‖Ḣ1/p

x
‖ψ2‖L2

x
.

Finally, we may repeat the argument with the roles of ψ1 and ψ2 reversed. �

Lemma 4.8 (bounds for the nonlinear terms). Suppose that ρ j = |ψ j |
2 for j = 1, 2. Then

‖A(ρ1,ρ2)
0 2‖L2

x
+
∥∥ 1

r2 A(ρ1)
θ A(ρ2)

θ 2
∥∥

L2
x
. ‖ψ1‖Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
‖2‖Ḣ1/2

x
min
τ∈S2
‖ψτ(1)‖Ḣ1/2

x
‖ψτ(2)‖L2

x
. (68)

Proof. We start with

‖A(ρ1,ρ2)
0 2‖L2

x
. ‖r1/2 A(ρ1,ρ2)

0 ‖L∞x ‖r
−1/22‖L2

x
. ‖r1/2 A(ρ1,ρ2)

0 ‖L∞x ‖2‖Ḣ1/2
x

and then appeal to (67) with p = q = 2.
Similarly, ∥∥ 1

r2 A(ρ1)
θ A(ρ2)

θ 2
∥∥

L2
x
. ‖r−1 A(ρ1)

θ ‖L∞x ‖r
−1/2 A(ρ2)

θ ‖L∞x ‖r
−1/22‖L2

x

. ‖ψ1‖
2
Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
‖ψ2‖L2

x
‖2‖Ḣ1/2

x
,

where we have used (66) and (65) with p = q = 2 and Hardy’s inequality. Finally, we may repeat the
estimate but with the roles of ψ1 and ψ2 reversed. �
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Now we introduce (see (28) to compare)

aρ1,ρ2(t, r) := A(ρ1,ρ2)
0 (t, r)+ 1

r2 A(ρ1)
θ (t, r)A(ρ2)

θ (t, r). (69)

For the definitions of the terms on the right-hand side, see the equations and comments from (57) to (58).

Corollary 4.9. Suppose ρ j = |ψ j |
2 for j = 1, 2. Then

‖aρ1,ρ2ψ3‖L2
x
. ‖ψ1‖Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
min
τ∈S3
‖ψτ(1)‖Ḣ1/2

x
‖ψτ(2)‖Ḣ1/2

x
‖ψτ(3)‖L2

x
, (70)

where S3 denotes the set of permutations on three elements.

Proof. For all but two permutations, the estimate follows from (68). To establish the estimate for the
remaining two cases, we need L∞x bounds on A(ρ1,ρ2)

0 and 1
r2 A(ρ1)

θ A(ρ2)
θ . Using the second estimate of (62)

twice and Sobolev embedding, we obtain∥∥ 1
r2 A(ρ1)

θ A(ρ2)
θ

∥∥
L∞x
≤
∥∥1

r A(ρ1)
θ

∥∥
L∞x

∥∥1
r A(ρ2)

θ

∥∥
L∞x
. ‖ψ1‖

2
L4

x
‖ψ2‖

2
L4

x
. ‖ψ1‖

2
Ḣ1/2

x
‖ψ2‖

2
Ḣ1/2

x
.

To bound A(ρ1,ρ2)
0 , we proceed in a manner similar to that of the second estimate of (63) and (67). In

particular, invoking (66) with q = 2 and Hardy, we obtain

‖A(ρ1,ρ2)
0 ‖L∞x =

∥∥∥∥∫ ∞
r

s−1 A(ρ1)
θ s−1

|ψ2|
2s ds

∥∥∥∥
L∞x

. ‖r−1 A(ρ1)
θ ‖L∞x ‖r

−1/2ψ2‖
2
L∞x
. ‖ψ1‖

2
Ḣ1/2

x
‖ψ2‖

2
Ḣ1/2

x
. �

Remark 4.10. From the proofs of these estimates, we see that the limiting factor in lowering the regularity
of the unconditional uniqueness result lies in the interaction part, which requires s= 2

3 rather than the s= 1
2

required for the nonlinear part. By using negative-regularity Sobolev spaces, [Hong, Taliaferro, and Xie
2014] lowers the regularity required for the interaction part. Such a procedure does not seem to work, at
least directly, for the problem at hand. This is because one would need to obtain the same negative-order
Sobolev index in the right-hand side of (70) for the purpose of moving the term arising from controlling
the nonlinear part back over to the left-hand side (see the argument following the proof of Theorem 2.4).

Acknowledgment

The authors thank the referee for a careful reading of the manuscript and for helpful suggestions for
improving the readability of the paper.

