GLOBAL GAUGES AND GLOBAL EXTENSIONS IN OPTIMAL SPACES

MIRCEA PETRACHE AND TRISTAN RIVIÈRE

We consider the problem of extending functions $\phi : \mathbb{S}^n \to \mathbb{S}^n$ to functions $u : B^{n+1} \to \mathbb{S}^n$ for $n = 2, 3$. We assume ϕ belongs to the critical space $W^{1,n}$ and we construct a $W^{1,(n+1,\infty)}$-controlled extension u. The Lorentz–Sobolev space $W^{1,(n+1,\infty)}$ is optimal for such controlled extension. Then we use these results to construct global controlled gauges for L^4-connections over trivial SU(2)-bundles in 4 dimensions. This result is a global version of the local Sobolev control of connections obtained by K. Uhlenbeck.

1. Introduction

The use of Hodge decomposition is by now one of the classical tools in the study of elliptic systems and is related to important breakthroughs such as the famous “div–curl”-type theorems [Coifman et al. 1993]. More recently, in [Rivière 2007], such use allowed the solution of S. Hildebrandt’s [1982] conjecture. At the same time, it has helped establish important links to apparently unrelated fields of geometry, such as the study of conformally invariant geometric problems in 2 dimensions [Hélein 1996] and the study of Yang–Mills bundles and gauge theory [Uhlenbeck 1982b], with the introduction of controlled Coulomb gauges.

The study of 2-dimensional problems using controlled gauges has already given its fruits, and in connection to the discovery of H. Wente’s inequality (which gave the basis for introducing the Lorentz spaces $L^{(2,\infty)}$ in geometric problems) allowed the successful use of controlled moving frames in the study of harmonic maps and prescribed mean curvature surfaces [Hélein 1996; Müller and Šverák 1995].

We come back to this in Section 2H. Techniques and function spaces related to the moving frame method also apply to the study of the Willmore functional [Rivière 2012] for immersed surfaces.

1851

MSC2010: primary 28A51, 46E35; secondary 70S15, 58J05.

Keywords: nonlinear extension, nonlinear Sobolev space, global gauge, conformally invariant problem, Yang–Mills, Lorentz spaces, Hopf lift.
The use of controlled gauges especially in relation to Lorentz spaces in dimensions higher than 2 is far less developed. We attempt here a first attack of this completely new area of research, and we obtain some extensions of previous results for the case of Yang–Mills fields on 4-dimensional manifolds.

1A. Yang–Mills theory and controlled gauges. Yang–Mills theory for 4-manifolds is often associated to the famous result of S. Donaldson [1983] who, using the moduli spaces of anti-selfdual connections, described new invariants of smooth manifolds. The study of moduli spaces used by Donaldson [1983] starts from the result of K. Uhlenbeck [1982b], who proved that one can find a gauge in which the $W^{1,2}$-norm of the local coordinate expression of the connection is controlled by the L^2-norm of the curvature. Moreover the connection 1-form A can be also made to satisfy the Coulomb condition $d^*A = 0$.

It is easy to construct a Coulomb gauge in which we have just an L^2-control in terms of the curvature (see [Petrache 2013] or [Petrache and Rivière ≥ 2014]). This is done by first obtaining any gauge in which

$$\|A\|_{L^2} \leq C \|F\|_{L^2}$$

and then finding the smallest norm coefficients with respect to that gauge on our manifold M:

$$\min \left\{ \int_M |g^{-1}dg + g^{-1}Ag|^2 \, dx : g \in W^{1,2}(M, SU(2)) \right\}.$$

A unique minimizer will exist by convexity, and it will satisfy the Coulomb equation $d^*A = 0$.

The control of A in the higher norm $W^{1,2}$ is more difficult. A smallness hypothesis on $\|F\|_{L^2(M)}$ is required in order for the control to be achievable:

Theorem 1.1 (controlled Coulomb gauge under assumption of small energy [Uhlenbeck 1982b]). There exists a constant $\epsilon_0 > 0$ such that if the curvature satisfies $\int_M |F|^2 \leq \epsilon_0$ then there exists a Coulomb gauge $\phi \in W^{2,2}(M, SU(2))$ such that in that gauge the connection satisfies $\|A_\phi\|_{W^{1,2}(M)} \leq C \|F\|_{L^2(M)}$ with $C > 0$ depending only on the dimension.

The reason the smallness of the curvature is necessary is that $\|F\|_{L^2(M)}$ being above a certain threshold allows the second Chern number of the bundle to be nontrivial:

$$c_2(E) = \frac{1}{8\pi^2} \int_M \text{tr}(F \wedge F) \neq 0.$$

If, for such F, the controlled gauge were *global*, i.e., if we had a global trivialization in which the connection of the above F is expressed as $d + A$ with

$$\|A\|_{W^{1,2}(M)} \leq C,$$

then by the Sobolev and Hölder inequalities we would have enough control on the quantities involved to prove the following formal identity for our A:

$$\text{tr}[(dA + [A, A]) \wedge (dA + [A, A])] = \text{tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$
Now the right side, being an exact form, would have integral equal to zero over the boundaryless manifold M, which would contradict $c_2(E) \neq 0$.

M. Atiyah, N. Hitchin, I. Singer [Atiyah et al. 1978] and C. Taubes [1982] constructed instantons with nontrivial Chern numbers behaving as in the above heuristic. To exemplify the phenomena at work consider the simplest instanton, having $c_2(E) = 1$ over $M = \mathbb{S}^4$ (see [Freed and Uhlenbeck 1984, Chapter 6] for notations and details). Recall that we may use quaternion notation due to the isomorphisms $\text{SU}(2) \sim \text{Sp}(1)$ and $\text{su}(2) \sim \text{Im} \mathbb{H}$, under which Pauli matrices correspond to quaternion imaginary units. We then have the following local expression of A over \mathbb{R}^4 (identified by stereographic projection with $\mathbb{S}^4 \setminus \{p\}$) in a trivialization:

$$A = \text{Im} \left(\frac{x \, d\bar{x}}{1 + |x|^2} \right).$$

If Ψ is the inverse stereographic projection then Ψ^*A is smooth away from the pole p, but near p we have $|\Psi^*A|(q) \sim \text{dist}_{\mathbb{S}^4}(p,q)^{-1}$, which is not L^4 in any neighborhood of p.

Such behavior like $1/|x|$ shows that we are in any space L^p for $p < 4$ but not in L^4. The natural space is the weak-L^4 space $L^{4,\infty}$, which is strictly contained between all L^p, $p < 4$, and L^4:

Definition 1.2 [Grafakos 2008]. Let X, μ be a measure space. The space $L^{p,\infty}(X, \mu)$ (also called weak-L^p or Marcinkiewicz space) is the space of all measurable functions f such that

$$\|f\|_{L^{p,\infty}} := \sup_{\lambda > 0} \lambda^p \mu \{ x : |f(x)| > \lambda \}$$

is finite.

We note immediately that the function $f(x) = 1/|x|$ belongs to $L^{4,\infty}$ on \mathbb{R}^4 and the above global gauge gives an $L^{4,\infty}$ 1-form Ψ^*A on \mathbb{S}^4. Spaces $L^{p,\infty}$ arise naturally in dealing to the critical exponent estimates for elliptic equations. Indeed, the Green kernel $K_n(x)$ of the Laplacian on \mathbb{R}^n satisfies $\nabla K \in L^{n/(n-1),\infty}$ but not $\nabla K \in L^{n/(n-1)}$. Thus $\Delta u = f$ with $f \in L^1$ implies $\nabla u = \nabla K * f \in L^{n/(n-1),\infty}$ by an extended Young inequality (see [Grafakos 2008]). This is unlike the higher exponent case $f \in L^p$, $p > 1$, which gives the stronger result $\nabla u \in L^p$.

1B. Controlled global gauges. As shown heuristically by the explicit case of the instanton A above, it is known how to construct $L^{4,\infty}$ global gauges. Our main effort in this work is to obtain norm-controlled gauges, mirroring Theorem 1.1 by Uhlenbeck. The main result is the following:

Theorem A. Let M^4 be a Riemannian 4-manifold. There exists a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ with the following property: Let ∇ be a $W^{1,2}$-connection over an $\text{SU}(2)$-bundle over M. Then there exists a global $W^{1,(4,\infty)}$-section of the bundle (possibly allowing singularities) over the whole M^4 such that in the corresponding trivialization ∇ is given by $d + A$ with the bound

$$\|A\|_{L^{4,\infty}} \leq f(\|F\|_{L^2(M)}),$$

where F is the curvature form of ∇.
This theorem is related to a second main result of this work, namely the introduction of Lorentz–Sobolev extension theorems for nonlinear maps. This result takes most of our efforts and can be stated as follows:

Theorem B. There exists a function \(f \) such that \(f \) is Sobolev with the following property:

\[
\| \nabla f \|_{L^4, \infty(B^4)} \leq f_1(\| \nabla \phi \|_{L^3}).
\]

The originality of Theorem B with respect to the previous results [Bethuel and Demengel 1995; Mucci 2010] is that, whereas the previous works were concerned with the existence of an extension, in our case a control is provided in terms of the boundary value. We show below that, even under the hypothesis \(\text{deg}(\phi) = 0 \) — so that a \(W^{1,4} \)-extension surely exists — no energy control will be available in the (stronger) \(W^{1,4} \)-norm.

Controlled global gauges as above will probably have many applications in the analysis of gauge theory, for example in simplifying compactness results; see [Petrache 2013]. Controlled global gauges could allow a global control on the Yang–Mills flow provided we obtain also the Coulomb condition, which is however an open question:

Open Problem 1.3. Prove that it is possible to find \(L^{4,\infty} \)-controlled global Coulomb gauges as in Theorem A. In other words, prove that it is possible to find a gauge as in Theorem A, but with the further requirement that \(d^*A = 0 \).

1C. **Strategy of gauge construction.** The link between Theorems A and B is given by the well-known identification \(SU(2) \simeq \mathbb{S}^3 \). Therefore, Theorem B can be rephrased as follows:

Theorem B’. Fix a trivial \(SU(2) \)-bundle \(E \) over the ball \(B^4 \). There exists a function \(f_1 : \mathbb{R}^+ \to \mathbb{R}^+ \) with the following property: if \(g \) is a trivialization of the restricted bundle \(E|_{\partial B^4} \), then there exists an extension of \(g \) to a trivialization \(\tilde{g} \) such that

\[
\| \nabla \tilde{g} \|_{L^4, \infty(B^4)} \leq f_1(\| \nabla g \|_{L^3(\mathbb{S}^3)}).
\]

The proof of Theorem A is by a sequence of gauge extensions along the simplices of a suitable triangulation. We use simplices where Uhlenbeck’s Theorem 1.1 holds, i.e., \(F \) has energy \(\lesssim \epsilon_0 \). To ensure a lower bound on the size of simplices we cut areas of energy concentration and use induction on the energy; see the graphical summary (5-1).

1D. **Extension of Sobolev maps into manifolds.** We discuss the relevance of our theorem, several possible extensions and related phenomena in Section 2.

Here we point out the main open questions in the area of controlled nonlinear extensions and some analogues of Theorem B. The fundamental group \(\pi_m(N) \) is a useful tool to control the topology of \(N \). It is a quotient of \(C^0(\mathbb{S}^m, \mathbb{N}) \). To say that any map in this space is continuously extendable to \(B^{m+1} \) amounts to asserting that \(\pi_m(N) = 0 \).

We consider here the controlled extension problem for maps \(\mathbb{S}^m \to \mathbb{S}^n \). As is usually the case, interesting new features appear when smooth maps are not dense in \(W^{1,p}(\mathbb{S}^m, \mathbb{S}^n) \), in which case we expect topological obstructions to gradually disappear as \(p \) decreases. The first facts to note are:
• For extensions of maps from $W^{1,p}(\mathbb{S}^m, \mathbb{R}^n)$ to B^{m+1} the natural space given by continuous Sobolev and trace embeddings is $W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n)$ (see Section 2A and 2B).

• For $p < m(n + 1)/(m + 1)$ the controlled extensions exist (see Section 2A).

• For $p > m$ the extension question reduces to a purely topological problem (see Section 2B).

The open cases when $p < m$ are thus among the following ones:

Open Problem 1.4. Assume that $m(n + 1)/(m + 1) \leq p < m$ and $m > n$. For which such choices of m, n, p does there exist a finite function $f_{m,n,p} : \mathbb{R}^+ \to \mathbb{R}^+$ such that for every $\phi \in W^{1,p}(\mathbb{S}^m, \mathbb{S}^n)$ there exists an extension $u \in W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n)$ for which the estimate

$$\|u\|_{W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n)} \leq f_{m,n,p}(\|\phi\|_{W^{1,p}(\mathbb{S}^m, \mathbb{S}^n)})$$

holds? Does the estimate hold for $p = m$ for the norm $W^{1,(m+1,\infty)}(B^{m+1}, \mathbb{S}^n)$?

Open Problem 1.4 is partially understood or solved just in some cases:

• Due to a relation between extension problems and lifting problems, we answer the above problem for $n = 2 < m$ and $3m/(m + 1) \leq p < 4m/(m + 1)$; see Proposition 1.7 and Section 2D.

• In particular, we cover all p for the dimensions $m = 3$, $n = 2$.

• For $n = 1$, $m \geq 3$ and $3m/(m + 1) \leq p < m$, it was shown by F. Bethuel and F. Demengel [1995] that no extension exists.

It will be interesting in the future to look at the link between extension and lifting problems in detail. It is possible to do this also in the case of \mathbb{S}^1-valued maps and in nonlocal Sobolev spaces, e.g., using the results of J. Bourgain, H. Brezis and P. Mironescu [Bourgain et al. 2000].

In the critical case $p = m$, left aside in Open Problem 1.4, we have the following results:

• Using the Hopf lifts as in the works of R. Hardt and T. Rivière [2003; 2008], we prove Theorem C, which is the solution to the case $p = m = n = 2$ (see Section 3).

• The extension in that case exists but cannot be controlled in the above Sobolev norm, making the Lorentz–Sobolev weakening of Theorem B and of Theorem C below optimal (see Section 2E). This is analogous to the case of global gauges in 4 dimensions pointed out in the introduction.

• We also prove an analogous result for $p = m = n = 1$ (see Theorem 2.5). However this is not the natural space to look at, unlike in higher dimensions. In this case, indeed, the trace space $H^{1/2}(\mathbb{S}^1, \mathbb{S}^1)$ is the natural space to look at, because $W^{1,1}(\mathbb{S}^1, \mathbb{S}^1)$ does not continuously embed in it (we recall a counterexample in Section 2C).

These theorems leave open higher-dimensional cases:

Open Problem 1.5. Assume $n \geq 4$. Prove that there exists a finite function $f_n : \mathbb{R}^+ \to \mathbb{R}^+$ such that, for each $\phi \in W^{1,n}(\mathbb{S}^n, \mathbb{S}^n)$, we can find an extension $u \in W^{1,(n+1,\infty)}(B^{n+1}, \mathbb{S}^n)$ for which

$$\|u\|_{W^{1,(n+1,\infty)}(B^{n+1}, \mathbb{S}^n)} \leq f_n(\|\phi\|_{W^{1,n}(\mathbb{S}^n, \mathbb{S}^n)}).$$
Unlike in linear Sobolev spaces, not only the topology of the domain must be compared to the Sobolev exponent p, but also the dimension and structure of the constraint (i.e., the target manifold) plays a critical role. This is also related to the topological global obstructions to density results for smooth functions between manifolds found by F. Hang and F.-H. Lin [2001; 2003] and discussed by T. Isobe [2006].

A general tool allowing extensions is the projection trick of Section 2A, which works well for Sobolev exponents smaller than the target dimension plus one. Lifting theorems allow us to increase this dimension and thus to apply the projection trick with higher exponents.

Using the Hopf fibration $H : S^3 \rightarrow S^2$ we construct controlled lifts and apply a version of the projection trick obtaining the following theorem with much less effort than for the 3-dimensional case of Theorem B:

Theorem C (see Section 3). Suppose $\phi \in W^{1,2}(S^2, S^2)$ is given. Then there exists $u \in W^{1,3}(B^3, S^2)$ such that, in the sense of traces, $u|_{B^3} = \phi$ and such that the following estimate holds, for a constant independent of ϕ:

$$\|u\|_{W^{1,3}(B^3)} \leq C \|\phi\|_{W^{1,2}(S^2)}(1 + \|\phi\|_{W^{1,2}(S^2)}).$$

The Hopf fibration has a natural structure of $U(1)$-bundle with nontrivial characteristic class, $P \rightarrow S^2$. Lifting a map $\phi : X \rightarrow S^2$ to a map $\tilde{\phi} : X \rightarrow S^3$ for which $H \circ \tilde{\phi} = \phi$ corresponds to giving the trivialization of the pullback bundle ϕ^*P. Analogous lifts are interesting to study for general principal G-bundles, using universal connections. The next case after the one with target S^2 is the SU(2)-bundle of the introduction, which corresponds to the Hopf fibration $S^7 \rightarrow S^4$.

The Hopf lift idea seems to be much more difficult to extend to the case where the target is S^3. We cannot use principal bundles because $\pi_2(G) = 0$ for all compact Lie groups G. For other fibrations, the following question is open:

Open Problem 1.6. Is it possible to find a fibration $\pi : E \rightarrow S^3$ with compact fiber M and a constant $C > 0$ such that, for each $\phi \in W^{1,3}(\mathbb{R}^3, S^3)$, there exists a lift $\tilde{\phi} : \mathbb{R}^3 \rightarrow E$ satisfying the estimate $\|\nabla \tilde{\phi}\|_{L^{3,\infty}} \leq C f(\|\nabla \phi\|_{L^3})$ for some finite function $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$?

The controlled Hopf lift result for S^2 yields also an answer to Open Problem 1.4 for dimensions $m = 3, n = 2$:

Theorem D. Assume $\phi \in W^{1,3}(S^3, S^2)$. Then there exists a controlled extension $u \in W^{1,(4,\infty)}(B^4, S^2)$ with the control

$$\|u\|_{W^{1,(4,\infty)}(B^4, S^2)} \leq C \|\phi\|_{W^{1,3}(S^3, S^2)}(1 + \|\phi\|_{W^{1,3}(S^3, S^2)}).$$

If instead we have $\phi \in W^{1,p}(S^3, S^2)$ for $\frac{9}{4} \leq p < 3$, then there exists an extension $u \in W^{1,\frac{3}{2}p}(B^4, S^2)$ with

$$\|u\|_{W^{1,\frac{3}{2}p}(B^4, S^2)} \leq C \|\phi\|_{W^{1,p}(S^3, S^2)}(1 + \|\phi\|_{W^{1,p}(S^3, S^2)}).$$

The same proof allows us to also answer Open Problem 1.4 for $n = 2 < m$ for some exponents p:

Proposition 1.7. Assume $n = 2$, $m \geq 3$ and $3m/(m+1) \leq p < 4m/(m+1)$ and let $\phi \in W^{1,p}(S^m, S^2)$. Then there exists a controlled extension $u \in W^{1,p(m+1)/m}(B^{m+1}, S^2)$ with

$$\|u\|_{W^{1,p(m+1)/m}(B^4, S^2)} \leq C \|\phi\|_{W^{1,p}(S^3, S^2)}(1 + \|\phi\|_{W^{1,p}(S^3, S^2)}).$$
1E. Ingredients used in the construction of \(W^{1,(4,\infty)}(B^{4}, \mathbb{S}^{3}) \)-extensions. The starting new idea was to the use of implicit function theorems and of a limit on the integrability exponent as done in [Uhlenbeck 1982a] for the extension result. Note that the procedure of Appendix A is generalizable to other contexts with no new ingredients, at least as long as a Lie group structure is present.

For the implicit function theorems above, we needed here a new product estimate valid in Sobolev spaces, which is presented in Appendix B, extending partially the results of [Brézis and Mironescu 2001]; cf. [Runst and Sickel 1996; Triebel 1995].

The second idea was to use \(L^{4,\infty} \) functions such that the \(L^{4} \)-estimate would fail just near a controlled number of points. Such singular points (where “singular” is meant with respect to the \(L^{4} \)-estimates) are introduced via Lemma 4.6 and Theorem 4.3.

Under a balancing condition on the boundary value \(\phi \), we can write \(\phi = \phi_{1}\phi_{2} \), where the product is taken in SO(2), and the energies of \(\phi_{i} \), \(i = 1, 2 \), are strictly less than that of \(\phi \), allowing an induction on the energy. If the balancing is not valid, we apply a Möbius transformation \(F_{v} \) to \(\mathbb{S}^{3} \) and either reduce to a balanced situation for \(F_{v} \circ \phi \) for some \(v \) or provide a substitute \(v \in B^{4} \mapsto \int_{\mathbb{S}^{3}} \phi \circ F_{v} \) to the harmonic extension of \(\phi \), to which we can now apply the projection trick. The natural parametrization of the Möbius group of \(\mathbb{S}^{3} \) via vectors in \(B^{4} \) fits very well in this setting, and we were inspired to use it by the similar use of it in [Marques and Neves 2014].

Plan of the paper. Section 2 contains a list of positive and negative results concerning phenomena parallel to ours, showing that our results are optimal. Section 3 contains the proof of Theorem C. In Section 4 we prove Theorem B, and in Section 5 we prove Theorem A. Appendix A deals with our new “extension” version of Uhlenbeck’s gauge construction and in Appendix B we prove the needed new product inequality. Appendix C contains computations and notation for the Möbius groups of \(B^{n+1} \) and \(\mathbb{S}^{n} \).

2. Controlled and uncontrolled nonlinear Sobolev extensions

Classical Sobolev space theory features optimal extension theorems in natural trace norms. For example, if \(\Omega \subset \mathbb{R}^{n} \) is a bounded smooth domain and \(u : \partial \Omega \to \mathbb{R} \) is a \(W^{1,n-1} \)-function, then there exists an extension \(\tilde{u} : \Omega \to \mathbb{R} \) such that \(\tilde{u} \in W^{1,n} \) and the estimate

\[
\|\tilde{u}\|_{W^{1,n}} \leq C\|u\|_{W^{1,n-1}}
\]

holds (with \(C \) independent of \(u \)). This extension theorem is optimal in the sense that for dimensions \(n > 2 \) the natural trace operator \(\tilde{u} \in W^{1,n} (\Omega) \mapsto \tilde{u}|_{\partial \Omega} \) sends \(W^{1,n} \) to the optimal space \(W^{1-1/n,n} \) (see [Tartar 2007, Chapter 40] for the natural appearance of this space), and we have the optimal Sobolev...
continuous embedding $W^{1-1/n,n} \to W^{1,n} (\text{see [Tartar 2007]})$ which brings us back to the original space. A similar result still holds if we replace the codomain \mathbb{R} by \mathbb{R}^m.

However, for $n = 2$, the space $W^{1,1}(\mathbb{S}^1, \mathbb{S}^1)$ does not continuously embed in $H^{1/2}(\mathbb{S}^1, \mathbb{S}^1)$, making the above reasoning less effective; see Section 2C.

A construction of \tilde{u} is possible by imitating the model, valid for $\Omega = \mathbb{R}^n_+ := \{(x_1, \ldots, x_n) | x_n \geq 0\}$,

$$\tilde{u}(x_1, \ldots, x_{n-1}, \epsilon) := (\rho_\epsilon \ast u)(x_1, \ldots, x_{n-1}),$$

where ρ_ϵ is a standard family of radial smooth compactly supported mollifiers.

An equivalent construction of \tilde{u} in terms of function spaces is by harmonic extension. The optimal result is the following:

Proposition 2.1 (harmonic extension; cf. [Gazzola et al. 2010, Chapter 10]). Assume $q > 1$ and $u \in W^{1-1/q,q}(\partial B^{m+1}, \mathbb{R}^{n+1})$. Then there exists a harmonic extension $\tilde{u} \in W^{1,q}(B^{m+1}, \mathbb{R}^{n+1})$ such that

$$\|\tilde{u}\|_{W^{1,q}(B^{m+1}, \mathbb{R}^{n+1})} \leq C_{m,n,q} \|u\|_{W^{1-1/q,q}(\partial B^{m+1}, \mathbb{R}^{n+1})}.$$

By Sobolev embedding, we have the controlled inclusion $W^{1,p} \hookrightarrow W^{1-1/q,q}$ on an m-dimensional bounded open domain (or a compact manifold like ∂B^{m+1}) for $q \leq p(m + 1)/m$; therefore, this q is the largest exponent where we can hope to have a control for the extension.

If u is a constrained function with values in a subset of \mathbb{R}^{n+1} (e.g., a curved n-dimensional submanifold like \mathbb{S}^n) then averaging even on a very small scale could push the values of \tilde{u} quite far from the constraint obeyed by u. This happens in particular for Sobolev exponents that make the dimension “supercritical”, i.e., exponents such that $W^{1,q}(B^{m+1})$ is not constituted of continuous functions. We now describe some cases where directly projecting back to \mathbb{S}^n does not destroy the norm control of Proposition 2.1.

2A. Projection from a well-chosen center. We present in this section a trick which probably appeared for the first time in relation to nonlinear Sobolev extensions in R. Hardt, D. Kinderlehrer and F.-H. Lin’s works [Hardt et al. 1986; Hardt and Lin 1987]. For a Lorentz space version see Proposition 3.4.

Proposition 2.2 (projection trick). If $f \in W^{1,q}(\Omega, B^{n+1})$ with $q < n + 1$ and Ω is a bounded open simply connected domain of \mathbb{R}^{m+1}, then there exists $a \in B^{n+1}_1(\Omega)$ and a constant C depending only on q, m, n such that if $f_a(x) = \pi_a(f(x))$, where $\pi_a : B^{n+1}_1 \setminus \{a\} \to \mathbb{S}^n$ is the projection which is constant along the segments $[a, \omega], \omega \in \mathbb{S}^n$, then

$$\|f_a\|_{W^{1,q}(\Omega, \mathbb{S}^n)} \leq C \|f\|_{W^{1,q}(\Omega, B^{n+1})}.$$

Proof. We just have to estimate the gradient of f_a in terms of that of f since in any case the functions themselves are bounded and Ω is assumed of finite measure. We first note that, since $a \in B^{n+1}_1$ is away from the boundary of B^{n+1}, we have the pointwise estimate

$$|\nabla f_a|(x) \lesssim \frac{|\nabla f|(x)}{|f(x) - a|},$$
where the implicit constant depends only on \(n \). We next consider the following “average” on \(a \):

\[
\int_{B_{1/2}^{n+1}} \left(\int_{\Omega} |\nabla f_a|^q(x) \, dx \right) \, da \leq \int_{\Omega} |\nabla f|^q(x) \left(\int_{B_{1/2}^{n+1}} \frac{da}{|f(x) - a|^q} \right) \, dx.
\]

We note that the inner integral is of the form

\[
Z_C f_j q \, x / \Omega = Z_{C1} f_j q \, x / \Omega,
\]

\[
\int_{B_{1/2}^{n+1}} \left(\int_{\Omega} |\nabla f_a|^q(x) / da \right) \, dx.
\]

\[
Z_C f_j q \, x / \Omega = Z^2 \, da j f j q \, x / \Omega.
\]

The above proposition together with Proposition 2.1 and the remark on Sobolev exponents following it give the following:

Theorem 2.3 (corollary of the projection trick; cf. [Hardt and Lin 1987, Theorem 6.2]). Let \(m, n \in \mathbb{N}^* \). If \(1 \leq p < m(n+1)/(m+1) \) then for any \(\phi \in W^{1,p}(\partial B^{m+1}, \mathbb{S}^n) \) there exists a nonlinear extension \(u \in W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n) \) satisfying the control

\[
\|u\|_{W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n)} \leq C_{m,n,p} \|\phi\|_{W^{1,p}(\partial B^{m+1}, \mathbb{S}^n)}.
\]

Remark 2.4. Note that from the same ingredients we obtain also the stronger estimate where for \(q := p(m+1)/m < m \) the weaker space \(W^{1-1/q,q}(\partial B^{m+1}, \mathbb{S}^n) \) replaces \(W^{1,p}(\partial B^{m+1}, \mathbb{S}^n) \). This was done in [Bethuel and Demengel 1995; Hardt and Lin 1987]. We stated Theorem 2.3 as above to emphasize the connection with our Theorems B and C. Indeed, taking \(m = n \) we see that those theorems cover the critical exponent \(p = n \) for which the projection trick stops working.

2B. Large integrability exponents. We now consider functions in \(W^{1,p}(\mathbb{S}^m, \mathbb{S}^n) \) with \(p > m \); there is a continuous embedding of \(C^{0,1-m/p}(\mathbb{S}^m, \mathbb{S}^n) \) into this space. The candidate extension space \(W^{1,p(m+1)/m}(B^{m+1}, \mathbb{S}^n) \) is also composed of \(C^{0,1-m/p} \)-functions. As described in Section 1D, the extension problem is guaranteed to have a solution as long as \(\pi_m(\mathbb{S}^n) = 0 \). This is true for \(m < n \) but false for many choices of \(m > n \) and for \(m = n \).

When an extension exists for \(\phi \) representing the identity of the (nontrivial) group \(\pi_m(\mathbb{S}^n) \), a controlled extension can be constructed based on the fact that a bound on the \(C^{0,\alpha} \)-norm for \(\alpha > 0 \) implies a control on the modulus of continuity.
2C. Extension for maps in $W^{1,1}(\partial \mathbb{S}^1, \mathbb{S}^1)$. For maps with values in \mathbb{S}^3, we are helped by the existence of a well-behaved product structure on \mathbb{S}^3, i.e., the one which gives the identification $\mathbb{S}^3 \simeq SU(2)$. This is enough to get the analogous result for $n = 1$, as we will see now. It is however well known (see [Hatcher 2009, Section 2.3]) that this is a very unusual case: a group operation exists on \mathbb{S}^k only for $k = 1, 3$.

We can state a similar extension problem in the 1-dimensional case. This kind of controlled extension result is related to the recent work on Ginzburg–Landau functionals in [Serfaty and Tice 2008].

Here the main structural ingredients present for \mathbb{S}^3 are again present: namely, we have a group operation on \mathbb{S}^1 (in this case it is the abelian group $U(1) \sim \mathbb{R}/\mathbb{Z}$) and a Möbius structure on D^2 restricting to one on \mathbb{S}^1. We follow the strategy of proof described in Section 1D. The result is:

Theorem 2.5 (1-dimensional version of the extension). There exists a function $g: \mathbb{R}^+ \to \mathbb{R}^+$ with the following property: if $\phi \in W^{1,1}(\mathbb{S}^1, \mathbb{S}^1)$ then there exists $u \in W^{1,(2,\infty)}(D^2, \mathbb{S}^1)$ with $u|_{\partial D^2} = \phi$ in the sense of traces and we have the norm control

$$\|u\|_{W^{1,(2,\infty)}(D^2, \mathbb{S}^1)} \leq g(\|\phi\|_{W^{1,1}(\mathbb{S}^1, \mathbb{S}^1)}).$$

We will explain the changes which occur with respect to the proof of Theorem B (see Section 4).

Sketch of proof. The procedure is as in Section 4 and Appendix A; we have just to replace exponents and dimensions 3, 4 with 1, 2. For the analogue of Proposition 4.9 the biharmonic equation (4–36) is replaced by a harmonic equation, while the resulting estimates persist. Perhaps the only significant change is Lemma B.1 of Appendix B. It should be replaced by the following product estimate, valid for $f \in W^{1,1}(D^2)$, $g \in L^\infty \cap W^{1,2}(D^2)$:

$$\|fg\|_{W^{1,1}} \leq \|f\|_{W^{1,1}}(\|g\|_{L^\infty} + \|g\|_{W^{1,2}}).$$

We must however note that the naturality of the space $W^{1,1}(\mathbb{S}^1, \mathbb{S}^1)$ in Theorem 2.5 is less evident, since the trace space $H^{1/2}(\mathbb{S}^1, \mathbb{S}^1)$ does not continuously embed in it, unlike what happens in higher dimensions. This is seen by considering

$$u_\epsilon(\theta) = \exp\left(i \min\{1, \epsilon^{-1} \text{dist}_{\mathbb{S}^1}(\theta, [-\frac{1}{2}\pi, \frac{1}{2}\pi])\}\right).$$

It is then clear that $\|\nabla u_\epsilon\|_{L^1(\mathbb{S}^1)} = 2$, while we estimate the double integral in θ, θ' giving the $H^{1/2}$-norm by the contribution of the regions $\theta \in [0, \frac{1}{2}\pi], \theta' \in \left[\frac{1}{2}\pi + \epsilon, \pi + \epsilon\right]$. Under these choices, $u_\epsilon(\theta) = e^0$, $u_\epsilon(\theta') = e^i$, and their distance in \mathbb{S}^1 is 1. Thus,

$$\|u_\epsilon\|_{H^{1/2}(\mathbb{S}^1, \mathbb{S}^1)}^2 = \int_{\mathbb{S}^1} \int_{\mathbb{S}^1} \frac{\text{dist}_{\mathbb{S}^1}(u_\epsilon(\theta), u_\epsilon(\theta'))^2}{\text{dist}_{\mathbb{S}^1}(\theta, \theta')^2} \ d\theta \ d\theta' \leq \int_0^1 \int_0^1 \frac{1}{|x + 2\epsilon/\pi - y|^2} \ dx \ dy \leq |\log \epsilon| + 1.$$
2D. Using controlled liftings to obtain controlled extensions. The control obtained for extensions of maps in \(W^{1,3}(S^3, S^3)\) and \(W^{1,1}(S^1, S^1)\) is exponential in the norms of these maps. In Section 3 we describe an approach, which works for \(\phi \in W^{1,2}(S^2, S^2)\), which is completely different than in dimensions 1 and 3 and yields a faster proof and a better control. Such an approach was first considered in [Hardt and Rivière 2003]. This is based on the existence of controlled Hopf lifts. The result (see Corollary 3.3) is that there exists an \(L^{2,\infty}\)-controlled lifting \(\tilde{\phi} : S^2 \to S^3\), i.e., a function such that \(H \circ \tilde{\phi} = \phi\), where \(H : S^3 \to S^2\) is the Hopf fibration and we have the control
\[
\|\nabla \tilde{\phi}\|_{L^2,\infty} \leq C \|\nabla \phi\|_{L^2}(1 + \|\nabla \phi\|_{L^2}).
\]
The analogous controlled lift exists also for \(\phi \in W^{1,3}(S^3, S^3)\), whereas for \(2 \leq p < 3\) we have a control on the \(L^p\)-norm of the lift instead of the \(L^{p,\infty}\) one; cf. Proposition 1.7. This lift allows us to prove, along the same lines, Theorems C and D.

The gist of the proof is the following: Once we have the controlled lift, the lifted map takes values into a sphere of a higher dimension. This allows a wider range of application for the projection trick of Proposition 2.2 or of its Lorentz space analogue of Proposition 3.4.

Having extended the lift, reprojecting the extension to \(S^2\) via the Hopf map maintains the gradient estimates. This is due to the fact that the Hopf fibration is a submersion (cf. (3-4)) and our lift can be taken so that the “vertical” component \(\eta\) is also controlled.

Work on the existence of nonlinear liftings has been very active regarding \(S^1\)-valued maps (see, e.g., [Bourgain et al. 2000; 2004; Bethuel and Zheng 1988] and the references therein). Looking also at higher-dimensional analogues seems very promising in relation to extension results.

2E. Small energy extension with estimate. As for the case of curvatures over bundles with a compact Lie group, the small energy regime allows a kind of linearization of the problem and gives estimates which are better than what is expected in general. We obtain in particular an estimate in \(W^{1,4}\) instead of \(W^{1,4,\infty}\) for the extension, provided that the norm of the boundary trace is small:

Proposition 2.6 (see Theorem 4.4). There is a constant \(\epsilon_0 > 0\) and a finite constant \(C\) such that, if
\[
\int_{S^3} |\nabla \phi|^3 \leq \epsilon_0, \quad \phi : S^3 \to S^3,
\]
then there exists \(u \in W^{1,4}(B^4, S^3)\) such that
\[
u = \phi \text{ on } \partial B^4 \text{ in the sense of traces} \quad \text{and} \quad \|\nabla u\|_{L^4(B^4)} \leq C \|\nabla \phi\|_{L^3(S^3)}.
\]

This is part of our proof of Theorem B and is proved in Section 4B using a method developed in Appendix A in the spirit of [Uhlenbeck 1982b].

2F. Existence of \(W^{1,4}\)-extension without norm bounds. As for the case of global gauges, we can in general obtain \(W^{1,4}(B^4, S^3)\)-extensions once we give up the requirement to have a norm control of the extension such as in Theorem B. This phenomenon represents one example of situations in which function spaces have behavior which is more complex than what can be detected by only looking at their norms.
Proposition 2.7. If \(\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \), then its topological degree is well defined; cf. [Schoen and Uhlenbeck ~1980; White 1988]. Suppose that \(\deg \phi = 0 \). Then there exists \(u \in W^{1,4}(B^4, \mathbb{S}^3) \) such that \(u = \phi \) on \(\partial B^4 \) in the sense of traces.

Proof. We use the extension as in Section 4A. The construction using Lemma 4.5 is done on a series of domains \(B(x_i, \rho_i) \cap B^4 \), where \(x_i \in \partial B^4 \), \(\rho_i \in [\rho_F, 2\rho_F] \) for the choice

\[
\rho_F := \inf \left\{ \rho > 0 : \exists x_0 \in \partial B^4, \int_{B(x_0, 2\rho) \cap \partial B^4} |\nabla \phi|^3 \geq \epsilon_0 \right\}.
\]

Note that we have no a priori control on how small \(\rho_F \) could get, but (by absolute continuity of \(|\nabla \phi|^3 d\lambda \) and compactness of \(\partial B^4 \)) it cannot be zero for a fixed \(\phi \). Then a Lipschitz extension \(u : \mathcal{R} \to \mathbb{S}^3 \) to a Lipschitz region \(\mathcal{R} \) included between \(B^4 \setminus B_{1-2\rho_F} \) and \(B^4 \setminus B_{1-\rho_F} \) exists as in Section 4A and such a \(u \) will also be Lipschitz (with constant bounded by \(\rho_F^{-1} \)) and will have degree zero (the preservation of degree follows because the extension used in the construction preserves the homotopy type; cf. [White 1988]). In particular we can do a further Lipschitz (thus \(W^{1,4} \)) extension to the interior of \(B^4 \setminus \mathcal{R} \). This provides the desired \(u \).

The proof of the above proposition is constructive, and no hint that the construction is optimal is available. In the next section we prove that actually no general bound in \(W^{1,4} \) can be achieved, because of the intervention of the topological degree, much as in the case of \(SU(2) \)-instantons.

2G. Impossibility of \(W^{1,4} \) bounds for an extension.

Proposition 2.8. There exists no finite function \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) such that for each \(\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \) there exists a function \(u \in W^{1,4}(B^4, \mathbb{S}^3) \) satisfying

\[
u u = \phi \text{ on } \partial B^4 \text{ in the sense of traces } \quad \text{and} \quad \|\nabla u\|_{L^4(B^4)} \leq f(\|\nabla \phi\|_{L^3(\mathbb{S}^3)}).
\]

Proof. We recall the robustness of degree under strong convergence in \(W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \) (see [Schoen and Uhlenbeck ~1980; White 1988; Brézis and Nirenberg 1995; 1996]). Consider \(\phi = \text{id}_{\mathbb{S}^3} \), which has degree 1. Suppose an extension \(u : B^4 \to \mathbb{S}^3 \) to \(\phi \) were to exist with \(\|u\|_{W^{1,4}} \leq C' \). It would then be possible to approximate \(u \) in \(W^{1,4} \)-norm by functions \(u_i \in C^\infty(B^4, \mathbb{S}^3) \), since smooth functions are dense in \(W^{1,4}(B^4, \mathbb{S}^3) \). In particular the degrees \(\deg(\phi_i) \) of \(\phi_i = u_i |_{\partial B^4} \) would have to be zero. This contradicts the fact that \(\phi_i \to \phi \) in \(W^{1,3} \)-norm because the degree of the boundary trace is preserved under strong \(W^{1,3} \)-convergence.

This proves the absence of a continuous extension operator. To show that boundedness is also impossible, we use a slightly different argument.

Consider \(\phi_0 \in W^{1,3} \cap C^\infty(\mathbb{S}^3, \mathbb{S}^3) \) that is a perturbation of the identity equal to the south pole \(S \) in a neighborhood \(N_S \) of \(S \). Then consider a Möbius transformation \(F : \mathbb{S}^3 \to \mathbb{S}^3 \) such that \(F^{-1}(N_S) \) includes the lower hemisphere, and let \(\phi' = \phi_0 \circ F, \phi'' = \phi_0 \circ (-F) \). Then, identifying \(\mathbb{S}^3 \sim SU(2) \) so that \(S \sim \text{id}_{SU(2)} \), use the group operation to define \(\phi = \phi' \phi'' \). Note that \(\|\phi\|_{W^{1,3}} \leq 2\|\phi_0\|_{W^{1,3}} \), since the conformal maps \(F, -F \) preserve the energy; moreover, \(\phi \) has zero degree.
Let F_n be a family of Möbius transformations symmetric about S that concentrate more and more near S (with the notation of Appendix C we may take $F_n := F_{v_n}$ for $v_n = (1-1/n)S$). Define $\phi'_n := \phi' \circ F_n$ and $\phi_n := \phi_n \phi''$. It is clear by conformal invariance of the $W^{1,3}$-energy that the ϕ_n have constant energy. They converge weakly to ϕ'' and have degree zero.

Call u_n the extension of ϕ_n and suppose that $\|u_n\|_{W^{1,4}} \leq C$ independent of n. We may suppose that, in $W^{1,4}$-norm, $u_n \to u_\infty \in W^{1,4}(B^4, \mathbb{S}^3)$ and we obtain $u_\infty|_{\partial B^4} = \phi''$ in the sense of traces. We then apply the result of [White 1988] (see also [Schoen and Uhlenbeck ~1980]), which in this case says that the 3-dimensional homotopy class passes to the limit under bounded sequential weak-$W^{1,4}(B^4, \mathbb{S}^3)$ limits. We again obtain a contradiction to boundedness, since $\deg(\phi'') = -1$ whereas the same degree is zero for the maps ϕ_n. □

2H. Moving frames and their gauges. We describe here a lifting problem arising in the theory of moving frames on 2-dimensional surfaces, where the Lorentz spaces appear again in the optimal estimates. The model question is as follows:

Question 2.9. Given a map (representing the normal vector of an immersed surface) $\tilde{n} \in W^{1,2}(D^2, \mathbb{S}^2)$, does there exist a $W^{1,2}$-controlled trivialization $\tilde{e} = (\tilde{e}_1, \tilde{e}_2)$ of the pullback bundle $\tilde{n}^{-1}T\mathbb{S}^2$? A trivialization is defined by two vector fields $\tilde{e}_1, \tilde{e}_2 \in W^{1,2}(D^2, \mathbb{S}^2)$ such that the pointwise constraints $|\tilde{e}_1| = |\tilde{e}_2| = 1$, $\tilde{e}_1 \cdot \tilde{e}_2 = 0$ are satisfied almost everywhere and $\tilde{n} = \tilde{e}_1 \times \tilde{e}_2$.