References

[Adami, Golse, and Teta 2007] R. Adami, F. Golse, and A. Teta, “Rigorous derivation of the cubic NLS in dimension one”, J.
Stat. Phys. 127:6 (2007), 1193–1220. MR 2008i:82055 Zbl 1118.81021

[Ammari and Nier 2008] Z. Ammari and F. Nier, “Mean field limit for bosons and infinite dimensional phase-space analysis”,
Ann. Henri Poincaré 9:8 (2008), 1503–1574. MR 2009m:81118 Zbl 1171.81014

[Ammari and Nier 2011] Z. Ammari and F. Nier, “Mean field propagation of Wigner measures and BBGKY hierarchies for
general bosonic states”, J. Math. Pures Appl. (9) 95:6 (2011), 585–626. MR 2012e:81123 Zbl 1251.81062

[Arkeryd, Caprino, and Ianiro 1991] L. Arkeryd, S. Caprino, and N. Ianiro, “The homogeneous Boltzmann hierarchy and
statistical solutions to the homogeneous Boltzmann equation”, J. Stat. Phys. 63:1-2 (1991), 345–361. MR 92m:82108

http://dx.doi.org/10.1007/s10955-006-9271-z
http://msp.org/idx/mr/2008i:82055
http://msp.org/idx/zbl/1118.81021
http://dx.doi.org/10.1007/s00023-008-0393-5
http://msp.org/idx/mr/2009m:81118
http://msp.org/idx/zbl/1171.81014
http://dx.doi.org/10.1016/j.matpur.2010.12.004
http://dx.doi.org/10.1016/j.matpur.2010.12.004
http://msp.org/idx/mr/2012e:81123
http://msp.org/idx/zbl/1251.81062
http://dx.doi.org/10.1007/BF01026609
http://dx.doi.org/10.1007/BF01026609
http://msp.org/idx/mr/92m:82108


UNIQUENESS OF SOLUTIONS TO THE INFINITE RADIAL CHERN–SIMONS–SCHRÖDINGER HIERARCHY 1709

[Beckner 2014] W. Beckner, “Multilinear embedding-convolution estimates on smooth submanifolds”, Proc. Amer. Math. Soc.
142:4 (2014), 1217–1228. MR 3162244 Zbl 06269482

[Bejenaru, Ionescu, Kenig, and Tataru 2013] I. Bejenaru, A. Ionescu, C. E. Kenig, and D. Tataru, “Equivariant Schrödinger maps
in two spatial dimensions”, Duke Math. J. 162:11 (2013), 1967–2025. MR 3090782 Zbl 06206217

[Benedetto, Castella, Esposito, and Pulvirenti 2005] D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, “On the weak-
coupling limit for bosons and fermions”, Math. Models Methods Appl. Sci. 15:12 (2005), 1811–1843. MR 2007a:82035
Zbl 1154.82314

[Benedetto, Castella, Esposito, and Pulvirenti 2006] D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, “Some considera-
tions on the derivation of the nonlinear quantum Boltzmann equation, II: The low density regime”, J. Stat. Phys. 124:2-4 (2006),
951–996. MR 2008g:82106 Zbl 1134.82029

[Benedetto, Castella, Esposito, and Pulvirenti 2008] D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, “From the N -body
Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime”,
Comm. Math. Phys. 277:1 (2008), 1–44. MR 2008i:82089 Zbl 1148.82022

[Benedikter, Oliveira, and Schlein 2012] N. Benedikter, G. de Oliveira, and B. Schlein, “Quantitative derivation of the Gross–
Pitaevskii equation”, preprint, 2012. To appear in Comm. Pure Appl. Math. arXiv 1208.0373

[Bergé, De Bouard, and Saut 1995] L. Bergé, A. De Bouard, and J.-C. Saut, “Blowing up time-dependent solutions of the planar,
Chern–Simons gauged nonlinear Schrödinger equation”, Nonlinearity 8:2 (1995), 235–253. MR 96b:81025 Zbl 0822.35125

[Byeon, Huh, and Seok 2012] J. Byeon, H. Huh, and J. Seok, “Standing waves of nonlinear Schrödinger equations with the
gauge field”, J. Funct. Anal. 263:6 (2012), 1575–1608. MR 2948224 Zbl 1248.35193

[Cercignani, Illner, and Pulvirenti 1994] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases,
Applied Mathematical Sciences 106, Springer, New York, 1994. MR 96g:82046 Zbl 0813.76001

[Christ and Weinstein 1991] F. M. Christ and M. I. Weinstein, “Dispersion of small amplitude solutions of the generalized
Korteweg–de Vries equation”, J. Funct. Anal. 100:1 (1991), 87–109. MR 92h:35203 Zbl 0743.35067

[Deser, Jackiw, and Templeton 1982] S. Deser, R. Jackiw, and S. Templeton, “Topologically massive gauge theories”, Ann.
Physics 140:2 (1982), 372–411. MR 84j:81128

[Dunford and Schwartz 1988] N. Dunford and J. T. Schwartz, Linear operators, I: General theory, Wiley, New York, 1988.
MR 90g:47001a Zbl 0635.47001
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