This problem behaves like the one of global controlled gauges; namely for small energy a lift exists and is controlled, and, for large energy, lifts can be found but with no general control. Uhlenbeck’s ϵ-regularity estimate is mirrored in the following theorem. This result was proved initially by F. Hélein [1996, Lemma 5.1.4] under the hypothesis $\|\nabla \tilde{n}\|_{L^2} \leq C$ and improved by Y. Bernard and T. Rivière, who proved that it is enough to assume a smallness condition in weak-L^2:

Theorem 2.10 [Bernard and Rivière 2014, Lemma IV.3]. There exists ϵ_0 such that, if $\|\nabla \tilde{n}\|_{L^{2,\infty}} \leq \epsilon_0$, then there exists a trivialization with the controls

$$\|\nabla \tilde{e}_1\|_{L^2} + \|\nabla \tilde{e}_2\|_{L^2} \leq C \|\nabla \tilde{n}\|_{L^2} \quad \text{and} \quad \|\nabla \tilde{e}_1\|_{L^{2,\infty}} + \|\nabla \tilde{e}_2\|_{L^{2,\infty}} \leq C \|\nabla \tilde{n}\|_{L^{2,\infty}}.$$

Note that, for the improvement above, the L^2-energy might blow up yet still control the energy of the trivialization, as long as we stay small in Lorentz norm. It would be interesting to explore this kind of phenomenon also for curvatures in higher dimensions, like in our setting.

The bad behavior in large energy regimes starts at the energy level 8π (and this is optimal; see [Kuwert and Li 2012]). This number has an evident topological significance because, if \tilde{n} is homotopically non-trivial, i.e., parametrizes a noncontractible 2-cell of \mathbb{S}^2, then $4\pi = |\mathbb{S}^2| \leq \int_{D^2} u^* d \text{Vol}_{\mathbb{S}^2} \leq \frac{1}{2} \int_{D^2} |\nabla \tilde{n}|^2$, so 8π is the smallest energy of a topologically nontrivial \tilde{n}.

We also have the following lemma, similar to Section 2G:

Lemma 2.11. For $\int |\nabla \tilde{n}|^2 > 8\pi$ there can be no controlled $W^{1,2}$-trivialization \tilde{e}.

Sketch of proof: We choose \tilde{n} mapping a neighborhood $D^2 \setminus B_r := N_1$ for small r to the south pole of \mathbb{S}^2 that has degree 1 and equals a conformal map outside a small neighborhood $N_2 \ni N_1$. Such \tilde{n} exists
we prove Theorem C. We consider a fixed where the implicit constant is independent of C with values in \mathbb{R} and the control S exponents. Projecting back to Q similar lifting results as in [Hardt and Rivière 2003]. In the smooth case we will first lift $[Hardt and Rivière 2003]$. The same strategy was later used in [Bethuel and Chiron 2007] for proving u^2 $W^{1,2}$ and thus C^0 and they have values in the equator of S^2. By well-posedness of the topological degree and since \bar{n} is nontrivial in homotopy, we obtain that each e_i will make a full turn on each ∂B_r. This gives that $\int_{\partial B_r} |\nabla \bar{e}_i| \geq 1$ on ∂B_r and by Jensen’s inequality we obtain

$$
\int_{D^2 \setminus B_r} |\nabla \bar{e}_i|^2 \geq C \int_r^1 \frac{1}{\rho^2} \rho \, d\rho \geq C \left| \log \frac{1}{r} \right| ;
$$

since there is no positive lower bound for $r > 0$, we see that we cannot have a controlled trivialization. □

There is an analogue also of our $W^{1, (4, \infty)}$-extension result here, and it corresponds to taking the so-called “Coulomb frames”. The result is a general estimate with no restriction on \bar{n}, but with the Lorentz norm $L^{(2, \infty)}$ instead of the L^2-norm (this estimate follows from Wente’s [1969] inequality using [Adams 1975]):

Proposition 2.12 [Rivièr 2012, VII.6.3]. Let $\bar{n} \in W^{1,2}(D^2, S^2)$. Then a trivialization \bar{e} belonging to $W^{1, (2, \infty)}$ exists which satisfies the Coulomb condition

$$
\text{div}(\bar{e}_1, \nabla \bar{e}_2) = 0
$$

and the control

$$
\|\nabla \bar{e}_1\|_{L^{(2, \infty)}} + \|\nabla \bar{e}_2\|_{L^{(2, \infty)}} \lesssim \|\nabla \bar{n}\|_{L^2} + \|\nabla \bar{n}\|_{L^2}^2 .
$$

3. The Hopf lift extension

We now prove Theorem C. We consider a fixed $\phi \in W^{1,2}(S^2, S^2)$ and we need to construct an extension $u \in W^{1, (3, \infty)}(B^3, S^2)$ such that

$$
\|u\|_{W^{1, (3, \infty)}(B^3)} \lesssim \|\phi\|_{W^{1,2}(S^2)} (1 + \|\phi\|_{W^{1,2}(S^2)}),
$$

where the implicit constant is independent of ϕ.

The strategy of proof uses a construction based on the Hopf fibration which has been introduced in [Hardt and Rivièr 2003]. The same strategy was later used in [Bethuel and Chiron 2007] for proving similar lifting results as in [Hardt and Rivièr 2003]. In the smooth case we will first lift $\phi : S^2 \to S^2$ to $\tilde{\phi} : S^2 \to S^3$ such that $H \circ \tilde{\phi} = \phi$, where $H : S^2 \to S^3$ is the Hopf fibration. Then we will extend $\tilde{\phi}$ by using a Lorentz analogue of Proposition 2.2, working with similar conditions on dimensions and exponents. Projecting back to S^2 via H will keep the estimates.

Before the proof, we recall some properties of the map H.

3A. Facts about the Hopf fibration. Identifying S^3 with the unit sphere of \mathbb{C}^2 with complex coordinates (Z, W), the Hopf projection is $H(Z, W) = Z/\overline{W}$ and its fibers are great circles. This gives a function with values in $\mathbb{C} \cup \{\infty\} \simeq S^2$. If we look at $S^3 \subset \mathbb{R}^4$ with the inherited coordinates (x_1, x_2, x_3, x_4), then
we can identify
\[H^* \omega_{\mathbb{S}^2} = d\alpha \quad \text{for} \quad \alpha = \frac{1}{2}(x_1 dx_2 - x_2 dx_1 + x_3 dx_4 - x_4 dx_3). \] (3-1)
Here \(\omega_{\mathbb{S}^2} \) is a constant multiple of the volume form of \(\mathbb{S}^2 \). Since \(\mathbb{S}^1 \sim U(1) \), we can regard \(\mathbb{S}^3 \to \mathbb{S}^2 \) as a principal \(U(1) \)-bundle \(P \to \mathbb{S}^2 \).

Let \(\phi : \mathbb{C} \to \mathbb{S}^2 \) be a smooth function. Then \(d(\phi^* \omega_{\mathbb{S}^2}) = 0 \), because \(\Omega^3(\mathbb{R}^2 \cong \mathbb{C}) = \{0\} \). Since \(H^d_R(\mathbb{C}) = 0 \), there exists a 1-form \(\eta \) such that
\[d\eta = \phi^* \omega_{\mathbb{S}^2}. \] (3-2)
We also note that for a smooth \(\phi : \mathbb{C} \to \mathbb{S}^2 \) the pullback of the \(U(1) \)-bundle \(P \) is trivial, since \(\mathbb{R}^2 \) is contractible. A trivialization of the bundle \(\phi^* P \to \mathbb{C} \) can be identified with a lift \(\tilde{\phi} \) of \(\phi \). From (3-1) we can deduce that \(d\eta = \tilde{\phi}^* H^* \omega_{\mathbb{S}^2} = \tilde{\phi}^* d\alpha = d(\tilde{\phi}^* \alpha) \) and again there exists a 1-form \(\tilde{\eta} \) as in (3-2), defined by
\[\tilde{\eta} = \tilde{\phi}^* \alpha. \] (3-3)
Note that \(\tilde{\eta} \) coincides with \(\eta \) up to adding an exact form \(d\theta \): we have \(\tilde{\phi}^* \alpha - \eta = d\phi \). If we come back to the bundle point of view then \(d\theta \) represents the effect of change of coordinates of the trivialization giving \(\tilde{\phi} \), i.e., of a change of gauge. We then have \(\eta = \tilde{\phi}^* \alpha - d\theta = (e^{-i\theta} \tilde{\phi})^* \alpha \), where the action of \(e^{-i\theta} \) is intended as a \(U(1) \)-gauge change and \(\theta : \mathbb{C} \to \mathbb{R} \) is determined up to a constant. Moreover, since \(DH \) is an isometry between the orthogonal complement of the tangent space of the fiber \(T_p H^{-1}(H(p)) \) and \(T_p \mathbb{S}^2 \), we also obtain the norm identity
\[|D\tilde{\phi}|^2 = |	ilde{\eta}|^2 + |D\phi|^2. \] (3-4)

3B. Hopf lift with estimates. We start the proof of Theorem C:

Proposition 3.1. Suppose \(\phi \in W^{1,2}(\mathbb{C}, \mathbb{S}^2) \). Then there exists a lifting \(\tilde{\phi} : \mathbb{C} \to \mathbb{S}^3 \) such that \(H \circ \tilde{\phi} = \phi \) and there exists a universal constant \(C \) such that
\[\| \nabla \tilde{\phi} \|_{L^2,\infty} \leq C \| \nabla \phi \|_{L^2}(1 + \| \nabla \phi \|_{L^2}). \]

Proof. The proof is divided into two steps.

Step 1 (constructions in the smooth case). We have seen that, at least in the smooth case, constructing a 1-form \(\eta \) as in (3-2) is equivalent to constructing a lift \(\tilde{\phi} : \mathbb{C} \to \mathbb{S}^3 \). We now observe that such a 1-form can in turn be easily constructed by inverting the Laplacian on \(\mathbb{C} \) via its Green kernel, which is of the form \(K(x) = -\gamma \log |x| \). In particular, \(K \in W^{1,(2,\infty)} \), which is the reason why this norm appears. First note that \(dd^*(K \ast \beta) = 0 \) for a smooth \(L^1 \)-integrable 2-form \(\beta \) on \(\mathbb{C} \). We can then use this formula for \(\beta = \phi^* \omega_{\mathbb{S}^2} \) and, taking into account the fact that \(\nabla K \) is in \(L^{2,\infty} \), by the Lorentz-space Young inequality (see [Grafakos 2008]), we obtain that the 1-form \(\eta \) defined as
\[\eta := dd^*[K \ast (\phi^* \omega_{\mathbb{S}^2})], \quad \eta \to 0 \text{ at infinity}, \] (3-5)
satisfies (3-2) and the estimates
\[
\|\eta\|_{L^2,\infty} \lesssim \|\phi^* \omega_3^2\|_{L^1} \lesssim \|D\phi\|^2_{L^2} \|\phi\|_{L^\infty} \simeq \|D\phi\|^2_{L^2}.
\] (3-6)
We have mentioned where to find the proof that \(\eta\) corresponds up to a unitary transformation to a lift \(\tilde{\phi}\), and from (3-4) and (3-6) we also obtain the estimate for \(\tilde{\phi}\),
\[
\|D\tilde{\phi}\|_{L^2,\infty} \lesssim \|\eta\|_{L^2,\infty} + \|D\phi\|_{L^2} \lesssim \|D\phi\|_{L^2}(1 + \|D\phi\|_{L^2}).
\] (3-7)

Step 2 (extending the constructions to \(W^{1,2}\)). The results obtained so far hold for \(\phi \in C^\infty(\mathbb{C}, \mathbb{S}^2)\). We use the well-known fact that, while not dense in the strong topology, the functions in \(C^\infty(\mathbb{C}, \mathbb{S}^2)\) are instead *dense with respect to weak sequential convergence* (see [Bethuel 1991; Hang and Lin 2003]). The constraint of \(u_n\) having values in \(\mathbb{S}^2\), as well as the constraint \(\tilde{\phi}_n \circ H = \phi_n\) for the \(\tilde{\phi}_n\), are pointwise constraints (note indeed that the function \(H\) is smooth), so they are preserved under weak convergence \(\phi_n \rightharpoonup \phi \in W^{1,2}\). Now we state the only less classical point in the proof in the following lemma:

Lemma 3.2. \(L^{2,\infty}\)-estimates are preserved under weak convergence in \(L^2\). In other words, if \(f_n \in L^2\) are weakly convergent to \(f \in L^2\), then \(\|f\|_{L^2,\infty} \leq \lim \inf_{n \to \infty} \|f_n\|_{L^2,\infty}\).

Proof. We observe that a positive answer to this question cannot directly and trivially be obtained by interpolation, since the \(L^\infty\)-norm is not lower semicontinuous with respect to weak convergence in \(L^2\). We thus proceed by duality; namely, we note that
\[
L^{(2,\infty)} = (L^{(2,1)})' \quad \text{and} \quad L^{(2,1)} \subset L^2.
\]
Therefore \(<f_n, \phi> \to <f, \phi>\) for all \(\phi \in L^{(2,1)}\), and by usual Banach space theory we obtain the thesis. \(\square\)

Applying the lemma, we obtain the desired estimate to conclude the proof of Proposition 3.1 via Bethuel’s weak density result [1991]. \(\square\)

We observe that, given a map \(\phi \in W^{1,2}(\mathbb{S}^2, \mathbb{S}^2)\), we can obtain a map \(u : \mathbb{C} \to \mathbb{S}^2\) having the same norm by composing with the inverse stereographic projection \(\Psi^{-1} : \mathbb{C} \to \mathbb{S}^2\); we use the facts that the exponent 2 is equal to the dimension and that \(\Psi\) is conformal. In a similar way, having constructed a lift \(\tilde{u} : \mathbb{C} \to \mathbb{S}^3\), we obtain automatically a lift \(\tilde{\phi}\) of \(\phi\) by composing back with \(S\). The same reasoning using conformality also shows that the \(L^{2,\infty}\)-norm of the gradient of \(\tilde{\phi}\) is preserved. This proves:

Corollary 3.3. Suppose \(\phi \in W^{1,2}(\mathbb{S}^2, \mathbb{S}^2)\). Then there exists a lifting \(\tilde{\phi} : \mathbb{S}^2 \to \mathbb{S}^3\) such that \(H \circ \tilde{\phi} = \phi\) and there exists a universal constant \(C\) such that
\[
\|\nabla \tilde{\phi}\|_{L^2,\infty} \leq C\|\nabla \phi\|^2_{L^2}(1 + \|\nabla \phi\|_{L^2}).
\]

3C. Projection and wise choice of the point. To proceed in our strategy for the proof of Theorem C, we use a version of the projection trick of Section 2A.

Proposition 3.4 (projection trick 2). Suppose that \(\tilde{\phi} \in W^{1,(2,\infty)}(\mathbb{S}^2, \mathbb{S}^3)\). Then there exists a function \(\tilde{u} : B^3 \to \mathbb{S}^3\) such that \(\tilde{u}|_{\partial B^3 \setminus \mathbb{S}^2} = \tilde{\phi}\) satisfying the following bound for some universal constant \(C\):
\[
\|\tilde{u}\|_{W^{1,3,\infty}(B^3)} \leq C\|\tilde{\phi}\|_{W^{1,2,\infty}(\mathbb{S}^2)}.
\]
Proof. We proceed in two steps: the first one introduces the $W^{1,(3,\infty)}$-norm estimate, and the second one ensures that the constraint of having values in \mathbb{S}^3 can be preserved.

Step 1 (harmonic extension). Consider a solution \tilde{u} of the equation

$$
\begin{align*}
\Delta \tilde{u} &= 0 \quad \text{on } B^3, \\
\tilde{u} &= \tilde{\phi} \quad \text{on } \partial B^3.
\end{align*}
$$

(3-8)

By using the Poisson kernel estimates, we obtain that $\tilde{u} \in W^{1,(3,\infty)}(B^3, B^4)$ and

$$
\|\nabla \tilde{u}\|_{L^{(3,\infty)}} \lesssim \|\nabla \tilde{\phi}\|_{L^{(2,\infty)}}.
$$

(3-9)

Step 2 (projection in the target). We now correct the fact that \tilde{u} has values not in \mathbb{S}^3 but in its convex hull B^4. For $a \in B^4_{1/2}$ we define the radial projection $\pi_a : B^4 \to \mathbb{S}^3$ of center a, i.e.,

$$
\pi_a(x) := a + t_{a,x}(x - a), \quad \text{where } t_{a,x} \geq 0 \text{ is chosen so that } |\pi_a(x)| = 1.
$$

In order to estimate the norm of $u_a := \pi_a \circ \tilde{u}$ we note that

$$
|\nabla (\pi_a \circ \tilde{u})(x)| \lesssim \frac{|\nabla \tilde{u}(x)|}{|u(x) - a|}
$$

with an implicit constant bounded by 4 as long as $a \in B^4_{1/2}$. We just estimate the L^p-norm of ∇u_a for $p \in [1, 4]$. We note that $\int_{B^4_{1/2}} |\tilde{u}(x) - a|^{-p} \, da$ is bounded for all such p by a number C_p independent of x; therefore, by changing the order of integration and applying Fubini, we obtain

$$
\int_{B^4_{1/2}} \int_{B^3_1} |\nabla u_a(x)|^p \, dx \, da \leq C_p \int_{B^3_1} |\nabla \tilde{u}(x)|^p \int_{B^4_{1/2}} |\tilde{u}(x) - a|^{-p} \, da \leq C_p \|\nabla \tilde{u}\|_p^p.
$$

In other words, the assignment $a \mapsto u_a$ gives a map whose $L^1(B^4_{1/2}, W^{1,p}_x(B^3, \mathbb{S}^3))$-norm is bounded by the L^p-norm of $\nabla \tilde{u}$ for $p \in [1, 4]$. First observe that, by Lions–Peetre reiteration (see [Tartar 2007, Chapter 26]), $L^{(3,\infty)}$ is an interpolation between L^{p_0} and L^{p_1} with $3 \in]p_0, p_1[$ and $p_1 \in [1, 4]$. We now use the nonlinear interpolation theorem of Tartar [2007, Chapter 28]. Call $U(a, x) := \nabla \tilde{u}(x)/|\tilde{u}(x) - a|$. We know that the map $u \mapsto U$ is bounded between W^{1,p_i} and L^{p_i} for $i = 0, 1$. In order to show that it also satisfies

$$
\sup_{\lambda > 0} \lambda^{3} \left\{ (x,a) \in B_1 \times B^4_{1/2} : \frac{|\nabla u(x)|}{|u(x) - a|} > \lambda \right\} \leq \|U\|_{(3,\infty)}^3 \lesssim \|\tilde{u}\|^3_{W^{1,(3,\infty)}},
$$

(3-10)

we will check the local estimate

$$
\left\| \frac{\nabla u(x)}{|u(x) - a|} - \frac{\nabla v(x)}{|v(x) - a|} \right\|_{L^{p_1}} \lesssim \|u - v\|_{L^{p_1}}.
$$

This follows since

$$
\int_{B^4_{1/2}} \int_{B^3_1} \left| \frac{\nabla u(x)}{|u(x) - a|} - \frac{\nabla v(x)}{|v(x) - a|} \right|^{p_1} \leq \int_{B^3_1} |\nabla u - \nabla v|^{p_1} \int_{B^4_{1/2}} (|u(x) - a|^{-p_1} + |v(x) - a|^{-p_1}) \, da \, dx
$$
and the same estimates as before apply to the second factor, uniformly in x. Thus (3-10) holds. From (3-10) it easily follows that there exists $a \in B_{1/2}$ for which

$$\|\nabla u_a\|_{L^{(3,\infty)}(B_1)} \lesssim \|\tilde{u}\|_{W^{1,(3,\infty)}}.$$ (3-11)

Combining (3-9) and (3-11), we obtain the claim of the proposition for $\tilde{u} := u_a$.

\[\square \]

3D. End of proof.

Proof of Theorem C. Apply consecutively Corollary 3.3 and Proposition 3.4. For \tilde{u} as in Proposition 3.4, we can then consider $u := H \circ u_a : B^3 \to S^2$. Since H is Lipschitz, we obtain the pointwise estimate

$$|\nabla u| \lesssim |\nabla u_a|. \quad (3-12)$$

Combining this with the estimates of Corollary 3.3 and Proposition 3.4, we obtain the thesis.

\[\square \]

3E. Modification of proof in the case of $W^{1,p}(S^m, S^2)$. In this section we prove Theorem D and Proposition 1.7.

Proof of Theorem D and of Proposition 1.7. We consider $n = 2 < m$ and $3m/(m+1) \leq p < 4m/(m+1)$ as in Proposition 1.7. We will use the fact that such p is always greater than 2. The construction of the 1-form η satisfying (3-3) and (3-4) can be done in a completely analogous way if the domain is \mathbb{R}^m, $m \geq 3$. The only difference is that in that case the Laplacian on 2-forms such as $\phi^* \omega_{S^2}$ has the form $\delta = d^*d + dd^*$, where the first part does not vanish anymore. In this case however we may still solve

$$\begin{cases}
d\eta = \phi^* \omega_{S^2}, \\
d^* \eta = 0, \\
\eta(x) \to 0 \quad \text{as} \quad |x| \to \infty.
\end{cases}$$

If $\phi \in W^{1,p}(\mathbb{R}^m, S^2)$ and since $p > 2$, we then have

$$\|d\eta\|_{L^{p/2}(\mathbb{R}m)} \leq C\|\phi^* \omega_{S^2}\|_{L^{p/2}(\mathbb{R}m)} \leq C\|d\phi\|_{L^p(\mathbb{R}m)}.$$

As before, we have (3-4), from which we also obtain $|D\tilde{\phi}|^p \lesssim |\eta|^p + |D\phi|^p$. Passing to S^m and noting that in dimension $m \geq p$ we have $W^{1,p/2}(S^m, S^2) \hookrightarrow L^{mp/(2m-p)}(S^m, S^2) \hookrightarrow L^p(S^m, S^2)$, we obtain

$$\|D\tilde{\phi}\|_{L^p(S^m, S^2)} \lesssim \|D\phi\|_{L^p(S^m, S^2)}.$$

Harmonic extension and Proposition 2.2 allow us then to obtain an extension $\tilde{u} : B^{m+1} \to S^2$ of $\tilde{\phi}$ such that

$$\|\nabla \tilde{u}\|_{L^{p(m+1)/m}(B^{m+1}, S^3)} \lesssim \|D\tilde{\phi}\|_{L^p(S^m, S^3)}$$

provided $p(m+1)/m < 4$ (which is the condition appearing in Proposition 2.2. Composing with the Hopf map H at most decreases the norm; thus we obtain that $u := H \circ \tilde{u}$ is the desired controlled extension as in Proposition 1.7 and in Theorem D (note that for $m = 3$ the condition $p(m+1)/m < 4$ is equivalent to $p < 3$).

\[\square \]
4. The extension theorem for $W^{1,3}$ maps $\mathbb{S}^3 \to \mathbb{S}^3$

This section is devoted to the proof of the following theorem:

Theorem B. There is a constant $C > 0$ such that, if $\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3)$, then there exists an extension $u \in W^{1,(4,\infty)}(B^4, \mathbb{S}^3)$ of ϕ such that

$$\|\nabla u\|_{L^{4,\infty}(B^4)} \leq C(e^C\|\nabla \phi\|_{L^3}^0 + \|\nabla \phi\|_{L^3}). \quad (4-1)$$

4A. Modulus of integrability estimates. In general, during our estimates we indicate by C a positive constant, which may change from line to line and also within the same line. We start by fixing the notation for the main quantity which will be used control the energy concentration of our maps.

Definition 4.1. If $D \subset \mathbb{R}^4$ and $f : D \to \mathbb{R}$ is measurable then let $E(f, \rho, D)$ denote the (possibly infinite) modulus of integrability of f, which is defined as

$$E(f, \rho, D) = \sup_{x \in D} \int_{B_\rho(x) \cap D} |f|.$$

The modulus of integrability fits into a sort of elliptic estimate as follows:

Proposition 4.2 (integrability modulus estimates). Let $\phi \in W^{1,3}(\partial B^4, \mathbb{S}^3)$ and assume that u is the solution to the equation

$$\begin{cases}
\Delta u = 0 & \text{on } B^4, \\
u = \phi & \text{on } \partial B^4.
\end{cases}$$

Then there exists a constant C_1 independent of ϕ, ρ such that, when $\rho \in]0, \frac{1}{4}[$,

$$E(|\nabla u|^4, \rho, B^4) \leq C_1 E(|\nabla \phi|^3, 2\rho, \partial B^4)^{1/3} \int_{\partial B^4} |\nabla \phi|^3. \quad (4-2)$$

Proof. We have to prove that, for all $x_0 \in B^4$,

$$\int_{B_\rho(x_0) \cap B^4} |\nabla u|^4 \leq C_1 E(|\nabla \phi|^3, 2\rho, \partial B^4) \int_{\partial B^4} |\nabla \phi|^3. \quad (4-3)$$

Step 1 (the case $x_0 \in \partial B^4$). Let $\eta : \mathbb{S}^3 \to [0, 1]$ be a cutoff function such that $\eta \equiv 1$ on $B_{2\rho}(x_0) \cap \mathbb{S}^3$, $\eta \equiv 0$ on $\mathbb{S}^3 \setminus B_{4\rho}(x_0)$, and $|\nabla \eta| \leq \rho^{-1}$. Then write $\phi = \phi_1 + \phi_2$ with $\phi_1 = \eta \phi, \eta_2 = (1-\eta)\phi$, and let $u = u_1 + u_2$ with

$$\begin{cases}
\Delta u_i = 0 & \text{on } B^4, \\
u_i = \phi_i & \text{on } \partial B^4
\end{cases}$$

for $i = 1, 2$. It suffices to prove (4-3) for each u_i separately. By elliptic theory and by the definition of η,

$$\int_{B_\rho(x_0) \cap B^4} |\nabla u_1|^4 \leq \left(\int_{\mathbb{S}^3} |\nabla \phi|^3 \right)^{4/3}.$$

Poisson’s formula gives

$$u_2(x) = C(1 - |x|^2) \int_{\partial B^4} \frac{\phi_2(y)}{|x - y|^4} dy;$$
thus, for \(x \in B_\rho(x_0) \cap B^4, \rho < \frac{1}{4} \),
\[
|\nabla u_2|(x) \leq \rho \int_{\mathbb{S}^3 \setminus B_{2\rho}(x_0)} \frac{|\nabla \phi|}{|x-y|^4} \, dy + \int_{\mathbb{S}^3 \setminus B_{2\rho}(x_0)} \frac{|\phi|}{|x-y|^4} \, dy \leq \rho \int_{\mathbb{S}^3 \setminus B_{2\rho}(x_0)} \frac{|\nabla \phi|}{|x-y|^4} \, dy.
\]

Patching together the estimates obtained so far, we write
\[
\int_{B_\rho(x_0) \cap B^4} |\nabla u|^4 \lesssim \left(\int_{S^3} |\nabla \phi|^3 \right)^{4/3} + \rho^8 \left(\int_{S^3} \frac{|\nabla \phi|}{|x-y|^4} \right)^4,
\tag{4-4}
\]
where the factor \(\rho^8 \) comes from the pointwise estimate for \(\nabla u_2 \), keeping in mind that \(|B_\rho(x_0) \cap B^4| \lesssim \rho^4 \).

Let the summands on the right side of (4-4) be \(I \) and \(II \) respectively. Note that
\[
I \leq \left(\int_{B_{2\rho}(x_0) \cap \partial B^4} |\nabla \phi|^3 \right)^{1/3} \int_{S^3} |\nabla \phi|^3 \leq E(|\nabla \phi|^3, 2\rho, \partial B^4) \int_{S^3} |\nabla \phi|^3.
\tag{4-5}
\]
To estimate \(II \), cover \(\mathbb{S}^3 \setminus B_{2\rho}(x_0) \) by (finitely many) geodesic balls \(B_{2\rho}(x_i) \) so that \(x_i \) form a maximal \(2\rho \)-net and they are at distance at least \(2\rho \) from \(x_0 \). Then
\[
\int_{B_{2\rho}(x_i)} |\nabla \phi| \leq |B_{2\rho}| \left(\int_{B_{2\rho}(x_i)} |\nabla \phi|^3 \right)^{1/3}.
\]
For \(y \in B_{2\rho}(x_i), x \in B_{2\rho}(x_0) \cap B^4 \), we have \(|x-y| \sim \text{dist}(x_i, x_0) \). Thus
\[
II \lesssim \rho^8 \left(\sum_i \text{dist}^{-4}(x_i, x_0) \rho^3 a_i^{1/3} \right)^4,
\]
where \(a_i = f_{B_{2\rho}(x_i)} |\nabla \phi|^3 \). By Hölder’s inequality we easily obtain
\[
II \lesssim \rho^{20} (\sup_i a_i^{1/3}) \left(\sum_i a_i \right) \left(\sum_i \text{dist}^{-16/3}(x_i, x_0) \right)^3.
\]
Now, the first parenthesis is estimated by \(\rho^{-1} E(|\nabla \phi|^3, 2\rho, \partial B^4)^{1/3} \), the second one by \(\rho^{-3} \int_{S^3} |\nabla \phi|^3 \), and the last one by \(\rho^{-16/3} \). Thus we obtain
\[
II \lesssim \rho^{20} \rho^{-1} E(|\nabla \phi|^3, 2\rho, \partial B^4)^{1/3} \rho^{-16} \int_{S^3} |\nabla \phi|^3 \lesssim E(|\nabla \phi|^3, 2\rho, \partial B^4)^{1/3} \int_{S^3} |\nabla \phi|^3.
\tag{4-6}
\]
By (4-5) and (4-6), we obtain (4-3) for \(x_0 \in \partial B^4 \).

Step 2. If \(|x_0| < 1 - 2\rho \) then we can directly apply the estimates for the term \(II \) of (4-4), since now the denominator \(|x-y| \) in the Poisson formula will be at least \(\rho \) for all \(x \in B_\rho(x_0) \).

The estimate of Step 1 also holds for \(\rho > \frac{1}{4} \) with the same constant. We can cover the case \(|x_0| \in [1 - 2\rho, 1] \) with \(\rho < \frac{1}{4} \) by noticing that if \(x'_0 = x_0/|x_0| \) then \(B_{3\rho}(x'_0) \supset B_\rho(x_0) \), and that the measures \(|\nabla \phi|^3 d\sigma, |\nabla u|^4 dx \) are doubling with constants bounded by the packing constants of \(\mathbb{S}^3 \) and of \(B^4 \) respectively, while the function \(E(f, \rho, D) \) is increasing in \(\rho \). Therefore the inequality (4-3) also holds for this last choice of \(x_0 \) up to changing \(C_0 \) by a factor depending only on the above packing constants. \(\square \)
4B. Extension in the case of small energy concentration. In small energy concentration regions we utilize the following:

Theorem 4.3 (small concentration extension). *There exists a constant $\delta \in \left]0, \frac{1}{4}\right]$ with the following property: for each $\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3)$ such that the local estimate*

$$E(|\nabla \phi|^3, 2\rho, \mathbb{S}^3) \leq \frac{\delta}{C_1 E}$$ \hspace{1cm} (4-7)

holds with $\|\nabla \phi\|_{L^3(\mathbb{S}^3)}^3 = E$, there exists a function $\tilde{u} \in W^{1,4,\infty}(B^4, \mathbb{S}^3)$ which equals ϕ on \mathbb{S}^3 in the sense of traces and satisfies

$$\|\nabla \tilde{u}\|_{L^{4,\infty}} \lesssim \|\nabla \phi\|_{L^3}^2 + \|\nabla \phi\|_{L^3}.$$ \hspace{1cm} (4-8)

Theorem 4.3 follows from several ingredients, the proofs of which are postponed to Appendix A and to the end of Section 4B.

Theorem 4.4 (Uhlenbeck analogue). *There exist two constants $\delta > 0, C > 0$ with the following property: Suppose $\psi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3)$ is such that $\|\nabla \psi\|_{L^3(\mathbb{S}^3)} \leq \delta$. Then there exists an extension $v \in W^{1,4}(B^4, \mathbb{S}^3)$ satisfying the estimate*

$$\|v\|_{W^{1,4}(B^4)} \leq C\|\nabla \psi\|_{L^3(\mathbb{S}^3)}.$$

Proof. See Theorem A.2.

If $u \in W^{1,4}(B^4, \mathbb{R}^4)$ and $\rho \in \left]0, \frac{1}{2}\right[$, $x_0 \in \partial B^4$, then by a mean value argument there exists $\tilde{\rho} \in [\rho, 2\rho]$ such that

$$\tilde{\rho} \int_{\text{int}(B^4) \cap \partial B_{\tilde{\rho}}(x_0)} |\nabla u|^4 \leq C \int_{B^4 \cap B_{\tilde{\rho}}(x_0)} |\nabla u|^4.$$ \hspace{1cm} (4-9)

In this case the following lemma will prove useful:

Lemma 4.5 (Courant–Lebesgue analogue). *Fix $\tilde{\rho} \in [0, 1[$. There exists a constant $C > 0$ such that, if $u \in W^{1,4}(B^4, \mathbb{R}^4)$ is the extension of $\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3)$ and*

$$\tilde{\rho} \int_{\text{int}(B^4) \cap \partial B_{\tilde{\rho}}(x_0)} |\nabla u|^4 \leq C$$

with $x_0 \in \partial B^4$, then for almost every $x \in \partial (B^4 \cap B_{\tilde{\rho}}(x_0))$ we have

$$\text{dist}(u(x), \mathbb{S}^3) \leq \frac{1}{8}.$$ \hspace{1cm} (4-10)

The restriction of u to a smaller ball $B_{1-\rho}$, being harmonic, is smooth. Then we may utilize the following result:

Lemma 4.6 (interior estimate). *Given $u \in W^{1,4} \cap C^1(B^4, B^4)$, there exists a constant C independent of u such that, for half of the points $a \in B^4$,*

$$\left\| \frac{1}{|u-a|} \right\|_{L^{4,\infty}(B^4)}^4 \leq C \int_{B^4} |\nabla u|^4.$$
Proof of Theorem 4.3. Step 1. We first observe that the harmonic extension u of ϕ satisfies

$$|\nabla u|(x) \lesssim \frac{\|\phi\|_{W^{1,3}(\mathbb{S}^3)}}{\rho} \quad \text{for } x \in B_{1-\rho}.$$

A direct way to see this is by estimating via the Poisson formula together with Poincaré’s inequality and a good covering by ρ-balls $B_j \subset \mathbb{S}^3$:

$$|\nabla u|(x) \lesssim \rho \left(\int_{\mathbb{S}^3} \frac{\nabla \phi}{|x-y|^4} \, dy + \int_{\mathbb{S}^3} \frac{|\phi|}{|x-y|^4} \, dy \right)$$

$$\lesssim \sum_j \frac{\int_{B_j} |\nabla \phi| + |\phi|}{d_j^4},$$

where $d_j \sim \text{dist}(B_j, x)$

$$\lesssim \sum_j \left(\frac{\rho}{d_j} \right)^4 \int_{B_j} |\nabla \phi| + 1,$$

by Poincaré

$$\lesssim \left(\sum_j \left(\frac{\rho}{d_j} \right)^6 \right)^{2/3} \left(\sum_j \left(\int_{B_j} |\nabla \phi| \right)^3 + 1 \right)^{1/3},$$

by Hölder

$$\lesssim \frac{\|\phi\|_{W^{1,3}(\mathbb{S}^3)}}{\rho}.$$

To justify the last step we observe that $\text{Card}\{j : d_j \sim 2^j \rho\} \sim 2^{4j}$ and thus the first factor in the penultimate line is bounded by $\left(\sum_{j \geq 0} 2^{-2j} \right)^{2/3}$, while for the second factor we use Jensen’s inequality.

Step 2. We now use Lemma 4.6 and observe that if $\pi_a : B^4 \setminus \{a\} \to \mathbb{S}^3$ is the retraction of center a then

$$|\nabla (\pi_a \circ u)| \leq C \frac{|\nabla u|}{|u-a|}.$$

In particular, using Step 1 and Lemma 4.6 we obtain

$$\|\nabla (\pi_a \circ u)\|_{L^4,\infty} \leq \|\nabla u\|_{L^\infty} \left\| \frac{1}{|u-a|} \right\|_{L^{4,\infty}} \leq C \frac{\|\nabla \phi\|_{L^3}}{\rho} \|\nabla u\|_{L^4}. \quad (4-11)$$

Step 3. Consider a maximal cover $\{B_i\}$ of $\mathbb{S}^3 = \partial B^4$ by 4-dimensional balls of radius ρ and centers on ∂B^4. It is possible to find a constant C, depending only on the dimension, such that the collection of balls of doubled radius $\{2B_i\}$ can be written as a union of C families of disjoint balls $\mathcal{F}_1, \ldots, \mathcal{F}_C$.

Then apply (4-9) to each ball $B_i \in \mathcal{F}_1$. This will give a new family of balls $\{B'_i : B_i \in \mathcal{F}_1\}$ with radii between ρ and 2ρ to which it will be possible to apply Lemma 4.5. Thus $\text{dist}(u(x), \partial B^4) < \frac{1}{8}$ on $\partial(B^4 \cap B'_i)$ for all B'_i. Because of the choice of \mathcal{F}_1 it also follows that the balls B'_i are disjoint.

If we choose a projection π_a from Step 2 so that $\text{dist}(a, \partial B^4) > \frac{1}{4}$, then

$$u'_i := \pi_a \circ (u|_{\partial((B^4 \cap B'_i))}) \quad \text{satisfies} \quad |\nabla u'_i| \leq C |\nabla u| \quad \text{on} \quad \partial B'_i \cap B^4$$

by the estimates of Step 2. Note that a will be fixed during the whole construction.
We extend \(u_1^i \) (denoting the extension again by \(u_1^i \)) inside \(B_i' \cap B^4 \) via Theorem 4.4, obtaining a new function
\[
 u_1 := \begin{cases}
 \pi_a \circ u & \text{on } B^4 \setminus \bigcup B_i', \\
 u_1^i & \text{on } B_i'.
 \end{cases}
\]

Theorem 4.4 implies that \(u_1 \) satisfies
\[
 \| \nabla u_1 \|_{L^4(B_i')} \leq C \left(\int_{\partial B_i'} |\nabla u_1|^3 \right)^{1/3}.
\]

We can rewrite this as follows:
\[
 \int_{B_i \cap B^4} |\nabla u_1|^4 \leq C \left(\int_{B_i \cap \partial B} |\nabla \phi|^3 \right)^{1/3} \int_{\partial B_i \cap \int(B)} |\nabla u_1^i|^3 \right) \leq C \left(\int_{\partial B_i \cap \int(B)} |\nabla \phi|^3 \right)^{4/3} + \left(\int_{\partial B_i \cap \int(B)} |\nabla u_1^i|^3 \right)^{4/3}.
\]

We note that (using Lemma 4.5)
\[
 \left(\int_{\partial B_i \cap \int(B)} |\nabla u_1^i|^3 \right)^{4/3} \leq \mathcal{F}^3(\partial B_i)^{1/3} \int_{\partial B_i \cap \int(B)} |\nabla u_1|^4 \leq \rho \int_{\partial B_i \cap \int(B)} |\nabla u|^4.
\]

therefore, \(u_1 \) still satisfies (4-2) with a constant \(C_1 \) which is now changed by a universal factor.

Step 4. It is possible to repeat the same operation starting from the function \(u_1 \) and using the balls of the family \(\mathcal{F}_2 \) to obtain a function \(u_2 \), and then do the same iteratively for all the families \(\mathcal{F}_2, \ldots, \mathcal{F}_C \).

Denote by \(\mathcal{R} \) the union of all the perturbed balls \(B_i' \) corresponding to the families \(\mathcal{F}_1, \ldots, \mathcal{F}_C \). Recall that the number of families is equal to the maximal number of overlaps of balls of different families and depends only on the dimension. Then, iterating the estimates (4-12) using (4-13) for all families \(\mathcal{F}_i \), we obtain for the last function \(u_C \) that
\[
 \int_{\mathcal{R}} |\nabla u_C|^4 \leq E(|\nabla \phi|^3, 2\rho, \mathbb{S}^3)^{1/3} \sum_i \int_{B_i \cap \partial B} |\nabla \phi|^3 + \int_{\mathcal{R}} |\nabla u|^4 \leq \| \nabla \phi \|_{L^4(\mathbb{S}^3)}^3 \left(E(|\nabla \phi|^3, 2\rho, \mathbb{S}^3)^{1/3} + \| \nabla \phi \|_{L^4(\mathbb{S}^3)} \right),
\]

where for the last inequality we also used the elliptic estimates for \(u \) in terms of \(\phi \).

Step 5. We now combine the estimate (4-11) for the part \(B \setminus \mathcal{R} \subset B_{1-\rho} \) and (4-14). Observe that in general \(\| f \|_{L^{4,\infty}} \leq \| f \|_{L^4} \) and that the \(L^{4,\infty} \)-norm satisfies the triangle inequality. We obtain
\[
 \| \nabla \tilde{u} \|_{L^{4,\infty}} \leq \frac{\| \nabla \phi \|_{L^3}^2}{\rho} + \| \nabla \phi \|_{L^3} + \| \nabla \phi \|_{L^{3/4}}^3 E(|\nabla \phi|^3, 2\rho, \mathbb{S}^3)^{1/12}.
\]

Using the trivial estimate \(E(|\nabla \phi|^3, 2\rho, \mathbb{S}^3) \leq \int_{\mathbb{S}^3} |\nabla \phi|^3 \), the desired estimate follows.
We now proceed to prove the above lemmas.

Proof of Lemma 4.5. The hypotheses \(x_0 \in \partial B^4 \), \(\tilde{\rho} < 1 \) have the following two geometric consequences: (1) \(\partial B^4 \cap \partial B_{\tilde{\rho}}(x_0) \) has positive measure; (2) \(B^4 \cap B_{\tilde{\rho}}(x_0) \) is 2-bi-Lipschitz equivalent to \(B_{\tilde{\rho}} \). Therefore, we may just prove that (4-10) holds true on \(\partial B_{\tilde{\rho}} \) for a function \(u \) such that

\[
\tilde{\rho} \int_{\partial B_{\tilde{\rho}}} |\nabla u|^4 < C, \quad |\{ x : |u|(x) = 1 \}| > 0.
\]

To do this note that, by definition, \(u(x) \in S^3 \) for a.e. \(x \in \partial B^4 \), then use the Sobolev inequality

\[
\|u\|^4_{C^{0,1/4}(\partial B_{\tilde{\rho}})} \lesssim \tilde{\rho} \int_{\partial B_{\tilde{\rho}}} |\nabla u|^4,
\]

which is valid in dimension 3. For \(C \) small enough we obtain (4-10). \(\square \)

Proof of Lemma 4.6. By the coarea formula we have

\[
|\{ x : |u(x) - a|^{-1} > \Lambda \}| = |u^{-1}(B_{\Lambda^{-1}}(a))| = \int_{B_{\Lambda^{-1}}(a)} \text{Card}(u^{-1}(x)) \, dx \leq C \int_{B^4} |\nabla u|^4.
\]

We then observe that the measurable positive function \(F_u(x) := \text{Card}(u^{-1}(x)) \) belongs to \(L^1(B^4) \). The maximal function \(MF_u \) has \(L^{1,\infty} \)-norm bounded by the \(L^1 \)-norm of \(F_u \), and in particular there exists a constant \(C \) independent of \(u \) such that for at least half of the points \(a \in B^4 \) we have

\[
\sup_{\lambda} \frac{1}{\lambda^4} \int_{B_\lambda(a)} F_u \leq C \int_{B^4} F_u \leq C \int_{B^4} |\nabla u|^4.
\]

For such \(a \) we have, after the change of notation \(\lambda = \Lambda^{-1} \), the desired estimate

\[
|\{ x : |u(x) - a|^{-1} > \Lambda \}| \Lambda^4 \leq C \int_{B^4} |\nabla u|^4.
\]

\(\square \)

4C. The case of large energy concentration. Following Theorem 4.3, we are led to divide the set of boundary value functions \(W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \) into two classes, based on whether or not the energy concentrates. Let \(L_E := \{ \phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) : \|\nabla \phi\|_{L^3}^3 \leq E \} \) and for \(\phi \in L_E \) define \(E_\phi := E(\|\nabla \phi\|_{L^3}^3, \rho_{L_E}, S^3) \). We distinguish between the following two classes of “good” and “bad” boundary value functions:

\[
\begin{align*}
\mathcal{G}^E &:= L_E \cap \{ \phi : E_\phi \leq \delta \}, \\
\mathcal{B}^E &:= L_E \cap \{ \phi : E_\phi > \delta \}.
\end{align*}
\]

We will fix the constants \(\rho_{L_E} = e^{-C \max\{1,E^3\}} \) and \(\tilde{\delta} \)

at the end of Section 4D.

The precise steps of our extension construction are as follows (see also the graphical summary (4-17)): (1) Theorem 4.3 gives a good estimate for the boundary values in \(\mathcal{G}^E \).
(2) If $\phi \in \mathcal{B}^E$ has average close to zero, i.e.,

$$\left| \int_{\mathbb{S}^3} \phi \right| \leq \frac{1}{4},$$

then it is possible to write $\phi = \phi_1 \phi_2$ with

$$\int_{\mathbb{S}^3} |\nabla \phi_1|^3 \leq E - \frac{\delta}{2}$$

(the product of \mathbb{S}^3-valued functions is pointwise the product on $\mathbb{S}^3 \cong \text{SU}(2)$).

(3) If we are not in the two cases above, we use the functions

$$F_v(x) := -v + (1 - |v|^2)(x^* - v)^*, \quad a^* = a/|a|^2, \ v \in B^4,$$

which form a subset of the Möbius group of B^4. We have two cases:

(a) For all $v \in B^4$, we have $|\int_{\mathbb{S}^3} \phi \circ F_v| > \frac{1}{4}$, in which case

$$\tilde{u}(v) := \pi_{\mathbb{S}^3} \left(\int_{\mathbb{S}^3} \phi \circ F_v \right)$$

gives an extension of ϕ with values in \mathbb{S}^3 that satisfies

$$\|u\|_{W^{1.4}} \lesssim \|\phi\|_{W^{1.3}}.$$

(b) There exists $v \in B^4$ such that $|\int_{\mathbb{S}^3} \phi \circ F_v| \leq \frac{1}{4}$, in which case we can apply the reasoning of cases (1), (2) above to $\tilde{\phi} := \phi \circ F_v$. Since F_v is conformal and $|\phi| = |\tilde{\phi}| = 1$, we have

$$\|\nabla \phi\|_{L^3} = \|\nabla \tilde{\phi}\|_{L^3}, \quad \|\phi\|_{W^{1.3}} = \|\tilde{\phi}\|_{W^{1.3}}.$$

Again we reason differently in the two cases $\tilde{\phi} \in \mathcal{G}^E$ and $\tilde{\phi} \in \mathcal{B}^E$:

(4) If, in case (3b), $\tilde{\phi} \in \mathcal{B}^E$, then we apply case (2) to $\tilde{\phi}$ and we can express

$$\tilde{\phi} = \tilde{\phi}_1 \tilde{\phi}_2 \quad \text{and} \quad \phi = (\tilde{\phi}_1 \circ F_v^{-1})(\tilde{\phi}_2 \circ F_v^{-1}).$$

Then $\phi : = \tilde{\phi}_1 \circ F_v^{-1}$ are as in case (2).

(5) If, in case (3b), $\tilde{\phi} \in \mathcal{G}^E$, then we apply case (1) to $\tilde{\phi}$. With a careful study of the relation between the position of $v \in B^4$ relative to ∂B^4 and the parameter ρ_E, we construct

$$u \in W^{1,(4,\infty)}(B^4, \mathbb{S}^3) \quad \text{extending} \quad \phi = \tilde{\phi} \circ F_v^{-1},$$

starting from the extension \tilde{u} of $\tilde{\phi}$ given in case (1).
Proposition 4.7 (balancing \Rightarrow splitting). There exists a constant C with the following property: Suppose that $\phi \in \mathbb{R}^E$ with the notation of (4-16), and assume $\bar{\delta} \leq C$ and $\rho_E \leq e^{-C\max\{1, E^3\}}$. Further assume that, as a function in $W^{1,3}(\mathbb{S}^3, \mathbb{R}^4)$, ϕ satisfies

$$\left| \int_{\mathbb{S}^3} \phi \right| \leq \frac{1}{4}.$$

Then, identifying $\mathbb{S}^3 \sim SU(2)$, there exists a decomposition

$$\phi = \phi_1 \phi_2$$

such that, for $i = 1, 2$,

$$\int_{\mathbb{S}^3} |\nabla \phi_i|^3 < E - \frac{\bar{\delta}}{2}. \quad (4-19)$$

Proof. Step 1. Fix a concentration ball $B = B^{S^3}_E(\rho_E, x_0)$ such that

$$\int_B |\nabla \phi|^3 > \bar{\delta}. \quad (4-20)$$

Step 2. Consider dyadic rings in \mathbb{S}^3 defined as $R_i := 2^{i+1}B \setminus 2^iB$, where we denote $2^iB = B^{S^3}(2^i\rho_E, x_0)$. For an easily computed constant C we can fix $N_E = C|\log_2 \rho_E|$ such that, for $i \leq N_E$, it follows that $2^{i+1}\rho_E < \frac{1}{4}$. Since

$$\sum_{i=1}^{N_E} \int_{R_i} |\nabla \phi|^3 < E,$$
by the pigeonhole principle there exists \(i_0 \in \{1, \ldots, N_E\} \) such that
\[
\int_{R_{i_0}} |\nabla \phi|^3 < \frac{E}{N_E}.
\]
Again by the pigeonhole principle (using the fact that the cubes are dyadic), there therefore exists \(t \in [2^{i_0+1} \rho_E, 2^{i_0} \rho_E] \) such that
\[
t \int_{\partial B^{3^n}(t, x_0)} |\nabla \phi|^3 < \frac{E}{N_E},
\] (4.21)
where \(C \) is a constant depending only on the geometry of \(S^3 \).

Step 3. Denote \(B_t = B^{3^n}(t, x_0) \) as in Step 2. We define the function \(\tilde{\phi}_1 \) via a suitable harmonic extension outside of \(B_t \) by
\[
\begin{align*}
\tilde{\phi}_1 &= \phi & \text{on } \partial B_t, \\
\Delta (\tilde{\phi}_1 \circ \Psi) &= 0 & \text{on } B_1^{3^n},
\end{align*}
\]
where \(\Psi : \mathbb{R}^3 \to S^3 \setminus \{x_0\} \) is a stereographic projection composed with a dilation of \(\mathbb{R}^3 \) such that \(\Psi(B^{3^n}(1, 0)) = S^3 \setminus B_t \). On \(B_t \) we define \(\tilde{\phi}_1 \equiv \phi \). By Hölder’s inequality, using elliptic estimates and the conformality of dilations and inverse stereographic projections, we have
\[
t \int_{\partial B_t} |\nabla \tilde{\phi}_1|^3 \geq C \left(\int_{\partial B_t} |\nabla \tilde{\phi}_1|^2 \right)^{3/2} = C \left(\int_{\partial B_1^{3^n}} |\nabla \tilde{\phi}_1 \circ \Psi|^2 \right)^{3/2} \geq C \int_{B_1^{3^n}} |\nabla \tilde{\phi}_1 \circ \Psi|^3
\]
\[
= C \int_{S^3 \setminus B_t} |\nabla \tilde{\phi}_1|^3.
\] (4-22)

Step 4. We define
\[
\phi_1 = \pi_{S^3} \circ \tilde{\phi}_1.
\]
As in Lemma 4.5, there exists a universal constant \(C \) such that if
\[
\frac{E}{N_E} \leq C
\] (4.23)
then
\[
\text{dist}(\tilde{\phi}_1, S^3) \leq \frac{1}{2}.
\]
This implies, like in Theorem 4.3, that pointwise a.e. we have the estimate
\[
|\nabla \phi_1| \leq C |\nabla \tilde{\phi}_1|.
\]
By (4.23) it follows that, extending via \(\phi_1 = \phi \) on \(B_t \), we obtain \(\phi_1 \in W^{1,3}(S^3, S^3) \) such that
\[
\int_{S^3 \setminus B_t} |\nabla \phi_1|^3 \leq C \frac{E}{N_E}.
\] (4-24)
Step 5. We now estimate from below the energy of $\phi|_{S^3 \setminus B_t}$. Denote by $\bar{\phi}_\Omega$ the average of ϕ on a domain $\Omega \subset S^3$. First we use the Poincaré inequality on $S^3 \setminus B_t$ and the fact that $|\phi| \equiv 1$ almost everywhere:

$$\int_{S^3 \setminus B_t} |\nabla \phi|^3 \geq \int_{S^3 \setminus B_t} |\phi - \bar{\phi}_{S^3 \setminus B_t}|^3 \geq \left(\int_{S^3 \setminus B_t} |\phi - \bar{\phi}_{S^3 \setminus B_t}| \right)^3 \geq \left(|S^3 \setminus B_t|(1 - |\bar{\phi}_{S^3 \setminus B_t}|) \right)^3.$$ (4-25)

Using the fact that $|\bar{\phi}_{S^3}| \leq \frac{1}{4}$, $|\bar{\phi}_{B_t}| \leq 1$ and the triangle inequality, we have

$$|\bar{\phi}_{S^3 \setminus B_t}| \leq |\bar{\phi}_{S^3}| |S^3| + |B_t| |\bar{\phi}_{B_t}| \leq \frac{1}{4} |S^3| + |B_t|. \quad \text{(4-26)}$$

Now, (4-25) and (4-26) and the estimate $t < \frac{1}{4}$ from Step 2 give

$$\int_{S^3 \setminus B_t} |\nabla \phi|^3 \geq \left(\frac{3}{4} |S^3| - 2 |B_t| \right)^3 \geq C. \quad \text{(4-27)}$$

From this inequality, if $\bar{\delta}$ is small enough then we obtain

$$\int_{S^3 \setminus B_t} |\nabla \phi|^3 \geq \bar{\delta}. \quad \text{(4-28)}$$

Step 6. We now define $\phi_2 := \phi_1^{-1} \phi$, where the pointwise product uses the group operation on $S^3 \sim SU(2)$. Observe that, since $|\phi| = |\phi_1| = 1$ a.e.,

$$|\nabla (\phi_1^{-1} \phi)| = |\phi_1^{-1} \nabla \phi_1 \phi_1^{-1} \phi + \phi_1^{-1} \nabla \phi| \leq |\nabla \phi| + |\nabla \phi_1|.$$ Thus, if $C/N_E < 1$ in (4-24) (i.e., if $\rho_E = e^{-CN_E}$ is small enough), then

$$\int_{S^3 \setminus B_t} |\nabla \phi_2|^3 \leq \int_{S^3 \setminus B_t} |\nabla \phi|^3 + 7 \left(\int_{S^3 \setminus B_t} |\nabla \phi_1|^3 \right)^{1/3} \left(\int_{S^3 \setminus B_t} |\nabla \phi|^3 \right)^{2/3}. \quad \text{(4-29)}$$

By using (4-28), (4-24) and (4-20) we then obtain

$$\int_{S^3 \setminus B_t} |\nabla \phi_2|^3 \leq \int_{S^3 \setminus B_t} |\nabla \phi|^3 + \frac{C |E|}{N_E^{1/3}} \leq E - \bar{\delta} + \frac{C |E|}{N_E^{1/3}}. \quad \text{(4-29)}$$

Step 7. It is now possible to conclude the proof. The estimate (4-19) for ϕ_2 follows from (4-29) if

$$N_E \geq CE^3 \bar{\delta}^3. \quad \text{(4-30)}$$

Similarly, by construction $\phi_1 \equiv \phi$ on B_t, and

$$\int_{S^3} |\nabla \phi_1|^3 = \int_{B_t} |\nabla \phi|^3 + \int_{S^3 \setminus B_t} |\nabla \phi_1|^3 \leq E - \bar{\delta} + \frac{C |E|}{N_E}. \quad \text{(4-31)}$$

Thus we reach (4-19) if

$$N_E \geq CE \bar{\delta}. \quad \text{(4-31)}$$

Recall from Step 2 that $N_E = -C \log_2 \rho_E$, so (4-30) and (4-31) translate into the requirement that $\rho_E \leq e^{-C \max\{E \bar{\delta}, (E \bar{\delta})^3\}}$, which is implied by our hypothesis since $\bar{\delta}$ is bounded. \qed
Remark 4.8. The proof of (4.27) in Step 5 gives the following general estimate, valid for bounded Sobolev functions on a compact manifold \(M \) and for any Poincaré domain \(\Omega \subset M \):

\[
\|\nabla \phi\|_{L^p(\Omega)} \geq C_\Omega \left[|M| (\|\phi\|_{L^\infty(M)} - |\phi_M|) - 2 \|\phi\|_{L^\infty(M)} |M \setminus \Omega| \right],
\]

(4.32)

where \(C_\Omega \) is the Poincaré constant of \(\Omega \).

Consider now the conformal transformations of the unit ball \(B^4 \)

\[
F_v(x) = -v + (1 - |v|^2)(x^* - v)^*, \quad \text{where } v \in B^4 \text{ and } a^* = \frac{a}{|a|^2}.
\]

Proposition 4.9 (balancing \(\Rightarrow \) extension). Let \(\phi \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \). Suppose that, for all \(v \in B^4 \),

\[
\left| \int_{\mathbb{S}^3} \phi \circ F_v \right| \geq \frac{1}{4}.
\]

Then the following function \(u : B^4 \to \mathbb{S}^3 \) extends \(\phi \):

\[
u(v) := \pi_{\mathbb{S}^3} \left(\int_{\mathbb{S}^3} \phi \circ F_v \right), \quad \text{where } \pi_{\mathbb{S}^3}(a) = \frac{a}{|a|} \text{ for } a \in \mathbb{R}^4 \setminus \{0\}.
\]

Moreover, there exists a constant \(C \) independent of \(\phi \) such that

\[
\|\nabla u\|_{L^4(B^4)} \leq C \|\nabla \phi\|_{L^3(\mathbb{S}^3)}.
\]

(4.35)

Proof. **Step 1.** After a change of variable,

\[
\int_{\mathbb{S}^3} \phi \circ F_v(x) \, dx = \int_{\mathbb{S}^3} \phi(y) |(F_v^{-1})'(y)|^3 \, dy,
\]

where \(|(F_v^{-1})'|\) is the conformal factor of \(DF_v^{-1} \). From **Lemma C.1**,\n
\[
|(F_v^{-1})'(y)| = |F'_{-v}|(y) = \frac{1 - |v|^2}{|y + v|^2};
\]

therefore,

\[
\int_{\mathbb{S}^3} \phi \circ F_v = \int_{\mathbb{S}^3} \phi(y) \left(\frac{1 - |v|^2}{|y + v|^2} \right)^3 \, dy.
\]

From [Nicolesco 1936], the function

\[
K(x, y) = |\mathbb{S}^3|^{-1} \left[\frac{1 - |y|^2}{|x - y|^2} \right]^3
\]

is the Poisson kernel for the equation

\[
\begin{aligned}
\Delta^2 u &= 0 \quad \text{on } B^4, \\
\frac{\partial u}{\partial v} |_{\partial B^4} &= 0, \\
\frac{u}{|\partial B} &= \phi.
\end{aligned}
\]

(4.36)

Therefore, the function \(\bar{u}(v) := \int_{\mathbb{S}^3} \phi \circ F_v \) satisfies (4.36).
Step 2. The following classical estimate holds for (4-36) (see [Gazzola et al. 2010, Chapter 2] for the stronger estimate $\|u\|_{W^{1,4}(\Omega)} \leq \|\phi\|_{W^{1-1/4,4}(\partial\Omega)}$):

$$\|\nabla u\|_{L^4(B^4)} \leq C \|\nabla \phi\|_{L^3(B^4)}.$$

Step 3. We note that

$$\frac{1}{4} \leq |\tilde{u}(x)| \leq C \quad \text{for all } v \in B^4$$

because of our hypothesis (4-33), $|\phi| \equiv 1$ and by the elementary estimate $\int_{S^3} ((1-|v|^2)/|y+v|^2)^3 \, dy \leq C$. As in Step 2 of the proof of Theorem 4.3 (with notation $\pi_{S^3} = \pi_a$ for $a = 0$), we obtain the pointwise estimate

$$|\nabla (\pi_{S^3} \circ \tilde{u})| \sim |\nabla \tilde{u}|.$$

The estimate (4-35) follows via Step 2. \hfill \square

Consider now the case in which the hypothesis of Proposition 4.9 is false, i.e., that there exists $v \in B^4$ with

$$\left|\int_{S^3} \phi \circ F_v\right| \leq \frac{1}{4}. \quad (4-37)$$

$F_v|_{S^3}$ is conformal and bijective (see Appendix C); thus, for $A \subset S^3$,

$$\int_A |\nabla \tilde{\phi}|^3 = \int_{F_v^{-1}(A)} |\nabla \phi|^3;$$

in particular, $\tilde{\phi} := \phi \circ F_v$ has energy at most E, like ϕ. We observe that Proposition 4.7 applies to $\tilde{\phi}$ directly due to our hypotheses. Therefore, we can find $\tilde{\phi}_1, \tilde{\phi}_2 \in W^{1,3}(S^3, SU(2))$ such that

$$\tilde{\phi} = \tilde{\phi}_1 \tilde{\phi}_2, \quad \int_{S^3} |\nabla \tilde{\phi}_i|^3 \leq E - \frac{\delta}{2} \quad \text{for } i = 1, 2.$$

We then precompose with F_v^{-1}, which preserves the pointwise product and the L^3-energy of the gradients, obtaining the same decomposition for ϕ.

The case $\tilde{\phi} \in \mathcal{G}^E$ is a bit more difficult:

Proposition 4.10. Under the assumption (4-37) and with $\tilde{\phi} := \phi \circ F_v$, suppose that $\tilde{\phi} \in \mathcal{G}^E$. Then there exists an extension $u \in W^{1,(4,\infty)}(B^4, S^3)$ of ϕ such that

$$\|\nabla u\|_{L^4,\infty(B^4)} \leq \frac{C}{\rho_E} \|\nabla \phi\|_{L^3(S^3)}^2 + \|\nabla \phi\|_{L^3(S^3)} \quad (4-38)$$

under the assumption that

$$\rho_E \leq \frac{1}{4}. \quad (4-39)$$

Proof. To simplify notations, let $\rho = \rho_E$ during this proof. We divide the domain B^4 into

$$A := F_v^{-1}(B(0, 1 - \rho)), \quad A' := B^4 \setminus A.$$
By Lemma C.2, there exists a constant C dependent only on the dimension and a function $h(v)$ such that, for $x \in A$ and under the condition (4-39),

$$\frac{h(v)}{C} \leq |F'_v|(x) \leq Ch(v). \quad (4-40)$$

Therefore, we have

$$|\{x \in A : |\nabla u|(x) > \Lambda\}| = |\{x \in A : |\nabla \tilde{u}|(F_v(x)) |F'_v|(x) > \Lambda\}| \leq |\{x \in A : |\nabla \tilde{u}|(F_v(x)) > \frac{\Lambda}{Ch(v)}\}|$$

$$= \int_{F_v(A) \cap \{y : |\nabla \tilde{u}|(y) > \Lambda/(Ch(v))\}} |F'_v|^{-4} dy$$

$$\leq C^4 \Lambda^{-4} \left(\frac{\Lambda}{Ch(v)}\right)^{4} \left|\{y \in B_{1-\rho} : |\nabla \tilde{u}| > \frac{\Lambda}{Ch(v)}\}\right|$$

$$\leq C^8 \Lambda^{-4} \|
abla \tilde{u}\|^{4}_{L^{4,\infty}(B_{1-\rho})}.$$

By bringing Λ to the other side, it follows that

$$\Lambda^{4} |\{x \in A : |\nabla u|(x) > \Lambda\}| \leq C^8 \|
abla \tilde{u}\|_{L^{4,\infty}(B(0,1-\rho))}. \quad (4-41)$$

By conformal invariance, the invertibility of F_v and the usual estimate between $L^{4,\infty}$ and L^4, we have

$$\Lambda^{4} |\{x \in A' : |\nabla u|(x) > \Lambda\}| \leq C \|
abla u\|^{4}_{L^{4}(A')} = C \|
abla \tilde{u}\|_{L^4(B \setminus B_{1-\rho})}. \quad (4-42)$$

We now sum (4-41) and (4-42) and take the supremum on $\Lambda > 0$. It follows that, up to increasing C,

$$[\nabla u]_{L^{4,\infty}(B^4)} \leq C (\|
abla \tilde{u}\|_{L^{4,\infty}(B_{1-\rho})} + \|
abla \tilde{u}\|_{L^4(B \setminus B_{1-\rho})}). \quad (4-43)$$

The estimate (4-43) together with Theorem 4.3 applied to \tilde{u} gives the desired estimate for the first summand, while for the second summand we proceed as in Step 3 of the proof of Theorem 4.3. On the small concentration regions B_t for $\tilde{\phi}$ we apply Courant’s Lemma 4.5, due to which we may project the values of $u := \tilde{u} \circ F_v^{-1}$ on \mathbb{S}^3 with little change of the gradient of u. Since F_v^{-1} is conformal, the L^3-energy of \tilde{u} on ∂B_t is the same as the L^3-energy of u on $\partial F_v^{-1}(B_t)$. By Theorem 4.4 applied to \tilde{u} as in Step 3 of the proof of Theorem 4.3, we obtain

$$\|
abla u\|_{L^4(F_v^{-1}(B \setminus B_{1-\rho}))} \leq C \|
abla \tilde{u}\|_{L^4(B \setminus B_{1-\rho})} \leq C \|
abla \tilde{\phi}\|_{L^3(\mathbb{S}^3)} = C \|
abla \tilde{\phi}\|_{L^3(\mathbb{S}^3)}.$$

This and (4-43) conclude the proof. \[\square\]

4D. **End of the proof of Theorem B**. We refer to the scheme (4-17) for the idea of the proof.

Choice of $\tilde{\delta}$. In (4-16), take $\tilde{\delta} \leq \delta/C_1$ with the notations of Theorem 4.3 and with δ is as in Theorem 4.4. If necessary, shrink $\tilde{\delta}$ so that the bound of Proposition 4.7 is also satisfied.

Choice of ρ_E. From Proposition 4.7 with the above choices of $\tilde{\delta}$, we get $\rho_E \lesssim e^{-C \max(1,E^3)}$.

Estimates for extensions. Consider again the scheme (4-17). Each time we extend some boundary datum \(\phi \) obtained during our constructions via a function \(u : B^4 \rightarrow S^3 \), we do so with one of the following estimates:

- In the case of the extensions of Theorem 4.3 or of Proposition 4.10 (which in turn actually depends on Theorem 4.3) we have
 \[
 \| \nabla u \|_{L^4,\infty} \lesssim \frac{\| \nabla \phi \|_{L^3}^2}{\rho_E} + \| \nabla \phi \|_{L^3}.
 \]

- In the case of the biharmonic extension of Proposition 4.9, we have the much better
 \[
 \| \nabla u \|_{L^4} \lesssim \| \nabla \phi \|_{L^3}.
 \]

The number of iterations to be made when we apply the procedure described in scheme (4-17) is bounded by

\[
E / \frac{1}{2} \delta \sim E.
\]

Since each iteration creates two new boundary value functions out of one, in the end we may have a decomposition into no more than

\(e^{CE} \) boundary value functions.

By the triangle inequality we see that, in this case, there exists an extension of the initial \(\phi \) satisfying

\[
\| \nabla u \|_{L^4,\infty} \lesssim e^{C \| \nabla \phi \|_{L^3}^9} \| \nabla \phi \|_{L^3}^2 + \| \nabla \phi \|_{L^3}. \tag{4-44}
\]

This gives the estimate (4-1) of Theorem \(B'' \), finishing the proof.

\[
\square
\]

5. Controlled global gauges

In this section we prove Theorem A.

5A. Scheme of the proof. We indicate here the sketch of the proof, before going through the details.

Proof. We will denote the \(L^2 \)-norm of \(F \) by \(E \). We may assume that a first guess for \(A \) (i.e., a fixed trivialization) is already given and belongs to \(W^{1,2} \) (if the bound by \(\epsilon_0 \) on the energy of \(F \) is available, we may assume more by Uhlenbeck’s result stated above, namely that one controls the \(W^{1,2} \)-norm of \(A \) by the energy).

It can be seen from the formula of change of gauge that it is equivalent to estimate either the gradient of the trivialization \(g \) or the gradient of the connection \(A \) in that gauge.

We define \(f \) by iteration on the energy bound \(E \). The main steps are as follows (see the scheme (5-1)):

- Uhlenbeck’s theorem [1982b] already gives a gauge with an \(L^4 \)-estimate of the gradient of the trivialization if the energy of \(F \) is smaller than \(\epsilon_0 \).
- Let \(\rho_F \) be the largest scale at which no more than \(\frac{1}{2} \epsilon_0 \) of the \(L^2 \)-norm of \(F \) concentrates.
In the case $\rho_F \geq \rho_E := C_{\text{inj}}(M)2^{-E/\epsilon_1}$, we iteratively extend our gauge on the small simplices of a triangulation using Theorem B''; see Section 5B. The estimates depend only on M^4.

- The alternative is $\rho_F \leq \rho_E$. Then, consider a point x_0 at which $|F|$ concentrates and look at the geodesic dyadic rings

$$R_k := B(x_0, 2^{k+1}\rho_F) \setminus B(x_0, 2^k\rho_F), \quad k \in \{0, \ldots, \lfloor \log_2(C_{\text{inj}}/\rho_F) \rfloor \}.$$
By the pigeonhole principle and by the choice of ϵ_1, we ensure the existence of a small energy slice along a geodesic sphere of radius $t \sim 2^{k_0}\rho_F$. We have extensions of the connections with curvatures of energy smaller than $E - \frac{1}{2}\epsilon_0$. We use Lemma 5.4. To avoid subtleties about traces, we will ensure that these two connections coincide on an open set. The choice of slice is described in Section 5D.

- Then we separately trivialize these two connections. By iterative assumption we then define $f(E)$ based on $f(E - \frac{1}{2}\epsilon_0)$ and on the function f_1 of Theorem B. The detailed bounds are given in Section 5E.

5B. Iterations based on a suitable triangulation. Define, for ϵ_0 as in Theorem 5.1, the radius

$$\rho_F := \inf \left\{ \rho > 0 : \int_{B_\rho(x_0)} |F|^2 = \frac{1}{2}\epsilon_0 \text{ for some } x_0 \in M \right\},$$

where $\rho_E := C_{\text{inj}}(M)2^{-E/\epsilon_1}$ and $\rho_{\text{inj}}(M)$ is the injectivity radius of M. The constant ϵ_1 will be fixed later. Fix a triangulation on M with in-radius $\geq \rho_E$ and size $\leq \rho_E$, with implicit constants bounded by 4. We choose $C < 1$ in the definition of ρ_E so that each simplex of the triangulation is contained in a ball of radius $\frac{1}{2}\rho_{\text{inj}}(M)$. In particular, all k-simplices of the triangulation are bi-Lipschitz equivalent to S^k for $k = 1, \ldots, 4$.

We recall here the main result of [Uhlenbeck 1982b]:

By the pigeonhole principle and by the choice of ϵ_1, we ensure the existence of a small energy slice along a geodesic sphere of radius $t \sim 2^{k_0}\rho_F$. We have extensions of the connections with curvatures of energy smaller than $E - \frac{1}{2}\epsilon_0$. We use Lemma 5.4. To avoid subtleties about traces, we will ensure that these two connections coincide on an open set. The choice of slice is described in Section 5D.

- Then we separately trivialize these two connections. By iterative assumption we then define $f(E)$ based on $f(E - \frac{1}{2}\epsilon_0)$ and on the function f_1 of Theorem B. The detailed bounds are given in Section 5E.

5B. Iterations based on a suitable triangulation. Define, for ϵ_0 as in Theorem 5.1, the radius

$$\rho_F := \inf \left\{ \rho > 0 : \int_{B_\rho(x_0)} |F|^2 = \frac{1}{2}\epsilon_0 \text{ for some } x_0 \in M \right\},$$

where $\rho_E := C_{\text{inj}}(M)2^{-E/\epsilon_1}$ and $\rho_{\text{inj}}(M)$ is the injectivity radius of M. The constant ϵ_1 will be fixed later. Fix a triangulation on M with in-radius $\geq \rho_E$ and size $\leq \rho_E$, with implicit constants bounded by 4. We choose $C < 1$ in the definition of ρ_E so that each simplex of the triangulation is contained in a ball of radius $\frac{1}{2}\rho_{\text{inj}}(M)$. In particular, all k-simplices of the triangulation are bi-Lipschitz equivalent to S^k for $k = 1, \ldots, 4$.

We recall here the main result of [Uhlenbeck 1982b]:

By the pigeonhole principle and by the choice of ϵ_1, we ensure the existence of a small energy slice along a geodesic sphere of radius $t \sim 2^{k_0}\rho_F$. We have extensions of the connections with curvatures of energy smaller than $E - \frac{1}{2}\epsilon_0$. We use Lemma 5.4. To avoid subtleties about traces, we will ensure that these two connections coincide on an open set. The choice of slice is described in Section 5D.

- Then we separately trivialize these two connections. By iterative assumption we then define $f(E)$ based on $f(E - \frac{1}{2}\epsilon_0)$ and on the function f_1 of Theorem B. The detailed bounds are given in Section 5E.

5B. Iterations based on a suitable triangulation. Define, for ϵ_0 as in Theorem 5.1, the radius

$$\rho_F := \inf \left\{ \rho > 0 : \int_{B_\rho(x_0)} |F|^2 = \frac{1}{2}\epsilon_0 \text{ for some } x_0 \in M \right\},$$

where $\rho_E := C_{\text{inj}}(M)2^{-E/\epsilon_1}$ and $\rho_{\text{inj}}(M)$ is the injectivity radius of M. The constant ϵ_1 will be fixed later. Fix a triangulation on M with in-radius $\geq \rho_E$ and size $\leq \rho_E$, with implicit constants bounded by 4. We choose $C < 1$ in the definition of ρ_E so that each simplex of the triangulation is contained in a ball of radius $\frac{1}{2}\rho_{\text{inj}}(M)$. In particular, all k-simplices of the triangulation are bi-Lipschitz equivalent to S^k for $k = 1, \ldots, 4$.

We recall here the main result of [Uhlenbeck 1982b]:

By the pigeonhole principle and by the choice of ϵ_1, we ensure the existence of a small energy slice along a geodesic sphere of radius $t \sim 2^{k_0}\rho_F$. We have extensions of the connections with curvatures of energy smaller than $E - \frac{1}{2}\epsilon_0$. We use Lemma 5.4. To avoid subtleties about traces, we will ensure that these two connections coincide on an open set. The choice of slice is described in Section 5D.

- Then we separately trivialize these two connections. By iterative assumption we then define $f(E)$ based on $f(E - \frac{1}{2}\epsilon_0)$ and on the function f_1 of Theorem B. The detailed bounds are given in Section 5E.

5B. Iterations based on a suitable triangulation. Define, for ϵ_0 as in Theorem 5.1, the radius

$$\rho_F := \inf \left\{ \rho > 0 : \int_{B_\rho(x_0)} |F|^2 = \frac{1}{2}\epsilon_0 \text{ for some } x_0 \in M \right\},$$

where $\rho_E := C_{\text{inj}}(M)2^{-E/\epsilon_1}$ and $\rho_{\text{inj}}(M)$ is the injectivity radius of M. The constant ϵ_1 will be fixed later. Fix a triangulation on M with in-radius $\geq \rho_E$ and size $\leq \rho_E$, with implicit constants bounded by 4. We choose $C < 1$ in the definition of ρ_E so that each simplex of the triangulation is contained in a ball of radius $\frac{1}{2}\rho_{\text{inj}}(M)$. In particular, all k-simplices of the triangulation are bi-Lipschitz equivalent to S^k for $k = 1, \ldots, 4$.

We recall here the main result of [Uhlenbeck 1982b]:

By the pigeonhole principle and by the choice of ϵ_1, we ensure the existence of a small energy slice along a geodesic sphere of radius $t \sim 2^{k_0}\rho_F$. We have extensions of the connections with curvatures of energy smaller than $E - \frac{1}{2}\epsilon_0$. We use Lemma 5.4. To avoid subtleties about traces, we will ensure that these two connections coincide on an open set. The choice of slice is described in Section 5D.

- Then we separately trivialize these two connections. By iterative assumption we then define $f(E)$ based on $f(E - \frac{1}{2}\epsilon_0)$ and on the function f_1 of Theorem B. The detailed bounds are given in Section 5E.
Theorem 5.1 (Uhlenbeck gauge). There exists $\epsilon_0 > 0$ such that, if the curvature satisfies $\int_{B_1} |F|^2 \leq \epsilon_0$, then there is a gauge $\phi \in W^{2,2}(B_1, SU(2))$ in which the connection satisfies $\|A_\phi\|_{W^{1,2}(B_1)} \leq C \|F\|_{L^2(B_1)}$ with $C > 0$ depending only on the dimension.

Theorem 5.1 gives a trivialization ϕ_i associated to each 4-simplex C_i such that the expression of A in those coordinates,

$$A_i = \phi_i^{-1} d\phi_i + \phi_i^{-1} A\phi_i \quad \text{on } C_i,$$

satisfies

$$\|A_i\|_{W^{1,2}(C_i)} \leq C \|F\|_{L^2(C_i)}. \quad (5-3)$$

If we call

$$g_{ij} := \phi_j^{-1} \phi_i,$$

then $g_{ij} g_{jk} = g_{ik}$, so in particular $g_{ij}^{-1} = g_{ji}$; moreover,

$$A_j = g_{ij} d\phi_{ji} + g_{ij} A_i \phi_{ji} \quad \text{on } \partial C_i \cap \partial C_j. \quad (5-6)$$

It follows that $g_{ij} \in W^{1,3}(\partial C_i \cap \partial C_j, SU(2))$.

Lemma 5.2 (extension on a sphere). Let S^3_+ be the upper hemisphere, $S^3 \cap \{x_3 \geq 0\}$. For any $g \in W^{1,3}(S^3_+, SU(2))$, there exists $\tilde{g} \in W^{1,3}(S^3, SU(2))$ such that $\tilde{g} = g$ on S^3_+ and

$$\|
\nabla \tilde{g}\|_{L^3(S^3)} \leq C \|\nabla g\|_{L^3(S^3_+)}.
$$

Proof. Let S^3_- be a spherical cap of height $t \in \left[\frac{1}{2}, \frac{3}{2}\right]$ such that

$$\|g|_{\partial S^3_-}\|_{W^{1,2}(\partial S^3_-)} \leq C \|g\|_{W^{1,3}(S^3_+)}.$$

(5-7)

We observe that $g|_{\partial S^3_+ \cap \partial S^2} \in W^{1,2}(S^2, SU(2))$, and we desire to extend this trace inside $B^3 \simeq S^3_-$ with a good norm estimate. Let

$$\begin{cases}
\Delta \hat{g} = 0 & \text{on } B^3, \\
\hat{g} = g & \text{on } \partial B^3.
\end{cases}$$

Then we have, by the usual elliptic estimates,

$$\|\hat{g}\|_{W^{1,3}(S^3_-)} \leq C \|g|_{\partial S^3_-}\|_{W^{1,2}(\partial S^3_-)}. \quad (5-8)$$

For $a \in B^4_{1/2}$, if g_a is the radial projection of the values of \hat{g} on the boundary with center a, then (as in the projection trick of Section 2A)

$$|\nabla g_a| \leq C \frac{|\nabla \hat{g}|}{\hat{g} - a} \quad \text{and} \quad \int_{a \in B^4_{1/2}} \int_{B^3} |\nabla g_a|^3 \leq C \int_{B^3} |\nabla \hat{g}|^3 \quad (5-9).$$

Therefore, there exists $a \in B^4_{1/2}$ such that

$$\|\nabla g_a\|_{L^3(B^3 \cap S^3_-)} \leq C \|\nabla \hat{g}\|_{L^3(B^3 \cap S^3_-)}. \quad (5-10)$$

Combining the inequalities (5-7), (5-8), (5-9) and (5-10), we obtain the thesis for $\tilde{g} = g_a$ with a as above. \qed
Corollary 5.3 (iteration step). Suppose that on our 4-manifold M a connection A is fixed and an Uhlenbeck gauge ϕ_j is defined on a 4-simplex C_j, i.e., (5-4) holds with notation (5-3). Suppose that a global gauge $\tilde{\phi}$ is defined on a finite union of simplices $C_I := \bigcup_{i \in I} C_{i_0}$ and that $\partial C_j \cap C_I^{(3)}$ (where $C_I^{(3)}$ is the simplicial 3-skeleton of C_I) contains some, but not all, 3-faces of C_j. It is then possible to extend the gauge change g_{ij} of (5-5) to \tilde{g}_{ij} defined on the whole of ∂C_I with

$$\|\nabla \tilde{g}_{ij}\|_{L^3(\partial C_I)} \leq C \|\nabla g_{ij}\|_{L^3(\partial C_j \cap C_I^{(3)})},$$

where C depends only on M.

Proof. $H := (\partial C_j \cap C_I^{(3)})$ is bi-Lipschitz to a ball for δ equal to two-thirds of the smallest in-radius of a face of C_j. Here, A_j is a δ-neighborhood of A inside ∂C_j. Let $H' := (\partial C_j \cap C_I^{(3)})_{2\delta}$. The triple $(\partial C_j, H, H')$ is C-bi-Lipschitz to (S^3, S^3, K) where K is the spherical cap of height $\frac{3}{4}$ extending S^3. We apply Lemma 5.2 in order to “fill the hole” H extending the gauge g_{ij} with estimates. The bi-Lipschitz constant is bounded by the geometric constraints on our triangulation only. \qed

Given Lemma 5.2 and Corollary 5.3, we proceed iteratively on the triangulation as follows (the indices labeling the simplices are redefined during the whole procedure in a straightforward way):

- Suppose that we already defined the gauge $\tilde{\phi}_{j-1}$ on a set of $j-1$ simplices C_1, \ldots, C_{j-1} whose union forms a connected set.
- Consider a new simplex C_j extending this connected set. Use Corollary 5.3 to extend g_{ij} to \tilde{g}_{ij}.
- We apply Theorem B′ and extend \tilde{g}_{ij} to a gauge change h_{ij} defined inside C_j so that

$$\|\nabla h_{ij}\|_{L^{(4, \infty)}(C_j)} \leq f(\|\nabla \tilde{g}_{ij}\|_{L^3(C_j)}) \leq C_0,$$ (5-11)

with C_0 depending only on universal constants and on ϵ_0.
- On $\bigcup_{i < j} C_i$ let $\tilde{\phi}_j = \tilde{\phi}_{j-1}$, while on C_j we define $\tilde{\phi}_j = \phi_j h_{ij}$.

Let \tilde{A}_j be the local expression corresponding to the gauge $\tilde{\phi}_j$. Then

$$\|\tilde{A}_j\|_{L^{(4, \infty)}(C_j)} \lesssim \|A_j\|_{L^4(C_j)} + \|\nabla h_{ij}\|_{L^{(4, \infty)}(C_j)} \leq \epsilon_0 + C_0.$$

Iterating this gauge extension strategy, we obtain a global gauge \tilde{A} on the whole of M such that

$$\|\tilde{A}\|_{L^{(4, \infty)}(M)} \leq C(\text{number of simplices})(C_0 + \epsilon_0) \leq C \frac{\text{Vol}(M)}{\rho_F^4}.\quad (5-12)$$

The above bound depends on the geometry of M and on the energy E of the curvature only. Note that the above reasoning works only as long as $\rho_F \lesssim \rho_E$. We next consider the case $\rho_F \geq \rho_E$.

5C. Extending the connection with small curvature changes. Let ϵ_0 be as in Theorem 5.1.

Lemma 5.4 (finding good slices). There exists a constant ϵ_1 with the following properties: If M is a fixed 4-manifold with a $W^{1,2}$-connection A and if $B_{2t}(x_0) \subset M$ is a geodesic ball such that

$$t \int_{\partial B_t} |F|^2 \leq \epsilon_1,$$
then there exists \(\hat{A} \in W^{1,2}(\mathcal{O} M, \text{su}(2)) \) such that \(\hat{A} = A \) on \(B_t \) and

\[
\int_{M \setminus B_t} |F_{\hat{A}}|^2 \leq \frac{\epsilon_0}{4}.
\]

Proof. Up to a change of gauge, which does not increase the norm, we may assume the Neumann condition

\[
\langle A, v \rangle \equiv 0 \quad \text{on} \quad \partial B_t.
\]

This is obtained, for example, by minimizing \(\| g^{-1} dg + g^{-1} A g \|_{L^2(B_t)} \) among \(g \in W^{2,2}(B_t, \text{SU}(2)) \).

Extend \(A \) to \(B_{2t} \setminus B_t \) by \(\tilde{A} := \pi^* \pi^* A \), where \(\pi(x) = t x / |x| \) and \(\pi_{\partial B_t} \) is the inclusion. Using the hypothesis, we obtain

\[
\int_{B_{2t} \setminus B_t} |d \tilde{A} + \frac{1}{2} [\tilde{A}, \tilde{A}]|^2 \leq C \epsilon_1.
\]

We apply a change of gauge \(g = g(\sigma) \) depending only on the angular variable \(\sigma \in \partial B^4 \) and such that

\[
d^* A_{g} \big|_{\partial B_t} = 0.
\]

This preserves (5-13) and gives, as \(s \to 0 \),

\[
C \epsilon_1 \geq \int_{B_t \cap \partial B_t} |d A_{g} + \frac{1}{2} [A_{g}, A_{g}]|^2 \geq \int_{B_t \cap \partial B_t} |d A|^2 - o(s) \int_{B_t \cap \partial B_t} |\nabla A|^2.
\]

Therefore, \(A_{g} \in W^{1,2}(\mathcal{O} \partial B_t, \text{su}(2)) \), \(\tilde{A}_{g} \in W^{1,2}(\mathcal{O} B_{2t} \setminus B_t, \text{su}(2)) \), and \(A_{g}, \tilde{A}_{g} \) satisfy (5-13). Therefore, \(\tilde{A}_{g} \) extends by \(A_{g} \) in a neighborhood of \(\partial B_t \), giving still a \(W^{1,2} \) gauge. Observe that, by Sobolev embedding,

\[
\int_{\partial B_t} |[A, A]|^2 \lesssim \left(\int_{\partial B_t} |\nabla A|^2 \right)^2
\]

and, by Hodge decomposition and using \(d^* A_{g} \big|_{\partial B_t} = 0 \),

\[
\int_{\partial B_t} |\nabla A|^2 \lesssim \int_{\partial B_t} (|d A|^2 + |d^* A|^2) \lesssim \int_{\partial B_t} |F_{A}|^2 + \left(\int_{\partial B_t} |\nabla A|^2 \right)^2.
\]

For \(X = \| \nabla A \|^2_{L^2(\partial B_t)} \) we get \(X \leq \epsilon_1 + X^2 \), and thus we may assume that

\[
t \int_{\partial B_t} |\nabla A|^2 \leq C t \int_{\partial B_t} |F|^2.
\]

Define \(\hat{A} := \chi_t A \) for a smooth \([0, 1]\)-valued cutoff function \(\chi_t \) such that \(\chi_t \equiv 1 \) on \(B_t \) and \(\chi_t \equiv 0 \) outside \(B_{2t} \). We obtain

\[
\int_{B_{2t}} |F_{\hat{A}}|^2 \leq \int_{B_t} |F_{A}|^2 + C \epsilon_1
\]

and we can extend \(\hat{A} \equiv 0 \) outside \(B_{2t} \), obtaining the desired estimate for \(\epsilon_1 \) small enough. \(\square \)
5D. Cutting M by a small energy slice. Suppose for this subsection that $\rho_F < \rho_E$. Let C be as in the definition of ρ_E and define

$$\rho_1 := \begin{cases} \inf \{ \rho \geq \rho_F : \int_{B_{2\rho}\setminus B_{\rho}} |F|^2 \leq \frac{1}{4} \epsilon_1 \} & \text{if this is less than } C\rho_{\text{inj}}(M), \\ C\rho_{\text{inj}} & \text{otherwise.} \end{cases}$$

Since $\rho_F < \rho_E$ and by the choice of ϵ_1, ρ_1 is rather small and $B_{2\rho_1}$ is bi-Lipschitz to B_1. Thus Lemma 5.4 applies. More precisely, let $t_1 \in [\rho_1, \frac{5}{4} \rho_1], t_2 \in [\frac{7}{4} \rho_1, 2\rho_1]$. There exist $t_i, i = 1, 2$, such that

$$t_i \int_{\partial B_{t_i}} |F|^2 \leq \epsilon_1.$$

5E. Strategies after cutting. Let ϵ_0 be as in Theorem 5.1. We pursue different strategies depending on the energy of F outside $B_{2\rho_1}$.

The case $\int_{M \setminus B_{2\rho_1}} |F|^2 \geq \frac{1}{2} \epsilon_0$. Split to the regions B_{t_2} and $M \setminus B_{t_1}$ and do induction on the energy in order to separately find gauges satisfying our estimates. Lemma 5.4 gives extensions

$$\begin{cases} \hat{A}_1 \equiv A \text{ on } B_{t_2} & \text{s.t. } \int_{M} |F_{\hat{A}_1}|^2 \leq \int_{B_{t_2}} |F_A|^2 + C\epsilon_1, \\ \hat{A}_2 \equiv A \text{ on } M \setminus B_{t_1} & \text{s.t. } \int_{M} |F_{\hat{A}_2}|^2 \leq \int_{B_{t_1}} |F_A|^2 + C\epsilon_1. \end{cases} \quad (5-14)$$

In particular, \hat{A}_1, \hat{A}_2 are equivalent on $B_{\frac{7}{4} \rho_1 \setminus B_{\frac{5}{4} \rho_1}}$ and

$$\int |F_{\hat{A}_i}|^2 \leq \int |F_A|^2 - \frac{1}{4} \epsilon_0.$$

If we can find global gauges $g_i^\infty, i = 1, 2$, in which \hat{A}_i have expressions \hat{A}_i^∞ with $L^{(4,\infty)}$ bounds as in Theorem B, then it is enough to apply

$$g_{12}^\infty := (g_1^\infty)^{-1} g_2^\infty$$

on $R := B_{\frac{7}{4} \rho_1 \setminus B_{\frac{5}{4} \rho_1}}$ in order to obtain

$$A_{2}^\infty = g_{12}^\infty A_1^\infty (g_{12})^{-1} + g_{12}^\infty d(g_{12}^{-1})$$

and $\|\nabla g_{12}^\infty\|_{L^{(4,\infty)}(R)} \leq f(E - \frac{1}{4} \epsilon_0)$. Then there exists $t_3 \in [\frac{5}{4} \rho_1, \frac{7}{4} \rho_1]$ such that

$$\int_{\partial B_{t_3}} |\nabla g_{12}^\infty|^3 \leq f(E - \frac{1}{4} \epsilon_0).$$

By Theorem B we can find a $W^{1,(4,\infty)}$-extension h_{12}^∞ of g_{12}^∞ to a map from B_{t_3} to $SU(2)$. Thus, if we call f_1 the function of Theorem B, then

$$\|\nabla h_{12}^\infty\|_{L^{(4,\infty)}(B_{t_3})} \leq f_1(f(E - \frac{1}{4} \epsilon_0)).$$

If we define

$$g_{12}^\infty := \begin{cases} g_2^\infty & \text{on } M^4 \setminus B_{t_3}, \\ h_{12}^\infty g_1^\infty & \text{on } B_{t_3}. \end{cases}$$ \quad (5-15)
then ∇g^∞ is estimated by an universal constant times

$$f_1\left(f\left(E - \frac{1}{4}\varepsilon_0\right)\right) + f\left(E - \frac{1}{4}\varepsilon_0\right).$$

The case $\int_{M \setminus B_{2\rho_1}} |F|^2 \leq \frac{1}{2}\varepsilon_0$. Outside B_{ρ_1} we apply directly Theorem 5.1, while on $B_{2\rho_1}$ we extend the so-obtained gauge via Theorem B'. If we call A_1, A_2 the so-obtained connections on $B_{2\rho_1}, M \setminus B_{\rho_1}$ respectively, then there exists $t \in [\rho_1, 2\rho_1]$ such that

$$\int_{\partial B_t} (|A_1|^3 + |A_2|^3) \leq C(f_1(\varepsilon_0) + \varepsilon_0).$$

As above, the same bound is true also for the gradient of the change of gauge ∇g_{12}. Theorem B gives the extension h_{12} to a gauge in $W^{1,(4,\infty)}(B_t, SU(2))$ with

$$\|\nabla h_{12}\|_{L^{4,\infty}(B_{t_3})} \leq f_1(C(f_1(\varepsilon_0) + \varepsilon_0)).$$

Then choose

$$g^\infty := \begin{cases} g_2 & \text{on } M^4 \setminus B_{t_3}, \\ h_{12}g_1 & \text{on } B_{t_3}. \end{cases}$$

This g^∞ satisfies an estimate independent on E and dependent only on ε_0, again allowing us to define $f(E)$ inductively. \qed

Appendix A: Uhlenbeck small energy extension

We use the strategy from [Uhlenbeck 1982a] to prove Theorem 4.4. The analogy is in the method of proof more than in the result.

First recall that $W^{1,2}(X, \mathbb{S}^3) = W^{1,2}(X, \mathbb{R}^4) \cap \{u : u(x) \in \mathbb{S}^3 \text{ a.e.}\}$ and observe that we attain the infimum

$$\inf\left\{\int_{B^4} |\nabla P|^2 : P \in W^{1,2}(B^4, \mathbb{S}^3), P = P_0 \text{ on } \partial B^4\right\}. \quad (A-1)$$

Indeed, a minimizing sequence will have a $W^{1,2}$-weakly convergent subsequence, which thus converges pointwise everywhere. By weak lower semicontinuity a minimizer exists, and by convexity it is unique. The minimizer P distributionally verifies

$$\text{div}(P^{-1}\nabla P) = 0. \quad (A-2)$$

Lemma A.1 (a priori estimates). There exists $\varepsilon > 0$ with the following property: Let P be an extension of $P_0 \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3)$ with $\|P - I\|_{W^{1,4}(B^4)} \leq \varepsilon$ that satisfies (A-2). We identify \mathbb{S}^3 with the Lie group $SU(2)$. Then there exists a constant C_ε such that

$$\|P - I\|_{W^{4/3,3}(B^4)} \leq C_\varepsilon \|\nabla P_0\|_{L^3(\mathbb{S}^3, \mathbb{S}^3)}. \quad (A-3)$$

Proof. By L^2-Hodge decomposition,

$$P^{-1}dP = dU + d^*V, \quad (A-4)$$
where V is the unique minimizer of
\[
\min \left\{ \int_{B^4} |d^*V - P^{-1}dP|^2, \, *V|_{\partial B^4} = 0, \, dV = 0 \right\};
\]
thus,
\[
\begin{cases}
\Delta V = dd^*V = dP^{-1} \wedge dP, \\
dV = 0, \\
*V = 0.
\end{cases}
\]
We claim that
\[
\|\nabla V\|_{L^3(\partial B^4)} \lesssim \epsilon \|P - I\|_{W^{1,4}(B^4)}. \tag{A-5}
\]
To see this, observe that $d(P^{-1}) = P^{-1}dP P^{-1}$ and $P, \, P^{-1} \in L^\infty$ with norm equal to 1 so, by the elliptic, Hölder and Poincaré estimates,
\[
\|\nabla V\|_{W^{1,2}(B^4)} \lesssim \|dP^{-1} \wedge dP\|_{L^2(B^4)} \lesssim \|d(P^{-1})\|_{L^4(B^4)} \|dP\|_{L^4(B^4)}
\]
\[
\lesssim \|dP\|_{L^4(B^4)} \|P^{-1}\|_{L^\infty}^8 \|\nabla P\|_{L^4(B^4)}
\]
\[
\lesssim \epsilon \|P - I\|_{W^{1,4}(B^4)}. \tag{A-6}
\]
The trace and Sobolev embedding inequalities
\[
\|V\|_{L^p(\partial B^4)} \lesssim \|V\|_{W^{1-1/q, q}(\partial B^4)} \lesssim \|V\|_{W^{1,q}(B^4)}
\]
are valid for $q = 2, \, p = 3$. Therefore, we obtain (A-5).

Using the trace of the Hodge decomposition formula (A-4) on the boundary, we obtain from (A-5) that
\[
\|dU - P_0^{-1}dP_0\|_{L^3(\partial B^4)} \lesssim \epsilon \|P - I\|_{W^{1,4}(B^4)}. \tag{A-7}
\]
Like for V, for U we have
\[
\Delta U = d^*dU = d^*(P^{-1}dP) = 0.
\]
We apply the elliptic estimates for U to obtain
\[
\|dU\|_{W^{1,3,3}(B^4)} \lesssim \|\nabla U\|_{L^3(\partial B^4)}, \tag{A-8}
\]
while (A-7), the triangle inequality and the fact that $P_0 \|_{L^\infty} = 1$ give
\[
\|U\|_{L^3(\partial B^4)} \lesssim \|dU - P_0^{-1}dP_0\|_{L^3(\partial B^4)} + \|P_0^{-1}dP_0\|_{L^3(\partial B^4)}
\]
\[
\lesssim \epsilon \|P - I\|_{W^{1,4}(B^4)} + \|dP_0\|_{L^3(\partial B^4)}. \tag{A-9}
\]
Using (A-4), the triangle inequality and (A-6), (A-8), (A-9) we obtain
\[
\|P^{-1}dP\|_{W^{1,3,3}(B^4)} \lesssim \|d^*V\|_{W^{1,3,3}(B^4)} + \|dU\|_{W^{1,3,3}(B^4)}
\]
\[
\lesssim \epsilon \|P - I\|_{W^{1,4}(B^4)} + \|dP_0\|_{L^3(\partial B^4)}. \tag{A-10}
\]
Write $dP = P P^{-1}dP$ and observe that $P \in L^\infty \cap W^{1,4}$ since \mathbb{S}^3 is bounded, while $P^{-1}dP \in W^{1,3,3}$ by (A-10). We now use Lemma B.1 for the product fg with $f = P, \, g = P^{-1}dP$ and we obtain
\[
\|dP\|_{W^{1,3,3}(B^4)} \lesssim \|P^{-1}dP\|_{W^{1,3,3}} (\|P\|_{L^\infty} + \|P - I\|_{W^{1,4}(B^4)}). \tag{A-11}
\]
Note again that \(\|P\|_{L^\infty} = 1 \) and deduce then from (A-10), Lemma B.1 and the Poincaré inequality that
\[
\|P - I\|_{W^{4/3,3}(B^4)} \leq C\|dP_0\|_{L^3(\mathbb{S}^3)} + C\varepsilon\|P - I\|_{W^{1,4}(B^4)}.
\] (A-12)
By the Sobolev inequality we can absorb the \(\|P - I\| \) term to the left, and we obtain the thesis. \(\square \)

We are now ready for the proof of Theorem 4.4. We restate the same result with a slight change of notation and more details.

Theorem A.2 (small energy extension). There exist two constants \(\delta > 0 \), \(C > 0 \) with the following property: Suppose \(Q \in W^{1,3}(\mathbb{S}^3, \mathbb{S}^3) \) is such that \(\|dQ\|_{L^3(\mathbb{S}^3)} \leq \delta \). Then there exists an extension \(P \in W^{1,4}(B^4, \mathbb{S}^3) \) satisfying
\[
\|P - I\|_{W^{1,4}(B^4)} \leq C\|dQ\|_{L^3(\mathbb{S}^3)}.
\] (A-13)

Proof. Define the following two sets, with \(K > 0 \) fixed later:
\[
\mathcal{Q}_\epsilon^\alpha = \{ Q \in W^{1,3+\alpha}(\mathbb{S}^3, SU(2)) : \|\nabla Q\|_{L^3} \leq \epsilon \},
\]
\[
\mathcal{F}_{\epsilon,C}^\alpha = \{ Q \in \mathcal{Q}_\epsilon^\alpha : \exists P \in W^{1,4+\alpha}(B^4, SU(2)), \text{div}(P^{-1}\nabla P) = 0 \text{ on } B^4, P = Q \text{ on } \partial B^4, \|P - I\|_{W^{1,4}(B^4)} \leq K\|\nabla Q\|_{L^3(\partial B^4)} \|P - I\|_{W^{1,4+\alpha}(B^4)} \leq C\|\nabla Q\|_{L^{3+\alpha}(\partial B^4)} \}.
\] (A-14)
The claim of our theorem states that a \(P \in \mathcal{F}_{\epsilon,C}^\alpha \) can be constructed to extend any \(Q \in \mathcal{Q}_\epsilon^\alpha \) when \(\delta \) is small enough. The strategy of the proof is to use the supercritical spaces \(\mathcal{Q}_\epsilon^\alpha \), \(\alpha > 0 \) to approximate \(\mathcal{Q}_\epsilon^\alpha \). We divide the proof into five steps, paralleling Uhlenbeck [1982a].

Claim 1. \(\mathcal{Q}_\epsilon^\alpha \) is connected for all \(\epsilon, \alpha \geq 0 \).

Claim 2. \(\mathcal{F}_{\epsilon,C}^\alpha \) is closed (in \(\mathcal{Q}_\epsilon^\alpha \)) with respect to the \(W^{1,3+\alpha} \)-norm for \(\alpha \geq 0 \) and for any \(C > 0 \).

Claim 3. For \(\epsilon > 0 \) small enough and \(\alpha > 0 \), there exists \(C = C_\alpha \) such that the set \(\mathcal{F}_{\epsilon,C}^\alpha \) is open in \(\mathcal{Q}_\epsilon^\alpha \) with respect to the \(W^{1,3+\alpha} \)-topology.

Claim 4. \(\mathcal{Q}_\epsilon^0 \) is contained in the \(W^{1,3} \)-closure of \(\bigcup_{\alpha > 0} \mathcal{Q}_\epsilon^\alpha \).

Proof of Claim 1. This is straightforward, since \(\mathcal{Q}_\epsilon^\alpha \) embeds in \(C^0,\mathcal{V}(\mathbb{S}^3, SU(2)) \). \(\square \)

Proof of Claim 2. Consider a family \(Q_j \in \mathcal{F}_{\epsilon,C}^\alpha \) with associated \(P_j \) as in (A-14) which converge to \(Q \) in \(W^{1,3+\alpha} \). We extract a weakly convergent subsequence of the \(P_j \) and the estimate passes to the limit by weak lower semicontinuity (and by convergence of the \(Q_j \)). Similarly, the equations pass to weak limits, since they are intended in the weak sense. \(\square \)

Ideas for Claim 3. For the proof we need to study the behavior of solutions to \(\text{div}(P^{-1}\nabla P) = 0 \), which is regarded here as an equation \(\mathcal{N}_\alpha(P) = 0 \) with \(P \) close to the constant \(I \), which is a zero of \(\mathcal{N}_\alpha \). The equation considered is elliptic. The proof of the claim is thus done by linearization of \(\mathcal{N} \) near \(I \) and by the implicit function theorem. Ellipticity of the equation translates into invertibility of this linearized operator. The estimate of the \(W^{1,4} \)-norm follows from the a priori estimate of Lemma A.1 once we choose, for example, \(K \leq \frac{1}{2}C_\epsilon \). See Lemma A.3 for the complete proof. \(\square \)
Proof of Claim 4. Consider \(Q \in G_{\epsilon}^0 \). There exists a sequence \(Q_i \in C^\infty(\mathbb{S}^3, \text{SU}(2)) \) such that \(Q_i \to Q \) in \(W^{1,3}(\mathbb{S}^3, \text{SU}(2)) \); see [Bethuel 1991; Hang and Lin 2003] — by the density proofs of these works it follows that we may also assume \(Q_i \in G_{\epsilon_i}^{\alpha_i} \) for some sequence \(\alpha_i \to 0^+ \). The \(L^3 \)-norm of a function \(f \) can be obtained as

\[
\lim_{q \to 3^+} \| f \|_{L^q},
\]

so in particular we may assume up to extracting a subsequence that \(\epsilon_i \leq 2\epsilon \).

To conclude the proof, consider \(Q \in G_{\epsilon_{2\delta}}^0 \). We use Claim 4 to approximate \(Q \) in \(W^{1,3} \)-norm by \(Q_i \in G_{\epsilon_{2\delta}}^{\alpha_i} \) with \(\alpha_i > 0 \). From Claims 1–3 it follows that there exist functions \(P_i \in W^{1,4+\alpha_i}(B^4, \text{SU}(2)) \) such that

\[
\| P_i - I \|_{W^{1,4}(B^4)} \leq K \| dQ_i \|_{L^3(\mathbb{S}^3)} \leq 2K\delta.
\]

The \(P_i \) have a weakly convergent subsequence whose limit \(P \) satisfies

\[
\| P - I \|_{W^{1,4}(B^4)} \leq 2K\delta \quad \text{and} \quad \begin{cases} \text{div}(P^{-1}\nabla P) = 0 & \text{on } B^4 \\ P = Q & \text{on } \mathbb{S}^3. \end{cases}
\]

Choose \(\delta > 0 \) such that \(2K\delta \leq \epsilon \) for \(\epsilon \) as in Lemma A.1. We can then apply that lemma and obtain that

\[
\| P - I \|_{W^{1,4}(B^4)} \leq c \| P - I \|_{W^{4/3,3}(B^4)} \leq cC_\epsilon \| Q \|_{L^3(\mathbb{S}^3)}.
\]

We now complete the details of the proof of Claim 3:

Lemma A.3. There exist \(\epsilon > 0, K > 0 \) such that for all \(\alpha > 0 \) there exists \(C_\alpha > 0 \) with the following property: Let \(Q_0 \in W^{1,3+\alpha}(\mathbb{S}^3, \text{SU}(2)) \) and let \(P_0 \in W^{1,4+\alpha}(B^4, \text{SU}(2)) \) be an extension of \(Q_0 \) which satisfies \(\text{div}(P_0^{-1}\nabla P_0) = 0 \). If the estimates

\[
\| dQ_0 \|_{W^{1,3}(\mathbb{S}^3)} < \epsilon, \quad \text{(A-15)}
\]

\[
\| P_0 - I \|_{W^{1,4}(B^4)} \leq K \| dQ_0 \|_{W^{1,3}(\mathbb{S}^3)}, \quad \text{(A-16)}
\]

\[
\| P_0 - I \|_{W^{1,4+\alpha}(B^4)} \leq C_\alpha \| dQ_0 \|_{W^{1,3+\alpha}(\mathbb{S}^3)}, \quad \text{(A-17)}
\]

hold then, for some \(\delta > 0 \) depending on \(Q_0 \), for all \(Q \) satisfying

\[
\| Q - Q_0 \|_{W^{1,3+\alpha}(\mathbb{S}^3, \text{SU}(2))} < \delta \quad \text{(A-18)}
\]

there exists an extension \(P \) of \(Q \) satisfying the same equation \(\text{div}(P^{-1}\nabla P) = 0 \) and such that (A-15), (A-16), (A-17) hold with \(P, Q \) in place of \(P_0, Q_0 \).

Proof. We fix \(Q \) satisfying (A-18) and (A-15). The proof is divided into two parts:

Claim 3.1. For \(\delta > 0 \) small enough and for \(Q \) satisfying (A-18), there exists an extension \(P \) of \(Q \) solving \(\text{div}(P^{-1}\nabla P) = 0 \) and such that (A-17) holds.

Claim 3.2. The function \(P \) of Claim 3.1 satisfies (A-16).

Proof of Claim 3.2. This follows directly from Lemma A.1. \(\square \)
We have to show that for
\[Q - Q_0 \|_{W^{1,3+\alpha}} \geq c_\alpha (Q - Q_0 \|_{L^\infty} \Leftrightarrow \| Q_0^{-1} Q - I \|_{L^\infty} \leq \frac{\varepsilon}{c_\alpha} \]
and \(\exp^{-1} \) is well defined in a neighborhood of the identity.

We consider the problem of extending \(Q_0 \exp(V) \) inside \(B^4 \) to a function \(P = P_0 \exp(U) \). Extend \(V \) to \(\tilde{V} \) such that \(\Delta \tilde{V} = 0 \) inside \(B^4 \).

We look for a \(P \) of the form \(P_0 \exp(\tilde{V}) \exp(U) \). We thus consider the equation
\[\mathcal{N}(U, V) := d^*(\exp(-U) \exp(-\tilde{V}) P_0^{-1} d(P_0 \exp(\tilde{V}) \exp(U))) = 0. \tag{A-19} \]
In order to solve (A-19) it is useful to look at the operator
\[\mathcal{N}(V, U) : W^{1,4+\alpha}_0(B^4, su(2)) \to W^{-1,4+\alpha}(B^4, su(2)). \tag{A-20} \]
We have to show that for \(\delta > 0 \) small enough, for each \(Q \) satisfying (A-18) (i.e., for each small enough \(V \)), there exists a unique \(U \) such that \(\mathcal{N}(V, U) = 0 \). We prove that \(\mathcal{N}(V, U) \) is \(C^1 \) near \((U, V) = (0, 0) \) and that \(\partial \mathcal{N}/\partial U(0, 0) \) is an isomorphism, given the existence of \(\delta > 0 \) as desired.

A simple calculation gives
\[\frac{\partial \mathcal{N}}{\partial U} \cdot \eta = \frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{N}(U + t \eta, V) = d^*d\eta - d^*[\eta, \exp(-U) \exp(-\tilde{V}) P_0^{-1} d(P_0 \exp(\tilde{V})) \exp(U)] \]
\[:= \Delta \eta - L \eta. \]
We observe that \(d^*d = \Delta \) is an isomorphism between the spaces above, so it will be enough to show that for \(U, \tilde{V} \) small enough in the \(W^{1,4+\alpha} \)-norm the commutator term \(L \eta \) is just a small perturbation of \(\Delta \) (with respect to the norms present in (A-20)). First note that we can write
\[L \eta = [\nabla \eta, X] + [\eta, \text{div} X], \text{ where } X := \exp(-U) \exp(-\tilde{V}) P_0^{-1} d(P_0 \exp(\tilde{V})) \exp(U). \]

Estimate for \([\nabla \eta, X]\). First note that by the Sobolev, Hölder and triangle inequalities,
\[||[\nabla \eta, X]||_{W^{-1,4+\alpha}} \lesssim ||[\nabla \eta, X]||_{L^{p_\alpha}} \lesssim ||\nabla \eta||_{L^{4+\alpha}} ||X||_{L^4}, \]
where
\[\frac{1}{p_\alpha} = \frac{1}{4+\alpha} + \frac{1}{4}. \]
We then observe
\[X = \exp(-U) \exp(-\tilde{V}) P_0^{-1} d(P_0 \tilde{V}) \exp(\tilde{V}) \exp(U) \]
and note \(|\exp A| = 1 \); therefore,
\[||X||_{L^4} = ||d(P_0 \tilde{V})||_{L^4} \lesssim ||dP_0||_{L^4} + ||d \tilde{V}||_{L^4} \lesssim \varepsilon + \delta. \]
We thus have the first desired estimate,
\[||[\nabla \eta, X]||_{W^{-1,4+\alpha}} \lesssim (\varepsilon + \delta)||\eta||_{W^{1,4+\alpha}}. \]
Estimate for $[\eta, \text{div } X]$. Here we start with

$$
\|[\eta, \text{div } X]\|_{W^{-1.4+\alpha}} \lesssim \|\eta\|_{L^\infty} \|\text{div } X\|_{L^{p\alpha}}.
$$

Note that $\|\eta\|_{L^\infty} \lesssim \|\eta\|_{W^{1.4+\alpha}}$ by the Sobolev embedding. We start the computations for the second fact or above. Note that

$$
\nabla (P_0 \exp \tilde{V}) = (\nabla P_0) \exp \tilde{V} + P_0 \nabla (\exp \tilde{V})
$$

and then expand:

$$
div X = \text{div} [\exp(-U) \exp(-\tilde{V}) P_0^{-1} \nabla (P_0 \exp \tilde{V}) \exp U]
$$

$$
= \nabla (\exp(-U)) \exp(-\tilde{V}) P_0^{-1} \nabla (P_0 \exp \tilde{V}) \exp U
$$

$$
+ \exp(-U) \nabla (\exp(-\tilde{V})) P_0^{-1} \nabla (P_0 \exp \tilde{V}) \exp U
$$

$$
+ \exp(-U) \exp(-\tilde{V}) \text{div} (P_0^{-1} \nabla P_0) \exp \tilde{V} \exp U
$$

$$
+ \exp(-U) \exp(-\tilde{V}) P_0^{-1} P_0 \text{div} (\exp \tilde{V}) \exp U
$$

$$
+ \exp(-U) \exp(-\tilde{V}) P_0^{-1} \nabla P_0 \nabla (\exp \tilde{V}) \exp U
$$

$$
+ \exp(-U) \exp(-\tilde{V}) P_0^{-1} \nabla (P_0 \exp \tilde{V}) \nabla (\exp U)
$$

We have $\text{div} (P_0^{-1} \nabla P_0) = 0$ and $\text{div} \nabla (\exp(\tilde{V})) = 0$, so two terms cancel. Note also the fact that $\|P_0^{-1} \nabla P_0\|_{L^4} \leq \|\nabla P_0\|_{L^4} \leq \epsilon$. For estimating $\nabla (\exp(\pm \tilde{V}))$ observe that \tilde{V} satisfies a Dirichlet boundary value problem, therefore we assume the estimate $\|\tilde{V}\|_{W^{1.4+\alpha}} \lesssim \delta$, and $\|U\|_{W^{1.4+\alpha}} \lesssim \delta$, which, by the smoothness of \exp, imply $\|\nabla (\exp(\pm \tilde{V}))\|_{L^{4+\alpha}} \lesssim \delta$ and $\|\nabla (\exp(\pm U))\|_{L^{4+\alpha}} \lesssim \delta$. From all this it follows that we can estimate

$$
\|\text{div } X\|_{L^{p\alpha}} \lesssim \|\nabla (\exp(-U))\|_{L^{4+\alpha}} \|\nabla (P_0 \exp \tilde{V})\|_{L^4} + \|\nabla (\exp(-\tilde{V}))\|_{L^{4+\alpha}} \|\nabla (P_0 \exp \tilde{V})\|_{L^4}
$$

$$
+ \|\nabla P_0\|_{L^4} \|\nabla (\exp(\tilde{V}))\|_{L^{4+\alpha}} + \|\nabla (\exp(\tilde{U}))\|_{L^{4+\alpha}} \|\nabla (P_0 \exp \tilde{V})\|_{L^4}
$$

$$
\lesssim \delta \|\nabla (P_0 \exp \tilde{V})\|_{L^4} + \epsilon \delta
$$

$$
\lesssim \delta (\epsilon + \delta).
$$

We combine all the estimates and obtain the desired smallness result,

$$
\|[\eta, \text{div } X]\|_{W^{-1.4+\alpha}} \lesssim \delta (\epsilon + \delta) \|\eta\|_{W^{1.4+\alpha}}.
$$

End of proof. We now have that

$$
\|L \eta\|_{W^{-1.4+\alpha}} \lesssim (\delta + 1)(\epsilon + \delta) \|\eta\|_{W^{1.4+\alpha}},
$$

while

$$
\|\Delta \eta\|_{W^{-1.4+\alpha}} \gtrsim \|\eta\|_{W^{1.4+\alpha}}.
$$

Therefore, for small enough ϵ, δ we have also

$$
\|(\Delta - L) \eta\|_{W^{-1.4+\alpha}} \gtrsim \|\eta\|_{W^{1.4+\alpha}}.
$$

This concludes the proof.
Appendix B: A product estimate with only one bounded factor

Lemma B.1 (cf. [Brézis and Mironescu 2001]). Let Ω be a smooth compact 4-manifold. If $f \in W^{1/3,3}(\Omega)$ and $g \in W^{1,4} \cap L^\infty(\Omega)$, then we have the following estimate, with the implicit constant depending only on Ω:

$$\|fg\|_{W^{1/3,3}(\Omega)} \lesssim \|f\|_{W^{1/3,3}(\Omega)}(\|g\|_{L^\infty(\Omega)} + \|g\|_{W^{1,4}(\Omega)}).$$

Proof. The estimates for the nonhomogeneous part of the norms are trivial, so we concentrate on the homogeneous part.

We use the Littlewood–Paley decompositions $f = \sum_{j=0}^{\infty} f_j$, $g = \sum_{k=0}^{\infty} g_k$, and we recall that the $W^{s,p}$-norm is equivalent to the Triebel–Lizorkin \dot{F}_4^1-norm and the $W^{\theta,4}$-norm is equivalent to the \dot{F}_p^s-norm, where in general the following definition holds:

$$\|f\|_{\dot{F}_{p,q}^s} = \|2^ks f_k(x)|\|_{L_p}.$$

We use different notations $\| \cdot \|, | \cdot |$ for the different norms just to facilitate the reading of formulas. As is usual in the theory of paraproducts, we estimate separately the following three contributions (where $g^k := \sum_{i=0}^{k} g_k$, and similarly for f^k)

$$fg = \sum_i f_i g_i^{i-4} + \sum_{|k-l|<4} f_k g_l + \sum_i f_i^{i-4} g_i =: I + II + III.$$

The support of $(i g_i^{i-4})$ is included in $B_{2l+2} \setminus B_{2l-2}$; thus,

$$\|I\|_{W^{1/3,3}} = \left\| \sum_i f_i g_i^{i-4} \right\|_{W^{1/3,3}} \sim \left[\int_{\Omega} \left(\sum_i 2^{2i/3} |f_i g_i^{i-4}|^2 \right)^{3/2} \right]^{1/3}$$

and analogously for $III = \sum_i f_i^{i-4} g_i$. Regarding the term II, we will estimate only $II' := \sum_i f_i g_i$ because the same estimate will apply also to the finitely many contributions of the form $\sum_i f_i g_{i+l}$ with $0 < l < 4$.

We start with the most difficult term, III. From above we have

$$\|III\|_{W^{1/3,3}} \sim \left[\int \left(\sum_i 2^{2i/3} |f_i^{i-4} g_i| \right)^2 \right]^{3/2} \|f\|_{W^{1/3,3}}^{1/3} \lesssim \left[\int \left(\sum_i 2^{-4i/3} |f_i^{i-4}| \right)^{3/2} \left(\sum_i 2^{2i} |g_i|^2 \right)^{3/2} \right]^{1/3} \lesssim \left[\int \left(\sum_i 2^{-4i/3} |f_i^{i-4}|^2 \right)^{6/12} \left(\int \left(\sum_i 2^{2i} |g_i|^2 \right)^2 \right)^{1/4} \right]^{1/2} \lesssim \|f\|_{W^{2/3,12}} \|g\|_{W^{1,4}} \lesssim \|f\|_{W^{1/3,3}} \|g\|_{W^{1,4}}.$$
For the term I we have
\[\|I\|_{W^{1,3}_3} \sim \left[\int \left(\sum_i 2^{2i/3} |f_i g^{i-4}|^2 \right)^{3/2} \right]^{1/3} \lesssim \|g\|_{L^\infty} \|f\|_{W^{1,3}_3} \]
because of the estimate $\|g^{i-4}\|_{L^\infty} \lesssim \|g\|_{L^\infty}$. Finally, we estimate II', as promised. We prove it by duality; namely, we prove that II' is bounded as a linear functional on the unit ball of the dual $W^{-1,3/2}_3$. Consider therefore h in this ball. The support of $\hat{f_i g_i}$ is included in B^2_{2i+2}, so some terms cancel:
\[
\begin{align*}
\int h \cdot II' &\sim \sum_{k,i} \int h_k f_i g_i = \sum_{k \leq i+4} \int h_k f_i f_j = \sum_i \int h^{i+4} f_i g_i \\
&\leq \left| \sum_i \int 2^{-i/3} h^{i+4} 2^{i/3} f_i g_i \right| \\
&\leq \|g\|_{B^0_{0,\infty}} \int \left(\sum_i 2^{-2i/3} \|h^{i+4}\|^2 \right)^{1/2} \left(\sum_i 2^{2i/3} |f_i|^2 \right)^{1/2} \\
&\leq \|g\|_{W^{1,4}} \|h\|_{W^{-1,3/2}_3} \|f\|_{W^{1,3}_3}.
\end{align*}
\]
The last estimate follows, recalling that
\[\|g\|_{B^0_{0,\infty}} := \sup_i \|g_i\|_{L^\infty} \]
and that in dimension 4 we have continuous embeddings
\[W^{1,4} \hookrightarrow \text{BMO} \hookrightarrow B^0_{0,\infty}. \]
Summing up the different terms, we are done.

\[\Box \]

Appendix C: The Möbius group of B^n

We call the Möbius group of \mathbb{R}^n the group $M(\mathbb{R}^n)$ generated by all similarities and the inversion with respect to the unit sphere. Recall that a similarity is an affine map of the form
\[x \mapsto \lambda Kx + b \quad \text{with} \quad \lambda > 0, \ K \in O(n), \ b \in \mathbb{R}^n, \]
and the inversion $i_{c,r}$ with respect to the sphere $\partial B(c, r)$ is the map
\[x \mapsto c + r^2 \frac{x-c}{|x-c|^2}. \]
The formula $i_{c,r} = (r^2 \text{id} + c) \circ i_{0,1} \circ (\text{id} - c)$ shows that all inversions belong to $M(\mathbb{R}^n)$. We use the abridged notation
\[x^* := i_{1,0}(x) = \frac{x}{|x|^2}. \]
The Möbius group of B^{n+1} is the subgroup $M(B^{n+1})$ of all transformations belonging to $M(\mathbb{R}^{n+1})$ which preserve B^{n+1}. Similarly, we define the Möbius group $M(\mathbb{S}^n)$ of the unit sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$. The
general form of an element $\gamma \in M(B^{n+1})$ is

$$\gamma = K \circ F_v \quad \text{with} \quad K \in O(n), \quad v \in B^{n+1}, \quad F_v : = -v + (1 - |v|^2)(x^* - v)^*. $$

We use the following basic properties of the functions F_v, which can be found in [Ahlfors 1981, Chapter 2]:

Lemma C.1.

- We have
 $$|F_v|(x) = \frac{1 - |v|^2}{|x, v|},$$
 where $[x, y] = |x||x^* - y| = |y||y^* - x|$.
- F_v is conformal. We have $F_v^{-1} = F_{-v}$, $F_v(0) = -v$ and $F_v(v) = 0$.
- The conformal factor $|F'_v|(x)$ is explicitly computed as
 $$|F'_v|(x) = \frac{1 - |v|^2}{1 + |x|^2|v|^2 - 2v \cdot x} = \frac{|v^*|^2 - 1}{|x - v^*|^2}.$$
- The restriction $F_v|_{\mathbb{S}^n}$ belongs to $M(\mathbb{S}^n)$; in particular, $F_v|_{\mathbb{S}^n}$ is a conformal involution and
 $$|(F_v|_{\mathbb{S}^n})'(x) = \frac{1 - |v|^2}{|x - v|^2}.$$

The next lemma gives the estimate needed for the case when v is close to ∂B^{n+1}:

Lemma C.2. Suppose that

$$\rho \leq \frac{1}{4}.$$

Then, on $F_v^{-1}(B_{1-\rho})$, the following estimate holds with a constant C dependent only on the dimension:

$$\frac{h(v)}{C} \leq |F'_v|(x) \leq Ch(v).$$

Proof. We will calculate

$$\max\{\frac{|F'_v|(y)}{|F'_v|(y')} : y \in F_v^{-1}(B_{1-\rho})\} \leq \max\{\frac{|F'_v|(y)}{|F'_v|(y')} : y, y' \in F_v^{-1}(B_{1-\rho})\}$$

and we show that this quantity is bounded. The following equalities hold:

$$\max\left\{\frac{|F'_v|(x)}{|F'_v|(x')} : x, x' \in B_{1-\rho}\right\} = \max\left\{\frac{|F'_v|(x)}{|F'_v|(x')} : x, x' \in B_{1-\rho}\right\}$$

$$= \max\left\{\frac{|(F_v^{-1})'(x)|}{|(F_v^{-1})'(x')|} : x, x' \in B_{1-\rho}\right\}$$

$$= \max\left\{\frac{|F'_v(F_v^{-1}(x'))}{|F'_v(F_v^{-1}(x))|} : x, x' \in B_{1-\rho}\right\}$$

$$= \min\left\{\frac{|F'_v(y')}{|F'_v(y)|} : y, y' \in F_v^{-1}(B_{1-\rho})\right\}.$$
From the formula of the previous lemma it follows that

$$\nabla_x |F'_v|(x) = 2\frac{|v^*|^2 - 1}{|v^* - x|^4} (v^* - x);$$

therefore, $|F'_v|$ achieves its extrema on $B_{1-\rho}$ at $\pm (1-\rho)v/|v|$. The maximum M and the minimum m of $|F'_v|$ satisfy

$$M = \frac{1 - |v|^2}{1 + |v|^2(1-\rho)^2 - 2(1-\rho)|v|} = \frac{1 - |v|^2}{(1 - (1-\rho)|v|)^2},$$

$$m = \frac{1 - |v|^2}{1 + |v|^2(1-\rho)^2 + 2(1-\rho)|v|} = \frac{1 - |v|^2}{(1 + (1-\rho)|v|)^2},$$

$$M/m = \left(\frac{1 + (1-\rho)|v|}{1 - (1-\rho)|v|}\right)^2 \sim (1 - (1-\rho)|v|)^{-2} \sim 1,$$

which finishes the proof. □

References

[Ahlfors 1981] L. V. Ahlfors, Möbius transformations in several dimensions, University of Minnesota, School of Mathematics, Minneapolis, MN, 1981. MR 84m:30028 Zbl 0517.30001

GLOBAL GAUGES AND GLOBAL EXTENSIONS IN OPTIMAL SPACES

MIRCEA PETRACHE: decostruttivismo@gmail.com
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris 6), place Jussieu, 4, 75005 Paris, France

TRISTAN RIVIÈRE: decostruttivismo@gmail.com
Department of Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantized slow blow-up dynamics for the corotational energy-critical harmonic heat flow</td>
<td>1713</td>
</tr>
<tr>
<td>Pierre Raphaël and Remi Schweyer</td>
<td></td>
</tr>
<tr>
<td>Existence and orbital stability of the ground states with prescribed mass for the L^2-critical and supercritical NLS on bounded domains</td>
<td>1807</td>
</tr>
<tr>
<td>Benedetta Noris, Hugo Tavares and Gianmaria Verzini</td>
<td></td>
</tr>
<tr>
<td>Boundary blow-up under Sobolev mappings</td>
<td>1839</td>
</tr>
<tr>
<td>Aapo Kauranen and Pekka Koskela</td>
<td></td>
</tr>
<tr>
<td>Global gauges and global extensions in optimal spaces</td>
<td>1851</td>
</tr>
<tr>
<td>Mircea Petrache and Tristan Rivièr</td>
<td></td>
</tr>
<tr>
<td>Concentration of small Willmore spheres in Riemannian 3-manifolds</td>
<td>1901</td>
</tr>
<tr>
<td>Paul Laurain and Andrea Mondino</td>
<td></td>
</tr>
<tr>
<td>Hole probabilities of $\text{SU}(m + 1)$ Gaussian random polynomials</td>
<td>1923</td>
</tr>
<tr>
<td>Junyan Zhu</td>
<td></td>
</tr>
<tr>
<td>Stochastic homogenization of viscous Hamilton–Jacobi equations and applications</td>
<td>1969</td>
</tr>
<tr>
<td>Scott N. Armstrong and Hung V. Tran</td>
<td></td>
</tr>
<tr>
<td>Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system</td>
<td>2009</td>
</tr>
<tr>
<td>David Barbato, Francesco Morandin and Marco Romito</td>
<td></td>
</tr>
</tbody>
</table>